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57 ABSTRACT 

A cache system has a large master cache and smaller slave 
caches. The slave caches are coupled to the processor's 
pipelines and are kept small and simple to increase their 
speed. The master cache is set-associative and performs 
many of the complex cache management operations for the 
slave caches, freeing the slaves of these bandwidth-robbing 
duties. The master cache has a tag pipeline for accessing the 
tag RAM array, and a data pipeline for accessing the data 
RAM array. The tag pipeline is optimized for fast access of 
the tag RAM array, while the data pipeline is optimized for 
overall data transfer bandwidth. The tag pipeline and the 
data pipeline are bound together for retrieving the first 
sub-line of a new miss from the slave cache. Subsequent 
sub-lines only use the data pipeline, freeing the tag pipeline 
for other operations. Bus snoops and cache management 
operations can use just the tag pipeline without impacting 
data bandwidth. Loop-back flows are performed which 
cancel an intervening flow in the tag pipeline when the index 
portions of the addresses match. 

19 Claims, 6 Drawing Sheets 
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MASTER-SLAVE CACHE SYSTEM WTTH 
DE-COUPLED DATA AND TAG PIPELINES 

AND LOOP-BACK 

BACKGROUND OF THE INVENTION-- 
RELATED APPLICATIONS 

This is a continuation-in-part (CIP) of "Master-Slave 
Cache System". Ser. No. 08/267.658, filed Jun. 29, 1994 
now U.S. Pat. No. 5,551,001, hereby incorporated by ref. 
erence. This application is also related to "A Slave Cache 
Having Sub-Line Valid Bits Updated by a Master Cache", 
U.S. Ser. No. 08/618,637, filed Mar. 19, 1996, and assigned 
to the same assignee. 

BACKGROUND OF THE INVENTION FELD 
OF THE INVENTION 

This invention relates to cache memory systems, and 
more particularly to a master-slave cache system having 
separate pipelines for accessing the tag and data arrays of the 
master cache. 

BACKGROUND OF THE INVENTION-- 
DESCRIPTION OF THE ELATED ART 

On-chip caches are becoming more of a bottleneck to 
processor performance. They need to be larger and more 
complex because the off-chip miss penalty is becoming 
relatively higher, Processor technology allows for rapid 
increases in processor speed but off-chip memory access 
times have been unable to achieve commensurate speed 
increases. Larger, more complex caches are not as fast as 
smaller, simpler caches, and may not be able to match the 
processor's pipeline clock rate and maximum bandwidth. 
A memory hierarchy is often set up, in which a few small 

registers lie within the microprocessor core. A small level-1 
cache memory is placed on the microprocessor die, and a 
level-2 cache memory on the system board, with dynamic 
RAM (DRAM) comprising the large main memory, Main 
taining coherency between each of these levels in the 
memory hierarchy can be difficult and can slow down the 
cache memories. Prefetching of instructions can also 
increase the complexity of the cache and slow down the 
cache. 

The trend in recent years has been to put a level-1 cache 
on the microprocessor die. As the processor becomes faster, 
the level-1 cache size has been increased to increase the hit 
rate of the level-1 cache. A high hitrate is necessary because 
the miss penalty is high, requiring that a slower off-chip 
level-2 cache or main memory be accessed. Often the level-1 
cache is made multi-way set-associative to improve its hit 
rate. This has led to larger and more complex on-chip 
caches. However, the larger and more complex the cache 
becomes. the more difficult it becomes to make the cache 
fast enough to meet the bandwidth of the processor pipelines 
The parent application disclosed a master-slave cache 

system where a large level-2 master cache controls smaller 
slave caches. The slave caches supply instructions and data 
to the processor at a high rate since the slave caches are 
small and simple. The master cache performs all cache 
management functions for the slave caches, such as 
snooping, line invalidation, and cache block Zeroing. The 
master cache keeps line valid bits which indicate when a line 
is also present in one of the slave caches. In the other related 
application the master-slave cache is extended to include a 
pipeline in the master cache which keeps track of the 
sub-line valid bits in the slave caches. The master pipeline 
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2 
alters sub-line valid bits to reflect other transfers to the slave 
cache that are in progress. The slave cache then blindly 
writes the updated sub-line valid bits from the master 
cache's pipeline. Thus the slave cache does not have to 
generate and alter its sub-line valid bits, further simplifying 
and speeding up the slave cache. 
The master cache's pipeline described in the related 

application used a single pipeline to access both the master 
cache's tags and data. A pipeline has multiple stages, and 
different actions occur in these stages. The tags are first 
accessed, and then the data is retrieved from the master 
cache before being sent to the slave cache. Using multiple 
stages allows for optimization of timing of these various 
actions such as accessing the cache memory. 
While the master cache's pipeline frequently accesses 

both the tags and the data array of the master cache, many 
operations do not require access to both the tags and the data 
array. Line fills require that the master's tags be read once 
per line, but the data array is read four times per line (for a 
line having four sub-lines). Thus the data array is accessed 
much more often than the tags for line fills. The tags sit idle 
during three of the four sub-line transfers. 

Cache management operations often do not require access 
to the data array. Bus snoops and invalidations merely have 
to read and possibly update the master's tags. The data array 
sits idle during bus snoops. Thus some cache operations do 
not access the data array while other operations access only 
the tag array. The resources of the master cache are not used 
efficiently since the master's pipeline often accesses just the 
tags or just the data array. 
On the other hand, some systems must respond to external 

bus snoops within a fixed span of time. These systems 
sometimes include a second set of tags to respond quickly to 
bus snoops. A second set of 'snoop' tags certainly increases 
the cost of the cache. 
A pipeline allows optimization of accesses. For the master 

cache, two different kinds of access are required: tag access 
and data-array access. Latency, the delay to read the tag, is 
most important for the tag array. Bandwidth, the amount of 
data transferred averaged over a period of time, is most 
important for optimizing the data array. Often the bandwidth 
of the data array must be less than optimal in order to 
minimize tag latency. Thus latency of tag access can impede 
data-array bandwidth when a single master-cache pipeline is 
used, or conversely, optimizing for data-array bandwidth can 
increase tag latency. 
What is desired is efficient use of the tags and the data 

array of the master cache. It is desired to process line misses, 
stores, bus snoops, invalidates, and other cache operations in 
the master cache's pipeline as efficiently as possible. It is 
further desired to minimize tag access latency yet maximize 
data bandwidth without adding a second set of 'snoop' tags. 

SUMMARY OF THE INVENTION 

A master-slave cache system is accessed by a central 
processing unit's (CPU's) execution pipelines. A slave cache 
supplies instructions or operands to the CPU's execution 
pipelines. A master cache is coupled to the slave cache and 
is coupled to an external bus. The master cache is organized 
as an N-way set-associative cache with N elements for each 
index-portion of an address. The master cache has a tag 
RAM array for storing a tag and a master-valid indicator for 
each element for each index-portion of the address. The tag 
RAM array includes slave-valid indicators which identify 
elements in the tag RAM array which also have valid data 
in the slave cache. The master cache performs cache man 
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agement operations for the slave cache by using the slave 
valid indicators in the master cache. 
A data RAM array stores sub-lines of data for each tag in 

the tag RAM array. A tag pipeline accesses the tag RAM 
array. The tag pipeline has a plurality of stages for simul 
taneously processing a plurality of requests by passing the 
requests through successive stages of the tag pipeline in 
response to a clock. 
A data pipeline accesses the data RAM array indepen 

dently of the tag pipeline. The data pipeline has a plurality 
of stages simultaneously processing a plurality of requests 
bypassing the requests through successive stages of the data 
pipeline in response to the clock. 
Tag arbitration means receives a plurality of tag requests. 

It selects a tag request from the plurality of tag requests for 
processing by the tag pipeline. Data arbitration means 
receives a plurality of data requests. It selects a data request 
from the plurality of data requests for processing by the data 
pipeline. The data arbitration means operates independently 
of the tag arbitration means. 

