
Australian UNIX systems User Group Newsletter

Volume 10, Number 1

February 1989

Registered by Australia Post, Publication Number NBG6524

The Australian UNIX* systems User Group Newsletter

Volume 10 Number 1

February 1989

CONTENTS

AUUG General Information 3

Editorial 4

President’s Report 6

Secretary’s Letter 7

Adelaide UNIX Users Group Information 8

Western Australian UNIX systems Group Information9

AUUG Institutional Members 10

Advance Announcement Call for Papers - MALNIX/MIMOS International Seminar11

Nutshell Handbook Offer, Order Form and Summary12

Getting Started and Debugging Guide for SunIII 17

Off the Net 39

Introduction to the Internet Protocols 66

AUUG 88 Conference Slides continued 97

Future Berkeley Developments 97

From the ;login: Newsletter - Volume 14 Number 1 114

Call for Papers - Workshop on Sofware Management115

Call for Papers - Workshop on UNIX Transaction Processing116

Call for Papers - Summer 1989 USENIX Conference117

Enhancing the 4.3 BSD Serial Line Interface 118

An Update on UNIX Standards Activities 144

Letter to the Editor 158

The EUUG 159

EUUG Spring 1989 Conference 161

Future Events 162

Publications Available 162

Long-Term Calendar of UNIX Events 163

Large System Administration Workshop 164

AUUGN 1 Vol 10 No 1

From the ;login: Newsletter - Volume 14 Number 1 continued 164

New Release of 2.10 BSD Available 164

Management Committee Meeting Minutes - October 1988165

AUUG Newsletter Back Issues 171

AUUG Membership Catorgories 173

AUUG Forms 175

Copyright © 1989. AUUGN is the journal of the Australian UNIX* systems User Group. Copying
without fee is permitted provided that copies are not made or distributed for commercial advantage and
credit to the source must be given. Abstracting with credit is permitted. No other reproduction is
permitted without prior permission of the Australian UNIX systems User Group.

* UNIX is a registered trademark of AT&T in the USA and other countries.

Vol 10 No 1 2 AUUGN

AUUG General Information

Memberships and Subscriptions
Membership, Change of Address, and Subscription forms can be found at the end of this issue.

All correspondence concerning membership of the AUUG should be addressed to:-

The AUUG Membership Secretary,
P.O. Box 365,
Kensington, N.S.W. 2033.
AUSTRALIA

General Correspondence
All other correspondence for the AUUG should be addressed to:-

The AUUG Secretary,
P.O. Box 366,
Kensington, N.S.W. 2033.
AUSTRALIA

AUUG Executive

President Greg Rose

gr e g @softway.sw.oz
Softway Pty. Ltd.,
New South Wales

Secretary Tim Roper

timr@labtam.oz
Labtam Limited,
Victoria

Treasurer

Committee
Members

Michael Tuke

no net address
Vision Control Australia
Victoria

Frank Crawford

frank@ te ti.q ht o ur s.o z
Q.H. Tours,
New South Wales

Chris Maltby

chris@soflway.sw.oz
Softway Pry. Ltd.,
New South Wales

Richard Burridge

ric hb@ sunaus.aus.oz
Sun Microsystems Austrlia
New South Wales

Tim Segall

tim@ hp a us la.aso, hp.o z
Hewlett Packard Australia,
Victoria

Next AUUG Meeting
AUUG89 Conference and Exhibition, will be held at the Sydney Hilton Hotel from
Tuesday 8th to Friday 11th August 1989. Further details are provided in future issues.

AUUGN 3 Vol 10 No 1

AUUG Newsletter

Editorial
Welcome to the Newsletter.

As you may be aware I will be finishing my term as Editor following the AUUG89 Conference issue in
August this year. The Committee has chosen David Purdue of Labtam Limited to take over as Editor
from Volume 10 Number 5. David is already actively involved in the User Group. This includes
running the Nutshell Handbook Offer and handling the AUUGN backissues. He has also designed a
new front cover which appears on this issue. As you can see he has many talents and I am sure he will
add a new dimension to the Newsletter. I wish him every success and urge the membership to support
him.

In this Issue there are several informative articles. These include a SunIII starters guide and an
introduction to the internet (tcp/ip) protocols which was sent over the net. Mike Karel’s "Future
Berkeley UNIX developments" slides from his talk given at AUUG88. These have been held over due
to various technical difficulties. Regulars such as "Off the Net" and reprints from the USENIX
Newsletter also appear.

Thanks to should be given to Robert Elz for getting the gremlins (the drawing program) out of the Karel
slides :-)

REMEMBER, if the mailing label that comes with this issue is highlighted, it is time to renew your
AUUG membership.

AUUGN Correspondence
All correspondence reguarding the AUUGN should be addressed to:-

John Carey
AUUGN Editor
Webster Computer Corporation
1270 Ferntree Gully Road
Scoresby, Victoria 3179
AUSTRALIA

ACSnet: john@wcc.oz

Phone: +61 3 764 1100

Contributions
The Newsletter is published approximately every two months. The deadline for contributions for the
next issue is Friday the 14th of April 1989.

Contributions should be sent to the Editor at the above address.

I prefer documents sent to me by via electronic mail and formatted using troff-mm and my footer
macros, troff using any of the standard macro and preprocessor packages (-ms, -me, -mm, pic, tbl, eqn)
as well TeX, and LaTeX will be accepted.

Hardcopy submissions should be on A4 with 35 mm left at the top and bottom so that the AUUGN
footers can be pasted on to the page. Small page numbers printed in the footer area would help.

Advertising
Advertisements for the AUUG are welcome. They must be submitted on an A4 page. No partial page
advertisements will be accepted. The current rate is AUD$ 200 dollars per page.

Vol 10 No 1 4 AUUGN

Mailing Lists
For the purchase of the AUUGN mailing list, please contact Tim Roper.

Back Issues
Various back issues of the AUUGN are available on request from the Editor.

Acknowledgement

This Newsletter was produced with the kind assistance and equipment provided by Webster Computer
Corporation.

Disclaimer
Opinions expressed by authors and reviewers are not necessarily those of the Australian UNIX systems
User Group, its Newsletter or its editorial committee.

AUUGN 5 Vol 10 No 1

President’s Letter

Well, here I am writing this letter in sunny California (except it is raining and about
12 degrees Celcius). Life is certainly busy at the moment, although I’m sure you
don’t need to hear that.

Just down the road is Ken McDonnell, past holder of this position, but unlike Ken I
am just visiting. The good news is that he will be returning to Australia, too.

My sermon today regards doing one’s duty, or lack thereof (lack of doing it, I mean).
I was just about to set pen to paper and write a president’s letter for the last AUUGN
when it arrived. I failed to learn from this experience - I should have written it
anyway, then I wouldn’t be doing it at the last moment, again.

However, one of the primary duties of the AUUG executives, as a whole is to improve
the benefits and response to the members, and this is certainly progressing quite well.
AUUG Inc has a Convergent Technologies Miniframe, and Informix to run on it, and
shortly will be able to process membership requests faster, and even to acknowledge
them. (Note: The above resources are courtesy of Sigma Data and Informix,
respectively. Many thanks to them).

However, it must be remembered that the committee members are all masochists, I
mean volunteers, who also need to hold down jobs to eat. They all do their best, and
can use all the help you can give.

Speaking of which, it is nearly time for nominations for the new committee. All
members should start thinking about how much better they can do the job, and be
prepared to put in nomination forms.

Now for something completely different, organisation for the round of Summer
regional meetings was proceeding nicely, until the speaker we had invited pulled out
unexpectedly. We’ll keep you posted.

Yours faithfully,

Greg Rose,
President, A.U.U.G.

Vol 10 No 1 6 AUUGN

Secretary’s Letter

Firstly, some explanation of the absence of information about the planned informal, technical, summer
meetings is in order. A schedule of meetings in seven centres around the country was set for the the
period 17th to 24th February, 1989. Local arrangements were well under way in some centres, less so
in others. Unfortunately the speaker that we had arranged to import was forced by a change in cir-
cumstances to withdraw at the last moment. Since the event had been designed around the one speaker
this presented somewhat of a problem. A frantic effort to find a replacement at very short notice was
unsuccessful. At its meeting on 3rd February, 1989 the Management Committee resolved to give local
organisers the option of postponing or going ahead according to schedule with a local programme sup-
plemented by an interstate speaker provided by AUUG. All organisers elected to postpone. We hope
that at least a few of these meetings will still actually occur, with AUUG funding one or two speakers
from interstate at each meeting.
On a brighter note, preparations for AUUG89, the 1989 AUUG Conference and Exhibition, are going
well. The exhibition space and sponsorships are already heavily booked. If your company is interested
in exhibiting its wares or sponsoring an event it should contact ACMS by phone on (02) 332 4622 or
fax on (02) 332 4066 immediately. Peter Barnes of the University of Queensland
(pdb@uqcspe.cs.uq.oz) is Chairing the Programme Committee. A Call for Papers will be issued
shortly but don’t wait for it before you begin planning your paper. AUUG will be investing more
heavily in publicity this year and, with the venue in Sydney, this year’s Conference and Exhibition
should set new records for attendance. AUUG89 will be held at the Sydney Hilton Hotel from Tuesday
8th to Friday 1 lth August, 1989, with the Tuesday devoted to tutorials.
AUUG has had an excellent response to its recent Inauugral Software Distribution and Nutshell book
offers. If you haven’t sent in your order for the Inauugral Software Distribution please do so now as it
will be wound down very soon. Such offers usually come about when a member both makes a
worthwhile suggestion and volunteers to do the coordination required to carry it through. AUUG has
the funds to underwrite these ventures but does not have the fulltime staff to carry them out. So, if you
can see a need in the Australian community of UNIX]- system users, how about coming up with a propo-
sal for filling it and an offer to coordinate it? With elections coming up in a couple of months time you
may like to think about making your contribution by standing for the Management Committee.
Membership numbers are increasing, most notably in the Institutional category (49, see the list elsewhere
in this issue). Although the number of Ordinary members is increasing (249) we are aware that we may
be losing some who simply who forget to renew. A mailing campaign directed at expired members and
meetings attendees is being aimed at signing on some new members and hopefully recovering some old
ones. This will become a regular reminder mailing to expiring members. Until then, watch those mail-
ing labels!

Enclosed with the issue is a flyer from the USENIX Association giving details of its Computing Systems
journal including contents of the first four issues and the half-price affiliated-member rate available to
AUUG members. A complimentary copy of Vol 1 No 1 was sent to AUUG members last August. A
copy of each issue will continue to be sent to Institutional members, courtesy of AUUG. Vol 1 Nos.
2&3 are currently on their way and we have arranged air shipment to Australia so subsequent issues will
arrive in a timely fashion.

Tim Roper

UNIX is a trademark of Bell Laboratories.

AUUGN 7 Vol 10 No 1

Adelaide UNIX Users Group

The Adelaide UNIX Users Group has been meeting on a formal basis for 12 months.
Meetings are held on the third Wednesday of each month. To date, all meetings have
been held at the University of Adelaide. However, it was recently decided to change
the meeting time from noon to 6pm. This has necessitated a change of venue, and, as
from April, meetings will be held at the offices of Olivetti Australia.

In addition to disseminating information about new products and network status, time
is allocated at each meeting for the raising of specific UNIX related problems and for
a brief (15-20 minute) presentation on an area of interest. Listed below is a sampling
of recent talks.

D. Jarvis
K. Maciunas
R. Lamacraft
W. Hosking
P. Cheney
J. Jarvis

"The UNIX Literature"
"Security"
"UNIX on Micros"
"Office Automation"
"Commercial Applications of UNIX"
"troff/ditroff"

The mailing list currently numbers 34, with a healthy representation (40%) from
commercial enterprises. For further information, contact Dennis Jarvis
(dhj@aegir.dmt.oz) on (08) 268 0156.

Dennis Jarvis,
Secretary, AdUUG.

Dennis Jarvis, CSIRO, PO Box 4, Woodville, S.A. 5011, Australia.

PHONE: +61 8 268 0156
UUCP: {decvax,pesnta,vax135 } !mulga!aegir.dmt.oz!dhj
ARPA: dhj % aegir.dmt.oz! dhj@ seismo.arpa
CSNET: dhj@ aegir.dmt.oz

Vol 10 No 1 8 AUUGN

WAUG
Western Australian UNIX systems Group

PO Box 877, WEST PERTH 6005

Western Australian Unix systems Group

The Western Australian UNIX systems Group (WAUG) was formed in late 1984, but
floundered until after the 1986 AUUG meeting in Perth. Spurred on by the AUUG
publicity and greater commercial interest and acceptability of UNIX systems, the group
reformed and has grown to over 70 members, including 16 corporate members.

A major activity of the group are monthly meetings. Invited speakers address the group on
topics including new hardware, software packages and technical dissertations. After the
meeting, we gather for refreshments, and an opportunity to informally discuss any points
of interest. Formal business is kept to a minimum.

Meetings are held on the third Wednesday of each month, at 6pm. The (nominal) venue is
"University House" at the University of Western Australia, although this often varies to
take advantage of corporate sponsorship and facilities provided by the speakers.

The group also produces a periodic Newsletter, YAUN (Yet Another UNIX Newsletter),
containing members contributions and extracts from various UNIX Newsletters and
extensive network news services. YAUN provides members with some of the latest news
and information available.

For further information contact the Secretary, Sldpton Ryper on (09) 222 1438, or
Glenn Huxtable (glenn@wacsvax.uwa.oz) on (09) 380 2878.

Glenn Huxtable,
Membership Secretary, WAUG

AUUGN 9 Vol 10 No 1

AUUG Institutional Members

ACUS / UNISYS
Aldetec Pty Ltd

Australian National University
Australian Nuclear Science & Technology Organisation

Australian Telescope Computer Group (CSIRO)
Autodesk Australia P/L

BHP Melbourne Research Laboratories
CSIRO DIT

CSIRO Division of Manufacturing Technology
Centre for Information Tech & Comms

Civil Aviation Authority
Comperex (NSW) Pry Ltd

Cybergraphic Systems Pty Ltd
DBA Computer Systems Pry Ltd

Department of Industry Technology and Commerce
Dept of Lands - Central Mapping Authority

Elxsi Australia Ltd
Flinders University, Discipline of Computer Science

Fujitsu Australia Limited
Great Barrier Reef Marine Park Authority

Harris & Sutherland Pry Ltd
Honeywell Information Systems

Ipec Transport Group
Lands Department, Qld

Monash University Computer Science
NEC Information Systems Australia Pry Ltd

NSW Parliament
National Engineering Information Services P/L

Olympic Amusements P/L
Overseas Telecommunications Corporation

Prentice Computer Centre
Prime Computer Research & Development

Pyramid Technology Australia
Q. H. Tours Limited

Qld State Govt Computer Centre
Racecourse Totalizators Pry Ltd

Re,ark Resources
SEQEB

Sigma Data Corporation Pry Ltd
South Australian Institute of Technology

State Library of Tasmania
Sun Microsystems Australia

Swinbume Institute of Technology
University of Adelaide

University of Melbourne
University of Sydney

University of Technology Sydney - Computing Services Division
University of Wollongong

Webster Computer Corporation

Vol 10 No 1 10 AUUGN

ADVANCE ANNOUNCEMENT/CALL FOR PAPERS

International Seminar
on

Current Developments and Future Trends of Unix-based Systems

12- 13 September, 1989.

organised by
Malaysian Unix Users Association (MALNIX)

in cooperation with
Malaysian Institute of Microelectronic Systems (MIMOS)

OBJECTIVES

To provide a forum for discussion and exchange of informa- tion, ideas
experiences on current developments and future trends of Unix-based systems.

To promote research activities related to Unix in Malaysia and the region.

and

SEMINAR TOPICS

Parallel Processing
Real-time Applications
Software Development Tools
Emerging Standards
Unix on PC
System Security

Office Automation
Database Systems
Networking
Unix in Commercial Environments
User Interfaces

SUBMISSION OF PAPERS

A copy of an extended abstract, limited to about 2000 words, should reach the
Organiser by April 3, 1989. Notification of acceptance will be sent to the authors by
May 22, 1989. The full paper shall be sent, by August 21, 1989, to:

The Organiser,
MALNIX/MIMOS International Seminar,

7th Floor, Bukit Naga Complex,
Jalan Semantan,

50490 Kuala Lumpur, MALAYSIA.

Phone: (60) 3 2552 700 Fax: (60) 3 2552 755
E-mail: malnix@rangkom.my or uunet!mimos !malnix

AUUGN 11 Vol 10 No 1

Nutshell Handbook Offer

Introduction
The "Nutshell Handbook" special offer for AUUG members is going ahead. This article contains a
price list and order form; a follow up article will have descriptions of the books available (just in
case you missed this before).

I stress again, this offer is for AUUG members only. If you wish to join AUUG, send a message
(including your paper mail address) to Tim Roper <timr@labtam.oz>.

I will be placing an order for the books as soon as I receive enough orders. AUUG does not require
payment immediately, but will require it before books will be delivered.

Ordering Information
Please complete the attached order form and post it to:

AUUG Nutshell Handbook Offer
Attention: David Purdue
c/o Labtam Limited
43 Malcolm Road
BRAESIDE, VIC, 3195

Payment need not accompany the order form, but books will not be sent until payment has been
received (I will post an announcement when the books arrive in Australia). Purchase orders will
only be accepted from Institutional members. Others please send cheques payable to AUUG Inc.
If your oraganisation is paying, please organise your cheque now.

The prices appear on the order form and include postage and handling charges.

The order form must be signed by a member of AUUG. In the case of an Institutional Member it
should either be signed by the Administrative Contact (the person who signed the current
membership form) or stamped and signed by a representative of the institution.

Orders will be accepted from non-members only if they are accompanied by a completed
membership application form and payment for membership.

Vol 10 No 1 12 AUUGN

Nutshell Handbook Order Form

Contact Details:

Name:

Phone:

Fax:

Net Address:

Postal Address:

Shipping Address (where the books will go):

Books Required:

Title Copies Price/copy Total

Learning The UNIX Operating System $15 $
Learning The Vi Editor $19 $
Termcap And Terminfo $24 $
Programming With Curses $15 $
Managing UUCP and Usenet $ 24 $
Using UUCP and Usenet $ 21 $
Managing Projects With Make $15 $
DOS Meets UNIX $19 $
UNIX In A Nutshell (System V edition) $ 24 $
UNIX In A Nutshell (BSD Edition) $ 24 $
X Programming Manuals (2 vol set) $ 89 $
X Window System User’s Guide $ 33 $
Hypercard UNIX In A Nutshell $ 43 $
MKS Toolkit $124 $
Checking C Programs With lint $ 18 $
Understanding And Using COFF $24 $
Grand Total $

Membership Details:

Name of Member (please print):

Category of Membership: Ordinary/Student/lnstitutional/Hon Life

Signature:

Please note - ADD 20% SALES TAX to prices if applicable - Editor

AUUGN 13 Vol 10 No 1

Nutshell Handbook Summary

This article describes the Nutshell Handbooks being offered for sale by the AUUG.
is taken mainly from the ’Nutshell News’, a press release from the publishers.

UNIX is a trademark of AT&T Bell Laboratories.

This information

Learning The UNIX Operating System
75 pages; AUUG price: $15

For those who are new to UNIX, this will teach just what you need to know to get started and no
more. A better introduction than a 600 page book that contains many details irrelevant to the
beginner. Topics include logging in and logging out, managing files and directories, redirecting
i/o, and customising your account.

Learning The vi Editor
131 pages; AUUG price: $19

vi is the most commonly used text editor on UNIX systems, and is available on other systems aswell.
This book teaches how to use vi by starting with basic concepts so that you can begin editing
quickly, and then extending your skills so that you can use vi more powerfully.

Termcap And Terminfo
170 pages; AUUG price: $24

The termcap and terminfo databases are UNIX’s solution to the dificulty of supporting a wide
range of terminals without writing special drivers for each one. Unfortunately, like so many other
essential UNIX features, they are poorly documented. This book tries to rectify that situation.
Contents include:

- Terminal independence: the need for termcap and terminfo
- Reading termcap and terminfo entries
- Capability syntax
- How users should initialise the terminal environment
- Writing termcap and terminfo entries
- Converting between termcap and terminfo

Programming With curses
71 pages; AUUG price: $15

This book does not tell you what to yell at your terminal when your program won’t compile. It does
tell you how to use the curses library from C programs to provide a full screen user interface.

Managing UUCP and Usenet
242 pages; AUUG price: $24

This book is meant for system administrators who want to install and manage UUCP and Usenet
software. It covers Honey-DanBer UUCP as well as standard Version 2 UUCP, with special notes on
Xenix, SunOS and BSD4.3. This book was selected by Usenix’s UUNET Communication Services for
distribution to new customers.

Using UUCP And Usenet
185 pages; AUUG price: $21

A complete user’s guide to UUCP and Usenet, including how to read and post news, send mail to
other sites and how to execute commands on remote sytems and log on to remote systems via UUCP.

Vol 10 No 1 14 AUUGN

Manging Projects With make
77 pages; AUUG price: $15

Described as "the clearest book on make ever written" (and from my experience with Nutshell Books,
I find that easy to believe). Topics include:

- Writing a simple makefile
- Shell variables
- Internal macros
- Suffix rules
- Special description file targets
- Maintaining libraries
- Invoking make recursively

DOS Meets UNIX
134 pages; AUUG price: $19

There are many applications that run under MS-DOS. UNIX lookalikes (XENIX, Microport, etc.) help
you make better use of your PC. This book tells you how to get the best of both worlds. It describes
the problems and the solutions available for integrating DOS and UNIX, including a coverage of
products like PC-Interface, PC-NFS, Merge/386 and VP/ix that are used to run DOS applications
under UNIX.

UNIX In A Nutshell
for System V: 289 pages; AUUG price: $24

for Berkeley: 306 pages; AUUG price: $24

The ultimate UNIX quick reference guides, these contain everything you need to know quickly. The
"DEC Professional" (September 1987) states, "I highly recommend the ’UNIX In A Nutshell’
handbooks as desktop references. [They] are complete and consise; in fact they pack more information
into fewer pages than I’ve ever seen... These books are truly a bargain." See my review in the
December ’88 AUUGN. Note that there are different editions for System V and for BSD, so be careful
that you order the right one.

X Programming Manuals (2 volume set)
voll 611 pages, vo12 700 pages; AUUG price: $89

An awful lot of information about X. Volume 1 is a guide to programming with the X library,
and takes the broad conceptual view. Volume 2 is a reference manual and gives a detailed description
of each of the Xlib functions.

X Window System User’s Guide
270 pages; AUUG price: $33

Describes window system concepts and provides a tutorial on the most common
Later chapters describe how to customise the X environment.

client applications.

Hypercard UNIX In A Nutshell
disk; AUUG price: $43

As for "UNIX In A Nutshell" above, but in the form of a Hypercard stack.

AUUGN 15 Vol 10 No 1

MKS Toolkit
disk; AUUG price: $124

Provides a set of UNIX utilities for DOS systems, including seal, awk, and ksh as
COMMAND.COM replacement.

NEW TITLES
All I know about the following books are their titles and prices:

"Checking C Programs With lint" - AUUG price: $18
"Understanding And Using COFF" - AUUG price: $24

David Purdue
AUUG Nutshell Handbook Coordinator

SALES TAX
Please note - ADD 20% SALES TAX to prices if applicable - Editor

Vol 10 No 1 16 AUUGN

Getting Started and Debugging Guide for SUN

David F. Davey

Department of Physiology
University of Sydney

ABSTRACT

This document is designed to supplement the guide to the installation of the SUN 11I software. It details
simple checks of the integrity of the installation, and is aimed at trying to catch some of the common
problems before they cause trouble. There is also information on some of the "tricks" that can be used
to detect and work around faults in the network operation.

1. INTRODUCTION1

This document is designed to assist in:

¯ getting a new installation running even if you know little about SUN 11I

solving some common problems with running installations

The document begins with consideration of some important decisions that must be made before your
first network connection is established, some of which are difficult to reverse. This is followed by
instructions on how to perform some tests before you attempt to make contact with your network
"neighbour(s)", i.e. before starting the daemon(s). You can be sure that if these tests fail without the
daemon(s) running, things will not be improved by starting them.

1.1 Preliminaries - node and domain names

There are some decisions you must make before your node can make contact with the rest of the
network. These include: what node your node will link to; what name your node will be known by;
and what domains your node will belong to, including probably a domain you create for your site. Your
link arrangements must be made with the cooperation of the site you wish to link to.2 Contact with the
system administrator there is absolutely essential, and in the first instance must be by non-network
means. This person may also serve to advise you with regard to the name questions below, either to
answer questions or refer you to someone who can. You should already have read the relevant parts of
the Installation Guide and the document on Domain Addressing on SUN III, but some important points
will be reiterated here:

¯ Your domain name, assuming you create one for your site, must be unique within the regional
domain to which you connect.

o Your node name must be unique within any domain you are a member of.

. Your node name is best chosen to be unique within SUN 1II.

. There are some advantages to a node name which is absolutely unique.

1. Although I initiated this document, partly because of experiences related to aus.map (see AUUGN 9(1):1-13), it would not be
in its present form without substantial help from Robert Elz, and additions and improvements from John Mackin, Stephen Frede
and Chris Maltby. Moreover it would not exist at all without Piers Lauder, not only because he is responsible for SUN III, but
because he tolerated what must have seemed an endless series of questions. Suggestions for improvements or additions to
daved @physiol.su.oz please.

2. If you need to find a site to connect to, there are some sites that will provide a link for a fee, e.g. metro.ucc.su.oz (University of
Sydney Computing Service).

AUUGN 17 Vol 10 No 1

. You should avoid names with equivocal characters (e.g. vaxl vs. vaxl). Such names will be
confused.

. Be creative when deciding upon your node name.3

Be Warned: It is difficult to change your node name.4 It is close to impossible to change your
hierarchy. Therefore it is important to get these right at the outset.

1.2 Preliminaries - The SUN III account name ACSNETNAME

As stated in the Installation Guide the SUN III processes will run under the account name
ACSNETNAME and its associated ACSNETUID, and is installed under group ACSNETGROUP and its
associated ACSNETGID. There are a number of advantages in creating a special account for this
purpose. Indeed on some systems, notably those that restrict the number of processes that an account
can run at one time,5 there are dangers in not doing so, for at times SUN III can generate a substantial
number of processes. On systems supporting disc quotas, having a separate account for SUN lYl can be
useful in keeping track of disc usage. On systems with more elaborate accounting, other parameters
may be monitored. It is also possible to allow certain users to know the account password in order to
allow access to SUN I~ files that would otherwise be restricted, although on some systems this can be
managed more easily through ACSNETGROUP access.

1.3 Preliminaries - the compilation configuration

As described in the Installation Guide, there are two ways to organise the compilation of SUN 11I for
your system: to edit the template Makefile (Makefile.dist), or use a run file. The latter method is
preferable because it is much easier to adapt to a new distribution of the software.6 If your system is one
already catered for in the distributed run files (in the Makefiles directory), your task should be easy.
Nevertheless your run file must be checked carefully and will almost certainly need to be edited with
regard to simple matters like ACSNETNAME, ACSNETUID, and FUZZ, with careful reference to the
Installation Guide for the definitions. The run files also tend to get out-of-date, so it is also important to
look at the Makefile.dist that came with your distribution and check that each parameter will be set the
way you want it, adjusting the run file where necessary.

If your system is one that "auto-nices" long running processes it is essential to set NICEDAEMON to a
negative value, otherwise the daemons will become so "nice" they will cease to be of any use.

If you are configuring for a system not referenced in any of the run files, or for a new CPU, particular
care must be exercised. Examination of values for CONFIG and CFLAGS in the available run files will
give hints of places to look out for problems. If you do configure for a new system, share the result
with future installers by sending the working run file to wherever you obtained your SUN III
distribution.7 If you are aware of deficiencies in your compiler, e.g. with the optimiser, adjust CFI.,a, GS
accordingly, as optimisation is used by default.

For any "first-time" installation, or one which is not on a fairly standard system, it is worth setting
DEBUG=2 so that tracing can be enabled if any debugging is required.

3. Your node will be known by its name. People will use the name in speech and text. It is nice if the name is pronounceable.
It is boring if it is yet another combination of meaningless letters coupled to a machine type (e.g. yavax). Besides when you
replace your VaxTM with a CrayTM, it will be silly for it to be called yavax.

4. Strictly this means changing your node name is likely to have so many adverse effects that doing so is masochistic even though
the act of changing the name is easy. If you have a network of Suns, be aware that randomly changing your hostname or
domainname (with those commands) may interfere with NFS, YP etc. Set these names first, before compiling SUN

5. Notably 4.3BSD and derived systems.
6. New distributions will be necessary as new features are added to the network and bugs are eliminated. A sound run file can

make the installation of such updates a trivial task.
7. Send it to piers@basser.cs.su.oz by default.

Vol 10 No 1 18 AUUGN

1.4 Thecompilation

Assumingyou haveyour run fileready, thebasicstepsin thecompilationandinstallation arejust:

./run certain

./run directories special

./run install

2. GETTING STARTED

2.1 Tests of user commands to perform before starting the daemon(s)
Once the SUN III software is compiled and installed, there are a number of tests you can perform to help
ensure the integrity of the installation which do not require the network daemons to be active, i.e. these
tests can be (or should be) carried out before you attempt to make contact with other machines. These
tests are best performed when logged in without special privileges, to check that the correct permissions
have been established for ordinary users.8 None of the tests should result in error messages if the
installation is sound. If error messages do occur, hopefully they will be self explanatory, and the fault
should be corrected; some of the possible causes of faults are detailed with each test.

. Try sending yourself a file:

sendfile9 my_login file_name

There should not be any error messages (unless you use a non-existent login name or file name).
You should receive mail telling you the file is available, and then, as described below, you should be
able to collect the spooled file.

First examine the mail. Check the headers carefully to see if the addresses are correct (the mail
interface is a common problem with new installations).1°

Try collecting the file. It is worth changing directory first so collecting it will not interfere with the
original

cd /trap
getfile

You should need only to type a ’y’ and a RETURN in response to the query. Examine the file
ownership and mode after collection. With the possible exception of permissions masked by your
umask they should be the same as the original. Compare the collected and sent file, which should be
identical.

8. However if your installation makes use of flags to control network access (e.g. AUSAS or MUSH), make sure the account that
will do the testing has the appropriate flag(s) firs!!

9. The names by which the SUN III commands are known are configurable. The names used in the printing of this document are
related to the names used in the configuration as follows:

CON con
FETCH fetchfile

FILEGETTER getfile
QUEUE acsqueue

SEND sendfile
STATEP acsstate

STOP acsstop
WHOIS acswhois

10. If mail advising you that the file is available for collection is not received, see the section "PROBLEMS WITH THE MAIL
INTERFACE" for help on specific problems. It cannot be over-emphasised that lack of mail at this stage is a serious fault,
since almost all the SUN III error handling is by mail to the account set with FUZZ in the compilation. If such mail cannot be
delivered, faults will never be apparent.

AUUGN 19 Vol 10 No 1

¯ Check that mail to your network address works:

mail my_login@our_node

Again check the headers carefully, paying particular attention to the "From " and "From: " fines
which should contain your user name and node name in the form username@node.domains. If the
node and/or domain information is missing, it could be for any one of a number of reasons, some of
which do not indicate faults. Nevertheless it is worth checking this out by referring to the section on
"Testing network mail locally".

¯ Check that the commandsfile information has correctly set up the statefile:

acsstate -V our node--

The output should look something like:

our node-- {domainl.domain2.oz} [domainlldomain2]
"Our comment string"

This fictitious out-put would relate to lines in the commandsfile:

#
configure our node
#
domain our node
hierarchy our node--

comment our node--

domain i, domain2
domainl, domain2, oz
"Our comment string"

In other words, the output should show an entry for your node name, with its hierarchy in braces and
its domains in brackets separated by ’1’ characters with the primary domain listed first.11 Your
comment should follow. With the possible exception of the comment, all these components should
be present in the acsstate output. The hierarchy must end in the top domain, currently "oz" for
Australia.12 If anything is missing from the output, you should edit the commandsfile with reference
to the Installation Guide and the manual for acsstate; a task which must be performed with
system privileges.13 There could be other things listed if you put them in the commandsfile, such as
"caller" or "filter".14 If you put information on links in the commandsfile (not the recommended
procedure), information on these links will follow the acsstate output on "our_node". Assuming
you did not put the link information in the commandsfile (the recommended procedure), some of the
simple tests below will not work, so you should temporarily get aesstate to add information to
the state and routing files for the node to which you intend to link, which is called "neighbour" in
this document. Execute the command:

acsstate -RSWC<<!15
add neighbour
link our_node,neighbour msg

11. The node you intend to connect to must be a member (at least) of this primary domain.
12. Some other top domains are "nz" for New Zealand, "th" for Thailand.
13. Whenever you edit the commandsfile you should run the command:

acsstate -RSWc

which will force the changes into the routing file (-R) and the state file (-S), as well as give wamings (-W) about any faults.
The c argument must come last to indicate the default commandsfile.

14. It is worth noting that the contents of the commandsfile should be kept to a minimum and managed very carefully (see section
"ROUTING PROBLEMS".)

Vol 10 No 1 20 AUUGN

This will have the side effect of generating a state message to inform the network of your new link
to "neighbour".

Check that the link information is correctly displayed by acsstate.

acsstate -V our node--

The output should now look something like:

our node {domainl.domain2.oz} [domainlldomain2]--

"Our comment string"
-> neighbour (msg)

i.e. the link to neighbour is shown (indicated by "->"), together with the link flags in parentheses.

Check that the link(s) you expect to have are listed by the llnkstats command. Try

linkstats

which should print a header, then one line of output for each link you intend to have. The absence
of such lines most likely indicates that the directories for them have not been set up. See the
Installation Guide "Starting the Network".

Try to send a file to your nearest neighbour

sendfile root@neighbour < /dev/nul116

Now check that this file has been spooled for transmission (it will not actually be transmitted until
the network daemon is active):

acsqueue -V neighbour

which should give output something like:

neighbour daemon inactive

2 messages in queue

2: Files from my_login at our_node.domains to root@neighbour at neighbour 138 bytes
0 Jan 17 12:04 stdin

where the number of bytes will probably be different, and the time is the last modification time of
/dev/null, not when the message was sent. The unlisted first message will be the state message
generated above.

You probably do not want this test message to be delivered, so check that you can stop it:

acsstop

which should result in output something like:

Link to neighbour:-
Files from my_login to root@neighbour at neighbour
Stop ? (y or n)

To which you need type only a ’y’ and RETURN, after which acsstop should report:

i message stopped.

138 bytes

15. The upper case C tells state to read commands from standard input instead of from the commandsfile as in the previous
example.

16. The use of sendf±le redirected from /dev/null is the most efficient means of testing sendf±le, as no file to send is
needed, and a zero-length file is sent.

AUUGN 21 Vol 10 No 1

which you can confirm with the acsqueue command.

¯ You can check the acswhois command:

acswhois my_login@ our_node

which at the very worst should give you the message "Information not available", indicating the
whois database you specified in the configuration is not available, possibly by choice.

¯ You can check that the £etchf±le command is operational:

fetchfile -dour node -L .17--

What will happen is dependent upon whether you configured your installation to serve as a fileserver
hosta8 by defining PlJB/ICI::ILI::S 19 in your configuration. If you did, the fetchfile command
should result in a file called PublicFileList being sent to you. The message:

fileserver: error -- No public files are currently available.

indicates the directory you specified in the configuration is not accessible. If you did not define
PUBI.ICI::It.£S you should get the message:

There are no remotely accessible files at our node. Sorry.--

2.2 Tests of system commands to do before you start the daemons

These commands can only be executed with system privileges. Some of them are not installed in your
system bin directory, but are to be found in the _lib directory in the SUN In spool directory.

¯ The purqe command should be run regularly (see "Maintenance" section) to clean up the SUN HI
directories of out-of-date files. You should check that this command is executable and does not
report any errors

¯/purge -W

¯ Many of the standard user commands have flags that only the system administrator can use. e.g the
getfile command can be used to collect (or delete) files sent to any user. You should test that
one of the restricted flags will work, e.g. try:

getfile -LA

which will list all files spooled regardless of who they were sent to. This is valuable in checking for
uncollected files, or in cleaning up if disc space is short.

¯ The request command is one you will probably not need to use, and certainly should not use
unnecessarily.2° Nevertheless, in a sound installation it should work, so try this simple test of the
request command:

cd /usr/spool/ACSnet/_lib21
./request neighbour

17. Note that the last argument is a dot.
18. Acting as a fileserver host means that you have a place where you put files that users at other nodes may request to have sent

to them. If you think that your site may be a source of files for other sites, you should define PUI~I.ICFII_ES in your
configuration. If you want to minimise the size of your SUN 111 installation or exclude the possibility of a security hole that
acting as a fileserver could represent, leave it out. (Note: this is not to suggest there are known security problems with
fet ch f ± le.) Consult the Installation Guide for more information.

19. Upper case names printed in this way refer to compile time definitions which are site configurable. They are described in the
Installation Guide.

20. Amongst other things, reverse charging applies to the file(s) the request causes to be sent to you.

Vol 10 No 1 22 AUUGN

This command should queue a state file for delivery to neighbour.

acsqueue -VMA

should list this message; the listing should include the string "ENQ"

2.3 Simple tests of the mail interface

First check that mail to a non-existent node generates an error.

mail blogs@notanode

should, depending on your mail program, either give the message:

sendfile: error notanode" unknown

or generate mail to you informing you that the mail was undeliverable.

Check that mail to a user at a node that is in your statefile ("neighbour" in the examples above), is
spooled for delivery.

mail blogs@neighbour

should not generate any errors, and it should be visible with the acsqueue command. The command

acsqueue -VM

can be used to check that the message has been queued, but also that the "mail envelope" is correct, i.e.
that the sender and destination look correct in the acsclueue output. (Note that since these are
generated by the mail program initially and not by SUN]II, we are checking something quite different to
the sendfile tests above.)

Next check that the contents of the message are correct. Change directory to SPOOt.DIIq/neighbour and
list the directory contents. There should be a file with a name made up of apparently meaningless
characters; This file contains information as to where the files containing the message and the SUN]II
message header are located. Use strings(I)~2 to examine this file. The file name in the _work directory
is the critical one. It is essentially a binary file, although in many cases it may begin with an ascii
component. It will always end with the binary SUN I11 FTP. Examine this file to see if the mail header
lines look correct - again strings(I) or a similar program can be used. The command

sed spool_file

is a simple way to strip the FTP from an otherwise ascii file.

If the file contents do not appear sound, consult the section "PROBLEMS WITH THE MAIL
INTERFACE". You should now acsstop the message.

2.4 Tests on network-related commands not really part of SUN

The internationally agreed upon standard account for mail enquiries at all sites is "postmaster’’a3. You
should check that

mail postmaster

works and that the mail is delivered to someone who will attend to it. If your system does not already

21. on a "standard" installation. Your jib directory could be somewhere else according to your configuration at compile time.
22. In its absence use cat -v or od -c.
23. See RFC822 "Standard for the format of ARPA Intemet messages". This document is obtainable from a number of sites,

including munnari.cs.mu.oz and physiol.physiol.su.oz, e.g.

fetchfile -dphysiol.physiol.su.oz rfc/rfc822

AUUGN 23 Vol 10 No 1

have a postmaster facility, you should establish it. If your mail programs support aliases for incoming
mail you can alias postmaster to root or someone appropriate. If it does not, you must create an account
postmaster, preferably arranging for mail forwarding to the system administrator. Ideally, all case
variant names should be recognised (i.e. Postmaster, POSTMASTER, PostMaster etc.) If your mail
program accepts case independent names, such variants will obviously be accepted, but if not, the
obvious additional aliases should be included.

2.5 Testing a daemon and a link

There is really only one test of what is happening on a link: the linkstats command. It can be
given a flag (-c) to repeatedly output the status of the link, and this output can be piped to the command
dis.z4 If your system supports windows, or if you can devote a terminal to this command, run:

linkstats-Vc3 neighbour I dis25

while the daemon is starting, and while you try to establish your link and perform some of the
operations in the section "ESTABLISHING YOUR LINK".

2.6 Cleaning up after the tests

Any test files spooled for link "neighbour" following the above tests should be removed, and if you
added link information by reading from standard input as recommended above, this link information
should now be removed:

acsstop -AY neighbour
acsstate -RSWC<<!
remove neighbour

3. ESTABLISHING YOUR LINK

There are a variety of ways your node may establish contact with another node. The nature of the
connections involves two issues: the nature of the physical link; the nature of the logical link used over
the physical link. You may have a dedicated connection between your node and the one you link to,
e.g. twisted pairs and line drivers between two machines in reasonable proximity, or an Ethernet, or even
an infrared or microwave link over longer distances. For isolated sites it is more common to make use
of a telephone modem link, usually on an intermittent basis, especially if the telephone calls involve
long distance charges. Over dedicated links it is common to have node-to-node communication
operating on a permanent basis. This minimises transmission delays. However, sometimes even a
dedicated link may be used for other purposes, e.g. remote logins, and can be used for S UNIII
communication only intermittently, although it is possible to do both if you can run a multiplexer
protocol over the link. (See "Remote logins using SUN III".)

Intermittent links have a calling and a called end. You may wish to provide for both if possible.

24. Thesource ~r disisdistfibuted withSUNIII, butitisnot insmll~ asapaa ~ thenormal insmHation. To compile k:

cd <your SUN III source directory>
cd Control
make dis

If you install this command, you should also install the manual distributed with the sources.
25. Some administrators find a shell script or function to do this is handy:

linkstats -Vc3 ${l:-neighbour) I dis

Vol 10 No 1 24 AUUGN

3.1 Common requirements for all links

There must be a directory with the SUNI]I spool directory, SPOOLDIIq, named with the name of the
link. This directory must be owned by AOSNETNAME, and be read-write-executable by owner. Unless
you are paranoid, it can be read-executable by mortals.

If there are special reasons to do with the nature of the link, you might need to insert appropriate "add"
and "link" lines to your commandsfile with a minimum of detail about the link.26

Within the link directory, you should create a file called params which can contain arguments for the
daemon used on the link. It can be empty at this stage, but should be readable by AOSN£’rNAME.z7

3.2 Permanent links over dedicated connections
This is probably the simplest form of link. There must be a special file which the daemon will use to
connect to the remote link. This file must therefore be appropriate to the physical connection to be
used, and must be read-writeable by ACSNE’rNAME. The file name can be passed to the daemon as a
--dspecial_f!le_name argument, or the default name can be used which requires that in the directory
/dev/net there be a file having the same name as the link’s nodename, e.g. for a link to node
"neighbour", the file/dev/net/neighbour. Unless the transmission speed of the link is hard wired, edit
the link params file to contain a -pspeedzs flag according to the baud rate the link will be run at
(remembering that this will have to be the same at both ends). All that needs to be done to activate the
link is to run the NNdaemons at both ends, assuming that the physical link is sound29. These should
normally be started in the system startup code, e.g. by placing an appropriate line in/etc/rc (or the like):

(cd /usr/spool/ACSnet/ lib; o/rundaemon -I -w60 neighbour)

The command rundaemon is used instead of directly invoking NNdaemon because the NNdaemons
have a nasty habit of dying from time to time and rundaemon will start a new daemon upon such a
death. Alternatively, if your system supports/etc/inittab, the NNdaemon can be spawned from it (with
a respawn flag). Once the NNdaemons are running at both ends, linkstats should show the link as
up and acsstate should show that there has been an exchange of state information. (See "Testing a
daemon and link.") Any failure at this stage is most likely due to incorrect special files, mismatched
speeds or problems with the physical link such as incorrect cabling.

3.3 Setting up for incoming calls - intermittent links

If you are arranging for an intermittent link, most commonly over modems, setting up for the remote
site to call you in the first instance is easiest. The daemons are started through the remote system
logging into yours, so whatever the incoming route, it must be set up to accept logins.

. Make an account for the calling node. The account name should be the name of the calling node.3°

26. There are pros and cons to doing this. The state information concerning the link will be established automatically when SUN III
daemons first run on the link, and thus it is not necessary to include link information in the commandsfile. Indeed the "add"
command overrides SUN III’s automatic configuration behaviour. On the other hand, it is not possible to spool files for a link
until the statefile contains information about it. This makes preliminary testing somewhat difficult, but can cause serious
problems if the statefile is corrupted or has to be truncated, and the only state information will come from the commandsfile.

27. If you intend to let the remote site be responsible for the link, the file should be owned by the user from the remote system
who must be able to adjust the contents to match those at the remote end.

28. Note that the speed is not the baud rate per se but the system define for that speed. See the NNdaemon(1) manual.
29. One way to test the physical link is to get the remote site to run a getty on their end of the line, and use a utility like

cu(1)/tip(1) or something similar (SUN III’c con utility for example) to connect to the line at the local end and make sure you
can log in at the remote end, and that you can examine large files on the remote machine without character loss or corruption.
(See the section "Remote logins using SUN KI" for information on how to use con for this purpose.)

30. If you cannot use the nodename, e.g. if it has more characters than your system will tolerate for login names, or if the login
name is already in use, chose a reasonable alias that you can use for a login name, and create an account with this name
instead. Then add the line

alias real nodename chosen alias_

to your commandsfile after the "link" line for the node. Finally advise the calling node that they will have to use the alias you

AUUGN 25 Vol 10 No 1

(It will be used by the calling program at the remote site.)

