
[] []

U X st÷

te

Volume 9- Number 5

October 1988

Registered toy Austi’~lla Post Pu~lication No. NBG6524

The Australian UNIX* systems User Group Newsletter

Volume 9 Number 5

October 1988

CONTENTS

AUUG General Information 3

Editorial 4

President’s Report 6

Secretary’s Letter 7

Adelaide UNIX Users Group Information 8

Western Australian UNIX systems Group Information9

Annual General Meeting Minutes - September 198810

ACSnet SIG Meeting Minutes - September 1988 13

AUUG 88 Conference Report 16

AUUG 88 Conference Papers continued 22

Hows a Windowing System 22

The Fundamentals of NeWS 24

Programming on UNIX System X release Y revised 33

OSI into UNIX: the network junkies have a field day50

AUUG 88 Conference Slides 56

ISO/OSI Networking Protocols under Berkeley UNIX56

The Future of UNIX Software: The Open Computing Platform for the 1990s65

OSF and ABI: Technology and Future Impact on UNIX96

From the ;login: Newsletter - Volume 13 Number 4 132

Charge Number Accounting without Kernal Modifications133

Presenting a Single Image with Fine Granularity Mounts-137

C++ Tape 145

2.10BSD Software Release 146

UUNET Communications Service 147

From the ;login: Newsletter - Volume 13 Number 5 148

C++ Conference Program 149

Call for Papers - Winter 1989 USENIX Conference151

AUUGN 1 Vol 9 No 5

From the ;login: Newsletter - Volume 13 Number 5 continued 152
Workshop on Large Installation Systems Administration152
Call for Papers - EUUG Spring ’89 Conference153
Obtaining GNU Software 154
Broadcast Storms, Nervous Hosts, and Load Imbalances155
An Update on UNIX Standards Activities 164
Future Events 169
Publications Available 170
4.3BSD Manuals 171
Local User Groups 172

Management Committee Meeting Minutes - May 1988174
AUUG Membership Catorgories 181
AUUG Forms 183

Copyright © 1988. AUUGN is the journal of the Australian UNIX* systems User Group. Copying
without fee is permitted provided that copies are not made or distributed for commercial advantage and
credit to the source must be given. Abstracting with credit is permitted. No other reproduction is
permitted without prior permission of the Australian UNIX systems User Group.

* UNIX is a registered trademark of AT&T in the USA and other countries.

Vol 9 No 5 2 AUUGN

AUUG General Information

Memberships and Subscriptions
Membership, Change of Address, and Subscription forms can be found at the end of this issue.

All correspondence concerning membership of the AUUG should be addressed to:-

The AUUG Membership Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033.
AUSTRALIA~

General Correspondence
All other correspondence for the AUUG should be addressed to:-

The AUUG :Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033.
AUSTRALIA

AUUG Executive

President Greg Rose

greg@softway.sw.oz
Softway Pty. Ltd.,
New South Wales

Secretary Tim Roper

timr@labtarn.oz
Labtam Limited,
Victoria

Treasurer

Committee
Members

Michael Tuke

no net address
Edge Computer,
Victoria

Frank Crawford

frank@teti.qhtours.oz
Q.H. Tours,
New South Wales

Chris Maltby

chris@softway.sw.oz
Softway Pty. Ltd.,
New South Wales

Richard Burridge

ric hb@ sunaus.aus.oz
Sun Microsystems Austrlia
New South Wales

Tim Segall

tim@ hpaus la.aso, hp.o z
Hewlett Packard Australia,
Victoria

Next AUUG Meeting
Regional Meetings will be held during February 1989, and the major Conference and Exhibition,
AUUG89 will be held at the Sydney Hilton Hotel from Tuesday 8th to Friday llth August 1989.
Further details are provided in this issue.

AUUGN 3 Vol 9 No 5

AUUG Newsletter

Editorial
Welcome to the Newsletter.

I have resigned as Editor of the Newsletter and gave my resignation to the Committee at the AUUG88
Conference. Before you start rejoicing, I have given 12 months notice to allow time for a new Editor to
be found and installed. This time will see me out as Editor until the August 1989 Issue.

I would like to see my last six issues as Editor be a fitting finale For this too happen, must I say it
again, I need people to contribute, so

GO TO IT

Also if there are any budding Editors out there don’t hestitate to put your name forward - I am sure you
find the work rewarding.

Thanks to those of you that send me articles and contributed to the production of issue - it is very much
appreciated.

I hope you enjoy this issue and please feel free to contribute an article soon.

REMEMBER, if the mailing label that comes with this issue is highlighted, it is time to renew your
AUUG membership.

ALSO, please find enclosed with your copy an order form for the USENIX Journal Computing Systems.
Institutional Members already receive a copy of the Journal automatically.

AUUGN Correspondence
All correspondence reguarding the AUUGN should be addressed to:-

John Carey
AUUGN Editor
Webster Computer Corporation
1270 Ferntree Gully Road
Scoresby, Victoria 3179 .
AUSTRALIA

ACSnet: john@wcc.oz

Phone: +61 3 764 1100

Contributions
The Newsletter is published approximately every two months. The deadline for contributions for the
next issue is Friday the 16th of December 1988.

Contributions should be sent to the Editor at the above address.

I prefer documents sent to me by via electronic mail and formatted using troff-mm and my footer
macros, troff using any of the standard macro and preprocessor packages (-ms, -me, -mm, pic, tbl, eqn)
as well TeX, and LaTeX will be accepted.

Hardcopy submissions should be on A4 with 35 mm left at the top and bottom so that the AUUGN
footers can be pasted on to the page. Small page numbers printed in the footer area would help.

Advertising
Advertisements for the AUUG are welcome. They must be submitted on an A4 page. No partial page
advertisements will be accepted. The current rate is AUD$ 200 dollars per page.

Vol 9 No 5 4 AUUGN

Mailing Lists

For the purchase of the AUUGN mailing list, please contact Tim Roper.

Back Issues
Various back issues of the AUUGN are available on request from the Editor.

Acknowledgement
This Newsletter was produced with the kind assistance and equipment provided by Webster Computer
Col~oration.

Disclaimer
Opinions expressed by authors and reviewers are not necessarily those of the Australian UNIX systems
User Group, its Newsletter or its editorial committee.

AUUGN 5 Vol 9 No 5

President’s Report

October 1988

Since the last newsletter, containing the bulk of the AUUG ’88 conference
proceedings, was produced, a number of things have happened within the group.

Firstly, the conference itself actually happened. The three days in Melbourne seem to
have been a resounding success, with the event proceeding smoothly, and good reports
from attendees, speakers and exhibitors alike. Gelato appears to be a good lubricant
(and if you are not sure what that means you really must come to the next one).

The committee has made some progress toward organising the membership database
better and combining that with part time secretarial service. This should ensure that
the membership is serviced more promptly and conveniently for all concerned, and
give us a mechanism for growing the group both faster and more smoothly.

I am pleased to say that the West Australian Unix User’s Group, previously
independent of the main group, has become the first chapter of AUUG. This process
occurred recently when Ken Thompson was invited to Perth to speak for them. In the
two weeks between confirrning a date and speaking, this regional chapter managed to
get about 120 people together for a buffet lunch and talk. This too is reported to have
been very well received.

To really fulfil the aims of the new conference organisation, it is important that
regional meetings like that in Perth should be organised in other places as well. And
not just the remote places either. I believe that both New South Wales and Victoria
should also have regional chapters and summer meetings. But rather than continuing to
have the same faces in those groups I am calling for volounteers to organise those
chapters. It’s really easy guys, hardly any work at all...

We also need an understudy for the newsletter editor; John Carey will be a hard act to
follow, so you should start now.

That is probably enough exhortation for one report, so until the next issue,

regards,

Greg Rose.

Vol 9 No 5 6 AUUGN

Secretary’s Letter

AUUG88 has been over for exactly a month, life has returned to its normal level of
chaos and I can wear my Secretary’s hat a bit more often. Thanks again to all those
who contributed to a successful conference and to those who have offered kind
thoughts and constructive criticism. New lessons are learned with every conference;
hopefully the same lessons are not re-learned too often.

Plans for AUUG89 are underway, with a timetable that we hope will lend itself to new
features, more publicity and higher attendances. Please note the details in next year’s
diary as soon as you get it. AUUG89 will be held at the Sydney Hilton Hotel from
Tuesday 8th to Friday l lth August, 1989, with the Tuesday devoted to tutorials.

New ideas for social events, competitions and technical demonstrations are welcome,
especially when accompanied by an offer to organise. To continue to improve, the
conferences need input from more people with a wider range of skills. For example,
we need marketing and accounting people to play a role in the planning of AUUG89.

The next major activities of AUUG will be the local, technical meetings in early 1989.
Although the Management Committee will provide funding and guest speakers, the
existance of these meetings relies on the willingness of people to take care of the local
arrangements. One of the reasons for having this kind of event is that the
organisational effort should be relatively small. With no exhibition and with informal
arrangements for meals and accommodation, if any, the local organisers will need to
arrange the meeting place, audio-visual equipment and perhaps coffee and things.

Perhaps these local meetings will see the formation of more local Chapters of AUUG?

Tim Roper
AUUG Secretary

AUUGN 7 Vol 9 No 5

Adelaide UNIX Users Group

The Adelaide UNIX Users Group has been meeting on a formal basis for 12 months.
Meetings are held on the third Wednesday of each month. To date, all meetings have
been held at the University of Adelaide. However, it was recently decided to change
the meeting time from noon to 6pm. This has necessitated a change of venue, and, as
from April, meetings will be held at the offices of Olivetti Australia.

In addition to disseminating information about new products and network status, time
is allocated at each meeting for the raising of specific UNIX related problems and for
a brief (15-20 minute) presentation on an area of interest. Listed below is a sampling
of recent talks.

D. Jarvis
K. Maciunas
R. Lamacraft
W. Hosking
P. Cheney
J. Jarvis

"The UNIX Literature"
"Security"
"UNIX on Micros"
"Office Automation"
"Commercial Applications of UNIX"
"troff/ditroff"

The mailing list currently numbers 34, with a healthy representation (40%) from
commercial enterprises. For further information, contact Dennis Jarvis
(dhj@aegir.dmt.oz) on (08) 268 0156.

Dennis Jarvis,
Secretary, AdUUG.

Dennis Jarvis, CSIRO, PO Box 4, Woodville, S.A. 5011, Australia.

PHONE: +61 8 268 0156
UUCP: {decvax,pesnta,vax135 } !mulga!aegir.dmt.oz!dhj
ARPA: dhj % aegir.dmt.oz!dhj@ seismo.arpa
CSNET: dhj@aegir.dmt.oz

Vol 9 No 5 8 AUUGN

WAUG
Western Australian UNIX systems Group

,
PO Box 877, WEST PERTH 6005

Western Australian Unix systems Group

The Western Australian UNIX systems Group (WAUG) was formed in late 1984, but
floundered until after the 1986 AUUG meeting in Perth. Spurred on by the AUUG
publicity and greater commercial interest and acceptability of UNIX systems, the group
reformed and has grown to over 70 members, including 16 corporate members.

A major activity of the group are monthly meetings. Invited speakers address the group on
topics including new hardware, software packages and technical dissertations. After the
meeting, we gather for refreshments, and an opportunity to informally discuss any points
of interest. Formal business is kept to a minimum.

Meetings are held on the third Wednesday of each month, at 6pm. The (nominal) venue is
"University House" at the University of Western Australia, although this often varies to
take advantage of corporate sponsorship and facilities provided by the speakers.

The group also produces a periodic Newsletter, YAUN (Yet Another UNIX Newsletter),
containing members contributions and extracts from various UNIX Newsletters and
extensive network news services. YAUN provides members with some of the latest news
and information available.

For further information contact the Secretary, Skipton Ryper on (09) 222 1438, or
Glenn Huxtable (glenn@wacsvax.uwa.oz) on (09) 380 2878.

Glenn Huxtable,
Membership Secretary, WAUG

AUUGN 9 Vol 9 No 5

AUUG Incorporated

1988 Annual General Meeting

15th September, 1988
Southern Cross Hotel

MINUTES

[Secretaries note: these minutes are subject to amendment at the
next General Meeting of the Association.]

The meeting opened at 17:07 with the entire committee and some
number of members and visitors estimated by the Secretary at 150
present. The President took the chair¯

i. Apologies
There were no apologies.

¯ Minutes of last meeting (August 27, 1987)
A copy of the minutes of the previous meeting, being the 1987
Annual General Meeting, was projected onto the screen.
Moved John O’Brien, seconded Burn Alting That the minutes of
the previous AGM be accepted. Carried.

¯

o

Business arising from Minutes
Item 13.

Greg Rose pointed out that the decision by the Management
Committee to unbundle the price of the dinner at
conferences as announced at the last AGM had been
reversed. There was some discussion and a straw vote was
taken that indicated that the vast majority preferred
bundling. Scott Colwell pointed out that the sample was
biased. Greg Rose suggested that a majority of members
appeared to be present anyway.

Returning Officer’s Report
John O’Brien reported that for the May 1988 election and
referendum:
(a) there were 180 members eligible to vote
(b) there were 72 ballots returned, one being informal
(c) the results of the election were as published in AUUGN

volume 9 number 4, namely Greg Rose as President, Tim
Roper as Secretary, Michael Tuke as Treasurer, Rich
Burridge, Frank Crawford, Chris Maltby and Tim Segall as
general committee members, John O’Brien as Returning
Officer. No candidates remained for the position of
Assistant Returning Officer.

(d) the referendum was passed with one abstention and all
others in favour.

¯

o

President’s Report
The President, Greg Rose, expressed his thanks to the
outgoing committee and introduced the new committee.
Moved Rich Burridge seconded Geoff Cole That the President’s
report be accepted. Carried unanimously.

Secretary’s Report
The Secretary, Tim Roper reported as follows:
(a) The group currently has 41 Institutional, 4 Student, 0

Vol 9 No 5 10 AUUGN

Honorary Life and 202 Ordinary members and 17 newsletter
subscriptions. There was some discussion on the low
numbers of Student members. John Lions suggested that
students were no longer studying UNIX per se to the same
extent as in previous, years.

(b) The Secretary has been exploring various ways of
improving the standard of membership processing by
employing secretarial assistance and regretted that no
choice has yet been made.

(c) The previous meeting of the Management Committee
(12/9/88) had appointed a sub-committee chaired by Greg
Rose to co-ordinate regional, technical meetings in early
1989.

(d) The 1989 Winter Conference and Exhibition will be held at
the Hilton Hotel in Sydney on Tuesday 8th to Friday llth
August, 1989, with tutorials being held on the Tuesday.

(e) The Editor of AUUGN has indicated that he needs more
articles for publication and that appointing sub-editors
with responsibility for special sections may help.

(f) AUUG88 has approximately 290 registrants, including 250
in advance, and 20 exhibitors. New features include a
membership desk and published proceedings. The next
issue of AUUGN would contain some papers that were not
available at the proceedings deadline. Thanks were due
to Wael Foda of Australian Convention Managements
Services for organising the exhibition, sponsorships,
hotel, registrations and accommodation.

Moved John Lions, seconded Glenn Huxtable That %he
Secretary’s report be accepted. Carried.

. Treasurer’s Report
Michael Tuke summarised the balance sheet prepared by the
retiring Treasurer and read out the letter from the
accountant David Howe (both attached). He stated that the
Management Committee had moved to engage the services of an
accountant to keep and audit the books in the future.
Moved Geoff Cole, seconded Andrew Worsley That the
Treasurer’s report be accepted. Carried.

8. Meetings in 1989
This item had been covered in the Secretary’s report.

. Next Annual General Meeting
Moved Tim Roper, seconded Peter Tyres That the next Annual
General Meeting of the group be held at the Hilton Hotel in
Sydney on the 10th August, 1989 at 17:00. Carried
unanimously.

i0. Other Business
(a) Moved John Carey, seconded David Purdue That this meeting

be held despite the short notice. Carried unanimously.
(b) Greg Rose announced that the committee had accepted the

resignation of the Editor of AOUGN, John Carey, effective
in 12 months time. Moved Greg Rose That John Carey be
thanked. Carried by acclamation.

(c) There was general discussion of alternative ways of
performing the current Editor’s functions.

(d) A question was asked about the intended processing of the
face images being collected at AUUG88. Chris Maltby
answered.

AUUGN 11 Vol 9 No 5

(e) Peter Tyres suggested that NZUSUGI felt that previously
good relations with AUUG had deteriorated. Chris Maltby
suggested that this impression may have been gained
because our (paper) mail to them was being returned due
to their having changed address. Tim Roper pointed out
that there was an official delegate from NZUSUGI at
AUUG88, as there was from UKUUGo

Moved Chris Maltby, seconded John O’Brien That %he mee%ing be
closed. Carried. The meeting then closed at 17:55.

Vol 9 No 5 12 AUUGN

Minutes from the AUUG ACSnet .SIG Meeting
15th September, 1988

The meeting opened at 0900 with Chris Campbell as the Chairman.

Ron Baxter presented the results of an ACSnet traffic survey which was conducted earlier in 1988. This
survey was conducted over a period of one week.

The survey collected responses from 110 sites with data involving 399 sites and 918 links. A total
1,113 Mb of data was transferred during the survey’s period, although the question was posed, what
percentage of the total is this figure? In analying the data, postcodes were used as geographic handles
and these were then aggregated into large regions. It was seen that traffic on inter-city links was 126
Mb and the largest of these was the Sydney-Melbourne link which carried 36 Mb. It was also seen that
many links were dominated by news.

A pictorial representation of inter-city traffic was shown and appears at the end of these minutes.

Bob Kummerfeld then reported of the growth of ACSnet’s "backbone" of leased lines. A year ago, most
of these were dialup links but now are leased lines of one form or another. Links such as
Sydney-Melbourne, Melbourne-Adelaide, Melbourne-Perth and Sydney-Wollongong are in place and
proposed links such as Sydney-Brisbane and Sydney-Armidale are currently being organised. Bob
proposed that these links should run the Internet Protocol (eg SL/IP) which would provide better
services and connectivity. He also proposed that if IP were to be used then it would be preferred that
links be 9600 baud or greater. A backbone connecting major cities would cost in the region of fifty
thousand dollars ($50,000) per year.

Bob then talked about the AVCC/ACDP Report. Two years ago Queensland University proposed an
Australia wide academic network based on the ColourBook protocols and DEC hardware. Last year a
proposal was put to the AVCC to establish a working party to investigate this network. Earlier this year,
the ACDP was included and Dr Brian Carrs from Queensland was appointed by the AVCC/ACDP
committee to. carry out a survey and report back to the AVCC/ACDP. The survey was send to
Computing Centre directors only. Bob was invited to talk to the working party regarding ACSnet. This
he did. One of the points raised during these discussions was that the working party was worded about
the commercial sites within ACSnet.

The report was disappointing. It said that ACSnet was the largest network but lacked performance in
message transfer timing and that there was no indication of improvement of ACSnet.

The report’s conclusion was that a self-funding 2Mb backbone be put in place. This backbone was to
carry both voice and fax as well as data. Each trunk on the backbone was to be split into 64 Kb
channels and that X.25 run over each. The report recommended that the first year should be devoted to
establishing the management for the network, allocating $270,000 for salaries, and that in the second
year the backbone be put in place.

The report had some technical flaws and it was suggested that the report’s recommendations took the
wrong approach, in that, although "thinking big", current traffic didn’t warrant such a wide bandwidth
and the proposed management. It was suggested that the AUUG should, as a body, formulate and
submit a reply to this report.

The following suggestions were made -

¯ The AUUG should not get "off-side" with the AVCC/ACDP as we are both striving for the
same goals.

° The AUUG should call a halt to the current plans (management then implementation) and
submit a better design - for example, include Tasmania.

AUUGN 13 Vol 9 No 5

¯ A solely academic network is crazy, why not include research and commercial organisations.
We must foster a complete network!

¯ The network should cater to all groups and we should join together with other networks (eg
SPEARNET) and produce a new report.

The meeting was then open to the floor for comment, some of which appear below
¯ It was reinforced that the AVCC/ACDP proposed too much bandwidth.

°

°

¯ A question was raised regards the design, in that, what type of machine would act as the router
in each major site?

¯ It was pointed out that this network had to cater to more operating systems than just Unix.

¯ The legal implications of such a network had to be investigated.

¯ It was pointed out that libraries wanted to use the network and their use would be
predominantly SNA. So perhaps large bandwidth is necessary.

¯ If voice, video and fax are to be included then the 2.0 Mbit bandwidth is needed but the
network should grow slowly.

JANET, when first established, overloaded very quickly and the time needed to upgrade was
insufficient to meet needs. It was also pointed out that Unix ColourBook doesn’t work!

Bob Kummerfeld was appointed to represent the AUUG.

We should lobby the AVCC/ACDP now as they are about to meet regarding the network
proposal.

A member from the ACDP said that their group did not support the trunk network as yet,
although they do support a core management team.

A set of resolutions from this meeting were made and appear below.

° We support the initiative of having an Australian wide networking environment for the
Australian community.

A moratorium of 2 months be placed on the current AVCC/ACDP report. During this time
period no money or people will be allocated for the current AVCC/ACDP proposal for an
Australian network.

A network proposal
(Universities, TAFEs,
communities.

should be extended and developed to encompass the academic
CCAEs, etc), research (CSIRO, DSTO, etc) and commercial

° A new proposal should be developed during the next 2 month period.

The meeting ended.

Vol 9 No 5 14 AUUGN

.<

ACSnet

Perth

U

G g

Ade

su rvey: inter-city traffic

Brisbane

Ar e

~erra
Newcastle

o art

Mackay

gong

AUUG Conference Report

Keith B. Lewis Kathy Ching

October 13, 1988

1 The Conference
The 1988 Australian UNIX Users’ Group Conference was held at the Southern Cross, Melbourne,
on the 13th, 14th and 15th of September, at a cost of $200 per person. It was attended by about
300 attendees, rather a lot of whom were wearing suits, although Greg Rose wore a tee shirt with
’/aev/du:[:~’ written on it.

2 The Exhibits

There were about 20 companies exhibiting products at the Conference. IBM had two stands. One
was exhibiting a rather boring looking minicomputer with some impressive display terminals, and
the other was exhibiting an RT running AIX supporting a number of dumb terminals. This made
IBM look a bit behind the times as most of the other vendors were showing work stations or PC’s,
but KBL was impressed with the range of commercial software running on the RT and the simplicity
of setting it up.

Pyramid had a stand with a boring minicomputer and a 386 based box capable of running UNIX
and DOS programs simultaneously.

The SONY stand had the most eye-catching workstation display. Their boxes were displaying a
picture of a bowl and chopsticks that changed colours very impressively.

Comperex had a display of an RISC based UNIX box many times the power of a 780, not much
bigger than a PC, mostly air inside, and with XT and AT expansion slots. They also had a video
camera that was used to get images of most of the attendees. The purpose of this is that the images
will be distributed to those who have workstations, and when such people receive mail from another
person who also attended the Conference, a picture of the person who sent the mail will appear on
the workstation screen. They also gave away free gelati during the breaks between sessions. They
won’t be forgotten in a hurry.

Other exhibitors included HP, Prime, NCR, NIXDORF, SIGMA, SUN and Honeywell. They all
had UNIX boxes, workstations and PC clones.

One of the vendors actually had a VAX running VMS at their stand but they did their best to
keep it hidden.

3 Formal Sessions

There were about nine formal sessions each day. They were given by such illustrious speakers as
Ken Thompson (he and Denis Ritchie invented UNIX), Michael Lesk (he invented UUCP, -ms, tbl,
lex and co-authored learn), Mike Karels (research leader at Berkeley) and John Mashey (VP MIPS
Computer Systems).

3.1 Day 1:13th Sep

The Conference was opened by Prof Poole (Corn Sci Melb Uni) who gave a short history of UNIX
in Australia. (Wollongong started it, Robert Elz brought it to Melbourne and it grew.)

Vol 9 No 5 16 AUUGN

The AUUGN printed copies of nearly all the papers presented, so I’ll just describe those briefly,
but the first paper was very good and relevant, so I’ll describe it in some detail. It was given by
Michael Lesk and described the origins of UUCP and purported to show that informal user supported
networks are better than centrally administered ones.

Michael was a software support person to whom people would bring their computing problems.
He analyzed the types of problems brought to him. Most of them were solved by telling the user to
read the manuals. Of the rest, most could be solved by installing the latest version of software or,
the machine that the person with the problem used. These things got in the way of the interesting
problems. His response was to invent UUCP as part of a master plan to do automatic software
upgrading on remote machines. Mostly this was thwarted by administrators who took a dim view of
him mucking about with their software, and claimed it was a security problem. Actually it wasn’t
as big a security risk as the people with problems giving him their usercodes and passwords.

UUCP grew, and became the basis of UUnet and thus is a kind of ancestor of modern networking.
He then discussed some other networks:

ARPANET 150 sites, 56Kbit/sec links.

BITNET 1306 sites, 9.6Kbit/sec links.

UUCP >7000 sites, 1.2Kbit/sec links.

He then discussed the uses of networks, and in particular Email. A survey of Ema~ at Bell Labs
showed:

messages average 70 words.

85% of Email is local.

average message is received within 2.5 hours of being sent.

average number of addressees is 1.2.

70% of mail is someone asking to be reminded of something that he once knew.

Lessons he claims to have learned:

Don’t have high speed and low speed links to the same destination. People will get used to
the high speed link. If it fails it’s better to wait for it to be repaired than to use the slow link.

If dialout attempts fail, increase the time waited before trying again. Otherwise you get very
annoyed phone owners when the computer is dialling the wrong number.

InformM user supported networks are better than centrally administered ones. The network
administrators may or may not own the network, but they do not own the computers at-
tached to it. With the proliferation of systems it becomes impossible to get all the system
administrators to agree to anything.

Security is not worth worrying too much about. It’s better to just make sure everything is
identified. Then you can jump on offenders at a later time.

low cost is worth bad performance.

Separating E-mail from computing fails.
netnews.

There have been serious attempts to stamp out

UUCP is not an entirely good thing. It is partly responsible for net-noise.

Networks may go the same way as phonographs and television. All three were invented as
educational gadgets.

AUUGN 17 Vol 9 No 5

¯ It is useless to fight the forms... We have to kill the people producing them. (This was a quote
from an anti USSR propaganda slogan.)

¯ (He gave an example of queueing involving railways. Obviously an enthusiast)

The second paper was on future telecom products presented by Steve Jenkin.

¯ Telephone, Fax are here to stay.

Telegram, Telex are evaporating.

* Viatel is going fairly well.

¯ X400 is coming.

ISDN is coming, but no-one at the conference seemed to be happy about this. Only Telecom
was seen as getting anything out of it.

MAN’s are coming. These are 150 Mbit/sec fibre metropolitan networks.

¯ BISDN -- Don’t hold your breath. This involves 4 150Mbit/sec fibers to every subscriber.

A company called QSPX was highly praised for work in this area.
There were two papers given on SUN-IV, the next version of the ACSnet software, by its devel-

opers.

Some OSI compatability.

Different routing algorithm.

Faster and better. Especially at startup of high speed links.

Simplified management.

Fast or cheap delivery.

* X400 message handling.

The next three papers were on windowing. One was on NEWS, SUN’s postscript based windowing
system. This is based on the concept of processes. An application program opens a channel to a
workstation, and then sends it commands in a superset of postscript. Some of these commands set
up processes that wait for events, such as ’right mouse button while over canvas A’. Other processes
are set up to redraw eanvases if they become ’damaged’ by occlusion etc. 9600 baud is quite ok for
this sort of windowing because of the expressive power of postscript.

X-Windows is a quite different sort of windowing system. It is based on collection of 258 primitive
routines, a library of less primitive routines and some higher level objects, e.g. widgets. It is available
free from MIT.

Greg Rose of Softway presented a most amusing paper on the only windowing system he could
afford.

~ He couldn’t afford a BLIT.

* He

~ He

* He

~ He

Next
an order

After
talk will

couldn’t afford a SUN or an Apollo.

tried two terminals side by side but that failed.

tried a PC running GEM with multiple sessions, but that failed.

finally tried an Atari ST running some free software he got from the UK. It works!

came a paper about implementing OSI protocols, especially FTAM. Results showed nearly
of magnitude increase in code size between FTP and FTAM.
that Mike Karels from Berkeley presented ISO/OSI under Berkeley Unix. The slides of his
be printed in the next issue of AUUG.

Vol 9 No 5 18 AUUGN

3.2 Day 2:14th Sep

John Young of SUN, Larry Crume of AT~zT, Ross Bott of Pyramid and Tom Daniels of HP discussed
the SUN/AT~zT based UNIX vs the Open Software Foundation alternative.

System 5 will be merged with Xenix and SUN-OS to produce System 5 V 3.4.
¯

Application Binary Interface (ABI) was mentioned. This enables companies to sell ’shrink
wrapped software’ as is currently done with PC’s.

Application Source Interface (ASI) was also mentioned. This might enable portable programs
to be written.

Everyone seemed to agree that UNIX is now out of the ’small is beautiful’ stage. Database
systems are getting written into the kernel, along with whole hosts of other features. Experi-
mentation is going on in the area of add ons rather than UNIX itself.

The System V version 4 directions are ¯

~ In the operational, administration and maintenance areas are - backup and restore commands,
configuration management, software installation, messages handling facilities and remote con-

trol.

¯ Improvement in real time - scheduler, general event mechanism and async. I/O.

®

®

POSIX conformance.

X/OPEN capabilities. - OPEN LOOK.

o Internationalization- foreign language, e.g. Japanese, error messages etc.

Users can obtain the specification of OPEN LOOK by sending request to AT~zT Japanese office.
Mike Karels then talked about research going on at Berkeley:

New features in 4.3:

Disks now have labels.

Flexible file system.

Kernel memory allocator.

Better TCP/IP that has slow start and congestion control.

Disk tables that always should have been on disk now are.

Current projects:

¯ routed, EGP, gated, internet nameserver and extensions, IOS/OSI network protocol support,
POSIX compliant interface.

Wait for system call.

Generic file system with VNODES.

l~earrange filesystem so/usr,/bin,/etc can be shared.

CMU MOK integration.

Memory resident file system for/tmp.

Reasonable hardware independent for a range of configurations.

User interface finalized.

AUUGN 19 Vol 9 No 5

Virtual memory design that includes :

¯ Define process as regions :

- Share memory with semaphores.

- File mapping for private and share.

- Copy on write for fork and file mapping.

- Light weight processes.

¯ Larger share address space with multi-level, paged data structure and swapped image is not
preallocated.

A paper was presented on the problems with networking SUN workstations at Sydney Uni.

¯ People with SUN’s on their desk turn them off when they go home, and hence miss getting
software upgrades etc. Various automatic updating programs were tried and rejected. Current
solution is to do the upgrade, and all the machines that miss it, miss out. The upgrade will
be done later for the user if he ever complains of any related software problems.

¯ security:

1. What is on a screen can be read by anyone anywhere on the network. This is because it
is also in memory (video ram) and as well as that it appears as a device,/dev/fb, which
is public.

2. Owners can reboot their workstations and hence run in single user mode.
3. The SUN diagnostic monitor allows the user to modify kernel data and code.
4. There is a bug in ’Yellow Pages’ that lets unprivileged users supply their own password

file for a whole network.

These problems were overcome by telling the users about them, suggesting they encrypt im-
portant files and pointing out that if they damage the network they mainly hurt themselves.

Next came a good technical paper about getting NFS to go on a VAX under 4.3 BSD. It seemed
a lot of work, but really a fun kernel hacking.

Following that was a paper called ’Legal and Social Implications’. The paper was much as
the title suggests. KBL enjoyed the serious suggestion that Fax and Email are illegal. Someone
commented that there is a case about a company being sued for $4.2 millions related to computer
services.

Next Michael Lesk gave two papers about human interface issues. The first concerned a library
where the users were presented with a choice of two terminals. They could either look up books
using a command driven interface (much like sesame) or a completely menu driven interface (much
like the HP system at Box Hill library). The command driven interface was used by 70% of first
time users and a rising percentage of more experienced users. The conclusion was that the more the
users know about what the commands are likely to be, the less valuable a.menu system is.

The next paper concerned the extreme difficulty he had in getting management to actually sell a
product he had produced, to a customer. The product was an AI system that provides instructions
about getting from place to place efficiently subject to certain conditions. E.g. when driving one has
to obey street laws governing one way streets, but when walking that would not apply. He showed
examples of various routes through cities based on certain optimizations and compared them with
the routes people would actually choose. The standard Dijkstra breadth first graph search algorithm
produced very suboptimal results. The system was originally designed as an electronic yellow pages
phone book. The customer who wanted to buy it was a car rental agency.

At the dinner that night John Mashey gave an amusing talk that compared a large software
project to an army invading territory. The scouts were compared to software prototypes. The users
were compared to natives, and they might accept the system, or they might try and slash the tyres
and put gravel in the fuel tanks. Worse even than that, they might have left the area entirely before
~he project was finished. We thought the talk very good value as well as good entertainment, but it
was slightly marred by the distraction produced by the hotel staff clattering dishes etc.

Vol 9 No 5 20 AUUGN

3.3 Day 3:15th Sep

The final day started with the ACSnet meeting. The AVCC, Queensland Uni and Brian Carss came
in for alternating bouts of criticism and defence. Results of some measurements of ACSnet traffic
were presented. Bob Kummerfield was authorized to act on behalf of the ACSnet community in
negotiations with the AVCC etc.

