awy

1661 $10552201dOIDIW . SE06TWY PUe , 0E06ZWY

Am29030™ and Am29035™ Microprocessors
User’'s Manual and Data Sheet

e

Advanced
~ Micro
- Devices

Am29030™ and Am29035™
Microprocessors
User’s Manual
and Data Sheet

ADVANCED MICRO DEVICES a

© 1991 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products
without notice in order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but not limited to implied warranties of merchantability or

fitness for a particular application. AMD® assumes no responsibility for the use of any circuitry other than the circuitry embodied in an
AMD product.

The information in this publication is believed to be accurate in all respects at the time of publication, but is subject to change without
notice. AMD assumes no responsibility for any errors or omissions, and disclaims responsibility for any consequences resulting from
the use of the information included herein. Additionally, AMD assumes no responsibility for the functioning of undescribed features or
parameters.

AMD is a registered trademark of Advanced Micro Devices, Incorporated.

Am29000, Am29005, Am29030, Am29035, Am29050, 29K, Laser29K, HighC29K, Scalable Clocking, and Branch Target Cache are trademarks of
Advanced Micro Devices, Inc.

PostScript is a registered trademark of Adobe Systems, Inc.

XRAY29K is a registered trademark of Microtec Research, Inc.

Fusion29K is a registered servicemark of Advanced Micro Devices, Incorporated.

Product names used in this puPIication are for identification purposes only and may be trademarks of their respective companies.

This is printed on

recycled paper.
PRINTED WITH
I:‘;Y INKI

| CONTENTS |

TABLE OF CONTENTS ¢\
Preface IntroductionandOverviewcoiiiiiiiinneinnnannn P-1
The Am29030™ and Am29035™ RISC Microprocessors P-1
Design Philosophycoiti i e e P-1
OptimumPerformanceottt iiiiininnnn... P-2
Performance Leverageoiuiiiii ittt e P-2
CONCIUSION . . .ot e i e e e P-3
PurposeofthisManual i, P-3
Intended Audience e P-3
Am29030™ and Am29035™ Microprocessors User’'s Manual Overview P-3
29K™ Family Documentation it P-5
Related Publications il P-6
Chapter 1 FeaturesandPerformanceccciiineerinnnncncnnns 1-1
1.1 Distinctive Characteristics i, 11
1.1.1 Am29030 MiCroproCessoro vvi ettt iie it iiien e 1-1
1.1.2 Am29035 MiCroproCessoro vvevee et iiaenennnn 1-2
113 FeatureSummaryc.uiiiiiiniiiii i, 1-2
1.2 KeyFeaturesandBenefits i, 1-2
1.2.1 Large, On-Chip InstructionCache 1-3
1.2.2 Scalable Clocking Technology 1-3
123 NarrowReadlInterface 1-4
1.24 ProgrammableBusSizing 1-4
1.25 Streamlined Systeminterface 1-4
1.2.6 Pin-, Bus-, and Software-Compatibility 1-5
- 1.2.7 Wide Range of Price/Performance Points 1-5
1.2.8 Complete Development and Support Environment 1-6
1.3 Performance Overview i, 1-6
1.3.1 nstructionTimingot 1-6
132 Pipelining 1-6
1.3.3 InstructionCache i, 1-7
1.3.4 Instruction SetOverview 1-7
135 DataFormats 1-7
136 Protection 1-7
1.3.7 MemoryManagement ...ttt 1-8
138 InterruptsandTrapscoviiiiiiinniiinnnnnnn. 1-8
14 DebuggingandTestingccoiiiiiiiniiiiininn... 1-8
Chapter 2 Programmingc.oeeiiieiiiiner it ttnenasttrcnaanan 21
21 InstructionSet 21
211 IntegerArithmetic 2-1

TABLE OF CONTENTS i

Chapter 3

212 COMPAret e e e 2-1

213 Logical ..ot e e e 2-4
214 Shift ... 2-4
215 DataMovement it 2-4
216 Constant i 2-5
21.7 FloatingPoint 2-5
218 Branch ... 2-7
219 Miscellaneousoiii it 2-8
2.1.10 ReservedlInstructions i, 2-8

22 RegisterModel e e 2-8
221 General-Purpose Registerso.u... 29
2.2.1.1 Register Addressing 2-9

2.21.2 GlobalRegistersccciiiiiiiii... 2-9

2213 LocalRegisters i, 2-11

2.2.1.4 Local-Register Stack Pointer 2-11

2.2.2 Special-Purpose Registers, 2-11

2.3 Addressing Registersindirectly 2-13
2.3.1 Indirect Pointer C (IPC, Register128) 2-13
2.3.2 Indirect Pointer A (IPA, Register129) 2-14
2.3.3 Indirect Pointer B (IPB, Register 130) 2-14

24 InstructionEnvironment i, 2-14
2.4.1 Floating-Point Environment (FPE, Register 160) 2-15
2.4.2 Integer Environment (INTE, Register161) 2-16

2.5 Status Resultsof Instructions 2-16
25.1 ALU Status (ALU, Register132) 2-16
25.2 Arithmetic Operation Status Results 2-17
25.3 Logical Operation StatusResults 2-18
25.4 Floating-Point Status (FPS, Register162) 2-18
2.5.5 Floating-Point Status Results 2-18

2.6 Integer Multiplicationand Divisionc..civuunn. 2-20
26.1 Q(Q,Register131), 2-20
2.6.2 Multiplication 2-20
263 DiVISION 2-22

2.7 INeedanlinstructionto... oo, 2-24
271 Run-TimeCheckingcoiiiiiviiiiiinna.. 2-24
2.7.2 Operating-SystemCalls 2-25
2.7.3 Multiprecision Integer Operations 2-25
274 ComplementingaBoolean 2-25
275 LargedJumpandCallRangescciiunn. 2-26
276 NO-OPS ...ttt e 2-26

2.8 Virtual Arithmetic Processorc.iiiiiiiiiiinnnn.. 2-26
2.8.1 Trapping Arithmetic Instructions 2-27
28.2 \VitualRegisters i, 2-27

2.9 MURIPrOCesSiNg ooii i i e e e e e, 2-27
DataFormatsandHandling, 3-1
3.1 IntegerDataTypesoouiiiiiini it 3-1
311 CharacterData i 3-1
3.1.2 Hall-WordOperations, 3-2
3.1.3 Byte Pointer (BP, Register133) 3-2
314 BitStrings ... e e 3-3
3.1.4.1 Funnel Shift Count (FC, Register 134) 3-3

TABLE OF CONTENTS

Chapter 4

Chapter 5

3.1.5 Character-StringOperationscoveuiun... 3-4

3.1.5.1 Alignment of Bytes withinWords 34

3.1.5.2 Detection of Characters withinWords 34

316 BooleanData 3-5
3.1.7 InstructionConstants 3-5

3.2 Floating-PointDataTypesciiiiiiiiiiiiiinnnn. 3-5
3.2.1 Single-Precision Floating-PointValues 3-5
3.2.2 Double-Precision Floating-Point Values 3-6
3.2.3 Special Floating-PointValues 3-6
3.2.3.1 Not-A-Number 3-6

3232 1INfiNRtY ... 3-7

3.2.3.3 DenormalizedNumbers 3-7

B234 Z6r0 . ..o 3-7

3.3 External Data ACCESSES oo ii i 3-7
3.3.1 AddressSpacesciiiiiiii i i i 3-7
3.3.2 Load/Store InstructionFormat 3-8
3.33 LoadOperationsc.iiiiiiiiiiiiniinnaann. 39
334 StoreOperations.............c.oiiiiiiiiiinina... 3-10
3.35 Multiple ACCESSES .. .o viiii i e e 3-10
3.3.5.1 Load/Store Count Remaining (CR, Register 135) 3-11

3.3.5.2 Movement of Large DataBlocks 3-12

336 OptionBits i 3-12
3.3.7 AddressingandAlignment 3-13
3.3.7.1 Byte and Half-Word Addressing 3-13

3.3.7.2 Byte and Half-Word Accesses 3-14

3.3.7.3 Alignment of Words and Half-Words 3-15

3.3.7.4 Alignmentof Instructions 3-15
ProcedureLinkagettt 4-1
4.1 Run-Time Stack OrganizatonandUse 4-1
41.1 Managementofthe RuntimeStack 4-1
412 TheRegisterStack o i, 4-3
4.1.3 Local RegistersasaStackCache 4-4
414 TheMemoryStackc.. i, 4-5

4.2 Procedure Linkage Conventions 4-7
421 ArgumentPassing, 4-8
422 ProcedurePrologueiiiiiiiiiiiiiiia, 4-8
423 SpillHandler 4-10
424 ReturnValuesc.iiiiiiii i, 4-10
425 ProcedureEpilogue oL, 4-10
426 FillHandlersottt 4-11
427 The Register Stack Leaf Frame 4-11
428 Local Variables and Memory-Stack Frames 4-12
429 StaticLinkPointer i, 4-13
4.2.10 TransparentProcedurescovvuvenn. 4-13

4.3 RegisterUsage Conventioniiiiiiiiiiiiannn. 4-13
4.4 Example of a Complex ProcedureCall 4-14
45 Trace-BackTagsoiiiiiiii ittt 4-15
Pipelining and Instruction Scheduling, 5-1
5.1 Four-StagePipeline oot 5-1
52 PipelineHoldMode i 5-3
53 Serialization e 5-3

TABLE OF CONTENTS i

Chapter 6

Chapter7

Chapter 8

5.4 DelayedBranch ...ttt 5-4
5.5 OverlappedLoadsandStoresciiiiiiiiinnn.nn. 5-5
5.6 Delayed Effectsof Registerso i, 5-6
SystemProtectionccciiiiiiiiiitiiiaiaaaaan 6-1
6.1 Userand SupervisorModesciiiiiiiiiiinnnn. 6-1
6.1.1 SupervisorMode il 6-1
6.1.2 UserModettt 6-1

6.2 RegisterProtection il 6-2
6.2.1 Register Bank Protect (RBP, Register7) 6-3

6.3 Memory Protectiono 6-3
6.4 External AccessProtection, 6-4
MemoryManagementooctineetnnnnnennnnncannsans 7-1
7.1 Translation Look-Aside Buffer 7-1
72 TLBReGISterscouiiuniiiiiiii it iii i 7-1
721 TLBEntryWordOcoiiiniii e 7-2
722 TLBEntryWord1 it 7-4

7.3 Address TranslationControls, 7-5
7.3.1 Enabling and Disabling Address Translation 7-5
7.3.2 MMU Configuration Register (MMU, Register13) 7-5

7.4 Address Translation Description 7-6
741 Vitual Address Structure, 7-6
7.4.2 Address-TranslationProcess 7-6
7.43 Successful and Unsuccessful Translations 7-9
7.4.4 Instruction Cache Considerations 7-9
745 Selectingthe Virtual Page Size 7-10

75 Handling TLBMISSeS oiiiii it e e ean 7-11
751 TLBReloadottt 7-11
75.2 LRU Recommendation (LRU, Register14) 7-12
7.5.3 Page Reference and Change Information 7-12
754 WarmStart 7-13
7.5.5 Minimum Number of ResidentPages 7-13

7.6 Invalidating TLBEntries i 7-13
Interrupts and Trapscoiimiiiininnnennrrnnrannnennsas 8-1
8.1 OVEIVIEW ...ttt i e e e e 8-1
8.1.1 Current Processor Status (CPS, Register2) 8-1
8.12 Interrupts i i 8-3
813 TraPS .ottt e e e 8-4
8.1.4 ExternalinterruptsandTrapsc..coiun... 8-4
815 WaitMode i e 8-4

8.2 VECIOr Area . ..ottt it e 8-5
8.2.1 Vector Area Base Address (VAB, Register0) 8-5
8.22 VectorNumberscciiiiiiiiiiiiininnnnnnn. 8-6

8.3 interruptand TrapHandling il 8-6
8.3.1 Old Processor Status (OPS, Register1) 8-6
8.3.2 TheProgramCounterStack 8-6
8.3.2.1 Program Counter 0 (PCO, Register 10) 8-9

8.3.2.2 Program Counter 1 (PC1, Register 11) 8-9

8.3.2.3 Program Counter 2 (PC2, Register12) 8-10

iv

TABLE OF CONTENTS

Chapter9

Chapter 10

8.3.3 TakinganinterruptorTrapcoiiiinann. 8-10

8.3.4 ReturningfromaninterruptorTrap 8-11
8.3.5 Lightweight Interrupt Processing 8-13
8.3.6 Simulationof Interruptsand Trapscouonn. 8-13

8.4 WARNTIAD ..ottt ittt it 8-14
841 WARNINpUt ... 8-14

8.5 SequencingofInterruptsand Trapso, 8-15
8.6 Exception Reportingand Restarting 8-17
8.6.1 InstructionExceptions il 8-17
8.6.2 Restarting Faulting External Accesses 8-17
8.6.2.1 Channel Address (CHA, Register4) 8-18

8.6.2.2 Channel Data (CHD, Register5) 8-19

8.6.2.3 Channel Control (CHC, Register6) 8-19

8.6.3 IntegerExceptions i, 8-20
8.6.4 Floating-PointExceptions 8-21
8.6.5 Correcting Out-of-Range Results 8-21
8.6.6 Exceptions During Interrupt and Trap Handling 8-21

8.7 TimerFacilityooiiii i e 8-22
8.7.1 Timer Facility Operation 8-22
8.7.2 Timer Facility Initialization 8-22
8.7.3 Handling Timerinterrupts 8-22
8.74 TimerFacilityUses i, 8-23
8.7.5 Timer Counter (TMC, Register8) 8-23
8.7.6 Timer Reload (TMR, Register9) 8-24
InstructionCacheOperationot iiiiiiiennnnn. 9-1
9.1 InstructionCacheOverviewt 9-1
9.2 AccessingCacheFields o .. 9-2
9.2.1 InstructionWords i 9-3
9.2.2 Address Tag and Status Information 9-3
9.2.3 Cache Interface Register (CIR, Register29) 9-4
9.2.4 Cache Data Register (CDR, Register30) 9-4

9.3 CacheHitsandMissesc.ciiiiiiiiiinennnenn. 9-5
9.4 External Fetchingand CacheReload 9-5
9.4.1 CacheReplacementt 9-6
9.4.2 Overview of External Instruction Fetching 9-6
9.43 The Instruction FetchPointer 9-7
9.4.4 Cache Misses During Sequential Instruction Fetching 9-7

9.5 InstructionPrefetching o i 9-7
9.5.1 Operation During Prefetching 9-7
9.5.2 The Role of the PrefetchBuffer 9-8
9.5.3 Terminating Instruction Prefetching Because of a Cache Hit ... 9-8
9.5.4 Terminating Instruction Prefetching Because of a Branch 9-8
9.5.5 Collisions Between Instruction Fetching and Loads or Stores .. 9-9

9.6 Cachelnvalidation i, 9-9
SystemiInterfacecoiiit ittt i i et e it 10-1
10.1 SignalDescription e 10-1
10.2 Processor Reset and Initialization 10-5
10.2.1 Configuration (CFG, Register3) 10-5
1022 ResetMode i, 10-7
10.2.3 Am29035 Processor Initialization Considerations 10-8

103 ClOCKS . oit ittt i i e e e e e e 10-8

TABLE OF CONTENTS v

Chapter 11

10.3.1 Electrical Specifications 10-9
104 BusDescription0t 10-9
104.1 BusOvVerviewcooiiiiiiiiiiiniinennenn.. 10-9
104.2 User-DefinedSignalsooiion... 10-9
10.4.3 Instruction Accessescoiiiiiiiiiian, 10-10
1044 DataACCeSSeS ... ovvvviiiiiiini it 10-10
1045 Read-OnlyMemoriesccoviiiinnennnn.. 10-11
10451 NammowReadinterface 10-11
10452 8-BitNarrowAccesseS.................... 10-12
10453 16-BitNarrowAccesses................... 10-12
10454 ROMAddressMapping 10-13
104.6 Programmable Bus Sizing (Am29035 Processor Only) 10-13
104.7 ReportingErors i 10-14
104.8 AccessProtocolscoiiiiiiiiiiiii., 10-15
10.4.8.1 Page-ModeAccesses 10-15
1049 Simple ACCESSESciiiiiiiiiiiiiii 10-15
10.4.10 Burst-ModeAccesses 10-15
10.4.10.1 Burst-Mode Overview 10-15

10.4.10.2 Processor Pre-emption, Termination, or
Cancellation of a Burst-Mode Access 10-16
10.4.10.3 Slave Cancellation of a Burst-Mode Access ... 10-17
10.4.10.4 Using ERLYA for Interleaved Memory Systems . 10-17
104.11 Arbitration 10-18
10.4.11.1 Using The Processor as an Arbiter 10-19
10.5 Bus Sharing—Electrical Considerations 10-19
10.6 Multiprocessing and the LOCK Output e 10-20
10.7 Master/SlaveChecking, 10-20
10.7.1 Master/Slave Operation 10-21
10.7.2 Preventing Spurious Errors e 10-21
10.7.3 Switching Master and Slave Processors 10-22
Debuggingand Testingcooiiiiieiiiinirnninnnnnannns 1141
111 TraceFacility i 11-1
11.2 Instruction Breakpoints it 11-2
11.3 ProcessorStatusOutputsooiiiiiiiiiiin... 11-2
114 CPUCONtrol Inputsottt it ieeann, 11-4
11.5 Implementing a Hardware-Development System 115
1151 HaltMode 115
1152 StepModecoiiiiiii i e e 115
115.3 LoadTestlInstructionMode 11-6
11.5.4 Summary of Development System Operation 119
116 In-Circuit Testingttt 11-9
117 TestAccessPort i 11-9
1171 BoundaryScanCells, 11-10
11.7.2 Instruction Register and Implemented Instructions 11-11
11721 EXTEST ... i 11-12
11722 INTEST i, 11-12
11723 SAMPLE i 11-13
11724 ICTESTT, 11-13
11725 ICTEST2, 11-13
11726 BYPASS..... i 11-13
11.7.3 Order of Scan Cells in Boundary ScanPath 11-14
11731 InstructionPath 11-14
11732 BypassPath............................ 11-14

vi

TABLE OF CONTENTS

Chapter 12

Appendix A
Appendix B

Appendix C

11.73.3 MainDataPath 11-14

11.73.4 ICTEST1Path 11-16

11735 ICTEST2Pathcunun... 11-16
InstructionSetcciiiiiiiiiiiii i ittt 12-1
12.1 Instruction-DescriptionNomenclature 1241
12.1.1 Operand Notationand Symbols 1241
12.1.2 OperatorSymbolst 12-2
12.1.3 Control-Flow Terminologycocitieieernon... 12-3
12.1.4 AssemblerSyntax i 12-4

122 Instruction Formatsoiiiiiiii i 12-4
12.3 Instruction Descriptionot 12-7
12.4 Instruction Index by OperationCode 12-127
Bus Summaryand TimingDiagramscccoviviievnennnns A-1
RegisterSummaryc.iiieiiiiicinnnnneerreannnnns B-1
DataSheetiiiiiiiiiiniienenentenetnnennannns C-1
Am23030 Microprocessor Distinctive Characteristics C-1
Am29035 Microprocessor Distinctive Characteristics C-1
General Descriptionttt e e C-2
29K Family Development Support Products C-2
Related AMD Productsttt C-2
Third Party Development Support Products C-2
Connection Diagramt e C-3
PGAPInDesignationt i e e C4
Sortedby PinNo.o C-4
Sortedby PinName it C-5
ConnectionDiagram i e C-6
QFP PinDesignationttt ittt c-7
Sorted by PINNO. i e C-7
Sortedby PinName oot c-8
Ordering Information ittt C-10
Absolute Maximum BRatingsciviit it i i e C-11
Operating Rangescuuiiiii ittt it C-11
DC Characteristics Over Commercial Operating Ranges C-11
(07 o= Ted 1 = o o7~ C-11
Switching Characteristics Over Commercial Operating Range (PGA) C-12
Switching Characteristics Over Commercial Operating Range (QFP) C-13
SwitchingWaveformso iiiiiiiiiiiin .. C-14
Capacitive OutputDelayscciiiiiiiiin i, C-15
Switching Test Circuitttt C-15
Am29030 Microprocessor Thermal Characteristics C-16

TABLE OF CONTENTS vii

LIST OF FIGURES

Figure 1-1
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 5-1
Figure 6-1
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 8-10
Figure 8-11
Figure 8-12

Simplified System Diagram o il 1-3
General-Purpose Register Organization 2-10
Special-Purpose Registerst 2-12
Indirect Pointer CRegister i, 2-13
Indirect Pointer ARegisterot 2-14
Indirect PointerBRegisterot 2-14
Floating-Point Environment Register 2-15
Integer Environment Register.o oo, 2-16
ALUStatus Registeroooitiiii ittt 2-16
Floating-PointStatus i, 2-19
QREGISIBr . ..\ttt i e e 2-20
CharacterFormatttt 3-1
Hall-Word Formatttt e e es 3-2
Byte PointerRegisterttt 3-3
Funnel Shift CountRegisterc.coiiiiiiiiiinennnenn.. 3-3
Single-Precision Floating-Point Format 3-6
Double-Precision Floating-PointFormat 3-6
Load/Store InstructionFormatot 3-8
Load/Store Count Remaining Register 3-12
Byte and Half-Word Addressing with BO=0 (Big Endian) 3-13
Byte and Half-Word Addressing with BO=1 (Little Endian) 3-14
Run-time StackExample i 4-2
An Activation Record in the RegisterStack 4-3
Relationship of Stack Cache and RegisterStack 4-4
Stack Overflowo e 4-6
Stack Underflow o 4-6
Definition of size and rsizeValues, 4-9
Trace-Back Tagsvvivtien ittt ee e iieeianeeeeannn 4-15
Am29030 and Am29035 Microprocessors DataFlow 5-2
Register Bank Protect Register, 6-3
Translation Look-Aside Buffer Organization 7-2
Translation Look-Aside Buffer Registers 7-3
TLBEntry WordORegister, 7-3
TLBEntry Word1 Registerttt 7-4
MMU Configuration Registercoiiiiiiiiiiine.. 7-5
Virtual Address for 1, 2, 4, and 8-Kbyte Pages 7-7
TLB Address-Translation Processccoviiiiinn.... 7-8
LRU RecommendationRegister oo, 7-12
Current Processor Status Register, 8-1
VectorTable Entrycoiiiniiiiiii e 8-5
Vector Area Base Address Register, 8-5
Program CounterUnit 0ttt 8-8
Program Counter O Register, 8-9
Program Counter 1 Registercootiiiiiininnnnn. 8-9
Program Counter2 Registero, 8-10
Current Processor Status After an InterruptorTrap 8-11
Current Processor Status Before Interrupt Return 8-12
Channel Address Registerc.coiiiiiiiiiiinnnn... 8-19
ChannelDataRegister i, 8-19
Channel Control Register, 8-19

viii

TABLE OF CONTENTS

Figure 8-13
Figure 8-14
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 10-1
Figure 10-2
Figure 10-3
Figure 11-1
Figure 11-2
Figure 11-3
Figure 11-4
Figure 11-5
Figure 12-1
Figure 12-2
Figure 12-3
Figure A-1
Figure A-2
Figure A-3
Figure A-4
Figure A-5
Figure A-6
Figure A-7
Figure A-8
Figure A-9
Figure A-10
Figure A-11
Figure A-12
Figure A-13
Figure A-14
Figure A-15
Figure A-16
Figure A-17
Figure A-18
Figure A-19

Figure A-20

Figure A-21
Figure A-22
Figure A-23
Figure A-24
Figure A-25
Figure A-26
Figure A-27
Figure A-28
Figure A-29
Figure A-30
Figure A-31

Timer Counter Register 8-23

Timer ReloadRegistero, 8-24
Instruction Cache Block Organization 9-1
Instruction Cache Organization 9-2
Instruction Words in the Cache DataRegister 9-3
Address Tag and Status Information in the Cache Data Register 9-3
Cache Interface Register, 9-4
CacheDataRegisterottt 9-5
ConfigurationRegister il 10-6
Current Processor Status Register InResetMode 10-7
Configuration Registerin ResetMode 10-7
STAT Output Reporting with High-Frequency Interface 11-3
Valid Transitions on CNTL(1-0) Inputs 11-4
Processor Status While in Load Test Instruction Mode 11-7
Input Boundary-ScanCell i, 11-10
Qutput Boundary-ScanCell, 11-11
Instruction Format 12-4
Frequently Occurring Instruction FieldUses 12-6
Instruction-DescriptionFormat 12-7
Relationship of INCLK, Internal Processor Clock, and MEMCLK A-3
ProcessorReset e A-4
Processor Reset—8-Bit Narrow Read Interface A-4
Processor Reset—16-Bit Narrow Read interface A-4
Simple Data Read ACCESS iiiiiiin i A-5
Simple Data Read Access (Multi-Cycle) A-6
Simple Data Write ACCESSo vttt i et e e A-7
Simple Data Write Access (Multi-Cycle) oot A-8
Page-Mode Read ACCESSot vvn et et e A-9
Page-Mode Write ACCESS oot i A-10
Read Access Followed by a Read Access (Page-Mode) A-11
Read Access Followed by a Write Access (Page-Mode) A-12
Write Access Followed by a Read Access (Page-Mode) A-13
Write Access Followed by a Write Access (Page-Mode) A-14
Burst-Mode Read ACCeSSoiiiiii i A-15
Burst-Mode Read Access (Multi-Cycle Initial Access) A-16
Burst-Mode Write ACCESSottt i e e A-17
Burst-Mode Write Access (Multi-Cycle Initial Access) A-18
Processor Preemption, Termination or Cancellation of a

Burst-Mode Read ACCESSot ii et A-19
Processor Preemption, Termination or Cancellation of a

Burst-Mode Write ACCESSot iiii i e e e A-20
Slave Cancellation of a Burst-Mode Read Access A-21
ERLYA Burst-Mode Read ACCESScuourrrreinneannnnnnn.. A-22
ERLYA Burst-Mode Read Access (Multi-Cycle) A-23
Simple 8-Bit Narrow Read Word Accesscocvvnvnnn.. A-24
Simple 8-Bit Narrow Read Access with Fast Subsequent Accesses A-25
Burst-Mode 8-Bit Narrow Read Accesscooiiin... A-26
Simple 16-Bit Narrow Read Word Accessc.ovnn. A-27
Simple 16-Bit Narrow Read Word Access with Fast Second Access A-28
Burst-Mode 16-Bit Narrow Read Access A-29
Simple 16-Bit Narrow Write Word Accesscovunn. A-30

Simple 16-Bit Narrow Write Word Access with Fast Subsequent Access A-31

TABLE OF CONTENTS ix

Figure A-32
Figure A-33
Figure A-34
Figure A-35
Figure A-36
Figure A-37
Figure A-38
Figure A-39
Figure A-40
Figure B-1
Figure B-2
Figure B-3
Figure B-4
Figure B-5

Burst-Mode 16-Bit Narrow Write Accessccovvevnan... A-32

Load and Set Instruction (PageMode) ..., A-33
TLB Miss or Protection Violation on ReadorWrite A-34
Bus Arbitration—Normal Transferto Processor A-35
Bus Arbitration—Fast Transferto Processor A-36
Bus Arbitration—False ProcessorRequest A-37
Bus Arbitration—Granting of UnrequestedBus A-38
Bus Arbitration—Normal Transfer from Processor A-39
Bus Arbitration—Preempting Bus from Processor A-40
General-Purpose Register Organization B-1
RegisterBank Organizationc..ccoiiiiiiiinenn... B-2
Special Purpose Registers ..ottt B-3
Special Purpose Registersoiiiiiiii i B-7
Translation Look-Aside BufferEntries B-7

TABLE OF CONTENTS

LIST OF TABLES

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 6-1
Table 6-2
Table 8-1
Table 8-2
Table A-1
Table B-1

Integer Arithmetic Instructions 2-2
Compare Instructions i, 2-3
Logical Instructions i 2-4
Shift Instructions 24
Data Movement Instructions i 2-5
ConstantInstructions i i 2-6
Floating-Point Instructions 2-6
Branch Instructions 2-7
Miscellaneous Instructions i 2-8
Register Bank Organization i, 6-2
AccessProtection 6-4
Vector Number ASSignmentsoiitiiinnnninnnann. 8-7
Interrupt and Trap Priority Table 8-16
Signal SumMmMaAry i e A-1
RegisterFieldSummary B-8

TABLE OF CONTENTS xi

|_PREFACE |
INTRODUCTION AND OVERVIEW a

THE Am29030™ AND Am29035™ MICROPROCESSORS

The Am29030 and Am29035 microprocessors are the first in a new series of 32-bit,
streamlined instruction processors that employ submicron circuits to provide high per-
formance even with low-cost system components. High circuit densities and a high
degree of on-chip integration enable the Am29030 and Am29035 microprocessors to
operate at high frequencies while providing a streamlined interface that simplifies sys-
tem design.

The Am29030 and Am29035 microprocessors were designed expressly to meet the
requirements of embedded applications such as laser beam printers, graphics proc-
essing, application program interface (API) accelerators, X terminals and servers, and
scanners. Such applications make the following four demands on system design:

* High performance at low cost: A high-frequency processor must interface with
low-cost memory without degrading processor performance. The system must
provide excellent real-time response at low cost.

» Design flexibility: One basic design must establish an entire product line.

¢ Reduced time-to-market: A complete suite of development, debug, and
benchmarking tools is critical for reducing the product development cycle.

¢ A rational, easy upgrade path: The processor family must provide bus-, pin-, and
software-compatibility so that processor upgrades are transparent to both hardware
and software. In addition, the processor’s system interface must accommodate
easy memory upgrades in convenient (0.5-MB) increments.

The Am29030 and Am29035 processors are, in fact, highly optimized for any embed-
ded application that requires high performance at low cost. In addition to graphics and
imaging applications, the processors are ideal for use in network applications such as
bridges and node processors for fiber optic (FDDI) networks.

DESIGN PHILOSOPHY

The Am29030 and Am29035 processors are the result of a design philosophy that
recognizes that processor performance must be considered in light of the processor’s
hardware and software environment. The key to maximizing performance lies in the
realization that the processor is part of an integrated system, and is itself a collection
of components that must be properly integrated.

Processor features must be considered not only on their own merits, but also in rela-
tion to other components of the system. A particular feature that—considered alone—
increases one aspect of processor performance may actually decrease the perform-
ance of the total system, because of the burden that it places elsewhere in the sys-
tem. As an illustration, consider the factors involved in the execution time of any proc-
essor task:

TASK TIME = (INSTRUCTIONS / TASK) *(CYCLES / INSTRUCTION) * (TIME / CYCLE)

INTRODUCTION AND OVERVIEW P-1

To minimize the time taken, it is necessary to minimize the above product. This is not
equivalent to minimizing all of the terms that contribute to the product; in fact, this is
generally not possible due to the interaction of the terms.

As an example of the interaction of the above terms, consider the number of instruc-
tions required for a task. An attempt to minimize this number, a more or less tradi-
tional approach to processor architecture design, increases the average number of
cycles required for the execution of an instruction, because of the increased number
of operations performed by each instruction. In addition, cycle time is increased be-
cause of instruction-decode time.

A second example of the interaction in the above equation appears in an attempt to
reduce the cycle time through the pipelining of operations. In theory, the cycle time
can be made arbitrarily small by the definition of an arbitrarily large number of pipeline
stages. In practice—at least in the case of general-purpose processors—pipelining
rarely yields much of its potential benefit. This is due to situations where the pipeline
cannot be kept fully occupied, such as when memory references and branches occur.
In these situations, additional pipeline stages increase the number of cycles required
for an operation, and thus affect the CYCLES /INSTRUCTION term.

OPTIMUM PERFORMANCE

Each of the terms in the above equation has some minimum bound for a given imple-
mentation technology and task. In general, this minimum bound cannot be ap-
proached without an offsetting increase in the other terms, making the overall product
less-than-optimum. The question then arises, what combination of terms will yield an
optimum product? There are several things to note when answering this question.

The first observation is that the number of operations underlying a given task is more
or less fixed. Any single processor ultimately limits the time required for a task be-
cause it has a single execution unit and a single instruction stream. The operations
that must be performed are reflected in the INSTRUCTIONS / TASK and CYCLES/IN-
STRUCTION terms. These operations may be performed by relatively few instruc-
tions, where each instruction takes multiple cycles to execute, or by a larger number
of instructions, where each takes a single cycle to execute. In the first case, the in-
structions are complex; in the second, they are simple.

The point is that the trade-off between simple and complex instructions is not one-to-
one. For example, reducing the number of cycles per instruction by a factor of three
does not increase the number of instructions per task by the same factor. There are
two reasons for this. The first is that, even when an instruction set supports complex
operations, a large proportion of the instructions that are executed perform operations
that could be performed as well by simple instructions. The second is that simple
instructions expose more of the internal processor operation to an optimizing com-
piler. This allows the compiler to tailor the organization and sequence of operations to
the task at hand, thereby reducing the total number of instructions executed.

PERFORMANCE LEVERAGE

Another important observation is that there is a tremendous amount of leverage in the
TIME/CYCLE and CYCLES/INSTRUCTION terms. As they are made smaller, they
have a proportionately greater effect on performance.

For example, a reduction of 10 ns in the cycle time of a processor operating with a
200-ns cycle time yields an increase of 5% in the processor’s performance. The same
improvement in a processor operating with a 50-ns cycle time yields a 20% increase
in performance.

pP-2

INTRODUCTION AND OVERVIEW

Correspondingly, a reduction of 0.2 in the number of cycles per instruction in a proc-
essor that averages 5 cycles per instruction yields a 4% increase in performance.
However, the same reduction yields a 12.5% performance increase in a processor
that averages 1.6 cycles per instruction.

