
United States Patent 19
Shen et al.

54 STACKPUSH/POP TRACKING AND
PARING IN APPELNED PROCESSOR

75 Inventors: Gene Shen, Mountain View; Shalesh
Thusoo, Milpitas; James S. Blomgren,
San Jose, all of Calif.

73) Assignee: Exponential Technology, Inc., San
Jose, Calif.

(21) Appl. No.: 584,836
22 Filed: Jan. 11, 1996

(51] Int. CI. ... G06F 9/32
52 U.S. Cl. ... 395,378
58 Field of Search 395/DIG. 1 MS File,

395/DIG. 2 MS File, 378,395,410,588,
427, 445, 459

56) References Cited

U.S. PATENT DOCUMENTS

4,524,416 6/1985 Stanley et al. 395/410
4,974,158 11/1990 Watanabe et al. 395/378
4,984,151 1/1991 Dujari 395/588
5,006,980 4/1991 Sanders et al. 395/395
5,142,635 8/1992 Saini 395/375
5,566,307 10/1996 Watanabe et al. 395/378

DECODE
16

US005687336A

11 Patent Number: 5,687,336
45 Date of Patent: Nov. 11, 1997

Primary Examiner-Robert B. Harrell
Attorney, Agent, or Firm-Stuart T. Auvinen
57 ABSTRACT

A pipelined processor executes several stack instructions
simultaneously. Additional shadow registers for stackpoint
ers of instructions in the pipeline are not needed. Instead the
new stackpointeris generated once at the end of the pipeline
and written to the register file. The stack pointer is needed
for generating the stack-top address in memory. The stack
top address is generated early in the pipeline. Other stack
instructions in the pipeline which have not yet incremented
the stackpointer are located with a stack valid bit array. The
stack valid array indicates the increment or decrement
amounts for stack instructions in each pipeline stage. An
overal displacement or increment value is computed as the
sum of all increments and decrements for stack instructions
in the pipeline which have not yet updated the stackpointer.
The overall displacement which accounts for all unfinished
stack instructions is added to the stack pointer from the
register file to generate the stack-top address. Thus the new
stackpointer does not have to be generated before the stack
memory is accessed. Pushes or pops are paired by doubling
the increment amount in the stack valid bit array and
performing a double-width data transfer.

19 Claims, 6 Drawing Sheets

SEG BASE

TOS ADDR

U.S. Patent Nov. 11, 1997 . Sheet 1 of 6 5,687,336

DECODE
16

SP
10

SEG BASE

14

FIG. 1

U.S. Patent Nov. 11, 1997 Sheet 2 of 6 5,687,336

10

PL

VALID
BITS

50

SEG BASE

INCR

LOGIC 20 14

U.S. Patent Nov. 11, 1997 Sheet 3 of 6 5,687,336

50
12 10

D SP : REG FILE 20

SEG BASE INCR B

A viv,
TOS ADDR

C MEM DATA REG FILE
26 STACK GPR'S

POP 1
DATA

SP NCR

LOGIC M Av, +4 2O

SP
10

W SP REG FILE
12

FG. 3

U.S. Patent Nov. 11, 1997 Sheet 4 of 6 5,687,336

PUSH 6O

NOP 72

PUSH 74

PUSH 76

POP 78

NOP 80

FIG. 4 911 -4

U.S. Patent Nov. 11, 1997 Sheet 5 of 6 5,687,336

10

PUSH 1 - C
POP 1-W

PUSH 2 - C
POP 2-W

REG

SP D-STAGE
SP'-W FILE

SPM-STAGE

SEG BASE

FIG. 5

U.S. Patent Nov. 11, 1997 Sheet 6 of 6 5,687,336

94 INCRVALUE

5,687,336
1.

STACKPUSHAPOP TRACKNG AND
PARING IN A PIPELINED PROCESSOR

BACKGROUND OF THE INVENTION-FIELD
OF THE INVENTION

This invention relates to stack operations on a digital
computer, and more particularly for pipelining push and pop
stack operations.

BACKGROUND OF THE INVENTION--
DESCRIPTION OF THE RELATED ART

The rapid execution of instructions has been an area of
intense developmental efforts by the microprocessor indus
try. One approach has been to reduce the complexity of the
instructions, thus reducing the computational work required
by each instruction. However, many programs have been
written for older complex instruction sets, and it is thus very
desirable to execute these older, complex instruction sets.

