P

Am29200 and Am29205

Advanced
RISC Microcontrollers
User's Manual

Micro
Devices

AMD's Marketing Communications Department specifies environmentally sound
agricultural inks and recycled papers, making this book highly recyclable.

Am29200™ and Am29205™
RISC Microcontrollers

User’s Manual
Rev. 1, 1994

ADVANCED MICRO DEVICES =X

© 1994 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products
without notice in order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but not limited to implied warrants of merchantability or fitness for
a particular application. AMD assumes no responsibility for the use of any circuitry other than the circuitry in an AMD product.

The information in this publication is believed to be accurate in all respects at the time of publication, but is subject to change without notice.
AMD assumes no responsibility for any errors or omissions, and disclaims responsibility for any consequences resulting from the use of the
information included herein. Additionally, AMD assumes no responsibility for the functioning of undescribed features or parameters.

Trademarks

AMD and Am29000 are registered trademarks; Am29005, Am29027, Am29030, Am29035, Am29050, Am29200, Am29205, Am29240, Am29243,
Am29245, 29K, Laser29K, EB29K, XRAY29K, MiniMON29K, and Design-Made-Easy are trademarks of Advanced Micro Devices, Inc.
Fusion29K is a servicemark of Advanced Micro Devices, Inc.

PostScript is a registered trademark of Adobe Systems, Inc.

High C is a registered trademark of MetaWare, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

IF YOU HAVE QUESTIONS, WE’'RE HERE TO HELP YOU.

Customer Service

AMD'’s customer service network includes U.S. offices, international offices, and a
customer training center. Expert technical assistance is available from AMD’s worldwide
staff of field application engineers and factory support staff to answer 29K™ Family
hardware and software development questions..

Hotline, Email, and Bulletin Board Support

For answers to technical questions, AMD provides a toll-free number for direct access to
our engineering support staff. For overseas customers, the easiest way to reach the
engineering support staff with your questions is via fax with a short description of your
question. AMD 29K Family customers also receive technical support through electronic
mail. This worldwide service is available to 29K product users via the international UNIX
email service. Also available is the AMD bulletin board service, which provides the latest
29K product information, including technical information and data on upcoming product
releases.

Engineering Support Staff

(800) 292-9263 ext 2 toll-free for U.S.
0031-11-1163 toll-free for Japan

(512) 602-4118 direct dial worldwide
44-(0)256-811101 U.K. and Europe hotline
(512) 602-5031 fax
29k-support@amd.com emalil

Bulletin Board
(800) 292-9263 ext 1 toll-free for U.S.

(512) 602-4898 worldwide and local for U.S.

Documentation and Literature

The 29K Family Customer Support Group responds quickly to information and literature
requests. A simple phone call gets you free 29K Family information, such as data books,
user's manuals, data sheets, application notes, the Fusion29Ks™ Partner Solutions
Catalog and Newsletter, and other literature. Internationally, contact your local AMD
sales office for complete 29K Family literature.

Customer Support Group

(800) 292-9263 ext 3 toll-free for U.S.
(512) 602-5651 local for U.S.
(512) 602-5051 fax for U.S.

TABLE OF CONTENTS u

Preface

Chapter 1

Chapter 2

INTRODUCTION AND OVERVIEW

Am29200 AND Am29205 RISC MICROCONTROLLERS XV
DESIGN PHILOSOPHY ...ttt i e e XV
PURPOSEOF THISMANUAL ...ttt iiiiiiiee et xviii
INTENDEDAUDIENCEoitiniiiiiii it i isiei e iieieeas xviii
USER'SMANUALOVERVIEWot xviii
AMD DOCUMENTATION ... ittt it i ciieinanees Xix
RELATED PUBLICATIONS ittt XX

FEATURES AND PERFORMANCE

1.1 DISTINCTIVECHARACTERISTICSccviii i 1-1
1.1.1 Am29200 Microcontrollercoiiiiiiiiiiiiniann, 1-2
1.1.2 Am29205 Microcontrollerccvviiniiiiiiiiienn, 1-4

1.2 KEY FEATURES ANDBENEFITSiciiiiiiiiiiiiaiinenans 1-5
1.2.1 Complete Set of Common System Peripherals 1-5
1.2.2 Wide Range of Price/Performance Points 1-6
1.2.3 Gilueless SystemInterfacesc.cecviiiiiinninnnnen. 1-6
1.2.4 Bus- and Binary-Compatibilityooiiii. 1-7
1.25 Complete Development and Support Environment 1-7

1.3 PERFORMANCEOVERVIEWc i iiiiiiiiaenaes 1-7
1.3.1 Instruction TiMINgoovviiriiin e iiii et 1-7
132 Pipelining i st 1-8
1.3.3 Burst-Mode and Page-Mode Memorieso.0. 1-8
1.3.4 InstructionSetOverviewt 1-8
1.35 DataFormatsooiiiiiiiiiiiiiiiiiiiiiiiiiiiiann. 1-8
1.3.6 Protectionooiiiiiiiiiii i e 1-9
1.3.7 DRAMMappINgouviiiiiii e 1-9
138 Interruptsand Trapsccvviiiiiiiiiiiieniiinnneanes 1-9

1.4 DEBUGGINGAND TESTINGcciiiriiiiiiiiiiaininennnennns 1-9

PROGRAMMING

2.1 INSTRUCTION SET ..iitiiiiiiiiiiiiiiiiiiiiieiaiaianienenss 2-1
2.1.1 IntegerArithmetic............cooiiiiiiiiiiiiiaii, 2-1
212 COMPArE . oiieiiiiiniiat i eaeaat sttt taannanananeians 21
213 Logicalooiiiiii i i i e it e 2-4
214 Shift ..ot e e e 2-4
215 DataMovementottt 2-4
21.6 Constant ..ottt s 2-5
21.7 FloatingPointcoiiiiiiiiiiii i i e 2-6
21.8 Branch ... e, 2-7
219 Miscellaneouscvviiiiiiiiiii i it 2-7
2.1.10 ReservedInstructionscoiiiiiiiiiiii i, 2-8

22 REGISTERMODELottt iee e eaeenes 2-8
2.2.1 General-Purpose Registersccoiiiiiiiiiniinen 2-8

Table of Contents v

a AMD

Chapter 3

Chapter 4

2.2.2 Special-Purpose Registerscvvviiiiiiiiiiinnnn, 2-11
2.3 ADDRESSING REGISTERS INDIRECTLYccvvnvvinnenn. 2-12
2.3.1 Indirect Pointer C Register (IPC, Register 128) 2-13
2.3.2 |Indirect Pointer A Register (IPA, Register 129) 2-13
2.3.3 Indirect Pointer B Register (IPB, Register 130) 2-14
2.4 INSTRUCTIONENVIRONMENTc.ciiiiiiilivnnninnnnennen. 2-14
2.4.1 Floating-Point Environment Register (FPE, Register 160) ... 2-14
2.4.2 Integer Environment Register (INTE, Register 161) 2-15
2.5 STATUS RESULTS OF INSTRUCTIONSccvviiiieann... 2-16
2.5.1 ALU Status Register (ALU, Register 132) 2-16
2.5.2 Arithmetic Operation Status Results 2-17
2.5.3 Logical Operation Status Resultsl. 2-17
2.5.4 Floating-Point Status Resultsccooiiiiiinnann. 2-18
2.5.5 Floating-Point Status Register (FPS, Register 162) 2-18
2.6 INTEGER MULTIPLICATIONANDDIVISIONcccvviinennnen. 2-19
2.6.1 QRegister (Q, Register 131)cooiiiiiiiiaiatn 2-20
2.6.2 Multiplication i e 2-20
2.6.83 DiVISION ..ttt i e et e i 2-22
2.7 INEED ANINSTRUCTIONFOR... ...ttt i eaee 2-24
2.7.1 Run-Time Checking e e, 2-24
2.7.2 Operating-SystemCallsc.coovviiiiiiiinne.. 2-24
2.7.3 Multiprecision Integer Operationsccocnvent. 2-25
2.74 ComplementingaBoolean............ e resiiaaeeaanes 2-25
275 LargeJumpandCallRangescoiiiiiiinnnnnnnes 2-25
276 NO-OPS . ciiiiii ittt ittt tiiiiieiiesaaneesnniaens 2-25
2.8 VIRTUAL ARITHMETICPROCESSORccccviiinnaannnn. 2-26
2.8.1 Trapping Arithmetic Instructionsociiunen, 2-26
282 VirtualRegisters ..ottt 2-26
29 PROCESSORINITIALIZATION ..o, ...2-26
2.9.1 Configuration Register (CFG, Register3) 2-26
292 ResetModec.oiiiiiiiiiiiiiiii i 2-27

DATA FORMATS AND HANDLING

3.1 INTEGER DATATYPES ... ittt it iia i iiinaans 31
311 CharacterDatacoiiiiiiiiiiiii i 3-1
3.1.2 Half-Word Operationsccoiiiiiieirinnienenineenns 3-2
3.1.3 Byte Pointer Register (BP, Register133) 3-2
314 BitSUNGS ..o e e e 3-3
3.1.5 Character-StringOperationscooiieiiiiiiiinnnn. 34
316 BooleanDatac.ciiiiiiiiiiiiiii i 35"
3.1.7 InstructionConstantsc.oiiiiiiiiiiiiiiiiien. 3-5

3.2 FLOATING-POINTDATATYPES ...coiiiiiiiiiiiiiiiiiiiiiennes 35
3.2.1 Single-Precision Floating-PointValues 3-5
3.22 Double-Precision Floating-Point Values 3-6
3.2.3 Special Floating-PointValuesl 3-6

3.3 EXTERNALDATAACCESSEScciviiiiiiiiiniiininnnnens 3-7
3.3.1 Load/Store Instruction Formatcoviiiiin.. 3-7

T 832 Load Operationseiiiiiieriiienieee e 3-9
3.3.3 StoreOperationsciiiiiiiiiiiiieiiiiiteriiiianans 3-9
3.34 Multiple ACCESSES ...vvrutiiiiiiiiiiiiiiiiniieiiiaens 39
3.3.5 Addressingand Alignment il 3-11

PROCEDURE LINKAGE

4.1 RUN-TIME STACK ORGANIZATIONANDUSEc.o.... 4-1

vi

Table of Contents

Chapter 5

Chapter 6

Chapter 7

AMD
4.1.1 Management of the Run-Time Stack 4-1
412 RegisterStackcoiiiiiiiiii e 4-3
4.1.3 Local Registersasa StackCache 4-4
414 Memory Stackcviiieiiiiiiiiiiiei it 4-5
4.2 PROCEDURE LINKAGE CONVENTIONScciviinnnnn. 4-6
421 Argument Passing ...coveieririniariiiiieii e 4-7
422 Procedure Prologuecciivemiireainrerreniaainaes 4-8
423 SpillHandleroiiiiiiiiiiiieiii i e e 4-10
424 BReturnValuesccciiiiiiiiiiiiiiiiiiiiinanenennns 4-10
425 Procedure Epiloguevvniiiiiiiaiiiiie i iiieieieaan 4-10
426 FillHandlersc.iiiiiiiiiiiiiiiiiiii i iiiieiinnan, 4-1
42.7 RegisterStackLeafFramec.cciiiiiiiiiiinnan, 4-11
428 Local Variables and Memory-Stack Frames 4-11
429 StaticLinkPointer ...t . 4-12
4.2.10 Transparent Proceduresocovviieeerieennnnass 4-13
4.3 REGISTERUSAGECONVENTIONciviiiiiiiiiiiiiiannne, 4-13
4.4 COMPLEXPROCEDURE CALLEXAMPLEcccivinnnn. 4-14
4.5 TRACE-BACKTAGS ..\uiiiiiiiiteeeiiiaeaeeeeeeaeannaaennn 4-15
PIPELINING AND INSTRUCTION SCHEDULING
5.1 FOUR-STAGEPIPELINEccoiiiiiiiiiiiiiiiiiiiiniennnes 5-1
5.2 PIPELINEHOLDMODE ittt eieeaaeeannn 5-1
5.3 SERIALIZATION et e e ae e e 5-2
5.4 DELAYEDBRANCH ...t iiianiaannanen FETT 5-2
5.5 OVERLAPPEDLOADSANDSTORESccviiiiiiieeinnnnn. 5-4
5.6 DELAYED EFFECTSOFREGISTERScccvvvviiiieiinnnnnnn. 5-5
SYSTEM PROTECTION
6.1 USERANDSUPERVISORMODEScciiiiiiiiiiiiinnnn, 6-1
6.1.1 SupervisorModet 6-1
6.1.2 UserModeciiiiiiiiiiiiiiiiiiiiiiiiiineiannnnns 6-1
6.2 REGISTERPROTECTIONttt iii e eaeeaan e 6-1
6.2.1 Register Bank Protect Register (RBP, Register7) 6-2
SYSTEM OVERVIEW
7.1 SIGNALDESCRIPTION ...ttt eeiennanns 7-1
728 TR TR (o< T 7-1
7.1.2 ProcessorSignalscoiiiiiiiiiiiiiii e 71
71.3 ROMInterfacecciiiiiiiiiii et ieiennnnnnnas 7-3
714 DRAMINterfacecocvveiiiiiiiiiiiiiiii i 7-3
7.1.5 Peripheral Interface Adapter (PIA)coiviiiinne. 7-4
7.1.6 DMAController...... N 7-4
TAT7 HOPOM . i i i et s 7-5
718 ParallelPort 7-5
719 Seral Port ...t e 7-6
7.1.10 VideolInterfaceottt 7-6
7.1.11 JTAG 1149.1 Boundary Scan Interface 7-6
7.1.12 Pin Changes for the Am29205 Microcontroller 7-7
7.2 ACCESS PRIORITY .ttt ie e cai e eaeenaranans 7-7
7.3 SYSTEMADDRESSPARTITIONc.ciiiiiiiiiiiii i 7-8
7.4 INTERNAL PERIPHERALS AND CONTROLLERS 7-8

‘Table of Contents

vii

u AMD

Chapter 8

Chapter 9

Chapter 10

Chapter 11

ROM CONTROLLER
8.1 OVERVIEW ...ttt ittt at i et ria e nanneen. 8-1
8.2 PROGRAMMABLEREGISTERScciiiiiiiiiiiinnnninnnnn, 8-1
8.2.1 ROM Control Register (RMCT, Address 80000000) 8-1
8.2.2 ROM Configuration Register (RMCF, Address 80000004) 8-2
823 Initialization ..o i i e, 8-3
8.3 ROMACCESSESottt ittt ittt e et ceienenns 8-4
8.3.1 ROMAddressMappingoovviiiiiiiniiinnnerannnnn, 8-4
8.32 Simple ROM ACCESSES « vt iiirnnereinrnnterennerenneens 8-4
8.3.3 Narrow ROM ACCESSES ..iivevrrrrrnrenaertenrrennnnnss 8-4
834 Writestothe ROM Spacevvvveviiinniieennnnnnnnnn. 8-7
8.3.5 Burst-Mode ROM ACCESSES . ..vviiiininrinrernnerannenn. 8-8
8.3.6 Use of WAIT to Extend ROM Cycles 88
DRAM CONTROLLER
9.1 OVERVIEW L.iiiiiiiiiiiieiitieesttenanneenneeronessonnsoanes 9-1
9.2 PROGRAMMABLE REGISTERSciviiiiirineiianananen. 9-1
9.2.1 DRAM Control Register (DRCT, Address 80000008) 9-1
9.2.2 DRAM Configuration Register (DRCF, Address 8000000C) .. 9-2
- 9.23 DRAM Mapping Register 0 (DRMO, Address 80000010) 9-3
9.2.4 DRAM Mapping Register 1 (DRM1, Address 80000014) 9-4
9.2.5 DRAM Mapping Register 2 (DRM2, Address 80000018) 9-4
9.2.6 DRAM Mapping Register 3 (DRM3, Address 8000001C) 9-4
9.2.7 Initialization ..ottt e e e 9-4
9.3 DRAMACCESSESiiiiitiiiiiiiieiiiiannerinacisnntsnens 9-4
9.3.1 DRAMAddress Mappingccvvvvenereerennnnecraeans 9-4
9.3.2 Address MUltiplexing ...t iiiiaiiiienan. 9-5
933 32-BitDRAMWidthccviiiiiiiiii i 9-7
934 16-BitDRAMWidthcoviiiiiiiiiiiiiiii it e, 9-7
9.3.5 Mapped DRAM ACCESSESvvuiivienrnnreennneennnnnns 9-8
9.3.6 Normal Access TIMING ...vveneerinienenrerneaaaennenans 9-8
9.3.7 Page-Mode Access TIMING ...vvirrvineeieneevnneeninees 9-10
9.38 DRAMRefreshcciiiiiiiii ittt it eeiinenasn 9-10
9.3.9 VideoDRAMInterfaceccvvviiiiiiniininnnnnnens 9-12

PERIPHERAL INTERFACE ADAPTER

101 OVERVIEW ... i ittt iete e eeenanseanaanans 10-1

10.2 PROGRAMMABLE REGISTERSccviviiieiaiananennn. 10-1
10.2.1 PIA Control Register 0/1 (PICT0/1, Address 80000020/24) . . 10-1
10.2.2 Initializationcoovtiiiiiiiiiii it i 10-2

10.3PIAACCESSES ... oottt cii e et 10-2
10.3.1 Normal AccessS TiIMINGivirierrrenanenenrernnnnnns 10-2
10.3.2 Use of WAIT to Extend /O Cycles ccvvieeenn. 10-3

DMA CONTROLLER

TTAOVERVIEW ... it cic et PR 111

11.2 PROGRAMMABLE REGISTERSciiiiiiiiiiiaannennen. 11-1
11.2.1 DMAO Control Register (DMCTO, Address 80000030) 11-1
11.2.2 DMAO Address Register (DMADO, Address 80000034) 11-4
11.2.3 DMAQ Address Tail Register (TADO, Address 80000070) ... 11-4
11.2.4 DMAO Count Register (DOMCNO, Address 80000038} 11-5
11.2.5 .DMAO Count Tail Register (TCNO, Address 8000003C) 11-5
11.2.6 DMAT1 Control Register (DMCT1, Address 80000040) 11-5

vili

Table of Contents

Chapter 12

Chapter 13

Chapter 14

Chapter 15

' 11.2.7 DMA1 Address Register (DMAD1, Address 80000044) 11-7
11.2.8 DMA1 Count Register (DMCN1, Address 80000048) 11-7
11.2.9 Initializationot e 11-7

11.3DMATRANSFERS cei it 11-8
11.3.1 Specifying the Direction of a DMA Transfer 11-8
11.3.2 Programming Internal DMA Transfers 11-8
11.3.3 Programming External DMA Transfers 11-9
11.3.4 Generating External DMA Requestsco0otnn 11-9
11.3.5 External DMATransfersooviiiiiiiiiiiinnnnn, 11-9
11.3.6 Latching External DMA Requestscvvvuntn. 11-11

11.4 DMA QUEUING (DMACHANNEL Q)ccvviiineiiiiiiinnnn. 11-12

11.5 RANDOM DIRECT MEMORY ACCESS BY EXTERNAL DEVICES 11-12

PROGRAMMABLE /O PORT

121 OVERVIEW ... et aaes 12-1

12.2 PROGRAMMABLE REGISTERScciiviiiiiiiiiiiiiinninns 12-1
12.2.1 PIO Control Register (POCT, Address 800000D0) 12-1
12.2.2 PIO Input Register (PIN, Address 800000D4) 12-2
12.2.3 PIO Output Register (POUT, Address 800000D8) 12-2
12.2.4 PIO Output Enable Register (POEN, Address 800000DC) .. 12-3
12.2.5 Initialization ... e 12-3

12.30PERATING THE /O PORT ..ottt eiie e 12-3

PARALLEL PORT

18,1 OVERVIEW L. et 13-1

13.2 PROGRAMMABLE REGISTERSccoiviiiiiiiiiiinnen. 13-1

13.2.1 Parallel Port Control Register (PPCT, Address 800000C0) .. 13-1
13.2.2 Parallel Port Status Register (PPST, Address 800000C8) ... 13-3
13.2.3 Parallel Port Data Register (PPDT, Address 800000C4) 13-4

13.2.4 Initializationccoiiiiiiiiiii e e 13-4
13.3 PARALLEL PORT TRANSFERSot 13-5
13.3.1 TransfersfromtheHostcoooiiiiiiiiiniiaas, 13-5
13.32 TransferstotheHost........... ..., 13-5
SERIAL PORT
T4 10VERVIEW ... it e e 14-1
14.2 PROGRAMMABLE REGISTERSiiiiiiiiiiiiiiiininnnns, 14-1
14.2.1 Serial Port Control Register (SPCT, Address 80000080) 14-1
14.2.2 Serial Port Status Register (SPST, Address 80000084) 14-3
14.2.3 Serial Port Transmit Holding Register
(SPTH, Address 80000088)ccvivueiieiinennennnnn. 14-4
14.2.4 Serial Port Receive Buffer Register
(SPRB, Address 8000008C)ccvuiriiiuninnnnevnnn 14-4
14.2.5 Baud Rate Divisor Register (BAUD, Address 80000090) 14-5
14.2.6 Initialization e ieeeieerereeiearaeaeaaeas 14-5
VIDEO INTERFACE
15 A0VERVIEW ..ottt c it et iee e enns 15-1
15.2 PROGRAMMABLE REGISTERS aedeatiaesseaaereaaeas 15-1
15.2.1 Video Control Register (VCT, Address 800000EQ) 15-1
15.2.2 Top Margin Register (TOP, Address 800000E4) 15-3
15.2.3 Side Margin Register (SIDE, Address 800000E8) 15-3

Table of Contents ' ix

("

AMD

15.2.4 Video Data Holding Register (VDT, Address 800000EC) 15-3

15.2.5 Initialization ... 15-4
15.3 VIDEO INTERFACE OPERATIONciviiiiiiiiiiiiiiininnn. 15-4
15.3.1 Transmitting Data on the Video Interface 15-5
15.3.2 Receiving Data on the Video Interface 15-6
Chapter 16 INTERRUPTS AND TRAPS
16.1 OVERVIEW ... i i ittt i 16-1
16.2INTERRUPTS AND TRAPSt iiiiiiiiiiiiiiiiienniaens 16-1
16.2.1 Current Processor Status Register (CPS, Register2) 16-1
16.2.2 INEITUPES «ovi ittt ieiiiiareeaanann 16-3
16.2.3 TIPS tivvttreerersrerenannnnsansosesnscnsesssseenann 16-4
16.2.4 ExternalInterrupts and Trapsccovvvevneineennen. 16-4
16.25 WaitModeot e 16-4
16.3VECTORAREA ... ittt iieiiiiiiiiiennans e 16-5
16.3.1 Vector Area Base Address Register (VAB, Register0) 16-5
16.3.2 Vector NUmberso.ovviniiiiiiiiiniiiiiniiiinnnnne. 16-5
16.4 INTERRUPT AND TRAP HANDLINGccciviiiiiiinnnnnn. 16-6
16.4.1 Old Processor Status Register (OPS, Register 1) 16-6
16.4.2 Program CounterStackcciiiiiiiiiiiiininns 16-6
16.4.3 Takingan InterruptorTrapc.covviiiiiiiiiinnn.. 16-10
16.4.4 Returning from an Interruptor Trapcoovvinnntn. 16-11
16.4.5 Lightweight Interrupt Processingc.ooviiaat, 16-12
16.4.6 Simulation of Interruptsand Trapscceveeiiinnnns 16-13
16 5WARNTRAP .. i ittt 16-13
16.5.1 WARNINPUE .. .oviniiiiiiiii ittt ittt iei i 16-14
16.6 SEQUENCING OF INTERRUPTS AND TRAPS 16-14
16.7 EXCEPTION REPORTING AND RESTARTING 16-16
16.7.1 Instruction Exceptionsc.cveiiiiiiiiiinnnadinn 16-16
16.7.2 Restarting Mapped DRAM Accessesoevvinnnns 16-17
16.7.3 IntegerExceptionsot it 16-19
16.7.4 Floating-Point Exceptionsccoeviviiiinenn, 16-20
16.7.5 Correcting Out-of-Range Results 16-20
16.7.6 Exceptions During Interrupt and Trap Handling 16-21
16.8TIMER FACILITY ..ottt e s 16-21
16.8.1 Timer Facility Operationccocviiiiiieiinne, 16-21
16.8.2 Timer Facility Initializationcooiiiis, 16-21
16.8.3 Handling Timer Interrupts i, 16-22
16.8.4 Timer FacilityUsesccoviriiiiiiiiiiiiinnninnns 16-22
16.8.5 Timer Counter Register (TMC, Register8) 16-22
16.8.6 Timer Reload Register (TMR, Register9) 16-23
16.9 INTERNAL INTERRUPT CONTROLLERcvvinannnt. 16-23
16.9.1 Interrupt Control Register (ICT, Address 80000028) 16-23
16.9.2 Interrupt Controller Initializationcooeuuat, 16-25
16.9.3 Servicing Internal Interrupts ..., 16-25
Chapter 17 DEBUGGING AND TESTING
17 A0VERVIEW ..ottt ettt eiiae e e aaeaas 17-1
17.2TRACE FACILITY .o i ettt et taieeeas 171
17.3INSTRUCTIONBREAKPOINTScciiiiiiiiiiiiiiiiiienenn 17-2
17.4 PROCESSOR STATUS OUTPUTSooiiiiiiiiiiiiiienens 17-2
17.5CONTROL FIELDINSCANPATHoitiiiiiiiiiiiinn 17-3
X Table of Contents

Chapter 18

Appendix A

Appendix B
Appendix C

INDEX

17.6 TESTACCESS PORT ...ttt ieeiiniees 17-4
17.6.1 Boundary-ScanCellsciiiiiiiiiiiiiiat, 17-4
17.6.2 Instruction Register and Implemented Instructions 17-6
17.6.3 Order of Scan Cells in Boundary-ScanPath 17-8

17.7 IMPLEMENTING A HARDWARE-DEVELOPMENT SYSTEM 17-11
1771 HaltMode ... i i iiiieiiiiiiinaes 17-11
1772 StepMode ..o viviii ittt i 17-12
17.7.3 Load Test InstructionModecoiiiaittt. 17-13
17.7.4 Accessing Internal State Via Boundary Scan 17-14
17.7.5 HALT Instructions as Breakpoints e 17-16
17.7.6 Forcing Outputs to High Impedance 17-17

17.8 EMULATING THE Am29205 MICROCONTROLLER 17-17

INSTRUCTION SET

18.1 INSTRUCTION-DESCRIPTION NOMENCLATURE 18-1
18.1.1 Operand Notation and Symbolsoeieieatn 18-1
18.1.2 Operator Symbolsol 18-2
18.1.3 Control-Flow Terminologycoiiiiiiiniiiinninnnnes 18-3
18.1.4 Assembler SyntaXccvvniiiiiiiiiiiiiiiiiiia 18-3

18.2 INSTRUCTION FORMATS . . .+t eeeeee e ereaaaeeeeeeeennnnns 18-4

18.3INSTRUCTIONDESCRIPTIONt ieeaeeas 18-5

SPECIAL SETTINGS FOR THE

Am29200 AND Am29205 MICROCONTROLLERS A-1

PROCESSOR REGISTER SUMMARY B-1

PERIPHERAL REGISTER SUMMARY C-1

I-1

Table of Contents xi

z' AMD

LIST OF FIGURES
Figure 1-1
Figure 1-2
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2-12
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6

- Figure 4-7

Figure 6-1
Figure 6-2
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 9-7
Figure 9-8
Figure 9-9
Figure 9-10
Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5

Am29200 Microcontroller Block Diagramc.covvvennen 1-3
Am29205 Microcontroller Block Diagramcccevvviiiinnnn.. 1-4
General-Purpose Register Organizationccoeiveeennnnnn. 2-9
Special-Purpose Registerscoviiiiiiiiiiiieiiiiinnnnnn, 2-12
Indirect Pointer C Registerccciiiiiiiiiiniiinnennnnans, 2-13
Indirect Pointer ARegiSterovviviiiiiii ittt iin e ieiiienane 2-13
Indirect Pointer BRegisterovviiiiiiiiiiiiiiiiiiiieienneenn 2-14
Floating-Point Environment Register ...t 2-14
Integer Environment Register ..., 2-15
ALU Status Registerovvviii i i 2-16
Floating-Point Statusccvviiiiiiinrererieerenrennenaannnens 2-18
[o 1= 111] A 2-20
Configuration Registercoviiiiiiiiiiiiiiiiiiiiiiiiiiianess 2-26
Current Processor Status Register In ResetMode 2-27
Character Formatcoiiiii it iiiiiiii i iiiennees 3-1
Half-Word Format ...ttt isisnaeannass 3-2
Byte Pointer Registercoviiiiiiiiiiiiiiiiiii e 3-3
Funnel Shift CountRegisterccviiiiiiiiiiiiiiiiirananns 3-3
Single-Precision Floating-PointFormatccceen... 3-6
Double-Precision Floating-PointFormatccocovavenn. 3-6
Load/Store Instruction Formatcooiiiiiiiiiat. 3-8
Load/Store Count Remaining Registerccoiiiinaa... 3-11
Byte and Half-Word Addressing (Big Endian) 3-12
Run-Time Stack Examplecooiiiiiiiiiiiiiiiiiiiiiienennes 4-2
‘Activation Record in the Register Stackcoooiiiiiiiian 4-3
Relationship of Stack Cache and Register Stack 4-4
Stack Overflowoueiiiiiii i e 4-6
StackUnderflowciiiiiiiiiiiiiiiiiiiiiiiiiii i 4-7
Definition of sizeand rsizeValuesccociiiiiiiiiiaa, 4-9
Trace-Back Tags .. ccvviiiieriiiiiiiiiiiiieiiniicietesanaanns 4-15
Register Bank Organizationccvieiiieineerinerennnnans 6-2
Register Bank Protect Registercccviiiiiiiiiniin.n. 6-3
ROM Control Registerccccirrieriiiriinriiieareransnnnaneens 8-1
ROM Configuration Register ..ot 8-3
Simple ROM ReadCyclecovviiiivninnnnnn, [8-5
Simple ROM Read Cycle—ZeroWait Statescocounnn.. 8-6
Simple Write to ROM Bank oiiiiiiiiiiiiiiiiiiienannaneas 8-7
Byte Write to ROM Bank (using CAS3—-CASO as byte strobes) 8-9
BurstMode ROMReadcoiiiiiiiiiiiii it iianens 8-10
Extendinga ROM Read Cycle With WAITcciivienneinanens 8-11
Extending a ROM Write Cycle With WAITcoiiiivnnivnnnes 8-11
DRAM Control Registercoiiiiniiiiiiiiiiiiiiiiiianenn. 9-1
DRAM Configuration Registercooiiiiiiiiiiiiiiniiininnann. 9-3
DRAM Mapping Register 0oiiiiiiiiiiinniiniiiienneenanss 9-3
Location of Bytes and Half-Wordson a 16-BitBus 9-8
DRAMRead CyCle ...o.uiniiiiiii ittt i it 9-9
DRAMWrite CyCle ...viiiiiiiiiiiiiiiieierreeeiianreernnnnnsnas 9-9
DRAM Page-Mode Read CycClecovviiiiiiiiniiiinennnn 9-10
DRAM Page-Mode Write Cyclecooviiiiiniiiiiiiiains, 9-11
DRAMRefreshCycCleoiviiiiiii it ii e eaaes 9-11
VDRAM Transfer Cyclec.iviiinieinniinieineecnacinnennnns 9-12
PIA Control Register 0 (PICTO, Address 80000020) 10-1
PIA Control Register 1 (PICT1, Address 80000024)c.... 101
PIAREAd CyClE .. vv i i teiiiiiici i et e enineeeenerasssannsannas 10-3
PIAWIte CyCle ..ot ettt ees 10-4
Extendinga PIARead Cycle Wth WAITccoiviiiiiiiininnen. 10-5

xii

Table of Contents

Figure 10-6
Figure 11-1
Figure 11-2
Figure 11-3
Figure 11-4
Figure 11-5
Figure 11-6
Figure 11-7
Figure 11-8
Figure 11-9
Figure 11-10
Figure 11-11
Figure 12-1
Figure 12-2
Figure 12-3
Figure 12-4
Figure 13-1
Figure 13-2
Figure 13-3
Figure 13-4
Figure 13-5
Figure 13-6
Figure 13-7
Figure 13-8
Figure 13-9
Figure 13-10
Figure 13-11
Figure 13-12
Figure 14-1
Figure 14-2
Figure 14-3
Figure 14-4
Figure 14-5
Figure 15-1
Figure 15-2
Figure 15-3
Figure 15-4
Figure 15-5
Figure 16-1
Figure 16-2
Figure 16-3
Figure 16-4
Figure 16-5
Figure 16-6
Figure 16-7
Figure 16-8
Figure 16-9
Figure 16-10
Figure 16-11
Figure 16-12
Figure 16-13
Figure 16-14
Figure 16-15
Figure 17-1
Figure 17-2
Figure 17-3
Figure 17-4

Extending a PIA Write Cycle with WAITcccovvviiiiiiiann... 10-5
DMAO Control Registercovuviiiiiiiiiieiriinerrenenrnneanns 11-2
DMAO Address Registeroiuiiiiieiiiiiiiiiiiiiiinnens 11-4
DMAO Address Tail Registercovveeriiiieiiiiiiiiiinnnnanns 11-4
DMAO Count REgISterviuiriieiinnneenneneiastenennnrannanan 11-5
DMAO Count Tail Registerccviiiiiiiiiii it iiiicienens 11-5
DMAT1 Control Registerc.ooiuiiiiiiiiiiiiiiiiiiiieaaen 11-5
External DMAPIARead Cyclecciiiiiiiiiinieinnnnnnnnnnn 11-10
External DMAPIAWriteCyclecooviiiiiiiiiiiiiiiin e 1-11
External Random DRAM Read Cycleccccvviniiiinnninnnn 11-13
External Random DRAM Write Cyclecovvivviinnnnnnn.. 11-14
External Random ROM Read Cyclec.ooiiiiiiiinnennnnn 11-15
PIO Control Registercoiviiiiirieiiiiiiiiiiainnennnnnes 12-1
PIOInput Registeroiuiiiiniii i e 12-2
PIOOutput Registervnuiiniiiiiii it 12-2
PIO Output Enable Registerccooiiiiiiiiiiiiiiiennennnnnn. 12-3
Parallel Port Control Registerc.covviiiniiiiiiiiiiiiceinens 13-1
Parallel Port Status Register ..., 13-3
Parallel Port Data Register N 13-4
State Transitions for Transfers from the Host....... e 13-6
Transfer from the Host on the Parallel Port (BRS=0, ARB=0)......... 13-7
Transfer from the Host on the Parallel Port (BRS=0, ARB=1})......... 13-7
Transfer from the Host on the Parallel Port (BRS=1, ARB=0) 13-8
Transfer from the Host on the Parallel Port (BRS=1, ARB=1) 13-8
Parallel Port Buffer Read Cycleccciiiiiiieeiinnnennnnnnn 13-9
State Transitions for Transferstothe Hostl 13-9
Transfer to the Host on the Parallel Port 13-10
Parallel Port BufferWriteCyclec.cciviiiiiiiiannaen 13-10
Serial Port Control Registerccviniiiiiiiiiiii et iiiereneans 14-1
Serial Port Status Registervieeiirinenenennennenenns 14-3
Serial Port Transmit Holding Registercociiiiiiiiannan. 14-4
Serial Port Receive Buffer Registerc.coviiiiiiaianaat, 14-4
Baud Rate Divisor Registeroointioiiiiiiiiiiiiiaannnnnn. 14-5
Video Control Registerooiiimiiii e aaans 15-1
TopMargin Registercovviiiieiir i iiiiiieniienareannennns 15-3
Side Margin Registerc..ciiiiiiiiniiiiii it iiaeaa 15-3
Video Data Holding Registercovvieiiiriniiiieneneannnn.. 15-4
VCLK, LSYNC, and VDAT Relationshipscccveiiiiarnannns 15-6
Current Processor Status Registercooiiiiiiiiiiiia., 16-1
Vector Table Entry .. .covoetiiiiiiiii it ieiiiiiieetnencecnanannns 16-5
Vector Area Base Address Registercoeviiiiviiaiiian, 16-5
Program Counter Unitccoiiiiiiiiiiiiiiriiniiinneaanan, 16-8
Program Counter ORegisterccvveiiiininiiieeneanennnn 16-9
Program Counter 1 Registercoviiiiiiiiiiiiiniinanananns 16-9
Program Counter 2 Registerccooiitiiiiiiiieiaaann. 16-10
Current Processor Status After an InterruptorTrap 16-11
Current Processor Status Before Interrupt Return 16-11
Channel Address Register ..ot iiennn, 16-18
ChannelData Registercoiiiiiiiiiiniiiiiin ... 16-18
Channel Control Registercoiiiiiiiiiiineninnieiinennn. 16-19
Timer Counter Registervovvieiiiiiieiierinrenennnnnnn 16-22
Timer Reload Register ..ot iiiiaens 16-23
Interrupt Control Registerc.ociiiiiiioiiiiiiinna... 16-24
Valid Transitions for CNTLFieldc.coviiiiiiiiiian., 17-3
Input Boundary-ScanCellottt 17-4
Output Boundary-ScanCellcoiiiiiiiiiii et iiieianannn 17-5
Processor Status While in Load Test Instruction Mode 17-13

Table of Contents xifi

n AMD

Figure 17-5

Figure 18-1
Figure 18-2
Figure 18-3
Figure B-1
Figure B-2
Figure B-3
Figure C-1

LIST OF TABLES

Table 1-1
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 2-10
Table 7-1
Table 7-2
Table 9-1
Table 9-2
Table 9-3
Table 9-4
Table 16-1
Table 16-2
Table 17-1
Table 17-2
Table 17-3
Table 17-4
Table B-1
Table C-1

Using an Am29200 Microcontroller to Emulate

an Am29205 Microcontrollerc..oiiiiiiiiiiiiiiiiiinn.. 17-18
Instruction Formatcciiiiiiii it it e 18-4
Frequently Occurring Instruction Field Uses 18-6
Instruction-Description Formatooiiiiirieiiiiiiininans 18-7
General-Purpose Register Organizationccoiievieieians B-1
Register Bank Organizationccciiiiiiiiiiiiiiiiiians B-2
Special-Purpose Registerscocveiiiiiiiiiininiiiiinienn B-3
On-Chip Peripheral Registerscoiiiiiiiiiiiiiinirenannnns C-1
Am29200 and Am29205 Microcontrollers: Feature Summary 1-2
Integer Arithmetic Instructionsttt 2-2
Compare INStructionscviiviiii it iiiiini it iariiienss 2-3
Logical INnStructionsccoiiiiiiiiii ittt ittt e 2-4
Shift INSIrUCHIONS ... it et c e e e e rnaeaaerans .. 2-4
Data Movement Instructionsccooiiiiiiiiiiiiiiiiiiiiiia, 2-5
Constant Instructionscooiiiiiiiiiii i 2-5
Floating-Point Instructionscocout. e ..26
Branchinstructionsot 2-7
Miscellaneous Instructionsooviiiiiiieiiiiiiinieiienan 2-8
Reserved Instructionst 2-8
Internal Peripheral Address Rangesc.coiieviiiiiennnnnne. 7-8
Internal Peripheral Address Assignmentscooeivevvininann 7-10
Address Multiplexing for 16-bit DRAM Memorycoeuvnn. 9-5
Address Multiplexing for 32-bit DRAM Memoryoouehs. 9-6
DRAM Address Multiplexing (by-4 DRAMS)cvviiiiineinnnenns 9-6
DRAM Address Connections to Microcontroller (by-4 DRAMS) 9-7
Vector NUumber ASSigNmMENtS . .. v.vevueerneirneneareenenrnennsnns 16-7
Interrupt and Trap Priority Table ..o iiiaiia, 16-15
Instruction ScanPath ..o i 17-8
Main Data Scan Pathc.coiiniiiiriiiitiiiieeiiannnaranaens 17-9
ICTEST1ScanPathc.iiiiiiiiiiii e ciieens 17-10
ICTEST2ScanPathc.viiiiiiiiiiiiiii it iiiiiaens 17-11
Processor Register Field Summarycoiiiiiiiiiiiniin., B-7
Peripheral Register Field Summaryccceiviiiiiiianae.. C-6

Xiv

Table of Contents

|
&\

'INTRODUCTION AND OVERVIE

Am29200 AND Am29205 RISC MICROCONTROLLERS

The Am29200 and Am29205 microcontrollers are part of a growing family of 32-bit
reduced-instruction set (RISC) processors employing submicron circuits to increase the
degree of system integration, yielding very low system cost. Dense circuitry and a large
number of on-chip peripherals minimize the number of components required to imple-

- ment embedded systems, while providing performance superior to that of complex-
instruction-set (CISC) microprocessors. Systems implemented with the Am29200 or
Am29205 microcontroller can achieve higher performance at lower cost than existing
systems. The Am29200 and Am29205 microcontrollers are binary compatible with all
other members of the 29K Family, further broadening the price/performance range of the
29K Family.