That was followed by the second of the two ACSnet papers. The one focused on the link
management- commands file, config file and call script language.

Following that came the eagerly awaited paper by Ken Thompson. He is writing a very fast C
compiler. Speed is achieved at the expense of code quality by combining two of the early passes into
one, simplifying the intermediate structure, and reducing the optimization to two simple passes. He
doesn’t mind the lesser code quality, because he spends much more time compiling than running
anyway. Surprisingly, the generated code didn’t seem any worse than that of the standard compiler.

Next was a paper on distributed processing in the Queensland Government. The authors have
produced a "cookbook" about how to buy, install and operate a UNIX box. Basically they have a
terminal network, and wish they had a computer to computer network. Many of their machines are
connected but cannot even send mail to each other.

Next was a paper on time synchronization in a network. (Pyramids over Ethernet in this case).
We may well run his code on our Pyramids.

Next came a paper from ICL about a small office automation network. The MICROLAN 2 cable
can be used to connect up to 8 workstations and among them one is the master unit.

Next came a very good paper about how to write portable UNIX programs. This was a very
valuable talk. The paper itself was published in the AUUG newsletter. There were some notable
comments on writing portable socket or share memory or semaphores code. Its is not easy.

Next came a paper by a Korean visitor about some real time extensions his group are making to
UNIX. He spoke well but had trouble understanding the questions put to him afterwards. He gave
the impression that the Korea Government and Companies (e.g. Samsung) have spent millions in
research and development in his introduction of the paper.

Next came a paper on STIX. That is a port of MINIX to the Atari ST. As a MINIX user
KLB was quite interested. The system runs well and is useful but the overhead needed to move
programs around in memory.was a bit disturbing. It was necessary because the ST has no memory
management hardware.

Finally John Mashey gave a talk about RISC chips and the software that goes with them. In
particular he spoke about a MIPS chip which has pipelines that can partially stall, and a compiler
that generally manages to rearrange the code so that the stall times can be utilized, e.g. The
instruction after a test and branch instruction is executed irrespective of the result of the tested
condition. Only after that instruction completes will the branch happen or not as appropriate.

4 Informal discussions
We had quite a lot of informal discussions with other attendees at the meeting, and this resulted in
several people suggesting solutions to some of our problems, and some offering to let us use bits of
their software. This will be of great value to the university.

5 The End
And that was the end of a really worthwhile and informative, but extremely intense and tiring

conference. (Following it there was an unannounced 3 hour delay affecting trains on the city loop,
but KBL did get home, eventually).

Keith Lewis
Kathy Ching.

Vol 9 No 5
AUUGN 21

Hows a Windowing System

Greg Rose

Softway Pty Ltd

ABSTRACT

This paper gives some very subjective view about windowing systems and their application to getting
work done under UNIX.

Despite being based on work done quite a long time ago, most of the world seems to believe that the
use of windowing to enable multitasking of the user interface and graphics to improve the ergonomics of
such an interface started with the Macintosh. Even Apple, who should know better, seem to think this.

I make no apologies for my own attitude in this matter, which is that multiple task streams and
environments match what I want to do and the way that I work. But I don’t have a lot of time for
dragging Icons around screens, or moving mice more than three metres just to get to a menu. So I make
a biased and possibly incorrect assumption. Which is: that other programmers like to do things much
the same as I do. Therefore this talk concentrates on an environment of programming under

What is it about the use of windows that addresses my requirements, then? It is simply the existence
within the interface to the computer of multiple streams of commands, text, environments, or whatever,
which parallels my own methods of doing work. The less obtrusive the "context switch" the better. And
there are other things that I am not prepared to sacrifice even for this benefit, an example being output
data rate.

One of the first examples of the sort of thing I am referring to, was the shell escape from the editor.
This enabled an editing session to be interrupted by a compile, or sending mail, or whatever, without
loss of the editing environment (current line, last pattern, perhaps the buffer was in the middle of some
series of changes and writing the file was inappropriate).

Later came Berkeley Job Control. This enabled the act of changing environments to be relatively
independent of what was actually running (i.e. the application didn’t need to change to allow the
equivalent of a shell escape). Having multiple virtual terminals was a different way of viewing the same
functionality. But at any instant, only one terminal is really "there".

This is where windows come in. Humans are perfectly capable of assimilating input from multiple
sources at once, at least to the extent of processing interrupts. For example, while reading a book to a
background of music, I am perfectly capable of replying "milk and no sugar" when asked if I want a cup
of tea. In the virtual terminal environment, the tea-making program doesn’t talk very often, so it is
unlikely to be communicating to me at any given instant.

However, it is not possible for me to carry out two conversations at once. My output stream (fingers or
mouth) is definitely not multiple threaded.

So what I really need for my computer interface is one where I can maintain multiple environments at
one time, and where any of those environments can communicate to me, even though I will only reply
to one at a time.

Multiple windows, where a window may be completely visible or completely obscured, or some
intermediate state, and where I can quickly change the destination of my own input, is a very good
model of these requirements.

The next step is the ability to communicate I" x, een these environments, but that is another story.

Vol 9 No 5 22 AUUGN

But now that they have become popular we are faced with a number of alternatives in the human
interface area, the vast bulk of which are very usable and very expensive.

I forgot to mention one other criterion for judgement. I want all of this functionality to be as cost
effective as possible.

So where do most UNIX programmers stand today? I have concluded that a depressingly large number
of them (you) are so used to a glass version of a hard copy terminal that the limitations of the output
device are dictating artificial limitations to work practices. Most programmers think that Berkeley job
control is for "controlling jobs" not for maintaining multiple environments. Very few people seem to use
System V shell layers. Most people are still dreaming about having a single user workstation one day.
But they are expensive, so many employers aren’t providing them yet.

But those wonderful X windows or NeWS systems are designed to be able to do just about anything,
like displaying a zillion different fonts or rotating a wire frame drawing in real time. These facilities are
not used very often by people like me. I can do most of my job by reading and typing ASCII in just one
adequate font. Why, then, do I have to pay a lot more for a terminal with all these capabilities that I
don’t need or want to pay for? Couldn’t it be a lot cheaper?

Yes it could. Firstly, the latest whiz-bang RISC microprocessor doesn’t need to be in there. For actually
doing work, I prefer a centralised and efficiently shared multi user computer. After all, most of my work
involves interacting with others and using shared resources. Why throw this out and then attempt to put
things together to simulate it again? And if it isn’t doing all of the work of a general purpose computer,
then a three year old chip should be about enough to shuffle characters around a screen.

So I prefer an approach which disconnects the computing tasks from the display tasks, especially where
someone tales to convince me that one-to-one correspondence is what is needed.

So how big does the screen need to be? What resolution? Well, obviously, the bigger and clearer, the
better. But these are trade off items, and at the moment it is a binary trade ("Mummy, can I have a
630? NO!") While I would like to have a screen that can fit whole A4 pages, or fit a VT100 emulator
on a postage stamp and still be readable, there is a limit to just how much that is worth. And anyway,
nobody denies that 747’s are good value for money, but I don’t see many people with them parked in
the front street. Reality has budgets.

So what I want boils down to something that can display a reasonable amount of information (at least
24x80 characters) readable for an extended period. But I also want windows, and maybe the possibility
to trade readability for more size or less crowding on the screen.

The obvious solution is to have a mass produced small computer (which provides the cheapness part of
the equation) and a bit of specialised software that makes it do windows sensibly. The windows should
then talk mostly to another computer do do any real work.

Soft ~ y has identified two solutions to this problem. Our first cut was to use the cheapest and nastiest
PC clones we could find, and run GEM to handle windows, and a manufacturers’ proprietary offerring
to let those windows talk to the real computer.

The second, and much better, solution us .- .’,tari computers, which actually have w ,w manipulation
in ROM, and a software package from th,. Jniversity of Kent at Canterbury England, written by Peter
Collinson.

The former gave acceptable characteristics for about $2000 per terminal. The latter gives outstanding
characteristics for about $1300 (tax paid) per terminal, little more than an average glass tty.

The presentation of this paper will show some of the range of systen.o available.

I also intend to rant and rave about pop-up versus pull-down menus a bit.

AUUGN 23 Vol 9 No 5

The fundamentals of NeWS

Tim Long

NeWS is a system developed by SUN Microsystems for driving bitmapped
graphic displays. It uses an extended PostScript to implement its drawing
primitives and is designed to work in a multi-process and multi-machine
environment.

NeWS attempts to combine the machine and operating system independence of
the canonical VDU with the interactive capabilities of the bitmapped graphics
workstation.

In short, NeWS is a system a programmer uses to implement an interactive
graphic interface, in the same sense that UNIX is a system a programmer uses to
implement an application.

There are two other well known systems which attempt to address some of the
same issues as NEWS. One is X-Windows, the other the Blit.

X-Windows attempts to achieve device independence by defining a canonical
form for classic bitmapped display operations. It also defines an encapsulation
and network transfer mechanism for these operations. By this means, X-Windows
attempts to drive remote and varied displays with the same sort of library routines
that have been used in systems where the display is local and tightly coupled to
the driving application.

Another system which addresses the ’bitmapped graphics terminal’ issue is the
Blit.

In addition to other innovations the Blit takes a different approach to the
application-to-graphics interface by allowing an application to program the
terminal. This approach greatly relieves network bandwidth and allows a well
written application to give a high fidelity of interactive response. But both the
Blit and X-Windows fail in important respects.

The most hnportant is device independence.

X-Windows attempts to achieve device independence through the adoption of a
canonical bitmapped display to which all operations are mapped. In reality this
does not allow for much variation. If the pixels are not just about 80 to the inch
things begin to look very strange. If there is any unusual special purpose
hardware in the display it often has to be ignored. Aald the handling of colour
versus monochrome is awkward. X-Whadows also suffers from requiring a
substantial library on the application programming machine, and has major
problems with network bandwidth.

The Blit takes a more extreme attitude. A Blit is a Blit is a Blit. And if you
don’t have a cross-compiler and the appropriate libraries, forget it.

The Blit, X-Windows and almost all other bitmapped graphics system suffer
another major problem. They are difficult to program.

Vol 9 No 5 24 AUUGN

The primitives provided normally start at the bit manipulation level and, despite
layers of protective libraries, still require a large investment in reading,
programming and debugging to make an application operate in a basic fashion.
When it comes to making it slick and attractive even more work is involved. As
if this wasn’t enough, all systems, except the Blit, impose a structure on the
application program based around a main loop with some form of ’get next event’
call and an enormous switch statement to decide what to do about it. This
structure is often totally inapplicable to the task at hand.

NEWS, despite years of effort by SUN, and a somewhat over-engineered
hnplementation, solves all of these problems and more. It has the
progrmrunability of the Blit, the network transparency of X-Windows, and a
device independence and ease of programming all its own.

NeWS is based on PostScript. PostScript is a stack based interpretive
prograrm, ning language rich in primitives for rendering static two dimensional
pictures. It is device independent and well designed for the description of printed
images. The extensions which turn PostScript into NeWS revolve around:

1. The introduction of multiple processes with private stacks but otherwise
shared resources.

2. The introduction of an asynchronous message passing scheme for event
handling and IPC.

3. The introduction of multiple drawing surfaces and the definition of a
mechanism to keep the pictures drawn on them up to date.

In practice, a NeWS terminal (or server) implements an extended PostScript
(which I will hereafter call NeWS-PostScript) and operates along the following
lines:

The server initially starts with one process rtmning. This process waits for a
foreign connection request (via TCP/IP say). For each of these that it receives, it
forks a new NeWS-PostScript process which establishes an environment similar to
the standard PostScript starting environment and begins to execute operators from
the connection. Meanwhile the main process is back waiting for new connections.

The application which requested the connection is now free to send NEWS-
PostScript operations down the connection. Ahnost all applications would first
send some bunch of function definitions and initialisation code. Once in
operation, the terminal (server) side of the application will have several NEWS-
PostScript processes running to implement various aspects of the user-interface.
Any of these may also be involved in sending data back to the main application,
while one process will still be executing operators from tile connection to allow
the main application to control the terminal side.

* For a short description of PostScript see the introduction to The PostScript Language
Reference Manual by Adobe Systems.

AUUGN 25 Vol 9 No 5

A slightly more detailed examination of the extensions to PostScript which turn it
into NeWS will make this mode of operation a little clearer.

Memory and processes

The memory model of pure PostScript divides all objects into two classes, shnple
and compound objects. S hnple objects are pushed directly onto stacks by value
and, naturally, the memory they occupy is relased when they are popped off. But
compound objects (such as arrays) are pushed onto stacks by reference and have
their value in ’virtual memory’. The memory used by these objects is only
reclaimed by restoring the state of the interpreter back to some previously saved
state.

While in most respects NeWS is identical to PostScript, the NeWS memory
model is different. Compound objects in NeWS are retained while they are
referenced and freed when they are no longer referenced. But the distinction
between simple and compound objects is still important when considering multiple
processes.

A new NeWS process is started by a fork primitive. The new process gets a copy
of its parent’s stacks, therefore simple objects are copied, but compound objects
have a value shared between the two processes because they reside in the
common ’virtual memory’. Likewise drawing surfaces (the screen included) and
other terminal wide resources are shared.

NeWS processes are intended to be light-weight primitives. They are used for
seemingly trivial tasks. Poping up a menu or just dragging a box around the
screen would typically be done by forking a process to do it. This is one of the
key elements which can make user interface programming in NeWS particularly
easy.

Context switching is not pre-emptive. It happens only when a process performs
blocking operations or explicitly allows context switching.

Events

Events are bundles of information about something which has happened. Some
are generated by the NeWS system automatically to describe real world events
(such as key transitions and mouse movements), and they are also used for inter-
process communication.

An event, once generated, is ’distributed’ to applicable processes. Which events
are distributed to which processes depends on ’expressions of interest’ processes
have made for events matching some pattern. For example, suppose a process
wished to act on left mouse button events over a particular drawing surface. It
would construct an event which looked like such an event, setting to null those

Vol 9 No 5 26 AUUGN

fields which it did not care about and specifying those fields it did (such as the
drawing surface and type of e~ent). This would then be used as an argument to
the expressinterest operator.~

A process will typically receive events by executing the awaitevent operator
which blocks until an event of interest is available, but once one is available, it
returns it~

Canvases
Canvases are things you draw on. Canvases have been introduced to allow
multiple drawing surfaces as opposed to the single page of pure PostScript.

Canvases are created in a hierarchy, that is, each canvas has a parent canvas on
which it was made. A canvas also has a position relative to its parent and a
clipping-path (further restricted by its parent’s). Unlike most other windowing
systems, NeWS’s canvases are bounded by arbitrary paths.

Most other properties of canvases are variable. For instance a canvas may be
transparent in which case all drawing primitives are subject to its position and
botmdary but then just flow through to the parent. Of more utility is the opaque
canvas. Painting primitives on opaque canvases directly effect the bitmap that
corresponds to them (subject to obscurement by other opaque canvases).

Canvases are intended to be ’cheap’ graphics primitives and should not be
confused with a window.

Picture maintenance

At the heart of any windowing system is some technique for picture maintenance
in the presence of opaque drawing surfaces appearing, disappearing and moving.
This normally, when all else fails, involves the application being asked by the
system to regenerate some image which has been lost. NeWS is no exception to
this.

When some previously hidden part of an opaque canvas becomes visible (and the
NeWS server does not have the bitmap hidden away somewhere) a ’damaged’
event is generated for that canvas. In a correctly constructed NeWS prograna
every on-screen opaque canvas will have some process that is interested in
damaged events on it and be prepared to repaint the hnage. There are a number
of ways of optimising this but the principle remains.

AUUGN 27 Vol 9 No 5

Writing a NeWS program

Writing and running programs to use NeWS requires very little support on the
client machine beyond the connection mechanism to the NeWS terminal. There is
a small library, the source for which is available form SUN, which implements
the few routines needed to establish a connection to a NeWS server (in terms of
4.2BSD networking prhnitives of course). The only important function is
ps_open_PostScriptO which sets two global variables to be standard I/O streams,
one to, and one from, the NeWS server.

Once a connection is established almost all NeWS client programs will wish to
transmit a bunch of PostScript functions to the terminal. The obvious way of
doing this is to copy the source of your PostScript functions from some data file
to the connection. This is very easy to do. But for some reason which remains a
mystery to me, SUN have provided a much more difficult method. SUN’s
documentation uses this method exclusively so you could be forgiven for thinking
this is the best approach.

In brief, SUN’s method involves embedding fragments of your PostScript within
pseudo-C function declarations. The syntax for tiffs is poorly designed. The
resulting Erie is parsed by a programs called cps which produces an include file
with declarations of arrays which contain your PostScript and macros which
transmit the various fragments.

Typically one of the fragments will be the bulk of your PostScript functions and
initialisations. This will normally be invoked as soon as your connection is
established.

After initialisation the difference in the two methods is small. For instance, using
cps to draw a line w.ould involve defining a function in the cps file which
associates a PostScript fragment with a C function, called say ps_line0, and then
invoking the function. So in the cps file we would have:

cdef ps_line(int tox, int toy)
tox toy lineto

Then in the C program:

ps_line(tox, toy) ;

I think it is clearer to say:

fprintf(PostScript, "%d %d lineto\n"

because this is all the ps_line macro does anyway.
, tox, toy) ;

An example

The best way to get a feel for NeWS is to try and program it, but in the absence
of that, looking at an example will do.

Vol 9 No 5 28 AUUGN

This example is somewhat artificial because I have fully expanded (or dodged
altogether) a lot of code which would normally be provided by SUN libraries. I
have also not used the SUN window system. This is deliberate.

SUN’s libraries seem to be designed to make programmers used to the old way of
doing things feel comfortable. But in doing this they largely defeat the benefits
NEWS. It may be that SUN felt it was essential to do things ’the old way’ in
order to gain some form of market acceptance. Their plans for the next release of
NeWS which contains an X-Windows immplementation certainly suggests they
feel this is important. But in my opinion using SUN’s windowing system would
only obscure the purpose of this example, which is to demonstrate the
fundamentals of NEWS.

This example maintains the time in ctime(3) format in a small white rectangle in
the lower left of the screen. The point of this simple example is that the C
program (the client) knowns how to find out the date, and the PostScript side (the
tenninal or server) known how it wants it displayed.

The client side of the example:

1. establishes a connection to the NeWS terminal;

2. copies its NeWS-PostScript code from a text file to the terminal;

3. responds to requests for the time from the terminal.

The terminal code:

1. makes the canvas on which it will print the time;

2. forks a process which maintains the time canvas and makes periodic time
requests to the client;

3. does what the client tells it to do.

For more details see the programs.

The separation of the semantics of the application from the graphics is an
essential part of good NeWS programming. This simple example is based on the
hypothesis that the full breakdown of the current time is something only the client
application is capable of calculating, so it has the job of supplying this. But how
this is displayed is entirely up to the server code.

Given the well defined format of a ctime string the PostScript side could be
pulling out the numbers and using them to draw hands on a picture of Big-Ben.
Whatever is was doing would make no difference to the client code.

AUUGN 29 Vol 9 No 5

#include <stdio.h>

extern FILE*PostScript;
extern FILE *PostScriptInput;
extern char *crime();

main ()
{

FILE *stream;
long t;
char *s;
int c;

/*

* Establish a connection to the NeWS terminal. (Sans error
* messages for brevity.) This sets PostScript and PostScriptInput
* as a side effect.
*/
if (ps_open_PostScript() == 0)

return I;

/*

* Send the initialisation code to the NeWS terminal.
*/

if ((stream = fopen (’clock.ps’, "r’)) == NULL)
return I;

while ((c = getc(stream)) != EOF)
putc (c, PostScript) ;

fclose (stream) ;

case ¯ q¯ :
flcose(PostScript);
return 0;

/*

* Do what the server side asks of us.
This is a particularly simple

* communications protocol from the server side, but in reallity
* you hardly ever need anything more than a scanf. It’s not as if
* there is a user out there sending this stuff. You contol both
* ends so make it easy on yourself.
*/

while ((c = getc (PostScriptInput)) != EOF)
(

switch (c)
(
case "t’:

time (&t) ;
s = ctime (&t) ;
s[24] = "\0";
fprintf(PostScript, "(%s) Update\n’, s);
fflush (PostScript) ;
break;

%
%
%
%
%
%
%
%
%
%
%
%

I have left it to here to mention a couple of points which will
presumable only be of interest to people who wish to read the PostScript.

Process IDs, canvases, and events are all immplemented in NeWS as
dictionaries in the same way that fonts are in pure PostScript.
That is: a canvas is manipulated as a dictionary with well known
element names. Likewise for events and processes.

There is an example of this immediatel~, b~iow where a newly
created canvas is "begun’ in order te set some of its attributes.

%
% Create a new canvas (call it ~ClockCanvas’~ whoes parent is the framebuffer.
% Reshape it to be at 0,0 and 145 long by i~.~ high (in points as usual).

_
% Make it opaque and mapped onto the screen, then finally make it the
% "current canvas" (and therefore the implicit target of drawing operations).
%
/ClockCanvas framebuffer newcanvas def
0 0 145 16 rectpath ClockCanvas reshapecann-a~.
ClockCanvas begin

/Transparent false def
/Retained false def
/Mapped true def

end
ClockCanvas setcanvas

This function is run as a seperate process. It handles a few things:
it keeps the canvas up to date, it catches clock ticks, forwards
them to the client side and re-primes the clock, and finally it
forwards a left mouse button press on the canvas as a finish message
to the client.

/ClockProc

%
% Express intrest in damage event on the clock canvas.
%
createevent begin

/Name /Damage def
/Canvas ClockCanvas def
currentdict

end
expressinterest

%
% Express intrest in left mouse button down transitions over the canvas.
%
createevent begin

/Name /LeftMouseButton def
/Action /DownTransition def
/Canvas ClockCanvas def
cLLrrentdict

end
expressinterest

%
% Express intrest in "Tick" events. These are not NeWS systems events
% but something of out own fabrication.
%
createvent begin

/Name /Tick def
/Process currentprocess def
currentdict

end
expressinterest

PrimeTick % Start the clock.

awaitevent % Wait for anything of interest.
%
% The event (which we just got or we wouldn’t be here) is
% a dictionary (as usual) so "begin" it to get easy access
% to the contents...
%
begin

/Name /Damaged eq
{

%
% A damaged event, must redraw canvas. A small amount of
% effort (and a reasonable sense of ascetics) can make a
% big difference here. By changing the shape of the
% canvas, pulling out a few numbers from the crime string
% and drawing hands and things you get an analog clock.
%
damagepath clipcanvas % Restrict drawing to damaged areas.
1 fillcanvas % Erase to white.
0 setgray
1 4 moveto Ctime show % Redraw the current Crime.

% (The default font is 12 point Times.)
)
if
%
% For ’Tick" events we just print a "t" to the client
% and reprime the clock. The client will give us a
% new crime value and cause us to redraw in due course.
%
/Name /Tick eq {(t) print PrimeTick} if
%
% For left mouse down event we send a "q’ to the
% client and break from the loop (which then falls off
% the end of this processes code causeing it to exit).
% The other process (the main one the client is
% talking to) will exit when the client closes the
% connection. This will cause our userdict to be
% discarded which will cause the last reference to the
% ClockCanvas to disappear which will cause it to
% vanish from the screen and any canvases it was
% obscuring to get damaged events. Simple really.
%
/Name /LeftMouseButton eq {(q) print end exit} if

end

loop

def

%
% Generate a "Tick" event to arrive at ClockProc in one second.
%
/PrimeTick

createevent begin
/Nan~ /Tick def % "Tizk" if’ our invention.
/Process ClockPID def % Send straight to the given process.
/TimeStamp currenttime [..166 def % Tin,÷5tamp in future, so deliver then.
currentdict h Leave cn s~’}~ for sendevent below.

end
sendevent

def

%
% (crime-string) Update -
%
% Update crime and damage the ClockCanvas ~w~izh is assumed to be
% the current canvas) to cause it to be re~,=inted.
%
/Update
{

/crime exch def
clipcanvaspath extenddamage

}
def

/Ctime () def

%
% Fork of the ClockProc function (above) and store the pid in ClockPID.
%
/ClockPID {ClockProc) fork def

%
% This is the end of the initialisation code sent down the connection.
% But this process will continue to read anything the client program
% sends down the connection until it gets closed. In this case the client
% will just send things like:
%
% (Tue Aug 23 01:33:08 EST 1988) Update
%
% See the Update function above and clock.c.

Conclusion

This description of NeWS is incomplete. There are some aspects of NeWS which
I have failed to explain. Some because I hope they are replaced (such as SUN’s
windowing system). Others because they are shnple and work (such as colour
support). But mostly because I have tried to stick to the fundamentals of NEWS,
for this is where its strength lies.

The programmability of the graphics terminal with a language appropriate to the
task allows for great reductions in the bandwidth required between the display and
application. At the same time it gives the NeWS programmer the opportunity to
hnprove the responsiveness or sophistication of the interface using local CPU
power.

The use of PostScript as a drawing primitive is a great advantages of NEWS.
Although it is not often recognised, the malleability and availability of artwork is
essential to the production of good graphic interfaces. PostScript is a superbly
portable picture description language. Bitmapped based systems can never
achieve the same degree of flexibility.

The use of light-weight processes is also an enormous advantage in interactive
graphics. In many extant graphics programs the need for the application to be
on-tap to perform display housekeeping at a moments notice totally perverts their
structure. Being able to farm out conceptually different parts of picture
maintenance to appropriately constructed processes greatly simplifies the
programming task and improve the program’s behaviour. But there is one point
which overshadows all of the above.

The importance of device independence can not be over emphasised. Good
software has a long natural lifetime, whereas hardware tends to come and go on
an annual basis. Software tied to hardware will die. It may struggle for a while,
supporting the hardware that dooms it, but die it will. It is in this matter that
NeWS has it all over its peers. NeWS does not operate at the bitmap level, it is
far more independent of changes in display technology. It is also far more
capable of taking advantage of new features. It will take some radical
redevelopment of X-Windows and all X-Windows applications to handle 300dpi
screens. But 300dpi screens and the CPU power to drive them are almost here.
Given the necessary CPU power NeWS will handle these without difficulty.
Application programs will run urunodified, and take full advantage of the
resolution.

Vol 9 No 5 32 AUUGN

Programming on UNIX System X release Y

Stephen Frede

Softway Pty Ltd

1. intro
This paper is meant to provide a useful reference guide to anyone writing or porting programs for
versions BSD version 4 release 2 (BSD4.2), BSD version 4 release 3 (BSD4.3), AT&T System V
(SysV), AT&T System V release 2 (SysV.2) and AT&T System V release 3 (SysV.3). When porting
programs, the usual problem is to port BSD programs to SysV, rather than vice-versa.

Note that this is a guide only, and readers should refer to the appropriate manual entries for relevant
details. Also note that is is very incomplete and correspondence will certainly be entered into. Sections
marked TODO will be implemented in forthcoming releases of this paper.

2. Common changes

To many people, the most common porting problem they have to deal with is to get programs from
Usenet to run on their systems. In many cases, only a few changes need to be made. The most
common of these are listed here for convenience. Refer to the individual descriptions given later in the

paper for more details.

SysV BSD
strchr() index()
strrchr() rindex()
#include <string.h> #include <strings.h>
memcpy() bcopy()
srand48() srandom()
lrand48() random()
uname() gethostname()

3. System calls and library routines

All of the system calls and some of the non-compatible library routines are listed here in alphabetical
order, so that they can be found easily. Descriptive parameter names are provided for some but not all
of the routines as an aid to comparison more than anything else. Anything given as "pathname" is a
string which refers to a relative or absolute pathname in the filesystem. The argument fd is an integer
file descriptor.

accept() (BSD)
access(pathname, mode) (any)
BSD provides definitions in <sys/file.h> not provided in SysV.
#if BSD
include <sys/file .h>
#endif /* BSD */

See Sockets

#ifndef R OK
define R OK 4
define W OK 2
define X OK 1
define F OK 0
#endif /* R OK */

AUUGN 33 Vol 9 No 5

acct(pathname) (any)
Use is compatible. However, there are minor differences in the structure stored in the accounting file.
SysV has two extra fields in the acct structure: comp._~ ac rw (no. block read/writes) and
char ac_stat (exit status). Also the cornp__.~ ac io means no. dis~ I/O blocks under BSD and chars
transferred by read/write under SysV. Finally, the-~c comm field is 10 bytes long in BSD, and 8 bytes
in SysV. -

adjtime(delta, olddelta) (BSD) See Time
This system call is used to adjust the system clock by temporarily speeding it up or _lowing it down, so
that the clock always gives increasing values. No comparable functionality in SysV.

alarm(secs) (any)
This SysV system call is implemented as a library routine under BSD.

bind() (BSD) See Sockets
brk(address) (any)
chdir(pathname) (any) Compatible all versions
chmod(pathname, mode) (any) Compatible all versions
chown(pathname, owner, group)
Use is compatible. Under BSD, only the super-user may change the owner of a file, while under SysV,
anyone may "give away" files they already own.

chroot(pathname) (any)
close(fd) (any)
closedir(dirp) (BSD, SysV.3, PD)
connect() (BSD)
creat(pathname, mode) (any)
dup(fd) (any)
dup2(oldfd, newfd) (BSD)
The BSD system call:

newfd = dup2 (oldfd, wantedfd) ;
is equivalent to the following under either BSD or SysV
#include <fcntl.h>

Compatible all versions
Compatible all versions
See Directory
See Sockets
Compatible all versions
Compatible all versions

¯ ¯ ¯

close (wantedfd) ;
newfd = fcntl(oldfd, F_DUPFD, wantedfd);

environ (any) Compatible all versions
execl() (any) See exec
execle() (any) See execexeclp() (any) See execexect(name, argv, envp) (BSD)
Used when tracing (with ptrace(2)) the executed process.

execv() (any) See execexecve() (any) See execexecvp() (any) See exec
exit(status) (any) Compatible all versions
_exit(status) (any) Compatible all versions
f...(fd, ...)
A number of system calls exist starting with the letter ’T’, which correspond in function to a system call
with the same name without the leading "f". The "f’ system calls take a file descriptor as their first
parameter. The corresponding system calls take a pathname as first parameter. Of these, fstat() is
available on all versions, but fchmod(), fchown() and ftruncate() are BSD specific. To emulate these
under SysV, you will need to keep the pathname of the file available and use the corresponding "non-f"
system call.

Vol 9 No 5 34 AUUGN

fchmod(fd, mode) (BSD) See chmod()
fchown(fd, owner, group) (BSD) See chown()
fcntl(fd, cmd, arg) (any)
Use is compatible if the cmd argument is F DUPFD, F_GV, TFD, or F_SV, TFD. BSD has the extra cmd
arguments F_GWTOWN and F_SV.TOWN for dea~ng with job control, which is not applicable under SysV.
SysV has the extra emd arguments F,Gv.Tr.K, F_Sv.TLK and F_Sv.TLKW which deal with file locking (see
the section on File Locking).

The cmd arguments F_Gv.TFr. and F_SV.TFr. are used in the same way under both systems, but the file
status flags being accessed are different. Under SysV, the status values O_RDONI~Y, O_..WRONr,Y, O__RDWR,
O_NDELAY and o APPEND may be accessed. Under BSD, FAPPEND corresponds directly with O_APPEND
under SysV, and~n fact uses o APPEND as a flag for open() (so you can’t just #define it). The BSD
flag FASYNC is used with job c-ontrol - there is no equivalent functionality under SysV. The SysV.2
flag O_SYNC is used to ensure that data is physically updated on disk after every write(). Under BSD,
calling fsync() after every write() can be used to achieve the same effect.