Source registers are coupled to the tag arbitration means 
and to the data arbitration means. They store a plurality of 
requests for access to the master cache, including requests to 
access only the tag RAM array, requests to access only the 
data RAM array, and requests to access both arrays. The 
source registers store completion status for each request. 
The tag pipeline includes tag update means, coupled to the 

source registers, for updating the completion status for the 
request being processed by the tag pipeline. The data pipe 
line includes data update means, coupled to the source 
registers, for updating the completion status for the request 
being processed by the data pipeline. Thus the tag RAM 
array is accessed separately and independently from the data 
RAM array because separate pipelines are used to access the 
tag RAM array and the data RAM array, 

In further aspects of the invention the tag pipeline has tag 
compare means that is coupled to the tag RAM array. It 
compares a tag portion of the address of the tag request to 
a plurality of N tags for the N elements that have an index 
matching an index portion of the address of the tag request. 
A hit means is coupled to the tag compare means. It signals 
a hit when one of the plurality of N tags matches the tag 
portion of the address of the tag request. The tag update 
means further updates the completion status for the tag 
request with a hit indication when the hit is signaled by the 
hit means but updates the completion status with a miss 
indication when no hit is signaled. Thus the source registers 
are updated with the hit indication or the miss indication 
after the tag pipeline accesses the tag RAM array. 

Still further aspects of the invention include element 
means which is coupled to the tag compare means. It 
identifies which one of the plurality of N tags for the N 
elements matches the tag portion of the address of the tag 
request and outputs an element-hit identifier to the tag 
update means. The tag update means writes the element-hit 
identifier to the tag request in the source registers. Thus the 
source registers identify which element contains a matching 
tag after the tag pipeline accesses the tag RAM array. 

In other aspects a bus snoop register stores bus snoop 
requests from the external bus. The bus snoop requests 
include requests to invalidate any matching lines in the 
master cache. Thus slave-cache misses and bus Snoops are 
requests stored in the source registers. 

BRIEF DESCRIPTION OF THE DRAWINGS 
FIG. 1 illustrates a microprocessor substrate or die con 

taining the master-slave cache. 
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4 
FIG.2 shows the tags and data stored for each line in the 

master cache in a tag array and a separately-accessed data 
array. 

FIG. 3 highlights separate tag and data pipelines in the 
master cache for separately accessing the tag array and the 
data array of the master cache. 

FIG. 4 is a detailed diagram of the stages in the tag and 
data pipelines. 

FIG. 5 highlights arbitration and loop-back flows in the 
tag and data pipeline of the master cache. 

FIG. 6 shows the address for the request in the intervening 
stage P3 being compared to the loop-back address from 
stage P2 and the intervening request being canceled when 
the index portions of the address match. 

FIG. 7 shows fields in a foreground source register. 

DETALED DESCRIPTION 

The present invention relates to an improvement in cache 
organization. The following description is presented to 
enable one of ordinary skill in the art to make and use the 
invention as provided in the context of a particular applica 
tion and its requirements. Various modifications to the 
preferred embodiment will be apparent to those with skill in 
the art, and the general principles defined herein may be 
applied to other embodiments. Therefore, the present inven 
tion is not intended to be limited to the particular embodi 
ments shown and described, but is to be accorded the widest 
scope consistent with the principles and novel features 
herein disclosed. 

Master-Slave Cache Arrangement 
The parent application for a "Master-Slave Cache Sys 

tem” U.S. Ser. No. 08/267.658, now U.S. Pat No. 5,551, 
001, hereby incorporated by reference, first disclosed a 
master-slave cache arrangement. A large, set-associative 
master cache supplies instructions and operands to smaller 
direct-mapped slave caches for the processor's data and 
instruction pipelines. Complex logic for cache coherency, 
snooping, zeroing and invalidations is provided in the mas 
ter cache but not in the slave caches. The master cache's tags 
include slave valid bits which indicate that a copy of the data 
is located in the slave cache. Data in the slave caches can be 
invalidated by the master cache if the master cache deter 
mines that the data also resides in a slave cache. 
A master-slave cache on the same substrate or die with a 

microprocessor can supply the maximum bandwidth of the 
processor's pipelines while being large enough to have a low 
miss rate. The cache is arranged as a large master cache 
which controls two smaller slave caches, one slave instruc 
tion cache for supplying the instruction pipeline with 
instructions, and a second slave data cache for supplying 
data operands to the execution pipeline. 

FIG. 1 illustrates a microprocessor substrate or die 20 
containing the master-slave cache. The central processing 
unit's (CPU's) instruction pipeline 22 is supplied with 
instructions by slave instruction cache 26. Instruction pipe 
line 22 is clocked by a processor or pipeline clock. The 
pipeline clock controls the transfer of instructions from one 
stage of the pipeline to the next. One or more instruction 
words must be provided for each processor clock period. 
Although the instruction pipeline 22 may stall, or occasion 
ally require more than one processor clock period for an 
instruction word, the maximum or full bandwidth when no 
stalls occur is n instruction words per processor clock 
period, where n is the level of scalarity. Thus the slave 
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instruction cache 26 must supply the instruction pipeline 22 
with at least n instruction words per processor clock period 
if the full bandwidth of the processor is to be achieved. A 
super-scalar processor capable of executing 2 instructions 
per clock period has n=2. 
The execution pipeline 24 is supplied with operands from 

slave data cache 28. In one embodiment of the invention 
execution pipeline 24 may also store data operands into 
slave data cache 28; these data operands are then written 
through to master cache 30. Master cache 30 provides all the 
cache management necessary for itself and the slave caches 
26, 28. Slave caches 26, 28 need only have a valid bit with 
each tag which is set and cleared by the master cache 30. 
Prefetching, handling external snoop requests, coherency 
operations, and cache flushes are all accomplished by the 
master cache. Thus the slave caches 26, 28 may be kept 
simple, allowing for a fast access time and a high bandwidth. 
Master cache 30 is significantly larger and more complex 
than is possible if it were to directly supply the processor's 
pipelines 22, 24. Directly supplying the pipelines in a single 
processor clock requires a fast access time. 

Slave caches 26, 28 are small, fast and simple, and are 
preferably implemented as RAM-based, direct-mapped 
caches, while master cache 30 is preferably RAM-based and 
set-associative. Master cache 30 preferably has four or more 
times the capacity of both the slave caches 26, 28. Master 
cache 30 may require multiple processor clock periods to 
access its contents, while the slave caches 26, 28 are small 
enough to supply the required data operand and instruction 
words each processor clock period. 
An additional level-2 cache 32 may be provided on the 

system board off the microprocessor die 20, or the level-2 
cache 32 may be omitted, and misses from the master cache 
passed on to the main memory 34 on the system board. The 
high-bandwidth benefit of the Harvard architecture is 
obtained because the slave instruction cache 26 and slave 
data cache 28 can supply both pipelines 22, 24 as do split 
instruction and data caches of the Harvard architecture. 
However, two sets of address and data busses and pins are 
not required. 
The two caches must be made large so that the miss rate 

is small, otherwise the two caches will be contending for the 
multiplexed pins frequently, causing one cache to have to 
wait. However, the larger cache sizes reduce the clock rate 
and bandwidth that can be supplied to the processor core. 
The prior-art Harvard architecture is thus stuck between the 
trade-off of larger size and lower bandwidth, or smaller 
cache size and higher bandwidth but pin contention or die 
coSt. 

In the invention, master cache 30 provides more func 
tionality than is the case by merely integrating an additional 
level of caching on the microprocessor die 20. Master cache 
30 is tightly coupled to slave caches 26, 28 and can relieve 
the slave caches 26, 28 from burdensome cache management 
operations such as coherency and snooping. In the Harvard 
architecture, coherency between instruction cache and data 
cache is difficult and may consume clock cycles that other 
wise would be used to supply the pipelines 22, 24. In the 
invention, the master cache 30 absorbs these coherency 
requests, freeing the slave caches to supply the processor's 
pipelines, and greatly simplifying the control logic for the 
slave caches. 

