n

Advanced
Micro

Devices

Device
Data Book

PAL®

\ﬁ 1988
‘ Data Book

8
g
S
£
§
%

3
&
§
$
<

Micro Devices

lly Owned Subsidiary of Advanced

24-pin Combinatorial TTL/CMOS PAL Devices

PRODUCT PINS | TECHNOLOGY top(ns) loc(mA) DESCRIPTION PAGE
AmPAL22XP10 24 TTL 20, 30, 40 90, 180, 210 XOR gate 5-271
PAL20S10 24 TTL 35 240 Product term steering | 5-103
AmPAL22P10 24 TTL 15,25 105, 210 24-pin superset 5-291
Am/PAL20L10 24 TTL 185, 20, 25, 30 105, 165, 210 10 outputs 5-113, 5-306
PAL20L8 24 TTL, E CMOS 15, 25, 35, 45 0.1, 105, 210 Standard 5-122
PAL6L16 24 TTL 25 90 Wide output 5-141
PAL8L14 24 TTL 25 90 Wide output 5-141
PAL12L10 24 TTL 40 100 Simple combinatorial | 5-147
PAL14L8 24 TTL 40 100 Simple combinatorial | 5-147
PAL16L6 24 TTL 40 100 Simple combinatorial | 5-147
PAL18L4 24 TTL 40 100 Simple combinatorial | 5-147
PAL20L2 24 TTL 40 100 Simple combinatorial | 5-147
PAL20C1 24 TTL 40 100 Simple combinatorial | 5-147

24-pin Registered TTL/CMOS PAL Devices

PRODUCT PINS | TECHNOLOGY fuaax (MH2) loc(MA) DESCRIPTION PAGE
AmPALC29MA16 24 EE CMOS 20,15 120 Advanced Async. Macro| 5-209
AmPALC29M16 24 EE CMOS 20, 15 120 Advanced Macrocell 5-231
PAL32VX10 24 TTL 25,22 180 J-K, varied terms 5-70
Am/PAL22V10 24 TTL, E CMOS 40, 33, 28.5, 20, 18 90, 180 Versatile 5-79, 5-249
PAL22RX8 24 TTL 28.5 210 J-K flip-flops 5-87
PAL20RA10 24 TTL 20 200 Asynchronous 5-95
AmPAL20XRP10 24 TTL 30,22, 14 105, 180,210 | XOR gate & polarity 5-271
AmPAL20XRP8 24 TTL 30, 22, 14 105, 180, 210 XOR gate & polarity 5-271
AmPAL20XRP6 24 TTL 30, 22, 14 105, 180, 210 XOR gate & polarity 5-271
AmPAL20XRP4 24 TTL 30,22, 14 105, 180,210 | XOR gate & polarity 5-271
PAL20RS10 24 TTL 20 240 Product term steering | 5-103
PAL20RS8 24 TTL 20 240 Product term steering 5-103
PAL20RS4 24 TTL 20 240 Product term steering | 5-103
PAL20X10 24 TTL 22 180 XOR gate 5-113
PAL20X8 24 TTL 22 180 XOR gate 5-113
PAL20X4 24 TTL 22 180 XOR gate 5-113
AmPAL20RP10 24 TTL 37,25 105, 210 Programmable polarity | 5-291
AmPAL20RP8 24 TTL 37,25 105, 210 Programmable polarity | 5-291
AmPAL20RP6 24 TTL 37,25 105, 210 Programmable polarity | 5-291
AmPAL20RP4 24 TTL 37,25 105, 210 Programmable polarity | 5-291
PAL20R8 24 TTL, E CMOS 37, 25, 20, 15 0.1, 105, 210 Standard 5-122
PAL20R6 24 TTL, E CMOS 37, 25, 20, 15 0.1, 105, 210 Standard 5-122
PAL20R4 24 TTL, E CMOS 37, 25, 20, 15 0.1, 105, 210 Standard 5-122
PAL32R16 40 TTL 16 280 MegaPAL™ device 5-158

(Continued on back cover)

- PAL Device Data Book

PAL°Device Handbook

Introduction

Applications

PAL Device Data Book

Programming and Quality

PALASM®2 Software User Documentation

Data Sheets

Appendices

© 1988 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes
in its products without notice in order to improve design or performance characteristics.
The performance characteristics listed in this document are guaranteed by specific tests,
correlated testing, guard banding, design and other practices common to the industry.
For specific testing details contact your local AMD sales representative.
The company assumes no responsibility for the use of any circuits described herein.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088
(408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

Inlate 1987, the two programmable logic market leaders, Monolithic Memories and Advanced Micro
Devices, merged into one great company. We combined our strong traditions of customer service
and innovation to offer you the best line of programmable logic devices. The 7988 Data Book
presents the technical specifications on the entire product line. The separate 71988 Handbook
presents all of the necessary support material, whether you are accustomed to using MMI or
AMD products.

AMD/MMI has the products, manufacturing capacity and technology to perpetuate the leadership
in the programmable logic field which we pioneered. In the 1988 Data Book you will notice that we
not only have the broadest programmable logic line, but we also have the industry’s most
comprehensive CMOS programmable logic line. We think that you will find the Data Book and
Handbook informative and useful. If you have any comments or questions on the books or the
product line, please contact us.

CLE

Cyrus Tsui

Vice President
Programmable Logic Division

n Monolithic m Memoriles El

Description

This 1988 PAL Device Handbook/Data Book is your complete guide to all programmable logic
devices (PLDs) from Monolithic Memories and Advanced Micro Devices. The merger of the two
companies provides a greater wealth of products and services for you. Note that all PLDs which
were in production before the merger are still being produced.

The PAL Device Handbook/Data Book is organized into two volumes and six easy-to-use sections:

PAL Device Handbook

Section 1: Introduction
Includes an overview of the PLD product family.

Section 2: Applications
Includes detailed application examples. The first few chapters provide tutorials in PLD design.
The application notes are grouped by application area.

PAL Device Data Book

Section 3: Programming and Quality
Includes information on PLD software programs, programming information, PLD technology and
quality discussions, and package information.

Section 4: PALASM 2 Software User Documentation
Includes complete documentation for PALASM 2 software.

Section 5: Data Sheets .
Includes specifications for all PLDs from the combined company. PAL devices formerly from MMI
are under “PAL Devices,” while PAL devices formerly from AMD are under "“AmPAL Devices.”

Section 6: Appendices
Includes quick reference information.

If you have any questions or comments on PLDs or any other products, please contact your most
convenient AMD/MMI sales office, listed at the end of each book.

zl Monolithlc m Memories :l

Trademarks

PAL®, HAL®, PALASM®, and SKINNYDIP® are registered trade-
marks of Monolithic Memories, Inc.

ProPAL™, MegaPAL™, ZPAL™, MegaHAL™, ZHAL™ , PLE™,
PLEASM™, DOC™, Diagnostics-On-Chip™, PROSE™, MONOX™,

HIPAC™, and AutoVec™ are trademarks of Monolithic Memories, Inc.

IMOX™ and SSR™ are trademarks of Advanced Micro Devices.

Xilinx™, XACT™, XACTOR™, Logic Cell Array™, and Logic
Processor™ are trademarks of Xilinx Inc.

P-SILOS™ is a trademark of SimuCad.

IBM® is a registered trademark of International Business Machines
Corporation.

Micro Channel™, IBM-PC™, PC-XT™, and PC-AT™ are trademarks
of International Business Machines Corporation.

Data /O® is a registered trademark of Data I/O Corporation.

ABEL™, PLDtest™, UniSite™, LogicPak™, Logic Fingerprint™, and
PROMIink™ are trademarks of Data I/O Corporation.

FutufeNet@ is a registered trademark of FutureNet, a Data /O
Company.

DASH™, DASH-ABEL™, DASH-GATES™, PLD-CADAT™, and
DASH-CADAT-PLUS™ are trademarks of FutureNet, a Data /O
Company.

CUPL™ is a trademark of Personal CAD Systems.

Multibus™ is a trademark of Intel Corporation.

ISDATA® is a registered trademark of ISDATA GmbH.
LOG/IC™ is a trademark of ISDATA GmbH.

Apollo® is a registered trademark of Apollo Computer.

Q-Bus®, UNIBUS®, VAX®, and VMS® are registered trademarks of
Digital Equipment Corporation.

Microsoft® is a registered trademark of Microsoft Corporation.
MS-DOS™ is a trademark of Microsoft Corporation.

UNIX™ is a trademark of AT&T Technologies, Inc.
DAISY® and DNIX® are registered trademarks of Daisy Systems.

SOFTPACK™, SOFTLINK™, and LOGILINK™ are trademarks of
Digelec, Inc.

ALLPRO™ and LOGIPRO™ are trademarks of Logical Devices, Inc.
PROMAC™ is a trademark of Japan Macnics Corporation.
WordStar™ is a trademark of MicroPro International Corporation.
Mouse System™ is a trademark of Mouse Systems Corporation
TestPLA™ is a trademark of Structured Design, Inc.

NuBus™ is a trademark of Texas Instruments

iv l‘rl Monollthlcm Memorles l:'

Table of Contents

E— I S

PAL Device Handbook

Introduction

Introduction 14
What is a PLD? 11
What Advantages do PLDs Have Over Other Implementations? 1-4

Product Overview 1-7
PAL Devices 1-7
Nomenclature 1-7
Programmable Sequencers 1-19
LCA Devices 1-20

Applications

Beginner’s Guide 21
Constructing a Combinatorial Design 2-2
Constructing a Registered Design 29
Programming a Device 2-14

PLD Design Methodology 2-21
Conceptualizing a Design 2-22.
Device Selection Considerations 2-23
Implementing a Design 2-26
Simulation 2-30
Device Programming and Testing 2-33

Combinatorial Logic Design 2-35
Encoders and Decoders 2-35
Multiplexers 2-43
Comparators 2-45
Range Decoders 2-52
Adders/Arithmetic Circuits 2-53 .
Latches 2-58

Registered Logic Design 2-61
Binary Counters 2-67
Modulo Counters 2-75
Gray-Code Counters 2-87
Johnson Counters 2-88
Shift Registers . 2-90
Asynchronous Registered Designs 2-94

2 monothic B memories £

Table of Contents

State Machine Design 2-101
State Machine Theory -~ 2-103
State Machine Types: Mealy & Moore 2-105
Device Selection Considerations 2-107
PAL Devices as Sequencers 2-111
Programmable Logic Sequencers (PLS) 2-117
PROSE Sequencer (PMS14R21) 2-120
Fuse Programmable Controller (Am29PL141) 2-121
State Machine Design Tutorial 2-122

Microprocessor-Based Systems ' 2-131
Interfacing to the 8086/80186/80286 2-134

8086 and Am7990 LANCE Interface 2-135
8086 and Am9516 Universal DMA Controller Interface 2-138
80286 to Am9568 Data Ciphering Processor Interface 2-143,
80286 to Am8530 Interface 2-147
Interfacing to the 68000/68020 2-149
The 68000 and Am8530 Interface with Interrupts 2-150
68000 and Am7990 LANCE Interface . 2-153
68000 to AmZ8068 Data Ciphering Processor Interface 2-155
68000 and Dual Am9516 DMA Controllers Interface 2-159
Am8530 to 68020 Interface 2-162
Interfacing to the 8088 2-165
8088 to Am9516 UDC Interface 2-166
80186 to Am9516 Universal DMA Coentroller Interface ‘ 2-170
68000 Interrupt Controller 2-172

Memory Control 2-179
Memory Handshake Logic 2-184
Customize a DRAM Controller Using Advanced PAL Devices 2-187
8088 to Am2968 Interface 2-202
MC68000 to Am2968 Interface 2-210
General-Purpose Dual-Port Arbiter 2-215
Dynamic Memory Control State Sequencer 2-224
8-Bit Error Detection and Correction 2-229
Fuse Programmable Controller Simplifies Cache Design 2-239
PAL22RX8A Provides Control and Addressing for a 32-Location-Deep RAM-Based LIFO 2-250

Graphics and Image Processing Systems 2-257
Small System Video Controller 2-261
PAL32VX10 Uses Buried Register for Input-Intensive State Machine Designs 2-275

Digital Signal Processing 2-283
Waveform Generator 2-286
PAL32VX10 Uses Buried Register for Input-Intensive State Machine Designs 2-292
Analog to Digital Conversion 2-297
PAL Devices, PROMs, FIFOs and Multipliers Team up to ‘

Implement Single-Board High-Performance Audio Spectrum Analyzer 2-307

Bus Interface 2-325
Unibus Interrupt Controller 2-328
A MULTIBUS Arbiter Design for 10 MHz Processors 2-333
MULTIBUS to Am9516 Interface 2-338
Z-BUS and 8088/8086 Interface....... e 2-342
VME Bus Control Simplified with PLDs 2-347

G‘rl Monolithic Eﬂﬂ Memories :l

Communications

Table of Contents

B8ZS Coding Using CMOS ZPAL Devices
HDBS3 Line Coding Using PAL Devices
ZPAL Devices Implement D4 Frame Synchronization
T1 Extended Superframe Provides Transmission Error Detection
Time Division Multiplexing with the LCA Device
LCA Device Implements an 8-Bit Format Converter in.a PBX Switching Module

Serial Data Link Controller

QAM Encoder in a ZPAL Device
PAL Devices Implement the Full V.32 Convolution Encoder
PLD Devices Implement 4B3T Line Transcoder
PALC22V10 Creates Manchester Encoder Circuit

Peripheral Design

Building an ESDI Translator Using the M2064 Logic Cell Array
Writing a Tape Drive Controller in PROSE
GCR (4B-5B) Encoder/Decoder

Industrial Control

Stepper Motor Controllers
Shaft Encoders

Military Applications

Radiation Hardness

Article Reprints

Programmable Logic Device Preserves Pins, Product Terms (PAL32VX10)

PLD Programmability Extends its Sway Over Complex /O (PALC29M/MA16)
PROSE Devices Simplify State Machine Design (PMS14R21)
Designing a State Machine with a Programmable Sequencer (PMS14R21)
FPCs and PLDs Simplify VME Bus Control (Am29PL141)

Fuse-Programmable Chip Takes Command of Distributed Systems (AM29PL141)ccooveceumrurvrenenccreeneerrennns

PAL Device Buries Registers, Brings State Machines to Life (AmPAL23S8)
Programmable Event Generator Conquers Timing Restraints (Am2971)
Wait-State Remover Improves System Performance (PAL22V10)
PLDs Implement Encoder/Decoder for Disk Drives (PAL22V10)
Mixing Data Paths Expands Options in System Design (PAL22V10)
Programmable Logic Chip Rivals Gate Arrays in Flexibility (PAL22V10)
XOR PLDs Simplify Design of Counters and Other Devices (PAL20X10)

The PAL20RA10 Story —The Customization of a Standard Product (PAL20RA10)c.evevccmcrssrenceccorecenens

PLDs Abound: RAM-Based Logic Joins In
Introduction to Programmable Array Logic
Logical Alternatives in Supermini Design

Conference Proceedings

New PAL Device Architecture Extends Design Flexibility (PAL32VX10)
PROSE Architecture and Design Methodology (PMS14R21)

Blazing Fast PAL Devices Enable New Application Areas (PAL16R8-10, PAL10H20P/GS8)ccccururneees

Sales Offices

l‘rl MI(hIo m Memories l‘r'

2-357
2-362
2-384
2-404
2-431
2-435
2-444
2-453
2-456
2-463
2-475
2-499

2-507
2-509
2-519
2-541

2-547
2-550
2-558

2-579
2-581

2-589
2-593
2-601
2-607
2-619
2-633
2-639
2-644
2-648
2-651
2-660
2-670
2-676
2-683
2-699
2-702
2-711

2-719
2-724
2-730

2-740

Table of Contents

PAL Device Data Book

Programming and Quality

Design Software for Programmable Logic ‘ 3-1
PALASM 2 Logic Design Software Package 35
PLPL: Programmable Logic Programming Language ; 3-7
Logic Cell Array and Development Systems 3-21
ABEL-GATES y ; 3-35
CUPL.......... : 3-43
LOG/IC . 3-66

Programming 3-76
‘Programmer Reference Guide 3-81
ProPAL, HAL and ZHAL Devices Program 3-104

Testability : 3-108
Designing Testable Combinatorial Circuits 3-109
Designing Testable Sequential Circuits 3-114
Designing Testable State Machines 3-118
Designing for Testability with the PROSE Device 3-123
Using Test Vectors ' - 3-128

Technology and Quality
MONOX 3 Oxide-Isolated Process 3-130
Product Assurance 3-132
Test and Finish Operations . S 3-138
IMOX Product Technology and Reliability 3-140

IMOX Product Reliability 3141

IMOX Product Testability 3-144
ECL Technology : ' 3-150,
CMOS HIPAC Technology 3-155
CMQS EE Technology . 3-159
Latchup in CMOS Integrated Circuits . 3-160
Metastability . 3-164

Packaging
Surface Mount Technology 3-170
PAL Device Package Outlines 3-179
PAL Dev’jce Package Thermal Characteristics : 3-208
AmPAL Device Package Outlines 3-224
AmPAL Device Package Thermal Characteristics 3-231

PALASM 2 Software User Documentation

Introduction : ‘ 4-1
Install PALASM 2 Software : 4-15
Run the Software ‘ 4-29
Build a Boolean Equation Design 4-61
Build a State Machine Design - 4-95
Build Simulation ; 4-137
Program the Device...... : 4-169
PALASM 2 Software Glossary 4-183
PALASM 2 Software Index 4-189

&\ monotithic Bl Memories €1

Table of Contents

Data Sheets

PAL/PLD Device Menu 5-3 PAL16R4A-2
PAL16R8A-4 Series 5-43
TTL/CMOS PAL Devices 5-9 PAL16L8A-4
PAL16R8A-4
PAL16RA8 511 PAL16R6A-4
. PAL16R4A-4
PALIGRPEA Series 17 PALC16R8Z-25 Series 5-50
PAL16L8Z-25
PAL16RP8A
BAL16RPEA PAL16R8Z-25
PAL16RP4A PAL16R6Z-25
PAL16R4Z-25
PAL16R8 Family 5-26
PAL16R8D.Series 5-29 PAL16X4 5-51
z:t: Z;Z% PAL10H8 Series 5-56
PAL16R6D P:“ OH8
PAL16R4D PAL12HG
PAL16REB Series 531 PAL14H4
PAL16L8B PAL16H2
PAL16C1
PAL16R8B PALioLs
PAL16R6B
PAL16R4B PAL12L6
PALC16R8Q-25 Serios 533 PAL14L4
PAL16L8Q-25 PAL16L2
PAL16R8Q-25 PAL32VX10A 5-70
PAL16R6Q-25 PAL32VXA0 o
PAL16R4Q-25
PAL16R8B-2 Series 5-35 PALC22V10H-25 5.79
PAL16L88-2 PALC22V10H-35 579
PAL16R8B-2
PAL16R6B-2 PAL22RX8A 5-87
PAL16R4B-2
PAL16R8A Series 5-37 PAL20RA10-20 5-95
PAL16L8A PAL20RA10 5.97
PAL16R8A
PAL16R6A PAL20RS10 Series 5-103
PAL16R4A PAL20S10
PAL16R8B-4 Series 5-39 PAL20RS10
PAL16L8B-4 PAL20RS8
PAL16R8B-4 PAL20RS4
PAL16R6B-4 .
PAL16R4B-4 PAL20X10A Series 5-113
PAL16R8A-2 Series 5-41 PAL20L10A
PAL16LBA2 PAL20X10A
PAL16R8A-2 PAL20X8A
PAL16R6A-2 PAL20X4A
zl Monolithic E.Eﬂ Memories zl ix

Table of Contents

e T 2 R—

PAL20RS Family 5122 TTL/CMOS AMPAL DeVICESc..corrrrrrrr 5-167
PAL20R8B Series 5-125 ‘
PAL20L8B AmPAL2358-20 5-169
PAL20R8B AmPAL23S8-25 5-169
PAL20R6B
PAL20R4B AmPAL16R8 Family 5-184
PAL20R8B-2 Series 5-126 AmPAL16R8D Series 5-183
PAL20L8B-2 AmPAL16L8D
PAL20R8B-2 AmPAL16R8D
| PAL20R6B-2 AmPAL16R6D
PAL20R4B-2 AmPAL16R4D
PAL20R8A Series 5-128 AmPAL16R8B Series 5-197
PAL20L8A AmPAL16L8B
PAL20R8A AmPAL16R8B
PAL20R6A AmPAL16R6B
PAL20R4A AmPAL16R4B
PAL20R8A-2 Series 5-130 AmPAL16R8AL Series 5-197
PAL20L8A-2 AmPAL16L8AL
PAL20R8A-2 AmPAL16R8AL
PAL20R6A-2 AmPAL16R6AL
PAL20R4A-2 AmPAL16R4AL
PALC20R8Z-35 Series 5-133 AmPAL16R8A Series 5-107
PALC20L8Z-35 AmPAL16L8A
PALC20R8Z-35 AmPAL16R8A
PALC20R6Z-35 AmPAL16R6A
PALC20R4Z-35 AmPAL16R4A
PALC20R8Z-45 Series 5-133 AmPAL16R8Q Series 5-197
PALC20L8Z-45 AmPAL16L8Q
PALC20R8Z-45 AmPAL16R8Q
PALC20R6Z-45 AmPAL16R6Q
PALC20R4Z-45 AmPAL16R4Q
AmPAL16R8L Series 5-197
AmPAL16L8L
PAL6L16A 5-141 AmPAL16R8L
PALSL14A 5-141 AmPAL16R6L
AmPAL16R4L
PAL12L10 Series 5-147 AmPAL16R8 Series 5-197
PAL12L10 AmPAL16L8
PAL14L8 AmPAL16R8
PAL16L6 AmPAL16R6
PAL18L4 AmPAL16R4
PAL20L2
PAL20CH AmPAL18P8B 5-202
AmPAL18P8AL 5-202
PAL32R16 5-158 AmPAL18P8A 5-202
AmPAL18P8Q 5-202,
General Information 5-164 AmPAL18P8L 5-202

L'l Monolithic E.Eﬂ Memories I‘vl

Table of Contents

AmPALC29MA16-35 5-209 AmPAL20RP10A Series 5-306
AmPALC29MA16-45 5-209 AmPAL22P10A
AmPALC29M16-35 5-231 AmPAL20RP10A
AmPALC29M16-45 5-231 AmPAL20RP8A
) AmPAL20RP6A
AmPAL22V10-15 5-249 AmPAL20RP4A
AmPAL22V10A 5-260
AmPAL22V10 5-260 AmPAL20L10B 5-306
AmPAL20L10-20 5-306
AmPAL20XRP10 Family 5-271 AmPAL20L10AL 5306
AmPAL20XRP10-20 Series 5-286
AmPAL22XP10-20 PROSE/PLS Sequencers 5-313
AmPAL20XRP10-20 PMS14R21A 5315
AmPAL20XRP8-20 . PMS14R21 5315
AmPAL20XRP6-20
AmPAL20XRP4-20 PLS167-33 5-331
AMPAL20XRP10-30L SISeuuecrccerrevrerimieresceneeennens 5-286 PLS168-33 5-331
AmPAL22XP10-30L PLS105-37 5-331
AmPAL20XRP10-30L
AmPAL20XRP8-30L FPC/PEG Sequencers 5-337
AmPAL20XRP6-30L Am239PL141 Fuse Programmable Controller . 5-339
AmPAL20XRP4-30L Am2971 Programmable Event Generator 5-365
AmPAL20XRP10-30 Series 5-286
AmPAL22XP10-30 ECL PAL Devices 5-379
AMPAL20XRP10-30 PAL10020EV/EG8 5-381
AmPAL20XRP8-30 PAL10H20EV/EG8 5-381
AmPAL20XRP6-30 PAL10H20G8 5-382
AmPAL20XRP4-30 PAL10H20P8 5-386
AMPAL20XRP10-40L SErieSoccuuruvmuvemeemermersvnmssassnmsennens 5-286 X
AMPAL22XP10-40L HAL/ZHAL DeVIf:es 5-391
AMPAL20XRP10-40L ZHAL20A Serfes 5-394
AMPAL20XRP8-40L ZHAL24A Series 5-401
::i:ig;gﬁijgt Military PAL Devices 5-415
Introduction : 5-417
AmPAL20RP10 Family 5-291 m::g:z Zg_l;)/i:L;lE;vem\:;cienu .. 22;?
AmPAL20RP10B Series 5-306 - R .
AmPAL22P10B Military 24-pin PAL Devices 5-439
DC/AC Parametric Testing 5-469
AmPAL20RP10B - .
AmPAL20RPSB JAN 38510 and. Standard Military Drawings................. 5-470
AmPAL20RPEB Mrma'ry Screening 5-474
AmMPAL20RP4B Quality Programs 5-477
AmPAL20RP10AL Series 5-306 Logic Cell Array 5-481
AmPAL22P10AL M2064 5483
AmPAL20RP10AL M2018 5.483
AmPAL20RPSAL Military M2064/M2018 5518
AmPAL20RP6AL ‘
AmPAL20RPAAL Electrical Definitions 5-531

1'.' Monolithic m Memories El) xi

Table of Contents

Appendices

Logic Reference

6-1

Basic Logic Elements

6-1

Basic Storage Elements

6-8

Binary Numbers

Signal Polarity
Glossary

Competitive Cross-Reference

Worldwide Application Support

Sales Offices

a Monolithic E.[iﬂ Memories :l

6-15
6-19
6-24
6-30
6-40
6-41

Alphanumeric Product Index

L R ——
Am29PL141 5-339 ? AmPAL20XRP4-40L 5-286 PAL16L2 5-56 PAL20R8A-2 5-130
Am2971 5-365 AmPAL20XRP6-20 5-286 PAL16L6 5-147 PAL20R8B 5-125
AmPAL16LS8 5-197 AmPAL20XRP6-30L 5-286 PAL16L8D 5-29 PAL20R8B-2 5-126
AmPAL16L8A 5-197 AmPAL20XRP6-30 5-286 PAL16L8A 5-37 PAL20RA10 5-97
AmPAL16LSAL 5-197 AmPAL20XRP6-40L 5-286 PAL16L8A-2 5-41 PAL20RA10-20 5-95
AmPAL16L8B 5-197 AmPAL20XRP8-20 5-286 PAL16L8A-4 5-43 PAL20RS10 5-103
AmPAL16L8D 5-183 AmPAL20XRP8-30L 5-286 PAL16L8B 5-31 PAL20RS4 5-103
AmPAL16L8L 5-197 AmPAL20XRP8-30 5-286 PAL16L8B-2 5-35 PAL20RSS8 5-103
AmPAL16L8Q 5-197 AmPAL20XRP8-40L 5-286 PAL16L8B-4 5-39 PAL20S10 5-103
AmPAL16R4 5-197 AmPAL20XRP10-20 5-286 PAL16P8A 5-17 PAL20X4A 5-113
AmPAL16R4A 5-197 AmPAL20XRP10-30L 5-286 PAL16R4D 5-29 PAL20X8A 5-113
AmPAL16R4AL 5-197 AmPAL20XRP10-30 5-286 PAL16R4A 5-37 PAL20X10A 5-113
AmPAL16R4B 5-197 AmPAL20XRP10-40L 5-286 PAL16R4A-2 5-41
AmPAL16R4D 5-183 PAL16R4A-4 5-43 PAL22RX8A 5-87
AmPAL16R4L 5-197 AmPAL22P10A 5-306 PAL16R4B 5-31
AmPAL16R4Q 5-197 AmPAL22P10AL 5-306 PAL16R4B-2 5-35 PAL32R16 5-158
AmPAL16R6 5-197 AmPAL22P10B 5-306 PAL16R4B-4 5-39 PAL32VX10 5-70
AmPAL16R6A 5-197 AmPAL22V10 5-260 PAL16R6D 5-29 PAL32VX10A 5-70
AmPAL16R6AL 5-197 AmPAL22V10-15 5-249 PAL16R6A 5-37
AmPAL16R6B 5-197 AmPAL22V10A 5-260 PAL16R6A-2 5-41 PAL10020EV/EGS 5-381
AmPAL16R6D 5-183 AmPAL22XP10-20 5-286 PAL16R6A-4 5-43
AmPAL16R6L .5-197 AmPAL22XP10-30L 5-286 PAL16R6B 5-31 PALC16L8Q-25 5-33
AmPAL16R6Q 5-197 AmPAL22XP10-30 5-286 PAL16R6B-2 5-35 PALC16L8Z-25 5-50
AmPAL16R8 5-197 AmPAL22XP10-40L 5-286 PAL16R6B-4 5-39 PALC16R4Q-25 5-33
AmPAL16R8A 5-197 PAL16R8D 5-29 PALC16R4Z-25 5-50
AmPAL16RSAL 5-197 AmPAL23S8-20 5-169 PAL16R8A 5-37 PALC16R6Q-25 5-33
AmPAL16R8B 5-197 AmPAL23S8-25 5-169 PAL16R8A-2 5-41 PALC16R6Z-25 5-50
AmPAL16R8D 5-183 PAL16R8A-4 5-43 PALC16R8Q-25 5-33
AmPAL16R8L 5-197 AmPALC29M16-35 5-231 PAL16R8B 5-31 PALC16R8Z-25 5-50
AmPAL16R8Q 5-197 AmPALC29M16-45 5-231 PAL16R8B-2 5-35 PALC20L8Z-35 5-133
AmPALC29MA16-35 5-209 PAL16R8B-4 5-39 PALC20R4Z-35 5-133
AmPAL18P8A 5-202 AmPALC29MA16-45 5-209 PAL16RA8 5-11 PALC20R6Z-35 5-133
AmPAL18PSAL 5-202 PAL16RP4A 5-17 PALC20R8Z-35 5-133
AmPAL18P8B 5-202 M2018 5-483 PAL16RP6A 5-17 PALC20L8Z-45 5-133
AmPAL18PSL 5-202 M2064 5-483 PAL16RP8SA 5-17 PALC20R4Z-45 5-133
AmPAL18P8Q 5-202 PAL16X4 5-51 PALC20R6Z-45 5-133
PALGL16A 5-141 PALC20R8Z-45 5-133
AmPAL20L10AL 5-306 PALSL14A . 5141 PAL18L4 5-147 PALC22V10H-25 5-79
AmPAL20L10B 5-306 PALC22V10H-35 5-79
AmPAL20L10-20 5-306 PAL10H8 5-56 PAL20C1 5-147
AmPAL20RP4A 5-306 PAL10H20G8 5-382 PAL20L2 5-147 PLS105-37 5-331
AmPAL20RP4AL 5-306 PAL10H20EV/EG8 5-381 PAL20L10A 5-113 PLS167-33 5-331
AmPAL20RP4B 5-306 PAL10H20P8 5-386 PAL20LSA 5-128 PLS168-33 5-331
AmPAL20RPGA 5-306 PAL10LS - 5-56 PAL20L8A-2 5-130
. AmPAL20RPG6AL 5-306 PAL20LSB 5-125 PMS14R21 5-315
AmPAL20RPGB 5-306 PAL12H6 5-56 PAL20L8B-2 5-126 PMS14R21A 5-315
AmPAL20RPSA 5-306 PAL12L6 5-56 T—PALZOFMA 5-128 -
AmPAL20RPSAL 5-306 PAL12L10 5-147 : PAL20R4A-2 5-130
AmPAL20RP8B 5-306 PAL20R4B 5-125
AmPAL20RP10A 5-306 PAL14H4 5-56 . PAL20R4B-2 5-126
AmPAL20RP10AL 5-306 PAL14L4 5-56 PAL20R6A 5-128
AmPAL20RP10B 5-306 PAL14L8 5-147 PAL20R6A-2 5-130
AmPAL20XRP4-20 5-286 PAL20R6B 5-125
AmPAL20XRP4-30L 5-286 PAL16C1 5-56 PAL20R6B-2 5-126
AmPAL20XRP4-30 5-286 PAL16H2 5-56 PAL20R8A 5-128
2\ mononthic [l Memories &1 xiii

Notes

xiv &\ Monolithic [F.MI Memories &1

,x

PAL Device Data Book
Programming and Quality

Table of Contents

Design Software for Programmable Logic . 31
PALASM 2 Logic Design Software Package 3-5
PLPL: Programmable Logic Programming Language 3-7
Logic Cell Array and Development Systems e 3-21
ABEL-GATES .. 3-35
CUPL 3-43
LOG/IC 3-66

Programming 3-76
Programmer Reference Guide 3-81
ProPAL, HAL and ZHAL Devices Program 3-104

Testability 3-108
Designing Testable Combinatorial Circuits 3-109
Designing Testable Sequential Circuits 3-114
Designing Testable State Machines : 3-118
Designing for Testability with the PROSE Device 3-123
Using Test Vectors , : 3-128

Technology and Quality
MONOX 3 Oxide-Isolated Process 3-130
Product Assurance 3-132
Test and Finish Operations 3-138
IMOX Product Technology and Reliability 3-140

IMOX Product Reliability 3-141

IMOX Product Testability 3-144
ECL Technology 3-150
CMOS HiPAC Technology e 3-165
CMOS EE Technology .. 3-159
Latchup in CMOS Integrated Circuits 3-160
Metastability 3-164

Packaging ,

Surface Mount Technology 3-170
PAL Device Package Outlines : 3-179
PAL Device Package Thermal Characteristics 3-208
AmPAL Device Package Outlines . 3-224
AmPAL Device Package Thermal Characteristics 3-231

(2]

l‘.l Monolithic m Memories Il

Design Software for
Programmable Logic

Introduction

Programmable logic design software translates a custom logic
design specification into a format which can be accepted by a
programmer (Figure 1).

Programmable logic software is also an excellent tool for design
simulation and documentation. Simulation assists in debugging
an initial design and helps to ensure that a device will operate as
intended the first time instead of requiring multiple design itera-
tions. Documentation is essential for someone other than. the
original designer to understand a custom programmable logic
specification.

This overview will describe the basic components of PLD design
software packages, including assistance in logic simulation and
testing. Several software packages are available. They are listed
at the end of this overview, along with references to the appropri-
ate pages for more information or user documentation.

CIRCUIT CONCEPT

!

PROGRAMMABLE
YOUR COMPUTER LOGIC DESIGN
SOFTWARE
PROGRAMMING
FORMAT
LOGIC (PROM) YOUR
BLANK PLD PROGRAMMER [pRoGRAM. || PRODUCT
MED DEVICE
602 01

Figure 1. The Programmable Logic Development Cycle

Design Software for Programmable
Logic

PLD design software lets the designer write logic descriptions at
a high level, that is, at a level that accurately reflects the design
concept. This type of software increases productivity while
producing designs that are thoroughly documented.

The software should support all programmable logic device
types, all popular logic (PROM) programmers, and a large num-
ber of popular development computers. In addition, software
products offer a variety of input design formats such as state
machines, high-level Boolean equations, truth tables and logic
schematics.

A compiler’s syntax offers a general and easy description of the
desired configuration of the chosen programmable logic device
(PLD).

TRUTH HIGH LEVEL STATE LOGIC
TABLES EQUATIONS MACHINE SCHEMATIC
DESIGN
SOFTWARE M

|
! ! ! !

PLS DEVICES PROMS
DEVICES DEVICE
602 02

Figure 2. The Compiler

In addition, the high-level description of the design provides
flexibility in changing the design if so desired. A designer might
use a particular type of PLD. Later, when fixes or enhancements
are made, the design can be quickly re-compiled for the same
device. Ifthe changes require more productterms or an architec-
tural configuration that the chosen PLD cannot support, the
function can easily be placed in an alternate device. In many
cases this will allow design modifications without altering printed
circuit boards which may have already been manufactured.

Logic Simulation

Most of the PLD software design tools also offer logic simulation.
Logic simulation is typically performed to verify the logical design
prior to programming an actual device. This may save some of
the time spent trouble-shooting a programmable logic design
using conventional techniques, using an oscilloscope and logic
analyzer.

A simulation file consists of stimulus patterns applied to inputs
and response patterns expected at outputs. The simulator com-
pares each stimulus/response pattern, or vector, with the logic
equations to verify that the expected-response agrees with that
produced according to the equations.

Not simulating may be of little consequence for simple designs,
but for complex designs, especially complex sequential logic, it is
well worth the time.

Testing Programmable Logic

PLD software design tools also assist the designer in testing the
PLD after it has been programmed.

Before shipping a PLD, programmability may be verified by the
manufacturer by exercising the device’s address and program-
ming circuitry on redundant test sites.

:l Monolithic m Memories :'

Design Software for Prosjrammable Logic

Afterthe device has been received and programmed by the user,
the logic programmer will read the states of all the fuses in the
device and compare them with the data stored in the
programmer’s memory to check the status of the programming
matrix, in its verify cycle (Figure 3). If any mismatches are
detected, the device is rejected.

INPUTS
_INPUTS I PROGRAMMING FIXED

MATRIX LOGIC

| |

TESTED DURING TESTED BY APPLYING
PROGRAMMER VERIFY FUNCTIONAL TEST
cYCL VECTORS

OUTPUTS
| ———»

602 03
Figure 3. Programmable Logic Device Testing

However, a correct fuse verify does not guarantee that the device
willwork properly, since the fixed logic of the device has not been
fully tested. To ensure proper operation the device must be
functionally tested.

Functionaltesting of PLDs involves applying stimulus patterns to
a device while looking for the expected response. The test
sequence consists of a table of stimulus/response patterns
“similar to those used to perform a simulation. PLD software
design tools offer the capability of generating these test vectors.

Test vectors are produced by creating a simulation input file
containing stimulus/response patterns. After running the simula-
tor to verify the integrity of the vectors, they are appended to the
JEDEC down-loadable file which already contains the program-
ming patterns for the particular target device.

We can now see that there are two distinct benefits of logic
simulation in working with PLDs:

LOGIC SIMULATION

TEST VECTOR

DESIGN
GENERATION 602 04

VERIFICATION

Software Tools

Many different programmable logic design aid software programs
are available. Table 1 lists some current suppliers of these design
tools. Contact the indicated companies for the status of their
particular product.

MMI/AMD supplies several software products for its program-
mable logic devices. Table 2 lists the software supporting the
various PLDs.

zl Monolithic m Memories :l

SOFTWARE VENDOR DESCRIPTION
PALASM 2 (PAL, | MMVAMD Page 3-5
PROSE, PLS) Contact Local Sales Office Documentation:

Chapter 4
PLPL MMI/AMD Page 3-7
(AmPAL) Contact Local Office
LCA Development | MMI/AMD Page 3-21
Systems (LCA) Contact Local Office
ABEL Data I/O Corp. Page 3-35
DASH-GATES 10525 Willows Road N.E.
DASH-CADAT Redmond, WA. 98073
DASH-ABEL (800) 426-1045
CUPL Personal CAD Systems Page 3-43
1290 Parkmoor Avenue
San Jose, CA. 95126
(408) 971-1300
LOG/IC ISDATA GmbH Page 3-66
(Reps: See page 3-75)

Table 1. Software Design Tools

Design Software for Programmable Logic

PRODUCT [SOFTWARE SUPPORT
16L8, 16R8, 16R6, 16R4 Both PALASM 2 and PLPL software*
18P8
22V10
20L10

20L8, 20R8, 20R6, 20R4

16RA8 PALASM 2 software only
16P8, 16RP8, 16RP6, 16RP4

10H8, 12H6, 14H4, 16H2, 16C1, 10L8, 12L6, 14L4, 16L2
32VX10

22RX8

20RA10

20S10, 20RS10, 20RS8, 20RS4

20X10, 20X8, 20X4

6L16, 8L14

12L10, 14L8, 16L6, 18L4, 20L2, 20C1

32R16

105, 167, 168

14R21

10H20G8

10H20P8

10H/10020EV/EG8

23S8 PLPL Software only
29MA16

29M16

22XP10, 20XRP10, 20XRP8, 20XRP6, 20XRP4
22P10, 20RP10, 20RP8, 20RP6, 20RP4

16X4 PALASM 1 Software
29PL141 ASM14X
2971 PEGASUS
M2064 XACT software
M2018

*PALASM 2 and PLPL software are bundled together.

Table 2. Software Support

:l Monolithic m Memories l‘,l 3-3

Notes

34 : &\ monoiithio i Memories £

PALASM 2 Logic Design

Software Package

High-Performance Support Tools

PALASM 2 CAD software is an integral part of the MMI/AMD
programmable logic solution. As PAL devices and other PLDs
have grown more powerful and complex, our team of software
engineers has added major enhancements to PALASM software.
The goal is to provide timely, state-of-the-art software support for
every new PAL device at market introduction. The result is
software that enables you to configure a PLD quickly, easily, and
effectively.

Freedom to Express Your Designs
in Different Forms

PALASM 2 software offers you increased design flexibility. You
have the option of creating your design file with Boolean or State
equations. The powerful PAL device design specification syntax
has the advantage of being flexible enough for complex designs,
without compromising ease-of-use. The basic operators INVERT,
AND, OR, and EXCLUSIVE-OR can be usedto describe any logic
function using Boolean equations. The syntax for State equations
is equally easy to use.

Powerful Simulator Provides
Automatic Testing

PALASM 2 software has a powerful, event-driven simulator that
cuts down the margin of design error significantly. It enables
simulation of the design before the chip is programmed. This
means you can go back and edit the design as many times as you
want without wasting a single chip. The simulator’s English-like
commands allow you to describe functions easily. It performs a
validation of your design, and generates vectors from a test
sequence that you specify. PALASM 2 software’s simulation
makes testing of the design an integral part of creating the design.
This means that every time you insert a PAL device into the
programmer, you can be sure it will be accurately programmed.

Automatic Logic Reduction for
Cost-Effective Design

PALASM 2 software gives you the option of automatically reduc-
ing your logic equations, enabling you to utilize your PAL device
fully. Now you don't have to go through tedious manual reduction
and DeMorganization. The software does the work for you.
Reduced logic leads to cost-effective design, since less device
space is used. By conserving space, design efficiency is in-
creased, as more complex logic can be packed into the device.

Edit Programmed Device Designs

PALASM 2 software offers you the unique ability to edit pro-
grammed device designs. Its time-saving JEDEC manipulator
enables you to read a fuseplot directly from a programmed
device, and disassembles the fuse information back to Boolean
equations. If you wish to alter the design, you can edit the Boolean
equations that the JEDEC manipulator generates.

Easy-to-Use New Menu

The power of PALASM 2 software has been harnessed by a
powerful new menu. Function key options allow you to modify,
assemble, and simulate your design; view any data, including
simulation waveforms; and download JEDEC files to a program-
mer. And with the “Autorun” feature, all of the assembly and
simulation processes can be chained together so that one com-
mand completes the entire process. Errors are flagged on-screen
and in a log file for examination later. The result is a smooth,
integrated design environment that allows you to design logic
easily and efficiently.

Hardware Support

PALASM 2 software is supported on the following systems:
* IBM-PC/XT/AT and compatibles

« VAX-VMS/Ultrix

+ Daisy workstations
» Mentor workstations

A
oot [~
D PAL DEVICE
JEDEC
FILE
511 01
:‘ Monolithic m Memorles z' 3.5

PALASM 2 Logic Design Software Package

Documentation is a Few Pages Away

PALASM 2 software is fully documented in section 4 of this
databook. In addition, a free hotline is provided to answer any
questions you may have about the software or about MMI/AMD
devices. The hotline number is (800) 222-9323.

Design Software for PLDs

Woe believe that PALASM 2 software and MMI/AMD PLDs are
firmly linked. From immediate device support to documentationto
field service: PLD support and software support are one and the
same. It is through this philosophy that PALASM 2 software has
become the world’s most widely-used PLD design package, and
a natural complement to MMI/AMD PLDs.

INPUT " ShickinG outRe
- LOGIC " PUSELOT - FUSEMAP DEVICE
+ STATE MACHINE REDUCTION ‘ « JEDEC FILE PROGRAMMING
+ BOOLEAN . ERROR * SIMULATION « TEST VECTORS
DETECTION « HISTORY FILE

511 02

3-6 a Monolithic m Memories z‘

PLPL: Programmable Logic
Programming Language

Software Version V2.1

- R — R — I
PLPL supports all AmPAL devices, including the following: PLPL PLD Design Environment
16L8, 16R8/6/4 *
18P8 *
2338 co:chg;gauzeo
22V10* I
20L10 *
22P10, 20RP10/8/6/4
22XP10, 20XRP10/8/6/4 EDITOR
29M16
20MA16 |
Devices marked with an asterisk are also supported by PALASM PLD
2 software. PLPL will automatically be shipped with the PC DESIGN
version of PALASM 2 software.
PLPL is a programmable logic development package which lets { 1
the designer describe logic functions and state machines in a
high-level syntax. Various programs in the PLPL package are PLD TEST VECTOR
used to process this design or source file before programming a COMPILER DATABASE [| GENERATOR

device. l l

PLPL is composed of 6 separate programs:
« A programmable logic compiler (PLC) converts the design file INTERMEDIATE TEST
into logic equations and stores these in an intermediate file. FILE VECTORS
A logic optimizer (OPTIMIZE) logically reduces the Boolean
equations in the intermediate file. l
A JEDEC-standard fuse map generator (JM) converts the
equations in the intermediate (or optimized) file and writes
theseinto afuse mapfile. Thisfuse map is used to program the
device.
A manual test vector generator (TESTV) generates JEDEC- l
standard test vectors from a user-specified function table inthe

OPTIMIZER

design file. These vectors are used by the simulator when OPTIMIZED SIMULATOR
modeling the part. FILE
« A functional simulator (SIM) tests the logic equations in the
intermediate/optimized file using the user-defined test vectors. l
+ A PLD program which helps the user define the architecture IF THERE ARE
features on a device (available for PCs). JEDEC Ak .
PLPLhas adatabase file for every supported part. Each database T“ET';“ER,EL‘SD'T
file name is composed of the letter P and the numeric designation DESIGN FILE
of the part. For example, the AmPAL22V10 database file is called
P22v1o0.
PLD Design Methodology: Using PLPL Eéﬁg.co,q JeoEC Fuse |, F\{ég%if;i&
A typical PLPL design cycle contains the following steps:
1. Write a design file specifying the logic functions to be pro- l
grammed into a PLD using the PLPL language.
2. Use PLC1to compile the design file; the output of PLC is called PROGIGMMER
an intermediate file.
3. If required, use the optimizer to reduce the logic equations in 443 01
the intermediate file produced by PLC.
4. Specify afunction table inthe PLD design file. Use TESTV to
generate JEDEC-format test vectors from the function table.
5. Use JM to produce a JEDEC-standard fuse map from the
equations in the intermediate file.
6. Use SIM to simulate the logic model represented by the
intermediate file with the test vectors generated by TESTV.
7. If there are any errors, repeat steps (1) to (6).
8. Load the fuse map into a PLD programmer to program the

PLD.

2\ mononithic LAl Memories £1 3.7

PLPL: Programmable Logic Programming Language

The PLPL Logic Language

PLPL s alogiclanguage used to simplify the design and definition
of Boolean logic functions. These functions can be described
using logic equations with Boolean operators in canonical or
standard sum-of-products form, or through high-level language
constructs such as IF-THEN-ELSE and CASE.

Language Elements

There are three main elements in the PLPL language: keywords,
punctuation marks, and user-defined elements.

Keywords

The following is the list of keywords that the PLC compiler
attributes special meanings to:

BEGIN DEVICE END PRESET
CASE ELSE IF RESET
DEFINE ENABLE PIN THEN

These should not be used as variable or constant names.
Punctuation Marks
These symbols are interpreted in the PLC language:

+

*

Boolean OR operator, as in C = A+B
Boolean AND operator, as’in C = A*B
Boolean XOR operator, as in C = A%B
Parentheses to control logic evaluation, as in
C = A*(B+E)

Boolean complement operator, as in C = /A
Assignment operator, as in C = A

Encloses comments

Statement terminator. This must be put at the
end of each statement

Indicates a range of values .
Concatenates values and variables in CASE
statements and functions

Indicates the end of file and must be preceded
by the keyword “END”

%
(’)

N A A A

!

Comments must begin and end with double quotes (*). Such com-
ments can be placed anywhere in a PLPL file to improve reada-
bility and documentation. Comments cannot be nested.

Operator Precedence

There are four logical operators in PLC: NOT (/), AND (*), OR (+),
and XOR (%). In addition to these, parentheses ‘()’ are provided

to control the grouping or associativity of these operators. The
operators are arranged in order of precedence as follows:

In the expression F = A*B + /C + D, A and B will be ANDed first
because *’ has higher precedence than ‘+". C is complemented
before the ‘+’ operator is evaluated. That is, the expression is
evaluated as F = ((A*B) + ((/C) + D)).

OPERATION OPERATOR | ASSOCIATIVITY
primary 0 right to left
bitwise complement / right to left
bitwise AND * right to left
bitwise OR,XOR +% right to left

Note that the ‘+' and ‘%’ operators have the same precedence.
Use parentheses to prevent any ambiguities in the logic expres-
sion.

Example: F= (A%B) + (C%D) will be evaluated differently from

F = A%B + C%D
User-Defined Elements

You can create variables or numbers in PLPL. Variables are
alphanumeric strings which begin with an alphabetic character
and may contain up to 24 characters. These include all 26 letters,
the numbers 0-9, and the underscore ('_’) symbol. Spaces
cannot be used, and upper and lower-case characters are treated
the same.

Example: VAR_Athis is a valid variable name
VAR A invalid variable name

Numbers can be expressed in one of four radices: binary, octal,
decimal and hexadecimal. To specify a radix, the ‘#x’ symbol is
used, where ‘X’ is b, 0, d, or h to represent binary, octal, decimal,
or hexadecimal, respectively. If ‘#x’is not used, the number is
assumed to be decimal. In PLC, the numbers have to be positive
integers.

Example: #b1110 binary representation of 14
#0016 octal representation of 14

#d14 decimal representation of 14
14 decimal representation of 14
#hE hexadecimal representation of 14

Note: Upper or lower-case characters can be used for the key-
words, variables, or numbers. For example, no distinction
will be made between the character strings “DEVICE” and
“Device”.

38 l‘rl Monolithic lﬁ.ﬁﬂ Memories l‘rl

PLPL: Programmable Logic Programming Language

/]

PLPL Design File

The logic equations or function definitions are specified in an
ASCII PLPL design file. Most text editors/word processors can
create clean text files in ASCII mode, which are free of any control
characters. The design file contains the following sections: the
design name, the header, and the logic specification.

Example:

DEVICE design name (part name)
“<—-— Design name”

PIN = header section”
D[0] = 1l(input combinatorial)
Y[0] = 22 (output active HIGH registered);
DEFINE
CONSTANT 1 = 4,
CONSTANT 2 = 5; “<

end of header section”
BEGIN “<—— logic/function section”
“write logic equations in this section”

END.
Design Name

The design name section contains the keyword DEVICE, the
design file name, and the part to be used in parentheses.

DEVICE design name (part_name)

Header

The header consists of two subsections: pin definition and define
sections.

1. Pin Definition Section

The designer defines names and architectural features to each
pin on the PLD. For example, the AmPAL16R8 (P16R8) has 8
inputs and 8 registered active-LOW outputs. A design making
use of 2 inputs and 5 outputs on this device can be described as
follows:

DEVICE example (P16R8)

PIN a = 1 (input combinatorial)
/b = 2 (input combinatorial) “active LOW input”
/state[3:0] = 13:16 (output registered active LOW)
/c = 18 (output registered active_ LOW);

In this example, pins 1 and 2 have been defined as the input
variables A and /B (active low inputs have), and pin 18 as the
registered output variable C that is also active-LOW.

The architecture definitions in parentheses correspond to the
features available for this device pin. If afeature is programmable
(e.g., registered or combinatorial on the AmPAL22V10), then
these architecture definitions are necessary for the JM fuse map
generator program to set the appropriate architecture fuses. The
dedicated input pins do not need the “active_LOW?” definition in

parentheses because there is no physical fuse to program in
order to get an active-LOW input; the '/ is sufficient.

To get the available architecture settings for each pin, use the
menu-driven PLD program. This program guides the user
through the definition of each pin. After setting the architecture
fuses, the PLD program will write a PLPL source file template
containing the design name and header sections. Allthe designer
has to do is enter the logic equations between the main BEGIN-
END section.

Pins can also be associated in groups called vectors. Once a
group of pins has been defined as a vector, this group can be
referred to by the vector definition. This is helpful when specifying
state machines or address/databuses. Inthe example, the group
of pins 13,14,15, and 16 have been assigned to the output vector
called “state[3:0]". This is logically equivalent to the definition:

PIN a =1 (input combinatorial)
/b = 2 (input combinatorial)
/state[3] = 13 (output registered active_LOW)

/state[2] = 14 (output registered active_ LOW)
/state[l] = 15 (output registered active_LOW)
/state[0] = 16 (output registered active_LOW)

/c = 18 (output registered active_ LOW);

The range of pins to be assigned to a vector can be described by
using the ‘.’ symbol, as in “13:16". In addition, non-sequential pin
numbers can be specified by using ‘,’. In the pin definition
example, if pin 17 is to be used instead of pin 16, then the
definition of state[3:0] can be written as:

/state[3:0] = 13:15,17 (output..)

An element or elements in a vector can be accessed by using the
appropriate subscripts.

Example: ¢ = a*b*state([3];
“access the 3rd vector element”
state[3:2] = state[1:0];
“assign the last two vector elements
to the two most significant bits”

Only pins with the same architecture definitions can be grouped
together as vectors.

2. DEFINE section (optional)

PLPL supports intermediate variable definitions. A PLPL defini-
tion is a variable name assigned to an integer constant or an
often-used logic equation. Vector definitions are currently not
supported. Each macro definition is separated by a comma and
the macro definition section isterminated by ;’. This is an optional
section.

Example: DEFINE LOAD
OUTPUT1
SET_SIGNAL

ENABLE1 *ENABLE2 ,
20 ,
LOAD + SYSRESET ;

In the example, LOAD has been assigned to the logic equation
ENABLE1*ENABLE2, while the name OUTPUT1 has been as-
signed to the constant decimal 20. The logic equations assigned
to defined names can contain variables and logic operators. The

&\ monoiitic BE] memories £1 3.9

PLPL: Programmable Logic Programming Language

variables can also be previously defined names, as shown in the
SET_SIGNAL definition, where the definition LOAD is logically
ORed with the signal SYSRESET.

Definitions are used to simplify the logic specification section by
assigning easily recognized names to logic equations or con-
stants. Itis easiertorememberthataload signalis LOAD instead
of a logic equation ENABLE1*ENABLEZ2, and that an often-used
value is called OUTPUT1 instead of the decimal number 20.

Logic/Function Description

After defining the pin architectures, the designer can now write
logic equations for these pins between the main BEGIN-END.

Logic Specification Section

The statements in the main BEGIN-END block that describe the
logic functions can be expressed in terms of logic equations or
high-level statements.

Logic Equations

The equations can use the logic operators described in the
language elements section. This capability is provided for de-
signers who know the logic equations for a function. The logic
equation is composed of three parts: the variable on the left-hand
side, the assignment symbol ‘=’, and the logic expression on the
right-hand side of the ‘=". Each logic equation is terminated by a
semicolon (;).

Single Signal Expressions

The left-hand side of the equation can be a pin name or a pin
vector. All pins must be defined inthe PIN definition section as an
output, /O or internal register. The logic expression on the right-
hand side of the ‘=’ can be any Boolean algebraic expression
composed of the logic operators AND (*), OR (+), NOT (/), and
XOR (%). In addition, evaluation of logic statements can also be
controlled by the use of parentheses. Each equation is consid-
ered a single statement.

Example: If the variables B and C are to be evaluated first, then
these are enclosed in parentheses.

C = A*(B+C)*/D ;

Every signal in the equation section is considered either true or
false regardless of the physical pin description. Astatement such
as:

IF (A*B) THEN
C = 1; “this is logically equivalent to C = A*B”

means output Cis true (set to alogic 1) if signals Aand B are true.
“IF (/A*/B) THEN" is read “IF A and B are both false”. Note that
the designer does not need to worry about the pins being defined
as active HIGH or LOW.

Vector Expressions
Logic operations can also be performed on vectors. If a vector
VCTR_A[3:0] is to be assigned the value of another vector
VCTR_B([0:3] logically ANDed with a vector VCTR_C[3:0], then
this is written as:

VCIR A[3:0] = VCTR B[0:3]*VCIR C[3:0];

This is easier to write than:

VCTR A[3] = VCTR B[O]*VCTR C[3];
VCTR A[2] = VCTR B[1]*VCIR C[2];
VCTR_A[1] = VCTR B[2]*VCIR C[1];
VCTR A[0] = VCTR B[3]*VCTR C[0];

Single signals can also be used when working with vector vari-
ables.

Example: VCTR A[3:0] = VCTR B[0:3]*/A;
is equivalent to:

VCTR A[3] = VCTR B[0]*/A;
VCTR A[2] = VCTR B[1]*/A;
VCIR A[1] = VCTR B[2]*/A;
VCTR A[0] = VCTR B[3]*/A;

Vectors cannot be assigned to single signals, as in
C = VCTR A[3:0];

This vector assignment property also holds for vectors specified
with'special functions (e.g., ENABLE, RESET). Vectors cannot
be created by concatenating scalars or parts of vectors (using ')
in a logic expression such as "“VCTR_A[3:0] =
A,B,VCTR_A[1:0];". An error will be generated.

High-Level Logic Descriptions

The designer can describe logic functions in a higher-level format
by making use of the PLPL statement constructs. PLPL supports
two statement forms: IF-THEN-ELSE and CASE.

IF-THEN-ELSE Statement

This language format is similar to the IF-THEN-ELSE used in
regular programming languages. In PLPL, this language con-
structs the appropriatelogic equations from the statementsinthe
THEN and ELSE sections and the test conditions. The statement
format is:)

IF (logic condition) THEN
[statement]

ELSE
[statement]

3-10

:l Monollthlom Memorles n

PLPL: Programmable Logic Programming Language

For example, if an output pin is to be set when a condition (e.g.,
/A) is true, and reset when not true, this can be defined as:

IF (/A) THEN

OUTPUT = 1;
ELSE
OUTPUT = 0;

This is the same as writing OUTPUT = /A, where OUTPUT will be
active when the condition /A is true and inactive when not true.
The IF-THEN-ELSE statement makes the function more under-
standable. A 2-input AND gate can be similarly described:

IF (A*B) THEN Truth Table A B OUTPUT
OUTPUT = 1; 0 0 0
ELSE 0 1 0
OUTPUT = 0; 1 0 0
1 1 1

The high-level description is equivalent to OUTPUT = A*B; The
logic test condition must always be enclosed in parentheses.

Note thatthe statement following THEN and ELSE canbe asingle
statement or a group of statements enclosed between BEGIN
and END, and followed by a semicolon (;). For example:

IF (/A) THEN
BEGIN
A = B+C;
G = VCTR A[3]+ B;
END;
ELSE
etc..

The entire IF-THEN-ELSE statement is considered a single
statement and can be nested inside another IF-THEN-ELSE.

IF (/A) THEN
IF (B+C) THEN “nested IF-THEN-ELSE”

C = A*B;
ELSE
C = A*D;
ELSE
A = B;

The ELSE part in any IF-THEN-ELSE is optional but any ELSE
section will match the most recent IF section, hence care mustbe
taken when using nested IF-THEN-ELSE statements.

For example:

IF (/A) THEN
IF (B+C) THEN “nested IF-THEN”
C = A*B;
ELSE
A =B;

The ELSE is matched with IF (B+C) THEN, and not IF (/A) THEN.
In order to match the ELSE with (/A), BEGIN and END keywords
must be used to enclose the statements between IF (/A) THEN
and the ELSE, as shown in the following example:

IF (/A) THEN
BEGIN
IF (B+C) THEN “nested IF-THEN is now a single
statement”
C = A*B;
END;
ELSE “ELSE now matches with IF (/A) THEN”
A = B;

Logic Test Conditions

A logic test condition can be a logic expression, a vector test, or
a combination of both.

Logic Expression as a Test Condition

A logic expression can be used as a test condition. This
expression can contain single signals, vector variables, and logic
operators, including parentheses.

Examples: IF (/A) THEN
IF (A+B* (A+/C)) THEN
IF (A+VCTR A[3]) THEN
IF (VCTR A[3:0] = #b1001) THEN

Inthe last example, a vectortestis used as the test condition. This
logic expression checks if the vector is aspecific value. The value
can be expressed in any radix, as long as it can be represented
by the vector. VCTR_A[3:0] is tested to determine if it has a value
of binary 1001; this is equivalent to

IF (VCTR A[3]*/VCTR_A[2]*/VCTR_A[1]*VCTR A[0]) THEN

If the vector test condition does not include the equal sign and a
value (as in IF (VCTR_A[3:0]) THEN), then this is equivalent to
logically ANDing every element in the vector, or

IF (VCTR_A[3]*VCTR A[2]*VCTR A[1]*VCTR _A[0]) THEN

Vector test conditions can be mixed with other vector or single-
signal test conditions. The following are some examples of
mixed element logic test conditions:

Example: IF ((VCTR_A[3:0] = #b1001)*/a + b) THEN
IF ((VCTR_A[0:3] = #hA)* (VCTR B[3:0] = #012))
THEN

a Monolithic m Memorles a

3-11

PLPL: Programmable Logic Programming Languagye‘

Note that each vector test must be enclosed in its own set of
parentheses. If not, an error will be generated. A vector test
condition can be performed by concatenating single signals and
vectors and testing for a value. Inthe example below, signalsA,B
and VCTR_A[2] are tested to determine if they have the value
#b110.

Example: IF (a,B,VCTR A[2] = #B110) THEN
CASE Statement

The CASE statement is similar to the multiway branch statement
provided in computer programming languages. It has the follow-
ing format:

CASE(pin_vector)
BEGIN
value0) [statement]
value1) [statement]
value2) [statement]

vélueN) [statement]
END;

The pin vector must be large enough to represent the values
VALUEOto VALUEN. Forexample, ifthe pin vector contained two
elements, then amaximum of four different values can be tested.
The user can also specify a range of values by using the " and
‘! symbols.

Example: CASE (VCTR A[3:0])

BEGIN
0:5,9) BEGIN
F = A*B;
E = /A*C + B;
END;

12,#bl1111) A FIAG = 1;
END; “end of CASE”

In the example above, the CASE statement is used to check the
possible values of VCTR_A. The first values tested are from O to
5 and the decimal number 9. The second test checks whether
VCTR_A[3:0] is equal to 12 or 15 (specified in binary). Any
number radix can be used to specify the values, and a name
defined as a constant in the DEFINE section can also be used as
a CASE value.

The statement at each variable value can be a single logic
equation, a set of logic equations (bracketed by BEGIN and
END), an IF-THEN-ELSE statement, or another CASE state-
ment. There is no default statement to handle values that are not
specified. No logic equations will be generated for the unspeci-
fied values.

Example: CASE (VCTR A[3:0])

BEGIN

0) BEGIN
VCIR A[3:0] = 1;
A FIAG = 1;
END;

1) BEGIN
VCTR A[3:0] = 12;
A FIAG = 0;
END;

12) VCIR A[3:0] = 0;
END; “end of case statement”

In the example above, only three possible values for
VCTR_A[3:0] are tested and the corresponding logic
statement(s) are listed.

The vector used in the CASE condition can also be created from
single signals. The concatenation operator ;" is used to group
single signals and/or vectors together, as shown in the examples
below.

Examples: CASE (a,B,C)
BEGIN
#B100) [statement]

END;

CASE (A,VCTR A[3:2],C)
BEGIN
#B1100) [statement]

END;

CASE (VCTR A[3:2],VCTIR B[3:2])
BEGIN
#B1101) [statement]

END;

Case statements are useful in creating state machines. The
vector variable specified in the CASE statement can be consid
ered as a group of state bits, with the values in the CASE
statement being the range of possible states the vector may take

A multi-mode counter is an example of a state machine. By
defining two pins as state registers (these can be defined as ¢
vector), the count sequence can be easily customized. In this ex
ample, the next state of the machine at any count is determinec
by the present count and the mode bit MODE. If the MODE bit it
UP, then the counter operates as an up counter. If the MODE bi
is DOWN, then the device operates as a down counter.

3-12 2\ Monoithic B Memories &1

PLPL: Programmable Logic Programming Language

Multi-Mode Counter Example

DEFINE UP = 0, “constant definitions for better”
DOWN = 1; “readability”

CASE (COUNT[1:0]) “4-state up/down counter”
BEGIN
0) IF (MODE = UP) THEN
COUNT[1:0] = 1;
ELSE
COUNT[1:0] = 3;

3) IF (MODE = UP) THEN
COUNT[1:0] = O;
ELSE
COUNT[1:0] = 2;
END; “end of CASE statement”

NOTE: The use of CASE statements with large numbers of values
to be tested and the extensive use of nested CASE statements
may force the PLC compiler to consume all available memory. If
an “OUT OF MEMORY?” error is generated when using nested
CASE statements, try converting the function definition into a
single-level CASE statement.

DeMorganization

If an output variable or vector is prefaced by a complement (/)
operator on the left-hand side of a logic equation, then the right
hand side of the logic equation is DeMorganized.

Example: IF (/A) THEN
/SIGNAL[3:0] = /B*C;

In this example, the right-hand side will be DeMorganized before
assignment to each element in the vector SIGNAL[3:0]. In other
words, the resulting logic expression for each element in the
vector SIGNAL is:

SIGNAL[3] = B + /C;
SIGNAL[2] = B + /C;
SIGNAL[1l] = B + /C;
SIGNAL[O] = B + /C;

Positivé-Polarity Signals on
Negative-Polarity Outputs

A positive-polarity signal can be represented with a negative-
polarity pin by DeMorganizing the equation. This may be neces-
sary if the only available PLD does not have programmable
polarity. For example, the active-HIGH function F = A*B can be
implemented on an active-LOW device (P16L8) by complement-
ing the function:

/F(H) = /(A*B)
F(L) = /(A*B)
F(L) = /A + /B

&\ monotithic X Memories £

In the PLPL language:

DEVICE a_design (P16L8)
PIN A = 1 (input combinatorial)
B = 2 (input combinatorial)
F = 15 (output active LOW combinatorial);
BEGIN
/F = A*B;
END.

PLPL automatically DeMorganizes the equation for device im-
plementation.

Special Functions

The PLPL language allows the creation of logic expressions to
utilize special functions for PLD pins. RESET, PRESET and
ENABLE are examples of special functions foroutput pins. These
three function names are treated as keywords because most
PLDs incorporate them. More advanced devices may have other
control functions (e.g., OBSERVE on the AmPAL23S8).

The database file contains architecture information on the device
that is used to generate the JEDEC fuse maps for programming
the device. The database file also contains architecture and
special function names which the user will need to know when
writing the PLPL source file for the part.

Examplei

The polarity architecture fuse for pin 23 on a 22V10 is defined in
the database file as:

active LOW 5808 0 + # active HIGH 5808 1

This means JEDEC fuse number 5808 for the 22V10 controls the
polarity of this device. If the name “active_LOW" is used inthe pin
definition section (described earlier) for pin 23, then fuse 5808 is
set to state 0; if “active_HIGH?”, then the fuse is set to state 1.

Special functions such as OBSERVE and PRELOAD are also
contained in the database file. These names are prefaced by the
‘I symbol.

Example:

The observability product term feature on the 23S8 is defined in
the database file as:

!OBSERVE 1 6072;

This is interpreted as 1. observability product term starting at
JEDEC fuse location 8072. The user must type the feature name
when using the special function in the design file.

The specialfunctions for newer PLDs are listed in the correspond-
ing PLD database file and are preceded by the ‘' symbol.
ENABLE, RESET and PRESET are not listed there. PC users
canusethe PLD program to get a listing of the functions available
on aPLD.

3-13

PLPL: Programmable Logic Programming Language

Usage

A special function consists of the function name followed by
parentheses. Enclosed in the parentheses are the signals and/
or vectors that are to be associated with the logic expressions
used to define and activate the special functions.

For example, to define the special function product term(s) for a
. set of output vectors, write:

DEVICE a_design (P22V10)
PIN MODEO = 1 (input combinatorial)
MODE1l = 2 (input combinatorial)
= 3 (input combinatorial)
SIGNAL([3:0] = 14:17 (output registered
active HIGH);

BEGIN

IF (/MODEO*/MODE1l) THEN .
ENABLE (SIGNAL[3:0]) = #bl11l; "i"

IF (MODEO*/MODEl) THEN

- RESET (SIGNAL[3]) = A; "iiv

IF (MODEO*MODEl) THEN
PRESET (SIGNAL[3]) ; "iiiv

END.

In (i), the ENABLE function product term for each vector element
is setto 1 (logictrue) when both mode inputs are low because the
binary value #b1111 corresponds to each of the four vector
elements. Ifthe binary number #b1 is used, then the enable term
for SIGNAL[0] will be setto 1 and the enable terms will be 0 forthe
other 3 vector elements.

The special functions can also be equated to logic expressions.
In (i), the RESET function is active for the vector element
SIGNAL([3] if the test condition (MODEOQ*/MODE1) is true and the
variable Ais true. If no logic expression is specified (iii), then the
function is dependent on the test condition (MODEO*MODET1).
If no test condition is specified; as in:

BEGIN
ENABLE (SIGNAL[3:0]) ;

END.
thenthis is equivalentto ENABLE(SIGNAL[3:0]) = #b1111; where
each variable enclosed in the parentheses is assigned the
. constant 1.

The function can also be defined like a logic expression. (ii) can
be written as: “RESET(SIGNAL[3]) = MODEO*/MODE1*A;".

Special Parts

Using the XOR Gate in the AmMPAL20XRP10 Series

To use the XOR gate in the AmPAL20XRP10 PLD series (e.g.,
P22XP10), use the XOR function provided:

pin20 = inputl*input2*input3;
xor (pin20) = /inputl*/input2+/input3*/inputd;

The second statement above will assign the logic function to the
two product terms allotted to the XOR gate of pin PIN20. The first
statement above assigns the logic expression to the other group
of six product terms on the other XOR input. Do not use the XOR
(%) operator because the compiler will convert logic expressions
with the % operator into its sum-of-products form.

Internal Registers on the AmPAL23S8

The internal registers on the AmPAL23S8 are considered as
output pins and are numbered as pins 21 to 26. Pin 21 refers to
the internal register connected to physical output pin 13, while pin
26 is connected to pin 18.

Using the Dual-Feedback Macrocell
on the AMPALC29M/MA16

The architecture of each of the 16 /O macrocells on the 29M16
and 29MA16 can be configured by the 8 or 9 architecture fuses
in each macrocell. 8 of the 16 macrocells on the part have dual-
feedback paths and these dual-feedback macrocells have 8
architecture fuses. The remaining 8 single-feedback macrocells
have 9 fuses. The 8 dual-feedback macrocells are connected to
pins 3,4,9,10,15,16,21, and 22.

In PLPL V2.1, each of the architecture fuses is given a pair of
names describing the effect the fuse has on the macrocell. For
example, fuse SO (see datasheet) can be described as
“ACTIVE_LOW?” or “ACTIVE_HIGH". This corresponds to the 2
possible states this fuse can have. For fuses S4to S7, the names
Sn_0OorSn_1 are used (n = 4,5,6,7), where Sn_0 means the fuse
is not programmed, and Sn_1 means the fuse is programmed.

The fuse names can be obtained from the P29M/MA 16 database
files. The fuse names are prefaced by the # symbol. For a
description of the functions controlled by the architecture fuses,
refer to the datasheet.

These names are put between parentheses in the pin definition
section in the PLPL design file.

Using the Dual-Feedback Macrocell as an Internal
Register and a Dedicated Input

The dual-feedback macrocell can be used as an internal register
and as a dedicated input. This is done by setting architecture
fuses inthe macrocell to always disable the output buffer. Torefer
to this internal register in the part, use the virtual pin number.

There are 8 virtual pin numbers corresponding to the 8 dual-
feedback macrocells. These virtual pins are numbered from pins
25 to 32, and refer to the physical pins 3, 4, 9, 10, 15, 16, 21, and
22 respectively. For example, if the register attached to pin 3 is
programmed as an internal register, then pin 3 can be considered
asaninputand pln 25 as aninternal register. Logic equauons can

be assigned to pin 25.

3-14

i:l Monolithic m Memories ﬂ

PLPL: Programmable Logic Programming Language

Example: DEVICE dual_macro (P29M16)
PIN p2 = 2 (input combinatorial)
p3 = 3 (I_O combinatorial)
p4 = 4 (I_O combinatorial)
regular out = 5 (output active HIGH
registered reg_latch
out_cell s4 1 s5_1
s6_0 s7_1
reg_feedback)
internall = 25 (active HIGH registered
reg_latch S4 1 S5_1 s6_0
s7_0);

BEGIN

internall = p2 % p4;
regular out = internall*/p3;
END.

The architecture definitions for the pin “internal1” have been
selected to always disable the output of the register in this
macrocell (S6 and S7 set to 0 = S6_0, S7_0). This frees pin 3 to
be used as a dedicated input by using one of the feedback paths
in this dual-feedback path macrocell.

Other output pins on the device, such as “regular_out”, can now
refer to this internal register just like a regular pin. The only
difference is that the output of this internal register cannot be
observed by the designer at the pins.

Using the Dual-Feedback Macrocell as a
Regular /O Macrocell

The dual-feedback macrocells can be used as regular 1/O pins.
Configure the architecture features ofthe virtual pins suchthatthe
output of the register in this dual-feedback macrocell is always
enabled. This means that the output of the register will be sent
through the corresponding physical pin. The physical pin must be
configured as an output or I/0 pin.

Example: DEVICE dual_macro (P29M16)
PIN p2 = 2 (input combinatorial)
p3 = 3 (IO combinatorial)
p4 = 4 (IO combinatorial)
regular out = 5 (output active HIGH
registered reg_latch
out_cell s4 1 s5 1 s6 0
s7_1 reg_feedback)
internall = 25 (active HIGH registered
reg latch S4_1 S5 1 s6_0
s7_1);

BEGIN

internall = p2 % p4;

regular out = internall*/regular_out;
END.

In this example, the output of “internal1” will be sent through its
corresponding physical pin 3. Note that P3 is defined as a
combinatorial I/O pin.

Defining I/O Pins as Inputs

When an I/O pin on a device that does not have polarity control
(e.g., pin 15 on the AmMPAL20L10) is defined as an input, the
polarity keywords (ACTIVE_HIGH and ACTIVE_LOW) must not
be used.

For example: Pin 15 on the P20L10 is defined as an active-HIGH
input. The pin should be defined as:

PIN name x = 15 (input combinatorial)

Generating Test Vectors

Test vectors are used by PLD programmers or logic simulators to
verify that the logic functions defined for aPLD are correct. These
vectors describe the inputs to the PLD and the outputs expected
from the device after applying these inputs.

In PLPL, these test vectors are listed at the end of the design file.
They are processed by the test vector generator program
(TESTV) which produces JEDEC-format test vectors.

Test Vector Format

DEVICE ...
PIN ... See PLPL Language section
BEGIN

END.

TEST_VECTORS
[Pin Classification]
BEGIN

[Vectors]

END.

The user-defined test vectors are attached to the end of a PLPL
language file, i.e. after the “END.". The keyword
TEST_VECTORS marks the beginning of the vector section.
This is followed by a pin classification section which specifies the
pin types. There are four pin types: IN, OUT, |_O, and BREG.
These refer to input, output. input/output and internal (buried)
register pins, respectively.

The pin names specified in the pin classification section must
have been defined already inthe PIN definition section (see PLC).
The pin names must also be classified under the appropriate

types.

Example: DEVICE Ex1 (Pxxxxx)

PIN A =1 (input ...)
/B = 2 (input ...)
/C =15 (IO active LOW...)
D = 16 (output ...);

BEGIN “logic equation section”

END.
TEST_VECTORS
IN A,B;
10C;

“test vector section”

ﬂ Monolithic m Memories L'l

3-15

PLPL: Programmable Logic Programming Language

The pins A and B are classified as inputs, C as I/0, and D ‘as a
dedicated output pin. This matches with the PIN section. Note
that the '/ symbols can be used, but'are not required.

The pin classification section specifies the order with which the
user must specify the pin values. This means that since the pin
order is now A,B,C and D, the values specified for the test vector
must also follow this order. \

Example: TEST VECTORS
IN A,B;
Ioc;

Inthefirst \)ector, the first value 1 is associated with pin A, the next
1 with pin B, H with pin C, and L with pin D. The list is then
terminated with a ;.

If a different pin order is required, then the pin order in the pin
classification section can be changed.

Example: TEST_VECTORS
OUT D;
IN A;
Io0C;)
IN B; “sections can be split up also”
BEGIN
L1H1;

END.
Test Vector Values

The values apin can take in atest vector are determined by its pin
type. These values are outlined in the JEDEC standard. The
following is the list of possible pin values:

0 — drive input low
1 — drive input high
2-9 — drive input to super voltage #2 to 9
— test output low
— test output high
— float input or output
— test input or output for high-impedance
— drive input low, high, low (positive clock pulse)
— drive input high, low, high (negative clock pulse)
— preload registers
— preload buried/internal registers
— power pins and output not tested
— output not tested, use input default level

XZWIUXONTTIrr

The default level for unspecified pins is a0 or L. In the test vector

generator program TESTV, this can be settoa 1 or H.

Pin Types

There are two types of pins: supply, and input or output pins.
Supply Pins

These pins are not tested by the PLD programmer or logic
simulator. These are the power and ground pins. They should not
be specified in the pin classification section.

Input and Output Pins

Input and Output pins are dedicated input, output, clock, or input/
outputpins. Control pins such as dedicated enable pins (as onthe

AmPAL16R8) are considered input pins. The values these pins
may take are listed below:

PIN TYPE POSSIBLE TEST VECTOR VALUE
input 0,1,2,3,4,5,6,7,8,9
FZ
X,N
output LH,FZ
0,1(preload)
XN
clock CK,P
X,N
input/output (same as input and output)

Example: To test a 2-input AND function programmed into an
AmPAL16R8 with the following PLPL definition:

DEVICE AND FUNCTION (P16R8)
PIN CLK1 = 1 (clock)

A = 2 (input combinatorial)

B = 3 (input combinatorial)

ENB = 11 (control) “enable pin”

/AND = 19 (registered output active LOW);
BEGIN
AND = A*B;
END.

TEST_VECTORS
IN CLK1,ENB,A,B; “pin classification section”

The JEDEC test vectors produced will be:

V0001 COOXXXXXXNOXXXXXXXHN*
V0002 COIXXXXXXNOXXXXXXXHN*
V0003 ClOXXXXXXNOXXXXXXXHN*
V0004 ClIXXXXXXNOXXXXXXXLN*
AnA ~ A
Pin 1 11 19
2
3

3-16 &\ Monolithic m Memories &

PLPL: Programmable Logic Programming Language

Note that the values for pin 19 are inverted. This is because the
name AND in the pin classification section did not have a /" as in
the PIN definition section. TESTV reverses the polarity of the
vector value if the pins do not have the same definitions (one
defined with the ‘7 and the other without). If they have the same
definition in both the pin classification and definition section (both
with or without /'), the vector values are not modified.

This capability is useful because now the user can think in terms
of asserted/not asserted or voltage levels. If the user is thinking
of assertion levels, then the names are specified in the pin
classification section without any /’s. A 0/1 or L/H will mean not
asserted/asserted for inputs and outputs, respectively. TESTV
will convert the 0/1s and L/Hs by resolving any polarity discrep-
ancies in both the pin classification and definition sections.

Example: Inthe AND function example, pin 19 (AND) is defined
as active-LOW in the PIN definition section but de-
fined without the 7’ in the pin classification section.
The vector values specified now refer to AND being
asserted (H) or not asserted (L). TESTV will automati-
cally invert them.

If the user wants to think in terms of voltages with a 0/1 and L/H
referring to the low and high voltages respectively, then the
names must match in both pin definition sections.

Example: Inthe AND example, if pin AND were defined as /AND
in the pin classification section, then the test value
specified for AND mustbe the voltage or physical level
expected. This meansthat when AND is asserted, an
L is expected at the output, with H expected when
AND is not asserted.

The test vectors will be numbered in increasing order (decimal)
and will contain a number of values equivalent to the physical
number of pins on the device. In the preceding example, all pin
locations on the AmPAL16R8 except pins 1,2,3,10,11,19 and 20
are specified as X ordon’t care. Pins 10 and 20 are the power and
GND pins (automatically set by the TESTV program) while pins
1,2,3,11 and 19 were taken from the test vector specification.

Some PLD programming systems and simulators will use the test
vectors in the following manner: the specified inputs are applied
to the PLD and the outputs and input/output values are compared
with the outputs specified. In sequential designs the previous
register state is used to determine the next state. Forthe very first
vector, many PLDs have the power-up reset feature which guar-
antees the part starting with all registers reset to 0.

Preloading Registers

Registers can be preloaded by putting the ‘P’ value on the clock
pin controlling the registers. This meansthatif aclock pincontrols
a bank of registers, a ‘P’ should be placed on the clock pin to
preload that register bank. The value to be loaded into the
registers is then specified using 0 and 1, not L and H.

Example: TopreloadanAmPAL16R8with 10010110, the follow-
ing vector sequence is used (note that the outputs are
active LOW):

TEST_VECTORS

IN CLK1, IN_A,IN_B;

OUT /out7,/outé,/out5, /outd, /out3, /out2, /outl, /out0;
BEGIN

C 0 1 XXXX XXXX;
P X X 0110 1001;
0 X X LHHL HLLH;
C 1 1 XXXX XXXX;
END.

“do one test”

“preload reg with 10010110”

“test registers without clocking”
“do another test with preloaded reg”

For preloading buried or internal registers on a device like the
AmPAL23S8, the keyword LOAD_INTERNAL is used. A se-
quence of 0s and 1s follows which corresponds directly to the
states of the internal registers.

1. Test vector values may be grouped together if they are all
numbers or all alphabetic characters.

Example: TEST VECTORS
IN INO,IN1,IN2;
OUT OUTO, OUT1,0UT2;
BEGIN
111 HHL;
100 LHH;
101 LHL;
END.

2. Spaces can be used to separate the test vector values
(ex. ‘111HHL).

PLPL V2.1 Programs

The PLPL V2.1 package contains the following programs:
Programs:

1. PLC: generic logic software compiler

2. OPTIMIZE: logic optimizer

3. JM: JEDEC map generator

4. TESTV: manual test vector generator

5. SIM: functional simulator

6. For PC users, a pin utility program PLD.EXE is included

A menu program PLPL.EXE can be used to control execution of
each of the programs, or the programs can be called individually
as described later. Experienced users can create a batch file to
perform the COMPILE-OPTIMIZE-FUSEMAP sequence.

PLC: Programmable Logic Compiler

The PLC logic compiler compiles an ASClII logic description file
written in the PLPL language and produces an intermediate file.
To run PLC, type the following command at the system prompt
(e.g.,A>)

A> plc -i filename [-o intermediate filename]
-i filename ==> specifies the input filename

-0 intermediate_filename ==> writes the compiled form to
the file specified (optional)

l‘rl Monolithic lﬁ.ﬁﬂ Memaories I‘rl

3-17

PLPL: Programmable Logic Programming Language
W_

The compiled form will appear on the screen. Any errors will be
written to the temporary file $tmp.$$$.

OPTIMIZE: Logic Optimizer

OPTIMIZE is a logic equation optimizer that applies logic reduc-
tion algorithms to the expressions in the intermediate file. This
program detects and eliminates logic redundancies inthe expres-
sions. ‘

The optimizer is called as follows:

A> optimize -i intermediate filename
[~o new file]

-i intermediate_filename ==> an intermediate file is
taken as an input

-0 new_filename ==> the logically minimized file is written
to the file with the specified name (optional)

The optimized file will be displayed on the monitor.

JM: JEDEC Link/Fuse Map and Equation Listing
Generator

JMtakes an intermediate file, and generates the link/fuse map for

the targeted PLD. The link/fuse map generated conforms to the
standards set forth by the JEDEC committee. The intermediate
file contains the logic equations that are then converted into a
pattern of 1s and Os corresponding to the device links on a PLD.

JM can also perform the following functions:

List the logic equations with the user-defined signal names into
a file; improves documentation

Concatenate an existing JEDEC map with a TESTV-generated
test vector file; this format is used by some PLD programming
units with testing capability

Generate anew PLD design file header containing a correct pin
definition section; this menu-driven function will display the
available architectural features for all the pins on a user-
specified PLD. This is used on VAX versions of the program
and is similar to PLD.EXE on the PC.

~ Torun JM, type:

A> jm -i intermediate filename [-o map_filename]
[-1 list_filename]
or
jm -a <link/fuse map file> <test_ vector_ file>
or
jm -n

-i intermediate_filename ==> generate the link/fuse map from
the equations in this file

-0 map_filename ==> send the JEDEC map to the file
specified (optional)

-l list_filename ==> list the logic equations with the user-
specified variables into a file (optional)

-a <linkfuse_map_file> <test_vector_file> ==> first file name
contains link/fuse map and second contains the JEDEC
standard test vector file

-n ==> used to generate a new PLD design file header

The device/fuse map will be displayed on the screen. If the “-0”
option is used, it will also be sent to the file specified.

The “-a” or concatenate option must be used by itself. If other
options like “-i” or “-0” are included with their arguments, they will
be ignored.

The “-n” option must also be used by itself when creating new
design file headers.

TESTV: JEDEC Standard Test Vector Generator
TESTV takes a PLPL language file and searches for a test vector
section. It then converts these user-specified vectors into a
format that can be loaded into a PLD programmer for testing.
To run TESTV, type: '

A> testv -i filename [-o out_filename]

-i filename is the input file specification

-o filename is the file to write the test vectors to;

this is an optional argument

The vectors generated will be sent to the screen.

3-18 Zl Monolithic m Memories Il

PLPL: Programmable Logic Programming Language

SIM: Functional Simulator

The functional simulator SIM simulates PLD designs created with
the PLPL V 2.1 package. Logical errors can be detected before
the part is actually programmed, thus reducing debugging costs
and design time.

To run the simulator, type:

sim -i <intermediate/optimized file>
<testvector_ file>

The following simulator options are available:

-o output_file

-b init_val,final val

-x value of don’t_care

-z value_of_three_ state

—e

-t

Options:

—-e

Status information (e.g., number of errors) generated by the
Simulator is normally sent to the CRT. This option will cause the
output to the CRT to be suppressed.

-i <intermediate file> <testvector file>

The intermediate file is generated by the PLC program. This file
serves as the simulation model for the PLD design. The test
vector file is generated by TESTV and contains the inputs to the
model and the expected outputs.

-0 <output_file>

Writes the simulation results to the output file.

-b <init val,final val>

Breakpoint selection option: simulation will be performed on a
range of vectors. This range begins at the vector numbered
INIT_VAL up to and including the vector numbered FINAL_VAL.
Any one of these two values can be left out. If the initial value is
not specified, then the beginning of the test vector file is taken as
the first vector read by the simulator. If the final_value is not
specified, then the final vector in the test vectorfile is taken as the
final vector affected by this breakpoint option.

For example:

[-b20,] start simulation at test vector 20 to the end of file.
[-b,12] start simulation at test vector 1 to test vector 12.
[-b 7,24] start simulation at test vector 7 to test vector 24.

-x <value_of_don't_care>

The default interpretation of a don’t care symbol in the test vector
file (‘X’) is interpreted O (or L for outputs). The user can set the X
value to be interpreted as O (L for outputs) or 1 (H for outputs).

-z <value of_three state>

The default three-state value is 1. This Z value can be set to 0,
L, or H with this option.

-t

The trace feature displays simulation results on the screen. The
simulator will compare the calculated outputs with the expected
outputs (specified by the user) and flag any inconsistencies.

Simulating Special Functions

To ensure the correct simulation of a design specification, make
sure that all special-function product terms for outputs on a PLD
are defined. If a product term is not used, specify a logic 0 for that
product term. For example, if the RESET function is not used on
an AmPAL22V10, write: RESET(x,y) = #b00; where x,y are two
outputs used in the design.

2\ monotithic Ll Memories &1

3-19

Notes

3-20 | 2\ monotithic K Memories €1

Logic Cell"Array

and Development System_s

The Logic Cell Array

The Logic Cell Array (LCA) is the first device to successfully
bridge the gap between field programmable logic and gate
arrays. The LCA™ successfully combines the benefits of low-
power CMOS LS| technology and the advantages of user pro-
grammability with the gate density and logic flexibility previ-
ously obtainable only with gate arrays.

The LCA provides a quantum jump in field-programmable logic
device capability extending its usable functional density into a
realm beyond that of more conventional programmable logic
devices. Much greater gate utilization is achieved with the LCA
by use of a flexible array type architecture more versatile than
that of conventional PLDs, which is increasingly inefficient as
gate density is increased. The Monolithic Memories M2018
1800-gate LCA device can replace as many as six 1200-gate
PLD devices in some applications.

Gate arrays, on the other hand, provide densities higher than
those of current LCAs. However, gate arrays typically require
longer development times, design risks and significant cost.

The LCA is the ideal option for the PLD designer wishing to
achieve a new level of system functional density and for the
gate array user looking for a low-cost and easy-to-use alterna-
tive which provides instant prototyping through the power of
in-circuit emulation

Component Ordering Information

Ordering Information Development

Systems
PART
NUMBER DESCRIPTION
LCA-MEKO1 Logic Cell Array Evaluation Kit
LCA-MDS21 XACT™ Design Editor System
LCA-MDS22 P-SILOS™ Simulator
LCA-MDS23 Automatic Placement and

Routing Program

LCA-MDS24-48N

XACTOR™ In-Circuit Emulator for
48-Pin DIP (includes one LCA-MDS26
and one LCA-MDS27-48N)

LCA-MDS24-68NL

XACTOR In-Circuit Emulator for
68-Pin PLCC (includes one LCA-
MDS26 and one LCA-MDS27-68NL)

LCA-MDS24-68P

XACTOR In-Circuit Emulator for
68-Pin PGA (includes one LCA-MDS26
and one LCA-MDS27-68P)

LCA-MDS24-84NL

XACTOR In-Circuit Emulator for
84-Pin PLCC (includes one LCA-
MDS26 and one LCA-MDS27-84NL)

LCA-MDS24-84P

XACTOR In-Circuit Emulator for
84-Pin PGA (includes one LCA-MDS26
and one LCA-MDS27-84P)

LCA-MDS26 Universal Emulation Pod
M2018-50 CNL84 LCA-MDS27-48N | Emulation Header Cable for 48-Pin DIP
PART NUMBER —— L packace TYPE Feader Cablo 1
M2064 (1200 Gates, 58 I0B) N48 =48 Pin Molded DIP Emulation Header Cable for
M2018 zwoo Gates, 74 I0B) NL68 =68 Pin PLCC LCA-MDS27-68NL | ¢o o bl oG
NL84 =84 Pin PLCC .
SPEED GRADE P68 =68 Pin PGA .
-33 = 33 MHz Toggle Rate P84 =84 Pin PGA LCA-MDS27-68p | Emulation Header Cable for
-50 = 50 MHz Toggle Rate 68-Pin PGA
-70 = 70 MHz Toggle Rate T%MPS-:ATURE :‘ANGE Ermalation Header Cabla {
=Commercial mulation Header Cable Tor
M =Military LCA-MDS27-84NL 84-Pin PLCC
Emulation Header Cable for
LCA-MDS27-84P 84-Pin PGA
- ag= FutureNet® DASH™ Schematic Design
Package Availability LCA-MDS31 Entry Interface
48-PIN -
PART |pLAsTIC| 88-PIN | 68-PIN | 84-PIN | 84-PIN Service Contracts
NUMBER DIP PLCC PGA PLCC PGA
NL68 P68 NL84 P84 PART
N48 NUMBER DESCRIPTION
M2064 X X X LCA-MSC21 XACT Design Editor System (LCA-MDS21)
M2018 X X X X Annual Support Agreement
a Monolithic m Memories a 3-21

Logic Cell Array and Development Systems

Logic Cell Array M2064, M2018

Features

Fully Programmable

- /O functions

- Digital logic functions

- Interconnections

General purpose array architecture
Complete user control of design cycle

Compatible arrays with logic cell complexity equivalent to
1200 and 1800 usable gates

Standard product availability

100% factory-tested

o Selectable configuration modes
 Low-power, CMOS, static memory technology
o Three performance options: 33, 50, and 70 MHz
TTL or CMOS input threshold levels

Complete development system support
—XACT Design Editor

—Macro Library

—Timing analyzer

— Design rules checker

~ Configuration file generator

- Configuration file formatter

Optional features

- Schematic capture entry

—XACTOR in-circuit emulator

—Logic and timing simulator

- Auto Place/Route

Description

The Logic Cell Array (LCA) is a high-density CMOS user-
programmable logic device. The array architecture of the LCA
allows the designer total flexibility and yields extremely high
gate utilization. The LCA is composed of three configurable
logic elements: Input/Output Blocks (IOBs), Configurable Logic
Blocks (CLBs), and Programmable Interconnect. The XACT de-
velopment system Design Editor provides a graphical interface
to configure individual IOBs for external interface, define CLBs
to implement internal logic, and assemble an internal network
of interconnect to accomplish larger logic functions. The XACT
Design Editor provides an interactive graphic design capture
system with an automatic routing feature. Both logic simulation
and emulation are available for design verification.

Programming

The Logic Cell Array's logic functions and interconnections are
determined by a configuration program stored in internal static
memory cells. On-chip logic provides for automatic loading of
configuration data at power-up or on command. The program
data can reside in an EEPROM, EPROM, or ROM on the circuit
board or on a floppy disk or hard disk. :

Several methods of automatically loading the required data are
designed into the Logic Cell Array and are determined by logic
levels applied to mode selection pins at configuration time. The
form of the data may be either serial or parallel, depending on
the configuration mode. The programming data are indepen-
dent of the configuration mode selected.

The Logic Cell Array is available in a variety of logic capacities,
package styles, temperature ranges and speed grades.

Input/Output Block

Each user-configurable 1/0 block (IOB) provides an interface
between the external package pin of the device and the inter-
nal logic. Each 1/0 block includes programmable input path and
a programmable output buffer as shown in Figure 1. It also pro-
vides input clamping diodes to provide protection from electro-
static damage, and circuits to protect the LCA from latch-up
due to input currents.

The input buffer portion of each 1/0 block provides threshold
detection to translate external signals applied to the package
pin to internal logic levels. The input buffer threshold of the 1/O
blocks can be programmed to be compatible with either TTL
(1.4 V) or CMOS (2.2 V) levels.

Output buffers in the I/O blocks provide 4-mA drive for high
fan-out CMOS- or TTL-compatible signal levels.

10Bs

_%I-]

CLBs
m
] PROGRAMMABLE
B INTERCONNECTS
EEEE B
L] °
° M LCA Internal Structure
LOGIC | CONFIG- CONFIG-
PART |CAPACITY | URABLE USER URATION
NUMBER | (USABLE LOGIC 1/0s PROGRAM
GATES) BLOCKS) (BITS)
M2064 1200 64 58 12038
M2018 1800 100 74 17878

3-22 a Monol(thlc m Memories :l

Logic Cell Array and Development Systems

Configurable Logic Block

An array of Configurable Logic Blocks (CLBs) provides the
functional elements from which the user's logic is constructed.
The Logic Blocks are arranged in a matrix in the center of the
device. The M2064 has 64 such blocks arranged in an 8-row by
8-column matrix. The M2018 has 100 logic blocks arranged in a
10 by 10 matrix. OUTPUT

Each logic block has a combinatorial logic section, a storage PAD/PIN
element, and an internal routing and control section as shown
in Figure 2. Each CLB has four general-purpose inputs: A, B, C, D q
and D; and a special clock input (K), which may be driven from
the interconnect adjacent to the block. Each CLB also has two _ USER DEFINABLE P
outputs, X and Y, which may drive interconnect networks. PATH SELECTOR

TRI-STATE
CONTROL

INPUT

Additional memory bits are used to set the user-definable path
selectors, shown in Figure 2, which determine CLB internal
connections. All memory bits are determined automatically by
the XACT design editor as the design is entered.

The logic block combinatorial logic uses a table look-up.memo-
ry to implement Boolean functions. This technique can gener-
ate any logic function of up to four variables with a high-speed,
sixteen-bit memory. The propagation delay through the com- OUTPUTS
binatorial network is independent of the function generated.
Each block can perform any function of four input variables or
any two functions of three input variables each. The input vari- INPUTS \

ables may be selected from among the four inputs and the I

block's storage element output "Q." : G —) +—
Programmable Interconnect c (L:ggI%
Programmable interconnection resources in the Logic Cell D— F
Array provide routing paths to connect inputs and outputs of
the 1/0 and logic blocks into desired networks. All interconnec-
tions are composed of metal segments, with programmable K
switching points provided to implement the necessary routing.
Three types of resources accommodate different types of net-
works:

L d LN
1/0 CLOCK

Figure 1. 10B Logic Equivalent

— X

« General-purpose interconnect _ USER DEFINABLE
i PATH SELECTOR
e Long lines

o Direct connection

Figure 2. CLB Logic Equivalent

Summary of CLB Switching Characteristics

SPEED GRADE
SYMBOL PARAMETER -33 -50 -70 UNIT
MIN MAX | MIN MAX | MIN MAX

tiLo Logic input to output | Combinatorial 20 15 10 | ns

tcko To output . 20 15 10

tick K Clock Logic-input setup 12 8 7 ns

toki Logic-input hold 0 0 10
t Pad to input (direct 12 8

PID Input/Output input (direct) 6| ns

top Output to pad (enabled) 15 12 9| ns

FoLk Maximum flip-flop toggle frequency 33 50 70 MHz

:l Monolithic m Memories l‘:l 3.23

Logig Cell Array and 'bevelopment’ Systems

LCA-MDS21 XACT Design Editor
System

Features

Runs on an IBM® PC-XT™ or compatible computer
Complete basic system for designing with Logic Cell Arrays
Interactive graphical design editor

Simplified definition, placement and interconnection
capability for logic design and implementation

* Macro library of 113 standard logic family equivalents
Utility for user-defined macros

Boolean equation or Karnaugh map alternatives to specify
logic functions

Point-to-point timing calculations for critical path analysis

« Automatic design consistency checking for connectivity and
design violations

« Documentation support with hardcopy output of logic and
physical configuration information

« Download cable to transfer configuration programs from
personal computer to LCA in target system

« Compatible hardware and software options to enhance
design productivity

 File formatter for EPROM programmer

General

The XACT Design Editor provides users with a complete design
and development system for specification and implementation
of designs using Monolithic Memories' Logic Cell Arrays. Func-
tional definition of Configurable Logic Blocks (CLBs), Input/
Output Blocks (IOBs) and interconnection is performed with a
menu-driven interactive graphics editor. An automatic router
greatly reduces the effort to interconnect logic.

Designs are captured with a graphics-based design editor
using either a mouse for menu-driven entry, or a keyboard for
command-driven entry. Functions are specified by CLB and

IOB definitions plus their interconnections. The macro library .

and user-defined macros enable the user to easily implement
complex functions.

The check for logic connectivity and design rule violation is
easily performed. All unused internal nodes are automatically
configured to minimize power dissipation.

Interactive point-to-point timing delay calculation is provided
for timing analysis and critical path determination. This ability
enables the user to quickly identify and correct timing prob-
lems while the design is in progress.

Automatic generation of similar input netlist files with'timing'
parameters simplifies the use of P-SILOS for logic and timing
simulation. o)

The XACT Design Editor includes hardcopy generation to docu-
ment a design and automatically track design changes. Logic
Cell Array configuration programs can be automatically trans-
lated into standard EPROM programming bit pattern formats.

A download cable included with XACT is useful for transferring
configuration programs serially from the PC workstation to a
Logic Cell Array installed in a system. During product develop-
ment and debug this capability can be used to save the time re-
quired to write a modified configuration program intoan EPROM.

Monolithic Memories provides ongoing support for XACT users.
For the first year, software updates are included. After that the
user may purchase the LCA-MSC21 Annual Support Agree-
ment to continue to receive the latest software releases. XACT
users also receive Monolithic Memories' technical information,
which includes information about Logic Cell Arrays and PAL®
devices, as well as software updates and application notes for
designers. In addition, Monolithic Memories provides compre-
hensive field and factory support.