The Am29200 and Am29205 microcontrollers were designed expressly to meet the
requirements of embedded applications such as laser printers, graphics processing,
application program interface (API) accelerators, X terminals and servers, and scanners.
‘Such applications make the following demands on system design:

m Performance at low cost: A processor must interface with memory and peripherals
with a minimum number of external components.

® Design flexibility: One basic design must be extensible to an entire product line.

® Reduced time-to-market: A complete set of development, debug, and benchmarking
tools is critical for reducing product development time.

®m A rational, easy upgrade path: The processor family must provide bus- and software-
compatibility so processor upgrades are transparent to both hardware and software.

The Am29200 and Am29205 microcontrollers are optimized for any embedded applica-
tion requiring better-than-CISC performance at minimal system cost. The electronic
components for many systems, such as personal laser printers, amount to little more
than the Am29200 or Am29205 microcontroller, ROM, DRAM, and electrical buffering.

DESIGN PHILOSOPHY

The 29K Family of processors results from a design philosophy that considers processor
performance in light of the processor’s hardware and software environment. The key to
maximizing performance is understanding that the processor is part of an integrated
system, and is itself a collection of components that must be properly integrated.

Processor features must be considered not only on their own merits, but also in relation
to other components of the system. A particular feature that, while considered alone may
increase one aspect of processor performance, may actually decrease the performance
of the total system, because of the burden it places elsewhere in the system.:

Introduction and Overview XV

a AMD

As an illustration, consider the factors involved in the execution time of any processor
task:

Task Time = (Instructions / Task) * (Cycles / Instruction) * (Time / Cycle)

To minimize the time taken, it is necessary to minimize the above product. This is not
equivalent to minimizing all the terms that contribute to the product; in fact, this is
generally not possible due to the interaction of the terms.

As an example of the interaction of the previous terms, consider the number of instruc-
tions required for a task. An attempt to minimize this number, a more or less traditional
approach to processor architecture design, increases the average number of cycles
required for the execution of an instruction, because of the increased number of
operations performed by each instruction. In addition, cycle time is increased because of
instruction-decode time.

A second example of the interaction in the previous equation appears in an attempt to
reduce the cycle time through the pipelining of operations. In theory, the cycle time can
be made arbitrarily small by the definition of an arbitrarily large number of pipeline
stages. In practice, at least in the case of general-purpose processors, pipelining rarely
yields much of its potential benefit. This is due to situations where the pipeline cannot be
kept fully occupied, such as when memory references and branches occur. In these
situations, additional pipeline stages increase the number of cycles required for an
operation, and thus affect the Cycles / Instruction term.

Optimum Performance

Each of the terms in the previous equation has some minimum bound for a given
implementation technology and task. In general, this minimum bound cannot be
approached without an offsetting increase in the other terms, making the overall product
less-than-optimum. The question then arises, what combination of terms will yield an
optimum product? There are several things to note when answering this question.

The first observation is that the number of operations underlying a given task is more or
less fixed. Any single processor ultimately limits the time required for a task because it
has a single execution unit and a single instruction stream. The operations that must be
performed are reflected in the Instructions / Task and Cycles / Instruction terms. These
operations may be performed by relatively few instructions, where each instruction takes
multiple cycles to execute, or by a larger number of instructions, where each takes a
single cycle to execute. In the first case, the instructions are complex; in the second,
they are simple.

The point is that the trade-off between simple and complex instructions is not one-to-
one. For example, reducing the number of cycles per instruction by a factor of three
does not increase the number of instructions per task by the same factor. There are two
reasons for this. The first is that even when an instruction set supports complex opera-
tions, a large proportion of the instructions that are executed perform operations that
could be performed as well by simple instructions. The second is that simple instructions
expose more of the internal processor operation to an optimizing compiler. This allows
the compiler to tailor the organization and sequence of operations to the task at hand,
thereby reducing the total number of instructions executed.

xvi

Introduction and Overview

AMD :l

Performance Leverage

Another important observation is that there is a tremendous amount of leverage in the
Time / Cycle and Cycles / Instruction terms. As they are made smaller, they have a
proportionally greater effect on performance.

For example, a reduction of 10 ns in the cycle time of a processor operating with a
200-ns cycle time yields an increase of 5% in the processor’s performance. The same
improvement in a processor operating with a 50-ns cycle time yields a 20% increase in
performance.

Correspondingly, a reduction of 0.2 in the number of cycles per instruction in a processor
averaging 5 cycles per instruction yields a 4% increase in performance. However, the
same reduction yields a 12.5% performance increase in a processor that averages 1.6
cycles per instruction.

Conclusion

It is possible, and desirable, to increase the number of instructions executed for a given
task, and more than make up for the performance impact of this increase by reductions
in the cycle time and in the number of cycles per instruction. For example, if both the
cycle time and the number of cycles per instruction are reduced by a factor of three,
while the number of instructions for a given task is allowed to grow by 50%, the resulting
task time is reduced by a factor of six.

The Am29200 and Am29205 microcontrollers were designed with the above effects in
mind. Maximum performance is obtained by the optimization of the product of the
number of instructions per task, the number of cycles per instruction, and the cycle time,
not by minimizing one factor at the expense of the others. This is accomplished by
careful definition of all processor components. In particular:

® The Instruction / Task term is optimized by the definition of simple instructions. The
processor provides an efficient instruction set and a large number of general-pur-
pose registers to an optimizing, high-level language compiler. Most reductions in
this term are accomplished by the compiler. The number of instructions for a given
task may be greater than the number of instructions for processors with complex
instruction sets. However, this increase is more than offset by other improvements in
processor performance.

B8 The Cycles / Instruction term is optimized by the data-flow structure and perfor-
mance-enhancing features of the processor. A large amount of processor hardware is
dedicated to achieving an average instruction-execution rate that is close to single-
cycle execution.

The Time / Cycle term is optimized by the implementation technology, the processor
system interface, and judicious use of pipelining. The simplicity of the instruction set
and processor features helps minimize the cycle time.

Introduction and Overview xvii

n AMD‘

PURPOSE OF THIS MANUAL

This manual describes the technical features, programming interface, on-chip peripher-
als, and complete instruction set of the Am29200 and Am29205 microcontrollers.

INTENDED AUDIENCE

This manual is intended for system hardware and software architects and system
engineers who are designing or are considering designing systems based on the
Am29200 and Am29205 microcontrollers.

USER’S MANUAL OVERVIEW

“This manual contains information on the Am29200 and Am29205 microcontrollers and is

essential for system hardware and software architects and design engineers. Additional
information is available in the form of data sheets, application notes, and other docu-
mentation provided with software products and hardware-development tools.

The information in this manual is organized into eighteen chapters:

m Chapter 1 introduces the features and performance aspects of the Am29200 and
Am29205 microcontrollers.

m Chapter 2 describes the programmer’s model of the Am29200 and Am29205
microcontrollers, including the instruction set and register model.

m Chapter 3 expands on the programmer’s model, discussing different data formats
and data handling. Instructions that manipulate external data are also discussed.

m Chapter 4 details the management of the run-time stack and defines the conven-
tions that apply to procedure linkage and register usage.

m Chapter 5 describes the internal pipelining and the effects of the pipeline on program
behavior.

m Chapter 6 describes the system-protection features provided by the Am29200 and
Am29205 microcontrollers.

m Chapter 7 provides an overview of the processor’s system interfaces and the
system components that are integrated on-chip.

m Chapter 8 describes the ROM interface.
m Chapter 9 describes the DRAM interface.

Chapter 10 describes the peripheral interface adapter, which is used for glueless
attachment of a number of peripheral components.

Chapter 11 describes the DMA controller.

Chapter 12 describes the programmable /O port.
Chapter 13 describes the parallel port.

Chapter 14 describes the serial port.

Chapter 15 describes the video interface.

Chapter 16 provides a description of the interrupt and trap mechanism and the han-
dling of interrupts and traps, including the operation of the on-chip interrupt controller.

Chapter 17 describes the software and hardware facilities for debugging and testing.

m Chapter 18 provides a detailed description of the instruction set.

xviii

Introduction and Overview

AMD u

For those readers desiring only a brief overview of the Am29200 and Am29205
microcontrollers, Chapter 1 identifies the outstanding features of each device. This
chapter addresses the basic software and hardware concerns.

Chapters 2, 3, and 5 are recommended reading for both hardware and software
developers.

For software architects and system programmers interested mainly in software-related
issues, Chapters 4, 6, and 16 provide the necessary information. Chapters 17 and 18
also provide related information.

For hardware architects and systems hardware designers interested mainly in hard-
ware-related issues, Chapters 7 through 15 and Chapter 17 provide most of the
required information. Chapters 5 and 18 also provide related information.

For users already familiar with other 29K Family processors, Chapters 7-15 describe the
on-chip peripherals and system functions unique to the Am29200 and Am29205
microcontrollers.

AMD DOCUMENTATION

29K Family
ORDER NO. DOCUMENT

10620 Am29000° and Am29005™ Microprocessors User’s Manual
and Data Sheet
Describes the Am29000 and Am29005 microprocessors’ technical
features, programming interface, and complete instruction set.

15723 Am29030™ and Am29035™ Microprocessors User’s Manual
and Data Sheet '
Describes the Am29030 and Am29035 microprocessors’ technical
features, programming interface, and complete instruction set.

14779 Am29050™ Microprocessor User’s Manual
Describes the Am239050 microprocessor’s technical features,
programming interface, and complete instruction set.

16361 Am29200 and Am29205 RISC Microcontrollers Data Sheet
Describes the Am29200 and Am29205 microcontrollers’ technical
features, including electrical and mechanical specifications.

17741 Am29240™, Am29245™, and Am29243™ RISC Microcontrollers
User’s Manual and Data Sheet
Describes the Am29240, Am29245, and Am29243 microcontrollers’
technical features, programming interface, and complete instruction set.

17882 Am29240, Am29245, and Am29243 RISC Microcontrollers Brochure
Describes features, reference designs, and tool support for this series of
high-performance RISC microcontrollers.

18002 29K Family Comparison Chart
Compares the features of all 29K microprocessors and microcontrollers in
a single chart organized for easy reference.

11426 Fusion29Ks™ Catalog
: Provides information on more than 200 tools that speed a 29K Family
embedded product to market. Includes products from over 100 expert .
suppliers of embedded development solutions. Design solution chapters

Introduction and Overview Xix

n AMD

12990

15176

10344

16693

include: laser printer and OCR solutions, graphics solutions, and
networking solutions.

Fusion Newsletter

Contains quarterly updates on developments in the Am186 Family, 29K
Family, and E series of microprocessors and features new Fusion Partner
solutions.

29K Laser Printer Solutions Brochure

Reviews how the 29K Family of microprocessors fits into the laser printer
marketplace. Includes a description of AMD’s PCL and PostScript®
Laser29K™ Low-Cost Raster Image Processor demonstration boards.

29K Family Design-Made-Easy Solutions Brochure
Presents an overview of the entire 29K Family of microprocessors and -
microcontrollers. Features development support products.

RISC Design-Made-Easy™ Applications Guide

Presents topics on the 29K Family, including interfaces to integer
multipliers, context switching, TLB handlers, benchmarking applications,
byte-writable memories for three-bus microprocessors, host interface
(HIF) version 2.0 specification, using the Am29000 microprocessor as a
high-performance DMA controller, and writing interrupt handlers.

Development Tools

17704

10287
10626
10957

Am29200 and Am29205 RISC Microcontroller Brochure

Reviews how the SA-29200 and SA-29205 demonstration boards and
the SA-29200 expansion board use the Am29200 or Am29205
microcontroller to meet requirements for low-cost embedded
applications. Includes additional support product and ordering
information.

MiniMON29K™ Portable Debug Monitor Data Sheet
XRAY29K™ Source-Level Debugger Data Sheet
High C® 29K Development Toolkit Data Sheet

To order literature, contact your local AMD sales office or call: 800-2929-AMD, ext. 3 (in
the U.S.), or 800-531-5202, ext. 55651 (in Canada), or direct dial from any location:

512-602-5651.

RELATED PUBLICATIONS
The IEEE Standard 1149.1-1990 (JTAG) may be ordered from

IEEE Computer Society Press
Customer Service Center
10662 Los Vaqueros Circle
P.O. Box 3014 ;

Los Alamitos, CA 90720-1264
USA

IEEE Catalog No. SH13144
1-800-CS-BOOKS
714-821-4010 (fax)

XX

Introduction and Overview

n

FEATURES AND PERFORMANCE

1.1

This chapter provides a general evaluation of the Am29200 and Am29205 microcontrollers.
A detailed technical description of the Am29200 and Am29205 microcontrollers is
contained in subsequent chapters. This chapter informally describes the features of the
two microcontrollers, concentrating on features which distinguish them from other
available processors and describing how these features enhance system performance
and cost-effectiveness. This chapter consists of the following sections:

m Distinctive Characteristics
m Key Features and Benefits
@ Performance Overview
m Debugging and Testing

DISTINCTIVE CHARACTERISTICS
The Am29200 and Am29205 RISC microcontrollers are highly integrated, 32-bit

"~ embedded processors implemented in complementary metal-oxide semiconductor

(CMOS) technology. Through submicron technology, the Am29200 and Am29205
microcontrollers incorporate a complete set of system facilities commonly found in
printing, imaging, graphics, and other embedded applications. The distinctive features of
each microcontroller are compared in Table 1-1. ‘

Based on the 29K architecture, the Am29200 and Am29205 microcontrollers are part of
a growing family of RISC microcontrollers, which also includes the high-performance
Am29240, Am29245, and Am29243 RISC microcontrollers.

Features and Performance 141

l"l AMD

Table 1-1 Am29200 and Am29205 Microcontrollers: Feature Summary
FEATURE Am29200 Microcontroller Am29205 Microcontroller
Data Bus Width
Internal 32 bits 32 bits
External 32 bits 16 bits
Address Bus Width 24 bits 22 bits
ROM Interface
Banks 4 3
Width 8, 16, 32 bits 8, 16 bits
ROM Size (Max/Bank) 16 Mbytes 4 Mbytes
- Boot-up ROM Width 8, 16, 32 bits 16 bits
Burst-mode access Supported Not Supported
DRAM Interface
Banks 4 4
Width 16, 32 bits 16 bits only
Size: 32-bit mode 16 Mbytes/bank —
Size: 16-bit mode 8 Mbytes/bank 8 Mbytes/bank
Video DRAM Supported Not Supported
On-Chip DMA)
Width (ext. peripherals) 8, 16, 32 bits 8, 16 bits
Externally Controlled 2 Channels 1 Channel
External Master Access Yes No
External Terminate Signal Yes No
Peripheral Interface Adapter ~
(PIA)
PIA Ports 6 2
Data Width 8, 16, 32 bits 8, 16 bits
Programmable /O Port (P10)
Signals 16 8
Serial Ports
Ports 1 Port 1 Port
DSR/DTR Supported Uses PIO signals
Interrupt Controller
External Interrupt Pins 4 2
External Trap and Warn Pins 3 0
Parallel Port Controller
32-bit Transfer Yes No
JTAG Debug Support Yes No
1.1.1 Am29200 Microcontroller

The Am29200 microcontroller meets the common requirements of embedded applica-

tions such as industrial control, graphics processing, imaging applications, laser printers,
and general purpose applications requiring high-performance in a compact design.
Figure 1-1 shows a block diagram of the Am29200 microcontroller. The microcontroller
includes the following features:

Completely integrated system for embedded applications
Full 32-bit architecture '
16- and 20-MHz operating frequencies

Price/performance flexibility. Support for several low-cost memory configurations
allows performance points of 8, 6, 5, and 3 million instructions per second sustained
(at 16 MHz).

m 4-Gbyte virtual address space, 304-Mbyte physical address space implemented

Features and Performance

AMD “71

2 A M B BE E R R B

192 general-purpose registers; three-address instruction architecture

Glueless system interfaces with on-chip wait state control

Four banks of ROM, each separately programmable for 8-, 16-, or 32-bit interface
Four banks of DRAM, each separately programmable for 16- or 32-bit interface
Burst-mode and page-mode access support

DRAM mapping on-chip

Advanced debugging support

IEEE Std. 1149.1-1990 (JTAG) compliant Standard Test Access Port and
Boundary Scan Architecture

Two-channel DMA controller with queuing on one channel

6-port peripheral interface adapter

16-line programmable 1/O port

Bidirectional bit serializer/deserializer (video interface)

Serial port (UART)

Bidirectional parallel port controller

Interrupt controller

On-chip timer

Binary compatibility with all 29K Family microcontrollers and microprocessors

Figure 1-1 Am29200 Microcontroller Block Diagram

A 'y
Parallel Port / Clock/ / 2 DREQ
Control/Statusf 6 STAT f4 5 Control A5 f 2DAack
Lines MEMCLK ‘] JTAG Lines v GREQ/GACK/TDMA
of 4 Parallel Port 2-Channel DMA 18f ef
Controller Controller
/10
. Programmable
Serial Port /O Port
P.rinter/Scanner
Video Serializerr | Am29000 CPU Interrupt | Nterrupts, Traps
i Deserializer Controller
ROM
Chip Selects RAS/CAS
ROM DRAM Controller
Controller
4y 4
/] PIA Timer/Counter /]
(Controller 4

" ROM
Space
Memory

—_— A =l

N\
AVAVA

/ V
6 24 }32

PIA Address Instruction/Data
Chip Selects Bus Bus

v N\

. 1
i Peripherals J s

DRAM

Features and Performance i 1-3

:' AMD

1.1.2 Am29205 Microcontroller

The Am29205 RISC microcontroller (see Figure 1-2) is a highly integrated, Iow-cost
derivative of the Am29200 microcontroller, with a 16-bit instruction bus, fewer peripheral
ports, and no JTAG interface. It includes the following features:

Completely integrated system for embedded applications

Full 16-bit external, 32-bit internal architecture

12- and 16-MHz operating frequencies

68-Mbyte address space

Two-channel DMA controller (one external)

Three separately programmable ROM banks with16-bit ROM interface

Fully functional 16-bit DRAM interface complete with address MUXing, Refresh, and
RAS/CAS generation

Two-port peripheral interface adapter

Eight-line programmable /O port

Bidirectional bit serializer/deserializer (video interface)
Serial port (UART)

Bidirectional parallel port controller

Interrupt controller

On-chip timer

Figure 1-2 Am29205 Microcontroller Block Diagram

A A
Parallel Port Clock/
Control/Status £ 6 Control / 3 24 DREQ
Linesl/ MEMCLK Lines : X /f DACK
4// 2 Parallel Port DMA 8 2//
Controller Controller
. /o
Serial Port Prosgr;g\:ble
\l;r;nter/Scanner s s
ideo - nterrup!
_ Serializer/ Interrupt "
ROM Deserializer Am29000 CPU Controller N
Chip Selects RAS/CAS
ROM DRAM Controller
Controller
9%) "y 4
/] PIA Timer/Counter /]
q Controller ; 4

VANVAN
NZNZ

ROM V. ve
2 2 Mlis
Space PIA Address Instruction/Data DRAM
Memory Chip Selects Bus Bus
v N2
1
iy Peripherals J in

14 Features and Performance

AMD u

1.2
1-2-1

1.2.1.1

1.2.1.2

1.2.1.3

1.2.1.4

1.2.1.5

KEY FEATURES AND BENEFITS

Complete Set of Common System Peripherals

The Am29200 and Am29205 microcontrollers minimize system cost by incorporating a
complete set of system facilities commonly found in embedded applications, eliminating
the cost of additional components.

The on-chip functions include: a ROM controller, a DRAM controller, a peripheral
interface adapter, a DMA controller, a programmable I/O port, a parallel port, a serial
port, and an interrupt controller. A serializer/deserializer (video interface) is also included
for printer, scanner, and other imaging applications.

By providing a complete set of common system peripherals on-chip and glueless
interfacing to external memories and peripherals, these RISC microcontrollers let
product designers capitalize on the very low system cost made possible by the integra-
tion of processor and peripherals. Many simple systems can be built using only the
Am29200 or Am29205 microcontroller and external ROM and/or DRAM memory.

ROM Controller (Chapter 8)

The ROM controller supports four individual banks of ROM or other static memory in the
Am29200 microcontroller and three banks in the Am29205 microcontroller. Each ROM
bank has its own timing characteristics, and each bank can be a different size: either 8,
16, or 32 bits wide in the Am29200 microcontroller and 8 or 16 bits wide in the Am29205
microcontroller. The ROM banks can appear as a contiguous memory area of up to 64
Mbytes in size on the Am29200 microcontroller. The ROM controller also supports writes
to the ROM memory space for devices such as flash EPROMs and SRAMs.

DRAM Controller {Chapter 9)

The DRAM controller supports four separate banks of dynamic memory. On the
Am29200 microcontroller, each bank can be a different size: either 16 or 32 bits wide.
DRAM banks on the Am29205 microcontroller are 16 bits wide. The DRAM banks can
appear as a contiguous memory area of up to 64 Mbytes in size on the Am29200
microcontroller and 32 Mbytes on the Am29205 microcontroller. To support system
functions such as on-the-fly data compression and decompression, four 64-Kbyte
regions of the DRAM can be mapped into a 16-Mbyte virtual address space.

Peripheral Interface Adapter (PIA)> {Chapter 10)

The peripheral interface adapter allows for additional system features implemented by
external peripheral chips. The PIA permits glueless interfacing from the Am29200
microcontroller to as many as six external peripheral regions and from the Am29205
microcontroller to two external peripherals.

DMA Controller (Chapter 11)

The DMA controller in the Am29200 microcontroller provides two channels for transfer-
ring data between the DRAM and internal or external peripherals. One of the DMA
channels is double buffered to relax the constraints on the reload time. On the Am29205
microcontroller, internal 32-bit transfers are supported on two DMA channels; external
transfers are limited to 8-or 16-bit data accesses.on one DMA channel.

Interrupt Controller (Section 16.9)

The interrupt controller generates and reports the status of interrupts caused by on-chip
peripherals.

Features and Performance 1-5

u AMD

1.2.1.6

1.2.1.7

1.2.1.8

1.2.1.9

1 I2I2

1.2.3

I/O Port (Chapter 12)

The Am29200 microcontroller’s I/O port permits direct access to 16 individually program-
mable external input/output signals. Eight signals are available on the Am29205
microcontroller. These eight signals can be conflgured to cause interrupts on either
microcontroller.

Parallel Port {Chapter 13)

The parallel port implements a bidirectional IBM PC-compatible parallel interface to a
host processor.

Serial Port (Chapter 14)
The serial port implements a full-duplex UART.

Serializer/Deserializer (Chapter 15)

The bidirectional bit serializer/deserializer (video interface) permits direct connection to a
number of laser marking engines, video dlsplays or raster input devices such as
scanners.

Wide Range of Price/Performance Points

To reduce design costs and time-to-market, one basic system design can be used as the
foundation for an entire product line. From this design, numerous implementations of the
product at various levels of price and performance may be derived with minimum time,
effort, and cost.

The Am29200 and Am29205 microcontrollers provide this capability through program-
mable memory widths, burst-mode and page-mode access support, programmable wait
states, and hardware and 29K Family software compatibility. A system can be upgraded
without hardware and software redesign using various memory architectures.

The ROM controller on the Am29205 microcontroller accommodates memories that are
either 8 or 16 bits wide, while that of the Am29200 microcontroller supports either 8-,
16-, or 32-bit memories. The DRAM controller on the Am29205 microcontroller accom-
modates dynamic memories that are 16 bits wide; the Am29200 microcontroller supports
either 16- or 32-bit memories.

These unique features provide a flexible interface to low-cost memory as well as a
convenient, flexible upgrade path. For example, a system can start with a 16-bit memory
design and can subsequently improve performance by migrating to a 32-bit memory
design. One particular advantage is the ability to add memory in half-megabyte incre-
ments. This provides significant cost savings for applications that do not require larger
memory upgrades. -

The Am29200 microcontroller family allows users to address a wide range of
price/performance points, with higher performance and lower cost than existing designs
based on CISC microprocessors.

Glueless System Interfaces

The Am29200 and Am29205 microcontrollers also minimize system cost by providing a
glueless attachment to external ROMs, DRAMs, and other peripheral components.
Processor outputs have edge-rate control that allows them to drive a wide range of load
capacitances with low noise and ringing. This eliminates the cost of external logic and
buffering.

Features and Performance

AMDn

1.24

1.2.5

1.3-1

Bus- and Binary-Compatibility

Compatibitity within a processor family is critical for achieving a rational, easy upgrade
path. The Am29200 and Am29205 microcontrollers are members of a bus-compatible
family of RISC microcontrollers, which also includes the high-performance Am29240,
Am29245, and Am29243 microcontrollers. Future members of this family will improve in
price and performance and system capabilities without requiring that users redesign
their system hardware or software. Bus compatibility ensures a convenient upgrade path
for future systems.

The Am29200 microcontroller is binary compatible with the Am29240, Am29245, and
Am29243 microcontrollers, as well as the Am29000, Am29005, Am29030, Am29035,
and Am29050 microprocessors. The Am29200 microcontroller family provides a
migration path to low-cost, highly integrated systems for products based on other 29K
Family microprocessors, without requiring expensive rewrites of application software.

Complete Development and Support Environment

A complete development and support environment is vital for reducing a product’s
time-to-market. Advanced Micro Devices has created a standard development environ-
ment for the 29K Family of processors. In addition, the Fusion29K third-party support
organization provides the most comprehensive customer/partner program in the
embedded processor market.

Advanced Micro Devices offers a complete set of hardware and software tools for
design, integration, debugging, and benchmarking. These tools, which are available now
for the 29K Family, include the following:

m High C® 29K optimizing C compiler with assembiler, linker, ANSI library functions,
and 29K architectural simulator

m XRAY29K™ source-level debugger
| MiniMON29K™ debug monitor
m A complete family of demonstration and development boards

In addition, Advanced Micro Devices has developed a standard host interface (HIF)
specification for operating system services, the Universal Debug Interface (UDI) for
seamless connection of debuggers to ICEs and target hardware, and extensions for the
UNIX common object file format (COFF).

This support is augmented by an engineering hotline, an on-line bulletin board, and field
application engineers.

PERFORMANCE OVERVIEW

The Am29200 and Am29205 microcontrollers offer a significant margin of performance
over CISC microprocessors in existing embedded designs, since the majority of
processor features were defined for the maximum achievable performance at a very low
cost. This section describes the features of the Am29200 and Am29205 microcontrollers
from the point of view of system performance.

Instruction Timing (Section 2.1)

The Am29200 and Am29205 microcontrollers use an arithmetic/logic unit, a field shift
unit, and a prioritizer to execute most instructions. Each of these is organized to operate
on 32-bit operands and provide a 32-bit result. All operations are performed in a single
cycle.

Features and Performance 1-7

u AMD

1 I3l2

1.3.3

1.34

1.3.5

The performance degradation of load and store operations is minimized in the Am29200

and Am29205 microcontrollers by overlapping them with instruction execution, by taking

advantage of pipelining, and by organizing the flow of external data into the processor so
that the impact of external accesses is minimized. -

Pipelining {Chapter 5)

Instruction operations are overlapped with instruction fetch, instruction decode and
operand fetch, instruction execution, and result write-back to the register file. Pipeline
forwarding logic detects pipeline dependencies and routes data as required, avoiding
delays that might arise from these dependencies.

Pipeline interlocks are implemented by processor hardware. Except for a few special
cases, it is not necessary to rearrange programs to avoid pipeline dependencies,
although this is sometimes desirable for performance.

Burst-Mode and Page-Mode Memories (Sections 8.3.5, 9.3.7)

The Am29200 microcontroller directly supports burst-mode memories in ROM address
space. The burst-mode memory supplies instructions at the maximum bandwidth,
without the complexity of an external cache or the performance degradation due to
cache misses.

Both the Am29200 and Am29205 microcontrollers can also use the page-mode capabili-
ty of common DRAMs to improve the access time in cases where page-mode accesses
can be used. This is particularly useful in very low-cost systems with 16-bit-wide
DRAMs, where the DRAM must be accessed twice for each 32-bit operand.

Instruction Set Overview (Section 2.1, Chapter 18)

The Am29200 and Am29205 microcontrollers employ a three-address instruction set
architecture. The compiler or assembly-language programmer is given complete
freedom to allocate register usage. There are 192 general-purpose registers, allowing
the retention of intermediate calculations and avoiding needless data destruction.
Instruction operands may be contained in any of the general-purpose registers, and the
results may be stored into any of the general-purpose registers.

The instruction set contains 117 instructions that are divided into nine classes. These
classes are integer arithmetic, compare, logical, shift, data movement, constant, floating
point, branch, and miscellaneous. The floating-point instructions are not executed
directly, but are emulated by trap handlers.

All directly implemented instructions are capable of executing in one processor cycle,
with the exception of interrupt returns, loads, and stores.

Data Formats (Chapter 3)

The Am29200 and Am29205 microcontrollers define a word as 32 bits of data, a
half-word as 16 bits, and a byte as 8 bits. The hardware provides direct support for
word-integer (signed and unsigned), word-logical, word-boolean, half-word integer
(signed and unsigned), and character data (signed and unsigned).

Word-boolean data is based on the value contained in the most significant bit of the
word. The values TRUE and FALSE are represented by the MSB values 1 and 0,
respectively.

Other data formats, such as character strings, are supported by instruction sequences.
Floating-point formats (single and double precision) are defined for the processor;

- Features and Performance

AMD u

1.3.6

1 l3l7

1 l3l8

however, there is no direct hardware support for these formats in the Am29200 or
Am29205 microcontroller.

Protection (Chapter 6)

The Am29200 and Am29205 microcontrollers offer two mutually exclusive modes of
execution, the user and supervisor modes, that restrict or permit accesses to certain
processor registers and external storage locations.

The register file may be configured to restrict accesses to supervisor-mode programs on
a bank-by-bank basis.

DRAM Mapping (Section 9.3.5)

The Am29200 and Am29205 microcontrollers provide a 16-Mbyte region of virtual
memory that is mapped to one of four 64-Kbyte blocks in the physical DRAM memory.
This supports system functions such as on-the-fly data compression and decompres-
sion, allowing a large data structure such as a frame buffer to be stored in a compressed
format while the application software operates on a region of the structure that is
decompressed. Using a mechanism that is analogous to demand paging, system
software moves data between the compressed and decompressed formats in a way that
is invisible to the applications software. This feature can greatly reduce the amount of
memory required for printing, imaging, and graphics applications.

Interrupts and Traps (Chapter 16}

When the microcontroller takes an interrupt or trap, it does not automatically save its
current state information in memory. This lightweight interrupt and trap facility greatly
improves the performance of temporary interruptions such as simple operating-system
calls that require no saving of state information.

In cases where the processor state must be saved, the saving and restoring of state
information is under the control of software. The methods and data structures used to
handle interrupts—and the amount of state saved—may be tailored to the needs of a
particular system.

Interrupts and traps are dispatched through a 256-entry vector table that directs the
processor to a routine that handles a given interrupt or trap. The vector table may be
relocated in memory by the modification of a processor register. There may be multiple
vector tables in the system, though only one is active at any given time.

The vector table is a table of pointers to the interrupt and trap handlers and requires only
1 Kbyte of memory. The processor performs a vector fetch every time an interrupt or trap
is taken. The vector fetch requires at least three cycles, in addition to the number of
cycles required for the basic memory access.

DEBUGGING AND TESTING (Chapter 17)

Software debugging on the Am29200 and Am29205 microcontrollers is facilitated by the
instruction trace facility and instruction breakpoints. Instruction tracing is accomplished
by forcing the processor to trap after each instruction has been executed. Instruction
breakpoints are implemented by the HALT instruction or by a software trap.

The Am29200 microcontroller provides two additional features to assist system debug-
ging and testing: ‘

m The test/development interface is composed of a group of pins that indicate the state
of the processor and control the operation of the processor.

Features and Performance 1-9

n AMD

® An |EEE Standard 1149.1-1990 (JTAG) compliant Standard Test Access Port and
Boundary-Scan Architecture. The test access port provides a scan interface for test-
ing system hardware in a production environment, and contains extensions that allow
a hardware-development system to control and observe the processor without inter-
posing hardware between the processor and system.

Hardware testing and debugging on thé Am29205 microcontroller are supported by
using an Am29200 microcontroller to emulate an Am29205 microcontroller.

1-10 Features and Performance

|
bm

2 PROGRAMMING

2-1

2.1.1

2.1.2

This chapter focuses on programming the Am29200 and Am29205 microcontrollers. First,
this chapter presents an instruction set overview. It then describes the register model,
emphasizing the general- and special-purpose registers. This chapter also describes
certain special-purpose registers that deal directly with instruction execution. Finally, this
chapter describes general considerations related to application programming.

INSTRUCTION SET

The Am29200 and Am29205 microcontrollers recognize 117 instructions. All instructions
execute in a single cycle, except for IRET, IRETINV, LOADM, STOREM, and certain
arithmetic instructions such as floating-point instructions. Floating-point and integer
multiply and divide instructions are not implemented directly in hardware, but are imple-
mented by a virtual arithmetic interface invoked using instruction traps (see Section 2.8).

Most instructions deal with general-purpose registers for operands and results; however,
in most instructions, an 8-bit constant can be used in place of a register-based operand.
Some instructions deal with special-purpose registers and external devices and memories.

This section describes the nine instruction classes and provides a brief summary of
instruction operations. A detailed instruction specification is contained in Chapter 18.
Section 18.1 describes the nomenclature used here.

If the processor attempts to execute an unimplemented instruction, an llilegal Opcode
trap occurs unless the instruction is reserved for emulation (see Section 2.1.10).
Reserved instructions are assigned individual traps.

Integer Arithmetic

The Integer Arithmetic instructions perform add, subtract, multiply, and divide operations
on word-length integers. Certain instructions in this class cause traps if signed or)
unsigned overflow occurs during the execution of the instruction. There is support for
multiprecision arithmetic on operands whose lengths are multiples of words. All instruc-
tions in this class set the ALU Status Register. The Integer Arithmetic instructions are
shown in Table 2-1. In the Am29200 and Am29205 microcontrollers, the integer multiply
and divide instructions cause traps to routines which perform the operations.

Compare

The Compare instructions (Table 2-2) test for various relationships between two values.
For all Compare instructions except the CPBYTE instruction, the comparisons are
performed on word-length signed or unsigned integers. There are two types of Compare
instructions. The first type places a Boolean value reflecting the outcome of the compare
into a general-purpose register. For the second type, assert instructions, instruction
execution continues only if the comparison is true; otherwise a trap occurs. The assert
instructions specify a vector for the trap (see Section 16.3).

The assert instructions support run-time operand checking and operating-system calls. If
the trap occurs in the User mode, and a trap number between 0 and 63 is specified by
the instruction, a Protection Violation trap occurs.

Programming 2-1

l‘:l AMD

Table 2-1 Integer Arithmetic Instructions

Mnemonic Operation Description
ADD DEST « SRCA + SRCB
ADDS DEST « SRCA + SRCB

IF signed overflow THEN Trap (Out of Range)
ADDU DEST « SRCA + SRCB

IF unsigned overflow THEN Trap (Out of Range)
ADDC DEST « SRCA + SRCB + C
ADDCS DEST « SRCA + SRCB + C

IF signed overflow THEN Trap (Out of Range)

. ADDCU DEST «- SRCA + SRCB+C

IF unsigned overflow THEN Trap (Out of Range)
SuB DEST « SRCA - SRCB
SuBS DEST « SRCA - SRCB

IF signed overflow THEN Trap (Out of Range)
SUBU DEST « SRCA — SRCB

IF unsigned underflow THEN Trap (Out of Range)
SUBC DEST < SRCA-SRCB-1+C
sSuBCS DEST « SRCA-SRCB-1+C

IF signed overflow THEN Trap (Out of Range)
SusCU DEST « SRCA-SRCB-1+C

IF unsigned underflow THEN Trap (Out of Range)
SUBR DEST « SRCB -SRCA
SUBRS DEST « SRCB - SRCA

IF signed overflow THEN Trap (Out of Range)
SUBRU DEST « SRCB - SRCA

IF unsigned underflow THEN Trap (Out of Range)
SUBRC DEST « SRCB-SRCA-1+C
SUBRCS DEST « SRCB-SRCA-1+C

IF signed overflow THEN Trap (Out of Range)
SUBRCU DEST « SRCB-SRCA-1+C

IF unsigned underflow THEN Trap (Out of Range)
MULTIPLU DEST « SRCA - SRCB (unsigned)
MULTIPLY DEST « SRCA - SRCB (signed)
MUL Perform one-bit step of a multiply operation (signed)
MULL Complete a sequence of multiply steps
MULTM DEST « SRCA - SRCB (signed), most significant bits
MULTMU DEST « SRCA - SRCB (unsigned), most significant bits
MULU Perform one-bit step of a multiply operation (unsigned)
DIVIDE DEST « (Q//SRCA)/SRCB (signed)

Q « Remainder
DIVIDU DEST « (Q//SRCA)/SRCB (unsigned)

Q « Remainder
DIVO Initialize for a sequence of divide steps (unsigned)
DIV Perform one-bit step of a divide operation (unsigned)
DIVL Complete a sequence of divide steps (unsigned)
DIVREM Generate remainder for divide operation (unsigned)

2-2 Programming

AMD I"'

Table 2-2 Compare Instructions

Mnemonic Operation Description
CPEQ IF SRCA = SRCB THEN DEST « TRUE
ELSE DEST « FALSE
CPNEQ IF SRCA <> SRCB THEN DEST « TRUE
ELSE DEST « FALSE
CPLT IF SRCA < SRCB THEN DEST « TRUE
ELSE DEST « FALSE
CPLTU IF SRCA < SRCB (unsigned) THEN DEST « TRUE
ELSE DEST « FALSE
CPLE IF SRCA < SRCB THEN DEST « TRUE
ELSE DEST « FALSE
CPLEU IF SRCA < SRCB (unsigned) THEN DEST « TRUE
ELSE DEST « FALSE
CPGT IF SRCA > SRCB THEN DEST « TRUE
ELSE DEST « FALSE
CPGTU IF SRCA > SRCB (unsigned) THEN DEST « TRUE
: ELSE DEST « FALSE
CPGE If SRCA = SRCB THEN DEST « TRUE
‘ ELSE DEST « FALSE
CPGEU IF SRCA > SRCB (unsigned) THEN DEST « TRUE
ELSE DEST « FALSE
CPBYTE IF (SRCA.BYTEO = SRCB.BYTEO) OR

(SRCA.BYTE1 = SRCB.BYTE1) OR
(SRCA.BYTE2 = SRCB.BYTE2) OR
(SRCA.BYTE3 = SRCB.BYTES) THEN DEST « TRUE

ELSE DEST « FALSE
ASEQ IF SRCA = SRCB THEN Continue
ELSE Trap (VN)
ASNEQ IF SRCA <> SRCB THEN Continue
ELSE Trap (VN)
ASLT IF SRCA < SRCB THEN Continue
ELSE Trap (VN)
ASLTU IF SRCA < SRCB (unsigned) THEN Continue
ELSE Trap (VN)
ASLE IF SRCA < SRCB THEN Continue
ELSE Trap (VN)
ASLEU IF SRCA < SRCB (unsigned) THEN Continue
: ELSE Trap (VN)
ASGT IF SRCA > SRCB THEN Contlnue
ELSE Trap (VN)
ASGTU IF SRCA > SRCB (unsugned) THEN Continue
ELSE Trap (VN)
ASGE IF SRCA 2 SRCB THEN Contmue
ELSE Trap (VN)
ASGEU IF SRCA = SRCB (unsigned) THEN Continue

ELSE Trap (VN)

Programming 2-3

n AMD

21.3

Logical
The Logical instructions (Table 2-3) perform a set of bit-by-bit Boolean functions on
word-length bit strings. All instructions in this class set the ALU Status Register.

