
Australian Unix systems

G Ne letter

Vo 7

Registered by Australia Post Publication No. NBG6524

The Australian UNIX* systems User Group Newsletter

Volume 7 Number 6

April 1987

CONTENTS

AUUG General Information 2

Editorial 3

AUUG Winter 1987 Meeting Announcement 4

Adelaide UNIX Users Group Information 5

Rock C Music 6

ASCII vs UNIX 8

Taking Performace Evaluation out of the "Stone" Age12

Cake: a fifth generation version of make 22

UNIX Menu System 32

From the ;login: Newsletter - Volume 12 Number 2 44

MIND(: A UNIX Clone with Source Code for the IBM PC45

The DASH Project: Design Issues for Very Large Distributed Systems52

Book Review - The Nutshell Handbooks 54

General Meeting Minutes 58

Letters to the Editor 60

AUUG Membership Catorgodes 79

AUUG Forms 81

Copyright © 1987. AUUGN is the journal of the Australian UNIX* systems User Group. Copying
without fee is permitted provided that copies are not made or distributed for commercial advantage and
credit to the source must be given. Abstracting with credit is permitted. No other reproduction is
permitted without prior permission of the Australian UNIX systems User Group.

* UNIX is a registered trademark of AT&T in the USA and other countries

AUUGN 1 Vol 7 No 6

AUUG General Information

Memberships and Subscriptions
Membership, Change of Address, and Subscription forms can be found at the end of this issue.

All correspondence concerning membership of the AUUG should be addressed to:-

’ The AUUG Membership Secrekary,
P.O. Box 366,
Kensington, N.S.W. 2033.
AUSTRALIA

General Correspondence
All other correspondence for the AUUG should be addressed to:-

The AUUG Secretary,
Department of Computer Science,
Melbourne University,
Park,Alle, Victoria 3052.
AUSTRALIA

ACSnet: auug@munnari.oz

AUUG Executive

Ken McDonell, President

kenj@moncsbruce.oz
Monash University, Victoria

Robert Elz~ Secretary

kre@munnari.oz
University of Melbourne, Victoria

Chris Maltby, Treasurer

chris@gris.oz
Softway Pty. Ltd., N.S.W.

Chris Campbell, Committee Member

chris@olisyd.oz
Olivetti Australia, N.S.W.

John Lions~ Committee Member

johnl@elecvax.oz
University of New South Wales, N.S.W.

Tim Roper~ Committee Member

timr@labtam.oz
Labtam Limited, Victoria

Lionel Singer, Committee Member

lionel@pta.oz
Lionel Singer Group, N.S.W.

Next AUUG Meeting

(Temporary address is kjmcdonell@er.waterloo.cdn)
(University of Waterloo, Canada)

(This does not work)

The next meeting will be held at NSWIT on the 27th and 28th of August.
Futher details are provided in this issue.

Vol 7 No 6 2 AUUGN

AUUG General Information

Editorial
It has become obvious to me that many people in the UNIX community are NOT aware of the User
Group. This is especially true amongst commercial vendors and users of UNIX. I think the Group
should try to improve the situation. On a personal level, tell people you know who use UNIX, but are
not. members, about the AUUG. Please show them a copy of this newsletter, and encourage them to
join. The Group as a whole could promote itself more at wider forums such as the A.C.S., in the
electronic news, and at commercial UNIX seminars.

People that do not know that we exist cannot possibly become members

Special thanks to those who contributed to this issue, without them this Newsletter would be very short
on AUSTRALIAN content.

Please help the Newsletter by sending me a contribution.

REMEMBER, if the mailing label that comes with this issue is highlighted, it is time to renew your
AUUG membership.

AUUGN Correspondence
All correspondence reguarding the AULIGN should be addressed to:-

John Carey
AULIGN Editor
Computer Centre
Monash University
Clayton, Victoria 3168
AUSTRALIA

ACSnet: auugn@monul.oz

Phone: +61 3 565 4754

Contributions
The Newsletter is published approximately every two months. The deadline for contributions for the
next issue is Friday the 12th of June 1987.

Contributions should be sent to the Editor at the above address.

I prefer documents sent to me by via eleclronic mail and formatted using troff-mm and my footer
macros, troff using any of the standard macro and preprocessor packages (-ms, -me, -ram, pic, tbl, eqn)
as well TeX, and LaTeX will be accepted.

Hardcopy submissions should be on A4 with 35 mm left at the top and bottom so that the AUUG~!
footers can be pasted on to the page. Small page numbers printed in the footer area would help.

Advertising
Advertisements for the AUUG are welcome. They must be submitted on an A4 page. No partial page
advertisements will be accepted. The current rate is AUD$ 200 dollars per page.

Mailing Lists
For the purchase of the AUUGN mailing list, please contact Chris Maltby.

Disclaimer
Opinions expressed by authors and reviewers are not necessarily those of the Australian UNIX systems
User Group, its Newsletter or its editorial committee.

AUUGN 3 Vol 7 No 6

AUUG
Winter Meeting

1987

Sydney, August 27 and 28.

The Winter 1987 AUUG meeting will be held in Sydney, August 27 and 28
(Thursday/Friday) 1987.

The meeting is being hosted by the New South Wales Institute of Technology. Local
conference organisation is under the direction of Greg Webb, gregw@nsMtgould.oz.

More detailed information about this conference will be in the next issue of AUUGN,
and posted to the newsgroup aus.auug.

We are now actively seeking papers for this conference. The programme committee
chairman is Bob Kummerfeld from the University of Sydney.

Please send abstracts of papers to him at bob@basset.oz. Paper abstracts can be sent
to

Dr R.J. Kummerfeld,
Basser Department of Computer Science,
University of Sydney,
NSW 2006,
Australia.

The deadline for abstracts is Jul 10 1987. Authors will be notified of acceptance by
July 31.

Authors of papers given at the conference will receive complimentary admission to the
conference dinner. Authors who provide a written version of their paper by August 21
will have the conference registration fee waived.

In addition, AUUG has decided to hold a competition for the best paper by a full time
student at an Australian educational institution. The prize for this competition will be
an expenses paid trip to the AUUG meeting to present the winning paper. Students
should indicate with their abstract that they wish to enter the competition, and then
should provide the full written paper to the programme committee (which will be the
sole judge) by August 14. AUUG reserves the right to not award the prize if no
entries of a suitable standard are forthcoming.

It is hoped that this will become a regular feature of AUUG conferences.

Vol 7 No 6 4 AUUGN

Adelaide UNIX Users Group

The Adelaide UNIX Users Group has been meeting on a formal basis for 12 months.
Meetings are held on the third Wednesday of each month. To date, all meetings have
been held at the University of Adelaide. However, it was recently decided to change
the meeting time from noon to 6pm. This has necessitated a change of venue, and, as
from April, meetings will be held at the offices of Olivetti Australia.

In addition to disseminating information about new products and network status, time
is allocated at each meeting for the raising of specific UNIX related problems and for
a brief (15-20 minute) presentation on an area of interest. Listed below is a sampling
of recent talks.

D. Jarvis
K. Maciunas
R. Lamacraft
W. Hosking
P. Cheney
J. Jarvis

"The UNIX Literature"
"Security"
"UN/X on Micros"
"Office Automation"
"Commercial Applications of UNIX"
"troff/ditroff"

The mailing list currently numbers 34, with a healthy representation (40%) from
commercial enterprises. For further information, contact Dennis Jarvis
(dhj@aegir.dmt.oz) on (08) 268 0156.

Dennis Jarvis,
Secretary, AdUUG.

Dennis Jarvis, CSIRO, PO Box 4, Woodville, S.A. 5011, Australia.

PHONE: +61 8 268 0156
UUCP: {decvax,pesnta,vax135} !mulga!aegir.dmt.oz!dhj
ARPA: dhj % aegir.dmt.oz! dhj@ seismo.arpa
CSNET: dhj@aegir.dmt.oz

AUUGN 5 Vol 7 No 6

Rock C Music

Bruce Ellis
AT&T Bell Laboratories

There are some frightening parallels between the Rock Music industry and the
Computer industry. A quick look at the local newsstand reveals startling similarities.
Unix Review is a lot like Rolling Stone. A software review in the former reads much
like a record review in the latter.

I was sitting in a bar on 8th Street, slowly sipping a Long Island Iced Tea. To the left
of me were three members of a Heavy Metal band, to the fight two guys talking about
the financial modelling package they were working on. The conversations were very
similar. The guys to the left were priming the jukebox with Hendrix and grunting
bass lines to each other. The guys on the fight were playing the Doors on the box and
sketching screens and menus on the coasters. The most apparent difference between
the two groups wass the money. The guys on the left were not short of smart leather
jackets but they were scrounging to pay for the next round of Bacardi and Cokes. The
guys on the fight did not have this problem. They would nod at the barman mid
sentence for their refills. They lived in Manhattan. I’m sure the guys on the left lived
in Queens or Brooklyn, or even (God forbid it) New Jersey.

When we move on to the field of electronic musical instruments the parallel lines
meet. Fortunately a standard asynchronous information transfer protocol (MIDI) is
well established and more or less demanded for every product. MIDI interfaces are
available for many types of PCs and lots of software, both good and bad, is available
and heavily pirated. This field is a micro hackers dream and the musical instrument
shows have turned into engineering shows. Don’t try and use any musical term at
these unless you are willing to back it up with a distributors name. Where do you buy
your leading notes?

Lets look at the end users. Last Tuesday night I was wiling away my time at a bar in
the Village, as is my custom. I sipped my Beer as I watched the next band set up.
"Do you have a cable with an XLR female on one end and a quarter inch male on the
other?" Yes, but can I plug it into my Unibus? Finally the band is ready. The guy
"doing" the PA hasn’t a clue what he’s doing, but he’s merely support staff and has a
long tradition of performing busy meaningless tasks to uphold. The users have
brought their own peripherals, so there is little he can do about security. He can’t
really call a meeting in the middle of a song to discuss use of the midrange horns nor
is he likely to rewire the stage mid set so I guess the analogy falls down.

Anyway. Back to the band. They’re doing a plausible job of actually playing music
and the crowd is content. There are bugs, a bit of feedback now and then, but the
system seems to be holding up. I ponder a while at the little box sitting on top of the
sythesizer, the one connected in-to-out and out-to-in to the synth. Another drink,

Vol 7 No 6 6 AUUGN

another XTC clone and I realise. It is a MIDI-controlled synth module slaved to the
keeb. Only one of the MIDI chords is actually carrying data! What the hell? It
works so why bother telling the user he doesn’t need all that hardware? Sell him
some more. Speaking of hardware the more-than-competent drummer has two bass
drums! A backup? Surely not. At the end of the second set the band did the usual
"introduce the band and see how long they can solo for" song. The second bass drum
was for the "Flashy Demo". Sign him up to sell laser printers. ~

Let’s look at the industry watchers. After the Slayer concert at the Ritz the best I
could get out of the Black-Shirts was "They’re really good!", hardly a compelling
product endorsement. What does it matter? They picked a good name. A couple of
thousand Black-Shirts belting acrosstown to the PATH, chanting "Slayer!" and
breaking Budweiser bottles is as good a promo as they’ll ever need. And they put on
a great show. It is a bit sad that the best thing that can be said about a lot of bands is
"What a nice guitar Jimmy has". But this is what the industry watchers do. This is
done all the time in the Computer industry, particularly with words like UNIX and C
(I guess you were wondering what this has to do with AUUGN). Who cares about the
prestige names: the Marshall’s the Strats the 386s? What’s is being done with the
gear, what’s coming out the other end? Don’t tell me about your new machine, I’m
quite happy using a VAX and never want to have to port another program in all my
life. Anyway, I like those bright red angular guitars that sound like banjos and don’t
stay in tune.

So what can we conclude from all this? Buy Bon Jovi Computers I guess, and give
SUN a bad name.

AUUGN 7 Vol 7 No 6

ASCII vs UNIX~

Bob Buckley

School of Mathematics, Physics, Computing and Electronics,
Macquade University,
Sydney, NSW 2109.

bob@mqcomp.oz

Introduction.
The UNIX System has been with us for a while now and some of its initial advantages seem to be

fraying with time. This is an attempt to indicate a few places where repairs are needed.
The motivation for this comes from a persistent problem of inexperienced users and their difficul-

ties with printers and printer support software. However, the problem spills over into a number of
related areas. We seem to have a number of models for ASCII files coexisting (and undocumented) in
the UNIX environment.

I’m worded about file types. This is a naughty thing to say since there are no file types in this
context. We all know that a UNIX file is just a string of 8-bit quantities. This means that we can easily
copy, concatenate or do other simple things to files. Though this seems like a good idea, it turns out to
be a too simple to be completely practical.

This article is more a warning than a report. It was presented (before being written) at the Ade-
laide AUUG meeting. It is less ready for printing than I would like.

ASCII interpretation.

Most of us feel we understand use of ASCII on UNIX. However, there are several issues which
are not generally addressed.

UNIX likes to remove CR characters from its input. This simplifies recognition of line termina-
tors. It gives an excuse for pretending the CR character doesn’t exist. Unfortunately, this ostrich atti-
tude doesn’t always work. More and more, files and software is being imported to the UNIX context.
Some data and software prefers to use CR to achieve overprinting while most UNIX software uses BS.
Typically, CR isn’t correctly managed by UNIX utilities. How many programs reset their column
counters when they see CR? Pr doesn’t tackle the problem (it is tricky - in multicolumn output, does
CR mean CR or ’start-of-column’).

Using CR for overprinting raises another question. Should we interpret spaces as being destruc-
tive or non-destructive? At the moment, for physical reasons, we have a mixture: terminals tend to
assume destructive spaces while printers have non-destructive spaces. We seem to get by, but some-
times it really matters. It would be nice to have a consistent model.

Another problem character is FF. Mostly, this is ignored by UNIX but sometimes it causes trou-
ble. It didn’t used to be there but later versions of troff seem to be aware of page boundaries. Also,
BSD pr will insert FFs (but seems to not like them in the input). The problem here is that the model
doesn’t determine whether FF moves to column zero (output devices vary on this). Again, pr has a
problem with this character. Should FF start a new column or a new page?

UNIX is a trademark of Bell Laboratories.

Vol 7 No 6 8 AUUGN

At the moment, vertical motions are not consistent. NL is generally assumed to move to column
zero (except by col) while other motions (ESC 7, 8 or 9 and VT don’0. Much of the rest of the ASCII
control codes are ignored except by the tty drivers (and that’s a whole new ball-park). UNIX seems to
manage TABs pretty well.

UNIX file types°

There have always been a few special UNIX file types. The first obvious example is a directory.
There are many restrictions on what can be done to a directory by a user program. There are some spe-
cial programs which deal with directories, eg. Is, mv, cpThere are a few restrictions, like not
write(2) hag.

Other special file types are the special files. These allow different operations (via ioctl(2)) and
are really special. Pipes, sockets, etc. are different again.

Another group of file types known to the kernel is the executable files. An executable file can be
exec (2)ed - others can’t. The kernel knows they are executable because they contain type information.

UNIX is full of file types when you consider the utilities. Look at the manual decription of file
formats (it used to be section 5); as well as a.out(5), you will find things like ar(5), tarO), dump(5),
wtmp(5) and utmp(5). All of these are file types.

This is OK. The UNIX kernel doesn’t know (or care) about these. It is all up to the programmers
responsible for the system software. We just need to be a little more honest: UNIX does have lots of
file types but the kernel doesn’t care. The utilities care.

Implicit File Types - the Problem.

UNIX has many implicit file types. Further, these types aren’t always documented and people
aren’t conscious of their existence. Many programs are unexpressive of their limitations.

Several programs (eg. ed, vi and pr) expect ASCII files ie. files containing spaces, printable char-
acters and NL (provided NLs aren’t far apart). A few other characters are acceptable, in particular TAB
and BS. There are common ASCII characters that are not generally acceptable (eg. CR and FF). Such
files present few problems provided lines don’t get too long.

Actually, such file have different types. C source, Pascal source and English text are different
types. Of course, the UNIX kernel doesn’t care but other software does, eg. the C compiler. The file (1)
utility attempts to recognise the difference.

There are other anonymous file types managed by UNIX utilities. Nroff is good at producing spe-
cial file types - by default it produces files intended to be sent, in raw mode, to a TTY37 (whatever that
was). Control characters have different meanings (particularly LF). Extra characters may be used, par-
ticularly CR, SI, SO, VT and ESC (with 7,8 or 9). The interesting thing is that nroff’s TTY37 output
can be used as input to other programs, particularly col and pr (ul and more on BSD systems) Then,
with luck, col’s output may be suitable input for pr!

Nroff-Txxx produces a different file type and its output should be sent directly to a xxx device.
Though such a file contains only ASCII characters, it is not UNIX’s idea of an ASCII file (despite what
file(l) says). A related problem arises with graph(l) or plot(3) output. Due to poor support
limited/infrequent use this present fewer problems, in practise.

We pretend there aren’t file types. For some utilities this is true. Programs like cp, od, tr, etc.
genuinely don’t care about their input.

The real problem is that there are lots of different file types and there are lots of ways of describ-
ing them. What determines a file type? Is it determined by the programs or devices which can process
it? Is it determined by its contents or its intended interpretation? Each approach has problems.

TTY37 files are a sort of intermediate form and have a file type which is partially documented
and supported. Output for other printer types is not generally supported and file types are not defined.
The problem is generally regarded as ’too difficult’. As a result, users are expected to know a file’s
type and to process it accordingly. Many utilities could object to nonsense input.

AUUGN 9 Vol 7 No 6

What to do.
There are several things that need fixing now. These are minor but need to be fixed consistently.

File (1) utility is a rarely used and usually out-of-date program. It needs updating and a bit of promo-
tion. Several programs need to improve their image. Pr(1) should complain about CR and FF with
multi-column output. (What do CR and FF mean in multi-column output?)

The TRY37 model of ASCII is broader than we generally need. It is broader than we can easily
handle (few printers handle reverse motions or special characters, some don’t backspace and a few can’t
even overprint). There are probably three major sub-types. The simplest is a basic file for editing.
Such a file contains only printing characters (040-0176), TABs and NL. Most source code, data and
nroff/troff input is like this. This material can be easily manipulated - edited, printed, etc.
After this comes fries directed to simple printers. As well as the above, they may include overprinting
via BS (perhaps FF should also be allowed). A program like pr should be able to handle this as input.
Character widths are fixed. Font handling for normal, bold, italics and underline should be included
(note: bold and underline are currently expressed as oxierprinting but it should be explicit, especially now
that continuous underlining is supported). Programs which understand BS should allow overprinting
using CR (this is pretty easy and available on other systems).
The TTY37 model allows SUSO special character handling. This can be merged with the bold!italic
font handling above.

The TI’Y37 model supports reverse motions and half-line motions. Note: reverse motions can be elim-
inated using col(l) so only half-line motions are necessary.

Other nroff output is aimed at specific devices. This should be explicitly indicated so lpr, etc.
can check that output is going to appropriate devices. Other checks are also needed - eg. no printing of
executable (non-ASCII) files unless these are some sort of download file for the device. Col and other
utilities should complain about unsuitable input. Files requiring particular hardware (fancy fonts, fine
motions, proportional spacing, etc.) should be made explict. With so many (nearly) compatible printers
this gets complicated. Checking to see that output is suitable for a particular printer is a real headache -
but we need to face this problem. There are problems ensuring fonts are properly downloaded and that
the printer is in the right mode, etc.

If we consider files intended for bit-mapped screens or ’intelligent’ terminals, the problem gets
worse.

This boris down to a need for explicit file types in the UNIX environment. Simple ASCII (edit-
able files) are probably a basic type. It is usually easy to see what these are about. Even so, it doesn’t
make much sense to cat C source code and nroff input together (just as it isn’t sensible to append a file
to an archive). Merging and ASCII file with a printer file may be sensible but it could require signifi-
cant work (is this what desk-top publishing is abou0. Like TTY37 files, PostScript and plot (5) fries are
intermediate forms. Should we expect to be able to combine these file types? This is the stuff that
dreams are made of.

