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57 ABSTRACT 

A pipelined processor executes several stack instructions 
simultaneously. Additional shadow registers for stackpoint 
ers of instructions in the pipeline are not needed. Instead the 
new stackpointeris generated once at the end of the pipeline 
and written to the register file. The stack pointer is needed 
for generating the stack-top address in memory. The stack 
top address is generated early in the pipeline. Other stack 
instructions in the pipeline which have not yet incremented 
the stackpointer are located with a stack valid bit array. The 
stack valid array indicates the increment or decrement 
amounts for stack instructions in each pipeline stage. An 
overal displacement or increment value is computed as the 
sum of all increments and decrements for stack instructions 
in the pipeline which have not yet updated the stackpointer. 
The overall displacement which accounts for all unfinished 
stack instructions is added to the stack pointer from the 
register file to generate the stack-top address. Thus the new 
stackpointer does not have to be generated before the stack 
memory is accessed. Pushes or pops are paired by doubling 
the increment amount in the stack valid bit array and 
performing a double-width data transfer. 

19 Claims, 6 Drawing Sheets 
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STACKPUSHAPOP TRACKNG AND 
PARING IN A PIPELINED PROCESSOR 

BACKGROUND OF THE INVENTION-FIELD 
OF THE INVENTION 

This invention relates to stack operations on a digital 
computer, and more particularly for pipelining push and pop 
stack operations. 

BACKGROUND OF THE INVENTION-- 
DESCRIPTION OF THE RELATED ART 

The rapid execution of instructions has been an area of 
intense developmental efforts by the microprocessor indus 
try. One approach has been to reduce the complexity of the 
instructions, thus reducing the computational work required 
by each instruction. However, many programs have been 
written for older complex instruction sets, and it is thus very 
desirable to execute these older, complex instruction sets. 

Stack-based addressing is common in these older complex 
instruction sets. A stackis a data structure that is accessed in 
a first-in, last-out fashion. Data that is stored to the stack is 
“pushed” onto the top of the stack, while data read off the 
stackis "popped" off the top of the stack. Thus the top of the 
stack (TOS) is the memory location that is normally read or 
written. A pointer called a stack pointer (SP) contains the 
location of the top of the stack. When data is written 
(pushed) to the stack, this stack pointer is first incremented 
to point to the next unoccupied memory location, and the 
data is then written to this unoccupied location. When the 
data is read from the stack, the top of the stack is accessed 
by reading the location pointed to by the stack pointer, and 
then the stackpointeris decremented to point to the previous 
data item on the stack. 
The x86 architecture includes complex, stack-based 

instructions. The x86 architecture was originally used by the 
8086, 286, 386, and 486 processors manufactured by Intel 
Corporation of Santa Clara, Calif., and is now used by many 
other processors by such companies as Advanced Micro 
Devices of Sunnyvale, Calif., and Cyrix of Richardson,Tex. 
The x86 architecture includes several variants of stack 

instructions. These stack instructions fundamentally incre 
ment the stackpointer and store data to the stack (a PUSH) 
or read data from the top of the stack and decrement the 
stackpointer (a POP). However, the x86 uses a upside-down 
stack that grows downward rather than upward. Thus 
PUSHes actually decrement the stack pointer while POPs 
increment the stackpointer. For purposes of explanation, the 
stack is described herein as a right-side-up stack while in 
practice an inverted stack is used. 

Another x86 complexity is that the stackresides in a stack 
segment. The stack pointer may be an offset address within 
that stack segment rather than an absolute address. The 
offset is measured in units of bytes, with each data item 
stored in the stack typically being 32-bits (four bytes) in 
size, although other sizes may occasionally be used. Thus 
the stackpointer is incremented by 4 bytes for a PUSH, but 
decremented by 4 bytes for a POP 
Pipelining Stack Instructions Problematic 
A particular problem with stack operations is pipelining 

them. In a pipelined processor, the work of executing an 
instruction is broken down into smaller steps. Each step is 
executed in a hardware unit called a pipestage or a stage. 
When a stack operation is executed, it is decoded and the 
stackpointer read in a first pipeline stage. In a second stage 
the address in memory of the stacktop is calculated from the 
stackpointer. Then the memory is accessed in the following 
stage. Finally the stackpointer is updated in the final stage 
of a pipeline. 
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The problem arises when several stackinstructions are in 

the pipeline at the same time. An older stack instruction 
needs to update the stack pointer before younger stack 
instructions read the stack pointer. 
The stack pointer must be read early in the pipeline to 

calculate the address in the memory of the stack top. 
However, the stackpointer may not be updated by the older 
instruction until the end of the pipeline. Thus the younger 
stackinstructions may have to stall until the stackpointer is 
updated, especially when back-to-backstackinstructions are 
encountered. This reduces performance. 
A Prior-Art Solution Uses Multiple Additional SP Registers 
and Busses 

