
AUUGN Volume 11, Number 3 June 1990

The Australian UNIX* systems User Group Newsletter

Volume 11 Number 3

June 1990

CONTENTS

AUUG General Information 3

Editorial 4

AUUG Institutional Members 6

Letters tothe Editor

ACSnet Survey

SESSPOOLE Information

Call For Papers: AFUU Convention UNIX ’91

AUUG Book Club - Reviews & Order Form

Perth Summer’90 Technical Meeting Report

Using UNIX as a Persistent Programming Environment (From Summer’90 Victoria) .

UNIX System V Release 4 and OSF/1 (From Summer’90 Sydney)

Optimizing The B5FS File System

Open Buzzwords And NPA’s

Bulgeria In Turmoil

USENIX Association News For AUUG Members

AUUGN Back Issues

WAUG Information ¯ . . .

AUUG Membership Information

AUUG Forms

10

13

14

17

23

25

30

38

46

48

5O

54

55

56

57

AUUGN 1 Vol 11 No 3

Copyright © 1990 AUUG Incorporated. All rights reserved.

AUUGN is the journal of the Australian UNIX1 systems User Group (AUUG Incorporated).

Copying without fee is permitted provided that copies are made without modification, and are not

made or distributed for commercial advantage. Credit to AUUGN and the author must be given.

Abstracting with credit is permitted. No other reproduction is permitted without prior consent of

AUUG Incorporated.

1 UNIX is a registered trademark of AT&T in the USA and other countries.

Vol 11 No 3 2 AUUGN

AUUG General Information

Memberships and Subscriptions

Membership, Change of Address, and Subscription forms can be found at the end of this issue.

All correspondence concerning membership of the AUUG should be addressed to:-

The AUUG Membership Secretary
P.O. Box 366
Kensington, N.S.W. 2033
AUSTRALIA

Phone: (02) 361 5994
Fax: (02) 332 4066

General Correspondence

All other correspondence for the AuUG should be addressed to:-

The AUUG Secretary
P.O. Box 366
Kensington, N.S.W. 2033
AUSTRALIA

AUUG
President

Executive
Greg Rose
greg@softway.sw.oz.au
Softway Pty Ltd
New South Wales

Vice President Pat Duffy
pzd30@juts.ccc.amdahl.com
Amdahl Australia Pty Ltd
New South Wales

Secreuary Peter Barnes
pdb@uqcspe.cs.uq.oz.au
Computer Science
University of Queensland

Treasurer Michael Tuke
mjt@anl.oz.au
ANL Limited
Victoria

Committee
Members

Frank Crawford
frank@teti.qhtours.oz.au
Q.H. Tours Pry Lid
New South Wales

Andrew Gollan
adjg@softway.sw.oz.au
Softway Pry Ltd
New South Wales

Chris Maltby
chris@softway.sw.oz.au
Softway Pty Ltd
New South Wales

Scott Merrilees
sm@bhpese.oz.au
BHP Information Technology
New South Wales

Stephen Prince
sp@ labtam.labtam.oz.au
Chancery Lane Computer Services Pty Ltd
Victoria

Next AUUG Meeting
The AUUG’91 Conference and Exhibition will be held from the 24th to the 27th of September, 1991, at Darling
Harbour, Sydney. The AGM of AUUG Inc. will be held during the conference.

The AUUG’92 Conference and Exhibition will be held from the 8th to the 1 lth of September, 1992, at the World
Congress Centre, Melbourne.

AUUGN 3 Vol 11 No 3

AUUG Newsletter

Editorial
Well, it has been some time.

Despite the date shown on the cover this issue is coming out after the AUUG’90 Conference and Exhibition, which
was a huge success. Over 400 people attended the conference, over 170 people took part in the tutorial program and
over 1200 people walked through the exhibition (not counting conference attendees). There was an interesting mix of
papers with commercial content and those of technical interest, and the World Congress Centre is the best conference
venue AUUG has ever used. I look forward to meeting you all again at AUUG’91 in Sydney next September.

The AUUG Annual General Meeting was held during the conference, and members took the opportunity to air their
views to the Management Committee. One issue raised was that the AUUG could act as a coordinator for members
trying to get a connection to the network. This issue is being followed up, and a survey form appears in this issue.
Please take the time to fill it out and send it in if you are seeking a net connection or, more importantly, you can
offer one. Reports and minutes from the AGM should appear in the next issue of AUUGN.

Following the success of the Summer Technical Meetings in February this year, the AUUG Management
Committee is hoping to stage them again in ’91. Many thanks must go to Glenn Huxtable who has kindly (bravely?
foolishly?) volunteered to act as national coordinator again. However, we are still looking for organisers in each
state, and of course for people to present technical papers.

In this issue there is another book offer from Prentice-Hall. Prentice-Hall kindly offer AUUG members a 20%
discount on these books, but there is a catch - they want to see book reviews published in AUUGN. Now, while I
have had little trouble f’mding reviewers, I have had a lot of trouble getting reviews out of them. Prentice-Hall donate
review copies of the books to us, so please don’t volunteer to review a book unless you are prepared to devote the
time to read the book and write a review and get it back to me within a month to six weeks. I am starting to get an
idea of who the reliable book reviewers are, and these people will get preference for rifles as they come in.

That’s it from me. Keep those cards and letters rolling in.

AUUGN Correspondence

All correspondence regarding the AUUGN should be addressed to:-

David Purdue
AUUGN Editor
PO Box 366
Kensington, NSW, 2033
AUSTRALIA

ACS net: auugn@ munnari.oz

Phone: +61 3 353 3913 (w)
+61 3 813 1258 (h)

Fax: +61 3 353 2987

Contributions
This Newsletter is published approximately every two months. The deadline for contributions for the next issue is
Friday the 26th of October 1990.

Contributions should be sent to the Editor at the above address.

I prefer documents to be e-mailed to me, or mailed to me on a floppy disk (IBM-PC 5-1/4 inch or 720K 3-1/2 inch;
or Macintosh 3-1/2 inch), and in plain text format. Hardcopy submissions should be on A4 with 30 mm left at the
top and bottom so that the AUUGN footers can be pasted on to the page. Small page numbers printed in the footer
area would help.

Vol 11 No 3 4 AUUGN

AUUG Newsletter

Advertising
Advertisements for the AUUG are welcome. They must be submitted on an A4 page. No partial page advertisements
will be accepted. Advertising rates are $300 for the first A4 page, $250 for a second page, and $750 for the back
cover. There is a 20% discount for bulk ordering (ie, when you pay for three issues or more in advance). Contact the
editor for details.

Mailing Lists
For the purchase of the AUUG mailing list, please contact the AUUG secretariat, phone (02) 361 5994, fax (02) 332
4066.

Back Issues
Various back issues of the AUUGN are available, delails are printed at the end of this issue.

Acknowledgements
This Newsletter was produced with the kind assistance of and on equipment provided by the Advanced Imaging
Systems department of Kodak (Australasia) Pty Ltd. I would also like to thank Labtarn Information Systems Pty Ltd
for providing me with a network connection.

Disclaimer
Opinions expressed by authors and reviewers are not necessarily those of AUUG Incorporated, its Newsletter or its
editorial committee.

AUUGN 5 Vol 11 No 3

AUUG Institutional Members

ACUS - UNISYS
ANL Limited
Adept Business Systems Pty Ltd
Alcatel STC Australia
Aldetec Pty Ltd
Alliance Computer Centre Pry Ltd
Apple Computer Australia
Apscore International Pry Ltd
Australian Artificial Intelligence

Institute
Australian Electoral Commision
Australian National University
Australian Nuclear Science &

Technology Organisation
Australian Wool Corporation
BHP Melbourne Research Labs
Ballarat Base Hospital
Basser Department of Computer

Science
Bond University Library Service
Bond University School of

Information and Computing
Science

Bureau of Meteorology
Bureau of Vocational, Further

Education and Training
CADAD Support Section o SECWA
Capricorn Coal Management Pry Ltd
Civil Aviation Authority
Co-Cam Computer Group
Colonial Mutual
Commodore Business Machines Pty

Ltd
Commonwealth Department of

Primary Industries and Energy
Comperex (NSW) Pty Ltd
Computer Power IR+D, NSW Branch

Computer Power Today IR+D
Computer Software Packages
Corinthian Engineering Pty Ltd
Crane Enfield Metals Pty Ltd
Cybergraphic Systems Pty Ltd
DBA Limited
DMR Group
Data General
Davey Products Pry Ltd
Deakin University
Depamnent of Industrial Relations &

Employment
Department of Transport, Queensland
Dept of Agricultural & Rural Affairs
Dept of Industry, Technology and

Resources, Victoria
Digital Equipment Corporation

(Australia) Pty Ltd
ERIN, Bureau of Flora and Fauna
Earth Resource Mapping Pty Ltd
Elxsi Australia Ltd
Epson Australia Pry Ltd
Exicom Australia Pty Ltd
Flinders University - Discipline of

Computer Science
Fremantle Port Authority
Geelong and District Water Board
Genasys II Pry Ltd
Golden Casket Art Union
Gould Electronics Pty Ltd
Hamersley Iron Pry Ltd
Harris & Sutherland Pty Ltd
Hewlett Packard Australia Limited
Hewlett-Packard Australian Software

Operation
Honeywell Software Centre
IBM Australia Ltd
ICL Australia Pty Ltd

¯ Vol 11 No 3 6 AUUGN

AUUG Institutional Members

IPS Radio and Space Services
Ipec Transport Group
Kodak (Australasia) Pty Ltd
Labtam Information Systems Pty Ltd
Logic Group
Macquarie Bank Limited
Macquarie University
Mathematics and Computing

Department- BCAE (Kelvin
Grove Campus)

Mincom Pty Ltd
Motorola Communications Australia
NEC Information Systems Australia

Pty Ltd
NSW Parliament
National Engineering Information

Services Pty Ltd
Nixdorf Computer Pty Limited
OPSM
Olivetti Australia Pty Ltd
Olympic Amusements Pty Ltd
Overseas Telecommunications

Corporation
Pact International
Port of Melbourne Authority
Prentice Computer Centre
Prime Computer of Australia Ltd
Pyramid Technology Corporation
Q. I4. Tours Limited
Queensland Department of Mines
Queensland Education Department
Queensland Justice Depamnent
RMIT Computer Centre
Roads and Traffic Authority NSW
SEQEB
Sigma Data Corporation Pty Ltd
Silicon Graphics Computer Systems

Sola International Holdings Ltd
South Australian Institute of

Technology
Sphere Systems Pty Ltd
Stallion Technologies Pty Ltd
Stamp Duties Office Victoria
State Bank Victoria
State Bank of NSW
State Library of Tasmania
Steedman Science and Engineering
Sugar Research Institute
Sun Microsystems Australia
Swinbume Institute of Technology
Sybase Australia Pty Ltd
Tandem Computers Pty Ltd
Tasmania Bank
Tattersall Sweep Consultation
Tech Pacific
Telecom Business Services
Telecom Network Engineering - CSS
University College of Central

Queensland
University of Adelaide
University of Melbourne (Information

Technology Services)
University of New England
University of New South Wales
University of Technology Sydney -

Computing Services Division
University of Wollongong
Vicomp
Wacher Pty Ltd
Wang Australia Pry Ltd
Wyse Technology Pry Ltd
Yartout Pry Ltd

AUUGN 7 Vol 11 No 3

Letters Editor

From Tim Roper,
Labtam Information Systems Pty Ltd

Dear Sir,

Thank you for publishing the paper Design of the Labtam Xengine in AUUGN 11 (2) as presented
at the AUUG Summer ’90 meeting. I refer to the xbench figures published on Page 42. At the
time the paper was presented in February they were already overtaken and the rate at which they
have improved since then means that they are seriously out of date at the time of (belated)
publication. For example, the overall xstone rating of both the CT100 and MT200 has nearly
doubled. In the interests of accuracy I would like to take this opportunity to tender the following
updated summary and would be grateful if you would publish this letter in the next issue of
AUUGN.

machine planes comm line fill bit text arc cmplx xstones

MT200 1 10Mb ether 43202 27357 57484 86968 1266467 41764 49182

CT100 8 10Mb ether 79852 22959 20709 110343 1210344 28692 39732

Sun3/50 (R3) 1 unix-socket 10000 10(O 10000 10000 10000 10000 10000

Attached is the complete xbench output should you find space for it. Readers who would like an
updated hardcopy of the paper, or more extensive xbench or x11perf results, are welcome to
contact

Technical Publishing Department
Labtarn Information Systems Pty Ltd
41 Malcolm Road
Braeside VIC 3195

Phone: (03) 587 1444
Fax: (03) 580 5581

or e-mail their name and postal address to :~engine@labtam.oz.

Yours sincerely,

Timothy Roper

Senior Systems Programmer

[I choose not to reproduce the lengthy xbench results, they can be obtained from the above
source. I know Labtam are still optimising the Xengine server, so these figures may be out of date
already by the time this gets published- Ed.]

Vol 11 No 3 8 AUUGN

NOW

eyo d Widgets

SL-GMS...the complete tool for application graphics.
The Graphical Modelling System from SL Corporation is the only complete application graphics tool for

UNIX and VMS workstations, including 386-based UNIX platforms.

Draw new graphical objects ¯ Connect easily to data sources
Animate to visualise real-time data ¯ Use to control the application

Standard widgets are not enough:
With the rise of graphics workstations has come a
demand for tools that speed the development of
graphics screens for applications. A bewildering ar-
ray of tools has appeared to aid developers with X
Windows and primary GUI styles: MOTIF, Open
Look and DECwindows. Many of these tools are
WYSIWYG editors
limited to the crea-
tion of standard wid-
gets such as menus,
scroll boxes, sliders
and buttons. Stan-
dard widgets, how-
ever, are not enough
for application visu-
alisation, inevitably,
the need arises for
custom screen objects (graphs, maps, icons and
other pictures) which are beyond such tools, and
which are too time-consuming to create with Xiib.
Developers also need a way to visualise changing
data in real time.

A complete graphics tool
must provide:
A Powerful Drawing Tool - The ability to create
custom screen objects. Not limited to canned
graph types, this flexible tool with
many CAD features and an inter-
face like familiar PC drawing tools
allows you to draw whatever you
need, attach dynamic behaviours
and test those behaviours-all within
the drawing tool.

Dynamks - The ability of screen
objects to instantly reflect changes
in data values, receive user input or
execute callback functions. Over
forty attributes such as colour or
text changes, visibility on/off, per-
cent fill, line width, rotation,
movement, scaling, font style or size, zooms and
window creation can be triggered by changes in
data values or user input.

Complete Xt Widget Integration - SL-GMS
graphics can fully incorporate Xt widgets. Screen
objects created with SL-GMS fully interact with
MOTIF, Open Look, DECwindows or other toolkit
widgets, whether in the same or different windows.

GISMOs - Graphical Interactive Screen Manage-
ment Objects are called GISMOs to distinguish
them from Xt widgets. Fully interactive with Xt
widgets, GISMOs can take any appearance you
wish and trigger any user-defined function or ex-
ternal program. Created with the drawing tool,
GISMOs provide developers with tremendous de-
sign flexibility.

HyperCard-like Screen Management - After
screens have been created, the user must be able to
button from any screen to any other screen in the
application. With the screen management System
(SMS) included in SL-GMS, the developer can
give the user this ability without writing a line of
code. SMS can bring up new screens with data
sources attached and dynamics up and running.

Data Source Management - The ability to con-
nect screen objects to data sources such as files,
databases, expert systems and real-time feeds.With
the Data Source Manager of SL-GMS, these con-
nections are easily made.

Runtime Editors and Con-
figurators - The ability of the
enduser to customise or recon-
figure screens to match the
current environment.

Cross-Platform Portability -
The ability to develop screens
on any major workstation and
run them on any other
through simple ASCII file
transfer. SL-GMS also sup-
ports PixWin, Iris GL, GKS
and other non-X graphics

environme~[V~-rsions such as Iris GL take ad-
vantage of special accelerator hardware and double
buffering capability.

SL-GMS is widely used:
For real-time or highly interactive applications in
fields such as manufacturing, process control, net-
work management, cockpit display and financial
trading.

== :. ::.;.. ~:::.::.::::::::

~i~~ ~i~.~i :::::: :: :: : : :: :: :: : : :: :: :: !~!~ :::

Toshiba: Pb@~:.~i~i~:~::~::~ ~:::::~:~::.:
...............

Supported Workstations:
Sun (PixWin or X), DEC (VMS or ULTR.[X), Sili-
con Graphics (X or GL), HP, Apollo, IBM, and
M[PS as well as 386-based workstations running
UNIX and the X windowing System.

Q.S.S. Pry. Ltd.
40 Munibung Rd., Cardiff NSW 2285.
PO Box 269, New Lambton 2305.
Tel. (049) 546524 Fax. (049) 545132

ACSnet Survey Host Name"

ACSnet Survey

1.1 Introduction

ACSnet is a computer network linking many UNIX hosts in Australia. It provides connections over various media
and is linked to AARNet, Intemet, USENET, CSnet and many other overseas networks. Until the formation of
AARNet it was the only such network available in Australia, and is still the only network of its type available to
commercial sites within Australia. The software used for these connections is usually either SUN III or SUN IV (or
MHSnet). For the purposes of this survey other software such as UUCP or SLIP is also relevant.

At the AUUG Annual General Meeting held in Melbourne on September 27th, the members requested that the
AUUG Executive investigate ways of making connection to ACSnet easier, especially for sites currently without
connections. This survey is aimed at clearly defining what is available and what is needed.

Replies are invited both from sites requiring connections and sites that are willing to accept connections from new
sites. Any other site that has relevant information is also welcome to reply (e.g. a site looking at reducing its
distance from the backbone).

Please send replies to:

Mail: Atm: Network Survey FAX: (02) 332 4066
AUUG Inc E-Mail: auug@teti.qhtours.oz

P.O. Box 366
Kensington N.S.W. 2033

Technical enquiries to:

Frank Crawford (frank@teti.qhtours.oz.au) (02) 957 0348

Scott Merdlees (Sm@bhpese.oz.au) (049) 40 2132

Thank you

1.2 Contact Details

Name:

Phone:

Fax:

E-Mail:

1.3 Site Details

Host Name:
Hardware Type:

Operating System Version:
Location:

Vol 11 No 3 10 AUUGN

ACSnet Survey Host Name :

New Connections

If you require a network connection please complete the following section.