Stack-based addressing is common in these older complex
instruction sets. A stackis a data structure that is accessed in
a first-in, last-out fashion. Data that is stored to the stack is
“pushed” onto the top of the stack, while data read off the
stackis "popped" off the top of the stack. Thus the top of the
stack (TOS) is the memory location that is normally read or
written. A pointer called a stack pointer (SP) contains the
location of the top of the stack. When data is written
(pushed) to the stack, this stack pointer is first incremented
to point to the next unoccupied memory location, and the
data is then written to this unoccupied location. When the
data is read from the stack, the top of the stack is accessed
by reading the location pointed to by the stack pointer, and
then the stackpointeris decremented to point to the previous
data item on the stack.
The x86 architecture includes complex, stack-based

instructions. The x86 architecture was originally used by the
8086, 286, 386, and 486 processors manufactured by Intel
Corporation of Santa Clara, Calif., and is now used by many
other processors by such companies as Advanced Micro
Devices of Sunnyvale, Calif., and Cyrix of Richardson,Tex.
The x86 architecture includes several variants of stack

instructions. These stack instructions fundamentally incre
ment the stackpointer and store data to the stack (a PUSH)
or read data from the top of the stack and decrement the
stackpointer (a POP). However, the x86 uses a upside-down
stack that grows downward rather than upward. Thus
PUSHes actually decrement the stack pointer while POPs
increment the stackpointer. For purposes of explanation, the
stack is described herein as a right-side-up stack while in
practice an inverted stack is used.

Another x86 complexity is that the stackresides in a stack
segment. The stack pointer may be an offset address within
that stack segment rather than an absolute address. The
offset is measured in units of bytes, with each data item
stored in the stack typically being 32-bits (four bytes) in
size, although other sizes may occasionally be used. Thus
the stackpointer is incremented by 4 bytes for a PUSH, but
decremented by 4 bytes for a POP
Pipelining Stack Instructions Problematic
A particular problem with stack operations is pipelining

them. In a pipelined processor, the work of executing an
instruction is broken down into smaller steps. Each step is
executed in a hardware unit called a pipestage or a stage.
When a stack operation is executed, it is decoded and the
stackpointer read in a first pipeline stage. In a second stage
the address in memory of the stacktop is calculated from the
stackpointer. Then the memory is accessed in the following
stage. Finally the stackpointer is updated in the final stage
of a pipeline.

5

O

15

25

30

35

45

50

55

65

2
The problem arises when several stackinstructions are in

the pipeline at the same time. An older stack instruction
needs to update the stack pointer before younger stack
instructions read the stack pointer.
The stack pointer must be read early in the pipeline to

calculate the address in the memory of the stack top.
However, the stackpointer may not be updated by the older
instruction until the end of the pipeline. Thus the younger
stackinstructions may have to stall until the stackpointer is
updated, especially when back-to-backstackinstructions are
encountered. This reduces performance.
A Prior-Art Solution Uses Multiple Additional SP Registers
and Busses

Saini, in U.S. Pat. No. 5,142,635, assigned to Intel
Corporation, discloses one method to execute multiple stack
operations in a pipelined processor. Saini uses multiple
stack-pointer registers, latches, and busses which are
updated at various times within the pipeline. (See ESP 122,
ASP 124, SSP 120 and I-bus, M-bus, and J-bus of his FIG.
4.) Since the stack pointer is a 32-bit value, these extra
registers and busses are 32-bits in width and add to the
expense and complexity of the processor.
What is desired is a pipelined processor for executing

stack instructions. It is desired to have multiple stack
instructions being simultaneously executed in various stages
of the pipeline without adding many extra stack registers and
busses for the stack pointer.

SUMMARY OF THE INVENTION

A pipeline for processing multiple stack instructions
includes a plurality of pipeline stages for processing instruc
tions. A register file stores operands for input to the pipeline
and results from the pipeline while a stack pointer register
stores a stackpointer indicating a top of a stack. An array of
stack-instruction valid bits indicate which pipeline stages in
the plurality of pipeline stages contain a stack instruction.
A stack-top address generating means receives stack

instruction valid bits from the array of stack-instruction
valid bits. It generates a memory address of the top of the
stack in memory. A memory access means responds to the
memory address from the stack-top address generating
means and transfers data between the stack in memory and
the register file. A stack pointer update means receives the
stackpointer and adds a final adjust to the stackpointer and
writes a sum to the stack pointer register when a stack
instruction completes processing by the pipeline.
The stack-instruction valid bits thus indicate which pipe

line stages in the plurality of pipeline stages contain a stack
instruction, and the stack-instruction valid bits are used to
generate the memory address of the stack in memory.

In further aspects of the invention the absolute value of
the final adjust for a particular stack instruction is equal to
the size of the data transferred by the memory access means
for the particular stack instruction. The sign of the final
adjust indicates if the particular stack instruction is a push
stack instruction or a pop stack instruction. The push stack
instruction reads data from the register file and writes the
data to the stack in memory, but the pop stack instruction
reads the data from the stack in memory and writes the data
to the register file.