Table 2-3

Logical Instructions

Mnemonic Operation Description

AND DEST « SRCA & SRCB
ANDN DEST « SRCA & ~ SRCB
NAND DEST «~ (SRCA & SRCB)
OR DEST « SRCA | SRCB
NOR DEST « ~ (SRCA | SRCB)
XOR DEST « SRCA A SRCB
XNOR DEST « ~ (SRCAA SRCB)

2.1.4

Shift

The Shift instructions (Table 2-4) perform arithmetic and logical shifts. All but the
EXTRACT instruction operate on word-length data and produce a word-length resuilt.
The EXTRACT instruction operates on double-word data and produces a word-length
result. If both parts of the double-word for the EXTRACT instruction are from the same
source, the EXTRACT operation is equivalent to a rotate operation. For each operation,
the shift count is a 5-bit integer, specifying a shift amount in the range of 0 to 31 bits.

Table 2-4

Shift Instructions

Mnemonic Operation Description

SLL DEST <« SRCA << SRCB (zero fill)
SAL DEST « SRCA >> SRCB (zero fill)
SRA DEST « SRCA >> SRCB (sign fill)
EXTRACT DEST « high-order word of (SRCA//SRCB << FC)

2.1.5

Data Movement

The Data Movement instructions (Table 2-5) move bytes, half-words, and words
between processor registers. In addition, they move data between general-purpose
registers and external devices, and memories. The instructions LOADL and STOREL
are provided for compatibility with other 29K processors and are treated as LOAD and
STORE instructions. Similarly, the instructions MFTLB and MTTLB perform no operation,
except that both are privileged instructions.

2-4

Programming

AMDn

Table 2-5 Data Movement Instructions
Mnemonic Operation Description
LOAD DEST « EXTERNAL WORD [SRCB]
LOADL Implemented as LOAD
LOADSET DEST « EXTERNAL WORD [SRCB]
EXTERNAL WORD [SRCB] « h'FFFFFFFF’
LOADM DEST.. DEST + COUNT «
EXTERNAL WORD [SRCB] ..
EXTERNAL WORD [SRCB + COUNT - 4]
STORE EXTERNAL WORD [SRCB] « SRCA
STOREL Implemented as STORE
STOREM EXTERNAL WORD [SRCB] ..
EXTERNAL WORD [SRCB + COUNT - 4] «
SRCA .. SRCA + COUNT
EXBYTE DEST « SRCB, with low-order byte replaced by byte in SRCA
selected by BP
EXHW DEST « SRCB, with low-order half-word replaced by half-word in SRCA
selected by BP :
EXHWS DEST « half-word in SRCA selected by BP, sign-extended to 32 bits
INBYTE DEST « SRCA, with byte selected by BP replaced by low-order byte
of SRCB
INHW DEST « SRCA, with half-word selected by BP replaced by low-order
half-word of SRCB
MFSR DEST « SPECIAL
MFTLB no operation (privileged)
MTSR SPDEST « SRCB
MTSRIM SPDEST « 0!16
MTTLB no operation (privileged)
2.1.6 Constant
The Constant instructions (Table 2-6) provide the ability to place half-word and word
constants into registers. Most instructions in the instruction set allow an 8-bit constant as
an operand. The Constant instructions allow the construction of larger constants.
Table 2-6 Constant Instructions

Mnemonic Operation Description

CONST DEST «-0l16

CONSTH Replace high-order half-word of SRCA by 116
CONSTN DEST « 1116

Programming 2-5

u AMD

2.1.7 Floating Point

The Floating-Point instructions (Table 2-7) provide operations on single-precision (32-bit)
or double-precision (64-bit) floating-point data. They also provide conversions between
single-precision, double-precision, and integer number representations. In the Am29200
and Am29205 microcontrollers, these instructions cause traps (specified by the vector
numbers listed in the table) to routines which perform the floating-point operations.

Table 2-7 Floating-Point Instructions

Mnemonic Operation Description Vector Number

FADD DEST (single-precision) « SRCA (single-precision) 48
+ SRCB (single-precision)

DADD . DEST (double-precision) « SRCA (double-precision) 49
+ SRCB (double-precision)

FSUB DEST (single-precision) <+ SRCA (double-precision) 50
— SRCB (single-precision)

DSuUB DEST (double-precision) « SRCA (double-precision) 51
— SRCB (double-precision)

FMUL DEST (single-precision) « SRCA (single-precision) 52

: - SRCB (single-precision)

FDMUL DEST (double-precision) « SRCA (single-precision) 57
- SRCB (single-precision)

DMUL DEST (double-precision) < SRCA (double-precision) 53
- SRCB (double-precision)

FDIV DEST (single-precision) « SRCA (single-precision 54
/ SRCB (single-precision)

DDiV DEST (double-precision) « SRCA (double-precision) 55
/ SRCB (double-precision)

FEQ IF SRCA (single-precision) = SRCB (single-precision) 42

THEN DEST « TRUE
ELSE DEST « FALSE
DEQ IF SRCA (double-precision) = SRCB (double-precision) 43
THEN DEST « TRUE
ELSE DEST « FALSE
FGE IF SRCA (single-precision) >= SRCB (single-precision) 46

THEN DEST « TRUE
ELSE DEST « FALSE

DGE IF SRCA (double-precision) >= SRCB (double-precision) 47
THEN DEST « TRUE
ELSE DEST « FALSE ‘
FGT IF SRCA (single-precision) > SRCB (single-precision) 44
THEN DEST « TRUE
ELSE DEST « FALSE

DGT IF SRCA (double-precision). > SRCB (double-precision) 45
THEN DEST « TRUE

ELSE DEST « FALSE

SQRT DEST (single-precision, double-precision) 37
« SQRT [SRCA (single-precision, double-precision)]

CONVERT DEST (integer, single-precision, double-precision) 36
< SRCA (integer, single-precision, double-precision)

CLASS DEST « CLASS [SRCA (single-precision, double-precision)] 38

2-6) Programming

AMD l:l

2.1.8 Branch
The Branch instructions (Table 2-8) control the execution flow of instructions. Branch
target addresses may be absolute, relative to the program counter (with the offset given
by a signed instruction constant), or contained in a general-purpose register. For
conditional jumps, the outcome of the jump is based on a Boolean value in a general-
purpose register. Procedure calls are unconditional and save the return address in a
general-purpose register. All branches have a delayed effect; the instruction following
the branch is executed regardless of the outcome of the branch.
Table 2-8 Branch Instructions
Mnemonic Operation Description
CALL DEST « PC//00 + 8
PC « TARGET
Execute delay instruction
CALLI DEST « PC//00 + 8
PC « SRCB
Execute delay instruction
JMP PC « TARGET
Execute delay instruction
JMPI PC « SRCB
Execute delay instruction
JMPT IF SRCA = TRUE THEN PC « TARGET
Execute delay instruction
JMPTI IF SRCA = TRUE THEN PC « SRCB
Execute delay instruction
JMPF IF SRCA = FALSE THEN PC « TARGET
Execute delay instruction
JMPFI IF SRCA = FALSE THEN PC « SRCB
Execute delay instruction
JMPFDEC IF SRCA = FALSE THEN
SRCA « SRCA -1
PC « TARGET
ELSE
SRCA « SRCA -1
Execute delay instruction
2.1.9 Miscellaneous

The Miscellaneous instructions (Table 2-9) perform various operations that cannot be
grouped into other instruction classes. In certain cases, these are control functions
available only to Supervisor-mode programs. The instructions INV and IRETINV are
provided for compatibility with other 29K processors. INV performs no operation, and
IRETINV performs the same operations as IRET. Both are privileged instructions.

‘Programming 2-7

n AMD

Table 2-9 Miscellaneous Instructions

Mnemonic Operation Description
cLz Determine number of leading zeros in a word
SETIP Set IPA, IPB, and IPC with operand register numbers
EMULATE Load IPA and IPB with operand register numbers and Trap (VN)
INV No operation
IRET Perform an interrupt return sequence
IRETINV Perform an interrupt return sequence
HALT Enter Halt mode
2.1.10 Reserved Instructions

Sixteen operation codes are reserved for instruction emulation. Each of these instruc-
* tions causes a trap and sets the indirect pointers IPC, IPA, and IPB. The relevant B
operation codes, and the corresponding trap vectors, are as follows:

Table 2-10 Reserved Instructions

Operation Codes (Hexadecimal) Trap Vector Numbers (Decimal)

D8-DD 24-29
E7-E9 39-41
F8 56

FA-FF 58-63

The reserved instructions are intended for future processor enhancements, and users
desiring compatibility with future processor versions should not use them for any
purpose.

2.2 REGISTER MODEL

The microcontroller has two classes of registers that are accessible by instructions.
These are the general-purpose registers and the special-purpose registers. Any
operation available to the microcontroller can be performed on the general-purpose
registers, while special-purpose registers are accessed only by the instructions MTSR,
MTSRIM, and MFSR. This section describes the general-purpose and special-purpose
registers.

2.2.1 General-Purpose Registers

The microcontroller incorporates 192 general-purpose registers. The organization of the
general-purpose registers is diagrammed in Figure 2-1.

General-purpose registers hold the following types of operands for program use:
m 32-bit addresses

m 32-bit signed or unsigned integers

32-bit branch-target addresses

32-bit logical bit strings

8-bit signed or unsigned characters

2-8 Programming

AMD “rl

Figure 2-1 General-Purpose Register Organization

a:;g::f # General Purpose
0 Indirect Pointer Access
1 Stack Pointer
2-63 Not Implemented
e
64 -| Global Register 64
65 Global Register 65
66 Global Register 66
Global < . .
Registers . .
. . 31 8 210
rsp| [¢ 1]
126 Global Register 126
131
|
127 Global Register 127 (example)
7
128 Local Register 125
129 Local Register 126
130 Local Register 127
131 Local Register 0 ¢
a !.ct)cal < See Section 4.1.3 formore
egisters 132 Local Register 1 detail on the operation of
the register stack pointer
* * (rsp).
L] []
L] L]
254 Local Register 123
\ 255 Local Register 124

Programming 2-9

b" AMD

2.2.1.1

2.2.1.2

2.2.1.3

m 16-bit signed or unsigned integers

m Word-length Booleans

m Single-precision floating-point numbers ,

m Double-precision floating-point numbers (in two register locations)

Because a large number of general-purpose registers are provided, a large amount of
frequently used data can be kept on-chip, where access time is fastest.

Instructions can specify two general-purpose registers for source operands and one
general-purpose register for storing the instruction result. These registers are specified
by three 8-bit instruction fields containing register numbers. A register may be specified
directly by the instruction, or indirectly by one of three special-purpose registers.

Register Addressing

The general-purpose registers are partitioned into 64 global registers and 128 local
registers, differentiated by the most significant bit of the register number. The distinction
between global and local registers is the result of register-addressing considerations.

The following terminology is used to describe the addressing of general-purpose
registers: :

m Register number, a software-level number for a general-purpose register. For
example, this is the number contained in an instruction field. Register numbers range
from 0 to 255.

m Global-register number, a software-level number for a global register. Global-register
numbers range from 0 to 127.

m Local-register number, a software-level number for a local register. Local-register
numbers range from 0 to 127. ~

m Absolute-register number, a hardware-level number used to select a general-purpose
register in the register file. Absolute-register numbers range from 0 to 255.

Global Registers

When the most significant bit of a register number is 0, a“global register is selected. The
seven least significant bits of the register number give the global-register number. For
global registers, the absolute-register number is equivalent to the register number.

Global registers 2 through 63 are not implemented. An attempt to access these registers
yields unpredictable results; however, they may be protected from User-mode access by
the Register Bank Protect Register (see Section 6.2.1).

The register numbers associated with Global Registers 0 and 1 have special meaning.
The number for Global Register 0 specifies that an indirect pointer is to be used as the
source of the register number (see Section 2.3); there is an indirect pointer for each of
the instruction operand/result registers. Global Register 1 contains the Stack Pointer,
which is used in the addressing of local registers.

Local Registers

When the most significant bit of a register number is 1, a local register is selected. The
seven least significant bits of the register number give the local-register number. For
local registers, the absolute-register number is obtained by adding the local-register
number to bits 8-2 of the Stack Pointer and truncating the result to seven bits; the most
significant bit of the original register number is unchanged (i.e., it remains a 1).

2-10

Programming

AMD zl

2.2.1.4

2.2.2

The Stack Pointer addition applied to local-register numbers provides a limited form of
base-plus-offset addressing within the local registers. The Stack Pointer contains the
32-bit base address. This assists run-time storage management of variables for
dynamically nested procedures (see Chapter 4).

Local-Register Stack Pointer

The Stack Pointer is a 32-bit register that may be an operand of an instruction as any
other general-purpose register. However, a shadow copy of Global Register 1 is
maintained by processor hardware for use in local-register addressing. This shadow
copy is set only with the results of Arithmetic and Logical instructions. If the Stack
Pointer is set with the result of any other instruction class, local registers cannot be
accessed predictably until the Stack Pointer is set once again with an Arithmetic or
Logical instruction.

A modification of the Stack Pointer has a delayed effect on the addressing of local
registers, as discussed in Section 5.6.

Special-Purpose Registers
The microcontroller contains 24 special-purpose registers. The organization of the
special-purpose registers is shown in Figure 2-2.

Special-purpose registers provide controls and data for certain processor operations.
Some special-purpose registers are updated dynamically by the processor, independent

. of software controls. Because of this, a read of a special-purpose register following a

write does not necessarily get the data that was written.

Some special-purpose registers have fields reserved for future processor implementa-
tions. When a special-purpose register is read, a bit in a reserved field is read as a 0. An
attempt to write a reserved bit with a 1 has no effect; however, this should be avoided
because of upward-compatibility considerations, except for bits 5 and 6 of the Current
Processor Status Register. These bits are used to disable address translation in other 29K
processors and may be written with 1 in the Am29200 and Am29205 microcontrollers.

The special-purpose registers are accessed by explicit data movement only. Instructions
that move data to or from a special-purpose register specify the special-purpose register
by an 8-bit field containing a special-purpose register number. Register numbers are
specified directly by instructions.

The special-purpose registers are partitioned into protected and unprotected registers.
Special-purpose registers numbered 0-127 and 160-255 are protected (note that not all
of these are implemented). Special-purpose registers numbered 128-159 are unpro-
tected (again, not all are implemented).

Protected special-purpose registers numbered 0—127 are accessible only by programs
executing in the Supervisor mode. An attempted read or write of a special-purpose
register by a User-mode program causes a Protection Violation trap to occur. Special-
purpose registers numbered 160-255, though architecturally unprotected, are not
accessible by programs in the User mode or the Supervisor mode. These register
numbers are reserved for virtual registers in the arithmetic architecture, and any
attempted access causes a Protection Violation trap.

The Floating-Paint Environment Register, Integer Environment Register, and Floating-
Point Status Register are not implemented in processor hardware. These registers are
implemented via the virtual arithmetic interface provided on the Am29200 and Am29205
microcontrollers (see Section 2.8).

Programming 2-1

n AMD

Figure 2-2

Special-Purpose Registers

Register Number Protected Registers Mnemonic
0 Vector Area Base Address VAB
1 Old Processor Status OPS
2 Current Processor Status CPS
3 Configuration CFG
4 Channel Address CHA
5 Channel Data CHD
6 Channel Control CHC
7 Register Bank Protect RBP
8 Timer Counter T™C
9 Timer Reload T™MR

10 Program Counter 0 PCO
11 Program Counter 1 PC1
12 Program Counter 2 PC2

Unprotected Registers

128 Indirect Pointer C IPC
129 Indirect Pointer A IPA
130 Indirect Pointer B IPB
131 Q Q
132 ALU Status ALU
133 Byte Pointer BP
134 Funnel Shift Count FC
135 Load/Store Count Remaining CR
160 Floating-Point Environment (virtual) FPE
161 Integer Environment (virtual) INTE
162 Floating-Point Status (virtual) FPS

2.3

An attempted read of an unimplemented special-purpose register yields an unpredict-
able value. An attempted write of an unimplemented, protected special-purpose register
has an unpredictable effect on processor operation, unless the write causes a Protection
Violation. An attempted write of an unimplemented, unprotected special-purpose register
has no effect; however, this should be avoided because of upward-compatibility
considerations. ’

ADDRESSING REGISTERS INDIRECTLY

Specifying Global Register 0 as an instruction operand register or result register causes
an indirect access to the general-purpose registers. In this case, the absolute-register
number is provided by an indirect pointer contained in a special-purpose register.

Each of the three possible registers for instruction execution has an associated 8-bit
indirect pointer. Indirect register numbers can be selected independently for each of the
three operands. Since the indirect pointers contain absolute-register numbers, the number
in an indirect pointer is not added to the Stack Pointer when local registers are selected.

The indirect pointers are set by the MTSR, MTSRIM, SETIP, and EMULATE instructions,
and by floating-point, MULTIPLY, MULTM, MULTIPLU, MULTMU, DIVIDE, and DIVIDU
instructions.

2-12

Programming

AMDa

For a move-to-special-register instruction, an indirect pointer is set with bits 9-2 of the
32-bit source operand. This provides consistency between the addressing of words in
general-purpose registers and the addressing of words in external devices or memories. A
modification of an indirect pointer using a move-to-special-register instruction has a
delayed effect on the addressing of general-purpose registers (see Section 5.6).

For the remaining instructions, all three indirect pointers are set simultaneously with the
absolute-register numbers derived from the register numbers specified by the instruc-
tion. For any local registers selected by the instruction, the Stack-Pointer addition is
applied to the register numbers before the indirect pointers are set.

Except when an indirect pointer is set by a move-to-special-register instruction, register
numbers stored into the indirect pointers are checked for bank-protection violations at
the time the indirect pointers are set.

2.3.1 Indirect Pointer C Register (IPC, Register 128)
This unprotected special-purpose register (Figure 2-3) provides the RC-operand register
number (see Section 18.3) when an instruction RC field has the value zero (i.e., when
Global Register 0 is specified).

Figure 2-3 Indirect Pointer C Register

31 23 15 7 0
Reserved IPC o|o

Bits 31-10: Reserved
Bits 9-2: Indirect Pointer C (IPC)—The 8-bit IPC field contains an absolute-register
number for a general-purpose register. This number directly selects a register. (Stack-
Pointer addition is not performed in the case of local registers.)
Bits 1-0: Zeros—The IPC field is aligned for compatibility with word addresses.

2.3.2 indirect Pointer A Register (IPA, Register 129)
This unprotected special-purpose register (Figure 2-4) provides the RA-operand register
number (see Section 18.3) when an instruction RA field has the value zero (i.e., when
Global Register 0 is specified).

Figure 2-4 Indirect Pointer A Register

31

. 23 15 7
RERERERRERRRRRRRRRRRRRRE R

Reserved IPA 0jo

Bits 31-10: Reserved

Bits 9-2: Indirect Pointer A (IPA)—The 8-bit IPA field contains an absolute-register
number for either a general-purpose register or a local register. This number directly
selects a register. (Stack-Pointer addition is not performed in the case of local registers.)

Bits 1-0: Zeros—The IPA field is aligned for compatibility with word addresses.

Programming 2-13

l"l AMD

2.3.3

indirect Pointer B Register (IPB, Register 130)

This unprotected special-purpose register (Figure 2-5) provides the RB-operand register
number (see Section 18.3) when an instruction RB field has the value zero (i.e., when
Global Register 0 is specified). '

Figure 2-5

Indirect Pointer B Register

31 23 15 7
CTTErTT Tt re e et

Reserved IPB

2.4

2I4I 1

Bits 31-10: Reserved

Bits 9-2: Indirect Pointer B (IPB)—The 8-bit IPB field contains an absolute-register
number for a general-purpose register. This number directly selects a register. (Stack-
Pointer addition is not performed in the case of local registers.)

Bits 1—0: Zeros—The IPB field is aligned for compatibility with word addresses.

INSTRUCTION ENVIRONMENT

This section describes the special-purpose registers that affect the execution df Floating-
Point and Integer Arithmetic instructions.

Floating-Point Environment Register (FPE, Register 160)

This unprotected special-purpose register (Figure 2-6) contains control bits that affect
the execution of floating-point operations. This register is not implemented directly by
processor hardware, but is implemented by the virtual arithmetic software.

Figure 2-6

Floating-Point Environment Register

31 23 15
LTttt I

Reserved FRM

)]
FF DM s UM ' RM .
1 J
XM VM NM

Bits 31-9: Reserved

Bit 8: Fast Float Select (FF)—The FF bit being 1 enables fast floating-point operations,
in which certain requirements of the IEEE floating-point specification are not met. This
improves the performance of certain operations by sacrificing conformance to the IEEE
specification.

Bits 7-6: Floating-Point Round Mode (FRM)—This field specifies the default mode
used to round the results of floating-point operations, as follows:

FRM1-0 Round Mode

00 Round to nearest
01 Round to ~

10 Round to + o

1 Round to zero

2-14

Programming

AMD a

2.4.2

Bit 5: Floating-Point Divide-By-Zero Mask (DM)—If the DM bit is 0, a Floating-Point
Exception trap occurs when the divisor of a floating-point division operation is zero and
the dividend is a non-zero, finite number. If the DM bit is 1, a Floating-Point Exception
trap does not occur for divide-by-zero.

Bit 4: Floating-Point Inexact Result Mask (XM)—If the XM bit is 0, a Floating-Paint
Exception trap occurs when the result of a floating-point operation is not equal to the
infinitely precise result. If the XM bit is 1, a Floating-Point Exception trap does not occur
for an inexact result. v

Bit 3: Floating-Point Underflow Mask (UM)—If the UM bit is O, a Floating-Point
Exception trap occurs when the result of a floating-point operation is too small to be
expressed in the destination format. If the UM bit is 1, a Floating-Point Exception trap
does not occur for underflow.

Bit 2: Floating-Point Overflow Mask (VM)—If the VM bit is 0, a Floating-Point Excep-
tion trap occurs when the result of a floating-point operation is too large to be expressed
in the destination format. If the VM bit is 1, a Floating-Point Exception trap does not
occur for overflow.

Bit 1: Floating-Point Reserved Operand Mask (RM)—If the RM bit is 0, a Floating-
Point Exception trap occurs when one or more input operands to a floating-point
operation is a reserved value, or when the result of a floating-point operation is a
reserved value. If the RM bit is 1, a Floating-Point Exception trap does not occur for
reserved operands.

Bit 0: Floating-Point Invalid Operation Mask (NM)—If the NM bit is 0, a Floating-Point
Exception trap occurs when the input operands to a floating-point operation produce an
indeterminate result (e.g., - times 0). If the NM bit is 1, a Floating-Point Exception trap
does not occur for invalid operations.

Integer Environment Register (INTE, Register 161)

This unprotected special-purpose register (Figure 2-7) contains control bits that affect
the execution of integer multiplication and division operations. This register is not
implemented directly by processor hardware, but is implemented by the virtual arithmetic
interface.

Figure 2-7

Integer Environment Register

31 23 15 7
LTt errrrrr ettt

Reserved

Bits 31-2: Reserved

Bit 1: Integer Division Overflow Mask (DO)—If the DO bit is 0, an Out-of-Range trap
occurs when overflow of a signed or unsigned 32-bit result occurs during a DIVIDE or
DIVIDU instruction, respectively. If the DO bit is 1, an Out-of-Range trap does not occur
for overflow during integer divide operations.

The DIVIDE and DIVIDU instructions always cause an Out-of-Range Trap upon division
by zero, regardless of the value of the DO bit.

Programming 2-15

&\ amo

2.5

2.5-1

Bit 0: Integer Multiplication Overflow Exception Mask (MO)—If the MO bit is 0, an
Out-of-Range trap occurs when overflow of a signed or unsigned 32-bit result occurs
during a MULTIPLY or MULTIPLU instruction, respectively. If the MO bit is 1, an
Out-of-Range trap does not occur for overflow during integer multiply operations.
Because 64-bit results cannot overflow, this bit should be set to 1 when obtaining a
64-bit result for multiplication to avoid Out-of-Range traps.

STATUS RESULTS OF INSTRUCTIONS

This section discusses the status information generated by arithmetic, logical and
floating-point operations, and the special registers that contain this status information.

ALU Status Register (ALU, Register 132)

This unprotected special-purpose register (Figure 2-8) holds information about the
outcome of Arithmetic/Logic Unit (ALU) operations as well as control for certain opera-
tions performed by the execution unit.

Figure 2-8

ALU Status Register

NERERRRRRRRRERREEE 1T 0T
FC

Reserved V|N| Z]| C| BP

DF

Bits 31-12: Reserved

Bit 11: Divide Flag (DF)—The DF bit is used by the instructions that implement division.
This bit is set at the end of the division instructions either to 1 or to the complement of
the 33rd bit of the ALU. When a Divide Step instruction is executed, the DF bit deter-
mines whether an addition or subtraction operation is performed by the ALU.

Bit 10: Overflow (V)—The V bit indicates that the result of a signed, two’s-complement
ALU operation required more than 32 bits to represent the result correctly. The value of
this bit is determined by exclusive-ORing the ALU carry-out with the carry-in to the most
significant bit for signed, two’s-complement operations. This bit is not used for any
special purpose in the processor and is provided for information onily.

Bit 9: Negative (N)—The N bit is set with the value of the most significant bit of the
result of an arithmetic or logical operation. If two's-complement overflow occurs, the N bit
does not reflect the true sign of the result. This bit is used in divide operations.

Bit 8: Zero (Z)—The Z bit indicates that the result of an arithmetic or logical operation is
zero. This bit is not used for any special purpose in the processor, and is provided for
information only.

Bit 7: Carry (C)—The C bit stores the carry-out of the ALU for arithmetic operations. It is
used by the add-with-carry and subtract-with-carry instructions to generate the carry into
the Arithmetic/Logic Unit.

Bits 6-5: Byte Pointer (BP)—The BP field holds a 2-bit pointer to a byte within a word.
It is used by Insert Byte and Extract Byte instructions.

2-16

Programming

AMD zl

2.5.2

2.5.3

The most significant bit of the BP field is used to determine the position of a half-word
within a word for the Insert Half-Word, Extract Half-Word, and Extract Half-Word,
Sign-Extended instructions.

The BP field is set by a Move To Special Register instruction with either the ALU Status
Register or the Byte Pointer Register as the destination. It is also set by a load or store
instruction if the Set Byte Pointer (SB) bit in the instruction is 1. A load or store sets the
BP field with 11.

The Byte Pointer Register (Section 3.1.3) provides direct access to this field.

Bits 4-0: Funnel Shift Count (FC)—The FC field contains a 5-bit shift count for the
funnel shifter. The funnel shifter concatenates two source operands into a single 64-bit
operand and extracts a 32-bit result from this 64-bit operand; the FC field specifies the
number of bit positions from the most significant bit of the 64-bit operand to the most
significant bit of the 32-bit result. The FC field is used by the EXTRACT instruction.

The FC field is set by a Move To Special Register instruction with eitherA the ALU Status
Register or the Funnel Shift Count Register as the destination.

Arithmetic Operation Status Results

The Arithmetic instructions modify the V, N, Z, and C bits. These bits are set according
to the result of the operation performed by the instruction.

All instructions in the Arithmetic class—except for MULTIPLY, MULTM, DIVIDE, MULTI-
PLU, MULTMU, and DIVIDU—perform an add. In the case of subtraction, the subtract is
performed by adding the two’s-complement or one’s-complement of an operand to the
other operand. The multiply-step and divide-step operations also perform adds, again
possibly complementing one of the operands before the operation is performed. In
general, the status bits are based on the results of the add.

If two’s-complement overflow occurs during the add, the V bit of the ALU Status Register
is set; otherwise it is reset. Two's-complement overflow occurs when the carry-in to the
most significant bit of the intermediate result differs from the carry-out. When this occurs,
the result cannot be represented by a signed word integer. Note that the V bit always is
set in this manner, even when the result is unsigned.

The N bit of the ALU Status Register is set to the value of the most significant bit of the
result of the add. Note that the divide-step and multiply-step operations may shift the
result after the operation is performed. In the cases where shifting occurs, the N bit may
not agree with the result that is written into a general-purpose register, since the N bit is
based only on the result of the add, not on the shift.

If the result of the add causes a zero word to be written to a general-purpose register,
the Z bit of the ALU Status Register is set; otherwise, it is reset. The Z bit always reflects
the result written into a general-purpose register; if shifting is performed by a multiply or
divide step, the Z bit reflects the shifted value.

If there is a carry out of the add operation, the C bit is set; otherwise it is reset.

Logical Operation Status Results

The Logical instructions modify the N and Z bits. These bits are set according the result
of the instruction. The V and C bits are meaningless in regard to the Logical instructions,
so they are not modified.

Programming 217

a AMD

2,54

2.5.5

The N bit of the ALU Status Register is set to the value of the most significant bit of the
result of the logical operation.

If the result of the logical operation is a zero word, the Z bit of the ALU Status Register is
set; otherwise, it is reset.

Floating-Point Status Results

The Floating-Point instructions check for a number of exceptional conditions, and report
these exceptions by setting bits of the Fioating-Point Status Register. The exceptional
conditions may also cause traps, depending on the state of mask bits in the Floating-
Point Environment Register. There are two groups of status bits in the Floating-Point
Status Register: trap status bits and sticky status bits. When an exception is detected,
the virtual arithmetic processor on the microcontroller sets the trap status bit and/or the
sticky status bit associated with the exception, depending on the corresponding excep-
tion mask bit and on whether or not a trap occurs. The sticky status bit is set whenever
the corresponding exception is masked, regardless of whether or not a trap occurs. A
trap status bit is set whenever a trap occurs, regardless of the state of the corresponding
mask bit.

A trap status bit is reset when a trap occurs and the indicated status does not apply to
the trapping operation. A sticky status bit is reset only by software.

Floating-Point Status Register (FPS, Register 162)

This unprotected special-purpose register (Figure 2-9) contains status bits indicating the
outcome of floating-point operations. This register is not implemented directly by
processor hardware, but is implemented by the virtual arithmetic software.

The floating-point status bits are divided into two groups. The first group consists of the
sticky status bits (DS, XS, US, VS, RS, and NS), which, once set, remain set until
explicitly cleared by a Move-to-Special-Register (MTSR) or Move-to-Special-Register-
Immediate (MTSRIM) instruction. Only those sticky status bits corresponding to masked
exceptions are updated. The update occurs at the end of instruction execution.

The second group consists of the trap status bits (DT, XT, UT, VT, RT, and NT) that
report the status of an operation for which a Floating-Point Exception trap is taken.
These bits are updated only by an operation that takes a trap as a result of an un-
masked Floating-Point Exception; all other operations leave these bits unchanged. A
trap status bit is updated regardless of the state of the corresponding exception mask in
the Floating-Point Environment Register.

Figure 2-9

Floating-Point Status

31 23 15
BEREEERERERRRRRRR

Reserved Res

[|) E :] LI |] E
' vy, (] 1)) 1 .
DT {UT ! AT ! DS ! US ! RS
XT VT NT XS VS NS

Bits 31-14: Reserved

Bit 13: Floating-Point Divide-By-Zero Trap (DT)—The DT bit is set when a Floating-
Point Exception trap occurs and the associated floating-point operation is a divide with a

Programming

AMDa

2.6

zero divisor and a non-zero, finite dividend. Otherwise, this bit is reset when a Floating-
Point Exception trap occurs.

Bit 12: Floating-Point Inexact Result Trap (XT)—The XT bit is set when a Floating-
Point Exception trap occurs and the result of the associated floating-point operation is
not equal to the infinitely-precise result. Otherwise, this bit is reset when a Floating-Point
Exception trap occurs.

Bit 11: Floating-Point Underflow Trap (UT)—The UT bit is set when a Floating-Point
Exception trap occurs and the result of the associated floating-point operation is too
small to be expressed in the destination format. Otherwise, this bit is reset when a
Floating-Point Exception trap occurs.

Bit 10: Floating-Point Overflow Trap (VT)—The VT bit is set when a Floating-Point
Exception trap occurs and the result of the associated floating-point operation is too
large to be expressed in the destination format. Otherwise, this bit is reset when a
Floating-Point Exception trap occurs.

Bit 9: Floating-Point Reserved Operand Trap (RT)—The RT bit is set when a
Floating-Point Exception trap occurs and the result of the associated floating-point
operation is a reserved value. Otherwise, this bit is reset when a Floating-Point Excep-
tion trap occurs. '

Bit 8: Floating-Point Invalid Operation Trap (NT)—The NT bit is set when a Floating-
Point Exception trap occurs and the input operands to the associated floating-point
operation produce an indeterminate result. Otherwise, this bit is reset when a Floating-
Point Exception trap occurs.

Bits 7-6: Reserved

Bit 5: Floating-Point Divide-By-Zero Sticky (DS)}—The DS bit is set when the DM bit
of the Floating-Point Environment Register is 1, the divisor of a floating-point division
operation is a zero, and the dividend is a non-zero, finite number.

Bit 4: Floating-Point Inexact Result Sticky (XS)—The XS bit is set when the XM bit of
the Floating-Point Environment Register is 1 and the result of a floating-point operation
is not equal to the infinitely precise result.

Bit 3: Floating-Point Underflow Sticky (US)—The US bit is set when the UM bit of the
Floating-Point Environment Register is 1 and the result of a floating-point operation is
too small to be expressed in the destination format.

Bit 2: Floating-Point Overflow Sticky (VS)—The VS bit is set when the VM bit of the
Floating-Point Environment Register is 1 and the result of a floating-point operation is
too large to be expressed in the destination format.

Bit 1: Floating-Point Reserved Operand Sticky (RS)—The RS bit is set when the RM
bit of the Floating-Point Environment Register is 1 and either one or more input oper-
ands to a floating-point operation is a reserved value or the result of a floating-point
operation is a reserved value.

Bit 0: Floating-Point Invalid Operation Sticky (NS)}—The NS bit is set when the NM
bit of the Floating-Point Environment Register is 1 and the input operands to a floating-
point operation produce an indeterminate resuit.

INTEGER MULTIPLICATION AND DIVISION

The Am29200 and Am29205 microcontrollers do not directly support the instructions
MULTIPLU, MULTMU, MULTIPLY, MULTM, DIVIDE, and DIVIDU. The processor is

Programming 2-19

>aAMD

2.6.1

capable of performing these instructions as a sequence of multiply or divide steps, which
are directly supported by hardware. A special register, Q, is used in conjunction with the
SRCA and SRCB operands to execute the multiply or divide step. This section describes
the Q register and discusses the general method for multiplication and division.

Q Register (Q, Register 131)
The Q Register is an unprotected special-purpose register (Figure 2-10).

Figure 2-10

Q Register
0

31) 23 15 7
Lrrerrrrrrrtreerrrrrrrrrrrrrree

Q

2.6.2

Bits 31-0: Quotient/Multiplier (Q)—During a sequence of divide steps, this field holds
the low-order bits of the dividend; it contains the quotient at the end of the divide. During
a sequence of multiply steps, this field holds the multiplier; the field contains the
low-order bits of the result at the end of the multiply.

For an integer divide instruction, the Q field contains the high-order bits of the dividend
at the beginning of the instruction, and contains the remainder upon completion of the
instruction.

Multiplication

The processor performs integer multiplication by a series of multiply-step instructions.
Note that when the product of a constant and a variable is to be computed, a more
efficient sequence of shift and add instructions can usually be found. Many compilers
use this technique automatically.

If a program requires the multiplication of two integers, the required sequence of multiply
steps may be executed in-line or executed in a multiply routine called as a procedure. It
may be beneficial to precede a full multiply procedure with a routine to discover whether
or not the number of multiply steps may be reduced. This reduction is possible when the
operands do not use all of the available 32 bits of precision.

The following routine multiplies two 32-bit signed integers, giving a 64-bit resuilt.
Unsigned multiplication can be performed by substituting the MULU instruction for the
MUL and MULL instructions.

; 32 bit * 32 bit —>64 bit signed multiply
; Input: multiplicand in Ir2, multiplier in Ir3
; Output: result most significant word in gr96, result least significant word in gr97

SMul64:
mtsr Q, I3 ; put multiplier in the Q register
mul groe, Ir2, 0 ; perform initial multiply step
.rep 30 ; expand out 30 copies of the next instruction
; in-line
mul gr9e, Ir2, gra6 ; total of 30 more multiply steps
.endr
mull gro6, Ir2,groé ; perform last sign correcting step
mfsr gr97, Q ; get the least significant result word

The following routine multiplies two 32-bit integers, returning a 32-bit result. It attempts
to minimize the number of multiply-step instructions by checking the input operands. It is

2-20

Programming

AMD n

coded as a subroutine, with pointers to its operands passed in the indirect pointers IPC,
IPA, and IPB. This allows the routine to operate on any combination of registers, rather
than forcing the operands to be in fixed registers.

