Main Page | Namespace List | Class Hierarchy | Alphabetical List | Compound List | File List | Namespace Members | Compound Members | File Members

gfpcrypt.h

Go to the documentation of this file.
00001 #ifndef CRYPTOPP_GFPCRYPT_H
00002 #define CRYPTOPP_GFPCRYPT_H
00003 
00004 /** \file
00005         Implementation of schemes based on DL over GF(p)
00006 */
00007 
00008 #include "pubkey.h"
00009 #include "modexppc.h"
00010 #include "sha.h"
00011 #include "algparam.h"
00012 #include "asn.h"
00013 #include "smartptr.h"
00014 #include "hmac.h"
00015 
00016 #include <limits.h>
00017 
00018 NAMESPACE_BEGIN(CryptoPP)
00019 
00020 CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters<Integer>;
00021 
00022 //! .
00023 class CRYPTOPP_DLL DL_GroupParameters_IntegerBased : public DL_GroupParameters<Integer>, public ASN1CryptoMaterial
00024 {
00025         typedef DL_GroupParameters_IntegerBased ThisClass;
00026         
00027 public:
00028         void Initialize(const DL_GroupParameters_IntegerBased &params)
00029                 {Initialize(params.GetModulus(), params.GetSubgroupOrder(), params.GetSubgroupGenerator());}
00030         void Initialize(RandomNumberGenerator &rng, unsigned int pbits)
00031                 {GenerateRandom(rng, MakeParameters("ModulusSize", (int)pbits));}
00032         void Initialize(const Integer &p, const Integer &g)
00033                 {SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(ComputeGroupOrder(p)/2);}
00034         void Initialize(const Integer &p, const Integer &q, const Integer &g)
00035                 {SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(q);}
00036 
00037         // ASN1Object interface
00038         void BERDecode(BufferedTransformation &bt);
00039         void DEREncode(BufferedTransformation &bt) const;
00040 
00041         // GeneratibleCryptoMaterial interface
00042         /*! parameters: (ModulusSize, SubgroupOrderSize (optional)) */
00043         void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
00044         bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
00045         void AssignFrom(const NameValuePairs &source);
00046         
00047         // DL_GroupParameters
00048         const Integer & GetSubgroupOrder() const {return m_q;}
00049         Integer GetGroupOrder() const {return GetFieldType() == 1 ? GetModulus()-Integer::One() : GetModulus()+Integer::One();}
00050         bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
00051         bool ValidateElement(unsigned int level, const Integer &element, const DL_FixedBasePrecomputation<Integer> *precomp) const;
00052         bool FastSubgroupCheckAvailable() const {return GetCofactor() == 2;}
00053         void EncodeElement(bool reversible, const Element &element, byte *encoded) const
00054                 {element.Encode(encoded, GetModulus().ByteCount());}
00055         unsigned int GetEncodedElementSize(bool reversible) const {return GetModulus().ByteCount();}
00056         Integer DecodeElement(const byte *encoded, bool checkForGroupMembership) const;
00057         Integer ConvertElementToInteger(const Element &element) const
00058                 {return element;}
00059         Integer GetMaxExponent() const;
00060 
00061         OID GetAlgorithmID() const;
00062 
00063         virtual const Integer & GetModulus() const =0;
00064         virtual void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g) =0;
00065 
00066         void SetSubgroupOrder(const Integer &q)
00067                 {m_q = q; ParametersChanged();}
00068 
00069 protected:
00070         Integer ComputeGroupOrder(const Integer &modulus) const
00071                 {return modulus-(GetFieldType() == 1 ? 1 : -1);}
00072 
00073         // GF(p) = 1, GF(p^2) = 2
00074         virtual int GetFieldType() const =0;
00075         virtual unsigned int GetDefaultSubgroupOrderSize(unsigned int modulusSize) const;
00076 
00077 private:
00078         Integer m_q;
00079 };
00080 
00081 //! .