In still further aspects of the invention the array of
stack-instruction valid bits is a plurality of single-stage stack
valid bits. Each of the plurality of single-stage stack valid
bits includes a displacement indicator means for indicating
the amount and direction of the adjust for stackinstructions
being processed in that stage. The pipeline includes means

5,687,336
3

for copying the single-stage stack valid bits in the stage to
the single-stage stack valid bits for a next stage when the
stack instruction advances to the next stage in the pipeline.

In other aspects of the invention the stack-top address
generating means has an overall displacement generating
means which receives the stack-instruction valid bits. It
generates an overall displacement between a memory
address pointed to by the stack pointer in the stack pointer
register and the top of the stack in memory to be accessed
by a stack instruction at the beginning of the pipeline. The
overall displacement is a sum of adjusts for other stack
instructions in the pipeline which have not yet completed
processing by the pipeline.
An address adder means receives the overall displacement

and the stack pointer from the stack pointer register, and it
generates as a sum the memory address of the top of the
stackin memory. The address adder means further adds in a
segment base address to the overall displacement and the
stackpointer when generating the memory address of the top
of the stack. The segment base address is a base address for
a stack segment in memory containing the stack.

Pushes or pops are paired by doubling the increment
amount in the stack valid bit array and performing a double
width data transfer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a pipelined processor for pipelining stack
instructions by staging multiple stack pointers down the
pipeline.

FIG. 2 is an improvement in a pipelined processor for
executing multiple stack instructions in the pipeline.

FIG. 3 is a resource timing diagram showing howpipeline
resources are arranged in the pipeline sequence for process
ing multiple stack instructions.

FIG. 4 is a detailed diagram of stack valid bits for a
super-scalar processor with three pipelines.

FIG. 5 illustrates a multi-port register file used with the
invention.

FIG. 6 is an embodiment of the increment logic for
generating an overall displacement.

DETALED DESCRIPTION

The present invention relates to an improvement in stack
instruction pipelining. The following description is pre
sented to enable one of ordinary skill in the art to make and
use the invention as provided in the context of a particular
application and its requirements. Various modifications to
the preferred embodiment will be apparent to those with
skill in the art, and the general principles defined herein may
be applied to other embodiments. Therefore, the present
invention is not intended to be limited to the particular
embodiments shown and described, but is to be accorded the
widest scope consistent with the principles and novel fea
tures herein disclosed.

FIG. 1 is a pipelined processor for pipelining stack
instructions by staging multiple stack pointers down the
pipeline. One more obvious way of executing multiple stack
instructions in a pipeline is to generate the stack pointer
early in the pipeline, before the memory access. This cal
culated stack pointer is then staged down the pipeline and
finally written to the register file in the last pipeline stage.
The pipeline of the preferred embodiment is a five-stage

pipeline. The stages are D, A, C, M, and W, for decode,
address generate, cache, memory/execute, and write-back.

10

15

20

25

35

40

45

50

55

65

4
The instruction is decoded in the D stage. An address of an
operand in memory is calculated in the Astage. This address
is used to access the operand in the cache during the C and
M stage, and pipeline stalls are added if the cache misses and
main memory must be accessed. During the M stage any
ALU or execute type of operations are performed. The final
resultis written back to the register file in the W stage. Many
other variations of pipeline stages can employ the invention
described herein as the exact number and type of stages can
be varied by persons of skill in the art.
An instruction is first decoded in the D stage instruction

decoder 16, Fields in the instruction can indicate which
registers in register file 10 are accessed by the instruction.
For stack-type instructions, stack pointer 12 (SP) is read
from register file 10 and inputted to first adder 18. Increment
logic 19 determines how many bytes the stack pointer (SP)
should be incremented, and this increment value from incre
ment logic 19 is added to stack pointer 12 in first adder 18
to produce the new stack pointer SP 30. This new stack
pointer SP is stored in register 32 and then staged down the
pipeline through registers 34, 36, during the A, C, and M
stages. In the final W stage the new stack pointer SP is
written to stack pointer 12 in register file 10.

Since the stack pointer SP may be updated by an older
instruction in the pipeline, the stackpointer 12 in registerfile
10 may not be the correct stack pointer. Instead, the stack
pointer updated by an older instruction in the A, C, or M
stages may be used by inputting the updated stack pointers
from registers 32, 34, 36 to first adder 18 rather than stack
pointer 12 from register file 10.

Second adder 22 then adds the segment base address from
register file 10 to the new stackpointer 30 to generate the
linear address of the top of the stackin memory 26. Data is
then pushed or popped from the stack in memory 26 to
general-purpose registers (GPR's) 14 in register file 10.

