

コ

- tester

Advanced Micro Devices

MOS Microprocessors and Peripherals Military Data Book

© 1988 Advanced Micro Devices

Advanced Micro Devices reserves the right to make changes in its products without notice in order to improve design or performance characteristics.

This data book neither states nor implies any warranty of any kind, including but not limited to implied warranties of merchantability or fitness for a particular application. AMD assumes no responsibility for the use of any circuitry other than the circuitry embodied in an AMD product.

The information in this publication is believed to be accurate in all respects at the time of publication, but is subject to change without notice. AMD assumes no responsibility for any errors or omissions, and disclaims responsibility for any consequences resulting from the use of the information included herein. Additionally, AMD assumes no responsibility for the functioning of undescribed features or parameters.

> 901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088-3000 (408)732-2400 TWX: 910-339-9280 TELEX: 34-6306

Z8000, Z8002 and Z8530 are registered trademarks of Zilog, Inc. MULTIBUS is a registered trademark of Intel Corporation. ť

The Advanced Micro Devices MOS Microprocessors and Peripherals Military Data Book presents military versions of AMD's broad line of MOS fixed-instruction set microprocessors, peripherals, and microcontrollers. AMD has continually provided the military systems designer a complete system solution.

This document used together with AMD's MOS Microprocessors and Peripherals Data Book is your source for innovative military designs.

Today more than ever your satisfaction is essential. At Advanced Micro Devices, we bring you the quality, reliability and innovation you need from a leader in semiconductor VLSI definition, design and manufacturing. Our worldwide hardware and software support teams of field applications engineers are ready to help you utilize our advanced microprogrammable products to complete your designs in a timely and cost-effective manner.

If you have questions about any of the products described in this data book or if you'd like to know more about our product line, call your local AMD Sales office, licensed representative or franchised distributor.

George Rigg Vice President Processor Products Division Advanced Micro Devices

Introduction

Advanced Micro Devices offers a broad range of military MOS and CMOS fixed-instruction-set microprocessors, peripherals and microcontrollers. These products enable the designer to build sophisticated military systems that meet the latest military quality and reliability standards.

AMD's advanced 32-bit processor, the Am29000, operating at a sustained 17 MIPS level, provides higher levels of performance and flexibility than ever before. This development will open the door to faster and more sophisticated military-system applications.

AMD is the number-one alternate source for the iAPX microprocessor family from the 8088/8086 and 80186/80188 to the high-performance 80286. Its military products are fully compatible with the latest revisions of these iAPX processors and are available in a variety of hermetic packages including DIP, PGA and LCC.

AMD offers military versions — both NMOS and CMOS — of the peripherals that support the iAPX microprocessor family. The 82C54-12/BJA is a high-performance 12-MHz CMOS part replacing the industry-standard 8254 counter/timer. High-performance proprietary advanced peripherals are available including the Am9517A-/BQA DMA Controller, the Am9513A/BQA System-Timing Controller, the Am9516A-4/BXC Advanced DMA Controller, and the industry-standard Z8530 Serial-Communication Controller.

Another family of military products offered by AMD is the popular 8051 microcontroller family. For prototyping or small-volume usage, AMD supplies military options of the 8751 — an EPROM version of the 8051. For applications where more on-chip program memory is required, the 8753 has 8 Kbytes of on-chip EPROM. For high-volume military applications, AMD offers the 80C31/BQA and 80C51/BQA — the CMOS versions of the 8031/8051. These CMOS devices are ideally suited for power-sensitive military applications because they feature idle and power-down modes for additional power conservation.

Advanced Micro Devices' goal is to qualify each of its products at the Defense Electronic Supply Center so that qualified military parts can be purchased without the burden of source-control drawings. AMD's military products are tested to the most stringent military specifications; military flows and testing are based on MIL-M-38510 and MIL-STD-883. If needed, additional testing and screening are available by special order.

For more information on these products or other AMD products, contact your nearest AMD sales office, representative or distributor.

Table of Contents

CHAPTER 1		
	Military Product Requirements/Manufacturing Flows	1-1
	Military Ordering/Marking Information	1-3
CHAPTER 2		
	Am29000	2-1
	Am9511A	2-2
	Am9513A*	2-6
	Am9516A	2-13
	Am9517A*	2-21
	Am9519A*	2-27
CHAPTER 3		
	80186*	3-1
	80286	3-7
	8085A*	3-14
	8086	3-19
	8088*	3-26
	8251/Am9551	3-33
	8251A*	3-38
	8253*	3-44
	82C54	3-49
	8255A*	3-54
	8259A*	3-59
CHAPTER 4		
	8031AH	4-1
	80C51BH/80C31BH	4-7
	8751H/8753H**	4-13
CHAPTER 5		
	Z8002	5-1
	Z8530**	5-8
CHAPTER 6	General Information	
	Package Outlines	6-1

*DESC approved **Pending DESC approval

NUMERICAL DEVICE LISTING

Am29000	Streamlined Instruction Processor	2-1
Z8002	16-Bit Microprocessor	5-1
80186	High-Integration 16-Bit Microprocessor	3-1
80286	High-Performance Microprocessor with Memory	
	Management and Protection	3-7
8031AH	Single-Chip 8-Bit Microcontroller	4-1
80C31BH	CMOS Single-Chip Microcontroller	4-7
80C51BH	CMOS Single-Chip Microcontroller	4-7
8085A	8-Bit Microprocessor	3-14
8086	16-Bit Microprocessor	3-19
8088	8-Bit Microprocessor CPU	3-26
8251	Programmable Communication Interface	3-33
8251A	Programmable Communication Interface	3-38
8253	Programmable Interval Timer	3-44
82C54	CMOS Programmable Interval Timer	3-49
8255A	Programmable Peripheral Interface	3-54
8259A	Programmable Interrupt Controller	3-59
Z8530	Serial Communications Controller	5-8
8751H	Single-Chip 8-Bit Microcontroller	4-13
8753H	Single-Chip 8-Bit Microcontroller	4-13
Am9511A	Arithmetic Processor	2-2
Am9513A	System Timing Controller	2-6
Am9516A	Universal DMA Controller	2-13
Am9517A	Multimode DMA Controller	2-21
Am9519A	Universal Interrupt Controller	2-27
Am9551	Programmable Communication Interface	3-33

CHAPTER 1

Military Product Requirements/Manufacturing Flows	1-1
Military Ordering/Marking Information	1-3

Military Manufacturing Flows

		Processing Level		
Description of Requirements and Screens	MIL-M-38510, MIL-STD-883 Requirements Methods and Test Conditions	Requirement	DESC	883C Class B (APL)
1. General MIL-M-38510 A. Pre-Certification B. Qualification Test Plan C. Product Assurance Program Plan	The manufacturer shall establish and implement a product-assurance program plan and qualification test plan and submit to qualifying activity.		N/A	N/A
2. Certification	DESC survey Manufacturer's Q.A. survey		N/A X	N/A X
3. Traceability	Traceability to wafer production lots		х	x
4. Country of Origin	Devices must be manufactured, assembled, and tested within U.S. or its territories.		N/A	N/A
MIL-STD-833, Method 5004 Sc	reening			
5. Internal Visual	Method 2010 condition B	100%	х	x
6. Stabilization Bake	Method 1008 condition C	100%	х	x
7. Temperature Cycle	Method 1010 condition C (10 cycles, - 65° C to + 150° C)	100%	x	x
8. Constant Acceleration	Method 2001 condition D or E; Y1 (30 kg in Y, axis)	100%	x	x
9. Visual Inspection	Method 2009 4th Optical Criteria	100%	х	x
10. Hermeticity A. Fine Leak B. Gross Leak	Method 1014 condition A or B Method 1014 condition C	100%	x	x
11. Interium Electricals (initial class test)	Per manufacturers documented data sheet	100%	x	x
12. Burn-In	Method 1015, condition as specified Minimum 160 hours at 125° C	100%	х	x
13. Post Burn-In/ Final Electrical Test	25° C with 5% PDA and in-line Group A per method 5005	100%	х	x
	Data Sheet Limits at cold temperature extreme, with in-line Group A, per method 5005	100%	x	x
14. Lead Finish	A. Hot solder dip B. Gold	100%	x	x
15. Mark	Fungus inhibiting ink includes ESD and Part Nomenclature.	100% 596	X 2-8552301 + Vendor P/N	X QX JEDEC 101 "/BQA"

Military Manufacturing Flows (continued)

			Processing Level	
Description of Requirements and Screens	MIL-M-38510, MIL-STD-883 Requirements Methods and Test Conditions	Requirement	DESC	883C Class B (APL)
MIL-STD-833, Method 5004 Sc	reening (continued)			
16. Quality Conformance Inspection	Method 5005 in-line Group B	Sub-groups B1, B2, B3 B4, B5	x	x
17. Post Mark/Final Electrical Test	Data Sheet Limits at hot temperature extreme. Balance of Method 5005, in-line Group A	100%	x	x
18. Lead Scan/Straighten		AMD 07-549.1 100%	x	x
19. Hermetic Fine and Gross Leak Sample	Method 1014	AMD 06-099 Sample	x	x
20. Visual/Mechanical/ Paperwork	Method 2009	AMD 16-049 100%	x	x
21. Pack/Ship	Per MIL-M-38510, Includes C of C	AMD 16-050 100%	x	. X
Quality Conformance Inspection	n per Method 5005 of MIL-STD-833 (attributes dat	a only)		
22. Group A	Electrical per slash sheet or manufacturer's data sheets: sub-groups 1-11 as specified.	Each lot/ sublot	In-line	In-line
23. Group B	Package functional and constructional Each package type on each lot		In-line	In-line
24. Group C	Die related test (1,000 hour operating life).	Each micro- circuit group	Generic every 52 weeks	Generic every 52 weeks
25. Group D	Package related test.	Each package type	Generic every 52 weeks	Generic every 52 weeks

Military Ordering/Marking Information

MIL-STD-883C devices listed on AMD's <u>Approved Products List are fully compliant to all provisions of paragraph 1.2</u>.
 A. Part Number: The complete part number shall be as shown in the following example:

<u>80186</u>	L	B	U	ç
Device	Slash	Device	Case	Lead
Туре		Class	Outline	Finish
(1)	(2)	(3)	(4)	(5)

- 1) Device type is standard generic type including considerations for revision level of die, speed requirements, or limited temperature per M38510.
- 2) A Slash (/) separates the device type and device class.
- 3) The device class is the M38510 product assurance designator, i.e., B=Class B.
- 4) The case outline is in accordance with Appendix C of MIL-M-38510 and listed in AMD's 09-000. See Case Outline Table.
- 5) The lead finish designator shall be as defined in MIL-M-38510 and documented in AMD's 16-018.1. A = Hot Solder Dip
 - B = Tin Reflow
 - C = Gold
- II. Devices listed utilizing AMD's existing nomenclature are existing products not on the APL/CPL list processed to MIL-STD-883B, Method 5004 and QCI per Method 5005.

A. The part number shall be as shown in the following example:

<u>Am9511A</u>	D	М	<u>B</u>
Device	Pkg	Military	Military
Туре		Temperature	Burn-in
		Range	
(1)	(2)	(3)	(4)

- 1) Standard Generic Part
- Package Configuration
 D = Dual-in Line
 L = Leadless Chip Carrier
- 3) Military Temperature Range Testing
- 4) Military Burn-in

Case Outline Table Military Package Designators

Letter Description

- J 24-lead DIP (1/2" x 1-1/4")
- Q 40-lead DIP (9/16" x 2-1/16")
- U 44-terminal SQ. CCP (.650" x .650")
- U 68-terminal SQ. CCP (.950" x .850")

If the case outline or case outline letter is not included in the above table, use letter:

- U For all chip carrier packages.
- X For dual-in-line packages
 - (i.e., Cerdips and sidebraze).
- Z For all other configurations (PGAs, etc.).

CHAPTER 2

Am29000	2-1	
Am9511A	2-2	
Am9513A*	2-6	
Am9516A	2-13	
Am9517A*	2-21	
Am9519A*	2-27	
Am9517A*	2-21	

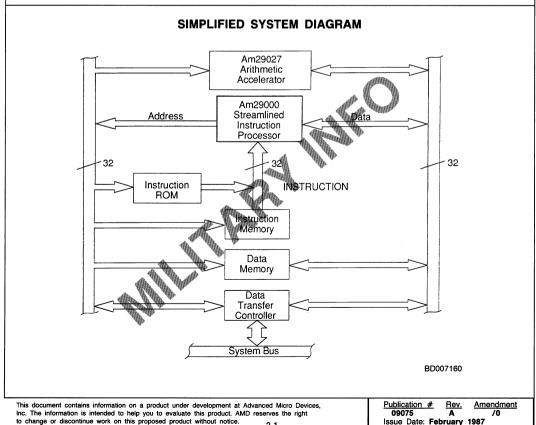
Am29000

Streamlined Instruction Processor

ADVANCE INFORMATION

DISTINCTIVE CHARACTERISTICS

- · Full 32-bit, three-bus architecture
- 17 million instructions per second (MIPS) sustained
 - 25-MHz operating frequency
- Efficient execution of high-level language programs
- CMOS technology
- 4-gigabyte virtual address space with demand paging
- Concurrent instruction and data accesses .
- Burst-mode access support
- 192 general-purpose registers
- 512-byte Branch Target Cache
- 64-entry Memory-Management Unit
- De-multiplexed, pipelined address, instruction, and data buses
- Three-address instruction architecture


GENERAL DESCRIPTION

The Am29000 Streamlined Instruction Processor is a highperformance, general-purpose, 32-bit microprocessor implemented in CMOS technology. It supports a variety of applications, by virtue of a flexible architecture and rapid execution of simple instructions which are common to a wide range of tasks.

The Am29000 efficiently performs operations common to all systems, while deferring most decisions on system policies to the system architect. It is well suited for application in high-performance workstations, general-purpose super-minicomputers, high-performance real-time controllers, laser printer controllers, network protocol converters, and many other applications where high-performance, flexibility, and the ability to program using standard software tools is important.

The Am29000 instruction set has been influenced by the results of high-level-language, optimizing-compiler research. It is appropriate for a variety of languages, because it efficiently executes operations which are common to all languages. Consequently, the Am29000 is an ideal target for high-level languages such as C. Fortran, Pascal, and ADA.

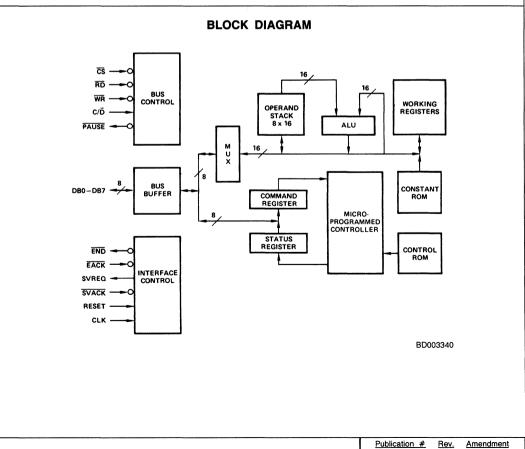
The processor is packaged in a 169-terminal pin-grid-array (PGA) package, using 141 signal pins, 27 power and ground pins, and 1 alignment pin. A representative system diagram is shown below.

Am9511A

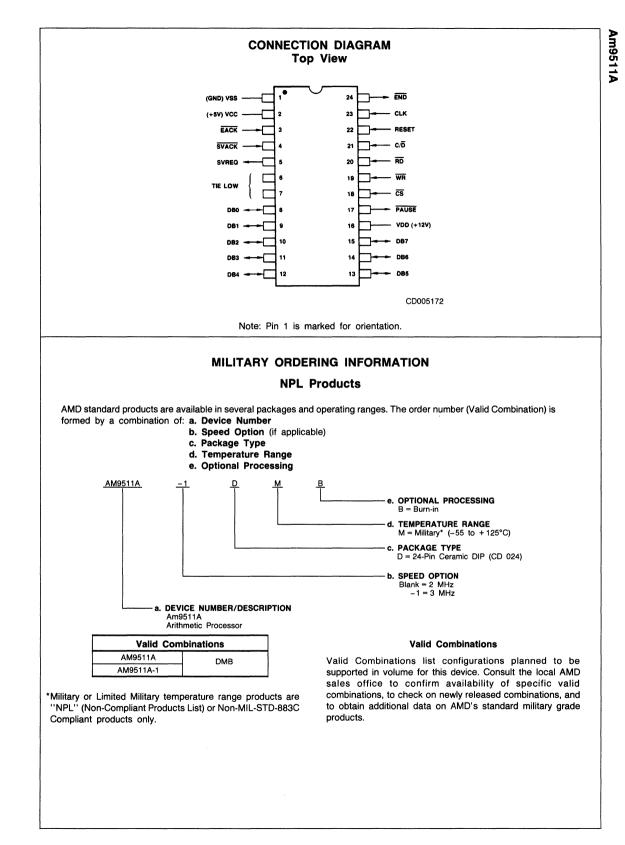
Arithmetic Processor

MILITARY INFORMATION

DISTINCTIVE CHARACTERISTICS


- 2 and 3 MHz operation; fixed point 16-bit and 32-bit operations
- · Floating point 32-bit operations; binary data formats
- Add, Subtract, Multiply and Divide; trigonometric and inverse trigonometric functions
- Square roots, logarithms, exponentiation; float-to-fixed fixed-to-float conversions
- Stack-oriented operand storage; DMA or programmed I/O data transfers
- End signal simplifies concurrent processing; Synchronous/Asynchronous operations
- General purpose 8-bit data bus interface; standard 24pin package

GENERAL DESCRIPTION


The Am9511A Arithmetic Processing Unit (APU) is a monolithic MOS/LSI device that provides high-performance fixed and floating point arithmetic and a variety of floating point trigonometric and mathematical operations. It may be used to enhance the computational capability of a wide variety of processor-oriented systems.

All transfers, including operand, result, status, and command information, take place over an 8-bit bidirectional data bus. Operands are pushed onto an internal stack, and a command is issued to perform operations on the data in the stack. Results are then available to be retrieved from the stack, or additional commands may be entered.

Transfers to and from the APU may be handled by the associated processor using conventional programmed I/O, or may be handled by a direct memory access controller for improved performance. Upon completion of each command, the APU issues an end-of-execution signal that may be used as an interrupt by the CPU to help coordinate program execution.

09224 A /0 Issue Date: December 1987

2-3

Am9511A

ABSOLUTE MAXIMUM RATINGS

OPERATING RANGES

Storage Temperature65 to +150°C
V _{DD} with Respect to V _{SS} 0.5 V to +15.0 V
V _{CC} with Respect to V _{SS} 0.5 V to +7.0 V
All Signal Voltages
with Respect to V _{SS} 5.0 V to +7.0 V
Power Dissipation (Package Limitation)2.0 W

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

DC CHARACTERISTICS over operating range

Operating ranges define those limits between which the functionality of the device is guaranteed.

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
VOH	Output HIGH Voltage	I _{OH} = -200 μA	3.7		v
VOL	Output LOW Voltage	I _{OL} = 3.2 mA		0.4	v
VIH	Input HIGH Voltage		20	Vcc*	v
VIL	Input LOW Voltage		-0.5*	0.8	v
ll _X	Input Load Current	$V_{SS} \leq VI \leq V_{CC}$		±10	μA
loz	Data Bus Leakage	$V_0 = 0.4 V$ $V_0 = V_{00}$	10	10	μA
lcc	V _{CC} Supply Current			100	mA
CAPACIT	ANCE			r	
Symbol	Description	Test Conditions	Min.	Max.	Unit
Co	Output Capacitance			10*	pF
CI	Input Capacitance	$f_C = 1.0$ MHz, Inputs = 0 V		8*	pF
CIO	I/O Capacitance			12*	pF
Not tested a	uaranteed by design.				
	2.4				
	0.45	LO.8 POINTS 0.8	WF0040	60	

SWITCHING CHARACTERISTICS over operating range

B			Am9	511A	Am95	11A-1	
Parameter Symbol	Parameter Description		Min.	Max.	Min.	Max.	Unit
TAPW	EACK LOW Pulse Width		100		75		ns
TCDR	C/D to RD LOW Setup Time		0		0		ns
TCDW	C/D to WR LOW Setup Time		0		0		ns
тсрн	Clock Pulse HIGH Width		200		140		ns
TCPL	Clock Pulse LOW Width		240		160		ns
TCSR	CS LOW to RD LOW Setup Time		0		0		ns
TCSW	CS LOW to WR LOW Setup Time		0		0		ns
TCY	Clock Period		480	5000	320	3300	ns
TDW	Data Bus Stable to WR HIGH Setup Time		150		150		ns
TEAE	EACK LOW to END HIGH Delay			200		175	ns
TEPW	END LOW Pulse Width (Note 4)		400	The second second	270		ns
TOP	Data Bus Output Valid to PAUSE HIGH Delay		0		0		ns
TPPWR	PAUSE LOW Pulse	Data	3,5TCY + 50	¹⁹ 5.5TCY + 300	3.5TCY + 50	5.5TCY + 200	ns
IPPWR	Width Read (Note 5)	Status	5TCY 50	3.5TCY + 300	1.5TCY + 50	3.5TCY + 200	
TPPWW	PAUSE LOW Pulse Width Write (Note 8)	-		50		50	ns
TPR	PAUSE HIGH to RD HIGH Hold Time		0		0		ns
TPW	PAUSE HIGH to WR HIGH Hold Time	al k	0		0		ns
TRCD	RD HIGH to C/D Hold Time		0		0		ns
TRCS	RD HIGH to CS HIGH Hold Time	ф. ф.	0		0		ns
TRO	RD LOW to Data Bus ON Delay		50		50		ns
TRP	RD LOW to PAUSE LOW Delay (Note 6)			150		150	ns
TRZ	RD HIGH to Data Dus OFF Delay		50	200	50	150	ns
TSAPW	SVACK LOW Pulse Width		100		75		ns
TSAR	SVACK LOW to SVREQ LOW Delay			300		200	ns
TWCD	WR HIGH to C/D Hold Time		60		30		ns
TWCS	WR HIGH to CS HIGH Hold Time		60		30		ns
TWD	WR HIGH to Data Bus Hold Time		20		20		ns
TWI	Write Inactive Time	Command	4TCY		4TCY		ne
1 441	while mactive time	Data	5TCY		5TCY		— ns
TWP	WR LOW to PAUSE LOW Delay (Note 6)			150		150	ns

 Notes: 1. Typical values are for T_A = 25°C, nominal supply voltages and nominal processing parameters.
 2. Switching parameters are listed in alphabetical order.
 3. Test conditions assume transition times of 20 ns or less, output loading of one TTL gate plus 100 pF ±20 pF and timing reference levels of 0.8 V and 2.0 V.

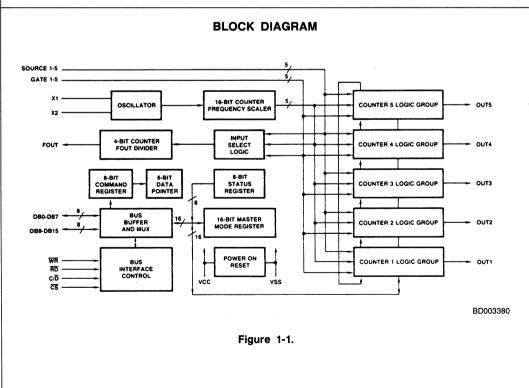
 END low pulse width is specified for EACK tied to V_{SS}. Otherwise TEAE applies.
 Minimum values shown assume no previously entered command is being executed for the data access. If a previously entered command is being executed, PAUSE LOW Pulse Width is the time to complete execution plus the time shown. Status may be read at any time without exceeding the time shown. 6. PAUSE is pulled low for both command and data operations. 7. <u>TEX is</u> the execution time of the current command (see the Command Execution Times table).

 PAUSE to be executed rune of the content command (see the command executed runes table).
 PAUSE low pulse width is less than 50 ns when writing into the data port or the control port as long as the duty requirement (TWI) is observed and no previous command is being executed. TWI may be safely violated up to 500 ns as long as the extended TPPWW that results is observed. If a previously entered command is being executed, PAUSE LOW Pulse Width is the time to complete execution plus the time shown.

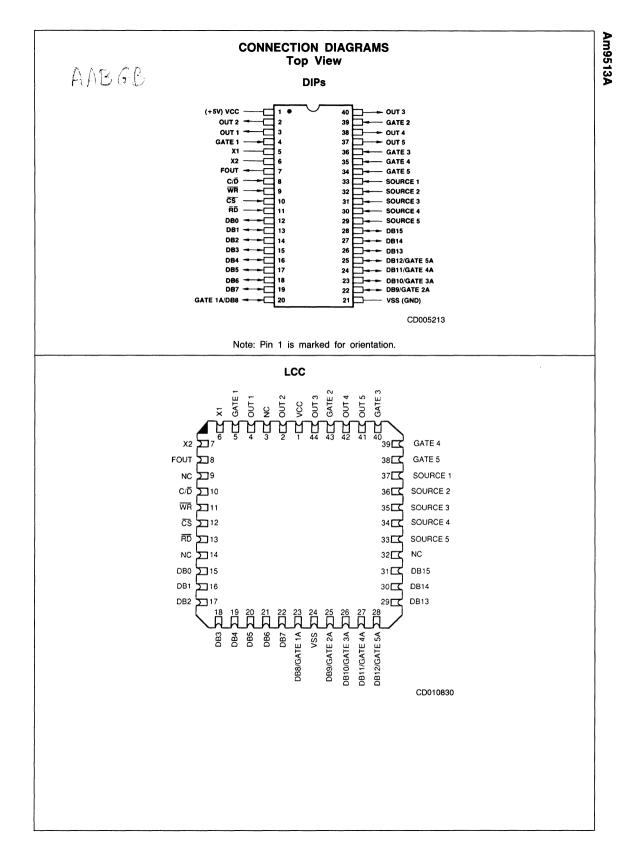
Am9513A

System Timing Controller

MILITARY INFORMATION

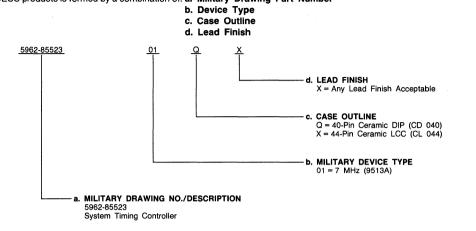

DISTINCTIVE CHARACTERISTICS

- Am9513A
- SMD/DESC qualified
- Five independent 16-bit counters
- High speed counting rates
- Up/down and binary/BCD counting
- Internal oscillator frequency source
- Tapped frequency scaler
- Programmable frequency output
- 8-bit or 16-bit bus interface


- Time-of-day option
- Alarm comparators on counters 1 and 2
- One-shot or continuous outputs
- Programmable count/gate source selection
- Programmable input and output polarities
- Programmable gating functions
- Retriggering capability
- Standard 40-pin DIP package; 44-Pin LCC

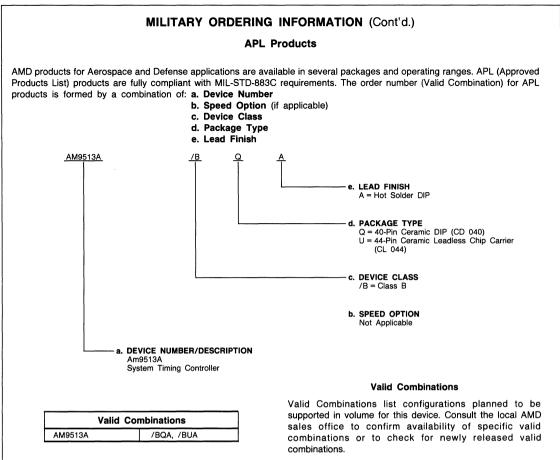
GENERAL DESCRIPTION

The Am9513A System Timing Controller is an LSI circuit designed to service many types of counting, sequencing and timing applications. It provides the capability for programmable frequency synthesis, high resolution programmable duty cycle waveforms, retriggerable digital oneshots, time-of-day clocking, coincidence alarms, complex pulse generation, high resolution baud rate generation, frequency shift keying, stop-watching timing, event count accumulation, waveform analysis, etc. A variety of programmable operating modes and control features allow the Am9513A to be personalized for particular applications as well as dynamically reconfigured under program control. The STC includes five general-purpose 16-bit counters. A variety of internal frequency sources and external pins may be selected as inputs for individual counters with software selectable active-high or active-low input polarity. Both hardware and software gating of each counter is available. Three-state outputs for each counter provide pulses or levels and can be active-high or active-low. The counters can be programmed to count up or down in either binary or BCD. The host processor may read an accumulated count at any time without disturbing the counting process. Any of the counters may be internally concatenated to form any effective counter length up to 80 bits.


Publication #
09225Rev.
AAmendment
/0Issue Date:November1987

Standard Military Drawing (SMD)/DESC Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. Standard Military Drawing (SMD)/DESC products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for SMD/DESC products is formed by a combination of: **a. Military Drawing Part Number**



Valid Combinations				
5962-8552301	QX, XX			

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

> Group A Tests Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

Group A Tests Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

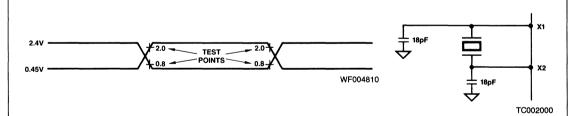
Am9513A

ABSOLUTE MAXIMUM RATINGS

OPERATING RANGES

Storage Temperature-65°C to +150°C VCC with Respect to VSS-0.5 V to +7.0 V All Signal Voltages with Respect to VSS-0.5 V to +7.0 V

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. Operating ranges define those limits between which the functionality of the device is guaranteed.


DC CHARACTERISTICS over operating range (for SMD/DESC and APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol		imeter ription	Test Conditions	Min.	Max.	Unit
	Innut I and Maltana	All Inputs Except X2		VSS - 0.5*	0.8	v
VIL	Input Low Voltage	X2 Input		VSS - 0.5*	0.8	1 V
		All Input Except X2		2.2 V	VCC*	v
VIH	Input High Voltage	X2 Input		3.8	VCC*	l v
VITH	Input Hysteresis (SRC a	ind GATE Inputs Only)		0,2		V
VOL	Output Low Voltage	W allow	IOL = 3.2 mA		0.4	V
VOH	Output High Voltage		IOH = -200 μA	2.4		V
lix	Input Load Current (Exc	ept X2)	$VSS \leq VIN \leq VCC$		±10	μA
IIX	Input Load Current X2		$VSS \le VIN \le VCC$		±100	μA
IOZ	Output Leakage Ourrent	(Except X1)	VSS + 0.4 ≤ VOUT ≤ VCC High-Impedance State		±25	μA
ICC	VCC Supply Current (St	eady State)			275	mA
CIN †	Input Capacitance		f = 1 MHz, T _C = + 25°C.		20*	
COUT †	Output Capacitance		All pins not under		20*	pF
CIO †	IN/OUT Capacitance	test at 0 V.			20*	1

* Guaranteed by design; not tested.

† Not included in Group A tests.

SWITCHING TEST INPUT/OUTPUT WAVEFORMS

Crystal is fundamental mode parallel resonant 32 pF load capacitance less than 100 Ω ESR C₀ less than 100 pF.

SWITCHING CHARACTERISTICS over operating range (for SMD/DESC and APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

		Am9	513A	
Parameter Symbol	Parameter Description	Min.	Max.	Uni
TAVRL	C/D Valid to Read Low	25		ns
TAVWH	C/D Valid to Write High	170		ns
тснсн	X2 High to X2 High (X2 Period) (Note 13)	145		ns
TCHCL	X2 High to X2 Low (X2 High Pulse Width) (Note 13)	70		ns
TCLCH	X2 Low to X2 High (X2 Low Pulse Width) (Note 13)	70		ns
TDVWH	Data In Valid to Write High	80		ns
ТЕНЕН	Count Source High to Count Source High (Source Cycle Time) (Note 7)	145		ns
TEHEL TELEH	Count Source Pulse Duration (Note 7)	70		ns
TEHFV	Count Source High to FOUT Valid (Note 7)		500	ns
TEHGV	Count Source High to Gate Valid (Level Gating Hold Time) (Notes 7, 9, 10)	10		ns
TEHRL	Count Source High to Read Low (Set-up Time) (Notes 2, 7)	190		ns
TEHWH	Count Source High to Write High (Set-up Time) (Notes 3, 7)	- 100		ns
	TC Output		300	
TEHYV	Count Source High to Out Valid (Note 7) Immediate or Delayed Toggle Output		300	ns
	Comparator Output		350	
TFN	FN High to FN + 1 Valid (Note 11)		75	ns
TGVEH	Gate Valid to Count Source High (Level Gating Set-up Time) (Notes 7, 9, 10)	100		ns
TGVGV	Gate Valid to Gate Valid (Gate Pulse Duration) (Notes 8, 10)	145		ns
TGVWH	Gate Valid to Write High (Notes 3, 10)	-100		ns
TRHAX	Read High to C/D Don't Care	0		ns
TRHEH	Read High to Count Source High (Notes 4, 7)	0		ns
TRHQX	Read High to Data Out Invalid	10		ns
TRHQZ	Read High to Data Out int High-Impedance (Data Bus Release Time)		85	ns
TRHRL	Read High to Read Low (Read Recovery Time)			ns
TRHSH	Read High to CS High (Note 12)			ns
TRHWL	Read High to Write Low (Read Recovery Time)	1000		ns
TRLQV	Read Low to Data Out Vand		110	ns
TRLQX	Read Low to Data Bus Driven (Data Bus Drive Time)	20		ns
TRLRH	Read Low to Read High (Head Pulse Duration) (Note 12)	160		ns
TSLRL	CS Low to Read Low (Note 12)	20	1	ns
TSLWH	CS Low to Write High Note 12)	170	ļ	ns
TWHAX	Write High to C/D Doon't Care	20	ļ	ns
TWHDX	Write High to Data In Don't Care	20		ns
TWHEH	Write High to Count Source High (Notes 5, 7, 14, 15)	550	ļ	ns
TWHGV	Write High to Gate Valid (Notes 5, 10, 14)	475	ļ	ns
TWHRL	Write High to Read Low (Write Recovery Time) (Note 16)	1500		ns
TWHSH	Write High to CS High (Note 12)	20		ns
TWHWL	Write High to Write Low (Write Recovery Time) (Note 16)	1500		ns
TWHYV	Write High to Out Valid (Notes 6, 14)		650	ns
TWLWH	Write Low to Write High (Write Pulse Duration) (Note 12)	150		ns
TGVEH2	Gate Valid to Count Source High (Special Gate) (Notes 10, 13, 17)	200		ns
TEHGV2	Count Source High to Gate Valid (Special Gate) (Notes 10, 13, 18)	80		ns

Notes:

- Abbreviations used for the switching parameter symbols are given as the letter T followed by four or five characters. The first and third characters represent the signal names on which the measurements start and end. Signal abbreviations used are:
 - A (Address) = C/\overline{D}
 - C (Clock) = X2

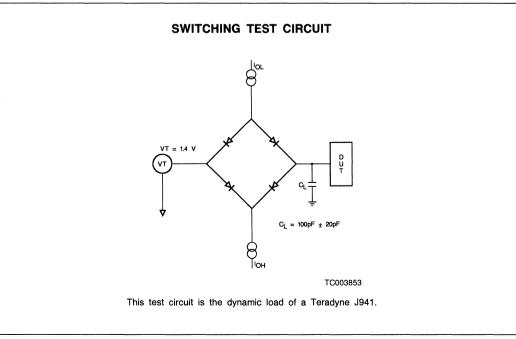
D (Data In) = DB0-DB15

E (Enabled counter source input) = SRC1-SRC5, GATE1-GATE5, F1-F5,TCN-1

F = FOUT

- G (Counter gate input) = GATE1-GATE5, TCN-1
- Q (Data Out) = DB0-DB15
- R (Read) = RD
- S (Chip Select) = \overline{CS}
- W (Write) = WR
- Y (Output) = OUT1-OUT5

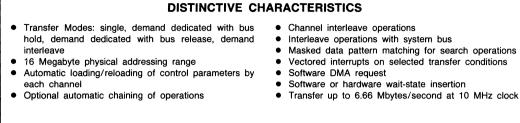
- Continued on next page -

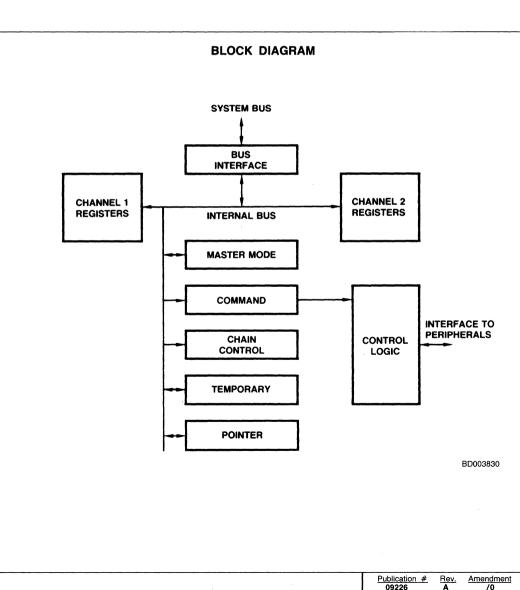

Am9513A

The second and fourth letters designate the reference states of the signals named in the first and third letters respectively, using the following abbreviations.