More needs to be said about file types. Documentation should be fixed up and most references to
TTY37 should be deleted. People tend to ignore stuff about devices they don’t have.

A rather specific problem is that output programs should handle file types automatically. Conver-
sions for italics, bold, underline, etc. should be standard for all devices. Ideally, this is done as late as
possible - perhaps in the device driver (after all, tty drivers do just about everything else) or in the very
last program. When this isn’t possible, warnings could be posted. A major contender for improvement
is the lpr/lpd software (consider/usr/games/worms piped into lpr). Surely, Berkeley’s printcap (and
termcap, for that matter) needs conversions for TTY37 oddities (reverse motions, half-motions, etc.).

As a final remark, obtaining device specifications from the environment doesn’t quite work. It
fails for most redirected output - output piped to lpr or directed to another terminal. Networks can
make the problem even worse. This is not an easy problem to solve.

Vol 7 No 6 10 AUUGN

Conclusion
The UNIX model of ASCII files was based around the TTY37. This terminal has departed (or was

never here) but its memory is enshrined in the UNIX environment. It served us well but the advent of
’advanced’ printers and displays show the need for change. If this is mismanaged, we may never
recover.

In most cases, the utilities are the problem. The above recommendations hardly effect the UNIX
kernel. The utilities have been derived from a large user base. It is difficult to maintain a consistent
model over the time they’ve been developing and such a large development team. There might be fewer
problems if the model were more explicit.

You may feel that this approach is totally (or partially) wrong. This article will have served it’s
purpose if you think about it.

AUUGN 11 Vol 7 No 6

TAKING PERFORMANCE EVALUATION OUT OF THE STONE" AGE

Ken J. McDonellt
Department of Computer Science

Monash University
AUSTRALIA

kenj@moncskermit.oz

ABSTRACT

Predicting the performance of any computer system is critical to rational equipment acquisition by purchasers and
successful product delivery by vendors. This paper takes a brief but critical look at "figure of merit" performance
metrics, especially with respect to their reliability and predictive usefulness.
Necessary prerequisites for serious performance evaluation and prediction are identified. The architecture of the
MUSBUS benchmark suite is described with particular emphasis on the technical considerations that allow MUSBUS
to be tailored to accurately predict multi-user system behaviour in specific operational environments.

1. Performance Evaluation Goals
All computer system performance evaluation is directed to one or more of the following specific goals,

(G-l) Compare the measured performance of heterogeneous systems executing specific identical tasks.

(G-2) Compare the anticipated performance of heterogeneous systems executing the same "typical" tasks.

(G-3) Collect diagnostic evidence to substantiate hypotheses about anomalous performance (either very good or very
bad) for one or more tasks executed on a particular stable system.

Irrespective of the specific tests employed most performance metrics are based upon resource consumption (e.g. cpu
time), throughput (e.g. as measured by elapsed time) or some related measure (e.g. number of users supported or
mega-grunts per second).

Goal G-2 typically implies performance prediction based upon performance measurement, and this is by far the most
useful application of performance evaluation. Purchasers want reliable estimates of expected system performance in
their anticipated operational environment. This would be useful not only when new systems are being acquired, but
also when upgrades are considered, e.g. "what demonstrable improvement can we expect from adding 2Mbytes of
memory or a second disk controller?". On the other hand, vendors need reliable estimates of system performance
across a range of designated application environments to guide marketing and system tuning activities.

The central thesis of the first half of this paper is that G-2 is the most widely sought, but seldom realized, goal of
current performance evaluation activity in the Ur,ax~ community. An approach to achieving this goal in any opera-
tional environment is described in the later sections.

2. Some Performance Tests and Measures
The UNix system and the C programming language combine to provide a stable software execution environment on
machines across the full price-performance spectrum. The consequent ease with which portable software can be
developed has fostered a large class of tests purporting to measure system performance by a single "figure of merit"
metric. These tests fall into two basic classes,

* This paper will be presented by Ken at the next Usenix meeting, Phoenix, Arizona, 3une 1987 and will be
printed in the proceedings - AUUGN Editor.

t Currently on leave at the Department of Computer Science, University of Waterloo, Ontario, CANADA,
kjmcdonell@er.watedoo.cdn or kjmcdonell@waterloo.csnet

~t UNtx is a Registered Trademark of AT&T.

Vol 7 No 6 12 AUUGN

(a) The "one liners" that are easy to type in, use standard UNIX programs and measure cpu time using either the
shell built-in time function or/bin/time. Some common examples are shown in Figures 1 and 2.

(b) Synthetic tests such as the "stone" family (whet[3], dhry[9, 12], dhamp[5]). ’
Irrespective of which class they come from, these tests may be characterized as follows,
(a) The test is easy to run, and is guaranteed to produce a value for the performance metric.
(b) The value obtained is statistically unreliable due to an unknown and often large measurement error; worse still,

the relative error may vary between different machines.
(c) The performance metric typically measures some combination of

¯ cpu arithmetic speed, and

¯ C compiler quality.
Unfortunately, other important factors (as identified below) are totally ignored.

(d) System performance under real operating loads may be, but most often is not, well correlated with the test and
performance metric[6].

Clearly these tests potentially satisfy the performance evaluation goal G-1, and with careful use could assist with goal
G-3. However the majority of people running and interpreting these tests appear to believe the results have some
predictive value as per goal G-2. The compilation and publication of tabulated results from these tests under the
heading of "UNtx benchmark results" is highly misleading because what has been measured is influenced by only a
few of the many factors contributing to system performance - this is the fundamental weakness common to all the
single "figure of merit" approaches. These test programs and performance evaluation suites are essentially of no
more use than common sense and guesswork in predicting the performance of a real system under actual load condi-
tions.
To be fair, it is the use of the tests and interpretation of the results that is most commonly at fault. The tests have
often been constructed for a specific purpose, and in that role are both accurate and useful. Despite the pleas of their
creators (see for example[8,10,11]), and caveats in the code, it is the adoption of the test for an unsuited role (i.e.
general performance prediction) that is the problem.
Another class of tests has evolved from recognition of specific areas of weakness in some UNiX implementations
and/or factors perceived to be important influences on performance, for example
$ filesystem throughput
¯ system call overhead

main ()
{

int i;
for (i = O; i < i000000; i++)

;

Figure 1: The "count to a million" test.

$ time dc
99k2vpq
1.414213562373095048801688724209698078569671875376948073176679737990732\
478462107038850387534327641572

9.2 real 1.3 user 0.2 sys

Figure 2: The "square root of 2 to 99 decimal places" test.

AUUGN 13 Vol 7 No 6

® fork() and exec0 speed
® pipe throughput

o memory access bandwidth
These tests are clearly aimed at goal G-3, and any wider intel~retation of their results cannot be made. Even in this
restricted usage, these tests can be tricked by implementors aiming for a competitive edge in commonly used bench-
marks (e.g. cache the results from getpid0). In some cases the tests are simply misguided, measuring behaviour that
is uncommon in many operational U~,ax environments (e.g. random file I/O).
Some attempts have been made to provide test environments in which many G-3 style tests are performed, and the
results combined using relative weights of importance [1,4, 7]. The disadvantages of this approach are,
(a) the tests are not statistically independent (interaction between factors is not measured), and
(b) accurate assignment of the weights of importance is more difficult than constructing a user-level workload pro-

file as suggested below.
Finally, there have been some G-1 type tests developed for comparing heterogeneous systems executing the same set
of end-user tasks, for example [1,2]. The predicitive value of these tests depends upon the extent to which the sup-
plied end-user tasks are representative of a particular operational environment.

3. Improving the Methodology

In the performance of various Ur,rtx systems running the same task was accurately measured, the differences in the
observed results may be attributed to some of the following factors,

® processor performance; includes raw speed, configuration options (e.g. FPU, data cache, co-processor) and interrupt
servicing overheads

. disk subsystem performance; device characteristics, bus bandwidth and channe!/controller configuration

® C compiler; the quality may vary dramatically with revision level
® U~rr~ kernel implementation; quality varies between base versions, ports and release levels

® filesystem configuration; allocation of filesystems across spindles and filesystem age

o real memory available to user processes
~ configuration parameters; most notably disk buffer cache size and filesystem block size(s)

Reliable performance evaluation tests must be sensitive to all the above factors, because the performance delivered to
the end-user can be seriously degraded by any one of these factors. The simplest test meeting this criterion is to
measure the time required to perform some mixture of typical processing tasks from the anticipated operational
environment. In this way, total system performance is measured directly, rather than attempting to isolate and meas-
ure the performance in each of the critical areas.

Whilst there undoubtedly exist classes of U~rtx users with similar patterns of system usage, it is unrealistic to expect
that one test or one mix of processing tasks will be representative for all operational environments. Rather, we
should be aiming for tools that help us create, realistically execute and instrument the running of a representative col-
lection of tasks on a variety of system configurations.

Serious performance evaluation requires,

(a) Definition of the anticipated workload profile.

(b) A test environment that will execute randomized tasks, chosen from the desired workload profile, for various
levels of system load and record statistically sound measures of resource consumption. This test environment
must be portable and extremely robust to maximize its usefulness and to encourage vendors to run user-specific
benchmark tests, often at remote locations.

(c) Careful documentation of the environment in which the test was conducted (hardware configuration, revision lev-
els of the operating system and C compiler, workload profile, sysgen configuration parameters, filesystem parti-
tioning, etc.).

Vol 7 No 6 14 AUUGN

A workload profile may be characterized by a set of independent user-level tasks, each typically corresponding to one
or more program executions. For each task, the following information is required,

® the particular programs involved

representative test data (data files, user input, patterns to search for, directory contents, etc.)
relative frequency of execution

Identifying and describing the anticipated workload profile is a task of varying difficulty. In some environments, his-
torical records (e.g. process or shell accounting) or known application usage provide accurate data from which the
workload profile may be constructed. In other cases, informed guesswork is required.

For the MUSBUS multi-user test described below, a workload profile consists of an annotated shell1 script with all
associated data files. Tasks with high relative frequencies may appear more than once in the script.

4. MUSBUS
The Monash University Suite for Benchmarking U~r~x Systems (MUSBUS) is a public-domain benchmark suite
developed originally for equipment comparison during acquisition procedures.
The suite supports all three goals of performance evaluation with a simulated multi-user testbed facility and a battery
of specific diagnostic tests.
The diagnostic tests have been designed to measure raw speed in very specific areas. Their execution is controlled by
a shell script and parametedzed so that the default values effecting test selection, size and duration may be over-
ridden by command line options and environment variables. Table 1 provides a brief summary of these tests.

Of all the tests in MUSBUS, the simulated multi-user test is the by far the most complicated, most realistic and most
likely to uncover operating system bugs. It is also the test specifically engineered to provide reliable predictions of
anticipated performance (goal G-2) since it may be easily configured to perform "typical" tasks for any operational
environment and then run on heterogeneous systems.

Once a workload profile has been defined (as described in the previous section), several (typically 4) scripts are
automatically created, each comprising a randomized permutation of all the tasks in the workload profile. A control
file (workload) is also created to describe how each script should be run (refer to Figure 3).

The multi-user test simulates a variable number of users, each executing their own job stream. The job streams are
chosen by cyclic selection from the scripts.

Control over the multi-user test rests with the program makework (refer to Figure 4) that performs the following func-
tions.

(a) Read the workload and script files into dynamically allocated buffers.

(b) Make cloned copies of itself (via fork()) to run the job streams for groups of users (necessary due to per process
open file limits).

(c) Start each user shell with its input coming from makework via a pipe.

(d) Send random chunks of input to the job streams, controlled so that the aggregate rate across all simulated users
does not exceed a specified rate in characters per second.

(e) All output from the shells and echoing of all input is directed to one or more real tty devices to ensure that an
appropriate number tty output interrupts occur. See Figure 5.

(0 When all script input has been sent, wait for all user shells and makework clones to terminate.

All MUSBUS tests are run under the control of a large Bourne shell procedure charged with.

(a) Executing each test several times (the default is 6 or 3, depending on the particular test), recording the/bin/time
results then computing the mean and standard deviation of the total (user plus system) cpu and elapsed times.

1 The choice of "shell" is truly arbitrary, and may include any interactive application environment, e.g. an SQL
database query language interface.

AUUGN 15 Vol 7 No 6

Test Controlling Variables Description
Name and Default Values

arithloop [1000] A family of tests that compute the sum of a series of terms
such that the arithmetic is unbiased towards operator type.
Each major loop in the computation involves summing 100
terms; there are $adthloop major loops. Repeated for all
flavours of ints and floats.

dc Compute the square root of 2 to 99 decimal places using dc.
This test is due to John Lions (University of New South
Wales) who has suggested it as a good first order measure of
raw processor speed.

hanoi ndisk [17] A recursive solution to the classical Tower of Hanoi
problem. Sndisk provides a list of the number of disks for a
set of problems.

syscall ncall [4000] Sit in a hard loop of $ncall iterations, making 5 system calls
(dup(0), close(i), getpid0, getuid0 and umask(i)) per
iteration.

p~ it [2048] One process (therefore no context switching) that writes and
reads a 512 byte block along a pipe $io times.

spawn children [100] Simply repeat $children times; fork a copy of yourself and
wait for the child process to exit.

execl nexecl [100] Perform $nexecl execs using execl0. The program to be
exec’d has been artificially expanded to a reasonable size.

context switch [500] Perform 2 x $switch context switches, using pipes for
synchronization. The test involves 2 processes connected via
2 pipes. One process writes then reads a 4-byte
(descending) sequence number, while the other process reads
then writes a sequence number.

C Measure the time for each of
cc -c cctest.c

and
cc cctest.o

where cctest.c contains 124 lines of uninteresting C code
(108 lines of real code after cpp).

seqmem poke [100000] These tests try to measure memory read accesses per real
arrays [8 64 512] second. Spoke accesses are made into arrays of Spoke x

1024 ints. A cyclic sequential access pattern is used.
randmem Like seqmem, but uses random access patterns.
fstime blocks [62 125 250 500] Sequential file write time, file read time and File copy time

where [.] for files of $blocks Kbytes. Temporary files will be created
in the directory Swhere. The copy time for the larger files is
the best indicator of throughput and reflects the type of disk
activity most commonly generated by compilers, editors,
assemblers, etc.

Table 1: MUSBUS diagnostic tests.

Vol 7 No 6 16 AUUGN

/bin/sh -ie <script.l
/bin/sh -ie <scripto2
/bin/sh -ie <script.3
/bin/sh -ie <script.4

Figure 3: Typical specifications for executing scripts (workload).

script

makework

¯¯¯7

¯

user #j
shell

makework
clone #1

¯
!

user #k
shell

File I/O ~,
Pipe I/O ~

makework
clone #2

I ¯
I

I

user #m
shell

user #1
shell

Figure 4: Overall architecture of the MUSBUS multi-user test.

AUUGN 17 Vol 7 No 6

_ -

..- ., \ Pipe I/O :~

~ ~ ~ iI~
~

user #j I [I

Figure 5: Directing terminal output to a physical device.

(b) Reconfiguring the multi-user tests to allow tty and filesystem activity to be distributed across an arbitrary
number of physical devices.

(c) Performing tests with different control parameters, e.g. varying the number of job streams in the simulated
multi-user test.

(d) Monitoring completion status and standard error output to detect failed tests.

5. Issues Related to Test Engineering

The development of the MUSBUS multi-user test in particular has highlighted a number of issues related to bench-
mark test design in the UNiX environment.

Quiescent system configuration. Some tests must be run as super-user to avoid per user limits (e.g. maximum
number of processes). However, given the performance prediction goals, the tests should be run on an otherwise
unloaded machine in multi-user mode. This ensures that mandatory daemon activity will be present during test
measurements.

Interactive input rate limitation. Limiting the rate at which input is presented to the shell and other interactive
programs is an important factor influencing the predictive accuracy of the multi-user test results. Without this con-
straint, an interactive program’s contribution to resource consumption for the job stream may be significantly reduced
(e.g. artificially short program residency leads to higher buffer cache hits rates during exec0 and application file I/O
for repeated program executions, and reduced swapping and/or paging activity). Of course the ideal situation would
be to simulate demand driven (i.e. no typeahead) and rate limited input. Unfortunately there is no portable and cheap
(in terms of resource consumption) software technique2 for one process to determine that another process is waiting
for input, and so simulating demand driven input is not possible.

Bogus file sharing. If tasks in the job streams require access to the same data file, private copies should be made
unless the files are truly shared in the application environment, otherwise buffer cache hits will artificially reduce the
cost of file I/O. For example, if all N job streams contain an edit task on a sample data file, there should be N
copies of the file made, one per simulated user.

Multiplexed standard input. When two processes compete in time for the one source of standard input (see Figure
6) serious problems may arise if the input generator (i.e. makework) is not response-driven. In general makework

Although external hardware "stimulators" have been used in some cases.

Vol 7 No 6 18 AUUGN

cannot tell whether the current "chunk" of input text is intended for the user’s shell or some program invoked from
that shell or a mixture of both. With reference to Figure 6 there are many pathological situations, the worst being
program K consumes in one read some input that includes it’s own termination command and some of the following
text intended for the shell once program K has finished - the shell never sees that text! The architecture shown in
Figure 7 has been used to overcome this; keyb includes the rate-limited text generation algorithm from makework and
allows separation of shell and application input. However to retain control over the shell’s rate of execution, the shell
script must be padded with comments by the number of bytes in the input stream to program K.
Testing for failure. Makework checks the results of every system call, has a SIGPIPE handler and checks the status
returned via wait(). If any error is detected, makework kills off all shells and the makework master kills off all clones
(and their dependent shells). There is a certain degree of paranoia in this error checking, fostered by several bad
experiences in which bizarre Urnx implementation bugs resulted in very good, but incorrect, predicted performance (if

makework

user #i
shell

I
I
I
I

Pipe I/O :~

program K
for

user #i

Figure 6: Multiplexing standard input in a job stream.

makework

!

I

user #i
shell

File I/O ~~,
Pipe I/O ~

program K
for

user #i

keyb

Figure 7: Multiple input sources for a job stream.

AUUGN 19 Vol 7 No 6

only a fraction of each job stream is executed, the work can be completed in a very short time!). No program or sys-
tem call can be assumed to always execute correctly.

Randomizing the processing. Particularly misleading results are produced when a number of identical job streams
are executed in effective synchrony. In some other benchmark suites, this has been used as a cheap way of increas-
ing the "work" performed in a test. MUSBUS randomizes the processing load by using permuted scripts and ran-
domizing the input rates to individual shells.

Using standard tools. MUSBUS uses many standard U~IX tools and utilities, in particular the Bourne shell, awk,
sed, grep and a particularly bland vanilla dialect of C that is very portable. Uses include,

® permuting tasks to construct scripts

o checking standard error output for unexpected messages

® producing statistical summaries of repeated test results

~ post-processing results to automatically produce tbl input for summary tables and tables comparing system perfor-
mance

® the driving script, controlled by command line arguments and environment variables.
Constructing portable software. Since MUSBUS was specifically designed for comparing performance between
heterogeneous U~,nx systems, software portability was always an issue of importance. Despite the apparent uniformity
of the C and U~,ax interfaces, and considerable prior experience in building portable systems, a number of hidden
incompatibilities were revealed in early MUSBUS usage. Some of the more notable problems included,
® /bin/time produces different format output, which means different awk scripts are required to produce the statistical

summaries.
The behaviour of wc when given a single argument is not consistent.

Trying to measure short elapsed time intervals varies between, impossible, hopelessly unreliable and grossly
obscene code.

The total lack of standardization in cpp predefined macros to reflect environment parameters (cpu and Ur,ax fla-
vour) led to the creation of yet another redundant set of cpp macros that must be checked by hand before the
software can be installed.