System Requirements

Minimum System Configuration

IBM PC-XT, PC-AT or cbrnpatible computer with:

o MS-DOS™ 2.1 or higher

* 1M Bytes RAM

« 1 Diskette Drive

¢ 10-MB Hard Disk

¢ IBM compatible Color Graphic Adapter and Display
o 1 Serial Interface Port

o 1 Parallel Interface Port

e Mouse System™, Microsoft® or compatible mouse

Design Editor with Routed Design

3-24

:' Monollthlem Memories zl

Logic Ceil Array and Development Systems

XACT Macro Library
General CLBs FDCR D Flip-Flop with CIkEna, Reset 1
FDCS D Flip-Flop with ClkEna, Set 1
GADD Adder 1 FDM D Flip-Flop 2-Input Data Mux 1
GCOMP Compare 1 FDMR D Flip-Flop 2-Input Data Mux, Reset 1
GEQGT Equal or Greater 1 FDMS D Flip-Flop 2-Input Data Mux, Set 1
GMAJ Majority 1 FDM-rd D Flip-Flop 2-Input Data Mux, ResetDir 1
GMux 2-to-1 Mux 1 FDM-sd D Flip-Flop 2-Input Data Mux, SetDir 1
GPAR Parity 1 FSR Set-Reset Flip-Flop with Set Dominate 1
GXOR Exclusive-OR 1 FRS Set-Reset Flip-Flop with Reset Dominate 1
GXOR2 Dual Exclusive-OR 1 FJK J-K Flip Flop 1
GXTL Crystal Oscillator 0+210B FJKS J-K Flip Flop with Synchronous Set 1
GOsC Low Frequency 1+210B FJK-rd J-K (Set-Reset) Flip Flop with ResetDir 1
Resistor-Capacitor Oscilator FJK-sd J-K (Set-Reset) Flip Flop with SetDir 1
FJK-srd J-K (Set-Reset) Flip Flop with SetDir, 1
Pads 10Bs ResetDir
FTO Self Toggle Flip-Flop 1
PIN Input Pad 1 FTOR Self Togg'le Flip-Flop with Reset 1
PINQ Input Pad with Storage 1 T Toggle Flip-Flop !
PIO Input/Output Pad ; 1 FTP Toggle Fl !p-FIop w!th ParEna) 1
PIOQ Input/Output Pad with Input Storage 1 FTP-rd Toggle FI!p-FIop w!th ParEna, ResetDir 1
PIOC Input/Output Pad with ‘Open Collector’ 1 FIR Toggle Flip-Flop with Reset !
PIOQC Input/Output Pad with Input Storage, 1 FTS Toggle Flip-Flop with Set 1
‘Open Collector’ FT2 2-Input Toggle Flip-Flop 1
POUT Output Pad 1 FT2R 2-Input Toggle Flip-Flop with Reset 1
POUTC Output Pad with ‘Open Collector’ 1
POUTZ Output Pad with 3-State Control 1 Decoders CLBs
PREG Output Pad with Input Storage 1
D2-4 1-of-4 Decoder 2
Latches CLBs D2-4E 1-of-4 Decoder, with Ena 2
74-139 1-of-4 Single Decoder with Low Output, Ena 4
LD Data Latch 1 D3-8 1-of-8 Decoder 5
LC-rd Data Latch with ResetDir 1 D3 1-0f-8 Decoder with Ena 6
LC-sd Data Latch with SetDir 1 74-138 1-of-8 Decoder with Enables, Low Output 7
LD-srd Data Latch with SetDir, ResetDir 1 a2 1-0f10 Decoder with Low Output 8
LDM Data Latch with 2-Input Data Mux 1
LDM-rd Data Latch with 2-Input Data Mux, ResetDir 1 Multiplexers CLBs
LDM-sd Data Latch with 2-Input Data Mux, SetDir 1
M3-1 3-to-1 Mux 2
Flip-Flops CLBs M3-1E 3-to-1 Mux with Ena 2
M4-1 4-to-1 Mux 3
D D Flip-Flop 1 M4E 4-to-1 Mux with Ena 3
EDR D Flip-Flop with Reset 1 74-352 4-to-1 Mux with Low Output, Ena 3
FDS D Flip-Flop with Set 1 Me 8-to-1 Mux !
FD-rd D Flip-Flop with ResetDir 1 MeiE 8-to-1 Mux with Ena !
FD-sd D Flip-Flop with SetDir 1 T4 8-to-1 Mux with Ena 7
FD-srd D Flip-Flop with SetDir, ResetDir 1 Complementary Outputs
FEDC D FIIp—FIOp with CIKEna 9 74-152 8-to-1 Mux with Low OUtpUt 7
a Monolithic ﬁ.ﬁﬂ Memories a 3-25

Logic Cell Array and Development Systems

XACT Macro Library

Registers CLBs Modulo 8
Data Registers C8BCP 3-Bit Binary Counters with CIkEna, ParEna 5
C8BCR 3-Bit Binary Counters with ClkEna, Reset 4
RD4 4-Bit Data Register 4 CsBC-rd 3-Bit Binary Counters with CIkEna, ResetDir 4
RDS8 8-Bit Data Register 8 C8JCR 3-Bit Johnson Counters with CIKEna, Reset 4
RESCR 8-Bit Data Register with CIkEna, Reset 8
Modulo 10
Serial to Parallel -
C10BC-rd 4-Bit BCD Counter with ClkEna, ResetDir 4
RS4 4-Bit Shift Register 4 C10BCP-rd 4-Bit BCD Counter with ClkEna, ParEna, 7
74-195 4-Bit Serial to Parallel 5 ResetDir
Shift Register with ParEna, Reset 74-160 4-Bit BCD Counter with ClkEna, ParEna, 8
74-194 4-Bit Bidirectional Shift Register 12 ResetDir
with CIkEna, ParEna, ResetDir C10BP-rd 4-Bit BCD Counter with ParEna, ResetDir 6
RS8 8-Bit Shift Register 8 C10JCR 5-Bit Johnson Counter with ClkEna, Reset 5
RS8CR 8-Bit Shift Register with CIkEna, Reset 8
RS8PR 8-Bit Shift Register with ParEna, Reset 8 Modulo 12
RS8R 8-Bit Shift Register with Reset 8
74-164 8-Bit Serial to Parallel Shift Register 8 C12JCR 6-Bit Johnson Counter with ClkEna, Reset 6
with ResetDir
Modulo 16
Counters CLBs C16BA-rd 4-Bit Binary Ripple Counter with ResetDir 4
C16BC-rd 4-Bit Binary Counter with ClkEna, ResetDir 4
Modulo 2 C16BCPR 4-Bit Binary Counter with CIkEna, ParEna, 10
Reset
C2BCR 1-Bit Binary Counters with CIkEna, Reset 1 C16BCP-rd 4-Bit Binary Counter with CIkEna, ParEna, 6
C2BC-rd 1-Bit Binary Counters with CIkEna, ResetDir 1 ResetDir
ca2BP 1-Bit Binary Counters with ParEna 1 74-161 4-Bit Binary Counter with ResetDir 8
C2BR 1-Bit Binary Counters with Reset 1 C16BP-rd 4-Bit Binary Counter with ParEna, ResetDir 5
C2B-rd 1-Bit Binary Counters with ResetDir 1 C16BUD-rd 4-Bit Binary Up-Down Counter with ParEna, 8
ResetDir 3
Moduic 4 C16JCR 8-Bit Johnson Counter with CIkEna, Reset - 8
C4BCP 2-Bit Binary Counters with ClkEna, ParEna 3 Modulo 256
C4BCR 2-Bit Binary Counters with ClkEna, Reset 2
C4BC-rd 2-Bit Binary Counters with CIkEna, ResetDir 2 C256FC-rd 8-Bit Modulo 256 Feedback Shift Register 9
C4JCR 2-Bit Johnson Counters with CIkEna, Reset 2 with CIkEna, ResetDir
Modulo 6
C6JCR 3-Bit Johnson Counter with CIkEna, Reset 3

3-26 :l Monolithic m Memories I‘J

Logic Celil Array and Development Systems

LCA-MDS22 P-SILOS Simulator

Features
« Event-driven logic and timing simulator

* Logic network input automatically generated by XACT
Design Editor

Control and observation of any physical circuit node
Multiple file input for vectors and commands

« Interactive or batch mode operation

¢ Output available in printed or tabular formats

Runs on an IBM PC-XT, PC-AT or compatible personal
computer

General

P-SILOS is a powerful PC-based simulator that provides event-
driven logic and timing simulation of Logic Cell Array designs.
Simulation is particularly useful for testing logic or logic seg-
ments as well as for verifying critical timing over worst case
power supply, temperature and process conditions.

Simulation is useful in several stages of the design cycle. After
design entry, simulation may be used to debug logic in an
unplaced and unrouted design. This saves design time
because fogic errors can be detected and corrected prior to
final placement and routing. After a circuit has been placed,
routed, and then fully debugged using in-circuit emulation,
worst case timing may be verified. This enables the user to
select the correct Logic Cell Array speed for a particular appli-
cation.

Network inputs for Logic Cell Array designs are automatically
created by the Simgen utility in the XACT system. The network
includes logic and routing delay parameters and setup and hold
times based upon the selected speed grade operating under
worst case conditions. Simulation stimuli are created with a set
of clock statements or with an input pattern for either pad

inputs or internal nodes. Simulation results are available in
tabular, plotted, and graphic formats. This flexibility makes
debugging easy for both the circuit function and timing.

System Requirements

Minimum System Configuration

1BM PC-XT, PC-AT or compatible computer with:
e MS-DOS 2.1 or higher

¢ 640 K Bytes RAM

¢ 1 Diskette Drive

¢ 10-MB Hard Disk

¢ 1 Parallel Interface Port

Refer to the MDS21 XACT Design Editor Product Datasheet for
additional equipment required for systems which will also run
the XACT Design Editor.

P-SILOS Waveform Output

a Moncalithic m Memories zl

3-27

Logic Cell Array- and Development Systems

LCA-MDS23 Automatic Placement
and Routing Program

Features

« Automatic placement and routing of logic to minimize design
cycle time

o User control over placement of logic blocks
User specification of critical paths
Netlist inputs from either schematic capture or XACT

« May be used in conjunction with schematic capture or with
the XACT Design Editor

Runs on IBM PC-XT, PC-AT or compatible personal
computer

General

The automatic Placement and Routing program enhances the
productivity of designers using Logic Cell Arrays by reducing
design placement and routing time, whether the design logic is
entered from a schematic capture package or from the XACT
Design Editor.

Designs that are developed incrementally can also take advan-
tage of Automatic Placement and Routing. Partial Logic Cell
Array layouts can be locked in place while additions to the
design are automatically placed and routed, or the design can
be completely rearranged to yield a new placement.

The Automatic Placement and Routing program is extremely
flexible. Through placement directives the user can control the
placement process to achieve the best placement for a partic-
ular design. Routing resources can be specified to minimize
clock skews and signal delays for critical paths. The result is
faster product developement.

System Requirements

Minimum System Configuration

IBM PC-XT, PC-AT or compatible computer with:
MS-DOS 2.1 or higher

e 640 K Bytes RAM

o 1 Diskette Drive

¢ 10-MB Hard Disk

o 1 Parallel Interface Port

Refer to the MDS21 XACT Design Editor Product Datasheet for
additional equipment required for systems which will also run
the XACT Design Editor.

XACT Schematic Design
Design System Entry Interfaces
LCA-MDS21 LCA-MDS31

3w

APR
Auto Place And Route
LCA-MDS23

Optimally Placed
And Routed
LCA Design

APR Diagram

3-28

:l Monolithic m Memories a

Logic Cell Array and Development Systems

LCA-MDS31 FutureNet DASH
Schematic Design Entry Interface

Features

« Design entry to XACT via the FutureNet DASH Schematic
Designer

« Macro library of over 100 standard logic family equivalents
derived from the XACT Macro Library

 Library of logic symbols including all two-input, three-input,
and four-input AND, OR, and XOR gates plus storage, input/
output, and clock elements

o User control for flagging critical paths for the LCA-MDS23
Automatic Placement and Routing Program

« Automatic partitioning and conversion of schematic
drawings to a Monolithic Memories' Logic Cell Array design
file

¢ Output compatibility with XACT Design Editor and the
Automatic Placement and Routing Program

« Runs on an IBM PC-XT, PC-AT or compatible personal
computer

Schematic entry and automatic partitioning of Logic Cell Array
designs shortens product development times. Complex de-
signs can be specified schematically and quickly implemented
for in-circuit design verification.

Monolithic Memories FutureNet DASH Schematic Design Entry
Interface provides the symbol library and conversion utility to
permit designers to enter Logic Cell Array designs with the
FutureNet DASH Schematic Designer. The Monolithic
Memories module provides the logic, /O and macro symbols to
be used in the schematic and a conversion utility which auto-
matically partitions and translates the schematic into a Logic
Cell Array design.

System Requirements
Minimum System Configuration
IBM PC-XT, PC-AT or compatible computer with:

o FutureNet DASH-2 or later, and associated hardware
including mouse, Enhanced Graphics Adapter and Display

e MS-DOS 2.1 or higher
¢ 640 K Bytes RAM

* 1 Diskette Drive

e 10-MB Hard Disk

Refer to the MDS21 XACT Design Editor Product Datasheet for
additional equipment required for systems which will also run
the XACT Design Editor.

Schematic Capture

:l Monolithic m Memories I‘J

3-29

Logic Cell Array and Development Systems

LCA-MDS24, LCA-MDS26, LCA-
MDS27 XACTOR In-CIrcult Emulator

Features
¢ Real-time in-circuit emulation in user's target system
« Concurrent emulation of up to four devices

« Readback and display of Logic Cell Array internal storage
element states

» Device status display with automatic update of
asynchronous events

Control and /O pin isolation from target system

Support for daisy chain programming of up to seven devices
in a daisy chain

On-chip crystal oscillator support during emulation
« Support for multiple device and package types

Runs on an IBM PC-XT, PC-AT or compatible personal
computer

The XACTOR real-time in-circuit emulator provides interactive
target-system emulation of up to four Logic Cell Arrays from
the host PC system. In-circuit emulation provides a powerful
productivity enhancement to simulation, providing capabilities
to verify functionality in the target system at full speed with all
other circuits and system software.

The emulation system is composed of a microcomputer-based
controller (LCA-MDS24), and from one to-four universal emula-
tion pods (LCA-MDS26), each with a package-specific emula-
tion header (LCA-MDS27). One universal emulation pod is
included with the system. The controller is connected to the
host PC through a serial port and provides local storage of con-
figuration programs, control of individual device configurations
and control of the isolation of the pod device(s) from the target
system. The user can set the state and isolation for each of
the control signals to provide debugging of target hardware.
Four general I/0 pins are available to provide test points which
may-also be isolated from the target system.

Universal In-Circuit Emulator Pod
(LCA-MDS26)

Additional pods may be connected to the XACTOR in-circuit
emulator controller, up to a maximum of four pods per control-
ler. Pod headers (LCA-MDS27) are interchangeable for differ-
ent device and package types. Each pod provides a direct
in-socket connection for a minimum disruption of the target
system. Test points are provided to allow connection of a logic
analyzer or other test equipment to aid in the system
debugging.

System Requirements
Minimum System Configuration

IBM PC-XT, PC-AT or compatible computer as configured for
MDS21 XACT Design Editor, plus second serial interface port.

MONOCHROME
MONITOR
(OPTIONAL)

COLOR-GRAPHICS
MONITOR

SERIAL
PORT IBM PERSONAL
COMPUTER
(AT OR XT)
SERIAL PORT

] DD

KEYBOARD

Target Logic Cell Arrays can be programmed individually or in a POWER
daisy chain. Daisy chains of up to seven devices may be sup-
ported from any of the four pods. Individual device isolation
and configuration is controlled with mouse or keyboard com- XACTOR
mands and may be supplemented wnh user-defined setup files CONTROLLER FLAT
for easy system debugging. 12 3 a4 RIBBON
Readback of device configuration may be performed on com- CABLE
mand for verification of the configuration process and interro-
gation of the internal states. The state of all internal storage I V'
elements is displayed after readback has been performed. ‘/(—
Status displays showing the state of all isolation switches and NOTE: POD1| |POD2}| |POD3| |POD4
control signal states are provided. The status display includes INTERCHANGEABLE |=— - — —
automatic reporting of asynchronous status changes in the HEADER CABLES
target system.
TARGET TARGET TARGET TARGET
LSYSTEM SYSTEM SYSTEM SYSTEM
XACTOR Hardware

3-30 :l Monollthlcm Memories :l

Logic Cell Array and Development Systems

LCA-MEKO1 Logic Cell Array
Evaluation Kit

The Monolithic Memories Logic Cell Array is a high-perfor-
mance CMOS user-programmable gate array. The Monolithic
Memories' Logic Cell Array Evaluation Kit is a software pack-
age that provides the capability to evaluate the Logic Cell
Array for new applications.

Features

» Design software package for IBM PC-XT, PC-AT or

compatible computer

Interactive graphics-oriented designer interface

Simplified definition, placement and connection capability for

implementation of complex logic

» Boolean equation or Karnaugh map alternatives to specify
logic functions

Macro library of 113 standard logic equivalents plus support
for user-defined macros

Point-to-point timing calculations for critical path analysis

Automatic checking for connectivity and design
consistency

Hardcopy output of logical and physical configuration
information

General

The Evaluation Kit can be used to enter complete designs
using a subset of the XACT design editor, including the use of
the Monolithic Memories macro library. Critical timing for the
design can be evaluated with the timing delay calculator to
evaluate the applicability of the Logic Cell Array technology to
a particular design.

Functional definition of Configurable Logic Blocks (CLBs), and
their internal routing,|/O Block (IOB) definitions, and intercon-
nection are all done within an integrated graphics-oriented
system. Interactive placement and automatic routing of logic
and I/O elements are accomplished quickly and easily via an
easy-to-learn user interface.

Designs are captured with a graphics-oriented design editor,
using either a mouse or keyboard entry, driven from command
or files. User functions are specified in terms of CLB definitions
and interconnections. Standard logic functions from the macro
library or user-defined macro capabilities can be utilized to
quickly implement complex logic functions. Placement and
routing can be edited easily to modify or optimize a design.

& monotithic B Memories &1

Checking of logical connectivity is performed automatically. All
unused internal nodes are automatically configured to minimize
power dissipation.

Interactive point-to-point timing delay calculation is provided to
simplify timing analysis and critical path determination.

The Evaluation Kit includes hardcopy generation to document
a design and automatically track design changes.

System Requirements

Minimum System Configuration

IBM PC-XT, PC-AT or compatible computer with:

o MS-DOS 2.1 or higher

¢ 640K Bytes RAM

« 1 Diskette Drive

¢ 10-MB Hard Disk

o IBM or compatible Color Graphic Adapter and Display
1 Serial Interface Port

* Mouse Systems, Microsoft or compatible mouse

MMz
D s
28, S

Evaluation Kit

3-31

Logic Cell Array and Development Systems

Minimum Requirements of Software and Hardware Configurations
for Monolithic Memories LCA Design System

L Software Package
egend
gR Required XACT AUTOMATIC| FutureNet DASH XACTOR
S Supported XACT EVALUATION P-SILOS |PLACEMENT| SCHEMATIC IN-CIRCUIT
— Not required or |PESIGN EDITOR KIT SIMULATOR AND DESIGN ENTRY EMULATOR
supported LCA-MDS21 LCA-MEKO1 LCA-MDS22 | ROUTING INTERFACE LCA-MDS24
LCA-MDS23 LCA-MDS31
Version 1.30 Version 1.30 |yersion |Version| Version Version 1.00** 1.10 | 1.30
Version Version 1U3 | 2C5 1.0 IpASH|DASHDASH 1.33*
1.2 1.2 2 3C 4
VXAC.T Version ‘Version Version Version Version |Version
ersion 12 | 12or 13 13 12 | 13
Required - 13 ! : ’ i
MS-DOS Version | Version | Version | Version | Version | Version| Version Version Version [Version
PC-DOS 21or | 216r | 210r | 210r | 210r | 210r 21or 21o0r 21or |21o0r
Operating System above | above | above | above | above | above above above above | above
M2064 | M2064 - | M2064 M2064 M2064 M2064 M2064*
Logic Cell M2064 | (8x8) | M2064 | (8x8) | M2064 | (8x8) (8x8) (8x8) (8x8) (8x8)
Arrays (8x8) and (8x8) and (8x8) and and and 68NL. and
Supported only | M2018 | only |M2018 | only |M2018 | M2018 M2018 only | M2018
(10x10) |. (10x10) (10x10) | (10x10) (10x10) Y (10x10)
IBM PC XT
or 100% compatible R R R R R R R R R | R
IBM PC AT
or 100% compatible S S S s S S S S s s
ng:ﬁ';&"M 640KB| 1MB |640KB| 1 MB [640KB|640KB| 640KB [256 KB|512 KB|512 KB|640 KB| 1 MB
Memo
i Hard Disk
(10 MB min R R R R R R R R R R R R
30 MB REC)
Monochrome — — — — R R — R —_ — — —
CGA)
(Color graphics R R R R S S R — — — R R
adapter)
: EGA : R R
Graphics | eqnancedcoior | S s s s s s s — |win | win | S | S
Boardds graphics adapter) 192 KB) [192 KB)
an
; Lotus/Intel EMS R R R
D'SPIayS (Exl;:ndt:dememory —_ (with —_ (with — .= —_ —_ — —_ —_ (with
specifications) 256 KB) 256 KB) : 256 KB)
Vendor Fu’\tll;e-
graphics graphics
board cniroltr
Security key R R — — R R R — — — R R
' R (Fuﬁjre— (Fuﬁr& RY Rt
Mouse Rt Rt Rt Rt — — — (Fﬁtsl.ge— powing v
other |
Devices | Min. number of mouse/ |mouse/
. 1 1 1 1 1 1 1 1 |parallel |paraliet| 1 1
parallel ports port | port
board | board
Min. number of
serial ports 1 1 1 1 0 0 0 0 0 0 2 2

* XACTOR Version 1.33 supports the universal emulator pod with interchangeable header cables for each package type. Versions 1.10 and 1.30 or XACTOR
supportonly the dedicated 68-Pin PLCC emulation pod originaly offered with XACTOR Version 1.10. XACTOR Version 1.33 will also support the original 68-Pin

PLCC Emulator Pod.

** |CA-MDS31 FutureNet DASH Schematic Design Entry Interface version 1.00 is compatible with FutureNet DASH Schematic Designer versions 2, 3C and 4.
T Must be Mouse Systems™, FutureNet® or Microsoft® mouse compatible.

3-32

n Monolithic m Memories n

Logic Cell Array and Development Systems

Logic Cell Array

MDS21 XACT DESIGN EDITOR SYSTEM OPTIONAL
MDS24
XACTOR
22&? LCA MACRO EMULATOR
LIBRARY
CALCULATOR
MDS31
Net Pin Blk Config Screen Misc Profile FUTURENET DASH
SCHEMATIC DESIGN

ENTRY INTERFACE

i
%fr{}- {10

I P-SILOS
LOGIC AND TIMING
SIMULATOR
Pin: BAA SEGA0 NET: ADO 2ns
Cmd:
MDS23
LCA FILE FORMATTER AUTOMATIC
DOWNLOAD FOR EPROM PLACE AND ROUTE
CABLE PROGRAMMER (APR)
Development System

The DS21 XACT Design Editor provides all capabilities required
for Logic Cell Array design. Additional development system
options provide enhanced designer productivity during design
entry, placement and routing, and design verification.

Xilinx, Logic Cell, XACT, XACTOR and LCA are trademarks of Xilinx, Inc.

IBM is a registred trademark and PC, PC/AT, PC/XT are trademarks of Interna-
tional Business Machines Corporation.

FutureNet is a registered trademark and DASH is a trademark of FutureNet Cor-
poration, a Data I/O Company. P-Silos is a trademark of SimuCad Corporation.
MS-DOS is a trademark of Microsoft Corporation. Mouse Systems is a trademark
of Mouse Systems Corporation. Microsoft is a registered trademark of Microsoft
Corporation.

Monolithic Memories does not assume any liability arising out of the application or
use of any product described herein; nor does it convey any license under its
patent, copyright or maskwork rights of any rights of others. Monolithic Memories
reserves the right to make changes, at any time, in order to improve reliability,
function or design and to supply the best product possible. Monolithic Memories
cannot assume responsibility for the use of any circuitry described other than
circuitry entirely embodied in their product. No other circuit patent licenses are
implied.

Monolithic Memories cannot assume responsibility for any circuits shown or
represent that they are free from patent infringement or any other third party
right.

Monolithic Memories assumes no obligation to correct any errors contained
herein or to advise any user of this text of any correction if such be made.

Portions of this data sheet reproduced with the permission of XILINX, Inc.

n Monolithic m Memories n

Notes

3-34 &\ Monolithic ﬁ[ﬁﬂ Memories &\

ABEL-GATES

Two Powerful Tools
For PLD Design

From FutureNet (Data 1/0)

FutureNet® Corporation (a Data 1o® Company) currently offers
two high-level PLD design tools: ABEL™, and the more sophis-
ticated DASH-GATES™. Each of these products is ideally suited
for certain tasks, hardware platforms, and budgets. This article
describes the similarities and differences between ABEL and
DASH-GATES, and provides brief examples of the uses of each.

Natural Design Descriptions

No matter how a design is described, all current PLD program-
ming technology adheres to one standard: the JEDEC file (Stan-
dard 3A). The JEDEC file contains a list of 1's and O’s that
specifies the binary state of each fuse in the PLD. Unfortunately,
a JEDEC fusemap is not the way most engineers would like to
describe a design; Boolean equations, truth tables and state
diagrams are all preferable methods.

State AddCard: AddClk =

Ace

Thus, ABEL and DASH-GATES share a common purpose—to
generate a JEDEC file from a design description that is more
familiar to an engineer. ABEL and DASH-GATES incorporate
high-level design languages that help engineers describe de-
signs inthe mast natural way. The following types of descriptions
can be used*:

Schematics
Boolean Equations
Truth Tables

State Diagrams

These formats can be used in any combination, to describe any
design; the engineer is free to decide which form best suits the
task at hand. Figure 1 shows a state diagram described with the
ABEL state diagram syntax.

* With the addition of FutureNet's DASH-ABEL™ , designs can be
described in schematic form with the FutureNet DASH™ CAE
system and converted to ABEL for implementation in PLDs.

!1C1KIN;
1= Ace;

if (is_Ace & !Ace) then Add_10 else Wait;

State Add 10: AddClk = !{C1lKIN;
Ace := High;
goto Wait;

State Wait: AddClk = Low;
Ace := Ace;

if (CardOut==Low) then Test_17 else Wait;

. State Test_17: AddClk = Low;
Ace := Ace;
if !GT16 then ShowHit else Test 22:
State Test_22: AddClk = Low;
Ace := Ace;
case LT22 ¢ ShowStand;
1LT22 & !Ace : ShowBust;
1LT22 & Ace : Sub_10;
endcase;)
State Sub_10: AddClk = !C1KIN;
Ace := Low;
goto Test_17:

Figure 1. ABEL and DASH-GATES Let Engineers Describe Designs at a High Level,
as Shown In This Portion of an ABEL State Diagram

:l Monolithic m Memories n

3-35

" ABEL-GATES

Simulating and Optimizing the Design

ABEL and DASH-GATES share another major feature: both
employ logic reduction algorithms to automatically reduce a
design description to a near-minimal form. When entering
designs, engineers need not perform reductions themselves us-
ing tedious manual methods such as Karnaugh maps. DASH-
GATES alsofactors designs to make equations fit the architecture
of the device.

Functional simulation is also performed by ABEL and DASH-
GATES. Functional simulation verifies that a design operates as
intended before a PLD is programmed. This notonly saves PLDs;
it also provides an opportunity for the engineer to experiment with
new design ideas or changes. Since simulation is automatic and
generally takes just seconds or minutes, fast answers to “what-if”
questions can be obtained.

PLD Toolkit

Figure 2 shows how Data /O and FutureNet tools are used to fully
automate the design process. This PLD design toolkit not only
enhances each step of the PLD design process, but it also
provides a link to system level simulation and gate array implem-
entation.

ABEL OR DASH-GATES

CONCEPT
DESIGN

FUTURENET CAE
TOOLS (FOR GATE
ARRAYS, SYSTEMS)

DASH
SCHEMATIC
SIMULATE DESIGNER
—————————— -»
DASH-CADAT
- ——— -I PLD—CADAT} SIMULATOR

| PLDTEST l

DATA 11O
PROGRAMMER

|
v

PROGRAMMED DEVICE

593 02
PLDtest™ : Test Vector Generation and Fault

Analysis

To ensure comprehensive testing of each programmed device,
PLDtest analyzes the PLD design description and generates aset
of test vectors based on both the design and the target device.
PLDtest attempts to assure 100% testability, but reports the
actual testability along with a fault analysis if 100% testability
cannot be achieved.

PLD-CADAT™: A Link to System-Level Simulation

The ABEL and DASH-GATES simulators readily perform func-
tional simulation of single PLD designs. PLD-CADAT goes astep
further by providing a link to FutureNet's DASH-CADAT-PLUS™
system-level simulator. DASH-CADAT-PLUS can simulate
complete boards, providing results of functional simulation, tim-
ing analysis, and fault simulation. PLD-CADAT converts JEDEC
files created by ABEL or DASH-GATES into the CADAT model
description language so that PLD designs can be simulated as

‘part of a much larger CADAT circuit.

ABEL

Firstintroduced in 1983, ABEL is a high-level design language for
PLDs. The early version of ABEL supported 90 devices, and was
afull-fledged PLD design tool with logic reduction, simulation, and
automatic generation of design documentation.

Today, ABEL supports over 600 devices, providing complete
support for virtually all available PLDs. Logic reduction and
simulation algorithms have been improved, and language modi-
fications have been made. The newest enhancements to ABEL
are:

Greater Device Support—ABEL supports virtually all standard
PLDs and can call device specific programs (DSPs) to support
non-standard devices.

Simulation—A new simulator provides greater support of asyn-
chronous devices and complex macrocells. It also allows
changes in test vectors without reprocessing of the design.

Improved Syntax—The ABEL syntax now suppotts devices with
multiple feedback paths, and is compatible with the DASH-
GATES syntax.

Macro and Function Library—Device-specific declarations or
any kind of macro or function can now be stored in a system
library.

Automatic JEDEC-to-ABEL Conversion—This utility converts
a JEDEC file to an ABEL source file. The JEDEC file might be
obtained from disk or directly from a programmed device. This
utility is useful for recovering undocumented designs existing on
master devices, or for making quick changes to designs for which
the ABEL source file has been lost.

ABEL was designed to provide a comprehensive PLD design tool
that would perform on standard IBM PCs, XTs, and ATs. ABEL is
also available for VAX VMS and UNIX installations, and runs on
most popular engineering workstations.

DASH-GATES

DASH-GATES offers all the PLD design features of ABEL and
much more. DASH-GATES provides superior assistance in the
design entry process, with split-screen capability, design entry
forms, and interactivity.

336

2\ monotithic A Memories £

ABEL-GATES

Additionally, DASH-GATES is a link to full CAE systems (such as
FutureNet DASH) which can be used to create random logic, gate
array, standard cell, and full system-level designs. Such designs
can then be simulated at a system level with complete timing
analysis and fault grading.

The Differences Between ABEL and
DASH-GATES

ABEL and DASH-GATES are both powerful PLD design tools, but
there are differences between them that make each better-suited
for a particular application or class of users. The major differ-
ences are outlined below; additional differences are discussed in
ABEL and DASH-GATES examples that follow.

Interactive vs. Batch

The single biggest difference between the two products is that
DASH-GATES is a truly interactive program and ABEL is not.
DASH-GATES provides forms to speed up design entry and
continuously monitors design input to detect errors. As you make
an error, DASH-GATES lets you know so you can correctit “on the
fly.” DASH-GATES provides other “interactive advantages” illus-
trated in the design examples below. ABEL, on the other hand,
processes a design description that has been created with a text
editor, reports errors to the screen during processing, and writes
detailed error messages to documentation files.

Links to Other Technologies

ABEL is specifically a PLD design tool and supports virtually all
available PROMs, PAL devices, PLSs, and other PLDs. DASH-
GATES supports all the same devices as ABEL and provides an
automated path to gate arrays and standard cells. DASH-GATES
has afunctional-to-schematic description conversion feature that
automatically converts equations, truth tables, and state dia-
grams to FutureNet DASH schematics. These schematics can
then be incorporated into larger designs using the DASH CAE
system, and netlists can be produced for gate array and standard
cell designs.

Advanced Features of DASH-GATES

DASH-GATES also provides factoring, partitioning, and ad-
vanced reduction algorithms. These features allow greater flexi-
bility in adapting, or “fitting”, a design to meet the constraints of
various types of devices.

Required Hardware

ABEL runs on minimum configuration PCs, including laptops, as
well as any IBM PC, XT, AT or compatible personal computers,
workstations, or minicomputers. DASH-GATES runs on an en-
hanced AT, UNIX-based minicomputers and a variety of engi-
neering workstations.

Describing And Processing Designs

How a Design Is Described with ABEL

ABEL design descriptions are entered using any standard text
editor. Any combination of Boolean equations, truth tables, and
state diagrams can be used to describe the desired logic function.
The basic Boolean operators for ABEL are the following:

! invert

Figures 2 and 3 show a complete design for a counter/seven-
segment display decoder. (This same design will be used to
illustrate the operation of DASH-GATES.) The design is actually
described in two separate modules; each module describes a
partition of the design that will be programmed into a device.

The design description has four major sections, as shown in the
figures. The declarations section defines set names and assigns
signal names to device pins. Sets are useful for referring to a
group of signals with one name. Subsequent equations can use
the set name in lieu of listing all the components of the set.
“Count” is a set of the signals Q0, Q1, Q2, and Q3.

The equations section lists the Boolean equations for the design.
In this example, a complete state machine is described with one
equation. The equation, “Count = (Count +1) & IClear”, describes
the count-up operation that takes place only when Clear is low.

The truth table section of the ABEL design description contains
the decoding function for the seven-segment decoder. For each
value of count (values can be entered in decimal, binary, hex, or
octal), the corresponding outputs forthe LED segments are listed.
The outputs are expressedinterms of ON or OFF accordingtothe
desired state of the LED. ON and OFF can be assigned to a high
or low signal based on polarity required to drive the LEDs.

The final section of the design description contains test vectors
used to perform functional simulation. Much like the truth table,
the test vectors describe inputs and their corresponding outputs.
During simulation, the inputs are applied to the design and results
are checked against the listed outputs. If a mismatch between
actual and predicted values occurs, a simulation error s reported.

How a Design is Processed by ABEL

An ABEL design is processed in six steps that can be run by
issuing one batch file command. Typically, the user types a
command like “ABEL LED” to process the design named LED.
ABEL then automatically performsthe logic reduction, simulation,
and conversion to a JEDEC file. Individual steps such as logic
reduction or simulation can be performed if desired. Each step of
the ABEL processing sequence can be customized through the
use of parameters.

How a DASH-GATES Design is Entered

DASH-GATES uses design entry forms to help the engineer enter
PLD designs. The following forms are available:

:l Monolithic m Memories :l

3-37

ABEL-GATES

module _count flag '-r3'
title '4 bit binary counter FutureNet a Data I/O Company'
count device 'P16R8';

Clk,Clear,OEl pin 1,2,11;
Q0,Q1,Q2,Q3 pin 14,15,16,17;

Count = [Q3,Q2,Q01,Q0];
z,C = .2., .C.i

equations
Count := (Count +1) & !Clear;

test_vectors
([C1lk,Clear,OEl

’

-> Count)
-> 0;

e Y e e e e e e e e ey
(e X NeNeNe oo NeNe e Ne Ko Ne NeNoRoRoNoNe]
B N TR T
HFOOOOOOO0OOO0OOOOOOOOOHK
S eSS s s s ssssssssss~
0C0000000OFIFOOOOOOOO
et e et bt e et e e et e et e el d e d) e i

U

v

end
Figure 2. ABEL Source Files for a Counter

module _led flag '-r3'

Title '7 segment decoder FutureNet a Data I/O Company'

led device 'Pl6L8';
Q0,01,02,03 pin 2,3,4,5;
OE2 pin 11;
a,b,c,d,e,f,g pin 13,14,15,16,17,18,19;
Count = [Q3,Q2,Q1,Q0];
ON =1;
OFF = 0;
X,2 = Xe, 2.3
equations

enable [a,b,c,d,e,f,g] = !OE2;

truth_table
(Count -=> [a,b,c,d,e, £, qg]
-> [ON ,ON ,ON ,ON ,ON ,ON ,OFF]
-> [OFF,ON ,ON ,OFF,OFF,OFF,OFF]
-> [ON ,ON ,OFF,ON ,ON ,OFF,ON]
-> [ON ,ON ,ON ,ON ,OFF,OFF,ON]
-> [OFF,ON ,ON ,OFF,OFF,ON ,ON]
-> [ON ,OFF,ON ,ON ,OFF,ON ,ON]
-=> [ON ,OFF,ON ,ON ,ON ,ON ,ON]
-> [ON ,ON ,ON ,OFF,OFF,OFF,OFF]
]
]
]
]
]
]
]
]

o

~e e ~t Ne Ne Se Se Se e Ne we Se N e Se we S

-> [ON ,ON ,ON ,ON ,ON ,ON ,ON
-> [ON ,ON ,ON ,ON ,OFF,ON ,ON
-> [ON ,ON ,ON ,OFF,ON ,ON ,ON
-> [OFF,OFF,ON ,ON ,ON ,ON ,ON
-> [ON ,OFF,OFF,ON ,ON ,ON ,OFF
-> [OFF,ON ,ON ,ON ,ON ,OFF,ON
-> [ON ,OFF,OFF,ON ,ON ,ON ,ON
AhF =-> [ON ,OFF,OFF,ON ,OFF,ON ,ON

> > > > >
b‘:fb‘b‘gwmqamhunwo
HaOQU

end

Figure 3. ABEL Source Files for a Decoder

3-38 bu lllnult:lltﬁﬂh:[ili]]lllewwrt:rdh:sr pu |

ABEL-GATES

FORM PURPOSE
Declarations Enter set names, pin assignments, etc.
Equations Aid entry of Boolean equations
Truth Table Aid entry of truth tables
State Diagrams | Aid entry of state diagram
Simulation Set parameters, perform simulation
Reduction Set parameters, perform reduction
Factoring Set parameters, perform factoring
Partitioning Define partition, display partitioning data
Schematic Set parameters, perform schematic

generation

PLD Map Set parameters, create JEDEC file

Each type of form has a predefined format and follows certain
rules to make design entry easier, faster, and more accurate. For
example, as an engineer enters an equation in the equations
form, DASH-GATES checks each signal name against those
entered on the declarations form. If a typing or assignment error
occurs, an error message appears so the error can be corrected.
For instance, entering an input on the output side of an equation
would result in an error message, as would the use of an illegal
operator or incorrect syntax.

The interactivity of the forms prevents design errors from accu-
mulating in a design, only to be discovered later after much work.
More than one form can be displayed on the screen at atime, and
all forms are always “active™—that is, available to DASH-GATES
for cross-checking of entries and collection of data for further
processing.

The top of Figure 4 shows an equation form with three equations
that describe the COUNT function of the counter/LED decoder
design example. The first equation, “Count.d = (Count.q +1) &
IClear,” describes the count-up operation that takes place only
when Clear is low. Note that a “.d" or “.q” has been appended to
the set name. This notation allows the engineer to explicitly state
whether the reference is to the D input or Q output of a D flip-flop.
It also provides better control of multiple feedback paths.

The second equation, “Count.clk = Clk”, describes the clocking
operation, assigning the clock input of the flip-flops to the Clk
signal. The third equation, “Count.or = IOE1”, is for the output
enable.

DASH-GATES Reduction
The lower half of figure 4 shows reduced equations. Note that

reduction parameters can be entered in the four columns to the
left of each equation to be reduced.

F1: HELP DASH-GATES
>> edit type: reduction

Insert: off

Select reduction level: MNone TIransform Sum-of-products Espresso
Reduce: Done
Forn name: count

Forn type: equation

Count.d = (Count.q + 1) & tClear
Count.clk = Clk
Count.oe = 10E1

Forn type: reduction
Reduction Level

Forn nane:

Reduce

Figure 4. Split Screen Showing Original and Reduced Equations

:l Monolithic m Memories z‘

3-39

ABEL-GATES

Insert: of {j

name: - ledcount

F18 for new vector
ledcount,

hbhbbhkhbh
Lbbkbbbhbh
Lbhhbhbbbh
bbhhbbhbbb

F1: HELP DASH-GATES
>> edit type: simulation
Enter input or output value
Forn type: sinulation Forn nane:
Clk Clear OE1 OE2 1 Counta b c d e f g

1 c 1 8 8 8 1141

2 “c 8 8 8 4 B4

3 c 8 e 8 2 1198

4 "c @ e 8 3 1141

5§ c 8 8 8 4 B 11

6 c 8 e 8 S5 1841

? c 8 8 8 5 181

8 "c 8 8 8 2 1141

9 “c @8 8 8 8 1141
$18 c 8 8 8 —_—— e — —
211 c @ e 8 —_——— — —
112 c 8 8 8 ——— — —
213 c 8 8 8 —_—— e — —
214 c @ 8 8 —— e — —
15 c 8 e 8 —— e — —
216 c 8 a 8 —_—— e — —
212 c 8 8 8 —_——— — —

Figure 5.

DASH-GATES Simulation

Asimulation form is shownin Figure 5 forthe LED decoder portion
of the design. Unlike ABEL, DASH-GATES will fill in the output
section of the form automatically. Once the input values are
entered, the simulator goes to the design description forms,
appliesthe inputs tothe design, obtains output values, and inserts
them into the simulation form. Notice that in Figure 5 roughly half
the simulation is complete, so half the values are filled in. The
engineer checks the values to make sure they are correctand can
then make them “permanent,” so they may be used for checking
future iterations of the design. With ABEL, all values must be
entered manually.

Simulation takes place interactively and can be set to stop at the
first error. An error message is displayed on the screen so
corrections to the design can be made. In fact, because DASH-
GATES can display more than one screen at atime, the engineer
can simply call up the truth table for the decoder and make the
appropriate change without leaving the simulation screen.

F1: HELP

> edit type: factor

Select factor target:
Forn name:

Forn type: factor

DASH-GATES

DASH-GATES Simulation in Progress

DASH-GATES Factoring

PLDs differin the number of inputs to theirAND and OR gates; the
number of product terms, the existence of feedback paths and
internal registers, the number of inputs and outputs, and many
other items of interest to the engineer. DASH-GATES'’ factoring
algorithm optimizes the design equations for the gate counts of
the target device, creating intermediate equations and multiple
levels of logic to do so.

Figure 6 shows the counter equations before factoring; note that
Q3.d requires 5 product terms. Figure 7 shows the factored
equations for the counter outputs. During factoring, one interme-
diate equation, “cnt@0”, was produced to reduce the number of
product terms from 5 to 4. If an internal signal or extra input is
available, this intermediate equation can be used. Note also that
the intermediate equation introduced one more stage or level into
the design (indicated by the [3] next to the equation). In timing-
critical designs, such a tradeoff may not work; in other designs,
saving one product term may mean cost and/or power savings by
allowing the use of a smaller PLD.

Insert: of f

Gate_array If1 None Pal

Factor

Factored Output

Group: cnt AND Min: 2

AND Max: 28 OR Min: 3

OR Max: 4

Stage Count: 99 Factor Target: n Polarity: +

Stages Factored Equations:
1Q8.d = Clear % Q8.q

1q1.d = Q1. & 1Q8.q ¥ Q1.9 & Q3.9 ¥ Clear

1024 =
Q2.9 8 Q1.9 &8 Q8.q
% 1Q2.q & Q8.9
% 1Q2.9 & Q1.q
% Clear
1Q3.d =
Q3.9 & Q2.9 & Q1.9 & QB.q
% 1G3.9 & 1Q8.q
% 103.9 & 1Q1.q
% 103.q & 1Q2.q
% Clear

Figure 6. Screen Showing Original Equations

3-40

:l Monolithic m Memories :l

ABEL-GATES

DASH-GATES

Select factor target: Gate_array If1 None Pal

Forn type: factor
Group: cnt AND Min: 2

Forn nane:

Factor
AND Max: 28 OR Min: 3

OR Max: 4

Stage Count: 99 Factor Target: p Polarity: +

Stages Factored Equations:
d = Clear % Q8.q

21 1Q1.d = 1Q1.q & 1Q8.q ¥ Q1.q & Qd.q ¥ Clear

Q2.q 8 Q1.q 8 QB.q
%102, & 108.q
8 Q2.q & WQ1.q

% Clear
(%} 1Q3.d = cnt@@ 8 Clear

Stages Intermediate Equatioms:
21 cnteg =
Q3.9 Q2.9 8 Q1.q & QB.q
8 1Q3.q & 1Q8.q
3103, & 1Q1.q
8 1Q3.q & 1Q2.q

Figure 7. Screen Showing Factored Equations

DASH-GATES Partitioning

Manually partitioning a PLD design into more than one PLD can
be adifficult task. The engineer must determine which inputs and

The engineer enters design outputs that he thinks are candidates
for partitioning. DASH-GATES references the various declara-
tion and design description forms and fills in the required inputs,
the required number of combinatorial and registered outputs, and

the total number of pins used by the partition. In this case, it is
obvious thatthere is a natural partition between the count function
that produces the QO through Q3 outputs and the decoder
function.

outputs are common to equations to decide what makes a
sensible partition. DASH-GATES’ partitioning form provides
assistance in this task. Figure 8 shows a partitioning form for the
full LEDCOUNT design.

F1: HELP DASH-GATES Insert: off

> edit type: partition name: ledcount

Enter output name (as in declaration)

F18 for new recor

Forn type: partition Forn name: ledcount

Partition: ledcount

Inputs: 4 Comb Outputs: ? (B wfeedback) Reg Outputs: 4 (4 w/feedback)
Total Pins Required: 15

OGutput Name: Output Type: Inputs Required:

Q3 Bidir Clear,Clk,0E1,08,Q1,Q2,Q3
Q2 Bidir Clear,C1k,0E1,Q0,Q1,Q2
Q1 Bidir Clear,Clk,0E1,Q8,Q1

Qe Bidir Clear,Clk,0E1,Q8

a Output OE2,0Q8,Q1,Q2,Q3

b Output OE2,08,01,Q2,Q3

c Output OE2,08,Q1,Q2,Q3

d Output OE2,Q8,Q1,Q2,Q3

e Output 0E2,00,Q1,Q2,93

f Output OE2,00,Q1,Q2,Q3

g Output 0E2,00,01,Q2,Q3

Figure 8. Partitioning Form Used to Partition Large Designs

a Monolithic m Memories :l 3-41

ABEL-GATES

- HE DASH-GATES
> edit type: pld-map
Enter PLD device type
Forn type: pld-map Form' nane:

Partition: count
Target Device Type: P16R8
Output File Name: count.jed

name: - count

count

Output file format: Jedec

PU
File Title Line: 4 bit binary counter FutureNet a Data 170 Company

Checksun Format: full
Simulation Forn(s): ledcount

Special Fuse Nunmber:

Fast Flag: no

Value:

Pin Name: Type: P-terms: Pin Number: Active Level:
Clear Input J— 2 high
Clk Input 1 high
OE1 Input 1 high
Q8 Bidir 2 14 high
Q1 Bidir 3 15 high
Q@ Bidir 4 16 high
Qa3 Bidir 5 1? high

Figure 9. Device and Pin Assignment Form Usgd When a GATES Design is Programmed Into a PLD

Pin and Device Assignment

To this point, the DASH-GATES design description has been
completely “technology independent.” In other words, the func-
tion of the design has been described without regard to the type
of device used to implement it. This design could be part of a
larger gate array or a complete program for a PLD. In this case,
we have a partitioned design for two PLDs and must assign
signals to the PLD pins. Figure 9 shows a device and pin
assignment form.

Two Powerful Tools: ABEL and
DASH-GATES

As the above discussion shows, both ABEL and DASH-GATES
are powerful PLD design tools that address the needs of the PLD

design process. Both provide natural design entry methods,
automated logic reduction and simulation, and full design docu-
mentation.

The differences between ABEL and DASH-GATES arise mainly
in the way a design is entered and processed. ABEL is a
character-oriented, batch process; DASH-GATES is a graphical,
interactive tool. DASH-GATES also features advanced logic
reduction, factoring and partitioning and schematic generation.

The choice between ABEL or DASH-GATES is a choice deter-
mined by a variety of factors, among them budget, need, and -
hardware availability. ABEL will serve many engineers to the full
extent they need; others will decide the advanced processing of
DASH-GATES warrants the additional investment. The choice of
tools is simply a choice between two very high levels.

3-42

n_ Monolithic m Memories :l

CUPL

Complier-Based Software and PLDs Part 1

Improve Logic Design

Programmable logic devices allow you to
complete a design faster than you can using
SSI devices or custom ICs, and PLD
implementations take up less space than do
SSI-based circuits. Moveover, easy-to-use
compiler-based languages that don’t require
you to understand PLD architectures make
PLD:s increasingly attractive for

logic designs.

Bob Osann, Assisted Technology

Circuits that incorporate programmable logic devices
(PLDs) take up less board space than do SSI-based
implementations and require less design time than do
custom-IC or SSI-based versions. But until recently,
the PLDs’ unusual architecture and lack of software
support made designers hesitant to use the devices,
despite the advantages they offer. Compiler-based soft-
ware, however, is simplifying PLD use; this high-level
software makes it unnecessary for you to be concerned
with the PLDs’ internal details when implementing
logic functions with the devices.

This first article in this 3-part series, which is aimed
at first-time PLD users, discusses basic PLD architec-
ture and shows you how to replace two simple logic

EDN January 10, 1985

Z' Monolithic m Memories l‘.'

designs with PLDs using a compiler-based PLD design
language. Part 2 will show you how to replace more
complicated combinatorial and registered-TTL designs
with PLDs. Part 3 will introduce the state-machine
concept and show you how to implement a logic design
directly, without ever developing a gate-level descrip- -
tion of the system.

Although the PLD approach lets you go from logic
function to PLD circuit without conceiving a gate-level
description, when designers decide to use PLDs, they
usually have either completed TTL designs that they
want to shrink or else gate-level descriptions of circuits
they don’t want to implement in discrete logic. There-
fore, the first two articles in this series target convert-
ing existing designs.

Why use a PLD?

For one-of-a-kind designs, prototypes, or small pro-
duction runs, designers have traditionally taken the
discrete approach. Discrete designs are easy to modify
and inexpensive to manufacture in small quantities, and
you can complete them more quickly than you can
complete custom or semicustom designs. For produc-
tion runs over 500, designers have typically chosen the
semicustom and custom routes and sacrificed short
design cycles and ease of modification to reduce manu-
facturing costs.

PLDs bridge the gap between bulky discrete designs
and long custom-IC design cycles. On the one hand,
PLD designs are easier to modify than SSI-based ones

3-43

CUPL

and use much less space. Moreover, depending on the
application, they can cost less than SSI-based imple-
mentations for even small production runs. And on the
other hand, although custom ICs can prove more eco-
nomical than PLDs for large production runs, PLD
design cycles are much shorter. So, if you need to get a
small, inexpensive design to market quickly and can’t
wait for a completed custom design, PLDs can provide
you with a quick stand-in until your custom design is
completed.

In general, the PLD architecture contains a fixed
logic array made of AND gates—whose outputs feed

A PLD approach allows designers to go
from a logic function to a PLD-based
circuit without conceiving a gate-level
description.

OR gates—and a programming matrix. The program-
ming matrix is made up of fuses that you blow with a
programming device. By blowing the appropriate
fuses, you can achieve any AND/OR product or combi-
nation. Fig 1 shows the PAL-type and FPLA-type
architectures. The total number of terms that you can
generate is limited only by the size of the matrix.
Because you can represent any logical function as the
logical sum of product terms, you can realize any logical
function using a PLD. A product term consists of any
combination of input variables or their complements
ANDed together. A logical sum is any combination of

|

» A |
— & I
¥ |

|

|

[

I |

|

IN;—— } |
I ’ I

|

1

|

|

|

|

AND
FUSE
MATRIX{ D —ouTy
AND :
|
|
@ !
__________________________ 1
(PRODUCT TERM) |
T\ |
AND
by !
FUSE |
MATRIX :
lAND\ |
/ i
|
|
|
|

FUSE.
MATRIX

Fig 1—Typical PLDs use one of two general architectures to permit
implementation of a wide range of logic functions. PAL-type devices
(a) prove easier to use, but FPLAs (b) provide more flexibility by
allowing two levels of programmability.

I CONCEPTUALIZE THE LOGICAL DESIGN l

'

| create THe Loaic-DEsCRiPTION FiLe |

!

I RUN CUPL FOR TARGET PLD

EDIT SOURCE FILE,

Y
COMPILE ERRORS?
NO

YES

I SIMULATE FOR DESIGN VERIFICATION]

| pownLoAD AND PROGRAM TARGET PLDI

DEBUG PROTOTYPE

YES
[LOGIC DESIGN ERRORS? l———_

DESIGN COMPLETE

FOR TEST-VECTOR GENERATION

!

RUN SIMULATOR TO PRODUCE
JEDEC FILE (DOWNLOADABLE)
WITH TEST VECTORS

I CREATE SIMULATION INPUT FILE l

l PRODUCTION. RELEASE]

Fig 2—PLDs greatly simplify logic design. After you complete the
logic-description file, the PLD software automatically compiles the
data for downloading to a programming device.)

3.44

n Monollthlcm Memorles Z' .

CUPL

N, g IN, 1
12_'out 12 out
PLO F— PLD |/
IN, 2 IN, 2
D

15 OuT,

Fig 3—When using CUPL, you can always write your logic equa-
tions in positive logic, regardless of the actual polarity of the signals
entering the device. For example, the two cases illustrated above both
yleld the same logic equation: OUT=IN,&IN,.

Fig 4—Some PLD devices use an inverting output buffer. As a
result, to accommodate applications that demand an active-high
output signal, the compiler often must generate extra product terms
that might make the design too big for the target PLD.

product terms ORed together. Using De Morgan’s
theorems,

(AB)= A + B, and
(A+B)=A B.

Then, using the distributive property,

A +C)=AB + AC, and
(A + B)(C + D) = AC + AD + BC + BD.

The PLD software determines the best form of the
equation that will fit into a PLD, which uses a general
architecture to permit implementation of a wide range
of functions. The software should allow you to think in
terms of logical functions rather than gates. The better
the software, the more you can abstract from the
details of discrete design and attend to system
concerns.

Once you've decided to use a PLD approach, you'l
need to choose the software development support for
that device. You can use two basic types of software:
assembler-based software and compiler-based software
(Ref 1). Assembler-based software is supplied by the
PLD manufacturer; it typically supports only that
manufacturer’s devices. If you buy PLDs in large
quantity, you can usually get the software for well
under $100. An alternative to assembler-based soft-
ware is the compiler-based software sold by Data I/0
and Assisted Technology. Compiler-based software
supports almost all PLD devices and programmers;
typical prices range from $750 for a version that runs on
CP/M-based systems to $2695 for a version that runs on
VAX/VMS systems.

Although compiler-based software is more expen-
sive, it will make your PLD design task easier. Capabil-
ities such as symbolic signal representation and macro

a Monolithic m Memoriles l‘.l

substitution make it easier for you to formulate and
enter your logic equations. These improvements allow
you to formulate your design at a higher conceptual
level; that is, you can think in terms of systems instead
of individual circuits.

Fig 2 illustrates the PLD design process using As-
sisted Technology’s CUPL language. (The Abel lan-
guage, developed by Data I/0, could also be used
to demonstrate the techniques involved.) .

The CUPL syntax

Before you can design with CUPL, you have to learn
the syntax. CUPL’s operators, which were chosen
largely from the C programming language, are as
follows:

&=logical AND
#=logical OR
$=logical exclusive-OR
!=logical negation.

You can place comments anywhere within a CUPL
logic specification by using the symbol /* for “start
comment” and the symbol */ for “end comment.” You
can also nest parentheses to any level, as in this
example: OUT=!((A&B)&(C#(D&E))).

To facilitate clear documentation, CUPL allows you
to use symbolic names of arbitrary length (the first 31
characters must be unique). Symbolic names can repre-
sent pin variable names, internal device nodes, inter-
mediate variables, bit-field representations, and sym-
bolic constants. To further improve clarity, you can use
the underscore character—

RAM_PARITY_INT_EN.

When you're converting an existing design, CUPL -
allows you to give symbolic names to internal nodes
within your design. For example, for flip-flops con-
nected to the pin PIN__VAR, you would name the node
as follows:

® D-type flip-flop—PIN__VAR.D=Expression

3-45

CUPL

® JK-type flip-flop—PIN__VAR.J=Expression,
PIN_VAR.K=Expression
® RS-type flip-flop—PIN__VAR.R=Expression,
PIN__VAR.S=Expression.
For 3-state-device enable signals connected to a pin,
you would write:
o PIN__VAR.OE=Expression
® [PIN__VAR LIST].OE=Expression,
as in [DATAT..0].OE=Expression. If you're leaving the
3-state device enabled, you don’t have to write an
equation for it.

Handling signal polarities

One issue that often confuses first-time PLD users is
the representation of signal polarities. In CUPL, you
can always write equations in positive logic, regardless
of the polarity of the signals entering the device.
Because all signals entering the PLD are buffered, you
have access to both the true and complement versions
of the -input signal for your logic equations. Fig 3
illustrates two simple cases. For each case—if you were
using the PLD as an AND gate—you would write the
same logic equation: OUT=IN,&IN.,.)

The specification of signal polarities is complicated by
the inverting-output architecture of, for instance,
20-pin PAL devices (Fig 4). If you need an active-low
output polarity, this doesn’t create a problem. In this
case, the compiler has to implement only one P (prod-
uct) term. However, if you need an active-high output
signal, the compiler must apply De Morgan’s theorem,

T T e e e e — -
PLD EQUIVALENT

N, 8]

IN, 5

15 OUT

e

Fig 5—With CUPL, you can often replace a TTL design without
understanding its function. You just name the pins and nodes,
combine them according to gate relationships in the circuit, and the
softiware does the rest.

3-46

The PLD architecture contains a fixed
logic arvay made of a programming
matrix and AND gates whose
outputs feed OR gates.

Fig 6—Reduced propagation delays are one of the beheﬁts of using
PLDs. A PLD implementation of the circuit shown here has, on the
average, half the propagation delay of the discrete implementation.

and !OUT,;=!(IN,&IN;) becomes !IN,#!IN,. Note that
this equation contains two product terms. The addition-
al space the compiler requires reduces the probability
that the compiler will be able to fit the logic function
into the target PLD.

CUPL can eliminate this problem for PLD devices
that have programmable output polarities. CUPL auto-
matically chooses the output polarity that will result in
the fewest number of P terms.

Reduce keystrokes

One of CUPL’s (and Abel’s) major advantages is
macro substitution, the ability to use a single variable
name to represent a complex logical equation. For
example, if you define “INT_VAR” as “A&B#C,” the
compiler will insert A&B#C every time it encounters
INT_VAR.

Because macro substitution lets you use fewer key-
strokes to write equations, it saves time and reduces
the probability that you'll make input errors. By using
macro substitution, you can write your logic specifica-
tion in a hierarchical fashion, breaking complex equa-
tions into more manageable and readable pieces.

The logic description

The heart of CUPL is the logic-description file
(LDF), which contains your logic equations, pin decla-
rations, intermediate variables, and documentation de-
scribing the device’s function. You must complete the
LDF to prepare your logic equations for downloading to

n Monolithic m A'amorlos i"l

CUPL

a programming device. Table 1 shows the format for a
CUPL LDF that was written for a memory decoder.
The following example shows you how to complete
the logic equation, pin declaration, and intermediate
variable portions of an LDF for the design in Fig 5.
First, you write the pin declarations using the same
names and signal polarities that appear on yonr sche-
matic. Next, you name the output of each gate in the

TABLE 1—SOURCE
SPECIFICATION FILE FORMAT

FUNCTION DESCRIPTION

PART NO 900 16487 HEADER INFORMATION
NAME MEMDEC IDENTIFIES TH

DATE 07/18/84 PARTICULAR I.OGIC
REV 03 SOURCE FILE
DESIGNER OSANN

COMPANY ATI

ASSEMBLY PC-RAM

LOCATION 47

THIS DEVICE DECODES ADDRESSES TITLE BLOCK:

FOR THE DYNAMIC R DESCRIBES IN

PROVIDES THE RAS SYHOBES AS PLAIN TERMS WHAT

WES AS A SIGNAL THAT INITIATES THIS DEVICE DOES.
AS.

ALLOWABLE TARGET DEVICE
TVPES: PAL 16L8, 825153,

DEVICE MENU: LISTS
ALL TARGET DEVICE TYPES
THAT MAY BE USED.

PIN DECLARATIONS:

IR 19 CPU ADDRESS

PN |7 Jmsuw MEMR) MEMORY DATA STROBE!

PINS) Red A INDIGATES AEERESH CYCLE IN PROGRESS
PIN 11 = | REF__RAS STROBE FOR RAS-ONLY REFRESH

PIN |a - ALI’ toc PLACE MEMORY IN ALTERNATE RANGE
ouT

PIN [19 Sy =1 IRAS 3. 0] RAM ROW ADDRESS STROBES

PIN 14 = ! CAS_! ENABLE CAS STROBES

DECLARATIONS AND INTER-
MEDIATE VARIABLE DEFINITIONS:

WRITE EOUATIONS FOR
BIT-FIELD DECI TION:

AND INTERMEDIATE VARIABLES
WHICH WILL BE SUBSTITUTED
LATER USING MACRO-
SUBSTITUTION:

MEMORY ADDRESS

MEMORY REQUEST

WRITE EQUATIONS FOR

FIELD MEMADR = [A19. . A14)
MEM REQ = MEMW # MEMR

LOGIC EQUATIONS:

S IN:
OUTPUT = INPUT 1 & FEEDBACK 1
INPUT 2 & FEEDBACK 2
INPUTS N & FEEDBACK N

FUNCTION

RAS 3 = MEMREQ & ! REF_ADR_EN &
(! ALT__LOC & MEMADR: [0C000. . . OFFFF]
ALT__LOC & MEMADR: [FC000. . . FFFFF)
REF_ADR_EN & REF_RAS

RAS 2 = MEMREQ & ! REF_ADR_EN &
(! ALT__LOC & MEMADR: [08000. . .0BFFF]
ALT__LOC & MEMADR: [F8000. . . FBFFF)
REF_ADR_EN & REF_RAS

RAS 1 = MEMREQ & ! REF_ADFI EN &
(! ALT__LOC & MEMADR: 07FFF£
ALT__LOC & MEMADR: F4000 F7FFF
REF_ADR_EN & REF__RAS

RAS 0 = MEMREQ & ! REF_ADR_EN &
(! ALT__LOC & MEMADR: ..
ALT__LOC & MEMADR:
REF_ADR__EN & REF_RAS

CAS_INIT = MEMREQ & ! REF_ADR_EN &

(Y ALT__LOC & MEMADR: [00000. . . OFFFF]
ALT__LOC & MEMADR: [F0000. . . FFFFI

DESCRIPTION

PRIMARY RANGE
ALTERNATE RANGE
REFRESH CYCLE

PRIMARY RANGE
ALTERNATE RANGE
REFRESH CYCLE

PRIMARY RANGE
ALTERNATE RANGE
REFRESH CYCLE

PRIMARY RANGE
ALTERNATE RANGE
REFRESH CYCLE

PRIMARY RANGE
ALTERNATE RANGE

n Monollﬂllcm Memories :l

schematic. In the example, STROBE, A, and !GATE
are the intermediate variables. Using the intermediate
variable definitions, you then write an equation for the
output:

PIN 4=!IN,
PIN 5=IN,
PIN 6=IN;,
PIN 15=0UT
A=!IN,
STROBE=!(!IN,)#!IN,; /*!(!IN,) =IN,*1
!GATE=!(A&IN;)
OUT=STROBE&!GATE.

The following expressions show this strategy applied
to the more complicated design in Fig 6:

A=!IN|

B= !(IN]&IN;&'IN;)

C=!('INy)#!('IN,)

D=!C

E=!(C&IN;)

F=!B&!D&'E

G=A#F
10UT=(G&IN).

The design in Fig 6 illustrates another advamage of
using PLDs instead of discrete logic. The propagation
delay in the PLD implementation is often less than that
in the discrete design. The discrete design for this
circuit requires at least three TTL packages and has
five levels of delay. The total delay time is 50 nsec (five
levels times 10 nsec/level; for LS packages and 26 nsec
(4x4 nsec+ 10 nsec) for a combination of LS and Schott-
ky TTL packages. In an equivalent PLD circuit, the
maximum delay is 25 nsec; typical delay is only 15 nsec.

Registered PLDs

Some of the more complicated types of PLDs use
flip-flops in their output stages to store information.
Most of these PLDs provide integral feedback paths.
The simplest registered PLDs contain D-type flip-flops,
which transfer the signal at their D input to their Q
output after one clock pulse (more specifically, after the
application of a positive-going leading edge). The equa-
tions for the flip-flop in Fig 7 are

OUTPUT.D=G&INPUT /*UPDATE WITH INPUT*/
#!G&OUTPUT; /*MAINTAIN CURRENT OUTPUT*/
/*VIA INTERNAL FEEDBACK DATA*/.

For simple registered designs, you can often model

3-47

CUPL

Compriler-based software for PLD design

includes such features as symbolic signal
representation and macro substitution.

the circuit with a timing diagram. Using the timing
diagram, you can write your logic equations easily. In
the Fig 8 timing diagram for a D-type flip-flop, INPUT,
initiates the input pulse, and INPUT, terminates the
output pulse. The pin declarations are

PIN 3=!INPUT,

PIN 6=!INPUT,

PIN 1=CLOCK
PIN 14=0UTPUT,

and the corresponding logic equations are

OUTPUT.D=!0UTPUT&INPUT 2 /*SET FF*/
' # OUTPUT&!INPUT 1; /* KEEP FF SET*/
/* UNTIL INPUT 1%/
/*GOES ACTIVE*/.

These equations demonstrate one method for using

the smallest possible number of product terms to keep a
D flip-flop set for several clock cycles. Here, the
flip-flop’s output is fed back until some condition is met
that again enables the flip-flop.

If the registered PLD contained JK flip-flops, the
expressions would be

OUTPUT.J=INPUTy; /* SET FF*/
OUTPUT.K=INPUT;; /* RESET FF*/.

To handle more complicated sequential designs, you
can model your circuit as a multiple-flip-flop system
that uses a common clock. (Virtually all -currently
available registered PLDs use common clocks for their
flip-flops.) For example, to convert TTL designs that
use cascaded flip-flops (in which the outputs of some
flip-flops are used to clock other flip-flops), you must
find the originating clock in the circuit, which is usually

INPUT

' PLD
G OUTPUT (REGISTERED)

Fig 7—Some PLDs use registered outputs to mtroduce storage
elements into their architecture.

JUuusuJuruur
CLOCK od)
UINPUT, _—

j
uNPUTz—L_J
OUTPUT—J |

Fig 8—Converting logic designs to PLDs is easy once you've
completed a timing diagram for your circuit. This one represents
operation of a D-type flip-flop.

TABLE 2—CUPL OPTION FLAGS

A

L PRODUCE YOUR__FILE__NAME.LST WITH LINE NUMBERS AND ERROR MESSAGES.
| PRODUCE YOUR__FILE_NAME.HL DOWN-LOADABLE HL FORMAT FILE FOR IFL.
H PRODUCE YOUR__FILE_NAME.HEX MMI PAL ASCII-HEX FORMAT FILE.

F PRODUCE YOUR__FILE__NAME.DOC WITH FUSE MAP FILE.

X PRODUCE YOUR__FILE_NAME.DOC WITH FULLY EXPANDED EQUATIONS.

G PROGRAM SECURITY FUSE.

R DISABLE GLOBAL PRODUCT-TERM MERGING. (FPLA DEVICES).

MO PERFORM NO LOGIC MINIMIZATION.

M1 PERFORM LOCAL LOGIC MINIMIZATION.

M2 PERFORM LOGIC MINIMIZATION UNTIL EQUATIONS FIT IN TARGET DEVICE.

M3 PERFORM FULL LOGIC MINIMIZATION.

D DEACTIVATE UNUSED OR-TERMS. (INCREASES SPEED IN FPLAs).

U SET ALTERNATE SEARCH PATH FOR PLD DEVICE DATABASE.

J PRODUCE YOUR__FILE__NAME..IED, THE JEDEC FORMAT DOWNLOADABLE FILE
S AUTOMATICALLY RUN CSIM AFTER RUNNING CUPL

‘PRODUCE YOUR__FILE__NAME.ABS FOR LATER USE BY CSIM.

&\ Monolithic m Memories &\

3-48

CUPL

the highest-frequency source in the circuit. In most
cases, the timing skew from one flip-flop output to the
next is tolerable.

The TTL circuit in Fig 9 contains an LS161 counter
whose output is decoded in an LS138. The decoded
output sets and resets flip-flops at various points in the
timing cycle. The timing diagram in Fig 10 is based on
the assumption that the clock rate is sufficiently high
that the propagation delays from SYSCLK to OUT, and
OUT; are not significant. If you were to implement this
design in a PLD, the pinout would look like the one
shown in Fig 11. Outputs Q, and Q; were added to make
all eight time slots in the circuit’s cycle a unique
combination of the four outputs. Adding Q and Q
results in a timing sequence like the one in Fig 12.

You can now write the logic equations by noting, for
each output, each place in the timing cycle where the
output reads high (the flip-flop is set). For example,
OUT, is set during time slots 2, 3, and 4. (The equation
for the D input should include representations of time
slots 1, 2, and 3; these time slots occur immediately
before the flip-flop is set.) For time slots 1 through 3,
you can now write

OUT,.D=!0UT,&!0UT:&Qu&!Q, /*TIME SLOT 1*/
#0OUT & !OUT.&!Qo&!Q; /*TIME SLOT 2%/
#OUT &!0UT.&Qu&!Q, /*TIME SLOT 3*/.

Writing these equations is easier if you first define each
time slot in terms of the register outputs that are fed

Compiler-supported symbolic names can
represent pin variable names, internal
device nodes, intermediate variables,
bit-field representations, and

symbolic constants.

TMESLOT| 0 | 0| 1 1 2| 3)lal 5|61 7101
SYSCLK

VRESE Temmmemd

I

our,

2

Fig 10—This timing diagram is based on the assumption that the
Fig 9 circuit uses a clock rate that is not significantly affected by
propagation delays from SYSCLK to OUT, and OUT;.

PLD
PIN1 =SYSCLK |pegeT 2, Ro [—— oury
PIN 2 = IRESET Ro P4 ouT,
PIN 13 = OUT,
PIN14=0UT, SYSCLK ! > RoHZ—— o,
PIN15=Q Ro HE Q
PIN16=0g °

Fig 11—Adding outputs Q, and Q, of this PLD implementation of the
Fig 9 circuit makes each of the eight intervals in the Fig 12 timing
cycle a unique combination of the circuit’s four outputs.

back into the programmable array:
TS,=!0UT,&'!0UT:&!Qu&!Q:; *TIME SLOT 0*/

TS,=!0UT\&!0UT&Q&!Q,; /*TIME SLOT 1*/
TS,=0UT,&!0UT>& !Qu&!Qy; /*TIME SLOT 2*/

TS;=0UT,&!0UT:& Q&!Q; /*TIME SLOT 3*/
TS,=0UT,&0UT:&!Q&!Q;; /*TIME SLOT 4*/
sV TS;=!0UT,&0UT:&!Qu&!Q;; /*TIME SLOT 5*/
Ls138 ‘T_ 5 o our, TSs=!0UT,&OUT:&Qo&!Qy; /*TIME SLOT 6*/
LS161 Yz
SYSCLK Qc c :2 - You can now write the equations for the four registered
B (O 2? 8 W outputs in terms of TS, through TS, (TS, is not needed);
e Y2 5vep qf— ouT CUPL performs the following substitutions:
Y9 R
OUT..D=TS;#TS,#TS;
Qo. D=TS#TS#TS;
LS10 1500 Lsoa Q:.D=TS;.
Running CUPL
IRESET Once you've completed the LDF, you're ready to
compile the LDF for downloading to the PLD program-
mer. To compile the file, you type an expression that
Fig 9—When converting complex sequential designs to PLDs, you follows this format:
can model your circuit as a grong ot 1 flops driven by a common CUPL [FLAGS] TARGET_DEVICE__CODE
clock. YOUR_FILE_NAME.
:' Momllthle'i-ﬁﬂﬂomorles E'l 3-49

3-50

CUPL

PLDs with an inverting-output
architecture complicate selection of
signal polarities.

mnsﬁlgéfgloloi‘|213|4|5I6|7|o|
RESET emed

OUT,____]"——'[____

ouT, |

Qo L1 1T

Q, o

Fig 12—Once you’ve rewritten the Fig 10 timing diagrams to reflect
the PLD configuration in Fig 11, you can write a set of logic
equations for implementing the PLD design.

For example, the sequence CUPL -J -A P16L.8 RAM-
CNTRL compiles the source file for a RAM controller
that is targeted for a PAL16L8. The J and A symbols
are chosen from a table of CUPL option flags (Table 2).
In this case, the compiler produces a JEDEC file and an
absolute-format file to be used later by CUPL’s simula-
tor, CSIM (Ref 1). The resulting compiled code is
downloaded to the programmer, which then blows the
appropriate fuses in the PLD.

The designs discussed thus far are simple but useful
for describing the PLD design process. The next two
articles will extend the discussion to more advanced
designs, and finally, to the state-machine approach.

EDN

Reference

Marrin, K, “Programmable logic devices gain software
support,” EDN, February 9, 1984, pg 67.

2\ monotithic B Memories £

CUPL

Use PLDs to Shrink Complex, Discrete Logic Designs

As discrete combinatorial and sequential
logic circuits become more complex, it
becomes more difficult to convert them to
PLD equivalents. With the help of
compiler-based software, though, yow’ll be
converting complicated logic designs in no
time.

Bob Osann, Assisted Technology Inc

Converting complicated discrete designs to their PLD
(programmable logic device) equivalents can be an
imposing task for the first-time PLD user or for the
engineer who's been laboring with outmoded PLD
software tools. New compiler-based software, howev-
er, makes it easy for you to implement even complex
logic designs with PLDs.

This article, the second in a 3-part series on PLD
design, introduces a few of the more advanced features
of the compiler-based PLD design language CUPL and
shows you how to use those features to convert compli-
cated sequential and combinatorial SSI logic designs to
PLD equivalent designs. Part 1 of the series demon-
strated some elementary features of CUPL and showed
you how to apply those features in a few simple designs.
Part 3 will introduce CUPL’s state-machine syntax and

a Monolithic ﬁ.ﬁﬂ Memories :l

Part 2

show you how to move directly from logic ideas to PLD
implementations without developing a gate-level de-
scription of your system.

CUPL lets you use a systems approach

The CUPL high-level PLD support language enables
you to develop your logic designs using a systems
approach. This approach not only speeds the design
process but facilitates the generation of logic descrip-
tions that are easy to understand.

CUPL supports a systems approach with several
advanced features, which give you a self-documenting
syntax, allow you to use fewer keystrokes to develop
your systems, and let you use symbolic names that
correspond to whatever function you're trying to imple-
ment. CUPL also gives you a flexible format, which lets
you describe several similar systems in less time than it
would take to describe the systems using a more rigid
format.

One of CUPL’s advanced features is its bit-field
capability, which allows you to use a single symbolic
name to represent a group of bits (such as an address
bus or state bit field). This feature saves you key-
strokes when you're formulating your design equations
and makes the resulting equations easier to read. Once
you've defined a symbolic name, you can use that name
to represent either a single hexadecimal value or a
range of hexadecimal values. For example, in an ad-
dress-decoding application, you could equate the sym-
bolic name MEMADR with [ADR7, ADR6, ADRS5,

3-51

CUPL

PLDs are effective replacements for both
simple and complex combinatorial and
sequential discrete logic designs.

ADR4, ADR3, ADR2, ADR1, ADRO]. You could then
substitute [ADR7 ... 0] for [ADR7, ADR6, ADR5,
ADR4, ADR3, ADR2, ADR1, ADRO)]. The resulting
equation, FIELD MEMADR=[ADR7 . ..], assigns
the name MEMADR to the address bus.

CUPL speeds bit-field comparisons

Another CUPL feature is its “:” operator, which can
perform bit-field comparisons and operations quickly
and efficiently. This feature is particularly useful for
describing such features as an address decoder. When
the compiler is performing a bit-field comparison, the
operator “:” compares a bit field with either a hexadeci-
mal or an octal constant value or a hexadecimal or octal
list of constant values (hexadecimal is the default
value). When you're describing an address decoder, for
example, the statement MEMADR: [A000 . . . EFFF]
is true if the address MEMADR falls in the hexadecimal
range' A000 to EFFF (inclusively). Note that hexadeci-
mal constant values must contain the proper number of
nibbles' to include the most significant bit of the bit
field. In the above expression, the most significant bit
of the E in EFFF corresponds to A15 in MEMADR.

You can also use the “:” operator for bit-field opera-
tions, as in the following equation:

IOADR: & REPLACES AT&A6&A5&A4&A3&A2&A1&A0
IOADR: # REPLACES AT#A6#A5#A4#A3#A2#A1#A0.

Another timesaving CUPL feature is the preprocess-

or, which lets you write general-purpose logic descrip-

.tions that you can tailor to suit more than one applica-

tion. For example, you might write a general-purpose
decoder that you could adapt to 8-, 16-, or 32-bit
applications by changing a few symbolic names and
ranges.

The CUPL preprocessor is a program that operates
on the CUPL source file before it’s compiled. The
preprocessor’s string-substitution function, for exam-
ple, can replace one symbolic name with another until
some condition is met. When it encounters the state-
ment $DEFINE ARG1 ARG2, for instance, the pre-
processor replaces ARG1 with ARG2 until it encoun-
ters the statement §UNDEF ARG1. You could use the
arguments in this example to represent different ver-
sions of your decoder. You could make ARG1 represent,
say, the 8-bit decoder, and you could make ARG2
represent the 16-bit decoder.

The preprocessor also allows you to delay inclusion of
a file until compile time. Again, this feature lets you
generalize your functions. For example, you could write
several files that represent several specific cases of a
general application. To implement different functions,
you'd just include different file names. In the statement
$INCLUDE FILENAME, the referenced file becomes
part of the LDF (logic description file) only at compile
time.

Conditional control structures extend even further
the ability to create generalized files. They allow you to

@ PAL16R8
INPUT 2
————
G 3], PLD A OUTPUT (REG/INV)
CLOCK 1 >
®)
PAL16R8
INPUT 2[
G 3], PLD R IOUTPUT (REG/INV)
CLOCK 1
D>

IORD
IOWR
A;
A

= |

BUFFEN

Fig 1—These two PLDs show two possible output configurations
for a PLD with a fixed inverting output buffer. PLDs with program-
mable output polarity eliminate the confusion that fived output
devices cause.

Fig 2—Address decoders are typical targets for first-time PLD
users. A simple application like this address decoder shows how you
can benefit from software features like macro substitution, range
Sfunctions, and list notation.

3-52

ﬂ Monolithic m Memorles Zl

CUPL

TABLE 1 — MEMDEC LOGIC DESCRIPTION FILE

PARTNO
NAME
DATE

REV
DESIGNER
COMPANY
ASSEMBLY
LOCATION

2600A00004 ;

MEMDEC ;

02/14/84 ;

02 ;

OSANN ;

ASSISTED TECHNOLOGY ;
PC-RAM ;

u76 ;

/* THIS DEVICE DECODES ALL MEMORY ACCESSES FOR BOTH PRIMARY AND
/* ALTERNATE LOCATIONS. IT GENERATES THE RAS SIGNALS FOR THE FOUR
/* BANKS OF 16K DYNAMIC RAMS AS WELL AS THE SIGNAL THAT INITIATES

/* THE CAS SIGNALS.

*/

*/
*/

/** ALLOWABLE TARGET DEVICE TYPES: PAL16L8, 825153, PAL16P8

* INPUTS *+/
PIN(1..6]
PIN(7,8)

PIN9

PIN 11

PIN 13

/** OUTPUTS **/
PIN[19..16]
PIN 14

ey

= [A19..14] :/* CPU ADDRESS BUS */

= | [MEMW,MEMR] : /* MEMORY DATA STROBES */

= IREF_ADR_EN . /* INDICATES REFRESH CYCLE IN PROGRESS */
= IREF_RAS :/* STROBE FOR RAS-ONLY REFRESH */

= ALT_LOC . /* PLACE MEMORY IN ALTERNATE RANGE */

= I[RAS3..0] : /* RAM ROW ADDRESS STROBES */

= ICAS_INIT : /* ENABLE CAS STROBES */

/** DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS **/

FIELD MEMADR
MEMREQ

|

= [A19..14]

]

/** LOGIC EQUATIONS **/

MEMREQ & !REF_ADR_EN &

('ALT-LOC & MEMADR:[0C000..0FFFF]
ALT_LOC & MEMADR:[FCO000..FFFFF])
REF_ADR_EN & REF_RAS ;

MEMREQ & !REF_ADR_EN &
('ALT_LOC & MEMADR:[08000..0BFFF]
ALT_LOC & MEMADR:[F8000..FBFFF])
REF_ADR_EN & REF_RAS ;

MEMREQ & !REF.ADR_EN &
('ALT_LOC & MEMADR:[04000..07FFF]
ALT_LOC & MEMADR:[F4000..F7FFF])
REF_ADR_EN & REF_RAS ;

MEMREQ & !REF_ADR_EN &
('ALT_LOC & MEMADR:[00000..03FFF]
ALT_LOC & MEMADR:[F0000..F3FFF])
REF_ADR_EN & REF_RAS ;

MEMREQ & !'REF_ADR_EN &
('ALT_LOC & MEMADR:(00000..0FFFF]
ALT_LOC & MEMADR:[F0000. FFFFF]);

RAS3

RAS2

RAS1

RASO

CAS_INIT

1)

MEMW # MEMR

;/* MEMORY ADDRESS */
;/* MEMORY REQUEST */

/* PRIMARY RANGE */
* ALTERNATE RANGE */
/* REFRESH CYCLE */

/* PRIMARY RANGE */
/* ALTERNATE RANGE */
/* REFRESH CYCLE */

/* PRIMARY RANGE */
/* ALTERNATE RANGE */
/* REFRESH CYCLE */

/* PRIMARY RANGE */
/* ALTERNATE RANGE */
/* REFRESH CYCLE */

/* PRIMARY RANGE */
/* ALTERNATE RANGE */

l‘rl Monolithic m Memorles a

3-53

CUPL

compile particular portions of your LDF when you've
complied with certain conditions. When you use the
format ‘

$IFDEF ARG

... STATEMENTS. . .
$ELSE

... STATEMENTS. . .
$ENDIF,

the statements are compiled only if the argument ARG k

has been defined. When you use the format

$IFNDEF ARG

...STATEMENTS . . .
$ELSE

... STATEMENTS . . .
$ENDIF,

the statements are compiled only if the argument ARG
has not been defined.

Output programmability saves space

One CUPL feature that can save you considerable
space in your design is the language’s ability to support
a PLD with programmable output polarity. For PLDs
with this feature, the CUPL compiler chooses whichev-

By using symbolic names to represent bit
fields such as address buses, you can not
only save keystrokes, but you can make your
designs virtually self documenting.

er output polarity results in logic equations that use the
smallest number of product terms. Although output-
programmability support is a useful PLD option, many
widely used PLDs contain inverting output buffers that
are fixed instead of programmable. The examples that
follow demonstrate the limitations of PLDs that don’t
have programmable output polarity.

For instance, Fig 1 illustrates the architecture for a
PLD that uses a single D flip-flop and an inverter in its
output stage. Fig la shows a design that uses an
active-high output name, and Fig 1b shows one that
uses an active-low output name. The pin declarations
for Fig la are

PIN 1 = CLOCK
PIN 2 = INPUT
PIN3 =G

PIN 18 = !OUTPUT.

To see why support for output programmability is so
important, imagine that the flip-flop’s output is fed
back to keep it set. The polarity used in the output
name makes a significant difference in the number of
product (P) terms that are fed back. .

A19.A14 [
MEMDEC _—_I.RAsa..o 164k xx 8
ICAS3..0
p— 1ORD, IOWR PAL16LS ICAS_INIT 9}————
OR
JMPR 4——& 825153
IREF_RAS DYNAMIC
RAM
— DELAY LINE ADDRESS
MUX
A13.0 @x1
1BUS_AK]
[A7.0
| BUS_REQ
AFSHONT SELA SELB
TER RESET | pasomo
OR
IREF_REQ 825157 IRFSH_ADR_EN
CLR
REFRESH ADDRESS COUNTER
ICLR_REF_TMR

Fig 3— Memory decoders (MEMDEC) prove a challenging application for PLD conversions. This decoder is a portion of a dynamic

RAM controller.

3-54

z‘ Manolithic m Memories n

CUPL

TABLE 2 — RFSHCNT LOGIC DESCRIPTION FILE

PARTNO 2600A00005 ;

NAME RFSHCNT ;
DATE 02/19/84 ;
REV 02 ;

DESIGNER OSANN ;
COMPANY ASSISTED TECHNOLOGY ;

/* THIS DEVICE RESPONDS TO THE REFRESH REQUEST(REF_REQ) GENERATED *
/* BY THE REFRESH INTERVAL TIMER. IT PRODUCES THE SIGNAL WHICH Wi
/* GATES THE REFRESH COUNTER ADDRESS INTO THE RAM ADDRESS BUS *f
/* AS WELL AS THE REFRESH RAS STROBE AND THE CLEAR PULSE FOR *
/* THE REFRESH INTERVAL TIMER. *

/** ALLOWABLE TARGET DEVICE TYPES: PAL16R6, 825157 il

/** INPUTS **/

PIN 1 = CLK ;/* CPU CLOCK */

PIN 2 = REF_REQ ;/"REFRESH REQUEST FROM INTERVAL TIMER */
PIN3 = IBUS_AK ;/* BUS ACKNOWLEDGE FROM CPU */

PIN 4 = RESET ;/* SYSTEM RESET */

PIN 11 = I0E ;/* TIED TO GROUND */

/** OUTPUTS **/

PIN 18 = IBUS_REQ ;/* BUS REQUEST TO CPU */

PIN 17 = IREF_ADR_EN ;/* ENABLE REFRESH ADDRESS */

PIN 16 = IREF_RAS ;/* STROBE FOR RAS-ONLY REFRESH */

PIN 15 = IREF_RAS_DLY1 ;/* REF_RAS DELAYED 1 CLOCK */

PIN 14 = IREF_RAS_DLY2 ;/* REF_RAS DELAYED 2 CLOCKS */

PIN 13 = ICLR_LREF_-TMR - ;/* PULSE TO CLEAR RFRSH INTERVAL TIMER */

/** DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS **/

FIELD ST = [BUS_REQ, /* ALL OUTPUTS ARE PART OF */
REF_ADR_EN, /* THE STATE BIT FIELD. */
REF_RAS,

REF_RAS_DLY1,
REF_RAS_DLY2,

CLR_REF_TMR] ;
/** LOGIC EQUATIONS **/
BUS_REQ.D = 'RESET &
IBUS_REQ & REF_REQ /SETITY
BUS_REQ & (ST:20 # ST:30 /* KEEP IT SET*/
ST:38 # ST:3C /* KEEP IT SET*/
#ST3E) % /* KEEP IT SET*/
REF_ADR_EN.D = IRESET &
(IREF_ADR_EN & BUS_AK & BUS_REQ /* SETIT*/
REF_ADR_EN & (ST:30 # ST:38 /* KEEP IT SET*/
ST:3C # ST:3E)); /IKEEP IT SET*/

REF_RAS.D = !RESET & (ST:30 # ST:38 # ST:3C) ;
REF_RAS_DLY1.D = !'RESET & (ST:38 # ST:3C # ST:3E) ;
REF_RAS_DLY2.D = !RESET & (ST:3C # ST:3E # ST:36) ;
CLR_REF_TMR.D = !RESET & ST:36 ;

2\ monotithic KX Memories &1 355

CUPL

If you choose an active-high output name, the logic
equations are

OUTPUT.D = G & INPUT /* UPDATE WITH INPUT */
#!G & OUTPUT /* MAINTAIN CURRENT OUTPUT */
/* VIA INTERNAL FEEDBACK PATH */.

Because of the inverting output buffer, the equations
that you must program into the array are
1OUTPUT.D = (G & INPUT # !G & OUTPUT)
1OUTPUT.D =!G & !OUTPUT # !INPUT & G #
IINPUT & !OUTPUT.
Notice the extra product terms that are created. If, on
the other hand, you choose an active-low output name,
the pin declarations are
PIN 1 = CLOCK
PIN 2 = INPUT

PIN3 =G
PIN 18 = !OUTPUT,

and the final equations are

OUTPUT.D = G & INPUT /* UPDATE WITH INPUT */
#!G & OUTPUT /* MAINTAIN CURRENT OUTPUT */

/* VIA INTERNAL FEEDBACK PATH */.

As you can see, when PLDs have fixed inverting
buffers, the active-low output condition requires the
fewest number of P terms.

Now that you're familiar with CUPL’s features,
you're ready to apply them to more complicated sys-
tems. When a logic designer uses a PLD for the first
time in a new design, the designer’s target area is often
the address-decode function. Fig 2 shows a simple
I/0-decoding circuit that creates a buffer-enable signal
for 1/0 reads or writes when the decoded address falls
in the hexadecimal range 10 through 12, inclusively. If
you were to implement this address-decoding function
using assembler-based software, your equations would
look like the following ones:

BUFFEN=IORD*/AT*/A6*/A5*A4*/A3*/A2*/A1*/A0
+IORD*/A7*/A6%/A5*A4*/A3*/A2*/A1* A0
+IORD*/AT*/A6*/A5*A4*/A3*/A2* A1*/A0
+IOWR*/AT*/A6*/A5* A4*/A3*/A2*/A1"/A0
+IOWR*/AT*/A6*/A5* A4*/A3*/A2*/A1* AO
+IOWR*/AT*/A6*/A5*A4*/A3*/A2* A1*/A0.

If you were to implement the address-decoding fune-
tion using CUPL, your equations would look like this:

FIELDADR = [A7 .. 0}
IOREQ = IORD # IOWR;
BUFFEN = IOREQ & ADR:[10 . . 12];.

To write equations using CUPL, you first define the
address bus as a bit field where ADR=[A7 . .. 0]. The

3-56

Conditional control structures improve
compiler flexibility. They allow the compiler
to delay decisions until certain predefined
conditions are met. '

compiler then substitutes [A7 . . . 0] whenever it sees
ADR. You then combine the strobe signals and give
them the arbitrary name IOREQ where IOREQ
=IORD#IOWR. Finally, you write an equation for the
output BUFFEN in terms of the intermediate variables
IOREQ and ADR so that BUFFEN=IOREQ&ADR:[10
... 12]. The list-notation and range functions, as well
as macro substitution, are all used here. The final code
takes less time to write and is much easier to read than
code written in an assembler-based language, and it’s
virtually self documenting.

Fig 3 shows the CUPL design technique in a more
complicated decoder application, a dynamic RAM con-
troller. The PLD MEMDEC in Fig 3 provides the
memory decoder function. It supplies four 16kx8-bit
banks of dynamic RAM with RAS (row address strobe)
signals and generates a signal that initiates the CAS

“(column address strobe). The initiating signal first

passes through a delay line and then recombines with
the RAS signals to produce the CAS.

MEMDEC decodes address bits A19 through A14 of
a 20-bit address space and maps the 64k-byte block to
either the top or the bottom of the memory map shown
in Fig 4. The jumper-selectable input called ALT__LOC

FFFFF
FC000 BANK 3
BANK 2
F8000 ALT_LOC =1
i BANK 1
Fa000 BANK 0
F0000
MEMORY
MAP
OFFFF
0C000 BANK 3
08000 BANK2 ALT_LOC=0
BANK 1
04000
BANK 0
00000

Fig 4—This memory map shows two possible locations for address
bits A19 through A1} of a 20-bit address space. MEMDEC decodes
the bits and maps the 64k-byte block to either the top or the bottom of
the memory map.

l‘rl Monolithic ﬁ.ﬁﬂ Memories l‘r.'

CUPL

determines whether the top or the bottom of the
memory map is used. Table 1 shows a completed LDF
for the memory decoder.

Not only does CUPL simplify combinatorial designs,
but it’s useful for implementing sequential designs as
well. Because PLDs contain both the logic array and
registers in the same package, they’re particularly
powerful for implementing registered logic. The PLD
named RFSHCNT in the RAM controller shown in Fig
3 handles the sequential aspects of refresh control for
the dynamic RAM in a typical P system.

RFSHCNT responds to a refresh signal from the
refresh internal timer (usually 14 psec) by driving the
CPU’s bus-request line high. After receiving a bus-
acknowledge signal from the CPU, RFSHCNT then
generates signals for address MUX control and RAS-
only refresh timing.

RFSHCNT also provides a signal that resets the
refresh interval timer and clocks the refresh-address
counter. Fig 5 shows the timing diagram for
RFSHCNT. Note that the registered output signals
are shown as logical true even though the actual
outputs are active low. Because the equations are based
on signals in the timing diagram, in order for the
registered outputs to be shown as logical true, the
target device must have either an inverting output

Programmable-output capability allows the
compiler to save PLD space. Thus, yow'll
need fewer PLDs when you’re converting
your design.

buffer or programmable-output-polarity capability.

Table 2 shows the LDF for RFSHCNT. The LDF
uses the hexadecimal values that define the time slots
shown in the timing diagram. Note the use of CUPL’s
bit-field capability in the equations that specify the D
flip-flop’s state.

CUPL'’s compiler-based techniques simplify the con-
version of complicated SSI circuits to their PLD equiva-
lents. Part 3 of this series will show you how to simplify
the logic design process even further by using the
state-machine approach. EDN

(STATE) TIME SLOT |oo |2o oo e oo | |® Jo Jo |
- ax SIS LS LUl eri
(IN) REF_REQ J |
(OUT) BUS_REQ | L
nBus Ak T] E—
(OUT) REF_ADR_EN [1
(OUT) REF_RAS | 1
(OUT,NC) REF_RAS_DLY1 | 1
(OUT, NC) REF_RAS_DLY2 | 1
(OUT) CLR_REF_TMR [1

Fig 5—The r ed output si

Is shown in this timing diagram for RESHCNT are shown as logical true even though the actual outputs

are active low Became the eqwztums are based on the timing diagram, the target device must be inverting, or it must have

Proyt tp {x8 ty.

n Monolithic m Memories :l

3-57

CUPL

State-Machine Approach Speeds Logic Design

To exercise a PLD’s fill potentml for
shortening design time and improving
documentation, use the state-machine
approach. This approach lets you formulate
a behavioral description of your system and
implement 1t divectly in a PLD, without
ever developing an equation-level
representation.

Using the state-machine approach and a compiler-based
PLD design language like CUPL, you can bypass the
gate- and equation-level stage in logic design and move
directly from a system-level description to a PLD
implementation. Unlike assembler-based approaches,
the state-machine approach lets you document your
design in a_manner that’s understandable to future
users of your design.

Actually, few logic designers currently use the state-
machine approach in their logic designs. This isn’t
surprising: The technique seems difficult to learn at
first. But CUPL makes the state-machine approach less
formidable by handling many of the decisions you would

EDN February 7, 1985

Part 3

normally have to make. Furthermore, CUPL gives you
a general and simple state-machine model like the one
shown in Fig 1. The software automatically fits the
model to your application.

Defining the state model

In general, a state machine is a loglc circuit w1th
flip-flops. Because a flip-flop’s output can be fed back to
its own or some other flip-flop’s input, a flip-flop’s input
value may depend on both its own output and that of
other flip-flops. Consequently, the final value for a
flip-flop’s output depends on its own previous values, as
well as those of other flip-flops.

The CUPL state-machine model uses six compo-

INPUTS NONREGISTERED OUTPUTS
COMBINATORIAL REGISTERED
JLoaic STORAGE OUTPUTS
'HEG&ST/ERS STATE BITS

Fig 1—State-machine theory can be complicated, but C UPL allows
you to abstract from the theory’s complicated details. Using this
simple model and an easy-to-learn syntax, you can quickly con-
struct state-machine models of your system.

3-58

l"l Monolithic m Memories l‘.‘

CUPL

When you use the state-machine approach,
you don’t have to write a logic-equation-
level description of your system before
implementing it in a PLD.

CLOCK

STATE BIT

REGISTERED T
OUTPUT had

NONREGISTERED OUPUT
(DEPENDS ONLY ON STATE)

INPUT

NONREGISTERED OUTPUT
(DEPENDS ON STATE AND INPUT)

Fig 2—This timing diagram characterizes CUPL's simple state-machine maodel. The setting or resetting of the registered output depends on
the status of the state bit. Conversely, nonregistered outputs can depend either on only the current state bit's status or on both the state bit's

status and the input's status.

nents: inputs, combinatorial logic, storage registers,
state bits, registered outputs, and nonregistered out-
puts. Fig 2 shows the timing relationships between
these components.

Inputs are signals entering the device that originate
in some other device. Combinatorial logic is any combi-
nation of logical gates (usually AND-OR) that produces
an output signal that’s valid T, (propagation delay
time) nsec after any of the signals that drive these
gates changes. T, is the time delay between the
initiation of an input or feedback event and the occur-
rence of a nonregistered output.

State bits are storage-register outputs that are fed
back to drive the combinatorial logic. They contain the
present-state information. Storage registers are any
flip-flop elements that receive their inputs from the
state machine’s combinatorial logic. Some registers are
used for state bits, while others are used for registered
outputs. The registered output is valid T., nsec after
the clock pulse occurs. T,, is the time delay between the
initiation of a clock signal and the occurrence of a valid
flip-flop output.

" For the system to operate properly, you must meet
your PLD’s requirements for setup and hold times. For
most PLDs, the setup time (T,,) usually includes both
the propagation delay of the combinatorial logic and the
actual setup time of the flip-flops. T, is the time it takes
for the result of either a feedback or an input event to
appear at the input to a flip-flop. A subsequent clock
input cannot be applied until this result becomes valid
at the flip-flop’s input. These flip-flops may be either D,

n Monolithic E.WJ Memorles I‘rl'

RS, or JK types (but RS and JK types are used more
often in state-machine implementations because they
require fewer product (P) terms than D types do).

Nonregistered outputs are outputs that come direct-
ly from the combinatorial logic gates. They may
be functions of the state bits and the input signals (and
have asynchronous timing), or they may be purely
dependent on the current state-bit values, in which case
they become valid T.,+T, nsec after an active clock
edge occurs.

Registered outputs are outputs that come from the
storage registers but are not included in the actual
state-bit field (ie, a bit field composed of all the state
bits). State-machine theory requires that the setting or
resetting of these registered outputs depend on the
transition from a present state to a next state. This
allows a registered output to be either set or reset in a
given state, depending on how the machine came to be
in that state. Thus, a registered output can assume a
“don’t care” operation mode. In the “don’t care” mode,
the registered output will remain at its last value as
long as the current state transition does not specify
that registered output.

The state-machine syntax

To help you implement this state-machine model
quickly, CUPL supplies a general and simple state-
machine syntax. This syntax gives you a single, simple
format that allows you to describe any function in the
state machine. The general format for the state-ma-
chine syntax is

3-59

CUPL

SEQUENCE state_bit_field {
PRESENT present_state
IF input_cond NEXT next_state OUT outputs ;
IF input_cond NEXT next_state OUT outputs ;
IF...
PRESENT present._state
IF input_cond NEXT next_state
IF input_cond NEXT next_state
IF ...
PRESENT. ..
}

OUT outputs ;
OUT outputs ;

Each present-state block within this format de-
seribes both asynchronous (present state) and synchro-
nous (transition) activity. Using this format, you can
describe any component of the state machine. For
example, the formats for registered outputs would be

IF input_cond NEXT next_state OUT outputs
-
CONDITIONAL OUTPUT ASSOCIATED
TRANSITION WITH TRANSITION
or
NEXT next_state OUT outputs
-
UNCONDITIONAL OUTPUT ASSOCIATED
TRANSITION WITH TRANSITION,

depending on whether the transition is conditional or
not. To use these equations for describing your system,
you need to learn how to use the CUPL keywords. For
example, when you use a Next statement, you're telling
the compiler that all of the outputs in that block are
registered outputs whose values depend on transition

information (ie, information about the transition from
the present state to the next state). Using the If
statement signifies a conditional event. When you use
the If keyword in a nonregistered description, you
signify that the input and output events will have an
asynchronous dependence. The absence of a Next key-
word signifies a nonregistered event.

For nonregistered outputs, you would use the format

IF input_cond OUT outputs

INPUT CONDITION NO STATE OUTPUTS ASSOCIATED
AFFECTS OUTPUT TRANSITION WITH INPUT CONDITION
AFTER Ty AND PRESENT STATE.

or

OUT outputs

NO STATE OUTPUT ASSOCIATED
TRANSITION SOLELY WITH PRESENT
STATE. VALID
T + Ty AFTER
CLOCK.

NO INPUT
CONDITION

Much of the reason for choosing either the registered
or nonregistered format for an output depends on the
system timing. For fully synchronous systems that
require tight timing, the registered output provides
fast response—it responds within T, nsec after the
occurrence of a clock pulse. This quick response gives
the circuit time to use that registered output as an
input somewhere else in the circuit before the next
clock pulse occurs.

Conversely, you would use the nonregistered output
in asynchronous applications. You would also use the

STATE
DIAGRAM

out
! REG_OUT

OUT REG_OUT

T NON_REG_OUT =INPUT

NON_REG_OUT
INPUT
PLD REG_OUT
Q1
CLOCK
Qo

Fig 3—This model for a free-running 2-bit counter demonstrates CUPL’s state-machine syntax. The counter has one input, one

nonregistered output, and one registered output.

3-60

a Monolithic m Memorles zl

CUPL

nonregistered output in simpler applications, such as
present-state decoders.

To better understand the state-machine model and its
syntax, consider a simple example: a free-running 2-bit
counter with one input, one registered output, and one
nonregistered output. Fig 3 shows the state-transition

diagram. The circles represent states (specific combina-
tions of the state bits), and the arrows represent the
transitions between states. Because the transitions in
this example are unconditional, the counter is free-
running. Accordingly, the logic description uses no If
keywords in statements that signify a Next state. The

The function-table approach

To design logic systems with
PLDs, you could use the func-
tion-table approach, which com-
plements the state-machine ap-
proach. The function-table
approach is useful in applications
such as code converters, where
input/output relationships are
best represented in tabular
form.

CUPL'’s parallel-operation ca-
pability makes it easy for you to
develop these tabular represen-
tations. Using that feature, you
can declare bit fields and use
them on either the right or left
side of the equation.

