FHSST Authors

The Free High School Science Texts: Textbooks for High School Students Studying the Sciences
Physics
Grades 10-12

Version 0
November 9, 2008

Copyright 2007 "Free High School Science Texts"
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no FrontCover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

STOP!!!!

Did you notice the FREEDOMS we've granted you?

Our copyright license is different! It grants freedoms

 rather than just imposing restrictions like all those other textbooks you probably own or use.- We know people copy textbooks illegally but we would LOVE it if you copied our's - go ahead copy to your hearts content, legally!
- Publishers' revenue is generated by controlling the market, we don't want any money, go ahead, distribute our books far and wide - we DARE you!
- Ever wanted to change your textbook? Of course you have! Go ahead, change ours, make your own version, get your friends together, rip it apart and put it back together the way you like it. That's what we really want!
- Copy, modify, adapt, enhance, share, critique, adore, and contextualise. Do it all, do it with your colleagues, your friends, or alone but get involved! Together we can overcome the challenges our complex and diverse country presents.
- So what is the catch? The only thing you can't do is take this book, make a few changes and then tell others that they can't do the same with your changes. It's share and share-alike and we know you'll agree that is only fair.
- These books were written by volunteers who want to help support education, who want the facts to be freely available for teachers to copy, adapt and re-use. Thousands of hours went into making them and they are a gift to everyone in the education community.

FHSST Core Team

Mark Horner ; Samuel Halliday ; Sarah Blyth ; Rory Adams ; Spencer Wheaton

FHSST Editors

Jaynie Padayachee ; Joanne Boulle ; Diana Mulcahy ; Annette Nell ; René Toerien ; Donovan
Whitfield

FHSST Contributors

Rory Adams ; Prashant Arora; Richard Baxter ; Dr. Sarah Blyth ; Sebastian Bodenstein ; Graeme Broster ; Richard Case ; Brett Cocks ; Tim Crombie ; Dr. Anne Dabrowski ; Laura Daniels ; Sean Dobbs ; Fernando Durrell ; Dr. Dan Dwyer ; Frans van Eeden ; Giovanni Franzoni ; Ingrid von Glehn ; Tamara von Glehn ; Lindsay Glesener ; Dr. Vanessa Godfrey ; Dr. Johan Gonzalez ; Hemant Gopal ; Umeshree Govender ; Heather Gray ; Lynn Greeff ; Dr. Tom Gutierrez ; Brooke Haag ; Kate Hadley ; Dr. Sam Halliday ; Asheena Hanuman ; Neil Hart ; Nicholas Hatcher ; Dr. Mark Horner ; Robert Hovden ; Mfandaidza Hove ; Jennifer Hsieh ; Clare Johnson ; Luke Jordan ; Tana Joseph ; Dr. Jennifer Klay ; Lara Kruger ; Sihle Kubheka ; Andrew Kubik ; Dr. Marco van Leeuwen ; Dr. Anton Machacek; Dr. Komal Maheshwari ; Kosma von Maltitz ; Nicole Masureik ; John Mathew ; JoEllen McBride ; Nikolai Meures ; Riana Meyer ; Jenny Miller ; Abdul Mirza ; Asogan Moodaly ; Jothi Moodley ; Nolene Naidu ; Tyrone Negus ; Thomas O'Donnell ; Dr. Markus Oldenburg ; Dr. Jaynie Padayachee ; Nicolette Pekeur ; Sirika Pillay ; Jacques Plaut ; Andrea Prinsloo ; Joseph Raimondo ; Sanya Rajani ; Prof. Sergey Rakityansky ; Alastair Ramlakan ; Razvan Remsing ; Max Richter ; Sean Riddle ; Evan Robinson ; Dr. Andrew Rose ; Bianca Ruddy ; Katie Russell ; Duncan Scott ; Helen Seals ; Ian Sherratt ; Roger Sieloff ; Bradley Smith ; Greg Solomon; Mike Stringer ; Shen Tian ; Robert Torregrosa ; Jimmy Tseng ; Helen Waugh ; Dr. Dawn Webber ; Michelle Wen ; Dr. Alexander Wetzler ; Dr. Spencer Wheaton ; Vivian White ; Dr. Gerald Wigger ; Harry Wiggins ; Wendy Williams ; Julie Wilson ; Andrew Wood ; Emma Wormauld ; Sahal Yacoob ; Jean Youssef

Contributors and editors have made a sincere effort to produce an accurate and useful resource. Should you have suggestions, find mistakes or be prepared to donate material for inclusion, please don't hesitate to contact us. We intend to work with all who are willing to help make this a continuously evolving resource!
www.fhsst.org