Please circle y~tr choice (circle more than one if appropriate).

A1. Do you currently have networking software? Yes No

A2. If no, do you require assistance in selecting
a package?

Yes No

A3. Are you willing to pay for networking Yes
software?
If yes, approximately how much?

No

A4. Do you require assistance in setting up your
network software?

Yes No

A5. Type of software: SUNIII
TCP/IP
Other (Please

MHSnet
SLIP
specify):

uucP

A6. Type of connection: Direct Modem/Dialin
X.25/Dialin X.25/Dialout
Other (Please specify):

Modem/Dialout

A7. If modem, connection type: V21 (300 baud) V23 (1200/75) V22 (1200)
V22bis (2400) V32 (9600) Trailblazer
Other (Please specify):

A8. Estimated traffic volume (in KB/day):
(not counting netnews)

< 1 1-10 10-100
> 100: estimated volume:

A9. Do you require a news feed? Yes No
Limited (Please specify):

A10. Any time restrictions on connection? Please specify:

A11. If the connection requires STD charges (or
equivalen0 is this acceptable?

Yes No

A12. Are you willing to pay for a connection
(other than Telecom charges)?
If yes, approximately how much (please
also specify units, e.g. $X/MB or flat fee)?

Yes No

A13. Once connected, are you willing to provide
additional connections?

Yes No

A14. Additional Comments:

AUUGN 11 Vol 11 No 3

ACSnet Survey Host Name"

Existing Sites

If you are willing to accept a new network connection’please complete the following section.

Please circle your choice (circle more than one if appropriate).

B 1. Type of software: SUNIII
TCPflP
Other (Please

MHSnet
SLIP
specify):

UUCP

B2. Type of connection: Direct
X.25/Dialin
Other (Please

Modem/Dialin
X.25/Dialout
specify):

Modem/Dialout

B3. If modem, connection type: V21 (300 baud) V23 (1200f/5) V22 (1200)
V22bis (2400) V32 (9600) Trailblazer
Other (Please specify):

B4. Maximum traffic volume (in KB/day):
(not counting netnews)

< 1 1-10 10-100
> 100: acceptable volume:

B5. Will you supply a news feed? Yes No
Limited (Please specify):

B6. Any time restrictions on connection? Please specify:

B7. If the connection requires STD charges (or
equivalent) is this acceptable?

Yes No

B8. Do you charge for connection?
If yes, approximately how much (please
also specify units, e.g. $X/MB or flat fee)?

Yes No

B9. Any other restrictions (e.g. educational
connections only)?

B10. Additional Comments:

Vol 11 No 3 12 AUUGN

SESSPOOLE
SESSPOOLE is the South Eastern Suburbs Society for Programmers Or Other Local
Enthusiasts. That’s the South Eastern Suburbs of Melbourne, by the way.

SESSPOOLE is a group of programmers and friends who meet every six weeks or so for the
purpose of discussing UNIX and open systems, drinking wines and ales (or fruit juices if alcohol
is not their thing), and generally relaxing and socialising over dinner.

Anyone who subscribes to the aims of SESSPOOLE is welcome to attend SESSPOOLE meetings,
even if they don’t live or work in the South Eastern Suburbs. The aims of SESSPOOLE are:

To promote knowledge and understanding of Open Systems; and to
promote knowledge and understanding of Open Bottles.

(Note that these aims have been updated in line with recent changes to the aims of AUUG Inc.)

SESSPOOLE was the first Chapter of AUUG Inc to be formed, and members of SESSPOOLE
were involved in the staging of the AUUG Summer’90 meeting.

SESSPOOLE meetings are held in the Bistro of the Oakleigh Hotel, 1555 Dandenong Road,
Oakleigh, starting at 6:30pm. Dates for the next few meetings are:

Thursday, 15th November, 1990
Tuesday, 15th January, 1991
Wednesday, 27th February, 1991
Thursday, 18th April, 1991
Tuesday, 28th May, 1991
Wednesday, 17th July, 1991
Thursday, 29th August, 1991

Hope we’ll see you there!

For more information on SESSPOOLE and SESSPOOLE activities (including a description of how
much fun it is to book a table in a restaurant under the name "SESSPOOLE"), contact either David
Purdue (ph. (03) 353 3913, e-mail: auugn@munnari.oz.au) or John Carey (ph. (03) 587 1444,
e-mail: john@labtam.labtam.oz.au), or keep a lc~kout for announcements in aus.auug.

AUUGN 13 Vol 11 No 3

CONVENTION UNIX 91

4th Conferences Series and Exhibition

Preliminary Annotmcement and Call for Papers

The French UNIX and Open Systems Users Group (AFUU), in cooperation with the Bureau International des
Relations Publiques (BIRP), is organising the Convention UNIX 91. This event is structured around a series of
conferences, tutorials and a commercial exhibition of hardware and software dedicated to UNIX and Open Systems.
The Convention will be held from the 26th to the 30th of March 1991 at the CNIT, Pads La Defense.

Being open and international, the Conferences Programme Committee is setting up three main streams of
information to enable users, researchers and manufacturers to create for themselves a wide forum for exchange and
dialogue:

Technical Conferences Users Sessions Industrial Solutions

Technical Conferences

These sessions will give the opportunity to familiadse with the latest trends in research and development. The
Programme Committee suggests the following subject areas:

Distributed Systems and Cooperative Processing
Networks: Interconnections, Interoperability and Management
System Administration and Security
New Technologies for Open Systems
Parallelism and New Architectures
Graphics Applications
Databases
Object Oriented Applications and Interfaces
Development and Runtime Environments

Users Sessions

Today, more than ever, UNIX and the Open Systems world is ruled by the users. These sessions are intended to be a.
forum where these users, coming from different technical areas, can meet and share their experiences and analysis of
their hardware and software installations. Two major tracks are proposed for these sessions:

° Users Experiences, with the following topics:
- configurations (mini and mainframes, microcomputers, networks)
- standard applications (office automation, management)
- specific applications (multimedia, industrial processing)
- vadous facettes of UNIX insertion (professional, cultural, technical)
- choice guidelines (benchmarks, validation, certification).

° Open Systems Stakes, with the following topics:
- market and trends
- international standards vs. de-facto standards
- applications portability

Industrial Solutions

In addition to a large exhibition where they can show and demonstrate their products, industrialists, manufactuturers
and software vendors will be able to participate in these sessions concerning existing or forthcoming products.

Vol 11 No 3 14 AUUGN

CONVENTION UNIX 91

Suggested topics are:
¯ Operating System (new developments, real time, system administration tools, tools

standardisation, interoperability)
¯User Interfaces
¯Tools (security, project management, electronic mail)
¯General Purpose and Specific Software Packages
-Databases (building tools, access tools, distributed databases, object oriented databases,

databases and artificial intelligence)
. Software Engineering
¯Networking (mail, VIDEOTEX, ISDN)
¯Office Automation and Desktop Publishing

Method of submission

9th November 1990: Deadline for the receipt of communications or extended abstracts by the Conference Secretariat.

7th December 1990: Notification to authors of the papers selected by the Program Committee.

10th January 1991: Deadline for the reception of the full papers by the Conference Secretariat.

Submissions should include: a fide, the author’s name and affiliation and the target audience (Technical Conference,
Users Session, Industrial Solutions). Official languages for the Conferences are French and English. French/English
translation services will be provided. Submissions should be sent to the following address:

A.F.U.U.
Secretariat de la Convention 91
11, rue Camot
94270 Le Kremlin Bic~tre
France

Telephone: (+33)-1-46.70.95.90
Fax: (+33)- 1-46.58.94.20
Telex: 263887F
E-Mail: afuucdm f@ inria.inria, fr

AUUGN 15 Vol 11 No 3

C ONVENTION UNIX 91

Programme Committee Chair:

Sylvain Langlois
EDF - Direction des Etudes et Recherches
IMABCIBDR, M-305
1, avenue du General de Gaulle
92141 Clamart CEDEX, France

Telephone:
Fax:
E-mail:

(+33)-1-47.65.44.02
(+33)-1-47.65.35.23
sylvain@ cli53an.edf.fr

ConferencesProceedings Preparation:

Philippe Dax
Telecom Paris

E-mail: dax@enst.fr

"TechnicalConferences" Chair:

Jean-Christophe Petithory
Universite Paris VIII
Departement Informatique
2, rue de la Liberte
93526 Saint-Denis CEDEX 2, France

Telephone: (+33)- 1-49.40.64.00
E-mail: jcp@uparis8.univ-paris8.fr

"UsersSessions" Chair:

Jean-Michel Comu
Consultant
69, rue de Seine
91130, Ris Orangis, France

Telephone:
Fax:
E-mail:

(+33)-1-69.43.48.47
(+33)-1-60.78.00.98
Jean-Michel.Comu@ enst.fr

"Industrial Solutions" Chair"

Jean-Luc Anthoine
IUT De_ partement Informatique
Rue Engel Gros - BP 527
90016 Belfort CEDEX, France

Telephone: (+33)-84.21.01.00
Fax: (+33)-84.22.29.05
E-mail: anthoine@afuu.fr

V ol 11 No 3 16 AUUGN

AUUG Book Club

Earlier this year AUUG Incorporated and Prentice Hall Australia formed the AUUG Book Club to give AUUG
members a chance to obtain Prentice Hall books at a discount.

To obtain copies of the books reviewed here, fill out the order form that appears on page 22 and send it to
Prentice Hall at the address shown, or place a phone order by ringing Liz Guthrie on (02) 939 1333. Don’t forget to
mention that you are an AUUG member, and to deduct 20% from the Recommended Retail Price shown.

Review copies of books are kindly provided by Prentice Hall.

Books For Review

I am currently seeking people to review the following titles:

PhilipE. Bourne:
"UNIX For VMS Users",
ISBN 0-13-947433-1, pp 368, RRP $84.95, 1990

Prabhat K. Andleigh:
"UNIX System Architecture",
ISBN 0-13-949843-5, pp 274, RRP $57.95, 1990

Ulka Rodgers:
"UNIX Database Management Systems",
ISBN 0-13-945593-0, pp 338, RRP $39.95, 1990

Paul Mahler:
"An Informix-4GL Tutorial",
ISBN 0-13-464173-6, pp 282, RRP $43.95, 1990

Nathaniel S. Borenstein:
"Multimedia Applications Development With The Andrew Toolkit",
ISBN 0-13-036633-1, pp 310, RRP $72.95, 1990

The more astute among you may notice that. there are many more books mentioned on the order form than
there are reviews in the next few pages. That is because most of the people who promised me book reviews did not
produce them (to those people - I still want those reviews!). This annoys me, because it means I miss out on copy
for AUUGN, and also because it jeopardizes the relationship we have with Prentice Hall (they expect to get reviews
out of us, that’s why they supply the books).

So while I do not wish to discourage people from volunteering to review books, please realise that I will
expect reviewers to produce a review within about a month of receiving the book. People I know to be reliable
reviewers will be more likely to get their choice of books to review.

If, after all that, you would like to review one of the books listed here, please phone or e-mail the AUUGN
Editor. My numbers and address are shown on page 4 of this issue.

David Purdue, AUUGN Editor

AUUGN 17 Vol 11 No 3

AUUG Book Club
Book Reviews

X/OPEN PORTABILITY GUIDE
VOLUME 4 (PROGRAMMING

LANGUAGES)
by The X/Open Company Ltd

ISBN 0-13-685868-6, RRP $52.50, 1988

The second half of the guide contains five chapters
and deals with X/Open’s approach to open systems
COBOL. X/Open’s COBOL definition is based upon the
ANSI standard,.ANS X3.23-1985 and its international
counterpart I 1989:1985, with a number of extensions.
The most notable of these is the screen handier.

Reviewed by Bryn M. Pears
Telecom Research Laboratories

<b.pears@trl.OZ>

The X/Open portability guide is issued by the
X/Open Company, Ltd. Claimed by themselves to be a
major breakthrough in Open Systems, X/Open are a group
of "major information system suppliers", supported by
software developers, etc. Their stated goal is "to make true
Open Systems a practical reality". This goal is apparently
achieved through common applications environments, etc.
Volume 4 of Issue 3 of the X/Open portability guide deals
with two programming languages (C and COBOL) and
what is necessary to make ones applications conform to
the X/Open standards.

Chapter five introduces the X/Open COBOL
standard, noting its derivation.

Chapter six presents the full X/Open COBOL
definition, consisting of wholesale quotes of
IS 1989:1985 plus extensions to cover perceived
deficiencies of that standard. This is presented in the form
of a syntax summary and is clear and easily read. All
X/Open extensions to the COBOL standard are clearly
marked as such.

Chapter seven defines the X/Open extensions in a
more rigorous fashion, dealing with each in turn. Much
attention is given to the X/Open Screen Handiing Module,
the major extension provided. Other additions include such
vital things as the EBCDIC character set.

Volume four of the guide is divided into two parts.

The first part is the C half. These four chapters deal
with X/Open’s attitude to C portability.

Chapter eight provides a summary of extensions and
limitations. Exactly which sections of ANS X3.23-1985
are excluded from the X/Open standard is stated here, as am
all of the extensions to the standard.

Chapter one introduces the C section, describing the
contents of the various chapters and adding a little detail to
the reader’s picture of the X/Open philosophy.

Chapter two presents a detailed C language
definition. This definition is practically identical to that
given in the AT&T UNIX system V programming guide,
release 2.0 and as such will be familiar to many readers.

Chapter three was by far the most interesting of the
four, dealing with some of the issues involved in the
production of portable C code. Advice is given for
programmers trying to produce such code. This chapter is
organised in a fairly ad hoc fashion, being essentially a
list of points to watch for during the coding and testing
processes. The ANSI draft standard is also mentioned,
with the differences between this standard and the X/Open
stance being highlighted.

Chapter nine addresses the specifics of X/Open
compliant systems and the effects of such compliance on
currently used COBOL compilers and code.
Recommendations are made as to how maximum
portability for COBOL code may be achieved.

Overall this book is well presented and laid out. It is
clear, informative and easy to read. The problem is that its
use seems to be extremely limited unless you happen to
be working in an X/Open compliant site or are
considering becoming one. I found the discussions of
portability issues quite interesting but the bulk of the
volume is consumed by language definitions. A
moderately interesting read but I wouldn’t buy it myself.

Chapter four deals with Lint, giving a brief
overview of its function, exhorting its use, and detailing
how to use it. The meanings of Lint outputs are
explained. This chapter provides a useful beginners guide
to Lint.

Vol 11 No 3 18 AUUGN

AUUG Book
Book Reviews

Club

X/OPEN PORTABILITY GUIDE
VOLUME 6 (WINDOW

MANAGEMENT)
by The X/Open Company Ltd

ISBN 0-13-685884-8, RRP $52.50, 1988

Reviewed by Huw Davies
LaTrobe University Computer Centre

< cc hd@ latvax8.1at.oz.au >

From the start it should be said that this is not the
sort of book that is read from cover to cover, rather it is
the type of book that, in the appropriate environment,
will be referred to so often that many pages will become
very ’dog-eared’. What this volume (one of a series of
seven) provides is an accessible reference to the clib
bindings for the X windows system and would prove
invaluable to an experienced X-windows programmer.

Why this series of books? To quote from the
Preface: "X/Open represents a major breakthrough in the
world of Open Systems. A large number of the world’s
major information system suppliers, supported by
representatives of the user, system integrator and software
development communities have come together to make
true Open Systems a practical reality.

This is achieved by the establishment of a
comprehensive integrated Common Applications
Environment which ensures portability and connectivity
of applications and allows users to move between
systems without retraining.

The X/Open Portability Guide contains an
evolving porOeolio of practical integrated standards for
application portability. All X/Open members guarantee
to support the defined interfaces."

The book is divided into five chapters and two
appendices. Chapter 1 contains a very brief (one page)
overview of the X-windows system; a description of the
format of Chapter 2; a good definition of the terminology
of the X windows system; a very brief description of the
fundamental concepts of the X windows system and how
connections are made to an X server; caveats and error
processing and a complete list of all the functions and
macros that are provided by an X/Open compliant Xlib
implementation.

Chapter 2 lists all the functions contained in the
Xlib library. Each entry contains the function name; the
synopsis (how the function is def’med); a description of the
function parameters and the function itself; possible error
returns and a change history. As would be expected, this

chapter occupies the majority of the volume.

Chapter 3, entitled "Event Handling and Predef’med
Values", describes both how events ("data generated
asynchronously by the X server as a result of some device
activity, or as a side-effect of a request sent by an Xlib
function") are generated and describes in detail what
processing occurs when event masks are passed to
XSelectInput (). The second section describes
properties (the collection of named typed data); the use of
colour in X and the key values (the device independent
mapping of keys to internal keycap values).

The format of the different files used by X clients is
briefly described in Chapter 4. The types described are
bitmap and pixmap files, font files and resource files. The
final chapter and the following two appendices describe the
contents of the four include files which are part of the X
windows system; the various X data structures and the
macros def’med to make access to the data structures more
convenient.

From the description of the contents, it can be seen
that this book is not a tutorial introduction (there are a
number of books which aim to provide this, for example
"Introduction To The X Window System" by Oliver
Jones), but a reference for an experienced X programmer
who wishes to write X/Open compliant programs. Typical
usage would be in checking the form of an Xlib call, and
ensuring that the application remains compliant. To this
end, only Chapter 2 is of interest, but the other chapters
provide, in a convenient accessible form, information that
is otherwise inconvenient, if not difficult, to come by.

The only drawback with this volume is that the
copy reviewed dates from August 1988 and documents
Xll Release 2, and whilst still applicable, does not
contain information about the new features in Xll
Release 3 and the recently announced Release 4.

AUUGN 19 Vol 11 No 3

AUUG Book
Book Reviews

Club

X/OPEN PORTABILITY GUIDE
VOLUME 7 (NETWORKING

SERVICES)
by The X/Open Company Ltd

ISBN 0-13-685892-9, RRP $52.50, 1988

Reviewed by Douglas Ray
University Of Melbourne Information

Technology Services
< do u g @murtoa.cs.mu.o z >

first impression:
Thin card cover. Cheap wire comb binding designed

to warp said cover. No pagination on the table of
contents. A scant cm thick, and all for only $50... thank
you, Prentice-Hall. How do you do it?

between the covers:
The book documents a library of 25 networking

functions. These form the X/Open Transport Interface
(XTI), providing access to the transport services; both OSI
(connection-oriented and connectionless modes) and
Intemet (tcp/udp) protocols are supported.