The parallel operation feature

Jreeeseetaaaaias

seLt 13] sero [t9 [t ano

Fig A—In code-conversion applications,
like this dual 4-to-1 multtplezer, you can
best describe the system using a tabular
Sformat.

/* THIS DEVICE FUNCTIONS AS A DUAL 4-TO-1 MUX WITH INVERTING
/* REGISTERED OUTPUTS. THE MUX QUTPUTS ARE ONLY CLOCKED INTO THE
" REGlSTERS WHEN JTHE GATE INPUT IS ACTIVE

TABLE A—GATED MUX LOGIC DESCRIPTION FILE

PARTNO PL10007;

NAME GATED MUX;

DATE 09/17/84;

REV 01;

DESIGNER ARONSON;

COMPANY ASSISTED TECHNOLOGY:
ASSEMBLY PC_.IO;

LOCATION u23,

PR rreraereranteseiaraanan Cererasanaes deassesiieaaeny

'/

. It INPUTS 7
allows you to operate uniformly :
PIN 1 = CLOCK ;1" SYSTEM CLOCK */
PIN (2.5] = [B3.0 . 1* INPUT GROUP B */
PIN(6.9] = [A3.0 ;1" INPUT GROUP A */
PIN13 = SELY 17 SELECT 17/
PIN 19 = SELO ;1" SELECT 0 *
PIN12 = GATE I+ GATES MUX QUTPUT INTO REGISTER */
PIN 11 = 10E ;1" OUTPUT ENABLE */
B3 2
B2 3 BN I°* OUTPUTS "/
81 + | GATED MUX
PIN 15 =11 ;1" REGISTER OUTPUT FROM GROUP B */
B0 5 PIN16 = Y0 ;1" REGISTER OUTPUT FROM GROUP A */
A3 6 PAL16R4
a2 7] s /** DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS **/
A1 8 1 1Yo FIELD OUT = [Y1.0); /* OUTPUT BITS */
" FIELD SEL = [SEL1..0] ; /* SELECT CONTROL BITS */
0 9
oATE 2 12 /** LOGIC EQUATIONS **/
K 1 OUT.D = !GATE & OUT Jererneerea cerees .
gock 1k # GATE & ([B3,A3) & SEL:3 I NOTE: o
[B2,A2] & SEL:2 I* ONE EQUATION DESCRIBES */

(B1.A1] & SEL'1
(BO.AO] & SEL0) ;

BOTH OUTPUT VAR!ABLES

2\ monotithic BE memories £1

3-61

nonregistered output is active on a count of two (S2)
when the input is active. The registered output is set on
the transition from S2 to S3 and reset on the transition
from S3 to SO. Table 1 gives the logic description for
the counter.

An application that mcorporates hysteresis shows the

T CUPL

To make the state-machine approach easier
to learn, CUPL uses a model that incor-
porates both the Mealy and Moore models.
You use the same model for all cases.

importance of using transition information in addition
to present-state information. Consider, for instance, a
circuit that performs threshold detection on an analog
signal, but requires a hysteresis band both wider and
more accurate than the hysteresis band an analog
comparator could achieve. In such an application, you

TABLE B—HEXDISP LOGIC DESCRIPTION FILE . 7 1A
PARTNO CT0002;
NAME HEXDISP; DATAO 10 j6__ '8
EegEG] g’f’s‘ DATAY 11} evoiep |5 lC
ESIGNER 825123

COMPANY ASSISTED TECHNOLOGY INC; DATA2 12 OR 4 D
fgg§¥|%'NY 8I1$7PLAY __BOARD; paTA3 13| EQUVALENT [, ¢

At e ettt et et a st bs st aaaey 2 !'F

/* THIS IS A HEXADECIMAL-TO-SEVEN-SEGMENT .

/* DECODER CAPABLE OF DRIVING COMMON-ANODE R I ARBI__ 14) A

/* LEDS. IT INCORPORATES BOTH A RIPPLE- Fa 4B N

/* BLANKING INPUT (TO INHIBIT DISPLAYING A N L] L RBO

/* LEADING ZEROES) AND A RIPPLE-BLANKING Ty]

/* OUTPUT TO ALLOW FOR EASY CASCADING OF f ' .

/* DIGITS. ED ac ‘!

"] K ‘/

I N

. ‘o Flg B-—-Though a PROM was used to

T PO PSP SO OPP PRI VPSR) ¢ this simple hexadecimal-to-7

;' f\L}.OWABLE TARGET DEVICE TYPES: 32 x 8 PROM (828123 OR EQUIV)

/** INPUTS **/
PIN [10.. 1317‘B [D0..3] ; 1" DATA INPUT LINES TO DISPLAY
I

seg‘y—ment decoder, you could use the same
Sfunction table to implement this state ma-
chine in a PLD.

PIN 14 /* RIPPLE BLANKING INPUT
I+ QUTPUTS */ on an entire parallel data path.
, L S
PIN[7.1] = K\ B.CD.EFG: /* SEGMENT OUTPUT LINES N I ts easy to write a description
PIN /* RIPPLE BLANKING OUTPUT . in this manner, as you can see
/** DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS **/ from Fig A’s 4-to-1 multiplexer,
FIELD DATA = (0.0 I* HEXADECIMAL INPUT FIELD Y which has an inverting regis-
FIELD SEGMENT=[A B,C,D.E,F,G]; /* DISPLAY SEGMENT FIELD / tered output. Table A contains
$DEFINE ON_ 'b’1 /* SEGMENT LIT WHEN LOGICALLY “ON" */ the multiplexer’s LDF.

$DEFINE OFF 'b’0

/** LOGIC EQUATIONS **/

I A B Cc D E F G

/* SEGMENT DARK WHEN LOGICALLY
“OFF"

.) The hexadecimal-to-7 segment
decoder in Fig B also lends itself
well to tabular representation.

X . 3 S

- , bit- -
SEGMENT Again, bit-field notation is con
10 ON, ON, ON, ON, ON, ON, OFF] & DATAO & !RBi . e .
n1y 4 %Frf ON. ON. OFf OFf. OFf og; & DATA venient for describing the logical
ra v oon ON' o“: o%g oFF. O X onl & 8:}253 ﬁfnctlon. Incidentally, because
t4 # \ 4 i i ircui is i .
15 ¥ " OFF. ON. ON. OFF, ON. OFF] & DATAS it's a simple circuit, this imple
N # [ON, OFF, . . ON, . OFF| & DATA® mentation uses a PROM as the
7 # N, ON, ON, OFF OFF, OFF, OFF] & DATA7 . .
nel 4 ION. ON. ON. ON QN oM. ONI & DATAS target device (because 16 pins
A +lon OFF' SN: OSF: 8N: o“: ol & BﬂA; A are sufficient and ll))lpo]ar PR({(I}VIS
- # \ \) N, N . A : :
I C # [ON, OFF, OFF, ON ON. ON OFF] & DATAC are inexpensive), but you cou
ro #loFF. ON o%" ON. ON. OFf. ON} & DATAD also implement these function
I F # [ON v+ OFF. OFF, ON, ON, ON| & DATAF; tables in PLDs. Table B con-

RBO = RBI & DATA 0:

tains the decoder’s LDF.

3-62

ﬂ Monollthlom Memorlqs I‘rl

CUPL

TABLE 1—LOGIC DESCRIPTION FOR 2-BIT COUNTER

FIELD COUNT =[Q1, Q0}; /* LET'S CALL THE STATE BIT FIELD “COUNT" */
A S teeeraeiaruany
$DEFINE SO 0 /*DEFINE SYMBOLIC NAMES FOR THE ACTUAL STATE BIT CONSTANT */
$DEFINE S1 1 /* VALUES USING PREPROCESSOR COMMANDS. CONSTANTS DEFAULT */
$DEFINE S22 /* TO HEX AND REPRESENT VALUES OF “'COUNT" WITHIN THE "/
$DEFINE S33 /* “SEQUENCE’’ BLOCK BELOW. ';
R R P I T RE T
SEQUENCE COUNT { I NOTE USE OF BRACES FOR ENCLOSING STATE /
I SEQUENCE DESCRIPTION BLOCK. !
PRESENT SO
NEXT 81,
PRESENT S1
NEXT 82,
PRESENT S2 IF INPUT OUT NON__REG_ OUT; /* ASYNCHRONOUS WITHIN S2 */
NEXT §3 OUT REG__OUT; I SETS ON TRANSITION Wi
PRESENT S3
NEXT SO OUT 'REG_OUT ; } I RESETS ON TRANSITION '

need transition information in order to achieve hystere-

sis. One way to solve this problem would be to con- ANALOG._IN [N _COMPARATOR o
struct a tracking A/D converter in which the threshold — DIRECTION |1 RO f—— [UGGER
detector output (digital Schmitt-trigger output) is a
registered output of the state machine (Fig 4). Roj—=2
The three counter bits that feed the D/A converter ro b DAC
compose the state bits. To create the hysteresis, you set S rol—2°
the trigger output only on the transition from S5 to S6
and reset the trigger only on the transition from S2 to

S1. At all other times, you place the trigger output in a
“don’t care” state. The trigger output may have differ-
ent values in states S2 through S5 depending on how
the machine arrived at those states. - - - — -

Fig 5 shows a state diagram for the system. All Fif (210 realis the hyterss functon i ko el
states in which you can set the trigger output are shown or reset the registered output by using transition information rather
on top and all states in which you can reset the trigger than present-state information.

DEEHBE -

-

ISOl.___lS1I—__IS2HSS|._lSJ 85 TRIGGER =0

Fig 5—The state diagram for the analog comparator with hysteresis shows that a state’s value can be history-dependent. The trigger output
can have different values in states S2 through S5 depending on how the machine arrives at those states.

n Monolithic m Memories :l 3-63

CUPL

The CUPL state-machine syntax allows you
to specify any state-machine component
with a single format, thus simplifying the
state-machine description.

TABLE 2—SCHMITT LOGIC DESCRIPTION FILE
PARTNO CT0001;
NAME SCHMITT:
DATE 6/30/84
REVISION 01;
DESIGNER T KAHL;
COMPANY ASSISTED TECHNOLOGY INC:
ASSEMBLY ANALOG_ INTERFACE
LOCATION ~ U27;
[et e ettt en et a e atee e ;
/* THIS DEVICE RECEIVES A 'COUNT DIRECTION' COMMAND FROM AN ANALOG ~ */
/* COMPARATOR AND RESPONDS BY INCREMENTING OR DECREMENTING AN Y
/* INTEGRAL UP/DOWN COUNTER. A REGISTERED OUTPUT IS CREATED AND ACTS */
/ AS A DIGITAL SCHMITT TRIGGER WITH HYSTERESIS, ¥
............................... B
I** INPUTS *°/
PIN 1 = CLOCK; /* CLOCK PIN FOR THE COUNTER */
PIN 2 = DIRECTION: /* DIRECTION OF COUNT MODE PIN */
/** OUTPUTS **/
PIN [14..16] = 1[Q0.2] ; /* COUNTER STATE BITS R
PIN 17 = ITRIGGER ; /* SCHMITT. TRIGGER OUTPUT BIT */
/** DECLARATIONS AND INTERMEDIATE VARIABLE DEFINITIONS **/
UP - DIRECTION; /* COUNTER MODES i
DOWN = IDIRECTION:;;
FIELD COUNT = [G2..0); /* FIELD FOR COUNTER STATES
$DEFINE SO0 0 /* COUNTER STATES DEFINED AS */
SDEFINE S1 1 /* STATES 0 THRU 7 N
SDEFINE S2 2 -
: SDEFINE S3 3
SDEFINE S4 4
SDEFINE S5 5
$DEFINE S6 6
$DEFINE S7 7
SEQUENCE COUNT {
PRESENT SO)
IF UP NEXT S1:
IF DOWN NEXT S0;
PRESENT S1
IF UP NEXT S2;
IF DOWN NEXT S0;
PRESENT S2
IF UP NEXT S3;
IF DOWN NEXT S1 OUT ITRIGGER;
PRESENT S3
IF UP NEXT S4;
IF DOWN NEXT S2:
PRESENT S4
IF UP NEXT S5;
IF DOWN NEXT S3:
PRESENT S5
IF UP NEXT S6 OUT TRIGGER;
IF DOWN NEXT Sa
PRESENT S6
IF UP . NEXT S7:
IF DOWN NEXT S5;
PRESENT S7
IF UP NEXT S7;
IF DOWN NEXT S6:

3-64 Zl Monolithic m Memorles l'l

CUPL

are shown on the bottom. Note that states S2, S3, S4,
and S5 appear twice because they can have two differ-
ent values. Each state’s value depends on the system’s
previous state.

Note also that the state bits in this application supply
information to the outside world; in this case, the
information consists of inputs to a D/A converter. When
you give the PLD access to the outside world, you
deviate from the standard Mealy and Moore state-
machine models, but you can squeeze more logic into
your PLD.

Table 2 gives the state machine’s logic description
file (LDF). In the LDF, you declare the state bits as a
bit field and give them the symbolic name “Count.”
Next, you use the input Direction to define names for
the Up and Down counter modes. You then complete
the numerical state assignment for states SO through
S7 by using the $Define command from CUPL’s pre-
processor.

In defining the state machine, you use If and Next
keywords for every present-state block. When you use
Next, you indicate that the state machine’s activity is
synchronous; when you use If, you indicate that the
transitions are conditional. The transitions’ direction
depends on the direction the counter counts in, which is
in turn determined by the value of the Direction input.

Though applications like counters and comparators
with hysteresis may not seem very complicated, they
serve to show that designing with PLDs is a straight-
forward task, whether you're using the devices to
replace existing designs or using them in a state-
machine design. EDN

Z'l Monolithic m Memorles I:'

3-65

LOG/iC
LOG/iC: The CAE System
for Digital Electronics

A modular design tool for digital electronics for devices
from the entire ASIC spectrum.

Supports all types of PLDs, regardless of manufacturer.
Extensive library, automatic generation of test vectors.
Development of multi-level gate circuits for gate arrays,
cell arrays, etc., including a timing analysis and the proc-
essing of net lists.

Complete optimization even for MARCs (microprogram-
med designs), state machines of very high complexity.
Same standardized input syntax for all devices, making it
easy to switch between different implementations of a
circuit. The input data set is not restricted to describe one
device and may contain larger circuits.

« Specific optimization strategies for every device family.
Exact minimization results reached in unequaled speed.

« Standard data format for the programming and test data
for PLDs. Communication software facilitates a trouble-
free connection with the programmer. Interfaces to the
CAE systems of many manufacturers.

« Can be run on various mainframes (e.g. VAX), worksta-
tions (e.g. Apollo), and PCs (e.g. IBM-PC).

DESIGN SCHEMATIC FUNCTIONAL
INPUT ENTRY VERIFIER
|
PAL ROM GATE ARRAY
PLD EPROM CELL ARRAY
PLD FPLA
DATA BASE FPLS MARC

418 01

Functional Description

LOGY/iC is a modular design tool for the development of digital
circuits. The system is based on a design specification formu-
lated in its own versatile syntax. In addition, it allows schematic
entry of third-party systems via net lists. Circuit definitions gained
in this way are checked and optimized specifically for each
device. LOGY/IC transforms this optimized circuit into various
devices selected from the entire ASIC spectrum, generates test
aids and produces specific documentation for each realization of
the circuit.

The entire CAE system consists of module packages tailored to
various applications and additional options. Allmodule packages
use the same input facilities, but they have specific tools to
optimize the circuit according to the supported device family.

Module package 1 supports the design of PAL devices. It is also
contained in module package 2 which supports all PLDs such as
PROMSs, PAL devices, and PLS devices. Module package 3 is

the tool used to develop multi-level gate circuits implemented in
semi- or full-custom circuits. Module package 4 develops so-
called MARCs (Minimized Address space ROM-based Control-
lers).

Optional interfaces allow the connection of “Schematic Entry
Systems”. The “Functional Verifier” option allows the interactive
simulation of a circuit on the functional level, so that there is no
need to run a complete compilation in order to verify its logic
behavior.

Option “PLD Data Base” rounds out the range of tools offered by
LOG/C. This databank contains the essential data of all PLDs
supported by LOG/IC, such as structures, electrical and AC
characteristics, etc. Combined with module packages 1 and 2, it
supports the selection of the best-suited PLDs.

This data sheet describes the basic features of the system.
Module packages and options are described in detail on separate
data sheets.

3-66

Z‘ Monolithic m Memories L'l

LOG/iC

Process of Development

LOGV/iC is a universal design system for digital logic. It puts the
emphasis on the logical description of the circuit rather than a
specific device. LOG/IC allows you to run sophisticated designs
without tying you down to a specific IC.

Circuit descriptions, as well as syntax and consistency checks,
can be run without transforming the design into a specific device.
This applies also to the circuit simulation performed by the
“Functional Verifier”, which verifies the logical functioning of the

design. Thereis a specific optimization for each particular device
family. The designer’s choice of a device is based upon the
results of this optimization. Additional support is offered by the
“PLD DataBase” that helps select the best-suited type in case of
a PLD implementation.

The described procedure allows the user to enter and optimize
large designs even if they can’t be implemented in one single IC.
After optimization, LOG/IC helps to select the best-suited circuit
technology and IC type, thus enabling the designer to make best
use of the benefits of modern ICs.

SYSTEM DESIGN

OPTIMIZATION
PARTITIONING

i:l Monolithic m Memorles 1‘.'

418 02

3-67

LOG/iC

Circuit Definition

LOGYIC offers specific description aids for various design prob-
lems. lts standard syntax preferably describes combinatorial
circuits, but it is also possible to describe sequential circuits by
means of Boolean equations. The FSM (Finite State Machine)
syntax has been created to make the definition of state machines
more convenient. Special interface options enable circuits from
third-party systems to be fed into LOG/C in the form of circuit
schematics. Together with LOG/C, any text editor can be used
to edit design files.

Standard Syntax

The basic elements of the standard syntax are Boolean equations
and function tables. The format of the equations corresponds to

the common standard. Allcommon operators can be used. The
equations can be nested in any order. They will automatically be
converted into a Sum-of-Products (SOP) format. String substitu-
tions considerably reduce the time spent on editing, and allowthe
design to be more clearly laid out.

Function tables, basically the most concise way of formatting, can
be made even more concise through numbers in arbitrary nu-
meric systems, which can then be merged (hex, decimal, octal,
binary). It is possible to partition logical data into a subset of
different function tables. In addition, equations and tables can be
merged in order to define a circuit. The option “Rest-Definition”
and the use of number fields make the function tables particularly
concise. As aresult, address decoders especially can be conven-
iently described.

(™ ~—1Ras4
RAMCS1
RAMCS2
ADR. RAMCS3
DEC. MEM
REGCS1
REGCS2
- ——

*FUNCTION TABLE

DESIGN DEFINITION
STANDARD SYNTAX

$ (ADR[15..0]) :MEM, (RAMCS [1..3]), (REGCS [l..4]);
0000H . . 3FFFH: 1 , 100 , 0000 ; MEMORY NR.1
4000H . JFFFH: 1 , 010 , 0000 ; MEMORY NR.2
8000H BFFFH: 1 , 001 , 0000 ; MEMORY NR.3

CO037H :0, - , 1000 ; S-REGISTER
CCO3H 0, - , 0100 ; F-REGISTER
DOF7H 0, - , 0010 ; G-REGISTER
EFF3H o, - , 0001 ; L-REGISTER
REST o, - , 0000 ; NOT SELECTED
*END
418 03
3-68 &\ Monolithic m Memories G

LOG/iC

OE
RESET ;’
6
CNT_EN | CNT21 ﬁ
DIR CARRY
CLK >
N~
DESIGN DEFINITION
STATE MACHINE SYNTAX
* FLOW TABLE
S [1..21], 'CLEAR', 'CAR_0', Fl; SYNCHRONOUS RESET
; COUNT UP
S [1..20], 'up' 'CAR 0', F[2..21];
s21, ‘'Up’ 'CAR_1', F1l;
; COUNT DOWN
s [21..2], 'DOWN' , 'CAR_O0', F[20..1];
S 1, 'DOWN' 'CAR_1', F 21;
*STATE ASSIGNMENT
BINARY

*END 418 04

FSM-Syntax

The FSM-syntax enables you to give a functional description of a
synchronous state machine. LOG/iC supports the design of any
state machine such as MEALY or MOORE or combinations of the
two. Any diagram description can be used as a concept, e.g. flow
diagrams or bubble diagrams. These diagrams can easily be
transformed into LOG/iC syntax. The basic entry syntax is close
to hardware. A number of syntax aids, however, enable circuits
to be defined on a high level. Thus you candefine inputand output
vectors and make the design files more understandable by
means of the macro-definition. The “range notation” also applies
to state definitions so that counters and similar circuits can be
conveniently defined. It is possible to select with a single
statement the relevant variables out of a whole set of input
variables.

Consistency Check

In addition to the usual syntax check, LOG/C verifies the logical
consistency. At avery early stage of the design flow, inconsisten-
cies are pointed out to the designer. The Consistency Checker
reports its results in the form of information, warnings, and errors
indicating the line where they occur.

Incompletely specified branches of a state orincomplete function
tables are indicated as a warning. Ambiguous outputs of a table,
onthe other hand, as well as contradictory branches and outputs
of a state machine are indicated as an error. The LOG/C
consistency check detects even complex error conditions, such
as states that can’t possibly be reached by running the circuit.

CIRCUIT DEFINITION
CONSISTENCY CHECK

** WARNING ** STATE
** WARNING ** STATE
K’k kKX INFO **x*x
%x% INFO ** STATE
*%%% INFO **** STATE

INCONSISTENT NEXT-STATE ENTRIES IN LINE

INCONSISTENT CONTROL-VECTORS IN LINE

1 INCOMPLETELY DEFINED

4 INCOMPLETELY DEFINED

NO EXIT FROM STATE 4

3 CANNOT BE REACHED FROM INITIAL STATE
4 CANNOT BE REACHED FROM INITIAL STATE

1 AND LINE 2

7 AND LINE 8

*%% 1,0G/iC ERROR TERMINATION: CONSISTENCY-CHECK ***

418 05

:' Monolithic lﬁ.ﬁﬂ Memories z'

3-69

LOG/iC

CIRCUIT DEFINITION
CONSISTENCY CHECK

VERIFICATION
12 STAGE COUNTER, 1-OF-N
s C R C C
T L E o] D N Q Q
A © s U [} T Q Q Q Q Q
T C E N W 1 1 1 Q Q Q
E K T T N 2 1 0 9 8 7
—-~0-1—0-1-0-1-—0-1 0-1-0-1-0-1~0-1-0-1—0-1—
12 : L _I
1 H
n :|
10
418 06 — —_ —_ — —_ — _ — —-—I—
Verification

The option “Functional Verifier” is a simulator that applies stimuli
tothe circuit definition in order to verify its correct logical behavior.
This simulation is not influenced by any devices and it provides a
quick verification of the design definition. Its operation, similarto

alogic State Analyzer, is screen-based and therefore easy torun.’

The results of such a simulation are indicated in the form of wave-
forms. Inputs can be changed online inthe interactive mode and
the reaction of the simulated circuit will be indicated immediately.

Optimiiation

The data input and consistency checks are completely independ-
ent of the device. Optimization, however, is tailored to each
specific family of devices. Even during optimization, there is still
noneed to specify the type. PAL device designs are optimized by

means of an exact procedure, called the “FACT Algorithm”. PLA
circuits, on the other hand, are optimized by means of a “bundle™
minimization. Multi-level gate logic for gate and cell arrays is
optimized through a special procedure. For ROM-based control-
lers, the optimizer computes various possible solutions.

By offering a choice of optimizers, LOG/IC enables the user to
optimize a defined circuit for very different realizations in a short
period of time. The optimization reports produced in this way are
tailored to specific device families. They are decision aids for the
designer when he wants to realize a particular circuit.

All the optimizers are described in more detail on their respective
data sheets.

CIRCUIT DEFINITION
CONSISTENCY CHECK
VERIFICATION
OPTIMIZATION

4

SYNTAX AND CONSISTENCY CHECK:
READING RESULTS OF PHASE 1
READING GATE LIBRARY

NO ERRORS

START: COST = 447 STAGE LIMIT = 10
EXPANSION: COST = 229 STAGES = 17
TRANSFORMATION: COST = 256 STAGES = 7
FANOUT ADJUSTMENT: COAT = 260 STAGES = 7

FINAL COST = 260, REDUCTION = 41%,
7 STAGES, MAX DELAY = 98.4

418 07

3-70 n Monolithic m Memories a

LOG/iC

CIRCUIT DEFINITION
CONSISTENCY CHECK

VERIFICATION
OPTIMIZATION
REALIZATION
PAL-TYPE: PAL16RP6
R
E S T S
S T M U MM M
EN FF TT TT TT EA FF FN
TC G2 AK ZL OM RZ 1 2¢C
o 00 01 11 11 22 22 23
ROW ADDRESS 02 46 80 24 68 02 46 80
SMF2
8 00256
9 00288
10 00320
16 00512
17 00544
18 00576
19 00608 418 08

Realization

In the case of a PLD design, LOG/C fits the optimized data into
the device structure of a particular device and produces the
programming and test data for the IC. The structural data are
taken from the PLD library and the results are transferred to the
programmer in the form of a JEDEC File.

Module package "Gates” produces the net lists of the design in
various data formats so that it can be transferred to different CAE
systems.

If a design is to be realized as a ROM-based controller, the
designer chooses one of the seven solutions offered by the
optimizer. The necessary programming and structural data are
then produced. LOGI/C provides the programming data for
PROMs in the Intel-Hex format.

In all module packages, partial designs can be combined in order
to be realized in one circuit. But at the same time, LOG/IC also
enables the user to partition a design into various devices.

Test Aid

LOGI/IC is an effective tool for the design of circuits, but it also
offers many test aids.

For PAL devices, module package 2 automatically generates test
vectors for a product-term-oriented test on the programmer.
LOG/iC guarantees 100% product term coverage. Module pack-
age 1 supports the input of user-defined test vectors and includes
them into the JEDEC File.

Gate array circuits undergo a timing analysis after optimization.
The results are extensively documented and contain a critical-
path analysis. In addition to the microprogam listing, LOG/C
generates additional test lists for MARCs.

CIRCUIT DEFINITION
CONSISTENCY CHECK
VERIFICATION
OPTIMIZATION
REALIZATION
TEST SUPPORT

TEST VECTORS:

c

A
QOR
Q0R
34YB

C Q0
LX00
K112

0 G
EXN

AN2D

R

E
G S
NXEM
D3TO

A
LRRL MMXC
O0UU UMA4C

PN11
O1HH
ClHH
PNOO
O00LL
COLL

11NN N
HHNO 1
HHHO 1
01NN
LHN1 0O
LLH1 ©

AU WN IR

I‘J Monolithic m Memorles a

NNN
01N
01N

NNNN

00N
00N

NNNN ;
NLIN ;
NNIN ;

PNNN ;
NNNN ;

011H
Cl1N
PNNN
001L
CO1N

NNNN
HNNH
NNNN
NNNN
LHNN
NNNN

HNON

NNON - 418 09

3-71

LOG/iC

CIRCUIT DEFINITION
CONSISTENCY CHECK

VERIFICATION
OPTIMIZATION
REALIZATION
TEST SUPPORT
DOCUMENTATION
ZUN —
MCOL ——
PH11 —] G026
xomal —— AND
MABL ——
SA ——g
YN —
MCOL ——q on
PH11 —] Go27
komsl — AnD —— INV TEO
maBL —
418 10 SA —d
Documentation
Each run of the compiler will be documented in several listings. MARC and gate circuits are documented by Test and Program
Those listings are laid out according to the selected device family. Listings.

The format of the documents can be determined by the user.

Computer Hardware
Optimization Reports give information on the number of product .
terms used and the achieved reduction. LOG/C generates LOG/iC can be run on a number of computers (16 or 32-bit) with
Pinouts, Gate Plots and Circuit Block Diagrams. You can, of different operating systems.
course, get the result in the form of Boolean Equations.) .
Porting to other hardware is possible, especially if the operating

Fuse Plots (PAL device specificdocuments) come inthe common system is already supported. ISDATA will check the portability on
notation; in the case of PROM designs a Hex list is printed out. request.
) OPERATING STORAGE
COMPUTER SYSTEM MEDIUM HARDWARE
VAX VMS (V. 4.0) MAGNETIC TAPE VT 100
ULTRIX (V 1.2) | (1600 BPI) TERMINALS

CARTRIDGE TK 50 OR COMPAT.
MICROVAX MICROVMS

APOLLO AEGIS 5 1/4" DISKETTE
HP 9000 HP-UX 1/4" TAPE MOD. 200
CARTRIDGE MOD. 300

IBMPC/XT* | MS-DOS (MIN. | 5 1/4" DISKETTE
IBM PC/AT* | PC-DOS V. 2.0) | (360 KB)

48 *or compatible

3-72 :l Monolithic IF.EJ] Memories :l

LOG/iC

Integration into the CAE Environment

LOG/IC generates the programming data for PLDs in standard
data formats, such as JEDEC and Intel-Hex. The connection to
the programmer is supported from the screen by means of a
special communication module, which emulates various hard-
ware and software handshakes. All interface parameters are
software selectable, so that LOG/iC can be run together with any
programmer.

Optional interfaces make possible the input of net lists and circuit
schematics. LOG/C is therefore compatible with third-party
systems and can be integrated into an existing environment. This
is also guaranteed on the output level by the post-processors of
the module package “Gates”. These post-processors output the
gate structure of the design in the form of net lists in various
common data formats, so that it is possible to transfer the data
produced by LOG/C to third-party systems.

Support of the Designer

~ The user of LOG/C is supported in many ways. With every
installation comes a handbook that gives extensive information
on the LOG/iC modules and their operation. The handbooks are
deliveredin Englishor German. Agreatvariety of examples show
the range of options offered by the LOG/iC syntax and make it
easier for the user to get familiar with it.

*IDENTIFICATION

Function “Help” of the menu gives answers to specific questions.
Depending on the kind of installation, help is offered in English or
German. The user can install the software. Explicit instructions
are given in the handbook and in the installation program.

A maintenance contract assures you of prompt updates for the
program, that also support new devices. Inaddition, itguarantees
youimmediate help through ISDATAor its representatives incase
of any application problems.

Ordering Information

Each delivery contains the handbook and the storage medium for
the respective CPU. You can find the order numbers in the
respective data sheets.

Example of PAL32VX10 Support

The following example demonstrates the ability to use the T-type
flip-flop in the PAL32VX10 directly though LOG/IC software.
LOG/iC automatically emulates the T-type flip-flop as needed
through specific programming of the XOR terms in the
PAL32VX10. The following file fully describes a modulus-93
counter. ‘

BIT STREAM COUNTER FOR 93 BITS (VER.2.1 T-FLIPFLOP)

GUENTER BIEHL

ISDATA KARLSRUHE, TEL. 0721 693092

*DECLARATIONS
X-VARIABLES
Y-VARIABLES
Z-VARIABLES

*X-NAMES

3
1
7

RESET = 1, DOWN=2, COUNT=3;

*Y-NAMES

CARRY = 1;
*Z-NAMES

Q0(6..0) = [7..1];
*RUN-CONTROL

LISTING = PINOUT, FUSE-PLOT, EQUATIONS;

PROGFORMAT =JEDEC;
*Z-VALUES

S[1..93) = [0..92];
*FLOW-TABLE

;COUNTER WITH 93 STATES AND CARRY SIGNAL

s(1..93)}, Xi--, Y0, F1;

RESET CONDITION

s[1..93], x00-, Y0, F{1..93]; HOLD

s{1..92], X010, Y0, F[2..93]; COUNT UP
s93 , X010, Y1, Fi; CARRY
s[2..93], X011, YO, F[1..92]; COUNT DOWN
s1 , X011, Y1, F93; CARRY
*STATE~ASSIGNMENT

Z-VALUES;
*PAL

TYPE=PAL32VX10;

*PINS

RESET=3, COUNT=4, DOWN=5,

CARRY=22, QQ[0..6]=[15..21];
*FLI

T-FLIPFLOP
*END
l‘rl Monolithic lﬁ.ﬁﬂ Memorles l‘rl 3.73

LOG/iC

L S S N VS

The product terms are minimized by LOG/G for inputs to the T- The Boolean equations are generated automatically by LOG/iC
type flip-flops. Compared to a D-type flip-flop implementation, software. In the equations for the T-type flip-flops, the output
only about half as many product terms are required. signals are distinguished by the suffix “T”. In addition to the

equations, LOG/C generates information on the resulting con-
figuration of the macrocells and the XOR terms.

BIT STREAM COUNTER FOR 93 BITS (VER.2.1_T-FLIPFLOP)
GUENTER BIEHL

ISDATA KARLSRUHE, TEL. 0721 693092

28-0CT-86 12:29:35

ARKKKKRRKKRKAKKARARARA KRR A RARRARAR KK RAARARA KA RARKARA KRR RAAR AR AR ARk K

fadled BOOLEAN EQUATIONS hk
AAARRKRRRKAKRARRRRRR KRR AR KA AR ARRRARRRARRARRRAARA R AR AR KRR AR ARk

QQo0:T := /QQ1 & /QQ2 & /QQ3 & /QQ4 & /QQ5 & /QQ6
& /RESET& DOWN & COUNT
+ Q01 & Q02 & QO3 & Q04 & Q05 & QQ6
& /RESET& DOWN & /COUNT
+ QQ0 & RESET
+ QQ0 & Q02 & Q03 & QQ4 & DOWN & /COUNT ;
QQL1:T = QQ2 & QO3 & Q04 & QQ5 & QQ6 & /RESET
& DOWN & /COUNT
+ QQ1 & RESET
+ 001 & /QQ2 & /QQ3 & /QQ4 & /QQ5 & /QQ6
& DOWN & COUNT ’
+ Q00 & /Q02 & /QQ3 & /QQ4 & /QQ5 & /QQ6
& /RESET& DOWN & COUNT ;
QQ2:T := /QQ3 & /QQ4 & /QQ5 & /QQ6 & /RESET& DOWN
& COUNT
+ 003 & QR4 & Q05 & QQ6 & /RESET& DOWN
& /COUNT
+ QQ2 & RESET
+ Q00 & 0QQ2 & QQ3 & 0QQ4 & DOWN & /COUNT ;
QQ3:T := /QQ4 & /QQ5 & /QQ6 & /RESET& DOWN & COUNT
+ Q04 & QQ5 & QQ6 & /RESETs& DOWN & /COUNT
+ Q03 & RESET
+ 000 & QQ2 & QQ3 & QQ4 & DOWN & /COUNT ;
QQ4:T := /QQ5 & /QQ6 & /RESETs DOWN & COUNT
+ 005 & QQ6 & /RESET& DOWN & /COUNT
+ Q04 & RESET
+ Q00 & 002 & Q03 & QQ4 & DOWN ;
/QQ5:T := /RESET& /DOWN
+ /QQ6 & /RESET& /COUNT
+ QQ6 & /RESET& COUNT
+ /Q05 & RESET
+ /000 & /QQ1 & /Q02 & /QQ3 & /QQ4 & /QQ5
& COUNT ;

/006:T := /QQ0 & /QQ1 & /QQ2 & /Q03 & /0Q4 & /QQ5
: & /Q06 & COUNT)

+ /RESET& /DOWN
+ /QQ6 & RESET
+ Q00 & Q02 & Q03 & QQ4 & /COUNT ;
CARRY := /000 & /QQ1 & /QQ2 & /QQ3 & /QQ4 & /QQ5
& /QQ6 & /RESET& DOWN & COUNT
+ 000 & 002 & Q03 & Q04 & /RESETs& DOWN
& /COUNT ;

3-74 I‘r‘ Monolithic ﬁ.ﬁﬂ Memories I‘r'

LOG/iC

ISDATA GmbH
Haid-und-Neu Strasse 7
D-7500 Karlsruhe 1
West Germany

Tel: 0721/693092

Representatives

Switzerland

CAS

Computer Access Systems AG
Papiermuehlestr. 145
CH-3063 lttigen

Tel.: 031-587844

Italy

Instrumatic

Via Piave u. 22/A
1-20016 Pero (Milano)
Tel.: 02-3538041

Spain

Instrumatic Espanola SA
Paseo de la Castellana 127-2-A
E-28046 Madrid

Tel.: 01-455 8112

Great Britain

Instrumatic U.K. Ltd.
First Avenue

Globe Park

Marlow, Bucks. SL7 1YA
Tel.: 06284-76741

Netherlands

Diode Nederland
Meidoornkade 22
NL-3992 AE Houten
Tel.: 03403-91234

Scandinavia

Pronesto AB

Saab-Scania Combitech Group
BOX 1358

S-171 26 Solna

Sweden

Tel.: 08-733 93 00

France

AK Division Electronique
54 Avenue Emile-Zola
F-75015 Paris

France

Tel.: 0033-1-45 75 53 53

OEM Partners

Kontron

Kontron Metechnik GmbH
Oskar von Miller Str. 17
D-8057 Eching

Tel.: 08165-77-1

Kontron

630 Clyde Ave.

Mountain View, CA 94039-7230
(415) 965-7020

Elan Digital Systems, Ltd./U.K.
16 -20 Kelvin Way

Crawley, West Sussex

RH10 2TS

Tel.: 0293-510448

Digelec AG
Doerfli Strasse 14
CH-8057 Zurich
Tel.: 01-312 4622

Digelec

1602 Lawrence Ave.
Suite 113

Ocean, NJ 07712
(800) 367-8750

SMS
Microcomputer-Systeme
Im Morgental 13
D-8994 Hergatz

Tel.: 07522-4460

Micropross

Parc d'activite des Pres
5, rue Denis-Papin
59650 Villeneuve d’Ascq
France

Tel.: 20 47 90 40

a Monolithic m Memorles l"l

3-75

‘Programming

There are two common situations when a PAL device user wants
to program parts:

1. The userhas a master device and wants to program the mas-
ter pattern into new unprogrammed parts from the same or
from a different manufacturer.

2. The user has a file that is in JEDEC standard Programmable
Logic Data Transfer Format and wants to send the file to a
programmer and program parts to that pattern.

All approved programmers can accomplish either of these tasks.
You will have to refer to your programmer manual for detailed
procedures, but here are some general guidelines:

Programming with the Use of a
Master Device

Suppose you have a master device and you want to program a
device of the same type with exactly the same pattern. The
master device can be an MMI or AMD device or another
manufacturer’s functionally equivalent device. Follow these
steps:

1. Setthe programmerto read (or copy) the master device. This
may require having a hardware adaptor for the master and
entering a product code unique to the manufacturer and
device type.

2. Install the correct adaptor (if required). Enter the appropriate
product code information or select the device type from the
menu. Then place the master device in the correct socket and
read its fuse pattern into the programmer memory. Use
whatever operating sequence is required by the programmer
for this operation.

3. The pattern is now inthe programmer memory and will remain
there until the memory is cleared or the programmer power is
turned off. Changing an adaptor or product code will not erase
the memory. Usually at the end of a copy operation a
checksum will be displayed. Make a note of this number. The
checksum is a calculated hexadecimal code for the pattern
loaded into memory. It can be very helpful in diagnosing any
programming problems. If a partisto be re-used frequently as
a master device it is a good practice to write the checksum on
the top of the part. Never proceed with programming without
checksum agreement after reading a master.

Error Detection

As a matter of curiosity take the part out of the socket once and
read an empty socket. Also read a known blank part (using the
right adaptor). Checksums from these two situations will be
helpful in diagnosing two common problems when programming
from masters:

« Forgetting to lock down the socket lever to make good contact
after loading a part
« Loading an unprogrammed part as a master by mistake.

4. Now prepare the programmer for the device to be pro-
grammed with the master pattern loaded into memory. Some
programmers require different adaptors for different
manufacturer’s parts. If the programmer being used has this
requirement, be sure to use the proper adaptor for the exact
part number to be programmed. Using the wrong adaptor can
cause permanent damage to the parts. Always check for
adaptor compatibility.

5. Everything’s OK. You have the correct adaptor, the right
device code (or have selected the device from the menu) and
you wrote down the checksum that you got after loading the
master. Now put the programmer in the mode used for
programming from its memory and execute the programming
operation. .

There is some variation in the sequence of events carried out by
different programmers during the programming cycle, but all of
them program and verify the appropriate fuses to match the
pattern in the programmer memory. Such operations as Blank
Checks, lllegal Bit Checks, Test Vector Testing, and Security Fuse
Programming can be a part of the programming sequence. Check
the programmer manufacturer’s manual for the availability and
appropriate use of these features.

The essential part of the programming cycle is the programming
and verification of each fuse followed by a verification of all fuses
at both low and high Vecc. At the very end of the programming
sequence you will see the checksum for the part you have just
programmed. This checksum should agree with the master part
checksum. You now have a programmed part that is functionally
identical to the master.

3-76

z' Monolithic m Memorlies :l

Programming

Programming From a JEDEC File

A JEDEC standard file is the output of design software packages
used to specify programming pattern information to a program-
mer. All approved programmers will accept JEDEC files. A
JEDEC file is normally generated on a computer by PLD design
software. The unique aspect of programming from a JEDEC file
is the transfer of the file to the programmer. Afterthe file has been
transferred into the programmer, the programming task is identi-
cal to programming from a master with one exception. The
exception is that design software may be used to prepare test
vectors to be applied to a device immediately following the
programming cycle. These vectors will be transmitted with the
JEDEC fuse file and they have a JEDEC standard format of their
own.

General guidelines for transfer of a JEDEC file and programming
are as follows:

1. Make sure your file is in the standard JEDEC format. This will
not be a problem if you are using software for file preparation
that adheres to this standard.

2. Connect the JEDEC file source to the programmer with an
RS232 cable. The programmer manual will describe the con-
nection details.

3. Prepare the programmer forreceiving aJEDEC file overalink.
This will generally involve entering the product code informa-
tion and putting the programmer in a ready-to-receive mode.

4. Transmit the file from the computer source using commer-
cially available communications software or operating system
commands.

5. After transmission a checksum should appear on the pro-
grammer display. Part of the JEDEC standard file is a
checksum. If the displayed checksum is the same as the
JEDEC file generated checksum transmission has been
successful.

6. Program a PAL device by first installing the correct adaptor
(if needed) and then entering the programming mode. Finally
put a part in the socket and execute the programming
operation.

Register Preload

Register preload is an aid to functional testing of registered PAL
devices. Functionaltesting is usually performed after a device is
programmed but before it is installed on the circuit board. Func-
tional testing exercises the functional Ioglc circuitry of a device
that is not fully testable prior to programming, providing a higher
final quality level for programmable products. For a more thor-
ough discussion of functional testing and related quality issues
see the “ProPAL/HAL/ZHAL" section, page 3-104.

Using register preload, the registers of a device can be “pre-
loaded”to any desired state value. The ability to set the registers
to any arbitrary value is extremely useful for testing state machine
designs where the output is fed back into the array as an input. It
lets the user check for deadlock loops and proper recovery from

illegal states. It also simplifies testing state transitions of states
which may be difficult to reach through normal state transitions.

Considerthe example of the 6-state counterillustrated in the state
machine diagram of Figure 1.

®
@»@@c?

® @,G)

Figure 1. 419 1

States 6 and 7 are illegal states, both transitioning to state 4. If
the registers of the device are not preloadable, it is difficult to
check for recovery from these states since they cannot be
reached through normal state transitions. If register preload is
available, however, it is a simple matter to write a set of vectors
that sets the device to the illegal state and then clocks it and
checks proper recovery.

If the device powers up in state 1 and you want to test the
transition from state 0 — 1, the only way to check that transition
is to write a series of vectors that cycle the device through the
state sequence starting at state 1, until the desired state, state 0,
is reached. With register preload, reaching state 0 is simply a
matter of writing a vector that sets the device to that state.

In general, register preload simplifies the task of writing test
vectors for functional testing, and is especially helpful in testing
the conditions described in this discussion. However, test vectors
written utilizing register preload can provide only a limited amount
of functional coverage. Fullcoverage canonly be achievedwhen
the vectors used to test the device simulate actual operating
conditions, and preload is not a normal operating condition.

Programmer Support

Not all programmers support register preload. The programmer
guide lists the programmers that do support this feature. For
more specific information regarding your programmer, contact
the manufacturer.

Choosing the Right Programmer

Monolithic Memories has qualified several PAL device program-
mers, and choosing among them is not simple. You must
consider many factors. Does the programmer handle all of the
devices you will be using? Does it program PAL devices,
sequencers, PLE devices, and PROMs? Does it program TTL,
EPROM CMOS, EEPROM CMOS, and ECL technology prod-
ucts? How easily is it upgraded for future devices? Does it have
provisions for test vectors, accepting JEDEC files, or a handler
interface? And what about cost?

2\ mononithic FEl Memories €1

3-77

Programming

APPROVED PROGRAMMERS—PRODUCTS & FEATURES—CHART

. DIG- MICRO-
PROGRAMMER DATA /O STAG ELEC KONT- STORY SDI VARIX PROSS JMC

29 M60 US40 PPZ ZL30 803 RON SYS. 1000 OMNI 5000 P3
FEATURES
PRICE M M H M L M M L L M M L
TEST VECTORS Y Y Y Y Y Y Y Y Y Y Y Y
PRELOAD Y Y Y N N N N Y N Y Y Y
ACCEPTS JEDEC Y Y Y Y Y Y Y Y N Y Y Y
PIN CONTINUITY Y Y Y Y Y N Y N Y N N N
FINGERPRINT Y Y N N N N N N N N N N
HANDLER Y Y Y Y Y N N N Y N N N
CRT. N N N Y N Y N N N N Y N
STANDALONE Y Y N Y Y Y Y Y N N Y Y
SECURITY CHECK Y Y Y Y N N Y N N N N N
FAST PROGRAM N Y Y Y Y N N N N N N N
ASSEMBLER Y N N Y N Y N N Y N N N
DISASSEMBLER N N N N N Y N N N N Y N
1 PULSE PROG. Y Y Y N N N N N N N N N

NOTE: Y=YES N=NO

Despite these variations in features, today’s programmers fall
into two broad categories, PC-based programmers and standa-
lone programmers. PC-based programmers consist of a board
(that plugs into a PC) and an external box with socket(s) for the
device being programmed. The plug-in board contains the
‘intelligence” of the programmer, and, as the name implies,
these programmers require a PC for use. Standalone program-
mers can perform all programming operations without a PC. PC-
based programmers are usually lower cost and lower perform-
ance design and developmenttools that support a limited number
of devices and have limited capabilities. Standalone program-
mers offer higher performance (e.g., faster programming), and
are oriented to the production environment.

The chart above lists programmer features, as well as current
support for some of the newer parttypes. This information should
help you decide on the best programmer for your needs.

Approved Programmers

Monolithic Memories and Advanced Micro Devices PAL devices
are manufactured under strict processing procedures to provide
our PAL device users with the highest-quality PAL devices avail-
able. We take the same approach in our programmer vendor
approval process, and recommend that you choose an approved
programmer for your PAL device programming needs.

The Benefits of Using Approved Programmers

When you choose an approved programmer you gain all the
benefits of our thorough vendor evaluation. You can feel confi-
dent investing in equipment that will give you consistently reliable
results and will be able to support current and future generations
of programmable logic devices. When you select an approved
programmer you get many benefits:

« Your programmed product is backed by our corporate
warranty.

« New features and algorithm updates are quickly imple-
mented.

« Any new programmer software and hardware releases are

factory evaluated and approved before release.

Your equipment will have a long “technical lifetime”.

Through our sales force and Field Applications Engineers

you have a factory interface with the programmer vendors to

deal with any issues or concerns that might arise.

The Approval Process

The Programmability Group at Monolithic Memotries works
closely with our programmer vendors to ensure that high-quality
programming and testing support is available to all users of our
PLDs.

To gain approval a programmer must pass a rigorous series of
tests which include:

Conformity to programming specifications.

Devices programmed must pass all reliability tests. This
reliability testing is performed by Monolithic Memories as
part of the evaluation.

Programmer must meet programming yield requirements for
both array and security fuse programming.

Programmer must be able to support JEDEC format files
and communication standards.

Programmer vendors are encouraged to support structured test
vector testing and preload capability, pin continuity and pre-
programming security fuse checking.

3-78

I‘rl Monolithic lﬁ.ﬁﬂ Memorles I‘rl

Programming

New Product Support

Approved programmers must also provide timely support for new
products and programming algorithm updates and revisions.
This ensures PAL device users that no matter which approved
programmer they choose, they can feel confident that it will
support the latest and greatest PLDs we have to offer.

Additionally, we work closely with our approved vendors in the
development of their new programmers and our new PLDs. This
means that their new products will be able to support our future
PLD offerings.

A Broad Range of Programmers

We work with a broad range of programmer vendors, so you can
find a programmer to suit your engineering needs as well as your
budget. Approved programmers cover the range from economi-
cal engineering/design prototyping tools to high-volume produc-
tion units. We have a worldwide programmer vendor base, so
programming support is available no matter where you use PAL
devices. Approved programmers are available from American,
British, French, German and Japanese vendors.

Our quality and reliability guarantees are made for products
programmed with approved programmers only. Use of unap-
proved programmers voids our corporate warranty and may
result in poor manufacturing yields and product performance.
The Approved Programmer section in this handbook is a valuable
tool. The information it contains can help you obtain consistent,
reliable high-quality programming results with your PLDs.

zl Monolithic m Memories zl

3-79

Notes

3-80 i:l Monolithic m Memories :l

Programmer Reference Guide
Table of Contents

Adams MacDonald Enterprises, Inc. 3-82
Data I/O 3-84
Digelec 3-88
Kontron 3-90
Logical Devices, Inc. ; 3-92
Micropross 3-94
Stag Microsystems 3-96
Storey Systems 3-98
Structured Design 3-100
Varix 3-102

I‘rl Monolithic m Memorles :' ’ 3-81

Programmer Reference Guide

Adams MacDonald Enterprises, Inc. 1.0 PROMAC P3
(408) 373-3607
20 Pin Device Families
Family Product Software Rev. S$1/82
Sequencer AmPAL23S8-20/-25 — -_
Asynchronous PAL16RA8 3.0 112
PAL16RP8A PAL16P8A 30 1/0
Programmable PAL16RP8SA 3.0 7
Polarity PAL16RP6A 3.0 12
PAL16RP4A 3.0 1/3
PAL16R8-10 PAL16L8-10/H-15 3.0 5/0
PAL16R8-10/H-15 3.0 5/1
PAL16R6-10/H-15 3.0 5/2
PAL16R4-10/H-15 3.0 5/3
PAL16R8D/B PAL16L8D/B 30 5/0
PAL16R8D/B 3.0 5/
PAL16R6D/B 30 5/2
PAL16R4D/B 3.0 5/3
AmPAL16R8 AmPAL16L8/B/AL/A/Q/L 3.0 —
AmPAL16R8/B/AL/A/Q/L 3.0 —
AmPAL16R6/B/AL/A/Q/L 30 —
AmPAL16R4/B/AL/A/Q/L 3.0 —
PAL16R8/B-2/B-4/ PAL16L8/B-2/B-4/A/A-2/A-4 3.0 0/10
A/A-2/A-4 PAL16R8/B-2/B-4/A/A-2/A-4 3.0 0/11
PAL16R6/B-2/B-4/A/A-2/A-4 3.0 0/12
PAL16R4/B-2/B-4/A/A-2/A-4 3.0 0/13
PALC16R8Q-25 PALC16L8Q-25 — —
(CMOS) PALC16R8Q-25 — —
PALC16R6Q-25 —_
PALC16R4Q-25 —
AmPAL16HD8 AmPAL16H8A/L 3.0
AmPAL16HDBA/L 3.0 -
AmPAL16LD8A/L 3.0 —
Arithmetic PAL16X4 3.0 0/14
Combinatorial AmPAL18P8B/AL/A/Q/L 30 —
PAL10H8 PAL10H8/-2 3.0 0/1
Combinatorial PAL10L8/-2 3.0 0/6
PAL12H6/-2 3.0 0/2
PAL12L6/-2 3.0 0/7
PAL14H4/-2 3.0 0/3
PAL14L4/-2 3.0 0/8
PAL16H2/-2 3.0 0/4
PAL16L2/-2 3.0 0/9
PAL16C1/-2 3.0 0/5
24 Pin and MegaPAL Device Families
Family Product Software Rev. S$1/82

Macrocell (Async)

AmPALC29MA16-35/-45

Macrocell (Sync)

AmPALC29M16-35/-45

Varied with XOR

PAL32VX10/A

Varied Product Terms

AmPAL22V10/-15/A

3.0

Varied Terms (CMOS)

PALC22V10H-25/35

Registered XOR

PAL22RX8A

3-82

ﬂ MonollthlcEMMemoﬂes :l :

Programmer Reference Guide

Adams MacDonald Enterprises, Inc.

Family Product Software Rev. S$1/82
Asynchronous PAL20RA10-20 3.00 3/4
PAL20RA10 3.00 3/4
AmPAL20XRP10 AmPAL22XP10-20/-30L/-30/-40L — —
AmPAL20XRP10-20/-30L/-30/-40L — —_
AmPAL20XRP8-20/-30L/-30/-40L — —
AmPAL20XRP6-20/-30L/-30/-40L — —
AmPAL20XRP4-20/-30L/-30/-49L — —
PAL20RS10 PAL20S10 3.0 3/5
Shared Product PAL20RS10 3.0 3/6
Terms PAL20RS8 3.0 37
PAL20RS4 3.0 3/8
PAL20X10A PAL20L10A 3.0 217
Exclusive OR PAL20X10A 3.0 2/15
PAL20X8A 3.0 3/0
PAL20X4A 3.0 31
PAL20X10 PAL20L10 3.0 217
Exclusive OR PAL20X10 3.0 2/12
PAL20X8 3.0 3/13
PAL20X4 3.0 3/14
AmPAL20L10 AmPAL20L10B/-20/AL — —
AmPAL20RP10 AmPAL22P10B/AL/A — —
AmPAL20RP10B/AL/A — —
AmPAL20RP8B/AL/A — —
AmPAL20RP6B/AL/A — —
AmPAL20RP4B/AL/A — —
PAL20R8B/B-2/A/A-2 PAL20L8B/B-2/A/A-2 3.0 2/8
PAL20R8B/B-2/A/A-2 3.0 2/9
PAL20R6B/B-2/A/A-2 3.0 2/10
PAL20R4B/B-2/A/A-2 3.0 2/11
PALC20R8Z PALC20L8Z-35/-45 —_ -
Zero Standby Power PALC20R8Z-35/-45 — —
PALC20R62Z-35/-45 — —
PALC20R4Z-35/-45 — —
Decoder PAL6L16A 3.0 3/11
PALSL14A 3.0 3/10
PAL12L10 PAL12L10 3.0 22
Comblnatorial PAL14L8 3.0 23
PAL16L6 3.0 2/4
PAL18L4 3.0 2/5
PAL20L2 3.0 2/6
PAL20C1 3.0 2/1
MegaPAL Device PAL32R16 — —
PROSE Device PMS14R21/A — —
Programmable Logic PLS105-37 —_
Sequencer PLS167-33 — —_
PLS168-33 — —
Fuse Programmable Am29PL141 - -
Controller
Programmable Event Am2971 — —
Generator
ECL Reglstered PAL10H/10020EV/EG8 - —
ECL Combinatorlal PAL10H20P8 - -
ECL Latched PAL10H20G8 - -

Notes: “—" = Contact programmer manufacturer.

The software and hardware revisions listed are the earliest revisions that support these products.

Later software and hardware revisions can be assumed to support these products.

z' Monolithic m Memorles I‘r'

3-83

Data /O
(800) 247-5700

20 Pin Device Families

Programmer Reference Guide

1.1 Logic Pak 303A

1.1.1 P/T Adapter 303A-002
1.1.2303A-ECL
1.1.3303A-011A/B

2.0 System 19, 29A, 29B, Unisite 40
3.0 System 19, 22, 29A, 29B, Unisite 40

Generlc
Family Product Adapter Adapterl Code
Sequencer AmPAL23S58-20/-25 — — 97-84
Asynchronous PAL16RA8 303A-002-V08 | 303A-011A/B-VO1 22-30
PAL16RP8A PAL16P8A 303A-002-V08 303A-011A/B-V01 22-30
Programmable PAL16RP8A 303A-002-V08 303A-011A/B-V01 22-31
Polarity PAL16RP6A 303A-002-V08 303A-011A/B-VO1 | 22-31
PAL16RP4A 303A-002-V08 303A-011A/B-Vo1 22-31
PAL16R8-10 PAL16L8-10/H-15 — 303A-011A/B-V02 22-17
PAL16R8-10/H-15 — 303A-011A/B-V02 22-67
PAL16R6-10/H-15 — 303A-011A/B-V02 22-67
PAL16R4-10/H-15 — 303A-011A/B-V02 22-67
PAL16R8D/B PAL16L8D/B 303A-002-V08 303A-011A/B-VO1 30-17
PAL16R8D/B 303A-002-V08 303A-011A/B-V01 30-24
PAL16R6D/B 303A-002-V08 303A-011A/B-V0o1 30-24
PAL16R4D/B 303A-002-V08 303A-011A/B-V01 30-24
AmPAL16R8 AmPAL16L8/B/AL/A/Q/L —_ 303A-011A/B-V05 97-81
AmPAL16R8/B/AL/A/Q/L — 303A-011A/B-V05 97-80
AmPAL16R6/B/AL/A/Q/L — 303A-011A/B-V05 97-82
AmPAL16R4/B/AL/A/Q/L — 303A-011A/B-V05 97-17
PAL16R8/B-2/B-4/ PAL16L8/B-2/B-4/A/A-2/A-4 303A-002-V08 303-011A/B-VO01 22-17
A/A-2/A-4 PAL16R8/B-2/B-4/A/A-2/A-4 303A-002-V08 303-011A/B-Vot1 22-24
PAL16R6/B-2/B-4/A/A-2/A-4 303A-002-V08 303-011A/B-VO1 22-24
PAL16R4/B-2/B-4/A/A-2/A-4 303A-002-V08 303-011A/B-VO1 22-24
PALC16R8Q-25 PALC16L8Q-25 — 303A-011A/B-Vo4 DB-17
(CMOS) PALC16R8Q-25 — 303A-011A/B-V0o4 DB-24
PALC16R6Q-25 — 303A-011A/B-V04 DB-24
PALC16R4Q-25 — 303A-011A/B-V04 DB-24
AmPAL16HD8 AmPAL16H8A/L — 303-011AB-VO5 | 9725
AmPAL16HDSA/L — 303-011A/B-V05 97-25
AmPAL16LD8SA/L — 303-011A/B-V05 97-17
{ Arithmetic PAL16X4 303A-002-V08 303A-011A/B-V01 22-24
Combinatorial AmPAL18P8B/AL/A/Q/L — 303A-011A/B-V01 97-29
PAL10H8 PAL10H8/-2 303A-002-V08 303A-011A/B-VO01 22-18
Combinatorial PAL10L8/-2 303A-002-V08 303A-011A/B-V01 22-13
PAL12H6/-2 303A-002-V08 303A-011A/B-VO1 22-19
PAL12L6/-2 303A-002-V08 303A-011A/B-V01 22-14
- PAL14H4/-2 303A-002-V08 303A-011A/B-V01 22-20
PAL14L4/-2 303A-002-V08 303A-011A/B-VO1 22-15
PAL16H2/-2 303A-002-V08 303A-011A/B-V01 22-22
PAL16L2/-2 303A-002-V08 303A-011A/B-V01 22-16
PAL16C1/-2 303A-002-V08 303A-011A/B-V01 22-21
24 Pin and MegaPAL Device Families
Generic
Family Product Adapter Adapter Code
Macrocell(Async) AmPALC29MA16-35/-45 — — —
Macrocell(Sync) AmPALC29M16-35/-45 - —_ : —
Varied with XOR PAL32VX10/A — 303A-011A/B-VO1 22-77
Varied Product Terms AmPAL22V10/-15/A — 303A-011A/B-VO1 97-28/83
Varled Terms (CMOS) PALC22V10H-25/35 — 303A-011A/B-V02 DB-28
Registered XOR PAL22RX8A — 303A-011A/B-VO1 22-78
384 2\ mononthio EE) Memories €1

Programmer Reference Guide

D ————]

Data I/O
20 Pin Device Familles
Mé60 Unisite 40
Family Product Rev. Rev. System Pak
Sequencer AmPAL23S8-20/-25 Vi1 —_ ALL 303A-Vo4
Asynchronous - PAL16RA8 Vo5 1.54 ALL 303A-Vo4
PAL16RP8A PAL16P8A Vo5 1.54 ALL 303A-Vo4
Programmable PAL16RP8A Vos 1.54 ALL 303A-Vo4
Polarity PAL16RP6A Vo5 1.54 ALL 303A-Vo4
PAL16RP4A Vo5 1.54 ALL 303A-V04
PAL16R8-10 PAL16L8-10/H-15 Vo5 1.54 ALL 303A-Vo4
PAL16R8-10/H-15 Vo5 1.54 ALL 303A-Vo4
PAL16R6-10/H-15 Vo5 1.54 ALL 303A-Vo4
PAL16R4-10/H-15 Vo5 1.54 ALL 303A-Vo4
PAL16R8D/B PAL16L8D/B Vit 1.54 ALL 303A-Vo4
PAL16R8D/B \ARR| 1.54 ALL 303A-V04
PAL16R6D/B Vi1.1 1.54 ALL 303A-V04
PAL16R4D/B Vi1 1.54 ALL 303A-V04
AmPAL16R8 AmPAL16L8/B/AL/A/Q/L V114 1.3 ALL 303A-Vo4
AmPAL16R8/B/AL/A/Q/L Vit 1.3 ALL 303A-V0o4
AmPAL16R6/B/AL/A/Q/L V11,1 1.3 ALL 303A-Vo4
AmPAL16R4/B/AL/A/Q/L Vi1.1 1.3 ALL 303A-Vo4
PAL16R8/B-2/B-4/ PAL16L8/B-2/B-4/A/A-2/A-4 Vo5 1.54 ALL 303A-Vo4
A/A-2/A-4 PAL16R8/B-2/B-4/A/A-2/A-4 Vo5 1.54 ALL 303A-Vo4
PAL16R6/B-2/B-4/A/A-2/A-4 Vo5 1.54 ALL 303A-Vo4
PAL16R4/B-2/B-4/A/A-2/A-4 Vo5 1.54 ALL 303A-Vo4
PALC16R8Q-25 PALC16L8Q-25 — — ALL 303A-Vo4
(CMOS) PALC16R8Q-25 — — ALL 303A-Vo4
PALC16R6Q-25 - — ALL 303A-V04
PALC16R4Q-25 — — ALL 303A-Vo4
AmPAL16HD8 AmPAL16HSA/L Vo3 1.3 ALL 303A-Vo4
AmPAL16HD8A/L Vo3 1.3 ALL 303A-V04
AmPAL16LD8A/L Vo3 1.3 ALL 303A-Vo4
Arithmetic PAL16X4 Vo5 1.54 ALL 303A-Vo4
Combinatorial AmPAL18P8B/AL/A/Q/L Vo5 1.3 ALL 303A-V04
PAL10H8 PAL10H8/-2 Vo5 1.54 ALL 303A-V04
Combinatorial PAL10LS8/-2 Vo5 1.54 ALL 303A-V04
PAL12H6/-2 Vo5 1.54 ALL 303A-Vo4
- PAL12L6/-2 Vo5 1.54 ALL 303A-Vo4
PAL14H4/-2 Vo5 1.54 ALL 303A-V04
PAL14L4/-2 Vo5 1.54 ALL 303A-Vo4
PAL16H2/-2 Vos 1.54 ALL 303A-Vo4
PAL16L2/-2 Vo5 1.54 ALL 303A-Vo4
PAL16C1/-2 Vo5 1.54 ALL 303A-Vo4
24 Pin and MegaPAL Device Familles
. Mé60 Unisite 40
Family Product Rev. Rev. System Pak
Macrocell (Async) AmMPALC29MA16-35/-45 _ -— —_ —_
Macrocell (Sync) AmPALC29M16-35/-45 - - - —
Varied with XOR PAL32VX10/A V1o 1.54 ALL 303A-Vo4
Varled Product Terms AmPAL22V10/-15/A Vo3 1.3 ALL 303A-Vo4
Varled Terms (CMOS) PALC22V10H-25/35 V1o 1.54 ALL 303A-V04
Registered XOR PAL22RX8A vio 1.54 ALL - 303A-V04
X monotithic] Memories £1

3-85

Programmer Reference Guide

Data I/O ,
24 Pin and MegaPAL™ Device Families
Generic
Family Product . Adapter Adapter Code
Asynchronous PAL20RA10-20 — —_ —
PAL20RA10 . 303A-002-V08 303A-011A/B-V01 22-45
AmPAL20XRP10 AmPAL22XP10-20/-30L/-30/-40L — 303A-011A/B-V02 97-2C
AmPAL20XRP10-20/-30L/-30/-40L - 303A-011A/B-V02 97-0E
AmPAL20XRP8-20/-30L/-30/-40L — 303A-011A/B-V02 97-0D
AmPAL20XRP6-20/-30L/-30/-40L — 303A-011A/B-V02 97-0C
AmPAL20XRP4-20/-30L/-30/-40L - 303A-011A/B-V02 97-0B
PAL20RS10 PAL20S10 | 303A-002-V08 303A-011A/B-Vo1 22-43
Shared Product PAL20RS10 303A-002-V08 303A-011A/B-V01 22-44
Terms PAL20RS8 303A-002-V08 303A-011A/B-V01 22-44
PAL20RS4 303A-002-V08 303A-011A/B-V01 22-46
PAL20X10A PAL20L10A 303A-002-V08 303A-011A/B-VO1 22-06
Exclusive OR PAL20X10A 303A-002-V08 303A-011A/B-Vo1 22-36
PAL20X8A 303A-002-V08 303A-011A/B-V01 22-36
PAL20X4A 303A-002-V08 303A-011A/B-Vo1 22-36
PAL20X10 PAL20L10 303A-002-V08 303A-011A/B-Vo1 22-06
Exclusive OR PAL20X10 303A-002-V08 303A-011A/B-Vo1 22-23
PAL20X8 . 303A-002-V08 303A-011A/B-Vo1 22-23
PAL20X4 303A-002-V08 303A-011A/B-VO1 22-23
AmPAL20L10 AmPAL20L10B/-20/AL — 303A-011A-V02 97-06
AmPAL20RP10 AmPAL22P10B/AL/A — 303A-011A-V02 97-2B
: AmPAL20RP10B/AL/A — 303A-011A-V02 97-9F
AmPAL20RP8B/AL/A — 303A-011A-V02 97-9E
AmPAL20RP6B/AL/A —_ 303A-011A-V02 97-9D
AmPAL20RP4B/AL/A — 303A-011A-V02 97-9C
PAL20R8B/B-2*/A/A-2 PAL20L8B/B-2/A/A-2 303A-002-V08 303A-011A/B-Vo1 22-26
. PAL20R8B/B-2/A/A-2* 303A-002-V08 303A-011A/B-V01 22-27
PAL20R6B/B-2/A/A-2* 303A-002-V08 303A-011A/B-VO1 22-27
PAL20R4B/B-2/A/A-2* 303A-002-V08 303A-011A/B-V01 22-27
PALC20R8Z PALC20L8Z-35/-45 303A-002-V08 303A-011A/B-V02 46-26
Zero Standby Power PALC20R8Z-35/-45 303A-002-V08 303A-011A/B-V02 46-27
PALC20R6Z-35/-45 303A-002-V08 303A-011A/B-V02 46-27
PALC20R4Z-35/-45 303A-002-V08 303A-011A/B-V02 46-27
Decoder PAL6L16A 303A-002-V08 303A-011A/B-Vo1 22-48
PALSL14A 303A-002-V08 303A-011A/B-VO1 | = 22-49
PAL12L10 PAL12L10 303A-002-V08 303A-011A/B-V01 22-01
Combinatorial PAL14L8 303A-002-V08 303A-011A/B-V01 22-02
PAL16L6 303A-002-V08 303A-011A/B-V01 22-03
PAL18L4 303A-002-V08 303A-011A/B-Vo1 22-04 .
PAL20L2 303A-002-V08 303A-011A/B-V0o1 22-05
PAL20C1 : 303A-002-V08 303A-011A/B-VO1 22-12
MegaPAL Device PAL32R16 303A/008-V02 — 22-47
PROSE Device PMS14R21/A ' — 303A-011A/B-V02 22-58
Programmable Loglc PLS105-37 —_ 303A-011A/B-V03 2A-63
Sequencer PLS167-33 —_ 303A-011A/B-V03 2A-60
PLS168-33 ‘ — 303A-011A/B-V03 2A-74
Fuse Programmable Am29PL141 — 303A-FPC-VO01 97-79
Controller
Programmable Event Am2971 C— 303A-011A-V03 —_
Generator '
ECL Registered PAL10H/10020EV/EG8 303A-ECL — -
ECL Combinatorial PAL10H20P8 ~ 303A-ECL — 22-42
ECL Latched PAL10H20G8 303A-ECL - 22-42

Notes: “—" = Contact programmer manufacturer.
The software and hardware revisions listed are the earliest revisions that support these products.
Later software and hardware revisions can be assumed to support these products.
*PAL 20R8 B-2 family code using preload is 22-68 with Generic Adapter V04.

3.86 2\ Monotithic KRl Memories &1

Programmer Reference Guide

Data I/O
24 Pin and MegaPAL Device Families
Mé60 Unisite 40
Family Product Rev. Rev. System Pak
Asynchronous PAL20RA10-20 Vo5 1.54 ALL 303A-Vo4
PAL20RA10 Vo5 1.54 ALL 303A
AmPAL20XRP10 AmPAL22XP10-20/-30L/-30/-40L — — ALL 303A-Vo4
AmPAL20XRP10-20/-30L/-30/-40 V10 — ALL 303A-V04
AmPAL20XRP8-20/-30L/-30/-40L V10 — ALL 303A-Vo4
AmPAL20XRP6-20/-30L/-30/-40L V10 — ALL 303A-Vo4
AmPAL20XRP4-20/-30L/-30/-40L V10 — ALL 303A-V04
PAL20RS10 PAL20S10 Vo5 154 ALL 303A
Shared Product PAL20RS10 Vo5 1.54 ALL 303A-V04
Terms PAL20RS8 Vo5 1.54 ALL 303A-V04
PAL20RS4 V05 1.54 ALL 303A-Vo4
PAL20X10A PAL20L10A Vo5 1.54 ALL 303A
Exclusive OR PAL20X10A Vos 1.54 ALL 303A
PAL20X8A Vo5 1.54 ALL 303A
PAL20X4A Vo5 1.54 ALL 303A
PAL20X10 PAL20L10 Vo5 1.54 ALL 303A
Exclusive OR PAL20X10 Vo5 1.54 ALL 303A
PAL20X8 Vo5 1.54 ALL 303A
PAL20X4 Vo5 1.54 ALL 303A
AmPAL20L10 AmPAL20L10B/-20/AL — — ALL 303A-Vo4
AmPAL20RP10 AmPAL22P 10B/AL/A — — ALL 303A-V04
AmPAL20RP10B/AL/A V10 .- ALL 303A-Vo4
AmPAL20RP8B/AL/A V10 —_ ALL 303A-Vo4
AmPAL20RP6B/AL/A V10 — ALL 303A-Vo4
AmPAL20RP4B/AL/A V1o — ALL 303A-Vo4
PAL20R8B/B-2*/A/A-2 PAL20L8B/B-2/A/A-2 Vo5 1.54 ALL 303A
PAL20R8B/B-2/A/A-2 Vo5 1.54 ALL 303A
PAL20R6B/B-2/A/A-2 Vo5 1.54 ALL 303A
PAL20R4B/B-2/A/A-2 Vo5 1.54 ALL 303A
PALC20R8Z PALC20L82Z-35/-45 V10 1.54 ALL 303A-V04
Zero Standby Power PALC20R8Z-35/-45 V10 1.54 ALL 303A-Vo4
PALC20R6Z-35/-45 V10 1.54 ALL 303A-V04
PALC20R4Z-35/-45 V10 1.54 ALL 303A-V04
Decoder PAL6L16A Vo5 1.54 ALL 303A
PAL8SL14A Vo5 1.54 ALL 303A
PAL12L10 PAL12L10 Vo5 1.54 ALL 303A
Combinatorial PAL14L8 Vo5 1.54 ALL 303A
PAL16L6 Vo5 1.54 ALL 303A
PAL18L4 Vo5 1.54 ALL 303A
PAL20L2 Vo5 1.54 ALL 303A
PAL20C1 Vo5 1.54 ALL 303A
MegaPAL Device PAL32R16 — 1.54 29B 303A
PROSE Device PMS14R21/A — — ALL 303A-V04
Programmable Logic PLS105-37 —_— - ALL 303A-V04
Sequencer PLS167-33 —_ —_ ALL 303A-V04
PLS168-33 — ALL 303A-V04
Fuse Programmable Am29PL141 — —_ ALL 303A-Vo4
Controller :
Programmable Event Am2971 — — ALL 303A-V04
Generator :
ECL Registered PAL10H/10020EV/EG8 — ALL 303A-V04
ECL Combinatorial PAL10H20P8 — 1.54 ALL 303A-V04
ECL Latched PAL10H20G8 — 1.54 ALL 303A-Vo4
Notes: “—" = Contact programmer manufacturer.

The software and hardware revisions listed are the earliest revisions that support these products.
Later software and hardware revisions can be assumed to support these products.

l‘r‘ Monolithic m Memoriles :'

3-87

Programmer Reference Guide

‘Digelec 1.0 System UP803
1.1 P/T Adapter DA53, DA55,DA60, DA62
(201) 493-2420 1.2 Logic Center FAM52
: 2.0 System 860
20 Pin Device Families
Adapter . System 860
Family Product FAM52 Rev. Adapter Rev.
Sequencer AmPAL23S8-20/-25 — — - -
Asynchronous PAL16RA8 5.4 DAS53 C-1 A-1.2
PAL16RP8A PAL16P8A 5.4 DA53 A-3 A-1.2
Programmable PAL16RP8A 5.4 DAS53 A-3 A-1.2
Polarity PAL16RP6A 54 DAS3 A-3 A-1.2
PAL16RP4A 54 DA53 A-3 A-1.2
PAL16R8-10 PAL16L8-10/H-15 54 DA53 C-1 A-1.2
PAL16R8-10/H-15 54 DA53 C-1 A-1.2
PAL16R6-10/H-15 54 DA53 C-1 A-1.2
PAL16R4-10/H-15 5.4 DA53 C-1 A-1.2
PAL16R8D/B PAL16L8D/B 5.4 DA53 C-1 A1.2
PAL16R8D/B 5.4 DAS53 C-1. A-1.2
PAL16R6D/B 5.4 DA53 C-1 A-1.2
PAL16R4D/B 5.4 DA53 C-1 A-1.2
AmPAL16R8 AmPAL16L8/B/AL/A/Q/L 55 DA53 A-3 —
AmPAL16R8/B/AL/A/Q/L 5.5 DA53 A-3 —
AmPAL16R6/B/AL/A/Q/L 55 DAS53 A-3 —_
AmPAL16R4/B/AL/A/Q/L 55 DA53 A-3 —
PAL16R8/B-2/B-4/ PAL16L8/B-2/B-4/A/A-2/A-4 5.4 DA53 A-3 A-1.2
AA-2/A-4 PAL16R8/B-2/B-4/A/A-2/A-4 5.4 DAS3 A-3 A-1.2
PAL16R6/B-2/B-4/A/A-2/A-4 5.4 DAS3 A-3 A-1.2
PAL16R4/B-2/B-4/A/A-2/A-4 5.4 DAS53 A-3 A-1.2
PALC16R8Q-25 PALC16L8Q-25 — - — —
(CMOS) PALC16R8Q-25 — — — —
PALC16R6Q-25 — — —_ —
PALC16R4Q-25 — — — —
AmPAL16HD8 AmPAL16H8A/L 55 DA53 A-3 —
AmPAL16HDSA/L 55 DA53 A-3 —
AmPAL16LD8SA/L 55 DA53 A-3 —
Arithmetic PAL16X4 5.4 DA53 A-3 A-1.2
Comblinatorial AmPAL18P8B/AL/A/Q/L 54 DAS5 B-3 —
PAL10H8 PAL10H8/-2 5.4 DA53 A-3 A-1
Combinatorial PAL10L8/-2 54 DA53 A-3 A-1
PAL12H6/-2 5.4 DA53 A3 A1
PAL12L6/-2 5.4 'DASs3 A-3 A-1
PAL14H4/-2 54 DA53 A-3 A-1
PAL14L4/-2 54 DAS53 A-3 A-1
PAL16H2/-2 54 DA53 A-3 A-1
PAL16L2/-2 5.4 DA53 A-3 A-1
PAL16C1/-2 5.4 DAS53 A-3 A1
24 Pin and MegaPAL Device Families
Adapter System 860
Family Product FAM52 Rev. Adapter Rev.
Macrocell (Async) AmPALC29MA16-35/-45 - —_ S — —
Macrocell (Sync) AmPALC29M16-35/-45 — — — -
Varied with XOR PAL32VX10/A 6.54 DAS5 C-1 A-1.2
Varled Product Terms AmPAL22V10/-15/A 5.4 DASS B-3 —

Varied Terms (CMOS) PALC22V10H-25/35 — — — —
Registered XOR PAL22RX8A — - - —
3-88 i:l Monolithic m Memories El

Programmer Reference Guide

Digelec
Adapter System 860
Family Product FAM52 Rev. Adapter Rev.
Asynchronous | PAL20RA10-20, 5.4 DASS C-1 A1-2
| PAL20RA10 5.4 DAS55 C-1 A1-2
AmPAL20XRP10 AmPAL22XP10-20/-30L/-30/-40L — — — —
AmPAL20XRP10-20/-30L/-30/-40L — —_ — —
AmPAL20XRP8-20/-30L/-30/-40L — —_ — —
AmPAL20XRP6-20/-30L/-30/-40L — — — —
AmPAL20XRP4-20/-30L/-30/-40L - -— — —
PAL20RS10 PAL20S10 54 DA55 C-1 A1-2
Shared Product PAL20RS10 5.4 DA55 C-1 At-2
Terms PAL20RS8 5.4 DA55 C-1 A1-2
PAL20RS4 5.4 DAS55 C-1 Al1-2
PAL20X10A PAL20L10A 5.4 DAS55 C-1 A1-2
Exclusive OR PAL20X10A 54 DA55 C-1 A1-2
PAL20X8A 54 DA55 C-1 A1-2
PAL20X4A 5.4 DAS55 C-1 A1-2
PAL20X10 PAL20L10 5.4 DAS55 C-1 A1-2
Exclusive OR PAL20X10 5.4 DAS5S C-1 A1-2
PAL20X8 5.4 DAS55 C-1 Al1-2
PAL20X4 54 DA55 C-1 Al1-2
AmPAL20L10 AmPAL20L10B/-20/AL 5.4 DAS5 C-1 Al-2
AmPAL20RP10 . AmPAL22P10B/AL/A 54 ~DAs5 C-1 A1-2
AmPAL20RP10B/AL/A 5.4 DA55 C-1 A1-2
AmPAL20RP8B/AL/A 5.4 DA5S C-1 A1-2
AmPAL20RP6B/AL/A 54 DA5S C-1 A1-2
AmPAL20RP4B/AL/A 5.4 DAsS C-1 A1-2
PAL20R8B/B-2/A/A-2 PAL20L8B/B-2/A/A-2 5.4 DA55 C-1 A1-2
PAL20R8B/B-2/A/A-2 54 DAs55 C-1 Al1-2
PAL20R6B/B-2/A/A-2 54 DA55 C-1 Al1-2
PAL20R4B/B-2/A/A-2 54 DA55 C-1 A1-2
PALC20R8Z PALC20L82-35/-45 54 DAS55 C-1 A1-2
Zero Standby Power PALC20R8Z-35/-45 5.4 DA55 C-1 A1-2
PALC20R62Z-35/-45 54 DAS5S C-1 A1-2
PALC20R4Z-35/-45 5.4 DA55 C-1 A1-2
Decoder PAL6L16A 6.54 DA62 —_ A1-2
PALSL14A 6.54 DA62 — Al1-2
PAL12L10 PAL12L10 5.4 DAs55 C-1 A1-2
Combinatorial PAL14L8 5.4 DAS5S C-1 A1-2
PAL16L6 54 DA55 C-1 A1-2
PAL18L4 54 DAS55 C-1 Al1-2
PAL20L2 5.4 DA55 C-1 A1-2
PAL20C1 5.4 DA55 C-1 Al1-2
MegaPAL Device PAL32R16 — — — —
PROSE Device PMS14R21/A — — — —
Programmable PLS105-37 —_ —_ —
Logic Sequencer PLS167-33 — — — —
PLS168-33 — —_ —
Fuse Programmable Am29PL141 — —_ -— b
Controller
Programmable Event Am2971 —_ —_ — —
Generator
ECL Registered PAL10H/10020EV/EG8 — — — —
ECL Combinatorial PAL10H20P8 5.4 DA&0 A-1 —
ECL Latched PAL10H20G8 5.4 DA60 A-1 —
Notes: “—" = Contact programmer manufacturer.
The software and hardware revisions listed are the earliest revisions that support these products.
Later software and hardware revisions can be assumed to support these products.
2\ Monotithic LIl Memories £1 3-89

Kontron

(415) 965-7020

20 Pin Device Families

i’rogrammer Reference Guide

1.0 System MPP-80S

1.1 Module MOD 21

1.2 Socket Adapter SA-27
1.3 Socket Adapter SA-27-1
2.0 System EPP-80

2.1 Module UPM-B

3-90

: UPM-B
Family Product Adapter Rev.
Sequencer AmPAL23S8-20/-25 — —
Asynchronous PAL16RA8 — 1.47
PAL16RP8A PAL16P8A — 1.44
Programmable PAL16RP —_ 1.44
Polarity PAL16RP6A — 1.44
PAL16RP4A —_ 1.44
PAL16R8-10 PAL16L8-10/H-15 —_ "1.44
PAL16R8-10/H-15 — 1.44
PAL16R6-10/H-15 — 1.44
PAL16R4-10/H-15 — 1.44
PAL16R8D/B PAL16L8D/B — 1.44
PAL16R8D/B — 1.44
PAL16R6D/B — 1.44
PAL16R4D/B — 1.44
AmPAL16R8 AmPAL16L8/B/AL/A/Q/L — —
AmPAL16R8/B/AL/A/Q/L — —_
AmPAL16R6/B/AL/A/Q/L — —
AmPAL16R4/B/AL/A/Q/L — —
PAL16R8/B-2/B-4/ PAL16L8/B-2/B-4/A/A-2/A-4 SA-27 1.44
A/A-2/A-4 PAL16R8/B-2/B-4/A/A-2/A-4 SA-27 1.44
PAL16R6/B-2/B-4/A/A-2/A-4 SA-27 1.44
PAL16R4/B-2/B-4/A/A-2/A-4 SA-27 1.44
PALC16R8Q-25 PALC16L8Q-25 — —
(CMOS) PALC16R8Q-25 — —_
PALC16R6Q-25 — —
PALC16R4Q-25 — —
AmPAL16HD8 AmPAL16HSA/L — —
AmPAL16HDSA/L —_ —
AmPAL16LD8A/L — —
Arithmetic PAL16X4 SA-27 1.44
Combinatorial AmPAL18P8B/AL/A/Q/L — —
PAL10H8 PAL10H8/-2 SA-27 1.44
Combinatorial PAL10L8/-2 SA-27 1.44
. PAL12H6/-2 SA-27 1.44
PAL12L6/-2 SA-27 1.44
PAL14H4/-2 SA-27 1.44
PAL14L4/-2 SA-27 1.44
PAL16H2/-2 SA-27 1.44
PAL16L2/-2 SA-27 1.44
PAL16C1/-2 SA-27 1.44
24 Pin and MegaPAL Device Families
: UPM-B
Family Product Adapter Rev.
Macrocell (Async) AmPALC29MA16-35/-45 — —
Macrocell (Sync) AmPALC29M16-35/-45 - —
Varied with XOR PAL32VX10/A — 2.0
Varled Product Terms AmPAL22V10/-15/A — —_
Varied Terms (CMOS) PALC22V10H-25/35 — 2.0
Registered XOR PAL22RX8A — 2.0
P Monolithic E.ﬁﬂ Memories &1

Programmer Reference Guide

Kontron
UPM-B
Family Product Adapter Rev.
Asynchronous PAL20RA10-20 — —_
PAL20RA10 — 1.44
AmPAL20XRP10 AmPAL22XP10-20/-30L/-30/-40L - —_
AmPAL20XRP10-20/-30L/-30/-40L — -_—
AmPAL20XRP8-20/-30L/-30/-40L — —
AmPAL20XRP6-20/-30L/-30/-40L — —
AmPAL20XRP4-20/-30L/-30/-40L — —
PAL20RS10 PAL20S10 — 1.44
Shared Product PAL20RS10 — 1.44
Terms PAL20RS8 — 1.44
PAL20RS4 — 1.44
PAL20X10A PAL20L10A SA-27-1 1.44
Exclusive OR PAL20X10A SA-27-1 1.44
PAL20X8A SA-27-1 1.44
PAL20X4A SA-27-1 1.44
PAL20X10 PAL20L10 SA-27-1 1.44
Exclusive OR PAL20X10 SA-27-1 1.44
PAL20X8 SA-27-1 1.44
PAL20X4 SA-27-1 1.44
AmPAL20L10 AmPAL20L10B/-20/AL — —
AmPAL20RP10 AmPAL22P10B/AL/A — —
AmPAL20RP10B/AL/A —_ —
AmPAL20RP8B/AL/A — —
AmPAL20RP6B/AL/A — —_
AmPAL20RP4B/AL/A —_ —_
PAL20R8B/B-2/A/A-2 PAL20L8B/B-2/A/A-2 SA-27-1 1.44
PAL20R8B/B-2/A/A-2 SA-27-1 1.44
PAL20R6B/B-2/A/A-2 SA-27-1 1.44
PAL20R4B/B-2/A/A-2 SA-27-1 1.44
PALC20R8Z PALC20L8Z-35/-45 — 2.00
Zero Standby Power PALC20R8Z-35/-45 — 2.00
PALC20R6Z-35/-45 —_ 2.00
PALC20R4Z-35/-45 — 2.00
Decoder PAL6L16A - 2.00
PAL8SL14A — 2.00
PAL12L10 PAL12L10 SA-27-1 1.44
Combinatorial PAL14L8 SA-27-1 1.44
PAL16L6 SA-27-1 1.44
PAL18L4 SA-27-1 1.44
PAL20L2 SA-27-1 1.44
PAL20C1 SA-27-1 1.44
MegaPAL Device PAL32R16 —_ —
PROSE Device PMS14R21/A — —
Programmable Logic PLS105-37 — —
Sequencer PLS167-33 —_ —
PLS168-33 — —
Fuse Programmable Am29PL141 — —_
Controller
Programmable Event Am2971 — —
Generator
ECL Registered PAL10H/10020EV/EG8 — —
ECL Combinatorial PAL10H20P8 —_ 1.47
ECL Latched PAL10H20G8 — 1.47

Notes: “—" = Contact programmer manufacturer.

The software and hardware revisions listed are the earliest revisions that support these products.

Later software and hardware revisions can be assumed to support these products.

&\ monotithic Bl Memories €1

3-91

Programmer Reference Guide

Logical Devices, Inc.

1321 E. Northwest
65th Place

Fort Lauderdale, FL 33309

'(800) 331-7766

20 Pin Device Familles

1.0 System ALLPRO

Famlly Product Software
Sequencer AmPAL2358-20/-25 —
Asynchronous PAL16RA8 1.44CR2
PAL16RP8A PAL16P8A 1.44CR2
Programmable PAL16RP8A 1.44CR2
Polarity PAL16RP6A 1.44CR2
PAL16RP4A 1.44CR2
PAL16R8-10 PAL16L8-10/H-15 1.44CR2
PAL16R8-10/H-15 1.44CR2
PAL16R6-10/H-15 1.44CR2
PAL16R4-10/H-15 1.44CR2
PAL16R8D/B PAL16L8D/B 1.44CR2
PAL16R8D/B 1.44CR2
PAL16R6D/B 1.44CR2
PAL16R4D/B 1.44CR2
AmPAL16R8 AmPAL16L8/B/AL/A/Q/L 1.44CR2
AmPAL16R8/B/AL/A/Q/L 1.44CR2
AmPAL16R6/B/AL/A/Q/L 1.44CR2
AmPAL16R4/B/AL/A/Q/L 1.44CR2
PAL16R8/B-2/B-4/ PAL16L8/B-2/B-4/A/A-2/A-4 1.44CR2
A/A-2/A-4) PAL16R8/B-2/B-4/A/A-2/A-4 1.44CR2
PAL16R6/B-2/B-4/A/A-2/A-4 1.44CR2
PAL16R4/B-2/B-4/A/A-2/A-4 1.44CR2
PALC16R8Q-25 PALC16L8Q-25 —
(CMOS) PALC16R8Q-25 —
PALC16R6Q-25 —
PALC16R4Q-25 —
AmPAL16HD8 AmPAL16H8A/L 1.44CR2
AmPAL16HDSA/L 1.44CR2
AmPAL16LDSA/L 1.44CR2
Arithmetic PAL16X4 1.44CR2
Combinatorial AmPAL18P8B/AL/A/Q/L —
PAL10H8 PAL10H8/-2 1.44CR2
Combinatorlal PAL10L8/-2 1.44CR2
PAL12H6/-2 1.44CR2
PAL12L6/-2 1.44CR2
PAL14H4/-2 1.44CR2
PAL14L4/-2 1.44CR2
PAL16H2/-2 1.44CR2
PAL16L2/-2 1.44CR2
PAL16C1/-2 1.44CR2
24 Pin and MegaPAL Device Families
Family Product Software
Macrocell(Async) AmPALC29MA16-35/-45 —
Macrocell(Sync) AmPALC29M16-35/-45 —
Varied with XOR PAL32VX10/A 1.44CR2
Varled Product Terms AmPAL22V10/-15/A —_
Varied Terms (CMOS) PALC22V10H-25/35 —_
Registered XOR PAL22RX8A 1.44CR2
3.92 2\ monotithio FE] Memories €1

Programmer Reference Guide

Logical Devices, Inc.

Famlly Product Software
Asynchronous PAL20RA10-20 1.44CR2
PAL20RA10 1.44CR2
AmPAL20XRP10 AmPAL22XP10-20/-30L/-30/-40L —
AmPAL20XRP10-20/-30L/-30/-40L —
AmPAL20XRP8-20/-30L/-30/-40L -
AmPAL20XRP6-20/-30L/-30/-40L —
AmPAL20XRP4-20/-30L/-30/-40L —
PAL20RS10 PAL20S10 1.44CR2
Shared Product PAL20RS10 1.44CR2
Terms PAL20RS8 1.44CR2
PAL20RS4 1.44CR2
PAL20X10A PAL20L10A 1.44CR2
Exclusive OR PAL20X10A 1.44CR2
PAL20X8A 1.44CR2
PAL20X4A 1.44CR2
PAL20X10 PAL20L10 1.44CR2
Exclusive OR PAL20X10 1.44CR2
PAL20X8 1.44CR2
PAL20X4 1.44CR2
AmPAL20L10 AmPAL20L10B/-20/AL —
AmPAL20RP10 AmPAL22P10B/AL/A —
AmPAL20RP10B/AL/A —
AmPAL20RP8B/AL/A —
AmPAL20RP6B/AL/A —
AmPAL20RP4B/AL/A
PAL20R8B/B-2/A/A-2 PAL20L8B/B-2/A/A-2 1.44CR2
PAL20R8B/B-2/A/A-2 1.44CR2
PAL20R6B/B-2/A/A-2 1.44CR2
PAL20R4B/B-2/A/A-2 1.44CR2
PALC20R8Z PALC20L8Z-35/-45 1.44CR2
Zero Standby Power PALC20R8Z-35/-45 1.44CR2
PALC20R6Z-35/-45 1.44CR2
PALC20R4Z-35/-45 1.44CR2
Decoder PAL6L16A 1.44CR2
PALSL14A 1.44CR2
PAL12L10 PAL12L10 1.44CR2
Combinatorial PAL14L8 1.44CR2
PAL16L6 1.44CR2
PAL18L4 1.44CR2
PAL20L2 1.44CR2
PAL20C1 1.44CR2
MegaPAL Device PAL32R16 —
PROSE Device PMS14R21/A —_
Programmable Logic PLS105-37
Sequencer PLS167-33 —
PLS168-33 —_
Fuse Programmable Am29PL141 —
Controller
Programmable Event Am2971 -
Generator
ECL Registered PAL10H/10020EV/EG8 -
ECL Combinatorial PAL10H20P8 -
ECL Latched PAL10H20G8 —_

Notes: “—" = Contact programmer manufacturer.
The software and hardware revisions listed are the earliest revisions that support these products.
Later software and hardware revisions can be assumed to support these products.

2\ monotithio Bl memories €1

Micropross

204-79040
France

20 Pin Device Families

Programmer Reference Guide

1.0 ROM 5000

a Monolithic m Memoriles a

Software
Family Product Rev.
Sequencer AmPAL23S8-20/-25 -
Asynchronous PAL16RA8 4.6
PAL16RP8A PAL16P8A 35
Programmable PAL16RP8A 35
Polarity PAL16RP6A 35
PAL16RP4A 35
PAL16R8-10 PAL16L8-10/H-15 35
PAL16R8-10/H-15 35
PAL16R6-10/H-15 35
PAL16R4-10/H-15 3.5
PAL16R8D/B PAL16L8D/B 35
PAL16R8D/B 35
PAL16R6D/B 35
PAL16R4D/B 35
AmPAL16R8 AmPAL16L8/B/AL/A/Q/L -
AmPAL16R8/B/AL/A/Q/L -
AmPAL16R6/B/AL/A/Q/L —
AmPAL16R4/B/AL/A/Q/L —
PAL16R8/B-2/B-4/ PAL16L8/B-2/B-4/A/A-2/A-4 35
A/A-2/A-4 PAL16R8/B-2/B-4/A/A-2/A-4 35
PAL16R6/B-2/B-4/A/A-2/A-4 35
: PAL16R4/B-2/B-4/A/A-2/A-4 35
PALC16R8Q-25 PALC16L8Q-25 —
(CMOS) PALC16R8Q-25 —_
PALC16R6Q-25 —
PALC16R4Q-25 —
AmPAL16HD8 AmPAL16HSA/L —
AmPAL16HDSA/L —
AmPAL16LD8SA/L —
Arithmetic PAL16X4 3.5
Combinatorial AmPAL18P8B/AUA/Q/L —_
PAL10H8 PAL10H8/-2 35
Combinatorial PAL10L8/-2 3.5
PAL12H6/-2 35
PAL12L6/-2 35
PAL14H4/-2 35
PAL14L4/-2 35
PAL16H2/-2 35
PAL16L2/-2 35
PAL16C1/-2 35
24 Pin and MegaPAL Device Families
Software
Family Product Rev.
Macrocell (Async) AmPALC29MA16-35/-45 —_
Macrocell (Sync) AmPALC29M16-35/-45 -
Varled with XOR PAL32VX10/A 4.51
Varled Product Terms AmPAL22V10/-15/A —_
Varled Terms (CMOS) PALC22V10H-25/35 4.6
Reglistered XOR PAL22RX8A —
3-94

Programmer Reference Guide

Micropross
Software
Family Product Rev.
Asynchronous PAL20RA10-20 35
PAL20RA10 3.5
AmPAL20XRP10 AmPAL22XP10-20/-30L/-30/-40L —
AmPAL20XRP10-20/-30L/-30/-40L —
AmPAL20XRP8-20/-30L/-30/-40L —
AmPAL20XRP6-20/-30L/-30/-40L —
AmPAL20XRP4-20/-30L/-30/-40L —
PAL20RS10 PAL20S10 35
Shared Product PAL20RS10 3.5
Terms PAL20RS8 3.5
PAL20RS4 35
PAL20X10A PAL20L10A 35
Exclusive OR PAL20X10A 35
PAL20X8A 35
PAL20X4A 35
PAL20X10 PAL20L10 3.5
Exclusive OR PAL20X10 35
PAL20X8 35
PAL20X4 35
AmPAL20L10 AmPAL20L10B/-20/AL s
AmPAL20RP10 AmPAL22P10B/AL/A —
AmPAL20RP10B/ALA —
AmPAL20RP8B/AL/A —
AmPAL20RP6B/AL/A —
AmPAL20RP4B/AL/A —
PAL20R8B/B-2/A/A-2 PAL20L8B/B-2/A/A-2 3.5
PAL20R8B/B-2/A/A-2 35
PAL20R6B/B-2/A/A-2 3.5
PAL20R4B/B-2/A/A-2 35
PALC20R8Z PALC20L8Z-35/-45 —
Zero Standby Power PALC20R8Z-35/-45 -
PALC20R6Z-35/-45 —
PALC20R4Z-35/-45 —
Decoder PAL6L16A 4.6
PAL8L14A 4.6
PAL12L10 PAL12L10 3.5
Combinatorial PAL14L8 3.5
PAL16L6 35
PAL18L4 35
PAL20L2 35
PAL20C1 35
MegaPAL Device PAL32R16 —
PROSE Device PMS14R21/A —
Programmable Logic PLS105-37 -
Sequencer PLS167-33 -
PLS168-33 -
Fuse Programmable Am29PL141 —
Controller .
Programmable Event Am2971 —
Generator
ECL Registered PAL10H/10020EV/EGS -
ECL Combinatorial PAL10H20P8 4.6
ECL Latched PAL10H20G8 4.6

Notes: “—" = Contact programmer manufacturer.
The software and hardware revisions listed are the earliest revisions that support these products.
Later software and hardware revisions can be assumed to support these products.

z‘ Monolithic m Memories :‘

3-95

Programmer Reference Guide

Stag Microsystems 1.02ZL 30
2.0PPZ

(408) 988-1118 2.1 Module ZM2200

20 Pin Device Families

ZL 30 ZM2200
Family Product Code Rev. Rev.
Sequencer AmPAL23S8-20/-25 — —_ —
Asynchronous PAL16RA8 20-19 30-37 15
PAL16RP8A PAL16P8A 20-38 30-35 15
Programmable PAL16RP8SA 20-11 30-35 15
Polarity PAL16RP6A 20-12 30-35 15
PAL16RP4A 20-13 30-35 15
PAL16R8-10 PAL16L8-10/H-15 22-29 30-39 12
: PAL16R8-10/H-15 22-30 30-39 12
PAL16R6-10/H-15 22-31 30-39 12
PAL16R4-10/H-15 22-32 30-39 12
PAL16R8D/B PAL16L8D/B 22-29 30-39 12
PAL16R8D/B 22-30 30-39 12
PAL16R6D/B 22-31 30-39 12
PAL16R4D/B 22-32 30-39 12
AmPAL16R8 AmPAL16L8/B/AL/A/Q/L 90-29 30-35 14
AmPAL16R8/B/AL/A/Q/L 90-30 30-35 14
AmPAL16R6/B/AL/A/Q/L 90-31 30-35 14
AmPAL16R4/B/AL/A/QIL - 90-32 30-35 14
PAL16R8/B-2/B-4/ PAL16L8/B-2/B-4/A/A-2/A-4 20-29 30-35 14
A/A-2/A-4 PAL16R8/B-2/B-4/A/A-2/A-4 20-30 30-35 14
PAL16R6/B-2/B-4/A/A-2/A-4 20-31 30-35 14
PAL16R4/B-2/B-4/A/A-2/A-4 20-32 30-35 14
PALC16R8Q-25 PALC16L8Q-25 — — —
(CMOS) PALC16R8Q-25 —_— _ -_
PALC16R6Q-25 — — —
PALC16R4Q-25 — — —
AmPAL16HD8 AmPAL16HSA/L 90-35 30-35 14
AmPAL16HDSA/L 90-37 30-35 14
AmPAL16LD8A/L 90-36 30-35 14
Arithmetic PAL16X4 20-33 30-35 14
Combinatorial AmPAL18P8B/AL/A/Q/L 90-10 30-38 19
PAL10H8 PAL10H8/-2 20-20 30-35 14
Combinatorial PAL10L8/-2 20-25 30-35 14
PAL12H6/-2 20-21 30-35 14
PAL12L6/-2 20-26 30-35 14
PAL14H4/-2 20-22 30-35 14
PAL14L4/-2 20-27 30-35 14
PAL16H2/-2 20-23 30-35 14
PAL16L2/-2 20-28 30-35 14
PAL16C1/-2 20-24 30-35 14
24 Pin and MegaPAL Device Families
ZL 30 ZM2200
Family Product Code Rev. Rev.
Macrocell (Async) AmPALC29MA16-35/-45 - — —
Macrocell (Sync) AmPALC29M16-35/-45 — — —
Varied with XOR PAL32VX10/A 21-66 — 23
Varied Product Terms AmPAL22V10/-15/A 91-70 30-38 10
Varied Terms (CMOS) PALC22V10H-25/35 — — —
Registered XOR PAL22RX8A 21-98 —_ 23
3.96 X monotithic I Memories £1

Programmer Reference Guide
R R ————,——,— — e —

Stag Microsystems

ZL 30 ZM2200
Family Product Code Rev. Rev.
Asynchronous PAL20RA10-20 —_ —_ —
PAL20RA10 21-77 30-37 15
AmPAL20XRP10 AmPAL22XP10-20/-30L/-30/-40L — —_ —
AmPAL20XRP10-20/-30L/-30/-40L — — —
AmPAL20XRP8-20/-30L/-30/-40L - — —
AmPAL20XRP6-20/-30L/-30/-40L — — —
AmPAL20XRP4-20/-30L/-30/-40L — — —
PAL20RS10 PAL20S10 21-81 30-39 15
Shared Product PAL20RS10 21-80 30-39 15
Terms PAL20RS8 21-79 30-39 15
PAL20RS4 21-78 30-39 15
PAL20X10A PAL20L10A 21-60 30-35 12
Exclusive OR PAL20X10A 21-61 30-35 12
PAL20X8A 21-62 30-35 12
PAL20X4A 21-63 30-35 12
PAL20X10 PAL20L10 21-60 30-35 12
Exclusive OR PAL20X10 21-61 30-35 12
PAL20X8 21-62 30-35 12
PAL20X4 21-63 30-35 12
AmPAL20L10 AmPAL20L10B/-20/AL - — —
AmPAL20RP10 AmPAL22P10B/AL/A — —_ -
AmPAL20RP10B/AL/A — — —
AmPAL20RP8B/AL/A — — —_
AmPAL20RP6B/AL/A —_ —_ —
AmPAL20RP4B/AL/A — —_ —_
PAL20R8B/B-2/A/A-2 PAL20L8B/B-2/A/A-2 21-56 30-35 12
PAL20R8B/B-2/A/A-2 21-57 30-35 12
PAL20R6B/B-2/A/A-2 21-58 30-35 12
PAL20R4B/B-2/A/A-2 21-59 30-35 12
PALC20R8Z PALC20L8Z-35/-45 24-56 — 23
Zero Standby Power PALC20R8Z-35/-45 24-57 — 23
PALC20R6Z-35/-45 24-58 — 23
PALC20R4Z-35/-45 24-59 —_ 23
Decoder PAL6L16A — — —
PAL8SL14A — — —
PAL12L10 PAL12L10 21-50 30-35 14
Combinatorial PAL14L8 21-51 30-35 14
PAL16L6 21-52 30-35 12
PAL18L4 21-53 30-35 12
PAL20L2 21-54 30-35 12
PAL20C1 21-55 30-35 12
MegaPAL Device PAL32R16 — — —
PROSE Device PMS14R21/A — — —
Programmable Logic PLS105-37 — -
Sequencer PLS167-33 —_ —_ —_
PLS168-33 —_ — —
Fuse Programmable Am29PL141 — —_ —_
Controller .
Programmable Event Am2971 — — —
Generator
ECL Registered PAL10H/10020EV/EG8 . — — —
ECL Combinatorial PAL10H20P8 —_ — -
ECL Latched PAL10H20G8 — — —

Notes: “—" = Contact programmer manufacturer.
The software and hardware revisions listed are the earliest revisions that support these products.
Later software and hardware revisions can be assumed to support these products.

i:l Monolithic m Memories l‘r' 3.97

Programmer Reference Guide
-

Storey Systems 1.0 P240 -
(214) 270-4135
20 Pin Device Families
Family Product Rev.
Sequencer AmPAL23S8-20/-25 —
Asynchronous PAL16RA8 4.04
PAL16RP8SA PAL16P8A 4.0
Programmable PAL16RP8A 4.0
Polarity PAL16RP6A 4.0
PAL16RP4A
PAL16R8-10 PAL16L8-10/H-15 4.0
PAL16R8-10/H-15 4.0
PAL16R6-10/H-15 4.0
PAL16R4-10/H-15 . 4.0
PAL16R8D/B PAL16L8D/B 4.0
PAL16R8D/B 4.0
PAL16R6D/B 4.0
PAL16R4D/B 4.0
AmPAL16R8 AmPAL16L8/B/AL/A/Q/L —
AmPAL16R8/B/AL/A/Q/L —
AmPAL16R6/B/AL/A/Q/L —
_AmPAL16R4/B/AL/A/Q/L —
PAL16R8/B-2/B-4/ PAL16L8/B-2/B-4/A/A-2/A-4 2.0
A/A-2/A-4 PAL16R8/B-2/B-4/A/A-2/A-4 2.0
PAL16R6/B-2/B-4/A/A-2/A-4 2.0
PAL16R4/B-2/B-4/A/A-2/A-4 2.0
PALC16R8Q-25 PALC16L8Q-25 —
(CMOS) PALC16R8Q-25 —
PALC16R6Q-25 -
PALC16R4Q-25 —
AmPAL16HD8 AmPAL16HSA/L —
AmPAL16HDSA/L —
AmPAL16LD8SA/L —
Arithmetic PAL16X4 2.0
Combinatorial AmPAL18P8B/AL/A/Q/L —
PAL10H8 PAL10H8/-2 2.0
Combinatorial PAL10LS8/-2 2.0
PAL12H6/-2 2.0
PAL12L6/-2 2.0
PAL14H4/-2 2.0
PAL14L4/-2 2.0
PAL16H2/-2 2.0
PAL16L2/-2 2.0
PAL16C1/-2 2.0
24 Pin and MegaPAL Device Families
Family Product Rev.
Macrocell (Async) AmPALC29MA16-35/-45 —_
Macrocell (Sync) AmPALC29M16-35/-45 —
Varled with XOR PAL32VX10/A —
Varied Product Terms AmPAL22V10/-15/A —
Varied Terms (CMOS) PALC22V10H-25/35 —
Registered XOR PAL22RX8A —_
3.98 X monotithic BE) Memories €1

Programmer Reference Guide
e —

Storey Systems
Family Product Rev.
Asynchronous PAL20RA10-20 _
PAL20RA10 4.04
AmPAL20XRP10 AmPAL22XP10-20/-30L/-30/-40L —_
AmPAL20XRP10-20/-30L/-30/-40L —
AmPAL20XRP8-20/-30L/-30/-40L —
AmPAL20XRP6-20/-30L/-30/-40L —
AmPAL20XRP4-20/-30L/-30/-40L -
PAL20RS10 PAL20S10 —
Shared Product PAL20RS10 —_
Terms PAL20RS8 _
PAL20RS4 —
PAL20X10A PAL20L10A 2.0
Exclusive OR PAL20X10A 2.0
PAL20X8A 2.0
PAL20X4A 2.0
PAL20X10 PAL20L10 2.0
Exclusive OR PAL20X10 2.0
PAL20X8 2.0
PAL20X4 2.0
AmPAL20L10 AmPAL20L10B/-20/AL —
AmPAL20RP10 AmPAL22P10B/AL/A —
AmPAL20RP10B/AL/A —
AmPAL20RP8B/AL/A —
AmPAL20RP6B/AL/A —
AmPAL20RP4B/AL/A —
PAL20R8B/B-2/A/A-2 PAL20L8B/B-2/A/A-2 2.0
PAL20R8B/B-2/A/A-2 2.0
PAL20R6B/B-2/A/A-2 2.0
PAL20R4B/B-2/A/A-2 2.0
PALC20R8Z PALC20L8Z-35/-45 —
Zero Standby Power PALC20R8Z-35/-45 —_
PALC20R62Z-35/-45 —
PALC20R4Z-35/-45 —
Decoder PAL6L16A —
PAL8L14A —
PAL12L10 PAL12L10 2.0
Combinatorial PAL14L8 2.0
PAL16L6 2.0
PAL18L4 2.0
PAL20L2 2.0
PAL20C1 2.0
MegaPAL Device PAL32R16 —
PROSE Device PMS14R21/A —
Programmable Logic PLS105-37 —
Sequencer PLS167-33 —_
PLS168-33 —
Fuse Programmable Am29PL141 —
Controller
Programmable Event Am2971 —
Generator
ECL Registered PAL10H/10020EV/EG8 —
ECL Combinatorial PAL10H20P8 —_
ECL Latched PAL10H20G8 —_

Notes: “—" = Contact programmer manufacturer.
The software and hardware revisions listed are the earliest revisions that support these products.