- H = HIGH
- L = LOW
- V = VALID
- X = Unknown or Don't care
- Z = High-Impedance
- Any input transition that occurs before this minimum setup requirement will be reflected in the contents read from the status register.
- Any input transition that occurs before this minimum setup requirement will act on the counter before the execution of the operation initiated by the write and the counter may be off by one count.
- Any input transition that occurs after this minimum hold time is guaranteed to not influence the contents read from the status register on the current read operation.
- Any input transition that occurs after this minimum hold time is guaranteed to be seen by the counter as occurring after the action initiated by the write operation and the counter may be off by one count.
- 6. This parameter applies to cases where the write operation causes a change in the output bit.
- 7. The enabled count source is one of F1-F5, TCN-1 SRC1-SRC5 or GATE1-GATE 5, as selected in the applicable Counter Mode register. The timing diagram assumes the counter counts on rising source edges. The timing specifications are the same for falling-edge counting.
- 8. This parameter applies to edge gating (CM15-CM13 = 110 or 111) and gating when both CM7 = 1 and $CM15-CM13 \neq 000$. This parameter represents the minimum GATE pulse width needed to ensure that the pulse initiates counting or counter reloading.
- 9. This parameter applies to both edge and level gating (CM15-CM13 = 001 through 111 and CM7 = 0). This pa-

rameter represents the minimum setup or hold times to ensure that the Gate input is seen at the intended level on the active source edge and the counter may be off by one count.


- 10. This parameter assumes that the GATENA input is unused (16-bit bus mode) or is tied high. In cases where the GATENA input is used, this timing specification must be met by both the GATE and GATENA inputs.
- 11. Signals F1-F5 cannot be directly monitored by the user. The phase difference between these signals will manifest itself by causing counters using two different F signals to count at different times on nominally simultaneous transitions in the F signals. F1 = X2.
- 12. This timing specification assumes that \overline{CS} is active whenever \overline{RD} or \overline{WR} are active. \overline{CS} may be held active indefinitely.
- 13. This parameter assumes X2 is driven from an external gate with a square wave.
- 14. This parameter assumes that the write operation is to the command register.
- 15. This timing specification applies to single-action commands only (e.g., LOAD, ARM, SAVE, etc.). For doubleaction commands such as LOAD AND ARM and DISARM AND SAVE, TWHEH minimum = 700 ns.
- 16. In short data write mode, TWHRL and TWHWL minimum = 1000 ns.
- 17. This parameter applies to the hardware retrigger/save modes N, O, Q, R, and X (CM7 = 1 and CM15-CM13 <> 000). This parameter ensures that the gating pulse initiates a hardware retrigger/save operation.
- 18. This parameter applies to hardware load source select modes S and V (CM7 = 1 and CM15-CM13 = 000). This parameter represents the minimum hold time to ensure that the GATE input selects the correct load source on the active source edge.



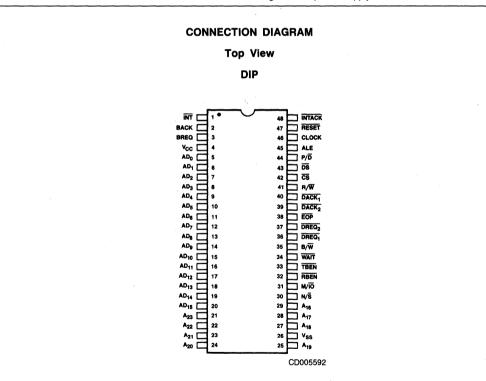
Am9516A

Universal DMA Controller (UDC)

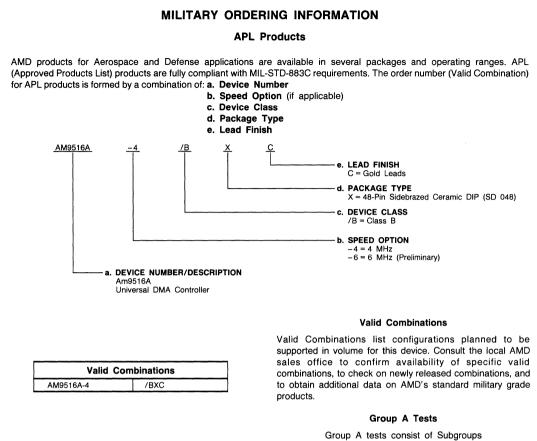
MILITARY INFORMATION

Issue Date: November 1987

GENERAL DESCRIPTION


The Am9516A Universal DMA Controller (UDC) is a highperformance peripheral interface circuit for 8086 and 68000 CPUs. In addition to providing data block transfer capability between memory and peripherals, each of the UDC's two channels can perform peripheral-to-peripheral, as well as memory-to-memory transfer. A special Search Mode of Operation compares data read from a memory or peripheral source to the content of a pattern register.

For all DMA operations (search, transfer, and transfer-andsearch), the UDC can operate with either byte or word data sizes. In some system configurations it may be necessary to transfer between word-organized memory and a byteoriented peripheral. The UDC provides a byte packing/ unpacking capability through its byte-word funneling transfer or transfer-and-search option. Some DMA applications may continuously transfer data between the same two memory areas. These applications may not require the flexibility inherent in reloading registers from memory tables. To service these repetitive DMA operations, base registers are provided on each channel which re-initialize the current source and destination Address and Operation Count registers. To change the data transfer direction under CPU control, provision is made for reassigning the source address as a destination and the destination as a source, eliminating the need for actual reloading of these address registers.


Frequently, DMA devices must interface to slow peripherals or slow memory. In addition to providing a hardware WAIT input, the Am9516A UDC allows the user to select independently for both source and destination addresses and automatic insertion of 0, 1, 2 or 4 wait states. The user may even disable the WAIT input pin function altogether and use these software-programmed wait states exclusively.

High throughput and powerful transfer options are of limited usefulness if a DMA requires frequent reloading by the host CPU. The Am9516A UDC minimizes CPU interactions by allowing each channel to load its control parameters from memory into the channel's control registers. The only action required of the CPU is to load the address of the control parameter table into the channel's Chain Address register and then issue a "Start Chain" Command to start the register loading operation.

The Am9516A UDC is packaged in a 48-pin DIP and uses a single +5 V power supply.

Note: Pin 1 is marked for orientation.

1, 2, 3, 7, 8, 9, 10, 11.

Am9516A

ABSOLUTE MAXIMUM RATINGS

Storage Temperature-65°C to +150°C V_{CC} with Respect to V_{SS}-0.5 to +7.0 V All Signal Voltages with Respect to VSS .. -0.5 to +7.0 V

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Military (M) Devices

Temperature (T _C)55	5 to 125°C
Supply Voltage (V _{CC})5	V ± 10%

Operating ranges define those limits between which the functionality of the device is guaranteed.

2.2K Ω

DUT PIN

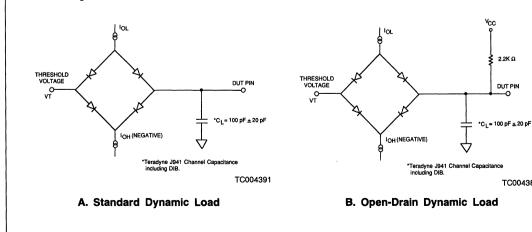
0

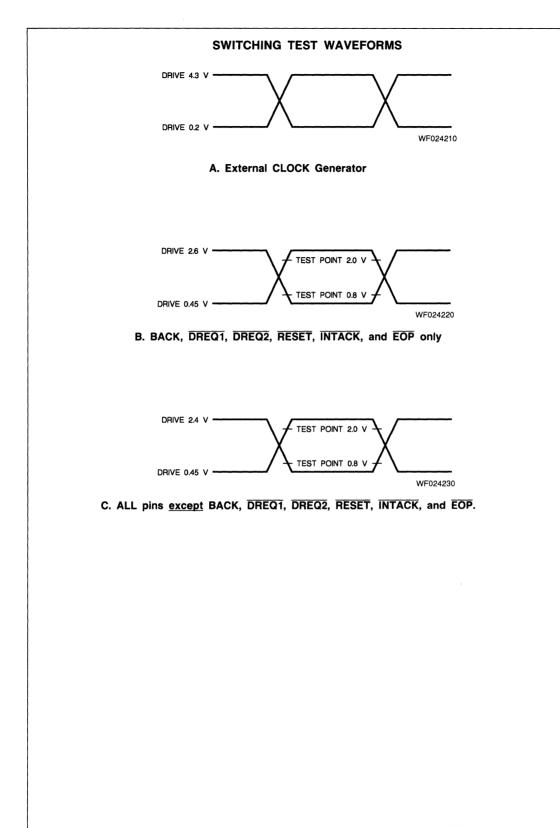
TC004381

DC CHARACTERISTICS over operating range (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
V _{CH} †	Clock Input HIGH Voltage	Driven by External Clock Generator	3.8	V _{CC} + 0.3*	V
V _{CL} †	Clock Input LOW Voltage	Driven by External Clock Generator	-0.5*	0.45	v
VIH1 †	Input HIGH Voltage	All Pins Except 2, 36, 37, 38, 47, 48	2.0	V _{CC} + 0.3*	v
V1H2 †	Input HIGH Voltage	Pins 2, 36, 37, 38, 47, 48	2.2	V _{CC} + 0.3*	V
VIL †	Input LOW Voltage		-0.5*	0.8	V
V _{OH1}	Output HIGH Voltage	I _{OH} = -250µA Except Pins 1, 32, 33, 38	2.4		v
V _{OH2}	Output HIGH Voltage	I _{OH} = -200 μA, Pins 1, 32, 33, 38	2.0		V
VOL	Output LOW Voltage	$I_{OL} = 3.2 \text{ mA}$		0.45	٧
կլ	Input Leakage	Vss < VIN VCC		±10	μA
lol	Output Leakage	Vss Vout < Vcc		±10	μA
	V _{CC} Supply Current	Tc = −55°C		350	mA
lcc	VCC Supply Current	T _C = + 125°C		200	mA
C _{CLK} ††	Input Capacitance (Clock)	Unmeasured pins returned to ground. f = 1 MHz over specified temperature range.		25*	pF
C _{IN} ††	Input Capacitance (Except Pin 46)	Unmeasured pins returned		10*	pF
COUT ††	Output Capacitance	to ground. f = 1MHz over		15*	рF
CI/O tt	Bidirectional Capacitance	specified temperature range.		20*	pF

Guaranteed by design; not tested.


Group A, Subgroups 9, 10, and 11 only are tested.


++ Not included in Group A tests.

Standard Test Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the referenced pin. Standard conditions are as follows:

 $+4.75 \le V_{CC} \le +5.25 V$ GND = 0 V $-55 \leq T_C \leq +125^\circ C$

Am9516A

SWITCHING CHARACTERISTICS over operating range (for APL Products, Subgroups 9, 10, 11 are tested unless otherwise noted)

TIMING FOR UDC AS BUS MASTER

	1					ninary	
AL -	Parameter	Parameter		MHz		MHz	
No.	Symbol	Description	Min.	Max.	Min.	Max.	Uni
1	TcC		250	2000	165	2000	ns
2	TwCh	Clock Width (HIGH)	105	1000	70	1000	ns
3	TwCl	Clock Width (LOW)	105		70		ns
4	TfC	Clock Fall Time		20		10	ns
5	TrC	Clock Rise Time		20		15	ns
6	TdC(AUv)	Clock RE to Upper Address (A ₁₆ -A ₂₃) Valid Delay		90		80	ns
7	ThC(AUv)	Clock RE to Upper Address Valid Hold Time	5		5		ns
8	TdC(ST)	Clock RE to R/W and B/W Valid Delay		110		90	ns
9	TdC(A)	Clock RE to Lower Address (A ₀ -A ₁₅) Valid Delay		90		90	ns
10	TdC(Az)	Clock RE to Lower Address (A ₀ -A ₁₅) Float Delay		60		60	ns
11	TdC(ALr)	Clock RE to ALE RE Delay		70		60	ns
12	TdC(AL)	Clock FE to ALE FE Delay		70		60	ns
13	TdC(DS)	Clock RE to DS (Read) FE Delay		60		60	ns
14	TdC(DSf)	Clock FE to DS (Write) FE Delay		60		60	ns
15	TdC(DSr)	Clock FE to DS RE Delay	atti	60		60	ns
16	TdC(DO)	Clock RE to Data Out Valid Delay		90		90	ns
17	TsDI(C)	Data in to Clock FE Setup Time	20	1610	15		ns
18	TdA(AL)	Address Valid to ALE FE Delay	50	11111-	35		ns
19	ThAL(A)	ALE FE to Lower Address Valid Hold Time	60	<u> </u>	40		ns
20	TwAL	ALE Width (HIGH)	80		60		ns
21	TdAz(DS)	Lower Address Float to DS LOW Delay	0	+	0		ns
22	TdAL(DS)	ALE FE to DS (Read) FE Delay	75		35		ns
23	TdAL(DI)	ALE FE to Data in Required Valid Delay		300	- 35	215	ns
24	TdA(DI)	Address Valid to Data in Required Valid Delay		410		305	ns
25	TdDS(A)	DS RE to Address Active Delay	80	410	45		
26	TdDS(A)	DS RE to ALE RE Deav	75		40		ns
20	TdA(DS)	Address Vand to DS (Read) FE Delay	160		110		ns
28		Data Out Valid to DS RE Delay					ns
	TdDO(DSr)		230		150		ns
29	TdDO(DSf)	Data Out Valid to DS FE Delay	55	<u> </u>	35		ns
30	ThDS(DO)	DS RE to Data Out Valid Hold Time	85		45		ns
31	TdDS(DI)	OS (Read) FE to Data in Required Valid Delay		205		155	ns
33	ThDI(DS)		0	ļ	0		ns
34	TwDSmw W	DS (Write) Width (LOW)	185	ļ	110		ns
35	TwDSmr	DS (Read) Width (LOW)	275	<u> </u>	220		ns
36	TdC(RBr)	Clock FE to RBEN RE Delay*		70	ļ	65	ns
37	ThDS(ST)	DS RE to B/W, N/S, R/W and M/IO Valid Hold Time	70		45		ns
38	TdC(TRf)	Clock RE to TBEN or RBEN FE Delay		60		60	ns
39	TdC(TRr)	Clock RE to TBEN RE Delay		60		60	ns
40	TdC(ST)	Clock RE to M/IO and N/S Valid Delay		90		75	ns
41	TdS(AL)	R/₩, M/IO, B/₩ and N/S Valid to ALE FE Delay	60		35		ns
42	TsWT(C)	WAIT to Clock FF Setup Time	20		20		ns
43	ThWT(C)	WAIT to Clock FE Hold Time	20		20		ns
44	TwDRQ	DREQ Pulse Width (Single Transfer Mode)	20	1	20		ns
45	TsDRQ(C)	DREQ Valid to Clock RE Setup Time	60		50	1	ns
46	ThDRQ(C)	Clock RE to DREQ Valid Hold Time	20	1	20		ns
47	TdC(INTf)	Clock FE to INT FE Delay	t	150	1	150	ns

Am9516A CLOCK-CYCLE-TIME-DEPENDENT CHARACTERISTICS

The parameters listed below are also shown in the Switching specification. However, they are dependent on the actual values of the clock periods. The equations below define that dependence so that the exact limit for these parameters may be determined for any given system in relation to its specific clock characteristics.

Number	Parameters	Derivation
18	TdA (AL)	0.5TcC - #9 + (#12 - tr)
19	ThAL (A)	0.5TcC - #12 (ALE FE @ 0.8V) + #10
21	TdAz (DS)	#13 – #10
22	TdAL (DS)	0.5TcC - #12 + #13
23	TdAL (DI)	2TcC - #12 - #17
24	TdA (DI)	2.5TcC - #9 - #17
25	TdDS (A)	0.5TcC - #15 + #9
26	TsDS (AL)	0.5ToC-#15 + #11 (ALE RE)
27	TdA (DS)	TcC-#0+#10
28	TdDO (DSr)	1.5ToC - #16 + #15
29	Todo (DSI)	0.5TcC - #16 + #14
30	ThDS (DO)	0.5TcC - #15 + #32
31	TdDS (DI)	1.5TcC - #13 - #17
34	TwDSmw	TcC - #14 + #15
35	TwDSmr	1.5TcC - #13 + #15
37	ThDS (ST)	0.5TcC - #15 + (#40 - tr)
41	TdS (AL)	0.5TcC - #40 + (#12 - tr)

Note: tr (nominal) = 10 ns #32 CLCK RE to Data Out Not Valid Delay = 20 ns (4 and 6 MHz)

Am9516A

SWITCHING CHARACTERISTICS (Cont'd.) UDC AS BUS SLAVE BUS EXCHANGE

			T			ninary	
	Parameter	Parameter	4 N	4 MHz		6 MHz	
No.	Symbol	Description	Min.	Max.	Min.	Max.	Uni
61	TdIN(DO)	INTACK FE to Data Output Valid Delay		135		135	ns
62	TdIN(DOz)	INTACK RE to Data Output Float Delay		80		80	ns
63	TdDS(DO)	DS FE (IOR) to Data Output Driven Delay		135*		135	ns
64	TdDS(DOz)	DS RE (IOR) to Data Output Float Delay		80		80	ns
65	TsDI(DS)	Data Valid to DS RE (IOW) Setup Time	40		40		ns
66	ThDS(DI)	DS RE (IOW) to Data Valid Hold Time	40		30		ns
67	TwDS	DS LOW Width	150*		150*		ns
68	TwiN	INTACK LOW Width	150		150		ns
69	ThDS(CS)	DS RE to CS Valid Hold Time	20		20		ns
70	ThDS(PD)	DS RE to P/D Valid Hold Time	20		20		ns
74		P/D Valid to DS FE Setup Time (IOR)	10		10		ns
71	TsPD(DS)	P/D Valid to DS FE Setup Time (IOW)	50		50		
72	TsCS(DS)	CS Valid to DS FE Setup Time	30		30		ns
73	TrDS	DS RE to DS FE Recovery Time (for Commands Only)	4TcC		4TcC		ns
74	TwRST	RESET LOW Width	3TcC		3TcC		ns
75	TdC(BRQf)	Clock RE to BREQ RE Delay	attition	165		150	ns
76	TdC(BRQr)	Clock FE to BREQ FE Delay	A market	150		150	ns
77	TdBRQ(CTRz)	BREQ FE to Control Bus Float Delay		140		140	ns
78	TdBRQ(ADz)	BREQ FE to AD Bus Float Delay		140		140	ns
79	TdBRQ(BAK)	BREQ RE to BACK RE Required Delay	6		0		ns
80	TsBAK(C)	BACK Valid to Clock RE Setup Time	50		45		ns
81	TdRES(ADz)	RESET FE to A and AD Buses Float Delay		135**		135	ns
82	TdRES(CTRz)	RESET FE to Control Bus Float Delay		100**		100	ns
83	TdRES(DSz)	RESET FE to DS Float Delay		90**		90	ns
84	TsRW(DS)	R/W Valid to DS FE Setup fine (IOW)	2		2		ns
85	ThDS(RW)	DS RE to R/W Valid Hold Time (IDW)	-10		-10		ns
86	TsRW(DS)	R/W Valid to DS FE Setup Time (IOR)	20		20		ns
87	ThDS(RW)	DS RE to R/W Valid Hold Time (IOR)	20		20		ns

*2000 ns for slow readable registers (worst case) **Guaranted but not tested. Note: RE = rising edge FE = talling edge

UDC-PERIPHERAL INTEREAC

	Demomenter	Parameter	4 MHz		6 MHz		
No.	Parameter Symbol	Description	Min.	Max.	Min.	Max.	Ur
90	TCHDL	Clock RE to Pulsed DACK FE Delay (Flyby Transactions Only)		100		85	n
91	тснрн	Clock RE to Pulsed DACK RE Delay (To Flyby Transactions Only)		100		85	n
92	TDSK	DS RE to Pulsed DACK RE Delay (FROM Flyby Transactions Only)	10		10		n
93	TDAD	Clock RE to Level DACK Valid Delay		100		85	n
94	TDAH	Clock FE to Level DACK Valid Hold Time		100		85	n
95	TEIDL	Clock FE to Internal EOP LOW Delay		110		90	n
96	TEIDH	Clock FE to Internal EOP RE Delay		110		90	n
97	TES	External EOP Valid to Clock RE Setup Time During Operation	10		10		n
98	TEW	External EOP Pulse Width Required During Operation	20		20		n
99	TES(BH)	External EOP Valid to Clock RE Setup Time During Bus Hold	10		10		n
100	TEW(BH)	External EOP Pulse Width Required During Bus Hold	20		20	T	n

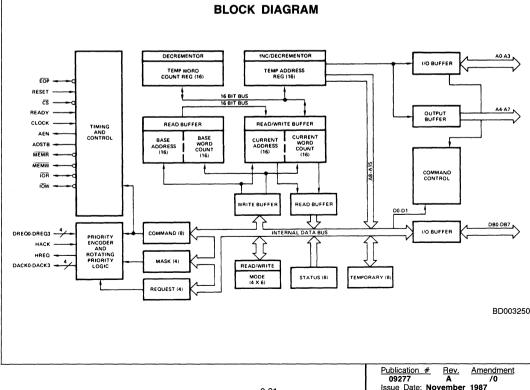
Am9517A

Multimode DMA Controller

MILITARY INFORMATION

DISTINCTIVE CHARACTERISTICS

- SMD/DESC qualified
- Four independent DMA channels, each with separate registers for Mode Control, Current Address, Base Address, Current Word Count and Base Word Count
- Transfer modes: Block, Demand, Single Word, Cascade
- Independent Autoinitialization of all channels
- Memory-to-memory transfers
- · Memory block initialization
- Address increment or decrement
- Master system disable


- Enable/disable control of individual DMA requests
- · Directly expandable to any number of channels
- End of Process input for terminating transfers
- Software DMA requests
- Independent polarity control for DREQ and DACK signals
- Compressed timing option speeds transfers up to 2.5M bytes/second
- 40-pin Hermetic DIP package
- **GENERAL DESCRIPTION**

The Am9517A Multimode Direct Memory Access (DMA) Controller is a peripheral interface circuit for microprocessor systems. It is designed to improve system performance by allowing external devices to directly transfer information to or from the system memory. Memory-to-memory transfer capability is also provided. The Am9517A offers a wide variety of programmable control features to enhance data throughput and system optimization and to allow dynamic reconfiguration under program control.

The Am9517A is designed to be used in conjunction with an external 8-bit address register such as the Am74LS373. It contains four independent channels and may be expanded to any number of channels by cascading additional controller chips.

The three basic transfer modes allow programmability of the types of DMA service by the user. Each channel can be individually programmed to Autoinitialize to its original condition following an End of Process (EOP).

Each channel has a full 64K address and word count capability. An external EOP signal can terminate a DMA or memory-to-memory transfer. This is useful for block search or compare operations using external comparators or for intelligent peripherals to abort erroneous services.

CONNECTION DIAGRAM **Top View** DIPs 40 IOR AZ 39 IOW A6 MEMB 3 38 Δ5 MEMW 37 Α4 36 EOP * (NOTE 11) 35 READY Δ3 34 наск Δ2 ADSTB 8 33 A1 32 A0 **AEN** a 10 31 VCC (+5V) HREQ ĈŜ 11 30 DB0 12 29 DB1 CLK 13 28 DB2 RESET 27 DACK2 14 DB3 DACK3 15 26 DB4 DREQ3 16 25 DACKO 17 24 DACK1 DBE02 23 D85 DREQ1 18 DREQO 19 22 DB6 20 DB7 (GND) VSS 21 CD005072 Note: Pin 1 is marked for orientation. *See Note 9 under DC Characteristics table. MILITARY ORDERING INFORMATION Standard Military Drawing (SMD)/DESC Products AMD standard products for Aerospace and Defense applications are available in several packages and operating ranges. Standard Military Drawing (SMD)/DESC products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for SMD/DESC products is formed by a combination of: a. Military Drawing Part Number b. Device Type c. Case Outline d. Lead Finish 5962-87575 01 Q х e. LEAD FINISH X = Any Lead Finish Acceptable c. CASE OUTLINE Q = 40 pin Ceramic DIP (CD 040) **b. MILITARY DEVICE TYPE**

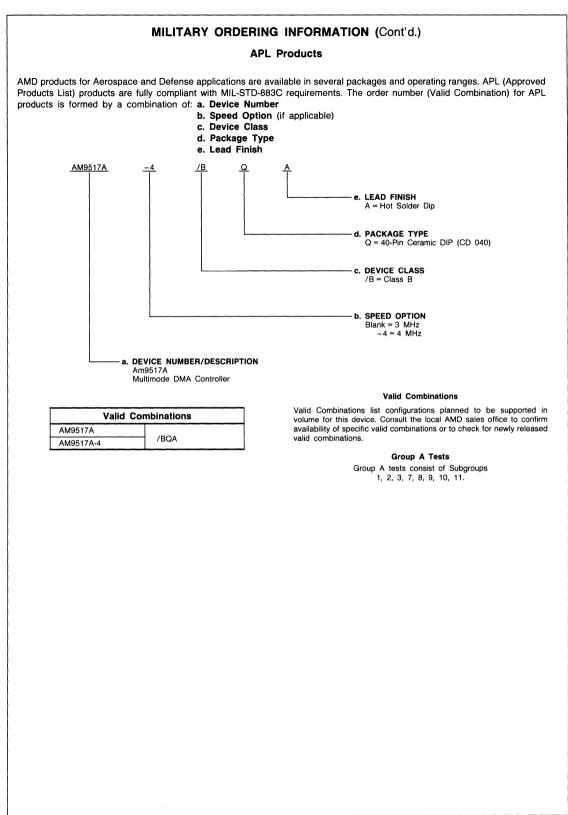
Valid Combinations

01 = 3 MHz (9517A) 02 = 4 MHz (9517A-4)

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.


Valid Combinations							
5962-8757501	OX						
5962-8757502							

5962-87575

Multimode DMA Controller

MILITARY DRAWING NO./DESCRIPTION

Am9517A

2-23

Am9517A

ABSOLUTE MAXIMUM RATINGS

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Military (M) Devices

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range (for SMD/DESC and APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Veu	Output HIGH Voltage	$I_{OH} = -200 \ \mu A, \ V_{CC} = 4.5 \ V$	2.4		v
VOH	Output High Voltage	$I_{OH} = -100 \ \mu A$, (HREQ Only)	3.3		v
VOL	Output LOW Voltage	I _{OL} = 3.2 mA, V _{CC} = 5.5 V		0.45 V	V
VIH	Input HIGH Voltage	V _{CC} = 4.5 V, 5.5 V	2.2	V _{CC} + 0.5*	V
VIHCLK	Input HIGH Voltage	V _{CC} = 4.5 V, 5.5 V (CLK Only)	2.35	V _{CC} + 0.5*	V
VIL	Input LOW Voltage	V _{CC} = 4.5 V, 5.5 V	-0.5*	0.7	V
lix	Input Load Current	$V_{SS} \leq V_I \leq V_{CC}, V_{CC} = 5.5 V$	- 10	+ 10	μA
loz	Output Leakage Current	$V_{CC} \le V_O \le V_{SS} + 0.40,$ $V_{CC} = 5.5 V$	- 10	+ 10	μA
lcc	V _{CC} Supply Current	(Note 1)		150	mA
C _O †	Output Capacitance (Note 12)			20*	pF
C1 †	Input Capacitance	fc = 1.0 MHz, Inputs = 0 V		15*	pF
CIO †	I/O Capacitance	1	18*	pF	

* Guaranteed by design.

† Not included in Group A tests.

Notes:

- 1. I_{CC} is measured in a dynamic condition with outputs in a worst-case state having no loads applied.
- Input timing parameters assume transition times of 20 ns or less. Waveform measurement points for both input and output signals are 2.0 V for HIGH and 0.8 V for LOW, unless otherwise noted.
- 3. The new IOW or MEMW pulse width for normal write will be TCY-100 ns and for extended write will be 2TCY-100 ns. The net IOR or MEMR pulse width for normal read will be 2TCY-50 ns and for compressed read will be TCY-50 ns.
- TDQ is specified for two different output HIGH levels. TDQ1 is measured at 2.0 V. TDQ2 is measured at 3.3 V. The value for TDQ2 assumes an external 3.3 kΩ pull-up resistor connected from HREQ to V_{CC}.
- 5. DREQ should be held active until DACK is returned.
- 6. DREQ and DACK signals may be active HIGH or active LOW. Timing diagrams assume the active-HIGH mode.
- 7. Successive read and/or write operations by the external processor to program or examine the controller must be timed to allow at least 600 ns for the Am9517A, at least 450 ns for the Am9517A-4 as recovery time between active read or write pulses.
- 8. Parameters are listed in alphabetical order.
- Pin 5 is an input that should always be at a logic-HIGH level. An internal pull-up resistor will establish a logic HIGH when the pin is left floating. Alternatively, pin 5 may be tied to V_{CC}.
 Signals READ and WRITE refer to IOR and MEMW respectively for peripheral-to-memory DMA operations and to MEMR and IOW
- Signals READ and WRITE refer to IOR and MEMW respectively for peripheral-to-memory DMA operations and to MEMR and IOW
 respectively for memory-to-peripheral DMA operations.
- 11. If N wait states are added during the write-to-memory half of a memory-to-memory transfer, this parameter will increase by N (TCY).
- 12. All output pins except HREQ.
- 13. Because EOP HIGH from clock HIGH is load-dependent, users wishing to test these parameters should use a 2k pull-up resistor and a tester with 50 pF or less load capacitance. Time constant R_C = 120 ns is added to the specified number in the data sheet for testing.

SWITCHING CHARACTERISTICS over operating range (for SMD/DESC and APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

ACTIVE CYCLE (Notes 2, 8, 9, and 10)

Parameter	Deveryotar	Am9	Am9517A		517A-4	
Symbol	Parameter Description	Min.	Max.	Min.	Max.	Unit
TAEL	AEN HIGH from CLK LOW (S1) Delay Time		300		225	ns
TAET	AEN LOW from CLK HIGH (S1) Delay Time		200		150	ns
TAFAB	ADR Active to Float Delay from CLK HIGH		150		120	ns
TAFC	READ or WRITE Float from CLK HIGH		150		120	ns
TAFDB	DB Active to Float Delay from CLK HIGH		250		190	ns
TAHR	ADR from READ HIGH Hold Time	TCY-100		TCY-100		ns
TAHS	DB from ADSTB LOW Hold Time	30		30		ns
TAHW	ADR from WRITE HIGH Hold Time	TCY-50		TCY-50		ns
	DACK Valid from CLK LOW Delay Time		280		220	ns
ТАК	EOP HIGH from CLK HIGH Delay Time		250		190	ns
	EOP LOW to CLK HIGH Delay Time		250	h	190	ns
TASM	ADR Stable from CLK HIGH	đ	250	W.	190	ns
TASS	DB to ADSTB LOW Setup Time	100	A COLOR	100		ns
тсн	Clock High Time (Transitions ≤ 10ns)	120		100		ns
TCL	Clock Low Time (Transitions ≤ 10ns)	- 750 and		110		ns
TCY	CLK Cycle Time	320		250		ns
TDCL	CLK HIGH to READ or WRITE LOW Delay (Note 3)	Allar	270		200	ns
TDCTR	Read HIGH from CLK HIGH (S4) Delay Time (Note 3)	4	270		210	ns
TDCTW	WRITE HIGH from CLK HIGH (S4) Delay Time (Note 3)	·	200		150	ns
TDQ1			160		120	ns
TDQ2	HREQ Valid from CLK HIGH Delay Time (Note 4)		2TCY + 250		2TCY + 190	ns
TEPS	EOP LOW from CLK LOW Setup Time	60		45		ns
TEPW	EOP Pulse Width	300		225		ns
TFAAB	ADR Float to Active Delay from CLK HIGH		250		190	ns
TFAC	READ or WRITE Active from CLK HIGH		200		150	ns
TFADB	DB Float to Active Delay from CLK HIGH		300		225	ns
THS	HACK Valid to CLK HIGH Setup Time	100		75		ns
TIDH	Input Data from MEMR HIGH Hold Time	0		0		ns
TIDS	Input Data to MEMIR HIGH Setup Time	250		190		ns
TODH	Output Data from MEMW HIGH Hold Time	20		20		ns
TODV	Output Data Valid to MEMW HIGH (Note 11)	200		125		ns
TQS	DREQ to CLK LOW (S1, S4) Setup Time	0		0		ns
TRH	CLK to READY LOW Hold Time	20		20		ns
TRS	READY to CLK LOW Setup Time	100		60		ns
TSTL	ADSTB HIGH from CLK HIGH Delay Time		200		150	ns
TSTT	ADSTB LOW from CLK HIGH Delay Time		140		110	ns
TQH	DREQ from DACK Valid Hold Time	0		0		ns
TRQHA	HREQ to HACK Delay Time	1		1		clk

AC Device Test Conditions: $V_{CC} = 4.5$ V, 5.5 V

 $\begin{array}{l} \text{V}_{\text{UL}} = 0.45 \text{ V}, \text{ V}_{\text{H}} = 2.4 \text{ V} \\ \text{V}_{\text{OL}} = 0.8 \text{ V}, \text{V}_{\text{OH}} = 2.0 \text{ V} \\ \text{I}_{\text{OL}} = 3.2 \text{ mA}, \text{I}_{\text{OH}} = 200 \ \mu\text{A} \\ \text{CL} = 100 \text{ pF} \pm 20 \text{ pF} \end{array}$

Notes: See notes following DC Characteristics.

Am9517A

SWITCHING CHARACTERISTICS (Cont'd.)

PROGRAM CONDITION (Idle Cycle) (Notes 2, 3, 10, and 11)

Parameter	Parameter	Am9	Am9517A Am9517A-4		17A-4		
Symbol	Description	Min.	Max.	Min.	Max.	Unit	
TAR	ADR Valid or CS LOW to READ LOW	50		50		ns	
TAW	ADR Valid to WRITE HIGH Setup Time	200		150		ns	
TCW	CS LOW to WRITE HIGH Setup Time	200		150		ns	
TDW	Data Valid to WRITE HIGH Setup Time	200		150		ns	
TRA	ADR or CS Hold from READ HIGH	0		0		ns	
TRDE	Data Access from READ LOW (Note 8)		300		200	ns	
TRDF	DB Float Delay from READ HIGH	20	150	20	100	ns	
TRSTD	Power Supply HIGH to RESET LOW Setup Time	500		500		μs	
TRSTS	RESET to First IOWR	2TCY		2TCY		ns	
TRSTW	RESET Pulse Width	300		300		ns	
TRW	READ Width	300		250		ns	
TWA	ADR from WRITE HIGH Hold Time	20		20		ns	
TWC	CS HIGH from WRITE HIGH Hold Time	20		20		ns	
TWD	Data from WRITE HIGH Hold Time	30		30		ns	
TWWS	Write Width	200		200		ns	
TAD	Data Access from ADR Valid CS LOW (TAD = TAR + TRDE)		300		300	ns	

Notes: See notes following DC Characteristics.