Additionally, the slave caches 26, 28 may be physically 
located in close proximity to the pipelines 22, 24. Thus slave 
instruction cache 26 is located near to the instruction pipe 
line 22, while the slave data cache 28 is located near the 
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execution pipeline 24. The larger master cache 30 may then 
be located at a greater distance from the pipelines 22, 24 and 
the core CPU logic. This simplifies floor-planning and 
layout of the microprocessor die 20, and results in faster 
access times for transferring instructions and data from the 
slave caches 26, 28 to the pipelines 22, 24. In prior-art 
systems, the large cache sizes required that any cache be 
located away from the CPU core and the pipelines. 
Only a single set of address and data busses are needed for 

communicating with external caches and memories. Pins 31 
connect the master cache 30 with the external level-2 cache 
32, whereas on some prior-art systems a single set of pins 
had to be multiplexed. Not having to multiplex the pins 
reduces contention and complexity. Alarger, wider datapath 
may be used between the master cache 30 and the slave 
caches 26, 28 since no connection is necessary for the 
slave-master busses 33, 35 to the external pins of the 
microprocessor die 20. Slave-master busses 33, 35 may be 
each separately optimized for the bandwidth required by the 
particular slave cache and pipeline. 

Since the bulk of the capacity of the cache lies in the 
master cache 30 rather than the slave caches 26, 28, the 
benefits of the unified cache result. A higher hit rate is 
achieved than if the master cache were split into two 
separate half-size caches, and the master cache provides 
flexibility and adaptability by being able to place either 
instruction or data words in any line in the cache, allowing 
the portion of the cache allocated to either data or instruc 
tions to vary as needed by the programs currently executing 
on the processor. The master cache may be implemented in 
slower, denser, and lower-power memory than the slave 
caches, saving power, space and cost while maintaining a 
high hit rate. 

Master Tags Include Slave Valid Bits 
FIG. 2 shows the tags and data stored for each line in the 

master cache in a tag array and a separately-accessed data 
array. Amaster line is stored for each line in the master cache 
30. The master line is divided into two parts which are stored 
and accessed separately: data fields 61 are stored in a data 
RAM array, while tag 60, valid bits 62. 66, 68 and LRU bits 
64 are stored in a tag RAM array. LRU bits 64 may also be 
stored in a separate 'use' array which may be accessed with 
the tag RAM array. 

Data fields 61 of the line are well-known in the art and can 
take on many arrangements. Data fields 61 are preferably 
sub-lines, where the bus interface between the master and 
slave caches can transfer one sub-line of data per cycle. The 
data stored may be either data operands, instructions, or 
translation or other system information. Data fields 61 are 
stored and accessed separately from the remaining fields 
which are stored in a tag RAM array separate from the data 
RAM array. 

For each cache line in the tag RAM array, address tag 60 
stores a tag portion of the address of the data stored in the 
line. A master valid bit 62 is used to indicate if the line in the 
master cache 30 contains valid data. A preferred embodi 
ment replaces a single master valid bit 62 with a MESIfield 
of two bits which are encoded to indicate if the line is 
invalid, modified (dirty), exclusive, or shared with other 
external caches. The MESI protocol is a well-known pro 
tocol for sharing data between different memories or caches. 
Master valid bit 62 does not provide sub-line validity; only 
an entire line in master cache 30 can be valid. 
Master cache 30 is preferably an 8-way set-associate 

cache, which is a cache array divided into 8 elements or 
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blocks. A cache line with a certain index can reside in any 
of the 8 lines (also called set-associates) for the index. The 
8 lines are known as a set, and each set is uniquely identified 
by an index. LRU bits 64 encode a pseudo-least-recently 
used algorithm to help select which element or block should 
be replaced next for that index. An approach for line 
replacement is to force the set-associates in the master cache 
that also exist in a slave cache (they have a slave valid bit 
66, 68 set) also to be the most-recently-used set-associates. 
The master cache line also contains inclusion information 

for the slave caches 26, 28. SI valid bit 68 indicates that at 
least some of the data in the master's cacheline is also valid 
in the slave instruction cache, while SD valid bit 66 indicates 
that at least some of the data in the master's cacheline is also 
valid in the slave data cache. It is possible that only one or 
two of the four sub-lines may be valid in the slave cache 
since the slave cache supports sub-line validity. Thus the 
master cache has information on the contents of the slave 
caches. 
The master cache thus contains three valid bits: 
1. The master valid bit 62 which indicates if the line in the 

master cache is valid. 
2. The SI valid bit 68 for the slave instruction cache. 
3. The SD valid bit 66 for the slave data cache. 
The master cache always contains inclusion information 

for any lines in the slave caches; it is not permitted for the 
slave caches to have lines which are not presentin the master 
cache. By also having the slave-cache valid bits, the master 
can perform complex coherency operations, required by 
many modern architectures such as snoops, invalidations, 
and zeroing, without needlessly disturbing the slave caches. 

Only a valid bit for an entire cache line is provided in the 
master cache, but sub-line valid bits are provided in the slave 
caches. Since the master cache is much larger than the slave 
caches, the additional cost for providing sub-line validity is 
reduced compared to adding sub-line valid bits in the larger 
master cache. Details of providing sub-line validity in the 
slave cache and not in the master cache are provided in the 
related applications for "Slave Cache having Sub-Line Valid 
Bits Updated by a Master Cache", U.S. Ser. No. 08/618,637 
filed Mar 19, 1996 with a common inventor and assigned to 
the same assignee. This related application describes a single 
combined tag and data pipeline in the master cache for 
adjusting the sub-line valid bits from the slave caches. 

Separate Tag and Data Pipelines in Master Cache 
FIG. 3 highlights separate tag and data pipelines in the 

master cache for separately accessing the tag RAM and the 
data RAM of the master cache. Master cache 30 stores data 
arranged in the sub-lines of datafields in dataRAM array 18. 
Tags, valid bits, and LRU fields are stored in tag RAM array 
16. Tagpipeline 10 is amulti-stage pipeline for accessing tag 
RAM array 16, while data pipeline 12 is a second multi 
stage pipeline for accessing data RAM array 18. Tag pipe 
line 10 is optimized for accessing tag RAM array 16 with 
minimum latency or access time, while data pipeline 12 is 
optimized for accessing data RAM array 18 with maximum 
bandwidth. Thus tag pipeline 10 and data pipeline 12 are 
separately optimized in timing. 
Tag RAM array 16 is set-associative, but all tags for a 

given index are output to tag pipeline 10 during an access of 
tag RAM array 16. Tagpipeline 10 includes comparators for 
each element of tag RAM array 16. These comparators 
compare the tags stored for an index with the tag portion of 
the incoming address. When none of the comparators signal 
a match, or when the master-valid bit or MESIfield indicates 
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8 
that the matching address is marked as invalid, then a miss 
is signaled in tag pipeline 10. When a match is found, and 
the master-valid bit indicates that the matching line is valid, 
then a hit is signaled and the element number oridentifier for 
the matching element is encoded by tag pipeline 10. 
The hit-miss indication, and the encoded element number 

for the matching element are sent to data pipeline 12 so that 
the matching element's data may be selected. Data pipeline 
12 can first access data RAM array 18 without knowing 
which element the desired data resides in, and later in the 
pipeline select the correct data using the encoded element 
number from tag pipeline 10. Sending the hit and encoded 
element number from tag pipeline 10 directly to data pipe 
line 12 is useful when both pipelines are processing the same 
address. Both pipelines can process the same address when 
a source request such as a new miss from a slave cache is 
simultaneously sent to both pipelines 10, 12. Using both 
pipelines for the same request is known as "binding the two 
pipelines together and is used for high-priority cache 
accesses such as a new demand miss from a slave cache 
which must be quickly responded to so that the CPU can 
continue. Thus demand misses, which must be satisfied 
immediately, can use both pipelines in lock-step to maxi 
mize resources allocated to the new miss. 
Most other sources of requests are not critical for both the 

tag and data pipelines, so tag pipeline 10 and data pipeline 
12 respond to a request at different times. A low-priority line 
transfer to a slave cache first is loaded into source registers 
14, which then arbitrate for control of tag pipeline 10 and/or 
data pipeline 12. The request is first sent down tag pipeline 
10 to read tag RAM array 16 to determine if the line hits in 
the master cache. If it does, then the hit updates source 
registers 14, and the encoded element number is also stored 
in source registers 14. The hit signal sent to data pipeline 12 
is either not generated or ignored by data pipeline 12, which 
may be processing a different source's request. 
Once the requestin source registers 14 has been looked up 

by tag pipeline 10 to find the element number of the 
requested data, then the request arbitrates for control of data 
pipeline 12. The encoded element number which was found 
by tag pipeline 10 and stored in source registers 14 is also 
passed to data pipeline 12. The data is retrieved from the 
indicated element of data RAM array 18 as the request 
travels down data pipeline 12. Finally the data and its 
address are sent to the slave cache from data pipeline 12. 
When the data pipeline is not otherwise busy, sending the 

request down both the tag and the data pipelines can reduce 
latency in returning the first critical sub-line of a demand 

SS 

One Tag Access Followed by Four Data Accesses 
When multiple sub-lines of data are transferred, then the 

single pass through tag pipeline 10 may be followed by 
multiple passes through data pipeline 12, with one sub-line 
of data being sent to the slave cache for each pass through 
data pipeline 12. A complete line transfer requires one pass 
through tag pipeline 10, and four passes through data 
pipeline 12. A second pass through tag pipeline 10 may be 
used to update LRU or slave-valid information. A third pass 
may update slave valid information for the prior contents of 
the slave cache. 