Contents

I Introduction 1
1 What is Physics? 3
II Grade 10 - Physics 5
2 Units 9
2.1 Introduction 9
2.2 Unit Systems 9
2.2.1 SI Units 9
2.2.2 The Other Systems of Units 10
2.3 Writing Units as Words or Symbols 10
2.4 Combinations of SI Base Units 12
2.5 Rounding, Scientific Notation and Significant Figures 12
2.5.1 Rounding Off 12
2.5.2 Error Margins 13
2.5.3 Scientific Notation 13
2.5.4 Significant Figures 15
2.6 Prefixes of Base Units 15
2.7 The Importance of Units 17
2.8 How to Change Units 17
2.8.1 Two other useful conversions 19
2.9 A sanity test 19
2.10 Summary 19
2.11 End of Chapter Exercises 21
3 Motion in One Dimension - Grade 10 23
3.1 Introduction 23
3.2 Reference Point, Frame of Reference and Position 23
3.2.1 Frames of Reference 23
3.2.2 Position 25
3.3 Displacement and Distance 28
3.3.1 Interpreting Direction 29
3.3.2 Differences between Distance and Displacement 29
3.4 Speed, Average Velocity and Instantaneous Velocity 31
3.4.1 Differences between Speed and Velocity 35
3.5 Acceleration 38
3.6 Description of Motion 39
3.6.1 Stationary Object 40
3.6.2 Motion at Constant Velocity 41
3.6.3 Motion at Constant Acceleration 46
3.7 Summary of Graphs 48
3.8 Worked Examples 49
3.9 Equations of Motion 54
3.9.1 Finding the Equations of Motion 54
3.10 Applications in the Real-World 59
3.11 Summary 61
3.12 End of Chapter Exercises: Motion in One Dimension 62
4 Gravity and Mechanical Energy - Grade 10 67
4.1 Weight 67
4.1.1 Differences between Mass and Weight 68
4.2 Acceleration due to Gravity 69
4.2.1 Gravitational Fields 69
4.2.2 Free fall 69
4.3 Potential Energy 73
4.4 Kinetic Energy 75
4.4.1 Checking units 77
4.5 Mechanical Energy 78
4.5.1 Conservation of Mechanical Energy 78
4.5.2 Using the Law of Conservation of Energy 79
4.6 Energy graphs 82
4.7 Summary 83
4.8 End of Chapter Exercises: Gravity and Mechanical Energy 84
5 Transverse Pulses - Grade 10 87
5.1 Introduction 87
5.2 What is a medium? 87
5.3 What is a pulse? 87
5.3.1 Pulse Length and Amplitude 88
5.3.2 Pulse Speed 89
5.4 Graphs of Position and Velocity 90
5.4.1 Motion of a Particle of the Medium 90
5.4.2 Motion of the Pulse 92
5.5 Transmission and Reflection of a Pulse at a Boundary 96
5.6 Reflection of a Pulse from Fixed and Free Ends 97
5.6.1 Reflection of a Pulse from a Fixed End 97
5.6.2 Reflection of a Pulse from a Free End 98
5.7 Superposition of Pulses 99
5.8 Exercises - Transverse Pulses 102
6 Transverse Waves - Grade 10 105
6.1 Introduction 105
6.2 What is a transverse wave? 105
6.2.1 Peaks and Troughs 106
6.2.2 Amplitude and Wavelength 107
6.2.3 Points in Phase 109
6.2.4 Period and Frequency 110
6.2.5 Speed of a Transverse Wave 111
6.3 Graphs of Particle Motion 115
6.4 Standing Waves and Boundary Conditions 118
6.4.1 Reflection of a Transverse Wave from a Fixed End 118
6.4.2 Reflection of a Transverse Wave from a Free End 118
6.4.3 Standing Waves 118
6.4.4 Nodes and anti-nodes 122
6.4.5 Wavelengths of Standing Waves with Fixed and Free Ends 122
6.4.6 Superposition and Interference 125
6.5 Summary 127
6.6 Exercises 127
7 Geometrical Optics - Grade 10 129
7.1 Introduction 129
7.2 Light Rays 129
7.2.1 Shadows 132
7.2.2 Ray Diagrams 132
7.3 Reflection 132
7.3.1 Terminology 133
7.3.2 Law of Reflection 133
7.3.3 Types of Reflection 135
7.4 Refraction 137
7.4.1 Refractive Index 139
7.4.2 Snell's Law 139
7.4.3 Apparent Depth 143
7.5 Mirrors 146
7.5.1 Image Formation 146
7.5.2 Plane Mirrors 147
7.5.3 Ray Diagrams 148
7.5.4 Spherical Mirrors 150
7.5.5 Concave Mirrors 150
7.5.6 Convex Mirrors 153
7.5.7 Summary of Properties of Mirrors 154
7.5.8 Magnification 154
7.6 Total Internal Reflection and Fibre Optics 156
7.6.1 Total Internal Reflection 156
7.6.2 Fibre Optics 161
7.7 Summary 163
7.8 Exercises 164
8 Magnetism - Grade 10 167
8.1 Introduction 167
8.2 Magnetic fields 167
8.3 Permanent magnets 169
8.3.1 The poles of permanent magnets 169
8.3.2 Magnetic attraction and repulsion 169
8.3.3 Representing magnetic fields 170
8.4 The compass and the earth's magnetic field 173
8.4.1 The earth's magnetic field 175
8.5 Summary 175
8.6 End of chapter exercises 176
9 Electrostatics - Grade 10 177
9.1 Introduction 177
9.2 Two kinds of charge 177
9.3 Unit of charge 177
9.4 Conservation of charge 177
9.5 Force between Charges 178
9.6 Conductors and insulators 181
9.6.1 The electroscope 182
9.7 Attraction between charged and uncharged objects 183
9.7.1 Polarisation of Insulators 183
9.8 Summary 184
9.9 End of chapter exercise 184
10 Electric Circuits - Grade 10 187
10.1 Electric Circuits 187
10.1.1 Closed circuits 187
10.1.2 Representing electric circuits 188
10.2 Potential Difference 192
10.2.1 Potential Difference 192
10.2.2 Potential Difference and Parallel Resistors 193
10.2.3 Potential Difference and Series Resistors 194
10.2.4 Ohm's Law 194
10.2.5 EMF 195
10.3 Current 198
10.3.1 Flow of Charge 198
10.3.2 Current 198
10.3.3 Series Circuits 199
10.3.4 Parallel Circuits 200
10.4 Resistance 202
10.4.1 What causes resistance? 202
10.4.2 Resistors in electric circuits 202
10.5 Instruments to Measure voltage, current and resistance 204
10.5.1 Voltmeter 204
10.5.2 Ammeter 204
10.5.3 Ohmmeter 204
10.5.4 Meters Impact on Circuit 205
10.6 Exercises - Electric circuits 205
III Grade 11 - Physics 209
11 Vectors 211
11.1 Introduction 211
11.2 Scalars and Vectors 211
11.3 Notation 211
11.3.1 Mathematical Representation 212
11.3.2 Graphical Representation 212
11.4 Directions 212
11.4.1 Relative Directions 212
11.4.2 Compass Directions 213
11.4.3 Bearing 213
11.5 Drawing Vectors 214
11.6 Mathematical Properties of Vectors 215
11.6.1 Adding Vectors 215
11.6.2 Subtracting Vectors 217
11.6.3 Scalar Multiplication 218
11.7 Techniques of Vector Addition 218
11.7.1 Graphical Techniques 218
11.7.2 Algebraic Addition and Subtraction of Vectors 223
11.8 Components of Vectors 228
11.8.1 Vector addition using components 231
11.8.2 Summary 235
11.8.3 End of chapter exercises: Vectors 236
11.8.4 End of chapter exercises: Vectors - Long questions 237
12 Force, Momentum and Impulse - Grade 11 239
12.1 Introduction 239
12.2 Force 239
12.2.1 What is a force? 239
12.2.2 Examples of Forces in Physics 240
12.2.3 Systems and External Forces 241
12.2.4 Force Diagrams 242
12.2.5 Free Body Diagrams 243
12.2.6 Finding the Resultant Force 244
12.2.7 Exercise 246
12.3 Newton's Laws 246
12.3.1 Newton's First Law 247
12.3.2 Newton's Second Law of Motion 249
12.3.3 Exercise 261
12.3.4 Newton's Third Law of Motion 263
12.3.5 Exercise 267
12.3.6 Different types of forces 268
12.3.7 Exercise 275
12.3.8 Forces in equilibrium 276
12.3.9 Exercise 279
12.4 Forces between Masses 282
12.4.1 Newton's Law of Universal Gravitation 282
12.4.2 Comparative Problems 284
12.4.3 Exercise 286
12.5 Momentum and Impulse 287
12.5.1 Vector Nature of Momentum 290
12.5.2 Exercise 291
12.5.3 Change in Momentum 291
12.5.4 Exercise 293
12.5.5 Newton's Second Law revisited 293
12.5.6 Impulse 294
12.5.7 Exercise 296
12.5.8 Conservation of Momentum 297
12.5.9 Physics in Action: Impulse 300
12.5.10 Exercise 301
12.6 Torque and Levers 302
12.6.1 Torque 302
12.6.2 Mechanical Advantage and Levers 305
12.6.3 Classes of levers 307
12.6.4 Exercise 308
12.7 Summary 309
12.8 End of Chapter exercises 310
13 Geometrical Optics - Grade 11 327
13.1 Introduction 327
13.2 Lenses 327
13.2.1 Converging Lenses 329
13.2.2 Diverging Lenses 340
13.2.3 Summary of Image Properties 343
13.3 The Human Eye 344
13.3.1 Structure of the Eye 345
13.3.2 Defects of Vision 346
13.4 Gravitational Lenses 347
13.5 Telescopes 347
13.5.1 Refracting Telescopes 347
13.5.2 Reflecting Telescopes 348
13.5.3 Southern African Large Telescope 348
13.6 Microscopes 349
13.7 Summary 351
13.8 Exercises 352
14 Longitudinal Waves - Grade 11 355
14.1 Introduction 355
14.2 What is a longitudinal wave? 355
14.3 Characteristics of Longitudinal Waves 356
14.3.1 Compression and Rarefaction 356
14.3.2 Wavelength and Amplitude 357
14.3.3 Period and Frequency 357
14.3.4 Speed of a Longitudinal Wave 358
14.4 Graphs of Particle Position, Displacement, Velocity and Acceleration 359
14.5 Sound Waves 360
14.6 Seismic Waves 361
14.7 Summary - Longitudinal Waves 361
14.8 Exercises - Longitudinal Waves 362
15 Sound - Grade 11 363
15.1 Introduction 363
15.2 Characteristics of a Sound Wave 363
15.2.1 Pitch 364
15.2.2 Loudness 364
15.2.3 Tone 364
15.3 Speed of Sound 365
15.4 Physics of the Ear and Hearing 365
15.4.1 Intensity of Sound 366
15.5 Ultrasound 367
15.6 SONAR 368
15.6.1 Echolocation 368
15.7 Summary 369
15.8 Exercises 369
16 The Physics of Music - Grade 11 373
16.1 Introduction 373
16.2 Standing Waves in String Instruments 373
16.3 Standing Waves in Wind Instruments 377
16.4 Resonance 382
16.5 Music and Sound Quality 384
16.6 Summary - The Physics of Music 385
16.7 End of Chapter Exercises 386
17 Electrostatics - Grade 11 387
17.1 Introduction 387
17.2 Forces between charges - Coulomb's Law 387
17.3 Electric field around charges 392
17.3.1 Electric field lines 393
17.3.2 Positive charge acting on a test charge 393
17.3.3 Combined charge distributions 394
17.3.4 Parallel plates 397
17.4 Electrical potential energy and potential 400
17.4.1 Electrical potential 400
17.4.2 Real-world application: lightning 402
17.5 Capacitance and the parallel plate capacitor 403
17.5.1 Capacitors and capacitance 403
17.5.2 Dielectrics 404
17.5.3 Physical properties of the capacitor and capacitance 404
17.5.4 Electric field in a capacitor 405
17.6 Capacitor as a circuit device 406
17.6.1 A capacitor in a circuit 406
17.6.2 Real-world applications: capacitors 407
17.7 Summary 407
17.8 Exercises - Electrostatics 407
18 Electromagnetism - Grade 11 413
18.1 Introduction 413
18.2 Magnetic field associated with a current 413
18.2.1 Real-world applications 418
18.3 Current induced by a changing magnetic field 420
18.3.1 Real-life applications 422
18.4 Transformers 423
18.4.1 Real-world applications 425
18.5 Motion of a charged particle in a magnetic field 425
18.5.1 Real-world applications 426
18.6 Summary 427
18.7 End of chapter exercises 427
19 Electric Circuits - Grade 11 429
19.1 Introduction 429
19.2 Ohm's Law 429
19.2.1 Definition of Ohm's Law 429
19.2.2 Ohmic and non-ohmic conductors 431
19.2.3 Using Ohm's Law 432
19.3 Resistance 433
19.3.1 Equivalent resistance 433
19.3.2 Use of Ohm's Law in series and parallel Circuits 438
19.3.3 Batteries and internal resistance 440
19.4 Series and parallel networks of resistors 442
19.5 Wheatstone bridge 445
19.6 Summary 447
19.7 End of chapter exercise 447
20 Electronic Properties of Matter - Grade 11 451
20.1 Introduction 451
20.2 Conduction 451
20.2.1 Metals 453
20.2.2 Insulator 453
20.2.3 Semi-conductors 454
20.3 Intrinsic Properties and Doping 454
20.3.1 Surplus 455
20.3.2 Deficiency 455
20.4 The p-n junction 457
20.4.1 Differences between p - and n -type semi-conductors 457
20.4.2 The p-n Junction 457
20.4.3 Unbiased 457
20.4.4 Forward biased 457
20.4.5 Reverse biased 458
20.4.6 Real-World Applications of Semiconductors 458
20.5 End of Chapter Exercises 459
IV Grade 12-Physics 461
21 Motion in Two Dimensions - Grade 12 463
21.1 Introduction 463
21.2 Vertical Projectile Motion 463
21.2.1 Motion in a Gravitational Field 463
21.2.2 Equations of Motion 464
21.2.3 Graphs of Vertical Projectile Motion 467
21.3 Conservation of Momentum in Two Dimensions 475
21.4 Types of Collisions 480
21.4.1 Elastic Collisions 480
21.4.2 Inelastic Collisions 485
21.5 Frames of Reference 490
21.5.1 Introduction 490
21.5.2 What is a frame of reference? 491
21.5.3 Why are frames of reference important? 491
21.5.4 Relative Velocity 491
21.6 Summary 494
21.7 End of chapter exercises 495
22 Mechanical Properties of Matter - Grade 12 503
22.1 Introduction 503
22.2 Deformation of materials 503
22.2.1 Hooke's Law 503
22.2.2 Deviation from Hooke's Law 506
22.3 Elasticity, plasticity, fracture, creep 508
22.3.1 Elasticity and plasticity 508
22.3.2 Fracture, creep and fatigue 508
22.4 Failure and strength of materials 509
22.4.1 The properties of matter 509
22.4.2 Structure and failure of materials 509
22.4.3 Controlling the properties of materials 509
22.4.4 Steps of Roman Swordsmithing 510
22.5 Summary 511
22.6 End of chapter exercise 511
23 Work, Energy and Power - Grade 12 513
23.1 Introduction 513
23.2 Work 513
23.3 Energy 519
23.3.1 External and Internal Forces 519
23.3.2 Capacity to do Work 520
23.4 Power 525
23.5 Important Equations and Quantities 529
23.6 End of Chapter Exercises 529
24 Doppler Effect - Grade 12 533
24.1 Introduction 533
24.2 The Doppler Effect with Sound and Ultrasound 533
24.2.1 Ultrasound and the Doppler Effect 537
24.3 The Doppler Effect with Light 537
24.3.1 The Expanding Universe 538
24.4 Summary 539
24.5 End of Chapter Exercises 539
25 Colour - Grade 12 541
25.1 Introduction 541
25.2 Colour and Light 541
25.2.1 Dispersion of white light 544
25.3 Addition and Subtraction of Light 544
25.3.1 Additive Primary Colours 544
25.3.2 Subtractive Primary Colours 545
25.3.3 Complementary Colours 546
25.3.4 Perception of Colour 546
25.3.5 Colours on a Television Screen 547
25.4 Pigments and Paints 548
25.4.1 Colour of opaque objects 548
25.4.2 Colour of transparent objects 548
25.4.3 Pigment primary colours 549
25.5 End of Chapter Exercises 550
26 2D and 3D Wavefronts - Grade 12 553
26.1 Introduction 553
26.2 Wavefronts 553
26.3 The Huygens Principle 554
26.4 Interference 556
26.5 Diffraction 557
26.5.1 Diffraction through a Slit 558
26.6 Shock Waves and Sonic Booms 562
26.6.1 Subsonic Flight 563
26.6.2 Supersonic Flight 563
26.6.3 Mach Cone 566
26.7 End of Chapter Exercises 568
27 Wave Nature of Matter - Grade 12 571
27.1 Introduction 571
27.2 de Broglie Wavelength 571
27.3 The Electron Microscope 574
27.3.1 Disadvantages of an Electron Microscope 577
27.3.2 Uses of Electron Microscopes 577
27.4 End of Chapter Exercises 578
28 Electrodynamics - Grade 12 579
28.1 Introduction 579
28.2 Electrical machines - generators and motors 579
28.2.1 Electrical generators 580
28.2.2 Electric motors 582
28.2.3 Real-life applications 582
28.2.4 Exercise - generators and motors 584
28.3 Alternating Current 585
28.3.1 Exercise - alternating current 586
28.4 Capacitance and inductance 586
28.4.1 Capacitance 586
28.4.2 Inductance 586
28.4.3 Exercise - capacitance and inductance 588
28.5 Summary 588
28.6 End of chapter exercise 589
29 Electronics - Grade 12 591
29.1 Introduction 591
29.2 Capacitive and Inductive Circuits 591
29.3 Filters and Signal Tuning 596
29.3.1 Capacitors and Inductors as Filters 596
29.3.2 LRC Circuits, Resonance and Signal Tuning 596
29.4 Active Circuit Elements 599
29.4.1 The Diode 599
29.4.2 The Light Emitting Diode (LED) 601
29.4.3 Transistor 603
29.4.4 The Operational Amplifier 607
29.5 The Principles of Digital Electronics 609
29.5.1 Logic Gates 610
29.6 Using and Storing Binary Numbers 616
29.6.1 Binary numbers 616
29.6.2 Counting circuits 617
29.6.3 Storing binary numbers 619
30 EM Radiation 625
30.1 Introduction 625
30.2 Particle/wave nature of electromagnetic radiation 625
30.3 The wave nature of electromagnetic radiation 626
30.4 Electromagnetic spectrum 626
30.5 The particle nature of electromagnetic radiation 629
30.5.1 Exercise - particle nature of EM waves 630
30.6 Penetrating ability of electromagnetic radiation 631
30.6.1 Ultraviolet(UV) radiation and the skin 631
30.6.2 Ultraviolet radiation and the eyes 632
30.6.3 X-rays 632
30.6.4 Gamma-rays 632
30.6.5 Exercise - Penetrating ability of EM radiation 633
30.7 Summary 633
30.8 End of chapter exercise 633
31 Optical Phenomena and Properties of Matter - Grade 12 635
31.1 Introduction 635
31.2 The transmission and scattering of light 635
31.2.1 Energy levels of an electron 635
31.2.2 Interaction of light with metals 636
31.2.3 Why is the sky blue? 637
31.3 The photoelectric effect 638
31.3.1 Applications of the photoelectric effect 640
31.3.2 Real-life applications 642
31.4 Emission and absorption spectra 643
31.4.1 Emission Spectra 643
31.4.2 Absorption spectra 644
31.4.3 Colours and energies of electromagnetic radiation 646
31.4.4 Applications of emission and absorption spectra 648
31.5 Lasers 650
31.5.1 How a laser works 652
31.5.2 A simple laser 654
31.5.3 Laser applications and safety 655
31.6 Summary 656
31.7 End of chapter exercise 657
V Exercises 659
32 Exercises 661
VI Essays 663
Essay 1: Energy and electricity. Why the fuss? 665
33 Essay: How a cell phone works 671
34 Essay: How a Physiotherapist uses the Concept of Levers 673
35 Essay: How a Pilot Uses Vectors 675A GNU Free Documentation License677