6. Performance Prediction
All MUSBUS performance predictions are based upon the multi-user test results for a varying number of job streams.
Provided sufficient data points have been collected (4 or more) over a range of "number of job streams" that moves
out of the linear region of performance behaviour, reasonable extrapolated results can be obtained for each of the
measures described below.

System throughput: the elapsed time for a particular number of job streams.

System saturation: can be deduced from the ratio of cpu to elapsed times.

Relative response time degradation: can be determined directly from the ratio of elapsed times for 1 and N job
streams.

These predictive measures may be extrapolated to answer the following sorts of questions.

® With 48 simulated users, which system offers best throughput?

¯ Which system supports most simulated users at 0.85 cpu utilization?

® Which system supports most simulated users at the point where response times have deteriorated by 50% over the
single user performance?

Accurate interpretation of measured performance requires considerable skill and awareness of factors such as the fol-
lowing.

(a) Particular hardware configurations, versions of the same Unix port and C compilers vary with time to such an
extent that labelling one set of figures as from Brand X Model Y is misleading to all concerned.

Vol 7 No 6 20 AUUGN

(b) MUSBUS is intended to be reconfigured in the multi-user simulated workload test to reflect the work profile of
a particular user site. Whenever different workloads are used the results cannot be compared.

(c) Deliberately the MUSBUS tests are in two distinct categories, raw speed and multi-user. The former are useful
for diagnostic purposes only and give little useful information for a potential purchaser. The latter test gives
good predictions of system performance.

(d) Changing Unix configuration parameters (e.g. cache size, filesystem architecture, filesystem age, etc.) may have
dramatic effects on the observed performance.

(e) Beware of simulating too few users in the multi-user test. Useful information about system throughput and per-
formance under heavy load conditions can usually be obtained by extrapolation of various measures computed
from the CPU and elapsed times for the multi-user tests with various numbers of users. However this assumes
the machine has been sufficiently loaded to move out of the linear part of the performance curves. For very fast
machines, this may require emulation of a large number of users in the multi-user test.

(f) Beware of simulating too many users in the multi-user test. This can result in unexpected resource depletion
(e.g. serial line bandwidth) that does not accurately reflect the likely operating conditions.

(g) Serious testing has been known to "break" UNIX ports. Causes have been identified as implementation (confi-
guration) limits in the system being tested (e.g. proc slots), real bugs in the port or MUSBUS errors.

7. Concluding Comments
MUSBUS was originally developed to assist in equipment selection decisions. In that role it has proven to be most
useful, and by empirical standards, an accurate predictive tool.
However the use has grown to include technical performance criteria to be met in contractual acceptance conditions,
system check-out during installation, in-house performance measurement and kernel-exercising by several vendors
during product evolution.

References

.
AIM Technology, AIM Benchmark Suite II - Evaluating UNIX Computers, 1984.

L. F. Cabrera, Benchmarking Unix - A Comparative Study, in Experimental Computer Performance Evaluation,
D. Ferrari and M. Spadoni, (eds.), North-Holland, Amsterdam, 1981.

3. H.J. Curnow and B. A. Wichmann, A Synthetic Benchmark, Comp. J. 19,1, (Feb. 1976), 43-49.

4. G. Dronek, Relating Benchmarks to Performance Projections, Proc. USENIX, Salt Lake City, Utah, Jun., 1984.

5. R.J. Eickemeyer and J. H. Patel, Dhampstone, USENET, Newsgroup comp.arch, Article <500001@ uicsg>, 14
Feb., 1987.

o

J. Mashey, Re: 01/31/87 Dhrystone Results and Source, USENET, Newsgroup comp.arch, Article
<ll2@winchester.mips.uucp>, 9 Feb., 1987.
M. F. Morris and P. F. Roth, Computer Performance Evaluation - Tools and Techniques for Effective Analysis,
Van Nostrand Reinhold, New York, 1982.

J. H. Patel, Re: Dhrystone and Dhampstone, USENET, Newsgroup comp.arch, Article <500002@uicsg>, 26 Feb.,
1987.

9. R. Richardson, Dhrystone, USENET, Newsgroup comp.arch, Article <153@homxb.uucp>, 14 Mar., 1987.

10. R. Richardson, Re: 01/31/87 Dhrystone Results and Source, USENET, Newsgroup comp.arch, Article
<2366@homxb.uucp>, 7 Feb., 1987.

11.

12.

R. Richardson, Re: 01/31/87 Dhrystone Results and Source, USENET, Newsgroup comp.arch, Article
<2387@homxb.uucp>, 14 Feb., 1987.

R. P. Weicker, Dhrystone: A Synthetic Systems Programming Benchmark, Comm. ACM 27, 10, (Oct. 1984),
1013-1030.

AUUGN 21 Vol 7 No 6

Cake: a fifth generation version of make

Zoltan Somogyi
Department of Computer Science

University of Melboume
zs@mulga.OZ

Abstract

Make is a standard Unix1 utility for maintaining computer programs.
Cake is a rewrite of make from the ground up. The main difference is
one of attitude: cake is considerably more general and flexible, and can
be extended and customized to a much greater extent. It is applicable to a
wide range of domains, not just program development.

1. Introduction
The Unix utility make (Feldman, 79) was written to automate the compilation and
recompilation of C programs. People have found make so successful in this domain that they
do not wish to be without its services even when they are working in other domains. Since
make was not designed with these domains in mind (some of which, e.g. VLSI design, did not
even exist when make was written), this causes problems and complaints. Nevertheless,
implied in these complaints is an enormous compliment to the designers of make; one does
not hear many grumbles about programs with only a few users.

The version of make described in (Feldman, 79) is the standard utility. AT&T
modified it in several respects for distribution with System V under the name augmented
make (AT&T, 84). We know of two complete rewrites: enhanced make (Hirgelt, 83)
and fourth generation make (Fowler, 85). All these versions remain oriented towards
program maintenance.

Here at Melbourne we wanted something we could use for text processing. We had
access only to standard make and spent a lot of time wrestling with makefiles that kept
on getting bigger and bigger. For a while we thought about modifying the make source, but
then decided to write something completely new. The basic problem was the inflexibility of
make’s search algorithm, and this algorithm is too embedded in the make source to be
changed easily.

The name cake is a historical accident. Cake follows two other programs whose
names were also puns on make. One was bake, a variant of make with built-in rules for
VLSI designs instead of C programs (Gedye, 84). The other was David Morley’s shell script
fake. Written at a time when disc space on our machine was extremely scarce, and full file
systems frequently caused write failures, it copied the contents of a directory to /trap and

1 Unix is a trademark of AT&T Bell Laboratories.

Vol 7 No 6 22 AUUGN

invoked make there.

The structure of the paper is as follows. Section 2 shows how cake solves the main
problems with make, while section 3 describes the most important new features of cake.
The topics of section 4 are portability and efficiency.

The paper assumes that you have some knowledge of make.

2. The problems with make

Make has three principal problems. These are:

(1) It supports only suffix-based rules.

(2) Its search algorithm is not flexible enough.

(3) It has no provisions for the sharing of new make rules.

These problems are built deep into make. To solve them we had to start again from
scratch. We had to abandon backward compatibility because the make syntax is not rich
enough to represent the complex relationships among the components of large systems.
Nevertheless, the cake user interface is deliberately based on make’ s; this helps users to
transfer their skills from make to cake. The functionalities of the two systems are
sufficiently different that the risk of confusion is minimal9.

Probably the biggest single difference between make and cake lies in their general
attitudes. Make is focused on one domain: the maintenance of compiled programs. It has a
lot of code specific to this domain (especially the later versions). And it crams all its
functionality into some tight syntax that treats all sorts of special things (e.g.. SUFFIXES) as
if they were fries.

Cake, on the other hand, uses different syntax for different things, and keeps the number
of its mechanisms to the minimum consistent with generality and flexibility. This attitude
throws a lot of the functionality of make over the fence into the provinces of other programs.
For example, where make has its own macro processor, cake uses the C preprocessor; and
where make has special code to handle archives, cake has a general mechanism that just
happens to be able to do the same job.

2.1. Only suffix-based rules

All entries in a makefile have the same syntax. They do not, however, have the same
semantics. The main division is between entries which describe simple dependencies (how to
make file a from file b), and those which describe rules (how to make files with suffix . x
from files with suffix . y)3. Make distinguishes the two cases by treating as a rule any
dependency whose target is a concatenation of two suffixes.

For this scheme to work, make must assume three things. The first is that all
interesting files have suffixes; the second is that suffixes always begin with a period; the third
is that prefixes are not important. All three assumptions are violated in fairly common
situations. Standard make cannot express the relationship between file and file. c
(executable and source) because of assumption 1, between file and f il e, v (working file
and RCS file) because of assumption 2, and between file. o and ../src/file. c (object
and source) because of assumption 3. Enhanced make and fourth generation
make have special forms for some of these cases, but these cannot be considered solutions

This problem, called cognitive dissonance, is discussed in Weinberg’s delightful book (Weinberg, 71).

For the moment we ignore entries whose targets are special entities like .IGNORE .PRECIOUS etc.

AUUGN 23 Vol 7 No 6

because special forms will always lag behind demand for them (they are embedded in the
make source, and are therefore harder to change than even the built-in rules).

Cake’s solution is to do away with make-style rules altogether and instead to allow
ordinary dependencies to function as rules by permitting them to contain variables. For
example, a possible rule for compiling C programs is

~ .o: % .c
cc -c %. c

where the % is the variable symbol. This rule is actually a template for an infinite number of
dependencies, each of which is obtained by consistently substituting a string for the variable %.

The way this works is as follows. First, as cake seeks to update a file, it matches the
name of that file against all the targets in the description file. This matching process gives
values to the variables in the target. These values are then substituted in the rest of the rule4.
(The matching operation is a form of unification, the process at the heart of logic
programming; this is the reason for the fifth generation bit in the title.)

Cake actually supports 11 variables: % and % 0 to % 9. A majority of rules in practice
have only one variable (canonically called %), and most of the other rules have two
(canonically called %1 and %2). These variables are local to their rules. Named variables are
therefore not needed, though it would be easy to modify the cake source to allow them.

Example
If cake wanted to update prog. o, it would match prog.o against %. o, substitute prog
for % throughout the entry, and then proceed as if the cakef±le contained the entry

prog. o : prog. c
cc -c prog.c

This arrangement has a number of advantages. One can write

%.0: RCS/%. c, v
co -u %.c
cc -c %.c

without worrying about the fact that one of the files in the rule was in a different directory and
that its suffix started with a nonstandard character. Another advantage is that rules are not
restricted to having one source and one target file. This is useful in VLSI, where one
frequently needs rules like

%. out : %.in %.circuit
simulator %.circuit < %.in > %.out

and it can also be useful to describe the full consequences of running yacc

4 After this the rule should have no unexpanded variables in it. If it does, cake reports an error, as it

has no way of finding out what the values of those variables should be.

Vol 7 No 6 24 AUUGN

%.c%.h: %.y

yacc -d % oy
mv y.tab.c %.c

mv y.taboh %.h

2.2. Inflexible search algorithm

In trying to write a makefile for a domain other than program development, the biggest
problem one faces is usually make’s search algorithm. The basis of this algorithm is a
special list of suffixes. When looking for ways to update a target file. x, make searches
along this list from left to right. It uses the first suffix . y for which it has a rule . y. x and
for which f il e. y exists.

The problem with this algorithrn manifests itself when a problem divides naturally into a
number of stages. Suppose that you have two rules . c. b and . b. a, that file. c exists
and you want to issue the command make file. a. Make will tell you that it doesn’t
know how to make file. a. The problem is that for the suffix .b make has a rule but no
file, while for . c it has a file but no rule. Make needs a transitive rule . c. a to go direct
from file.c to file.a.

The number of transitive rules increases as the square of the number of processing
stages. It therefore becomes significant for program development only when one adds
processing stages on either side of compilers. Under Unix, these stages are typically the link
editor ld and program generators like yacc and lex. Half of standard make’ s builtin
rules are transitive ones, there to take care of these three programs. Even so, the builtin rules
do not form a closure: some rare combinations of suffixes are missing (e.g. there is no rule for
going from yacc source to assembler).

For builtin rules a slop factor of two may be acceptable. For rules supplied by the user
it is not. A general-purpose makef±le for text processing under Unix needs at least six
processing stages to handle nroff/troff and their preprocessors ibl, bib, pic, tbl,
and e qn, to mention only the ones in common use at Melboume University.

Cake’ s solution is simple: if filel can be made from file2 but file2 does not
exist, cake wi!l try to create file2. Perhaps file2 can be made from file3, which
can be made from file4, and so on, until we come to a file which does exist. Cake will
give up only when there is absolutely no way for it to generate a feasible update path.

Both the standard and later versions of make consider missing files to be out of date.
So if filel depends on file2 which depends on file3, and file2 is missing, then
make will remake first file2 and then filel, even if filel is more recent than
file3.

When using yacc, I frequently remove generated sources to prevent duplicate matches
when I run egrep ... *. [chyl]. If cake adopted make’ s approach to missing files,
it would do a lot of unnecessary work, running yacc and cc to generate the same parser
object again and again5.

Cake solves this problem by associating dates even with missing files. The theoretical
update time of an existing file is its modify time (as given by stat(2)); the theoretical update
time of a missing file is the theoretical update time of its youngest ancestor. Suppose the

5 In this case make is rescued from this unnecessary work by its built-in transitive rules, but as shown

AUUGN 25 Vol 7 No 6

yacc source parser .y is older than the parser object parser. O, and parser, c is
missing. Cake will figure that if it recreated parser, c it would get a parser, c which
theoretically was last modified at the same time as parser, y was, and since parser, o is
younger than parser, y, theoretically it is younger than parser, c as well, and therefore
up-to-date.

2.3. No provisions for sharing rules

Imagine that you have just written a program that would normally be invoked from a make
rule, such as a compiler for a new language. You want to make both the program and the
make rule widely available. With standard make, you have two choices. You can hand out
copies of the rules and get users to include it in their individual makefiles; or you can
modify the make source, specifically, the file containing the built-in rules. The first way is
error-prone and quite inconvenient (all those rules cluttering up your makefile when you
should never need to even look at them). The second way can be impractical; in the
development stage because the rules can change frequently and after that because you want to
distribute your program to sites that may lack the make source. And of course two such
modifications may conflict with one another.

Logically, your rules belong in a place that is less permanent than the make source but
not as transitory as individual makefiles. A library file is such a place. The obvious way
to access the contents of library files is with #include, so cake filters every cakefile
through the C preprocessor.

Cake relies on this mechanism to the extent of not having any built-in rules at all. The
standard cake rules live in files in a library directory (usually/usr/lib/cake). Each of these
files contains rules about one tool or group of tools. Most user cakefiles #define some
macros and then include some of these files. Given that the source for program prog is
distributed among prog. c, auxl. c, aux2. c, and parser, y, all of which depend on
def. h, the following would be a suitable cakefile:

#define MAIN prog
#define FILES prog auxl aux2 parser
#define HDR defoh

#include <Yacc>
#include <C>
#include <Main>

The standard cakefiles Yacc and C, as might be expected, contain rules that invoke
yacc and cc respectively. They also provide some definitions for the standard cakefile
Main. This file contains rules about programs in general, and is adaptable to all compiled
languages (e.g. it can handle NU-Prolog programs). One entry in Main links the object files
together, another prints out all the sources, a third creates a tags file if the language has a
command equivalent to ctags, and so on.

Make needs a specialized macro processor, without one it cannot substitute the proper
filenames in rule bodies. Fourth generation make has not solved this problem but it
still wants the extra functionality of the C preprocessor, so it grinds its makefiles through
both macro processors ! Cake solves the problem in another way, and can thus rely on the C
preprocessor exclusively.

above this should not be considered a general solution.

Vol 7 No 6 26 AUUGN

The original make mechanisms are quite rudimentary, as admitted by ~eldman, 79).
Unfortunately, the C preprocessor is not without flaws either. The most annoying is that the
bodies of macro definitions may begin with blanks, and will if the body is separated from the
macro name and any parameters by more than one blank (whether space or tab). Cake is
distributed with a fix to this problem in the form of a one-line change to the preprocessor
source, but this change probably will not work on all versions of Unix and definitely will not
work for binary-only sites.

3. The new features of cake

The above solutions to make’s problems are useful, but they do not by themselves enable
cake to handle new domains. For this cake employs two important new mechanisms:
dynamic dependencies and conditional rules.

3.1. Dynamic dependencies
In some situations it is not convenient to list in advance the names of the files a target depends
on. For example, an object file depends not only on the corresponding source file but also on
the header files referenced in the source.

Standard make requires all these dependencies to be declared explicitly in the
makefile. Since there can be rather a lot of these, most people either declare that all objects
depend on all headers, which is wasteful, or declare a subset of the true dependencies; which is
error-prone. A third altemative is to use a program (probably an awk script) to derive the
dependencies and edit them into the makefile. (Walden, 84) describes one program that
does both these things; there are others. These systems are usually called makedepend or
some variation of this name.

The problems with this approach are that it is easy to alter the automatically-derived
dependencies by mistake, and that if a new header dependency is added the programmer must
remember to run makedepend again. The C preprocessor solves the first problem; the
second, however, is the more important one. Its solution must involve scanning though the
source file, checking if the programmer omitted to declare a header dependency. So why not
use this scan to find the header dependencies in the first place ?

Cake attacks this point directly by allowing parts of rules to be specified at run-time. A
command enclosed in double square brackets6 may appear in a rule anywhere a filename or a
list of filenames may appear. For the example of the C header files, the rule would be

%.o: %.c [[ccincl %.c]]
cc -c %.c

signifying that x. o depends on the files whose names are listed in the output of the command
ccincl x. c7, as well as on x.c.. The matching process would convert this rule to

6 Single square brackets (like most specia! characters) are meaningful to csh: they denote character
classes. However, we are not aware of any legitimate contexts where two square brackets must appear
together. The order of members in such classes is irrelevant, so if a bracket must be a member of such
a class it can be positioned away from the offending boundary (unless the class is a singleton, in which
case there is no need for the class in the first place).
7 Ccincl prints out the names of the files that are #included in the file named by its argument.

AUUGN 27 Vol 7 No 6

X.O: x.c [[ccincl x oc]]

cc -c x. c

which in turn would be command expanded to

X.O: x.c hdr.h

cc -c x. c

if hdr. h were the only header included in x.c.
Command pattems provide replacements for fourth generation make’s

directory searches and special macros. [[find <dirs> -name <filename> -
print]] does as good a job as the special-purpose make code in looking up source files
scattered among a number of directories. [[basename <filename> <suffix>]] can
do an even better job: make cannot extract the base from the name of an RCS file.

A number of tools intended to be used in just such contexts are distributed together with
cake. Ccincl is one. Sub is another: its purpose is to perform substitutions. Its
arguments are two pattems and some strings: it matches each string against the first pattern,
giving values to its variables; then it applies those values to the second pattem and prints out
the result of this substitution. For example, in the example of section 2.3 the cakefile
Main would invoke the command [[sub .X X.o FILES]] 8, the value of FILES being
prog auxl aux2 parser, to find that the object files it must link together to create the
executable prog are prog. o auxl. o aux2. o parser, o.

Cake allows commands to be nested inside one another. For example, the command
[[sub X.h X [[ccincl file.c]]]] would strip the suffix .h from the names of the

header files included in file. C9.

3.2. Conditional rules

Sometimes it is natural to say that f il e 1 depends on f il e 2 if some condition holds. None
of the make variants provide for this, but it was not too hard to incorporate conditional roles
into cake.

A cake entry may have a condition associated with it. This condition, which is
introduced by the reserved word if, is a boolean expression built up with the operators and,
or and not from primitive conditions.