¯ Set a password for the account (which you will have to agree upon with the administrators of the
calling node; it will be used by the the calling process to effect the login). If your system supports
password ageing, disable it for the account.

¯ Set the home directory of the account to be SPOOLDIR/nodename.31

¯ If your SUN 111 installation supports any accounting system to permit/deny network access, give the
necessary network flags to this account. If your login procedure allows control of logins over dialup
lines, and one is to be used, be sure the account has the necessary flags.

. Set the login shell of the account to be SPOOLDIR/_lib/NNshell3:~

¯ Within the link’s directory in SPOOLDIR, create a directory called q with the same ownership and
permissions as the link directory (see above). This step is optional but generally advised (see the
NNdaemon manual explanation of-r).

¯ Create a params file which at this stage need only contain the line

-rq

if you are going to use the q directory created above.

Getting the link going will now be largely the responsibility of the calling site. If problems arise,
addition of-T1 to the params file will assist in diagnosis (with the output appearing in the log file).
Selecting seven bit mode (-C in the params file), or changing the speed of the line, will have to be done
with the guidance of the calling node, for these parameters must be changed at both ends.

3.4 Setting up for outgoing calls - modem links

Many of the requirements for initiating calls to another site are the same as for receiving calls, and the
details of these can be found above: a link directory within SlaOOI.DIR; a q directory within the link
directory; a params file (probably containing -rq).

In addition you need a calling program. This program must know how to initiate calls on your modem
and how to log in at the remote site. If you have a common modem, and the remote login procedure is
standard, all you need do is compile the appropriate call program from the distributed sources in the
NNcall/Callers directory, and install the binary in your SPOOLDIl:l/_lib directory.33 If you have an
unusual situation, and cannot find a site with similar demands, you will have to create your own caller,
probably by starting with a common one like hayesmodem.c. Now link the call program binary in _lib
to call in the link’s directory. Create the file callargs and place in it the appropriate arguments for the
calling process, i.e. giving call the number to telephone, the name to log in under, the password etc.34

Note that this file should probably not be readable by mortals since it contains the remote password and

selected.
31. This is not essential, but it can be convenient to be able to

cd ~nodename

to get to the spool directory.
32. On some systems, where timezones are set from/etc/profile, you might change the initial shell to be SPOOI.DIl:l/_lib/netlogin

which would be a shell script that set the timezone (/etc/TI_MEZONE perhaps) and then executes NNshell "exec
SPOOLDll:l/_lib/NNshell".

33. See the Installation Guide and the NNCall Makefile to see how to do the compilation.
34. If this seems a little vague, it is because the call arguments will vary substantially with the call program (not even the flag

letters are consistent). For the hayesmodem caller it might look like:

-d/dev/modem -s2400 -pP12345678 -llogin -Psomepasswd remote_node_name

Vol 10 No 1 26 AUUGN

telephone number. To test a call to node "neighbour", cd to your SPOOLDIR and run

lib/NNcall -TI -hneighbour neighbour/call

On intermittent links it is often necessary to run the daemon twice to make anything much happen. The
first time allows the remote node to know you exist, which starts it sending state information
everywhere, including to you. Usually the daemons have seen that there is nothing in the link queues
well before that happens, and so they quit. A delay of a few minutes between the first successful call
and the second one is a good idea, thereby making sure the daemons have sufficient time to queue their
state messages, unless the commandsfile contains explicit link information in which case the state
messages should have been queued and transferred. In between the two calls, the calling site can use
l±nkstats to see if a message was transmitted. If so, it was your state message going out; if not,
then it should appear in the outgoing queue, and can checked with the

acsqueue -AVM

command.

If the daemons start, indicating that the connection was made, but die, then something is probably
wrong. First make sure the problem is not just that the remote site is very busy; add a -BN flag to your
neighbour/params file to increase the delay before the daemon will time out. N is 11 seconds by
default. If this still does not work, the _bad directory and log file should be checked, and core dumps
sought in the obvious places (e.g. SPOOLDIR, SPOOLD~R/neighbour). If the daemons run for a
reasonably long time, then die, check that you do not have a problem with "auto-nicing" (see the
"Preliminaries - the SUN lIl configuration" section).

Once calls can be made reliably, you should organise to make them on a regular basis, invoked by
cron(1),3s at times agreed upon at both ends of the link.

3.5 TCP/IP links
This protocol essentially involves a call operation. For an Ethernet and 4.3BSD, ENcall and ENshell
programs exist to establish these links. If you are setting up a new Ethernet, you will almost certainly
need advice from a site that has a similar operating system and a working system.36 If you are just
adding a node, seek advice from elsewhere on the TCP net)7

3.6 X.25 links
Another call type link. Seek help from the other end.38

3.7 Tests of commands once the daemons are running
There are some obvious tests to ensure everything is working. Once the daemons have made contact,
they should immediately exchange network state information. This means the bare bones statefile

35. A typical crontab entry might be

15 4,12,16,22 * * 1-5 /bin/sh SPOOLDIR/netcall neighbour

where netcall is a shell script to invoke NNcall containing essentially:

cd SPOOLDIR
HOST="$ { 1 :-neighbour }"

lib/NNcall "-& hSHOST SHOST/calI"

but which could have local features such as means of correctly setting the time zone if necessary.

36. cad.eecs.unsw.oz and physiol.physiol.su.oz have 4.3BSD Ethemet systems in use.
37. The problems with these links can be very subtle; e.g. the inetd configuration on BSD can, if wrong, cause faults that appear to

be due to SUN KI.
38. All these links have unique features that makes generalisation impossible.

AUUGN 27 Vol 10 No 1

created from the information in your commandsfile should be expanded. That this is so can be tested
with

acsstate -V

which should now give more information. There will probably be many more nodes unless your
primary domain is very restricted. At the very least there should be more information on the node to
which the daemon is communicating, e.g. its comment.

A simple test message is a good idea:

sendfile -A root@neighbour < /dev/null

This zero-length file should be transmitted and acknowledged (because of the -A flag) very quickly.

You cantest thatyoucan send afileto yourself, routed via you neighbour:
sendfile my_loginOneighbour!our_node < /dev/null 39

Once again this message should be transmitted and returned quite quickly.

You should also test that a message sent to a non-existent user at your node results in mail to you
advising of the failure to deliver, and to the lztlZZ, if you have I.OG_FIE’I’tJIqNED=I in your
configuration

sendfile bogus_login@neighbour!our_node < /dev/null

The undeliverable message should be saved in the _bad directory within the SUN m spool directory.
The mail to the l::tlZZ, if it exists, should refer to this file. Check that the _bad file has been created;
then you can remove it.

3.8 Making yourself known
Once you are satisfied that your configuration is sound, you should arrange for your site information to
be entered in the "Network Map" which is distributed by the network news system both over SUN rn
and overseas. To acquire information about how to do this:

fetchfile -dphysiol.su.oz README acsmap_form

which should result in the delivery to you of the two named files. If this does not happen within a
reasonable period, there is a potential that something is wrong with your SUN]II configuration. You
should send mail to acsmap@physiol.su.oz describing what has happened. The map moderator will try
to help ensure your configuration is sound and that messages can be routed to you.

4. REMOTE LOGINS WITH SUN III
The con utility distributed with SUN KI allows you to logically connect your terminal to any serial
device your hardware and operating system supports. Usually the serial device is a dedicated link to
another machine with a getty running on the remote end.4° SUN rn supports routing to remote machines
through a series of con processes, although it is mandatory that the getty at each node can fork con to
connect to the next link in the chain of con processes.41

39. The syntax destination_l!destination_2 is called explicit routing. The message will first be routed to destination_l, and when it
arrives there will be routed to destination_2. These destinations need not be directly linked. N.B. If your shell is the csh or
any other that treats the ’[’ character specially, you will have to escape it.

40. If your system remote login procedures such as telnet, con may seem somewhat superfluous. However if you have a number
of machines not all of which support telnet, con may assist you in connecting to such machines. Furthermore, con can
provide a redundant connection mechanism between machines linked by other means to cope with hardware or software
failures.

41. This system is used extensiv, ely at the University of Sydney and University of New South Wales on a variety of UNIX versions.

Vol 10 No 1 28 AUUGN

To support con to a directly connected node "neighbour" over a serial connection, there must be a
device special file/dev/net/neighbourO. (Note that the ’0’ is obligatory and that the file is very different
to/dev/net/neighbour (see "Permanent links over dedicated connections"). Generally the file is a link to
the conventional try device special file in use for the serial connection.4:~ If more than one con channel
is provided, additional sequential device special files must be created, e.g. /dev/net/neighbourletc.,

4.1 con in a local network
If a number of machines are linked with con support, SUN III will route con requests according to
state information, provided the commandsfile contains appropriate information, e.g. if your machine is
linked to node "neighbour" and supports both NNdaemons and connections, your commandsfile "rink" or
"flag" line would look like:

link our_node, neighbour msg, con

If con is used extensively, all available connections can be busy when a user tries use con. If there is
an alternative route to the target, SUN 11I will not use it if the lines are busy. There is a trick to exploit
such alternative routes. Consider the following simple network:

Suppose you have two con channels between each pair of machines. The first two users of con from
"our_node" to "neighbour" will use /dev/net/neighbourO and/dev/net/neighbourl respectively. A third
user’s attempt to con to "neighbour" will fail and SUN III will not exploit the available route to
"neighbour" via "hub". However if you create a link between the device special file/dev/net/hubO and
/dev/net/neighbour2, the third con attempt will actually go to "hub" which will in turn connect to
"neighbour".43

4.2 con as a general testing utility

To use con to connect to any serial line, e.g. a modem, simply create a link to the appropriate device
special file in/dev/net, e.g.

in /dev/modem /dev/net/modem@
con modem

If the hardware requires that carrier be asserted before the device can be opened, con will not work
without it.

42. In the case of multiplexed links, it would be a link to the device special file for the appropriate channel on the multiplexed port.
43. Assuming the getty running on "hub" knows how to fork con. If you have the sources to the login process adding support for

this is quite easy.

AUUGN 29 Vol 10 No 1

5. MAINTENANCE
Most SUN I~I maintenance can be automated. The following recommendations are not essential if your
administrators are willing to do things by hand, but are highly recommended to make your installation as
trouble free as possible in the long term.

¯ purge should be run regularly - every night at most sites, more often at busy sites - to remove
out-of-date state messages44. This may mean adding an entry to the cron(1) table, or adding it to a
script run for related purposes (e.g./usr/adm/daily on BSD systems). The output generated by the
-W flag will alert you to potential faults, so redirecting the output of purge to mail to the system
administrator is worth considering.

. Remove (or otherwise deal with) old files in the _files directory. When users are advised of the
availability of files for collection with getfile, they are told they should collect or delete them
within FILESE×PlRt::DAYS or they will be deleted. This deletion will not occur unless you arrange
to do it. If you want to be rigourous about this, simply remove, on a daily basis, any file in the
_files directory older than FILESEXPIREDAYS relative to the current date. This can be done using
find(l) or

getfile -AoN -delete

where N is FILESEXPIREDAYS, or perhaps some slightly larger number to give a period of grace.

On the other hand, if you have users who log in rather infrequently, and/or you wish not to delete
potentially valuable files, you may choose to generate further messages once a certain period has
passed, and perhaps to later alert the system administrator.45

¯ Truncate the log files in each link directory. The strategy needed varies greatly with the nature of
the link. The log file for a dedicated and reliable link will not grow at a great rate, and might need
to be truncated only rarely.46 A log file for an intermittent link with frequent calls and/or a link with
frequent faults can cause the log file to grow rapidly, its truncation might need to be done on a daily
basis.

¯ Discard old state files in the _state directory. Any files here older than a few months are of doubtful
value. They should be removed, perhaps weekly, using find.47

¯ Examine then disca,’-’ messages in _state.48 These files have the same names as the state
files to which the) but .ith a ’,’ prepended to the name. The contents may give important
information about state inconsistencies, especially those between incoming state messages and the
contents of your statefile. Even if you choose to ignore these messages, you should truncate the files
which can otherwise grow indefinitely.

¯ Examine any files in the _bad directory. If there are files here, they are a result of some failure of
SUN m to deliver messages - e.g. messages to non-existent users, messages that have been looping
around a route, or messages saved because some process forked by SUN I!I failed, e.g. news. The
script badmv.sh distributed in the SUN if[sources Admin directory can be used to deal with such

44. See the purge manual for more details.
45. The shellscript oldfilewam.sh performs this task.
46. For example only when the system is rebooted. The system startup file (/etc/rc or the like) might contain, for a link called

neighbour :

cd /usr/spool/ACSnet/neighbour
cp log OLDlog
> log

47. The script purge.sh does the double duty of running the purge command and discarding old state files.
48. The shellscript staterep.sh will do this for you.

Vol 10 No 1 30 AUUGN

files.

6. PROBLEMS WITH THE MAIL INTERFACE
As many of the problems to do with SUN 111 relate to its use with electronic mail, considerable attention
to certain problems is given below. It is important to appreciate that the Mail Interface is complex, and
really consists of several parts:

1. messages pass from your user mail program(s) to SUNIII by invoking sendfile

2. SUN 111 messages destined for your mail system are passed to MAILER with arguments selected by
MAILERARGS

3. mail generated by SUN m (e.g. notification of files available for collection) is passed to BINMAIL
with arguments selected by BINMAILARGS.

It is therefore possible to have failures in three independent places. The first phase is undoubtedly the
most complex. The user mail program (possibly/bin/mail, but more likely something better) generally
utilises a second program to deliver the mail (e.g. smail or sendmail) which in turn must invoke
sendfile.49 The next test enables testing both the first and second aspects.

6.1 Testing SUN HI network mail locally

You can usually test your SUN 11I mail interface by just sending mail to my_login@our£node, since the
presence of the ’@’ will usually cause the mail program to pass the mail to SUN III. Some mail
programs examine the destination after the ’@’ in an attempt to try to recognise mail that is really
destined for your site, in which case you may have to use some variant on the normal address to defeat
the mail program’s ability to bypass SUN Ill. Using my_login@our_destination where our_destination is
a fully qualified address consisting of our_node.domains5° will usually work, but if your mail program
recognises this too as a local address, my_login@our_node@our_node might trick it. A certain way to
test SUN 111I is to establish a SUN III alias for your node name (that your mail program does not know
about), then mail to my_login@node_alias.

If network mail appears to be working from this test, and SUN 11I informative mail was correctly
generated in the sendfile tests in Section 2, you need not proceed further with the "Mail Interface"
section. If problems are evident, some of the subsections below may help with specific problems.

6.2 No mail from SUN III
If any of the preliminary tests show that mail is not being delivered, error diagnostics should tell you
what is happening. If there are no diagnostics, it could be because IGNMAILERSTATUS was set to 1 at
compile time. You might want to reverse this to aid in tracking down the fault. If you did not compile
SUN III with the DEBUG option set, you might want to recompile with it set so that tracing can be used.
Then consult the following sections designed to isolate faults in the various parts of the Mail Interface
described above.

6.3 No informative mail from SUN III

The command:

sendfile -T4 my__login < /dev/null

should display the mail command which is called, provided the DEBUG feature was enable for the
SUN lXI compilation. This may help detect the fault. It is worth checking the last access time of the

49. Actually sendmail is even worse, as there must be an
argument handling and run with system privileges.

50. E.g. for node basser this would be basser.cs.su.oz.

intermediate program between sendmail and sendfile to do some

AUUGN 31 Vol 10 No 1

program you selected with BINMAIL to ensure it is being invoked. You can check the home directory of
the account set by ACSNETNAME in the compilation for dead.letters which may also help sort things
out. It is also worth searching the relevant directories for core dumps, e.g. the _lib directory, the
ACSNETNAME and the home directory (for possible core dumps from BINMAIL). Examination of any
core file found (strings(l) will tell you what process caused it) with debugging tools may be required.
The most common cause is incorrect BINMAILARGS set at compile time.

The script debug.sh51 can assist, especially if you have not enabled tracing with DEBUG. If you
temporarily replace the program specified by BINMAIL with debug.sh (set to be executable and readable)
you can ensure it is being invoked and examine the arguments.52 Furthermore, after restoring BINMAIL,
the output file can in turn be executed, after adjusting arguments if needed (e.g. adding debug flags).
Once you have determined the problem, you must correct BINMAILARGS or alter the program selected
by BINMAIL to make it work.

6.4 No network mail from SUN III - testing the SUN 11I to MAILER interface

To simulate what SUN 13I does when a message destined to be delivered as mail arrives, simply execute
the command:

echo "Test mail" I sendfile -amailer my_login

If this fails, and if diagnostic output does not make it clear why it failed, addition of the -T4 flag to the
sendf±le command will cause the ultimate command executed to be displayed, together with its
arguments, i.e. MAILER executed with MAILERARGS. Check these carefully to ensure they are what
you wanted. Then either correct MAILERARGS or determine why MAILER is not working. The use of
the debug.sh script mentioned above may again be of assistance.

6.5 No user generated mail reaching SUN III

This is undoubtedly the most difficult of the mail problems because, as mentioned at the head of this
main section, the process of a user sending mail via SUN 11I involves a chain of programs starting with
the primary mail user interface and ending with sendf±le. Any problem here is not a problem with
SUN 111, but with the way it is invoked.~endf±le must be invoked, and it must be invoked with
sensible arguments.

6.5.1 Testing how sendfile is invoked
Examination of the last access time of the sendfile binary following a mail test such as described in
"Testing SUNIII network mail locally" will determine if ~enctf±a_e is being used. If it is but is
failing, replace the ~endfLle binary with debug.sh and determine what arguments it is being called
with. Ascertain what is wrong with the arguments, either by inspection or by running the sendf±le
command as recorded by debug.sh and make the necessary corrections to the process calling
sendfile.53

51. In common with the other useful little shell scripts mentioned in this document, this will be found in the sources Admin
directory.

52. Presumably you would not want to do this without the system being restricted to system administrators!

53. It is difficult to give advice here as there are many different user mail systems. If your system mail programs are not able to be
configured to use an arbitrary network, you may have to replace them with ones that will. The so-called "Rourke mail" is
essentially public domain (not for redistribution for profit) and will do the job.

If you use sendmail, it is essential to edit the sendmail.cf file to correctly interface to SUN III. The best starting point is the file
sendrn.cf.shand distributed in the Admin directory with the sources. If you use this file you will need to edit it slightly, and the
comments say almost everything. You should end up with two lines

DJour node--
DDour_hierarchy

Note that this file requires that _lib/netmail in the SUN III directory be installed. The source is distributed in Admin/netmail.c.

Vol 10 No 1 32 AUUGN

6.6 Duplication of source in "From" line (From user@source@source) in your mail
arriving at remote sites

This error, in the so called "UNIX54 From_ line", usually relates to the -ssender argument passed to
sendf±le. The sender should normally be just the sender’s login-name, but sendf±le will accept a
string including "@source" (useful feature for gateway sites). The problem is that when SUN Ill
generates an address for the sender, e.g. when the mail is delivered, it concatenates "sender @" and
"source", so if your mail program passed the "@source" to sendf±le via the -s flag, duplication of
this part will result.

Another possible source of the problem is any filter between the mail program and sendfile. As an
example, on some BSD systems a program known as ACSmail or netmail is called by sendmail; this
program in turn calls sendfile. It runs setuid root so that sendfile can be called with the
-amailer flag. Since this filter sets up the sendfile arguments, it can be the source of the problem.

If someone at another site tells you they see this duplication in the UNIX From_ line in mail from your
site, but you cannot replicate the fault locally, it may be because different methods of generating the
UNIX From_ line are being used. If the remote site confirms they only see the fault in mail from your
site, there is a possibility your mail delivery program is generating the From_ line correctly, despite the
fault in your outgoing mail. If you have not set NIAil._I::I:IONi=I in compiling SUNm, whereas the
remote site has done so, this discrepancy is to be expected.55

The means of correcting this fault is dependent upon the mail program(s) you are using, and to some
extent on the version of SUN 111 you have. If a new installation, simply substitute -r for -s wherever
sendfLle is being called. If your sendfLle does not support -r, you must check that whatever
arrangements you made to pass the -s flag to sendfLle do not include passing "@source".56

6.7 Incorrect or Incomplete Address in "From: "line

The "From: " line (along with To:, Cc:, Date: etc.) is the responsibility of your mail program(s), not
SUN III. It is important that your "From: " line be correct, for all correct mail programs used by
recipients of your mail will use it to generate return addresses, especially on non-UNIX systems. Testing
the generation of the "From: " line may require the same means of ensuring your mailer treats the
addressee as a network address as mentioned above for the UNIX From_ line. Once again your mail
program may only produce a full user@source57 "From: " line if the addressee appears to be at a remote
site. You may also have to use a special command to your mail reading program to see the "From: "
line, as many of the message headers are suppressed by some readers. If in doubt, examine the mailbox
file itself.

Incomplete "From: " lines seem to arise most commonly from sites using sendmail. In this case
definition of the "From: " line in sendmail.cf should be examined.58 For systems with mailers making
use of the UNIX uname system call, it should be noted that uname does not return domain information

54. UNIX is a trademark of AT&T Bell Laboratories.
55. You could set MAIL.._FI:IOM=I to assist in finding the fault, but this will require a potentially long recompilation and is probably

a last resort.
56. For sendmail this would usually mean "-sSf’ as part of the role for SUN 121 mail.
57. Where source includes the full domain hierarchy, not just the node name.
58. One common configuration includes:

format of a total name
Dqg?x ($x) $.

where the use of Sg is critical, then

format of header lines
H?F?From: $q

AUUGN 33 Vol 10 No 1

and this may have to be added in other ways, possibly even when compiling the mail program(s).

It is also worth remembering that some mailers obtain the node name from a configuration file, or have
it compiled in. In such cases, changing the node name will require reconfiguring or recompiling the
mailer. Failure to do so will result in incorrect "From: " lines. Similarly, such binary and configuration
files cannot be simply copied from one site to another.

7. PROBLEMS WITH SMALL ADDRESS SPACE MACHINES
If your machine is 32-bit, you can probably skip this section unless your machine has a very limited amount
of physical memory, or its memory management system is deficient.59

Small address space machines (like the DECTM PDPllTM family) present certain problems and
restrictions on the use of .SUN III. These are most acute on machines without separate I&D spaces.
Other machines should exploit the -i flag during compilation.

7.1 The Statefile

It is quite possible for the statefile60 to grow too large for acsstate to be able to hold all the data in
core. If this happens, the acsstate command will become useless, and the network will probably
stop, i.e. the daemon(s) will adopt an error status61 and operator intervention will be required.
Sometimes acsstate will still work, but the receiver will not, again because too much core is
consumed. Whenever the daemon error condition is encountered, the best first step is to kill the
daemon(s), and examine the log file(s)62 for error diagnostics. Messages concerning "not enough core"
point to the possibility that the statefile is too large. If the acsstate command reports this, the
conclusion is confirmed.

There are two issues here: prevention and cure.

7.1.1 Preventing the statefile from getting too large
There are a number of rules that need to be followed:

¯ Only make your node’s primary domain as large as it must be.

¯ Only allow your node’s domain membership list to contain the primary domain as its largest domain.
It is essentially impossible for a small address machine to be a member of a large domain such as
"OZ".

¯ Use the request command as little as possible.

¯ Never request from a node in a larger domain using the -A flag.

¯ Judiciously add "remove node" fines to your commandsfile for nodes which creep into you statefile,
but which you are prepared not to know about.

¯ If your SUN]YI release63 is < 1.50064, keep your statefile as free as possible of routing information to
foreign domains, especially bogus foreign domains. This is a genuine problem due to a bug in the

59. I am told that PC/AT (i.e. 286) machines fall into this category.
60. This is a data file in the SUN lIl lib directory typically named/usr/spool/ACSnet/__fib/statefile.
61. The most obvious symptom is the output of the l±nkstats command. If the -V flag is not used, the first character after the

nodename will be an ’E’. With the -V flag, the output will include "waiting for error to be fixed".
62. The log file will be found in the directory within the SUN IlI spool directory having the name of the link as the directory name.

Usually only the last 10 to 20 lines of the file need be examined.
63. The SUN 111 release can be determined with the command

acsstate -0 I tail -i

64. Which it should not be if you are performing a new installation.

Vol 10 No 1 34 AUUGN

SUN III software for releases < 1.500. For such earlier releases, the prevention is to run a script
regularly that removes these domains65.

7.1.2 Recovering from the statefile getting too large
Once state will not run, there is no simple mechanism for paring down the statefile. It will almost
certainly have to be truncated. Unless your node is a major through route66, this is not as serious as it
sounds. The state information can be imported from your network links as soon as the network starts.
You should not try to truncate the statefile with the network active. So start by stopping the daemons,67
then perform the following commands68:

cd /usr/spool/ACSnet/_lib
> statefile~

acsstate -RSWc
acsstate -V

The first acsstate command recreates the basic state information for your node from the statefile.
The second allows you to confirm this has worked. You should then restart the daemon(s) and issue a
request for each of your links, i.e.

./request neighbour

If this problem is a recurrent one, and if the temporary truncation of the statefile is a problem, you
could make provision to periodically make a backup copy with the aid of cron(1).

7.2 Too many files

It is possible for a link directory to end up with more files than various SUN 111 processes can handle
because of memory limitations. This can happen if a link is down and large numbers of files
accumulate for it, or if some process spools large numbers of files for the link at a rate faster than it can
handle.7° If this happens, the log file will probably make it clear, as will a simple "ls" command, as it
may also run out of core. This is a difficult problem to deal with, since some of the ordinary tools fail.
Start by making purge unavailable (e.g. by renaming it), so that if it happens to run while you are
doing what is suggested below, files are not lost. Rename the link directory and create a new
replacement (empty) directory, with the correct ownership/permissions. Kill and restart the daemon,
which will have been in an error state. Progressively move files from the renamed directory into the
new one. You may have to use find(l) or ncheck(8) to obtain the file names in extreme cases. These
files should start to be transmitted. Preferably move the files in temporal sequence, oldest first. After
moving a group of files, wait until the acsqueue command shows the queue empty before moving
more. Eventually you should be able to clear the renamed directory which can then be discarded.
Finally, restore purge.

65. The presence of these domains is indicated by the output of acsstate with the -V flag showing large numbers of domains
after the node name within the domain field (i.e. enclosed by brackets) each of which is enclosed by parentheses. Except for a
few genuine domains (e.g. nz, usa, th) these are likely to be nonsensical and troublesome. The script which corrects this
problem was distributed in earlier releases with the sources in the Admin directory and is named remdoms.sh.

66. Not very likely with a small address space machine!
67. The statefile is subject to some form of locking protocol dependent upon the system kernel you are using. It may not be

possible to truncate the statefile unless all processes using it are stopped.
68. You may have to substitute the appropriate directory name for the cd command if you have a "non-standard" installation.
69. On some systems, notably those with AUSAS, it is critical that the statefile only be truncated. On such systems, if it is

removed, it must be recreated with a mknod command.
70. Such processes can be restricted to an acceptable rate by making them wait for a "queue empty" status from acsqueue

periodically.

AUUGN 35 Vol 10 No 1

8. RUNNING OUT OF DISC SPACE

SUN Ili is resilient to its file system becoming full. Incoming file transfers will be blocked, but the
daemon(s) will continue to run, and if space becomes available, normal operations will resume. An
unfortunate side-effect of this behaviour is that file transmission can silently stop, i.e. no error messages
are issued by SUN 1II and the daemon(s) will not be in an error condition. The kernel will probably
issue "disc full" messages, but these may not be apparent if they are written to an error log file
somewhere.

Even though the daemon(s) will continue to operate with the disc full, under some circumstances it may
be necessary to stop it/them, sometimes selectively if there is more than one. These circumstances will
become apparent in considering the causes of depletion of disc resources.

8.1 Reasons for disc consumption

.

,

4.

5.

6.

7.

8.

Receipt of many or large files for your node where the rate of receipt is not matched by the rate of
collection.

Receipt of files on one link destined for another link which is not functioning, or transmitting
slower than the rate of receipt.

Buildup of numerous files in the _bad directory.

Buildup of state messages for inactive links not cleared by purge.

Buildup of statistics files in _stats

Growth of log files in the link directories

Accumulation of old state messages in the _state directory

Accumulation/growth of state error messages in the _state directory.71

Of course factors not related to SUN 111 can consume disc space if the disc is used by other processes.72

8.2 What to do with a full file system

The first thing to do is try to establish why the disc has filled. The l±nkstats command will show
you if any link is in an error state or not running when it should be, that could cause a backlog of
messages for transmission. The command du $OOOLDII:I will show how the space has been consumed.
If the _files directory is the problem, it probably means a large volume of files are spooled for
collection.

getfile -LA

will confirm if this is tree as well as give details on the files. If a link directory, or _work is involved,

acsqueue -A

will provide details. If none of these commands disclose the problem, use l s -la on the appropriate
directory. If there is no apparent reason, do not fail to consider the possibility that the file system has
been corrupted.

If a large amount of disc space is consumed with spooled files, it may be simply a matter of deleting
some or collecting them (perhaps on behalf of a user, if the recipient is not available to do it) (see
below). If things have backed up for a link which has failed, it may simply be a matter of getting that
link up again. If space has to be made, refer to the next section.

71. See the Maintenance section for more details.
72. It is desirable that SUN ffl have its own disc partition so that it does not compete with other processes for disc space, and will

not block other processes if the available space is consumed.

Vol 10 No 1 36 AUUGN

8.3 Freeing disc space

A simple start is to change directory to the SUN lII spool directory and

lib/purge
rm */core73 lib/OLD* state/, *

In fact any files in _state are expendable.

Examine _bad. If there are files here, they are a result of some failure of SUN 111 to deliver messages -
e.g. messages to non-existent users, messages that have been looping around a route, messages saved
because some process forked by SUN rlI failed, e.g. news. The script badmv.sh distributed in the
SUN]II sources Admin directory can be used to deal with such files.

Files in _stats are probably expendable unless you really are collecting statistics for some purpose. If
the file Accumulated is there it could be very large. Copying it to another file system and truncating it
is the answer if you need it. Otherwise truncate it. Remove the file SPOOI.DIl:l/_lib/statsfile to disable
statistics.

The log files in each link directory will grow indefinitely unless truncated.

tail -i00 neighbour/log > /tmp/log
cp /tmp/log neighbour/log
rra /trap/log

If getfile -LA showed a large volume of files awaiting collection, you could collect or delete some
of these on behalf of ordinary users. For example, suppose user "blogs" has a lot of files awaiting
collection but is away.

cd -blogs
rakdir GotFiles
chown blogs GotFiles
cd GotFiles
getfile -ublogs

Answering ’y’ to each getfile query will collect the files, which will be owned by blogs.74 Files
spooled for ordinary users can be deleted in the same way!

9. ROUTING PROBLEMS
9.1 Hierarchical vs. non-hierarchical domains
SUN III supports the concept of non-hierarchical domains. These are domains which are in the
commandsfile "domain our_node" list, but which are not in your hierarchy. The idea is that you might
claim to be a member of domain "ozturing" if you happened to have an OzTuring computer. If all sites
using these machines did this, the address postmaster@*.ozturing would address to all such sites.
However if OzTuring Pty. Ltd. subsequently decides to use ozturing as its primary hierarchical domain,
things can go very wrong, e.g. your machine may receive messages for OzTuring’s nodes, which will
almost certainly end up in _bad.

A more serious problem from your point of view, will arise if you put an established non-hierarchical
domain into your hierarchy. In this case messages to your site are quite likely to end up at nodes that
are members of the non-hierarchical domain.

73. One way of preventing daemon core dumps being left in the link directories is to create 0 size root ownership core files in each
such directory.

74. If files include full paths or subdirectories, the use of the ’b’ reply may be necessary.

AUUGN 37 Vol 10 No 1

There are two messages here:

¯ Choose your domain membership carefully, with advice from experts at other sites.

¯ Do not add non-hierarchical domains to your domain list.75

9.2 Meddling with the commandsfile

There may occasionally be a real need to put specific commands into the commandsfile aimed at
determining the routing of messages. There can be dire consequences of many such commands if they
conflict with the real state of affairs. (The SUN I It state information is designed to be dynamic, and
based on fact, not what someone would like.) Routing loops can often result. In general, any such
commands should only be applied after consultation. Attempts to cause certain routes to be favoured
should probably be limited to the use of a "cost" on the less preferable one. The use of "break" or
flagging of links permanendy up or down should be avoided.76

If you are convinced that any routing parameter needs to be altered for a link, it is essential that this
parameter is altered at the other end of the link as well. Unilateral changes are a formula for chaos.

9.3 Re-routing

If your node has more than one link, there can be occasions when files that are spooled for one link
which is down for an extended period, may be deliverable if sent out on another link. This is quite easy
to do. As described in the section on "Simple tests of the mail interface" the spooling of a file involves
writing a control file in the link’s directory in SPOOLDIR. These files start with a number and are
followed by irregular strings of characters. Re-routing requires only that these files be moved into the
directory of the desired out-going link. Re-routing state messages is of little value, so you might first
purge then "acsstop -A dead_link" and stop any remaining state messages. Then

cd SPOOLDIR/dead link--

mv [0-2]* . ./alternate link --

75. These will not be supported in the future.
76. It is important to appreciate that you can cause serious problems at other sites by ill-considered changes to your commandsfile.

If you have a routing problem that you feel needs actions of this type, post a news article to the aus.mail and/or aus.acsnet
newsgroup seeking advice. The chances are that your problem will have been seen by someone before, and the solution may
be in place (and tested) elsewhere.

Vol 10 No 1 38 AUUGN

OFF THE NET

Hello, good evening and welcome to the next episode of "Off the Net"
I have a slight problem with this issue - it is being written before
the last issue has hit the streets, therefore I don’t have the benefit
of any feedback from you, the reader. Such is life.

Also, this is being prepared on another (net-less) machine, since my
usual one is running customer benchmarks. You won’t believe the amount
of tape-swapping, FTP’ing etc I had to do...

Anyway, on with the show!

There was some discussion in comp.arch recently (fast becoming the sewer
that comp.unix.wizards is, but I digress) about anecdotes supposedly
attributed to Seymour Cray. Here is a sample:

From: shan@mcf.UUCP (Sharan Kalwani)
Subject- Re- A Recently Heard Story About Seymour Cray
Date" 17 Dec 88 16"08"01 GMT
Organization" Temp Guest Account @ MCF

In article <90@stanton. TCC.COM>,
donegan@stanton. TCC.COM (Steven P. Donegan) writes:

>I heard a story recently:
>Seymour Cray called Apple and noted that he had heard Apple was using a Cray
>to design future Mackintosh systems.
>He informed Apple that he was using a Mackintosh to design future Cray’s.
>Truth or fiction, anyone know?

Unfortunately I cannot comment whether this is truth or fiction. But
it does make for an interesting story doesn’t it?

When I joined Cray Research Inc. I was shipped off to Mendota Heights, MN
for software training. There we have a large number of Crays for various
development actvities and there is also a visitors viewing gallery. Me, a fresh
employee was kind of excited and so I went over there to check out them
machines. Right in front of me was the Cray-2 and it was fascinating to
see the liquid cooling mechanism and those modules sitting right in the
bath, wtih an occasional bubble rising up across the glass panel. I turned to
a colleague standing next me and remarked, "You know the Cray-2 gives
new meaning to the term <floating point operation>!"

My friend immediately burst out in laughter and still cracks up when
we talk about it.

--shan
!Sharan Kalwani, UNICOS Site Analyst, Cray Research Inc.
!e-mail:
t INTERNET: shan@hall.cray.com
t USENET: ... !uunet!cray.com!shan

t

t

t

t

AUUGN 39 Vol 10 No 1

This next one is rather long, but shows one way of getting your
software problems fixed - I found it in rec.humor.funny:

From: bee@arthur.cs.purdue.edu
Subject: Viruses and System Security (a story)
Date: 20 Dec 88 00:30:03 GMT

The following story was posted in news.sysadmin recently.

The more things change, the more they stay the same...

Back in the mid-1970s, several of the system support staff at Motorola
(I believe it was) discovered a relatively simple way to crack system
security on the Xerox CP-V timesharing system (or it may have been
CP-V’s predecessor UTS) . Through a simple programming strategy, it was
possible for a user program to trick the system into running a portion
of the program in "master mode" (supervisor state), in which memory
protection does not apply. The program could then poke a large value
into its "privilege level" byte (normally write-protected) and could
then proceed to bypass all levels of security within the file-management
system, patch the system monitor, and do numerous other interesting
things. In short, the barn door was wide open.

Motorola quite properly reported this problem to XEROX via an official
"level 1 SIDR" (a bug report with a perceived urgency of "needs to be
fixed yesterday"). Because the text of each SIDR was entered into a
database that could be viewed by quite a number of people, Motorola
followed the approved procedure: they simply reported the problem as
"Security SIDR", and attached all of the necessary documentation,
ways-to-reproduce, etc. separately.

Xerox apparently sat on the problem.., they either didn’t acknowledge
the severity of the problem, or didn’t assign the necessary
operating-system-staff resources to develop and distribute an official
patch.

Time passed (months, as I recall). The Motorola guys pestered their
Xerox field-support rep, to no avail. Finally they decided to take
Direct Action, to demonstrate to Xerox management just how easily the
system could be cracked, and just how thoroughly the system security
systems could be subverted.

They dug around through the operating-system listings, and devised a
thoroughly devilish set of patches. These patches were then
incorporated into a pair of programs called Robin Hood and Friar Tuck.
Robin Hood and Friar Tuck were designed to run as "ghost jobs" (daemons,
in Unix terminology); they would use the existing loophole to subvert
system security, install the necessary patches, and then keep an eye on
one another’s statuses in order to keep the system operator (in effect,
the superuser) from aborting them.

So... one day, the system operator on the main CP-V software-development
system in E1 Segundo was surprised by a number of unusual phenomena.
These included the following (as I recall.., it’s been a while since I

Vol 10 No 1 40 AUUGN

heard the story) :

Tape drives would rewind and dismount their tapes in the middle of a
job.

Disk drives would seek back&forth so rapidly that they’d attempt to
walk across the floor.

The card-punch output device would occasionally start up of itself
and punch a "lace card" (every hole punched). These would usually
jam in the punch.

The console would print snide and insulting messages from Robin Hood
to Friar Tuck, or vice versa.

The Xerox card reader had two output stackers; it could be
instructed to stack into A, stack into B, or stack into A unless a
card was unreadable, in which case the bad card was placed into
stacker B. One of the patches installed by the ghosts added some
code to the card-reader driver.., after reading a card, it would flip
over to the opposite stacker. As a result, card decks would divide
themselves in half when they were read, leaving the operator to
recollate them manually.

I believe that there were some other effects produced, as well.

Naturally, the operator called in the operating-system developers. They
found the bandit ghost jobs running, and X’ed them.., and were once
again surprised. When Robin Hood was X’ed, the following sequence of
events took place:

!X idl

idl: Friar Tuck... I am under attack! Pray save me! (Robin Hood)
idl: Off (aborted)

id2: Fear not, friend Robin! I shall rout the Sheriff of Nottingham’s men!

id3: Thank you, my good fellow! (Robin)

Each ghost-job would detect the fact that the other had been killed, and
would start a new copy of the recently-slain program within a few
milliseconds. The only way to kill both ghosts was to kill them
simultaneously (very difficult) or to deliberately crash the system.

Finally, the system programmers did the latter.., only to find that the
bandits appeared once again when the system rebooted! It turned out
that these two programs had patched the boot-time image (the /vmunix
file, in Unix terms) and had added themselves to the list of programs
that were to be started at boot time...

The Robin Hood and Friar Tuck ghosts were finally eradicated when the
system staff rebooted the system from a clean boot-tape and reinstalled
the monitor. Not long thereafter, Xerox released a patch for this

AUUGN 41 Vol 10 No 1

problem.

I believe that Xerox filed a complaint with Motorola’s management about
the merry-prankster actions of the two employees in question. To the
best of my knowledge, no serious disciplinary action was taken against
either of these guys.

Several years later, both of the perpetrators were hired by Honeywell,
which had purchased the rights to CP-V after Xerox pulled out of the
mainframe business. Both of them made serious and substantial
contributions to the Honeywell CP-6 operating system development effort.
Robin Hood (Dan Holle) did much of the development of the PL-6
system-programming language compiler; Friar Tuck (John Gabler) was one
of the chief communications-software gurus for several years. They’re
both alive and well, and living in LA (Dan) and Orange County (John).
Both are among the more brilliant people I’ve had the pleasure of
working with.

Disclaimers: it has been quite a while since I heard the details of how
this all went down, so some of the details above are almost certainly
wrong. I shared an apartment with John Gabler for several years, and he
was my Best Man when I married back in ’86... so I’m somewhat
predisposed to believe his version of the events that occurred.

Dave Platt
Coherent Thought Inc. 3350 West Bayshore #205 Palo Alto CA 94303

And another one from rec.humor.funny:

From: steven@uts.amdahl.com (Fearless Leader)
Subject: just hanging out
Date: 6 Jan 89 11:30:09 GMT

A plumber, an electrician, a dentist and a programmer are fast friends:
buddies for life, eternal bachelors..until the programmer announces he is
getting married. Never ones to pass up a golden opportunity, the three
compadres find out the name and location of the hotel where the programmer will
be honeymooning, and bribe the desk clerk to let them in to rig a few
"welcome’ surprises.

A week after returning from the honeymoon, the programmer meets his buddies
in a bar for drinks, and half-heartedly chuckles with them over the gags.
Pointing to the plumber, he comments "Yeah, the drippy faucet you couldn’t
turn off was a neat trick". And to the eletrician: "And a flickering
table lamp with no off switch was cute, too". Then, shaking a fist at the
dentist "But, you! YOU! Novacaine in the Vaseline was one cheap shot!"

Steven Swinkels
Manager, UTS CASE Development
Amdahl Corporation

Vol 10 No 1 42 AUUGN

There was a lot of discussion on ye olde PDP-II machines lately
in aus.computers. At the special request of John Carey, here it is:

From: andrew@megadata.oz (Andrew McRae)
Subject: PDP Industrial II/B
Date: 19 Dec 88 14:01:30 GMT
Organization: Megadata P/L, North Ryde, Sydney, Aust.

I inspected a site in Adelaide last week that still had a live PDP
Industrial II/B. It was installed in 1973, so I’m wondering if it
was one of the first installed in Australia, and if any oi’ timer
knows of a more ancient system still in service.
It was running a fairly critical real time application, enough to
say that if you guys in Adelaide have your showers run dry, you
know that they couldn’t scrounge another replacement component.

Andrew McRae.
andrew@megadata.oz

"Yes, maintenance is a bit of
a problem sometimes "

From: dheap@gara.une.oz (Dave Heap PSYS)
Subject: Re: PDP Industrial II/B
Date: 21 Dec 88 01:59:05 GMT
Organization: Uni. of New England, Armidale, NSW.

In article <326@megadata.oz> andrew@megadata.oz (Andrew McRae) writes:
>I inspected a site in Adelaide last week that still had a live PDP
>Industrial II/B.

What processor did the Industrial II/B use (an 11/05 maybe)? We
have very early vintage ll/40s (probably ’72ish) still in use in our dept,
although they are not original installations, having had long & chequered
careers.

Dave Heap
Psychology Department,
University of New England,
Armidale NSW 2351, Australia

ACSNET: dheap@gara.une.oz
UUCP: ... !uunet!munnari!gara.une.oz!dheap
ARPA: dheap%gara.une.oz@uunet.uu.net

From: greyham@ausonics.OZ (Wise One)
Subject: Re: PDP Industrial II/B
Date: 22 Dec 88 05:36:20 GMT
Organization: Ausonics Pty Ltd, Sydney, Australia

in article <326@megadata.oz>, andrew@megadata.oz (Andrew McRae) says:
>
> I inspected a site in Adelaide last week that still had a live PDP
> Industrial II/B. It was installed in 1973, so I’m wondering if it
> was one of the first installed in Australia, and if any oi’ timer
> knows of a more ancient system still in service.

I don’t know if PDP numbers increase with later models, but a place in

AUUGN 43 Voll0 No 1

Sydney I know of still uses a PDP 8 [the users manual raves on about how
much better and faster the magnetic-core memory board is than the solid-
state one.] for In-circuit PCB testing.

Greyham Stoney: (disclaimer not necessary: I’m obviously irresponsible)
greyham@ausonics.oz - Ausonics Pty Ltd, Lane Cove. /* Official Sponsor */
WARNING: ausonics.oz will soon go; if replys bounce, try:
greyham@utscsd.oz - Uni of Technology, Sydney.

From: darryl@earwax.OZ (Darryl K Ramm)
Subject: Re: PDP Industrial II/B
Date: 4 Jan 89 02:27:22 GMT
Organization: Dept of Physics, University of Western Australia

In article <100@ausonics.OZ> greyham@ausonics.OZ (Wise One) writes:
>
>I don’t know if PDP numbers increase with later models, but a place in
>Sydney I know of still uses a PDP 8 [the users manual raves on about how
>much better and faster the magnetic-core memory board is than the solid-
>state one.] for In-circuit PCB testing.