Note that we aren’t discussing executable code, here.
The book merely proposes a standardised set of C
functions to implement the above protocols. ’X/Open’ is
a commercial consortium whose ostensible purpose is,

"to adopt and adapt existing standards
into a consistent environment."

The central part of the book is a series of ’man’-
style pages for the 25 networking functions. The only
difference from your average section 2 or section 3 entry is
a formalised description of parameters, both before and
after invocation. Commendable, and we hope in some
future form less cryptic.

The remainder of the text, on either side of the
’man’ pages, gives a detailed description of the available
protocols. This is generally structured well, and is
pleasantly concise. There is considerable redundancy
between some sections, though, almost to the point of
’padding’.

corresponding clear statement of where their "adoption...
of existing standards" f’mished and their "adaption" of them
began; however, any mapping of OSI’s service functions
onto, for example, C functions is beyond the scope of the
OSI standards: this is why a document such as this X
Transport manual can be useful.

The contents discussed to this point seem quite
reasonable. The book warns that it is not serf-sufficient as
a network transport interface: all the system dependent bits
and pieces are subsumed into ’Event Management’, which
is defined in a separate paper; a user supplied ’Event
Management’ library would be necessary for synchronous
operation. This we find less reasonable. Workable samples
for different systems would have been appropriate, as
would reproducing .the ’Event Management’ paper in the
present volume.

getting picky:
The references are curiously split into two pages at

either end of the volume. The first, ’Referenced
Documents’, is in neither the index nor the table of
contents.

The Portability Guide seems to have been
partitioned into as many volumes as possible, so you can
pay as much as possible for them. This volume,
Networking Services, at the very least should have been
combined with Data Management (v5) and Window
Management (v6). There are just too many small volumes
to have littering one’s desk.

conclusion:
On the whole, the ’man-page-per-function-with-crib-

notes-on-the-protocol’ approach used in the X/Open
Portability Guide was easily followed. To draw a contrast,
it is much quicker to understand, and more immediately
useful, than the voluminous high level descriptive
documentation supplied in the (already implemented) OSI
’isode’ package. However, you could probably ignore the
book given familiarity with ISO’s transport specs,
(IS 8072, 8073), or access to the ’isode’ suite of libraries,
the latter saving you the trouble of writing the code.

A thorough explanation of both the protocols and
the abstractions these protocols operate on is presented:
state and event tables, synchronous and async operation,
connection mode (fixed route) and connectionless
(datagram) options are clearly documented. The manual
tabulates the mandatory and optional functions it defines.
What I was looking for, without luck, was a

Vol 11 No 3 20 AUUGN

AUUG Book
Book Reviews

Club

X/OPEN SECURITY GUIDE
by The X/Open Company Ltd

ISBN 0-13-972142-8, RRP $52.50, 1989

Reviewed by David Purdue
Kodak (Australasia) Pty Ltd

< auu g n@munna ri.o z.au >

As our machines become more widely connected,
system security is becoming ever more important. It is
with this in mind that the X/Open company has published
its Security Guide, a supplement to the X/Open
Portability Guide. The Guide discusses security and related
issues for systems compliant with the X/Open Common
Applications Environment, but almost all of it applies to
any UNIX system, and many of the principles apply to
any multi-user system.

The book starts by introducing some security
concepts and terminology. The approach taken is that a
computer system, including its hardware, software and the
information stored on it, is a valuable resource, and the
value of this resource must be protected. This value is
reflected in the system’s availability, the integrity of data
and programs, and the maintenance of confidentiality.

Chapter 1 goes on to introduce the roles of those
responsible for a system’s security - the system
administrator, the programmers and the users - and to talk
about the various forms of security - physical, personnel,
software, etc.

Chapter 2 discusses the mechanics of security, being
those elements of an X/Open compliant system that affect
the maintenance of security. These include users ID’s,
groups, processes, permissions and access rules, and
privileges.

Chapter 3 talks about users of the systems, and their
role in maintaining security. It covers the obvious things
(e.g. don’t leave a logged in terminal unattended), and also
contains good advice on the importance of passwords and
how to choose an effective one. Also mentioned are the
ways users can use UNIX protection facilities to protect
their own programs and data. This chapter contains many
practical examples of the security implications inherent in
using various tools, such as text editors, electronic mail
and remote login.

Chapter 4 covers the responsibilities of
programmers to not create programs that will breach
security. Topics covered include programmer management,
guidelines for writing secure programs, and the

implications of writing programs that operate in a multi-
tasking environment. Also covered is the writing of
privileged programs, and special cases such as shell scripts

Chapter 5 is on managing security, and covers
establishing a secure installation, the ongoing
management decisions involved in maintaining security -
such as planning, choice of personnel and education - and
how to deal with security breaches.

Chapter 6 gives more detail on system
administration procedures for secure systems. This
includes a programme for making the transition to a
secure system, for administrating users within a secure
domain, the security of the physical machine, file system
security and network security.

The book is mainly a practical guide to operating a
secure site; and as such it is quite good, but suffers from
the consequent patchy presentation of the theoretical
material that backs up this practice. Perhaps a better
approach would have been to have a longer introductory
chapter on the theoretical aspects, or to have given a list
of references to such information.

Also because of the practical orientation, some of
the statements made in the book are not justified. For
example, in section 2.8, "Reasonableness Tests", one of
the tests is that no process can gain write access to a
directory. It is not explained why a process having write
access to a directory is unreasonable.

One final criticism is that the book is a bit out of
date. There is no mention of sendmail or the Internet
protocols, and the implications of using those. This is
surprising considering that the guide was published in
1989.

Overall, though, I think this book provides a good
overall guide for day-to-day operation of a site that is
concerned about maintaining security.

AUUGN 21 Vol 11 No 3

20% DISCOUNT TO AUUG MEMBERS
Please send me copy/coples of the following books ~

X/OPEN PORTABILITY GUIDE
Voi. IXS1 Commands and Utilities
RRP $52.50* ISBN:1368-5835-× Paper 1989

Vol. IIXS1 Systems Interface and Headers
RRP $52.50* ISBN’1368-5843-0 Paper

Vol. IiIXS1 Systems Supplementary Definitions
RRP $52.50* ISBN:1368-5850-3 Paper

Vol. IV Programming Languages
RRP $52.50* ISBN:1368-5868-6 Paper

Vol. V Data Management
RRP $52.50* ISBN:1368-5876-7 Paper

Vol. VI Window Management
RRP $52.50* ISBN:1368-5884-8 Paper

Vol. VII Networking Service
RRP $52.50* ISBN:1368-5892-9 Paper

1989

1989

1989

1989

1989

1989

X/OPEN SECURITY GUIDE
RRP $52.50* ISBN:1397-2142-8 Paper 1989

X/OPEN SO--ARE DIRECTORY
RRP $52.50* ISBN:1397-2134-7 Paper 1989

HekmatpoutCC++ A GUIDE FOR PROGRAMMERS
RRP $35.95* ISBN: 1310-9471-8 Paper 1990

*Deduct 20%froml~tedretailpHce.

Name: Organisation:
Address’

(Slree~ address only) Telephone:

Enclosed cheque for $ (Payable to ’Prentice Hall Australia’)
Please charge my: [~ Bankcard [~ Visa ~ MasterCard
Credit Card No: [I I It I .

Expiry Date: Signature:

Mail completed order form to Prentice Hall Australia, PO Box 151, Brookvale

Use our FAST PHONE SERVICE call Uz Guthrie.
Have your credit card ready (gam to 5pro)

SYDNEY (02) 939 1333

Prentice Hall Australia Pty Ltd
7 Grosvenor Place, Brookvale NSW 2100
Tel: (02) 939 1333 Fax: (02) 938 6826

A PARAMOUNT COMMUNICATIONS COMPANY

NSW 2100

West Australian Summer’90 Technical Meeting
Darryl K. Ramm

Pyramid T~hnology Corporation
South Shore Centre

83 The Esplanade, South Perth, 6151.
darry l @p yrmani a. o z.a u

The West Australian Summer’90 meeting was very
successful, with over 70 delegates attending. The meeting
showed a diversified range of interests, with talks coveting
topics such as data encryption, performance analysis,
RDBMS systems, system evaluation and purchasing,
lightweight processes and session management. One of
the most useful functions of user group meetings is to
just bring together the user community to allow exchange
of ideas and information. Judging by some of the
conversations occurring over coffee (and stronger
refreshment later in the day) this part of the meeting was
very successful. The added advantage of having interstate
visitors helps to keep the local community up to date
with what is happening elsewhere.

The keynote speaker was Ken McDonell from
Pyramid Technology. For the benefit of the many West
Australians who could not attend the AUUG’89 winter
meeting Ken presented a repeat of his talk "OLTP -
What’s Behindthe Smoke and Mirrors". Ken reviewed the
TP1 and Debit-Credit family of benchmarks, highlighting
several methods used by vendors to produce large, and
possibly meaningless, numbers of transactions per second.
He then discussed more r~stic benchmarks than TP1 and
Debit-Credit being developed by groups such as the
Transaction Processing Performance Council (TPC) an
organization formed by over 30 database software and
hardware ~vendors. Several other organizations such as the
System Performance Evaluation Cooperative (SPEC) and
UniForum, previously /usr/group, are also developing
more realistic benchmarks for measuring machine
performance.

Ken described some enhancements to UNIX and
RDBMS systems to support OLTP. These enhancements
include fast locking, asynchronous but guaranteed I/O,
modified CPU scheduling algorithms etc. More details are
described in [McDonel189].

Chris McDonald presented a talk describing the
development of a lightweight process library that he and
James Pinakis are working on at The University of
Western Australia. This development is aimed at
simulating parallel concurrency on uni-processor systems
for research into distributed operating systems. Chris and
James have particular interest in Linda, a distributed
operating system developed at MIT.

The presentation gave an overview of lightweight
processes, or threads, and discussed their advantages over
heavyweight processes as found in the conventional UNIX

concept of a process. These advantages include fast process
creation, termination, context switching and interprocess
communication, but at some cost in user level software
complexity. The talk described some public domain
threads libraries that are available and some practical
aspects of implementing a threads library (like how easier
SPARC assembler is if you have a manual!). Chris and
James talk was one of the more technical at the meeting
and showed that there is good operating systems research
being done locally.

Steve Landers of Functional Software discussed a
session management package for ASCII terminals. The
system utilizes the multi-page screenbuffers found in most
modern terminals to provide rapid switching between
sessions. Steve discussed the design alternatives that
where available, comparing BSD job control, System V
streams and BSD and System V pseudo terminals. He
explained the justification behind the final design using
System V sxt pseudo terminals. Steve explained the
difficulty of dealing with badly behaved UNIX
applications that do things such as unnecessarily setting
the tty into raw mode, upsetting the session management
control mechanism. Steve discussed System V streams
based terminal I/O in some detail, pointing out that this
would become more significant with the release of System
V.4.

Michael Selig of Functional Software presented a
talk entitled "Choosing a RDBMS - Do Your
Homework". This talk was a chance for Michael to
highlight some issues to consider before purchasing an
RDBMS. He described the major types of RDBMS
architectures including multi-process, single-server and
hybrid architectures, and briefly noted some advantages and
weaknesses of each architecture. Michael discussed the
advantages of using a RDBMS based on standards like
SQL, however he warned of the dangers of being trapped
into vendors non-standard tools, embedded languages and
4GL’s. He also described some of the RDBMS/UNIX
performance enhancements such as raw I/O,asynchronous
I/O and batch log commits and discussed the integrity and
recoverability with RDBMS’s, with some warnings to not
assume that all systems have guaranteed recoverability.

Greg Rose of Softway presented a talk on public key
encryption systems. Greg described a system devised by
Rivest, Shamir and Adelman (RSA) which is about to be
adopted by the Internet. Greg described how in a public
key system the sender encodes the message using the
recipient’s public key. After transmission the message can

AUUGN 23 Vol 11 No 3

be decoded by the recipient using his private key, but not
by anybody else. In this way anybody with a directory of
public keys can generate an encrypted message that can
only be decoded by the intended recipient.

Greg pointed out that RSA encoding is fairly
expensive in processor time as it involves exponentiating
a 160 digit base number (the message) with an 80 digit
encryption key. RSA offers the advantage of being a
public key system and has potentially greater robustness
to the more conventional Data Encryption Standard
(DES). As the RSA system is public key it can be used
for transmitting a small encoded private key with a
message. Once the private key is decoded using the RSA
system it can be used to decrypt the bulk of the message
using a less expensive algorithm (such as DES).

Greg described how a public key encryption system
also allows sender verification using a series of
hierarchical verification signatures. The signature
verification works by allowing senders authentication to
be vouched for by an encoded signature of a "justiceof the
peace". The identity of the "justice of the peace" is in turn
verified by an encoded message signature of a more senior
"justiceof the peace" and so on until some central
authentication authority is reached.

Tim McGrath from Port Community Systems and
Ian Crawford from the Fremantle Port Authority presented
an entertaining two person presentation on managing the
evaluation process for the purchase of acomputer system.
The talk had particular emphasis on government
departments, but much of the suggestions and advice
would apply to any potential customer. Tim and Ian
covered initial budgeting, choosing consultants or
planning committees, planning the request for tender
(RFT), specifying requirements, benchmark design, details
of publishing the RFT, making the tender evaluation,
contract negotiation, systems installation, maintenance
and support arrangements and much more. To borrow their
metaphor, the talk led from the first introduction between
the eager potential partners, through the courtship stages,
wedding, honeymoon and finally living together. This talk
raised some interesting points in an amusing way. Many
people in the audience could sympathize with the
difficulty of performing system evaluation and find useful
some of the suggestions in their talk.

days at Monash and its acceptance within Australia, to its
acceptance internationally by organizations such as EUUG
and numerous UNIX system vendors. Ken described the
MUSBUS architecture, especially how it controls the
simulated multi-user workload and performs some
important error checking. He pointed out the importance
of specifying an appropriate workload so that the
benchmark is simulating as closely as possible the desired
environment. Ken also described some new features that
he will be including in the next, and final, version of
MUSBUS. These include a load simulator that allows a
work profile to be specified in low level constructs such
as CPU andI/O usage.

The organization of the West Australian Summer’90
Meeting was largely the work of Glenn Huxtable and
Chris McDonald. Thanks go to them and the others who
helped make the meeting a success. Judging by the
interest shown at the West Australian Summer’90
meeting the Summer’91 meeting should be a guaranteed
success.

[McDonel189] McDonell, Ken J., "OLTP Performance
What’s Behind the Smoke and

Mirrors", AUUGN, 10, 4 (1989).

Ken McDonell concluded with a retrospective view
on a decade of life with MUSBUS (Monash University
Suite for Benchmarking UNIX Systems). From its early

Vol 11 No 3 24 AUUGN

Using Unix as a Persistent Programming Environment

A. J. Hurst

Monash University

Introduction
Persistent programming denotes a philosophy of programming in which all program objects have

the same data rights. In particular, one important data right of a program object is its lifetime. Most
languages control lifetimes of data objects by declaration and scoping rules, but one important exception
is the data object file. Whereas all other objects normally are destroyed when a program terminates, a
file may outlive the program that creates it. Programmers have exploited this mechanism in order to
preserve important data, but it necessitates a tedious process of converting from input representations
to internal representations, and then back again for output. It has been estimated that this activity
accounts for some 30% of program code.

Persistent languages accord all objects the same lifetime rights, so that no conversion from external
to internal form is required. This mechanism is akin to virtual memory, where the transfer of objects
between internal and external stores is managed automatically. However, persistent systems usually
give the programmer more explicit control of such movement, without requiring explicit conversions.
Data objects can then be said to be persistent, meaning that they have the right to outlive their parent
environment, and this right is conferred independently of the data object’s other attributes.

In order to implement persistent systems, a form of virtual memory is required. This may be done
by means of capability based systems, such as has been developed at Monash University. If persistent
systems are to succeed however, implementations on conventional architectures are also required. The
paper develops the important point of how the underlying persistent mechanism reduces to the problem
of mapping names to objects, describes the processes involved in implementing persistence, and shows
how the Unix file system can be used as a tool for achieving this. In addition, some experiments with
using a graphical interface to both a persistent system, and to the Unix file system, are described.

Persistence
Persistence is a term used to describe the lifetime of program objects. Just as such objects have

other attributes such as type and locality, over which programmers have control, so too should the
lifetime of an object be under the control of the programmer. Lifetimes range from the very short,
such as local variables in an innermost procedure call, to the intermediate, such as global variables in
a program, to the long and very long, such as data and system files. Indeed, in most general purpose
languages, files are the only objects with arbitrary lifetimes, able to persist beyond the lifetime of the
creating environment.

The persistent programming paradigm provides all program objects with this ability to outlive the
program that creates them. Without this ability, the programmer is forced to convert from internal data
types, such as integers, lists, arrays, etc., to external representations, usually just character strings. Of
particular concern is the fact that pointers cannot easily be mapped to external forms, and subsequently
reconstructed when the object is read back in. This necessitates mapping the internal structure of a list,
tree, etc., into some flattened form as a character string that can be stored in a file. When the object
is restored in a later program environment, this conversion must be inverted. The programming effort
required for these processes is not trivial, and is very error prone.

When the programmer defines the various programming objects of a program, it is important that
this can be done without regard to the persistence attribute of the object. For example, declaring local
objects should be done with respect to the attributes of the object in the same way as for a global object
with the same attributes. If changing an integer variable from local to global required a change in the
type declaration, the language would become unecessarily cumbersome.

AUUGN 25 Vol 11 No 3

In the same way, persistent languages allow program objects to be declared and created in much
the same way as for conventional languages. Indeed, there is no requirement for a programmer to actudlly
use persistent features.

Persistence can be thought of programmer controlled virtual memory. Objects move between
the primary store, or program space, and the secondary store, or persistent space, without change of
representation. The process of moving data between the two spaces is transparent, like virtual memory,
and the objects themselves are independent of the store boundary, and can be copied back and forth just
like segments or pages in a virtual memory. Having to recast objects as new structures is as obsolete as
linking in new code overlays in non-virtual memory systems.