Chapter 11

Vectors

11.1 Introduction

This chapter focuses on vectors. We will learn what is a vector, how it differs from everyday numbers, how to add, subtract and multiply them and where they appear in Physics.
Are vectors Physics? No, vectors themselves are not Physics. Physics is just a description of the world around us. To describe something we need to use a language. The most common language used to describe Physics is Mathematics. Vectors form a very important part of the mathematical description of Physics, so much so that it is absolutely essential to master the use of vectors.

11.2 Scalars and Vectors

In Mathematics, you learned that a number is something that represents a quantity. For example if you have 5 books, 6 apples and 1 bicycle, the 5,6 , and 1 represent how many of each item you have.

These kinds of numbers are known as scalars.

Definition: Scalar

A scalar is a quantity that has only magnitude (size).

An extension to a scalar is a vector, which is a scalar with a direction. For example, if you travel 1 km down Main Road to school, the quantity $\mathbf{1} \mathbf{~ k m}$ down Main Road is a vector. The $\mathbf{1} \mathbf{~ k m}$ is the quantity (or scalar) and the down Main Road gives a direction.

In Physics we use the word magnitude to refer to the scalar part of the vector.

Definition: Vectors

A vector is a quantity that has both magnitude and direction.

A vector should tell you how much and which way.
For example, a man is driving his car east along a freeway at $100 \mathrm{~km} \cdot \mathrm{hr}^{-1}$. What we have given here is a vector - the velocity. The car is moving at $100 \mathrm{~km} \cdot \mathrm{hr}^{-1}$ (this is the magnitude) and we know where it is going - east (this is the direction). Thus, we know the speed and direction of the car. These two quantities, a magnitude and a direction, form a vector we call velocity.

11.3 Notation

Vectors are different to scalars and therefore has its own notation.

11.3.1 Mathematical Representation

There are many ways of writing the symbol for a vector. Vectors are denoted by symbols with an arrow pointing to the right above it. For example, \vec{a}, \vec{v} and \vec{F} represent the vectors acceleration, velocity and force, meaning they have both a magnitude and a direction.