The SysV O_NDELAY flag affects reads and writes on pipes and reads from tty devices: a read from an
empty pipe or a tty device with no information available, which would otherwise block, returns with 0.
The BSD FNDELAY flag affects reads and writes on sockets and tty devices: an operation which would
otherwise block returns an error and sets errno tO EWOULDBLOCK.

flock(fd, operation) (BSD) See Locking

fork() (any) Compatible all versions

fstat(fd, statbufp) (any) See stat()
fstatfs(fd, buf, len, fstyp) (SysV.3) See staffs()
fsync(fd) (BSD)
The effect of a write() followed by an fsync() can be duplicated under SysV.2 by setting the O_SYNC

flag on the file descriptor prior to the write().

ftruncate(fd, length) (BSD) See truncate()
getdents(fd, bur, nbytes) (SysV.3) See Directory
This system call is designed to read directory entries in a filesystem independant format. The
directory(3) routines should generally be used in preference tO using this routine directly.

getdtablesize() (BSD)
This gives the maximum no. of open file descriptors available to a process. Under SysV, use NOFILE

defined in <sys/param. h>. The information is only available at compile time under SysV.

getgid(), getegid(), getuid(), geteuid() (any) See Access permissions
The only difference in these functions between versions is the return value. Under SysV, they are int.
Under SysV.3, they are unsigned short. Under BSD, they are g±d_~ and u±d__t, as defined in
< sy s/type s. h>.

getgroups(gidsetlen, gidset) (BSD) See Access permissions
Used to get group access list under BSD. Under SysV just use getegid() to get the single value group
id that is used for all access permission checks.

gethostid() (BSD)
Designed to get a unique number (as set by sethostid()) for networking purposes. Under SysV, read
this from a file.

gethostname(name, namelen) (BSD)
Designed to get the standard host name for this machine. Under SysV, this information is provided by
the uname() system call.
#if BSD
include <sys/param. h>

static char hostbuf[MAXHOSTNAMELEN + I];

AUUGN 35 Vol 9 No 5

o.o

hostname = gethostname(hostbuf, sizeof hostbuf) == -i ? 0
#else /* BSD */
include <sys/utsname.h>

: hostbuf;

°oo

static struct utsname names;
° ¯ ,

hostname = uname(&names) == -i ? names.nodename : 0;
#endif /* BSD */
Under SysV the name of the system (as obtained by uname()) is configured into the kernel and cannot
be changed at runtime. An alternate approach to emulating gethostname () and sethostname () is
to read and write the name to and from a known file. This approach has the problem that other
programs using uname() will obtain possibly different information.It is rare that a user program
would need to change the system name except at boot time.

getitimer(which, value) (BSD) See Time
getmsg() (SysV.3) See Streams
getpagesize() (BSD)
The value returned by this routine is the system page size. Under SysV this is often defined as NBPP
(number of bytes per page) in either <sys/param.h> or <sys/immu.h>, but is rarely required. On
BSD it is the granularity of memory allocated by sbrk().

getpeername() (BSD) See Sockets
getpgrp() (any)
Under BSD, this system calls takes a pid parameter and returns the process group id of the nominated
process group. This capability is not available under SysV - the function call does not take any
parameters and returns the process group of the current process.

getpid() (any) Compatible all versions
getppid() (any) Compatible all versions
getpriority(which, who) (BSD)
Used to get the scheduling priority for a process, process group, or user. SysV can only provide
information about the current process.
#if BSD
include <sys/resource. h>

#else

#endif

errno = 0;
prio = getpriority(PRIO_PROCESS,
/* BSD */
errno = 0 ;
prio = nice(0) ;
/* BSD */

0);

getrlimit() (BSD)
Used to determine what current limits exist on resource usage for the resources process cpu time,
maximum file size able to be created, maximum process data area size, maximum process stack size,
maximum size core file to be created, maximum resident set size (ie amount of physical memory being
used). Similarly setrlimit() is used to set these values. Under BSD both a hard and soft limit may be
specified for consumption of these resources. The process may be notified (eg via a signal) when a soft
limit is reached, and will be denied the resource when a hard limit is reached.

The only equivalent functionality in SysV is provided by the ulimit() system call, which allows a
process to examine and set the file size limit, and to get the maximum possible data area size. There is
no soft limit capability.

Vol 9 No 5 36 AUUGN

#if

#
#

long cUrrfilemax, newfilemax, currdatamax;

BSD

include <sys/time.h>

include <sys/resource.h>

struct rlimit rl;

.oo

getrlimit (RLIMIT_FSIZE, &rl) ;
currfilemax = (long) rl.rlim_max;

rl.rlim max = (int) newfilemax;
setrlimit (RLIMIT FSIZE, &rl) ;

#else

getrlimit(RLIMIT_DATA, &rl);
currdatamax = (long) rl.rlim_max;
/* BSD */
long ulimit();
o.,

currfilemax = ulimit(l, 0L) * 512;
¯ ¯ ¯

ulimit(2, (newfilemax + 511) / 512) ;
o°¯

currdatamax = ulimit(3) ;
#endif /* BSD */

getrusage() (BSD)
The system call allows a process to enquire about the utilisation of various resources by itself or its
children. There is no equivalent functionality available directly through the system call interface under
SysV. If such information is required, system accounting may be able to provide it. A process may
directly examine the process accounting file, or use the output of the commands sar(1), sar(1M),
timex(I), acctcom(1). Probably the most useful approach is to use timex(l) to run the command in
question and use the resulting output information.

getsockname() (BSD)
getsockopt() (BSD)
gettimeofday(tp, tzp) (BSD)
index(str, ch) (BSD)
Equivalent under SysV to strchr(str, ch).

See Sockets
See Sockets
See Time

ioctl(fd, request, argp) (any) See Tty
The actual use of this command is compatible amongst all versions, though the possible values of the
parameters vary widely. This system call is used to perform device specific actions on various devices.
The only device where a modicum of standardisation exists is the tty interface.

kill(pid, sig) (any) Compatible all versions
killpg(pgrp, sig) (BSD)
This system call can be replacexl with the kill() system call under any version.
#if BSD ONLY

status = killpg(pgrp, sig) ;
#else

status = kill(-pgrp, sig) ;
#endif

link() (any) Compatible all versions
listen() (BSD) See Sockets

AUUGN 37 Vol 9 No 5

lseek(~, offset, whence) (any)
BSD defines tokens ~r the whence ~gumentof thiscaH.
#ifdef BSD
include <sys/file.h>
#endif /* BSD */

Compatible all versions

#ifndef L SET
define L SET 0--

define L INCR 1
define L XTND 2
#endif L SET

lstat(pathname, statbufp) (BSD) See Symbolic links, stat()
Like stat(), but provides information about symbolic links, instead of the file referred to by the link.
No equivalent in SysV.

mkdir(pathname, mode) (BSD, SysV.3)
This system call was introduced into SysV with release 3. For a non-privileged process, the only
alternative is to execute the setuid root mkdir(1) command. A privileged process could duplicate the
code in mkdir(1) to create the directory with mknod(2), but this is not recommended.
#if SysV && SysVver < 3
#include <fcntl.h>
mkdir(path, mode)
char *path;
int mode;
{

int pid,
wstat;

switch(pid = fork())
{

case -I:
return -I;

case 0: /* child */
close (2) ;
fd = open("/dev/null", O WRONLY);
if (fd != 2)

fcntl(fd, F_DUPFD, 2);
execl ("/bin/mkdir", "mkdir", path,

exit (i) ;

!= pid && s

}
/* parent */
while ((s = wait (&wstat))

;
if (s != pid)

return -i ;
if (wstat != 0)

return -i ;
umask(mask = umask(0)) ;
mode &= ~mask;

0);

return chmod(path, mode) ;

#endif

Vol 9 No 5 38 AUUGN

mknod() (any) Compatible all versions

mount() (any)
BSD is compatible with SysV up to release 2. SysV.3 is incompatible. The following code handles the
simplest case, where the file system being mounted is the same type as the root filesystem.

char *special, *pathname ;
int rwflag;

#ifnde f SYSV3
mount (special, pathname, rwflag) ;

#else /* SYSV3 */
mount(special, pathname, rwflag == 0 .9 0 : i, 0) ;

#endif /* SYSV3 */

msgctl() (SysV) See Message Queues

msgget() (SysV) See Message Queues

msgrcv() (SysV) See Message Queues

msgsnd() (SysV) See Message Queues

nice()
The SysV system call is compatible with the BSD library routine, except that no value is returned by the
BSD version.

open(pathname, flags, mode) (any)
For SysV, flag values are defined in <fcntl.h>; for BSD they are defined in <sys/file.h>. See
fcntl() for details on the flag values.

opendir(f’dename) (BSD, SysV.3, PD) See Directory
pause() (any) Compatible all versions
pipe() (any) Compatible all versions

plock(op) (SysV)
This system call allows a process to lock (or unlock) its text and data segments in memory. This means
that they are immune to all normal swapping. There is no functional equivalent under BSD.

poll() (SysV.3) See Streams
profil(buff, bufsiz, offset, scale) (any)
These are compatible except for the interpretation of the scale argument. A 1:1 mapping of pc to words
in buff is specified by a scale of 0xl0000 under BSD and 0xFFFF under SysV.

ptrace() (any)
Similar but differences.
#if BSD
include <sys/signal.h>
include <sys/ptrace .h>
#endif /* BSD */

#ifndef /* PT TRACE ME */
define PT TRACE ME 0
define PT READ I 1
define PT READ D 2
define PT READ U 3
define PT WRITE I 4
define PT WRITE D 5
define PT WRITE U 6
define PT CONTINUE 7
define PT KILL
define PT STEP
#endif /* PT TRACE ME */

8
9

AUUGN 39 Vol 9 No 5

putmsg() (SysV.3) See Streams
quota() (BSD)
The quota() and setquota() system calls are used to implement per-user disk quotas on BSD systems.
There is no equivalent functionality available under SysV.

read() (any)
readlink() (BSD)
readdir(dirp) (BSD, SysV.3, PD)
readv(fd, iov, iovcnt) (BSD)
struct iovec /* defined on BSD in <sys/uio.h> */
{

char *iov base;
int iov len;--

};

Compatible all versions
See Symbolic links
See Directory

readv(fd, iov, iovcnt)
int fd;
struct iovec *iov;
int iovcnt;
{

struct iovec
int

char

*iovt ;
n,

nread;
*buf,
*bp,
*malloc () ;

n = O;
/* count up no. bytes to read */
for (i = O, iovt = iov; i < iovcnt; i++, iovt++)

n += iovt->iov len;
if (! (buf = malloc((unsigned) n)))

return -i;
if ((nread = read(fd, buf, n)) == -I)
{

free (buf) ;
return -I;

}
n = nread;
bp = buf;
for (i = O, iovt = iov; i < iovcnt && n; i++, iovt++)
{

int nx;
nx = iovt->iov len;
if (nx > n)

nx = n;

memcpy(iovt->iov_base, bp, nx);
bp += nx;
n -= nx;

free (bp) ;
return nread;

Vol 9 No 5 4O AUUGN

reboot() (BSD)
This system call is used to shutdown and possibly reboot the system. It may be sensibly invoked in two
possible ways, and these can be emulated under SysV.3 versions.
#if BSD
include <sys / reboot, h>

reboot(RB HALT); /* halt; no reboot */
reboot(RB AUTOBOOT); /* halt; then reboot multiuser */

#else /* BSD */
include <sys/uadmin.h>

¯ ¯ o

uadmin(A_SHUTDOWN, AD HALT, 0) ; /* immedi~ ;e halt; no reboot */
uadmin(A_SHUTDOWN, AD_BOOT, 0) ; /* immediate halt; reboot multiuser */

#endif /* BSD */
The 2nd parameter of uadmin() could also be A REBOOT, indicating that the system shutdown is
immediate, rather than after killing all user processes-~ flushing the buffer cache and unmounting the root
filesystem. Also note that the 3rd parameter of uadmin() has a machine dependant function.

recv() (BSD)
recvfrom() (BSD)
recvmsg() (BSD)
rename() (BSD)
rewinddir(dirp) (BSD, SysV.3, PD)
rindex(str, ch) (BSD)
Equivalent under SysV to strrchr(str, ch).

See Sockets
See Sockets
See Sockets

See Directory

rmdir(pathname) (BSD, SysV.3) See mkdir()

sbrk(incr) (any)
seekdir(dirp, loc) (BSD, SysV.3, PD) See Directory

select() (BSD) See Sockets

semctl() (SysV) See Semaphores

semget() (SysV) See Semaphores

semop() (SysV) See Semaphores

send() (BSD) See Sockets

sendto() (BSD) See Sockets
sendmsg() See Sockets(BSD)
seteuid(euid), setegid(egid) (BSD) See setreuid(), setregid()
These are library routines on BSD which call the setreuid() and setregid() system calls.

setgroups(ngroups, gidset) (BSD) See getgroups(), Access permissions

Under SysV, use setgid().

sethostid() (BSD) See gethostid()

sethostname() (BSD) See gethostname()

setitimer() (BSD) See getitimer(), Time

setpgrp() (BSD, SysV) See getpgrp()

The SysV call
status = setpgrp() ;

is equivalent to the BSD code
status = getpid() ;
if (setpgrp(0, status) ==-I)

status = -I;
Under BSD, this call can be used to alter the process group of another process. There is no SysV
mechanism to do this.

AUUGN 41 Vol 9 No 5

setpriority() (BSD) See getpriority()
Used to set the scheduling priority for a process, process group, or user. SysV can only set the priority
of the current process.
#if BSD
include <sys/resource .h>

int pri;
¯ o ¯

setpriority(PRIO PROCESS,
#else /* BSD */

int pri, incr;
incr = pri - nice(0) ;
errno = 0 ;
nice (incr) ;

#endif /* BSD */

0, pri) ;

/* calculate increment required */

setquota() (BSD) See quota()
setregid(rgid, egid), setreuid(ruid, euid) (BSD) See Access permissions
These system calls are used to change the real and effective uid and gid of the current process. If a
parameter is given as -1, the current value is used (ie no change is requested). Under SysV, there is no
capability for a non super user process to change its real uid or gid, and no capability for a super user
process to change its real uid or gid independant of the effective uid or gid.

setrgid(rgid), setruid(ruid) (BSD)
These BSD library routines use the setreuid() and setregid() system calls.

setrlimit(resource, rip) (BSD)
setsockopt() (BSD)
settimeofday(tp, tzp) (BSD)
setuid(uid), setgid(gid) (any)
shmat(shmid, shmaddr, shmflg) (SysV)
Attach an already existing shared memory segment to the current process.

shmctl(shmid, cmd, buf) (SysV)
Perform various operations on a shared memory segment.

shmdt(shmaddr) (S ysV)
Detach a shared memory segment from the current process.

shmget(key, size, shmflag) (SysV)
Create a shared memory segment.

See setreuid(), setregid()

See getrlimit()
See getsockopt(), Sockets
See gettimeofday(), Time
See Access permissions
See Shared Memory

See Shared Memory

See Shared Memory

See Shared Memory

sigblock(mask) (BSD) See Signals
Like sigsetmaskO, but adds signals to be blocked to the current mask rather than setting them absolutely.

sighold(sig) (SysV.3) See Signals
Specifies that the given signal is to be held upon receipt, (BSD "blocked"). Use sigblockO or
sigsetmaskO under BSD.

sigignore(sig) (SysV.3) See Signals
Used to ignore the specified signal. Pending instances of this sigbals are discarded. Use sigvecO under
BSD.

sigmask(signum) (BSD) See Signals
This is a macro defined in <s±gnal .h> on BSD systems which is used to construct a signal mask from
a signal number.

signal(sig, func) (any) See Signals
This routine is available as a system call under SysV, and as a library routine under BSD. Usage is the
same in either case. See the "signals" section for differences in function.

Vol 9 No 5 42 AUUGN

sigpause0 (BSD, SysV.3) See Signals
This system call is used by both BSD and SysV.3 to unblock (SysV "release") a signal, and then wait
for a signal to occur or take action immediately if the specified signal was pending. However, the
argument under BSD is a signal mask, used to specify the blocked status of all signals, where under
SysV it is an integer specifying a single signal.

sigrelse(sig) (SysV.3) See Signals
Specifies that a signal is no longer to be blocked. Any pending signals of this type will take effect.
Use sigsetmaskO under BSD.

sigreturn(scp) (BSD4.3) See Signals
Used to "atomically unmask, switch stacks, and return from a signal context". The argument to this
routine is a pointer to a signal context, in other words a stack frame. Fiddling with this structure is
extremely machine dependant. No equivalent SysV functionality.

sigset(sig, fune) (SysV.3) See Signals
Used to specify the action to be taken for a given signal: whether it is to be caught, ignored, held, or
cause program termination. If a signal handler is specified with this routine it is not affected by the
other SysV.3 signal handling system calls.

The sigvecO system call provides the equivalent functionality under BSD.

sigsetmask(mask), (BSD) See Signals
Specifies which signals are to be blocked (SysV.3 "held"). Use sigholdO under SysV.3.

sigstack(ss, oss) ¯ (BSD) See Signals
Used to specify the stack on which signal handler routines will be executed. No equivalent SysV
functionality.

sigvec(sig, vec, ovec) (BSD) See Signals
Specifies the action taken upon receipt of a signal. The closest equivalent under SysV was signal() until
SysV.3, where sigsetO and related functions can be used.

socket() (BSD) See Sockets
socketpair() (BSD) See Sockets
stat(pathname, statbufp) (any)
Used in the same manner on any version, but the star structure varies between SysV and BSD. Fields in
common are listed below. The types are defined in <sys/t=ypos .h> and the actual names may vary
from those given here (eg ushort= in SysV is u_short= in BSD).

dev t st dev; /* dev on which inode resides */

ino t st ino;
ushort st mode;
dev t st rdev;
short st nlink;
ushort st uid;
ushort st_gid;
off t st size;
time t st atime;
time t st mtime;
time t st ctime;

Additionally, BSD provides the fields:
long st_blksize;
long st_blocks ;

/* inode number */
/* file mode */
/* dev of this inode (if applicable) */
/* no. links */

/* uid of file owner (short on BSD)
/* gid of file group (short on BSD)

/* file size in bytes */
/* time of last access */
/* time of last data modification */
/* time of last inode modification */

/* optimal blocksize for i/o */
/* no. blocks actually allocated */

,/
./

statfs(pathname, buf, len, fstyp) (SysV.3)
This s~,stem call is used to retrieve generic information about a filesystem. It replaces the ustat()
system call used before SysV.3 (though SysV.3 also supports ustat()). Its introduction is because of the
filesystem switch introduced with SysV.3 -reading the filesystem superblock directly is no longer a

AUUGN 43 Vol 9 No 5

practicable alternative for the many different possible f’desystem types. To obtain information about a
filesystem under BSD, or more information than is provided by ustat() under SysV, a process has to
open the filesystem directly and read the superblock.

stime(timep) (SysV) See Time
This system call is used to set the system’s idea of time of day. Under BSD, settimeofday() can be
used instead.

strchr(str, ch) (SysV)
This system call is equivalent on BSD to index(str, ch).

strrchr(str, ch) (SysV)
This system call is equivalent on BSD to rindex(str, ch).

swapon() (BSD)
Used under BSD to add a swap device for interleaved paging/swapping. No equivalent functionality
under generic SysV. However, some implementations of SysV provide an implementation specific
means of doing this. For example on the 3b series running SysV.2.1 and up, the sys3b() system call
with cmd parameter S3BSWPI can be used to add or delete swapping areas.

symlink() (BSD)
Used to create a symbolic link to a file. No equivalent in SysV.

See Symbolic links

sync() (any) Compatible all versions
sys3b(cmd, argl, arg2, arg3) (SysV)
This system call is machine dependant. Other implementations of SysV (and indeed BSD) may provide
similar machine specific system calls to handle tasks not otherwise provided by the release. Typical
uses of this sort of system call are to operate lights on the machine, provide access to internal system
tables, access or change kernel configuration parameters, access or change boot information, access or
change swap areas, access or change information stored in non-volatile RAM, etc.

syscall()
Indirect system call. This is very system dependant, and is not intended to be used by C programs.

sysfs() (SysV.3)
This system call is used to determine the type of a filesystem.

Under

telldir(dirp) (BSD, SysV.3, PD) See Directory
time() (any) See Time
times() (SysV) See Time
truncate(path, length) (BSD)
The system calls truncate() and ftruncate() are used to reduce a file to a particular length.
SysV, trucation of a file is only possible to 0 length.

(SysV)
(BSD)

See reboot()
See getrlimit()
Compatible all versions
Compatible all versions
Compatible all versions
See staO~s()
See utimes()

uadmin() (SysV)
ulimit() (SysV)
umask(mask) (any)
umount(path) (any)
unlink() (any)
ustat() (SysV)
utime(pathname, times)
utimes(pathname, tvp)
Under SysV, one only needs write permission on a file to change the times. On BSD, only the owner
(or super-user) may do this. In both cases, the inode change time is set to the current time, and in
neither case can the inode change time be set to any arbitrary value.
long atime, mtime; /* new access and modification times in seconds */
#if BSD
include <sys/time. h>

struct timeval tvp[2] ;

Vol 9 No 5 44 AUUGN

#else

¯ o ¯

tvp[0] .tv_sec = atime;
tvp[l] .tv_sec = mtime
utimes(file, tvp) ;
/* BSD */
struct ut imbuf tbuf;

#endif

tbuf.actime = atime;
tbuf.modtime = mtime;
utime(file, &tbuf);
/* BSD */

vfork() (BSD)
This system call is provided for efficiency only where the child process intends to immediately exit or
call exec(), and can be replaced in SysV with fork(). If you are writing portable code and intend to
use vfork() if the code is running on a BSD system, you should read the manual entry carefully before
doing so.

vhangup() (BSD)
This system call causes a number of actions to take place, basically disassociating the current process’s
control terminal from any other references.
TODO

wait(statusp) (any)
Although the definition of the parameter under BSD is a pointer to a union wait, rather than to an int
under SysV, the usage and meaning is generally compatible.

wait3(status, options, rusage) (BSD)
This system call allows a parent to collect more detailed information about its children, and to optionally
avoid hanging.

write(fd, buf, nbytes) (any) Compatible all versions

writev(fd, iov, iovcnt) (BSD) See readv()

4. Include files
BSD and SysV C programs usually include a lot of standard header files. In many cases, the use of
these files is equivalent, but very often a file with the same name will have significantly different
contents, and in some cases files with similar contents have different names.
TODO

5. curses

System V introduced the terminfo terminal description database scheme to replace the previous termcap
database, which is still in use by BSD. At the same time, a new version of the curses library was
introduced. Fortunately it is largely compatible with the old version, but there are a number of
differences. The most common of these incompatibilities is given below. The best way to write code
which distinguishes the two versions is to #ifdef on a token like g_r~V-gRSE which is defined in
<cUrSO-q. h> in the terminfo version, but not in the termcap version.

Note that BSD programs that use termcap routines only are compiled with -ltermcap, while those that
use curses routines must be compiled with -lcurses -ltermcap. All SysV programs that use any of these
routines are compiled with -lcurses only.

#ifdef A REVERSE #ifndef A_REVERSE

cbreak(Y crmode()

nocbreak() nocrmode()

AUUGN 45 Vol 9 No 5

attron (x)
attroff (x)
wattron (win, x)
wattroff (win, x)
beep ()
flash ()

saveterm()
resetterm()
erasechar()

standout()
standend()
wstandout(win)
wstandend(win)
putchar(’ 07’)
{

if (BP)
_puts (VB) ;

else
putchar(’ 07’);

}
savetty ()
resetty ()
ioctl(o, TIOCGETP, &sg), sg.sg_erase

6. Directory

The traditional directory structure, and that used in SysV looks like:
struct direct
{

ino t d ino;
char d_name [DIRSIZ] ;

};
where ino_t is normally a 2 byte quantity and DIRSIZ is always 14. This is defined in <sys/dir.h>
on SysV systems (although it will not be in SysV.4). BSD4.2 introduced long filenames, up to
MAXNAMLEN (<sys/dir.h>) bytes in length. In order to access this new directory structure in a
relatively simple and portable fashion, the directory(3) library routines were introduced. These should
be used wherever directories are to be read. They are in the standard C library in BSD systems, and
many vendors provide them for SysV systems, either in the standard C library or in an alternate library
(eg try compiling with -lndir). Additionally, there are public domain versions freely available for SysV
and other operating systems (such as MS-DOS). Also, SysV.3 has these routines provided as standard.

If the world were a perfect place, this would be all there was to it - just use these routines, and tack a
PD implementation of them onto software for systems that don’t already have them. Unfortunately, the
world not being a perfect place, there is more to the story.

When BSD implemented long directory names, they chose the same structure name in the same include
file (struct direct in <sys/dir.h> to refer to the new directory structure supported by the system,
and the readdir() routine returns a pointer to one of these structures. This gives compatibility
routines on other systems two alternatives. They could either retain maximum compatibility with BSD,
in which case programs using them could not #include <sys/dir.h>; or they could opt to change
the name of the directory structure returned by readdir(). While routines are available to do the former,
the IEEE 1003.1 and the SVID (and various other PD implementations) have opted for the latter
approach.

The implication is that you need to handle both BSD-compatible and POSIX-compatible (inc. SysV.3)
cases. The following code can be used as a guide:
#if BSD DIR
if BSD /* BSD 4.2 */
include <sys/dir.h>
endif /* BSD */
if V9 /* Bell Edition 9,
include <ndir.h>
endif /* V9 */
if BRL /* BRL System V emulation */
include <dir.h>

and some others */

Vol 9 No 5 46 AUUGN

endif /* BRL */
define dirent direct
#else /* BSD DIR */

/* SysV.3 or library compatible with same */
include <sys/dirent. h>
#endif /* BSD DIR */
Just in case you tho--ught things weren’t too bad, the BSD struct direct is different from the SysV.3 stmct
dirent. Fields in common are long d_ino (the inode number), short d_reclen (the length of this record
rounded up), and d_name (the actual filename, which can be treated as type char * though the actual
declaration varies). Most importantly, d_namlen does not appear in the SysV.3 structure, so portable
programs should use strlen(...->d_name) instead. Both provide MAXNAMI,~.N as the maximum possible
name length.

That’s it as far as most programs are concerned. But I shoukl mention the SysV.3 getdents() system
call. It has nothing to do with parking your car in the street, but is designed to read directory entries in
a file system independent format. The impetus for this system call is the famous filesystem switch
implemented in SysV.3; getdents() can be used to read directory envies regardless of the actual type of
the filesystem. The readdir() routine uses this system call and should be used in preference to using
this call directly (in fact the manual entry explicitly states that this call should not be used for other
purposes).

7. Exec

Note that BSD allows f’des which begin with "#! interpreter", to be executed directly, while SysV allows
only a.out style files to be executed directly. This means that an instance of one of the exec...()
routines in a BSD program may have to be changed under SysV to execute the interpreter (typically
/bin/sh) for that program instead. For example if/usr/bin/thing is a shell script:
#if BSD

"it" 0) ;execl ("/usr/bin/thing", "thing", ,

#else /* BSD */
"it" 0) ;execl ("/bin/sh", "/usr/bin/thing", "thing", ,

#endif /* BSD */

8. Time

TODO

9. Sockets

Under BSD, sockets are used as the primary IPC mechanism. A socket is described as "an endpoint for
communication between processes", with each socket having queues for sending and receiving data. It
has been said that sockets are a good idea done badly. BSD has 18 system calls, 25 error numbers and
14 related library routines to implement sockets. Porting a BSD program which uses sockets to SysV
will usually require major changes to the code, and probably sigificant design changes. The following
list is purely to enable you to identify a BSD program which uses sockets.

System calls: accept(), bind(), connect(), getpeername(), getsockname(), getsockopt(), listen(),
recv(), recvfrom(), recvmsg(), select(), send(), sendmsg(), sendto(), setsockopt(), shutdown(),
socket(), socketpair(). Related library routines: endhostent(), endprotoent(), gethostbyaddr(),
gethostbyname(), gethostent(), getprotobyname(), getprotobynumber(), getprotoent(), res_comp(),
res_expand(), res_init(), res_mkquery(), res_send(), sethostent(), setprotoent().

10. Tty
TODO

AUUGN 47 Vol 9 No 5

11. Semaphores

TODO

12. Message Queues

TODO

13. Streams

A very nice idea implemented in SysV.3, which would be even more relevant if tty devices had been
implemented using streams, which in SysV.3 they are not. A stream is the path between the system call
interface to a device (the stream head) and the device driver itself. A set of routines, called a module,
may be interposed in the stream to provide manipulation of data in either direction.

There is no equivalent under BSD.

14. Signals

Using the traditional signal() routine, the main difference in behaviour between SysV and BSD is that
for most signals under SysV, when a signal is being caught, upon receipt of such a signal the default
action is reinstated before the signal handler is called. This means that if another signal is sent to the
process before the signal handler has a chance to change things, the process will be killed. This is true
for all signals except for sz~rr.r, and sr~Tru~p, for which the action is not reset when the signal is
caught. For this reason, many programs use these signals for communication.

Because of this problem, BSD introduced a new set of system calls to handle signals, and made signalO
a library routine which uses the new system calls. The new signal() routine is used in the same way as
the SysV system call, except that signal actions are not reset when a signal is caught. The BSD signal
routines provide the capability of blocking signals, so that they will be held pending, rather than causing
an immediate action. The routines which deal with signals use a signal mask of all the signals currently
specified to be blocked. Also provided by BSD is the capability of using an alternate stack frame while
executing a signal handler routine. BSD also changed the action of signals which arrive during system
calls which are blocked waiting for some event to happen (such as a read() on a tty device with no data
available). The default action for a signal that has an associated handler routine (ie a signal which is
being caught) is for the system call to be interrupted, but then restarted on completion of the handler
routine. However it is possible to specify the normal SysV action of having the system call terminate
and return an error condition.

The problem of signals is dealt with in SysV.3 by the introduction of a number of system calls to
provide similar functionality to that of BSD. Signals may be blocked ("held" in the SysV.3
terminology), released, ignored, or a signal handler routine may be specified. There is no way to set an
alternate stack frame, and system calls cannot be made to be restarted - it is up to the programmer to
cater for signals or protect critical pieces of code.

15. Symbolic links

BSD supports the concept of symbolic links. A symbolic link is a file in the filesystem which refers to
another file. An attempt to open the symbolic link results in a file descriptor referring to the file to
which the link is pointing. Similarly a stat() system call and most other system calls which act on files
will affect the referenced file rather than the actual symbolic link. An unlink() or rename() system call
will affect the symbolic link itself. A new lstat() system call has been introduced to access information
about the symbolic link itself.

16. MAUS

This acronym stands for Multiple Access User Space. Some implementations of SysV up to SysV.2 had
a set of system calls known under this acronym to implement shared memory. These should normally

Vol 9 No 5 48 AUUGN

be avoided and the more standard (though still only SysV) shared memory operations used instead.

17. Shared Memory

SysV supports shared memory through the use of the shmget(), shmat(), shmctl() and shmdt() system
calls.

18. Access permissions

Every BSD process has a set of group ids used for file access permission checking, as well as the real
and effective gid used by SysV. The getgroups() and setgroups() system calls are used to access and
change this set. When any file access is attempted, the gid on the file is compared with all the gids in
the list. Under SysV, group file access is determined solely by the effective group id of the process.

Under SysV, the gid of a file when it is created is set to the effective gid of the process that created it.
Under BSD, the gid of the file is set to the gid of the directory in which the file is beaing created.

Under both BSD and SysV, a process may change its effective uid to match its real uid. Under BSD
only, a process may also change its real uid to match its effective uid. The same is tree of group ids.

Note that when a process has an effective uid set by executing a setuid program, this effective uid is
saved seprately from the current effective uid, so that if the effective uid is changed by the process back
to the real uid, it may be changed back to the saved effective uid. This is true for both SysV and BSD,
and the same applies for group ids.

An undocumented but deliberate feature of SysV only is that a process cannot change its effective uid to
its real uid, if that real uid is the super-user.

The sticky bit has a special meaning when applied to a directory in BSD4.3. Where this is the case, in
order to unlink or rename a file in that directory, as well as having write permission on the directory a
user must own the file or directory (or be the super-user).

AUUGN 49 Vol 9 No 5

OSI into UNIX: the network junkies have a field day

George Michaelson

george@ditmela.oz

Open Systems Interconnection (OSI) is coming. Incomplete, behind schedule,
possibly unwanted. Trying to say something sensible about it is almost impossible.
The field of comment is littered with many years of blatantly partisan statements from
either side, with levels of hype and invective normally associated with anti-IBM hys-
teria and other socially acceptable forms of relaxation.

Now that OSI based products have finally started to hit the UNIX marketplace,
the pressure to draw up plans for migration is overwhelming, although quite why still
isn’t clear.

1. In search of the roots of a religious war.

Historically, network products have been closed solutions. You used the network your chosen sup-
plier gave you, or designed one in-house. Lots of people thought vaguely about the global network, and
talked about "convergence" which was seen as being technically a solved problem, money and politics
aside. In reality, there were a large number of highly disjoint networks, and few of them linked to one
another, except by magtape.

In 1969 when the US Department of Defence (DoD) funded ARPANET, named after its Advanced
Research Projects Agency this picture changed somewhat as a large funding base came along, demand-
ing conformance to such protocols as were developed for its use. Luckily for us, the protocols were
designed by "users", and enough people wanted access to force a very diverse bunch of suppliers to toe
the line. ARPANET was designed and specified as a "packet switching" network in contrast to "circuit
switched" options which up until then was all the PTT’s would provide1. >From 4 nodes in 1969,
ARPANET grew to 40 nodes in 1973, including some reached by satellite (Hawaii and London).

At that stage, divergence between "datagram" and "virtual circuit" camps was in the future. Both
are packet switching protocols, but have different implications in terms of resource usage, underlying
hardware and their behaviour under load. In 1974 the GPO2 in the UK implemented EPSS, their Exper-
imental Packet Switching System. This was based on a virtual circuit scheme, in contrast to the ARPA
datagram protocol. This was the f’trst FIT provided packet switching service in the world, and lead onto
JANET and PSS the academic and commercial X.25 networks in the UK. It would seem from reading
papers of the time that the ARPA protocol suite was known, but for "engineering" reasons the virtual-
circuit approach was seen as preferable. ARPANET was by then a 40-node network3 but a public ser-
vice would have to cope with hundreds of nodes quite soon after launch, and even give a return on
investment. At that time, virtual circuit technology seemed to scale better, had more predictable perfor-
mance and costs.4 This protocol choice became enshrined in the X-seres of standards, for common use

1 PTT: Postal, Telegraph and Telecommunications bodies An acronym reflecting the blend of French and English as

official languages for international cooperation. Since most countries have now separated postal services from telephony
and telecommunications, often prior to deregulatio~ and privatisation this acronym is showing its age a little.