Persistence is not a new idea. Some programming languages (or more properly, programming
language environments) have provided for persistent storage of objects. APL and LISP are notable
examples, providing in many implementations the notion of a workspace, which can be dumped to sec-
ondary storage and subsequently restored. These workspaces can contain variables, function or procedure
declarations, and other program objects. The major disadvantage with these early forms of persistence
is the fact that the programmer has little control over which objects are persistent: either nothing is (no
workspace is saved), or everything is (the workspace is saved). What is required is the ability to specify
the lifetimes of objects individually. In more formal terms, we demand that persistence is an orthogonaI
a~lribu~e of program objects.

The concept of persistence as an independent attribute of program objects has been touched upon
by several researchers, but it was Atkinson [1] who first identified the term.

Programming with Persistence
Just as with other programming models, persistence requires a certain discipline on the part of the

programmer. Forcing all objects to be persistent, as happens with the APL/LISP models, is too heavy
handed an approach. We need mechanisms that will allow the programmer to control which objects
are persistent, and how they are used within programs. To see why, we must first examine the basic
persistent programming model.

Objects that are to be persistent are simply objects that may be retrieved in later, different
executions of either the same, or different, programs. To make an object persistent we might simply add
a persistent keyword to its declaration. Programs creating new persistent objects might declare x :
new persistent array [1 .. 6] of integer, while programs reusing old persistent objects might declare
them as persistent procedure y.

Doing this requires some form of nomenclature that is agreed upon by the two program executions.
One obvious way is to use the identifier attached to the object. For example, if z is an integer variable
made persistent in program A, then when program B declares a persistent variable with identifier z,
the connection is established, and the same object (with the same type) as was used in program A is
available for use in program B.

However, this simple scheme suffers from obvious disadvantages. How does the compiler know
when compiling B that the type of x is integer? What if there already is an identifer x in program B?
What would happen in there already was a (persistent) ~ when A declared its use of z? How could B
access two different persistent objects both named z?

The answer to these problems lies in giving different persistent names to persistent objects, and
binding these names to local identifiers within a program. This is nothing more than that which already
happens with those well known persistent objects, files. When a file is opened, a binding is established
between the file name, a system wide, persistent name, and the file variable, identified by a name local
to the program.

Environments and Context Sensitive Addressing
Just as in conventional file systems, a flat naming structure is inappropriate to persistent stores.

The consequent name explosion generated by having to find new, unique names for each persistent object
makes flat, or global, naming cumbersome. Just as hierarchical naming has taken over in the file domain,
so most persistent systems offer a mechanism to structure the persistent store so that names are conlez~
sensilive, meaning that they are interpreted according some context in which they are found.

Vol 11 No 3 26 AUUGN

Take Unix as an example. The solitary file name x will interpreted as a context sensitive name,
relative to the current working directory. It will not be confused with any other file name z defineit in
any other directory. The directory structure is a tree, which is rooted in the file name /, also known,
appropriately enough, as root.

Since all files are either leaf nodes or directories, the file system forms a hierarchical tree. But
note that Unix goes further than this, as files may be reachable from more than one directory. The Unix
command in allows the programmer to establish a new name for a file, in a possibly different directory.
The same file may thus be accessed by different paths starting from root, and the file system is no longer
a tree, but a directed graph.

This flexible and convenient form of naming allows programmers to establish localities of related
objects, so that files related to a common task are accessible directly within a single ’working directory’.
Software can be structured so that it need not know absolute file names, and thus becomes more flexible
in operation.

Such addressing we call context sensitive addressing [2], as it depends upon the current context
(or current working directory, in Unix terms) when the name is translated. The context or ’locality’
gives the user (and computer) a very much restricted domain of objects, and prevents the user (if not the
computer) from becoming overwhelmed by too much data. As Dijkstra has pointed out, we are limited
by ’our inability to do much’ ([3], p.1).

Such locality is an important tool in much of computing. For very similar reasons, it is convenient
to organize the persistent store in the same way. However, we have traded one form of naming convenience
for another. Because the file name no longer represents a unique identifier for the file, we must introduce
another, necessarily unique, name. The reason that we need such a unique name is that the file has an
existence independent of the naming path used to reach it. Such a name we shall call the persistent
identifier.

Capabilities as Persistent Identifiers

The important attribute of a persistent identifier is that it is a once-and-for-all-time label attached
to a persistent object. When the object is created, a new unique persistent identifier is also created.
When the object is finally destroyed, or becomes inaccessible, the persistent identifier is discarded.

To some extent, the persistent identifier is like a pointer. It serves as a unique handle to reach
the object, and cannot (or at least, should not) be used to reach any other object. When the object is
created, a memory allocation routine returns a pointer value to denote the storage space allocated to
that object. This storage space is independent of any other storage space for any other object, although
often a knowledge of the allocation strategy allows unscrupulous programmers to get at other objects
via such pointers.

For some time it has been recognised that pointers are potential sources of trouble .in programmed
systems. Various attempts to control them have been made, but the most successful has been the notion
of regarding pointers as capabilities [4]. Important to the notion of pointers as capabilities is the fact
that pointers usually undergo some form of address translation on modern architectures, and that this
translation can be exploited to ensure that only legitimate pointers translate successfully. Various
schemes exist to do this (see, for example, [5]), but basically, they all reduce to making it difficult or
impossible to forge a capability. In the Monash Multiprocessor ([6]), a randomly generated password is
added to so increase the redundancy of a capability, that it becomes very unlikely, that anyone could
guess a legal capability.

Capabilities make excellent persistent identifiers. They are so closely coupled with the mechanism
for accessing an object, that they can almost be considered to be the object. The process of retrieving
a persistent object then becomes one of uttering a capability, and asking the capability translation
mechanism to make the object accessible. Access rights to the object can be encoded in the capability,
so that objects can be read-only, or execute-only, and even made type secure, meaning that only certain
well defined operations or procedures may be applied to the object when it is accessed ([7]).

AUUGN 27 Vol 11 No 3

Unix File Names as Persistent Identifiers

Unfortunately, not all architectures are capability architectures. Any language of system designed
around special hardware will suffer a severe acceptance problem if it is not also available on conventional
machines. Persistence is claimed to be an important general purpose programming tool. It is necessary
therefore to investigate how persistent mechanism can be implemented on conventional architectures.

One of the first persistent languages, PS-algol ([8], [9]) used a soft implementation of persistent
identifiers, represented as a 32 bit integer, and performed software translation of this persistent identifier,
or pid, on the fly. To improve performance, the pid was translated only the first time it was encountered,
and was then replaced by the primary store address of the referenced object, which was also brought in
from persistent store if necessary.

One special class of object, called a database, contained mappings from identifier strings to persis-
tent identifiers, allowing programs to browse through the persistent store by referencing such database
objects. Since these were standard types in the language, arbitrary graphs of persistent objects could
be constructed.

The behaviour of these database objects can be modelled by Unix files. The Unix file system
provides a name translation service,.for mapping identifier strings to file objects. Since files can be
directories, this structure can be used to represent exactly the same form of persistent store provided by
PS-algol. Of course, Unix misoneists may well argue that the persistent structures just model the Unix
file system!

Persistent identifiers per se are no problem. These can be generated by time stamping a stub file
name. Each time a new persistent object is created, and written to a file, the file is linked into a master
directory of persistent objects with the unique file name, such as p±d-90-01-12 : IS : 21 : S6. Local names
can map to this file by linking to it, or by storing this file name as a character string within the local file.
Assembly language programmers will recognise this as a high level form of indirection. Since the Unix
persistent identifier is just a string of characters, it can be used in much the same way as a capability,
and extra characters used to encode rights information, etc.. Of course, the read/write protection bits of
Unix could themselves be used for that purpose. The only disadvantage of this scheme is that because
the name lookup is performed in software, its performance is comparable to the PS-algol scheme, but it
cannot compete against the hardware translation mechanisms of the Monash Multiprocessor.

A Graphical Browser for Persistent Objects

To illustrate just how closely the persistent programming model can be supported by Unix, a
serendipitous result from a recent student project can be used. A graphical browser for persistent
systems was developed by Wong [10]. This had as its aims the construction of a graphically based
interactive tool, that could be used to explore the structure and value of objects in a persistent store.
One of the problems with persistent stores (and this includes conventional file systems) is the difficulty
of keeping track of what is stored where. As we have already seen, using a hierarchical system somewhat
ameliorates this problem, but the real insidiousness is demonstrated by programs such as wh±ch and f±nd.
How many Unix users have forgotten where in their directory structure resides an old, not-recently-used
file that they now wish to use?

The graphical browser (itself developed from an earlier, text-based, browser) allows the user to
point-and-click with a WIMP (Windows, Icons, Menus, Pointer) style interface, running on a Sun under
Unix 4.3 and Suntools. Upon startup, the root environment is shown. By pointing at, and clicking on,
the icon representing the root, the objects referenced by entries within the root are themselves displayed
iconically. The user is able to rapidly traverse the persistent store, by successively tracing down paths,
backtracking, or just selecting new branches not previously visited. The window manager takes care of
the display, by scrolling the window upon which the icons are displayed, so that the current focus of
attention is always visible. Of course, the user can also scroll the window explicitly. The icons are defined
by the type of the persistent object represented, so that a strong visual clue is given as to what the
object is, thus often freeing the user from having to interact further to determine whether the displayed
object is the object being pursued.

The browser does not talk directly to the persistent store, as it was designed to handle a variety
of persistent store sub-systems. Instead, it relies upon a persistent store server to carry out the basic

Vol 11 No 3 28 AUUGN

operations of fetching persistent store objects. Because the browser is just a browser, there is no need
to write to the persistent store, but if an editing facility were to be included as a sub-component of the
browsing system, this would obviously change.

The serediptious result referred to earlier was the observation, after the browser had been com-
pleted, that, just by changing the interface between the browser and server, the browser system could
be used as a front end to a Unix file store. The icons now represent files, with the different attributes of
a file reflecting themselves in different icons. For example, a directory is displayed as an iconic tree with
a table at a leaf node, while a file is displayed according to the file type returned by the file command
in Unix.

Such use of the browser is possible because it follows an important principle of software engi-
neering: information hiding. The browser does not need to know exactly what happens when it issues
requests to the server, and therefore this information should be hidden from it. Because the two sys-
tems are coupled only through the interface, the server implementation can change significantly, from
an arbitrarily typed-object persistent store to a conventional character-stream file system, without any
redesign of the browser.

Conclusions
We argue that persistent programming will become a significant programming paradigm. Like

many advances in programming, the paradigm draws from conventional experience, and extends our
understanding of the programming process by simplifing and generalizing a key concept. That concept
is that program objects can have lifetimes that are independent of the other attributes of the object.

In addition, the work has demonstrated how the reuse of existing programming facilites can
be used to advantage. Always an important part of the Unix philosophy, software tool construction
by building upon existing components allows new facilities to be created with a minimum of effort.
The rapid prototyping of a graphical Unix file browser was possible because of adherence to soft~vare
engineering principles, namely information hiding and software reuse.

.

,

.

.

10.

Bibliography
M. P. Atkinson, K. J. Chisholm, W. P. Cockshott; Nepal- the New Edinburgh Persistent
Algorithmic Language, in Database, Pergammon Infoteeh State of the Art Report, Series 9,
No. 8 (January 1982).

A. J. Hurst, A Context Sensitive Addressing Model, Proceedings of the 10th Australian Com-
puter Science Conference, Deakin, Feb 1987.

O.-J. DaM, E. W. Dijkstra, C. A. R. Hoare; Structured Programming, Academic Press (1972).

R. S. Fabry; Capability Based Addressing, Comm. ACM, vol. 17, no. 7, pp.403-412 (July 1974).

M. S. Anderson, C. S. Wallace; Some Comments on the Implementation of Capability Systems,
Australian Comp. J., vol. 20, no. 3 (1988).

M. S. Anderson, R. D. Pose, C. S. Wallace; A Password Capability System, Computer J.,
vol. 29, no. 1, pp. 1-8 (1986).

W. A. Wulf, R. Levin, S. Harbison, Hydra/C.mmp: An Experimental Computer System,
McGraw-Hill, New York (1980).

M. P. Atkinson, P. J. Bailey, K. J. Chisholm, W. P. Cockshott, R. Morrison; PS-algol: a Lan-
guage for Persistent Programming, lOth Australian Computer Society Conference, Melbourne
(1983).

W. P. Cockshott, M. P. Atkinson, K. J. Chisholm, P. J. Bailey, R. Morrison; POMS.’A
Persistent Object Management System, Softw. Pract. and Exper., vol. 14, no. 1 (January
1984).

G. Wong, Persistent Editing Environments, Honours Project Report, Department of Computer
Science, Monash University, 1989.

AUUGN 29 Vol 11 No 3

UNIX International
UNIX System V Release 4 and OSF/1

A Comparison

Copyright © 1989 by UNIX Intemational, Inc. All fights reserved.
UNIX® is a registered trademark of AT&T in the United States and other countries.
OPEN IX3OKTM is a trademark of AT&T in the United States and other countries.
X/Open® ~ registered trademark of X/Dpen Company, Ltd.
MS-DOS® is a registered trademark and Presentation ManagerTM is a trademark of Microsoft Corporation.
Open Software Foundation, OSF and OSF/1 are trademarks of the Open Software Foundation, Inc.
OSF/Motif is a trademark of the Open Software Foundation.
XENIX® is a registered trademark of Microsoft Corporation.
X Window System is a trademark of Massachusetts Institute of Technology.
SNATM is a trademark of IBM Corp.

Vol 11 No 3 30 AUUGN

UNIX System V Release 4 and OSF/1

A Comparison

Executive Summary
UNIX System V Release 4.0 (SVR4) is available for general release and is being tested on over
thirty different vendors’ hardware platforms. UNIX International, in conjunction with AT&T’s
UNIX Software Operation (USO), has been developing market requirements for future System V
releases. These will be made public via the distribution of the UNIX International Product
Roadmap, the foundation product planning document for UNIX System V.
This paper has been provided to help the industry determine the relative merits of UNIX System V
versus a furore product from the Open Software FoundationTM (OSFTM) called OSF/1 ~. There
has been much speculation in the press about OSF/1, but little is really known. Critical issues,
such as the kernel architecture, remain unresolved. Real OSF/1 knowledge will likely be scarce
until it is introduced, reportedly in the last half of 1990. This paper briefly discusses advances in
SVR4, makes comparisons with OSF/1 where information is available, and discusses important
issues which should be considered as more is known about OSF/1.
SVR4 was designed to unify and merge the several major derivatives of the UNIX system: UNIX
System V Release 3, the Berkeley Software Distribution 03SD) and XenixTM. With this
unification, UNIX System V Release 4.0 is compatible with over 80% of the installed base of
UNIX system software, over twelve thousand applications. In addition, SVR4 contains
substantially enhanced functionality as compared to UNIX System V Release 3 and other flavors
of the UNIX system. However, it is even more important to note the advantages of SVR4 in its
overall engineering. The infrastructure for the future evolution of UNIX System V is built into
SVR4. The modularity of the various functions in SVR4 ensure that continued improvements in
one area will not have a negative effect on another area, Furthermore, SVR4 is based primarily on
time-tested code that has run on a wide variety of hardware architectures, and has had its bugs
systematically eliminated.
The OSF equivalent, OSF/1, whether based substantially on IBM’s ~ product, other existing
software (e.g. Mach), or new code, must first ’catch-up’ with SVR4, and do so with code that has
yet to stand the test of time that comes after having been operating on dozens of different vendor
systems over many years. Only then will OSF/1 be able to address future needs, and then only if
its users do not demand ’catching-up’ with the newer System V releases.
The greatest strength of UNIX System V is not that it provides every feature known, but that it
provides a strong environment from which a user can build the right applications or add new
technology. This allows the market to develop and choose among competing solutions that exist
on top of System V rather than having to accept a unilateral choice by a controlling developer, even
if that developer has requested technology about different approaches.
This paper compares SVR4 and OSF/1 by examining what is known, via press reports, about
OSF/1 and its ’base’ code, AIX: The comparison first discusses general open systems
requirements and then basic operating system functionality.

UNIX System V Release 4 is real and being ported to dozens of vendors’ systems
today. It maintains compatibility with over twelve thousand existing applications.
and provides a solid foundation from which to address future market
requirements. SVR4 advances System V’s open systems leadership by creating a
vendor-neutral software platform that end-users can use to mix and match
software and hardware within a virtually seamless operating environment. We
believe that no other system can or will offer such complete capability.

AUUGN 31 Vol 11 No 3

1. Introduction
This document attempts to compare OSF/1 and UNIX Systemv Release 4.0 (SVR4.0). This is
difficult because the first version of OSF/1 has not been finalized. OSF statements suggest OSF/1
will be based substantially on IBM’s Advanced Interactive Executive (AIX) operating system
therefore the following comparison is often a comparison of SVR4.0 and AIX. While it is
necessary to use AIX as the basis for comparison it must be recognized that since OSF will be
tailoring AIX to its needs, the result may be significantly different from the current AIX product.
Additionally, OSF/1 will most likely be based on AIX version 3.0, a product which is also yet to
be delivered to the marketplace.
The following discussion first compares SVR4 and OSF/1-AIX on the general basis of open
systems requirements. Next, basic operating system functionality is discussed followed by brief
discussions on multiprocessing, security, and networking.

2. High Level ’Open Systems’ Comparison
Both OSF/1 and SVR4.0 claim to be Open Systems. This comparison looks at how well they
support that claim. Both UNIX International, and the Open Software Foundation use the
characteristics of compatibility, portability, scalability, and interoperability to define an open
system. This section uses these criteria to compare SVR4.0 and OSF/1.

2.1 Compatibility
Compatibility provides a source-code level commonality which allows applications to be run on
any UNIX System V system without changes besides recompilation. Compatibility means an
application developer can move their software investments to a different hardware platform without
any code changes.

2.1.1 Source-level Standard~
In order to provide compatibility, an open system must support a consistent set Of standardized
application programming interfaces. For the application programmer the most significant interface
is the primary system interface which in the UNIX world has been historically known as the SVID
(System V Interface Definition). Because of the importance of this definition, IEEE has created a
standard, influenced significantly by the SVID, referred to as ’POSIX’. This standard has
received significant support via government purchasing standards (the NIST FIPS) as well as from
X/Open. X/Open is also standardizing in areas beyond POSIX to create their Common
Applications Environment (CAE) via the X/Open Portability Guide (XPG).