CONCLUSION

The conclusion is that it is possible—and desirable—to yield somewhat in the number
of instructions executed for a given task, and more than make up for the performance
impact of this increase by reductions in the cycle time and in the number of cycles per
instruction. For example, if both the cycle time and the number of cycles per instruc-
tion are reduced by a factor of three, while the number of instructions for a given task
is allowed to grow by 50%, the resulting task time is reduced by a factor of six.

The Am29030 and Am29035 microprocessor architectures were designed with the
above effects in mind. Maximum performance is obtained by the optimization of the
product of the number of instructions per task, the number of cycles per instruction,
and the cycle time, not by minimizing one factor at the expense of the others. This is
accomplished by careful definition of all processor components. In particular:

1. The INSTRUCTION/TASK term is optimized by the definition of simple
instructions. The processor provides an efficient instruction set and a large
number of general-purpose registers to an optimizing, high-level language
compiler. Most reductions in this term are accomplished by the compiler. The
number of instructions for a given task may be greater than the number of
instructions for processors with complex instruction sets. However, this increase is
more than offset by other improvements in processor performance.

2. The CYCLES/INSTRUCTION term is optimized by the data-flow structure and
performance-enhancing features of the processor. A large amount of processor
hardware is dedicated to achieving an average instruction-execution rate that is
close to single-cycle execution.

3. The TIME/CYCLE term is optimized by the implementation technology, the
processor system interface, and judicious use of pipelining. The simplicity of the
instruction set and processor features helps minimize the cycle time.

PURPOSE OF THIS MANUAL

This manual describes the technical features, programming interface, and complete
instruction set of the Am29030 and Am29035 microprocessors.

INTENDED AUDIENCE

This manual is intended for computer hardware and software architects and system
engineers who are designing or are considering designing systems based on the
Am29030 and Am29035 microprocessors.

Am29030 and Am29035 MICROPROCESSORS USER’S MANUAL
OVERVIEW

This manual contains information on the Am29030 and Am29035 microprocessors
that is essential for system hardware and software architects and design engineers.
Additional information is available in the form of data sheets, application notes, and
other documentation that is provided with software products and hardware-develop-
ment tools.

INTRODUCTION AND OVERVIEW P-3

The information in this manual is organized into twelve chapters:

Chapter 1 introduces the features and performance aspects of the Am29030 and
Am29035 microprocessors.

Chapter 2 describes the programmer’s model of the Am29030 and Am29035 micro-
processors, including the instruction set and register model.

Chapter 3 expands on the programmer’s model, discussing different data formats and
handling. Instructions that manipulate external data are also discussed.

Chapter 4 details the management of the run-time stack and defines the conventions
that apply to procedure linkage and register usage.

Chapter 5 describes the internal pipelining and the effects of the pipeline on program
behavior.

Chapter 6 describes the system protection features provided by the Am29030 and
Am29035 microprocessors.

Chapter 7 describes the memory management features of the Am29030 and
Am29035 microprocessors.

Chapter 8 provides a description of the interrupt and trap mechanism and details the
handling of interrupts and traps.

Chapter 9 describes the operation of the instruction cache.

Chapter 10 details the system interface of the Am29030 and Am29035 processors.
Chapter 11 describes the software and hardware facilities for debugging and testing.
Chapter 12 provides a detailed description of the instruction set.

For those readers desiring only a brief overview of the Am29030 and Am29035 micro-
processors, Chapter 1 identifies the outstanding features of the processors. This
chapter addresses the basic software and hardware concerns. Chapters 2, 3, and 5
are recommended reading for all developers, both hardware and software.

For software architects and system programmers interested mainly in software-related
issues, Chapters 4, 6, 7, 8 and Section 10.2 provide the necessary information. Chap-
ter 9 describes software issues related to the instruction cache. Chapters 11 and 12
provide related information.

For hardware architects and systems hardware designers interested mainly in hard-
ware-related issues, Chapters 10, 11 and Appendix A provide most of the required
information; Chapters 5, 9, and 12 also provide related information.

P-4

INTRODUCTION AND OVERVIEW

29K FAMILY DOCUMENTATION
ORDER NO. TITLE

10620

11011

11426

12990

14779

15176

12175

10626
10957
13089
14721
15039
11539

29K User’s Manual
Describes the Am29000™ microprocessor’s technical features,
programming interface, and complete instruction set.

29K Graphics Primitives Handbook

Describes a set of graphics functions written in C-callable assembly
language. This is an excellent introduction/tutorial for graphics
programming on the Am29000 microprocessor.

Fusion29Ks™ Catalog

Provides information on more than 100 tools that speed a 29K Family
embedded product to market. Includes products from over 50 expert
suppliers of embedded development solutions. Design solution
chapters include: laser printer and OCR solutions, graphics solutions,
and networking solutions.

Fusion29K Newletter
Contains quarterly updates on developments in the 29K Family.

Am29050™ User’s Manual
Describes the Am29050 microprocessor’s technical features,
programming interface, and complete instruction set.

29K Laser Printer Solutions Brochure

Reviews how the 29K Family of microprocessors fits into the laser
printer marketplace. Includes a description of AMD’s PCL and
Postscript® Laser29K™ Low-Cost Raster Image Processor
demonstration boards.

29K Family Data Book

A comprehensive collection of data sheets for the Am29000
microprocessor, Am29027™ arithmetic accelerator, High C 29K™
Cross Development Toolkit, and XRAY29K™ Source-Level Debugger.
It also includes application notes to help shorten designers learning
curves and hardware and software development time.

XRAY29K Data Sheet

High C 29K Data Sheet

Am29005™ Data Sheet

EB29K Data Sheet

Am29050 Data Sheet

Host Interface (HIF) v2.0 Specification

To order literature, contact your local AMD sales office or call: 800—2929—-AMD
Ext.3 (in the U.S.), or 800-531-5202 Ext. 55651 (in Canada), or direct dial from
any location: 512—462-5651.

INTRODUCTION AND OVERVIEW P-5

RELATED PUBLICATIONS
The IEEE Std. 1149.1-1990 (JTAG) may be ordered from:

IEEE Computer Society Press
Customer Service Center
10662 Los Vaqueros Circle
P.O. Box 3014

Los Alamitos, CA 90720-1264
USA

IEEE Catalogue No. SH13144
1-800-CS-BOOKS
714-821-4010 (FAX)

P-6 INTRODUCTION AND OVERVIEW

| CHAPTER 1 |
FEATURES AND PERFORMANCE a

This chapter provides an evaluation of the Am29030 and Am29035 microprocessors
as an aid in considering a particular application. A detailed technical description of
these microprocessors is contained in subsequent chapters. This chapter informally
describes the features of the processors, concentrating on features which distinguish
the Am29030 and Am29035 microprocessors from other available processors and
how these features enhance system performance and cost-effectiveness. This
chapter consists of the following sections:

o Distinctive Characteristics
» Key Features and Benefits
¢ Performance Overview
¢ Debugging and Testing

1.1 DISTINCTIVE CHARACTERISTICS

1.1.1 Am29030 Microprocessor
« Designed for printer, imaging, graphics, and other embedded applications
» Full 32-bit architecture
o CMOS technology/TTL-compatible
+ 8 Kbyte, two-way-set-associative Instruction Cache
o Scalable Clocking™ Technology
« Operational frequencies of 25 and 33 MHz
« 26 million instructions per second sustained at a 33 MHz operating frequency
« 1.26 clock cycles per instruction average
« 4-GB virtual address space
« 192 general-purpose registers
+ Three-address instruction architecture
« Streamlined system interface for simplified high-frequency operation
» Burst-mode and page-mode access support
* 8,16, or 32-bit ROM interface
* 64-entry Memory Management Unit on-chip
+ Demand paging
« Fully pipelined
¢ On-chip Timer Facility
« Enhanced debugging support

FEATURES AND PERFORMANCE 1-1

1.1.2

1.1.3

1.2

+ Master/slave chip output checking

o |EEE Std.1149.1-1990 (JTAG) compliant Standard Test Access Port and
Boundary-Scan Architecture implementation

Am29035 Microprocessor

The Am29035 microprocessor is very similar to the Am29030 microprocessor, with
the following exceptions:

o Operational frequency of 16 MHz

« 12 million instructions per second sustained at a 16 MHz operating frequency
e Programmable 16 or 32-bit data bus width

¢ 4 Kbyte, direct-mapped Instruction Cache

Feature Summary

The following table compares the features of the Am29030 and Am29035
microprocessors:

Feature Am29035 Am29030

Input Clock (MHz) 16 25,33

Cache Size 4K-bytes 8K-bytes
(Direct Mapped) - (2-Way Set Associative)

Scalable Clocking Yes Yes

Narrow Read Yes Yes

Programmable Bus Sizing Yes No

Package 144-pin QFP 145-pin PGA

KEY FEATURES AND BENEFITS

The Am29030 and Am29035 RISC microprocessors are high-performance, general-
purpose, 32-bit microprocessors implemented in complementary metal-oxide
semiconductor (CMOS) technology. They are targeted primarily at printer, imaging
and graphics applications, using a flexible architecture, a high-bandwidth memory

. interface, and rapid execution of simple instructions which are common in embedded

applications.

The Am29030 and Am29035 microprocessors also position the 29K architecture to
enter the realm of submicron technology which is characterized by very high circuit
densities and operating frequencies.

The Am29030 and Am29035 microprocessors are fully software-compatible with the
Am29000, Am29005 and Am29050 microprocessors. They can be used in most
existing Am29000 microprocessor applications without software modifications.

A representative system diagram for the Am29030 and Am29035 microprocessors is
shown in Figure 1-1.

1-2 FEATURES AND PERFORMANCE

Figure 1-1 Simplified System Diagram
f""/ r"‘l
Am29030 and Am29035
Address RISC microprocessors Instruciion/Data
<, with 8 Kbyte/4 Kbyte < A >
HCache 320r 16
¢ V
,/ 32 Y]320r16
Instruction/ 32, 16’/°r 8
> Data ,/ >
Address ROM Instruction/Data
N 32o0r 16
Instruction/
> Data < // >
RAM 7
Address Instruction/Data
/"'J ,.._/
1.2.1 Large, On-Chip Instruction Cache
The use of submicron circuitry allows the integration of a large on-chip instruction
cache. The Am29030 microprocessor has an 8K-byte two-way-set-associative
instruction cache, and the Am29035 microprocessor has a 4K-byte direct-mapped
instruction cache. A large instruction cache provides very high cache hit rates, which
reduces the average number of cycles per instruction by minimizing the effect of
memory latency. This is a key feature, since it allows designers to use low-cost
memory that requires a simpler (and therefore less costly) memory design.
The large, on-chip instruction cache also plays a major role in providing a streamlined
system interface, as described in Section 1.2.5
1.2.2 Scalable Clocking Technology

A feature unique to the Am29030 and Am29035 microprocessors is Scalable Clocking'
technology. Scalable Clocking technology is comprised of several features which aid
in the design of low-cost high frequency designs.

A primary feature of Scalable Clocking technology is the ability of the processor to
drive the memory system at the same speed as the processor or at half processor
speed. This capability provides substantial benefits. First, the half-speed mode allows
the use of slower, lower-cost memory without significant degradation of processor

FEATURES AND PERFORMANCE 1-3

1.2.3

1.2.4

1.2.5

performance. For example, a 33-MHz processor could be combined with a 20-MHz
memory system with only a slight loss in performance. Another advantage is that
system performance can be upgraded by simply replacing the processor with a
higher-speed processor. For example, a processor may be replaced with a faster
processor while utilizing the existing memory system, running at half-speed if
necessary.

Another feature of Scalable Clocking technology is the processor runs at the
frequency of the oscillator input. The Am29030 and Am29035 processors do not
require a double-frequency oscillator to generate internal clocks. Relaxed duty cycle
restrictions allow the processor to directly use oscillators with duty cycles of 30/70 to
70/30.

High frequency operation is further simplified through the use of a hardwired wait
state which is enforced during the initial cycle of all simple data accesses and the
initial cycle of a burst-mode access. The main benefit of this approach is that the
address and data pins are not required to change state during the same cycle. This
reduces electrical noise and therefore aids in high-frequency designs.

Finally, Scalable Clocking technology encompasses relaxed timing specifications.
This reduces the cost and complexity of external system design.

Narrow Read Interface

Both the Am29030 and Am29035 microprocessors can be connected to 8-, 16-, and

32-bit memories. If the data sized accessed is larger than that supported by memory,
the processor automatically generates the necessary sequencing to perform multiple
reads.

This ability to perform narrow reads is particularly useful for a ROM interface. Using
narrow reads, the processor can execute a bootstrap program from a small boot
ROM. Such a bootstrap program would most likely download the application program
into RAM. This not only allows the use of low-cost ROMs, it also conserves board
space and allows easy revision of application code.

Programmable Bus Sizing

The Am29035 processor’s Instruction/Data bus can be dynamically programmed to
be either 16 or 32 bits wide for data transfers. This enables the Am29035
microprocessor to write either 16-bit or 32-bit devices. The processor automatically
performs multiple 16-bit writes when writing more than 16 bits.

This unique feature, called Programmable Bus Sizing, provides a flexible interface to
low-cost memory, as well a convenient, flexible upgrade path. For example, a system
can start with a 16-bit memory design and can subsequently improve performance by
migrating to a 32-bit memory design. Of particular advantage is the ability to add
memory in half-megabyte increments. This provides significant cost savings for appli-
cations that do not require larger memory upgrades.

Streamlined System Interface

The high level of integration achieved in the Am29030 and Am29035 microprocessors
allows a large on-chip instruction cache to be implemented, which in turn enables the
system interface to be streamlined. The addition of the instruction cache reduces the
external instruction bandwidth requirements, and therefore relaxes the requirements
of the system interface.

14 FEATURES AND PERFORMANCE

1.2.6

1.2.7

The initial processors of the 29K family have a Branch Target Cache™ memory of 512
or 1 Kbyte. This structure was used due to the limited level of integration permitted by
process technology at that time. Since the Branch Target Cache (BTC) memory
caches the initial instruction sequence of non-sequential instruction fetches, only the
initial access latency of the memory system is reduced and therefore the processor
must provide sufficient instruction bandwidth. In the initial 29K processors, this meant
having a separate instruction and data bus to allow concurrent instruction and data
accesses.

Research' has demonstrated that, at cache sizes below approximately 4 Kbytes, a
BTC is more cost effective than a conventional instruction cache. At larger cache
sizes, a conventional cache provides performance superior to the BTC’s and is able
to maintain sufficient instruction bandwidth without a dedicated instruction bus.

The large on-chip instruction cache of the Am29030 and Am29035 microprocessors
satisfy the instruction bandwidth requirements and therefore remove the need for
separate instruction and data buses. The Am29030 and Am29035 microprocessors
employ a streamlined, 2-bus external interface, which comprises an address bus and
an instruction/data bus. This allows the use of lower-performance and lower-cost
memory, provides a reduction in the memory-system parts count, and reduces the
board area required for the memory system. In addition, the simplified design require-
ments reduce development costs.

Pin-, Bus-, and Software-Compatibility

Compatibility within a processor family is critical for achieving a rational, easy upgrade
path. The Am29030 and Am29035 microprocessors provide compatibility on several
levels. The processors are software-compatible with the existing members of the 29K
family (the Am29000, Am29005, and Am29050 microprocessors). In addition, the
processors are pin-, bus-, and software-compatible with future members of the
Am29030 and Am29035 processors.

Pin- and bus-compatibility within the Am29030 and Am23035 processors is a unique
feature that ensures a convenient upgrade path, without hardware or software rede-
sign, for embedded applications.

Wide Range of Price/Performance Points

To reduce design costs and time-to-market, one basic system design may be used as
the foundation for an entire product line. From this design, numerous implementations
of the product at various levels of price and performance may be derived with mini—
mum time, effort, and cost.

The Am29030 and Am29035 processors provide this capability through Scalable
Clocking technology, the narrow read interface, programmable bus sizing, and
hardware and software compatibility. Processors can be upgraded without hardware
and software redesign and combined with high-performance or mid-performance
memory. The narrow read interface accommodates numerous ROM configurations. In
addition, programmable bus sizing allows Am29035 microprocessor-based systems
to support memory upgrades in half-megabyte increments.

These new AMD processors provide a wide range of price/performance points for any
system design.

FEATURES AND PERFORMANCE 1-5

1.2.8

1.3.1

1.3.2

Complete Development and Support Environment

A complete development and support environment is vital for reducing a product's
time-to-market. Advanced Micro Devices has created a standard development
environment for the 29K Family of processors. In addition, the Fusion29Ksm third-party
support organization provides the most comprehensive customer/partner program in
the embedded processor market.

Advanced Micro Devices offers a complete set of hardware and software tools for
design, integration, debugging, and benchmarking. These tools, which are available
now for the RISC family include the following:

e HighC29K optimizing C compiler with assembler, linker, ANSI library functions, and
29K architectural simulator

o XRAY29K source-level debugger
¢ Debug monitor
o EB29030 execution board

In addition, Advanced Micro Devices has developed a standard host interface (HIF)
for OS services, and extensions for the UNIX® common object file format (COFF).

This support is augmented by an engineering hotline, an on-line bulletin board, and
field application engineers.

PERFORMANCE OVERVIEW

The Am29030 and Am29035 microprocessors provide a significant margin of perform-
ance over other processors in their class, since the majority of processor features
were defined for the maximum achievable performance at a reasonable cost. This
section describes the features of the Am29030 and Am29035 microprocessors from
the point of view of system performance.

Instruction Timing

The Am29030 and Am29035 microprocessors use an Arithmetic/Logic Unit, a Field
Shift Unit, and a Prioritizer to execute most instructions. Each of these is organized to
operate on 32-bit operands and provide a 32-bit result. All operations are performed
in a single cycle.

The performance degradation of load and store operations is minimized in the
Am29030 and Am29035 microprocessors by overlapping them with instruction execu-
tion, by taking advantage of pipelining, and by organizing the flow of external data into
the processor so that the impact of external accesses is minimized.

Pipelining
Instruction operations are overlapped with instruction fetch, instruction decode,
operand fetch, and result write-back to the Register File. Pipeline forwarding logic

detects pipeline dependencies and routes data as required, avoiding delays that
might arise from these dependencies.

Pipeline interlocks are implemented by processor hardware. Except for a few special
cases, it is not necessary to rearrange programs to avoid pipeline dependencies,
although this is sometimes desirable for performance.

1-6 FEATURES AND PERFORMANCE

1.3.3

1.3.4

1.3.5

1.3.6

Instruction Cache

The Am29030 microprocessor utilizes an 8K-byte, two-way-set-associative instruction
cache to meet the instruction bandwidth requirements for high performance.

The Am29035 microprocessor utilizes a 4K-byte, direct-mapped instruction cache to
meet the instruction bandwidth requirements for mid-range performance.

In both processors, the instruction cache stores the most recently fetched instructions.
The instruction cache block size is four words (16 bytes). Either processor allows all
or part of the instruction cache to be locked, allowing the processor to retain special
instruction sequences. The Am29030 microprocessor allows either one or both col-
umns of the cache to be locked, and the Am29035 microprocessor allows the entire
cache to be locked.

Instruction Set Overview

The Am29030 and Am29035 microprocessors employ a three-address instruction set
architecture. The compiler or assembly-language programmer is given complete
freedom to allocate register usage. There are 192 general-purpose registers, allowing
the retention of intermediate calculations and avoiding needless data destruction.
Instruction operands may be contained in any of the general-purpose registers, and
the results may be stored into any of the general-purpose registers.

The Am29030 and Am29035 instruction set contains 117 instructions which are
divided into nine classes. These classes are integer arithmetic, compare, logical, shift,
data movement, constant, floating-point, branch, and miscellaneous. The
floating-point instructions are not executed directly, but are emulated by trap handlers.

All directly implemented instructions are capable of executing in one processor cycle,
with the exception of interrupt returns, loads, and stores.

Data Formats

The Am29030 and Am29035 microprocessors define a word as 32 bits of data, a
half-word as 16 bits, and a byte as 8 bits. The hardware provides direct support for
word-integer (signed and unsigned), word-logical, word-boolean, half-word integer
(signed and unsigned) and character data (signed and unsigned).

Word-boolean data is based on the value contained in the most significant bit of the
word. The values TRUE and FALSE are represented by the MSB values 1 and 0
respectively.

Other data formats, such as character strings, are supported by instruction
sequences. Floating-point formats (single and double precision) are defined for the
processors; however, there is no direct hardware support for these formats in the
Am29030 and Am29035 microprocessors.

Protection

The Am29030 and Am29035 microprocessors provide a variety of system protection
features. The processors offer two mutually exclusive modes of execution, the User
and Supervisor modes, which restrict or permit accesses to certain processor
registers and external storage locations.

The Memory Management Unit (MMU) provides for memory protection through the
use of six access permission bits. These bits restrict memory accesses to instruction

FEATURES AND PERFORMANCE 1-7

1.3.7

1.3.8

execution (user and/or supervisor execution) and type of data access (read, write or
no access). The MMU may be used also to provide protection for the system via
user-defined outputs.

The Register File may be configured to restrict accesses to Supervisor-mode pro-
grams on a bank-by-bank basis.

Memory Management

A 64-entry Translation Look-Aside Buffer (TLB) performs virtual-to-physical address
translation, avoiding the cycle which would be required to transfer the virtual address
to an external TLB. A number of enhancements improve the performance of address
translation:

1. Pipelining—The operation of the TLB is pipelined with other processor operations.

2. Task Identifiers—Task Identifiers allow TLB entries to be matched to different
processes, so that TLB invalidation is not required during task switches.

3. Least-Recently Used Hardware—This hardware allows immediate selection of a
TLB entry to be replaced.

4. Software Reload—Software reload allows the operating system to use a
page-mapping scheme which is best matched to its environment. One of
Paged-segmented, one-level-page mapping, two-level-page mapping, or any
other user-defined page-mapping scheme can be supported. Because Am29030
and Am29035 instructions execute at an average rate of nearly one instruction per
cycle, software reload has performance approaching that of hardware TLB reload.

Interrupts and Traps

When an Am29030 or Am29035 microprocessor takes an interrupt or trap, it does not
automatically save its current state information in memory. This lightweight interrupt
and trap facility greatly improves the performance of temporary interruptions such as
TLB reload or other simple operating-system calls which require no saving of state
information.

In cases where the processor state must be saved, the saving and restoring of state
information is under the control of software. The methods and data structures used to
handle interrupts—and the amount of state saved—may be tailored to the needs of a
particular system.

Interrupts and traps are dispatched through a 256-entry Vector Table which directs
the processor to a routine that handles a given interrupt or trap. The Vector Table
may be relocated in memory by the modification of a processor register. There may
be multiple Vector Tables in the system, though only one is active at any given time.

The Vector Table is a table of pointers to the interrupt and trap handlers, requiring
only 1 Kbyte of memory. This structure requires that the processors perform a vector
fetch every time an interrupt or trap is taken. The vector fetch requires at least three
cycles, in addition to the number of cycles required for the basic memory access.

DEBUGGING AND TESTING

The Am29030 and Am29035 microprocessors provide debugging and testing features
at both the software and hardware levels.

Software debugging is facilitated by the instruction trace facility and instruction
breakpoints. Instruction tracing is accomplished by forcing the processor to trap after

1-8 FEATURES AND PERFORMANCE

each instruction has been executed. Instruction breakpoints are implemented by the
HALT instruction or by a software trap.

Software can access all tag/status, and instruction words in the instruction cache for
testing.

The processors provide two additional features to assist system debugging and test-
ing. The first feature, the Test/Development Interface, is composed of a group of pins
that indicate the state of the processor and control the operation of the processor. The
second feature is an IEEE Std. 1149.1-1990 (JTAG) compliant Standard Test Access
Port and Boundary-Scan Architecture. The Test Access Port provides a scan interface
for testing system hardware in a production environment, and contains extensions
that allow a hardware-development system to control and observe the processor
without interposing hardware between the processor and system.

REFERENCES
1 Hill, M.D. Aspects of Cache Memory and Instruction Buffer Performance, PhD
Dissertation, University of California at Berkeley, CA, USA (1987)

FEATURES AND PERFORMANCE 1-9

| CHAPTER 2 |

PROGRAMMING a

2.1

2.1.1

2.1.2

This chapter focuses on programming the Am29030 and Am29035 microprocessors.
First, this chapter presents an instruction set overview. It then describes the register
model, emphasizing the general- and special-purpose registers. This chapter also
describes certain special-purpose registers that deal directly with instruction execu-
tion. Finally, this chapter describes general considerations related to applications
programming.

INSTRUCTION SET

The Am29030 and Am29035 microprocessors recognize 117 instructions. All instruc-
tions execute in a single cycle, except for IRET, IRETINV, LOADM, STOREM, and
certain arithmetic instructions such as floating-point instructions.

Most instructions deal with general-purpose registers for operands and results; how-
ever, in most instructions, an 8-bit constant can be used in place of a register-based
operand. Some instructions deal with special-purpose registers, TLB registers, and
external devices and memories.

This section describes the nine instruction classes in the Am29030 and Am29035
microprocessors, and provides a brief summary of instruction operations. A de-
tailed instruction specification is contained in Chapter 12. Section 12.1 describes the
nomenclature used here.

If the processor attempts to execute an instruction which is not implemented, an
llegal Opcode trap occurs, unless the instruction is reserved for emulation (see Sec-
tion 2.1.10). Reserved instructions are assigned individual traps.

Integer Arithmetic

The Integer Arithmetic instructions perform add, subtract, multiply, and divide opera-
tions on word-length integers. Certain instructions in this class cause traps if signed or
unsigned overflow occurs during the execution of the instruction. There is support for
multi-precision arithmetic on operands whose lengths are multiples of words. All
instructions in this class set the ALU Status Register. The integer arithmetic instruc-
tions are shown in Table 2-1.

Compare

The Compare instructions test for various relationships between two values. For all
Compare instructions except the CPBYTE instruction, the comparisons are performed
on word-length signed or unsigned integers. There are two types of Compare instruc-
tions. The first type places a Boolean value reflecting the outcome of the compare into
a general-purpose register. For the second type, assert instructions, instruction exe-
cution continues only if the comparison is true; otherwise a trap occurs. The assert
instructions specify a vector for the trap (see Section 8.2).

PROGRAMMING 2-1

Table 2-1 Integer Arithmetic Instructions

Mnemonic

Operation Description

ADD
ADDS

ADDU

ADDC
ADDCS

ADDCU

SuB
SUBS

SuBU

SuBC
SUBCS

SuBsCU

SUBR
SUBRS

SUBRU

SUBRC
SUBRCS

SUBRCU

MULTIPLU
MULTIPLY
MUL
MULL
MULTM
MULTMU
MULU
DIVIDE

DIVIDU

DIVO
DIV
DIVL
DIVREM

DEST « SRCA + SRCB

DEST « SRCA + SRCB
IF signed overflow THEN Trap (Out of Range)

DEST « SRCA + SRCB
IF unsigned overflow THEN Trap (Out of Range)

DEST « SRCA+SRCB+C

DEST « SRCA+SRCB+C
IF signed overflow THEN Trap (Out of Range)

DEST« SRCA+SRCB+C
IF unsigned overflow THEN Trap (Out of Range)

DEST « SRCA-SRCB

DEST « SRCA-SRCB
IF signed overflow THEN Trap (Out of Range)

DEST « SRCA-SRCB
IF unsigned underflow THEN Trap (Out of Range)

DEST « SRCA-SRCB-1+C

DEST « SRCA-SRCB-1+C
IF signed overflow THEN Trap (Out of Range)

DEST« SRCA-SRCB-1+C
IF unsigned underflow THEN Trap (Out of Range)

DEST « SRCB-SRCA

DEST « SRCB-SRCA
IF signed overflow THEN Trap (Out of Range)

DEST « SRCB-SRCA
IF unsigned underflow THEN Trap (Out of Range)

DEST« SRCB-SRCA-1+C

DEST« SRCB-SRCA-1+C
IF signed overflow THEN Trap (Out of Range)

DEST« SRCB-SRCA-1+C
IF unsigned underflow THEN Trap (Out of Range)

DEST « SRCA - SRCB (unsigned)

DEST « SRCA - SRCB (signed)

Perform one-bit step of a multiply operation (signed)
Complete a sequence of multiply steps

DEST « SRCA - SRCB (signed), most-significant bits
DEST « SRCA - SRCB (unsigned), most-significant bits
Perform one-bit step of a multiply operation (unsigned)

DEST « (Q//SRCA)/SRCB (signed)
Q « Remainder

DEST « (Q//SRCA)/SRCB (unsigned)
Q<« Remainder

Initialize for a sequence of divide steps (unsigned)
Perform one-bit step of a divide operation (unsigned)
Complete a sequence of divide steps (unsigned)
Generate remainder for divide operation (unsigned)

2.2 PROGRAMMING

Table 2-2

Compare Instructions

Mnemonic Operation Description
CPEQ IF SRCA =SRCB THEN DEST « TRUE
ELSE DEST « FALSE
CPNEQ IF SRCA <>SRCB THEN DEST « TRUE
ELSE DEST « FALSE
CPLT IF SRCA <SRCB THEN DEST « TRUE
ELSE DEST « FALSE
CPLTU IF SRCA < SRCB (unsigned) THEN DEST « TRUE
ELSE DEST « FALSE
CPLE IF SRCA<SRCB THEN DEST « TRUE
ELSE DEST « FALSE
CPLEU IF SRCA < SRCB (unsigned) THEN DEST « TRUE
ELSE DEST « FALSE
CPGT IF SRCA > SRCB THEN DEST « TRUE
ELSE DEST « FALSE
CPGTU IF SRCA > SRCB (unsigned) THEN DEST « TRUE
ELSE DEST « FALSE
CPGE If SRCA>SRCB THEN DEST « TRUE
ELSE DEST « FALSE
CPGEU IF SRCA > SRCB (unsigned) THEN DEST « TRUE
ELSE DEST « FALSE
CPBYTE IF (SRCA.BYTEO =SRCB.BYTEQ) OR
(SRCA.BYTE1=SRCB.BYTE1) OR
(SRCA.BYTE2=SRCB.BYTE2) OR
(SRCA.BYTE3=SRCB.BYTE3) THEN DEST « TRUE
ELSE DEST « FALSE
ASEQ IF SRCA = SRCB THEN Continue
ELSE Trap (VN)
ASNEQ IF SRCA <>SRCB THEN Continue
ELSE Trap (VN)
ASLT iF SRCA < SRCB THEN Continue
ELSE Trap (VN)
ASLTU IF SRCA < SRCB (unsigned) THEN Continue
ELSE Trap (VN)
ASLE IF SRCA < SRCB THEN Continue
ELSE Trap (VN)
ASLEU IF SRCA < SRCB (unsigned) THEN Continue
ELSE Trap (VN)
ASGT IF SRCA > SRCB THEN Continue
ELSE Trap (VN)
ASGTU IF SRCA > SRCB (unsigned) THEN Continue
ELSE Trap (VN)
ASGE IF SRCA>SRCB THEN Continue
ELSE Trap (VN)
ASGEU IF SRCA > SRCB (unsigned) THEN Continue

ELSE Trap (VN)

PROGRAMMING

23

The assert instructions support run-time operand checking and operating-system
calls. If the trap occurs in the User mode, and a trap number between 0 and 63 is
specified by the instruction, a Protection Violation trap occurs. The Compare instruc-
tions are shown in Table 2-2.

2.1.3 Logical
The Logical instructions perform a set of bit-by-bit Boolean functions on word-length
bit strings. All instructions in this class set the ALU Status Register. These instructions
are shown in Table 2-3.

21.4 Shift
The Shift instructions (Table 2-4) perform arithmetic and logical shifts. All but the
EXTRACT instruction operate on word-length data and produce a word-length result.
The EXTRACT instruction operates on double-word data and produces a word-length
result. If both parts of the double-word for the EXTRACT instruction are from the
same source, the EXTRACT operation is equivalent to a rotate operation. For each
operation, the shift count is a 5-bit integer, specifying a shift amount in the range of 0
to 31 bits.

2.1.5 Data Movement
The Data Movement instructions (Table 2-5) move bytes, half-words, and words
between processor registers. In addition, they move data between general-purpose
registers and external devices, and memories.

Table 2-3 Logical instructions
Mnemonic Operation Description
AND DEST « SRCA&SRCB
ANDN DEST <« SRCA &~ SRCB
NAND DEST «~ (SRCA & SRCB)
OR DEST « SRCA|SRCB
NOR DEST « ~ (SRCA | SRCB)
XOR DEST « SRCA*SRCB
XNOR DEST « ~(SRCA*SRCB)

Table 2-4 Shift Instructions
Mnemonic Operation Description
SLL DEST « SRCA << SRCB (zero fill)
SRL DEST « SRCA >> SRCB (zero fill)
SRA DEST « SRCA >> SRCB (sign fill)
EXTRACT DEST « high-order word of (SRCA//SRCB << FC)

24 PROGRAMMING

Table 2-5 Data Movement Instructions

Mnemonic Operation Description

LOAD DEST « EXTERNAL WORD [SRCB]

LOADL DEST « EXTERNAL WORD [SRCB]
assert LOCK output during access

LOADSET DEST «- EXTERNAL WORD [SRCB]

EXTERNAL WORD [SRCB] « h'FFFFFFFF’
assert LOCK output during access

LOADM DEST.. DEST + COUNT ¢«
EXTERNAL WORD [SRCB] ..
EXTERNAL WORD [SRCB + COUNT - 4]
STORE EXTERNAL WORD [SRCB]« SRCA
STOREL EXTERNAL WORD [SRCB] « SRCA
assert LOCK output during access
STOREM EXTERNAL WORD [SRCB] ..