Later software and hardware revisions can be assumed to support these products.

Pu | Monolithic EX] memrories &1

3-99

Programmer Reference Guide
p—

Structured Design 1.0 SD 20/24
2.0 SD 1000
(408) 988-0725
20 Pin Device Families
SD 20/24 SD 1000
Family Product Rev. Rev.
Sequencer AmPAL23S8-20/-25 — _—
Asynchronous PAL16RA8 - —
PAL16RP8A PAL16P8A — —
Programmable PAL16RP8A — —
Polarity PAL16RP6A — —
PAL16RP4A — —
PAL16R8-10 PAL16L8-10/H-15 —_ 1.05
PAL16R8-10/H-15 — 1.05
PAL16R6-10/H-15 — 1.05
PAL16R4-10/H-15 — 1.05
PAL16R8D/B PAL16L8D/B — 1.05
PAL16R8D/B — 1.05
PAL16R6D/B — 1.05
PAL16R4D/B — 1.05
AmPAL16R8 AmPAL16L8/B/AL/A/Q/L — 1.05
AmPAL16R8/B/AL/A/Q/L — 1.05
AmPAL16R6/B/AL/A/Q/L — 1.05
_AmPAL16R4/B/AL/A/Q/L — 1.05
PAL16R8/B-2/B-4/ PAL16L8/B-2/B-4/A/A-2/A-4 1.6 1.05
A/A-2/A-4 PAL16R8/B-2/B-4/A/A-2/A-4 1.6 1.05
PAL16R6/B-2/B-4/A/A-2/A-4 1.6 1.05
PAL16R4/B-2/B-4/A/A-2/A-4 1.6 1.05
PALC16R8Q-25 PALC16L8Q-25 —_ —
(CMOS) PALC16R8Q-25 — —
PALC16R6Q-25 — —
PALC16R4Q-25 — —
AmPAL16HD8 AmPAL16H8A/L — 1.05
AmPAL16HDSA/L — 1.05
AmPAL16LD8A/L — 1.05
Arithmetic PAL16X4 1.6 1.05
Combinatorial AmPAL18P8B/AL/A/Q/L — 1.05
PAL10H8 PAL10H8/-2 1.6 1.05
Combinatorial PAL10L8/-2 1.6 1.05
PAL12H6/-2 1.6 1.05
PAL12L6/-2 1.6 1.05
PAL14H4/-2 1.6 1.05
PAL14L4/-2 1.6 1.05
PAL16H2/-2 1.6 1.05
PAL16L2/-2 1.6 1.05
PAL16C1/-2 1.6 1.05
24 Pin and MegaPal Device Familles
SD 20/24 SD 1000
Family Product Rev. Rev.
Macrocell (Async) AmPALC29MA16-35/-45 —_ —_
Macrocell (Sync) AmPALC29M16-35/-45 —_ —_
Varled with XOR PAL32VX10/A — —_—
Varled Product Terms AmPAL22V10/-15/A —_ 1.05
Varied Terms (CMOS) PALC22V10H-25/35 — —
Reglisteread XOR PAL22RX8A - -
3-100 &\ Monolithic m Memories bn

i

Programmer Reference Guide

Structured Design

SD 20/24 SD 1000
Family Product Rev. Rev.
Asynchronous PAL20RA10-20
PAL20RA10 — —
AmPAL20XRP10 AmPAL22XP10-20/-30L/-30/-40L — —
AmPAL20XRP10-20/-30L/-30/-40L — —
AmPAL20XRP8-20/-30L/-30/-40L — —
AmPAL20XRP6-20/-30L/-30/-40L — —
AmPAL20XRP4-20/-30L/-30/-40L — —
PAL20RS10 PAL20S10 — —
Shared Product PAL20RS10 - —_
Terms PAL20RS8 — —_
PAL20RS4 — —
PAL20X10A PAL20L10A 1.6 1.05
Exclusive OR PAL20X10A 1.6 1.05
PAL20X8A 1.6 1.05
PAL20X4A 1.6 1.05
PAL20X10 PAL20L10 1.6 1.05
Exclusive OR PAL20X10 1.6 1.05
PAL20X8 1.6 1.05
PAL20X4 1.6 1.05
AmPAL20L10 AmPAL20L10B/-20/AL — —
AmPAL20RP10 AmPAL22P10B/AL/A - —
. AmPAL20RP10B/AL/A — —
AmPAL20RP8B/AL/A — —
AmPAL20RP6B/AL/A - —
'AmPAL20RP4B/AL/A — —
PAL20R8B/B-2/A/A-2 PAL20L8B/B-2/A/A-2 1.6 1.05
PAL20R8B/B-2/A/A-2 1.6 1.05
PAL20R6B/B-2/A/A-2 1.6 1.05
PAL20R4B/B-2/A/A-2 1.6 1.05
PALC20R8Z PALC20L82Z-35/-45 — —
Zero Standby Power PALC20R8Z-35/-45 — —
PALC20R6Z-35/-45 — —
PALC20R4Z-35/-45 — —
Decoder PAL6L16A — —
PAL8L14A — —
PAL12L10 PAL12L10 1.6 1.05
Combinatorial PAL14L8 1.6 1.05
PAL16L6 1.6 1.05
PAL18L4 1.6 1.05
PAL20L2 1.6 1.05
PAL20C1 1.6 1.05
MegaPAL Device PAL32R16 —_ —
PROSE Device PMS14R21/A — —
| Programmable Logic PLS105-37 —_ —
Sequencer PLS167-33 — —_
PLS168-33 —_ —_
Fuse Programmable Am29PL141 — _
Controller
Programmable Event Am2971 — —
Generator
ECL Registered PAL10H/10020EV/EG8 — ==
ECL Combinatorial PAL10H20P8 —_ —_
ECL Latched PAL10H20G8 — —

- Notes: “—" = Contact programmer manufacturer.
The software and hardware revisions listed are the earliest revisions that support these products.
Later software and hardware revisions can be assumed to support these products.

2\ monoiithic B Memories &1 3-101

Programmer Reference Guide
1

Varix 1.0 Omni Programmer
. 1.1 Adapter HVX5A-B01
(214) 437-0777 1.2 Adapter AO1
20 Pin Device Familles
Software
Family Product Rev.
Sequencer AmPAL23S8-20/-25 —_
Asynchronous PAL16RA8 —
PAL16RP8SA PAL16P8A 3.18
Programmable PAL16RPSA 3.18
| Polarity PAL16RP6A 3.18
PAL16RP4A 3.18
PAL16R8-10 PAL16L8-10/H-15 3.18
PAL16R8-10/H-15 3.18
PAL16R6-10/H-15 3.18
PAL16R4-10/H-15 3.18
PAL16R8D/B PAL16L8D/B 3.18
PAL16R8D/B 3.18
PAL16R6D/B 3.18
PAL16R4D/B ‘ 3.18
AmPAL16R8 AmPAL16L8/B/AL/A/Q/L —_—
AmPAL16R8/B/AL/A/Q/L —_
AmPAL16R6/B/AL/A/Q/L -
AmPAL16R4/B/AL/A/Q/L -
PAL16R8/B-2/B-4/ PAL16L8/B-2/B-4/A/A-2/A-4 3.18
A/A-2/A-4 PAL16R8/B-2/B-4/A/A-2/A-4 3.18
PAL16R6/B-2/B-4/A/A-2/A-4. 3.18
PAL16R4/B-2/B-4/A/A-2/A-4 3.18
PALC16R8Q-25 PALC16L8Q-25 —
(CMOS) PALC16R8Q-25 —
PALC16R6Q-25 —
PALC16R4Q-25 —
AmPAL16HD8 AmPAL16HSA/L —
AmPAL16HDSA/L —
AmPAL16LD8A/L —
Arithmetic PAL16X4 3.18
Combinatorial AmPAL18P8B/AL/A/Q/L -
PAL10H8 PAL10H8/-2 3.18
Combinatorial PAL10L8/-2 3.18
PAL12H6/-2 3.18
PAL12L6/-2 3.18
PAL14H4/-2 3.18
PAL14L4/-2 3.18
PAL16H2/-2 3.18
PAL16L2/-2 3.18
PAL16C1/-2 3.18
24 Pin and MegaPAL Device Families
Software
Family Product Rev.
Macrocell (Async) AmPALC29MA16-35/-45 —_
Macroceli (Sync) AmPALC29M16-35/-45 —_
Varled with XOR PAL32VX10/A 5.00A
Varled Product Terms AmPAL22V10/-15/A —
Varied Terms (CMOS) PALC22V10H-25/35 5.00A
Reglstered XOR PAL22RX8A 5.00A
3.102 2\ Monoittnio HE) Memories &1

Programmer Reference Guide
s —

Varix
Software
Familly Product Rev.
Asynchronous PAL20RA10-20 —
PAL20RA10 3.18
AmPAL20XRP10 AmPAL22XP10-20/-30L/-30/-40L —
AmPAL20XRP10-20/-30L/-30/-40L —
AmPAL20XRP8-20/-30L/-30/-40L —
AmPAL20XRP6-20/-30L/-30/-40L —
AmPAL20XRP4-20/-30L/-30/-40L —
PAL20RS10 PAL20S10 —_
Shared Product PAL20RS10 —_—
Terms PAL20RS8 —
PAL20RS4 —
PAL20X10A PAL20L10A 3.18
Exclusive OR PAL20X10A 3.18
PAL20X8A 3.18
PAL20X4A 3.18
PAL20X10 PAL20L10 3.18
Exclusive OR PAL20X10 3.18
PAL20X8 3.18
PAL20X4 3.18
AmPAL20L10 AmPAL20L10B/-20/AL —
AmPAL20RP10 AmPAL22P10B/AL/A —
AmPAL20RP10B/AL/A —
AmPAL20RP8B/AL/A —
AmPAL20RP6B/AL/A —_
AmPAL20RP4B/AL/A —
PAL20R8B/B-2/A/A-2 PAL20L8B/B-2/A/A-2 3.18
PAL20R8B/B-2/A/A-2 3.18
PAL20R6B/B-2/A/A-2 3.18
PAL20R4B/B-2/A/A-2 3.18
PALC20R8Z PALC20L8Z-35/-45 5.0
Zero Standby Power PALC20R8Z-35/-45 5.0
PALC20R6Z-35/-45 5.0
PALC20R4Z-35/-45 5.0
Decoder PAL6L16A 3.18
PAL8SL14A 3.18
PAL12L10 PAL12L10 3.18
Combinatorial PAL14L8 3.18
PAL16L6 3.18
PAL18L4 3.18
PAL20L2 3.18
PAL20C1 3.18
MegaPAL Device PAL32R16 —
PROSE Device PMS14R21/A 5.00A
Programmable Logic PLS105-37
Sequencer PLS167-33 -
PLS168-33 —
Fuse Programmable Am29PL141 —
Controller
Programmable Event Am2971 —
Generator
ECL Registered PAL10H/10020EV/EG8 —
ECL Combinatorial PAL10H20P8 —_
ECL Latched PAL10H20G8 —_

Notes: “—" = Contact programmer manufacturer.
The software and hardware revisions listed are the earliest revisions that support these products.

Later software and hardware revisions can be assumed to support these products.

zl Monolithic m Memories Zl

3-103

ProPAL, HAL and ZHAL

Devices Program

ProPAL, HAL and ZHAL devices are programmable logic devices
that are programmed, marked and functionally tested by Mono-
lithic Memories. Our functional testing offers the user board-
ready product at quality levels as stringent as 50 Parts Per Million
(PPM), providing significant benefits in both quality and manufac-
turing cost savings. The ProPAL, HAL and ZHAL device program
provides system manufacturers a risk-free migration path from
system prototype to full production with extremely high-quality,
board-ready devices.

ProPAL Devices

ProPAL (Programmed PAL) devices are simply PAL devices that
Monolithic Memories programs and tests for you. You receive a
fully functional device without having to do any programming and
testing, and still have the flexibility to handle design changes
easily.

HAL Devices

HAL (Hard Array Logic) devices are to PAL devices as ROMs are
to PROMs. Instead of fuses in the logic array, your pattern is
implemented using metal links that are masked in during wafer
fabrication.

ZHAL Devices

ZHAL devices are Zero-Standby-Power CMOS HAL devices.
These devices can implement any pattern from our standard and
combinatorial 20-pin and 24-pin PAL device families with the
greatly reduced power consumption only CMOS can offer.

All ZHAL devices are fully HC/HCT compatible, making them
easy to use in TTL and CMOS environments.

Should You Use a ProPAL, HAL or
ZHAL Device?

PAL devices offer the flexibility and convenience needed for
prototyping your innovative designs. They provide a means for

designing an efficient system by integrating functions and saving
board space. For design, prototyping and low-volume produc-
tion, it makes sense to program and test your own PAL devices.
You always have the option of making last-minute design tweaks
as you fine-tune your system design.

Once your production volumes begin to ramp up to higher
volumes our ProPAL, HAL and ZHAL device offerings provide a
cost-effective solution.

At modest initial volumes, ProPAL devices provide the best solu-
tion by eliminating programming and testing needs while retain-
ing enough flexibility to accommodate design changes. We offer
three different testing options for ProPAL devices, which are
described below. A detailed technical description of what these
testing options involve follows in the functional testing section.

The AutoVec™ option provides a cost-effective solution for low-
volume business (as few as 250 devices/pattern) at a typical
quality level of 500-700 PPM.

When your volumes reach a moderate volume of a few thousand
devices per year for each pattern, straight-functional or AC-
functional tested ProPAL devices provide the right solution.
Straight-functional testing provides typical quality levels of 200-
400 PPM, and AC-functional testing provides 50 PPM level
quality. Of course the AutoVec option is available fortheselarger
volumes, but larger volume business is usually handled with the
straight-functional or AC-functional testing options.

When your design has stabilized and your production volume has
ramped up to several thousand devices per year, HAL or ZHAL
devices are the most cost-effective way to purchase your pro-
grammable logic. All HAL and ZHAL devices are fully AC-
functional tested and have final quality levels of better than 50
PPM.

The quality levels provided by the various ProPAL, HAL and
ZHAL device options are summarized in Table 1.

TESTING OPTION ’
AUTOVEC™ STRAIGHT AC-
FUNCTIONAL | FUNCTIONAL
DEVICE TYPE
ProPAL Devices 500~700 PPM 200-400 PPM 50 PPM
HAL Devices N/A N/A 50 PPM
ZHAL Devices N/A N/A 50 PPM

Table 1. Quality Levels for the Various Testing Alternatives in the ProPAL, HAL and ZHAL Devices Program.

3-104

a Monolithic m Memories z‘

ProPAL, HAL, and ZHAL Devices Program

Quality and Cost Savings

The quality and cost savings benefits the ProPAL, HALand ZHAL
device program offers are substantial. The investment the PAL
device user makes in ProPAL, HAL or ZHAL devices yields a
significant return in product quality and manufacturing savings.

The quality is a result of our many years and millions of units of
experience in the design, manufacture, programming and testing
of PALdevices. This experience lets us provide PAL device users
finished quality levels as stringent as 50 PPM.

The reduced manufacturing costs are derived from the high
quality provided by the ProPAL, HAL and ZHAL device (quality
that results in increased manufacturing yield) and reduced com-
ponent processing and handling costs.

The manufacturing yield (the number of working systems pro-
duced as a percentage of total number of systems produced) is
afunction of the quality of the components in a system. Increas-
ing the quality of the components naturally increases the manu-
facturing yield. Table 2is atabulation of values demonstrating the
relationship between component quality and manufacturing
yield.

Additional manufacturing cost savings come in reduced process-
ing and handling costs. Purchasing pre-programmed and func-
tionally tested devices direct from the factory eliminates the need
.for the user to perform any programming or functional testing.
This eliminates the need for the user to carry all the associated
overhead:

Programming (programmer equipment cost, floor space, main-
tenance and calibration, operator costs)
Labeling/stripping/marking (equipment cost, floor space, main-
tenance, operator costs)

Vector generation (computer/software costs, engineering
costs)

Testing (equipment costs, operator costs)

Elimination of sockets (which allows for auto-insertion)

Also, when ProPAL, HAL or ZHAL devices are utilized, handling-
related rejects are virtually eliminated. We have found handling
errors to be one of the largest sources of rejects. Mixed device
types, mixed bit patterns, mixed reject and good devices, bent
leads and ESD damaged devices can all result in board-level

failures, failures that can be avoided with ProPAL, HAL or ZHAL
devices. ProPAL, HAL and ZHAL devices come programmed,
marked and fully tested, ready to go directly from the shipping box
to the production floor.

A Cost Savings Example

A systems manufacturer produces 2000 systems per month,
each having 10 PAL devices (total 20,000 PAL devices/month).
This manufacturer’s cost of diagnosing and reworking a non-
functional system (at system test) is $150. What cost benefits
does the ProPAL, HAL and ZHAL devices program offer this
manufacturer? .

Casel

No functional testing is performed—5000 PPM board-level
quality.

Manufacturing yield (from Table 2) = 95.1%

4.9% or 98 systems/month require rework.

At $150/system, total rework costs/month are:
98 x $150 = $14,700.

At 20,000 devices/month, rework costs are:
$14,700/20,000 = $0.73/device.

Caselll

AutoVec testing is performed—500 PPM board-level quality. n

Manufacturing yield (from Table 1) = 99.5%.

0.5% or 10 systems/month require rework.

At $150/system, total rework costs/month are:
10 x $150 = $1500.

At 20,000 devices/month, rework costs are:

$1500/20,000 = $0.08/device.

DEVICES/SYSTEM
EEEE—— 5 25 50 100
PPM
50 99.975% | 99.95% | 99.87% | 99.75% | 99.5%
500 99.75% | 99.5% 98.8% 97.5% 95%
5000 97.5% 95.1% 88% 78% 61%
10,000 95.1% 91.5% 78% 61% 37%

Table 2. Manufacturing Yield for Various Component Quality Levels

:' Monolithic ﬁ[i.ﬂ Memoriles El 3-105

ProPAL, HAL, and ZHAL Devices Program

Case lll
AC-functional testing is performed—50 PPM board-level quality.
Manufacturing yield (from Table 2) = 99.975%.
0.025% or < 1 system/month requires rework.
At $150/system, total rework costs/month are:

< $150.
At 20,000 devices/month, rework costs are:

< $150/20,000 = $0.01/device.
Cost Savings (utilizing):
Autovec testing: $0.73 — $0.08 = $0.65/device.
AC-functional testing: $0.73 — $0.01 = $0.72/device.
This example does not take into account a few things:
» The cost of the manufacturer doing the programming.
» Additional manufacturing cost savings (e.g. elimination of

sockets allowing auto-insertion).

» The cost adder for ProPAL, HAL and ZHAL device services.
The cost of doing programming varies from manufacturer to
manufacturer. Generally, unless a manufacturer does high
volume programming, this cost can be substantial.
Additionally, other manufacturing cost benefits are also realized.
If PAL devices are being socketed, the high quality levels of
ProPAL, HAL and ZHAL devices allow for elimination of those
sockets and the utilization of auto-insertion in the manufacturing
flow. Board-ready devices also lend themselves more readily to
just-in-time or ship-to-stock purchasing and manufacturing pro-

grams.

The cost of ProPAL, HAL and ZHAL device services depends on

a number of factors (device type, volume, device base price). It

is typically much less than it costs a manufacturer to program and
test devices, not to mention the savings realized through the
increased quality.

The Importance of Functional Testing

Programming is final manufacturing, and the quality of a pro-
grammed device must be verified by thorough testing. After
programming, adevice is “array verified.” This verification checks
the fuse array to verify that the pattern programmed into the
device is correct. However, verification does not guarantee
functionality. Devices can pass array verification but fail in the
circuit board. These are called post-programming functional
rejects. Post-programming functional testing simulates the ac-
tual operation of the device to verify functionality. This testing
detects these functional rejects before they get into your system.
The typical post-programming functional reject rate for PAL
devices is about 0.5-1.0%, or 5000-10,000 PPM. Our AC-
functional testing options for ProPAL, HAL and ZHAL devices
offer 50 PPM quality levels.

ProPAL, HAL and ZHAL Device
Functional Testing

Thoroughfunctionaltesting is atthe heart of our ProPAL, HAL and
ZHAL device program. We offer a range of programming and
testing options. These are discussed in detail in this section.

All functional testing of PAL devices starts with test vectors, but
the similarity ends there, because when it comes to functional
testing of PAL devices, all vectors are not alike. They range in
complexity from simple, short pseudo-random testing sequences
(e.g. Data 1/O’s Fingerprint™ Test) to sophisticated structured
vectors generated by expensive software programs used interac-
tively by dedicated test engineers.

We offer a sophisticated brand of signature analysis testing and
two types of structured vector testing. The signature analysis
testing is performed on the AutoVec tester. The two structured
vector testing options are straight-functional vector testing and
AC-functional vector testing. Straight-functional testing provides
full functional and DC threshold testing. AC-functional testing
includes this straight-functional testing plus functional testing for
AC conditions. The following is a brief description of thesetesting
options and what they yield in final quality.

AutoVec Testing

The AutoVec tester is an extremely sophisticated signature
analysistester. ltgenerates a sequence of upto 20 million vectors
viaaproprietary hardware-based pseudo-random vector genera-
tion algorithm. These vectors provide a typical quality level of
500~700 PPM for finished product.

AutoVec testing requires less engineering interaction and setup
time than straight-functional and AC-functional testing (while still
providing excellent quality levels), and the business conditions
for ProPAL devices produced with AutoVec testing are more
flexible. These more flexible business conditions include lowered
NREs and reduced minimum volume requirements.

Straight-Functional Testing

The straight-functional and AC-functional testing options offer the
next level of quality in the ProPAL, HAL and ZHAL device
program. The increase in quality is a result of the increasingly
sophisticated structured test vectors and test equipment used for
testing.

When generating vectors for this level of testing we start with a
transistor-level schematic of the device under test. With this we
can model internal gate-level stuck-at-faults. Most other vector
generation packages use inexact models—such as logic diagram
representations—as the basis for vector generation. With our
exact device representation it is possible to cover all possible
faults of the internal gates (where these faults can occur).

Monolithic Memories test engineers, using proprietary software,
then check for three-state faulting. This is in addition to the stuck-
at 1 or stuck-at 0 faulting tested by most commercially available
test packages and conventional testing methods.

3-106

z‘ Monollthlcm Memories I‘rl

ProPAL, HAL, and ZHAL Devices Program

Monolithic Memories proprietary software is then used to check
the design for potential design problems (e.g. race conditions).
Additional vectors are added as needed to test for these condi-
tions and guarantee reproducible test results.

In the process Monolithic Memories test engineers interactively
add vectors until 100% of the detectable faults are covered. The
end result: guaranteed 90% fault coverage on every pattern we
test, with typical fault coverage >95% and typical system quality
levels of 200-400 PPM. If 90% fault coverage cannot be
obtained our Field Application Engineers will work with the
customer to improve the testability of the design, or we will
continue processing your product upon receipt of asigned waiver.

AC-Functional Testing

The starting point for AC-functional testing is the straight-func-
tional DC vector set. The excellent functional testing coverage
the straight functional vectors provide is now extended to thresh-
old condition AC testing. Monolithic Memories test engineers,
working with additional proprietary in-house ‘“intelligent” soft-
ware, use these vectors as the basis for generating their AC test
vectors. For high-quality AC testing, the design must be consid-
ered. Multiple feedback paths must be accounted for in the
testing sequence. These “intelligent” software packages “learn”
the design and flag the test engineer when special AC testing
considerations are found. In this iterative process the engineer
adds vectors to cover AC testing conditions. Typically, the
number of DC functional vectors is doubled or tripled for full AC
testing coverage. The expanded set of vectors is incorporated
into a test program that performs DC, functional, threshold-func-
tional and AC-functional testing, all at the VCC extremes.

&\ Mononthio [Memories &1

The end result is excellent system level quality of < 50 PPM.

When you utilize our ProPAL, HAL and ZHAL devices program
you are getting tremendous quality and manufacturing cost
benefits—semicustom product without the risks:

You can prototype your system and start production with
standard PAL devices.

The Non-Recurring Engineering (NRE) charges for ProPAL,
HAL and ZHAL devices devices are far lower than those
normally required for a semicustom circuit, and can be
amortized over your first production quantity.

You save on the cost of programming and testing devices. This
also shortens your production cycle, since you can plug the
devices into the socket with no additional processing.

* You save on the costs of generating test programs and func-
tionally testing devices. Alldevices are fully functionally tested
before they leave the factory.

We provide you with custom marking. This saves you the ad-
ded expense of stripping the mark from standard devices and
remarking them with your own mark.

You eliminate handling errors. When you use ProPAL, HAL and
ZHAL devices, you are receiving board-ready product. No
need to program, mark or test. And the elimination of these
extraprocessing steps means the elimination of many handling
steps, which can be the number one cause of component
defects.

You eliminate or reduce board and system-level reworking.
The high quality levels provided by our ProPAL, HAL and ZHAL
device offerings significantly reduces board reworking costs.

3-107

Testability

Introduction

With digital logic design, it is all too easy to design a circuit which
merely implements a specified function. When production starts
it is suddenly found that the circuit cannot be tested, or perhaps
that tests cannot be performed economically. Dealing with this
situation can, at the very least, have a negative impact on the in-
troduction of the system into the marketplace.

Potential headache can be avoided by taking test issues into
consideration during the initial design. Instead of just designing a
circuit which implements a specified function, which is the bare
minimum that must be accomplished, that function needs to be
implemented in a manner which can be tested.

The purpose of this section is to establish the notion of testability
and its importance, and then to provide ways of avoiding the most
common untestable circuits. The issues will be discussed primar-
ily in the context of logic design in PLD’s, although they are also
relevant for general logic design.

After testability has been discussed for general circuits, some
specific testability circuitry on the PROSE device will be dis-
cussed. Finally, test vectors will be reviewed. Various kinds of
vectors are mentioned, and the general tools available for vector
generation will-be summarized.

Defining Testability — A Qualitative
Look

A completely testable design is one in which any and all device
faults can be systematically detected.

First note that the issue is one of devices, not designs. The design
itself must work as specified; that is the main job of the design
engineer. Once the design is implemented in a device, the issue
is how to test the device to make sure that the design has been
correctly implemented. Throughout this paper, then, it will be
assumed that a particular design works as is; we will just be
addressing its testability.

The easiest and most effective means of testing a circuit is
through a systematic series of tests. A random set of tests may
also do well, but does not yield much information regarding the
testability of a circuit itself. No number of random (or systematic)
vectors can test an inherently untestable circuit.

In order to be able to perform a systematic test sequence, every
part of the circuit under test must be accessible, so that it can be
controlled. Only then can each node be forced high or low as
needed. This is essentially a requirement of complete controlla-
bility of the circuit.

In order to-be able to detect faults every part of the circuit must
also be visible to the outside world, so that the results of each test
can be observed. In this manner, each node can be inspected to
determine its logic level. This requires complete observability.

These are, of course, the age-old issues of controllability and
observability, which are as important for digital logic circuits as
they are for so many other kinds of systems. If any portion of a
circuit is uncontrollable or unobservable, then the testability of the
entire circuit is compromised.

Figure 1 shows a couple of completely untestable circuits. The
integrity of the top input in Figure 1a can never be verified. No
matter whether it is shorted to ground, to V.o or whether it is
functioning correctly, the output will be the same. That is to say,

any faults on the top input cannot be observed at the output.

The circuit in Figure 1a would appear pretty useless as is. It is
possible, however, that instead of being directly grounded, the
second input may be driven by some distant signal, possibly on
a different PC board, which happens to be a a logic low. If you
cannot bring this line to a logic high, then it might as well be
grounded.

The circuit in Figure 1b essentially has no input. This circuit can
be thought of as a latch, but there is no way to change its logic
state. Therefore, it is completely uncontrollable.

—(D—

a. Unobservable

b. Uncontrollable
560 01

Figure 1. Untestable Circuits

Quantifying Testability

Intheory, if we want to quantify the testability of a given circuit, we
might first attempt to make a list of all possible things that could
go wrong with a circuit (no matter how unlikely), and then verify
that all such “faults” can be tested, in all combinations and
permutations. But for a circuit of any significance whatsoever, it
will rapidly become apparent that this is not a practical solution.:

3-108

I'J Monolithic ﬁliﬂ Memorles :l

Testability

What we need instead is ameasure which can give an empirically
reliable indication of the testability of a circuit, or of the quality of
a given set of tests. There are several different such measures,
but the most popular of these is the single stuck-at faults model.

There are several ways of analyzing circuits for single stuck-at
faults. For very large circuits, various testability analysis schemes
have been developed. However, for smaller circuits, especially of
the size that would be put into a PLD, the more common method
uses simulation.

Simulating Single Stuck-At Faults

A given circuit is first simulated. The quality of the simulation is
important; the more complete the simulation the better. A thor-
ough simulation can then serve as a benchmark test sequence
later. In this way, the fault simulation procedure also allows us to
measure the quality of a given simulation, or set of tests, in
addition to the testability of the circuit.

The results of the simulation are recorded. Next, one node in the
circuit is modeled with a “stuck-at” fault — either stuck-at-one
(SA1) or stuck-at-zero (SA0), as shown in Figure 2. The circuit is
now resimulated. If the simulation results of the modified circuit
are different from the simulation results of the good circuit, then
the fault was detected. If not, then we have a faulty circuit which
appears to operate correctly.

STUCK-AT-ONE (SA1)

STUCK-AT-ZERO (SA0)

Figure 2. Single “Stuck-At” Faults

This procedure is repeated for each node, one node at a time
(hence the name “single” stuck-at faults). The nodes are modeled
with both SA1 and SAO faults, so that for N nodes, we will have
2N simulations. If of those 2N simulations, D of them produced
simulation results different from those of the original circuit, then
we say that this simulation tested this circuit with a test coverage
of D/(2N)*100%. Whereas this specifically tests only for single
faults, experience shows that it is also a good test for multiple
stuck-at faults.

Undetected Faults

Why are some of the faults not detected? For simple combinato-
rial logic, there are two basic reasons: either the simulation was
not complete enough to find the fault, or the circuit itself cannot be
tested for the fault. So when an undetected fault is located, the
first step taken is to add vectors to the simulations which will
exercise the node being tested. By doing this, we gradually

improve the quality of the simulation, and thus the quality of the
test sequence that we can use in production.

It is possible that certain nodes will have undetectable faults for
which no new vectors can be added. These are the result of an
untestable design. It is the joint job of the test and design
engineers to generate a test sequence that is as complete as
possible. It is the design engineer’s responsibility to provide a
circuit which is testable. If both of these responsibilities are
carried out, the result will be a testable circuit which can be tested
with an exhaustive test sequence. This will yield the highest
quality system. Note, however, that the overall responsibility is
shared between the design and test engineers.)

Needless to say, this process of analyzing the testability of a
circuit is not done all by hand; software aids are used. There are
many different kinds of programs that run on many different kinds
of systems, ranging from PCs to workstations to mainframes.
Some of them are standalone programs; others are integrated
into larger overall environments. Their specific capabilities also
vary, but in general, they can simulate a given circuit with a given
set of vectors; analyze the test coverage that the vectors provide
for the circuit; and generate new tests, either from scratch or by
improving on the coverage of a few manually generated “seed”
vectors. Most can also point out potential problems areas of a
circuit, such as race conditions and logic hazards.

Finally, one frequently asked question is “So what if there is afault
that can never be detected. Who cares?” Theoretically, this
question is not unreasonable. However, most companies will not
feel comfortable telling a customer “We only tested half of the
system, but if anything goes wrong with the other half, you'll never
notice it.” In addition, as will be seen, many untestable circuits
occur as a result of poor design practices.

Testability issues for sequential circuits have implications far
beyond the test bed. Indeed, failure to take these issues into
account can greatly affect the normal performance of a system.
The key for state machines is controllability. The challenge is to
make all elements of the circuit controllable, both for testing and
for general functionality.

Designing Testable Combinatorial
Circuits

All of the previous procedures dealt mostly with the ways in which
existing circuits are treated. However, if a finished circuit is found
to be untestable, then it must be redesigned for testability. An
easier approach is to design for testability from the beginning.
Unfortunately there is no direct recipe for atestable design. There
are, however, many common ways of making a circuit untestable.
Most of this section is devoted to pointing out such problems.

The simplest kind of problem is redundant logic. Figure 3a shows
one such circuit. It has a purely redundant product term. If the
output of either of the product terms is stuck low, for any reason,
then as long as the other product term is good, the fault will never
be visible at the output.

This may initially look like a benefit, since we have what we could
call a "primary” circuit with a “backup.” One can cover up some of
the failures of the other (but not all failures). If this kind of

z‘ Monolithic m Memorles l‘rl

3.109

Testability

redundancy is truly desired, this is not the way to achieve it. When
you ship out this circuit, you do not know if you really have a
working primary and backup. The primary may already be mal-
functioning; since it was never tested, you will never know. If you
want useful, reliable redundancy, test circuitry must be added, as
in Figure 3b, so that each part of the circuit can be independently
tested. ’

[p—
B
A'B + A'B = A'B
550 03a
a. A Purely Redundant Circuit
A,
B 1
PRIMARY —
BACKUP
= A*B*PRIMARY
550 03b + A*B*"BACKUP

b. Testable Redundant Circuit
Figure 3. Making Redundancy Testable
Figure 4 shows another redundant circuit. Although the product
terms are not identical, the larger AND gate is really redundant.
Any stuck-low faults at the output of this gate are not detectable.
c

D
e

C'D'E + D’E = D'E

550 04

Figure 4. Circuit with a Redundant 3-Input AND Gate
Reconvergent Fanout

Redundant logic is a special case of what is called reconvergent
fanout. This is a term that refers to circuits that have inputs
splitting up, going through independent logic paths, and then
reconverging to form a single output, as shown in Figure 5. When
this happens, itis very easy to introduce untestable nodes. It may
not be easy to identify where such nodes are.

550 05

FANS OUT

RECONVERGES
Figure 5. Reconvergent Fanout

Figure 6 is an example of a reconvergent circuit. The inputs are
shared between two different product terms, which are eventually
summed. This circuit appears harmless enough, but it turns out
that the node indicated by “SA1” cannot be tested for a stuck-at-
one condition. In other words, there is no way that we can
guarantee that that node is operating correctly.

= A'B'C
+ B'C

Figure 6. A Reconvergent Circuit with an Untestable Node

It is worth analyzing this circuit a bit more closely. This will give
some insight into the kinds of analyses that are necessary when
evaluating circuits and generating tests, and into the ways in
which untestable nodes are created.

If we wish to prove that the node in question is not stuck high, then
we must force it low and prove that we were successful in doing
so. Thus we have two requirements: forcing the node low, and
seeing the logic low on the output — controlling and observing the
node.

First we raise input C high to force the node to a logic low
condition, as in Figure 7a. This satisfies our controllability require-
ment. Next we need to provide a way to propagate this logic low
to the output (Figure 7b). This is referred to as sensitizing a path
to the output. The first step is to get the logic low past the AND
gate. But if either input A or B is low, then the output of the AND
gate willbe low regardless of the node being tested. Thus we must
force both A and B to a logic high, so that if there is a low on the
output of the AND gate, we will know for sure that it came from the
node we are testing. This is shown in Figure 7c.

550 07a 550 07¢c
0
C=1
560 070 b. Observability: Sensitizing a Path to the Output 860 07d 4. Propagatirltgpz:ssitut‘!:ecgn%ng:te Sets Up an
Figure 7. Analyzing Testability
3-110

El Monolithic m Memories :'

Testability

Next we wish to get the logic low through the OR gate to the
output. To do this, we must insure that the second OR input is
always low; if it is high, then the output of the OR gate will be high
regardless of the node being tested. If we can keep the lower OR
input low, then if the node we are testing was sucessfully forced
into a low condition, then the output will be low. Otherwise the
output will be high. This can be seen in Figure 7d.

How do we keep the lower OR input low? By making the output
of the lower AND gate low, which can be done by setting one of
its inputs low. However, we have already required that all of the
inputs be high. Thus we have required a set of conditions that
cannot be met. One of three things will result:

1. Thelower AND gate has both inputs high, and therefore keeps
the lower OR input high. In this case, we may have been
successful in forcing the node under test low, but we cannot
see it at the output.

2. We bring input B low, allowing the lower OR input to go low.
However, now the output of the upper AND gate will always be
low. So we will see a low at the output, but we cannot be sure
exactly where the low came from.

3. We bring input C low, allowing the lower OR input to go low.
However, now we are no longer forcing the node under test
low.

So we can either force the node low, but cannot see the low at the
output; or, we can see a low at the output but cannot be sure of
its source; or, we cannot force the node itself low. In any case, we
will never be able to guarantee that the node under test is not
stuck high.

Note that the two “independent logic blocks” which generate the
signals that eventually reconverge are testable by themselves;
they are justAND gates. It is only when we hook them together via
the OR gate thatthe overall circuit becomes untestable. Thus the
testability of individual portions of a circuit does notguarantee that
the entire circuit will be testable when the testable pieces are all
connected.

We can minimize this circuit using the following steps:

A*B*C + B*C =A*B*C + B*C + A*B*B (by consensus)
=A'B'C+B*C+A'B
=A'B+B*'C

Thus the node we were trying to test is really not needed in the

logic. The resultant circuit is shown in Figure 8, and is completely
testable.

c . SA1

Do———D
4>°——5M |

Figure 9. A Messy Reconvergent Circuit

550 09

Not all reconvergent circuits are so simple. Figure 9 shows amore
complicated reconvergent circuit. Here some signals have to
travel through several levels of logic to reach their final destina-
tion. This introduces considerable skew into the circuit, and will
produce glitches on the outputs during certain transitions. In
addition to this, there is again a stuck-at-one fault that cannot be
tested.

Circuits like this can result from the design iteration process, as
a designer tries to debug a circuit. By adding this and that,
eventually the circuit works. But it is a mess, has poor timing
characteristics, and is untestable. Alittle analysis of the logic itself
shows that:

the bottom output is
(A+B)=AB

thus the middle output is
(A'B)=A+B

which makes the top output
(A*B*C + C*(A + B)) = (A*B*C +A*B*C)
=(A"B)
=A+B

That is, the top two outputs are actually the same, and the third
output is just the inverse of the top two. As convoluted as the
original circuit looks, the logic itself is actually trivial. So if three
outputs are really needed for some reason, we can generatethem
independently, as in Figure 10a. If only two outputs are needed,
it is even easier. Figures 10b and 10c show two possibilities.

These circuits are much easier to understand, their timing char-
acteristics are better, and they are completely testable.

A
= A'B
B + B'C
¢ 550 08
Figure 8. The Minimized Circuit Is Testable
El Monollthlcm Memories l‘rl 3-111

Testability

A — - .

= /(/A +/B)
550 10a
a. A Cleaner 3-Output Version
A — .
B —| = /(A*B)
= /(/A +/B)
550 10b
b. A Clean, Fast 2-Output Version
A .
B = /(A*B)
= /(A + /B)

550 10c

c. A Slower 2-Output Version.

Figure 10. Simplifying the Circult of Figure 9.

The Importance of Minimization

The common factor behind all of the untestable circuits we have
examined is the fact that all of them were not minimal. By
minimizing the logic, we made the circuits testable. This is true in
general: UNMINIMIZED LOGIC CANNOT BE FULLY TESTED.

Very often, especially when designing with PLDs, an attempt is
made to minimize logic only to the point where it fits into a
particular PLD. Any further minimization is considered an aca-
demic waste of time. This is a grave misconception. Getting rid of
all extra product terms, and eliminating all extra literals on the
remaining product terms has real value. Failing to do so will result
in untestable nodes in the circuit.

Minimizing is not always enjoyable, since hand techniques are
usually too tedious, and Karnaugh maps are essentially useless
for more than four or five inputs. However, computers have long
been used to minimize logic. In particular, PALASM® software
(version 2.22 and later) has a minimization routine which can
minimize logic automatically before assembly.

Logic Hazards

One occasional side effect of minimization can be the introduction
of glitches into a circuit. Figure 11a shows such a “glitchy” circuit.
The waveform in Figure 11b shows that under steady-state
conditions, as long as inputs A and C are high, the output is high

X = A'B
+ /B*A
550 11a
a. A Glitchy Circuit
A
. __—l—
|
_ |
B | |
[
[11
[
[
x L
550 11b
b. Waveform for the Glitchy Circuit
A
B
C 00 01 1 10

of o] o ‘1 ,10
1 1 o '1 ‘1
550 11c J— |

c. "Gap” in the Karnaugh Map Indicates a Logic
Hazard

Figure 11. Examining a Glitchy Circuit

regardless of B. However, as B changes from high to low, causing
the top product term to shut off and the bottom one to turn on, the
inverter adds a bit of delay to the path that will turn on the lower
product term. Thus the top term may shut off before the bottom
one gets a chance to turn on. In this case, we have two logic low
signals going into the OR gate, giving alow on the output. As soon
asthe lower product term turns on, the output goes back high, but
not before the appearance of the high-low-high glitch.

Figure 11c shows the Karnaugh map for this circuit. It is minimal,
but there are two product terms which do not overlap; they are
“adjacent” in one location. These represent the two AND gates in
the circuit diagram. The arrows indicate the troublesome transi-

tion: when Aand C are high, and when B changes from high to low

orthe reverse. We can intuitively think of this as a “gap” between
the two adjacent product terms, in which a glitch may occur.

Note that glitching is not a certainty. It is called a hazardbecause
in certain situation, given certain timing situations, there is a
chance that a glitch will occur.

Note also that the glitch is not really caused by the minimization
process itself, but is caused by these “gaps”inthe Karnaugh map.
Unminimized logic with such gaps may also be glitchy.

3112

z' Monolithic m Memories i:l

Testability

APROM s agood example of such a circuit. PROMs can be used
to implement any logic function of their inputs. However, regard-
less of the function, itis implemented in acompletely unminimized
fashion, using complete minterms. So even a function as simple
as the one in Figure 12 (which could be implemented using a
single product term, grouping all 1's into a single cell) is imple-
mented with each 1 in its own cell. Thus there is a gap between
every cell, meaning that every transition is a potential glitch.
PROMs are notoriously glitchy, and it is for this reason that the
output of a PROM is actually undefined until its access time has
elapsed.

00 01 11 10

wf o [(D|Df o
off o (DI o
110@@0
100@@0

Figure 12. In a PROM, Every Transition Can Glitch

550 12

If we go back to the Karnaugh map in Figure 11c, we see that we
can eliminatethe gap —and the glitch—by adding a productterm
which overlaps both existing product terms and covers the gap.
This is shown in Figure 13a, with the resultant circuit shown in
Figure 13b.

A

CBOO 01 11 10

0 OFO
30)

0
1

a. A Redundant Product Term Can 550 13a
Eliminate the Glitch
X = A'B
+ /B'C
+ A'C
550 13b

b. A Glitch-Free, but Untestable Circuit

Figure 13. Eliminating Glitches

This circuit is no longer glitchy. Unfortunately, it is also no longer
testable, since we have added in a redundant product term which
cannot be tested (try it yourself). In order to have a circuit which
is both testable and glitch-free, we must add a test input to the

circuit which we can use to shut off the outside gates, isolating the
middle gate for testing (Figure 14a). When the circuit is operating
normally, the extra input is kept at a logic high condition, where it
does not interfere with the basic logic function.

The Karnaugh map for this circuit is shown in Figure 14b. Note
that all product terms overlap, but now the circuit is minimal. The
size of the Karnaugh map has doubled, since we added another

. input. But if we isolate just that portion which corresponds to the

test input being high, which is the normal operating mode (see
Figure 14c), it looks exactly like the map of Figure 13a. Of course
we should expect this, since we do not want the addition of a test
circuit to affect the basic function.

= A'B*/TEST
+ B*C*TEST
+ A'C
550 14a
a. A Testable, Glitch-Free Circuit
A
C \B8
TesT 2001 [11] 10
00| 0 0 U 0
01] o 0 0 0
1loof1| 1)
1] 1) o m T 550 140

L

b. Karnaugh Map

550 14c

10 En@@

c. Karnaugh Map Showing Non-Test-Mode Portion

Figure 14. Making a Glitch-Free Circuit Testable

Thus, in general, these types of glitches can be eliminated first by
adding some redundant logic to get rid of the gaps in the
Karnaugh map, and then by adding a test inputto make the circuit
testable.

2\ Monotithic L Memories C1

3-113

Testability

Designing Testable Sequential
Circuits -

The design of sequential circuits involves considerations above
and beyond those required for simple combinatorial circuits.
Latches and oscillators are circuits which appear combinatorial,
but which use feedback to introduce sequential properties. State
machines use flip-flops and feedback to generate what can be
complex sequential circuits.

Feedback

Whereas combinatorial circuits depend only on the conditions of
present inputs, sequential circuits depend on both present condi-
tions and past behavior to determine future behavior. This is
made possible primarily by feedback. Feedback takes an output
signal and routes it back for use as an input to the same circuit,
as shown in Figure 15. We now have a situation where an output
depends on itself; this can introduce new testability problems.

———>|coMBINATORIAL
lﬁ LOGIC T
550 15

Figure 15. Logic with Feedback

Most sequential circuits (under varying circumstances also called
state machines, finite state machines, and sequencers) make
use of flip-flops as memory elements. These memory elements
serveto remember a past condition (called a state) sothat afuture
decision can be made based on it. This state is then fed back as
in input. With PLDs, the flip-flops and combinatorial logic are
contained within a single device, as shown in Figure 16.

I\

—| =
S
282 | FLIp-
28 |nops
o -
=
o]
o

550 16

Figure 16. Structure of a Sequential PLD

Of course, the effects of feedback may have to be considered

even when there are no flip-flops. The circuit in Figure 15 has’

_feedback, but has no flip-flops. Such a circuit will either function
as a latch or as an oscillator, as will be seen.

Before we look into the special needs of circuits with feedback,
bear in mind that all of the testability criteria discussed for
combinatorial logic still hold. The blocks of combinatorial logic
shown in Figures 15 and 16 must be testable by themselves.
What we will discuss here are issues which must be considered
in addition to the issues involving combinatorial logic.

Latches

A combinatorial logic circuit which uses positive feedback is a
latch. The simplest possible latch is shown in Figure 17a. The
output is fed back as an input in its TRUE form. This means, of
course, that the output will stay at its present level; hence the

name “latch”.

a. Completely Uncontrollable

b. Cannot Set Output HIGH

SET

550 17

. ¢. Cannot Reset Output LOW

Figure 17. Uncontrollable Latches

The circuit as shown is clearly not useful, since it will always
remaininits power-up state. If anotherinputis added, asinFigure
17b, a HIGH output could be made to go LOW by setting the
RESET input LOW. However, once the output goes LOW, there
is no way to make it go HIGH again. Likewise, the circuit could be
modified as in Figure 17c. Now a LOW output can be made HIGH
by setting the SET input HIGH. However, once HIGH, the output
can never be made to go back LOW.

Controllable latches
For a latch to be useful, it must be completely controllable. The
previous latches cannot be completely controlled. In order for a

latch to be controllable, it must have both SET and RESET
controls, as shown in Figure 18.

SET

RESET

550 18

Figure 18. A Controllable Latch

3-114

l‘rl Monolithic [ﬁ.ﬁﬂ Memories :l

Testability

A In PLDs, a latch can be detected by simplifying the logic for each
X function. If an output is a function of itself in TRUE form, then it is
. a latch. To be controllable,
B
« productterms containing the feedback should have at leastone
other direct input in the product (providing RESET control)
¢ Y « there should be at least one product term with no feedback
(providing SET control).
D
The circuit in Figure 19a provides an example. At first it is not
immediately obvious that the circuit is a latch, but when the logic

is simplified, we see that indeed it is. It is controllable since it has
both SET and RESET controls. If the logic were shown in Figures
19b or 19c¢, the latch would be uncontrollable under some circum-

X=A
+ B'Y stances.
=A
+ B'(C + D)X) Latch hazards
=A :] SET
: g_g,x 550 19a Thecircuit of Figure 18 can be generalized to have several inputs
(] on both the set and reset controls. Such a circuit is shown in
RESET Figure 20. In this case, we have two inputs on the set AND
gate. If the two set inputs A and B change from 0 and 1 to 1 and
a. Latch with SET and RESET 0, respectively, then there will be a glitch or a false latch at the

output if both inputs were 1 at sometime during the transition
(Figure 20). For this transition, it is important to make sure that

B X — the 1-0 transition be made before the 0-1 transition to avoid
- anomalous output behavior. Merely delaying one input will not
help, since it will delay both rising and falling transitions.
D Y
A
B X
c

550 20a E

X = B'Y
+ B'D'X a. Circuit
L
RESET 550 19b
b. Latch with RESET Only A
S5t ~» e 5t
A X B
—
0
c .
B FALSE LATCH
v /
c
X
_______ < EXPECTED
aLmcH 77
X=A+Y b. Glitch and False Laich 550 200
=A :I SET 550 19¢
+ B'C
+ X

Figure 20. A Latch with More Complex SET Logic

. i I . . .
c. Latch with SET Only The simplest solution to this problem is the use of an edge-

triggered flip-flop to synchronize the signals. This will eliminate
Figure 19. More Complex Latches any such glitches. If a flip-flop cannot be used, it is possible to
delay reaction to a “11” condition to make sure that such a
condition is not transitory. A circuit which accomplishes this is

ﬂ Monolithic m Memories :l 3-115

Testability

shown in Figure 21a. This is relatively efficient in that only one
delay circuit is required regardless of the number of inputs used
on the set control (within the limits of the size of the AND gate). It
will require an extra output on a PAL device.

DELAY
GATE

A
B
: :
. L]
N SET CONTROL
AND GATE
550 21a
a. Circuit Which Delays "11...1" signals
TEST
— X
A |:;| ;
p—————1 / Y
550 21b

b. Testable Delay Circuit

Figure 21. Delay Circuit

This delay circuit will delay the effect of a “11” input by an extra

Because we have introduced redundancy, the circuit must be
modified to be testable. If the circuit is implemented in a combi-
natorial PAL device, then programmable three-state can be used
to test the circuit, as shown in figure 21b. By enabling output X,
the redundant circuit can be observed without regard to Y. Then,
to test Y, output X is disabled and then the pin is used as an input
to drive the circuitry for Y directly. This provides a simple means
of testing the circuit, but it only works if pin X can be measured and
driven. The complete circuit is shown in figure 22a.

If node X is not so accessible, then additional circuitry and test
inputs must be added. In the worst case, if node X is completely
inaccessible, the resulting testable circuit is shown in figure 22b.

TEST
F
— X
E
A
B —
550 22a [} Y
a. Complete Latch Circuit
To control X —»TEST1
independently \
of A and B. €872 —mmm ™\
—1 J . X

/TESTS
To MUX X

—_—

propagation delay. However, it also provides a window of one g:ve“’:"‘,'yp”‘ \ A
propagation delay which will screen out any transitory “11” con- TE5Ta — v
ditions that occur within that window. This allows up to one propa-
gation delay’s worth of skew between inputs during a transition ¢
from 01" to “10”.
550 22b
b. Circuit if Node X is Completely Inaccessiblé
A >>)} |
8t) | St |
° L
| |
| |
| |
F [|
| I
11 1
c I | 11
11 11
11 |
Y I
CORRECT
Vd T1 T LATCHING
550 22¢ NO GLITCH ol le— NO FALSE ol e
LATCH Wl
EXTRA DELAY EXTRA DELAY
c. Latch Circuit Behavior
Figure 22. A Testable Glitch-Free Latch
3.116 &\ Monoithio I Memories €1

Testability

Note that although the three-state capability is not needed, the
circuit requires two extra gates, and, worst of all, four test inputs.

Figure 22¢ shows the behavior of either of the testable glitch-free
latches.

Transparent latches

Many designers like to use PLDs to design standard D-type
“transparent” latches. A D-type latch is a very simple circuit,
shown in basic form in Figure 23a. As it turns out, however, this
is a glitchy circuit of the type discussed on page 550-5 above.
The problem is compounded in this case, since, given the right
timing, the glitch can actually be latched; the glitching problem is
no longer transitory. If this type of circuit is desired, it must be
designed to be both glitch-free and testable; the resultant circuit
is shown in Figure 23b.

DATA
GATE
ouTt

OUT = GATE'DATA
+ /IGATE*'OUT
650 23a
a. Glitchy

DATA
TEST —4 — OUT
1

OUT = GATE'DATAY/TEST
+ /GATE*OUT */TEST
+ DATA*OUT

GATE

b. Glitch-Free and Testable 550 230

Figure 23. D-Type Transparent Latches

Oscillators

Circuits whose outputs are fed back in TRUE form are latches. If
the outputs are fed back in COMPLEMENT form, then the circuit
is an oscillator. A simple oscillator circuit is shown in Figure 24.

0T

Figure 24. A Simple Oscillator

550 24

Latchés are very often useful in circuits; oscillators rarely are.
Crystals and other specialized oscillators are useful when it is
necessary to generate a clock signal, for example. Trying to build

an oscillator out of standard logic or PLDs will not yield a very
predictable, accurate oscillator; where these circuits occur, it is
usually by accident.

An oscillatory circuit may not always be obvious. It also may not
oscillate all of the time. The oscillator shown in Figure 24 is
uncontrollable; it always oscillates. However, just as we can
design controllable latches, we can also design controllable
oscillators (on purpose or by accident). This means that there
may be an oscillator hidden in the circuit which will sometimes
oscillate and sometimes be stable. Such a circuit is shown in
Figure 25a.

H

X = A'B'Z
= A'B'D'E
+ A'B'C*/X

— Y = CX
= IA'C
+ /B'C
+ C'D*IY
+ C'E'Y
—— Z = D'E
+Y
= D'E
+ /A'C
+ /B'C
+ CZ

a. Complete Circuit

X = A'B'D*E
+ A'B*CY/X

TERM 1
TERM 1

b. The Equation for X 550 25

Figure 25. A Conditional Osclllator

Detecting oscillators

The oscillator in the circuit is not obvious. But if we simplify the
logic completely, we can see that output X depends on /X; output
Y depends on /Y; and output Z depends on /Z. Since the outputs
are fed back to themselves in COMPLEMENT form, the circuit
constitutes an oscillator.

This circuit will sometimes be stable. If we examine the logic
function determining X, we see that it has two product terms,
shown in Figure 25b. Term 1 is independent of /X; term 2 is
dependent on /X. If inputs A, B, D, and E are all TRUE, then term
1 becomes TRUE, and the output stays HIGH regardless of the
status of the rest of the circuit. Itis thus stable. However, if signals
D and/or E are LOW, then term 1 will be FALSE. If, at the same
time, input C is HIGH, then, as long as the output X is LOW, term
2 will be TRUE, making the output HIGH (which makes the
product term FALSE, which makes the output LOW, etc.). That is,
the circuit oscillates.

In this manner, we can identify the conditions under which a
conditional oscillator will oscillate. The mere presence of an
oscillator is usually an indication that the circuit needs to be
changed. It may be that the circuit only oscillates under conditions
that could never possibly exist. One must be very certain of the
impossibility of such a condition, however, if a conditional oscilla-
tor is to be tolerated. In addition, a thorough test sequence will
usually expose a circuit to conditions that it may never encounter
in a real system. Thus oscillators may interfere with the test
process even if they do not disrupt the system.

zl Monolithic EE.HMamorles :l

3117

Testability

Designing Testable State Machines

State machines have theirown set of controllability issues. These
essentially boil down to the concepts of initialization and illegal
states.

State machine initialization

The nature of a state machine is that there is a well-defined
sequence of states through which the machine will traverse as it
operates. This implies the existence of a *first” state. Of course,
these initial states vary from design to design. One obvious
problem is the fact that many flip-flops — especially older varie-
ties — do not power up in a predictable state.

Power-up Initialization

Flip-flops that truly power up into a random state must be
initialized explicitly. Lately, however, flip-flops have become
available which have “power-up reset”. This allows the flip-flops
to power up into a predictable state every time. This is helpful
when the power-up state also happens to be the initial state. But
evenifitis notthe initial state, a predictable initialization sequence
can bring the state machine into its start-up state.

Unfortunately, such initialization schemes rely on the ability of the
device to initialize itself when being powered up. If the system
needs to be re-initialized, it will have to be completely turned off
and then turned on again. Anyone who has had to turn off a
computer in order to reboot will know that this is not an elegant
way of re-initializing. By building initialization into the design, a
means of performing a “warm boot” is provided. It is for this
reason that initialization must be considered along with all other
aspects of the design.

Some devices, such as the PAL32VX10/A, the PAL22RX8A, and
other PAL devices, have mechanisms specifically designed for
initializing a state machine. These are usually inthe form of global
set and reset product terms. By programming the conditions for
initialization onto such terms, the device can be re-initialized at
any time. Other devices, like the PMS14R21/A and the PLS
devices, have pins which can be dedicated as preset pins.

Including initialization in a design

Some of the simplér devices do not have specific provisions for
initialization. However, the need is still present in these devices;
here the initialization should be included in the design. This is a
very simple process; it can be added in after all of the other design
details have been worked out. Adding initialization will use up one
input pin and potentially one product term on some outputs; this
can affect the choice of device for the design.

To provide initialization in an otherwise complete design when
Boolean equations are being used:

« determine the start-up state

« assign each bit as being initialized active or inactive, based on
the desired start-up state

« if a bit is to be initialized inactive, add "/INIT” to every product
term for that bit.

« ifabitistobeinitialized active, add one product term consisting
solely of “INIT”

Here we have assumed that the initialization pin has been called
“INIT”. “Active” would mean HIGH for an active high device; LOW
for an active low device. “Inactive” is just the reverse.

The equation in Figure 26a can be initialized inactive as shown
in Figure 26b, or active as shown in Figure 26c. Initialization is
accomplished by asserting the INIT pin and clocking once. This
“cookbook” approach is very reliable.

Q0:= Q1*Q2
+ Q2'/Q3

a. Uninitializable

Q0 := Q1*Q2*INIT
+ Q2/Q3*/INIT

b. Initialized Inactive

Qo0:= Q1*Q2
+ Q2*/Q3
+ INIT

c. Initialized Active

Figure 26. Designing in Initialization

PALASM software also makes it possible to design state ma-
chines with a special syntax which essentially allows-the state
diagram to be transferred directly into a design file. For devices
which have no dedicated initialization features, the initialization
branches should be explicitly built into the state diagram. The
software then performs the remainder of the processing needed.

3.118

zl Monolithic m Memories zl

Testability

Illegal states

A state machine is formed by using a set of flip-flops to remember
states, and assigning a code to each state. Since there are 2"
different codes that can be assigned to a group of n flip-flops,
there is a good chance that some codes may not be used. For
example, if a state machine is to have 6 states, 2 flip-flops will not
be sufficient; 3 are needed. But 3 flip-flops allow 8 states, which
will result in 2 unused states (see Figure 27).

& S
oo

Figure 27. lllegal States

550 27

Assuming that the state machine has been designed correctly,
there is no reason why these extra states should ever be entered;
therefore they are called “illegal” states. Unfortunately, situations
do occur, thanks to noise and other unpredictable occurrences,
which result in the state machine being in an illegal state. When
this happens, the immediate need is to return to a normal
sequence of states: there must be a predictable means of getting
from any illegal states into a legal state.

llegal state recovery is a controliability issue which actually
affects functionality more than it affects testability. But the con-
cepts used for functionality and testing are so closely related that
it is worth treating here.

Recovering from illegal states

There are three basic ways of getting out of an illegal state:

re-initialize

make sure that one can continue clocking until the machine
recovers

design the machine such that the start-up state is reached from
any illegal state in one clock cycle, independent of any condi-
tional inputs

Of course, re-initializing will take the machine back into its start-
up state from any state, legal or illegal (Figure 28). The disadvan-
tage here is that outside control is needed to force initialization.

Very often, a path will exist which eventually takes the state
machine back into a normal sequence (Figure 29). These paths
are not usually designed in; they just happen to be there. In fact,
if D-type flip-flops are used, it is surprisingly difficult to get a
“closed” set of illegal states (that is, a set such that once one of
the illegal states is entered, the machine will forever remain in

550 28

550 29

Figure 29. Cycling Back to a Legal State

illegal states) by accident. In most cases, there will be a path
which eventually leads back to a legal state. In these cases,
merely clocking enough times will cause the machine to recover.

The drawback here is that one does not know ahead of time how
many clock cycles will be needed. This necessitates some built-
in way of knowing just when a legal state has been re-entered.
And once that state has been reached, further cycling may be
needed to get to a point where operation can resume.

Designing-in one-step recovery

The most predictable way of dealing with illegal states is to
provide a one-step path back to a legal state. Depending on the
state desired, more or less work may be involved to do this. For
PAL devices, we can consider three cases:

« allillegal states go to state 00...0
« allillegal states go to one state other than 00...0
« each illegal state goes to some legal state

The cause of poor illegal state recovery canbe illustrated concep-
tually with Karnaugh maps (although realistically, Karnaugh
maps are often not used). When calculating the equations for a
particular bit, it is tempting to use Don't Care cells from the
Karnaugh map (Figure 30) to simplify the logic. The success of
illegal state recovery depends on how these Don’t Care cells are
treated.

ﬂ Monolithic m Memories zl

3-119

Testability

Qt Q2
Q@ Qa\ 00 01 11 10

X
DONT CARE
o1 X 0 D X | 4— CELLS CORRESPOND
‘ TO ILLEGAL STATES
[x| x
x| x

550 30

Figure 30. lllegal State

Recovering into state 00...0

This is the simplest case; it is illustrated in Figure 31. It is
accomplished by not using any illegal states to generate the logic
for any of the bits. Since most PAL devices have only D-type flip-
flops, a bit will go HIGH only as a result of legal states. Any illegal
states will cause all bits to be LOW.

a. State Diagram

@l x| x| x

o x| x| x
an ik
o o |(®

b. Karnaugh Map
i

550 31 0

Figure 31. Recovering to State 0...0

This procedure does not work when J-K or T-type flip-flops are
used. In fact, it is deadly. Whereas a D-type flip-flop defaults to
LOW, J-K and T-type flip-flops hold their present state as a
default. Thus if illegal states are not considered in the transfer

" functions, anillegal state will cause the state machine to be locked
up in that state.)

Recovering into one fixed state

This case is shown in Figure 32a. The procedure can be illus-
trated conceptually with a Karnaugh map. It mustfirst be decided
which legal state will be entered, and the resultant value of each

a. State Diagram

1 X| X| X
0 X1 X1 X
1 1 X1 X

0 o] o 1

b. Kamaugh Map for Bit Qn

@ o ot o

oOoLoj|Jo}o
D)\ K
ojo o@

c. Bit Qn Recovers to 0

1
CER D
ol o 0"1

d. Bit Qn Recovers to 1

Figure 32. Recovering to a State Other Than 0...0

3-120

l'.' Monolithic m Memories ﬂ

Testability

state bit. The Don'’t Care cells for each bit are then filled with the
corresponding next state bit value; if the next state for a bit is to
be 1, then Don’t Care cells are filled with 1’s for that bit’s Karnaugh
map; the procedure for a 0-bit is analogous. The equations are
now taken by including either all Don't Care cells if filled with 1’s,
or none of them if filled with 0’s. This procedure is illustrated in
Figures 32b, ¢, and d.

When Karnaugh maps are not used, the same result can be
obtained by explicitly considering all illegal states. When calculat-
ing the Boolean equations for:

+ abit that will be 0 after recovery, no illegal states should be
included.

« abit that will be 1 after recovery, all illegal states should be
included.

When J-K flip-flops are used, then the transfer function for either
J or K — but not both — will include all illegal states.

« If a bit is to be HIGH after recovery, J should account for all
illegal states; K should account for none.

« If a bit is to be LOW after recovery, K should account for all
illegal states; J should account for none.

This must be done explicitly for J-K flip-flops even if state 0...0 is
the recovery state.

When T-type flip-flops are used, there is no easy way out; any
recovery must be explicitly designed-in as part of the original
function.

Recovering Into Any Legal State

The third case allows one to fill in the Don’t Care cells of a
Karnaugh map in such a way that some legal next state is always
reached in one clockcycle, but suchthat the 1’s and 0's are placed
to keep the logic functions simple. This is shown in Figure 33. The
disadvantage here is that since different illegal states result in a
different legal state, some additional cycling may be required to
allow operation to resume.

When Karnaugh maps are not used, this can be implemented
more simply by explicitly including the illegal states as part of the
complete state diagram. This is especially simple if the state
machine input format for PALASM software is being used.

Default transitions

The PMS14R21/A and PLS devices have default branching
mechanisms. When PALASM state machine input is used, it is
possible to specify a DEFAULT BRANCH. This means that when
in any state, if none of the branching conditions are satisfied,
some user-definable state is automatically reached. This can be
used as a way of recovering from illegal states.

a. State Diagram

550 33
b. Karnaugh Map

Figure 33. Recovery Such That Logic Functions Are As
Simple As Possible

In PLS devices, the complement array can serve as a way of
recovering from illegal states. In adesign, only legal branches are
defined. When in an illegal state, since no legal branch is active,
the complement array is activated, allowing for some default state
to be reached.

Testing illegal state recovery

One of the difficulties of designing illegal state recovery into a
circuit is the fact that it is. difficult to test. Because the state is
illegal, it is impossible to force the circuit into such a state. The use
of register preload circumvents this problem. With preload, any
state — legal or illegal — can be loaded into the register. If an
illegal state is loaded, then the circuit can be tested to verify that
correct recovery does indeed occur.

The use of preload must be considered carefully with devices
having programmable asynchronous set and reset features. If
these are driven by feedback from an output, then situations can
occur where preloading one state immediately causes a set or
resettothe opposite state (Figure 34). There are two alternatives:
either avoid preloading such states, or include a control input in
the set and/or reset product terms which can disable the feature
when testing.

:l Monolithic m Memories Z'l

3-121

Testability

L

S
—D Q —D Qf—
— al— — Ql—
p R . p R
Cannot Preload 1 Stable
S S
- D Q —D Q
— aQ|l— — al—
p R R ‘R
550 34
Cannot Preload 0 Stable

Stable Case: Can Preload Any State

Other Cases: Preloading Any State Will
Cause SET or RESET to
Opposite State.

Figure 34. Preloading Registers with SET and RESET

Providing for bed-of-nails testing

Most state machine PLDs are equipped with an enable pin for
disabling the outputs. This is a key feature when the circuit board
is to be tested in a bed-of-nails tester. When the devices driven by
by the PLD are tested, it is recommended that the PLD be
disabled so that there is no output level contention. Since the
enable pin is usually grounded to keep outputs permanently
enabled, it can instead be made available for use during testing.

Note that for combinatorial devices, there is generally. no output
enable pin. The disabling feature is instead implemented through
a product term. Designing the part such that the outputs can be
disabled during bed-of-nails testing is also encouraged for these
combinatorial designs.

3-122 El Monollthlam Memories Z‘

Testability

Designing for Testability With the
PROSE™ Device

Today’s more complex circuits and systems are becoming pro-
hibitively expensive to test using standard methods. Diagnostics-
On-Chip™, or DOC™, is a test feature provided in several of
Monolithic Memories’ devices as a means of increasing testability
at the system, board, and chip levels. DOC is especially useful in
the PROSE™ device (PMS14R21). It is even used by device
programmers to configure the two programmable arrays inside
the device (Figure 35).

DOC Architecture

Testability consists of two basic elements: controllability and
observability. In a sequential (registered) system, these two
elements are lost when a register is not directly accessible. In
Figure 364, thefirst register is not observable and the last register
is not controllable. Figure 36b shows that the addition of a scan
path through each register, as in the DOC method, provides the
direct access for controllability and observability, which ensures
complete testability.

CLK

DCLK SDI
10— X1 n M ;o
" —» X)) >4 oo
2 e &
13 ——nf X0 Q3
ARRAY AS PROM ™ —> Q
14 —» 21 DOC 21 4
- (14H2) X)) > TR R 2% R 4+ REGISTER |— Q5
s — (128X 21) N G-y
7 — A0-A4 —» Q7
5 8,
€S0-CS5 £
6y 7
A
Ty 1T
MODE SDO P/E
\ 550 35

Figure 35. PROSE Block Diagram

REGISTER

LOGIC

REGISTER

REGISTER

550 36a

a. Standard Sequential Logic

SDI

REGISTER

i

REGISTER

REGISTER - SDO

550 36b

b. Sequential Logic with a Scan Path

Figure 36. Testability Can Be Increased by Providing Direct Access to All Registers

:l Monolithic m Memories i'l

3-123

Testability

The heart of the DOC circuitry is the shadow register (see Figure
37). The shadow register is a serial/parallel register, equivalent in
length to the pipeline register. It is called a shadow register
because it is invisible to the device during normal operation. It is
clocked by its own clock input, DCLK.

A6-A0
PROM ARRAY
. TO
¥ ARRAYS
DCLK ——»]
SHADOW -
SDI —» 'REGISTER sbo
Iszo-so D20-D0
MODE MULTIPLEXER
CLK ——— b ouTPUT
REGISTER
13
8//

4

550 37

Q7-Q0

Figure 37. DOC Circuitry in the PROSE Device

- 550 38

In normal mode (MODE input is LOW), the shadow register
operates as a serial shift register (see Figure 38). The Serial Data
Input is SDI, and the Serial Data Output is SDO. The pipeline
register can operate at the same time while MODE is LOW.

10-17

SDI — SHADOW

DCLK ——}> REGISTER > SDO

!

LOGIC
ARRAYS

I

PIPELINE
CLK ————P REGISTERS

l |

MODE = LOW

Q7-Q0

Figure 38. The Shadow Register Operates as an
Independent Shift Register when MODE is LOW

In diagnostic mode (MODE is HIGH), the shadow register oper-
ates as a parallel register (see Figure 39). It can be parallel loaded
from or to the pipeline register by clocking the receiving register.
A swap can be performed by clocking both at the same time.

Note that the PROSE device differs from other DOC family
members in that the shadow register is loadable only from the
output register. Other devices also allow loading of the dataon the
output pins, if the device is connected to a bus. This does not
affect the device-level testability if the outputs do not connect to
a bus, of if the bus is otherwise observable.

e

SHADOW
DCLK —— ReGISTER

MODE = HIGH l
PIPELINE
o > REGISTERS

550 39

L

Figure 39. The Shadow Register Can Parallel Transfer its Contents to and from the Pipeline Register when MODE is HIGH

3-124

:' Monolithic [ﬁ.ﬁ.ﬂ Memoriles :l

Testability

INPUTS OUTPUTS
- OPERATION
MODE | SDI CLK DCLK Q20-Q0 Q20-Q0 SDO
L X) * Qn « PROM HOLD S20 Load output register from PROM array
Sn « Sn-1
L X * T HOLD S0 « SDI S20 Shift shadow register data
Sn « Sn-1 Load output register from PROM array
L X T T QnPROM | SO« SDI S20 while shifting shadow register data
H X T - Qn « Sn HOLD SDI Load output register from shadow register
H ‘L * T HOLD Sn«Qn SDI Load shadow register from output register
H L T) Qn « Sn Sn«Qn sDI Swap output and shadow registers
H H * T HOLD HOLD SDI No operationt

* Clock must be steady or failling.
t Reserved operaton for 74S818 8-Bit Diagnostic Register.

Figure 40. Diagnostics Function Table

All of the functions of the DOC circuitry are described in the
function table (Figure 40).

DOC allows access to all twenty-one pipeline flip-flops in the
PROSE device through the serial path, requiring only four addi-
tional pins. These four pins can be controlled directly, or can be
connected to other DOC circuits in series. A series connection of
several DOC circuits allows the same four signals to address an
unlimited number of flip-flops on a board or system (Figure 41).
A typical test would be performed as follows:

1. Test vector shifted into shadow register(s)
2. Testvector parallel transferred to pipeline register(s)

. Device/system clocked desired number of times to run test
. Test results parallel transferred to shadow register(s)

. Test results shifted out of shadow register(s)

CLK ¥
L> L> L>
SDI SDI SDO SDI SDO SDI SDO|— SDO
e [[t
MODE —— ¢ !
DCLK

Figure 41. Example Architecture for Use of System-Level
Diagnostics

Note that while shifting, the system can return to normal opera-
tion. In addition, while test results are being shifted out, a new test
vector can be shifted in.

The swap function allows the state of the pipeline register(s) to be
restored once the test is complete. When the test vector s parallel
transferred to the pipeline register, the pipeline register contents
are transferred to the shadow register at the same time for

DIAGNOSTIC CONTROLLER

DIAGNOSABLE SYSTEM

TEST VECTOR SIAVE PORT
MICROPROCESSOR P
DIAGNOSTIC
o k it it N DIAGNOSTIC SLAVE PORT
— ¢ T T — MASTER PORT
DIAGNOSTIC
: RAM PROGRAM SLAVE PORT
EPROM 550 42
..
.
DIAGNOSTIC
Figure 42. Example Architecture for Use of System-Level Diagnostics SLAVE PORT
2\ monotithic] Memories €1 3-125

Testability

storage. Later, when thetest results are transferred to the shadow
register, the original pipeline register information (stored in the
shadow register) is transferred back to the pipeline register.

System-Level Testing

At the system level, DOC provides the ability for a diagnostic
controllerto monitor the interior status of asystem. The diagnostic
controller could control several scan loops, selecting the loops
required for the test needed (Figure 42).

However, many key products, such as microprocessors, are not
available with the DOC function and cannot be part of the scan
path. This limits the use of DOC for full system-level testing to
selected manufacturers who can use this additional testability as
an enhanceement to a larger system-level testability strategy.

In addition, little support is available for writing the test vectors that
can be run through the DOC scan path. The software that is

available is expensive and runs on large computers only. This is .

anotherfactorthat limits the use of DOC on a system level. Onthe
board or chip levels, however, test vectors are much easier to
generate and can even be found by running vectors through a
known good unit.

A complete system-level test would require that most of the
devices in the system shown in Figure 43 incorporate the DOC

PART NUMBER DESCRIPTION
PMS14R21/A 128-state sequencer
Am29PL141 64-state sequencer
Am27S65/A 4-K Diagnostic PROM
Am27S75/A 8-K Diagnostic PROM
Am27S85/A 16-K Diagnostic PROM
Am9151 4-K Diagnostic Static RAM
745818 8-bit register
Am29818 8-bit register

Figure 43. DOC Products Family

circuitry. Other devices inthe DOC family are shown in Figure 43.
Devices with circuitry equivalent to the DOC format are available
from several other suppliers as well. Also, many gate array and
standard cell manufacturers offer standard functions similar to
the DOC scan path and can easily be included in custom designs.

Board-Level Testing

DOC in the PROSE device is especially useful at the board, or
functional, level. The PROSE device will usually form the heart of
afunction, such as a peripheral controller. In addition, it often will
serve to off-load the main Central Processing Unit (CPU) and be
partially controlled by the CPU. DOC allows direct control of the
PROSE device, bypassing a difficult-to-control CPU and taking
command of whatever function the PROSE device performs
(Figure 44). Here, on-board diagnostics can be easily done with
the PROSE device. The alternative is to dedicate edge-connector
signals to the DOC path.

The DOC circuitry provides access to the PROSE device's
pipeline register. This can be used to set the outputs to a given
state, in order to test the effect on the devices surrounding the
PROSE device. Or, the pipeline register can be setto agiven state
and then left to run freely, to verify functionality. If combined with
control of the device inputs, the sequencer can be stepped
through a number of states, to test the response of the surround-
ing logic. This is especially useful for bed-of-nails board-level
testing; the PROSE device can be tested completely without
having to be backdriven.

Device-Level Testing

On the device level, the DOC circuitry effectively provides a
Preload function for the register. Instead of loading the register
from the outputs, as with standard PAL® devices, the register is
preloaded from the shadow register. A standard type of preload
is not possible on the PROSE device because thirteen of the flip-
flops are buried (Figure 45). Preload is necessary for testing the
device functionality, since the buried flip-flops must be set to a
known condition before the device can be tested.

| OTHER I

DOC ACCESS

. _DATABUS
K———

PARALLEL-TO-

Ec:* cPU |AADDRESS BUS,| SERIAL CONVERTER |«22
D S—

DISK

PROSE [+ oive

550 44 1l
I MEMORY I
Figure 44. DOC Allows Direct Access to Peripheral Elements In a System, Bypassing the CPU
3-126 Fl Monolithic m Memories n

Testability

8
—* PROSE LOGIC PIPELINE 7 « NO PRELOAD
[, ARRAYS REGISTERS J;L_l ACCESS
ACCESS THROUGH 550 45

DOC SCAN PATH

Figure 45. DOC Effectively Adds a Preload Function to Buried Flip-Flops

The DOC circuitry allows more than just a Preload equivalent, the inputs, clocking the device, and then observing the resulting
however. It also allows observation of the pipeline register, which state in the pipeline register. State transitions which do not result
contains all of the state information. Thus, an individual state in a change in outputs are thus easily tested (Figure 46).

transition may be tested by preloading the desired state, setting

550 46

Figure 46. DOC Allows Transitions that Do Not Result in Changes to the Outputs to Be Verified. In this Case, the Transi-
tion from A to B Does Not Change the Outputs (Q1 and Q2), but the Internal Feedback Changes (the Condition Select
Signals Examine 13 and 14 Instead of I1 and 12). Buried Flip-Flop Observability Is Required to Verify the Transition

z' Monolithic m Memories l‘r‘ 3-127

Testability

D ————E———]

Using Test Vectors

Digital systems are generally tested by applying a sequence of
test vectors. Atest vector is a group of signals which are applied
(forced) and measured (sensed) on a device or a board. The
vector thus defines all inputs and expected outputs for a given
test. As we have noted, the sequence of tests performed greatly
affects the quality of the overall tests, as measured by the fault
coverage.

In_general, we can talk in terms of three kinds of vectors.
Simulation (or application) vectors, functional test vectors and
signature test vectors.

Simulation vectors are generated during the design process.
Their main purpose is to help the designer verify that the design
has been correctlyimplemented. They representthe way in which
the circuit was intended to operate. When PALASM software (or
almost any other PLD design software package) is used, simula-
tion may be performed prior to programming a device. The
software simulates the operation of the circuit, and then gener-
ates vectors from the simulation, adding the vectors to the JEDEC
file. These vectors can then be used for testing by programmers
that have the capability of performing functional tests.

While simulation vectors may be adequate for verifying that the
design is operating as expected, they generally do not provide
very extensive test coverage. For this reason, we distinguish
functional test vectors from simulation vectors.

It is very difficult to generate a complete set of functional test
vectors by hand; computer programs are generally used instead.
The simulation vectors are often used as a basis for generating
a more comprehensive set of functional test vectors; i this
capacity, the simulation vectors serve as seedvectors. There are
many programs which perform this function although many of the
programs require larger computers and take a long time to run.
Monolithic Memories also generates functional test vectors for
patterns that are used in ProPAL and HAL devices. This is
discussed more fully on page 3-106.

More recently, programs which run on the IBM PC-compatible
computers have been developed to generate vectors for use in
testing PLDs. Most well-known among these are PLDtest™ from
Data I/0 Corp., and TestPLA™ from Structured Design. These

programs use the programming information in the JEDEC file to
generate tests.

On most patterns, they can generate test sequences of high
quality. lf complex internal feedback is used in a particular design,
then some manual test generation may still be needed to improve
the test coverage. Both of these programs support the use of
register preload for initializing states; the TestPLA package can
also generate tests for devices which do not have the preload
feature.

While functional vectors provide more extensive tests, they may
not exercise the circuit in the manner in which it was meant to be
used. Thus, for example, a conditional oscillator in a circuit (as
discussed above) may not be a problem during simulation, since
the conditions causing oscillation are not thought to be possible
by the designer. However, the functional vectors will take all
situations (some of which may not be physically possible) into
account in the tests. Thus more subtle design problems may
become apparent when functional test vectors are generated.

Signature vectors are random vectors which are first applied to a
device which is known to be good in order to generate a “signa-
ture”. This same set of vectors is then applied to a device of
unknown quality; if the same signature results, the device is said
to be good; if a different signature results, then the device is
assumed to be faulty.

Signature vectors can vary greatly inthe quality of testing they can
provide. Since they are generated with no knowledge of the circuit
being tested, many more vectors must be used to perform a good
test. The quality of the test depends on the circuit being tested, the
number of vectors used, the speed with which the tests are
applied, and the algorithm used to generate the vectors. The
tester must also be able to apply a preload sequence to devices
that have registers; otherwise two devices may power up into two
different states. In that case, both devices will generate different
signatures even if both are good devices.

Quality signature testing can be very cost effective, since no
advance knowledge of a device pattern is needed. This reduces
the amount of resources that must be dedicated to test vector
generation. Signature testing options are discussed more fully on
page 3-106.

The different types of vectors are summarized in Table 1 below.

'

TYPE OF VECTOR PURPOSE GENERATED BY:
Simulation Used for verifying whether or not Sequence defined by the design engineer,
(Application) a design will operate as expected usually by hand. Actual vectors generated
when implemented. by design software, placed in the JEDEC file.
Functional Used for verifying that Usually generated by a computer program
a device is operating such as PLDtest or TestPLA. The simulation
correctly. vectors can be used as seed vectors
Signature Used for verifying that a device The tester generates the
is operating correctly without test sequence during the test.
functional vectors. .
Table 1. Test vectors
3-128 ﬂ Monolithic m Memories l‘rl

Testability

Summary

The time to start considering ways of testing a circuit is before the
circuit has been designed. The key to testability lies inthe way the
circuit is implemented.

Basic combinatorial logic can be made completely testable sim-
ply by minimizing logic. It is not even necessary to analyze the
circuit for redundancy or reconvergent fanout; automatically
minimizing all logic will eliminate any occurrences.

Where a sequential circuit is generated from simple feedback

paths in the logic, the circuit must be analyzed as a combinatorial
circuit. All combinatorial logic must be included to determine
whether the circuit is a latch or an oscillator. If a latch is desired,
it should be completely controllable. If an oscillator is found, it is
probably not desired, and will generally indicate a mistake in the
design. If a conditional oscillator is to be tolerated, one must be
sure that the oscillation conditions can never occur, and that the
test procedure will not cause oscillation.

In general, combinatorial circuits should be analyzed completely
for the presence of latches and oscillators (wanted or unwanted).
This can be done by simplifying each combinatorial logic block to
see whether any signal ultimately depends on itself.

When the sequential nature of a circuit is derived through the use
of flip-flops to generate a state machine, the two key issues are

initialization and illegal state recovery. A combination of device
features and careful circuit design will yield circuits that can
behave predictably even in unexpected situations.

DOC is a testability feature that is useful in the PROSE™ device;
it may be used on multiple levels: system, board, and chip. While
the system-level uses may be restricted by the limited availability
of support products, the board or functional-level uses are excep-
tionally handy when the PROSE device acts as a local controller.
And on the device level, the DOC circuitry provides a means of
accessing the buried flip-flops within the device for functional
testing.

It is important to analyze the testability of a circuit before commit-
ting it too far. Thus any changes can be made early on. In
particular, if the test analysis software points out any logic
hazards in your circuit, you can easily remedy them by modifying
the design.

These simple steps, taken early in the design phase, can help
avoid later redesigns, and ultimately provide a higher quality
system. .

Finally, the ultimate test quality depends also on the quality of the
test sequence used for production, functional test vectors and
high quality signature tests will provide you with the highest
confidence in the quality of your system.

l‘:' Monolithic m Memories l‘r|

3-129

MONOX"™ 3

Oxide-Isolated Process

Monolithic Memories’ premier programmable logic process,
MONOX 3, is an evolution of the junction-isolated process used
in the popular 15 nanosecond PAL family. The 15 ns PAL device
process is a shallow-junction, ion-implanted, diffused isolation
technology.

When the time came to advance PAL device speed through
improved process technology, the decision was made to evolve
from and benefit from the proven reliability, simplicity, and manu-
facturability of the 15 ns PAL device process. Only fully recessed
oxide isolation and stepper design rules were to be added for the
new technology. The fully recessed oxide isolation technology to
be used had already been proven in earlier processes.

MONOX 3 Process Description

The unique feature of MONOX 3 is the isolation structure (patent
pending) which combines the best features of fully recessed
oxide isolation (FULROX) and diffused isolation, while maintain-
ing a very dense structure. The advantages of FULROX, low
capacitance and high density, are well known to the industry.

Diffused isolation has an important advantage for transistors that
aredriven hard into saturation, as inthe case where minimum size
array transistors are used to program fuses in PALdevices. Inthis
case, substantial current is injected into the substrate, and this
may adversely affect nearby circuitry. While this substrate injec-
tion can be reduced in FULROX, it has an adverse effect on ca-
pacitance and perhaps density.

In MONOX 3, the diffused pottion of the isolation acts as an ex-
cellent substrate contact and as a sink for the injected substrate
current. This permits the FULROX to be optimized both for
density and for low capacitance, lower than is typical for industry-
standard oxide isolation. The typical density disadvantages of
diffused isolation are minimized by containing the diffusion within
the FULROX. This isolation structure results in a die that is
substantially smaller than some trench-isolated products, and
that has lower capacitance than other oxide-isolated products.

Other features of the MONOX 3 process are:

Fully ion implanted except for buried layer—This permits
excellent control of the layers for a consistent product, and
permits a base width of 2000A which yields a cutoff frequency
f, of 4.3 gigaHeriz.

High-pressure oxidation—This is used for the recessed isola-
tion to minimize process temperature and crystal defects.

Oxide walling all devices—This eliminates potential leakage
paths that might cause reliability problems.

Planarization of the isolation “bird’s head” shape—This im-
proves lithography and metal step coverage.

N+ and P+ sink diffusions—These lower parasitic resistances.

Dry (plasma) etch—This improves control and density of most
layers including metal.

'Platinum silicide Schottky diodes—These prevent saturation of

the logic transistors for improved speed.
Titanium Tungsten fuses—These are simple and reliable.

Double layer metal, with intermetal planarization—The first
metal pitch is 4.5 microns and the second layer metal pitch is
6.0 microns.

Stepper lithography with 1.5 micron minimum design rules
(1.3 micron fuses)—This notonly makes the die more compact,
but significantly improves the fuse programming (see next
section). :

OXIDE
ISOLATION

P+

DIFFUSED.
ISOLATION

ISOLATION

BURIED LAYER)

42201

MONOX 3 Isolation

BURIEDLAYER Y BURIED LAYER
CBURIED LAYER . \ CHANNEL STOP /

42202

Typical Oxide Isolation

3-130

&\ monoithic LD Memories &1

MONOX 3 Oxide-Isolated Process

MONOX 3 Fuse Technology MONOX 3 Summary
The fuse technology in MONOX 3 is Titanium Tungsten (TiW). In conclusion, MONOX 3 was designed to be and is both high-
This fuse technology has been used for years in millions of chips performance and simple. Only thirteen masking layers, two
that have proven to be the industry’s most reliable programmable diffusion cycles, and four oxidation cycles are used. This yields
logic parts. a process that competes with, and out-performs, other currently
available programmable logic technologies. The relatively few
In MONOX 3 the fuses are further enhanced by using stepper steps needed to manufacture MONOX 3 devices mean fewer po-
lithography to print them 1.3 microns wide. This significantly tential problems and increased reliability.

lowers the programming current from 70 milliamps to 35 mil-
liamps maximum. A lower programming current means less
power and heat are needed, leading to increased reliability and a
denser chip design.

- 28.1mm

) | & W
7

166

OO

I /
7
20.1 »]
4
AREA 466.5 2 42203
MONOX 3
COLLECTOR EMITTER BASE SCHOTTKY
\ [\ l/ \ [\ [/

NEPI \oxms

N+

FULROX 42204
NPN Transistor

z‘ Monolithic m Memories zl 3-131

Product Assurance

Introduction

Product Assurance consists of Quality Control, Reliability Assur-
ance, Quality Assurance for Military Products and Quality Assur-
ance for Commercial Products.

Quality Assurance

Quality Assurance for the Commercial Products includes cus-
tomer support and failure analysis, outgoing’ inspection and
factory support, document control and quality information.

Inorderto support customers, QA provides actual datagenerated
during various monitors and inspections throughout the factory.
Non-proprietary data is available upon request. If the specific
data is not immediately available, experiments can be run to
collect the necessary information subject to resource and time
limitations.

Another aspect of customer support is the performance of failure
analyses. Failure analyses are broken down into three levels.
Level 1 analysis consists of failure verification using an automatic
tester. The result is only whether or not the device under test is
good or bad with a datalog pointing out the potential failure mode.
Level 2 analysis consists of Level 1 plus the verification at abench
top setup which results in confirmation of the failure mode with
detailed specific data. Level 3 adds to Level 2 a decap and
physical analysis to isolate the failure mechanism. Monolithic
Memories has the capability to perform the total analysis in
house, but occasionally sends analyses to outside sources
whenever circumstances deem it necessary. Quality Engineer-
ing goals for cycle time are to complete Level 1 analyses within
seven days, Level 2 within 14 days, and Level 3 within 30 days.

Not all customers want or need a full Level 3 analysis every time.
The level can be specified at the time of submission. A failure
analysis should be requested through the Sales person or Field
Applications Engineer (FAE). Afailure analysis request form will
be completed at that time and the request form and suspected
failure(s) will be forwarded to Quality Assurance.

Upon completion of the analysis, a formal report will be made to
the requester. The report will summarize the results of the
analysis and enumerate the steps followed in performing the
analysis. In most cases, a statement of the corrective action
taken to prevent future occurrences will be included for valid
failures. In those cases where no failing condition is found, the
device(s) and report are forwarded to the requester.

Quality Assurance supports the factory with periodic auditing of
the various processes, areas and products. The Discrepant
Material Reporting system (DMR) provides the factory feedback
onthe level of quality itis producing as well as providing protection
to our customers via a gating of the product. The Quality
Inspection group takes a 200 piece sample (.065% AQL for lot

sizes according to Mi-HDBK-105D) from each production lot for
visual and mechanical testing and electrical testing. The lot is
returned to production for rescreening if a defective unit is found
inthe sample. The results of the inspections are summarized and
reported weekly. Through programs aimed at solving the causes
of the defects, Monolithic Memories has improved quality levels
significantly.)

As a customer, you can learn from our experience. Our data
suggests that handling is the number one cause of defective
material. Whether it is human handling or not, the product flows
should be engineered so as to minimize the number of separate
handling steps. By ordering completed product in even box
quantities, no handling should be necessary afterthe product has
been packaged by the factory. Product can be placed into boards
upon receipt.

By placing product directly into boards without incoming inspec-
tion and handling, ship-to-stock has been accomplished. Ship-to-
stock, also known as dock-to-stock or certification, is an electron-
ics industry goal. It accomplishes minimum cost objectives of our
customers. The ship-to-stock decision is a customer decision
that is based onthe confidence one has in their supplierto provide
consistent, high quality. Monolithic Memories has mechanismsin
place to support ship-to-stock programs and has agenetic recipe
for the certification process for those who would like to get a head
start on a such a program. Refer to the outline of Guidelines for
Product Certification.)

Quality improvement Programs

The Product Quality Objective is divided into the following com-
ponents:

Reliability

Electrical Performance
Programmability

External Visual/Mechanical
Internal Die Visual

Total Quality Process
Quality Partnership Program

.

Reliability

The reliability program: consists of new product, package and
process qualifications, qualifications of product, package and
process changes, and product, package, and process monitors.
Most reliability testing is performed on site in Santa Clara.

Qualification ' requirements are generally customer driven.
Monolithic Memories has developed a procedural specification
that attempts to cover most of the requirements of our numerous
customers. Most test methods follow the Mil-Std 883 method if
applicable.

3-132 ﬂ Monolithic m Memorles I'l

Product Assurance

The most common stresses are operating life, temperature
cycling, and temperature and humidity testing. Monolithic
Memories performs operating life at 125 degrees Celsius, 5.25V
Vee, and 1000 hours per method 1005, condition D. In some
instances the time will be extended for information only. Operat-
ing life is performed dynamically by applying 100KHz to the inputs
ofthe devices under stress. Interim readouts are generally made
after 168 hours. The junction temperature is kept below 175
degrees Celsius. Temperature cycling is performed from —65 to
150 degrees Celsius for 100 cycles per method 1010,
condition C.

Temperature and humidity, usually referred to as 85/85 testing, is
performed with devices biased. Both Vcc and ground are held at
ground potential while the rest of the pins are biased to 5 volts.
The name 85/85 comes from the temperature and humidity
settings of 85 degrees Celsius and 85% relative humidity. De-
vices are stressed for 1000 hours.

Many other stress tests are performed including ESD testing.
Monolithic Memories has a complete ESD control program in all
post wafer fabrication areas. All necessary facilities are in place
andtraining is carried out on aroutine basis. Audits are also made
of the manufacturing areas to ensure adequate control is main-
tained at all times.

The monitor program is intended to continually look at production
products, packages and processes. Each month a series of
product, package, and process combinations are selected to be
monitored. Each quarter one product from each process and
packageis thus checked. Any defects are analyzedinthe manner
previously presented.

Whenever a major change is made to a product, process, or
package, a re-qualification test is run. In addition to requalifica-
tion, notification is made through the sales organization to those
customers that have such notification requirements. Monolithic
Memories generally notifies customers at least 90 days prior to
implementation of a major change.

All the data are summarized and published twice per year in the
Reliability Report. Copies of the report are available upon
request.

Electrical and Visual/Mechanical Quality

The basis of the quality improvement program has beenthorough
analysis of and corrective action for defective units found in four
main areas. The Discrepant Material Reporting system stems
from outgoing sampling performed by the QA Inspection group on
each production lot of devices. QA uses a 0.065% AQL sampling
plan per Mil Std 105D which generally results in a 200 piece
sample. Any lot with a defect in the sample is returned to
manufacturing for rescreening.

The Parts Per Million monitor is a unique effort to emulate the
results that our customers find by using our products. The signifi-
cant feature of the monitor is that the parts utilized are pulled from
finished goods, the point closest to the customer but still within the
factory. Devices are tested at room and hot temperature to arrive
at an electrical PPM and visually inspected to arrive at a visual/

mechanical PPM. In addition, samples are sent for programming
and static burn in. In this way programming yield and infant
mortality information are generated.