Sometimes just the magnitude of a vector is needed. In this case, the arrow is omitted. In other words, F denotes the magnitude of vector \vec{F}. $|\vec{F}|$ is another way of representing the magnitude of a vector.

11.3.2 Graphical Representation

Vectors are drawn as arrows. An arrow has both a magnitude (how long it is) and a direction (the direction in which it points). The starting point of a vector is known as the tail and the end point is known as the head.

Figure 11.1: Examples of vectors

Figure 11.2: Parts of a vector

11.4 Directions

There are many acceptable methods of writing vectors. As long as the vector has a magnitude and a direction, it is most likely acceptable. These different methods come from the different methods of expressing a direction for a vector.

11.4.1 Relative Directions

The simplest method of expressing direction is relative directions: to the left, to the right, forward, backward, up and down.

11.4.2 Compass Directions

Another common method of expressing directions is to use the points of a compass: North, South, East, and West.

If a vector does not point exactly in one of the compass directions, then we use an angle. For example, we can have a vector pointing 40° North of West. Start with the vector pointing along the West direction:

Then rotate the vector towards the north until there is a 40° angle between the vector and the West.

The direction of this vector can also be described as: W $40^{\circ} \mathrm{N}$ (West 40° North); or $\mathrm{N} 50^{\circ} \mathrm{W}$
 (North 50° West)

11.4.3 Bearing

The final method of expressing direction is to use a bearing. A bearing is a direction relative to a fixed point.

Given just an angle, the convention is to define the angle with respect to the North. So, a vector with a direction of 110° has been rotated clockwise 110° relative to the North. A bearing is always written as a three digit number, for example 275° or 080° (for 80°).

Exercise: Scalars and Vectors

1. Classify the following quantities as scalars or vectors:
1.112 km
1.21 m south
$1.32 \mathrm{~m} \cdot \mathrm{~s}^{-1}, 45^{\circ}$
$1.4075^{\circ}, 2 \mathrm{~cm}$
$1.5100 \mathrm{~km} \cdot \mathrm{hr}^{-1}, 0^{\circ}$
2. Use two different notations to write down the direction of the vector in each of the following diagrams:
2.1

11.5 Drawing Vectors

In order to draw a vector accurately we must specify a scale and include a reference direction in the diagram. A scale allows us to translate the length of the arrow into the vector's magnitude. For instance if one chose a scale of $1 \mathrm{~cm}=2 \mathrm{~N}(1 \mathrm{~cm}$ represents 2 N$)$, a force of 20 N towards the East would be represented as an arrow 10 cm long. A reference direction may be a line representing a horizontal surface or the points of a compass.

Method: Drawing Vectors

1. Decide upon a scale and write it down.
2. Determine the length of the arrow representing the vector, by using the scale.
3. Draw the vector as an arrow. Make sure that you fill in the arrow head.
4. Fill in the magnitude of the vector.

Worked Example 49: Drawing vectors

Question: Represent the following vector quantities:

1. $6 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ north
2. 16 m east

Answer

Step 1 : Decide upon a scale and write it down.

1. $1 \mathrm{~cm}=2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$
2. $1 \mathrm{~cm}=4 \mathrm{~m}$

Step 2 : Determine the length of the arrow at the specific scale.

1. If $1 \mathrm{~cm}=2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, then $6 \mathrm{~m} \cdot \mathrm{~s}^{-1}=3 \mathrm{~cm}$
2. If $1 \mathrm{~cm}=4 \mathrm{~m}$, then $16 \mathrm{~m}=4 \mathrm{~cm}$

Step 3 : Draw the vectors as arrows.

1. Scale used: $1 \mathrm{~cm}=2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$

Direction $=$ North
2. Scale used: $1 \mathrm{~cm}=4 \mathrm{~m}$ Direction $=$ East

16 m

Exercise: Drawing Vectors

Draw each of the following vectors to scale. Indicate the scale that you have used:

1. 12 km south
2. $1,5 \mathrm{~m} \mathrm{~N} 45^{\circ} \mathrm{W}$
3. $1 \mathrm{~m} \cdot \mathrm{~s}^{-1}, 20^{\circ}$ East of North
4. $50 \mathrm{~km} \cdot \mathrm{hr}^{-1}, 085^{\circ}$
5. $5 \mathrm{~mm}, 225^{\circ}$

11.6 Mathematical Properties of Vectors

Vectors are mathematical objects and we need to understand the mathematical properties of vectors, like adding and subtracting.
For all the examples in this section, we will use displacement as our vector quantity. Displacement was discussed in Chapter 3. Displacement is defined as the distance together with direction of the straight line joining a final point to an initial point.
Remember that displacement is just one example of a vector. We could just as well have decided to use forces or velocities to illustrate the properties of vectors.

11.6.1 Adding Vectors

When vectors are added, we need to add both a magnitude and a direction. For example, take 2 steps in the forward direction, stop and then take another 3 steps in the forward direction. The first 2 steps is a displacement vector and the second 3 steps is also a displacement vector. If we did not stop after the first 2 steps, we would have taken 5 steps in the forward direction in total. Therefore, if we add the displacement vectors for 2 steps and 3 steps, we should get a total of 5 steps in the forward direction. Graphically, this can be seen by first following the first vector two steps forward and then following the second one three steps forward:

$\xrightarrow{2 \text { steps }}+\xrightarrow{3 \text { steps }}$	$=\xrightarrow[5 \text { steps }]{ }$

We add the second vector at the end of the first vector, since this is where we now are after the first vector has acted. The vector from the tail of the first vector (the starting point) to the head of the last (the end point) is then the sum of the vectors. This is the head-to-tail method of vector addition.

As you can convince yourself, the order in which you add vectors does not matter. In the example above, if you decided to first go 3 steps forward and then another 2 steps forward, the end result would still be 5 steps forward.
The final answer when adding vectors is called the resultant. The resultant displacement in this case will be 5 steps forward.

Definition: Resultant of Vectors

The resultant of a number of vectors is the single vector whose effect is the same as the individual vectors acting together.

In other words, the individual vectors can be replaced by the resultant - the overall effect is the same. If vectors \vec{a} and \vec{b} have a resultant \vec{R}, this can be represented mathematically as,

$$
\vec{R}=\vec{a}+\vec{b}
$$

Let us consider some more examples of vector addition using displacements. The arrows tell you how far to move and in what direction. Arrows to the right correspond to steps forward, while arrows to the left correspond to steps backward. Look at all of the examples below and check them.

$$
\xrightarrow{1 \text { step }}+\xrightarrow{1 \text { step }}=\xrightarrow{2 \text { steps }}=\xrightarrow{2 \text { steps }}
$$

This example says 1 step forward and then another step forward is the same as an arrow twice as long - two steps forward.

$$
1 \text { step }+\frac{1 \text { step }}{\longleftarrow}=\stackrel{2 \text { steps }}{\longleftarrow}=2 \text { steps }
$$

This examples says 1 step backward and then another step backward is the same as an arrow twice as long - two steps backward.

It is sometimes possible that you end up back where you started. In this case the net result of what you have done is that you have gone nowhere (your start and end points are at the same place). In this case, your resultant displacement is a vector with length zero units. We use the symbol $\overrightarrow{0}$ to denote such a vector:

$$
\begin{aligned}
& \stackrel{1 \text { step }}{\longleftrightarrow}+\stackrel{1 \text { step }}{\longleftrightarrow}=\stackrel{1 \text { step }}{\stackrel{1 \text { step }}{\longrightarrow}}=\overrightarrow{0} \\
& \stackrel{1 \text { step }}{\longleftrightarrow}+\xrightarrow{1 \text { step }}=\stackrel{1 \text { step }}{\stackrel{1 \text { step }}{\longleftrightarrow}}=\overrightarrow{0}
\end{aligned}
$$

Check the following examples in the same way. Arrows up the page can be seen as steps left and arrows down the page as steps right.
Try a couple to convince yourself!

$$
\uparrow+\uparrow=\uparrow=\uparrow \quad \downarrow+\downarrow=\downarrow=\downarrow \downarrow
$$

$$
\downarrow+\uparrow=\downarrow \uparrow=\overrightarrow{0} \quad \uparrow+\downarrow=\uparrow=\overrightarrow{0}
$$

It is important to realise that the directions are not special- 'forward and backwards' or 'left and right' are treated in the same way. The same is true of any set of parallel directions:

$$
\nearrow+/=/ /=\overrightarrow{0} \quad /=/ \quad=\overrightarrow{0}
$$

In the above examples the separate displacements were parallel to one another. However the same head-to-tail technique of vector addition can be applied to vectors in any direction.

Now you have discovered one use for vectors; describing resultant displacement - how far and in what direction you have travelled after a series of movements.

Although vector addition here has been demonstrated with displacements, all vectors behave in exactly the same way. Thus, if given a number of forces acting on a body you can use the same method to determine the resultant force acting on the body. We will return to vector addition in more detail later.