00082 template <class GROUP_PRECOMP, class BASE_PRECOMP = DL_FixedBasePrecomputationImpl<CPP_TYPENAME GROUP_PRECOMP::Element> >
00083 class DL_GroupParameters_IntegerBasedImpl : public DL_GroupParametersImpl<GROUP_PRECOMP, BASE_PRECOMP, DL_GroupParameters_IntegerBased>
00084 {
00085         typedef DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> ThisClass;
00086 
00087 public:
00088         typedef typename GROUP_PRECOMP::Element Element;
00089 
00090         // GeneratibleCryptoMaterial interface
00091         bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
00092                 {return GetValueHelper<DL_GroupParameters_IntegerBased>(this, name, valueType, pValue).Assignable();}
00093 
00094         void AssignFrom(const NameValuePairs &source)
00095                 {AssignFromHelper<DL_GroupParameters_IntegerBased>(this, source);}
00096 
00097         // DL_GroupParameters
00098         const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return m_gpc;}
00099         DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return m_gpc;}
00100 
00101         // IntegerGroupParameters
00102         const Integer & GetModulus() const {return m_groupPrecomputation.GetModulus();}
00103         const Integer & GetGenerator() const {return m_gpc.GetBase(GetGroupPrecomputation());}
00104 
00105         void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g)         // these have to be set together
00106                 {m_groupPrecomputation.SetModulus(p); m_gpc.SetBase(GetGroupPrecomputation(), g); ParametersChanged();}
00107 
00108         // non-inherited
00109         bool operator==(const DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> &rhs) const
00110                 {return GetModulus() == rhs.GetModulus() && GetGenerator() == rhs.GetGenerator() && GetSubgroupOrder() == rhs.GetSubgroupOrder();}
00111         bool operator!=(const DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> &rhs) const
00112                 {return !operator==(rhs);}
00113 };
00114 
00115 CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_IntegerBasedImpl<ModExpPrecomputation>;
00116 
00117 //! .
00118 class CRYPTOPP_DLL DL_GroupParameters_GFP : public DL_GroupParameters_IntegerBasedImpl<ModExpPrecomputation>
00119 {
00120 public:
00121         // DL_GroupParameters
00122         bool IsIdentity(const Integer &element) const {return element == Integer::One();}
00123         void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
00124 
00125         // NameValuePairs interface
00126         bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
00127         {
00128                 return GetValueHelper<DL_GroupParameters_IntegerBased>(this, name, valueType, pValue).Assignable();
00129         }
00130 
00131         // used by MQV
00132         Element MultiplyElements(const Element &a, const Element &b) const;
00133         Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;
00134 
00135 protected:
00136         int GetFieldType() const {return 1;}
00137 };
00138 
00139 //! .
00140 class CRYPTOPP_DLL DL_GroupParameters_GFP_DefaultSafePrime : public DL_GroupParameters_GFP
00141 {
00142 public:
00143         typedef NoCofactorMultiplication DefaultCofactorOption;
00144 
00145 protected:
00146         unsigned int GetDefaultSubgroupOrderSize(unsigned int modulusSize) const {return modulusSize-1;}
00147 };
00148 
00149 //! .
00150 template <class T>
00151 class DL_Algorithm_GDSA : public DL_ElgamalLikeSignatureAlgorithm<T>
00152 {
00153 public:
00154         static const char * StaticAlgorithmName() {return "DSA-1363";}
00155 
00156         Integer EncodeDigest(unsigned int modulusBits, const byte *digest, unsigned int digestLen) const
00157         {
00158                 return DSA_EncodeDigest(modulusBits, digest, digestLen);
00159         }
00160 
00161         bool Sign(const DL_GroupParameters<T> &params, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
00162         {
00163                 const Integer &q = params.GetSubgroupOrder();
00164                 r = params.ConvertElementToInteger(params.ExponentiateBase(k)) % q;
00165                 Integer kInv = k.InverseMod(q);
00166                 s = (kInv * (x*r + e)) % q;
00167                 return (!!r && !!s);
00168         }
00169 
00170         bool Verify(const DL_GroupParameters<T> &params, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
00171         {
00172                 const Integer &q = params.GetSubgroupOrder();
00173                 if (r>=q || r<1 || s>=q || s<1)
00174                         return false;
00175 
00176                 Integer w = s.InverseMod(q);
00177                 Integer u1 = (e * w) % q;
00178                 Integer u2 = (r * w) % q;
00179                 // verify r == (g^u1 * y^u2 mod p) mod q
00180                 return r == params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(u1, u2)) % q;
00181         }
00182 };
00183 
00184 CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<Integer>;
00185 
00186 //! .