Am9519A

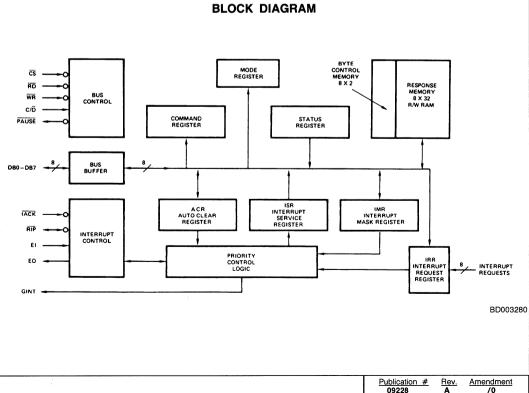
Universal Interrupt Controller

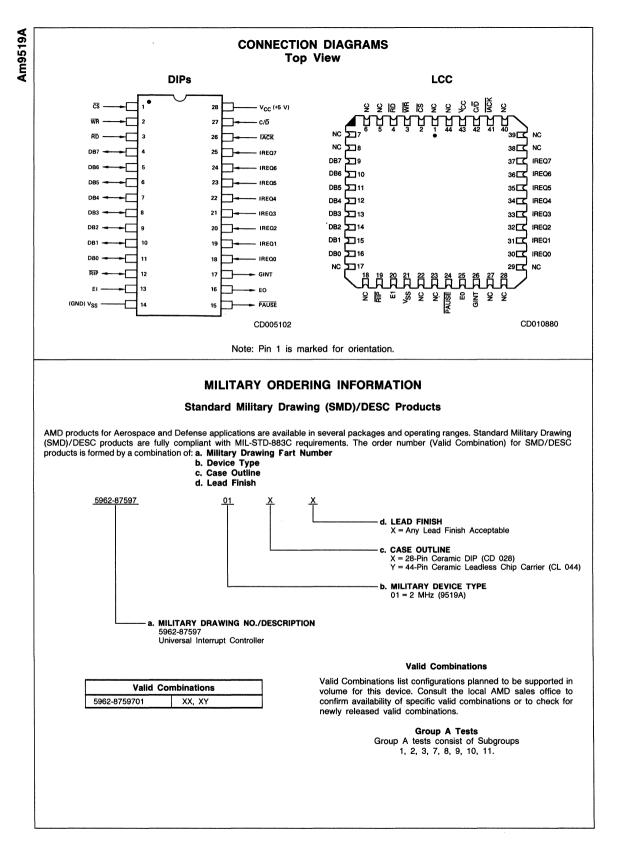
MILITARY INFORMATION

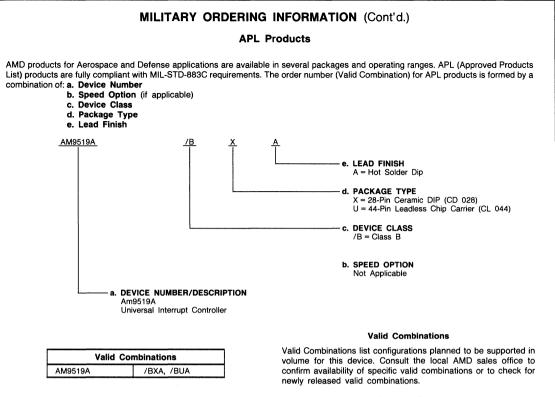
DISTINCTIVE CHARACTERISTICS

- SMD/DESC qualified
- Eight individually maskable interrupt inputs reduce CPU overhead
- Unlimited interrupt channel expansion with no extra hardware
- Programmable 1-byte to 4-byte response provides vector address and message protocol for 8-bit CPUs
- Rotating and fixed priority resolution logic

- Software interrupt request capability
- · Common vector and polled mode options
- Automatic hardware clear of in-service interrupts reduces software overhead
- Polarity control of interrupt inputs and outputs
- Reset minimizes software initialization by automatically generating CALL to location zero


GENERAL DESCRIPTION


The Am9519A Universal Interrupt Controller is a processor support circuit that provides a powerful interrupt structure to increase the efficiency and versatility of microcomputerbased systems. A single Am9519A manages up to eight maskable interrupt request inputs, resolves priorities, and supplies up to four bytes of fully programmable response for each interrupt. It uses a simple expansion structure that allows many units to be cascaded for control of large numbers of interrupts. Several programmable control features are provided to enhance system flexibility and optimization.


The Universal Interrupt Controller is designed with a general-purpose interface to facilitate its use with a wide

range of digital systems, including most popular 8-bit microprocessors. Since the response bytes are fully programmable, any instruction or vectoring protocol appropriate for the host processor may be used.

When the Am9519A controller receives an unmasked interrupt request, it issues a Group Interrupt output to the CPU. When the interrupt is acknowledged, the controller outputs the one-to-four byte response associated with the highest priority unmasked interrupt request. The ability of the CPU to set interrupt requests under software control permits hardware prioritization of software tasks, and aids system diagnostic and maintenance procedures.

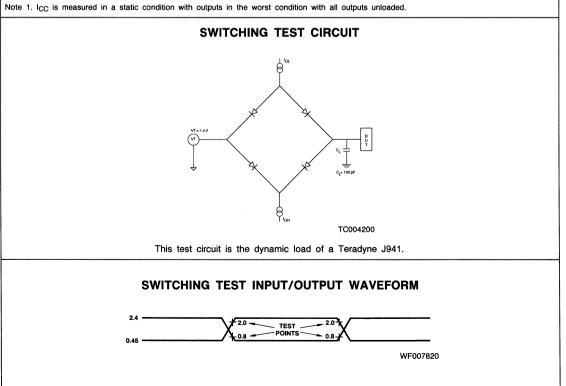
Group A Tests Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11. Am9519A

ABSOLUTE MAXIMUM RATINGS

OPERATING RANGES

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. Military (M) Devices

Temperature (T _C)55 to 1	25°C
Supply Voltage (V _{CC})	10%


Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range (for SMD/DESC and APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise specified)

Parameter Symbol	Parameter Description	Test Cond	itions	Min.	Max.	Unit
Vон	Output HIGH Voltage (Note 8)	l _{OH} = -200 μA		2.4	•	v
VОН	Sulput man voltage (Note 5)	$I_{OH} = -100 \ \mu A$ (EO or	ily)	2.4		v
Vol	Output LOW Voltage	l _{OL} = 3.2 mA			0.4	v
¥0L	Output LOW Voltage	I _{OL} = 1.0 mA (EO only)		0.4	v
VIH	Input HIGH Voltage			2.0	V _{CC} *	V
VIL	Input LOW Voltage			-0.5*	0.8	٧
h	Input Load Current	No chi chi	El Input	-60	10	
lix	input Load Current	V _{SS} ≤ V _{IN} ≤ V _{CC}	Other Inputs	-10	10	μΑ
loz	Output Leakage Current	$V_{SS} \leq V_{OUT} \leq V_{CC}, O_{OUT}$	utput Off	- 150	150	μA
ICC	V _{CC} Supply Current	V _{CC} = 5.5 V (Note 1)			200	mA
Co †	Output Capacitance	f _c = 1.0 MHz			15*	
CI †	Input Capacitance	T _C = 25°C			10*	pF
C _{IO} †	I/O Capacitance	All pins at 0 V			20*	

*Guaranteed by design; not tested.

†Not included in Group A tests.

SWITCHING CHARACTERISTICS over operating ranges (for SMD/DESC and APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted). (Notes 1, 2)

	Parameter	Parameter	AMS	519A	
No.	Symbol	Description	Min.	Max.	Unit
1	TAVRL	C/D Valid and CS LOW to Read LOW	0		ns
2	TAVWL	C/\overline{D} Valid and \overline{CS} LOW to Write LOW	0		ns
3	TCLPH	RIP LOW to PAUSE HIGH (Note 3)	75	375	ns
4	TCLQV	RIP LOW to Data Out Valid (Note 4)		50	ns
5	TDVWH	Data in Valid to Write HIGH	250		ns
6	TEHCL	Enable in HIGH to RIP LOW (Note 5)	30	300	ns
7	TIVGV	Interrupt Request Valid to Group Interrupt Valid	100	800	ns
8	τινιχ	Interrupt Request Valid to Interrupt Request Don't Care (IREQ Pulse Duration)	250		ns
9	ТКНСН	TACK HIGH to RIP HIGH (Note 5)		450	ns
10	TKHKL	IACK HIGH to RIP HIGH (Note 5) IACK HIGH to IACK LOW (IACK Recovery)	140		ns
11	TKHNH	IACK HIGH to EO HIGH (Notes 6, 7)		975	ns
12	TKHQX	IACK HIGH to Data Out Invalid	20	200	ns
13	TKLCL	IACK HIGH to Data Out Invalid IACK LOW to RIP LOW (Notes 5, 9)	75	650	ns
14	TKLKH	IACK LOW to IACK HIGH (1st IACK) (Note 9)	975		ns
15	TKLNL	ACK LOW to EO LOW (Notes 6, 7, 9)		125	ns
16	TKLPL	IACK LOW to PAUSE LOW (Note 9)	25	175	ns
17	TKLQV	IACK LOW to Data Out Valid (Notes 4, 9)	25	300	ns
18	TKLQV1	1st IACK LOW to Data Out Valid (Note 9)	75	650	ns
19	ТРНКН	PAUSE HIGH to TACK HIGH	0		ns
20	TRHAX	Read HIGH to COD and OS Don't Care	0		ns
21	TRHQX	Read HIGH to Data Out Invalid	20	200	ns
22	TRLQV	Read LOW to Data Out Valid		300	ns
23	TRLQX	Read LOW to Data Out Unknown	35		ns
24	TRLRH	Read LOW to Read HIGH (RD Pulse Duration)	300		ns
25	TWHAX	Write HIGH to C/\overline{D} and \overline{CS} Don't Care	25		ns
26	TWHDX	Write HIGH to Data in Don't Care	25		ns
27	TWHRW	Write HIGH to Read or Write LOW (Write Recovery)	600		ns
28	TWLWH	Write LOW to Write HIGH (WR Pulse Duration)	300		ns
29	ТКНІН	IACK HIGH to GINT Inactive		1000	ns

Signal abbreviations used for the switching parameter symbols include: R = Read, W = Write, Q (CS and C/D), K = Interrupt Acknowledge, N = Enable Out, E = Enable In, P = Pause, C = \overline{RIP} . Data Out, D = Data In, A = Address

3. During the first IACK pulse, PAUSE will be LOW long enough to allow for priority resolution and will not go HIGH until after RIP goes LOW (TCLPH).

4. TKLQV applies only to second, third and fourth IACK pulses while RIP is LOW. During the first IACK pulse, Data Out will be valid following the falling edge of RIP (TCLQV).

5. RIP is pulled LOW to indicate that an interrupt request has been selected. RIP cannot be pulled LOW until EI is HIGH following an internal delay. TKLCL will govern the falling edge of RIP when EI is always HIGH or is HIGH early in the acknowledge cycle. The TEHCL will govern when EI goes HIGH later in the cycle. The rising edge of EI will be determined by the length of the preceding Priority resolution chain. RIP remains LOW until after the rising edge of the IACK pulse that transfers the last response byte for the selected IREQ.

6. Test conditions for the EO line assume an output loading of IOL = 1.0 mA and IOH = $-100 \ \mu$ A. Since EO normally only drives EI of another Am9519A, higher speed operations can be specified with this more realistic test condition.

7. The arrival of IACK will cause EO to go LOW, disabling additional circuits that may be connected to EO. If no valid interrupt is pending, EO will return HIGH when EI is HIGH. If a pending request is selected, EO will stay LOW until after the last IACK pulse for that interrupt is complete and RIP goes HIGH.

8. VOH specifications do not apply to RIP, PAUSE, or to GINT when active-LOW. These outputs are open drain, and VOH levels will be determined by external circuitry.

9. CS must be HIGH for at least 100 ns prior to IACK going LOW.

CHAPTER 3

80186*	3-1
80286	3-7
8085A*	3-14
8086	3-19
8088*	3-26
8251/Am9551	3-33
8251A*	3-38
8253*	3-44
82C54	3-49
8255A*	3-54
8259A*	3-59

*DESC approved **Pending DESC approval

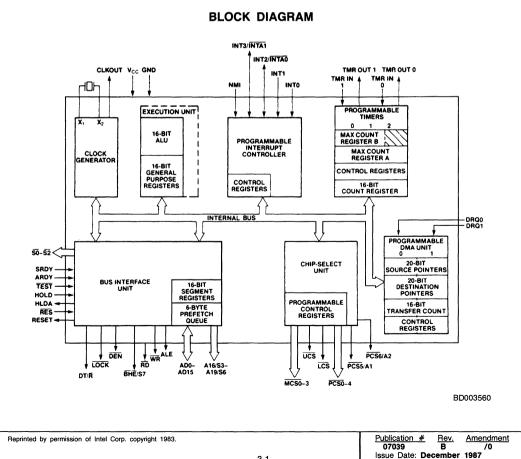
80186

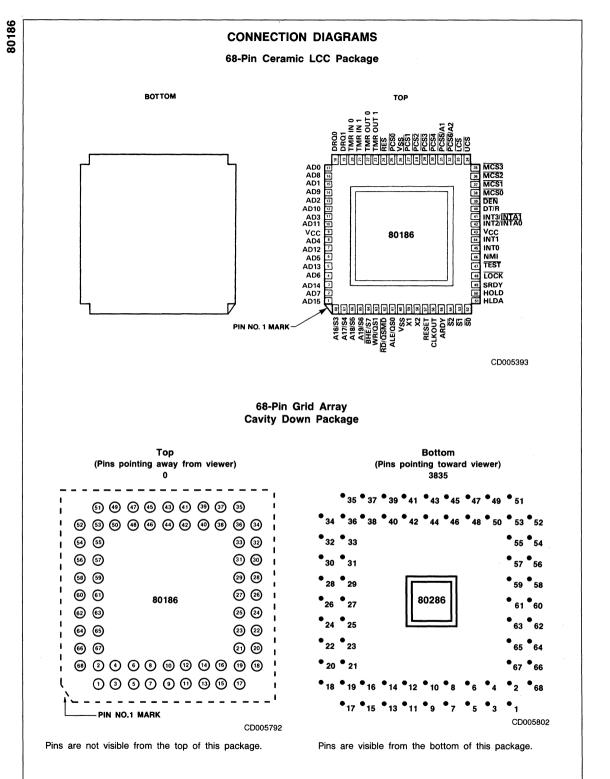
High-Integration 16-Bit Microprocessor iAPX86 Family

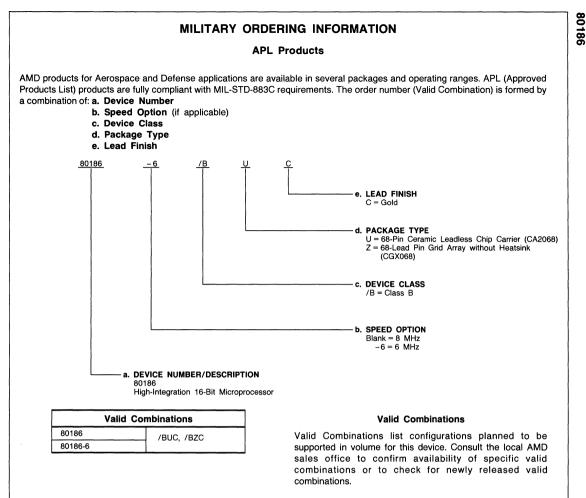
MILITARY INFORMATION

DISTINCTIVE CHARACTERISTICS

- Integrated feature set
 - Enhanced 8-MHz 8086-2 CPU
 - Clock generator
 - Two independent, high-speed DMA channels
 - Programmable interrupt controller
 - Three programmable 16-bit timers
 - Programmable memory and peripheral chip-select logic
 - Programmable wait-state generator
 - Local bus controller
- Available in 8 MHz (80186) and 6 MHz (80186-6)


- High-performance processor
 - Two times the performance of the standard 8086 - 4 Mbyte/sec bus bandwidth interface
- Direct addressing capability to 1 Mbyte of memory
- Completely object-code-compatible with all existing iAPX 86, 88 software
 - Ten new instruction types
 - Compatible with 29843/45 and 8284 bus support components
- Optional numeric processor extension
- Available in 68-pin Ceramic Leadless Chip Carrier (LCC) and Pin Grid Array (PGA) packages


GENERAL DESCRIPTION


The 80186 is a highly integrated 16-bit microprocessor. It effectively combines 15-20 of the most common iAPX 86 system components onto one. The 80186 provides two times greater throughput than the standard 5-MHz 8086. The 80186 is upward-compatible with 8086 and 8088

software, and adds ten new instruction types to the existing set.

The 80186 comes in a 68-pin package and requires a single \pm 5V power supply.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65 to +150°C
Voltage on Any Pin with
Respect to Ground1.0 V to +7 V
Power Dissipation

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliabilitv.

OPERATING BANGES

Military (M) Devices

Temperature (T _C)55 to +125°C	С
Supply Voltage (V _{CC})	6

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range (for APL products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
VIL †	Input LOW Voltage		-0.5	+ 0.8	V
V _{IH} †	Input HIGH Voltage (All Except X1 and RES)		2.0	V _{CC} + 0.5	v
VIH1 †	Input HIGH Voltage (RES)		3.0	V _{CC} + 0.5	V
V _{OL}	Output LOW Voltage	$I_{OL} = 2.5$ mA for $\overline{S_0} - \overline{S_2}$ $I_{OL} = 2.0$ mA for All Other Outputs		0.45	v
VOH	Output HIGH Voltage	I _{OH} = -400 μA	2.4		V
lcc	Power Supply Current	T _C =-55°C, V _{CC} = V _{CC} Max.		600	mA
lu	Input Leakage Current	0 V < V _{IN} ≤ V _{CC} Max.		±10	μA
LO	Output Leakage Current	0.45 V < V _{OUT} < V _{CC} Max.		±10	μA
V _{CLO}	Clock Output LOW	I _{OL} = 4.0 mA		0.6	V
VCHO	Clock Output HIGH	I _{OH} = -200 μA	4.0		V
V _{CLI} †	Clock Input LOW Voltage		-0.5	0.6	V
V _{CHI} †	Clock Input HIGH Voltage		3.9	V _{CC} + 1.0	V
CIN tt	Input Capacitance			10*	pF
CIO tt	I/O Capacitance			20*	pF

* Not tested; guaranteed by design. † Group A, Subgroups 7 and 8 only are tested. †† Not included in Group A tests.

SWITCHING CHARACTERISTICS over operating range (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

PIN TIMING

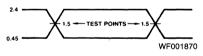
80186 Timing Requirements (all timings measured at 1.5 V unless otherwise noted)

		ı	80186 (8 MHz) & 80186-6 (6 MHz)		
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
TDVCL	Data in Setup (A/D)		20		ns
TCLDX	Data in Hold (A/D)		10		ns
TARYHCH	Asynchronous Ready (AREADY) Active Setup Time*		20		ns
TARYLCL	AREADY Inactive Setup Time		38		ns
TCHARYX	AREADY Hold Time		15		ns
TSRYCL	Synchronous Ready (SREADY) Transition Setup Time		35		ns
TCLSRY	SREADY Transition Hold Time		15		ns
THVCL	HOLD Setup*		25		ns
TINVCH	INTR, NMI, TEST, TIMERIN, Setup*		25		ns
TINVCL	DRQ ₀ , DRQ ₁ , Setup		25		ns

*To guarantee recognition at next clock.

Note: Case temperatures are instant-on.

80186 Master Interface Timing Responses


Boromotor			80186 (8	MHz)	80186-6 (6	80186-6 (6 MHz)	
Parameter Symbol	Description	Test Conditions	Min,	Max.	Min.	Max.	Unit
TCLAV	Address Valid Delay	C _L = 100 pF all outputs	5	59	5	63	ns
TCLAX	Address Hold		5		5		ns
TCLAZ	A ddress Float Delay		TCLAX	35	TCLAX	44	ns
TCHCZ	Command Lines Float Delay		a and the	45		56	ns
TCHCV	Command Lines Valid Delay (After Float)		Ô	55		76	ns
TLHLL	ALE Width		TCLCL-35		TCLCL-35		ns
TCHLH	ALE Active Delay			35		44	ns
TCHLL	ALE Inactive Delay			35		44	ns
TLLAX	Address Hold to ALE Inactive		TCHCL-25		TCHCL-30		ns
TCLDV	Data Valid Delay		5	44	5	55	ns
TCLDOX	Data Hold Time		5		5		ns
TWHDX	Data Hold after WR	ditte.	TCLCL-40		TCLCL-50		ns
TCVCTV	Control Active Delay1	6	10	50	10	87	ns
TCHCTV	Control Active Delay2		5	73	5	76	ns
TCVCTX	Control Inactive Delay		5	55	5	76	ns
TCVDEX	DEN Inactive Delay (Non-Write Cycle)			70		87	ns
TAZRL	Address Float to RD Active		0		0		ns
TCLRL	RD Active Delay		10	70	10	87	ns
TCLRH	RD Inactive Delay		10	55	10	76	ns
TRHAV	RD Inactive to Address Active		TCLCL-40		TCLCL-50		ns
TCLHAV	HLDA Valid Delay		5	67	5	67	ns
TRLRH	RD Width		2TCLCL-50		2TCLCL-50		ns
TWLWH	WR Width		2TCLCL-40		2TCLCL-40		ns
TAVAL	Address Valid to ALE LOW		TCLCH-25		TCLCH-45		ns
TCHSV	Status Active Delay		10	55	10	76	ns
TCLSH	Status Inactive Delay		10	65	10	76	ns
TCLTMV	Timer Output Delay	100 pF Max.		60		75	ns
TCLRO	Reset Delay			60		75	ns
TCHQSV	Queue Status Delay			35		44	ns
TCHDX	Status Hold Time		10		10		ns
TAVCH	Address Valid to Clock HIGH		10		10		ns

SWITCHING CHARACTERISTICS (Cont'd.)

Parameter	Parameter		80186 (8	MHz)	80186-6 (6	MHz)	
Symbol	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
TCLCSV	Chip-Select Active Delay		5	66	5	80	ns
TCXCSX	Chip-Select Hold from Command Inactive		35	attilling	35		ns
TCHCSX	Chip-Select Inactive Delay	-	5	47	5	47	ns
80186 CL	(IN Requirements		TO AND A				
			80186 (8 N	/Hz)	80186-6 (6	MHz)	
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
TCKIN	CLKIN Period	1	62.5	250	83.2	250	ns
TCKHL	CLKIN Fall Time	3.5 to 1.0 volts		10		10	ns
TCKLH	CLKIN Rise Time	1.0 to 3.5 volts		10		10	ns
TCLCK	CLKIN Low Time	1.5 volts	25		33		ns
тснск	CLKIN High Time	1.5 volts	25		33		ns
80186 CLM	(OUT Timing (200-pF load)						
Demonster	Devenueter		80186 (8 I	MHz)	80186-6 (6	MHz)	
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
TCICO	CLKIN to CLKOUT SKew			50		62.5	ns
TCLCL	CLKOUT Period		125	500	166	500	ns
TCLCH	CLKOUT Low Time	1.5 volts	¹ /2TCLCL-7.5		¹ /2TCLCL-7.5		ns
TCHCL	CLKOUT High Time	1.5 volts	¹ /2TCLCL-7.5		¹ /2TCLCL-7.5		ns
TCH1CH2	CLKOUT Rise Time	1.0 to 3.5 volts		15		15	ns
TCL2CL1	CLKOUT Fall Time	3.5 to 1 volts		15		15	ns

All timings measured at 1.5 volts unless otherwise noted.

SWITCHING TEST INPUT/OUTPUT WAVEFORM

AC testing inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0." The clock is driven at 4.3 V and 0.25 V. Timing measurements are made at 1.5 V for both a logic "1" and "0."

80286

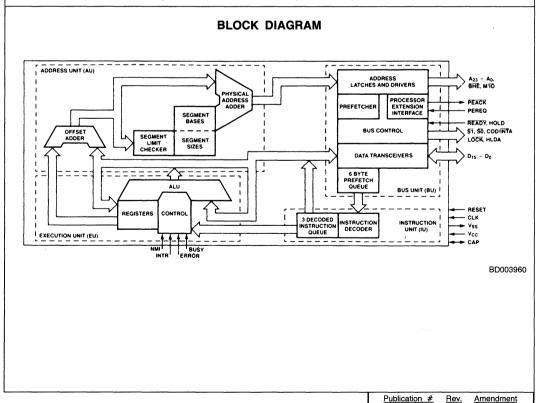
High-Performance Microprocessor with Memory Management and Protection PRELIMINARY MILITARY INFORMATION

DISTINCTIVE CHARACTERISTICS

- High performance processor (up to six times iAPX 86 when using the 8 MHz 80286)
- Large address space
 - 16 megabytes physical
 - 1 gigabyte virtual memory per task
- Integrated memory management, four-level memory protection and support for virtual memory and operating systems
- Military temperature range (T_C = -55 to 125°C)
- Two iAPX 86 upward compatible operating modes – iAPX 86 real address mode – Protected virtual address mode
- High bandwidth bus interface (16 megabyte/sec)
- Range of clock rates
- 8 MHz 80286-8

GENERAL DESCRIPTION

The 80286 is an advanced, high performance microprocessor with specially optimized capabilities for multiple user and multi-tasking systems. The 80286 has built-in memory protection that supports operating system and task isolation as well as program and data privacy within tasks. A 12 MHz 80286 provides up to ten times greater throughput than the standard 5 MHz 8086. The 80286 includes (one gigabyte) of virtual address space per task into 2^{24} bytes (16 megabytes) of physical memory.


The 80286 is upward compatible with iAPX 86 and 88 software. Using iAPX 86 real address mode, the 80286 is object code compatible with existing iAPX 86, 88 software.

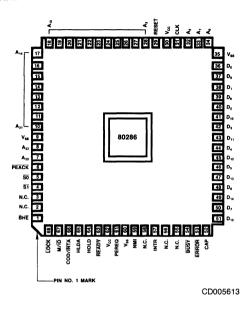
In protected virtual address mode, the 80286 is source code compatible with iAPX 86, 88 software and may require upgrading to use virtual addresses supported by the 80286's integrated memory management and protection mechanism. Both modes operate at full 80286 performance and execute a superset of the iAPX 86 and 88 instructions.

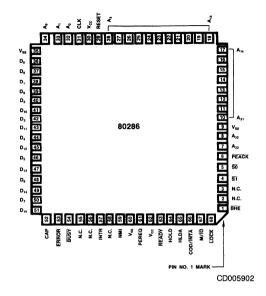
The 80286 provides special operations to support the efficient implementation and execution of operating systems. For example, one instruction can end execution of one task, save its state, switch to a new task, load its state, and start execution of the new task. The 80286 also supports virtual memory systems by providing a segment-not-present exception and restartable instructions.

09398

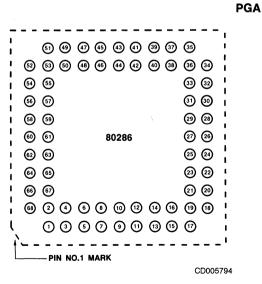
Issue Date: October 1987

80286

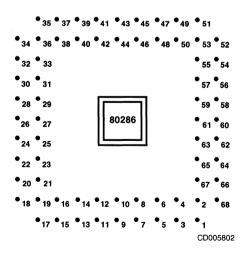

CONNECTION DIAGRAMS


LCC

Component Pad Views - as viewed from underside of component on the P.C. board.

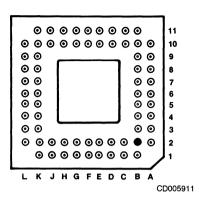

80286

P.C. Board Views - as viewed from the component side of the P.C. board.

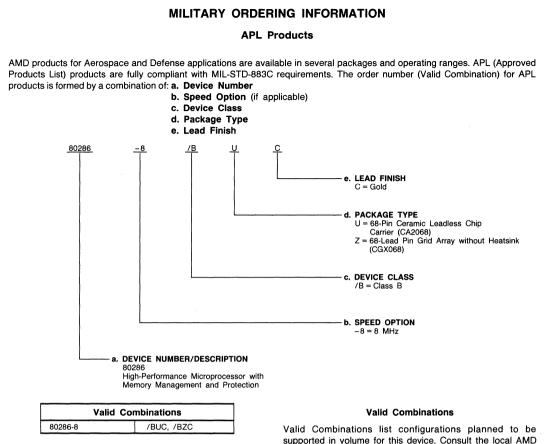


There are no electrical connections on the bottom of this package.

Pins pointing away from viewer


Pins pointing toward viewer

3-8


PGA (continued)

Bottom Vi	ew

NAME	PAD	PIN
BHE	1	B1
NC	2	B2
NC	3	C1
<u>S1</u>	4	C2
SO	5	D1
PEACK	6	D2
A ₂₃	7	E1
A ₂₂	8	E2
VSS	9	F1
A ₂₁	10	F2
A ₂₀	11	G1
A ₁₉	12	G2
A ₁₈	13	H1
A ₁₇	14	H2
A ₁₆	15	J1
A ₁₅	16	J2
A ₁₄	17	K1
A ₁₃	18	L2
A ₁₂	19	K2
A11	20	L3
A ₁₀	21	К3
Ag	22	L4
A ₈	23	K4
A7	24	L5
A ₆	25	K5
A5	26	L6
A ₄	27	К6
A ₃	28	L7
RESET	29	K7
Vcc	30	L8
CLK	31	K8
A ₂	32	L9
Α1	33	К9
A ₀	34	L10

NAME	PAD	PIN
Vss	35	K11
D ₀	36	K10
D8	37	J11
-0 D1	38	J10
- 1 D9	39	H11
- 9 D2	40	H10
-2 D ₁₀	41	G11
D ₃	42	G10
D ₁₁	43	F11
D4	44	F10
D ₁₂	45	E11
D5	46	E10
D ₁₃	47	D11
D ₆	48	D10
D ₁₄	49	C11
D7	50	C10
D ₁₅	51	B11
CAP	52	A10
ERROR	53	B10
BUSY	54	A9
NC	55	B9
NC	56	A8
INTR	57	B8
NC	58	A7
NMI	59	B7
Vss	60	A6
PEREQ	61	B6
Vcc	62	A5
READY	63	B5
HOLD	64	A4
HLDA	65	B4
COD/INTA	66	A3
M/Īō	67	B3
LOCK	68	A2

80286

supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature-65 to +150°C Voltage on Any Pin with

Respect to Ground.....-1.0 to +7.0 V

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Military (M) Devices

Temperature (T_C).....-55 to +125°C Supply Voltage (V_{CC}) 5 V ± 10%

Operating ranges define those limits between which the functionality of the device is guaranteed.

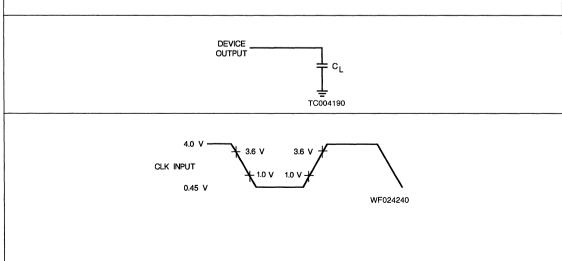
DC CHARACTERISTICS or	ver operating range	e (for APL Products,	Group A, Subgroup	s 1, 2, 3 are tested
unless otherwise noted)				

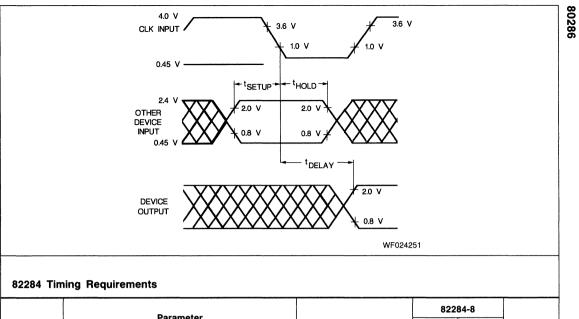
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
ViL	Input LOW Voltage		5	.8	V
VIH	Input HIGH Voltage		2.0	V _{CC} + .5	V
VILC	CLK Input LOW Voltage		5	.6	V
VIHC	CLK Input HIGH Voltage		3.8	V _{CC} + .5	V
VOL	Output LOW Voltage	I _{OL} = 2.0 mA		.45	V
VOH	Output HIGH Voltage	I _{OH} = -400 µA	2.4		V
ILI	Input Leakage Current			±10	μA
ILO	Output Leakage Current	.45 VS VOUT SVOC		±10	μA
lcc	Supply Current (turn on, 0°C)	Note 1		600	mA
ILO	Output Leakage Current	0 V ≤ Vout < 045 V		±1	mA
կլ	Input Sustaining Current on BUSY and ERROR pins	Vin - 0 V	30	500	μA
Notes: 1. L	ow temperature is worst case.			• • • • • • • • • • • • • • • • • • •	

CAPACI	FANCE*	1990			
Parameter Symbol	Parameters Description	Test Conditions	Min.	Max.	Unit
C _{CLK} †	CLK Input Capacitance	f _C = 1 MHz		20*	pF
C _{IN} †	Other Input Capacitance	f _C = 1 MHz		10*	pF
Co †	Input/Output Capacitance	f _C = 1 MHz		20*	pF

* Not tested; guaranteed by design.

† Not included in Group A tests.


80286


SWITCHING CHARACTERISTICS over operating range (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted) (V_{CC} = 5 V \pm 10%, T_C = -55 to +125°C); AC timings are referenced to 0.8 V and 2.0 V points of signals as illustrated in datasheet waveforms, unless otherwise noted.

No.	Parameter Description	Test Conditions	Min.	Max.	Unit
1	System Clock (CLK) Period		62	250	ns
2	System Clock (CLK) LOW Time	at 1.0 V	15	225	ns
3	System Clock (CLK) HIGH Time	at 3.6 V	25	235	ns
17	System Clock (CLK) Rise Time	1.0 V to 3.6 V		10	ns
18	System Clock (CLK) Fall Time	3.6 V to 1.0 V		10	ns
4	Asynch. Inputs Set-up Time	Note 1	20		ns
5	Asynch. Inputs Hold Time	Note 1	20		ns
6	RESET Set-up Time		28		ns
7	RESET Hold Time	6.0	5		ns
8	Read Data Set-up Time	N C	10		ns
9	Read Data Hold Time		8		ns
10	READY Set-up Time		38		ns
11	READY Hold Time		25		ns
12	Status/PEACK Valid Delay	Note 2, Note 3	1	40	ns
12a	Status/PEACK Active Delay	Note 2, Note 3	-	-	ns
12b	Status/PEACK Inactive Delay	Note 2, Note 3	-	-	ns
13	Address Valid Delay	Note 2, Note 3	1	60	ns
14	Write Data Valid Delay	Note 2, Note 3	0	50	ns
15	Address/Status/Data Float Delay	Note 2, Note 4	0	50	ns
16	HLDA Valid Delay	Note 2, Note 3	0	50	ns
19	Address Valid To Status Valid Setup Time	Note 3, Note 5, Note 6	38		ns

Notes: 1. Asynchronous inputs are INTR, NMI, HOLD PEREQ, ERROR, and BUSY. This specification is given only for testing purposes to assure recognition at a specific CLK edge. 2. Delay from 0.8 V on the CLK to 0.8 V or 2.0 V or float on the output as appropriate for valid or floating condition. 3. Output load: CL = 100 pF. 4. Elost condition course when eventual current is loss than h c is magnitude.

 So uppur load: Co L = 100 pr.
 Float condition occurs when output current is less than ILO in magnitude.
 Delay measured from address either reaching 0.8 V or 2.0 V (valid) to status going active reaching 2.0 V or status going inactive 6. For load capacitance of 10 pF on STATUS/PEACK lines, subtract typically 7 ns for 8 MHz spec.

	Parameter		822	84-8	
No.	Description	Test Conditions	Min.	Max.	Unit
11	SRDY/SRDYEN Set-up Time		17		ns
12	SRDY/SRDYEN Hold Time		0		ns
13	ARDY/ARDYEN Set-up Time	Note 1	0		ns
14	ARDY/ARDYEN Hold Time	Note 1	30		ns
19	PCLK Delay	C _L = 75 pF HOZ = 5 mA IOH = -1 mA	0	45	ns

Note 1. These times are given for testing purposes to assure a predetermined action.

82C288 Timing Requirements

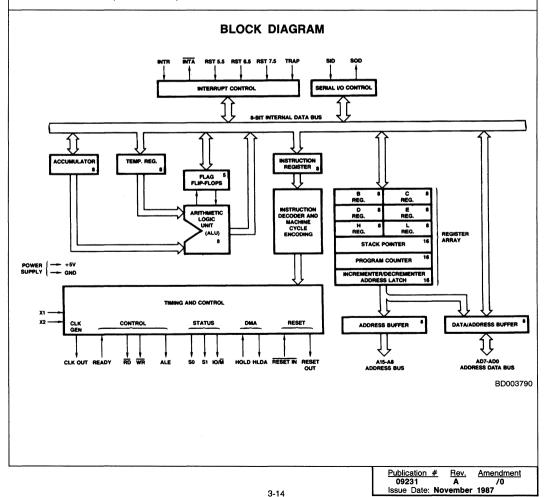
82C288 Timing Requirements							
			82C:	288-8			
No.	Parameter Description	Test Conditions	Min.	Max.	Unit		
12	CMDLY Set-up Time		20		ns		
13	CMDLT Hold Time		1		ns		
30	Command Delay	$C_L = 300 \text{ pF Max.}$	5	25			
29	from CLK Command Active	$I_{OL} = 32$ mA Max. $I_{OH} = 5$ mA Max.	3	25	ns		
16	ALE Active Delay		3	20	ns		
17	ALE Inactive Delay			25	ns		
19	DT/R Read Active Delay			25	ns		
22	DT/R Read Inactive Delay	C _L = 150 pF I _{OL} = 16 mA Max.	5	35	ns		
20	DEN Read Active Delay	$I_{OH} = -1$ mA Max.	5	35	ns		
21	DEN Read Inactive Delay		3	35	ns		
23	DEN Write Active Delay]		30	ns		
24	DEN Write Inactive Delay		3	30	ns		

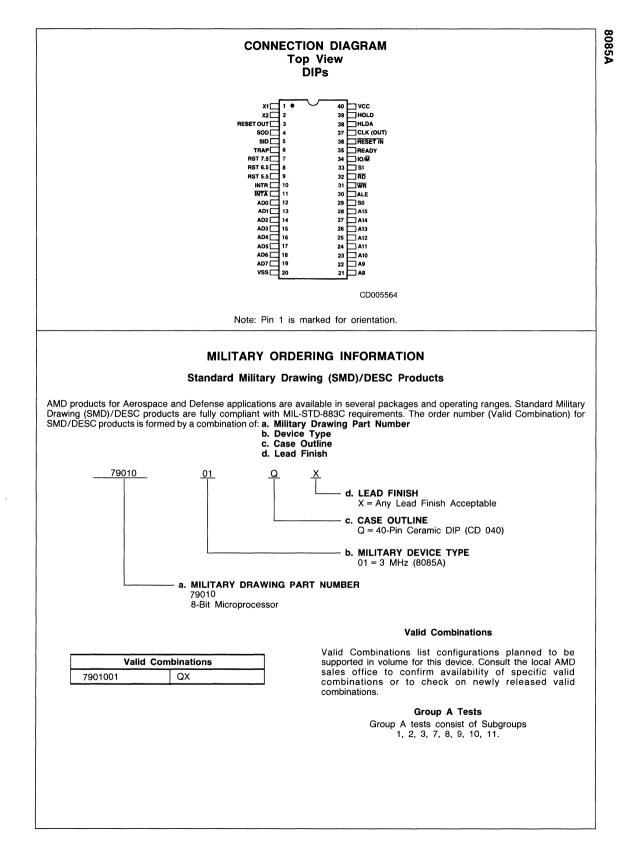
8085A

8-Bit Microprocessor

MILITARY INFORMATION

- **DISTINCTIVE CHARACTERISTICS**
- SMD/DESC qualified


8085A


- 3- and 5-MHz selections available
- On-chip system controller; advanced cycle status information available for large system control
- Four vectored interrupts (one is non-maskable)
- On-chip clock generator (with external crystal, LC or R/C network)
- Serial-in/serial-out port
- Decimal, binary, and double-precision arithmetic
- Direct addressing capability to 64K bytes of memory
- 1.3 µs instruction cycle (8085A)
- 0.8 μs instruction cycle (8085A-2)
- 100% software-compatible with 8080A
- Single +5 V power supply

GENERAL DESCRIPTION


The 8085A is a new generation, complete 8-bit parallel central processing unit (CPU). Its instruction set is 100% software compatible with the 8080A microprocessor. Specifically, the 8085A incorporates all of the features that the 8224 (clock generator) and 8228 (system controller) provided for the 8080A. The 8085A-2 is a faster version of the 8085A. The 8085A is a 3-MHz CPU with 10% supply tolerances and lower power consumption.

