
ELFIO

Tutorial

Serge Lamikhov-Center
(to serge@users.sourceforge.net)

October 20, 2001

1 Introduction

ELFIO is a C++ library that permits you to read and generate files in ELF
binary format. This library is not based on any other products and is plat-
form independent. It uses only standard ANSI C++ language constructios and
supposed to run on wide range of architectures.

While the library’s implementation does it’s best to make your work easy,
a basic knowledge of ELF binary format is needed. You may read about ELF
format in TIS (Tool Interface Standards) documentation that you received to-
gether with the sources of this library.

2 Getting started with ELFIO

2.1 Initialization

ELFIO library consists of two independent parts: ELF file reader (ELFI) and
producer (ELFO)1. Each is represented by its own set of interfaces. The li-
brary doesn’t contain any classes that we should explicitly instantiate. Instead,
ELFIO provides us a set of interfaces that we should use to access the library
functionality.

To make our program recognize all ELFIO interface classes, we need to
include ELFIO.h header file. Doing this, we also define all standard definitions
from TIS documentation.

#include <ELFIO.h>

In this tutorial, we’ll see how to work with the reader part of ELFIO library.
The first step that we should do, is to get a pointer onto the ELF file reader:

IELFI* pReader;
ELFIO::GetInstance()->CreateELFI(&pReader);

1ELF file producer (ELFO) is under development. There were no public releases yet.

1

Now, when we have a pointer on IELFI interface, we should initialize the
object by loading ELF file itself:

char* filename = ’’file.o’’;
pReader->Load(filename);

From here, we have an access to an ELF header. We may “ask” such file
parameters as encoding, machine type, entry point, etc. . . Lets get an encoding
of our file:

unsigned char encoding = pReader->GetEncoding();

Please note, standard types and constants from TIS document are defined in
ELFTypes.h header file. This file is included automatically into our project.
For example ELFDATA2LSB and ELFDATA2MSB constant defines a value for
little and big endian encoding respectively.

2.2 ELF file sections

ELF binary file consist from several sections. Each section has it’s own respon-
sibility. There are sections that contain executable code, and there are sections
that describes you program dependencies, symbol tables and so on. . . Please see
TIS documentation for the full description of all sections.

How can we know, how many sections our ELF file contains? What are their
names? Their size? Let’s see the next code:

int nSecNo = pReader->GetSectionsNum();
for (int i = 0; i < nSecNo; ++i) { // For all sections

const IELFISection* pSec = pReader->GetSection(i);
std::cout << pSec->GetName() << ’’ ’’

<< pSec->GetSize() << std::endl;
pSec->Release();

}

First, we have got a number of sections. Next, we have received a pointer on
IELFISection interface. Using this interface we may access different section’s
attributes, like it’s size, type, flags. address. To get a buffer, that contains
section’s bytes, we’ll use GetData() member function of this interface. Please
see IELFISection declaration for a full description of this interface.

2.3 Section readers

When we have got section’s data througt GetData() function call, we can ma-
nipulate this data according to our wish. But there are special sections that
provide information in predefined forms and ELFIO library is ready to help us to
process such sections. The library provides a set of section readers that “know”
predefined formats and how to process data. ELFIO.h header file curently de-
fines the next types of readers:

2

enum ReaderType {
ELFI_STRING, // Strings reader
ELFI_SYMBOL, // Symbol table reader
ELFI_RELOCATION, // Relocation table reader
ELFI_NOTE, // Notes reader
ELFI_DYNAMIC, // Dynamic section reader
ELFI_HASH // Hash

};

Let’s see how we can use symbol table reader in our example.
First, we get symbol section:

const IELFISection* pSec = pReader->GetSection(’’.symtab’’);

Then, we create symbol section reader:

IELFISymbolTable* pSymTbl = 0;
pReader->CreateSectionReader(IELFI::ELFI_SYMBOL,

pSec,
(void**)&pSymTbl);

And finally, we use the section reader to process all entries (print operations
omitted):

std::string name;
Elf32_Addr value;
Elf32_Word size;
unsigned char bind;
unsigned char type;
Elf32_Half section;
int nSymNo = pSymTbl->GetSymbolNum();
if (0 < nSymNo) {

for (int i = 0; i < nSymNo; ++i) {
pSymTbl->GetSymbol(i, name, value, size,

bind, type, section);
}

}
pSymTbl->Release();
pSec->Release();

2.4 Finalization

All interfaces that we get from ELFIO library should be freed after their use.
Each interface has a Release() function. It’s not enough to free only high level
interface. If one of sections or readers will be held, resources will not be cleared.

While we freed our interfaces immediatly after their use, in this example, we
should free only pReader object:

pReader->Release();

3

3 ELFDump utility

You may find source code of an ELF dumping utility in examples directory.
There you will find more examples of using ELFIO reader interfaces.

4