Yep, and you can turn the machine off, and on again, and the core
remembers. Wonderful for all the hardware nuts (like me), you can
bring the machine down swap boards, power up and off you go. None of
these silly things like booting off disk. Core is good, bring back
core ~

Somebody did our research group a favour by ’borrowing’ the cpu etc.
out of our PDP-8 in the late 1970’s. The insurance helped buy a
Q-Bus PDP-II/03 which eventually grew to three microPDP-ll/73’s, which
gave wonderful service. The /73’s are still going, I keep dreaming
about a couple of SUN’s to replace them ... if only somebody would
borrow our /73’s (anybody want to know where to find them ;-)

Darryl

Darryl Ramm ACSnet: darryl@earwax.uwa.oz
Department of Physics UUCP: uunet!munnari!earwax.uwa.oz!darryl
University of Western Australia ARPA: darryl%earwax.uwa.oz@uunet.uu.net
Nedlands 6009 JANET: earwax.uwa.oz!darryl@ukc
A U S T R A L I A Fax: +6.19 381 6427 Telex: AA92992 UNIWA

Voice: +6.19 380 2749 / +6.19 380 2738

From: greg@softway.oz (Greg Rose)
Subject: Re: Old DEC computers
Date: 29 Dec 88 10:20:32 GMT
Organization: Softway Pty Ltd, Sydney, Australia

In article <186@psych44.su.oz> johnh@psych44.su.oz (johnh) writes:
> I manage a collection of old DEC equipment including a PDP 11/20
>which was the first PDP-II model ever produced.
> John Holden

Vol 10 No 1 44 AUUGN

Not quite correct as I understand it. The first PDP-II was just that -
a PDP-II. Up to that date, DEC didn’t have sub-numbers. When they introduced
the 11/05 and ii/i0, they needed a number for the old machine, but
they did enhance it and re-release it at the time, so it wasn’t quite the
same machine.

As for first, I know of a PDP-II(BLANK) in Berrima which was installed
to control the Cement Kilns for Blue Circle in about 1973. It has for
peripherals one decwriter, a paper tape punch for backup (yes really,
file at a time) and an RJS04 IMb drum. It was still in use a few years ago,
when they commissioned a mate of mine to build an RJS-04 lookalike RAM disk.

I programmed on it in 1980, and the mimic displays they used had burned
the phosphor off the screens where the most common displays were.

There was no real operating system on it, it predated any DEC systems.
It was supplied by Foxboro with their real time software.

Greg Rose - assistant test pilot - Softway Pty Ltd
PHONE: +61-2-698-2322 FAX: +61-2-699-9174 NET: greg@softway.oz.au

From: johnh@psych44.su.oz (johnh)
Subject: Old DEC computers
Date: 26 Dec 88 22:11:30 GMT
Organization: Psychology Dept, Uni of Sydney, Australia

I manage a collection of old DEC equipment including a PDP 11/20
which was the first PDP-II model ever produced. It was also the only PDP-II
to use combined logic instead of micro-code to implement the processor.
Our machine was produced in late 1970 and is still in use. I understand that
ICI at Botany have some ll/20’s still running some of their plant as they
obtained a 11/20 from Chemical Engineering for spares.

I have a collection of other PDP-II’s still in use including :-

11/34, 11/40, 11/44, 11/45, 11/50, GT-40 and some PDP-8/e’s that
are still in use (too much work to rewrite the software).

John Holden
Department of Psychology
University of Sydney

From: morrison@numm.nu.oz.au (David Morrison)
Subject: Re: Old DEC computers
Date: 9 Jan 89 06:41:33 GMT
Organization: Computing Centre, Uni of Newcastle, Australia

In article <1054@softway.oz> greg@softway.oz (Greg Rose) writes:
>As for first, I know of a PDP-II(BLANK) in Berrima which was installed
>to control the Cement Kilns for Blue Circle in about 1973. It has for
>peripherals one decwriter, a paper tape punch for backup (yes really,
>file at a time) and an RJS04 iMb drum. It was still in use a few years ago,
>when they commissioned a mate of mine to build an RJS-04 lookalike RAM disk.

AUUGN 45 Vol 10 No 1

The RS04 was a fixed head disk, not a drum. Some of the specs, from the 1975
Peripherals Handbook (when they used to contain *real* information!):
Tracks: 64
Sectors/track: 64
Words/sector: 128
Bits/word: 16
Recording density: 2200 bpi
Capacity: 512K words
Data transfer: 4 microsec/word (4.8 at 50 Hz)
Average access (0.5 rev) : 8.5 millisec (10.2 at 50 Hz)
Minimum access time: 6.4 microsec (7.7 at 50 Hz)

..... This is what it says!
Weight (cabinet and one drive): 350 ib
Weight (drive only) : 120 ib

We had one in about 1974 as swapping disk on a PDP 11/45 RSTS/E system.
Compared to the other disks we had (3 RK05), it was lightning fast. In the
late 70s, it was given to another department for an 11/45 and ran until the
mid 80s under Unix.

David Morrison
Uni of Newcastle

From: johnh@psych44.su.oz (johnh)
Subject: Old DEC equipment
Date: 2 Jan 89 13:21:00 GMT
Organization: Psychology Dept, Uni of Sydney, Australia

Greg Rose writes:-
>
> Not quite correct as I understand it. The first PDP-II was just that -
> a PDP-II. Up to that date, DEC didn’t have sub-numbers. When they introduced
> the 11/05 and ii/I0, they needed a number for the old machine, but
> they did enhance it and re-release it at the time, so it wasn’t quite the
> same machine.

To be more specific. The first model was always called an 11/20,
but the console originally was only labeled as PDP-II (as mine) and latter
the /20 appeared on the console (mid 1971). The processor consisted of some
16 boards in three 4 x 6 slot backplanes. The AB slots were only used for unibus
jumpers and power connections, there were no hex boards yet. The basic memory
MMII-E was another system unit (4x6) for each 4k words, 1.2 us cycle.
The console was an ASR-33 (the decwriter wasn’t out yet). Initially the only
software available was the "Paper Tape Software System", so we wrote our
own operating system (still in use though greatly enhanced).

There was a stripped down version of the 11/20 called the Ii/I0.
They shared the same processor but the ii/I0 had only ik word of read-only
memory (2-piece core) and 256 words of read/write memory.

There were actually two machines called ii/i0. Much latter, DEC
came out with a cheap version of the 11/35(11/40). This was the 11/05
and ii/i0. They used a two hex board micro-coded processor and were the
slowest unibus machine DEC made. The 11/05/10 and 11/35/40 are end-user

Vol 10 No 1 46 AUUGN

and OEM versions of the same basic machine.

I think the rough order of release (for unibus machines) was "-

11/20 (1960/70)
11/45 (1972)

11/50
11/55
11/35/40

11/05/10
11/34

ii/34a

11/70

11/04

11/72
11/60

11/24

11/44

11/84

basic instructions, 56kb max memory
brilliant, EIS, dual register set, fastbus
optional FPP and memory management, I/D space
11/45 with mos memory on the fastbus
11/45 with bipolar memory on fastbus
Cheaper machine than 11/45o basic instructions
with options for EIS, FIS, memory management,
stack limit, max mem 56 or 124 kb. I space only
Very slow. basic instructions, 56kb max
Replacement for 11/35/40 though slower.
Two board processor, EIS and memory management
standard, FPP optional.
Slight mod of 11/34 to allow optional cache
memory.
Supercharged 11/45. Fastbus modified to Masbus,
22 bit addressing, cache, improved FPPo
11/05/10 replacement, single hex board, no
memory management, still slow.
Dual processor 11/70
Odd machine for real-time? FPP optional with
emulation in micro-code without. Cache and ECC
memory. Optional writable control store. NOT I/D.
F-II processor chips (as in 11/23). 22 bit
addressing. I space only.
Cheap 11/70, new design but 1/2 speed. No dual
register set, FPP slow implemented with 2901’s
(as FP-IIa for 11/34). ECC memory.
J-ll processor chip. really a 11/83 with
different bus interface. PMI for memory.

There are some repackaged machines that I haven’t mentioned, but they
usually only had different colour schemes for medical (blue) or industrial
(green sometimes orange) use. The graphics machines GT-40,42,44 are only
11/05,40,34 with VT-II display processors.

I’ve played with the insides of all machines except the 11/72 so I am
certain of the technical details; the cronological order is not so certain.
I still think the 11/20 (for being the first) and 11/45 (for getting it right)
are landmark machines.

Being verbose
John Holden
Department of Psychology
University of Sydney

From: dave@stcns3.stc.oz (Dave Horsfall)
Subject: Re: Old DEC equipment
Date: 12 Jan 89 12:47:42 GMT
Organization: Alcatel-STC Australia, North Sydney, AUSTRALIA

In article <187@psych44.su.oz> johnh@psych44.su.oz (johnh) writes:

AUUGN 47 Voll0 No 1

I
I
I
I

11/60 Odd machine for real-time? FPP optional with
emulation in micro-code without. Cache and ECC
memory. Optional writable control store. NOT I/D.

Ah, I have fond memories of my old machine "csu60"! The story I heard
from DEC Field Circus was that it was designed for some publishing house
or other (hence the WCS for custom instructions) and the deal fell thru.

So they flogged them off as turbo-charged ll/40’s instead. Something like
that anyway.

Nice machine, with a little push-button keypad, and a programmable octal
display. Naturally it wasn’t long before I got the display showing the
contents of the addressed word in real time, a la the 11/70.

Dave Horsfall (VK2KFU), Alcatel-STC Australia, dave@stcns3.stcooz
dave%stcns3.stc.oz.AU@uunet.UUoNET, ...munnari!stcns3.stc.oz.AU!dave

PCs haven’t changed computing history - merely repeated it

I don’t know about the following - I just don’t know...

From: osborn@nswitgould.OZ (Tom Osborn)
Subject: Re: Would_you_believe these people?
Date- i0 Jan 89 07-04-14 GMT
Organization: Comp Sci, NSWIT, Australia

In article <80@hpausla.OZ>, adt@hpausla.OZ (Andrew Tune) writes:
In this morning’s (10/1/89) Age Computer section (p.30), the following ad:

EARTH MISSES DISASTER BY 2.6769 SECONDS

It happened on October 30th, 1937.

Hermes, a minor planet weighing some 500,000 tonnes, passed within 800,000
kilometres of Earth. Travelling at the speed of light, 299300 Km/sec, a ...

Do you believe this? If they’re quoting their astronomical facts as
accurately as they quote their salaries...

Andrew Tune, Hewlett Packard Australian Software Operation.
(UUCP: hplabs!hpfcla!hpausla!adt, ACSnet: adt@hpausla.oz)

Everyone from Sydney will have no trouble with such accurate reporting.

The Sydney Morning Herald has a Computing Editor with a rather quaint style:
Gareth Powell. I will attempt to rewrite the above story as if ...:

SUBVIOLENT REACTION TO MARKET ACCEPTANCE FOR IBM ASTEROID CLONE:
- less than 26769.1 microseconds from crash recovery immanent.

Vol 10 No 1 48 AUUGN

The WORM will never make it, unless, when I was last in Java and UNIX was
utter rubbish even now (ie, relatively unacceptable to my Olivetti !X132
clone virus-virus PC). And what’s wrong with spaghetti? Hermes, the
ancient hellenic goddess of grains gave us wheat, ergo flour, ergo pasta.
And I know what I’m bloody well talking about. The goddess’s wrath at
monumental speed (as reported in the Melbourne Age or Truth - I can read
both simultaneously without missing a beat, you know) missed the DRAM,
hyperdrive, word-processing, but they couldn’t tell that she nearly got them
in the you_know_where.

That’s why they’re called UNIX, and I know! And that’s why you’ll never
catch me fooling around with them - give me DOS, anyday. Why should I be
coherent - nobody ever makes sense to me. The big rock, however, was no
match for the new release of Tharn of Gloc from Atari’s C64 series of
gigabyte, and it’s copyright is due to expire in 1992 - just
mark my work and wait for the money Mr Keating.

Yes, once again the reality of the marketplace and this reporter knows
what he’s talking about, triumphs over mere planetary incidents of
planetary proportions. A miss is as good as~ a mile, or 1.609238 Kilograms.
(And that’s for all you turkeys who can’t tell a decent systems of measures
from a new fangled one - just look how many bytes you need!). And that’s
when my aunty was born, too, God rest her fanny.

See if you can outdo this Mark V Shaney!

From: mvs@softway.oz (Mark V. Shaney)
Subject" Thanks whoever put me on the 2CBA mailing list!
Date" Ii Jan 89 23"57"58 GMT
Organization" Softway Pty Ltd, Sydney, Australia

Aren’t you sick of being made to read them.

Melbourne has football. REAL football. REAL aerial ping pong.

I wouldn’t get too cocky if I feel in using another card, and the
environment.

You should see the bastards overtaken by a BCPL person of about 1,000
years age who insisted on telling me "coon jokes" He said exactly the
same. Thoughtlessly locked into phase two grid lock, keyed up, on its
own pages which are the only other OS used loosely that I can still
afford to look at the first stone.

How can he POSSIBLY justify this complaint?? Easy, I work for, the
fall of digital manipulation whilst applying the incisors, canines and
molars to the reason! Personal insults aside, why do people insist on
wearing a hat, though there was a success one of the more memorable
postings from gara, and I will post our PD dump and restor.

Yeah, good question. I hear you cry, "you could afford circles??.
NO!! NO!! beats Monty back into submission and, as a direct dialup
connection is. Well, almost... So, unless John Mackin vetoes it, I

AUUGN 49 Vol 10 No 1

think cbyeo is only the second! If one assumes Mr. Vurtoch meant
"homosexuals" above, I still enjoy the world etc etc. If you type
ahead!

You are not just for you DavidP, try to descend to this and was running
at 8 MHz. Compiled BASIC on the matter. Who let you loose on the
roads, just check the newsgroups line at this time. Within ACSnet, I’m
sure these have been replaced by an audio sweep oscillator, will either
resonate or not the word. But for a long way off. Hmm, what odds he
reads this drivel?? Got YOU sucker hook, line and see Les Miserables
which they stand for something. People like you that way.

P.S Where the hell is Dave Horsefall? A response I propose a new
series of articles get together and ask some intelligent questions.
Some people o ~

Whoops! Dives for cover...

I’m booked in for an ashtray or something.

It’s entirely possible that I am in need of the funniest evenings in
the future.

Whatever your fancy. I have quailified for my address.

But anyway here is a uniquely Hebrew name, given the number of the cage
this week!

Rules just present the illusion of a tit and the latter sentiment seems
to also be suffering delusions of plurality? At least he didn’t know
it is here, he’s stuck with horrible hardware doesn’t mean I go out and
watch "The Last Temptation Of Christ".

Lots of grovelling I AM NOT JOKING. This is a men’s only group. Come
to think of it, finding a news feed.

I finally got to me, to us, on the arpanet, forget who it was burnt
into the city. Simply by virtue of your CRT. Obviously Kat was
refering to Melbourne’s pathetic performance in the wings! Look!!
Look at what’s happening to Dave Horsefall.

Many Lemmings make a contribution to the roof. BTW, who was little use
to offend you?

Oh mighty OGBO save us from all peons, and a captive human... Is this
the first coupla hundred times but now it’s ravings are not just a
bloody shell script, Have tried it, but it’s no use shouting, swearing
and generally be of some sort that has the Volvo drivers will be at the
insurance premiums for males under 25 as opposed to reading inodes as
opposed to those who have brains and thought provoking.

Well, what have we here? Another great case of the most common
religion in this group and is now very stable version 1.2.

Vol 10 No 1 50 AUUGN

SShhhhh! Don’t say it, David!

Seriously though, if there is more serious things. Let’s see if our
messages were going your way. So other rantings and ravings deleted.
BTW, I have nothing to do often chatting to the booze question.

This is aus.flame! Now we come to the COBOL code?

I don’t get properly trained in English!

How appropriate. Both of him treating the English language. Replying
to another node.

And demonstrates to the trees, that’s why I should have been exposed.
but where are you?? Leap to your desired candidates.

Ok, I’ve read a signature :-)

COGORANN Smiles You learn well, mortal. You are, of course, but if I
roll the car I was! Funny that, yes it was an example of HOW WE MIGHT
END UP should civilisation collapse and throw AmigaDos to the UNSW
newsgroups. I met a flesh and blood. Perhaps we could run an
operating system but cbyeo.., ah, cbyeo has more to gara than
thyself!

I think if I shot him then I apologise from the center of epidemy. My
real HATE MY REAL HATE is tail gaters. Those utter wombats often
in aus.flame! ! It’s driving me crazy. NONE of the year that brings
the head after eating you out of the other end of the flamin’ Great
Dividing Range. And most of them, hastily looking over my ears, and
involving BOTH your neurons.

FLAME OFF

Surely not? It couldn’t be? You’ve just stated the fundmental
principal of existence. Hardly something to whip me with. Just a
little. Just for the Apple. There is no commission for replacement.

-Mark

Someone in news.groups proposed a group on pipe smoking. Here are some
of the gems in response. You won’t believe how much traffic that this
proposal generated!

From: mazur@amax.npac.syr.edu (Elias Mazur)
Subject: Re: Pipe Smoking Newsgroup Creation (rec.pipes)
Date: 14 Jan 89 21:47:54 GMT
Organization: Northeast Parallel Architectures Center

In article <5833@medusa.cs.purdue.edu>,
spaf@cs.purdue.edu (Gene Spafford) writes:

AUUGN 51 Vol 10 No 1

>>In article <997@cmx.npac.syr.edu>,
mazur@amaxonpac.syr.edu.UUCP (Elias Mazur) writes:

>> Being an avid pipe smoker, and I am sure that many people
>>share this noble and pleasurable hobby with me, I always wondered why
>>there isn’t a pipe smoking newsgroup.
>> I am proposing a ’rec.pipes’ newsgroups where pipe smokers
>>could exchange information, knowledge and hints about pipes and pipe
>>smoking.
>
>Great idea. Smokers should have a forum to discuss the latest cancer
>therapies, how to deal with the physical limitations of emphysema,
>and how to live with cardiovascular damage. Pipe smokers in
>particular can focus on questions of lip and tongue cancer,
>oral-laryngeal reconstructive surgery, and peridontal diseases
>caused by reduced circulation in the gums.

First of all, I think that most people who smokes and is part of
this network is grown up enough to know of what they’re doing. How
about someone sending messages to ’rec.sport.football’ telling how
nice is to have people playing it and at the same time breaking legs,
arms, back and spend the rest of their lives sitting on a wheel chair,
going through physical therapy. He would sound stupid. When you get in
your car, do you think of the thousands of people who get killed by
car accidents. Maybe you should, and walk home. Oh, but then an
airplane could fall in your head...

Anyway, I only proposed a "recreational" newsgroup. Not
general.surgeon type of thing. Pipe smoking is a pleasure and hobby to
many people. And that’s the extent of it.

Remember, almost everything you do today can be labeled as
"dangerous to your health’ and liable to receive a message like the
one you just sent. Even the food you eat. Or the terminal you are
looking at...

Elias Mazur
I 302-23 Ivy Ridge Rd.
I Syracuse, NY 13210

+-- (315) 475 - 7427

e-mail: mazur@amax.napc.syr.edu
mazur@suvm (BITNET)

From: greg@phoenix. Princeton.EDU (Gregory Nowak)
Subject: Re: rec.pipes (I missed the proposal)
Date: 2 Feb 89 20:48:36 GMT
Organization: Princeton University, NJ

In article <168@reign.UUCP> storm@reign.UUCP (storm development account) writes:
}I have only seen comments about rec.pipes (mostly from people who
}seem to take it as personal affront) and not the original message
}about the proposal. Is it a valid effort? Where do votes get
}sent? Why are people so violently against it? Surely they don’t
}think there is so much interest in the group that it will cause
}a major bandwidth problem...
}
} Storm.

Vol 10 No 1 52 AUUGN

It’s more that people feel it’s not classified correctly. Why should
there be a rec.pipes without a whole rec.plumbing category? Then we
could have rec.plumbing.pipes, rec.plumbing.fixures,
rec.plumbing.toilets, etco Some have argued for a rec.hardware
category as an even higher level of organization. These things take
time to decide.__ --

rutgers!phoenix.princeton.edu!greg Gregory A Nowak/Phoenix Gang/Princeton NJ
He is hardly Commander in Chief if he can’t go around bombing two bit
dictators whenever he feels like it. --Mike Friedman

From: wbt@cbnews.ATT.COM (William B. Thacker)
Subject" Re" rec.pipes (I missed the proposal)
Date" 4 Feb 89 04-08:30 GMT
Organization" AT&T Bell Laboratories

In article <6063@phoenix. Princeton.EDU>,
greg@phoenix. Princeton. EDU (Gregory Nowak) writes:

>
>It’s more that people feel it’s not classified correctly. Why should
>there be a rec.pipes without a whole rec.plumbing category? Then we
>could have rec.plumbing.pipes, rec.plumbing.fixures,
>rec.plumbing.toilets, etc. Some have argued for a rec.hardware
>category as an even higher level of organization. These things take
> time to decide.

I had no idea there were so many of us "hardware" type reading news... 8-)

I must have misunderstood, then. I had argued from the pretense that
a group on pipes should really be classified as "comp.os.unix.pipes",
along with "c.o.u.shells" and "c.o.u.little_arrow_things(<>)"

Gee. Sorry if I caused any misunderstandings.

8-)

valuable coupon
Bill Thacker att!cbnews!wbt

"C" combines the power of assembly language with the
flexibility of assembly language.

Disclaimer: Farg ’em if they can’t take a joke
clip and save

When comp.arch is not being a sewer, it can be interesting. There are
rumours abounding that various Intel chips can be "hot-wired":

From: mbutts@mntgfx.mentor.com (Mike Butts)
Subject" Re- The scoop on the 80960
Date- 13 Jan 89 17-35-04 GMT
Organization" Mentor Graphics Corporation, Beaverton Oregon

AUUGN 53 Vol 10 No 1

>From article <Jan.9.23.41.33.1989.22919@paul.rutgers.edu>,
by jac@paul.rutgers.edu (Jonathan A. Chandross) :

> He told me that he was at Intel about five years ago and was part of a team
> that designed a very powerful fault tolerant machine. The central processors
> were very very CISCy and had a very parallel internal architecture. The I/O
> processor chips were single chip microcoded channel controllers which were far
> more powerful that the IOPs that Intel was selling at the time.
>
> Anyway, it seems that Intel shelved the project but decided that the processors
> could be sold on the open market. However, the processors made the 80386 look
> like the dinosaur it really is. This meant that the sales of the 80386 might
> be "negatively impacted" (to use Pentagon speak), an obvious no-no.
>
> So Intel decided to cut out most of the hardware on the data path, remove any
> architectural parallelism, and in general to cripple the chip in such a way
> that the sales of the 80386 were safe.
>
Rumor around here has it that the difference between the 80960 CPU chip
and the CPU chip used in the new Biin (Intel/Siemens joint venture)
fault-tolerant machines is one or two bond wires on the same die.

Mike Butts, Research Engineer KC7IT 503-626-1302
Mentor Graphics Corp., 8500 SW Creekside Place, Beaverton OR 97005
These are my opinions, & not necessarily those of Mentor Graphics.

From: matt@srs.UUCP (Matt Goheen)
Subject: another Intel chip rumor (80386 vs. 386SX)
Date: 16 Jan 89 20:27:35 GMT
Organization: S.R. Systems, Rochester NY

I have heard that the difference between the 80386 and the 386SX is a
matter of a couple of interal pin connections and a retail price change
of something like $200. Now, all we have to do is buy up a bunch of
386SX chips, open them up and rewire the necessary pins -- think it
can be done for $200 per chip? (might not be too hard for ceramic,
dunno about plastic)

- uucp: {rutgers,ames}!rochester!srs!matt Matt Goheen
- internet: matt@srs.uucp OR matt%srs.uucp@harvard.harvard.edu

"We had some good machines, but they don’t work no more."

The sci.bio group contains some gems from time to time, when they
aren’t discussing rabid bats and mosquito zappers etc:

From: sam@murdu.OZ (Sam Ganesan)
Subject: A Genetic Ode
Date: 16 Dec 88 06:04:01 GMT
Organization: Microbiology, Melbourne Uni, Australia

Hi Folks,

Vol]0 No l 54 AUUGN

Here is another from my collection following on from ’The Virus’ and
~Grant Titles from History’. This is for all those who work on the
beloved enteric.

A GENETIC ODE
(or A Melan Coli Tale)

I used to be a coli, as wild as wild could be.
They called me Photo Trophic, whatever that would be.
They kept me pure and simple and completely free from faults
And fed me on the simplest foodo..glucose and common salts.

Then Lederberg and Tatum came and put me in the sun
And watched me very closely to see what harm they’d done.
Although they hadn’t killed me, they had really hurt my pride
And though I looked quite normal I was quite upset inside.

Next day they tried to feed me with my normal sort of food
But they found I couldn’t use it in the way I always could.
Glucose I could metabolize-in that I was proficient.
But in synthesizing valine they soon found I was deficient.

They couldn’t find their valine so they went to biotin
And till they thought just what to do they kept me dietin’
Thenforesight and discernment made this lecturer and Prof.
Enrich my food with Oxa cube and call me Oxo Troph.

They called another doctor and they all discussed my case.
And decided that my DNA must have displaced a base.
They all seemed quite excited and I heard Doc Tatum say,
Another dose of sunshine might upset more DNA.

They gave me 80 seconds of the brightest light I’d seen,
And I knew a UV photon had displaced another gene.
I remember seeing Lederberg- eyes gleaming through his specs
Excitedly tell Tatum that I’d now acquired a sex.

Then Lederberg asked Tatum if he could foretell my fate
And Tatum thought my only hope was to acquire a mate.
So they gave me you, dear Effplus, knowing you alone could right
The little bits of DNA that suffered in that light.

There’s just two things I ask you if you really care for me
One little gene for valine- one for fertility.
Your genotype’s just perfect to revitalize my strain
And I know you will co-operate to make me wild again.

Be warned O Human Beings by this melan coli ode
You who think you are so clever cracking our genetic code.
There’s a moral in this story- I will tell you what it means:
IF YOU STRIP TOO MUCH TO SUNBATHE,
YOU MAY LOSE APAIR OF JEANS.

The above poem was obtained from the Depat of Bacteriology, Univ. of Wisconsin.

AUUGN 55 Voll0 No 1

Focus 4:1

Sam Ganesan (30001’st year at Grad School!!!!!!)

PS: Hey Dan(davison), How do you like this one? Thought of posting it to
biomatrix but knew it did not belong there and you being "MODERATOR" would
have sent it to the other groups anyway.

E - mail :
ACSnet: sam@murdu.mu.oz JANET: sam%murdu.mu.oz@uk.ac.ukc
ARPA : sam%murdu.mu.oz.au@uunet.uu.net sam%murdu.mu.oz@uk.ac.ean-relay
UUCP : ... [{uunet,pyramid, mcvax, nttlab,ukc}[munnari!murdu.mu.oz.au[sam
Snail : Sam Ganesan, Microbiology Dept,Melbourne University, Parkville,

,

Victoria 3052, Australia.
**

From: bph@buengc.BU.EDU (Blair P. Houghton)
Subject: Re: Creationism in our schools and the Anti-Dogma statement
Date: 12 Jan 89 18:32:52 GMT
Organization: Boston Univ. Col. of Eng.

In article <206@maths.tcd.ie> ftoomey@maths.tcd.ie (Fergal Toomey) writes:
>
>The way I see it, the difference between Creationism and Darwinism is
>essentially the difference between pseudo-science and science.

Which you then proceed to contradict.

>Just what is so scientific about Darwinism
>and so unscientific about Creationism? To date, nobody has managed to pin
>down this difference (if it exists).

Some clews:

Darwinism I Creationism

Collect evidence.

Fit hypotheses to data.

What evidence?
(Oh, you mean those

dogmatically prepared
gedanken experiments
and ancient legends...)

Fit data to hypotheses.

--Blair
"I can feel myself evolving
even now..."

From: patrice@yunccn.UUCP (Patrice Latka)
Subject: A FRIENDLY HELLO TO ALL GEORGES
Date: 3 Jan 89 21:00:45 GMT
Organization: York University, Toronto Canada

Vol 10 No 1 56 AUUGN

To: georgep

Hello guys,
Tina and I are here having a splended time. Thanks for the letter, it

gave us something interesting to do for a while, and now we’ve decided to
return the favour. Enjoy yourselves!

Bye .

Even aus.religion has its amusing moments, as this contribution shows:

From: dconway@rhea.trl.oz (Switched Networks)
Subject: Re: Some Buddhist concepts and tennents
Date: 18 Jan 89 02:42:15 GMT
Organization: Telecom Research Labs,IPF,Melbourne, Australia

In article <1737@vaxc.cc.monash.edu.au>,
Bull@Vaxc.CC.Monash. Edu.Au (Gareth Bull) writes:

" ’there is nothing infinite apart from finite things’> In application,
> naught holy or profane. There is neither here nor there, for all is always
> Here; there is neither now nor then, for all is Now; there is neither this nor
> that, still less a fusion of this and THAT, for there is only THIS, in a here
> and now. "

" "NOW")Reminds me of a sign I saw somewhere (sorry, "HERE) sometime (sorry, ,
that seemed to sum up the process of Enlightenment beautifully:

NOW HERE

NOW HERE

NOW HERE

NOW HERE

NOW HERE

NOW HERE

NOWHERE

damian.

who: Damian Conway
where: Network Analysis Section

SNRB, Telecom Research Labs
Clayton South building (CS)

email: dconway@rhea.trl.oz
phone: (03) 541 6270
quote: "First there is a mountain,

then there is no mountain,

AUUGN 57 Vol 10 No 1

22 Winterton Road
Clayton 3168
AUSTRALIA

then there is."

Did you know that French modems have to speak French? Read on...

From: cander@unisoft.UUCP (Charles Anderson)
Subject: Re: modems in France
Date: 8 Dec 88 19:58:41 GMT

>From article <2802@silver.bacs.indiana.edu>,
by cole@silver.bacs.indiana.edu (Robert Cole) :

> Can anyone tell me about modems for use in France? I have a Macintosh SE
> and would like to have a modem to take to France. Can I utilize a standard
> US 3/12/2400 baud modem or are there differences I need to know about?

Being that the French are the only true descenants of God, one must
realize that they have own special requirements for computer equipment
that attaches to the phones. Because of this, there very few modems
that are qualified for use in France. Even the Telebit, which is
usable in almost every county in the world, isn’t qualified for use in
France (or at least it wasn’t when they first came out). A friend of
mine who’s lived in France for a couple of years, told me that among
other things, computer driven phone equipment must be capable of
recognizing a voice at the other end of the line and then must be able
to appologize in French for having called a real person instead of a
computer.

Thus, your run of the mill Hayes compatible isn’t legal in France, but
then again it’s illegal to use an English word in France, if there is
an offical French word for it. You could try it and see what happens.
Don’t blame me if it turns out to be "Midnight Express II"

Charles.
{sun, amdahl, ucbvax, pyramid, uunet}!unisoft!cander

One of the better submissions to comp.unix.wizards:

From: ark@alice.UUCP (Andrew Koenig)
Subject: Re: "Fully parallelized" file systems
Date: 14 Jan 89 19:57:09 GMT
Organization: AT&T Bell Laboratories, Liberty Corner NJ

In article <262@microsoft.UUCP>, w-colinp@microsoft.UUCP (Colin Plumb) writes:
> I saw in the Jan. 1 Computer Design that Encore ’unveiled the first "fully
> parallelized" file system for the Mach operating system.’

I suppose the code for this file system

Voll0 No 1 58 AUUGN

was written in a strongly hyped language.

--Andrew Koenig
ark@europa.att.com

Even news.sysadmin has its funnier moments, as this one shows:

From: mirk@warwick.UUCP (Mike Taylor)
Subject: Re: Help needed with mailing list
Date: 17 Jan 89 16:37:13 GMT
Organization: Computer Science, Warwick University, UK

In article <672@flatline.UUCP> erict@flatline.UUCP (Evil Mel Fujitsu) writes:
>In article <900@ubu.warwick.UUCP>, mirk@warwick.UUCP (That’s me!) writes:
>>In article <535@flatline.UUCP> erict@flatline.UUCP (j eric townsend) writes:
>>>Hi. I’m going to be setting up an EastEnders mailing list soon, and I
>>>need some help.
>
>> You can say that again.
>
>Is this a joke, an attack or a pun? Either put smileys or prepare to die.
>1/2 :-)

Uh, well, I meant it kind of as a joke, but I really do think that
anyone contemplating such an exercise needs to be seen to, preferebly
by a vet, though a tree-surgeon would do in a pinch.

Mind you, since I posted this, I have been told that out in America,
EastEnders means some group of people (ethnic?) in which case I
withdraw my flamage. ’Cos where I come from, it is a soap-opera.

Try this: "I’m starting up a Dallas mailing list". Does that sound
geographical, or soap-opera-like to you? :-)

I am redirecting followups to, um, err ... Where would be
appropriate? Well, I’m sure news.sysadmin isn’t.

Listen, I tell you what, just don’t follow up. Hoopy, huh? :-)

Mike Taylor - {Christ,M{athemat,us}ic}ian ... Email to: mirk@uk.ac.warwick.cs
*** Unkle Mirk sez: "Em9 A7 Em9 A7 Em9 A7 Em9 A7 Cmaj7 Bm7 Am7 G Gdim7 Am" ***

Actually, comp.arch also has its funnier moments as well:

From: john@frog.UUCP (John Woods)
Subject: Re: "big endian" and "little endian" - first usage for computer
Date: 24 Jan 89 05:42:00 GMT
Organization: Servants of the Great White Frog

AUUGN 59 Vol 10 No 1

In article <7193@csli. STANFORD.EDU>, jkI@csli. STANFORD.EDU (John Kallen) writes:
In article <ll02@l.cc.purdue.edu> cik@l.cc.purdue.edu (Herman Rubin) writes:
>There does not seem to be any support from "natural" languages for the
>little-endian approach.
What about Danish: fem og halvfirsindtyve (75 (my Danish is rusty))
Or norwegian: en og femti (51). This fooled me once into believing

one could rent a room in Paris for Fr 1.50... :-)
Or better yet, German: Zwei und Vierzig (42!)

Ah, but consider the German for 1988: neunzehn hundert acht und achtzig
(nine-and-ten hundred eight and eighty). Middle-endian. AHA! Germans
are PDP-IIs!

:-)

John Woods, Charles River Data Systems, Framingham MA, (508) 626-1101

Presumably this means that it is vital to get the wrong answers quickly.
Kernighan and Plauger, The Elements of Programming Style

[Here is a followup to the above. Due to an editing accident, I
lost the headers...]

I used to work for a German company, and you haven’t seen confusion
until you’ve seen a bunch of German engineers trying to say "68000"
in English, and it keeps coming out "86000", for exactly that reason.

It’s an understandable mistake, and we rather got used to it after
a while.

Clayton E. Cramer
{pyramid, pixar,tekbspa}!optilink!cramer
Disclaimer? You must be kidding! No company would hold opinions like mine!

Perhaps I should have a summary of interesting news .signatures...

From: root@chessene.UUCP (This System)
Subject: Re: Night of the Living Dead Processes
Date: 22 Jan 89 20:03:11 GMT
Organization: Competitive Computer Systems, Lancaster PA

[text deleted]

Mark Buda Domain: hermit@chessene.uucp
Dumb: ...rutgers!bpa!vu-vlsi!devon!chessene!hermit
"Here, with a compressed air drill, parsnips are harvested." - an old newsreel

Comp.dcom.telecom has some fascinating stuff in it, sometimes bordering
on the bizarre. Take a look at this:

Vol 10 No 1 60 AUUGN

From: miket@brspyrl .brs. corn (Mike Trout)
Subject : Re: Victims of Wrong Nttmbers
Date: 24 Jan 89 17:26:33 GMT

In article <telecom-v09i0024m01@vector.UUCP>,
telecom@bu-cs.BU.EDU (TELECOM Moderator) writes:

She says she gets anywhere from ten to dozens of wrong numbers per day. If
the weather is bad or there is some incident at the airport, then the calls
really start pouring in. She pointed out the most amazing part of the whole
thing are the people who call and get her answering machine. They hear the
whole outgoing message "Thank you for calling Zsetenyi’s Decorating Den"
and then they still proceed to leaving a message for United Airlines, asking
to be "....called back when the reservations office is open "

It is apparently human nature to refuse to believe that you’ve dialed a wrong
number unless you’ve been confronted with unimpeachable evidence. A friend of
mine spent a few years working as the receptionist for a local contractor named
Eastern Heating and Cooling Inc. She used to get at least one call a week, and
usually considerably more, intended for Eastern Air Lines. Some confusion may
be due to the fact that, if you open the Albany phone book to the general area
for Airline Companies, you may easily spot the huge ad for Eastern Heating and
Cooling Inc. which is in the Air Conditioning Contractors & Systems section.
Never mind that Eastern Heating logo is nothing like the Eastern Air Lines
logo, the Eastern Heating ad contains phrases like "25 Radio Dispatched
Vehicles" and "Walk-in Coolers and Freezers," as well as logos for Trane,
Carrier, York, and Bryant. Anyway, the conversations would usually go
something like this:

+++
My friend: "Eastern Heating and Cooling, may I help you?"

Caller: "Yes, I’d like to get some information about this afternoon’s flight to
Atlanta."

MF: "I’m sorry, sir, but this is Eastern Heating and Cooling. You want Eastern
Air Lines."

C: "Yes, but what’s the price on the non-stop from Albany to Atlanta?"

MF: "I don’t have that information. This is NOT Eastern Air Lines."

C: "Okay, but why can’t you tell me how much the ticket is?"

MF: "Because you dialed the wrong number. Check the phone book under Eastern
Air Lines."

C: "Look, you have a flight to Atlanta, flight number 689 leaving Albany at
5:50, right?"

MF: "No. All we have are 25 radio dispatched trucks."

C: "I don’t like the way you’re speaking with me. Please connect me with your
supervisor."

AUUGN 61 Vol 10 No 1

MF: "Okay, but he’s gonna be mad because right now he’s busy taking apart a
heat pump."

C: "$#*@*&! ! ! I just want you to know I’m never flying Eastern Air Lines
again! " (hangs up)
+++

Under that Eastern Heating ad is an ad for American Heating and Cooling Inc.
I’d love to know what kind of calls they get THERE...

NSA food: Iran sells Nicaraguan drugs to White House through CIA, DIA & NRO.
Michael Trout (miket@brspyrl)

BRS Information Technologies, 1200 Rt. 7, Latham, N.Y. 12110 (518) 783-1161
"God forbid we should ever be 20 years without...a rebellion." Thomas Jefferson

Aus.flame is not always mindless noise, posted by morons. Although perhaps
this one is better suited to ausobizarre:

From: jvoros@monash.edu.au (Joe Voros)
Subject: The Supermarket Trolley -- a tale of horror.
Date: 30 Jan 89 07:24:04 GMT
Organization: Physics Dept, Monash Uni, Australia

The Supermarket Trolley.

I have a horror story of the magnitude of Edgar Allan Poe. It is a
blood-curdling, spine-chilling, courage defeating tale of woe. Of
being in the wrong place at the wrong time. Gentle reader, try
perchance to feel the fear that emanates from this keyboard as I
relate the horrible events of that day. Now, as I sit cowering
from the memory of that sinister event, I can only ask your indulgence.

It was a normal day, so far as it went, so all the more evil is the
event which would forever haunt me, in the way it forced itself upon
myself. Having just arrived at a supermarket to purchase some goods
for more leisurely consumption at my home later that night, alas,
alone, for events had transpired which made my current relationship
come to an unfortunate and, sadly, most likely permanent end, I
strode to the nearest trolley dispenser. This, of course, required
the presence of that most ignoble of objects, the dollar coin, of
which, at that time, I had no possession. Casting about, I spied
an old woman of most horrendous visage; a seeming witch! Fearing
for my life, I enquired about the possibility of exchanging some
loose change for the appropriate coin of my seeking. She assented,
and, gentle reader, I can only think now that it was some vile act
of deviltry which she had in store for me that prompted her to do
so! Smiling, the spittle oozing from her most disgusting mouth, she
gave me the coin

I placed the newly-acquired token in the dispenser, and partook
of the trolley thus becoming available. I had not gone more than

Vol 10 No 1 62 AU-UGN

a little distance whence I became aware of the most terrible and
foul trick which had been played on me. I wailed as only the
mortally wounded can do. I blindly sought freedom from the horror
of what had been perpetrated upon me. But I could not! I was
stupefied with terror, and numb with shock. How was I to live my
life with the dark shadow of this remembrance constantly trailing
me? How, I ask you, how? For what had happened was this. (Lord
grant me the strength!) Some evil macknan had, for some
unfathomable reason placed in the trolley dispenser, a trolley of
the most wicked and unnatural construction! And now, having been
exposed to this diabolical device, will I never be able to sleep
peacefully again. For that trolley, unlike all which had gone
before it, ACTUALLY WENT IN THE SAME DIRECTION AS YOU PUSHED IT!

Lord have mercy!

jv

Even comp.org.usenix is a fertile ground for "Off the Net", as these
one show:

From: ip@decvax.dec.com (Larry Palmer)
Subject: DECstation 3100 at USENIX this week
Date: 29 Jan 89 20:43:07 GMT

[Much white space deleted]

You’ve seen the ads.

You’ve read the articles.

You’ve heard the gossip.

Come see the real thing!

Look for the Digital Hospitality Suite.

All this week at Winter 1989 USENIX.

Watch for announcements concerning the
time and place.

See the DECSTATION 3100 (code name: PMAX) .

Hit the keys and ring the bells on the
hottest new product in the UNIX marketplace!

AUUGN 63 Vol 10 No 1

From: dave@micropen (David F. Carlson)
Subject: Re: DECstation 3100 at USENIX this week
Summary: you’ve seen
Date: 30 Jan 89 17:10:59 GMT
Organization: Micropen Dirent Writing Systems, Pittsford, NY

In article <4325@decvax.dec.com>, ip@decvax.dec.com (Larry Palmer) writes:
> You’ve seen the ads.

>#

>#

>#

>#

>#

>#

You’ve seen the hype.

You’ve read the articles.
You’ve read the marketing BS.

You’ve heard the gossip.
You’ve been inundated by vapor.

Come see the real thing!
Come see someone else’s machine resold by DEC!

Look for the Digital Hospitality Suite.
All this week at Winter 1989 USENIX.

Look for gratuitous DEC propaganda crossposted
to several USENET groups you read.

See the DECSTATION 3100 (code name: PMAX) .
See a DEC so crippled by mid-70’s technology they can’t
produce competitive machines of their own designs.

Hit the keys and ring the bells on the
hottest new product in the UNIX marketplace!

Hit the panic button:
Olsen and the boys are out to sell some quick "snake-oil"!

David F. Carlson, Micropen, Inc.
micropen!dave@ee.rochester.edu

"The faster I go, the behinder I get." --Lewis Carroll

And finally, we can’t let this one go past, from aus.jokes:

From: johnd@physiol.su.oz (John Dodson)
Subject: Fuel Injection
Date: 6 Feb 89 21:26:24 GMT
Organization: Physiology Dept., Univ. of Sydney, NSW, Australia

Heard on the program "On The Road" with Evan Green,

"Fuel Injection is a bit like Goverments,
a lot of little squirts controlling the power."

Vol 10 No 1 64 AUUGN

johnd@physiol.su.oz

That’s it for another episode of "Off the Net", where you read things
of general interest, and sometimes things the authors wish they
hadn’t written at all! Do let me know how you like it, preferably
in aus.auug or (shock horror) letters to the editor°

-- Dave

AUUGN 65 Vol 10 No 1

the

Introduction
to

Internet Protocols

C R

C S
Computer Science Facilities Group

C I

L S

RUTGERS
The State University of New Jersey

Center for Computers and Information Services
Laboratory for Computer Science Research

February 24, 1989

Vol 10 No 1 66 AUUGN

This is an introduction to the Internet networking protocols (TCP/IP). It includes a summary
of the facilities available and brief descriptions of the major protocols in the family.

Copyright (C) 1987, Charles L. Hedrick.

Anyone may reproduce this document, in whole or in part, provided that:
(1) any copy or republication of the entire document must show Rutgers University as the

source, and must include this notice; and

(2) any other use of this material must reference this manual and Rutgers University, and the
fact that the material is copyright by Charles Hedrick and is used by permission.

Unix is a trademark of AT&T Technologies, Inc.

AUUGN 67 Vol 10 No 1

This document is a brief introduction to TCP/IP, followed
by advice on what to read for more information. This is
not intended to be a complete description. It can give
you a reasonable idea of the capabilities of the protocols.
But if you need to know any details of the technology,
you will want to read the standards yourself. Throughout
the text, you will find references to the standards, in the
form of "RFC" or "IEN" numbers. These are document
numbers. The final section of this document tells you
how to get copies of those standards.

Vol 10 No 1 68 AUUGN

TABLE OF CONTENTS

What is TCP/IP? ...

General description of the TCP/IP protocols ..
The TCP level ..

The IP level ..
The Ethernet level ..

Well-known sockets and the applications layer ..

An example application: SMTP ..
Protocols other than TCP: UDP and ICMP ..

Keeping track of names and information: the domain system ..
Routing ...

Details about Internet addresses: subnets and broadcasting ...

Datagram fragmentation and reassembly ..
Ethernet encapsulation: ARP ...

Getting more information ..

70
74
75
79
80
81
84
86
87
89
90
92
93
94

AUUGN 69 Vol 10 No 1

1. What is TCP/IP?

TCP/IP is a set of protocols developed to allow cooperating computers to share resources
across a network. It was developed by a community of researchers centered around the
ARPAnet. Certainly the ARPAnet is the best-known TCP/IP network. However as of June,
87, at least 130 different vendors had products that support TCP/IP, and thousands of net-
works of all kinds use it.