The 8085A uses a multiplexed data bus. The address is split between the 8-bit address bus and the 8-bit data bus. The on-chip address latches of 8155H/56H memory products allow a direct interface with 8085A. The 8085A components, including various timing-compatible support chips, allow system speed optimization.

3-15

Valid Co	mbinations
8085A	/BQA
8085A-2	

8085A

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD

supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature-65 to +150°C Voltage on Any Pin

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Military (M) Devices

Temperature (T _C)55 to +1	25°C
Supply Voltage (V _{CC})5 V ±	10%
Supply Current (I _{CC}) 200	mA

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range (for SMD/DESC and APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
VIL	Input LOW Voltage	$V_{CC} = 5 V \pm 10\%$	-0.5*	+ 0.8	V
VIH	Input HIGH Voltage	$V_{CC} = 5 V \pm 10\%$	2.2	V _{CC} + 0.5*	V
VOL	Output LOW Voltage	$I_{OL} = 2 \text{ mA}, V_{CC} = 5 \text{ V} \pm 10\%$		0.45	V
Voн	Output HIGH Voltage	$I_{OH} = -400 \ \mu A_{\star} \ V_{CC} = 5 \ V \pm 10\%$	2.4		V
lcc	Power Supply Current	V _{CC} = 5.5 V (Note 1)		200	mA
liL1	Input Leakage, Except Pin 1	V _{CC} = 5.5 V, V _{IN} = V _{CC} to 0 V		±10	μA
lil2	Input Leakage, Pin 1	$V_{CC} = 5.5$ V, $V_{IN} = V_{CC}$ to 0 V		±70	μA
ILO	Output Leakage	$V_{CC} = 5.5 \text{ V}, V_{OUT} = V_{CC} \text{ to } .45 \text{ V}$		±10	μA
VILR	Input LOW Level, RESET	$V_{CC} = 5 V \pm 10\%$	-0.5*	+ 0.8	V
VIHR	Input HIGH Level, RESET	$V_{CC} = 5 V \pm 10\%$	2.4	V _{CC} + 0.5*	V
V _{HY}	Hysteresis, RESET	$V_{CC} = 5 V \pm 10\%$	0.25		V

*Guaranteed by design; not tested.

Notes: 1. I_{CC} is measured while running a functional pattern with no loads applied.

SWITCHING CHARACTERISTICS over operating range (for SMD/DESC and APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

Parameter	ter Parameter		8085A (Note 2)		5A-2 te 2)		
Symbol	Description	Min.	Max.	Min.	Max.	Unit	
t _{CYC}	CLK Cycle Period	320	2000	200	2000	ns	
t ₁	CLK LOW Time (Standard CLK Loading)	80		40		ns	
2	CLK HIGH Time (Standard CLK Loading)	120		70		ns	
tr, tf	CLK Rise and Fall Time		30		30	ns	
XKR	X1 Rising to CLK Rising	20	120	20	100	ns	
XKF	X1 Rising to CLK Falling	20	150	20	110	ns	
tAC	A8-15 Valid to Leading Edge of Control (Note 1)	270		115		ns	
ACL	A0-7 Valid to Leading Edge of Control	240		115		ns	
t _{AD}	A ₀₋₁₅ Valid to Valid Data In		575		350	ns	
^t AFR	Address Float After Leading Edge of READ (INTA)		0		0	ns	
AL	A8-15 Valid Before Trailing Edge of ALE (Note 1)	90		50		ns	
ALL	A0-7 Valid Before Trailing Edge of ALE	70		50		ns	
ARY	READY Valid from Address Valid		220		100	ns	
^t CA	Address (A8-15) Valid After Control	120		60		ns	
tcc	Width of Control LOW (RD, WR, INTA) Edge of ALE	400	A Cana .	230		ns	
CL	Trailing Edge of Control to Leading Edge of ALE	50		25		ns	
^t DW	Data Valid to Trailing Edge of WRITE	420	₩.	230		ns	
HABE	HLDA to Bus Enable		P 210		150	ns	
HABF	Bus Float After HLDA		210		150	ns	
HACK	HLDA Valid to Trailing Edge of CLK	110		40		ns	
HDH	HOLD Hold Time	● ●		0		ns	
^t HDS	HOLD Setup Time to Trailing Edge of CLK	170		120		ns	
tinh	INTR Hold Time	0		0		ns	
lins	INTR, RST, and TRAP Setup Time to Falling Edge of CLK	160		150		ns	
tLA	Address Hold Time After ALE	100		50		ns	
tLC	Trailing Edge of ALE to Leading Edge of Control	130		60		ns	
^t LCK	ALE LOW During CLK HIGH	100		50		ns	
t _{LDR}	ALE to Valid Data During Read		460		270	ns	
tLDW	ALE to Valid Data During Write		200		120	ns	
t _{LL}	ALE Width	140		80		ns	
tLRY	ALE to READY Stable		110		30	ns	
^t RAE	Trailing Edge of READ to Re-Enabling of Address	150		90	2	ns	
RD	READ (or INTA) to Valid Data		300		150	ns	
^t RV	Control Trailing Edge to Leading Edge of Next Control	400		220		ns	
^t RDH	Data Hold Time After READ INTA (Note 6)	0		0		ns	
t _{RYH}	READY Hold Time	0		0		ns	
t _{RYS}	READY Setup Time to Leading Edge of CLK	110		100		ns	
twp	Data Valid After Trailing Edge of WRITE	100		60		ns	
twol	LEADING Edge of WRITE to Data Valid		40		20	ns	

Notes: 1. $A_8 - A_{15}$ address Specs apply to IO/ \overline{M} , S₀, and S₁, except $A_8 - A_{15}$ are undefined during $T_4 - T_6$ of OF cycle; whereas, IO/ \overline{M} , S₀, and S₁ are stable.

2. Test conditions: t_{CYC} = 320 ns (8085A)/200 ns (8085A-2); C_L = 100 pF, V_{CC} = 5 V ±10%, V_{IL} = .45 V, V_{IH} = 2.4 V; V_{OL} = .8 V, V_{OH} = 2.0 V.

3. For all output timing where C_L = 150 pF use the following correction factors: 25 pF \leq C_L < 150 pF: -0.10 ns/pF 150 pF < C_L \leq 300 pF: +0.30 ns/pF

4. Output timings are measured with purely capacitive load.

5. To calculate timing specifications at other values of t_{CYC} use Table 3 on page 3-191 of the MOS Microprocessors and Peripherals Data Book (Order #09067A)

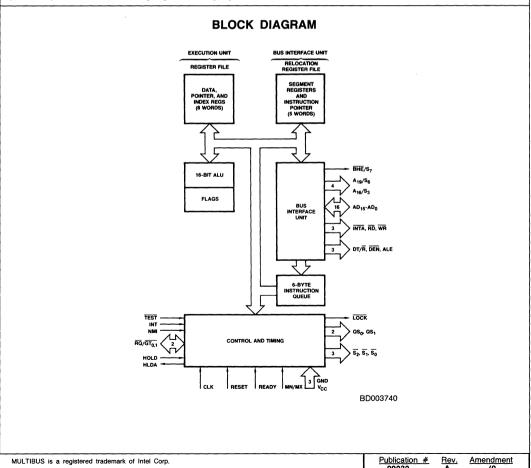
6. Data hold time is guaranteed under all loading conditions.

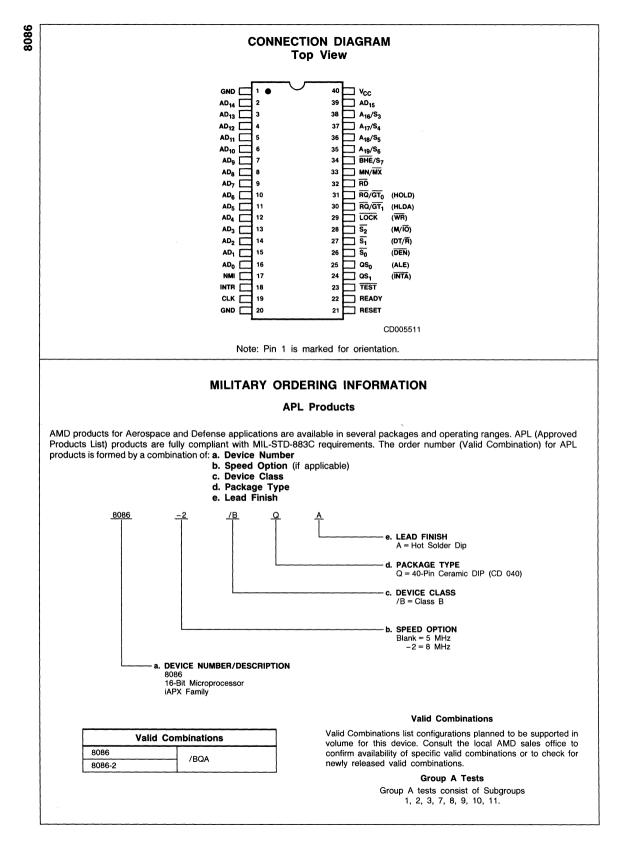
8086

16-Bit Microprocessor iAPX86 Family

MILITARY INFORMATION

DISTINCTIVE CHARACTERISTICS


- Directly addresses up to 1 Mbyte of memory
- 24 operand addressing modes
- Efficient implementation of high-level languages
- Instruction set compatible with 8080 software
- Bit, byte, word, and block operations


- 8- and 16-bit signed and unsigned arithmetic in binary or decimal
- MULTIBUS* system interface
- Two speed options:
- 5 MHz for 8086
- 8 MHz for 8086-2

GENERAL DESCRIPTION

The 8086 is a general purpose 16-bit microprocessor CPU. Its architecture is built around thirteen 16-bit registers and nine 1-bit flags. The CPU operates on 16-bit address spaces, and can directly address up to 1 megabyte using offset addresses within four distinct memory segments, designated as code, data, stack, and extra code. The 8086 implements a powerful instruction set with 24 operand addressing modes. This instruction set is compatible with that of the 8080 and 8085. In addition, the 8086 is particularly effective in executing high-level languages.

The 8086 can operate in minimum and maximum modes. Maximum mode offloads certain bus control functions to a peripheral device and allows the CPU to operate efficiently in a multi-processor system. The CPU and its high performance peripherals are MULTIBUS compatible. The 8086 is implemented in N-channel, depletion load, silicon gate technology, and is contained in a 40-pin ceramic DIP package.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature-65 to +150°C Ambient Temperature Under Bias0 to 70°C Voltage on any Pin with Respect to Ground-1 to +7.0 V

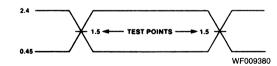
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Military (M) Devices

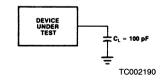
Temperature (T _C)	55	to +	125°C
Supply Voltage (V _{CC})		.5 V	±10%

Operating ranges define those limits between which the functionality of the device is quaranteed.


DC CHARACTERISTICS over operating range (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
VIL †	Input LOW Voltage	V _{CC} = Min. & Max.	-0.5*	+ 0.8	v
VIH †	Input HIGH Voltage	V _{CC} = Min. & Max.	2.0	V _{CC} + 0.5*	v
V _{OL}	Output LOW Voltage	i _{OL} = 2.0 mA, V _{CC} = Min.		0.45	v
V _{OH}	Output HIGH Voltage	i _{OH} = +400 µA, V _{CC} = Min.	2.4		v
lcc	Power Supply Current (Note 1)	T _C = 25°C, V _{CC} = Max.		340	mA
ILI	Input Leakage Current	V _{CC} = Max., V _{IN} = 5.5 V & 0 V	- 10	10	μA
1LO ††	Output Leakage Outrent	V _{CC} = Max., V _{OUT} = 5.5 V & 0.45 V	- 10	10	μA
V _{CL} †	Clock Input LOW Voltage	V _{CC} = Min. & Max.	-0.5*	+ 0.6	v
Vсн †	Clock Input HIGH Voltage	V _{CC} = Min. & Max.	3.9	V _{CC} + 1.0*	V
C _{IN} †††	Capacitance of Input Buffer (All Input Except AD ₀ -AD ₁₅ , RQ/GT)	fc = 1 MHz		20*	pF
CIO ttt	Capacitance of I/O Buffer (AD0-AD15, RQ/GT)	fc = 1 MHz		20*	pF

* Guaranteed by design; not tested. † Group A, Subgroups 7 and 8 only are tested. †† Group A, Subgroups 1 and 2 only are tested. †† Not included in Group A tests.


Notes: 1. I_{CC} is measured while running a functional pattern with spec value I_{OL}/I_{OH} loads applied.

SWITCHING TEST INPUT/OUTPUT WAVEFORM

AC TESTING INPUTS ARE DRIVEN AT 2.4 V FOR A LOGIC "1" AND 0.45 V FOR A LOGIC "0." TIMING MEASUREMENTS ARE MADE AT 1.5 V FOR BOTH A LOGIC ''1'' AND ''0.''

SWITCHING TEST LOAD CIRCUIT

CL INCLUDES JIG CAPACITANCE

SWITCHING CHARACTERISTICS over operating range (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS

Damanatia	D	Test	808		808	6-2	
Parameter Symbol	Parameter Description	Conditions (Note 6)	Min	Max.	Min.	Max.	Unit
TCLCL	CLK Cycle Period (Note 11)	đ	200	500	125	500	ns
TCLCH	CLK LOW Time	•	118		68		ns
TCHCL	CLK HIGH Time		69		44		ns
TCH1CH2	CLK Rise Time (Note 5)	From 1.0 to 35 V	€	10		10	ns
TCL2CL1	CLK Fall Time (Note 5)	From 3.5 to 1.0 V		10		10	ns
TDVCL	Data in Setup Time		30		20		ns
TCLDX	Data in Hold Time		10		10		ns
TRIVCL	RDY Setup Time into 8284A (Notes 1 & 2)		35		35		ns
TCLR1X	RDY Hold Time into 8284A (Notes 1 & 2)		0		0		ns
TRYHCH	READY Setup Time into 8086	₩.	118		68		ns
TCHRYX	READY Hold Time into 8086		30		20		ns
TRYLCL	READY Inactive to CLK (Note 4)		-8		-8		ns
THVCH	HOLD Setup Time		35		20		ns
TINVCH	INTR, NMI, TEST Setup Time (Note 2)		30		15		ns
TILIH	Input Rise Time (Except CLK) (Note 5)	From 0.8 to 2.0 V		20		20	ns
TIHIL	Input Fall Time (Except CEK) (Note 5)	From 2.0 to 0.8 V		12		12	ns

Notes:1. Signal at 8284A and 8288 shown for reference only.2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.3. Applies only to T3 and wait states.4. Applies only to T2 state (8 ns into T3).5. Not tested; these specs are controlled by the Teradyne J941 tester.6. $V_{CC} = 4.5 V$, 5.5 V, $V_{IH} = 2.4 V$ $V_{IL} = .45 V$, 5.5 V, $V_{IH} = 2.4 V$ $V_{IL} = .45 V$, 5.5 V, $V_{IH} = 2.4 V$ $V_{IL} = .45 V$, 5.5 V, $V_{IH} = 1.6 V$ $V_{OL} = 1.4 V$ 7. Minimum spec tested at V_{CC} Max. (5.5 V) only.8. Maximum spec tested at V_{CC} Min. (4.5 V) only.9. Tested at V_{CC} Min. (4.5 V) only.10. Tested at V_{CC} Min. (4.5 V) only.11. Test conditions for TCLCL Max. are: $V_{CC} = 4.5 V$ $V_{CL} = 1 V$

Vcc	-	4.5 V	VOL	=	1 V
VIL	=	0 V	VIH	-	4 V
VILC	=	0 V	VIHC	=	5 V

SWITCHING CHARACTERISTICS (Cont'd.)

TIMING RESPONSES

	Denneration	Parameter Conditions		86	808		
Parameter Symbol	Parameter Description	(Note 6)	Min.	Max.	Min.	Max.	Unit
TCLAV	Address Valid Delay		10	110	10	60	ns
TCLAX	Address Hold Time (Notes 7 & 8)		10		10		ns
TCLAZ	Address Float Delay (Note 8)		10	80	10	50	ns
TLHLL	ALE Width (Note 10)		10 . Se	di la calendaria de la	58		ns
TCLLH	ALE Active Delay (Note 8)	<u>ک</u> ا	allin demo	80		50	ns
TCHLL	ALE Inactive Delay (Note 8)		۹D.	85		55	ns
TLLAX	Address Hold Time to ALE Inactive (Note 7)	A THEOREM	5 9		34		ns
TCLDV	Data Valid Delay (Note 8)		10	110	10	60	ns
TCHDX	Data Hold Time (Note 10)		10		10		ns
TWHDX	Data Hold Time After WR (Note 9)		88		38		ns
TCVCTV	Control Active Delay 1 (Note 8)	and the	10	110	10	70	ns
TCHCTV	Control Active Delay 2 (Note 8)	CL 100 pF	10	110	10	60	ns
TCVCTX	Control Inactive Delay (Note 8)	for all 8086 Outputs (in addition	10	110	10	70	ns
TAZRL	Address Float to READ Active (Note a	to 8086 internal loads)	0		0		ns
TCLRL	RD Active Delay (Note 8)	, i i i i i i i i i i i i i i i i i i i	10	165	10	100	ns
TCLRH	RD Inactive Delay (Note 8)	1	10	150	10	80	ns
TRHAV	RD Inactive to Next Address Active (Note 10)		155		85		ns
TCLHAV	HLDA Valid Delay (Note 8)		10	160	10	100	ns
TRLRH	RD Width (Note 10)		325		200		ns
TWLWH	WR Width (Note 10)		340		210		ns
TAVAL	Address Valid to ALE LOW (Note 9)		58		28		ns
TOLOH	Output Rise Time (Note 9)	From 0.8 to 2.0 V		20		20	ns
TOHOL	Output Fall Time (Note 9)	From 2.0 to 0.8 V		12		12	ns
3. 4. 5. 6. 7.	Setup requirement for asynchronous signal only to guar Applies only to T3 and wait states. Applies only to T2 state (8 ns into T3). Not tested; these specs are controlled by the Teradyne V _{CC} = 4.5 V, 5.5 V V _{IH} = 2.4 V V _{IL} = 4.3 V V _{IL} = 4.5 V V _{IH} = 4.3 V V _{IL} = 1.4 V V _{OL} = 1.4 V V _{OL} = 1.4 V V _{OL} = 1.4 V Minimum spec tested at V _{CC} Max. (5.5 V) only. Tested at V _{CC} Max. (5.5 V) only.	·	ULIX.				

SWITCHING CHARACTERISTICS (Cont'd.)

MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) TIMING REQUIREMENTS

D	Deservation (Test Conditions	80	86	808	86-2	
Parameter Symbol	Parameter Description	(Note 6)	Min.	Max.	Min.	Max.	Unit
TCLCL	CLK Cycle Period (Note 11)		1 800	500	125	500	ns
TCLCH	CLK LOW Time	diin	198		68		ns
TCHCL	CLK HIGH Time		linii 6 9		44		ns
TCH1CH2	CLK Rise Time (Note 5)	From 1.0 to 3.5 V	₿.	10		10	ns
TCL2CL1	CLK Fall Time (Note 5)	From 3.5 to 1.0 W		10		10	ns
TDVCL	Data in Setup Time	All and a second second	30		20		ns
TCLDX	Data in Hold Time		10		10		ns
TR1VCL	RDY Setup Time into 8284A (Notes 1 & 2)	Aller AP	35		35		ns
TCLR1X	RDY Hold Time into 8284A (Notes 1 & 2)		0		0		ns
TRYHCH	READY Setup Time into 8086	eithe.	118		68		ns
TCHRYX	READY Hold Time into 8086		30		20		ns
TRYLCL	READY Inactive to CLK (Note 4)		-8		-8		ns
TINVCH	Setup Time for Recognition (INTR, NMI, TEST) (Note 2)		30		15		ns
TGVCH	RQ/GT Setup Time		30		15		ns
TCHGX	RQ Hold Time into 8006		40		30		ns
TILIH	Input Rise Time (Except CLK) (Note 5)	From 0.8 to 2.0 V		20		20	ns
TIHIL	Input Fall Time (Except CLK) (Note 5)	From 2.0 to 0.8 V		12		12	ns

Notes: 1. Signal at 8284A and 8288 shown for reference only.

2. Setup requirement for asynchronous signal only to guarantee recognil 3. Applies only to T3 and wait states. 4. Applies only to T2 state (8 ns into T3). 5. Not tested; these specs are controlled by the Teradyne J941 tester. 6. $V_{CC} = 4.5$ V, 5.5 V V_{IH} = 2.4 V V_{IL} = 4.5 V V_{IH} = 4.3 V V_{ILC} = .25 V V_{IH} = 4.3 V V_{ILC} = 1.4 V V_{OL} = 1.4 V 7. Minimum spec tested at V_{CC} Max. (5.5 V) only. 8. Maximum spec tested at V_{CC} Min. (4.5 V) only. 9. Tested at V_{CC} Max. (5.5 V) only. 10. Tested at V_{CC} Max. (5.5 V) only. 11. Test conditions for TCLCL Max. are: V_{CC} = 4.5 V V_{OL} = 1 V V_{II} = 0 V V_{IH} = 4 V 2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.

VIL	=	0 V	ViH	=	4	۷
Vinc	-	0 V	Villo	-	5	v

$V_{ILC} = 0 V$	VIHC =	5	۷
$\mathbf{v}_{\text{ILC}} = 0 \mathbf{v}$	VIHC -	5	1

SWITCHING CHARACTERISTICS (Cont'd.) TIMING RESPONSES

Parameter Description Active Delay (Note 1) nactive Delay (Note 1) ive to Status Passive (Note 3) re Delay (Notes 7 & 8) ive Delay lid Delay lid Delay lid Time nat Delay	Conditions (Note 6)	Min. 10 10 10 10 10	Max. 35 35 110 110 130 110	Min. 10 10 10 10 10	Max. 35 35 65 60 70	Unif ns ns ns
nactive Delay (Note 1) ive to Status Passive (Note 3) ie Delay (Notes 7 & 8) ive Delay iid Delay id Time		10 10 10 10	35 110 110 130	10 10 10	35 65 60 70	ns ns ns
ive to Status Passive (Note 3) te Delay (Notes 7 & 8) tive Delay lid Delay ld Time		10 10 10	110 110 130	10 10	65 60 70	ns ns
e Delay (Notes 7 & 8) ive Delay lid Delay Id Time		10 10	110 130	10	60 70	ns
ive Delay lid Delay ld Time		10 10	130	10	70	
lid Delay Id Time		10	CHID.			
ld Time		1111	110	10		ns
	1	MPO	1999		60	ns
at Delay	1		Lattill	10		ns
		10	80	10	50	ns
to ALE HIGH (Note 1)	diim	ADV A	15		15	ns
to MCE HIGH (Note 1)			15		15	ns
o ALE Valid (Note 1)			15		15	ns
o MCE HIGH (Note 1)			15		15	ns
e Delay (Note 1)	C. = 100 pF for all 8086		15		15	ns
re Delay (Note 1)	Outputs (In addition to 8086 internal loads)		15		15	ns
Delay		10	110	10	60	ns
Гime	houtfin.	10		10		ns
ve Delay (Note 1)		5,	45	5	45	ns
ctive Delay (Note 1)	1	10	45	10	45	ns
at to Read Active		0		0		ns
Delay	1	10	165	10	100	ns
Delay		10	150	10	80	ns
to Next Address Active		155		85		ns
ontrol Active Delay (Note 1)			50		50	ns
ontrol Inactive Delay (Note 1)			30		30	ns
Delay (Note 8)		0	85	0	50	ns
Delay (Note 8)		0	85	0	50	ns
		325		200		ns
Time	From 0.8 to 2.0 V		20		20	ns
Time	From 2.0 to 0.8 V		12		12	ns
	to ALE Valid (Note 1) to MCE HIGH (Note 1) e Delay (Note 1) Delay Time twe Delay (Note 1) Delay Delay (Note 1) Delay Delay to Next Address Active Delay to Next Address Active Dontrol Active Delay (Note 1) Delay (Note 8) Delay (Note 8) Delay (Note 8)	to ALE Valid (Note 1) to MCE HIGH (Note 1) e Delay (Note 1) Pe Delay (Note 1) Delay Time Ve Delay (Note 1) Delay Time Delay (Note 1) Delay to Next Address Active Delay to Next Address Active Delay (Note 8) Delay (Note 8)	to ALE Valid (Note 1)	to ALE Valid (Note 1) 15 to MCE HIGH (Note 1) 15 e Delay (Note 1) 15 //e Delay (Note 1) 16 Delay 10 Time 10 to Net Address Active 10 Delay (Note 8) 0 Delay (Note 8) 0	to ALE Valid (Note 1) 15 to MCE HIGH (Note 1) 15 e Delay (Note 1) 10 or of 8088 //e Delay (Note 1) 10 or of 8088 Delay 110 Time 10 Delay 10 Delay (Note 1) 10 Delay 10 Time 10 Delay 10 Delay (Note 1) 50 Delay (Note 8) 0 Delay (Note 8)	to ALE Valid (Note 1) 15 15 to MCE HIGH (Note 1) 100 cm 15 15 e Delay (Note 1) 100 cm 15 15 ve Delay (Note 1) 0060 internal loads) 15 15 Delay 10 110 10 60 Time 10 10 10 10 Delay (Note 1) 10 10 10 10 ve Delay (Note 1) 10 10 10 10 ve Delay (Note 1) 10 10 10 10 pat to Read Active 0 0 0 0 Delay 10 165 10 100 Delay 10 165 10 100 Delay 10 165 10 100 Delay (Note 1) 50 50 50 Delay (Note 8) 0 85 0 50 Delay (Note 8) 0 85 0 50 Delay (Note 8) 0

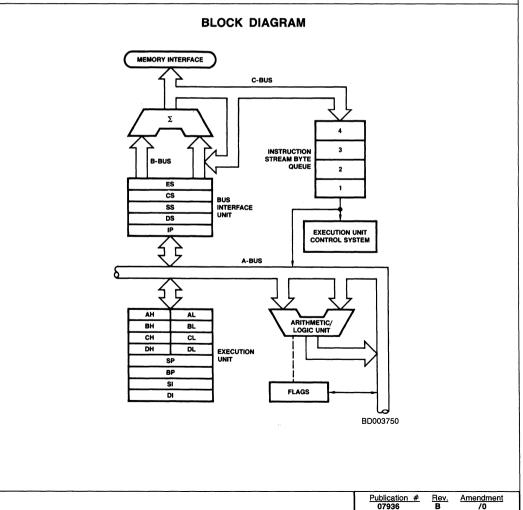
8088

8-Bit Microprocessor CPU iAPX86 Family MILITARY INFORMATION

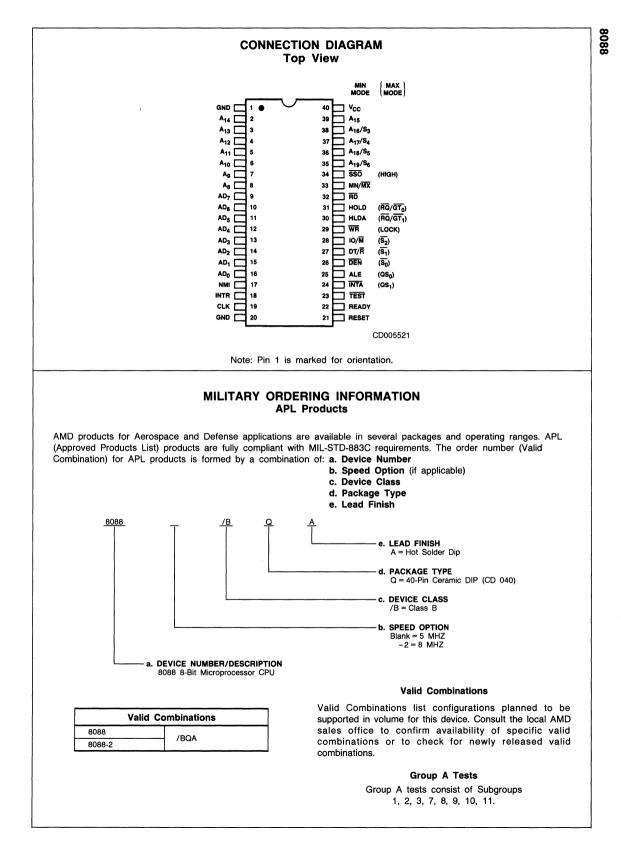
8088

DISTINCTIVE CHARACTERISTICS

- 8-bit data bus, 16-bit internal architecture
- Directly addresses 1 Mbyte of memory
- Software compatible with 8086 CPU
- Byte, word, and block operations
- 24 operand addressing modes


- Powerful instruction set
- Efficient high level language implementation
 - Three block options: 5 MHz 8088 8 MHz 8088-2

GENERAL DESCRIPTION


The 8088 CPU is an 8-bit processor designed around the 8086 internal structure. Most functions of the 8088 are identical to the equivalent 8086 functions. The pinout is slightly different. The 8088 handles the external bus the same way the 8086 does, but it handles only 8 bits at a time. Sixteen-bit words are fetched or written in two consecutive bus cycles. Both processors will appear identi-

cal to the software engineer, with the exception of execution time.

The 8088 is fabricated with N-channel silicon gate technology and is packaged in a 40-pin Ceramic DIP. For complete information, refer to the 8088 Product Specification in the "MOS Microprocessors and Peripherals' Data Book, Order #09067A.

Issue Date: December 1987

OPERATING RANGES

Storage Temperature65 to +150°C	2
Ambient Temperature Under Bias0 to 70°C)
Voltage on any Pin	
with Respect to Ground1 to +7.0 \	1
Power Dissipation2.5 W	I

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Military (M) Devices

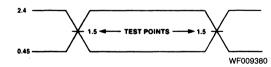
Temperature (T _C)55 to +	125°C
Supply Voltage (V _{CC})5 V	±10%

Operating ranges define those limits between which the functionality of the device is guaranteed.

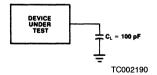
DC CHARACTERISTICS over	operating range (for APL Proc	ducts, Group A, Subgroups 1, 2, 3 are tested
unless otherwise noted)		

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
VIL †	Input LOW Voltage	V _{CC} = Min. & Max.	-0.5*	+ 0.8	v
ViH †	Input HIGH Voltage	V _{CC} = Min. & Max.	2.0	V _{CC} + 0.5*	v
V _{OL}	Output LOW Voltage	$I_{OL} = 2.0 \text{ mA},$ $V_{CC} = Min$		0.45	v
V _{OH}	Output HIGH Voltage	$t_{OH} = -400 \text{ yzA}, V_{CC} = Min.$	2.4		v
ICC	Power Supply Current (Note 1)	$T_C = 25$ °C, $V_{CC} = Max$.		340	mA
lu	Input Leakage Current	V _{CC} = Max., V _{IN} = 5.5 V & 0 V	- 10	10	μA
1LO ††	Output Leakage Current	V _{CC} = Max., V _{OUT} = 5.5 V & 0.45 V	- 10	10	μΑ
V _{CL} †	Clock Input LOW Voltage	V _{CC} = Min. & Max.	-0.5*	+ 0.6	V
V _{CH} †	Clock Input HIGH Voltage	V _{CC} = Min. & Max.	3.9	V _{CC} + 1.0*	v
C _{IN} †††	Capacitance of Input Buffer (All Input Except AD ₀ -AD ₇ , RQ/GT)	fc = 1 MHz		20*	pF
Cio ttt	Capacitance of I/O Buffer (AD0-AD7, RQ/GT)	fc = 1 MHz		20*	pF

* Guaranteed by design; not tested.


t Group A, Subgroups 7 and 8 only are tested. tt Group A, Subgroups 1 and 2 only are tested.

ttt Not included in Group A tests.


Notes: 1. I_{CC} is measured while running a functional pattern with spec value I_{OL}/I_{OH} loads applied.

SWITCHING TEST INPUT/OUTPUT WAVEFORM

AC TESTING INPUTS ARE DRIVEN AT 2.4 V FOR A LOGIC "1" AND 0.45 V FOR A LOGIC "0." TIMING MEASUREMENTS ARE MADE AT 1.5 V FOR BOTH A LOGIC ''1'' AND ''0.''

CL INCLUDES JIG CAPACITANCE

SWITCHING CHARACTERISTICS over operating range (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

	Parameter Description	Test Conditions (Note 6)	80	88	8088-2		
Parameter Symbol			Min.	Max.	Min.	Max.	Unit
CLCL	CLK Cycle Period (Note 11)		200	500	125	500	ns
TCLCH	CLK LOW Time		di Tha	affillin	68		ns
TCHCL	CLK HIGH Time	dh	69		44		ns
CH1CH2	CLK Rise Time (Note 5)	From 1.0 to 3.5 V		10		10	ns
CL2CL1	CLK Fall Time (Note 5)	From 3.5 to 1.0 V	AD .	10		10	ns
TDVCL	Data in Setup Time		30		20		ns
TCLDX	Data in Hold Time		10		10		ns
R1VCL	RDY Setup Time into 8284A (Notes 1 & 2)		35		35		ns
CLR1X	RDY Hold Time into 8284A (Notes 1 & 2)		0		0		ns
FRYHCH	READY Setup Time into 8088		118		68		ns
CHRYX	READY Hold Time into 8088		30		20		ns
RYLCL	READY Inactive to CLK (Note 4)		-8		-8		ns
THVCH	HOLD Setup Time		35		20		ns
TINVCH	INTR, NMI, TEST Setup Time (Note 2)		30		15		ns
rilih	Input Rise Time (Except CLK) (Note 5)	From 0.8 to 2.0 V		20		20	ns
THIL	Input Fall Time (Except CLK) (Note 5)	From 2.0 to 0.8 V		12		12	ns
TIHIL Notes: 1. Signa 2. Setup		From 2.0 to 0.8 V	at next CLI	12			

MINIMUM COMPLEXITY SYSTEM TIMING REQUIREMENTS

1.	Test	conditions	for	TCLCL	Max.	are:		
	Vcc	= 4.5 V			VOL	=	1	٧
	VIL	= 0 V			VIH	=	4	٧
	VILC	= 0 V			VIHC	=	5	٧

SWITCHING CHARACTERISTICS (Cont'd.)