FIG. 2 is an improvement in a pipelined processor for
executing multiple stackinstructions in the pipeline. Decode
16, register file 10, and memory 26 operate as described for
FIG. 1. Pipeline valid bits 50 indicate the locations of valid
stack instructions in the pipeline. From the locations of the
stack instructions from valid bits 50, increment logic 20
determines increment value 94 to add to stack pointer 12
stored in register file 10. If older stack instructions exist in
the pipeline, an additional amount of increment value 94 is
added by logic 20 to account for the older stackinstructions
in the pipeline.

Three-port adder 40 is used to generate the address of the
top of the stack (TOS) directly without calculating the new
stackpointer. The old stackpointer 12 from register file 10,
along with the increment amount from increment logic 20
and the segment base address 24 are added together without
having to generate the new stack pointer.
The new stack pointer SP' is not generated until the end

of the pipeline, when the new stackpointer is written to the
register file 10. Final increment logic 20' generates incre
ment value 94 for the instruction at the end of the pipeline,
which is added to stack pointer 12 in final adder 42 to
generate the new stack pointer SP. Thus the updated stack
pointer need only be generated at the end of the pipeline.
Timing of Multiple Stack Instructions in Pipeline.

FIG.3 is a resource timing diagram showing how pipeline
resources are arranged in the pipeline sequence for process
ing multiple stack instructions. In the D stage stackpointer
12 of register file 10 is read. In the following A stage, stack
pointer 12 is added to the segment base 24 and to increment
value 94.

5,687,336
5

The increment value 94 is determined by increment logic
20 by reading stack valid bits in pipeline valid bits 50. Stack
valid bits are readby increment logic 20 for the D, A, C, M,
and W stages. The stack valid bits indicate the locations of
valid stack instructions. As shown in FIG. 3, push
instructions, which increment the stack pointer by -4, are
located in the D and C stages. In the C stage two push
instructions are present, so the stack pointer must be incre
mented by a double amount, -8. A pop instruction is present
in stage M. which decrements the stackpointer by +4. The
net result:

-4-8-44-8

is increment value 94 outputted from increment logic 20. It
is the overall displacement to add to the stackpointer. This
addition may be implemented in increment logic 20 as a
small 3-bit 5-port adder, or preferably as combinatorial
logic.

Three-port adder 40 then performs the addition of the
stack pointer, segment base 24, and increment value 94
during the Astage and outputs the sum, which is the address
of the top of the stack in memory, to the cache. The cache
memory 42 is accessed in the C and M stages. Register file
10 is again accessed in the CM stage to read the pushed data.
Popped data is written to register file 10 in the W stage.

Register file 10 is again read in the C stage to provide
stackpointer 12 to final adder 42. During the M stage, final
adder 42 increments stackpointer 12 by the final increment
amount determined by final increment logic 20'. The new
stackpointer SP is written to stackpointer 12 in register file
10 during the W stage.

Final increment logic 20' in stage Mis much less complex
than increment logic 20 in the earlier stage D. While
increment logic 20 adds increment values for all stages, final
increment logic 20' only reads the increment value for a
single stage, the M stage. Multiple stages of stack valid bits
50 are not read since the stackpointer is being updated at the
end of the pipeline. Each cycle that has a valid stack
instruction performs the stack pointer increment in final
adder 42 in stageMjust before writing the new stackpointer
value back to register file 10 in the W stage.
Thus stack pointer 12 in register file 10 always contains

the value for the correct stackpointer 12. This correct stack
pointer value is the stack pointer that would be read by the
last instruction in the pipeline, in the W stage. This correct
stack pointer is the stack pointer visible to the user, the
architectural value.
Multiple Registers for Temporary Stack Pointers Not
Needed
No intermediate values for the stack pointer need to be

stored. Thus the staging registers 32, 34, 36 of FIG. 1 are
deleted. Removing these 32-bit registers is desirable since
they are wide, expensive registers. Bussing to and from
these registers 32, 34, 36 is also reduced or removed
altogether.
When a push instruction is decoded in the D stage, then

increment logic 20 includes the increment by -4 for that
push instruction in the D stage. However, when a pop
instruction is decoded in the D stage, the increment of +4 for
that pop is not included in the increment value 94 generated
by increment logic 20. The reason that the increment is
included for pushes but not for pops being decoded is that
the x86 architecture requires that the stack pointer be
incremented before a push, but decremented after a pop. A
push instruction writes to the next vacant memory location
above the top of the stack, so the stack pointer must be
incremented before the memory write. However, the pop

10

15

20

25

30

35

45

50

55

65

6
reads from the occupied memory location at the top of the
stack, so the stackpointer is first used for the memory access
and then decremented. Thus the stackpointer always points
to an occupied memory location at the top of the stack.