Defective devices from either of these factory locations are
analyzed, summarized and have corrective actions generated by
manufacturing and engineering. Formal reports are made to
corporate management in the bimonthly Product Quality Review,
which is a general meeting dedicated to reporting progress
toward quality goals.

Two sources of customer feedback are the Customer Material
Returns and failure analysis systems. Customer Material Re-
turns (CMR) are generally returns by customers who are con-
cerned with receiving credit or replacement of defective units they
have found. These units are verified by a level 1 analysis as
explained previously and summarized weekly and monthly in
formal reports to management.

Thefourth area of feedback is through the failure analysis system
which has already been presented.

The results of the efforts have been the steady reduction in PPM
levels to below 250ppm electrical, below 500ppm visual/me-
chanical, and below 0.1% infant mortality failures.

Programmability

In addition to improving product quality, we have improved pro-
gramming yields to higher levels. Improvement has come
through algorithm revisions, random defect reduction, redesigns
of products and programmer qualification. Once we began fo-
cussing on the programmer suppliers, we were able to better
understand their programming processes and work much more
closely with them to develop optimal programming algorithms.
While this in itself helped to improve yields, we also made some
design “tweaks” and manufacturing improvements that contrib-
uted further toward reaching levels generally above 99.5%. Post
programming functionality was also improved.

Some of the issues that should be considered when considering
performing your own programming are to maintain adequate cali-
bration of programmers including replacing sockets after 10,000
insertions, inventory handling costs, human handling errors, and
lack of post programming testing. Monolithic Memories can
provide programmed product with minimum cost and handling
that falls below 100ppm. This can be a significant reduction inthe
cost of quality and make it easier to move to a just-in-time
manufacturing system.

Internal Die Visual

It is Monolithic Memories’ intent to supply die quality that meets
or exceeds the Mil-Std 883, method 2010, class B. Toward this
goal, Monolithic Memories has made significant improvements
through random defect reduction in our manufacturing areas and
through the use of statistical process control techniques. Signifi-
cant defect reduction was gained by automating the assembly
process to remove human handling. Similarly, automation in the
wafer fabrication areas has also been effective. One significant
improvement was made by putting pelicles on all photolithogra-

l‘rl Monolithic Eﬁﬂ Memories i‘v‘

3-133

Product Assurance

phic wafer masks. In addition to preserving the plate indefinitely,
the pelicle causes any particle that should happen to fall onto the
plate to be out of focus on the wafer. Therefore, a perfect print is
made every time.

Die visual quality has improved to over 97% conformance to
method 2010, class B in molded packages and to 100% confor-
mance in hermetic packages. The die visual improvement has
also contributed to the improvement in infant mortality and the
improvement in programming and post programming
functionality.

Total Quality Process

Up to this point, the discussion has centered around detection
and inspection to find quality problems and fixthem. However, the
long term trend is toward prevention. Statistical process control
is a preventive measure that allows for building in quality by
quickly heading off problems before they occur. Statistical
process control (SPC) is the mainstay of a total quality approach.

Total Quality means the molding of attitudes through continual
education, training and awareness in all areas, and to establish
SPC in all manufacturing areas. The vehicles for accomplishing
total quality are the bimonthly Product Quality Review, Quality
Improvement Teams, Deming seminars, in house SPC training,
use of SPC consultants, and an automatic data collection and
analysis. !

The actual use of SPC in manufacturing can be seen in both the
U. S. and in the assembly facility in Penang, Malaysia. The
assembly areas are leading the way with on line monitoring and
real time charting in most operations. The wafer manufacturing
areas have attained various levels of penetration.

The future holds more automation in store for SPC. By the end
of 1987, we will have implemented a computer integrated system
of data collection and analysis that will eventually allow foron line
analysis, automatic data collection and automatic line control.
We will be pushing ahead with more Taguchitechniques and with
an SPC program to address non-production areas. And the
bottom line will be to reduce our cost of quality through reduction
in inspection and detection costs and to eliminate rework.

Quality Partnership Program

Several years ago Monolithic Memories developed the Quality
Partnership Program in order to facilitate quality improvement
through enhanced feedback from a few customers that had good
reporting mechanisms in place. Today, the program is basically
the same with one very important exception. Monolithic
Memories has attained quality levels below 250ppm as we
measure ourselves. Through pareto analysis of your supplier
base, you may not want to make the commitment necessary to
sustain a true partnership relationship with a supplier that does
not rank as one of your problems. But if you should, we are
always ready to participate toward mutual improvementin quality.
We have mechanisms in place to provide rapid and thorough
failure analysis and outgoing inspection data on a regular basis.
Allthat is needed is a commitment from our customers to provide
us with rapid feedback and to be willing to work in tandem toward
zero defects and minimum costs. The usualresult of a successful
partnership is reaching ship-to-stock and building a working
relationship based upon trust and mutual understanding.

The quality programs described have been in existence for
several years. The results have been dramatic. You will find us
to be very honest and responsive to your needs. If you should
need some information, please don’t hesitate to contact us.

3-134

&\ Monolithic [FJE.H Memories G\

Product Assurance

Guidelines for Product Certification

Characteristic Accountability

« Process Flow

Product Specification
Monitors and Controls
Place of Manufacture
Establish Correlation

First Article Inspection

« Electrical Conformance

« Visual/Mechanical Conformance
» Variables Data

Lot Monitoring Inspection

« Lot Acceptance or Defect Rate Maintenance
* Period of Time or Number of Lots Criteria

Factory Audit

« Customer

Certification

« Certification Maintenance Program
Disqualification and Recertification Program
Periodic Reports, Data, and Timely Feedback

- Special Outgoing Inspection and Verification
« Change Notification

Product Assurance

Quality Assurance-Military

Facility Certification

QPL Qualifications

JEDEC 13/13.2 (Gov't Liason Committee)
38510 Quality Conformance Inspection

Product Acceptance

Electrical Test Gates

Visual/Mechanical Gates

Traceability Verification
Government/Customer Liason

Final Outgoing Inspection

Inspection Activity Reporting

Verifies Conformance With MIL-M-38510 QCI
Requirements

Quality Assurance Eng.

Self Audits
Corrective Action
Calibration Control

Technical Resource
Major Programs Support

Customer Return Disposition, Reports and Failure Analysis

Division Quality Assessment Program
Quality Partnership Program
Contiguration Control

Reliability Assurance Eng.

Customer/Gov't Quality Conformance Inspection

Package, Process and Reliability Studies (New/Revised)

Division/Reliability Reporting
CECC Reliability Programs

Quality Control

Incoming Inspection/Vendor Evaluations, Ratings and

Corrective Action
In-Line Procedural Audits (Fab Through Final Seal)

In-Line Operational Audits (Fab Through Final Seal)

In-Process Wafer Fab Inspection
In-Process Wafer Sort Inspection
In-Process Assembly Inspection

Offshore Assembly Surveillance
Offshore/Surveillance Correlation Program

Analytical Lab Services (Di Water, Chemical Analysis)
Environmental Audits (Temp., RH, Particle Counts and Flow

Hood Velocity)

* In-Process CSI/GSI

Quality Engineering Failure Analysis
Statistical Control, Product Quality Analysis

Quality Assurance-Commercial

Self Auditing

Customer Material Returns Analysis and Corrective Action

Discrepant Material Analysis and Corrective Action
Technical Support

Major Program Support

PPM Monitor Support

Quality Partnership Program

Electrical Test Inspection

Visual/Mechanical Inspection

Final Outgoing Inspection

Inspection Activity Reporting

Commercial Traceability

Conformance Verification of Special Commercial
Specifications

Document Control (Commercial)

Reliability Assurance

« Early Failure Mode Detection and Corrective Action

Device/Design Qual (New/Revised)

Package Qualification (New/Revised)

Process Qualification (New/Revised)
On-Going Device/Package Reliability Monitors
Extended and Accelerated Life Testing

Qualification Test Lab Per MIL-STD-883 Method 5005
38510 Device Qualification and 883 Quality Conformance
Failure Analysis Lab (SEM/EDAX and Engineering Services)

Reliability Reports (In-House and Field)

:' Monolithic m Memories a

3-135

Product Assurance

STANDARD POST ASSEMBLY PROCESS FLOW

START ?

MPS 8230
100% PRODUCTION QA PRE-SHIP
MPS 25551 ELECTRICAL TEST 25C INSPECTION
. @————01 MPS 20256
MPS 40406
PRODUCT
IDENTIFICATION MARK
MPS 40960 l
100% PRODUCTION MPS 9521
VISUAUMECHANICAL
INSPECTION
MPS 9010 l
PRODUCTION PRODUCT
PACK
MPS 20255 l
Q/A VISUALMECH.
INSPECTION
D
YEs
MPS 20254
Q/A ELECTRICAL
INSPECTION

O—e

FINISHED GOODS

"MPS 9520

434 01

* Internal Manufacturing Process Specification Number

3-136 &\ Monolithic m Memories &

Product Assurance

SHRP* POST ASSEMBLY PROCESS FLOW

START

MPS 8230 100% PRODUCTION
PRE-BURN-IN
MPS 28551 ELECTRICAL TEST 25C
MIL STD 883C
BURN-IN 125C
METH. 1015 COND. C T = 40-48H
MPS 8230
100% PRODUCTION QA PRE-SHIP
MPS 25551 ELECTRICAL TEST 25C INSPECTION
@—_.1 MPS 20256
MPS 40406
PRODUCT
IDENTIFICATION MARK
MPS 40060 1
100% PRODUCTION MPs 9521
VISUALMECHANICAL
INSPECTION
MPS 9010 1
PRODUCTION PRODUCT
PACK
MPS 20255 l
Q/A VISUALMECH.
INSPECTION

YES
MPS 20254
Q/A ELECTRICAL
INSPECTION
O
©
MPS 9520

FINISHED GOODS
434 02

* SHRP is "Super High Reliability Product” which receives a
nominal 48-hour burn-in for a modest cost adder. Information
is available in a SHRP brochure which your salesperson or
FAE can provide.

3-137

:' Monolithic m Memories ‘l

rations

Test and Finish Ope

Monolithic Memories performs the test and finish operations
stateside in Santa Clara, Ca. and in Penang, Malaysia. Both
facilities utilize state ofthe art electronic testing equipment as well
as Electro-Static Discharge safeguards in all handling areas.
Inventory is' maintained and controlled via computerized data-
base systems assuring one of the best on-time delivery systems
in the industry. The product quality is monitored continually
throughout the process to provide feedback necessary to support
factory corrective actions.

Electrical Testing/Pre Burn-In

The electrical test of integrated circuits starts long before a batch
of parts is dispatched to the test area. Product and process
characterizations must be performed to understand the para-
metric distributions and the test conditions that are necessary to
provide full compliance to datasheet specification. When the cus-
tomer order requires programming, functional test vectors are
computer generated and evaluated for array coverage. Test
software is validated for performance margin before being
handed over to the Test area for use in production. The electrical
test software is maintained through revision control and sign-off
procedures.

Devices are delivered to the Test area for initial electrical testing.
The productis 100% production tested to guarantee the databook
requirements and functionality. The parameters specified include
electrical and switching characteristics. In addition Monolithic
Memories performs these tests at various ambient temperatures
in order to eliminate marginal devices. Additionally, test program
forcing conditions and test limits have been guardbanded to
reduce the effects of system variability and parameter shift at
temperature. Alltest equipment is calibrated to standards trace-
able to the National Bureau of Standards.

For reduced costs and improved quality due to the elimination of

human handling errors, Monolithic Memories is incorporating

bulk loading equipment into the Test and Finish areas. These ma-

chines can load and unload product from a handler with great
' speed, efficiency, and accuracy.

Burn-In
Semiconductor failures over time are known to manifest them-

selves during the earliest stages of useful life. This phenomenon
is known as ‘Infant Mortality’. During burn-in, stresses are applied

— — =

that accelerate failure for those devices which are prone to Infant
Mortality. The elimination of these failures not only improves the
reliability, but also results in substantial cost savings for system
manufacturers by reducing rework and repair loading.

Typical conditions for burn-in are:

Static Condition C
Temperature: 125°C
Vee: 5.25 V

The typical infant mortality phase is defined as 168 hours, with
75% of the defectives found in the first 48 hours.

Monolithic Memories has reduced mechanical handling defects
during board load and unload by utilizing robotic handling/loading
equipment.

Electrical Test/Post Burn-In

The devices which are burned-in are again electrically tested to
remove any failures that are a result of the Burn-in accelerated
stresses. Production and engineering monitors have shown that
the typical failure rate for this stress is approximately 0.05%.

Marking

The devices are marked to provide identification of part number,
MMI logo, assembly location, and date codes. In addition to
standard marking, special customer required items are available.
A photolithographic process is used to produce exceptional
character clarity. Every lot is tested for marking permanency.

Traceability of all raw materials, equipment, operators and proc-
esses are identified by two unique date code numbers found on
the top and bottom of the package. Asix-digitcode marked onthe
top-side of the device allows traceability of the test and finish
operations, and an eight-digit bottom-side code for traceability of
assembly processing and raw materials back to wafer lot.

Visual/Mechanical Inspection

Visual and Mechanical inspection is performed on all production
units. The inspection includes package outline dimensions, and
lead and marking quality. With the aid of production monitors and
statistical process controls, marginal processes are eliminated.

3-138

zl Monolithic m Memoﬂes n

Test and Finish Operations

[

Pack

Packaging of devices is no simple matter. One must provide
mechanical strength, and identification of contents as well as
electrical protection (from ESD). Monolithic Memories utilizes
carbon impregnated boxes for the intermediate containers of a
shipment, which act as faraday cages in dissipating the built-up
electro-static charges. The box label has printed on it the part
number, package type, quantity of devices, QA stamp of accep-
tance, specification number, date of pack, and bit pattern (if
programmed). Many of the above items are also printed in
machine-readable bar code formatto assistin product movement
and control.

&\ Monolithic m Memories &1

Quality Assurance Visual/ Mechanical
and Electrical Inspections

The Quality Assurance department sample inspects the devices
to a 0.065% AQL sample plan in accordance to Mil-HDBK-105D.

The visual/mechanical inspection consists of physical dimension
checks along with lead, marking, and packaging verification to
ensure quality. . .

Paperwork is also reviewed for accurate and complete process-
ing to specification and customer requirement.

The devices are electrically tested to databook and/or specific
customer conditions and limits to validate the electrical and
functional integrity.

Any non-conformities that are found during QA inspection are
verified and tracked through the appropriate product/assembly
engineering group to obtain corrective action. This information
along with inspection volume and failure rates is reported to
management, operations and engineering regularly for long-term
trend visibility and improvement.

3-139

IMOX " Product Technology

and Reliability

In order to meet the next generation requirements for speed and
density in PAL devices, an advanced bipolartechnology hasbeen
developed called IMOX-IIl. Although IMOX-Ill represents a major
breakthrough which will allow further scaling to the sub-micron
region, thetechnology also shares many features in common with
prior generations of technology, IMOX-Il and IMOX-IIS.

The revolutionary breakthrough of IMOX-Ill is the use of reactive-
jon-etched grooves, called slots, to isolate the transistors. These
slots are 1.5 microns wide, over 6 microns deep, and are filled with
dielectric material (Figure 1). Because the transistors are not
isolated by junctions, space for depletion spreading is not neces-
sary. Also, since the slots are etched anisotropically, thicker EPI
layers can be isolated without increasing the isolation widths. Es-
sentially, no density penalty is paid to achieve high breakdown
voltages. Higher breakdown voltages are needed to support the
programming voltages required to program fuses in bipolar PAL
devices.

Smaller device sizes translate into faster circuits through smaller
die sizes and reduced capacitances of active devices and metal
interconnect. Another advantage of the slot isolation is reduced
collector to substrate capacitance, which offers improved per-
formance in many circuit configurations.

Overall, the IMOX-IIl process is a major step forward from
IMOX-IIS. Inaddition to the slotisolation, stepper lithography and
dry metal and via etching have been implemented, resulting in a
dramatic reduction in device sizes. The slot isolation allows the
silicon pitch to be reduced by one-third. The steppers and plasma
metal etching allow the metal pitch to be shrunk by one-third also.
Furthermore, the IMOX-III process was designed with a 20%
shrink in mind. This scaling can be accomplished simply by
shrinking the masks.

The IMOX-Il process shares many familiar features with its
predecessor, IMOX-1IS. Oxide-walled bases and emitters are

used to reduce the size and parasitic capacitances of transistors.
lon implanted emitters and bases are used to achieve the profile
control necessary for high performance transistors. The reliability
of the transistor structure used in IMOX-IIl has been proven over
millions of hours of high-temperature tests on products that use
IMOX-II and IMOX-1IS processes.

Another key feature familiar to users of older generation IMOX
PAL devices is the fuse technology. IMOX-III uses platinum
silicide fuses, identical to the fuse technology used on older
generation IMOX PAL devices. Programming yields are the
highest possible, and programming times are extremely short
(about 300 ns).

The IMOX-Illtechnology also features two levels of metallization,
as does IMOX-Il and IMOX-1IS. However, with IMOX-Ill technol-
ogy, both layers are stepper-defined and plasma-etched.

The IMOX-III technology is being applied to a family of high-

‘performance PAL devices. The first of these is a “D-speed”

20-pin PAL IC, which runs at 10 ns. The table below shows the
devices built on the IMOX processes.

MAXIMUM
PROPAGATION
DEVICE PROCESS DELAY
AmPAL16R8 Family IMOX-1l 25ns
AmPAL16R8B Family | IMOX-IIS 15 ns
AmPAL16R8D Family | IMOX-lII 10 ns
AmPAL18P8 IMOX-IIS 15ns
AmPAL22V10 IMOX-IIS 25 ns
AmPAL22V10-15 IMOX-1II 15 ns
AmPAL20XRP10 IMOX-1IS 15ns
Family
AmPAL23S8 IMOX-IIS 20 ns

EXTRINSIC BASE INTRINSIC BASE

BASE CONTACT

N EPI

COLLECTOR FIELD OXIDE
EMITTER

SINK

N* BURIED LAYER

/ POLYSILICON
/ SIDEWALL OXIDE

NN

465 01 -

4
A}

\ P SUBSTRATE '

QAN

\

-

/(
h
Q
3
z
Zz
m
~
»
=
o)
el

Figure 1. Slot Isolation

3-140 X monotithic L Memories &1

IMOX Product Technology and Reliability
—

IMOX-III technology will enable third and fourth generations of
PAL devices that will be significantly faster and more complex
than the current devices. It will also reduce the cost of the new
devices by significantly reducing die sizes or allowing more
features to be added without increasing present die sizes. Faster
and more complex PAL devices will permit system designers to
build advanced computers, communications systems and instru-

mentation systems at a much lower cost.

IMOX Product Reliability

IMOX bipolar Programmable Array Logic (PAL) devices are
based on two key technologies with many years of high volume
production experience behind them.

1. IMOX—The basic process technology employed is IMOX, an
advanced ion-implanted, oxide-isolated structure. IMOX

provides very high performance devices with predictable

manufacturing yields. It has accumulated many millions of
hours of life test history through its application to the Am27S
series of PROMs and the Am2900 family of bipolar micropro-
cessors.

A comprehensive report on IMOX reliability titled IMOX
RELIABILITY REPORT (AMD publication #03687A-MPR) is
available forthose interested in a detailed presentation on this
subject.

2. Platinum-silicide fuses—This fuse structure was originally
developed for use on junction-isolated PROMs. It quickly
established a standard of excellence for high programming
yields and long-term reliability. Several years ago it was
applied to anew generation of ultra high performance PROMs
based on the IMOX process.

This combination of IMOX and platinum-silicide fuses has an
outstanding record of reliability which has been verified repeat-
edly through in-house life testing and by high-reliability customer
qualification testing and system use.

IMOX PAL devices are fabricated with this same combined
process technology. Not only is the technology for building PAL
devices and PROMs the same, but also the programming algo-
rithm and programming circuitry used to program the platinum-
silicide fuses are the same in all characteristics of importance.
The resultis that the conditions seen by an IMOX PAL device fuse
are the same as those seen by an IMOX PROM fuse.

Due to the common process technology, fuse design and fuse
programming circuitry design, reliability and programming yield
results are expected to be the same for PAL devices and PROMs.
Data accumulated to date on PAL devices confirms this
expectation.

This report describes the characteristics of the platinum-silicide
fuse and programming conditions for the fuse, along with a
description of the ongoing reliability monitor program.

Platinum-Silicide Fuse

Fusing Technique

IMOX PAL circuits are designed to use a programming algorithm
which minimizes the requirements on the programmer yet allows
the circuit to program the platinum silicide links quickly and *
reliably.

The sequence of events to program a fuse are:
1. VCC power is applied to the chip.

2. The address of the fuse to be programmed is selected by TTL
levels on the appropriate address pins.

3. The outputs are disabled. (Pin 1 serves this purpose on PAL
devices).

4. The programming voltage is then applied to one output.

5. A fuse enable is accomplished by raising an input to a level
above normal TTL operating voltage. (Pin 11 is used for this
on PAL devices.) This action gates the current flow through
the proper fuse, resulting in an open fuse in a few microsec-
onds.

6. The output programming voltage is lowered and then re-
moved.

7. The device is enabled and clocked if required. The output
state then indicates whether successful programming has
occurred. If programming has not occurred a sequence of
much longer pulses is applied until programming occurs.

8. The sequence of 2 through 7 is repeated for each bit which
must be programmed.

There are several advantages to this technique. First, the two
high current power sources, VCC and the voltage applied to the
output, do not have critical timing requirements. As the program-
ming current is gated through the fuse actively, there is no
dependence on the rise rate of the programming voltage. Afast
application of programming current is desirable for optimum
programming. Since the output programming voltage does not
have to be applied rapidly, breakdown and latchback problems
attributed to fast voltage rise times on the output are avoided.

This programming procedure has a second major advantage. I
the fuse does not open during the first programming pulse, longer
programming pulses are used. With the platinum-silicide fuse,
long programming pulses may be safely applied with no danger
of developing a reliability problem. The algorithm can therefore
be designed to minimize the time required to program by using a
fastfirst pulse followed by alonger pulse if needed to program the
occasionalfuse that does not open with the first short pulse. Most
devices do program satisfactorily with all short pulses.

&\ monotithic Bl Memories €1

3-141

IMOX Product Technology and Reliability

Fuse Characteristics

When a fast (less than 500 ns rise time) current pulse is applied
to afuse, the fuse voltage rises abruptly to a value determined by
the room temperature resistance. However, it then quickly falls to
avalue of approximately 2 V. This value is nearly independent of
the applied current. During the period of time the fuse is molten,
the fuse current drops very abruptly to zero indicating the
separation of the platinum-silicide into two distinct sections.
Scanning Electron Microscope photographs ofthe resulting fuses

'

(Figure 2) indicate that the typical case is asharp clean separation
in excess of a micron. This separation occurs in the center of the
fuse because the “bow-tie” structure (Figure 3) concentrates the
energy density in the center away from the aluminum intercon-
nect lines. The energy density in the center of the fuse creates
temperatures substantially greater than those required to meltthe
silicide. Melted material is then “wicked” from the center of the
fuse to either side due to surface tension.

Unprogrammed Fuse

Programmed Fuse
Figure 2. Scanning Electron Microscope Photo-Unprogrammed and Programmed Fuses

3-1 42 :' Monolithic m Memories Pm

IMOX Product Technology and Reliability

— o

ALUMINUM | CURRENT DENSITY ALUMINUM
IS 6X LEVEL IN
CONTACT AREAS

N

CONTACT Pt-Si | CONTACT
AREA AREA

AN

COOLER REGIONS
~——""" RESULT IN CORRECT ~—"
SURFACE TENSION FORCES

FOR PULLBACK OF FUSE
MATERIAL FROM CENTER GAP 466 02

Figure 3. Bow-Tie Fuse Design

Reliability Testing Data Data on IMOX PAL and PROM devices has been gathered over
millions of device hours and more than 40 billion fuse hours of
high temperature operating life tests (HTOL). The life test circuits
used in this work conform to MIL-STD-883 method 1005 condi-
tions C and D. This data indicates a projected unit failure rate (at
60% confidence) of 0.0002%/1000 hrs. at 70°C.

Data on the reliability of PAL and PROM devices with platinum-
silicide fuses is gathered via the Reliability Monitor Program
(RMP). The RMP is an ongoing program conducted on all device
types across all product lines, and is designed to ensure that all
IMOX devices meet acceptable reliability levels. A summary of
the RMP tests for hermetic and plastic molded packages are
shown in Tables 1 and 2.

Results of the IMOX RMP are updated periodically and can be
obtained through inquiry to any of the Sales Offices listed in the

back of this handbook.
TYPICAL . TYPICAL
SAMPLE SAMPLE
TEST CONDITIONS SIZE TEST CONDITIONS SIZE
160 hours at 125°C 160 hours at 125°C or
Infant ambient. Initial and 300 Infant 85°C ambient (Tj <150°C
Mortality end-point electrical Mortality nominal). Initial and 300
tests. end-point electrical tests.
1000 hrs (1160 total) . 1000 hrs (1160 total))
Operating at 125°C ambient. 120 Operating @ 125°C or 85°C ambient
Life Initial and end-point Life (Tj <150°C, nominal). 120

Initial & end-point

electrical tests. .
electrical tests.

1000 cycles, (—65°C to

Temperature | 150°C), 30 min/cycle. 85°C/85% RH/low power
Cycle End-point-hermeticity 50* Temperature bias, 500 hours and
and electrical tests. And 1000 hrs. 50
Humidity Initial, interim, and
150°C 1000 hours at 150°C end-point electrical tests.
Operating ambient. 50
Cycle Initial and end-point Temperature | 1000 cycles: -65°C

Cycle to 150°C, 30 minutes/ 50
cycle. High temperature
(75°C min) functional

electrical tests.

* ;I:lstise units are hermetically tested prior to commencement of end-point electrical test.
Table 1. Reliability Monitor Program for Devices in Pressure 121°C, 15 psi, 160
Hermetic Packages Cooker hours, unbiased, initial 50

end-point electrical test.

Table 2. Reliability'Monitor Program for Devices in Molded
Packages

:' Monolithic m Memories a 3-143

IMOX Product Technology and Reliability

IMOX Product Testability

Thorough testing of programmable logic devices by the manufac-
turer is important to both the performance of programmable logic
. and its cost of use.

Field programmable logic devices are different from other semi-
conductor products in that the user must complete the manufac-

turing process by programming and functionally testingthe parts.

Programming is normally accomplished on commercially avail-
able programming equipment. Functional testing may be per-
formed on a programmer, on automatic test equipment or at the
board or system level. Figure 4 illustrates where device failure
detection can occur. Clearly, the cost implications of failure
become more serious with each advancing step.

DESIGN
SOFTWARE

}

. FUSE
PARTS PATTERN

;*‘__I

PROGRAMMING —¥

}

COMPONENT
TEST

PROGRAMMING
REJECT

AC, DC, OR
—> FUNCTIONAL
REJECT

BOARD R PER;g?EMCArNCE

TEST
SYSTEM » PERFORMANCE
REJECT
ON-SITE » PERFORMANCE
469 01 OPERATION REJECT
Figure 4.

As a result of assuming the responsibility of programming and
test, the user gains all the benefits of a custom function with the
cost and availability advantages of a standard product. However,
the user must also deal with those parts that do not program suc-
cessfully or do not function to advertised specifications after
programming. }

Testing before shipping can make a difference to the user in:

1. Programming yield
2. Post-programming functional yield (PPFY)
3. Uniformity of performance

This paper describes the téchniques used on IMOX process PAL
devices to allow testing of these three important attributes on
every device before shipment to the user.

Programming Yield

Programming yield is the measure of the success of the program-
ming operation. Large volume users of programmable logic keep
records of the programming yield history of their suppliers’ parts.
Programming yield is considered by these users to be an impor-
tant element in judging the overall suitability of different
suppliers’ parts.

Post-Programming Functional Yield

Experienced PROM and EPROM users are sometimes puzzled
by the fact that not all programmable logic devices function
correctly even though they have successfully completed a pro-
gramming operation and fuse verification check.

With PROMs, a one-for-one relationship exists between address
states and programming elements (which can be fuses, floating
gate MOS devices, open-base NPN transistors, etc.) That is, the
state of each output for each address is dependent on the
condition of only one fuse. Sensing a desired fuse state after
programming therefore practically guarantees correct functional
operation (at least at the voltage and temperature conditions of
the programming operation). .

With programmable logic devices the relationship between pro-
gramming success and post-programming functionality is not
one-for-one. Except for the simplest of patterns and devices, the
relationship is highly complex. Feedback buffers allow the crea-
tion of more than one level of logic; latches, counters, shift
registers, and even oscillators can be created. Special fuse
functions such as polarity control, output enables, register/com-
binatorial path selection and buried registers complicate the
relationship further.

This is the power of programmable logic—but the testing chal-
lenge that results from this versatility can be substantial. Logic
states for programmable logic devices can depend on multiple
fuses. The fuse verification procedure that examines each fuse
uniquely is therefore not sufficient, as it is with PROMs, for
guaranteeing functionality.

All programmable logic devices contain special on-chip program-
ming circuitry and modes to allow programming and verification
of each individualfuse. The complexity of programming may vary
significantly, but all have one thing in common—successful
programming by itself cannot guarantee functionality.

The user’s job does not end then with the programming operation.
To be assured of a functional part, a comprehensive set of test
vectors must be applied to the part. Many device programmers
accept test vectors along with fuse programming vectors and will
apply the test vectors to the part following the programming
operation. The PRELOAD feature greatly simplifies the test
generation problem for registered parts.

3-144

:l Monolithic m Memories :l

IMOX Product Technology and Reliability

Uniformity of Performance

The buyer of a programmable logic part has the right to expect
that the performance specifications appearing on the
manufacturer’s data sheet will be met for all legitimate applica-
tions of the part. This applies to each and every logic path and
function.

A glance at the logic diagram for an unprogrammed part shows
that, with the array in its unprogrammed state, no amount of
activity of the inputs can make any output switch. Without any
programmed fuses, the AND gates see both the true and comple-
ment of all inputs.

If post-programming performance is to be guaranteed with
absolute confidencs, test circuitry must be provided to allow each
path to be tested to data sheet performance.

Approach to Designing in Testability in
IMOX PAL Devices

The approach to the the design of IMOX programmable logic was
strongly influenced by the goal to provide users with the best
programming yield, post-programming functional yield, and uni-
formity of performance.

Designing programmable logic can be viewed as a three-dimen-
sional task involving high-performance logic design, fuse pro-
gramming circuit design and test circuit design.

The first dimension is the design of a high-performance logic
circuit with SSI/MSI competitive switching speeds and very high
output drive for bus environments.

The second dimension of programmable logic design is the
programming circuit design. The emphasis of this design is to
provide circuitry that will deliver large programming currents to
individual fuses. Special decoders, demultiplexers, buffers and
mode select circuitry are needed. The circuits need not be fast
since programming occurs at microsecond speeds. Becausethe
circuitry is not used after programming, it is desirable that it
consume power only during programming and not during
operation. Since large voltages are required to generate pro-
gramming current, survival under high voltage is also required. All
of these requirements are quite different from the logic circuit
requirements but must be achieved within the same part.

Testability is the third dimension of programmable logic design.
This overlay of circuitry provides the means to exercise the part
through all of the possible paths that might be activated by
programming. Test circuitry is also needed to insure that the
programming circuitry will function properly. Testability is thus
important to achieving high programming yields, post-program-
ming functionality, and performance to data sheet specifications
through all possible paths.

The unique challenge of programmable logic design is to inte-
grate these three dimensions in the most efficient manner.

Testability in the Programming
Circuitry

Good programming yields are in the high ninety percent range.
IMOX PAL device programming yields are typically higher than
98%.

Three things contribute to the high success rate in programming
IMOX fuses:

1. Uniform fuse cross sections.

2. Pretesting of the current delivery and sink capability of
column drivers and row drivers through use of wafer sort
test pads.

3. Sample fusing of test rows.

Uniformity of Fuse Cross Sections

The IMOX process gives consistently uniform platinum-silicide
fuse cross sections. Uniformity is monitored by measuring fuse
resistance test patterns on a sample basis in every wafer lot. The
data is processed for mean and standard deviation and trend
plots are maintained. Material not meeting fuse width control
limits is scrapped.

Testing for Fusing Current Delivery Capability

On every IMOX PAL device there are two extra pads that are
probed at wafer sort. These extra pads are used to gain access
to the fuse array for special testing at wafer sort. The connection
of these pads to the fuse array is shown in Figure 5.

The programming process involves selectionof individualcolumn
and row drivers to deliver and sink programming current through
selected fuses. The extra test pads allow easy access for
individually testing the source and sink capability of each column
and row driver. Also areverse leakage checkof all of the Schottky
diodesin the array is possible by applying bias between the pads.
Without the test pads, all of these tests would be impossible or
would have to be accomplished in a less direct and less effective
manner.

Sample Programming

To further assure programmability, the IMOX PALdevices include
an extratest input buffer with fuses connected to each of the array
columns.

Programming one test buffer fuse per column accomplishes two
important things. First, a sample fuse has been programmed
using each of the column drivers. The sample fuse is exactly the
same dimension as all of the normal array fuses, and the test
buffer drivers sinking the programming current are identical to all
of the normal drivers. Before shipment each IMOX PAL device
has had a sample of fuses programmed on the test buffer. For
example, 64 fuses are programmed on the test word of every
AmPAL16L8, one per product term.

The second purpose in programming the sample fuses is to
create a pattern for AC and functional testing.

z‘ Monolithic E.[ﬁﬂ Memories ﬂ

3-145

IMOX Product Technology and Reliability

TEST
() I

O

gg:;}gﬂé . ARRAY

o OUTPUTS

P

4

469 02°

ROW DRIVERS

Figure 5.

Testability to Guarahtee Functionality
After Programming

Atypical PAL device, the AmPAL16R4, is shown in Figure 6. Not
shown in the logic diagram are the components located at each
horizontal and vertical line intersection. For IMOX PAL devices,
afuse and a Schottky diode reside at each cross point as shown
in Figure 5.

The horizontal or “Product Term” line is then the common anode
connection for a 32-wide diode AND gate. The user’s job is to
figure out which of the 32 inputs should be connected to the AND
gates. Theinputs not needed must be disconnected by program-
ming the fuse shown in series with the diode.

The obvious problem from a manufacturer’s test standpoint is:
How can it be guaranteed through testing that the device will work
after fuses are programmed? If the only logic in the device were
that shown in Figure 7, testing would be nearly impossible. With
16 LOW levels and 16 HIGH levels presented to each AND gate,
the LOWs win. All 64 AND outputs are thus always stuck LOW,
and there is no way to get the output to toggle for AC or DC
test purposes. This is the raw state of any device before
programming. :

Necessary Testability Requirements

Something more is needed in every PAL device to assure close
to 100% functional yield after programming. The IMOX PAL
devices have an overlay of test circuitry that accomplishes the
following: '

1. Each input and feedback buffer can be checked for
functionality.

2. Each of the AND gates can be switched HIGH and LOW
and uniquely sensed by an output.

These two tests are necessary to the guarantee of close to 100%
post-programming functional yield.

Under normal operating conditions the test circuitry is inactive
and consumes very little power. Supervoltages cause it to come
alive. Supervoltages are levels substantially higher than Vce so
that under normal operating conditions accidental activation of a
test mode cannot occur.

In this paper a double line on the input side of a logic symbol
indicates that the HIGH level must be a supervoltage to
activate it.

Checking the Input and Feedback Buffers

Functionality of the input and feedback buffers is checked with the
aid of the extra AND gate dedicated to this function. Figure 7
illustrates the AND gate and its associated enabling circuitry.

The non-inverting or true side of each input and feedback buffer
is connected to the special test AND gate. The AND gate is
activated by a supervoltage on one of the input pins. The function
actually takes two activating inputs to implement since the use of
one for activation prevents that pin from being tested for function-
ality. Having an alternate pin to activate the function solves this
problem.

Only the non-inverting side of each buffer is hooked up to the AND
gate because each buffer is constructed from two inverters in
series. The first inverter must work for the second one to work,
so that checking the second one is sufficient to prove that they
both work.

The feedback from the output used for the test cannot be fed to

the test AND gate; such a connection would make the test output .
oscillate. For this reason its feedback input is not connected and

is tested by creating another test AND gate on a different output

and routing it there.

3-146

2\ monotithic Fll Memories €1

IMOX Product Technology and Reliability

0\ 4567\\ 12131415\ fo\212223|2/ 2829 30 31
>

m,
v

NOnAWN=-O

j) [sv/s.v/v.v[v 0]
N
Lﬁ” g LE JAN JAN AN

0123

/ 891

/ \
16171819/ \ 2425265
021222 2

12131415 293031

Figure 6.

zl Monolithic m Memories n 3-147

IMOX Product Technology and Reliability

INPUT TEST ENABLE
INPUT

TRUE CONNECTED
COMPLEMENT
UNCONNECTED

TYPICAL QUTPUT
INPUT OR ENABLE
FEEDBACK

BUFFER [|

FEEDBACK
BUFFER

469 04

Figure 7.

Since the special AND gate used to test all of the buffers is
identical to those used in the normal operating path, switching
each input through this path provides the means for testing the
switching performance of each buffer.

Testing the AND Gates

The next important test requirement is to make sure that all of the -

AND gates work and will switch at data sheet speeds. This test
challenge is little more complex.

What is needed in this case is:

1. A means of decoding one AND gate at a time in each
output.

2. Away to force all input and feedback buffers to a HIGH
level on both true and complement outputs.

3. A special input of identical design to a normal input that can
be used to switch the decoded AND gates. '

These requirements are met by the circuitry shown in Figure 8.

The decoder to select one AND gate at a time in each output
serves a dual purpose. It is the same decoder that provides

.unique selection of product term lines for programming and fuse

verification. It responds to binary combinations of TTL signals at
three input pins; only one of the eight outputs will go high at a
time, thereby isolating each AND gate.

The special test input that is used in this mode also serves a dual
purpose. It was mentioned earlier in this paper that a program-
ming sample was performed on each part. This specialtest input
is the input that carries the test fuses. During the sample
programming operation the fuses are programmed in a pattern
that allows switching of all 64 AND gates, one in each output, for
each of the eight decode states.

The input to the special buffer for AND gate testing is one of the
normal input pins, but the buffer is inactive for normal operation
and must be activated by supervoltage levels applied to two other
inputs.

The supervoltage levels also provide the signal to force all of the
buffer outputs HIGH, which is one of the three necessary require-
ments for AND gate testing.

Since the design of the special buffer is identical to all of the
normal input buffers, it serves as a surrogate buffer for speed-
testing all of the AND gates. Inthe AND gate test mode, all eight
outputs are switched at once, since one AND gate is selected in
each output. For registered outputs the AND gate switching path
provides a means of testing setup and hold times.

Summary

All IMOX programmable logic devices have designed-in testabil-
ity and are achieving yields of greater than 98% for programming

- and better than 99.9% functional and AC test yields after pro-

gramming. Even higher goals have been set for future products.

3-148 l"'l Monolithic m Memorles z'

IMOX Product Technology and Reliability

TYPICAL
INPUT
AND
NORMAL GATES
INPUT .
DISABLE
N . TYPICAL
! . OUTPUT

BUFFER
ENABLES

TEST
INPUT

TEST

BUFFERS

__I“ >__.I COD! TEST NORMAL
DENABLER INPUTS . INPUTS

—] 1:8

AND .
GATE
DECODER

469 05
Figure 8.

&\ monotithio] Memories &1 3-149

ECL Technology

Emitter-Coupled Logic (ECL) delivers high speed, high input
impedance, and low outputimpedance. These features are ideal
for system designers who want to improve system performance.
ECL achieves high speed by operating the transistor in a non-
saturation mode, so that the storage-time delay associated with
saturating logic is not present. When high input impedance is
combined with low output impedance, large fan-in and fan-out
can be achieved; in addition, low-impedance transmission lines
can be driven.

Current Switch

The differential amplifier (Figure 1) is the basic building block for
ECL logic; it functions as a current switch. Current | is steered
either through resistor R, or R, depending on the input voltage
(VIN). Adifference of 150 mV between VIN and VBB will cause
the current | to flow entirely through the transistor with the higher
base-emitter voltage (VBE), due to the exponential relationship
between the collector current and VBE.

When VIN is 150 mV less than the reference voltage (VBB), the
collector voltage of Q, (VC2) will equal VCC«t| Rwhen R;=R =R,
and the collector voltage of Q, (VC1) will equal VCC. When VIN
equals VBB, the two collector currents will be equal and
VC1=VC2=VCC-alR/2. When VIN is 150 mV higher than VBB,
VC1=VCC-a. 1R, and VC2 = VCC. Although the switching thresh-
old is 300 mV centered about VBB, the signal swing is made
larger (approximately 850 mV) to provide noise immunity and to
provide for differences between input thresholds of one circuit
and output voltage levels of another. The values of R and the
current source are chosen to determine the voltage swing and
ensure the charging and discharging of parasitic capacitances
at a given switching rate.

If we consider VCC to be a high logic level, and VCC-a | R to be
alow logic level, then VC1 will always be the inverse of VC2. That
is, they are complementary outputs.

436 01

Figure 1. The Basic Differential Amplifier

Emitter-Follower

To keep the current switch out of saturation, VIN must not be
greater than VCC-0.l R. For matched switching speed the volt-
age swing should be centered around VBB, which must also be
below VCC- | R by at least one half the voltage swing. To meet
these restrictions, an emitter-follower is added to the current
switch (Figure 2). This shifts the level of VC1 and VC2 down by
a diode, and allows the logic gate to have compatible input and
output levels. The emitter-follower also isolates the collector
switch nodes from the output load, and provides the low outputim-
pedance that is beneficial to this logic family. On outputs, the
emitter-follower can drive a 50 Q load to —2.0 V. This allows a
terminated transmission line, preventing reflections.

VEE

Figure 2. Gate with Emitter-Followers 4 02

OR Logic

The buffered switchin Figure 2 functions as abufferoraninverter.
By adding a second input transistor to the buffered switch
(Figure 3a), a wired-AND of the collector impedances is formed
at VC1. By using DeMorgan’s rule, this AND function is inverted
into the NOR of the two inputs. The inverse of VC1, the OR
function, is generated at VC2.

VEE

436 03a
Figure 3a. OR/NOR Gate

‘3-150

:' Monolithic m Memories a

ECL Technology

Additional parallel input transistors can be added to this gate to Current Source
create multiple input gates (Figures 3b and 3c). The limit of the
number of parallel input transistors is set by the speed of the gate;
additional input transistors add more capacitance to the collector
switch node forming the NOR logic. Given enough capacitance
difference between the two collector switch nodes, a skew in the
two outputs will occur.

The current source used in 10KH and 100K ECL circuits is
illustrated in Figure 4. The source current | is set by the reference
voltage VCS, the emitter resistor R,, and the base-emitter volt-
age of Q,. VCS is internally generated and is at a fixed voltage
with respect to the negative supply VEE. The source current is

A®B ' I
(A+B)*(A+ A
* A+B
A VBB
"
VBB’
436 03b
VEE
Figure 3b. 2-Input XOR/XNOR Gate
AB®C) + ABOC) ABBC) + AB®C)
A®BOC A®B®C

[-
A+(B®OC) A+B®C
A [: A+(B®C) VBB :]

436 03¢

VEE

Figure 3c. 3-Input XOR/XNOR Gate

X mononthic LAl Memories S1 3-151

ECL Technology

independent of the VEE supply voltage because of this fixed
voltage. The output levels are primarily determined by the
collector voltages of Q, and Q,. As discussed earlier, these
voltages are VCC-al,R or VCC. This relationship between the
output levels and the source current makes the output levels
practically insensitive to VEE variations. Thus these ECL circuits
are said to be voltage compensated. The variation of output
voltages with respect to VEE for the 10KH and 100K families is
shown in Table 1.

436 04 VEE
Figure 4.
10KH | 100K
AVOH /AVEE mVN -20 7
AVOL/AVEE mVNV 20 15
AVBB/AVEE mVNV 10 10

Table 1. Voltage Sensitivity
Input Threshold Regulation

The input threshold region is centered around VBB. VBB is
internally generated and is at a fixed voltage with respect to the
positive supply VCC. Variations in VEE have minimal effect inthe
value of VBB. The relationship between VBB and VEE is also
shown in Table 1.)

10KH Temperature Tracking

The output levels of 10KH circuits vary over temperature. The
input threshold voltage VBB also varies over temperature to track
the output variation. The temperature tracking characteristics of
the 10KH output levels and lnput thresholds are shown |n
Table 2.

10KH | 100K
AVOH /AT mVrC 13 | <04
AVOL /AT mV/rC 0.5 <0.1
AVBB/AT mVrC 1.0 | <0.1

Table 2. Temperature Sensitivity

100K Temperature Compensation

The output levels and input thresholds of 100K circuits are
temperature compensated. The input threshold is compensated
in the bias network by referencing it to the extrapolated energy
band-gap voltage of silicon (VGO = 1.3 V), which is generated in
an on-chip regulator. The output levels are compensated by a
cross-connect network in the current switch and a temperature-
regulated current-source driver (Figure 5). The cross-connect
network adds a negative temperature coefficient to the base of
Q, when the true output of the gate is in the VOH. state, which
oompensatss for the positive temperature coefficient developed
by the base-emitter junction of Q,. Additionally this same circuit
adds a positive temperature coefficient to the base of Q, when the
gate is in the VOL state, thereby compensating for the dominant -
negative coefficient introduced by the gate’s current source. The

temperature dependence of the 100K output levels and input

thresholds is shown in Table 2. '

VCCy
VCC2

CROSS-CONNECT
NETWORK

D4

R4

COMPLEMENT TRUE

436 05

Figure 5. Output Temperature Compensation
Voltage Supply Range

Because the outputs switch high currents very rapidly, they can
generate a lotof noise onthe VCC line. The circuitry operates with
small voltage swings, so this noise can disrupt the rest of the
circuit. For this reason, multiple VCC lines are used to isolate the
internal “clean” VCC from the VCC that drives the outputs,
(Figure 6). If the device has many outputs, several “dirty” VCC
pins may be used. As a general rule, provide one VCC for each
group of four outputs.

Because of the necessity for a clean VCC supply, it is desirable
to connect it to the most stable voltage in a system, which is
normally ground. Thus VEE is normally negative. The normal
ECL VEE supply ranges are shown in Table 3.

NOMINAL | RANGE
V)
10KH -5.2 +0.5%
100K -4.5 +0.3V
Table 3.

3-152

&\ Monolithic E) memortes £

ECL Technology

"CLEAN"VCC “DIRTY" VCC Noise Mal’gins

Noise margins between circuits with different supply voltages do
not degrade more than 30 mV because of the insensitivity of both
the output voltage and the threshold voltage to changes in VEE.
This simplifies the requirements for the system power regulation
and distribution. The minimum noise margin is defined by the dif-
ference between the Min VOH and Min VIH, or VNH, and the
difference between the Max VOL and Max VIL, or VNL (Figure 7).

InTable 4the input and output electrical characteristics are shown

for the 10KH family. Both VNH and VNL are 150 mV for two parts

at the same temperature. With one part at 0°C driving another

Figure 6. 436 07 part at 75°C the VNL drops to 50 mV. This happens because the

input thresholds and output voltages of 10KH circuits are nottem-

perature compensated. The 100K circuits have temperature

compensation and provide better noise margin for parts operating

VOH MAX ——————— — VHMAX at different temperatures. Table 5 shows this; notice that input
VOHMIN [—A——— - g --- and output characteristics are specified for difference in power
supply and not in temperature as is Table 4 for 10KH character-
istics. The worst-case VNH for 100K parts is 115 mV. This occurs
when one part has a VEE of —4.8 V and is driving a part whose
VEE is at —4.2 V. The worst-case VNL for 100K parts is also
VOL MIN VIL MIN 115mV. This occurs when one part has a VEE of 4.2 V and is
driving a part whose VEE is at —4.8 V. The system designer must

VIH MIN

VIL MAX

OUTPUT VOLTAGE LIMITS INPUT VOLTAGE LIMITS) ROV
also take into account any variations in VCC from one part to the
436 06 other as this will have direct affect on the system performance
Figure 7. Noise Margins with respect to noise.

10KH Electrical Characteristics v --5.2V15%, Outputs Terminated With 50 Q to —2.0V

0° 25° 75°
SYMBOL PARAMETER UNIT
MIN MAX MIN MAX MIN MAX
Vou High output voltage -1.02 -0.84 -0.98 -0.81 -0.92 -0.735 Vdc
A Low output voltage -1.95 -1.63 -1.95 -1.63 -1.95 -1.60 Vdc
V., High input voltage -1.17 -0.84 -1.13 -0.81 -1.07 -0.735 Vdc
A Low input voltage -1.95 -1.48 -1.95 -1.48 -1.95 -1.45 Vdc

Table 4. 10KH Input and Output Characteristics

:l Monolithic m'Memorles :' : 3-153

ECL Technology

100K Electrical Characteristics 0°C < T, <85°C, Outputs Terminated With 50 Q to 2.0 V

TEST CONDITIONS
SYMBOL PARAMETER UNIT
V. (V) MIN TYP MAX
-4.2 -1.020 —_ -0.870
Ve, High output voltage -45 -1.025 | -0.995 | -0.880 mV
-4.8 -1.035 —_ -0.880
-4.2 -1.810 _ -1.605
\' Low output voltage -4.5 -1.810 | -1.705 | -1.620 mvV
-4.8 -1.930 -_— -1.620
-4.2 -1.150 — -0.880
Vi High input voltage -4.5 -1.165 — -0.880 Vde
-4.8 -1.150 -_— -0.880
-4.2 -1.810 . — -1.490
v, Low input voltage -4.5 -1.810 — -1.475 Vdc
-4.8 -1.810 —_ -1.490
Table 5. 100K Input and Output Characteristics
3-154 n Monolithic m Memories :l

CMOS HIiPAC Technology

Introduction

CMOS has recently become one of the most important technolo-
gies for VLSI circuits. Monolothic Memories has successfully
developed different versions of advanced 1.2-micron CMOS
technology with the capability to manufacture High-performance
Programmable Array CMOS (HiPAC) products. The HiPAC tech-
nology advocates many advantages of CMOS circuits, including
very low power consumption, high noise margin, excellent speed
performancs, high device density, and improved reliability. In
addition, the HiPAC technology accommodates a double-poly
structure to fabricate the conventional EPROM cell, which pro-
vides the programming capability for programmable CMOS prod-
ucts. The EPROM cell is electrically prcgrammable, then eras-
able by ultraviolet light, and reprogrammable. Such reprogram-
mable characteristics allow a comprehensive test of the parts to
guarantee 100% programmingyield. Any defective parts canalso
be screened out during the manufacturing process. This assures
the excellent reliability of programmable CMOS products. The
programmed data are stored in the double-poly structure, and are
not visible even if the packaged part is opened. Security of the
programmed data is thus enhanced. CMOS products are also
well protected from potential destructive damage caused by
electrostatic discharge and latchup phenomena.

CMOS HiPAC Technology

The advanced HiPAC technology developed is an N-well double-
layer poly, single-layer metal process based on a p-type sub-
strate. A self-aligned lightly doped drain-source (LDD) has been
incorporated for the regular n- and p-channel transistors. The
LDD structure reduces the gate to drain-source overlap capaci-
tance for speed improvement. It also increases the field induced
drain breakdown voltage, increases the punchthrough voltage,
decreases the impact ionization, and thus minimizes the hot
electron injection. All these aid to improve the device reliability
significantly. Figure 1 gives a process cross section of the HIPAC
process. In addition to enhancement mode n-channel and p-
channel transistors, the depletion mode n-channel transistor is
also available in the technology for flexible circuit design strategy
to optimize the circuit performance. The double-poly layers inthe
HiPAC technology establish the foundation to build Erasable PAL
devices. A detailed description of the programmable cell will be
given in the next section.

N-WELL

P-SUBSTRATE

ENHANCEMENT MODE

Figure 1. HiPAC Process Cross Section

P-SUBSTRATE
DEPLETION MODE

>
g
>
g

P-SUBSTRATE

Traditionally in CMOS technology, a p-channel pullup and an n-
channel pulldown are used in the basic CMOS inverter logic gate,
as depicted in Figure 2. This pullup-pulldown characteristics
leads to a very high differential gain and hence a fairly ideal
voltage transfer function. Figure 3 illustrates a typical voltage
transfer function of a CMOS inverter. Except near the sharp
transition region, the output voltage is almost equal to zero or

423 01

w
Sa
wise
o

z' Monolithic m Memories z' 3-155

CMOS HIiPAC Technology

VDD. These two voltage levels are commonly used to represent
logic operating values (0 or 1) for a logic circuit. One key feature
of the CMOS inverter is that at either operating condition of these
two output logic values, the current flowing through the pullup-
pulldown transistor pair is negligible. For this reason, there is
almost no power dissipation in the CMOS inverter at either static
logic operating levels (zero or VDD). The sharp transition in the
voltage transfer function offers another important effect. It makes
the maximum allowable logic low value (denoted as VIL) and the
minimum allowable logic high value (denoted as VIH) very close
to the middle of the voltage swing range (VDD/2). Hence, high
noise margin is obtained for the CMOS inverter. All these
beneficial properties make the basic CMOS logic inverter nearly
an ideal logic element: the output voltage is almost at an ideal
logic operating level, and its quiescent power dissipation is also
almost zero.

In one version of the advanced HiPAC process, zero-standby
power dissipation (with leakage current less than 10 microamps
typical and 100 microamps maximum) is attained by using full
CMOS inverter gates without back gate bias. The nature of the
p-channel pullup and the n-channel pulldown gives large current
driving capability, which is about equal in both directions of pullup
andpulldown. Therefore, the CMOS inverterfeatures equally fast
turn-on and turn-off times. The CMOS inverter logic gate has an
additional advantage that it does not suffer from the body effect.
This arises from the fact that the body of the n-channel transistor
(p-substrate) must connect to the most negative voltage, while
the body of the p-channel transistor (N-well) connects to the most
positive voltage in the circuit. With such arrangement, the body
and the source of both p- and n-channel transistors are shorted
together, and the body effect is totally eliminated.

In another version of the process, a back gate bias technique is
employed to reduce the parasitic capacitance of the semiconduc-
tor junctions, thus enhancing the speed performance of the
CMOS circuits. Other advantages obtained from the back gate
bias technique include improved field threshold for better isola-
tion as well as better latchup immunity. This second version
process requires an on-chip charge pump circuit to generate the
back gate bias voltage, and will thus consume somewhat higher
power than the first version process. However, it is still only a
quarter of the power consumption of equivalent bipolar parts.

The low power dissipation in the CMOS circuits results in lower
device junction temperature than their NMOS counterparts. This
improves significantly the reliability of CMOS devices, because
they will operate with cooler junctions. More devices, and thus

Vop

Qp

vi Vo

Qy
423 02

=

Figure 2. CMOS Inverter

" more logic functionality, can be integrated onto a single chip.

Benefiting from the high device density, CMOS products cangrow
in complexity to integrate new circuit architectures, and to expand
into a new application horizon.

Programmable Cell Technology and
Reliability

HIiPAC programmable CMOS devices use the conventional
EPROM cellto realize the programming mechanism. An EPROM
cellhas alayer of polysilicon, called the floating gate, buried within
the oxide layers between the regular control gate and the channel
region of an MOS transistor. Figure 4 sketches the structure of
an EPROM cell. During the programming operation, or the
WRITE cycle, a high voltage of 13 to 14 volts is applied to the

Qp IN PINCH-OFF
Qp IN TRIODE REGION

Vo 4
Qy OFF | ~— SLOPE =-1
Vou = Vpp
AR
Voo
(= +'1)
Qy AND Qp
IN PINCH-OFF
Voo _ IV SLOPE =-1
(=)
Qp' IN PINCH-OFF
N / Qn IN TRIODE REGION
\t_[o ’ OFFI
VoL=0 >
0 Vr Vnﬁ Viu (Voo-VT) Vop V)
Voo
2
423 03
Figure 3. The Voltage Transfer Characteristic
of the CMOS Inverter
FLOATING GATE e ’
CONTROL GATE
FIELD
OXIDE
-L_T GATE OXIDE
B +Vp
[
v J orelon v
P SUBSTRATE
423 04

Figure 4. EPROM Ultraviolet Eraseable Cell

3-156

l‘rl Monolithic m Memorles I‘rl

CMOS HiPAC Technology

control gate and about 12 V to the drain of the floating-gate
transistor. The floating gate is capacitively coupled to a positive
voltage under the biasing condition. This allows hot electrons
conducting in the channel region to be injected into the floating
gate, where they become trapped by the potential barrier of
3.1 eV at the polysilicon-oxide interface. The negative electronic
charges presented in the buried floating gate tend to shield the
channel from the positive voltage on the top control gate. As a
consequence, the cell’s threshold voltage is raised from Vtu for
the unprogrammed (or erased) cell to Vtp for the programmed
cell, as depicted in Figure 5. In the normal logic operation, Vtp
must be greater than 6 V so that the voltage on the control gate
is only high enough to turn on an erased cell, but the programmed
cell will remain off.

To accomplish the high-speed performance for logic operation,
HiPAC has used atwo-transistor EPROM cell. AREAD transistor
is used for sensing the programming condition of the cell in
addition to the programming WRITE transistor. The floating gate
of the WRITE transistor is shared with the READ transistor. A
sense amplifier, connected to the drain of the READ transistor,
reads a cell as in an erased state if the drain current is above the
amplifier’s trigger current (I, in Figure 5) and reads it as in a
programmed state otherwise. In general, the greater the read
current, the faster the sense amplifier responds. Practically, itis
desirable to obtain very high read current without losing the
programmability. This is realized with a two-transistor cell,
because both the WRITE and READ transistors can be optimized
independently to achieve effective programmability as well as
high read current to speed up the circuit performance.

Since the logic is programmed as charges stored in the floating
gate, the logic pattern is invisible even if a packaged part is

opened. This provides security for the users to protect their logic
design,

The state of the floating gate, charged or uncharged, is perma-
nent. This is because the floating gate is buried in an extremely
high quality oxide, and is electrically isolated with no ground or
discharge path. However, with exposure to ultraviolet light of
energy greater than 3.1 eV, the trapped charges may be removed
and discharge the floating gate. This process is repeatible, and
therefore we can take advantage of this feature to conduct
functional testing. All cells can be programmed during the
manufacturing process and then erased prior to packaging and
subsequent shipment. While these cells are programmed, the
performance of each individual cell in the programmable array
can be fully tested according to the specification. This allows the
shipment to the users of parts that have been tested comprehen-
sively to give 100% programming and functional yields.

The storage time of the trapped charges in the cell can be
characterized by monitoring the change in the threshold voltage
of the programmed cell. It has been evaluated through acceler-
ated temperature stress. Figure 6 shows the decrease in read
threshold voltage as a function of the total bake time at an
elevated temperature of 250° C. The charge retention time is
extrapolated to be much greater than 10 years at 125° C. Such
impressive charge retention is due to the large potential barrier
trapping the stored charges. Contamination and oxide defects
may greatly reduce the potential barrier and thereby greatly
degrade the charge retention time. With the 100% programming
testability, screening of any defective parts s also possible in the
manufacturing process. This ensures users the excellent reliabil-
ity of the parts they will receive.

3 3
)
ERASED PROGRAMMED =
= CELL CELL o8
z z T
w7 | T
£ g
o : 6
= Q 5
< >
o _— a
AV
[=] T 61 4
I
ITRiG -1~ g 3
[+ PALC20R8Z
T 2 DATA BAKE
= (250°C)
[=
<C
. . W .
Vlru VIH VITP 0.1 1 10 102 103 104
BAKE TIME (HOURS)
CONTROL GATE VOLTAGE
423 05 423 06
Figure 6. Change in Read Threshold vs.
Figure 5. Programming of a Cell Total Bake Time at 250°C
&\ monotithic Bl Memories £1 3.157

CMOS HiPAC Technology

Electrostatic Discharge (ESD)

The gate input of an MOS transistor is equivalent to a small, low-
leakage capacitor in parallel with a very high resistance, typically
10'2ohms. Electrostatic charges can readily build up at the gate
of the MOS transistor because of this extremely high input
impedance. Therefore, all MOS devices are susceptible to
electrostatic discharge (ESD) damage if they are not well pro-
tected.

Toprotectthe gate oxide against any devastating damage by high
levels of ESD, protective circuits are implemented on all CMOS
devices. Monolithic Memories has devoted substantial efforts to
investigate ESD input protection circuitry. Special attention is
paid to design details and layout techniques to give an optimized
input protection circuit adapted to each individual CMOS technol-
ogy. Indeed, every input pin of the CMOS products has been well
protected from ESD damage by an appropriate protection circuit.

Figure 7 gives an example of an ESD input protection circuit used
in CMOS zero-power ZPAL products. It consists of a thick field
oxide transistor (T1), a large-area diode (D1), adistributed diode-
resistor (DR) in substrate, and a thin gate oxide transistor (gate-
grounded T2) with a low breakdown of approximately 12 V. Large
positive input voltages cause T1 to turn on, which will conduct the
ESD current to ground. When the voltage between the drain and

-the source of T2 exceeds 12 V, T2 will break down to further

discharge the ESD current. The distributed resistor acts as a
current limiter to protect T2 from destruction by too high a current

INPUT
PIN

during its breakdown. For large negative input voltages, the diode
D1 turns on to dissipate the ESD current.

With this ESD protectivé circuit, any potential destructive dis-

.charging current will be dissipated to the ground and thus will not

flow into the internal circuitry. Measurements have confirmed that
this input protection circuit gives an ESD protection in excess of
2000 V.

For information on latchup, see page 3-160.

Conclusion

The advanced CMOS HiPAC technology developed at Monolithic
Memories has been presented. Afamily of high performance pro-
grammable CMOS devices have been fabricated using this
HiPAC technology. They feature fast speed, low power consump-
tion, high density of functionality per unit silicon area, erasable
and reprogrammable capability, security of programmed logic
pattern, and high reliability. Excellent ESD input protection as

. well as latchup immunity have been achieved with innovative

design techniques and careful layout details.

Thanks to the broad capability of the HiPAC technology, Mono-
lithic Memories is able to offer programmable CMOS products
with zero-standby-power consumption and high speed perform-
ance. A system designer can now select devices without sacri-
ficing power consumption for speed performance.

TOINTERNAL
CIRCUITRY

423 07

Figure 7. ESD Input Protection Circuit

3-158

zl Monolithic m Memories :‘

CMOS EE Technology

In addition to the commonly used bipolar TTL, ECL, and UV-
erasable CMOS technologies, programmable logic devices are
also manufactured using an advanced CMOS EEPROM-based
technology. This technology offers several significant advan-
tages. CMOS allows lower power parts of high complexity. PAL
devices based on EE technology can also be reprogrammed
electrically, allowing them to be used as a prototyping vehicle. In
addition, since the EE-cells can be reprogrammed, these devices
can be 100% tested at the factory before being shipped
to the customer. CMOS EE-based PAL devices include the
AmPALC29M16 and AmPALC29MA16.

This production-tested CMOS process employs state-of-the-art
design rules. It uses stepper lithography on all critical levels with
a minimum feature size of 1.5 microns. The transistor gate oxide
thickness is approximately 300 A. This advanced process per-
mits volume production of EE-based PAL devices with state-of-
the-art speed-power performance. In addition, continued tech-
nology enhancements are in development that will result in
significantly reduced dimensions and increased packing densi-
ties, allowing production of even faster circuits at lower cost.

The EE-cell, which can be electrically erased and reprogrammed,
contains a floating gate transistor structure (two layers of polysili-
con) with an oxide region of less than 100 A through which
electrons can “tunnel” to either charge or discharge the cell
(Figure 1). An additional enhancementtransistor has been added
in series with the storage cell to prevent leakage in the non-
selected discharged cells (as they have a negative threshold)
during a charge sensing cycle. This transistor also protects non-
selected EE-cells on the same product term during the charge
cycle. The tunnel oxide process allows easy manufacturing of
ultra-high quality, thermally-grown thin oxide capable of with-
standing the high fields associated with the tunneling
mechanism.

DEPOSITED

METAL OXIDE

BIT LINE POLYSILICON

SELECT

The EE-based process has a proven history of reliability, since it
has been used to manufacture EEPROM devices for several
years. These devices have been in the field for a long period and
have gone through extensive testing at the factory.

Users of devices that are based on EE-cell technology have two
concerns about the technology: endurance (number of program
or write cycles) and data retention (charge storage from the last
time the cell was updated). The endurance issue is of little
significance to EE-based PAL device users, as opposed to
EEPROM users, since the PAL devices are typically reprogram-
med only a few times whereas EEPROMs may be written up to
10,000 times. AMD’s process is capable of supporting much
higher endurance levels than are specified for PAL devices (100
cycles).

The second concern arises over the leakage of charge from the
EE cell over a period of time, thus potentially degrading the
device’s performance. This issue is resolved by designing the
PAL circuits so that performance is guaranteed to the factory
specifications under worst case conditions for a minimum of 10
years. Ifthe device is reprogrammed with the same or adifferent
pattern during this period, functionality is assured for another 10
years from that time.

One of the major benefits of EEPROM technology is 100%
testability. The EE-based PAL devices can be fully and more
easily tested since they are electrically erasable.

With PALdevices available in TTL, ECL and CMOS technologies,
the right devices can be supplied for any customer application.
Where blazing speed is needed, bipolar is the technology of
choice; for low-power high-complexity devices CMOS technol-
ogy is appropriate. Over the next several years, enhancements
will be made to both these technologies allowing production of
even faster, lower power and more complex PAL devices. The
flexibility to choose technology permits better service to our PLD
customers.

POLYSILICON CONTROL
GATE

DIFFUSED NT \ DIFFUSED
DRAIN SOURCE

467 01

NT) \ w
TUNNELING

REGION

Figure 1. EE Cell

I'J Monolithic ﬁﬁﬂ Memories :l

3-159

Latchup In CMOS
Integrated Circuits

Latchup Circuit

Latchupis caused by an SCR (Silicon Controlled Rectifier) circuit.
Fabrication of CMOS integrated circuits with bulk silicon process-
ing creates a parasitic SCR structure. The behavior of this SCR
is similar in principle to atrue SCR. These structures result from
the multiple diffusions needed for the formation of complemen-
tary MOS transistors in CMOS processing. The SCR structure
consists of a four layer device formed by diffused PNPN regions.
These four layers create parasitic bipolar transistors illustrated in
Figure 1.

Vee

—
RNweLL
M1
M2
Rpsus
GND
437 01
Figure 1

Figure 2a shows a typical CMOS inverter layout with the sche-
matic of the parasitic bipolar SCR structure. Figure 2b is a cross
sectional representation of the CMOS inverter, again with the
schematic of the bipolar SCR structure.

Iﬁ
11

Rpsus

ACTIVE DIFFUSION - P TYPE
ACTIVE DIFFUSION - N TYPE
N-WELL

POLYSILICON GATE

METAL INTERCONNECT
CONTACT

A

HEOO

437 02
Figure 2a

Vee

f_l_l

Py LNy N+ A P+) P, LN)
L R
kﬁ NWELL NWELL
NAN
Rpsus PSUB
437 03
Figure 2b

3-160

:l Monolithic m Memories :l

Latchup In CMOS Integrated Circuits

Any CMOS diffusion can become part of the parasitic SCR
structure, since all of these parts are interconnected through the
bulk silicon substrate resistance. Other parasitic resistors shown
result from doped regions of the semiconductor. The magnitude
to which the resistors resist current flow depends upon geometric
size and doping level.

As illustrated in Figure 1, the complementary PNP and NPN
transistors are cross-coupled, having common base-collector
regions. The vertical PNP device, M1, has its base composed of
the N-well diffusion while the emitter and collector are formed
from P-type source-drain and substrate regions, respectively.
The lateral bipolar transistor, M2, base is the P substrate with
emitter and collector junctions formed from N-type source-drain
and N-well diffusions, respectively.

Latch-Up Conditions

Under normal bias conditions the SCR conducts only leakage
current and the SCR structure is in the blocking state. However,
as current flows across any of the parasitic resistors, a voltage
drop is developed, turning on the parasitic bipolar base-emitter
junction. The forward bias condition of this junction allows
collector current to flow in the bipolar transistor. This collector
current flows across the base-emitter resistor of the complemen-
tary bipolar transistor, creating a voltage sufficient to turn on the
transistor.

A regenerative loop is now created between the complementary
bipolar transistors such that current conduction becomes self-
sustaining. Even after removal of the stimulus that triggered this
action, the current conduction can continue. This region of
operation is a high-current, low-resistance condition characteris-
tic of a four layer PNPN structure. This is referred to as latchup.
Once initiated, the excessive latchup current can permanently
damage an integrated circuit by fusing metal lines or destroying
junctions.

Causes Of Latchup

Latchup may be initiated in numerous ways. Just the critical
causes frequently encountered in a system environment will be
discussed. These include power up, supply overvoltage, and
overshoot/undershoot at device pins.

Power-Up

Caution must be exercised when powering up CMOS ICsto avoid
driving device pins before the supply voltage has been applied to
the circuit. Placing a device or board in a “hot socket” will create
this situation. When subjected to hot socket insertion, voltage
conditions at the device pins are uncertain such that the input
diodes may be forward biased. Forward biasing the input diodes
with adelayed or uncontrolled application of VCC could cause the
device to latch up. Monolithic Memories’ CMOS circuits have
substantial immunity to hot-socket power up, but since this con-
dition is uncertain, and difficult to characterize, test, and guaran-
tee, it should be avoided.

Supply Overvoltage

Supply levels exceeding the absolute maximum rating can cause
a CMOS circuit to latch up. Elevated supply voltage may cause
internal junctions to break down, producing substrate current
capable of triggering latchup. Latchup is just one of the reasons
overvoltage should be avoided; other undesirable effects may
result from this.

Overshoot/Undershoot

Generally the I/0 pins experience the noisiest electrical environ-
ment. Fast switching signals with a large capacitive load may
overshoot, creating a transient forward bias condition at the /O
junction. These junction diodes are illustrated in Figures 3 and 4.
Typically this is where latchup is most likely to be induced. Proper
design of the input and output buffers is essential to minimize the
risk of latchup due to overshoot.

INPUT
PROTECTION
V, RESISTOR TO INPUT
cc INPUT > oM
N4 PSUB N 4 PSUB DIODE
—<1 P, NWELL DIODE
ouT-
PUT
—{ N, PSUB DIODE ,-}7
PSUB
v PSUB
ss 437 04 : 437 05
Figure 3 Figure 4
2\ Monotithic LI Memories &1 3-161

Latchup In CMOS Integrated Circuits

Vour

Vss Vee

—— !

Vss

Vee Vee

! —l—

AT AUIE A,

NWELL

437 06

N2V

NWELL

Figure 5

Reducing Latchup Susceptibility

Numerous methods have been proposed to reduce the suscep-
tibility of CMOS circuits to latchup. Some of these include gold
doping, conductive substrates with epitaxy, substrate bias gen-
erators, guard rings, and geometric spacing. Many of the above
methods may compromise the performance of the active circuit
components while limiting the parasitic SCR. The extreme
immunity some of the approaches provide may be in excess of
what is needed for a reasonable system environment. It would
then be difficult to justify the complexity and added cost to
produce unnecessary immunity to latchup.

Special attention is placed in the design and layout of the input
and output buffers to reduce the susceptibility to latchup induced
by overshoot. Diffused guard rings connected to VCC and ground
are placed around I/O diffusions to collect injected charge. The
charge is passed directly to the power supply rather than to active
regions of the parasitic bipolar transistor. These guard rings, as
shown in Figure 5, also reduce substrate current as well as
effective substrate resistance, making bipolar turn-on more diffi-
cult. As an added precaution, diffusion space at the 1/O is relaxed
to reduce bipolar transistor gain.

Latchup Prevention in Low-Power
CMOS PAL Devices

. Latchup in CMOS [Cs is triggered by developing a forward bias

condition across the base-emitter junctions of the parasitic NPNP
SCR structure. Asdiscussed earlier, this is most likely to occur at
inputs and /O pins as a result of system overshoot during

switching transitions. To increase the undershoot latchup noise
margin available at inputs and I/Os, a technique to bias the
substrate voltage to a negative level is employed.

Incorporated into the design is a substrate pump, or bias genera-
tor. The bias generator capacitively couples the substrate to a
negative potential (VBB), providing an additional 3 V undershoot
margin prior to forward biasing the N+/psub diode (Figure 6). No
additional supply voltages are necessary to hold the substrate
negative; the on-chip substrate pump accomplishes this with the
standard +5 volt supply. Impedance of the bias generator is
determined by several design parameters.

Operation of the substrate bias generator continuously draws
several milliamps supply current. The power is dissipated by a
free running oscillator to charge and discharge the substrate
pump capacitors. This level of power dissipation is within an
acceptable range for use in quarter and half power high speed
CMOS PAL devices. For this family of devices the array power
dissipation is many times greater than the power consumed by
the substrate bias generator and can therefore be tolerated.

Output drivers in Monolithic Memories high-speed CMOS PAL
devices are exclusively N channel as shownin Figure 7. Removal
of the P+ region eliminates the overshoot latchup sensitivity found
intraditional CMOS outputs. The resultis a CMOS circuittolerant
to overshoot. Proper design of the NMOS pull up configuration
allows adequate VOH level for TTL compatibility.

When used in conjunction with a pumped (-3 V) substrate,
latchup cannot be initiated with realistic system overshoot or
undershoot. These design techniques have made the CMOS
PAL devices essentially latchup free, even up to 200 mA sink/

Vee B
source current at inputs and 1/Os.
Vee
R nweLL
Rpsug
D Vo
Vs (300 >
OUTPUT GND O

437 07 437 08

Figure 6 Figure 7
3-162 2\ monotithio 1] Memories &1

Latchup In CMOS Integrated Circuits

Latchup Prevention in Zero-Power
CMOS PAL Devices

Another strategy must be taken for zero power ZPAL logic
devices since these products must consume no power when in
the quiescent standby operating mode. This restriction elimi-
nates the possibility of an on-chip bias generator. Additionally,
ZPAL devices require CMOS VOH levels, placing further con-
straint on output buffer design.

Common to many CMOS output buffer circuits is a complemen-
tary PMOS and NMOS output driver. A P-channel pull-up
transistor allows the VOH level to reach VCC; however, place-
ment of the P-channel transistor at the output also creates alarge
P+ diffusion region at the I/O. This diffusion acts as an injector for
carriers during positive overshoot at the 1/O pin. Under worst-
case overshoot conditions, the injected charge may be large,
sufficient to turn-on (VCC +0.6) the P+/N-well diode to the extent
that the four layer SCRstructure will latch up. Once latchup is
initiated the device will most likely be permanently destroyed.

Proper placement of guard rings and dummy collectors around
the P+ diffusion at the I/0 will only increase the amount of current
necessary to trigger latchup; ultimately the SCR can be turned on
even with these layout precautions. Avoiding placing the P
channel device at the /O increases the circuit's immunity to
latchup when compared to atraditional full CMOS output utilizing
extensive layout safeguards.

Testing For Latchup

Monolithic Memories characterizes the latchup sensitivity of its
devices before they are released to the market. Testing is done
in such a way as to completely cover every possible latchup
condition, including VCC overvoltage, pin overcurrent, and pin
overvoltage. :

VCC Overvoltage Test

The VCC overvoltagetest is applied to all power (VCC) pins. The
test is performed at the highest guaranteed operating tempera-
ture of the device. Allinputs and |/Os acting as inputs are tied to
ground or VCC depending on the device logic, and outputs and
1/Os acting as outputs are floating (open).

VCC max is.applied to the VCC pin. Apositive high voltage pulse
is then applied to the VCC pin and returned to VCC max. The
occurence of latchup is detected if the voltage across the device
is less than VCC max, and the current through the device is
greater than the normal DC operating current.

Pin Overcurrent Test

The pin overcurrenttest is performed on every output, /O pin, and
non-current-limited input pin. Non-current-limited inputs are
inputs which present a diode-like (or otherwise “infinite”) current
characteristic for input voltages in the range (GND -5 V) < Vin <
(VCC+5V).

The pin overcurrent test is performed at the highest guaranteed
operating temperature of the device. Input pins and I/O pins
acting as inputs (which are not under test) are tied to ground or
VCC depending on the device logic, and outputs and I/Os acting
as outputs should be floating (open). VCC max is applied to the
VCC pin.

One pin is tested at atime. Athree-state output under test should
be disabled. A non-three-state output type under test should be
a logic High when applying a positive current and a logic Low
when applying a negative current. An I/O pin should be placed
into the input mode.

A high current pulse is then applied to the pin under test. The
magnitude of the pulse is stepped until latchup is induced. Both
positive and negative currents aretested. Latchupis observed as
described previously. The sensitivity of the device is the worst
case sensitivity found on any pin of the device.

Pin Overvoltage Test

The pin overvoltage test is performed on current-limited inputs.
Current-limited inputs are inputs which present a resistor-like (or
otherwise “limited”) current characteristic for input voltages inthe
range (GND -5 V) < Vin < (VCC + 5 V).

The pin overvoltage test is performed at the highest guaranteed
operating temperature of the device. Input pins and 1/O pins
acting as inputs (which are not under test) are tied to ground or
VCC depending on the device logic, and outputs and I/Os acting
asoutputs are floating (open). VCC max is applied tothe VCC pin.

One pin is tested at a time. Both positive and negative voltage
pulses are applied to the pin under test. Latchup is observed as
described previously. The sensitivity of the device is the worst-
case sensitivity found on any pin of the device.

a Monolithic m Memories :'

3-163

'Metastability

A Study of the Anomalous Behavior

of Synchronizer Circuits

INTRODUCTION

This article will summarize the results of the studies performed on
synchronizer circuits. The information presented may be used by system
designers to gain insight into the anomalous behavior of edge-
triggered flip-flops. Understanding flip-flop behavior and applying
some simple design practices can result in an increased reliability of
any system.,

METASTABILITY

Inthe digital world a bit represents the fundamental unit of measure.
The output state of any digital device is either "HIGH" (a voltage level
above VIH) or "LOW” (a voltage level below VIL) as shown in figure 2
Under the proper operating conditions the register in figure 1 outputs a
HIGH or a LOW on the rising edge of the clock within a nominal delay
called the “clock to out” delay. If the setup and hold times are violated
the register has a small probability of entering a third region of
operation called the "metastable” state. Metastable is a Greek word
meaning “in between” and it is a state between HIGH and LOW. Even
though most synchronizers snap out of metastability in a short period of
time, theoretically this state can persist indefinitely. Some of the registers
built from older technologies had metastable states which lasted as
long as a few microseconds. When the output of a device goes into
metastability the clock to out delay will be grossly atfected. This may
alter the system’s worst case propagation delay and potentially lead
toasystem crash!

PRESET

DATA———D Qf————ouTPuT

CLOCK———p> Qp——0UTPUT

SYNCHRONIZERS

The design of a synchronous digital system is based on the assumption
that the maximum propagation delay of a flip-flop and any other gates
are known. A digital system is free of hazardous race conditions and
timing anomalies if the maximum propagation delay in the system
does not exceed the clock’s period. In systems where an asynchronous
input is interfaced with a clocked device such as a flip-flop, the
maximum specified propagation delay of this device may no longer
be valid if certain electrical parameters are violated. Computer
peripherals, an operator’s keyboard, or two independently clocked
subsystems are instances where there is a possibility of interfacing an
asynchronous input which will violate the synchronizer’s electrical
parameters.

A popular device typically used in synchronized systems is the
edge-triggered register shown in figure 1. The edge-triggered register
will properly synchronize the incoming data to the system's clock as
long as its operating conditions are satistied. Table 1 surnmarizes these
specifications for Monolithic Memories Inc’s (MMI) 74LS374 register. It is
difficult to guarantee setup and hold time requirements when the data
is asynchronously interfaced to a register. The violation of setup or hold
time in a register has a probability of initiating a misbehavior termed
“Metastability”

SYMBOL PARAMETER COMMERCIAL | UNIT
. MIN. TYP MAX
Vee Supply Voltage 45 5 55 \
Ta - | Operating free air temp. 0 75 °C
tw Width of clock 15 ns
teu Setup time 20 ns
th Hold time 0 . ns
Table 1
4
3
VOLT
2 / ————— Vi
1 i
| | | | 1 1 -
0 2 4 é 8 10 12
NS
Figure 2

The diagrams in figure 3 illustrate some examples of waveforms in
the metastable condition. From the waveforms itis evident that the
outputs are distorted under metastable conditions. Figure 3d shows the
output of a typical 74LS374 register manutactured by Monolithic
Memories. Monolithic Memories family of bipolar devices exhibit
superior metastable hardened performance due to their high speed
bipolar technology and advance Schottky TTL circuit design techniques.
Most of these devices typically snap out of metastability in a flashing 15
nanoseconds.

‘WHY THE SYNCHRONIZER FAILS

Before attempting to explain how the synchronizer's internal circuity
fails let's take a look at an interesting problem.

PROBLEM: In the SR type latch shown in figure 4 what happens if the
set (S) and the reset (R) inputs are simultaneously raised from a LOW
voltage level to a HIGH level?

3-164

:l Monolithic m Memories l:'

Metastability

ANSWER: The outputs will be in a stable state of HIGH prior to the RS
transition and will quickly oscillate to a final steady state of either HIGH
or LOW (see tigure 3a). To demonstrate this result the reader is
encouraged to do this excercise either mentally or to actually build the
circuit and view the output on the oscilloscope.

(5NS/DIV, 1v/DIV)| (5NS/DIV; 1v/DIV)
~H =
r. \
(a) CROSS-TIED NAND GATES (b) REGISTER WITH NORMAL BEHAVIOR
(5NS/DIV, 1V/DIV) (5Ns/DIv, 1v/Dv)|
P

(c) MONOLITHIC MEMORIES INC'S (d) MONOLITHIC MEMORIES INC'S
PALI6R4A 74LS374

Figure 3

Clock driven master-slave flip-flops contain the same type of cross
tied RS latch within their internal circuitry. The NAND gate equivalent of
the master-slave D type flip-flop is shown in figure 5. The gates circled in
this figure can potentially behave similar to the above problem. If the
clock and data are triggered within a specific window of one another
the output may have an oscillatory behavior before settling down.

Figure 4

.

/ N
~— \
[
|
\/
\ : /
DATA [] Sy
L R

CLOCK——

Cross tied RS latch structure is seen in the master-slave
edge triggered flip-flop.

Figure 5

n Monolithic ﬁ[iﬂ Memories a

METASTABLE DETECTOR

This section will show how to characterize the behavior of an edge
triggered flip-flop with an asynchronous data interface. If the setup and
hold times of the flip-flop are satisfied the output behaves properly
(figure 6a). One of the four possible events below can take place if the
flip-flop goes metastable:

1) The output starts to make a transition but snaps back to its original
state (figure 6b).

2) The output makes a complete transition but the maximum propaga-
tion delay of the device is exceeded (figure 6¢).

3) The output starts oscillating and retains its present state (figure 6d).

4) The output oscillates to a new state (figure 6e).

CLOCK

DATA ’
(@) /

© //4
@ M’_

(e)

Figure 6

The circuit shown in figure 7 is used to obtain experimental results of a
metastable device. The circuit can detect and count the number of
events of metastability The device under test (DUT) is forced into
metastability by repeatedly sweeping the edges of the data past the
rising edges of the clock. The modulation of the data is possible by using
a comparator device (Ul) along with an external sawtooth waveform.
Thousands of transitions are created within the setup and hold time
window of the DUT. Sweeping the data edges past the low to high clock
transitions simulates an asynchonous input and increases the probabil-
ity of getting a metastable failure on the output (Q) of the DUT.

3-165

(® K_ u

Metastability

acLock__+A-{M\@

@ JITTER BAND SIMULATES AN ASYNCHRONOUS BEHAVIOR

() METASTABLE OUTPUT
(®) PROPER OUTPUT WAVEFORM

(® ACLOCK SAMPLES THE OUTPUT (Q) AFTER A DELAY A,

Figure7

If the output of the device goes into metastability it will be detected by
the comparator pair (U2) and (U3). The comparators will have comple-
mentary outputs if the output (Q) of DUT is anywhere between VIH and
VIL. The outputs of the comparators are latched by a delayed version of
the clock (AClock). The EXCLUSIVE-NOR gate followed by the register
signal the event of metastability to an external counter.

The variable delay (A) between the two clocks will sample the output
at various locations on the time axis. As this delay is varied the event of

metastability is sampled and counted at these locations by our circuit.
Therefore the output of our circuit measures the rate of metastability
versus time delay. The real behavior of a metastable output can thus be
effectively characterized with this scheme, that is, we can determine the
length of time a metastable condition will persist and the density
distribution of the metastable event. .

Three 74374 devices and four PAL devices are used in this experiment.
The plots of metastable failure versus time are shown in figures 8a.b. The
next section will discuss in detail the characteristics of these plots.

EXPERIMENTAL RESULTS

Various graphs of metastability failure rate versus delay time are
illustrated in figure 8. We can conclude from these graphs that the rate
of metastability failure decreases as the sample clock (ACLOCK)
moves farther and farther away from the DUT clock. The pictures shown
in figure 9 have captured repeated events of metastability on the
oscilloscope.

Let's take a closer look at one of the graphs to examine the behavior
of the device. The PAL16R4A-4 device exhibits one count per second if the
delay (A) is 60 nanoseconds. As the delay (A) is decreased, the rate
increases exponentially until the delay equals 32 ns at which point the
rate flattens out and remains fixed. The 32 ns forms the knee of our
graph and will be referred to as Ao. The rate will remain constant if the
delay (A) is decreased past the knee of our graph. Further reduction in
the delay will place the sampling clock’s rising edge prior to data
transitions and-thus the error rate vanishes to zero. The time at which the
rate goes to zero is marked with an (X) on the graphs. By using this time
(X). and another location on the graph such as the time where only one
error per second occurs, we can associate an approximate range of
metastability for different devices. This range of metastability is referred
to as the “mean time to snap out of metastability””. From the graph it is
evident that the mean time to snap out of metastability for the PALI6R4A-
4 logic circuit is the difference between 60 ns and 25 ns which is 35 ns.

10°— fcLock =4MHz
MAX[——— ”_‘ fpaTA=1MHz
~ 105 —
O
[7]
a
g 104— MMI74LS374
8
E 103 — FAIRCHILD AMD 74LS374
§ 74F374
E 102 —
g
10" }— v
100 |] | | | | | 1
10 15 20 30 35 40 45 50
Atime (ns)
Figure 8a
10— ! fcLock=4MHz
MAX |——— fpaTA=1MHz
105 —
o)
o
a
é 100
Q
)
S -
&
8
E -
|
10\ —
PALI6R4A
100 L1 T S R
10 15 20 25 30 35 40 45 50
Atime (ns)
‘Figure 8b

All of the graphs illustrated can be quantified by an equation of the
form:

log FAILURE = Jog MAX — b(A — A0)

Since a natural logarithm is a constant multiple of base 10 logarithm we
can rewrite the above equation as:

a+ InFAILURE=a+ InMAX —b (A — A0)
In the above equation the MAX value is representative of the
maximum metastability failure rate in our device. This MAX value
is closely related to the frequency at which a metastable condition
may occur in our device. The frequency at which metastability occurs

is simply a constant multiple of the product of CLOCK and DATA
frequency.

MAX =K1 *fcrock * fpata

Substituting this in our original equation we get:
a- InFAILURE = a- In (K! + fcpock * fpata) — b(A — A0)
In FAILURE = In (K1 * fcrock * fpata) — b/a(a — o)
FAILURE = (K1 * fcrock * fata) €752 (4 = 40)

3-166

z‘ Monolllhlem Memories :l

Metastability

PALI6R4

PALI6R4A

PAL16R4A-4

PAL16R4A-2

Figure 9 (2v/DIV, 5ns/DIV)

Table 2 gives the three important parameters which can be used by
system designers to fully characterize the metastable behavior of the
mentioned devices. These parameters can be obtained for different
devices by duplicating this experiment. An example is given below to
show how the information on table 2 may help the designer in the
design of asynchronous systems.

MANUFACTURER DEVICE |K, (Sec) | Kz (ns~2) | ao (ns)

PAL16R4 1x10°7 4.3 37

PAL16R4A 1x10°7 4.3 345
MMI PALI6R4A-2| 1x 107 64 25
PALI6R4A-4| 1x 1077 5 31

7415374 2x10°7 1.8 275

AMD 7415374 2x10°7 20 345

FAIRCHILD 74F374 2x10°7 115 175

Table 2

EXAMPLE
For the hardware implementation in figure 10 determine the maxi-
mum clock frequency to give a typical error rate of one failure per year.
We must choose the minimum period to give an error rate of less than

ASYNCHRONOUS PALI6R4 Tec PALI6R4
DATA
(9.6KHz) r, S
CLOCK r
[— ~—— P—
CLK-OUT=15ns Tcc=50ns setup=25ns

Figure 10

one failure per year. From this result we can determine the maximum
clock frequency. The time A in the equation below will determine the
distance between clock edges. We must determine A from the equation
by numerical extrapolation. The system clock’s period can be repre-
sented as (A + Tcc + setup), or plugging in the numbers it is A+75.

FAILURE = (K1 - fcrock * fpata) e K28 = 40)
and plugging in the appropriate values we have:

3.2EE — 8 = [(1EE — 7) (1/(A+75ns)) (9600)] e~ [(43) (4=37))

Solving for A, we see that it is approximately 43 nanoseconds. The
system period is thus seen to be the sum of 43ns and 75ns or 118ns. The
maximum clock frequency is the inverse of the period or approximately
8 MHz.

CONCLUSION

Synchronization of two independent pulse trainsis possible through
the use of edge triggered registers. The electrical characteristics of the
flip-flop are affected when the $etup and hold times of the device are
violated. This misbehavior is termed “metastability” and its probability
of occurrence can be derived for a given system. The factors which
affect this probability and the length of time which a metastable
condition persists are influenced by the technology of the device as well
as by the circuit design techniques.

An important fact which needs to be stressed is that even if a register’'s
output goes metastable, the system may not necessarily fail if the
register snaps out in time to satisfy the system'’s worst case timing
requirement. The following design practices are suggested when using
synchronizers:

Try to minimize the number of locations where asynchronous signals
enter your system. ‘

Clocking the asynchronous inputs through two pipelined registers can
greatly reduce the error rate.

Use a single clock within your local system environment. For multiple
system clocks, derive all the clock signals from a single source to assure
synchronization between different devices within the system.

When analyzing the worst case timing of your system, add the time to
snap out of metastability to any register in an asynchronous data path.

Assingle PAL® with registers can be your best choice for state machine
analysis of asynchronous events. As the registers have virtually identical
setup times, the simultaneous observation of a metastable event by
different register states are likely to be the same. Contrasted to a
distributed system of observing register states with different setup times,
the PAL system of register states with identical setup times is a superior -
synchronizer.

Avoid edge sensitive devices on the output paths of the registers
which have asynchronous inputs. The glitch created when the synchro-
nizer goes metastable is enough to trigger the edge sensitive device.
The use of level sensitive devices is generally a better design practice.

PAL devices can be effective synchronizers where various registering
schemes are easily implemented.

a Monolithic m Memories :l

3-167

PAL16R8-10 Series Metastability

Metastability Characteristics over Operating Conditions

SYMBOL PARAMETER TEST CONDITIONS Mﬁg M.l“f'f:c"ﬁ'x UNIT
p Poisson process rate 0.85 1.05 ns-1
k MTBF constant 08 1.0 | us1
Minimum recovery time in MTBF = 10 years
'MET | asynchronous mode fg= (1/3)f d=3 20 30| ns
Maximum frequency in MTBF = 10 years
fMET asynchronous mode fqg=(1/3)f d=38 2 26 MHz
Metastability

Metastability is a condition which can occur in any latch or
flip-flop if the minimum setup or hold times are violated. In most
cases, the flip-flop will either react to the input or remain in its
current state, both of which are stable results. The flip-flop can
also reach an “in-between” condition called the metastable state,
which is stable only if there is no noise in the system and the
flip-flop is perfectly balanced. This metastable condition lasts
until the flip-flop falls into one of its two stable states, which can
take longer than the normal response time.

The PAL16R8-10 Series exhibits better metastability character-
istics than most other registered devices. It is less likely to enter
the metastable state and recovers faster to a stable state. As a
result, the PAL16R8-10 Series can make an excellent synch-
ronizer circuit, and the metastability characteristics have been
specified for designs in which the setup and hold times may not
always be met.

Definition of Variables

MTBF (Mean Time Between Failures): the average time between
metastable occurrences that cause a violation of the device
specifications. Metastability characteristics are calculated at an
arbitrary MTBF of 10 years for the convenience of the user.

p (Poisson process rate): experimentally calculated factor
which determines the slope of the curve of probability of failure.

k (MTBF constant): experimentally calculated factor which
. determines the magnitude of the curve of probability of failure.

tsu (setup time): the specified minimum time interval allowed
between the application of a data signal at a specified device
input pin (pin 9 on the device under test) and a subsequent clock
transition. For the PAL16R8-10 Series, tsu is 10 nanoseconds.

tCLK (clock to output time): the specified maximum time
interval between a clock transition and the availability of valid
signals at an output pin. For the PAL16R8-10 Series, tCLK is
8 nanoseconds.

fMAX (maximum frequency): specified maximum frequency for
the device under test. Calculated as 1/(tsu + tCLK). For the
PAL16R8-10 Series, this calculates to 55.5 Megahertz.

f (clock frequency): actual clock frequency for the device under
test.

fd (data frequency): actual data frequency for a specified input
to the device under test.

d (data ratio): the ratio of the clock frequency to the data
frequency (f/fg).

-t (time delay): the additional time allowed per period beyond

that required by the specifications. t is the actual time between
clock transitions beyond the required period of (tsu +tCLK).

t MET (metastability recovery time): minimum t required to
guarantee recovery from metastability, with specified test
conditions.

f MET (metastability frequency): maximum f clock frequency to
limit metastability failures, with specified test conditions.

Metastability vs. Clock Frequency

MET
10 YEARS _ g™ »
10
TYPICAL
VCC=475V
1051 TA=75°C
1 DAY
104"
8
z 102
zZ 10
0
w
@ 100
ta'v
&
2t
=
g 10
1074
1076~
-8 1 1
1/100 1/50 1/40 1/30 1/20

1/8-MHz"1

* Normalized to d = 3; multiply by 3/d for other data frequencies.

3-168

l‘rl Monolithic m Memories I‘r'

PAL16R8-10 Series Metastability

Metastability Equations) Metastability Test Circuit
MTBF =k (d/3) (1/f)2 elp/f)
f MAX = 1/(tsu + tCLK)

f = 1/(tsu + tOLK +) <
f=d (fg) 1 [— 20] vee
RESET E | cLock E NC
Metastability Waveforms st moDE E— %Nc
nc[a ab{17]la
input AR XXX XXX XXX T <I: ab-Telz
(fd) ‘A‘A‘A“’A““‘A".‘“‘A‘A"."“"“‘.‘“".""‘0"““““ :c E b % .
cLock Z— NC E ERROR b E—>
® 7 ne [3] [13] nc
" fa EHB_ oe [12] nc
regTren T oo o
~-tcik t toy —>

Metastability Test Pattern File

CHIP Metastability Test PAL16R4

CLOCK RESET SYNC_MODE NC NC NC NC NC /D GND
/OE NC NC /ERROR /B /A /Q NC NC VcC

EQUATIONS
Q t= /Q* SYNC MODE ;TOGGLE SYNCHRONOUS INPUT (TESTS f MAX)
+ D*/SYNC_MODE ;TOGGLE ASYNCHRONOUS INPUT (TESTS META.)
A t= A*/Q ;HOLD A (IF NOT ERROR)
+ /A% Q ;TOGGLE A (IF NOT ERROR)
+ ERROR iSET A IF ERROR
B t= B*/Q*/ERROR ;HOLD B IF NOT ERROR, OR RESET
+ /B* Q*/ERROR ;TOGGLE B IF NOT ERROR, OR RESET
ERROR := /A*/B ' ;COMPARE A AND B,
+ A% B ; ERROR GOES HIGH IF A EQUALS B
+ RESET ;INITIALIZE A AND B TO OPPOSITE PHASES

Note:

Metastability characteristics were experimentally determined using the method
;hown, and are not guaranteed.

l‘:l Monolithic m Memories zl 3-169

Surface Mount Technology

Monolithic Memories

Monolithic Memories, Inc. (MMI) has
long been a leader in integrated circuit
packaging technology. MMI was one
of the first to offer integrated circuits in
24-pin, 300-mil wide SKINNYDIP®
packages, and pioneered the use of
Pin Grid Arrays.

Now Monolithic Memories again proves
its commitment to packaging innovation
by introducing commercial products
not only in the surface mount Plastic
Leaded Chip Carrier (PLCC) package,
but also in the Small Outline (SO)
Gull-wing package.

Surface Mount Technology (SMT) is
creating exciting changes in the design
and construction of Printed Circuit
Boards (PCBs). Surface mount boards
have significantly higher density, lower
cost, and higher reliability than boards
manufactured using DIP packages.

What is Surface Mount
Technology?

Surface mount circuit boards are
assembled with components bonded
to metal pads on the board surface,
instead of being inserted into through-
holes like conventional DIP packages.
Surface mount components can be
mounted on both sides of a circuit
board, DOUBLING the functional den-
sity. In addition to packages for
integrated circuits, surface mount ver-
sions have been developed for discrete
devices, such as resistors and capaci-
tors, and also for single transistors.

DEMAND (%)

THROUGH-HOLE
DIP PACKAGE

Cutaway View Comparison of Surface

Development of SMT

Surface mount technology was first
developed and employed in the hybrid
industry over twenty years ago. Since
then surface mount packages have
gained increasing acceptance. Bene-
fits of switching to SMT include
manufacturing cost reduction, an over-
all reduction in the size and weight of
device packages, and improvements in
circuit performance. It is estimated
that by 1990 40% of components
shipped will be in surface mount
packages.

100 -

DIP
o
SO
PLCC
0 /_4-(
84 87 90

SURFACE
MOUNT
SO
GULL-WING

Mount and Through-hole components

3-170

z‘ Monolithiom Memyries a

Surface Mount Technology

Advantages of Surface
Mounting

Surface mount technology offers
increased performance, reliability and
workability at lower cost.

Cost

® Automated surface mount assembly
dramatically increases board through-
put and lowers the cost per board:
m Less time per board
® Less labor per board
® Less potential for error in board
fabrication
® More reproducible process
m Higher quality control

® Surface mount reduces the number
or size of boards required, due to the
reduced size of the components.

® Boards are less expensive because
fewer through holes are needed
= Higher board yields can be achieved

with SMT through improved compo-
nent reliability

m Expensive, special substrates are not
needed for surface mount packages

Reliability

= Monolithic Memories’ surface mount
packages are manufactured using
the same dependable materials and
process as the standard molded
DIP package

m PLCCs and SOs have been shown to
be equal or superior in terms of reli-
ability to DIP packages

= Solder joint reliability is improved
through the use of vapor phase reflow
soldering. Where conventional DIP
boards need to pass over a heated
coil or a molten solder wave, vapor
phase reflow soldering can control
more tightly the high temperatures
required to melt the solder

m PLCCs have superior stress and
vibration performance

= Surface mount packages are rugged
and durable

:l Monolithic m Memorieg a

3171

Surface Mount Technology

Performance

m PLCCs and SOs are smaller than DIP
packages up to 75% which increases
the board functional density by as
much as 4:1.

PLCCs and SOs are lighter than DIP
packages up to 90% which reduces
overall board weight.

® PLCCs and SOs can be mounted on
two-sided PCBs which increases the
board density even further.

m PLCCs have improved electrical per-
formance due to shorter lead lengths.

m PLCCs have decreased susceptibility
to noise.

u The PLCC'’s “J-Hook” leads absorb
thermal and mechanical stress.

AREA (IN2)

Y

2
%
/
.
%
%
.
.
.
.
/
%
_

PLCC

[] so cuLL-wing

48 44 40

®
&
-]
©

Board Testing and Repair
As surface mount components increase
the density and performance of PCBs
they also make board testing and repair
more complex. New techniques are
required not only for product design
and assembly, but also for testing and
repair functions.

Testing

Testing begins long before a product
has been fully assembled. Bare PCBs
are often tested for continuity and
isolation before components are sol-
dered on them. Spring-loaded (pogo)
pins are plugged into a tester head to
make contact with the footprint pads.

Test for continuity is made by measur-
ing typical current through the PCB
conductor paths. Resistance measure-
ments are used to indicated isolation
and path resistances.

Another testing function which is per-
formed before the actual assembly
process is solderability testing. Both
the PCB and surface mount compo-
nents should be tested for solderability
before they are assembled. This is a

PINS

very important step since it is prac-
tically impossible to inspect the
connections after they are soldered.
Some automatic solderability testers
are already available on the market.

Post assembly functional testing of the
PCB will probably remain unchanged
regardless of the current method used.
The method used for DIP boards should
be adequate for surface-mount boards.
Depending on the testing equipment
used some special care will have to

be taken.

If automatic test equipment is used,
some adjustment will have to be made
to account for faster switching cycle,
or processing time. These times may
be faster because of the greater den-
sity and shorter circuit paths provided
by surface mount assembly.

If using a bed-of-nails tester, it will be
necessary to design the bed-of-nails
to coincide with the new PCB design
for the surface-mount components.
Also some effort should be made to
reduce the number of contact points
and the nail contact size so thata
smaller pad can be used on the PCB.