Source Registers Updated as Tags Modified or 
Read 

Source registers 14 contain the address of the request, 
such as the miss address from the slave cache. Source 
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registers 14 also contain status information about the 
progress of satisfying the request, such as the hit/miss 
indication and element numberlooked up by tag pipeline 10, 
and the status of external bus operations that are required 
when the request misses in the master cache and must read 
an external memory. For a large master cache, many sources 
can be loaded into many different registers in source regis 
ters 14. Source registers 14 contain several registers for miss 
and prefetch requests for the slave caches, and bus snoop 
requests, invalidates, stores, and other cache operations. 
The inventors have realized that the tags are changed 

much less frequently than the data. Since four data accesses 
occur for each tag access for satisfying a typical slave cache 
miss, more tag bandwidth is available than data pipeline 
bandwidth. If the tags are modified before all four sub-lines 
have been transferred to the slave cache, then the source 
register has its tag-hit indication cleared. The tags must be 
accessed again or the request canceled altogether when the 
request's tags are modified by another operation. 
When the tags are modified during the tag pipeline, the tag 

pipeline's address is compared to all sources in the source 
registers to find any matching index and tag portions of the 
address. Any matching tags in the sources have their hit 
indication cleared so that the tags must be accessed again, 
unless the source register's request has passed a commit 
point. 

Detail of Tag and Data Pipelines 
FIG. 4 is a detailed diagram of the stages in the tag and 

data pipelines. Tag pipeline 10 accesses the tag RAM array, 
while data pipeline 12 accesses the data RAM array of 
master cache 30. Both pipelines contain six pipestages, 
designated P5, P4, P3, P2, P1, and P0. Stage P5 is the top or 
beginning of the pipeline while stage P0 is the bottom or end 
of the pipeline. 
Two stages of arbitration (PS and P4) are used to arbitrate 

among the many sources of requests for access to the master 
cache. The first stage (P5), ARB-1, receives lower-priority 
requests such as background transfers and prefetches to the 
slave caches which can safely be delayed. The second stage 
(P4), ARB-2, arbitrates the winner of the ARB-1 arbitration 
with other high-priority sources. These high priority sources 
include a new demand miss from a slave cache, which is a 
request for data that the CPU is waiting for. Another 
high-priority request is a bus snoop, which often must be 
responded to within a fixed amount of time. When an 
exception such as a master-cache miss has occurred in tag 
pipeline 10, then the excepting request is looped back to 
ARB-2 and has priority over all other requests. Loop-back 
allows a request to have several flows through the pipelines 
to process complex operations, and excludes other requests 
from accessing or modifying lines at the same cache index 
as the complex operation. 

Separate Arbitration for Tag and Data Pipelines 
Separate arbitration is performed for tag pipeline 10 and 

for data pipeline 12, even when a source requests both 
pipelines, such as a new demand miss. Separate arbitration 
allows sources that require only one of the pipelines to 
request only that pipeline and not the other pipeline. A snoop 
request which has to read only the tags can arbitrate for only 
tag pipeline 10 and not for data pipeline 12, which is not 
needed. Thus separate arbitration promotes efficient use of 
the pipelines. 

Two-stage arbitration provides lower latency for high 
priority requests, since these enter the pipeline in the second 
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(P4) stage while low-priority requests enter the first pipeline 
stage, P5. Thus high-priority requests have one less cycle of 
latency than do low-priority requests. The presence of a 
competing requestor and short cycle times may necessitate 
two-stage arbitration. 
Once arbitration is complete, the request address from the 

source registers is loaded into the P3 stage of the pipeline. 
Thus the first two stages, PS and P4, do not require an 
address. This can further improve latency for requests that 
receive the address later than the request is signaled. For 
example, a bus snoop may be initiated when a snoop-request 
pin is asserted by an external snoop requestor. The snoop 
address may be driven onto the external bus a cycle or two 
later. As soon as the snoop-request pin is asserted, but before 
the snoop address is received, the master cache can begin 
arbitration for the snoop requestin either the P5 or P4 stages, 
depending on the priority of the snoop request. Likewise a 
miss from a slave cache can first be signaled before the miss 
address is sent. The index portion of the address does not 
have to be available until the beginning of the third pipeline 
stage, P3, while the remaining portions of the address need 
to be available only by the end of stage P3. 
Tag pipeline 10 is optimized for latency of tag RAM 

access. Thus the tag RAM array is read early in tag pipeline 
10, immediately after arbitration is complete. This provides 
the hit indication as soon as possible. The tag RAM is read 
during stage P3 of tag pipeline 10, and the tags, one for each 
element, are sent to the comparators. Address comparison 
begins during stage P3 and is completed during the next 
stage, P2. In P2 the matching element is identified and 
encoded into the element number, which is sent to stage P2 
of the data pipeline when the pipelines are bound together, 
During stage P2 the hit indication and the encoded element 
number are sent to source registers 14 for storage. 
When the tags need to be written (as for an invalidate), the 

updated tags, valid bits, and LRU fields are generated during 
stage P2, and a loop-backflow is performed by re-arbitrating 
for the tag pipeline in stage P4, and writing to the tags rather 
than reading the tags during stage P3 of the second flow. 
Explicittag-write flows without loop-back occur for line fills 
from the external bus. 

Stage P0, the last pipeline stage, is merely a place 
keeper' stage performing no function other than for address 
comparisons against new requests that are being loaded into 
source registers 14. All new requests have their indexes 
compared against transfers in the tag and data pipelines so 
that the new requests can reflect these completing requests 
that have not yet been sent to the slave caches. In particular, 
the sub-line valid bits of new requests are adjusted to take 
into account completing transfers in the P0, P1, P2, and P3 
stages of the data pipeline so that all requests are consistent. 
This allows for transfers to take several cycles to be sent to 
the master cache or back to the slave caches. In one 
embodiment the data pipeline has the P0 stage, but the P0 
stage is deleted from the tag pipeline. 

Data Pipeline 
Data pipeline 12 is loaded with the address of the winning 

request at the beginning of stage P3. This request and its 
address can be different from the request and address that are 
loaded into tag pipeline 10. The data RAM array is read 
during stages P3 and P2, with the address being sent to the 
data RAM array during stage P3, and the data fields being 
returned in the next stage, stage P2. Since all data fields are 
read for all lines having the same index, data pipeline 12 
must select the correct element's data by muxing during 
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stage P2. The encoded element number used to select the 
proper data is staged down data pipeline 12 when tag 
pipeline 10 is not bound to data pipeline 12. When the two 
pipelines are bound together, tag pipeline 10 sends the 
encoded element number to data pipeline 12 late in stage P2 
so the correct data can be muxed out. 

During stage P1, data pipeline 12 sends the selected data 
field to the slave cache or other source. Should the two 
pipelines be bound together and a miss be detected by tag 
pipeline 10, then the transfer to the slave cache is terminated 
by sending a cancel signal to the slave cache near the end of 
stage P1. This cancel signal acts as a disable of the transfer 
from data pipeline 12 to the slave cache, allowing the 
address and data fields to be sent at the beginning of stage 
P1 and the enable/disable at the end of stage P1. Since the 
wide address and data may require more time to drive the 
address and data bus interfaces, the cancel signal can be 
designed to arrive at the slave cache in time to cancel the 
transfer. 
The slave cache can write the data received during stage 

P0 of the data pipeline. Stage P0 performs no other function 
other than address comparisons for new requests from the 
slave cache which arrive before the data from the master's 
data pipeline 12 is written to the slave cache in stage P0. 