Both SVR4.0 and OSF/1 will support the POSIX and XPG3 industry standards. Other than
availability dates, (i.e. SVR4 is compatible with POSIX and XPG3 today), there is unlikely to be
much difference. But what about the installed base of software existing before these standards?

2.1.2 Preserving Past Software Investments
Support for ’de-facto’ standards, specifically Microsoft’s XENIXTM system, UNIX System V and
Berkeley BSD 4.2/4.3, will most likely show more variation. Compatibility with these ’de-facto’
standards was a major reason for the development of SVR4. SVR4 was designed to unify and
merge these major derivatives of the UNIX system so that SVR4 would be compatible with over
80% of available UNIX software, some twelve to fifteen thousand applications. SVR4 provides
complete source-level compatibility for Microsoft’s XENIX system - plus binary compatibility -
and a high degree of application source-level compatibility for 4.2 and 4.3 BSD, and, of course, it
will maintain complete compatibility with the standard UNIX System V pro/ganmaing interfaces
that have been supported in the past.

Vol 11 No 3 32 AUUGN

OSF intentions in this area are unclear. AIX 3.0 is SVID release 2 compatible and has been
described as BSD compatible, but there has been no clear indication of compatibility with the
installed base of Xenix software. And what about SVID compatibility with SVR4 or future
SVIDs? Unknown, is to what degree OSF/1 will maintain compatibility with UNIX System V
features that are not in XPG3 or POSIX. Surely the fact that System V defines past compatibility
and is continuing to make advances, would suggest that System V will always play a major role in
defining POSIX and X/Open standards.

2,1.3 User.Interface Compatibilit2~
Another critical aspect related to compatibility is the application programmer interface (API) for the
Graphical User Interface (GUI). UNIX System V Release 4 supports the X Window SystemTM

and thus can support any GUI based on X, which includes OPEN LOOK and OSF/Motif.

SVR4.0 extends compatibility by defining interfaces for device drivers, STREAMS I/O modules,
and Virtual File System (VFS) types. These open up the possibility for vendors to develop
compatible software in areas - like device drivers and communication software - where
compatibility has never before been possible. OSF/1 will undoubtedly have an analog to VFS but
it is not known whether OSF would choose to use STREAMS I/O or some equivalent capability.
If OSF/1 does not support STREAMS it will be incompatible with the numerous applications and
development tools that are already taking advantage of this powerful feature.

2.2 Portability
Portability is similar to compatibility but refers primarily to allowing application binaries to operate
on a variety of vendor systems. This would give a capability similar to the ’shrink-wrapped’
software found in the PC market and thus customers could purchase application software and use it
’as-is’ on computer systems from a variety of different vendors. UNIX System V is addressing
this need by developing Application Binary Interfaces (ABIs).

Z2A Application Binary. Interfaces
AT&T has been working with manufacturers to establish Application Binary Interfaces, which
define a set of interfaces that allow compiled software to be ported in binary form across different
vendors’ systems that share a processor architecture. An SVR3.2 ABI already exists and is
successful for the Intel 386 architecture. SVR4.0 ABIs for many processors are already under
industry review, and ABIs for Intel 80386, Motorola 68000 family and 88000, WE32000, and
SPARC processors will be generally available by the end of 1989.
OSF has put out a Request for Technology (RbT) for an Architecture-Neutral Distribution Format
(ANDF), which would provide a "single format for distribution that is hardware-independent."
This technology would define a single intermediate format usable with many architectures. But to
be useful, ANDF technology must solve issues concerning performance, ease-of-support, and ISV
source code protection. For more information, see the UNIX International white paper "Mass
Distribution of UNIX Software".
It is important to note that ANDF requires the ANDF software to be wanslated into a binary
application that is specific to the target architecture of the system for which the software is being
installed. The result of that translation step could itself conform to the applicable ABI for the target
architecture. Therefore, the future existence of an ANDF does not in any way diminish the need
for ABIs now or in the future.
OSF’s ANDF RFT stipulates that candidate technologies must be available for shipment during
! 990. The ANDF technology is still in its infancy and it does not seem likely that it could become
part of OSF/1. Since OSF has not announced compliance with the AT&T initiated ABIs, they may
or may not choose to make it possible for vendors who license OSF/1 to also support the ABIs.
Compliance, by OSF, with the AT&T ABIs would make life much easier for software vendors.

AUUGN 33 Vol 11 No 3

2̄.32 XENIX System and MS-DOS Compatibili _ty;
On the Intel 80386 architecture, SVR4.0 provides binary compatibility with XENIX System
applications. The degree of XENIX binary compatibility provided by OSF/1 is unknown at this
time. Several vendors offer software that provides MS-DOS compatibility under the UNIX
System. There is no reason to believe that these same vendors will not provide this capability for
OSF/1 systems.

2.3 Scalability
An open system must be hardware independent and available on a wide range of hardware
platforms from a variety of hardware vendors. Scalability means that customers can keep the same
software environment while upgrading their hardware platform or changing vendors.
UNIX System V runs on a wider range of hardware platforms (from PC’s to super-computers)
than any other operating system, and is supported by every major hardware vendor, most of them
choosing UNIX System V. Scalability is further enabled by the existence of System V ABIs.

Obviously, OSF/1 has yet to run on any system large or small. Even AIX has limited scalability
experience. While IBM has versions of AIX running on 370s, PS/2s and RTs, they are not
compatible. There has been considerable experience porting System V to hundreds of different
computer systems while it is unclear how easy it will be to port an AIX-based product. Lack of
any ABIs will also affect the scalability of OSF/1.

2.4 Interoperability
An open system must support communication and interconnection among a wide range of
applications. Interoperability addresses the question of:

h̄ow users interact with applications,
,how applications work with each other, and

¯ how one system communicates with another.

Interoperability.allows customers to pick hardware and software from multiple vendors and have
the pieces work together.

SVR4.0 supports a wide range of networking standards under a single standard interface
(Transport Interface, also known as TLI). It also provides Remote File Sharing (RFS) and Sun’s
Network File System (NFS), which allow application transparent f’fle sharing among different
systems, including systems that are not based on the UNIX System. NFS has already been widely
adopted by computer vendors and end-users alike. The NFS Remote Procedure Call (RPC)
capability is already being used by ISVs to create distributed applications, even between System V
and MS-DOS systems. The Transport Interface allows applications to be network and protocol
independent and supports easy migration to the OSI protocols.
OSF/1 will support TCP/LP using the BSD sockets interface, which SVR4.0 will also support, but
it is not as portable an interface as STREAMS. OSF does plan to support X/Open’s version of
TLI, called XTI, as will System Vo Beyond that, it is not clear whether OSF will support NFS or
IBM’s Distributed Services (DS) remote file system.

Vol 11 No 3 34 AUUGN

3. Base Operating Functionality

3.1 Kernel memory management and data structures
The management of kernel memory and data structures is crucial to the ability of the system to scale
from PC’s to supercomputers. System V continues to be the only software that spans so wide a
range. SVR4 contains many improvements to the kernel to support both smaller and larger
platforms.

Most kernel data structures grow dynamically by increments, rather than being preallocated in real
or kernel virtual memory. In SVR4, the same binary system code can run divergent workloads
and immediately adapt its data structures to changing system demands. This policy imposes the
lea.st deman~ds on low-end systems, yet allows expansion to high-end systems with the same
~ot-tware. tne AIX approach to memory management is less flexible, and requi.res larger kernel
page tables than SVR4. To attempt to get system scalability, AIX preallocates the maximum sizes
of system data structures in kernel virtual memory, then uses kernel paging to save memory.
The SVR4 kernel uses the virtual memory hardware to good advantage in providing a common
memory pool for program text and data as well as file information. It does so without requiring
special hardware support or large kernel virtual address spaces, which makes very effective use of
physical memory. The flexibility of this approach is that both the kernel and the application can
dynamically map files into their address spaces and use only as much space as is needed. AIX is
likely optimized for the virtual memory hardware of the 386, PCgRT, and 370/XA. It is not clear
how portable it will be to other architectures. Machines with limited kernel virtual address space,
such as the VAX or 68000, may suffer substantial performance penalties.
SVR4 has improved the organization of system data structures to support large numbers of users
~d larger applications and services. For example, linear searches of data structures have been
eliminated. Applications can now have an arbitrary number of simultaneous open files. AIX claims
similar improvements, but has no advantage in this area.

3.2 Virtual Memory
SVR4.0 uses a virtual memory architecture based on the SunOS Operating System. It is
considered the best virtual memory architecture available today. It implements a "single-level
store," which lets processes access files and devices as ranges of bytes within the virtual address
space of the process. Programs can now access and share data by mapping files or .parts of files
into their address spaces. The common memory pool provides a consistent view of data, whether
accessed by fileor memory operations. Maximum flexibility is provided by permitting page-level
operations. There are no arbitrary limitations on the portion of the file to be mapped or on the
number of files that can be mapped. The AIX VM is older technology, and deals only with
segments and whole files. AIX limits you to 10 segments of 256 megabytes each. Consistency is
provided only when it is used with the AIX file system.
In SVR4, swap space is more flexible and scalable, because paging is done to files instead of to
preallocated swap areas. The swap areas are managed to provide proper resource control by
notifying programs of space constraints when memory is allocated instead of arbitrarily terminating
a process when space is exhausted. AIX uses preallocated swap areas and "overbooks", which
can cause arbitrary process termination when the system runs out of memory.
The SVR4 virtual memory mechanism allows libraries and other code to be shared among

.Phro.gra~, ,s. The ability_to map !ibrayi. "es at arbitrary addresses allows programs complete control oft err aaaress spaces. Shared libraries are marked with version numbers that allow old binaries to
run on new systems ensuring maximum compatibility between different releases. It is not clear
how AIX or OSF/1 will address this issue.

AUUGN 35 Vol 11 No 3

OSF/1 may replace the AIX virtual memory manager with the Mach memory management
implementation developed at Carnegie-Mellon University, which is an improvement over the AIX
implementation, because it is more portable and flexible.

3.3 File System
SVR4.0 offers the vnodes architecture, which supports multiple file system types. SVR4.0 will
ship with seven different file system types, including UNIX System V, UFS - which is based on
the BSD Fast File System, and ’/proc’, which offers a unique interface to running processes.
Supporting multiple file systems .allows system vendors and users to choose the best file system
for their application environment. Since different file systems make different tradeoffs, like
performance versus flexibility, having a choice can be very important. Such a capability also
allows the development of application specific file systems, for example, a UNIX file system
which can read and write MS-DOS diskettes.
OSF says that OSF/1 will have a file switch and will support UNIX System V and BSD file
systems, plus a file system from AIX that provides database journaling. It is not clear whether
AIX will support the BSD file system as well as it supports the AIX file system.

3.4 Real-Time Support:
The SVR4 kernel has been substantially improved to increase its responsiveness for real-time
applications. Real-time support makes System V a better platform for time or event critical tasks
found in applications such as transaction processing or factory automation, where the system must
be determinably responsive to high priority needs.

SVR4.0 provides many more kemel preemption points than previous UNIX System V releases to
accomplish the same task. The insertion of many preemption points permits lower interrupt latency
without introducing the overhead of locking for non-real-time environments. OSF/1 is stated to
have a preemptive kernel to increase response time predictability. The AIX preemptive kernel is an
attempt to reduce interrupt latency. But because AIX requires locks to ensure system integrity, an
interrupt can still be delayed by kernel code that holds a lock.

SVR4 supports high-resolution timing to the granularity of nanoseconds. It also provides a new
real-time scheduler with dynamically-settable parameters, to allow high-priority processes to
preempt lower priority or interactive programs. OSF/1 will also have a real-time scheduler.
Generally it appears that both operating systems will need additional work to become full-fledged
"real-time" operating systems.

3.5 Internationalization
Both SVR4.0 and OSF/1 will support the intemationalization capabilities specified in ANSI X3J 11
C and the X?Open Portability Guide Issue 3. Beyond that, SVR4.0 provides some, but not all, of
the capabilities of the Multi-National Language Supplement (MNLS) Release 3.2. System V
already supports a number of European languages such as German, French, Italian etc. In
addition, the UNIX International Internationalization work group is developing requirements for
supporting Asian languages. Please refer to the UNIX International paper."Work Group Update"
for more details.

Vol 11 No 3 36 AUUGN

4. Multiprocessor Support
OSF is currently evaluating whether to support the Mach multiprocessing kernel. Combining
Mach with AIX, while not impossible, is a difficult task at best and will clearly increase the amount
of time required to stabilize the fast OSF/1 release. Unfortunately, the result is adding an
advanced capability to old functionality.
Future System V multiprocessing, as defined by the UNIX International Multiprocessing work
group, will be implemented on top of the advanced foundation and functionality provided by
SVR4. The work group, which contains over 30 members, including representatives from
Carnegie-Mellon’s Mach group, is near fmalization of a System V multiprocessing specification.
This specification includes the capability to provide symmetric multiprocessing with significant
Mach-like constructs. Please refer to the UNIX International paper "Work Group Update" for
more details. It is also important to note that UNIX System V has a long history of multi-
processor ports, and AIX has no such history.

5. Security
Security requirements, while formalized by the government market, are critical for the commercial
market as well. Today, AT&T’s Multi-Level Security (MLS) product, equivalent to a B 1 rating, is
available on UNIX System V Release 3.2. UNIX International and USO are committed to
advancing security functionality, for both comn~rcial and government markets, in all future
System V releases. UNIX International and USO are currently finalizing a furore System V release
which will support a B2 or higher security rating. It is not clear how soon OSF/1 will provide a
B2 level.

6. Networking Support
SVR.4 continues to use and enhance the STREAMS !/O system introduced in UNIX System V
Release 3. The Transport Interface, discussed earlier, provides protocol and network independent
se~,ices at the Transport Layer of the OSI reference model. Having such modular interfaces
allows System V to transparently support all major networking systems such as:

1) The worldwide UNIX TCP/IP network.
2) .Proprietary networks such as IBM SNA.
3) OSI networks.

Applications can be developed without concern for the underl~,ing network and will be compatible
with whatever network a user chooses. This allows a smooth u’ansition path from existing
networks to the ISO protocol suite. OSF/1 will provide TCPilP on the BSD sockets interface, but
STREAMS support has not been announced. Without STREAMS, it is not clear how easy it will
be for OSF/1 to support existing applications and provide a smooth transition to OSI.

7. Conclusion
UNIX System V Release 4 is real and being ported to dozens of vendors’ systems today. It
maintains compatibility with over twelve thousand existing applications and provides a solid
foundation from which to address future market requirements. SVR4 advances System V’s open
systems leadership by creating a vendor-neutral software platform that end-users can use to mix
and match software and hardware within a virtually seamless operating environment. We believe
that no other system can or will offer such complete capability.

AUUGN 37 Vol 11 No 3

Optimizing the BSFS File System

Steven Bodnar
steve@ labtam.oz.au*

Stephen Prince~
sp@ labtam.oz.au

Labtam Information Systems Pty Ltd
Braeside, Victoria 3195

ABSTRACT

The B5FS file system is a reimplementation of the Berkeley Fast file system
technology within the framework of the System V file system switch, whilst retaining
System V.3 file system semantics [Prince88a].

The following paper describes some macroinefficiencies which have been iso-
lated in the B5FS implementation, that cause cache and overall performance to be less
than its System V counterpart, which is refered to in this paper as the $5 file system.
That is, we describe the issues which needed to be addressed, in order for users not to
feel penalized when working with small files on the B5FS file system.

1. Background

Following the initial development of the B5FS file system, it was discovered that a hybrid system
containing both B5FS and System V file systems showed that B5FS while exhibiting the same perfor-
mance characteristics as a Berkeley file system was noticiably slower when file sizes were small enough
to be contained in the system’s buffer cache.

This paper discribes the issues which needed to be addressed, in order for users not to feel penal-
ized when working with small files on the B5FS.

2. Methodology

All tests were performed on newly made file systems. This paper does not show the System V file
system inadequacies in handling a greatly used file system.

The effect on performance as a result of changes to B5FS were measured using the fstime portion
of the MUSBUS 5.2 benchmarking suite [McDone87a] with zero interactive users~t, fstime measures
the rate at which user programs can transfer data to or from a file without performing any processing on
it. The measurements were run three times in order to improve their accuracy. Tabular representation of
the results are supplied in the appendix, variance figures are not supplied.

The remaining tests were carded out on a 33 MHz 80486 running System V 3.2. The drive was a
Wren 5 with synchronous SCSI. The System V and B5FS file system tests were run together with the
same hardware and the same kemel.

* Steven Bodnar is currently employed by Digital Ideas Pty Ltd.
]" Stephen Prince is currently employed by Chancery Lane Computer Services Pty. Ltd.
~: whilst this is not really a tree indication of file system performance, it was deemed necessary in order to provide a
consistent test environment.

Vol 11 No 3 38 AUUGN

Problems with comparing the performance of the System V file system with the Berkeley file .sys-
tem is that both are not available on most hardware. Tuning parameters cannot be easily mapped
between System V and Berkeley operating systems. Other optimizations in the Berkeley operation sys-
tem might colour the file system’s throughput°

With the B5FS filesystem, the one System V operating system is used. Inode caching, symbolic
links and large directory names are not supported, just the standard System V directory structure. Built
into the B5FS file system was a method of switching on or off any of the optimizations using additional
arguments to tunefs. This increased the accuracy of the comparisons.

The cache for System V was 400 one kilobyte buffers and the cache for the B5FS filesystem was
50 eight kilobyte buffers. The number of one, two and four kilobyte buffers was kept small enough to
have no effect but large enough not to cause any performance problems. The one, two and four kilobyte
buffers are not as used as often because they are copied directly to eight kilobyte buffers when they
need to grow.

3. Cached File Performance

The initial release of B5FS gave good performance for large file sizes and a consistent bandwidth
for a range of file sizes. Unfortunately for file sizes small enough to reside entirely in the buffer cache
the bandwidth was still below what was experienced under an $5 file system, as measured on the hybrid
system.

Closer examination of the $5 and B5FS implementations have revealed some further optimizations
which have been applied to improve performance.