Saini, in U.S. Pat. No. 5,142,635, assigned to Intel 
Corporation, discloses one method to execute multiple stack 
operations in a pipelined processor. Saini uses multiple 
stack-pointer registers, latches, and busses which are 
updated at various times within the pipeline. (See ESP 122, 
ASP 124, SSP 120 and I-bus, M-bus, and J-bus of his FIG. 
4.) Since the stack pointer is a 32-bit value, these extra 
registers and busses are 32-bits in width and add to the 
expense and complexity of the processor. 
What is desired is a pipelined processor for executing 

stack instructions. It is desired to have multiple stack 
instructions being simultaneously executed in various stages 
of the pipeline without adding many extra stack registers and 
busses for the stack pointer. 

SUMMARY OF THE INVENTION 

A pipeline for processing multiple stack instructions 
includes a plurality of pipeline stages for processing instruc 
tions. A register file stores operands for input to the pipeline 
and results from the pipeline while a stack pointer register 
stores a stackpointer indicating a top of a stack. An array of 
stack-instruction valid bits indicate which pipeline stages in 
the plurality of pipeline stages contain a stack instruction. 
A stack-top address generating means receives stack 

instruction valid bits from the array of stack-instruction 
valid bits. It generates a memory address of the top of the 
stack in memory. A memory access means responds to the 
memory address from the stack-top address generating 
means and transfers data between the stack in memory and 
the register file. A stack pointer update means receives the 
stackpointer and adds a final adjust to the stackpointer and 
writes a sum to the stack pointer register when a stack 
instruction completes processing by the pipeline. 
The stack-instruction valid bits thus indicate which pipe 

line stages in the plurality of pipeline stages contain a stack 
instruction, and the stack-instruction valid bits are used to 
generate the memory address of the stack in memory. 

In further aspects of the invention the absolute value of 
the final adjust for a particular stack instruction is equal to 
the size of the data transferred by the memory access means 
for the particular stack instruction. The sign of the final 
adjust indicates if the particular stack instruction is a push 
stack instruction or a pop stack instruction. The push stack 
instruction reads data from the register file and writes the 
data to the stack in memory, but the pop stack instruction 
reads the data from the stack in memory and writes the data 
to the register file. 

In still further aspects of the invention the array of 
stack-instruction valid bits is a plurality of single-stage stack 
valid bits. Each of the plurality of single-stage stack valid 
bits includes a displacement indicator means for indicating 
the amount and direction of the adjust for stackinstructions 
being processed in that stage. The pipeline includes means 
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for copying the single-stage stack valid bits in the stage to 
the single-stage stack valid bits for a next stage when the 
stack instruction advances to the next stage in the pipeline. 

In other aspects of the invention the stack-top address 
generating means has an overall displacement generating 
means which receives the stack-instruction valid bits. It 
generates an overall displacement between a memory 
address pointed to by the stack pointer in the stack pointer 
register and the top of the stack in memory to be accessed 
by a stack instruction at the beginning of the pipeline. The 
overall displacement is a sum of adjusts for other stack 
instructions in the pipeline which have not yet completed 
processing by the pipeline. 
An address adder means receives the overall displacement 

and the stack pointer from the stack pointer register, and it 
generates as a sum the memory address of the top of the 
stackin memory. The address adder means further adds in a 
segment base address to the overall displacement and the 
stackpointer when generating the memory address of the top 
of the stack. The segment base address is a base address for 
a stack segment in memory containing the stack. 

Pushes or pops are paired by doubling the increment 
amount in the stack valid bit array and performing a double 
width data transfer. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a pipelined processor for pipelining stack 
instructions by staging multiple stack pointers down the 
pipeline. 

FIG. 2 is an improvement in a pipelined processor for 
executing multiple stack instructions in the pipeline. 

FIG. 3 is a resource timing diagram showing howpipeline 
resources are arranged in the pipeline sequence for process 
ing multiple stack instructions. 

FIG. 4 is a detailed diagram of stack valid bits for a 
super-scalar processor with three pipelines. 

FIG. 5 illustrates a multi-port register file used with the 
invention. 

FIG. 6 is an embodiment of the increment logic for 
generating an overall displacement. 