Operations which write to the data RAM array include 
line fills from external memory to the master cache, and 
stores from the CPU (slave data cache and/or store buffer). 
Data must be available early in cycle P3 for writing to the 
data RAM. 
New requests that arrive from the slave cache during 

stages P0, P1, P2, and P3 do not see the data written from 
these stages. Thus an address comparison is made. When an 
exact address match is detected, the new request is simply 
requesting the same data that is being transferred, and thus 
the new request is redundant. The new request may be 
deleted rather than being loaded into source registers 14. The 
new request is known as a re-miss' and can occur when 
prefetching correctly anticipates what cache lines are 
needed. Re-misses also occur when prefetching the remain 
ing sub-lines of a cache line that had only one of the 
sub-lines requested earlier. When the new address is to a 
different sub-line but the same cache line as another request 
in a source register, the new request is merged into the old 
request's source register. 

Re-misses also occur after the new demand miss is 
transmitted to the master cache, but before all four sub-lines 
from that cache line have been transmitted to the slave 
cache. The CPU may request a second sub-line in that cache 
line. This request for the second sub-line is merged into the 
original request, but the order of sending the subsequent 
sub-lines is altered so that the second sub-line requested is 
sent immediately. Thus merging requests allows sub-lines to 
be transferred to the slave cache in the order requested by the 
CPU rather than in a fixed order. Prior art systems might use 
a fixed order, always sending the third sub-line after the first 
sub-line, and then the second and fourth sub-lines. 

Artbitration and Loop-Back Flows 
FIG. 5 highlights arbitration and loop-back flows in the 

tag and data pipeline of the master cache. Lower priority 
sources arbitrate for tag pipeline 10 and for data pipeline 12 
in the first stage, P5. Most lower-priority sources arbitrate 
for either tag pipeline 10 or data pipeline 12, but not both. 
High-priority sources such as a new demand miss from a 
slave cache are artbitrated in second stage P4. When there are 
no high-priority P4 sources arbitrating for a pipeline, then 
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the winner of the first-stage arbitration gains control of the 
pipeline. However, higher-priority sources input to stage P4 
generally win arbitration, losing only to line evicts and fills 
from the external bus which begin arbitration in stage PS. 
The winner of the two-stage arbitration flows down the 

pipeline through stages P3, P2, P1 and P0. Certain tag 
pipeline flows can have exceptional conditions occur. For 
example, a miss from the slave cache may also miss in the 
master cache and have to read external memory to find the 
data requested. Such a miss is detected in the tag pipeline 
during stage P2, after the tags have been read from the tag 
RAM array in stage P3 and compared in stages P3 and P2. 
When such a miss is detected in stage P2, a second flow 

is required to read the old tag because the LRU bits must be 
consulted during the first flow to determine which element 
is to be replaced. The LRU bits identify which element is to 
be replaced, and when that element is modified its tag is read 
during the second flow. The old element's address from the 
tags read during the second flow are loaded into a source 
register for line evicts which then arbitrates for the data 
pipeline. The data pipeline reads the evicted line's data and 
writes it out to the external bus, perhaps using other buffers. 
The second flow through tag pipeline 10 is known as a 

loop-back flow. A loop-backflow is initiated by arbitrating 
again for the pipelines. The address from stage P2 is looped 
back to stage P4 and the flow in P2 arbitrates for a second 
flow through tag pipeline 10. Data pipeline 12 is also 
arbitrated for, as it is also needed for some types of loop 
backflows. In the preferred embodiment, data pipeline 12 is 
always bound to tag pipeline 10 for loop-backflows as this 
simplifies arbitration logic. Since loop-back requests have 
the highest priority of all requests, the loop-back request 
from stage P2 always wins arbitration of both pipelines in 
stage P4. 

Both tag pipeline 10 and data pipeline 12 are arbitrated for 
when a loop-back flow is required. This simplifies loop 
backs since both pipelines are often required to handle the 
exceptional conditions. The preferred embodiment does not 
allow the tag pipeline to transfer to the slave caches; thus 
loop-backflows are required to send invalidates to the slave 
cache from the tag pipeline. 

Bus Snoop Which Hits Requires Loop-Back Row 
A bus Snoop that hits in the tag RAM may require a 

loop-back flow to invalidate the matching tag. The loop 
back flow uses the tag pipeline to write an invalid MESI 
condition to the master's valid bit/MESIfield. At the same 
time the data pipeline is used to send an invalidate to the 
slave cache when the matching tag's slave valid bits indi 
cates that the slave cache also has a copy of the data being 
invalidated. The data pipeline is needed because only the 
data pipeline can send information to the slave caches. The 
data pipeline invalidates the slave's data by sending the 
invalidation address along with all sub-line valid bits 
cleared. The slave cacheblindly writes this address and valid 
bits to its cache line, resulting in a cache line having all 
sub-lines marked as invalid. 
When the bus snoop hits a modified line in the master 

cache, then the modified line must be cast out or evicted 
from the master cache and written out to the bus to update 
external memory. This eviction of the dirty line requires four 
passes through the data pipeline to read all four sub-lines of 
data. A final, optional, tag flow may be initiated to alter the 
LRU bits to point to the invalidated line so that other valid 
lines are not replaced before the invalid line. This improves 
performance somewhat. 
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Master-Cache Miss Requires Loop-Back Flows 
Loop-backflows are also used when a miss from the slave 

cache also misses in the master cache, and an old cache line 
must be evicted to make room for the new cache line. If this 
evicted line is modified, it must be written out to the external 
memory. During the loop-back, the old tag is read and stored 
in an evict source register. Subsequent data pipeline flows 
are used to read the four sub-lines. Finally the tags are 
over-written for the new line, and the LRU bits are updated 
in another tag pipeline flow. 
A loop-back flow may also be used to update the LRU 

information. Since the LRU information does not need to be 
immediately updated, this can also be accomplished by a 
second flow from the source register rather than by using the 
loop-back arbitration, which can delay other critical 
requests. 
A loop-back flow is also required when a store from the 

CPU or store buffer writes to a clean (exclusive) line. During 
the initial flow through the tag pipeline, the MESI bits are 
read for the matching cache line. At the P2 stage the tag 
pipeline determines that the MESI bits show that the cache 
line is unmodified, and a loop-backflow is arbitrated for in 
the P4 stage. The loop-backflow then writes the MESIbits 
to the modified state. 
In summary, the loop-back flow occurs when any of the 

following occur: 
1. A miss in the master cache uses the loop-backflow to 
read the old tag for the modified cache line being 
replaced, the least-recently-used cache line. 

2. A bus snoop uses the loop-back flow to write the tags 
when a hit occurs in the first flow through the tag 
pipeline. The matching tag may be invalidated in the 
loop-back flow. Rather than invalidate the tag, the 
snoop may change the MESI bits to shared when the 
data is written out to the bus. 

3. A store from the CPU uses the loop-backflow to write 
the matching tag's MESIbits to modified (dirty) if they 
were exclusive. 

4. Other cache operations from the CPU use the loop-back 
flow to invalidate a tag. 

5. LRU updates use loop-back when too many LRU 
requests are already queued up. 

Address Compare for Intervening Request 
FIG. 6 shows the address for the request in the intervening 

stage P3 being compared to the loop-back address from 
stage P2. The intervening request is canceled for certain 
loop-back requests when the master-index portions of the 
address match. 
Once a request has flowed down a pipeline into the P1 

stage, it has passed the "commit' point, and an update has 
occurred. For tag pipeline 10, the source registers 14 are 
written on the transition from stage P2 to stage P1 with the 
encoded element number and a bit is set indicating that 
either a hit or a miss has been detected. For data pipeline 12, 
the data is sent to the slave cache during stage P1 and source 
registers 14 are updated to indicate that another sub-line of 
data has been transferred to the slave cache. A special late 
cancel signal is used at the end of stage P1 to cancel a 
transfer if a master-cache miss has just been detected. 
Otherwise data pipeline 12 reaches its commit point in early 
P1 rather than at the end of P1. The commit point is at the 
end of P1 for data pipeline but at the end of P2 for the tag pipeline. 
Requests before the commit point can be canceled or 

looped-back for a second flow through the pipelines. When 
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a request is looped back from stage P2 to stage P4, an 
intervening request may be present in stage P3 of tag 
pipeline 10. The master-index portion of the address being 
looped back is compared to the index portion of the address 
of the request in stage P3 by comparator 50, and if a match 
is detected, the request in stage P3 of the tag pipeline may 
be canceled. This cancels intervening requests that might be 
affected by the loop-back of P2, but allows requests to 
unrelated cache lines to complete unhindered. 
The comparison for the P3 stage may itself be pipelined 

for timing reasons. The comparison could take place in the 
previous P4 stage, with the compare result being available in 
the P3 stage. The intervening address of the P4 stage is 
compared to the P3 address in the pipelined compare, which 
is equivalent to comparing the intervening address in the P3 
stage with the P2 address. 