3.1o Fragment handling oprimization
Analysis found that when writing small files a fragment at a time the performance of B5FS file

system is much less than that of the System V filesystem. With.the Berkeley Fast File System being
added to System V where the buffer size is 1K, this is the norm rather than the exeption. BSDg sys-
tems always try writing in an optimal blocksize rather than the fragment size.

The reason for the poor performance is as follows. To reduce fragmentation, incomplete blocks
(fragments) will be allocated from already partially allocated blocks to save space. This could be a
problem when any of the two partial blocks want to grow, but is solved by relocating the growing frag-
ment to a full block. For performance not to suffer the implicite assumption is that the partial block is at
the end of the file and is only grown after the file is reopened. This assumption does not hold when ill-
behaved programs want to write less than a block size. Assuming the program writes in fragments there
is constant fragment allocation and reallocation throughout the growing of the file. These ill-behaved
programs are assumend to be rare on a Berkeley system but on a System V system it is the norm. For a
discussion on the fragment allocation and reallocation policies refer to [McKusi84a]

The first attempt was to give every fragment a new block. Speed improved dramatically but total
file system fragmentation was unacceptable. The solution was on the close of a file to perform the nor-
mal fragment relocation policy on the last block if it was a fragment. One extra benefit was that frag-
ment allocation is ignored when the file requires indirect blocks to represent it (after about the first 96
kilobytes in size on an 8k/lk filesystem), so for writing large files a fragment at a time, no fragment re-
allocation would ever be necessary.

The results of adding the Fragmentation optimization can be seen in Figure 1 as the second lowest
line, above the fully unoptimized B5FS line.

3.2. Buffer Reallocation Optimization
A change between 4.2 BSD:~ and 4.3 BSD releases was to reduce the amount of file system disk

"~ The BSD operating system comes from the Berkeley Standard Distribution of unix, distributed by the University of
California at Berkeley.
:~ The 4.2 BSD and 4.3 BSD software are release 4.2 and 4.3 of the Berkeley Standard Distribution of unix.

AUUGN 39 Vol 11 No 3

Read 3000 -
Throughput

(in Kbytes/sec) 2000 -

0
0

I I I I I
200 400 600 800 1000

File Size (in Kbytes)

Write 2000 -
Throughput

(in Kbytes/sec) 1000 -

0- i I I 1 I
0 200 400 600 800 1000

File Size (in Kbytes)

Figure 1: Incrementally adding optimizations. In all cases thereis no
degradation. Note that all data used a Write-Through policy. The lowest line,
apart from the cross-over at the first point, is the totally unoptimized B5FS.
The next line is with the Fragment optimization added, then the Buffer
Reallocation optimization and finally the top line is with the Buffer Clearing
optimization added. Refer to Table 1 in the Appendix for actual values.

block copying of data to successively larger and larger fragments until it finally grows to a full sized
block. This is the result of a program slowly growing files using writes of 1024 bytes or less. The
change was to recognize the first time that the file system is forced to copy a growing fragment and
place it at the beginning of a full sized block. This optimization was applied to disk blocks but not to
the buffer cache. The BSD system allocated system buffers that were only just large enough to hold the
required portion of the block, and reallocate a bufl’er of this size as the block grows. This results~ in a
lot of block copying and hash queue searches every time the buffer is grown. An optimization to
improve the write "time" efficiency, (as opposed to the existing ."space" efficiency algorithm) is to
recognize the first attempt to grow a buffer from the minimum class size to the next available size, and
force it to allocate the new buffer as the maximum class size available.

The results of adding the Buffer Reallocation optimization can be seen in Figure 1 as the second
highest line, just below the fully optimized B5FS line.

~" according to the interpretation of results from profiler(1M) and bstat(1M). Bstat(1M) is a tool developed for collecting
data related to buffer cache activity.

Vol 11 No 3 40 AUUGN

3.3. Buffer Clearing Optimization
A kernel profile of intense I/O on a B5FS file system, where all activity would remain in the

buffer cache, we found that the most active procedure was iomove0, the copy from user space to kernel
space. Second in line was bzero0. If you write 8k, an 8k buffer would be allocated, cleared, then
overwritten with the 8k of user data. In this senario the limiting factor should only be memory to
memory copy speeds. To further improve the cached performance we do not clear the buffer when reads
and writes of valid data occur, only when reading from "a file-hole" or when dealing with directories
and other important structures.

The results of finally adding the Buffer Clearing optimization can be seen in Figure 1 as the
highest line.

3.4. Cache Write Policy

The purpose of buffer caching is to improve the average access time of disk blocks by keeping the
most frequently used items in a small, fast, cache memory. The write policy determines when a
modification is presented to s~ondary storage. Writes may always go directly to secondary storage
(asynchronously) when using a write-through policy. Alternatively, the write may go to the cache to be
written at some time later, usually when the buffer where the block is located is about to be replaced,
using the write-back policy. A Write-back policy is motivated by the expectation that the block will be
modified or accessed several times before it has to be written. Write-back, or delayed-write as it is
referred to within the UNIX’I- kernel, is also desirable in file system caches because many files are tern-

’ porary and may never have to be written [Thomps89a].

One of the major differences between a Berkeley file system and a System V file system, is that
the buffer cache write policies are basically write-through and write-back respectively. In the Berkeley
file system, if the write is a full block then it is immediately written asynchronously to disk, while only
partial blocks are written with a delayed write. In the case of an System V file system the disk writes
are via a delayed write.

3.4.1. Effects on Read Operations

When B5FS (as well as the Berkeley Fast File System) attempts to read a buffer that is currently
being written to disk, it will block the reading process until it is available. Given a common senerio of
one process writing a file and another reading the same file, a write-through strategy could result in the
reader process waiting for the disk blocks to be asynchronously written. This can become the predom-
inate bottleneck when the disk is too slow to service all the write requests by the time the reads come
along. This would be seen as a read throughput similiar to that of reading directly from the disk.
Although Figure 2 does not show this effect it has been seen on machines with slower disks.

A draw back withthe write-back strategy is the cache can quickly fill with dirty buffers and then
the system is forced to write them out syncronously. At this point a reader could also block waiting for
the write to finish. This effect is shown in Figure 2 where the file starts to fill the cache and the read
performance for write-back is below that of write-through, about a 300 kilobyte file in a 400 kilobyte
cache. As this is a test that is repeated three times we can assume that the cache mainly consists of dirty
blocks.

Finally the file can get so large that the reads never come across a block that is being written, as
in the case of files much larger than the cache. Hence the read performance for both policies is equal,
as shown in Figure 2.

3.4.2. Effects on Write Operations

The first difference we would expect to see is writes of files, that will fit in a cache, will be faster
with write-back than with a write-through caching policy. The speed up is small but significant as the
overhead of processing the start and finish of an asynchronous write is not negligible.qt There is a clear

UNIX is a trademark of Bell Laboratories.
searching hash queues in the buffer pool, driver processing overhead.

AUUGN 41 Vol 11 No 3

000

Read 3000 -
Throughput

(in Kbytes/sec) 2000-

~’~;

Write-Through
Wrlto-Back

......... System V

I I I I i
200 400 600 800 1000

File Size (in Kbytes)

Write 2000 -
Throughput

(in Kbytes/sec) 1000-

¯.~.. Wdte-Th~ugh
,o ¯

"k\ .4"’ ’" "-I-. Write-Back

..~.~,, ~, ~., ~, ~ \
.. . ¯ System V

¯

0 200 400 600 800 1000
File Size (in Kbytes)

Figure 2: Comparison with System V and the fully optimized B5FS, with
write-back and write-through cache policies. Refer to Table 2 in the
Appendix for actual values.

example in Figure 2 with a 100 kilobyte file in a 400 kilobyte cache.

The drawback with the write-back strategy is when the file is much larger than the cache or the
number of writes from other processes makes most of the buffers dirty. With the write-back case flush-
ing dirty buffers to disk will not occur until the buffer is full, or the system decides to do a sync(2),
then a large number of buffers will be suddenly queued. This is opposed to the write-through case where
there is a more even distribution of writes to the disk. The overall effect is that write-back could dramat-
ically increase the write times by first letting the disk be idle then swamping the disk with asyncronous
writes. This results in a crossover between the write-back and write-through plots, as shown in Figure 2.

4. Conclusion

A test was performed first with no optimizations turned on in the B5 filesystem. Optimizations
where then incrementally added one by one. First the Fragment optimization was enabled then the
Buffer Reallocation optimization and finally the Buffer Clearing optimization. The results in Figure 1
show that there is an increase in performance for each addition of the optimizations. Although the
optimizations yielded small but significant gains, they were more pronounced on much slower systems
such as the National Semiconductor NS32332 series.

The choice of whether to have a write-through policy or a write-back policy is not clear and
would greatly depend on the pattern of reads and writes. Two clear conditions emerge: a write-back
cache is good if the traffic is mainly writes followed by reads on files small enough not to fill the cache
(as would normally occur on/tmp) and a write-through policy is better if the traffic is mainly writes of
large files in comparison to the cache with little or no probability of reading the file straight after, or

Vol 11 No 3 42 AUUGN

even with just heavy multi-user use.
When B5FS is distributed all optimizations except Write-Back caching is enabled by default. Only

in specific circumstances do we actually use the Write-Back policy of caching.

5. Further Research
Further work needs to be done on the negative sides of write-back and write-through strategies

before one clearly out performs the other under all conditions. To improve the read after write problem
the restriction to block on a write before reading the buffer could be lifted but work would have to be
done on the consequences. To improve the swamping of the disk on writes with the write-back cache a
more intelligent bdflush would need to be developed to take into account how many free buffers are left,
possibly using high/low water marks on the number of buffers, disk bandwidth and even develope
heuristics about the current process to determine when and how many buffers should be flushed to disk
rather than when the buffer cache fills.

If you look at figure 1 or 2 the write-through strategy produces a dip in performance at about the
100 Kilobyte mark. It has been speculated that the busy-write buffers are the cause of this and could be
due to a fault in our own buffer management implementation. More work is needed to explain and pos-
sibly correct this phenomenum.

6. Acknowledgements

We would like to thank Michael Podhorodecki and Russell McDonnel for allowing us to do this
work and for supplying many ideas. Others who made helpful comments on the paper include Mark
Tracey. We thank them all.

References

Prince88a.
Stephen Prince, "Porting the Berkeley Fast File System to System V," AUUGN, vol. 9, no. 6,
AUUG Inc, December 1988.

McDone87a.
Ken J. McDonell, "Taking Performance Evaluation Out Of The "Stone" Age," USENIX Summer
Conference Proceedings, Phoenix, Arizona, June 1987.

McKusi84a.
Marshall Kirk McKusick, William N. Joy, Samuel J. Leffer, and Robert S. Fabry, "A Fast File
System for UNIX," in Berkeley 4.3 BSD SMM, p. 5, University of California, Berkeley, CA
94720, Febuary 18, 1984.

Thomps89a.
James G. Thompson and Alan Jay Smith, "Efficient (Stack) Algorithms for Analysis of Write-
Back and Sector Memories," TOCS, vol. 7, no. 1, p. 78, ACM, February 1989.

AUUGN 43 Vol 11 No 3

APPENDIX

Write Throughput

File size None Fragment Fragment Fragment
Buf Alloc Buf Alloc

Buf Clear
(Kbytes) (Kbytes/sec) (Kbytes/sec) (Kbytes/sec) (Kbytes/sec)

50 1402.1 1250.0 1515.2 1579.3
100 862.1 1010.1 1010.1 1010.1
200 1263.2 1314.0 1415.1 1445.8
300 1461.0 1509.9 1595.7 1688.6
400 1564.5 1568.6 1678.3 1775.2
500 1634.0 1730.1 1730.1 1863.4-
600 735.3 745.1 750.0 770.9
700 810.2 821.0 821.0 851.6
800 870.6 887.0 887.3 924.9
900 936.5 942.8 953.4 990.1

1000 990.1 995.7 1006.0 1050.0

Read Throughput

File size None Fragment Fragment Fragment
Buf Alloc Buf Alloc

Buf Clear
(Kbytes) (Kbytes/sec) (Kbytes/sec) (Kbytes/sec) (Kbytes/sec)

50 4545.4 4545.4 4545.4 4545.4
100 4479.6 4545.4 4545.4 4545.4
200 4000.0 4000.0 4000.0 4000.0
300 3896.1 3896.1 3896.1 3896.1
400 733.5 735.8 731.7 736.3
500 729.3 730.7 733.5 731.4
600 742.3 743.8 741.1 744.1
700 737.1 738.4 740.8 738.9
800 747.2 745.1 747.0 745.8
900 732.5 730.7 733.1 735.1

1000 738.7 740.0 742.0 741.3

Table 1: Incrementally adding optimizations.

Vol 11 No 3 44 AUUGN

Write Throughput

File size Write-through Write-back System V
(Kbytes) (Kbytes/sec) (Kbytes/sec) (Kbytes/sec)

50 1579.3 2380.9 1503.7
100 1010.1 1595.8 2190.0
200 1445.8 2010.6 2716.4
300 1688.6 855.2 2218.2
400 1775.2 1523.3 152.6
500 1863.4 1204.4 177.4
600 770.9 935.4 199.6
700 851.6 766.0 202.2
800 924.9 935.7 158.5
900 990.1 928.1 166.8

1000 1050.0 836.3 172.6

Read Throughput

File size Write-through Write-back System V
(Kbytes) (Kbytes/sec) (Kbytes/sec) (Kbytes/sec)

50 4545.4 4545.4 4545.4
100 4545.4 4347.8 4479.6
200 4000.0 4000.0 4317.0
300 3896.1 1011.2 4186.2
400 736.3 1441.2 233.4
500 731.4 930.1 171.0
600 744.1 725.8 174.0
700 738.9 724.7 171.4
800 745.8 733.3 174.7
900 735.1 732.1 175.9

1000 741.3 740.0 176.1

Table 2: Comparison with System V and the fully optimized
B5FS, with write-back and write-through cache policies.

AUUGN 45 Vol 11 No 3

Open Buzzwords and NPAs

Greg Rose
Stephen Frede

Softway Pty Ltd

In recent times the computer industry has been moving towards increasingly "open"
specifications. This has been evident in computer architectures, bus structures, and
particularly operating systems and networks. The last bastion to fall appears to be that
of trademarks, terminology and acronyms. This paper explores current efforts to bring
these facets of the computer industry into the open, where a user friendly standards
oriented approach can yield productivity gains in the standardisation of de Jure
terminology rather than the current de facto usage.

1. Open Buzzwords

Regrettably, in the past, the computer industry has abounded with jargon terms, also known as buzzwords, which
have generally been associated with particular hardware of software vendors. This practice must stop. Users are
beginning to demand, in conjunction with Open Systems, the use of Open Buzzwords. That is, specific
terminology for use in the computer industry which is of a non-proprietary nature. By far the most important
enabler for this new technology is the NPA.

2. NPAs

An NPA is a vital part of the Opening of Buzzwords. An NPA is a Non-Proprietary Acronym, as opposed to a
TLA1 or Three Letter Acronym. TLAs appear to have been created by IBM2 with such momentous successes
as AMD3 (Air Movement Device, more commonly known as a FAN, which is not an acronym).

TLAs have been such momentous buzzword enablers that other computer manufacturers have followed the de
facto standard set thereby. Some examples which come to mind are CDC4, ICL5, CCI6, and of course

DEC7.

Of course, there have been holdouts from this de facto standard. AT&T8 not only added a fourth character, but
it isn’t even alphanumeric. DG9 continued this divergence from their arch rivals by having a more ergonomic,
shorter acronym; regrettably (for them) the market placehas moved in the opposite direction, towards acronyms
like WYSIWYG (What You See Is What You Get), self-evidently much more user friendly. This is opposed to
the application itself, which is more likely to be WYSINWYW (... Not What You Want).

1,

2.
3
4
5
6
7
8

’9

TLA is perceived to be a trademark of International Business Machines
IBM is perceived to be a trademark of International Business Machines
AMD is perceived to be a trademark of Intemational Business Machines
CDC is perceived to be a trademark of Control Data Corporation
ICL is perceived to be a trademark of Intemation Computers Limited
CCI is perceived to be a trademark of Computer Consoles Incorporated
DEC is perceived to be a trademark of Digital Equipment Corporation
AT&T is perceived to be a trademark of American Telephone and Telegraph
DG is perceived to be a trademark of Data General

Vol 11 No 3 46 AUUGN

ETA10 are (were) active by having a name which emulates a TLA without the drawback of needing an
explanation for it.

In the early 1980’s Zilog (not themselves an acronym) attempted to establish proprietary status for the SCA "Z",
however courts ruled that degenerate acronyms are really just letters, and as such could not be trademarked. This
was the fh’st shot in the war for Buzzword Openness, establishing forever that there were buzzwords which could
never be proprietary.

The fight against the de facto TLA standard has been entered by 11, but unfortunately they are not truly
advocates of NPAs. A court ruling is expected soon in the suit brought by 12 alleging restraint of trade.

There is a schism between the two major factions attempting to establish de facto standards in the process of
opening buzzwords. AI (Acronyms International) are in favour of pronouncable acronyms. Their name is, itself, a
cry for assistance in this effort. Opposing them are the OSF (Overuse of Sibilants Forbidding pronunciation),
who validly claim that of the 17576 possible TLAs, approximately 16473 are in use and only a small proportion
of the others can be pronounced. Regrettably, there is internal dissent in the OSF regarding just how many are
pronouncable, with the Australians asserting that all of them are13, including OSF, while the European
members believe that there are many more than 17576 in the first place.

The various Asian manufacturers, particularly the Japanese, seem to be remaining neutral in this conflict, since
they are not worded about the possibility of running out of product descriptions.

10. ETA is perceived to be a trademark of Control Data Corporation
11. is perceived to be a trademark of Invisible Acronyms Backspace Backspace Corporation
12. is perceived to be a trademark of Nonproprietary Nonvisible Acronyms Backspace Backspace Backspace Limited
13. Aussies have been seen to pronounce things like WYSIAYG (What You See Is All You Get), and even command

names like fsck(lm).

AUUGN 47 Vol 11 No 3

Bulgeria In Turmoil

Greg Rose

Softway Pty Ltd

It took me some time to understand the reaction I was seeing in the face of the Bulgarian Computer
Technologists when we discussed possible projects. Translated into words, it went "This sounds exciting; oh yes, I
am allowed to be excited now..."