; 32 bit * 32 bit —> 32 bit signed or unsigned muiltiply called by:

; call k tpc, MUL32 ; call the multiply routine
; setip dst_reg, src1_reg, src2_reg ; passing pointers to the operand registers
; ; in the delay slot

; Input: operands in the registers pointed to by indirect-pointer registers IPA and IPB
; Output: result least significant word in the register pointed to by IPC
; Used: return address in tpc, special registers Q and FC
; Destroy: previous contents of registers tpc, Temp0 — Temp2
; Symbolic register names:
.reg TempO, gr116
.reg Tempt, gri19
.reg Temp2, gri20
.reg tpc, gr122 .
.word 0x00200000 ; Debugger tag word

Mul32:
; need an instruction to separate SETIP (probably last instruction) from access of indirect
; pointers

mtsrim FC,8 ; useful when one operand is 8-bit

or TempoO, gr0, 0 ; copy value of IPA register

; next check to see that the operand with the most leading zeros becomes the multiplier
cpgtu Temp1,gr0,gro

jmpf Temp1,do8 ; the operands are already ordered correctly
or Temp1,Temp1,gr0 ; if it jumps, Temp1 holds 0, so this copies
) ; the value of the IPB register
const Temp0,0 ; swap the operands
or TempO0,TempO0,gr0
or Temp1,gr0,0
do8:
cpleu Temp2,Temp1,0x7f ; less than 8 bits?
jmpf Temp2,do16 ; no, check for 16 bits

mtsr Q,Temp0
mulu Temp0,Temp1,0

.rep 7 ; expand out 7 copies of the next instruction
; in-line

mulu Temp0,Temp1,Temp0 ; total of 7 more multiply steps

.endr

; the top 24 bits of the result are in the lower 24 bits of Temp0, and the bottom 8 bits are in the
;topof Q
mfsr Temp1,Q

jmpi tpc ; return to the calling routine
extract gr0,TempO,Temp1 ; extract the result in the delay-slot of the
; jump
doi6:
const Temp2,0x7fff ; less than 16 bits?
cplequ Temp2,Temp0,Temp2
jmpf Temp2,do32 ; no, perform all 32 steps
mulu Temp0,Temp1,0 ; perform initial multiply-step

Programming 2-21

n AMD

.rep

mulu
.endr

15

Temp0,Temp1,Temp0

; expand out 15 copies of next instruction
; in-line
; total of 15 more multiply-steps

; the top 16 bits of the result will be in the lower 16 bits of TempO, the bottom 16 bits in the top

;of Q
mtsrim
mfsr
jmpi
extract

do32:
mulu

.rep

mulu
.endr

jmpi
mfsr

2.6.3 Division

FC,16

Tempi1,Q

tpc

gr0, TempO0,Temp1

temp0,Temp1,0
31

TempO0,Temp1,Temp0

tpc
gr0,Q

; extract on bit-16 boundary

; return to the calling routine
; extracting the result in the delay-slot of the
; jump

; perform initial step

; expand out 32 copies of the next instruction
; in-line
; total of 31 more multiply steps

; Teturn to calling routine
; copy the result to the return register in the
; delay slot

The processor performs integer division by a series of divide-step instructions. When the
divisor is a power of 2 and the dividend is unsigned, the divide should be accomplished

by a right shift.

If a program requires the division of two integers, the required sequence of divide steps
may be executed in-line or executed in a divide routine called as a procedure. It may be
beneficial to precede a full divide procedure with a routine to discover whether or not the
number of divide steps may be reduced. This reduction is possible when the operands
do not use all of the available 32 bits of precision.

The following routine divides a 64-bit, unsigned dividend by a 32-bit unsigned divisor. .

; 64 bit/ 32 bit — 32 bit unsigned divide
; Input: most significant dividend word in Ir2, least significant dividend word in Ir3,
; divisor in Ir4

; Output: quotient in gr96, remainder in gro7

UDiv64:
mtsr

div0
.rep

div
.endr
divi

divrem
mfsr

Q, Ir3

gra7, Ir2

31

gr97, gr97, Ird4
gr97, gr97, Ir4

gr97, gra7, Ir4
gr96, Q

; put least significant word of the dividend in
; the Q register
; perform initial divide step

; expand out 31 copies of the next
; instruction in-line
; total of 30 more divide steps

; perform last step
; compute remainder
; get the quotient

The following routine divides a 32-bit unsigned dividend by a 32-bit unsigned divisor.

; 32 bit/ 32 bit — 32 bit unsigned divide

; Input: dividend word in Ir2, divisor in Ir4
; Output: quotient in gr96, remainder in gr97

2-22

Programming

AMD a

UDiv32:
mtsr
div0
rep

div

.endr

divil

divrem

mfsr

Q,Ir2

gr97,0

31

gr97, gr97, Ir4
gra7, gra7, Ir4

gr97, gro7, Ird
gr96, Q

; put the dividend in the Q register
; perform initial divide step, zeroing out
; the upper bits of the dividend

expand out 31 copies of the next
instruction in-line

; total of 30 more divide steps

perform last step
compute remainder
get the quotient

The following routine divides a 32-bit signed dividend by a 32-bit signed divisor. It also
traps division by zero. Because the divide-step instructions only operate on unsigned
operands, extra code is required to perform sign checking and conversion.

; 32 bit/ 32 bit signed divide, called by:

; call

; setip
~ + Input:

; Output:

; Used:

tpc, SDiv32

dst_reg, src1_reg, src2_reg

call the divide routine

passing pointers to the operand
registers in the delay slot

dividend and divisor in the registers pointed to by the indirect-pointer
registers IPA and IPB
result quotient in the register pointed to by IPC, remainder left in TempO
return address in tpc, special register Q

; Destroyed: previous contents of registers tpc, Temp0 — Temp2
; Symbolic register names:

.reg
.reg
.reg
.reg

.word

SDiv32:

const
asneq

add
jmpf
add

const

subr
pdividend:

jmpf

mtsr

xor
subr

pdivisor:
div0

.rep

div

.endr

divl

TempO, gr116
Temp1, gr119
Temp2, gr120
tpe, gr122
0x00200000

Tempt, 0

’

V_DIVBYZERO, Temp1, gr0

TempO, gr0, 0
TempO, pdividend
Temp?2, Temp1, gr0
Tempt, 3

TempO, TempO, O

Temp2, pdivisor
Q, Temp0

Tempt, Temp1, 1
Temp2, Temp2, 0

TempO, 0
31

TempO, TempQ, Temp2

TempO, TempO, Temp2

Debugger tag word

check for divide by zero with an assert
get dividend from indirect pointer

is it negative? (jmpf is also “jmppos”)
get divisor from indirect pointer

set negative result and remainder flags
make dividend positive

is divisor negative?

copy dividend to Q register in delay slot
of the jump

turn off negative result flag

make divisor positive

initialize
expand out 31 copies of the next

instruction in-line
total of 30 more divide steps

; perform last divide step

Programming

2-23

n AMD

2.7

T 2.71

2.7.2

divrem TempO, Temp0, Temp2 ; get positive remainder

mfsr Temp2, Q ; get positive quotient

sll Temp1, Tempi, 30 ; copy negative remainder flag to test bit
jmpf Temp1, premainder ; if itis not set, remainder is ok

sl Temp1, Temp1, 1 ; copy negative result flag to test bit

subr TempO, TempO, O negate remainder

premainder:
jmpfi Tempt, tpc
add gr0, Temp2, 0

return to caller if result is positive
copying quotient to the result register
in the delay slot

else return to caller,

negating the quotient in the delay slot

_jmpi tpc
subr gr0, Temp2, 0

1 NEED AN INSTRUCTION FOR...

This section discusses topics of general concern in the implementation of application
programs.

Run-Time Checking

The assert instructions provide programs with an efficient means of comparing two
values and causing a trap when a specified relation between the two values is not
satisfied. The instructions assert that some specified relation is true and trap if the
relation is not true. This allows run-time checking, such as checking that a computed
array index is within the boundaries of the storage for an array, to be performed with a
minimum performance penalty.

Assert instructions are available for comparing two signed or unsigned operands. The
following relations are supported: equal-to, not-equal-to, less-than, less-than-or-equal-to,
greater-than, and greater-than-or-equal-to.

The assert instructions specify a vector number for the trap. However, only vector
numbers 64 through 255 (inclusive) may be specified by User-mode programs. If a
User-mode assert instruction causes a trap and the vector number is between 0 and 63
inclusive, a Protection Violation trap occurs, instead of the specified trap.

Since the assert instructions allow the specification of the vector number, several traps
may be defined in the system for different situations detected by the assert instructions.

Operating-System Calls

An applications program can request a service from the operating system by using the
following instruction:

asneq System_Routine, gri, gri

This instruction always creates a trap since it attempts to assert that the content of a
register is not equal to itself (the register number used here is irrelevant, as long as the
register is otherwise accessible).

The System_Routine vector number specified by the instruction invokes the execution of
the operating system routine that provides the requested service. This vector number
may have any value between 64 and 255, inclusive (vector numbers 0 through 63 are
pre-defined or reserved). Thus, as many as 192 different operating-system routines may
be invoked from the applications program.

In cases where the indirect pointers may be used, the EMULATE instruction allows two
operand/result registers to be specified to the operating-system routine. The instruction
is as follows:

2-24

Programming

AMDa

2.7.3

2.7.4

2.7.5

2.7.6

emulate System_Routine, Ir3, Ir6

In this case, the System_Routine vector number performs the same function as in the
previous example. Here, however, LR3 and LR6 are specified as operand registers
and/or result registers (these particular registers are used only for illustration). The
operating-system routine has access to these registers via the indirect pointers, which
allows flexible communication.

Multiprecision Integer Operations

The processor allows the Carry (C) bit of the ALU Status Register to be used as an
operand for add and subtract instructions. This provides for the addition and subtraction
of operands that are greater than 32 bits in length. For example, the following code
implements a 96-bit addition with signed overflow detection.

add Ir7, gr96, Ir2
addc Ir8, gr97, Ir3
addes 19, gr98, Ir4

Global registers GR96—-GR98 contain the first operand, local registers LR2-LR4 contain
the second operand, and local registers LR7-LR9 contain the result. The first two add
instructions (ADD and ADDC) set the C bit, which is used by the second two instructions
(ADDC and ADDCS). If the addition causes a signed overflow, then an Out-of-Range
trap occurs; overflow is detected by the final instruction.

Complementing a Boolean

To complement a Boolean in the processor’s format, only the most significant bit of the
Boolean word should be considered, since the least significant 31 bits may or may not
be zeros. This is accomplished by the following instruction:

cpge gr96, gr96, 0

The Boolean is in GR96 in this example. This instruction is based on the observation
that a Boolean TRUE is a negative integer, since the Boolean bit coincides with the
integer sign bit. If the operand of this instruction is a negative integer (i.e., TRUE), the
result is the Boolean FALSE. If the operand is non-negative (i.e., the Boolean FALSE),
the result is TRUE. Note that this instruction clears the least significant 31 bits.

Large Jump and Call Ranges

The 16-bit relative branch displacement provided by processor instructions is sufficient in
the majority of cases. However, addresses with a greater range are occasionally

needed. In these cases, the CONST and CONSTH instructions generate the large
branch-target address in a register. An indirect jump or call then uses this address to
branch to the appropriate location.

NO-OPs
When a NO-OP is required for proper operation (e.g., as described in Section 5.6), it is
important that the selected instruction not perform any operation, regardless of program
operating conditions. For example, the NO-OP cannot access general-purpose registers
because a register may be protected from access in some situations. The suggested
NO-OP is:

aseq 0x40, gri, grt
This instruction asserts that the Stack Pointer (GR1) is equal to itself. Since the asser-
tion is always true, there is no trap. Note also that the Stack Pointer cannot be protected,
and that the assert instruction cannot affect any processor state.

Programming 2-25

l"l AMD

2.8 VIRTUAL ARITHMETIC PROCESSOR

In order to be object-code compatible with present and future implementations of the
29K Family of microprocessors, the Am29200 and Am29205 microcontrollers provide
virtual arithmetic software. A virtual implementation is the means by which a processor
appears to perform functions that it does not actually perform. In the case of the
Am29200 and Am29205 microcontrollers, the processor defines arithmetic instructions,
control, and status which are not directly supported by hardware, but which are imple-
mented by system software.

'2.8.1 Trapping Arithmetic Instructions
The processor does not incorporate hardware to directly support floating-point opera-
tions, nor does it directly support full multiply and divide instructions. However, instruc-
tions to perform these operations are included in the instruction set. These instructions
are included for compatibility with processor implementations, such as the Am29050
microprocessor, that have hardware to perform these operations.

In application programs that must be fully object-code compatible across several
processor versions—while taking advantage of the performance of the versions having
arithmetic hardware—the defined instructions should be used to perform floating-point,
multiplication, and division operations.

In the Am29200 and Am29205 microcontrollers, the Floating-Point, CLASS, CONVERT,
MULTIPLY, MULTM, MULTIPLU, MULTMU, DIVIDE, DIVIDU, and SQRT instructions
cause traps. The indirect pointers are set at the time the trap occurs, so a trap handler
can gain access to the operands of the instruction and can determine where the result is
to be stored. A trap handler can directly emulate the execution of the instruction.

2.8.2 Virtual Registers
The processor does not incorporate hardware to directly support the Floating-Point
Environment Register (FPE), Integer Environment Register (INTE), or Floating-Point
Status Register (FPS). When one of these registers is referenced by a MTSR/MFSR
instruction (or a variant), a Protection Violation trap occurs. The Protection Violation trap
handler must establish that the faulting instruction is a MTSR/MFSR and that the register
specified by the instruction is one of the registers supported by the virtual interface. This is
accomplished by obtaining the faulting instruction from memory and examining the
OPCODE and SRC/DEST fields. The trap handler then simulates the operation of the
register.

2.9 PROCESSOR INITIALIZATION

When power is first applied to the processor, it is in an indeterminate state and must be
placed in a known state. Also, under certain circumstances, it may be necessary to place
the processor in a defined state. This is accomplished by the Reset mode, which places
the processor into a predefined state.

2.9.1 Configuration Register (CFG, Register 3)
This protected special-purpose register (Figure 2-11) controls certain processor and
system options. The Configuration Register is defined as follows:

Figure 2-11 Configuration Register
31 23 15 7 0

PRL Reserved

2-26 Programming

AMD u

Bits 31~24: Processor Release Level (PRL)—The PRL field is an 8-bit, read-only
identification number which specifies the processor version.

Bits 23-0: Reserved

2.9.2 Reset Mode
The Reset mode is invoked by asserting the RESET input. The Reset mode is entered
within four processor cycles (MEMCLK cycles) after RESET is asserted. The RESET
input must be asserted for at least four processor cycles to accomplish a processor
reset.

The Reset mode can be entered at any point during operation. If the RESET input is
asserted at the time power is first applied to the processor, the processor enters the
Reset mode only after four cycles have occurred on the MEMCLK pin.

The Reset mode configures the processor state as follows:

1. Instruction execution is suspended.

2. Instruction fetching is suspended.

3. Any interrupt or trap conditions are ignored.
4

. The Current Processor Status Register (see Section 16.2.1) is set as shown in
Figure 2-12.

5. The Contents Valid (CV) bit of the Channel Control Register (see Section 16.7.2.3)
is reset.

Except as previously noted, the contents of all general-purpose registers and special-
purpose registers are undefined.

The Reset mode is exited when the RESET input is deasserted. Either four or five cycles
after RESET is deasserted (depending on internal synchronization time), the processor
-performs an initial instruction access on the external interface. The initial instruction
access is directed to address 0, which is in ROM Bank 0 after a reset. Setting the
characteristics of the ROM in Bank 0 during reset is described in Section 8.2.3.

A processor reset configures the internal peripherals as follows:

1. In the ROM controller, ROM Bank 0 on the Am29200 microcontroller is configured by
the BOOTW signal; the boot ROM in ROM Bank 0 on the Am29205 microcontroller is
always 16 bits wide.The other banks are set so as not to interfere with accesses to
ROM Bank 0.

Figure 2-12 Current Processor Status Register In Reset Mode

31 23 15 7 0

ojo|ojojo|ojojofjOjo|o|o|OfjOjO|O}OfO]|O|OjO)1jOfOfO|O|O]1|O]JOf1]1

\ 7 ' .
\

Reserved

'

'

'
res res

=
-
N

' L]

. 1]

1 L]

' 1]

L} 1]

L} 1
TD res TE TU res WM res IM DA

Programming 2-27

n AMD

. The DRAM configuration is not set by a processor reset, DRAM mapping is disabled,

and the refresh rate is set to the slowest possible value (refresh every 511 MEMCLK
cycles).

. The configuration of the peripheral interface adapter is not set by a processor reset.
. The DMA controller is disabled, DRM fields are reset to 0, and all state machines are

reset.

. The POEN field of the PIO Output Enable Register (see Section 12.2.4) is reset to 0,

making all PIO pins inputs.

. The parallel port is disabled and all state machines are reset.
7. The serial port is disabled and all state machines are reset.
. The video interface is disabled and all state machines are reset. All signals that may

be either inputs or outputs are configured as inputs.

2-28

Programming

&\

4 PROCEDURE LINKAGE

This chapter describes the run-time storage organization recommended for the
Am29200 and Am29205 microcontrollers and describes the use of the local registers to
improve the performance of procedure calls. The presentation in this chapter is intended
as a guide for implementing microcontroller software systems, not necessarily as a strict
definition of how these systems must be implemented.

Programming languages that use recursive procedures, such as C, generally use a
stack to store data objects dynamically allocated at run-time. The organization of the
run-time storage, including the run-time stack, determines how data objects are stored
and how procedures are called at the machine level. The microcontroller is designed to
minimize the overhead of calling a procedure, passing parameters to a procedure, and
returning results from a procedure. This chapter describes the run-time storage orga-
nization and procedure-calling conventions.

4.1 RUN-TIME STACK ORGANIZATION AND USE

A run-time stack consists of consecutive overlapping structures called activation records.
An activation record contains dynamically allocated information specific to a particular
activation (or call) of a procedure (such as local data objects). Because of recursion,
multiple copies of a procedure may be active at any given time. Each active procedure
has its own unique activation record allocated somewhere on the run-time stack. The
local variables required by a particular procedure activation are contained in the
activation record associated with that activation. Thus, the local variables for different
activations do not interfere with one another. A compiler generates the instructions to
create and manage the run-time stack, and compiler-generated instructions are based
on its existence. :

As an example, Figure 4-1 shows three activation records on a run-time stack. This
stack configuration was generated by procedure A calling procedure B, which in turn
called procedure C. The fact that procedure C is the currently active procedure is
reflected by its activation record being on the top of the run-time stack. The Stack
Pointer points to the top of procedure C’s activation record.

In Figure 4-1, the storage areas labeled Out args and In args are the outgoing argu-
ments area (for the caller) or the incoming arguments area (for the callee). These are
shared between the caller procedure and the callee for the communication of parame-
ters and results. The areas labeled Locals contain storage for local variables, temporary
variables (for example, for expression evaluation), and any other items required for the
proper execution of the procedure.

4.1.1 Management of the Run-Time Stack

A run-time stack starts at a high address in memory and grows toward lower memory
addresses as procedures are called. The bottom of the stack is the location with a high
address at which the stack starts; the top of the stack is the location with a lower
address at which the most recent activation record has been allocated.

When a procedure is called, a new activation record might need to be allocated on the
run-time stack. An activation record is allocated by subtracting from the stack pointer the

Procedure Linkage 441

n AMD

Figure 4-1

Activation
Record for A Locals A

Record for C

Run-Time Stack Example

Out args X Hi
gher Memory
Inargs A Addresses

Out args A
Inargs B

Activation
Locals B Record for B

Outargs B
Inargs C

r Y

Activation Locals C Lower Memory

Addresses

Outargs C Stack Pointer

(Top of Stack)

v

number of locations needed by the new activation record. The stack pointer is decrem-
ented so that variables referenced during procedure execution are referenced in terms
of positive offsets from the stack pointer.

When storage for an activation record is allocated, the number of storage locations
allocated is the sum of the number of locations needed for:

1. Local variables
2. Restarting the caller, such as locations for return addresses

3. Arguments of procedures that may be called in turn by the called procedure (the out-
going arguments area)

In some cases storage is not required for one or more of the above items. Also, the
incoming arguments area, though part of the activation record of the callee, is not

. allocated storage at this time, because this storage was allocated as the outgoing

arguments area of the calling procedure.

An activation record is deallocated, just prior to returning to the caller, by adding to the
stack pointer the value subtracted during allocation.

In the Am29200 and Am29205 microcontrollers, run-time storage is actually implement-
ed as two stacks: the Register Stack and the Memory Stack. Storage is allocated and
deallocated on these stacks at the same time. The Register Stack stores activation
records associated with all active procedures (except leaf routines, as described later).
The Memory Stack stores activation-record information that does not fit into the Register
Stack or that must be kept in memory for other reasons (e.g., because of pointer
dereferences). Both the Register Stack and the Memory Stack are stored in the external
data memory. However, a portion of the Register Stack is kept in the processor’s local
registers for performance. The term stack cache in this section refers to the use of the
local registers to contain a portion of the Register Stack.

42

Procedure Linkage

AMD z'

4-1 I2

Register Stack

The Register Stack contains activation records for active procedures (Figure 4-2). An
activation record in the Register Stack stores the following information:

m Input arguments to the called procedure. This portion of the activation record is
shared between a caller and the callee. It is allocated by the caller as part of the call-
er's activation record.

m The caller's frame pointer. This is the address of the lowest-addressed byte above
the highest-address word of the caller’s activation record, and is used to manage the
Register Stack. This portion of the activation record is shared between a caller and
the callee. It is allocated by the caller as part of the caller’s activation record.

m The callers return address. This is used to resume the execution of the caller after
the called procedure terminates. This is also part of the caller’s activation record.

m The memory frame pointer. This is the address of the top of the caller's Memory
Stack (see below). This address is stored by the callee (if required), and used to re-
store the memory stack upon return.

The local variables of the called procedure, if any.
Outgoing parameters of the called procedure, if any.
The frame pointer of the called procedure, if the procedure calls another procedure.

The return address for the called procedure, if the procedure calls another procedure.
This location is allocated in the Register Stack, and is used when the called proce-
dure calls another procedure.

Figure 4-2

Activation Record in the Register Stack

>
»

Incoming Arguments

Frame Pointer LR1 (Caller) } Before and
Retumn Address LRO (Caller) After Call
- 4
Memory Frame Pointer Caller's Stack Pointer

Callee’s]
Activation)
Record = Local Variables]
of Callee
Outgoing Arguments
Frame Pointer LR1 (Callee) } During
Call
Return Address LRO (Callee)

v

Callee's Stack Pointer

Procedure Linkage 4-3

l"' AMD

4.1.3

Local Registers as a Stack Cache

The Am29200 and Am29205 microcontrollers are designed for efficient implementation
of the Register Stack. Specifically, each microcontroller can use the large number of
relatively addressed local registers to cache portions of the Register Stack, yielding a
significant gain in performance. Allocation and deallocation of activation records occurs
largely within the confines of the high-speed local registers, and most procedure calls
occur without external references. Furthermore, during procedure execution, most data
accesses occur without external references, because activation-record data are
referenced most frequently. The principle of locality of reference, which allows any cache
to be effective, also applies to the stack cache. The entries in the stack cache are likely
to remain there for re-use, because the size of the Register Stack does not change very
much over long intervals of program execution. Activation records are typically small, so
the 128 locations in the local register file can hold many activation records.

Allocating Register-Stack activation records in the local registers is facilitated by the Stack
Pointer in Global Register 1. During the execution of a procedure, the Stack Pointer points
simultaneously to the top of the Register Stack in memory and to the local register at the
top of the stack cache. In other words, Global Register 1, a word-length register, contains
the 32-bit address of the top of the Register Stack, while bits 8~2 of Global Register 1
(with a 1 appended to the most significant bit) indicate the absolute register number of
Local Register 0. Allocation and deallocation of the Register Stack is accomplished by
subtracting from or adding to, respectively, the value of the Stack Pointer.

Using this register-addressing scheme, locations from the Register Stack are automati-
cally mapped into the local register file. Figure 4-3 shows the relationship between the
Register Stack and the stack cache in the local registers. As shown, pointers are
required to define the boundaries between the Register Stack and the stack cache.

Figure 4-3

Relationship of Stack Cache and Register Stack

" Register
Stack

Spilled
Activation

Local
Register Records

File Register Free Bound (gr127)

P e

Z Other Stack
Frame Pointer (Ir1) . Entries

— WL

Current
Activation

Ir6
IS

Ir3
Ir2
Ir1 Register Stack Pointer (gr1)
Iro —

Iri27

(in local
registers)

L]
.
L]
.
.
Ir4 ' ‘Record
1]
L]
1]
1

AN

Procedure Linkage

AMD n

4.1 I4

m The register free bound pointer (rfb, gr127) defines the boundary between the portion
of the Register Stack cached in the local registers and the portion stored in the exter-
nal data memory. The rfb pointer contains the address of the first word in the Register
Stack that is not contained in the local registers, but which is in memory.

® The frame pointer (fp, Ir1) contains the memory address of the lowest-addressed
word not in the current activation record. The fp is used to determine whether the call-
er's complete activation record is contained in the local registers when a procedure
returns from a call, as described later.

m The register stack pointer (rsp, gr1) points to the top of the Register Stack either in
the local registers or the memory. The rsp is contained in the local-register Stack
Pointer (Global Register 1). The top of the Register Stack may or may not be con-
tained in the data memory. The rsp simply defines the location of the top of the Regis-
ter Stack. .

® The register allocate bound pointer (rab, gr126) defines the lowest-addressed stack
location that can be cached within the local registers. This defines the limit to which
local registers can be allocated in the Register Stack.

Several activation records may exist in the Register Stack at any given time, but only
one stack location may be mapped to a local register at a given time. When the Register
Stack grows beyond the 128-word capacity of the local registers, some movement of
data between the stack cache and the Register Stack in data memory must occur.

Stack overflow occurs when a procedure is called, but the activation record of the callee
requires more registers than can be allocated in the stack cache (this is detected by
comparing rsp with rab). Figure 4-4 illustrates stack overflow. In this case, the contents
of a number of registers must be moved to data memory. The number of registers
involved must be sufficient to allow the entire activation record of the callee to reside in
the local registers. A block of the registers is copied, or spilled, into an area of external
data memory, freeing space in the local register file for the most recent procedure call.

Stack underflow occurs when a procedure returns to the caller, but the entire activation
record of the caller is not resident in the stack cache (this is detected by comparing fp
with rfb). Figure 4-5 illustrates stack underflow. In this case, the non-resident portion of
the caller’s stack must be moved from data memory to the local registers. Underflow
occurs because overflow occurred at some previous point during program execution,
causing part of the Register Stack to be moved to memory.

The processor performs no hardware management of the stack cache and cannot detect
a reference to a quantity that is not in the stack cache. Consequently, software must
keep the size of an activation record less than or equal to the size of the local register
file (128 words). Any additional storage requirements are satisfied by the Memory Stack.

Memory Stack

In general, the Memory Stack is used to augment the Register Stack, holding additional
information associated with activation records. For example, the Memory Stack holds
large data structures that cannot fit into the Register Stack. Similar to the Register Stack,
the Memory Stack contains a series of (possibly overlapping) activation records, each
corresponding to a procedure activation. However, a Memory Stack activation record
need not exist for a procedure that does not need a Memory Stack Area. The Memory
Stack contains the following information:

a Overflow incoming arguments. These are incoming arguments that do not fit in the
allowed incoming arguments area of the Register Stack activation record.

Procedure Linkage 4-5

l"l AMD

Figure 4-4 Stack Overflow
Register
Stack Y
Loc}al Spilled
Relgillseter Activation
Register Free Bound (gr127) Records
! Frame Pointer (Ir1)
‘_
% Other Stack ;
L/ Entries]
///
Ir6 Register Allocate Bound (gr126) E Current E
Ir5 e o e.... - Activation)
A L S “ ' Record !
Y << D 4 ' (in local '
o2 : _ ! registers) |
I ! Register Stack Pointer (gr1) 1
leeaeQ _i&— —

m Spilled incoming arguments. These are incoming arguments that cannot be kept in
the Register Stack. For example, if the address of an argument is used in a called
procedure, the associated value must be in the Memory Stack.

m Any procedure-local variable not allocated to a register.

m Local block space. This storage is allocated dynamically on the Memory Stack.

It is used to implement functions such as the alloca() function in the C programming
language.

m Overflow outgoing arguments. These are outgoing arguments that do not fit in the
allowed outgoing arguments area of the Register Stack activation record.

In contrast to the Register Stack, the Memory Stack is not cached and has no fixed size

limit. The top of the Memory Stack is defined by the memory stack pointer (msp), which

is stored in Global Register 125 by convention.
4.2 PROCEDURE LINKAGE CONVENTIONS

The procedure linkage conventions define the standard sequences of instructions used

to call and return from procedures. These instruction sequences perform the following

operations (other, more general operations may also be required, as described later):

m Put procedure arguments into the outgoing arguments area of the activation record.
This may or may not involve copying the arguments; copying is not necessary if the
arguments are placed into the appropriate registers as the result of computation.

4-6 Procedure Linkage

AMD n

Stack Underflow

Figure 4-5
Register
Stack
femmmmmmeemana Spilled
P, ! . Activation
... local ___ 3 Frame Pointer (Ir1) Records
o« __ _Register _&— —¥ .
____File : Register Free Bound (gr127)
1
---------------------- L 1
! Current !
' Activation '
! Record :
) ‘ '
In Register Stack Pointer (gr1) '
Ir0 0 '
127
126
Ir125
Ir124
Ir123
Ir122
1
Register Allocate Bound (gr126)

®m Branch to the procedure using a call instruction, which also places the return address
in a register.

m Allocate a frame on the Register Stack. A frame is the storage that contains the pro-
cedure’s activation record.

m If overflow occurs during frame allocation, spill the least recently used locations of the
Register Stack. The number of spilled locations must be sufficient to allow the new
frame to reside entirely within the local registers.

m Determine the frame-pointer value of the called procedure, if this procedure may call
another procedure.

m Execute the procedure.

m Place return values into the appropriate registers.

m Deallocate the activation-record frame.

m Fill locations of the local registers from the Register Stack in external memory, if un-
derflow occurs.

® Branch to the procedure’s return address.

This section describes the routines that implement the procedure linkage conventions.

The operations described here are not required on every procedure call. In some cases,

operations can be omitted or simpler routines used; these cases and the accompanying

simplifications are also described here.
4.2.1 Argument Passing

The linkage convention allows up to 16 words of arguments to be passed from the caller
to the callee in local registers. These arguments are passed in Local Register 2 through

Procedure Linkage

4-7

n AMD

4.2-2

Local Register 17 of the caller (note that the local-register numbers are different for the
caller and the callee, because of Stack-Pointer addressing).

When more than 16 words are required to pass arguments, the additional words are
passed on the Memory Stack. In this case, the memory stack pointer (in Global Register
125) points to the seventeenth word of the arguments, and the remaining argument
words have higher memory addresses. Multiword arguments may be split across the
Register Stack and the Memory Stack. For example, if a multiword argument starts on
the sixteenth word of the outgoing arguments, the first word of the argument is passed in
the Register Stack, and the remainder of the argument is passed in the Memory Stack.

All arguments occupy at least one word. Arguments that are a byte or half-word in length
(for example, a character) are padded to 32 bits and passed as a full word. However, an
array or structure composed of multiple byte or half-word components can be passed as
a single, packed array or structure of bytes or half-words rather than an array or
structure of padded bytes or half-words.

No argument is aligned to anything other than a word address boundary, including
multiword arguments. Some multiword arguments are referenced as a single object (for
example, double-precision floating-point values). It may be necessary to copy such
arguments to an aligned memory or register area before use.

Procedure Prologue

When a procedure is called and the procedure may call another procedure, the callee
must allocate a frame for itself on the Register Stack (this is not required for leaf
procedures that do not call other procedures, as described later). A frame is allocated by
decrementing the register stack pointer to accommodate the size of the required
activation record. The procedure prologue is the instruction sequence that allocates the
callee’s Register Stack frame.

To allocate the stack frame, the prologue routine decrements the register stack pointer
by the amount rsize (see Figure 4-6). The value of rsize must be an even number given
by the following formula:

rsize 2 (size of local variable area) + (size of outgoing arguments area) + 2

The value 2 in this formula accounts for the space required by the return address (in
Local Register 0) and the frame pointer (in Local Register 1). The size of the local
variable area includes the space for the memory frame pointer, if required. If the formula
total is an odd value, the total must be adjusted (by adding 1) so the resulting rsize value
is even. This aligns the top of the Register Stack on a double-word boundary. The
reason for this alignment is that double-precision floating-point values must be aligned to
registers with even absolute-register numbers. Alignment of double-precision values is
accomplished by placing these values into even-numbered local registers and making
rsize even (it is also assumed that the register stack pointer is initialized on an even-
word boundary).

Rsize is not the size of the entire activation record of the callee, because the callee’s
activation record includes storage that was allocated as part of the caller’s activation
record frame (e.g., the caller's outgoing arguments area, which is the callee’s incoming
arguments area). The size of the callee’s entlre activation record is denoted size and is
given by the following formula:

size = rsize + (size of the incoming arguments area) + 2

4-8

Procedure Linkage

AMDn

Figure 4-6 Definition of size and rsize Values

* ;
, — Incoming Arguments* —
'
. Frame Pointer LR1 (Caller)
L}
! Return Address —— LRO (Caller)
, 4 Memory Frame Pointer* Caller's Stack Pointer
: .
1 L]
L] . g —
1 []
Calleg’s ! ! | —
A;t:;e;t:gn . . | Local Variables |
: : of Callee*
' " -— —]
' [}
']
size rsize -
Co
L]
: E — Outgoing Arguments* —
) N .
L}
: E Frame Pointer* LR1 (Callee)
L}
v ; Return Address* — LRo (Callee)
> Callee’s Stack Pointer

*May not be required

In the prologue routine, the following instruction is used to allocate the stack frame
(rsp = gri):

prologue:
sub rsp,rsp,rsize*4 ; *4 converts words to bytes

However, this instruction does not account for the fact that there may not be enough
room in the local registers to contain the activation record. There must be additional
instructions to detect stack overflow and to cause spilling if overflow occurs. This is
accomplished by comparing the new value of the register stack pointer with the value of
the register allocate bound and invoking a trap handler (with vector number V_SPILL) if
overflow is detected.

Furthermore, if the procedure calls another procedure, the prologue must compute a
frame pointer. The frame pointer will be used by procedures called in turn by the callee
to insure that the callee’s activation record is in the local registers upon return (i.e., that it
has not been spilled onto the Register Stack in data memory). The frame pointer is
computed in the prologue because it need only be computed once, regardless of how
many procedures are called by a given procedure.

The complete procedure prologue is then (fp = Ir1):

prologue:
sub rsp, rsp, rsize*4 ; allocate frame
asgeu V_SPILL,rsp, rab ; call spill handler if needed
add fp, rsp, size*4 ; compute frame pointer

Procedure Linkage 4-9

l‘.l AMD

4.2.3

4.24

4.2.5

Spill Handler

If overflow occurs, the assert instruction in the prologue fails, causing a trap. The trap
handler invokes a User-mode routine in the trapping process to spill Register Stack
locations from the local registers to external memory. Having most of the spill handling in
a User-mode routine minimizes the amount of time that interrupts are disabled and
insures that spilling is performed using the correct virtual-memory configuration.

The spill handler uses two registers. The first register, Global Register 121, normally
contains a trap handler argument (tav), but is used by the spill handler as a temporary
register. The second register, Global Register 122, stores a trap handler return address
(tpc). This register is used by the User-mode spill handler to return to the trapping
procedure. It is assumed that the address of the User-mode spill handler is contained in
a global register, denoted user_spill_reg in the following instruction sequence.

The complete spill handler is:

Spill: ; operating-system routine
mfsr tpc, PC1 ; save return address
mtsr PC1, user_spill_reg ; branch to User spill via interrupt return
add tav, user_spill_reg, 4
mtsr PCO, tav
iret
user_spill: ; User-mode spill handler
sub tav, rab, rsp ; compute spill: allocate bound - rsp
srl tav, tav, 2 ; shift to get number of words
sub tav, tav, 1 ; count is one less
mtsr CR, tav ; set Count Remaining Register
sub tav, rab, rsp
sub tav, rfb, tav ; compute new free bound
add rab, rsp, 0 ; adjust allocate bound
storem 0,0, Ir0, tav ; spill
jmpi tpc ; return to trapping procedure
add rfb, tav, O ; adjust free bound

Return Values

If the called procedure returns one or more results, the first 16 words of the result(s)
are returned in Globa! Register 96 through Global Register 111, starting with Global
Register 96.

If more than 16 words are required for the results, the additional words are returned in
memory locations allocated by the caller. In this case a large return pointer (/rp) provided
by the caller in Global Register 123 at the time of the call points to the seventeenth word
of the results, and subsequent words are stored at higher memory addresses.

Procedure Epilogue

The procedure epilogue deallocates the stack frame allocated by the procedure
prologue and returns to the calling procedure. Stack deallocation is accomplished by
adding the rsize value back to the register stack pointer, after which the deallocated
registers are no longer used and are considered invalid. The epilogue also detects stack
underflow and causes register filling if underflow occurs. This is accomplished by
comparing the value of the caller’s frame pointer with the register free bound and
invoking a trap handler (with vector number V_FILL) if underflow is detected. Finally, the
epilogue returns to the caller using the caller’s return address.

4-10

Procedure Linkage

AMD l‘.l

4.2.6

4.2.7

4.2.8

The complete procedure epilogue is:

epilogue:
add rsp, Isp, rsize*4 ; add back rsize count
nop ; cannot reference a local register here
asleu V_FILL, fp, rfb ; call fill handler if needed
jmpi Ir0 ; jump to return address
nop ; delay slot

Fill Handlers

If underflow occurs, the assert instruction in the epilogue fails, causing a trap. The trap
handler invokes a User-mode routine in the trapping process to fill Register Stack
locations from the external memory to local registers. The fill handler is similar in
organization to the spill handler discussed above.

The complete fill handler is:

Fill: ; operating-system routine
. mfsr tpc, PCH ; save return address
mtsr PCH1, user_fill_reg ; branch to User fill via interrupt return
add tav, user_fill_reg, 4 ‘
mtsr PCO, tav
iret
user_fill: ; User-mode fill handler

const tav, (0x80<<2) local register has high bit set

or tav, tav, rib ; put starting register number into Indirect
’ : ; Pointer A

mtsr IPA, tav R

sub tav, fp, rib compute number of bytes to fill

add rab, rab, tav adjust the allocate bound

srl tav, tav, 2 change byte count to word count

sub fav, tav, 1 make count zero-based

set Count Remaining register
fill

return to trapping procedure
adjust the free bound

mtsr CR, tav
loadm 0,0, gro, rfb
jmpi tpc

add b, Ir1, 0

Register Stack Leaf Frame

A leaf procedure is one that does not call any other procedure. The incoming arguments
of a leaf procedure are already allocated in the calling procedure’s activation-record
frame, and the leaf routine is not required to allocate locations for any outgoing argu-
ments, frame pointer, or return address (since it performs no call). Hence, a leaf
procedure need not allocate a stack frame in the local registers, and can avoid the
overhead of the procedure prologue and epilogue routines. Instead, a leaf routine can
use a set of global registers for local variables; Global Register 96 through Global
Register 124 are reserved for this purpose (among other purposes). If there is an
insufficient number of global registers, the leaf procedure may allocate a frame on the
Register Stack. '

Local Variables and Memory-Stack Frames

A called procedure can store its local variables and temporaries in space allocated in the
Register Stack frame by the procedure prologue. The values are referenced as an offset
from the rsp base address, using the Stack-Pointer addressing of the local registers. No
object in a register is aligned on anything smaller than a register boundary, and all
objects take at least one register.