2 General Post Office: the joys of pre-privatisation days when postal services and telephony were one happy family...
3 it’s interesting to see that 2 PDP-I’s 16 PDP-10’s and 4 PDP-11’s were on the network, with 4 IBM360’s and 2

IBM370’s. From small acorns mighty forests grow.

4 Even with hindsight, this choice wasn’t so stupid. Although IP nets have been reworked to cope with thousands ofnodes, there have been periods when the network was "dead" with end-to-end delays exceeding 30 seconds per-character

Vol 9 No 5 50 AUUGN

by all P’Iq"s.
Having started along the path of providing X.25 aligned services, further divergence seems to have

been rapid and inevitable. The FI~’s were constrained to cooperate through meetings of the Interna-
tional Telegraph and Telephone Consultative Committee, (CCITT) a UN recognised umbrella organisa-
tion with cumbersome paperwork and procedural overheads. Adoption of a flexible approach to upper
protocols and application specs by the CCITT was not plausible. Adoption of a rigid structure by the
ARPA community was equally unlikely..

Even as late as 1978 it seemed to be assumed applications would sit directly on the transport pro-
tocol, as they do in many of the Internet Protocol (IP) based applications -since transport layer was pro-
viding end-to-end connectivity on top of the network, what remained to be resolved was arguably for
private agreement within the application itself. Had this remained true, divergence would have been
much less serious.

At this stage, OSI was still only a reference point, a basis for comparison. Subsequent develop-
ments to produce a concrete specification aligned to it, materialising in the 1983 International Standards
Organisation (ISO) OSI reference model formalised the rift between the ARPA and the non-ARPA
worlds, the latter often viewing ISO conformance as a "must", even if alternative network standards
could offer higher functionality. In fact ARPA never restricted itself to a single model for its network,
and different "layerings" can be imposed for different functionality, quite apart from the various routing,
gateway, relay and other "special" protocols developed to keep it running.

In 1980 Transmission Control Protocol (TCP) was adopted by ARPANET, providing reliable end-
to-end transport-level connectivity. TCP supports directly the current stable of applications we all know
and love. The DoD paid BBN5 to develop, and Berkeley to port TCP/IP into UNIX, and the rest is
[4.2BSD] history.6 Of course ARPA, latterly DARPA is no longer the single most important element,
but amongst the MILnet, NASA, NFSnet and the various regional backbones hereafter referred to collec-
tively as the (DARPA) internet, IP based protocols still predominate.

2. Why should ! care about OSI?
"Intent to migrate" is now commonly accepted in the internet itself and government aligned

groups. Anyone in receipt of US federal funding must now adopt an OSI conforming tendering process.
Until this year, this was all in the future, but with stabilisation of much of the OSI standards, and the
arrival of actual OSI-based systems in certain areas, real changes are starting to show in the IP camp.
That isn’t a good reason for following suit, but it shows which way the big money points.

Much of the desire to shift reflects a change in R & D funding in general. The network-at-large
now comprises several diverse coalescences of common interest groups, and similarly disparate funding
bodies, some funding a regional network, others national or international but not for all traffic. The
community has expanded from academic/research only to include substantial commercial elements, and
crosstalk between the internet and more public networks like ATI’MAIL and Tymnet grows steadily, if
in restricted contexts. As the community grows, so does its need for "nasty" side-issues like charging
and access control software in the underlying code. Bolting this into an existing protocol suite is almost
as much effort as adopting a new one which (hopefully) has it built-in. That speed and functionality is
lost counts for less in the eyes of the paymasters.

Another argument for adoption of OSI protocols is that newer network technology such as ISDN
can only be used under OSI protocols but that’s obviously hype. There might be functionality IP-based
systems would never exploit, but the existing applications could certainly be used. Politically however it
is unlikely major porting effort will be carded out, since a f’mancial commitment to OSI has already

echo. The scalability of IP is there, but the performance degradation can be extreme without juggling of internal links,
and massive increases in bandwidth. The ~ usually provides the IP network backbones, and clearly they have
resources available, but you can also see difficulties in trying to maintain a national network of this type.

5 A major contractor for ARPA, and historically very closely involved in its development.
6 Some of us tend to forget that there is life outside of BSD, and SysV based systems have lacked IP support until

very recently. Do most pro-OSI UNIX people use SysV instead of BSD?

AUUGN 51 Vol 9 No 5

been made. That doesn’t mean IP won’t be carried, but newer applications that exploit non-IP based ser-
vices may not have a backwards compatible IP path.

A better argument is that OSI by design bridges the local/public network gap, through network
relaying. Certainly many of the "seven layer cake" diagrams show this, but in practice higher level relay-
ing has to be carried out. Also, IP is easily "tunneled" over X.25 or serial lines, and several packages for
this are now available for UNIX, VMS and other systems. This doesn’t have quite the same functional-
ity, since arbitrary nodes cannot talk into your applications unless on that specific IP-link.

3. Will IP and OSI integrate cleanly?

In a word, no.
Aside from the diverged layering of their respective models, current OSI offerings do not integrate

cleanly into the existing utilities, nor into underlying models of IP subnetting and the like. Nobody
appears to be attempting to take existing TCP products and make them work over OSI transport class 4,
at least nobody is owning up to it -so you can expect to have to support several competing toolsets, and
probably two competing address and hostfile formats for quite some time. The possible exception to this
is for BSD users, of which more later.

4. Whats available now ?

End-users don’t care very much how it’s done, they just want to have it on a plate. Most of them
will be aware of and use four core (Mail, News, Remote login access, File transfer) and two "luxury"
(remote execution, and network filestore) applications. The ordering of these requirements is purely sub-
jective. People with logins on different hosts tend to want to actually work "at" them, rather than speci-
fying everything locally through rsh commands. Similarly, NFS although enormously useful isn’t strictly
speaking essential, nor available across all UNIX systems whilst some form of news mail and remote
login (cu, tip, telnet, pad) is much more common.

Were a common and consistent mechanism for files-in-mail available, nobody would really care
about ftp, but the techniques of sending source are so diverse, and ftp, so simple to use, that it ranks
high in most users minds, internet users would certainly complain if anonymous ftp was withdrawn
overnight.

Vol 9 No 5 52 AUUGN

Desirable Applications and their OSI-availability

availability/comments tApplication "common OSI names" status

Mail X.400,MHS IS medium: 3rd party,
some UNIXes at
extra cost, in 4.4BSD

News No Equivalent can be kludged into
frameworks, may be
done over X.400

Remote Login VT (Virtual Terminal) DIS low: 3rd party in
development, may be
in 4.4BSD

File Transfer FTAM (File Transfer IS medium: in 4.4BSD
Access &
Management

Remote Execution JTM (Job Transfer & IS? low: not in 4.4BSD
manipulation)

Network Filestore No Equivalent cuts across several
standards, FFS

note
IS means the standard is ratified and adopted within the ISO/CCITT community as an
International Standard. That doesn’t mean it never changes, but it does mean the changes are
regular (4 yearly cycle) and can be planned for. DIS means it is Draft IS, and highly likely
to become IS, although things can stay DIS for a very long time, and change massively
when they become IS. IS? means I don’t really know anything about this and am fudging
the issues.
As you can see some of your needs will be met quite rapidly, if you take the standard Berkeley

distribution. Mike Karels announced at AUUG that 4.4BSD will adopt ISODE, along with sockets code
for Transport and OSI Network from elsewhere7 which is where most of this will come from. ISODE
by then will encompass VT as well as.it’s existing FTAM application. The PP mail system from UCL
and Nottingham may also be in the 4.4BSD tape, and is being developed using ISODE so the release
will have some self-consistency as well as being reasonably complete.

If Berkeley have resolved the differences between IP and OSI network addressing, low-level
bridging and relaying between them may be built-in. If not, application-level "fudges" may have to be
done. It would be very nice if end-users were not aware of any difference between IP and OSI net-
works.

5. How about non 4.4BSD systems?
Alas outside of Berkeley, few suppliers are ready and able to offer OSI tools now. Some have OSI

Mail systems, because this is the first PTT provided OSI service. AT & T are a major OSI mail service
provider, and you would expect them to have code for SysV which will tie into the "ATTMAIL" offer-
ing but I have seen no announcements about this. Typically the mail offerings use the existing user-
interface (UIP in OSI-speak) and patch into it via a sendmail submission process. This requires users to
specify X.400 addresses in the RFC822 To: format, and can be a bit clumsy. The packages are also
rarely cheap, and some won’t talk to all of the others. Where suppliers do offer OSI network code, few
have integrated this cleanly with the existing IP products, and some even demand extra hardware to do
OSI network or link layer.

Unless you get 4.4BSD your ability to use these tools is in doubt. Your supplier will probably
view them as value-added products and demand high payment for them as a return on their development

7 I think he said Wisconsin but I was listening so hard I forgot to take notes

AUUGN 53 Vol 9 No 5

costs. If IP-based tools were only available under the same situation, I suspect most BSD-aligned users
would migrate to "pure" BSD rapidly, and force a re-think by the suppliers. When OSI becomes essen-
tial for your users, market pressures will force suppliers to re-bundle the OSI network offering if they
are to win the tenders8 so things should get better as the market expands.

6. What about non-OSI applications like news and NFS?

The lack of standardisation for news and network filestore will cause at lot of pain. News is prob-
ably going to be implemented over X.400 as a private "document structure" by several groups, and end-
user tools will remain much the same, but this is a real ldudge. Since X.400 mail encompasses higher
reliability, and in it’s 1988 standard9 has Distribution-List control software, this should make mail-lists
somewhat more acceptable. Some pressure exists for OSI to develop news-aware standards but this is
grassroots, and not likely to succeed.

Network Filestore may not be addressed for some time. Some proponents argue the FTAM proto-
cols should be used to transfer the information, whilst existing implementations (eg NFS) deliberately
reduce protocol overheads to increase speed. Since FTAM lives in the application layer, above 6 distinct
and complex functional layers, the underlying service implementations will have to be massively optim-
ised before this will be plausible. Hopefully a fresh standard area will address this directly rather than
trying to cram the concept into the existing model.

7. Anything good to be said for OSI?

Basically, OSI can’t yet offer a consistent, integrated view of network access to rival the BSD rsh,
rcp, rlogin model. FI’AM can and will be directly comparable to ARPA ftp, whilst X.400 mail could
potentially blow email users minds out of the water, when its ability to handle mixed text, binary, voice
and graphical data is fully extended to them. F~xisting systems tend to use the X.400 protocols for text-
only transfer. Similarly VT will align quite favourably with telnet and the X.29 PAD programs some of
us already use, and should offer more screen oriented styles as well, hopefully not just to plug into IBM
applications.

For mail and ftp, gateway code into OSI is already in existence. The mail code is used every day
for relaying to the UK, and can also be used to reach OTC connected X400 services. Most of you can
get to the same people faster via the internet so until features like FAX and TELEX gateways go public
this may not be so useful.10 For VT, telnet-VT gateways are in development. This means total network
connectivity for the 3 core functions will rise massively, as the OSI implementations should bridge the
current gap between local networks and X.25 or similar WAN access, much more than point-to-point IP
tunnels can achieve. 11

Local users with a mix of OSI and IP hosts and applications will have the worst of both worlds,
having to maintain dual sets of almost everything.

Users of VMS and VM will find life gets slightly easier, since both manufacturers will provide
built-in gateways to OSI, and so the various 3rd party options used at present may not be needed. In
parallel of course they are finally providing TCP/IP support embedded into their systems so you can also
choose to ignore OSI for some time to come.

8 In the UK, where central funding provides most academic equipment, contracts and tenders are already beginning
to demand a commitment to OSI migration, as in the US. One hopes the funding cover the costs. Previous experience
with JANET requirements suggests this sort of planned bullying of suppliers is very effective in getting things bundled:
-no OSI network support, no purchase...

9 which won’t be available as implementations for some time yet
10 This will instantly make over 15 Million people or organisations visible to you, which is a sizable increase in

connectivity by most peoples standards.
11 The first places these get put is between existing modem linked hosts so total connectivity doesn’t always rise,

although functionality does.

Vol 9 No 5 54 AUUGN

8. It’ll be solved in the Directory Service
Many OSI applications pay lipservice to the need for directory services. That these are not in

place, nor will be for some time to come doesn’t seem to cause much worry, but if too many OSI appli-
cations become installed using ad-hoc measures, your worst fears about migration will come true. Until
something sensible arrives, tailoring files and host-lists and conversion tables will mushroom in both
size and number. Somebody will hack extensions into bind and similar systems, but this may not actu-
ally be sufficient. You’ll find that many things can be done, but only by the few people with access to
the knowledge. Next time somebody near you says "it’ll be solved in the directory service" ask them
when they expect to get one running.

9. Why Bother migrating now?

In practice, you can sidestep most of the hassle by holding back until US and European market
pressure forces manufacturers to things properly. If you have to be "leading edge" then you’d suffer
pains willingly, if all you want is enhanced connectability, you may be able to avoid total conversion for
some time, and use application specific relay and bridging software.

Systems developers have a nightmare, since they will be finding OSI mandated in tenders, and
thus be forced to implement possibly before things get stable. To mimic 4.4BSD functionality you could
consider getting ISODE.

The problem OSI was designed to solve has almost solved itself, by the traditional process of de-
facto standardisation and market choices. Unix, in sweeping the board has reduced many problems
down to re-porting commonly available solutions to your flavour of box, if it hasn’t already been done.
Interworking between SysV and BSD has been almost completely resolved as regards IP-based pack-
ages. The otherwise regrettable domination of the PC market by IBM has also lead to a reduction in the
inter-connection problem. So if you can tolerate existing ad-hoc approaches, stick with them for another
year or so and review the situation.

If like me, your subsistence depends on this confusion, have no fear. OSI isn’t going to make net-
work hackers redundant for a long long time.

AUUGN 55 Vol 9 No 5

ISO/OSI Networking Protocols
under Berkeley UNIX

Mike Karels
Computer Systems Research Group

Computer Science Division
University of California

Berkeley, CA 94720

USA
karels@Berkeley.EDU

UNIX is a registered trademark of AT&T in the USA and other countries.

Vol 9 No 5 56 AUUGN

ISO/OSI Networking Protocols:
Project Overview

OSI protocols have enough layers, options
to keep several groups busy!

Collaborative project with funding from
NBS (US National Bureau of Standards)
for OSI protocols in POSIX framework:

Marshall Rose (Northrop/Wollengong)-
ISO Development Environment (session,
presentation, FTAM, etc.)

University of Wisconsin-
transport and network

University of California, Berkeley-
socket updates, kernel integration, link
layer; POSIX interface

University College London, University
of Nottingham-
X.400

Mitre- Virtual Terminal Protocol

AUUGN

NBS- Directory Services
57 Vol 9 No 5

University of Wisconsin contributions

Implementations of:

Transport (TP-4; maybe TP-0/X.25)

Connectionless network protocol
(CLNP) over Ethernet and X.25 (with
CONS/COSNS)

End System-Intermediate System
Protocol (ES-IS)
(implemented in daemon process)

Vol 9 No 5 58 AUUGN

UC Berkeley work

updates to socket interface

kernel integration

link layer (802.3/802.2, X.25)

POSIX interface

POSIX networking extensions?

AUIJGN 59 Vol 9 No 5

Problems in integration of OSI protocols
into 4.3BSD

4.2/4.3BSD offer network-independent
socket interface with multiple protocol
families, address families.

Interface supports TCP/IP naturally,
supports protocol features and layering
similar to TCP/IP.

Protocol features not supported
gracefully by 4.3BSD:

long network addresses (> 14
bytes)
multi-level routing hierarchy
server confirmation of incoming
connections
Receipt of lower-level protocol
data with user data (or connection
request)
record marks

Vol 9 No 5 60 AUUGN

Changes in socket interface

Variable-sized addresses:
generic address structure
(sockaddr) has length field
generic kernel sockaddrs are
allocated dynamically
(routing layer)
Source-, binary-compatible

AUUGN

Server acceptance of incoming
connections:

Protocol may pass descriptor to
server before confirming
connection using accept().

If server does read or write,
connection is automatically
confirmed.

If connection is closed
immediately, connection is denied.
Server may receive user call data
or interrogate lower protocol
layers.

61 Vo19 No 5

Changes in socket interface

Receipt of protocol information, status
with data (recvmsg):

New recvmsg call,
structure.

new msghdr

Second buffer pointer and length for
typed control information.

Received-data flags include end-of-
record, datagram-truncated, control-
data-truncated.
User may pass control buffer or end-
of-record flags to protocol with
sendmsg.

send, recv calls deprecated (use sendto,
recvfrom).

Vol 9 No 5 62 AUUGN

Changes in routing layer

Generic routes must include variable-
length destination, gateway addresses.

Routing ioctl commands to be replaced
with message-oriented routing socket.

Per-address-family network comparison
functions replaced with network-part bit
mask (byte length plus last-byte mask).

Network plus host route tables replaced
with single hierarchical table.

AUUGN 63 Vol 9 No 5

Remaining problem areas

Connection-oriented interfaces (X.25):
Current link-layer interface implies
packet-switched network.

* CLNP over X.25 is easy.
* Connection-oriented link layer may

need streams-like interface
(TP-0 / CONS /X.25).

Fill-on-demand routing tables

"Raw" interface to link layer
(IS-IS over 802.2, X.25)

Vol 9 No 5 64 AUUGN

0

0

AUUGN 65 Vol 9 No 5

.<

NIX~’’ SYSTEM MARKET GROWTH

WORLDWIDE CUMULATIVE
NUMBER OF UNITS SHIPPED
1,000K --

MT8ABOPL1.010

800K

600K

400K

200K

1981 1982 1983 1984 1985 1986 1987 1988

SYST V STA A AT

svvs

NBS/FIPS

UNIX" SYSTEM V SVID X/OPEN-CAE UNiX SYSTEM V

MTSABOPL1,002 TiME

.<

UNIX SYSTEM UNIFICATION

ASE 3.2

UNIX SYSTEM V RELEASE 3.1 RELEASE 4.0 .

1983 1985 1988 1989
MT8ABOPL1.008 ~

AUUGN
69

Vol 9 No 5

.<

UNiX~ SYSTEM V
1 9 8 7 Product Activities

3B2 porting base
- Re~ease 3.1

386 port
-Release

lnt erna t ionaliza tion
-Japanese
- Korean
- French
- German

MTSABOPL1.005

19
U
7

X* SYST
ion

V
Activities

Microsoft agreement
o XEN~X® consolidation
o Establish ~nte~ standard AB!
o Trademark ~icensing

Sun agreement
=BSD, Sun OSTM consolidation
=Establish SPARCTM standard

Trademark ~icensing

MTBABOPL1.006

F_ndorsements
~EEE POS~X
ANS~ C
NBS

OPEN

~ ¯ ¯ ¯

Vol 9 No 5 72 AUUGN

0

Ap
U X® SYST

ications inary n
V

efface (AB)

We are working with other major
processor technolo y vendors.to
for additional architectures:

(microprocessor)
support ABIs

= Intergraph® Clipper~

= MIPS®
Architecture

= Motoro|a~ 68XXX and 88XXX

SUN Microsystems® SPARC’"

MTSATR421,004

Vol 9 No 5

~ 0

(3 0

X
0

X

74

00 ~

AUUGN

UNIX® SYSTEM V
19 Product Activities

¯ Deliver

3B2 Release 3.2
386 Release 3.2
JAE 2.1
Japanese Messaging System
JAE / 386

MTSABOPLI.007

UNIX® SYSTEM V
elease 4.0 irections

Opera ions, a minis
an m~ln enaRce

ration

Real time

= Internationalization

¯ POSIX conformance

MTSABOPL1,021

OPEN capabilities

¯ XENIX® / BSD consolida []ion

O

AUUGN 77

0

Vol 9 No 5

U X®
e~ease

SYST V
4. irections

Unification

BSD
Signals

OSTM

- NFS
o RPC
- X / NeWSTM

MT8 ABOPL 1.0 2 0

U SYST V
19 Unification Activities

implement POSIX conformance

= Deliver XENIX" consolidation

Develop B D / Sun O TMcOnsOiidatiOn

¯ Implement X/OPEN capabilities

industry Review Draft SVID

industry Review Draft

MT8ABOPL 1.016

Vol 9 No 5 8O

o

AUUGN ~

~ CA5761.117 KEF

T

A
LOO

CAL

T

USER INTERFACE

OP LOOK is A Trademar Of AT T

OP LOOK USER IN FERFACE

t t t t

, !
APPLICATIONS

!

MTSATR421,007

. CA7893.105

WHAT iS A GRAPHICAL WINDOWING SYSTEM?

LJC

A Collection Of Programs Which:
- Allow For Multiple Applications To Appear

Simultaneously On A Display Device

Support Interactive Graphics And
Devices

Pointing

<CA5761.103 CAG

LOOK~" GRAPHICAL USER iNTERFACE
A STANDARD "LOOK AND FEEL"

= AT&T Offers "Look And Feel" To The industry

OPEN LOOK .Specification Published

Z

v’
0
0

AUUGN 85 Vol 9 No 5

Vol 9 No 5 86 AUUGN

CA7893.145

UNIX ~; SYSTEM
GRAPHICS

USER iNTERFACE STRATEGY

OPEN LOOK

Xt+ Xt+ NDE

X11/NEWS

UNiX SYSTEM

Look
And Feel

Applications

Graphics
Toolkits
(APls)

Graphics
Platform

Operating
System

BR/BAD.

CA7893.114

X 1 1 /NeWS GRAPHICS SOFTWARE

Network/
Integral Display

Host

X 1 1 / NeWS-’~
Server

BR-FRG

X Window
Server

Applications Must Be Written To EitherX Window Or NeWS Graphics
Standard. Target Display Devices Need To Be A Factor in Deciding Which
Standard To Use
Graphics Servers Manage Displays

Any Client Application Can Connect To A Local Or Remote Server Of The
Same Type (X Or NeWS)

CA7893.107 LJC

API TOOL KITS

Object Oriented Programming Environment
- Programmers Link Pre-defined User Interface

Objects into Their Application

Toolkit Objects Include:
Scroll Bars
Buttons
Menus
Pop-up Windows
Notices
Context Sensitive Help

Two Tooikits
- Xt+
- NDE

CA5761.107
]--] KEF

OPEN LOOK TM GRAPHICAL USER iNTERFACE
BUILD OPEN STANDARD

Expand UNIX ® System V Market Place

Create Recognized System V User interface

Create Industry Standa~’d "Look And Feel"

industry Input Program

License Trademark

License Source Code

CA5761.108 KEF

OP LOOK TM G AP CAL USE I T FACE

INDUSTRY.INPUT PROGRAM

¯ Solicit industry Comi’nent

Keep The industry informed

Circulate Draft Spec Ju~y 1988

Circulate Style Guide Draft September 1988

= Circulate API Drafts September 1988

CA5761.109
~ KEF

OP LOOK TM GRAPHICAL USER iNTERFACE
TRADEMARK LICENSING PROGRAM

Encourage Licensing Of The

Requires Compliance With

Maintain A Consistent

OPEN LOOK

pecification

"Look And Feel"
Establish Alternate .Langua

Endorse Other Toolkits
ge Toolkits

Trademark

CA7893.139 LJC

THE APPLiCATiON
STYLE GUIDE

The UNIX"System Standard Look And Fee~ ~s Designed To Make The
Power Of The UNiX System Easy and Efficient To Use For Both
Non-Technica~ And Technica~ Users.

The AT&T Application Style Guide is Designed To Make
Developing Conforming Programs Easy And Efficient.

Every Application Developed Using The Application Style Guide
Should Be Consistent With Other OPEN LOOKTMApplications
So The End User Need Not Relearn common Actions.

The Application Style Guide Provides Guidelines On
How To Design Applications That Are Easy To Learn, Efficient
To Use And Consistent With Other OPEN LOOK Applications

0
0

Vol 9 No 5 94 AUUGN

G A
SY$ 15

VAX V~S
5%

SOURCE:

S
R

OSF and ABI:

Technology and Future

Impact on UNIX

Ross Bott
Pyramid Technology Corporation

September 14, 1988

©1988 Pyramid Technology Corporation
~ PYRAMID

"--’=’-- TECHNOLOGY
Page1

Applications Development Under UNlX(tm)

Informix.
Currently maintaining 110 different UNIX ports

for its products

Oracle:
Currently has 40 UNIX ports
Porting group of 50+

RTI"
Currently has 40+ UNIX ports

SPSS:
17 UNIX ports x 2,000,000 lines of code

Uniplex"
87 Ports

©1988 Pyramid Technology Corporation

~ PYRAMID
"--"=’- TECHNOLOGY

Page 2

Vol 9 No 5 96 AUUGN

and OSF: issues

(1) Impact of the proliferation of UNIX versions on
software developers and users

* Does the introduction of OSF just make a bad
situation worse?

* Will the Application Binary Interface solve
this proliferation problem?

(2) Binary compatibility (ABI) vs source compatibility (OSF)

(3) What is so difficult about porting an application to a
new version of UNIX?

(4) Impact of compatibility and portability on
the future of UNIX

©1988 Pyramid Technology Corporation

¯ =---- PYRAMID
~ TECHNOLOGY

Page 3

Outline of Presentation

I. Competing pressures brought by the Open Platform
philosophy.

II. ABI" Current perceptions and an historical perspective

III. ABI: A formal definition

IV. ASI" Application Source Interface

V. ABI vs AS!

VI. Application porting process

VII. OSF
Compatibility Levels
Optional Implementation of Features
Evolution of Commercial UNIX

VIII. Summary

@1988 Pyramid Technology Corporation

PYRAMID
TECHNOLOGY

Page 4

AUUGN 97 Vol 9 No 5

Perspective: Open Platform User

Applications

I Open Platform Interface

Hardware Platforms

©1988 Pyramid Technology Corporation

"----- PYRAMID
--"-"=- TECHNOLOGY

Page 5

Perspective: Open Platform User

Open Platform Provides"

(1) Wide availability of applications

(2) Continually competitive price-performance

(3) Leveraged system development

(4) Leveraged application development

(5) Maximum people portability

(6) Not tied to a single hardware manufacturer

©1988 Pyramid Technology Corporation

--’---- PYRAMID
~ TECHNOLOGY

Page 6

Vol 9 No 5 98 AUUGN

Perspective: Open Platform
Software Developer

Application

Hardware Platforms

©1988 Pyramid Technology Corporation

¯ ----’-- PYRAMID....~,~....,,.,_

TECHNOLOGY
Page7

Perspective: Open Platform
Software Developer

Issues"

(1) Huge number of platforms to support

(2) For each:
(a) new hardware platform
(b) new release of operating system
(c) new release of software

the following must be done:
(a) re-port
(b) re-regression test
(c) re-release process
(d) additional variation to support

(3) Therefore, the fewer the platforms the better!

©1988 Pyramid Technology Corporation

------ PYRAMID
TECHNOLOGY

Page 8

AUUGN 99 Vol 9 No 5

Release Proliferation

Ingres RDBMS

2 releases a year on average

40 UNIX hardware platforms

1.5 operating system releases per year
for each platform

==> 120 releases each year, even without
taking on new platforms!

==> One release every 2 working days

©1988 Pyramid Technology Corporation

PYRAMID
TECHNOLOGY

Page 9

Perspective: Open Platform
Computer Manufacturer

Applications

Hardware Platforms

©1988 Pyramid Technology Corporation

PYRAMID
TECHNOLOGY

Page10

Vol 9 No 5 100 AUUGN

Perspective: Open Platform
Computer Manufacturer

Issues"

(1) Each major software application requires:
(a) possible porting funding
(b) possible OEM volume commitments
(c) machines and support for port
(d) additional first line software support

for system
(e) continual tracking to assure that

latest release is on system

(2) Fewer applications decreases commitments
and support requirements.

(3) More applications increases potential customer
base.

©1988 Pyramid Technology Corporation

PYRAMID
TECHNOLOGY

Page11

Release Proliferation for
Manufacturer

Pyramid Technology

335+ active software applications

new release every 1-2 years per application

new operating system release every 8 months

==> 335-770 new releases each year, even before
adding new applications software

©1988 Pyramid Technology Corporalion

~ PYRAMID
---"=-- TECHNOLOGY

Page12

AUUGN 101 Vol 9 No 5

Conflicting Forces Between Perspectives

USERS

More

applic~

SOFTWARE Fewer platforms ~ COMPUTER

DEVELOPERS -,,= MANUFACTURERS
Fewer applications

©1988 Pyramid Technology Corporation

PYRAMID
TECHNOLOGY

Page13

Conflicting Forces: Implications

(1) Despite the intent of open platforms, it is becoming
increasingly difficult for new computer architectures to
succeed.

Small customer base

/’’,
~ No portsFew incremental

sales likely for
S/W developer

(2) Problem is magnified by VLSI.

(3) New "deep" software applications are difficult to
justify.

©1988 Pyramid Tochnology Cotporallon

PYRAMID
TECHNOLOGY

Page14

Vol 9 No 5 102 AUUGN

Applications Binary Interface (ABe)

Definition" A specification of a computing environment
such that any binary written to this specification will run
on any computer system satisfying this specification.

Specification must include:

Instruction set (IS)
System call interface (SCl)
Binary data representation (DR)
User process layout "] (PR)Procedure call interface J
Graphics interface

I (Ul)Window interface

©1988 Pyramid Technology Corporation

¯ -’---- PYRAMID
~ TECHNOLOGY

Page15

ABI: The Political Sell

Users:

(1) Advantage: "Assurance" of compatibility of
binary applications across AB! platforms

(2) Advantage: Less investment in retargeting
of in-house applications

Software developers:

(1) Advantage: Fewer platforms to worry about.

(2) Advantage: Single binary

(3) Option for "shrink wrap software"

©1988 Pyramid Technology Corporation

PYRAMID
TECHNOLOGY

Page16

AUUGN 103 Vol 9 No 5

ABI: The Political Debate

Computer manufacturers:

(1) Advantage: if CPU is an ABI, then.one can take
advantage of all software ported to that ABI

(2) Disadvantage: AB! definition was being defined
by a small subset of computer manufacturers.
Problems of control and early release of ABI software.

(3) Disdvantage: if CPU is not an ABI, then
manufacturer becomes an outsider to users and
software developers.

(4) Disadvantage: Discourages new computer architecture
development

(5) Disadvantage: Encourages concept of hardware
as a commodity.

©1988 Pyramid Technology Corporation

-’---’-- PYRAMID
~ TECHNOLOGY

Page17

PC / MS-DOS as an AB!

How did MS-DOS / PC become an ABI?

(1) De facto standard set by IBM PC

(2) Market large enough and hardware simple enough
to support competitive commodity manufacturing.

(3) Selling price of hardware and customer needs
.

require inexpensive software and volume
distribution channels. Shrink wrap software becomes
a necessity.

(4) Non-expert customer base and shrink wrap
software require binary compatibility without
complications.

©1988 Pyramid Technology Corporation

=----- PYRAMID
~ TECHNOLOGY

Page18

Vol 9 No 5 104 AUUGN

PC / MS-DOS as an AB~ (cont.)

Why does it succeed as an ABI?

(1) Everyone uses the same chip (easy
answer)

(2) Standard is not CPU chip but whole
system architecture

(3) Performance not critical on most
applications ==> little incentive to stray
from full standard to boost performance

(4) Third party hardware plug-in requirements

-- Sometimes it really doesn’t.

©1988 Pyramid Technology Corporation

¯ ------ PYRAMID
~ TECHNOLOGY

Page19

PC / MS-DOS as an ABI (cont.)

Keys

(1) Application simplicity

(2) No requirement for performance tuning

(3) An! as a full system

(4) Commodity volumes

©1988 Pyramid Technology Corporalion

¯ ,,----- PYRAMID
~ TECHNOLOGY

Page 20

AUUGN 105 Vol 9 No 5

370/VM as an

Why does it succeed?

(1) De facto standard set by IBM.

(2) Operating system written in a low level language;
forces full system compatibility

(3) Huge body of applications, most non-portable.

(4) PCM at the same performance is acceptable" IBM
margin is large enough to undercut.

©1988 Pyramid Technology Corporation

--’-"-- PYRAMID
"""--- TECHNOLOGY

Page 21

What Does AB! UNIX
Really Buy You?

©1988 Pyramid Technology Corporalton

PYRAMID
TECHNOLOGY

Page 22

Vol 9 No 5 106 AUUGN

ABI: Towards a Formal Definition

Need to formalize"

A

ApII2ABI AB!

Impll Impl2

©1988 Pyramid Technology Corporation

PYRAMID
TECHNOLOGY

Page 23

ABI as an Interface Definition

ABI = <IS, SCl, DR, PR, Ul>, where

IS = instruction set
SCl = system call interface
DR = binary representation of data
PR = procedure segment setup +

procedure call protocol
Ul = window interface + graphic interface

<IS, DR, PR> define a user computer architecture

SCl and U! are (virtually) independent of the computer
architecture

©1988 Pyramid Technology Corporalion

=---- PYRAMID
~ TECHNOLOGY

Page 24

AUUGN 107 Vol 9 No 5

Testing ABI Compatibility:
System Side

Operating System

System I Return
call values as

expected?

ABI validation suite

Instruction i

instruction
Behavior

as expected?

AB! "diagnostics"

©1988 Pyramid Technology Corporation

------ PYRAMID
~ TECHNOLOGY

Page 25

ABi Definition and Validation Suite
as a Partial Specification Only

Untested exten

Operating System

ABI validation suite

ons to ABI

nstruction
set

AB! "diagnostics"

©1988 Pyramid Technology Corporation

=,’---- PYRAMID
--"===- TECHNOLOGY

Page 26

Vol 9 No 5 108 AUUGN

ABi Application Validation

(1) No single validation suite can exist.