Fields in Source Registers 
FIG. 7 shows fields in a foreground source register. Each 

source register contains the miss address 40 and other 
information on the status of the request. For example, 
sub-line valid bits 44 are stored for misses from the slave 
cache, and invalid sub-lines may be prefetched to the slave 
cache when free data-pipeline bandwidth is available. Sub 
line valid bits 44 thus indicate how many of the four 
sub-lines have already been transferred. 

Status information is stored when the tag has been looked 
up, and if so, if a master miss or hit was determined by the 
tag pipeline. Master hit bit 48 is set after a tag lookup when 
a hit is detected, while master miss bit 54 is set when the tag 
lookup detects a miss. The element or block number 52 of 
the matching tag is also stored from the tag pipeline so that 
the correct data may be fetched from the data pipeline. 
Secondary-flow status bits 58 indicate if the LRU update 
flow has occurred yet, and if any inclusion check or update 
flows have been processed through the tag pipeline after the 
data has been fetched. 

Foreground valid bit 42 is cleared when no request resides 
in the foreground register. Demand sub-line field 46 iden 
tifies which of the four sub-lines in the cache line is being 
requested first by the slave cache. Other sources have 
somewhat similar registers also containing address and 
status information, but are adapted for other particular types 
of request. 

Types of Source Registers 
Several different kinds of source register are used. The 

slave instruction cache has two source registers: a fore 
ground and a background register. New demand misses are 
loaded into the foreground register. Sub-lines of data are 
transferred to the slave cache until another miss from the 
slave is received. This new request is merged into the 
foreground register if the miss is to the same line (the index 
and tag portions of the address match). When the new 
request is to a different line, the older request in the 
foreground register is moved to the background register and 
the foreground register is loaded with the new request. The 
foreground register transfers its four sub-lines of data to the 
slave cache before the background register transfers its 
remaining sub-lines to the slave cache. When both the 
background and foreground registers are occupied and a new 
miss arrives, then the request in the background register is 
deleted to make room for the request from the foreground 
register. - 

The slave data cache also has a foreground and a back 
ground register used to satisfy slave data cache misses, 
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which operate in the same manner as the foreground and 
background registers for the slave instruction cache. 
The store buffer source register receives all writes from 

the CPU, which are then loaded into a source register for the 
store buffer. 

Bus snoops also have a source register for checking the 
tags to determine if the snoop hits in the tags, and to perform 
an invalidation if a hit occurs. When the hit is to a modified 
cache line, then the request is transferred from the snoop 
source register to a bus-operations source register. Bus 
operation source registers control transferring data between 
the master cache and the external bus or external memory. 
Typically the four sub-lines of data are transferred, and the 
tags are modified. This requires an initial tag-pipeline flow 
to read the old tags, four data-pipeline flows to transfer the 
four sub-lines of data, and a final tag-pipeline flow to write 
the new tags, or to invalidate the old tag. In the preferred 
embodiment, four bus-operation source registers are pro 
vided to perform up to three bus operations at once and a 
snoop push. Misses in the master cache also use these 
bus-operation source registers to read in the new cache line 
from the external memory, and possibly to evict the old 
modified line. 
Cache operations that are initiated by executing in the 

CPU a cache operation in the instruction set may also use 
these bus-operation source registers, or special source reg 
isters may be provided. As an example, the PowerPCM 
instruction set includes a wealth of cache instructions, such 
as "touch" instructions (dcbt, dcbtst) that fetch a line from 
the external memory but do not send any data to the CPU. 
This is useful to force a pre-fetch of the cache line into the 
master cache before the data is needed by the CPU. Block 
zeroing instructions (dcbz) allocate a new cache line and 
write zeros to all data fields in the cache line. Other cache 
operations include "dcbi", which invalidates data in the 
cache, "icbi" which invalidates instructions in the cache, and 
"dcbf” which invalidates data after flushing the data if it has 
been modified. 

Types of Operations 
The following operations are sent down the tag pipeline: 
1. Tag reads for Slave Cache Misses to determine if they 

hit in the master cache, and which element they hit in. 
2. Tag writes from the external bus to update the tags 
when a new line is allocated to the master cache. 

3. Tag reads for stores from the CPU or slave caches to 
determine if they hit in the master cache and what 
element they hit in. 

4. Tag reads for bus snoops to determine if they hit in the 
master cache and slave caches. 

5. Tag writes by bus snoops to invalidate the master 
cache's tags, a loop-back flow. 

6. Tag writes to update the LRU bits and/or slave valid 
bits in the master's tags. 

7. Tag writes to update MESI bits to modified when a 
store occurs, a loop-back flow. 

8. Tag writes and reads for diagnostic purposes. 
9. Inclusion update after replacing a line in the slave, a 

"2K-away check". 
The following operations are sent down the data pipeline: 
1. Data reads for slave-cache misses, after the master's 

tags have been read. 
2. Speculative data reads for slave-cache misses while the 

master's tags are being read. 
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3. Data writes for stores from the CPU (slave cache and/or 

store buffer). 
4. Data reads for expelling or copying a modified old line 
from the master cache to the external memory. 

5. Data writes from the external bus or memory for 
loading a new cache line into the master cache. 

6. Data reads and writes for diagnostic purposes. 
7. Invalidates to the slave caches. 

Tag-Only Operations 
Several types of operations do not require use of the data 

pipeline, and thus can occur without reducing the data 
bandwidth of the master cache. LRU updates, bus snoops, 
2K-away inclusion checks, and line-prefetch checking use 
only the tag pipeline under most circumstances. Bus Snoops 
that must invalidate a line in the slave cache are an excep 
tion: the data pipeline is used to transmit the invalidation to 
the slave cache which requires a loop-back flow, Line 
prefetch checking may first be done to determine if a 
prefetch is feasible before the data bandwidth is used to 
prefetch data. 
When the master cache has more indexes than the slave 

caches, several sets in the master cache map into one slave 
set. When a new cache line is loaded into the slave cache, the 
slave valid bit in the master's tag is set. However, the old 
slave valid bit for the slave's line being replaced may also 
need to be cleared. The old slave valid bit is in a different 
master tag than the new line when the old A20 bit differs 
from the new miss's A20 bit. Thus an inclusion check may 
be needed to locate and clear the old line's slave valid bit in 
the master cache. This inclusion check is performed as a 
tag-only pipeline flow. This is a lower-priority request. 
When the slave caches are 2K bytes in size, master cache 
lines that are 2K bytes away from the new cache line must 
be checked during this inclusion check. If the master cache 
has 4K bytes in each block, then only two master cache lines 
can map to each slave cache line and only one inclusion 
check may be necessary. 
Acache line with four sub-lines uses the data pipeline four 

times, but the tag pipeline only once or twice. Thus the tag 
pipeline sits idle for half of the time. This idle time is used 
for these tag-only operations without impacting data pipe 
line bandwidth. 