Procedure Linkage 4-11

n AMD

4.2.9

Because there are 128 local registers, the total Register Stack activation-record size
cannot be greater than 128 words. If the callee needs more space for local variables and
temporaries, it must allocate a frame on the Memory Stack to hold these objects. To
allocate a Memory-Stack frame, the procedure prologue decrements the memory stack
pointer (msp, in gr125). The procedure epilogue deallocates the Memory-Stack frame by
incrementing the msp.

A procedure that extends the Memory Stack dynamically (e.g., using alloca()) must
make a copy of the msp at procedure entry before allocating the Memory-Stack frame.
The msp is stored in the memory frame pointer (mfp) entry of the activation record in the
Register Stack. The procedure can then change the msp during execution, according to
the needs of dynamic allocation. On procedure return, the Memory-Stack frame is
deallocated using the mfp to restore the msp. A procedure that does not extend the
Memory Stack dynamically need not have an mfp entry in its activation record.

The following prologue and epilogue routines are used if there is no dynamic allocation
of the Memory Stack during procedure execution, but a-Memory Stack frame is other-
wise required (Figure 4-6 contains a diagram of register usage):

prologue:

sub rsp, rsp, <rsize>*4 ; allocate register frame

asgeu V_SPILL, rsp, rab ; call spill handler if needed

add fp, rsp, <size>*4 ; compute register frame pointer

sub msp, msp, <msize> ; allocate memory frame

; msize = size of memory frame in words

epilogue: .

add rsp, rsp, <rsize>*4 ; deallocate register frame

add msp, msp, <msize> ; deallocate memory frame

jmpi Ir0 ; return

asleu V_FILL, fp, rib ; call fill handler if needed :

The following prologue and epilogue routines are used if there is dynamic allocation of
the Memory Stack during procedure execution:

prologue:
sub rsp, rsp, <rsize>*4 ; allocate register frame
asgeu V_SPILL, rsp, rab ; call spill handler if needed
add fp, rsp, <size>"4 ; compute register frame pointer
add Ir{<rsize> — 1}, msp, O ; save memory frame pointer
; Ir{rsize—1} is last reg in new frame
sub msp, msp, <msize> ; allocate memory frame,
; msize = size of memory frame in words
epilogue:
add msp, Ir{<rsize> - 1},0 ; restore memory stack pointer
; deallocate memory frame
add Isp, Isp, <rsize>*4 ; deallocate register frame
nop ; cannot reference a local register here
jmpi Ir0 ; return

asleu V_FILL, fp, rfb call fill handler if needed

Static Link Pointer

Some programming languages permit nested procedure declarations, introducing the
possibility that a procedure may reference variables and arguments that are defined and
managed by another procedure. This other procedure is a static parent of the callee. A
static parent is determined by the declarations of procedures in the program source and
is not necessarily the calling procedure; the calling procedure is the dynamic parent.

4-12

Procedure Linkage

AMD u

4.2.10

4‘3

Since procedures can be nested at a number of levels, a given procedure may have a
number of hierarchically organized static parents.

A called procedure can locate its dynamic parent and the variables of the dynamic
parent because of the return address and frame pointer in the Register Stack. However,
these are not adequate to locate variables of the static parent that may be referenced in
the procedure. If such references appear in a procedure, the procedure must be
provided with a static link pointer (s/p). In the run-time organization, the sip is stored in
Global Register 124. Since there can be a hierarchy of static parents, the sip points to
the sip of the immediate parent, which in turn points to the sip of its immediate parent,
and so on. Note that the contents of Global Register 124 may be destroyed by a
procedure call, so a procedure needing to reference the variables of a static parent may
need to preserve the sip until these references are no longer necessary.

Transparent Procedures

A transparent procedure is one that requires very little overhead for managing run-time
storage. Transparent procedures are used primarily to implement compiler-specific
support functions, such as integer divide.

A transparent routine does not allocate any activation-record frames. Parameters are
passed to a transparent procedure using tav and the Indirect Pointer A, B, and C
registers. The return address is stored in tpc. This convention allows a leaf procedure to
call a transparent procedure without changing its status as a leaf procedure. There is a

- tight relationship between a compiler and the transparent procedures it calls. Some

transparent procedures may need more temporary registers and the compiler must
account for this.

REGISTER USAGE CONVENTION

The run-time organization standardizes the uses of the local and global registers. This
section summarizes register use and the nomenclature for register values:

B GR1: Register stack pointer (rsp)'

® GR2-GR63: Unimplemented

B GR64-GR95: Reserved for operating-system use

L]

GR96-GR111: Procedure return values. Lower-numbered registers are used before
higher-numbered registers. If more than 16 words are needed, the additional words
are stored in the Memory Stack (see GR123, large return pointer). These registers
are also used for temporary values that are destroyed upon a procedure call.

® GR112-GR115: Reserved for programmer. These registers are not used by the com-
piler, except as directed by the programmer.

m GR116-GR120: Compiler temporaries

m GR121: Trap handler argument/temporary (fav)—This register is used to communi-
cate arguments to a software-invoked trap routine. It can be destroyed by the trap,
but not by other traps and interrupts not explicitly generated by the program (for
example, a Timer trap).

m GR122: Trap handler return address/temporary (fpc). This register is also used by
software-invoked traps. It can be destroyed by the trap, but not by other traps and
interrupts not explicitly generated by the program (for example, a Timer trap). -

m GR123: Large return pointer/temporary (/rp)
m GR124: Static link pointer/temporary {s/p)

Procedure Linkage 4-13

n AMD

GR125: Memory stack pointer (msp)
GR126: Register allocate bound (rab)
GR127: Register free bound (rfb)
LRO: Return address

LR1: Frame pointer (fp)

In this convention, registers must be handled by software according to system require-
ments. The following practices are recommended:

m GR64-GR95 should be protected from User-mode access by the Register Bank
Protect Register.

m The contents of GR96—-GR124 should be assumed destroyed by a procedure call,
- unless the procedure is a transparent procedure.

® The contents of GR121 and GR122 should be assumed destroyed by any procedure
call or any program-generated trap.

m The contents of GR125 are always preserved by a procedure call.
& The contents of GR126 and GR127 are managed by the spill and fill handlers and

should not be modified except by these handlers.

COMPLEX PROCEDURE CAi.L EXAMPLE

4.4
The following code sequence demonstrates a complex procedure call, illustrating how
registers are used in the run-time organization:
caller:
(other code)
add Irp, msp, 32 ; pass Irp
add slp, msp, 120 ; pass a static link
call Ir0, callee
const Ir2, 1 ; 1 as first argument
(other code)
callee:
const tav, (126-2)*4 ; maximum register allocation
sub rsp, Isp, tav ; allocate register frame
asgeu V_SPILL, rsp, rab ; assert will be taken
const tav, (126-2)*4 + (3"4) ; incoming arguments and overhead
add fp, rsp, tav ; create frame pointer
add Ir123, msp, 0 ; for dynamic Memory-Stack allocation
const tav, memory_frame_size ; big msize (>65535 bytes)
consth tav, memory_frame_size - ; high half of msize
sub msp, msp, tav ; allocate memory frame
add Ir18, Irp, O ; save Irp for later
add Ir119, slp, 0 ; save slp for later
(other code)
add msp, Ir123, 0 ; deallocate memory frame
const tav, (126-2)*4 .; maximum allocation size
add rsp, rsp, tav ; deallocate register frame
const gr9e, 1 ; return v'alue
jmpi Ir0 ; return to caller)
asleu V_FILL, fp, b ; ensure caller’s registers in frame
4-14 Procedure Linkage

AMD n

4-5

TRACE-BACK TAGS

A trace-back tag is either one or two words of information included at the beginning of
every procedure. This information permits a debug routine to determine the sequence of
procedure calls and the values of program variables at a given point in execution. The
trace-back tag describes the memory frame size and the number of local registers used
by the associated procedure. A one-word tag is used if the memory frame size is less
than 2K words; otherwise, the two-word tag is used. Regardless of tag length, the tag
directly precedes the first instruction of the procedure. Figure 4-7 shows the format of the
trace-back tags.

Figure 4-7

Trace-Back Tags

One-word tag:

31 23 15 7 0

FITETT NERRERRRRERRRRREERR

000O0O0O0O0 O|JOIM|T argcount Reserved msize res

Two-word tag:

31 23 15 7 0

[TTTTI T T T ettt rrTyl
. 00
msize

HEERER HRRRERERRRRRERR R

00000 O0OO|1|MT argcount Reserved Reserved

The first word of a trace-back tag starts with the invalid operation code 00 (hexadecimal).
This unique, invalid instruction operation code allows the debugger to locate the beginning
of the procedure in the absence of other information related to the beginning of the
procedure, such as from a symbol table. This is particularly useful after a program crash,
in which case the debug routine may have only an arbitrary instruction address within a
procedure. The call sequence up to the current point in execution can be determined from
the argcount and msize values in the trace-back tag. However, for procedures that perform
dynamic stack allocation (e.g., using alloca()), the memory frame pointer must be used.

The tag word immediately preceding a procedure contains the following fields. Reserved
fields must be zero.

1-Word 2-Word

Tag Bits Tag Bits ltem Description
31-24 31-24 (word 2) opcode 00h (an invalid opcode)
23 23 (word 2) tag type O=one-word tag; 1=two-word tag
22 22 (word 2) Mfp 0=no mfp; 1=mfp used
21 21 (word 2) Transparent O=normal;1=transparent procedure
20-16 20-16 (word 2) argcount Number of arguments in

registers (including Ir0 and Ir1)
15-11 15-0 §word 2; reserved Reserved, must be zero
10-3 31-2 (word 1 msize Memory frame size in doublewords
2-0 1-0 (word 1) reserved Reserved, must be zero

If the procedure uses a Memory-Stack frame size 2K words or more, the msize field is
contained in the second tag word immediately preceding the first tag word.

Procedure Linkage 4-15

S5

PIPELINING AND n
INSTRUCTION SCHEDULING

5.1

5.2

This chapter offers a general overview of the internal operation of the pipeline, to help
the programmer understand how the pipeline affects the program execution and the
microcontroller’s behavior under certain conditions.

The operation of the functional units is coordinated by Pipeline Hold mode, which
ensures that operations are performed in the proper order. In certain cases, the pipeline
is exposed during instruction execution, because execution of certain instructions is
dependent on the execution of previous instructions. This chapter discusses the cases
where the pipeline is exposed to software and describes the resulting effect on instruc-
tion execution.

FOUR-STAGE PIPELINE

The Am29200 and Am29205 microcontrollers implement a four-stage pipeline for
instruction execution. The four stages are fetch, decode, execute, and write-back. For
operations, the pipeline is organized so the effective instruction-execution rate may be
as high as one instruction per cycle.

During the fetch stage, the instruction fetch unit determines the location of the next
processor instruction and issues the instruction to the decode stage. The instruction is
fetched from an external instruction memory.

During the decode stage, the instruction issued from the fetch stage is decoded, and the
required operands are fetched and/or assembled. Addresses for branches, loads, and
stores are also evaluated.

During the execute stage, the execution unit performs the operation specified by the
instruction.

During the write-back stage, the results of the operation performed during the execute
stage are stored. In the case of branches, loads, and stores, an address is transmitted to
a memory or a peripheral. ‘

Most pipeline dependencies internal to the processor are handled by forwarding logic in
the processor. For those dependencies that result from the external system, the Pipeline
Hold mode ensures proper operation.

In a few special cases, the processor pipeline is exposed to software executing on the
microcontroller (see Sections 5.4, 5.5, and 5.6).

PIPELINE HOLD MODE

The Pipeline Hold mode is activated whenever sequential processor operation cannot be
guaranteed. When this mode is active, the pipeline stages do not advance, and most
internal processor state is not modified.

The processor places itself in the Pipeline Hold mode in the following situations:

m The processor requires an instruction that has either not been fetched or not been
returned by the external instruction memory.

Pipelining and Instruction Scheduling 5-1

i"' AMD

® The processor requires data from an in-progress load and the operation has not
completed.

® The processor attempts to execute a load or store instruction while another load or
store is in progress.

® The processor must perform a serialization operation as described in Section 5.3.

m The processor is performing a sequence of load-multiple or store-multiple accesses.
The Pipeline Hold mode in this case prevents further instruction execution until the
completion of the load-multiple or store-multiple sequence.

m The processor has taken an interrupt or trap, and the first instruction of the interrupt
or trap handler has not entered the execute stage. The Pipeline Hold mode in this
case prevents the processor pipeline from advancing until the interrupt or trap handler
can begin execution.

m The processor has executed an interrupt return, and the target instruction of the inter-
rupt return has not entered the execute stage. The Pipeline Hold mode in this case
prevents the processor pipeline from advancing until the mterrupt return sequence is
complete.

The Pipeline Hold mode is exited whenever the causing conditions no longer exist, or
when the WARN or RESET input is asserted.

5.3 SERIALIZATION
The Am29200 and Am29205 microcontrollers overlap external data references with
other operations. When an external data reference might have to be restarted, however,
the processor context must be the same as when the operation was first attempted. To
insure this, certain operations are serialized.
The processor serializes by entering the Pipeline Hold mode in any of the following
circumstances:
®m An external access is not yet completed, and one of the following instructions is en-
countered:
Move to Special Register (MTSR)
Move to Special Register Immediate (MTSRIM)
Move to TLB (MTTLB)—even though this performs no operation
Interrupt Return (IRET)
Interrupt Return and Invalidate (IRETINV)
Halt (HALT)
m An external access is not yet completed, and an interrupt or trap, other than a WARN
trap, is taken.
If the processor is in the Pipeline Hold mode due to serialization, it enters the Executing
mode once the external access is completed.
5.4 DELAYED BRANCH
The effect of jump and call instructions is delayed by one cycle to allow the processor
pipeline to achieve maximum throughput. When one of these branches is successful, the
instruction immediately following the jump or call is executed before the target instruction
of the jump or call is executed. Jump and call instructions collectively are referred to as
delayed branches, and the instruction immediately following is called the delay instruc-
tion (sometimes referred to as a delay slot).
5-2

Pipelining and Instruction Scheduling

AMD‘-r'

For example, in the following code fragment:

cpeq grae, Ir6, Ir7 (1)
jmpf gr6, label (2)
sub Ir6, Ir6, 1 (3)
const Ir6, 0 (4)
label: call Ir0, sort (5)
add Ir2,1r5,0 (6)

cpneq Ir3, gr96, 0 (7)

The SUB instruction (3) is executed regardless of the outcome of the JMPF instruction
(2). Of course, if the JMPF is not successful, the CONST instruction (4) is also executed.
If the JMPF is successful, then the instruction sequence is: (2), (3), (5), (6), and then the
first instruction of the sort procedure. Note that the CALL instruction (5) is also a delayed
branch, so the instruction immediately following it, (6), is always executed. After the sort
procedure executes the return sequence, the CPNEQ instruction (7) is the next instruc-
tion executed.

The benefit of delayed branches is improved performance and a simplified processor
implementation. Performance is improved because the processor pipeline executes
useful instructions in a larger number of cycles, compared to an implementation without
delayed branches. :

For example, ignoring all other effects on performance and assuming 15% of all
instructions are taken branches, then a processor without delayed branches would take
at least two cycles for 15% of its instructions, leading to 0.85(1) + 0.15(2) = 1.15 cycles
per instruction, on average. This represents a 15% performance degradation compared
to a processor with delayed branches (assuming, for this simple example, the delay
instruction is always useful).

The cost of having delayed branches is either the extra effort required when the compiler
takes advantage of delayed branches (by re-organizing code), or the extra NO-OP
instruction that the compiler inserts after every branch to guarantee correct program
operation. Since the compiler expends only a small amount of effort to avoid wasting
time and space with NO-OPs, and since the performance improvement resulting from
this effort is significant, delayed branches are beneficial overall.

When two immediately adjacent branches are taken, the target of the first branch
pre-empts execution of the delay cyclie of the second branch, and the target of the
second branch then follows the target of the first branch. For example, in the following
code fragment:

’j:mp L1 (1)
jmp L2 2
add Ird, Ir4, Ir5 @)
L1: sub qr96, gros, 1)

subc gr97, gra7, 0 (5)

Pipelining and Instruction Scheduling 5-3

n AMD

L2: const gr100, Oxffof (6)
subr gr101, gr101, 1 (7)

or gr100, gr1i00, gri01 (8)

an unconditional JMP instruction (1) is followed immediately by another unconditional
‘JMP instruction (2). (In this example, unconditional JMPs are used; however, any two
immediately adjacent taken branches exhibit the same behavior.) The sequence of
executed instructions in this case is: JMP instruction (1), JMP instruction (2), SUB
instruction (4), CONST instruction (6), SUBR instruction (7), OR instruction (8), and so
on. Note that the ADD instruction (3) is not executed. Also, the target of the first JMP
instruction (1) was merely visited; control did not continue sequentially from L1, but
rather continued from L2,

5.5 OVERLAPPED LOADS AND STORES
The Am29200 and Am29205 microcontrollers overlap external data references with
other operations. Certain programming practices are necessary to exploit this parallelism
to improve program performance.
in order to make full use of overlapped storage accesses, some instruction reorganiza-
tion may be necessary. For example, in the following sequence:
loop:

sll gri21, gri19, 2 (1)

add gri21, gr120, gri21 (2)

load 0, 0, gr121, gri121 (3)

add gr96, gro6, gri21 (4)

sub gr98, gres, 3 (5)

add gri19, gri19, 1 (6)

cplt gri22, gr119, Ir2 (7)

jmpt gr122, loop 8)

nop ()]
the ADD instruction (4) uses the result of the LOAD instruction (3). However, the
following four instructions do not depend on the result of the LOAD. Therefore, the ADD
instruction (4) can be moved past the JMPT (8), since it always will be executed even
ifthe JMPT is taken, and can replace the NO-OP instruction (9). The resulting sequence
is:

loop:

sl gri21, gri19, 2 (1)

add gri21, gr120,gri21 (2)

load 0, 0, gri21, gri21 (3)

sub gro8, grog, 3 4

add gr119, gr119, 1 (5)

cplt gr122, gr119, Ir2 (6)

jmpt gr122, loop (7)

add gr96, gro6, gr121 8)
The instructions (4) through (7) are likely to be executed while external memory satisfies
the load request, resulting in improved throughput. The processor thus allows parallel-
ism to be exploited by instruction reordering.

5-4 Pipelining and Instruction Scheduling

AMD :‘

' The\overlapped load feature may be used to improve processor performance, but

imposes no constraints on instruction sequences, as delayed branches do. The proces-
sor implements the proper pipeline interlocks to make this parallelism transparent to a
running program.

DELAYED EFFECTS OF REGISTERS

The moadification of some registers has a delayed effect on processor behavior, because
of the processor pipeline. The affected registers are the Stack Pointer (Global Register
1), Indirect Pointers A, B, and C, and the Current Processor Status Register.

An instruction that writes to the Stack Pointer can be followed immediately by an
instruction that reads the Stack Pointer. However, any instruction that references a local
register also uses the value of the Stack Pointer to calculate an absolute-register
number. At least one cycle of delay must separate an instruction that updates the Stack
Pointer and an instruction that references a local register. In most systems, this affects
procedure call and return only (see Section 4.2). In general, though, an instruction that
immediately follows a change to the Stack Pointer should not reference a local register
(however, note that this restriction does not apply to a reference of a local register via an
indirect pointer).

The indirect pointers have an implementation similar to the Stack Pointer and exhibit
similar behavior. At least one cycle of delay must separate an instruction that modifies
an indirect pointer and an instruction that uses that indirect pointer to access a register.

Note that it normally is not possible to guarantee that the delayed effect of the Stack
Pointer and indirect pointers is visible to a program. If an interrupt or trap is taken
immediately after one of these registers is set, then the interrupted routine sees the
effect of the setting in the following instruction, because many interrupt or trap execution
cycles elapse between the two instructions of the interrupted routine. For this reason, a
program should not be written in a manner that relies on the delayed effect; the results of
this practice may be unpredictable.

If the Freeze (FZ) bit of the Current Processor Status Register is reset from 1 to 0, two
cycles are required before all program state is reflected properly in the registers affected
by the FZ bit. This implies that interrupts and traps cannot be enabled until two cycles
after the FZ bit is reset, for proper sequencing of program state. There is no delay
associated with setting the FZ bit from 0 to 1.

Pipelining and Instruction Scheduling 5-5

[creerer
=

6 SYSTEM PROTECTION

6.1

6.1.1

6.1.2

6.2

The Am29200 and Am29205 microcontrollers provide protection for general-purpose
registers and special-purpose registers. Certain processor operations are also protected.
This chapter describes the processor’s protection mechanisms.

USER AND SUPERVISOR MODES

At any given time, the microcontroller operates in one of two mutually exclusive program
modes: the Supervisor mode or the User mode. All system-protection features of the
micracontroller are based on the difference between these two modes.

Supervisor Mode

The processor operates in the Supervisor mode whenever the Supervisor Mode (SM) bit
of the Current Processor Status Register is 1 (see Section 16.2.1). In the Supervisor
mode, executing programs have access to all processor resources.

Any attempt to access a special-purpose register in the range of 160 to 255 causes a
Protection Violation to occur in either Supervisor or User mode. This permits virtualiza-
tion of these registers. Supervisor-mode accesses are permitted for any general-pur-
pose register, regardless of protection.

User Mode

The processor operates in the User mode whenever the SM bit in the Current Processor
Status Register is 0. In the User mode, any of the following actions by an executing
program causes a Protection Violation trap to occur:

® An attempted access of any general-purpose register for which a bit in the Register
Bank Protect Register is 1 (see Section 6.2).

® An attempted execution of one of the following instructions: Interrupt Return, Interrupt
Return and Invalidate, Invalidate, or Halt. However, a hardware-development system
can disable protection checking for the Halt instruction, so this instruction may be
used to implement instruction breakpoints in User-mode programs (see Sections 17.3
and 17.7.5).

B An attempted access of special-purpose register in the range of 0 to 127 or
160 to 255.

B An attempted execution of an assert or EMULATE instruction that specifies a vector
number between 0 and 63, inclusive (see Section 16.3.2).

REGISTER PROTECTION

General-purpose registers are divided into register banks and are protected by the
Register Bank Protect Register. The Register Bank Protect Register allows parameters
for the operating system to be kept in general-purpose registers and protected from
corruption by User-mode programs. Register banks consist of 16 registers (except for
Bank 0, which contains Registers 2 through 15) and are partitioned according to
absolute-register numbers, as shown in Figure 6-1.

System Protection 6-1

n AMD

Figure 6-1 Register Bank Organization
Register Bank Absolute-Register General-Purpose
Protect Register Bit Numbers Registers
0 2 through 15 Bank 0 {not implemented)
1 16 through 31 Bank 1 (not implemented)
2 32 through 47 Bank 2 (not implemented)
3 48 through 63 Bank 3 (not implemented)
4 64 through 79 Bank 4
5 80 through 95 Bank 5
6 96 through 111 ‘Bank 6
7 112 through 127 Bank 7
8 128 through 143 Bank 8
9 144 through 159 Bank 9
10 160 through 175 Bank 10
11 176 through 191 Bank 11
12 192 through 207 Bank 12
13 208 through 223 Bank 13
14 224 through 239 Bank 14
15 240 through 255 Bank 15
The Register Bank Protect Register contains 16 protection bits, where each bit controls
User-mode accesses (read or write) to a bank of registers. Bits 0—15 of the Register
Bank Protect Register, protect Register Banks 0 through 15, respectively.
When a bit in the Register Bank Protect Register is 1 and a register in the corresponding
bank is specified as an operand register or result register by a User-mode instruction, a
Protection Violation trap occurs. Note that protection is based on absolute-register
numbers. In the case of local registers, Stack-Pointer addition is performed before
protection checking.
When the processor is in the Supervisor mode, the Register Bank Protect Register has
no effect on general-purpose register accesses.
6.2.1 Register Bank Protect Register (RBP, Register 7)
This protected special-purpose register (Figure 6-2) protects banks of general-purpose
registers from User-mode program accesses.
The general-purpose registers are partitioned into 16 'banks of 16 registers each (except
that Bank 0 contains 14 registers). The banks are organized as shown in Figure 6-1.
6-2 System Protection

AMD n

Figure 6-2 Register Bank Protect Register

31 23 15 7
NERRRRRRRRRRRRRERRRRRR RN

0
Reserved B15 e e " BO

Bits 31—-16: Reserved o

Bits 15-0: Bank 15 through Bank 0 Protection Bits (B15-B0)—In the Register Bank
Protect Register, each bit is associated with a particular bank of registers, and the

bit number gives the associated bank number (e.g., B11 determines the protection for
Bank 11).

System Protection 6-3

&

7 SYSTEM OVERVIEW

7.1

7.1 I1

7.1 I2

The Am29200 and Am29205 microcontrollers significantly reduce system cost because
each microcontroller integrates many system functions onto a single chip. This chapter
overviews the system interfaces and on-chip peripherals of the Am29200 and Am29205
microcontrollers.

SIGNAL DESCRIPTION

The Am29200 microcontroller uses 140 pins for signal inputs and outputs. It uses 28
pins for power and ground.

The Am29205 microcontroller uses 84 pins for signal inputs and outputs. It uses 16 pins
for power and ground. Section 7.1.12 summarizes the signal differences between the
Am29200 and Am29205 microcontrollers.

Note: The UCLK signal must be tied High if the serial port is not used. The TRST signal
must be tied to RESET, whether or not the JTAG port is used. See Appendix A for other
important hardware configuration notes.

Clocks

INCLK Input Clock (input)
This is an oscillator input at twice the processor and system operating
frequency. It can be driven at TTL levels.

MEMCLK Memory Clock (output)
This is a clock output at one-half of the frequency of INCLK. Most proces-
sor outputs, and many inputs, are synchronous to MEMCLK. MEMCLK
drives out with CMOS levels.

Processor Signals

A23-A0 Address Bus (output, synchronous)
The address bus supplies the byte address for all accesses, except for
DRAM accesses. For DRAM accesses, multiplexed row and column
addresses are provided on A14—-A1. A2-AQ are also used to provide a
clock to an optional burst-mode EPROM. The signals A23-A22 and
burst-mode devices are not supported on the Am29205 microcontroller.

ID31-1D0 Instruction/Data Bus (bidirectional, synchronous)
The instruction/data bus (ID bus) transfers instructions to, and data to and
from the processor. The signals ID15-ID0 are not supported on the
Am29205 microcontroller.

WAIT Add Wait States
(input, synchronous, weak internal pull-up transistor)
External accesses are normally timed by the Am29200 microcontroller.
However, the WAIT signal may be asserted during a PIA, ROM, or DMA
access to extend the access indefinitely. The WAIT pin is not available on
the Am29205 microcontroller; see the WAIT/TRIST signal description.

System Overview 7-1

:l AMD

WAIT/TRIST Add Wait States/Three-State Control

(input, synchronous, weak internal pull-up transistor)

The WAIT signal may be asserted during a PIA, ROM, or DMA access to
extend the access indefinitely. The WAIT/TRIST pin also used for three-
state control during test. When asserted during a processor reset, all
output pins go into a high impedance state. For normal operation, this pin
must be pulled High during processor reset. This pin is not available on
the Am29200 microcontroller; see the WAIT signal description.

Read/Write (output, synchronous)
During an external ROM, DRAM, DMA, or PIA access, this signal indi-

cates the direction of transfer: High for a read and Low for a write.

Reset (input, asynchronous)

This input places the processor in the Reset mode. This signal has spe-
cial hardening against metastable states, allowing it to be driven with a
slow-rise-time signal.

Warn (input, asynchronous, edge-sensitive, internal pull-up)

A High-to-Low transition on this input causes a non-maskable WARN trap
to occur. This trap bypasses the normal trap vector fetch sequence, and
is useful in situations where the vector fetch may not work (e.g., when
data memory is faulty). This signal has special hardening against metast-
able states, allowing it to be driven with a slow-transition-time signal. This
signal is not supported on the Am29205 microcontroller.

INTR3-INTRO Interrupt Requests 3-0 (input, asynchronous, internal pull-ups)

These inputs generate prioritized interrupt requests. The interrupt caused
by INTRO has the highest priority, and the interrupt caused by INTR3 has
the lowest priority. The interrupt requests are masked in prioritized order
by the Interrupt Mask field in the Current Processor Status Register and
are disabled by the DA and DI bits of the Current Processor Status Regis-
ter. These signals have special hardening against metastable states,
allowing them to be driven with slow-transition-time signals. The
INTR1-INTRO signals are not supported on the Am29205 microcontroller.

STAT2-STATO

CPU Status (output, synchronous)
These outputs indicate information about the processor or the current
access for the purposes of hardware debug. They are encoded as follows:

STAT2 STAT1 STATO Condition

Halt or Step mode

Interrupt/trap vector fetch (vector valid)

Load Test Instruction mode, Halt/Freeze
Branch target fetch (instruction valid)
External data access (data valid)

External instruction access (instruction valid)
Internal peripheral access (data valid)

Idle or data/instruction not valid

- a2 0000
-_ -l OO0 == 0D00
2 O0O=-=20-=-=0=0

Note that in all cases, a condition is reflected on the STAT pins on the
second cycle following the condition. These signals are described in more
detail in Section 17.4. The STAT2-STATO signals are not supported on
the Am29205 microcontroller.

7-2

System Overview

AMD a

TRAP1-TRAPO ’

Trap Requests 1-0 (input, asynchronous, internal pull-ups)

These inputs generate prioritized trap requests. The trap caused by
TRAPO has the highest priority. These trap requests are disabled by the
DA bit of the Current Processor Status Register. These signals have
special hardening against metastable states, allowing them to be driven
with slow-transition-time signals. These signals are not supported on the
Am29205 microcontroller.

- 7.1.3 ROM Interface

ROMCS3-ROMCS0
ROM Chip Selects, Banks 3-0 (output, synchronous)
A Low level on one of these signals selects the memory devices in the
corresponding ROM bank. ROMCSS3 selects devices in ROM Bank 3, and
so on. The timing and access parameters of each bank are individually
programmable. ROMCS3 is not supported on the Am29205 microcontroller.

ROMOE ROM Output Enable (output, synchronous)
This signal enables the selected ROM Bank to drive the ID bus. lt is used
to prevent bus contention when switching between different ROM banks
or switching between a ROM bank and another device or DRAM bank.

BURST Burst-Mode Access (output, synchronous)
This signal is asserted to perform sequential accesses from a burst-mode
device. This signal is not supported on the Am29205 microcontroller.

RSWE ROM Space Write Enable (output, synchronous)
This signal is used to write an alterable memory in a ROM bank (such as
an SRAM or Flash EPROM). RSWE supports only writes of width equal to
or greater than the width of the memory, and the memory must be at least
16 bits wide. The CASx signals, described in Section 7.1.4, serve as
individual byte strobes for writes to the ROM space, if ROM byte writes
are enabled.

BOOTW Boot ROM Width (input, asynchronous)
This input configures the width of ROM Bank 0, so the ROM can be ac-
cessed before the ROM configuration has been set by the system initial-
ization software. The BOOTW signal is sampled during and after a pro-
cessor reset. If BOOTW is High before and after reset (tied High), the
boot ROM is 32 bits wide. If BOOTW is Low before and after reset (tied
Low), the boot ROM is 16 bits wide. If BOOTW is Low before reset and
High after reset (tied to RESET), the boot ROM is 8 bits wide. This signal
has special hardening against metastable states, allowing it to be driven
with a slow-rise-time signal and permitting it to be tied to RESET.

This signal is not supported on the Am29205 microcontroller. ROM Bank
0 is set to 16 bits during a processor reset; this setting cannot be
changed.

7.1.4 DRAM Interface

RAS3-RAS0 Row Address Strobe, Banks 3—-0 (output, synchronous)
A High-to-Low transition on one of these signals causes a DRAM in the
corresponding bank to latch the row address and begin an access. RAS3
starts an access in DRAM Bank 3, and so on. These signals also are
used in other special DRAM cycles.

System Overview 7-3

u AMD

7.1 I5

7.1 l6

CAS3-CAS0 Column Address Strobes, Byte 3—-0 (output, synchronous)

TR/OE

A High-to-Low transition on these signals causes the DRAM selected by
RAS3-RASO to latch the column address and complete the access. To
support byte and half-word writes, column address strobes are provided
for individual DRAM bytes. CASS is the column address strobe for the
DRAMs, in all banks, attached to ID31-ID24. CAS2 is for the DRAMSs
attached to ID23-ID16, and so on. These signals are also used in other
special DRAM cycles.

The CASx signals can be enabled to act as individual byte strobes for
byte writes to the ROM space. In this configuration, ROM accesses do
not conflict with DRAM accesses or refresh even though the CASx may
be used by both the ROM and DRAM. Refresh is delayed during byte
reads and writes to ROM space.

The CAS1-CASO signals are not supported on the Am29205
microcontroller.

Write Enable (output, synchronous)

This signal is used to write the selected DRAM bank. “Early write” cycles
are used so the DRAM data inputs and outputs can be tied to the com-
mon ID bus.

Video DRAM Transfer/Output Enable (output, synchronous)

This signal is used with video DRAMs to transfer data to the video shift
register. It is also used as an output enable in normal video DRAM read
cycles. This signal is not supported on the Am29205 microcontroller.

Peripheral Interface Adapter (PIA)
PIACS5-PIACSO0 ‘

Peripheral Chip Selects, Regions 5-0 (output, synchronous)

These signals are used to select individual peripheral devices. DMA
Channel 0 may be programmed to use PIACSO0 during an external periph-
eral access, and DMA Channel 1 may be programmed to use PIACS1.
PIACS5-PIACS2 are not supported on the Am29205 microcontroller.

Peripheral Output Enable (output, synchronous)
This signal enables the selected peripheral device to drive the ID bus.

Peripheral Write Enable (output, synchronous)
This signal causes data on the ID bus to be written into the selected
peripheral.

DMA Controller
DREQ1-DREQO

DMA Request, Channels 1-0 (input, asynchronous, internal pull-ups)
These signals request an external transfer on DMA Channel 0 (DREQO) or
DMA Channel 1 (DREQ1). These requests are individually programmable
to be either level- or edge-sensitive for either polarity of level or edge. DMA
transfers can occur to and from internal peripherals independent of these
requests. DREQQO is not supported on the Am29205 microcontroller.

DACK1-DACKO

DMA Acknowledge, Channels 1-0 (output, synchronous)
These signals acknowledge an external transfer on DMA Channel 0
(DREQO) or DMA Channel 1 (DREQ1). DMA transfers can occur to and

7-4

System Overview

AMD a

7.1.7

7.1.8

TDMA

1/O Port
PI0O15-PIO0

from internal peripherals independent of these acknowledgments. DACKO

_is not supported on the Am29205 microcontroller.

Terminate DMA (input, synchronous)

This signal can be asserted during an external DMA transfer to terminate
the transfer after the current access. This signal is not supported on the
Am29205 microcontroller.

External Memory Grant Request (input, synchronous, internal pull-up)
This signal is used by an external device to request an access to the
Am29200 microprocessor’s ROM or DRAM. To perform this access, the
external device supplies an address to the Am29200 microcontroller’s
ROM controller or DRAM controller.

To support a hardware-development system, GREQ should be either tied
High or held at a high-impedance state during a processor reset.

This signal is not supported on the Am29205 microcontroller.

External Memory Grant Acknowledge (output, synchronous)

This signal indicates to an external device that it has been granted an
access to the Am29200 microcontroller's ROM or DRAM, and that the
device should provide an address. This signal is not supported on the
Am29205 microcontroller. -

Programmable Input/Output (input/output, asynchronous)

These signals are available for direct software control and inspection.
P1015-PIO8 may be individually programmed to cause processor inter-
rupts. These signals have special hardening against metastable states,
allowing them to be driven with slow-transition-time signals. The signals
PIO7-PI00 are not supported on the Am29205 microcontroller.

Parallel Port

PSTROBE

PBUSY

PACK

PAUTOFD

Y|
m|

|
m

Parallel Port Strobe (input, asynchronous)
This signal is used by the host to indicate that data is on the parallel port
or to acknowledge a transfer from the microcontroller.

Parallel Port Busy (output, synchronous)
This indicates to the host that the parallel port is busy and cannot accept
a data transfer.

Parallel Port Acknowledge (output, synchronous)
This signal is used by the microcontroller to acknowledge a transfer from
the host or to indicate to the host that data has been placed on the port.

Parallel Port Autofeed (input, asynchronous)

This signal is used by the host to indicate how line feeds should be per-
formed or is used to indicate that the host is busy and cannot accept a
data transfer.

Parallel Port Output Enable (output, synchronous)
This signal enables an external data buffer containing data from the host
to drive the ID bus.

Parallel Port Write Enable (output, synchronous)
This signal writes a buffer with data on the ID bus. Then, the buffer drives
data to the host.

System Overview ‘ 7-5

I‘.l AMD

7.1.9 Serial Port
UCLK UART Clock (input)
This is an oscillator input for generating the UART (serial port) clock. To
generate the UART clock, the oscillator frequency may be divided by
any amount up to 65,536. The UART clock operates at 16 times the
serial port’s baud rate. As an option, UCLK may be driven with MEMCLK
or INCLK. It can be driven with TTL levels. UCLK must be tied High if
unused.
TXD Transmit Data (output, asynchronous)
This output is used to transmit serial data.
RXD Receive Data (input, asynchronous)
This input is used to receive serial data.
DSR Data Set Ready (output, synchronous)
This indicates to the host that the serial port on the Am29200 microcon-
troller is ready to transmit or receive data. This signal is not supported on
the Am29205 microcontroller.
DTR Data Terminal Ready (input, asynchronous)
This indicates to the Am29200 microcontroller that the host is ready to
transmit or receive data. This signal is not supported on the Am29205
microcontroller.
7.1.10 Video Interface
VCLK Video Clock (input, asynchronous)
This clock is used to synchronize the transfer of video data. As an option,
VCLK may be driven with MEMCLK or INCLK. It can be driven with TTL
levels. ‘
VDAT Video Data (input/output, synchronous to VCLK)
This is serial data to or from the video device.
LSYNC Line Synchronization (input, asynchronous)
This signal indicates the start of a raster line.
PSYNC Page Synchronization (input/output, asynchronous)
This signal indicates the beginning of a raster page.
7.1.11 JTAG 1149.1 Boundary Scan Interface (Am29200 Microcontrolier)
TCK Test Clock Input (asynchronous input, internal pull-up)
This input is used to operate the test access port. The state of the test
access port must be held if this clock is held either High or Low. This
clock is internally synchronized to MEMCLK for certain operations of the
test access port controller, so signals internally driven and sampled by the
test access port are synchronous to processor internal clocks. This signal
is not available on the Am29205 microcontroller.
TMS Test Mode Select (input, synchronous to TCK, internal pull-up)
This input is used to control the test access port. If it is not driven, it
appears High internally. This signal is not available on the Am29205
microcontroller.
TDI Test Data Input (input, synchronous to TCK, internal pull-up)
This input supplies data to the test logic from an external source. It is
sampled on the rising edge of TCK. If it is not driven, it appears High
internally. This signal is not available on the Am29205 microcontroller.
7-6 System Overview

AMDa

7.1.12

7.2

TDO Test Data Output (three-state output, synchronous to TCK)
This output supplies data from the test logic to an external destination. It
changes on the falling edge of TCK. It is in the high-impedance state
except when scanning is in progress. This signal is not available on the
Am29205 microcontroller.