Bulgaria has been a controlled country for most of its history, and a burning hatred for the Turks, who held
control for five centuries, is the most obvious result. The Russians liberated Bulgaria from the Turks and left it free
for about 50 years, until first Nazi Germany asserted some control; and then communist rule took over. Strangely,
the hatred for Communism is to some extent divorced from the Russians who brought it.

Despite the definite hate of Communism, the first free elections for 45 years returned the Communist Party
with a slim majority, and both international observers and the Bulgarians agree that the election process was fair.
However, the Bulgarians feel that the campaigning was definitely not, with the Communist Party exercising too
much control over the media. There has been one unexpected disaster resulting from this election - Bulgaria, alone
among the recently freed satellite states, is still "a communist country" and as such cannot receive most forms of
foreign aid..

The Soviets are not really helping either. The week before I arrived the supply.of crude oil was cut off with
no reason given. In retrospect, it is obvious that the US SR wants to increase its export of oil in return for hard
currency, rather than give it to Bulgaria for soft currency. This is interesting because Bulgaria used to import more
than it needed, refine it, then export some of it for hard currency itself. This important source of trade cash has now
dried up as the USSR will now export only as much as it thinks Bulgaria needs, and starting next year all trade
between the old Communist countries will be conducted only in hard currencies.

[Note added during revision: I find the current middle east crisis, coming only three weeks after the Soviet
Union plays games like this, to be highly suspicious - rising oil prices are likely to help the USSR significantly.l

Bulgaria had almost all of the Eastern Bloc computer market, for PC’s, disk drives, IBM compatible
mainframes and DEC compatible minis. About 15 years ago they succeeded in driving out of business the other East
German and Russian manufacturers. This allowed them to begin working the monopoly the easy way, letting quality
slide for example, and the political changes which are opening the purchasing options of the USSR are unmitigated
disaster for the Bulgarian computer industry of today. Attempts to address these issues a few years ago were squashed
as "unnecessary".

I was invited, through a contact in the Supercomputer Industry in the United States, to come to Bulgaria and
talk to people about the growing importance of Unix, and to bring a personal view of the standards efforts and
political machinations. The people there are so eager to read about changes in the Western computer industry that
they believe everything they read, whether it is technical specifications, new benchmark figures, or downright
marketing hype.

I arrived on Balkan Airways about three hours late, which is fairly normal for flights over Europe with its
congested airways. Heathrow is not a fun place when two out of every three flights are delayed. The aircraft was a
Tupelov TU-143, somewhat like a Boeing 727. In the seat pocket was a safety card for a TU-133 (DC9 like) - I
think I was the only person who noticed, although all I saw were wrong.

I was met at the airport by Trayan Velitchkov, a Senior of Research at the Bulgarian Academy of Sciences.
He started his car, a 13 year old Lada (Fiat 1500 clone) with 230,000km on it, and took me to a "hotel", which was
really a private home with a couple of fiats attached. The Lada had no windscreen wipers (I later found out that it is
standard practice to remove the blades and lock them in the car because they are in short supply), and it wouldn’t idle
at all. Trayan was expert at revving the engine while braking with his left foot, or heel-and-toeing to keep it going.

Vol 11 No 3 48 AUUGN

This was also the only time I saw his car start itself. I became very proficient at pushing during the next 6 days. I
arrived on Monday and on Saturday the Lada died.

Trayan and another researcher, Dimitri, were my hosts during the trip. The owner of the "hotel", Nadia, was
my surrogate mother. Dimitri’s car wouldn’t start either, although I think this was partly because of the lack of use
during the petrol shortage - he certainly knew nothing about clutch starring it, and I got all my experience driving
Russian cars by doing this for him.

Sofia is Bulgaria’s capital, and has less than 1 million of the 9 million people in the country. Other cities,
which I didn’t see, are Plovdiv, Varna (on the shore of the Black Sea) and Stara Zagora (Stara means old). Most of
the living is high-rise, huge buildings with huge advertisements on the featureless side walls.

Most buildings I saw were more or less in a state of disrepair, although some were very elegant stone and
spacious architecture. Except for agriculture, no effort seemed to go into gardening. I didn’t see any mown grass
anywhere on the trip.

Just about everyone I met, almost all technical people, programmers or hardware designers, asked about how
to migrate to Australia, or just about anywhere. The Turkish occupation and communist rule have left them with a
very defeatist attitude. To be fair, it is hard to see how Bulgaria will get out of the mess it is in, but most people
don’t want to try.

The defeatist attitude is manifested, technologically, as a lack of confidence to do design. The Bulgarians have
very successfully cloned the IBM 370 series, complete with channels, comms devices, and disk drives, as well as the
DEC VAX 11/750 (although faster), and PC’s. They also have Floadng Point Systems compatible array processors
at 18Mflops each, and are designing a workstation (for the Eastern Block) marrying a 386 PC and an array processor.
While the implementations are good, fast and innovative, the design was all done elsewhere, and the Bulgarians are
reluctant to do anything from scratch.

In software, too, they are used to doing patches and maintenance, but not large projects or innovative software
design. The academies seem to support the old notion that software is just an add-on, to make the hardware sit up.

Currently, the only experience any of them have with Unix has been to get it running on the 370 compatible
machines, and then move that to the VAX. They started with a version of Amdahl’s UTS, which they freely admit
was stolen. Just how it was stolen, nobody knows, as "procurement" was one of the questions they didn’t ask. It
will be hard for them to use this, though, as Bulgaria is now a signatory to the Berne Convention for intellectual
property. The hard currency for buying a Unix licence from AT&T is almost certainly not available in the near
future, so they are looking hard at the Free Software Foundation and Berkeley’s new release.

AUUGN 49 Vol 11 No 3

USENIX Association News For AUUG Members
Donnalyn Frey

donnalyn@frey.com

Frey Communications

Donnalyn is the USENIX Association Press Liaison.
She provides members of the press, USENIX
Association members, and AUUG members with
information on the activities of the USENIX
Association.

1. The 1990 Summer USENIX
Association Conference

Dennis Ritchie, of AT&T Bell Laboratories and co-author
of the UNIX operating system, presented the keynote
address at the USENIX Association 1990 Summer
Technical Conference and Exhibition on June 11 - 15 at
the Anaheim Marriott Hotel and Convention Center in
Anaheim, California. He reflected on "What Happens
When Your Kid Turns 21?", reported here by Marc
Donner.

OPEC vs. the Medellin Cartel

Dennis Ritchie, looking distinguished in a rarely worn
suit and tie, delivered the USENIX Conference and
Exhibition keynote address entitled "What Happens When
Your Kid Turns 21?" on Wednesday, June 13. This was
Dr. Ritchie’s first conference address in over three years.
[Has it really been that long since he spoke at
A UUG’89? -Ed.] Departing from conventional expository
style, Dr. Ritchie’s keynote was in the form of a
telephone interview.

Ritchie began by acknowledging the influence of Multics,
a project on which both he and Ken Thompson had
participated in the 1960s. Features of UNIX inspired by
Multics include the tree-structured file system and the
concept of the shell as a separate program. He mentioned
that he is a bystander in UNIX and C today.

Ritchie answered questions on the current state of UNIX
and C, particularly recent standardization efforts. He noted
that the ANSI C standard seems to be a good standard,
having clarified and updated many items without breaking
them. In addition, he observed that while the core of the
POSIX effort seemed sound, he was uncomfortable with
the lack of coherent network facilities in the proposed
standard and he found Real-Time Extensions work to be
troublesome. In general, he mentioned he was ambivalent
about standards as they seem to create a tension between
standardization and innovation. The real problem, he
noted, is when is the time right to standardize?

Ritchie briefly commented on the contest between the

Open Software Foundation and UNIX International,
observing that the squabbling was harmful but, given the
development history of UNIX, inevitable. The future
movie could be called "OPEC vs. the Medellin Cartel" or
perhaps "Ninja Turtles vs. the Fantastic Four". He
mentioned that when he told Ken Thompson (on
sabbatical in Australia) about the OSF, Ken noted dryly,
"Imagine, IBM and DEC in the same room, and we did
it." Ritchie also commented that the OSF could be
criticized for not producing less than might be expected,
but agreed that the bygone days of easily available source
code were definitely better.

The imaginary interviewer on the telephone asked Ritchie
his opinion of C++. Ritchie declined to comment, citing
an "agreement with Bjame [Stroustroup] that I don’t give
lectures on C++ and he doesn’t talk about old C."

The final part of the keynote "interview" was more
philosophical in tone. Asked about his greatest
satisfaction from the UNIX work, Ritchie cited the
influence it has had in creating new companies and new
directions for old companies. The advent of inexpensive
high-performance microprocessors was brought about, in
his view, by the wide availability of portable software to
run on them, eliminating the need for an expensive
software development effort.

Asked about things he would do differently, Ritchie
responded that Ken [Thompson] always said he would
spell ’creat’ with an ’e.’ "More seriously," he said, "there
are lots of small sins." He mentioned the experiment in
declaration syntax embodied in C had probably not
succeeded. He complained that many implementations of
UNIX had become bloated, observing that the 10th
Edition, the latest version at Bell Laboratories, required
only 140K of text space. Overall, Ritchie said, "I have
very few qualms about UNIX as a whole; it has turned out
to be very adaptable."

When asked to discuss his regrets, Ritchie noted that the
opportunity to create a viable alternative to X was lost
when the Blit work was not aggressively pursued. He also
regretted that the UNIX work had not satisfied AT&T’s
need for a system to manage very large software
development, like the 5ESS system. He mentioned that
either the small-is-beautiful development model of simple,
elegant powerful tools isn’t appropriate to large system
development, or the message didn’t get across.

Asked for a message to attendees, Ritchie observed that
UNIX, as a child that has come of age, was independent
and that all he could do is let it run its own life and wish

Vol 11 No 3 50 AUUGN

This was also the only time I saw his car start itself. I became very proficient at pushing during the next 6 days. I
arrived on Monday and on Saturday the Lada died.

Trayan and another researcher, Dimitri, were my hosts during the trip. The owner of the "hotel", Nadia, was
my surrogate mother. Dimitri’s car wouldn’t start either, although I think this was partly because of the lack of use
during the petrol shortage - he certainly knew nothing about clutch starting it, and I got all my experience driving
Russian cars by doing this for him.

Sofia is Bulgaria’s capital, and has less than 1 million of the 9 million people in the country. Other cities,
which I didn’t see, are Plovdiv, Varna (on the shore of the Black Sea) and Stara Zagora (Stara means old). Most of
the living is high-rise, huge buildings with huge advertisements on the featureless side walls.

Most buildings I saw were more or less in a state of disrepair, although some were very elegant stone and
spacious architecture. Except for agriculture, no effort seemed to go into gardening. I didn’t see any mown grass
anywhere on the trip.

Just about everyone I met, almost all technical people, programmers or hardware designers, asked about how
to migrate to Australia, or just about anywhere. The Turkish occupation and communist rule have left them with a
very defeatist attitude. To be fair, it is hard to see how Bulgaria will get out of the mess it is in, but most people
don’t want to try.

The defeatist attitude is manifested, technologically, as a lack of confidence to do design. The Bulgarians have
very successfully cloned the IBM 370 series, complete with channels, comms devices, and disk drives, as well as the
DEC VAX 11/750 (although faster), and PC’s. They also have Floating Point Systems compatible array processors
at 18Mtlops each, and are designing a workstation (for the Eastern Block) marrying a 386 PC and an array processor.
While the implementations are good, fast and innovative, the design was all done elsewhere, and the Bulgarians are
reluctant to do anything from scratch.

In software, too, they are used to doing patches and maintenance, but not large projects or innovative software
design. The academies seem to support the old notion that software is just an add-on, to make the hardware sit up.

Currently, the only experience any of them have with Unix has been to get it running on the 370 compatible
machines, and then move that to the VAX. They started with a version of Amdahl’s UTS, which they freely admit
was stolen. Just how it was stolen, nobody knows, as "procurement" was one of the questions they didn’t ask. It
will be hard for them to use this, though, as Bulgaria is now a signatory to the Berne Convention for intellectual
property. The hard currency for buying a Unix licence from AT&T is almost certainly not available in the near
future, so they are looking hard at the Free Software Foundation and Berkeley’s new release.

AUUGN 49 Vol 11 No 3

USENIX Association News For AUUG Members
Donnalyn Frey

dormalyn@frey.com

Frey Communications

Donnalyn is the USENIX Association Press Liaison,
She provides members of the press, USENIX
Association members, and AUUG members with
information on the activities of the USENIX
Association.

1. The 1990 Summer USENIX
Association Conference

Dennis Ritchie, of AT&T Bell Laboratories and co-author
of the UNIX operating system, presented the keynote
address at the USENIX Association 1990 Summer
Technical Conference and Exhibition on June 11 - 15 at
the Anaheim Marriott Hotel and Convention Center in
Anaheim, California. He reflected on "What Happens
When Your Kid Turns 21?", reported here by Marc
Donner.

OPEC vs. the Medellin Cartel

Dennis Ritchie, looking distinguished in a rarely worn
suit and tie, delivered the USENIX Conference and
Exhibition keynote address entitled "What Happens When
Your Kid Turns 21?" on Wednesday, June 13. This was
Dr. Ritchie’s first conference address in over three years.
[Has it really been that long since he spoke at
A UUG’89? -Ed.] Departing from conventional expository
style, Dr. Ritchie’s keynote was in the form of a
telephone interview.

Ritchie began by acknowledging the influence of Multics,
a project on which both he and Ken Thompson had
participated in the 1960s. Features of UNIX inspired by
Multics include the tree-structured file system and the
concept of the shell as a separate program. He mentioned
that he is a bystander in UNIX and C today.

Ritchie answered questions on the current state of UNIX
and C, particularly recent standardization efforts. He noted
that the ANSI C standard seems to be a good standard,
having clarified and updated many items without breaking
them. In addition, he observed that while the core of the
POSIX effort seemed sound, he was uncomfortable with
the lack of coherent network facilities in the proposed
standard and he found Real-Time Extensions work to be
troublesome. In general, he mentioned he was ambivalent
about standards as they seem to create a tension between
standardization and innovation. The real problem, he
noted, is when is the time right to standardize?

Ritchie briefly commented on the contest between the

Open Software Foundation and UNIX International,
observing that the squabbling was harmful but, given the
development history of UNIX, inevitable. The future
movie could be called "OPEC vs. the Medellin Cartel" or
perhaps "Ninja Turtles vs. the Fantastic Four". He
mentioned that when he told Ken Thompson (on
sabbatical in Australia) about the OSF, Ken noted dryly,
"Imagine, IBM and DEC in the same room, and we did
it." Ritchie also commented that the OSF could be
criticized for not producing less than might be expected,
but agreed that the bygone days of easily available source
code were definitely better.

The imaginary interviewer on the telephone asked Ritchie
his opinion of C++. Ritchie declined to comment, citing
an "agreement with Bjame [Stroustroup] that I don’t give
lectures on C++ and he doesn’t talk about old C."

The final part of the keynote "interview" was more
philosophical in tone. Asked about his greatest
satisfaction from the UNIX work, Ritchie cited the
influence it has had in creating new companies and new
directions for old companies. The advent of inexpensive
high-performance microprocessors was brought about, in
his view, by the wide availability of portable software to
run on them, eliminating the need for an expensive
software development effort.

Asked about things he would do differently, Ritchie
responded that Ken [Thompson] always said he would
spell ’creat’ with an ’e.’ "More seriously," he said, "there
are lots of small sins." He mentioned the experiment in
declaration syntax embodied in C had probably not
succeeded. He complained that many implementations of
UNIX had become bloated, observing that the 10th
Edition, the latest version at Bell Laboratories, required
only 140K of text space. Overall, Ritchie said, "I have
very few qualms about UNIX as a whole; it has turned out
to be very adaptable."

When asked to discuss his regrets, Ritchie noted that the
opportunity to create a viable alternative to X was lost
when the Blit work was not aggressively pursued. He also
regretted that the UNIX work had not satisfied AT&T’s
need for a system to manage very large software
development, like the 5ESS system. He mentioned that
either the small-is-beautiful development model of simple,
elegant powerful tools isn’t appropriate to large system
development, or the message didn’t get across.

Asked for a message to attendees, Ritchie observed that
UNIX, as a child that has come of age, was independent
and that all he could do is let it run its own life and wish

Vol 11 No 3 50 AUUGN

it well.

With that message, the interviewer asked Ritchie what he
had been doing lately? After mentioning having written an
ANSI preprocessor for C, Ritchie proceeded to show a
videotape of an infamous practical joke that Ritchie, Rob
Pike, and magicians Penn and Teller played on their boss,
Nobel Prize winner Arno Penzias.

1.1 Technical Exhibition

The Technical Exhibition included over 63 hardware and
software companies displaying their latest technical
innovations to a high focused end user community. Some
of the participating exhibitors included IBM, Data
General, AT&T, Intergraph, Sequent, Hewlett-
Packard/Apollo, Digital Equipment Corp., Sequoia,
Amdahl, Sun Microsystems, UUNET Communications,
UNIX International, Open Software Foundation, NEXT,
and HCR Corp.

The Association again sponsored an Ethernet network,
which allowed exhibitors to display the networking
capabilities of their products. Sun Microsystems and
MIPS also used the Association’s exhibition FDDI
network.

1.2 Concurrent Sessions

A second track of the conference sessions featured informal
talks on computing subjects. The most popular session
was on computer generated music. Peter Langston of Bell
Communications Research and Mike Hawley of MIT
Media Lab showed the audience how computers make
music, and how are they being used in music production,
arrangements, and composition. The concurrent sessions
also included Andrew Hume repeating his popular talks on
regular expressions and make; Craig Hunt, of the National
Institute of Standards and Technology discussing TCP/IP
system administration; and Rob Kolstad of Sun
Microsystems moderating a system administration
problem solving panel. Neil Groundwater discussed
xxxxx [sic.I

1.3 The Terminal Room and FaceSaver at the
Conference

The USENIX Association hosted a Terminal Room with
modems for a dialout connection and a T-1 connection to
CERFnet and the Internet. Conference attendees could log
onto their home or work systems to read their mail and
contact other UNIX users directly from the conference.
The FaceSaver faces from the Anaheim conference will
again go to the UUNET FaceServer.