3-172

zl Monolithic m Memories :l

Surface Mount Technology

Workability

& Most of Monolithic Memories’
products are currently available in
PLCCs and SOs

® MMI's PLCC and SO packages
conform to JEDEC standards for sur-
face mount devices.

m More efficient layouts are possible
since metal interconnects do not
have to work around holes in PCBs.

= A wide range of discrete and active
devices are already available in sur-
face mount packages and the number
is rapidly increasing

® An infrastructure of surface mount
vendors and services is currently
available to assist in production or
conversion to surface mount

:l Monolithic m Memories a

Repair Techniques

When a faulty device has been identi-
fied, it is necessary to remove this
component and replace it with a new
one. One approach would be to reflow
the whole board, remove the faulty
component and insert a new one while
the solder is still liquid. This procedure
is not recommended because it endan-
gers the reliability of the other solder
joints. Techniques which affect only
the faulty component are more reliable.

One way to solder or unsolder only
one surface mount component is to
use a heated collet. Acomponent is
inserted in the collet which comes in
contact with the PCB. Heat is applied
until the solder reflows, at which time
the faulty device can be removed and
anew one inserted.

Heated probes are another alternative
for PLCCs. The tool consists of two
probes attached in a scissor fashion
and sized to fit the four sides of a chip
carrier. The probes are heated like a
conventional iron and can be used
both to remove and install single
surface mount components. Some sac-
rifice in board density may have to be
made if the designer anticipates to use
probes for repair, in order to allow

sufficient space between the compo-
nents to insert the probe without
melting the pads of two devices.

One technique that works well for
closed-spaced components is the use
of a hot air stream on the connections.
Once the solder reflows, the compo-
nent is removed with tweezers. In the
same category is the use of super-
heated gases, such as nitrogen,
nitrogen plus hydrogen, or argon to
reflow the solder. The advantage of hot
gas is the prevention of contamination
and oxidation which may occur when
hot air is used.

Another method for reflowing surface
mount connections of closely spaced
components is the use of heat from an
infrared light which is focused on the
component.

As the usage of surface mount compo-
nentsincreases, manufacturers of repair
tools and equipment are responding
with a greater number of options from
which the potential user may choose.
The same methods can be used for
PLCCs or SO packages. The SO pack-
ages are somewhat easier because the
leads are more accessible and on two
sides only.

Surface Mount Technology

The Plastic
Leaded Chip

-
Carrier
i) i Advantages
The Plastic Leaded Chip Carrier (PLCC) m Most suitable package for automated
is the square, JEDEC-standard plastic assembly

package. Pins are located on all.four handl
sides of the package and spaced at 50 = Easy to handle

mils, significantly reducing the compo- m High copper content leadframe for
nent size over the 100-mil spaced DIP. better heat dissipation

Leads are bent down and under the » Highest space efficienc

molded body, forming a “J-Hook” gnestsp 4

shape. This protects them from dam- u High reliability

age and entanglement during handling m J-Hook leads absorb thermal and
and shipment, making them excellent mechanical stress

for use in automated assembly. Parts

are currently available in 20-, 28-, 44-, ® Low cost

68-, and 84-pin packages. PLCCs are = JEDEC standard package
manufactured with the same process ® Improved electrical performance
and materials as the conventional DIP over DIPs

for high reliability and low cost. All

MMI's newly released 28-pin devices = Mountable on both sides of circuit

have adopted the JEDEC approved board
pinout with center no-connect pins m Solder-coated leads for easy,
where applicable. reliable soldering
PLCC vs. DIP
PACKAGE DIMENSIONS AREA
NUMBER L x W (inches) (square inches) | AREA RATIO
OF PINS (PLCC/DIP)
PLCC. DIP PLCC | DIP
20 0.35x0.35 1.0x0.25 0.12 0.26 0.46
24 (SKINNYDIP®) - 1.2x0.25 - 0.30 0.66
24 (Wide) - 1.2x0.55 - 0.66 0.30
28 0.45x0.45 1.5x0.55 0.20 0.83 0.24
40 - 2.1x0.55 - 1.16 -
44 0.65 x0.65 — 0,42 — 0.36

3-174 , ‘ﬂ Monolithic m Memories n

Surface Mount Technology

Thermal C w
Characteristics w0

The thermal characteristics of PLCCs
resemble those of corresponding DIP
packages. Monolithic Memories’ plastic
leaded chip carriers employ a high-
copper content leadframe to aid in heat

THERMAL RESISTANCE
(Rg,) "CW
g 8 3
T T T 1
/
o
z
r

removal. ‘ 28NL/FN
40
Thermal Impedance
Calculation or
Oja = Ojc +Oca, 20
where '

0ja = Thermal impedance from

junction to ambient, °C/W 05— 30 ml)o 3&, ul;o scloo m;o 7:10 s«l)o suln Toloo
0jc = Thermal impedance from AIR FLOW (ft/min)
junction to case, °C/W
Oca = Thermal impedance from case
to ambient, °C/W. 100
Tj=Ta+ (Px6ja) sof-
Tj = Junction temperature, °C
Ta = Ambient temperature, °C 80|
P = Power dissipation, Watts. .
P=IccxVce 4 T
Icc = Device current, Amps g z 60 -
Ve = Device supply voltage, Volts. * 9O
3 EN 4aNL
: &
Sample Calculation i€ —
28NL package u
Air Flowrate =0 ft/s ooyl —_—
Ta=75°C
Vcc=5.0V 201 84NL
Icc =180 mA
From figure, 0ja =61.0°C/W or
Calculate P=5.0x0.180=09W 0 ! ! 1) L 1 L %fo L)
0 100 200 300 400 500 600 700 800 900 1000
Tj=75+(0.9x61.0) AIR FLOW (ft/min)
=129.9°C
Thermal Expansion PACKAGE DIE SIZE (mils)2 | R} Jc (°C/WATT)
The PLCC package body is made of ' 20NL 11,250 14
moisture-resistant, thermally-
conductive epoxy resin. Its thermal 28NL/FN 22,500 13
coefficient of expansion (TCE) matches 44NL 22500 11
that of most epoxy board materials. .
PLCCs can also be used on substrates) 68NL 50,625 8
with a different TCE, because the J- 84NL '50,625 6
Hook leads absorb mismatch stress. -

*These are typical values for the given die size.

zl Monolithic m Memories zl 3-175

Surface Mount Technology

The Small Outline
Gu“'w'“g Advantages
PaCkage [so, = Suitable for automated assembly

= Easy to handle
The Small Outline package has dual Y

in-line leads spaced 50 mils on center, ® Increased board density
compared to 100 mils on the DIP. This = Reduced inventory storage floor
gives the SO package the appearance space

of the DIP with the compactness of the

PLCC. The leads of the SO Gull-wing ® Reduced manufacturing time

package start out like the DIP's but are ® Easily inspectable gull-wing leads
bent out to rest flat on a board. Although can be probed by test leads
itincreases the width of the overall m Flexible leads can absorb thermal
package, it makes soldering easier and expansion mismatches between the
provides a reliable solder joint. Parts package and the board
are currently available in 16-, 20-, 24-,
and 28-pin packages. The SO Gull- = Low cost
wing package follows proposed JEDEC ® Mountable on both sides of circuit
standards for surface mount packages. board
SO vs DIP
PACKAGE DIMENSIONS AREA
NUMBER L x W (inches) (square inches) | AREA RATIO
OF PINS (SO/DIP)
SO DIP]o] DIP
16 0.40x0.30| 0.75x0.25 0.12 | 0.19 0.63
20 0.50x0.30| 1.00x0.25 0.15 0.26 0.58
1.20x0.25
(SKINNYDIP) 030 059
24 0.60x0.30 20 X058 0.18
.20x0.
(Wide) 0.66 0.27
28 0.70x0.30| 1.50x0.55 0.21 0.83 0.25

Table 1. SO vs. DIP Package Dimensions

3-176 ﬂ Monolithic [iliﬂ Memories :l

Surface Mount Technology

Thermal
Characteristics

Thermal characteristics of surface
mount devices were calculated by
mounting devices in direct contact with
a double-sided fiberglass-epoxy com-
posite PBC.

For measurement of R@-a all packages
were immersed in a constant tempera-
ture fluorinert bath.

Thermal Impedance

Calculation
0ja = 0]0 +0ca,
where

9ja = Thermal impedance from
junction to ambient, °C/W

Ojc = Thermal impedance from
junction to case, °C/W

Oca = Thermal impedance from case
to ambient, °C/W.

Tj =Ta+(Px0ja)

Tj = Junction temperature, °C
Ta = Ambient temperature, °C
P = Power dissipation, Watts.

P=lccxVce

Icc = Device current, Amps
Vcc = Device supply voltage, Volts.

Sample Calculation
248G package
Air Flowrate =0 ft/s
Ta=75°C

Vcc=5.0V

Icc =180 mA
From figure, 6ja =73.0°C/W
Calculate P=5.0x0.180=0.9W

Tj=75+(0.9x73.0)
=140.7°C

-

»

o
1

110
100 -
w 90
o
Z
(’l_) 2 80 |-
@°
5 :g 70
ic
- 60| 20SG
£
50 |
24SG"
40 |
30
20 1 1 1 1 1 1 1 L 1)
0 100 200 300 400 500 600 700 800 900 1000
AIR FLOW (ft/min)
PACKAGE DIE SIZE (mils)2 | R} Jc (CC/WATT)
20SG 5,625 16
24sG(1) 11,250 13
245G(2) 22,500 10

*These are typical values for the given die size.

zl Monolithic m Memories :l

3177

Surface Mount Technology

Surface Mount Packing

Monolithic Memories' surface mount
packages are available in standard
tubes with varying parts counts for
different size packages.

PLCC and SO devices are also avail-
able in tape-and-reel format.
Components are encapsulated in a
plastic ribbon with sprocket holes, sim-
ilar to a movie film. Tape-and-reel
packaging offers the best control over
the component feeding process. It also
greatly increases the time between
reloading as compared to tube feed.
Reels contain therefore many more
devices and don't need to be reloaded
as often as tubes.

These advantages of tape-and-reel
packing will become even more impor-
tant as board assembly moves toward
complete automation.

Monolithic Memories’ commitment to
component quality, through our Prod-
uct Assurance Program, eliminates the
need for incoming component screen-
ing. Therefore customers can take
advantage of tape-and-reel packing
without sacrificing confidence in prod-
uct quality.

3-178

Tube Format
PACKAGE SIZE PLCC PARTS PER TUBE | SO PARTS PER TUBE
16 SG 50
20SG/NL 50 40
248G 30
28 SG/NL/FN 40 25
44NL 35
68 NL 20
84 NL 15
Tape-and-Reel Format
PACKAGE SIZE | NUMBER OF PARTS PER REEL | TAPE WIDTH (MM)
16SG 1,400 16
20SG 1,400 24
20NL 1,200 16
24SG 1,400 24
28SG 1,400 24
28 NL/FN 950 24
44 NL 640 32

a Monolithic m Memories :l

PAL Device Package Outlines

Package Drawing

Molded DIP

DIE PAD BONDING WIRE

LEAD FRAME

/— PACKAGE BODY

DIE (DEVICE)
LEAD FRAME BONDING WIRE ' PACKAGE BODY
Copper Alloy 194. 1.0 Mil Gold Wire. Thermoset Plastic.
Copper Alloy Tamac 5. 1.25 Mil Gold Wire.
1.30 Mil Gold Wire. E
LEAD FINISH DIE PAD DIE BOND
Solder Dip. Spot Silver Plating Silver Filled Epoxy.

(150 Micro-Inches)

10257A
JANUARY 1988

a Monolithic m Memories a 3-179

PAL Device Package Outlines

Package Drawings
20N Molded DIP
(1/4"x1")
PIN NO. 1
B IDENTIFIER
AANANASAS YA YA WA WAL
20

1

O 10
;mm//'VVVVVV9vv g&/vvavivvv

1.778
Eﬁ‘ua 1 VERSION 2
VERSION 1 .035
IDENTIFIER —_— “aa9 I I .306 +.010
7.772 +.254
1.020 £ 015 30 _ .258 +.012
25.908 +.381 3.302 6.553 +.305
_.130+.010 ” \ ™
3.302+.254
.280£.010 _
7.112 +.254 Syl 5° - 12°
REF.(2)
: SEEDETAILA :011:.002 l | -
50 oo | 27901 M ™
3.810
100 - .060 +.004 .360 +.025
2.540 1.524 +.102 -~ 9.144 +.635
000 __f | o] |« :018.004 '
1.016 .457 £.102 ! v

/ t_
i .015 MIN
(MINIMUM GAP, PACKAGE
——.040 TO.042 REF LINE)
L .042

REF

DETAIL A

UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE +.007 INCHES

3-180 f 2\ monotithic L Memories &1

PAL Device Package Outlines

Package Drawing

24NS Molded SKINNYDIP
(1/4"x1 3/16")

.070

/ 1.778 DA
BASAAASAANAAA A A A AW AW AN A AN A AW
24 13
12 /
1080 PYVYVYYVYVYVPY Y 9pennot WYYYPYPYPYPYP P
1.524 DA IDENTIFIER
PIN NO. 1 — 035 VERSION 2
IDENTIFIER —_—
VERSION 1 306 +.010
7.772 +.254
1.196 +.015 | 1 | .258+.012
30.378 +.381 /\ e 6559 +.905
_ 130:.010 10° TYP
4 3.302+ .254
.280 +.010 |
7.112£.254 130]
3.302 5°.12°
REF.(2)
.011 +.002 _,' l<_ - \/
1279 +.051
.360 +.025
* " a4 .65
%};—iﬂ—g‘; - | |- %ﬂ% UNLESS OTHERWISE SPECIFIED:

ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS

Notes: ALL TOLERANCES ARE : .007 INCHES E
1. Lead material tolerances are for tin plate finish only. Solder dip finish adds

2-10 mils thickness to all lead tip dimensions.
2. Both version 1 and version 2 configurations are manufactured interchangeably.
3. Ejector pin marks on version 1 are optional.

:' Monolithic m Memorles :' 3-181

PAL Device Package Outlines

Package Drawing
.060

40N Molded DIP - ‘ v ‘ ™ [*is
(9/16"x2-1/16")

ABAAAMAANMAANAANNDAAN ¢

21

086 REF(2)—/ - © PIN ‘“’—/ >\ 120

2.184 IDENTIFY 3048 OA
20 -
vy
o 1 DENTIEY TV VYV YYY IV IYYY YIS
VERSION 1 VERSION 2
] 2.056 +.015 |
I 52.222 +.381
) .130 +.010
b [3.302:.256
300+.010 |
7.620 +.254 ‘ el

.150 _ ’
816" .100 ‘ .018 +.004 < 2050 +.004
2540 1.016 016 457 £.102 1.270 +.102
.600
15.240
150 _ .548 +.012
‘) 3.810 9 +.305

‘ 13.919 =.305
UNLESS OTHERWISE SPECIFIED: /\ I TvP
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS {f(
ALL TOLERANCES ARE % .007 INCHES
4 -11°
REF.(2)

.011 +.002 , - \4/
279,
92.051 .660 + 025
16.764 +.635

3-182 ﬂ Monolithic m Memories z'

PAL Device Package Outlines

Package Drawing

48N Molded DIP
(9/16"x2 13/32")

AAAAABDANAAAADADADADNADAR

48 25

O O

.086 /
2184 DIA(2)

yel 24
RN P9 VPV YV YV YPYPYPYVYYYPYVYYR Y Y
VERSION 1
PIN #1 IDENTIFY 2,408 £.015
bl 51.163 =.381
.140 +.010
3.556 +.254
.305 +.010
7.747 +.254

85 pec 100 .040 .‘ L .018 +.004 ’. L .050 +.004
3.937 2540 1.016 457 £.102 1270 +.102
15240
.060 150 548 +.012
™ sz 3.810 | 13919 305
‘ 1o° TP

-1
Ny
REF.(2)
PIN »1—/>)\ 120 011 +.002 ‘ \‘/
IDENTIFY 120
120 pia 279 +.051 'I ‘ 6602025
o 76.764 3635 1
VERSION 2

UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE +.007 INCHES

Notes:

1. Lead material tolerances are for tin plate finish only. Solder dip finish adds
2-10 mils thickness to all lead tip dimensions.

2. Both version 1 and version 2 configurations are manufactured interchangeably.
3. Ejector pin marks on version 1 are optional.

2\ monotithic B Memories £ 3-183

PAL Device Package Outlines

Package Drawing

- Ceramic DIP

CAVITY BONDING WIRE

CAP
GLASS
BASE
LEAD FRAME
DIE (DEVICES)

LEAD FRAME BONDING WIRE CAP AND BASE
Alloy 42 1.25 Mil Aluminum Pressed Alumina
GLASS CAVITY , LEAD FINISHES
Vitreous Gold Over Alumina Solder DIP Over

Solder Glass For Eutectic Die Attach Matte Tin Plate

3-184 , 2\ monotithic B Memories &1

PAL Device Package Outlines

Package Drawing

20J Ceramic DIP
Mil-M-38510,
Appendix C, D-8
< -018.+.004
457 +.102
RAAAAADAAAA UNLESS OTHERWISE SPECIFIED:
20 1 ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE +.007 INCHES
1 10
060008 | | o e 205
1.524 = .102 127
31
7.899
.060
1.524 "X] .962 +.025 | 285 +.022
015 24.435 +.635 200\ 158 + 016 __ 7.239 + .559
381 MIN— 5.080 4.013 + 406
325 + 025 K
8.255 + .635
Y73 M'NJ 100 038 + .065 _51321: 'oszo?s 011 +.003 z o
4.064 -100 038 = .683 £ . 011 +.003 - REF. (2)
2520 55C 1™ 95 = 1.651 279:.076 e
075 375+ 005
| 1= 7905 MAX ™ 9.525 = .635

a Monolithic m Memories l"l 3-185

. PAL Device Package Outlines I

Package Drawing
24JS Ceramic SKINNYDIP
. Mil-M-38510,
Appendix C, D-9
.018 +.004 i
|~ as7 =102 ‘
ARAAABBRRAARAA UNLESS OTHERWISE SPECIFIED: !
2 13 ALL DIMENSIONS MIN.-MAX. IN INCHES ;
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS !
ALL TOLERANCES ARE +.007 INCHES
1 12
AvARvAAvAAvAAVALVA v IArdivAkvdlvalv
0562008 |<— — «—EMIN
1.422 +.102 .508
311
.060 =
822 022
1.524 A% 1258 g5 7.899
31.953 + .635 —-200 158 +.016 -293 £ .012
015 N 5080 4013 +.406 7.442 + 305
-381 MAX
.325 + 025
8.255 + .635 T = /
60 098 LL 038+ 065 =02 011 +.003 2° — 13
160y 098 100 038 =08 3683 +.508 011:.003 ° — 13
2060 "N 1 ™ 2489 2540 25C 1 I~ To65 + 1.651 279:.076 N e
MAX
375+ .025 |
Notes: 9.525 + .635
1. Specified body dimensions allow for differences between MSI and LS| packages.
2. Lead material tolerances are for tin plate finish only. Solder dip finish adds
2-10 mils thickness to all lead tip dimensions.
3-186 &\ monoithic [l Memories €1

PAL Device Package Outlines

Package Drawing
40J Ceramic DIP

Mil-M-38510,
Appendix C, D-5
AAAAAAAAAAAAAAAAAAARA
40 21
1 20)
VYPPFVVVPPEEEYYPEEITE Y
018 +.004 055 + .004 020
457 %102 ’] l‘_r.sou.wz 1 = ls0s MIN
336+.025
8.534 + .635
2058 + .025 -
mMAX 52.237 + .635 5715 MAX
015 N -
2381
bl
160 pyyn 098 ol |_038 + 065 J L.wo Bsc %’?ﬁ%‘
4064 T 2age MAX =965 = 1.651 2540
611
15.519
554 +.044
14.0721.118
158+ .016 é \
4.013 .406
22 —11°
.011 +.003 _>H<__ REF. (2) ™
279+ .076
670 + .040

! 17.018 + 1.016 1

UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE +.007 INCHES

Notes:

1. Specified body dimensions allow for differences between MSI and
LS| packages.

2. Lead material tolerances are for tin plate finish only. Solder dip finish adds
2-10 mils thickness to all lead tip dimensions.

I‘rl Monolithic m Memories i:l 3-187

Package Drawing

20Q Window CERDIP

PAL Device Package Outlines

018 +.004 483 +.013
457:.102 12.268 £ .330 145+.010
[~ 3683x.254
A PANIWANIPAN] PANIPANIPANIPAN ﬂw
1
10
ird 7 hvd Avd v v vl
A7 . 060004 _ || 005 g
2318 DA 1.524 £.102 127
.060
7.524 MAX
015 311
381 "N] 7.899
.962 +.025 285 + .022
24.435.635 7.239 +.559
2004
| N a5 MAX
325+ .025 L
8.255 £.635 —
T 158+.016 _ |
4.013 £ .406 2°-13° REF
011 £.003
LGQ—MNJ L—»’———Bsc 279:.076 “' y \
'4.064 c 2540 < :375%.025
040 .075) | .145+.020 9.525 + .635
> 1.016 1.905 MAX—> 3.683 £ .508 :
UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE *.007 INCHES
3-188 :l Monolithic m Memorles zl

PAL Device Package Outlines

-Package Drawing

24QS Window CERDIP
(5/16” x 1 1/4”)

.018 +.004 628 +.012
.457 +.102 5.951 +.305 _.1471.010
3.683%.254
PANWANWANIPANIWANIPAN PANWWANIPANIPANSVANSPAN
24 13
1 12
VANV AL VAR VAL VAR v AR v of
170 056 + .004 -020
=170 i -056+.004 —| |e—22 min
4.138 1.422 +.102 -508
060
7.524 MAX
015 311
381 MIN 7.899
+022 ~158+.016
1258 025 4,013 2.406 2031 012
31.953 + 559 7.442 © 305
.200 i
5.080 MAX /
325 +.025
8.255%.635 | —T—— B
-~ 2°-13° REF
0 s || o - W
4065 N 254 2.489 .375:.025
.040 | .145+.020
1.016 . 3.683+.508
UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE *.007 INCHES
&\ mononthic EEl Memories €1 3.189

PAL Device Package Outlines

Package Drawing
Plastic Leaded Chip Carrier
DIE (DEVICE)
BONDING WIRE
LEAD FRAME
DIE PAD
T J T JJ \
PACKAGE BODY
LEAD FRAME BONDING WIRE PACKAGE BODY
Copper Alloy 195. 1.25 Mil Gold Wire Thermoset Plastic.

‘ Copper Alloy Tamac 5.

LEAD FINISH . DIE PAD DIE BOND

Tin Plating. Spot Silver Plating

Silver Filled Epoxy.
Solder Dip. (150 Microinches).

3-190 ; Pu Monollthlcm Memories b

PAL Device Package Outlines

Package Drawing
20NL Plastic Leaded Chip Carrier

(.351" x .351")
030 . PINNO. 1 5 e, 010 + .002
762~ IDENTIFY 1143 %5 254 * .051
[M 1
Y
085 o | { O J
1.143 O 353 + 003
|1 8.966 =076
[:] sQ .310
7.874
-—J]] 9.906 +.127
LA 8 sa
.050
050 psc Typ L
1.270 °°€
D[N I A B O o
200 persq .322
200 - .
5.080
.070
1.778
018 +.003
457 +.076 - .100 ¢ 005
2540 1 127
a72
4.369
- 020 +.003
737 = .076
T 430 o

(EJECTOR PIN)

.010 N
54 % 45° (3)

UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE +.007 INCHES

ﬂ Monolithic m Memories a 3-191

PAL Device Package Outlines

Package Drawing
28NL/FN Plastic Leaded Chip Carrier

(.451" x .451")
030 » PINNO. 1
762 ©'A IDENTIFY 045 o .010 +.002
V BB el o O S —— 1.143 254 + 051
o o] O)
1143 <48 O 0
O 1] 453 £ 003
11.506 + .076 410
0 0 sa 10.414
.490 = .005
E 3 12.446 +.127
—_—1 N sQ
-—0 J
.050 _ —
1.270 2°C TYP oo o p———— Y 030
} 300 l <762
=2 geF sq .
7.620 .070
1.778
.018 +.003
== =0 TYP .100 + .005
L_ A5T +.078 25540 =127
A72
4.369

.028 +.003

711 +.076 EJECTOR PIN

(NOT A WINDOW)

UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE +.007 INCHES

3-192 &\ Monolithic E.[F.ﬂ Memories &1

PAL Device Package Outlines

Package Drawing

44NL Plastic Leaded Chip Carrier

(.650" x .650")
030 PIN NO. 1 010 + .002
.762 IDENTIFY 045 m
L i O s T O T 04 o T Y 0 1 s 1143145"_>
J t C{ b
X 45° O ul
U i
0 [J_.653 + .003
[[16.586 + .076 oo
2050 gocTvp S
1.270° '1 g b 5.494
——0FC N .690 + .005
—] 17.526 +.127
tod 0 sa
O p
g Q b
5 5 O O B O i pui I—
| |- 030
093 .762
500 5 350 OIA (2) (EJECTOR PIN)
72700 REF SQ > 070
| 1.778
015 +.003 1y
.381 +.076 100 + .005
2.540 + .127
T 72
4.369
125 +.005 (9
3.175 +.127

(EJECTOR PIN)

UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE +.007 INCHES

ﬂ Monolithic m Memories l‘v‘ 3-193

PAL Device Package Outlines

Package Drawing

68NL Molded Chip Carrier
(-950"x.950")
e .g:.om
PIN NO. 1 085 0o -203 +.025
| e 1"-,4453 xd5° r‘/_IDENTIFIER 1143 [
ﬁr‘ll‘_\l—’l—lm’_\l—] ‘minininlininisiw]
o _
d h
o h
q]
q h
g 1
q h
d n
.954 +.001
g D 24232+.025 920
g P SQ 990 +.003 23.368
E H 25.146 +.076
050 sQ
O BSCTYP E h
] q h
. i
q h
f q h
i b
[y S8y v 5 R 5 g N g Sl g Ry gy X
«— 22 N
800 peesq ~ 508
| 20.320 080
] 2032
.100 +.005
2540 +.127
70
4318
018 +.002
457 +.051
120 +.005
2048 :.127 0
© 028 +.002
711 £.051
N 00
5 RMIN
UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE :+.007 INCHES
:
3-194 2\ mononithic Ll Memories £1

PAL Device Package Outlines

Package Drawing

84NL Plastic Leaded Chip Carrier
(1.154" x 1.154")

.008 +.001
085, 450 oo 085 o g .203 +.025
1.143 _l ’_‘[1.143 ¥ Rl
ﬁl_'lf_\r'll_\mmmﬂnd iminlinisiniainiaial
i . 1
q i)
g n
{ il
0 b
g o)
.050 . E
223 Bsc TYP
1.270 | E N 1154:.004
H 29.312:.102 1120
———.E n SQ 1.190 +.005 28.448
1 g b 30.226 +.127
a N sQ
a i}
g i}
O n
O i}
O i
0 0
g u}
[i)
T OO0 000000000000 OoOOOOnT —.
.020
1.000 e 020 4y
e ann ———————e |
25.400 NEF SQ 508
.080
I 2032
1100 +.005
2540 127
70
4318
018 +.002
457 +.051 1120 + .005
3008 =127 O @
.028 +.002
711 +.051

UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE +.007 INCHES

[RERR AR Rt 5

127

i:l Monolithic m Memories :l 3-195

PAL Device Package Outlines

Package Drawing
20SG Small Outline Package

:016
.406

HAAHAAAAASA

L ELLELE:

.029 050
737 ! 1.270 %€

092
2337

-101 T_—‘
= 5°TYP

2.565

.508

. 015
=—=MIN —
12.903 “381

UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE +.007 INCHES

- 3-196 :l Monolithic m Memorles :l

PAL Device Package Outlines

Package Drawing
24SG Small Outline Package

.016
.406

HAAAARAAHAAAA

— |—

PO R RIET]

.029

050 poc
.737 1.270

013
092

o
*330 X 45
2.337

|

5 1
- ;50615 _c':— }?;8 L .010
.608 ot5 . 032 .254
15.443 a1 MIN—>|[«— i
.328
8.331
.406
10.312 |

UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE +.007 INCHES

ﬂ Monolithic m Memories ﬂ 3-197

PAL Device Package Outlines

Package Drawing

Pin Grid Array

DIE (DEVICE)——\ /—-SEAL RING
. \ /

—

cavITy—_|
~_|
T

™N—LiD PIN

PACKAGE aonv—/

BONDING WIRE

PACKAGE BODY LID PIN MATERIAL
Alumina Gold Plated Kovar With Gold Plated Kovar
(Standard Dark) Nickel Underplating
BONDING WIRE CAVITY/SEAL RING
1.25 Mil Aluminum Gold Over Tungsten

3-198 &\ Monolithic li.liﬂ Memories &1

PAL Device Package Outlines

Package Drawing
68P Ceramic Pin Grid Array

Pg:‘-:gl 1 LOCATOR PIN
° - 11109876,5\4321
g’ OOOOOONOGE |a
eolclolololololoYololol
0)0) ©OE Gl
0J0) @@l
©JO) oJol:
— oJo) oJol:
10} ® Ol
—©® ool
-] 0@ ofo)!
2540 CEOEOOEOEE®EE O
PEEEEEEEG |
25,400 85C
27 040 - 2559
.080 +.008
1_2.032 +.203
i_ Iq m “ .270&.019
6.858 +.483
oso+oos_I ’LHUU”””UU’ '
1.270 +.127
=l a0 i
.018 +.002

457 +.051 DAL~

UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE £.007 INCHES

\ :l Monolithic E.Iiﬂ Memories 4'.| 3-199

PAL Device Package Outlines

Package Drawings
84P Ceramic Pin Grid Array

PIN NO. 1

/ IDENTIFIER LOCATOR PIN
110 5\ 4

“1\ cloJolololololbIololo)]
\\ PREEEOOAOOOs
- 0JO) OO BEOk
®O ool

OO oJoJol:

DO olololk

[~}

ol 1006 0

2.540

) @@ ©

©OOOO
9 C

.080 +.008

I‘zoaz:.zoa
v i

and 1111 UU ﬁ 2

1.270 +.127
050 +.005 018 +.002 130 + 005
1270 £.1270A ! <_ “as7+.051 0 T 3302 +.127

l

—| |-

UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE +.007 INCHES

3-200 a Monolithic m Memories :l

PAL Device Package Outlines

Package Drawing

Leadless Chip Carrier

BONDING WIRE SEAL RING PACKAGE BODY

ITLLS
-
-

N
T S -

DIE (DEVICE)

TERMINALS
PACKAGE BODY LID TERMINALS
Alumina Gold Plated Kovar With Gold Plating Over Tungsten
(Standard Dark) Nickel Underplating
BONDING WIRE CAVITY/SEAL RING
1.25 Mil Aluminum Gold Over Nickel

Over Tungsten

:l MonollthchMemorles a - 3-201

PAL Device Package Outlines

Package Drawing

20L Leadless Chip Carrier
Mil-M-38510,
Appendix C, C-2

+.003

035_ 002
+.076
- .051

025 + 003 PIN NO. 1
.015 635 +.076 TYP (20) IDENTIFY —l;-z%x 4a5°

2 REF

1 1 1 .014 £.008
200 l_ .356 +.203
—':;g 5.080 v
) BSC —
MAX .250 I
6.350 . SR
REF
l | .050
N\ 4 l 1270 BSC
040 .., 075 \ L .100 .050 +.005
7016 < %°® 705 NEF 2.540 1.270 +.127
350 + .008 REF BSC .009 +.006
3.890 .203 0 > T 127:.051
TOP VIEW BOTTOM VIEW
*
.072+.008 .060 + .006 _
[1829+ 203 1.524 * .152

[1

*CONTACT FACTORY
FOR THIN PROFILE PKG.

UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE +.007 INCHES

3-202 bu | Monollthlom Memories b

r 003 \& 20
= 015
_f— v Mnu—)\/—li 085 + .008
'381 —_—
4) a - 2.159v1 .203

PAL Device Package Outlines

Package Drawing

28L Leadless Chip Carrier
Mil-M-38510,
Appendix C, C-4

035" 3
+.076
889 _ 051 PIN#1
020 Lo IDENTIFY
i 45 015 /-%mu 085+ .008
REF § o3 2.159 + 203
; X [n'lg
014+ ooa
300 014 +.008
-330 7.620 8sc 356 *.
8.38 350
MAX 8.890 NEF 025 + 003
.635 £ .076
Y TYP
= AR T
040 4o 050 poe | ‘ ' «—975 g
™ 1016 <45°®) 1270Bsc = ™ 7.905 NEF
450 + 008 REF 50 e | .050 + .005
! 11.430 + .203 ! 3810 1.270 + .127
TYP
TOP VIEW 009 + .006
E— 127 +.051
060 + .006 * 072 1 .008
1.524 1 152 1.829 ¢ 203 —l _BOTTOM VIEW
I 1 t
-] - Notes:
“CONTACT FACTORY :
FOR THIN PROFILE PKG. 1. Solder fillets on lid edges not shown.

UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE £.007 INCHES

l‘r' Monolithic Eﬁﬂ Memorles :l 3-203

PAL Device Package Outlines

Package Drawing

44L Leadless Chip Carrier
Mil-M-38510,
Appendix C, C-5

.025 + .003 +.003
025 £ .008 035
.635 +.076 - -.002
TYP (44) +.076
r'd | e | 589051
.015
015 A PIN NO. 1
44|y 2 IDENTIFY

:___{ 003 gg1
!

085 + 008
009 +.006 2159 +.203
127 +.051
560 550 ‘
14.224 13.970 —
MAX REF T__ .014 +.008
1127 £.051
050 o
1.270
040 075 250 050 + 005
X 45° (3] = REF - |—
1.016 @ == 1.905 6.350 2°C ™ ~T1270 £.127
REF 650 +.010 00
650 + . 5
| 16.510 + .254 | 72.700 25C
TOP VIEW BOTTOM VIEW
060 + .006 072 +.008
1.524 * 152 1.829 +.203
UNLESS OTHERWISE SPECIFIED:

ALL DIMENSIONS MIN.-MAX. IN INCHES

ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS

ALL TOLERANCES ARE .007 INCHES

3-204 &\ mononthic I Memories &1

PAL Device Package Outlines

Package Drawing
68L Leadless Chip Carrier
MIL-M-38510 .
Appendix C, C-7
PIN NO. 1
IDENTIFIER

020 PIN NO. 1 .085 +.008

‘508 xw‘l /_ IDENTIFIER 2.159 .203 N
- v 1 / LIV

- /I'I“I'III'IITITI“T ’ -381
f iy [E— E .014 +.008
E 4 r 127 +.051
) S
4 f -025 +.003
950 +.012_c o 850 { -635+.076
24.130 +.305 21590 ——T
?
? { .050
. LSl
' .400
.040 __T <————BSC»|
1018 %% .590 | 050 +.005 10.160
1016 14.986 sa 1.270 +.127
.075
1 [* 7005 "EF
.800 .09 + .006
2052025 il .127 +.051
,oaoi.oos_T | .092 +.009
2.032 +.203 2337 +.229

UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE +.007 INCHES

. :l Monolithic ﬁ[ﬁﬂ Memorles Zl 3-205

PAL Device Package Outlines

Package Drawing

20W Cerpack
Mil-M-38510,
Appendix C, F-9
+.003 045
012 PIN #1 085 - pax
-.004 IDENTIFY l— 1.143
3051' %g 1 1 0 ————
* —— ————
P —
—— — R—
017 + 002 _T gt 017
—————/—/— | —————— -
432 = 051 ——%
. O ——— .
——
10 L)l e———
A0 asc] t
005
'270 l 055015 | S27 VN
7747381]
271 + 009
+.001 076 + .016
005 883 = . 076 2 016
- 002 6.883 + 229" 1.930 * .406
¥.025 i
a27 0 | l)
f [|
T_ -033 + .007
838 :.178 3°° MAX >
(GLASS FLOW)
UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE +.007 INCHES
i
3-206 a Monolithic m Memories a

Package Drawing

24W Cerpack
Mil-M-38510,
Appendix C, F-6

PAL Device Package Outlines

PIN #1

+.003 045
012 _ 04 [IDENTIFY l'—,,,,,a MAX
+.076
l‘ RO — 1 N~ P e —
.
f — 1
| S————— ——— |
S S ——— S ———
S ——— O ———
017 +.002 _T 613 + 017
_— [So—————— ——— -
432 + 051 ——T%
| E—————— S ————— | 15.570 N -457
————— E———— -
C—————— ———
| E———— ——— 7
| S———— S
12 13 ::__i
050 T_
Plgsc
1.270 1265 + .015 —%g—"; MIN
6.731 = 381 :
412 + 008
+.001 _412 £ 008
005 _ 002 70.465 = .203 . 075+ 015
025 1.905 + 381
127 025
127 _ 051 | [—
L]
T_.033i .007 o
838:.178 -
1176 MAX
(GLASS FLOW)
UNLESS OTHERWISE SPECIFIED:
ALL DIMENSIONS MIN.-MAX. IN INCHES
ALL DIMENSIONS MIN.-MAX. IN MILLIMETERS
ALL TOLERANCES ARE +.007 INCHES
&\ Monolithic m Memories Pu | 3-207

PAL Device Package

Thermal Characteristics

Introduction

Thermal resistance for a packaged integrated circuit determines
the operating temperature and hence the performance and life-
time of the semiconductor device. For this reason, itis of interest
to know the thermal resistance of the package configurations
commonly in use and the effect of external factors such as air
circulation and board-mounting conditions on the device
temperature. To accomplish this end, measurement techniques
and standards have been established providing certain conven-
tions for data acquisition. Monolithic Memories has chosen to

conform to these conventions in measurement and provides .

standard data for thermal resistance in the form of Rg ;- (resist-
ance from junction to case) and Rg 5 (resistance from junction
to ambient) as a function of air movement over the package/-
board combination.

Use of Monolithic Memories Data

In this publication, data is presented for a variety of packages
and ambient conditions. In order to simplify the data presenta-
tion, graphs of Rg JA VS airflow are provided for packages in

10261A
JANUARY 1988

3-208

common use. These include socket-mounted pin grid arrays,
dual-in-line p-dip, cerdip and side-brazed packages, board
mounted cerpacks, flatpacks, leadless-chip carriers and plastic
leaded chip carriers.

Resistance from junction to ambient (Rg;,) is a package
geometry and.die size related function. The user need only look
up the package type and die size for the air-flow used. Since the
Rgy is largely dependent on the package type and die size, a
table has been constructed for easy use.

Notes on the Tabulated Data

1. All side-brazed, cerdip-sealed, molded dual-in-line and pin
grid array packages were mounted in zero insertion force
sockets with 40 mils air gap and transverse to the airstream.

2. All cerpacks, flatpacks, LCC, PLCC and SOIC packages were
board mounted in direct contact with a double-sided fiber-
glass-epoxy composite printed circuit board.

3. For measurement of Rg ,~, all packages were immersed in a
constant temperature fluorinert bath. The thermocouple was
mounted directly to the bottom of the package.

a Monolithic m Memories n

"PAL Device Package Thermal Characteristics

Thermal Resistance Measurement Procedure

Definition

Thermal resistance of a semiconductor device is a measure of
the ability of its mechanical structure (package) to provide for
heat removal from the semiconductor element. It is defined as
the rise in the junction temperature against some reference
point per unit power of dissipation or it may be described by the
formula:

Ry IR Thermal resistance, junc-

TJ-TR tion to reference point, in
Royr = °C/watt
P Ty =Junctiontemperaturein®C
TR = Reference pointtempera-
turein °C
P = Power dissipation

Thermal Measurement Technique

Thermal resistance is measured using the temperature sensitive
parameter (TSP) method. This method takes advantage of the
linear relation between temperature and voltage drop across a
p-n junction to measure the average die temperature. Thermal
resistance measurement can be done either using an actual
device or with thermal test chips. For the purpose of this study,
thermal test chips are used.

Each test chip consists of sensing elements and a heating ele-
ment. Sensing elements are two sets of diode pairs. One diode
pair is located at the center of each die and one pair is near a
corner. The heating element is a polysilicon resistor which cov-
ers 95 percent of the die surface area. The resistor extends
underneath the bond pads but not the sensing elements.

Initially, diodes are forward biased to a low level current source
(50 pA) and the voltage drop is calibrated with respect to

state junction temperature is calculated from the calibration
data.

Forthe Rp 5 measurementthe deviceis putina windtunnel. The
air speed is adjustable from 0 to 1000 feet/min. The use of awind
tunnel allows us to graph the Rg j 5 vs. air flow velocity. Average
junction to case thermal resistance (Rg i) is measured by
immersing the package in a constant temperature fluorinert bath
and sensing steady state junction temperature with case
temperature being measured at the bottom of the package.

Summary

The thermal resistance measurement can be summarized as
follows:

1. Calibration of the voltage drop across the sensing element
with respect to temperature. This is done by measuring the
voltage drop at several different temperatures with the heat-
ing power off.

2. Measurement of voltage drop across the sensing element
under operating conditions, under various air flow rates
(from 0 to 1000 linear ft/min.), while measuring °C ambient
and power input for calculation of Rg ;.

3. Measurement of voltage drop across the sensing element
under operating conditions, package immersed in constant
temperature fluorinert bath, while measuring the case temper-
ature at the bottom of the package and power input for
calculation of Ry c The readings are recorded when the
package has reached thermal equilibrium.

4. Calculation of thermal resistance

temperature. Then, the resistor is powered and the diode voltage a. Rgyp = ToTA, b. Rgyg = _[‘E-_C__
drop is monitored until thermal equilibrium is reached. Steady P
X monotithic EEl Memories €1 3.209

20 Lead Molded DIP (20N) Packages

3-210

PAL Device Package Thermal Characteristics

100
ool
w TOP
2
g3 60 20N
5:% sor 20N®
2€ o
£
30_
20_
10
o Il 1 1 A 1 ! 1 1 1]
0 100 200 300 400 500 600 700 800 900 1000
AIR FLOW (f/min)
PACKAGE DIE SIZE (mils)2 | R,c (°C/WATT)
20N(1) 5,625 22
20N(2) 11,250 15

*These are typical values for the given die size.

,z' Monollthlcm Memories n

PAL Device Package Thermal Characteristics

24, 28 Lead Molded DIP (24N, 28N) Packages

100 —

90 —

80}
w oL 24NS®)
g 24NS®
Z% 60 28N
@s 24N
["g 50 e
ic ——
£~ wop ——
w \
I3 sk

20}

10+

0 1 A —l 1 1 1 1 | 1)

0 100 200 300 400 500 600 700 800 900 1000
AIR FLOW (ft/min)

PACKAGE DIE SIZE (mils)2 | Rf e (°C/WATT)
24Ns(1) 5,625 20
24NS(2) 11,250 15

24N 50,625 10
28N 22,500 13

*These are typical values for the given die size.

z‘ Monolithic m Memories n 3-211

PAL Device Package Thermal characteristigs

40,48 Lead Molded DIP (40N, 48N) Packages

8
1

%
80
70
N i
gg W\ 48N |
g, 50
S ¥
ig 40N
E “r
Fowl
200
10
0 1 1 1 - 1 1 1 1 ! J
0 100 200 400 500 600 700 800 900 1000
AIR FLOW (ft/min)

PACKAGE | DIE SIZE (mils)2 | R%,c (°C/WATT)

40N 22,500 16
48N 5,625 23

*These are typical values for the given die size.

3-212 ' n Monolithic m Memories :l

PAL Device Package Thermal Characteristics

Plastic Leaded Chip Carrier (NL) Packages

8 8 8 &8 8
T

-
o
—T

3
=

(Rg,p) "CW

THERMAL RESISTANCE

-
o
T

THERMAL RESISTANCE
°C/W
(Rg,) °C
3
[
N
o
2
r

PACKAGE DIE SIZE (mils)2 | R} Jc (CC/WATT)
20NL 11,250 14
28NL 22,500 13
44NL 22,500 1
68NL 50,625 8
84NL 50,625 6

*These are typical values for the given die size.

a Monolithic m Memories a

3-213

PAL Device Package Thermal Characteristics |

Small Outline (20SG, 24SG) Packages

120 -
10| .
100 |-
w 90—
2
SE 80 |-
O
&
B~ 70
i L
=€
g 60 20SG
Fool
24SG™
20 L 1 A 1 1

1 1 1) R—
0 100 200 300 400 500 600 700 600 900 1000
AIR FLOW (ft/min)

PACKAGE DIE SIZE (mils)2 | RYc (°C/WATT)

20SG 5,625 16
248G(1) 11,250 13
24SG(2) 22,500 10

*These are typical values for the given die size.

3-214 :l Monolithic m Memories :' ‘

PAL Device Package Thermal Characteristics

20 Lead Cerdip (20J) Packages

3
T

~
o

THERMAL RESISTANCE
(Rg,)

-

8 8 8 & 8
T

-
o

-

204"

20J@

1

| R W L1
0 100 200 300 400 500 600

1
AIR FLOW (ft/min|

)

Ll
700 800 900 1000

PACKAGE DIE SIZE (mils)2 | R} Jc (CC/WATT)
20J(1) 5,625 14
20J(2) 22,500 6

*These are typical values for the given die size.

a Monolithic m Memories a 3-215

PAL Device Package Thermal Characteristics

24 Lead Cerdip (24J, 24JS) Packages

3-216

100

70

60

50

40

THERMAL RESISTANCE
(Rg,p)

30}

20

10

24JS"

2445

24J

1 1 1

1 J

0

Il 1 1
0 100 200 300 400 500 600

Il 1
700 800 900 1000

AIR FLOW (ft/min)

PACKAGE DIE SIZE (mils)2 | Rjc (°C/WATT)
24Js(1) 5,625 16
24Js(2) 11,250 8

24J 50,625

*These are typical values for the given die size.

n Monolithic m Memories l"l

PAL Device Package Thermal Characteristics

40 Lead Cerdip (40J) Packages

100 —

90 |

THERMAL RESISTANCE
Ry,)

20 - 4042

10

0 1 I I TR T ! i

0 100 200 300 400 500 600 700 800 900 1000
AIR FLOW (ft/min)

PACKAGE | DIE SIZE (mils)2 | Rf,c (°C/WATT)

40J(1) 22,500 4
404(2) - 50,625 2

*These are typical values for the given die size.

z' Monolithic Eﬂﬂ Memories a 3-217

PAL Device Package Thermal Characteristics

20 Leadless Chip Carrier (20L) Packages

100 —

8
=

~
o

THERMAL RESISTANCE
(Rg,) °CIW

8 8 8§ 8 8
T

10

20LM

20L®@

1 1

1 Il | |

0

d. 41
0 100 200 300 400 500 600

I
AIR FLOW (ft/min)

700 800 900 1000

PACKAGE DIE SIZE (mils)2 | Rfc (°C/WATT)
20L(1) 5,625 16
20L(2) 22,500 4

*These are typical values for the given die size.

3-.218 : & Monoithic [Memories &1

PAL Device Package Thermal Characteristics

(Rg) “CIW
8

THERMAL RESISTANCE
8 3 8
/ T 1

28 Leadless Chip Carrier (28L) Packages

28L"

28L@

28L@

0 1 1 A1 L 1 Il L] 1]
0 100 200 300 400 500 600 700 800 900 1000
AiR FLOW (ft/min)

PACKAGE DIE SIZE (mlis)2 | R}, (°C/WATT)
28L(1) 5,625 20
28L(2) 11,250 10
28L(3) 50,625 3

*These are typical values for the given die size.

a Monolithic m Memories a

3-219

PAL Device Package Thermal Characteristics

Leadless Chip Carrier (44L, 52L) Packages

3-220

:l Monolithic ﬁlﬁﬂ Memories a

8
1

(Rg,) °CW
8 8 &8 8 8 3 8 8
1

THERMAL RESISTANCE

10+

44L

52L"

52L@

1 1

0

T T TR S B
0 100 200 300 400 500 600 700 800 900 1000

!
AIR FLOW (ft/min)

PACKAGE DIE SIZE (mils)2 | R} (°C/WATT)
441 22,500
52L.(1) 22,500
52L(2) 50,625 15

*These are typical values for the given die size.

PAL Device Package Thermal Characteristics

Leadless Chip Carrier (68L, 84L) Packages

100~

g8 8 3 8
T T T

(Rg,) “CW

8 8

THERMAL RESISTANCE

68L

8

84L
10+

1 ! ! L 1 [| L A
0 100 200 300 400 500 600 700 800 900 1000
AIR FLOW (tt/min)

PACKAGE | DIE SIZE (miis)2 | R}, (°C/WATT)

68L 22,500 2
84L 50,625 1

*These are typical values for the given die size.

z‘ Monolithic m Memories n 3-221

PAL Device Package Thermal Characteristiés

W

Pin Grid Array (68P, 84P) Packages

8
-

(Rg) °CW
g

THERMAL RESISTANCE
Y
-3

68P

8
T

0 I 1 [I | | 1 1 2
0 100 200 300 400 500 600 700 800 900 1000
AIR FLOW (ft/min)

PACKAGE DIE SIZE (mils)2 | R} (°C/WATT)

68P 22,500 5
84pP 90,000 2

*These are typical values for the given die size.

3-222 :l Monollthlom Memorles i:l

PAL Device Package Thermal Characteristics

Cerpack (W) Packages

120
110
w 100
2
g, 90| 16W
~ 80|
3's 18W
i€,
W 20W
F 60
24w
50|
24w
40 |
30 1 1 | 1 1 1 1 1]
0 100 200 300 400 5000 600 700 800 900 1000
AIR FLOW (f/min)
PACKAGE DIE SIZE (mils)2 | R} (°C/WATT)
16W 5,625 21
18W 5,625 17
20w 5,625 15
24W(1) 11,500
24W(2) 22,500
*These are typical values for the given die size.
:' Monollthlcm Memories a 3-223

AmPAL Device
Package Outlines

Plastic Dual-In-Line Packages (PD)
PD 020

1.240
1.280

fan T T W e Vi s Nl ¥ o W W

24 1
?] 20
280
1 2] 7y
= g o g o o g e g o o e
[=— .005 MIN.
SEATING
140 PLANE
225 .
010
— 060
o° - 008
125 j: 15° 015
110 065 023 ’

PID # 070898

3-224 I‘J Monollthiem Memories :l

AmPAL Device Package Outlines

Ceramic Hermetic Dual-In-Line Packages (CD)

o|§

CD 020
le— 080 MAX.
T T
260
310
4 |es 10
—=| |=— 005 mN.
935 200
£ e e ‘l
015
060
WWMMJ “
MIN. ia

JL I S

070
PID #£ 07553A

CD 024

:

[~—.098 MAX.

| o O o O o N v T o Y e Y o Y s T o T o Y e
24 13

510

D) =

1 12
| SN [N [O [NN NN [NN NN [NN NN A gy A |

|:|90 r‘ |._ .005 MIN. | :32 |

065 10 015
065 - .060

8l
=
g
EH

PID # 07156A

:' Monolithic m Memoriles :l 3-225

AmPAL Device Package Outlines

Ceramic Hermetic Dual-In-Line Packages (CD) (Cont'd.)

CD3024

i‘ 1 235

’I-— .088 MAX.

mmmmmmmmﬁmnm

24 13
A
310
12 1

L_H_Jl_ll_JUL_H_JL_ILUL_._Jl_J

_’H.—lﬂo—.l hH

PID # 06850B
CD 028
| 1.435 |
1490 ——‘ i——oumx
o B o e B e O e B s O e O e B B e B o O e M
28 15

PID # 06837A

3-226 ﬂ Monollthlom Memoriles zl

AmPAL Device Package Outlines

Plastic Leaded Chip Carriers (PL)

PL 020

13

-
2]

zl Monolithio m Memorles l‘rl

le— .045 TYP.
— e— 045 TYP.
l-— .050 REF 009
e 025
015 -
mimininie! \ l W~ 048
1
° 4
045 T
0 | oo 390
C —
\. L
O U 5 o e 032
——-l .020 MIN.
350 =
356 120 165
e 385 180
395
PID # 06970C
PL 028
— 045 TYP.
'-0-4—5— I=-.045 TYP. 008
TYP. .050 REF. Loy 025
l J 045
T inlainlislinliel
fa) N 1 L
g P 045 —L%
450 E a TYP. 0 abo
i h 028 430
d H 032
q u| _—L —
DTy T -
~| .020 MIN.
450
56 165
485 7 180
95
PID # 06751D

3-227

AmPAL Device Package Outlines

Ceramic Leadless Chip Carriers (CL & CLR)

CL 020

318 MAX
190
[’:‘ 20]

i I
-L_m_ E
T e

glg
!

Lﬁ]

g
BB -
4
N
:
8
s
ol i

mo 342 -
zopuces_/ 358
(5x8) %_.‘ (P
/ Y T]
3 L soe
N Y4
‘ o
i : PID # 07318B
CL 028
5 20
W_‘l 28 PLACES
I /‘ @x1)
W E 8N L]
E‘.g" _:: e
LS o ﬁ —
%—.’_| I N -
a R
[418 Max. —| __l’%.m
/ N -
T e
w3
) T SI0E
\ /, :
-
&
’ PID # 005050

3.228 2\ monotithio M Memories &1

AmPAL Device Package Outlines

Ceramic Leadless Chip Carriers (CL & CLR) (Cont'd.)

CLR032

32 PLACES
7 x9)

L
|

H

i
7 g
0
’ Pu;csz
PLANE 1

13
|
S

003 _
015 85 | L e
.100
418 MAx.— | 054
088
4 N -
% §
\ / -
| “z |
| P 1
PID # 08841C

:' Monolithic m Memorles i:l 3-229

AmPAL Device Package Outlines

Ceramic Flatpacks (CF)

CF 020
920 |
#Low |
; o1~ J2o——————
 —
— —
—— —
28— 495 F——
P —— 50—
R —— —
———— —
| — 045 MAX.
| o u) =FL—
305 080
ni,s o wax. = g0 0%
MN. y
f ..__ﬁq_.{ Pt
280
PID # 08257B
CFL 024
- 900 N
250 980
045 ‘_._3-(%_.!
wy - | [T .
e @ S —— |
%=y —_— + ———)
————————— 630
t ——— ———— | |
.005 MIN. ———————— > B Ee—— |
_{ ————— R — |
.015
T T I) 019
b L . {
,t%%% .420 i .090 E_g%%
; Pe—r— ’
) PID #09675A
3-230 2\ Monoiithio [Memories &1

AmPAL Device Package

Thermal Characteristics

TR-202

Abstract

Determination of the Thermal Resistance of Packaged De-
vices is of concern to the designer of new devices and to AMD
customers. The Advanced Package and Material Develop-
ment group has undertaken the task of characterizing current
AMD products and quantifying package-related influences on
Thermal Resistance. This report describes some of these
effects and the technique used to measure Thermal Resis-
tance.

Definition of Thermal Resistance

The reliability of an integrated circuit is largely dependent on
the maximum temperature which the device will attain during
operation. Because the stability of a semiconductor junction
declines with increasing temperature, knowledge of the ther-
mal properties of the packaged device becomes an important
factor during device design. In order to increase the operating
lifetime of a given device, the junction temperatures must be
minimized. This demands knowledge of the thermal resistance
of the completed assembly and specification of the conditions
in which the device will function properly. As devices become
both smaller and more complex and the requirement for high
speed operation becomes more important, heat dissipation
will become an ever more critical parameter.

Thermal resistance is defined as the temperature rise per unit
power dissipation above some referenced condition. The unit
of measure is typically °C/watt. The relationship between
junction temperature and thermal resistance is given by:

Ty=Tx+Pp O (4]

where: T, = junction temperature
Tyx = reference temperature
Py = power dissipation
0,x = thermal resistance
X =some defined test condition

In general, one of three conditions is defined for measurement
of thermal resistance:

0c ~thermal resistance measured
with reference to the tempera-
ture at some specified point on
the package surface.

0,a - thermal resistance measured
(still air) with respect to the temperature
of a specified volume of still air.
0,a - thermal resistance measured
(moving air) with respect to the temperature

of air moving at a specified ve-
locity.

The relationship between 0,c and 6, is
0y =6,c + Oca

where 0c, is a measure of the heat dissipation due to natural
convection (still air) or forced convection (moving air) and the
effect of heat radiation and mounting techniques. 6, is
dependent solely on material properties and package geome-
try; 0,5 includes the influence of the surface area of the
package and environmental conditions. Each of these defini-
tions of thermal resistance is an attempt to simulate some
manner in which the package device may be used.

The thermal resistance of a packaged device, however
measured, is a summation of the thermal resistances of the
individual components of the assembly. These in turn are
functions of the thermal conductivity of the component mate-
rials and the geometry of the heat flow paths. Like other
material properties, thermal conductivity is usually tempera-
ture dependent. For alumina and silicon, two common pack-
age materials, this dependence can amount to a 30%
variation in thermal conductivity over the operating tempera-
ture range of the device. The thermal resistance of a compo-
nent is given by

L
0=— (¢3]
K(MA
where:L = length of the heat flow path
A =cross sectional area of the heat flow path
K(T) = thermal conductivity as a function of tem-

perature

and the overall thermal resistance of the assembly (discount-
ing convective effects) will be:

Ln
KI\AH
but since the heat flow path through a component is influ-

enced by the materials surrounding it, determination of L and
A is not always straightforward.

0=26,=Z

A second factor that affects the thermal resistance of a
packaged device is the power dissipation level and, more
particularly, the relationship between power level and die
geometry, i.e., power distribution and power density. By
rearrangement of equation 1 to

1 1
Pq o M-Tx > (T-Tx ()]
the relationship between P4 and T; can be more clearly seen.
Thus, to dissipate a greater quantity of heat for a given
geometry, T, must increase and, since the individual 6, will
also increase with temperature, the increase in T, will not be a
linear function of increasing power levels.

A third factor of concern is the quality of the material
interfaces. In terms of package construction, this relates

z‘ Monolithic m Memories I‘J

08765B/0
JANUARY 1988

3-231

AmPAL Device Package Thermal Characteristics

]

specifically to the die attach bond, and for those packages
having a heatsink, the heatsink attach bond. The quality of the
die attach bond will most severely influence the package
thermal resistance as this is the area which first impedes the
transfer of heat out of the silicon die. Indeed, it seems likely
that the initial thermal response of a powered device can be
directly related to the quality of the die attach bond.

Experimental Method

The technique for measurement of thermal resistance involves
the identification of a temperature-sensitive parameter on the
device and monitoring this parameter while the device is
powered. For bipolar integrated circuits the forward voltage of
the substrate isolation diode provides a convenient parameter
to measure and has the advantage of a linear dependence on
temperature. MOS devices which do not have an accessible
substrate diode present greater measurement difficulties and
may require simulation through use of a specially designed
thermal test die. Choice of the parameter to be measured
must be made with some care to ensure that the results of the
measurement are truly representative of the thermal state of
the device being investigated. Thus measurement of the
substrate isolation diode which is generally diffused across the
area of the die yields a weighted average of the condition of
the individual junctions across the die surface. Measurement
of a more local source would yield a less generalized result.

For MOS devices, simulation is accomlished using the thermal
test die. The basis for this test die is a 25 mil square cell
containing an isolated diode and a 1 KS2 resistor. The resistors
are interconnected from cell to cell on the wafer before it is cut
into mulitple arrays of the basic unit cell. In use the device is
powered via the resistors with voltage or current adjusted for

the proper level and the voltage drop of the individual diodes is

monitored as in the case of actual devices.

Prior to the thermal resistance test, the diode voitage/
temperature calibration must be determined. This is done by
measuring the forward voltage at 1. mA current level at two
different temperatures. The diode calibration factor is then:

T,-T, AT
Vo=V, AV

in units of °C/mV. For most diodes used for this test the
voltage/temperature relationship is linear and these two
measurement points are sufficient to determine the calibration.

K= 4)

The actual thermal resistance measurement has two alternat-
ing phases: measurement and power on. The device under
test is pulse powered with an ON duty cycle of 99% and a
repetition rate of < 100 Hz. During the brief OFF states the
device is reverse-biased with a 1 mA current and the voltage
drop is measured. The series of voltage readings are averaged
over short periods and compared to the voltage reading
obtained before the device was first powered ON. The thermal
resistance is then computed as:

0 = Ke(VE- V) _ kav
" Vilw Pp

where: Kr = calibration factor
V|, =initial forward voltage value
Ve =current forward voltage value
Vi = heating voltage '
ly = heating current

(6)

The pulsing measurement is continued until the device has
reached thermal equilibrium and the final value measured is
the equilibrium thermal resistance of the device under test.

When the end result desired is 6,, (still air), the device and the
test fixture (typically a standard burn-in socket) are enclosed in
a box containing approximately 1 cubic foot of air. For 0,
measurements the device is attached to a large metal
heatsink. This ensures that the reference point on the device
surface is maintained at a constant temperature. The require-
ments for measurement of 8,, (moving air) are rather more
comple x and involve the use of a small wind tunnel with
capability for monitoring air pressure, temperature and velocity
in the area immediately surrounding the device tested. Stan-
dardization of this last test requires much careful attention.

WAVEFORMS FOR PULSED THERMAL RESISTANCE TEST

. VH

b)Y)

¢

VOLTAGE

\(s B

vi

N "

\L

WF009091

N)

¢

CURRENT

¢ T

3-232

WF009080

2\ Monotithic LA Memories €1

AmPAL Device Package Thermal Characteristics
e
Experimental Results

The thermal resistance data included in the attached table was extrapolated from data collected using the procedure outlined in the
preceding section. This data has resulted from an ongoing program undertaken by members of the Material Technology
Development group.

Updated data will replace the data in this table as each device is measured or revised data becomes available.

Thermal Resistance of AMD Products
(Notes 1,2 and 3)

PIN PACKAGE TYPE
COUNT (Note 4) f4A | 6uc
Ceramic DIP 60 11
Plastic DIP 61 30
20 Ceramic Flatpack 56 CR
Ceramic LCC 61 CR
Plastic LCC* CR CR
Ceramic DIP 57 15
24 Plastic DIP 60 CR
Ceramic Flatpack 85 9
28 Ceramic LCC CR CR
Plastic LCC* 58 CR

Notes:

1. Representative values for each package type — for information only.

2. Any given device may differ from these values. Consult local AMD sales
office for specific-device information.

3. CR = Consult local AMD Representative.

4. DIP = Dual-In-Line Package
LCC = Leadless Chip Carrier
LCC* = Leaded Chip Carrier

Table 1.

2\ monotithic BE] Memories &1 3-233

Notes

3-234 ' | l‘r' Monollthlom Memorles ;l

PAL Device Handbook

PAL Device Data Book

PALASM 2 Software User Documentation

Table of Contents’

Introduction . 4-1

Install PALASM 2 Software 4-15
Run the Software 4-29
Build a Boolean Equation Design : 4-61
5 Build a State Machine Design 4-95
\ .
Build Simulation 4-137
Program the Device ‘ 4-169
PALASM 2 Software Glossary . 4-183
PALASM 2 Software Index ‘ : 4-189

(Detailed Table of Contents on page 4-v)

4-ii l‘:‘ Monolithic m Memories a

Preface

Audience

The intended audience for this manual is design engineers who run PALASM® 2 software
on an IBM-PC/XT/AT computer to program Monolithic Memories programmable logic
devices (PLDs). Users of this manual should be familiar with PLD technology and with
PLD programming concepts. If you are a new user, refer to the introductory chapters of
this handbook for background information and tutorials, including the Beginner's Guide.

Uzing This Manual
This chapter of the handbook is a self-contained manual that describes step-by-step
instructions for installing PALASM 2 software and programming a Monolithic Memories
programmable logic device. As a self-contained PALASM manual, the information is
organized into chapters (numbered 1 to 7) that include sections and subsections. The
handbook chapter designator, 4-, precedes all page, figure, and table numbers, which are
numbered consecutively throughout the handbook.
Throughout this manual, note these conventions:
* ltalic typeface indicates references to other sections or chapters. n

* Courier typeface represents information displayed on a computer screen.

* Left and right arrows < > indicate keys on the computer keyboard. For example,
<F1>, <Y>, or <esc>.

* <return> represents the carriage return key. Some keyboards label this key as Ret,
enter, or an arrow pointing left.

Figure 4-1 shows the structure of PALASM 2 Software User Documentation.

n Monollthlom Memoriles ﬂ 4-iii

Preface

INTRODUCTION
Chapter 1

v

INSTALL
THE SOFTWARE
Chapter 2

y

Process Example Design
SUPER.PDS In
RUN THE SOFTWARE
Chapter 3

BUILD A BOOLEAN
EQUATION DESIGN
Chapter 4

BUILD A STATE
MACHINE DESIGN
Chapter 5

BUILD THE SIMULATION
SEGMENT
Chapter 6

v

PROGRAM THE
DEVICE
Chapter 7

Figure 4-1

Structure of PALASM 2 Software User Documentation

I‘rl Monolithic ﬁ.ﬁﬂ Memorles ﬂ

Preface

—— — — — ———— ———————————————— —]

Other Documents

Make sure you have available the user manuals for your specific computer and PLD
programmer. You will refer to these manuals when installing the PALASM 2 software and
programming a device.

For more information about programmable logic and PAL devices, refer to the first three
chapters of this handbook.

Documentation on PLPL, AMD's programmable logic software, can also be found in this
handbook. PLPL software is included in the PALASM 2 software package.

Where To Get Help

Monolithic Memories maintains an applications hotline to help you solve engineering-related
problems. If you have trouble installing or running PALASM 2 software, call the hotline at
800-222-9323.

2\ monoirthio LRl Memories £1 4-v

L Notes

4-vi &\ Monolithic m Memories &\

Table of Contents

Preface.....ccoccooeviiiiiiiniiininnn,
List Of Figures..
[T O L I 1o)== J OISR
CHAPTER 1
INTRODUCTION
1.1 Introducing PALASM 2 SOftware..........ccoeevieiiiniininncinenicniin 4-2
111 Supported Programmable Logic Devices...............cccveveriiiiiniiin. 4-2
1.1.2 Supported COMPULETSoocuiiiiiiiiiiieiiie e 4-4
1.2 Program and File SUMMaryooieieiiiiiiiniiii 4-5
1.2.1 PALASM 2 Software Programs............cceeeeruueirrerinneiiineeeiieeienns 4-6
1.2.2 Input, Output And Intermediate Files.............oooiiiniiiiiiiini 4-11
123 PALASM 2 Supplementary Programs.........ccccoevveieieiienienninnsneniens 4-12
CHAPTER 2

INSTALL PALASM 2 SOFTWARE

2.1 Installation ProCeAUIESccuuviuniiiiiiiiiiiiii e e 4-16
2141 What YOU REQUITE....ueeeeiieriiiiiiiiiiiriice et 4-16
21.2 Install PALASM 2 Software With Two Floppy Disk Drives 4-16
213 Install PALASM 2 Software On A Hard Disk Drive...............coooeeeinnn. 4-18
2.2 SORWAIE SEIUP ...ceeeeeeee e 4-23
2.3 Add Supplementary Programs To The Menu ... 4-25
24 Modifications To The AUTOEXEC.BAT And CONFIG.SYS Files............. 4-28
CHAPTER 3

RUN THE SOFTWARE

3.1 Overview Of The Procedure

3.2 Prepare To Use The Menu ...
3.2.1 Call THE PALASM MENUeviiinevieeiineeeieeeiie it einne e s ai e
3.2.2 Specify The Directory And Input File.......c.oooniiiiniis 4-35
3.3 Open The Sample INput File..........ooviiiieniiiii 4-36

Z'l Monolithic m Memories Fl 4-vii

3.4
3.5
3.6

-3.6.1

3.6.2
3.6.3
3.6.4
3.6.5
3.7
3.7.1
3.7.2
3.7.3
3.8
3.9
3.9.1
3.9.2
3.10
3.10.1
3.10.2
3.11

CHAPTER 4
BUILD A BOOLEAN EQUATION DESIGN

4-vi

4.1

411
4.1.2
41.3
4.2

4.21
422
4.3

4.3.1
4.3.2
433
43.4
4.3.5
4.3.6
4.3.7
4.4

Table of Contents

Study The Sample Input File..........coooiiiiiiiiiiiiiie
Autorun Assembly And Simulation............
Process The Input File............cc.ccevvviniennns
Check The Syntax Of The Input File
Expand The Input EQUationS..............cooviiiiiiiiiiiiiien
Minimize The Input Equations..........ccccccooviiiiiiiiiiiinniiiieeenin,
Assemble The Input File.........coooiiiiiiiiiii
View The Assembly Output Files..............coooiiiii
Simulate The Sample DesSign..........cccovviiiiiiiiiiiiiiii
Run The Simulation Programccoceviiiiiiinniin
View The Simulation Output Filesccoooviviiiii
View The JEDEC Test Data.........ccovvvviiiiiiiiniiii
Disassemble AJEDEC Filecocoiiiiiiiiiiiiiiiiii
Identify Errors In The Input File
View The RUN-TIME LOGceuniieiiiiiiieii e e
Disassemble The TRE Filecccovuiiiiiiiiiiiiii e
Interpret The Assembly Output Files
Interpret The Fuseplotccoooviiiiiiiiii
View The JEDEC Fil€ ..c..uevvviiiiiiiieiiiiccc e
Run The Software From DOS............cccciiiiiiiiii

Build A Boolean Equation DeSignccevveviiiiniiiiiiiiiiiieeieene
General SYNtaX..........vvuiiiiiineeiieiiin
Build The Declaration Segment....................
Build The Equations Segment
o1 F=1 41§V NN
Programmable Polarity.........cccccvvviiiiiiiiiiiii
Fixed POlarity.........ccooiiiiiiiiiin i
Tailor The Design For Specific Devices..........ccccviniiiiiiiiiiiiininnns 4-80
PLS Device General Considerations
PAL Device General Considerations
PAL10H20G8 And PAL10H20GRS8 Special Considerations............... 4-83
PAL22V10 Special Considerations................coovieiiniiniiiiiinnin
PAL16RA8 And PAL20RA10 Special Considerations
PAL32R16 And PAL64R32 Special Considerations..............
PAL32VX10 Special Considerations................ccoivvviiineinnns ..
Checklist For Verifying Boolean Equation Designs.............iccccceennnne

z‘ Monolithic m Memories :'

Table of Contents

CHAPTER 5
BUILD A STATE MACHINE DESIGN

5.1 Create A State Diagram........ccccccvviiiiiiiiiiiiiiii e

5.1.1 Create A Mealy State Diagram................

5.1.2 - Create A Moore State Diagram

5.2 Build A State Machine Design.........cccccovivevrinnnnennns

5.2.1 GNEral SYNEAX.....couuueeeeeiiiii ettt et e e

5.2.2 Build The Declaration Segment............ccooviiiiiiiiiniiis,

5.2.3 Build The State Segment..............

5.2.4 Build The Conditions Segment

5.3 Tailor The Design For PLS, PROSE, Or PAL Device State Machines...... 4-127

5.3.1 PLS And PROSE Considerationsccceerviiuineiininiinnneeineenenns

5.3.2 PAL Device General Considerations

5.4 Review A Simple DeSigN........c.oviiiiiiiiiii
CHAPTER 6

BUILD SIMULATION

6.1 Special Syntax...............

6.2 Build The Simulation Segment

6.2.1 The Simulation Languagecccueeiireriiimiiiieeiniiiiinre e

6.2.2 Review Simulation Guidelines..........c.ccccoevrviiiiiiiiiiiiininne 4-150

6.2.3 Rules For State Machine Simulation Syntaxccoovviiviininnnn. 4-151

6.3 Review A Sample Design And Interpret The Output Files..................... 4-151

6.3.1 Interpret The History Waveforms

6.3.2 Interpret The Trace Waveforms

6.3.3 Interpret The History File.....................oo.

6.3.4 Interpret A PROSE History File....................

6.3.5 Interpret The Trace File...........ooviviiiiiiiinin s

6.3.6 Interpret The JEDEC Test Data.......ccocooveniiiiiniiin
CHAPTER 7

PROGRAM THE DEVICE

71 Send JEDEC Files To The Programmer

71.1 . Connect the Programmer...............cc.uueenn.

7.1.2 Set Up The Communications Link....................

7.1.3 Transmit The JEDEC File Using MS-DOScoovcvvveiniiiiiinieennnn i 42178
7.2 PC2 Communications Software.........cccccccoeveiiiiinenn. reeeeree e 4-173
7.21 Load PC2)

7.2.2 Set Up Computer Transmission Parameterscccceviniinnn . 4-176

Z'l Monolithic m Memories I‘r' 4-ix

Table of Contents

7.2.3 Transmit The JEDEC Fileooovviiiiiiiiiiiiiiiiiii i 4-178
7.3 Copy From A Master DeviCe........ccceeeerviirieeiieienieiie e 4-180
7.4 Program The DeviCe.......ccccoeiiiiimiiiiiiiiiiii i 4-182
PALASM 2 SOFTWARE GLOSSARY......iiriens 4-183
PALASM 2 SOFTWARE INDEX ..o 4-189

4-x 2\ monotithic B Memories £

Table of Contents

LIST OF FIGURES

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-29A
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43

Structure of PALASM 2 Software User Documentation 4-ii
Typical Computer Configuration................ccoovviiiiiiiiiiiniinnn 4-5
PALASM 2 Software Flow for PAL DeviCes..........cccoevvniiieianiieniinnenns 4-6
PALASM 2 Software Main MeNU.........cc..oeviiiiiiiiiiiiiiee e e

PALASM Input Install Request Menu
PALASM 2 Software Installation Menu
MENU.SYS. ..ol et s
PALASM 2 Software Processing Sequence...........coueeveriiineiniennn, 4-30
Basic Design Options ‘
The MaIN MENUvnniii et
Page One of the PALASM2 SUD-MENU..........ccccovrvrveirirenreeiienneeinnns
The Syntax Check Operationcceeeevinnnnne

Assembly and Simulation Output Files

Page Two of the View Data Sub-menu

Page One of the View Data Sub-menu....................

History Waveformsccccovviiiiiiiiiiiiinn,

Page Two of the PALASM2 Sub-menu....................

Disassemble The TRE Fileccovuiiiiiiiiiiiiiiiiici s
The SUPER.XPT Fuse Map............... ettt et e
The JEDEC Fuse Data from SUPER.JED
Structure of the Boolean Equation DeSign.........cccceevvviviiiieinininnnns
Structure of the Declaration Segmentcooeiiiiiiii
CHIP Syntax and Pin Listcoovvuuiirieiiiiciieieiecccece i
STRING Information and Syntax
Sample Declaration Segment............ e e
Sample CHIP Entry and Combinatorial Equation...............cccocooivuunnnnn.
Sample CHIP Entry and Registered Equation
Comparison of Polarity in Pin List and Equations

Summary of Output Polarity for Programmable Polarity Parts............... 4-79
The PAL32VX10 MacroCellcccouvvviiiiiiiiiiiiiiiinci e
Mealy OULPUL.....coovuiiiiiiiiiiiie e e e
Mealy Functional State Diagram
Inputs and Outputs for Figure 4-31................coeees .
Minimum Inputs and Outputs to Build a Mealy Design......................... 4-99

" MOOIE OULPUL. eveeeeiieeiceeiieeeeei ettt er e e
Moore Functional State Diagram
Inputs and Outputs in Moore Diagramccoeeevviiiniiniiiiinnenninnnen. 4-102
Minimum Inputs and Outputs to Build a Moore Design 4-103
Structure of the DeSIGN........coevviuiniieiiii e 4-104
Structure of the Declaration Segment...........cc..oooviiiiiiiinnn,
CHIP Syntax and Pin List...................
STRING Information and Syntax..........cceevvviuiviriiniiiiniiiiiinnenn, 4-110
Sample Declaration Segmentoooviiiiiiiiiniiiiiee e, 4-112
Structure of the State Segmentccoeveiiniiiiiiiiiinii 4-113

l‘rl Monolithic m Memories I‘r'

4-xi

4-x

Table of Contents

LIST OF FIGURES (Continued)

4-44 Sample Defaultsvivveiiiiiiiiii

4-45 Sample State ASSIGNMENTS.......ccocccceviriiiiieeriiiiiiieeee e eiee e

4-46 State Equation for Mealy or Moore Machine

4-47 Transition and Output Equations for Mealy Machine..........cccccecevninn 4-122
4-48 Sample Transition and Output EQuations.............ccccoveeeviiineernenninneeee,

4-49 Sample State Segmentcceceviiiiriiiiiiiineeeen.

4-50 Location of Conditions Segment

4-51 State Diagram of Conflicting Conditions

4-52 Sample Conditions Segment

4-53 Simple State Diagram..............

4-54 Design for Figure 4-53.........cccceovvviveeennnnne

4-55 Location of the Simulation Segment...........cccccvvvviiriiviiiiiieriiiiiiennneee.

4-56 SUPER.TRF Input File....ccccoiiiiiiiiiiiiiiiiiie e

4-57 Waveform Display and Output File Format

4-58 SUPER.HST Waveformsccuuiiiiviiiieiici e

459 SUPER.TRF Waveforms

4-60 Sample of SUPER.HST File

4-61 Sample PMS14R21 History File

4-62 Sample Trace Fileuuvviiiiimiiiiiiiicii e

4-63 Test Vectors from SUPER.JDC

4-64 Connect the Programmerto @ COMpPULeroeuueviiiinnneeieiieeeeeanie

4-65 PC2 Function Key Menu Screen

4-66 Computer Transmission Parameters Screen.........ccccccvevveeeeeeeennnneenn. 4-177
4-67 PC2 Name Transmit File Screen...........cooeeviiiiiiiiiiiiiiiinceen, 4-179
4-68 PC2 Exit SCreen...........oeovveinininiiniiiiiieii . 4181

I‘r.l Monolithic m Memories l‘rl

Table of Contents

LIST OF TABLES

4-1 PLDs Supported by PALASM 2 SOftWareceevvunnvevnniienncrennnnns 4-3
4-2 PALASM 2 Software Programscceeeeeeeeeeeieieeeiiiieiiiiiieeeeeennnn, 4-7
4-3 Input, Output, and Intermediate Files..........c.cccveeviveereeiceiccieecien, 4-11
4-4 PALASM 2 Software Supplementary Programsccoovueeeeennn. 4-12
4-5 Additional Supplementary Programs.............cceeeeiiiviineeeeeiiieeeviiinnnen. 4-26
4-6 Description of Boolean Equation Design Segments...........c.cccveevvvenene 4-62
4-7 Special Characters and FUNCtionsccceeeervevinnnnnn.
4-8 Compilation of String Definitions in Figure 4-24
4-9 Summary of Signals for Active-Low Output......................
4-10 Table for Determining Output Polaritycccoeevveeeiiiieeiiiinieiennnnn.
4-11 Syntax for PAL16RA8 and PAL20RA10 Functional Equations.............. 4-86
4-12 Polarity Options for Output/Feedback and Register/Feedback

Paths for Signal S2.........c.coeiiiiiiiiiiii i 4-90
4-13 Options for Path Polarities and Specifying Output Pin Polarity for

Signal O and Register Polarity for Signal R.................cceieieinienennnnn.
4-14 Description of State Machine Design Segments...........c...cceeevvunevnnnnnn.
4-15 Special Characters and FUNCLIONSccoeviiieiiieiineiiieiieeinenieeannns
4-16 Compilation of String Definitions in Figure 4-41
4-17 Descriptions .of State Information
4-18 Descriptions of Default Options...........cccovvviiiiieiiiiiiiiiiiiiiic e,
4-19 Considerations for Tailoring State Machine Design Files for

PLS and PROSE DEVICES........uiivitiiiiiieieiiiiiiiieeeiieeiin v aeaeeaenens 4-128
4-20 Special Features and Considerations for Specific PAL Devices............ 4-131
4-21 Exceptions to General SyntaX..........ccoovvveverieeieriieeeiirieeseiee e 4-138
4-22 Description of Simulation Commands..............c.ccceeeeeiiiiiviriiiiieeeeennnn, 4-140
4-23 Table for Using SETF to Control a Dedicated Output Enable 4-143
4-24 Table for Checking Signalscooeveiiiiiiiieeiiiiiiic e,
4-25 Simulation Output Characters
4-26 Value Characters in the History File
4-27 PC2 FUNCHION KBYSciiiviiiiiieeeiiee ettt e e e

l‘rl Monolithic E.[F.ﬂ Memorles :l

4-xi

Notes

El Monolithic m Memories l‘rl

1. Introduction

About This Chapter

Read this chapter before you use PALASM 2 software to get an overview of the features,
functions, and software processing sequence.

For a description of... Refer to Section...

Supported programmable logic devices and 1.1
computer environments

Programs, supplementary programs, input and 1.2
output files that make up PALASM 2 software

z' Monolithic M‘Memaﬂos n

4-1

Introduction

1.1
Introducing PALASM 2 Software

PALASM 2 software uses the PLD design you create as an input file and converts it into a
JEDEC file that can be used to program programmable logic devices (PLDs) on a
programmer. The design you create specifies the fuses to be programmed on a device.
PALASM 2 software accepts designs in Boolean or state equations. Your design can also
include simulation guidelines that allow you to test your design without actually
programming a device. PALASM 2 software accepts the design as input and performs a
number of functions under your control. You can:

* Check the syntax of the input file

* Assemble the file

* Generate PLD fuse patterns in JEDEC format

* Report errors in'syntax and assembly

e Simulate the PLD design

1.1.1

Supported Programmable Logic Devices

With the exception of the PAL16A4 and the PAL16X4 parts, PALASM 2 software supports
all Monolithic Memories programmable logic devices, including new PAL products such as
RA (Registered Asynchronous), RS (Registered Synchronous), MegaPAL, ZHAL™, the
PROSE device, PMS14R21, and the new PLS family of devices.

Table 4-1 lists the PLDs supported by PALASM 2 software.

4.2 z‘ Monolithic m Memories :l

Introduction

Table 4-1

PLDs Supported by PALASM 2 Software

20-Pin PAL 24-Pin PAL MegaPAL PROSE PLS
Devices Devices Devices Devices Devices
PAL10H8 PAL6L16 PAL32R16 PMS14R21 PLS105
PAL10L8 PAL8SL14 PAL64R32 PLS167
PAL12H6 PAL12L10 PLS168
PAL12L6 PAL14L8
PAL14H4 PAL16L6
PAL14L4 PAL18L4
PAL16H2 PAL20L2
PAL16L2 PAL20C1
PAL16L8 PAL20L8
PAL16P8 PAL20L10
PAL16C1 PAL20X4
PAL16R4 PAL20X8
PAL16R6 PAL20X10
PAL16R8 PAL20R4
PAL16RA8 PAL20R6
PAL16RP4 PAL20R8
PAL16RP6 PAL20RA10
PAL16RP8 PAL20S10
PAL18P8 PAL20RS4
ZHAL20 PAL20RS8

PAL20RS10

PAL22V10

PAL10H20P8

PAL10H20G8

PAL32VX10

PAL22RX8

ZHAL24

Pu | Monolithic m Memories &\ 4-3

Introduction

1.1.2
Supported Computers

PALASM 2 software operates with no user modification in the following computer
environments. Monolithic Memories provides PALASM 2 software as an executable
program, ready to run on any of these systems:

Minicomputers: VAX™ under VMS™
VAX™ under UNIX™ (Berkeley 4.2)

Microcomputers: IBM-PC™, -XT™, -AT™
under MS-DOS™ (384K RAM)

Workstations: DAISY™ under DNIX™ 5.1

This manual documents the installation and operation procedures for an IBM
microcomputer environment. If your system is not an IBM-PC/X/AT, your PALASM 2
software package includes the installation and operation procedures for your particular
system. The other information in this manual (Chapters 1, 4-7) applies to all environ-
ments.

Note: You should equip floppy-based systems with two disk drives.

Note: Refer to the PALASM 2 software ordering procedure included in this handbook for
the correct part number of the software for your computer environment.

Your system must have a serial port (RS-232) if you need to communicate with the PLD
programmer. Program the Device, Chapter 7, describes how to connect your computer to
the programmer to download the JEDEC file. Figure 4-2 shows a typical computer
configuration.

44 zl Monolithic m Memories l‘rl

Introduction

PALASM 2
O
o
[=] PLD

R N S T S

PLD
PROGRAMMER

Figure 4-2

Typical Computer Configuration

1.2
Program and File Summary

This section lists the current PALASM 2 software programs, followed by a brief description

of each program. Input, intermediate, and output files are listed after the program

summaries. Finally, the supplementary programs distributed with the software are briefly

described. Figure 4-3 illustrates the sequence in which the software processing occurs.

ﬂ Monolithic m Memories n

Introduction

-Design Input:
FILENAME.PDS

MINIMIZE

XPLOT

FILENAME.XPT FILENAME.JED FILENAME . HST FILENAME . JDC

FILENAME.TRF

Note: Filename.JDC is generated only if XPLOT is run before SIM.

Figure 4-3

PALASM 2 Software Flow for PAL Devices

Note: On a PROSE device, the software substitutes XPLOT with PROASM and SIM with
PROSIM. On a PLS device, the software substitutes XPLOT with PLSASM.
PALASM 2 software currently includes the programs listed in Table 4-2.

1.2.1
PALASM 2 Software Programs
Each program in the PALASM 2 software package is described in the following sections.

Figure 4-3 shows the PALASM 2 software processing sequence for PAL devices along
with the input and output files. Section 1.2.2 describes these files.

4-6 &\ Monolithic m Memories &

Introduction

e

Table 4-2
PALASM 2 Software Programs
Program Function
PALASM PALASM 2 software menu program
PARSE Checks the syntax of the input file
EXPAND Expands input equations and converts state machine
syntax to Boolean equations
MINIMIZE Minimizes equations
XPLOT Assembles PAL device designs
SIM Simulates PAL device designs
PROASM-PROSIM Assembles and simulates PROSE device designs
PLSASM Assembles PLS device designs
JEDMAN ~ Disassembles JEDEC files to Boolean equation input files
TREPL2 Disassembles intermediate files created by PARSE,
EXPAND and MINIMIZE.

For a detailed description of each program, proceed to PALASM 2 Software Programs,
Section 1.2.1. For a description of the supplementary programs, proceed to PALASM 2
Supplementary Programs, Section 1.2.2.

1.2.1.1
PALASM

PALASM is the interactive menu program that simplifies user interface to the software.
You can install PALASM on an IBM-PC/XT/AT, with either a twin floppy system or a hard
disk drive. The user-friendly menu screens display all your options on one screen, enable
the use of function keys to run all the programs, and allow you to view the output. Help
screens and message windows facilitate easy interaction with the software.

:l Monolithic m Memories :l 4.7

Introduction

1.2.1.2
PARSE

1.2.1.3
EXPAND

1.2.1.4
MINIMIZE

_run, the program attempts to recover after each error. When the file is error-free, PARSE !

PARSE checks the syntax of the input file that contains the PLD design you created. If
the program detects an error, it indicates where the error occurred. The error messages
are sent to a file which you can retrieve. To correct as many errors as possible with each

generates an intermediate file.

EXPAND uses the intermediate file created by PARSE and performs the following
functions:

* Expands the input equations

* Converts state machine syntax to Boolean equations

The software can only assemble Boolean equation fuse specifications. Therefore, if your
input file contains a state machine design, EXPAND translates the design to Boolean
equations.

The program expands XOR expressions to AND and OR expressions when the device
does not contain an XOR gate. The XOR expressions will no longer be evident after
running this program. (Also see the explanation and note on XORs in Section 1.2.1.4.)

EXPAND creates another intermediate file that contains expanded Boolean equations.

Note: You don't need to run EXPAND on a PROSE device.

MINIMIZE uses the intermediate file created by PARSE or EXPAND to perform automatic
logic reduction. This function enables you to use the space on your device more
efficiently.

MINIMIZE looks for redundancy and minimizes AND and OR expressions. The program
creates an intermediate file that is used by subsequent programs.

Note: When MINIMIZE detects an XOR gate on the device, the equations on either side of

. the XOR expression are minimized independently leaving the XOR intact. (See the note

on XORs in Section 1.2.1.3.

4-8

:' Monolithic E.liﬂ Memories l‘y'

Introduction

Note: You don't need to run MINIMIZE on a PROSE device.

1.21.5

XPLOT

XPLOT validates the architectural design of an input PAL design and produces fuse maps
and JEDEC data. The program uses the intermediate file containing Boolean eqgations
created by PARSE, EXPAND or MINIMIZE as input. XPLOT checks the equations for
consistency and correctness for the specified device. When an error is detected, XPLOT
attempts immediate recovery. In this way, XPLOT detects as many errors as possible on
each run. Only if no errors are detected will the output fuse maps and JEDEC data be
generated. XPLOT reads the architectural information for each device from files stored in
the software containing profile descriptions for each device.

3.

Note: XPLOT checks only valid Monolithic Memories PAL devices listed in Table 4-1.

1.2.1.6
SIM

SIM checks the functionality of a PAL device design. You can run this program after
XPLOT, or, if the design is architecturally correct, you can run SIM directly after checking
the syntax with PARSE. SIM simulates the operation of the device you specify,
calculating the output values based on input signals through the Boolean equations and
any feedback.

SIM generates three output files: a history file, a trace file and a JEDEC test vector file.
The history file shows the values of every pin through a simulation sequence. The trace u
file, which is a subset of the history file, shows only the pins you specify in the input file.

If XPLOT has been run and a JEDEC fuseplot has been created, SIM adds test vectors to

the JEDEC file that duplicate the simulation sequence when the device is tested on a

programmer. All JEDEC checksums are recalculated.

Note: SIM tests only valid Monolithic Memories PAL devices listed in Table 4-1.

1.21.7
PROASM-PROSIM

PROASM and PROSIM do for a PROSE PMS14R21 device what XPLOT and SIM do for
PAL devices. The programs assemble and simulate PROSE device designs. PROASM
accepts only state machine designs. Like XPLOT, the program generates a fuseéftnap and
a JEDEC file that can be downloaded to the programmer to program the PROSE @vice.
Similarly, PROSIM generates history and trace files as well as JEDEC test data.

:l Monolithic m Memories I‘J 4.9

1.2.1.8

PLSASM
PLSASM is the assembler for PLS devices and performs the same functions that XPLOT
and PROASM do on PAL and PROSE devices.
Note: Currently, PALASM 2 software does not simulate PLS device designs.

1.2.1.9

JEDMAN
JEDMAN disassembles JEDEC files and generates Boolean equations. The program
allows you to read a fuse map directly from a programmed device.

1.2.1.10

TREPL2
TREPL2 is a useful error detection tool that aIIoWs you to disassemble an intermediate
TRE file and convert it to a Boolean equation input file. PALASM 2 software creates
intermediate files after syntax checking, equation expansion, and minimization. TREPL2
can be used to disassemble any of these intermediate files. This means you can examine
a Boolean equation input file:
« after the equations have been expanded
« after the equations have been minimized
« after the input state equations have been converted to Boolean equations

4-10 1',1 Monollthlom Memories :'

Introduction

Introduction

L

1.2.2
Input, Output, And Intermediate Files

Table 4-3 lists the input, output, and intermediate files (files that the software creates but
are not immediately visible to the user) required or generated by PALASM 2 software.

Notice the extensions on each filename. It is important to use these extensions
consistently since the software looks for them when retrieving files.

Table 4-3

Input, Output, and Intermediate Files

Filename

Description

FILENAME.PDS

User defined PLD design input file

PALASM2.TRE PLD intermediate design description

FILENAME.PDF PLD architecture description data

FILENAME.LOG Intermediate message file generated by PARSE,
MINIMIZE, EXPAND, and PLSASM

FILENAME.XPT PLD fuse map data

FILENAME.JED PLD fuse JEDEC data

FILENAME. HST Simulation history data

FILENAME.TRF Simulation trace data

FILENAME.JDC PLD fuse JEDEC data and JEDEC test vectors

FILENAME.PL2

PDS file reconstructed from JEDEC output

FILENAME.JDM JEDEC file that has been altered using JEDMAN as a
supplementary program
:l Monolithic m Memorles El 4-11

Introduction

1.2.3
PALASM 2 Supplementary Programs
The PALASM 2 software package currently includes several useful supplementary

programs that are not supported by Monolithic Memories. An asterisk next to the program
name in Table 4-4 indicates that the procedure to use it is described in the following

chapters. :
Table 4-4
PALASM 2 Software Supplementary Programs
Program Description
PDSCNVT Conversion of previous PALASM version input file to
PALASM 2 software syntax
*PC2 Programmer communications program
*SCRSIM Simulation waveform generation program
VTRACE SIM output files to timing diagrams conversion
f BINHEX Binary to hexadecimal conversion
- TIMING Timing diagram entry program
PINOUT Pinout program
DECODE Address decoder program -

1.2.3.1
PC2

PC2 enables communication between PLD programmers and IBM-PC/XT/AT computeré.
PC2 is a menu-driven, multiple-choice program that guides you through various options for
programming and checking PLDs.

4-12 &\ Monoithic K] memories &1

Introduction

1.2.3.2
SCRSIM

SCRSIM takes the simulation output files, history and trace, and creates waveforms that
can be viewed on the screen or sent to a printer.

Proceed to Install PALASM 2 Software, Chapter 2.

zl Monolithic m Memories z' 4-13

‘Notes

4-14 ’ El Monollthleliﬂﬂ"omnrlss l‘rl

2. Install PALASM 2 Software

— m——

About This Chapter
This chapter describes how to install the PALASM 2 software main menu and
supplementary programs on IBM-PC/XT/ATs with either two floppy disk drives or a hard
disk drive. It also describes how to add additional supplementary programs to the menu
installation file.
The menu and supplementary programs are not available for VAX or UNIX systems.
Monolithic Memories ships separate installation and operation instructions with the
software for these systems.

To... ‘ Refer to Section...

Install the PALASM 2 software on a hard drive 2.1
or with two floppy disk drives

Specify the editor and communications program 2.2

Add supplementary programs to the main menu 2.3

n Monolithic m Memories l‘rl 4-15

Install PALASM 2 Software

2.1

Installation Procedures

You can install the PALASM 2 software interactive menu and supplementary programs on
IBM personal computers with either two floppy disk drives or with a hard disk drive. Before
you start, make sure you have all the required equipment. Then read the section that
describes your IBM configuration.
Note: The installation procedures update the AUTOEXEC.BAT and CONFIG.SYS files.
Refer to Modifications to AUTOEXEC.BAT and CONFIG.SYS Files, Section 2.4, for more
information.

211

What You Require
To install PALASM 2 software, you require:
. An IBM-PC/XT/AT with either two floppy disk drives or a hard disk drive
. MS-DOS 2.1, or later versions
. Minimum memory of 384K bytes RAM and 2 megabytes on a hard disk

. PALASM 2 software on regular density disks for two floppy disk drives or high
density disks for an IBM-AT

. Blank, formatted disks for making backup copies of the PALASM 2 software disk set

If your system uses... Proceed to...
Two floppy drives Section 2.1.2
A hard disk drive Section 2.1.3

2.1.2
Install PALASM 2 Software With Two Floppy Disk Drives

Before you load PALASM 2 software on an IBM-PC/XT/AT with two floppy disk drives, you
should make a backup copy of the PALASM 2 software master disks. Refer to the IBM
Disk Operating System reference manual for instructions. If any of the disks fail to load,
contact your local Monolithic Memories representative.

If your system uses a hard disk drive, skip to Install PALASM 2 Software On A Hard Disk
Drive, Section 2.1.3.

4-16 l‘v' Monolithic liliﬂ Memories :l

Install PALASM 2 Software

Follow these steps to load PALASM 2 software.
1. Insert the MS-DOS disk in drive B.
2. Insertthe PALASM 2 software disk-1 in drive A.
3. Tocopy the MS-DOS system files to the PALASM disk, enter:
e B:<return>
e SYS A: <return>
e Copy B: COMMAND.COM A:<return>
4. Remove the MS-DOS disk from drive B.
5. Re-boot the system by simultaneously pressing <ctrl> <alt> .
6. Place the PALASM 2 software disk in drive B.
7. To start the PALASM 2 software program, enter:
A:PALASM <return>.
The screen displays the product and company name.
8. Todisplay the main menu, enter <return> again. Figure 4-4 shows the main menu.

9. Proceed to Software Setup, Section 2.2, to define the editor and the n
communications program used to communicate with your programmer.

:' Monolithic m Memories :l 4-17

R

R

Install PALASM 2 Software

A R

Input PDS FILE i Directory
i
Device Fl Display Dir § F2 Enter DOS
F3 Edit PDS F4 Program Device
F5 PALASM2 F6 Software Setup Menu
F7 View Data F8 Supplementary Window
F9 Databook F10 Help
. Key Movements
¥ next field = delete
t previous field <esc> = ret.:urn <ins> = insert
« Dprevious position = <esc><esc> = exit <home> = first field
= next position <esc><ret> = refresh <eopng> = last field
STATUS: All OK

2.1.3
Install PALASM 2 Software On A Hard Disk Drive

4.18

B

Figure 4-4

PALASM 2 Software Main Menu

When using an IBM-PC/XT /AT with a hard disk drive, install the main menu onto the
specified drive. Then install the supplementary programs on the same drive. This section
explains both installation procedures. '

Before you install PALASM 2 software, you should make a backup copy of the PALASM 2

software master disks. If any of the disks fail to load, contact your local Monolithic
Memories representative.

ﬂ Monolithic E.Eﬂ Memories I‘r| _

Install PALASM 2 Software

2.1.3.1
Install The Menu

Follow these steps to install the main menu software on your IBM-PC/XT/AT hard disk.
1. Atthe system prompt, insert the PALASM 2 software master disk-1 in drive A.
2. Toinstall the PALASM 2 software, enter:

A:PAL2INST <return>

The screen displays:

PALASM 2 Hard Disk Install Program
(c) CopyRight Monolithic Memories Inc. 1987

System Booted from Drive C
Which Drive to Install on? (default = C) _

3. Enter the name of the drive and press <return>. To select the default drive (C>),
press <return>. The screen displays:

PALASM 2 Hard Disk Install Program
(c) CopyRight Monolithic Memories Inc. 1987

System Booted from Drive C

Which Drive to Install on? (default = C) _
Installing to Drive = C OK? (Y/N) _

Note: The system boots from the logical drive you selected and the screen displays
the letter designator for that drive.

If you enter... Then...
<N> <return> Repeat step 3.
<Y> <return> The screen displays:

Making directory C:\palasm2

Making directory C:\palasm2\pal2
Making directory ... C:\palasm2\supl
Making directory C:\palasm2\pdf
Making directory C:\palasm2\msg

i'.»l Monolithic m Memories :l) 4-19

Install PALASM 2 Software

Note: If you are updating your PALASM 2 software, these files may already exist. If

s0, the screen will display a message that the software is making directories and
that some of these directories already exist. When the screen prompt asks if you
want to make directories with the same name, enter <Y> <return>.

The system updates the AUTOEXEC.BAT and CONFIG.SYS files and copies the
files from drive A to the install hard drive. For a description of the changes to these
files, refer to Modifications To AUTOEXEC.BAT And CONFIG.SYS Files, Section

2.4. When complete, the screen displays the input install request menu, as shown in
Figure 4-5.

4-20

PALASM 2 Hard Disk Install Program
(c) CopyRight Monolithic Memories Inc. 1987

Input Install request

0 ..

1 ..Install
2 ...Install
3 ...Install
4 ...Install
5 .Install

e e

.Exit Install Procedure

ALL PALASM 2 Software

Software for PAL devices only
Software for PROSE devices only
Software for PLS devices only
Supplementary Software only

Figure 4-5

PALASM Input Install Request Menu

a Monolithic m Memories :l

5

s

e

Install PALASM 2 Software

4. You can now exit the install program by entering <0> <return>. To install the
programs appropriate for your devices, proceed to Load The Software, Section
2.1.3.2.

2.1.3.2
Load The Software

From the input install request menu, Figure 4-5, select the software installation option that
applies to your application.

If you want to... Then ..

Install all the software programs at once, » Select option 1.
including the supplementary programs
* When installation is complete, exit
the install program by selecting
option 0.

* Proceed to Verify The Installation,
Section 2.1.3.3.

Load selected software programs individually Select options 2to 5. The example
' below uses option 2 to install software
for PAL devices only.

Follow the steps in this example to install the software for PAL devices. To use this n
example for PROSE or PLS devices, make selections appropriate to the software you
want to install.

1. Enter <2> <return>. The screen displays:
Insert PARSE.EXE in Drive A...Press any key to start_
2. Remove the PALASM 2 software master disk from drive A. .

3. Insert the disk that contains the PARSE.EXE file into drive A. Each disk label lists
the programs included on that disk.

2\ mononithic LX) Memories &1 4-21

Install PALASM 2 Software

4. Press any key. As the program copies each file from drive A to the install hard drive,
the screen displays the name of that file. For example:

Copying A:PARSE.EXE to C:\palasm2\pal2*. *
Copying A:PARSE.MSG to C:\palasm2\msg*.*

After copying all the files on this disk, the screen prompts you to load a new disk
which contains another file. ‘

5. Repeat steps 3 and 4, as necessary, using the disks that contain the requested
files. When the entire installation procedure is complete, the screen displays the
input install request menu, as shown in Figure 4-5.

6. Now you can either install another program or exit the installation procedure:

* To install another software program, repeat steps 1 through 5, making selections
appropriate to the software you want to install.

The installation software for the individual devices share some common
programs. When you install a second program, you delete the common files from
the hard disk and copy them again from the disk in drive A. You can avoid this
duplication by selecting option 1, Install ALL PALASM 2 Software.

» To exit the installation procedure, enter <0> <return>. The screen displays:
#% PALASM installation to hard disk completed ***

Now Remove Diskette from Drive A.