TRST Test Reset Input (asynchronous input, internal pull-up)
This input asynchronously resets the test access port. This input places
the test logic in a state such that no output driver is enabled. The TRST
input must be asserted in conjunction with the RESET input for correct
processor initialization, whether or not the JTAG port is used. (See Ap-
pendix A.) This signal is not available on the Am29205 microcontroller.

Pin Changes for the Am29205 Microcontroller

The reduced pin count of the Am29205 microcontroller comes from having a 16-bit
instruction/data bus, fewer ports on some of the peripherals, and no JTAG interface. The
following signals supported on the Am29200 microcontroller are not available on the
Am29205 microcontroller.

m Processor signals: A23-A22, ID15-1D0, WARN, INTR1-INTRO, TRAP1-TRAPO,
STAT2-STATO

ROM interface signals: ROMCS3, BURST, BOOTW
DRAM interface signals: CAS1-CASO, TR/OE

PIA signals: PIACS5-PIACS2

DMA signals: DREQO, DACKO, TDMA, GREQ, GACK
I/O port signals: PIO7—-PIO0

Serial port signals: DSR, DTR

m JTAG signals: TCK, TDI, TMS, TDO, TRST

In addition, the Am29200 microcontroller’s WAIT pin is defined as a WAIT/TRIST pin on
the Am29205 microcontroller.

ACCESS PRIORITY

Many of the processor interface signals are shared between various types of accesses.
If more than one access request occurs at the same time, the requests are prioritized as
follows, in decreasing order of priority:

1. “Panic mode” DRAM Refresh (see Section 9.3.8)

2. DMA Channel 0 transfer

3. DMA Channel 1 transfer

4. Memory access request by an external device (see Section 11.5)
5. Processor DRAM, PIA, or ROM access for data

6. Processor DRAM or ROM access for an instruction

External DMA transfers require two accesses: one to read the data from a peripheral or
the DRAM, and another to write the data to a peripheral or DRAM. The two accesses
are performed back-to-back, without interruption by another access.

Some processor accesses to narrow memories (a narrow memory is 8 or 16 bits wide)
require two or four accesses; for example, reading 32 bits from an 8-bit-wide ROM requires
four reads. These accesses are also performed back-to-back, without interruption.

System Overview 7-7

l‘:l AMD

DRAM refresh cycles are normally overlapped with other, non-DRAM accesses.
Because normal refresh cycles are performed when there is no conflict with other
accesses, these cycles are not prioritized in the above list.

7.3 SYSTEM ADDRESS PARTITION
All addresses are in the microcontroller’s instruction/data memory address space. The
address space is partitioned as shown in Table 7-1.
Table 7-1 Intemal Peripheral Address Ranges
’ Maximum Physical Size
Address Range Selection - -
(hexadeximal) Am29200 Microcontroller | Am29205 Microcontroller
00000000-03FFFFFF | ROM Banks (all) 64 Mbytes 12 Mbytes
4000000043FFFFFF | DRAM Banks (all) 64 Mbytes 32 Mbytes
50000000-50FFFFFF | Mapped DRAM Banks (all) 16 Mbytes 16 Mbytes
60000000-63FFFFFF | VDRAM transfers 64 Mbytes Not Supported
80000000-800000FC | Internal peripherals/controllers — : —
90000000-90FFFFFF | PIA Region 0 (PIACSO0) 16 Mbytes 4 Mbytes
91000000-91FFFFFF | PIA Region 1 (PIACS1) 16 Mbytes 4 Mbytes
92000000-92FFFFFF | PIA Region 2 (PIACS2) 16 Mbytes Not Supported
93000000-93FFFFFF | PIA Region 3 (PIACS3) 16 Mbytes Not Supported
94000000-94FFFFFF | PIA Region 4 (PIACS4) 16 Mbytes Not Supported
95000000-95FFFFFF | PIA Region 5 (PIACS5) 16 Mbytes Not Supported
—all others— Reserved
An access to any unimplemented address or address range has an unpredictable effect
on processor operation. '
7.4 INTERNAL PERIPHERALS AND CONTROLLERS
Internal peripheral registers are selected by offsets from address 80000000h. The
address assignment of the various internal peripherals and controllers is shown in
Table 7-2.
Nearly all registers are read/write and are 32 bits in length. However, a few register bits
are read only, bits in the Interrupt Control Register are reset-only, and the DMAO
Address Tail Register and DMAO Count Tail Register are both write-only. It is not
possible to perform writes on individual bytes or halfwords of any register. Unimplem-
- ented register bits are read as zeros and should be written with zeros to ensure compati-
bility with future processor versions. ‘
Three registers have alternates, provided for backward compatibility. The following
summary shows the preferred and alternate addresses for each of these registers.
Register Preferred Address Alternate Address
DMAOQ Address Tail Register '80000070h 80000036h
DMAO Count Tail Register 8000003Ch 8000003Ah
Parallet Port Status Register 800000C8h 800000C1h
The alternate DMAQ Address Tail Register and the alternate DMAO Count Tail Register
allow write-only access for compatibility with earlier versions of the Am29200 and
Am29205 microcontrollers. These two registers are supported for backward
7-8 System Overview

AMDn

compatibility and should not be used for new designs. The DMAQ Address Tail Register
(address 80000070h) and DMAO Count Tail Register (address 8000003Ch) should be
used instead.

The alternate Parallel Port Status Register is also provided for compatibility. This register
should not be used for new designs. The Parallel Port Status Register (address
800000C8h) should be used instead.

System Overview 7-9

I"l AMD

Table 7-2 Intemal Peripheral Address Assignments

Address
Peripheral (hexadecimal) Register
ROM Controller 80000000 ROM Control Register
80000004 ROM Configuration Register
DRAM Controller 80000008 DRAM Control Register
. 8000000C DRAM Configuration Register
DRAM Mapping Unit 80000010 DRAM Mapping Register 0
80000014 DRAM Mapping Register 1
80000018 DRAM Mapping Register 2
8000001C DRAM Mapping Register 3
Peripheral Interface Adapter 80000020 PIA Control Register 0
80000024 PIA Control Register 1¢
Interrupt Controller 80000028 Interrupt Control Register
DMA Channel 0 80000030 DMAO Control Register
80000034 DMAO Address Register
80000070 DMAQ Address Tail Register
80000038 DMAO Count Register
8000003C DMAO Count Tail Register
DMA Channel 1 80000040 DMAT1 Control Register
80000044 DMA1 Address Register
80000048 DMAT1 Count Register
- Serial Port 80000080 Serial Port Control Register
80000084 Serial Port Status Register
80000088 Serial Port Transmit Holding Register
8000008C Serial Port Receive Buffer Register
80000090 Baud Rate Divisor Register
Parallel Port 800000CO Parallel Port Control Register
800000C4 Parallel Port Data Register
800000C8 Parallel Port Status Register
Programmable /O Port 800000D0 PIO Control Register
800000D4 PIO Input Register
800000D8 PIO Output Register
800000DC PIO Output Enable Register
Video Interface 800000EO Video Control Register
800000E4 Top Margin Register
800000E8 Side Margin Register
800000EC Video Data Holding Register
—all others— Reserved

Note: ¢ Reserved on the Am29205 microcontroller.

7-10 . System Overview

-
&

ROM CONTROLLER

8‘1

8.2
8.2.1

This chapter describes the operation of the ROM controller. Programmable registers and
initialization are discussed, along with ROM address mapping, ROM reads and writes,
burst-mode accesses, and extending ROM cycles.

OVERVIEW

The on-chip ROM controller provides a glueless interface to static memory devices
such as ROMs and EPROMs, as well as alterable devices such as SRAMs, flash
EPROMs, and memory-mapped peripherals. ROM space on the Am29200 and
Am29205 microcontrollers is divided into banks, each of which is individually configur-
able for width and access timing. Programmable registers control the location, size,
width, wait-state, and burst capability of each bank. The banks can be arranged to form
a contiguous memory area.

The ROM interface on the Am29200 microcontroller accommodates up to four banks of
ROM. These banks can be 8, 16, or 32 bits wide, with a maximum address space of 16
Mbytes per bank.

The Am29205 microcontroller supports up to three ROM banks; 8- and 16-bit wide
banks are supported, with a maximum address space of 4 Mbytes per bank. Burst-mode
ROM access is not supported. Boot ROM width is 16 bits. The signals ROMCS3,
BURST, and BOOTW are not available on the Am29205 microcontroller.

PROGRAMMABLE REGISTERS

ROM Control Register (RMCT, Address 80000000}

The ROM Control Register (Figure 8-1) controls the access of ROM Banké 0 through 3
on the Am29200 microcontroller and ROM Banks 0 through 2 on the Am29205
microcontroller.

Figure 8-1

ROM Control Register

31 23

DWo

} HE
BSTO LM} res BST1
BWE
= Reserved on Am29205 microcontroller

BST3

Bit 31: Burst-Mode ROM, Bank 0 (BST0), Am29200 microcontroller—When this bit is

-1, ROM Bank 0 is accessed using the burst-mode protocol, in which sequential ac-

cesses are completed at the rate of one access per cycle. When this bit is 0, the
burst-mode protocol is not used. This bit is reserved on the Am29205 microcontroller.

ROM Controller 8-1

:l AMD

8‘2.2

Bits 30-29: Data Width, Bank 0 (DW0)—This field indicates the width of the ROM in
Bank 0, as follows:

DWO ROM Width
00 32 bits (Reserved on Am29205 microcontroller)
01 8 bits
10 16 bits
11 Reserved

Bit 28: Large Memory (LM)—This bit controls the size of the ROM banks and the total
size of the ROM address space. If the LM bit is 0 on either microcontroller, each ROM
bank is up to 4 Mbytes in size, for placement within a 16 Mbyte address space.

If the LM bit is 1 on the Am29200 microcontroller, each ROM bank is up to 16 Mbytes in
size, for placement within a 64-Mbyte address space. If the LM bit is 1 on the Am29205
microcontroller, each ROM bank is up to 4 Mbytes in size, for placement within a
64-Mbyte address space.

Bit 27: Byte Write Enable (BWE)—This bit controls whether or not the CASx signals
are used as byte strobes during writes to the ROM address space. If BWE is 0, the
CASKx signals are not used during ROM writes (unless there is a hidden refresh at the
same time). If BWE is 1, the CASXx signals are used as byte strobes during a ROM write
with hidden refresh prohibited during a ROM read or write.

Bit 26: Reserved

Bits 25-24: Wait States, Bank 0 (WS0)—This field specifies the number of wait states
in 2 ROM access: that is, the number of cycles in addition to one cycle required to
access the ROM. Zero-wait-state cycles are supported only for non-burst-mode ROM
reads. Writes to the ROM address space and burst-mode ROMs have a minimum of one
wait state, even when wait states are programmed at zero.

" Other bits of this register have a definition similar to BST0, DW0, and WSO for ROM

Banks 1 through 3 on the Am29200 microcontrolier and ROM Banks 1 through 2 on the
Am29205 microcontroller. The BSTx bits are not supported on the Am29205 microcon-
troller.

Bits 7-0: Reserved. These bits are reserved on the Am29205 microcontroller only.

ROM Configuration Register (RMCF, Address 80000004)

The ROM Configuration Register (Figure 8-2) controls the selection of ROM Banks 0
through 3 on the Am29200 microcontroller and ROM Banks 0 through 2 on the
Am29205 microcontroller. In most systems, this register should be set by software to
cause all the banks of ROM to appear as a single, contiguous region of memory.

Bits 31-27: Address Select, Bank 0 (ASEL0)—On a load, store, or instruction access,
this field is compared against bits of the access address, with the comparisons possibly
masked by the AMASKO field. The unmasked bits of the ASELO field must match the
corresponding bits of the address for ROM Bank 0 to be accessed.

Bits 26-24: Address Mask, Bank 0 (AMASKO0)—This field masks the comparison of
the ASELDO field with bits of the address on an access, to permit various sizes of
memories and memory chips in ROM Bank 0 (“ad(x:y)” represents a field of address bits
x through y, inclusive). '

8-2

ROM Controller

Figure 8-2

ROM Configuration Register

ASELO AMASKO ASEL1 AMASK1 ASEL2

7

= Reserved on Am29205 microcontroller

8.2.3

AMASKO Address Comparison Address Comparison
Value (LM=0) (LM=1)

B

000 ASELO§4:O

-001 ASELO(4:1) to ad(23:20 ASELO(4:1) to ad(25:22
011 ASELO0(4:2) to ad(23:21 ASELO0(4:2) to ad(25:23 {Reserved on Am29205)

to ag§23:19$ ASELO§4:O to ad(25:21
111 ASELO(4:3) to ad(23:22) ASELO(4:3) to ad(25:24) (Reserved on Am29205)

Only the AMASKO values shown in the above table are valid. The AMASKO field permits
various sizes of memories and memory chips in ROM Bank 0 that are independent of
the sizes in the other banks.

Other bits of this register have a definition similar to ASELO and AMASKO for ROM
Banks 1 through 3 on the Am29200 microcontroller and ROM Banks 1, through 2 on the
Am29205 microcontroller.

Bits 7-0: Reserved. These bits are reserved on the Am29205 microcontroller only.
Although ROM Bank 3 is not supported on the Am29205 microcontroller, AMASK3 and
ASELS still exist in the ROM Configuration Register. ASEL3 must be programmed to a
value that does not overiap with addresses specified for ROM Banks 2 through 0.

Initialization
ROM Bank 0 is used as the boot ROM containing the initialization code for the processor
and peripherals. <

On the Am29200 microcontroller, the width of Bank 0 is set by the BOOTW signal, which
is sampled during and after a processor reset. If BOOTW is High before and after reset
(tied High), the boot ROM is 32 bits wide. If BOOTW is Low before and after reset (tied
Low), the boot ROM is 16 bits wide. If BOOTW is Low before reset and High after reset
(tied to RESET), the boot ROM is 8 bits wide. The BOOTW signal is used to set the
DWO field before the boot ROM is accessed.

On the Am29205 microcontroller, the boot ROM width in Bank 0 is 16 bits during
processor reset. No 8-bit booting is possible since the BOOTW signal is not supported
on the Am29205 microcontroller.

The boot ROM defaults to a non-burst-mode ROM with three wait states until the ROM
Control Register and ROM Configuration Register are set with the correct configuration.
The LM bit is reset to 0. The ASELO and AMASKO fields are both set to zero by a
processor reset.

ROM Controller 8-3

n AMD

8.3
8.3.1

8.3.2

8.3.3

To prevent bank conflicts during initialization, the ASEL and AMASK fields for ROM
banks 1 through 3 are set to all 1s. The configuration of ROM banks 1 through 3, if
present, must be set by software before the respective bank is accessed.

ROM ACCESSES

ROM Address Mapping

To map logical memory banks to physical addresses, each ROM bank uses two fields to
determine the location of the bank in physical memory: AMASK and ASEL. AMASK
selects the number of address bits decoded and thus the size of a given bank. ASEL
contains the address bit values compared against the address and thus the location of a
given bank. The LM bit controls the maximum size of the banks and the total size of the
ROM address space as shown.

AMASK Value Bank Size (LM=0) Bank Size (LM=1)

000 512 Kbytes 2 Mbytes
001 1 Mbyte 4 Mbytes
011 2 Mbytes 8 Mbytes*
111 4 Mbytes . 16 Mbytes*

* Am29200 microcontroller only

The ASEL and AMASK fields allow the three or four ROM banks to appear as a
contiguous region of ROM, with the restriction that a bank of a certain size must fit on
the natural address boundary for that size. For example, a 2-Mbyte ROM must be
placed on a 2-Mbyte address boundary. For this reason, ROM banks must appear in the
address space in order of decreasing bank size if the banks are to be contiguous. Note
that to achieve a contiguous memory, the various ROM banks need not appear in
sequence in the address space. For example, on the Am29200 microcontroller, ROM
Bank 3 may appear in an address range below the address range for ROM Bank 1 or 2.
The only restriction in the placement of ROM banks is that ROM Bank 0 is used for the
initial instruction fetches after a processor reset, starting at address 00000000, hexadeci-
mal. Setting AMASK to 0 and ASEL to 1Fh reduces the probability of empty banks being
inadvertently decoded. This configures the bank as small and as high in memory as
possible.

Simple ROM Accesses

Figure 8-3 shows the timing of a simple ROM read cycle. The number of cycles is
controlled by the WSx field in the ROM Control Register (“x” represents one of ROM
Banks 0 through 3). The WSx field specifies the number of wait states: that is, the
number of cycles beyond one cycle required to access the ROM.

Figure 8-4 shows the timing of a zero-wait-state ROM read (WSx = 00). in this case, the
ROMOE signal is asserted at the midpoint of the cycle rather than at the beginning of
the second cycle (since there is no second cycle).

Narrow ROM Accesses

A narrow ROM is one that is less than 32 bits wide. The Am29200 and Am29205
microcontrollers support 8- and 16-bit-wide ROMs in any bank, as determined by the
DWx field in the ROM Control Register.

8-4

ROM Controller

Figure 8-3

Simple ROM Read Cycle

o [\ T\

A23-A0 Address
RW ./ , I ,
ROMCSx : \ ' ')
ROMOE . ! \ ' '
BURST ! : ' ' ' ‘
RSWE ' ' ' ' ' '
ID31-1D0 . :
' ber of cycles determined by WSx+1 '
e R —
An 8-bit-wide ROM must be attached to ID31-1D24. A 16-bit-wide ROM must be
attached to ID31-1D16 and ignores A0. A 32-bit ROM is attached to ID31-ID0 and
ignores A1-A0. A narrow ROM can respond to any read access, but the ROM must be
at least 16 bits wide to respond to writes. Writes to 8-bit memories are not supported and
may provide unreliable results.
8.3.3.1 8-Bit Narrow Accesses

If the processor expects a half-word or a word on a read (that is, if the access is nota’
byte read), and a narrow ROM is 8 bits wide, the microcontroller generates one (for a
half-word) or three (for a word) requests immediately following the first access. No
other intervening accesses are performed. The address for each subsequent access is
the same as the address for the first access, except that A1-AQ are incremented by
one for each access. A burst-mode access may be performed for the subsequent bytes
if the ROM permits such an access and if the ROM Contro! Register is programmed to
enable burst. . '

The microcontroller assembles the final word or half-word by placing the first received
byte in the high-order byte position of the word or half-word. The second received byte is
placed in the next-lower-order byte position and so on until the entire word or half-word
is assembled.

If the read access is a byte access, the processor performs only one access.

If software generates an unaligned half-word or word read, the narrow ROM does not
permit the implementation of the unaligned read. The address sequence generated to

ROM Controller 8-5

l‘:l AMD

Figure 8-4 Simple ROM Read Cycle—Zero Wait States

MEMCLK_/ _/ _/ __/ _/—_/_

A23-A0 X Address

ROMCSX . \ ' /

L

’ —ﬁ L] '
ROMOE)]) 1 L] L]
L})) . L]

by
.
2
m

ID31-1D0

assemble the half-word or word wraps within the half-word or word. A trap on unaligned
access is available and may be used to detect and correct such accesses. ‘

8.3.3.2 16-Bit Narrow Accesses

If the processor expects a word on a read, and a narrow ROM is 16 bits wide, the
microcontroller generates one more request immediately following the first access. No
other intervening accesses are performed. The address for the second access is the
same as the address for the first access, except that A1-A0 are incremented by two for
the second access. A burst-mode access may be performed for the second 16 bits if the
ROM permits such an access.

The microcontroller assembles the final word by placing the first received half-word in
the high-order half-word position of the word, and the second received half-word in the
low-order half-word position. :

If the read access is a byte or half-word access, the processor performs only one
access.

If software generates an unaligned word read, the narrow ROM does not permit the
implementation of the unaligned read. The address sequence generated to assemble
the word wraps within the word. A trap on unaligned access is available and may be
used to detect and correct such accesses.

8-6 ROM Controller

AMD a

8.3.4 Writes to the ROM Space

8.3.4.1 Simple Writes

Figure 8-5 shows the timing of a simple write to the ROM address space. This cycle is
provided for alterable memories in the ROM space, such as SRAMs or Flash EPROMs.
Zero-wait-state cycles are not supported for writes.

Because of processor limitations, the ROM must be at least 16 bits wide to support
writes (see Section 8.3.3). If 32-bit data is written into a 16-bit-wide ROM, the processor
performs two back-to-back uninterrupted accesses. On the first cycle of the second
write, the processor drives the data bus with the second 16 bits (that is, in the same
cycle in which ROMCSx and A23-A0 are asserted).

8.3.4.2 Byte Writes

If the BWE bit is set in the ROM Control Register, the processor uses the CASx signals
as individual byte strobes, to allow byte and half-word writes to the ROM address space.
Note that this reuse of the CASx signals causes CAS-only cycles to the memories in the
DRAM banks (if present) during ROM writes and causes spurious write enables to
non-selected memories in the ROM banks during DRAM accesses. These normally do
not cause invalid operation. Furthermore, hidden refresh is disabled during ROM reads
or writes if the BWE bit is set, to prevent invalid interference between simultaneous ROM
and DRAM cycles. Thus, one slight disadvantage of using ROM byte writes is that there
are fewer hidden refresh cycles and hence slightly degraded system performance.

Figure 8-5 Simple Write to ROM Bank
(for alterable memories in the ROM address space)

MEMCLK_/—__/ __/ _/ \ /\ /_

A23-A0 L Address

o T\ f f J
ROMGSx _\ : : : ./ .
ROMOE
ow T\ L
ID31-ID0 : v ‘E(‘ 'Data N ' L} E

number of cycles determined by WSx+1
. — e WSx=3 illustrated —_——
]

ROM Controller 8-7

z' AMD

8'3.5

8.3.6

The CAS3-CASO signals on the Am29200 microcontroller are used to write individual
bytes for a 32-bit-wide ROM bank as follows:

Data width A1-A0 CAS3-CASO (on write)
8 bits 00 0111
8 bits 01 1011
8 bits 10 1101
8 bits 11 1110
16 bits Ox 0011
16 bits 1x 1100
32 bits . XX 0000

The CAS3-CASO signals are used to write individual bytes for a 16-bit-wide bank (that
is, a narrow bank) as follows:

Data width A1-A0 CAS3-CASO (on write)
8 bits 00 : 0111
8 bits 01 1011
8 bits 10 . 0111
8 bits 11 1011
16 bits Ox : 0011
16 bits 0011
—all other writes (two cycles)— 0011

Byte writes are not supported for 8-bit-wide narrow banks.

Figure 8-6 shows the timing of a write to the ROM address space. The CAS3—CASOQ
signals have exactly the same timing as RSWE.

Burst-Mode ROM Accesses (Am29200 Microcontrolier)

Figure 8-7 shows the timing of a burst-mode ROM access, for direct connection to
burst-mode devices. Burst-mode accesses have a minimum of one wait state for the
initial access, even when wait states are programmed as zero; sequential access after
that are single cycle. Burst-mode writes are not, supported. Burst-mode ROM accesses
are not supported on the Am29205 microcontroller.

Use of WAIT to Extend ROM Cycles

If the WAIT signal is asserted two cycles before the end of a ROM access (that is, two
cycles before the cycle in which ROMCSx would normally be deasserted), the processor
extends the ROM access until WAIT is deasserted. This permits the system to extend
the ROM access indefinitely. The access ends on the cycle after WAIT is deasserted,
both for reads (Figure 8-8) and for writes (Figure 8-9). Note that the wait state counter
continues to count while WAIT is active, so that the cycle is controlled by either the wait
state counter or WAIT, depending on which has the longer duration. Note that WAIT will
not be recognized by any bank programmed for zero wait states. °

The WAIT signal on the Am29200 microcontroller can also be used to extend individual
accesses in a sequence of burst-mode accesses. For each access, the processor does
not consider the data to be valid until the cycle after WAIT is High (Figure 8-7).

8-8

ROM Controller

AMD u

Figure 8-6 Byte Write to ROM Bank (using CAS3-CASO as byte strobes)

‘MEMCLK _/__\ / \ / __/ \ / \ /_

: X Address

A23-A0

RW

ROMCSx

ROMOE

~

fhi

CAS3-CASO
)
1] 1) 1
o \
ID31-1D0 A\ Data N),
)
number of cycles determined by WSx+1 '
WSx=3 illustrated —_—

ROM Controller v 8-9

l"l AMD

Figure 8-7 Burst-Mode ROM Read (Am29200 Microcontrolier)

MEMCLK _/ \ / \ /__\ /_\ / \ /

A23-A3 Address
. 1 L] 1)
L] L] 1
A2-A0 Address x ' / \ ' '
-] 1 0 . 0
R/W] ’ 1] Ll . []
' L] 1 L} L]
] . . []
ROMCSX ' \ ' ' ' ¢
)
[} [] L] 1 L)
ROMOE ' ' \) ' !
1 [] 1] [l)
' [) .) .
[} [] 1] 1 L]
BURST)) \ . , .
[N 1 [[]
RSWE . , . . .
e i ' [0
WAIT : ' \) / : :
' '] '
] [} 1 . .
ID31-1D0 - : ta
' . [U 1 A
’ number of cycles s following accesses® burst ' [
T determined by WSx+1 —; are alwayls single ;*— suspend ™% .
cycle

8-10 ROM Controller

AMD :'

Figure 8-8 Extending a ROM Read Cycle with WAIT

AT AYEYL VW

A23-A0 Address

T f f f AN
ROMCSX . : , , i .
ROWOE . : : : ./ .
RSWE [' ' ' ’ '
R S S [R
ID31-1D0 o l

Figure 8-9 Extending a ROM Write Cycle with WAIT

MEMCLK/\/\/\/_\/\/

A23-A0 Address

W 5 E 5 .
ROWCSK : : : i :
ROMOGE ' ! ' ‘ ' '
RSWE ' , / . .
wr : LT 5 5
ID31-ID0 . I Dat;, N . ')

ROM Controller 8-11

9

DRAM CONTROLLER ‘ n

9.1

9.2
9.2.1

This chapter describes the DRAM interface on the Am29200 and Am29205 microcon-
trollers. The programmable registers are presented, followed by a discussion of DRAM
accesses, address mapping, and address multiplexing. Mapped DRAM accesses,
page-mode timing, DRAM refresh, and video DRAM transfers are also described.

OVERVIEW

The Am29200 and Am29205 microcontrollers directly support DRAM devices without
any additional components, providing RAS and CAS generation, address multiplexing,
and refresh generation. The on-chip DRAM controller utilizes page-mode accesses and
CAS-before-RAS refresh to extract maximum performance from DRAM devices.

The DRAM interface accommodates up to four banks of DRAM that appear as a
contiguous memory. Each bank on the Am29200 microcontroller is individually configur-
able in width; the Am29205 microcontroller supports only 16-bit wide DRAM banks . In
addition, four 64-Kbyte regions of the DRAM can be mapped into a 16-Mbyte virtual
address space. The DRAM controller provides a fixed access time of three cycles plus
one cycle of RAS precharge after each access. Two cycle page-mode accesses are
supported. - :

To support a lower pin count, several signals used by the Am29200 microcontroller for
DRAM interfacing are not available on the Am29205 microcontroller. Because the external
data bus is only 16-bits wide, there need be only two CAS signals (one CAS per byte),
labeled CAS3 and CAS2. The internal circuitry of the Am29205 microcontroller automati-
cally concatenates the two 16-bit accesses, using big-endian structure for a full 32-bit
word. The TR/OE signal for normal DRAM output enable and video DRAM transfer is not
available on the Am29205 microcontroller. Any DRAM with an OE line should be tied to
CAS for the bank, or tied to ground (asserted) as internal DRAM logic gates OE with CS.
Video DRAM ftransfers are not supported on the Am29205 microcontroller.

PROGRAMMABLE REGISTERS

DRAM Control Register (DRCT, Address 80000008)

The DRAM Control Register (Figure 9-1) controls the access to and refresh of DRAM
Banks 0 through 3.

Figure 9-1

DRAM Control Register

31 23 15 7 0

res res res res REFRATE

. : : ;
PGO® res + PG1! PG2! PG3! sC
.
DWO LM DW1 DW2 DW3

DRAM Controller 9-1

zl AMD

Bit 31: Page-Mode DRAM, Bank 0 (PGO0)—When this bit is 1, burst-mode accesses to
DRAM Bank 0 are performed using page-mode accesses for all but the first access.
When this bit is 0, page-mode accesses are not performed.

Bit 30: Data Width, Bank 0 (DW0)—This field indicates the width of the DRAM in Bank
0, as follows:

DW Value DRAM Width
0 32 bits (Reserved on Am29205 microcontroller)
1 16 bits

Since the Am29205 microcontroller supports only 16-bit DRAM, all DWx bits should be
setto 1. '

Bit 29: Reserved

Bit 28: Large Memory (LM)—This bit controls the size of the DRAM banks and the total
size of the DRAM address space. If the LM bit is 0 on either microcontroller, each DRAM
bank is up to 4 Mbytes in size, for placement within a 16 Mbyte address space.

If the LM bit is 1 on the Am29200 microcontroller, each DRAM bank is up to 16 Mbytes
in size, for placement within a 64-Mbyte address space. If the LM bit is 1 on the
Am29205 microcontroller, each DRAM bank is up to 8 Mbytes in size, for placement
within a 64-Mbyte address space. :

PG1, DW1, and so on perform functions similar to PGO and DWO0 for DRAM Banks 1
through 3.

Bit 15: Static-Column DRAM (SC)—When this bit is 1, page-mode accesses to the
DRAM are performed using static-column accesses. Static column accesses differ from
page-mode cycles only in that CAS3-CASO are held Low throughout a read access. The
timing of the access is not affected, and write accesses are not affected. When this bit is
0, normal page-mode accesses are performed, if enabled.

Bits 14-9: Reserved

Bits 8-0: Refresh Rate (REFRATE)—This field indicates the number of MEMCLK
cycles between DRAM refresh intervals. A DRAM refresh interval is the time required to
refresh all four DRAM banks. “CAS before RAS” cycles are performed, overlapped in the
background with other non-DRAM accesses when possible. If one or more banks have
not been refreshed in the background when the REFRATE interval expires, the proces-
sor forces a panic mode refresh of the unrefreshed banks.

A zero in the REFRATE field disables refresh. Upon reset, this field is initialized to the
value 1FFh.

9.2.2 DRAM Configuration Register (DRCF, Address 8000000C)
The DRAM Configuration Register (Figure 9-2) controls the selection of DRAM Banks 0
through 3. In most systems, this register should be set by software to cause the four
banks of DRAM to appear as a single, contiguous region of memory.

9-2 DRAM Controller

AMDn

Figure 9.2

DRAM Configuration Register
31 23 15 7 0
| L | L | LR T | 1 LI 1

ASELO AMASKO| - ASEL1 AMASK1 ASEL2 AMASK2 ASEL3 AMASK3

Bits 31-27: Address Select, Bank 0 (ASEL0)—On a load, store, or instruction access,
this field is compared against bits of the access address, with the comparisons possibly
masked by the AMASKO field. The unmasked bits of the ASELO field must match the
corresponding bits of the address for DRAM bank O to be accessed.

Bits 26—24: Address Mask, Bank 0 (AMASKO0)—This field masks the comparison of
the ASELO field with bits of the address on an access, to permit various sizes of
memories and memory chips in DRAM Bank 0 (“ad(x:y)” represents a field of address
bits x through vy, inclusive).

AMASKO Address Comparison Address Comparison
Value (LM=0) - (LM=1)
000 ASELO(4:0) to ad(23:19) ASEL0(4:0) to ad(25:21
001 ASELO(4:1) to ad(23:20 ASELOQ(4:1) to ad(25:22
011 ASELO(4:2) to ad(23:21 ASELO0(4:2) to ad(25:23
111 ASELO(4:3) to ad(23:22 ASELO(4:3) to ad(25:24) (Reserved on Am29205)

Only the AMASKQO values shown in the above table are valid.

Other bits of this register have a definition similar to ASELO and AMASKO for DRAM
Banks 1 through 3.

DRAM Mapping Registef 0 (DRMO, Address 80000010}

9.2.3
This register (Figure 9-3) specifies one of four possible mappings of a mapped DRAM
access. :

Figure 9.3 DRAM Mapping Register 0

31 23 15 - 7 0

res VIRTBASE res PHYBASE

.
VALID

Bit 31: Valid Mapping (VALID)—This bit, when 1, indicates that the mapping specified
by the VIRTBASE and PHYBASE fields is valid.

Bits 30-24: Reserved

Bits 23-16: Virtual Base Address (VIRTBASE)—This field specifies the virtual base
address of the mapped region. On a mapped DRAM access, it is compared against bits
23-16 of the address generated by the load or store instruction. The comparison must
match for the mapping to be performed.

DRAM Controller 9-3

l"' AMD

9.2.4

9.2.5

9.2.6

9.2.7

9.3
9.3.1

Bits 1v5—8: Reserved

Bits 7-0: Physical Base Address (PHYBASE)—This field specifies the physical base
address of the mapped region. On a mapped DRAM access, if the comparison of the
virtual base address yields a match and the VALID bit is 1, the PHYBASE field replaces
bits 23-16 of the address.

DRAM Mapping Register 1 (DRM1, Address 80000014)

This register is identical in layout and definition to the DRAM Mapping Register 0.
It specifies the second of the four possible mappings.

DRAM Mapping Register 2 (DRM2, Address 80000018)

This register is identical in layout and definition to the DRAM Mapping Register 0.
It specifies the third of the four possible mappings.

DRAM Mapping Register 3 (DRM3, Address 8000001C)

This register is identical in layout and definition to the DRAM Mapping Register 0.
It specifies the the fourth of the four possible mappings.

Initialization

The configuration of DRAM banks, if present, must be set by software before normal
DRAM accesses are performed (the DRAM may be accessed using default parameters
that are set by software to determine the configuration of the DRAM). The DRAM
Mapping registers are not initialized by a processor reset, and must be set by

software before a mapped DRAM access occurs. The REFRATE field is initialized

on reset to the value 1FFh. DRAM power-up requirements must be guaranteed by
software.

DRAM ACCESSES

DRAM Address Map})ing

To map logical memory banks to physical addresses, each DRAM bank uses two fields
to determine the location of the bank in physical memory: AMASK and ASEL. AMASK
selects the number of address bits decoded and thus the size of a given bank. ASEL
contains the address bit values compared against the address and thus the location of a
given bank. The LM bit controls the maximum size of the banks and the total size of the
DRAM address space as shown. .

AMASK Value Bank Size (LM=0) Bank Size (LM=1)

000 512 Kbytes 2 Mbytes
001 1 Mbyte 4 Mbytes
011 2 Mbytes 8 Mbytes*
11 4 Mbytes 16 Mbytes*

* Am29200 microcontroller only

The ASEL and AMASK fields allow the four DRAM banks to appear as a contiguous
region of DRAM, with the restriction that a bank of a certain size must fit on the natural
address boundary for that size. For example, a 2-Mbyte DRAM must be placed on a
2-Mbyte address boundary. For this reason, DRAM banks must appear in the address
space in order of decreasing bank size. Note that to achieve a contiguous memory, the

9-4

DRAM Controller

AMD l""

various DRAM banks need not appear in sequence in the address space. For example,
DRAM Bank 3 may appear in an address range below the address range for DRAM
Bank 1 or 2. This provides flexibility in meeting the restriction that DRAM banks appear
in the address space in order of decreasing size. Setting AMASK to 0 and ASEL to 1Fh
reduces the probability of empty banks being inadvertently decoded. This configures the
bank as small and as high in memory as possible.

9.3.2 Address Multiplexing
The address multiplexing for the DRAMs is performed directly by the processor on the
A14-A1 pins, and no external multiplexing is required. As shown in Table 9-1 and
Table 9-2, only the odd physical address pins from A9 and above (A9, A11, and A13) are
used for 16-bit interfaces, while only even physical address pins above A9 (A10, A12,
and A14) are used for 32-bit memories. Address bit A0 is not represented, since the
Am29200 microcontroller supports only 16- and 32-bit DRAM widths. Address multiplex-
ing for 16- and 32-bit DRAM memories is performed as shown in Table 9-1 and
Table 9-2 (“ax” represents address bit x).
Table 9-1 Address Multiplexing for 16-bit DRAM Memory
Bank Depth Bank Depth
Address Pin RAS Asserted CAS Asserted (LM=0) (ea) (LM=1) (ea)
*
A13 a21 a22 4 Mbyte 8 Mbyte
*
A1 al9 a20 1 Mbyte 2 Mbyte
L)
A9 ais a9
Upto Upto
AB at7 it 256 Kbyte 512 Kbyte
A7 al6 a7
A6 ai5 a6
A5 al4 ab
A4 ai3 a4
A3 al2 a3
A2 alt a2
A1l al0 al
Note: * indicates signals not applicable to the bus width.
DRAM Controlier 9-5

a AMD

Table 9-2 Address Multiplexing for 32-bit DRAM Memory (Am29200 Microcontroller)
Bank Depth Bank Depth
Address Pin RAS Asserted CAS Asserted (LM=0) (ea) (LM=1) (ea)
Al4 a22 a23 4 Mbyte 16 Mbyte
*
A12 a20 a21 2 Mbyte . 4 Mbyte
.
A10 al9 al0
Upto Up to
A9 alg a9 512 Kbyte 1 Mbyte
A8 al7 a8
A7 al6 a7
A6 als ab
A5 al4 as
A4 al3 a4
A3 ai2 a3
A2 al1 a2
*
Note: * indicates signals not applicable to the bus width.
Table 9-3 shows how this multiplexing of addresses supports various configurations of
memory densities and memory widths, assuming the individual DRAMs are 4 bits wide.
The addresses shown in Table 9-3 are the address bits for an access. Table 9-4 shows
how the various memories should be connected to the processor’s address pins to
realize this address multiplexing, again assuming the individual DRAMs are 4 bits wide.
Sequential accesses can use page-mode accesses, even though not all CAS address bits
are contiguous address bits, because the processor does not generate a page-mode
Table 9-3 DRAM Address Multiplexing (by-4 DRAMs)
DRAM DRAM Portion DRAM multiplexed address bits
density width of cycle 0 9 8 7 6 5 2 3 >] 0
16 bit RAS alg8 | al7 | a16 | a15 | a14 | a13 | a2 | a1l | at0
s
1 Mbit CAS a9 a8 a7 aé a5 a4 a3 a2 a1l
RAS al9 | a18 | a17 | a16 | a15 | al4 | a13 | a12 | a1
32 bits
CAS al0 | a9 ad a7 a6 a5 a4 a3 a2
16 bit. RAS al® | a18 | a17 | a16 | ai5 | a14-} at3 | a12 | a1l]| al0
its
4 Mbit CAS a20 a9 a8 a7 aé a5 a4 a3 a2 ail
52 bit RAS a20 | a19 | a18 [a17 | a16 | a15 | a4 | a13 | a2 | a1
s
CAS a21 | a1t0 | a9 a8 a7 a6 a5 a4 a3 a2
16 bit RAS a21 | a19 | a18 | a17 [a16 | at5 | al4 | a13 | a12 | a11 | ato
Iits
16 Mbit CAS a22 | a20 a9 a8 a7 a6 a5 a4 a3 a2 al
: 3’2 bit RAS a22 | a20 | a19 | a18 | a17 | a16 | a15 | a14 | a13 | a12 | all
s
CAS a23 | a21 | a10 a9 a8 a7 ab a5 a4 a3 a2
9-6 DRAM Controller

AMD:‘

Table 9-4 DRAM Address Connections to Microcontroller (by-4 DRAMs)
DRAM DRAM DRAM muitiplexed address bits
density width o] 9| 8] 7] 6]5]24]3]z2]1]o
1 Mbit 16 bits AO | A8 | A7 | A6 | A5 | A4 | A3 | A2 | Al
32 bits Ao | A9 [A8 | A7 | A6 | A5 | A4 | A3 | A2
4 Mbit 16 bits A1 | A9 | AB | A7 | A6 | A5 | A4 | A3 | A2 | A1
32 bits A2 | Ato| A9 | A8 | A7 | A6 [A5 | A4 | A3 | A2
16 16 bits A3 | A1 | A9 | A8 | A7 | A6 | A5 | A4 | A3 | A2 | At
Mbit 32bits | Al4 |A12 | AIO| A9 | AB | A7 | A6 | A5 | A4 | A3 | A2
access across a 1-Kbyte address boundary. Thus, the processor will not change any
address bits other than a(9:1) during a page-mode access.
9.3.3 32-Bit DRAM Width (Am29200 Microcontrolier)
For a data access, the width of each DRAM bank on the Am29200 microcontroller can
be programmed to be either 32 or 16 bits by the DRAM Control Register. If the DRAM is
32 bits wide, ID31-IDO0 are used to transfer data to and from the processor, and the
processor performs one access to read or write a byte, half-word, or word. The
CAS3-CASO signals are asserted as follows (the value “0” is Low, “1” is High, and “x” is
a don’t care):
Data Width A1-A0 CAS3-CASO (on write)
8 bits 00 0111
8 bits 01 1011
8 bits 10 1101
8 bits 11 1110
16 bits Ox 0011
16 bits 1x 1100
32 bits 00 (one cycle) _ 0000
9.3.4 16-Bit DRAM Width

If the DRAM is 16 bits wide on either the Am29200 or Am29205 microcontroller, only
ID31-1D16 are used to transfer data to and from the processor and the processor
performs two accesses to read or write a full word.