11.6.2 Subtracting Vectors

What does it mean to subtract a vector? Well this is really simple; if we have 5 apples and we subtract 3 apples, we have only 2 apples left. Now lets work in steps; if we take 5 steps forward and then subtract 3 steps forward we are left with only two steps forward:

What have we done? You originally took 5 steps forward but then you took 3 steps back. That backward displacement would be represented by an arrow pointing to the left (backwards) with length 3 . The net result of adding these two vectors is 2 steps forward:

Thus, subtracting a vector from another is the same as adding a vector in the opposite direction (i.e. subtracting 3 steps forwards is the same as adding 3 steps backwards).

Important: Subtracting a vector from another is the same as adding a vector in the opposite direction.

This suggests that in this problem to the right was chosen as the positive direction. Arrows to the right are positive and arrows to the left are negative. More generally, vectors in opposite directions differ in sign (i.e. if we define up as positive, then vectors acting down are negative). Thus, changing the sign of a vector simply reverses its direction:

In mathematical form, subtracting \vec{a} from \vec{b} gives a new vector \vec{c} :

$$
\begin{aligned}
\vec{c} & =\vec{b}-\vec{a} \\
& =\vec{b}+(-\vec{a})
\end{aligned}
$$

This clearly shows that subtracting vector \vec{a} from \vec{b} is the same as adding $(-\vec{a})$ to \vec{b}. Look at the following examples of vector subtraction.

$$
\longrightarrow-\longrightarrow=\longrightarrow+\overrightarrow{0}
$$

11.6.3 Scalar Multiplication

What happens when you multiply a vector by a scalar (an ordinary number)?
Going back to normal multiplication we know that 2×2 is just 2 groups of 2 added together to give 4 . We can adopt a similar approach to understand how vector multiplication works.

11.7 Techniques of Vector Addition

Now that you have learned about the mathematical properties of vectors, we return to vector addition in more detail. There are a number of techniques of vector addition. These techniques fall into two main categories - graphical and algebraic techniques.

11.7.1 Graphical Techniques

Graphical techniques involve drawing accurate scale diagrams to denote individual vectors and their resultants. We next discuss the two primary graphical techniques, the head-to-tail technique and the parallelogram method.

The Head-to-Tail Method

In describing the mathematical properties of vectors we used displacements and the head-to-tail graphical method of vector addition as an illustration. The head-to-tail method of graphically adding vectors is a standard method that must be understood.

Method: Head-to-Tail Method of Vector Addition

1. Choose a scale and include a reference direction.
2. Choose any of the vectors and draw it as an arrow in the correct direction and of the correct length - remember to put an arrowhead on the end to denote its direction.
3. Take the next vector and draw it as an arrow starting from the arrowhead of the first vector in the correct direction and of the correct length.
4. Continue until you have drawn each vector - each time starting from the head of the previous vector. In this way, the vectors to be added are drawn one after the other head-to-tail.
5. The resultant is then the vector drawn from the tail of the first vector to the head of the last. Its magnitude can be determined from the length of its arrow using the scale. Its direction too can be determined from the scale diagram.

Worked Example 50: Head-to-Tail Addition I

Question: A ship leaves harbour H and sails 6 km north to port A. From here the ship travels 12 km east to port B, before sailing $5,5 \mathrm{~km}$ south-west to port C. Determine the ship's resultant displacement using the head-to-tail technique of vector addition.

Answer

Step 1 : Draw a rough sketch of the situation

Its easy to understand the problem if we first draw a quick sketch. The rough sketch should include all of the information given in the problem. All of the magnitudes of the displacements are shown and a compass has been included as a reference direction. In a rough sketch one is interested in the approximate shape of the vector diagram.

Step 2: Choose a scale and include a reference direction.

The choice of scale depends on the actual question - you should choose a scale such that your vector diagram fits the page.
It is clear from the rough sketch that choosing a scale where 1 cm represents 2 km (scale: $1 \mathrm{~cm}=2 \mathrm{~km}$) would be a good choice in this problem. The diagram will then take up a good fraction of an A4 page. We now start the accurate construction.
Step 3 : Choose any of the vectors to be summed and draw it as an arrow in the correct direction and of the correct length - remember to put an arrowhead on the end to denote its direction.
Starting at the harbour H we draw the first vector 3 cm long in the direction north.

Step 4 : Take the next vector and draw it as an arrow starting from the head of the first vector in the correct direction and of the correct length.
Since the ship is now at port A we draw the second vector 6 cm long starting from point A in the direction east.

Step 5 : Take the next vector and draw it as an arrow starting from the head of the second vector in the correct direction and of the correct length.
Since the ship is now at port B we draw the third vector $2,25 \mathrm{~cm}$ long starting from this point in the direction south-west. A protractor is required to measure the angle of 45°.

Step 6 : The resultant is then the vector drawn from the tail of the first vector to the head of the last. Its magnitude can be determined from the length of its arrow using the scale. Its direction too can be determined from the scale diagram.
As a final step we draw the resultant displacement from the starting point (the harbour H) to the end point (port C). We use a ruler to measure the length of this arrow and a protractor to determine its direction.

Step 7 : Apply the scale conversion

We now use the scale to convert the length of the resultant in the scale diagram to the actual displacement in the problem. Since we have chosen a scale of $1 \mathrm{~cm}=$ 2 km in this problem the resultant has a magnitude of $9,2 \mathrm{~km}$. The direction can be specified in terms of the angle measured either as $072,3^{\circ}$ east of north or on a bearing of $072,3^{\circ}$.

Step 8 : Quote the final answer

The resultant displacement of the ship is $9,2 \mathrm{~km}$ on a bearing of $072,3^{\circ}$.

Worked Example 51: Head-to-Tail Graphical Addition II

Question: A man walks 40 m East, then 30 m North.

1. What was the total distance he walked?
2. What is his resultant displacement?

Answer

Step 1 : Draw a rough sketch

Step 2 : Determine the distance that the man traveled
In the first part of his journey he traveled 40 m and in the second part he traveled 30 m . This gives us a total distance traveled of $40 \mathrm{~m}+30 \mathrm{~m}=70 \mathrm{~m}$.

Step 3 : Determine his resultant displacement

The man's resultant displacement is the vector from where he started to where he ended. It is the vector sum of his two separate displacements. We will use the head-to-tail method of accurate construction to find this vector.

Step 4 : Choose a suitable scale

A scale of 1 cm represents $10 \mathrm{~m}(1 \mathrm{~cm}=10 \mathrm{~m})$ is a good choice here. Now we can begin the process of construction.

Step 5 : Draw the first vector to scale

We draw the first displacement as an arrow 4 cm long in an eastwards direction.

Step 6 : Draw the second vector to scale
Starting from the head of the first vector we draw the second vector as an arrow 3 cm long in a northerly direction.

Step 7 : Determine the resultant vector

Now we connect the starting point to the end point and measure the length and direction of this arrow (the resultant).

Step 8 : Find the direction

To find the direction you measure the angle between the resultant and the 40 m vector. You should get about 37°.

Step 9 : Apply the scale conversion

Finally we use the scale to convert the length of the resultant in the scale diagram to the actual magnitude of the resultant displacement. According to the chosen scale $1 \mathrm{~cm}=10 \mathrm{~m}$. Therefore 5 cm represents 50 m . The resultant displacement is then $50 \mathrm{~m} 37^{\circ}$ north of east.

The Parallelogram Method

The parallelogram method is another graphical technique of finding the resultant of two vectors.

Method: The Parallelogram Method

1. Choose a scale and a reference direction.
2. Choose either of the vectors to be added and draw it as an arrow of the correct length in the correct direction.
3. Draw the second vector as an arrow of the correct length in the correct direction from the tail of the first vector.
4. Complete the parallelogram formed by these two vectors.
5. The resultant is then the diagonal of the parallelogram. The magnitude can be determined from the length of its arrow using the scale. The direction too can be determined from the scale diagram.

Worked Example 52: Parallelogram Method of Vector Addition I

Question: A force of $F_{1}=5 \mathrm{~N}$ is applied to a block in a horizontal direction. A second force $F_{2}=4 \mathrm{~N}$ is applied to the object at an angle of 30° above the horizontal.

Determine the resultant force acting on the block using the parallelogram method of accurate construction.

Answer

Step 1 : Firstly make a rough sketch of the vector diagram

Step 2 : Choose a suitable scale

In this problem a scale of $1 \mathrm{~cm}=1 \mathrm{~N}$ would be appropriate, since then the vector diagram would take up a reasonable fraction of the page. We can now begin the accurate scale diagram.

Step 3 : Draw the first scaled vector

Let us draw F_{1} first. According to the scale it has length 5 cm .

$$
5 \mathrm{~cm}
$$

Step 4 : Draw the second scaled vector

Next we draw F_{2}. According to the scale it has length 4 cm . We make use of a protractor to draw this vector at 30° to the horizontal.

Step 5 : Determine the resultant vector

Next we complete the parallelogram and draw the diagonal.

The resultant has a measured length of $8,7 \mathrm{~cm}$.

Step 6 : Find the direction

We use a protractor to measure the angle between the horizontal and the resultant. We get $13,3^{\circ}$.

Step 7 : Apply the scale conversion

Finally we use the scale to convert the measured length into the actual magnitude. Since $1 \mathrm{~cm}=1 \mathrm{~N}, 8,7 \mathrm{~cm}$ represents $8,7 \mathrm{~N}$. Therefore the resultant force is $8,7 \mathrm{~N}$ at $13,3^{\circ}$ above the horizontal.