KRKAKAKKKKKNKAAAKRKAKAA AR ARAK hhhkdhhkhkhhdhdhkhhddhhkhhhhhk

Re-Boot Machine then enter C:>PALASM
KA KAAAKRARAA KA AR AR KA ARAARA AR AAKRAARKA A AR A AR AR AKX A XA XK %K

c>

Proceed to Verify The Installation, Section 2.1.3.3.

4-22 pu | Monolithic m Memories &\

Install PALASM 2 Software

2.1.3.3
Verify The Installation

After you have completed the installation procedure, follow these steps to run a test.
1. Remove the disk from drive A .
2. Re-boot your system (simultaneously press <ctrl> <alt>).
3. At the system prompt, start PALASM 2 software by entering:
C: PALASM <return>
The screen displays the product and company name.

4. To display the main menu, enter <return> again. The screen displays the main menu
as shown in Figure 4-4.

5. Proceed to Software Setup, Section 2.2, to define the editor and the
communications program used to communicate with your programmer.

2.2
Software Setup

After you have installed the PALASM 2 software, you must tell the system the name of
your text editor and programmer communications program. To do this, use the main menu
option F6, Software Setup.

1. From the main menu, press <F6>. The screen displays the installation menu, as
shown in Figure 4-6.

2. Use the arrow keys to move the cursor to the Editor field.

Note: P2EDIT is a fictitious name, intended to show the format for entering the name
of your text editor.

3. Enter the name of your editor. Press the spacebar to delete all extra characters
from the field.

CAUTION

The editor you use must generate clean ASCII text. Check your editor installation
program to make sure the editor does not automatically load in a mode that embeds
formatting control characters in your design files. For example, if you use Wordstar,
make sure it automatically loads in non-document mode.

2\ Monotithic B Memories &1 4-23

Install PALASM 2 Software ‘
! _—_______—_..________._._.__—._—,——_————__—v _ . -

4. Move the cursor to the Programmer field.

Note: pc2comm.com is a fictitious name, intended to show the format for entering
the name of your programmer communication program

5. Enter the name of your programmer communication program. You can use a
commercial communications program or use the PC2 program, which is included on
the Supplementary disk.

@ 6. To return to the main menu, press <esc>.
7. lfyou want to add supplementary programs to the menu, proceed to Add

Supplementary Programs To The Menu, Section 2.3. If not, skip to Modifications to
AUTOEXEC.BAT And CONFIG.SYS Files, Section 2.4.

424 2\ Monoithic [l Memories &1

Install PALASM 2 Software

g@mmmwmm&mwmm

o

PALASM2 INSTALLATION MENU

Logged Drive Name

Programs Executed from hard disk?

e e &

%? PALASM2 Programs Loaded From [Path name only]

%g SUPPLEMENTARY Programs Loaded From [Path name only]

i

%‘? PAL Definition Files Loaded From [Path name only]

: Message Files Loaded From [Path name only] g

Editor i

o Programmer &

g i

g% i
§

e
Figure 4-6

PALASM 2 Software Installation Menu

2.3

Add Supplementary Programs To The Menu
After installing the supplementary programs on your hard disk, you can add these
programs to the installation procedure stored in the MENU.SYS file. Then you can call a
supplementary program from the main menu by selecting option F8.) :

Table 4-5 lists the supplementary programs you can add to the MENU.SYS system file.

E‘ Monolithic m Memories i‘rl 4.25

4-26

Install PALASM 2 Software

Table 4-5

Additional Supplementary Programs

Program Function

SCRSIM.COM Simulation waveform generation program that is called
automatically when you use option F7, View Data

VTRACE.COM A utility program to print simulation output files as
timing diagrams

BINHEX.COM A binary-to-hexadecimal conversion program

TIMING.COM Timing diagram entry program

PINOUT.COM Generates a list of the pin names from the .TRE file
(created by the PALASM 2 software assembler)

DECODE.COM Address decoder program that generates PALASM 2

software Boolean equations

To add a program to the MENU.SYS file, follow these steps.

1.

2.

Enter MS-DOS from the PALASM 2 software main menu by pressing <F2>.

Enter the text editor. Refer to the text editor operation manual for instructions.

Open the MENU.SYS file.

To the end of the file, add the filename of the supplementary program in the following
format. Any change you make to the file must occur after the Input file name (see

Figure 4-7).

$<FILENAME>

For example, to add the program PINOUT.COM, enter:

$PINOUT.COM

Save the file.

:l Monolithic m Memories zl

Install PALASM 2 Software

6. Toreturn to the PALASM menu, press <esc>. The screen displays the main menu.

7. Toview a list of the supplementary programs, press <F8>. Make sure the programs
you added are included in the list.

Refer to Figure 4-7 for the MENU.SYS file format.

2.23

c

NOT DEMO

C:\PALASM2 Last directory used
C Installed drive

\palasm2\pal2\

C

\palasm2\supl\

C Program path data
\palasm2\pdf\
C
\palasm2\msg\

C

\ws\ws I Editor data

com |

(e} I
\palasm2\supl\pc2 I Programmer data

exe
filename | Input file name
pds —

>

Figure 47

MENU.SYS

z‘ Monolithic m Memories z' 4-27

Install PALASM 2 Software

2.4

Modifications To The AUTOEXEC.BAT And
CONFIG.SYS Files

The installation process modifies your AUTOEXEC.BAT and CONFIG.SYS files. If you did
not have these files, they are created during the installation. The following lines are added
to the AUTOEXEC.BAT file:

REM C PALASM 2 path statement

PATH C:\;C:\palasm2\supl;%path%

ECHO Palasm 2 Software Installed - (c) Copyright MMI 1987
All Rights Reserved

The following line is added to your CONFIG.SYS file

Files=20

If you already have a CONFIG.SYS file with a Files = attribute greater than 20 (for
example, Files = 30), then the CONFIG.SYS will not be modified.

Proceed to Run the Software, Chapter 3.

4.28 : I‘rl Monolithic E.Eﬂ Memoriles ﬂ

3. Run the Software

About This Chapter

This chapter demonstrates how to run the software with an example input file -
SUPER.PDS. This input file contains a Boolean equation design for the PAL16R6.

The procedure steps you through PALASM 2 software by selecting options from the menu.
When the software processes are complete, you view the output files on your screen.

For a description of... Refer to Section...
Running the software through the menu 3.1

Autorun assembly and simulation 3.5

Processing an input file 3.6

Viewing the assembly output files 3.6.5

Simulating an input file 3.7

Viewing the simulation output 3.7.2

Interpreting the assembly output files 3.10

If you want to run the software from DOS instead of using the PALASM 2 software menu,
skip to Run The Software From DOS, Section 3.11.

n Monolithic m Memoriles :' ‘ 4-29

Run the Software

3.1

Overview Of The Procedure

The flowchart in Figure 4-8 shows the procedure to run PALASM 2 software. Figure 4-9
shows the basic processing options in a flowchart. The steps are as follows.

1. Check the syntax of the input file.

2. Expand the input equations.

3. Minimize the input equations.

4. Assemble the file and generate JEDEC output.

5. Simulate the design.

Expand The
Input Equations

Section 3.6.2

Check The
Syntax Of The
Input File

Section 3.6.1

Minimize The
Input Equations
Section 3.6.3

Assemble Simulate

The File The File
Section 3.6.4 Section 3.7
Figure 4-8

PALASM 2 Software Processing Sequence

4-30 5 2\ mononenio L] Memories &

Run the Software

(Comr)
' !

—» BUILD THE DESIGN [———=® ADD SIMULATION
ASSEMBLE d— SIMULATE

NO OK?
YES
v ' v
GOTO PROGRAM THE
ADD SIMULATION DEVICE

Figure 4-9

Basic Design Options

Before you run the programs to accomplish these steps, you must open the PALASM
menu and become familiar with its operation, as explained in the next section.

l‘r' Monolithic m Memorles I‘r' ‘ 4-31

Run the Software

3.2
Prepare To Use The Menu

The following list shows what tasks you should complete before using the menu.

1. Install the menu on your computer following the procedure in Install The Menu,
Section 2.1.3.1.

2. Install the text editor of your choice on the default drive. Use option F6, Software
Setup, on the main menu. Refer to Software Setup, Section 2.2, for the procedure.

3. Install the programmer communication software on your default drive. This too is
done on the software setup menu. Refer to Software Setup, section 2.2 for the
procedure.

Note: If you are using a twin floppy system, keep all the PALASM 2 software disks by

your computer. The PALASM menu prompts you to insert disks in drive B when it needs a

particular program. The disks are identified by the program name on the label.

Now you are ready to use the PALASM menu.

3.2.1
Call The PALASM Menu

To call the PALASM menu, type
PALASM

The first screen that you see displays the product and company name. Press <return> to
display the main menu as shown in Figure 4-10.

The main menu contains four features that you should identify.
1. Fields

You Qnter data in these fields.
2. ' Function keys

You use these keys to open sub-menus or activate a program.

4.32 2\ monotitnio I Memories €1

Run the Software

3. Key movements
The key movements, displayed at the bottom of your screen, allow you to:

* Move the cursor between the fields by using the arrow keys or <home> and
<end> on your keyboard

¢ Return to the main menu from another menu, by pressing <esc> on your
keyboard

* Refresh the screen by pressing <esc> <return> on your keyboard.
« Exit the program by pressing <esc> <esc> on your keyboard.
4. Status line

This is a reserved area at the bottom of every menu screen. Read the messages
displayed on the status line whenever they change.

Identify the four features on your screen with the help of Figure 4-10. As you step through
the procedure for running the software, you will see how to use these features.

i:l Monolithic ﬁﬁﬂ Memories :' » 4-33

Run the Software

FIELDS

Input PDS FILE { Directory
.] i

Device F1 Display Dir % F2 Enter DOS

F3 Edit PDS

F5 PALASM2 Menu

F7 View Data Window

F9 Databook
¥ next field = delete |
t previous field <ins> = insert o
« Previous position <home> = first field ||
» next position <end> = last field g

STATUS: All OK

osnnnnosst
358

:

E:;ﬁ?\'\"i%i?ﬁ&$?:‘£¢E&%}“%&%}2&%&%&%&%&W&?ﬁ&%ﬁi{%ﬁ@&%&f?&ﬁ?&?{'&i{:&f{i&{.‘?&%&i&%&

STATUS FUNCTION
LINE , KEYS

Figure 4-10

The Main Menu

4-34 n Monolithic m Memories :l

Run the Software

3.2.2
Specify The Directory And Input File

The following fields appear at the top of the menu.
* Input PDS File
» Directory

Note: You cannot enter the device name on the menu. It appears automatically when
the software indentifies the input file.

Notice that Figure 4-10 displays the default drive, C, in the directory field. Also, the
dummy filename appears in the input PDS file field. The example file you need is
SUPER.PDS. The PALASM menu looks for the input PDS file in the default directory
displayed on the menu. To make sure that the input file SUPER.PDS is on the default
drive, follow these steps.

Note: If you have a twin floppy system, your default drive should be drive B. Insert the
Design Examples disk in drive B and follow steps 1 to 5.

1. Todisplay the files on the default directory, press <F1>.

F1 Display Dir

The menu screen displays the files on the default directory. Make sure that

SUPER.PDS is in the directory. If not, go to step 2. If SUPER.PDS is in the

directory, press any key to return to the main menu and go to step 5. u
2. To change the default directory, press <F2>.

F2 Enter DOS

You are now in DOS. List your directories and find the file SUPER.PDS. Make a note
of the directory it is in.

3. Press any key to return to the main menu.
4. On the main menu, enter the correct directory name in the directory field.
5. Next, enter SUPER.PDS in the input PDS file field.

Input PDS file SUPER.PDS

:l Monolithic m Memories :' 4-35

'

Run the Software

3.3
Open The Sample Input File

The file SUPER.PDS is now displayed in the data entry field at the top left of your screen.

To open the file in your editor, press <F3>.
F3 Edit PDS

The editor you specified on the software setup menu (see Software Setup, Section 2.2)
now displays SUPER.PDS.

Note: While you are in the editor, your editor commands apply. When you exit the editor
using the editor command, you automatically return to the PALASM main menu.

3.4

Study The Sample Input File

If you are not familiar with PALASM input files, take a moment to study the sample file.
Otherwise exit the editor and, go to Autorun Assembly And Simulation, Section 3.5.

Scroll through the editor and glance at the various segments in the PDS file. Each
segment begins with a header, such as EQUATIONS, or SIMULATION. Chapters 4 and 5
of this manual describe how to create an input file. Chapter 6 of this manual describes
how to create the simulation segment. When you create an input file, you use the editor
specified in the software setup menu. For now, the sample input file will demonstrate the
menu operation.

CAUTION

Do not make any changes to the éample file SUPER.PDS since it is error-free and ready
for processing.

To return to the main menu, exit the editor.

3.5

Autorun Assembly And Simulation

The PALASM menu program offers a time-saving autorun feature that allows you to run the
assembly and simulation programs with one keystroke. Autorun is fast and easy, but to
become familiar with individual processes you should run each process separately. Also,
if your input file contains errors, it is easier to find out exactly where the error is if you run
the processes individually.

For now, you may either use autorun or run each of the programs individually.

4-36 n Monolithic m Memories :l

Run the Software

Proceed to the next section to find out about running the programs individually. The
procedure to use the autorun feature follows.

1. Select the PALASM2 option by pressing <F5>.
F5 PALASM2
The menu window displays the PALASM 2 sub-menu.
2. Select the Autorun 1-5 option by pressing <6>.
6 Autorun 1-5
The lower window opens and processing begins.
3. Watch the status line carefully as the following operations are completed.
¢ syntax check
* expansion
* minimization
* assembly
e simulation
4. When you see the message
SIM File Processed Successfully
press <esc>.

The assembly and simulation processes generate output files which you can view. One of
these files is the JEDEC file which is required by the device programmer.

If you want to... Refer to...

Run each assembly and simulation

step separately Section 3.6
View the assembly output Section 3.6.5
View the simulation output Section 3.7.2

2\ monoiithic Al Memortes £1 4.37

Run the Software

The options on the PALASM2 sub-menu allow you to run steps 1-6 on the main menu
individually. The procedure that enables running each program individually follows.

3.6

Process The Input File
This section describes the procedure to process the input file by running each assembly
and simulation step separately. After completing this procedure, you will have a JEDEC
file that enables you to program a device. The steps involved in processing the input file
are listed below and explained in detail in the following pages.
1. Check the syntax of the design file
2. Expand the input equations
3. Minimize the input equations
4. Assemble the file

A description of these steps follows.

3.6.1

Check The Syntax Of The Input File
PALASM 2 software checks the syntax of the input PDS file. The software displays
messages that identify errors. These messages are put into a file that you can either view
on your screen or send to a printer.
Since you are now using a sample input file which contains no errors, the syntax check
operation should be successful. The procedure to check the syntax of the input file
follows. '

1. Make sure to specify the correct input file and directory. Refer to Specify The
Directory And Input File, Section 3.2.2, for instructions.

2. Press <F5> to access the PALASM2 sub-menu.
F5 PALASM2

The menu window displays a sub-menu as shown in Figure 4-11.

4-38 I‘rl Monolithic ﬁ.ﬁﬂ Memorles i:l

Run the Software

£

-4

%

R

Input PDS FILE gypgr.pps.. | Directory

Device F1 Display Dir § F2 Enter DOS
i

F3 Edit PDS F4 Program Device
)

F5 PALASM2 F6 Software Setup

EF7 View Data F8 Supplementary |
.

F9 Databook F10 Help 2
&
o

&
Key M
next field = delete
previous field <esc> = return <ins> = insert
previous position <esc><esc> = exit <home> = first field
next position <esc><ret> = refresh cend> = last field

STATUS: All OK

A

Figure 4-11

Page One of the PALASM2 Sub-menu

3. The sub-menu has six options on page one and two options on page two. Use
<PgUp> or <PgDn> to view the two additional options. To check the syntax of the
input file SUPER.PDS, select the syntax check option on page one by pressing <1>.

1 Syntax Check

The lower window opens in the lower part of the main menu. You can view the syntax
check operation, or look at the message on the status line at the bottom of your
screen. When the syntax check operation is complete, the screen displays the
message shown in Figure 4-12.

z‘ Monolithic m Memories l‘rl 4-39

Run the Software
‘m

| Directory

i

Device F1 Display Dir g F2 Enter DOS

SORRRPRE

STATUS: All OK

Edit PDS F4 Program Device
PALASM2 F6 Software Setup
View Data F8 Supplementary
% Databook F10 -Help
% Key Movements
% ¥ next field = delete
2 T previous field <esc> = return <ins> = insert
% « previous position <esc><esc> = exit <home> = first field
§ = next position <esc>~ret> = refresh <ond> = last field

e

S

Figure 4-12

The Syntax Check Operation

3.6.2
Expand The Input Equations

PALASM 2 software expands the input Boolean equations before minimizing them. If your
input file is in state machine syntax, the equations are converted to Boolean equations at

this stage.

4-40 I‘rl Mohollthlaﬁ.ﬁﬂ"amorles :' ,

Run the Software

Note: Skip this step if you are using the PMS14R21 PROSE device. Expansion is
performed automatically on a PMS14R21 input file.

The procedure to expand the input equations follows.

1. Select the Expand option on the PALASM2 sub-menu by pressing <2>.
2 Expand
The lower window now displays the expansion process.

2. When the process is complete, the status line displays the following message
Expand Process Successful.

Proceed to Minimize The Input Equations, Section 3.6.3.

3.6.3

Minimize The Input Equations
After expanding the input equations, the next step is to minimize the equations. This step
minimizes Boolean equations. Minimization also ensures that the space on the device is

used efficiently.

Note: Skip this step if you are using the PMS14R21 PROSE device. Minimization is
performed automatically on a PMS14R21 input file.

" The procedure for minimizing input equations follows. n
1. Select option <3> on the PALASM2 sub-menu.
3 Minimize

The lower window now displays the minimization operation and the status line
displays messages.

2. As soon as minimization is complete, the lower window displays the following
message

Minimize Program Successful

Proceed to Assemble The Input File, Section 3.6.4.

a Monolithic m Memories a 4-41

Run the Software

3.6.4
Assemble The Input File
The assembly program generates the JEDEC file which is required to program the device.
The procedure to run the assembly program follows.
1. Select option <4> on the PALASM2 sub-menu.
4 Assemble
The lower window now displays the assembly process and the status line displays
messages.
2. As soon as the input file has been assembled, the lower window displays the
following message
The fuseplot is stored in SUPER.XPT.
The JEDEC 1is stored in SUPER.JED.
Note the names of the output files.
3. Press <esc> to exit the sub-menu.
The output file SUPER.JED is the JEDEC file required by the programmer to program the
device. Program The Device, Chapter 7, describes the programming procedure. Proceed
either to Chapter 7 or proceed to View The Assembly Output Files, Section 3.6.5.
3.6.5

View The Assembly Output Files

You can view the output files that the PALASM 2 software assembler generates or
proceed to Simulate The Sample Design, Section 3.7.

Figure 4-13 shows the output files that the assembler and simulator generate.

442 &\ monotithic Ll Memories &1

Run the Software

Check The Expand The
Syntax Of The Input Equations
Input File Section 3.6.2

Section 3.6.1

Minimize The
Input Equations
Section 3.6.3

Assemble Simulate

The File The File

Section 3.6.4 Section 3.7
Fuse Map) History File
FILENAME . XPT [~ FILENAME.HST
JEDEC Fuse Data | Trace File
FILENAME.JED : FILENAME.TRF

| JEDEC Test Data
FILENAME.JDC
Figure 4-13

Assembly and Simulation Output Files

The PALASM 2 software assembler generates two output files. They are:
¢ The fuse map SUPER.XPT

¢ The JEDEC fuse data SUPER.JED This file is required by the programmer to
program the device.

El Monolithic ﬁﬁﬂ Memorles :l 4-43

‘Run the Software

The procedure to view these files on your screen follows.
1. Select the View Data option on the main menu by pressing <F7>.
F7 View Data
The menu window now displays page one of the View Data sub-menu.

2. Notice the message at the bottom of the View Data sub-menu. To display page two
of the View Data sub-menu, press <PgDn> on your keyboard.

<Pg Dn>

The menu window displays page two of the View Data sub-menu as shown in Figure
4-14,

2. Select the Fuse Map option by pressing <1>.
1 Fuse Map
The entire screen now displays the fuse map.

3. To return to the main menu, press <esc>.

4. Select the JEDEC Fuse Data option by pressing <2>.
2 JEDEC Fuse Data

The entire screen now displays the JEDEC fuse data. Press any key to scroll down
and <esc> to return to the main menu.

5. Press <esc> on your keyboard to close the sub-menu.
To read the output files, refer to Interpret The Assembly Output Files, Section 3.10.
This completes the assembly procedure. To simulate the sample input file, proceed to the

next section. To create your own design, proceed to Create A Boolean Equation Design,
Chapter 4, or Create A State Machine Design, Chapter 5.

4-44 2\ monotithic FI Memories £

Run the Software

e

R e

Input PDS FILE SUPER.PEDS..

g Directory

S Ry
e

Device Fl Display Dir § F2 Enter DOS
&
§ F3 Edit PDS F4 Program Device
PALASM2 F6 Software Setup |
i

i

i F7 View Data F8 Supplementary g
\, .
% F9 Databook F10 Help i
. ¥ next field = delete 2
. * previous field <esc> = return <ins> = insert Y
! « Dprevious position <esc><esc> = exit <home> = first field %
; = next position <esc><ret> = refresh <end> = last field |
K : '&»

i STATUS: All OK |

J

e A

Figure 4-14

Page Two of the View Data Sub-menu

El Monolithic E.Eﬂ Memories l‘rl 4-45

Run the Software

3.7

Simulate The Sample Design

3.7.1

Simulation allows you to test your design without actually programming a device. The
sample input file SUPER.PDS contains a simulation segment. You cannot simulate your
design without including this segment in your input file. Build Simulation, Chapter 6,
describes how to set up the simulation segment in the input file.

This section describes how to run the simulation program and view the output on your
screen.

Run The Simulation Program

4-46

1.

4.

If the PALASM2 sub-menu is not displayed in the menu window, press <F5>.
F5 PALASM2

The sub-menu now displays page one of the PALASM2 sub-menu as shown in Figure
4-11.

To select the Simulate option, press <5>.
5 Simulate

The lower window now displays the simulation operation and the status line displays
messages.

Once simulation is complete, the lower window displays the following message
Sim File Processed Successfully

Press <esc> to return to the main menu.

To check whether the design performed as planned, you must look at the simulation
output.

:l Monolithic m Memories l‘rl

Run the Software

3.7.2
View The Simulation Output Files

The four ways in which to view the simulation output are:
e History File

* History Waveforms

* Trace File

* Trace Waveforms

The simulation process generates history and trace files from which the waveform
program takes its information.

If you simulate your design after assembling it, the simulation program creates a JEDEC
test data file which can be used for functional testing on the device programmer. The test
vectors are added to the JEDEC fuse map that the assembler creates.

The simulation output is best viewed as waveform on your screen. To view the simulation
output files, select the View Data option by pressing <F7>.

F7 View Data

The menu window displays page one of the View Data sub-menu as shown in Figure 4-15.

2\ monotithic I Memories &1 | 4-47

Run the Software

Input PDS FILE

SURE]

R

§ Directory

H

s

5

H

SRR

S

S

R

8
Device i F1 Display Dir F2 Enter DOS

§ F3 Edit PDS F4 Program Device

i . ‘

z;\ﬁf‘s PALASM2 Fé6 Software Setup

§ F7 View Data F8 Supplementary

Z‘ﬁ ;

3 F9 Databook F10 Help

. Key Movements

g ¥ next field . = delete 2

% * previous field .<esc> = return <ins> = insert

%5 « Dprevious position <esc><esc> = exit <home> = first field

% = next position <esc><ret> = refresh ' <epng> = last field

STATUS: All OK

s

i

i,

B

B e R A

Figure 4-15

Page One of the View Data Sub-menu

To display the history or trace waveforms or the history and trace files follow these steps.

1. While the screen displays the View Data sub-menu, select the appropriate number
on your keyboard.

awo b

History Waveform
Trace Waveform
Simulation History
Simulation Trace

4-48

z' Monolithic m Memories :l

Run the Software

The screen displays the output file. Figure 4-16 displays history waveforms.
2. Use the vertical bar cursor to track the values by selecting .

3. Press <esc> to return to the main menu.

g ¢ ¢ ¢ ¢c ¢C ¢cC ¢ cC c c c cc cc c c c ¢

rieke ~] LT inrnry
RSTB §
FRMIB
W I e
SUNK
e WL e
SOF
GND
OEB
Wm
Q3
e
Q2 B —
Qa1 Y L1 prom——

Starting vector is number 53 Step size = 1
Use arrow keys, HOME, END, <STEP> size, ar, <Z>print, <ESC> quit

Figure 4-16

History Waveforms

I‘:l Monolithic m Memories :' 4-.49

Run the Software

3.7.3
View The JEDEC Test Data

The simulation program creates a new JEDEC file by adding test data to the fuse map
created by the assembler. This occurs only if simulation follows assembly . The JEDEC
file created by the simulator contains test vectors and can be used to test and verify the
device on the programmer.
To view the JEDEC test data file, follow these steps.
1. Select the View Data option on the main menu by pressing <F7>.

F7 View Data

The menu window displays page one of the View Data sub-menu.

2. Scroll down to page two by pressing <PgDn>. The screen displays page two as
shown in Figure 4-14.

3. Select the JEDEC Test Data option by pressing <3>.
3 JEDEC Test Data
The entire screen displays the JEDEC test data file. You can scroll up and down by
using <PgUp>, <PgDn>, and the arrow keys. Notice that the file contains both fuse
and test data.

4. Press <esc> to return to the main menu.

For information on how to interpret the simulation output files, turn to Review A Sample
Input File And Interpret The Output Files, Section 6-3.

3.8

Disassemble A JEDEC File

The PALASM menu program offers an additional processing option that you do not always
require. If you want information on the basic processing procedure alone, you may skip
this section.

This process allows you to disassemble an existing JEDEC file and convert it to a Boolean
equation input file.

The procedure to run the JEDEC disassembly program follows.

4-50 I'l Monolithic m Memories I‘rl

Run the Software

1. Select the PALASM2 option on the main menu by pressing <F5>.
F5 PALASM2
Page one appears in the menu window.

2. Scroll to page two by pressing <PgDn>. Page two appears in the menu window as
shown in Figure 4-17.

S

f Directory u
»%‘ Device Fl Display Dir f F2 Enter DOS §
. ;
ﬁf\ F3 Edit PDS F4 Program Device %
|
& F5 PALASM2 F6 Software Setup &
o
F7 View Data F8 Supplementary :
. F9 Databook F10 Help g
;“'3: Key Movements %
¥ next field = delete ;,3
* previous field <esc> = return <ins> = insert o

! & previous position <e@sc><esc> = exit <home> = first field

¢ = next position <esc><ret> = refresh «ong> = last field

STATUS: All OK

st

A m&mwmm@s%w«w%@mmmwww&mwmmﬁ@

Figure 4-17

Page Two of the PALASM2 Sub-menu

&\ monoiithic B Memories £ 4.51

Run the Software

3. Select Disassemble JEDEC by pressing <1>.
1 Disassemble JEDEC

4. The JEDEC file produced by the assembler is now disassembled. The lower window
displays the process. The status line displays the message

Disassembling JEDEC file <SUPER.JED>
5. When the disassembly process is complete, the lower window displays the message

$$JEDMANS % Program successfully completed. Check output
files.

The status line displays the message

All OK.
6. Press <esc> to close the menu windows.
To view the disassembled JEDEC file, select the View Data sub-menu. Scroll to page two
as shown in Figure 4-14 by pressing <PgDn> or <PgUp>. Select the Disassembled JEDEC

option by pressing <4> on your keyboard.

3.9
Identify Errors In The Input File

PALASM 2 software creates the following files that are useful error detection tools:
* Run-time Log
¢ Intermediate TRE files

You can identify the design errors in your input file by viewing these files.

4-52 I‘r' Monolithic ﬁlﬁﬂ Memorles l‘r'

Run the Software

3.9.1
View The Run-Time Log

The run-time log contains any errors that the processes discover. The messages are sent
to a file which you can either view on screen or print.

It is important to remember that the run-time log after each process is overwritten by the
log of the succeeding process. This means that the log created after the syntax check
process is overwritten by the log created after the expansion process. Also, the log files
are deleted when you exit the menu. If you want to maintain each log, you can print them
at the end of each process. The log files are all called MENU.LOG. (Also see the note on
saving the file at the end of this section.)

Note: If you use the autorun feature, the log file records messages from all the
processes.

To view the run-time log, follow these steps.

1. Select the View Data option on the main menu by pressing <F7>.
F7 View Data
The menu window displays the View Data sub-menu.

2. Select the Run-time Log option by pressing <1>.

1 Run-time Log . ﬂ

The entire screen now displays the run-time log for the last process you ran. You
can scroll down by pressing any key.

3. To print the log, press <P>.
4. To return to the main menu, press <esc>.

Note: To save the file, select the DOS option on the main menu and change the filename
of the file MENU.LOG.

a Monolithic m Memoriles a 4-53

Run the Software

3.9.2 '
Disassemble The TRE File

PALASM 2 software creates an intermediate TRE file at the end of each of the following
processes:

e syntax checking
¢ expansion of input equations
¢ minimization of input equations

Figure 4-18 shows when you can disassemble the TRE file.

DISASSEMBLE .TRE FILE

Check The Expand The
Syntax Of The Input Equations
Input File Section 3.6.2

Section 3.6.1

DISASSEMBLE .TRE FILE

Minimize The '
Input Equations
Section 3.6.3

DISASSEMBLE .TRE FILE

Assemble Simulate
The File The File
Section 3.6.4 Section 3.7
Figure 4-18
Disassemble The TRE File

4-54 &\ Monolithic E.[ﬁﬂ Memories &

Run the Software
e e ——

The software uses the TRE file to perform processing functions. However, you are given
the option of converting the TRE file to a Boolean equation input file. This is particularly
useful in the following instances:

* When your input file was originally in state equations, TRE file disassembly performed
after expansion gives you a Boolean equation input file.

e After minimization, TRE file disassembly gives you an input file with the equations
minimized.

To disassemble the TRE file follow these steps after the relevant process.
1. Select the PALASM2 option on the main menu by pressing <F5>.
F5 PALASM2
The menu window displays page one of the PALASM2 sub-menu.
2. Scroll down to page two by pressing <PgDn>. The menu window displays page two.
3. Select Disassemble TRE by pressing <2>.
2 Disassemble TRE

4. The lower window displays the TRE disassembly process. The status line displays
the message

Disassembling file —~ PALASM2.TRE n
When the process is complete the status line message reads
All OK
5. Press <esc> to return to the main menu.
The TRE file is stored as run-time log. The procedure to view the TRE file follows.
1. Select the View Data option by pressing <F7>.
F7 View Data
The menu window displays the View Data sub-menu.
2. Select Run-time Log by pressing <1>.

1 Run-time Log

Z'l Monolithic m Memories z' ’ 4-55

Run the Software

The entire screen displays the disassembled TRE file.
3. To scroll down press any key.
4. You can print the file by pressing <P>.
5. To return to the main menu, press <esc>.

Note: When you exit the menu, the file will be deleted. To save the TRE file, select the
DOS option on the main menu and change the filename of the file MENU.LOG.

3.10
Interpret The Assembly Output Files
The assembler creates the following output files:

* the fuse map SUPER.XPT
e the JEDEC SUPER.JED

The files always have the extension .XPT or .JED as shown above.

The fuse map displays the programmed and unprogrammed fuses that the input file
specifies. If you plan to simulate your design, you need not examine this file. The JEDEC
is read by the device programmer and contains information required to program the

device.
{

3.10.1
Interpret The Fuseplot

Figure 4-19 displays a sample fuseplot.- Notice the use of the following symbols.

Unprogrammed fuse X
Programmed fuse -

If you want to... ‘ Then...

View the JEDEC file Proceed to Section 3.10.2
Run PALASM 2 software from DOS, ' Skip to Section 3.11
instead of the menu

Build a Boolean equation design Skip to Chapter 4

Build a state machine design Skip to Chapter 5

4.56 2\ monorithic I Memories 1

Run the Software

PAL16R6
SUPER_FRAME

SNo s WNhBE O
e
o]
>
<
>
]
e
>
]
e
]
b
o]
el
o]
>
o]
o]
<
<
o]
el
>
»
o]
<
<
>
o
o]
o]
<

e G S ——
I L e - X ===
12 XXXX XXXX XXXX XXXX XXX% XXXX XXXX
13 XXXX XXXX XXXX XXXX XXXXY XXXX XXXX
14 XXXX XXXX XXXX XXXX XXXX ¥ XXXX XXXX
15 XXXX XXXX XHXX XXXX XXXX X XXXX XXXX

UNPROGRAMMED
FUSE

PRODUCT PROGRAMMED
TERM FUSE

Figure 4-19

The SUPER.XPT Fuse Map

3.10.2
View The JEDEC File
The JEDEC file is programmer-readable and should be downloaded to the device

programmer. Refer to Program The Device, Chapter 7, for more information. Figure 4-20
shows a sample JEDEC file.

H Monolithic E.ﬁ.ﬂ Memories L'l 4-57

Run the Software

PAL16R6 '
SUPER_FRAME*
QP20* <l
QF2048* ..
COrFO [
10256 111111111111111111T0%24211111111%
L0288 111111111111111111111101117TTrad%,
10320 11111111111111011111111111111111% ~ TOTALFUSES
L0352 11111111111111111111111111101111* ON THE DEVICE
L0512 11111111111111111101111111111111%
L0544 11111111111111111111111011111111*
L0576 11111111111111011111111111111111*
L0608 11111111111111111111111111011111%
L0768 10111111111111111111111111111111*
L0800 11111011011101111111111111111111*
10832 11111111111111011111111111111111*
L1024 11111111111111011101111111111111*
L1056.11111111111111101110111111111111*
11088 11111011011101111111111111111111*
L1120 10111111111111111111111111111111%
L1280 11111111111111111111111011011111%
L1312 11111011011101111111111111111111*
L1344 11111111111111111110111011111111%
11376 11111111111111011101110111111111*
L1408 11111111111111101111111011111111%
L1440 10111111111111111111111111111111%
L1536 11111011011101111111111111111111*
L1568 11111111111111111110111111101111*
11600 11111111111111011101111011111111%
L1632 11111111111111101111111111101111%
L1664 10111111111111111111411111111111*
e,

TOTAL PINS

C607CH
D325 “.._ PROGRAMMED
UNPROGRAMMED ~ FUSE
FUSE
Figure 4-20

The JEDEC Fuse Data from SUPER.JED

4-58 n Monolithic m Memories :'

Run the Software

3.1

Run The Software From DOS
PALASM 2 software can be run directly from DOS. Call the programs from DOS by

entering the program names instead of using the PALASM menu. The following procedure
briefly describes how the programs are invoked directly.

Create The Input File

Create the input file using any text editor. Remember to include the extension .PDS in the
input filename. Refer to Build The Boolean Equation Design, Chapter 4, or Build The State
Machine Design, Chapter 5 for detail on how to create the design that becomes your input
file.

Check The Syntax

The following procedure describes how to run the syntax check program.

1. Insert the disk containing the executable files in drive B. Insert the disk containing
your PDS file in drive A.

Make sure that the operating system is looking at both drives for command files. The
MS-DOS command

PATH A:\;B:\; n

takes care of this requirement. (If you are using a hard disk, specify drive C instead
of B.)

2. Enter PARSE FILENAME.PDS<return>.

The software checks the syntax of the design file and creates an intermediate file,
PALASM2.TRE, on the default drive. It also creates a PARSE.LIS file that contains the
input file error messages.

Expand The Input Equations

Enter EXPAND <return>.

l‘rl Monolithic m Memories 4'.' 4-59

4-60

Run the Software

Minimize The Input Equations

Enter MINIMIZE <return>.

Assembile the Input File

Enter XPLOT <returns.

Build Simulation

Enter SIM <return>.

Additional Processing Options
Enter the following program names to perform additional processing.

JEDMAN JEDEC disassembly
TREPL2 TRE file disassembly

You are now ready to build your own design.

To... Proceed to ...
Build a Boolean equation design Chapter 4
Build a state machine design Chapter 5

I‘vl Monolithic m Memorles ﬂ

4. Build a Boolean Equation Design

About This Chapter

This chapter guides you through building a Boolean design for PALASM 2 software.

To... Refer to Section . . .
Build a Boolean equation design 4.1
Determine the polarity of an output 4.2
Tailor the design for specific devices 4.3
Verify your design with a cheéklist of guidelines 4.4

ﬂ Monolithic m Memorles I‘r' 4-61

Build a Boolean Equation Design
w

4.1

Build A Boolean Equation Design

A Boolean equation design specifies logic functions for programming a device to perform
specified tasks and give specified outputs. The design is constructed using a text editor
and must contain only ASCII characters. Store the file using the filename format of
FILENAME.PDS. PALASM 2 software interprets the design and translates it into a JEDEC
file for downloading to a device programmer.

Figure 4-21 shows the structure of the design.

DECLARATION

EQUATIONS

Figure 4-21

Structure of the Boolean Equation Design
Table 4-6 describes each segment of the design.

Table 4-6

Description of Boolean Equation Design Segments

Segment Description

DECLARATION Design identification, device and pin data, string
substitutions

EQUATIONS Boolean functions that define outputs in terms
of inputs and feedback, and equations that define
programmable functions

4-62 l‘rl Monolithic IEEII Memories &

Build a Boolean Equation Design
W

"Equations” is a reserved word. The software reserves certain words to identify design
segments and information, device codes, commands, functions, and pin defaults. Do not
use the reserved words for any other purpose. Some reserved words are keywords that
identify the block of information that follows. All reserved words are listed in General
Syntax, Section 4.1.1, item 5.

The general syntax rules discussed in the following section must be observed to build a
Boolean design.

4.1.1
General Syntax

The following general syntax rules apply to building the Boolean input file.

1. Maximum line length is 128 characters or columns. Data beyond the limit must be
placed on the next line.

2. Characters are upper or lower case alphanumeric, spaces, tabs, and underscores.
Tabs are translated as spaces. Unless otherwise stated, neveruse " ~ ! @ # $ %
A&-{}0"?<or>

3. Table 4-7 lists characters that perform special functions. Do not use these

characters for any other purpose.

Table 4-7

Special Characters and Functions

Character(s) Function

v (Single quote or apostrophe) Delimits string characters to be
substituted

s Pin list separator
() Enclose pins in logic expressions
H Precedes comments (text the software does not see). Exten-

sive commenting is a good habit. Comments may start
anywhere on the line and must be preceded by a semi-colon (;).

zl Monolithic m Memorles :l 4-63

Build a Boolean Equation Design

Table 4-7 (Continued)

Special Characters and Functions .

Character(s) Function
/ NOT or active-low value
* B AND
+ OR
T XOR

= Combinatorial output equation operator
*= Latched output equation operator

= Registered output equation operator

Operator precedence: / * + :+:

4. For a programmable polarity part, a pin with the same polarity in the pin list and in the
equation has an active-high output. A pin with different values in the pin list and the
equations has an active-low output. For more information, refer to Polarity, Section
4.2.

5. PALASM 2 software reserves the following words to identify design segments and
information, device codes, commands, functions, and pin defaults:

AUTHOR DEFAULT_BRANCH
BEGIN DEFAULT_OUTPUT
CHECK DO

CHIP ELSE

CLKF END

CLOCKF . EQUATIONS

CMBF . FOR

COMPANY GND

CONDITIONS - HOLD_STATE
DATE IF

4-64 2\ monoiithic BHl Memories &1

Build a Boolean Equation Design

5. Reserved words (continued):

MASTER_RESET RSTF
MEALY_MACHINE S
MOORE_MACHINE SETF

NC SIMULATION
NEXT_STATE STATE

OR STRING
OUTPUT_ENABLE THEN
OUTPUT_HOLD TITLE
PATTERN TRACE_OFF
POWER_UP TRACE_ON
PRLDF ' TRST

R vCC
REVISION WHILE

4.1.2
Build The Declaration Segment

Information in the Declaration segment helps document the design before processing. It
also defines pin names and string substitutions. This segment appeatrs first in the design
as shown previously in Figure 4-21. Figure 4-22 shows the keywords and information
structure of the segment. '

z‘ Monolithic m Memories :l 4-65

Build a Boolean Equation Design

e ————]

BQU KEYWORDS DESIGN HEADER

TITLE M What the design is; name of design

PATTERN File name or pattern number or other ID

REVISION Version or other ID

AUTHOR Designer or department or other ID

COMPANY Company or division or other ID

DATE Build date or current date or other DEFINITIONS
CHIP Description or file name or other Device name

Signal names and their polarity assigned to pins

STRING Name of string ' Characters to substitute *

Figure 4-22

Structure of the Declaration Segment

The design header helps document and identify the design. The software inserts the
header into the output files to help identify them also. You may omit any part of the
Declaration segment except the CHIP keyword and definition; PALASM 2 software
requires them to process the design. When any part of the design header is omitted, the
software issues a warning message during assembly and continues processing.

Information for the design header contains up to 24 significant characters after the
keyword and extra blank spaces. Characters beyond 24 are truncated during processing.
Definitions for CHIP and STRING have the special syntax described below.

4.1.2.1

CHIP Syntax

The CHIP definition is required to process the design. It provides information about the
device and pins. CHIP syntax requires three entries:

4-66 I'l Monolithic m Memories n

Build a Boolean Equation Design
m

Syntax
CHIP Description or file name or other Device name
Signal names and values assigned to pins (pin list)

Figure 4-23 lists each entry, describes its specific syntax and shows an example.

1 Description or filename or other 2 Device name
1 letter followed by up to 13 alphanumeric Any device supported by the software (Chapter
characters \ 1 contains the complete list of devices)
i i i]
CHIP NOT_REAL 1 PAL16R8
;PINS 1 2 3 4 5 6 7 8 9 10

CLOCK DCLOCK SEN1 SEN2 1I2 /I3 /14 1I5 /I6 GND

;PINS 11 12 13 14 15 16 17 18 19 20
SDI NC RESET SDO TOP1 BOT1 TOPZ2 BOT2 MID VCC 3

3 Signal names and polarity assigned to pins (pin list)

Sequential list of signal names and their polarities for the pins of the device. Begin a name
with a letter and follow it with up to 13 alphanumeric characters. Place a slash (/) before the
name to indicate active-low; otherwise, the signal is active-high. Separate names by commas,
blank spaces, or carriage returns. Label unused pins NC (no connect). GND and VCC

are reserved words and must be placed on ground and power pins.

Figure 4-23

CHIP Syntax and Pin List

Notice the commented lines of pin numbers in Figure 4-23. Commenting the pin numbers
helps identify signal names and pin numbers for writing equations. Using mnemonic
phrases or names for pins (e.g., CLOCK for the clock pin) also makes writing equations
easier and helps document the design.

n Monolithic m Memoriles ﬂ 4-67

: Build a Boolean Equation Design

4.1.2.2
STRING Substitution Syntax

Substituting a frequently used string of characters with an identifier is optional. You may
know from the design's purpose, the device logic diagram, and the CHIP definition which
combinations of pins will be used frequently before writing any equations. You can add
string definitions to the Declaration segment as the design progresses. If you use
strings, two entries must follow the STRING keyword:

Syntax

STRING Stringname ' Characters or previously defined string names
to substitute '

The single quotes ('. .. ") are delimiters that identify the characters for substitution.
Figure 4-24 lists each entry and its specific syntax and shows two examples.

1 String name

Unlimited number of alphanumeric
characters DELIMITER

Number of strings limited by computer
memory i__}_:;._,_,__,!

STRING INPUT ' Al + /A2 + A3 '
STRING INPUT ALL.,' (Al + /A2 + A3) '

T

2 Characters or previously defined
string names to substitute

Must be delimited with single quotes

Figure 4-24

STRING Information and Syntax

4-68 &\ Monolithic IF.E.H Memories &\

Build a Boolean Equation Design

In Figure 4-24, notice that parentheses were added to the INPUT string to form the string
entitled INPUT_ALL. The difference between how /INPUT and /INPUT_ALL are compiled is
shown in Table 4-8.

Table 4-8

Compilation of String Definitions in Figure 4-24

String Term Software Compilation

/INPUT /Al + /A2 + A3

/INPUT ALL /(A1 + /A2 + A3)
=/Al * A2 * /A3

Figure 4-25 shows a sample Declaration segment.

;
i
:
:
o

TITLE NOT REAL 6
AUTHOR J. ENGINEER
CHIP NOT REAL 6 PAL16R4

;PINS 1 2 3 4 5 6 7.8 9 10
CLOCK DCLOCK SEN1 SEN2 Al /A2 A3 GND NC GND

;PINS 9 10 11 12 13 14 15 16 17 18 19 20
SDI NC RST SDO TOP1 BOT1 MID NC NC NC NC VCC

STRING INPUT ' Al + /A2 + A3 '
STRING INPUT ALL ' (Al + /A2 + A3) '

Figure 4-25

Sample Declaration Segment

:l Monolithic m Memories :l 4-69

Build a Boolean Equation Design

413

Build The Equations Segment
The Equations segment contains Boolean functions and equations for programmable
functions that define outputs in terms of inputs and feedback. The equations determine
which fuses are programmed.
The keyword
EQUATIONS
is required to identify this segment of the design.
The syntax of an equation depends on the function it performs. The following sections
discuss the purpose and syntax of combinatorial, registered, latched, and functional
equations.

4.1.3.1

Combinatorial Equations
Combinatorial equations combine signals for immediate output:
Syntax

Output_Pin Signal * Signal *. . .

+ Signal * Signal * . . .
+

The combination of signals on the right of the = define the output signal on the left. This

“output signal can be active-high (Output_Pin) or active-low (/Output_Pin). (Polarity,
Section 4.2, contains more details about polarity.). Figure 4-26 shows a sample CHIP
entry (not part of the Equations segment) and combinatorial equations.

4.70 z' Monolithic m Memories ﬂ

Build a Boolean Equation Design

DECLARARION

EQUATIONS
Y=A*B
+ /C * D

/Z =E *F
+ /F * /E

/W =E

vV = /F

Figure 4-26

Sample CHIP Entry and Combinatorial Equation

On devices with programmable polarity, the polarity fuse is programmed or left intact
according to the polarities given on the left side of the equation and those defined in CHIP.
When these two polarities are the same, the fuse is programmed, giving an active-high
output. When the two polarities differ, the fuse is left intact, leaving the output active-low.
Polarity, Section 4.2, contains more discussion.

In Figure 4-26, equations for outputs Y and Z have the same polarity as in the pin list,
indicating an active-high output. On the programmable-polarity PAL16P8, the outputs will
be programmed as active-high. On the active-low PAL16L8, these equations would
cause an error because an active-high output is not allowed. Specifying active-low
outputs for the active-high PAL10H8 would also cause an error.

a Monolithic m Memories i:l 4-71

' Build a Boolean Equation Design ’
P e e ——————— e e—————————
4.1.3.2
Registered Equations
Registered equations generate logic functions for devices with registered outputs. For

example, each output of the PAL16R8 device is a registered output:

Syntax

Output_Pin Signal * Signal * . . .

Signal * Signal * . . .

+ &

The combination of signals on the right of := defines the next value of the output signal on
the left. This output signal can be active-high (Output_Pin) or active-low (/Output_Pin).

(Polarity, Section 4.2, contains more details about polarity.) Figure 4-27 shows a sample
CHIP entry (not part of the Equations segment) and registered equations.

4.72 &\ Monolithic IF.EH Memories &\

Build a Boolean Equation Design

DECLARANEON

EQUATIONS

Y := A *B
+ /C * D

/Z :=E *F
+ /F * /E

/W :=E

vV := /F

Figure 4-27

Sample CHIP Entry and Registered Equation

In most cases, the clock to the register is a dedicated clock pin. For example, on the
PAL16RS8, pin 1 is the clock pin. On the PAL20RA10, a special product term generates
the clock. (Refer to PAL16RA8 And PAL20RA10 Special Considerations, Section 4.3.5,
for more information.)

The transition at the output of the register takes place on the rising edge of the clock.
This output signal can be active-high (output) or active low (/output).

4.1.3.3
Latched Equations

Latched equations generate logic functions for devices with latched outputs. For
example, each output of the PAL10H20G8 device may be used as a latched output:

:l Monolithic m Memories l‘vl . 4-73

Build a Boolean Equation Design

Syntax
butput_Pin *= Signal * Signal *. . .
+ Signal * Signal *. ..
+
The signals on the right of *= define the output pin on the left. This output signal can be
active-high (Output_Pin) or active-low (/Output_Pin). (Polarity, Section 4.2, contains
more information.)
4134
Functional Equations

Functional equations define these special programmable functions:

* Clock (PAL16RA8 .and PAL20RA10 only; refer to PAL16RA8 And PAL20RA10 Special
Considerations, Section 4.3.5.) '

e Set
* Reset
¢ Three-state

* Registered/Combinatorial output selection (PAL32VX10 only; refer to PAL32VX10
Special Considerations, Section 4.3.7)

Some devices offer individually programmable output functions. Individually
programmable functions can be defined for each output. The PAL16RA8 and PAL20RA10,
for example, are individually programmable output devices.

Refer to Tailor the Design for Specific Devices, Section 4.3, for more details about
devices with programimable outputs. The following sections discuss globally
programmable set and reset equations, and individually programmable three-state
equations.

The Programmabl'e Set And Reset Functions

The set function creates a logic 1 at a register; the reset creates a logic 0.

When set and reset are globally programmable, a fictional 25th pin must be named after
VCC in the pin list:

4.74 I‘r| Monolithic m Memories l'l

Build a Boolean Equation Design

Example

;PINS 18 19 20 21 22 23 24 25
OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 VCC GLOBAL

The options for specifying global set and reset in the Equations segment are:

Syntax

Options for set:
25th_Pin.SETF = GND (Default: always disabled)
25th_Pin.SETF = VCC (Always set)
25th_Pin.SETF = One_Product_Term

When the product term is true, the registers are set.

Options for reset:
25th_Pin.RSTF = GND (Default: always disabled)
25th_Pin.RSTF = VCC (Always reset)
25th_Pin.RSTF = One_Product_Term

When the product term is true, the registers are reset:

Example
GLOBAL.SETF = A * /B
GLOBAL.RSTF = /A * B

Individually programmable set and reset for the PAL16RA8 and PAL20RA10 are
discussed in PAL16RA8 And PAL20RA10 Special Considerations, Section 4.3.5.

The Programmable Three-State Function

When the device has individually programmable three-state, any outputs may be put in a
logic off (high impedance) state:

Syntax
Output_Enable_Pin.TRST = VCC (Always enabled)
Output_Enable_Pin.TRST = GND (Default unless an equation is

defined for that pin)
Output_Enable.TRST = One_Product_Term (User-defined)

I‘vl Monolithic m Memorles Il 4.-75

Build a Boolean Equation Design

Enabled means visible output (three-state buffer is high); disabled means no output
(three-state buffer is low). This syntax applies whether the outputs are registered or
combinatorial:

Example

014 := A * /B
014.TRST = C * /I4

The output is enabled when the three-state equation product term is true.

4.2

Polarity

Some devices have fixed active-high or active-low outputs. Some devices have
programmable output polarity. To achieve the desired polarity on an output, the signals in
your design must be defined correctly. The factors that determine the polarity of an
output are:

* Whether the device has fixed or programmable output polarity

* Whether the polarity of the output pin name in the pin list and on the left side of an
equation operator.is the same or opposite

4.21
Programmable Polarity

Note: To define polarity for the PAL32VX10, refer to PAL32VX10 Special Considerations,
Section 4.3.7.

The relationship between the signal in the pin list and the signal in the Boolean equation
has a direct bearing on the polarity of the output pin. To achieve the desired program-
mable output polarity, you must define the signals in the pin list and Boolean equation
appropriately.

When the polarities of a signal in the pin list and in the equation are the same, the output
polarity is active-high. When the polarities of a signal in the pin list and in the equation are
different, the output polarity is active-low. As an example of programmable polarity,
Figure 4-28 shows that for pin 12, while the signal in the pin list is active-low (/O1), the
signal in the equation is active-high (O1). This programs the output polarity for pin 12 as
active-low (/O1) because the two signals have different polarities.

4.76 2\ Monotithic Ll Memories 1

Build a Boolean Equation Design

DECHARAYION
SIGNAL AS
USER-
DEFINED
PIN NAME
EQUATIONS
SIGNAL IN
BOOLEAN Oly= Il * I2
EQUATION + /I3 * I4
/02 = I5 * I6
+ /I6 * /I5
/03 = I5
04 = /16
Figure 4-28

Comparison of Polarity in Pin List and Equations

Table 4-9 summarizes the polarity of signals for active-low output.

I‘rl Monolithic ﬁ.ﬁﬂ Memories :l 4-77

Build a Boolean Equation Design
w

Table 4-9

Summary of Signals for Active-Low Output

Output Pblarity Pin List Boolean Equation
Active-low Active-low Active-high
/01 /01 o1
OR
Active-high Active-low
o1 /01

Table 4-10 lists the output polarity for the four possible combinations of signals in the pin
list and the equations.

Table 4-10

Table for Determining Output Polarity

! Signal in Boolean Equation

S /S

Signal in
Pin List /S

Using Table 4-10 makes defining equations simple. If we want the output polarity to be
active-high, one possible combination is to use /S in the pin list and /S in the Boolean
equation.

4.78 X mononithic LEl] Memories &1

Build a Boolean Equation Design

Figure 4-29 summarizes all possible pin list and equation polarity combinations for a partial

pin list.
DECHARAEZON
EQUATIONS
/0l:= A * /B ;01 is high in the
;pin list, low in
ACTIVE-LOW ;the equation
OUTPUT
03:= A * /B ;03 is low in the
;pin list, high in
e ;the equation
02:= A * /B ;02 is high in the
ACTIVE-HIGH ;pin list, high in
OUTPUT ;the equation
/04:= A * /B ;04 is low in the
;pin list, low in
T ;the equation

Figure 4-29
Summary of Output Polarity for Programmable Polarity Parts
Note: It is important to remember that on some programmable polarity parts, the polarity

fuse is located before the register. It does not affect the set or reset function of the
output. If no equation is defined for an output, the polarity fuse is left intact.

z‘ Monolithic m Memories n 4-79

4.2.2

Build a Boolean Equation Design

Fixed Polarity

4.3

While any combination in Figure 4-29, works on a programmable polarity device, fixed
polarity active-low devices, such as PAL16L8, do not accept the same polarity in both the
pin list and the Boolean equation. The combinations these devices accept are /S in the pin
list and S in the equation or vice versa for a fixed active-low output.

For a fixed active-high output device, the polarities in the pin list and in the equation must
be the same (S...S or /S.../S). If active-high output is specified for an active-low
output device, or if active-low output is specified for an active-high output device, errors
occur.

Tailor The Design For Specific Devices

4-80

This section provides general considerations for designing with PLS and PAL devices,
and specific considerations for designing with the following devices:

e PAL10H20G8

o PAL16RA8 and PAL20RA10
* PAL22V10

* PAL32R16

« PAL32VX10

Only the special functions and features not discussed previously are included in this
section.

n Monolithic m Memories Il

Build a Boolean Equation Design

A S —

4.3.1

PLS Device General Considerations

When designing with any PLS device, consider the following items.

1.

PLS devices have S-R flip-flops instead of D flip-flops. Each output equation
requires two equations, one for S and one for R:

Syntax

Output_Pin.S := Product_Terms
Output_Pin.R := Product_Terms

The total supply of product terms for the device determines the number of product
terms for each equation because the device allows product term steering. The
polarity of the output pin in the equations must be the same as declared in the pin
list.
PLS devices have buried register nodes. A buried register can be used for feeding
back a signal into the array; it cannot send its output to an output pin. Assign a
name to each node after VCC in the pin list beginning with the earliest node:
Example

CHIP INPUT OUTPUT PLS105

CLK I2 I3 I4 I5 I6 I7 I8 I9 010 O0l1l1l NC NC GND

013 014 015 016 OE I18 I19 I20 I21 I22 I23 NC NC VCC

PO P1 P2 P3 P4 P5
Write equations for the buried nodes using the same syntax as for output pins.
PLS devices have a complement array for inverting signals, which can be used to
save product terms. Assign a name for the complement array after the buried
nodes:
Example

CHIP INPUT OUTPUT PLS105

CLK I2 I3 I4 I5 I6 I7 I8 I9 010 011 NC NC GND

013 014 015 016 OE I18 I19 I20 I21 I22 I23 NC NC VCC

PO P1 P2 P3 P4 P5 COMP

If you want to use the complement array, define it once in the Equations segment:

:' Monolithic Eﬂﬂ Memories :l

4-81

Build a Boolean Equation Design

Example

/COMP = I2 * I3
+ I4 */I5

Notice that the polarity of the complement array on the left side of the equation must
be the opposite of the polarity defined in the pin list. You may use it as a term in the
equations as often as needed:

Example

011.S := COMP * I6 * I7
+ I9 */I10

Notice that when you use the array as a term of an expression, it has the same
polarity as in the pin list.

4. PLS devices have a dedicated programmable pin for preset or output enable
(PR/OE). It controls either the asynchronous preset of all registers to high or
controls the three-state output buffers of the output registers. By programming the
PR/OE pin to control the three-state output buffers, the preset function is
permanently disabled. Otherwise, the default is that preset is programmed.

To program the pin as preset, define a SETF functional equation for any or all buried
nodes and outputs:

Syntax

Any_Output_Pin.SETF = Name_of_PR/OE_Pin
Any_Buried_Node.SETF = Name_of_PR/OE_Pin

Example

O15.SETF = OE
P1.SETF = OE

The PR/OE pin must be asserted high to activate the preset. The output pin or
buried node cannot have a slash, /, in front of it.

To program the pin as output enable, define a three-state functional equatibn for any
or all outputs:

4-82 &\ Monolithic li.liﬂ Memories G\

Build a Boolean Equation Design

S —

Syntax

Any_Output_Pin.TRST = Name_of_PR/OE_Pin
Example

011.TRST = /OE

The PR/OE pin must be asserted low to enable outputs. The output pin or buried
node cannot have a slash, /, in front of it.

Note: Define .SETF or .TRST; not both.
4.3.2
PAL Device General Considerations
The following general considerations apply to PAL devices.
1. The number of product terms is fixed for each output. Therefore, the fixed number of

terms allotted to that output determines the number of product terms allowed for the
equation for that output.

If the device has product term steering, then the number of product terms for an
equation is limited by the number of terms allotted to each pair of outputs. For
example, if a pair of outputs has eight product terms, you can use five for one output
and three for the other. '

2. Runthe EXPAND program to translate XOR gates into AND and OR gates or to n
expand nested parentheses.

4.3.3
PAL10H20G8 Special Considerations

1. The PAL10H20GS8 has programmable latched or combinatorial outputs.

2. Touse a PAL10H20GS8 I/O pin as an input, refer to Controlling Output Enable With
SETFin Section 6.2.1.2.

Remember that the symbol *= is the latched equation operator.

3. Onthe PAL10H20GS, pins 1 and 13 may be used as a latch enable or as regular
inputs.

“rl Monolithic m Memories i:l 4-83

4.3.4

Build a Boolean Equation Desigﬁ

PAL22V10 Special Considerations

4-84

When designing with the PAL22V10 device, consider the following items.

1.

The three-state function can be controlled using an individually programmable three-
state function for each output (refer to Functional Equations, Section 4.1.3.4 for the
syntax).

The default for a combinatorial equation with no .TRST function is VCC.

You can program combinatorial or registered equations by using the = or :=
operators to define the outputs.)

To use an I/0 pin permanently as an input, do not use the pin as an output on the left
side of the equation. Use the pin only as an input on the right side of the equation
operator to define other outputs.

Pin 1 may be used as a clock and as an input for combinatorial or registe’red output in
the same design.

The synchronous global preset sets all registers to high. Define a fictional 25th pin
after VCC in the pin list to serve as the global preset. Define this function once in the
design: '
Syntax

25th_Pin.SETF = One_Product_Term

Refer to Controlling Output Enable With SETF in Section 6.2.1.2 for how to control
this function in simulation.

zl Monolithic m Memorles :l

Build a Boolean Equation Design

6. The asynchronous global reset sets all registers to low. Define a fictional 25th pin
after VCC in the pin list to serve as the global reset. Define this function once in the
design:

Syntax
25th_Pin.RSTF = One_Product_Term

Refer to Controlling Output Enable With SETF in Section 6.2.1.2 for how to control
this function in simulation.

4.3.5

PAL16RA8 And PAL20RA10 Special Considerations
In addition to the programmable set, reset, and three-state functions, the PAL16RA8 and
PAL20RA10 offer a programmable clock. The programmable clock function allows you to
clock individual output signals. The software indicates an error if a clock function is

defined for a combinatorial output because combinatorial output has no clock. If no clock
function is defined for a registered output, the software issues an error.

Table 4-11 shows the syntax for PAL16RA8 and PAL20RA10 functional equations.

:l Monolithic Eﬁ.ﬂ Memorles l‘r.' 4-85

Build a Boolean Equation Design

Table 4-11

Syntax for PAL16RA8 and PAL20RA10 Functional Equations

Function

Syntax Example

Set

Reset

Clock

Three-state

Output_Pin.SETF = VCC (Bypass register with
reset also high)
Output_Pin.SETF = GND (Default)
Output_Pin.SETF = One_Product_Term OUT.SETF = A * /B

Output_Pin.RSTF = VCC (Bypass register with
set also high)
Qutput_Pin.RSTF = GND (Default)
Output_Pin.RSTF = One_Product_Term OUT.RSTF = /A * B

Output_Pin.CLKF = GND (Default: no clock)
Output_Pin.CLKF = Name_of_Pin_Used_as_Clock OUT.CLKF = CLK
Output_Pin.CLKF = Input_Product_Term OUT.CLKF = A * B * /C

Output_Pin.TRST = VCC (Default: output enabled)
Output_Pin. TRST = GND (Default unless an
equation is defined)
Output_Pin.TRST = One_Product_Term OUT.TRST = C * /I4

4-86

You can bypass the register by asserting both set and reset high in two different ways.
One way is to be explicit for each registered output:

Example

OUT := A + /B +D *E ;Output defined as registered
OUT.SETF = VCC ;SETF always true

OUT.RSTF = VCC ;Reset always true

OUT.CLKF = GND

The other way is to be implicit by writing a combinatorial equation for the output:

OUT = A + /B +D *E ;Output defined as
;combinatorial - no clock

In the implicit case, the software automatically assigns the set and reset functions to VCC
and the clock function to GND.

l‘rl Monolithic m Memories :l

Build a Boolean Equation Design

In some cases, you might want to use the register without the set and reset functions:
Example
Being explicit:

OUT := A + /B

OUT.SETF = GND

OUT.RSTF = GND

OUT.CLKF = CLK
Being implicit:

ouT := A + /B
OUT.CLKF CLK

The software assigns the set and reset functions to GND by default.

Note: [f you define output as combinatorial (=), the default value for both set and reset is
VCC. If you define output as registered (:=), the default value for both set and reset is
GND.

4.3.6
PAL32R16 And PAL64R32 Special Considerations

You can program the outputs of the PAL32R16 as registered or combinatorial, in banks of

eight. The equation operator determines the function. If you use :=, the output is

registered; if you use =, the output is combinatorial. All outputs within a bank must be n
configured the same way.

437
PAL32VX10 Special Considerations

In addition to global set and reset functions, the PAL32VX10 has associated with it the
following architectural features unique in the PAL device family:

» Each register can be buried so that its contents cannot be observed directly on the
output pin.

» Each output has an internal exclusive-OR gate which can either be used as such or
as a polarity inverter, depending on the application. The XOR gate also allows the
user to create D, T, J-K, or S-R flip-flop types. In addition, you can set outputs as
registered or combinatorial (and set the register type) dynamically, specifying the
option you want with a product term.

;l Monolithic m Memorles :l 4-87

Build a Boolean Equation Design

To use these special features, observe the following special rules.

1.

The pin list for a PAL32VX10 includes the expected pin names, with VCC followed by
a fictional pin name used to specify global set and reset functions, This is followed
by ten names that specify the nodes located at the /Q outputs of the internal
registers at pins 14 through 23:

Example
CHIP INPUT OUTPUT PAL32VX10
CLK I2 I3 I4 I5 I6 I7 I8 I9 I10 I11l GND
I13 014 015 016 017 018 019 020 021 022 023 VCC

GLOBAL R14 R15 R16 R17 R18 R19 R20 R21 R22 R23

The relationship between the internal registered node names and output names in
the pin list above is that R14 corresponds to O14.

When you want the output to be a registered function of product terms, you must
define it this way at the buried registered node. You must then define the output pin
as the internal register. If you want the register to be used onIy for feedback, do not
define the output pin as the internal register:

Syntax

Internal_Register := Sum_of_Product_Terms
Output_Pin := Internal_Register

or

/internal_Register := Sum_of_Product_Terms
Output_Pin := /Internal_Register

depending on your polarity preference. Notice that the internal register always has
the same polarity in both equations.

Example

R14 := I2 * I3
OUT14 := R14

Note: If you want the output from the buried register to be visible, the output pin
must be defined as a function of the buried register.

When you want the output to be a combinatorial function of product terms, define the
output node with the = operator. In this case, the buried registered node must not be
defined. Use the regular combinatorial equation (=) notation.

4.88

:l Monolithic m Memories :l

Build a Boolean Equation Design

Because there is only one AND/OR array for each output, you can define either the
internal node or the output node as a sum of products, but not both. Follow rules 2
and 3 above for defining registered or combinatorial outputs to meet this
requirement.

The PAL32VX10 has only one exclusive-OR gate per output. Each output equation
can therefore contain at most one exclusive-OR function (of two terms). If you use
the exclusive-OR gate in your equation, then you must not also use it as a polarity
inverter. Thus, if you define an internal node or output node with an exclusive-OR,
its polarity must be opposite of that given in the pin list:

Example

/R14 := I2 :+: I6 * I5 + I7 * /I8
if R14 is the name used in the pin list.
Defining output polarity for the PAL32VX10 is currently different from other devices.
Observing the following guidelines will provide upward compatibility with future
PALASM 2 software.
The polarities of the output/output feedback path and the register feedback path are
determined as a pair. The polarity of one path depends on the polarity of the other

path. Figure 4-29A shows the PAL32VX10 macrocell with the signal and path names
that this discussion uses.

:l Monolithic m Memories I'l | 4-89

4-90

N

Build a Boolean Equation Design

BYPASS MUX
CONTROLLED
BY .CMBF
THREE-STATE
PoLARITY CONTROLLED
MUX & '
s1 N - 1 OUTPUT
s2 — D Q 0
CK —T> @ 1 ‘
REGISTERED
FB1 FEEDBACK
ONLY
FB2
OUTPUT FEEDBACK
 Figure 4-29A
The PAL32VX10 Macrocell

Table 4-12 lists the four polarity pairs of the output/output feedback and the register
feedback paths for signal S2.

Table 4-12
Polarity Pairs of Output/Output Feedback and Register Feedback Paths
‘ for Signal S2
Output/Output Feedback Register Feedback
(FB2) (FB1)

S2 S2

S2 /S2

/S2 /S2

/S2 S2

2\ monotithic Fl Memories 1

Build a Boolean Equation Design

L e

You have only one option for selecting each pair of paths (for example, $2,S2). The
option comprises two factors:

* how the output pin is defined in the pin list and in the equaton

* how the register is defined in the pin list and the equation

Table 4-13 lists the four options for path polarities for signal S2 and the corresponding pin
list’equation polarity option for output signal O and register signal R. Please use only
these combinations to program the paths.

Table 4-13

Options for Path Polarities and Specifying Output Pin Polarity for Signal O and Register Polarity for Signal R

EEZEW” FB1 Polari
Option FB2 FB1 PinList Equation PinList Equation
1 s2 S2 0 o) R R
2 S2 182 /0 /0 R /R
3 1S2 /S2 (0] /0 /R R
4 /S2 S2 /0 o R R

For example, if you want the output/output feedback and register feedback polarity

paths to be high, the output pin in the pin list and the equation must be high and the
register in the pin list and the equation must be low.

No other options are currently available. For example, defining both the pin and the
register in the pin list and the equations as high is invalid.

After defining an output node either as a function of a buried registered node or as a

function of product terms, you can use the special function .CMBF to override the
definition. CMBF allows dynamic selection of registered or combinatorial output:

a Monolithic ﬁﬁﬂ Memories :l

4-91

Build a Boolean Equation Design

4.4

Syntax_
Output_Pin.CMBF = VCC
specifies a fixed combinatorial output.
Output_Pin.CMBF = GND
specifies a fixed registered output.
Output_Pin.CMBF = One_Product_Term

specifies a dynamically selected registered output if the result is low; or specifies a
dynamically selected combinatorial output if the result is high:

Example
014 := R14
R14 := I1 * I2 * /I3

014.CMBF = I4

This is a registered output, but will be combinatorial if 14 is asserted high. You need
not use the .CMBF if you do not want dynamic selection.

Note: You can use only one product term for this function.

Note: The Examples disk contains a complete PAL32VX10 design specification
example.

Checklist For Verifying Boolean Equation Designs

The following checklist helps you verify that your design meets PALASM 2 software's
syntax requirements for Boolean designs.

1.

Is the input file free of control characters such as form feeds, and was it created as
aclean ASCI| file?

Does the keyword CHIP appear before the design name, device type, and list of pin
names?

Does the keyword EQUATIONS preface all Boolean equations used?

Have you defined all strings to be used as logic replacements for terms in the
Boolean equations?

4-92

:l Monolithic m Memorles I‘rl

Build a Boolean Equation Design

5. On 20-pin devices, is GND specified as pin 10 and VCC as pin 20? On 24-pin
devices, is GND specified as pin 12 and VCC as pin 24? On 28-pin devices, is GND
specified as Pin 14 and VCC as pin 28?

6. If you are specifying an active-low output on a programmable polarity device, is the
signal name on the left side of the equation the logical opposite of the signal name
specified in the pin list? Are the signal names the same for active-high parts?

7. Are you within the maximum number of product terms for any output?

8. Are you specifying .TRST equations for individually programmable three-state
outputs with three-state buffers only?

9. Are you specifying .CLKF equations for PAL16RA8 and PAL20RA10 designs only?
10. Are all comments preceded by a semicolon (;)?

11. Does the last line in your input file terminate with a hard carriage return? (Omitting
this carriage return will cause the program to crash.)

After verifying your design, proceed to Build Simulation, Chapter 6.

:l Monolithic Eﬂﬂ Memoriles :l 4-93

Notes

4.94 l'r' Monollthlem Memories :l

5. Build a State Machine Design

About this Chapter

This chapter guides you through creating a state diagram and building a state machine
design file for PALASM 2 software. It describes state diagrams for Mealy and Moore
machines, the structure and syntax of the state machine design file, and design
considerations for PAL, PLS, and PROSE devices. It also reviews a simple design using
a state diagram and design file.

To... Refer to Section . . .
Create a state diagram 5.1
Build a state machine design 5.2

Tailor the design fora PLS, PROSE, or
PAL device state machine 5.3

l‘rl Monolithic m Memoriles i'.'l 4.95

Build a State Machine Design

5.1
Create A State Diagram

A state diagram illustrates the behavior of a state machine. The design is easy to build
from a state diagram that includes:

e All states named (with or without assigned values) and connected to their next states
* The input values that cause state transitions when a clock pulse occurs
* The output values expected because of state transitions

The following sections discuss the definitions and diagrams for the two types of
machines, Mealy and Moore.

5.1.1
Create A Mealy State Diagram

A Mealy machine determines its outputs from the inputs and the present state. Figure
4-30 illustrates how combinatorial and registered Mealy output is achieved.

INPUTS

COMBINATORIAL
Logic > outruTs

COMBINATORIAL
"~ LOGIC

OUTPUT i ourtpUTS
REGISTERS
PRESENT STATE
REGISTERS
Figure 4-30
Mealy Output

4-96 I‘rl Monollthlcm Memories I‘:'

Build a State Machine Design

In Figure 4-30, inputs from pins are combined with present state registers to determine the
next state (which becomes the present state on the clock). Inputs are also combined with
present state registers to determine the outputs to the pins. When outputs are
combinatorial functions of inputs and the present state, the outputs are valid when the
new state is reached. Registers may be added to synchronize the outputs. When outputs
are registered functions, the outputs are valid one clock cycle after the new state is
reached.

The state diagram for a Mealy machine reflects the independence of the states, the
inputs, and the outputs. Figure 4-31 shows a functional diagram for a Mealy machine with
four states.

TRANSITION

LINES
Inputs

Outputs

Inputs

__Inputs Outputs
Outputs

Inputs

Outputs Inputs

Outputs 4

Inputs
Outputs

Outputs

Inputs
—_— Inputs
Outputs —Outputs

Inputs, Inputs, Inputs

Outputs

Figure 4-31

Mealy Functional State Diagram

In Figure 4-31, one or more sets of inputs and outputs are located near each transition
line. You specify the input values that initiate a transition and output values that result. A
set of inputs is also called a condition. Later, you will assign a name for the condition.
Each transition has a unique condition; the outputs may be unique or the same. Notice

zl Monolithic m Memories :' 4-97

Build a State Machine Design

S T s .

that a transition may have more than one input/output set and notice that a transition may
have more than one condition (inputs) with only one set of outputs. More than one
condition means that the outputs are a function of any of the true conditions.

Figure 4-32 shows sample conditions and outputs for a Mealy machine with two input and
output values.

11,10 00,10,11

11

00,10,11
10

Figure 4-32

Inputs and Outputs for Figure 4-31

In Figure 4-32, when the machine is in state N1, three next states are possible:

* If the conditions are 00 or 01, the next state is N2; the outputs are 00

« If the condition is 10, the next state is N3; the outputs are 11

» |f the condition is 11, the machine remains in N1; the outputs are 11

Transitions occur with the clock, after which outputs are valid. Notice in Figure 4-32 that

one transition line between N2 and N4 suffices for the two lines shown in Figure 4-31. Two
sets of conditions and outputs are shown because the outputs are unique.

4.98 &\ Monotithic lU] Memories €1

Build a State Machine Design

Figure 4-32 may be simplified. One way to simplify it is to omit conditions that do not
affect the transition to a new state. Outputs that do not change can also be omitted. For
example, state N3 has a hold transition (N3 to N3). The hold conditions 00, 10, and 11
may be omitted from the line because they do not affect a transition to a new state.
Outputs 11 may be omitted because they have not changed since the transition from N1
to N3. The hold transition at state N2 may be omitted for the same reasons.

Figure 4-33 shows the results of simplifying Figure 4-32.

Figure 4-33

Minimum Inputs and Outputs to Build a Mealy Design

You can use other ways of simplifying state diagrams, depending on the design. For
example, if outputs are high, unless otherwise specified, only conditions and low outputs
need to be shown. Or, if the transition from any state is either to a next state or to an
initial state, only the next states with their conditions and outputs need to be shown. The
initial state can be defined separately.

The design for a Mealy machine may now be built from the information in Figure 4-33.
Proceed to Build A State Machine Design, Section 5.2.

a Monolithic mnhmorles l‘r' | 4-99

5.1.2

Build a State Machine Design

Create A Moore State Diagram

4-100

A Moore machine determines its outputs from the present state only. Figure 4-34
illustrates how Moore output is achieved.

INPUTS

COMBINATORIAL
LOGIC

PRESENT STATE
REGISTERS

§ outpuTs

COMBINATORIAL
LOGIC B QUTPUTS
Figure 4-34
Moore Output

In Figure 4-34, inputs from pins are combined with the present state registers to determine
the next state (which becomes the present state on the clock). Only the present state
determines the outputs. For a Moore machine, combinatorial and registered outputs are
valid when the new state is reached.

The state diagram for a Moore machine reflects the dependence of the outputs on the
states. Figure 4-35 shows a functional diagram-for a Moore machine with four states.

| :l Monollthlcm Memorles n

Build a State Machine Design

TRANSITION
LINES Inputs
| I
nputs Inputs nputs
STATE NAME STATE NAME
Outputs Outputs

Inputs Inputs

STATE NAME

Inputs, Inputs,Inputs

Figure 4-35

Moore Functional State Diagram

In Figure 4-35, one or more inputs are located near each transition line. You specify the
input values that initiate a transition. A set of inputs is also called a condition. Later, you
will assign a name for the condition. You place the outputs from each state with the state
name. Notice that a transition may be caused by more than one condition. Each
transition has a unique condition.

Figure 4-36 shows sample conditions and outputs for a Moore machine with two inputs and
outputs.

2\ monotithic LI Memories £ 4-101

Build a State Machine Design

00,01,11

10,00,11

Figure 4-36

Inputs and Outputs in Moore Diagram

In Figure 4-36, when the machine is in state N1, three next states are possible:
. If the conditions are 00 or 01, the next state is N2 and the outputs are 01

* |f the condition is 10, the next state is N3 and the outputs are 10

* Ifthe condition is 11, the machine remains in N1 and the outputs are 11

Notice that one transition line between N2 and N4 suffices for the two lines shown in Figure
4-35.

Figure 4-36 may be simplified. One way to simplify it is to omit conditions that do not
affect the transition to a new state. For example, N4 has a hold transition (N4 to N4). The
hold conditions 10, 00, and 11 may be omitted from the line because they do not affect a
transition to a new state. The hold conditions at states N1, N2, and N3 may be omitted for
the same reason. i

Figure 4-37 shows the results of simplifying Figure 4-36.

4-102 z‘ Monollthicm Memories ﬂ

Build a State Machine Design

‘ -
00,10
STATEN4

00

Figure 4-37

Minimum Inputs and Outputs to Build a Moore Design

As with Mealy diagrams, alternative ways of simplifying state diagrams are used
depending on the design. If outputs are high, unless otherwise specified, only low outputs
need to be shown. If all states have hold transitions, only the new state transitions with
their conditions need to be shown.

The design for a Moore machine may now be built from the information in Figure 4-37. n
5.2

Build A State Machine Design

The PALASM 2 software design is easy to build from a state diagram. The design contains
information for programming a device to cycle through defined states and give specified
outputs. The design is constructed using a text editor and must contain only ASCII
characters. PALASM 2 software interprets the data and translates it into a JEDEC file for
downloading to a device programmer.

Figure 4-38 shows the structure of the design.

:l Monolithic m Memories ﬂ 4-103

Build a State Machine Design

DECLARATION

STATE

CONDITIONS

Figure 4-38

Structure of the Design

Table 4-14 describes the three segments of the design.

Table 4-14

Description of State Machine Design Segments

Segment Description

DECLARATION Design identification, device and pin data, string
substitutions

STATE Defaults; pin assignments to states; equations for
state transitions and outputs

CONDITIONS Input values that determine the state transitions .

"State" and "Conditions" are reserved words. The software reserves certain words to
identify design segments and information, device codes, commands, functions, and pin
defaults. Do not use the reserved words for any other purpose. Some reserved words are
keywords that identify the block of information that follows. All reserved words are listed
in General Syntax, Section 5.2.1, item 5.

The general syntax rules discussed in the following section must be observed to build the
design.

4-104 &\ Monolithic m Memories :l

Build a State Machine Design

/o ——————]

5.2.1
General Syntax

The following general syntax rules apply to building the state machine design.

1. Maximum line length is 128 characters or columns. Data beyond the limit must be
placed on the next line.

2. Characters are upper or lower case alphanumerics, spaces, tabs, and underscores.
Tabs are translated as spaces. Unless otherwise stated, neveruse "~ ! @ #$ A & [
1{}"?0r <

3. Table 4-15 lists characters that perform special functions. Do not use these
characters for any other purpose.

Table 4-15

Special Characters and Functions

Character(s) Function

v (Single quote or apostrophe) Delimits string
characters to be substituted

s Pin list separator

() Enclose pins in expressions

H Precedes comments (text and characters the
software does not see). Extensive com-
menting is a good habit. Comments can
start anywhere on the line and must be
preceded by a semi-colon (;).

/ NOT or active-low polarity

Y% Don't care value for global defaults

2\ monotithic Rl Memories £1 4-105

Build a State Machine Design ,
———""""""""""-"""*"-"""-"—]

Table 4-15 (Continued)

Special Characters and Functions

Character(s) Function

* AND

+ OR,; "Or for input condition . . ."

o XOR (used only in éondition equations)

- State transition: "Go to state . . ."

+> Local default state transition: "Otherwise, go
to state. . ."

= State transition and registered output
equation operator

= Condition, state assignment, and combina-
torial output equation operator

4. PALASM 2 software reserves the following words to identify design segments and
information, device codes, commands, functions, and pin defaults:

AUTHOR DO

BEGIN ELSE

CHECK END

CHIP EQUATIONS
CLKF : FOR

CLOCKF GND

CMBF HOLD_STATE
COMPANY IF

CONDITIONS ‘ MASTER_RESET
DATE MEALY_MACHINE
DEFAULT_BRANCH MOORE_MACHINE

DEFAULT_OUTPUT NC

4-106 a Monolithic m Memorles z'

Build a State Machine Design

4. Reserved words (continued):

NEXT_STATE SETF

OR SIMULATION
OUTPUT_ENABLE STATE
OUTPUT_HOLD STRING
PATTERN THEN
POWER_UP TITLE
PRLDF TRACE_OFF
R TRACE_ON
REVISION TRST

RSTF vCcC

S WHILE

5.2.2

Build The Declaration Segment

Information in the Declaration segment helps document the design before processing. It
also defines pin names and string substitutions. This segment appears first in the design
as shown previously in Figure 4-38. Figure 4-39 shows the keywords and information
structure of the segment.

2\ monoithic I Memories &1 4-107

Build a State Machine Design

8TWA KEYWORDS DESIGN HEADER

| R TITLE &// What the design is; name of design
om PATTERN File name or pattern number or other ID
0] REVISION Version or other ID
AUTHOR Designer or department or other ID
COMPANY Company or division or other ID
DATE Build date or current date or other DEFINITIONS
CHIP Description or file name or other Device name

Signal names and their polarity assigned to pins

STRING Name of string ' Characters to substitute '

Figure 4-39

Structure of the Declaration Segment

The design header helps document and identify the design. The software copies the
header into the output files to help identify them also. You may omit any part of the
Declaration segment except the CHIP keyword and definition; PALASM 2 software
requires the CHIP definition to process the file. When any other part of the design header
is omitted, the software issues a warning message during assembly and continues
processing.

Information in the design header can contain up to 24 significant characters after the
keyword and extra blank spaces. Characters beyond 24 are truncated during processing.

Definitions for CHIP and STRING have the special syntax described below.

4-108 bu Monolllhlcm Memories &1

Build a State Machine Design

5.2.2.1
CHIP Syntax

The CHIP definition is required to process the design. Filling in the CHIP information early
makes design entry easier later. With the purpose of the design in mind and the device
logic diagram in hand, fill in the three required entries for the CHIP definition:
Syntax

CHIP Description or file name or other ~ Device name

Signal names and their polarity assigned to pins (pin list)

Figure 4-40 lists each entry, describes its specific syntax and shows an example.

1 Description or filename or other 2 Device name
1 letter followed by up to 13 alphanumeric Any device supported by the software (Chapter
characters \ 1 contains the complete list of devices)
i i f i
CHIP NOT REAL 1 PAL16R8
;PINS 1 2 3 4 5 6 7 8 9 10

CLOCK DCLOCK SEN1 SEN2 1I2 /I3 /14 15 /16 GND

;PINS 11 12 13 14 15 16 17 18 19 20
SDI NC RESET SDO TOP1 BOT1 TOP2 BOT2 MID VCC

3 Signal names and polarity assigned to pins (pin list)

Sequential list of signal names and their polarities for the pins of the device. Begin a name
with a letter and follow it with up to 13 alphanumeric characters. Place a slash (/) before the
name to indicate active-low; otherwise, the signal is active-high. Separate names by commas,
blank spaces, or carriage returns. Label unused pins NC (no connect). GND and VCC

are reserved words and must be placed on ground and power pins.

Figure 4-40

CHIP Syntax and Pin List

a Monolithic E.Eﬂ Memories zl 4-109

5.2.2.2

Build a State Machine Design

Notice the commented lines of pin numbers in Figure 4-40. Commenting the pin numbers
helps identify signal names and pin numbers for writing state equations. Using mnemonic
phrases or names for pins also makes writing equations and documenting the design
easier.

STRING Substitution Syntax

Substituting a frequently used string of characters with a short name is optional. You may
know from the design's purpose, the device logic diagram, and the CHIP information which
combinations of signals will be used frequently before writing equations. Otherwise, you
may wish to add a string definition as the design progresses. If you use strings, two
entries must follow the STRING keyword:

Syntax

STRING String name ' Characters or previously defined string names to
substitute '

Figure 4-41 lists each entry and its specific syntax and shows two examples.

1 String nafne
Unlimited number of alphanumeric
characters DELIMITER
Number of strings limited by computer
memory

STRING INPUT ' Al + /A2 + A3 '
STRING INPUT___ALLi' (Al + /A2 + A3) '

e

2 Characters or previously defined
string names to substitute

E

Must be delimited with single quotes

4-110

Figure 4-41

STRING Information and Syntax

I‘rl Monolithic m Memories i:l

Build a State Machine Design

s —

The single quoteé ('...")initem two of Figure 4-41 are delimiters that identify the
characters for substitution.

Notice that parentheses added to the INPUT string form the string entitled INPUT_ALL.
The difference between how /INPUT and /INPUT_ALL are compiled is shown in Table 4-16.
Table 4-16

Compilation of String Definitions in Figure 4-41

String Term Software Compilation

/INPUT /Al + /A2 + A3

/INPUT ALL /(A1 + /A2 + A3)
=/A1 * A2 * /A3

Figure 4-42 shows a sample Declaration segment.

2\ Monotithic L Memories &1 4-111

‘ Build a State Machine Design
W

N

TITLE NOT_REAL 6
AUTHOR J. ENGINEER
CHIP NOT REAL 6 PAL16R4

;PINS 1 2 3 4 5 6 7 8 9 10
CLOCK DCLOCK SEN1 SEN2 Al /A2 A3 GND NC GND

;PINS 11 12 13 14 15 16 17 18 19 20
RST SDO TOP1 BOT1 MID NC NC NC NC VCC

STRING INPUT ' Al + /A2 + A3 !
STRING INPUT ALL ' (Al + /A2 + A3) !

Figure 4-42

Sample Declaration Segment

5.2.3
Build The State Segment

The State segment contains information about the design and equations that describe
how the machine functions. The information comes from the state diagram and CHIP
definition. The keyword

STATE

is required to identify this segment of the design. Figure 4-43 shows the information
contained in this segment.

4112 FI Monollthloim Memories n

Build a State Machine Design

DECHARANZON

STATE

CONDET

PR G l Ob a l D e f au l t s

State Assignments

State Transitions and Outputs

Figure 4-43

Structure of the State Segment

Table 4-17 describes the information in each box in Figure 4-43.

Table 4-17

Descriptions of State Information

Information Description

Global Defaults Statements that specify the kind of machine, the outputs,
and transitions when unspecified in the equations

State Assignments Equations that assign pins as a bit code for each state

State Transitions and Equations that specify the transitions between states
Outputs and the polarity of the output signals

ﬂ Monolithic E.[iﬂ Memorle§ :l

4-113

Build a State Machine Design
m

The following sections discuss the purpoée and specific syntax for each kind of
information.

5.2.3.1
Global Defaults

You can use defaults to speed design entry. For example, if outputs do not change on
transitions, one global default option maintains the present output and you can write
shorter equations. If a transition cannot be determined from the equations, another global
default causes a transition to a known state.

You can default outputs to maintain the present values or to have specific values on
transitions. You can default state transitions to go to the state specified, stay in the
present state, or go to the next state listed in the design. Table 4-18 describes the default

options.
Table 4-18
Descriptions of Default Options

Default Options and Syntax Description
MEALY MACHINE (Default) Specifies which kind of machine the design

or implements. Refer to Create A State Diagram,
MOORE_MACHINE Section 5.1 for definitions and state diagrams.
OUTPUT_HOLD Output_Pins ~ List of output pins that maintain their present

output values when next state output values cannot
be determined from PLS or PROSE device designs.
Use spaces, commas, or carriage returns to separate
pin names. . :

(Output equations are required when using
OUTPUT_HOLD. Refer to State And Output
Equations , ‘Section 5.2.33)

4-114 z‘ Monolithlc m Memories Z'l

Build a State Machine Design

Table 4-18 (Continued)
Descriptions of Default Options
Default Options and Syntax Description
DEFAULT OUTPUT Output_Pins List of output pins that default to specified

values when next values cannot be determined
from the design. A value is specified by placing
the following special symbol before the pin name:

Value Symbol
Logic 1 None
Logic 0 /

Don't Care %

(Output equations are required when using
this default. Refer to State And Output Equations,
Section 5.2.3.3.)

Pin names are separated with spaces, commas,
or carriage returns.

DEFAULT BRANCH State_Name Defines the next state when a next state cannot
or be determined from the design.
DEFAULT_ BRANCH HOLD STATE Holds the machine in the present state when a next
or state cannot be determined from the design.
DEFAULT BRANCH NEXT STATE Moves the machine to the state of the following

equation when a next state cannot be determined
from the design. The last state and output equations
must define all possible transitions.

All the default options in Table 4-18 are reserved words or keywords. ‘Mealy machine
designs that do not use defaults do not need any of the options in Table 4-18. Figure 4-44
shows sample defaults.

zl Monolithic Eﬂﬂ Memoriles l‘rl 4-115

Build a State Machine Design

DECERARATION

S
%,_.‘%%%

STATE

\?@DEE

N —

StQte ASSH NMOORE MACHINE

% b T, N —

kY DEFAULT OUTPUT 0uUT1, /0UT2, $0UT3
%2 State \ra
221 ““““““““““““““) DEFAULT BRANCH INIT
Figure 4-44
Sample Defaults

In Figure 4-44, when the outputs cannot be determined from the design, the DEFAULT_
OUTPUT definition means OUT1.will go high and OUT2 will go low; OUT3 has a don't care
value. When the next state cannot be determined from the transitions, the DEFAULT_
BRANCH definition means the machine will go to state INIT.

5.2.3.2
State Assighments

A state assignment is an equation that defines a state as a unique combination of
outputs. The phrases "state bit assignment” and "bit assignment” also describe state
assignments. State assignment is strongly recommended but not required. If not
assigned manually, running the Expand program automatically assigns state bits for
registered outputs defined as NC in CHIP. You must be careful to place NC on those
outputs to be used as state bits. If you allow Expand to make assignments, however,
understanding the simulation results may be difficult.

Syntax

State_Name =Output_Pinqy . .. * .. . Output_Pinp

4-116 &\ Monolithic m Memories &\

Build a State Machine Design

Information for state assignments comes from the purpose of the design, the names of
the states in the diagram, and the names and polarity of the output pins in the pin list.
Figure 4-45 shows sample assignments.

DECLARATION
: o
\\ MM“"“’M«.,,,
STATE
CONDIE:
V“i Global Defaults
% ~-
\ st\e Tra IDLE = /Q1 * /QO0 ;0-0
s Ngssssssoss S0 = Q1 * /Q0 ;1-0
%%WMWAWW - S1 = Q1 * Q0 ;1-1
S2 = /Q1 * QO ;0-1
Figure 4-45
Sample State Assignments

In Figure 4-45, the machine is in state IDLE when outputs Q1 and QO are low. When
outputs Q1 and QO are high, the machine is in state S1.

5.2.3.3
State And Output Equations

State equations define the machine's sequencing in terms of conditions and next states.

Output equations define the machine's output in terms of conditions and outputs.

2\ monotithic LI Memories &1 4-117

4-118

Build a State Machine Design

The state diagram and CHIP definition contain the state names and outputs for these
equations.)

State Equations

A state transition equation defines states in terms of conditions that determine transitions
to other states. State transitions are necessary for both Mealy and Moore designs:

Syntax
State_Name := Conditiony - Next_State

+ Conditionp -> Next_State
+> Local _Default_State

The state name corresponds to a named state in a state diagram. It must be unique and
can have up to 14 alphanumeric characters. The condition is a label for the combination of
input signals that determine a transition. Build The Conditions Segment, Section 5.2.4,
discusses how to define conditions. The local default state signified by +-> overrides the
global defaults. If no local default exists, global defaults apply to unspecified transitions.

Note: An unconditional state transition must use VCC as a condition. The unconditional
transition has the syntax

State_Name := VCC -> Next_State

Figure 4-46 contains simple state diagrams for Mealy and Moore machines and gives the
state transitions that they both illustrate.

“1 Monolithic m Memories zl

Build a State Machine Design

MEALY DIAGRAM: COND4
/P1,/P2

MOORE DIAGRAM:

COND4
NO l
/P1,/P2
D1
COND2

STATE EQUATIONS: NO := COND1 -> N1
+ COND2 -> N1
+ COND3 -> N2
+-> NO
N2 := VCC -> N3

Figure 4-46

State Equation for Mealy or Moore Machine

Notice that in Figure 4-46 pin names (P1,P2) have replaced actual output values (0,1).
Condition names (COND1,COND2,COND3) have also replaced actual input values (0,1).

I‘J Monolithic m Memories a 4-119

Build a State Machine Design

The state equations for NO and N2 are shown at the bottom of the figure. If the global
default

DEFAULT BRANCH HOLD_STATE
were specified in the Defaults segment, the local default
+=-> NO

would be unnecessary.

Output Equations

If you use OUTPUT_HOLD or DEFAULT_OUTPUT, you must have an output equation for
each state equation. While a state equation specifies the conditions that cause
transitions between states, an output equation specifies the conditions and the outputs
from the present state.

Note: OUTPUT_HOLD is valid only in PLS and PROSE designs.

Note: If the output pins are the same as the state bits, do not use output equations and
do not use OUTPUT_HOLD or DEFAULT_OUTPUT. If the output bits are different from the
state bits, you must use output equations; using OUTPUT_HOLD and DEFAULT_OUTPUT
is optional. Output pins not defined in the output equations or by DEFAULT_OUTPUT
have the don't care value. :

The syntax for output equations is different for Mealy and Moore machines. The syntax
also depends on whether the outputs are registered or combinatorial: .

Syntax
For registered Mealy output:
State_Name.QUTF := Conditiony -> Outputs

+ Conditionn - Outputs
+> Local_Default_Outputs

Notice the registered equation operator :=.

4-120 2 monotithic I Memories &1

Build a State Machine Design

Syntax
For combinatorial output:
State_Name.OUTF = Conditiony -> Outputs

+ Conditionn -> Outputs
+> Local_Default_Outputs

Notice the combinatorial equation operator =. The state name comes from the state
diagram. It must be unique and may have up to 14 alphanumeric characters. The
condition is a name for the combination of input signals along the transition line in the
diagram. Build The Conditions Segment, Section 5.2.4, discusses how to define
conditions. The outputs are pin names with the appropriate polarity to create the logic
values found in the state diagram. The local default output signified by +-> overrides the
global defaults.

Moore output equations have the same registered and combinatorial operators but have
no conditions and no local default outputs. Conditions and local defaults are not valid in
Moore machine output equations because the output is determined by the state only:
Syntax

For registered Moore output:

State_Name.QUTF := Outputs

Syntax

For combinatorial Moore output:

State_Name.OUTF = Outputs
Note: Registered Mealy machine outputs are valid one clock cycle after the new state is
reached. Mealy combinatorial outputs are valid when the new state is reached. Moore

registered and combinatorial outputs are valid when the new state is reached.

Figure 4-47 contains the Mealy state diagram from Figure 4-46 with its transition and
output equations.

“rl Monolithic m Memories n 4-121

Build a State Machine Design

COND4
/P1,/P2

P1,P2

COND1 -> N1
COND2 -> N1
COND3 -> N2
+-> NO

N2 := VCC -> N3

STATE EQUATIONS: NO

+ + |

OUTPUT EQUATIONS: NO.OUTF := COND1 -> /Pl * P2
-> COND2 -> P1 * /P2

-> COND3 -> P1 * P2
+-> /P1 * /P2
N2.0UTF := VCC -> Pl * P2

Figure 4-47

Transition and Output Equations for Mealy Machine

In Figure 4-47, if the global default
OUTPUT_HOLD /P1 /P2
were specified in the Defaults segment, the local default

+-> /P1 * /P2

4-122 &\ Monolithic IFJEJ] Memories &\

Build a State Machine Design

in the output equation would be unnecessary.

Transition and output equations may be grouped together or alternated in the design.
Figure 4-48 shows sample state and output equations.

DECLARANXON
SO0 :=C3 -> S1 + CO -> S1
+ Cl1 -> S2
+-> S0
S1 := VCC -> S2
S2 := VCC -> S3
S3 := VCC -> 54
S4 := Cl -> S7
+ C3 -> S5
+ CO -> S5
+ C2 -> S6
+-> S4
S5 := VCC -> S6
S6 := VCC -> 857
S7 := VCC -> S0
SO0.OUTF := C3 -> GRN1l * RED2

+ CO -> /GRN1 * RED2

+ Cl1 -> GRN1 * /RED2

+-> /GRN1 * /RED2
S1.0UTF := VCC -> /GRN1 * /RED2
S2.0UTF := VCC -> /GRN1l * /RED2
S3.0UTF := VCC -> YEL1l * RED2

S4.0UTF := Cl -> RED1 * GRN2
+ C3 -> /RED1 * GRN2
+ CO -> /RED1 * /GRN2
+ C2 -> RED1 * /GRN2
+-> /GRN1 * /RED2
S5.0UTF := VCC -> /RED1 * /GRN2
S6.0UTF := VCC -> /RED1 * /GRN2
S7.0UTF := VCC -> RED1 * /YEL2
Figure 4-48

Sample Transition and Output Equations

n Monolithic m Memories Z'l 4-123

Build a State Machine Design
]

Recall that the local default outputs for S0.OUTF and S4.OUTF,
+-> /GRN1 * /RED2

can be put in a DEFAULT_OUTPUT statement and omitted from the equations if no other
global output default exists.

Figure 4-49 shows a sample State segment.

STATE
; DEFAULTS

MOORE_MACHINE
DEFAULT BRANCH HOLD_ STATE

; ASSIGNMENTS

SO0 = /Q1 * /Q0 ;0-0
S1 = Q1 * /QO0 ;1-0
S2 = Q1 * QO ;1-1
S3 =/Q1 * QO ;0-1

; STATE TRANSITIONS AND OUTPUTS

SO0 := CO0 -> s1
4+ ClL -> s1
+ C2 -> S2
S1 := VCC -> S2
S2 := VCC -> S3
S3 :=C0 -> s1
+ Cl -> S1
+ C2 -> s2
Figure 449
Sample State Segment

The Conditions segment follows the State segment in the design.

4-124 z‘ Monolithic m Memorles n

Build a State Machine Design

5.2.4

Build The Conditions Segment

The Conditions segment contains equations that give names to unique sets of inputs. The
equations identify the branching conditions used in the State segment to determine
transitions and outputs.

The keyword

CONDITIONS

is required to identify this segment of the design, as shown in Figure 4-50.

DECLARAT XON

STEATE

CONDITIONS

Figure 4-50

Location of Conditions Segment

The structure of a condition equation is:
Syntax
Condition_Name = Inputy * Inputy
+ Inputy * Inputp
The condition name must be unique and may have up to 14 alphanumerics; the number of
conditions depends on the design. The inputs are the pins named in the pin list and must
be unique combinatorial expressions. If a condition is only one input, a condition equation

is unnecessary; use the pin name in the state and output equations. You can enclose the
inputs with parentheses for DeMorgan expansion.

ﬂ Monolithic m Memories :l ' 4.125

Build a State Machine Design

lllegal, conflicting conditions occur when two or more conditions may be true at the same
time and are used in the same transition equation. For-example, the two conditions

GOOD_COND1 = Il * I2 * I3
BAD COND2 = Il * I4

used in the state transition
NO := GOOD_COND1 -> N1
+ BAD_COND2 -> N2
+-> NO

conflict. The state diagram in Figure 4-51 illustrates conflicting conditions.

~_

GOOD_COND1 = I1 * I2 * I3 BAD COND2 = Il * I4

Figure 4-51
State Diagram of Conflicting Conditions
In Figure 4-51, if 11, 12, I3, and 14 are all true, the transition from NO is random. The next

state could be N1; it could be N2. PALASM 2 software issues an error message that
conflicting conditions exist.

Figure 4-52 shows a sample Conditions segment with no conflicting conditions.

4-126 : 2\ mMonoiithic B Memories £

Build a State Machine Design

e L —

PDECLARATLON

BEARE

\ W conprTIONS
CO0 = /SEN1 * /SEN2
Cl = /SEN1 * SEN2
C2 = SEN1 * SEN2
C3 = SEN1 * /SEN2

Figure 4-52
Sample Conditions Segment

Although the preceeding discussion guides you in building a PALASM 2 software state
machine design, a few devices have special features that need further discussion.’

Tailor The Design For PLS, PROSE, Or PAL Device
State Machines

The structure and content of the design also depends on the device you use. The
following sections discuss special considerations not covered in the previous sections for
building PAL, PLS, and PROSE state machine designs.

5.3.1 .
PLS And PROSE Considerations

This section describes only the syntax and considerations that allow you to take
advantage of special features on PLS and PROSE devices. A discussion of the syntax
and structure for building a state machine design begins in Build A State Machine Design,
Section 5.2.

Table 4-19 lists the syntax and considerations for PLS and PROSE devices.