The most important primitive is a command enclosed in double curly braces. Whenever
cake considers applying this rule, it will execute this command after matching, substitution
and command expansion. The condition will retum true if the command’s exit status is zero.
This runs counter to the intuition of C programmers, but it conforms to the Unix convention of
commands returning zero status when no abnormal conditions arise. For example,
{ {grep xyzzy file}} returns zero (i.e. true) if xyzzy occurs in file and nonzero
(false) otherwise.

8 Sub uses X as the character denoting variables. It cannot use %, as all %’s in the command will

have been substituted for by cake by the time sub is invoked.
9 As the outputs of commands are substituted for the commands themselves, cake takes care not to

scan the new text, lest it find new double square brackets and go into an infinite loop.

Vol 7 No 6 28 AUUGN

Conceptually, this one primitive is all one needs. However, it has considerable overhead,
so cake includes other primitives to handle some special cases. These test whether a
filename occurs in a list of filenames, whether a pattem matches another, and whether a file
with a given name exists. Three others forms test the internal cake status of targets. This
status is ok if the file was up-to-date when cake was invoked, canto if it wasn’t but
cake knows how to update it, and noway if cake does not know how to update it.

As an example, consider the rule for RCS.

%: RCS/%,v
co -u %

if exist RCS/%,v

Without the condition the rule would apply to all files, even ones which were not controlled by
RCS, and even the RCS files themselves: there would be no way to stop the infinite recursion
(% depends on RC$/%, v which depends on RCS/RC$/%, v, v ...).

Note that conditions are command expanded just like other parts of entries, so it is
possible to write

%: archive if % in [[art archive]]
ar x archive %

4. The implementation

4.1. Portability
Cake was developed on a Pyramid 90x under 4.2bsd. It now rims on a VAX under 4.3bsd, a
Perkin-Elmer 3240 and an ELXSI 6400 under 4.2bsd, and on the same ELXSI under System
V. It has not been tested on either System III or version 7.

Cake is written in standard C, with (hopefully) all machine dependencies isolated in the
makefile and a header file. In a number of places it uses #ifdef to choose between pieces
of code appropriate to the AT&T and Berkeley variants of Unix (e.g. to choose between
time () and gettimeofday ()). In fact, the biggest hassle we have encountered in porting
cake was caused by the standard header files. Some files had different locations on different
machines (/usr/include vs. /usr/include/sys), and the some versions hncluded
other header files (typically types, h) while others did not.

As distributed cake is set up to work with csh, but it is a simple matter to specify
another shell at installation time. (in any case, users may substitute their preferred shell by
specifying a few options.) Some of the auxiliary commands are implemented as c sh scripts,
but these are small, and it should be trivial to convert them to another shell if necessary.

4.2. Efficiency

Fourth generation make has a very effective optimization system. First, it forks and
execs only once. It creates one shell, and thereafter, it pipes commands to be executed to this
shell and gets back status information via another pipe. Second, it compiles its makefiles
into intemal form, avoiding parsing except when the compiled version is out of date with
respect to the master.

The first of these optimizations is an absolute winner. Cake does not have it for the
simple reason that it requires a shell which can transmit status information back to its parent
process, and we don’t have access to one (this feature is provided by neither of the standard

AUUGN 29 Vol 7 No 6

shells, sh and csh).

Cake could possibly make use of the second optimization. It would involve keeping
track of the files the C preprocessor includes, so that the makefile can be recompiled if one
of them changes; this must be done by fourth generation make as well though (Fowler, 85)
does not mention it. However, the idea is not as big a win for cake as it is for make. The
reason is as follows.

The basic motivations for using cake rather than make is that it allows one to express
more complex dependencies. This implies a bigger system, with more and slower commands
than the ones make usually deals with. The times taken by cake and the preprocessor are
insignificant when compared to the time taken by the programs it most often invokes at
Melbourne. These programs, ditroff and nc (the NU-Prolog compiler that is itself written
in NU-Prolog), are notorious CPU hogs.

Here are some statistics to back up this argument. The overhead ratio is given by the
formula

cake process system time + children user time + children system time
calve process user time

This is justifiable given that the cake implementor has direct control only over the
denominator; the kernel and the user’s commands impose a lower limit on the numerator.

We have collected statistics on every cake nan on two machines at Melbourne1°.
These statistics show that the processes and system calls invoked by cake take on average
about 70-80 times as much CPU time as the cake process itself. This suggests that the best
way to lower total CPU time is not to tune cake itself but to reduce the number of child
processes. To this end, cake caches the status returned by all condition commands
{ {command} } and the output of all command pattems [[command]]. The first cache has
a hit ratio of about 50 percent, corresponding to the typical practice in which a condition and
its negation select one out of a pair of rules. The second cache has a hit ratio of about 75
percent; these hits are usually the second and later occurrences of macros whose values contain
commands.

Cake also uses a second optimization. This one is borrowed from standard make:
when an action contains no constructs requiring a shell, cake itself will parse the action and
invoke it through exec. We have no statistics to show what percentage of actions benefit from
this, but a quick examination of the standard cakef±]_es leads us to believe that it is over
50 percent.

Overall, cake can do a lot more than make, but on things which can be handled by
make, cake is slightly slower than standard make and a lot slower than fourth generation
make. Since the main goal of cake is generality, not efficiency, this is understandable. If
efficiency is important, make is always available as a fallback.

4.3. Availability

Cake has been fairly stable for about six months now. During this time it has been used
without major problems by about twenty people here at Melbourne. It will be posted to the net
in the near future, complete with auxiliary programs and manual entries.

10 On munmurra (an EXLSI 6400), the main application is Prolog compilation; on mulga (a Perkin-

Elmer 3240), the main applications are text processing and the maintenance of a big bibliography (over
36000 references).

Vol 7 No 6 30 AUUGN

5. Acknowledgements
John Shepherd, Paul Maisano, David Morley and Jeff Schultz helped me to locate bugs by
being brave enough to use early versions of cake. I would like to thank John for his
comments on drafts of this paper.

This research was supported by a Commonwealth Postgraduate Research Award, the Australian
Computer Research Board, and Pyramid Australia.

6. References

(AT&T, 84)

(Feldman, 79)

(Fowler, 85)

(Gedye, 84)

(Hirgelt, 83)

(Walden, 84)

(Weinberg, 71)

Augmented version of make, in: Unix System V - release 2.0 support tools
guide, AT&T, April 1984.

Stuart I. Feldman, Make - a program for maintaining computer programs,
Software - Practice and Experience, 9:4 (April 1979), pp. 255-265.

Glenn S. Fowler, A fourth generation make, Proceedings of the USEN1X
Summer Conference, Portland, Oregon, June 1985, pp. 159-174.

David Gedye, Cooking with CAD at UNSW, Joint Microelectronics
Research Center, University of New South Wales, Sydney, Australia, 1984.

Edward Hirgelt, Enhancing make or re-inventing a rounder wheel,
Proceedings of the USENIX Summer Conference, Toronto, Ontario, Canada,
June 1983, pp. 45-58.

Kim Walden, Automatic generation of make dependencies, Software -
Practice and Experience, 14:6 (June 1984), pp. 575-585.

Gerald M. Weinberg, The psychology of computer programming, Van
Nostrand Reinhold, New York, 1971.

AUUGN 31 Vol 7 No 6

UNIXTM MENU SYSTEM

Keith Godfrey
Telecom Australia Educational Fellow

University of Western Australia (keith~trlluna.oz)

Peter Y. F. Hui
Principal Computer Systems O~cer

Telecom Australia Research Laboratories (hui~trlsasb.oz)

(~) Australian Telecommunications Commission 198~’
Permission to reprint in the AUUGN is kindly acknowledged.

ABSTRACT
This paper describes the implementation of a "user friendly" interface to the UNIX
systems. It allows non-technical users to utilize the UNIX operating system with
minimal training.

A powerful menu driven system has resulted which encompasses most of the capabil-
ities required by such users without encountering a shell prompt. On-line help is also
available. The system produces compilable C code from a menu script file - a special
language. The compiled menu system is fast, flexible and friendly.

1 Introduction

The Telecom Australia Research Laboratories in Melbourne have a number of computers
with the UNIX operating system. These machines are used to support research work, to
exchange electronic mail with other research organisations, and to provide a programming
environment for software development.

Most of the managerial staff and researchers are not familiar with UNIX shell commands
and have no desire to learn them. They only want to use the computer as a tool to capture
and analyse data, then carry on with their administrative or research work.

The problem is that these users run into difficulties as soon as they need to do anything
that is outside their normal operations. Often the required task is very simple, perhaps
to create or remove a directory, copy or rename a file, or merely change the password of
their account. But they cannot quite remember the command. In vain they try several
commands that sound similar, say "password", "pw", "pwd", "newpass" or "pass", then
panic and call the system manager for help.

Trying random commands is generally harmless, but it can cause a lot of trouble if the
user executes a valid command that means something else. Executing "pwd" instead of
"passwd" will merely display the name of the working directory. Trying "cat" for a catalog
of files (instead of "ls") will lock the terminal until Control-C or Control-D is typed since
it will copy stdin to stdout. Unfamiliar users are not likely to deduce that.

~rMUNIX is a registered trademark of AT&T in the USA and other countries.

AUUGN 32 Vol 7 No 6

The aim of this menu driven interface is to perform all the necessary commands without
the user needing to know the commands and parameters.

All the programs have been written in C under Ultrix~’M Version 1.2 on a MicroVAX II.

2 Menu Operation

A menu system in a computer is rather like a menu in a restaurant. Presentation is very
important. Menus should look elegant, with the title and list of choices clearly shown.
Although it may be desirable to give a description of each item, it should be kept to
an absolute minimum otherwise it will become cluttered and the user will get confused.
Menus should be clear and concise.

The selection process must be very flexible; users need to be able to make their choices
with ease. Since there are many types of user, the menu system should be responsive to
several different styles of selection.

This menu system has been designed with these points in mind.

The screen display can be broken up into several distinct sections; the menu number, title,
list of choices, description of selected choice, and instructions on how to choose. A typical
menu screen is shown in figure 1. Due to problems of reproduction, text which would be
in inverse video is represented in boldface.

The user selects an item by moving the "highlight" up or down to the desired choice then
pressing the RETURN key to confirm it.

The highlight can be moved in several ways:

- By pressing the UP or DOWN arrows. (The most logical way.)

- By pressing SPACE to move down or BACKSPACE to move up. (This method was
included to suit the people who are familiar with the Wang Menu System.)

- By entering the FIRST LETTER of the item’s name. (This is a quick way to skip
down the menu.)

- By entering the NUMBER of the item. (It is also possible to go directly to any other
place in the menu system using this method.)

The highlight (shown in boldface in figure 1) will rotate back to the beginning of the list
if it is moved off the last line and vice-versa. If any intervening items are missing from
the menu, the highlight will automatically skip across the gap.

Each time the highlight is moved, a brief description of the highlighted choice is displayed
near the bottom of the screen. This provides the user with additional information about
the list of choices without cluttering the screen.

~’MUltrlx is a trademark of Digital Equipment Corporation.

AUUGN 33 Vol 7 No 6

Menu number Selection -->

0 Help
1 Choose Directory
2 Examine Dbeectory
3 View File
4 Protect File
5 Delete File
6 Copy File
7 Move File
8 Print File
9 Locate Files

10 Classify File
11 Quit

Selection 2: Examine the contents of the working directory

Press ARROW KEYS to select, RETURN to execute, PF4 or DIVIDE for previous menu.
Alternatively type the number of your selection and press RETURN.

Figure 1: Sample Menu Screen

3 Menu Tree

The UNIX operating system has a large number of commands, which cannot all fit in a
single menu. It is therefore necessary to have menus of sub-menus, arranged in a tree
structure.

This system allows the menus to linked together in many ways. A logical way is to separate
the UNIX commands into functional groups:

File Handling Commands
Directory Handling Commands
Personal Account Details
System Information
Special Applications
Printer Commands
Mail System Commands
News System Commands
Editor Commands

(Is [-alR], cat files, rm files, ...)
(mkdir dir, rmdir dir, rm dir/*, ...)
(whoami, ps-x, quota, groups, ...)
(uptime, w-h, ps-augx, vmstat 4, ...)
(man, sh -c command, csh)
(lpr file, lpq, lprm)
(mail: send, read, delete, ...)

(vi file)

The menu tree is then constructed accordingly, figure 2 shows an abbreviated representa-
tion of such a tree.

Menus or items are identified uniquely by their number. Number 0 is the top of the tree

AUUGN 34 Vol 7 No 6

/ Choose Directory
/ Examine Directory __/ Long Listing(y/n)

/ View File \ All Entries (y/n)
/ : \ Group Owners (y/n)

Files ____/ : \ Subdirectories(y/n)
/ \ Copy File

/ \ Locate Files ./ Search for User
\ Classify File \ Search for Name

/ Choose Directory
Directories _/ Make Directory
/ \ Remove Directory

/ \ Empty Directory
Main

Selections \
\ / Who Am I
Personal ___/ :

\ :
\ Kill Process

\

and so on

Figure 2: A Typical Menu Tree

(the Main Selections menu). Subsequent levels are indicated by numbers preceded by a
period (".").

A typical numbering system for the tree above is shown in figure 3.

4 The Design

The requirements of the menu system were formulated after examination of several existing
systems and discussions with many users. The system should:

- operate rapidly.

- be easy to use.

- allow the system manager to tailor menus easily.

- be able to execute a sequence of UNIX commands.

- cater for UNIX commands requiring flags or other parameters.

AUUGN 35 Vol 7 No 6

Main Selections
0 Help Information
I File Commands

I .0 Help Information
I. 1 Choose Directory
I .2 Examine Directory

I .2.0 Help
1.2.i List Directory

:
:

1.2.6 Subdirectories
1.2.7

I .3 View File
:
:

I .g Locate Files
1.11 quit

2 Directory Commands
:
:

4 System Information
etc.

Figure 3: Numbering of The Menu Tree

5 Implementation

Generally there are two ways to implement a menu system:

- Compiler Reads a file of menu definitions and creates an executable menu system.
- Interpreter Loads menu definition files while running.

Each has several advantages and disadvantages. It was decided to build a compiler because:

- The resulting menus operate much faster.
- All menu definitions can be contained in a single file.
- Compilation time is small (about 5 minutes on a MicroVAX for a complicated system).

The Programs

The menu system uses a two-stage compiler:

Stage 1. menucoml Condenses the menu script file menu.in
and produces a temporary file menu.out

Stage 2. menucom2Processes the condensed script file menu.out
and the runtime function library file menu.include
and reads all specified message files, menu.help.,
then produces C source code file menu.c

AUUGN 36 Vol 7 No 6

The C compiler cc is then used to compile the source code menu.c into an executable
program menu. Figure 4 shows the compilation process.

menu.in

menucoml

menu.include ~
" menu.out

menu.help.,)
I menucom2

Figure 4: Flow Chart of the Menu Compilation Process

Two satellite programs have been included to perform specialised tasks while conforming
to the screen format of menu:

ct Operates in a similar manner to cat but includes paging and
filtering of escape sequences.

chmode Performs the same task as chmod but displays the current
file mode and visually adjusts it via a menu, instead of asking
for a four digit octal number.

These can be executed in place of the normal UNIX commands.

7 Menu Script Language

The menu layout is specified in a file called menu.in. It contains the definitions of all the
items in all menus, listed one after another. They do not need to be in numeric order.

Each item definition will require at least two lines of the file. Most items, especially UNIX
commands, will require more.

The first line contains the number, name, and description of the item. This has the form:

number name: description

AUUGN 37 Vol 7 No 6

Example:

2.4 Empty Directory: Remove all the files within a directory

T̄his causes menu number 2 to display "4 Empty Directory" as the fourth choice. Selecting
this option (by moving the highlight on to it) produces the explanation

Selection 4: Remove all the files within a directory

at the bottom of the screen.

The second and subsequent lines of the item definition determine what the item will do
when it is chosen. Some items will call up another menu (for example, the 1st choice of the
Main Selections menu will display the Files menu). Others will display help information
or other messages. The majority will perform UNIX commands.

The syntax of the second line is:

type [parameters]

where "type" refers to the type of task that the item will perform and "parameters" are
additional information if required.

There are currently 10 types of task supported which are defined briefly in Tables 1, 2 and
3.

MENU

GOTO <item>

GO <item>

UP

MESSAGE <file>

The item is a sub-menu, or branch down the tree from the menu the item is
in.

This provides cross-branching between menus. Instead of an item being a
sub-menu, it can refer to any menu or item, anywhere in the tree.

Same as GOTO <item>.

UP is a special form of GOTO. It is equivalent to GOing to the parent menu,
one hop up the tree.

The file is read during compilation of the menu script and will be displayed as
a text message whenever this option is chosen. This is the best way to present
help information. Message files may contain special characters to adjust the
screen attributes or display graphics symbols.

Table 1: Menu Script Tasks for Sequencing

The ultimate purpose of the menu system is to execute UNIX commands. These are
handled by the COMMAND, EXECUTE and LOOP instructions illustrated in Table 3.

AUUGN 38 Vol 7 No 6

FLAG <x>

THREE <x>

Many UNIX commands have toggles or flags that can change the performance
of the command. This item type will determine how those parameters are set
according to the following presets:

FLAG 0 (Item is initially ~off")
FLAG 1 (Item is initially ~on")

A THREE is a special form of a FLAG. It has three possible states; set, reset,
or neither. This is used by commands that can switch a feature on, off, or
leave it unchanged. The definitions are:

THREE +
THREE -
THREE.

(Item is initially ~’set")
(Item is initially ~reset")
(Item is initially ~no change")

Table 2: Menu Script Tasks for Setting Flags

COMMAND

EXECUTE

LOOP

Following the word COMMAND there may be as many separate lines of shell
commands as are required. After they have all been executed the user is
prompted to press any key to continue with the menus (so that the terminal
output is not lost).

EXECUTE is similar to COMMAND but does not wait for a key to be pressed.
The menu re-appears as soon as the command has finished.

If LOOP is specified at the very beginning (prior to the first COMMAND or
EXECUTE), the whole lot will repeat until the user directs it to stop.

Table 3: Menu Script Tasks for Process Initiation

AUUGN 39 Vol 7 No 6

A menu item may contain several COMMANDs and EXECUTEs, in any order, each with
a list of many shell commands. This allows for pauses between commands and, when
combined with functions (described shortly), provides a very powerful way to execute
groups of UNIX commands intertwined with user input. An example of this approach is
shown in figure 5.

8.1 Read News: Use the News system
COMMAND

echo
echo
echo
echo
echo
echo
echo ’ to continue:
echo ’ to skip to next:
echo ’ to quit:
echo " for help:
echo

EXECUTE
echo ’Getting news.’
echo
vne ws

’You are about to enter the news system.’
¯

’News articles are presented one page at’
"a time. You will be asked "more?" at the"
’end of each page.’

press RETURI~ (more).’
press "n" (next) .’
press "q" (quit) . °
press "?" (help) . ’

Figure 5: An Example of The Use of COMMAND & EXECUTE

There are two stages to this item. The first echoes the instructions and waits for the user
to read them; the second puts the message "Getting news." on to the screen and loads
the news system. When the user exits vnews, the menu will re-appear without waiting.

An extension of the EXECUTE and COMMAND types is the LOOP type which allows
continual repitition of the commands.

8 Functions

Parameters are passed to UNIX commands via functions. There are several functions
defined by the menu system. Each returns a text string that is included as part of the
command to be executed.

Functions have the form:

@fu n ction (parameter)

where "function" is the name and "parameters" are any parameters that it needs. When
a function appears in a UNIX command, it is processed and replaced by its result.

Example: the "Make Directory" command.

AUUGN 40 Vol 7 No 6

2.2 Make Directory: Create a new Directory
EXECUTE

mkdir ©ask("Enter the name o~ the directory to be created - ")

When this item is chosen it will:

Ask the user the question "Enter the name of the directory to be created - " and
read the answer.