00187 template <class T>
00188 class DL_Algorithm_NR : public DL_ElgamalLikeSignatureAlgorithm<T>
00189 {
00190 public:
00191         static const char * StaticAlgorithmName() {return "NR";}
00192 
00193         Integer EncodeDigest(unsigned int modulusBits, const byte *digest, unsigned int digestLen) const
00194         {
00195                 return NR_EncodeDigest(modulusBits, digest, digestLen);
00196         }
00197 
00198         bool Sign(const DL_GroupParameters<T> &params, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
00199         {
00200                 const Integer &q = params.GetSubgroupOrder();
00201                 r = (params.ConvertElementToInteger(params.ExponentiateBase(k)) + e) % q;
00202                 s = (k - x*r) % q;
00203                 return !!r;
00204         }
00205 
00206         bool Verify(const DL_GroupParameters<T> &params, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
00207         {
00208                 const Integer &q = params.GetSubgroupOrder();
00209                 if (r>=q || r<1 || s>=q)
00210                         return false;
00211 
00212                 // check r == (m_g^s * m_y^r + m) mod m_q
00213                 return r == (params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(s, r)) + e) % q;
00214         }
00215 };
00216 
00217 /*! DSA public key format is defined in 7.3.3 of RFC 2459. The
00218         private key format is defined in 12.9 of PKCS #11 v2.10. */
00219 template <class GP>
00220 class DL_PublicKey_GFP : public DL_PublicKeyImpl<GP>
00221 {
00222 public:
00223         void Initialize(const DL_GroupParameters_IntegerBased &params, const Integer &y)
00224                 {AccessGroupParameters().Initialize(params); SetPublicElement(y);}
00225         void Initialize(const Integer &p, const Integer &g, const Integer &y)
00226                 {AccessGroupParameters().Initialize(p, g); SetPublicElement(y);}
00227         void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &y)
00228                 {AccessGroupParameters().Initialize(p, q, g); SetPublicElement(y);}
00229 
00230         // X509PublicKey
00231         void BERDecodeKey(BufferedTransformation &bt)
00232                 {SetPublicElement(Integer(bt));}
00233         void DEREncodeKey(BufferedTransformation &bt) const
00234                 {GetPublicElement().DEREncode(bt);}
00235 };
00236 
00237 //! .
00238 template <class GP>
00239 class DL_PrivateKey_GFP : public DL_PrivateKeyImpl<GP>
00240 {
00241 public:
00242         void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits)
00243                 {GenerateRandomWithKeySize(rng, modulusBits);}
00244         void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &g)
00245                 {GenerateRandom(rng, MakeParameters("Modulus", p)("SubgroupGenerator", g));}
00246         void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &q, const Integer &g)
00247                 {GenerateRandom(rng, MakeParameters("Modulus", p)("SubgroupOrder", q)("SubgroupGenerator", g));}
00248         void Initialize(const DL_GroupParameters_IntegerBased &params, const Integer &x)
00249                 {AccessGroupParameters().Initialize(params); SetPrivateExponent(x);}
00250         void Initialize(const Integer &p, const Integer &g, const Integer &x)
00251                 {AccessGroupParameters().Initialize(p, g); SetPrivateExponent(x);}
00252         void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &x)
00253                 {AccessGroupParameters().Initialize(p, q, g); SetPrivateExponent(x);}
00254 };
00255 
00256 //! .
