
2017 Tcl Conference
Don Porter
Tcl/Tk Release Manager

Introduction to the HAMT:
Opportunity for Tcl

Hash Maps in Tcl

● Dictionaries

● Array variables

● Name lookups (commands, vars, etc.)

● Much much more…

– Most make use of Tcl_HashTable.
● Customizable

…..

Hash Map – Giant Bucket Array

Search bucket [Hash(key)] for key

0 2
64

● Define Hash: Key → index

– Efficient

– Range evenly distributed over indices

Hash Map – Tcl_HashTable

Search bucket [Hash(key) & mask] for key

0 2
3

…..

Hash Map – Hash Trie
Follow Hash(key) path to leaf storing key

0 1

…..

Hash Map – Hash Trie
Eliminate empty buckets and paths

0 1

Hash Map – Hash Trie
Store hashes – shorten paths w/o branches

0 1

Hash Map – Hash Trie
Store node IDs – shorten paths w/o branches

0 1

Hash Array-Map Trie (HAMT)
Structure nodes as array maps

0011

1100

1100

0110

Array Map Encoding

● Two bits encoding bucket leaf children

– Bit n is set → child n is a bucket
● Hash and leaf pointer are stored in array

● Two bits encoding subnode children

– Bit n is set → child n is a subnode
● Pointer to subnode is stored in array

Removal Operation –
Tcl_HashTable (Destructive)

0 2
3 0 2

3

→

Removal Operation – HAMT
(non-destructive)

0011

1100

1100

0110

0110

OLD

NEW

IMMUTABILITY

● Values as Read-only structures

● Matches value semantics of Tcl

● Alternative to Copy on Write

– CoW is a discipline to implement immutable
values out of mutable foundations

...on Steroids
● Presented as binary tree

– Two two-bit encoding maps per node

– Easy to draw and explain

– Inessential

● Implemented as 64-ary tree

– Two 64-bit encoding maps per node

– Shallow, wide trees → few hops in lookup

– Depth of 11 covers entire 16 exbibyte capacity

Demo: dict vs hamt
% set data [lmap _ [lrepeat 20000 {}] tcl::mathfunc::rand]
% set d [dict create {*}$data]
% time {foreach {k v} $data {set d [dict remove $d $k]}}
-> 23839420 microseconds per iteration

% set h [hamt create {*}$data]
% time {foreach {k v} $data {set h [hamt remove $h $k]}}
-> 77113 microseconds per iteration

% set d [dict create {*}$data]
% time {foreach {k v} $data {dict unset d $k}}
-> 28610 microseconds per iteration

The Enemy

Merge Demo
% time {set d [dict merge $d1 $d2]}
→ 681783 microseconds per iteration

% time {dict merge $d $d}
→ 1032838 microseconds per iteration

% time {dict merge $d $d1}
→ 927085 microseconds per iteration

% time {set h [hamt merge $h1 $h2]}
→ 294936 microseconds per iteration

% time {hamt merge $h $h}
→ 65 microseconds per iteration

% time {hamt merge $h $h1}
 → 218641 microseconds per iteration

More dict vs hamt

● For one hashmap, hamt uses more memory.

● For set of related hashmaps, will use less.

● Operation speeds are competitive. (oom)

● Avoids copy catastrophe by design

● Still prototype quality

– Known improvement avenues

● Immutability benefits...

Immutable Hashmap Benefits
● Read-only values share easily

– Think “threads”

● Keep useful checkpoints

– Think built-in command set of an interp.

● Controlled teardowns

– Think namespace delete

● Caching and Epochs

– No epoch for something that does not change

● Scaling?

How can I try it?

● Branch dgp-refactor in the Tcl fossil
repository.

– https://core.tcl.tk/tcl

● [hamt info] reports interesting details.

● Comments welcome.

Relaxed Radix Balance (RRB)
Tree

● HAMT : Hashmap :: RRB : Sequence

– Think “list”

– Think “string” (list of characters)

● Foundation of the Clojure Vector

● Stay Tuned!

Conclusions
● Protoype HAMT implementation underway

– Basic functions complete.

● Initial testing shows promise

– Not yet a clear failure.

● Immutable structures are useful tools.

● Other immutable structure opportunities.

● Further work is needed.

	The (Active) State of Tcl
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