Substitute the answer into the UNIX command in place of the @ask(...) such that
if the user answers "xyz", the command becomes "mkdir xyz".

Operate the UNIX command and return immediately to the main menu.

The ©ask("question") is a function which asks a question and returns the answer.

Functions are defined in the file menu.include and are illustrated in Table 4.

three(n umber, "set", "reset", "neither")

~ask("question"

file("question"

files("question")

~confirm(~question")

~exit0

The ~flag function determines the state of the item
<number> which must be defined as FLAG, and sub-
stitutes <on> if on or <off> if off. Example: See the
"Is" command further on.

The ~three function is very similar to the ~flag function,
except that it works on items defined as THREE instead
of FLAG.

A simple question-answer system is provided by the @ask
function. It asks the <question> and substitutes the
answer.

~file displays a list of the files in the working directory
and lets the user select one. Alternatively, the user may
type the name of any file anywhere in the machine, in
response to the <question>.

The ~files function allows for several files to be selected
from a displayed list.

~confirm allows the user to abort a command if it is not
desired. This may be useful for preventing accidental
mistakes. It returns nothing if okay, or aborts the item
if not.

The ~exit function terminates the menu system. It
should be used in conjunction with the ~confirm func-
tion,, to ensure the user doesn’t accidentally drop out.

Table 4: Functions Pre-defined In menu.include

The "ls" command demonstrates the usage of flags. It is defined in the menu "1.2 Examine
Directory" which is shown in Figure 6.

AUUGN 41 Vol 7 No 6

1.2 Examine Directory: Examine the contents of the working directory

1.2.0 Help: How to interpret the contents of the directory
MESSAGE menu. help. ls

1.2.1 List Directory: List the files in the working directory
COMMAND

echo-n ’Directory of ’; pwd; echo
is ~flag(l.2.30"-l","") ~flag(l.2.40"-a","") \
©flag (I. 2.5, "- g", "") ~flag(I. R. 6, "- R", "")

1.2.2 Choose Directory: Select worklnE directory
EXECUTE

chdlr ©subdir("Enter the name of the new working directory - ")
1.2.3 Long Listing: Displays mode,owner,slze and other details

FLAG I
I .2.4 All Entries : \

Lists all files (including names which start with a period)
FLAG I

I .2.5 Group Ownership: Includes group owner with Long Listing
FLAG I

1.2.6 Sub-Directories: Recurslvely lists all sub-directories
FLAG 0

1.2.7 quit: Go back to File Maintenance
UP

Figure 6: Script for Examine Directory - part of menu.in

Note that a backslash "\" at the end of a line in the file menu.in indicates continuation
on to the next line.

Item 1.2.3 is defined as FLAG and can be toggled by the user. The function @flag(1.2.3,
"-l","") determines its state and substitutes "-l" if it is on, or "" if it is off. Similarly the
other items.

The initial state comprises flags 1.2.3 on, 1.2.4 on, 1.2.5 on, and 1.2.6 off. The resulting
command at item 1.2.1 would therefore be "ls -1 -a -g". This will change with each change
of the flags.

All functions within a COMMAND or EXECUTE group are substituted before the whole
group is executed. By careful usage of COMMAND, EXECUTE, LOOP and functions it
is possible to specify a very wide variety of tasks.

9 The Include File

The file menu.include contains all the functions that the menu system requires to operate.
It is copied directly to the start of menu.c.

Included are:

AUUGN 42 Vol 7 No 6

- cursor strings (cursor movement, underlining etc.)

- procedures required by MENU, FLAG / THREE, COMMAND / EXECUTE, MES-
SAGE. (menu display, flag toggling, wait for key, message display).

- procedures required by ’@’ functions within commands. (flag, three, ask, confirm,
exit, subdir, file, files.)

As mentioned earlier, the functions provide much of the power of the menu system. Param-
eters are passed to them from the definitions in menu.in and their results are substituted
into the UNIX commands.

The menu compiler adjusts the function name and calling parameters to suit the require-
ments of (3 compiler. If the function specified in menu.in is

(~ask("question")

the way it will be called in menu. e will be

ask_("question" .result)

where result is a pointer to a character string in which to store the answer. All functions
are called with this extra parameter. The string placed there will be substituted into the
UNIX command by the caller.

The function name has the ’~’ removed to make it begin with a letter (as required by the
C compiler). It is distinguished from other procedures in menu.include by the addition of
the ’_’.

There are a number of subroutines in menu.include that can be called by the functions.
These perform special operations on the screen such as graphics, highlighting, displaying
instruction messages and selection.

10 Conclusion

The system has been successfully tested by a number of users. It is expected that it will
be shortly installed on many of the UNIX computers at the Telecom Australia Research
Laboratories.

AUUGN 43 Vol 7 No 6

login
The USENIX Association Newsletter

Volume 12, Number 2 March/April 1987

CONTENTS

MINIX: A UNIX Clone with Source Code for the IBM PC ...3
Andrew S. Tanenbaum

Program for the Phoenix Technical Conference ..10
Ten Years Ago in UNIX NEWS ..12
The DASH Project: Design Issues for Very Large Distributed Systems13

David P. Anderson and Domenico Ferrari
Book Review: The Nutshell Handbooks ...15

Lou Katz
Summary of the Board of Directors’ Meeting October 1-2, 198619
Summary of the Board of Directors’ Meeting January 19-20 & 22, 198720
Future Meetings ..22
Financial Statements of the USENIX Association ..23
WEIRDNIX Competition ...26
Publications Available ..27
Software Tapes ..27
4.3BSD UNIX Manuals ..28
4.3BSD Manual Reproduction Authorization and Order Form ..29
Local User Groups ..30

The closing date for submissions for the next issue of ;login: is April 24, 1987

THE PROFESSIONAL AND TECHNICAL

UNIX® ASSOCIATION ¯

Vol 7 No 6 44 AUUGN

;login:

MINIX: A UNIX Clone with Source Code for the IBM PC

Andrew S. Tanenbaum
Dept. of Mathematics and Computer Science

Vrije Universiteit
Amsterdam, The Netherlands

Usenet: minix@cs.vu.nl

ABSTRACT

This article describes a new operating system, called MINIX, that is functionally
compatible with Version 7 UNIX®. It has been rewritten completely from scratch. Neither
the kernel nor the utility programs contain any AT&T code, so the source code is free from
AT&T licensing restrictions and may be studied by individuals or in a course. The system
runs on the IBM PC, XT, or AT, and does not require a hard disk, thus making it possible for
individuals to acquire a UNIX-like system for home use at a very low cost. If a hard disk is
available, it is fully supporied, however.

Internally, MINIX is structured completely differently from UNIX. It is a message
passing system on top of which are memory and file servers. User processes can send
messages to these servers to have system calls carried out. The paper describes the
motivation and intended use of the system, what the distribution contains, and discusses the
system architecture in some detail.

Introduction

MINIX is a new operating system for the
IBM PC, XT, and AT. Functionally, it is
system-call compatible with Version 7 UNIX,
but inside it has been rewritten from scratch.
It contains no AT&T code at all, neither in the
kernel nor in the utilities. Furthermore, the
internal structure is also completely different
(it is much more modular). The source code is
being released without a restrictive licence for
the benefit of those people who would like to
have access to the source code of a UNIX-like
system. This point is discussed in more detail
at the end of this paper.

Another feature of this system is that it
has been designed to run with inexpensive
hardware. Many people whose work involves
computers also have a computer at home.
While many of these people have an ego that
says "VAX" their wallets often say "IBM PC."
MINIX has therefore been designed to run on a
256K IBM PC with one floppy disk if it has to,
but the system is then highly restricted. On a
6401(IBM PC with two floppy disks, it runs
quite well and can even recompile itself from
the source code provided, using its own C
compiler. On a hard disk system or a PC-AT it

works even better, of course. It also runs on
those clones that are 100% hardware
compatible with the PC, XT, or AT.
Experiments have shown that about 80% of all
clones are compatible, but 20% are not.

As a natural consequence of this "small is
beautiful" philosophy, I decided to have
MINIX be compatible with Version 7 rather
than, say, 4.3 BSD or System V. Making a 4.3
BSD or System V compatible system that runs
on a 256K IBM PC with one 360K floppy disk
is left as an exercise for the reader. Besides,
there are many people who believe that
Version 7 was not only an improvement on all
its predecessors, but also on all its successors,
certainly in terms of simplicity, coherence, and
elegance.

MINIX implements all the V7 system calls,
except ACCT, LOCK, MPX, NICE, PHYS, PKON,
PKOFF, PROFIL, and PTRACE. The other
system calls are all implemented in full, and
are exactly compatible with V7. In particular,
FORK and EXEC are fully implemented, so
MINIX can be configured as a normal
multiprogramming system, with several
background jobs running at the same time
(memory permitting), and even multiple users.

AUUGN 45 Vol 7 No 6

;login:

The MINIX shell, is compatible with the
V7 (Bourne) shell, so to the user at the
terminal, running MINIX looks and feels like
running UNIX. Over 60 utility programs are
part of the software distribution, including ar,
basename0 cat, cc, chmem, chmod,
cho~n, cmp,- comm, cp, date, dd, df,
echo, grep, head, kilt, ln, togin,
tpr, is, make, mkdir, mkfs, mknod,
mount, mv, od, passwd, pr, pwd, rev,
rm, rmdir, roff, sh, size, steep,
sort, spt it, stty, su, sum, s}’nc,
tail, tar, tee, time, touch, tr,
umount, uniq, update, and wc. A full-
screen editor loosely inspired by emacs, a full
Kernighan and Ritchie compatible C compiler,
and programs to read and write MS-DOS
diskettes are also included: All of the sources
of the operating system and these utilities,
except the C compiler source (which is quite
large and is available separately), are included
in the software package.

In addition to the above utilities, over 100
library procedures, including std i o,are
provided, again with the full source code.

To reiterate what was said above, all of
this software is completely new. Not a single
line of it is taken from, or even based on the
AT&T code. I personally wrote from scratch
the entire operating system and some of the
utilities. This took about three years. My
students and some other generous people
wrote the rest. The C compiler is derived
from the Amsterdam Compiler Kit (CACM,
Sept. 1983), and was written at the Vrije
Universiteit. It is a top-down, recursive
descent compiler written in a compiler writing
language called LLGEN and is not based on or
in any way related to the AT&T portable C
compiler, which is abottom-up, LALR
compiler written in },ace.

Overview of the MINIX System
Architecture

UNIX is organized as a single executable
program that is loaded into memory at system
boot time and then run. MINIX is structured
in a much more modular way, as a collection
of processes that communicate with each other
and with user processes by sending and
receiving messages. There are separate
processes for the memory manager, the file
system, for each device driver, and for certain

other system functions. This structure
enforces a better interface between the pieces.
The file system cannot, for example,
accidentally change the memory manager’s
tables because the file system and memory
manager each have their own private address
spaces.

These system processes are each full-
fledged processes, with their own memory
allocation, process table entry and state. They
can be run, blocked, and send messages, just as
the user processes. In fact, the memory
manager and file system each run in user space
as ordinary processes. The device drivers are
all linked together with the kernel into the
same binary program, but they communicate
with each other and with the other processes
by message passing.

When the system is compiled, four binary
programs are independently created: the
kernel (including the driver processes), the
memory manager, the file system, and in it
(which reads /etc/ttys and forks off the login
processes). In other words, compiling the
system results in four distinct a.out files.
When the system is booted, all four of these
are read into memory from the boot diskette.

It is possible, and in fact, normal, to
modify, recompile, and relink, say, the file
system, without having to relink the other
three pieces. This design provides a high
degree of modularity by dividing the system
up into independent pieces, each with a well-
defined function and interface to the other
pieces. The pieces communicate by sending
and receiving messages.

The various processes are structured in
four layers:
4. The user processes (top layer).

3. The server processes (memory manager and
file system).

2. The device drivers, one process per device.

1. Process and message handling (bottom
layer).

Let us now briefly summarize the function of
each layer.

Layer 1 is concerned with doing process
management including CPU scheduling and
interprocess communication. When a process
does a SEND or RECEIVE, it traps to the
kernel, which then tries to execute the

Vol 7 No 6 46 AUUGN

;login:

command. If the command cannot be
executed (e.g., a process does a RECEIVE and
there are no messages waiting for it), the caller
is blocked until the command can be executed,
at which time the process is reactivated.
When an interrupt occurs, layer 1 converts it
into a message to the appropriate device
driver, which will normally be blocked waiting
for it. The decision about which process to
run when is also made in layer 1. A priority
algorithm is used, giving device drivers higher
priority over ordinary user processes, for
example.

Layer 2 contains the device drivers, one
process per major device. These processes are
part of the kernel’s address space because they
must run in kernel mode to access I/O device
registers and execute I/O instructions.
Although the IBM PC does not have user
mode/kernel mode, most other machines do,
so this decision has been made with an eye
toward the future. To distinguish the
processes within the kernel from those in user
space, the kernel processes are called tasks.

Layer 3 contains only two processes, the
memory manager and the file system. They
are both structured as servers, with the user
processes as clients. When a user process (i.e.,
a client) wants to execute a system call, it calls,
for example, the library procedure read with
the file descriptor, buffer, and count. The
library procedure builds a message containing
the system call number and the parameters
and sends it to the file system. The client then
blocks waiting for a reply. When the file
system receives the message, it carries it out
and sends back a reply containing the number
of bytes read or the error code. The library
procedure gets the reply and returns the result
to the caller in the usual way. The user is
completely unaware of what is going on here,
making it easy to replace the local file system
with a remote one.

Layer 4 contains the user programs.
When the system comes up, in it forks off
tog in processes, which then wait for input.
On a successful login, the shell is executed.
Processes can fork, resulting in a tree of
processes, with init at the root. When
Control-D is typed to a shell, it exits, and
init replaces the shell with another togin
process.

AUUGN

Layer 1 -. Processes and Messages

The two basic concepts on which MINIX is
built are processes and messages. A process is
an independently schedulable entity with its
own process table entry. A message is a
structure containing the sender’s process
number, a message type field, and a variable
part (a union) containing the parameters or
reply codes of the message. Message size is
fixed, depending on how big the union
happens to be on the machine in question. On
the IBM PC it is 24 bytes.

Three kernel calls are provided:

RECEIVE(source, gmessage)
SEND(destination, gmessage)
SENDRE~(process, &message)

These are the only true system calls (i.e., traps
to the kernel). RECEIVE announces the
willingness of the caller to accept a message
from a specified process, or ANY, if the
RECEIVER will accept any message. (From
here on, "process" also includes the tasks.) If
no message is available, the receiving process
is blocked. SEND attempts to transmit a
message to the destination process. If the
destination process is currently blocked trying
to receive from the sender, the kernel copies
the message from the sender’s buffer to the
receiver’s buffer, and then marks them both as
runnable. If the receiver is not waiting for a
message from the sender, the sender is
blocked.

The SENDREC primitive combines the
functions of the other two. It sends a message
to the indicated process, and then blocks until
a reply has been received. The reply
overwrites the original message. User
processes use SENDREC to execute system calls
by sending messages to the servers and then
blocking until the reply arrives.

There are two ways to enter the kernel.
One way is by the trap resulting from a
process’ attempt to send or receive a message.
The other way is by an interrupt. When an
interrupt occurs, the registers and machine
state of the currently running process are
saved in its process table entry. Then a
general interrupt handler is called with the
interrupt number as parameter. This
procedure builds a message of type
INTERRUPT, copies it to the buffer of the
waiting task, marks that task as runnable

47 Vol 7 No 6

;login:

(unblocked), and then calls the scheduler to see
who to run next.

The scheduler maintains three queues,
corresponding to layers 2, 3, and 4,
respectively. The driver queue has the highest
priority, the server queue has middle priority,
and the user queue has lowest priority. The
scheduling algorithm is simple: find the
highest priority queue that has at least one
process on it, and run the first process on that
queue. In this way, a clock interrupt will
cause a process switch if the file system was
running, but not if the disk driver was
running. If the disk driver was running, the
clock task will be put at the end of the highest
priority queue, and run when its turn comes.

In addition to this rule, once every 100
msec, the clock task checks to see if the
current process is a user process that has been
running for at least 100 msec. If so, that user
is removed from the front of the user queue
and put on the back. In effect, compute bound
user processes are run using a round robin
scheduler. Once started, a user process runs
until either it blocks trying to send or receive a
message, or it has had 100 msec of CPU time.
This algorithm is simple, fair, and easy to
implement.

Layer 2- Device Drivers

Like all versions of UNIX for the IBM PC,
MINIX does not use the ROM BIOS for input
or output because-the BIOS does not support
interrupts. Suppose a user forks off a
compilation in the background and then calls
the editor. If the editor tried to read from the
terminal using the BIOS, the compilation (and
any other background jobs such as printing)
would be stopped dead in their tracks waiting
for the the next character to be typed. Such
behavior may be acceptable in the MS-DOS
world, but it certainly is not in the UNIX
world. As a result, MINIX contains a complete
set of drivers that duplicate the functions of
the BIOS. Like the rest of MINIX, these
drivers are written in C, not assembly
language.

This design has important implications for
running MINIX on PC clones. A clone whose
hardware is not compatible with the PC down
to the chip level, but which tries to hide the
differences by making the BIOS calls
functionally identical to IBM’s will not run an

unmodified MINIX because MINIX does not
use the BIOS.

Each device driver is a separate process in
MINIX. At present, the drivers include the
clock driver, terminal driver, various disk
drivers (e.g., RAM disk, floppy disk), and
printer driver. Each driver has a main loop
consisting of three actions:

1. Wait for an incoming message.
2. Perform the request contained in the

message.
3. Send a reply message.
Request messages have a standard format,
containing the opcode (e.g., READ, WRITE, or
IOCTL), the minor device number, the position
(e.g., disk block number), the buffer address,
the byte count, and the number of the process
on whose behalf the work is being done.

As an example of where device drivers fit
in, consider what happens when a user wants
to read from a file. The user sends a message
to the file system. If the file system has the
needed data in its buffer cache, they are copied
back to the user. Otherwise, the file system
sends a message to the disk task requesting
that the block be read into a buffer within the
file system’s address space (in its cache).
Users may not send messages to the tasks
directly. Only the servers may do this.

MINIX supports a RAM disk. In fact, the
RAM disk is always used to h01d the root
device. When the system is booted, after the
operating system has been loaded, the user is
instructed to insert the root file system
diskette. The file system then sees how big it
is, allocates the necessary memory, and copies
the diskette to the RAM disk. Other file
systems can then be mounted on the root
device.

This org~inization puts important
directories such as/bin and/tmp on the fastest
device, and also makes it easy to work with
either floppy disks or hard disks or a mixture
of the two by mounting them on /usr or /user
or elsewhere. In any event, the root device is
always in the same place.

In the standard distribution, the RAM disk
is about°240K, most of which is full of parts of
the C compiler. In the 256K system, a much
smaller RAM disk has to be used, which
explains why this version has no C compiler:

Vol 7 No 6 48 AUUGN

;login:

there is no place to put it. (The /usr diskette
is completely full with the other utility
programs and one of the design goals was to
make the system run on a 256K PC with one
floppy disk.) Users with an unusual
configuration such as 256I(and three hard
disks are free to juggle things around as they
see fit.

The terminal driver is compatible with the
standard V7 terminal driver. It supports
cooked mode, raw mode, and cbreak mode. It
also supports several escape sequences, such as
cursor positioning and reverse scrolling
because the screen editor needs them.

The printer driver copies its input to the
printer character for character without
modification. It does not even convert line
feed to carriage return + line feed. This
makes it possible to send escape sequences to
graphics printers without the driver messing
things up. MINIX does not spool output
because floppy disk systems rarely have
enough spare disk space for the spooling
directory. Instead one normally would print a
file fby saying

l pr <f 8,

to do the printing in the background. The lpr
program inserts carriage returns, expands tabs,
and so on, so it should only be used for
straight ASCII files. On hard disk systems, a
spooler would not be difficult to write.