DETALED DESCRIPTION 

The present invention relates to an improvement in stack 
instruction pipelining. The following description is pre 
sented to enable one of ordinary skill in the art to make and 
use the invention as provided in the context of a particular 
application and its requirements. Various modifications to 
the preferred embodiment will be apparent to those with 
skill in the art, and the general principles defined herein may 
be applied to other embodiments. Therefore, the present 
invention is not intended to be limited to the particular 
embodiments shown and described, but is to be accorded the 
widest scope consistent with the principles and novel fea 
tures herein disclosed. 

FIG. 1 is a pipelined processor for pipelining stack 
instructions by staging multiple stack pointers down the 
pipeline. One more obvious way of executing multiple stack 
instructions in a pipeline is to generate the stack pointer 
early in the pipeline, before the memory access. This cal 
culated stack pointer is then staged down the pipeline and 
finally written to the register file in the last pipeline stage. 
The pipeline of the preferred embodiment is a five-stage 

pipeline. The stages are D, A, C, M, and W, for decode, 
address generate, cache, memory/execute, and write-back. 
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The instruction is decoded in the D stage. An address of an 
operand in memory is calculated in the Astage. This address 
is used to access the operand in the cache during the C and 
M stage, and pipeline stalls are added if the cache misses and 
main memory must be accessed. During the M stage any 
ALU or execute type of operations are performed. The final 
resultis written back to the register file in the W stage. Many 
other variations of pipeline stages can employ the invention 
described herein as the exact number and type of stages can 
be varied by persons of skill in the art. 
An instruction is first decoded in the D stage instruction 

decoder 16, Fields in the instruction can indicate which 
registers in register file 10 are accessed by the instruction. 
For stack-type instructions, stack pointer 12 (SP) is read 
from register file 10 and inputted to first adder 18. Increment 
logic 19 determines how many bytes the stack pointer (SP) 
should be incremented, and this increment value from incre 
ment logic 19 is added to stack pointer 12 in first adder 18 
to produce the new stack pointer SP 30. This new stack 
pointer SP is stored in register 32 and then staged down the 
pipeline through registers 34, 36, during the A, C, and M 
stages. In the final W stage the new stack pointer SP is 
written to stack pointer 12 in register file 10. 

Since the stack pointer SP may be updated by an older 
instruction in the pipeline, the stackpointer 12 in registerfile 
10 may not be the correct stack pointer. Instead, the stack 
pointer updated by an older instruction in the A, C, or M 
stages may be used by inputting the updated stack pointers 
from registers 32, 34, 36 to first adder 18 rather than stack 
pointer 12 from register file 10. 

Second adder 22 then adds the segment base address from 
register file 10 to the new stackpointer 30 to generate the 
linear address of the top of the stackin memory 26. Data is 
then pushed or popped from the stack in memory 26 to 
general-purpose registers (GPR's) 14 in register file 10. 

FIG. 2 is an improvement in a pipelined processor for 
executing multiple stackinstructions in the pipeline. Decode 
16, register file 10, and memory 26 operate as described for 
FIG. 1. Pipeline valid bits 50 indicate the locations of valid 
stack instructions in the pipeline. From the locations of the 
stack instructions from valid bits 50, increment logic 20 
determines increment value 94 to add to stack pointer 12 
stored in register file 10. If older stack instructions exist in 
the pipeline, an additional amount of increment value 94 is 
added by logic 20 to account for the older stackinstructions 
in the pipeline. 

Three-port adder 40 is used to generate the address of the 
top of the stack (TOS) directly without calculating the new 
stackpointer. The old stackpointer 12 from register file 10, 
along with the increment amount from increment logic 20 
and the segment base address 24 are added together without 
having to generate the new stack pointer. 
The new stack pointer SP' is not generated until the end 

of the pipeline, when the new stackpointer is written to the 
register file 10. Final increment logic 20' generates incre 
ment value 94 for the instruction at the end of the pipeline, 
which is added to stack pointer 12 in final adder 42 to 
generate the new stack pointer SP. Thus the updated stack 
pointer need only be generated at the end of the pipeline. 
Timing of Multiple Stack Instructions in Pipeline. 

FIG.3 is a resource timing diagram showing how pipeline 
resources are arranged in the pipeline sequence for process 
ing multiple stack instructions. In the D stage stackpointer 
12 of register file 10 is read. In the following A stage, stack 
pointer 12 is added to the segment base 24 and to increment 
value 94. 
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The increment value 94 is determined by increment logic 
20 by reading stack valid bits in pipeline valid bits 50. Stack 
valid bits are readby increment logic 20 for the D, A, C, M, 
and W stages. The stack valid bits indicate the locations of 
valid stack instructions. As shown in FIG. 3, push 
instructions, which increment the stack pointer by -4, are 
located in the D and C stages. In the C stage two push 
instructions are present, so the stack pointer must be incre 
mented by a double amount, -8. A pop instruction is present 
in stage M. which decrements the stackpointer by +4. The 
net result: 

-4-8-44-8 

is increment value 94 outputted from increment logic 20. It 
is the overall displacement to add to the stackpointer. This 
addition may be implemented in increment logic 20 as a 
small 3-bit 5-port adder, or preferably as combinatorial 
logic. 