EXTERNAL WORD [SRCB + COUNT - 4]
SRCA... SRCA + COUNT

EXBYTE DEST « SRCB, with low-order byte replaced by byte in SRCA
selected by BP

EXHW DEST « SRCB, with low-order half-word replaced by half-word in SRCA
selected by BP

EXHWS DEST « half-word in SRCA selected by BP, sign-extended to 32 bits

INBYTE DEST « SRCA, with byte selected by BP replaced by low-order byte
of SRCB

INHW DEST « SRCA, with half-word selected by BP replaced by low-order
half-word of SRCB

MFSR DEST « SPECIAL

MFTLB DEST « TLB [SRCA]

MTSR SPDEST « SRCB

MTSRIM SPDEST «0l16

MTTLB TLB [SRCA] « SRCB

2.1.6 Constant

The Constant instructions (Table 2-6) provide the ability to place half-word and word
constants into registers. Most instructions in the instruction set allow an 8-bit constant
as an operand. The Constant instructions allow the construction of larger constants.

2.1.7 Floating-Point

The Floating-Point instructions (Table 2-7) provide operations on single-precision
(32-bit) or double-precision (64-bit) floating-point data. They also provide conversions
between single-precision, double-precision, and integer number representations. In
the Am29030 and Am29035 processor implementations, these instructions cause
traps to routines which perform the floating-point operations.

PROGRAMMING 2-5

Table 2-6

Constant instructions

Mnemonic Operation Description
CONST DEST«0l16
CONSTH Replace high-order half-word of SRCA by 116
CONSTN DEST« 1116
Table 2-7 Floating-Point instructions
Mnemonic . Operation Description
FADD DEST (single-precision) « SRCA (single-precision)
+SRCB (single-precision)
DADD DEST (double-precision) « SRCA (double-precision)
+SRCB (double-precision)
FSUB DEST (single-precision) « SRCA (double-precision)
—SRCB (single-precision)
DSUB DEST (double-precision) « SRCA (double-precision)
—SRCB (double-precision)
FMUL DEST (single-precision) « SRCA (single-precision)
- SRCB (single-precision)
FDMUL DEST (double-precision) « SRCA (single-precision)
- SRCB (single-precision)
DMUL DEST (double-precision) « SRCA (double-precision)
- SRCB (double-precision)
FDIV DEST (single-precision) « SRCA (single-precision
/ SRCB (single-precision)
DDIV DEST (double-precision) <« SRCA (double-precision)
/ SRCB (double-precision)
FEQ IF SRCA (single-precision) = SRCB (single-precision)
THEN DEST « TRUE
ELSE DEST « FALSE
DEQ IF SRCA (double-precision) = SRCB (double-precision)
THEN DEST « TRUE
ELSE DEST « FALSE
FGE IF SRCA (single-precision) >= SRCB (single-precision
THEN DEST « TRUE
ELSE DEST « FALSE
DGE IF SRCA (double-precision) >= SRCB (double-precision
THEN DEST « TRUE
ELSE DEST « FALSE
FGT IF SRCA (single-precision) > SRCB (single-precision)
THEN DEST « TRUE
ELSE DEST « FALSE
26 PROGRAMMING

Floating-Point Instructions (continued)

Mnemonic Operation Description
DGT IF SRCA (double-precision) > SRCB (double-precision)
THEN DEST « TRUE

ELSE DEST « FALSE
SQRT DEST (single-precision, double-precision)

« SQRT[SRCA (single-precision, double-precision)]
CONVERT DEST (integer, single-precision, double-precision)

« SRCA (integer, single-precision, double-precision)
CLASS DEST « CLASS[SRCA (single-precision, double-precision)]

2.1.8 Branch

The Branch instructions (Table 2-8) control the execution flow of instructions. Branch
target addresses may be absolute, relative to the Program Counter (with the offset
given by a signed instruction constant), or contained in a general-purpose register.
For conditional jumps, the outcome of the jump is based on a Boolean value in a
general-purpose register. Procedure calls are unconditional, and save the return
address in a general-purpose register. All branches have a delayed effect; the instruc-
tion sequence following the branch is executed regardless of the outcome of the

branch.
Table 2-8 Branch Instructions

Mnemonic Operation Description

CALL DEST « PC//00 +8
PC « TARGET
Execute delay instruction

CALLI DEST « PC//00+8
PC« SRCB
Execute delay instruction

JMP PC «TARGET
Execute delay instruction

JMPI PC«+ SRCB
Execute delay instruction

JMPT IF SRCA =TRUE THEN PC « TARGET
Execute delay instruction

JMPTI IF SRCA=TRUE THEN PC « SRCB
Execute delay instruction

JMPF IF SRCA =FALSE THEN PC « TARGET
Execute delay instruction

JMPFI IF SRCA =FALSE THEN PC « SRCB
Execute delay instruction

JMPFDEC IF SRCA=FALSE THEN

SRCA« SRCA-1
PC « TARGET

ELSE

SRCA« SRCA-1
Execute delay instruction

PROGRAMMING 2-7

2.1.9

2.1.10

2.2

Miscellaneous

The Miscellaneous instructions (Table 2-9) perform various operations that cannot be
grouped into other instruction classes. In certain cases, these are control functions
available only to Supervisor-mode programs.

Reserved Instructions

Sixteen Am29030 and Am29035 microprocessor operation codes are reserved for
instruction emulation. Each of these instructions causes a trap and sets the indirect
pointers IPC, IPA, and IPB. The relevant operation codes, and the corresponding trap
vectors, are as follows:

Operation Codes (Hexadecimal) Trap Vector Numbers (Decimal)

D8-DD 24-29
E7-E9 39-41

F8 56
FA-FF 58-63

The reserved instructions are intended for future processor enhancements, and
users desiring compatibility with future processor versions should not use them for
any purpose.

REGISTER MODEL

The Am29030 and Am29035 microprocessors have three classes of registers that are
accessible by instructions. These are the general-purpose registers, special-purpose
registers and Translation Look-Aside Buffer (TLB) registers. Any operation available
to the Am29030 and Am29035 microprocessors -can be performed on the general-
purpose registers, while special-purpose registers are accessed only by the instruc-
tions MTSR, MTSRIM, and MFSR, and the TLB registers are accessed only by the
instructions MTTLB and MFTLB. This section describes the general-purpose and
special-purpose registers. The TLB registers are discussed in Section 7.2.

Table 2-9

Miscellaneous Instructions

Mnemonic Operation Description

CLZ Determine number of leading zeros in a word

SETIP Set IPA, IPB, and IPC with operand register numbers

EMULATE Load IPA and IPB with operand register numbers, and Trap (VN)
INV Reset all Valid bits in Branch Target Cache memory to zeros
IRET Perform an interrupt return sequence

IRETINV Perform an interrupt return sequence and reset all Valid bits in
the Instruction Cache to zeros

HALT Enter Halt mode

28

PROGRAMMING

2.2.1

2211

2.2.1.2

General-Purpose Registers

The Am29030 and Am29035 microprocessors incorporate 192 general-purpose
registers. The organization of the general-purpose registers is diagrammed in
Figure 2-1.

General-purpose registers hold the following types of operands for program use:
. 32-bit addresses

. 32-bit signed or unsigned integers

. 32-bit branch-target addresses

. 32-bit logical bit strings

. 8-bit signed or unsigned characters

. 16-bit signed or unsigned integers

. Word-length Booleans

. Single-precision floating-point numbers

. Double-precision floating-point numbers (in two register locations)

Because a large number of general-purpose registers are provided, a large amount of
frequently used data can be kept on-chip, where access time is fastest.

Am29030 and Am29035 microprocessor instructions can specify two general-purpose
registers for source operands, and one general-purpose register for storing the in-
struction result. These registers are specified by three 8-bit instruction fields contain-
ing register numbers. A register may be specified directly by the instruction, or indi-
rectly by one of three special-purpose registers.

REGISTER ADDRESSING

The general-purpose registers are partitioned into 64 global registers and 128 local
registers, differentiated by the most-significant bit of the register number. The
distinction between global and local registers is the result of register-addressing
considerations.

The following terminology is used to describe the addressing of general-purpose
registers:

1. Register number—this is a software-level number for a general-purpose register.
For example, this is the number contained in an instruction field. Register
numbers range from 0 to 255.

2. Global-register number—this is a software-level number for a global register.
Global-register numbers range from 0 to 127.

3. Local-register number—this is a software-level number for a local register.
Local-register numbers range from 0 to 127.

4. Absolute-register number—this is a hardware-level number used to select a
general-purpose register in the Register File. Absolute-register numbers range
from 0 to 255.

GLOBAL REGISTERS

When the most-significant bit of a register number is 0, a global register is selected.
The seven least-significant bits of the register number give the global-register num-
ber. For global registers, the absolute-register number is equivalent to the register
number.

© 0O N O s W =

PROGRAMMING 2-9

Figure 2-1

P
Global
Registers
\
/
Local <
Registers

General-Purpose Register Organization

Ag;’g‘:' General-Purpose
0 Indirect Pointer Access
1 Stack Pointer
2-63 Not Implemented
64 Global Register 64
65 Global Register 65
66 Global Register 66
L] .
L] L[]
o L[]
126 Global Register 126
127 Global Register 127
128 Local Register 125
129 Local Register 126
130 Local Register 127
131 Local Register 0 1—l
Stack
132 Local Register 1 Pointer =131
r - (example)
[] L]
° []
254 Local Register 123
255 Local Register 124

210 PROGRAMMING

2.2.1.3

2214

2.2.2

Gilobal registers 2 through 63 are not implemented. An attempt to access these regis-
ters yields unpredictable results; however, they may be protected from User-mode
access by the Register Bank Protect Register (see Section 6.2.1).

The register numbers associated with Global Registers 0 and 1 have special mean-
ing. The number for Global Register 0 specifies that an indirect pointer is to be used
as the source of the register number (see Section 2.3); there is an indirect pointer for
each of the instruction operand/result registers. Global Register 1 contains the Stack
Pointer, which is used in the addressing of local registers.

LOCAL REGISTERS

When the most-significant bit of a register number is 1, a local register is selected.
The seven least-significant bits of the register number give the local-register number.
For local registers, the absolute-register number is obtained by adding the local-regis-
ter number to bits 8-2 of the Stack Pointer and truncating the result to seven bits; the
most-significant bit of the original register number is unchanged (i.e., it remains a 1).

The Stack Pointer addition applied to local-register numbers provides a limited form
of base-plus-offset addressing within the local registers. The Stack Pointer contains
the 32-bit base address. This assists run-time storage management of variables for
dynamically nested procedures (see Chapter 4).

LOCAL-REGISTER STACK POINTER

The Stack Pointer is a 32-bit register that may be an operand of an instruction as any
other general-purpose register. However, a shadow copy of Global Register 1 is
maintained by processor hardware for use in local-register addressing. This shadow
copy is set only with the results of Arithmetic and Logical instructions. If the Stack
Pointer is set with the result of any other instruction class, local registers cannot be
accessed predictably until the Stack Pointer is set once again with an Arithmetic or
Logical instruction.

A modification of the Stack Pointer has a delayed effect on the addressing of local
registers, as discussed in Section 5.6.

Special-Purpose Registers

The Am23030 and Am29035 microprocessors contain 28 special-purpose registers.
The organization of the special-purpose registers is shown in Figure 2-2.

Special-purpose registers provide controls and data for certain processor operations.
Some special-purpose registers are updated dynamically by the processor, independ-
ent of software controls. Because of this, a read of a special-purpose register follow-
ing a write does not necessarily get the data that was written.

Some special-purpose registers have fields that are reserved for future processor
implementations. When a special-purpose register is read, a bit in a reserved field is
read as a 0. An attempt to write a reserved bit with a 1 has no effect; however, this
should be avoided because of upward-compatibility considerations.

The special-purpose registers are accessed by explicit data movement only. Instruc-
tions that move data to or from a special-purpose register specify the special-purpose
register by an 8-bit field containing a special-purpose register number. Register num-
bers are specified directly by instructions.

The special-purpose registers are partitioned into protected and unprotected regis-
ters. Special-purpose registers numbered 0-127 and 160-255 are protected (note
that not all of these are implemented). Special-purpose registers numbered 128-159
are unprotected (again, not all are implemented).

PROGRAMMING 2-11

Figure 2-2

Special-Purpose Registers

Register Number Protected Registers Mnemonic
0 Vector Area Base Address VAB
1 Old Processor Status OPS
2 Current Processor Status CPS
3 Configuration CFG
4 Channel Address CHA
5 Channel Data CHD
6 Channel Control CHC
7 Register Bank Protect RBP
8 Timer Counter T™MC
9 Timer Reload TMR

10 Program Counter 0 PCO
11 Program Counter 1 PC1

12 Program Counter 2 PC2
13 MMU Configuration MMU
14 LRU Recommendation LRU
29 Cache Interface Register CIR

30 Cache Data Register CDR

Unprotected Registers

128 Indirect Pointer C IPC
129 Indirect Pointer A IPA
130 Indirect Pointer B IPB
131 Q Q
132 ALU Status ALU
133 Byte Pointer BP
134 Funnel Shift Count FC
135 Load/Store Count Remaining CR
160 Floating-Point Environment FPE
161 Integer Environment INTE
162 Floating-Point Status FPS

Protected special-purpose registers numbered 0-127 are accessible only by pro-
grams executing in the Supervisor mode. An attempted read or write of a special-pur-
pose register by a User-mode program causes a protection violation trap to occur.
Special-purpose registers numbered 160-255, though architecturally unprotected, are
not accessible by programs in the User mode or the Supervisor mode. These register
numbers are reserved for virtual registers in the arithmetic architecture, and any
attempted access causes a Protection Violation trap.

The Floating-Point Environment Register, Integer Environment Register, and Floating-
Point Status Register are not implemented in processor hardware. These registers
are implemented via the virtual arithmetic interface provided on the Am29030 and
Am29035 microprocessor.

212 PROGRAMMING

2.3

2.3.1

An attempted read of an unimplemented special-purpose register yields an unpredict-
able value. An attempted write of an unimplemented, protected special-purpose regis-
ter has an unpredictable effect on processor operation, unless the write causes a
Protection Violation. An attempted write of an unimplemented, unprotected special-
purpose register has no effect; however, this should be avoided because of upward-
compatibility considerations.

ADDRESSING REGISTERS INDIRECTLY

Specifying Global Register 0 as an instruction operand register or result register
causes an indirect access to the general-purpose registers. In this case, the absolute-
register number is provided by an indirect pointer contained in a special-purpose
register.

Each of the three possible registers for instruction execution has an associated 8-bit
indirect pointer. Indirect register numbers can be selected independently for each of
the three operands. Since the indirect pointers contain absolute-register numbers, the
number in an indirect pointer is not added to the Stack Pointer when local registers
are selected.

The indirect pointers are set by the Move To Special Register, SETIP, and EMULATE
instructions and by floating-point, MULTIPLY, MULTM, MULTIPLU, MULTMU,
DIVIDE, and DIVIDU instructions.

For a Move-To-Special-Register instruction, an indirect pointer is set with bits 92 of
the 32-bit source operand. This provides consistency between the addressing of
words in general-purpose registers and the addressing of words in external devices or
memories. A modification of an indirect pointer using a Move To Special Register has
a delayed effect on the addressing of general-purpose registers, as discussed in
Section 5.6.

For the remaining instructions, all three indirect pointers are set simultaneously with
the absolute-register numbers derived from the register numbers specified by the
instruction. For any local registers selected by the instruction, the Stack-Pointer addi-
tion is applied to the register numbers before the indirect pointers are set.

Except when an indirect pointer is set by a Move-To-Special-Register instruction,
register numbers stored into the indirect pointers are checked for bank-protection
violations at the time that the indirect pointers are set.

Indirect Pointer C (IPC, Register 128)

This unprotected special-purpose register (Figure 2-3) provides the RC-operand
register number (see Section 12.3) when an instruction RC field has the value zero
(i.e., when Global Register 0 is specified).

Figure 2-3

Indirect Pointer C Register

31 23 15 7
frrerrretrtrtrtrrr ey e

Reserved IPC ojo

PROGRAMMING 2-13

Bits 31-10: Reserved.

Bits 9-2: Indirect Pointer C (IPC)—The 8-bit IPC field contains an absolute-register
number for a general-purpose register. This number directly selects a register (Stack-
Pointer addition is not performed in the case of local registers).

Bits 1-0: Zeros—The IPC field is aligned for compatibility with word addresses.

2.3.2 Indirect Pointer A (IPA, Register 129)
This unprotected special-purpose register (Figure 2-4) provides the RA-operand
register number (see Section 12.3) when an instruction RA field has the value zero
(i.e., when Global Register 0 is specified).

Figure 2-4 Indirect Pointer A Register
31 23 15 7 0

Reserved IPA ojo

Bits 31-10: Reserved.
Bits 9-2: Indirect Pointer A (IPA)—The 8-bit IPA field contains an absolute-
register number for either a general-purpose register or a local register. This number
directly selects a register (Stack-Pointer addition is not performed in the case of
local registers).
Bits 1-0: Zeros—The IPA field is aligned for compatibility with word addresses.

2.3.3 Indirect Pointer B (IPB, Register 130)
This unprotected special-purpose register (Figure 2-5) provides the RB-operand
register number (see Section 12.3) when an instruction RB field has the value zero
(i.e., when Global Register 0 is specified).

Figure 2-5 Indirect Pointer B Register
31 23 15 7 0

RERRRRRRERERRRRRRR RN
Reserved IPB 010

Bits 31-10: Reserved.
Bits 9-2: Indirect Pointer B (IPB)—The 8-bit IPB field contains an absolute-register
number for a general-purpose register. This number directly selects a register (Stack-
Pointer addition is not performed in the case of local registers).
Bits 1-0: Zeros—The IPB field is aligned for compatibility with word addresses.

24 INSTRUCTION ENVIRONMENT

This section describes the special-purpose registers that affect the execution of float-
ing-point and integer arithmetic instructions.

2-14 PROGRAMMING

2.4.1 Floating-Point Environment (FPE, Register 160)
This unprotected special-purpose register (Figure 2-6) contains control bits that affect
the execution of floating-point operations.

Figure 2-6 Floating-Point Environment Register

31 23 15
HERERRRRRRRRRRRRRRREREE

Reserved FRM

'] 0
') .

y ' : ' . .
FF DM:UM: RM
XM VM NM

T v
PR |
.
[

Bits 31-9: Reserved.

Bit 8: Fast Float Select (FF)—The FF bit being 1 enables fast floating-point opera-
tions, in which certain requirements of the IEEE floating-point specification are not
met. This improves the performance of certain operations by sacrificing conformance
to the IEEE specification.

Bits 7-6: Floating-Point Round Mode (FRM)—This field specifies the default mode
used to round the results of floating-point operations, as follows:

FRM1-0 Round Mode

00 Round to nearest
01 Round to —e

10 Round to +

1 Round to zero

Bit 5: Floating-Point Divide-By-Zero Mask (DM)—If the DM bit is 0, a Floating-Point
Exception trap occurs when the divisor of a floating-point division operation is zero
and the dividend is a non-zero, finite number. If the DM bit is 1, a Floating-Point
Exception trap does not occur for divide-by-zero.

Bit 4: Floating-Point Inexact Result Mask (XM)—If the XM bit is 0, a Floating-Point
Exception trap occurs when the result of a floating-point operation is not equal to the
infinitely precise result. If the XM bit is 1, a Floating-Point Exception trap does not
occur for an inexact result.

Bit 3: Floating-Point Underflow Mask (UM)—If the UM bit is 0, a Floating-Point
Exception trap occurs when the result of a floating-point operation is too small to be
expressed in the destination format. If the UM bit is 1, a Floating-Point Exception trap
does not occur for underflow.

Bit 2: Floating-Point Overflow Mask (VM)—If the VM bit is 0, a Floating-Point
Exception trap occurs when the result of a floating-point operation is too large to be
expressed in the destination format. If the VM bit is 1, a Floating-Point Exception trap
does not occur for overflow.

Bit 1: Floating-Point Reserved Operand Mask (RM)—If the RM bit is 0, a Floating-
Point Exception trap occurs when one or more input operands to a floating-point
operation is a reserved value, or when the result of a floating-point operation is a
reserved value. If the RM bit is 1, a Floating-Point Exception trap does not occur for
reserved operands.

PROGRAMMING 2-15

2.4.2

Bit 0: Floating-Point Invalid Operation Mask (NM)—If the NM bit is 0, a Floating-
Point Exception trap occurs when the input operands to a floating-point operation
produce an indeterminate result (e.g., « times 0). If the NM bit is 1, a Floating-Point
Exception trap does not occur for invalid operations.

integer Environment (INTE, Register 161)

This unprotected special-purpose register (Figure 2-7) contains control bits which
affect the execution of integer multiplication and division operations.

Figure 2-7

Integer Environment Register

31 23 15 7
NERRRRARRRRRRRRRRRRRRRRRRRRE

Reserved

Do !

Bits 31-2: Reserved.

Bit 1: Integer Division Overflow Mask (DO)—If the DO bit is 0, an Out of Range trap
occurs when overflow of a signed or unsigned 32-bit result occurs during a DIVIDE or
DIVIDU instruction, respectively. If the DO bit is 1, an Out of Range trap does not
occur for overflow during integer divide operations.

The DIVIDE and DIVIDU instructions always cause an Out of Range Trap upon divi-
sion by zero, regardless of the value of the DO bit.

Bit 0: Integer Multiplication Overflow Exception Mask (MO)—If the MO bit is 0, an
Out of Range trap occurs when overflow of a signed or unsigned 32-bit result occurs
during a MULTIPLY or MULTIPLU instruction, respectively. If the MO bit is 1, an Out
of Range trap does not occur for overflow during integer multiply operations.

2.5 STATUS RESULTS OF INSTRUCTIONS
This section discusses the status information generated by arithmetic, logical and
floating-point operations, and the special registers which contain this status
information.

2.5.1 ALU Status (ALU, Register 132)
This unprotected special-purpose register (Figure 2-8) holds information about the
outcome of Arithmetic/Logic Unit (ALU) operations as well as control for certain
operations performed by the Execution Unit.

Figure 2-8 ALU Status Register

31 23 15 7 0
Reserved VIN| Z| C| BP FC

DF

216 PROGRAMMING

2.5.2

Bits 31-12: Reserved.

Bit 11: Divide Flag (DF)—The DF bit is used by the instructions that implement
division. This bit is set at the end of the division instructions either to 1 or to the com-
plement of the 33rd bit of the ALU. When a Divide Step instruction is executed, the DF
bit determines whether an addition or subtraction operation is performed by the ALU.

Bit 10: Overflow (V)—The V bit indicates that the result of a signed, two’s-comple-
ment ALU operation required more than 32 bits to represent the result correctly. The
value of this bit is determined by exclusive-ORing the ALU carry-out with the carry-in
to the most-significant bit for signed, two’s-complement operations. This bit is not
used for any special purpose in the processor and is provided for information only.

Bit 9: Negative (N)—The N bit is set with the value of the most-significant bit of the
result of an arithmetic or logical operation. If two’s-complement overflow occurs, the N
bit does not reflect the true sign of the result. This bit is used in divide operations.

Bit 8: Zero (Z)—The Z bit indicates that the result of an arithmetic or logical operation
is zero. This bit is not used for any special purpose in the processor, and is provided
for information only.

Bit 7: Carry (C)—The C bit stores the carry-out of the ALU for arithmetic operations.
It is used by the add-with-carry and subtract-with-carry instructions to generate the
carry into the Arithmetic/Logic Unit.

Bits 6-5: Byte Pointer (BP)—The BP field holds a 2-bit pointer to a byte within a
word. It is used by Insert Byte and Extract Byte instructions. The mapping of the
pointer value to the byte position depends on the value of the Byte Order (BO) bit in
the Configuration Register.

The most-significant bit of the BP field is used to determine the position of a half-word
within a word for the Insert Half-Word, Extract Half-Word, and Extract Half-Word,
Sign-Extended instructions. The mapping of the most-significant bit to the half-word
position depends on the value of the BO bit in the Configuration Register.

The BP field is set by a Move To Special Register instruction with either the ALU
Status Register or the Byte Pointer Register as the destination. It is also set by a load
or store instruction if the Set Byte Pointer (SB) bit in the instruction is 1. A load or
store sets the BP field with the complement of the Byte Order bit of the Configuration
Register, for compatability with other 29K family processors.

Bits 4-0: Funnel Shift Count (FC)—The FC field contains a 5-bit shift count for the
Funnel Shifter. The Funnel Shifter concatenates two source operands into a single
64-bit operand and extracts a 32-bit result from this 64-bit operand; the FC field speci-
fies the number of bit positions from the most-significant bit of the 64-bit operand to
the most-significant bit of the 32-bit result. The FC field is used by the EXTRACT
instruction.

The FC field is set by a Move To Special Register instruction with either the ALU
Status Register or the Funnel Shift Count Register as the destination.

Arithmetic Operation Status Results

The Arithmetic instructions modify the V, N, Z, and C bits. These bits are set accord-
ing to the result of the operation performed by the instruction.

All instructions in the Arithmetic class—except for MULTIPLY, MULTM, DIVIDE,
MULTIPLU MULTMU, and DIVIDU—perform an add. in the case of subtraction, the
subtract is performed by adding the two’s-complement or one’s-complement of an
operand to the other operand. The multiply step and divide step operations also

PROGRAMMING ~ 2-17

2.5.3

254

25.5

perform adds, again possibly complementing one of the operands before the opera-
tion is performed. In general, the status bits are based on the results of the add.

If two’s-complement overflow occurs during the add, the V bit of the ALU Status Reg-
ister is set; otherwise it is reset. Two’s-complement overflow occurs when the carry-in
to the most-significant bit of the intermediate result differs from the carry-out. When
this occurs, the result cannot be represented by a signed word integer. Note that the
V bit always is set in this manner, even when the result is unsigned.

The N bit of the ALU Status Register is set to the value of the most-significant bit of
the result of the add. Note that the divide step and multiply step operations may shift
the result after the operation is performed. In the cases where shifting occurs, the N
bit may not agree with the result that is written into a general-purpose register, since
the N bit is based only on the result of the add, not on the shift.

If the result of the add causes a zero word to be written to a general-purpose register,
the Z bit of the ALU Status Register is set; otherwise, it is reset. The Z bit always
reflects the result written into a general-purpose register; if shifting is performed by a
multiply or divide step, the Z bit reflects the shifted value.

If there is a carry out of the add operation, the C bit is set; otherwise it is reset.

Logical Operation Status Results

The Logical instructions modify the N and Z bits. These bits are set according the
result of the instruction. The V and C bits are meaningless in regard to the logical
instructions, so they are not modified.

The N bit of the ALU Status Register is set to the value of the most-significant bit of
the result of the logical operation.

If the result of the logical operation is a zero word, the Z bit of the ALU Status Register
is set; otherwise, it is reset.

Floating-Point Status Results

The floating-point instructions check for a number of exceptional conditions, and
report these exceptions by setting bits of the Floating-Point Status Register. The
exceptional conditions also may cause traps, depending on the state of mask bits in
the Floating-Point Environment Register. There are two groups of status bits in the
Floating-Point Status Register: trap status bits and sticky status bits. When an excep-
tion is detected, the Am29030 and Am29035 microprocessors set the trap status bit
and/or the sticky status bit associated with the exception, depending on the corre-
sponding exception mask bit and on whether or not a trap occurs. The sticky status bit
is set whenever the corresponding exception is masked, regardless of whether or not
a trap occurs. A trap status bit is set whenever a trap occurs, regardless of the state
of the corresponding mask bit.

A trap status bit is reset when a trap occurs and the indicated status does not apply to
the trapping operation. A sticky status bit is reset only by software.

Floating-Point Status (FPS, Register 162)

This unprotected special-purpose register (Figure 2-9) contains status bits indicating
the outcome of floating-point operations.

The floating-point status bits are divided into two groups. The first group consists of
the sticky status bits (DS, XS, US, VS, RS, and NS), which, once set, remain set until

2-18

PROGRAMMING

explicitly cleared by a Move-to-Special-Register (MTSR) or Move-to-Special-Register-
Immediate (MTSRIM) instruction. Only those sticky status bits corresponding to
masked exceptions are updated. The update occurs at the end of instruction execu-
tion.

The second group consists of the trap status bits (DT, XT, UT, VT, RT, and NT),
which report the status of an operation for which a Floating-Point Exception trap is
taken. These bits are updated only by an operation which takes a trap as a result of
an unmasked Floating-Point Exception; all other operations leave these bits un-
changed. A trap status bit is updated regardless of the state of the corresponding
exception mask in the Floating-Point Environment Register.

Figure 2-9

Floating-Point Status

31 23 15 7 0
(rrrerrrrrerrtind |
Reserved Res

' DL : A] N [: T

L] 1] Ll M ' L L] 1]) N 1

[[I R T T |

DT:UT:RT: DS'USlRSj

XT VT NT XS VS NS

Bits 31-14: Reserved.

Bit 13: Floating-Point Divide By Zero Trap (DT)—The DT bit is set when a Floating-
Point Exception trap occurs, and the associated floating-point operation is a divide
with a zero divisor and a non-zero, finite dividend. Otherwise, this bit is reset when a
Floating-Point Exception trap occurs.

Bit 12: Floating-Point Inexact Result Trap (XT)—The XT bit is set when a Floating-
Point Exception trap occurs, and the result of the associated floating-point operation
is not equal to the infinitely-precise result. Otherwise, this bit is reset when a Floating-
Point Exception trap occurs.

Bit 11: Floating-Point Underflow Trap (UT)—The UT bit is set when a Floating-
Point Exception trap occurs, and the result of the associated floating-point operation
is too small to be expressed in the destination format. Otherwise, this bit is reset when
a Floating-Point Exception trap occurs.

Bit 10: Floating-Point Overflow Trap (VT)—The VT bit is set when a Floating-Point
Exception trap occurs, and the result of the associated floating-point operation is too
large to be expressed in the destination format. Otherwise, this bit is reset when a
Floating-Point Exception trap occurs.

BIt 9: Floating-Point Reserved Operand Trap (RT)—The RT bit is set when a Float-
ing-Point Exception trap occurs, and the result of the associated floating-point opera-
tion is a reserved value. Otherwise, this bit is reset when a Floating-Point Exception
trap occurs.

Bit 8: Floating-Point Invalid Operation Trap (NT)—The NT bit is set when a Float-
ing-Point Exception trap occurs and the input operands to the associated floating-
point operation produce an indeterminate result. Otherwise, this bit is reset when a
Floating-Point Exception trap occurs.

Bits 7-6: Reserved.

Bit 5: Floating-Point Divide By Zero Sticky (DS)—The DS bit is set when the DM
bit of the Floating-Point Environment Register is 1, the divisor of a floating-point divi-
sion operation is a zero, and the dividend is a non-zero, finite number.

PROGRAMMING 2-19

2.6

2.6.1

Bit 4: Floating-Point Inexact Result Sticky (XS)—The XS bit is set when the XM bit
of the Floating-Point Environment Register is 1, and the result of a floating-point
operation is not equal to the infinitely precise resuilt.

Bit 3: Floating-Point Underflow Sticky (US)—The US bit is set when the UM bit of
the Floating-Point Environment Register is 1, and the result of a floating-point opera-
tion is too small to be expressed in the destination format.

Bit 2: Floating-Point Overflow Sticky (VS)—The VS bit is set when the VM bit of the
Floating-Point Environment Register is 1, and the result of a floating-point operation is
too large to be expressed in the destination format.

Bit 1: Floating-Point Reserved Operand Sticky (RS)—The RS bit is set when the
RM bit of the Floating-Point Environment Register is 1, and either one or more input
operands to a floating-point operation is a reserved value or the result of a floating-
point operation is a reserved value.

Bit 0: Floating-Point Invalid Operation Sticky (NS)—The NS bit is set when the
NM bit of the Floating-Point Environment Register is 1, and the input operands to a
floating-point operation produce an indeterminate result.

INTEGER MULTIPLICATION AND DIVISION

The Am29030 and Am29035 microprocessors do not directly support the instructions
MULTIPLU, MULTMU, MULTIPLY, MULTM, DIVIDE, and DIVIDU. The processors
are capable of performing these instructions as a sequence of multiply- or divide-
steps, which are directly supported by hardware. A special register, Q, is used in
conjunction with the SRCA and SRCB operands to execute the multiply- or divide-
step. This section describes the Q register and discusses the general method for
multiplication and division.

Q (Q, Register 131)
The Q Register is an unprotected special-purpose register (Figure 2-10).

Figure 2-10

Q Register

SERERRRRERRSRRRRRRRERERRRRRRERE

Q

2.6.2

Bits 31-0: Quotient/Multiplier (Q)—During a sequence of divide steps, this field
holds the low-order bits of the dividend; it contains the quotient at the end of the
divide. During a sequence of multiply steps, this field holds the multiplier; it contains
the low-order bits of the result at the end of the multiply.

For an integer divide instruction, the Q field contains the high-order bits of the divi-
dend at the beginning of the instruction, and contains the remainder upon completion
of the instruction.

Multiplication

The processor performs integer multiplication by a series of multiply step instructions.
Note that when the product of a constant and a variable is to be computed, a more
efficient sequence of shift and add instructions usually can be found.

2-20° PROGRAMMING

If a program requires the multiplication of two integers, the required sequence of
multiply steps may be executed in-line or executed in a multiply routine called as a
procedure. It may be beneficial to precede a full multiply procedure with a routine to
discover whether or not the number of multiply steps may be reduced. This reduction
is possible when the operands do not use all of the available 32 bits of precision.