Layer 3 -- Servers

Layer 3 contains two server processes: the
memory manager and the file system. They
are both structured in the same way as the
device drivers, that is a main loop that accepts
requests, performs them, and then replies. We
will now look at each of these in turn. .~

The memory manager’s job is to handle
those system calls that affect memory
allocation, as well as a few others. These
include FORK, EXEC, WAIT, KILL, and BRK.
The memory model used by MINIX is
exceptionally simple in order to accommodate
computers without any memory management
hardware. When the shell forks off a process,
a copy of the shell is made in memory. When
the child does an EXEC, the new core image is
placed in memory. Thereafter it is never
moved. MINIX does not swap or page.

The amount of memory allocated to the
process is determined by a field in the header
of the executable file. A program, chmem, has
been provided to manipulate this field. When
a process is started, the text segment is set at
the very bottom of the allocated memory area,
followed by the data and bss. The stack starts
at the top of the allocated memory and grows
downward. The space between the bottom of
the stack and the top of the data segment is
available for both segments to grow into as
needed. If the two segments meet, the process
is killed.

In the past, before paging was invented,
all memory allocation schemes worked like
this. In the future, when even small
microcomputers will use 32-bit CPUs and I M
x 1 bit memory chips, the minimum feasible
memory will be 4 megabytes and this
allocation scheme will probably become
popular again due to its inherent simplicity.
Thus the MINIX scheme can be regarded as
either hopelessly outdated or amazingly
futuristic, as you prefer.

The memory manager keeps track of
memory using a list of holes. When new
memory is needed, either for FORK or for
EXEC, it searches the hole list and takes the
first hole that is big enough (first fit). When a
process terminates, if it is adjacent to a hole
on either side, the process’ memory and the
hole are merged into a bigger hole.

The file system is really a remote file
server that happens to be running on the user’s
machine. However it is straightforward to
convert it into a true network file server. All
that needs to be done is change the. message
interface and provide some way of
authenticating requests. (In MINIX, the source
field in the incoming message is trustworthy
because it is filled in by the kerne!°) Whe~
running remote, the MINIX file server
maintains state information, like RFS and
unlike NFS.

The MINIX file system is similar to that of
V7 UNIX. The i-node is slightly different,
containing only 9 disk addresses instead of 13,
and only 1 time instead of 3. These changes
reduce the i-node from 64 bytes to 32 bytes, to
store more i-nodes per disk block and reduce
the size of the in-core i-node table.

Free disk blocks and free inodes are kept
track of using bit maps rather than free lists.

AUUGN 49 Vol 7 No 6

;login:

The bit maps for the root device and all
mounted file systems are kept in memory.
When a file grows, the system makes a definite
effort to allocate the new block as close as
possible to the old ones, to minimize arm
motion. Disk storage is not necessarily
allocated one block at a time. A minor device
can be configured to allocate 2, 4 (or more)
contiguous blocks whenever a block is
allocated. Although this wastes disk space,
these multiblock zones improve disk
performance by keeping file blocks close
together. The standard parameters for MINIX
as distributed are I K blocks and I K zones
(i.e., just I block per zone).

MINIX maintains a buffer cache of
recently used blocks. A hashing algorithm is
used to look up blocks in the cache. When an
i-node block, directory block, or other critical
block is modified, it is written back to disk
immediately. Data blocks are only written
back at the next SYNC or when the buffer is
needed for something else.

The MINIX directory system and format is
identical to that of V7 UNIX. File names are
strings of up to 14 characters, and directories
can be arbitrarily long.

Layer 4- User Processes

This layer contains in it, the shell, the
editor, the compiler, the utilities, and all the
user processes. These processes may only send
messages to the memory manager and the file
system, and these servers only accept valid
system call requests. Thus the user processes
do not perceive MINIX to be a general-purpose
message passing system. However, removing
the one line of code that checks if the message
destination is valid would convert it into a
much more general system (but less UNIX-
like).

Documentation

Since one of the purposes of MINIX is to
provide a system that can be taught .in classes
and studied individually ample documentation
is essential. For this reason I have written a
textbook (719 pages) treating both the theory
and the practice of operating system design.
The bibliographic data is:

Title: Operating Systems:
Design and Implementation

Author: Andrew S. Tanenbaum
Publisher: Prentice-Hall, Inc.
Publication date: January 1987

The table of contents .is as follows:
CHAPTERS
1. Introduction
2. Processes
3. Input/Output
4. Memory Management
5. File Systems
6. Bibliography and Suggested Readings

APPENDICES
A. Introduction to C
B. Introduction to the IBM PC
C. MINIX Users Guide
D. MINIX Implementers Guide
E. MINIX Source Code Listing
F. MINIX Cross Reference Map

The heart of the book is chapters 2-5. Each
chapter deals with .the indicated topic in the
following way. First comes a thorough
treatment of the relevant principles (thorough
enough to be usable as a university textbook
on operating systems). Next comes a general
discussion of how the principles have been
applied in MINIX. Finally there is a procedure
by procedure description of how the relevant
part of MINIX works in detail. The source
code listing of appendix E contains line
numbers, and these line numbers are used
throughout the book to pinpoint the code
under discussion. The source code itself
contains more than 3000 comments, some
more than a page long. Studying the
principles and seeing how they are applied in a
real system gives the. reader a better
understanding of the subject than either the
principles or the code alone would.

Appendices A and B are quickie
introductions to C and the IBM PC for readers
not familiar with these subjects. Appendix C
tells how to boot MINIX, how to use it, and
how to shut it down. It also contains all the
manual pages for the utility programs. Most
important of all, it gives the super-user
password.

Appendix D is for people who wish to
modify and recompile MINIX. It contains a
wealth of nutsy-boltsy information about
everything from how to use MS~DOS as a

Vol 7 No 6 50 AUUGN

;login:

development system, to what to do when your
newly made system refuses to boot.

Appendix E is a full listing of the
operating system, all 260 pages of it. The
utilities (mercifully) are not listed.

Distribution of the Software

Software distribution is being done by
Prentice-Hall. Four packages are available.
All four contain the full source code; they
differ only in the configuration of the binary
supplied. The four packages are:

* 640K IBM PC version
(eight 360K diskettes)

® 256K IBM PC
(no C compiler; eight 360K diskettes)

® IBM PC-AT
(512K minimum; five 1.2M diskettes)

® Industry standard 9-track tape

The 640K version will also run on 512K
systems, but it may be necessary to chmem
parts of the C compiler to make it fit. The
tape version, in addition to the MINIX
software, also contains a complete IBM PC
simulator in C and .other software that allows
MINIX to be experimented with to some extent
on a VAX or other time sharing computer,
rather than a bare IBM PC. This option may
be useful for courses for which IBM PCs are
not available.

The book ($34.95) and the software
($79.95) are being issued separately. The book
can be bought in any technical bookstore, or
ordered specially. The book contains a
postcard that can be sent back to Prentice-Hall
to order the software.

A final word about the legal status of the
code is in order. The software does not come
with a 10-page licensing document that only
the Dean of the Harvard Law School
understands. However, it is protected by
copyright. The software is not public domain.
However, the publisher does not object to a
limited amount of copying being done for
noncommercial use. In other words,
professors may make copies of the system for
their students, students may make copies for
their professors, and you may make copies for
your friends. If you wish to port the software
to another computer and then sell it, you need
written permission from Prentice-Hall. In
general they will be quite reasonable about
granting such permission.

A Usenet newsgroup called comp.os.minix
has been set up. This channel is being used by
people wishing to contribute new programs,
point out and correct bugs, discuss the
problems of porting MINIX to new systems,
etc. Although the publisher does not object to
the network being used to broadcast a few files
that have been improved, it is not intended to
publish the full distribution (eight 360K
diskettes) this way.

Acknowledgements

I would like to thank the following people
for contributing utility programs and advice to
the MINIX effort: Martin Atkins, Erik
Baalbergen, Charles Forsyth, Richard Gregg,
Michiel Huisjes, Patrick van Kleef, Adri
Koppes, Paul Ogilvie, Paul Polderman, and
Robbert van Renesse. Without their help, the
system would have been far less useful than it
now is.

AUUGN 51 Vol 7 No 6

;login:

The DASH Project: Design Issues for
Very Large D stdbuted Systems

David P. Anderson
Domenico Ferrari

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

Introduction

A very large distributed system (VLDS) is a
(currently hypothetical) system that:

® is large in the following senses: numerical (it
contains thousands or millions of connected
hosts), geographical (hosts may be thousands
of miles apart), and administrative (the
system encompasses hosts and networks
owned by many organizations and
individuals).

¯ offers access to non-local resources such as
databases, processing power, software, and
communication with remote human users.

is transparent in the senses that 1) at some
level (perhaps the user interface) the same
syntax can be used to access both local and
remote resources, and 2) there is little
performance difference between local and
remote access.

Such a system is preferable to a collection of
connected but unintegrated local distributed
systems because it allows efficient resource
sharing on a much larger scale. However, a
VLDS cannot be realized by extending .an
existing distributed system, because many of the
assumptions underlying the designs of these
systems do not hold for VLDS. Fundamental
differences exist in the areas of security, naming,
communication paradigms and architectures, and
kernel architecture.

VLDS design involves close interaction of
levels ranging from network hardware up to the
user programming model, and optimal solutions
cannot in general be reached by extending
techniques developed for small distributed
systems. Furthermore, a VLDS has significant
advantages over unintegrated collections of LAN
systems, and a properly-designed VLDS restricted
to a LAN is potentially as efficient as a

specialized LAN system. For these reasons,
VLDS design should be viewed as a distinct and
.important research area.

Previous projects have considered VLDS-
related problems such as scalable nameservers
[3,6,7] and file services with many clients [4].
Efforts at large-scale integration of existing
centralized systems are described in [8] and [5].
These projects, for the most part, address
restricted problems or develop solutions based
on technology that will soon be outdated.

In contrast, the DASH project at UC
Berkeley is taking a unified approach to VLDS
design, and is seeking solutions that will not be
made obsolete by foreseeable technology
advances. The goals of the DASH project are to
1) project the advances in computing and.
communication hardware that will make a VLDS
feasible, and the software systems and
applications that will be possible in a VLDS; 2)
identify a set of design principles for VLDS, 3)
propose mechanisms based on these principles,
and 4) develop a prototype VLDS that can be
used to test and compare these mechanisms.

Principles and Research Areas

The following are some of the principles for
VLDS design that we have arrived at; a more
complete discussion can be found in [2]. The
DASH prototype incorporatesall of these
principles.

® Separate the levelsof’ netv~ork
communication, execution environr;~_ent~
execution abstraction, and kernel structu~’e,
and provide an open framework where
possible.

o Use a hybrid naming system using a tree-
structured symbolic naming for global
permanent entities, and capabilities to
communication streams for other entities.

Vol 7 No 6 52 AUUGN

;login:

When possible, put communication
functions such as security and interface
scheduling at a host-to-host rather then
process-to-process level, and consolidate
these functions in a sub-transport layer.

Provide flexible support foi- stream-oriented
communication.

o Provide a service abstraction that allows for
replication, local caching and fault-tolerance,
but does not directly supply them.

* Support real-time computation and
communication at every level.

Our discussion raises a number of research
areas that should be investigated before a VLDS
is put in place:

* Exploring the limits of size and granularity
in distributed computing, and identification
of possible bottlenecks (process creation,
name resolution, authentication, network
latency).

. The design of high-performance servers for
distant access, and in particular the use of
replication, streaming, and caching.

. Utilization of multiprocessors: how
important is kernel parallelism, and how
does performance depend on processor
scheduling, locking mechanisms, and locking
granularity?

® Assessing the usefulness of bundle-like
stream mechanisms for long-distance high-
performance services.

o Investigation of real-time network
performance in terms of its implications for
network .and sub-transport layer design, its
implications for process scheduling, and its
possible applications..

® Exploring the limits of network performance
with very .fast networks, network interfaces,
and I/O systems.

Project Status

The DASH project currently consists of 2
faculty members, 2 graduate students, and
several undergraduates. The DASH prototype
kernel is being implemented on Sun-3
workstations in C++. We are using UNIX as our
development environment, and have made a

modified version of the UNIX dbx debugger that
allows us to do remote symbolic debugging of the
DASH kernel running on bare machines. The
DASH kernel contains no UNIX code.

At this point (February 1987) the lowest
layer of the kernel (processes and message-
passing) and of the network communication
facility (security mechanism and network
drivers) have been completed. We have recently
performed a study of the performance of our
network security mechanismsl described in [1].

References

[1] D. P. Anderson, D. Ferrari, P. V. Rangan and B.
Sartirana, "A Protocol for Secure Communication
in Large Distributed Systems," UCB/Computer
Science Report No. 87/342, CS Division (EECS
Dept.) UC Berkeley, February 1987.

[2] D. P. Anderson, D. Ferrari, P. V. Rangan and S.
Tzou, "The DASH Project: Issues in the Design of
Very Large Distributed Systems," UCB/Computer
Science Report No. 87/338, CS Division (EECS
Dept.), UC Berkeley, January 1987.

[3] A. D. Birrell, B. W. Lampson, R. M. Needham and
M. D. Schroeder, "A Global Authentication
Service without Global Trust," IEEE Symposium
on Security and Privacy, 1986.

[4] M. Satyanarayanan, J. M. Howard, D. A. Nichols,
R. N. Sidebotham, A. Z. Spector and M. J. West,
"The ITC Distributed File System: Principles and
Design," Proceedings of the lOth Symposium _on
Operating System Principles, Operating Systems
Review 19, 5 (December 1985), 35-50.

[5] R. E. Schantz, R. H. Thomas and Go Bono, "The
Architecture of the Cronus Distributed Operating
System," Proceedings of the 6th International
Conference on Distributed Computing Systems,
May 1986, 250-259.

[6] M. D. Schroeder, A. D. Birrell and R. M.
Needham, "Experience with Grapevine: the
Growth of a Distributed System," ACM
Transactions on Computer Systems 2, 1 (February
1984), 3-23.

[7] D. B. Terry, M. Painter, D. W. Riggle and S.
Zhou, "The Berkeley lnternet Domain Server,"
USENIX Summer Conference Proceedings, June
1984, 23-31.

[81 T. Truscott, B. Warren and K. Moat, "A State-
Wide UNIX Distributed Computing System,"
Proceedings of the 1986 ’ Summer USENIX
Conference, June 1986, 499-513.

AUUGN 53 Vol 7 No 6

;login:

Book Review

The Nutshell Handbooks
(Newton, MA: O’Reilly & Associates, 1986) $7.50 each

Reviewed by Lou Katz

Metron Computerware, Ltd.
Oakland, CA

ucbvax!metron!lou

O’Reilly & Associates has created an
ambitious set of small volumes intended to
sei’ve as a relatively basic introduction to a
number of important UNIXt facilities.
Uniform in style and presentation, there are
currently seven books:
#1 Learning the UNIX Operating System

Grace Todino and John Strang
#2 Learning the Vi Editor

Linda Lamb
#3 Reading and Writing Termcap Entries

John Strang
#4 Programming with Curses

John Strang
#5 Managing UUCP and USENET

Grace Todino and Tim O’Reilly
#6 Using UUCP and USENET

Grace Todino
#7 Managing Projects with Make

Steve Talbott

The first book of this series, Learning the
UNIX Operating System, declares its intention
to give a "good overview of ... UNIX survival
materials for the new user," "not to
overwhelm you with unnecessary details but to
make you comfortable as soon as possible in
the UNIX environment." In that respect, the
book accomplishes its aim. It is well-
organized and flows in a logical manner. The
text is simply written, and should make a
novice user comfortable. I like the small (81/2"
x 51/2") format, which is compatible with many
of the commonly available UNIX manuals.

However (now for the bad news), this
volume is seriously flawed in detail. I get the
very strong impression that its authors are new
to UNIX, mastered the one system they had
access to, and by virtue of being more facile

t UNIX is a registered trademark of AT&T. All sorts of
other things are trademarks of other companies.

than their friends came to delude themselves
that they were experts. This seems clear to me
by omission, for surely anyone with any depth
of experience would have gone to some pains
to. remark on the existence of different versions
of UNIX and to specify (at least in an
introduction or appendix) which version or
versions this volume referred to. Although
one can smile with wry amusement at the
statement "ed was first developed when text
editing was done on a line printer," one
wonders whether the authors were born
yesterday or just arrived from Mars.
Statements of this sort certainly do not inspire
confidenc!! In fact, this book is loaded with
inaccuracies in details or concepts, flaws which
can easily lead a new or naive user to
formulate a fundamentally incorrect model of
the system. There is a blurring and mixing of
the distinction between UNIX the operating
system, the shell user interface and other user-
level commands which are supplied with a
UNIX system. The assertion that "If you
make a mistake in specifying the options (to .a
command) UNIX (sic!) will display the correct
form" is both conceptually and factually
incorrect. Some commands will give a
"usage: syntax" response when faced with
unknown flags or missing but required
arguments, but many commands do not do so,
and certainly UNIX isn’t doing this service.

Almost all topics are explained in
narrative and then at least one specific
example is presented. This is very useful, and
is reasonably well done, though there are
enough errors in detail to make me worry.
The overall presentation of I/O redirection is
good and there is an excellent discussion of the
danger of qrm. The discussion of cd has a
good comment regarding the fact that you
cannot cd to a filename, but follows that with
an example which shows a system response
which is incorrect. The description of t s -a

Vol 7 No 6 54 AUUGN

;login:

poses the common quesion "What are these
files ’.’ and ’..’?" explicitly, but then doesn’t
answer it. Furthermore, the parent directory
of the user’s directory is shown in an t s -t
listing as being owned by the user himself, a
highly unlikely organization ’of file system
ownership.

Users are encouraged to try a terminal’s
BREAK key, among others, if they need the
INTERRUPT function, a practice which usually
will not work, and will often cause big
problems. The much-needed section on what
to do if your terminal seems hung or
unresponsive contains a number of excellent
suggestions, but omits crucial ones: to try
pressing LINE-FEED or control-J!

Typographically,. O’Reilly & Associates
have chosen to use a rather poor sans serif
font when displaying literal computer-user
interactions. I would have preferred greatly
the computer’s prompts and responses to be
bold-faced and the user’s entries to be normal
rather than the reverse scheme used. In the
section on the need for white space between
commands and their arguments, the example
t s-t (without whitespace) was broken at the
margin right after the t s, totally destroying the
visual information of the missing space and
the intelligibility of the example!

Although this volume is clearly and simply
written and covers a very suitable selection of
topics for novice users, it is much too flawed.
I cannot recommend it.

Volume #2, Learning the Vi Editor, covers
that common utility. Since I am not a v i user,
I cannot vouch for its detailed accuracy.
However, the discussion of cursor position on
page 3 is totally confusing. The WYSIWYG
statement on page 6 is wrong, and the table on
customization is unclear. Some of the
examples in the regular expression section,
though correct, were more complicated than
was needed: to delete all trailing blanks, they
suggested :9/\(.*\) *$1s11\1/ while the
expression :g/ *S/s/// would work just as
well and didn’t need the saved sub-string \l.
However, the overall description seemed good
enough that I expect to try use this book on
the next occasion that I have to cope with a
system which does not happen to have my
favorite editor but does have v i.

Volume #3, Reading and Writing Termcap
Entries, is written for system administrators,
albeit ones with limited experience. It
proceeds through the features and capabilities
of the termcap system and gives expanded
explanations in rather clear English. The
"Terminal Capabilities by Function" table is a
very nice restatement of the capabilities codes.
The blow-by-blow annotation of the entries for
two different types of terminals is good, as are
the hints on how to write, test, and debug
entries. The alphabetic list of capabilities at
the end also serves as an index to the booklet.
In a few places, the descriptions get bogged
down -- the written discussion of the ’%’
arguments being an example, though the
following examples partly compensate for the
confusion in the paragraph. In general this
volume is a useful and helpful addition to the
standard documentation.