TIMING RESPONSES

Devementer	Parameter Description	Test Candidians	80	88	808	88-2	
Parameter Symbol		Test Conditions (Note 6)	Min.	Max.	Min.	Max.	Unit
TCLAV	Address Valid Delay		10	110	10	60	ns
TCLAX	Address Hold Time (Notes 7 & 8)		10		10		ns
TCLAZ	Address Float Delay (Note 8)		10	80	10	50	ns
TLHLL	ALE Width (Note 10)		98		58		ns
TCLLH	ALE Active Delay (Note 8)	•		80		50	ns
TCHLL	ALE Inactive Delay (Note 8)		The set	85		55	ns
TLLAX	Address Hold Time to ALE Inactive (Note 7)		59		34		ns
TCLDV	Data Valid Delay (Note 8)		100	110	10	60	ns
TCHDX	Data Hold Time (Note 10)		10		10		ns
TWHDX	Data Hold Time After WR (Note 9)		88		38		ns
TCVCTV	Control Active Delay 1 (Note 8)		10	110	10	70	ns
TCHCTV	Control Active Delay 2 (Note 8)	$C_L = 100 pF$	10	110	10	60	ns
TCVCTX	Control Inactive Delay (Note 8)	for all 8068 Outputs (in addition	10	110	10	70	ns
TAZRL	Address Float to READ Active (Note 9)	to internal loads).	0		0		ns
TCLRL	RD Active Delay (Note 8)	₩ ∰	10	165	10	100	ns
TCLRH	RD Inactive Delay (Note 8)		10	150	10	80	ns
TRHAV	RD Inactive to Next Address Active (Note 10)		155		85		ns
TCLHAV	HLDA Valid Delay (Note 8)		10	160	10	100	ns
TRLRH	RD Width (Note 10)		325		200		ns
TWLWH	WR Width (Note 10)		340		210		ns
TAVAL	Address Valid to ALE Low (Note 9)		58		28		ns
TOLOH	Output Rise Time (Note 9)	From 0.8 to 2.0 V		20		20	ns
TOHOL	Output Fall Time (Note 9)	From 2.0 to 0.8 V		12		12	ns

Notes: 1. Signal at 8284A and 8288 shown for reference only. 2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.

Vcc	= 4.5 V, 5.5 V	ViH	= 2
VIL	= .45 V	VIHC	= 4
Virc	= .25 V	Voh	= 1

IL	=.45 V	V _{IHC} = 4.3 V
ILC	= .25 V	V _{OH} = 1.6 V

VUC - 4.5 V	VUL - I V
$V_{IL} = 0 V$	$V_{\rm H} = 4 V$
$V_{ILC} = 0 V$	$V_{\rm HC} = 5 V$

SWITCHING CHARACTERISTICS (Cont'd.)

MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) TIMING REQUIREMENTS

	Descenter Test Oraclisians	80	88	8088-2			
Parameter Symbol	Parameter Description	Test Conditions (Note 6)	Min.	Max.	Min.	Max.	Unit
TCLCL	CLK Cycle Period (Note 11)		200	500	125	500	ns
TCLCH	CLK LOW Time		118		68		ns
TCHCL	CLK HIGH Time		68	A and a strength	44	1	ns
TCH1CH2	CLK Rise Time (Note 5)	From 1.0 to 3.5 V	W Maller	10		10	ns
TCL2CL1	CLK Fall Time (Note 5)	From 3.5 to 1.0 V	APP APP	10		10	ns
TDVCL	Data in Setup Time		30		20		ns
TCLDX	Data in Hold Time		10		10		ns
TR1VCL	RDY Setup Time into 8284A (Notes 1 & 2)		35		35		ns
TCLR1X	RDY Hold Time into 8284A (Notes 1 & 2)		0		0		ns
TRYHCH	READY Setup Time into 8088		118		68		ns
TCHRYX	READY Hold Time into 8088		30		20		ns
TRYLCL	READY Inactive to CLK (Note 4)		-8		-8		ns
TINVCH	Setup Time for Recognition (INTR, NMI, TEST (Note 2)		30		15		ns
TGVCH	RQ/GT Setup Three		30		15		ns
TCHGX	RQ Hold Time into 8086		40		30		ns
TILIH	Input Rise Time (Except CLK) (Note 5)	From 0.8 to 2.0 V		20		20	ns
TIHIL	Input Fall Time (Except CLK) (Note 5)	From 2.0 to 0.8 V		12		12	ns
2. Setu 3. Appli 3. Appli 4. Appli 5. Not 6. Voc VIL VIL 7. Minir 8. Maxi 9. Testu 10. Testu	al at 8284A and 8288 shown for reference p requirement for asynchronous signal only eso only to T3 and wait states. eso niy to T3 and wait states. ieso niy to T3 and wait states. tested; these specs are controlled by the = 4.5 V, 5.5 V V _{IH} = 2.4 V = 4.5 V VIHC = 4.3 V = 4.5 V VIHC = 4.3 V = 1.4 V num spec tested at V _{CC} Max. (5.5 V) only mum spec tested at V _{CC} Min. (4.5 V) only. ed at V _{CC} Min. (4.5 V) only. ed at V _{CC} Min. (4.5 V) only.	r to guarantee recognitio Teradyne J941 tester.					

SWITCHING CHARACTERISTICS (Cont'd.) TIMING RESPONSES

Parameter	Parameter	Test Conditions	8088		8088-2		
Symbol	Description	(Note 6)	Min.	Max.	Min.	Max.	Uni
TCLML	Command Active Delay (Note 1)		10	35	10	35	ns
TCLMH	Command Inactive Delay (Note 1)		10	35	10	35	ns
TRYHSH	READY Active to Status Passive (Note 3)			110		65	ns
TCHSV	Status Active Delay (Notes 7 & 8)		10	110	10	60	ns
TCLSH	Status Inactive Delay		10	130	10	70	ns
TCLAV	Address Valid Delay		10	110	10	60	ns
TCLAX	Address Hold Time		10		10		ns
TCLAZ	Address Float Delay		10		10	50	ns
TSVLH	Status Valid to ALE HIGH (Note 1)			15		15	ns
TSVMCH	Status Valid to MCE HIGH (Note 1)			15		15	ns
TCLLH	CLK LOW to ALE Valid (Note 1)	P.		15		15	ns
TCLMCH	CLK LOW to MCE HIGH (Note 1)			15		15	ns
TCHLL	ALE Inactive Delay (Note 1)	CL = 100 pF for all 80 66		15		15	ns
TCLMCL	MCE Inactive Delay (Note 1)	Outputs (in addition to internal loads)		15		15	ns
TCLDV	Data Valid Delay		10	110	10	60	ns
TCHDX	Data Hold Time	The second se	10		10		ns
TCVNV	Control Active Delay (Note 1)	A	5	45	5	45	ns
TCVNX	Control Inactive Delay (Note 1)		10	45	10	45	ns
TAZRL	Address Float to Read Active		0		0		ns
TCLRL	RD Active Delay		10	165	10	100	ns
TCLRH	RD Inactive Delay		10	150	10	80	ns
TRHAV	RD Inactive to Next Address Active		155		85		ns
TCHDTL	Direction Control Active Delay (Note 1)			50		50	ns
тснотн	Direction Control Inactive Delay (Note 1)			30		30	ns
TCLGL	GT Active Delay (Note 8)			110		50	ns
TCLGH	GT Inactive Delay (Note 8)			85		50	ns
TRLRH	RD Width		325		200		ns
TOLOH	Output Rise Time	From 0.8 to 2.0 V		20		20	ns
TOHOL	Output Fall Time	From 2.0 to 0.8 V	1	12	1	12	ns

Notes: 1. Signal at 8284A and 8288 shown for reference only. 2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK. 3. Applies only to T3 and wait states. 4. Applies only to T2 state (8 ns into T3). 5. Not tested; these specs are controlled by the Teradyne J941 tester. 6. $V_{CC} = 4.5 V$, 5.5 V V |H = 2.4 V $V_{ILC} = .45 V$, 5.5 V V $|H_{C} = 4.3 V$ $V_{ILC} = .25 V$ V $|H_{C} = 4.3 V$ $V_{OL} = 1.4 V$ 7. Minimum spec tested at V_{CC} Max. (5.5 V) only. 8. Maximum spec tested at V_{CC} Min. (4.5 V) only. 9. Tested at V_{CC} Min. (4.5 V) only. 10. Tested at V_{CC} Min. (4.5 V) only. 11. Test conditions for TCLCL Max. are: $V_{CC} = 4.5 V$ V $_{IH} = 4 V$ $V_{IL} = 0 V$ V $_{IH} = 4 V$

8088

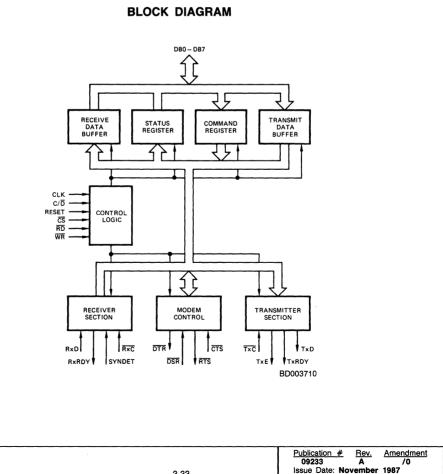
8251/Am9551

Programmable Communication Interface iAPX86 Family MILITARY INFORMATION

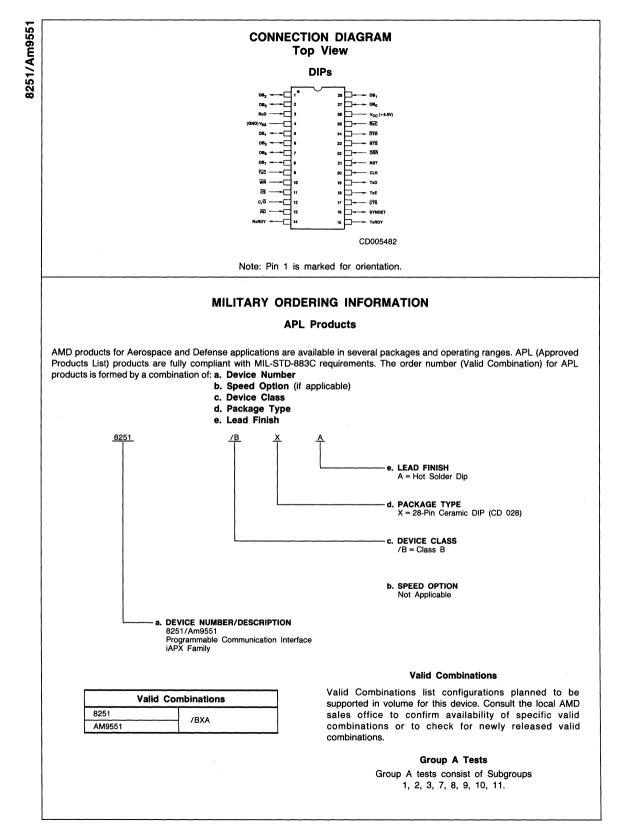
DISTINCTIVE CHARACTERISTICS

- Separate control and transmit register input buffers .
- Synchronous or asynchronous serial data transfer
- Parity, overrun, and framing errors detected .
- Half- or full-duplex signaling
- Character length of 5, 6, 7, or 8 bits

- Internal or external synchronization
- Odd parity, even parity, or no parity bit
- Modem interface controlled by processor
 - Programmable Sync pattern
 - Fully TTL-compatible logic levels


GENERAL DESCRIPTION

The 8251/Am9551 is a programmable serial data communication interface that provides a Universal Synchronous/ Asynchronous Receiver/Transmitter (USART) function. It is normally used as a peripheral device for an associated processor and may be programmed by the processor to operate in a variety of standard serial communication formats.


The device accepts parallel data from the CPU, formats and serializes the information based on its current operating mode, and then transmits the data as a serial bit stream.

Simultaneously, serial data can be received, converted into parallel form, deformatted, and then presented to the CPU. The USART can operate in an independent full-duplex mode.

Data, control, operation, and format options are all selected by commands from an associated processor. This provides an unusual degree of flexibility and allows the 8251/ Am9551 to service a wide range of communication disciplines and applications.

3-33

OPERATING RANGES

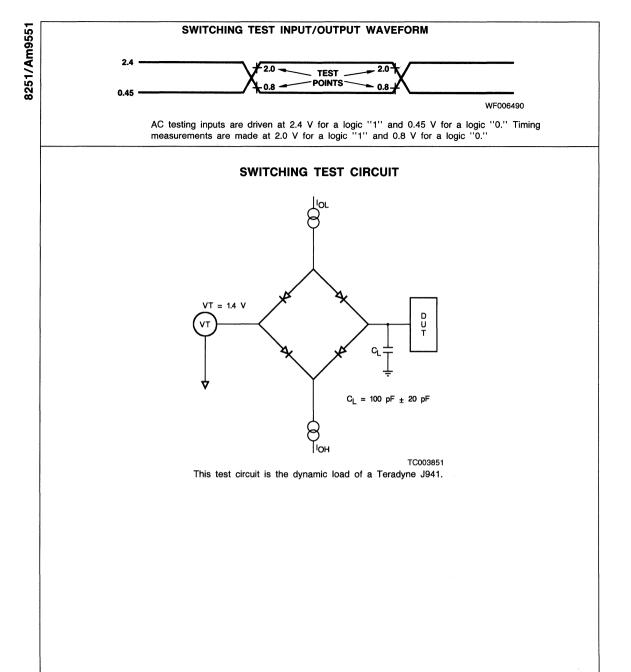
ABSOLUTE MAXIMUM RATINGS

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Military (M) Devices

Temperature (T _C)	55 to + 125°C
Supply Voltage (V _{CC})	5 V ± 10%

Operating ranges define those limits between which the functionality of the device is guaranteed.


DC CHARACTERISTICS over operating range (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter	Parameter		82	251	Am	9551	
Symbol	Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
Voh	Output HIGH Voltage	$I_{OH} = -200 \ \mu A, \ V_{CC} = 4.5 \ V$			2.4		v
VОН	Oulput High voltage	$I_{OH} = -100 \ \mu A$	2.4				v
VOL	Output LOW Voltage	$I_{OL} = 1.6 \text{ mA}, V_{CC} = 4.5 \text{ V}$		0,45	1990	0.45	v
VIH	Input HIGH Voltage	$V_{CC} = 5 V \pm 10\%$	2.2	Vcc*	2.2	V _{CC} *	V
VIL	Input LOW Voltage	V _{CQ} = 5 V ± 10%	-0.5*	0.8	-0.5*	0.8	V
ILI	Input Load Current	V _{CC} = 5.5 V. VIN = 5.5 V 0 V		±10		±10	μA
	Data Bus Leakage	V _{OUT} = 0.45 V, V _{CC} = 5.5 V		- 50		- 50	
IDL	Data Bus Leakage	V _{OUT} = 5.5 V, V _{CC} = 5.5 V		10		10	μΑ
ICC	V _{CC} Supply Current			120		120	mA
Cot	Output Capacitance			15*		15*	pF
C ₁ †	Input Capacitance			10*		10*	pF
CI/0 †	I/O Capacitance	fc = 1.0 MHz, Inputs = 0 V		20*		20*	pF

* Guaranteed by design; not tested.

† Not included in Group A tests.

Notes: 1. ICC is measured in a static condition with outputs in the worst-case condition with all outputs unloaded.

SWITCHING CHARACTERISTICS	over	operating	range	(for	APL	Products,	Group A	Subgroups	9, 10	, 11
are tested unless otherwise noted) (Note										

Devementer	Becometer			251	Am9551		
Parameter Symbol	Parameter Description	Min.	Max.	Min.	Max.	Unit	
t _{AR}	CS, C/D Stable to READ LOW Setup Time	50		50		ns	
tAW	CS, C/D Stable to WRITE LOW Setup Time	20		20		ns	
tCR	DSR, CTS to READ LOW Setup Time			16		16	tCY
tCY	Clock Period		0.420	1.35	0.380	1.35	μs
tDF	READ HIGH to Data Bus Off Delay		25	200	25	200	ns
t _{DTx}	TxC LOW to TxD Delay			1.0		1.0	μs
tow	Data to WRITE HIGH Setup Time		200		150		ns
tes	External SYNDET to RxC LOW Setup Time		16		16		tCY
tHRx	Sampling Pulse to Rx Data Hold Time (Note	9 5)	2.0		2.0		μs
tis	Data Bit (Center) to Internal SYNDET Delay			30		30	tCY
tφW	Clock Pulse Width		220	0.6t _{CY}	175	0.6t _{CY}	ns
t _{RA}	READ HIGH to CS, C/D Hold Time		5.0 ₄₄₁₁₁₁₁		5.0		ns
t _{RD}	READ LOW to Data Bus On Delay			350	[250	ns
		1x Baud Rate			15		
^t RPD	Receiver Clock HIGH Time	16x & 64x Baud Rate	3		3		tCY
		1x Baud Rate	12		12		
tRPW	Receiver Clock LOW Time	16x & 64x Baud Rate	1		1		tCY
tRR	READ Pulse Width		430		380		ns
t _{RV}	Time Between WRITE Pulses During Initialization (Note 1)	ation	6.0		6.0		tCY
t _{Rx}	Data Bit (Center) to RxRDY Delay			20		20	tCY
tSRx	Rx Data to Sampling Pulse Setup Time (No	te 5)	2.0		2.0		μS
t _{TPD}	Transmitter Clock HIGH Time	1x Baud Rate	15		15		tCY
		Baud Rate	3		3		
		1x Baud Rate	12		12		
t _{TPW}	Transmitter Clock LOW Time	16x & 64x Baud Rate	1		1		tCY
t _{TX}	Data Bit (Center) to TxRDY Delay			16		16	tCY
t _{TxE}	Data Bit (Center) to Tx EMPTY Delay			16		16	tCY
twa	WRITE HIGH to CS, C/D Hold Time		20		20		ns
twc	WRITE HIGH to TxE, DTR, RTS Delay			16		16	tCY
t _{WD}	WRITE HIGH to Data Hold Time		40		40		ns
tww	WRITE Pulse Width		430		380		ns
		1x Baud Rate	DC	56	DC	56	
f _{Rx}	Receiver Clock Frequency	16x & 64x Baud Rate	DC	520	DC	520	kHz
,		1x Baud Rate	DC	56	DC	56	
f _{Tx}	Transmitter Clock Frequency	16x & 64x Baud Rate	DC	520	DC	520	kHz

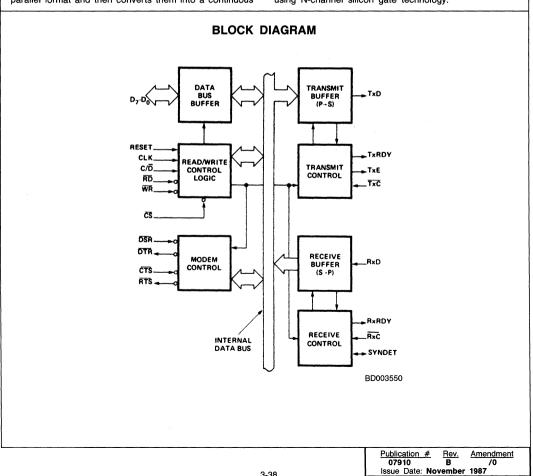
Notes: 1. This time period between write pulses is specified for initialization purposes only when MODE, SYNC 1, SYNC 2, COMMAND, and first DATA BYTE are written into the Am9551. Subsequent writing of both COMMAND and DATA are only allowed when TxRDY = 1. t_{RV} after internal Reset = 8 * t_{CY}. 2. Reset Pulse Width = 6t_{CY} Min. 3. Switching Characteristics parameters are listed in alphabetical order. 4. Clock Rise and Fall times are controlled by the Teradyne J941 tester. Measurement of typical signals generated by the J941 showed

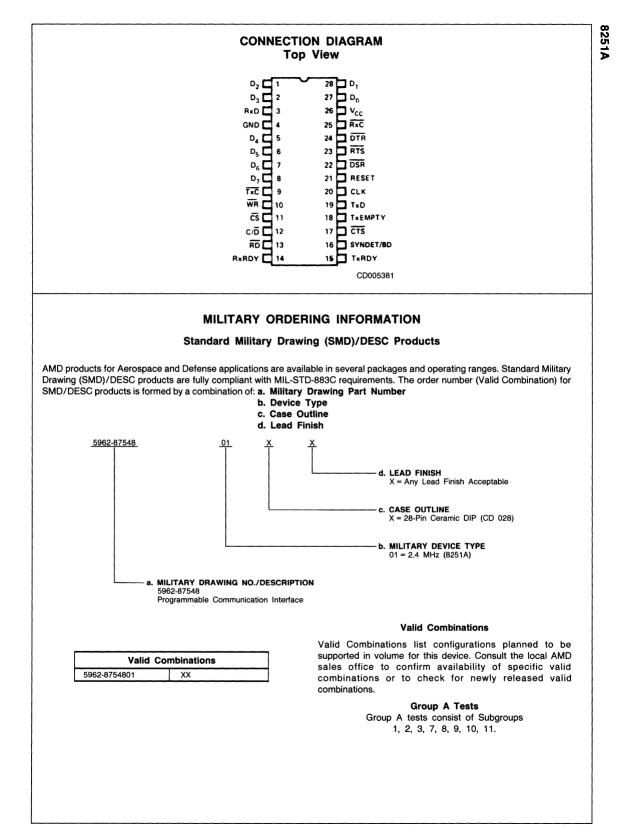
 $t_R = t_F = 5$ ns. 5. Sampling pulse is internal and not tested; guaranteed by design.

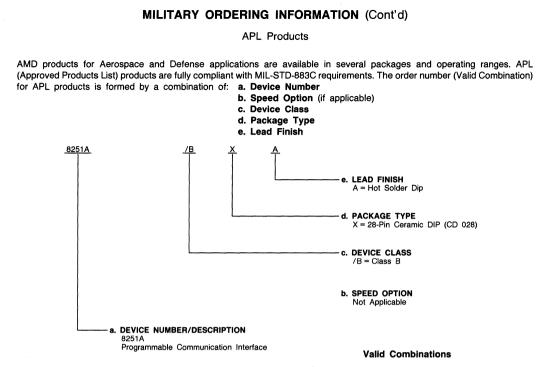
Programmable Communication Interface

iAPX86 Family

MILITARY INFORMATION


DISTINCTIVE CHARACTERISTICS


- 8251A
- SMD/DESC gualified
- . Synchronous and asynchronous operation
- Synchronous 5 - 8-bit characters; internal or external character synchronization; automatic sync insertion
- Asynchronous 5 8-bit characters: clock rate 1, 16, or 64 times baud rate; break character generation; 1, 1 1/2, or 2 stop bits: false start bit detection: automatic break detect and handling
- Synchronous baud rate DC to 64K baud .
- Asynchronous baud rate DC to 19.2K baud .
- Full-duplex, double-buffered transmitter and receiver
- Error detection parity, overrun, and framing .
- Compatible with an extended range of microprocessors
- 28-pin DIP package
- . All inputs and outputs are TTL compatible


GENERAL DESCRIPTION

The 8251A is the enhanced version of the industry standard 8251 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) designed for data communications with microprocessor families, such as the iAPX86, 88. The 8251A is used as a peripheral device and is programmed by the CPU to operate using virtually any serial data transmission technique presently in use (including IBM "bi-sync"). The USART accepts data characters from the CPU in parallel format and then converts them into a continuous

serial data stream for transmission. Simultaneously, it can receive serial data streams and convert them into parallel data characters for the CPU. The USART will signal the CPU whenever it can accept a new character for transmission or whenever it has received a character for the CPU. The CPU can read the complete status of the USART at any time including data transmission errors and control signals such as SYNDET, TxEMPTY. The chip is fabricated using N-channel silicon gate technology.

Valid Combinations								
8251A		/BXA						

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

with	Hespect to	Ground	v
Power	Dissipation .		W

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

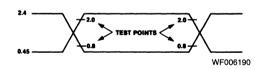
Military (M) Devices
Temperature (T _C)55 to +125°C
Supply Voltage (V _{CC})5 V \pm 10%

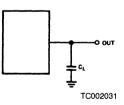
Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range (for SMD/DESC and APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
VIL	Input LOW Voltage	$V_{CC} = 5 V \pm 10\%$	-0.5*	0.8	V
VIH	Input HIGH Voltage	$V_{CC} = 5 V \pm 10\%$	2.2	V _{CC} *	V
VOL	Output LOW Voltage	$I_{OL} = 2.2 \text{ mA}, V_{CC} = 4.5 \text{ V}$		0.45	V
Voн	Output HIGH Voltage	$I_{OH} = -400 \ \mu A, \ V_{CC} = 4.5 \ V$	2.4		V
IOFL	Output Float Leakage	$V_{OUT} = 5.5 V$ to 0.45 V, $V_{CC} = 5.5 V$		±10	μA
l _{IL}	Input Leakage	$V_{IN} = 5.5$ V to 0.45 V, $V_{CC} = 5.5$ V	1	±10	μA
lcc	Power Supply Current	Outputs Unloaded Static (Note 1) V _{CC} = 5.5 V		120	mA

CAPACITANCE $(T_C = 25^{\circ}C, V_{CC} = GND = 0 V)$


Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
C _{IN} †	Input Capacitance	fc = 1 MHz		10*	pF
C1/0†	I/O Capacitance	Unmeasured Pins Returned to GND		20*	pF


* Guaranteed by design.

† Not included in Group A tests.

SWITCHING TEST WAVEFORM

SWITCHING TEST CIRCUIT

 $C_{L} = 100 \text{ pF} \pm 20 \text{ pF}$

A.C. testing: Inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0." Timing measurements are made at 2.0 V for a logic "1" and 0.8 V for a logic "0."

Input/Output

SWITCHING CHARACTERISTICS over operating range (for SMD/DESC and APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted) BUS PARAMETERS (Notes 2 and 3)

No.	Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
RE	AD CYCLE					
1	t _{AR}	Address Stable Before READ (CS, C/D)		0		ns
2	t _{RA}	Address Hold Time for READ (CS, C/D)		0		ns
3	t _{BB}	READ Pulse Width		250		ns
4	t _{RD}	Data Delay from READ	(Note 4)		200	ns
5	tDF	READ to Data Floating	i	10	250	ns
WF	RITE CYCLE					
6	t _{AW}	Address Stable Before WRITE		0		ns
7	twa	Address Hold Time for WRITE		20		ns
8	tww	WRITE Pulse Width		250		ns
9	t _{DW}	Data Setup Time for WRITE		150		ns
10	twp	Data Hold Time for WRITE		20		ns
11	t _{RV}	Recovery Time Between WRITES	(Note 5)	6		tCY
от	HER TIMINGS					
12	t _{CY}	Clock Period	(Note 6)	320	1350	ns
13	to	Clock HIGH Pulse Width		140	t _{CY} -90	ns
14	tō	Clock LOW Pulse Width		90		ns
15	t _{DTX}	TxD Delay from Falling Edge of TxC			1	μs
16	fтх	Transmitter Input Clock Frequency 1x Baud Rate		DC	64	kHz
		16x Baud Rate		DC	310	kHz
		64x Baud Rate		DC	615	kHz
17	t _{TPN}	Transmitter Input Clock Pulse Width 1x Baud Rate		12		tCY
		16x and 64x Baud Rate	,	1		tCY
18	tTPD	Transmitter Input Clock Pulse Delay 1x Baud Rate		15		tCY
		16x and 64x Baud Pate		3		tCY
19	f _{RX}	Receiver Input Clock Frequency 1x Baud Rate		DC	64	kHz
		16x Baud Rate		DC	310	kHz
		64x Baud Rate		DC	615	kHz
20	tRPW	Receiver Input Clock Pulse Width 1x Baud Rate		12		tCY
		16x and 64x Baud Rate		1		tCY
21	t _{RPD}	Receiver Input Clock Pulse Delay 1x Baud Rate		15		tCY
		16x and 64x Baud Rate		3		tCY
22	t _{TxRDY}	TxRDY Pin Delay from Center of Last Bit			12	tCY
23	t _{TxRDY} CLEAR	TxRDY ↓ from Leading Edge of WR			400	ns
24	t _{RxRDY}	RxRDY Pin Delay from Center of Last Bit			26	tCY
25	t _{RxRDY} CLEAR	RxRDY ↓ from Leading Edge of RD			400	tCY
26	tis	Internal SYNDET Delay from Rising Edge of RxC			26	tCY

SWITCHING CHARACTERISTICS (Cont'd.)

No.	Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
27	t _{ES}	External SYNDET Setup Time After Rising Edge of RxC	VEC	16 t _{CY}	tRPD-tCY	ns
28	^t TxEMPTY	TXEMPTY Delay from Center of Last Bit			20	t _{CY}
29	twc	Control Delay from Rising Edge of WRITE (TxEn, DTR, RTS)			8	tCY
30	tCB	Control to READ Setup Time (DSR, CTS)		20		tcy

Notes: 1. ICC is measured in a static condition with outputs in the worst-case condition with all outputs unloaded.

2. Test Conditions: $V_{CC} = 5 \ V \ \pm 10\%$; $V_{IL} = 0.45 \ V$, $V_{IH} = 2.4 \ V \ V_{OL} = 0.8 \ V$, $V_{OH} = 2.0 \ V \ I_{OL} = 2.2 \ mA$, $I_{OH} = -400 \ \mu A$

3. Clock Rise and Fall times are controlled by the Teradyne J-941 tester. Measurement of typical signals generated by the J-941 showed $t_R = t_F = 5$ ns.

4. Test condition: $C_L = 100 \text{ pF} \pm 20 \text{ pF}$, guaranteed by Teradyne J941 DIB.

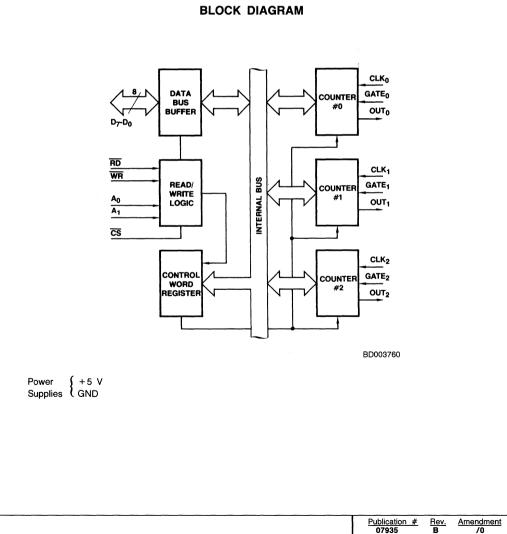
5. This recovery time is for Mode Initialization only. Write Data is allowed only when TxRDY = 1. Recovery time between Writes for Asynchronous Mode is 8t_{CY} and for Synchronous Mode is 16t_{CY}.

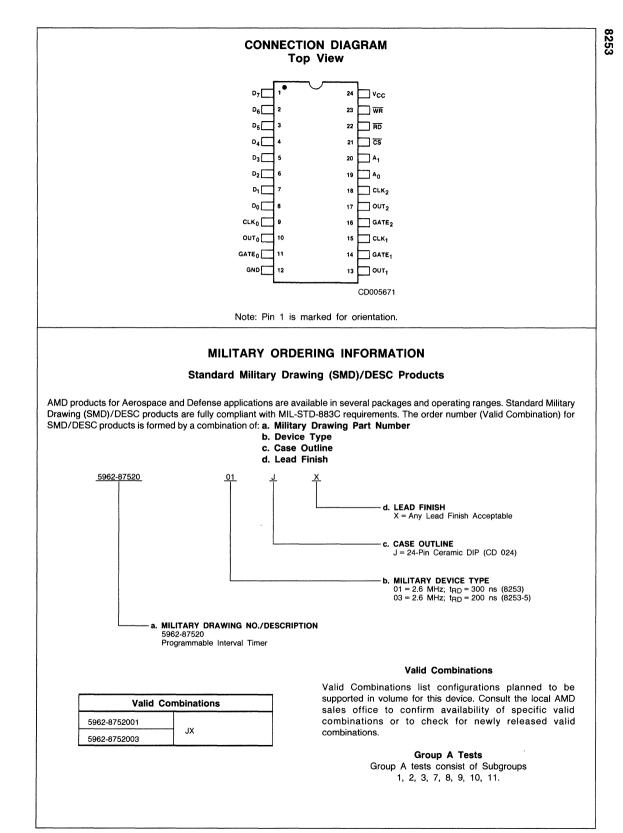
6. Reset Pulse Width = 6t_{CY} minimum. System Clock must be running during Reset.

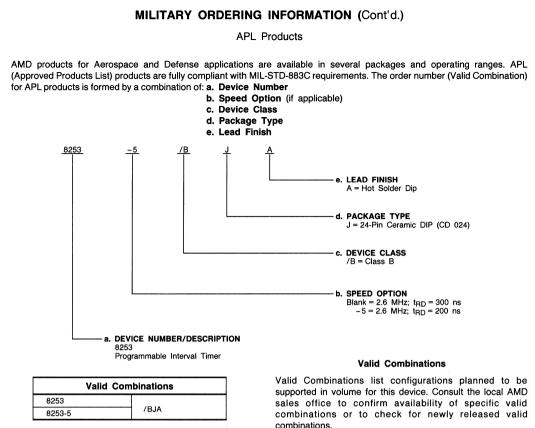
8253

Programmable Interval Timer iAPX86 Family MILITARY INFORMATION

DISTINCTIVE CHARACTERISTICS


- SMD/DESC qualified
- · Both Binary and BCD counting
- Single + 5-V supply
- Three independent 16-bit counters


- DC to 5 MHz
- Programmable counter modes
- Bus-oriented I/O


GENERAL DESCRIPTION

The 8253 is a programmable counter/timer chip designed for use with 8080A/8085A microprocessors. It uses NMOS technology with a single +5-V supply and is a direct replacement for Intel's 8253/8253-5.

Each device is organized as three independent 16-bit counters, each counter having a rate of up to 5 MHz. All modes of operation are software-programmable. For improved performance devices, see the Am9513A System Timing Controller.

Group A Tests Group A Tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

8253

combinations.

	11000001 10	anouna		 0.0 10	
Power	Dissipation	•••••	• • • • • • • • • • • • • • • •	 	1 W

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

8253

Military (M) Devices	
Temperature (T _C)55 to 12	5°C
Supply Voltage (V _{CC})5 V ±1	0%

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS	over operating range (for SMD/DESC and APL Products, Group A, Subgroups 1, 2,
3 are tested unless otherwise	noted)

B			8253-5		8253		
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Min.	Max.	Unit
VIL	Input LOW Voltage	$V_{CC} = 5 V \pm 10\%$	5*	A WEATH	5*	.7	v
VIH	Input HIGH Voltage	$V_{CC} = 5 V \pm 10\%$	2.2	V _{CC} + .5 V*	2.2	V _{CC} + .5 V*	v
V _{OL}	Output LOW Voltage	$I_{OL} = 1.6 \text{ mA},$ $V_{CC} = 5 \text{ V} \pm 10\%$		0.45		0.45	v
V _{OH}	Output HIGH Voltage	$I_{OH} = -150 \ \mu A,$ $V_{CC} = 5 \ V \ \pm 10\%$	2.4		2.4		v
l _{IL}	Input Load Current	$V_{IN} = V_{CC}$ to $O_{V_{A}}$ $V_{CC} = Max$		±20	1	±20	μA
IOFL	Output Float Leakage	VOUT = VCC, to 0, V, VCC = Max		±20		±20	μΑ
lcc	V _{CC} Supply Current	V _{CO} = Max., Outputs Unloaded Static (Note 1)		140		140	mA

CAPACITANCE T_C = 25°C: W_C = GND = 0 V

Parameter Symbol	Parameter Description		Min.	Тур.	Max.	Unit
C _{IN} †	Input Capacitance 🖤	f _c = 1 MHz			10*	pF
C1/0 †	I/O Capacitance	Unmeasured pins returned to VSS			20*	pF

*Guaranteed by design; not tested.

†Not included in Group A tests.