Op~er~iting System

information or services or errors returned

Application

©1988 Pyramid Technology Corporation

----- PYRAMID
~ TECHNOLOGY

Page 27

ABI Application Validation (cont.)

(2) Indirect validation only is done by regression
suite specific to that application.

I CompilersABI (?)
! fromSource

U.n.tested J Operatingmnary j ystem

Knowngood| ,~_l Regression]
output J~______’~_-I_~ output

©1988 Pyramid Technology Corporalion

---’--" PYRAMID
~ TECHNOLOGY

Page 28

AUUGN 109 Vol 9 No 5

AB! As an Operator

Define abi(Appl) as

(a) a conversion of the source of application Appl
to obey ABI

(b) a compilation CG of the source of Appl, where
CG conforms to DR and PR and generates
code from IS.

Thus, abi(Appl) is a runnable object on any computer
conforming to this ABI.

988 Pyramid Technology Corporation
PYRAMID
TECHNOLOGY

Page 29

Application-specific ABi Compatibility

Define: REGR-appl as the output from a suite of
regression tests for appl.

An application is ABI compatible iff REGR-appl is the same
for all known computers satisfying that ABI.

Definition. Two computers Impll and Impl2 are
ABI-REGR-compatible with respect to Appl iff

REGR[abi(Appl), Impll] = REGR[abi(Appl), Irnpl2]

REGR[CG(ABI(Appl),ABI), lmpll] = REGR[CG(ABI(Appl),ABI), Impl2]

REGR[CG(<SCI,UI>(Appl),ABI), Impll] = REGR[CG(<SCI,UI>(Appl),ABI), Impl2]

©1988 Pyramid Technology Corporalion
PYRAMID
TECHNOLOGY

Page 30

Vol 9 No 5 110 AUUGN

Application Source interface (ASI)

ASI = <SCI, Ul, PS>, where

SCI = system call interface
Ui = window interface + graphic interface
PS = porting specification

PS is defined such that no part of the applicaton
source is architecture dependent, for an acceptably
large class of computer architectures

©1988 Pyramid Technology Corporation

----- PYRAMID
~ TECHNOLOGY

Page 31

Examples of AS!

(1) SVID + X-Windows + GKS + PS

(2) X-OPEN (with planned additions) + PS

(3) POSIX (with planned additions) + PS

(4) OSF Level 1 (1991-2) ÷ PS

Keys are
(a) whether SCl is sufficiently powerful
(b) a well articulated PS

©1988 Pyramid Technology Corporation

------- PYRAMID
~ TECHNOLOGY

Page32

AUUGN 111 Vol 9 No 5

System Validation

System

System J J Return
call I J_ values as

I ~’ expected?

AS! validation suite

©1988 Pyramid Technology Corporation
PYRAMID
TECHNOLOGY

Page 33

Validation of ASi Application

Indirect validation by regression suite
specific to that application.

ABI (?)
Source

Untested
binary

Known good J~~ Regression
output output

Ls
’ Compilers 1

from
ystem .

I Operating
L~ system

©1988 Pyramid Technology Corporation

PYRAMID
TECHNOLOGY

Page 34

Vol 9 No 5 112 AUUGN

Application-specific AS! Compatibility

Definition: Two computers ASI1 and ASi2are
ASI-REGR-compatible with respect to Appl iff:

REGR[CG(ASI(Appl), ASil), ASI1] = REGR[CG(ASI(Appl), ASI2), ASI2]

REGR[CG(<SCl,UI,PS>(Appl),ASI1), ASll] = REGR[CG(<SCI,UI,PS>(Appl), ASI2), ASI2]

©1988 Pyramid Technology Coq3oration

¯ -"--- PYRAMID
--==’- TECHNOLOGY

Page 35

ABI vs AS!

REGR[CG(<SCI,UI>(Appl),ABI), Impll] = REGR[CG(<SCI,UI>(Appl),ABI), Impl2]

REGR[CG(<SCl,UI,PS>(Appl),ASI1), ASll] = REGR[CG(<SCl,UI,PS>(Appl), ASI2), ASI2]

Identical"

(1) Application does not change.
(2) Standards that application must adhere to are

architecture independent.
(3) Regression test is (in theory) a formality.

Differences:

(1) With ABI, CG targets to same instruction set, and
must be done only once. With ASI, CG must be done
once for each side of the equation.

(2) ABI doesn’t need PS.
-------- PYRAMID

--’=-=’- TECHNOLOGY

©1988 Pyramid Technology Corporalion Page 36

AUUGN 113 Vol 9 No 5

ABi vs ASI: In Theory

As interface definition:

AB! = AS! + instruction set specification

As a product release process:

AB! = ASI- incremental compile

©1988 Pyramid Technology Corporalion
PYRAMID
TECHNOLOGY

Page 37

Resolving the Differences:
Multiple AB! s.

ABI
_

A

is equivalent to

for small numbers of machines from each manufacturer.
Thus, non-merchant chip ABI’s are nearly meaningless.

©1988 Pyramid Technology Corporalion
~ PYRAMID

--’-"=-’- TECHNOLOGY
Page 38

Vol 9 No 5 114 AUUGN

AB! vs ASI:
How Does Theory Differ From Perception?

Software developer: A single compile Is a very big deal.
No manufacturer agrees upon compiler, OS, or debugger
standards. Separate releases for each ASI are a big
headache.

l User: For internal applications, no perceived need~
to compile. For external applications, nothing.

Computer manufacturer: A chance of running binaries
from untested third party developers.

©1988 Pyramid Technology Corporation

"---- PYRAMID.-.~,~....-..
~ TECHNOLOGY

Page 39

Myth No. 1

AB! guarantees that a binary application will run
on any ABi-compatible computer.

False" Application can use feature outside of ABI.

Example" On VAX, for p=0, *p=0.

©1988 Pyramid Technology Corporation

,=---- PYRAMID
~ TECHNOLOGY

Page40

AUUGN 115 Vol 9 No 5

ABI as a Partial Constraint Definition

impl2

ABi
definition

Impll

System design space obeying ABI

©1988 Pyramid Technology Corporation ~ PYRAMID
---’--"-" TECHNOLOGY

Page 41

From AB! Definition to AB! System

Definition incompleteness
Extension to full system
Feature enhancements
Performance enhancements

©1988 Pyramid Technology Corporalion
PYRAMID
TECHNOLOGy

Page42

Vol 9 No 5 116 AUUGN

AB~ Application
Violating Binary Compatibility

©1988 Pyramid Technology Corporation

----- PYRAMID
:~ TECHNOLOGY

Page43

Why An Application Can
Stray Beyond ABI Definition

Need for additional features
(application complexity)

Performance requirements
Unintentional straying

Cannot test for application ABI compatibility

©1988 Pyramid Technology Corporalion

’=’---- PYRAMID
--=’==’- TECHNOLOGY

Page 44

AUUGN 117 Vol 9 No 5

1.0

0.0

Cross-System Binary Compatibility

Theory

Low ABI systems
ABI "freedom"

Complexity of software
Need for performance

High ASI systems

©1988 Pyramid Technology Corporalion
~ PYRAMID

"--"--- TECHNOLOGY
Page 45

Myth No. 2

An ASI would imply a greater porting effort than
and ABI.

False: if application obeys porting specification
and computer system provides standard front end to
compiler, then "port" for AS! is a recompile.

©1988 Pyramid Technology Corporalion
PYRAMID
TECHNOLOGY

Page 46

Vol 9 No 5 118 AUUGN

Perceived Porting Effort
Required of Software ~Developer

Increasing
effort

ASI application"
perceived effort

ABI application

Low High
Application impurity vs standard

System impurity vs standard
Application complexity
Need for performance

©1988 Pyramid Technology Corporation

¯ "----" PYRAMID
~ TECHNOLOGY

Page 47

Application Porting Process

I CompilerI
Problems:
(1) Non-standard

front end
(2) Compiler bugs

Source

source
lain

" to manuf

Include files
and libraries

Problems:

Yes

Unteste6
Binary]

(1) Mislocated or missing
include files

(2) Missing misnamed library
functions

©1988 Pyramid Technology Corporalion

"----- PYRAMID
~ TECHNOLOGY

Page48

AUUGN 119 Vol 9 No 5

Application Porting Process (cont.)

Apply
regression
test suite

Untested
binary

Isolate
bugs

Released
product

No

Performance
tuning

process

©1988 Pyramid Technology Corporation

PYRAMID
TECHNOLOGY

Page49

Porting Effort to Different AS!
(C Language)

Source

Untested Binary

#~n Run ~,regression \
suite \

d differences ~,.
Debug ~

roduce releases ~

Performance Tuning

Product Release on ASI System
Support I

©1988 Pyramid Technology Corporation

------- PYRAMID
TECHNOLOGY

Page50

Vol 9 No 5 120 AUUGN

Porting Process: Example

Ingres RDBMS:

Stage 1 (new port): 5 days to 3 months
(re-port): 2-3 days

Stage 2 (regression)" 2-3 days CPU time
7-8 days diff & debug

Stage 3 (tuning): 2-12 months

©1988 Pyramid Technology Corporation

------- PYRAMID
~ TECHNOLOGY

Page 51

Porting Effort to Different ASI
(Fortran Language)

Source

Compile

Untested Binary

~n
Run ~

regression \
suite \

d differences ~
Debug ~

roduce releases

Performance Tuning

Product Release on ASI System
Support

©1988 Pyramid Technology Corporation

------ PYRAMID
~ TECHNOLOGY

Page 52

Vol 9 No 5
AUUGN 121

Towards an ideal ASI Porting Process

Source

Standard Compiler ~ ~ Cornp,eFront Ends

Untested Binary
r Run

Strict, complete AS!
(system + application)

Release Automation

regression
suite
Find differences

Debug

Produce releases
Product Release on ASI System

Strict ASI ~ ~ Support I

©1988 Pyramid Technology Corporation
PYRAMID
TECHNOLOGY

Page 53

Porting Effort Required With
Strong ASi and Porting System (PS)

AS! application

¯

n

Low High
Application impurity vs standard

©1988 Pyramid Technology Corporation

System impurity vs standard
Application complexity
Need for performance

PYRAMID
TECHNOLOGY

Page 54

Vol 9 No 5 122 AUUGN

Myth No. 3

AB! allows UNIX to move into the Age of
"Shrink-Wrap Software"

Partially false"

Shrink wrap software =
(1) binary compatibility
(2) cost
(3) low complexity & performance not an issue

©1988 Pyramid Technology Corporation

-------- PYRAMID
~ TECHNOLOGY

Page 55

Commodity-based ABi’s

PC / Low end
MS-DOS ABI Unix

Shrink wrap
software?

Yes Soon

Application Low to Low to

complexity moderate moderate

Sys Stand
exists?
useful?

Commodity
hardware?

High gross
margins?

Performance
important?

Yes Some cases
YesYes

Yes Coming
soon

No

Sometimes

No

Sometimes

©1988 Pyramid Technology Corporation

-------- PYRAMID
~ TECHNOLOGY

Page 56

Vol 9 No 5
AUUGN 123

Shrink wrap
software?

Price Leverage ABi

High end 370
ABI Unix VM / MVS

No
No

Application Moderate
complexity to high Moderate

to high

Sys Stand
exists? No No
useful? No(?) Yes

Commodity
hardware?

High gross
margins?

Performance
important?

No
No

No Yes

Yes Sometimes

©1988 Pyramid Technology Corporation
PYRAMID
TECHNOLOGY

Page 57

Open Software Foundation:
The Political Reasons For its Creation

* Counter to the pewer move of AT&T and Sun

* AB! to be defined by a small subset of developers

* (Successful) attempt to reopen and reunify UNIX

©1988 Pyramid Technology Corporalion

PYRAMID
TECHNOLOGY

Page 58

Vol 9 No 5 124 AUUGN

Technical Goals for OSF UNIX

(1) Source distributed; available to many hardware
platforms (OSF as ASi)

(2) Adherence to standards
* verification suites are crucial

(3) Freedom to choose what to implement

(4) Significant feature enhancements to UNIX

©1988 Pyramid Technology Corporation

------- PYRAMID
~ TECHNOLOGY

Page 59

Adherence to Standards

OSF as a superset of POSIX and X/OPEN UNIX’s

POSIX
X/OPEN UNIX

OSF

©1988 Pyramid Technology Corporation

----- PYRAMID
~ TECHNOLOGY

Page 60

Vol 9 No 5
AUUGN 125

"Danger" of Multiple UNIX’s

ATT System V.4

POSIX X/OPEN UNIX

OSF UN

©1988 Pyramid Technology Corporation
PYRAMID
TECHNOLOGY

Page 61

UNIX Compatibility Levels

Level 2

Level 3

©1988 Pyramid Technology Corporalion
PYRAMID
TECHNOLOGY

Page 62

Vol 9 No 5 126 AUUGN

Compatibility Level of a Software Application

Software
Application

Level 1

Level 2

Level 3

Requires
Level 2

Compatibility

©1988 Pyramid Technology Corporation

-----’- PYRAMID
~ TECHNOLOGY

Page 63

"Freedom" of Implementation
of Optional Features

Core
OSF
UNIX security

©1988 Pyramid Technology Corporation

------ PYRAMID
TECHNOLOGY

Page 64

Vol 9 No 5
AUUGN 127

Two UNIX’s:
An Example of Optional Freedom

©1988 Pyramid Technology Corporation
PYRAMID
TECHNOLOGY

Page 65

Effect of Option Freedom on Applications

Application

Core
OSF
UNIX

security

©1988 Pyramid Technology Corporalion
PYRAMID
TECHNOLOGY

Page 66

Vol 9 No 5 128 AUUGN

Evolution of Commercial UNiX
SQL-based

Applications

Customized
Office Autom.ation \~,~,~,~,~-/

for Law Offices

Customized
mail interfaces

for large project
management

©1988 Pyramid Technology Corporation

------- PYRAMID
~ TECHNOLOGY

Page 67

UNIX and RDBMSs: 1988 Relatio~shi~

Kernel driver

Proprietary
4GL

SQL Interface

Back-end Interface

©1988 Pyramid Technology Corporation

¯ -’------ PYRAMID
~ TECHNOLOGY

Page 68

AUUGN 129 Vol 9 No 5

UNIX and RDBMSs: 1990s Relationship

Custom
Vertical
Market

Applications

RDBMS
Proprietary
Front End
and 4GL

SQL ISAM~
ISAM

3QL Optimized ISAMback-end \
~ Electronic~

I _ " \ _.~"" .\
t /~ent
I I~’c’~’’’ UNIX oy,.~rrj _. mail
~ [.... ~"/ Electronic

~o, y ~s,e~ / ~"
X X-windows/
~ Early 1990’s

~ Commercial
~ UNIX

©1988 Pyramid Technology Corporalion
~ PYRAMID

"-"-"’- TECHNOLOGY
Page 69

UNIX and RDBMSs: 1990s Relationship

Back-end contained within the
UNIX operating system

High speed transaction performance
built in to OS

©1988 Pyramid Technology Corporalion
PYRAMID
TECHNOLOGY

Page 70

Vol 9 No 5 130 AUUGN

Summary

(1) Absolute ABi is an illusion.

(2) ABI UNIX is possible at the low end (commodity ABI)

(3) ABI UNIX unlikely at the high end
* performance tuning is critical
* no price margins to work with
* a disservice to creativity in computer architectures

(4) A well specified and conformed to ASI approaches
an ABI in effective utility

(5) OSF optional implementation approach dangerous
unless extremely well specified.

(6) ABI pushes trend towards hardware as commodity.

(7) OSF pushes trend toward software as a commodity.

©1988 Pyramid Technology Corporation

PYRAMID
TECHNOLOGY

Page71

Research and Entreprenurial Opportunities

(1) Regression testing process as:

(a) an expert system

(b) a completely automated process

(2) Computer assisted release management

(3) A theory of porting (given a space of computer
architectures)

(4) High efficiency object to object translation

©1988 Pyramid Technology Corporation

~ PYRAMID
-""="- TECHNOLOGY

Page 72

AUUGN 131 Vol 9 No 5

login®

The USENIX Association Newsletter

Volume 13, Number 4

CONTENTS

July/August 1988

Call for Papers: Winter 1989 USENIX Conference ..3
UNIX Security Workshop ...4
Workshop on UNIX and Supercomputers ..5
C+ + Conference ...6
Call for Papers: Workshop on Large Installation Systems Administration7
Future Events ..8
EUUG Autumn Conference ..8
Charge Number Accounting Without Kernel Modifications ...9

Paul E. McKenney
Presenting a Single System Image with Fine Granularity Mounts13

Charles.H. Sauer
San Francisco Thanks ...20
Publications Available ..21
C+ + Tape ..21
2.10BSD Software Release ...22
New Supporting Member ..22
UUNET Communications Service ..23
4.3BSD Manuals ...24

4.3BSD Manual Reproduction Authorization and Order Form25
Local User Groups ..26

The closing date for submissions for the next issue of,’login: is August 26, 1988

THE PROFESSIONAL AND TECHNICAL

UNIX® ASSOCIATION

Vol 9 No 5 132 AUUGN

;login:

Charge Number Accounting Without Kernel Modifications

Paul E. McKenney

SRI International
Computer Systems & Services

ABSTRACT

The Golden Age of timesharing may be over, but there still are some hosts that must
perform resource usage accounting.

There have been many charge number accounting schemes implemented on UNIX,
however, they typically require modifications to the UNIX kernel and to system programs
such as login.

Sri-unix had been running such a system for a number of years, but it was becoming
very expensive to maintain, partly due to the age of the code and the number of program-
mers who had modified it, but also because the modifications had to be reinstalled into each
new release of the operating system. Therefore, we at SRI decided to rewrite the accounting
system so that it would run on a vanilla BSD system (without modifications to the kernel or
to systems programs). This project was successful; the resulting accounting system has been
running on sri-unix for over a year.

This paper will give an overview of the implementation, features, and limitations of
this system, and will discuss some features of UNIX that helped (and hindered!) its
development.

1. Introduction

Sri-unix is a "central" machine that is
owned by SRI as a whole. Its continued
existence is justified only by the willingness of
its users to pay for the privilege of using it. In
this day of personal computers and worksta-
tions, it might be helpful to list some reasons
why people would want to use a centrally
located super-mini:

¯Low up-front cost.

¯Availability of user consultants.

¯ Disk backups and other administrative
chores performed by central staff.

¯ Good network connectivity that might be
expensive to reproduce elsewhere.

Most of sri-unix’s users fall into these
categories:

¯ Mail and network news readers. These
users would probably be satisfied with a

normal accounting system, as they typically
use a single charge number for all of their
work.

¯ Prograrnmers. Again, these users would
probably be satisfied with a normal accounting
system.

¯ Technical writers. These users need
charge number accounting, since they typically
prepare reports and proposals for many ongo-
ing projects. Furthermore, these users wanted
to be able to change charge numbers in mid-
session, as logging off of and onto a busy
system can be time-consuming.

While there are relatively few technical
writers on the system, the technical writers
make much heavier use of the system than
most other users do. They thus make a much
heavier contribution to the system’s revenues
than do the other users. Suffice it to say that
we were more than willing to implement an
accounting system to make life easier for them.

AUUGN 133 Vol 9 No 5

;login:

2. The Old Accounting System

The old accounting system did charge
number accounting that was based on the
standard System V’ accounting system [2]. It
billed for connect time, CPU time, disk space,
and printer usage. Connect time and CPU
time were billed at a lower rate during non-
prime time and on holidays, and could be
billed to different charge numbers (at the
user’s discretion) on a session-by-session basis.
Disk space and printer usage were billed at a
flat rate to the user’s default charge number.

The old system had the following draw-
backs:

o It had been modified over the years by a
legion of programmers. The code was very
difficult to read and maintain, and had
accumulated an annoying number of
idiosyncrasies and bugs.

o It required users to log out and back in to
change theircharge number. This mis-feature
did not make the technical writers happy.

¯ It relied on a specially modified version of
login to collect and record the charge number
information. This modification had to be
reapplied every time the operating system was
upgraded, which diverted scarce systems
programming resources from other projects
and scarce budgetary resources to source
license renewals.

¯ There was ho invoicing to the users, thus
they were unsure of how much money they
were spending until their charges worked their
way through SRI’s main MIS system some
weeks later.

3. Requirements for the New
Accounting System

The new accounting system was required
to:

¯ Run on a vanilla BSD 4.2 version of UNIX.
No modifications to the kernel or to systems
programs were allowed.

¯ Charge for connect time, CPU time, disk
space, and printer usage.

o Bill CPU and connect time at a lower rate
during non-prime time and on holidays.

¯ Allow the user to specify a charge number
at any time during a login session, and have all
subsequent connect and CPU time used during
that session billed to that charge number.

¯ Maintain lists of valid charge numbers.
Each valid charge number must have a list of
users who are permitted to use it. A separate
charge number list must be kept for each
UNIX group, and it must be possible to
designate a user to be the group administrator
for a given group. A group administrator must
be able to modify the list of valid charge
numbers for his group. The supervisor for a
group is usually designated as that group’s
administrator.

¯ Produce per-command and per-user usage
reports each week.

¯ Produce a billing tape each week that can
be used as input into SRI’s MIS system.

¯ Send weekly invoices to users, at their dis-
cretion. A user should also be able to specify
that his invoice should be sent to someone else
(e.g., his supervisor).

¯ Allow a user to see how much the current
session has cost so far.

¯ Of course, the system should run with as
little human intervention as possible.

4. The User’s View of the New
Accounting System

4.1. Setting the Charge Number

The setcharge program is the normal
user’s main interface to the accounting system.
This program may be run at any time during a
login session. It will query the user for a
charge number, possibly offering a default.
The charge number entered by the user is
checked against a list of valid charge numbers
for that user. If the charge number is
accepted, all subsequent CPU and connect time
for the current login session will be billed to
that charge number.

If the user never runs the setcharge
program, the session will be billed to his
default charge number. "The accounting
system always gets its money."

Vol 9 No 5 134 AUUGN

;login:

4.2. Weekly Invoices

A user can get weekly invoices automati-
cally mailed to him by placing an empty file
named .InvoiceWeekly into his home directory.
He may also place a list of mail addresses into
the .InvoiceWeekly file. This will cause weekly
invoices to be mailed to each address in the
list.

For example, suppose that Mary is Peter’s
supervisor, and that she wants to see his
weekly invoices.. If Peter places the following
into his .InvoiceWeekly file:

peter
mary

they will both get a copy of Peter’s weekly
invoices.

4.3. Cost of Current Session

A csh script named SessionCost (based on
the csh time command) may be sourced to
determine the connect and CPU charges
incurred so far for the current session. The
following is an example of SessionCost’s
output:

CPU and connect cost for session exclud-
ing running background processes:

$1.02 CPU, $4.83 Connect, $5.85 Total

Since UNIX does not record the resource usage
of a process until the process terminates, the
CPU time lgrinted by the SessionCost
command does n.ot include usage by processes
still running in the background. Therefore,
users should not be running any background
jobs when using SessionCost to determine the
cost of running a program.

4.4. Charge Number Validation

Each UNIX group has its own list of valid
charge numbers, and its own set of lists of
users who are allowed to bill to each of those
charge numbers. The system administrator
may designate a user as the administrator for a
group.

The group administrator can run the
chacct program to add and delete charge
numbers for the group, and to specify which of
the users in that group will be allowed to use
each charge number. The group administrator

can also designate a default charge number for
each user in his group. All of a user’s disk and
printer usage is billed to his default charge
number.

5. The System’s View of the New
Accounting System

This section will concentrate on how the
accounting system associates CPU and connect
time usage with the proper charge number.

The setcharge program records charge
numbers on,l~o the file /usr/adm/chgacct. The
format of each. chgacct record is as follows:
Position Field Name Description

0-7 ut_line Terminal line name
8-15 ut_name User name

16-31 ut_host Charge number
32-35 ut_time Time of charge

number change

The astute reader may have noticed that this is
really a utmp record with the charge number
placed into the ut_host field (which normally
contains the name of the remote host for
remote login sessions). Stealing the utmp
record format allows all the utilities that
currently work with the /etc/wtmp file to be
used on the/usr/adm/chgacct file.

Each night, records from the pacct and
wtmp files are correlated with the chgacct
records, pacer records are output by the kernel
each time a process terminates. They contain
the user ID, the time the process was created,
and the name of the process’s controlling
terminal (as well as many other things, includ-
ing the amount of CPU time that the process
used), wtmp records are output by login (when
a user is logged in) and by init (when a user
logs out). They contain the user name, the
terminal, name, the name of the remote host
(for telnet ~ogins), and the time that the
login/logout occurred.

All three files are converted to ASCII so
that they may be processed by the system sort
utility~ The wtmp records for the beginning
and end of a login session are combined into a
single record that represents the full login ses-
sion. They are sorted by time within terminal
line within user as shown in the following
table:

AUUGN 135 Vol 9 No 5

;login:

User Name Terminal Name Time
fred ttyi08 08:43

14:21
ttyi 1 a 07:30

10:35
12:54

harry ttyi03 16:36
ttyil 1 01:12

05:42

This ordering allows a simple merge program
to associate the proper charge number with a
given pacct or login session record. Of course,
it may be necessary to split a login session
record and associate each of the pieces with a
different charge number. It is not necessary to
do this with pacct records because each process
is billed to the charge number in effect when
that process was created.

Note that this method of assigning charge
numbers to pacct records requires the user be
careful when running shell scripts in the back-
ground. If the user starts up such a script,
then changes the charge number, any processes
started by the script after the charge number
change will be billed to the new charge
number.

6. Help and Hindrance from UNIX

The accounting system benefitted from the
concepts of pipes, filters, and shell scripts in
much the same way that many .other applica-
tions have in th~ past.

The following sections describe some of
the problems that UNIX presented.

6.1. Time Base

There is no absolutely trustworthy time
base in UNIX, as the time of day can be
changed at any time by anyone with super-user
privileges. Since much of the billing is based
on elapsed times, an accurate time base is very
important to the accounting system.

The date program does leave evidence of
date changes in the/etc/wtmp file, but it is not
always possible to correlate these change
records with the timestamps in files created by
the accounting system. For example, if the
time is set back five minutes at 8:30, then there
will be two different 8:27s. How is the Door

application program to tell which of the two
possible 8:27s is meant?

Our work-around for this problem was
straightforward - we prohibit setting of the
date while in multi-user mode. However, it
would be much more convenient for our
operators and our users if we could allow the
date to be changed while in multi-user mode.
This could be done more easily if there was a
counter that was faithfully incremented with
the passage of time, independent of the the
time-of-day clock (perhaps an
ITIMER_MONOTONIC?).

Note that an accurate time base is
important to any program that needs to make
elapsed-time measurements, including data
collection programs and real-time systems.

6.2. Single-precision awk

awk keeps its numbers in single-precision
floating-point variables. This means that you
cannot do arithmetic on t ime_ts in awk.
(Note that this has been fixed by some
vendors; I applaud them.)

We worked around this problem by writ-
ing more C programs than originally planned,
with attendant schedule slippage.

6.3. Explicit Support for Charge Numbers

Explicit support for charge numbers in the
kernel would make this whole exercise trivial
(aside from the maintenance of the kernel
code). [1] took this approach.

The printer spooling system and the disk
quota system also do not know about charge
numbers. An accounting system that needed
to do charge number accounting for printing
and for disk usage could benefit from a change
in this situation.

Bibliography

1. Eaton, Charles K.:
UNICOS," USENIX
Winter 1988.

"Project Accounting on
Conference Proceedings,

2. Knutsen, Andrew: "SRI Modifications to
Pyramid/4.2bsd/SysV Accounting," SRI, August
1985.

3. Source Code for BSD 4.3, Berkeley, May 1986.

Vol 9 No 5 136 AUUGN

;login:

Presenting a Single System Image
with Fine Granularity Mounts

Charles H. Sauer

IBM Advanced Engineering Systems
Austin, Texas 78758

ABSTRACT

In distributed system environments, a variety of administrative environments (system
images) can be presented, reflecting different user requirements and administrative
objectives. One of the most important system images is the so called "single system image."
This paper provides a context and definition for single system image. It describes an
effective approach to collecting multiple UNIX systems into a single system image, based on
simple use of remote mounts at fine granularities, including individual files. The approach is
designed to allow for replication of administrative files, e.g., /etc/passwd, and graceful
reconfiguration of the system to accommodate planned outages and respond to unplanned
outages. Experiences with this approach and AIX? Distributed Services are summarized.

Introduction

In a distributed system environment,
individual machines usually perform roles as
servers (file, print, name, ...) and/or clients.
Subsets of machines may be associated into
administrative groups or the associations
between machines may remain primarily pair-
wise and ad hoc. Figure 1 illustrates a typical
software development environment. Some
machines provide services to all other
machines in the organization, e.g., network
news, source control, special devices, etc.
Some machines are administered directly by
their owners and have only loose associations
with other machines, e.g., the organization
wide servers. Many of the other machines are
collected into single system images, based on
suborganizations. In the figure, single system
images are represented by dashed boxes,
intended to suggest "virtual" laboratories,
virtual floors of a building, or virtual build-
ings, as appropriate to the organization. (It is
likely that the association of the machines into
single system images will be based on organi-
zational functions and boundaries, not physi-
cal boundaries.) Within a single system image,
machines are administered as a group, with

]" AIX is a trademark of International Business Machines
Corporation.

the intent that users can use any of the
machines equivalently. There will be inherent
exceptions to this, e.g., some machines will
have color displays and others will have
monochrome displays. And even where the
hardware configurations are the same, the end
users will usually be able to distinguish one
machine from another, e.g., by querying a
machine readable serial number. But a
successful approach will give users the illusion
that all the machines are the same under most
circumstances:

user accounts/passwords. A user can login to
any of the machines using the same login
name and the same password. Regardless of
which machine is used, the user has the same
home directory and execution environment.
When the user changes his/her password, using
the standard passwd command, the change is
effective immediately on all machines in the
single system image. When an administrator
adds a new account, this is done once for all
the machines.

availability. Even though one or more of the
machines is unavailable, the rest of the
machines are still able to function together and
present the same system image, except for
resources which exist only on unavailable
machines. A machine which cannot connect
to other machines is still usable.

AUUGN 137 Vol 9 No 5

;login:

I d75

.1 bgeynon E]
Build_j

tl -7

I

Test
L_/_

E!
El

OE]I0 o Cll

Prototy o

Figure 1" Associations of machines

administered services. System wide functions,
e.g., print and mail service, function the same
from machine to machine. If mail is sent to a
particular user, "it can be seen/handled on any
of the machines.

This is not an exhaustive list, but is
intended to be indicative. Wherever possible,
the administrator should view the collection of
machines as if it were one machine and use
the same procedures that would be used on a
single machine. We will use the above
characteristics as an operational definition of
"single system image" and discuss an approach
which we believe is effective in meeting the
definition.

Distributed Services (DS) provides
distributed operating system capabilities for
the AIX operating system. These include
distributed file services with local/remote
transparency, distributed interprocess
communication and a number of
administrative services. For background infor-
mation on DS, see Sauer et al [1,2,3] and

Levitt [4]. One of the design goals of DS was
to provide support for mixed administrative
environments, such as the one depicted in Fig-
ure 1, using the same protocols and conven-
tions across the administrative environment.
One of the cornerstones of this administrative
flexibility is a general remote mount model.
The focus of this paper is to show how the
features of this remote mount model can be
used to simply and effectively present a single
system image. We first describe some of the
characteristics of the DS mount model, then
describe the approach to single system image,
and finally discuss some additional related
topics.

Distributed Services Mount Model

Distributed Services uses "remote
mounts" to achieve local/remote transparency.
A remote mount is much like a conventional
mount in the UNIX operating system, but the
mounted filesystem is on a different machine
than the mounted-on directory. Once the

Vol 9 No 5 138 AUUGN

;login:

remote mount is established, local and remote
files appear in the same directory hierarchy,
and, with minor exceptions, file system calls
have the same effect regardless of whether files
(directories) are local or remote.~ Mounts,
both conventional and remote, are typically
made as part of system startup, and thus are
established before users login. Additional
remote mounts can be established during
normal system operation, if desired.

Conventional mounts require that an
entire file system be mounted. Distributed
Services remote mounts allow mounts of
subdirectories and individual files of a remote
filesystem over a local directory or file,
respectively. Fine granularity mounts are use-
ful in configuring a single system image. For
example, a shared copy of/etc/passwd may be
mounted over a local /etc/passwd without hid-
ing other, machine specific, files in the /elc
directory. Use of mounts at a fine granularity
is key to this approach to single system image.

Virtual File Systems

The Distributed Services remote mount
design is based on the Virtual File System
approach used with NFS [5,6]. This approach
allows construction of ess.entially arbitrary
mount hierarchies, including mounting a local
object over a remote object, mounting a
remote object over a remote object, mounting
an object more than once within the same
hierarchy, motint hierarchies spanning more
than one machine, etc. The main constraint is
that mounts are only effective on the machine
performing the mount.