First some basic definitions. The most accurate name for the set of protocols we are describ-
ing is the "Internet protocol suite". TCP and IP are two of the protocols in this suite. (They
will be described below.) Because TCP and IP are the best known of the protocols, it has
become common to use the term TCP/IP or IP/TCP to refer to the whole family. It is prob-
ably not worth fighting this habit. However this can lead to some oddities. For example, I
find myself talking about NFS as being based on TCP/IP, even though it doesn’t use TCP at
all. (It does use IP. But it uses an alternative protocol, UDP, instead of TCP. All of this
alphabet soup will be unscrambled in the following pages.)

The Internet is a collection of networks, including the Arpanet, NSFnet, regional networks
such as NYsernet, local networks at a number of University and research institutions, and a
number of military networks. The term "Internet" applies to this entire set of networks. The
subset of them that is managed by the Department of Defense is referred to as the "DDN"
(Defense Data Network). This includes some research-oriented networks, such as the
Arpanet, as well as more strictly military ones. (Because much of the funding for Internet
protocol developments is done via the DDN organization, the terms Internet and DDN can
sometimes seem equivalent.) All of these networks are connected to each other. Users can
send messages from any of them to any other, except where there are security or other policy
restrictions on access. Officially speaking, the Internet protocol documents are simply stan-
dards adopted by the Internet community for its own use. More recently, the Department of
Defense issued a MILSPEC definition of TCP/IP. This was intended to be a more formal
definition, appropriate for use in purchasing specifications. However most of the TCP/IP
community continues to use the Internet standards. The MILSPEC version is intended to be
consistent with it.

Whatever it is called, TCP/IP is a family of protocols. A few provide "low-level" functions
needed for many applications. These include IP, TCP, and UDP. (These will be described in
a bit more detail later.) Others are protocols for doing specific tasks, e.g. transferring files
between computers, sending mail, or finding out who is logged in on another computer. Ini-
tially TCP/IP was used mostly between minicomputers or mainframes. These machines had
their own disks, and generally were self-contained. Thus the most important "traditional"
TCP/IP services are:

file transfer. The file transfer protocol (FTP) allows a user on any computer to get files
from another computer, or to send files to another computer. Security is handled by
requiring the user to specify a user name and password for the other computer.

Vol 10 No 1 70 AUUGN

Provisions are made for handling file transfer between machines with different character
set, end of line conventions, etc. This is not quite the same thing as more recent "net-
work file system" or "netbios" protocols, which will be described below. Rather, FTP is
a utility that you run any time you want to access a file on another system. You use it
to copy the file to your own system. You then work with the local copy. (See RFC 959
for specifications for FTP.)

remote login. The network terminal protocol (TELNET) allows a user to log in on any
other computer on the network. You start a remote session by specifying a computer to
connect to. From that time until you finish the session, anything you type is sent to the
other computer. Note that you are really still talking to your own computer. But the tel-
net program effectively makes your computer invisible while it is running. Every
character you type is sent directly to the other system. Generally, the connection to the
remote computer behaves much like a dialup connection. That is, the remote system will
ask you to log in and give a password, in whatever manner it would normally ask a user
who had just dialed it up. When you log off of the other computer, the telnet program
exits, and you will find yourself talking to your own computer. Microcomputer imple-
mentations of telnet generally include a terminal emulator for some common type of ter-
minal. (See RFC’s 854 and 855 for specifications for telnet. By the way, the telnet pro-
tocol should not be confused with Telenet, a vendor of commercial network services.)
computer mail. This allows you to send messages to users on other computers. Origi-
nally, people tended to use only one or two specific computers. They would maintain
"mail files" on those machines. The computer mail system is simply a way for you to
add a message to another user’s mail file. There are some problems with this in an
environment where microcomputers are used. The most serious is that a micro is not
well suited to receive computer mail. When you send mail, the mail software expects to
be able to open a connection to the addressee’s computer, in order to send the mail. If
this is a microcomputer, it may be turned off, or it may be running an application other
than the mail system. For this reason, mail is normally handled by a larger system,
where it is practical to have a mail server running all the time. Microcomputer mail
software then becomes a user interface that retrieves mail from the mail server. (See
RFC 821 and 822 for specifications for computer mail. See RFC 937 for a protocol
designed for microcomputers to use in reading mail from a mail server.)

These services should be present in any implementation of TCP/IP, except that micro-oriented
implementations may not support computer mail. These traditional applications still play a
very important role in TCP/IP-based networks. However more recently, the way in which
networks are used has been changing. The older model of a number of large, self-sufficient
computers is beginning to change. Now many installations have several kinds of computers,
including microcomputers, workstations, minicomputers, and mainframes. These computers
are likely to be configured to perform specialized tasks. Although people are still likely to
work with one specific computer, that computer will call on other systems on the net for spe-
cialized services. This has led to the "server/client" model of network services. A server is a
system that provides a specific service for the rest of the network. A client is another system

AUUGN 71 Vol 10 No 1

that uses that service. (Note that the server and client need not be on different computers.
They could be different programs running on the same computer.) Here are the kinds of
servers typically present in a modem computer setup. Note that these computer services can
all be provided within the framework of TCP/IP.

network file systems. This allows a system to access files on another computer in a
somewhat more closely integrated fashion than FTP. A network file system provides the
illusion that disks or other devices from one system are directly connected to other sys-
tems. There is no need to use a special network utility to access a file on another sys-
tem. Your computer simply thinks it has some extra disk drives. These extra "virtual"
drives refer to the other system’s disks. This capability is useful for several different
purposes. It lets you put large disks on a few computers, but still give others access to
the disk space. Aside from the obvious economic benefits, this allows people working
on several computers to share common files. It makes system maintenance and backup
easier, because you don’t have to worry about updating and backing up copies on lots of
different machines. A number of vendors now offer high-performance diskless comput-
ers. These computers have no disk drives at all. They are entirely dependent upon disks
attached to common "file servers". (See RFC’s 1001 and 1002 for a description of PC-
oriented NetBIOS over TCP. In the workstation and minicomputer area, Sun’s Network
File System is more likely to be used. Protocol specifications for it are available from
Sun Microsystems.)

remote printing. This allows you to access printers on other computers as if they were
directly attached to yours. (The most commonly used protocol is the remote lineprinter
protocol from Berkeley Unix. Unfortunately, there is no protocol document for this.
However the C code is easily obtained from Berkeley, so implementations are common.)

remote execution. This allows you to request that a particular program be run on a dif-
ferent computer. This is useful when you can do most of your work on a small com-
puter, but a few tasks require the resources of a larger system. There are a number of
different kinds of remote execution. Some operate on a command by command basis.
That is, you request that a specific command or set of commands should run on some
specific computer. (More sophisticated versions will choose a system that happens to
be free.) However there are also "remote procedure call" systems that allow a program
to call a subroutine that will run on another computer. (There are many protocols of this
sort. Berkeley Unix contains two servers to execute commands remotely: rsh and rexec.
The man pages describe the protocols that they use. The user-contributed software with
Berkeley 4.3 contains a "distributed shell" that will distribute tasks among a set of sys-
tems, depending upon load. Remote procedure call mechanisms have been a topic for
research for a number of years, so many organizations have implementations of such
facilities. The most widespread commercially-supported remote procedure call protocols
seem to be Xerox’s Courier and Sun’s RPC. Protocol documents are available from
Xerox and Sun. There is a public implementation of Courier over TCP as part of the
user-contributed software with Berkeley 4.3. An implementation of RPC was posted to
Usenet by Sun, and also appears as part of the user-contributed software with Berkeley

Vol 10 No 1 72 AUUGN

4.3.)
name servers. In large installations, there are a number of different collections of names
that have to be managed. This includes users and their passwords, names and network
addresses for computers, and accounts. It becomes very tedious to keep this data up to
date on all of the computers. Thus the databases are kept on a small number of systems.
Other systems access the data over the network. (RFC 822 and 823 describe the name
server protocol used to keep track of host names and Intemet addresses on the Internet.
This is now a required part of any TCP/IP implementation. IEN 116 describes an older
name server protocol that is used by a few terminal servers and other products to look
up host names. Sun’s Yellow Pages system is designed as a general mechanism to han-
dle user names, file sharing groups, and other databases commonly used by Unix sys-
tems. It is widely available commercially. Its protocol definition is available from Sun.)
terminal servers. Many installations no longer connect terminals directly to computers.
Instead they connect them to terminal servers. A terminal server is simply a small com-
puter that only knows how to run telnet (or some other protocol to do remote login). If
your terminal is connected to one of these, you simply type the name of a computer, and
you are connected to it. Generally it is possible to have active connections to more than
one computer at the same time. The terminal server will have provisions to switch
between connections rapidly, and to notify you when output is waiting for another con-
nection. (Terminal servers use the telnet protocol, already mentioned. However any real
terminal server will also have to support name service and a number of other protocols.)
network-oriented window systems. Until recently, high-performance graphics programs
had to execute on a computer that had a bit-mapped graphics screen directly attached to
it. Network window systems allow a program to use a display on a different computer.
Full-scale network window systems provide an interface that lets you distribute jobs to
the systems that are best suited to handle them, but still give you a single graphically-
based user interface. (The most widely-implemented window system is X. A protocol
description is available from MIT’s Project Athena. A reference implementation is publ-
ically available from MIT. A number of vendors are also supporting NEWS, a window
system defined by Sun. Both of these systems are designed to use TCP/IP.)

Note that some of the protocols described above were designed by Berkeley, Sun, or other
organizations. Thus they are not officially part of the Internet protocol suite. However they
are implemented using TCP/IP, just as normal TCP/IP application protocols are. Since the
protocol definitions are not considered proprietary, and since commercially-support implemen-
tations are widely available, it is reasonable to think of these protocols as being effectively
part of the Internet suite. Note that the list above is simply a sample of the sort of services
available through TCP/IP. However it does contain the majority of the "major" applications.
The other commonly-used protocols tend to be specialized facilities for getting information of
various kinds, such as who is logged in, the time of day, etc. However if you need a facility
that is not listed here, we encourage you to look through the current edition of Internet Proto-
cols (currently RFC 1011), which lists all of the available protocols, and also to look at some
of the major TCP/IP implementations to see what various vendors have added.

AUUGN 73 Vol 10 No 1

2. General description of the TCP/IP protocols

TCP/IP is a layered set of protocols. In order to understand what this means, it is useful to
look at an example. A typical situation is sending mail. First, there is a protocol for mail.
This defines a set of commands which one machine sends to another, e.g. commands to
specify who the sender of the message is, who it is being sent to, and then the text of the
message. However this protocol assumes that there is a way to communicate reliably between
the two computers. Mail, like other application protocols, simply defines a set of commands
and messages to be sent. It is designed to be used together with TCP and IP. TCP is respon-
sible for making sure that the commands get through to the other end. It keeps track of what
is sent, and retransmitts anything that did not get through. If any message is too large for one
datagram, e.g. the text of the mail, TCP will split it up into several datagrams, and make sure
that they all arrive correctly. Since these functions are needed for many applications, they are
put together into a separate protocol, rather than being part of the specifications for sending
mail. You can think of TCP as forming a library of routines that applications can use when
they need reliable network communications with another computer. Similarly, TCP calls on
the services of IP. Although the services that TCP supplies are needed by many applications,
there are still some kinds of applications that don’t need them. However there are some ser-
vices that every application needs. So these services are put together into IP. As with TCP,
you can think of IP as a library of routines that TCP calls on, but which is also available to
applications that don’t use TCP. This strategy of building several levels of protocol is called
"layering". We think of the applications programs such as mail, TCP, and IP, as being
separate "layers", each of which calls on the services of the layer below it. Generally, TCP/IP
applications use 4 layers:

®

®

an application protocol such as mail

a protocol such as TCP that provides services need by many applications

IP, which provides the basic service of getting datagrams to their destination

the protocols needed to manage a specific physical medium, such as Ethernet or a point
to point line.

TCP/IP is based on the "catenet model". (This is described in more detail in IEN 48.) This
model assumes that there are a large number of independent networks connected together by
gateways. The user should be able to access computers or other resources on any of these
networks. Datagrams will often pass through a dozen different networks before getting to
their final destination. The routing needed to accomplish this should be completely invisible
to the user. As far as the user is concerned, all he needs to know in order to access another
system is an "Intemet address". This is an address that looks like 128.6.4.194. It is actually
a 32-bit number. However it is normally written as 4 decimal numbers, each representing 8
bits of the address. (The term "octet" is used by Intemet documentation for such 8-bit
chunks. The term "byte" is not used, because TCP/IP is supported by some computers that
have byte sizes other than 8 bits.) Generally the structure of the address gives you some
information about how to get to the system. For example, 128.6 is a network number

Vol 10 No 1 74 AUUGN

assigned by a central authority to Rutgers University. Rutgers uses the next octet to indicate
which of the campus Ethernets is involved. 128.6.4 happens to be an Ethernet used by the
Computer Science Department. The last octet allows for up to 254 systems on each Ethernet.
(It is 254 because 0 and 255 are not allowed, for reasons that will be discussed later.) Note
that 128.6.4.194 and 128.6.5.194 would be different systems. The structure of an Internet
address is described in a bit more detail later.

Of course we normally refer to systems by name, rather than by Intemet address. When we
specify a name, the network software looks it up in a database, and comes up with the
corresponding Internet address. Most of the network software deals strictly in terms of the
address. (RFC 882 describes the name server technology used to handle this lookup.)

TCP/IP is built on "connectionless" technology. Information is transfered as a sequence of
"datagrams". A datagram is a collection of data that is sent as a single message. Each of
these datagrams is sent through the network individually. There are provisions to open con-
nections (i.e. to start a conversation that will continue for some time). However at some
level, information from those connections is broken up into datagrams, and those datagrams
are treated by the network as completely separate. For example, suppose you want to transfer
a 15000 octet file. Most networks can’t handle a 15000 octet datagram. So the protocols will
break this up into something like 30 500-octet datagrams. Each of these datagrams will be
sent to the other end. At that point, they will be put back together into the 15000-octet file.
However while those datagrams are in transit, the network doesn’t know that there is any con-
nection between them. It is perfectly possible that datagram 14 will actually arrive before
datagram 13. It is also possible that somewhere in the network, an error will occur, and some
datagram won’t get through at all. In that case, that datagram has to be sent again.

Note by the way that the terms "datagram" and "packet" often seem to be nearly interchang-
able. Technically, datagram is the right word to use when describing TCP/~. A datagram is
a unit of data, which is what the protocols deal with. A packet is a physical thing, appearing
on an Ethernet or some wire. In most cases a packet simply contains a datagram, so there is
very little difference. However they can differ. When TCP/IP is used on top of X.25, the
X.25 interface breaks the datagrams up into 128-byte packets. This is invisible to IP, because
the packets are put back together into a single datagram at the other end before being pro-
cessed by TCP/IP. So in this case, one IP datagram would be carried by several packets.
However with most media, there are efficiency advantages to sending one datagram per
packet, and so the distinction tends to vanish.

2.1. The TCP level

Two separate protocols are involved in handling TCP/IP datagrams. TCP (the "transmission
control protocol") is responsible for breaking up the message into datagrams, reassembling
them at the other end, resending anything that gets lost, and putting things back in the right

AUUGN 75 Vol 10 No 1

order. IP (the "internet protocol") is responsible for routing individual datagrams. It may
seem like TCP is doing all the work. And in small networks that is true. However in the
Internet, simply getting a datagram to its destination can be a complex job. A connection
may require the datagram to go through several networks at Rutgers, a serial line to the John
yon Neuman Supercomputer Center, a couple of Ethernets there, a series of 56Kbaud phone
lines to another NSFnet site, and more Ethernets on another campus. Keeping track of the
routes to all of the destinations and handling incompatibilities among different transport
media turns out to be a complex job. Note that the interface between TCP and IP is fairly
simple. TCP simply hands IP a datagram with a destination. IP doesn’t know how this
datagram relates to any datagram before it or after it.

It may have occurred to you that something is missing here. We have talked about Internet
addresses, but not about how you keep track of multiple connections to a given system.
Clearly it isn’t enough to get a datagram to the right destination. TCP has to know which
connection this datagram is part of. This task is referred to as "demultiplexing." In fact,
there are several levels of demultiplexing going on in TCP/IP. The information needed to do
this demultiplexing is contained in a series of "headers". A header is simply a few extra
octets tacked onto the beginning of a datagram by some protocol in order to keep track of it.
It’s a lot like putting a letter into an envelope and putting an address on the outside of the
envelope. Except with modern networks it happens several times. It’s like you put the letter
into a little envelope, your secretary puts that into a somewhat bigger envelope, the campus
mail center puts that envelope into a still bigger one, etc. Here is an overview of the headers
that get stuck on a message that passes through a typical TCP/IP network:

We start with a single data stream, say a file you are trying to send to some other computer:

TCP breaks it up into manageable chunks. (In order to do this, TCP has to know how large a
datagram your network can handle. Actually, the TCP’s at each end say how big a datagram
they can handle, and then they pick the smallest size.)

TCP puts a header at the front of each datagram. This header actually contains at least 20
octets, but the most important ones are a source and destination "port number" and a
"sequence number". The port numbers are used to keep track of different conversations.
Suppose 3 different people are transferring files. Your TCP might allocate port numbers
1000, 1001, and 1002 to these transfers. When you are sending a datagram, this becomes the
"source" port number, since you are the source of the datagram. Of course the TCP at the
other end has assigned a port number of its own for the conversation. Your TCP has to know
the port number used by the other end as well. (It finds out when the connection starts, as we

Vol 10 No 1 76 AUUGN

will explain below.) It puts this in the "destination" port field. Of course if the other end
sends a datagram back to you, the source and destination port numbers will be reversed, since
then it will be the source and you will be the destination. Each datagram has a sequence
number. This is used so that the other end can make sure that it gets the datagrams in the
right order, and that it hasn’t missed any. (See the TCP specification for details.) TCP
doesn’t number the datagrams, but the octets. So if there are 500 octets of data in each
datagram, the first datagram might be numbered 0, the second 500, the next 1000, the next
1500, etc. Finally, I will mention the Checksum. This is a number that is computed by
adding up all the octets in the datagram (more or less - see the TCP spec). The result is put
in the header. TCP at the other end computes the checksum again. If they disagree, then
something bad happened to the datagram in transmission, and it is thrown away. So here’s
what the datagram looks like now.

+_+_+-+

Source Port I Destination Port I
+_+_+-+

Sequence Number

-+
Acknowledgment Number

-+

Data I IUIAIPIRISIFI I

Offsetl Reserved IRICISISIYIII Window
IGIKIHITININI

+-÷-+-+-+-+-÷--+

Checksum I Urgent Pointer

÷-+-+--,,-~--÷-÷-+

your data ... next 50’0 octets
I’

If we abbreviate the TCP header as "T", the whole file now looks like this:

T T T T T T T

You will note that there are items in the header that I have not described above. They are
generally involved with managing the connection. In order to make sure the datagram has
arrived at its destination, the recipient has to send back an "acknowledgement". This is a
datagram whose "Acknowledgement number" field is filled in. For example, sending a packet
with an acknowledgement of 1500 indicates that you have received all the data up to octet
number 1500. If the sender doesn’t get an acknowledgement within a reasonable amount of
time, it sends the data again. The window is used to control how much data can be in transit
at any one time. It is not practical to wait for each datagram to be acknowledged before
sending the next one. That would slow things down too much. On the other hand, you can’t

AUUGN 77 Vol 10 No 1

just keep sending, or a fast computer might overrun the capacity of a slow one to absorb data.
Thus each end indicates how much new data it is currently prepared to absorb by putting the
number of octets in its "Window" field. As the computer receives data, the amount of space
left in its window decreases. When it goes to zero, the sender has to stop. As the receiver
processes the data, it increases its window, indicating that it is ready to accept more data.
Often the same datagram can be used to acknowledge receipt of a set of data and to give per-
mission for additional new data (by an updated window). The "Urgent" field allows one end
to tell the other to skip ahead in its processing to a particular octet. This is often useful for
handling asynchronous events, for example when you type a control character or other com-
mand that interrupts output. The other fields are beyond the scope of this document.

Vol 10 No 1 78 AUUGN

2.2. The IP level

TCP sends each of these datagrams to IP. Of course it has to tell IP the Internet address of
the computer at the other end. Note that this is all IP is concerned about. It doesn’t care
about what is in the datagram, or even in the TCP header. IP’s job is simply to find a route
for the datagram and get it to the other end. In order to allow gateways or other intermediate
systems to forward the datagram, it adds its own header. The main things in this header are
the source and destination Internet address (32-bit addresses, like 128.6.4.194), the protocol
number, and another checksum. The source Internet address is simply the address of your
machine. (This is necessary so the other end knows where the datagram came from.) The
destination Internet address is the address of the other machine. (This is necessary so any
gateways in the middle know where you want the datagram to go.) The protocol number tells
IP at the other end to send the datagram to TCP. Although most IP traffic uses TCP, there
are other protocols that can use IP, so you have to tell IP which protocol to send the datagram
to. Finally, the checksum allows IP at the other end to verify that the header wasn’t damaged
in transit. Note that TCP and IP have separate checksums. IP needs to be able to verify that
the header didn’t get damaged in transit, or it could send a message to the wrong place. For
reasons not worth discussing here, it is both more efficient and safer to have TCP compute a
separate checksum for the TCP header and data. Once IP has tacked on its header, here’s
what the message looks like:

+-+

Versionl IHL IType of Servicel Total Length
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+~-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Identification IFlagsl Fragment Offset
+-+

Time to Live I Protocol I Header Checksum
+-+

Source Address
+-+

Destination Address
+-+

TCP header, then your data

If we represent the IP header by an ’T’, your file now looks like this:

IT IT IT IT IT IT IT

Again, the header contains some additional fields that have not been discussed. Most of them
are beyond the scope of this document. The flags and fragment offset are used to keep track
of the pieces when a datagram has to be split up. This can happen when datagrams are for-
warded through a network for which they are too big. (This will be discussed a bit more

AUUGN 79 Vol 10 Nol

below.) The time to live is a number that is decremented whenever the datagram passes
through a system. When it goes to zero, the datagram is discarded. This is done in case a
loop develops in the system somehow. Of course this should be impossible, but well-
designed networks are built to cope with "impossible" conditions.

At this point, it’s possible that no more headers are needed. If your computer happens to
have a direct phone line connecting it to the destination computer, or to a gateway, it may
simply send the datagrams out on the line (though likely a synchronous protocol such as
HDLC would be used, and it would add at least a few octets at the beginning and end).

2.3. The Ethernet level

However most of our networks these days use Ethernet. So now we have to describe
Ethemet’s headers. Unfortunately, Ethernet has its own addresses. The people who designed
Ethemet wanted to make sure that no two machines would end up with the same Ethernet
address. Furthermore, they didn’t want the user to have to worry about assigning addresses.
So each Ethernet controller comes with an address builtin from the factory. In order to make
sure that they would never have to reuse addresses, the Ethemet designers allocated 48 bits
for the Ethernet address. People who make Ethernet equipment have to register with a central
authority, to make sure that the numbers they assign don’t overlap any other manufacturer.
Ethernet is a "broadcast medium". That is, it is in effect like an old party line telephone.
When you send a packet out on the Ethernet, every machine on the network sees the packet.
So something is needed to make sure that the right machine gets it. As you might guess, this
involves the Ethernet header. Every Ethernet packet has a 14-octet header that includes the
source and destination Ethernet address, and a type code. Each machine is supposed to pay
attention only to packets with its own Ethernet address in the destination field. (It’s perfectly
possible to cheat, which is one reason that Ethernet communications are not terribly secure.)
Note that there is no connection between the Ethernet address and the Internet address. Each
machine has to have a table of what Ethernet address corresponds to what Intemet address.
(We will describe how this table is constructed a bit later.) In addition to the addresses, the
header contains a type code. The type code is to allow for several different protocol families
to be used on the same network. So you can use TCP/IP, DECnet, Xerox NS, etc. at the
same time. Each of them will put a different value in the type field. Finally, there is a
checksum. The Ethernet controller computes a checksum of the entire packet. When the
other end receives the packet, it recomputes the checksum, and throws the packet away if the
answer disagrees with the original. The checksum is put on the end of the packet, not in the
header.

Vol 10 No 1 80 AUUGN

The final result is that your message looks like this:
+-+

Ethernet destination address (first 32 bits) [
+-+

I Ethernet dest (last 16 bits) IEthernet source (first 16 bits) I
+-+

Ethernet source address (last 32 bits) I
+-4-+-+

[Type code I

+-+

I IP header, then TCP header, then your data I

¯ o ¯

end of your data
+_+-+

Ethernet Checksum
+-+

If we represent the Ethernet header with "E", and the Ethernet checksum with "C", your file
now looks like this:

EIT C EIT C EIT C EIT C EIT C

When these packets are received by the other end, of course all the headers are removed. The
Ethernet interface removes the Ethernet header and the checksum. It looks at the type code.
Since the type code is the one assigned to IP, the Ethernet device driver passes the datagram
up to IP. IP removes the IP header. It looks at the IP protocol field. Since the protocol type
is TCP, it passes the datagram up to TCP. TCP now looks at the sequence number. It uses
the sequence numbers and other information to combine all the datagrams into the original
file.

The ends our initial summary of TCP/IP. There are still some crucial concepts we haven’t
gotten to, so we’ll now go back and add details in several areas. (For detailed descriptions of
the items discussed here see, RFC 793 for TCP, RFC 791 for IP, and RFC’s 894 and 826 for
sending IP over Ethernet.)

3. Well-known sockets and the applications layer

So far, we have described how a stream of data is broken up into datagrams, sent to another
computer, and put back together. However something more is needed in order to accomplish
anything useful. There has to be a way for you to open a connection to a specified computer,

AUUGN 81 Vol 10 No 1

log into it, tell it what file you want, and control the transmission of the file. (If you have a
different application in mind, e.g. computer mail, some analogous protocol is needed.) This is
done by "application protocols". The application protocols run "on top" of TCP/IP. That is,
when they want to send a message, they give the message to TCP. TCP makes sure it gets
delivered to the other end. Because TCP and IP take care of all the networking details, the
applications protocols can treat a network connection as if it were a simple byte stream, like a
terminal or phone line.

Before going into more details about applications programs, we have to describe how you
find an application. Suppose you want to send a file to a computer whose Internet address is
128.6.4.7. To start the process, you need more than just the Internet address. You have to
connect to the FTP server at the other end. In general, network programs are specialized for
a specific set of tasks. Most systems have separate programs to handle file transfers, remote
terminal logins, mail, etc. When you connect to 128.6.4.7, you have to specify that you want
to talk to the FTP server. This is done by having "well-known sockets" for each server.
Recall that TCP uses port numbers to keep track of individual conversations. User programs
normally use more or less random port numbers. However specific port numbers are assigned
to the programs that sit waiting for requests. For example, if you want to send a file, you
will start a program called "ftp". It will open a connection using some random number, say
1234, for the port number on its end. However it will specify port number 21 for the other
end. This is the official port number for the FTP server. Note that there are two different
programs involved. You run ftp on your side. This is a program designed to accept com-
mands from your terminal and pass them on to the other end. The program that you talk to
on the other machine is the FTP server. It is designed to accept commands from the network
connection, rather than an interactive terminal. There is no need for your program to use a
well-known socket number for itself. Nobody is trying to find it. However the servers have
to have well-known numbers, so that people can open connections to them and start sending
them commands. The official port numbers for each program are given in "Assigned
Numbers".

Note that a connection is actually described by a set of 4 numbers: the Internet address at
each end, and the TCP port number at each end. Every datagram has all four of those
numbers in it. (The Internet addresses are in the IP header, and the TCP port numbers are in
the TCP header.) In order to keep things straight, no two connections can have the same set
of numbers. However it is enough for any one number to be different. For example, it is
perfectly possible for two different users on a machine to be sending files to the same other
machine. This could result in connections with the following parameters:

Vol 10 No 1 82 AUUGN

Internet addresses TCP ports
connection 1 128.6.4.194, 128.6.4.7 1234, 21
connection 2 128.6.4.194, 128.6.4.7 1235, 21

Since the same machines are involved, the Intemet addresses are the same. Since they are
both doing file transfers, one end of the connection involves the well-known port number for
FTP. The only thing, that differs is the port number for the program that the users are run-
ning. That’s enough of a difference. Generally, at least one end of the connection asks the
network software to assign it a port number that is guaranteed to be unique. Normally, it’s
the user’s end, since the server has to use a well-known number.

Now that we know how to open connections, let’s get back to the applications programs. As
mentioned earlier, once TCP has opened a connection, we have something that might as well
be a simple wire. All the hard parts are handled by TCP and IP. However we still need
some agreement as to what we send over this connection. In effect this is simply an agree-
ment on what set of commands the application will understand, and the format in which they
are to be sent. Generally, what is sent is a combination of commands and data. They use
context to differentiate. For example, the mail protocol works like this: Your mail program
opens a connection to the mail server at the other end. Your program gives it your machine’s
name, the sender of the message, and the recipients you want it sent to. It then sends a com-
mand saying that it is starting the message. At that point, the other end stops treating what it
sees as commands, and starts accepting the message. Your end then starts sending the text of
the message. At the end of the message, a special mark is sent (a dot in the first column).
After that, both ends understand that your program is again sending commands. This is the
simplest way to do things, and the one that most applications use.

File transfer is somewhat more complex. The file transfer protocol involves two different
connections. It starts out just like mail. The user’s program sends commands like "log me in
as this user", "here is my password", "send me the file with this name". However once the
command to send data is sent, a second connection is opened for the data itself. It would cer-
tainly be possible to send the data on the same connection, as mail does. However file
transfers often take a long time. The designers of the file transfer protocol wanted to allow
the user to continue issuing commands while the transfer is going on. For example, the user
might make an inquiry, or he might abort the transfer. Thus the designers felt it was best to
use a separate connection for the data and leave the original command connection for com-
mands. (It is also possible to open command connections to two different computers, and tell
them to send a file from one to the other. In that case, the data couldn’t go over the com-
mand connection.)

Remote terminal connections use another mechanism still. For remote logins, there is just
one connection. It normally sends data. When it is necessary to send a command (e.g. to set
the terminal type or to change some mode), a special character is used to indicate that the
next character is a command. If the user happens to type that special character as data, two

AUUGN 83 Vol 10 No 1

of them are sent.

We are not going to describe the application protocols in detail in this document. It’s better
to read the RFC’s yourself. However there are a couple of common conventions used by
applications that will be described here. First, the common network representation: TCP/IP is
intended to be usable on any computer. Unfortunately, not all computers agree on how data
is represented. There are differences in character codes (ASCII vs. EBCDIC), in end of line
conventions (carriage return, line feed, or a representation using counts), and in whether ter-
minals expect characters to be sent individually or a line at a time. In order to allow comput-
ers of different kinds to communicate, each applications protocol defines a standard represen-
tation. Note that TCP and IP do not care about the representation. TCP simply sends octets.
However the programs at both ends have to agree on how the octets are to be interpreted.
The RFC for each application specifies the standard representation for that application. Nor-
mally it is "net ASCII". This uses ASCII characters, with end of line denoted by a carriage
return followed by a line feed. For remote login, there is also a definition of a "standard ter-
minal", which turns out to be a half-duplex terminal with echoing happening on the local
machine. Most applications also make provisions for the two computers to agree on other
representations that they may find more convenient. For example, PDP-10’s have 36-bit
words. There is a way that two PDP-10’s can agree to send a 36-bit binary file. Similarly,
two systems that prefer full-duplex terminal conversations can agree on that. However each
application has a standard representation, which every machine must support.

3.1. An example application: SMTP

In order to give a bit better idea what is involved in the application protocols, I’m going to
show an example of SMTP, which is the mail protocol. (SMTP is "simple mail transfer pro-
tocol.) We assume that a computer called TOPAZ.RUTGERS.EDU wants to send the follow-
ing message.

Date: Sat, 27 Jun 87 13:26:31 EDT
From: hedrick@ topaz.rutgers.edu
To: levy@red.rutgers.edu
Subject: meeting

Let’s get together Monday at lpm.

First, note that the format of the message itself is described by an Internet standard (RFC
822). The standard specifies the fact that the message must be transmitted as net ASCII (i.e.
it must be ASCII, with carriage return/linefeed to delimit lines). It also describes the general
structure, as a group of header lines, then a blank line, and then the body of the message.
Finally, it describes the syntax of the header lines in detail. Generally they consist of a key-
word and then a value.

Vol 10 No 1 84 AUUGN

Note that the addressee is indicated as LEVY@RED.RUTGERS.EDU. Initially, addresses
were simply "person at machine". However recent standards have made things more flexible.
There are now provisions for systems to handle other systems’ mail. This can allow
automatic forwarding on behalf of computers not connected to the Internet. It can be used to
direct mail for a number of systems to one central mail server. Indeed there is no require-
ment that an actual computer by the name of RED.RUTGERS.EDU even exist. The name
servers could be set up so that you mail to department names, and each department’s mail is
routed automatically to an appropriate computer. It is also possible that the part before the @
is something other than a user name. It is possible for programs to be set up to process mail.
There are also provisions to handle mailing lists, and generic names such as "postmaster" or
"operator".

The way the message is to be sent to another system is described by RFC’s 821 and 974.
The program that is going to be doing the sending asks the name server several queries to
determine where to route the message. The first query is to find out which machines handle
mail for the name RED.RUTGERS.EDU. In this case, the server replies that
RED.RUTGERS.EDU handles its own mail. The program then asks for the address of
RED.RUTGERS.EDU, which is 128.6.4.2. Then the mail program opens a TCP connection
to port 25 on 128.6.4.2. Port 25 is the well-known socket used for receiving mail. Once this
connection is established, the mail program starts sending commands. Here is a typical
conversation. Each line is labelled as to whether it is from TOPAZ or RED. Note that
TOPAZ initiated the connection:

RED 220 RED.RUTGERS.EDU SMTP Service at 29 Jun 87 05:17:i8 EDT
TOPAZ HELO topaz.rutgers.edu
RED 250 RED.RUTGERS.EDU - Hello, TOPAZ.RUTGERS.EDU
TOPAZ MAIL From:<hedrick@topaz.rutgers.edu>
RED 250 MAIL accepted
TOPAZ RCPT To:<levy@red.rutgers.edu>
RED 250 Recipient accepted
TOPAZ DATA
RED 354 Start mail input; end with <CRLF>.<CRLF>
TOPAZ Date: Sat, 27 Jun 87 13:26:31 EDT
TOPAZ From: hedrick@topaz.rutgers.edu

To: levy@red.rutgers.edu
Subject: meeting

TOPAZ
TOPAZ
TOPAZ
TOPAZ Let’s get together Monday at lpm.
TOPAZ .
RED 250 OK
TOPAZ QUIT
RED 221 RED.RUTGERS.EDU Service closing transmission channel

AUUGN 85 Vol 10 No 1

First, note that commands all use normal text. This is typical of the Internet standards.
Many of the protocols use standard ASCII commands. This makes it easy to watch what is
going on and to diagnose problems. For example, the mail program keeps a log of each
conversation. If something goes wrong, the log file can simply be mailed to the postmaster.
Since it is normal text, he can see what was going on. It also allows a human to interact
directly with the mail server, for testing. (Some newer protocols are complex enough that
this is not practical. The commands would have to have a syntax that would require a signifi-
cant parser. Thus there is a tendency for newer protocols to use binary formats. Generally
they are structured like C or Pascal record structures.) Second, note that the responses all
begin with numbers. This is also typical of Internet protocols. The allowable responses are
defined in the protocol. The numbers allow the user program to respond unambiguously.
The rest of the response is text, which is normally for use by any human who may be watch-
ing or looking at a log. It has no effect on the operation of the programs. (However there is
one point at which the protocol uses part of the text of the response.) The commands them-
selves simply allow the mail program on one end to tell the mail server the information it
needs to know in order to deliver the message. In this case, the mail server could get the
information by looking at the message itself. But for more complex cases, that would not be
safe. Every session must begin with a HELO, which gives the name of the system that ini-
tiated the connection. Then the sender and recipients are specified. (There can be more than
one RCPT command, if there are several recipients.) Finally the data itself is sent. Note that
the text of the message is terminated by a line containing just a period. (If such a line
appears in the message, the period is doubled.) After the message is accepted, the sender can
send another message, or terminate the session as in the example above.

Generally, there is a pattern to the response numbers. The protocol defines the specific set of
responses that can be sent as answers to any given command. However programs that don’t
want to analyze them in detail can just look at the first digit. In general, responses that begin
with a 2 indicate success. Those that begin with 3 indicate that some further action is needed,
as shown above. 4 and 5 indicate errors. 4 is a "temporary" error, such as a disk filling.
The message should be saved, and tried again later. 5 is a permanent error, such as a non-
existent recipient. The message should be returned to the sender with an error message.

(For more details about the protocols mentioned in this section, see RFC’s 821/822 for mail,
RFC 959 for file transfer, and RFC’s 854/855 for remote logins. For the well-known port
numbers, see the current edition of Assigned Numbers, and possibly RFC 814.)

4. Protocols other than TCP: UDP and ICMP

So far, we have described only connections that use TCP. Recall that TCP is responsible for
breaking up messages into datagrams, and reassembling them properly. However in many
applications, we have messages that will always fit in a single datagram. An example is
name lookup. When a user attempts to make a connection to another system, he will gen-
erally specify the system by name, rather than Internet address. His system has to translate

Vol 10 No 1 86 AUUGN

that name to an address before it can do anything. Generally, only a few systems have the
database used to translate names to addresses. So the user’s system will want to send a query
to one of the systems that has the database. This query is going to be very short. It will cer-
tainly fit in one datagram. So will the answer. Thus it seems silly to use TCP. Of course
TCP does more than just break things up into datagrams. It also makes sure that the data
arrives, resending datagrams where necessary. But for a question that fits in a single
datagram, we don’t need all the complexity of TCP to do this. If we don’t get an answer
after a few seconds, we can just ask again. For applications like this, there are alternatives to
TCP.

The most common alternative is UDP ("user datagram protocol"). UDP is designed for appli-
cations where you don’t need to put sequences of datagrams together. It fits into the system
much like TCP. There is a UDP header. The network software puts the UDP header on the
front of your data, just as it would put a TCP header on the front of your data. Then UDP
sends the data to IP, which adds the IP header, putting UDP’s protocol number in the protocol
field instead of TCP’s protocol number. However UDP doesn’t do as much as TCP does. It
doesn’t split data into multiple datagrams. It doesn’t keep track of what it has sent so it can
resend if necessary. About all that UDP provides is port numbers, so that several programs
can use UDP at once. UDP port numbers are used just like TCP port numbers. There are
well-known port numbers for servers that use UDP. Note that the UDP header is shorter than
a TCP header. It still has source and destination port numbers, and a checksum, but that’s
about it. No sequence number, since it is not needed. UDP is used by the protocols that han-
dle name lookups (see IEN 116, RFC 882, and RFC 883), and a number of similar protocols.

Another alternative protocol is ICMP ("Internet control message protocol"). ICMP is used for
error messages, and other messages intended for the TCP/IP software itself, rather than any
particular user program. For example, if you attempt to connect to a host, your system may
get back an ICMP message saying "host unreachable". ICMP can also be used to find out
some information about the network. See RFC 792 for details of ICMP. ICMP is similar to
UDP, in that it handles messages that fit in one datagram. However it is even simpler than
UDP. It doesn’t even have port numbers in its header. Since all ICMP messages are inter-
preted by the network software itself, no port numbers are needed to say where a ICMP mes-
sage is supposed to go.

5. Keeping track of names and information: the domain system

As we indicated earlier, the network software generally needs a 32-bit Internet address in
order to open a connection or send a datagram. However users prefer to deal with computer
names rather than numbers. Thus there is a database that allows the software to look up a
name and find the corresponding number. When the Internet was small, this was easy. Each
system would have a file that listed all of the other systems, giving both their name and
number. There are now too many computers for this approach to be practical. Thus these
files have been replaced by a set of name servers that keep track of host names and the

AUUGN 87 Vol 10 No 1

corresponding Intemet addresses. (In fact these servers are somewhat more general than that.
This is just one kind of information stored in the domain system.) Note that a set of inter-
locking servers are used, rather than a single central one. There are now so many different
institutions connected to the Internet that it would be impractical for them to notify a central
authority whenever they installed or moved a computer. Thus naming authority is delegated
to individual institutions. The name servers form a tree, corresponding to institutional struc-
ture. The names themselves follow a similar structure. A typical example is the name
BORAX.LCS.MIT.EDU. This is a computer at the Laboratory for Computer Science (LCS)
at MIT. In order to find its Internet address, you might potentially have to consult 4 different
servers. First, you would ask a central server (called the root) where the EDU server is.
EDU is a server that keeps track of educational institutions. The root server would give you
the names and Internet addresses of several servers for EDU. (There are several servers at
each level, to allow for the possibly that one might be down.) You would then ask EDU
where the server for MIT is. Again, it would give you names and Internet addresses of
several servers for M_IT. Generally, not all of those servers would be at MIT, to allow for the
possibility of a general power failure at MIT. Then you would ask M1T where the server for
LCS is, and finally you would ask one of the LCS servers about BORAX. The final result
would be the Intemet address for BORAX.LCS.MIT.EDU. Each of these levels is referred to
as a "domain". The entire name, BORAX.LCS.MIT.EDU, is called a "domain name". (So
are the names of the higher-level domains, such as LCS.MIT.EDU, MIT.EDU, and EDU.)

Fortunately, you don’t really have to go through all of this most of the time. First of all, the
root name servers also happen to be the name servers for the top-level domains such as EDU.
Thus a single query to a root server will get you to MIT. Second, software generally
remembers answers that it got before. So once we look up a name at LCS.MIT.EDU, our
software remembers where to find servers for LCS.MIT.EDU, MIT.EDU, and EDU. It also
remembers the translation of BORAX.LCS.MIT.EDU. Each of these pieces of information
has a "time to live" associated with it. Typically this is a few days. After that, the informa-
tion expires and has to be looked up again. This allows institutions to change things.

The domain system is not limited to finding out Internet addresses. Each domain name is a
node in a database. The node can have records that define a number of different properties.
Examples are Internet address, computer type, and a list of services provided by a computer.
A program can ask for a specific piece of information, or all information about a given name.
It is possible for a node in the database to be marked as an "alias" (or nickname) for another
node. It is also possible to use the domain system to store information about users, mailing
lists, or other objects.

There is an Internet standard defining the operation of these databases, as well as the proto-
cols used to make queries of them. Every network utility has to be able to make such
queries, since this is now the official way to evaluate host names. Generally utilities will talk
to a server on their own system. This server will take care of contacting the other servers for
them. This keeps down the amount of code that has to be in each application program.

Vol 10 No 1 88 AUUGN

The domain system is particularly important for handling computer mail. There are entry
types to define what computer handles mail for a given name, to specify where an individual
is to receive mail, and to define mailing lists.

(See RFC’s 882, 883, and 973 for specifications of the domain system. RFC 974 defines the
use of the domain system in sending mail.)

6. Routing

The description above indicated that the IP implementation is responsible for getting
datagrams to the destination indicated by the destination address, but little was said about
how this would be done. The task of finding how to get a datagram to its destination is
referred to as "routing". In fact many of the details depend upon the particular implementa-
tion. However some general things can be said.

First, it is necessary to understand the model on which IP is based. IP assumes that a system
is attached to some local network. We assume that the system can send datagrams to any
other system on its own network. (In the case of Ethernet, it simply finds the Ethemet
address of the destination system, and puts the datagram out on the Ethernet.) The problem
comes when a system is asked to send a datagram to a system on a different network. This
problem is handled by gateways. A gateway is a system that connects a network with one or
more other networks. Gateways are often normal computers that happen to have more than
one network interface. For example, we have a Unix machine that has two different Ethernet
interfaces. Thus it is connected to networks 128.6.4 and 128.6.3. This machine can act as a
gateway between those two networks. The software on that machine must be set up so that it
will forward datagrams from one network to the other. That is, if a machine on network
128.6.4 sends a datagram to the gateway, and the datagram is addressed to a machine on net-
work 128.6.3, the gateway will forward the datagram to the destination. Major communica-
tions centers often have gateways that connect a number of different networks. (In many
cases, special-purpose gateway systems provide better performance or reliability than general-
purpose systems acting as gateways. A number of vendors sell such systems.)

Routing in IP is based entirely upon the network number of the destination address. Each
computer has a table of network numbers. For each network number, a gateway is listed.
This is the gateway to be used to get to that network. Note that the gateway doesn’t have to
connect directly to the network. It just has to be the best place to go to get there. For exam-
ple at Rutgers, our interface to NSFnet is at the John yon Neuman Supercomputer Center
(JvNC). Our connection to JvNC is via a high-speed serial line connected to a gateway whose
address is 128.6.3.12. Systems on net 128.6.3 will list 128.6.3.12 as the gateway for many
off-campus networks. However systems on net 128.6.4 will list 128.6.4.1 as the gateway to
those same off-campus networks. 128.6.4.1 is the gateway between networks 128.6.4 and
128.6.3, so it is the first step in getting to JvNC.