SWITCHING TEST WAVEFORM

WF006951

Input

8253

SWITCHING CHARACTERISTICS over operating range (for SMD/DESC and APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted) (Note 2)

Parameter		meter Parameter		53	8253-5			
No.	Symbol			Max.	Min. Max.		Unit	
READ C	/CLE							
1	tAR	Address Stable Before READ	50		30		ns	
2	tRA	Address Hold Time for READ	5		5		ns	
3	t _{RR}	READ Pulse Width	400		300		ns	
4	t _{RD} (Note 3)	Data Delay from READ	att.	800		200	ns	
5	tDF	READ to Data Floating	25	125	25	100	ns	
6	t _{RV}	Recovery Time Between READ and Any Other Control Signal	William W	anna ann ann ann ann ann ann ann ann an	1		μs	
WRITE C	YCLE							
7	t _{AW}	Address Stable Before WRITE	50		30		ns	
8	twa	Address Hold Time for WRITE	30		30		ns	
9	tww	WRITE Pulse Width	400		300		ns	
10	tDW	Data Setup Time for WRITE	300		250		ns	
11	twp	Data Hold Time for WRITE	40		30		ns	
12	t _{RV}	Recovery Time Between WRITE and Any Other Control Signal	1		1		μs	
CLOCK	AND GATE TIMIN	G (Note 2)						
13	^t CLK	Clock Period	380	DC	380	DC	ns	
14	tpwH	HIGH Pulse Width	230		230		ns	
15	tpwL	LOW Pulse Width	150		150		ns	
16	t _{GW}	Gate Width HIGH	150		150		ns	
17	t _{GL}	Gate Width LOW	100		100		ns	
18	tGS	Gate Setup Time to CLKt	100		100		ns	
19	tGH	Gate Hold Time After CLKt	55		55		ns	
20	t _{OD} (Note 3)	Output Delay from CLK↓		400		400	ns	
21	topg (Note 3)	Output Delay from Gate		300		300	ns	

Notes: 1. I_{CC} is measured in a static condition with no output loads applied. 2. Test Conditions: $V_{CC} = 5 V \pm 10\%$ $V_{IL} = 0.45 V$, $V_{IH} = 2.4 V$ $V_{OL} = 0.8 V$, $V_{OH} = 2.2 V$ $I_{OL} = 1.6 mA$, $I_{OH} = 150 \mu A$ 3. Test Condition: $C_L = 100 \text{ pF} \pm 20 \text{ pF}.$

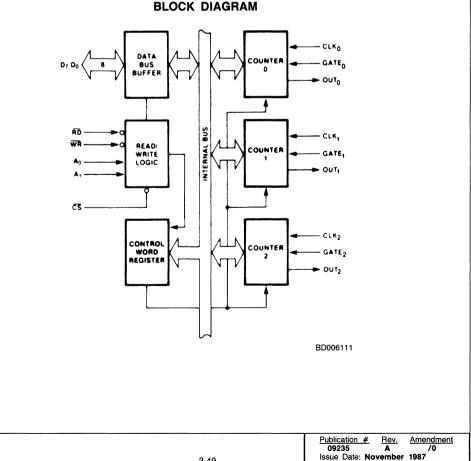
82C54

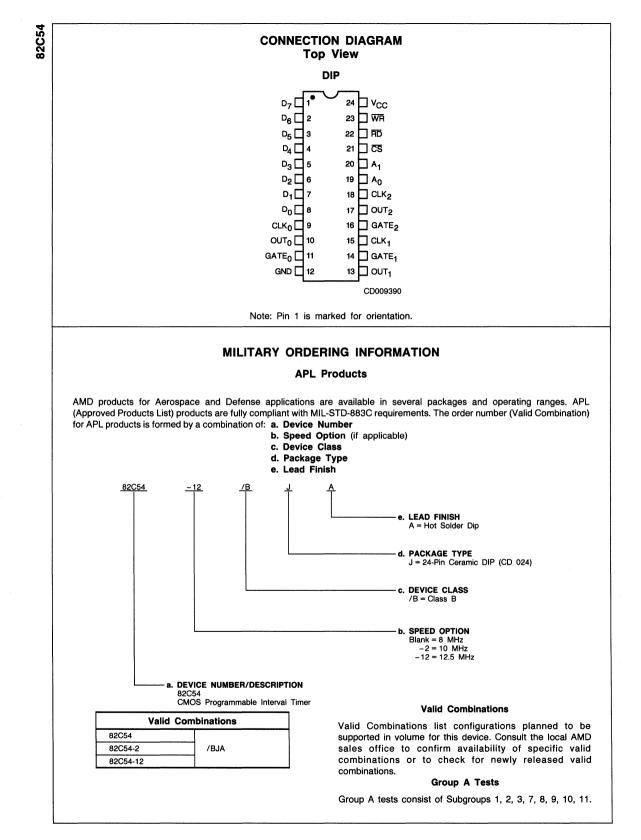
CMOS Programmable Interval Timer

MILITARY INFORMATION

DISTINCTIVE CHARACTERISTICS

- Compatible with all Intel and most other microprocessors
- High-speed, zero-wait-state operation with 10-MHz • 8086/88 and 80186/188
- Three independent 16-bit counters
- Handles inputs from DC to 8 MHz
 - 10 MHz for 82C54-2
 - 12.5 MHz for 82C54-12


- Low-power CMOS
 - $-I_{CC} = 50 \ \mu A$ military standby current I_{CC}
- Completely TTL compatible
- Six programmable counter modes
- Binary or BCD counting •
- Status read-back command •
- Available in 24-pin DIP


GENERAL DESCRIPTION

The AMD 82C54 is a high-performance, CMOS version of the industry-standard 8254 counter/timer which is designed to solve the timing-control problems common in microcomputer system design. It provides three independent 16-bit Counters - each capable of handling clock inputs up to 12.5 MHz. All modes are software-programmable. The 82C54 is pin-compatible with the NMOS 8254 and is a superset of the 8253.

Six programmable-timer modes allow the 82C54 to be used as an event counter, elapsed time indicator, programmable one-shot, and in many other applications as well.

The 82C54 is fabricated with AMD's CMOS technology providing low-power consumption with performance equal to or greater than the equivalent NMOS product. The 82C54 is available in 24-pin DIP package.

AALCI I	nespect to			 	5 10	11.0	•
Power	Dissipation	••••	•••••	 	•••••	1	w

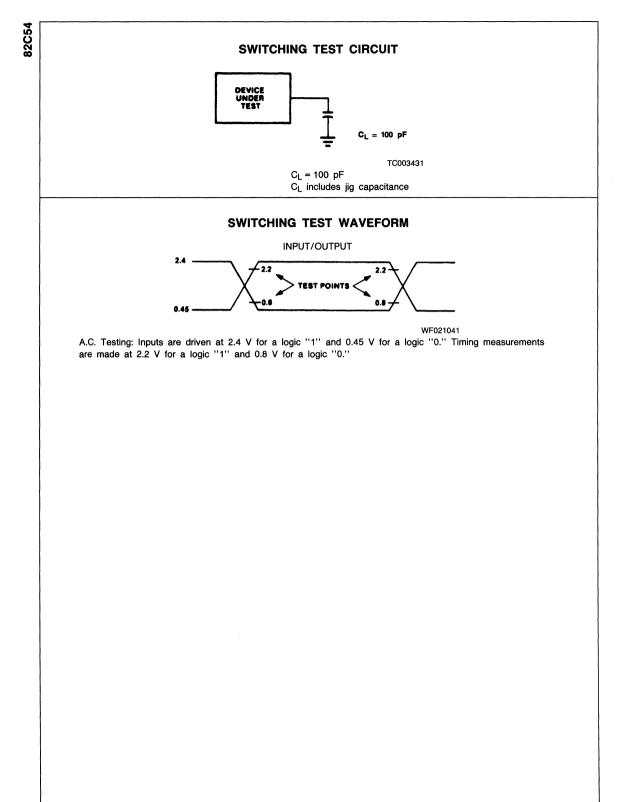
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions		Min.	Max.	Unit
VIL	Input LOW Voltage			-0.5*	0.8	V
VIH	Input HIGH Voltage		annun be	2.2	V _{CC} +0.5 V*	V
VOL	Output LOW Voltage	I _{OL} = 2.0 mA			.45	V
VOH	Output HIGH Voltage	$I_{OH} = -400 \ \mu A$	ballati. Manan	2.4		V
կլ	Input Load Current	$V_{IN} = V_{CC}$ to 0 V			±10	μA
IOFL	Output Float Leakage Current	V _{OUT} = V _{CC} to 0 V	¢		±10	μA
			8 MHz		20	
Icc	Operating Power-Supply Current (Note 1)	CLK Freq	10 MHz		20	mA
			12.5 MHz		20	
ICCSB	Standby Power-Supply Current (Note 2)	CLK Free DC, CS = HIGH, AL Inputs/Data Bus HIGH, All Qutputs Floating			±50	μA


CAPACITANCE $(T_C = 25^{\circ} O_V V_{OC} = GND = 0 V)$

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Units
C _{IN †}	Input Capacitance	fc = 1 MHZ		10*	pF
CI/O †	I/O Capacitance	Unmeasured pins		20*	pF
COUT †	Output Capacitance	returned to GND		20*	pF

* Guaranteed by design; not tested.

† Not included in Group A tests.

Notes: 1. I_{CC} is measured in a dynamic condition with no output loads applied and inputs at rail levels.
2. Standby I_{CC} is measured in a static condition (CLK = DC) with no output loads applied, and CS and all inputs/ databus at the V_{CC} rail level.

SWITCHING CHARACTERISTICS over operating range (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted) (Note 1).

Parameter				/Hz	10	MHz	12.5	MHz	
No.	Symbol	Parameter Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ C	YCLE								
1	t _{AR}	Address Stable Before RD ↓	45		30		25		ns
2	^t SR	CS Stable Before RD ↓	0		0		0		ns
3	t _{RA}	Address Hold Time After RD	0		0		0		ns
4	t _{RR}	RD Pulse Width	150		95		90		ns
5	t _{RD}	Data Delay from RD ↓		120		85		80	ns
6	t _{AD}	Data Delay from Address		220		185		150	ns
7	tDF	RD 1 to Data Floating	5	90	5	65	5	55	ns
8	t _{RV}	Command Recovery Time	200		165		135		ns
WRITE	CYCLE			4	attilites				
9	t _{AW}	Address Stable Before WR ↓	0		0		0		ns
10	tsw	CS Stable Before WR ↓	0	All all	Anno P		0		ns
11	twa	Address Hold Time After WR	0		0		0		ns
12	tww	WR Pulse Width	150		95		80		ns
13	t _{DW}	Data Setup Time Before WR	120		95		80		ns
14	twp	Data Hold Time After WR	0		0		0		ns
15	t _{RV}	Command Recovery Time	200		165		135		ns
CLOCK	AND GATE C	/CLE							
16	^t CLK	Clock Period	125	DC	100	DC	80	DC	ns
17	tpwh	HIGH Pulse Width (Note 3)	60		30		30		ns
18	tPWL	LOW Pulse Width (Note 3)	60		50		40		ns
19	t _R	Clock Rise Time (Note 4)		25		25		25	ns
20	t⊨	Clock Fall Tune (Note 4)		25		25		25	ns
21	tGW	Gate Width HIGH	50		50		40		ns
22	tGL	Gate Width LOW	50		50		40		ns
23	tGS	Gate Setup Time to CLK 1	50		40		30		ns
24	tGH	Gate Hold Time After CLK 1 (Note 2)	50		50		40		ns
25	tOD	Output Delay from CLK ↓		150		100		80	ns
26	todg	Output Delay from Gate ↓		120		100		80	ns
27	twc	CLK Delay for Loading	0	55	0	55	· 0	45	ns
28	twg	Gate Delay for Sampling	- 5	50	-5	40	-5	35	ns
29	two	Out Delay from Mode Write		260		240		200	ns
30	tCL	CLK Set Up for Count Latch	- 4	45	-4	40	-4	35	ns

Notes: 1. Timings measured at V_{OH} = 2.2 V, V_{OL} = 0.8 V. C_L = 100 pF \pm 20 pF.

2. In Modes 1 and 5, triggers are sampled on each rising clock edge. A second trigger within 120 ns (70 ns for the 82C54-2) of the rising clock edge may not be detected.

3. LOW-going glitches that violate tPWH, tPWL may cause errors requiring Counter re-programming.

4. Clock rise and fall times are tested at 5 ns, guaranteed by Teradyne J941 test equipment.

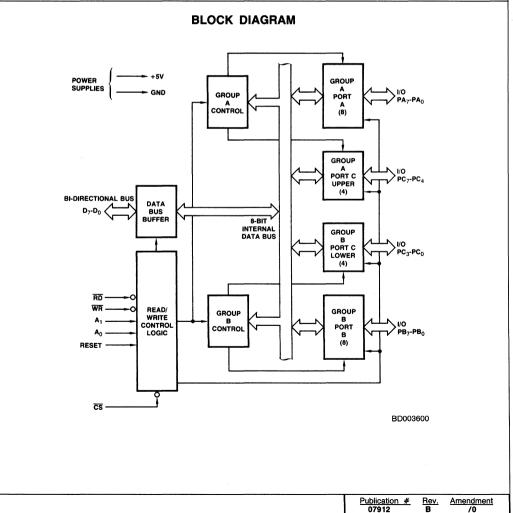
Programmable Peripheral Interface iAPX86 Family

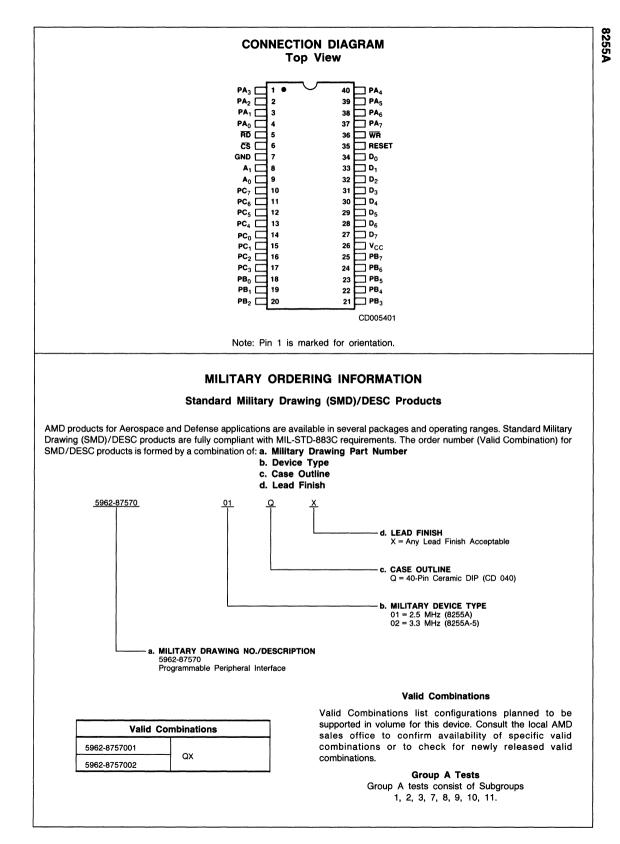
MILITARY INFORMATION

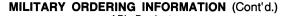
DISTINCTIVE CHARACTERISTICS

SMD/DESC gualified

8255A

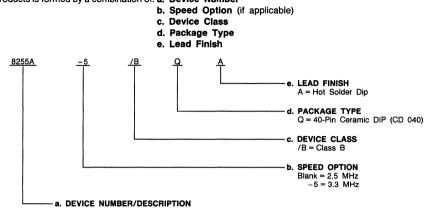

- Direct bit set/reset capability easing control application interface
- Reduces system package count
- Improved DC driving capability


- 24 programmable I/O pins
- Completely TTL-compatible
- Fully compatible with the iAPX86 microprocessor family
- Improved timing characteristics


GENERAL DESCRIPTION

The 8255A is a general-purpose, programmable I/O device designed for use with iAPX Family microprocessors. It has 24 I/O pins which may be individually programmed in two groups of twelve, and used in three major modes of operation. In the first mode, each group of twelve I/O pins may be programmed in sets of four and eight to be input or output. In Mode 1, the second mode, each group may be

programmed to have eight lines of input or output. Of the remaining four pins, three are used for handshaking and interrupt control signals. The third mode of operation (Mode 2) is a bidirectional bus mode which uses eight lines for a bidirectional bus, and five lines, borrowing one from the other group, for handshaking.



APL Products

AMD products for Aerospace and Defense applications are available in several packages and operating ranges. APL (Approved Products List) products are fully compliant with MIL-STD-883C requirements. The order number (Valid Combination) for APL products is formed by a combination of: **a. Device Number**

8255A Programmable Peripheral Interface

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations or to check for newly released valid combinations.

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

Valid Combinations							
8255A	/BQA						
8255A-5							

8255A

Storage Temperature-65 to +150°C V_{CC} with Respect to V_{SS}-0.5 to 7.0 V All Signal Voltages with Respect to VSS -0.5 to +7.0 V

Power Dissipation1.0 W

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliabilitv.

OPERATING RANGES

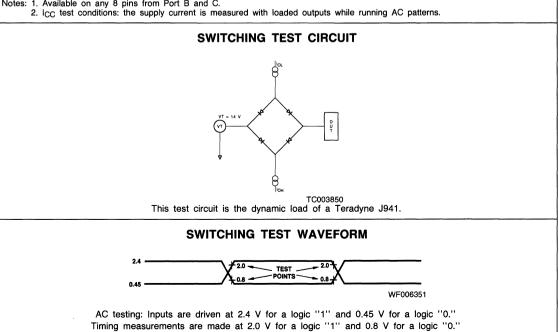
Ailitary (M) Devices	
Temperature (TC)55 to 125°C	
Supply Voltage (V _{CC}) 5 V \pm 10%	

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range (for SMD/DESC and APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
V _{IL} †	Input Low Voltage	$V_{\rm CC} = 4.5 \text{ V}$	-0.5 *	0.8	V
VIHT	Input High Voltage	$V_{CC} = 5.5 V$	2.2	5.5*	v
V _{OL} (DB)	Output Low Voltage (Data Bus)	$I_{OL} = 2.5 \text{ mA}, V_{CC} = 5.5 \text{ V}$		0.45	V
V _{OL} (PER)	Output Low Voltage (Peripheral Port)	I _{OL} = 1.7 mA, V _{CC} = 5.5 V		0.45	V
V _{OH} (DB)	Output High Voltage (Data Bus)	$I_{OH} = -400 \ \mu A, \ V_{CC} = 4.5 \ V$	2.4		V
V _{OH} (PER)	Output High Voltage (Peripheral Port)	I _{OH} = -200 µA, V _{CC} = 4.5 V	2.4		V
IDAR	Darlington Drive Current (Note 1)	R _{EXT} = 750 Ω, V _{EXT} = 1.5 V	-1.0	-4.0	mA
ICC	Power Supply Current (Note 2)	V _{CC} = 5.5 V		120	mA
կլ	Input Load Current	$V_{\rm IN} = V_{\rm CC}$ to 0 V, $V_{\rm CC} = 5.5$ V		±10	μA
IOFL	Output Float Leakage	$V_{OUT} = V_{CC}$ to 0 V, $V_{CC} = 5.5$ V		±10	μA

VCC CAPACITANCE


Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Unit
C _{IN} tt	Input Capacitance	fc = 1 MHz			15*	pF
CI/Ott	I/O Capacitance	Unmeasured pins returned to GND			25*	pF

*Guaranteed by design; not tested.

†Group A, Subgroups 9, 10, 11 only are tested.

††Not included in Group A tests.

Notes: 1. Available on any 8 pins from Port B and C.

See Section 6 of the MOS Microprocessors and Peripherals Data Book (Order #09067A) for Thermal Characteristics Information.

SWITCHING CHARACTERISTICS over operating range (for SMD/DESC and APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted) (Note 1)

BUS PARAMETERS

	Parameter	Parameter	82	55A	825	5A-5	
No.	Symbol	Description	Min.	Max.	Min.	Max.	Unit
REA	D	•					
1	t _{AR}	Address Stable Before READ	0		0		ns
2	t _{RA}	Address Stable After READ	0		0		ns
3	t _{RR}	READ Pulse Width	300		300		ns
4	t _{RD}	Data Valid From READ (Note 1)		250		200	ns
5	tDF	Data Float After READ (Note 3)	10	150	10	100	ns
6	t _{RV}	Time Between READs and/or WRITEs	850		850		ns
WRI	TE						
7	tAW	Address Stable Before WRITE	0		0		ns
8	t _{WA}	Address Stable After WRITE	20		20		ns
9	tww	WRITE Pulse Width	400		300		ns
10	t _{DW}	Data Valid to WRITE (T.E.)	4999	¢	100		ns
11	twD	Data Valid After WRITE	30	11 ¹	30		ns
отн	ER TIMINGS		₩.				
12	t _{WB}	WR = 1 to Output (Note 1)		350		350	ns
13	t _{IR}	Peripheral Data Before RD	0		0		ns
14	t _{HR}	Peripheral Data After RD	0		0		ns
15	t _{AK}	ACK Pulse Width	300		300		ns
16	tST	STB Pulse Width	500		500		ns
17	t _{PS}	Per. Data Before E. of STB	0		0		ns
18	t _{PH}	Per. Data After TE. of STB	180		180		ns
19	t _{AD}	ACK = 0 to Output (Note 1)		300		300	ns
20	t _{KD}	ACK = 1 to Dutput Float (Note 3)	20	250	20	250	ns
21	twoв	WR = 1 to $OBF = 0$ (Note 1)		650		650	ns
22	t _{AOB}	ACK = 0 to $OBF = 1$ (Note 1)		350		350	ns
23	tSIB	STB = 0 to IBF = 1 (Note 1)		300		300	ns
24	t _{RIB}	RD = 1 to IBF = 0 (Note 1)		300		300	ns
25	t _{RIT}	RD = 0 to INTR = 0 (Note 1)		400		400	ns
26	tSIT	STB = 1 to INTR = 1 (Note 1)		300		300	ns
27	t _{AIT}	ACK = 1 to $INTR = 1$ (Note 1)		350		350	ns
28	twit	WR = 1 to INTR = 0 (Note 1)		450		450	ns

Notes: 1. Test Conditions: V_{CC} = 5.5 V and 4.5 V, V_{IH} = 2.4 V, V_{IL} = .45 V, V_{OH} = 2.0 V, V_{OL} = .8 V, C_L = 100 pF \pm 20 pF.

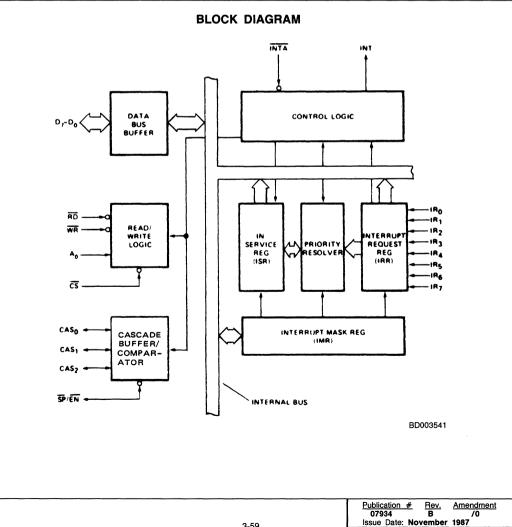
2. Period of Reset pulse must be at least 50 μ s during or after power on. Subsequent Reset pulse can be 500 ns min.

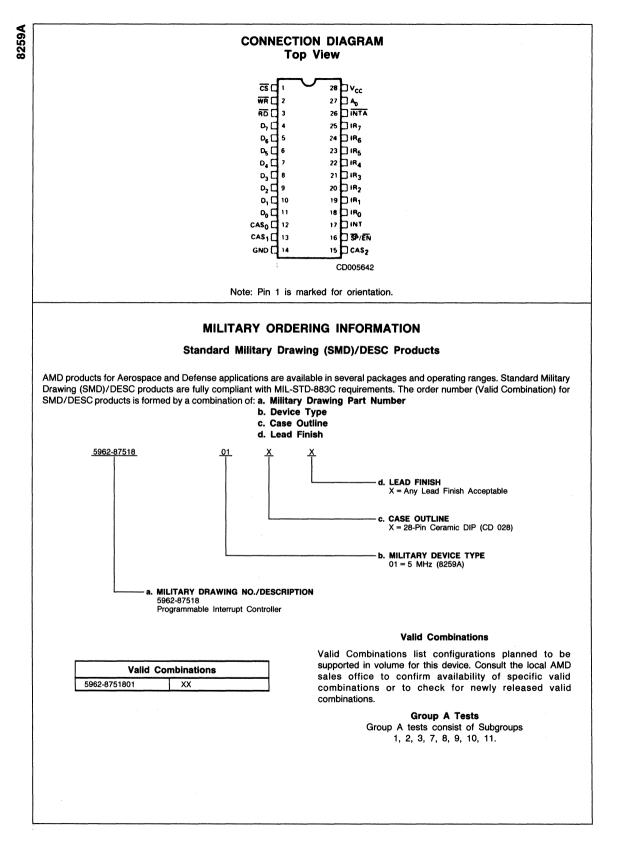
3. AC float timing parameters t_{DF} and t_{KD} are tested Logic 0 to float only.

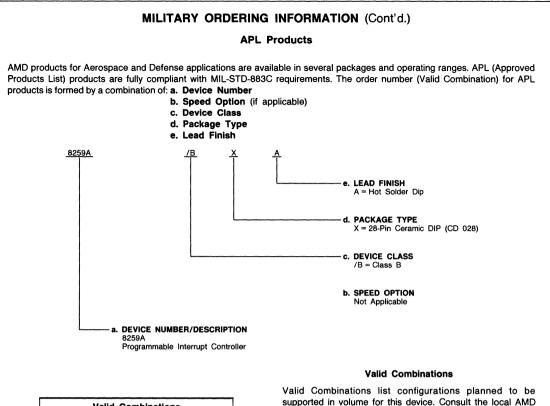
Programmable Interrupt Controller iAPX86 Family MILITARY INFORMATION

DISTINCTIVE CHARACTERISTICS

- SMD/DESC qualified
- Eight-level priority controller •
- Expandable to 64 levels •
- Programmable interrupt modes •


- Individual request mask capability
- Single +5-V supply (no clocks)
- 28-pin dual-in-line package


GENERAL DESCRIPTION


The 8259A Programmable Interrupt Controller handles up to eight vectored priority interrupts for the CPU. It is cascadable for up to 64 vectored priority interrupts without additional circuitry. It is packaged in a 28-pin DIP, uses NMOS technology, and requires a single +5-V supply. Circuitry is static, requiring no clock input.

The 8259A is designed to minimize the software and realtime overhead in handling multi-level priority interrupts. It has several modes, permitting optimization for a variety of system requirements.

The 8259A is fully upward-compatible with the 8259. Software originally written for the 8259 will operate the 8259A in all 8259-equivalent modes.

Valid	Combinations
8259A	/BXA

combinations or to check for newly released valid combinations. Group A Tests

sales office to confirm availability of specific valid

8259A

Group A tests consist of subgroups 1, 2, 3, 7, 8, 9 10, 11.

3-61

OPERATING RANGES

Storage Temperature65	to	+1	150°	°C
Voltage on Any Pin				
with Respect to Ground0.5	۷	to	+7	۷

Power Dissipation1 W

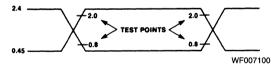
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Military (M) Devices

Temperature (T _C)55 to 1	25°C
Supply Voltage (V _{CC})5 V \pm	10%

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range (for SMD/DESC and APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)


Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
VIL	Input LOW Voltage	$V_{CC} = 4.5 V$ to 5.5 V	-0.5*	0.8	v
VIH	Input HIGH Voltage	$V_{CC} = 4.5 V$ to 5.5 V	2.3	V _{CC} + 0.5 V*	v
VOL	Output LOW Voltage	$I_{OL} = 2.2 \text{ mA}, V_{CC} = 4.5 \text{ V}$		0.45	v
VOH	Output HIGH Voltage	$I_{OH} = -400 \ \mu A, \ V_{CC} = 4.5 \ V$	2.4		v
Voh(INT)	Interrupt Output HIGH Voltage	$I_{OH} = -100 \ \mu A, \ V_{CC} = 4.5 \ V$ $I_{OH} = -400 \ \mu A, \ V_{CC} = 4.5 \ V$	3.5 2.4		V V
ILI	Input Load Current	VCC = 0.5 V, VIN = 5.5 V and 0 V	- 10	+ 10	μA
LOL, LOH	Output Leakage Current	V _{CO} = 5.5 V, V _{OUT} = 5.5 V and 0.45 V	- 10	+ 10	μA
lcc	V _{CC} Supply Current	V _{CC} = 5.5 V (Note 1)		125	mA

25°C, V_{CC} = GND = 0 V) CAPACITANCE (T

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
C _{IN} †	Input Capacitance	fc = 1 MHz		10*	pF
Ci/Ot	I/O Capacitance	Unmeasured pins returned to VSS		20*	pF

*Guaranteed by design; not tested. †Not included in Group A tests.

SWITCHING TEST WAVEFORM

Input/Output

Note: AC testing inputs are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0." Timing measurements are made at 2.0 V for a logic "1" and 0.8 V for a logic "0."

SWITCHING CHARACTERISTICS over operating range (for SMD/DESC and APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted).

	Parameter	Parameter		82	59A	
No.	Symbol	Description	Test Conditions	Min.	Max.	Unit
TIMING	REQUIREMENT	S				
1	t _{AHRL}	A ₀ /CS Setup to RD/INTA		0		ns
2	^t RHAX	A0/CS Hold after RD/INTA		0		ns
3	^t RLRH	RD Pulse Width		235		ns
4	tAHWL	A_0/\overline{CS} Setup to \overline{WR}_1		0		ns
5	twhax	A0/CS Hold after WR1	- A Martin - An	0		ns
6	twLWH	WR Pulse Width	all manifes b	290		ns
7	tDVWH	Data Setup to WR1	(Note 1)	240		ns
8		Data Hold after WRt	(Note 1)	0		ns
9	ULJH	Interrupt Request Width (LOW)	- W.	100		ns
10	tCVIAL	Cascade Setup Second or Third INTA: (Slave Only)		55		ns
11	^t RHRL	End of RD to next Command		300		ns
12	twhRL	End of WR to next Command		370	Ì	ns
TIMING	RESPONSES	and the second second				
13	^t RLDV	Data Valid from AD/WTA			200	ns
14	^t RHDZ	Data Float after RD/INTAt	-	10	100	ns
15	tjнiн	Interrupt Output Delay	1		350	ns
16	tIALCV	Cascade Valid from First INTAL (Master Only)			565	ns
17	^t RLEL	Enable Active from RD1 or INTA1	(Notes 1 and 2)		125	ns
18	^t RHEH	Enable Inactive from RDt or INTAt			150	ns
19	t _{AHDV}	Data Valid from Stable Address			200	ns
20	tCVDV	Cascade Valid to Valid Data			300	ns
2	2. Test Condition: C	$V_{IL} = 0.45$ V, $V_{IH} = 2.4$ V; $V_{OL} = 0.8$ V, $V_{OH} = 100$ $D_L = 2.2$ mA, $I_{OH} = -400 \ \mu A$ $L = 100 \ pF \pm 20 \ pF.$				
2	2. Test Condition: C	$O_L = 2.2 \text{ mA}, I_{OH} = -400 \mu \text{A}$				
	2. Test Condition: C	OL = 2.2 mA, I _{OH} = -400 μA L = 100 pF ±20 pF.		PF024761		
:	2. Test Condition: C	$\frac{OL = 2.2 \text{ mA, } I_{OH} = -400 \mu \text{A}}{L = 100 \text{ pF} \pm 20 \text{ pF.}}$		F024761		
	2. Test Condition: C	$\frac{\text{RD}}{\text{TA}} = 100 \text{$		F024761		
2	2. Test Condition: C	$\frac{\text{RD}}{\text{TA}} = 100 \text{$		F024761		
2	2. Test Condition: C	$\frac{\text{RD}}{\text{TA}} = 100 \text{$		F024761		
2	2. Test Condition: C	$\frac{\text{RD}}{\text{TA}} = 100 \text{$		F024761		
2	2. Test Condition: C	$\frac{\text{RD}}{\text{TA}} = 100 \text{$				
2	2. Test Condition: C	$\frac{OL = 22 \text{ mA, } I_{OH} = -400 \ \mu\text{A}}{L = 100 \text{ pF} \pm 20 \text{ pF.}}$	ary)			
2	2. Test Condition: C	$\frac{\text{RD}}{\text{TA}} = 100 \text{$	ary)			
	2. Test Condition: C	$\frac{OL = 22 \text{ mA, } I_{OH} = -400 \ \mu\text{A}}{L = 100 \text{ pF} \pm 20 \text{ pF.}}$	ary)			
	2. Test Condition: C	$\frac{OL = 22 \text{ mA, } I_{OH} = -400 \ \mu\text{A}}{L = 100 \text{ pF} \pm 20 \text{ pF.}}$	ary)			

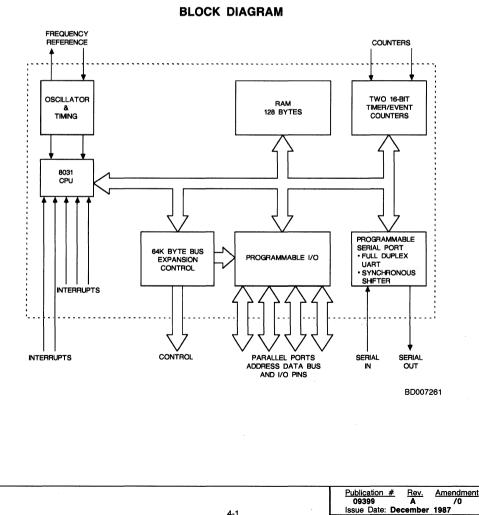
CHAPTER 4

8031AH	4-1
80C51BH/80C31BH	4-7
8751H/8753H**	4-13

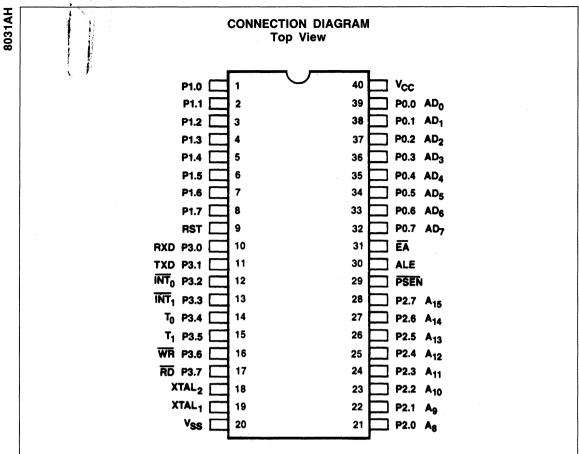
8031AH

Single-Chip 8-Bit Microcontroller

MILITARY INFORMATION

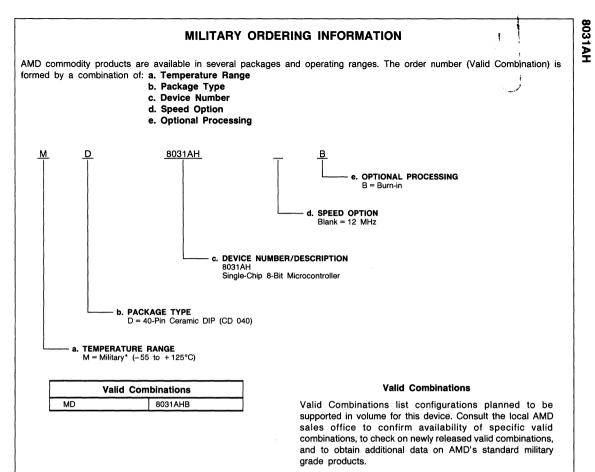

DISTINCTIVE CHARACTERISTICS

- 128 x 8 RAM .
- Four 8-bit ports, 32 I/O lines .
- Two 16-bit timer/event counters
- 64K addressable Program Memory
- All versions are pin-compatible


- Boolean processor
- Programmable Serial Port
- Five interrupt sources/two priority levels
- On-chip Oscillator/Clock Circuit
- 64K addressable Data Memory •

GENERAL DESCRIPTION

The 8031AH is optimized for control applications. Byte processing and numerical operations on small data structures are facilitated by a variety of fast addressing modes for accessing the internal RAM. The instruction set provides a convenient menu of 8-bit arithmetic instructions. including multiply and divide instructions. Extensive on-chip support is provided for 1-bit variables as a separate data type. This allows direct bit manipulation and testing in control and logic systems that require Boolean processing. Efficient use of program memory results from an instruction set consisting of 44% 1-byte, 41% 2-byte, and 15% 3-byte instructions. With a 12 MHz crystal, 58% of the instructions execute in 1 μ s, 40% in 2 μ s, and multiply and divide require only 4 µs.



8031AH

CD005551

*Military temperature range products are NPL (Non-Compliant Products List) or Non-MIL-STD-883C Compliant Products only. reliabilitv.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65 to	+ 150°C
Voltage on Any Pin	
with Respect to Ground0.5 to	+7.0 V

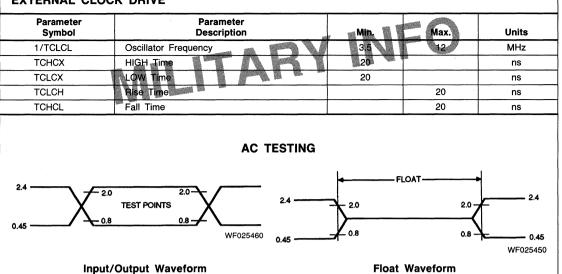
DC CHARACTERISTICS over operating ranges

OPERATING RANGES

Military (M) Devices

Operating ranges define those limits between which the functionality of the device is guaranteed.

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
VIL	Input LOW Voltage		-0.5	0.7	V
VIH	Input HIGH Voltage (Except RST/VPD and XTAL2)		2.2	V _{CC} + 0.5	v
VIH1	Input HIGH Voltage to RST/VPD, XTAL2	XTAL ₁ = V _{SS}	2.8	V _{CC} + 0.5	V
V _{PD}	Power-Down Voltage to RST/VPD	V _{CC} = 0 V	4.5	5.5	V
VOL	Output LOW Voltage, Ports 1, 2, 3 (Note 1)	l _{OL} ≠ 1.2 mA		0.45	v
V _{OL1}	Output LOW Voltage, Port 0, ALE, PSEN (Note 1)	10L = 2.4 mA		0.45	v
VOH	Output HIGH Voltage, Ports 1, 2, 3	I _{OH} = -60 μA	2.4		V
V _{OH1}	Output HIGH Voltage, Port 0, ALE, PSEN	$I_{OH} = -400 \ \mu A$	2.4		v
IIL	Logical 0 Input Current, Ports 1, 2, 3	V _{IL} = 0.45 V		-800	μA
lIL2	Logical 0 Input Corrent for XTAL2	XTAL ₁ = V _{SS} V _{IN} = 0.45 V		-3.2	mA
liH1	Input HIGH Current to RST/VPD for Reset	V _{IN} < (V _{CC} – 1.5 V)		600	μA
ILI	Input Leakage Current to Port 0, EA	0.45 < V _{IN} < V _{CC}		±10	μA
lcc	Power-Supply Current	$\overline{EA} = V_{CC}$		140	mA
IPD	Power-Down Current	V _{CC} = 0 V; V _{PO} = 5.0 V		15	mA
CIO	Capacitance of I/O Buffer	fc = 1 MHz		10	pF


Notes: 1. Capacitive load on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL}s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8 V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.