Three-port adder 40 then performs the addition of the 
stack pointer, segment base 24, and increment value 94 
during the Astage and outputs the sum, which is the address 
of the top of the stack in memory, to the cache. The cache 
memory 42 is accessed in the C and M stages. Register file 
10 is again accessed in the CM stage to read the pushed data. 
Popped data is written to register file 10 in the W stage. 

Register file 10 is again read in the C stage to provide 
stackpointer 12 to final adder 42. During the M stage, final 
adder 42 increments stackpointer 12 by the final increment 
amount determined by final increment logic 20'. The new 
stackpointer SP is written to stackpointer 12 in register file 
10 during the W stage. 

Final increment logic 20' in stage Mis much less complex 
than increment logic 20 in the earlier stage D. While 
increment logic 20 adds increment values for all stages, final 
increment logic 20' only reads the increment value for a 
single stage, the M stage. Multiple stages of stack valid bits 
50 are not read since the stackpointer is being updated at the 
end of the pipeline. Each cycle that has a valid stack 
instruction performs the stack pointer increment in final 
adder 42 in stageMjust before writing the new stackpointer 
value back to register file 10 in the W stage. 
Thus stack pointer 12 in register file 10 always contains 

the value for the correct stackpointer 12. This correct stack 
pointer value is the stack pointer that would be read by the 
last instruction in the pipeline, in the W stage. This correct 
stack pointer is the stack pointer visible to the user, the 
architectural value. 
Multiple Registers for Temporary Stack Pointers Not 
Needed 
No intermediate values for the stack pointer need to be 

stored. Thus the staging registers 32, 34, 36 of FIG. 1 are 
deleted. Removing these 32-bit registers is desirable since 
they are wide, expensive registers. Bussing to and from 
these registers 32, 34, 36 is also reduced or removed 
altogether. 
When a push instruction is decoded in the D stage, then 

increment logic 20 includes the increment by -4 for that 
push instruction in the D stage. However, when a pop 
instruction is decoded in the D stage, the increment of +4 for 
that pop is not included in the increment value 94 generated 
by increment logic 20. The reason that the increment is 
included for pushes but not for pops being decoded is that 
the x86 architecture requires that the stack pointer be 
incremented before a push, but decremented after a pop. A 
push instruction writes to the next vacant memory location 
above the top of the stack, so the stack pointer must be 
incremented before the memory write. However, the pop 
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6 
reads from the occupied memory location at the top of the 
stack, so the stackpointer is first used for the memory access 
and then decremented. Thus the stackpointer always points 
to an occupied memory location at the top of the stack. 

Other architectures may invert the x86 scheme and have 
their stack pointers point to the vacant location above the 
stack. In that case the stackpointer is decremented before a 
pop, but incremented after a push. 
While in the prior art the stack pointer was generated 

before the push memory access, since the stackpointer is not 
discretely generated in the invention before the memory 
access, the stack pointer increment is actually done by final 
adder 42 at the end of the pipeline in the Mstage. Thus even 
for push instructions the stack pointer is not physically 
incremented before the memory access as in the prior art. 
Instead the three-port adder 40 generates the linear address 
of the memory location to read or write from without first 
generating the new stack pointer. The pre-increment of the 
stack pointer before the memory write is accounted for by 
including the D-stage's push instruction's increment amount 
when generating the overall displacement or increment 
value 94 by increment logic 20. For a D-stage pop 
instruction, its decrement amount is not included when 
generating the overall displacement or increment value 94 
by increment logic 20. 

Three-port adder 40 is the normal address-generate adder 
in the Astage. Three-port adder 40 adds a base and an index 
value to segment base 24 for a typical load or store instruc 
tion. During stackinstructions, segment base 24 is the base 
address of the stack's segment SS, while for typical data 
reads and writes to random memory segment base 24 is the 
data segment DS or the extra segment ES. For some types 
of branch instructions segment base 24 is the code segment 
CS. 