In conjunction with using the Virtual File
System concept, we necessarily have replaced
the traditional nameio) kernel function, which
translated a full path name to an i-number,
with a component by component lookup()
function, lookup() is used both for local and
remote path name resolution. The arguments
to lookup() are a file handle representing a

1. The traditional prohibition of links across devices
applies to remote mounts. In addition, Distributed
Services does not support direct access to remote special
files (devices) and the i-emote mapping of data files using
the AIX extensions to the shmatO system call. Note that
program licenses may not allow execution of a remotely
stored copy of a program.

directory and the name of a component to be
found in that directory, lookup() returns a
handle for the component, if found. A handle
is effectively a pointer to the on-disk inode for
the corresponding object and a generation
number for that inode. The generation
number is used for subsequent validity tests.

When a client successfully requests a
mount from a server, it receives a handle for
the object it is mounting and stores it in its
mount table. When the client is parsing a file
path name, e.g., for open(), and encounters the
mounted object, the handle is given to the
server as an argument in the lookup() remote
procedure call. Typically, the mounted object
is a directory, and the server will look up an
object within that directory.

For example, let us suppose that a client
mounts server’s /B over /a/b. The client then
opens /a/b/c. When the client gets to b/c, it
passes the handle for b and the component c to
the server, requesting the server to look up and
return a handle for c that can be used in the
actual open() call. The server will return a
handle for/B/c.

For fine granularity mounts, the string
form of the file name component is returned,
along with the file handle of the (real) parent
directory. This alternative to using the file
handle for the mounted file allows replacement
of the mounted file with a new version without
loss of access to the file (with that name). (For
example, when/etc/passwd is mounted and the
passwd command is used, the old file is
renamed opasswd and a new passwd file is
produced. If we used a file handle for the fine
granularity mount, then the client would con-
tinue to access the old version of the file. Our
approach gives the effect, presumably
intended, that the client sees the new version
of the file.)

There are several points to notice here.
First, this approach is stateless in that the
server can be recycled (e.g., powered off and
on) and the handle(s) given to the client(s)
performing a mount(s) is still valid, so the
mount need not be repeated. This is true
because the handle refers to an on-disk
structure, not an in-memory structure.
Second, the path resolution process must
necessarily ignore mounts on the server, since

AUUGN 139 Vol 9 No 5

;login:

these are not reflected in the on-disk structures
and are not necessarily repeated when the
server is recycled. Third, as an immediate
consequence, the client must explicitly perform
all mounts "for itself," since it does not "see"
mounts performed by the server.

Inherited Mounts

In constructing a single system image of
UNIX systems, it is desirable, if not necessary,
to preserve the traditional directory hierarchy
and conventions. All the machines in the sin-
gle system image must see the same instances
of /etc/passwd, /etc/hosts, ..., home direc-
tories, spool directories for mail, and so forth.
However, it is also desirable/necessary to be
able to access local equivalents of these
files/directories so that they may be kept up to
date with the shared copies. For example,
/etc/passwd refers to a shared copy of the file,
and /native/etc/passwd refers to the unshared
local version. In general /native/a/b/... is
established as the path to the local instance of
/a/b/....

Without the concept of inherited mounts,
discussed below, this implies that each
machine would have to be doubly~ configured
for its local (device) mounts. E.g., if / (root),
/u, and /usr are on partitions /dev/hd0,
/dev/hdl, and /dev/hd2, then the desired
mounts could be achieved by the commands:

mount /dev/hdl /u
mount /de~)/hd2 /usr
mount / /native
mount "/u /native/u
mount /usr /native/usr

Alternatively, the mount profile
(/etc/filesystems in AIX) would contain an
entry for each of these mounts. If another
disk was added to hold Atsr/src, then two
profile entries would be needed, one for
mounting /usr/src and one for mounting
/native/usr/src.

Distributed Services implements inherited
mounts on top of virtual file systems. There is
a mntctlO system call and corresponding
remote procedure call. One of the options of
mntctlO is to query and return a list of all
mounts currently in effect on a given server.

The mount command in AIX supports a -i
(inherited) flag which causes the query to be
performed and the additional mounts to be
made. For the above example,

mount -i / /native
would have the same net effect as the three
separate mount commands for the /native
subtree. When additional device mounts are
configured, this single mount command still
provides the desired effect of an aliased nam-
ing path for the local instance of the file
hierarchy. Additional examples of motivation
for inherited mounts are given in [3].

Presentation of Single System Image

Objectives

o The configuration is managed by a few
simple profiles. It should be easy to add/delete
machines and users, and to make other
configuration changes.

¯ All of the machines in the single system
image cluster should use exactly the same
configuration flies, i.e., there is no distinction
between the profiles on the server for
/etc/passwd and related files and the ones on
the clients.

¯ As a result of the above, it should be sim-
ple to reconfigure to use a different server for
the/etc files, either because of planned outages
of the existing server or because of failure of
the existing server.

¯ Client machines should recognize when
the server is unavailable, and switch to
alternate copies of administrative files and
other shared files.

¯ Local replicated copies of the
administrative files should be periodically
updated, so that if there is an unplanned
outage of the server, the other machines have
up to date copies.

¯ If a machine providing some of the home
directories is unavailable, a user should dis-
cover this immediately at login time, and and
be able to either use an alternate home direc-
tory or wait until the machine becomes avail-
able again.

Vol 9 No 5 140 AUUGN

;login:

General Approach

The discussion will focus on
administrative files, e.g., /etc/passwd, and data
files, e.g., home directory subhierarchies and
mail spooling areas. Assuming, for the
moment, a homogeneous processor
architecture, executable files may be viewed
between two extremes: (1) all of the machines
in the cluster have full copies of the executable
code, and so there is no sharing of executables,
or (2) there is a single shared copy of each
executable file. The first extreme has the
potential for inconsistency among the multiple
copies, administrative burden to ensure that
inconsistent copies are not present, and waste
of disk space for the redundant copies. The
second extreme has the limitation that execut-
ables will be unusable if the shared copy is not
accessible. An administrator will typically
choose a policy in between the extremes, e.g.,
that the kernel and the files in /etc and /bin
are replicated, but that other executables are
shared. The approach discussed below
supports and allows flexibility in determining
such policies. However, AIX and DS have
other administrative mechanisms, known as
"code serving" which address these policies in
detail, so we focus on the administrative and
data files.

Where heterogeneous processor
architectures are involved, the motivation for
a separate mechanism for code serving is
stronger, since the mechanisms below should
not be used for sharing binary executables
across different processor architectures. The
files explicitly shared in the mechanisms
described below are in ASCII format, and are
suitable for sharing across heterogeneous
processor architectures. Thus the mechanisms
themselves will work across heterogeneous
processor architectures. However, in the
heterogeneous environment, machine
boundaries are much more likely to be visible,
e.g., due to byte order considerations in appli-
cation data. More stringent requirements
must be placed on application code in such an
environment, if the illusion of a single system
is to be preserved.

Configuration Files

/etc/adminserver. One machine is
designated as the "administrative server" and
is the machine that has the disk copies of the
shared administrative files such as/etc/passwd.
The administrative server can be changed
while machines are in operation, as discussed
below. The name of the administrative server
is stored in/etc/adminserver.

/etc/SSImachines. This file lists the names
of all machines in the single system image
(including the administration server).

/etc/server.files. This file lists individual
files that will be shared based on the
administrative server’s copy.For example,
this list might include

/etc/passwd
/etc/group
/etc/rnotd’
/etc/qconfig

(AIX printer configuration file)
/etc/hosts
/etc/hosts.equiv
/etc/adminserver
/etc/SSImachines
/usr/adm/user.cfile

(AIX adduser defaults)
/etc/server.files
/etc/server.dirs (see below)
/etc/remounts.list (see below)
/etc/ug.SSl

(for id translations - see below)
/etc/oug.SSI
/etc/opasswd
/etc/ogroup
/etc/umountd.c

(source for umountd - see below)
/usr/adm/newuser.sys

(AIX adduser defaults)
/usr/adm/newuser.usr

Though the list could be longer or shorter,
roughly this set of files has been appropriate in
our experience.

/etc/server.dirs. This file lists directories,
other than home directories, that will be
shared based on the administrative server’s
copy. Assuming that code serving is handled
separately, this list might include

AUUGN 141 Vol 9 No 5

;login:

/usr/mail
/usr/lib/news
/usr/spool/news
/usr/man

If code serving is not handled separately, then
/usr/bin, /usr/lib might be added to this
list.

/etc/remounts.list. This file lists files and
directories that will be unmounted when it is
detected that the server is inaccessible and
remounted when the server becomes accessible
again. This is handled by the umountd
daemon, discussed below. This list will be a
subset of the combined lists in server.files and
server.dirs, e.g.,

/etc/passwd
/etc/group
/etc/motd
/etc/qconfig

/etc/hosts
/etc/hosts.equiv
/etc/adminserver
/etc/remounts.list
/usr/mail

(AIX printer configuration file)

This is a subset of the combined list oriented
toward normal operation when the
administrative server is inaccessible. It is a
subset because some operations, e.g., changing
passwords, presumably will be deferred when
the administrative server is inaccessible, and
some directories, e.g., /usr/man and
/usr/spool/news, are likely to be empty, except
on the administrative server, and thus
uninteresting when that machine is
unavailable.

/etc/ug.SSI, /etc/oug.SSI. DS provides
general translation mechanisms for user and
group id translation [1,2]. For machines
within the cluster, there should be one to one
translations, so that numeric id’s are the same
on all machines in the cluster, but machines in
the cluster may also need translations to other
machines outside the cluster, ug.SSI is used
for a cluster wide definition of the translations.
For brevity, we will not discuss the content of
these files.

Home Directories

For the sake of simplicity, it is assumed
that home directories’ path names have the
form .../machine/user, where "machine" is the
name of the machine where the home direc-
tory is actually stored. Even though paths are
of this form, users will see the same actual
home directory on each machine of the cluster,
e.g., in our environment, when user sauer is
loggedinto machine d75, his home directory is
still /u/auschs/sauer, since his home directory
is stored on auschs. This is a minor sacrifice
of transparency, since users usually do not use
rooted paths to get to their home directories -
their home directory is listed in /etc/passwd,
so that is where they start, cd takes them back
there, and the C shell " notation is often used
to get to other users’ home directories, e.g.,
cd~dale. Shipley has proposed a similar
convention for sharing home directories [7].

Having paths of this form allows each
machine to simply mount the home directories
stored on other machines, e.g.,

mount -n auschs /u/auschs /u/auschs

or, in general,

for i in ’cat /etc/SSImachines’
do

if [$i != $myname]
then

mount -i -n $i /u/$i /u/$i
fi

done

This is a slightly simplified fragment from
/etc/SSImounts, discussed below.

Machine Initialization

As init processing, after normal standalone
initialization, e.g., fsck and device mounts,
/etc/rc starts DS and then runs/etc/SSIrnounts.
SSImounts runs in the background so that
local operations can begin without server
availability. SSImounts runs on all machines,
including the adminserver. Following are
simplified sketches taken from SSImounts.
Error checks, touches and rnkdirs for mount
points, precautionary umounts, etc. are
omitted.

Vol 9 No 5 142 AUUGN

;login:

Initial mounts from adminserver, updating
local copies of files:

if [Smyname != Sadminserver]
then

until mount -i -n Sadminserver \
/native /$adrninserver

do
sleep Sdelay

done
for i in ’cat /etc/server.files’
do

cp -p /$adminserver$i $i
mount -n Sadminserver /native$i $i

done
for i in ’cat /etc/server.dirs’
do

mount -i -n $adminserver /native$i $i
if[$i = ’/usr/mail’]
then

/etc/movemail & # see below
fi

done

Start/etc/umountd

make umountd
/etc/umountd &

Update user/group ids.
cmp /etc/ug.SSI /etc/oug.SSI
if [$? -ne 0]
then

dsldxprof -a -f /etc/ug.SSI
if [$? -eq 0]
then

cp -i) /etc/ug.SSI /etc/oug.SSI
fi

Mount home directories. This is as indicated
in the previous fragment, except that the
mounts are retried asynchronously in the back-
ground so that availability of any given
machine doesn’t delay availability of home
directories from other machines.

Once these steps have been performed,
then the machine has joined the single system
image.

/etc/movemail. Mail received while the
administrative server is not available will be
kept in the native spool directory, /usr/mail.
movemail moves mail from the native spool
directory to the shared spool directory When-
ever the shared directory is mounted, either by
SSImounts or remounts (see below).

umountd

The key remaining topic is the daemon
umountd, umountd uses a polling loop,
performing the following functions and then
sleeping until repeating the functions. The
default sleep time is 60 seconds.

Detection of server inaccessibility, umountd
attempts to open each of the files listed in
/etc/server.files. If an open fails, umountd
assumes the server is inaccessible and executes
/etc/remounts. /etc/remounts unmounts all of
the files in/etc/remounts.list and then attempts
to remount them. remounts will execute
movemail after successfully remounting
/usr/mail. (umountd runs on adminserver, but
skips these steps.)

Updating modified files, umountd determines
whether any of the files in /etc/server.files have
been updated. If so, umountd locks the server
copy and updates the native copy. (umountd
running on adminserver skips these steps.)

Detection of configuration changes. If key
configuration files, e.g., /etc/adminserver or
/etc/server.files, have been updated, umountd
execs SSImounts. SSImounts applies the
changes and then starts a fresh version of
umountd, as indicated above.

There are subtleties of locking and timing
which we omit for brevity. Starting with DS
1.2, the source for umountd.c is included in the
DS samples directory, along with the installa-
tion documentation, installation command and
so forth.

Note the power of the above mechanisms.
By simply changing the name of the server in
/etc/adminserver, e.g., for a scheduled outage
of the adminserver, the machines in the cluster
will shift to the new adminserver in a couple
of minutes, without rebooting any of the
machines or otherwise significantly disrupting
users. For an unscheduled server outage of
significant duration, a switchover to a different
server can be accomplished by changing the
adminserver file on each of the other machines
and rebooting them. In either case, scheduled
or unscheduled, the original server can rejoin
the cluster as a client when it is ready to rejoin
the cluster, and then assume the server role
again when its configuration files have been
updated.

AUUGN 143 Vol 9 No 5

;login:

Summary

We believe this approach effectively meets
the operational definition given in the
introduction, in regard to user accounts, data,
availability, and administered services. The
mechanisms are designed to be simple to apply
and administer, yet highly effective in present-
ing the image of a single system. These
mechanisms are complementary to the under-
lying file system mechanisms of Distributed
Services, and orthogonal to other enhance-
ments such as the code server mechanisms.
Thus the same underlying mechanisms are
applied across the distributed environment, for
example the abstraction, of our software
development environment depicted in Figure
I. In addition, significant administrative flexi-
bility is present, as suggested in the preceding
paragraph. These concepts could be applied to
other distributed file systems supporting fine
granularity mounts.

References

Charles H. Sauer, Don W. Johnson, Larry
Loucks, Amal A. Shaheen-Gouda, and Todd A.
Smith, "RT PC Distributed Services:
Overview," Operating Systems Review 21, 3
(July 1987) pp. 18-29.

Charles H. Sauer, Don W. Johnson, Larry
Loucks, Amal A. Shaheen-Gouda, and Todd A.
Smith, "RT PC Distributed Services: File
System," ;login: 12, 5 (September/October 1987)
pp. 12-22.

Charles H. Sauer, Don W. Johnson, Larry
Loucks, Amal A. Shaheen-Gouda, Todd A.
Smith, "Statelessness and Statefulness in
Distributed Services," UniForum 1988, Dallas,
TX, February 1988.

Jason Levitt, "The IBM RT Gets Connected,"
Byte 12, 12 (1987) pp. 133-138.

5. R. Sandberg, D. Goldberg, S. Kleiman, Dan
Walsh and B. Lyon, "Design and Implementa-
tion of the Sun Network File System," USENIX
Conference Proceedings, Portland, June 1985.

6. Sun Microsystems, Inc., Networking on the Sun
Workstation, February 1986.

7. M. Shipley, "The Virtual Home Environment,"
UniForum 1988, Dallas, TX, February 1988.

Vol 9 No 5 144 AUUGN

;login:

C+ + Tape

The first 1988 USENIX software tape contains C++ software. It requires no AT&T nor UC
license. It is being sent to all current Institutional and Supporting members of the Association.

Individual members of USENIX who wish to obtain a copy of the tape may request it from the
Association Office, which will then send the requestor a "Tape Release Form." The form plus a
check for $125 should be returned to the office, whereupon the tape will be sent out, postpaid in the
US. Foreign individuals will be billed for the additional (air) postage/shipping.

The tape, in tar format at 1600 BPI, contains:

GNU C++ Version 1.21.0 (Michael Tiemann)
OOPS (Keith E. Gorlen)
Storage management class and String class... (Peter A. Buhr)
InterViews 2.3 (Mark A. Linton)
C+ + Subroutines for string manipulation (Arthur Zemon)

The tape is not available to non-members of the USENIX Association.

If you are were an institutional member in 1987 and have not received your 1987 software
distribution tapes, please contact the office.

AUUGN 145 Vol 9 No 5

;login:

2.10BSD Software Release
The "Second Berkeley Software Distribu-

tion" (2.10BSD), .produced by the Computer
Systems Research Group (CSRG) of the
University of California, Berkeley, is being
distributed by the USENIX Association. It is
available to all V7, System III, System V, and
2.9BSD licensees for a price of $200. The
release consists of two 2400 foot, 1600 BPI
tapes (approximately 80Mb) and approximately
100 pages of documentation. If you require
800 BPI tapes, please contact USENIX for more
information.

Sites wishing to run 2.10BSD should be
aware that the networking is only lightly
tested, and that certain hardware has yet to be
ported. Contact Keith Bostic at the address
below for current information as to the status
of the networking. As of August 6, 1987, the
complete 4.3BSD networking is in place and
running, albeit with minor problems. The
holdup is that only the Interlan Ethernet
driver has been ported, as well as some major
space constraints. Note, if we decide to go to

a supervisor space networking, 2.10 networking
will only run on:

11/44/53/70/73/83/84
11/45/50/55 with 18 bit addressing

If you have questions about the distribu-
tion of the release, please contact USENIX at:

2.10BS D
USENIX Association
P.O. Box 2299
Berkeley, CA 94710

528-8649
uunet,ucbvax)!usenix!office

If you have technical questions about the
release, please contact Keith Bostic at:

(ucbvax,seismo) !keith
keith@okeeffe.berkeley.edu

+ 1 415 642-4948

Keith Bostic
Casey Leedom

Vol 9 No 5
146 AUUGN

;login:

UUNET Communications Service

The UUNET Communications Service is
now one year old and has proven itself to be a
success. UUNET is a non-profit communica-
tions service that provides access to USENET
news, UUCP mail, public domain software,
and many standards. The UUNET computer is
accessible by any computer running the UNIX
operating system. With the purchase of a
third party software package, any PC running
MS-DOS can also access UUNET.

The UUNET Communications Service
came about because many people were having
difficulty in accessing USENET, the worldwide
network of UNIX users. When a USENET
connection was found, it was often expensive
to maintain, unreliable, or prone to
unanticipated interruption when the remote
computer was used for work rather than for
USENET access. The USENIX Association
funded the UUNET Communications Service
to assist UNIX users in accessing the USENET
network and in sending electronic mail to
other UNIX users.

UUNET, because of its mandate, has
become the best connected UNIX computer in
the world. It provides its subscribers with easy
access to the USENET news and mail network
and to other UNIX users. UUNET has been
a~ithorized to function as an ARPANET mail
gateway. Gateways to other networks are
being set up. UUNET is also the principal
gateway to European, Australian, Asian, and
South American UUCP sites.

UUNET provides subscribers with UUCP
access to an extensive archive of publicly
available UNIX software. This includes the
latest GNU software, all the ARPANET RFCs,
the latest UUCP map information, the latest
Kermit distributions, and the netlibd archives.

Operationally, UUNET consists of a 16-
processor Sequent B21 computer with 20
dialup modems (12 accessible via an 800
number), a T-1 connection, over one gigabyte
of disk space, and a 56 KBPS dedicated
connection to Tymnet. This system is
dedicated to UUNET and has no function
other than as a communications relay. Most
subscribers access UUNET through the Tymnet
X.25 public data network or via Telebit
Trailblazer Plus modems.

Because the UUNET Communications
Service is non-profit, costs to subscribers can
be kept very low. Most subscribers call in at
night, taking advantage of the $4.00 per hour
Tymnet off-peak rate.

UUNET currently has over 360 subscribers,
including individuals, universities, computer
companies, banking and investment firms, and
other companies. Many subscribers save a
substantial sum of money by using UUNET
rather than paying long distance charges to
receive news and mail.

For further information on the UUNET,
provide your name and US postal address to
the UUNET office at:

(ucbvax,usenix)!uunet!uunet-request

(703) 764-9789

UUNET Communications
P.O. Box 2685
Fairfax, VA 22031

AUUGN 147 Vol 9 No 5

login

The USENIX Association Newsletter

Volume 13, Number 5 September/October 1988

CONTENTS

C++ Conference Program
Call for Papers: Winter 1989 USENIX Conference

Workshop on Large Installation Systems Administration
Call for Papers: EUUG Spring ’89 Conference
Obtaining GNU Software ..

Broadcast Storms, Nervous Hosts, and Load Imbalances ...
Paul E..McKenney

An Update on UNIX Standards Activities
Shane P. McCarron ...18

Future Events ..
23USENIX Association By-Laws ...
24Staff Changes ...
31Publications Available ..
314.3BSD Manuals ...
324.3BSD Manual Reproduction Authorization and Order Form
33Local User Groups: ..
34

5
6
7
8
9

The closing date for submissions for the next issue of ;login: is October 28, 1988

........ ===- THE PROFESSIONAL AND TECHNICAL
---~--=== -=-=-= UNIX® ASSOCIATION

Vol 9 No 5 148 AUUGN

;login:

C++ Conference Program

Denver Marriott, City Center Hotel
Denver, Colorado

October 17-20, 1988

USENIX is holding its first full C++ conference in Denver, Colorado, Monday through Thursday,
October 17-20.

Program At A Glance/Dates to Remember
¯ Hotel Registration DeadlineSeptember 26
¯ Pre-registration Deadline September 28
¯ All Day Tutorials October 17-18
¯ Technical Sessions October 19-20

For details about registration, contact theUSENIX Conference Office immediately.

C++ Tutoral Program

MI: Advanced C++ Topics
Jonathan Shopiro, AT&T Bell Laboratories

M2: Object-Oriented Development and C++ Concepts
John Carolan and Adrienne Dockrell, Glockenspiel Ltd.

T l: An Introduction to C++
Robert Murray, AT&T Bell Laboratories

T2: Applications: InterViews & C++ 2.0
Part A: Programming User Interfaces in C++ With InterViews

Mark A. Linton, Stanford University
Part B: What’s New in C+~ 2.0

Stanley Lippman, AT&T Laboratories

Monday, 9-5:00

Monday, 9-5:00

Tuesday, 9-5:00

Tuesday, 9-5:00

Opening Session

Keynote speech
W. N. Joy, Sun Microsystems

Param’eterized Types for C-~-
Bjarne Stroustrup, AT&T Bell Laboratories

Wednesday, 9-10:30

Technique

Building Well-behaved Type Relationships in C++
R. B. Murray, AT&T Bell Laboratories

Porting from Common Lisp with Flavors to C~-
Joseph Eccles, AT&T Bell Laboratories

Wednesday, 11-12:30

Databases and File Systems Wednesday, 2- 3:30

Prototyping Database Applications with a Hybrid of C-~- and a 4GL
Ronan Stokes, Glockenspiel, Ltd.

Open Dialogue: Using an Extensible Retained Object Workspace to Support a UIMS
Andrew Schulert, Kate Erf, Apollo Computer

AUUGN 149 Vol 9 No 5

;login:

Building Object-Oriented UNIX-like File Systems in C++
Peter.Madany, Doug Leyens, Vince Russo,
Roy Campbell, University of Illinois

Applications

Applying Object-Oriented Design to Structured Graphics
John M. Vlissides, Mark A. Linton, Stanford University

A C++ Interpreter for Scheme
Vincent F. Russo, Simon M. Kaplan, University of Illinois

GPIO: Extensible Objects for Electronic Design Tools
David Campbell, Russel Edwards,Prakash Reddy,
Roger Scott, Data General Corporation

Experience

C++: From Research to Practice
S. B. Lippman, B. E. Moo, AT&T Bell Laboratories

NAPS - A (2++ Project Case Study
C. Bcrman, R. Gut, AT&T

Parallelism and Simulation
Data-Level Parallel Programming in C++

Thomas M. Breuel, MIT
A Multiprocessor Operating System Simulator

Gary M. Johnston, Roy H. Campbell, University of Illinois

Modelling of Control Systems with C++ and PHIGS
Dag M. Briick, Lurid Institute of Technology

Linguistics

Type-safe Linkage for C++
Bjarne Stroustrup, AT&T Bell Laboratories

Implementing a Logic-Based Executable Specification Language in C++
Peter A. Kirslis, Robert B. Terwilliger, AT&T Bell Laboratories

Debugging and Instrumentation of C++ Programs
Martin J. O’Riordan, Glockenspiel, Ltd.

Libraries
libg++, The GNU C++ Library

Douglas Lea, SUNY Oswego
A Class Library for Darts

Troy Otillo, Cal Poly - SLO
Guide to the C++ Real Library

Jerry Schwarz, AT&T Bell Laboratories

Iris: A Class-Based Window Library
E. R. Gansner, AT&T Bell Laboratories

Wednesday, 4-5:30

Thursday, 9-10:30

Thursday, 11-12:30

Thursday, 2-3:30

Thursday, 4-5:30

Vol 9 No 5
150 AUUGN

;login:

Call for Papers
Winter 1989 USENIX Conference

San Diego, California
January 30- February 3, 1989

Papers are requested for formal review as
candidates for inclusion in the three day tech-
nical session at the 1989 Winter USENIX
Conference. Papers that are accepted will be
presented at the conference and published in
the conference proceedings. The technical ses-
sions provide a forum for the presentation of
new research and development related to or
based upon the UNIX operating system.

Suggested topics include (but are not
limited to):

¯Performance analysis and tuning
¯New User Interfaces and Applications
o System and Network Security
° Networking and Distributed Services
o RISC versus CISC in UNIX
o Software and System Management tools
¯ Standards
¯Graphics and Electronic Publishing
o Evolution of UNIX for the 1990’s

All papers should describe new and
interesting work. Acceptance or rejection of a
paper will based completely on the work
submitted at the deadline. Submitted papers
should consist of a 100 to 300 word abstract in
addition to the main body of the paper.
Extended abstracts will be conditionally
accepted but full papers are preferred. Papers
accepted on extended abstracts that do not
meet the promise of the abstract will be
rejected. Each paper should discuss how this
work relates to prior work and provide
sufficient detail in the presentation of back-
ground material and work to allow referees to
perform a consistent comparison to other
submitted papers. Concise references of
related work should also be included as
appropriate. Full papers should be 6-12 single
spaced typeset pages and include any abstract,
references, or illustrations. For the review
process you should submit the highest quality
copy you can create. Laser printer output is
recommended. The exact format for final
papers will be sent to authors of accepted
papers.

Four hard copies and one electronic copy
of each submitted paper must arrive no later
than October 7, 1988; this is an absolute dead-
line. Papers received after that date will not
be considered. Papers which clearly do not
meet USENIX’s standards for applicability,
originality, completeness or page length may
be rejected with no review. Authors will
receive official notification no later than
November 4, 1988, and final papers are due by
December 5, 1988.

Please contact one of the program chairs if
additional information is required:

Greg Hidley, (619) 534-6170
Keith Muller, (619) 534-4062

They may be also be reached at
sdusenix@ucsd, edu .

Send technical program submissions to:

Greg Hidley
CSE Dept. C-014
University of California, San Diego
La Jolla, CA 92093

Bitnet: sdusenix@ucsd
Internet: sdusenix@ucsd.edu
uucp: ucbvax!ucsd!sdusenix

The program

Rick Adams
Keith Bostic
Todd Brunhoff
John Chambers
Lori Grob
Andrew Hume
Thomas Narten
Don Seeley
Melinda Shore

Gene Spafford
Henry Spencer
Avadis Tevanian
Karen White

committee includes:

Center for Seismic Studies
UC Berkeley
Tektronix
University of Texas, Austin
NYU
AT&T Bell Labs
Purdue University
University of Utah
Frederick Cancer
Research Facility
Purdue University
University of Toronto
NeXT
Pyramid

AUUGN 151 Vol 9 No 5

;login:

Workshop on Large Installation Systems Administration.

DoubleTree Hotel
Monterey, California

November 17-18, 1988

In light of last year’s successful workshop on Large Installation Systems Administration,
Alix Vasilatos will again be chairing a workshop on this subject in Monterey, CA on Thurs-
day and Friday, November 17th and 18th, 1988. There is demonstrable benefit in bringing
together system administrators of sites with 100 or more users (on one or more processors)
to compare notes on solutions that they have found for a variety of common problems.
These include but are not limited to:

Large file systems (dumps, networked file systems)
Password file administration
Large mail system administration
USENET/News/Notes administration
Heterogeneous environments (mixed vendor and/or version)
Load control and batch systems
Monitoring tools
Software release to multiple systems
Output device management

The workshop will focus on short papers and presentations. You do not have to
present to attend! Proceedings will be available at the workshop.

Rob Kolstad of Prisma Computers will be the Keynote Speaker. His topic will be "The
Evolving Role of the System Administrator."

For details about registration, contact the USENIX Conference Office at (213) 592-3243
or (uunet, ucbvax).tusenix.tjudy.

Vol 9 No 5 152 AUUGN

;login:

Call for Papers
EUUG Spring ’89 Conference

Brussels, Belgium
April 10-14, 1989

The BUUG will host the Spring ’89 European UNIX systems User Group Technical Conference
in Brussels. Technical tutorials on UNIX and closely related subjects will be held on Monday and
Tuesday, followed by the three day conference with commercial exhibitions. A pre-conference regis-
tration pack will be mailed to interested persons in early December.

Call for Papers
The EUUG invite abstracts from those wishing to present their work. Submissions from

students are particularly encouraged under the EUUG Student Encouragement Scheme, details of
which are available from the Secretariat. All submitted papers will be refereed to be judged with
respect to their quality, originality and relevance. Abstracts MUST be submitted.by post to the EUUG
Secretariat. All submissions will be acknowledged. Suggested subject areas include:

real time
networking
security issues
graphics
internationalisation
distributed processing

fault tolerance
new architectures
transaction processing
window systems and environments
supercomputing
standards and conformance tests

Important Dates."

Abstract deadline
Acceptance notification
Final paper .received

November 30, 1988
January 15, 1989
February 1, 1989

Tutorial Solicitation
Tutorials are an important part of the EUUG’s biannual events, providing detailed coverage of a

number of topics. Past tutorials have been taught by leading experts. Those interested in offering a
tutorial should contact the EUUG Tutorial Officer as soon as possible.

Additional Information
The Programme Chair will be pleased to provide advice to potential speakers.

If you wish to receive a personal copy of further information about this, and future, EUUG
events, please contact the Secretariat.

Secretariat

EUUG
Owles Hall
Owles Lane
Buntingford
Herts, SG9 9PL, UK

Phone: +44 763 73039
Fax: +44 763 73255
Telex:
Email: euug@inset.uucp

Tutorial Officer

Neil Todd
IST
60 Albert Court
Prince Consort Road
London, SW7 2BH, UK

+44 1 581 8155
+44 1 581 5147
928476 ISTECH G
neil@ist.co.uk

Programme Chair

Prof. Marc Nyssen
Medical Informaticas Dept.
Vrije Universiteit Brussel
Laarbeeklaan 103
B- 1090 Jette Belgium

+32 2 477 44 24
+32 2 477 40 00

rn ~ rc~minf.vub.uucp

AUUGN 153 Vol 9 No 5

;login:

Obtaining GNU Software
The GNU Project (GNU’s Not UNIX) is developing a complete UNIX compatible software

system with freely redistributable source code. The rationale for GNU is explained in the GNU
Manifesto. Copies are available in the GNU Emacs distribution and manual, and by request to
gn u@prep, ai. mit. edu.

You are encouraged to get GNU software from or with others. GNU software is also available by
J?p on the DoD/NSF Internet, and by uucp; ask gnu@prep for details. If you are unable to use one of
these methods, you can use this order form.

at $ 150 : $

at $ 150 = $

at$ 175=$
at$ 175 =$
at$ 150=$

at $ 150 = $

at$ 15=$

at $ 60 = $
at$ 1 =$
at$ 5=$
at$ 10 = $
at$ 10 = $
at$ 10 = $

Sub Total $
$
$
$

Total $

GNU Emacs source code and other software, on 1600bpi tape in tar format.
The tape also includes Scheme, T, Hack, Bison, GNU Chess, GDB, and
the X window system (Version 10r4).
GNU C Compiler. Beta test tape, 1600bpi, in tar format. The tape also
includes Bison, Gawk, GNU Assembler, X windows (Version 1 lr2
complete), Flex, GNU Make, and object file utilities.
GNU Emacs source and other software, cartridge tape for Suns.
GNU C Compiler and other software, cartridge tape for Suns.
GNU Emacs source and binary code, on 1600bpi tape in VMS interchange
format.
GNU C Compiler source and binary code, on 1600bpi tape in VMS
interchange format.
GNU Emacs manual, ~300 pages, spiral bound. The manual is
phototypcset and offset printed, and includes a reference card.
Box of six GNU Emacs manuals, each with reference card.
GNU Emacs reference card.
Packet of ten GNU Emacs reference cards.
GDB manual, "50 pages, side stapled.
Texinfo manual, ~100 pages, side stapled.
Termcap manual, ~60 pages, side stapled.