To read a 32-bit word from a 16-bit DRAM bank, the processor first reads the high-order
16 bits of the word, then generates a second access to read the low-order 16 bits of the
word. The address is incremented by two for the second access. To read an 8-bit byte or
16-bit half-word from a 16-bit DRAM, the processor performs only a single access.
Alignment and sign extension are performed as usual, except the required byte or
half-word is received on ID31-ID16. Figure 9-4 shows the location of bytes and half-
words from a 16-bit DRAM bank. In Figure 9-4, bytes and half-words are numbered as
they are numbered in a word.

To write a 32-bit word into a 16-bit DRAM bank, the processor first writes the high-

order 16 bits of the word, then generates a second access to write the low-order 16 bits
of the word. The address is incremented by two for the second access, and the low
order bits of the word appear on ID31-ID16. To write an 8-bit byte or 16-bit half-word on
a 16-bit bus, the processor performs only a single access. For a byte write, the appropri-
ate byte is replicated on both ID31-1D24 and ID23-ID16. For a half-word write, the

DRAM Controller 9-7

l"l AMD

Figure 9-4 Location of Bytes and Half-Words on a 16-Bit Bus

D31 23 15 7 0
Byte 0 Byte 1
Bytes Byte 2 Byte 3 X X
ID31 15 0
Half-Words ﬁ:,'i:vwvgiﬂ ?' X

9.3.5

9.3.6

appropriate half-word appears on ID31-1D16. The CAS3—-CASO signals are asserted as
follows (the value “0” is Low, “1” is High, and “X” is a don't care):

Data width A1-AQ CAS3-CASO (on write)
8 bits 00 ' 0111
8 bits 01 1011
8 bits 10 0111
8 bits 11 1011
16 bits Ox 0011
16 bits 1x 0011
—all other writes (two cycles)— 0011

Mapped DRAM Accesses

Processor DRAM accesses in the 16-Mbyte address range 50000000h-50FFFFFFh are
mapped to one of four 64-Kbyte regions of the DRAM. This provides a virtual memory
region supporting functions such as image compression and decompression that yield
lower overall memory requirements and thus lower system cost. Only processor DRAM
accesses can be mapped. DRAM accesses by a DMA channel cannot be mapped.

DRAM Mapping Registers 0 through 3 each specify a DRAM mapping. Before an access
to a DRAM location having an address in the range 50000000h—50FFFFFFh, bits 23-16
of the address are compared to the VIRTBASE fields in each of the DRAM Mapping
registers. If the address bits match the VIRTBASE field in one of the registers, and the
associated VALID bit is 1, then the PHYBASE field replaces bits 23-16 of the address
before the access is performed. If more than one valid comparison occurs, thie mapping
specified by DRAM Mapping Register 0 has the highest priority, and the mapping
specified by DRAM Mapping Register 3 has the lowest priority. If no valid comparison is
detected, the processor’s User- or Supervisor-mode Instruction or Data Mapping Miss

* occurs, depending on the program mode and type of access.

Normal Access Timing

Figure 9-5 shows the timing for a normal DRAM read cycle. Figure 9-6 shows the timing
for a normal DRAM write cycle. DRAM cycles are fixed at four cycles including precharge
and cannot be extended with WAIT. An additional cycle is taken after the data is read or
written to permit time for RAS precharge. The rising edge of RAS occurs on the third
rising edge of MEMCLK after the beginning of the cycle.

DRAM Controller

AMD n

Figure 9-5 DRAM Read Cycle

MEMCLK : ' \ / \ /_\ / \ /

A14-A1 Row Addr X Col Addr : ‘

RW :) : : ,
-——-\‘ ' ' ' T T

RASX '] 1 ' ' \]

CAS3-CASO . . \ '. . . .

WE ! ' '

'T—R/O = . [1]

ID31-1D0 L . .

* Am29200 microcontroller only

Figure 9-6 DRAM Write Cycle

MEMCLK‘_/__/_\ /_\ /_\ /j /

T S L |
mm T\ : : ./ 1
m T\ -
OASS-CASD \ / 1
WE : 4\ : : /) :
woEs f f f f f
om0 — e f

+ Am29200 microcontroller only

DRAM Controlier 9-9

a AMD

9.3.7

9.3-8

Page-Mode Access Timing

Page-mode accesses can be enabled for each bank to reduce the average access time
for a sequence of accesses. If enabled, page-mode accesses are performed for
instruction accesses and for the LOADM and STOREM instructions. Page-mode
accesses permit an access time of two cycles for all but the first access. When the
DRAM bank is 16 bits wide, two accesses are required to obtain a 32-bit word. Page-
mode accesses are performed to access the second 16 bits in this case if page-mode
accesses are enabled.

Figure 9-7 shows the timing for a page-mode DRAM read cycle. Figure 9-8 shows the
timing for a page-mode DRAM write cycle. Static-column accesses are performed if
SC=1 in the DRAM Control Register. Static-column accesses differ from page-mode
accesses only in that CASx remain Low throughout the access.

DRAM Refresh

“CAS before RAS” refresh cycles are performed periodically, as determined by the
REFRATE field of the DRAM Control Register. The REFRATE field specifies the number
of MEMCLK cycles in a refresh interval; a zero in this field disables refresh. The
microcontroller ensures that one row of each DRAM bank is refreshed in every interval.
Each bank is refreshed separately to distribute the demand placed on the DRAM power
supplies by the individual banks.

Figure 9-9 shows the timing of a refresh cycle. Because refresh cycles use only the
RASx and CASKx signals, the processor attempts to perform refresh in the background,
refreshing each bank in the cycles that the DRAM is not being used, possibly overlapped

Figure 9-7

DRAM Page-Mode Read Cycle

e I e e e A A A

A14-A1

Row Addr X Col Addr X Col Addr +2/4

TR/OE+«

ID31-1D0

o o e e e e e e ofa

may be repeated up to 1

:‘_ Kbyte address boundary _.:

¢ Am29200 microcontrolier only

9-10

DRAM Controller

AMD l"l

Figure 9-8 DRAM Page-Mode Write Cycle

N AY AR W W Wl

Row Addr X Col Addr x Col Addr +2/4

~

—

CAS ASO ' ' \ ' ’ \ / '

[

1
. '
'
[

_ Data Data + 2/4 \
ID31-1D0 —:——_"(7 a X ata + I

may be repeated up to 1

:‘_ Kbyte address boundary _’:

el = =« = F - -

¢ Am29200 microcontroller only

Figure 9-9 DRAM Refresh Cycle

MEMCLK —/___/—\ Ij \ '/ _/ u

A14-A1

P

=

TR/OE«

ID31-1DO

+ Am29200 microcontroller only

DRAM Controller 9-11

z' AMD

with ROM and PIA accesses. Background refresh incurs very little overhead. The
average penalty of background refresh is about 2 cycles per refresh interval. This
penalty arises because the processor sometimes attempts to access the DRAM after a
refresh cycle has been started. If one or more banks has not been refreshed by the end
of a refresh interval, the DRAM controller performs “panic mode” refresh cycles to
refresh the remaining banks. Panic mode refresh cycles take priority over all other
processor accesses.

9.3.9 Video DRAM Interface {Am29200 Microcontroller)

A video DRAM (VDRAM) transfer cycle is performed during accesses in the range
60000000h- 63FFFFFFh. These cycles permit the transfer of data to.a VDRAM shift
register in graphics applications.

For VDRAM transfer cyclés with 16-bit memories, the DRAM bank'’s page-mode bit
(PGx) in the DRAM Control Register must be turned off.

Figure 9-10 shows the timing of a VDRAM transfer cycle. Note that the ID bus is not
forced to high impedance. This cycle differs from a normal DRAM cycle because the
signal TR/OE is asserted with different timing.

Figure 9-10 VDRAM Transfer Cycle (Am29200 Microcontroller)

MEMGLK / \ / ' _/ __/

Row Addr X Col Addr

"" []
[)
RASX . \ .

CAS3-CASO ' ! \

WE ' \ +High=read, Low = write

ID31-ID0

9-12 . DRAM Controller

|
&

1 o PERIPHERAL INTERFACE ADAPTER

10.1

10.2
10.2.1

This chapter describes the peripheral interface (PIA) adapter on the Am29200 and
Am29205 microcontrollers. Information is provided on the programmable registers,
initialization, and PIA accesses, including timing.

OVERVIEW

PIA space on the microcontroller is divided into regions, each of which can be directly
attached to an off-chip peripheral device. The microcontroller’s dedicated PIA chip select
signals will assert a peripheral device’s chip select input pin when the associated PIA
region on the microcontroller is read or written.

With six PIA chip select signals, PIACS5-PIACSO0, the Am29200 micracontroller permits
direct attachment of up to six external peripheral devices, each with its own 24-bit
address space, for a maximum size of 16 Mbytes per PIA region.

With two PIA chip select signals and a smaller address bus, the Am29205 microcontrol-
ler supports up to two peripheral devices, each with its own 22-bit memory space, for a
maximum size of 4 Mbytes per PIA region. The 16-bit ID bus of the Am29205 microcon-
troller limits PIA support to 8- or 16-bit peripherals. The PIACS5-PIACS2 signals are not
supported on the Am29205 microcontroller.

PROGRAMMABLE REGISTERS

PIA Control Register 0/1 (PICT0/1, Address 80000020/24)

The PIA Control Registers (Figure 10-1 and Figure 10-2) control the access to PIA
Regions 0 through 5 on the Am29200 microcontroller. The PIA Control Register 1 is not
available on the Am29205 microcontroller, since that product does not support PIA
Regions 2, 3, 4, or 5.

Figure 10-1

PIA Control Register 0 (PICTO, Address 80000020)

31 23
L L LI L

res | towaimo res | 1oWAIT1

: : .)
10EXTO I0EXT1 I0EXT2 IOEXT3

= Reserved on Am29205 microcontroller

Figure 10-2

PIA Control Register 1 (PICT1, Address 80000024) (Am29200 Microcontroller)

31 23 15 7 0

L} .
I0EXT4 IOEXT5

= Reserved on Am29205 microcontroller

Peripheral Interface Adapter 10-1

n AMD

10.2.2

10.3

10.3.1

Bit 31: Input/Output Extend, Region 0 (IOEXT0)—If this bit is one, the end of a PIA
access is extended by one cycle after PIAOE is deasserted or by two cycles after
PIAWE is deasserted. This provides one additional cycle of output disable time or data
hold time for reads and writes, respectively.

Bits 30-29: Reserved

Bits 28-24: Input/Output Wait States, Region 0 (IOWAIT0)—This field specifies the
number of wait states taken by an access to PIA Region 0. An I/O read cycle takes at
least three cycles (two wait states), and an I/O write cycle takes at least four cycles
(three wait states). If the IOWAITO field specifies an insufficient number of wait states for
an access (for example, IOWAITO = 00010b for a write), the processor takes the
required minimum number of wait states instead of the specified number.

Other bits perform similar functions to IOEXTO and IOWAITO for PIA Regions 1 through 5.

Bits 15-0: Reserved. These bits are reserved on the Am29205 microcontroller and
should be written with Os to ensure compatibility.

Initialization

The configuration of PIA regions, if present, must be set by software before PIA
accesses are performed. Peripherals may be accessed using default parameters set by
software to determine the presence and/or configuration of the peripherals.

PIA ACCESSES

PIA accesses are performed as a result of load and store instructions having an address
within the range of the specific PIA regions supported by the microcontroller. The
Am29200 microcontrolier supports PIA Regions 5 through 0; the Am29205 microcontrol-
ler supports PIA Regions 1 through 0. The PIA region number determines which PIACSx
signal is asserted during the access. PIACSO is asserted for an access to PIA Region O,
and so on.

The Am29200 microcontroller supports PIA accesses within the address ranges of PIA
Region 0 (addresses 90000000h—90FFFFFFh) through PIA Region 5 (addresses
95000000h—95FFFFFFh). The data width of the load or store (selected by the OPT bits
of the instruction) determines the width of the access. An 8-bit device must be attached
to ID7-ID0 on the Am29200 microcontroller and a 16-bit device must be attached to
1D15-1D0. LOADM and STOREM instructions (possible only for 32-bit accesses) are
performed as a series of simple loads and stores.

The Am29205 microcontroller supports PIA accesses within the address ranges of PIA
Region 0 (addresses 90000000h—90FFFFFFh) through PIA Region 1 (addresses
91000000h—91FFFFFFhY). Since the instruction/data bus on the Am29205 microcontrol-
ler is 16 bits wide, only 8- or 16-bit peripherals are supported. They are attached to
ID23-ID16 and ID31-ID186, respectively. Only byte or half-word accesses (specified by
the OPT bits in the load and store instructions) are allowed on these peripherals.
Performing a 32-bit data access on these peripherals may result in unpredictable data.

When a byte access is made to the PIA region on either microcontroller, the two least
significant bits of the address must be 11. When a half-word access is made, the two
least significant bits must be 10. Instruction fetching from a PIA region is not supported.

Normal Access Timing

Figure 10-3 shows the timing of a PIA read cycle. The address is driven in the first cycle,
the PIACSKx signal is asserted in the second cycle to allow for address setup, and the

10-2

" Peripheral Interface Adapter

AMD l"l

PIAOE signal is asserted in the third cycle to allow for chip select setup. The data must
be valid after the number of cycles specified by IOWAITx+1. After sampling the data, the
microcontroller deasserts PIACSx and PIAOE. The interface operates such that the
processor allows at least one cycle before it drives the instruction/data bus (ID31-1D0 on
the Am29200 microcontroller and ID 31-16 on the Am29205 microcontroller) for a new
access (though a new address may be driven on the address bus immediately),
providing one cycle for the peripheral to disable its drivers. If this cycle is insufficient,
setting the IOEXTx bit for the region causes the processor to insert an additional cycle
after the read before starting a new access.

Figure 10-4 shows timing of a PIA write cycle. The PIAOE signal is not asserted.
Instead, the processor drives data in the second cycle and asserts the PIAWE signal in
the third cycle to allow for address, data, and chip select setup. The PIAWE signal is
deasserted one cycle before the final cycle to provide data hold time for the write. If one
cycle of hold time is insufficient, setting the IOEXTx bit for the region causes the
processor to insert an additional cycle of data hold time.

10.3.2 Use of WAIT to Extend 1/O Cycles
The WAIT signal is used to extend the number of wait states beyond the number
determined by the IOWAITXx field. WAIT can be asserted during a read at any time up
until two cycles before PIAOE is deasserted, and can be asserted during a write at any
time up until two cycles before PIAWE is deasserted. In response to WAIT, the proces-
sor extends the access until WAIT is deasserted. If WAIT is asserted within the appropri-
ate amount of time, a normal read access ends on the cycle after WAIT is deasserted
Figure‘ 10-3 PIA Read Cycle
A23-A0 I Address
RAW ./ I , Z \
PIACSX ' \ ! ' /
PIAOE . ' ! \ ' ' / B
PIAWE ' ' '
WAIT ' ' '
ID31-ID0 == : .
—

Ll
number of cycles determined by IOWAITx+1 , nextaccessis
IOWAIT=3 illustrated — o delayed one cycle
' if IOEXTx=1

Peripheral Interface Adapter . 10-3

l"l AMD

Figure 10-4 PIA Write Cycle
MEMCLK \ / \ / \ /
. Address X : v

A23-A0

w0\

WAIT '

IL R DataN)—

number of cycles determined by IOWAITx+1
|IOWAITx=4 illustrated >

ID31-IDO

final cycle is
extended for one
cycle if IOEXTx=1

(Figure 10-5), and a normal write access ends on the second cycle after WAIT is
deasserted, to provide data hold time (Figure 10-6). If IOEXTx=1, the processor waits
one more cycle after a read access to begin a new access, and inserts one more cycle
of data hold time after a write access.

104 Peripheral Interface Adapter

AMD zl

Figure 10-5 Extending a PIA Read Cycle with WAIT

MEMCLK _/___/_\ , / \

A23-A0 Address

) : : : A
e : : : VB
ww | : | : ¥
PIAWE

WAIT

ID31-ID0
next access is
delayed one cycle
if IOEXTx=1

Figure 10-6 Extending a PIA Write Cycle with WAIT

MEMCLK_/___/_\ / \ /__/ _/

A23-A0 Address

~N NN PSS

al e a ol = =
of @ = afe = =

.3
>
g
m

=
—l
NN

ID31-ID0 DataN ’)

final cycle is
extended for one
cycle if IOEXTx=1

Peripheral Interface Adapter . 10-5

b

1 1 DMA CONTROLLER

11.1

11.2
11.2.1

This chapter describes the on-chip DMA controller. Programmable registers and
initialization are detailed, followed by a discussion of DMA transfers, queuing, and
random DMA by external devices.

The DMA controlier supports three types of DMA transfers: internal, external, and
direct transfers.

OVERVIEW

The on-chip DMA controller provides a means to transfer data between the DRAM and
internal or external peripherals. Each supported DMA channel on the Am29200 and
Am29205 microcontrollers is configurable for width, direction, address increment or
decrement, external request type, and external peripheral wait states.

Internal DMA transfers can be requested by the parallel port, serial port, and video
interface. Each of these internal peripherals has a field in its control register for
specifying which of the two DMA channels is to be used for the transfer.

External DMA transfers are requested by off-chip peripherals.

Direct DMA transfers transfer data between an external device and DRAM using an
address supplied by the device. The GREQ and GACK signals are used to perform
direct DMA. Direct DMA is not supported on the Am29205 microcontroller.

The Am29200 microcontroller has two DMA channels, DMA Channel 0 and DMA
Channel 1, each capable of performing either internal or external DMA transfers. One of
these channels, DMA Channel 0, supports queued transfers. Using the GREQ and
GACK signals, the Am29200 microcontroller also supports direct DRAM and ROM
access by an external device such as an external DMA controller.

The Am29205 microcontroller has one externally controlled DMA channel, DMA
Channel 1, and two internally controlled channels, DMA Channels 0 and 1, available for
use by the internal peripherals only. 32-bit DMA transfers between internal peripherals
and DRAM are supported. However, DMA transfers between external peripherals and
DRAM are limited to 8- or 16- bit data accesses. The DREQO, DACKO, GREQ, GACK,
and TDMA signals are not supported on the Am29205 microcontroller.

PROGRAMMABLE REGISTERS

DMAO Control Register (DMCTO, Address 80000030)

The DMAO Control Register (Figure 11-1) controls DMA Channel 0 on the Am29200
and Am29205 microcontrollers. DMA Channel 0 on the Am29205 microcontroller is
available for transfers between internal peripherals and DRAM only; external transfers
are not supported.

DMA Controller 11-1

n AMD

Figure 11-1 DMAO Control Register

31 23 15 7
Frrrrriri

reserved

. 1 1 L 1] L] 1] ;
DMAEXT ACS UD ! EN ! CTE!
RW TTE QEN

= Reserved on Am29205 microcontroller

Bit 31: DMA Extend (DMAEXT), Am29200 microcontroller—The DMAEXT bit serves
a function very similar to the IOEXTx bits in the PIA Control registers. This bit is set to
provide an additional cycle of output disable time for a read or an additional cycle of data
hold time for a write. This bit is reserved on the Am29205 microcontroller.

Bits 30—29: Reserved

Bits 28—-24: DMA Wait States (DMAWAIT), Am29200 microcontroller—This field
specifies the number of wait states taken by an external access by DMA Channel 0. An
external DMA read cycle takes at least three cycles (two wait states) and an external
DMA write cycle takes at least four cycles (three wait states). If the DMAWAIT field
specifies an insufficient number of wait states for an access (for example, DMAWAIT =
00010b for a write), the processor takes the required minimum number of wait states
instead of the specified number. This field is reserved on the Am29205 microcontroller.

Bits 23-22: Data Width (DW)—This field indicates the width of the data transferred by
the DMA channel, as follows:

DW Value DMA Transfer Width
00 32 bits (External and internal transfers on Am29200 microcontroller)
32 bits (Internal transfers on Am29205 microcontroller)
01 8 bits
10 16 bits
11 32 bits, address unchanged (Reserved on Am29205 microcontroller)

On the Am29200 microcontroller, the value DW=11 is used to repeatedly transfer a fixed
pattern from a single DRAM location to a peripheral. For example, it can be used to
transfer to a blank area of a printed page without requiring that a memory buffer be
allocated for the blank area.

Bits 21-20: DMA Request Mode (DRM), Am29200 microcontroller—This field
indicates how external DMA requests are signaled by DREQO, as follows:

DRM Value DREQO Request
00 Active Low
01 Active High
10 High-to-Low transition
11 . Low-to-High transition

The DRM field is set‘ to 00 by a processor reset. See Section 11.3.6 for information on
clearing latched DMA requests. This field is reserved on the Am29205 microcontroller.

11-2

DMA Controller

AMD a

Bit 19: Assert Chip Select (ACS), Am29200 microcontroller—This bit controls
whether DMA Channel 0 asserts PIACSO during an external peripheral access. If the
ACS bit is 1, the DMA channel asserts PIACSO; if the ACS bit is 0, the DMA channel
does not assert PIACSO. This bit is reserved on the Am29205 microcontroller.

Bits 18-10: Reserved

Bit 9: Transfer Up/Down (UD)—This bit controls the addressing of memory for the
series of DMA transfers. If the UD bit is 1, the DMA address (in the DMAO Address
Register) is incremented after each transfer. If the UD bit is 0, the DMA address is
decremented after each transfer. The amount by which the address is incremented or
decremented is determined by the width of the transfer, as follows:

DW Value . Address Incr/Decr
00 (32 bits) +—4
01 §8 bits) +—1
10 (16 bits) +-2
11 (32 bits) +/-0 (Reserved on Am29205 microcontroller)

Bit 8: Read/Write (RW)—This bit controls whether the DMA transfer is to or from the
DRAM. if the RW bit is 1, the DMA channel transfers data from the DRAM to the
peripheral. If the RW bit is 0, the DMA channel transfers data from the peripheral to the
DRAM.

Bit 7: Enable (EN)—This bit enables the DMA channel to perform transfers. A 1 enables
transfers, and a 0 disables transfers.

Bit 6: TDMA Terminate Enable (TTE), Am29200 microcontroller—This bit, when 1,
causes the DMA channel to sample the TDMA signal during an external DMA transfer
and to terminate the transfer if TDMA is asserted. TDMA does not apply to an internal
transfer. If this bit is 0, the TDMA signal is ignored. This bit is reserved on the Am29205
microcontroller. .

Bit 5: Count Terminate Enable (CTE)—This bit, when 1, causes the DMA channel to
terminate the transfer when the DMACNT field of the DMA Count Register decrements
past zero. If this bit is 0, the DMA transfer does not terminate, though the DMA channel
still decrements the count after every transfer.

Bit 4: Queue Enable (QEN)—This bit, when 1, enables the DMA queuing feature (which
is implemented only on DMA Channel 0). DMA queuing allows the DMAQO Address
Register and DMAO Count Register to be reloaded automatically at the end of a DMA
transfer from the DMAO Address Tail Register and the DMAO Count Tail Register,
respectively. Queuing permits a second transfer to start immediately after a first transfer
has terminated, greatly reducing the response-time requirement for software to set up
and start the second transfer. When this bit is 0, DMA queuing is disabled, and the
DMAGO Address Register and DMAO Count Register are set directly to initiate a transfer.

Bits 3-2: Reserved

Bit 1: TDMA Terminate Interrupt (TTI), Am29200 microcontroller—The TTI bit is
used to report that the DMA channel has generated an interrupt because of TDMA
termination. If the TTE bit is one and the TDMA signal is asserted during an external
DMA transfer, the TTI bit is set and a processor interrupt occurs. This bit is reserved on
the Am29205 microcontroller.

DMA Controller 11-3

u AMD

11.2,2

Bit 0: Count Terminate Interrupt (CTI)}—The CTI bit is used to report that the DMA
channel has generated an interrupt because of count termination. if the CTE bit is one
and the DMACNT field decrements past zero, the CTI bit is set and a processor interrupt
occeurs.

DMAO Address Register (DMADO, Address 80000034)

The DMAO Address Register (Figure 11-2) contains the addresses for a transfer by DMA
Channel 0.

Figure 11-2

DMAO Address Register
31 ' 23 15 7 0

DRAMADDR

[Z] = Reserved on Am29205 microcontroller

11.2.3

Bits 31-24: Peripheral Address (PERADDR), Am29200 microcontroller—This field
specifies eight bits that are driven on A7—A0 during an external peripheral access by the
DMA channel. A23—A8 are driven Low during the transfer. The peripheral address
remains unchanged with each access. This field is reserved on the Am29205 microcon-
troller, since external DMA transfers are not supported on Channel 0.

Bits 23—0: DRAM Address (DRAMADDR)—This field contains the DRAM address for
the next DMA transfer to or from the DRAM. The DRAMADDR field is incremented or
decremented (based on the UD bit) by an amount determined by the width of the DMA
transfer. The increment or decrement amount is 1 for a byte transfer, 2 for a halfword
transfer, and 4 for a word transfer. (Word transfer is not supported on'the Am29205
microcontroller.) To support repeated transfers from the same word on the Am29200
microcontroller, the address can be left unchanged. The DRAMADDR field wraps from
the value 000000h to FFFFFFh when decremented and from FFFFFFh to 000000h
when incremented.

DMAO Address Tail Register (TADO, Address 80000070)

This write-only register (Figure 11-3) is the tail of the DMA Channel 0 address queue,
and is used to write the address of a queued transfer when the QEN bit is 1.

Figure 11-3

DMAO Address Tail Register

31 23 ' 15 7 0

reserved DRAMADDR

Bits 31-24: Reserved

Bits 23-0: DRAM Address (DRAMADDR)—This field is written with the beginning
DRAM address for a queued DMA transfer, if queuing is enabled.

14

DMA Controller

AMD a

11.24

DMAO Count Register (DMCNO, Address 80000038)

The DMAO Count Register (Figure 11-4) specifies the number of transfers remaining to
be performed by DMA Channel 0.

Figure 11-4 DMAO Count Register

31 23 15 7 0

reserved DMACNT

11.2.5

Bits 31-24: Reserved

Bit 23—-0: DMA Count (DMACNT)—This field normally specifies the number of transfers
remaining to be performed on the DMA channel. The count is zero-based: a count of
zero indicates one transfer, a count of one indicates two transfers, and so on. The DMA
channel decrements the DMACNT field after every transfer. If the CTE bit is 1, the DMA
channel generates an interrupt when the DMACNT field is decremented past zero.
However, if the CTE bit is not 1, the DMACNT field is still decremented after every
transfer and can be used to determine how many transfers have been performed when
the DMA channel terminates because of the TDMA signal.

DMAO Count Tail Register (TCNO, Address 8000003C)

This write-only register (Figure 11-5) is the tail of the DMA Channel 0 count queue, and
is used to write the transfer count of a queued transfer when the QEN bit is 1.

Figure 11-5 DMAO Count Tail Register

31 23 15 7 0
rerrrrryprrirrrrrirrrri T T T T i TrrTTiTd

reserved DMACNT

11.2.6

Bits 31-24: Reserved

Bits 23-0: DMA Count (DMACNT)—This field is written with the zero-based number of
transfers to be performed by a queued DMA transfer, if queuing is enabled.

DMA1 Control Register (DMCT1, Address 80000040)
The DMA1 Control Register controls DMA Channel 1. Queuing is not implemented on
DMA Channel 1. ’

Figure 11-6 DMA1 Control Register

31 23 15 7 0
LI L L L LU

res DMAWAIT DW | DRM reserved

N L] L) L] L) L) . . .
DMAEXT ACS) ub ; EN | CTE Tl

RW TTE CTl
] = Reserved on Am29205 microcontroller

DMA Controller 11-5

n AMD

Bit 31: DMA Extend (DMAEXT)—The DMAEXT bit serves a function very similar to the
IOEXTx bits in the PIA Control registers. This bit is set to provide an additional cycle of
output disable time for a read or an additional cycle of data hold time for a write.

Bits 30-29: Reserved

Bits 28-24: DMA Wait States (DMAWAIT)—This field specifies the number of wait
states taken by an external access by DMA Channel 1. An external DMA read cycle
takes at least three cycles (two wait states) and an external DMA write cycle takes at
least four cycles (three wait states). If the DMAWAIT field specifies an insufficient
number of wait states for an access (for example, DMAWAIT = 00010b for a write), the
processor takes the required minimum number of wait states instead of the specified
number.

Bits 23-22: Data Width (DW)—This field indicates the width of the data transferred by
the DMA channel, as follows:

DW Value DMA Transfer Width
00 32 bits (External and internal transfers on Am29200 mlcrocontroller)
32 bits (Internal transfers on Am29205 microcontroller)
01 8 bits
10 16 bits
11 32 bits, address unchanged (Reserved on Am29205 microcontroller)

On the Am29200 microcontroller, the value DW=11 is used to repeatedly transfer a fixed
pattern from a single DRAM location to a peripheral. For example, it can be used to
transfer to a blank area of a printed page without requiring that a memory buffer be
allocated for the blank area.

Bits 21-20: DMA Request Mode (DRM)—This field indicates how external DMA
requests are signaled by DREQ1, as follows:

DRM Value DREQ1 Request
00 Active Low
01 Active High
10 . High-to-Low transition
1 Low-to-High transition

The DRM field is set to 00 by a processor reset. See Section 11.3.6 for information on
clearing latched DMA requests.

Bit 19: Assert Chip Select (ACS)—This bit controls whether DMA Channel 1 asserts
PIACS1 during an external peripheral access. If the ACS bit is 1, the DMA channel
asserts PIACSH1; if the ACS bit is 0, the DMA channel does not.assert PIACS1.

Bits 18-10: Reserved

Bit 9: Transfer Up/Down (UD)—This bit controls the addressing of memory for the
series of DMA transfers. If the UD bit is 1, the DMA address (in the DMA1 Address
Register) is incremented after each transfer. If the UD bit is 0, the DMA address is
decremented after each transfer. The amount by which the address is incremented or
decremented is determined by the width of the transfer, as follows:

16

DMA Controller

AMD n

11.2.7

1 1 I2-8

11.2.9

DW Value Address Incr/Decr
00 (32 bits) +—4
01 (8 bits) +-1
10 (16 bits) +-2
11 (32 bits) +/-0 (Reserved on Am29205 microcontroller)

Bit 8: Read/Write (RW)—This bit controls whether the DMA transfer is to or from the
DRAM. If the RW bit is 1, the DMA channel transfers data from the DRAM to the
peripheral. If the RW bit is 0, the DMA channel transfers data from the peripheral to the
DRAM.

Bit 7: Enable (EN)—This bit enables the DMA channel to perform transfers. A 1 enables
transfers, and a 0 disables transfers.

Bit 6: TDMA Terminate Enable (TTE), Am29200 microcontroller—This bit, when 1,
causes the DMA channel to sample the TDMA signal during an external DMA transfer
and to terminate the transfer if TDMA is asserted. TDMA does not apply to an internal
transfer. If this bit is 0, the TDMA signal is ignored. This bit is reserved on the Am29205
microcontroller.

Bit 5: Count Terminate Enable (CTE)—This bit, when 1, causes the DMA channel to
terminate the transfer when the DMACNT field of the DMA Count Register decrements
past zero. If this bit is 0, the CTE field does not terminate the DMA transfer, though the
DMA channel still decrements the count after every transfer.

Bits 4-2: Reserved
Bit 1: TDMA Terminate Interrupt (TTI), Am29200 microcontroller—The TTI bit is

- used to report that the DMA channel has generated an interrupt because of TDMA

termination. If the TTE bit is one and the TDMA signal is asserted during an external
DMA transfer, the TTI bit is set and a processor interrupt occurs. This bit is reserved on
the Am29205 microcontroller.

Bit 0: Count Terminate Interrupt (CTI}—The CTI bit is used to report that the DMA
channel has generated an interrupt because of count termination. If the CTE bit is one
and the DMACNT field decrements past zero, the CTI bit is set and a processor interrupt
oceurs. -

DMA1 Address Register (DMAD1, Address 80000044)

" The DMA1 Address Register contains the addresses for a transfer by DMA Channel 1. It

is identical in layout and definition to the DMAO Address Register, except that the
PERADDR field is not reserved on the Am29205 microcontroller for DMA Channel 1.

DMA1 Count Register (DMCN1, Address 80000048)

The DMA1 Count Register specifies the number of transfers remaining to be performed
by 'DMA Channel 1. It is identical in layout and definition to the DMAO Count Register.

Initialization

- The EN bits of the DMAO and DMA1 Control registers are reset to 0 by a processor

reset. The DRM fields of both registers are also reset to 0 (see Section 11.3.6). The
DMA channels must be configured by software before they are used.

DMA Controller 11-7

n AMD

11.3

11.3.1

1 1 l3l2

DMA TRANSFERS

A DMA transfer is performed as a result of a DMA request. The DMA request can be
generated either by an internal peripheral (parallel port, serial port, or video interface) or
by an external device using DREQ1-DREQO on the Am29200 microcontroller and
DREQ1 on the Am29205 microcontroller.

Specifying the Direction of a DMA Transfer

The direction of a DMA transfer is determined by the RW bit of the DMA Control
Register. ’

If the RW bit is 0, the DMA channel transfers data from the peripheral to the DRAM. The
DMA channel first performs an access to read the data from the peripheral and then
performs a DRAM write to store the data into the DRAM. Both accesses occur without
interruption: there is no other intervening access.

If the RW bit is 1, the DMA channel transfers data from the DRAM to the peripheral. The
DMA channel first performs a DRAM read to access the data and then performs an
internal or external access to write the data to the peripheral. Both accesses occur
without interruption: there is no other intervening access.

Programming Internal DMA Transfers

Programming an internal DMA transfer using the parallel pon, serial port, or video
interface involves coding the DMA controller registers along with the appropriate internal
peripheral’s control register, as listed in the following table.

Internal Peripheral Control Register DMA Enable Field

Paraliel Port Parallel Port Control Register MODE
Serial Port : Serial Port Control Register TMODE, RMODE
Video Interface Video Control Register MODE

Setting up an internal DMA transfer involves disabling the peripheral and the DMA
controller, configuring both, and enabling both. Note that the internal peripheral and the
DMA controller must be disabled before each is configured; after configuration, the
peripheral must be enabled before the DMA controller is enabled. Otherwise, the steps
listed below can be performed in any order.

The following procedure describes how to program a simple internal transfer, using the
video interface as an example.

1. Disable the parallel port, serial port, or video interface with the appropriate field in the
peripheral’s control register. For example, to disable the video interface, set the
MODE field in the Video Control Register to 00.

2. Disable the DMA channel by writing O to the EN bit of the DMAx Control Register.

3. Program the peripheral’s control register with the appropriate values. For example,
program the Video Control Register with values for CLKI, SDIR, VIDI, LSI, PSi, PSIO,
etc., as required.

4. Program other peripheral registers as needed. For example, program the Side Margin
Register of the video interface to set the required page margins.

5. Program the DMAXx Control Register, specifying the address increment or decrement,
transfer direction, and interrupt enables.

11-8

DMA Controller

AMD l"l

11.3.3

11.3.4

11.3.5

6. Program the DMAXx Address Register by specifying the DRAM starting address to be
read or written.

7. Program the DMAx Count Register.

8. Enable peripheral DMA requests with the appropriate field in the peripheral’s control
register. For example, set the MODE field of the Video Control Register to 10 to en-
able DMA Channel 0.

9. Enable the DMA channel by writing a 1 to the EN bit of the DMAx Control Register.

Programming External DMA Transfers v
Programming an external DMA transfer is accomplished by coding the DMA controller

registers. Note that the DMA controller must be disabled before being configured,
otherwise, the steps listed below can be performed in any order.

The following procedure describes how to program a simple external transfer.

1. Disable the DMA channel by writing a 0 to the EN bit of the DMAXx Control Register.

2. Program the DMAXx Control Register, specifying the address increment or decrement,
transfer direction, interrupt enables, wait states, etc., for external peripherals.

3. Program the DMAx Address Register by specifying the extemal peripheral address
and the DRAM starting address to be read or written.

4. Program the DMAx Count Register.
5. Enable the DMA channel by writing a 1 to the EN bit of the DMAx Control Register.

Generating External DMA Requests

The generation of DMA requests by the DREQ1-DREQO signals is controlled by the
DRM field of the DMA control register. The DMA requests can be programmed individu-
ally to be edge- or level-sensitive for either polarity of edge or level.

If the DMA request is edge-sensitive, the DMA request signal must remain at the
appropriate level for at least four cycles after the active edge to insure that the DMA
channel detects the request. An active edge that occurs during an in-progress transfer
(that is, while DACKXx is asserted) is ignored. The DREQx signal must be Low (rising-
edge-triggered) or High (falling-edge-triggered) for four cycles before a new active edge
can be recognized. :

If the DMA request is level-sensitive, the request may be deasserted at any time while
DACKXx is asserted, and must be deasserted during the cycle in which DACKXx is
deasserted unless it is desired to generate a subsequent DMA request.