Other architectures may invert the x86 scheme and have
their stack pointers point to the vacant location above the
stack. In that case the stackpointer is decremented before a
pop, but incremented after a push.
While in the prior art the stack pointer was generated

before the push memory access, since the stackpointer is not
discretely generated in the invention before the memory
access, the stack pointer increment is actually done by final
adder 42 at the end of the pipeline in the Mstage. Thus even
for push instructions the stack pointer is not physically
incremented before the memory access as in the prior art.
Instead the three-port adder 40 generates the linear address
of the memory location to read or write from without first
generating the new stack pointer. The pre-increment of the
stack pointer before the memory write is accounted for by
including the D-stage's push instruction's increment amount
when generating the overall displacement or increment
value 94 by increment logic 20. For a D-stage pop
instruction, its decrement amount is not included when
generating the overall displacement or increment value 94
by increment logic 20.

Three-port adder 40 is the normal address-generate adder
in the Astage. Three-port adder 40 adds a base and an index
value to segment base 24 for a typical load or store instruc
tion. During stackinstructions, segment base 24 is the base
address of the stack's segment SS, while for typical data
reads and writes to random memory segment base 24 is the
data segment DS or the extra segment ES. For some types
of branch instructions segment base 24 is the code segment
CS.

Final adder 42 is preferably the arithmetic-logic-unit
adder which is used to execute calculation-type instructions
such as ADD, SUB, etc. Thus adders already present in the
pipeline may be used to implement in the invention.
Embodiments of Stack Valid Bits

Several embodiments of stack valid bits 50 are contem
plated. Some or all of the stack valid bits may be imple
mented as detection or decode logic which may decode
certain fields in a microcode or control word which controls
the hardware to perform the indicated operation defined by
the decoded instruction.
A simple army of displacement values for each pipeline

stage is shown in FIG. 3. If only one stack instruction can
exist in a stage, then the possible increment values for that
stage are -4 for a push, +4 for a pop, or 0 for no stack
operation. Thus two binary bits can implement the stack
valid bits. When pushes or pops can be paired in a single
stage so that two pushes or pops are simultaneously
executed, then the possible increment values are -8 for two
pushes, +8 for two pops, or-4 for one push, +4 for one pop,
or 0 for no pushes or pops. Note that a push and a pop cannot
be paired together. Four binary bits can implement the stack
valid bits when pairing is allowed.

FIG. 4 is a detailed diagram of stack valid bits 50 for a
super-scalar processor with three pipelines. In a superscalar
processor, multiple pipelines operate in parallel to process
and retire more than one instruction per clock cycle. The
stack valid bits are extended to include stack valid bits for
each pipeline capable of executing stack instructions. As
shown in FIG. 4, three pipelines, PL-1, PL-2, and PL-3 each
are capable of executing stack instructions. In the D stage a
push instruction 60 is in pipeline PL-1, and its stack valid
bits are set to -4. The D-stage stack valid bits for pipelines

5,687,336
7

PL-2 and PL-3 are set to 0, indicating that no stack instruc
tions are processed by pipelines PL-1 and PL-2 in the D
Stage.
For the A stage a non-stack instruction is executed,

designated as a no-operation (nop 72) for purposes of
illustration, although this instruction 72 could by any of a
number of non-stackinstructions. The stack valid bits for all
three pipelines are set to zero.

Stage C contains a pair of push instructions. Push 74 is
allocated to pipeline PL-1, whose stack valid bits are set to
-4, while push 76 is allocated to pipeline PL-2, whose stack
valid bits are also set to -4.

Stage M has a single pop instruction 78, which sets the
stack valid bits in pipeline PL-1 to +4. Stage W has no stack
instructions, indicated by nop instruction 80.
At each clock edge the instructions are staged down to the

next pipeline stage, and the stack valid bits are also staged
down. Thus on the next clockedge, stage D's stack valid bits
set to -4 are staged down to the A stage, which is then
changed from 0 to -4.

Increment value 94 from increment logic 20 is generated
as the sum of each stage's increment or decrement value.
Thus increment value 94 is -4, which is the sum of -4, -8,
and +4. This sum is represented by high and low electrical
signals as is well known in the art, For example, a bus of four
or five metal interconnect lines or nets could be used to
represent or encode in binary two's complement encoding
the possible values for increment value 94.

In other embodiments only one or a few or the pipelines
are able to execute stack instructions. Perhaps two pipelines
are needed to execute just one stack instruction. For
example, a superscalar processor has three pipelines: ALU,
MEM, and BR. These pipelines are specialized pipelines
which can only execute ALU, load/store, and branch instruc
tions respectively. Stack instructions require both the ALU
and the MEM pipelines. Three-port adder 40 and cache
memory 26 are located in the MEM pipeline, while final
adder 42 is located in the ALU pipeline. Thus both the MEM
and ALU pipelines are allocated for each stack instruction.
Multi-Port Register File

FIG. 5 illustrates a multi-port register file used with the
invention. Register file 10 has three write ports and five read
ports. During each processor clock cycle, all ports may be
used. Thus five data operands or pointers may be read during
each clock cycle, and four results may be written.