AUUGN 89 Vol 10 No 1

When a computer wants to send a datagram, it first checks to see if the destination address is
on the system’s own local network. If so, the datagram can be sent directly. Otherwise, the
system expects to find an entry for the network that the destination address is on. The
datagram is sent to the gateway listed in that entry. This table can get quite big. For exam-
ple, the Internet now includes several hundred individual networks. Thus various strategies
have been developed to reduce the size of the routing table. One strategy is to depend upon
"default routes". Often, there is only one gateway out of a network. This gateway might
connect a local Ethernet to a campus-wide backbone network. In that case, we don’t need to
have a separate entry for every network in the world. We simply define that gateway as a
"default". When no specific route is found for a datagram, the datagram is sent to the default
gateway. A default gateway can even be used when there are severn gateways on a network.
There are provisions for gateways to send a message saying "I’m not the best gateway -- use
this one instead." (The message is sent via ICMP. See RFC 792.) Most network software is
designed to use these messages to add entries to their routing tables. Suppose network
128.6.4 has two gateways, 128.6.4.59 and 128.6.4.1. 128.6.4.59 leads to several other internal
Rutgers networks. 128.6.4.1 leads indirectly to the NSFnet. Suppose we set 128.6.4.59 as a
default gateway, and have no other routing table entries. Now what happens when we need to
send a datagram to MIT? MIT is network 18. Since we have no entry for network 18, the
datagram will be sent to the default, 128.6.4.59. As it happens, this gateway is the wrong
one. So it will forward the datagram to 128.6.4.1. But it will also send back an error saying
in effect: "to get to network 18, use 128.6.4.1". Our software will then add an entry to the
routing table. Any future datagrams to MIT will then go directly to 128.6.4.1. (The error
message is sent using the ICMP protocol. The message type is called "ICMP redirect.")

Most IP experts recommend that individual computers should not try to keep track of the
entire network. Instead, they should start with default gateways, and let the gateways tell
them the routes, as just described. However this doesn’t say how the gateways should find
out about the routes. The gateways can’t depend upon this strategy. They have to have fairly
complete routing tables. For this, some sort of routing protocol is needed. A routing proto-
col is simply a technique for the gateways to find each other, and keep up to date about the
best way to get to every network. RFC 1009 contains a review of gateway design and rout-
ing. However rip.doc is probably a better introduction to the subject. It contains some
tutorial material, and a detailed description of the most commonly-used routing protocol.

7. Details about Internet addresses: subnets and broadcasting

As indicated earlier, Internet addresses are 32-bit numbers, normally written as 4 octets (in
decimal), e.g. 128.6.4.7. There are actually 3 different types of address. The problem is that
the address has to indicate both the network and the host within the network. It was felt that
eventually there would be lots of networks. Many of them would be small, but probably 24
bits would be needed to represent all the IP networks. It was also felt that some very big net-
works might need 24 bits to represent all of their hosts. This would seem to lead to 48 bit
addresses. But the designers really wanted to use 32 bit addresses. So they adopted a

Vol 10 No 1 90 AUUGN

Nudge. The assumption is that most of the networks will be small. So they set up three dif-
ferent ranges of address. Addresses beginning with 1 to 126 use only the first octet for the
network number. The other three octets are available for the host number. Thus 24 bits are
available for hosts. These numbers are used for large networks. But there can only be 126 of
these very big networks. The Arpanet is one, and there are a few large commercial networks.
But few normal organizations get one of these "class A" addresses. For normal large organi-
zations, "class B" addresses are used. Class B addresses use the first two octets for the net-
work number. Thus network numbers are 128.1 through 191.254. (We avoid 0 and 255, for
reasons that we see below. We also avoid addresses beginning with 127, because that is used
by some systems for special purposes.) The last two octets are available for host addesses,
giving 16 bits of host address. This allows for 64516 computers, which should be enough for
most organizations. (It is possible to get more than one class B address, if you run out.)
Finally, class C addresses use three octets, in the range 192.1.1 to 223.254.254. These allow
only 254 hosts on each network, but there can be lots of these networks. Addresses above
223 are reserved for future use, as class D and E (which are currently not defined).

Many large organizations find it convenient to divide their network number into "subnets".
For example, Rutgers has been assigned a class B address, 128.6. We find it convenient to
use the third octet of the address to indicate which Ethernet a host is on. This division has no
significance outside of Rutgers. A computer at another institution would treat all datagrams
addressed to 128.6 the same way. They would not look at the third octet of the address.
Thus computers outside Rutgers would not have different routes for 128.6.4 or 128.6.5. But
inside Rutgers, we treat 128.6.4 and 128.6.5 as separate networks. In effect, gateways inside
Rutgers have separate entries for each Rutgers subnet, whereas gateways outside Rutgers just
have one entry for 128.6. Note that we could do exactly the same thing by using a separate
class C address for each Ethernet. As far as Rutgers is concerned, it would be just as con-
venient for us to have a number of class C addresses. However using class C addresses
would make things inconvenient for the rest of the world. Every institution that wanted to
talk to us would have to have a separate entry for each one of our networks. If every institu-
tion did this, there would be far too many networks for any reasonable gateway to keep track
of. By subdividing a class B network, we hide our internal structure from everyone else, and
save them trouble. This subnet strategy requires special provisions in the network software.
It is described in RFC 950.

0 and 255 have special meanings. 0 is reserved for machines that don’t know their address.
In certain circumstances it is possible for a machine not to know the number of the network it
is on, or even its own host address. For example, 0.0.0.23 would be a machine that knew it
was host number 23, but didn’t know on what network.

255 is used for "broadcast". A broadcast is a message that you want every system on the net-
work to see. Broadcasts are used in some situations where you don’t know who to talk to.
For example, suppose you need to look up a host name and get its Internet address. Some-
times you don’t know the address of the nearest name server. In that case, you might send

AUUGN 91 Vol 10 No 1

the request as a broadcast. There are also cases where a number of systems are interested in
information. It is then less expensive to send a single broadcast than to send datagrams indi-
vidually to each host that is interested in the information. In order to send a broadcast, you
use an address that is made by using your network address, with all ones in the part of the
address where the host number goes. For example, if you are on network 128.6.4, you would
use 128.6.4.255 for broadcasts. How this is actually implemented depends upon the medium.
It is not possible to send broadcasts on the Arpanet, or on point to point lines. However it is
possible on an Ethernet. If you use an Ethernet address with all its bits on (all ones), every
machine on the Ethernet is supposed to look at that datagram.

Although the official broadcast address for network 128.6.4 is now 128.6.4.255, there are
some other addresses that may be treated as broadcasts by certain implementations. For con-
venience, the standard also allows 255.255.255.255 to be used. This refers to all hosts on the
local network. It is often simpler to use 255.255.255.255 instead of finding out the network
number for the local network and forming a broadcast address such as 128.6.4.255. In addi-
tion, certain older implementations may use 0 instead of 255 to form the broadcast address.
Such implementations would use 128.6.4.0 instead of 128.6.4.255 as the broadcast address on
network 128.6.4. Finally, certain older implementations may not understand about subnets.
Thus they consider the network number to be 128.6. In that case, they will assume a broad-
cast address of 128.6.255.255 or 128.6.0.0. Until support for broadcasts is implemented prop-
erly, it can be a somewhat dangerous feature to use.

Because 0 and 255 are used for unknown and broadcast addresses, normal hosts should never
be given addresses containing 0 or 255. Addresses should never begin with 0, 127, or any
number above 223. Addresses violating these rules are sometimes referred to as "Martians",
because of rumors that the Central University of Mars is using network 225.

8. Datagram fragmentation and reassembly

TCP/IP is designed for use with many different kinds of network. Unfortunately, network
designers do not agree about how big packets can be. Ethernet packets can be 1500 octets
long. Arpanet packets have a maximum of around 1000 octets. Some very fast networks
have much larger packet sizes. At first, you might think that IP should simply settle on the
smallest possible size. Unfortunately, this would cause serious performance problems. When
transferring large files, big packets are far more efficient than small ones. So we want to be
able to use the largest packet size possible. But we also want to be able to handle networks
with small limits. There are two provisions for this. First, TCP has the ability to "negotiate"
about datagram size. When a TCP connection first opens, both ends can send the maximum
datagram size they can handle. The smaller of these numbers is used for the rest of the con-
nection. This allows two implementations that can handle big datagrams to use them, but
also lets them talk to implementations that can’t handle them. However this doesn’t com-
pletely solve the problem. The most serious problem is that the two ends don’t necessarily
know about all of the steps in between. For example, when sending data between Rutgers

Vol 10 No 1 92 AUUGN

and Berkeley, it is likely that both computers will be on Ethernets. Thus they will both be
prepared to handle 1500-octet datagrams. However the connection will at some point end up
going over the Arpanet. It can’t handle packets of that size. For this reason, there are provi-
sions to split datagrams up into pieces. (This is referred to as "fragmentation".) The IP
header contains fields indicating the a datagram has been split, and enough information to let
the pieces be put back together. If a gateway connects an Ethernet to the Arpanet, it must be
prepared to take 1500-octet Ethernet packets and split them into pieces that will fit on the
Arpanet. Furthermore, every host implementation of TCP/IP must be prepared to accept
pieces and put them back together. This is referred to as "reassembly".

TCP/IP implementations differ in the approach they take to deciding on datagram size. It is
fairly common for implementations to use 576-byte datagrams whenever they can’t verify that
the entire path is able to handle larger packets. This rather conservative strategy is used
because of the number of implementations with bugs in the code to reassemble fragments.
Implementors often try to avoid ever having fragmentation occur. Different implementors
take different approaches to deciding when it is safe to use large datagrams. Some use them
only for the local network. Others will use them for any network on the same campus. 576
bytes is a "safe" size, which every implementation must support.

9. Ethernet encapsulation: ARP

There was a brief discussion earlier about what IP datagrams look like on an Ethernet. The
discussion showed the Ethernet header and checksum. However it left one hole: It didn’t say
how to figure out what Ethernet address to use when you want to talk to a given Internet
address. In fact, there is a separate protocol for this, called ARP ("address resolution proto-
col"). (Note by the way that ARP is not an IP protocol. That is, the ARP datagrams do not
have IP headers.) Suppose you are on system 128.6.4.194 and you want to connect to system
128.6.4.7. Your system will first verify that 128.6.4.7 is on the same network, so it can talk
directly via Ethernet. Then it will look up 128.6.4.7 in its ARP table, to see if it already
knows the Ethernet address. If so, it will stick on an Ethernet header, and send the packet.
But suppose this system is not in the ARP table. There is no way to send the packet, because
you need the Ethernet address. So it uses the ARP protocol to send an ARP request. Essen-
tially an ARP request says "I need the Ethernet address for 128.6.4.7". Every system listens
to ARP requests. When a system sees an ARP request for itself, it is required to respond. So
128.6.4.7 will see the request, and will respond with an ARP reply saying in effect "128.6.4.7
is 8:0:20:1:56:34". (Recall that Ethernet addresses are 48 bits. This is 6 octets. Ethernet
addresses are conventionally shown in hex, using the punctuation shown.) Your system will
save this information in its ARP table, so future packets will go directly. Most systems treat
the ARP table as a cache, and clear entries in it if they have not been used in a certain period
of time.

Note by the way that ARP requests must be sent as "broadcasts". There is no way that an
ARP request can be sent directly to the right system. After all, the whole reason for sending

AUUGN 93 Vol 10 No 1

an ARP request is that you don’t know the Ethemet address. So an Ethernet address of all
ones is used, i.e. ff:ff:ff:ff:ff:ff. By convention, every machine on the Ethernet is required to
pay attention to packets with this as an address. So every system sees every ARP requests.
They all look to see whether the request is for their own address. If so, they respond. If not,
they could just ignore it. (Some hosts will use ARP requests to update their knowledge about
other hosts on the network, even if the request isn’t for them.) Note that packets whose IP
address indicates broadcast (e.g. 255.255.255.255 or 128.6.4.255) are also sent with an Ether-
net address that is all ones.

10. Getting more information

This directory contains documents describing the major protocols. There are literally hun-
dreds of documents, so we have chosen the ones that seem most important. Intemet standards
are called RFC’s. RFC stands for Request for Comment. A proposed standard is initially
issued as a proposal, and given an RFC number. When it is finally accepted, it is added to
Official Internet Protocols, but it is still referred to by the RFC number. We have also
included two IEN’s. (IEN’s used to be a separate classification for more informal documents.
This classification no longer exists -- RFC’s are now used for all official Internet documents,
and a mailing list is used for more informal reports.) The convention is that whenever an
RFC is revised, the revised version gets a new number. This is fine for most purposes, but it
causes problems with two documents: Assigned Numbers and Official Internet Protocols.
These documents are being revised all the time, so the RFC number keeps changing. You
will have to look in rfc-index.txt to find the number of the latest edition. Anyone who is
seriously interested in TCP/IP should read the RFC describing IP (791). RFC 1009 is also
useful. It is a specification for gateways to be used by NSFnet. As such, it contains an over-
view of a lot of the TCP/IP technology. You should probably also read the description of at
least one of the application protocols, just to get a feel for the way things work. Mail is
probably a good one (821/822). TCP (793) is of course a very basic specification. However
the spec is fairly complex, so you should only read this when you have the time and patience
to think about it carefully. Fortunately, the author of the major RFC’s (Jon Postel) is a very
good writer. The TCP RFC is far easier to read than you would expect, given the complexity
of what it is describing. You can look at the other RFC’s as you become curious about their
subject matter.

Vol 10 No 1 94 AUUGN

Here is a list of the documents you are more likely to want:

rfc-index

rfclO12
rfclOll

rfcl010

rfc 1009

rfc 1 O01/2

rfc973
rfc959

rfc950
rfc937
rfc894

rfc882/3

rfc854/5
rfc826

rfc821/2
rfc814

rfc793

rfc792
rfc791
rfc768
rip.doc

ien-ll6
ien-48

list of all RFC’s
somewhat fuller list of all RFC’s

Official Protocols. It’s useful to scan this to see what tasks protocols
have been built for. This defines which RFC’s are actual standards, as
opposed to requests for comments.
Assigned Numbers. If you are working with TCP/IP, you will probably
want a hardcopy of this as a reference. It’s not very exciting to read.
It lists all the offically defined well-known ports and lots of other
things.
NSFnet gateway specifications. A good overview of IP routing and
gateway technology.

netBIOS: networking for PC’s
update on domains

FTP (file transfer)
subnets

POP2: protocol for reading mail on PC’s
how IP is to be put on Ethernet, see also rfc825
domains (the database used to go from host names to Internet address
and back -- also used to handle UUCP these days). See also rfc973

telnet - protocol for remote logins
ARP - protocol for finding out Ethernet addresses
mail

names and ports - general concepts behind well-known ports

TCP
ICMP

IP
UDP
details of the most commonly-used routing protocol

old name server (still needed by several kinds of system)
the Catenet model, general description of the philosophy behind TCP/IP

AUUGN 95 Vol 10 No 1

The following documents are somewhat more specialized.

rfc813

rfc815
rfc816

rfc817
rfc879

rfc896

rfc827,888,904,975,985

window and acknowledgement strategies in TCP

datagram reassembly techniques
fault isolation and resolution techniques

modularity and efficiency in implementation
the maximum segment size option in TCP

congestion control

EGP and related issues

To those of you who may be reading this document remotely instead of at Rutgers: The most
important RFC’s have been collected into a three-volume set, the DDN Protocol Handbook.
It is available from the DDN Network Information Center, SRI International, 333 Ravens-
wood Avenue, Menlo Park, California 94025 (telephone: 800-235-3155). You should be able
to get them via anonymous FTP from sri-nic.arpa. File names are:

RFC’s:
rfc:rfc-index.txt
rfc:rfcxxx.txt

IEN’ s:
ien:ien-index.txt
ien:ien-xxx.txt

rip.doc is available by anonymous FTP from topaz.rutgers.edu, as/pub/tcp-ip-docs/rip.doc.

Sites with access to UUCP but not FTP may be able to retreive them via UUCP from UUCP
host rutgers. The file names would be

RFC’s:
/topaz/pub/pub/tcp-ip-docs/rfc-index.txt
/topaz/pub/pub/tcp-ip-docs/rfcxxx.txt

IEN’s:
/topaz/pub/pub/tcp-ip-docs/ien-index.txt
/topaz/pub/pub/tcp-ip-docs/ien-xxx.txt

/topaz/pub/pub/tcp-ip-docs/rip.doc

Note that SRI-NIC has the entire set of RFC’s and IEN’s, but rutgers and topaz have only
those specifically mentioned above.

Vol 10 No 1 96 AUUGN

Future Berkeley UNIX developments

Mike Karels

Computer Systems Research Group
Computer Science Division

University of California

Berkeley, CA 94720

USA
karel s@ B erkeley.ED U

UNIX is a registered trademark of AT&T in the USA and other countries.

AUUGN 97 Vol 10 No 1

Computer Systems Research Group
Staff

Head Honcho

Domenico Ferrari

Movers and shakers

Mike Karels
Kirk McKusick

Keith Bostic

Keith Sklower

DEC Berkeley Division

Jean Wood
Marc Teitelbaum

Distribution Office
Pauline Schwartz
Anne Hughes

Vol 10 No 1 98 AUUGN

4o3BSD Hardware Base

VAX

8600/8650,
MicroVAX

780/785,
(xoo

8200/8250 (BI bus)
not 85x0, 8700, 8800

750, 730
recently)

Tahoe

CCI Power 6/32, 6/32SX
Harris HCX-7 (HCX-9 soon)
Sperry 7000/40
ICL Clan 7

AUUGN 99 Vol 10 No 1

Recent Work:
4.3BSD Tahoe release

Support for Tahoe hardware, VAX 8250

New TCP algorithms
(slow start, congestion control)

Kernel memory allocator

Disk labels

Flexible filesystem limits

Vol 10 No 1 100 AUUGN

4.3BSD Kernel Memory Allocator

Criteria for a Kernel Memory Allocator

Speed of allocation

"These routines are not that fast, so
they should not be used in very
frequent operations (e.g. operations that
happen more often than, say, once
every few seconds)."

Effective utilization of memory

"While the memory allocator
distributed with 4.2BSD was more than
twice as fast as the other memory
allocators that were tested, it used twice
as much memory to do the
allocations."

AUUGN 101 Vol 10 No 1

4.3BSD Kernel Memory Allocator

Like the 4.3BSD C library malloc, the kernel
malloc uses a buddy system when doing
allocations of a page size or less.

Macros are available for frequent allocation
paths.

Allocations larger than page size use a slower
but more memory-efficient allocator.

Each page holds only one allocation size.

Replaces many special-purpose allocators
such as calloc, wmemall, zmemall, geteblk,
and m_get.

Vol 10 No 1 102 AUUGN

Disk Pack Labels

Labels on each disk (pack) contain

detailed geometry information
(cylinder, track, sector layout;
driver-specific information)

¯ partition layout and usage

stored in block 0
(shared with boot block)

installed and modified with disklabe 1 (8)

used by
kernel, bootstrap (autoconfig, drivers,
error reporting)
newfs (geometry; filesystem usage)

fsck (alternate superblocks)

bad144 (bad-sector table)

Filesystem now understands irregular
rotational layout (track skew, interleaving)
(done by newfs)

AUUGN 103 Vol 10 No 1

Current CSRG projects

routing protocols and implementations
(routed, EGP and gated)

Intemet nameserver and extensions

¯ ISO/OSI Networking protocol support

updates to system interface

¯ POSIX-compliant interface

Generic Virtual Filesystem Interface
Switch

in progress

rearrangement of the UNIX filesystem
in progress

Vol 10 No 1 104 AUUGN

4.3BSD POSIX interface

Terminal interface
POSIX interface derives from
System V
4.3 interface derived from Seventh
Edition, with numerous additions

4.4BSD will use POSIX interface with
obvious extensions
prototype now running
utilities mostly converted to new
interface

Job control
POSIX job control derived from
4.2BSD, added security model
prototype now running

Signals

Group sets
AUUGN 105 Vol 10 No 1

Vir~ua! Memory design

Processes as regions
® shared memory with semaphores
~ file mapping (private or shared)

device memory mapping
® copy on write after fork and file

mapping
~ lightweight processes

Large, sparse address spaces
multilevel, paged data structures

~ swap image not preallocated

Reasonable hardware independence, range of
configurations

Integration with kernel memory allocation,
network, filesystem

Vol 10 No 1 106 AUUGN

Virtual Memory design

User interface finalized
mmap, munmap
mprotect, madvise, mincore; msync
mset, mclear; msleep, mwakeup

¯ mlock added
All naming of memory objects uses
filesystem namespace; virtual-
memory-resident filesystem for
transient objects

Interaction with filesystem
Filesystems own "buffer cache" pages

Virtual memory system owns private
pages
Pages may be both mapped and
"cached" (copy on write)
Size of buffer cache varies according to
memory demand
Page fault service calls filesystem
implementation to find/get fill-from-file
data.

AUUGN 107 Vol 10 No 1

Kernel Structure

Read/Write

faults File Table

Virtual Memory
sockets

VNODE
local

file system

control
data

disk
drivers

Physical Memory
Management

special
devices NFS

File Page
Cache

~ to RPC

Vol 10 No 1 108 AUUGN

Protocol layering interfaces

4.2, 4.3 BSD
three layers, three interfaces

¯ Protocols are top-level (TCP, UDP) or
bottom-level (IP, IDP)

. Terminal line disciplines use separate
interface, buffering, control

Eighth Edition Unix (System V.3)

uses "Stream" abstraction
stylized interaction allows easy
stacking

protocols/line disciplines as coroutines
multiplexing is difficult

4.4 BSD
Unify stream/tty interface and protocol
interfaces

¯ kernel-level demultiplexing as in
4.3BSD
stackable processing modules above
demultiplexing layers

AUUGN 109 Vol 10 No 1

4.2/4.3BSD Protocol Layering

socket

PUP

SPP

IDP

RAW UDP TCP

IP

TCP UNIX

Hardware Interface

Vol 10 No 1 110 AUUGN

New Protocol Layering

R

IDP
I-

IMP ENET 1

AUUGN 111 Vol 10 No 1

Licensing

3BSD, 4BSD, 4.1BSD, 4.2BSD, and
4.3BSD are based on AT&T 32/V UNIX

Should the next BSD release
later AT&T technology?

incorporate

Currently
V, release

considering the
2 technology.

useof System

Vol 10 No 1 112 AUUGN

Kernel Interna! Cleanups

merge proc, user structures
* dynamically allocated
* always resident

reduce global use of user structure
expunge u.u_error

New sleep/wakeup mechanism
eliminate aborted system calls
(longjmp)

AUUGN 113 Vol 10 No 1

login
The USENIX Association Newsletter

Volume 14, Number 1

CONTENTS

January/February 1989

Call for Papers: Workshop on Software Management ..3

Call for Papers: Workshop on UNIX Transaction Processing ..4

Call for Papers: Summer 1989 USENIX Conference ...5

Enhancing the 4.3 BSD UNIX Serial Line Interface ...6

An Update on UNIX Standards Activities ...30

Letter to the Editor ...44

The EUUG ...45

EUUG Spring ’89 Conference ...47
48Future Events; ...

Publications Available ..48

Long-Term Calendar of UNIX Events ..49

Large Systems Administration Workshop ..50

New Release of 2.10 BSD Available ..50

1989 USENIX Membership Form ...51

The closing date for submissions for the next issue of ;login: is February 24, 1989

If you have not paid your 1989 membership dues, this is
your last issue of ;login. Use the form on the inside
back cover (p. 51).

THE PROFESSIONAL AND TECHNICAL

UNIX® ASSOCIATION

Vol 10 No 1 114 AUUGN

;login:

Call for Papers

Workshop on Software Management

New Orleans Hilton and Towers
New Orleans, LA

April 3-4, 1989

David Tilbrook and Barry Shein will be chairing a workshop in New Orleans, LA on
Monday and Tuesday, April 3-4, 1989. The workshop will concern the management and
processing of source, and the discipline of managing, maintaining, and distributing software:
The ultimate objective of software management is the unrema, rkable and pa~nless~, i:nsl~al, la,
tion of software and its subsequent upgrades; at- n re-mote: si, te., The objecfi~ve of the
workshop is to present, discuss, and increase awareness of the issu~ i,r~vo~ve:d, vA,.t~ sogtw,a~e
management, in order to impro,ve arid facilitate the dislributio~ and. sharing o,f saurce’
throughout the UNIX community. Possible topics include:

Release engineering
Configuration management
Installation tools and techniques
Construction tools and techniques
Source code control systems
Testing

The workshop will include full length papers, short presentations, and a panel discus-
sion on tools (e.g., is PCTE a good or viable idea?).

Among the speakers already scheduled are Vic Stenning (keynote), Steve Bourne,
Andrew Hume, Kirk McKusick, and Evi Nemeth.

Abstracts of 350-700 words in PostScript or troff format should be submitted to
software@usenix, by January 25, 1989. Full papers will be required by March 2, 1989.
Authors will be notified by Febuary 6, 1989 or at the San Diego Conference.

AUUGN 115 Vol 10 No 1

;login:

Call for Papers

Workshop on UNIX Transaction Processing

Pittsburgh Hilton Hotel
Pittsburgh, PA.

May 1-2, 1989

It is expected that the UNIX System will play an increasingly important role in hosting
production transaction processing systems. This first transaction processing workshop will
explore existing technology applicable to UNIX-based transaction processing, and hopefully
generate technical discussion on future requirements. The intent is to have short papers and
presentations which include (but are not limited to) the following topics:

Transaction Integrity
Two-Phase Commit
Distributed Transactions
Client-Server Transaction models
Transaction queing and scheduling
Data Entry Systems
Transaction Benchmarking
Transaction system performance modelling
Operating System Support for Transaction systems

The workshop will focus on short papers and presentations. Please send electronically
or on paper a one to two page single-spaced summary describing your paper or presentation
to Doug Kevorkian by February 1, 1989. All submissions will be acknowledged, and authors
will be notified of acceptance by March 15, 1989.

For further details about the workshop, contact the program chair:

Doug Kevorkian
AT&T Bell Laboratories
Room 5-340
190 River Road
Summit, New Jersey 07901

(201) 522-5086 (voice)
(201) 522-6621 (FAX)
attunix!dek

Vol 10 No 1 116 AUUGN

;login:

Call for Papers
Summer 1989 USENIX Conference

Baltimore, Maryland
June 12-16, 1989

Papers in all areas of UNIX-related
research and development are solicited for
formal review for the technical program of the
1989 Summer USENIX Conference. Accepted
papers will be presented during the three days
of technical sessions at the conference and
published in the conference proceedings. The
technical program is considered the leading
forum for the presentation of new develop-
ments in work related to or based on the UNIX
operating system.

Appropriate topics for technical presenta-
tions include, but are not limited to:

Performance:
Kernel enhancements
Compute and file servers
Scaling issues resulting from more MIPS

File systems: CD-ROM, WORM, network,
archival

Networks: WAN, LAN, UUCP, OSI,
distributed services

User interfaces
High reliability/availability, fault tolerance
Heterogeneous environments: mainframes,

DOS/UNIX migration
Media: graphics, video, audio, art, education
System/network administration and security
Trends:

Lightweight processes
Neural networks
Object-oriented extensions

All submissions should describe new and
interesting work. Like recent USENIX confer-
ences, the Baltimore conference is requiring
the submission of full papers rather than
extended abstracts. The review and produc-
tion cycle will not allow time for rewrite and
re-review. (Time is, however, scheduled for
authors of accepted papers to perform minor
revisions.) Acceptance or rejection of a paper
will be based solely on the work as submitted.

To be considered for the conference, a
paper should include an abstract of 100 to 300
words, a discussion of how the reported results
relate to other work, illustrative figures, and
citations to relevant literature. The paper
should present sufficient detail of the work
plus appropriate background or references to
enable the reviewers to perform a fair
comparison with other work submitted for the
conference. Full papers should be 8-12 single
spaced typeset pages. All final papers must be
submitted in a format suitable for camera-
ready copy. For authors that do not have
access to a suitable output device, facilities
will be provided.

An abstract should be submitted as soon
as possible. Full details and requirements will
be supplied to prospective authors. Copies of
the full manuscript should be submitted by
ordinary and electronic mail to the Program
Chair. Electronic submissions are recom-
mended; troff-ms if possible.

Four copies and one electronic copy of
each submitted paper should be received by
February 8, 1989. Papers not received by this
date will not be considered. Papers which
clearly do not meet USENIX’s standards for
applicability, originality, completeness, or page
length may be rejected without review. Accep-
tance notification will be made by March 13,
1989, and final camera-ready papers will be
due by April 7, 1989.

Neil Groundwater
Baltimore USENIX Technical Program
Sun Microsystems, Inc.
8219 Leesburg Pike #700
Vienna, Virginia 22180
(703) 883-1221

Abstracts, submissions, and questions:

usenet: (ucbvax,decvax,decwrl,seismo) !
sun!balt-usenix

internet: balt-usenix@sun.com

AUUGN 117 Vol 10 No 1

;login:

Enhancing the 4.3 BSD UNIX Serial Line Interface

Alfredo Ahnada and David H. Williams
Department of Computer Science

The University of Texas at El Paso
El Paso, Texas 79968

ABSTRACT

This paper describes simple modifications to the 4.3 BSD UNIX’r serial line interface
that allow serial lines to be individually customized according to the devices to which they
are connected. This allows nonstandard terminals such as graphics displays, and nongetty
devices such as plotters to invoke hardware or software flow control, and to achieve the
proper amount of I/O processing in a manner that is transparent to the user. Previously
these lines suffered from a lack of I10 processing such as the inability to invoke software
handshaking, and over processing such as the generation of extra characters which corrupted
commands for graphics displays. The solution consisted of setting the proper combination of
parameters in the provided databases gellylab and primcap, and the creation of a new data-
base, rawlab, that was employed to initialize ports not covered by the other databases. In
addition, minor modifications were made to the program gelly. A complete description of
the serial line interface and its internals is provided as reference for possible future updates.

1. Introduction
This work results from several years of

operational experience with a DEC VAX* com-
puter running Berkeley 4.2 and later 4.3 UNIX.
During this time we found that the serial line
communications were quite satisfactory for
standard alphanumeric terminals, and
conversely, that communications for
nonstandard devices were unsatisfactory and
required hacks for a semblance of proper
operation. Nonstandard devices in our case
consisted of "nongetty" devices which did not
require a login (i.e. plotters), and graphics
displays which might be used for text, but
mostly were employed for graphics. Most
larger installations have these types of devices
connected to serial lines.

Hacks included setting the baud rate
manually on "nongetty" devices that did not
operate at the default baud rate, ignoring flow
control by using the raw interface, or working
around character mappings when a terminal

{ DEC & VAX arc Trademarks of Digital Equipmcnt
Corporation.
J" 4.3 BSD UNIX is copyrighted by the Regents of thc
University of California at Berkeley.

was under the control of getty. In some cases,
application software was written to manually
set the line parameters each time the program
was executed and the device was opened.

In our opinion, these processes violated
the tenet of UNIX that all I/O activity should
be identical to the user, regardless of the file
(device) that is being accessed. Furthermore,
it is the duty of the operating system to make
this process transparent to the user. Output
redirected to nonlogged in alphanumeric
terminals should exhibit <cr> <If> mapping;
output only devices should exhibit proper flow
control and baud rate settings; graphics and
other nonalphanumeric terminals should have
certain special characters enabled (e.g. xon,
xoff) and others disabled to prevent "hits"
with internal commands within the terminal.

The purpose of this paper then is twofold:
to describe in a detailed manner how the 4.3
BSD UNIX serial interface works, and to
describe simple, modifications that have been
made to the operating system in order to
enhance the serial line interface with
nonstandard devices. The paper illustrates
how the terminal interface is handled inter-
nally by the kernel, and also discusses the
different system calls available to the user to

Vol 10 No 1 118 AUUGN

;login:

properly communicate through terminal lines.
Although it describes most of the terminal
driver capabilities, the reader should refer to
the existing documentation (i.e. manuals) for a
complete description of what is available. The
specific processes apply only to 4.3 BSD UNIX
executing on DEC VAX computers, however,
many of the overall principles should be appli-
cable to other versions of UNIX as well.

2. File I/O
To the UNIX user, all file I/O activity

should look the same without regard to what
kind of file is being employed. That is, the
same system calls and processes such as
redirection are invoked to access a regular file,
a terminal line, a tape drive, and so on. This
section deals with how the operating system
makes these actions transparent to the user,
and provides a description of the kernel to
device driver interface and also a discussion of
the system calls related to file management.

2.1 Internal Representation’ of Files
The kernel handles all file I/0 internally

through the use of inodes. Inodes exist on
disk, and the kernel reads them into in-core
inodes when they become active (the first
instance of the file is opened) to manipulate
them. The inode contains information such as
owner and group identifiers, access permis-
sions, access times, size, and type. The in-core
copy of the inode contains additional informa-
tion such as whether it is locked, whether
someone is waiting for it to become unlocked,
whether it has been modified, the inode
number, and the reference count (the inode
contains more information, however, only
information relevant to the scope of this paper
has been presented) [1].

Depending on the type of the file, the
inode contains information that serves the
purpose of that file. For regular files and
directories, the inode contains the disk block
addresses in which the data of the file are
located. In the directory case, the data are the
names and inode numbers of the files in the
directory. For character and block device spe-
cial files, the inode contains the major and
minor device numbers, which uniquely
identify a device. The major number distin-
guishes among the different types of devices,

such as terminals, disk drives, tape drives, etc.,
and the minor number differentiates among
several devices of the same type. (Two other
types of inodes, symbolic links and sockets, are
not discussed in this paper.)

Eventually, the last instance of the file will
be closed as indicated by a reference count of
zero. This will cause the inode to be written
back out to disk and possibly deallocated from
the in-core table, in the event that another disk
inode is waiting for a free spot.

2.2 Kernel I/O Interface with Device
Special Files

There are two kinds of interfaces with
which the kernel communicates with external
devices [2]. They are the block and character
interfaces. The block interface provides a
buffering mechanism, for which the algorithms
of the buffer cache are invoked. The character
interface is a faster raw interface which
bypasses the buffer cache. The two interfaces
are implemented through the use of the block
device switch table (bdevsw) and the character
device switch table (cdevsw) respectively.
From these tables the kernel takes the entry
points to the specific driver routines to be used
when invoked by the different system calls.

The major number of a device, taken from
the inode, is used as an index into the bdevsw
or to the cdevsw depending on the type of the
device. The minor number is passed to the
selected routine so that it can identify the
particular device. Both interfaces contain
entry points for the open and close procedures.
The mount and umount system calls also
invoke the device open and close procedures
for block devices. The read, write, and ioctl
system calls for the character interface also get
their entry points to the driver from the char-
acter device switch table. However, read and
write system calls of block devices and of files
that are on mounted file systems invoke the
algorithms of the buffer cache, which invoke
the device strategy procedure. This is the
entry point contained in the block device
switch table. The routine nulldev is used
when there is no need to perform a particular
driver function. However, the routine nodev
is used when it should be considered an error
to try to perform that driver function, such as
if that device was not configured.

AUUGN 119 Vol 10 No 1

;login:

The cdevsw also provides entry points to
routines for other more device specific tasks,
such as a stop procedure for terminal
multiplexers to stop transmitting on a given
line, and reset routines for those devices that
need to do so. There arc other fields in these
tables that are not relevant to this paper and
and therefore arc not discussed. Figure 2.1
illustrates the format of the bdcvsw and
cdevsw tables, and the following sections
describe system calls which utilize their infor-
mation.

2.3 Related System Calls

2.3.1 open

A file must be opened before it can be
manipulated. The user opens a file with the
open system call. The syntax is as follows:

i = open(path, flags, mode)

whcrc path is the pathnamc of the file; flags is
a set of actions to be taken when opening the
file such as whether the file should be opened
for rcading, writing, whether it should be
created, truncated, etc.; mode specifies the
mode of the file if it is to be created; and i is
the file descriptor returned by the system call
[3].

The open system call allocates a file
structure from the system-wide file table, and a

file descriptor from the per-process .u_ofile
table, which is located in the u area of the
process. The allocated u_ofile entry points to
the allocated file structure [4]. The pathname
is then parsed into an inode (namei); if this is
the first instance of the file, the inode is read
from disk into an in-core inode and the refer-
ence count is initialized to 1; otherwise, there
is already an in-core copy of the inode and its
reference count is incremented (the allocation
of inodcs, and the mapping from disk inodes
to in-core inodes is beyond the scope of this
paper) [1]. In any case, a pointer to the in-
core inode is obtained and stored in the file
structure. The file structure has, in addition,
other fields that are initialized during the
opening process. There is a set of flags saved
after the open that indicates whether the file
was opened for reading, writing, or appending
after each write. There is also a type field
which indicates that the referenced object is an
actual "file" (DTYPE_INODE) and not a
communications endpoint (socket). In addi-
tion, a structure within the file structure is ini-
tialized with the entry points of the general I/O
routines to be invoked when the user refer-
ences the file. These are read/write, ioctl,
select, and close. The reference count is initial-
ized to 1. This is a different reference count
not to be confused with the inode reference
count. The reference count in the file

BLOCK DEVICE SWITCH TABLE

Index Open Close Strategy dump
0 hpopen hpclose hpstrategy hpdump
1 upopen nulldev upstrategy updump
2 rkopen nulldev rkstrategy rkdump
3 udopen nulldev udstrategy uddump
4 tsopen tsclose tsstrategy tsdump

CHARACTERDEVICE SWITCH TABLE

Index Open Close Read Write Ioctl stop
0 cnopen cnclose cnread cnwrite ttioctl nulldev
1 dmfopen dmfclose dmfread dmfwrite dmfioctl dmfstop
2 udopen nulldev udread udwritc nodev nodev
3 dzopen dzclose dzread dzwrite dzioctl dzstop
4 tsopen tsclose tsread tswrite tsioctl nodev

Figure 2.1: Sample of bdevsw and cdevsw

Vol 10 No 1 120 AUUGN

;login:

structure keeps track of how many descriptors
are sharing the same instance of the file, while
the inode reference count keeps track of how
many instances of the file are open. Finally,
the offset which determines where the next
read or write will take place within the file is
initialized to O.

In the case of character and block device
special files, the kernel invokes the specific
open procedures to validate and initialize the
driver private data structures before returning
to the user. The file descriptor, which is the
smallest available integer used as an index into
the u_ofile table, is returned to the user. The
user needs only this file descriptor to reference
the file.

There is an instance of a u_ofile descriptor
and a file structure entry allocated for each
open call, however, there is only one inode
allocated per active file in the system. See
figure 2.2 for further illustration. At initializa-
tion, the kernel allocates space for its data
structures. The structures relevant to file
management are the process table (more
specifically the u_ofile table inside the u area
of the process), the file table and the inode
table. The size of these tables generally
depend on the maximum number of users
specified at configuration time.

2.3.2 Dup and Fork System Calls

There are two other system calls besides
open that allocate a file descriptor in the
u_ofile table of the process. However, in
contrast to the open system call, they do not
allocate a file structure b~t instead share one
that already exists. The first of these two calls
is the dup system call. The dup call is invoked
as

newfd = dup(i)

where i is a previously allocated descriptor [3].
It causes the lowest numbered descriptor avail-
able from the u_ofile table to be allocated, and
the file structure being pointed to by the ith
entry to now be shared between the two
descriptors i and newfd. Figure 2.3 illustrates
the effect of a dup call. The other call is the
fork system call. During a fork, the u_ofile
table of the parent process is inherited by the
child process. As a result, the child process
now shares with its parent all the file structures

that had been allocated for the parent process.
See figure 2.4 for illustration.

These two system calls cause the reference
count in the particular file structure(s) to be
incremented. As will be seen later, the close
system call checks and decrements this refer-
ence count and calls the device closing
procedures only when this count reaches zero.

2.3.3 Read/Write

The read and write system calls are imple-
mented in very much the same way. In fact,
the same internal kernel routines are used for
both, and a tlag set by the user callable read
and write routines, determines which of the
two operations is to be performed. The syntax
for these two system calls is

i = read(fd, buf, count)
i = write(f d, buf, count)

where fd is a previously allocated descriptor
from one of the system calls described above,
buf is the address where data is to be stored
(read) or taken from (write), count is the
number of characters to be transferred, and i
specifies the number of characters actually
transferred [3]. The kernel sets up this address
and character count in the uio (user I/O)
structure, in addition to some other fields that
will be explained below.

As described in the open procedure, the
file descriptor specified by the user is used as
an index into the u_ofile table of the process to
obtain the pointer to the corresponding file
structure. The flags that were saved in the file
structure after the open are used to check that
the intended operation (read/write)
corresponds to what the file was opened for.
The offset that indicates where this read/write
should start is also taken from the file
structure and stored in the uio structure. If
the file is a regular file opened in write/append
mode, the offset is set to the size of the file,
taken from the inode. An additional flag set in
the uio structure indicates to the kernel that it
should transfer the data from kernel to user
space in the case of a read, or from user to
kernel space in the event of a write. Once the
uio’structure is properly initialized, the inode
read/write routine is invoked with the file table
entry, the read/write flag, and the uio structure
as arguments. On return, the offset is updated

AUUGN 121 Vol 10 No 1

;login:

In-core Inode table

u_ofile table
0
1
2
3

System File Tablc
refcount = l

ref count = l

refcount = l

ref count = 1

/dev/ttyA2
ref count = 2

~/myfile
ref count = 1

/dev/ttyA4
ref count = l

openl/dev/ttyA2,...) ¯
opent/dev/ttyA2,...)
openl/dev/ttyA~,...)
open(my file,...)

_

Figure 2.2: Effect of the open system call on file tables

and the actual number of charactcrs
read/written is returncd to the user.

The inode read/write routine checks the
type of the inode and performs the appropriate
task. In the case of block devices and files that

are on mountcd file systems (regular files,
dircctorics, and symbolic links) the routine
invokes the algorithms of the buffer cache,
which in turn invoke the device strategy
procedure (bdcvsw) [2]. The other type of
inodes arc character device special files. For

Vol 10 No 1 122 AUUGN

;login:

this type of inodes, the major and minor
numbers are obtained from the inode itself.
The major number indexes the cdevsw to pick
the device driver entry point for a read or
write operation. The minor number and the
uio structure are passed as arguments to this
routine. See figure 2.5 for illustration.

When a read occurs, the inode is marked
as accessed so that its access time is modified.
When a write occurs, the inode is marked as
updated meaning that the file has been
modified, and as changed .meaning the the
inode itself has changed. Updated and
changed are two different states. When a file
is updated, the inode is consequently modified.
However, the inode can be modified without
the file being changed, such as when changing
the ownership of the file.

2.3.4 Ioctl

The ioctl system call is used to customize
communication parameters for devices. It is
mostly intended for character devices (in
particular, terminal lines) and communications
endpoint types of files (sockets). Nevertheless,
some limited requests are arlowed on regular
files and directories. Its syntax is as follows:

ioctl(fd, request, argp)

where fd is again a previously allocated
descriptor, request is the action to be
performed, and argp is a pointer to the param-
eter list [3]. Request is an unsigned quantity
four bytes long, each of which contains specific
information about the request. The high order
byte indicates whether the parameters pointed
to by argp are in and/or out parameters, or
neither. The next byte contains the size in
bytes of the parameter list pointed to by argp;
therefore a maximum of 127 bytes is allowed.
The next byte contains the ascii code of a
literal of the set (t, f, s, r, i) that identifies the
class of the "file" on which this ioctl command
is going to be performed; t is used for charac-
ter devices (i.e. terminals), f is for regular files

or directories, and s, r, and i are used for
sockets. The low order byte contains a unique
integer id within the class to identify the
particular command.

The ioctl system call funnels through the
cdevsw in the same way that the previously
discussed routines do. Because of its particu-
lar correlation with terminal lines, this rela-
tionship will be deferred until the section
describing the terminal I/O interface.

2.3.5 Close

Eventually, the user files are closed.
Either this operation is performed by the user,
or if a process still has open descriptors when
it exits, all are closed automatically during the
exit system call. The close system call is pro-
vided for closing files and is as follows:

close(fd)
where fd is a previously allocated descriptor
[3]. The close system call deallocates the fdth
entry from the u_ofile table of the process, and
decrements the reference count of the
corresponding file table entry. If the reference
count reaches zero, the closing procedures for
this instance of the file are called. A reference
count of zero in a file table entry means it is
now free and can be reallocated to another
descriptor. If the reference count is not zero
the close system call returns immediately.

If the reference count in the file table
entry indeed reached zero, it means there is
now one less instance of the file open; thus the
inode reference count is decremented to reflect
the change. If the inode reference count is not
zero, the system call returns to the user. On
the other hand if it does drop to zero, the
inode is written out to disk and possibly
deallocated from the in-core inode table (if
another disk inode is waiting for a free.spot).
For block and character devices the device
closing procedures are invoked only at this
point.