The following routine multiplies two 32-bit signed integers, giving a 64-bit result. Un-
signed multiplication can be performed by substituting the MULU instruction for the
MUL and MULL instructions:

; 32 bit * 32 bit —>64 bit signed multiply

; Input: multiplicand in Ir2, multiplier in Ir3

; Output: result most-significant word in gr96, result least-significant word in gro7

SMule4:

mtsr Q, I3 ; put multiplier in the Q register

mul groe6, Ir2, 0 ; perform initial multiply step

.rep 30 ; expand out 30 copies of the next instruction
; in-line

mul gro6, ir2, graé ; total of 30 more multiply steps

.endr

mull groe6, Ir2,gr96 ; perform last sign correcting step

mfsr gra7,Q ; get the least-significant result word

The following routine multiplies two 32-bit integers, returning a 32-bit result. It at-
tempts to minimize the number of multiply-step instructions by checking the input
operands. It is coded as a subroutine, with pointers to its operands passed in the
indirect pointers IPC, IPA, and IPB. This allows the routine to operate on any combi-
nation of registers, rather than forcing the operands to be in fixed registers:

; 32 bit * 32 bit —> 32 bit signed or unsigned multiply called by:

; call tpc, MUL32 ; call the multiply routine
; setip dst_reg, src1_reg, src2_reg ; passing pointers to the operand registers
; ; in the delay slot

; Input: operands in the registers pointed to by indirect-pointer registers IPA and IPB
; Output: result least-significant word in the register pointed to by IPC
; Used: return address in tpc, special registers Q and FC
; Destroyed: previous contents of registers tpc, Temp0 — Temp2
; Symbolic register names:
.reg Temp0, gr116
.reg Temp1, gr119
.reg Temp2, gr120
.reg tpc, gri22
.word 0x00200000 ; Debugger tag word

Mul32:
; need an instruction to separate SETIP (probably last instruction) from access of indirect
; pointers

mtsrim FC,8 ; useful when if one operand is 8-bit

or TempoO, gr0, 0 ; copy value of IPA register

; next we'll check to see that the operand with the most leading zeros becomes the multiplier
cpgtu Temp1,9r0,gr0
jmpf Temp1,do8 ; the operands are already ordered correctly
or Temp1,Tempi,gr0 ; if we jump, Temp1 holds 0, so this copies
; the value of the IPB register

PROGRAMMING 2-21

const Temp0,0 ; we must swap the operands

or Temp0,Temp0,gr0
or Temp1,9r0,0
do8:
cpleu Temp2,Temp1,0x7f ; less than 8 bits?
jmpf Temp2,do16 ; no, check for 16 bits
mtsr Q,Temp0
mulu Temp0,Temp1,0
.rep 7 ; expand out 7 copies of the next instruction
; in-line
mulu Temp0,Temp1,Temp0 ; total of 7 more multiply steps
.endr
; the top 24 bits of the result are in the lower 24 bits of Temp0, and the bottom 8 bits are in the
; topof Q
mfsr Temp1,Q
jmpi tpc ; return to the calling routine
extract gr0,Temp0,Temp1 ; extract the result in the delay-slot of the
; jump
do16:
const Temp2,0x7fff ; less than 16 bits?
cplequ Temp2,Temp0,Temp2
jmpf Temp2,do32 ; no, perform all 32 steps
mulu Temp0,Temp1,0 ; perform initial multiply-step
.rep 15 ; expand out 15 copies of next instruction
; in-line
mulu Temp0,Temp1,Temp0 ; total of 15 more multiply-steps
.endr

; the top 16 bits of the result will be in the lower16 bits of Temp0,the bottom 16 bits in the top

;ofQ
mitsrim FC,16 ; extract on bit-16 boundary
mfsr Temp1,Q
jmpi tpc ; return to the calling routine
extract gr0,Temp0,Temp1 ; extracting the result in the delay-slot of the
; jump
do32:
mulu temp0,Temp1,0 ; perform initial step
.rep 31 ; expand out 32 copies of the next instruction
; in-line
mulu Temp0,Temp1,Temp0 ; total of 31 more multiply steps
.endr
jmpi tpc ; return to calling routine
mfsr gr0,Q ; copy the result to the return register in the
; delay slot
2.6.3 Division

The processors perform integer division by a series of divide step instructions. When
the divisor is a power of 2, and the dividend is unsigned, the divide should be accom-
plished by a right shift.

If a program requires the division of two integers, the required sequence of divide
steps may be executed in-line or executed in a divide routine called as a procedure. It
may be beneficial to precede a full divide procedure with a routine to discover whether
or not the number of divide steps may be reduced. This reduction is possible when
the operands do not use all of the available 32 bits of precision.

222 PROGRAMMING

The following routine divides a 64-bit, unsigned dividend by a 32-bit unsigned divisor:

; 64 bit / 32 bit — 32 bit unsigned divide
; Input: most-significant dividend word in Ir2, least-significant dividend word in Ir3,

; divisor in ir4
; Output: quotient in gr96, remainder in gr97
UDiv64:
mtsr Q,Ir3 ; put least-significant word of the dividend in
; the Q register
div0 gra7, Ir2 ; perform initial divide step
.rep 31 ; expand out 31 copies of the next
; instruction in-line
div gr97, gra7, Ird ; total of 30 more divide steps
.endr
divi gr97, gra7, Ird4 ; perform last step
divr.em gr97,gr97, Ir4 ; compute remainder
mfsr gr96, Q ; get the quotient

The following routine divides a 32-bit unsigned dividend by a 32-bit unsigned divisor:

; 32 bit / 32 bit — 32 bit unsigned divide
; Input: dividend word in Ir2, divisor in Ir3
; Output: quotient in gr96, remainder in gr97

UDiv32:

mtsr Q, Ir2 ; put the dividend in the Q register

div0 gr97,0 ; perform initial divide step, zeroing out
; the upper bits of the dividend

.rep 31 ; expand out 31 copies of the next
; instruction in-line

div gr97, gr97, ir4 ; total of 30 more divide steps

.endr

divl gra7, gr97, Ir4 ; perform last step

divrem gr97, gro7, Ir4 ; compute remainder

mfsr gr96, Q ; get the quotient

The following routine divides a 32-bit signed dividend by a 32-bit signed divisor. It also
traps division by zero. Because the divide-step instructions only operate on unsigned
operands, extra code is required to perform sign checking and conversion:

; 32 bit / 32 bit signed divide, called by:

; call tpc, SDiv32 ; call the divide routine
; setip dst_reg, src1_reg, src2_reg
; passing pointers to the operand
; registers in the delay slot
; Input: dividend and divisor in the registers pointed to by the indirect-pointer
; registers IPA and IPB
; Output: result quotient in the register pointed to by IPC, remainder left in Temp0
; Used: return address in tpc, special register Q
; Destroyed: previous contents of registers tpc, Temp0—Temp2
; Symbolic register names:
.reg Temp0, gri16
.reg Temp1, gri19
.reg Temp2, gr120
.reg tpc, gri22
.word 0x00200000 ; Debugger tag word

PROGRAMMING ~ 2-23

SDiv32:

const Tempi,0
asneq V_DIVBYZERO, Temp1, gr0
; check for divide by zero with an assert
add TempO, gr0, 0 ; get dividend from indirect pointer
jmpf Temp0, pdividend ; is it negative (jmpf is also “ymppos”)
add Temp2, Temp1, gr0 ; get divisor from indirect pointer
const Tempi,3 ; set negative result and remainder flags
subr Temp0, Temp0, 0 ; make dividend positive
pdividend:
jmpf Temp2, pdivisor ; is divisor negative?
mtsr Q, Temp0 ; copy dividend to Q register in delay slot
; of the jump
xor Tempt, Tempi, 1 ; turn off negative result flag
subr Temp2, Temp2, 0 ; make divisor positive
pdivisor:
div0 Temp0, 0 ; initialize
.rep 31 ; expand out 31 copies of the next
; instruction in-line
div Temp0, Temp0, Temp2 ; total of 30 more divide steps
.endr
divl Temp0, Temp0, Temp2 ; perform last divide step
divrem TempO, Temp0, Temp2 ; get positive remainder
mfsr Temp2, Q ; get positive quotient
sli Tempi, Temp1, 30 ; copy negative remainder flag to test bit
jmpf Temp1, premainder ; if it is not set, remainder is ok
sll Temp1, Temp1, 1 ; copy negative resulit fiag to test bit
subr Temp0, Temp0, 0 ; negate remainder
premainder:
jmpfi Temp1, tpc ; return to caller if result is positive
add gr0, Temp2, 0 ; copying quotient to the result register
; in the delay slot
jmpi tpc ; else return to caller,
subr gr0, Temp2, 0 ; negating the quotient in the delay slot
2.7 1 NEED AN INSTRUCTION TO...
This section discusses topics of general concern in the implementation of applications
programs.
2.7.1 Run-Time Checking

The assert instructions provide programs with an efficient means of comparing two
values and causing a trap when a specified relation between the two values is not
satisfied. The instructions assert that some specified relation is true and trap if the
relation is not true. This allows run-time checking—such as checking that a computed
array index is within the boundaries of the storage for an array—to be performed with
a minimum performance penalty.

Assert instructions are available for comparing two signed or unsigned operands. The
following relations are supported: equal-to, not-equal-to, less-than, less-than or equal-
to, greater-than, and greater-than-or-equal-to.

The assert instructions specify a vector number for the trap. However, only vector
numbers 64 through 255 (inclusive) may be specified by User-mode programs. If a

224 PROGRAMMING

2.7.2

2.7.3

2.7.4

User-mode assert instruction causes a trap, and the vector number is between 0 and
63 inclusive, a Protection Violation trap occurs, instead of the specified trap.

Since the assert instructions allow the specification of the vector number, several
traps may be defined in the system for different situations detected by the assert
instructions.

Operating-System Calls

An applications program can request a service from the operating system by using
the following instruction:
asneq System_Routine, gr1, gr1

This instruction always creates a trap, since it attempts to assert that the content of a
register is not equal to itself (the register number used here is irrelevant, as long as
the register is otherwise accessible).

The System_Routine vector number specified by the instruction invokes the execution
of the operating system routine that provides the requested service. This vector num-
ber may have any value between 64 and 255, inclusive (vector numbers 0 through 63
are pre-defined or reserved). Thus, as many as 192 different operating-system rou-
tines may be invoked from the applications program.

In cases where the indirect pointers may be used, the EMULATE instruction allows
two operand/result registers to be specified to the operating-system routine. The
instruction is as follows:

emulate System_Routine, Ir3, Iré

In this case, the System_Routine vector number performs the same function as in the
previous example. Here, however, LR3 and LR6 are specified as operand registers
and/or result registers (these particular registers are used only for illustration). The
operating-system routine has access to these registers via the indirect pointers, which
allows flexible communication.

Multiprecision Integer Operations

The processor allows the Carry (C) bit of the ALU Status Register to be used as an
operand for add and subtract instructions. This provides for the addition and subtrac-
tion of operands which are greater than 32 bits in length. For example, the following
code implements a 96-bit addition with signed overflow detection.

add Ir7, gro9e, Ir2
addc ir8, gr97, Ir3
addes . Ir9, @r98, Ir4

Global registers GR96-GR98 contain the first operand, local registers LR2-LR4 con-
tain the second operand, and local registers LR7—LR9 contain the result. The first two
add instructions set the C bit, which is used by the second two instructions. If the
addition causes a signed overflow, then an Out of Range trap occurs; overflow is
detected by the final instruction.

Complementing a Boolean

To complement a Boolean in the processor’s format, only the most-significant bit of
the Boolean word should be considered, since the least-significant 31 bits may or may
not be zeros. This is accomplished by the following instruction:

cpge gr96, gr96, 0

PROGRAMMING 2-25

2.7.5

2.7.6

The Boolean is in GR96 in this example. This instruction is based on the observation
that a Boolean TRUE is a negative integer, since the Boolean bit coincides with the
integer sign bit. If the operand of this instruction is a negative integer (i.e., TRUE), the
result is the Boolean FALSE. If the operand is non-negative (i.e., the Boolean
FALSE), the result is TRUE.

Large Jump and Call Ranges

The 16-bit relative branch displacement provided by processor instructions is suffi-
cient in the majority of cases. However, addresses with a greater range occasionally
are needed. In these cases, the CONST and CONSTH instructions generate the large
branch-target address in a register. An indirect jump or call then uses this address to
branch to the appropriate location.

When program modules are compiled separately, the compiler cannot determine
whether or not the 16-bit displacement of a CALL instruction is sufficient to reach

an external procedure, even though it is sufficient in most cases. Instead of generat-
ing instructions for the worst case (i.e., the CONST, CONSTH, and CALLI described
above), it is more efficient to generate a CALL as if it were appropriate, with the
worst-case sequence (in this case, CONST, CONSTH, and JMPI) also appearing in
the generated code somewhere (e.g., at the end of a compiled procedure).

When the above scheme is used, the linker is able to determine whether or not the
CALL is sufficient. If it is not, the CALL can be retargeted to the worst-case sequence
in the code. In other words, when the CALL is not sufficient, the linker causes the
execution sequence to be:

const
consth

jmpi
In this manner, the longer execution time for the call occurs only when necessary.

NO-OPs

When a NO-OP is required for proper operation (e.g., as described in Section 5.6), it
is important that the selected instruction not perform any operation, regardless of
program operating conditions. For example, the NO-OP cannot access general-
purpose registers, because a register may be protected from access in some situ-
ations. The suggested NO-OP is:

aseq 0x40, gri, gr1

This instruction asserts that the Stack Pointer (GR1) is equal to itself. Since the asser-
tion is always true, there is no trap. Note also that the Stack Pointer cannot be pro-
tected, and that the assert instruction cannot affect any processor state.

VIRTUAL ARITHMETIC PROCESSOR

In order to be object-code compatible with present and future implementations of the
29K family of microprocessors, the Am29030 and Am29035 microprocessors provide
a virtual arithmetic interface. A virtual interface is the means by which a processor
appears to perform functions that it does not actually perform. In the case of the

2-26 PROGRAMMING

2.8.1

2.8.2

2.9

Am29030 and Am29035 virtual arithmetic interface, the processor defines arithmetic
instructions, control, and status which are not directly supported by hardware, but
which are implemented by system software.

Trapping Arithmetic Instructions

The processor does not incorporate hardware to directly support floating-point opera-
tions, nor does it directly support full multiply and divide instructions. However, in-
structions to perform these operations are included in the instruction set. These in-
structions are included for compatibility with processor implementations, such as the
Am29050 microprocessor, that include hardware to perform these operations.

In application programs that must be fully object-code compatible across several
processor versions—while taking advantage of the performance of the versions hav-
ing arithmetic hardware—the defined instructions should be used to perform floating-
point, multiplication and division operations.

In the Am29030 and Am29035 microprocessors, the Floating-Point, CLASS, CON-
VERT, MULTIPLY, MULTM, MULTIPLU, MULTMU, DIVIDE, DIVIDU, and SQRT
instructions cause traps. The indirect pointers are set at the time the trap occurs, so
that a trap handler can gain access to the operands of the instruction and can deter-
mine where the result is to be stored. A trap handler can directly emulate the execu-
tion of the instruction.

Virtual Registers

The processor does not incorporate hardware to directly support the Floating-Point
Environment Register (FPE), Integer Environment Register (INTE), or Floating-Point
Status Register (FPS). When one of these registers is referenced by a MTSR/MFSR
instruction (or a variant), a Protection Violation trap occurs. The Protection Violation
trap handler must establish that the faulting instruction is a MTSR/MFSR and that the
register specified by the instruction is one of the registers supported by the virtual
interface. This is accomplished by obtaining the faulting instruction from memory and
examining the OPCODE and SRC/DEST fields. The trap handler then simulates the
operation of the register.

MULTIPROCESSING

The Am29030 and Am29035 microprocessors provide several facilities for the imple-
mentation of multi-programming and multi-processing systems. These facilities help
provide mutual exclusion, synchronization, and communication between multiple
processes, whether these processes execute on a single processor or multiple proc-
essors.

Binary semaphores are supported by the Load and Set (LOADSET) instruction. This
instruction loads the contents of an external location into a register and automatically
sets the contents of the location to the integer —1. This instruction requires no special
hardware support in the system, since all sequencing is performed by the processor.
Also, the LOADSET is available to User-mode programs. This eliminates the over-
head of an operating-system call in the use of binary semaphores.

The instructions Load and Lock (LOADL) and Store and Lock (STOREL) support the
locking of external devices and memories, or the locking of particular locations within
an external device or memory. This prevents access by any process or processor

other than the one that performed the lock, and provides the flexibility of locking in a

PROGRAMMING 2-27

manner appropriate to the system and application. The LOADL and STOREL instruc-
tions are available to User-mode programs.

To indicate that a LOADL or STOREL is being executed, the processor asserts the
LOCK output during the external access (see Section 10.1 and 10.6 for a description
of the LOCK output). Since the processor cannot directly control the behavior of exter-
nal devices and memories, system hardware must support locking, if required.

Note that the protocol for locking and unlocking devices and memories must be de-
fined by the system. For example, the protocol may be defined such that a LOADL
locks the device or memory, and a STOREL unlocks the device or memory. Between
the execution of the LOADL and the STOREL, the device can be accessed with any
combination of normal loads and stores.

For the implementation of a general-purpose exclusion, synchronization, and/or com-
munication scheme, the processor allows Supervisor-mode programs to set the Lock
(LK) bit in the Current Processor Status Register (see Section 8.1.1). This bit acti-
vates the LOCK pin and prevents the processor from relinquishing the bus to another
bus master. If another master already has control of the channel when the LK bit is
set, the LK bit does not take affect until control of the bus is returned to the processor.

The LK bit allows a Supervisor-mode program to execute with mutual exclusion for
any sequence of instructions. However, because interrupts must also be disabled for
true exclusion, this may have a negative impact on system performance if used im-
properly.

228 PROGRAMMING

CHAPTER 3

DATA FORMATS AND HANDLING a

3.1

3.1.1

This section describes the various data types supported by the Am29030 and
Am29035 microprocessors and the mechanisms for accessing data in external de-
vices and memories. The Am29030 and Am29035 microprocessors include provi-
sions for the external access of words, bytes, half-words, unaligned words, and
unaligned half-words, as described in this section.

INTEGER DATA TYPES

Most instructions deal directly with word-length integer data; integers may be either
signed or unsigned, depending on the instruction. Some instructions (e.g., AND) treat
word-length operands as strings of bits. In addition, there is support for character,
half-word, and Boolean data types.

Character Data

The processor supports character data through load, store, extraction, and insertion
operations, and by a compare operation on byte-length fields within words. The for-
mat of unsigned and signed characters is shown in Figure 3-1; for signed characters,
the sign bit is the most-significant bit of the character. For sequences of packed char-
acters within words, bytes are ordered either left-to-right or right-to-left, depending on
the BO bit of the Configuration Register (see Section 3.3.7.1).

Figure 3-1

Character Format

Unsigned:

31 23 15 7 0
CErrrrreerrrrrre ety it
0000000O0O0O0O0OO0OOO0OOOOOOOOODO Data
Signed:

31 23 15 7 0
cererrrrerrerr et er ey e
S S S S S S SSSSSSSSSSSSSsSsss s ss Data

On a byte load, an external packed byte is converted to one of the character formats
shown in Figure 3-1. On a byte store, the low-order byte of a word is packed into

a selected byte of an external word. Section 10.4.4 describes how external byte
accesses are performed by hardware.

The Extract Byte (EXBYTE) instruction replaces the low-order character of a destina-
tion word with an arbitrary byte-aligned character from a source word. For the
EXBYTE instruction, the destination word can be a zero word, which effectively zero-
extends the character from the source operand.

DATA FORMATS AND HANDLING 3-1

3.1.2

The Insert Byte (INBYTE) instruction replaces an arbitrary byte-aligned character in a
destination word with the low-order character of a source word. For the INBYTE in-
struction, the source operand can be a character constant specified by the instruction.

The Compare Bytes (CPBYTE) instruction compares two word-length operands and
gives a result of TRUE if any corresponding bytes within the operands have equiva-
lent values. This allows programs to detect characters within words without first hav-
ing to extract individual characters, one at a time, from the word of interest.

HALF-WORD OPERATIONS

The processors support half-word data through load, store, insertion and extraction
operations. The format of unsigned and signed half-words is shown in Figure 3-2; for
signed half-words, the sign bit is the most-significant bit of the half-word. For se-
quences of packed half-words within words, half-words are ordered either left-to-right
or right-to-left, depending on the Byte Order (BO) bit of the Configuration Register
(see Section 3.3.7.1).

Figure 3-2

Half-Word Format
U:lslgned:

3 23 15 7
RERRRRERRERRRRRRRRRRRRRRRRREEE

0000000O0O0O0O0OOOCOOOO Data

0

Signed:
31 23 15 7 0

S S S S S S S S S S S s s s s s|s Data

3.1.3

On a half-word load, an external packed half-word is converted to one of the formats
shown in Figure 3-2. On a half-word store, the low-order half-word of a word is packed
into a selected half-word of an external word. Section 10.4.4 describes how external
half-word accesses are performed by hardware.

The Extract Half-Word (EXHW) instruction replaces the low-order half-word of a desti-
nation word with either the low-order or high-order half-word of a source word. For the
EXHW instruction, the destination word can be a zero word, which effectively zero-
extends the half-word from the source operand.

The Extract Half-Word, Sign-Extended (EXHWS) instruction is similar to the EXHW
instruction, except that it sign-extends the half-word in the destination word (i.e., it
replaces the most-significant 16 bits of the destination word with the most-significant
bit of the source half-word).

The Insert Half-Word (INHW) instruction replaces either the low-order or high-order
half-word in a destination word with the low-order half-word of a source word.

Byte Pointer (BP, Register 133)

This unprotected special-purpose register (Figure 3-3) provides an alternate access to
the BP field in the ALU Status Register (see Section 2.5.1). For the Extract Byte
(EXBYTE) and Insert Byte (INBYTE) instructions, the character is selected via the
Byte Pointer field. For the Extract Half-Word (EXHW), Extract Half-Word Signed
(EXHWS), and Insert Half-Word (INHW) instructions, the half-word is selected by the
most significant bit of the Byte Pointer field.

3-2 DATA FORMATS AND HANDLING

Figure 3-3

Byte Pointer Register
31 23 15 7 0

3.1.4

3.1.4.1

Bits 1-0: Byte Pointer (BP)—The BP field holds a 2-bit pointer to a byte within a
word. Itis used by Insert Byte and Extract Byte instructions. The mapping of the
pointer value to the byte position depends on the value of the Byte Order (BO) bit in
the Configuration Register.

The most-significant bit of the BP field is used to determine the position of a half-word
within a word for the following three instructions; Insert Half-Word, Extract Half-Word,
and Extract Half-Word, Sign-Extended instructions. The mapping of the most-signifi-
cant bit to the half-word position depends on the value of the BO bit in the Configura-
tion Register.

The BP field is set by a Move To Special Register instruction with either the ALU
Status Register or the Byte Pointer Register as the destination. It is also set by a load
or store instruction if the Set Byte Pointer (SB) bit in the instruction is 1. A load or
store sets the BP field with the complement of the Byte Order bit of the Configuration
Register.

This field allows a program to change the BP field without affecting other fields in the
ALU Status Register.

Bit Strings

Graphics and imaging applications often require that a data region be collectively
shifted by a specific number of bits. The Am29030 and Am29035 microprocessors
provide support for such an operation through the Extract (EXTRACT) instruction. The
Extract instruction concatenates two 32-bit values, producing a 64-bit source operand,
and then shifts this value left by an arbitrary number to produce a 32-bit result. The
shift amount is determined by the value in the Funnel Shift Count Register. The Fun-
nel Shift Count Register is set before executing the Extract instruction.

FUNNEL SHIFT COUNT (FC, Register 134)

This unprotected special-purpose register (Figure 3-4) provides an alternate access to
the FC field in the ALU Status Register.

Figure 3-4

Funnel Shift Count Register

31 23 15 7

RERE
C

ojo Fi

Bits 31-5: Zeros.

Bits 4-0: Funnel Shift Count (FC)—The FC field contains a 5-bit shift count for the
Funnel Shifter. The Funnel Shifter concatenates two source-operands into a single
64-bit operand and extracts a 32-bit result from this 64-bit operand; the FC field speci-
fies the number of bit positions from the most-significant bit of the 64-bit operand to

DATA FORMATS AND HANDLING 3-3

3.1.5

3.1.5.1

3.1.5.2

the most-significant bit of the 32-bit result. The FC field is used by the EXTRACT
instruction.

The FC field is set by a Move To Special Register instruction with either the ALU
Status Register or the Funnel Shift Count Register as the destination.

This field allows a program to change the FC field without affecting other fields in the
ALU Status Register.

Character-String Operations

The need to perform operations on character strings arises frequently in many sys-
tems. The processor provides operations for manipulating character data, but these
are frequently inefficient for dealing with character strings, since the processor is
optimized for 32-bit data quantities.

It is much more efficient, in general, to perform character-string operations by operat-
ing on units of four bytes each. These four-byte units are more suited to the proces-
sor's data flow organization. However, there are several things to be considered when
dealing with four-byte units, as outlined in this section.

ALIGNMENT OF BYTES WITHIN WORDS

Character strings normally are not aligned with respect to 32-bit words. Thus, when
word operations are used to perform character-string operations, alignment of the
character strings must be taken into account.

For example, consider a character string aligned on the third byte of a word that is
moved to a destination string aligned on the first byte of a word. If the movement is
performed word-at-a-time, rather than byte-at-a-time, the move must involve shift and
merge operations, since words in the destination character string are split across
word boundaries in the source character string.

The processor’s Funnel Shifter can be used to perform the alignment operations

required when character operations are performed in four-byte units. Though the

Funnel Shifter supports general bit-aligned shift and merge operations, it easily is
adapted to byte-aligned operations.

For byte-aligned shift and merge operations, it is only necessary to insure that the two
most-significant bits of the Funnel Shift Count (FC) field of the ALU Status Register
point to a byte within a word, and that the three least-significant bits of the FC field
are 000.

DETECTION OF CHARACTERS WITHIN WORDS

Most character-string operations require the detection of a particular character within
the string. For example, the end of a character string is identified by a special charac-
ter in some character-string representations. In addition, character strings often are
searched for a specific pattern. During such searches, the most frequently executed
operation is the search within the character string for the first character of the pattern.

The processor provides a Compare Bytes (CPBYTE) instruction, which directly sup-
ports the search for a character within a word. This instruction can provide a factor-of-
four performance increase in character-search operations, since it allows a character
string to be searched in four-byte units.

During the search, the words containing the character string are compared, a word at
a time, to a search key. The search key has the character of interest in every byte
position. The CPBYTE instruction then gives a result of TRUE if any character within
the character-string word matches the corresponding byte in the search key.

3-4 DATA FORMATS AND HANDLING

3.1.6

3.1.7

3.2

3.2.1

Boolean Data

Some instructions in the Compare class generate word-length Boolean results. Also,
conditional branches are conditional upon Boolean operands. The Boolean format
used by the processor is such that the Boolean values TRUE and FALSE are repre-
sented by a 1 or 0, respectively, in the most-significant bit of a word. The remaining
bits are unimportant: for the compare instructions, they are reset. Note that two’s-
complement negative integers are indicated by the Boolean value TRUE in this
encoding scheme.

Instruction Constants

Eight-bit constants are directly available to most instructions. Larger constants must
be generated explicitly by instructions and placed into registers before they can be
used as operands. The processor has three instructions for the generation of large
data constants: Constant (CONST); Constant, High (CONSTH); and Constant,
Negative (CONSTN).

The CONST instruction sets the least-significant 16 bits of a register with a field in the
instruction; the most-significant 16 bits are set to zero. This instruction allows a 32-bit
positive constant to be generated with one instruction, when the constant lies in the
range of 0 to 65535.

Any 32-bit constant can be generated with a combination of the CONST and
CONSTH instructions. The CONSTH instruction sets the most-significant 16 bits of a
register with a field in the instruction; the least-significant bits are not modified. Thus,
to create a 32-bit constant in a register, the CONST instruction sets the least-signifi-
cant 16 bits, and the CONSTH instruction sets the most-significant 16 bits.

The CONSTN instruction sets the least-significant 16 bits of a register with a field in
the instruction; the most-significant 16 bits are set to one. This instruction allows a
32-bit, negative constant to be generated with one instruction, when the constant lies
in the range of —-65536 to —1.

FLOATING-POINT DATA TYPES

The Am29030 and Am29035 microprocessors define single- and double-precision
floating-point formats that comply with the IEEE Standard for Binary Floating-Point
Arithmetic (ANSV/IEEE Std. 754—1985). These data types are not directly supported in
processor hardware, but can be implemented using the virtual arithmetic interface
provided on the Am29030 and Am29035 microprocessors.

In this section, the following nomenclature is used to denote fields in a floating-point
value:

¢ s:sign bit
« bexp: biased exponent
« frac: fraction
« sig: significand
Single-precision Floating-Point Values
The format for a single-precision floating-point value is shown in Figure 3-5.

DATA FORMATS AND HANDLING 35

Figure 3-5

Single-Precision Floating-Point Format

31 23 156 7 0
rerrrreprrrrrrrrrrrr e et ere

s bexp frac

3.2.2

Typically, the value of a single-precision operand is expressed by:
(-1)**s * 1.frac * 2**(bexp-127).
The encoding of special floating-point values is given in Section 3.2.3.

Double-precision Floating-Point Values
The format for a double-precision floating-point value is shown in Figure 3-6.

Figure 3-6

Double-Precision Floating-Point Format

31 23 15 7 0
rerrrerrrrprrrr e et e

s bexp frac... 0

(rrrrrererrrrrrrrrrrrr et

..frac 1

3.2.3

3.2.3.1

Typically, the value of a double-precision operand is expressed by:
(-1)**s * 1.frac * 2**(bexp-1023).

The encoding of special floating-point values is given in Section 3.2.3.

In order to be properly referenced by a floating-point instruction, a double-precision
floating-point value must be double-word aligned. The absolute-register number of the
register containing the first word (labeled 0 in Figure 3-6) must be even. The absolute-
register number of the register containing the second word (labeled 1 in Figure 3-6)
must be odd. If these conditions are not met, the results of the instruction are unpre-
dictable. Note that the appropriate registers for a double-precision value in the local
registers depends on the value of the Stack Pointer.

Special Floating-Point Values

The Am29030 and Am29035 microprocessors define floating-point values which are
encoded for special interpretation. The values are described in this section.

NOT-A-NUMBER

A Not-a-Number (NaN) is a symbolic value used to report certain floating-point excep-
tions. It also can be used to implement user-defined extensions to floating-point op-
erations. A NaN comprises a floating-point number with maximum biased exponent
and non-zero fraction. The sign bit can be either 0 or 1, and has no significance.
There are two types of NaN: signaling NaNs (SNaNs) and quiet NaNs (QNaNs). A
SNaN causes an Invalid Operation exception if used as an input operand to a floating-
point operation; a QNaN does not cause an exception. The Am29030 and Am29035
microprocessors distinguish signaling and QNaNs by the most-significant bit of the
fraction: a 1 indicates a QNaN and a 0 indicates a SNaN.

3-6 DATA FORMATS AND HANDLING

3.2.3.2

3.23.3

3.2.34

3.3

3.3.1

An operation never generates a SNaN as a result. A QNaN result can be generated in
one of two ways:

o As the result of an invalid operation that cannot generate a reasonable result, or

¢ As the result of an operation for which one or more input operands are either
SNaNs or QNaNs.

In either case, the Am29030 and Am29035 microprocessors produce a QNaN having
a fraction of 11000... 0; that is, the two most-significant bits of the fraction are 11, and
the remaining bits are 0. If desired, the Reserved Operand exception can be enabled
to cause a Floating-Point Exception trap. The trap handler in this case can implement
a scheme whereby user-defined NaN values appear to pass through operations as
results, providing overall status for a series of operations.

INFINITY

Infinity is an encoded value used to represent a value that is too large to be repre-
sented as a finite number in a given floating-point format. Infinity comprises a floating-
point number with maximum biased exponent and zero fraction. The sign bit of an
infinity distinguishes +co from —eo.

DENORMALIZED NUMBERS

The IEEE Standard specifies that, wherever possible, a result that is too small to be
represented as a normalized number be represented as a denormalized number. A
denormalized number may be used as an input operand to any operation. For single-
and double-precision formats, a denormalized number is a floating-point number with
a biased exponent of zero and a non-zero fraction field; the sign bit can be either 1 or
0. The value of a denormalized number is expressed by:

(-1)**s * O.frac * 2**(-bias+1),
where bias is the exponent bias for the format in question (127 for single precision,
1023 for double precision).

ZERO

A zero is a floating-point number with a biased exponent of zero and a zero fraction
field. The sign bit of a zero can be either 0 or 1; however, positive and negative zero
are both exactly zero, and are considered equal by comparison operations.

EXTERNAL DATA ACCESSES

This section discusses external data accesses supported by load and store opera-
tions on the Am29030 and Am29035 microprocessors.

Address Spaces

External instructions and/or data are contained in one of two 32-bit address-spaces:
1. Instruction/Data Memory

2. Input/Output

An address in the instruction/data memory address space may be treated as virtual or
physical, as determined by the Current Processor Status Register (see Section 8.1.1).
Address translation for data accesses is enabled separately from address translation
for instruction accesses. A program in the Supervisor mode may temporarily disable
address translation for individual loads and stores; this permits load-real and store-
real operations.

DATA FORMATS AND HANDLING 3-7

3.3.2

For untranslated data accesses, bits contained in load and store instructions distin-
guish between the instruction/data memory and input/output address spaces. For
translated data accesses, the Input/Output bit of the associated TLB entry distin-
guishes between the instruction/data memory and input/output address spaces.