Banking Data Rams 
The data RAM array may be divided into two or more 

banks to allow interleaving. Interleaving can increase band 
width by accessing each bank in a staggered fashion when 
RAM access requires more than one pipestage. When the 
source is assigned the data pipeline, one or both of the two 
RAM banks is also assigned. Both RAM banks may be 
accessed for demand misses when the tags are being 
accessed in parallel. The correct bank to use is determined 
once the tag has been looked up. For subsequent misses in 
the same line, the tag has already been looked up, and the 
data pipeline is assigned one of the banks. Back-to-back 
accesses in the data pipeline can occur when the banks 
accessed are alternated; otherwise the RAM may be 
accessed only once every two cycles for a two-cycle RAM 
CCCSS 

The two-stage arbitration is ideal for two banks of data 
RAM. Since an access to any one bank of data RAM can 
only be started every other clock cycle, the two-stage 
arbitration can cancel a request immediately following 
another request to the same bank and instead allow another 
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request to a different bank to win arbitration. Thus two-stage 
arbitration promotes efficient interleaving of the two data 
RAM banks. 

For a new demand miss, the first data sub-line is returned 
in three cycles (stages P3, P2, P1 from receiving the miss in 
cycle P4). Subsequent sub-lines are returned in three, one, 
and one additional cycles. Thus a burst of 3-3-1-1 is sup 
ported with two-bank interleaving. Below is a timing dia 
gram when the correct bank is selected in the first flow 
which has the tag and data bound in the pipeline: 

P4 P3 P2 P1 
st 

P5 P4 P3 P2 P1 
te 

P2 

1st Sub-line: 
1st data 
2nd Sub-line: 
2nd data 
3rd Sub-line: 
3rd data 
4th Sub-line: 
4th data 

P5 P4 P3 P1 
s: 

P4 P3 P2 P1 

The second sub-line does not begin until after the tag has 
been accessed in P2 of the first flow through the tag pipeline. 
Alternating banks are selected for each subsequent sub-line. 
Sub-line validity allows data to be transferred in any order, 
so that the third sub-line may be transferred before the 
second sub-line if the second sub-line's bank is busy. This 
flexibility of ordering sub-lines uses the available RAM 
banks more efficiently. 

Advantages of the Invention 
Two independent and parallel pipelines allow separate 

access of the tag and data RAMs. A higher overall through 
put is achieved for a wide variety of cache operations that 
must be processed by advanced cache systems. While it is 
possible to optimize access for common line misses andfills, 
the invention provides optimized access for a wider variety 
of cache operations, such as bus snoops, invalidates, evicts, 
stores, and other cache management operations. 
The tag pipeline is separately optimized for the timing of 

the tag RAM array, which may differ from the timing 
requirements of the data RAM array. The tag pipeline is 
optimized for latency, providing quick access to the tags, 
while the data pipeline is optimized for throughput rather 
than latency. Data transfer throughput is increased while fast 
tag latency is provided for bus snoops and demand misses. 
The pipelines can still be bound together for high priority 

operations such as returning the first sub-line of data when 
a new demand miss occurs. The pipelines are then unbound 
for transfer of subsequent sub-lines, allowing just the data 
RAM to be accessed for these subsequent sub-lines. 

Since the tag RAM array is smaller than the data RAM 
array for most cache arrangements, the tag RAM has a lower 
access delay than does the data RAM. The separate pipelines 
take full advantage of this difference in access delays by 
reading the tag RAM in less than one clock cycle, but 
allowing two clock cycles for the data RAM array access. 
While pipeline stalls often occur in processor pipelines, 

tag pipeline 10 and data pipeline 12 are designed to not have 
any stalls. Instead, when an exceptional condition such as a 
miss occurs, a request flowing through a pipeline can cancel 
other requests flowing behind it in the pipeline, and the 
exceptional request can loop back and flow through the 
pipeline again to process the exceptional condition. Thus 
requests always continue to stage down the pipeline unless 
they are canceled or loop back to the top of the pipeline. 
Typically a cache clock is used to clock the requests down 
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the pipeline. When no request is being processed by a 
particular stage, then the stage's outputs are disabled. A 
stage-valid bit can be used to indicate empty stages. 
Except for the hit?cancel signal, tag pipeline 10 and data 

pipeline 12 are completely decoupled. Even when both 
pipelines are “bound' together to simultaneously handle a 
new demand miss, the only coupling once arbitration is over 
is the hit?cancel signal and element number from tag pipe 
line to the data pipeline. After the tag pipeline reads the tag 
RAM array and determines if the demand miss is a hit in the 
master cache, tag pipeline 10 sends a hit signal to data 
pipeline 12. The encoded element number of the matching 
line is also sent with the hit?cancel signal so that data 
pipeline 12 can select the correct element's data from the 
data read out of the data RAM array. Data pipeline 12 reads 
all elements of data for the index of the new demand-miss, 
and then selects the correct element's data toward the end of 
data pipeline 12. Thus almost no coupling between the 
pipelines is used, allowing the pipelines to actindependently 
of one another. 

Alternate Embodiments 

Several other embodiments are contemplated by the 
inventors. For example separate master cache pipelines may 
be constructed for the slave instruction and slave data 
caches. Separate pipelines may also be used for each ele 
ment or group of elements in the master cache. When the 
RAM is divided into banks, a separate pipeline may be 
provided for each bank. Requests from other sources besides 
those described herein can be mixed in with requests for the 
master pipeline. These other sources can include external 
Snoop or invalidate requests, other processors or I/O devices, 
stores to the master cache, and other caches. In these cases 
the "miss' address is not strictly caused by a miss. 
The master cache's pipelines have been described as 

six-stage pipelines, but deeper or shallower pipelines may 
also be used. The tag and data pipelines do not have to be of 
the same length. While for simplicity the requests in the 
master pipeline have remained in order, some higher-priority 
requests may bypass lower-priority requests in the pipeline 
to achieve more efficient processing. Foreground and back 
ground registers are just one of many ways to track incoming 
requests, and indeed these registers or buffers may be 
deleted in favor of other means of tracking and processing 
requests. Each foreground or background register may 
source several transfer requests. A line miss in the fore 
ground register can generate four sub-line requests in order 
to fetch the entire line into the slave cache. A new request 
can move an olderline miss in the foreground register to the 
background register, and prefetching may be sourced from 
these registers by incrementing the line address. 
The master cache could also contain a secondary tag 

RAM array for keeping a copy of the slave's sub-line valid 
bits and tags to expedite processing. Data forwarding and 
bypassing techniques may also be used. For example, bus 
operations which write data from an external bus to the 
master cache may also forward this data directly to the slave 
cache during the P2 stage of the data pipeline when writing 
the data to the data RAM. 

In the preferred embodiment, only the data pipeline can 
transfer information to the slave caches; the tag pipeline 
must use the data pipeline to send an invalidate to the slave 
cache even when no data access is required. The tag pipeline 
could be extended to access the slave caches as does the data 
pipeline. The tag pipeline may contain additional hardware 
to latch and stage down the pipeline the tags, valid bits, and 
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LRU information for all elements in a set. This additional 
hardware can avoid having to perform a loop-back flow to 
read the old tags for the line being evicted. 
The master cache may use a single bus to communicate 

with both the slave caches. In that case, busses 33, 35 of FIG. 
1 are combined together into a single bus. Another improve 
ment is to not store slave valid bits for each of the elements. 
For an 8-way set-associative master cache storing slave 
instruction cache and slave data cache valid bits in each set, 
16 bits are needed for each index. Instead, a single structure 
is shared by all sets. The shared structure is known as a use 
record. The use record encodes the 8 slave instruction cache 
valid bits into 4 bits: a single slave instruction valid bit, and 
a 3-bit field that encodes the element number of the one 
element containing the activated slave instruction cache 
valid bit. No more than one element may have its data in the 
slave instruction cache since the slave instruction cache is 
direct mapped, having only one entry for each master-index. 
The use record thus reduces the number of bits for the slave 
valid bits from 16 to 8 for a master having two slave caches. 
Least-recently-used bits can also be located in the use 
record. 