Register file 10 includes read ports for reading the stack
pointer in the D and C stages, for input to three-port adder
40 in the Astage and to final adder 42 in the M stage. Note
that register file 10 is read one stage before the data is
needed. The segment base 24 is also read in the D stage for
input to three-stage adder 40 in the A stage.
The result or new stack pointer SP' is written in the W

stage using one of the write ports. The other two write ports
are used for data popped from memory 26 to register file 10.
For paired pops, two 32-bit write ports are needed since two
32-bit data words are popped off the stack.
Two read ports are available for paired pushes. When only

a single push is presentin a stage, then only one of these read
ports is used. Paired pushes push up to two 32-bit data words
onto the stack in memory 26 and therefore two 32-bit
registers in register file 10 are read during a paired push.

Register file 10 is read for pushes during the C stage, or
possibly the A stage if memory 26 write timing is critical.
For pops, register file 10 is written during the W stage.
Increment Logic

FIG. 6 is an embodiment of increment logic 20. Stack
valid bits 50 are read for each pipeline stage, and each

10

15

20

25

30

35

45

55

65

8
stage's increment value is input to adder 90. For the first D
stage, mux 92 selects the stack valid bit value of -4 when a
push instruction is in the decode stage, but selects +0 when
a pop instruction is decoded in the D stage. Thus for pop
instructions the top-of-stack memory address does not
include the D-stage's decrement when generating the
memory address since the x86 architecture decrements the
stack pointer after the memory access. However, for push
instructions the D-stage increment of -4 is included when
generating the memory address.

Instead of physically storing stack valid bits for the first
D stage, the decode logic itself can simply input either +0 or
+4 to adder 90 and then stage either-4 or +4 down to the
A stage's stack valid bits when a pop or push instruction is
decoded.

Adder 90 generates the sum of the five stage's increment
values and outputs the sum as increment value 94 which is
the overall displacement of the new stack pointer for the
D-stage when compared to the user-visible stack pointer in
the register file.
Push and Pop Pairing
Two pushes or two pops may be simultaneously executed

by the same pipeline when paired together. When a pair of
pushes or pops are executed, up to 64-bits of data must be
transferred between register file 10 and memory 26. Thus
two read and two write ports to register file 10 are used. The
data path to cache memory 26 is 64-bits in width, so two
adjacent, 32-bit data words may be simultaneously read or
written. Since the stackis contiguous, when a paired push or
pop occurs, the data accessed is adjacent. It is possible that
the two data words are not aligned and then additional cache
memory 26 cycles may be needed, or the pushes and pops
are not paired.
When the stack pointer has been incremented or decre

mented for a 16-bit operand, the increment/decrement value
is +2 rather than 4. The next stack access may be mis
aligned when the new stackpointer is not a multiple of four.
A simple scheme to detect mis-aligned accesses is to signal
a mis-aligned access when the bottom, least-significant three
bits of the new stack pointer are not all zeros. Pairing the
pushes and pops is then disabled since mis-aligned pushes
and pops may cross over to another cache line, requiring a
second cache access cycle which reduces performance.
Depending upon the size of the cache line, the mis
alignment detection can be altered to prevent push/pop
pairing when the two pushes or pops are not both in the same
cache line.

Push and pop pairing allows for super-scalar execution
without requiring an extra pipeline. Two stack instructions
can be executed in a single stage in a single pipeline. The
operation performed by the pipeline for a paired push or pop
is identical to the operation performed for a single push or
pop, except that the increment amount is doubled, and a
64-bit data transfer is performed instead of a 32-bit transfer.
Stack valid bits implement a doubled increment easily by
storing a larger increment amount. Thus push/pop pairing is
more easily implemented with the stack valid bits described
herein.
When an exception is possible, push and pop pairing may

have to be prevented. If the exception occurs between the
paired pushes or pops, there is no simple way of halting
execution after the first push or pop but before the second
push or pop since a 64-bit quantity containing both pushes
or popsis written to either memory 26 or register file 10. The
paired pushes or pops may simply both be canceled after
issue once the exception is detected and the first push/pop
re-issued without the second push/pop. Another approach

5,687,336
9

when segmentation or debug exceptions cannot occur is to
use the mis-aligned pair detection. When the new stack
pointer points to the middle of a cache line and pairing
pushes or pops will cross the cache line boundary, the
pairing is prevented. Since page faults only occur when a
memory reference crosses a page boundary, and pages are
aligned to cache-line boundaries, preventing pairing also
prevents page fault exceptions.

ALTERNATE EMBODIMENTS
Several other embodiments are contemplated by the

inventors. For example only pushes but not pops may be
paired if there is a limitation on the number of write ports to
the register file. The reverse could also be implemented.