\
External DMA Transfers

External DMA transfers appear very much like PIA accesses, except the DMA acknowl-
edge signals (DACK1-DACKO on the Am29200 microcontroller and DACK1 on the
Am29205 microcontroller) are asserted during the transfer as well as, optionally,
PIACS1-PIACS0 on the Am29200 microcontroller and PIACS1 on the Am29205
microcontroller. The address bus is driven with an address derived from the DMA
Address Register. Bits 23-8 of the address are all Os, and bits 7-0 are driven with the
PERADDR field. 1t is possible to use the DACKX signals as chip selects to the DMA
peripherals. The signals PIAOE, PIAWE, and WAIT are used as they are during a PIA
access. The DMAWAIT field is used to determine the number of wait states, much as the
IOWAITX field is used during a PIA access.

DMA Controller . ' 11-9

a AMD

On the Am29200 microcontroller, if the DRAM is 16 bits wide, a 32-bit DMA DRAM
access appears as two 16-bit accesses on ID31-ID16. If the peripheral is 8 or 16 bits
wide, a DMA peripheral access appears as a single access on 1D7-1D0 or ID15-1D0,
respectively. The peripheral must have the same width as the transfer.

On the Am29205 microcontroller, DMA transfers between external peripherals and the
DRAM are limited to 8- or 16- bit data accesses. For 8- or 16- bit wide peripherals, a
DMA access appears on ID23-16 or ID31-16, respectively. The peripheral must have
the same width as the transfer.

Figure 11-7 shows the timing of a DMA read cycle (performed when the RW bit is 0).
The DACKX signal (and, optionally, the PIACSx signal) is asserted in the second cycle,
and the PIAOE signal is asserted in the third cycle. The data must be valid after the
number of cycles determined by DMAWAIT. If DMAEXT=1, the processor waits one
more cycle after the read access to begin a new access. The peripheral can use WAIT
to extend the access.

Figure 11-8 shows timing of a DMA write cycle (performed when the RW bit is 1). The
PIAOE signal is not asserted. Instead, the processor drives data in the second cycle and
asserts the PIAWE signal in the third cycle. The PIAWE signal is deasserted one cycle
before the final cycle (the number of cycles is determined by DMAWAIT) to provide data
hold time. If DMAEXT=1, the processor inserts one more cycle of data hold time after a
write access. The peripheral can use WAIT to extend the access.

On the Am29200 microcontroller, if the DMA channel’s TTE bit is 1, an external peripher-
al can assert TDMA at any time while DACKXx is asserted to terminate the transfer after

Figure 11-7 External DMA PIA Read Cycle

MEMCLK ' _/ _/ \ / \ /___/_
’ X Address

A(23-0)

PIAWE

|

WAIT
ID(31-0)
. .
number of cycles determined by DMAWAIT+1 , nextaccess is
DMAWAIT=3 illustrated e delayed one cycle
' if DMAEXT=1

- 11-10 ' DMA Controller

Figure 11-8 External DMA PIA Write Cycle

MEMCLK _/ _/ __/ _/_\ /_\

Address

PIAOE ' ' ' ' .
PIAWE ' ' L ' / '
AT ! | : | '
1D(31-0) (Data N)—
o number of cycles determined by DMAWAIT+1 .
DMAWAIT=4 illustrated .
: final cycle is
extended for one
cycle if DMAEXTx=1
the current access; in this case, the current access is completed as usual. As with PIA
accesses, the peripheral can use WAIT to extend the access.
The DMA channel continues to perform transfers until the count expires or the TDMA
input is asserted (depending on the CTE and TTE bits). When the transfer terminates,
the EN bit is reset unless there is an active queued transfer, as explained in Section
11.4.
11.3.6 Latching External DMA Requests

The DMA controller is designed to latch an active transition of the external DREQ line,

.even if such a transition occurs when the DMA is disabled. This latching occurs for both

edge- and level-triggered modes. The latched transition will then be recognized when
the DMA channel is enabled, assuming the DRM field has not changed. This latching
avoids a problem when using edge-sensitive DMA requests. There is the potential to
lose a request between the time a transfer terminates on the count going to zero (which
automatically disables the channel, blocking further requests) and the time the DMA
interrupt handler restarts the channel.

Any programming of the DMA Control Register that changes the value of the DRM field
from its previously programmed value will clear any latched request. Thus, to re-enable
a DMA channel and also clear any latched request, the respective DMA Control Register
must be written twice. With the first write, the DMA should remain disabled, and a value

DMA Controller 11-11

l"l AMD

1.4

11.5

different from the desired DRM value should be set in the DRM field. On the second
write, the DMA should be enabled, and the desired value should be set in the DRM field.

Upon reset, the DRM field is set to 00 (active Low). Therefore, if the DMA is later
enabled with DRM still at 00, any active Low transition of DREQ since reset will have
been latched and will be considered an active request when the DMA is enabled. To
clear any such latched request, as noted above, the DMA Contro!l Register should be
written twice, once with DMA disabled and DRM set to 11 (or 10 or 01), and finally with
DMA enabled and DRM set to 00.

DMA QUEUING (DMA CHANNEL 0)

The address and count registers for DMA Channel 0 each consist of a two-entry queue,
with each entry of the queue separately addressable for loading a new transfer. The
DMAO Address Register and DMAO Count Register are at the head of the queue. The
DMAQ Address Tail Register and DMAO Count Tail Register are at the tail of the queue
and are write-only registers. A DMA transfer queued behind an active transfer can start
as soon as the first transfer is complete. This reduces the response-time requirement for
software to load a new transfer: software has the entire transfer time of the second
transfer to load the next transfer at the tail of the queue.

DMA queuing is enabled by writing the appropriate address and count values at the
head of the queue, then setting the DMAO Control Register appropriately, with EN=1,
QEN=0, and CTE/TTE=1.

A transfer is loaded into the tail of the queue by first loading the DMAO Count Tail
Register, then loading the DMAQ Address Tail Register (note that the PERADDR field
cannot be changed by a queued transfer). Writing the tail address causes the QEN bit to
be set. Whenever a DMA transfer terminates at the head of the queue and the QEN bit
is 1, the transfer at the tail of the queue advances to the head of the queue and begins
immediately. When the queued transfer advances to the head of the queue, the QEN bit
is reset, the EN bit remains set, and the CTI/TTI bit is set (note that the automatic queue
advance makes it impossible to inspect the count of the former transfer after a TTI
interrupt in order to discover how many transfers were performed by that transfer).

The CTI/TTI interrupt handler need not clear the CTI/TTI bit: in fact, it is unsafe to write
the DMAQ Control Register at this point because the termination of the current transfer
(the transfer that was formerly queued) may be lost. The interrupt handler need only
place the count and address of the next transfer at the tail of the queue (again, the tail
address should be loaded after the count, because writing the tail address sets the QEN
bit and enables the queue to advance). The CTI/TTI bit is automatically reset when the
tail address is written.

Queue underflow occurs if the transfer at the head of the queue terminates before the
next transfer is loaded at the tail of the queue. Software can detect that underflow has
occurred by examining the EN bit after setting up the next transfer. if the EN bit is O,
underflow has occurred, because a successful start of a queued transfer causes the EN
bit to remain set when the termination interrupt is generated.

RANDOM DIRECT MEMORY ACCESS BY EXTERNAL DEVICES
(Am29200 MICROCONTROLLER)

The Am29200 microcontroller is designed primarily for single-controller applications, and
it has no provision for other bus masters to control the address and data buses in the
traditional sense. However, the DMA controller does provide a mechanism for an
external device to access the ROM or DRAM using addresses provided by the device

1112

DMA Controller

AMD n

rather than by a DMA channel. External devices use the GREQ and GACK signals to
perform a random memory access via the Am29200 microcontroller's DRAM or ROM
controller.

Figure 11-9 shows the timing for a memory read using GREQ and GACK. The external
device indicates that it wants to perform a memory access by asserting GREQ. As soon
as the processor can perform the access, it asserts GACK. The external device can
place the memory address on 1D31-1D0 during any cycle following the assertion of
GACK. The device indicates that the address is valid by deasserting GREQ. The
processor uses this address to determine whether the access is to ROM or DRAM
(according to the normal address allocation) and performs the required access.

Figure 11-9 shows an access to DRAM, as an example. The processor deasserts GACK
at the beginning of the cycle in which the data is valid on ID31-ID0. The deassertion of
GACK completes the access.

Figure 11-10 illustrates how the GREQ/GACK protocol can be used to perform a
memory write. In this case, the external device supplies the address upon the deasser-
tion of GREQ and then provides the write data on ID31-1D0. The processor does not
distinguish between a read and a write, allowing the ID Bus to be available to the device
for the transfer of both address and data. The distinction between reads and writes must
be made by external logic (which, for example, forms the signal wepe,, in Figure 11-10)

in a way that meets the memory timing requirements. For example, an AND gate can be

Figure 11-9 External Random DRAM Read Cycle {(Am29200 Microcontroller)

AV AN AVAVAVAVANAWRWAWE

Row »
Row -x Col Addr

Al14-A1 .

ﬁ/’()—E) '] [' ' [[.] 1

ID31-1D0

DMA Controller 11-13

zl AMD

Figure 11-10 External Random DRAM Write Cycle (Am29200 Microcontroller)

)] 1 Ll 1] L] ’] 1

Row ‘x Col Addr

A14-A1 Addr .
R/W L) 1] IL
1]] [}
1]] [}
RASX \ . . . /—
CAS3-CAS0 ' \ ' ’
Wenew ' ' ' I-
1 1

© 0]
2)
Q m
A O

—

used to form the negative OR of the processor's WE signal and the write enable from
the external device.

To summarize the use of GREQ and GACK:

1. The external device asserts GREQ to request an access.

2. Following the assertion of GACK, the device places the address on ID31-ID0 and
deasserts GREQ to indicate that the address is valid.

3. For a read, the device must be able to latch data from ID31-1DO0 at the end of the
cycle in which GACK is deasserted. For a write, the device must be prepared to drive
data on ID31-1D0 on the second cycle following the address transfer and must hold
the data valid until the cycle following the deassertion of GACK, at which time it must
stop driving. The device must also supply a write enable signal that satisfies the tim-
ing requirements of the memory. In either case, the processor deasserts GACK
based on the access timing of the ROM or DRAM.

To further clarify the use of GREQ and GACK, Figure 11-11 shows example timing for a
ROM read. Writes to the ROM space are more difficult to implement than DRAM writes
because the processor always asserts the ROMOE signal.

Memory accesses using GREQ and GACK are restricted to 32-bit accesses: 8- and
16-bit accesses are not supported. Zero-wait-state accesses are also not supported.
Furthermore, the ROM and/or DRAM bank must be 32 bits wide. Although the GREQ/

11-14 DMA Controller

AMD n

Figure 11-11 External Random ROM Read Cycle (Am29200 Microcontroller)

[[} . ' ' ' [1] [] [[
—

A23-A0

RW

ROMCSx

ROMOE

J-o-1--Jd-I-1-1

ID31-1D0

(0]
X
m
0O

[
>
(@)
A

GACK protocol supports full 32-bit addressing, the addresses supplied must be within
the range of ROM or DRAM addresses. DRAM mapping cannot be performed.

During a processor reset, the GREQ input may be used by a hardware-development
system to force processor outputs to the high-impedance state. To prevent driver
conflicts, the system should keep GREQ in a high-impedance state during a processor
reset.

DMA Controller 11-15-

b

1 2 PROGRAMMABLE 1/0 PORT

12.1

12.2
12.2.1

This chapter discusses the programmable I/O port available on the Am29200 and
Am29205 microcontrollers. Programmable registers, initialization, and operation are
described.

OVERVIEW

The I/O port permits direct programmable access of up to sixteen external PIO signals,
as either inputs or open-drain outputs. When used as inputs, eight of these signals,
PIO15-PI08, can be programmed to cause edge- or level-sensitive interrupts. The
Am29200 microcontroller supports sixteen external PIO signals (PIO15-PIO0). The
Am29205 microcontroller supports eight PIO signals, (PIO15-P108).

PROGRAMMABLE REGISTERS

P10 Control Register (POCT, Address 800000D0)

The PIO Control Register (Figure 12-1) controls interrupt generation and determines the
polarity of PIO15-PIO0 on the Am29200 microcontroller and PIO15-PIO8 on the
Am29205 microcontroller.

Figure 12-1

PIO Control Register
31 23 : 15

IRM | IRM | IRM { IRM | IRM | IRM | IRM | IRM
15 14 13 12 1 10 9 |

= Reserved on Am29205 microcontroller

Bits 31-30: Interrupt Request Mode, PIO15 (IRM15)—This field enables PIO15 to
generate an interrupt equivalent to a request on the processor’s INTR3 input, and
indicates whether PIO15 is level- or edge-sensitive in generating the interrupt. The
IRM15 field controls PIO15 as follows:

IRM15 Value P1015 Interrupt
00 Interrupt disabled
01 Level-sensitive
10 Edge-sensitive
1 IRM15 only — see below

The INVERT field (see below) further conditions interrupt generation. If the INVERT bit
for PIO15 is 0, an interrupt, if enabled, is generated by a High level on PIO15 (level-sen-
sitive) or on a Low-to-High transition (edge-sensitive) of PIO15. If the INVERT bit for
PIO15is 1, an interrupt, if enabled, is generated by a Low level on PIO15 (level-sensi-
tive) or on a High-to-Low transition (edge-sensitive) of PIO15.

Programmable /O Port 1241

l"' AMD

12.2.2

For IRM15, the value 11 causes PIO15 to generate an edge-triggered interrupt and to
also set the FBUSY bit in the Paralle! Port Control Register (see Section 13.2.1), causing
the PBUSY output to be asserted. This can be used to support certain system-specific
features of the parallel port. Note that this value may cause a spurious settlng of FBUSY
during a reset, depending on the activity on PIO15 after a reset.

Bits 29-16: IRM14 through IRM8—The IRM14-IRM8 fields enable interrupts and
specify level- or edge-sensitivity for PIO14-P108, respectively. These fields are identical
in definition to IRM15, except that the value 11 is reserved.

Bits 15-0: PIO Inversion (INVERT)—This field determines how the level on each PIO
signal is reflected in the PIO Input and PIO Output Registers, and how interrupts are
generated. The most significant bit of the INVERT field determines the sense of PIO15,
the next bit determines the sense of PIO14, and so on. A 0 in this field causes the internal
and external sense of the respective PIO signal to be noninverted; a High external level is
reflected as a 1 internally, and a Low is reflected as a 0 internally. A 1 in this field causes
the interal and external sense of the respective PIO signal to be inverted; a High external
level is reflected as a 0 internally, and a Low is reflected as a 1 internally.

Bits 7-0: Reserved. These bits are reserved on the Am29205 microcontroller and
should be written with Os to ensure compatibility.

PIO Input Register (PIN, Address 800000D4)
The PIO Input Register (Figure 12-2) reflects the external levels of PIO15-PI00 on the
Am29200 microcontroller and PIO15-PI08 on the Am29205 microcontroller.

Figure 12-2

PIO Input Register
31 23 15

reserved

= Reserved on Am29205 microcontroller

12.2.3

Bits 31—16: Reserved

Bits 15-0: PIO Input (PIN)—This field reflects the levels on each PIO signal. The most -
significant bit of the PIN field reflects the level on PIO15, the next bit reflects the level on
PlO14, and so on. The correspondence between levels and bits in this register is
controlled by the INVERT field.

Bits 7-0: Reserved. These bits are reserved on the Am29205 microcontroller and will
be read as Os.

P10 Output Register (POUT, Address 800000D8)
The PIO Output Register (Figure 12-3) determines the levels driven on the PIO signals,
for those signals enabled to be driven by the PIO Output Enable Register.

Figure 12-3

PIO Output Register
31 23 15

reserved

= Reserved on Am29205 microcontroller

12-2

Programmable /O Port

AMD l‘.'

Bits 31-16: Reserved

Bits 15-0: PIO Output (POUT)—This field determines the levels on each PIO signal, if
so enabled by the PIO Output Enable Register. The most significant bit of the POUT field
determines the level on PIO15, the next bit determines the level on PIO14, and so on.
The correspondence between levels and bits in this register is controlled by the INVERT
field. ‘

Bits 7-0: Reserved. These bits are reserved on the Am29205 microcontroller and
should be written with Os to ensure compatibility.

12.2.4 PIO Output Enable Register ([POEN, Address 800000DC)

The PIO Output Enable Register (Figure 12-4) determines whether or not the P10
signals are driven as outputs.

Figure 124 PIO Output Enable Register

31 23 15
TT T T T T T T T T T T T T 11T T T 1T 11
reserved
= Reserved on Am29205 microcontroller
Bits 31-16: Reserved
Bits 15-0: PIO Output Enable (POEN)—This field determines whether each PIO signal
is driven as an output. The most significant bit of the POEN field determines whether
PlO15 is driven, the next bit determines whether PIO14 is driven, and so on. A 1 in a bit
position enables the respective signal to be driven according to the associated POUT
and INVERT bits, and a 0 disables the signal as an output.
Bits 7-0: Reserved. These bits are reserved on the Am29205 microcontroller and
should be written with Os to ensure compatibility. .

12.2.5 Initialization ' .
During a processor reset, all bits of the PIO Output Enable Register are reset to 0,
disabling all PIO signals as outputs. The I/O port must be initialized by software before
the /O port is used. ' '

123 OPERATING THE 1/0 PORT

The PIO signals are asynchronous to the processor. A change on any PIO signal is
reflected in the PIO Input Register a maximum of four MEMCLK cycles after the change
occurs. A level-sensitive interrupt occurs four cycles after the change, and an edge-sen-
sitive interrupt occurs five cycles after the change. When driven as an output, a change
to the PIO Output Register is reflected on the PIO signals a maximum of one cycle after
the change occurs. All the PIO signals have additional metastable hardening, allowing
them to be driven with slow-transition-time signals.

The PIO Output Enable Register permits the PIO signals to be operated as open-drain
outputs. This is accomplished by keeping the appropriate POUT bits constant and
writing data into the POEN field, so the output is either driving Low or is disabled,
depending on the data. :

Programmabile I/O Port 12-3

|
| &\

1 3 PARALLEL PORT

13.1

1 3-2
1 3.2-1

This chapter describes the parallel port supported on the Am29200 and Am29205
microcontrollers. Programmable registers and initialization are described, along with
parallel port transfers from the host and to the host.

OVERVIEW

The parallel port supports asynchronous bidirectional parallel data transfers. It connects a
host processor to the Am29200 or Am29205 microcontroller. The parallel port supports
data transfers from the host to the microcontroller or from the microcontroller to the host.
Data is transferred via an 8- or 32-bit external data register. Data is transferred to and
from the external data register via processor access (programmed 1/O) or DMA transfers.
The Am29205 microcontroller does not support full word transfers on the parallel port.

PROGRAMMABLE REGISTERS

Parallel Port Control Register (PPCT, Address 800000C0)
The Parallel Port Control Register (Figure 13-1) controls the parallel port.

Figure 13-1

Parallel Port Control Register

23 .15 7 0
FrT T 1T 1T 17T T 1T T T1TTT1 LI] |

reserved TDELAY reserved MODE res

DRQ; DDIR 1 FACK; BRS; AFD
-TRA FBUSY DHH ARB

= Reserved on Am29205 microcontroller

Bit 31: Reserved
Bit 30: Full Word Transfer (FWT), Am29200 microcontroller—This bit controls

" whether the parallel port generates an interrupt or DMA request every handshake or

every fourth handshake. When FWT is 0, a transfer of either 8 or 32 bits occurs on every
handshake. When FWT is 1, a transfer of either 8 or 32 bits occurs.on every fourth
handshake, reducing the demand the parallel port places on the processor. The FWT bit
is reserved on the Am29205 microcontroller; it must be set to 0 to ensure proper
operation.

For proper transfer of data, external logic must assemble bytes from the parallel port
interface into an 8- or 32-bit external latch that implements the Parallel Port Data Register.
The actual size of the transfer is determined by the width of the external latch: an 8-bit
latch enables 8-bit transfers, and a 32-bit latch enables full word transfers. The DMA
transfer or load/store instruction that reads/writes the Parallel Port Data Register must
indicate the correct data width. Full word transfers are implemented only for transfers from
the host. Full word transfers are not supported on the Am29205 microcontroller.

Parallel Port 13-1

I‘J AMD

Bits 29-24: Reserved

Bits 23-16: Transfer Delay (TDELAY)—During a transfer from the host, this field
controls the duration of the assertion of PACK (and possibly PBUSY). During a transfer
to the host, it controls the duration of data setup, PACK assertion, and data hold times.

On transfers from the host, the TDELAY field specifies one less than the number of
MEMCLK cycles in the duration interval. Setting TDELAY to 0 in this case will cause
PACK to assert for one cycle.

On transfers to the host, the TDELAY field specmes the number of MEMCLK cycles in
the duration interval. In this case, if TDELAY is set to 0, PACK will not assert at all.

Bit 15: Data Request (DRQ)—This bit is set to indicate that the parallel port is ready for
data to be read from or written to the Paralle! Port Data Register. If so enabled by the
MODE field, this bit being 1 generates an interrupt or DMA request to read or write data.
This bit is reset when the Parallel Port Data Register is read or written. The DRQ bit is
read-only, allowing other bits of the Parallel Port Control Register to be set (for example,
the FACK bit) without interfering with the data request.

Bit 14: Transfer Active (TRA)—This bit is set at the beginning of a transfer on the
parallel port and reset at the end of a transfer. It is read-only, so that setting other bits of
the Parallel Port Control Register does not interfere with the indication of an active
request. The TRA bit can be inspected by software to detect that a transfer is hung.

Bits 13—11: Reserved

Bit 10: Data Direction (DDIR)—This bit controls the direction of data transfer on the
parallel port. If the DDIR bit is 0 (the default), data is received on the parallel port. If the
DDIR bit is 1, data is transmitted on the parallel port. The MODE field must be 00 when
the DDIR bit is changed.

Bits 9-8: Parallel Port Mode (MODE)—This field enables the parallel port and controls
the operational mode of the parallel port, as follows:

MODE Value Effect on Parallel Port
00 Disabled
01 Generate interrupt requests for service
10 Generate DMA Channel 0 requests
11 Generate DMA Channel 1 requests

Requests for service are requests to read or write the Parallel Port Data Register.
Placing the parallel port into the disabled state causes all internal state machines to be
reset, forces PACK Low, and holds the parallel port in an idle state. Parallel port
programmable registers are not affected when the port is disabled.

Bit 7: Force Busy (FBUSY)—A 1 in this bit forces an active level on the PBUSY output.
A O allows the PBUSY signal to operate normally

Bit 6: Force ACK (FACK)—A 1 in this bit forces an active level on the PACK output for
one TDELAY interval. At the end of the interval, the FACK bit is reset and PACK is
deasserted.

Bit 5: Disable Hardware Handshake (DHH)—A 1 in this bit prevents the parallel
port interface logic from controlling PACK or PBUSY. A 0 in this bit permits normal

13-2

Parallel Port

AMD “71

13.2.2

handshaking with PACK and PBUSY. FACK and FBUSY may be used by software to
control PACK and PBUSY regardless of the DHH bit.

Bits 4-3: Reserved

Bit 2: BUSY Relationship to STROBE (BRS)—This bit controls the relative timing of
the PBUSY and PSTROBE hardware handshaking when the parallel port is receiving
data. If BRS=0, PBUSY is asserted on the Low-to-High transition (leading edge) of
PSTROBE. If BRS=1, PBUSY is asserted on the High-to-Low transition (trailing edge) of
PSTROBE. The parallel port does not respond to PSTROBE until PBUSY is asserted,
except that the TRA bit is always set on the leading edge of PSTROBE.

Bit 1: ACK Relationship to BUSY (ARB)—This bit controls the relative timing of the
PACK and PBUSY handshaking when the parallel port is receiving data.

If ARB=0, PBUSY and PACK are asserted and deasserted at the same time (except for
output driver skew). Both PACK and PBUSY are asserted at either the leading or trailing
edge of PSTROBE, as controlled by the BRS bit. Both are deasserted together at the
end of a transfer, which is usually at the end of a TDELAY interval.

If ARB=1, the PACK pulse follows the PBUSY pulse in time. PBUSY is asserted in
response to an assertion of PSTROBE and is deasserted when the Parallel Port Data
Register has been read and PSTROBE is Low. PACK is asserted at the same time
PBUSY is deasserted and is deasserted at the end of a TDELAY interval.

Bit 0: Autofeed (AFD)—This bit reflects the level on the PAUTOFD input. A 1 indicates
PAUTOFD is active (High), and a 0 indicates PAUTOFD is inactive (Low).

Parallel Port Status Register (PPST, Address 800000C8)
The Parallel Port Status Register (Figure 13-2) indicates the status of the parallel port.

Figure 13-2

Parallel Port Status Register

31 23 15 7 0
rrireirfprrererrryprerripd i

reserved TDELAYV reserved BCT reserved

: L] .
sTB L AC
BSY

Bit 31: PSTROBE Level (STB)}—This bit indicates the level on the PSTROBE signal. If
PSTROBE is Low, this bit is 0; if PSTROBE is High, this bit is 1.

Bits 30—24: Reserved

Bits 23-16: TDELAY Counter Value (TDELAYV)—This field indicates the current value
of the TDELAY counter used to time transitions of the handshaking signals. This value
changes as the TDELAY interval is being timed.

Bits 15-10: Reserved

Bits 9-8: Byte Count (BCT)—When the FWT bit is 1, this field indicates the number of
bytes (that is, the number of complete handshakes) received on the parallel port since

Parallel Port 13-3

z' AMD

13.2.3

the most recent data request. This information is useful for handling partial-word
transfers at the end of a block transfer.

Bit 7: PBUSY Level (BSY)—This bit indicates the level on the PBUSY signal. if PBUSY
is Low, this bit is 0; if PBUSY is High, this bit is 1.

Bit 6: PACK Level (ACK)—This bit indicates the level on the PACK S|gnal If PACK is
Low, this bit is 0; if PACK is High, this bit is 1.

Bits 5-0: Reserved

Parallel Port Data Register (PPDT, Address 800000C4)

The Parallel Port Data Register (Figure 13-3) is used to read from and write data to the
parallel port. This register is not implemented directly on the processor, but rather is
implemented by an external data latch connected to the parallel port interface cable. The
processor converts an access of this register into an external access of the data latch.
This access is similar to a PIA access, except the timing is fixed (see Section 13.3) and
the access uses the signals POE and PWE to read and write the latch.

Figure 13-3

8 bits

32 bits

Parallel Port Data Register

31 23 15 7 0

13.24

Bits 7-0 (8-bit transfers) or

Bits 31-0 (32-bit transfers): Parallel Port Data (PDATA), Am29200 microcontroller—
This field contains the data being transferred to/from the microcontrolier and the host
over the paraliel port. For transfers from the host, the width of this field is determined by
the width of the external latch that implements the Parallel Port Data Register. However,
the instruction or DMA channel that reads the parallel port must also specify the correct
data width to properily read the Parallel Port Data Register. Full word transfers are not
supported on the Am29205 microcontroller. ‘

Initialization
During a processor reset, the MODE field of the Parallel Port Control Register is reset to

00 (disabled) and the FBUSY bit is set to 1, forcing PBUSY Low (busy). The parallel port
must be configured by software before the parallel port is enabled.

Writing the value 00 into the MODE field resets the parallel port, forces PACK Low, and
forces PBUSY High (unless FBUSY is set).

The I/O port signal PIO15 may be used by the host to signal a change in the configura-
tion of the parallel port. If the IRM15 field of the PIO Control Register has the value 11
(see Section 12.2.1), PIO15 causes an edge-triggered interrupt and causes the FBUSY

13-4

Parallel Port

AMD a

13.3

13.3.1

13.3.2

bit to be set. Setting the FBUSY bit causes the parallel port to appear busy (PBUSY=0)
to the host while the port’s configuration is changed. The FBUSY bit must be reset by
software (if required) once configuration is complete.

PARALLEL PORT TRANSFERS

The parallel port does not attach directly to the microcontroller, but is attached to the '
interface cable via buffers. Data must be latched in the interface using a three-state latch
such as a 74LS374. The handshaking signals, PSTROBE, PAUTOFD, PACK, and
PBUSY, are connected to the microcontroller via simple interface circuits. The inputs
PSTROBE and PAUTOFD should be connected to the processor via a Schmitt-trigger
inverter such as a 74HCT 14, and the outputs PACK and PBUSY should be connected to
the host via an open-collector inverter such as a 7406.

The hardware handshaking described in this section can be disabled by setting the DHH
bit. If the DHH bit is 1, handshaking can be accomplished by software using the FACK
and FBUSY bits.

Transfers from the Host

Figure 13-4 shows the state-transition diagram for transferring data from the host to the
microcontroller over the parallel port. Figure 13-5 through Figure 13-8 show the timing
diagrams for these transfers. The timing diagrams differ in the settings of the BRS and
ARB bits. The timing diagrams also show the signals as they appear at the processor
interface, and do not reflect the inversions in the buffers to the parallel-port connector.

The host begins the transfer by placing data on the interface and asserting the
PSTROBE signal. The data is latched in the interface on the rising edge of PSTROBE if
BRS=0, and can be latched by either edge if BRS=1. The TRA bit is set on the leading
edge of PSTROBE. '

The microcontroller asserts PBUSY within three MEMCLK cycles after the leading edge
of PSTROBE (BRS=0) or within three MEMCLK cycles after the trailing edge of .
PSTROBE (BRS=1). The microcontroller asserts PACK at the same time as PBUSY if
ARB=0. The parallel port then generates either an interrupt request or a DMA request,
as controlled by the MODE field, so the data can be read. If ARB=0, both PBUSY and
PACK are deasserted once the TDELAY interval has expired, the Parallel Port Data
Register (PDR) has been read, and the host has deasserted PSTROBE. If ARB=1,
PBUSY is deasserted and PACK is asserted when the PDR has been read and
PSTROBE is Low. PACK remains active until the TDELAY interval has expired. In any
case, the TRA bit is reset when PACK is deasserted.

The PDR is mapped to the external buffer register. Figure 13-9 shows the timing of the
external access. This external access is treated as either a DMA access or a processor
PIA access for the purpose of prioritization with other accesses.

The PAUTOFD signal is used for software control during a transfer from the host.
Software can detect the level on PAUTOFD by reading the AFD bit in the Parallel Port
Control Register.

Transfers to the Host

Figure 13-10 shows the state transition diagram for transferring data from the microcon-
troller to the host over the parallel port. Figure 13-11 shows the timing for this transfer.
Transfers to the host are enabled by the host, using a system-dependent software
protocol. This type of transfer is enabled in the processor by setting the DDIR bit in the
Parallel Port Control Register. Setting the DDIR bit forces the PBUSY output active,

Paralilel Port 13-5

n AMD

Figure 13-4 State Transitions for Transfers from the Host

RESET

|

PSTROBET

Set TRA l

BRS=0 or (BRS=1 & PSTROBE!)

Idle

Latch data in buffer (system),
PBUSYY, .
Generate PIO/DMA Request*,
If ARB=0:
PACKT (same time as
PBUSY\) and start

TDELAY tjmer .
DMA/PIO read PDR,
ARB=1, and DMA/PIO read PDR
PSTROBE Low and ARB=0
PBUSYT, Wait for TDELAY ex-
PACKT, piration and
Start TDELAY timer PSTROBE Low
TDELAY expiration TDELAY expiration
and PSTROBE Low
PACK!, PBUSYT,
Reset TRA PACK !,
Reset TRA

*PIO or DMA request is generated every
fourth time if FWT=1

preventing the host from transferring data to the microcontroller. The MODE bit must be
00 when the DDIR bit is set or reset.

The microcontroller begins the transfer by writing data to the external buffer.
Figure 13-12 shows the timing for a buffer write. The buffer is written by either software

~writing the Parallel Port Data Register or a DMA transfer that writes the Parallel Port

Data Register. The parallel port automatically generates the first DMA or interrupt
request to write the data. Thereafter, the parallel port generates a DMA or interrupt
request after it completes each transfer to the host. . :

During a transfer to the host, the PAUTOFD signal is used to indicate that the host is
busy and cannot accept data. PAUTOFD has the same polarity as PBUSY for this
purpose. After the data buffer has been written, the parallel port waits for one TDELAY
interval and then asserts PACK as soon as PAUTOFD is High and PSTROBE is Low
(these signal conditions may hold before the interval expires). The TDELAY interval is

13-6

Parallel Port

AMD u

Figure 13-5 Transfer from the Host on the Parallel Port (BRS=0, ARB=0)

Data Data X ' ; :” e
Data Buffer Cf - X Data

data latched
PSTROBE inbuter \

PACK and PBUSY deasserted when:
- processor has read data

(see Figure 13-9)
- TDELAY interval has expired

PACK / *—- Z PSTROBE is low
o N =
X

Figure 13-6 Transfer from the Host on the Parallel Port (BRS=0, ARB=1)

PAUTOFD

Data Data
Data Buffer Data
data latched —e=
PSTROBE in buffer \
PACK deasserted
when the TDELAY
interval has expired
PACK /._ \ P
PBUSY \ : /,__ PBUSY deasserted and PACK as-
serted when processor has read data
(see Figure 13-9) and PSTROBE is
Low
PAUTOFD

used to provide data setup time for the host. PACK is active for one TDELAY interval,
then is deasserted.

In response to PACK, the host acknowledges the transfer by asserting PSTROBE, which
resets the TRA bit. PSTROBE has no fixed relationship to PACK. The host may also
assert PAUTOFD before the end of the transfer to indicate it is not ready for a subse-
quent transfer. Following the deassertion of PACK or the assertion of PSTROBE
(whichever is later), the parallel port waits one TDELAY interval to provide data hold time
to the host. At the end of the interval, the parallel port generates a new DMA or interrupt
request to have the data buffer written again, starting a new transfer. Software or the
DMA channel may determine that all transfers have been made, and a new transfer
does not start in this case.

Parallel Port 13-7

n AMD

Figure 13-7 Transfer from the Host on the Parallel Port (BRS=1, ARB=0)

Data X Data X .
Data Buffer Data
PSTROBE /q— data latched in —e
buffer on either
edge of PSTROBE

PACK /
PBUSY \

PACK and PBUSY deasserted when:

~ processor has read data (see Figure 13-9)

— TDELAY interval has expired

~PSTROBE is low

PAUTOFD

Figure 13-8 Transfer from the Host on the Parallel Port {(BRS=1, ARB=1)

Data X Data
Data Buffer Data
PACK deasserted when the
PSTROBE / <— data latched in _.\ TDELAY interval has\explred
buffer on either
edge of PSTROBE \

PACK | A A\Y
PBUSY : \ / '« PBUSY deasserted and PACK
' asserted when processor has

read data (see Figure 13-9)

PAUTOFD

13-8 Parallel Port

Figure 13-9 Parallel Port Buffer Read Cycle

-
m

ID7-1DO0 or
ID31-1D0

-1

Figure 13-10 State Transitions for Transfers to the Host
RESET

l

DDIR=1 and
PIO or DMA enabled

Idle

Generate PIO/DMA request I

PIO/DMA write PDR

Start TDELAY timer
Set TRA

TDELAY expiration and
PSTROBE Low and
PAUTOFD High

PACKT,
Start TDELAY timer

TDELAY expiration

PACK!

PSTROBE High

Start TDELAY timer
Reset TRA

TDELAY expiration

Parallel Port 13-9

z‘ AMD

Figure 13-11 Transfer to the Host on the Parallel Port

i buffer write (see Cl e
Data (from X'_ Figure 13-12) Data X S
buffer)
PSTROBE \ / : \

PACK asserted on latestof: data hold time from later of

- TDELAY interval after data write «— PACKlor PSTROBET oo

- PSTROBE L9w ’ controlled by TDELAY
PACK — PAUTOFD High —* [<=— PACK duration —e '

controlled by
TDELAY

PBUSY

wd Data \

ID7-1DO

13-10 Parallel Port

A
c

1 4 SERIAL PORT

1 4-1

14.2
14.2.1

This chapter describes the programmable registers of the serial port on the Am29200
and Am29205 microcontrollers.

OVERVIEW

The on-chip serial port is a UART that permits full-duplex, bidirectional data transfer using
the RS-232 standard. Serial port registers provide a programmable baud rate generator,
odd/even parity capability, choice of word length, a test mode, and DMA access.

The operations of the serial port are similar on the Am29200 and Am29205 microcontrol-
lers, except that the DSR and DTR handshake signals are not available on the Am29205
microcontroller. These functions, if needed, can be recreated with available P1O signals.

PROGRAMMABLE REGISTERS

Serial Port Control Register (SPCT, Address 80000080)

The Serial Port Control Register (Figure 14-1) controls both the transmit and receive
sections of the serial port.

Figure 14-1

Serial Port Control Register

31 : 23 15 7 0
L LI L r[r 11101 I 11 1
reserved res | PMODE WLGN reserved TMODE reserved RMODE
L} 1] :
+BRK | STP RSIE
LOOP DSR
= Reserved on Am29205 microcontroller N

Bits 31-27: Reserved

Bit 26: Loopback (LOOP)—Setting this bit places the serial port in the loopback mode. In
this mode, the TXD output is set High and the Transmit Shift Register is connected to the
Receive Shift Register. Data transmitted by the transmit section is immediately received
by the receive section. The loopback mode is provided for testing the serial port.

Bit 25: Send Break (BRK)—Setting this bit causes the serial port to send a break,
which is a continuous Low level on the TXD output for a duration of more than one frame
transmission time. The transmitter can be used to time the frame by setting the BRK bit
when the transmitter is empty (indicated by the TEMT bit of the Serial Port Status
Register), writing the Serial Port Transmit Holding Register with data to be transmitted,
and then waiting until the TEMT bit is set again before resetting the BRK bit.

Bit 24: Data Set Ready (DSR), Am29200 microcontroller—Setting this bit causes the
DSR output to be asserted. Resetting this bit causes the DSR output to be deasserted.
This bit is reserved on the Am29205 microcontroller.)

Serial Port 14-1

a AMD

Bits 23-22: Reserved

Bits 21-19: Parity Mode (PMODE)—This field specifies how parity generation and
checking are performed during transmission and reception (the value “x” is a don't care):

PMODE Value Parity Generation and Checking
0xx . No parity bit in frame
100 Odd parity (odd number of 1s in frame)
101 Even parity (even number of 1s in frame)
110 Parity forced/checked as 1
11 Parity forced/checked as 0

Bit 18: Stop Bits (STP)—A 0 in this bit specifies that one stop bit is used to signify
the end of a frame. A 1 in this bit specifies that two stop bits are used to signify the end
of a frame.

Bits 17-16: Word Length (WLGN)—This field indicates the number of data bits
transmitted or received in a frame, as follows:

WLGN Value Word Length
00 5 bits
01 6 bits
10 7 bits
11 8 bits

Data words of less than eight bits are right-justified in the Transmit Holding Register and
Receive Buffer Register. _ . .

Bits 15-10: Reserved

Bits 9-8: Transmit Mode (TMODE)—This field enables data transmission and controls
the operational mode of the serial port for the transmission of data, as follows:

TMODE Value Effect on Transmit Section
00 Disabled)
01 Generate interrupt requests fo