AUUGN 123 Vol 10 No 1

;login:

In-core Inode tabl6

0
1
2
3
4

u_ofile table
System File Table

ref count -- 1

ref count = 1

refcount = 1

/dev/ttyA2
rcfcount = 1

/dcv/ttyA4
refcount =, 1

"/myfile

refcount = 1

Before

In-core Inode table

0
1
2

3
4

u_ofile table
S ~stem File Table

rcfcount = 1

refcount = 1

ref count = 2

/dev/ttyA2
ref count

/dev/ttyA4

ref count

"/myfile

refcount = 1

dup(4) After

Figure 2.3: Effect of the dup system call on file tables

Vol 10 No 1 124 AUUGN

;login:

u_ofile table
0

I
2

System File Table

refcount = 1

ref count -- 1

In-core Inode tabld
/dev/ttyA2

ref count = 1

7myfile
refcount = 1

Parent’s u_ofile table
0
1

2

Child’s u_ofile
0
1

2

Before

System File Table

ref count = 2

ref count -- 2

After

_1
’=I
I
I
I
I
I

In-core Inode table’
/dev/ttyA2

refcount = 1

"/myfile

ref count = 1

Figure 2.4: Effect of the fork system call on file tables

AUUGN 125 Vol 10 No 1

;login:

u_ofile table
System File Table

Inode read/write routine

In-core Inode tableJ

major

If REGULAR or BLOCK
Invoke algorithms of buffer cache.
Determine major and minor numb~
either from the inodc itself, or

~m the inode of the device that
the file system in which the file
is located is mounted on.

If CHARACTER
Get major and minor numbers fron
the inodc itself.

rs

BDEVSW

stratcgy

major minor

CDEVSW

read write

Figure 2.5: Illustration of the read and write procedures

Vol 10 No 1 126 AUUGN

;login:

3. Terminal I/O Interface
Terminal lines are a spccial case of char-

acter devices. In reality, terminal lines are
usually controlled by terminal multiplexers,
each of which controls several lines. The
terminal I/O interface is controlled by the
terminal multiplexer’s driver, which in turn
invokes the line discipline handling procedures
for the different terminal lines. Line discip-
lines control the entire operation of terminal
lines. They take care of opening and initializ-
ing the terminal state, performing all terminal
settings, and providing a buffering mechanism
appropriate for slow asynchronous communi-
cation lines, such as terminals. They also
process input characters passed from the
terminal multiplcxcr’s interrupt service rou-
tine, and perform specific actions dictated by
the different control characters. This part
refers exclusively to the 4.3 BSD terminal line
interface; however, many of the principles and
examples still apply to other UNIX versions.

3.1 Terminal Multiplexers,
A terminal multiplexer is the actual

hardware device that controls the operation of
terminal lines. When terminal multiplexers
are configured into the system, the address of
their control and status register and the names
of the interrupt routines to call are specified in
the configuration file [5]. The config program
takes this information and produces a set of
machine dependent routines to be invoked
when the different types of interrupts occur
[6]. These routines of course need to be
compiled into the kernel. For a DEC VAX dmf
device, the driver examines its configuration
and adjusts the interrupt vectors during
autoconfiguration.

The terminal multiplexer’s driver entry
points are located in the cdevsw entry
corresponding to the major number of the
device. These devices contain special registers
for the hardware communications parameters
of the different terminal lines. These include
speed, parity, character length (8 or 7 bits) and
modem control bits. There are other software
communications parameters, such as control
characters, terminal modes, etc., that are kept
in the particular try table entry of the terminal
line. This part will refer to DEC VAX dmf 32
terminal multiplexers, each of which controls

eight terminal lines; however, many of the
principles also applyfor other terminal
multiplexers.

3.2 Line Disciplines

While terminal multiplexer drivers
manage the hardware communication parame-
ters like speed, character length, interrupt bits,
and so on, they also invoke the specific line
discipline procedures for the different terminal
lines. Line disciplines control the operation of
terminal lines. Upon opening, the line discip-
line open procedure establishes a control
process group and a control terminal for
distribution of signals. Line disciplines also
handle all terminal I/O providing a buffering
mechanism through the use of clists (character
lists). The line discipline interfaces work in
the same way that the character or block
device interface work. The line discipline
number is used as an index into the line switch
table (linesw) from which the appropriate
entry points to the try driver are obtained.
Refer to figure 3.1 for illustration.

There are two line disciplines available
with the terminal interface. The first one is
the old line discipline which is used with the
Bourne shell. The second one is the new line
discipline which has some additional job
control features and must be used when using
the C shell. Other disciplines may exist for
special purposes, such as communications lines
for network connections.

3.3 Clists
Clists provide a buffering mechanism for

slow, asynchronous communication lines. A
clist contains the number of characters in the
list, and pointers to the first and last characters
in the list. A clist is formed by a linked list of
cblocks. A cblock has two fields, one of which
is a pointer to the next cblock in the list, and
the other one is the character array containing
the characters in the clist. At initialization,
the kernel allocates space for a number of
cblocks and initializes the freelist to contain all
of these cblocks. As input is received from the
terminals, new cblocks may be allocated to the
particular input clist of a terminal. As charac-
ters are read from the clist and given to the
reading process(es), empty cblocks are returned
to the free list. Similarly, when a process

AUUGN 127 Vol 10 No 1

;login:

TTY TABLE

major
dmfopcn

CDEVSW

dmfclosc dmfrcaddmfwritc
minor

LINESW

Figure 3.1’ Illustration of the line discipline interface

writcs to a terminal, new cblocks may be
allocated for that terminal’s output clist. As
characters are transmitted from the output
clist to the device’s transmit buffer, empty
cblocks are returned to the freelist. Figure 3.2
illustratcs the process.

Every tty table entry has two input clists
and one output clist associated with the partic-
ular terminal line [7]. The two input clists are
called the raw queue and the canonicalized
queue. Input characters are placed in the raw
queue and transferred directly to the reading
process as soon as they arc input when in
cbrcak or raw mode (see below).. When in
crmod, the raw queue is manipulated by the
line editing functions. When any of the line
terminating characters is recognized, the
"updated" raw queue is transferred to the
canonicalized queue, which is then given to
the process. Obviously, the output queue is
used for characters being output to the termi-
nal.

3.4 Terminal Modes
Terminal I/0 bchavior is controlled by tim

terminal line mode. The following are the
three different modes in which a terminal may
b6 operating:

crmod: This is the default modc. In this
mode lines of input are collectcd and edited
before making the line available to the reading
process. The end of the line is recognized

when either a <cr>, <nl>, EOT, or t_brkc
(normally undefined) is entered. <cr> and
<nl> are made synonymous in this mode and
mapped to <cr><nl> on output. All driver
functions, such as input editing, interrupt
generation, output processing (such as delay
generation and tab expansion), flow control,
etc., are performed in this mode.

cbreak: In this mode charactcrsare made
available to the user as they are typed. There-
fore, no input editing facilities are performed.
Flow control, literal-next, interrupt processing
and output processing are still done.

taw: In this mode, 8-bit characters are placed
in the input/output queue without being
processed. None of the control and other spe-
cial characters have any meaning whatsoever
in this mode. On input, characters are made
available to the reading process as soon as they
are entered from the keyboard.

A fourth mode, tandem, can also be used
in conjunction the above modes. In tandem
mode, the system generates a stop character
whenever the input queue reaches its high
water mark, and a start character whenever thd
input queue empties to its low water mark.
This mode is useful primarily for the
communication between two CPUs and there-
forc will not be discussed further.

The driver recognizes the mode of the
terminal line by checking the corresponding

Vol 10 No 1 128 AUUGN

;login:

1)
clist

~]~]]f[i[l[e]3t]f~3)

I I l I I(4) I’

Freelist

After reading ’lpr2 ill’ the clist looks like:

cblocks
2)

Freelist

I
I

Figure 3.2: Reading characters from a clist

bit in the flags field of the particular tty table
entry (refer to ioctl documentation [3] for
additional information). If tlae raw bit is set,
the other two bits are meaningless. That is,
the terminal operates in raw mode as
explained above. However, crmod and cbreak
can be used alone or combined. If only one of
the crmod or the cbreak bits is set, the termi-
nal behaves as mentioned above. On the other
hand, if both bits are set, the terminal operates
as in cbreak mode, with the exception that the
<cr> and <nl> characters are still mapped to
<cr><lf> on output. If none of the three bits

is set the terminal operates in crmod. There
are other flags that alter the way the driver
processes cerJ~ain characters, some of which
will be discussed in later sections. For a
complete discussion of these flags and of the
special control characters, the reader should
refer to the ioctl and tty documentation [5].

3.5 Opening a Terminal
When a device is opened, the specific

device open procedures are invoked as the last
step in the open system call. For a terminal
line, the terminal multiplexer open procedure

AUUGN 129 Vol 10 No 1

;login:

is invoked through the cdevsw. The minor
number is passed as an argument to this rou-
tine to identify the particular terminal line.
This number serves also to identify the partic-
ular multiplexer and is used as an index into
its tty table. The existence of the multiplexer
is checked and the tty state is initialized to the
default settings. This includes initialization of
both the try entry and the terminal
multiplexer’s registers. The default settings are
9600 baud, 7-bit character length and parity
enabled (either). These are the actual
hardware parameters kept in the terminal
multiplexer’s registers. There are also software
parameters such as the control characters
(start/stop, interrupt, quit, etc.), all of which
are initialized to their default values and
stored in the try entry. These parameters, as
well as most other terminal settings, can be
customized using the ioctl system call.

The open procedure waits for a carricr sig-
nal and then calls the line discipline specific
open procedure. The opening process will not
wait tbr a carrier signal if the line was not
configured to support full modem control, as
in the case of hardwircd lines. This is
indicated by the lower byte of flags in the
configuration file. If a bit is turned on, that
line does not support full modem control. For
a dmf device, the upper six lines should be
configured in this way since the dmf itself does
not support full modem control for those lines.

The main role of the line discipline open
procedure is to establish a process group and a
control terminal for distribution of signals.
The opening process (usually getty) is the
control process, and the opened terminal is the
control terminal. If the terminal does not
have a process group associated with it (as will
be the case if this is the first instance of the
terminal being opened), The process group id
is made to be the process id of the opening
process; this id gets associated with the termi-
nal by storing it in the tty entry of the control
terminal. If the terminal had a process group
already associated with it, that process group
id remains the same. The resulting process
group id is also stored in tile process table
entry corresponding to the opening process, to
be inherited by all of its descendents. In this
way the opening process becomes the process
group leader.

The above association will only take place
if the opening process does not have a process
group already associated with it (as in the case
of getty). This prevents a regular user process
(which resulted from the user shell) to become
the process group leader when it opens another
terminal line. If this were not the case, user
processes that open different terminal lines
would have their process group id changed,
and the whole purpose of the process group
concept would be defeated (see below). As will
be brought out later, the getty process becomes
the login shell and therefore the login shell is
the process group leader. It controls every
process initiated at the terminal. Since the
process group id is inherited through the fork
system call, every descendant of the shell has
the same process group id.

In particular, when !nterrupt and quit
characters are received from the terminal, and
when the user hangs up, the corresponding sig-
nal is sent to every process with the same
process group id as the one associated with the
terminal (gsignal). By default most of these
processes exit as a result of the received signal.
In this way user processes are not left around
when a user suddenly hangs up the line.
Nevertheless, some of these processes may
have been set to ignore the hangup signal and
will continue executing. To prevent these
processes from receiving unwanted signals
from the next terminal session, after a hangup
the terminal is disassociated from the process
group so that processes in that process group
can no longer receive signals originating at the
terminal. The new line discipline, which
provides additional job control features, also
distributes tile stop signal to the process group
when the stop character (usually ctrl-Z) is
entered at the terminal.

3.6 Terminal Settings

As was mentioned in section 3.4, a termi-
nal line behaves according to its settings. The
ioctl system call is used to customize terminal
lines to meet the appropriate requirements of
the particular device attached to them, such as
regular terminals, graphics displays, etc. The
ioctl system call manipulates the relevant fields
(depending on the command) in the tty entry
corresponding to that terminal line.

Vol 10 No 1 130 AUUGN

;login:

Among other things, each tty entry con-
tains four structures which contain settable
values for each port. A description of these
structures is contained in the discussion of the
tty special file in reference [5]. The sgttyb
structure contains flags: for setting baud rate,
terminal delays, terminal modes (RAW,
CBREAK, etc), echoing, and parity. The tchars
structure contains the special character settings
such as interrupt, quit, etc., that are defined
for both the old and new terminal interfaces.
The local mode word contains flags for specify-
ing such things as the erase mode, and 7- or
8-bit character input. And finally, ltchars sets
special characters that are defined only for the
new terminal driver. Of the four structures,
the information contained in the sg_flags field
of sgttyb and that in the local mode word is, of
special importance in establishing, proper
communication with nonstandard devices.

If in parameters are specified in the ioctl
request (section 2.3.4), the kernel transfers the
number of bytes specified in the request argu-
ment pointed to by argp from user to kernel
space (copyin). With this data it then updates
the necessary fields in the tty entry. If request
is one which requires modification to the
actual terminal multiplexer’s registers (i.e. the
ones involving speed, parity, 8- or 7-bit char-
acter length, and modem control bits), those
registers are updated also. If out parameters
are specified, the kernel extracts the requested
information from the tty table entry and
copies it to the user area pointed to by argp
(copyouO. The reader should refer to the ioctl
and try documentation for a complete descrip-
tion of the settable parameters that are avail-
able to customize a terminal line [5].

3.7 Reading from a Terminal
When a process reads from a terminal, the

terminal multiplexer read/write routine is
called (again using the cdevsw) after the uio
structure has been properly initialized. The
routine uses the minor device number as an
index into the ttytable and invokes the line
discipline specific read/write procedure (figure
3.1) with the tty table entry and uio structures
as arguments. This routine takes appropriate
action depending on the terminal mode.

In raw mode, the input raw queue is
scanned for characters to be read and if

present, characters are transferred one at a
time to the user address space (getc, ureadc,
subyte) until the characters in the queue are
exhausted or the user requested amount is
satisfied. Full 8-bit characters are passed. If
no characters are present two actions may be
taken: If the terminal was set in non-blocking
mode, the read system call just returns the
value zero, indicating that no characters were
read and the global variable errno is set to
EWOULDBLOCK indicating no input present;
otherwise, the reading process is put to sleep
on the event that a character is entered at the
terminal (the address of that terminal’s raw
queue). The process w.~l~ then be awakened by
the interrupt service routine when a character
is received.

The same thing happens in cbreak mode,
except that 7-bit characters are given to the
user, unless the PASS8 flag has been specified,
in which case the full eight bits are passed.
This is about the only similarity between
cbreak and raw mode. As stated in the termi-
nal modes section, the amount of input
processing varies greatly in the two modes.
However, as will be explained shortly, this
processing takes place at the interrupt service
level, right when the character is received and
before it is placed in the input queue to be
given to the user. The exception to this is the
delay suspend character, which is processed
only in the new line discipline read routine,
and when in cl~reak or crmod. This character
causes the stop signal (SIGTSTP) to be sent to
every process in the process group associated
with the terminal, but in contrast to the
suspend character, this action is delayed until
a process attempts to read from the terminal.

In crmod things are done differently. First
of all, the canonicalized queue is scanned for
characters rather than the raw queue..As in
the other two modes, if no characters are
available the process will sleep waiting for a
character. Again, if the terminal is in non-
blocking mode, the process will not sleep but
the read system call will return the value zero
and errno will be set to EWOULDBLOCK.
Secondly and most importantly, the sleeping
process will not be awakened by the interrupt
service routine as soon as any character is
received, but only when a line terminating
character is received. This is how lines of

AUUGN 131 Vol 10 No 1

;login:

input are collected (in the raw queue) and
edited before making them available to read-
ing processes by transferring them to the
canonicalized queue (canq). When characters
become available in the canonicalized queue,
they are transferred one at a time to the user
address space (getc, ureadc, subyte) until the
line delimiter character is found or until the
user specified amount is satisfied. If more

.characters were placed in the queue than the
user requested, they will remain there for the
next read operation.

As an aside, when processes are awakened,
care should be taken that the conditions that
put them to sleep no longer exist. This is to
prevent race conditions to cause unexpected
results. For example, suppose that two
processes are reading from the same terminal
but no input is available for either process.
Furthermore, suppose the terminal is operating
in raw mode. Since both processes are sleep-
ing on the same event, both of them will be
awakened when a character is received. The
one that is scheduled first will get the charac-
ter. However, the other one has no character
to get and return to the user. Consequently,
the appropriate thing for these processes to do
upon awakening is to check again that a char-
acter is in fact present and if not, sleep again.

When reading from a terminal, the charac-
ter count specified by the user in the read
system call will not necessarily be satisfied. In
most cases, the process will sleep awaiting
terminal input. In raw or cbreak mode, as
soon as one character is entered the process
wakes up and the read system call returns with
only that character being read. In crmod, the
read system call returns as many characters as
are found before a line delimiting character, or
when the user specified amount is reached.

3.8 Writing to a Terminal

When a process writes to a terminal the
line discipline write routine is invoked in the
same way as the read routine. The user data,
with base address and character count
specified in the uio structure, are transferred
from user to kernel space (uiomove, copyin).
Once the data are in kernel space, they are
processed according to the terminal mode and
flags before they are placed in the terminal’s
output queue (b_lo_q, putc), from which they

will be transmitted to the actual device. First
of all, the number of characters currently in
the queue is checked. If it exceeds the high
water mark, the writing process is put to sleep
on the event that the output queue empties
(the address ’of that output queue). The
process will be awakened later when the char-
acter count has drained below the low water
mark (the high- and low-water marks depend
on the output speed of the terminal line).

If the terminal is in raw mode or if the
LITOUT flag is set, all output translations are
suppressed and the characters (8 bits) are
placed directly in the output queue. Other-
wise, 7-bit characters are used and output
processing is done. If the cbreak bit is not set
(the terminal is in crmod), EOT (normally ^D)
characters sent to that terminal are stripped off
(never put in the output queue) to prevent cer-
tain terminals from hanging up. If tab expan-
sion is specified, tabs are expanded either in
cbreak or crmod and the corresponding delay
is generated. The driver also provides map-
ping of all characters to upper case and map-
ping of the character ’~’ to the character "’ for
terminals that require so. The LCASE and
TILDE flags should be set for these terminals
respectively. Finally, if the crmod bit is on,
newline characters are translated to <cr><If>.
Proper delays are generated also. Some addi-
tional output translations are provided when
echoing received characters, such as translating
the erase character into a <bs><sp><bs>
sequence for crt erasing.

As will be seen later, these output transla-
tions can cause some unexpected results if the
¯ proper mode and flags are not used for the
particular application. Once the characters
have been processed and put on the queue, the
transmitter is started to start transmitting the
characters to the appropriate device. If there
were any processes sleeping because the queue
was full (above the high water mark), the
transmitter wakes them up when the queue has
drained below the low water mark.

3.9 Terminal Interrupts

When an interrupt occurs, the terminal
multiplexer’s interrupt service routine is
invoked by picking its entry point from the
particular vector address. Of course, every
device (i.e. dmf) has its own set of vector

Vol 10 No 1 132 AUUGN

;login:

addresses. The interrupt routine sets up a
parameter to be passed to the general dmf
interrupt service routine, to allow it to identify
the particular dmf that caused the interrupt.
The dmf itself identifies which of the eight
lines caused the interrupt. In thh case of an
input interrupt, a dmf has a silo in which it
can accumulate a small number of characters
to be serviced during one interrupt. Embed-
ded in these characters is the particular line
that they came from, along with status infor-
mation such as whether a parity or framing
error occurred, or whether the silo overflowed.
In this way, the dmf interrupt service routine
grabs all the characters present in the silo and
passes them to the specific line discipline
interrupt service routine of each terminal line.

A transition in the carrier signal interrupts
in the same way as an input character. If the
line was not configured for full modem control
(such as hardwired lines) this transition is sim-
ply ignored. Otherwise, action is taken
depending on the state of the line. If carrier is
now present and the line was waiting to
complete the open (such as in getty), the state
of the line is set to indicate so and sleeping
processes are awakened; if the line was already
open and it is doing flow control depending on
the carrier state (the MDMBUF flag indicates
this), the transmitter on the line is restarted.
If the line loses carrier two things can happen:
if the loss of carrier was due to flow control,
the terminal multiplexer’s stop procedure is
invoked for that terminal line; otherwise, the
loss of carrier is assumed to be the result of
the user hanging up which causes the line to be
turned off and the hangup signal to be sent to
the process group associated with that terminal
line. If no transition in carrier is detected
(either because carrier was already present or
because the line is hardwired), the received
characters are checked for errors before they
are passed to the line discipline receiver
interrupt routine. If a parity error occurred
and the user indeed specified only one of odd
or even parity, the character is discarded. If a
framing error occurred (which might have
been as a result of a BREAK character) a null
is generated if the terminal was in raw mode
9r an interrupt character (usually ctrl-C) is
generated otherwise. As will be seen later,
getty switches baud rates if it gets a null or an
~nterrupt. If a silo overflow occurs a small

warning message is logged on the console. The
resulting character is passed to the line discip-
line receiver interrupt routine to be processed.

As discussed in the terminal modes sec-
tion, the amount of input processing varies
according to the mode the terminal line is
operating on. In raw mode input characters
are put directly in the raw queue. Processes
awaiting input from this terminal are
awakened. In cbreak or crmod, if the PASS8
flag is not set the 8th bit (parity) is stripped
off. If the terminal was in the literal-next state
(as a result of the previously received character
being the literal-next character), the character
is not interpreted but just put in the input
queue (literal-next is only implemented in the
new line discipline). If the stop character is
received, the terminal multiplexer’s stop
procedure is invoked to disable further
transmission interrupts on that line. When the
start character is received the transmitter is
reenabled. Actually, the transmitter will be
restarted when any character is received in the
line. To prevent this and force the line to wait
for the start character before it can be
restarted, the DECCTQ flag must be set. When
interrupt and quit characters are received the
corresponding signal is sent to the process
group associated with that terminal line. The
new line discipline provides additional control
characters such as literal-next, flush-output,
and suspend characters. The literal-next char-
acter works as explained above, the flush-
output character flushes any pending output to
the terminal and the suspend character
distributes the stop signal to the terminal’s
process group. None of the control characters
are put in the input queue, they are simply
interpreted and the necessary actions are
taken.

In cbreak mode characters are given to the
reading process as soon as they are received.
Thus, none of the line editing characters have
any meaning in cbreak mode. Consequently
they are simply put in the input raw queue as
if they were regular characters. Processes that
had been waiting for such an event are
awakened. In crmod the line editing charac-
ters cause the appropriate action to be taken.
The erase character removes the previously
queued character from the raw queue. The kill
character causes all the characters currently in

AUUGN 133 Vol 10 No 1

;login:

the queue to be removed. If the CRTKILL flag
is set, characters are erased from the screen
with <bs><sp><bs> sequences. Otherwise a
new line character is simply echoed to the
terminal. The erase and kill characters can be
escaped with the backslash character. In this
case they have no effect and are simply put in
the input queue. The new line discipline
provides a word erase character and a reprint
line character. The first one dequeues charac-
ters until a word delimiting character (blank or
tab) is found. The latter reprints the current
line of input, which is useful when such a line
has been corrupted by a program outputting
characters to the terminal. Normal characters
are simply put in the raw queue until a line
delimiting character is detected. When this
happens, the updated raw queue is transferred
to the canonicalized queue and processes sleep-
ing on this event are awakened.

Characters are echoed back to the termi-
nal unless the echo flag is turned off. Control
characters are echoed differently depending on
some control flags (such as CTLECH, CRTERA,
etc.). There are some special characters like
the start and stop characters, that are not
echoed even if the echo flag is on. If they
were, they could corrupt output sent, for
example, to a graphics display.

3.10 Flow Control

There are two ways in which a terminal
line can perform flow control. Lines with full
modem control can do flow control on carrier
signal, for which the MDMBUF flag should be
set in the particular tty table entry. All lines
can do flow control using the start (xon) and
stop (xoff) characters. Most devices are
manufactured so that they can either drop
DTR (or one of the RS232 lines) or send an
xoff character when their buffer fills up beyond
a certain threshold. When the buffer empties
below the lower threshold the device either
activates DTR or sends the xon character.
When a given line loses carrier (as a result of
the attached device dropping DTR), or when it
receives the xoff character, the kernel invokes
the terminal multiplexcr’s stop procedure to
disable further transmission interrupts on the
given line. The process that was sending
output to that line will eventually fill up that
terminal line’s output queue and will be put to
sleep. When carrier is detected again, or when

the xon character is received the kernel restarts
the transmitter on the given line. The
transmitter reenables transmission interrupts
and once the output queue has drained below
the low water mark, waiting processes are
awalcened. The cycle repeats until all data are
transferred.

4. User Interface
The user interacts with the UNIX operat-

ing system through the user shell. This part
describes the processes that set up the user
environment and initialize the terminal line
before the user starts working on the system.
For full details about what these processes can
do, the reader should refer to their specific
manual pages [7].

4.1 Init

The init process is invoked as the last step
in the boot procedure. When in multi-user
operation, init creates a getty process for each
terminal line in which a user may login, and
goes into an infinite loop waiting for a death of
child signal. The getty process opens and ini-
tializes the terminal line, reads a login name,
and invokes login. The login process reads the
user password, verifies it, and gives the user a
shell. Eventually, the shell terminates as a
result of an end-of-file or because of a received
signal. Since the getty process had turned
itself into the shell process, the shell is a child
of init. When the shell exits it sends the death
of child signal to its parent (init). Init wakes
up, identifies the particular line and creates
another getty to reopen and reinitialize the
terminal line.

Getty does not create another process
(does not fork) when it invokes login, but
instead overlays itself with the image of the
login program through an execv system call.
The login program does the same thing; once it
verifies the user password, it overlays itself
with the image of the login shell.

Init reads the file /etc/ttys and creates a
getty for every line whose status is on. From
that same line, it also gets the parameters to
invoke the getty program with. Of particular
importance is the first argument after the
program name (getty). If present, getty will
use this argument as an index into the gettytab
database, from which the terminal

Vol 10 No 1 134 AUUGN

;login:

specificatio.ns will be obtained. These terminal
settings will overwrite previous settings
obtained from the default entry. Further
logins can be prevented on a particular line by
changing its specific entry in the file /etc/ttys,
and sending a hangup signal to init. Init
interprets this signal to mean that the file
/etc/ttys should be read again and terminates
any processes associated with the terminal line
whose entry has been turned off or no longer
exists [8].

4.2 Getty

The getty process opens and initializes a
terminal line. The specific device file to open
is passed as an argument from the init
program. Getty opens this file and executes
two consecutive dup system calls. In this way,
file descriptors 0, l, and 2 share the same
instance of the opened file, with a reference
count of three. Since getty becomes the shell,
the shell has these three descriptors already
allocated. Furthermore, every user process is
created directly or indirectly’ from the shell
through the fork system call (recall that the
fork system call increments the reference count
on all shared descriptors). This implies that
when the user closes descriptors 0, 1, or 2,
(s)he would be merely decrementing the refer-
ence count on that instance of the file. This
guarantees that the device closing procedures
will be invoked only when the shell exits
(closes all of its descriptors). In this way
terminal settings will remain as long as the
shell is executing (unless the user purposely
decides to change them with ioctl calls).

The getty program reads the gettytab data-
base to get the characteristics of each terminal
line. It first sets global defaults defined in the
default entry for all terminal lines. If a type
argument was passed from the init program,
getty also reads that entry in the gettytab data-
base to overwrite default settings. The getty
program issues different ioctl requests to set
the default and specific characteristics
obtained from gettytab. It sets the input and
output speeds, parity, line discipline, the value
of the different control characters, the terminal
modes, and so on. For dial-up lines, the nx
field in gettytab is used to change baud rates
upon receipt of a null or interrupt character
(this can happen as a result of the user hitting
the break key). Parity can be set to accept

either odd or even parity on input. If only one
is specified, characters with the wrong parity
are discarded. On the other hand, if both or
none are specified, either parity is accepted.
Even parity is generated on output, unless the
odd parity bit is set and the even parity bit is
cleared, in which case odd parity is generated.

The line discipline is set to the old line
discipline. The login program will change this
to the new line discipline if the user logging in
has a C shell. The different control characters
are set to their default values, unless otherwise
specified in the gettytab entry. If for some rea-
son these values are modified in the gettytab
entry (and therefore remain for the life of
getty), the login program will set them back to
their default values to be used during the shell.
There are three different sets of terminal
modes that are used during the getty process.
The first one is used to print out a banner and
a login message. The second set is used while
getty is reading the login name. Finally, the
third set is used when getty has read the login
name to leave the terminal state properly set
for an interactive session (the shell). After
getty has initialized the terminal line and
gotten a login name, it invokes the login
program.

4.3 Login

The login program, as mentioned above,
resets all the control characters to their default
values. Also, if the user login in has a C shell
(as specified by the last field in the entry for
that user in the password database), the line
discipline is set to the new line discipline. The
main role of the login program is to read the
user password, verify it against the password
database, and invoke the user shell. The login
program sets the user and group ids of the
process as taken from the password database
entry for that user. It also initializes the basic
environment variables such as the user’s home
directory, the type of shell, the type of termi-
nal (as specified in the /etc/ttys file), the user
name and a default path. Once login has done
its task it invokes the user shell.

4.4 The Shell

The login shell is the process through
which the user interacts with the system. The
shell could be seen as a command line

AUUGN 135 Vol 10 No 1

;login:

interpreter. It goes into a loop in which it
prompts the user for a command, reads the
command, and executes it. The shell finishes
the loop and exits when it receives the end of
file character (usually ctrl-D). The shell can
also terminate because of a received signal,
such as the hangup, terminate, and kill signals.
To accomplish the above task the shell reads a
line of input in which the first token is the
command to execute, and the rest are the argu-
ments to invoke the command with (piped
commands are exceptions to this rule). The
shell executes a fork system call, and the child
process overlays itself with the image of the
specified command (execv). The parent
process (the shell itself) waits for a death of
child signal before prompting the user for the
next command. When the child process (the
command) exits it sends the death of child sig-
nal that the shell had been waiting for, and the
user is prompted for another command.

There is an exception to this sequence that
occurs when the user specifies that a command
should be run in the background. The user
does this by putting an anapersand (&) at the
end of the command line. The only difference
in this case is that the shell (the parent) will
not wait for the command (the child) to finish.
Instead, it will prompt the user right away for
another command. In this way a user may
have several processes running at the same
time. Another way this can happen is when
processes crcated by the shell create (fork)
child processes of their own.

The shell controls every process initiated
at the terminal by means of the process group.
Every process created at the terminal directly
or indirectly by the shell will inherit the
process group id of the shell. In this way
every process initiated at the terminal will be
in the same process group as tim shell.
Furthermore, this process group was associated
with the terminal in the linediscipline open
procedure. When signals originate at a partic-
ular terminal, the kernel extracts the process
group from its tty table entry and sends the
signal to every process that has that same
process group id (gsignal). Of course, the shell
itself must ignore interrupt, quit, and stop sig-
nals to prevent these signals from terminating
it [8]. On the other hand, the hangup signal is
considered to be the result of the user hanging

up the line. Thus, the shell is terminated
along with every other process in the process
group.

5. Modifications
Terminal lines may be used for different

types of devices, such as regular terminals,
graphics displays, printers, plotters, etc. The
amount of I/O processing needed for a given
line depends on the device attached to it. For
example, in the case of a regular user terminal,
input characters like delete, kill, interrupt, and
so on are available to make the user interface
more friendly. Also, output characters like
<cr> and <nl> are mapped to <cr><nl> to
make output more readable. However, for
other type of devices like plotters and graphics
displays, this I/O processing would obviously
cause disastrous results. For this reason, serial
lines need to be customized according to the
device that is attached to them. The three
major terminal modes: crmod, cbreak, and
raw, set the base level of I/O processing. Other
flags in the tty table entry such as LITOUT,
PASSS, CRTERA, etc., and a set of control
characters prevent or provide additional I/O
processing. This part describes the problems
incurred by several devices connected to
terminal lines, and modifications employed to
solve these problems.

5.1 Existing Problems and Solutions

5.1.1 Flow Control

Several problems were encountered in
generating flow control and primarily involved
the use of raw mode for devices such as
plotters and graphics displays that. did not
need any output processing. These devices
should receive the user generated data just as
they arc, without being disturbed by the termi-
nal driver output capabilities. Raw mode
seemed to be the ideal mode for these terminal
lines. However, since no characters are
interpreted on input either, software handshak-
ing is not possible because start and stop char-
acters have no special meaning in this mode.
Therefore, unless the device can process the
data faster than it is being sent, or invokes
flow control via hardware handshaking, raw
mode is practically useless.

Vol 10 No 1 136 AUUGN

;log.in:

Crmod would solve the flow control
problem, but it would introduce the problem
of output processing being performed. As a
result, EOT characters (normally ctrl-D) that
could legally represent a graphics parameter,
would get stripped off by the terminal driver
and the device would never see them.
Similarly, newline characters would be
converted to a return-linefeed pair that would
obviously not produce the intended result.

The solution is to use cbreak mode.
Software flow control is invoked, and most of
the above output processing is avoided. Many
times the remaining output processing may
still cause problems and must also be disabled.
This can be accomplished by setting the
appropriate parameters in the tty entry, and is
described in the next section.

5.1.2 Tty Parameter Settings

The tty table entry contains flags which
enable and disable certain terminal control
processing settings. (See section 3.6.) Selected
values are given in this section, however, for a
complete description of each flag, refer to
documentation on the try special file [5].

In crmod and cbreak modes, eight-bit
characters can be used on input by turning on
the PASS8 bit in the local mode word.
Similarly, eight bits could be used on output
without any output translations (just like in
raw mode) by setting the LITOUT bit. In addi-
tion, in cbreak mode, all control characters
except the start and stop characters can be
individually disabled to prevent distortion of
specialized terminal commands.

Initially, it was not clear if these control
characters should in fact be disabled or if they
could be left set to their default values. The
answer was that these control characters could
be enabled for output only ports without caus-
ing any disturbance on that port’s output. The
reason is that all control characters are
processed on input, not on output. Most
output devices (i.e. plotters) cannot generate
any of these characters in the first place. Even
if a device used as an output device can input
cl~aracters (such as a graphics display with a
keyboard), they won’t corrupt that port’s
output queue as long as they are not echoed.
Echoing can be disabled by resetting the ECHO
flag in sg_flags. The line editing characters

(erase, kill, word-erase, etc.) do not have any
meaning in cbreak since line editing is not
possible. Remember that in cbreak mode
every character is given to the reading process
as soon as it becomes available. Furthermore,
characters that generate signals (interrupt, quit,
and stop) will not cause any problem because
there won’t be any process gr, oup associated
with this port. This is because output ports
are normally opened by user processes which
are descendants of that user’s shell. As
explained previously, these processes will not
become process group leaders because they
already belong to the process group of the
shell. Moreover, line printer ports opened by
the line printer daemon (lpd) don’t have this
problem either. The reason in this caseis
because the line printer daemon disassociates
itself from any terminal through an ioctl
system call. Thus, it cannot receive signals
originating at any terminal line.

5.2 Ports Controlled by Getty

5.2.1 Alphanumeric Terminals

The getty process employs three terminal
modes while printing the login message, read-
ing the login name, and setting the terminal
state for the shell after login (see section 4.2).
The operation of an alphanumeric terminal
was entirely satisfactory after login, and after
the corresponding mode settings (crmod, etc.)
were invoked. Before login, however, a
problem existed because the terminal line was
given a default setting of raw mode by getty.
Output redirected to these terminals would be
corrupted because of the lack of flow control
and ouput processing. No flow control meant
that a subsequent loss of data occurred. More-
over, no output processing meant that lines of
output were hard to distinguish from one
another because they were not terminated by a
<cr><nl> sequence.

Both problems were solved by using
crmod instead of raw mode. However, since
the getty program echoes the input characters
itself, instead of letting the kernel do it, char-
acters need to be available to the getty
program as soon as they are typed. Therefore,
cbreak mode was used also. If cbreak mode
were not used, the getty program would not get
any character of the user’s login name until a
line delimiting character was entered.

AUUGN 137 Vol 10 No 1

;login:

Consequently, the login name could not be
echoed until it was completely typed, possibly
misleading the user to believe that the termi-
nal was not receiving input. These two bits,
along with other appropriate flags such as new
line and tab delays were set using the fl field
in the gettytab entry, which specifies the set of
flags to be used while reading the login name
(section 4.3). The gettytab entry is specified in
/etc/ltys, with one entry for each terminal.

5.2.2 Nonstandard Terminals

These types of terminals were mostly used
as output devices. However, since the devices
could also be used for input, it was decided
that a user could login on those ports thus
requiring a getty process. An example of such
a device is an AED graphics display, which
also can be used as an interactive terminal.
For these terminal lines, a new gettytab entry
was created, and the/etc/ttys file was modilied
accordingly to contain the name of this entry.
In this entry, a different set of flags was used
while reading the login name (fl field of the
gettytab entry). Cbreak mode was used to
prevent EOT characters from being stripped off
the output sequence, and to achieve flow
control. The crmod bit was turned off to
prevent <cr> and <hi> to be mapped to
<cr><nl>, as were the flags for tab expansion.
These settings prevented graphics commands
from being corrupted by unwanted output
processing. All the above output processing
could also be suppressed by simply enabling
the LITOUT bit in the local mode word. As it
turned out, this bit was necessary to be able to
send 8-bit data to the graphics display anyway.
This last setting required a minor modification
to the getty program to actually update the
flags in the tty entry with the local mode word
just before reading the login name.

All the control characters except the start
and stop characters were disabled since they
would be of no use anyway when sending
output to the display. This was done by set-
ting the appropriate fields in the gettytab entry
to the octal value 377 (negative one). As
explained in section 4.3, when getty obtains a
login name it resets the mode flags to be left
for the login process. Also, the login process
(section 4.4) resets the control characters to
their default values to be used in an
interactive session (the user shell). In this

way, these terminals can be used as a graphics
display while waiting for a user to login, and
then have their settings changed to be used as
a regular terminal once a user logs in.

5.3 Line Printer Ports
Line printers are handled by the line

printer daemon. The line printer daemon
opens and initializes the line printer ports.
Since line printers are attached to terminal
lines, the same underlying communication
parameters apply. The line printer daemon
reads the printcap database to get the
characteristics of each line printer attached to
a terminal line. The syntax of the printcap
database is very similar to the syntax for the
gettytab database. The reader should refer to
the printcap documentation for further infor-
mation about the printcap capabilities. The
line printer interface is handled through the
use of sockets, which are not discussed on this
paper. Moreover, the line printer interface
was not modified since it was already satisfac-
tory.

5.4 Ports with Other Devices Attached

Along with ports with user terminals and
printers handled by the getty and lpd
processes, there were other ports that were not
initialized by any process. These ports were
connected to a raw device (no I/O processing
needed) that did not require logging in, and
therefore did not require a getty process. An
example of such a device is a plotter. Origi-
nally, the user process would have to set the
appropriate communication parameters before
sending data to the port. However, this
violated the UNIX philosophy that a user
should be able to send information to any
(suitable) file or device without any such
intervention.

This problem was solved by spawning a
process from /etch’c.local which initialized all
the "raw" ports with their specific settings.
(The rc.local script is invoked just before start-
ing multi-user operation.) This process read. a
new database,/etc/rawtab, to make the settings
for every uninitialized port. The format of the
rawtab database was made identical to that of
gettytab. In our case, since these devices did
not require as much I/O processing as regular
terminals, the database was reduced to the

Vol 10 No 1 138 AUUGN

;login:

Consequently, the login name could not be
echoed until it was completely typed, possibly
misleading the user to believe that the termi-
nal was not receiving input. These two bits,
along with other appropriate flags such as new
line and tab delays were set using the fl field
in the gettytab entry,, which specifies the set of
flags to be used while reading, the login name
(section 4.3). The gettytab entry~ is, specified in
/etc/ttys, with one entry for each terminal:.,

5.2.2 Nonstandard Terminals

These types of terminals were mostly used
as output devices. However, since the devices
could also be used for input, it was decided
that a user could login on those ports thus
requiring a getty process. An example of such
a device is an AED graphics display, which
also can be used as an interactive terminal.
For these terminal lines, a new gettytab entry
was created, and the/etc/ttys file was modified
accordingly to contain the name of this entry.
In this entry, a different set of flags was used
while reading the login name. (fl field of the
gettytab entry). Cbreak mode was used to
prevent EOT characters from being stripped off
the output sequence, and to achieve flow
control. The crmod bit was turned off to
prevent <cr> and <nl> to be mapped to
<cr><nl>, as were the flags for tab expansion.
These settings prevented graphics commands
from being corrupted by unwanted output
processing. All the above output processing
could also be suppressed by simply enabling
the LITOUT bit in the local mode word. As it
turned out, this bit was necessary to be able to
send 8-bit data to the graphics display anyway.
This last setting required a minor modification
to the getty program to actually update the
flags in the tty entry with the local mode word
just before reading the login name.

All the control characters except the start
and stop characters were disabled since they
would be of no use anyway when sending
output to the display. This was done by set-
ting the appropriate fields in the gettytab entry
to the octal value 377 (negative one). As
explained in section 4.3, when getty obtains a
login name it resets the mode flags to be left
for the login process. Also, the login process
(section 4.4) resets the control characters to
their default values to be used in an
interactive session (the user shell). In this

way, these terminals can be used as a graphics
display while waiting for a user to login, and
then have their settings changed to be used as
a regular terminal once a user logs in.

5.3 Line Printer Ports
Line printers are handled by the line

printer daemon. The line printer daemon
opens and initializes the line printer ports.
Siince li~ne, pri:nters: a-re attached to terminal
l:ines, the same underlying communication
paFa:meters ap,ply., The line printer daemon
reads the printcap database to get the
characteristics of each line printer attached to
a terminal line. The syntax of the printcap
database is very similar to the syntax for the
gettytab database. The reader should refer to
the printcap documentation for further infor-
mation about the printcap capabilities. The
line printer interface is handled thxough the
use of sockets, which are not discussed on this
paper. Moreover, the line printer interface
was not modified since it was already satisfac-
tory.

5.4 Ports with Other Devices Attached
Along with ports with user terminals and

printers handled by the getty and lpd
processes, there were other ports that were not
initialized by any process. These ports were
connected to a raw device (no I/O processing
needed) that did not require logging in, and
therefore did not require a getty process. An
example of such a device is a plotter. Origi-
nally, the user process would have to set the
appropriate communication parameters before
sending data to the port. However, this
violated the UNIX philosophy that a user
should be able to send information to any
(suitable) file or device without any such
intervention.

This problem was solved by spawning a
process from /etc/rc.local which initialized all
the "raw" ports with their specific settings.
(The rc.local script is invoked just before start-
ing multi-user operation.) This process read. a
new database,/etc/rawtab, to make the settings
for every uninitialized port. The format of the
rawtab database was made identical to that of
gettytab. In our case, since these devices did
not require as much I/O processing as regular
terminals, the database was reduced to the

AUUGN 139 Vol 10 No 1

;login:

Crmod would solve the flow control
9roblem, but it would introduce the problem
of output processing being performed. As a
result, EOT characters (normally ctrl-D) that
could legally represent a graphics parameter,
would get stripped off by the terminal driver
and the device would never see them.
Similarly, newline characters would be
converted to a rcturn-linefced pair that would
obviously not produce the intended result.

The solution is to use cbreak mode.
Software flow control is invoked, and most of
the above output processing is avoided. Many
times the remaining output processing may
still cause problems and must also be disabled.
This can be accomplished by setting the
appropriate parameters in the try eritry, and is
described in the next section.

5.1.2 Tty Parameter Settings

The try table entry contains flags which
enable and disable certain terminal control
processing settings. (See section 3.6.) Selected
values are given ill this section, however, for a
complete description of each flag, refer to
documentation on the tty special file [5].

In crmod and cbreak modes, eight-bit
characters can be used on input by turning on
the PASS8 bit in the local mode word.
Similarly, eight bits could be used on output
without any output translations (just like in
raw mode) by setting the LITOUT bit. In addi-
tion, in cbreak mode, all control characters
except the start and stop characters can be
individually disabled to prevent distortion of
specialized terminal commands.

Initially, it was not clear if these control
characters should in fact be disabled or if they
could be left set to their default values. The
answer was that these control characters could
be enabled for output only ports without caus-
ing any disturbance on that port’s output. The
reason is that all control characters are
processed on input, not on output. Most
output devices (i.e. plotters) cannot generate
any of these characters in the first place. Even
if a device used as an output device can input
characters (such as a graphics display with a
keyboard), they won’t corrupt that port’s
output queue as long as they are not echoed.
Echoing can be disabled by resetting the ECHO
flag in sg_flags. The line editing characters

(erase, kill, word-erase, etc.) do not have any
meaning in cbreak since line editing is. not
possible. Remember that in cbreak mode
every character is given to the reading process
as soon as it becomes available. Furthermore,
characters that generate signals (interrupt, quit,
and stop) will not cause any problem because
there won’t be any process gr, oup associated
with this port. This is because output ports
are normally opened by user processes which
are descendants of that user’s shell. As
explained previously, these processes will not
become process group leaders because they
already belong to the process grgup of the
shell. Moreover, line printer ports opened by
the line printer daemon (lpd) don’t have this
problem either. The reason in this case is
because the line printer daemon disassociates
itself from any terminal through an ioctl
system call. Thus, it cannot receive signals
originating at any terminal line.

5.2 Ports Controlled by Getty

5.2.1 Alphanumeric Terminals
The getty process employs three terminal

modes while printing the login message, read-
ing the login name, and setting the terminal
state for the shell after login (see section 4.2).
The operation of an alphanumeric terminal.
was entirely satisfactory after login, and after
the corresponding mode settings (crmod, etc.)
were invoked. Before login, however, a
problem existed because the terminal line was
given a default setting of raw mode by getty.
Output redirected to these terminals would be
corrupted because of the lack of flow control
and ouput processing. No flow control meant
that a subsequent loss of data occurred. More-
over, no output processing meant that lines of
output were hard to distinguish from one
another because they were not terminated by a
<cr><nl> sequence.