Load/Store Instruction Format

All processor external accesses occur between general-purpose registers and exter-
nal devices and memories. Accesses occur as the result of the execution of load and
store instructions. The load and store instructions specify which general-purpose
register receives the data (for a load) or supplies the data (for a store). The format of
the load and store instructions is shown in Figure 3-8.

Figure 3-7

Load/Store Instruction Format
3 23 1

1 5 7 0
RERRRR Frprrrrrrrprrrrrnd

XX XXX XXM OPT RA RBorl

-eed

v
)
1
'
)

Ce--
>

0
:
res , PA

AS SB

Addresses for accesses are given either by the content of a general-purpose register
or by a constant value specified by the load or store instruction. The load and store
instructions do not perform address computation directly. Any required address com-
putations are performed explicitly by other instructions.

In load and store instructions, the “RB or I” field specifies the address for the access.
The address is either the content of a general-purpose register with register number
RB, or an immediate constant with a value | (zero-extended to 32 bits). The M bit
determines whether the register or the constant is used.

The data for the access is written into the general-purpose register RA for a load and
is supplied by register RA for a store.

The definitions for other fields in the load or store instruction are given below:
Bit 23: reserved.

Bit 22: Address Space (AS)—If the AS bit is 0 for an untranslated load or store, the
access is directed to instruction/data memory. If the AS bit is 1 for an untranslated
load or store, the access is directed to input/output. The AS bit must be 0 for a trans-
lated load or store; if the AS bit is 1 for a translated load or store, a Protection Viola-
tion trap occurs. The address space for a translated load or store is determined by the
Input/Output (IO) bit of the associated TLB entry.

Bit 21: Physical Address (PA)—The PA bit may be used by a Supervisor-mode
program to disable address translation for an access. If the PA bit is 1, address trans-
lation is not performed for the access, regardless of the value of the Physical Ad-
dressing/Data (PD) bit in the Current Processor Status Register. If the PA bitis 0,
address translation depends on the PD bit.

The PA bit may be 1 only for Supervisor-mode instructions. If it is 1 for a User-mode
instruction, a Protection Violation trap occurs.

3-8 DATA FORMATS AND HANDLING

3.3.3

Bit 20: Set Byte Pointer/Sign Bit (SB)—If the SB bit is 1 for a load, the loaded byte
or half-word is sign-extended in the destination register; if the SB bit is 0, the byte or
half-word is zero-extended. When the SB bit is 1 for either a load or store, each bit of
the Byte Pointer Register is written with the complement of the Byte Order bit of the
Configuration Register. The Byte Pointer Register is set in this case to provide soft-
ware compatibility across different types of memory systems and 29K family proces-
sors. If the SB bit is 0, the Byte Pointer Register is not affected.

Bit 19: User Access (UA)—The UA bit allows programs executing in the Supervisor
mode to emulate User-mode accesses. This allows checking of the authorization of
an access requested by a User-mode program. It also causes address translation (if
applicable) to be performed using the PID field of the MMU Configuration Register,
rather than the fixed Supervisor-mode process identifier zero.

if the UA bit is 1 for a Supervisor-mode load or store, the access associated with the
instruction is performed in the User mode. In this case, the User mode affects only
MMU protection-checking, the SUP/US output, and the use of the PID field in transla-
tion; it has no effect on the registers that can be accessed by the instruction. If the UA
bit is 0, the program mode for the access is controlled by the SM bit.

If the UA bit is 1 for a User-mode load or store, a Protection Violation trap occurs.

Bits 18-16: Option (OPT)—This field is placed on the OPT(2—0) outputs during the
address cycle of the access. There is a one-to-one correspondence between the OPT
field and the OPT(2-0) outputs; that is, the most-significant OPT bit is placed on
OPT2, and so on.

The OPT field controls system functions as described in Section 3.3.6.

Bits 15-8: (RA)—The data for the access is written into the general-purpose register
RA for a load, and is supplied by register RA for a store.

Bits 7-0: (RB or I)—In load and store instructions, the RB or | field specifies the
address for the access. The address is either the content of a general-purpose regis-
ter with register number RB, or a constant value | (zero-extended to 32 bits). The

M bit of the operation code (bit 24) determines whether the register or the constant
is used.

Load and store operations are overlapped with the execution of instructions that
follow the load or store instruction. Only one load or store may be in progress on any
given cycle. If a load or store instruction is encountered while another load or store
operation is in progress, the processor enters the Pipeline Hold mode until the first
operation completes (see Section 5.2).

Load Operations

The processors provide the following instructions for performing load operations: Load
(LOAD), Load and Lock (LOADL), Load and Set (LOADSET), and Load Multiple
(LOADM). All of these instructions transfer data from an external device or memory
into one or more general-purpose registers.

The LOADL instruction supports the implementation of device and memory interlocks
in a multi-processor configuration. It activates the LOCK output during the address
cycle of the access.

The LOADSET instruction implements a binary semaphore. It loads a general-
purpose register and atomically writes the accessed location with a word which has 1
in every bit position (that is, the write is indivisible from the read). The LOCK output is
asserted during both the read and write access. Note that, if address translation is
enabled for the LOADSET instruction, the MMU memory-protection bits must allow

DATA FORMATS AND HANDLING 3-9

3.3.4

33.5

both the read and write access. If either the read or write access is not allowed,
neither access is performed.

The LOADM instruction loads a specified number of registers from sequential
addresses, as explained below in Section 3.3.5.

Load operations are overlapped with the execution of instructions that follow the load
instruction. The processor detects any dependencies on the loaded data that subse-
quent instructions may have and, if such a dependency is detected, enters the Pipe-
line Hold mode until the data is returned by the external device or memory. If a regis-
ter that is the target of an incomplete load is written with the result of a subsequent
instruction, the processor does not write the returning data into the register when the
load completes; the Not Needed (NN) bit in the Channel Control Register is set in
this case.

Store Operations

The processors provide the following instructions for performing store operations:
Store (STORE), Store and Lock (STOREL), and Store Multiple (STOREM). All of
these instructions transfer data from one or more general-purpose registers to an
external device or memory.

The STOREL instruction supports the implementation of device and memory inter-
locks in a multi-processor configuration. It activates the LOCK output during the ad-
dress cycle of the access.

The STOREM instruction stores a specified number of registers to sequential ad-
dresses, as explained below.

Store operations are overlapped with the execution of instructions that follow the store
instruction. However, no data dependencies can exist, since the store prevents any
subsequent load or store accesses until it completes.

Multiple Accesses

The Load Multiple (LOADM) and Store Multiple (STOREM) instructions move con-
tiguous words of data between general-purpose registers and external devices and
memories. The number of transfers is determined by the Load/Store Count
Remaining Register.

The Load/Store Count Remaining (CR) field in the Load/Store Count Remaining
Register specifies the number of transfers to be performed by the next LOADM or
STOREM executed in the instruction sequence. The CR field is in the range of 0 to
255, and is zero-based: a count value of O represents one transfer, and a count value
of 255 represents 256 transfers. The CR field also appears in the Channel Control
Register.

Before a LOADM or STOREM is executed, the CR field is set by a Move To Special
Register. A LOADM or STOREM uses the most-recently written value of the CR field.
If an attempt is made to alter the CR field, and the Channel Control Register contains
information for an external access that has not yet completed, the processor enters
the Pipeline Hold mode until the access completes. Note that since the CR is set
independently of the LOADM and STOREM, the CR field may represent valid state of
an interrupted program even if the Contents Valid (CV) bit of the Channel Control
Register is 0 (see also Section 8.6.2).

Because of the pipelined implementation of LOADM and STOREM, at least one in-
struction (e.g., the instruction that sets the CR field) must separate two successive
LOADM and/or STOREM instructions.

3-10 DATA FORMATS AND HANDLING

3.3.5.1

After the CR field is set, the execution of a LOADM or STOREM begins the data
transfer. As with any other load or store operation, the LOADM or STOREM waits until
any pending load or store operation is complete before starting. The LOADM instruc-
tion specifies the starting address and starting destination general-purpose register.
The STOREM instruction specifies the starting address and the starting source
general-purpose register.

During the execution of the LOADM or STOREM instruction, the processor updates
the address and register number after every access, incrementing the address by 4
and the register number by 1. This continues until either all accesses are completed
or an interrupt or trap is taken.

For a load-multiple or store-multiple address sequence, addresses wrap from the
largest possible value (hexadecimal FFFFFFFC) to the smallest possible value (hexa-
decimal 00000000).

The processors increment absolute register numbers during the load-multiple or
store-multiple sequence. Absolute-register numbers wrap from 127 to 128 and from
255 to 128. Thus, a sequence that begins in the global registers may move to the
local registers, but a sequence that begins in the local registers remains in the local
registers. Also, note that the local registers are addressed circularly.

The normal restrictions on register accesses apply for the load-multiple and store-
multiple sequences. For example, if a protected general-purpose register is encoun-
tered in the sequence for a User-mode program, a Protection Violation trap occurs.

Intermediate addresses are stored in the Channel Address Register, and register
numbers are stored in the Target Register (TR) field of the Channel Control Register.
For the STOREM instruction, the data for every access is stored in the Channel Data
Register (this register also is set during the execution of the LOADM instruction, but
has no interpretation in this case). The CR field is updated on the completion of every
access, so that it indicates the number of accesses remaining in the sequence.

Load-multiple and store-multiple operations are indicated by the Multiple Operation
(ML) bit in the Channel Control Register. The ML bit is used to restart a multiple op-
eration on an interrupt return; if it is set independently by a Move To Special Register
before a load or store instruction is executed, the results are unpredictable.

While a multiple load or store is executing, the processor is in the Pipeline Hold mode,
suspending any subsequent instruction execution until the multiple access completes.
If an interrupt or trap is taken, the Channel Address, Channel Data, and Channel
Control registers contain the state of the multiple access at the point of interruption.
The multiple access may be resumed at this point, at a later time, by an interrupt
return.

The processors attempt to complete multiple accesses using the burst-mode capabil-
ity of the bus (see Section 10.4.10). For this reason, multiple accesses of individual
bytes and half-words is not supported. If the external device or memory cannot sup-
port burst-mode accesses, a sequence of simple single accesses are performed. If
the address sequence causes a virtual page-boundary crossing, the processor
preempts the burst-mode access, translates the address for the new page, and
re-establishes the burst-mode access using the new physical address.

LOAD/STORE COUNT REMAINING (CR, Register 135)

This unprotected special-purpose register (Figure 3-8) provides alternate access to
the CR field in the Channel Control Register.

DATA FORMATS AND HANDLING ~ 3-11

Figure 3-8

Load/Store Count Remaining Register
31 23 15

7 0
FTTTTH

ojo CR

3.3.5.2

3.3.6

Bits 31-8: Zeros.

Bits 7-0: Load/Store Count Remaining (CR)—The CR field indicates the remaining
number of transfers for a load-multiple or store-multiple operation that encountered an
exception or was interrupted before completion. This number is zero-based; for exam-
ple, a value of 28 in this field indicates that 29 transfers remain to be completed.

This register allows a User-mode program to change the CR field in the Channel
Control Register without affecting other fields in the Channel Control Register, and
is used to initialize the value before a Load Multiple or Store Multiple instruction is
executed.

MOVEMENT OF LARGE DATA BLOCKS

The movement of large blocks of data—for example, to perform a memory-to-memory
move—can be performed by an alternating series of loads and stores. However, it is
typically more efficient to move large blocks of data by using an alternating series of
Load Multiple and Store Multiple instructions. These instructions take better advan-
tage of the data-movement capabilities of the processor, though they require the use
of a larger number of registers.

During data movement, it is possible to perform alignment operations by a series of
EXTRACT instructions between the Load Multiple and Store Multiple. Also, since the
Load Multiple and Store Multiple are interruptible, these instructions may be used to
move large amounts of data without affecting interrupt latency.

Option Bits

The Option field in the load and store instructions supports system functions, such as
byte and half-word accesses. The definition of this field for a load or store, depending
on the AS bit of the instruction, is as follows:

AS OPT2 OPT1 OPTO Meaning

X 0 0 0 Word-length access

X 0 0 1 Byte access

X 0 1 0 Half-word access

0 1 0 Hardware-development system accesses

1
—AlI Others Reserved

Note that some of these encodings do not affect processor operation and could have
other interpretations in a particular system. Non-standard uses of the OPT field have
an implication on the portability of software between different systems.

3-12 DATA FORMATS AND HANDLING

3.3.7

3.3.7.1

Addressing and Alignment

BYTE AND HALF-WORD ADDRESSING

The Am29030 and Am29035 microprocessors generate word-oriented byte ad-
dresses for accesses to external devices and memories. Addresses are word-oriented
because loads, stores, and instruction fetches access words. However, addresses are
byte addresses because they permit byte selection within accessed words. For load
and store operations, the processor provides for using the least-significant address
bits to access bytes and half-words within external words.

For all external byte and half-word accesses, the selection of a byte within an external
word is determined by the two least-significant bits of an address and the Byte Order
(BO) bit of the Configuration Register. The selection of a half-word within an external
word is determined by the next-to-least significant bit of an address and the BO bit.
Figure 3-9 illustrates the addressing of bytes and half-words when the BO bit is 0 (big
endian), and Figure 3-10 illustrates the addressing of bytes and half-words when the
BO bit is 1 (little endian). In Figure 3-9 and Figure 3-10, addresses are represented in
hexadecimal notation.

Figure 3-9

Byte and Half-Word Addressing with BO =0 (Big Endian)

31 23 15 7 0
crreerrrrrrrrrrrrrrrrrrreererr

Word 00000000

Half-Word 00000000 Half-Word 00000002
Byte 00000000 Byte 00000001 Byte 00000002 Byte 00000003
crrerrrrrrrr ettt e
Word 000000004
Half-Word 00000004 Half-Word 00000006
Byte 00000004 Byte 00000005 Byte 00000006 Byte 00000007

0 0
. .

Word FFFFFFF8
Half-Word FFFFFFF8 Half-Word FFFFFFFA

Byte FFFFFFF8 Byte FFFFFFF9 Byte FFFFFFFA Byte FFFFFFFB

NERRRRRRRRRRRNRRERRRRNEREEEE

Word FFFFFFFC
Half-Word FFFFFFFC Half-Word FFFFFFFE

Byte FFFFFFFC Byte FFFFFFFD Byte FFFFFFFE Byte FFFFFFFF

For all byte and half-word operations in the processor, the byte or half-word within a
register is selected either by the two bits of the BP field or the two least-significant bits
of an external address. The BO bit affects only the interpretation of the BP field and
the two least-significant address bits.

If the BO bit is 0, bytes are ordered within words such that a 00 in the BP field or in
the two least-significant address bits selects the high-order byte of a word, and a 11
selects the low-order byte. If the BO bit is 1, a 00 in the BP field or in the two least-
significant address bits selects the low-order byte of a word, and a 11 selects the
high-order byte.

DATA FORMATS AND HANDLING ~ 3-13

Figure 3-10 Byte and Half-Word Addressing with BO = 1 (Little Endian)

31 23 15 7 0
crrererrtrrrerertrrrerrrrerirri
Word 00000000
Half-Word 00000002 Half-Word 00000000
Byte 00000003 Byte 00000002 Byte 00000001 Byte 00000000
BERRRRRERRRRERRNARRER R
Word 000000004
Half-Word 00000006 Half-Word 00000004
Byte 00000007 Byte 00000006 Byte 00000005 Byte 00000004
crerererertrerererererer et erd
Word FFFFFFF8

Half-Word FFFFFFFA Half-Word FFFFFFF8
Byte FFFFFFFB Byte FFFFFFFA Byte FFFFFFF9 Byte FFFFFFF8
BERRRRRERERRERREERRERRRREREE N
Word FFFFFFFC
Half-Word FFFFFFFE Half-Word FFFFFFFC
Byte FFFFFFFF Byte FFFFFFFE Byte FFFFFFFD Byte FFFFFFFC

if the BO bit is 0, half-words are ordered within words such that a 0 in the most-
significant bit of the BP field or the next-to-least-significant address bit selects the
high-order half-word, and a 1 selects the low-order half-word. If the BO bitis 1, a0 in
the most-significant bit of the BP field or the next-to-least-significant address bit se-
lects the low-order half-word of a word, and a 1 selects the high-order half-word. Note
that since the least-significant bit of the BP field or an address does not participate in
the selection of half-words, the alignment of half-words is forced to half-word bounda-
ries in this case.

33.7.2 BYTE AND HALF-WORD ACCESSES

During a load, the processor selects a byte or half-word from the loaded word de-
pending on: the Option (OPT) bits of the load instruction, the Byte Order (BO) bit of
the Configuration Register, and the two least-significant bits of the address (for bytes)
or the next-to-least-significant bit of the address (for half-words). The selected byte or
half-word is right-justified within the destination register. If the SB bit of the load in-
struction is 0, the remainder of the destination register is zero-extended. If the SB bit
is 1, the remainder of the destination register is sign-extended with the sign bit of the
selected byte or half-word.

During a store, the processor replicates the low-order byte or half-word in the source
register into every byte and half-word position of the stored word. The processor
generates the appropriate byte and/or half-word write enables, based on the
OPT(2-0) signals and the two least-significant bits of the address, to write the byte or
half-word in the selected device or memory. The SB bit does not affect the operation
of a store, except for setting the BP field as described below.

If the SB bit is 1 for either a load or store, both bits of the BP field are set to the com-
plement of the BO bit when the load or store is executed. This does not directly affect
the load or store access, but supports compatibility for software developed for word-
write-only systems and other 29K family processors.

3-14 DATA FORMATS AND HANDLING

3.3.7.3

3.3.74

ALIGNMENT OF WORDS AND HALF-WORDS

Since only byte addressing is supported, it is possible that the address for an access
of a word or half-word is not aligned to the desired word or half-word. The Am29030
and Am29035 microprocessors either ignore or force alignment in most cases. How-
ever, some systems may require that unaligned accesses be supported, for compati-
bility reasons. Because of this, the Am29030 and Am29035 microprocessors provide
an option to trap when a non-aligned access is attempted. This trap allows software
emulation of the non-aligned accesses, in a manner which is appropriate for the
particular system.

The detection of unaligned accesses is activated by a 1 in the Trap Unaligned Access
(TU) bit of the Current Processor Status Register. Unaligned-access detection is
based on the data length as indicated by the OPT field of a load or store instruction
and on the two least-significant bits of the specified address. Only addresses for
instruction/data memory accesses are checked; alignment is ignored for input/output
accesses.

An Unaligned Access trap occurs only if the TU bit is 1 and any of the following com-
binations of OPT field and address bits is detected for a load or store to instruction/
data memory:

OPT2 OPT1 OPTO A1l A0 Meaning
0 0 0 1 0 Unaligned Word access
0 0 0 0 1 Unaligned Word access
0 0 0 1 1 Unaligned Word access
0 1 0 0 1 Unaligned Half-word access
0 1 0 1 1 Unaligned Half-word access

The trap handler for the Unaligned Access trap is responsible for generating the
correct sequence of aligned accesses and performing any necessary shifting, mask-
ing and/or merging. Note that a virtual page-boundary crossing may also have to be
considered.

ALIGNMENT OF INSTRUCTIONS

In the Am29030 and Am29035 microprocessors, all instructions are 32 bits in length
and are aligned on word-address boundaries. The processor's Program Counter is 30
bits in length, and the least-significant two bits of processor-generated instruction
addresses are always 00. An unaligned address can be generated by indirect jumps
and calls. However, alignment is ignored by the processor in this case, and the proc-
essor expects the system to force alignment (i.e., by interpreting the two least-signifi-
cant address bits as 00, regardless of their values).

DATA FORMATS AND HANDLING ~ 3-15

GCHAPTER 4

PROCEDURE LINKAGE n

4.1

4.1.1

This chapter describes the run-time storage organization recommended for the
Am29030 and Am29035 microprocessors and describes the use of the local registers
to improve the performance of procedure calls. The presentation in this chapter is
intended to be used as a guide in the implementation of software systems for the
processor, not necessarily as a strict definition of how these systems should be
implemented.

Programming languages that use recursive procedures, such as C and Pascal, gener-
ally use a stack to store data objects that are dynamically allocated at run-time. The
organization of the run-time storage, including the run-time stack, determines how
data objects are stored and how procedures are called at the machine level. The
Am29030 and Am29035 microprocessors are designed to minimize the overhead of
calling a procedure, passing parameters to a procedure, and returning results from a
procedure. This chapter describes the run-time storage organization and procedure-
calling conventions.

RUN-TIME STACK ORGANIZATION AND USE

A run-time stack consists of consecutive overlapping structures called activation
records. An activation record contains dynamically allocated information specific to a
particular activation (or call) of a procedure (such as local data objects). Because of
recursion, multiple copies of a procedure may be active at any given time. Each active
procedure has its own unique activation record, allocated somewhere on the run-time
stack. The local variables required by a particular procedure activation are contained
in the activation record associated with that activation. Thus, the local variables for
different activations do not interfere with one another. A compiler generates the in-
structions to create and manage the run-time stack, and compiler-generated instruc-
tions are based on its existence.

As an example, Figure 4-1 shows three activation records on a run-time stack. This
stack configuration was generated by procedure A calling procedure B, which in turn
called procedure C. The fact that procedure C is the currently active procedure is
reflected by its activation record being on the top of the run-time stack. The Stack
Pointer points to the top of procedure C’s activation record.

In Figure 4-1, the storage areas labeled Out args and In args are the outgoing argu-
ments area (for the caller) or the incoming arguments area (for the callee). These are
shared between the caller procedure and the callee for the communication of parame-
ters and results. The areas labeled locals contain storage for local variables, tempo-
rary variables (for example, for expression evaluation) and any other items required
for the proper execution of the procedure.

Management Of The Run-time Stack

A run-time stack starts at a high address in memory and grows toward lower memory
addresses as procedures are called. The bottom of the stack is the location, with a

PROCEDURE LINKAGE 4-1

Figure 4-1

Run-time Stack Example
Out args X Hi
igher Memory
Inargs A Addresses
Activation Local
Record for A Is A &
Out args A
Inargs B
Activation
Locals B Record for B
Out args B
Inargs C M
Activation
Locals C Lower Memory
Record for C Addresses
R Out args C Stack Pointer
> (Top of Stack)

high address, at which the stack starts; the top of the stack is the location, with a
lower address, at which the most recent activation record has been allocated.

When a procedure is called, a new activation record might need to be allocated on the
run-time stack. An activation record is allocated by subtracting from the stack pointer
the number of locations needed by the new activation record. The stack pointer is
decremented so that variables referenced during procedure execution are referenced
in terms of positive offsets from the stack pointer.

When storage for an activation record is allocated, the number of storage locations
allocated is the sum of the number of locations needed for:

1. Local variables;
2. Restarting the caller, such as locations for return addresses; and

3. Arguments of procedures that may be called in turn by the called procedure (the
outgoing arguments area).

Note that, in some cases, no storage is required for one or more of the above items.
Also, the incoming arguments area, though it is part of the activation record of the
callee, is not allocated storage at this time, because this storage was allocated as the
outgoing arguments area of the calling procedure.

An activation record is de-allocated, just prior to returning to the caller, by adding to
the stack pointer the value that was subtracted during allocation.

In Am29030 and Am239035 microprocessors, run-time storage is actually implemented
as two stacks: the Register Stack and the Memory Stack. Storage is allocated and
de-allocated on these stacks at the same time. The Register Stack stores activation
records associated with all active procedures (except leaf routines, as described
later). The Memory Stack stores activation-record information that does not fit into the
Register Stack or that must be kept in memory for other reasons (e.g., because of
pointer dereferences). Both the Register Stack and the Memory Stack are stored in
the external data memory. However, a portion of the Register Stack is kept in the

4-2 PROCEDURE LINKAGE

4.1.2

processor’s local registers for performance. The term stack cache in this section
refers to the use of the local registers to contain a portion of the Register Stack.

The Register Stack

The Register Stack contains activation records for active procedures (Figure 4-2). An
activation record in the Register Stack stores the following information:

« Input arguments to the called procedure. This portion of the activation record is
shared between a caller and the callee. It is allocated by the caller as part of the
caller's activation record.

» The caller’s frame pointer. This is the address of the lowest-addressed byte above
the highest-address word of the caller’s activation record, and is used to manage
the Register Stack. This portion of the activation record is shared between a caller
and the callee. ltis allocated by the caller as part of the caller’s activation record.

e The caller’s return address. This is used to resume the execution of the caller after
the called procedure terminates. This is also part of the caller’s activation record.

« The memory frame pointer. This is the address of the top of the caller's Memory
Stack (see below). This address is stored by the callee (if required), and used to
restore the memory stack upon return.

« The local variables of the called procedure, if any.
« Outgoing parameters of the called procedure, if any.
» The frame pointer of the called procedure, if the procedure calls another procedure.

o The return address for the called procedure, if the procedure calls another
procedure. This location is allocated in the Register Stack, and is used when the
called procedure calls another procedure.

Figure 4-2

An Activation Record in the Register Stack

" Incoming Arguments
Frame Pointer LR1 (caller)} Before and
Return Address LRO (caller), Adter Call
. h
Memory Frame Pointer Caller’s Stack Pointer
Callee’s = _
Activation .
Record | Local Variables]
of Callee
Outgoing Arguments
Frame Pointer LR1 (Callee) } During
Call
Return Address LRo (Callee)
> —
Callee’s Stack Pointer

PROCEDURE LINKAGE 4-3

4.1 l3

Local Registers As A Stack Cache

The Am29030 and Am29035 microprocessors are designed for efficient implementa-
tion of the Register Stack. Specifically, the Am29030 and Am29035 microprocessors
can use the large number of relatively addressed local registers to cache portions of
the Register Stack, yielding a significant gain in performance. Allocation and de-allo-
cation of activation records occurs largely within the confines of the high-speed local
registers, and most procedure calls occur without external references. Furthermore,
during procedure execution, most data accesses occur without external references,
because activation-record data are referenced most frequently. The principle of local-
ity of reference—which allows any cache to be effective—also applies to the stack
cache. The entries in the stack cache are likely to remain there for re-use, because
the size of the Register Stack does not change very much over long intervals of pro-
gram execution. Activation records are typically small, so the 128 locations in the local
register file can hold many activation records.

Allocating Register-Stack activation records in the local registers is facilitated by the
Stack Pointer in Global Register 1. During the execution of a procedure, the Stack
Pointer points simultaneously to the top of the Register Stack in memory and to the
local register at the top of the stack cache. In other words, Global Register 1, a word-
length register, contains the 32-bit address of the top of the Register Stack, while
bits 8—2 of Global Register 1 (with a 1 appended to the most-significant bit) indicate
the absolute register number of Local Register 0. Allocation and de-allocation of the
Register Stack is accomplished by subtracting from or adding to, respectively, the
value of the Stack Pointer.

Using this register-addressing scheme, locations from the Register Stack are auto-
matically mapped into the local register file. Figure 4-3 shows the relationship

Figure 4-3

Relationship of Stack Cache and Register Stack

Register
Stack
Spilled
Local Activation
: Records
Register :
Eile Register Free Bound (gr127)
] Frame Pointer (Ir1) Entries
['
Ll
Ir6 ! Current
Ir5 ! Activation
Ir4 ' Record
Ir3 H (in local
Ir2 ! registers)
Ir Register Stack Pointer (gr1)
Iro ——
Ir127
1
Register Allocate Bound (gr126)

44 PROCEDURE LINKAGE

between the Register Stack and the stack cache in the local registers. As shown,
pointers are required to define the boundaries between the Register Stack and the
stack cache.

« The register free bound pointer (rib, gr127) defines the boundary between the
portion of the Register Stack that is cached in the local registers and the portion that
is stored in the external data memory. The rfb pointer contains the address of the
first word in the Register Stack that is not contained in the local registers, but which
is in memory.

« The frame pointer (fp, Ir1) contains the memory address of the lowest-addressed
word not in the current activation record. The current activation record is not
necessarily in the data memory: the fp is used to determine whether or not an
activation record is contained in the local registers when a procedure returns from a
call, as described later.

The register stack pointer (rsp, gr1) points to the top of the Register Stack either in
the local registers or the data memory; the rspis contained in the local-register
Stack Pointer (Global Register 1). The top of the Register Stack may or may not be
contained in the data memory—the rsp simply defines the location of the top of the
Register Stack.

The register allocate bound pointer (rab, gr126) defines the lowest-addressed stack
location that can be cached within the local registers. This defines the limit to which
local registers can be allocated in the Register Stack.

Several activation records may exist in the Register Stack at any given time, but only
one stack location may be mapped to a local register at a given time. When the Reg-
ister Stack grows beyond the 128-word capacity of the local registers, some move-
ment of data between the stack cache and the Register Stack in data memory must
occur.

Stack overflow occurs when a procedure is called, but the activation record of the
callee requires more registers than can be allocated in the stack cache (this is de-
tected by comparing rsp with rab); Figure 4-4 illustrates stack overflow. In this case,
the contents of a number of registers must be moved to data memory. The number of
registers involved must be sufficient to allow the entire activation record of the callee
to reside in the local registers. A block of the registers is copied, or spilled into an
area of external data memory, freeing space in the local register file for the most
recent procedure call.

Stack underflow occurs when a procedure returns to the caller, but the entire activa-
tion record of the caller is not resident in the stack cache (this is detected by compar-
ing fo with rfb); Figure 4-5 illustrates stack underflow. In this case, the non-resident
portion of the caller’s stack must be moved from data memory to the local registers.
Underflow occurs because overflow occurred at some previous point during program
execution, causing part of the Register Stack to be moved to data memory.

The processors perform no hardware management of the stack cache and cannot
detect a reference to a quantity that is not in the stack cache. Consequently, software
must keep the size of an activation record less than or equal to the size of the local
register file (128 words). Any additional storage requirements are satisfied by the
Memory Stack.

PROCEDURE LINKAGE 4.5

Figure 4-4

Stack Overflow

Local
Register
File

Iré

Ir5
PR [S
SN | < DRI
I - S
I ' W
-er-...-.l

tesmemyrmrmy -

B L R I Y

Register
Stack 1

Register Free Bound (gr127)

Spilled
Activation
Records

Frame Pointer (Ir1) ,,-v“‘@ ‘o“’w

o o o g
S S

‘s Other Stack %
s““. Entnes ;@ y

&
gty e & 4",‘ Pty

—

& o g“’r \@&‘ y“’\‘ & ,6 ““ \‘
& o \\ o
: > 9,«‘;,,«}»’} o :,x: ":e‘\:.c"
Ly &
S S S
e ‘-\‘&““\‘9* Sy
‘e"““@“‘ o ‘\\“"J\““:\s“‘\‘\\’“\’ \\“é\\‘»“‘ C
S “,\‘:“\\\“‘ ‘«‘; o S ,*"‘\:
)]
1 1]
1 1]
Register Allocate Bound (gr126) ! Current :
e e T Activation '
]]
' Record '
1 (in local '
.]
registers) H
]
1
.

]
Register Stack Pointer (gr1) '
1

Figure 4-5

Stack Underflow

Local
Register
File

Ir1
Ir0
Ir127
r126
r125
r124
Ir123
r122

Register
Stack

Frame Pointer(ir1)

Register Free Bound (gr127)

Register Stack Pointer (gr1)

Register Allocate Bound (gr126)
—>

Spilled
Activation
Records

Current
Activation
Record

4-6

-PROCEDURE LINKAGE

4.1.4

4.2

The Memory Stack

In general, the Memory Stack is used to augment the Register Stack, holding addi-
tional information associated with activation records. For example, the Memory Stack
holds large data structures than cannot fit into the Register Stack. Similar to the Reg-
ister Stack, the Memory Stack contains a series of (possibly overlapping) activation
records, each corresponding to a procedure activation. However, a Memory Stack
activation record need not exist for a procedure that does not need a Memory Stack
Area. The Memory Stack contains the following information:

« Overflow incoming arguments. These are incoming arguments that do not fit in the
allowed incoming arguments area of the Register Stack activation record.

» Spilled incoming arguments. These are incoming arguments that cannot be kept in
the Register Stack. For example, if the address of an argument is used in a called
procedure, the associated value must be in the Memory Stack.

« Any procedure-local variable not allocated to a register.

» Local block space. This storage is allocated dynamically on the Memory Stack. It is
used to implement functions such as the alloca() function in the C programming
language.

« Overflow outgoing arguments. These are outgoing arguments that do not fit in the
allowed outgoing arguments area of the Register Stack activation record.

In contrast to the Register Stack, the Memory Stack is not cached and has no fixed
size limit. The top of the Memory Stack is defined by the memory stack pointer (msp),
which is stored in Global Register 125 by convention.

PROCEDURE LINKAGE CONVENTIONS

The procedure linkage conventions define the standard sequences of instructions
used to call and return from procedures. These instruction sequences perform the
following operations (other, more general operations may also be required, as de-
scribed later):

« Put procedure arguments into the outgoing arguments area of the activation record.
This may or may not involve copying the arguments; copying is not necessary if the
arguments are placed into the appropriate registers as the result of computation.

« Branch to the procedure using a call instruction, which also places the return
address in a register.

e Allocate a frame on the Register Stack. A frame is the storage that contains the
procedure’s activation record.

« If overflow occurs during frame allocation, spill the least-recently used locations of
the Register Stack. The number of spilled locations must be sufficient to allow the
new frame to reside entirely within the local registers.

« Determine the frame-pointer value of the called procedure, if this procedure may
call another procedure.

« Execute the procedure.
« Place return values into the appropriate registers.
« De-allocate the activation-record frame.