Final adder 42 is preferably the arithmetic-logic-unit 
adder which is used to execute calculation-type instructions 
such as ADD, SUB, etc. Thus adders already present in the 
pipeline may be used to implement in the invention. 
Embodiments of Stack Valid Bits 

Several embodiments of stack valid bits 50 are contem 
plated. Some or all of the stack valid bits may be imple 
mented as detection or decode logic which may decode 
certain fields in a microcode or control word which controls 
the hardware to perform the indicated operation defined by 
the decoded instruction. 
A simple army of displacement values for each pipeline 

stage is shown in FIG. 3. If only one stack instruction can 
exist in a stage, then the possible increment values for that 
stage are -4 for a push, +4 for a pop, or 0 for no stack 
operation. Thus two binary bits can implement the stack 
valid bits. When pushes or pops can be paired in a single 
stage so that two pushes or pops are simultaneously 
executed, then the possible increment values are -8 for two 
pushes, +8 for two pops, or-4 for one push, +4 for one pop, 
or 0 for no pushes or pops. Note that a push and a pop cannot 
be paired together. Four binary bits can implement the stack 
valid bits when pairing is allowed. 

FIG. 4 is a detailed diagram of stack valid bits 50 for a 
super-scalar processor with three pipelines. In a superscalar 
processor, multiple pipelines operate in parallel to process 
and retire more than one instruction per clock cycle. The 
stack valid bits are extended to include stack valid bits for 
each pipeline capable of executing stack instructions. As 
shown in FIG. 4, three pipelines, PL-1, PL-2, and PL-3 each 
are capable of executing stack instructions. In the D stage a 
push instruction 60 is in pipeline PL-1, and its stack valid 
bits are set to -4. The D-stage stack valid bits for pipelines 
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PL-2 and PL-3 are set to 0, indicating that no stack instruc 
tions are processed by pipelines PL-1 and PL-2 in the D 
Stage. 
For the A stage a non-stack instruction is executed, 

designated as a no-operation (nop 72) for purposes of 
illustration, although this instruction 72 could by any of a 
number of non-stackinstructions. The stack valid bits for all 
three pipelines are set to zero. 

Stage C contains a pair of push instructions. Push 74 is 
allocated to pipeline PL-1, whose stack valid bits are set to 
-4, while push 76 is allocated to pipeline PL-2, whose stack 
valid bits are also set to -4. 

Stage M has a single pop instruction 78, which sets the 
stack valid bits in pipeline PL-1 to +4. Stage W has no stack 
instructions, indicated by nop instruction 80. 
At each clock edge the instructions are staged down to the 

next pipeline stage, and the stack valid bits are also staged 
down. Thus on the next clockedge, stage D's stack valid bits 
set to -4 are staged down to the A stage, which is then 
changed from 0 to -4. 

Increment value 94 from increment logic 20 is generated 
as the sum of each stage's increment or decrement value. 
Thus increment value 94 is -4, which is the sum of -4, -8, 
and +4. This sum is represented by high and low electrical 
signals as is well known in the art, For example, a bus of four 
or five metal interconnect lines or nets could be used to 
represent or encode in binary two's complement encoding 
the possible values for increment value 94. 

In other embodiments only one or a few or the pipelines 
are able to execute stack instructions. Perhaps two pipelines 
are needed to execute just one stack instruction. For 
example, a superscalar processor has three pipelines: ALU, 
MEM, and BR. These pipelines are specialized pipelines 
which can only execute ALU, load/store, and branch instruc 
tions respectively. Stack instructions require both the ALU 
and the MEM pipelines. Three-port adder 40 and cache 
memory 26 are located in the MEM pipeline, while final 
adder 42 is located in the ALU pipeline. Thus both the MEM 
and ALU pipelines are allocated for each stack instruction. 
Multi-Port Register File 

FIG. 5 illustrates a multi-port register file used with the 
invention. Register file 10 has three write ports and five read 
ports. During each processor clock cycle, all ports may be 
used. Thus five data operands or pointers may be read during 
each clock cycle, and four results may be written. 

Register file 10 includes read ports for reading the stack 
pointer in the D and C stages, for input to three-port adder 
40 in the Astage and to final adder 42 in the M stage. Note 
that register file 10 is read one stage before the data is 
needed. The segment base 24 is also read in the D stage for 
input to three-stage adder 40 in the A stage. 
The result or new stack pointer SP' is written in the W 

stage using one of the write ports. The other two write ports 
are used for data popped from memory 26 to register file 10. 
For paired pops, two 32-bit write ports are needed since two 
32-bit data words are popped off the stack. 
Two read ports are available for paired pushes. When only 

a single push is presentin a stage, then only one of these read 
ports is used. Paired pushes push up to two 32-bit data words 
onto the stack in memory 26 and therefore two 32-bit 
registers in register file 10 are read during a paired push. 