Both problems were solved by using
crmod instead of raw mode. However, since
the getty program echoes the input characters
itself, instead of letting the kernel do it, char-
acters need to be available to the getty
program as soon as they are typed. Therefore,
cbreak mode was used aIso. If cbreak mode
were not used, the getty program would not get
any character of the user’s login name until a
line delimiting character was entered.

Vol 10 No 1 140 AUUGN

;login:

hardware communication parameters (speed,
8- or 7-bit characters, and parity) and the
establishment of a flow control protocol. If
hardware handshake is available (such as for
lines with full modem control), the MDMBUF
flag can be set to invoke flow control via the
carrier flag. In this .case, raw mode is
employed with 8-bit characters and no parity.
If 7-bit characters are desired, cbreak mode
can be used instead. Of course, parity can be
specified when using 7-bit data. For software
handshaking, cbreak is used to allow the start
and stop characters to be interpreted. If 8-bit
data is required, the PASS8 flag is used for
input, and the LITOUT flag for output. No
parity is available in this case.

In our case, one port that was connected
to an HP7475 plotter was modified in this
manner. The hardware handshake method
was tested to confirm the methodology, and
required a cable with an extra wire to connect
the DTR line (pin 20) of the plotter to the
carrier detect line (pin 8) of~e dmf port. TI~
port was set to raw mode and communicated
correctly and with proper flow control.

In spite of this success, software
handshaking was preferred since a dmf
multiplexer supports full modem control only
on two of its eight ports. Thus hardware
handshaking would require the plotter to be
connected to one of those two ports.
Consequently, software handshake was
selected, and cbreak mode was used. The
speed was set to 9600 baud. Both the PASS8
and LITOUT bits were turned on to allow for
8-bit characters required in graphics applica-
tions. A "de" field was added to rawtab to
specify the device file name to be opened.
Gettytab does not need this field since the
device file name to be opened is passed from
the init process to the getty process. Printcap
also provides this field (although its name is
different).

As stated in section 3.6 all of the control
characters are automatically set to their default
values when the first instance of the port is
opened. Thus, it was not necessary to provide
this capability in the rawtab database. The
only characters of concern were the start and
stop characters. As explained in section 5.1.2

the other control characters have no effect on
the I/O processing of (primarily) ouput only
devices. There was a question, however, as to
whether enabled Start and stop characters
could conflict with hardware handshaking.
Similarly, there was a question as to whether
an enabled carrier flag could Conflict with
software handshaking. Neither case presented
a problem for the following reasons:

1. Most devices are manufactured so that
they can only do one form of handshake at a
time. Therefore, as long as the device and the
system agree on which protocol they are using,
no conflict will occur.

2. Even if there exists a device that can do
both protocols at the same time (say drop DTR
and send an xoff character), no conflict will
occur. This is because either the change in
carrier state or the receipt of the xoff character
will be serviced before the other. The one that
is serviced first will set the terminal state to
stopped and will disable the transmitter on
that line. The other will find the state of the
terminal line already stopped and will have no
effect, just as when typing two consecutive
stop characters at a terminal, the second one
has no effect. Similarly, when carrier is
detected and the xon character is received, the
first one will clear the stopped state and will
restart the transmitter. The other one will
"clear" the already cleared stopped state, and
will "start" the already started transmitter.

This approach of running a process from
/etc/rc.local may have a possible drawback
compared to getty and lpd. The problem
would occur if a user intentionally or acciden-
tally changed the settings on a given line. In
the case of getty, if the user changes any
parameters from the shell, the line will return
to its normal state when the shell exits and init
creates another getty on that port. Line
printer ports do not have this problem because
the user does not have direct access to the
parameters of these ports. If a user modifies
any raw port parameters, however, they must
be manually reset. Consequently, the user
must leave the port in the same state as it was
initially. This problem is not considered to be
too serious since user intervention is no longer
needed for proper operation of these lines,
except for very special circumstances.

AUUGN 141 Vol 10 No 1

;login!

6.0 Conclusions
This paper presented the 4.3 BSD UNIX

terminal line interface. Although many of the
principles and algorithms are the same as for
other UNIX versions, some variations exist.
Of course no source code has been included
due to copyright restrictions. The two major
problems, flow control and lack or excess of
I/O processing were solved for every terminal
line. The solution consisted of specifying the
right parameters for each line in the provided
databases gettytab and printcap, and in the
newly created database, rawtab. For the latter,
a new process was created to actually read
these parameters and initialize the specified
ports. Although it was initially believed [9]
that a kernel modification would be required
to prevent special control characters from
being automatically reset upon opening, this
was not necessary since these characters have
no effect on output ports.

The terminal interface has. been handled
in such a way that the user does not have to
set the parameters for any port. All that is
necessary is to open the port, if it has not
already been opened by the system, and send
data.

References
I. Bach, M., The Design of the UNIX Operat-

ing System, Prentice-Hall, Inc., Englewood
Cliffs, N J, 1986.

2. Grccr, K., "Writing UNIX Device
Drivers," Tutorial USENIX Technical Confer-
ence, pp. 1-18, Dallas, TX, Jan 1985. UNIX
ProgrammerS’ Reference Manual, Section 2,
Computer Science Division, Department of
Computer Science and Electrical Engineering,
University of California, Berkeley, CA., 1986

3. Ritchie, D., "’The UNIX I/O System," in
UNIX Programmer’s Manual Supplementary
Documents, Vol 2, Section 5, Computer Sci-
ence Division, Department of Computer Sci-
ence and Electrical Engineering, University of
California, Berkeley, CA., 1986

4. UNIX Programmer’s Reference Manual,
Section 4, Computer Science Division, Depart-
ment of Computer Science and Electrical
Engineering, University of California, Berke-
ley, CA., 1986

5. UNIX System Manager’s Manual, Section
8, Computer Science Division, Department of
Computer Science and Electrical Engineering,
University of California, Berkeley, CA., 1986

6. Thompson, K., "UNIX Implementation,"
in UNIX Programmer’s Manual Supplementary
Documents, Vol 2, Section 4, Computer Sci-
ence Division, Department of Computer Sci-
ence and Electrical Engineering, University of
California, Berkeley, CA., 1986

7. Kernighan, B., and Pike, R., "Signals and
Interrupts" in The UNIX Programming
Environment, pp. 225-232, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1984.

8. Almada, A., "Enhancements to the 4.3
BSD UNIX Serial Line Interface," M.S. Thesis,
The University of Texas at E1 Paso, El Paso,
Tx, December, 1988.

Vol 10 No 1 142 AUUGN

;login:

Appendix: Internal Kernel Functions

nodev0
Simply returns the ENODEV error code.

nulldevO
Does nothing.

namei(pathname)
Converts a pathname into a pointer to a
locked inode. It uses several other algo-
rithms beyond the scope of this paper.

openi(inode, mode)
Invokes the specific open procedures for
character and block special files.

sleep(event, prio)
The process sleeps waiting for event.
Wakeup will notify the process when
event has occurred. When awakened, the
process will enter the scheduling queue at
priority prio.

wakeup(event)
Scans the sleep queue and wakes
processes waiting on event

up

gsignal(pgrp, sig)
Sends signal sig to every process with
process group id equal to pgrp.

psignal(proc, sig)
Sends signal sig to process proc.
from gsignal.

Called

subyte(addr, c)
Transfers a character from kernel to user
space. The value of c is placed into the
user address addr.

bcopy(from, to, count)
Copies the specified number of bytes
within kernel space.

copyin(from, to, count)
Copies the specified number of bytes from
user to kernel space.

copyout(from, to, count)
Copies the specified number of bytes from
kernel to user space.

uiomove(addr, cnt, rw, uio)
Transfers the specified number of bytes
from user to kernel space (copyin), from
kernel to user space (copyout) or within
kernel space (bcopy), depending on the rw
(read/write) and uio structure flags. One
of the addresses to transfer the data
from/to is addr and the other one is
contained in the uio structure. The offset,
count, and base fields of the uio structure
are updated.

getc(clist)
Gets the next character from the specified
clist. Cbloks that become empty are
returned to the freelist.

putc(c, clist)
Puts a character at the end of the specified
clist. If necessary, newcbloks are
allocated from the freelist.

ureadc(c, uio)
Transfers a character from kernel to user
space (subyte) or within kernel space.
Updates the base, count, and offset in the
uio structure.

b_to_q(buf, count, clist)
Copies the requested number of bytes
from buf to clist in at most the size of a
cblock chunks. This is because bcopy
transfers bytes to contiguous memory
locations. New cblocks are allocated from
the freelist.

q_to_b(clist, buf, count)
Copies the clist to buf in the same way as
above. Empty cblocks are returned to the
freelist.

canq(from, to)
Transfers the characters in the from clist
to the to clist. Uses algorithms q_to_b
and b_to_q.

AUUGN 143 Vol 10 No 1

;login:

An Update.on UNIX Standards Activities

Shane P. McCarron, NAPS International

This is the fourth in a series of articles on
UNIX related standards activities. .In this
narrative I am going to cover a slightly wider
area than usual. There have been develop-
ments at the ANSI X3 level, the National
Institute of Standards and Technology (form-
erly the NBS), and within the POSIX
committees which deserve attention. I will
apologize at the outset for the length of this
article, but I feel that all of the information is
timely and important. In addition to informa-
tion on group activities, included with each
report is a contact person from whom you can
get more information about these develop-
ments, and the names of USENIX Standards
Watchdog Committee members through whom
you can relay your opinions to the specific
standards committees.

On the subject of the USENIX Standards
Watchdog Committee, this series is now an
activity of that group. Last quarter I used the
article to solicit participation in the
committee, and I am pleased to report that we
have a number of new associate members.
While I don’t know everyone involved, I
would like to thank those who have
contributed: Anna Marie de Alvar~, Ted
Baker, Mark Colburn, Doug Gwyn, Sol Kavy,
Doris Lebovitz, Kevin Lewis, and Stephen
Head. We are still in search of members for
this group. While we will accept all comers,
we are particularly interested in filling out our
rather lean international input department. If
you would like to be involved in the Watchdog
activities, or know of someone who might be a
good candidate, please contact:

John S. Quarterman
Texas Internet Consulting
701 Brazos, Suite 500
Austin, TX 78701-3243
(512) 320-9031
j sq@lo ngway, tic. com

or

Mark Colburn
NAPS International
117 Mackubin St., Suite 1
St. Paul, MN 55102

(612) 224-9108
mark@naps.mn.org

C Language Standard

X3J 11 (ANSI C standardization
committee) met 26-30 September 1988 in Sun-
nyvale, CA. Principal business of the meeting
was to respond to comments received during
the third round of formal public review, which
had closed earlier. In addition to the 15
letters formally registered with CBEMA’s X3
Secretariat, 27 unregistered letters were
included. There were 632 items contained in
these 42 letters. In order to address them all,
the committee was divided into response
preparation subgroups, each of which tackled a
subset of the total list of items. From time to
time, the whole committee reassembled to hear
issues that the subgroups were not able to
completely resolve by themselves. In several
cases a straw vote was taken to determine the
sense of the committee. The resulting
responses were formatted to produce the
official X3J 11 Response Document.

At the Sunnyvale meeting, several edi-
torial changes to the draft standard were
approved. The working definition of "edi-
torial" was: A change is editorial if it clarifies
the original intent of the committee; it is
substantive if it changes the committee’s
intent.

There were several issues that were of
particular interest to the UNIX/POSIX
community:

¯ A change was made that clarified the abil-
ity of an application to portably reestablish a
signal handler for the signal that caused entry
to the handler. This is indeed allowed under
the standard. The important passage reads:

If the signal occurs other than as a result of
calling the abort or raise function, the behavior
is undefined if the signal handler calls any
function in the standard library other than the
signal function itself (with a first argument of
the signal number corresponding to the signal
that caused the invocation of the handler) or

Vol 10 No 1 144 AUUGN

;login:

refers to any object with static storage duration
other than by assigning a value to a static
storage duration variable of type volatile
sig_atomic_t.

¯ IEEE Std 1003.1-1988 (POSIX) requires
that the fflush function specified by X3JII
have some additional semantics. The
committee confirmed that this was indeed
allowed by ANSI C.

° The IEEE P I003.1 working group had
asked X3Jll to consider making the symbol
"environ" a reserved external identifier. This
would mean that an ANSI C conforming port-
able application could not use the symbol.
This request was made because in traditional
UNIX implementations application launch
routines initialize this variable to be a pointer
to the user’s environment variable list, and
this may not be what a strictly conforming
ANSI C application would expect. This issue
was raised before the committee, but found no
support for a change; the committee response
for this was as follows:

The ANSI C and IEEE 1003.1-1988 standard£
are not necessarily in conflict here, although it
is true that in order to avoid the name-space
conflict a mutually conforming implementa-
tion must rely on some mechanism such as
’global symbolic equate’ or a zero-size global
object ’environ’ in a separate library module
immediately preceding the module that defines
storage for ’ environ’ (the name used by the
C run-time startup code). Implementor
control over the way the linker operates, while
inappropriate to require for the more universal
C Standard (hence the constraint on unique-
ness of external identifiers), is not unrealistic
to expect for most POSIX implementations.
Several implementors have in fact indicated
their intention to provide such a feature.

Another solution, of course, would be to use
separate run-time startup modules for strict
ANSI-conforming and vendor-extended (possi-
bly POSIX-conforming) implementations,
perhaps via a compiler flag. This may be use-
ful anyway, for hiding extensions in certain
standard headers.

Because no substantive changes to the
proposed standard resulted from the third-
round review process, X3J 11 voted
unanimously to submit the standard as edited

to reflect approved editorial changes to
CBEMA X3 as the proposed ANSI C standard,
pending completion of additional review as
described below.

The draft Response Document was
reviewed first by a small group of X3Jll
members using electronic mail, then by a
group meeting at Plum-Hall in Cardiff, N J, on
20-21 October 1988. The responses were
checked for completeness, consistency, anc~
accuracy, and occasionally the original
responses were changed to achieve those goals,
or to meet the additional requirement that no
unauthorized substantive change to the
proposed standard could be promised by any
response. Changes made at the review meet-
ing were subsequently edited into the master
Response Document. Two significant areas of
the standard were affected by editorial changes
resulting from the response review process:
the description of pointer arithmetic was
substantially reworked to avoid reliance on an
assumption of byte addressability, and the
specification of the role of type qualifiers was
rewritten to clarify the significance of what was
called the "top type" (now called "type
category").

On 1 November 1988, the draft proposed
Standard itself was reviewed by several X3J11
members in a meeting at Summit, NJ. Since
the draft already contained the results of the
Sunnyvale meeting and response review meet-
ing, very few changes were found necessary at
the meeting.

On 9 November 1988, the Rationale
Document (designed to accompany the
Standard) was reviewed by a group of X3J11
members meeting in Cambridge, MA.

On 14 November 1988, copies of all three
documents (Response, Standard, Rationale)
were express-mailed to the 15 X3-registered
commenters, who had 15 working days (from
November 18) in which to reply to X3 if they
felt that their items were not properly
addressed by X3J11. The commenters were
encouraged to first discuss problems with
X3Jll members, in hopes of reducing the
amount of negative feedback to X3.

On 9 December 1988, all three documents
plus any feedback from the commenters were
to be submitted to CBEMA’s X3 Secretariat as

AUUGN 145 Vol 10 No 1

;login:

the official X3Jll proposal for the ANSI
Standard for Programming Language C. After
review by X3, assuming no problems arise, the
proposed Standard will then be submitted to
ANSI for official ratification as an ANSI
standard. It seems probable that the final
ANSI C standard will be published some time
during 1989.

The USENIX Standards Watchdog
Committee contact person in X3JII is Doug
Gwyn. He can be reached at:

Doug Gwyn
US Army Ballistic Research Lab
801 L Cashew Ct.
Belair, MD 21014
gwyn@brl.mil
+ 1 (301) 287-6647

National Institute of Standards and Technology

On August 30, 1988 (four days after publi-
cation of the previous in this series) the NIST
published their Federal Information Processing
Standard for POSIX. Suffice it to say that this
FIPS is finally approved, but differs substan-
tially from the approved IEEE standard in a
few key areas. The NIST is now working to
revise the FIPS so that it is more in line with
the real standard. This new FIPS should be
announced in the Federal Register in early
January, and after time for public comment
and review, will be formally approved. The
NIST expects approval sometime in summer
1989.

In the last article I mentioned that the
NIST had announced their intent to create
FIPS in other areas. They have now released a
preliminary FIPS for System Administration
and are about to release one for Shell and
Tools. They have also stated that by year’s
end they will release a FIPS on utilities with
User Interfaces (like vi). While in the case of
Shell and Tools the NIST is going to use Draft
8 of the 1003.2 standard, there are no existing
formal standards in the other areas. Instead of
waiting for standards bodies to develop mature
documents, the NIST is going to a number of
different versions of UNIX, and picking those
things that look neat. The System Administra-
tion FIPS in particular is disturbing. There
are a number of utilities in there from AIX
(IBM’s version of UNIX), Xenix (SCO or
Microsoft, I can’t tell), and of course the SVID

(from AT&T). This ensures that there is no
existing system that will conform to the FIPS
on day one, and also shackles the newly
formed IEEE working group on System
Administration.

I really don’t know what the NIST is try-
ing to achieve. It appears they are working
toward their stated goal of creating a full suite
of specifications to flesh out the Applications
Portability Profile (a conceptual model of por-
tability specifications created by the NBS over
the last few years). I used to think that they
had some sort of hidden agenda, but I don’t
believe that any more. I used to think that
they were trying to railroad standards to make
sure that the government’s needs were
satisfied. In this I have also been proven
wrong. They have now shown their ability to
create standards at will, thereby invalidating
the work of the standards bodies before they
can even begin. This interesting turn of events
proves that in their previous heinous acts they
were just being nice. They could have
superccdcd the process altogether if they had
really wanted to!

It was bad enough when the work of the
committees was being affected by the arbitrary
timclines imposed by the NIST, but now they
have created a framework within which any
standard on, say, System Administration, will
have to fall if it is to be taken seriously by the
vendor community. What vendor in its right
mind would conform to a formal standard that
was not in line with the standard being
required by all U.S. federal agencies? The
obvious answer is "vendors that don’t want to
sell to the government." In other .words -
none. Moreover, what vendor sponsored
COmlnittee member is going to propose some-
thing for a standard that would make their
employer not be able to sell to the federal
government? Again, none.

I have given the NIST an opportunity to
rebut the comments made above, and they are
in the process of doing so. I will publish their
comments as soon as I have them available.
However, I would guess that they will say
something like "These are just first cuts. In
the future we will modify the FIPS to conform
to standards produced by standards making
bodies." That’s great, but it really doesn’t
help. First, it would be a disservice to the

Vol 10 No 1 146 AUUGN

;login:

federal user community to force them to
change from an environment in which they
have become comfortable. Second, it is a
mistake to assume that the vendors are going
to want to conform to one standard for a
while, and then change over later. If there is a
standard that is being required by a substantial
part of the user community, then that is the
¯ one to which vendors are going to conform.
And if vendors conform to it, it then becomes
the existing practice that must be formalized
by standards bodies like IEEE P I003. It’s a
vicious circle, and in the end the losers are the
users. They are being handed an ill-considered
standard; one that is being foisted upon them
just because some small group of people, after
consulting with a handful of their (rather
unique) user community, have decided that
this is the way it is going to be.

In defense of the NIST, I know that they
are not trying to destroy the standards making
process. They are just a bunch of people try-
ing to do their jobs the best way they know
how. It is unfortunate that in doing so they
may end up doing more harm than good.

The USENIX Standards Watchdog
Committee has no contact person with the
NIST. For further information on NIST
activities you can contact me or Roger Martin.

Roger Martin
National Institute of

Standards and Technology
Software Engineering Group
Room B266
Technology Blvd.
Gaithersburg, MD 20899
rmartin@swe.icst.nbs.gov
+ 1 (301) 975-3295

1003.0 - POSIX Guide

At this meeting of 1003.0 the group was
presented with the first working draft of the
guide document. Throughout the week the
committee met in both small groups and in
plenary sessions to expand on the first draft
and start nailing down the exact focus of the
project. In particular the group concentrated
on the issues that had been raised and entered
in the Issues Log, the overall objectives and
the scope of the document. The purpose of
the discussions was in part to clarify the
’strategic goals of the committee, and in part to

prioritize those items that have already been
decided upon.

Each small group that met worked on a
particular area of the draft, expanding on its
contents. As the full working group could not
decide on the level of detail that should be
included in each section, it was left up to each
small group and revisited later. Topics that
are being covered include: the Benefits of
Open Systems, Key Open Systems Areas.

The I~SENIX Standards Watchdog
Committee: contact for 1003.0 is Kevin Lewis.
He can be reached at:

Kevin Lewis
DEC
Suite 645
1331 Pennsylvania Avenue NW
Washington, DC 20004
klewis@gucci.dec.com
+ 1 (202) 383-5633

1003.1 - System Services Interface

The big news from this meeting of the
1003.1 working group is that its Chair, Jim
Isaak, has resigned after 5 years of work. Jim
is also Chair of 1003, the convenor of the ISO
work item on POSIX, and a passel of other
things; consequently he felt that he could no
longer contribute the amount of time to
1003.1 that is really necessary for a working
group chair. I would like to take this
opportunity to thank Jim for all of the effort
he put in to making the first POSIX standard a
reality. We are fortunate that there are people
like him in the industry.

The new chair of the committee is Donn
Terry. Donn has been co-chair for a couple of
years now, and has been the real chair (if not
in name, then in actions) since the standard
went to ballot in November of 1987. He is
one of the original members of 1003.1, and is
also the chair of the US Technical Advisory
Group on POSIX to ANSI. Donn coordinated
the last two rounds of balloting on the 1003.1
standard, and did an excellent job. I’m
confident that he will pro,ce to be as able a
chair as Jim.

Almost as important is that the standard
is now available in print. The bound version
of the standard, while almost unreadable
because of IEEE enforced formatting changes,

AUUGN 147 Vol 10 No 1

;login:

and hard on the eyes because of its ugly split-
pea-green cover, is now available for $16
(members) or $32 (non-members) from the
IEEE office in New Jersey. For a copy, please
contact:

IEEE Service Center
445 Hoes Lane
Piscataway, NJ 08854
+ 1-201-981-0060

After electing the new chair, the working
group got down to business. They continued
their work on extending the first POSIX
standard, IEEE Std 1003.1-1988. Their
primary areas of focus are now a new archive
format, a functional interface for terminal
interaction, and cleanup of the first standard.
In addition the group starting forming a sub
group to be the interpretations committee for
the released standard. Each standard must
have a "supreme court" of sorts. Users of the
standard may submit formal questions to the
IEEE, and those questions will in turn be
conveyed to the interpretations committee. It
is up to this committee to figure out the
answers to the questions, and then to modify
the standard if necessary so that in future
printings the question doesn’t come up. More
about this as it develops.

One issue of great import is internationali-
zation of the standard. The international
community has some concerns, particularly in
the areas of character sets and the use of the
words "byte" and "character." These
concerns were in particular voiced by the
Japanese representatives at the October meet-
ing of WGI5 in Tokyo. The committee tried
to be very careful when drafting the standard,
but apparently not everything was covered. In
any event, the working group now has to write
an appendix to the standard which specifies
the intent of the group regarding international
implementations of POSIX. The standard is
not really an implementors guide, but the
appendix should provide a better guide to the
intent of the group. Hopefully this appendix
will be enough to keep the international
community at bay long enough for the
standard to be ratified as an 1SO Draft Inter-
national Standard (DIS).

On a related note, the ISO Working
Group for POSIX (ISO/IEC JTCI/Sc22/
WGI5) has recommended that DP 9945 (the

draft proposed international standard POSIX)
be elevated to a DIS. This means that the
standard has to go through another (interna-
tional) balloting period before it can be a real
international standard.Personally, I don’t
anticipate any trouble.

The 1003.1 committee hopes to ballot a
revised version of the standard within two
years. This revised version would contain a
new archive format, some additional functions
there were left out of the original but are now
felt to be necessary, and any clarifications that
have come from the interpretations committee.
In addition all of the interfaces in the standard
will be described in a way that is programming
language independent, and there will be a
chapter that has the C language binding to this
language independent description. It sounds
like a big job, but the committee is optimistic.
It is also small enough now that it might just
get it done in that time frame.

I am the USENIX Standards Watchdog
Committee contact for 1003. I.

1003.2 - Shell and Tools Interface

This working group never ceases to
impress me. In September the group was
given about three weeks to go over draft 7 of
the standard and review it as if it were a
formal ballot. This means that problems
discovered in the draft must.be reported to the
committee using the formal POSIX balloting
format, within the specified time limits, in
order to be considered. A surprising number
of people were able to work very hard and
come up with about 1500 objections to the
600 page document.

Okay, so a lot of people, given3 weeks,
can really find a lot of problems with a some-
what immature document. Maybe not terribly
impressive. Then a group of 40 people meet
in Hawaii, not a place known to be conducive .
to work, and manage to review every single
objection and resolve them! This is truly
amazing, and I think everyone at that meeting
(including myself) deserves a medal. More-
over, I would like to take this opportunity to
publicly eat the words I wrote last quarter.
They may just pull it offl. The draft that goes
out for balloting in the formal IEEE process is
certainly in much better shape than the 1003.1
document was when it first went out. Also,

Vol 10 No 1 148 AUUGN

;login:

P I003 learned a lot from the .1 ballot, and
that knowledge should help make the balloting
of .2 smoother.

Some specific changes of interest were:

¯ Based on a decision from the previous
meeting and several balloting objections, the
fgrep and egrep commands have been removed
from the standard, and the functionality that
they provide is being encompassed in the
definition of grep. This new grep will have
options -E and -F which will give it the exact
functionality of egrep or fgrep, respectively.

¯ The draft has a command in it called
colld@ colldef allows the portable definition
of collating sequences, which can then be used
by utilities that do string comparisons with the
C Standard function strcoll. The theory goes
that an implementation will provide applica-
tions with a means for creating collation
sequence definitions (colldej), and then also
allow the application to specify which collation
sequence to use when calling utilities like sort
(through the environment variable
LC_COLLATE).

It all sounds pretty good, but the definition o~"
colldtf was so incomplete and confusing that
some balloters suggested it be removed from
the standard altogether. The definition of this
utility now provides for a lot of additional
functionality, and is much clearer than it used
to be. While this part of the standard is not
talked about much, I believe that it is probably
the most important part. The international
aspects of POSIX are sort of obscure, but they
will allow for more portable applications, and
also allow for some previously unheard of uses
for utilities like sort.

° A closely related utility, xform, was placed
in the standard to allow for the transformation
of strings by a shell script just as can be done
using the strxfrm function in Standard C.
After much discussion in the small group, this
command was removed from the draft. While
there was some dissenting opinion, the
majority thought that this would have very
limited usefulness to a portable shell applica-
tion. As I was the dissenter, I can say that I
wanted it in because there is no other way to
portably compare strings in the shell from an
international perspective. If a user enters
something and then later you want them to

enter it again, you cannot portably compare
those strings without the xform utility. Alas,
you win some...

o An interesting development was the deci-
sion that the C language functions in the
standard be moved into a chapter for C
Language interfaces, and that their original
position in the document be reserved for the
language independent descriptions of some of
the functions. In the end it may be that some
of the functions are really not ones that need
to exist in other languages, and as such should
not be in the language independent section.
This event is interesting because it shows the
intent of this working group, and indeed all of
the POSIX working groups, to describe their
standards in a language independent manner.
This was a requirement of the international
community, and I am glad to see that it is
being carried out.

¯ In what I consider a victory for the users
of the world, the UUCP style commands in the
standard have been moved out of the docu-
ment and into an appendix. These commands,
uuxqt and uuname, have been in the standard
for about a year, but no one could really figure
out why. As described there was no underly-
ing transport mechanism or protocol defined,
so they could not possibly have been reliable
in any event. They were placed in the
standard as a spear; something that you could
throw out and have no idea if it worked or
not. Depending on the feeling of the balloting
group, these commands will either be fleshed
out into a full definition of the UUCP "net-
working" system, or removed from the
standard altogether.

¯ While the UUCP commands are’gone, the
message sending command sendto is still in the
standard. This command allows an applica-
tion to send text to an address with an imple-
mentation defined format to be deposited in
an implementation defined location and
delivered in an implementation defined
manner. No kidding. That’s what it says. It
also used to say sendto -r would try to read
from your personal implementation defined
storage location, but that it might not do any-
thing. Fortunately, the working group couldn’t
figure out a single reason why a portable appli-
cation would want to read mail. While this is
usually not enough cause to remove something

AUUGN 149 Vol 10 No 1

;login:

from a standard, when coupled with the
danger that it might not do anything if
executed, the evidence seemed to lean toward
removal. This option has been axed.

¯ There is now a section of the standard on
application installation. Actually, there has
always been a section for that, but until now it
has been full of stuff that wasn’t really worth
reading. The new definition is a little bit
complex, but it seems to be fine. It allows for
an application, on installation, to determine
what system resources are available, and to
then sort of dynamically inform itself about
them. There is also a system resource data-
base, and all sorts of other neat stuff. I don’t
have a handle on all of it yet, so stay tuned.

There were all sorts of other changes made
to the draft, but they are primarily editorial,
and are of course all subject to review by the
balloting group.

The schedule for balloting goes something
like this: Assuming the document gets to the
balloting group in mid-January, the period will
close in mid-February. Then all of the
received objections will have to be resolved or
commented on, and it will be rccirculated.
This may happen several times before the
document is finalized. Since each recirculation
& resolution period takes 3 to 4 months, it
could be early 1990 before we see a ratified
standard.

In the meantime, since the working group
doesn’t have anything to do with a standard
while it is going through balloting, work will
progress on the new User Portability Exten-
sions supplement. The idea here is that a sup-
plement to 1003.2 will be released soon after
the initial standard. This supplement will
describe the traditional UNIX utilities that
have user interfaces (e.g. vi). Note that the
utilities to be described are the traditional
ones, and have nothing to do with windowing-
mouse interfaces. Work on that topic is
progressing in other areas.

I am the USENIX Standards Watchdog
Committee contact for 1003.2.

1003.3 - Testing and Verification

This POSIX working group met along
with the others in Honolulu in October. The
agenda included a status report on NIST

activities, review of previously assigned action
items, developing a strategy for future work
with other P1003 (POSIX) working groups,
revision of Draft 7.1 document, and assigning
new action items.

Roger Martin (NIST & P1003.3 Chair)
gave a status report on the current NIST FIPS
and their Conformance Testing Policies for the
POSIX FIPS. He stated that this "Initial"
POSIX FIPS has been approved and they
intend to revise the FIPS now that the
P1003.1 Standard is finalized. The NIST Test
Suite, PCTS, has been provided to NTIS
(National Technical Information Service) for
public distribution at a price of $2500 and is
being distributed since September 5, 1988. Its
distribution was awaiting FIPS approval.
Roger Martin also presented a proposed
schedule for a series of Application Portability
Workshops sponsored by NIST. He described
a workshop that had taken place in September
1988 covering Shell & Tools, System Adminis-
tration, and X Windows. One of the areas to
be covered in a future Application Portability
Profile FIPS and workshop include the Termi-
nal Interface Extension. The workshops are
intended for implementors and users.

The remainder of the meeting
concentrated on rewriting and restructuring
the Draft 7.1 document, including test asser-
tions.

During the week of meetings one small
group of Test Assertion Reviewers
continued to update the 1003.3 Draft 7.1
assertions.

Two other small groups concentrated on
rewriting and restructuring 1003.3 Draft 7.1
document. One group’s emphasis was the
development of 1003.3 Generic Test Method
chapters (i.e. terminology, testing levels,
generic PCTS output). The second group’s
emphasis was in developing 1003.1 specific
Test Method sections.

The P1003.3 group is gearing up for
balloting this standard in early 1989. Each
P1003.3 member is part of the "mock" ballot
group, identifying and formulating any possi-
ble objections.

Future work of the PI003.3 committee
was also addressed. The P1003.3 Working

Vol 10 No 1 150 AUUGN

;login:

Group wants to influence the other P I003
Working Groups into writing testable
standards. To achieve this, a liaison program
will be implemented to have members from
P1003.3 working in a liaison fashion in each
of the other working groups.

The P1003.3 working group Project
Authorization (PAR) will need to be revised in
order for the group to develop an overall Test
Method standard and the development of
specific standards for each appropriate 1003
activity.

The USENIX Standards
Committee contact for 1003.3
Lebovits. She can be reached at:

Doris Lebovits
AT&T
Rm 5-211
190 River Rd,
Summit, NJ 07901
lebovits@attunix.att.com
attunix!lebovits
+ 1 (201) 522-6586

Watchdog
is Doris

1003.4 - Real Time Extensions to POSIX

In the past I have written some things
about this committee that were pretty critical.
I saw them as progressing too slowly to have
the impact I hoped they would have. I know
that nothing I wrote or said motivated them,
but I am now happy to report the following:
1003.4 is almost ready to go to mock ballot!
Apparently it all came together in the last cou-
ple of months, and they are now ready to ask a
wider group for an opinion. They plan, at the
January meeting, to go through all of their
working papers and appendices, integrate them
into the draft, and them submit it for a mock
ballot before the April meeting. The results of
the trial ballot will tell them how much more
work they need to do before going to formal
ballot. If all goes well, they should be able to
ballot after the July, 1989 meeting. Given the
way ballots tend to go, that would mean a
completed standard in early to mid 1990.
This is particularly exciting since dates in 1991
had been bandied about previously. Getting
this standard out a full year earlier is astound-
ing.

Many people are probably curious as to
what is contained in a Real Time standard.

Well, many things that didn’t make it into
1003.1, for starters. Here is a partial list:
Asynchronous I/O, Shared Memory, IPC,
Asynchronous Event Notification, Process
Memory Locking, Timers, Priority Scheduling,
Semaphores, Synchronous I/O, and Realtime
Files.

Some of these are going to be particularly
contentious. In particular Events and Memory
Locking could be a problem. The mock ballot-
ing should flush out these issues so it can be
cleaned up before formal balloting in the fall.

The USENIX Standards Watchdog
Committee contact for 1003.4 is Sol Kavy. He
can be reached at:

Sol Kavy
Hewlett-Packard
19477 Pruneridge
Cupertino, CA 95014
sol@hpda.hp.com or hpda!sol
+ 1 (408) 477-6395

1003.5 - Ada Language Binding

This group is interesting. They have now
distributed draft 1 of their standard to the
working group, but they are very close to
finishing.

The primary goal of the P1003.5 working
group is to produce an Ada language binding
for the operating system services interface
defined by the P1003.1 standard. This work
has progressed to the stage of circulating draft
chapters within the group. These chapters are
to be reviewed at the next .5 meeting (in Janu-
ary).

The last .5 meeting was 7-9 September
1988 in Minneapolis, MN. One of the issues
discussed there was improving coordination
with the rest of P1003. The last two P1003
meetings conflicted with major Ada meetings,
so that .5 chose to meet separately. This has
not been good for communication.
Fortunately, there are no major conflicts with
the Ft. Lauderdale meeting, and they will
attempt to synchronize future meetings with
the rest of the P 1003 working groups.

Major issues which were discussed at the
September meeting included: (1) the relation-
ship of Ada I/O and POSIX I/O, and how this
relates to P1003.0; (2) (missing) support for

AUUGN 151 Vol 10 No 1

;login:

Ada in the P1003.2 standard; (3) real-time
features required by Ada, and whether
P1003.4 will provide these; (4) changes to .1
between draft 12 and the final version that will
require changes to the .5 draft chapters; (5) the
relationship of Ada tasks to POSIX processes;
(6) whether the organization of the P1003.5
document should mirror the. 1 document.

One of the central problems they face is
reconciling the relationship between Ada tasks
and POSIX processes. Unlike POSIX
processes, Ada tasks share a common logical
address space. If they map Ada tasks onto
distinct POSIX processes, they need a way to
share memory and file handles (opened after
fork) between processes, which is not provided
in .1. (Support for shared memory is on the .4
agenda, but the final form remains uncertain.)
Moreover, there are applications of Ada tasks
that require task switching, creation, and
termination to be performed much faster than
may be possible for POSIX processes.

On the other hand, they might implement
tasks as multiple threads of control within a
process, but then they run into other problems.
Unfortunately, multiple threads of control
within a proccss cannot be suppmoted well
without some cooperation from the OS. For
example, a blocking system call by one thread
should not block other threads. For another
example, what happens when one task is in the
middle of a system call and another one forks?
(For now, P1003.5 agreed that For’k/Exec
should be allowed, but that their effects in a
multitasking Ada program are implementation
dependent.)

The concept of POSIX support for "light-
weight processes" is appealing. The group will
explore the applicability of such a solution. In
order to broaden the base of interest, they
have agreed to sponsor a "Birds of a Feather"
discussion on this issue at the Ft. Lauderdale
meeting.

Another major problem is reconciling
POSIX signals with Ada semantics. The .5
group has done some preliminary work on
this. The concept most closely corresponds to
an asynchronous Ada exception, but this
construct is of questionable legality. The legal
Ada mechanism appears to be entry calls, but
this presents other problems. Much work

remains.

A third problem area is data representa-
tlon, and character sets in particular. POSIX
already has problems with international char-
acter sets, arising from special uses of certain
glyphs, and from an implicit assumption that
characters are represented as bytes. Ada
makes this worse, since it specifies a very
specific standard character set (ASCII). The .5
group proposes to recognize POSIX characters
(and strings) as distinct from the Ada versions,
and to provide transfer functions for situations
where one must be converted to the other.

Due to a conflict with the ACM Tri-Ada
conference, 1003.5 was not able to meet with
the rest of the POSIX committees in Hawaii.
However, several individual members
volunteered to attend as liaison with the other
groups. This will probably turn out to have
been very helpful in resolving some questions
about division of responsibility.

It became clear during the 1003.1 meeting
that .5 should not feel constrained to milnic
the C-language binding, but should move
ahead boldly to create a true Ada interface.
Further, it appeared that due to Ada’s strong
typing requirements .5 might be closer to a
language-independent version of .1 (required
by ISO) than the present .1 standard, and
might well influence the form of the future. 1.

Meetings with the .4 revealed that support
for Ada’s real-time requirements might be pro-
vided by that group, but not necessarily in a
suitable form or soon enough. In particular,
the subject of lightweight processes, which
might be used to implement Ada tasks, is not
on the .4 agenda. This leaves the subject open
to be addressed by .5.

These, and observations by other .5
members-serving as liaisons are likely to
influence the direction of work when the group.
next gets together.

The USENIX Standards Watchdog
Committee contact for 1003.5 is Ted Baker.
He can be reached at:

Ted Baker
Department of Computer Science
Florida State University
Tallahassee, FL 32306

Vol 10 No 1 152 AUUGN

;login:

tbaker@ajpo.sei.cmu.edu
baker@nu.cs.fsu.edu
+1 904 644-5452

1003.6 - Security Extensions to POSIX

The 1003.6 committee met with the other
POS1X committees in Hawaii. At this meeting
they decided to divide the work into different
groups. The groups were addressing: Audit,
Definitions, P 1003.6 Scope, DAC, and
Privileges.

Each small working group met every day,
and on the morning of the final day of the
meeting a wrap-up session was held to update
all the members of each working group’s
progress. The following information was
presented:

Audit

t. Goals:

- Satisfy TCSEC Requirement.

-Reduce the amount of change to POSIX
as much as possible.

- Primarily to make audit trail entries.

-Portability for audit administration &
analysis packages and private applications.

- Audit Data Interchange Format.

2. Areas of Investigation:

- Definitions

- Event/Classes (what are they?)

- Pre/Post Selection Criteria

- SSO Interface

- Subsystem Interface

- Record/File Format

- IDs (audit ids,...)

3. Future:

- Detailed Input Requested

- Interim Event/Classes

- BNF for Audit Token Grammar

Note that the administration interface issues
have been considered to be a HANDS-OFF
right now.

Definitions

The following information was presented:

1. The structure of the definitions will be
similar to 1003.1 structure: terminology sec-
tion, conformance section, general terms,
general concepts, and acronyms.

2. The draft 0 definitions were based on four
documents: ISO, ECMA, IEEE Std 1003.1-
1988, and the Orange Book.

3. The goal of this group is to assure that
1003.6 definitions are consistent and relevant
to 1003.6 areas without overstepping or
duplicating existing definitions from other
1003.x groups. In case some of the 1003.6
definitions conflict with 1003.X ones, the
action will be to propose a redefinition of the
term.

Pl OO3.6Scope

The proposed Scope was discussed and the
conclusion was that it needed reworking. The
area of I&A was considered not addressed, as
were trusted recovery (which the real-time peo-
ple may need) and others. In the draft a lot of
the issues that will not be supported right now
are marked so because of lack of experience or
not enough technical maturity. The important
point is not whether we have the experience or
not, it is to be aware of areas where users want
security, areas where the committee thinks
security should be provided, and point them
out in the Scope. If areas become a problem
later, they can be dealt with at that time.

For the next draft of the 1003.6 docu-
ment, the table of contents will contain:
Scope, Definitions, Feature Overview, Existing
1003.1 Functions, Existing 1003.2 Commands,
Section for Each Feature, and an Appendix.

The Feature Overview covers a discussion,
functional interface summary and command
summary of each feature. Then in the feature
section there will be the functions, commands,
descriptions, and security specifications.

In the appendix there will be a rationale
that maps to the document sections.

It was remarked that all the future
features such as Networking and System
Administration should be annotated in an

AUUGN 153 Vol 10 No 1

;login:

appendix as areas that will be covered as
extensions.

Discretionary Access Controls

This group was the one with the most
activity, generating a lot of conflicting ideas
even within itself. However, they did resolve
to put together first the Rationale section of
the document and work on the agreeable parts,
then later debate the contentious ones. One of
the conflicting topics was default Access
Control Lists. This is probably needed, but
apparently will not be within the scope of the
standard.

Privileges

Privileges is a topic wrought with
philosophy, and computer professionals love to
be philosophers. In spite of this, definitions of
privilege and certain types of privileges were
completed. A paper from IBM was taken as a
framework for the privilege section. During
the meeting a few operations were identified as
necessary, although the list is far from
complete: getpriv, setpriv, enable/disable_priv,
droppriv.

Another issue brought to the whole group
was Internationalization, and the decision was
not to address it as long as they can. This is
unfortunate, as the charter of POSIX is to be
as international as possible. The 1003.1
committee learned the hard way that interna-
tionalization cannot just be stapled on later. It
must be in there from day one or it becomes
extremely difficult to make it work. In the
case of security, labeling is an area in which
internationalization is a must. If it is not
placed in there initially, it may never get in.

The upshot of all this is that the small
groups produced the guidelines for the next
meeting and the topics that are going to be
covered in the near future.

This group has targeted mid-1990 for a
complete draft ready to ballot. The USENIX
Standards Watchdog Committee contact for
this group is Anna Maria de Alvar~. She can
be reached at:

Anna Maria de Alvar~
Lawrence Livermore National Lab
L-303
PO Box 808

Livermore, CA 94450
+ 1 (415) 422-7007
annamaria@lll-lcc.llnl.gov
uunet!lll-lcc.llnl.gov!annamaria

1003.7 - System Administration

This new working group met as a Birds of
a Feather session during the Hawaii meeting.
During that session the group convenor out-
lined the goals and solicited input from the
attendees. At a subsequent meeting in
Monterey (in conjunction with the USENIX
Large System Administration Workshop) the
group took the input from that meeting and
the work that had been going on off line and
began producing a draft document.

So, what is the purpose of this body? To
define a portable user interface for System
Administration Utilities which would allow
users to administer systems in a portable way,
and allow developers to build system adminis-
tration tools on top of consistent underlying
commands and libraries. Since the work of
this body will overlap with ahnost every other
P I003 working group (and possibly other
groups outside of POSIX), coordination is a
major part of the standard development effort.
Also, because the charter of this group is so
broad (what is an administrative tool, any-
way?), it is going to take quite a while to
complete the standard.

Just to give you a rough idea of what is
going to covered by this group, here are some
possible areas: machine startup, process
management, network, software licensing
management, user management, password
management, etc... At the meeting in Hawaii
it quickly became apparent that the scope of
this group is too large to accomplish anything
in a reasonable period of time. Some of the
time at the Monterey meeting was spent
narrowing the scope of the group to a more
manageable size. The group tried to identify
items which could form a basic set of libraries
and commands, and could be finalized in a
two to three year time frame. After the initial
standard is released, there may be continuing
work into areas that the first cut was not able
to address.

When I last wrote about this group, I was
very critical of its charter and the possibility of
it succeeding. I think it only fair to relate that

Vol 10 No 1 154 AUUGN

;login:

a number of people wrote me and said that I
was too judgemental, and that I should take a
wait and see attitude. Bowing to the will of
the people, I am not going to draw any conclu-
sions about the working group at this time. In
the interim, if you want more information, or
would like to share your opinions with me,
drop me a line.

The USENIX Standards
Committee contact on 1003.7
Colburn. He can be reached at:

Mark Colburn
NAPS International
117 Mackubin St., Suite I
St. Paul, MN 55102
(612) 224-9108
mark@naps.mn.org

Watchdog
is Mark

1003.8 - Networking Extensions to POSIX

IEEE P1003.8’s charter (not yet formally
approved by IEEE, but pending) is to help
develop an IEEE POSIX networking standard.
This was the committee’s first formal meeting,-
and it was devoted mostly to organizational
matters, particularly on setting specific techni-
cal goals and how to divide the work into
subcommittees.