5% Massachusetts sales tax, if applicable.
Optional tax deductible donation.
Outside North America and Hawaii, add $15 for each tape or manual for
shipping costs; and add $60 for each box of manuals.

Prices are subject to change without notice. All software from the Free Software Foundation is
provided on an "as is" basis, with no warranty of any kind. TeX source for all manuals is on the
appropriate distribution tape. Many of these programs are covered by a General Public License that
permits everyone to have and run copies of them, at no charge, and to redistribute copies under cer-
tain conditions which are designed to make sure that that all modified versions of the program
remain as free as the versions we distribute. The General Public License is usually in a file named
COPYING.

Orders are filled upon receipt of check or money order. We do not have the staff to handle the
billing of unpaid orders. Please help keep our lives simple by including your payment with your
order. Make checks payable to "Free Software Foundation," and mail orders to:

Free Software Foundation Name:
675 Mass. Avenue Organization:
Cambridge, MA 02139 Address:
+1 (617) 876-3296 City, State, Zip:
The USENIX Association is printing the above as a service to the user community; no endorsement of GNU software
is implied. "

Vol 9 No 5 154 AUUGN

;login:

Broadcast Storms, Nervous Hosts, and Load Imbalances

Paul E. McKenney

Information Sciences and Technology Center
SRI International

ABSTRACT

As equipment connected to local-area networks becomes more complex and diverse, so
do possible modes of failure. Innocent-looking "features" of such equipment can easily
cause serious disruptions of service to a local-area network.

Some software problems (including broadcast storms, "nervous hosts," and load imbal-
ances) that can arise on Ethernets using the DDN protocol suite are examined herein. The
causes of these problems and the sequence of events leading up to them are explored in
detail, and some commonly known methods of preventing, diagnosing, and correcting the
problems are presented.

Overview
This paper will look at three of the types

of problems which afflict local-area networks:

Broadcast storms

Nervous hosts

Load imbalances.

The following sections will look at these
problems in some detail, describing their
causes, how they can be diagnosed, and how
they can be prevented or corrected. Since the
broadcast storm is the most complex and the
most damaging of these problems, it will be
described in considerably more detail.

Broadcast Storms
While a classic broadcast storm occurs

when a large number of hosts respond almost
simultaneously to a broadcast packet, the
effects of a broadcast storm (nearly total denial
of network services for an extended period)
can be induced by a number of mechanisms.
The term "broadcast storm" will used in this
more general sense for the rest of this paper.

Broadcast storms can be caused by
continual packet transmission and by
inappropriate responses to broadcast packets.

Continual Packet Transmission
Since Ethernet is multiple-access, there is

nothing to prevent a host from consuming
most of an Ethernet cable’s bandwidth by
continually transmitting garbage packets. This
extreme case can be remedied on!y by either
fixing the software or physically disconnecting
the host from the Ethernet.

Note that bugs that cause continual packet
transmission can occur in user software just as
easily as they can in the kernel. A normal user
program on a Sun-3 work station can easily
send well over 100 packets per second through
a UDP socket. As few as five or ten programs
doing this simultaneously on separate work
stations (e.g., rwhod~) can do a very good job
of congesting an Ethernet.

The Ethernet source address is relatively
immune to corruption by software bugs
because it is usually stored in a hardware regis-
ter in the Ethernet interface.2 Therefore, keep-
ing a list of the Ethernet addresses of all
machines on a network can help pinpoint the

~ This program periodically broadcasts the list of users
currently logged onto the host that it is running on. While
this allows users to easily see who is logged onto other
machines, it can also produce bursts of heavy traffic.
2 The Ethernet source address is not always completely im-

mune to corruption. For example, hosts running
DECNET set their Ethernet addresses to a value related to
their DECNET node ID under sc~0ware control.

AUUGN 155 Vol 9 No 5

;login:

source of garbage packets. This pinpointing is
accomplished by extracting the Ethernet source
address from the garbage packet (possibly
using Van Jacobson’s tcpdump program), then
looking up the source address in the list to find
the offending host. For those who do not wish
to maintain such a list manually, we at SRI
have written an "cthcrhostprobc" program
that makes a list of Internct addresses and
Ethernet addresses of all hosts connected to
the local Ethernet that implement address
resolution protocol (ARP).

Responding Inappropriately to Broadcast
Packets

The classic broadcast storm ensues when
several hosts attempt to forward the same
datagram over the broadcast medium it came
from.

A classic broadcast storm involves
Internet protocol (IP) packets and ARP
packets. IP packets are the building blocks for
the familiar transmission control protocol
(TCP), network file system (NFS), and remote
procedure call (RPC). ARP packets allow hosts
to associate Internet addresseswith the
corresponding Ethernet addresses.

The following sections will describe a
classic broadcast storm in more detail by look-
ing first at the formats of the .IP and ARP
packets, second at the IP forwarding
mechanism, and finally at a (small) example of
a classic broadcast storm. This will be
followed by some experimental results
obtained at SRI and by recommendations for
preventing classic broadcast storms.

Ethernet Header Format

All packets on an Ethernet (including IP
and ARP packets) have an Ethernet header
prefixed to them as follows:

Six-byte source address

Six-byte destination addresa

Two-byte packet type.

An Ethernet address is typically written in
hexadecimal form, separated by colons, e.g.,
tc : 08 : 1 e : 3d : 00 : 0a. The Ethernet broadcast
address is f f : ~: ~ : ~: ~: : ~: ~" : f f : f f; a packet with

this as its destination address will be received
by all local Ethernet interfaces.

Each Ethernet interface ignores all packets
except those whose destination address is
either that Ethernet interface’s address or the
broadcast address. Ethernet packets destined
for the broadcast address form the seeds of a
broadcast storm.

An Ethernet packet type of 0800
(hexadecimal) indicates that the packet is an
IP packet; an Ethernet packet type of 0806
(hexadecimal) indicates that the packet is an
ARP packet.

IP Header Format

An IP packet has many fields, but the only
one relevant to this discussion is the four-byte
IP destination address (see Request For Com-
ments (RFC) 791 for more details). An IP
address is typically written in dotted-decimal
form, e.g., 10.0.0.51. Each IP address is
divided into a "network part" and a "host
part" with the latter part broken down further
in a subnetted network (see RFCs 922, 950, and
1027 for details). Table 1 shows how the
different classes of nonsubnetted IP addresses
are decomposed into network and host parts.

First Byte Class Network Host
0 127 A 1 3

128 191 B 2 2
192 223 C 3 1
224 239 D
240 255 E

Table 1: IP Address Classes

Class D addresses are special multicast
addresses (see RFCs 966 and 988), and Class E
addresses are reserved for future use. Only
Class A, B, and C addresses are relevant to
this discussion. (See RFCs 1010 and 1020 for
more details on IP address assignment.)

If the host part of the IP address is
composed of all 255s (for example,
10.255.255.255), the IP packet is to be
broadcast to all hosts on network 10.3
Unfortunately, this convention was established

3 However, since network 10 does not support the notion

of broadcast, this IP packet would be ignored, although an
error might be returned via an ICMP packet.

Vol 9 No 5 156 AUUGN

;login:

only fairly recently, so that some older imple-
mentations (in particular BSD 4.2) employ the
convention that a host part composed of all 0s
(e.g., 10.0.0.0) indicates that the IP packet is
to be broadcast to all hosts on the network.
As will be seen, this historical incompatibility
constitutes the trigger that sets off the classical
broadcast storm.

A sample new-style IP broadcast packet
layered over Ethernet is shown ill Table 2.
The "IP data" would consist of the headers
and data of the higher level protocol (e.g., user
datagram protocol, or "UDP") that is layered
on top of IP in this packet.

ARP Packet Format

The following fields from an ARP packet
are relevant to this discussion (see RFC 826 for
more details):

o Sender’s Ethernet address

o Sender’s IP address

¯Target’s IP address.

A typical ARP packet might be as as shown in
Table 3. Here the host (call it Host A) whose

IP address is 193.30.20.10 wa, L~ to know
the Ethernet address for the host (call it Host
B) whose IP address is 193.30.20.11. Since
Host A does not know Host B’s Ethernet
address, the Ethernet destination address is set
to the broadcast address to so that Host B can
receive the packet. When Host B does receive
the packet, it will note that the target IP
address in the packet matches his own IP
address, and will send a reply. Any other host
that receives the packet will see that the target
IP address in the packet does not match his
own, and so will discard the packet.

IP Packet Forwarding

While an Ethernet interface can simply
ignore packets that are not addressed to it, a
host may be required to process IP packets
that are addressed to someone else. For exam-
ple:

¯ A host that is acting as a gateway between
two networks must forward packets between
the networks.

¯ A host that cannot forward a packet may
inform the packet’s originator by means of an

Ethernet Header

IP Header

IP Data

Field

Source Address
Destination Address
Packet Type

Destination IP Address

Value

Ic:08:le:3d:OO:Oa
ff:ff:ff:ff:ff:ff
0800

193.30.20.255

Table 2: New-Style IP Broadcast Packet

Ethernet Header

ARP Packet

Field Value

Source Address
Destination Address
Packet Type

Sender’s Ethernet Address
Sender’s IP Address
Target’s IP Address

Table 3: ARP Packet

Ic:08:le:3d:OO:Oa
ff:ff:ff:ff:ff:ff
0806

Ic:08:le:3d:OO:Oa
193.30.20.10
193.30.20.11

AUUGN 157 Vol 9 No 5

;login:

Internet control message protocol (ICMP)
packet.

A host must be very careful with packets
that are not addressed to it. (See RFC 1009 for
a fairly thorough discussion and RFCs 1015
and 1017 for some recent thoughts.)

A host must be even more careful with
packets that have been broadcast, as they may
have been received by many other hosts. A
good principle is to never do anything with a
broadcast packet unless a hundred and one
hosts can do it at the same time safely on the
same Ethernet.4 Broadcast storms can occur
when this principle is violated.

Both BSD 4.2 and BSD 4.3 violate this
principle by refusing to check that the Ethernet
destination address is the same as the Ethernet
broadcast address (ff:ff:ff:ff:ff:ff).
Both BSD 4.2 and BSD 4.3 do check the
Internet destination address to determine
whether it matches their idea of the b~ternet
broadcast address (in fact BSD 4.3 checks the
Internet destination address to see whether it
matches any of the currently known Internet
broadcast addresses), but there is no guarantee
that

¯ It will not be necessary to add yet another
Internet broadcast address at some time in the
future, or that

- Some bug that wraps a broadcast Ethernet
header around a single-destination Internet
packet will not crop up somewhere.

Any check of the link layer (Ethernet in
this case) broadcast address must be done at
’hat layer; the results of the check must be
available to the network layer (IP in this case),
so that the layer interface would have to be
modified to implement this check. This could
go a long way toward explaining any
reluctance the BSD 4.3 maintainers might feel
about making this sort of modification.

There is a work-around for BSD 4.2 and
BSD 4.3 systems in the form of a kernel vari-
able called ipforwarding. Setting this variable

4 Some examples of safe actions would be recording the

packet on a local disk, responding to the packet if no other
host is going to (e.g., if you are the only boot server, then
you may respond to broadcast requests for booting), and,
of course, discarding the packet.

to 0 will prevent any forwarding of IP packets.
This has the (possibly unfortunate) side effect
of making the system incapable of acting as a
gateway between two networks or subnets.
Stock systems have this variable set to 1 by
default (thus enabling IP forwarding), although
a BSD 4.3 system with a single network
interface will behave as though it were set to 0
(thus disabling IP forwarding).

A Classical Broadcast Storm

We now have the background to examine
an example broadcast storm. Consider a small
network with a single BSD 4.3 machine
(193.30.20.10) whose IP broadcast address
has been set to the standard 193.30.20.255,
and three BSD 4.2 machines, all of which have
ipforwarding set to 1. Referring to Figure 1 we
see the following sequence of events:

1. At time=0, host 193.30.20.10 broad-
casts an IP packet over the network. This
packet might look like the one in Table 2.

2. BSD 4.2 hosts 193.30.20.11,
193.30.20.12, and 193.30.20.13 all receive
this packet.

3. Since the IP destination address
193.30.20. 255 does not match either
193.30.20.0 (the BSD 4.2 broadcast address)
or the hosts’ own IP addresses, each host
decides to forward the packet.

4. Each host looks in its cache of IP-address-
to-Ethernet-address translations for the
Ethernet address corresponding to
193.30.20.255. Since there is no such host,
the lookup will fail. Each host will therefore
broadcast an ARP packet over the Ethernet at
time=10 in an attempt to find the Ethernet
address corresponding to 193.30.20.255.
Table 4 shows what this packet might look like
for host 193.30.20.11. The three simultane-
ous ARP packets collide and are therefore lost.
Each of the hosts detects the collision, and
schedules a retransmission at some random
time in the future.

5. At time=30, hosts 193.30.20.11 and
193.30.20.13 retransmit. Again the ARP
packets collide, are lost, and the hosts schedule
a random retransmission.

Vol 9 No 5 158 AUUGN

;login:

Ethernet Header
Field
Source Address
Destination Address
Packet Type

Value
Ic:08:le:3d:OO:Ob
ff:ff:ff:ff:ff:ff
0806

ARP Packet Sender’s Ethernet Address
Sender’s IP Address
Target’s IP Address

Ic:08:le:3d:OO:Ob
193.30.20.11
193.30.20.255

Table 4: Broadcast Storm ARP Packet

6. This time, all three hosts pick different
times to retransmit their ARP packets. Since a
collision is therefore avoided, the packet is
broadcast successfully to all other hosts on the
Ethernet.

7. Since there is no actual host with an IP
address of 193.30.20.255, there is no reply
to the ARP packets. Thus, all three of the
hosts receiving the original broadcast IP packet
will time out and drop the packet.

The net effect is that one broadcast packet
has caused no fewer than eight separate
transmissions.

We at SRI conducted larger-scale tests of
the classical-broadcast-storm mechanism on
our local Ethernet (after hours, of course),
which is populated by a large diverse popula-
tion of hosts, including over one hundred Sun
workstations, several Vaxes running BSD 4.3,
several more Vaxes running VMS, some Xerox
workstations, several IBM PCs, several UNIX
machines, and an IBM mainframe.

The broadcast storm was triggered by a
burst of rwhod packets broadcast on the new-
style (all l s) broadcast address by a Silicon
Graphics work station. The first set of trials
used a total of 43 ipforwarding hosts; each trial
generated over 400 packets per second for a
period of twenty seconds.

The second set of trials used a total of 23
ipforwarding hosts; each of these trials
generated over 400 packets per second for a
period of ten seconds. Decreasing the number
of ipforwarding hosts shortens the duration of
the broadcast storm commensurately.

The packet rate figures are subject to large
errors because of missed interrupts in the
measuring hosts and to high collision rates on

the Ethernet. The figures given above almost
certainly understate the actual oacket rates.

The standard measures for preventing
classical broadcast storms are well known, but
bear repeating:

¯ Clear the ipforwarding kernel variable in
each UNIX host on the network, or

¯ Upgrade each system to a version that has
BSD 4.3 networking.

If you have a BSD 4.3 system with more than
one network interface, it is still wise to clear
the ipforwarding kernel variable (unless is is
really needed as a gateway).

Most BSD 4.2 and BSD 4.3 systems can be
patched with adb to clear the ipforwarding
variable as follows:

cp /vmunix /vmunix.save
adb -w /vmunix
_ipforwarding?*W 0
Sq
/etc/reboot

Note that the change will not take effect until
after the reboot.

SRI experimented with an ipforwarding
program that can determine whether a host
will forward new-style IP broadcast packets.
This program must be run on a Sun5 that is
connected to the same subnet as the host to be
tested. This program works by handcrafting a
"tickler" IP packet with a single-destination
Ethernet header and an new-style broadcast IP
header (see Table 5). After sending this
packet, the program listens for an ARP packet
requesting the Ethernet address that
corresponds to the new-style IP broadcast

5 The program uses Sun’s network interface tap (NIT) to
send and receive raw Ethernet packets.

AUUGN 159 Vol 9 No 5

;login:

Ethernet Header

IP Header

Field
Source Address
Destination Address
Packet Type

Destination IP Address

Value

lc:08:le:3d:OO:Oa
lc:08:le:3d:OO:Ob
0800

193.30.20.255

Table 5: IP-Forwarding "Tickler" Packet

address. If such a packet is heard, this means
that the destination host does forward new-
style broadcast IP packets.

Note that this program does not induce a
broadcast storm, since it "tickles" hosts one at
a time.

Other Packet-Response Storms

There are other mechanisms that theoreti-
cally can result in a packet-response storm:

¯ Many reverse ARP (RARP) servers serving
the same Ethernet address

¯ Many network mask request servers serv-
ing the same subnet.

In practice, only a few servers (perhaps one or
two) would be configured to serve the same
hosts, so any "storms" that did occur would
likely be very mild or completely .unnoticeable.

We at SRI run a script based on Van
Jacobsen’s tcpdump program that captures
broadcast traffic, retaining the individual
broadcast transactions for one hour. This
record is very helpful in ascertaining the cause
of a broadcast storm, as one can look at the
past hour’s broadcast packets and see which
machines have participated in the storm and
possibly which machine caused it.

Nervous Hosts
A "nervous host" is one that continually

attempts to send packets to another host that
is down. Since the first step in sending a
packet to another host on an Ethernet is to
broadcast an ARP packet, a large number of
nervous hosts can result in an unusually large
number of broadcast packets.

The classic "nervous host" is a UNIX host
set up to print on a printer that is down ann it

connected directly to the network. Let us
assume that the printer has been down for a
long time, and that the host has not attempted
recently to send a job to that printer.

Then let us also assume that a user queues
a print job for the dead printer. As long as the
printer is down, the host will repeat the follow-
ing:

I. The printer daemon (Ipd) will notice that
there is a job to be printed and will initiate the
filter process specified in the printcap entry for
the printer.

2. The filter process will attempt to open a
network connection to the printer; since the
printer is down, this attempt will fail.

3. The filter process will notify the printer
daemon of the failure. However, since the
printer could come back up at any time, the
filter process will indicate that this is a
temporary failure. Therefore, the printer
daemon will retry the print job.

Since the printer daemon must do several
disk accesses in order to start printing a job, a
very large number of nervous hosts would be
necessary to affect the Ethernet significantly.
However, the considerable volume of broad-
cast ARP packets can confuse monitoring
programs (to say nothing of people!).

A good way to diagnose this problem is to
look at a record of broadcast packets. If many
of these packets are ARP requests for a printer,
it is likely that the printer is down and that
there are nervous hosts trying to access it.

The best way to solve this particular
problem is to fix your printer, but applications
should use sleep(l) where necessary to prevent
this problem.

Vol 9 No 5 lou AUUGN

;login:

Load Imbalances
A load imbalance occurs on local-area net-

works that consist of several Ethernet segments
connected by bridges or gateways when:

¯ One of the segments has much more traffic
than the others, or

¯ Most of the traffic on one of the segments
is not local to that segment. The configuration
shown in Figure 2 allows only a single packet
at a time to be transmitted between a work
station and its server. Much better results
may be obtained by running parallel Ethernet
cables to split the load, as shown in Figure 3.
This configuration allows up to two packets to
be transmitted at a time, for example, file
server A could transmit a packet to one of its
work stations at the same time that file server
B is transmitting a packet to one of its work
stations.

In general, pairs of hosts that
communicate with each other heavily should
be placed on the same Ethernet segment.

Running physically parallel Ethernet cables
allows hosts to be moved easily from one cable
to another, as required by changing patterns of
usage.

Note that the load balancing problem may
be alleviated by the advent of higher-speed
networks, such as the 100 Megabit FDDI,
although usage will almost certainly expand to
fill the available bandwidth.

Summary
In short, to keep your network healthy,

rwhod and ipforwarding must be disabled (even
on BSD 4.3 systems, if they have more than
one network interface) and the network load
must be distributed with care.

The reader should keep in mind that the
forgoing discussion is by no means exhaustive.
There are many more interesting problems in
the form of subnets, gateways, routing
protocols, and other elements of network
architecture and operations.

AUUGN 161 Vol 9 No 5

;login:

TIME

i0 -

20 -

30 -

40 -

50 -

60 -

HOSTS

193.30.20.10 193.30.20.11 193.30.20.12 193.30.20.13

New-Style

Broadcast

(collision!)

(collision!)

(received) (received) (received)

ARP for ARP for ARP for
193.30.20.255 193.30.20.255 193.30.20.255

ARP for J
(collision!)

193.30.20.255
ARP for

193.30.20.255

(ignored) (ignored) l ARP f°r 1 (ignored)
,193.30.20.255

(ignored) ARP for
193.30.20.255 (ignored) (ignored)

(ignored) (ignored) (ignored) ARP for

193.30.20.255

Figure 1: Classical Broadcast Storm

Vol 9 No 5 162 AUUGN

;login:

File File File File
Server Server Server Server

A B C D

Bridge

Figure 2: Poor Ethernet Configuration

File
Server
A

Work
Stations

A
II

File
Server

B

File
Server

C

File
Server

D

Bridge

Work
Stations

B

T
Work

Stations
C "]

Work
Stations

D
1!

Figure 3: Better Ethernet Configuration

AUUGN 163 Vol 9 No 5

;login:

An Update on UNIX Standards Activities.

Shane P. McCarron

NAPS International
August 1, 1988

This is the third in a series of reports on
standards bodies relating to the UNIX
community. Before I start, I would like to
take a couple lines to thank all of those readers
who were kind enough to drop me a line of
either criticism or encouragement; both are
greatly appreciated. In the future please feel
free not only to comment on the articles here,
but also on standards issues. I am more than
happy to try and answer any of your questions
either individually or through this column.

To business: the most important item to
report (from my perspective) is that the
’_ISENIX Association has formed a Standards
Watchdog Committee. The charter of this
group is to keep an eye on as many of the
standards efforts as possible, and report the
progress of those efforts back to the member-
ship. In addition, the group will be looking for
important or contentious decisions, and trying
to determine a USENIX position where it
seems appropriate. The group will also be
looking to yo.u, the members, for input.
Everyone has opinions, and the Watchdog
Committee, through its standards committee
representatives, can serve as a channel to get
your ideas to the appropriate groups or can
put you in contact with the appropriate peo-
ple. For more information, please contact:

John S. Quarterman
Texas Internet Consulting
701 Brazos, Suite 500
Austin, TX 78701
(512) 320-9031
jsq@usenix.org, uunet!usenix!jsq

As always, the standards bodies have been
pretty busy during the past quarter. Busy, that
is, in standards body terms. There is often a
great deal of heat, but very little light. I have
remarked in the past that these committees
can take a long time to complete things.

PI003.0 - The POSIX Open Systems
Environment Guide

The IEEE 1003.0 working group met on
July 12 & 13, 1988 in Denver, Colorado. The
purpose of this meeting was to have the group
members, who had volunteered during the
March meeting to work on certain portions
(sub-groups) of the POSIX Open Systems
Environment guide document, present their
material for review and critique by the group.
This was accomplished on day 1 and the
morning of day 2. The sub-groups that were
discussed included:

1. Operating System
2. Database Management
3. Data Interchange
4. Network Services
5. User Interface
6. Languages
7. Graphics

The remainder of the meeting focused on
goals and objectives for the next meeting in
October. There was strong consensus within
the group that the next goal should be a very
rough draft document. Volunteers were
assigned to each sub-group above with the
purpose of putting into narrative form the
material that had been presented. It was also
agreed that distribution of this draft prior to
the October meeting would be essential in
order to allow for good, well thought-out
discussion during the meeting.

The group has targeted October, 1989 as a
goal for beginning the balloting process. This
is aggressive, but possible, assuming that the
effort between meetings can be maintained at
its present level.

Overall, the meeting was very productive
and is drawing more participation from a good
cross-section of vendors and users.

Vol 9 No 5 164 AUUGN

;logan:

PlO03.1

The big news this month is, of course, that
as of August 22nd the POSIX System Services
Interface standard is complete. By the time
you read this, final drafts should have been
circulated to all of the POSIX working group
members, and copies of that draft should be
available from the IEEE office in New York.
While you can obtain a copy of the final draft
now, you would do well to wait for a couple of
months and pick up a real, hard-bound version
of the standard from the IEEE. To order a
copy of the final draft, contact:

IEEE Standards Office
345 E. 47th St.
New York, NY 10017
(212) 705-7091

Since the last installment in this series, the
1003.1 standard has gone through not one, and
not two, but three more recirculations. As you
may remember, the second recirculation was
scheduled to take place in May, and it did.
This one went as well as expected, and
generated some excellent feedback. The
changes from that recirculation were assem-
bled and sent back to the balloting group for
review at the end of June. As a result of that
recirculation, there were yet more changes to
the standard, and those changes had to be
recirculated as well. The final recirculation
took place at the end of July, and generated no
substantial changes. At that point the
standard was released to the Technical Editor
for final copy editing, and has now been
balloted on and approved by the IEEE
Standards Board!

This is actually good and bad. It is good
for all the reasons you would suppose. It is
bad because the standard is not perfect; there
are things that shouldn’t be in it that are (e.g.
some weird timezone stuff and read() and
write() functions that allow broken behavior),
and things which should be in it but are not
(like seekdir() and telldir()). Even though the
standard is not perfect, at least we now have a
foundation upon which additional documents
can be based. In the future this standard will
be extended and revised, but for now (in
combination with Standard C), it’s the best
thing we have for application portability.

In the meantime, the .1 working group has
not been idle. Although the initial work on
the Services Interface standard was completed
some months ago, there are always new areas
to work in. The following is information on
developments where they occurred.

Clean Up

There are some issues that were not han-
dled to the satisfaction of the working group in
the first cut of the standard. A small group is
working on sifting through the unresolved
balloting objections (there were several) and
identifying those items that can be rectified
through modification to the standard. It turns
out that many of the unresolved objections
were very reasonable items, but were intro-
duced too late in the process to be placed in
the standard. Those items will be looked at
and possibly added to the standard in a sup-
plement.

Language Independent Description

While little progress has been made in this
area by the .1 working group, it turns out that
there has been quite a bit of work done by
other working groups and technical
committees. The /usr/group technical
committee on supercomputing, in particular,
has produced a Fortran language description of
the .1 interface. In the process they have
come up with a number of items that can be
used by the. 1 people to develop their language
independent description.

Terminal Interface Extensions
The Working Group looked at the various

requirements necessary for a terminal interface
standard (a terminal interface standard is
something like the Terminal Interface Exten-
sions in the SVID, better know as
curses/terminfo). The group determined that
there is little or no way to get a single interface
standard that will satisfy the needs of the
entire community. Those people with bit
mapped displays can do things better, and we
should let them. Those people with block
mode terminals have special needs that should
not have to be addressed by otherwise portable
applications. The majority of users that we
are tryina to satisfy, those with character based

AUUGN 165 Vol 9 No 5

,~ogin:

terminals, have well defined needs that are
already being addressed by existing practice.

What’s the solution? Well, none was
really proposed, but I would guess that the
people in the bit mapped world are going to
care a lot more about Open Look and Presen-
tation Manager (bite my tongue) than they are
about something based on terminfo or
termcap. For the other 90 percent of the
UNIX-using community, while terminfo &
termcap may be what they are used to seeing,
it is hardly attractive enough to make them sit
up and take notice. They are looking for
flashier, better, faster applications, and the
traditional interface is not going to be enough.
For application developers, the functionality
which can be achieved via terminfo is fine but
hardly adequate for building the products that
the user community is coming to expect.

I would guess that the POSIX committees
will settle on some subset of the terminfo
interface as the standard, and that no one will
use it. Sure, it will be on every POSIX
conformant system, but who cares? It is a
lame interface, and someone will come up
with a better one soon enough.

New Archive Format

As I mentioned previously, the ISO has
asked Pl003.1 to come up with a new archive
format that will not have the deficiencies of tar
or cpio and will be able to take the security
concerns of the P1003.6 group into considera-
tion (I assume that by this they mean access
control lists, mandatory access controls, and
the like). Little was done on this topic
between meetings, but at the July meeting the
committee discussed ways to extend the cpio
archive format to take these things into
consideration. While the technical details of
this extension are clear, they are also boring.
Suffice it to say that the filename field in the
archive can be extended through a kludge and
that it would be backward compatible.

This met with mixed reactions, and I
believe that in the end it will not be used.
This discussion (popularly known as Tar Wars)
has been very religious and contentious, and I
don’t think that a format based on either will
be able to get popular support from the work-
ing group. There is now a small group of peo-
ple (from both camps) working on another new

format, and I am certain that they will come
up with something for the October meeting.

P1003.2 - Shell and Tools Interface

This group is actually a little bit ahead of
schedule. Forget all the nasty things I have
said about their schedule being too tight and
optimistic - they are actually going to do it!
You’re not as impressed as I am, I can tell.
Some people are just never satisfied. Okay,
here’s some evidence for you.

Functionality was frozen at the March
meeting. This means that no additional
commands or concepts could be added to the
standard. It also means that the working
group members were free to concentrate on the
content of the draft, instead of looking at new
proposals for additional commands all of the
time. This has turned out to be very
profitable; the draft has been cleaned up to the
point where it can be submitted (to the work-
ing and corresponding groups) for a mock
ballot in September. A mock ballot is just that
- a process during which the draft is picked
apart as it would be in the balloting process,
with changes submitted through formal ballot-
ing objections. This may seem a little
excessive, but it has proven effective in the
past.

Assuming that all goes well, and the objec-
tions from the mock ballot are resolved at the
October meeting, the group could go to a full
ballot as early as January. A less optimistic
scenario shows the group working on resolu-
tion of the mock ballot for two full meetings,
with the real ballot occurring in February or
March. Either way, the group is on schedule
for a full use standard before the end of 1989.

In addition to this good news, there were
a few key decisions made at the July meeting.

This side of the Tar Wars is apparently at
an end. There were two aspects to the war -
user-program interface and actual archive
format. The interface side of it seems to have
been settled by the introduction of a command
called pax (Latin for peace). This command
will be able to read and write both types of
archives and has an interface that is acceptable
to both camps. While this has not been agreed
upon by the balloting group, or even by the
full working group, the interface is pretty

Vol 9 No 5 166

;login:

familiar, and I believe it will be approved with
little change¯

The group also concentrated on trying to
remove anything that might be considered
implementation dependent from the draft.
This included removing the octal modes from
chmod, and the signal numbers from trap and
kill. In their place go all of the mnemonic
command line arguments that have been in
those commands all along, but aren’t used by
anyone. As a committee member I can see
what they are trying to do, and even agree
with it. As a user, however, I wish they would
have placed requirements that, say, k itt -9
would always map to SIGKILL. At least that
way I wouldn’t have to fix every shell script I
have ever written.

P1003.3 - Testing and Verification

This working group is progressing well on
its verification standard for 1003.1. They are
planning to have a version to ballot in January
or February of 1989. That would make the
standard available just about the time that the
major vendors are finishing their .1
conformant implementations.

The group has also started supplying
liaison people to each of the other working
groups. These people, with their experience
writing a testing standard for .1, are proving
very valuable in designing testable standards.

New POSIX Work Items

In addition to all of the committees you
have heard about in past articles, there were
several new working groups proposed to the
P 1003 steering committee.

System Administration

The committee recognizes the need for a
standard interface to many of the system
administration utilities that we are plagued
with. While there was a considerable amount
~f skepticism exhibited from the members, the
steering committee has agreed to let work
progress on this topic. Consequently, a PAR
was filed by Steve Carter of Bellcore, and the
new working group will start meeting in
October.

This group has a lot of work ahead of
them; the difficulties of designing standard

interfaces to things like fsck and fsdb may
prove impossible. Also, from an system imple-
mentor standpoint, I would hate to have the
administrative functions I can provide limited
by something that a standards committee is
going to generate based on existing practice.
This is not an area in which there is a huge
body of existing applications, so implementors
should be allowed to innovate and improve if
they like.

On the other hand, the computer users of
the world are probably pretty sick of having to
learn a .new way to enable printers on every
system they purchase. For those people, hav-
ing a standard is going to be a big win. This is
one of those times when the saying "be careful
what you wish for..." comes into play. The
ultimate, generic system administration
interface may prove to be so restricted or
brain-dead that it is of no use to anyone. The
¯ 1 standard was nearly that way.

Networking

Another new working group will be focus-
ing on the services and service interfaces for a
networked POSIX conformant system. While
the exact charter and goals of this group are
not fully established, what they are not trying
to do is. They are not trying to overlap the
work of the ISO-OSI committees, nor are they
trying to supplant the work being done by
IEEE 802. Their plan is to spend two years
defining the services and service protocols, and
maybe an additional year defining interfaces to
those protocols.

User Interface Commands
If you have looked closely at the 1003.1

and .2 standards, you will notice that there is
nothing in either of them about User Interface.
Well, you’re not alone, and someone is finally
going to do something about it. A sub-group
of the Shell and Tools committee has been
formed to codify the interface of many of the
classic UNIX commands (vi, ed, etc.). In addi-
tion, the group will be defining the user
interface aspects of those commands already in
the .2 standard which have traditionally had
user interfaces as well as their programmatic
ones.