Other architectures may invert the x86 scheme and have
their stack pointers point to the vacant location above the
stack. In that case the stackpointer is decremented before a
pop, but incremented after a push. The sense of increment
and decrement can simply be reversed as well and thus the
term increment refers to an adjustment which serves to
increase the size of the stackrather than an absolute increase
or decrease in an address. Address translation can further
cloud the appearance of the direction of the stack address.
The size of the increment or decrement has been described
as 4-bytes, but other sizes may be used depending upon the
size of the data pushed or popped from the stack. The data
transferred may be program data such as operands or results,
or address pointers, subroutine parameters, and register
contents for subroutine calls and returns. The stack pointer
may physically reside within the register file array, or it may
be a separate register on the processor. Virtual or physical
addresses before or after address translation may also be
used.

While stack valid bits have been described for all stages,
they may not be necessary and could be deleted for the final
W stage if the stack pointer is written to register file 10
before the stack pointer is read in the D stage. Pipelining
registers are needed between pipestages. For example, the
inputs to adders 40 and 42 are latched from the previous
stage. These pipeline registers hold all operands or inputs
that are eventually added, whether the operands are the
segment base address, a component of an address, a data
operand, or the stack pointer. These pipeline register are
overwritten once the add is completed. These temporary
registers are thus part of the normal pipeline and are not
shadowing the stack pointer but merely holding the stack
pointer as an operand or input to the adders. Thus they are
not dedicated to holding a shadow of the stack pointer but
are used for any type of operand. A shadow register at the
last stage could be used with the invention when the gen
eration of the new stackpointer is pipelined.
The increment values have been described as being mul

tiples of four bytes (-4, 0, +4). However, when a 16-bit
(2-byte) operand is pushed or popped, the incrementis-2 or
+2. Likewise when a byte-operand is pushed or popped, the
increment is -l or +1. Additional stack valid bits may be
used to encode these additional possible values for the
increments. Other instructions besides push and pop which
adjust the stack pointer's value may also benefit from the
invention. Indeed, push and pop are generic terms for a
group of instructions. Instructions that explicitly update the
stack pointer, such as a move to the stack pointer register,
can occur if other pushes and pops are stalled until the
explicit move instruction completes.
The foregoing description of the embodiments of the

invention has been presented for the purposes of illustration

10

15

25

30

35

45

50

55

65

10
and description. It is notintended to be exhaustive or to limit
the invention to the precise form disclosed. Many modifi
cations and variations are possible in light of the above
teaching. It is intended that the scope of the invention be
limited not by this detailed description, but rather by the
claims appended hereto.
We claim:
1. A pipeline for processing multiple stack instructions

comprising:
a plurality of pipeline stages for processing instructions;
a registerfile for storing operands for input to the pipeline

and results from the pipeline;
a stack pointer register for storing a stack pointer indi

cating a top of a stack;
an array of stack-instruction valid bits for indicating
which pipeline stages in the plurality of pipeline stages
contain a stack instruction;

stack-top address generating means, receiving stack
instruction valid bits from the array of stack-instruction
valid bits, for generating a memory address of the top
of the stack in memory;

memory access means, responsive to the memory address
from the stack-top address generating means, for trans
ferring data between the stack in memory and the
register file; and

stack pointer update means, receiving the stack pointer,
for adding a final adjust to the stackpointer and writing
a sum to the stack pointer register when a stack
instruction completes processing by the pipeline,

whereby the stack-instruction valid bits indicate which
pipeline stages in the plurality of pipeline stages con
tain a stack instruction, and the stack-instruction valid
bits are used to generate the memory address of the
stack in memory.

2. The pipeline of claim 1 wherein the absolute value of
the final adjust for a particular stack instruction is equal to
the size of the data transferred by the memory access means
for the particular stack instruction.

3. The pipeline of claim 2 wherein the sign of the final
adjust indicates if the particular stack instruction is a push
stack instruction or a pop stack instruction, the push stack
instruction reading data from the register file and writing the
data to the stack in memory, the pop stack instruction
reading the data from the stack in memory and writing the
data to the register file.

4. The pipeline of claim 3 wherein the array of stack
instruction valid bits comprises a plurality of single-stage
stack valid bits, each of the plurality of single-stage stack
valid bits including displacement indicator means for indi
cating the amount and direction of the adjust for stack
instructions being processed in that stage, the pipeline
including means for copying the single-stage stack valid bits
in the stage to the single-stage stack valid bits for a next
stage when the stackinstruction advances to the next stage
in the pipeline.

5. The pipeline of claim 4 wherein the displacement
indicator means for a particular stage containing a first stack
instruction indicates an amount and direction of the adjust
which is equivalent to the final adjust for the first stack
instruction when the first stack instruction in the particular
stage is advanced to the end of the pipeline and completes
processing.