Register file 10 is read for pushes during the C stage, or 
possibly the A stage if memory 26 write timing is critical. 
For pops, register file 10 is written during the W stage. 
Increment Logic 

FIG. 6 is an embodiment of increment logic 20. Stack 
valid bits 50 are read for each pipeline stage, and each 
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8 
stage's increment value is input to adder 90. For the first D 
stage, mux 92 selects the stack valid bit value of -4 when a 
push instruction is in the decode stage, but selects +0 when 
a pop instruction is decoded in the D stage. Thus for pop 
instructions the top-of-stack memory address does not 
include the D-stage's decrement when generating the 
memory address since the x86 architecture decrements the 
stack pointer after the memory access. However, for push 
instructions the D-stage increment of -4 is included when 
generating the memory address. 

Instead of physically storing stack valid bits for the first 
D stage, the decode logic itself can simply input either +0 or 
+4 to adder 90 and then stage either-4 or +4 down to the 
A stage's stack valid bits when a pop or push instruction is 
decoded. 

Adder 90 generates the sum of the five stage's increment 
values and outputs the sum as increment value 94 which is 
the overall displacement of the new stack pointer for the 
D-stage when compared to the user-visible stack pointer in 
the register file. 
Push and Pop Pairing 
Two pushes or two pops may be simultaneously executed 

by the same pipeline when paired together. When a pair of 
pushes or pops are executed, up to 64-bits of data must be 
transferred between register file 10 and memory 26. Thus 
two read and two write ports to register file 10 are used. The 
data path to cache memory 26 is 64-bits in width, so two 
adjacent, 32-bit data words may be simultaneously read or 
written. Since the stackis contiguous, when a paired push or 
pop occurs, the data accessed is adjacent. It is possible that 
the two data words are not aligned and then additional cache 
memory 26 cycles may be needed, or the pushes and pops 
are not paired. 
When the stack pointer has been incremented or decre 

mented for a 16-bit operand, the increment/decrement value 
is +2 rather than 4. The next stack access may be mis 
aligned when the new stackpointer is not a multiple of four. 
A simple scheme to detect mis-aligned accesses is to signal 
a mis-aligned access when the bottom, least-significant three 
bits of the new stack pointer are not all zeros. Pairing the 
pushes and pops is then disabled since mis-aligned pushes 
and pops may cross over to another cache line, requiring a 
second cache access cycle which reduces performance. 
Depending upon the size of the cache line, the mis 
alignment detection can be altered to prevent push/pop 
pairing when the two pushes or pops are not both in the same 
cache line. 

Push and pop pairing allows for super-scalar execution 
without requiring an extra pipeline. Two stack instructions 
can be executed in a single stage in a single pipeline. The 
operation performed by the pipeline for a paired push or pop 
is identical to the operation performed for a single push or 
pop, except that the increment amount is doubled, and a 
64-bit data transfer is performed instead of a 32-bit transfer. 
Stack valid bits implement a doubled increment easily by 
storing a larger increment amount. Thus push/pop pairing is 
more easily implemented with the stack valid bits described 
herein. 
When an exception is possible, push and pop pairing may 

have to be prevented. If the exception occurs between the 
paired pushes or pops, there is no simple way of halting 
execution after the first push or pop but before the second 
push or pop since a 64-bit quantity containing both pushes 
or popsis written to either memory 26 or register file 10. The 
paired pushes or pops may simply both be canceled after 
issue once the exception is detected and the first push/pop 
re-issued without the second push/pop. Another approach 
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when segmentation or debug exceptions cannot occur is to 
use the mis-aligned pair detection. When the new stack 
pointer points to the middle of a cache line and pairing 
pushes or pops will cross the cache line boundary, the 
pairing is prevented. Since page faults only occur when a 
memory reference crosses a page boundary, and pages are 
aligned to cache-line boundaries, preventing pairing also 
prevents page fault exceptions. 

ALTERNATE EMBODIMENTS 
Several other embodiments are contemplated by the 

inventors. For example only pushes but not pops may be 
paired if there is a limitation on the number of write ports to 
the register file. The reverse could also be implemented. 

Other architectures may invert the x86 scheme and have 
their stack pointers point to the vacant location above the 
stack. In that case the stackpointer is decremented before a 
pop, but incremented after a push. The sense of increment 
and decrement can simply be reversed as well and thus the 
term increment refers to an adjustment which serves to 
increase the size of the stackrather than an absolute increase 
or decrease in an address. Address translation can further 
cloud the appearance of the direction of the stack address. 
The size of the increment or decrement has been described 
as 4-bytes, but other sizes may be used depending upon the 
size of the data pushed or popped from the stack. The data 
transferred may be program data such as operands or results, 
or address pointers, subroutine parameters, and register 
contents for subroutine calls and returns. The stack pointer 
may physically reside within the register file array, or it may 
be a separate register on the processor. Virtual or physical 
addresses before or after address translation may also be 
used. 