Volume #4, Programming with Curses, the
companion volume to #3, is a different story.
I actually used this book during a recent
project which required curses. The expanded
explanations were a great help in dealing with
the standard CURSES document in the UNIX
reference manuals, but the illustrative
examples were poor and badly explained.
Detailed explanations of some of the functions
were either inaccurate or misleading, leading
me to believe that the author did not fully
understand, among other things, the gory
details of terminal I/O.

Discussion of the c t earok () function was
confusing and left me no wiser than before I
read it. Physical echo does not mean that
"characters are also echoed to the screen
locally by your terminal." The definition of
crmode() says that AS, "Q, AC, ^Y go to the
kernel for processing long before they are
defined in the text as flow control, intet~upt
and quit, and there is NO mention of local
variability and freedom in assigning these
functions to the control key of your religious
choice. "Raw mode is good if you do not
want to handle interrupts and quits and would
rather ignore them" is a rather bizarre and
dangerous view of this topic.

In general, the usage examples are poor.
For me, the greatest lack was in not coming to
grips with using curses for overlapping
windows. This topic was not treated in any
useful fashion. Since curses is concerned

AUUGN 55 Vol 7 No 6

;login:

with the care and feeding of visual material,
the lack of illustrations (each potentially worth
1000 words) is regrettable.

The Quick Reference Table at the end of
the book did serve as a partial index.
Although seriously flawed, this book was
somewhat useful to me, and ! would
recommend it to experienced programmers,
but only very cautiously to novices.

Volume #5, Managing UUCP and
USENET, and volume #6, Using UUCP and
USENET, are another pair of pamphlets, one
targeted towards the system administrator, the
other towards a user who may not even be a
programmer. I became concerned at the
outset with the technical breadth of experience
of the author because I found on page 3 of
Volume #5 the statement "we use the system
prompt # to indicate that the commands can
only be executed in the superuser mode
because of UUCP file permissions. Commands
that are preceded by the system prompt unixT.
can be invoked in multi-user mode." Anyone
who confuses permissions with operating mode
(I have never heard single-user mode referred
to as superuser mode), or who cannot find the
right words to express this concept, makes me
wary, as does someone who believes the 50
foot limit on direct RS-232 connections. The
discussion of null modems is too trivial (again
lack of knowledge?), for a new system
administrator really needs some discussion of
modem control lines, not just how to cross
send-data and receive-data wires.

There are many detailed tidbits which
seemed strange, such as putting comment lines
in /etc/passwd by starting a line with #, doing
a setuname on every reboot from /etc/rc, or
putting several entries for the same username
but with different passwords in /etc/passwd
and expecting tog in to find the one which
matched, getty monitors incoming lines, and
does not start a tog in when a call out is
initiated. Setting the "time to call" field in
L.sys does not enable uucico.

The output from uucico in debug mode is
confusing and not really explained in standard
UNIX documentation, and this book adds
nothing to that situation. A two page
reproduction of a session is dropped in the
user’s lap without so much as one line of
comment, aside from dividing the printout
into sections and identifying the major activity

underway (establishing contact, sending a file,
etc). However, the table of STST and
LOGFILE messages is good and useful.

As ! have never had to install or maintain
netne~s, I cannot vouch for the accuracy of
the chapters on that subject. What I read
seemed clear and useful. Appendix A, which
lists the names, formats and use of the uucp
working files is a welcome addition of useful
information on this cryptic system. Despite
the glaring flaws there is value in this book,
and I give it a qualified recommendation.

The companion volume #6 is meant for
users, and suffers from the same defects as the
other volumes. UUENCODE is not a UUCP
command for sending binary files, and even
the example shows encoding a file and then
piping it through mail. One strongly suspects
that much of the information that is presented
was obtained by reading the documentation
rather than by trying it.

The fact that tilde escapes like "! or
"%put had to start on a new line was never
mentioned. The author seems not to have
known that the ">: file diversion facility of c u
could be invoked without the trailing :, and so
wastes considerable time explaining how to
run scripts to see material, when "> enables
you to see the input while capturing it in a file.
If one never gets past the -%take and -%put
options, one doesn’t quite understand the full
power of the cu program. As with the other
booklets, the discussion of netnews is quite
thorough, but I was tired of looking for defects
by then. With the recent reorganization of the
entire newsgroup naming conventions, some of
the material is out of date, but that isn’t the
fault of the author. This book is a useful
addition to the standard documentation, but
don’t go to any special trouble to find it.

Volume #7, Managing Projects with Make,
is a rather comprehensive tour through the
make facility. Written in an entirely differe~t
style from the standard UNIX doc’omerxtation,
it provides a clear and comprehensive
description of the flags, options, and features
of make along with examples. The booklet
discusses the less than obvious syntax of make
and its macros in some detail, and I learned a
few things about maintaining libraries using i.t.
My main criticism is that I would have
preferred more explanation of why certain

Vol 7 No 6 56 AUUGN

;login:

constructs were used in the final rather
elaborate example. All in all I would
recommend this book, especially for the
experienced programmer who may be working
alone and without much contact with a make
guru, and who need to get started using this
facility.

In summary, O’Reilly & Associates have
tackled many of the functions new or
inexperienced users, programmers, and system
administrators need to know in a coherent and
unified fashion, and should be commended for
their efforts. Each book is complete in itselfand modestly priced (about $7), though. the

cost for the entire set is no longer trivial. Each
volume contains a Table of Contents at the
beginning and Summary pages at the’end, but
none contains an index. The subjects are
covered thoroughly and in detail and the
writing is generally clear and simple. This is
not just a re-phrasing of material found in the
standard UNIX manuals.

However, when examined closely, the
books are riddled with inaccurate, misleading,
or downright incorrect technical details or
concepts, so that their utility is in some cases
severely compromised. In a discipline where
literal accuracy is required for learning by
example, this failing is inexcusable and cannot
be taken lightly. The printing style, photo
offset onto small format stapled booklets with
inexpensive paper should make revision less
costly, and many of the problems noted above
are correctable. With the exception of volume
#1, the other six booklets are all more useful
than flawed, and can be recommended to a
greater or lesser degree. The table below
summarizes my ratings for each of the books.
The rating scale is:

Unacceptable 0
Poor 1
Satisfactory 2
Good 3
Excellent 4

#2 #3 #4 #5 #6 #7

Clarity of Presentation 2 3 3 3 2 3 4
Organization and Style 3 3 3 3 3 3 4
Examples 2 3 3 1 2 2 3
Completeness 3 3 3 2 3 3 3
Accuracy 1 2 3 3 2 2 3
Overall Value 1.5 3 3 2.5 2.5 2.5 3.5

AUUGN 57 Vol 7 No 6

Minutes of the AUUG General Meeting
February 10, 1987

.

.

.

o

.

The meeting opened at 09:16. Present were an undetermined number of
members of the AUUG, and several others. The secretary, and one general
committee member (Chris Campbell) were present.

In the absence of the president, Chris Campbell was elected chairman of the
meeting.

The minutes of the previous GM, the 1986 AGM (Canberra, September 1986)
were read.

Moved (John Carey, seconded Peter Harding) That the minutes be accepted.
Carried (with one abstention).

There was no business arising from the minutes, other than that already
scheduled on the agenda.

No presidents report was given, as the president was absent.

The secretary (Robert Elz) presented his report. There were 148 ordinary
members, and 70 unfinancial members still owed newsletters on Sep 1. We now
have 5 institutional members. There were 24 newsletter subscribers who were
not members. 10 newsletters are exchanged with other groups, or otherwise sent
without payment. There are 144 members currently unfinancial.

The secretary made a brief report on progress with respect to negotiations with
other user groups for reciprocal rights. These include USENIX/usr/group
NZUSUGI JUS EUUG SIN/X and THAINIX.

The secretary also mentioned the high number of unfinancial members, and
indicated to members the method of determining their membership expiry date
from the mailing label of the newsletter.

Moved (Peter Tyres, seconded Stephen Frede) That the secretaries report be
accepted. Carried without dissent.

In the absence of the treasurer, the secretary presented the treasurer’s report. A
financial summary for the previous financial year, and budget for the current
year were presented.

Moved (Michael Selig, seconded Taso Hatzi) That the treasurer’s report be
accepted. Carried without dissent.

Vol 7 No 6 58 AUUGN

8, There was considerable discussion on the issue of incorporation, and the motion
moved at the AGM in Canberra instructing the committee to hold a ballot of
members.

The chairman presented a brief summary of the issues.

An unfinancial member asked why the ballot had not been held, and attempted
to move a motion that the ballot be held earlier than the committee’s intended
date of May. He indicated that he was an unfinancial member because of
concern of the status of members in unincorporated associations.

The secretary indicated that legal advice was being obtained, and the results
would be made available to members with the ballot when held.

The meeting expressed concern that incorporation be proceeded with as soon as
possible.

It was also suggested that the committee plan to hold meetings soon after each
general meeting, to avoid delays such as that which was incurred here, where
there was no committee meeting for 2 months after the AGM, so the committee
were unable to consider the direction for this period.

9. Meeting closed 10:13.

AUUGN 59 Vol 7 No 6

Letters to the Editor

Computer. Centre
Monash University
Clayton, Victoria 3168
AUSTRALIA

Wednesday 18th February, 1987

Ryerson E. Schwark
Account Executive - Software Licencing
AT&T Unix Pacific Co., Ltd.
No. 1 Nan-oh Bid., 5th Floor
2-21-2, Nishi-Shinbashi
Minato-ku, Tokyo 105 JAPAN

Dear Sir,

I enclose the following correspondence between Greg Rose and myself concerning
publishing AT&T literature in the AUUGN.

I am happy to publish press releases and related material concering AT&T UNIX*
products and activities as a service to the AUUG members.

It would be appreciated if AT&T would consider providing some form of support to
the production of the AUUG’s Newsletter. My most urgent need is to upgrade the
version of Documenter’s Work-Bench I am currently using to Version 2.0. At the
moment I am struggling to keep up with articles produced with grap and the mm
macros which respectively I currently do not have (grap) and have an old version
(mm). Also a 3B2 or a UNIX-PC and a text previewer or a fast laser-printer dedicated
to Newsletter production would be wonderful.

I look forward to your reply.

Yours Faithfully,

John Carey,
AUUGN Editor.

* UNIX is a trademark of AT&T Bell Laboratories

Vol 7 No 6 60 AUUGN

AT&T Unix Pacific Co.,Ltd.
No. 1 Nan-oh Bldg., 5th FI.
2-21-2, Nishi-Shinbashi
Minato-ku, Tokyo 105 Japan
Tel : 03-431-3305
Telefax :03-431-3680
Telex : J34936 ATTUP

March Ii, 1987

John Carey
Computer Centre
Monash University
Clayton Victoria 3168
AUSTRALIA

Dear Mr. Carey,

I have spoken with Mr. Crume about your request, and we have agreed
that your request is quite reasonable. We are thereforegoing to give
a free upgrade to Monash University from Documentor’s Workbench 1.0 to
Documentor’s Workbench 2.0. This is, of course, under the
understanding that it is done for the purpose of supporting AUUGN, and
not as a gift to the university per se. The contracts involved in
this upgrade will follow in a few days.

I understand your need for some computer hardware, but AT&T Unix
Pacific does not sell hardware, so I am passing a copy of your letter
on to Olivetti-Australia with the hopes that they might give you some
assistance in this matter°

We appreciate your efforts in informing the UNIX~ System community.
If there is anything I can do to assist you, please don’t hesitate to
contact me°

Tokyo-Japan-RS-hy

Sincerely,

Account Executive
Software Licensing

Registered Trademark of AT&T in the USA and other countries

AUUGN 61 Vol 7 No 6

Computer Centre
Monash University
Clayton, Victoria 3168
AUSTRALIA

Tuesday 2 lth April, 1987

Ryerson E. Schwark
Account Executive - Software Licencing
AT&T Unix Pacific Co., Ltd.
No. 1 Nan-oh Bid., 5th Floor
2-21-2, Nishi-Shinbashi
Minato-ku, Tokyo 105 JAPAN

Dear Sir,

Thank you for your generous offer to upgrade Monash University Computer Science’s
Documentor’s WorkBench to Version 2.0 for no charge to assist with the production of
the AUUG Newsletter.

I have passed your two letters and the contacts to:-

Sue Rees
Adminstrative Officer
Department of Computer Science
Monash University

for processing.

Unfortunately Olivetti Australia have not made any comment as far as hardware is
concerned.

Thank you again for showing interest in the Newsletter.

Yours Faithfully,

John Carey,
AUUGN Editor.

Vol 7 No 6 62 AUUGN

C.P. EXPORT PTY. LTD.
INCORPORATED IN VICTORIA
613 ST KILDA ROAD
MELBOURNE 3004
VICTORIA AUSTRALIA

April 9th, 1987

The Editor
The Australian UNIX Systems Users Group Newsletter
Computer Centre
Monash University
CLAYTON VIC 3168

Dear Sir,

I am writing this letter with the intention of informing members
of the AUUG about the formation of CP Export, an international
software publishing company whose major objective is to
successfully identify, promote, distribute and sell
Australian-sourced software on the international market.

By way of background, CP Export was formed in late 1986 as a
joint venture between the Victorian Government and Computer
Power., providing the software developer with a sizeable
marketing, distribution and support presence in North America,
Europe and Asia, thereby creating a ready made outlet for
Australian products.

We are looking for Australian software products developed either
by individuals or companies which will compete well in export
markets, specifically in the UNIX area. We believe that some
excellent produc~s have been developed within this environment
and as such are very keen to identify them irrespective of their
size or functionality. The product developed by an individual
to address a specific problem may well have significant
potential.

If any of your members have a product which they believe is
worth consideration or would like to have further information
regarding CP Export, we would be pleased if they could contact
CP Export, telephone (03} 520.5480.

Yours sincerely,

Brian R. Nicholson

TEL. (03) 520 5333 TLX. AA 37159 FAX. (03) 520 5411

AUUGN 63 Vol 7 No 6

Australian UNiX systems User Group.
P.O. Box 366, Kensington NSW 2033, Australia.

auug@mu nnari.oz.au {seismo,hplabs,mcvax,ukc} !mu nnari !auug
*UNIX Is a registered trademark of AT&T in the USA and other coun|rles.

Mr Greg Rose,
Managing Director,
Softway Pty Ltd,
P.O. Box 305
Strawberry Hills
N.S.W. 2012

Saturday 11th April, 1987

Dear Greg,

I refer to your letter to John Carey, the Editor, AUUGN, of January 27, in which you
make a complaint about the publication in AUUGN Volume 7 Issue 2-3 of an adver-
tisement for AT&T without charge.

I wish to point out that that particular advertisement was considered by the AUUG
Management Committee at its meeting on November 17, and expressly authorised for
publication at no charge.

This was reported in the minutes of the meeting, published in the same AUUGN issue.
I refer you to item 11, on page 31.

Thus, if you have a complaint, it would be more correctly addressed to the AUUG
Management Committee than to the Editor.

Yours sincerely,

Robert Elz
Honorary Secretary
AUUG

cc: The Editor, AUUGN

Vol 7 No 6 64 AUUGN

AUUG
Australian UNiX systems User Group.

P.O. Box 366, Kensington NSW 2033, Australia.
auug@rnunnari.oz.au {seisrno,hplabs,mcvax,ukc} !munnari!auug

*UNIX is a registered trademark of AT&T In the USA and other countries.

The Editor
AUUGN.

Sunday 12th April, 1987

Dear John,

I enclose a paper from the NZUSUGI I received some time ago, together with a cover-
ing letter from the secretary of the NZUSUGI, Keith Hopper.

I would appreciate it if you would arrange to publish this paper in the next issue of
AUUGN.

I was delaying this until I received a reply to a request I sent asking permission to
publish this, however, after six months it appears that no reply is likely, so I think we
should go ahead and publish it now.

I would also be grateful if you would request that any readers who have comments on
this paper would forward them to me, either at the above address, or by electronic
mail to

auug@munnari.oz

This will assist the management committee of AUUG to decide what position, if any,
AUUG should take on this issue.

Yours sincerely,

Robert Elz
Honorary Secretary
AUUG

Enc

AUUGN 65 Vol 7 No 6

NEW ZEALAND UNIX SYSTEMS USER GROUP, INC.

P.O. Box 13056
University of Waikato
HAMILTON
New Zealand

8 October 1986

The Secretary
Australian Unix Systems User Group
P 0 Box 366
Kensington
NSW 2033

Dear Sir

UNIX STANDARDISATION

The Board of NZUSUGI has received conflicting suggestions about
the use and applicability of the standardisation efforts of IEEE in
the USA and the X/OPEN group in Europe.

I was asked to conduct a study of the documents and co-ordinate a
position paper, a copy of which is attached.

A number of detailed technical discrepancies are also under
consideration for incorporation in any interim standard.

Your comments are invited on this group’s position in
standardisation. These may be addressed as above.

Electronic mail may be sent via JANET to kh@nz.ac.waikato.

Yours faithful ly

K. Hopper
Secretary

Vol 7 No 6 66 AUUGN

+

UNIX

STANDARDISATION

by

K. Hopper

University of Waikato, New Zealand

M~stract The ground rules for standarJisation of the UNIX

operating system are queried and one possible consistent

set suggested. The place of the existing informal

docu~nents on UNIX standar~lisation is investigated and an

outline plan for full formal standarJisation proposed.

Intr~uction

The recent initiatives to "standarJise" some facets of the UNIX operatinq

system are unfortunately, on very shaky ground. They have arisen in Europe

and the US for what are conceived to be urgent commercial reasons.

Before taking any action in regard to UNIX standardisation, however,

there are a number of ground rules which should be agreed. Most of these

are, at present, open questions.

Standarrls for
There are a number of viewpoints from which the need to star~ardise may

be seen’-

a. The commercial programmer wishing to invoke OS services.

b. The commercial package user wishing to make use of a package.

UNIX ~ a trademark nf AT&T Be|~ taborator~e~ in the USA and othe~

countr~et.

AUUGN 67 Vol 7 No 6

c. Any use~ wishing to use the UNIX tool-set.

d. Any user wishing to interact with a UNIX system.

These four different "users" may, of course, be one person at different

times.

Standardise What?

Is the attempt to "standardise" UNIX to be made from the point of view of

the UNIX implementers - o~ is it to be made from the point of view of the

eventual users (any or all of the kinds just described)? Whichever view is

taken wi!! result in quite different standards.

Standard in Relation to What?

All standards activities imply that there is necessarily some objective

measurement facility which can determine conformance. This offers

particularly intriguing situations when dealing with man-machine

interactions. Is measurement to be made against some non-proprietorial

"universal"? Is measurement to involve grades of conformance - allowing

sub-setting or super-setting? Is standardisation to be some minimum which

may be exceeded by some implementer providing for "optional extras" - or are

such extras’to be eschewed?

Why Standardise?

Although all the work done in the US & Europe expressed the objective

i~pl.-:,.ving software portability, there are a number of very important

additional questions:-

a. What about people portability?

b. Why restrict portability to one OS?

c. What about hardware portability? If not this then what about

firmware portability? What about a "UNIX machine" very close

to the raw hardware?

Vol 7 No 6 68 AUUGN

How Can a Standard be Specified?

In order to be able to test conformance it is a tautology to say that

there must be a specification. However, any new standard must itself be

specified in ter~s of some other "standard(s)" already defined.

The usefulness of a standard is strongly related to the range of people
who understand what it means (in terms ~qoYeYx of what is "written") because

they either know or have access to the standards 1½ which it is written.

Who Tests Conformance?
This is the major question in setting standardisation ground rules. The

easy answer is to merely say "standards authorities". When it comes tb

measuring against the Inter~ational Standard Metre or Kilogram, say, little

problem arises, since with due care it is possible to set up Transfer

Standards which can be distributed to countries to produce in turn an

arbitrary number of National Sub-standards.