The parallelogram method is restricted to the addition of just two vectors. However, it is arguably the most intuitive way of adding two forces acting at a point.

11.7.2 Algebraic Addition and Subtraction of Vectors

Vectors in a Straight Line

Whenever you are faced with adding vectors acting in a straight line (i.e. some directed left and some right, or some acting up and others down) you can use a very simple algebraic technique:

Method: Addition/Subtraction of Vectors in a Straight Line

1. Choose a positive direction. As an example, for situations involving displacements in the directions west and east, you might choose west as your positive direction. In that case, displacements east are negative.
2. Next simply add (or subtract) the vectors using the appropriate signs.
3. As a final step the direction of the resultant should be included in words (positive answers are in the positive direction, while negative resultants are in the negative direction).

Let us consider a few examples.

Worked Example 53: Adding vectors algebraically I

Question: A tennis ball is rolled towards a wall which is 10 m away from the wall. If after striking the wall the ball rolls a further $2,5 \mathrm{~m}$ along the ground away from the wall, calculate algebraically the ball's resultant displacement.

Answer

Step 1 : Draw a rough sketch of the situation

Step 2: Decide which method to use to calculate the resultant
We know that the resultant displacement of the ball $\left(\vec{x}_{R}\right)$ is equal to the sum of the ball's separate displacements (\vec{x}_{1} and \vec{x}_{2}):

$$
\vec{x}_{R}=\vec{x}_{1}+\vec{x}_{2}
$$

Since the motion of the ball is in a straight line (i.e. the ball moves towards and away from the wall), we can use the method of algebraic addition just explained.
Step 3 : Choose a positive direction
Let's make towards the wall the positive direction. This means that away from the wall becomes the negative direction.
Step 4 : Now define our vectors algebraically
With right positive:

$$
\begin{aligned}
& \vec{x}_{1}=+10,0 \mathrm{~m} \\
& \vec{x}_{2}=-2,5 \mathrm{~m}
\end{aligned}
$$

Step 5 : Add the vectors

Next we simply add the two displacements to give the resultant:

$$
\begin{aligned}
\vec{x}_{R} & =(+10 \mathrm{~m})+(-2,5 \mathrm{~m}) \\
& =(+7,5) \mathrm{m}
\end{aligned}
$$

Step 6 : Quote the resultant

Finally, in this case towards the wall means positive so: $\vec{x}_{R}=7,5 \mathrm{~m}$ towards the wall.

Worked Example 54: Subtracting vectors algebraically I

Question: Suppose that a tennis ball is thrown horizontally towards a wall at an initial velocity of $3 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ to the right. After striking the wall, the ball returns to the thrower at $2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. Determine the change in velocity of the ball.
Answer

Step 1 : Draw a sketch

A quick sketch will help us understand the problem.

Step 2: Decide which method to use to calculate the resultant

Remember that velocity is a vector. The change in the velocity of the ball is equal to the difference between the ball's initial and final velocities:

$$
\Delta \vec{v}=\vec{v}_{f}-\vec{v}_{i}
$$

Since the ball moves along a straight line (i.e. left and right), we can use the algebraic technique of vector subtraction just discussed.

Step 3 : Choose a positive direction

Choose towards the wall as the positive direction. This means that away from the wall becomes the negative direction.

Step 4: Now define our vectors algebraically

$$
\begin{aligned}
\vec{v}_{i} & =+3 \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
\vec{v}_{f} & =-2 \mathrm{~m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

Step 5: Subtract the vectors

Thus, the change in velocity of the ball is:

$$
\begin{aligned}
\Delta \vec{v} & =\left(-2 \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)-\left(+3 \mathrm{~m} \cdot \mathrm{~s}^{-1}\right) \\
& =(-5) \mathrm{m} \cdot \mathrm{~s}^{-1}
\end{aligned}
$$

Step 6 : Quote the resultant

Remember that in this case towards the wall means positive so: $\Delta \vec{v}=5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ to the away from the wall.

Exercise: Resultant Vectors

1. Harold walks to school by walking 600 m Northeast and then $500 \mathrm{~m} \mathrm{~N} 40^{\circ} \mathrm{W}$. Determine his resultant displacement by using accurate scale drawings.
2. A dove flies from her nest, looking for food for her chick. She flies at a velocity of $2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ on a bearing of 135° and then at a velocity of $1,2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ on a bearing of 230°. Calculate her resultant velocity by using accurate scale drawings.
3. A squash ball is dropped to the floor with an initial velocity of $2,5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. I rebounds (comes back up) with a velocity of $0,5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.
3.1 What is the change in velocity of the squash ball?
3.2 What is the resultant velocity of the squash ball?

Remember that the technique of addition and subtraction just discussed can only be applied to vectors acting along a straight line. When vectors are not in a straight line, i.e. at an angle to each other, the following method can be used:

A More General Algebraic technique

Simple geometric and trigonometric techniques can be used to find resultant vectors.

Worked Example 55: An Algebraic Solution I

Question: A man walks 40 m East, then 30 m North. Calculate the man's resultant displacement.

Answer

Step 1: Draw a rough sketch

As before, the rough sketch looks as follows:

Step 2 : Determine the length of the resultant

Note that the triangle formed by his separate displacement vectors and his resultant displacement vector is a right-angle triangle. We can thus use the Theorem of Pythagoras to determine the length of the resultant. Let x represent the length of the resultant vector. Then:

$$
\begin{aligned}
x_{R}^{2} & =(40 \mathrm{~m})^{2}+(30 \mathrm{~m})^{2} \\
x_{R}^{2} & =2500 \mathrm{~m}^{2} \\
x_{R} & =50 \mathrm{~m}
\end{aligned}
$$

Step 3 : Determine the direction of the resultant
Now we have the length of the resultant displacement vector but not yet its direction. To determine its direction we calculate the angle α between the resultant displacement vector and East, by using simple trigonometry:

$$
\begin{aligned}
\tan \alpha & =\frac{\text { oppositeside }}{\text { adjacentside }} \\
\tan \alpha & =\frac{30}{40} \\
\alpha & =\tan ^{-1}(0,75) \\
\alpha & =36,9^{\circ}
\end{aligned}
$$

Step 4 : Quote the resultant

The resultant displacement is then 50 m at $36,9^{\circ}$ North of East.
This is exactly the same answer we arrived at after drawing a scale diagram!

In the previous example we were able to use simple trigonometry to calculate the resultant displacement. This was possible since the directions of motion were perpendicular (north and east). Algebraic techniques, however, are not limited to cases where the vectors to be combined are along the same straight line or at right angles to one another. The following example illustrates this.

Worked Example 56: An Algebraic Solution II

Question: A man walks from point A to point B which is 12 km away on a bearing of 45°. From point B the man walks a further 8 km east to point C . Calculate the resultant displacement.

Answer

Step 1 : Draw a rough sketch of the situation

$B \hat{A} F=45^{\circ}$ since the man walks initially on a bearing of 45°. Then, $A \hat{B} G=$ $B \hat{A} F=45^{\circ}$ (parallel lines, alternate angles). Both of these angles are included in the rough sketch.

Step 2 : Calculate the length of the resultant

The resultant is the vector $A C$. Since we know both the lengths of $A B$ and $B C$ and the included angle $A \hat{B} C$, we can use the cosine rule:

$$
\begin{aligned}
A C^{2} & =A B^{2}+B C^{2}-2 \cdot A B \cdot B C \cos (A \hat{B} C) \\
& =(12)^{2}+(8)^{2}-2 \cdot(12)(8) \cos \left(135^{\circ}\right) \\
& =343,8 \\
A C & =18,5 \mathrm{~km}
\end{aligned}
$$

Step 3 : Determine the direction of the resultant
Next we use the sine rule to determine the angle θ :

$$
\begin{aligned}
\frac{\sin \theta}{8} & =\frac{\sin 135^{\circ}}{18,5} \\
\sin \theta & =\frac{8 \times \sin 135^{\circ}}{18,5} \\
\theta & =\sin ^{-1}(0,3058) \\
\theta & =17,8^{\circ}
\end{aligned}
$$

To find $F \hat{A} C$, we add 45°. Thus, $F \hat{A} C=62,8^{\circ}$.

Step 4 : Quote the resultant

The resultant displacement is therefore $18,5 \mathrm{~km}$ on a bearing of $062,8^{\circ}$.

Exercise: More Resultant Vectors

1. Hector, a long distance athlete, runs at a velocity of $3 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ in a northerly direction. He turns and runs at a velocity of $5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ in a westerly direction. Find his resultant velocity by using appropriate calculations. Include a rough sketch of the situation in your answer.
2. Sandra walks to the shop by walking 500 m Northwest and then $400 \mathrm{~m} \mathrm{~N} 30^{\circ}$ E. Determine her resultant displacement by doing appropriate calculations.