« Fill locations of the local registers from the Register Stack in external memory, if
underflow occurs.

« Branch to the procedure’s return address.

PROCEDURE LINKAGE 4-7

4.2.1

4.2.2

This section describes the routines that implement the procedure linkage conventions.
The operations described here are not required on every procedure call. In some
cases, operations can be omitted or simpler routines used; these cases and the ac-
companying simplifications are also described here.

Argument Passing

The linkage convention allows up to 16 words of arguments to be passed from the
caller to the callee in local registers. These arguments are passed in Local Register 2
through Local Register 17 of the caller (note that the local-register numbers are differ-
ent for the caller and the callee, because of Stack-Pointer addressing).

When more than 16 words are required to pass arguments, the additional words are
passed on the Memory Stack. In this case, the memory stack pointer (in Global Regis-
ter 125) points to the 17th word of the arguments, and the remaining argument words
have higher memory addresses. Multi-word arguments may be split across the Regis-
ter Stack and the Memory Stack. For example, if a multi-word argument starts on the
16th word of the outgoing arguments, the first word of the argument is passed in the
Register Stack, and the remainder of the argument is passed in the Memory Stack.

All arguments occupy at least one word; arguments which are a byte or half-word in
length (for example, a character) are padded to 32 bits and passed as a full word.
However, an array or structure composed of multiple byte or half-word components
can be passed as a single, packed array or structure of bytes or half-words rather
than an array or structure of padded bytes or half-words.

No argument is aligned to other than a word address boundary, including multi-word
arguments. Some multi-word arguments are referenced as a single object (for exam-
ple, double-precision Floating-Point values). Note that it may be necessary to copy
such arguments to an aligned memory or register area before use.

Procedure Prologue

When a procedure is called, and the procedure may call another procedure, the callee
must allocate a frame for itself on the Register Stack (this is not required for leaf
procedures that do not call other procedures, as described later). A frame is allocated
by decrementing the register stack pointer to accommodate the size of the required
activation record. The procedure prologue is the instruction sequence that allocates
the callee’s Register Stack frame.

To allocate the stack frame, the prologue routine decrements the register stack
pointer by the amount rsize (see Figure 4-6). The value of rsize must be an even
number given by the following formula:

rsize=(size of local variable area) + (size of outgoing arguments area) +2

The value 2 in this formula accounts for the space required by the return address (in
Local Register 0) and the frame pointer (in Local Register 1). The size of the local
variable area includes the space for the memory frame pointer, if required. If the
formula total is an odd value, the total must be adjusted (by adding 1) so that the
resulting rsize value is even. This aligns the top of the Register Stack on a double-
word boundary. The reason for this alignment is that double-precision Floating-Point
values must be aligned to registers with even absolute-register numbers. Alignment of
double-precision values is accomplished by placing these values into even-numbered
local registers and making rsize even (it is also assumed that the register stack
pointer is initialized on an even-word boundary).

4-8 PROCEDURE LINKAGE

Figure 4-6

Callee's
Activation
Record

Definition of size and rsize Values
? Incoming Arguments*
: Frame Pointer LR1 (caller)
L}
' Return Address LRO (caller)
E f Memory Frame Pointer* Caller's Stack Pointer
' '
' ! — —
' :
I -
' : - Local Variables]
" : of Callee*
' —
. !]
' . 1 —
size rsize
- 1
' '
' ' Outgoing Arguments*
L
! : Frame Pointer* LR1 (callee)
1
; ; R Return Address* — LRO (callee)
i Callee’s Stack Pointer

*May not be required

Note that rsize is not the size of the entire activation record of the callee, because the
callee’s activation record includes storage that was allocated as part of the caller’s
activation record frame (e.g., the caller’s outgoing arguments area, which is the
callee’s incoming arguments area). The size of the callee’s entire activation record is
denoted size, and is given by the following formula:

size=rsize + (size of the incoming arguments area) +2

In the prologue routine, the following instruction is used to allocate the stack frame
(rsp=gril):
prologue:

sub rsp,rsp,rsize*4 ; "4 converts words to bytes
However, this instruction does not account for the fact that there may not be enough
room in the local registers to contain the activation record. There must be additional
instructions to detect stack overflow and to cause spilling if overflow occurs. This is
accomplished by comparing the new value of the register stack pointer with the value
of the register allocate bound and invoking a trap handler (with vector number
V_SPILL) if overflow is detected.

Furthermore, if the procedure calls another procedure, the prologue must compute a
frame pointer. The frame pointer will be used by procedures called in turn by the
callee to insure that the callee’s activation record is in the local registers upon return
(i.e., that it has not been spilled onto the Register Stack in data memory). The frame
pointer is computed in the prologue because it need only be computed once, regard-
less of how many procedures are called by a given procedure.

PROCEDURE LINKAGE 4-9

4.23

4.2.4

The complete procedure prologue is then (fp = Ir1):

prologue:
sub rsp, rsp, rsize*4 ; allocate frame
asgeu V_SPILL, rsp, rab ; call spill handler if needed
add fp, rsp, size*4 ; compute frame pointer

Spill Handler

If overflow occurs, the assert instruction in the prologue fails, causing a trap. The
trap handler invokes a User-mode routine in the trapping process to spill Register
Stack locations from the local registers to external memory. Having most of the spill
handling in a User-mode routine minimizes the amount of time that interrupts are
disabled and insures that spilling is performed using the correct virtual-memory
configuration.

The spill handler uses two registers. The first register, Global Register 121, normally
contains a trap-handler argument (tav), but is used by the spill handler as a temporary
register. The second register, Global Register 122, stores a trap handler return ad-
dress ({pc). This register is used by the User-mode spill handler to return to the trap-
ping procedure. It is assumed that the address of the User-mode spill handler is
contained in a global register, denoted user_spill_reg in the following instruction
sequence.

The complete spill handler is:

Spill: ; operating-system routine
mfsr tpc, PC1 ; save return address
mtsr PC1, user_spill_reg ; branch to User spill via interrupt return
add tav, user_spill_reg, 4
mtsr PCO, tav
iret
user_spill: ; User-mode spill handler
sub tav, rab, rsp ; compute spill: allocate bound — rsp
srl tav, tav, 2 ; shift to get number of words
sub tav, tav, 1 ; count is one less
mtsr CR, tav ; set Count Remaining Register
sub tav, rab, rsp
sub tav, rfb, tav ; compute new free bound
add rab, rsp, 0 ; adjust allocate bound
storem 0, 0, Ir0, tav ; spill
jmpi tpc ; return to trapping procedure
add rfb, tav, 0 ; adjust free bound

Return Values

If the called procedure returns one or more results, the first 16 words of the result(s)
are returned in Global Register 96 through Global Register 111, starting with Global
Register 96.

If more than 16 words are required for the results, the additional words are returned in
memory locations allocated by the caller. In this case, a large return pointer (/rp)
provided by the caller in Global Register 123 at the time of the call points to the 17th
word of the results, and subsequent words are stored at higher memory addresses.

4-10 PROCEDURE LINKAGE

4.2.5

4.2.6

4.2.7

Procedure Epilogue

The procedure epilogue de-allocates the stack frame that was allocated by the proce-
dure prologue and returns to the calling procedure. Stack de-allocation is accom-
plished by adding the rsize value back to the register stack pointer, after which the
de-allocated registers are no longer used and are considered invalid. The epilogue
also detects stack underflow and causes register filling if underflow occurs. This is
accomplished by comparing the value of the caller's frame pointer with the register
free bound and invoking a trap handler (with vector number V_FILL) if underflow is
detected. Finally, the epilogue returns to the caller using the caller’s return address.

The complete procedure epilogue is:

epilogue:
add rsp, rsp, rsize*4 ; add back rsize count
nop ; cannot reference a local register here
asleu V_FILL, fp, rfb ; call fill handler if needed
jmpi Ir0 ; jump to return address
nop ; delay slot

Fill Handlers

If underflow occurs, the assert instruction in the epilogue fails, causing a trap. The
trap handler invokes a User-mode routine in the trapping process to fill Register Stack
locations from the external memory to local registers. The fill handler is similar in
organization to the spill handler discussed above.

The complete fill handler is:

Fill: ; operating-system routine
mfsr tpc, PC1 save return address
mtsr PC1, user_fill_reg branch to User fill via interrupt return

add tav, user _fill_reg, 4
mtsr PCO, tav
iret
user_fill: ; User-mode fill handler

sub tav, rib,rab local register has high bit set

or tav, tav, rib put starting register number into Indirect
Pointer A

mtsr IPA, tav

sub tav, fp, rib compute number of bytes to fill

add rab, rab, tav adjust the allocate bound

srl tav, tav, 2 change byte count to word count

sub tav, tav, 1 make count zero-based

mtsr CR, tav
loadm 0,0, gro0, tav
jmpi tpc

add b, fp, 0

set Count Remaining register
fill

return to trapping procedure
adjust the free bound

The Register Stack Leaf Frame

A leaf procedure is one that does not call any other procedure. The incoming argu-
ments of a leaf procedure are already allocated in the calling procedure’s activation-
record frame, and the leaf routine is not required to allocate locations for any outgoing
arguments, frame pointer or return address (since it performs no call). Hence, a leaf
procedure need not allocate a stack frame in the local registers, and can avoid the
overhead of the procedure prologue and epilogue routines. Instead, a leaf routine can
use a set of global registers for local variables; Global Register 96 through Global

PROCEDURE LINKAGE ~ 4-11

4.2.8

Register 124 are reserved for this purpose (among other purposes). If there is an
insufficient number of global registers, the leaf procedure may allocate a frame on the
Register Stack.

Local Variables And Memory-Stack Frames

A called procedure can store its local variables and temporaries in space allocated in
the Register Stack frame by the procedure prologue. The values are referenced as an
offset from the rsp base address, using the Stack-Pointer addressing of the local
registers. No object in a register is aligned on anything smaller than a register bound-
ary, and all objects take at least one register.

Because there are 128 local registers, the total Register Stack activation-record size
can not be greater than 128 words. If the callee needs more space for local variables
and temporaries, it must allocate a frame on the Memory Stack to hold these objects.
To allocate a Memory-Stack frame, the procedure prologue decrements the memory
stack pointer (msp, in gr125). The procedure epilogue de-allocates the Memory-Stack
frame by incrementing the msp.

A procedure that extends the Memory Stack dynamically (e.g., using alloca()) must
make a copy of the msp at procedure entry, before allocating the Memory-Stack
frame. The msp is stored in the memory frame pointer (mfp) entry of the activation
record in the Register Stack. The procedure then can change the msp during execu-
tion, according to the needs of dynamic allocation. On procedure return, the Memory-
Stack frame is de-allocated using the mfp to restore the msp. A procedure that does
not extend the Memory Stack dynamically need not have an mfp entry in its activation
record.

The following prologue and epilogue routines are used if there is no dynamic alloca-
tion of the Memory Stack during procedure execution, but a Memory Stack frame is
otherwise required (Figure 4-6 contains a diagram of register usage):

prologue:

sub rsp, rsp, <rsize>*4 ; allocate register frame

asgeu V_SPILL, rsp, rab ; call spill handler if needed

add fp, rsp, <size>*4 ; compute register frame pointer

sub msp, msp, <msize> ; allocate memory frame

; msize =size of memory frame in words

epilogue:

add rsp, rsp, <rsize>*4 ; de-allocate register frame

add msp, msp, <msize> ; de-allocate memory frame

jmpi Ir0 ; return

asleu V_FILL, fp, rfb ; call fill handler if needed

The following prologue and epilogue routines are used if there is dynamic allocation of
the Memory Stack during procedure execution:

prologue:
sub rsp, rsp, <rsize>*4 ; allocate register frame
asgeu V_SPILL, rsp, rab ; call spill handler if needed
add fp, rsp, <size>*4 ; compute register frame pointer
add Ir{<rsize>—1}, msp, 0 ; save memory frame pointer
; Ir{rsize—1} is last reg in new frame
sub msp, msp, <msize> ; allocate memory frame,

; msize =size of memory frame in words

4-12 PROCEDURE LINKAGE

4.2.9

4.2.10

4.3

epilogue:

add msp, Ir{<rsize>-1},0 ; restore memory stack pointer
; de-allocate memory frame
add rsp, rsp, <rsize>*4 ; de-allocate register frame
nop ; cannot reference a local register here
jmpi Ir0 ; return
asleu V_FILL, fp, rfb ; call fill handler if needed

Static Link Pointer

Some programming languages (notably Pascal) permit nested procedure déclara-
tions, introducing the possibility that a procedure may reference variables and
arguments which are defined and managed by another procedure. This other
procedure is a static parent of the callee. A static parent is determined by the declara-
tions of procedures in the program source, and is not necessarily the calling proce-
dure; the calling procedure is the dynamic parent. Since procedures can be nested at
a number of levels, a given procedure may have a number of hierarchically organized
static parents.

A called procedure can locate its dynamic parent and the variables of the dynamic
parent because of the return address and frame pointer in the Register Stack. How-
ever, these are not adequate to locate variables of the static parent which may be
referenced in the procedure. If such references appear in a procedure, the procedure
must be provided with a static link pointer (s/p). In the run-time organization, the sip is
stored in Global Register 124. Since there can be a hierarchy of static parents, the sip
points to the sip of the immediate parent, which in turn points to the slp of its immedi-
ate parent, and so on. Note that the contents of Global Register 124 may be de-
stroyed by a procedure call, so a procedure needing to reference the variables of

a static parent may need to preserve the sip until these references are no longer
necessary.

Transparent Procedures

A transparent procedure is one that requires very little overhead for managing run-
time storage. Transparent procedures are used primarily to implement compiler-spe-
cific support functions, such as integer divide.

A transparent routine does not allocate any activation-record frames. Parameters are
passed to a transparent procedure using tav and the Indirect Pointer A, B, and C
registers. The return address is stored in tpc. This convention allows a leaf procedure
to call a transparent procedure without changing its status as a leaf procedure. There
is a tight relationship between a compiler and the transparent procedures it calls.
Some transparent procedures may need more temporary registers and the compiler
must account for this.

REGISTER USAGE CONVENTION

The run-time organization standardizes the uses of the local and global registers. This
section summarizes register use and the nomenclature for register values:

* GR1: Register stack pointer (rsp).
e GR2-GR63: Unimplemented.
o« GR64-GR95: Reserved for operating-system use.

PROCEDURE LINKAGE ~ 4-13

« GR96—-GR111: Procedure return values. Lower-numbered registers are used
before higher-numbered registers. If more than 16 words are needed, the additional
words are stored in the Memory Stack (see GR123, large return pointer). These
registers are also used for temporary values that are destroyed upon a procedure
call.

« GR112-GR115: Reserved for programmer. These registers are not used by the
compiler, except as directed by the programmer.

¢ GR116—-GR120: Compiler temporaries.

o« GR121: Trap handler argument/temporary (tav)—This register is used to
communicate arguments to a software-invoked trap routine. It can be destroyed by
the trap, but not by other traps and interrupts not explicitly generated by the
program (for example, a Timer trap).

« GR122: Trap handler return address/temporary (tpc). This register also is used by
software-invoked traps. It can be destroyed by the trap, but not by other traps and
interrupts not explicitly generated by the program (for example, a Timer trap).

 GR123: Large return pointer/temporary (/rp).
o« GR124: Static link pointer/temporary (slp).

o GR125: Memory stack pointer (msp).

* GR126: Register allocate bound (rab).

o GR127: Register free bound (rfb).

o LRO: Return address.

« LR1: Frame pointer.

In this convention, registers must be handled by software according to system re-
quirements. The following practices are recommended:

o GR64-GR95 should be protected from User-mode access by the Register Bank
Protect Register.

« The contents of GR96-GR124 should be assumed destroyed by a procedure call,
unless the procedure is a transparent procedure.

o The contents of GR121 and GR122 should be assumed destroyed by any
procedure call or any program-generated trap.

« The contents of GR125 are always preserved by a procedure call.

o The contents of GR126 and GR127 are managed by the spill and fill handlers and
should not be modified except by these handlers.

EXAMPLE OF A COMPLEX PROCEDURE CALL

The following code sequence demonstrates a complex procedure call, illustrating how
registers are used in the run-time organization:

caller:
(other code)
add Irp, msp, 32 ; pass Irp
add slp, msp, 120 ; pass a static link
call Ir0, callee
const 2,1 ; 1 as first argument
(other code)

4-14

PROCEDURE LINKAGE

4.5

callee:

const tav, (126-2)*4 ; giant register allocation

sub rsp, rsp, tav ; allocate register frame

asgeu V_SPILL, rsp, rab

const tav, (126-2)*4+(3*4) ; incoming arguments and overhead
add fp, rsp, tav ; create frame pointer

add Ir123, msp, 0 ; for dynamic Memory-Stack allocation

const tav, memory_frame_size ; big msize
consth tav, memory_frame_size ; high half of msize

sub msp, msp, tav ; allocate memory frame
add Ir18, Irp, 0 ; save Irp for later
add Ir19, slp, 0 ; save slp for later
(other code)
add msp, Ir123, 0 ; de-allocate memory frame
const tav, (126-2)*4 ; giant allocation size
add rsp, rsp, tav ; de-allocate register frame
const gr96, 1 ; return value
jmpi Ir0 ; return to caller
asleu V_FILL, fp, rfb ; insure caller’s registers in frame

TRACE-BACK TAGS

A trace-back tag is either one or two words of information included at the beginning of
every procedure. This information permits a debug routine to determine the sequence
of procedure calls and the values of program variables at a given point in execution.
The trace-back tag describes the memory frame size and the number of local regis-
ters used by the associated procedure. A one-word tag is used if the memory frame
size is less than 2K words; otherwise, the two-word tag is used. Regardless of tag
length, the tag directly precedes the first instruction of the procedure. Figure 4-7
shows the format of the trace-back tags.

The first word of a trace-back tag starts with the invalid operation code 00 (hexadeci-
mal). This unique, invalid instruction operation code allows the debugger to locate the
beginning of the procedure in the absence of other information related to the begin-
ning of the procedure, such as from a symbol table. This is particularly useful after a

Figure 4-7

Trace-Back Tags

One-word tag:

31 23 15 7 0
FTTTTT (e rrrrprrrrrrrprl
000O0OOOO0 OjOM|T argcount Reserved msize res
Two-word tag:
31 23 15 7 0
crrrrerrerrer et rErrerrrrer iy
msize 00
[TTTTT] HERRRRRRRRRRRRRRRRR
00000 OO Of|t |[M|T|] argcount Reserved Reserved

PROCEDURE LINKAGE 4-15

program crash, in which case the debug routine may have only an arbitrary instruction
address within a procedure. The call sequence up to the current point in execution
can be determined from the rsize and msize values in the trace-back tag. However,
for procedures that perform dynamic stack allocation (e.g., using alloca()), the mem-

ory frame pointer must be used.

The tag word immediately preceding a procedure contains the following fields. Re-

served fields must be zero.

Bits Item Description
31-24 opcode Hexadecimal 00 (an invalid opcode)
23 tag type 0/one-word tag; 1/two-word tag
22 m 0/no mfp; 1/mfp used
21 t 0/normal; 1/transparent procedure
20-16 argcount Number of arguments in registers (includes Ir0 and Ir1)
15-11 Reserved Reserved, must be zero
10-3 msize Memory frame size in doublewords (if bit 23 is 0)
or reserved (if bit 23 is 1)
2-0 Reserved Reserved, must be zero

If the procedure uses a Memory-Stack frame size 2K words or more, the msize field is
contained in the second tag word immediately preceding the first tag word.

4-16

PROCEDURE LINKAGE

PIPELINING AND a
INSTRUCTION SCHEDULING

5.1

This chapter describes the operation of the Am29030 and Am29035 microprocessor
pipelines. A description of the Am29030 and Am29035 microprocessor pipelines is
presented only to offer the reader a general overview of the internal operation of this
pipeline, with the intent to aid understanding of the effects that the pipeline has on
program execution and of the behavior of the microprocessors under certain condi-
tions, especially the behavior of the system interfaces described in Chapter 10.

The operation of the functional units is coordinated by Pipeline Hold mode, which
insures that operations are performed in the proper order. This chapter also describes
the Pipeline Hold mode. In certain cases, the pipeline is exposed during instruction
execution, in that the execution of certain instructions is dependent on the execution
of previous instructions. This chapter discusses the cases where the pipeline is ex-
posed to software and describes the resulting effect on instruction execution.

FOUR-STAGE PIPELINE

The Am29030 and Am29035 microprocessors implement a four-stage pipeline for
instruction execution, as shown in detail in Figure 5-1. The four stages are fetch,
decode, execute, and write-back. For operations, the pipeline is organized so that the
effective instruction-execution rate may be as high as one instruction per cycle.

During the fetch stage, the Instruction Fetch Unit determines the location of the next
processor instruction and issues the instruction to the decode stage. The instruction is
fetched either from the Instruction Prefetch Buffer, the Instruction Cache, or an exter-
nal instruction memory.

During the decode stage, the instruction issued from the fetch stage is decoded, and
the required operands are fetched and/or assembled. Addresses for branches, loads,
and stores are also evaluated.

During the execute stage, the Execution Unit performs the operation specified by the
instruction. In the case of branches, loads, and stores, the Memory Management Unit
(see Chapter 7) performs address translation if required.

During the write-back stage, the results of the operation performed during the execute
stage are stored. In the case of branches, loads, and stores, the physical address
resulting from translation during the execute stage is transmitted to an external device
or memory.

Most pipeline dependencies that are internal to the processor are handled by forward-
ing logic in the processor. For those dependencies that result from the external sys-
tem, the Pipeline Hold mode insures proper operation.

In a few special cases, the processor pipeline is exposed to software executing on the
Am29030 and Am29035 microprocessors (see Sections 5.4, 5.5, and 5.6).

PIPELINING AND INSTRUCTION SCHEDULING 5-1

Figure 5-1 Am29030 and Am29035 Microprocessors Data Flow

FETCH DECODE EXECUTE ‘WRITE-
30,
I PC-Bus 4 T
Program
In%tru%tion Crggqter
1x2§gx: or Adljirgss Unit
2x256x4 nit
Arithmetic
Logic Unit
Field Shift
Bus Unit
Prioritizer
Instruction
Prefetch
Buffer
Read/ Special-
o Write Purpose {@—
Control Registers
4—-—— M-Bus < »>
Interface
A Translation
. A DA—T. Look-Aside
233:?:; As Relgjls’(er . 2 Bsu;e:u
Generat ile x32x
oneraoN—s A, 192x32 Do~
D,
< D-Bus |q
Interface

i é R-Bus
ﬂ B-Bus| | A-Bus
q >

Next-Block
Adder

Load/Store

Address
P d Fetch-Ahead
32 Adder
32
u MUX
U
Instruction/Data Address
Bus Bus

5-2 PIPELINING AND INSTRUCTION SCHEDULING

5.3

PIPELINE HOLD MODE

The Pipeline Hold mode is activated whenever sequential processor operation cannot
be guaranteed. When this mode is active, the pipeline stages do not advance, and
most internal processor state is not modified. The processor places itself in the Pipe-
line Hold mode in the following situations:

1. The processor requires an instruction that has either not been fetched or not been
returned by the external instruction memory.

2. The processor requires data from an in-progress load and the operation has not
completed.

3. The processor attempts to execute a load or store instruction while another load
or store is in progress.

4. The processor is reading or writing the Cache Interface Register. During this
operation, the bus that couples the Instruction Prefetch Buffer and the Instruction
Cache is used to move data to or from the Instruction Cache. The processor exits
the Pipeline Hold mode in the next processor cycle, unless one of the other
conditions listed causes a further pipeline hold to occur.

5. The processor must perform a serialization operation as described in Section 5.3.

6. The processor is performing a sequence of load-multiple or store-multiple
accesses. The Pipeline Hold mode in this case prevents further instruction
execution until the completion of the load-multiple or store-multiple sequence.

7. The processor has taken an interrupt or trap, and the first instruction of the
interrupt or trap handler has not entered the execute stage. The Pipeline Hold
mode in this case prevents the processor pipeline from advancing until the
interrupt or trap handler can begin execution.

8. The processor has executed an interrupt return, and the target instruction of the
interrupt return has not entered the execute stage. The Pipeline Hold mode in this
case prevents the processor pipeline from advancing until the interrupt return
sequence is complete.

The Pipeline Hold mode is exited whenever the causing conditions no longer exist, or
when the WARN or RESET input is asserted.

SERIALIZATION

The Am29030 and Am29035 microprocessors overlap external data references with
other operations. When an external data reference might have to be restarted, how-
ever, the processor context must be the same as when the operation was first at-
tempted. To insure this, certain operations are serialized.

The processor serializes by entering the Pipeline Hold mode in any of the following
circumstances:

1. An external access is not yet completed, and one of the following instructions is
encountered:
Move to Special Register
Move to Special Register Inmediate
Move to TLB
Interrupt Return
Interrupt Return and Invalidate
Halt

PIPELINING AND INSTRUCTION SCHEDULING 53

5.4

2. An external access is not yet completed, and an interrupt or trap, other than a
WARN trap, is taken.

If the processor is in the Pipeline Hold mode due to serialization, it enters the Execut-
ing mode once the external access is completed. Note that the processor may imme-
diately take a Data Access Exception trap.

DELAYED BRANCH

The effect of jump and call instructions is delayed by one cycle to allow the processor
pipeline to achieve maximum throughput. When one of these branches is successful,
the instruction immediately following the jump or call is executed before the target
instruction of the jump or call is executed. Jump and call instructions collectively are
referred to as delayed branches, and the instruction immediately following is called
the delay instruction (sometimes referred to as a delay slot).

For example, in the following code fragment:

cpeq groe, Ir6, Ir7 (1)
jmpf gro6, label 2
sub Ir6, Ir6, 1 (3)
const Ir6, 0 (4)
label: call Ir0, sort (5)
add Ir2,1Ir5, 0 (6)

cpneq Ir3, gr96, 0 (7)

The sub instruction (3) is executed regardless of the outcome of the jmpf instruction
(2). Of course, if the jmpf is not successful, the const instruction (4) is also executed.
If the jmpf is successful, then the instruction sequence is: (3), (5), (6), and then the
first instruction of the sort procedure. Note that the call instruction (5) is also a delayed
branch, so the instruction immediately following it, (6), is always executed. After the
sort procedure executes the return sequence, the cpneq instruction (7) is the next
instruction executed.

The benefit of delayed branches is improved performance and a simplified processor
implementation. Performance is improved because the processor pipeline executes
useful instructions in a larger number of cycles, compared to an implementation with-
out delayed branches.

For example, ignoring all other effects on performance, and assuming that 15% of all
instructions are taken branches, then a processor without delayed branches would
take at least two cycles for 15% of its instructions, leading to 0.85(1) +0.15(2)=1.15
cycles per instruction, on average. This represents a 15% performance degradation
compared to a processor with delayed branches (assuming, for this simple example,
that the delay instruction is always useful).

The cost of having delayed branches is either the extra effort required when the com-
piler takes advantage of delayed branches (by re-organizing code), or the extra
NO-OP instruction which the compiler inserts after every branch to guarantee correct
program operation. Since the compiler expends only a small amount of effort to avoid
wasting time and space with NO-OPs, and since the performance improvement result-
ing from this effort is significant, delayed branches are beneficial overall.

5-4

PIPELINING AND INSTRUCTION SCHEDULING

When two immediately adjacent branches are taken, the target of the first branch
pre-empts execution of the delay cycle of the second branch, and the target of the
second branch then follows the target of the first branch. For example, in the following
code fragment:

imp n (1)
jmp 12 (2)
add Ir4, Ir4, Ir5 (3)
L1: sub gr96, groe, 1 @)
subc gr97,gr97,0 (5)
L2: ;:onst gr100, Oxffof (6)
subr gr101, gr101, 1)

or gr100, gr100, gr101 (8)

An unconditional jmp instruction (1) is followed immediately by another unconditional
jmp instruction (2). (In this example, unconditional jmps are used; however, any two
immediately adjacent taken branches exhibit the same behavior.) The sequence of
executed instructions in this case is: jmp instruction (1), jmp instruction (2), sub in-
struction (4), const instruction (6), subr instruction (7), or instruction (8), and so on.
Note that the add instruction (3) is not executed. Also, the target of the first jmp in-
struction (1) was merely visited; control did not continue sequentially from L1 but
rather continued from L2.

OVERLAPPED LOADS AND STORES

The Am29030 and Am29035 microprocessors overlap external data references with
other operations. Certain programming practices are necessary to exploit this parallel-
ism to improve program performance.

In order to make full use of overlapped storage accesses, some instruction reorgani-
zation may be necessary. For example, in the following sequence:

loop:
sll gri2i, gr119,2 (1)
add gr121, gr120, gri21 (2)
load 0,0, gr121,gri21 (3)
add gr96, gr96, gri21 (4)
sub gr96, gr96, 3 (5)
add gr119, gr119, 1 (6)
cplt gr122,gr119,I2 (7)
jmpt gri22, loop (8)

nop (9)

the add instruction (4) uses the result of the load instruction (3). However, the follow-
ing four instructions do not depend on the result of the load. Therefore, the add in-
struction (4) can be moved past the jmpt (8)—since it always will be executed even if

PIPELINING AND INSTRUCTION SCHEDULING 55

5.6

the jmpt is taken—and can replace the NO-OP instruction (9). The resulting sequence
is:

loop:
sl gri21,gr119,2 (1)
add gri21, gr120, gri21 (2)
load 0,0,gr121,gr121 (3)
sub gra6, greé, 3 (4)
add gri19,gr119,1 (5)
cpit gri22,gr119,Ir2 (6)
jmpt gri122, loop (7)

add gr96, gr96, gri21 (8)

The instructions (4) through (7) are likely to be executed while external memory satis-
fies the load request, resulting in improved throughput. The processor thus allows
parallelism to be exploited by instruction reordering.

The overlapped load feature may be used to improve processor performance, but
imposes no constraints on instruction sequences, as delayed branches do. The proc-
essor implements the proper pipeline interlocks to make this parallelism transparent
to a running program.

DELAYED EFFECTS OF REGISTERS

The modification of some registers has a delayed effect on processor behavior, be-
cause of the processor pipeline. The affected registers are the Stack Pointer (Global
Register 1), Indirect Pointers A, B, and C, the MMU Configuration Register, and the
Current Processor Status Register.

An instruction that writes to the Stack Pointer can be followed immediately by an
instruction that reads the Stack Pointer. However, any instruction that references a
local register also uses the value of the Stack Pointer to calculate an absolute-register
number. At least one cycle of delay must separate an instruction that updates the
Stack Pointer and an instruction that references a local register. In most systems, this
affects procedure call and return only (see Section 4.2). In general, though, an in-
struction that immediately follows a change to the Stack Pointer should not reference
a local register (however, note that this restriction does not apply to a reference of a
local register via an indirect pointer).

The indirect pointers have an implementation similar to the Stack Pointer, and exhibit
similar behavior. At least one cycle of delay must separate an instruction that modifies
an indirect pointer and an instruction that uses that indirect pointer to access a
register.

Note that it normally is not possible to guarantee that the delayed effect of the Stack
Pointer and indirect pointers is visible to a program. If an interrupt or trap is taken
immediately after one of these registers is set, then the interrupted routine sees the
effect of the setting in the following instruction, because many cycles elapse between
the two instructions. For this reason, a program should not be written in a manner that
relies on the delayed effect; the results of this practice may be unpredictable.

At least one cycle of delay must separate a Move To Special Register that modifies
the Page Size (PS) field of the MMU Configuration Register and an instruction that
performs address translation. The latter instruction includes successful branches,
loads, and stores.

5-6

PIPELINING AND INSTRUCTION SCHEDULING

If the Freeze (F2) bit of the Current Processor Status Register is reset from 1 to 0, two
cycles are required before all program state is reflected properly in the registers
affected by the FZ bit. This implies that interrupts and traps cannot be enabled until
two cycles after the FZ bit is reset, for proper sequencing of program state.

An access to the Cache Data Register (CDR) cannot immediately follow a write to the
Cache Interface Register (CIR). At least one instruction must separate the access of
the CDR from the write to the CIR.

PIPELINING AND INSTRUCTION SCHEDULING 5-7

CHAPTER 6

SYSTEM PROTECTION a

6.1.1

6.1.2

The Am29030 and Am29035 microprocessors provide protection for system re-
sources, including general-purpose registers, special-purpose registers, Translation
Look-Aside Buffer registers, and external locations. Certain processor operations are
also protected. This chapter describes the processor’s protection mechanisms.

USER AND SUPERVISOR MODES

At any given time, the Am29030 and Am29035 microprocessors operate in one of
two mutually exclusive program modes: the Supervisor mode or the User mode. All
system-protection features of the Am29030 and Am29035 microprocessors are based
on the difference between these two modes.

Supervisor Mode

The processor operates in the Supervisor mode whenever the Supervisor Mode (SM)
bit of the Current Processor Status Register is 1 (see Section 8.1.1). In the Supervisor
mode, executing programs have access to all processor resources. Virtual pages
mapped by the Memory Management Unit (MMU), however, are protected from Su-
pervisor access (read, write, or execute) when the appropriate bit (SR, SW, or SE,
respectively) in the corresponding Translation Look-Aside Buffer (TLB) Entry is 0 (see
Chapter 7).

Any attempt to access a special-purpose register in the range of 160 to 255 causes
a Protection Violation to occur, in either Supervisor or User mode. This permits
virtualization of these registers. Supervisor-mode accesses are permitted for any
general-purpose register, regardless of protection.

The attempted execution of a translated load or store for which the AS bitis 1 causes
a Protection Violation trap, in either Supervisor or User mode.

During the address cycle of a bus request, the Supervisor mode is indicated by the
SUP/US output being High.