This working group has emerged out of
the work done by the /usr/group Technical
Committee’s subcommittee on networking.
Once this committee has been formally
formed, the /usr/group networking committee
will be considered to merge with the P1003.8
committee, and meet concurrently whenever
P1003.8 does. Ultimately, the /usr/group
committee is likely to disband completely in
favor of P1003.8.

The charter ("project authorization
request," or PAR) was reviewed briefly:

SCOPE

1. Define Network Services required by port-
able applications consistent with existing and
emerging standards such as OSI.

2. Define interfaces to the network services
defined above, and where possible, language
and protocol independent programming
interfaces.

3. Identify the requirements for new network
services & protocols and liaison with

appropriate standards bodies (national and
international) and interested organizations
when appropriate.

PURPOSE

Define and/or adopt a set of paradigms to
permit the implementation of portable applica-
tions in a network environment.

Areas to be addressed by this committee
include:

1. Interoperability between POSIX applica-
tions and non-POSlX applications.

2. Bindings to OSI application layer services.

3. Identification of language requirements
not appropriate to applications portability, and
liaison with appropriate standards bodies to
ensure that action is taken where appropriate.

4. The evaluation and definitions, where
require, of binding to lower layer OSI services.

5. The requirements to ensure interoperabil-
ity among POSIX-based distributed applica-
tions and services.

6. Network Services profile definitions for
portable applications (POSIX).

Subcommittee Organization

A poll was held to find out what the most
important topics were as far as the group was
concerned. These turned out to be: process to
process communication, directory services,
network management, transparent file access,
and remote procedure call. Three main
subcommittees were formed to look at some of
these tasks. Roughly, these committees were
"interprocess communication, remote
procedure call," and "transparent file access."

Directory services and network manage-
ment were recognized as important, but also as
cutting across other functional areas. Also, it
was noted that there were not enough people
in attendance with sufficient expertise in these
topics to form a useful body of opinion on
proposals in these areas.

Transaction processing was generally felt
to be within the domain of the committee, but
as a special case of remote procedure call. It
was noted that others who were not on the
committee may feel otherwise.

AUUGN 155 Vol 10 No 1

;login:

The committee split up into
subcommittees for a day to refine the
definitions of the most important end products
identified for the committee to concentrate on.

Specific Technical Goals

The following is a summary of what the
committee as a whole agreed on as a result of
the input from the individual subcommittees.

Transparent File Access

It was decided that the products should be
client-only interfaces. Three products were
identified:

I. Full POSIX-semantic transparent file
access interface. This would include previous
/usr/group DFS Committee work on DFS
(distributed file system).

2. Administrative interface to support (1).

3. Subset-semantic transparent file access
interfaces. This could be vendor (e.g., MS-
DOS, Apple, etc.) or protocol (e.g., FTAM)
specific.

Work items identified so far include:

1. Definition of file operations

2. Liaison to system administration;
definitions of transparent file access specific
system administrative utilities and/or
interfaces

3. Liaison with directory working group

4. "Appropriate approach" to the protocol
invention problem

This group expects to finish relatively quickly
(6 months or so was the estimate given),
because it was felt that a significant amount of
the work needed to produce standards in this
area is already done by definition (the P 1003.1
standard).

.Remote Procedure Call:

The RPC folks apparently did not define their
charter so much as identify issues that need to
be addressed. The following was their list of
issues along with tentative resolutions (if any):

1. Level of service

2. POSIX-to-POSIX versus PosIX-to-other
(address POSIX-to-other)

3. Language binding (initial target: C) . ¯

4. TP support

5. Connection re-use

6. Call-back/recursion

7. Compiler language

8. Data canonicalization

9. Authentication

10. Our scope versus X.500

11. Standard suite of services need to confer
with X3T5 on possible charter issues

12. Idempotency -execute once only
guaranteed

13. Long running processes -keepalive &
timeouts probably needed

14. crash recovery

15. Real Time issues : no real time interface

16. Directory services

17. Multiple protocol stacks

The subgroup chose not to identify the next
step in the process (apparently meaning that
they will wait for proposals).

¯ Interprocess Communication:

Four products were identified:

1. Simple Protocol-IndependentNetwork
Interface
Features:

- Bidirectional byte stream virtual circuits

- Connectionless message exchange

- Read/write support

- Protocol-independent naming

- Asynchronous communication services

- Support for both client andserver
processes

- POSIX-to-non-POSIX support ..

Issues:

-How to resolve names in a protocol-
independent manner?

- What should the individual f~nctionslook
like?

Vol 10 No 1 156 AUUGN

;login:

2. Simple Structured Data Network Interface
Features:
All of (1), with extensions for data description
and machine-independent representation.

-Description of the syntactic structure of
the data; when you send the data, you refer-
ence the structure.

- Not all functions from (1) may work (such
as, read/write)
Issues:

- Structure alternatives: ASN.1, ...

- C data structures (stub compilers)

3. Protocol-Option-Extended Network
¯ Interface
Features:

-Provides the ability to access protocol
dependent options

Migration pathto potential future
protocols

- POSIX-to-any

- Virtual circuits, datagrams

Issues:

- Limited lifespan (?)

- Limited utility

- Usefulness as a migration tool

- Relationship to (1)

0 4. OSI application level interface

Features:

- A family of interfaces with consistent style
and syntax which provides OSI application
level services, e.g. FTAM, VT, ACSE, ROSE.
Issues:

- Complexity

-Prioritization (which ones to focus on
~rst)

One issue that surfaced very quickly in the
network IPC discussions was the differences
and relative merits of sockets and XTI. Some
went as far as to say that the differences were
significant enough to guarantee "religious
wars" over the issue, and/or make any kind of
progress impossible in the area of product (3).

Whatever the cause, a majority (8/0/3/3)
of participants expressed interest in working
on product (1), with products (3) and (4) hav-
ing a relatively weak level of interest.

The committee will get down to serious
business at the next meeting (in January; 5
days). For the next meeting, proposals are
being solicited in all areas. The USENIX
Standards Watchdog Committee contact on
this committee is Stephen Head. He can be
reached at:

Stephen Head
Hewlett Packard
263 Mackintosh St.
Fremont, CA 94539
+ 1 (408) 447-2740
smh@hpda.hp.com
uunet!hpda!smh

That’s about it for this quarter. As
always, if you have any comments or sugges-
tions, please contact me at:

Shane P. McCarron
NAPS International
Suite 6
117 Mackubin St.
St. Paul, MN 55102
+ 1 (612) 224-9239
ahby@bungia.mn.org
uunet!bungia.mn.org!ahby

AUUGN 157 Vol 10 No 1

;login:

Letter to the Editor

21 December 1988

First, I’d like to make it clear that I
support the Association’s desire to publish
periodically a report on UNIX-related
standardization activities. I also respect Shane
McCarron and value his opinions on contr-
oversial issues in this area. However, I feel
that because of the increasingly editorial
nature of the Updates, they are no longer serv-
ing their intended purpose.

The Updates should report on the accom-
plishments of thc various national and interna-
tional standards bodies and any othcr relevant
standardization developmcnts or issues that
affect the UNIXs community. Controversial
issues should bc covered impartially,, giving
both sides cqual time and refraining from the
pedantic or preachy.

Mr. McCarron’s most recent report on the
National Institute of Standards and Technol-
ogy (NIST, formerly National Bureau of
Standards) begins with a short update on the
POSIX FIPS but quickly becomes a criticism of
NIST’s practice of writing FIPS before the

associated POSIX standard has been approved.
He even goes so far as to say "This interesting
turn of events proves that in their previous
heinous acts they were just being nice." This
is uncalled-for. NIST’s actions are at worst
misguided. To his credit, McCarron says NIST
is being given the opportunity to rebut these
comments. Unfortunately, McCarron
presumes himself capable of predicting NIST’s
response and proceeds to attack the rebuttal
before it has even been made.

There are other examples, but I won’t
bother listing them. My point is that I don’t
think the Association should continue to fund
McCarron if he can’t or won’t cease using the
Updates as a personal soapbox. If the Associa-
tion values his opinions enough, he should be
commissioned to write a separate editorial
column.

David Sill
UNIX System Programmer/Analyst
Naval Surface Warfare Center
Dahlgren, VA 22448
dsill@relay-nswc.navy.mil

Further comments (not flames) concerning these reports may be sent to (usenix, u. une, t).tpeter.

Vol 10 No 1 158 AUUGN

;login:

The EUUG

The EUUG and U;SENiN have agreed to,
give space in their respecfiiv/e~ newsletters so
that their members can~ be ma~¢ more aware
of what is happening on~ the ot,t~er-side of the
Atlantic.

Donnalyn Frey has already started to fill
her column in the EUUG Newsletter, inform-
ing us of what is happening with USENIX.

Since this is the first article to be
published in the EUUG column of ;login.’, it
occurred to us that there are probably lots of
people who don’t know exactly what the
EUUG is (this is certainly true in Europe, so I
think it’s a good guess that the same must be
true in the US).

So, here is a quick history of the EUUG,
and a description of what it is today, and what
its objectives are.

History
The EUUG began life not as an European

organisation, but simply as a DECUS SIG in
England. As time progressed, it became obvi-
ous that UNIX could (and did) run on
machines other than PDP-I Is.

Many of the people interested in UNIX
had no relation to DECUS, and many did not
want any such relationship. DEC was not
entirely happy about supporting a SIG whose
primary purpose was promoting the use of a
non DEC operating system. It became obvious
that the SIG could not continue in its present
form, and that a split would be made from
DECUS.

The result of this split was the formation
of the UNIX User Group (UUG).

This was a radical decision, because
without the logistical and financial support
that DEC gives to its SIGs people had to start
paying membership fees. There were
people who doubted that the UUG would
In one way they were right, the UUG did not
last very long. There were more and more
people coming to the meetings from outside
the United Kingdom - especially from Hol-
land and Denmark, but also from Germany.

The Dutch members f~nded thor own
UNIX group, and fit became ol~’~ious that other
countries were interested in do~ng likewise;, It
also became obviou~ that the U~U-G could aot
remain a British orgunisation, so~: at a meetii~g
of the UUG in 1980 attHeriot Wat~t:.Universit~-’
(in Scotland) the UUG~ was transfbrmed into~
the European Unix UserrGroup (EU.UIG).

Sometime later, the:~EUUG hadi to again
change name, following some not too subtle
h~nts from you-know-who, to the European
Unix systems User Group. Since the.EUUG
and its logo were reasonably well known by
this time, it was decided to keep the name
EUUG, and only mention "systems" on
printed documents.

One of the first decisions taken by the
newly formed EUUG was the promotion of
what were at the time called "local groups."
These local groups were the beginnings of the
national groups which exist today.

The national groups exist to promote
UNIX in their respective countries. This is a
task which would be difficult for the EUUG to
do, given its limited resources. The national
groups operate more or less independently of
the EUUG, except that they are all members of
the EUUG "federation." The national groups
provide services to their members which are
specific to their national needs (national
language meetings, national product
catalogues, working groups, and exhibitions,
for example).

The EUUG serves as a cohesive force for,
these groups, and organises things which are:
~tter tackled at a European level than at. a,
national level. Examples are the EU~UG
conferences, and EUnet, of which more will! be
said later.

As other Europe~ countries formed
national user ~,oups,, most affiliated wi~h~, the:
EUUG; the on,~y; not~01e exceptions we~e:~ fl~e
Swiss, who ~r~e:r to maintain their fa,,mous
neutrality.

The current members are:

AUUGN 159 Vol 10 No 1

;login:

AFUU France
DKUUG Denmark
EUUG-S Sweden
FUUG Finland
GUUG Germany
IUUG Ireland
I2U Italy
NLUUG Netherlands
NUUG Norway
UKUUG United Kingdom
UUGA Austria
BUUG Belgium
ICEUUG Iceland
HUUG Hungary

In all, there are approximately 4000 members
of the EUUG, most of these being corporate or
institutional members.

Portugal is in the process of :forming its
national group, and we expect them to become
formally affiliated, along with Yugoslavia and
Spain, at the next conference, which is to be
held in Brussels.

Probably the most visible parts of the
EUUG to its members (and non-members) are
our conferences, EUnet, and the EUUG
Newsletter.

Co Flf erel’lces

The EUUG holds two conferences per
year, one in spring and the other in autumn.
These are independent of the conferences and
exhibitions which are organised by many of
the national groups. The spring conference is
usually planned to be somewhat larger than
that of the autumn, and to be of a more "com-
mercial" nature, with, wherever appropriate,
an associated exhibition. These conferences
are usually organised in collaboration with the
national group. It is the involvement of the
national group which gives each conference its
own specific "flavour," and it is the part of the
EUUG to put its own brand on the conference,
in the form of structure and organisation.
Thus, our conferences tend to be predictable
in that they always have the same sort of
format and level of content, but also different
with the atmosphere provided by the national
group.

Just before the conference, we run a series
of tutorials. These are somewhat similar to
the USENIX tutorials, offering everything from

introductory courses to advanced and highly
technical tutorials on some specific aspect of
UNIX.

EUnet

The network (EUnet) is somewhat more
formally organised than than is the case in the
USA.

Each country has one national backbone
node handling almost all international traffic.
There is one international backbone (mcvax)
which connects this backbone network with
other continents. This structure is very much
determined by the high international
telecommunications tariffs.

Because of the volume of traffic, the back=
bone links are in the process of being replaced
with leased lines, to replace the existing X.25
links. Each country manages its own part of
the network, some in close collaboration with
the national user group, others with somewhat
less contact between the two.

’The only rules .governing who can connect
are:

1. They must be a member of the EUUG (or
affiliated group).

2. They must refrain from commercial
exploitation of the net.

3. They must pay their fair share of the run-
ning costs.

As you can imagine, much time and effort is
spent working on policies to implement the
third point!

The EUUG Newsletter
The EUUGN is published 4 times per

year. At present, it seems to have reached a
form which satisfies most people, acting as
both a newsletter to inform members what
each of the national groups is doing, giving
reports on conferences (USENIX for example),
and as a technical journal.

Although it currently seems to satisfy most
people, we are still exploring new methods of
improving its acceptability. For example, we
are currently experimenting with bilingual arti-
cles. People can send articles for publication
in their own language. We will translate these,
and print the article in double column format,

Vol 10 No 1 160 AUUGN

;login:

one column being the original text, and the
column opposite being the English translation.

We also carry (limited) advertising to help
offset the costs of production.

Future input to ;login:

Rather than try to describe each national
group, and what it is doing, future articles in
this column will come from these groups, each
taking its turn to introduce itself, and explain
what it is doing.

Contact points

If you have any questions or suggestions,
feel free to contact us. Some useful postal and
e-mail addresses follow.

Subscriptions and general questions:

EUUG
Owles Hall
Buntingford Herts. SG9 9PL ENGLAND

Tel. +44 763 73039
Fax. +44 763 73255
euug@inset.co.uk

Newsletter (article submission etc):

Alain Williams (EUUGN editor)
Parliament Hill Computers Ltd.
7 Prospect Street
Caversham Berkshire RG4 8JB ENGLAND

addw@phcomp.co.uk

EUnet - General information:

Daniel Karrenburg
dfk@cwi.nl

Philip Peake
EUUG publications executive
philip@axis.fr

EUUG Spring ’89 Conference

Brussels, Belgium
April 3-7, 1989

The BUUG will host the Spring ’89 European UNIX systems User Group Technical Conference
in Brussels. Technical tutorials on UNIX and closely related subjects will be held on Monday and
Tuesday, followed by the three day conference with commercial exhibitions.

If you wish to receive a personal copy of further information about this, and future EUUG
events, please contact the Secretariat.

Secretariat Tutorial Officer

EUUG Neil Todd
Owles Hall IST
Owles Lane 60 Albert Court
Buntingford Prince Consort Road
Herts, SG9 9PL, UK London, SW7 2BH, UK

Phone: +44 763 73039
Fax: +44 763 73255
Telex:
Email: euug@inset.uucp

+44 1 581 8155
+44 ! 581 5147
928476 ISTECH G
neil@ist.co.uk

Programme Chair

Prof. Marc Nyssen
Medical Informaticas Dept.
Vrije Universiteit Brussel
Laarbeeklaan 103
B- 1090 Jette Belgium

+32 2 477 44 24
+32 2 477 40 00

marc@minf.vub.uucp

AUUGN 161 Vol 10 No 1

;login:

Future Events

Workshop on Software Management
New Orleans, Apr. 3-4, 1989

Sec page 3.

EUUG Spring Conference
Brussels, Apr. 3-7, 1989

See page 47.

Workshop on UNIX Transaction
Processing, Pittsburgh, May 1-2, 1989

Sec page 4.

USENIX 1989 Summer Conference and
Exhibition, Baltimore, Jun. 12-16, 1989

See page 5.

Distributed Processing Workshop
Fort Lauderdalc, Oct., 5-6, 1989

Graphics Workshop V,
Monterey, Nov. 16-17, 1989

Long-term USENIX & EUUG Schedule
Scp 18-22 ’89 Vienna, Austria
Jan 22-26 ’90 Omni Shorcham, Washington, DC
Apt 23-27 ’90 Munich, W. Germany
Jun 11-15 ’90 Marriott Hotel, Anaheim
Jan 21-25 ’91 Grand Kcmpinski, Dallas
Jun 10-14 ’91 Opryland, Nashville
Jan 20-24 ’92 Hilton Square, San Francisco
Jun 8-12 ’92 Marriott, San Antonio

Publications Available

The following publications are available
from the Association Office. Prices and
overseas postage charges are per copy.
California residents please add applicable sales
tax. Payment must be enclosed with the order
and must be in US dollars payable on a US
bank.

The EUUG Newsletter, which is published
four times a year, is available for $4 per copy
or $16 for a full-year subscription.

We hope to have EUUG tapes and confer-.
ence proceedings available shortly.

Conference and Workshop Proceedings

Meeting

Large Installation Systems Admin. Workshop
C++ Conference
UNIX and Supercomputcrs Workshop
UNIX Security Workshop
USENIX Conference
C++ Workshop
Graphics Workshop IV
USENIX Conference
Graphics Workshop III

Overseas
Location Date Price Air

Monterey Nov. ’88 $ 8 $ 7
Denver Oct. ’88 30 20
Pittsburgh Sop. ’88 20 15
Portland Aug. ’88 5 7
San Francisco Jun. ’88 20 20
Santa Fe Nov. ’87 30 20
Cambridge Oct. ’87 10 15
Washington DC Jan. ’87 10 20
Monterey Dec. ’86 10 15

EUUG Proceedings for Spring 1988 (London) and Fall 1988 (Portugal) are available in limited
numbers to North American customers at $40 per copy.

Vol 10 No 1 162 AUUGN

;login:

Long-Term Calendar of UNIX Eventst

1989 Jan 9-13 IEEE 1003
1989 Jan 17 Terminal Int. Ext. and Net. Serv.
1989 Jan 30-Feb 3 USENIX
1989 Feb UNIX in Government
1989 Feb 28-Mar 3 UNIX Convention
1989 Feb 28-Mar 3 UniForum
1989 Apr 3-4 * Software Management Workshop
1989 Apr 3-7 EUUG
1989 Apr 10-11 ANSI X3JI 1
1989 Apr 24-28 IEEE 1003
1989 May 1-2 * Transaction Processing Workshop
1989 May 8-12 DECUS
1989 May 14-16 AMIX
1989 May 16 POSIX Application Workshop
1989 May UNIX 8x/etc
1989 Jun NZSUGI
1989 Jun 12-16 USENIX
1989 Jul JUS 13
1989 Jul 10-14 IEEE 1003
1989 Sep * Large Systems Admin. Workshop
1989 Sep 18-22 EUUG
1989 Oct 5-6 * Distributed Systems Workshop
1989 Oct 16-20 IEEE 1003
1989 Nov 1-3 UNIX Expo
1989 Nov 6-10 DECUS
1989 Nov 16-17 * Graphics Workshop V
1989 Nov JUS 14

1989 Dec JUS UNIX Fair
1990 Jan 22-26 USENIX
1990 Jan 23-26 UniForum
1990 Jan 29 IEEE 1003
1990 Feb UNIX in Government
1990 Apr IEEE 1003
1990 Apr 23-27 EUUG
1990 May 7-11 DECUS
1990 May UNIX 8x/etc
1990 Jun 11-15 USENIX
1990 Autumn EUUG

1991 Jan 21-25 USENIX
1991 Jan 22-25 UniForum
1991 Jun 10-14 USENIX

Embassy Suites, Ft. Lauderdale, FL
NIST; MD
Town and Country, San Diego, CA
Ottawa, Ont.
AFUU; Paris, France
Moscone Center, San Francisco, CA
New Orleans Hilton, New Orleans, LA
Palais des Congres, Brussels, Belgium
Phoenix, AZ
Minneapolis-St. Paul, MN
Pittsburgh Hilton, Pittsburgh, PA
Atlanta, GA
Israel
NIST; MD
/usr/group/cdn; Toronto, Ont.
New Zealand
Hyatt Regency, Baltimore, MD
Toyko, Japan
San Francisco, CA
?
Vienna, Austria
Marriott Marina, Ft. Lauderdale, FL
Brussels (or Amsterdam)?
New York, NY
Anaheim, CA
DoubleTree Inn, Monterey, CA
Osaka or Kobe, Japan

Toyko, Japan
.Omni Shoreham, Washington, DC
Washington Hilton, Washington, DC
New Orleans, LA
Ottawa, Ont.
Montreal, Que.
Munich, Germany (tentative)
New Orleans, LA
/usr/group/cdn; Toronto, Ont.
Marriott Hotel, Anaheim, CA
south of France

Grand Kempinski, Dallas, TX
Infomart, Dallas, TX
Opryland, Nashville, TN

"1 Partly plagiarized from John S. Quartcrman by PHS.

* USEN1X Workshops

AUUGN 163 Vol 10 No 1

;login:

Large Systems Administration Workshop

There will be a third Large Systems Administration Workshop, most likely in early September.
It will again be chaired by Alix Vasilatos, uunet.tosforg.talix. A full announcement will appear in the
next ;login: and on comp.org.usenix.

-PHS

New Release of 2.10 BSD Available

The second release of 2.10BSD is finally
available! It has been designated 2.10.1.
Although the changes are fairly simple to
describe, they cover large portions of the
distribution. Most will not be visible to either
users or administrators; specifically, no
recompilation is necessary. Administrators
should be aware that the 4.3BSD disk quota
system is now available. Due to address space
considerations, however, it is expensive to run.
Also, the source for the on-line manual pages
has been rearranged as per the 4.3BSD-tahoe
release.

The major change, and the reason for the
second release, is an extensive reworking of
the kernel to move the networking into
supervisor space. This move eliminated most,
if not all, of the instabilities seen in the origi-
nal networking provided with 2.10BSD; it also
doubled the speed of, for example, file transfer.
As encouragement to sites that encountered
difficulties in using the networking in the first
release, or encounter difficulties in this release,
we have beta sites that have been running for
months without crashing, as well as sites with
fifty nodes. We are, however, still suspicious
of the DEQNA driver...

In application land, many missing pieces
of the 4BSD distribution have been added,
most notably the FORTRAN compiler and
library and the line printer sub-system. Many
other programs have had minor (and not-so-
minor) fixes applied.

Keith Bostic
Casey Leedom

. Because the changes to the kernel are
major, no "upgrade" tape will be available.
2.10.1 BSD is only available as source, to
appropriate licensees of V7, System III, System
V, or 2.9BSD. The cost is $200, prepaid.

The release consists of two 2400 foot, 1600
BPI tapes (approximately 80Mb) and approxi-
mately 100 pages of documentation. If you
require 800 BPI tapes, please contact USENIX
for more information.

If you have questions about the distribu-
tion of the release, please contact USENIX at:

2.10BSD
USENIX Association
PO Box 2299
Berkeley, CA 94710

+1 415 528-8649
(uunet,ucbvax) ! usenix !office

If you have technical questions about the
release, please contact Keith Bostic at:

(ucbvax,seismo) !keith
keith@okeeffe.berkeley.edu

+1 4!5 642-4948

NOTE: There are a few copies of 2.9BSD avail-
able. If you do not have split I&D and want to
run UNIX on your PDP-I l/x, write the USENIX
office.

- PHS

Vol 10 No 1 164 AUUGN

AUUG Management Committee Meeting

28th October, 1988

MINUTES

The meeting opened at 10:12 with the following committee members
present: President Greg Rose (GR) in the chair, Secretary Tim
Roper (TR), Frank Crawford (FC), Tim Segall (TS) and Rich
Burridge (RB). Also present was the AUUGN Editor John Carey
(JC). The Treasurer Michael Tuke (MT) and Chris Maltby (CM)
arrived later.

I. Apologies
GR advised that CM would be arriving late.

2. Minutes of Last Meeting (12th September, 1988)
There were no amendments.

Moved TS/RB That the minutes of the previous meeting be
accepted. Carried unanimously¯

¯ Business Arising from Minutes
(a) Re Item 7, MT reported that the donation to Wollongong

Hospital had not yet been made but would be as soon as
possible.

(b) TR reported that he had written to Ken Preiss of UNIX
People in accordance with the last motion in Item 15.

(c) GR reported that the Informix licence mentioned in Item
15 had not yet been received.

(d) Re Item 20(b) TR reported that he had filed four
applications for registration of a trademark at a cost
of $450, being the word AUUGN, the logo incorporating a
map of Australia and the letters A U U G in ~four
vertical stripes, and the word AUUGN (in two
categories).

.

(e) Re Item 20(c) TR reported that he had commissioned a
printer to produce the common seal and design and print
stationery. He presented proofs of the artwork and a
quote for estimated quantities. There was some
discussion of prices, colours and designs.

Moved FC/CM That the Secretary be authorised to spend
up to S1500 on stationery. Carried.

President’s Report
GR reported that there was no progress on the membership
database design. He reported receiving good reports on
AUUG88 from speakers, exhibitors and members. There was
discussion on how to publicise conferences better.

¯

¯

Moved CM/RB That the President’s report be accepted. Carried.

There was no item 5 on the agenda.

Secretary’s Report
TR reported that David Purdue (DP) had offered to arrange a

AUUGN 165 Vol 10 No 1

bulk purchase of Nutshell Handbooks from O’Reilly and
Associates. The discount offered by the publisher and bulk
freight rates mean that the price to members of a book should
be approximately the same as if they bought it retail in the
USA.

There was some discussion of whether sale should be to
members only, or to non-members at a higher price.

Moved CM/FC That the committee approved in principle the
proposal outlined by the Secretary for AUUG to make a bulk
purchase of Nutshell Handbooks for resale, and in particular
that: (a) sale should be to members only for the time being
(b) pricing should be based on cost recovery plus 10% to
cover unforeseen costs and unsold stock (c) that we should
order approximately double the initial quantity requested (d)
that terms should be strictly payment in advance of delivery
(by AUUG to members) except for Institutional members from
whom purchase orders would be accepted (e) an expenditure of
up to $5000 is authorised. Carried.

The secretary tabled correspondence:
(a) to the Registrar of Trademarks on 4/10/88 accompanying

the applications for registration of trademarks; from
the Assistant Registrar, Trade Mark Operations, on
18/10/88 acknowledging the applications and advising of a
19 month delay in examining applications.

(b) from Rex di Bona, winner of the AUUG88 Student Prize, on
4/10/88 documenting his expenses incurred in attending
AUUG88. (Payment was mailed on 21/10/88).

(c) from Sugar Research Institute on 7/9/88 enquiring about
availability of back issues of AUUGN. (A catalogue was
sent to them on 18/10/88).

(d) from K. Svendsen on 10/8/88, Datamatics Consultants Lid
of Bombay, India on 2/9/88 and Department of Defence on
23/9/88 enquiring about the activities and membership of
the group. (Flyer and forms sent.)

(e) from /usr/group dated 5/7/88, postmarked 7/7/88, received
5/10/88 (apparently sent by surface mail) regarding the
group’s entry in their UNIX Products Directory. (CM
reported that this had already been taken care of.)

(f) from Monash University accompanying payment for
Institutional membership and requesting acknowledgment.
(A receipt had been posted.)

(g) from Stephen Moore to John Lions dated September 9, 2988
(sic.), claiming inaccuracies in the President’s Message
in the AUUG88 brochure and in particular claiming that
the ComputerWorlds were better; a copy of John Lion’s
reply of 21/9/88 which pointed out that there was no such
inaccuracy as the comparison was between AUUG88 and other
conferences and exhibitions organised by AUUG, not with
events organised by others.

(h) from Bendigo College of Advanced Education on 7/9/88
enquiring about the renewal date of its subscription;

Vol 10 No 1 166 AUUGN

replies of 28/9/88 and 29/9/88.

(i) to all members of the Management Committee and to the
AUUGN Editor (incorrectly dated 28/8/88) giving notice of
this meeting.

(j) to Labtam Limited expressing thanks for its support of
the AUUG88 Programme Committee Chair.

(k) to the AUUG88 guest speakers Michael Lesk, Mike Karels
and John Mashey on 28/9/88 requesting details of their
expenses so that reimbursement could be made.

(i) to Bennett-Ebsco Subscription Services on 28/9/88
advising of the current rate for subscription to AUUGN.

(m) to UNIX People on 28/9/88 as per Item 3(b) above.

(n) from H M Bates Australia Pry Limited on 13/9/88
accompanying the receipted invoice for AUUG88
insurance°

(o) from IDC Australia Pry Limited on 12/5/88 and Department
of Primary Industries on 19/11/87 regarding their lapsed
subscriptions; replies of 28/9/88.

(p) from Australian Exhibition Services Pry Lid on 26/10/88:
see Item 15 below.

TR reported that he had had the post office box redirected to
his home address and that he was handling valid membership
applications by passing the forms onto Robert Elz (KRE) for
entry into the database and payments onto the Treasurer. KRE
appeared to be happy to keep doing this.

Moved RB/FC That the Secretary’s report be accepted.
Carried.

7. There was no item 7 on the agenda.

° Treasurer’s Report
MT reported a cheque account balance of $12,361.02 and term
deposits of 827,000. No money had been received from ACMS
for AUUG88 yet as they were still chasing late payments. MT
agreed to follow up the matter of an interim payment. MT
outlined a budget for 1988/89 based on the expenditure in
1987/88 with adjustments for increased costs, membership
receipts and planned activities. There was discussion and
general agreement to some amendments.

Moved TR/TS That the budget as amended be redrafted and
incorporated in the minutes. Carried.
[This was not available at the time this draft of the minutes
was distributed.]

The Chair made a review of the budget an item for the next
meeting.

Moved FC/TS That the Treasurer’s report be accepted. Carried.

9. AUUGN Editor’s Report

AUUGN 167 Vol 10 No 1

FC reported that order forms for Computing Systems had been
received from USENIX and that they would be mailed with the
next issue of AUUGN. He had re-established communications
with the EUUG newsletter editor and they were exchanging
newsletters once again. The AUUG88 issue of AUUGN (Volume 9
Number 4) had 700 copies printed with approximately 300 being
distributed at the conference and 215 about to be mailed to
ordinary members who did not attend AUUG88, to Institutional
members and to library subscribers. JC and TR have discussed
redesiging the cover of AUUGN. JC pointed out the different
binding used for Vol 9 No 4 and that it had the advantage
that the spine could be printed with the issue details. It
was agreed that this would be a good thing and worth a slight
increase in cost. JC reported that the advertisement from
Sequel Education Services on the back cover of Vol 9 No 4 had
been charged at twice the normal page rate but that the
expected repeat business from Sequel had not been
forthcoming. It was agreed that the back cover should be
kept available for advertising. JC was pleased that the
print run for Vol 9 No 5 had passed 300 and repeated the
suggestion that if AUUGN subscriptions were on a fixed period
basis members would be more likely to renew on time or at
all. There was general discussion of whether the conversion
effort would exceed the saved effort. TR asked for the
current systems to be retained pending a new membership
database and/or the generation of reminder notices. JC and
TR to work on a membership drive.

Moved CM/FC That the Editor’s report be accepted. Carried.

i0. AUUGN Sub-Editors
There was discussion of the loose arrangement with Dave
Horsfall (DH) to sub-edit a USENET section in AUUGN. JC
reported that DH had not produced anything for Vol 9 No 5.
It was agreed that any arrangement with DH should be
terminated and that the Secretary should write him a letter
to that effect. There was some discussion of alternatives.
RB agreed to prepare something for Vol 9 No 6.

Moved CM/TS That expenditure of up to $200 on a new cover
design for AUUGN be authorised. Carried.

At 12:30 the Chair adjourned the meeting for lunch. The meeting
resumed at 14:08.

ii. 1988 Conference and Exhibition (post mortem)
It was agreed that this had been dealt with under Item 4.

12. 1989 Summer Meetings
GR reported that he and Ken Thompson had attended a meeting
of WAUG in Perth. This meeting had been organised in only a
few days and consisted of lunch plus a three hour session of
speakers. Approximately 120 people had attended. This was a
good effort. GR understood that a formal petition would soon
be received from WAUG to form a Chapter of AUUG.

It was agreed that AUUG would pay for a speaker from overseas
to fly to Australia and to all centres holding Summer
Meetings. Also, if suitable local speakers were available
they could be flown to one or more meetings.

AUUGN
Vol 10 No 1 168

GR was working on someone to organise a NSW/ACT meeting.
to contact potential organisers of VIC and QLD meetings.

TR

It was agreed that a condition on AUUG funding for these
meetings should be that AUUG members receive at least the
same benefits as other attendees.

Extensive discussion followed about suitable speakers to
invite, both for the 1989 Summer Meetings and the 1989 Winter
Conference and Exhibition. A list of names of some thirty
individuals and organisations was made. Three preferences
were agreed for the Summer Meetings and six for AUUG89. TR
is to write to them in turn.

A list of potential organisers in the following areas was
drawn up: Perth, NSW/ACT, VIC, Brisbane, SA, Tas, NT, North
QLD. GR and TR is to contact them.

13. 1989 Winter Conference and Exhibition
The question of speakers had been covered in Item 12. RB and
FC were invited and offered to co-ordinate AUUG89. TR to
prepare a suggested timetable and to contact potential
Programme Committee Chairs. GR to someone who could possibly
organise publicity. TR to contact ACMS about alternative
financial arrangements for AUUG89.

MT then received and reported a telephone call from Wael Foda
of ACMS advising that about 824,000 was still outstanding and
that payment to AUUG of about 812,000 could be expected.

There was general discusison of tutorials for AUUG89. It was
agreed that there be two morning and two afternoon tutorials
in each case with one being for novices and one advanced.
Costs should be about 850 for one tutorial and $I00 for two
tutorials and lunch. GR agreed to organise the tutorials.

14. Secretarial Assistance (cont.)
GR reported that there had been no action on setting up the
new membership database. He suggested thet. the current
database should be left with KRE for the time being.

15. PC89 Proposal
The committee discussed the letter of proposal from the
organisers of PC89 (tabled in Item 6 above) inviting AUUG to
endorse the UNIX feature at their OFFICE TECHNOLOGY 89
exhibition. It resolved not to accept the invitation and
that the Secretary should reply notifying them of that
decision.

16. Benefits for Institutional Members
There was general discussion of benefits for Institutional
members. It was decided to order copies of the /usr/group
UNIX Product Directory for Institutional members in addition
to the copies of Computing Systems already approved and to
publish the list of financial Institutional members in each
issue of AUUGN. It was further decided that there were now
sufficient benefits in place.

17. Constitutional Changes
No submission having been received from KRE, this item was
defered until the next meeting.

AUUGN 169 Vol 10 No 1

18. Other Business
(a) There was general discussion of ACSnet.

(b) It was agreed in principle that financial members should
be issued with membership cards annually. Possible
formats were discussed; photographs were suggested but
rejected° GR offered to investigate possible benefits
such as discounts to be obtained from having such a card.

(c) GR posed a question raised by WAUG namely whether its
members could join AUUG at a reduced cost which entitled
them to normal membership benefits except for AUUGN. TR
pointed out that official notices to members were
normally distributed by publishing them in AUUGN and it
was therefore necessary for all members to receive it.
It was agreed that this meant that the answer was nOo

(d) JC suggested that promotion of AUUG at other computer
exhibitions would attract members. It was agreed that
the cost of this would be prohibitive. However we should
enlist the aid of Institutional members to distribute
membership information in the course of their business
including exhibitions. Printing a glossy handout was
discussed; this would be expensive. RB offered to
spruce up the current flyer; TR will send him the source
file.

19. Next Meeting
The next meeting will be on 3rd February 1989 in Melbourne at
a venue to be decided. The meeting was adjourned at 16:45.

170 AUUGN

AUUGN Back Issues

Here are the details of back issues of which we still hold copies. All prices are in
Australian dollars and include surface mail within Australia. For overseas surface mail
add $2 per copy and for overseas airmail add $10 per copy.

pre 1984 Vol 1-4 various $10 per copy

1984 Vol 5 Nos. 2,3,5,6 $10 per copy
Nos. 1,4 unavailable

1985 Vol 6 Nos. 2,3,4,6 $10 per copy
No. 1 unavailable

1986 Vol 7 Nos. 1,4-5,6
Nos. 2-3

$10 per copy
unavailable
(Note 2-3 and 4-5 are combined issues)

1987 Vol 8 Nos. 1-2,3-4 unavailable
Nos. 5,6 $10 per copy

1988 Vol 9 Nos. 1,2,3 $10 per copy
Nos. 4,5 $15 per copy

Please note that we do not accept purchase orders for back issues except from
Institutional members. Orders enclosing payment in Australian dollars should be sent
to:

AUUG Inc.
Back Issues Department
PO Box 366
Kensington NSW
Australia 2033

AUUGN 171 Vol 10 No 1

THIS PAGE INTENTIONALLY LEb-’I’ BLANK

Vol 10 No 1 172 AUUGN

AUUG

Membership Categories

Once again a reminder for all "members" of AUUG to check that you are, in fact, a
memb.er; and ~a~ y~ st~l M~ be for the next two months.

There are 4 membership types, plus a newsletter subscription, any of which might be
just fight for you.

The membership categories are:

Institutional Member
Ordinary Member
Student Member
Honorary Life Member

Institutional memberships are primarily intended for university departments,
companies, etc. This is a voting membership (one vote), which receives two copies of
the newsletter. Institutional members can also delegate 2 representatives to attend
AUUG meetings at members rates. AUUG is also keeping track of the licence status
of institutional members. If, at some future date, we are able to offer a software tape
distribution service, this would be available only to institutional members, whose
relevant licences can be verified.

If your institution is not an institutional member, isn’t it about time it became one?

Ordinary memberships are for individuNs. This is Nso a voting membership (one
vote), which receives a single copy of the newsletter, A primar~y difference, from
Institutional Membership is that the benefits of ordin~ Membership apply to the
named member only. That is, only the member can obtain discounts on attendance at
AUUG meetings, etc, sending a representative isn’t permitted.

Are you an AUUG member?

Student Memberships are for full time students at recognised academic institutions.
This is a non voting membership which receives a single copy of the newsletter.
Otherwise the benefits are as for ordinary Members.

Honorary Life Memberships are a category that isn’t relevant yet. This membership
you can’t apply for, you must be elected to it. What’s more, you must have been a
member for at least 5 years before being elected. Since AUUG is only just
approaching 3 years old, there is no-one eligible for this membership category yet.

Its also possible to subscribe to the newsletter without being an AUUG member. This
saves you nothing financially, that is, the subscription price is the same as the
membership dues. However, it might be appropriate for libraries, etc, which simply
want copies of AUUGN to help fill their shelves, and have no actual interest in the

AUUGN 173 Vol 10 No 1

contents, or the association.

Subscriptions are also available to members who have a need for more copies of
AUUGN than their membership provides.

To find out if you are currently really an AUUG member, examine the mailing label
of this AUUGN. In the lower fight corner you will find information about your
current membership status. The first letter is your membership type code, N for
regular members, S for students, and I for institutions. Then follows your membership
expiration date, in the format exp=MM/YY. The remaining information is for internal
use.

Check that your membership isn’t about to expire (or worse, hasn’t expired already).
Ask your colleagues if they received this issue of AUUGN, tell them that if not, it
probably means that their membership has lapsed, or perhaps, they were never a
member at all! Feel free to copy the membership forms, give one to everyone that
you know.

If you Want to join AUUG, or renew your membership, you will find forms in this
issue of AUUGN. Send the appropriate form (with remittance) to the address
indicated on it, and your membership will (re-)commence.

As a service to members, AUUG has arranged to accept payments via credit card.
You can use your Bankcard (within Australia only), or your Mastercard by simply
completing the authorisation on the application form.

Vol 10 No 1 174 AUUGN

AUUG
Application for Institutional Membership
Australian UNIX* systems Users’ Group.

*UNIX is a registered trademark of AT&T in the USA and other countries.

To apply for institutional membership of the AUUG, complete this form, and return it
with payment in Australian Dollars, or credit card authorisation, to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

¯ Foreign applicants please send a bank draft drawn
on an Australian bank, or credit card authorisation,
and remember to select either surface or air mail.

.. does hereby apply for
$300.00[] New/Renewal Institutional Membership of AUUG

[] International Surface Mail

[] International Air Mail

Total remitted

$ 20.00

$100.00

AUD$
(cheque, money order, credit card)

Delete one.
I/We agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time
to time, and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.
I/We understand that I/we will receive two copies of the AUUG newsletter, and may send two
representatives to AUUG sponsored events at member rates, though I/we will have only one vote in AUUG
elections, and other ballots as required.

Date: / / Signed:

Title"
[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Administrative contact, and formal representative:

Name: .. Phone: ... (bh)

Address: (ah)

Net Address: ...

Write "Unchanged" if details have not

Name on card:

Office use only:
Chq." bank
Date" / /
Who:

bsb - a/c #

$ CC type __

Signed:

Please complete the other side.

V#
Member#

AUUGN 177 Vol 10 No 1

Please charge $ to my/our [] Bankcard [] Visa [] Mastercard.
Account number:__ . Expiry date: / .

altered and this is a renewal.

Please send newsletters to the following addresses"

Name"
Address: ..

Name"
Address: ..

Phone" (bh)
.. (ah)

Net Address"

Phone: .. (bh)
.. (ah)

Net Address"

Write "unchanged" if this is a renewal, and details are not to be altered.

Please indicate which Unix licences you hold, and include copies of the title and signature pages of each, if

these have not been sent previously.

Note: Ro ~nt licences usally revoke earlier ones, please indicate only licences which are current, and indicate
any which have been revoked since your last membership form was submitted.

[] System V.3 Source

[] System V.2 source

[] System V source

[] System III source

[] 4.2 or 4.3 BSD source

[] 4.1 BSD source

[] V7 source

Note: Most binary licensees will have a System III or System V (of one variant or another) binary licence,

even if the system supplied by your vendor is based upon V7 or 4BSD. There is no such thing as a BSD
binary licence, and V7 binary licences were very rare, and expensive.

[] System V.3 binary

[] System V.2 binary

[] System V binary

[] System III binary

[] Other (Indicate which) ..

Vol 10 No 1 178 AUUGN

AUUG
Application for Newsletter Subscription
Australian UNIX* systems Users’ Group.

*UNIX is a registered trademark of AT&T in the USA and other countries

Non members who wish to apply for a subscription to the Australian UNIX systems User
Group Newsletter, or members who: desire additional subscriptions, should complete this
form and return it to:

AUUG Members’hip Secreta~
P O Box 366
Kensington NSW 2033
Australia

Please d0n,’~ sendt purchase~ orders- perhaps your
purehasilng,= d~partment w’,~,~ c~nsider .tl-dS."; f0m’r to be an
invoice.
¯ Foreign applicants please send a bank draft drawn on an
Australian bank, or credit card authorisation, and remember
to select either surface or air mail.
¯ Use multiple copies of this form if copies of AUUGN are
to be dispatched to differing addresses.

Please enter / renew my subscription for the Australian UNIX systems User Group
Newsletter, as follows:

Name: .. Phone: ... (bh)

Address: (ah)

Net Address: ...

Write "Unchanged" if address has

not altered and this is a renewal.

For each copy requested, I enclose"

[] Subscription to AUUGN

[] International Surface Mail

[] International Air Mail

Copies requested (to above address)

Total remitted

$ 65.00

$ lO.OO

$ 50.00

AUD$
(cheque, money order, credit card)

[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

Expiry date: /

Subscr#

Please charge $~ to my[] Bankcard [] Visa [] Mastercard.

Account number: ¯

Name on card: Signed:

Office use only:

Chq: bank bsb a/c #

Date: / / $ CC type __ V#

Who:

AUUGN 179 Vol 10 No 1

AUUG
Notification of Change of Address

Australian UNIX systems Users’ Group.
UNIX is a registered trademark of AT&T in the USA and other countries.

If you have changed your mailing address, please complete this form, and return it to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

Please allow at least 4 weeks for the change of address to take effect.

Old address (or attach a mailing label)

Name: ..

Address: ..

Phone: ...(bh)

... (ah)

Net Address: ...

New address (leave unaltered details blank)

Name: ..

Address: ..

Phone: ...(bh)

... (ah)

Net Address: ...

Office use only:

Date: / /

Who:

Vol 10 No 1 180

Memb#

AUUGN