11.8 Components of Vectors

In the discussion of vector addition we saw that a number of vectors acting together can be combined to give a single vector (the resultant). In much the same way a single vector can be broken down into a number of vectors which when added give that original vector. These vectors which sum to the original are called components of the original vector. The process of breaking a vector into its components is called resolving into components.
While summing a given set of vectors gives just one answer (the resultant), a single vector can be resolved into infinitely many sets of components. In the diagrams below the same black vector is resolved into different pairs of components. These components are shown as dashed lines. When added together the dashed vectors give the original black vector (i.e. the original vector is the resultant of its components).

In practice it is most useful to resolve a vector into components which are at right angles to one another, usually horizontal and vertical.

Any vector can be resolved into a horizontal and a vertical component. If \vec{A} is a vector, then the horizontal component of \vec{A} is \vec{A}_{x} and the vertical component is \vec{A}_{y}.

Worked Example 57: Resolving a vector into components

Question: A motorist undergoes a displacement of 250 km in a direction 30° north of east. Resolve this displacement into components in the directions north (\vec{x}_{N}) and east $\left(\vec{x}_{E}\right)$.

Answer
Step 1 : Draw a rough sketch of the original vector

Step 2 : Determine the vector component

Next we resolve the displacement into its components north and east. Since these directions are perpendicular to one another, the components form a right-angled triangle with the original displacement as its hypotenuse.

Notice how the two components acting together give the original vector as their resultant.

Step 3 : Determine the lengths of the component vectors

Now we can use trigonometry to calculate the magnitudes of the components of the original displacement:

$$
\begin{aligned}
x_{N} & =(250)\left(\sin 30^{\circ}\right) \\
& =125 \mathrm{~km}
\end{aligned}
$$

and

$$
\begin{aligned}
x_{E} & =(250)\left(\cos 30^{\circ}\right) \\
& =216,5 \mathrm{~km}
\end{aligned}
$$

Remember x_{N} and x_{E} are the magnitudes of the components - they are in the directions north and east respectively.

Extension: Block on an incline

As a further example of components let us consider a block of mass m placed on a frictionless surface inclined at some angle θ to the horizontal. The block will obviously slide down the incline, but what causes this motion?

The forces acting on the block are its weight $m g$ and the normal force N exerted by the surface on the object. These two forces are shown in the diagram below.

Now the object's weight can be resolved into components parallel and perpendicular to the inclined surface. These components are shown as dashed arrows in the diagram above and are at right angles to each other. The components have been drawn acting from the same point. Applying the parallelogram method, the two components of the block's weight sum to the weight vector.

To find the components in terms of the weight we can use trigonometry:

$$
\begin{aligned}
F_{g \|} & =m g \sin \theta \\
F_{g \perp} & =m g \cos \theta
\end{aligned}
$$

The component of the weight perpendicular to the slope $F_{g \perp}$ exactly balances the normal force N exerted by the surface. The parallel component, however, $F_{g \|}$ is unbalanced and causes the block to slide down the slope.

Extension: Worked example

Worked Example 58: Block on an incline plane

Question: Determine the force needed to keep a 10 kg block from sliding down a frictionless slope. The slope makes an angle of 30° with the horizontal.

Answer

Step 1: Draw a diagram of the situation

The force that will keep the block from sliding is equal to the parallel component of the weight, but its direction is up the slope.

Step 2 : Calculate $F_{g \|}$

$$
\begin{aligned}
F_{g \|} & =m g \sin \theta \\
& =(10)(9,8)\left(\sin 30^{\circ}\right) \\
& =49 \mathrm{~N}
\end{aligned}
$$

Step 3 : Write final answer

The force is 49 N up the slope.

11.8.1 Vector addition using components

Components can also be used to find the resultant of vectors. This technique can be applied to both graphical and algebraic methods of finding the resultant. The method is simple: make a rough sketch of the problem, find the horizontal and vertical components of each vector, find the sum of all horizontal components and the sum of all the vertical components and then use them to find the resultant.
Consider the two vectors, \vec{A} and \vec{B}, in Figure 11.3, together with their resultant, \vec{R}.

Figure 11.3: An example of two vectors being added to give a resultant
Each vector in Figure 11.3 can be broken down into a component in the x-direction and one in the y-direction. These components are two vectors which when added give you the original vector as the resultant. This is shown in Figure 11.4 where we can see that:

$$
\begin{aligned}
\vec{A} & =\vec{A}_{x}+\vec{A}_{y} \\
\vec{B} & =\vec{B}_{x}+\vec{B}_{y} \\
\vec{R} & =\vec{R}_{x}+\vec{R}_{y}
\end{aligned} \quad \text { But, } \vec{R}_{x}=\vec{A}_{x}+\vec{B}_{x}
$$

In summary, addition of the x components of the two original vectors gives the x component of the resultant. The same applies to the y components. So if we just added all the components together we would get the same answer! This is another important property of vectors.

Worked Example 59: Adding Vectors Using Components

Question: If in Figure 11.4, $\vec{A}=5,385 \mathrm{~m}$ at an angle of 21.8° to the horizontal and $\vec{B}=5 \mathrm{~m}$ at an angle of $53,13^{\circ}$ to the horizontal, find \vec{R}.

Answer

Step 1 : Decide how to tackle the problem

Figure 11.4: Adding vectors using components.

The first thing we must realise is that the order that we add the vectors does not matter. Therefore, we can work through the vectors to be added in any order.

Step 2 : Resolve \vec{A} into components

We find the components of \vec{A} by using known trigonometric ratios. First we find the magnitude of the vertical component, A_{y} :

$$
\begin{aligned}
\sin \theta & =\frac{A_{y}}{A} \\
\sin 21,8^{\circ} & =\frac{A_{y}}{5,385} \\
A_{y} & =(5,385)\left(\sin 21,8^{\circ}\right) \\
& =2 \mathrm{~m}
\end{aligned}
$$

Secondly we find the magnitude of the horizontal component, A_{x} :

$$
\begin{aligned}
\cos \theta & =\frac{A_{x}}{A} \\
\cos 21.8^{\circ} & =\frac{A_{x}}{5,385} \\
A_{x} & =(5,385)\left(\cos 21,8^{\circ}\right) \\
& =5 \mathrm{~m}
\end{aligned}
$$

The components give the sides of the right angle triangle, for which the original vector is the hypotenuse.
Step 3 : Resolve \vec{B} into components
We find the components of \vec{B} by using known trigonometric ratios. First we find
the magnitude of the vertical component, B_{y} :

$$
\begin{aligned}
\sin \theta & =\frac{B_{y}}{B} \\
\sin 53,13^{\circ} & =\frac{B_{y}}{5} \\
B_{y} & =(5)\left(\sin 53,13^{\circ}\right) \\
& =4 \mathrm{~m}
\end{aligned}
$$

Secondly we find the magnitude of the horizontal component, B_{x} :

$$
\begin{aligned}
\cos \theta & =\frac{B_{x}}{B} \\
\cos 21,8^{\circ} & =\frac{B_{x}}{5,385} \\
B_{x} & =(5,385)\left(\cos 53,13^{\circ}\right) \\
& =5 \mathrm{~m}
\end{aligned}
$$

Step 4 : Determine the components of the resultant vector

Now we have all the components. If we add all the horizontal components then we will have the x-component of the resultant vector, \vec{R}_{x}. Similarly, we add all the vertical components then we will have the y-component of the resultant vector, \vec{R}_{y}.

$$
\begin{aligned}
R_{x} & =A_{x}+B_{x} \\
& =5 \mathrm{~m}+3 \mathrm{~m} \\
& =8 \mathrm{~m}
\end{aligned}
$$

Therefore, \vec{R}_{x} is 8 m to the right.

$$
\begin{aligned}
R_{y} & =A_{y}+B_{y} \\
& =2 \mathrm{~m}+4 \mathrm{~m} \\
& =6 \mathrm{~m}
\end{aligned}
$$

Therefore, \vec{R}_{y} is 6 m up.

Step 5 : Determine the magnitude and direction of the resultant vector

Now that we have the components of the resultant, we can use the Theorem of Pythagoras to determine the magnitude of the resultant, R.

$$
\begin{aligned}
R^{2} & =\left(R_{x}\right)^{2}+\left(R_{y}\right)^{2} \\
R^{2} & =(6)^{2}+(8)^{2} \\
R^{2} & =100 \\
\therefore R & =10 \mathrm{~m} \\
& 233
\end{aligned}
$$

The magnitude of the resultant, R is 10 m . So all we have to do is calculate its direction. We can specify the direction as the angle the vectors makes with a known direction. To do this you only need to visualise the vector as starting at the origin of a coordinate system. We have drawn this explicitly below and the angle we will calculate is labeled α.
Using our known trigonometric ratios we can calculate the value of α;

$$
\begin{aligned}
\tan \alpha & =\frac{6 \mathrm{~m}}{8 \mathrm{~m}} \\
\alpha & =\tan ^{-1} \frac{6 \mathrm{~m}}{8 \mathrm{~m}} \\
\alpha & =36,8^{\circ} .
\end{aligned}
$$

Step 6: Quote the final answer
\vec{R} is 10 m at an angle of $36,8^{\circ}$ to the positive x-axis.