User Mode

The processor operates in the User mode whenever the SM bit in the Current Proces-
sor Status Register is 0. In the User mode, any of the following actions by an execut-
ing program causes a Protection Violation trap to occur:

1. An attempted access of any TLB register.

2. An attempted access of any general-purpose register for which a bit in the
Register Bank Protect Register is 1 (see Section 6.2).

3. An attempted execution of a load or store instruction for which the PA bit is 1, for
which the AS bit is 1, or for which the UA bitis 1 (see Section 3.3).

4. An attempted execution of one of the following instructions: Interrupt Return,
Interrupt Return and Invalidate, Invalidate, or Halt. However, a hardware-

SYSTEM PROTECTION 6-1

development system can disable protection checking for the Halt instruction, so
that this instruction may be used to implement instruction breakpoints in
User-mode programs (see Sections 11.2 and 11.4).

5. An attempted access of special-purpose register in the range of 0 to 127 or 160
to 255.

6. An attempted execution of an assert or Emulate instruction which specifies a
vector number between 0 and 63, inclusive (see Chapter 8).

7. An attempted access (read, write, or execute) in a virtual page mapped by the
Memory Management Unit, when the appropriate permission bit (UR, UW, or UE,
respectively) in the corresponding TLB Entry is 0.

Devices and memories on the bus can also implement protection and generate traps
based on the value of the SM bit. During the address cycle of a bus request, the User
mode is indicated by the SUP/US output being Low.

6.2 REGISTER PROTECTION

General-purpose registers are divided into register banks and are protected by the
Register Bank Protection Register. The Register Bank Protection Register allows
parameters for the operating system to be kept in general-purpose registers and
protected from corruption by User-mode programs. Register banks consist of 16
registers (except for Bank 0, which contains Registers 2 through 15) and are parti-
tioned according to absolute-register numbers, as shown in Figure 6-1.

Figure 6-1 Register Bank Organization
Register Bank Absolute-Register General-Purpose
Protect Register Bit Numbers Registers
0 2 through 15 Bank 0 (not implemented)
1 16 through 31 Bank 1 (not implemented)
2 32 through 47 Bank 2 (not implemented)
3 48 through 63 Bank 3 (not implemented)
4 64 through 79 Bank 4
5 80 through 95 Bank 5
6 96 through 111 Bank 6
7 112 through 127 Bank 7
8 128 through 143 Bank 8
9 144 through 159 Bank 9
10 160 through 175 Bank 10
11 176 through 191 Bank 11
12 192 through 207 Bank 12
13 208 through 223 Bank 13
14 224 through 239 Bank 14
15 240 through 255 Bank 15

6-2 SYSTEM PROTECTION

The Register Bank Protect Register contains 16 protection bits, where each bit con-
trols User-mode accesses (read or write) to a bank of registers. Bits 0—15 of the Reg-
ister Bank Protect Register, protect Register Banks 0 through 15, respectively.

When a bit in the Register Bank Protect Register is 1, and a register in the corre-
sponding bank is specified as an operand register or result register by a User-mode
instruction, a Protection Violation trap occurs. Note that protection is based on
absolute-register numbers; in the case of local registers, Stack-Pointer addition is
performed before protection checking.

When the processor is in the Supervisor mode, the Register Bank Protect Register
has no effect on general-purpose register accesses.

6.2.1 Register Bank Protect (RBP, Register 7)
This protected special-purpose register (Figure 6-2) protects banks of general-
purpose registers from User-mode program accesses.
Figure 6-2 Register Bank Protect Register
31 23 15 7]
crrrrererrrererptrerrtr et
Reserved Bi15 Bo
The general-purpose registers are partitioned into 16 banks of 16 registers each
(except that Bank 0 contains 14 registers). The banks are organized as shown in
Figure 6-1.
Bits 31-16: Reserved.
Bits 15-0: Bank 15 through Bank 0 Protection Bits (B15-B0)—In the Register
Bank Protect Register, each bit is associated with a particular bank of registers, and
the bit number gives the associated bank number (e.g., B11 determines the protection
for Bank 11).
6.3 MEMORY PROTECTION

Memory and input/output access protection is provided by the MMU. Each TLB entry
in the MMU contains protection bits which determine whether or not an access is
permitted to the page associated with the entry.

There is a set of protection bits for Supervisor-mode programs and a separate set
for User-mode programs. Thus, for the same virtual page, the access authority of
programs executing in the Supervisor mode can be different than the authority of

programs executing in the User mode.

If address translation is performed successfully as described in Section 7.4.2, the
relevant TLB entry is used to perform protection checking for the access. Six bits are
provided for this purpose: Supervisor Read (SR), Supervisor Write (SW), Supervisor
Execute (SE), User Read (UR), User Write (UW), and User Execute (UE). These bits
restrict accesses, depending on the program mode of the access, as shown in

Table 6-1 (the value x is a don't care).

Note that for the Load and Set (LOADSET) instruction, the protection bits must be set
to allow both the load and store access. If this condition does not hold, neither access
is performed.

SYSTEM PROTECTION 6-3

Table 6-1 Access Protection

SR SW SE UR Uw UE Type of Access Allowed

X X X 0 0 0 No User access

X X X 0 0 1 User instruction

X X X 0 1 0 User store

X X X 0 1 1 User store or instruction

X X X 1 0 0 User load

X X X 1 0 1 User load or instruction

b X X 1 1 0 User load or store

X X X 1 1 1 Any User access

0 0 0 X X X No Supervisor access

0 0 1 X X X Supervisor instruction

0 1 0 X X X Supervisor store

0 1 1 X X X Supervisor store or instruction

1 0 0 X X X Supervisor load

1 0 1 X X X Supervisor load or instruction

1 1 0 X X be Supervisor load or store

1 1 1 X X X Any Supervisor access
If protection checking indicates that a given access is not allowed, a Data MMU Pro-
tection Violation or Instruction MMU Protection Violation trap occurs. The cause of the
trap can be determined by inspecting the Program Counter 1 Register for an Instruc-
tion MMU Protection Violation, or by inspecting the contents of the Channel Address
and Channel Control registers for a Data MMU Protection Violation.

6.4 EXTERNAL ACCESS PROTECTION

Other than the protection offered by the Memory Management Unit, the processor
provides no specific protection for external devices and memories. However, the
SUP/US output reflects the value of the SM bit during the address cycle of an external
access. This can signal external devices and memories to provide protection. Any
protection violations can be reported via the ERR input.

6-4 SYSTEM PROTECTION

MEMORY MANAGEMENT n

71

7.2

The Am29030 and Am29035 microprocessors incorporate a Memory Management
Unit (MMU) for performing virtual-to-physical address translation and memory access
protection. This chapter describes the logical operation of the MMU. Address transla-
tion is performed by the Translation Look-Aside Buffer (TLB), which is the fundamen-
tal component of the MMU. This chapter describes the structure of the TLB and the
issues related to software management of the TLB.

TRANSLATION LOOK-ASIDE BUFFER

The MMU stores the most-recently performed address translations in a special cache,
the Translation Look-Aside Buffer (TLB). The TLB reflects information in the system
page tables, except that it specifies the translation for many fewer pages; this restric-
tion allows the TLB to be incorporated on the processor chip where the performance
of address translation is maximized.

A diagram of the TLB is shown in Figure 7-1. The TLB is a table of 64 entries, divided
into two equal columns, called Column 0 and Column 1. Within each column, entries
are numbered 0 to 31. Entries in different columns which have equivalent entry-
numbers are grouped into a unit called a set; there are thus 32 sets in the TLB, num-
bered 0 to 31.

Each TLB entry is 64 bits long, and contains mapping and protection information for a
single virtual page. TLB entries may be inspected and modified by processor instruc-
tions executed in the Supervisor mode. The layout of TLB entries is described in
Section 7.2.

The TLB stores information about the ownership of the TLB entries in an 8-bit Task
Identifier (TID) field in each entry. This makes it possible for the TLB to be shared by
several independent processes without the need for invalidation of the entire TLB as
processes are activated. It also increases system performance by permitting proc-
esses to warm-start (i.e., to start execution on the processor with a certain number of
TLB entries remaining in the TLB from a previous execution).

Each TLB entry contains a Usage bit to assist management of the TLB entries. The
Usage bit indicates which block of the entry within a given set was least recently used
to perform an address translation. Usage bits for two entries in the same set are
equivalent.

The TLB contains other fields which are described in the following sections.

TLB REGISTERS

The Am29030 and Am29035 microprocessors contain 128 Translation Look-Aside
Buffer (TLB) registers. The organization of the TLB registers is shown in Figure 7-2.

The TLB registers comprise the TLB entries and are provided so that programs may
inspect and alter TLB entries. This allows the loading, invalidation, saving, and restor-
ing of TLB entries.

MEMORY MANAGEMENT 71

Figure 7-1 Translation Look-Aside Buffer Organization

Entry TLB COLUMN 0 Entry TLB COLUMN 1
#
Set 0 0 0
Set 1 1 1
Set 2 2 2
Set 3 3 3
Seta 4 4
° [. L] .
.
Set 31 31 31
<4——— 64 bits ———p <4— 64 bits ———p

TLB registers contain fields that are reserved for future processor implementations.
When a TLB register is read, a bit in a reserved field is read as a 0. An attempt to
write a reserved bit with a 1 has no effect; however, this should be avoided because
of upward-compatibility considerations.

The Translation Look-aside Buffer (TLB) registers are accessed only by explicit data
movement by Supervisor-mode programs. Instructions that move data to or from a
TLB register specify a general-purpose register containing a TLB register number.
The TLB register number is given by the contents of bits 6-0 of the general-purpose
register. TLB register numbers may be specified only indirectly by general-purpose
registers.

TLB entries are accessed as registers numbered 0-127. Since two words are re-
quired to completely specify a TLB entry, two registers are required for each TLB
entry. The words corresponding to an entry are paired as two sequentially numbered
registers starting on an even-numbered register. The word with the even register
number is called Word 0, and the word with the odd register number is called Word 1.
The entries for TLB Column 0 are in registers numbered 0-63, and the entries for TLB
Column 1 are in registers numbered 64—127.

7.2.1 TLB Entry Word O
The TLB Entry Word 0 register is shown in Figure 7-3.

7-2 MEMORY MANAGEMENT

Figure 7-2 Translation Look-Aside Buffer Registers

TLB Regi# TLB Column 0
0 TLB Entry Set 0 Word 0
1 TLB Entry Set 0 Word 1
2
TLB Entry Set 1 Word 0
3
TLB Entry Set 1 Word 1
* L]
L4 L]
[] L]
62 TLB Entry Set 31 Word 0
63 TLB Entry Set 31 Word 1
TLB Column 1
64 TLB Entry Set 0 Word 0
65 TLB Entry Set 0 Word 1
b L]
[] .
° L]
126 TLB Entry Set 31 Word 0
127 TLB Entry Set 31 Word 1
Figure 7-3 TLB Entry Word O Register
31 23 15 7 0
VTAG TID

N DO
') . .
N) (] L) ’
' SR+ SE uw

'
'
'
[
[
'] [
VE SW UR UE

Bits 31-15: Virtual Tag (VTAG)—When the TLB is searched for an address transla-
tion, the VTAG field of the TLB entry must match the most-significant 17, 16, 15, or 14
bits of the address being translated—for page sizes of 1, 2, 4, and 8K bytes, respec-
tively—for the search to be successful.

When software loads a TLB entry with an address translation, the most-significant 14
bits of the Virtual Tag are set with the most-significant 14 bits of the virtual address
whose translation is being loaded into the TLB. The remaining three bits of the Virtual

MEMORY MANAGEMENT 73

Tag must be set either to the corresponding bits of the address or to zeros depending
on the page size, as follows (A refers to corresponding address bits):

Page Size VTAG 2-0 (TLB Word 0 bits 17-15)
1K bytes AAA

2K bytes AAO

4K bytes A00

8K bytes 000

Bit 14: Valid Entry (VE)—If this bit is 1, the associated TLB entry is valid; if it is 0, the
entry is invalid.

Bit 13: Supervisor Read (SR)—If the SR bit is 1, Supervisor-mode load operations
from the virtual page are allowed; if it is 0, Supervisor-mode loads are not allowed.

Bit 12: Supervisor Write (SW)—If the SW bit is 1, Supervisor-mode store operations
to the virtual page are allowed; if it is 0, Supervisor-mode stores are not allowed.

Bit 11: Supervisor Execute (SE)—If the SE bit is 1, Supervisor-mode instruction
accesses to the virtual page are allowed; if it is 0, Supervisor-mode instruction ac-
cesses are not allowed.

Bit 10: User Read (UR)—If the UR bitis 1, User-mode load operations from the
virtual page are allowed; if it is 0, User-mode loads are not allowed.

Bit 9: User Write (UW)—If the UW bit is 1, User-mode store operations to the virtual
page are allowed; if it is 0, User-mode stores are not allowed.

Bit 8: User Execute (UE)—If the UE bit is 1, User-mode instruction accesses to the
virtual page are allowed; if it is 0, User-mode instruction accesses are not allowed.

Bits 7-0: Task Identifier (TID)—When the TLB is searched for an address transla-
tion, the TID must match the Process Identifier (PID) in the MMU Configuration Regis-
ter for the translation to be successful. This field allows the TLB entry to be associated
with a particular process.

7.2.2 TLB Entry Word 1
The TLB Entry Word 1 Register is shown in Figure 7-4.
Figure 7-4 TLB Entry Word 1 Register

31 23 15
rerrrrreerrrreerrrrrrp ey e

RPN Res |PGM Res U

10

Bits 31-10: Real Page Number (RPN)—The RPN field gives the most-significant 22,
21, 20, or 19 bits of the physical address of the page for page sizes of 1, 2, 4, and 8K
bytes, respectively. It is concatenated to bits 9-0, 10-0, 11-0, or 12-0 of the address
being translated—for 1, 2, 4, and 8K byte page sizes, respectively—to form the physi-
cal address for the access.

When software loads a TLB entry with an address translation, the most-significant 19
bits of the Real Page Number are set with the most-significant 19 bits of the physical
address associated with the translation. The remaining three bits of the Real Page
Number must be set either to the corresponding bits of the physical address, or to

7-4 MEMORY MANAGEMENT

zeros, depending on the page size, as follows (A refers to corresponding address
bits):

Page Size RPN 2-0 (TLB Word 1 bits 12-10)
1K bytes AAA

2K bytes AAD

4K bytes A00

8K bytes 000

Bits 7-6: User Programmable (PGM)—These bits are placed on the MPGM(1-0)
outputs when the address is transmitted for an access. They have no predefined
effect on the access; any effect is defined by logic external to the processor.

Bit 1: Usage (U)—This bit indicates which entry in a given TLB set was least recently
used to perform an address translation. If this bit is a 0, the entry in Column 0 in the
set is least recently used; if it is 1, the entry in Column 1 is least recently used. This bit
has an equal value for both entries in a set. Whenever a TLB entry is used to trans-
late an address, the Usage bit of each entry in the set used for translation is set
according to the TLB set containing the translation. This bit is set whenever the trans-
lation is valid, regardless of the outcome of memory-protection checking.

Bit 0: Input/Output (I0)—The 10 bit determines whether the access is directed to the
instruction/data memory (10 =0) or the input/output (IO = 1) address space.

7.3 ADDRESS TRANSLATION CONTROLS
Address translation is controlied by the MMU Configuration Register and the Current
Processor Status (CPS) register. This section discusses the control of the MMU
through the use of these registers.
7.3.1 Enabling and Disabling Address Translation
The processor attempts to perform address translation for the following external
accesses.
1. Instruction accesses, if the Physical Addressing/Instructions (Pl) bit of the Current
Processor Status (CPS) register is 0.
2. User-mode accesses to instruction/data memory if the Physical Addressing/Data
(PD) bit of the CPS is 0.
3. Supervisor-mode accesses to instruction/data memory if the Physical Address
(PA) bit of the load or store instruction performing the access is 0, and the PD bit
of the CPS is 0.
7.3.2 MMU Configuration Register (MMU, Register 13)
This protected special-purpose register (Figure 7-5) specifies parameters associated
with the MMU.
Figure 7-5 MMU Configuration Register

31 23 15 7 0
NRRRRRRRRRRRRRRRRRRRERRERRRE N

Reserved PS PID

MEMORY MANAGEMENT 75

7.4.1

7.4.2

Bits 31-10: Reserved.

Bits 9-8: Page Size (PS)—The PS field specifies the page size for address transla-
tion. The page size affects translation as discussed in Sections 7.2.1, 7.2.2, and 7.4.
The PS field has a delayed effect on address translation (see Section 5.6). At least
one cycle of delay must separate an instruction which sets the PS field and an in-
struction that performs address translation. The PS field is encoded as follows:

PS Page Size
00 1K bytes
01 2K bytes
10 4K bytes
11 8K bytes

Bits 7-0: Process Identifier (PID)—For translated User-mode loads and stores, this
8-bit field is compared to Task Identifier (TID) fields in Translation Look-Aside Buffer
entries when address translation is performed. For the address translation to be valid,
the PID field must match the TID field in an entry. This allows a separate 32-bit virtual-
address space to be allocated to each active User-mode process (within the limit of
255 such processes). Translated Supervisor-mode loads and stores use a fixed proc-
ess identifier of zero, and require that the TID field be zero for successful translation.

ADDRESS TRANSLATION DESCRIPTION

For the purpose of address translation, the virtual instruction/data address-space of a
process is typically partitioned into regions of fixed size, called pages. Pages are
mapped into equivalent-sized regions of physical memory, called page frames. All
accesses to instructions or data contained within a given page use the same virtual-
to-physical address translation.

Virtual Address Structure

Virtual addresses are partitioned into three fields for TLB address translation, as
shown in Figure 7-6. The partitioning of the virtual address is based on the page size.
Pages may be of size 1, 2, 4, or 8K bytes, as specified by the MMU Configuration
Register.

Address-Translation Process

The TLB address-translation process is diagrammed in Figure 7-7. Address transla-
tion is performed by the following fields in the TLB entry: the Virtual Tag (VTAG), the
Task Identifier (TID), the Valid Entry (VE) bit, the Real Page Number (RPN) field, and
the Input/Output (IO) bit. To perform an address translation, the processor accesses
the TLB set whose number is given by certain bits in the virtual address. The bits
used depend on the page size as follows.

7-6 MEMORY MANAGEMENT

Figure 7-6 Virtual Address for 1, 2, 4, and 8K Byte Pages
1K Byte Page Size:
31 23 15 7 0
T T
ERRRRRRRERRRRRREES VA RERRRRERR
Virtual Tag Comparison Select Page Offset
2K Byte Page Size:
31 23 15 7 0
L
ERRRRRRRRARRRERR P ARERRRRRRRRR
Virtual Tag Comparison Select Page Offset
4K Byte Page Size:
31 23 15 7 0
UL
TTTT T T T T T T T I T [T T T TTTTTITT]
Virtual Tag Comparison Select Page Offset
8K Byte Page Size:
31 23 15 7 0
o
TTTT T T T T T T I I T[T T T I TTITT]
Virtual Tag Comparison Select Page Offset
Page Size Virtual Address Bits (for Set Access)
1K bytes 14-10
2K bytes 15-11
4K bytes 16-12
8K bytes 17-13

The accessed set contains two TLB entries, which in turn contain two VTAG fields.
The VTAG fields are both compared to bits in the virtual address. This comparison
depends on the page size as follows (note that VTAG bit numbers are relative to the
VTAG field, not the TLB entry).

Page Size Virtual Address Bits VTAG Bits
1K bytes 31-15 16-0
2K bytes 31-16 16-1
4K bytes 31-17 16-2
8K bytes 31-18 16-3

Certain bits of the VTAG field do not participate in the comparison for page sizes
larger than 1K byte. These bits of the VTAG field are required to be zero.

For an address translation to be valid, the following conditions must be met:

1. The virtual address bits match corresponding bits of the VTAG field as specified
above.

2. For a User-mode access, the TID field in the TLB entry matches the PID field in
the MMU Configuration Register. For a Supervisor-mode access, the TID field is
zero.

MEMORY MANAGEMENT 77

Figure 7-7 TLB Address-Translation Process

Virtual Address

E: TLB COLUMN O TLB COLUMN 1

Mv—l w—/ T T - T

seloct || Virtual } V, !Task Real Page
Tag ,PROT, ID, Number

-—OEe_Iect O 0 "

e

MMU
Configuration

PGMH |Virtual } V, ,Task, Real Page
U, 10 Tag +PROT' ID + Number

LA v

YYYYYY [’lﬁ'ﬂ] select
Control _} ¢
S -y e
TLB Miss Protection

Violation

P, Offset
age Utisel 3 Real Page Number MPGMOo—1
Merge

Physical Address

3. The VE bitin the TLB entry is 1.

4. Only one entry in the set meets conditions 1, 2, and 3 above. If this condition is
not met, the results of the translation may be treated as valid by the processor, but
the results are unpredictable.

If the address translation is valid for one TLB entry in the selected set, the RPN field
in this entry is used to form the physical address of the access. The RPN field gives
the portion of the physical address that depends on the translation; the remaining
portion of the virtual address—called the Page Offset—is invariant with address
translation.

The Page Offset comprises the low-order bits of the virtual address and gives the
location of a byte within the virtual page (because of byte addressing). This byte is
located at the same position in the physical page frame, so the Page Offset also
comprises the low-order bits of the physical address.

The 32-bit physical address is the concatenation of certain bits of the RPN field and
Page Offset, where the bits from each depend on the page size as follows (note that
RPN bit numbers are relative to the RPN field, not the TLB entry).

7-8 MEMORY MANAGEMENT

7.4.3

7.4.4

Page Size RPN Bits Virtual Address Bits for Page Offset

1K bytes 21-0 9-0
2K bytes 21-1 10-0
4K bytes 21-2 11-0
8K bytes 21-3 12-0

Note: Certain bits of the RPN field are not used in forming the physical address for
page sizes greater than 1K byte. These bits of the RPN are required to be
zero.

The address space of the physical address is determined by the Input/Output (1O) bit
of the TLB entry. If the IO bit is 0, the address is in the instruction/data memory ad-
dress space. If the 10 bitis 1, the address is in the input/output address space.

Successful and Unsuccessful Translations

If an address translation is successful, the TLB entry is further used to perform protec-
tion checking for the access. Bits in the TLB make it possible to restrict accesses—in-
dependently for Supervisor-mode and User-mode accesses—to any combination of
load, store, and instruction accesses, or to no access. Section 6.3 describes MMU
protection in more detail.

If the address translation is valid, and no protection violation is detected, the physical
address from the translation is placed on the processor’'s Address Bus, and the ac-
cess is initiated. If the translation is not valid, or a protection violation is detected, a
trap occurs.

Also, if the address translation is successful, and there is no protection violation, the
PGM bits from the TLB entry used for translation are placed on the MPGM(1-0) out-
puts during the address cycle for the access. If address translation is not performed,
these pins are both Low for the address cycle.

If the TLB cannot translate an address, a TLB miss occurs. The MMU causes a trap if
either a TLB miss occurs, or the translation is successful and a protection violation is
detected. The processor distinguishes between traps caused by instruction and data
accesses, and between traps caused by User- and Supervisor-mode accesses, as
follows:

Trap Vector Number Type of Trap
8 User-Mode Instruction TLB Miss
9 User-Mode Data TLB Miss
10 Supervisor-Mode Instruction TLB Miss
1 Supervisor-Mode Data TLB Miss
12 Instruction MMU Protection Violation
13 Data MMU Protection Violation

The distinction between the above traps is made to assist trap handling, particularly
the routines that load TLB entries.

Instruction Cache Considerations

The Instruction Cache is accessed with virtual as well as physical addresses, depend-
ing on whether address translation is enabled for instruction accesses. Because of

MEMORY MANAGEMENT 7-9

-7.4.5

this, the Instruction Cache may contain entries that might be considered valid, even
though they are not.

For example, address translation may be changed by modifying the Process Identifier
of the MMU Configuration Register. This change is not reflected in the Instruction
Cache tags, so the tags do not necessarily perform valid comparisons.

If a TLB miss occurs during the address translation for either a branch target instruc-
tion or an instruction on a new virtual page, the processor considers the contents of
the Instruction Cache to be invalid. This is required to properly sequence the LRU
Recommendation Register, and does not solve the problem just described. If the TLB
is changed at some point, so that the TLB miss does not occur, the Instruction Cache
still may perform an invalid comparison.

To avoid the above problem, the contents of the Instruction Cache must be invali-
dated explicitly whenever address translation is changed. This can be accomplished
by executing an Invalidate (INV) instruction whenever an address translation is
changed. The INV instruction causes all entries of the Instruction Cache to become
invalid (after the next successful branch or cache block boundary). However, since
the change in address translation rarely affects the program performing the change,
the INV may unnecessarily affect the performance of this program.

The IRETINV instruction has the same effect on the Instruction Cache as the INV
instruction, but can reduce the performance impact. The IRETINV delays invalidation
until an interrupt return is executed, eliminating the need to disrupt an operating-
system routine when the routine changes address translation. At the point of interrupt
return, the contents of the Instruction Cache are most likely not of much use anyway.

Note that the Instruction Cache is not invalidated when the Instruction Cache Disable
(ID) bit of the Configuration Register is set. When the ID bit is 1, the Instruction Cache
retains its previous contents, but the processor considers its contents to be invalid.
Thus, the ID bit cannot be used to invalidate the cache, and, furthermore, the Instruc-
tion Cache may have to be invalidated whenever the ID bit is to be reset (i.e., when
the cache is to be enabled).

The Instruction Cache distinguishes between virtual and physical addresses and
between User-mode and Supervisor-mode addresses. Thus, the Instruction Cache
does not have to be invalidated on transitions between these address spaces. This
improves the performance of applications that make heavy use of operating-system
routines in either physical or virtual address space.

Selecting the Virtual Page Size
The selection of page size is based on several considerations:

1. For a given page size, any allocation of pages to a process will, on average,
waste half of one page. With smaller page sizes, the waste is smaller. In systems
with a large number of processes, each with a small amount of memory, small
page sizes can reduce waste significantly.

2. Smaller page sizes allow finer memory-protection granularity.

3. The maximum amount of memory that can be referenced by Translation
Look-Aside Buffer (TLB) entries is set by the number of TLB entries and the page
size. Larger page sizes allow the fixed number of TLB entries to address more
memory, and generally reduce the number of TLB misses. For example, with
1-Kbyte pages, a process requiring 8K bytes of contiguous memory would create
eight TLB misses; with 8-Kbyte pages, the process would create only one TLB
miss.

7-10 MEMORY MANAGEMENT

7.5.1

4. The page is usually the unit of memory moved between memory and backing
storage. The design of the backing storage sub-system also may influence the
choice of page size, because of transfer-efficiency considerations. For example, if
the backing storage is a disk, the disk seek time is large compared to transfer
time. Thus, it is more efficient to transfer large amounts of data with a single seek.
Efficiency may also depend on disk organization (i.e., the number of seeks
possibly required to transfer a page).

HANDLING TLB MISSES

The address translation performed by the MMU is ultimately determined by routines
that place entries into the Translation Look-Aside Buffer (TLB). TLB entries normally
are based on system page tables, which give the translation for a large number of
pages. The TLB simply caches the currently needed translations, so that system page
tables do not have to be accessed for every translation.

If a required address translation cannot be performed by any entry in the TLB, a TLB
miss trap occurs. The trap handling routine—called the TLB reload routine—accesses
the system page tables to determine the required translation and sets the appropriate
TLB entry. Note that the access requiring this translation can be restarted by the
interrupt return at the end of the TLB reload routine (see Section 8.6.2).

A large number of different page-table organizations are possible. Since the TLB
reload routine is a sequence of processor instructions, the page tables may have a
structure and access method that satisfies trade-offs of page table size, translation
lookup time, and memory-allocation strategies.

Another possibility supported by the TLB reload mechanism is that of a second-level
TLB. The TLB reload routine is not required to access the system page tables imme-
diately upon a TLB miss, but may access an external TLB, which can be much larger
than the processor's TLB. The amount of time required to access the external TLB
normally is much smaller than the amount of time required to access the page tables,
leading to an overall improvement in performance. Of course, if a translation is not in
the external TLB, a page table lookup still must be performed.

Because the TLB reload routine may depend on the type of access causing the TLB
miss, the processor differentiates between misses on instruction and data accesses
and between misses by Supervisor-mode and User-mode programs. This eliminates
any time which might be spent by the TLB reload routine in making the same determi-
nation. Performance is also enhanced by the LRU Recommendation Register, which
gives the TLB register number for Word 0 of the TLB entry to be replaced by the TLB
reload routine (the least recently used entry).

TLB Reload

So that the MMU may support a large variety of memory-management architectures, it
does not directly load TLB entries that are required for address translation. It simply
causes a TLB miss trap when address translation is unsuccessful. The trap causes a
program—called the TLB reload routine—to execute. The TLB reload routine is de-
fined according to the structure and access method of the page table contained in an
external device or memory.

When a TLB miss trap occurs, the LRU Recommendation Register contains the TLB
register number for Word 0 of the TLB entry to be used by the TLB reload routine. For
instruction accesses, the Program Counter 1 Register contains the instruction ad-
dress that was not successfully translated. For data accesses, the Channel Address
Register contains the data address that was not successfully translated.

MEMORY MANAGEMENT 7-11

7.5.2

The TLB reload routine determines the translation for the address given by the Pro-
gram Counter 1 Register or Channel Address Register, as appropriate. The TLB
reload routine uses an external page table to determine the required translation, and
loads the TLB entry indicated by the LRU Recommendation Register so that the entry
may perform this translation. In a demand-paged environment, the TLB reload routine
may additionally invoke a page-fault handler when the translation cannot be
performed.

TLB entries are written by the Move To TLB (MTTLB) instruction, which copies the
contents of a general-purpose register into a TLB register. The TLB register number is
specified by bits 6-0 of a general-purpose register. TLB entries are read by the Move
From TLB (MFTLB) instruction, which copies the contents of a TLB register into a
general-purpose register. Again, the TLB register number is specified by a
general-purpose register.

LRU Recommendation (LRU, REGISTER 14)

This protected special-purpose register (Figure 7-8) assists Translation Look-Aside
Buffer (TLB) reloading by indicating the least recently used TLB entry in the required
replacement set.

Figure 7-8

LRU Recommendation Register

31 23 15 7
crreeererrrrrrrrrr ety

Reserved LRU 0

7.5.3

Bits 31-7: Reserved.

Bits 6—1: Least-Recently Used Entry (LRU)—The LRU field is updated whenever a
TLB miss occurs during an address translation. It gives the TLB register number of
the TLB entry selected for replacement. The LRU field also is updated whenever a
memory-protection violation occurs; however, it has no interpretation in this case.

Bit 0: Zero—The appended 0 serves to identify Word 0 of the TLB entry.

Page Reference And Change Information

In a demand-paged environment, it is important to be able to collect information on
the use and modification of pages. The processor does not collect this information
directly, but the information may be collected by the operating system, without requir-
ing hardware support.

Each TLB entry contains six bits which specify the type of accesses that are permitted
for the corresponding page. When a TLB entry is loaded, the TLB reload routine can
set the protection bits so that an access to the corresponding page is not allowed. If
an access is attempted, an MMU Protection Violation traps occurs. This trap may be
used to signal that the page is being referenced. After noting this fact, the trap handler
may set the protection bits to allow the access and return to the trapping routine.

A technique similar to the one just described can be used to collect information on the
modification of a page. However, in this case, the TLB protection bits initially are set
so that a store is not allowed.

7-12 MEMORY MANAGEMENT

7.5.4

7.5.5

7.6

It is also possible to create reference information by noting references during TLB
reload. For example, reference bits normally are reset periodically, so that they reflect
current references. When reference bits are reset, the entire TLB may be invalidated.
Reference bits are set as TLB entries are loaded. Note that this scheme relies on the
fact that a TLB miss implies a reference to the corresponding page. Also, this scheme
does not account for page change information.

The disadvantage of both of the above schemes is one of possible performance loss.
This is the result of the additional traps required to monitor page references and
changes. If the performance impact is unacceptable, references and changes can be
monitored easily by hardware that detects reads and writes to page frames in instruc-
tion or data memory.

Warm Start

When a process switch occurs, there is a high probability that most of the TLB entries
of the old process will not be used by the new process. Thus, the new process most
likely creates many TLB miss traps early in its execution. This is unavoidable on the
first initiation of a process, but may be prevented on subsequent initiations.

When a given process is suspended, the operating system can save a copy of the
process’ TLB contents. When the process is restarted, the copy can be loaded back
into the TLB. This warm start prevents many of the process’ initial TLB misses, at the
expense of the time required to save and restore the copy of the TLB entries. How-
ever, this time may be much shorter than the time required to individually perform all
TLB reloads.

Note that if this warm-start strategy is adopted, any change in address translation
must be reflected in all copies of TLB entries for all affected processes. If address
translation is often changed so that it affects more than one process, warm start may
not be advantageous.

Minimum Number Of Resident Pages

In any processor that supports demand paging, there are a minimum number of
pages that must be resident for any active process. This minimum is determined by
the maximum number of pages that might be referenced by an atomic operation in the
processor’s architecture (e.g., an instruction, normally). If this maximum number is not
guaranteed to be resident in memory, some operations might never complete, since
they may never have all of the required pages resident in memory at one time.

For the Am29030 and Am29035 microprocessors, two pages are required for a proc-
ess to make progress through the system. The reason for this requirement is that the
Am29030 and Am29035 microprocessors, on interrupt return, restart an interrupted
Load Multiple or Store Multiple only after fetching two instructions (see Section 8.3.4).
The first of these instructions must be resident in memory—and mapped by the TLB—
and the page required to complete the Load Multiple or Store Multiple must also be
resident—and mapped by the TLB—for the interrupt return to complete successfully.