This group is going to work somewhat in a
vacuum - since there is no standard for

Vol 9 No 5
AUUGN 167

;iogin:

terminal interface, the user interfaces defined
are not going to have a way, programmatically,
of being put on the screen, terminfo will of
course work for this, but it is not a standard.
Hopefully the .1 committee can get a supple-
ment out regarding this before the .2 sub-
group finishes its work describing the utilities.

X/Open

The X/Open group is just about to release
version 3 of the X/Open Portability Guide.
This set of manuals is a must for any applica-
tion developer or system implementor plan-
ning on marketing products in Europe. Ver-
sion 3 will encompass all of the .1 standard,
but will not contain any of the items proposed
in the latest drafts of .2 - that document is too
immature. The XPG also has language
definitions, database interface specifications,
and many other things that a growing
programmer needs in the UNIX world.

NBS - Federal Information Processing
Standard

I have written about this in each issue of
this report, and each time I say that it is
almost here. Well, I am done making predic-
tions. The Federal government has a shield
that my crystal ball just refuses to penetrate. I
have heard recently that the FIPS for the .1
standard is within the Commerce. department
somewhere, but I have no proof. When it does
finally come out, it will be based on a version
of the standard that is almost a year out of
date. Draft 12 of the .1 standard resembles
the final standard about like a caterpillar
resembles a butterfly. This is very
unfortunate, as the vendors that are serious
about selling computers to the Feds are going
to have to conform to that standard, and not
the real one. Note that while the NBS did try
to jump the gun a little bit, they forced the .1
committee to work harder and faster. Without
their encouragement the standard may well
never have been finished.

Of course, the NBS has indicated that they
will start making the FIPS conform to the final
standard just as soon as it is out (now, that
means). But, given the amount of time it took
them to get the first standard out the door, I’m
not holding my breath. It could be deep into

1989 before we see a revised FIPS hit the
Federal Register’s list of announcements.

In the meantime, the NBS is proceeding in
its specification of other interim FIPS. Just
until there are real standards in these areas, of
course, we are going to see FIPS on Shell and
Tools, User Interface, System Administration,
Terminal Interface Extensions, and probably
shoe lacing. The NBS people are very busy
cranking out standards that Federal govern-
ment departments can cite when generating
bid requests. Unfortunately, in those cases
where the committees aren’t far enough along
yet, these standards are going to be based on
the SVID. And if the SVID is used as a base
document by the Feds, you can be sure that it
will also be used by any standards committees
that come along later and want to "codify
existing practice." Just another example of the
Federal government guiding the standards
community.

The NBS is putting on a series of
workshops this fall to address some of these
issues, and get input from the community.
The first of these workshops, a seminar on
"POSIX and other Application Portability
Profile Standards" will be September 22nd and
23rd. For more information, contact Debbie
Jackson at (301) 975-3295. She will be happy
to send you registration materials, as well as
give you information about future workshops
being put on by the National Bureau of
Standards.

X3Jll - ANSI C Language Standard

This standard is pretty important to every-
one in the UNIX community. Unfortunately,
that means that everyone has to get involved
in the development of it, and that takes time.
The document has now entered its third public
comment period (July 1st ~ August 31st).
From what I gather, the committee will be
very reluctant (read "it will never happen") to
make any substantive changes to the standard
as a result of this period. What they are look-
ing for is affirmation from the public that the
changes made in round two were adequate to
remove most of the outstanding objections.

The good news here is that the noa[i as
keyword has been removed from the draft.
This was a very contentious iss110 and was

Vol 9 No 5 168 AUUGN

;login:

introduced very late in the process. In
simplest terms, noalias would allow the
programmer to specify that the program, for
that statement, would do exactly what it was
supposed to do. Pretty silly, when you get
right down to it. Anyway, its gone now - like
a bad dream.

In addition, a number of simple editorial
changes were made. Most of these are
transparent, and just made the standard a little
more readable. Unfortunately, it is still a
standard written by programmers, for
programmers, and is a little hard to read.
There is even rumor of a x3speak program,
like the valspeak of a few years ago, about to
come out in comp.sources.misc. This would
take any prose and render it senseless through

the addition of legalese. My advice to future
readers of the standard is this: Don’t go into
the water alone. Use the buddy system, and
take a reader’s guide with you.

Assuming all goes well at the September
meeting, the ANSI C Language Standard
should be published later this year.

Well, that’s about it for this month.
Remember, keep those cards and letters com-
ing to:

Shane P. McCarron
NAPS International
117 Mackubin St., Suite 6
St. Paul, MN 55102

(612) 224-9239
ahby@bungia.mn.org

Future Events
EUUG Autumn Conference
Estoril, Portugal, Oct. 3-7

C++ Miniconference
Denver, CO, Oct. 17-21

The Program Chair is Andrew Koenig of
AT&T. See page 3.

Large Installation
Systems Administration II
Monterey, CA, Nov. 17-18

The Program Chair is Alix Vasilatos of
MIT’s Project Athena. See page 6.

Japan UNIX Society
Osaka, Nov. 11-15, Conference & Exhibition
Toyko, Dec. 7-8, UNIX Fair ’88

For both events, contact: Ms. Hiroko
Tsunoda, Japan UNIX Society, 2-12-505
Hayabusa-cho, Chiyoda-ku, Tokyo 102,
+81-3-234-5058

USENIX 1989 Winter Technical Conference
San Diego, Jan. 30-Feb. 3, 1989

See page 5.

EUUG Spring Conference
Brussels, Apr. 10-14, 1989

See page 7.

Long-term USENIX & EUUG Schedule
Jun 12-16 ’89 Hyatt Regency, Baltimore
Sep 18-22 ’89 Vienna, Austria
Jan 22-26 ’90 Omni Shoreham, Washington, DC
Apr 23-27 ’90 Munich, W. Germany
Jun 11-15 ’90 Marriott Hotel, Anaheim
Jan 21-25 ’91 Dallas
Jun 10-14 ’91 Opryland, Nashville
Jan 20-24 ’92 Hilton Square, San Francisco
Jun 8-12 ’92 Marriott, San Antonio

AUUGN 169 Vol 9 No 5

;login:

Publications Available
The following publications are available

from the Association Office. Prices and
overseas postage charges are per copy.
California residents please add applicable sales
tax. Payment must be enclosed with the order
and must be in US dollars payable on a US
bank.

Conference and Workshop Proceedings

The EUUG Newsletter, which is published
four times a year, is available for $4 per copy
or $16 for a full-year subscription.

The July 1983 edition of the EUUG
Micros Catalog is available for $8 per copy.

We hope to have EUUG tapes and confer-
ence proceedings available shortly.

Meeting Location
USENIX San Francisco
C++ Workshop Santa Fe
Graphics Workshop IV Cambridge
USENIX Wash. DC
Graphics Workshop III Monterey

Overseas Mail
Date Price Air Surface
Summer ’88 $20 $25 $5
November ’87 20 25 5
October ’87 10 I 5 5
Winter ’87 I 0 25 5
December ’86 10 15 5

Vol 9 No 5 170 AUUGN

;logi_n:

4.3BSD Manuals

The USENIX Association now offers all
members of the Association the opportunity to
purchase 4.3BSD manuals.~

The 4.3BSD manual sets are significantly
different from the 4.2BSD edition. Changes
include many additional documents, better
quality of reproductions, as well as a new and
extensive index. All manuals are printed in a
photo-reduced 6"x9" format with individually
colored and labeled plastic "GBC" bindings.
All documents and manual pages have been
freshly typeset and all manuals have "bleed
tabs" and page headers and numbers to aid in
the location of individual documents and
manual sections.

A new Master Index has been created. It
contains cross-references to all documents and
manual pages contained within the other six
volumes. The index was prepared with the aid
of an "intelligent" automated indexing
program from Thinking Machines Corp. along
with considerable human intervention from

Mark Seiden. Key words, phrases and
concepts are referenced by abbreviated docu-
ment name and page number.

While two of the manual sets contain
three separate volumes, you may only order
complete sets.

The costs shown below do not include
applicable taxes or handling and shipping from
the publisher in New Jersey, which will
depend on the quantity ordered and the
distance shipped. Those charges will be billed
by the publisher (Howard Press).

Manuals are available now. To order,
return a completed "4.3BSD Manual
Reproduction Authorization and Order Form"
to the USENIX office along with a check or
purchase order for the cost of the manuals.
You must be a USENIX Association member.
Checks and purchase orders should be made
out to "Howard Press." The manuals will be
shipped to you directly by the publisher.

Manual

User’s Manual Set (3 volumes)
User’s Reference Manual
User’s Supplementary Documents
Master Index

Programmer’s Manual Set (3 volumes)
Programmer’s Reference Manual
Programmer’s Supplementary Documents, Volume 1
Programmer’s Supplementary Documents, Volume 2

System Manager’s Manual (1 volume)
* Not including postage and handling or applicable taxes.

Cost*

$25.00/set

$25.00/set

$10.00

4.2BSD Manuals are No Longer Available

t Tom Ferrin of the University of California at San Francisco, a former member of the Board of Directors of the USENIX
Association, has overseen the production of the 4.2 and 4.3BSD manuals.

AUUGN 171 Vol 9 No 5

;login:

Local User Groups
The USENIX Association will support local user groups by doing an initial mailing to assist the

formation of a new group and publishing information on local groups in ;login:. At least one member
of the group must be a current member of the Association.

CA- Fresno: the Central California UNIX Users
Group consists of a uucp-based electronic mailing
list to which members may post questions or infor-
mation. For connection information:

Educational and governmental institutions:

Brent Auernheimer (209) 294-4373
brent@CSUFresno.edu or csufres!brent

Commercial institutions or individuals:

Gordon Crumal (209) 875-8755
csufres!gordon (209) 298-8393

CA-Los Angeles: the Los Angeles UNIX Group
meets on the 3rd Thursday of each month in
Redondo Beach.

Drew Bullard
(ucbvax,ihnp4) !trwrb!bullard

(213) 535-1980

Marc Ries
(decvax,sdcrdcf)!trwrb!ries

(213) 535-1980

CO - Boulder: meets monthly at different sites.

Front Range UNIX Users Group
USENIX Association Exhibit Office
5398 Manhattan Circle
Boulder, CO 80303

John L. Donnelly
(boulder, usenix) !johnd

(303) 499-2600

FL - Coral Springs:

S. Shaw McQuinn
8557 W. Sample Road
Coral Springs, FL 33065

(305) 344-8686

Ben Goldfarb
goldfarb@hcx9.ucf.edu
Mikel Manitius
(codas,attmail) !mikel

(305) 275-2790

(305) 869-2462

FL-Tampa Bay: the Tampa UNIX Users Group
meets the 1st Thursday of each month, alternately in
Largo and Tampa.

Scott Stone
uflorida!usfvax2!stone, stone@usf.edu
Bill Hargen
(codas,usfvax2) !pdn!hargen

(813) 974-3307

(813) 530-8655

George W. Leach
uunet!pdn!reggie

(813) 530-2376

GA- Atlanta: meets on the 1st Monday of each
month in White Hall, Emory University.

Atlanta UNIX Users Group
P.O. Box 12241
Atlanta, GA 30355-2241

Marc Merlin (404) 442-4772
Mark Landry (404) 365-8108

MI- Detroit/Ann Arbor: meets the 2nd Thursday
of each month in Ann Arbor.
William Bulley
web@applga.uucp

(313) 995-6211

Rich McGill
rich@oxtrap.uucp

(313) 971-5950

Steve Simmons
scs@lokkur.uucp

(313) 426-8981

FL-Melbourne: the Space Coast UNIX Users
Group meets at 8pm on the 3rd Wednesday of each
month at the Florida Institute of Technology.

Alex Stover (305) 724-3962
codas!lola!als

Bill Davis
bill@ccd.harris.com

(305) 242-4449

-Orlando: the Central Florida UNIX Users
,-oup meets the 3rd Thursday of each month.

4ike Geldner (305) 862-0949
~’odas!suntla!mike

MI - Detroit/Ann Arbor: dinner meetings the 1st
Wednesday of each month.
Linda Mason
michigan!/usr/group
P.O. Box 189602
Farmington Hills, MI 48018-9602

(313) 855-4220

MN- Minnetonka: meets the Ist Wednesday of
each month.

UNIX Users of Minnesota
545 Ashland Avenue #3
St. Paul, MN 55102

Vol 9 No 5 172 AUUGN

;login:

Scott Anderson
scott@questar.mn.org

(612) 688-0089

MO - St. Louis:
St. Louis UNIX Users Group
Plus Five Computer Services
765 Westwood, 10A
Clayton, MO 63105

Eric Kiebler
ihnp4!plus5!sluug

(314) 725-9492

NE - Omaha: meets on the 2"d Thursday of each
month.

/usr/group nebraska
P.O. Box 44112
Omaha, NE 68144

, Sukan Makmuri (402) 422-8367
ihnp4!ugn!root

New England - Northern:
different sites.

Emily Bryant
Kiewit Computation Center
Dartmouth College
Hanover, NH 03755

David Marston
Daniel Webster College
University Drive
Nashua, NH 03063
decvax!dartvax!nneuug-contact

meets monthly at

(603) 646-2999

(603) 883-3556

NJ- Princeton: the Princeton UNIX Users Group
meets monthly.

Pat Parseghian (609) 452-6261
Dept. of Computer Science
Princeton University
Princeton, NJ 08544

pep@Princeton.EDU

NY - New York City:
Unigroup of New York
G.P.O. Box 1931
New York, NY 10116
Ed Taylor
(attunix,philabs)!pencom!taylor

(212) 513-7777

New Zealand:

New Zealand UNIX Systems User Group
P.O. Box 13056
University of Waikato
Hamilton, New Zealand

OK - Tulsa:

Pete Rourke
$USR
7340 East 25th Place
Tulsa, OK 74129

PA - Philadelphia: the" UNIX SIG of the
Philadelphia Area Computer Society (PACS) meets
the morning of the 3rd Saturday of each month at
the Holroyd Science Building, LaSalle University.

G. Baun, UNIX SIG
c/o PACS
Box 312
La Salle University
Philadelphia, PA 19141

(inhp4,cbosgd,rutgers) ! (bpa,cbmvax) !
temvax! pacsbb! (gbaun,whutchi)

TX - Dallas/Fort Worth:
Dallas/Fort Worth UNIX Users Group
Seny Systems, Inc.
5327 N. Central, #320
Dallas, TX 75205

Jim Hummel (214) 522-2324

TX- San Antonio: the San Antonio UNIX Users
(SATUU) meets the 3rd Wednesday of each month.

Jeff Mason (512) 494-9336
Hewlett Packard
14100 San Pedro
San Antonio, TX 78232

gatech!petro!hpsatb!jeff

WA - Seattle: meets monthly.

Bill Campbell (206) 232-4164
Seattle UNIX Group Membership Information
6641 East Mercer Way
Mercer Island, WA 98040

uw-beaver!tikal!camco!bill

Washington, D.C.: meets the 1st Tuesday of each
month.

Washington Area UNIX Users Group
2070 Chain Bridge Road, Suite 333
Vienna, VA 22180

Samuel Samalin (703) 448-1908

AUUGN 173 Vol 9 No 5

Minutes of the AUUG Management Committee Meeting
May 13, 1988

2,

,

The meeting opened at 10:06. Present were Chris Campbell (CC) (arrived late,
as noted below), Piers Dick-Lauder (PL), Robert Elz (KRE), John Lions (JL) in
the chair, Chris Maltby (CM), Tim Roper (TR), and Peter Wishart (PW). Also
present was John Carey (JC), the AUUGN editor. John O’Brien (JO’B), the
returning officer, attended part of the meeting, as noted.

JL opened the meeting by welcoming PW to his first meeting as a member of
the AUUG executive. PW apologised for being unable to attend the previous
meeting.

The minutes of the previous meeting (February 1988), which had been circulated
earlier, were tabled.

4. TR pointed out that the second sentence of point 4, item 32, should be deleted.

5. Moved (CM, seconded TR) That the minutes, as amended be accepted.
Carried (5/0 PW abstaining).

6. Business arising from the minutes

Items carried forward from previous meetings
-- NSWIT meeting new members: More complaints have been

received. No solution appears imminent.
-- Meeting Guidelines Documents: PL distributed the results of

his work. He wants feedback, and has an electronic copy
available.

-- Usenix Journal (Computing Systems): The secretary has been
in communications with Usenix, and the initial issue should be
on its way. Cost for a subscription for AUUG members will be
$US23. It was suggested that an application form for
subscriptions should be placed in the June AUUGN.

Item 9

Item 11

Item 13

Newsletter: JC indicated that the publication date appears on the
cover, as requested, starting from volume 9, issue 2.

Newsletter sales tax: The solicitors have indicated that we do have
to pay this. A letter containing their detailed advice is on its way, but
has not yet been received.

AUUG database location. The database has been moved to
Melbourne.

Item 20 September AUUG meeting guests: Mashey has now agreed to
attend.

Vol 9 No 5 174 AUUGN

.

Item 27

Item 34

Item 35

Item 38

Item 39

Item 40

Database, Post Office Box, etc: The database has been moved, the
post office box has not yet been redirected. No secretarial assistance
has been obtained yet.

Conference advertising: Nothing done yet.

Thompson publicity: No specific action as regards AUUG, however
it was noted that Thompson has been interviewed on ABC radio.

NSWIT conference returns: Nothing heard from Greg Webb
recently, however PL provided evidence that Webb is still alive,
having had mail on other matters. The president and treasurer are to
visit him, and attempt to obtain a cheque, and all relevant
documentation, especially registration & membership forms.

Meeting CFP: Done.

Badges for meeting attendees: Done. The badges are available, and
an invoice has been received.

10:27: At this point (coincidentally) CC arrived bearing the badges
with him, and apologising for his late arrival. Samples of the badges
were shown to the committee, which resulted in general approval. CC
stated that he was not entirely pleased with the result, and that he was
negotiating with the manufacturer, with the aim of having the price
reduced.

Item 45

Item 47

Item 53

Item 54

TR took charge of the badges.

ACMS meeting responsibilities: The secretary has been in contact
with ACMS, a full report to follow later.

AUUG conference organiser job descriptiqn: No information on
progress. Last word from Greg Webb was that it would be done in a
week, two weeks ago.

Solicitor & Trade Marks: The solicitor has been contacted about
this, without any result so far.

Change of name: Ballot was not held as intended, current plan is to
combine it with the AUUG election ballot.

Item 60

Item 62

Accountant to prepare books:

Call for nominations: Done.
and disclose the outcome.

Not done yet.

JO’B will attend this meeting later,

JL gave the president’s report. He indicated that he had attended the EUUG
meeting in London, as a representative of AUUG. He agreed to write a report
of this meeting for AUUGN. He had also given a talk at a monthly SINIX

AUUGN 175 Vol 9 No 5

.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

(Singapore user group) meeting.

Moved (CM, seconded CC) That the president’s report be accepted. Carried
(7/0).

The secretary presented his report. He distributed a summary of the membership
status, and indicated that it showed a drop in membership numbers. Some
correspondence with ACMS was tabled, setting out the precise role that ACMS
will play in the meeting organisation.

The secretary also indicated that he had attended a meeting of Pacific area user
groups, in Singapore in April. The groups agreed to exchange newsletters, with
English summaries (but not translations) where appropriate. A Pacific area users
meeting is planned for Singapore sometime in 1989.

The database has been transferred to Melbourne, and the secretary has created
perl scripts (using Larry Wall’s public domain Perl programming language) to
manipulate it.

Moved (TR, seconded PL) That the secretary’s report be accepted. Carded
(7/0).

JL amended the president’s report. He indicated that AUUG was represented by
himself, and Greg Rose at Ross Nealon’s funeral, and had presented flowers in
the name of AUUG.

Moved (JL, seconded TR) That AUUG make a donation of $200 to the
oncology unit at Woll0ngong Hospital, in Ross Nealon’s name. Carded (7/0).

JL will prepare an obituary notice for AUUGN, to accompany one from Juris
Reinfelds. JL indicated that Richard Miller may send one as well.

The treasurer presented his report. He distributed copies of the balance sheet,
and indicated that he had still received no funds from NSWIT after the
September 87 AUUG meeting, and nor had any additional funds been moved to
a higher interest account.

The treasurer indicated that redirection of the post office box has not yet been
done, and that the accounts have not yet been audited.

Moved (PL, seconded CC) That the treasurer be instructed to have an audit
carried out before the new committee takes over, with AUUG to bear the
costs.

Amendment (moved JL) That PL be responsible for finding an auditor was
not seconded.

Amendment (moved TR, seconded CC) That "before the new committee takes
over" be altered to "before the end of May 1988". Carded (7/0).

Vol 9 No 5 176 AUUGN

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Motion, as amended, carried (7/0).

Moved (CC, seconded PW) That the treasurer’s report be accepted Carried
(7/0).

The newsletter editor (JC) presented a report. He indicated that he had changed
jobs, and was currently putting together production facilities at his new
employer’s, Webster Computer Corporation. He indicated that Monash
University Computer Science had agreed to act as a backup production facility.

JC indicated that he was having isolated problems with the printers, who need
continuous chasing to get things done. The April issue of AUUGN is currently
in the printing/distribution system somewhere.

JC is to talk to the postmaster about the occasional distribution problems that
have been reported.

He also indicated that he still wants to rid himself of the store of old AUUGN
copies that he currently has.

JC also indicated that AUUGN would achieve printing economies with either
more or less members. He also indicated that AUUG continually needs more
content.

Moved (PL, seconded CC) That the editor’s report be accepted. Carded
(7/0).

CC presented a report of the last ACSnet SIG meeting, held Tuesday May 10.
He indicated that another meeting was to be held in the first or second week of
June, after Bob Kummerfeld has the backbone information. Statistics that have
been collected need to be analysed, an approach is to be made to Ron Baxter for
assistance. Various methods of assistance, etc, are still being discussed.

PL indicated that an offer from NASA for assistance with a link to the US has
been made. Also DSTO, Salisbury, SA, are contemplating US connections.

KRE indicated that the solicitors need more information on the aims of any
company to be established, before giving any advice on the matter.

Incorporation: There has been no change since the last meeting, everything
remains on hold until the result of the change of name ballot is known.

TR indicated that he had searched the yellow pages (Melbourne) to see if any
secretarial assistance was available. He had one hit, which had looked
promising, but was probably going to fail (the hit was on a moving target). He
was not yet sure of the outcome.

TR agreed to contact Sigma Data about possible secretarial assistance. They
have already contacted about a possible upgrade to the auug.oz host, and had
been responsive.

AUUGN 177 Vol 9 No 5

35.

38.

39.

42.

43.

44.

47.

48.

49.

50.

TR distributed a list of duties required for secretarial assistance that he had
prepared. TR is continuing his search.

No budget was available.

JO’B arrived at 11:57, and presented the committee with the list of nominees
received for positions on the committee at the coming election.

Moved (CM, seconded PW) That a referendum be sent to members with the
election papers, "That the name of the group be altered from ’Australian
Unix systems User Group Incorporated’ to ’AUUG Incorporated’".

JL and TR departed before the motion was put to a vote, CC was elected to take
the chair.

Motion carried (5/0).

The meeting adjourned for lunch at 12:15, and resumed at 14:25 without JO’B,
who was preparing the ballot papers.

There was much discussion of the September AUUG meeting. A conference
organiser is needed. Matter still remaining to be attended to, include
advertising, a mailout, and brochure preparation.

TR is to liaise with Wael Foda at ACMS, and see how much he is prepared to
do. PW agreed to act as overall co-ordinator. CC agreed to handle press
releases, and advertisements.

It was agreed that .the deadline for early registration be altered from June 30 to
July 15.

The meeting adjourned at 15:16, and resumed at 15:40.

A brief discussion on benefits for institutional members took place.
Subscriptions to Computing Systems are to be arranged. A possible 20%
reduction in AUUGN advertising rates was mentioned. Discussion was deferred
to the next meeting.

Discussion of possible constitution changes was deferred to the next meeting.
KRE to prepare a list of possible changes.

The next committee meeting is to be held on September 12, at Melbourne
University, commencing at 13:00. KRE to arrange a room.

Some discussion of the possibilities of ties with the SUN local user group (and
other similar groups) took place. Assuming that the members of that group
desired it, would AUUG treat them as a chapter. No decision was taken.

The meeting closed at 16:17, after which members of the committee (and JO’B)
commenced stuffing envelopes for the election and referendum ballot. The

Vol 9 No 5 178 AUUGN

secretary took the stuffed envelopes with him, to affix labels, and arrange
postage as soon as possible.

AUUGN 179 Vol 9 No 5

THIS PAGE INTENTIONALLY LEFT BLANK

Vol 9 No 5 180 AUUGN

AUUG

Membership Categories

Once again a reminder for all "members" of AUUG to check that you are, in fact, a
member, and that you still will be for the next two months.

There are 4 membership types, plus a newsletter subscription, any of which might be
just fight for you.

The membership categories are:

Institutional Member
Ordinary Member
Student Member
Honorary Life Member

Institutional memberships are primarily intended for university departments,
companies, etc. This is a voting membership (one vote), which receives two copies of
the newsletter. Institutional members can also delegate 2 representatives to attend
AUUG meetings at members rates. AUUG is also keeping track of the licence status
of institutional members. If, at some future date, we are able to offer a software tape
distribution service, this would be available only to institutional members, whose
relevant licences can be verified.

If your institution is not an institutional member, isn’t it about time it became one?

Ordinary memberships are for individuals. This is also a voting membership (one
vote), which receives a single copy of the newsletter. A primary difference from
Institutional Membership is that the benefits of Ordinary Membership apply to the
named member only. That is, only the member can obtain discounts on attendance at
AUUG meetings, etc, sending a representative isn’t permitted.

Are you an AUUG member?

Student Memberships are for full time students at recognised academic institutions.
This is a non voting membership which receives a single copy of the newsletter.
Otherwise the benefits are as for Ordinary Members.

Honorary Life Memberships are a category that isn’t relevant yet. This membership
you can’t apply for, you must be elected to it. What’s more, you must have been a
member for at least 5 years before being elected. Since AUUG is only just
approaching 3 years old, there is no-one eligible for this membership category yet.

Its also possible to subscribe to the newsletter without being an AUUG member. This
saves you nothing financially, that is, the subscription price is the same as the
membership dues. However, it might be appropriate for libraries, etc, which simply
want copies of AUUGN to help fill their shelves, and have no actual interest in the

AUUGN 181 Vol 9 No 5

contents, or the association.

Subscriptions are also available to members who have a need for more copies of
AUUGN than their membership provides.

To find out if you are currently really an AUUG member, examine the mailing label
of this AUUGN. In the lower right corner you will find information about your
current membership status. The first letter is your membership type code, N for
regular members, S for students, and I for institutions. Then follows your membership
expiration date, in the format exp=MM/YY. The remaining information is for internal
use.

Check that your membership isn’t about to expire (or worse, hasn’t expired already).
Ask your colleagues if they received this issue of AUUGN, tell them that if not, it
probably means that their membership has lapsed, or perhaps, they were never a
member at all! Feel free to copy the membership forms, give one to everyone that
you know.

If you want to join AUUG, or renew your membership, you will find forms in this
issue of AUUGN. Send the appropriate form (with remittance) to the address
indicated on it, and your membership will (re-)commence.

As a service to members, AUUG has arranged to accept payments via credit card.
You can use your Bankcard (within Australia only), or your Mastercard by simply
completing the authorisation on the application form.

Vol 9 No 5 182 AUUGN

A G
Application for Ordinary, or Student, Membership

Australian UNIX* systems Users’ Group.
*UNIX is a registered trademark of AT&T in the USA and other countries

To apply for membership of the AUUG, complete this form, and return it with payment in
Australian Dollars, or credit card authorisation, to:

Please don’t send purchase orders ~ perhaps your
AUUG Membership Secretary purchasing department will consider this form to be an
P O Box 366 invoice.
Kensington NSW 2033 ¯ Foreign applicants please send a bank draft drawn on an
Australia Australian bank, or credit card authorisation, and remember

to select either surface or air mail.

I, ... do hereby apply for

[] Renewal/New* Membership of the AUUG $65.00

[] Renewal/New* Student Membership $40.00 (note certification on other side)

[] International Surface Mail $10.00

[] International Air Mail $50.00

Total remitted AU g$,
(cheque, money order, credit card)

Delete one.
I agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time to
time, and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.

Date: / / Signed:
[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Name: .. Phone: ...(bh)

Address: ...(ah)

Net Address: ...

Write "Unchanged" if details have not

altered and this is a renewal.

Please charge $~
Account number"

to my [] Bankcard [] Visa [] Mastercard.
Expiry date: / ,.

Name on card: Signed:

Office use only:

Chq: bank

Date: / /

Who:

bsb

$
- a/c #

CC type ~ V#
Member#

AUUGN 183 Vol 9 No 5

Student Member Certification (to be completed by a member of the academic staff)

I, ... certify that

... (name)
is a full time student at... (institution)
and is expected to graduate approximately ,, / / .

Title: Signature:

Vol 9 No 5 184 AUUGN

A
Application for Institutional Membership
Australian UNIX* systems Users’ Group.

*UNIX is a registered trademark of AT&T in the USA and other countries.

To apply for institutional membership of the AUUG, complete this form, and return it
with payment in Australian Dollars, or credit card authorisation, to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

¯ Foreign applicants please send a bank draft drawn
on an Australian bank, or credit card authorisation,
and remember to select either surface or air mail.

.. does hereby apply for

[] New/Renewal* Institutional Membership of AUUG$300.00

[] International Surface Mail $ 20.00

[] International Air Mail $100.00

Total remitted AUD$
(cheque, money order, credit card)

Delete one.
I/We agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time
to time, and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.
I/We understand that I/we will receive two copies of the AUUG newsletter, and may send two
representatives to AUUG sponsored events at member rates, though I/we will have only one vote in AUUG
elections, and other ballots as required.

Date: / / Signed:

Title"
[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Administrative contact, and formal representative:

Name: .. Phone" (bh)

Address: (ah)

Net Address: ...

Write "Unchanged" if details have not

altered and this is a renewal.

Please charge $~
Account number:

to my/our C3Bankcard []Visa []Mastercard.
¯ Expiry date: / .

Name on card:
Office use only:
Chq: bank
Date: / /
Who:

bsb a/c #

Signed:

Please complete the other side.

CC type ~ V#
Member#

AUUGN 185 Vol 9 No 5

Please send newsletters to the following addresses:

Name-
Address: ..

Name"
Address: ..

Phone" (bh)
.. (ah)

Net Address"

Phone" (bh)
.. (ah)

Net Address: ..

Write "unchanged" if this is a renewal, and details are not to be altered.

Please indicate which Unix licences you hold, and include copies of the tide and signature pages of each, if

these have not been sent previously.

Note: Recent licences usally revoke earlier ones, please indicate only licences which are current, and indicate
any which have been revoked since your last membership form was submitted.

Note: Most binary licensees will have a System III or System V (of one variant or another) binary licence,

even if the system supplied by your vendor is based upon V7 or 4BSD. There is no such thing as a BSD

binary licence, and V7 binary licences were very rare, and expensive.

[] System V.3 source

[] System V.2 source

[] System V source

[] System III source

[] 4.2 or 4.3 BSD source

[] 4.1 BSD source

[] System V.3 binary

[] System V.2 binary

[] System V binary

[] System III binary

[] V7 source

[] Other (Indicate which) ..

Vol 9 No 5 186 AUUGN

AU G
Application for Newsletter Subscription
Austral=an UNIX systems Users’ Group.

UNIX is a registered trademark of AT&T in the USA and other countries

Non members who wish to apply for a subscription to the Australian UNIX systems User
Group Newsletter, or members who desire additional subscriptions, should complete this
form and return it to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

Please don’t send purchase orders -- perhaps your
purchasing department will consider this form to be an
invoice.
. Foreign applicants please send a bank draft drawn on an
Australian bank, or credit card authorisation, and remember
to select either surface or air mail.
o Use multiple copies of this form if copies of AUUGN are
to be dispatched to differing addresses.

Please enter / renew my subscription for the Australian UNIX systems User Group
Newsletter, as follows"

Name: .. Phone: ... (bh)

Address: (ah)

Net Address: ...

Write "Unchanged" if address has

not altered and this is a renewal.

For each copy requested, I enclose:

[] Subscription to AUUGN

[] International Surface Mail

[] International Air Mail

Copies requested (to above address)

Total remitted

$ 65.00

$ lO.OO

$ 50.00

AUD$
(cheque, money order, credit card)

[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

[] Visa [] Mastercard.
¯

Signed:

Expiry date: /

CC type m V#

Subscr#

Please charge $.~ to my [] Bankcard
Account number:

Name on card:
Office use only:

Chq: bank bsb a/c

Date: / / $

Who:

AUUGN 187 Vol 9 No 5

A
Notification of Change of Address

Australian UNIX systems Users’ Group.
*UNIX is a registered trademark of AT&T in the USA and other countries.

If you have changed your mailing address, please complete this form, and return it to:
AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

Please allow at least 4 weeks for the change of address to take effect.

Old address (or attach a mailing label)

Name: ..

Address: ..

Phone: ...(bh)

... (al0

Net Address: ...

New address (leave unaltered details blank)

Name:

Address: ..

Phone: ...(bh)

... (ah)

Net Address: ...

Office use only:

Date: / /

Who: Memb#

Vol 9 No 5 188 AUUGN