While stack valid bits have been described for all stages, 
they may not be necessary and could be deleted for the final 
W stage if the stack pointer is written to register file 10 
before the stack pointer is read in the D stage. Pipelining 
registers are needed between pipestages. For example, the 
inputs to adders 40 and 42 are latched from the previous 
stage. These pipeline registers hold all operands or inputs 
that are eventually added, whether the operands are the 
segment base address, a component of an address, a data 
operand, or the stack pointer. These pipeline register are 
overwritten once the add is completed. These temporary 
registers are thus part of the normal pipeline and are not 
shadowing the stack pointer but merely holding the stack 
pointer as an operand or input to the adders. Thus they are 
not dedicated to holding a shadow of the stack pointer but 
are used for any type of operand. A shadow register at the 
last stage could be used with the invention when the gen 
eration of the new stackpointer is pipelined. 
The increment values have been described as being mul 

tiples of four bytes (-4, 0, +4). However, when a 16-bit 
(2-byte) operand is pushed or popped, the incrementis-2 or 
+2. Likewise when a byte-operand is pushed or popped, the 
increment is -l or +1. Additional stack valid bits may be 
used to encode these additional possible values for the 
increments. Other instructions besides push and pop which 
adjust the stack pointer's value may also benefit from the 
invention. Indeed, push and pop are generic terms for a 
group of instructions. Instructions that explicitly update the 
stack pointer, such as a move to the stack pointer register, 
can occur if other pushes and pops are stalled until the 
explicit move instruction completes. 
The foregoing description of the embodiments of the 

invention has been presented for the purposes of illustration 
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10 
and description. It is notintended to be exhaustive or to limit 
the invention to the precise form disclosed. Many modifi 
cations and variations are possible in light of the above 
teaching. It is intended that the scope of the invention be 
limited not by this detailed description, but rather by the 
claims appended hereto. 
We claim: 
1. A pipeline for processing multiple stack instructions 

comprising: 
a plurality of pipeline stages for processing instructions; 
a registerfile for storing operands for input to the pipeline 

and results from the pipeline; 
a stack pointer register for storing a stack pointer indi 

cating a top of a stack; 
an array of stack-instruction valid bits for indicating 
which pipeline stages in the plurality of pipeline stages 
contain a stack instruction; 

stack-top address generating means, receiving stack 
instruction valid bits from the array of stack-instruction 
valid bits, for generating a memory address of the top 
of the stack in memory; 

memory access means, responsive to the memory address 
from the stack-top address generating means, for trans 
ferring data between the stack in memory and the 
register file; and 

stack pointer update means, receiving the stack pointer, 
for adding a final adjust to the stackpointer and writing 
a sum to the stack pointer register when a stack 
instruction completes processing by the pipeline, 

whereby the stack-instruction valid bits indicate which 
pipeline stages in the plurality of pipeline stages con 
tain a stack instruction, and the stack-instruction valid 
bits are used to generate the memory address of the 
stack in memory. 

2. The pipeline of claim 1 wherein the absolute value of 
the final adjust for a particular stack instruction is equal to 
the size of the data transferred by the memory access means 
for the particular stack instruction. 

3. The pipeline of claim 2 wherein the sign of the final 
adjust indicates if the particular stack instruction is a push 
stack instruction or a pop stack instruction, the push stack 
instruction reading data from the register file and writing the 
data to the stack in memory, the pop stack instruction 
reading the data from the stack in memory and writing the 
data to the register file. 

4. The pipeline of claim 3 wherein the array of stack 
instruction valid bits comprises a plurality of single-stage 
stack valid bits, each of the plurality of single-stage stack 
valid bits including displacement indicator means for indi 
cating the amount and direction of the adjust for stack 
instructions being processed in that stage, the pipeline 
including means for copying the single-stage stack valid bits 
in the stage to the single-stage stack valid bits for a next 
stage when the stackinstruction advances to the next stage 
in the pipeline. 

5. The pipeline of claim 4 wherein the displacement 
indicator means for a particular stage containing a first stack 
instruction indicates an amount and direction of the adjust 
which is equivalent to the final adjust for the first stack 
instruction when the first stack instruction in the particular 
stage is advanced to the end of the pipeline and completes 
processing. 

6. The pipeline of claim 5 wherein the stack-top address 
generating means comprises: 

overall displacement generating means, receiving the 
stack-instruction valid bits, for generating an overall 
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displacement between a memory address pointed to by 
the stackpointer in the stackpointer register and the top 
of the stack in memory to be accessed by a stack 
instruction at the beginning of the pipeline, the overall 
displacement being a sum of adjusts for other stack 
instructions in the pipeline which have not yet com 
pleted processing by the pipeline; and 

address adder means, receiving the overall displacement 
and the stackpointer from the stackpointer register, for 
generating as a sum the memory address of the top of 
the stack in memory. 