8031AH

SWITCHING CHARACTERISTICS over operating range (Load Capacitance for Port 0, ALE, and $\overrightarrow{PSEN} = 100 \text{ pF}$; Load Capacitance for all other outputs = 80 pF)

Parameter	Parameter		MHz ock	Variable	Variable Clock	
Symbol	Description	Min.	Max.	Min.	Max.	Unit
TCY 1/TCLCL	Oscillator Frequency			3.5TCLCL	12TCLCL	MHz
TLHLL	ALE Pulse Width	112		2TCLCL-55		ns
TAVLL	Address Setup to ALE	28		TCLCL-55		ns
TLLAX	Address Hold After ALE	33		TCLCL-50		ns
TLLIV	ALE to Valid Instruction In		218	and the	4TCLCL-115	ns
TLLPL	ALE to PSEN	43		TCLCL-40		ns
TPLPH	PSEN Pulse Width	190	. The all y	TCLCL-60		ns
TPLIV	PSEN to Valid Instruction In		A ME		3TCLCL-140	ns
TPXIX	Input Instruction Hold After PSEN	2	anninge Alle	0		ns
TPXIZ	Input Instruction Float After PSEN	All All	48		TCLCL-35	ns
TPXAV	Address Valid After PSEN	58	da.	TCLCL-25		ns
TAVIV	Address to Valid Instruction In		287		5TCLCL-130	ns
TPLAZ	Address Float After PSEN	All .	20		20	ns
TRLRH	RD Pulse Width	400		6TCLCL- 100		ns
TWLWH	WR Pulse Width	400		6TCLCL-100		ns
TRLDV	RD to Valid Data In		232		5TCLCL- 185	ns
TRHDX	Data Hold After RD	0		0		ns
TRHDZ	Data Float After RD		82		2TCLCL-85	ns
TLLDV	ALE to Valid Data In		497		8TCLCL-170	ns
TAVDV	Address to Valid Data In		565		9TCLCL 185	ns
TLLWL	ALE to WR or AD	185	315	3TCLCL-65	3TCLCL+65	ns
TAVWL	Address to WR or RD	188		4TCLCL-145		ns
TQVWX	Data Valid to WR Transition	8		TCLCL-75		ns
TQVWH	Data Setup Before WR	508		7TCLCL-75		ns
TWHQX	Data Hold After WR	18		TCLCL-65		ns
TRLAZ	Address Float After RD		20		20	ns
TWHLH	WR or RD HIGH to ALE HIGH	18	148	TCLCL-65	TCLCL+65	ns

EXTERNAL CLOCK DRIVE

AC inputs during testing are driven at 2.4 V for a logic "1" and 0.45 V for a logic "0". Timing measurements are made at 2.0 V for a logic "1" and 0.8 V for a logic "0". For timing purposes, the float state is defined as the point at which a P0 pin sinks 2.4 mA or sources 400 μ A at the voltage test levels.

80C51BH/80C31BH

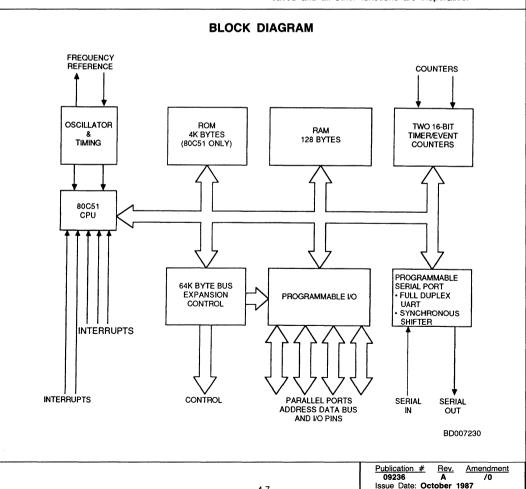
CMOS Single-Chip Microcontroller

PRELIMINARY MILITARY INFORMATION

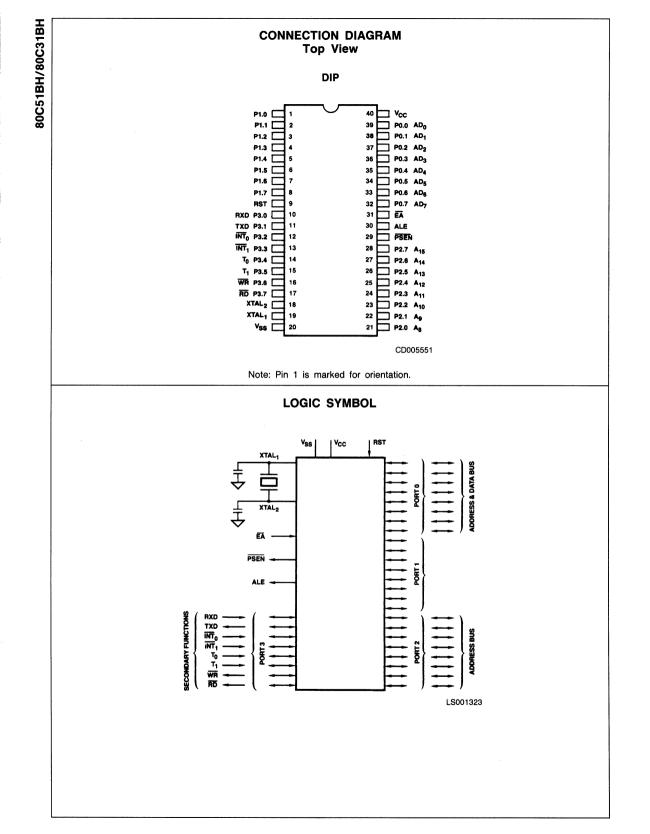
DISTINCTIVE CHARACTERISTICS

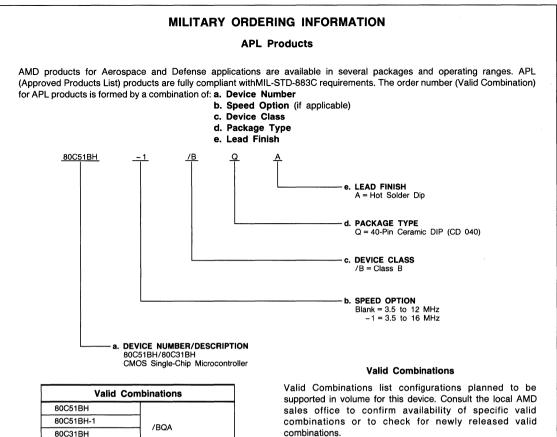
- CMOS versions of 8051 and 8031
- 80C51 = 80C31 + 4K bytes ROM
- 128 bytes of RAM
- 32 programmable I/O lines
- · CMOS and TTL compatible
- Two 16-bit timer/counters

- Low-power consumption:
 - Normal operation: 16 mA @ 5 V, 12 MHz
 - Idle mode: 3.7 mA @ 5 V, 12 MHz
 - Power-Down mode: 50 μA @ 2 V to 6 V
- 64K bytes Program Memory space
- 64 K bytes Data Memory space
- Boolean processor


GENERAL DESCRIPTION

The AMD 80C51 and 80C31 are CMOS versions of the 8051 and 8031 8-bit microcontrollers. They combine the power savings of CMOS with the powerful 8051/31 microcontroller.


These CMOS versions retain all the features of their NMOS counterparts: 4K bytes on-chip ROM (80C51 only); 128 bytes RAM; 32 I/O lines; two 16-bit timers; a five-source,


two-level interrupt structure; a full-duplex serial port; and on-chip oscillator and clock circuits.

In addition, the 80C51/31 has two software-selectable modes of reduced activity for further power conservation — Idle and Power-Down. In the Idle mode, the CPU is frozen while the RAM, timers, serial port, and the interrupt system continue to function. In the Power-Down mode, the RAM is saved and all other functions are inoperative.

80C51BH/80C31BH

80C31BH-1

Group A Tests Group A tests consist of Subgroups 1, 2, 3, 4, 7, 8, 9, 10, 11.

80C51BH/80C31BH

ABSOLUTE MAXIMUM RATINGS

OPERATING RANGES

Storage Temperature	65 to +150°C
Voltage on Any	
Pin to V _{SS} 0	.5 V to V_{CC} + 0.5 V
Voltage on V _{CC} to V _{SS}	0.5 V to 6.5 V
Power Dissipation	200 mW

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Military (M) Devices

Temperature (T _C) 55 to + 125°C	
Supply Voltage (V _{CC})+4 V to +6 V	
Ground (V _{SS})0 V	

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating ranges (for APL Products, Group A, Subgroups 1, 2, 3, are tested)

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
VIL	Input LOW Voltage (Except EA)		-0.5	.2 V _{CC} - 0.25	٧
VIL1	Input LOW Voltage (EA)	-	-0.5	.2 V _{CC} - 0.45	٧
VIH	Input HIGH Voltage (Except XTAL1, RST)		.2 V _{CC} + 1.1	V _{CC} + 0.5	٧
VIH1	Input HIGH Voltage (XTAL1 RST)		.7 V _{CC} + .2	V _{CC} + 0.5	٧
VOL	Output LOW Voltage (Ports 1, 2, 3)	I _{OL} = 1.6 mA (Note 1)		0.45	٧
VOL1	Output LOW Voltage (Port 0, ALE, PSEN)	I _{OL} = 3.2 mA (Note 1)		0.45	٧
		$I_{OH} = -60 \ \mu A, \ V_{CC} = 5 \ 10\%$	2.4		٧
VOH	Output HIGH Voltage (Ports 1, 2, 3)	I _{OH} = -25 μA	75 V _{CC}		٧
		I _{OH} = -10 µA	.9 V _{CC}		V
		$I_{OH} = -400 \ \mu A, V_{OC} = 5 \ V \pm 10\%$	24		٧
VOH1	Output HIGH Voltage (Port 0 in External Bus Mode, ALE, PSEN)	10H = -150 μΑ	.75 V _{CC}		v
		IOH = -40 μA (Note 2)	.9 V _{CC}		V
lιL	Logical 0 Input Current (Ports 1, 2, 3)	V _{IN} = 0.45 V	-	-75	μA
ITL	Logical 1 to 0 Transition Current (Ports 1, 2, 3)	V _{IN} = 2 V		-750	μA
ILI	Input Leakage Current (Port 0, EA)	0.45 VIN VCC		±10	μA
RRST	Reset Pulldown Resistor		50	150	kΩ
CIO	Pin Capacitance	Test Freq. = 1 MHz, T _A = 25°C		10	pF
IPD	Power Down Current	V _{CC} = 2 to 6 V (Note 3)		75	μA

MAXIMUM I_{CC} (mA)

	Ŏ Į Į į	perating (Note	4)		Idle (Note 5)	
Freq. V _{CC}	4 V	5 V	6 V	4 V	5 V	6 V
3.5 MHz	4.3	5.7	7.5	1.1	1.6	2.2
8.0 MHz	8.3	11	14	1.8	2.7	3.7
12 MHz	12	16	20	2.5	3.7	5
16 MHz	16	20.5	25	3.5	5	6.5

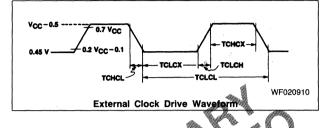
Notes: 1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OLS} of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1-to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8 V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt-Trigger STROBE input.

Capacitive loading on Ports 0 and 2 may cause the V_{OH} on ALE and PSEN to momentarily fall before the .9 V_{CC} specification when the address bits are stabilizing.

3. Power-Down I_{CC} is measured with all outputs pins disconnected: EA = Port 0 = V_{CC}; XTAL₂ N.C.; RST = V_{SS}.

4. I_{CC} is measured with all output pins disconnected; XTAL₁ driven with TCLCH, TCHCL = 5 ns, V_{IL} = V_{SS} + .5 V, V_{IH} = V_{CC} - .5 V; XTAL₂ N.C.; EA = RST = Port 0 = V_{CC}. I_{CC} would be slightly higher if a crystal oscillator is used.

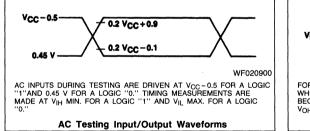
5. Idle I_{CC} is measured with all output pins disconnected; XTAL₁ driven with TCLCH, TCHCL = 5 ns, $V_{IL} = V_{SS} + .5 V$, $V_{IH} = V_{CC} - .5 V$; XTAL₂ N.C.; Port 0 = V_{CC} ; EA = RST = V_{SS} .

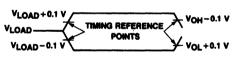

80C51BH/80C31BH

SWITCHING CHARACTERISTICS over operating range (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted) (C_L for Port 0, ALE and PSEN Outputs = 100 pF; C_L for All Other Outputs = 80 pF)

Deve meter	Parameter	16 MH	z Osc.	12 MH	z Osc.	Variable	Oscillator	
Parameter Symbol	Parameter Description	Min.	Max.	Min.	Max.	Min.	Max.	Uni
External Pro	ogram and Data Memory Characteristics							
1/TCLCL	Oscillator Frequency					3.5	16	MH
TLHLL	ALE Pulse Width	85		112		2TCLCL - 55		ns
TAVLL	Address Valid to ALE LOW	7		13	all	TCLCL – 70		ns
TLLAX	Address Hold After ALE LOW	27		38		TCLCL - 50		ns
TLLIV	ALE LOW to Valid Instr. In		150	dillar dilla	218		4TCLCL - 115	ns
TLLPL	ALE LOW to PSEN LOW	22	1	28	1110	ICL CL - 55		ns
TPLPH	PSEN Pulse Width	142	THAN.	19	Aller	3TCLCL - 60		ns
TPLIV	PSEN LOW to Valid Instr. In	1	83	An Im	130	Manufille	3TCLCL - 120	ns
TPXIX	Input Instr. Hold After PSEN	10 Page		0	V W	0		ns
TPXIZ	Input Instr. Float After PSEN	an All au	38 ·	ar Allador	43		TCLCL - 40	ns
TAVIV	Address to Valid Instr. In	All have	208	AN IN	297		5TCLCL - 120	ns
TPLAZ	PSEN LOW to Address Float		Allan HP	All .	25		25	ns
TRLRH	RD Pulse Width	275	Add W	400		6TCLCL - 100		ns
TWLWH	WR Pulse Width	275	AL W	400		6TCLCL - 100		ns
TRLDV	RD LOW to Valid Data In	AN AL	148		232		5TCLCL - 185	ns
TRHDX	Data Hold After RD	o white		0		0		ns
TRHDZ	Data Flost After FID		55		82		2TCLCL - 85	ns
TLLDV	ALE LOW to Valid Data In		350		49		8TCLCL - 170	ns
TAVDV	Address to Valid Data In		398		565		9TCLCL - 185	ns
TLLWL	ALE LOW to RD or WR LOW	137	238	185	315	3TCLCL - 65	3TCLCL + 65	ns
TAVWL	Address Valid to Read or Write LOW	120		188		4TCLCL-145		ns
TQVWX	Data Valid to WR Transiiton	2		8		TCLCL - 75		ns
TWHQX	Data Hold After WR	12		18		TCLCL - 65		ns
TRLAZ	RD LOW to Address Float		0		0		0	ns
TWHLH	RD or WR HIGH to ALE HIGH	22	103	18	148	TCLCL - 65	TCLCL + 65	ns

EXTERNAL CLOCK DRIVE


Parameter Symbol	Parameter Description	Min.	Max.	Unit
1/TCLCL	Oscillator Frequency	3.5	16	MHz
TCHCX	HIGH Time	20		ns
TCLCX	LOW Time	20		ns
TCLCH	Rise Time		20	ns
TCHCL	Fall Time		20	ns



SERIAL PORT TIMING — SHIFT REGISTER MODE (Test Conditions: $T_C = -55$ to $+125^{\circ}$ C; $V_{CC} = 5$ V $\pm 20^{\circ}$;

0 V; Load Capacitance = 80 pF) ∦ss`

Parameter	Parameter	16 MHz Osc.		Iz Osc. Variable Oscillator		
Symbol	Parameter Description	Min.	Max.	Min.	Max.	Unit
TXLXL	Serial Port Clock Cycle Time	750		12TCLCL		ns
TQVXH	Output Data Setup to Clock Rising Edge	492		10TCLCL - 133		ns
TXHQX	Output Data Hold After Clock Rising Edge	8		2TCLCL - 117		ns
TXHDX	Input Data Hold After Clock Rising Edge	0		0		ns
TXHDV	Clock Rising Edge to Input Data Valid		492		10TCLCL - 133	ns

WF020940

FOR TIMING PURPOSES A PORT PIN IS NO LONGER FLOATING WHEN A 100 MV CHANGE FROM LOAD VOLTAGE OCCURS, AND BEGINS TO FLOAT WHEN A 100 MV CHANGE FROM THE LOADED $V_{OH}/V_{OL}LEVEL$ OCCURS. $I_{OL}/I_{OH} \ge \pm 20$ mA.

Float Waveform

8751H/8753H

Single-Chip 8-Bit Microcontroller

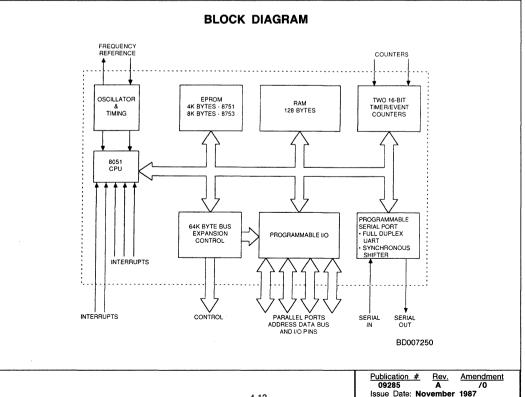
MILITARY INFORMATION

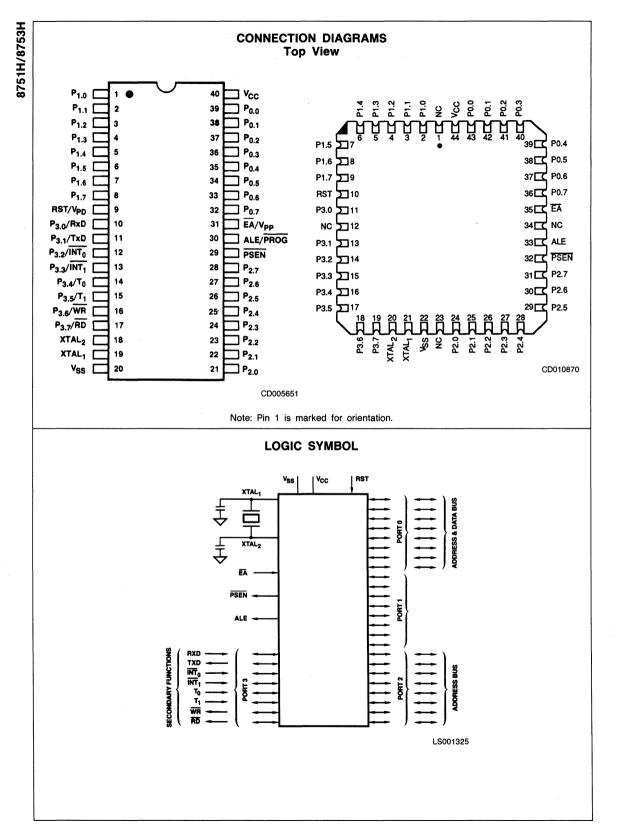
DISTINCTIVE CHARACTERISTICS

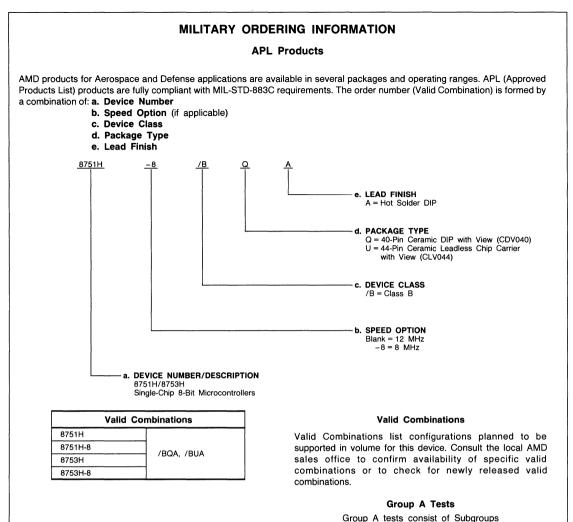
- Military Temperature Range
 --55 to +125°C (T_C)
- 4K x 8 EPROM (8751); 8K x 8 EPROM (8753)
- 128 x 8 RAM
- 64K bytes Program Memory space
- 64K bytes Data Memory space

- Pin-compatible with entire 8051 Family
- Full-duplex programmable serial ports
- 32 I/O lines (four 8-bit ports)
- Supports Adaptive EPROM Programming
- EPROM Security Feature
- Two 16-bit Timer/Event counters

GENERAL DESCRIPTION


The 8751H and 8753H are members of a family of advanced single-chip microcontrollers. Both the 8751H, which has 4K bytes of EPROM, and the 8753H, which has 8K bytes of EPROM, are pin-compatible EPROM versions of the 8051AH and 8053AH, respectively. Thus, the 8751H/8753H are full-speed prototyping tools which provide effective single-chip solutions for controller applications that require code modification flexibility. Refer to the block diagram of the 8051 family.


The 8751H/8753H devices feature: thirty-two I/O lines; two 16-bit timer/event counters; a Boolean processor, a 5-source, bi-level interrupt structure; a full-duplex serial channel; and on-chip oscillator and clock circuitry.


Program and Data Memory are located in independent addresses. The AMD family of microcontrollers can access up to 64K bytes of external Program Memory and up to 64K bytes of external Data Memory. The 8751H and the 8753H contain the lower 4K and 8K bytes of Program Memory, respectively, on-chip. Both parts have 128 bytes of on-chip read/write data memory.

The AMD 8051 Microcontroller Family is specifically suited for control applications. A variety of fast addressing modes, which access the internal RAM, facilitates byte processing and numerical operations on small data structures. Included in the instruction set is a menu of 8-bit arithmetic instructions, including 4-cycle multiply and divide instructions.

Extensive on-chip support enables direct bit manipulation and testing of 1-bit variables as separate data types. Thus, the device is also suited for control and logic systems that require Boolean processing.

4-15

1, 2, 3, 7, 8, 9, 10, 11.

8751H/8753H

ABSOLUTE MAXIMUM RATINGS

OPERATING RANGES

Storage Temperature-65 to +150°C Voltage on Any Other Pin to VSS

(Except V _{PP})0.5 to +7.0 V
Voltage from VPP to VSS0.5 to +21.5 V
Power Dissipation2 W

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

Military (M) Devices

Temperature (T _C)55 to +125°C	
Supply Voltage (V _{CC})+4.5 to +5.5 V	
Ground (V _{SS})0 V	

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
VIL †	Input LOW Voltage		-0.5	0.7	V
VIL1 †	Input LOW Voltage to EA		0	0.7	v
Viн †	Input HIGH Voltage (Except XTAL ₂ , RST)		2.2	V _{CC} + 0.5	v
VIH1 †	Input HIGH Voltage to XTAL ₂ , RST	XTAL ₁ = Vss	2.5	V _{CC} + 0.5	v
VOL	Output LOW Voltage (Ports 1, 2, 3) (Note 1)	$I_{OL} = 1.2 \text{ mA}$		0.45	v
VOL1	Output LOW Voltage (Port 0, ALE, PSEN) (Note 1)	IOL 2.8 MA		0.60	v
FOLT		OL=2.4 mA		0.45	•
Vон	Output HIGH Voltage (Ports 1, 2, 3)	μ = -60 μ A	2.4		٧
VOH1	Output HIGH Voltage (Port 0 in External Bus Mode, ALE, PSEN)	IOH = -300 μA	2.4		v
l _{IL}	Logical 0 Input Current P1, P2, P3	V _{IN} = 0.45 V		- 500	μA
liL1	Logical 0 Input Current to EA/Vpp	V _{IN} = 0.45 V		- 15	mA
IIL2	Logical 0 Input Current to XTAL2	$XTAL_1 = V_{SS}, V_{IN} = 0.45 V$		-4.5	mA
ILI	Input Leakage Current to Port	0.45 < V _{IN} < V _{CC}		±100	μA
ін	Logical Input Current to EA/Vpp	V _{IN} = 2.4 V		500	μA
liH1	Input Current to RST/VPP to Activate Reset	V _{IN} < (V _{CC} – 1.5 V)		500	μA
ICC	Power Supply Current (Note 3)	All Outputs Disconnected, EA = V _{CC}		275	mA
CIO ††	Capacitance of I/O Buffers	f _C = 1 MHz, T _A = 25°C		30*	pF
I _{PD}	Power-Down Current (Note 2)	$T_A = 25^{\circ}C, V_{PD} = 5.0 V, V_{CC} = 0 V$		10	mA

Notes: 1. Capacitive loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OLS} of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 jins when these pins make 1.to-0 transitions during bus operations. In the worst cases (capacitive loading > 100 pF), the noise pulse on the ALE line may exceed 0.8 V. In such cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.
2. Power-Down I_{CC} is measured with all output pins disconnected; EA = V_{CC} = 0; XTAL₂ = N.C.; RST = V_{PD} = 5.0 V.
3. I_{CC} is measured with all output pins disconnected; XTAL₁ driven with t_{CLCH}, t_{CHCL} = 5 ns, V_{IL} = V_{SS} + 5 V, V_{IH} = V_{CC} - 5 V; XTAL₂ = N.C.; EA = RST = V_{CC}.

Group A, Subgroups 7 and 8 only are tested. Not included in Group A tests. Not tested; guaranteed by design.

ŧţ

SWITCHING CHARACTERISTICS over operating range (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

(Load Capacitance for Port 0, ALÉ, and PSEN = 100 pF, Load Capacitance for All Other Outputs = 80 pF) External Program Memory Characteristics

Parameter	Parameter	12-MH	12-MHz Osc.		z Osc.	Variable Oscillator			
Symbol	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
1/t _{CLCL}	Oscillator Frequency	3.5	12	3.5	8	3.5	12	MHz	
tLHLL	ALE Pulse Width	112		195		2t _{CLCL} -55		ns	
tAVLL	Address Setup to ALE	28		70		t _{CLCL} -55		ns	
tLLAX	Address Hold After ALE	33		75		t _{CLCL} -50		ns	
tLLIV	ALE to Valid Instr In		168		335		4t _{CLCL} -165	ns	
tLLPL	ALE to PSEN	43		85		t _{CLCL} -40		ns	
tPLPH	PSEN Pulse Width	175		300		3t _{CLCL} -75		ns	
tPLIV	PSEN to Valid Instr In		85		210		3t _{CLCL} -165	ns	
t _{PXIX}	Input Instr Hold After PSEN	0		0		0		ns	
tPXIZ	Input Instr Float After PSEN		48		90		t _{CLCL} -35	ns	
t _{PXAV}	Address Valid After PSEN	58		100		t _{CLCL} -25		ns	
tAVIV	Address to Valid Instr In		252		460		5t _{CLCL} -165	ns	
t _{PLAZ}	Addr Float After PSEN		20		20		20	ns	

External Data Memory Characteristics

Parameter	Demonster		12-MHz Osc. 8-MHz Osc.			Variable						
Symbol	Parameter Description	Min.	Max	Min.	Max.	Min.	Max.	Unit				
^t RLRH	RD Pulse Width	400		650		6t _{CLCL} -100		ns				
twlwh	WR Pulse Width	400		650		6t _{CLCL} -100		ns				
t _{LLAX}	Address Hold After ALE	39	All V	75		t _{CLCL} -50		ns				
^t RLDV	RD to Valid Data In	AP Tages of P	232		440		5t _{CLCL} - 185	ns				
t _{RHDX}	Data Hold After RD	A P		0		0		ns				
tRHDZ	Data Float After RD	ullb-	82		165		2t _{CLCL} -85	ns				
tLLDV	ALE to Valid Data In		496		830		8t _{CLCL} -170	ns				
tAVDV	Address to Valid Data In		565		940		9t _{CLCL} - 185	ns				
tLLWL	ALE to RD or WR	185	315	310	440	3t _{CLCL} -65	3t _{CLCL} + 65	ns				
tAVWL	Address to RD or WR	188		355		4t _{CLCL} -145		ns				
tovwx	Data Valid to WR Transition	0		40		t _{CLCL} -85		ns				
tQVWH	Data Setup Before WR	508		800		7t _{CLCL} -75		ns				
tWHQX	Data Hold After WR	18		60		t _{CLCL} -65		ns				
tRLAZ	Address Float After RD		20		20		20	ns				
twhlh	RD or WR HIGH to ALE HIGH	18	148	60	190	t _{CLCL} -65	t _{CLCL} +65	ns				

External Clock Drive*

Parameter Symbol	Parameter Description	Min.	Max.	Unit
1/tCLCL	Oscillator Frequency	1.2	12	MHz
tснсх	HIGH Time	20		ns
tCLCX	LOW Time	20		ns
tCLCH	Rise Time		20	ns
tCHCL	Fall Time		20	ns

*Not tested; these specs are controlled by the Teradyne J941, J983 tester.

SWITCHING CHARACTERISTICS (Cont'd.) Serial Port Timing — Shift Register Mode ($C_L = 8 pF$)

Parameter	Parameter	12-MHz 8-MHz Osc. Osc. Varia				Oscillator		
Symbol	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tXLXL	Serial Port Clock Cycle Time	1.0		1.0		12t _{CLCL}		μs
tQVXH	Output Data Setup to Clock Rising Edge	700		1117		10t _{CLCL} -133		ns
txhqx	Output Data Hold After Clock Rising Edge	49		133	Á	2101CL-117		ns
^t XHDX	Input Data Hold After Clock Rising Edge	0		0		0		ns
^t XHDV	Clock Rising Edge to Input Data Valid		700	4	(11)		10t _{CLCL} -133	ns

EPROM Programming and Verification Characteristics ($T_A = +21$ to $+27^{\circ}$ C, $V_{CC} = +5$ V $\pm 10\%$, $V_{SS} = 0$ V)

	dta	4 ⁹⁷		
Parameter Symbol	Parameter Description	Min.	Max.	Unit
VPP	Programming Supply Voltage	20.5	21.5	V
Ipp	Programming Supply Current		30	mA
1/t _{CLCL}	Oscillator Frequency	4	6	MHz
tavgl	Address Setup to PROG	48t _{CLCL}		
tGHAX	Address Hold After PROG	48t _{CLCL}		
^t DVGL	Data Setup to PROC	48t _{CLCL}		
tGHDX	Data Hold After PROG	48t _{CLCL}		
tensh	P2.7 (ENABLE) HIGH to VPP	48t _{CLCL}		
tSHGL	Vpp Setup to PPOG	10		μs
tGHSL	VPP Hold after PROG	10		μs
tGLGH	PROG Width	45	55	ms
tAVQV	Address to Data Valid		48t _{CLCL}	
^t ELQV	ENABLE to Data Valid		48t _{CLCL}	
^t EHQZ	Data Float After ENABLE	0	48t _{CLCL}	

*Not tested; guaranteed by design.

CHAPTER 5

Z8002	5-1
Z8530**	5-8

* DESC approved ** Pending DESC approval

1.5.5

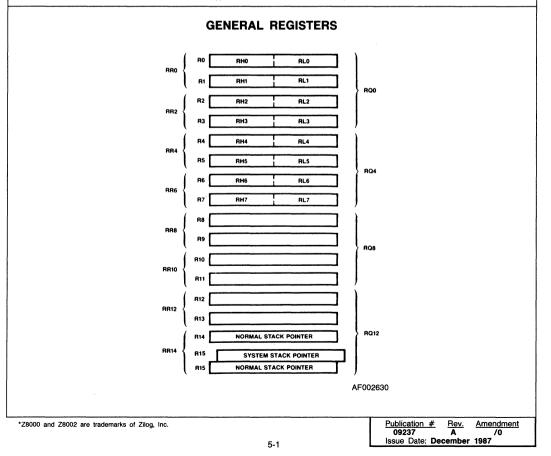
ς.

Z8002^{*}

16-Bit Microprocessor

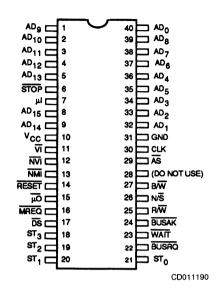
MILITARY INFORMATION

DISTINCTIVE CHARACTERISTICS

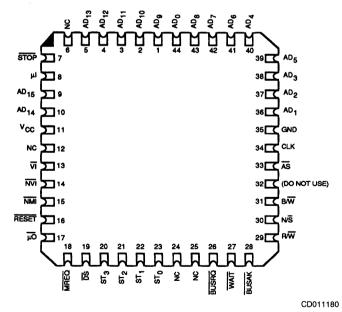

- 4- and 6-MHz CPU Clock High throughput with low system clock rate for easier system design
- Powerful General Register Architecture 16 general registers provide high throughput in all types of applications
- Wide Variety of Data Types Instructions operate on bits, bytes, 16- and 32-bit words for efficient programming of a wide variety of functions
- Partitioned for Operating System Protection Hardware bit protects privileged instructions from execution except by operating system

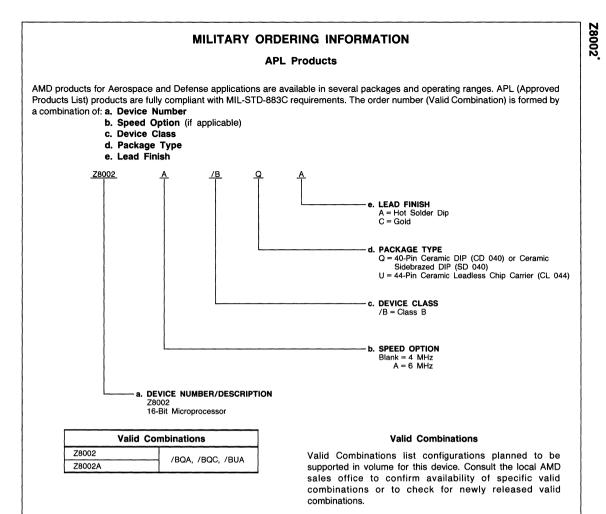
Z8002

- Supports 3 Types of Interrupts
 Separate pins provided for vectored, non-vectored and non-maskable interrupts
- Two Compatible CPUs Compact 40-pin Z8002 supports 64KB memory


GENERAL DESCRIPTION

The Z8002 is a general-purpose 16-bit CPU belonging to the Z8000 family of microprocessors. Its architecture is centered around sixteen 16-bit general registers. The CPU deals with 23-bit address space which consists of two components: 7-bit segment number and 16-bit offset. Facilities are provided to maintain three distinct address spaces — code, data and stack. The Z8002 implements a powerful instruction set with flexible addressing modes. These instructions operate on several data types — bit, byte, word (16-bit), long word (32-bit), byte string and word string. The CPU can execute instructions in one of two modes — System and Normal. Sometimes these modes are also known as Privileged and Non-Privileged, respectively. The CPU also contains an on-chip memory refresh facility. The Z8002 is fabricated using silicon-gate N-MOS technology and is packaged in a 40-pin DIP. The Z8002 requires a single +5-V power supply and a single phase clock for its operation.




DIPs

Group A Tests

Group A tests consist of Subgroups 1, 2, 3, 7, 8, 9, 10, 11.

ABSOLUTE MAXIMUM RATINGS

Z8002^{*}

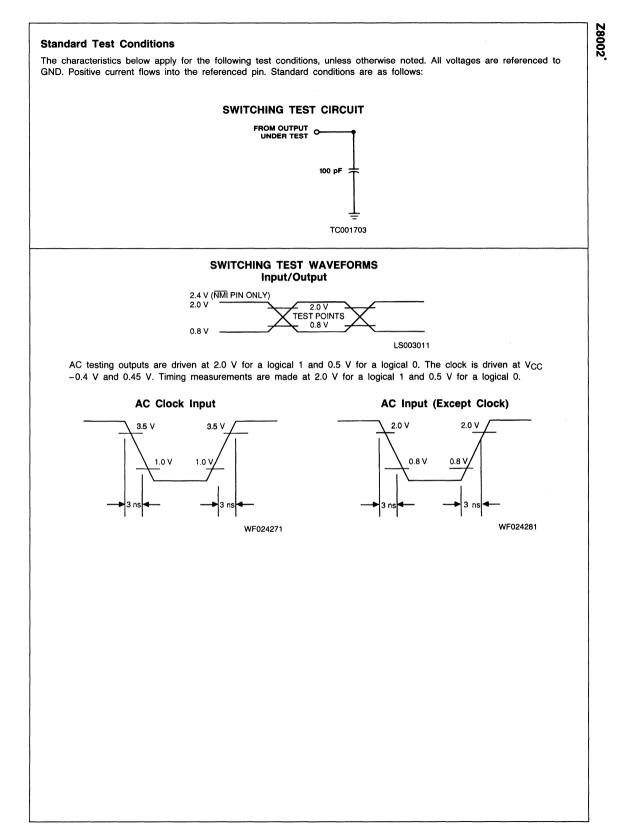
Storage Temperature65 to +150°C	
Voltage at any Pin	
Relative to V _{SS} 0.3 to +7.0V	
Power Dissipation	

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Military (M) Devices
Temperature (T _C)55 to +125°C
Supply Voltage (V _{CC})5 V \pm 5%

Operating ranges define those limits between which the functionality of the device is guaranteed.