Attempting to standardise an operating system requires that a set of

standard tests are generated, which an implementation wishing to conform

must pass satisfactorily - in terms of the written standard. However, the

producer of programs for sale must also test that his progr~ - which

becomes an extension of the functionality of the computer system on which it

runs - also conforms to the expected standarJ usage of operating system

facilities by being an extension and no~ an alteration! This must be done

with every program sold. It is unlikely that every individual programmer

could afford to do this, therefore each country must have at least one test

facility to be able to affix a "standards label" to every conforming

program.

Does this imply the necessity of a Software Standards Laboratory in each

country, such as is being done in relation to Ada, Cobol, Fortran, Pascal &

Modula-2 programming language compilers? The compiler situation is

relatively easy since very few people write compilers and only a sprinkling

of test laboratories are required world-wide. Standardisirm! software

production of the kind envisaged in standardising UNIX requires a great deal

more effort (arid, presumably, cost). ’

Vol 7 No 6
AUUGN 69

Who Uses the Standa~?

In order to be used, a standard must show advantage to its putative user

community. This returns the discussion neatly to the first ground rule.

Advantage may be measured in any appropriate way - but will, after a few

transformations, almost always turn into a monetary value or, occasionally,

only as a time-saver.

A little thought will show that the short-term immediate benefit arises

to commercial programmers who will be able to sell their efforts to run on a

wider range of machine hardware. The next most obvious beneficiary is the

hardware supplier since, assuming that he offers a duly certified operating

system implementation, he may compete more vigorously in a horizontal market
knowing that his potential customers’ software will not need changing.

The real beneficiary of all this in the long run is the end user who can

mix and match software and hardware more readily to his current needs,

,,without. any need for retraining/learner costs interfering with his

productivity.

THE ONLY WAY that this real benefit may be gained, however, is by THE

USER PAYING in cash terms for the COST OF CONFORMANCE TESTING! If the user
is not prepared to pay a testing premium then the standard might almost as

well not have been written. If the user either can’t or won’t pay, the

standard won’t otherwise receive the use which it deserves.

Some Al~ers

Having posed a number of questions which aim at the ground-rules for

standardisation, rathec than the technical details which are very much a

secondary consideration at this early stage, it is useful to present one set

of possible answers as a starting point [o~ discussion.

Vol 7 No 6 70 AUUGN

It is, therefore, proposed that the following ground-rules should be

adopted -

a. The viewpoint of the end user wishing to interact with a UNIX

system should be chosen to express the needs which are to be

satisfied. This viewpoint may be broadly described as a need for

ma,~um~o~i~Ye transparency and ~o~Ypackage portability, where

transparency means that the user neither wishes to know about nor

cares exactly what hardware is running which operating system

implementation! Total portability is even more severe in that it

implies that the user wishes to be able to use packages in

identical ways i~-e~/~9~£/~~ of the run-time environment - ie

hardware and operating system independent!!

b. The things which must be standardised from the user’s

viewpoints are essentially all related to the OSCRL definition. It

may be necessary to offer a variety of ~/~YY~con~~n~ "

alternative interface processes until more progress is made in

developing self-adaptive systems. The OSCRL should be a formally

defined language - noZthe "list" of methods invoking commands

syntactically which is seen currently in all UNIX "shells". The

user wishes to see above all a uniform interface with no syntactic

nor semantic peculiarities. The alternative interface processes

are suggested in order to provide simple interfaces for those users

needing them and more sophisticated facilities for the expert.

c. A standard should be exactly and only one! There should be no

sub-setting and certainly no supersetting - at least until forma!

revision of the standard provides for increased functionality. Any

alternatives to this allow individual implementers to produce the

existing Tower of Babel yet again.

d. A standard should be presented in terms of the operating system

interfaces.

(1) With a human user via some expressly provided interface
process, built upoh the following (2) interfaces.

AUUGN 71 Vol 7 No 6

(2) With other software non-human users in terms of primitive

"command and response" languages.

(3) With the underlying "UNIX machine" at the firmware or

hardware level. This is a vital interface all too often
ignored.

Given the user’s requirements for total software portability, the

functionality of the primitive interfaces must be defined in two

quite separate groups - those which are quite independent of what

may be the underlying operating system and those which, by their

nature, exercise operating system specific features.

e. Specifications should be written in terms of data abstractions

- i.e. data structures and formally defined routines. No attempt

should be made to use ~,~y"programming language" syntax for routine

specification. The use of programming-language-like syntax to

specify data structures ~axbe convenient, while using formal

routine semantic descriptions in, for example, VDM.

f. The computing industry in each country should set up (at least)

one Software Standards Laboratory (where insufficient already

exist), to provide the necessary independent conformance testing

for programs written in accordance with a standard.

The Path Ahead

Two groups of workers in US and in Europe have produced respectively IEEE

Trial Use Standard 2003 and the X/Open Portability Guide.

These large documents both address only a small part of a full standard -

in a very primitive non-formal pseudo-programming language way. While these

may be the result of many months of work - even years - they are not
suitable as a formal standard - nor even part of one.

Their major disadvantage is that they are expressed in terms of the C

programming language, which, besides not yet being given a standard
definition of its own is totally unsuited to formal standard specification

as it has no data abstraction built into its semantics (just into "good

practice"!)

Vol 7 No 6 72 AUUGN

The path ahead therefore could well begin by completely rewriting them in

formal notation as one document, to which is attached an informal

descriptive explanation - rather in the way that the Ada language formal

syntax and semantics are expressed in that standard. This preliminary step

would also serve to separate the specific from the non-specific

functionality required.

ISO work is being undertaken to specify human user OSCRLs. The human

user interfaces for UNIX should take this work into consideration, as well

as the associated theoretical work which has been undertaken by IFIP WG2oTo

The specification of a "UNIX machine" is something which has not yet been

tackled in serious vein by any research or standards group. Specification

of such a low-level functional ~machine is therefore open to anyone

interested in starting such work.

Practical Steps

The preliminary informal specifications currently proposed should, it is

considered, be used solely as an ~½ter~ standard until formal

specifications can be produced as suggested above. Bringing this into force

will get the market accustomed to the benefits which even an interim

standard can provide.

In parallel with work to produce a formal UNIX Software Interface

Standard, work should be undertaken to produce a UNIX Human Interface

Standard, in association with ISO TC97/SC21/WG5 standardisation efforts.

Users of the existing UNIX interfaces should provide comment and suggestions

for alterations through the Standards Officer of their national UNiX User

Group. Particularly welcome will be comments from non-programmer users -

who form the vast majority although they seem to receive too little

attention!

It is hoped that implementers of UNIX kernels can join together, despite

the existence of commercial secrets to produce in the longer term a UNIX

Machine Standard, which will be of considerable use to hardware
¯

Vol 7 No 6
AUUGN 73

manufacturers as "special" soft machines come to be used more than they are

today.

Acknowledgements

Many thanks are due to my colleagues in the New Zealand UNIX Systems User

Group who have encouraged me to devote more time to technical matters and

less to administrivia. The poor current state of UNIX standardisation needs

a great deal of help to correct the existing direction of work.

Bibliograph¥

I EEE, Tribl-g£qe S~.arldard Por~.able O]gera~i’~g Sys~.em for C.ompt:~.er

Envi’ronmen~s, (IEE~., New York, 1986).

X/OpenPor~bili’~yG~’de, (Elsevier, Amste~lam, 1985).

IFIP WG2.7, Reference /{odel for Oper~Y~g System Comm~nd end Responso

L~ng~/age.% (Springer, Heidelberg, 1986).

AUUGN
Vol 7 No 6 74

AT&T

AT&T Unix Pacific Co.,Ltd.
No. 1 Nan-oh Bldg., 5th
2-21-2, Nishi-Shinbashi
Minato-ku, Tokyo 105 Japar~
Tel : 03-431-3305
Telefax : 03-431-3680
Telex : J34936 ATTUP

February 20, 1987

Enclosed is a press release given out by AT&T and Microsoft
Corporation to introduce a new version of the UNIX~ System V operating
system for Intel Corporation’s 80386 microprocessor.

If you have any questions, please do not hesitate to contact us.

Sincerely,

Tokyo-Japan-RS-hy

wark
Account Executive
Software Licensing

Registered trademark of AT&T in the USA and other countries.

AUUGN 75 Vol 7 No 6

AT&T Unix Pacific Co., Ltd.
No.1 Nan-oh Bldg., 5th F1.
2-21-2, Nishi-Shinbashi
Minato-ku, Tokyo 105
Japan

For further information:

Ryerson Schwark
Software Licensing Account Executive
Tel: 3-431-3305 (Japanese)

3-431-3670 (English)
Fax: 3-431-3680
Telex: J34936 ATTUP
uucp :seismo!akgua!attunix!upshowa!schwark

PRESS RELEASE

AT&T and Microsoft Corporation today announced they will introduce a new version of the

UNIX* System V operating system for Intel Corporation’s 80386 microprocessor used in the

newest generation of microcomputers.

The new software product -- giving PC’s the power of a minicomputer -- will be developed by

Microsoft from AT&T specifications and will be distributed under AT&T’s trademarked name

"UNIX." The product is expected to be available in early 1988.

Vittorio Cassoni, Senior Vice President of AT&T’s Data Systems Division, said that "the use of

the trademark "UNIX" on operating system products will assure customers that their

applications will run unmodified on any computer based on the 80386 microprocessor, regardless

of the vendor."

The 80386 microprocessor (commonly referred to as the 386) is the basis for the newest

generation of 32-bit computers now being developed and marketed by many hardware

manufacturers. The combination of the 386 and the multi-tasking, multi-user features of UNIX

System V will be a powerful, cost-effective system for a wide variety of applications.

* Registered trademark of ATg~T in the USA and other countries.

Vol 7 No 6 76 AUUGN

"While much of the computer systems industry is experiencing minimal growth, the market

based on UNIX System V is accelerating," said Cassoni.

"We expect this version of UNIX System V, combined with the technological advances of the

Intel 386 microprocessor, to create tremendous growth opportunities for both computer

manufacturers and software vendors," he said.

He added that "the installed base of computers based on UNIX system software grew by about

75 percent in the past year," and that the current installed base is roughly 60 times larger than

when UNIX System V was first introduced in 1983.

AT&T will continue to market UNIX System V, and Microsoft will continue to market its

XENIX** operating system during the development of the new product. Applications written

for Microsoft ’s X:ENIX System V and for UNIX System V -- including applications for AT&T’s

PC 6300 PLUS -- will run on the new implementation of the UNIX system without modification.

When the new product becomes available, AT&T and Microsoft will market it as the sole UNIX

system product for the 386.

"Compatibility with existing applications for XENIX: System V and UNIX System V on the

80286 and the 80386 means that the new implementation of UNIX System V will be born with a

large existing base of application software," said Bill Gates, Chairman, Microsoft Corporation of

Bellview, Washington.

"Moreover, the establishment of a standard interface combined with the power of the 386 will

attract new application vendors," he said.

¯

"I am convinced that this announcement will clear the way for dramatic growth in the market

for computers based on UNIX System V," Gates said.

** XENIX is a registered trademark of Microsoft Corporation.

AUUGN 77 Vol 7 No 6

The new implementation will provide software developers with a standard application interface

while allowing them the option of using either AT&T or Microsoft software development tools.

Computer manufacturers and software vendors will be offered licenses to distribute products

based on the new implementation.

AT&T’s UNIX System V is a standard portable operating system, available on a wide variety of

machines from PC’s to mainframes. Microsoft is a licensee of UNIX system software and is one

of AT&T’s largest distributors of UNIX system-derived products under its XENIX operating

system.

Microsoft Corporation develops, markets, and supports a wide range of software for business

and professional use, including operating systems, languages, and application programs, as well

as books and hardware for the microcomputer marketplace.

Vol 7 No 6 78 AUUGN

AUUG

Membership Categories

Now that the Australian UNIX systems User’s Group has existed a while, its time that
all members reviewed their membership types, and even more, checked that they are in
fact still members!

There are 4 membership types, plus a newsletter subscription, any of which might be
just right for you.

The membership categories are:

Institutional Member
Ordinary Member
Student Member
Honorary Life Member

Institutional memberships are primarily intended for university departments,
companies, etc. This is a voting membership (one vote), which receives two copies of
the newsletter. Institutional members can also delegate 2 representatives to attend
AUUG meetings at members rates. AUUG is also keeping track of the licence status
of institutional members. If, at some future date, we are able to offer a software tape
distribution service, this would be available only to institutional members, whose
relevant licences can be verified.

If your institution is not an institutional member, isn’t it about time it became one?

Ordinary memberships are for individuals. This is also a voting membership (one
vote), which receives a single copy of the newsletter. A primary difference from
Institutional Membership is that the benefits of Ordinary Membership apply to the
named member only. That is, only the member can obtain discounts on attendance at
AUUG meetings, etc, sending a representative isn’t permitted.

Are you an AUUG member?

Student Memberships are for full time students at recognised academic institutions.
This is a non voting membership which receives a single copy of the newsletter.
Otherwise the benefits are as for Ordinary Members.

Honorary Life Memberships are a category that isn’t relevant yet. This membership
you can’t apply for, you must be elected to it. What’s more, you must have been a
member for at least 5 years before being elected. Since AUUG is only just over 2
years old, there is no-one eligible for this membership category yet.

Its also possible to subscribe to the newsletter without being an AUUG member. This
saves you nothing financially, that is, the subscription price is the same as the
membership dues. However, it might be appropriate for libraries, etc, which simply
want copies of AUUGN to help fill their shelves, and have no actual interest in the
AUUGN 79 Vol 7 No 6

contents, or the association.

Subscriptions are also available to members who have a need for more copies of
AUUGN than their membership provides.

To find out if you are currently really an AUUG member, examine the mailing label
of this AUUGN. In the lower right comer you will find information about your
current membership status. The first letter is your membership type code, N for
regular members, S for students, and I for institutions. Then follows your membership
expiration date, in the format exp=MM/YY. The remaining information is for internal
use.

If your membership has already expired, or is about to expire (many expire in January)
then now is the time to renew.

If you want to join AUUG, or renew your membership, you will find forms in this
issue of AUUGN. Send the appropriate form (with remittance) to the address
indicated on it, and your membership will (re-)commence.

Robert Elz

AUUG Secretary.

Vol 7 No 6 80 AUUGN

A
Application for Ordinary, or Student, Membership

Australian UNIX systems Users’ Group.
*UNIX is a registered trademark of AT&T in the USA and other countries.

To apply for membership of the AUUG, complete this form, and return it with payment in
Australian Dollars to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

Please don’t send purchase orders -- perhaps your purchasing department will consider this form an invoice.
Foreign applicants please send a bank draft drawn on an Australian bank, and remember to select either
surface or air mail.

I, ...do hereby apply for

r---I Renewal (indicate which membership type).

I---I Membership of the AUUG

I---] Student Membership of the AUUG

[~ International Surface Mail

I--I International Air Mail

Total remitted

$ 50.00

$ 3o.0o
$10.00
$ 50.00

(note certification on other side)

AUD$
(cheque, money order)

I agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time to
time~ and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.
I understand that membership includes a subscription to the AUUG newsletter, and that I will be entitled to
attend AUUG sponsored functions at member rates for the duration of my membership.

Date: / / Signed"
I---] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Name: .. Phone: ...(bh)

Address: (ah)

Net Address: ...

Write "Unchanged" if details have not

altered and this is a renewal.

AUUGN 81 Vol 7 No 6

Student Member Certification (to be completed by a member of the academic staff)

I, ...certify that

... (name)

is a full time student at ...(institution)

and is expected to graduate approximately _.._._J. _/. .

Title: ..Signature:

Office use only:

Chq: bank

Date: / /

Who:

bsb

$

- a/c #

Memb#

Vol 7 No 6 82 AUUGN

A G
Application for institutional Membership
Australian UNIX systems Users’ Group.

*UNIX is a registered trademark of AT&T in the USA and other countries.

To apply for institutional membership of the AUUG, complete this form, and return it
with payment in Australian Dollars to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

Foreign applicants please send a bank draft drawn on an Australian bank, and remember to select either
surface or air mail.

.. does hereby apply for
I--1 Renewal of existing Institutional Membership

I---I New Institutional Membership of the AUUG

[-] International Surface Mail

I---] International Air Mail

Total remitted

$250.00

$25o.o0
$ 20.o0
$1oo.oo

AUD$.
(cheque, money order)

I agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time to
time, and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.
I understand that I will receive two copies of the AUUG newsletter, and may send 2 representatives to
AUUG sponsored events at member rates, though I will have only one vote in AUUG elections, and other
ballots as required.

Date: / / Signed:

Title:
I--i Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Administrative contact, and formal representative:

Name: ..

Address: ..

Phone: ...(bh)

... (ah)

Net Address: ...

Write "Unchanged" if details have not

altered and this is a renewal.

Please complete the other side.

AUUGN 83 Vol 7 No 6

Please send newsletters to the following addresses:

Name: ..
Address: ..

Name: ..
Address: ..

¯,, ** **** ,***** ****** **** ** ,, ** ~*** ************************ **** ~, ,~** *** ~** ~, ** **** ** ******

¯**** ****** ****** ********** ** ******** ************ ** ** ** **** ** **** **** ************** ** **

Write "unchanged" if this is a renewal, and details are not to be altered.

Please indicate which Unix licences you hold, and include copies of the title and signature pages of each, if
these have not been sent previously.

Note: Recent licences usally revoke earlier ones, please indicate only licences which are current, and indicate
any which have been revoked since your last membership form was submitted.

Note: Most binary licensees will have a System III or System V (of one variant or another) binary licence,
even if the system supplied by your vendor is based upon V7 or 4BSD. There is no such thing as a BSD

binary licence, and V7 binary licences were very rare, and expensive.

[’~ System V.3 source ~-] System V.3 binary

[---] System V.2 source ~ System V.2 binary

[--] System V source [-] System V binary

[--] System III source [--] System III binary

1--] 4.2 or 4.3 BSD source

[---] 4.1 BSD source

[-] V7 source

[--] Other (Indicate which) ...

Office use only:
Chq: bank bsb
Date: / / $
Who:

- a/c #

Memb#

Vol 7 No 6 84 AUUGN

A UG
Application for Newsletter Subscription
Australian UNIX systems User Group.

UNIX Is a registered trademark of AT&T In the USA and other countries.

Non members who wish to apply for a subscription to the Australian UNIX systems User
Group Newsletter, or members who desire additional subscriptions, should complete this
form and return it to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

Please don’t send purchase orders -- perhaps your purchasing department will consider this form an invoice.
Foreign applicants please send a bank draft drawn on an Australian bank, and remember to select either
surface or air mail.

Please enter / renew my subscription for the Australian UNIX systems User Group
Newsletter, as follows:

Name: .. Phone: .. (bh)

Address: .. (ah)

Net Address: ..

Write "Unchanged" if address has

not altered and this is a renewal.

For each copy requested, I enclose:

[--] Subscription to AUUGN

International Surface Mail

International Air Mail

Copies requested

Total remitted

$ 50.00

$ ~o.oo

$ 5o.o0

AUD$
(cheque, money order)

Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

Office use only:

Chq: bank

Date: / /

Who:

bsb

$

a/c #

Subscr#

AUUGN 85 Vol 7 No 6

AUUG
Notification of Change of Address

Australian UNIX systems Users’ Group.
*UNIX is a registered trademark of AT&T In the USA and other countries.

If you have changed your mailing address, please complete this form, and return it to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

Please allow at least 4 weeks for the change of address to take effect.

Old address (or attach a mailing label)

Name: ..

Address: ..

Phone: ...(bh)

... (a~)

Net Address: ...

New address (leave unaltered details blank)

Name: ..

Address: ..

Phone: ...(bh)

... (ah)

Net Address: ...

Office use only:

Date: / /

Who: Memb#

Vol 7 No 6 86 AUUGN