7. The pipeline of claim 6 wherein the address adder 
means further adds in a segment base address to the overall 
displacement and the stack pointer when generating the 
memory address of the top of the stack, the segment base 
address being a base address for a stack segment in memory 
containing the stack. 

8. The pipeline of claim 7 wherein the overall displace 
ment generating means comprises an adder for adding 
single-stage displacements to generate the overall 
displacement, a single-stage displacement for a particular 
stage being equal to the final adjust when the stack instruc 
tion in a particular stage reaches the end of the pipeline and 
completes processing. 

9. The pipeline of claim 8 further comprising stack 
instruction pairing means for allocating two stack instruc 
tions to a single pipeline stage, the stack-instruction pairing 
means including: 

means for doubling the size of the data transferred by the 
memory access means between the register file and the 
stack in memory, and 

means for doubling the magnitude of the adjust indicated 
by the displacement indicator means in the single-stage 
stack valid bits for a stage having paired stack 
instructions, 

whereby two stack instructions are processed together in 
the single pipeline stage by doubling an adjust amount 
in the stack-instruction valid bits and doubling the size 
of data transfer. 

10. The pipeline of claim 9 further comprising: 
mis-align detection means for detecting when paired stack 

instructions are not both contained in a single cache 
line; 

pairing disable means, responsive to the mis-align detec 
tion means, for disabling the stack-instruction pairing 
means to not allocating two stack instructions to the 
single pipeline stage when the two stack instructions 
are not both contained in a single cache line. 

11. The pipeline of claim 10 wherein the mis-align 
detection means comprises: 

means for reading least-significant bits in the stack 
pointer, 

means for signaling a mis-alignment when the least 
significant bits in the stack pointer are not all equal to 
EO. 

12. The pipeline of claim 11 wherein the least-significant 
bits in the stack pointer comprise a same number of bits as 
a number of binary bits for the size of the cache line. 

13. The pipeline of claim 6 wherein the final adjust is a 
decrement. 
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14. A computer-implemented method for processing mul 

tiple stackinstructions in a pipeline, the method comprising 
the steps of: 

decoding a stack instruction at the beginning of the 
pipeline; 

reading a stackpointer from a stack-pointer register, the 
stack pointer not including any increments or decre 
ments for stackinstructions in the pipeline which have 
not completed processing; 

determining an overall displacement, the overall displace 
ment being the sum of increments and decrements for 
stack instructions in the pipeline which have not com 
pleted processing; 

generating the address of the top of a stack by adding the 
overall displacement to the stack pointer and to a 
segment base address, the segment base address being 
a starting address for a segment containing a stack; 

applying the address of the top of the stack to a memory 
and transferring data between the stack in the memory 
and a register file for the pipeline; 

reading the stack-pointer register and adding the stack 
pointer to a single-instruction displacement to generate 
an updated stack pointer, the single-instruction dis 
placement being an increment or decrement for the 
stackinstruction when the stack instruction is about to 
complete processing by the pipeline; and 

writing the updated stack pointer to the stack-pointer 
register when the stack instruction completes process 
ing by the pipeline, 

whereby the stack-pointer register contains the only stack 
pointer, wherein stack pointers for instructions in the 
pipeline are not stored. 

15. The computer-implemented method of claim 14 fur 
ther comprising the step of: 

reading an array of stack valid bits for the pipeline, the 
stack valid bits indicating the locations of stackinstruc 
tions in the pipeline which have not completed pro 
cessing by the pipeline; and 

determining from the stack valid bits the amount of 
increment or decrement for each stackinstruction in the 
pipeline, 

whereby the stack valid bits indicate the increment or 
decrement for stack instructions in the pipeline. 

16. The computer-implemented method of claim 15 
wherein the updated stackpointer is not generated in a first 
half of the pipeline before the memory access but is only 
generated once in a last half of the pipeline. 

17. The computer-implemented method of claim 15 
wherein the overall displacement is the sum including an 
increment for the stack instruction at the beginning of the 
pipeline when the stack instruction at the beginning of the 
pipeline is a push instruction. 

18. The computer-implemented method of claim 17 
wherein the overall displacement is the sum not including a 
decrement for the stack instruction at the beginning of the 
pipeline when the stack instruction at the beginning of the 
pipeline is a pop instruction. 

19. The computer-implemented method of claim 15 
wherein the memory is a cache of a larger memory. 

sk cit k : : 