DC CHARACTERISTICS over operating range (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
V _{CH} †	Clock Input HIGH Voltage	Driven by External Clock Generator	V _{CC} -0.4	V _{CC} +0.3*	v
V _{CL} †	Clock Input LOW Voltage	Driven by External Clock Generator	-0.3*	0.45	v
VIH †	Input HIGH Voltage		2.0	V _{CC} +0.3*	V
V _{IH} MMI, † Reset	Input HIGH Voltage		2.4	V _{CC} +0.3*	v
VIL †	Input LOW Voltage		-0.3*	0.8	v
V _{OH}	Output HIGH Voltage	I _{OH} = -250µА	2.4		v
V _{OL}	Output LOW Voltage	IOL = + 2.0mA		0.4	v
۱ _۱	Input Leakage Except SEGT Pin	0.4 ≤ V _{IN} ≤ + 2.4V		±10	μA
${\sf II}_{\sf L}$ on $\overline{\sf SEGT}$	Input Leakage on SEGT Pin		-100	100	μA
lol	Output Leakage	$0.4 \leq V_{OUT} \leq +2.4V$		±10	μA
ICC	V _{CC} Supply Current (Note 1)			400	mA

* Not tested; guaranteed by design.

† Group A, Subgroups 7 and 8 only are tested.

Notes: 1. I_{CC} is measured while running a functional pattern with the loads turned on.

SWITCHING CHARACTERISTICS over operating range (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

	Parameter	Parameter Parameter	4-MHz	Devices	6-MHz	Devices	
No.	Symbol	Description	Min.	Max.	Min.	Max.	Unit
1	TcC	Clock Cycle Time	250	500	160	500	ns
2	TwCh	Clock Width (HIGH)	105	250	70	250	ns
3	TwCl	Clock Width (LOW)	105	250	70	250	ns
4	TfC	Clock Fall Time (Note 1)		20		10	ns
5	TrC	Clock Rise Time (Note 1)		20		15	ns
8	TdC(Bz)	Clock † to Bus Float (Note 2)		65		55	ns
9	TdC(A)	Clock † to Address Valid		100		75	ns
10	TdC(Az)	Clock ↑ to Address Float (Note 2)		65		55	ns
11	TdA(DR)	Address Valid to Read Data Required Valid (Note 2)		475		305	ns
12	TsDI(C)	Data In to Clock ↓ Setup Time	50	attilies	20		ns
13	TdDS(A)	DS ↑ to Address Active (Note 2)	80		45		ns
14	TdC(DW)	Clock ↑ to Write Data Valid		100		75	ns
15	ThDI(DS)	Data In to DS ↑ Hold Time			0		ns
16	TdDO(DS)	Data Out Valid to DS † Delay (Note 2)	295		195		ns
17	TdA(MR)	Address Valid to MREQ ↓ Delay (Note 2)	55		35		ns
18	TdC(MR)	Clock ↓ to MREQ ↓ Delay	<u>6</u> ,	80		60	ns
19	TwMRh	MREQ Width (HIGH) (Note 2)	210		135		ns
20	TdMR(A)	MREQ 1 to Address Not Active (Note 2)	70		35		ns
21	TdDO(DSW)	Data Out Valid to DS 1 (Write) Delay (Note 2)	55		35		ns
22	TdMR(DR)	MREQ 1 to Read Data Required Valid (Note 2)		370		230	ns
23	TdC(MR)	Clock ↓ to MREQ ↑ Delay		80		60	ns
24	TdC(ASf)	Clock t to AS . Delay		80		60	ns
25	TdA(AS)	Address Value to AS † Delay (Note 2)	55		35		ns
26	TdC(ASr)	Clock to AS † Delay		90		80	ns
27	TdAS(DR)	AS ↑ to Read Data Required Valid (Note 2)		360		220	ns
28	TdDS(AS)	DS ↑ to AS ↓ Delay (Note 2)	70		35		ns
29	TwAS	AS Width (LOW) (Note 2)	85		55		ns
30	TdAS(A)	AS ↑ to Address Not Active Delay (Note 2)	70		45		ns
31	TdAz(DSR)	Address Float to $\overline{\text{DS}}$ (Read) \downarrow Delay (Note 2)	0		0		ns
32	TdAS(DSR)	AS ↑ to DS (Read) ↓ Delay (Note 2)	80		55		ns
33	TdDSR(DR)	DS (Read) ↓ to Read Data Required Valid (Note 2)		205		130	ns
34	TdC(DSr)	Clock ↓ to DS ↑ Delay		70		65	ns
35	TdDS(DW)	$\overline{\text{DS}}$ \uparrow to Write Data and STATUS Not Valid (Note 2)	75		45		ns
36	TdA(DSR)	Address Valid to $\overline{\text{DS}}$ (Read) \downarrow Delay (Note 2)	180		110		ns
37	TdC(DSR)	Clock ↑ to DS (Read) ↓ Delay		120		85	ns
38	TwDSR	DS (Read) Width (LOW) (Note 2)	275		185		ns

Notes: See next page for notes.

SWITCHING CHARACTERISTICS (Cont'd.)

	Parameter	Parameter	4-MHz	Devices	6-MHz	Devices	
No.	Symbol	Description	Min.	Max.	Min.	Max.	Unit
39	TdC(DSW)	Clock ↓ to DS (Write) ↓ Delay		95		80	ns
40	TwDSW	DS (Write) Width (LOW) (Note 2)	185		110		ns
41	TdDSI(DR)	DS (Input) ↓ to Read Data Required Valid (Note 2)		330		210	ns
42	TdC(DSF)	Clock ↓ to DS (I/O) ↓ Delay		120		100	ns
43	TwDS	DS (I/O) Width (LOW) (Note 2)	410		255		ns
44	TdAS(DSA)	AS ↑ to DS (Acknowledge) ↓ Delay (Note 2)	1065		690		ns
45	TdC(DSA)	Clock ↑ to DS (Acknowledge) ↓ Delay	A	120		85	ns
46	TdDSA(DR)	DS (Acknowledge) ↓ to Read Data Required Delay (Note 2)	A TRANS	455		295	ns
47	TdC(S)	Clock ↑ to Status Valid Delay		110		85	ns
48	TdS(AS)	Status Valid to AS ↑ Delay (Note 2)	50		30		ns
49	TsR(C)	RESET to Clock † Setup Time	180		70		ns
50	ThR(C)	RESET to Clock ↑ Hold Time	0		0		ns
51	TwNMI	NMI Width (LOW)	100		70		ns
52	TsNMI(C)	NMI to Clock † Setup Time	140		70		ns
53	TsVI(C)	VI, NVI to Clock t Setup Time	110		50		ns
54	ThVI(C)	VI, NVI to Clock A Hold Time	20		20		ns
57	TsMI(C)	MI to Clock Setup Time	180		110		ns
58	ThMI(C)	MI to Clock (Hold Time	0		0		ns
59	TdC(MO)	Clock 1 to MO Delay		120		85	ns
60	TsSTP(C)	STOP to Clock ↓ Setup Time	140		80		ns
61	ThSTP(C)	STOP to Clock ↓ Hold Time	0		0		ns
62	TsWT(C)	WAIT to Clock ↓ Setup Time	50		30		ns
63	ThWT(C)	WAIT to Clock ↓ Hold Time	10		10		ns
64	TsBRQ(C)	BUSRQ to Clock † Setup Time	90		80		ns
65	ThBRQ(C)	BUSRQ to Clock † Hold Time	10		10		ns
66	TdC(BAKr)	Clock ↑ to BUSAK ↑ Delay		100		75	ns
67	TdC(BAKf)	Clock ↑ to BUSAK ↓ Delay		100		75	ns
68	TwA	Address Valid Width (Note 2)	150		95		ns
69	TdDS(S)	DS † to STATUS Not Valid (Note 2)	80		55		ns

Notes: 1. Clock rise and fall times are intended for design information only; not tested. 2. Not tested.

Z8530

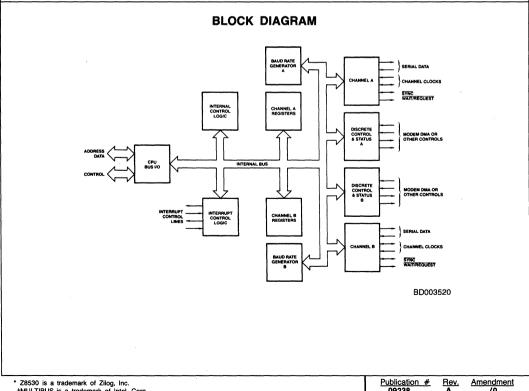
Serial Communications Controller

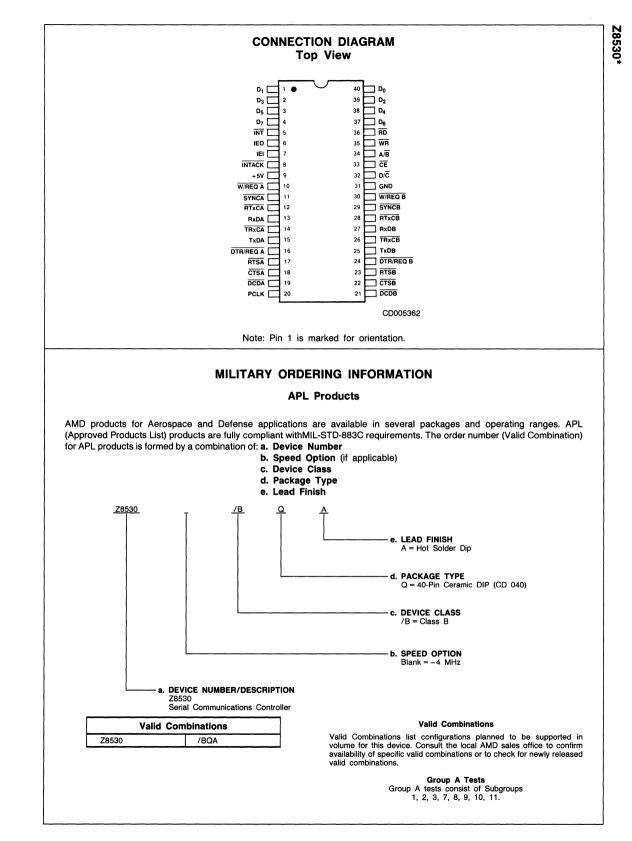
MILITARY INFORMATION

DISTINCTIVE CHARACTERISTICS

- Two 0 to 2 Mbps full-duplex serial channels • Each channel has independent oscillator, baud-rate generator, and PLL for clock recovery, dramatically reducing external components.
- Programmable protocols • NRZ, NRZI, and FM data encoding supported under program control.
- **Programmable Asynchronous Modes** . 5- to 8-bit characters with programmable stop bits, clock, break detect, and error conditions.
- Programmable Synchronous Modes SDLC and HDLC and SDLC loop supported with frame control, zero insertion and deletion, abort, and residue handling. CRC-16 and CCITT generators and checkers.
- Compatible with non-multiplexed bus The Z8530 interfaces easily to most other CPUs.

GENERAL DESCRIPTION


The SCC Serial Communications Controller is a dualchannel, multi-protocol data communications peripheral designed for use with 8- and 16-bit microprocessors. The SCC functions as a serial-to-parallel, parallel-to-serial converter/controller. The SCC can be software-configured to satisfy a wide variety of serial communications applications. The device contains a variety of new, sophisticated internal functions, including on-chip baud rate generators, digital phase-locked loops, and crystal oscillators, which dramatically reduce the need for external logic.


The SCC handles asynchronous formats, synchronous byte-oriented protocols, such as IBM Bisync, and synchro-

nous bit-oriented protocols, such as HDLC and IBM SDLC. This versatile device supports virtually any serial data transfer application (cassette, diskette, tape drivers, etc.).

The device can generate and check CRC codes in any synchronous mode and can be programmed to check data integrity in various modes. The SCC also has facilities for modem controls in both channels. In applications where these controls are not needed, the modem controls can be used for general-purpose I/O.

The Z8530 is designed for non-multiplexed buses and is easily interfaced with most other CPUs, such as Z80, 6800, 68000, and MULTIBUS.[†]

ABSOLUT

Z8530*

ABSOLUTE MAXIMUM RATINGS

OPERATING RANGES

Storage Temperature	65 to +150°C
Voltage at any Pin	
Relative to V _{SS}	0.5 to+7.0 V
Power Dissipation	1.8 W

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

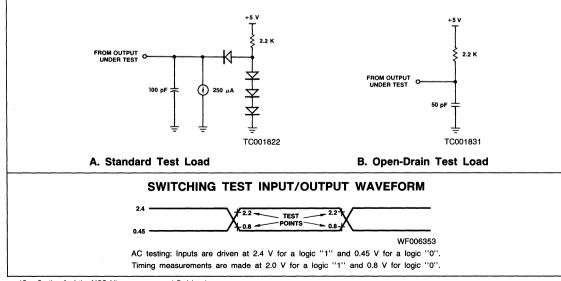
Military (M) Devices	
Temperature (T _C)55 to +125°C	
Supply Voltage (V _{CC})5 V $\pm 10\%$	

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over operating range (for APL Products, Group A, Subgroups 1, 2, 3 are tested unless otherwise noted)

Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Unit
VIH	Input HIGH Voltage		2.2		V _{CC} +0.3*	V
VIL	Input LOW Voltage		-0.3*		0.8	V
VOH	Output HIGH Voltage	I _{OH} = -250 μA	2.4			V
VOL	Output LOW Voltage	I _{OL} = + 2.0 mA			0.4	V
μL	Input Leakage	$0.4 V \le V_{IN} \le 2.4 V$			± 10.0	μA
IOL	Output Leakage	0.4 V < VOUT < 2.4 V			±10.0	μA
ICC	V _{CC} Supply Current				250	mA
CAPACIT	ANCE*					
Parameter Symbol	Parameter Description	Test Conditions	Min.	Тур.	Max.	Unit
C _{IN} †	Input Capacitance	Unmeasured pins returned			10*	pF
COUT [†]	Output Capacitance	to ground. f = 1 MHz at			15*	pF
Ci/O†	Bidirectional Capacitance	T _C = 25°C			20*	pF
* Not tested: guaranteed by design						

Not tested; guaranteed by design.
 Not included in Group A tests.


Thos included in Group A lesis.

Standard Test Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the referenced pin. Standard conditions are as follows:

+ 4.5 V \leq V_{CC} \leq 5.5 V GND = 0 V -55°C \leq T_C \leq 125°C

SWITCHING TEST CIRCUITS

SWITCHING CHARACTERISTICS over operating range (for APL Products, Group A, Subgroups 9, 10, 11 are tested unless otherwise noted)

GENERAL TIMING

No.	Parameter Symbol	Parameter Description	Min.	Max.	Unit
1	TdPC(REQ)	PCLK ↓ to W/REQ Valid Delay		250	ns
2	TdPC(W)	PCLK 1 to Wait Inactive Delay		350	ns
3	TsRXC(PC)	RxCt to PCLK t Set-up Time (Note 1, 4)	80	TWPCL	ns
4	TsRXD(RXCr)	RxD to RxC t Set-up Time (XI Mode) (Note 1)	0		ns
5	ThRXD(RXCr)	RxD to RxC + Hold Time (XI Mode) (Note 1)	150		ns
6	TsRXD(RXCf)	RxD to RxC Set-up Time (XI Mode) (Notes 1, 5)	0		ns
7	ThRXD(RXCf)	RxD to RxC 1 Hold Time (XI Mode) (Notes	150		ns
8	TsSY(RXC)	SYNC to RxC ↑ Set-up Time (Note 1)	- 200		ns
9	ThSY(RXC)	SYNC to RxC + Hold Time (Note 1)	3TcPC + 400		ns
10	TsTXC(PC)	TxC + to PCLK † Set-up Time (Notes 2, 4)	0		ns
11	TdTXCf(TXD)	TxC to TxD Delay (XI Model (Note 2)		300	ns
12	TdTXCr(TXD)	TxC † to TxD Delay (XI Mode) (Notes 2, 5)		300	ns
13	TdTXD(TRX)	TxD to TRxC Delay (Send Dlock Echo)		200	ns
14	TwRTXh	RTxC High With (Note 6)	180		ns
15	TwRTXI	RTxC Low Width (Note 6)	180		ns
16	TcRTX	RTxC Cycle Time (Notes 6, 7)	1000		ns
17	TcRTXX	Crystal Oscillator Period (Note 8)	250	1000	ns
18	TwTRXh	TRXC High Width (Note 6)	180		ns
19	TwTRXI	TRAC Low Width (Note 6)	180		ns
20	TcTRX	TRXC Cycle Time (Notes 6, 7)	1000		ns
21	TwEXT	DCD or CTS Pulse Width	200		ns
22	TwSY	SYNC Pulse Width	200		ns

Notes: 1. RxC is RTxC or TRxC, whichever is supplying the receive clock.
 2. TxC is TRxC or RTxC, whichever is supplying the transmit clock.
 3. Both RTxC and SYNC have 30 pF capacitors to ground connected to them.
 4. Parameter applies only if the data rate is one-fourth the PCLK rate. In all other cases, no phase relationship between RxC and PCLK or TxC and PCLK is required.
 5. Parameter applies only to FM encoding/decoding.
 6. Parameter applies only for transmitter and receiver; DPLL and baud rate generator timing requirements are identical to chip PCLK requirements.

requirements.

7. The maximum receive or transmit data is $\frac{1}{4}$ PCLK.

8. Not tested; guaranteed by design.

SWITCHING CHARACTERISTICS (Cont'd.)

SYSTEM TIMING

No.	Parameter Symbol	Parameter Description	Min.	Max.	Unit
1	TdRXC(REQ)	RxC † W/REQ Valid Delay (Note 2)	8	12	TcPC
2	TdRXC(W)	RxC + to Wait Inactive Delay (Notes 1, 2)	8	14	TcPC
3	TdRXC(SY)	RxC ↑ to SYNC Valid Delay (Note 2)	4	7	TcPC
4	TdRXC(INT)	RxC † to INT Valid Delay (Notes 1, 2)	10	16	TcPC
5	TdTXC(REQ)	TxC ↓ to W/REQ Valid Delay (Note 3)	5	8	TcPC
6	TdTXC(W)	TxC ↓ to Wait Inactive Delay (Notes 1, 3)	5	11	TcPC
7	TdTXC(DRQ)	TxC + to DTR/REQ Valid Delay (Note 3)	4	7	TcPC
8	TdTXC(INT)	TxC 1 to INT Valid Delay (Notes 1, 3)	6	10	TcPC
9	TdSY(INT)	SYNC Transition to INT Valid Delay (Note 1)	2	6	TcPC
10	TdEXT(INT)	DCD or CTS Transition to INT Valid Delay (Note 1)	2	6	TcPC

Notes: 1. Open-drain output, measured with open-drain test load. 2. RxC is RTxC or TRxC, whichever is supplying the receive clock. 3. TxC is TRxC or RTxC, whichever is supplying the transmit clock.

READ AND WRITE TIMING Parameter Parameter No. Symbol Description Min. Unit Max. 1 TwPCI PCLK Low Width 105 1000 ns 2 TwPCh PCLK High Width 105 1000 ns TfPC 3 PCLK Fall Time 20 ns 4 TrPC PCLK Rise Time 20 ns 5 TcPC PCLK Cycle Time 250 2000 ns Address to WR | Set-up Time TsA(WR) 80 6 ns Address to WR + Held Time 7 ThA(WR) 0 ns Address to RD . Set-up Time 8 TsA(RD) 80 ns Address to RD + Hold Time 9 ThA(RD) 0 ns INTACK to PCLK t Set-up Time 10 TsIA(PC) 10 ns INTACK to WR Set-up Time (Note 1) TslAi(WR) 11 200 ns INTACK to WR 1 Hold Time 12 ThIA(WR) 0 ns MACK to RD ↓ Set-up Time (Note 1) 13 TslAi(RD) 200 ns INTACK to RD t Hold Time 14 ThIA(RD) 0 ns 15 INTACK to PCLK † Hold Time ThIA(PC) 100 ns CE Low to WR ↓ Set-up Time 16 TsCEI(WR) 0 ns CE to WR + Hold Time 17 ThCE(WR) 0 ns CE High to WR ↓ Set-up Time 18 TsCEh(WR) 100 ns CE Low to RD + Set-up Time (Note 1) 19 TsCEI(RD) 0 ns CE to RD + Hold Time (Note 1) 20 ThCE(RD) 0 ns 21 TsCEh(RD) CE High to RD ↓ Set-up Time (Note 1) 100 ns TwRDI RD Low Width (Note 1) 22 240 ns TdRD(DRA) RD 1 to Read Data Active Delay 23 0 ns TdRDr(DR) RD t to Read Data Not Valid Delay 24 0 ns 25 TdRDf(DR) RD 1 to Read Data Valid Delay 220 ns 26 TdRD(DRz) RD t to Read Data Float Delay (Note 2) 70 ns

Notes: 1. Parameter does not apply to Interrupt Acknowledge transactions.

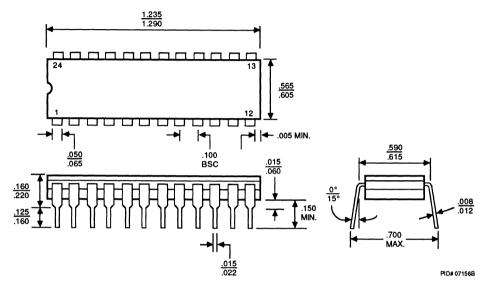
2. Float delay is defined as the time required for the data bus to be released with a maximum DC load and minimum AC load.

SWITCHING CHARACTERISTICS (Cont'd.) INTERRUPT ACKNOWLEDGE TIMING, RESET TIMING, CYCLE TIMING

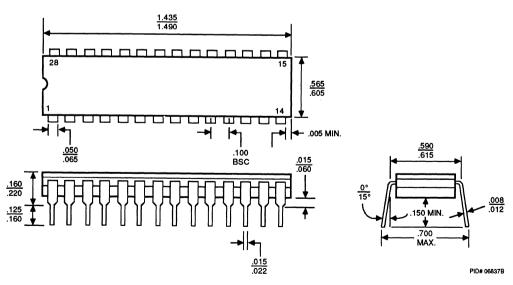
No.	Parameter Symbol	Parameter Description	Min.	Max.	Unit
27	TdA(DR)	Adress Required Valid to Read Data Valid Delay		400	ns
28	TwWRI	WR Low Width	240		ns
29	TsDW(WR)	Write Data to WR + Set-up Time	10		ns
30	ThDW(WR)	Write Data to WR + Hold Time	0		ns
31	TdWR(W)	WR 1 to Wait Valid Delay (Note 4)		240	ns
32	TdRD(W)	RD 1 to Wait Valid Delay (Note 4)		240	ns
33	TdWRf(REQ)	WR ↓ to W/REQ Not Valid Delay		240	ns
34	TdRDf(REQ)	RD ↓ to W/REQ Not Valid Delay	-	240	ns
35	TdWRr(REQ)	WR t to DTR/REQ Not Valid Delay		4TcPC	ns
36	TdRDr(REQ)	RD t to DTR/REQ Not Valid Delay		4TcPC	ns
37	TdPC(INT)	PCLK 1 to INT Valid Delay (Notena)		500	ns
38	TdIAi(RD)	INTACK to RD 1 (Acknowledge) Delay (Note 5)	250		ns
39	TwRDA	RD (Acknowledge) Width	250		ns
40	TdRDA(DR)	RD + (Acknowledge) to Read Data Valid Delay		250	ns
41	TsIEI(RDA)	IEI to RD ↓ (Acknowledge) Set-up Time	120		ns
42	ThIEI(RDA)	IEI to RD ↑ (Acknowledge) Hold Time	0		ns
43	TdIEI(IEO)	IEI to IEO Delay Time		120	ns
44	TdPC(IEO)	PCLK to IEO Delay		250	ns
45	TdRDA(INT)	RO , to INT mactive Delay (Note 4)	-	500	ns
46	TdRD(WRQ)	RD i to WR ↓ Delay for No Reset	30		ns
47	TdWRQ(RD)	WR to RD ↓ Delay for No Reset	30		ns
48	TwRES	WR and RD Coincident Low for Reset	250		ns
49	Trc	Valid Access Recovery Time (Note 3)	6TcPC + 200		ns

Notes: 3. Parameter applies only between transactions involving the SCC.
 4. Open-drain output, measured with open-drain test load.
 5. Parameter is system dependent. For any SCC in the daisy chain, TdIAI(RD) must be greater than the sum of TdPC(IEO) for the highest priority device in the daisy chain, TsIEI(RDA) for the SCC, and TdIEIf(IEO) for each device separating them in the daisy chain.

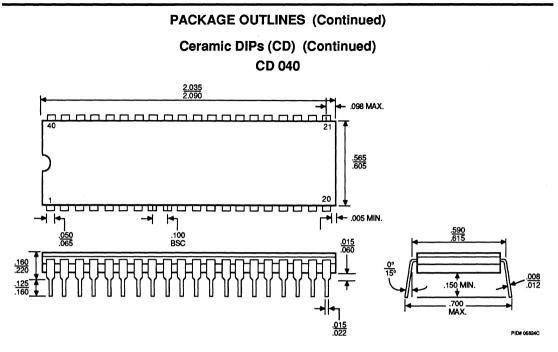
General Information

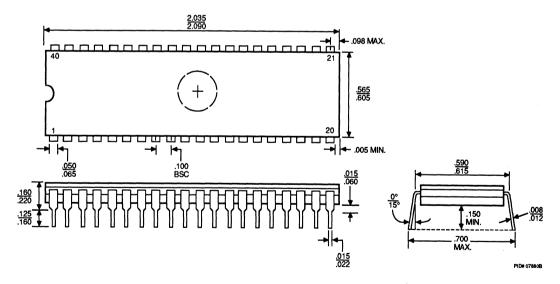

PACKAGE OUTLINES

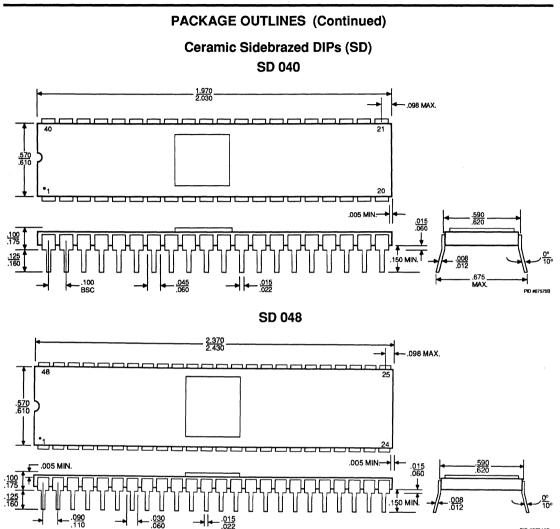
6-1


CHAPTER 6 General Information

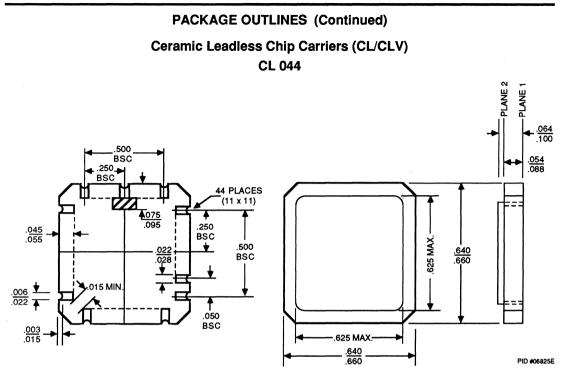
Ceramic DIPs (CD)



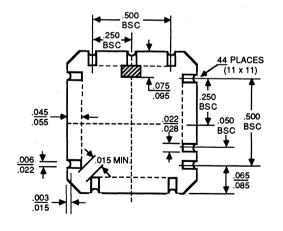

CD 028

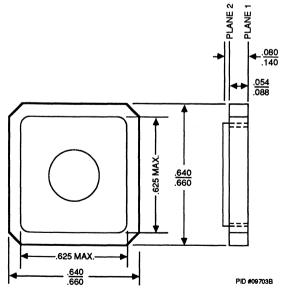


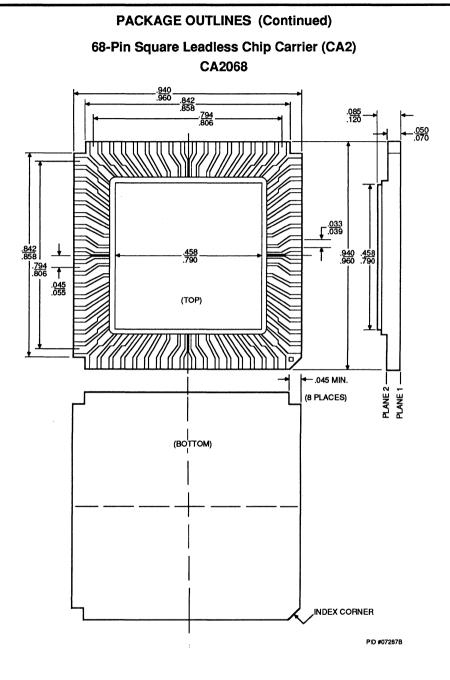
* For reference only. NOTE: Package dimensions are given in inches. To convert to millimeters, multiply by 25.4.

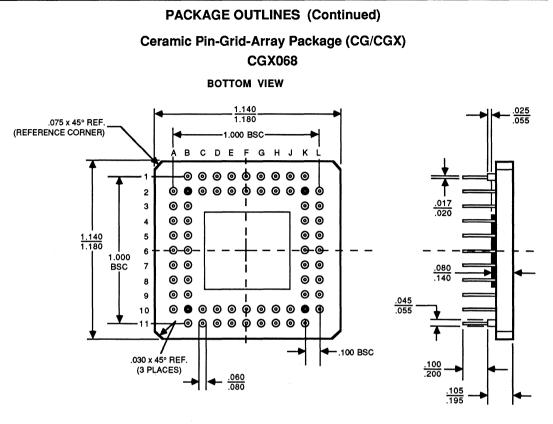


CDV040






PID #075468



CLV044

PID # 07547B

ORDERING INFORMATION

All Advanced Micro Devices' products listed are stocked locally and distributed nationally by Franchised Distributors. See back of this book for the location nearest you. Please consult them for the latest price revisions. For direct factory orders, call your local AMD Sales Office or Sales Representative. See the back of this book for the location nearest you.

Minimum Order

The minimum direct factory order is \$100.00 for a standard product. The minimum direct factory order for burn-in product is \$250.00.

NOTES

NOTES

ADVANCED MICRO DEVICES' NORTH AMERICAN SALES OFFICES

1441040

ALABAMA	(205) 882-9122
ARIZONA	(602) 242-4400
CALIFORNIA.	(002) 242 4400
Culver City	(213) 645-1524
Newport Beach	(714) 752-6262
San Diego	(619) 560-7030
San José	(408) 249-7766
Santa Clara	(408) 727-3270
Woodland Hills	(818) 992-4155
CANADA. Ontario.	
Kanata	(613) 592-0060
Willowdale	(416) 224-5193
COLORADO	(303) 741-2900
CONNECTICUT	(203) 264-7800
	(203) 204-7800
FLORIDA,	
Clearwater	(813) 530-9971
Ft Lauderdale	(305) 776-2001
Melbourne	(305) 729-0496
Orlando	(305) 859-0831
GEORGIA	(404) 449-7920
	(404) 449-7920
ILLINOIS,	
Chicago	(312) 773-4422
	(312) 505-9517
Naperville	
INDIÁNA	(317) 244-7207

KANSAS	(913) 451-3115
MARYLAND	(301) 796-9310
MASSACHUSETTS	(617) 273-3970
MINNESOTA	(612) 938-0001
MISSOURI	(314) 275-4415
NEW JERSEY	(201) 299-0002
NEW YORK.	(201) 233-0002
	(315) 457-5400
Liverpool	
Poughkeepsie	(914) 471-8180
Woodbury	(516) 364-8020
NORTH CÁROLINA	(919) 847-8471
ОНЮ	(614) 891-6455
Columbus	(614) 891-6455
Dayton	(513) 439-0470
OREGON	(503) 245-0080
PENNSYLVANIA.	(000) 210 0000
Allentown	(215) 398-8006
Willow Grove	(215) 057-3101
TEXAS,	
Austin	(512) 346-7830
Dallas	(214) 934-9099
Houston	(713) 785-9001
WASHINGTON	(206) 455-3600
WISCONSIN	(414) 792-0590

(010) 451 0445

ADVANCED MICRO DEVICES' INTERNATIONAL SALES OFFICES

BELGIUM.	
Bruxelles	37 12
FRANCE,	
Paris (1) 49-75- FAX (1) 49-75-	10-10
FAX (1) 49-75- TLX 20	10-13
GERMANY,	00202
Hannover area TEL (05143)	50 55
FAX (05143) TLX	
München	1 14-0
FAX (089) 4	06490
TLX	23883
FAX (0711) 62	
TLX	21882
HONG KONG, Kowloon	05277
FAX 852-123	
TLX 504260AMD	
ITALY, Milano	00541
(02) 35	33241
FAX (02) 34	98000
TLX	15286
Tokyo	-8241
FAX (03) 342	-5196
TLX J24064AMD	
Osaka 06-243 FAX 06-243	
TAX	0200

KOREA, Seoul	TEL 82-2-784-7598 FAX 82-2-784-8014
LATIN AMERICA, Ft. Lauderdale	TEL (305) 484-8600 FAX (305) 485-9736 TLX 5109554261 AMDFTL
Hovik	TEL
SINGAPORE	TEL
SWEDEN, Stockholm	TEL
TAIWAN	TLX
UNITED KINGDOM, Farnborough	TEL (0252) 517431 FAX (0252) 521041
Manchester area	FAX (0925) 827693 TLX 628524
London area	TEL

NORTH AMERICAN REPRESENTATIVES

CALIFORNIA I ² INC OEM	(408) (408)	988-3400 498-6868
CANADA	(100)	100 0000
Calgary, Alberta		
VITEL ELECTRONICS	(403)	278-5833
Kanata, Ontario		
VITEL ELECTRONICS	(613)	592-0090
Mississauga, Ontario		
VITAL ELÉCTRONICS	(416)	676-9720
	(514)	000 5054
	(514)	636-5951
	(209)	999 6071
INDIANA	(200)	000-0071
SAI MARKETING CORP	(317)	253-1668
IOWA	(017)	200-1000
LORENZ SALES	(319)	377-4666
KANSAS	(2.0)	
LORENZ SALES	(913)	384-6556
	/	

MICHIGAN	
SAI MARKETING CORP	(313) 750-1922
MISSOURI	(01.4) 007.4550
LORENZ SALES	(314) 997-4558
LORENZ SALES	(402) 475-4660
NEW MEXICO	
THORSON DESERT STATES	(505) 293-8555
NEW YORK	
NYCOM, INC	(315) 437-8343
OHIO	
Columbus DOLFUSS ROOT & CO	(C1A) OOE 4044
Dayton	(014) 000-4044
DOLFUSS ROOT & CO	(513) 433-6776
Strongsville	(0.0) 100 0710
DOLFUSS ROOT & CO	(216) 238-0300
PENNSYLVANIA	
DOLFUSS ROOT & CO	(412) 221-4420
UTAH	(004) 505 0004
R ² MARKETING	(801) 595-0631

Advanced Micro Devices reserves the right to make changes in its product without notice in order to improve design or performance characteristics. The performance characteristics listed in this document are guaranteed by specific tests, guard banding, design and other practices common to the industry. For specific testing details, contact your local AMD sales representative. The company assumes no responsibility for the use of any circuits described herein.

ADVANCED MICRO DEVICES 901 Thompson PI., PO. Box 3453, Sunnyvale, CA 94088, USA TEL: (408) 732-2400 ● TWX: 910-339-9280 ● TELEX: 34-6306 ● TOLL FREE: (800) 538-8450 APPLICATIONS HOTLINE TOLL FREE: (800) 222-9323

© 1988 Advanced Micro Devices, Inc. CP-20M-2/88-0

ADVANCED MICRO DEVICES, INC. 901. Thompson Place P.O. Box 453 Sunnyvale, California 94086 (408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306 TOLL-FREE

(800) 538-8450

APPLICATIONS HOTLINE (800) 222-9323

09275A