6. The pipeline of claim 5 wherein the stack-top address
generating means comprises:

overall displacement generating means, receiving the
stack-instruction valid bits, for generating an overall

5,687,336
11

displacement between a memory address pointed to by
the stackpointer in the stackpointer register and the top
of the stack in memory to be accessed by a stack
instruction at the beginning of the pipeline, the overall
displacement being a sum of adjusts for other stack
instructions in the pipeline which have not yet com
pleted processing by the pipeline; and

address adder means, receiving the overall displacement
and the stackpointer from the stackpointer register, for
generating as a sum the memory address of the top of
the stack in memory.

7. The pipeline of claim 6 wherein the address adder
means further adds in a segment base address to the overall
displacement and the stack pointer when generating the
memory address of the top of the stack, the segment base
address being a base address for a stack segment in memory
containing the stack.

8. The pipeline of claim 7 wherein the overall displace
ment generating means comprises an adder for adding
single-stage displacements to generate the overall
displacement, a single-stage displacement for a particular
stage being equal to the final adjust when the stack instruc
tion in a particular stage reaches the end of the pipeline and
completes processing.

9. The pipeline of claim 8 further comprising stack
instruction pairing means for allocating two stack instruc
tions to a single pipeline stage, the stack-instruction pairing
means including:

means for doubling the size of the data transferred by the
memory access means between the register file and the
stack in memory, and

means for doubling the magnitude of the adjust indicated
by the displacement indicator means in the single-stage
stack valid bits for a stage having paired stack
instructions,

whereby two stack instructions are processed together in
the single pipeline stage by doubling an adjust amount
in the stack-instruction valid bits and doubling the size
of data transfer.

10. The pipeline of claim 9 further comprising:
mis-align detection means for detecting when paired stack

instructions are not both contained in a single cache
line;

pairing disable means, responsive to the mis-align detec
tion means, for disabling the stack-instruction pairing
means to not allocating two stack instructions to the
single pipeline stage when the two stack instructions
are not both contained in a single cache line.

11. The pipeline of claim 10 wherein the mis-align
detection means comprises:

means for reading least-significant bits in the stack
pointer,

means for signaling a mis-alignment when the least
significant bits in the stack pointer are not all equal to
EO.

12. The pipeline of claim 11 wherein the least-significant
bits in the stack pointer comprise a same number of bits as
a number of binary bits for the size of the cache line.

13. The pipeline of claim 6 wherein the final adjust is a
decrement.

5

10

15

20

25

30

35

45

50

55

12
14. A computer-implemented method for processing mul

tiple stackinstructions in a pipeline, the method comprising
the steps of:

decoding a stack instruction at the beginning of the
pipeline;

reading a stackpointer from a stack-pointer register, the
stack pointer not including any increments or decre
ments for stackinstructions in the pipeline which have
not completed processing;

determining an overall displacement, the overall displace
ment being the sum of increments and decrements for
stack instructions in the pipeline which have not com
pleted processing;

generating the address of the top of a stack by adding the
overall displacement to the stack pointer and to a
segment base address, the segment base address being
a starting address for a segment containing a stack;

applying the address of the top of the stack to a memory
and transferring data between the stack in the memory
and a register file for the pipeline;

reading the stack-pointer register and adding the stack
pointer to a single-instruction displacement to generate
an updated stack pointer, the single-instruction dis
placement being an increment or decrement for the
stackinstruction when the stack instruction is about to
complete processing by the pipeline; and

writing the updated stack pointer to the stack-pointer
register when the stack instruction completes process
ing by the pipeline,

whereby the stack-pointer register contains the only stack
pointer, wherein stack pointers for instructions in the
pipeline are not stored.

15. The computer-implemented method of claim 14 fur
ther comprising the step of:

reading an array of stack valid bits for the pipeline, the
stack valid bits indicating the locations of stackinstruc
tions in the pipeline which have not completed pro
cessing by the pipeline; and

determining from the stack valid bits the amount of
increment or decrement for each stackinstruction in the
pipeline,

whereby the stack valid bits indicate the increment or
decrement for stack instructions in the pipeline.

16. The computer-implemented method of claim 15
wherein the updated stackpointer is not generated in a first
half of the pipeline before the memory access but is only
generated once in a last half of the pipeline.

17. The computer-implemented method of claim 15
wherein the overall displacement is the sum including an
increment for the stack instruction at the beginning of the
pipeline when the stack instruction at the beginning of the
pipeline is a push instruction.

18. The computer-implemented method of claim 17
wherein the overall displacement is the sum not including a
decrement for the stack instruction at the beginning of the
pipeline when the stack instruction at the beginning of the
pipeline is a pop instruction.

19. The computer-implemented method of claim 15
wherein the memory is a cache of a larger memory.

sk cit k : :