Exercise: Adding and Subtracting Components of Vectors

1. Harold walks to school by walking 600 m Northeast and then $500 \mathrm{~m} \mathrm{~N} 40^{\circ} \mathrm{W}$. Determine his resultant displacement by means of addition of components of vectors.
2. A dove flies from her nest, looking for food for her chick. She flies at a velocity of $2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ on a bearing of 135° and then at a velocity of $1,2 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ on a bearing of 230°. Calculate her resultant velocity by adding the horizontal and vertical components of vectors.

Extension: Vector Multiplication

Vectors are special, they are more than just numbers. This means that multiplying vectors is not necessarily the same as just multiplying their magnitudes. There are two different types of multiplication defined for vectors. You can find the dot product of two vectors or the cross product.

The dot product is most similar to regular multiplication between scalars. To take the dot product of two vectors, you just multiply their magnitudes to get out a scalar answer. The maths definition of the dot product is:

$$
\vec{a} \bullet \vec{b}=|\vec{a}| \cdot|\vec{b}| \cos \theta
$$

Take two vectors \vec{a} and \vec{b} :

You can draw in the component of \vec{b} that is parallel to \vec{a} :

In this way we can arrive at the definition of the dot product. You find how much of \vec{b} is lined up with \vec{a} by finding the component of \vec{b} parallel to \vec{a}. Then multiply the magnitude of that component, $|\vec{b}| \cos \theta$, with the magnitude of \vec{a} to get a scalar.

The second type of multiplication is more subtle and uses the directions of the vectors in a more complicated way to get another vector as the answer. The maths definition of the cross product is:

$$
\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta
$$

This gives the magnitude of the answer, but we still need to find the direction of the resultant vector. We do this by applying the right hand rule.

Method: Right Hand Rule

1. Using your right hand:
2. Point your index finger in the direction of \vec{a}.
3. Point the middle finger in the direction of \vec{b}.

4. Your thumb will show the direction of $\vec{a} \times \vec{b}$.

11.8.2 Summary

1. A scalar is a physical quantity with magnitude only.
2. A vector is a physical quantity with magnitude and direction.
3. Vectors are drawn as arrows where the length of the arrow indicates the magnitude and the arrowhead indicates the direction of the vector.
4. The direction of a vector can be indicated by referring to another vector or a fixed point (eg. 30° from the river bank); using a compass (eg. N $30^{\circ} \mathrm{W}$); or bearing (eg. 053°).
5. Vectors can be added using the head-to-tail method, the parallelogram method or the component method.
6. The resultant of a vector is the single vector whose effect is the same as the individual vectors acting together.

11.8.3 End of chapter exercises: Vectors

1. An object is suspended by means of a light string. The sketch shows a horizontal force F which pulls the object from the vertical position until it reaches an equilibrium position as shown. Which one of the following vector diagrams best represents all the forces acting on the object?

A

C

D

2. A load of weight W is suspended from two strings. F_{1} and F_{2} are the forces exerted by the strings on the load in the directions show in the figure above. Which one of the following equations is valid for this situation?

A $\quad W=F_{1}^{2}+F_{2}^{2}$
B $\quad F_{1} \sin 50^{\circ}=F_{2} \sin 30^{\circ}$
C $\quad F_{1} \cos 50^{\circ}=F_{2} \cos 30^{\circ}$
D $\quad W=F_{1}+F_{2}$

3. Two spring balances P and Q are connected by means of a piece of string to a wall as shown. A horizontal force of 100 N is exerted on spring balance Q. What will be the readings on spring
 balances P and Q ?

	P	Q
A	100 N	0 N
B	25 N	75 N
C	50 N	50 N
D	100 N	100 N

4. A point is acted on by two forces in equilibrium. The forces

A have equal magnitudes and directions.
B have equal magnitudes but opposite directions.
C act perpendicular to each other.
D act in the same direction.
5. A point in equilibrium is acted on by three forces. Force F_{1} has components 15 N due south and 13 N due west. What are the components of force F_{2} ?

A 13 N due north and 20 due west
B $\quad 13 \mathrm{~N}$ due north and 13 N due west
C 15 N due north and 7 N due west
D 15 N due north and 13 N due east

6. Which of the following contains two vectors and a scalar?

A distance, acceleration, speed
B displacement, velocity, acceleration
C distance, mass, speed
D displacement, speed, velocity
7. Two vectors act on the same point. What should the angle between them be so that a maximum resultant is obtained?
A 0°
B 90°
C 180°
D cannot tell
8. Two forces, 4 N and 11 N , act on a point. Which one of the following cannot be a resultant?
A 4 N
B 7 N
C $\quad 11 \mathrm{~N}$
D $\quad 15 \mathrm{~N}$

11.8.4 End of chapter exercises: Vectors - Long questions

1. A helicopter flies due east with an air speed of $150 \mathrm{~km} \cdot \mathrm{~h}^{-1}$. It flies through an air current which moves at $200 \mathrm{~km} . \mathrm{h}^{-1}$ north. Given this information, answer the following questions:
1.1 In which direction does the helicopter fly?
1.2 What is the ground speed of the helicopter?
1.3 Calculate the ground distance covered in 40 minutes by the helicopter.
2. A plane must fly 70 km due north. A cross wind is blowing to the west at $30 \mathrm{~km} . \mathrm{h}^{-1}$. In which direction must the pilot steer if the plane goes at $200 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ in windless conditions?
3. A stream that is 280 m wide flows along its banks with a velocity of $1.80 \mathrm{~m} . \mathrm{s}^{-1}$. A raft can travel at a speed of $2.50 \mathrm{~m} . \mathrm{s}^{-1}$ across the stream. Answer the following questions:
3.1 What is the shortest time in which the raft can cross the stream?
3.2 How far does the raft drift downstream in that time?
3.3 In what direction must the raft be steered against the current so that it crosses the stream perpendicular to its banks?
3.4 How long does it take to cross the stream in question 3?
4. A helicopter is flying from place X to place Y. Y is 1000 km away in a direction 50° east of north and the pilot wishes to reach it in two hours. There is a wind of speed $150 \mathrm{~km} . \mathrm{h}^{-1}$ blowing from the northwest. Find, by accurate construction and measurement (with a scale of $1 \mathrm{~cm}=50 \mathrm{~km} \cdot \mathrm{~h}^{-1}$), the
4.1 the direction in which the helicopter must fly, and
4.2 the magnitude of the velocity required for it to reach its destination on time.
5. An aeroplane is flying towards a destination 300 km due south from its present position. There is a wind blowing from the north east at $120 \mathrm{~km} \cdot \mathrm{~h}^{-1}$. The aeroplane needs to reach its destination in 30 minutes. Find, by accurate construction and measurement (with a scale of $1 \mathrm{~cm}=30 \mathrm{~km} \cdot \mathrm{~s}^{-1}$), or otherwise, the
5.1 the direction in which the aeroplane must fly and
5.2 the speed which the aeroplane must maintain in order to reach the destination on time.
5.3 Confirm your answers in the previous 2 subquestions with calculations.
6. An object of weight W is supported by two cables attached to the ceiling and wall as shown. The tensions in the two cables are T_{1} and T_{2} respectively. Tension $T_{1}=1200 \mathrm{~N}$. Determine the tension T_{2} and weight W of the object by accurate construction and measurement or by calculation.

7. In a map-work exercise, hikers are required to walk from a tree marked A on the map to another tree marked B which lies $2,0 \mathrm{~km}$ due East of A. The hikers then walk in a straight line to a waterfall in position C which has components measured from B of $1,0 \mathrm{~km} E$ and $4,0 \mathrm{~km} \mathrm{~N}$.
7.1 Distinguish between quantities that are described as being vector and scalar.
7.2 Draw a labelled displacement-vector diagram (not necessarily to scale) of the hikers' complete journey.
7.3 What is the total distance walked by the hikers from their starting point at A to the waterfall C?
7.4 What are the magnitude and bearing, to the nearest degree, of the displacement of the hikers from their starting point to the waterfall?
8. An object X is supported by two strings, A and B, attached to the ceiling as shown in the sketch. Each of these strings can withstand a maximum force of 700 N . The weight of X is increased gradually.
8.1 Draw a rough sketch of the triangle of forces, and use it to explain which string will break first.
8.2 Determine the maximum weight of X which can be supported.
9. A rope is tied at two points which are 70 cm apart from each other, on the same horizontal line. The total length of rope is 1 m , and the maximum tension it can withstand in any part is 1000 N . Find the largest mass (m), in kg , that can be carried at the midpoint of the rope, without breaking the rope. Include a vector diagram in your answer.

Appendix A

GNU Free Documentation License

Version 1.2, November 2002
Copyright (c) 2000, 2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or non-commercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a

Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, A TEX input format, SGML or XML using a publicly available DTD and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-commercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section A.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections A and A above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.
3. State on the Title page the name of the publisher of the Modified Version, as the publisher.
4. Preserve all the copyright notices of the Document.
5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
8. Include an unaltered copy of this License.
9. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
11. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
13. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version.
14. Do not re-title any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
15. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties-for example, statements of peer review or that the text has been approved by an organisation as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section A above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section A is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section A. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section A) to Preserve its Title (section A) will typically require changing the
actual title.

TERMINATION

You may not copy, modify, sub-license, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sub-license or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:
with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.