00257 struct DL_SignatureKeys_GFP
00258 {
00259         typedef DL_GroupParameters_GFP GroupParameters;
00260         typedef DL_PublicKey_GFP<GroupParameters> PublicKey;
00261         typedef DL_PrivateKey_GFP<GroupParameters> PrivateKey;
00262 };
00263 
00264 //! .
00265 struct DL_CryptoKeys_GFP
00266 {
00267         typedef DL_GroupParameters_GFP_DefaultSafePrime GroupParameters;
00268         typedef DL_PublicKey_GFP<GroupParameters> PublicKey;
00269         typedef DL_PrivateKey_GFP<GroupParameters> PrivateKey;
00270 };
00271 
00272 //! provided for backwards compatibility, this class uses the old non-standard Crypto++ key format
00273 template <class BASE>
00274 class DL_PublicKey_GFP_OldFormat : public BASE
00275 {
00276 public:
00277         void BERDecode(BufferedTransformation &bt)
00278         {
00279                 BERSequenceDecoder seq(bt);
00280                         Integer v1(seq);
00281                         Integer v2(seq);
00282                         Integer v3(seq);
00283 
00284                         if (seq.EndReached())
00285                         {
00286                                 AccessGroupParameters().Initialize(v1, v1/2, v2);
00287                                 SetPublicElement(v3);
00288                         }
00289                         else
00290                         {
00291                                 Integer v4(seq);
00292                                 AccessGroupParameters().Initialize(v1, v2, v3);
00293                                 SetPublicElement(v4);
00294                         }
00295 
00296                 seq.MessageEnd();
00297         }
00298 
00299         void DEREncode(BufferedTransformation &bt) const
00300         {
00301                 DERSequenceEncoder seq(bt);
00302                         GetGroupParameters().GetModulus().DEREncode(seq);
00303                         if (GetGroupParameters().GetCofactor() != 2)
00304                                 GetGroupParameters().GetSubgroupOrder().DEREncode(seq);
00305                         GetGroupParameters().GetGenerator().DEREncode(seq);
00306                         GetPublicElement().DEREncode(seq);
00307                 seq.MessageEnd();
00308         }
00309 };
00310 
00311 //! provided for backwards compatibility, this class uses the old non-standard Crypto++ key format
00312 template <class BASE>
00313 class DL_PrivateKey_GFP_OldFormat : public BASE
00314 {
00315 public:
00316         void BERDecode(BufferedTransformation &bt)
00317         {
00318                 BERSequenceDecoder seq(bt);
00319                         Integer v1(seq);
00320                         Integer v2(seq);
00321                         Integer v3(seq);
00322                         Integer v4(seq);
00323 
00324                         if (seq.EndReached())
00325                         {
00326                                 AccessGroupParameters().Initialize(v1, v1/2, v2);
00327                                 SetPrivateExponent(v4 % (v1/2));        // some old keys may have x >= q
00328                         }
00329                         else
00330                         {
00331                                 Integer v5(seq);
00332                                 AccessGroupParameters().Initialize(v1, v2, v3);
00333                                 SetPrivateExponent(v5);
00334                         }
00335 
00336                 seq.MessageEnd();
00337         }
00338 
00339         void DEREncode(BufferedTransformation &bt) const
00340         {
00341                 DERSequenceEncoder seq(bt);
00342                         GetGroupParameters().GetModulus().DEREncode(seq);
00343                         if (GetGroupParameters().GetCofactor() != 2)
00344                                 GetGroupParameters().GetSubgroupOrder().DEREncode(seq);
00345                         GetGroupParameters().GetGenerator().DEREncode(seq);
00346                         GetGroupParameters().ExponentiateBase(GetPrivateExponent()).DEREncode(seq);
00347                         GetPrivateExponent().DEREncode(seq);
00348                 seq.MessageEnd();
00349         }
00350 };
00351 
00352 //! <a href="http://www.weidai.com/scan-mirror/sig.html#DSA-1363">DSA-1363</a>
00353 template <class H>
00354 struct GDSA : public DL_SSA<DL_SignatureKeys_GFP, DL_Algorithm_GDSA<Integer>, H>
00355 {
00356 };
00357 
00358 //! <a href="http://www.weidai.com/scan-mirror/sig.html#NR">NR</a>
00359 template <class H>
00360 struct NR : public DL_SSA<DL_SignatureKeys_GFP, DL_Algorithm_NR<Integer>, H>
00361 {
00362 };
00363 
00364 //! .