:l Monolithic m Memofies :‘ 4-127

4-128

Build a State Machine Design

Table 4-19

Considerations for Tailoring State Machine Design Files for PLS and PROSE Devices

Device

Special Considerations

PLS

The complement array is assigned as a fictional pin
after the buried register nodes are defined in the pin list.
Refer to PLS Device General Considerations, Section
4.3.1.

The complement array implements all state transition and
output equation local defaults (specified by +->). The
complement array is non-functional if all possible transi-
tions are specified in the state transition equation. To use
the array for other purposes, you must add the Equations
segment (refer toBuild A Boolean Equation Design,
Chapter 4) and use Boolean equations.

The PLS devices have a pin you can configure as an
output enable or preset pin. Configure the pin in the
Defaults segment.

To configure the

pinas... Specify . . .

Output Enable OUTPUT ENABLE

Preset MASTER_RESET
(Default)

You can use MASTER_RESET to put the state machine
into a known initial state. If OUTPUT_ENABLE is
specified, your design must have an initial state.
Without an initial state, the machine may not

function as designed. Include an initial state in the
state diagram so that you will remember to write

the necessary state transition and output equations.

The polarity of a pin in the pin list and in the State segment
must be the same, either both active-high or both active-
low.

&\ Monolithic EE) memorres &1

Build a State Machine Design

Table 4-19 (Continued)

Considerations for Tailoring State Machine Design Files for PLS and PROSE Devices

Device Special Considerations

PLS (Continued) 5. lfyou allow the software to automatically assign state
bits, remember to assign NC to buried nodes or dual
output/state bits.

PROSE 1. The PMS14R21 device has a pin that is configured as an
output enable or preset pin. Configure the pin in the
Defaults segment.

To configure the

pinas... Specify . . .

Output Enable OUTPUT ENABLE

Preset MASTER RESET
(Default) -

MASTER_RESET may be used to put the state machine
into a known initial state. If OUTPUT_ENABLE is
specified, initialization may be built into the design.
Without an initial state, the machine may not

function as designed. Include an initial state in the
state diagram so that you will remember to write

the necessary state transition and output equations.

2. The software automatically assigns state bits.

3. The first state transition and output equations have a
special syntax to place the machine in an initial state
after power-up and the first clock:

&\ Monolithic MEB Memories & -4-129

Build a State Machine Design

Table 4-19 (Continued)

Considerations for Tailoring State Machine Design Files for PLS and PROSE Devices

Device Special Considerations

PROSE (Continued) Example
Mealy:

POWER UP := VCC -> Starting_State_Name
POWER _UP.OUTF := VCC -> Starting_Outputs

Example
Moore:

POWER UP := VCC -> Starting_State_Name
POWER _UP.OUTF := Starting_Outputs

VCC is required for both Mealy and Moore machines.

4. The maximum number of transitions from a state is four.
This limit includes the local or global default branch.

5. Parentheses, (), are not allowed in the Conditions
segment.

5.3.2

PAL Device General Considerations
This section describes only the syntax and considerations that allow you to take
advantage of special features on PAL devices. A discussion of the syntax and structure
for building a state machine design begins in Build A State Machine Design, Section 5.2.
The following general considerations apply to designing state machines for PAL devices.

1. Do not use the default option OUTPUT_HOLD.

2. Use both EXPAND and MINIMIZE to process the design.

4-130 2\ monotithic BE] Memories &1

Build a State Machine Design

3. Explicitly build initialization into the design. Without initialization, the machine may
not function as designed. Include initialization transitions in the state diagram so
that you will remember to include the necessary state and output equations.
Alternatively, if the device features set and reset functions, these functions may be
used for initialization.

4. PAL16RA8, PAL20RA10, and PAL devices without registers do not support state
machine designs.

Some PAL devices have programmable features that require adding an Equations
segment and using Boolean equations after the State segment. Functional Equations,
Section 4.1.3.4, discusses the structure and syntax for the set, reset, and three-state
functions. \

Table 4-20 lists the features and syntax considerations for specific PAL devices.

Table 4-20

Special Features and Considerations for Specific PAL Devices

Device Features Considerations
PAL22RX8, Set, Reset, and Three- Require Boolean equations™
PAL22V10 state
PAL32VX10 Set and Reset Require Boolean equations.”
Internal Nodes 1. The ten buried nodes must be assigned after

VCC and the fictional 25th pin in the pin list. After
the usual pin names are defined, you assign a
name for each buried node beginning with node
14. The syntax for the buried nodes is the same
as for the other pins.

2. State assignments are defined using the node
names. For automatic state bit assignment,
label the nodes to be assigned as NC.

*The structure and syntax for Boolean equations is discussed in Build A Boolean Equation Design,
Chapter 4. Also refer to Tailor the Design For specific Devices, Section 4.3.

a Monolithic m Memories i:l 4-131

Build a State Machine Design

Table 4-20 (Continued)

Special Features and Considerations for Specific PAL Devices

Device Features Considerations

PAL32VX10 (Continued) 3. Output equations are defined using the node
names listed after VCC and the fictional pin.
Assigning nodes to output pins is done with
Boolean equations.*

*The structure and syntax for Boolean equations is discussed in Build A Boolean Equation Design,
Chapter 4. Also refer to Tailor the Design For specific Devices, Section 4.3.

After your design is specified, you can proceed to Build Simulation, Chapter 6.

5.4

Review A Simple Design
The state diagram and design in this section comprise a simple, complete design.

Figure 4-53 shows the state diagram for the 2-bit up/down counter from which the design in
Figure 4-54 was built.

4-132 ﬂ Monolithic m Memorles :'

Build a State Machine besign

INIT

UP */INIT UP */INIT

INIT INIT

/UP * /INIT JUP */INIT

INIT

/UP */INIT /UP */INIT

UP */INIT

UP */INIT

Figure 4-53

Simple State Diagram

:l Monolithic m Memorlies :'

4-133

Build a State Machine Design

CLK UP INIT NC NC NC NC NC NC GND

%&%%%W%’%W%’WWSWM”&%”&W&”M%w%ﬁ%%ﬁm‘i@%’?”WW«&&%‘&&W&W@W?&%%W%%%Q& R »3
. TITLE UP/DOWN COUNTER %
. PATTERN X0000 L
| REVISION 0 .
AUTHOR BRYON MOYER u
% COMPANY MONOLITHIC MEMORIES

. DATE . 9/23/87

.

. cHIP 2 BIT CTR PAL16R4

i

% ;PINS 1 2 3 4 5 6 7 8 9 10

?

i

i

S

5

#

;PINS 11 12 13 14 15 16 17 18 19 20
/JOE NC NC RO Rl NC NC NC NC VCC.

%

S

;THIS IS A SIMPLE TWO-BIT UP/DOWN COUNTER EXAMPLE. NOTE THAT
;INITIALIZATION HAS BEEN DESIGNED IN WITH DEFAULT BRANCH.
;THE STATE MACHINE RETURNS TO STATE SO IF CLOCKED WHEN PIN

e

;INIT IS HI. COUNTING IS ONLY POSSIBLE IF INIT IS LO. IF .
.| ;PIN UP IS HI, COUNTER COUNTS UP. IF PIN UP IS LO, COUNTER .
i ;COUNTS DOWN. %
. STATE ; START THE STATE MACHINE SECTION §
. .
. MOORE_MACHINE .
% DEFAULT BRANCH SO ;FOR INITIALIZATION .
% ;IN THIS EXAMPLE, THE OUTPUTS ARE TAKEN DIRECTLY FROM THE %
| /STATE BITS. THEREFORE, AN OUTPUT DEFAULT IS NOT USED. |

R

4-134

Figure 4-54 (One of Two)

Design for Figure 4-53

z‘ Monolithic m Memories Il

Build a State Machine Design

. ;STATE ASSIGNMENTS
. ;STATES ARE THE SAME AS THE OUTPUTS

S0 = /R1 * /RO ;COUNT O
S1 = /Rl * RO ;COUNT 1
S2 = Rl * /RO ;COUNT 2
S3 = Rl * RO ;COUNT 3

; STATE AND TRANSITION DEFINITIONS
;BECAUSE THE OUTPUTS ARE TAKEN DIRECTLY FROM THE STATE BITS,
;NO OUTPUT EQUATIONS ARE USED.

S0 := COUNT UP -> s1 ;COUNT 0 TO 1
+ COUNT DOWN -> S3 ;COUNT 0 TO 3
% S1 := COUNT UP -> 82 ;COUNT 1 TO 2
_+ COUNT_DOWN -> S0 ;COUNT 1 TO 0
§
| S2 := COUNT_UP -> 83 ;COUNT 2 TO 3
| + COUNT_DOWN -> S1 ;COUNT 2 TO 1
%
| 53 := COUNT_UP -> 50 ;COUNT 3 TO 0
- + COUNT_DOWN -> 82 ;COUNT 3 TO 2
.
>
| ;DEFINE THE BRANCH CONDITIONS. THE BRANCH CONDITIONS ARE |
% ;ESSENTIALLY THE CONDITIONS FOR COUNTING UP OR DOWN. THE |
| iCOUNTER CAN ONLY COUNT IF PIN INIT IS LO. IF PIN INIT IS .
| HI, THEN NEITHER OF THE CONDITIONS IS TRUE, AND THE DEFAULT |
| #BRANCH IS USED TO INITIALIZE THE COUNTER TO COUNT 0. .
B k #
i &
% CONDITIONS g
. |
| |
. COUNT UP = UP*/INIT . .

: COUNT_DOWN = /UP*/INIT

S

Figure 4-54 (Two of Two)

Design for Figure 4-53

zl Monolithic m Memories :l 4-135

Notes

4-136 2\ Monotithic B Memories £

6. Build Simulation

About This Chapter

This chapter describes the additional commands and control structures that allow you to
simulate your design. Though simulating is optional, verifying a design before
programming a device saves time. Simulating the design helps verify that the equations
do implement the required function.

About PALASM 2 Software And Simulation

Simulating the design means specifying a trial set of input values for your design and
checking that the resulting outputs are correct.

PALASM 2 software has an event-driven simulator supporting all PAL device
architectures, both asynchronous and synchronous. The program realistically simulates
events generated by asynchronous or synchronous feedback and external events you
generate. The simulator detects and reports oscillatory conditions and conflicts in the
expected and the actual values of any signal.

To... Refer to Section...
Review the special syntax rules ' 6.1
Build the Simulation segment 6.2
Review a sample design and interpret the output files 6.3

a Monolithic m Memories i:l 4-137

Build Simulation

e e e aen]

6.1

Special Syntax

The general syntax rules for Boolean and state machine designs apply to building the
Simulation segment except for the characters in Table 4-21.

‘Table 4-21

Exceptions to General Syntax

Character(s) Function
< Less than operator
> Greater than operator

= Equality operator

<= Less thanorequalto. ..
>= Greater than or equal
’ to...

6.2

Build The Simulation Segment

Information in the Simulation segment defines a trial set of inputs and tells the software
what to do with them. This segment is the last part of the design as shown in Figure 4-55.

4-138 :l Monolithic m Memories a

Build Simulation

DECLARATION
STATE or
CONDITIONS EQUATIONS
SIMULATION

Figure 4-55

Location of the Simulation Segment

The keyword
SIMULATION

is required to identify this segment of the design.

6.2.1

The Simulation Language

The simulation language has English-like words, making it easy to read and understand. It
offers iterative looping, conditional branching, setting of signals, verification of signal
values, and selective observation of signals. Table 4-22 briefly describes each directive
in the simulation language.

l"l Monolithic m Memories n 4-139

4-140

Build Simulation

Table 4-22

Description of Simulation Commands

Command _ Description

PRLDF Initializes register outputs on preloadable
devices
SETF Specifies new input values
CLOCKF Generates a clock signal on the dedicated clock pin
CHECK Verifies that the expected values and the
simulated values are the same
TRACE_ON Defines specific signals to record in a special output
file
TRACE_OFF Turns off the TRACE_ON command.
FOR...TO...DO loop lterates a set of commands a fixed number of times
WHILE . . . DO loop lterates a set of commands until a condition is
satisfied
IF...THEN...ELSE Conditional branching

After running simulation with assembling first, the software stores results in two-output
files: a history file (FILENAME.HST) and a trace file (FILENAME.TRF). The history file
contains the values of all signals from the start of simulation to the end. The trace file
contains the values of the signals mentioned between TRACE_ONand TRACE_OFF
commands. i

The organization of directives and the size of the segment depend on how thoroughly you
simulate the design. You may need to use all the directives discussed below, or use only
a few. ‘

If your design uses feedback from output registers and the device has a preload pin, you
can preload register outputs to initialize the registers before initializing inputs (refer to
PRLDF, Section 6.2.1.1). However, preloading registers after initializing the clock and all
inputs is a better approach (refer to SETF, Section 6.2.1.2).

l‘r‘ Monolithic E.[iﬂ Memorles ﬂ

Build Simulation

6.2.1.1

PRLDF
The PRLDF command assigns logical values to, or initializes, register outputs on
preloadable PAL devices:

Syntax
PRLDF List of registered‘ output pins
Example
PRLDF 01 /02 /03
The elements of PRLDF are registered output pin names. Uncomplemented names cause
a high logic value to be assigned to the registered output pins; names preceded by /

assign a low logic value.

This command affects the flow of simulation differently according to the way each
registered device has its preload configured:

* For devices that have a dedicated preload pin, PRLDF successively disables the
outputs, enables preload, loads the registers with the required logic values, disables
preload, and finally enables the outputs.

* For devices that have their registers preloaded with supervoltages, PRLDF places a P
in the clock field of the JEDEC vector. Simulation continues with the new value.

¢ For registered devices that cannot be preloaded, PRLDF provides a convenient way n
of initializing registers to desired values. .

Remember the following guidelines for using PRLDF.

1. PRLDF the PAL32R16 and PAL64R32 in banks of eight.

2. Only registered output pin names are valid arguments to the PRLDF command.

3. The registers are preloaded, not the output pins. The output pins carry the results.

4. When PRLDF is used on a state machine, both the state and its outputs must be
preloaded, unless the state bits and the output bits are the same:

ﬂ Monolithic m Memories :l 4-141

Build Simulation

Example
PRLDF STATEO /OUT1 OUT2 OUT3 /OUT4

5. On certain PAL devices, such as the PAL20X4, the A version of the part preloads
with supervoltages, while the standard version does not. In these cases, the
software preloads the device and issues a warning message to you.

With your registers preloaded, you can initialize the clock and inputs as described next.

6.2.1.2
SETF

SETF specifies new input values for the software to simulate. SETF is usually the first
command after PRLDF when simulating registered output devices:

Syntax
SETF List of input pins
Example
SETF A /OE B /RESET /DO D1 D2

At the start of simulation, all signals are undefined and show an X in the simulation output.
A signal should only be set if you want to change it from the previous value. The signals in
SETF are set high (H in the output) if not preceded by / ; otherwise, they are set low (L in
the output). In the above example A, B, D1, and D2 are all set to H; OE, RESET, and DO
are all set to L. Other input signals are undefined (X) or remain at a previously defined
level.

When a SETF command affects outputs, a vector is generated and all the equations that
are affected are evaluated. Internally generated events are also detected and evaluated.
With some activities, many more vectors can be generated by a single SETF command
than with others because of feedback and asynchronous events. Although you do not
see it, the simulator continues generating vectors and evaluating equations until the
system stabilizes; that is, until there are no more changes in the output signals or no more
events are generated. If the system fails to stabilize after ten iterations, then an
oscillatory condition is assumed, and the simulation halts.

Atter initializing the registers, the clock, and the inputs, you may want to verify the
circuit's operation after a clock pulse for registered output designs.

4-142 a Monolithic li.ﬁﬂ Memories :l

Build Simulation

Controlling Output Enable With SETF

1. You have two options for using SETF to control the three-state function in
simulation:

Option 1:

Table 4-23 helps you determine how to use SETF and what consequences to expect
from a device with a dedicated output enable pin (OE). Enabled means visible output
(three-state buffer is high); disabled means no output (three-state buffer is low).

Table 4-23

Table for Using SETF to Control a Dedicated Output Enable

Signal in Pin List

OE /OE
OE
SETF

/OE
In Table 4-23,
If the pin is defined as... Aﬁd you want the outputs... Enter...
OE Disabled SETF OE
OE Enabled SETF /OE
/OE Disabled SETF /OE
/OE Enabled | SETF OE

ﬂ Monolithic m Memories :' 4-143

Build Simulation

6.2.1.3
CLOCKF

Option 2:

If a local product term controls the three-state (such as for PAL22V10 and
PAL20RA10), where

Output_Pin.TRST = Enable_Condition
then

SETF ENABLE_CONDITION (Enable_Condition is a logic 1; three-state is
enabled)

SETF /ENABLE_CONDITION (/Enable_Condition is logic 0; three-state is
disabled)

Té use a PAL10H20G8 I/O pin as an input, set the sum of product terms and the
output pin to low in the Simulation segment:

Example
EQUATIONS
OUT1 = A * C + B *D
SIMULATION

SETF /A’ /B
SETF OUT1 ;use as an input

CLOCKF generates a clock signal on the dedicated clock pin(s):

Syntax

CLOCKF list of clock signal(s)

"Example

CLOCKF CLK1

CLOCKF specifies the clock signals (dedicated clock pins) to which the software applies a
clock pulse. Only the clock pin(s) of the device can be used in the CLOCKF command;
any other pin is an illegal signal for this command.

' 4-144

:l Monclithic m Memories “rl

Build Simulation)
/e

Using SETF, initialize the clock pin to low in the first line of the Simulation segment before
using CLOCKF:

Example

SETF /CLK
PRLDF OUT1
CLOCKF CLK

if the pin was defined as CLK in the pin list. If the clock pin has a high value at the first
CLOCKF command, an error occurs. Notice that you can control the clock pin using
SETF:

Each CLOCKF command corresponds to a pulse going from low to high to low. Thus, two
or three vectors are generated. During the positive edge transition, the new value of the
registers being clocked is transferred to the output. No action takes place for the
registers that are not clocked.

At every CLOCKF command, internally generated events and asynchronous events are
detected. More vectors are generated until the circuit stabilizes. The operation of
CLOCKEF is similar to the SETF command, except that CLOCKF generates a pulse (return-
to-zero) rather than maintaining a level (non-return-to-zero).

Note: On the PAL10H20GR8, do not CLOCKF pin 3 if pin 3 serves as an input for
combinatorial equations and as clock/latch enable for registered/latched equations. Use
two SETF lines to imitate the low-high action of CLOCKF.

Example n

SETF /CLK
SETF CLK

6.2.1.4
CHECK

CHECK can be used at important points in your simulation for debugging and verifying
your design. CHECK verifies that the the signals you expect actually occur. If the signals
you expect differ from the simulated signals, the software reports an error. How you
specify the signals to check depends on the polarity of the signal in the pin list.

Table 4-24 summarizes how to CHECK signals.

:l Monolithic m Memories :l 4-145

Build Simulation

Table 4-24

Table for Checking Signals

Signal in Pin List

PIN1 /PIN1
For high
Checking

For low
In Table 4-24,
If the pin is defined as... And you are checking for a... Enter...
PIN1 High CHECK PIN1
PIN1 Low ' CHECK /PIN1
/PIN1 High CHECK /PIN1
/PIN1 Low CHECK PIN1
Syntax

CHECK List of signals you expect
Example

CHECK Q0 /Q1 /Q2
Only outputs can be arguments to the CHECK statement. Whenever a CHECK is
executed, the simulator compares the actual value and the expected value of a particular

signal. If they are equal, no action is taken. If they are not equal, the simulator reports a
warning and continues processing using the actual value. CHECK reports the warning by

4.146 . :l Monolithic m Memories a

Build Simulation

placing a 2 in the vector where the error occurred as well as a vector number. The
simulation output files contain the ? at this particular location.

6.2.1.5
TRACE_ON

TRACE_ON defines specific signal values to record in the simulation trace file
(FILENAME.TRF). By specifying only the signals significant to you, you can more easily
read the simulation trace results:

Syntax
TRACE_ON list of input and/or output signals
Example
TRACE_ON /OE SET RESET DO D1 D2 D3 /Q0 /Q1 /Q2

This command contains the signals that you want listed in the trace file. The signal names
will be listed in the same order and with the same polarity as present in the TRACE_ON
command. This list of signals will be active until the next TRACE_OFF command or until
the end of the simulation specification. New signals can be traced on after the
TRACE_OFF command. This command helps you group the signals more naturally for
debugging purposes. For example, all control signals can be grouped together, then all
data signals can be grouped together, and then all output signals can be grouped
together. This makes observing the results in the trace file very easy.

TRACE_OFF

TRACE_OFF turns off the TRACE_ON command. The signals you were tracing will no
longer be recorded in the trace file. After this command, no more results are added to the
trace file until the next TRACE_ON command is given.

Remember that the history file (FILENAME.HST) contains all the information generated
from the start of simulation to the end. The signals are in the same order and of the same
polarity as in the pin list. The trace options break your results into time frames, which is
critical for debugging. You can make the signals appear in any order with any polarity in
the trace file.)

I‘r' Monolithic m Memories l‘rl 4-147

Build Simulation

6.2.1.7

FOR...TO...DO

6.2.1.8

The FOR loop allows repetitive execution of statements:

Syntax

FOR index var := lower limit TO upper limit DO
BEGIN
statements
END
Example

FOR J := 3 TO 8 DO
BEGIN
SETF A /B
CLOCKF CLK
- “END

Many statements can be embedded in a FOR loop, including another FOR construct with a
different indexing variable. You can generate many vectors just by increasing the limits of
this loop. The lower limit should be less than or equal to the upper limit. All the limit values
should be greater than or equal to zero. ‘You cannot use negative values for the limits.
The loop is not executed if the conditions expressed in the limits are equal.

WHILE ... DO

The WHILE loop allows a repetitive execution of statements that may be controlled by
evaluation of logic conditions present within the device:

Syntax

WHILE condition DO
BEGIN
statements
END

Many statements can be embedded in a WHILE loop, including other looping constructs.
The WHILE loop is used to iterate a set of commands until the condition is false.

Condition expressions cannot contain nested parentheses. The condition can be any
Boolean expression of logic signals or mathematical equality (=, >, <, >=, <=, <>):

4-148

&\ Monotithic (Il Memories £1

Build Simulation

Example
WHILE (I<2) DO

Here, the simulator checks if the condition | < 2 is true. The condition can also be any
Boolean expression: :

Example
WHILE (DRDY * /CLR) DO
Here, the simulator evaluates (DRDY * /CLR). Ifit is true, then the condition is true.

6.2.1.9
IF... THEN...ELSE

Use this construct for conditional branching:
Syntax

IF condition THEN or IF condition THEN
BEGIN BEGIN
statements statements
END END
ELSE
BEGIN
statements
END

Example

IF J = 5 THEN
BEGIN
CHECK Q0
END
ELSE
BEGIN
CHECK /Q0
END-

The two ways to use this construct are: with an ELSE clause or without. If the construct
has an ELSE clause and the condition is true, the THEN clause is executed; otherwise,
the ELSE clause is executed. If there is no ELSE clause and the condition is not true,
then the simulation executes the next command or construct after the IF . . . THEN
construct.

ﬂ Monolithic m Memorles Fl) 4-149

i ‘ ~ Build Simulation

As with the WHILE . . . DO construct, condition expressions cannot contain nested
parentheses. The condition can be any Boolean expression of logic signals or mathe-
matical equality (=, >, <, >=, <=, <>).

6.2.2
Review Simulation Guidelines

1. All signals are assumed to be don't care at the start.
2. Initialize all your control signals (such as three-state, preload and clock) to their
default values. If they are not initialized, the simulation may give erroneous results

and may generate warnings for pins not initialized.

3. Ifthe three-state or preload pin is /OE, for example, then SETF OE will enable the
outputs and SETF /OE will disable the outputs.

4. Forthe PAL20RA10:
If A, B, CLK, RESET, and SET are defined in the pin list and

Q0 = A * B

Q0.CLKF = CLK
QO0.RSTF = RESET
Q0.SETF = SET

appear in the Equations segment, then the following simulation commands will have
i the given results:

SETF SET /RESET ;The register Q0 is set to H,
;so the output pin will go L.
SETF RESET /SET ; The register Q0 is set to L,
;so the output pin will go H.

The data path of this devics is treated in the normal way because the polarity fuse is
in front of the register. The simulator takes care of any difference in the polarity
between the signal in the pin list and the left side of the equation.

4-150 Zl Monolithic m Memories :l

Build Simulation

6.2.3

Rules For State Machine Simulation Syntax

1. Ina Boolean equation design, you use the PRLDF, CHECK, TRACE_ON, WHILE and
IF constructs to reference the value of an output. In a state machine design,
however, you use these constructs to reference states and outputs unless state
bits and output bits are the same:

Example
PRLDF STATE ONE 01 /02 /03

2. The two history output files from simulation are FILENAME.TRF (if TRACE_ON is
used) and FILENAME.HST. In addition to the H, L, X, and Z (high-impedance) values
for signals, output files for the PMS14R21 contain the state of the machine at each-
point in the simulation.

6.3

Review A Sample Design And Interpret The Output
Files ‘

The following sections discuss interpreting the simulation output files for SUPER.PDS in
Figure 4-56. Run The Software, Chapter 3, discusses processing SUPER.PDS. Along
with the previous discussions on simulation commands, the following discussions help
you understand how to simulate a design and interpret the results in waveform and output

file formats. n

I‘vl Monolithic m Memories :l 4-151

Build Simulation

'

B S R

Gk

i

. TITLE SUPER_FRAME PAL

§ PATTERN SUPER FRAME PAL FOR Tl INTERFACE

{ REVISION P1.02

AUTHOR STEVE PATTERSON AND THERESA SHAFER

E COMPANY MONOLITHIC MEMORIES

%’ DATE 1/16/87

% ; DESCRIPTION

% ;This PAL counts the Tl Frames and controls the Signal

§ ;Bits extraction process, including Fly Wheeling. It

% ;also provides various other signals which indicate

% ;the frames with signal bits. The counter is reset

% ;with either RSTB or when frame detection is SUNK and

% ;frame 1 occurs from two different sources (FRM1 & SOF).

B E
. CHIP SUPER FRAME PAL16R6 ;‘E§
i ;PINS ‘ %
TR 2 3 4 5 6 7 8 9 10 N
% Tl CKB RSTB FRM1B SUNK SOF NC NC NC NC GND

|

% ;11 12 13 14 15 16 17 18 19 20

. OEB NC 03 02 Q1 Q0 FRM 6 FRM_12 NC VCC

Figure 4-56 (One of Three)

SUPER.TRF Input File

4152 2 Monotithic I Memories 1

Build Simulation
e ———

gﬁ%m%%ﬁmmw&wm@ R e
% ; INPUTS:T1_CKB ACTIVE LOW EXTERNAL T1 CLOCK
. /RSTB ACTIVE LOW MASTER RESET
| /SOF LAST KNOWN START OF FRAME
% ;SUNK ACTIVE HIGH SIGNAL INDICATING "IN FRAME SYNC"
% ;OEB ACTIVE LOW OUTPUT ENABLE INPUT
© EQUATIONS
o
% /Q3 := /Q2 * Q1 * QO
. +/Q3 * /Q2 .
. + /03 * /01 .
% + /Q3 * /Q0 .
% + /FRM1B * SOF * SUNK %
| + /RSTB .
i /02 =02 * Q1 * QO |
. + /02 * 03 .
§ + /02 * /Q1 |
. + /02 * /Q0 .
| + /FRMIB * SOF * SUNK .
% + /RSTB .
& /01 := Q1 * Q0 o
. + /01 * /Q0 .
. + /FRM1B * SOF * SUNK §
; + /RSTB o
o
/Q0 := Q0 i
+ /FRM1B * SOF * SUNK §
+ /RSTB %
|
/FRM 6 := Q3
+ /02 |
+ Q1 |
+ Q0 %
/FRM 12 := /Q3 g
g + Q2
+ /Q1
. + Q0

e
Figure 4-56 (Two of Three)

SUPER.PDS Input File

a Monolithic Eﬁﬂ Memories I‘r' 4-153

Build Simulation _

S e e e e

;OUTPUTS:Q(3-0) STATE VARIABLES
+FRM 6 CLOCK SIGNAL WHICH INDICATES SIGNAL BIT A
;FRM 12 CLOCK SIGNAL WHICH INDICATES SIGNAL BIT B

SIMULATION

TRACE_ON T1_CKB RSTB FRM1B SOF SUNK
03 Q2 Q1 Q0 FRM 6 FRM 12

SETF /OEB ; ENABLE OUTPUT
/RSTB ; RESET REGISTERS
/T1_CKB ; INITIALIZE CLOCK

CLOCKF T1_CKB

SETF RSTB /SOF FRM1B SUNK

CLOCKF T1_CKB

FOR I:=1 TO 24 DO
BEGIN

CLOCKF T1_CKB
END

SETF /SUNK SOF /FRM1B
CLOCKF T1_CKB

SETF /SUNK /SOF /FRM1B
CLOCKF T1_CKB

SETF /SUNK SOF FRM1B
CLOCKF T1_CKB

SETF /SUNK /SOF FRM13B
CLOCKF T1_CKB

SETF SUNK SOF /FRM1B
CLOCKF T1_CKB

SETF SUNK /SOF /FRM1B
CLOCKF T1 CKB

SETF SUNK /SOF FRM1B
CLOCKF T1_ CKB

SETF SUNK SOF FRM1B
CLOCKF T1_CKB
TRACE_OFF

R
Figure 4-56 (Three of Three)

SUPER.PDS Input File

4-154 b MmmMemorlos P

Build Simulation.

After processing, the simulation results are stored in the following output files:
* History file (FILENAME.HST)
* Trace file (if TRACE_ON used, FILENAME.TRF)

Note: The simulation program also creates a JEDEC fuse and test data file
(FILENAME.JDC) if assembly was done first. This file can be downloaded to the
programmer to program and verify the device. For more information about this file, refer to
Interpret the JEDEC Test Data, Section 6.3.6, and to Program The Device, Chapter 7.

You may view the files as waveforms on your screen or on a printout as discussed in View
The Simulation Output Files, Section 3.7.2.

Figure 4-57 shows the format of the waveform displays and output files. In addition to the
previous discussions of the simulation commands, the following sections help you
interpret the codes in simulation waveforms and output files.

DESIGN SIMULATION COMMAND
AND - CHARACTERS

PAGE ID /
(Output files :

only) ip oc g or s

PIN oo
NAMES

I

VALUES OR WAVEFORMS

Figure 4-57

Waveform Display and Output File Format

ﬂ Monolithic m Memories z' 4-155

4-156

Build s-imulation

Table 4-25 shows the characters and their corresponding simulation commands.

Table 4-25
Simulation Output Characters
Character Input File Command
g (s on a PROSE device) SETF
c CLOCKF
p PRLDF

In addition to the previous discussions on simulation commands and constructs, the
following discussions help you simulate your design and interpret the results.

The g Character

The character g (s on a PROSE device) indicates the SETF command. In the Simulation
segment, you specify the pins that are set to high or low values with this command. When

“the value on a pin does not change, the result is not recorded in the history file. For

example, if a pin that has a high value already, is set high again, the second high value
causes ho change and generates no extra vectors. The values under the g character can
take up more than one column. When this happens, only the last column indicates the
stable values. The first two columns are caused by intermediate conditions such as
feedbacks.

Note: A column of SETF values can also be caused by a PRLDF command in the input file.
When this occurs, the g column will immediately follow the p column.

The ¢ Character

The ¢ character indicates the CLOCKF command. Notice in Figure 4-58 that each column
with a ¢ character is preceded by two more columns of values. This is because the
clocking procedure consists of three steps:

1. Raise the clock pin. The clock pin goes from low to high.

2. While the clock pin is high, the new output pin values are recorded.

:l Monolithic m Memorles i:l

Build Simulation

3. Lower the clock pin. The results are shown in the last column.

The p Character

The character p appears in the history output when a PRLDF or preload command is
specified in the Simulation segment. This command causes a three-step procedure on a
registered device:

1. The output enable pin is set high.

2. Avalueis loaded in the register.

3. The output enable pin is set low.

The history file records the entire preload procedure. The column headed by the p
character records the values. However, there are two exceptions:

e The outputs may be stored in the next column which is headed by a g or s. This
occurs when the value in the register changes.

* Ifthe PRLDF command is followed by a CLOCKF in the input file, the first CLOCKF
column records the stable values of the preload.

6.3.1
Interpret The History Waveforms
History waveforms are based on the information in the history file. The waveforms are not n

stored in a separate file; they graphically represent the FILENAME.HST file. Figure 4-58
shows SUPER.HST as history waveforms.

:l Moholllhlomh'omorlos I‘r| ’ 4-157

Build Simulation

SETF CLOCKF

¢c ¢ ¢c ¢cC ¢c c ¢c ¢c c c ccc cc cc ¢

g <

UL ULl

Starting vector§s number 53 Step size =
Use arrow keysiHOME, END, <STEP> size, ¥B>ar, <Z>print, <ESC¥% quit

PIN NAMES UNDEFINED Low HIGH

Figure 4-58

SUPER.HST Waveforms

4-158 2\ Monotithic BB Memories £

Build Simulation

You read waveforms in columns. Use the vertical bar cursor to track the events in each
column.

The SETF and CLOCKF commands used in the Simulation segment of the input file are
coded in the horizontal row above the waveforms. By moving the bar across the screen
you can track the results caused by the SETF and CLOCKF commands on each pin.
Notice that the p character does not appear. This is because this example does not
contain a PRLDF command.

The pins for which simulation events were defined appear vertically at the left of the
waveforms.

Note: The history waveforms list the pins exactly as they are defined in the pin list of the
input file. Therefore, they are in the same sequence and have the same polarity as the pin
list. NC or no-connect pins are not included. The signals in the history waveform can also
be observed on the pins of the device.

6.3.2
Interpret The Trace Waveforms

The trace waveforms are based on the information in the trace file. The waveforms are not
stored in a separate file; they graphically represent the FILENAME.TRF file. Figure 4-59
shows SUPER.TRF as trace waveforms.

The events recorded by trace waveforms are determined by the TRACE_ON and
TRACE_OFF commands in the Simulation segment. These commands allow you to trace a
group of signals in the order and polarity you specify.

ﬂ Monolithic m Memories 1'.' 4-159

Build Simulation

e e

SETF CLOCKF

g cg c cCcCCCCCGCCCCOCCCOCRCT CSC

AR R IR IR AR R AR AR IR R

grrms———

SITIRRI————
r— W(&wau&g . B
s

RS R VO B O B

N

Use arrow keysiHOME, END, <STEP> size, ar, <Z>print, <ESGy quit

PIN NAMES UNDEFINED Low HIGH

Figure 4-59

SUPER.TRF Waveforms

‘ 4-160 Pu Monolithic m Memories Pu |

Build Simulation

Track the events in columns using the vertical bar cursor just as you tracked the history
waveforms.

The trace waveforms differ from the history waveforms in the following ways:

* The signal names in the history waveforms are taken from the pin list; the signal
names in the trace waveforms are taken from the TRACE_ON command. Therefore
their polarity may be inverted.

* The signalin the trace file may be in any order.

« Some signals or events may not be displayed. The trace waveforms show only those
signals between the TRACE_ON and TRACE_OFF commands; the history waveforms

are more complete.

Interpreting the history and trace files is discussed next.
6.3.3

Interpret The History File

The history file contains simulation results in columns. If you prefer viewing the simulation
results in waveforms, you may not need to look at the sample history file in Figure 4-60.

i:l Monolithic E.liﬂ Memories I‘r‘ , 4-161

Build Simulation

SETF CLOCKF
PAL16R6
SUPER_FRAME
Page 1) ,
N gi cg ¢ ¢ ¢ cicic c ¢c ¢ c ¢
T1_CKB XHHLLHHLHH LHHLHHLEHL HHLHHLHHLH HLHHLHHLHH
RSTB LiLLHHHHHH HHHHHHHEHH HHHHHHHHHH HHHHHHHHHH
FRM1B {XXXXHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
SUNK XXXHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
SOF XXXXLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
GND LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
PIN ORI OEB .1LLLLLLLL LLLLLLLLELL LLLLLLLLLL LLLLLLLLLL
NAMES Q3 XXLLLLLLLL LLLLLLLLLL LLLLLLLHHH HHHHHHHHHL
Q2 XXLLLLLLLL LLLLLHBEHH HHHHHHHLLL LLLLLLLLLL
Q1 XXLLLLLLLH HHHHHLLLLL L{HHHHHHLLL LLLHHHHHHL
Q0 XXLLLLHHHL LLHHHLLLHH HLLLHHHLLL HHHLLLHHHL
FRM 6 XXXXXLLLL LLLLLLLEHH HALLLLLLLLL LLLLLLLLLL
FRM_12 XXXX¥XILLLL LLLLLLLLLL LLLLLLLLLL LLLLLLHHHL
vCC EJHH HHHH HHHHHHH@HH HHEF#HHHHHH HHHHHHHHHH
UNDEFINED LowW HIGH
Figure 4-60
SUPER.HST File
Notice that you read the file in columns. On the left side of the page, the pins are listed in
order beginning with pin 1. The characters for the simulation commands are displayed in
the first horizontal row on each page of the file. For example, the values in the outlined
columns in Figure 4-60 are a result of SETF (g) and CLOCKF (c) commands. Refer to Table
4-26 for definitions of the command characters.
Each column contains the values on each pin that result from simulation commands.
Table 4-26 lists the values that appear in a history file.
4-162 &\ Mononithio Il Memories &1

Build Simulation

Table 4-26

Value Characters in the History File

Character Value

H High

L Low

Z High impedance state

X Undefined or don't care value

? CHECK command discrepancy:
simulated value does not match the
expected value

Note: The example in Figure 4-60 does not contain p, ? or z characters. This is because
the input file does not contain PRLDF statements, CHECK statements, or high impedance
states.

Note: The history file lists the pins exactly as they are defined in the pin list. Refer to the n
note in Interpret The History Waveforms, Section 6.3.1.

6.3.4
Interpret A PROSE History File

The state machine history file for a PROSE device differs from a standard history file in
one respect. It shows the state the machine is in at the bottom of the file. Figure 4-61
displays the state information at the bottom of a PMS14R21 history file. Notice how the
values of the states can be tracked vertically against each pin.

z‘ Monolithic m Memories :l 4-163

e

Build Simulation

I S C s o] o4 o] C [¢] [ed o] o] S C [¢]
CLOCK LHHLLLHHLH: HLHHLHHLHH LHHLHHLHHIL LLHHLHHLHH
DCLK XXXXXXXXXXXXXKXXXXXX XXXXXXXXXX XXXXXXXXXX
SEN1 XXXXLLLLLL}LLL{iLLLLLL LLLLLLLLLL LLLLLLLLLL
SEN2 XXXXLLLLLL{ LLLLLLLLLL LLLLLLLLLL HHHHHHHHHH
12 XXXXXXKXXXK § XXXKXXKXKKK XXXXXXXKXXX XXXXXXXXKX
17 XXXXXXKXXX | XXXKXKXXXKX XKXXXXXXKXX XXXXXXXXXX
SDI XXXXXXKXKK | XKXXKXKKXKKXK XXXXXXXXKK XXXXXXXXKXX
GND LLLLLLLLLL: LLLLLLLLLL LLLLLLLLLL LLLLLLLLLL
RESET HHHHHHHHHH; HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH

PIN SDO XXXXXXKKKK | XXX ZXKKKKK KXXXXXXKXKK XXXXXXXKKX
NAMES RED1 HHLLLLLLLL! LLLLLLHHHH HHHHHHHHLL LLLLLLLLLH
YEL1 HHLLLLLLLL; LLLHHHLLLL LLLLLLLLLL LLLLLLHHHL
GRN1 HHHHHHHHHH: HHHLLLLLLL LLLLLLLLHH HHHHHHLLLL
RED2 HHHHHHHHHH; HHHHHHLLLL LLLLLLLLHH HHHHHHHHHL
YEL2 HHLLLLLLLL: LLLLLLLLLL LLLLLHHHLL LLLLLLLLLL
GRN2 HHLLLLLLLL; LLLLLLHHHH HHHHHLLLLL LLLLLLLLLH

o1 XXXXXXXXXK P XXX KXKXXKKK XXXXKXKXXXXX XXXXXXXXXX
00 XXXXXXKKKK i XKXKXKXKXKXKK KXXKXXXKXKKK XXXXXXXXKX
MODE XXXXXXXXXX{XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
vce HHHHHHHHHH: HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
STATE PPSSSSSSSS:SSS5SSSSSS §SSSSSSSSS SSSSSSSSSS

000000011152223334445 5566677700 0002223334

WW

EE

RR

uu

PP]
VERTICAL STATES
TRACKING (S0-S7)

Figure 4-61
Sample PMS14R21 History File
4-164 2\ Monottthic Bl Memories 1

6.3.5

Build Simulation

Interpret The Trace File

The trace file is a result of the TRACE_ON command in the input file and is read in the

same way as the history file. As mentioned earlier in the discussion on waveforms, the
trace file differs from the history file in the following ways.

* The pin names in the trace file are taken from the TRACE_ON command, not from the
pin list. Therefore, their polarity may be inverted.

* The pins in the trace file may be in a different order.

* Some pins or events may not be displayed. The trace file traces only those pins you
define in the TRACE_ON command; the history file is more complete.

Figure 4-62 shows a sample trace file. Notice that the GND, VCC, and OEB pins shown in

Figure 4-61 are not listed.

SETF CLOCKF
PAL16R6
SUPER_FRAME
Page : 1
e «‘a cg C C Cc [¢] o] [¢] C C [e] C [¢]
Tl CKB! XHHLLHHLHH LHHLHHLHHL HSHLHHLHHLH HLHHLHHLHH
RSTB LLLLHHHHHH HHHHHHH{HH HHHHHHHHHH HHHHHHHHHH
FRM1B | X¥XXHHHHHH HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH
SOF X¥XXLLLLLL LLLLLLLLLL {LLLLLLLLL LLLLLLLLLL
SUNK | X¥XXHHHHHH HHHHHHHHHH {HHHHHHHHH HHHHHHHHHH
PIN s - 0K X¥LLLLLLLL LLLLLLL{LL {LLLLLLHHH HHHHHHHHHL
NAMES Q2 XX¥LLLLLLLL LLLLLHHAHH HHHHHHHLLL LLLLLLLLLL
Q1 X¥LLLLLLLH HHHHHLL{LL {HHHHHHLLL LLLHHHHHHL
Q0 XXLLLLHHHL LLHHHLL{HH HLLLHHHLLL HHHLLLHHHL
FRM 6 | XXXXXXLLLL LLLLLLLLHH HLLLLLLLLL LLLLLLLLLL
FRM 12§ XXXXXXLLLL LLLLLLLL{LL L{LLLLLLLLL LLLLLLHHHL
UNDEFINED LOW HIGH
Figure 4-62
Sample Trace File

2\ mononthic K memories €1

4-165

Build Simulation

6.3.6
Interpret The JEDEC Test Data

The simulation program also generates a JEDEC test data file that has the extension .JDC
if you assembled the design first. This file contains the fuse data with test vectors at the
bottom. The device programmer can use this file for programming and verifying the
device. Refer to Program The Device, Chapter 7, for more information.

Figure 4-63 displays the test vectors from the SUPER.JDC output file. Notice that the
figure does not include the fuse map that appears above the test vectors.

4-166 l‘rl Monolithic m Memories I‘rl

Build Simulation

V0001 COXXXXXXXNOXLLLLXXXN*
V0002 C1l110XXXXNOXLLLHLLXN*
V0003 C1110XXXXNOXLLHLLLXN*
V0004 Cl110XXXXNOXLLHHLLXN*

¥0005. C1TT0XXXXNOXLHLLLLXN* <t TEST
V0006 C1110XXXXNOXLHLHHLXN* VECTOR

V0007 C1110XXXXNOXLHHLLLXN*
V0008 C1110XXXXNOXLHHHLLXN*

V0009 C1110XXXXNOXHLLLLLXN*

V0010 C1110XXXXNOXHLLHLLXN*

V0011l C1110XXXXNOXHLHLLLXN*

V0012 C1110XXXXNOXHLHHLHXN*

V0013 C1110XXXXNOXLLLLLLXN*

V0014 C1110XXXXNOXLLLHLLXN*

V0015 C1110XXXXNOXLLHLLLXN*

V0016 C1110XXXXNOXLLHHLLXN*

V0017 Cl¥EeRNMNOREHERETRNwmms CLOCK
V0018 C1110XXXXNOXLHLHHLXN*

V0019 C1110XXXXNOXLHHLLLXN*

V0020 C1110XXXXNOXLHHHLLXN*

V0021 C1110XXXXNOXHLLLLLXN *wem NOT
V0022 C1110XXXXNOXHLLHLLXN* TESTED
V0023 C1110XXXXNOXHLHLLLXN*

V0024 C1110XXXXNOXHLHHLHXN*

V0025 C1110XXXXNOXLLLLLLXN*

V0026 C1110XXXXNOXLLLHLLXN*

V0027 ClO01XXXXNOXLLHLLLXN*

V0028 C1000XXXXNOXLLHHLLXN*

V0029 C1101XXXXNOXLHLLLLXN*

V0030 C1100XXXXNOXLHLHHLXN*

V0031 C1011XXXXNOXLLLLLLXN*

V0032 C1010XXXXNOXLLLHLLXN

V0033 C1110XXXXNOXLLHLLLXN*

V0034 C1111XXXXNOXLLHHLLXN*

C607C* - FUSE

C5EE -4 CHECKSUM
MM .

Rt
e TRANSMISSION
CHECKSUM

Figure 4-63

Test Vectors from SUPER.JDC

zl Monolithic m Memorles :l 4-167

Notes

4-168 l‘rl Monolithic m Memories I‘rl

7. Program the Device

About This Chapter

This chapter outlines two methods to program a device:

To... : Read this Section...
Use a computer to send JEDEC files to your 71

programmer

Use PC2 communications software 7.2

Copy files from a programmed master device 7.3

Download the JEDEC file 7.4

For detailed instructions, specific to your programmer, refer to' your programmer manual.

ﬂ Monolithic Eﬁﬂ Memories l‘r‘ 4-169

Program the Device

e — A T A NN LA T

7.1

Send JEDEC Files To The Programmer

To program a device from a JEDEC file, complete the following tasks.

1.

2.

3.

4.

Set up the communications link between the programmer and your computer using
either MS-DOS commands or the PC2 communications program.

Connect the programmer to your computer.
Send a JEDEC file to the programmer.

Program the device.

The sections that follow give detailed descriptions of each step.

71.1

Connect the Programmer

To connect the programmer to the computer serial port, follow these steps.

1.

Make sure the computer has a serial port. Most programmers require a serial
connection to the computer.

Verify the device name of the serial port, COM1: or COM2: (You will need to know
this when you establish the communications link).

Connect the programmer to a serial port on the computer. Use the cable specified in
the programmer manual. Figure 4-64 shows a typical programmer-to-computer
connection.

4-170

a Monolithic m Memories Z'l

Program the Device

PLD
PROGRAMMER

PALASM 2

Figure 4-64

Connect the Programmer to a Computer

z' Monolithic m Memorles ﬁ

4-171

Program the Device

e
e ————————————————d

7.1.2
Set Up The Communications Link

To set up the programmer transmission parameters, follow these steps.

1. Set the transmission parameters for the programmer. Refer to the programmer
manual for instructions. If these parameters are fixed in your programmer, note the
settings so that you can configure the computer to match.

2. Set the transmission parameters for the computer. You can use:
¢ MS-DOS commands

* PC2, a software communications program supplied on the supplemental disk

* Any commercially available communications software

To use... You will...

MS-DOS commands * Type MODE followed by the device name, baud rate,
parity, number data bits, number stop bits. For
example,

MODE COM1:4800,N,7,1
To ensure a reliable transfer, use 4800 baud or lower.

* Proceed to Transmit The JEDEC File Using MS-DOS,

Section 7.1.3
PC2 software program Skip to PC2 Communications Software, Section 7.2
Commercial communi- Refer to that communications software manual for
cations software instructions.

4-172 I‘r‘ Monolithic m Memorles ﬂ

Program the Device

7.1.3
Transmit The JEDEC File Using MS-DOS

The PALASM 2 software generates different JEDEC files, depending on which programs
you run. If you run the XPLOT program, the software generates fuse maps in a file with
the extension .JED. The programmer uses the .JED file to program the device.

If you run the SIM program after XPLOT, the software adds test vectors to the .JED file
and generates a file with the extension .JDC. Many programmers can use the test vectors
in the .JDC file to perform a functional test after programming and verification.

Note: On PROSE and PLS devices the PROASM and PLSASM respectively are the
assembly programs that create the .JED file.

To prepare the programmer to receive a .JDC or JED file, follow these steps.

1. Set up the programmer to receive the JEDEC files. Refer to your programmer manual
for instructions.

2. Use the MS-DOS command, COPY, to send the JEDEC file to the serial port:
COPY filename COM1:
The programmer should indicate that it is receiving the file.

3. Make sure the programmer successfully received the file. The programmer should
indicate that the transmission is complete. n

4. Proceed to Download The JEDEC File, Section 7.4.
7.2

PC2 Communications Software

With PC2 software, a bidirectional communications program, you can set up and verify the
communications link between the programmer and the IBM-PC/XT/AT. You can also set
up computer transmission parameters and send a JEDEC file to the programmer.

zl Monolithic m Memorles 1‘.| 4-173

Program the Device

7.21

Load PC2
You can load the PC2 software program from a hard disk drive or from floppy disks. This
section describes both methods.

7.2.1.1

Load PC2 From A Hard Disk Drive

1. Make sure PC2 is installed on your hard disk drive.

If you... Then...
Already installed PC2 Proceed to step 2.
Did not install PC2 Follow the instructions in Install The Menu, Section

2.1.3.1. When the screen displays the input install
request menu, select option 5, Install Supplementary
Software only.
After you install the supplementary programs and exit
the input install request menu, the screen displays
the system prompt.

2. From the system prompt, start the PALASM 2 software main menu by entering

PALASM <return>

and press <return> again.

3. Use the PALASM 2 software main menu to start PC2. From the main menu, press
<F4> Program Device.

F4 Program Device
The screen displays the function key menu, as shown in Figure 4-65. For a

description of the function keys, proceed to PC2 Function Keys Defined, Section
7.21.3.

4174 zl Monolithic m Memories :l

Program the Device
e ——

Proceed...

FUNCTION KEYS:
Fl-Send File F2-SETUP F3-View F4-Capt F9-New Filename Fl0-Exit

Figure 4-65

PC2 Function Key Menu Screen

7.2.1.2
Load PC2 From A Two Floppy System

To load PC2 on a two floppy disk drive system, follow these steps.
1. Insert the backup copy of the Supplementary disk in drive A.

2. Insert the data disk containing your JEDEC file in drive B.

n Monolithic Eﬂﬂ Memories &\ 4-175

Program the Device

3. Type PC2 and press <return>. The screen displays the function key menu, as
shown in Figure 4-65. i

4. For a description of the function keys, proceed to PC2 Function Keys Defined,
Section 7.2.1.3.

7.21.3

PC2 Function Keys

Table 4-27 describes the use of each function key.

Table 4-27
PC2 Function Keys
Function Key Function
<F1> ‘ Send a file
<F2> Configure the communications port
<F3> View the JEDEC file as it is sent to the programmer
j <Fa> " Save the transmitted data to a disk file
<F9> Name a new file
<F10> Exit the PC2 program

7.2.2
Set Up Cdmputer Transmission Parameters

To set up transmission parameters for your computer, follow these steps.
1. Todisplay the setup menu, press <F2>.

2.. To view all the options for a selected paraméter, press the spacebar. A circle (bullet)
indicates the selected parameter.

3. When the correct option displays, press <return> to advance to the next parameter.

4.176 l'l Monolithic m Memories l'l

Program the Device

4. Repeat steps 2 and 3 for each parameter.

5. After you select an option for the last parameter (Stop bits) and press <return>, the
screen displays the transmission parameters. Figure 4-66 shows a sample setup.

SETUP PROGRAM FOR PALASM COMMUNICATION...
<CR> Next Field, <SPACE> Modify

‘o Com port.'. : COMLl:
Baud rate : 2400
Parity+ E
Data bits ¢ 7
Stop bits 1

New values ok (Y/N) 2?2 _

(C)Copyright 1983,1984 Monolithic Memories
All Rights Reserved

s

FUNCTION KEYS: i
Fl-Send File F2-SETUP F3-View F4-Capt F9-New Filename F10-Exit 2‘%

Figure 4-66

Computer Transmission Parameters Screen

:l Monolithic m Memories :l 4-177

Program the Device

7. Decide whether you want to use the new parameter values by selecting Y or N:

If you type... Then...
<N> <return> You can change any parameter setting. Repeat steps 2 and 3.
<Y> <retumn> The screen displays:

Make these changes permanent (Y/N) ?
Proceed to step 7.

7. Decide whether you want to save the changes to disk by selecting Y or N:

If you type... Then...
<N> <retum> You can change any parameter. Repeat steps 1 through 6.
<Y> <return> The program saves these changes to the file, PC2.DAT, on the

Supplementary diskette in drive A. The function key menu
displays across the bottom of the screen (as in Figure 4-65).

7.2.3
Transmit The JEDEC File

To send a JEDEC file to your programmer, follow these steps.

1. To transmit one file, or the first of a series of files, to your programmer, press <F1>.
Figure 4-67 shows the screen display.

2. To select another file to transmit to the programmer, press <F9>. Figure 4-67 shows
the screen display.

4178 2\ monotithic LR Memories &1

Program the Device

PALASM COMMUNICATION PROGRAM v2.0...

.
i
.

File to Transmit to Programmer? _

(C)Copyright 1983,1984 Monolithic Memories
All Rights Reserved

FUNCTION KEYS:
Fl-Send File F2-SETUP F3-View F4-Capt F9-New Filename F10-Exit
R G A

Figure 467
PC2 Name Transmit File Screen
2. Enterthe drive name followed by the name of your JEDEC file and press <return>.
The program verifies that the filename exists. When complete, the menu bar

displays across the bottom of the screen.

3. Set up the programmer to receive the JEDEC file. Refer to your programmer manual
for instructions. i

2\ Monotithic BED Memories £1 4-179

~ Program the Device
 —— ——— ———— — —————— ————— —————————

4. To send the JEDEC file, press <F1>. Watch for this activity:

* The screen displays: Transmitting...

¢ The programmer indicates that it is receiving the file.

* When complete, the screen displays: End Transmission...
5. If the transmission is not successful, check that the transmission parameters for

the computer and the programmer match. Also, refer to your programmer manual for

more troubleshooting information.
6. To exit the PC2 program, press <F10>. Figure 4-68 shows the screen diéplay.

7. Proceed to Download The JEDEC File, Section 7.4.

7.3
Copy From A Master Device

If you have a master device and you want to program a device of the same type with
exactly the same pattern, follow these steps.

1. Set the programmer to read (or copy) the master device. You may also need to know
i the product code and device type specific to the manufacturer.

2. Install the correct adapter, if required.

3. Enter the appropriate product code or select the product from the menu. Refer to the
programmer manual for instructions.

4. Install the programmed master device in the correct socket and read its fuse pattern
into the programmer memory.

The pattern is now in the programmer memory and will remain there unless the
memory is cleared or the programmer power is turned off.

5. Verify that the checksum displayed at the end of the copy operation matches the
checksum of the master device.

6. If the checksums match, you are now ready to program the device. Proceed to
Download The JEDEC File, Section 7.4.

4180 2\ monoithic B Memories &1

Program the Device

PALASM COMMUNICATION PROGRAM v2.0...

Thank you for using MMI products

(C)Copyright 1983,1984 Monolithic Memories
All Rights Reserved

FUNCTION KEYS:
Fl-Send File F2-SETUP F3-View F4-Capt F9-New Filename F10-Exit
R i

Figure 4-68

PC2 Exit Screen

2\ Monorithic B Memories &1 4-181

Program the Device

7.4
Program The Device

To program the device, follow these steps.

1. Follow the manufacturer's instructions to install a device into the programmer. For
some programmers, you must know the device code and the correct adapter or

software version.

2. Program the device by sending the file (now resident in the programmer) to the
device.

With most programmers, you can specify the programmer to verify that the device was
programmed correctly. If you run the SIM program, the software includes JEDEC test
vectors in your file. The programmer uses these test vectors to perform a functional test.

4-182 El Monolithic m Memories i:l

Sy

PALASM 2 Software Glossary

Autorun: A feature of the PALASM main menu that allows you to run the assembly and
simulation programs with one keystroke.

BINHEX supplementary program: A binary to hexadecimal conversion program.

Boolean equation design: Specifies Boolean logic functions for programming a
device to perform specified tasks and give specified outputs.

CHECK command: Compares the expected values and the simulated values of
signals during simulation.

CLOCKF command: Generates a clock signal on the dedicated clock pin(s).

Combinatorial equations: Component of the Equations segment. Equations that
combine signals for immediate output.

Commands: See individual command name.

Condition: A set of inputs in a state diagram.

Conditions segment: A segment of the state machine design that defines the input
values that determine state transitions. The condition equations assign names to unique

sets of inputs.

Declaration segment: Describes design identification, device and pin data, and
string substitutions.

DECODE supplementary program: Address decoder program that generates
PALASM 2 software Boolean equations.

Editor: Also called a word processor. A computer program that permits selective
revision of computer-stored data.

Equations segment: A segment of the input file. Contains equations for Boolean and
programmable functions that define outputs in terms of inputs and feedback.

EXPAND program: Expands input equations and converts state machine syntax to
Boolean equations.

:l Monolithic m Memorles :' 4-183

4-184

PALASM 2 Software Glc;ssary

Fields: Areas on the PALASM 2 main menu wheré you enter data--specifically, the input
PDS file name and the directory where that file is located.

Filés: See individual filename.

FOR...TO...DO loop command: Optional construct in the Simulation segment
syntax. lterates a set of commands a fixed number of times.

Functional equation: Components of the Equations segment of a Boolean design.
Defines these programmable functions: clock, set, reset, three-state, dynamic
registered/combinatorial output selection.

Fuse map: An output file generated by the program XPLOT. Displays the programmed
and unprogrammed fuses specified by the input file.

Fuseplot: See fuse map.

History file: An output file generated by the SIM program that shows the values of
every pin through a simulation sequence.

LHST file: Simulation history data file.
IF...THEN...ELSE command: Conditional branching construct for simulation.

Intermediate files: Files created by the software but not immediately visible to the
user.

JDC file: JEDEC fuse data and JEDEC test vectors file.
JED file: JEDEC fuse data file.

JEDEC file: Created by XPLOT and used by the device programmer to program a
device.

JEDMAN program: Disassembles JEDEC files and generates Boolean equation input
files. JEDMAN allows you to read a fuseplot directly from a programmed device.

Keyword: A word used by the software to identify the block of information that follows
it. .

Latched equation: Component of the Equations segment of a Boolean design.
Defines logic functions for devices with latched outputs.

Mealy state machine: Determines its outputs from the inputs and the present state.

P mnomhlcmn'emoﬂes Pu ’

PALASM 2 Software Glossary

MINIMIZE program: Uses the intermediate file created by PARSE or EXPAND to
perform automatic logic reduction.

Moore state machine: Determines its outputs from the present state only.
Output equation: Defines the state machine's operation in terms of conditions and
outputs from the present state. The syntax for output equations is different for Mealy and

Moore machines.

PALASM2: PALASM 2 software interactive menu program that simplifies user interface
to the software.

PARSE program: Checks the syntax of the input file.

PC2 supplementary program: A menu-driven, multiple choice program that enables
communication between PLD programmers and IBM-PC/XT/AT computers.

.PDF file: PLD architecture description data file.
.PDS file: User-defined PLD design input file.

PDSCNVT supplementary program: Converts previous PALASM version input
files to PALASM 2 software syntax.

PINOUT supplementary program: Generates a list of the pin names from the .TRE
file (created by the PALASM 2 software assembler).

.PL2 file: PDS file reconstructed from JEDEC output file. n
PLSASM program: Assembles PLS device designs.

PRLDF command: Assigns logical values to, or initializes, register outputs in
Simulation for preloadable PAL devices.

PROASM-PROSIM: Assembles and simulates PROSE device designs. PROASM
accepts only state machine designs and generates a fusemap and a JEDEC file. PROSIM
generates history and trace files as well as JEDEC test data.

Programmed fuse: Equivalentto a "1" in a JEDEC file. Sometimes refered to as a
"blown." fuse. See also Unprogrammed fuse.

Programs: See individual program name.

Registered equation: Component of the equations segment of a Boolean design.
Defines logic functions for devices with registered outputs.

i‘.l Monolithic m Memories :' 4-185

PALASM 2 Software Glossary

Reserved word: A word used by the software to identify design segments and
information, device codes, commands, functions, and pin defaults. Some reserved words
are keywords that identify the block of information that follows.

Run-time log: Contains the messages or intermediate files generated after running
each program in the early stages of processing.

SCRSIM supplementary program: Generates simulation waveforms from history
and trace output files. These waveforms can be viewed on the screen or sent to a printer.

SETF command: Specifies new input values for the software to simulate. Also used to
control the three-state function in simulation.

SIM program: Checks the functionality of a PLD device. SIM simulates the operation
of your design, calculating the output values based on input signals defined in the
Simulation segment. After running PARSE, EXPAND, and MINIMIZE, SIM generates two
output files: a history file and a trace file.

Simulation segment: A segment of the design. Defines a trial set of inputs for a
design and tells the software what to do with them. :

State assignment: An equation that defines a state as a unique combination of
outputs. Also called "state bit assignment" and "bit assignment.”

State diagram: lllustrates the behavior of a state machine. 'Includes: all named
states, the input values that cause state transitions when a clock pulse occurs, and the
output values expected because of state transitions.

State equation: Defines the states in terms of conditions that determine transitions to
other states. State equations are necessary for both Mealy and Moore designs.

State segment: A segment of the state machine design. Contains information about
the design and equations that describe how the machine functions. Describes defaults,
pin assignments to states, and equations for state transitions and outputs.

State machine design: An input file that contains information for programming a
device to cycle through defined states and give specified outputs.

Supplementary programs: Programs included with the PALASM 2 software package
but not supported by Monolithic Memories. See also individual supplementary program
name.)

TIMING supplementary program: Timing diagram entry program.

Trace file: A subset of the history file that shows only the pins you specify between
TRACE_ON and TRACE_OFF simulation commands. See also History file.

4-186 . zl Monolithic m Memories Il

PALASM 2 Software Glossary

TRACE_OFF command: Turns off the TRACE_ON command. After this command, no
more results are added to the trace file until the next TRACE_ON command appears.

TRACE_ON command: Defines specific signals whose values will be recorded in the
simulation trace file.

TREPL2 program: Disassembles intermediate files created by PARSE, EXPAND, and
MINIMIZE, and converts them to Boolean equation input files.

.TRF file: Simulation trace data file.

Unprogrammed fuse: Equivalent to a "0" in a JEDEC file. Sometimes refered to as
"intact." See also Programmed fuse.

VTRACE supplementary program: A utility program to convert simulation output
files to timing diagrams.

WHILE...DO loop command: Optional construct of the simulation syntax that
iterates a set of commands until a condition.is satisfied.

XPLOT program: After PARSE, EXPAND, and MINIMIZE, assembles PAL device
designs. Validates the architectural design of an input PLD design containing Boolean
equations (created by EXPAND or MINIMIZE) and produces fusemaps and JEDEC data.

XPT file: PLD fuse map data file.

2\ monoiithic K memories &1 . 4-187

Notes

4-188 ’ 2\ monotithio B Memories £

PALASM 2 Software Index

A B

Assemble
autorun feature 4-36
input file, procedure 4-30, 38
Autorun assembly
how to use 4-36
BINHEX 4-12, 26
Boolean equations
convert from state machine syntax 4-40, 41
declaration segment 4-65
design file structure 4-62
equations 4-70
how to expand 4-40
how to minimize 4-41
syntax rules 4-63, 138

C

CHECK command
defined 4-140
syntax 4-146
when to use 4-145
CHIP
information for state and output equations 4-118
keyword defined 4-109
syntax 4-67, 109
CLOCKF command
clocking procedure 4-156
defined 4-140
syntax 4-144
the ¢ character 4-156
Combinatorial equations
polarity 4-71
syntax 4-70
Computers supported 4-4
Conditions segment
keyword 4-125
syntax 4-125
when conditions conflict 4-126

2\ monontnic KX Memories €1 4-189

4-190

PALASM 2 Software Index

D, E

Data entry fields
defined 4-32
directory 4-35
input PDS file 4-35
Declaration segment
Boolean 4-65
CHIP syntax 4-67, 109
design header 4-66, 108
in a Boolean equation design 4-62
in a state machine design 4-104
keywords 4-66, 108
STRING syntax 4-68, 110
DECODE 4-12, 26
DeMorgan's theorem
when to use 4-125
Devices supported 4-2
DOS
commands to transmit JEDEC file 4-173
how to enter from menu 4-35
to run PALASM 2 software 4-59
EQUATIONS 4-70
Equations segment
combinatorial equations syntax 4-70
functional equations
programmable set and reset 4-74
programmable three-state 4-75
functional equations 4-74
in a Boolean equation 4-62, 70
‘keywords 4-70
registered equations syntax 4-72
Error detection
view run-time log 4-53
EXPAND
input equations, procedure 4-30, 40
program for PAL devices 4-130

ﬂ Monolithic m Memories ﬂ

PALASM 2 Software Index

F

FOR...TO...DO loop
defined 4-140
syntax 4-148
Function keys
defined 4-32
display directory (F1) 4-35
edit PDS input file (F3) 4-36
enter DOS (F2) 4-35
for PC2 4-176
PALASM2 option (F5) 4-37, 38, 46
program device (F4) 4-174
view data (F7) 4-44, 47, 50
Functional equations
defined 4-74
global set and reset syntax 4-75
programmable set and reset syntax 4-75
programmable three-state syntax 4-75
syntax for PAL16RA8 and PAL20RA10 4-85
Fuse map
how to interpret 4-56
stored in .XPT file 4-42
view .XPT output file 4-43

H, 1

History file
.HST filename 4-140, 147
for a PROSE device 4-163
simulation segment output file 4-140
TRACE_OFF command to create time frames 4-147
History waveform
defined 4-157
how to view 4-48
IF...THEN...ELSE command
defined 4-140
syntax 4-149
Input file
assemble 4-38, 42
check syntax 4-38
expand equations 4-40
minimize equations 4-41
Install PALASM 2 Software 4-15

l‘rl Monolithic m Memories El 4-191

4-192

PALASM 2 Software Index

J, K

JED file
created by assembler 4-56
fuse maps in 4-173
test vectors in 4-173
output file generated 4-42
view JEDEC fuse data 4-43
JEDEC file
convert to Boolean equation input file 4-50
disassembly program 4-50
how to generate as output 4-30
how to interpret 4-56
how to interpret test data 4-166
program a device from 4-170
required to program device, how to generate 4-42
test data, how to view 4-50
view fuse data 4-43
JEDMAN
defined 4-10
program to disassemble JEDEC file 4-52
Keywords .
as reserved words in a boolean design 4-63
as reserved words in a state machine design 4-104
CHIP 4-108
CONDITIONS 4-125
EQUATIONS 4-70
global default options 4-115
in sample input file 4-36
SIMULATION 4-139
STATE 4-112
STRING 4-68, 110

Mealy state machine
combinatorial output equation syntax 4-121
conditions defined 4-97
functional state diagram 4-97
global default options 4-115
how output is determined 4-96
registered output equation syntax 4-120
simplify a state diagram 4-99

l'l Monolithic m Memories a

PALASM 2 Software Index

M (Continued)

Menu
data entry fields defined 4-32
function keys defined 4-32
PALASM main, how to start 4-32
status line defined 4-33
Minimize
input equations, procedure 4-30, 41
MINIMIZE
program for PAL devices 4-130
Moore state machine
combinatorial output syntax 4-121
conditions defined 4-101
functional state diagram 4-100
how output is determined 4-100
registered output syntax 4-121
simplify a state diagram 4-102

O,P

Output equations
‘combinatorial Mealy output syntax 4-121
defined 4-120
in a state segment 4-117
registered Mealy output syntax 4-120
PAL device
.CMBF syntax 4-91
buried registers 4-87
designs with XOR gates 4-83
event-driven simulator 4-137
global preset syntax 4-84
global reset syntax 4-85
internal XOR gates 4-87
product terms 4-83, 88
programmable polarity, 4-71
state machine design considerations 4-130
syntax for PAL16RA8 and PAL20RA10 functional equations 4-85

a Monolithic m Memories z' 4-193

PALASM 2 Software Index

P (Continued)

PALASM 2 Software
add supplementary programs 4-25
event-driven simulator 4-137
input files 4-11
install 4-15
intermediate files 4-11
output files 4-11
programs
JEDMAN 4-10
PALASM 4-7
PARSE 4-8
PLSASM 4-10
PROASM-PROSIM 4-9
SIM 4-9
XPLOT 4-9
reserved words in a Boolean design 4-64
* reserved words in a state machine design 4-106
run the software
from DOS 4-59
procedure to 4-30
setup 4-23
supported computers 4-4
supported devices 4-2
TRE files 4-54
PALASM2 menu option
assemble input file 4-42
autorun assembly 4-36
check design file syntax 4-38
disassemble TRE file 4-55
expand input equations 4- 40
minimize input equations 4- 41
PC2
how to exit 4-180
how to load 4-174
supplementary program 4-12
use to set transmission parameters 4-172
using 4-173
PINOUT 4-12, 26
PLS device
complement array 4-81
output equation syntax 4-81
pin preset syntax 4-82
state machine design considerations 4-128

4-194 2\ mononithic KR Memories &1

PALASM 2 Software Index

P (Contined)

Polarity

factors determining output 4-76

how to determine output 4-78

in combinatorial equations 4-71

output defined 4-76

programmable 4-71

summary for active-low outputs 4-78
PRLDF command

defined 4-140

guidelines 4-141

syntax 4-141

the p character 4-157
PROASM-PROSIM 4-9
Program the device (See PC2)
PROSE device

history file 4-163

state machine design considerations 4-129

'R

Registered equations
syntax 4-72
Reserved words
equations in a Boolean design 4-62
global default options 4-115
in a state machine design 4-104
list, for a Boolean design 4-64
list, for a state machine design 4-106
RSTF command 4-74
Run-time log
print 4-53
view for error detection 4-53
view TRE file 4-55

z‘ Monolithic m Memorles :l

4-195

PALASM 2 Software Index

S

SCRSIM 4-13, 26
SETF command
defined 4-140
syntax 4-142
the g character 4-156
SIM 4-9
Simulate
output files 4-140
procedure 4-46
view output files 4-47
Simulation
commands
CHECK 4-140
FOR...TO...DO loop 4-140
IF...THEN...ELSE4-140
PRLDF 4-140
SETF 4-140
TRACE_OFF4-140
TRACE_ON 4-140
WHILE...DO loop 4-140
constructs
FOR loop 4-148
IF...THEN...ELSE loop 4-149
WIHLE...DO loop 4-148
syntax
CHECK 4-146
CLOCKF 4-144
FOR...DO loop 4-148
IF...THEN...ELSE loop 4-149
PRLDF 4-141
SETF 4-142
TRACE_ON 4-147
WHILE DO loop 4-148

4-196 2\ mononthic KA Memories &1

PALASM 2 Software Index

S (Continued)

Simulation segment
CHECK command defined 4-145
CLOCKEF syntax 4-144
commands 4-140
defined 4-138
FOR TO DO loop defined 4-148
IF THEN ELSE command defined 4-149
keyword 4-139
language directives 4-139
output files 4-140
PRLDF command syntax 4-141
SETF syntax 4-142
TRACE_OFF command defined 4-147
TRACE_ON command defined 4-147
WHILE DO loop defined 4-148
State assignment defined 4-116
State machine
design structure 4-103
design syntax rules 4-105, 138
diagram requirements to build a design 4-96
equations
in a state segment 4-117
transition syntax 4-118
Mealy output 4-96
Moore output 4-100
state and output equations 4-117
syntax to convert to Boolean equations 4-41
State segment
in a state machine design 4-112
keywords 4-112
state assignments syntax 4-116
STRING
keyword defined in a Boolean design 4-68
keyword defined in a state machine design 4-110
syntax 4-68, 110
SUPER.PDS
example input file demonstration 4-29
how to open 4-36
verify file location 4-35

:' Monolithic ﬁ.ﬁ.ﬂ Memorles :' 4-197

PALASM 2 Software Index

S —

S (Continued)

Supplementary Programs
BINHEX 4-12, 26
DECODE 4-12, 26
PC24-12
PDSCNVT 4-12
PINOUT 4-12, 26
SCRSIM 4-13, 26
TIMING 4-12, 26
VTRACE 4-12, 26

T

TIMING 4-12, 26
Trace file
.TRF filename 4-140, 147
how different from history file 4-165
simulation segment output file 4-140
TRACE_ON command to define signal values 4-147
Trace waveform
defined 4-159
how different from history waveforms 4-161
how to view 4-48
TRACE_OFF command 4-140, 147
TRACE_ON command
defined 4-140
syntax 4- 147
to record trace waveforms 4-159
TRE file
convert to a Boolean equation 4-55
how to disassemble 4-55
view run-time log 4-55 .
when PALASM 2 software creates 4-54

V,W, X

VTRACE 4-12, 26
WHILE DO loop
defined 4-140
syntax 4-148
XPLOT 4-8
XPT file
created by assembler 4-56
to store fuseplot 4-42

4-198 I'l Monolithic m Memorles ﬂ

PAL Device Handbook

PAL Device Data Book

Data Sheets

Table of Contents

PAL/PLD Device Menu 5-3 PAL16R8A-4 Series 5-43
PAL16L8A-4
TTL/CMOS PAL Devices 5-9 PAL16R8A-4
PAL16R6A-4
PAL16RAS 5-1 PAL16R4A-4
K PALC16R8Z-25 Series 5-50
PAL‘P‘;T: 2"2 5:’ ies 517 PAL16L8Z-25
PAL16R8Z-25
PAL16RPSA PAL16R6Z-25
PAL16RP6A PAL16R4Z-25
PAL16RP4A
PAL16R8 Family 526 PAL16X4 551
PAL16R8D Series 5-29 PAL10HS Series 556
PAL16L8D PAL10H8
PAL16RSD
PAL12H6
PAL16R6D
PAL14H4
PAL16R4D
s PAL16H2
PAL16R8B Series 5-31 PAL16CA
PAL16L8B PAL10LS
e
PAL14L4
PAL16R4B PAL16L2
PALC16R8Q-25 Series 5-33
PAL1 6L$Q-25 PAL32VX10A 5-70
PAL16R8Q-25 PAL32VX10 570
PAL16R6Q-25
PAL16R4Q-25 PALC22V10H-25 579
PAL16R8B-2 Series 5-35 PALC22V10H-35 5-79
PAL16L8B-2
PAL16R8B-2 PAL22RX8A 587
PAL16R6B-2
PAL16R4B-2 PAL20RA10-20 5-95
PAL16R8A Series 5-37 PAL20RA10 5-97
PAL16L8A]
PAL16R8A PAL20RS10 Series 5-103
PAL16BEA PAL20S10
PAL16R4A PAL20RS10
PAL16R8B-4 Series 5-39 PAL20RS8
PAL16L8B-4 PAL20RS4
PAL16REE-4 PAL20X10A Series 5-113
PAL16R6B-4
PAL20L10A
PAL16R4B-4
i PAL20X10A
PAL16R8A-2 Series 5-41
PAL20X8A
PAL16L8A-2 PAL2OXAA
PAL16R8A-2
PAL16R6A-2
PAL16R4A-2
5.ii 2\ monotithic KAl Memories £

Table of Contents

PAL20R8 Family 5-122 TTL/CMOS AMPAL Devices........oersernnn 5-167
PAL20R8B Series 5-125
PAL20L8B AmPAL23S8-20 5-169
PAL20RSB AmPAL23S8-25 5-169
PAL20R6B
PAL20R4B AmPAL16R8 Family 5184
PAL20R8B-2 Series 5-126 AmPAL16R8D Series 5-183
PAL20L8B-2 AmPAL16L8D
PAL20R8B-2 AmPAL16R8D
PAL20R6B-2 AmPAL16R6D
PAL20R4B-2 AmPAL16R4D
PAL20R8A Series 5-128 AmPAL16R8B Series 5-197
PAL20L8A AmPAL16L8B
PAL20RSA * AmPAL16R8B
PAL20R6A AmPAL16R6B
PAL20R4A AmPAL16R4B
PAL20R8A-2 Series 5-130 AmPAL16R8AL Series 5-197
PAL20L8A-2 AmPAL16L8AL
PAL20R8A-2 AmPAL16R8AL '
PAL20R6A-2 AmPAL16R6AL
PAL20R4A-2 AmPAL16R4AL
PALC20R8Z-35 Series 5-133 AmPAL16R8A Seties 5-197
PALC20L8Z-35 AmPAL16L8A
PALC20R8Z-35 AmPAL16R8A
PALC20R6Z-35 AmPAL16R6A
PALC20R4Z-35 AmPAL16R4A
PALC20R8Z-45 Series 5-133 AmPAL16R8Q Series 5-197
PALC20L8Z-45 AmPAL16L8Q
PALC20R8Z-45 AmPAL16R8Q
PALC20R6Z-45 AmPAL16R6Q
PALC20R4Z-45 AmPAL16R4Q
AmPAL16R8L Series 5-197
AmPAL16L8L
PAL6L16A 5-141 AmPAL16RSL
PALSL14A 5-141 AmPAL16R6L
AmPAL16R4L
PAL12L10 Series 5-147 AmPAL16R8 Series 5-197
PAL12L10 AmPAL16L8
PAL14L8 AmPAL16R8
PAL16L6 AmPAL16R6
PAL18L4 AmPAL16R4
PAL20L2
PAL20C1 AmPAL18P8B 5-202
. AmPAL18PSAL 5-202
PAL32R16 5-158 AmPAL18P8A 5202
AmPAL18P8Q 5-202
General Information 5-164 AmPAL18PSL 5-202
ﬂ Monolhhlcli.ﬁﬂﬂcmorles :‘ B.iii

Table of Contents

AmPALC29MA16-35

5-209

AmPALC29MA16-45

5-209

AmPALC29M16-35

5-231

AmPALC29M16-45

5-231

AmPAL22V10-15

5-249

AmPAL22V10A

5-260

AmPAL22V10

5-260

AmPAL20XRP10 Family

5-271

AmPAL20XRP10-20 Series
AmPAL22XP10-20
AmPAL20XRP10-20
AmPAL20XRP8-20
AmPAL20XRP6-20
AmPAL20XRP4-20

AmPAL20XRP10-30L Series

AmPAL22XP10-30L
AmPAL20XRP10-30L
AmPAL20XRP8-30L
AmPAL20XRP6-30L
AmPAL20XRP4-30L

5-286

AmPAL20XRP10-30 Series 5-286
AmPAL22XP10-30
AmPAL20XRP10-30
AmPAL20XRP8-30
AmPAL20XRP6-30
AmPAL20XRP4-30
AMPAL20XRP10-40L S€riescucrcceeremsmccsunrunrrsccssen 5-286
AmPAL22XP10-40L
AmPAL20XRP10-40L
AmPAL20XRP8-40L
AmPAL20XRP6-40L
AmPAL20XRP4-40L

AmPAL20RP10 Family 5-291

AmPAL20RP10B Series 5-306
AmPAL22P10B
AmPAL20RP10B
AmPAL20RP8B
AmPAL20RP6B
AmPAL20RP4B
AmPAL20RP10AL Series 5-306
AmPAL22P10AL
AmPAL20RP10AL
AmPAL20RP8AL
AmPAL20RP6AL
AmPAL20RP4AL

AmPAL20RP10A Series 5-306
AmPAL22P10A
AmPAL20RP10A
AmPAL20RP8A
AmPAL20RP6A
AmPAL20RP4A
AmPAL20L10B 5-306
AmPAL20L10-20 5-306
AmPAL20L10AL 5-306
PROSE/PLS Sequencers 5-313
PMS14R21A 5-315
PMS14R21 5-315
PLS167-33 5-331
PLS168-33 5-331
PLS105-37 5-331
FPC/PEG Sequencers 5-337
Am29PL141 Fuse Programmable Controller 5-339
Am2971 Programmable Event Generator 5-365
ECL PAL Devices 5-379
PAL10020EV/EG8 5-381
PAL10H20EV/EGS8 5-381
PAL10H20G8 5-382
PAL10H20P8 5-385
HAL/ZHAL Devices 5-391
ZHAL20A Series 5-394
ZHAL24A Series 5-401
Military PAL Devices 5-415
Introduction 5-417

Military PAL/PLD Device Menu

5-418

Military 20-pin PAL Devices 5-421
Military 24-pin PAL Devices 5-439
DC/AC Parametric Testing 5-469

JAN 38510 and Standard Military Drawings

5-470

Military Screening 5-474
Quality Programs 5-477
Logic Cell Array 5-481
M2064 5-483
M2018 5-483
Military M2064/M2018 5-518
Electrical Definitions 5-531

l‘rl Monolithic Eﬂﬂ Memories I‘r'

Alphanumeric Product Index

- -
Am29PL141 5-339 AmPAL20XRP4-40L 5-286 PAL16L2 5-56 PAL20R8A-2 5-130
Am2971 5-365 AmPAL20XRP6-20 5-286 PAL16L6 5-147 PAL20R8B 5-125
AmPAL16L8 5-197 AmPAL20XRP6-30L 5-286 PAL16L8D 5-29 PAL20R8B-2 5-126
AmPAL16L8A 5-197 AmPAL20XRP6-30 5-286 PAL16L8A 5-37 PAL20RA10 5-97
AmPAL16L8AL 5-197 AmPAL20XRP6-40L 5-286 PAL16L8A-2 5-41 PAL20RA10-20 5-95
AmPAL16L8B 5-197 AmPAL20XRP8-20 5-286 PAL16L8A-4 5-43 PAL20RS10 5-103
AmPAL16L8D 5-183 AmPAL20XRP8-30L 5-286 PAL16L8B 5-31 PAL20RS4 5-103
AmPAL16L8L 5-197 AmPAL20XRP8-30 5-286 PAL16L8B-2 5-35 PAL20RS8 5-103
AmPAL16L8Q 5-197 AmPAL20XRP8-40L 5-286 PAL16L8B-4 5-39 PAL20S10 5-103
AmPAL16R4 5-197 AmPAL20XRP10-20 5-286 PAL16P8A 5-17 PAL20X4A 5-113
AmPAL16R4A 5-197 AmPAL20XRP10-30L 5-286 PAL16R4D 5-29 PAL20X8A 5-113
AmPAL16R4AL 5-197 AmPAL20XRP10-30 5-286 PAL16R4A 5-37 PAL20X10A 5-113
AmPAL16R4B 5-197 AmPAL20XRP10-40L 5-286 - PAL16R4A-2 5-41
AmPAL16R4D 5-183 PAL16R4A-4 5-43 PAL22RX8A 5-87
AmPAL16R4L 5-197 AmPAL22P10A 5-306 PAL16R4B 5-31
AmPAL18R4Q 5-197 AmPAL22P10AL 5-306 PAL16R4B-2 5-35 PAL32R16 5-158
AmPAL16R6 5-197 AmPAL22P10B 5-306 PAL16R4B-4 5-39 PAL32VX10 5-70
AmPAL16R6A 5-197 AmPAL22V10 5-260 PAL16R6D 529 | PAL32VX10A 5-70
AmPAL16R6AL 5-197 AmPAL22V10-15 5-249 PAL16R6A 5-37
AmPAL16R6B 5-197 AmPAL22V10A 5-260 PAL16R6A-2 5-41 PAL10020EV/EG8 5-381
AmPAL16R6D 5-183 AmPAL22XP10-20 5-286 PAL16R6A-4 5-43
AmPAL16R6L 5-197 AmPAL22XP10-30L 5-286 PAL16R6B 5-31 PALC16L8Q-25 5-33
AmPAL16R6Q 5-197 AmPAL22XP10-30 5-286 PAL16R6B-2 5-35 PALC16L8Z-25 5-50
AmPAL16R8 5-197 AmPAL22XP10-40L 5-286 PAL16R6B-4 5-39 PALC16R4Q-25 5-33
AmPAL16R8A 5-197 PAL16R8D 5-29 PALC16R4Z-25 5-50
AmPAL16R8AL 5-197 AmPAL23S8-20 5-169 PAL16R8A 5-37 PALC16R6Q-25 5-33
AmPAL16R8B 5-197 AmPAL23S8-25 5-169 PAL16R8A-2 5-41 PALC16R6Z-25 5-50
AmPAL16R8D 5-183 PAL16R8A-4 5-43 PALC16R8Q-25 5-33
AmPAL16R8L 5-197 AmPALC29M16-35 5-231 PAL16R8B 5-31 PALC16R8Z-25 5-50
AmPAL16R8Q 5-197 AmPALC29M16-45 5-231 PAL16R8B-2 5-35 PALC20L8Z-35 5-133
AmPALC29MA16-35 5-209 PAL16R8B-4 5-39 PALC20R4Z-35 5-133
AmPAL18P8A 5-202 AmPALC29MA16-45 5-209 PAL16RA8 5-11 PALC20R6Z-35 5-133
AmPAL18P8AL 5-202 PAL16RP4A 5-17 PALC20R8Z-35 5-133
AmPAL18P8B 5-202 M2018 5-483 PAL16RP6A 5-17 '| PALC20L8Z-45 5-133
AmPAL18P8L 5-202 M2064 5-483 PAL16RP8A 5-17 PALC20R4Z-45 5-133
AmPAL18P8Q 5-202 PAL16X4 5-561 PALC20R6Z-45 5-133
PALEL16A 5-141 PALC20R8Z-45 5-133
AmPAL20L10AL 5-306 PAL8L14A 5-141 PAL18L4 5-147 PALC22V10H-25 5-79
AmPAL20L10B 5-306 PALC22V10H-35 5-79
AmPAL20L10-20 5-306 PAL10H8 5-56 PAL20C1 5-147 :
AmPAL20RP4A 5-306 PAL10H20G8 5-382 PAL20L2 5-147 PLS105-37 5-331
AmPAL20RP4AL 5-306 PAL10H20EV/EGS 5-381 PAL20L10A 5-113 PLS167-33 5-331
AmPAL20RP4B 5-306 PAL10H20P8 5-385 PAL20L8A 5-128 PLS168-33 5-331
AmPAL20RP6A 5-306 PAL10L8 5-56 PAL20L8A-2 5-130
AmPAL20RP6AL 5-306 PAL20L8B 5-125 PMS14R21 5-315
AmPAL20RP6B 5-306 PAL12H6 5-56 PAL20L8B-2 5-126 PMS14R21A 5-315
AmPAL20RP8A 5-306 PAL12L6 5-56 PAL20R4A 5-128
AmPAL20RP8AL 5-306 PAL12L10 5-147 PAL20R4A-2 5-130
AmPAL20RP8B 5-306 PAL20R4B 5-125
AmPAL20RP10A 5-306 PAL14H4 5-56 PAL20R4B-2 5-126
AmPAL20RP10AL 5-306 PAL14L4 5-56 PAL20R6A 5-128
AmPAL20RP10B 5-306 PAL14L8 5-147 PAL20R6A-2 5-130
AmPAL20XRP4-20 5-286 - - PAL20R6B 5-125
AmPAL20XRP4-30L 5-286 PAL16C1 5-56 PAL20R6B-2 5-126
AmPAL20XRP4-30 5-286 PAL16H2 5-56 PAL20R8A 5-128

E'l Monolithic m Memorles I‘rl 5.v

Notes

ﬂ Monolithic m Memories l‘rl

Data Sheets

Electrical Definil

ﬂ Monolithic m Memories zl 5.1

Notes

5.2 2\ Monoiithic I Memories £

- PAL/PLD Device Menu

STANDBY
PRODUCT SPEED lee DATA SHEET
DEVICE NAME INPUTS OUTPUTS TERMS/OUTPUT (t,; in ns) (mA) PAGE NO.
PAL8L14A 8 14 1 25 90 5-141
PAL6L16A 6 16 1 25 90 5-141
PAL10H8 10 8 2 35 90 5-56
PAL12H6 12 6 2,4 35 90 5-56
PAL14H4 14 4 4 35 90 5-56
PAL16H2 16 2 8 35 90 5-56
PAL10L8 10 8 2 35 90 5-56
PAL12L6 12 6 24 35 90 5-56
PAL14L4 14 4 4 35 90 5-56
PAL16L2 16 2 8 35 90 5-56
PAL16C1 16 2 16 40 90 5-56
PAL16L8D 16* 8 7 10 180 5-29
AmPAL16L8D 10 180 5-183
PAL16L8B 15 180 5-31
AmPAL16L8B 15 180 5-197
PALC16L8Z-25 25 0.1 5-50
PALC16L8Q-25 25 45 5-33
PAL16L8B-2 25 90 5-35
AmPAL16L8AL 25 90 5-197
PAL16L8A 25 180 5-37
AmPAL16L8A 25 155 5-197
PAL16L8B-4 35 55 5-39
AmPAL16L8Q 35 45 5-197
PAL16L8A-2 35 90 5-41
AmPAL16L8L 35 80 5-197
AmPAL16L8 35 155 5-197
PAL16L8A—4 55 50 5-43
PAL16P8A 16" 8 7 25/30** 180 5-17
AmPAL18P8B 18" 8 8 15 180 5-202
AmPAL18P8AL 25 90 5-202
AmPAL18P8A 25 180 5-202
AmPAL18P8Q 35 55 5-202
AmPAL18P8L 35 90 5-202
PAL12L10 12 10 2 40 100 5-147
PAL14L8 14 8 2,4 40 100 5-147
PAL16L6 16 6 2,4 40 100 5-147
PAL18L4 18 4 4,6 40 100 5-147
PAL20L2 20 2 8 40 100 5-147
PAL20C1 20 2 16 40 100 5-147
PAL20L8B 20" 8 7 15 210 5-125
PAL20L8B-2 25 105 5-126
PAL20L8A 25 210 5-128
PALC20L8Z-35 35 0.1 5-133
PAL20L8A-2 35 105 5-130
PALC20L8Z-45 45 0.1 5-133

Table 1. Simple Combinatorial PAL Devices

a Monolithic m Memories zl 5-3

/

PAL/PLD Device Menu

STANDBY
PRODUCT SPEED lee DATA SHEET
DEVICE NAME INPUTS OUTPUTS TERMS/OUTPUT (t,, in ns) (mA) PAGE NO.
AmPAL20L10B 20* 10 3 15 210 5-306
AmPAL20L10-20 20 165 5-306
AmPAL20L10AL 25 105 . 5-306
PAL20L10A 30 165 5-113
PAL20S10 20* 10 0-161t 35 240 5-103
AmPAL22P10B 22* 10 8 15 210 5-306
AmPAL22P10AL 25 105. 5-306
AmPAL22P10A 25 210 5-306
AmPAL22XP10-20 22* 10 2/6t 20 210 5-286
AmPAL22XP10-30L 30 105 5-286
AmPAL22XP10-30 30 180 5-286
AmPAL22XP10-40L 40 105 5-286
* Includes feedback 1 Has an exclusive-OR gate
** Depending on polarity 1t Product term steering
Table 1. Simple Combinatorial PAL Devices (Cont'd.)
STANDBY
PRODUCT SPEED I, DATA SHEET
DEVICE NAME INPUTS OUTPUTS | FLIP-FLOPS| TERMS/OUTPUT ((f,,,, in MHz) (mi\) PAGE NO.
PAL16R8D 16* 8 8 8 55 180 5-29
AmPAL16R8D : 55 180 5-183
PAL16R8B 37 180 5-31
AmPAL16R8B 40 180 5-197
PALC16R8Z-25 285 0.1 5-50
PALC16R8Q-25 285 45 5-33
PAL16R8B-2 25 90 5-35
AmPAL16R8AL 285 90 5-197
PAL16R8A 25 180 5-37
AmPAL16R8A 285 155 5-197
PAL16R8B-4 16 55 5-39
AmPAL16R8Q 18 45 5-197
PAL16R8A-2 16 90 5-41
AmPAL16R8L 18 80 5-197
AmPAL16R8 18 155 5-197
PAL16R8A-4 11 50 5-43
PAL16R6D 16* 8 6 8 55 180 5-29
AmPAL16R6D 55 180 5-183
PAL16R6B 37 180 - 5-31
AmPAL16R6B 40 180 5-197
PALC16R6Z-25 » 285 0.1 5-50
PALC16R6Q-25 285 45 5-33
PAL16R6B-2 25 90 5-35
'AmPAL16R6AL 28.5 90 5-197
PAL16R6A 25 180 5-37
Table 2. Simple Registered PAL Devices
5-4 &\ Monotithic I Memories €1

PAL/PLD Device Menu

SPEED | STANDBY
PRODUCT (Fone lee DATA SHEET
DEVICE NAME INPUTS | OUTPUTS |FLIP-FLOPS|TERMS/OUTPUT | in MHz) | (mA) PAGE NO.
AmPAL16R6A 285 180 5-197
PAL16R6B-4 16 55 5-39
AmPAL16R6Q 18 45 5-197
PAL16R6A-2 16 90 5-41
AmPAL16R6L 18 90 5-197
AmPAL16R6 18 180 5-197
PAL16R6A-4 11 50 5-43
PAL16R4D 16* 8 4 8 55 180 5-29
AmPAL16R4D 55 180 5-183
PAL16R4B a7 180 5-31
AmPAL16R4B 40 180 5-197
PALC16R4Z-25 285 0.1 550
PALC16R4Q-25 285 45 5-33
PAL16R4B-2 25 90 535
AmPAL15R4AL 285 90 5-197
PAL16R4A 25 180 5-37
AmPAL16R4A 285 180 5-197
PAL16R4B-4 16 55 539
AmPAL16R4Q 18 45 5-197
PAL16R4A-2 16 90 5-41
AmPAL16R4L 18 90 5-197
AmPAL16R4 18 180 5-197
PAL16R4A-4 11 50 5-43
PAL16X4 16* 8 4 8t 14 225 551
PAL16RP8A 16* 8 8 8 25 180 5-17
PAL16RP6A 16* 8 6 8 25" 180 5-17
PAL16RP4A 16* 8 4 8 25 180 5-17
PAL20R8B 20* 8 8 8 37 " 210 5-125
PAL20R8B-2 25 105 5-126
PAL20R8A 25 210 5-128
PALC20R8Z-35 20 0.1 5-133
PAL20R8A-2 16 105 5-130
PALC20R8Z-45 15.3 0.1 5-133
PAL20REB 20" 8 6 8 37 210 5-125
PAL20R6B-2 25 105 5-126
PAL20R6A 25 210 5-128
PALC20R6Z-35 20 0.1 5-133
PAL20R6A-2 : 16 105 5-130
PALC20R6Z-45 _ 153 0.1 5-133
PAL20R4B 20 8 4 8 37 210 5-125
PAL20R4B-2 25 105 5-126
PAL20R4A 25 210 5-128
PALC20R4Z-35 20 0.1 5-133
PAL20R4A-2 16 105 5-130
PALC20R4Z-45 15.3 0.1 . 5133

Table 2. Simple Registered PAL Devices (Cont'd.)

:l Monolithic m Memories I‘:l - 5.5

PAL/PLD Device Menu

SPEED |STANDBY
PRODUCT (Fne lee DATA SHEET
DEVICE NAME INPUTS | OUTPUTS |FLIP-FLOPS|TERMS/OUTPUT| inMHz) | (mA) PAGE NO.
PAL20RS10 20* 10 10 0-161t 20 240 5-103
PAL20RSS 20* 10 8 0-161t 20 240 5-103
PAL20RS4 20* 10 4 0-16tt 20 240 5-103
AmPAL22V10-15 22 10 0-10§ 8-16§§ 40 180 5-249
PALC22V10H-25 333 90 5-79
AmPAL22V10A 285 180 5-260
PALC22V10H-35 20 90 579
AmPAL22V10 18 180 5-260
AmPAL20RP10B 22 10 10 8 a7 210 5-306
AmPAL20RP10AL 25 105 5-306
AmPAL20RP10A 25 210 5-306
AmPAL20RPSB 22" 10 8 8 37 210 5-306
AmPAL20RP8AL 25 105 5-306
AmPAL20RP8A 25 210 5-306
AmPAL20RP6B 22" 10 6 8 a7 210 5-306
AmPAL20RP6AL 25 105 5-306
AmPAL20RP6A 25 210 5-306
AmPAL20RP4B 22 10 4 8 a7 210 5-306
AmPAL20RPA4AL 25 105 5-306
AmPAL20RP4A 25 210 5-306
PAL32R16 32t 16 16§ 0-161t 16 280 5-158

* Includes feedback

** With polarity fuse intact
1 Has an exclusive-OR gate

11 Product term steering

§ Flip-flops can be bypassed

§§ Has varied product term distribution

Table 2. Simple Registered PAL Devices (Cont'd.)

ﬂ ‘Monollthic m Memories ﬂ

PAL/PLD Device Menu

STAND
SPEED BY
FLIP-FLOP PRODUCT (fax l.. | DATASHEET

DEVICE NAME INPUTS | OUTPUTS | FLIP-FLOPS | TYPES | TERMS/OUTPUT| in MHz) | (mA) | PAGE NO.

PAL20X10A 20* 10 10 D,T.JK,SR 2/2t 222 180 5-113

PAL20X8A 20* 10 8 D,T.JK,SR 2/2t 222 180 5-113

PAL20X4A 20* 10 4 D, TJK,SR 2/2% 222 180 5-113
AmPAL20XRP10-20 22" 10 10 D,T.JK,SR 2/61 30.3 210 5-286
AmPAL20XRP10-30L : 222 105 5-286
AmPAL20XRP10-30 22.2 180 5-286
AmPAL20XRP10-40L 14.3 105 5-286
AmPAL20XRP8-20 22* 10 8 D, TJK,SR 2/6, 8t 30.3 210 5-286
AmPAL20XRP8-30L 222 105 5-286
AmPAL20XRP8-30 222 180 5-286
AmPAL20XRP8-40L 14.3 105 5-286
AmPAL20XRP6-20 22* 10 6 D, TJK,SR 2/6, 8t 30.23 210 5-286
AmPAL20XRP6-30L 222 105 5-286
AmPAL20XRP6-30 22.2 180 5-286
AmPAL20XRP6-40L 14.3 105 5-286
AmPAL20XRP4-20 22" 10 4 D,TJK,SR 2/6, 81 30.3 210 5-286
AmPAL20XRP4-30L 222 105 5-286
AmPAL20XRP4-30 22.2 180 5-286
AmPAL20XRP4-40L 143 105 5-286

PAL22RX8A 22* 8 8§ D,T,JK,SR 1/8t 285 210 5-87
AmPAL23S8-20 23* 8 14§ D,BO 6-12§§ 33 200 5-169
AmPAL23S8-25 285 200 5-169
AmPALC29M16-35 29* 16 16§ D,B,LO 8-16§§ 20 120 5-231
AmPALC29M16-45 15 120 5-231

PAL32VX10A 32* 10 10§ D,T.JK,SR, 1/8-161 25 180 5-70

PAL32VX10 B0 22.2 180 5-70
* Includes feedback §§ Has varied product term distribution
1 Has an exclusive-OR gate 0 B=flip-flops are or can be buried; L=latched outputs possible
§ Some flip-flops can be bypassed

Table 3. State Machine PAL Devices
PRODUCT SPEED | STANDBY DATA SHEET

DEVICE NAME INPUTS | OUTPUTS | TERMS/OUTPUT | (t,,inns) | | (mA) PAGE NO.

PAL16RA8 16* 8 4 30™ 170 5-11

PAL20RA10-20 20* 10 4 20" 200 5-95

PAL20RA10 30" 200 5-97
AmPALC29MA16-35 20* 16 4-12tt 35 120 5-209
AmPALC29MA16-45 45 120 5-209

* Includes feedback
** With polarity fuse intact
11 Has product term steering
Table 4. Asynchronous PAL Devices
ﬂ Monolithic m Memoriles i:' ' 5-7

PAL/PLD Device Menu

PRODUCT SPEED DATA SHEET,
DEVICE NAME INPUTS | OUTPUTS | FLIP-FLOPS | TERMS/OUTPUT | (t, orf,,) |l.(mA)| PAGE NO.
PAL10H20P8 20* 8 0 0-8t1 6ns 210 5-386
PAL10H20G8 20* 8 8§ 0-8t1 6ns 225 5-382
PAL10H20EV/EGS8 20" 8 8§ 8-12§§ 125 MHz 220 5-381
* Includes feedback § Flip-flops can be bypassed
11 Has product term steering §§ Has varied product term distribution
Table 5. 10KH-Compatible PAL Devices
PRODUCT SPEED DATA SHEET,
DEVICE NAME INPUTS | OUTPUTS | FLIP-FLOPS | TERMS/OUTPUT | (torf,,,) |l.(mA)| PAGE NO.
PAL10020EV/EGS8 20* 8 8§ 8-12§§ 125 MHz 220 5-381
* Includes feedback § Flip-flops can be bypassed
§§ Has varied product term distribution
Table 6. 100K-Compatible PAL Devices
) STATES BRANCHES SPEED l.. | DATA SHEET
DEVICE NAME INPUTS | OUTPUTS (MAX) PER STATE (fuax IN MHz) | (mA) PAGE NO.
PMS14R21A 8 8 128 4 30 210 5-315
PMS14R21 25 210 5-315
PLS105-37 16 8 <64" * 37 200 5-331
PLS167-33 1