2. 1991 Winter Conference in Dallas,
Texas

The 1991 USENIX Association Winter conference is in
Dallas, Texas on January 21 - 25, 1991. The Summer
1990 conference had a theme which was retrospective in
nature. For this conference we once again look to the
future. The theme of the 1991 Winter conference is
"What’s next: by the year 2010, evolution or revolution?
Unix derivative or Something Else?"

Topics of papers at the conference may include:

Operating systems of the future:
Distributed Systems
Real-time Systems
Object Ori_enled Systems
Fault Tolerant Systems
Multiprocessor and Multicomputer Systems
Workstation Systems
Systems for Novel Architectures

Communications and Networking:
Protocols
Performance
Administration
Security

Applications:
Databases
Transaction Processing
Arts and Social Applications
Novel Application Areas

User Interfaces:
Human Factors
Graphics and Window Systems
Graphical User Interfaces

Programming Environments and Languages

Testing and Debugging

To request additional technical information, please contact:
Lori S. Grob
Dallas USENIX Technical Program
Chorus systemes
6, avenue Gustave Eiffel
F78182 Saint-Quentin-en-Yvelines CEDEX France
Internet: dallas-conf@ usenix.org

¯
UUCP: uunet!usenix!dallas-conf
Telephone: +33 (1) 30 57 00 22
FAX: +33 (1) 30 57 00 66

Please include your physical and electronic mail address in
all correspondence.

AUUGN 51 Vol 11 No 3

For information on attending the conference, please
contact the USENIX conference office.

3. Monograph Series

Marc Donner, of the IBM Thomas J. Watson Research
Center, has been selected as the editor of the USENIX
Association’s Monograph Series on Advanced Computing
Systems, published by the USENIX Association.

The USENIX Association intends to publish books and
monographson the general topic of computing systems.
The intended audience for these books is the community
of system designers, builders, users, and scholars. The
intent is to publish material of lasting interest and
importance, with an emphasis on actual systems. Subjects
may include design, implementation, history, and analysis
of real systems. While Marc is interested in UNIX and
UNIX-inspired systems, he does not expect to limit his
attention to such systems.

Marc would like to solicit manuscripts in two specific
areas - books in traditional styles and formats about topics
important to the systems community as well as things
new or unusual.

Among things new or unusual, Marc is interested in
exploring significant systems, code, and important
technical reports.

Significant systems - many significant systems are
documented, if at all, only in reference manuals or user
guides. Journal publications often concentrate on narrow
specific details, as is appropriate for focussed technical
audiences. What is lost is the broad description of the
design and its evolution, with consideration of the success
and failure of specific features and lessons leamed.

Code - The editor is interested in exploring the
possibilities of publishing code to read. A truism among
the programming community is that one learns to write
good programs by reading good and bad programs. Sadly,
there is little code available to read. The recent interest in
public-domain code and open systems has increased the
quantity of high-quality source code available. Many open
questions in the publication of code remain to be explored.
The conventional codex form, long accepted as appropriate
for literary works and texts, may not be the right one for
programs. Very few experiments have been made with this
form, something that I hope to encourage. The audience
for published code includes serious students of systems,
including both the undergraduate and advanced levels, and
practitioners involved with development, modification,
and analysis of actual systems.

Important technical reports - many important technical
reports, issued in small numbers by industrial
organizations, research labs, or university departments, are
not disseminated as widely as they merit. This is often
because the originating organization doesn’t have the
resources or the will to publish it more widely and
because the material is deemed inappropriate by
commercial publishers because of its narrow scope or
limited size. Many technical reports are too large for
journal publication and too small for conventional book
publication. Marc hopes to provide a means of publication
and distribution of the best of these.

To submit a manuscript or proposal for consideration for
the MonographSeries, send a copy to

Monograph Editor
USENIX Association
2560 Ninth Street, Suite 215
Berkeley, CA 94710

or send electronic mail to
monographs@ usenix.org

4. Computing Systems Music CD

The USENIX Association is pleased to present the latest
issue of Computing Systems, "A Musical Offering,"
complete with a compact disk containing all the musical
illustrations associated with the papers in this issue.
Original computer music will be presented by Peter
Langston and Mike Hawley, with accompanying papers to
discuss the music. Tim Thompson includes a paper on
Keynote, a language and extensible graphic editor for
music. Lastly, the issue includes a controversy discussion
on portability by Stuart Feldman and W. Morven
Gentleman. The authors, Peter Langston, Mike O’Dell,
editor, and Peter Salus, managing editor of Computing
Sytems, have worked for over a year on this issue. It
should be one of the most interesting issues of
Computing Systems to date.

5. 1990 USENIX Workshops

Upcoming workshops include:

Mach on October 4 - 5 at the Radisson Hotel in
Burlington, Vermont.

Large Installation Systems Administration IV
on October 17 - 19 in Colorado Springs, Colorado.

Software Development Environments in UNIX
on January 16 - 18, 1991 at Grand Kempinski Hotel in
Dallas, Texas cosponsored with the SIGMA Project of
Japan.

Vol 11 No 3 52 AUUGN

Distributed / Multiprocessor Systems
Symposium, co-sponsored with SERC of Purdue
University on March 21 - 22, 1991 in Atlanta, Georgia.

Contact the USENIX conference office for information on
these workshops.

6. Speakers Bureau

A SpeWers Bureau was recently begun to provide a forum
for people with expertise in various areas of UNIX and
advanced computing to share their knowledge with
educational groups, including high schools, colleges,
universities, and local user groups. Potential speakers
have been encouraged to contact the USENIX office for
more information.

7. Further Information on Conferences
and Workshops

If you need further information regarding USENIX
conferences or workshops, contact the USENIX
Conference Office at:

22672 Lambert Street
Suite 613
El Toro, CA 92630
USA

Email: judy@usenix.org or {uunet,ucbvax} !usenix!judy
Tel: +1 714 588 8649
FAX: +1 714 588 9706

8. Further Information about the
USENIX Association

If you would like information on membership, or would
like information on ordering USENIX publications
(proceedings,manuals, the technical journal, Computing
Systems, the Monograph Series, or the Association’s
newsletter, ;login:, please contact the USENIX
Association Executive Office at:

2560 Ninth Street
Suite 215
Berkeley, CA 94710
USA

Email: office@usenix.org
Tel: +1 415 528 8649
FAX: +1 415 548 5738.

AUUGN 53 Vol 11 No 3

AUUGN Back Issues

Here are the details of back issues of which we still hold copies. All prices are in
Australian dollars and include surface mail within Australia. For overseas surface mail
add $2 per copy and for overseas airmail add $10 per copy.

pre 1984 Vol 1-4 various $10 per copy

1984 Vol 5 Nos. 2,3,5,6 $10 per copy
Nos. 1,4 unavailable

1985 Vol 6 Nos. 2,3,4,6 $10 per copy
No. 1 unavailable

1986 Vol 7 Nos. 1,4-5,6
Nos. 2-3

$10 per copy
unavailable
(Note 2-3 and 4-5 are combined issues)

1987 Vol 8 Nos. 1-2,3-4 unavailable
Nos. 5,6 $10 per copy

1988 Vol 9 Nos. 1,2,3 $10 per copy
Nos. 4,5,6 $15 per copy

1989 Vol 10 Nos. 1-6 $15 per copy

1990 Vol 11 No. 1,2 $15 per copy

Please note that we do not accept purchase orders for back issues except from
Institutional members. Orders enclosing payment in Australian dollars should be sent
to:

AUUG Inc.
Back Issues Department
PO Box 366
Kensington NSW
Australia 2033

Vol 11 No 3 54 AUUGN

WAUG
Western Australian UNIX systems Group

PO Box 877, WEST PERTH 6005

Western Australian Unix systems Group

The Western Australian UNIX systems Group (WAUG) was formed to bring together
people with a common interest in UNIX systems. It provides a forum for exchange of
ideas and experience among its members, catering for all levels of experience, from
novice to guru, and the many UNIX and UNIX-like systems and supporting hardwares.

A major activity of the group is monthly meetings. Invited speakers address the group on
topics including new hardware, software packages and technical dissertations. After the
meeting, we gather for refreshments, and an opportunity to informally discuss any points
of interest. Formal business is kept to a minimum.

The group also produces a periodic Newsletter, YAUN (Yet Another UNIX Newsletter),
containing members contributions and extracts from various UNIX Newsletters and
extensive network news services. YAUN provides members with some of the latest news
and information available.

Meetings are held on the third Wednesday of each month at 6pm. For further information
about membership or meeting venues, please contact:

the membership secretary, Major (major@pyrmania.oz) on (09) 474 2600, or
the chariman, Glenn Huxtable (glenn@wacsvax.uwa.oz) on (09) 380 2878.

WAUG is a local chapter of the AUUG and welcomes AUUG members and visitors to
our meetings.

Glenn Huxtable,
Chairman, WAUG

AUUGN 55 Vol 11 No 3

AUUG

Membership Categories

Once again a reminder for all "members"
of AUUG to check that you are, in fact, a
member, and that you still will be for the next
two months.

There are 4 membership types, plus a
newsletter subscription, any of which might be
just right for you.

The membership categories are:

Institutional Member
Ordinary Member
Student Member

Honorary Life Member

Institutional memberships are primarily
intended for university departments, companies,
etc. This is a voting membership (one vote),
which receives two copies of the newsletter.
Institutional members can also delegate 2
representatives to attend AUUG meetings at
members rates. AUUG is also keeping track of
the licence status of institutional members. If, at
some future date, we are able to offer a software
tape distribution service, this would be available
only to institutional members, whose relevant
licences can be verified.

If your institution is not an institutional
member, isn’t it about time it became one?

Ordinary memberships are for individuals.
This is also a voting membership (one vote),
which receives a single copy of the newsletter.
A primary difference from Institutional Member-
ship is that the benefits of Ordinary Membership
apply to the named member only. That is, only
the member can obtain discounts an attendance
at AUUG meetings, etc. Sending a representa-
tive isn’t permitted.

Are you an AUUG member?

Student Memberships are for full time stu-
dents at recognised academic institutions. This
is a non voting membership which receives a
single copy of the newsletter. Otherwise the
benefits are as for Ordinary Members.

Honorary Life Membership is not a
membership you can apply for, you must be
elected to it. What’s more, you must have been
a member for at least 5 years before being
elected.

It’s also possible to subscribe to the
newsletter without being an AUUG member.
This saves you nothing financially, that is, the
subscription price is greater than the member-
ship dues. However, it might be appropriate for
libraries, etc, which simply want copies of
AUUGN to help fill their shelves, and have no
actual interest in the contents, or the association.

Subscriptions are also available to
members who have a need for more copies of
AUUGN than their membership provides.

To find out if you are currently really an
AUUG member, examine the mailing label of
this AUUGN. In the lower right comer you will
find information about your current membership
status. The first letter is your membership type
code, N for regular members, S for students, and
I for institutions. Then follows your member-
ship expiration date, in the format exp=MM/YY.
The remaining information is for internal use.

Check that your membership isn’t about to
expire (or worse, hasn’t expired already). Ask
your colleagues if they received this issue of
AUUGN, tell them that if not, it probably means
that their membership has lapsed, or perhaps,
they were never a member at all! Feel flee to
copy the membership forms, give one to every-
one that you know.

If you want to join AUUG, or renew your
membership, you will find forms in this issue of
AUUGN. Send the appropriate form (with rem-
ittance) to the address indicated on it, and your
membership will (re-)commence.

As a service to members, AUUG has
arranged to accept payments via credit card.
You can use your Bankcard (within Australia
only), or your Visa or Mastercard by simply
completing the authorisation on the application
form.

Vol 11 No 3 56 AUUGN

AUUG Incorpora ed
Application Institutional Membership
Australian UNIX" systems Users’ Group.

UNIX is a register~:~t trademark of AT&T in the USA and oth~ countries.

To apply for institutional membership of the AUUG, complete this form, and return it
with payment in Australian Dollars, or credit card authorisation, to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

¯ Foreign applicants please send a bank draft drawn
on an Australian bank, or credit card authorisation,
and remember to select either surface or air mail.

This form is valid only until 31st May, 1991

.. does hereby apply for
New/Renewal Institutional Membership of AUUG $325.00

[] International Surface Mail $ 40.00

I--I International Air Mail $120.00

Total remitted

Delete one.

AUD$
(cheque, money order, credit card)

I/We agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time
to time, and that this membership will run for 12 consecutive months commencing on the first day of the
month following that during which this application is processed.
I/We understand that I/we will receive two copies of the AUUG newsletter, and may send two
representatives to AUUG sponsored events at member rates, though I/we will have only one vote in AUUG
elections, and other ballots as required.

Date: / / Signed"

Title:
[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Administrative contact, and formal representative:

Name"

Address: ..

Phone: ...(bh)

... (ah)

Net Address: ...

Write "Unchanged" if details have not

altered and this is a renewal.

Please charge $~
Account number:

to my/our [] Bankcard I-1 Visa I-1 Mastercard.
. Expiry date" / .

Name on card:
Office use only:
Chq: bank
Date: / /
Who:

bsb
$

a/c #

Signed:

Please complete the other side.

CC type ~ V#

Member#

AUUGN 57 Vol 11 No 3

Please send newsletters to the following addresses"

Name: Phone" (bh)
Address: .. (ah)

Net Address: .. .

Name:
Address:

Phone: .. (bh)
.. (ah)

Net Address: ..

Write "unchanged" if this is a renewal, and details are not to be altered.

Please indicate which Unix licences you hold, and include copies of the title and signature pages of each, if

these have not been sent previously.

Note: Recent licences usally revoke earlier ones, please indicate only licences which are current, and indicate
any which have been revoked since your last membership form was submitted.

Note: Most binary licensees will have a System III or System V (of one variant or another) binary licence,

even if the system supplied by your vendor is based upon V7 or 4BSD. There is no such thing as a BSD
binary licence, and V7 binary licences were very rare, and expensive.

[] System V.3 source

[] System V.2 source

[] System V source

[] System III source

[] 4.2 or 4.3 BSD source

[] 4.1 BSD source

[] V7 source

[] System V.3 binary

[] System V.2 binary

[] System V binary

[] System III binary

Other (Indicate which) ...

Vol 11 No 3 58 AUUGN

AUUG incorporated
Application Ordinary, or Student, Membership

Aus.lrai an UNlX systems Users’ Group.
UNIX is a registered trademark of AT&T in the USA and other countries

To apply for membership of the AUUG, complete this form, and return it with payment in
Australian Dollars, or credit card authorisation, to:

¯ Please don’t send purchase orders -- perhaps yourAUUG Membership Secretary purchasing department will consider this form to be an
P O Box 366 invoice.
Kensington NSW 2033 ¯ Foreign applicants please send a bank draft drawn on an
Australia Australian bank, or credit card authorisation, and remember

to select either surface or air mail.

This form is valid only until 31st May, 1991

I, ... do hereby apply for

IS] Renewal/New* Membership of the AUUG $78.00

I-I Renewal/New Student Membership $45.00 (note certification on other side)

I--I International Surface Mail $20.00

International Air Mail

Total remitted

Delete one.

$60.00 (note local zone rate available)

AUD$
(cheque, money order, credit card)

I agree that this membership will be subject to the rules and by-laws of the AUUG as in force from time to
time, and that this membership will run for 12 consecutive months commencing on the first day of the month
following that during which this application is processed.

Date" / / Signed:
[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

For our mailing database - please type or print clearly:

Name: .. Phone: ...(bh)

Address: ...(~h)

Net Address"

Write "Unchanged" if details have not

altered and this is a renewal.

Please charge $

Account number:
~ to my D Bankcard D Visa [-] Mastercard.

¯ Expiry date’ /

Name on card:

Office use only:

Chq: bank

Date: / /

Who:

Signed:

bsb - a/c #
$ CC type __ V#

Member#

AUUGN 59 Vol 11 No 3

Student Member Certification (to be completed by a member of the academic staff)

I, ..,certify that

... (name)

is a full time student at ...(institution)

and is expected to graduate approximately / / .

Title: Signature:

Vol 11 No 3 60 AUUGN

AUUG Incorporated
Application for Newsletter Subscription
Australian UNIX* systems Users’ Group.

*UNIX is a registered trademark of AT&T in the USA and other countries

Non members who wish to apply for a subscription to the Australian UNIX systems User
Group Newsletter, or members who desire additional subscriptions, should complete this
form and return it to:

AUUG Membership Secretary
PO Box 366
Kensington NSW 2033
Australia

¯ Please don’t send purchase orders m perhaps your
purchasing department will consider this form to be an
invoice.
¯ Foreign al~plicants please send a bank draft drawn on an
Australian bank, or credit card authorisation, and remember
to sel~t either surface or air mail.
¯ Use multiple copies of this form if copies of AUUGN are
to be dispatched to differing addresses.

This form is valid only until 31st May, 1991

Please enter / renew my subscription for the Australian UNIX systems User Group
Newsletter, as follows:

Name: .. Phone: ...(bh)

Address: (ah)

Net Address: ...

Write "Unchanged" if address has

not altered and this is a renewal.

For each copy requested, I enclose:

I-I Subscription to AUUGN

l~l International Surface Mail

[] International Air Mail

Copies requested (to above address)

Total remitted

$ 90.00

$ 2o.0o
$ 6o.0o

AUD$
(cheque, money order, credit card)

[] Tick this box if you wish your name & address withheld from mailing lists made available to vendors.

~ to my [] Bankcard IS] Visa[] Mastercard.
¯

Signed:

Expiry date: /

bsb - a/c

CC type

Subscr#

Please charge $
Account number:

Name on card:
Office use only:

Chq: bank

Date: / / $

Who:

AUUGN 61 Vol 11 No 3

AUUG
Notification of Change of Address

Australian UNIX systems Users’ Group.
*UNIX is a registered trademark of AT&T in the USA and other countries.

If you have changed your mailing address, please complete this form, and return it to:

AUUG Membership Secretary
P O Box 366
Kensington NSW 2033
Australia

Please allow at least 4 weeks for the change of address to take effect.

Old address (or attach a mailing label)

Name: ..

Address: ..

Phone: ...(bh)

... (ah)

Net Address: ...

New address (leave unaltered details blank)

Name: ..

Address: ..

Phone: ...(bh)

... (ah)

Net Address: ...

Office use only:

Date: / /

Who: Memb#

Vol 11 No 3 62 AUUGN