00365 class CRYPTOPP_DLL DL_GroupParameters_DSA : public DL_GroupParameters_GFP
00366 {
00367 public:
00368         /*! also checks that the lengths of p and q are allowed by the DSA standard */
00369         bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
00370         /*! parameters: (ModulusSize), or (Modulus, SubgroupOrder, SubgroupGenerator) */
00371         /*! ModulusSize must be between 512 and 1024, and divisible by 64 */
00372         void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
00373 };
00374 
00375 struct DSA;
00376 
00377 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_GFP<DL_GroupParameters_DSA>;
00378 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_GFP<DL_GroupParameters_DSA>;
00379 CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_GFP<DL_GroupParameters_DSA>, DSA>;
00380 
00381 //! .
00382 struct DL_Keys_DSA
00383 {
00384         typedef DL_PublicKey_GFP<DL_GroupParameters_DSA> PublicKey;
00385         typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_GFP<DL_GroupParameters_DSA>, DSA> PrivateKey;
00386 };
00387 
00388 //! <a href="http://www.weidai.com/scan-mirror/sig.html#DSA">DSA</a>
00389 struct CRYPTOPP_DLL DSA : public DL_SSA<DL_Keys_DSA, DL_Algorithm_GDSA<Integer>, SHA, DSA>
00390 {
00391         static std::string StaticAlgorithmName() {return std::string("DSA");}
00392 
00393         //! Generate DSA primes according to NIST standard
00394         /*! Both seedLength and primeLength are in bits, but seedLength should
00395                 be a multiple of 8.
00396                 If useInputCounterValue == true, the counter parameter is taken as input, otherwise it's used for output
00397         */
00398         static bool GeneratePrimes(const byte *seed, unsigned int seedLength, int &counter,
00399                                                                 Integer &p, unsigned int primeLength, Integer &q, bool useInputCounterValue = false);
00400 
00401         static bool IsValidPrimeLength(unsigned int pbits)
00402                 {return pbits >= MIN_PRIME_LENGTH && pbits <= MAX_PRIME_LENGTH && pbits % PRIME_LENGTH_MULTIPLE == 0;}
00403 
00404         enum {
00405 #if (DSA_1024_BIT_MODULUS_ONLY)
00406                 MIN_PRIME_LENGTH = 1024,
00407 #else
00408                 MIN_PRIME_LENGTH = 512,
00409 #endif
00410                 MAX_PRIME_LENGTH = 1024, PRIME_LENGTH_MULTIPLE = 64};
00411 };
00412 
00413 //! .