INVALIDATING TLB ENTRIES

There are two methods for invalidating TLB entries that are no longer required at a
given point in program execution. The first involves resetting the Valid Entry bit of a
single entry (this is done by a Move To TLB instruction). The second involves chang-
ing the value of the Process Identifier (PID) field of the MMU Configuration Register;

MEMORY MANAGEMENT 7-13

this invalidates all entries whose Task Identifier (TID) fields do not match the new
value.

If an entry is invalidated by changing the PID field, the TLB entry still remains valid in
some sense. If the PID field is changed again to match the TID field, the entry may
once again participate in address translation. This ability can be used to reduce the
number of TLB misses in a system during process switching. However, it is important
to manage TLB entries so that an invalid match cannot occur between the PID field
and the TID field of an old TLB entry.

7-14 . MEMORY MANAGEMENT

CHAPTER 8

INTERRUPTS AND TRAPS n

8.1

8.1.1

OVERVIEW

Interrupts and traps cause the Am29030 and Am29035 microprocessors to suspend
the execution of an instruction sequence and to begin the execution of a new se-
quence. The processor may or may not later resume the execution of the original
instruction sequence.

The distinction between interrupts and traps is largely one of causation and enabling.
Interrupts allow external devices and the Timer Facility to control processor execution
and are always asynchronous to program execution. Traps are intended to be used
for certain exceptional events that occur during instruction execution and are gener-
ally synchronous to program execution.

A distinction is made between the point at which an interrupt or trap occurs and the
point at which it is taken. An interrupt or trap is said to occur when all conditions that
define the interrupt or trap are met. However, an interrupt or trap that occurs is not
necessarily recognized by the processor, either because of various enables or be-
cause of the processor’s operational mode (e.g., Halt mode). An interrupt or trap is
taken when the processor recognizes the interrupt or trap and alters its behavior
accordingly.

Current Processor Status (CPS, Register 2)

This protected special-purpose register (see Figure 8-1) controls the behavior of the
processor and its ability to recognize exceptional events.

Figure 8-1

Current Processor Status Register

15 7 0

31 23
Frrrrrrerrrnl ! I

Reserved Res M

' R N
C 0 e vt '

0 tTEW TU WM* Pl ¢ DI’
IP TP FZ Res PD SM DA

Bits 31-18: Reserved.

Bits 17: Timer Disable (TD)—When the TD bit is 1, the Timer interrupt is disabled.
When this bit is 0, the Timer interrupt is dependant on the value of the IE bit of the
Timer Reload Register. Note that Timer interrupts may be disabled by the DA bit
regardiess of the value of either TD or IE. The intent of this bit is to provide a means
of disabling Timer interrupts without having to perform a non-atomic read-modify-write
operation on the Timer Reload Register.

Bit 16—15: Reserved.

INTERRUPTS AND TRAPS 8-1

Bit 14: Interrupt Pending (IP)—This bit allows software to detect the presence of
external interrupts while the interrupts are disabled. The IP bit is set if one or more of
the external signals INTR(3-0) is active, but the processor is disabled from taking the
resulting interrupt due to the value of the DA, DI, or IM bits. If all external interrupt
signals are subsequently de-asserted while still disabled, the IP bit is reset.

Bits 13—-12: Trace Enable, Trace Pending (TE, TP)—The TE and TP bits implement
a software-controlled, instruction single-step facility. Single stepping is not imple-
mented directly, but rather emulated by trap sequences controlled by these bits. The
value of the TE bit is copied to the TP bit whenever an instruction completes execu-
tion. When the TP bit is 1, a Trace trap occurs. Section 11.1 describes the use of
these bits in more detail.

Bit 11: Trap Unalighed Access (TU)—The TU bit enables checking of address
alignment for external data-memory accesses. When this bit is 1, an Unaligned Ac-
cess trap occurs if the processor either generates an address for an external word
that is not aligned on a word address-boundary (i.e., either of the least-significant two
bits is 1) or generates an address for an external half-word that is not aligned on a
half-word address boundary (i.e., the least-significant address bit is 1). When the TU
bit is 0, data-memory address alignment is ignored.

Alignment is ignored for input/output accesses. The alignment of instruction ad-
dresses is also ignored (unaligned instruction addresses can be generated only by
indirect jumps). Interrupt/trap vector addresses always are aligned properly by the
processor.

Bit 10: Freeze (FZ)—The FZ bit prevents certain registers from being updated during
interrupt and trap processing, except by explicit data movement. The affected regis-
ters are: Channel Address, Channel Data, Channel Control, Program Counter 0,
Program Counter 1, Program Counter 2, and the ALU Status Register.

When the FZ bit is 1, these registers hold their values. An affected register can be
changed only by a Move-To-Special-Register instruction. When the FZ bit is 0, there
is no effect on these registers, and they are updated by processor instruction execu-
tion as described in this manual.

The FZ bit is set whenever an interrupt or trap is taken, holding critical state in the
processor so that it is not modified unintentionally by the interrupt or trap handler.

Bit 9: Lock (LK)—The LK bit controls the value of the LOCK external signal. If the LK
bit is 1, the LOCK signal is active. If the LK bit is 0, the LOCK signal is controlled by
the execution of the instructions Load and Set, Load and Lock, and Store and Lock.
This bit is provided for the implementation of multi-processor synchronization
protocols.

Bit 8: Reserved.

Bit 7: WAIT Mode (WM)—The WM bit places the processor in the Wait mode. When
this bit is 1, the processor performs no operations. The Wait mode is reset by an
interrupt or trap for which the processor is enabled, or by the assertion of the RESET
pin.

Bit 6: Physical Addressing/Data (PD)—The PD bit determines whether address
translation is performed for load or store operations. Address translation is performed
for an access only when this bit is 0 and the Physical Address (PA) bit in the load or
store instruction causing the access is also 0.

Bit 5: Physical Addressing/Instructions (PI)—The Pl bit determines whether ad-
dress translation is performed for external instruction accesses. Address translation is
performed only when this bit is 0. '

8-2

INTERRUPTS AND TRAPS

8.1.2

Bit 4: Supervisor Mode (SM)—The SM bit protects certain processor context, such
as protected special-purpose registers. When this bit is 1, the processor is in the
Supervisor mode, and access to all processor context is allowed. When this bit is 0,
the processor is in the User mode, and access to protected processor context is not
allowed; an attempt to access (either read or write) protected processor context
causes a Protection Violation trap.

Section 6.1 describes the processor state protected from User-mode access.

For an external access, the User Access (UA) bit in the load or store instruction also
controls access to protected processor context. When the UA bit is 1, the Memory
Management Unit and bus perform the access as if the program causing the access
were in User mode.

Bits 3-2: Interrupt Mask (IM)—The IM field is an encoding of the processor priority
with respect to external interrupts. The interpretation of the interrupt mask is specified
in Section 8.1.2.

Bit 1: Disable Interrupts (DI)—The DI bit prevents the processor from being inter-
rupted by external interrupt requests INTR(3—0). When this bit is 1, the processor
ignores all external interrupts. However, note that traps (both internal and external),
Timer interrupts, and Trace traps may be taken. When this bit is 0, the processor
takes any interrupt enabled by the IM field, unless the DA bit is 1.

Bit 0: Disable All Interrupts and Traps (DA)—The DA bit prevents the processor
from taking any interrupts and most traps. When this bit is 1, the processor ignores
interrupts and traps, except for the WARN, Instruction Access Exception, and Data
Access Exception traps. When the DA bit is 0, all traps are taken, and interrupts are
taken if otherwise enabled.

Interrupts

Interrupts are caused by signals applied to any of the external inputs INTR(3-0) or by
the Timer Facility (see Section 8.7). The processor may be disabled from taking
certain interrupts by the masking capability provided by the Disable All Interrupts and
Traps (DA) bit, Disable Interrupts (DI) bit, and Interrupt Mask (IM) field in the Current
Processor Status Register.

The DA bit disables all interrupts. The DI bit disables external interrupts without affect-
ing the recognition of traps and Timer interrupts. The 2-bit IM field selectively enables
external interrupts as follows:

IM Value Result
00 INTRO enabled
01 INTR(1-0) enabled
10 INTR(2-0) enabled
11 INTR(3-0) enabled

Note that the INTRO interrupt cannot be disabled by the IM field. Also, note that no
external interrupt is taken if either the DA or DI bit is 1. The Interrupt Pending bit in the
Current Processor Status indicates that one or more of the signals INTR(3-0) is ac-
tive, but that the corresponding interrupt is disabled due to the value of either DA, DI,
or IM.

INTERRUPTS AND TRAPS 8-3

8.1.3

8.1.4

8.1.5

Traps

Traps are caused by signals applied to one of the inputs TRAP(1-0), or by exceptional
conditions such as protection violations. Except for the Instruction Access Exception
and Data Access Exception traps, traps are disabled by the DA bit in the Current
Processor Status; a 1 in the DA bit disables traps, and a 0 enables traps. It is not
possible to selectively disable individual traps.

External Interrupts And Traps

An external device causes an interrupt by asserting one of the INTR(3-0) inputs, and
causes a trap by asserting one of the TRAP(1-0) inputs. Transitions on each of these
inputs may be asynchronous to the processor clock; they are protected against
metastable states. For this reason, an assertion of one of these inputs that meets the
proper set-up-time criteria does not cause the corresponding interrupt or trap until the
second following cycle.

The INTR(3-0) inputs are prioritized with respect to each other and with respect to the
processor. To resolve conflicts between these inputs, the inputs are prioritized in
order, so that the interrupt caused by INTRO has the highest priority, and the interrupt
caused by INTR3 has the lowest priority.

The TRAP(1-0) inputs are prioritized with respect to each other, so that the trap
caused by TRAPO has priority over the trap caused by TRAP1 when a conflict occurs.
Both TRAPO and TRAP1 have priority over the INTR(3-0) inputs. The TRAP(1-0)
inputs cannot be disabled selectively. Both traps, however, can be disabled by the DA
bit in the Current Processor Status Register.

The INTR(3-0) and TRAP(1-0) inputs are level-sensitive. Once asserted, they must
be held active until the corresponding interrupt or trap is acknowledged by the inter-
rupt or trap handler (this acknowledgment is system-dependent, since there is no
interrupt-acknowledge mechanism defined for the processor).

If any of these inputs is asserted, then de-asserted before it is acknowledged, it is

not possible to predict (unless the interrupt or trap is masked) whether or not the
processor has taken the corresponding interrupt or trap. During interrupt and trap
processing, the vector number is determined in part by which of the INTR(3-0) and
TRAP(1-0) inputs is active. If the input causing an interrupt or trap is de-asserted
before the vector number is determined, the vector number is unpredictable, with the
result that processor operation is also unpredictable. Typically, this situation results in
the processor taking an lllegal Opcode trap.

There is a three-cycle latency from the de-assertion of an INTR(3-0) or TRAP(1-0)
input to the time that the corresponding interrupt or trap is actually not recognized by
the processor. The de-assertion must be timed so that, when the corresponding mask
is reset, the processor does not recognize the interrupt or trap. Otherwise, a spurious
interrupt or trap may occur.

Wait Mode

A wait-for-interrupt capability is provided by the Wait mode. The processor is in the
Wait mode whenever the Wait Mode (WM) bit of the Current Processor Status is 1.
While in Wait mode, the processor neither fetches nor executes instructions and
performs no external accesses. The Wait mode is exited when an interrupt or trap is
taken.

8-4 INTERRUPTS AND TRAPS

8.2

Note that the processor can take only those interrupts or traps for which it is enabled,
even in the Wait mode. For example, if the processor is in the Wait mode with a DA
bit of 1, it can leave the Wait mode only via a processor reset (see Section 10.2) or a
WARN trap (see Section 8.4).

VECTOR AREA

Interrupt and trap processing relies on the existence of a user-managed Vector Area
in external instruction/data memory. The Vector Area begins at an address specified
by the Vector Area Base Address Register and provides for as many as 256 different
interrupt and trap handling routines. The processor reserves 64 routines for system
operation and instruction emulation. The number and definition of the remaining 192
possible routines are system dependent.

The structure of the Vector Area is a table of vectors in instruction/data memory. The
layout of a single vector is shown in Figure 8-2. Each vector gives the beginning
word-address of the associated interrupt or trap handling routine.

Figure 8-2

Vector Table Entry

SEREEREERREEREERRERRRRRRRRRRE

Handler Starting Address ofo

8.2.1

Vector Area Base Address (VAB, Register 0)

This protected special-purpose register (see Figure 8-3) specifies the beginning ad-
dress of the interrupt/trap Vector Area. The Vector Area is a table of 256 vectors
which point to interrupt and trap handling routines.

When an interrupt or trap is taken, the vector number for the interrupt or trap (see
Section 8.2.2) replaces bits 9-2 of the value in the Vector Area Base Address
Register to generate the physical address for a vector contained in instruction/data
memory.

Figure 8-3

Vector Area Base Address Register

31 23 15
Frrrrrrrrrrrrrrrrrrrn
VAB
AN EEEEEE NN

Bits 31-10: Vector Area Base (VAB)—The VAB field gives the beginning physical
address of the Vector Area. This address is constrained to begin on a 1K-Byte ad-
dress-boundary in instruction/data memory.

Bits 9-0: Zeros—These bits force the alignment of the Vector Area to a 1K-Byte
boundary.

INTERRUPTS AND TRAPS 8-5

8.2.2

8.3.1

8.3.2

Vector Numbers

When an interrupt or trap is taken, the processor determines an 8-bit vector number
associated with the interrupt or trap. The vector number gives the number of a vector
table entry. The physical address of the vector table entry is generated by replacing
bits 9-2 of the value in the Vector Area Base Address Register with the vector
number.

Vector numbers are either predefined or specified by an instruction causing the trap.
The assignment of vector numbers is shown in Table 8-1 (vector numbers are in
decimal notation). Vector numbers 64 to 255 are for use by trapping instructions; the
definition of the routines associated with these numbers is system dependent.

INTERRUPT AND TRAP HANDLING

Interrupt and trap handling consists of two distinct operations: taking the interrupt or
trap and returning from the interrupt or trap handler. If the interrupt or trap handler
returns directly to the interrupted routine, the interrupt or frap handler need not save
and restore processor state.

Old Processor Status (OPS, Register 1)

This protected special-purpose register has the same format as the Current Proces-
sor Status Register. The Old Processor Status Register stores a copy of the Current
Processor Status Register when an interrupt or trap is taken. This is required since
the Current Processor Status Register is modified to reflect the status of the interrupt/
trap handler.

During an interrupt return, the Old Processor Status Register is copied into the Cur-
rent Processor Status Register. This allows the Current Processor Status Register to
be set as required for the routine that is the target of the interrupt return.

The Program COuntér Stack

The Program Counter Unit, shown in Figure 8-4, forms and sequences instruction
addresses for the Instruction Fetch Unit. It contains the Program Counter (PC), the
Program-Counter Multiplexer (PC MUX), the Return Address Latch, and the Program-
Counter Buffer (PC Buffer).

The PC forms addresses for sequential instructions executed by the processor. The
master of the PC Register, PC L1, contains the address of the instruction being
fetched in the Instruction Fetch Unit. The slave of the PC Register, PC L2, contains
the next sequential address, which may be fetched by the Instruction Fetch Unit in the
next cycle.

The Return Address Latch passes the address of the instruction following the delayed
instruction of a call to the register file. This address is the return address of the call.

The PC Buffer stores the addresses of instructions in various stages of execution
when an interrupt or trap is taken. The registers in this buffer—Program Counters 0,
1, and 2 (PCO, PC1, and PC2)—are normally updated from the PC as instructions
flow through the processor pipeline.

When an interrupt or trap is taken, the Freeze (FZ) bit in the Current Processor Status
is set, holding the quantities in the PC Buffer. When the FZ bit is set, PC0O, PC1, and
PC2 contain the addresses of the instructions in the decode, execute, and write-back
stages of the pipeline, respectively.

8-6 INTERRUPTS AND TRAPS

Table 8-1

Vector Number Assignments

Number Type of Trap or Interrupt Cause
0 lllegal Opcode Executing undefined instruction’
1 Unaligned Access Access on unnatural boundary, TU=1
2 Out of Range Overflow or underflow
34 Reserved
5 Protection Violation Invalid User-mode operation?
6 Instruction Access Exception ERR response while instruction fetching
7 Data Access Exception ERR response, doing load or store
8 User-Mode Instruction TLB Miss No TLB entry for translation
9 User-Mode Data TLB Miss No TLB entry for translation
10 Supervisor-Mode Instruction TLB Miss No TLB entry for translation
1 Supervisor-Mode Data TLB Miss No TLB entry for translation
12 Instruction MMU Protection Violation TLB UE/SE=0
13 Data MMU Protection Violation TLB UR/SR =0, UW/SW =0 on write
14 Timer Timer Facility
15 Trace Trace Facility
16 INTRO INTRO input
17 INTR1 INTR1 input
18 INTR2 INTR2 input
19 INTR3 INTRS input
20 TRAPO TRAPO input
21 TRAP1 TRAP1 input
22 Floating-Point Exception Unmasked floating-point exception®
23 Reserved
24-29 Reserved for instruction emulation
(opcodes D8-DD)
30 MULTM MULTM instruction
31 MULTMU MULTMU instruction
32 MULTIPLY MULTIPLY instruction
33 DIVIDE DIVIDE instruction
34 MULTIPLU MULTIPLU instruction
35 DIVIDU DIVIDU instruction
36 CONVERT CONVERT instruction
37 SQRT SQRT instruction
38 CLASS CLASS instruction
3941 Reserved for instruction emulation
(opcode E7-E9)
42 FEQ FEQ instruction
43 DEQ DEQ instruction
44 FGT FGT instruction
45 DGT DGT instruction
46 FGE FGE instruction
47 DGE DGE instruction
48 FADD FADD instruction
49 DADD DADD instruction
50 FSuUB FSUB instruction
51 DSUB DSUB instruction
52 FMUL FMUL instruction
53 DMUL DMUL instruction

1. This vector number also results if an external device removes INTR3-INTRO or TRAP1-TRAPO before the corresponding
interrupt or trap is taken by the processor.

2. Some Supervisor-mode operations cause Protection Violations, to facilitate virtualization of certain operations.
3. The Floating-Point Exception trap is not generated by the processor hardware. It must be generated by software support.

INTERRUPTS AND TRAPS 8-7

Vector Number Assignments (continued)

Number Type of Trap or Interrupt Cause
54 FDIV FDIV instruction
55 DDIV DDIV instruction
56 Reserved for instruction emulation
(opcode F8)
57 FDMUL FDMUL instruction
58-63 Reserved for instruction emulation
(opcode FA-FF)

64-255 ASSERT and EMULATE instruction traps
(vector number specified by instruction)

Note: Some of Vector Numbers 64-255 are reserved for software compatability (see Sections 4.2.3 and
4.2.6). These are documented in Chapter 4 and in the Host Interface (HIF) Specification, available

from AMD.
Figure 8-4 Program Counter Unit
R-Bus N
Instruction |g / PC-Bus o] Address
Cache [4 /30 i Unit
4
v
30-bit | PCO
Incrementer

1]
3
»
1]
1]
1]
1]
1]
1]
1]
1]
1]
1]
| PCL1§ ’
1]
t ! | PC1
A 4 »

1]

1]

1]

1]

1]

1]

1]

1]

1]

1]

1]

1]

1]

’

(i3

[

Return A 4
Branch—bl—FC— MUX Aﬂg:celfs < PC2
PC Buffer
A 4 t
—D— '
y

B-Bus

88 INTERRUPTS AND TRAPS

Upon the execution of an interrupt return, the target instruction stream is restarted
using the instruction addresses in PCO and PC1. Two registers are required here
because the processor implements delayed branches. An interrupt or trap may be
taken when the processor is executing the delay instruction of a branch and decoding
the target of the branch. This discontinuous instruction sequence must be restarted
properly upon an interrupt return. Restarting the instruction pipeline using two sepa-
rate registers correctly handles this special case; in this case PC1 points to the delay
instruction of the branch, and PCO points to its target. PC2 does not participate in the
interrupt return, but is included to report the addresses of instructions causing certain
exceptions.

The PC is not defined as a special-purpose register. It cannot be modified or in-
spected by instructions. Instead, the interrupting and restarting of the pipeline is done
by the PC Buffer registers PCO and PC1.

8.3.2.1 PROGRAM COUNTER 0 (PCO, Register 10)
This protected special-purpose register (Figure 8-5) is used, on an interrupt return, to
restart the instruction which was in the decode stage when the original interrupt or
trap was taken.

Figure 8-5 Program Counter 0 Register
31 23 15 7 0

crrrererrrrrerrerrererr e
PCO olo

Bits 31-2: Program Counter 0 (PC0)—This field captures the word-address of an
instruction as it enters the decode stage of the processor pipeline, unless the Freeze
(FZ) bit of the Current Processor Status Register is 1. If the FZ bit is 1, PCO holds its
value.
When an interrupt or trap is taken, the PCO field contains the word-address of the
instruction in the decode stage; the interrupt or trap has prevented this instruction
from executing. The processor uses the PCO field to restart this instruction on an
interrupt return.
Bits 1-0: Zeros—These bits are zero, since instruction addresses are always word
aligned.

8.3.2.2 PROGRAM COUNTER 1 (PC1, Register 11)
This protected special-purpose register (Figure 8-6) is used, on an interrupt return, to
restart the instruction that was in the execute stage when the original interrupt or trap
was taken.

Figure 8-6 Program Counter 1 Register

SRRRREREREREEERRRERERRREEEERR

PC1 0|0

Bits 31-2: Program Counter 1 (PC1)—This field captures the word-address of an
instruction as it enters the execute stage of the processor pipeline, unless the Freeze

INTERRUPTS AND TRAPS 8-9

8.3.23

(FZ) bit of the Current Processor Status Register is 1. If the FZ bitis 1, PC1 holds its
value.

When an interrupt or trap is taken, the PC1 field contains the word-address of the
instruction in the execute stage; the interrupt or trap has prevented this instruction
from completing execution. The processor uses the PC1 field to restart this instruction
on an interrupt return.

Bits 1-0: Zeros—These bits are zero, since instruction addresses are always word
aligned.

PROGRAM COUNTER 2 (PC2, Register 12)

This protected special-purpose register (Figure 8-7) reports the address of certain
instructions causing traps.

Figure 8-7

Program Counter 2 Register

31 23 15 7
rrererrrrerrrrrrr e ree

PC2 o|o

8.3.3

Bits 31-2: Program Counter 2 (PC2)—This field captures the word address of an
instruction as it enters the write-back stage of the processor pipeline, unless the
Freeze (FZ) bit of the Current Processor Status Register is 1. If the FZ bit is 1, PC2
holds its value.

When an interrupt or trap is taken, the PC2 field contains the word address of the
instruction in the write-back stage. In certain cases PC2 contains the address of the
instruction causing a trap. The PC2 field is used to report the address of this instruc-
tion and has no other use in the processor.

Bits 1-0: Zeros—These bits are zero, since instruction addresses are always word
aligned.

Taking An Interrupt Or Trap

The following operations are performed in sequence by the processor when an inter-
rupt or trap is taken:

1. Instruction execution is suspended.
2. Instruction fetching is suspended.

3. Any in-progress load or store operation is completed. Any additional operations
are canceled in the case of load multiple and store muiltiple.

4. The contents of the Current Processor Status Register are copied into the Old
Processor Status Register.

5. The Current Processor Status register is modified as shown in Figure 8-8 (the
value u means unaffected). Note that setting the Freeze (FZ) bit freezes the
Channel Address, Channel Data, Channel Control, Program Counter 0, Program
Counter 1, Program Counter 2, and ALU Status Registers.

6. The address of the first instruction of the interrupt or trap handler is determined.
The address is obtained by accessing a vector from instruction/data memory,
using the physical address obtained from the Vector Area Base Address Register
and the vector number. This access appears on the bus as a data access, and the
OPT(2-0) signals indicate a word-length access.

8-10 INTERRUPTS AND TRAPS

7. Aninstruction fetch is initiated using the instruction address determined in step 6.
At this point, normal instruction execution resumes.

Note that the processor does not explicitly save the contents of any registers when an
interrupt is taken. If register saving is required, it is the responsibility of the interrupt-
or trap-handling routine. For proper operation, registers must be saved before any
further interrupts or traps may be taken. The FZ bit must be reset at least two instruc-
tions before interrupts or traps are re-enabled, to allow program state to be reflected
properly in processor registers if an interrupt or trap is taken.

Figure 8-8 Current Processor Status After an Interrupt or Trap
31 23 15 7 0
0000000OOGOOOTOfo]JojoJulofolo]t1]ofjojof1]1]1]u u[1]1
N\ M R
" R A
Reserved : ' : v ! : [: o0 ' o
tResi IP!TP | FZ' Resi PD'SM IM 'DA
' ' ' *] * ' '
TD Res TE TU LK WM PI Dl
8.3.4 Returning From An Interrupt Or Trap

Two instructions are used to resume the execution of an interrupted program: Inter-
rupt Return (IRET), and Interrupt Return and Invalidate (IRETINV). These instructions
are identical except in one respect: the IRETINV instruction resets all Valid bits in the
Instruction Cache, whereas the IRET instruction does not affect the Valid bits.

In some situations, the processor state must be set properly by software before the
interrupt return is executed. The following is a list of operations normally performed in
such cases:

1. The Current Processor Status is configured as shown in Figure 8-9 (the value x is
a don'’t care). Note that setting the FZ bit freezes the registers listed below so that
they may be set for the interrupt return.

2. The Old Processor Status is set to the value of the Current Processor Status for
the target routine.

3. The Channel Address, Channel Data, and Channel Control registers are set to
restart or resume uncompleted external accesses of the target routine.

4. The Program Counter 1 and Program Counter 0 registers are set to the addresses
of the first and second instructions, respectively, to be executed in the target
routine.

5. Other registers are set as required. These may include registers such as the ALU
Status, Q, and so forth, depending on the particular situation. Some of these
registers are unaffected by the FZ bit, so they must be set in such a manner that
they are not modified unintentionally before the interrupt return.

Once the processor registers are configured properly, as described above, an inter-
rupt return instruction (IRET or IRETINV) performs the remaining steps necessary to
return to the target routine. The following operations are performed by the interrupt
return instruction:

INTERRUPTSAND TRAPS 8-11

Figure 8-9

Current Processor Status Before Interrupt Return

31 23 15 7 0
000000000000 of|x{olo]xjoJofx|1]x]ojof1]1]1]x x|1]1
S ~ SRR R RN RN
Reserved :':"':"'lll:l l:
iRes: IP | TP i FZ, Res, PD 'SM IM ! DA
' ¢ ' ’ ' '
TD Res TE TU LK WM P]

. Any in-progress load or store operation is completed. If a load-multiple or

store-multiple sequence is in progress, the interrupt return is not executed until the
sequence completes.

. Interrupts and traps are disabled, regardless of the settings of the DA, DI, and IM

fields of the Current Processor Status, for steps 3 through 10.

. If the interrupt return instruction is an IRETINV, all Valid bits in the Instruction

Cache memory are reset, except for those portions of the Instruction Cache which
are locked (see Section 9.1).

. The contents of the Old Processor Status Register are copied into the Current

Processor Status Register. This normally resets the FZ bit, allowing the Program
Counter 0, 1, 2, Channel Address, Data, Control, and ALU Status registers to
update normally. Since certain bits of the Current Processor Status Register
always are updated by the processor, this copy operation may be irrelevant for
certain bits (e.g., the Interrupt Pending bit).

. If the Contents Valid (CV) bit of the Channel Control Register is 1, and the Not

Needed (NN) and Multiple Operation (ML) bits are both 0, an external access is
started. This operation is based on the contents of the Channel Address, Channel
Data, and Channel Control registers. The Current Processor Status Register
conditions the access—as is normally the case. Note that load-multiple and
store-multiple operations are not restarted at this point.

. The address in Program Counter 1 is used to fetch an instruction. The Current

Processor Status Register conditions the fetch. This step is treated as a branch in
the sense that the processor searches the Instruction Cache for the target of the
fetch.

7. The instruction fetched in step 6 enters the decode stage of the pipeline.

10.

11.

12.

. The address in Program Counter 0 is used to fetch an instruction. The Current

Processor Status Register conditions the fetch. This step is treated as a branch in
the sense that the processor searches the Instruction Cache for the target of the
fetch.

. The instruction fetched in step 6 enters the execute stage of the pipeline, and the

instruction fetched in step 8 enters the decode stage.

If the CV bit in the Channel Control Register is a 1, the NN bit is 0, and the ML bit
is 1, a load-multiple or store-multiple sequence is started, based on the contents
of the Channel Address, Channel Data, and Channel Control registers.

Interrupts and traps are enabled per the appropriate bits in the Current Processor
Status Register.

The processor resumes normal operation.

8-12 INTERRUPTS AND TRAPS

8.3.5

8.3.6

Lightweight Interrupt Processing

The registers affected by the FZ bit of the Current Processor Status Register are
those which are modified by almost any usual sequence of instructions. Since the FZ
bit is set by an interrupt or trap, the interrupt or trap handler is able to execute while
not disturbing the state of the interrupted routine, though its execution is somewhat
restricted. Thus, it is not necessary in many cases for the interrupt or trap handler to
save the registers that are affected by the FZ bit. This permits the implementation of
lightweight interrupt handlers that do not have all of the overhead normally associated
with interrupt handlers.

The processor provides an additional benefit to lightweight interrupts if the Program
Counter 0 and Program Counter 1 Registers are not modified by the interrupt or trap
handler. If Program Counters 0 and 1 contain the addresses of sequential instructions
when an interrupt or trap is taken, and if they are not modified before an interrupt
return is executed, step 8 of the interrupt return sequence above occurs as a sequen-
tial fetch—instead of a branch—for the interrupt return. The performance impact of a
sequential fetch is normally less than that of a non-sequential fetch.

Because the registers affected by the FZ bit are sometimes required for instruction
execution, it is not possible for the lightweight interrupt or trap handler to execute all
instructions, unless the required registers are first saved elsewhere (e.g., in one or
more global registers). Most of the restrictions due to register dependencies are
obvious (e.g., the Byte Pointer for byte extracts) and will not be discussed here. Other
less obvious restrictions are listed below:

1. Load Multiple and Store Multiple. The Channel Address, Channel Data, and
Channel Control registers are used to sequence load-multiple and store-multiple
operations, so these instructions cannot be executed while the registers are
frozen. However, note that other external accesses may occur; the Channel
Address, Channel Data, and Channel Control registers are required only to restart
an access after an exception, and the interrupt or trap handler is not expected to
encounter any exceptions.

2. Loads and stores which set the Byte Pointer. If the Set Byte Pointer (SB) of a load
or store instruction is 1, and the FZ bit is also 1, there is no effect on the Byte
Pointer. Thus, the execution of external byte and half-word accesses using this
mechanism is not possible.

3. Extended arithmetic. The Carry bit of the ALU Status Register is not updated while
the FZ bitis 1.

4. Divide step instructions. The Divide Flag of the ALU Status Register is not
updated when the FZ bit is 1.

If the interrupt or trap handler does not save the state of the interrupted routine, it
cannot allow additional interrupts and traps. Also, the operation of the interrupt or trap
handler cannot depend on any trapping instructions (e.g., Floating-Point instructions,
illegal operation codes, arithmetic overflow, etc.), since these are disabled. There are
certain cases, however, where traps are unavoidable; these are discussed in Section
8.6.3 and 8.6.4. Special considerations for these cases are discussed in Section
8.6.6.

Simulation Of Interrupts And Traps

Assert instructions may be used by a Supervisor-mode program to simulate the oc-
currence of various interrupts and traps defined for the processor. Only an assert
instruction executed in Supervisor mode can specify a vector number between 0 and

INTERRUPTSAND TRAPS ~ 8-13

8.4

8.4.1

63. If this instruction causes a trap, the effect is to create an interrupt or trap which is
similar to that associated with the specified vector number.

Thus, the interrupt and trap routines defined for basic processor operation can be
invoked without creating any particular hardware condition. For example, an INTR1
interrupt may be simulated by an assert instruction that specifies a vector number
of 17, without the activation of the INTR1 signal.

WARN TRAP

The processor recognizes a special trap, caused by the activation of the WARN input,
which cannot be masked. The WARN trap is intended to be used for severe system-
error or deadlock conditions. It allows the processor to be placed in a known, oper-
able state, while preserving much of its original state for error reporting and possible
recovery. Therefore, it shares some features in common with the Reset mode as well
as features common to other traps described in this section.

The major differences between the WARN trap and other traps are:

1. The processor does not wait for an in-progress external access to complete
before taking the trap, since this access might not complete. However, the
information related to any outstanding access is retained by the Channel Address,
Channel Data, and Channel Control registers when the trap is taken.

2. The vector-fetch operation is not performed when the WARN trap is taken. Instead
instruction fetching begins immediately at address 16 in the instruction memory.
The trap handler executes directly from the instruction memory.

Note that the WARN trap may disrupt the state of the routine that is executing when it
is taken, prohibiting this routine from being restarted.

WARN Input

An inactive-to-active transition on the WARN input causes a WARN trap to be taken
by the processor. The WARN trap cannot be disabled; the processor responds to the
WARN input regardless of its internal condition, unless the RESET input is also as-
serted. The WARN input is provided so that the system can gain control of the proces-
sor in extreme situations, such as when system power is about to be removed or
when a severe non-recoverable error occurs.

The WARN input is edge-sensitive, so that an active level on the WARN input for
long intervals does not cause the processor to take multiple WARN traps. However