00414 template <class MAC, bool DHAES_MODE>
00415 class DL_EncryptionAlgorithm_Xor : public DL_SymmetricEncryptionAlgorithm
00416 {
00417 public:
00418         unsigned int GetSymmetricKeyLength(unsigned int plainTextLength) const
00419                 {return plainTextLength + MAC::DEFAULT_KEYLENGTH;}
00420         unsigned int GetSymmetricCiphertextLength(unsigned int plainTextLength) const
00421                 {return plainTextLength + MAC::DIGESTSIZE;}
00422         unsigned int GetMaxSymmetricPlaintextLength(unsigned int cipherTextLength) const
00423                 {return SaturatingSubtract(cipherTextLength, (unsigned int)MAC::DIGESTSIZE);}
00424         void SymmetricEncrypt(RandomNumberGenerator &rng, const byte *key, const byte *plainText, unsigned int plainTextLength, byte *cipherText) const
00425         {
00426                 const byte *cipherKey, *macKey;
00427                 if (DHAES_MODE)
00428                 {
00429                         macKey = key;
00430                         cipherKey = key + MAC::DEFAULT_KEYLENGTH;
00431                 }
00432                 else
00433                 {
00434                         cipherKey = key;
00435                         macKey = key + plainTextLength;
00436                 }
00437 
00438                 xorbuf(cipherText, plainText, cipherKey, plainTextLength);
00439                 MAC(macKey).CalculateDigest(cipherText + plainTextLength, cipherText, plainTextLength);
00440         }
00441         DecodingResult SymmetricDecrypt(const byte *key, const byte *cipherText, unsigned int cipherTextLength, byte *plainText) const
00442         {
00443                 unsigned int plainTextLength = GetMaxSymmetricPlaintextLength(cipherTextLength);
00444                 const byte *cipherKey, *macKey;
00445                 if (DHAES_MODE)
00446                 {
00447                         macKey = key;
00448                         cipherKey = key + MAC::DEFAULT_KEYLENGTH;
00449                 }
00450                 else
00451                 {
00452                         cipherKey = key;
00453                         macKey = key + plainTextLength;
00454                 }
00455 
00456                 if (!MAC(macKey).VerifyDigest(cipherText + plainTextLength, cipherText, plainTextLength))
00457                         return DecodingResult();
00458                 xorbuf(plainText, cipherText, cipherKey, plainTextLength);
00459                 return DecodingResult(plainTextLength);
00460         }
00461 };
00462 
00463 //! .
00464 template <class T, bool DHAES_MODE, class KDF>
00465 class DL_KeyDerivationAlgorithm_P1363 : public DL_KeyDerivationAlgorithm<T>
00466 {
00467 public:
00468         void Derive(const DL_GroupParameters<T> &params, byte *derivedKey, unsigned int derivedLength, const T &agreedElement, const T &ephemeralPublicKey) const
00469         {
00470                 SecByteBlock agreedSecret;
00471                 if (DHAES_MODE)
00472                 {
00473                         agreedSecret.New(params.GetEncodedElementSize(true) + params.GetEncodedElementSize(false));
00474                         params.EncodeElement(true, ephemeralPublicKey, agreedSecret);
00475                         params.EncodeElement(false, agreedElement, agreedSecret + params.GetEncodedElementSize(true));
00476                 }
00477                 else
00478                 {
00479                         agreedSecret.New(params.GetEncodedElementSize(false));
00480                         params.EncodeElement(false, agreedElement, agreedSecret);
00481                 }
00482 
00483                 KDF::DeriveKey(derivedKey, derivedLength, agreedSecret, agreedSecret.size());
00484         }
00485 };
00486 
00487 //! Discrete Log Integrated Encryption Scheme, AKA <a href="http://www.weidai.com/scan-mirror/ca.html#DLIES">DLIES</a>
00488 template <class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = true>
00489 struct DLIES
00490         : public DL_ES<
00491                 DL_CryptoKeys_GFP,
00492                 DL_KeyAgreementAlgorithm_DH<Integer, COFACTOR_OPTION>,
00493                 DL_KeyDerivationAlgorithm_P1363<Integer, DHAES_MODE, P1363_KDF2<SHA1> >,
00494                 DL_EncryptionAlgorithm_Xor<HMAC<SHA1>, DHAES_MODE>,
00495                 DLIES<> >
00496 {
00497         static std::string StaticAlgorithmName() {return "DLIES";}      // TODO: fix this after name is standardized
00498 };
00499 
00500 NAMESPACE_END
00501 
00502 #endif

Generated on Tue Jul 8 23:34:16 2003 for Crypto++ by doxygen 1.3.2