Other encodings may be used for the fields described 
herein, and indeed the miss address itself can be decoded at 
the end of the pipeline to supply the valid bit for the current 
sub-line. The entire 32-bit address need not be sent to the 
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master cache as alreads are preferably 8 bytes in size. Other 
address and data sizes may also be used. More tag states 
beyond MESI may be added without altering the slave 
caches. 
A simplified embodiment is described of a CPU having a 

single instruction pipeline and a single execution pipeline. 
However, most modern processors employ super-scalar 
designs. Super-scalar CPU's have several pipelines. A three 
way super-scalar embodiment requires three instructions for 
each clock period to supply three pipelines. If two of the 
pipelines are execution pipelines capable of executing 
memory operations, then two data operands may also need 
to be supplied for each clock period. The teachings of the 
detailed description are restricted to a simple CPU having a 
single execution pipeline and a single instruction pipeline. 
These teachings may however be extended to multiple 
pipelines and multiple CPUs by persons skilled in the art. 
The arbitration may be accomplished in a single cycle or 

three or more cycles rather than in two cycles. Tag access 
may also vary in the number of cycles required. Any number 
of banks of RAM may be used. Dedicated foreground and 
background source registers for each slave may be used as 
taught, or a unified foreground and background register may 
be used for requests from either slave cache. 
The master cache may periodically search for modified 

lines using spare tag-pipeline cycles. When a modified line 
is found, it is written out to the external memory, and another 
tag-pipeline flow performed to change the MESIbits from 
modified to either exclusive or shared. Writing modified 
lines out to external memory can improve performance, 
because when this line needs to be replaced by a new line, 
the old line no longer has to be written back to external 
memory. 
The foregoing description of the embodiments of the 

invention has been presented for the purposes of illustration 
and description. It is notintended to be exhaustive or to limit 
the invention to the precise form disclosed. Many modifi 
cations and variations are possible in light of the above 
teaching. It is intended that the scope of the invention be 
limited not by this detailed description, but rather by the 
claims appended hereto. 
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We claim: 
1. A master-slave cache system for access by a central 

processing unit's execution pipelines comprising: 
a slave cache for supplying instructions or operands to the 
CPU's execution pipelines; 

a master cache coupled to the slave cache and coupled to 
an external bus, the master cache organized as an 
N-way set-associative cache having N elements for 
each index-portion of an address, the master cache 
comprising: 
a tag RAM array for storing a tag and a master-valid 

indicator for each element for each index-portion of 
the address, the tag RAM array including slave-valid 
indicators for identifying elements in the tag RAM 
array which also have valid data in the slave cache, 
the master cache performing cache management 
operations for the slave cache by using the slave 
valid indicators in the master cache; 

a data RAM array for storing sub-lines of data for each 
tag in the tag RAM array; 

a tag pipeline for accessing the tag RAM array, the tag 
pipeline having a plurality of stages for simulta 
neously processing a plurality of requests bypassing 
the requests through successive stages of the tag 
pipeline in response to a clock; 

a data pipeline for accessing the data RAM array 
independently of the tag pipeline, the data pipeline 
having a plurality of stages simultaneously process 
ing a plurality of requests by passing the requests 
through successive stages of the data pipeline in 
response to the clock; 

tag arbitration means, receiving a plurality of tag 
requests, for selecting a tag request from the plurality 
of tag requests for processing by the tag pipeline; 

data arbitration means, receiving a plurality of data 
requests, for selecting a data request from the plu 
rality of data requests for processing by the data 
pipeline, the data arbitration means operating inde 
pendently of the tag arbitration means; and 

source registers, coupled to the tag arbitration means 
and to the data arbitration means, for storing a 
plurality of requests for access of the master cache, 
including requests to access only the tag RAM array, 
requests to access only the data RAM array, and 
requests to access both arrays, the source registers 
storing completion status for each request; 

wherein the tag pipeline includes tag update means, 
coupled to the source registers, for updating the 
completion status for the request being processed by 
the tag pipeline; 

and wherein the data pipeline includes data update 
means, coupled to the source registers, for updating 
the completion status for the request being processed 
by the data pipeline, 

whereby the tag RAM array is accessed separately and 
independently from the data RAM array and whereby 
separate pipelines are used to access the tag RAM array 
and the data RAM array. 

2. The master-slave cache system of claim 1 wherein the 
tag pipeline further comprises: 

tag compare means, coupled to the tag RAM array, for 
comparing a tag portion of the address of the tag 
request to a plurality of N tags for the N elements 
having an index matching an index portion of the 
address of the tag request; and 

hit means, coupled to the tag compare means, for signal 
ing a hit when one of the plurality of N tags matches the 
tag portion of the address of the tag request; 



5,692, 152 
21 

the tag update means further comprising means for updat 
ing the completion status for the tag request with a hit 
indication when the hit is signaled by the hit means but 
updating the completion status with a miss indication 
when no hit is signaled, 

whereby the source registers are updated with the hit 
indication or the miss indication after the tag pipeline 
accesses the tag RAM array. 

3. The master-slave cache system of claim 2 wherein the 
tag pipeline further comprises: 

element means, coupled to the tag compare means, for 
identifying which one of the plurality of N tags for the 
Nelements matches the tag portion of the address of the 
tag request and outputting an element-hit identifier to 
the tag update means; 

the tag update means writing the element-hit identifier to 
the tag request in the source registers, 

whereby the source registers identify which element con 
tains a matching tag after the tag pipeline accesses the 
tag RAM anray. 

4. The master-slave cache system of claim 1 wherein the 
data update means further comprises: 

sub-line means for indicating which sub-line of data is 
being accessed by the data pipeline; 

the data update means including means for writing the 
sub-line means to the completion status for the data 
request being processed by the data pipeline; 

whereby the completion status in the source registers for 
the data request processed by the data pipeline is 
updated to indicate which sub-line of data has been 
accessed. 

5. The master-slave cache system of claim 4 wherein the 
sub-line means comprise sub-line valid bits indicating which 
sub-lines in a cache line contain valid data, the master cache 
containing means for writing the sub-line valid bits to the 
slave cache, 
whereby the sub-line valid bits generated by the master 

cache are written to the slave cache. 
6. The master-slave cache system of claim 4 wherein the 

source registers include: 
a miss request register for miss requests from the slave 

cache for CPU requests which miss in the slave cache; 
a bus snoop register for bus snoop requests from the 

external bus, the bus snoop requests including requests 
to invalidate any matching lines in the master cache, 

whereby slave-cache misses and bus Snoops are requests 
stored in the source registers. 

7. The master-slave cache system of claim 6 wherein the 
source registers include: 
snoop means for generating a tag request in response to a 
bus snoop received from the external bus; 

slave miss means for generating a tag request in response 
to a slave-cache miss and for generating a plurality of 
M data requests in response to the slave-cache miss; 

wherein each cache line in the master cache contains M 
sub-lines of data. 

8. The master-slave cache system of claim 7 wherein the 
master cache further comprises: 

master miss means, responsive to the miss indication from 
the tag pipeline, for generating a plurality of M data 
requests for transferring M sub-lines of data from the 
external bus to a cache line in the data RAM array in 
the master cache, 

whereby M data requests to the data pipeline are gener 
ated when a new cache line is fetched from the external 
bus to the master cache when a master-cache miss 
OCCS. 
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9. The master-slave cache system of claim 4 wherein the 

master cache further comprises: 
binding means, coupled to the tag arbitration means and 

coupled to the data arbitration means, for binding the 
tag pipeline to the data pipeline when a high-priority 
request is received, the high-priority request arbitrating 
control of both the tag pipeline and the data pipeline; 

whereby both the tag and data pipelines simultaneously 
process the high-priority request. 

10. The master-slave cache system of claim 9 wherein the 
high-priority request is a first sub-line of data in a new 
cache-line miss from the slave cache; 

wherein subsequent sub-lines of data in the new cache 
line miss arbitrate for only the data pipeline and not the 
tag pipeline, 

whereby a new missbinds both pipelines together for the 
first sub-line of data but not for subsequent sub-lines of 
data. 

11. The master-slave cache system of claim 9 wherein the 
master cache further comprises: 

source compare means, coupled to the source registers, 
for comparing an index and a tag portion of a new 
request to the index and tag portions of addresses of 
requests in the source registers; 

source merge means, responsive to the source compare 
means, for merging the new request into an existing 
request in the source registers when the index and tag 
portions match; 

wherein a subsequent sub-line of data in the existing 
request arbitrates for only the data pipeline and not the 
tag pipeline, the subsequent sub-line of data being a 
sub-line requested by the new request, 

wherein sub-lines are transferred from the master cache to 
the slave cache in an order determined by new requests 
received from the slave cache rather than a fixed order. 

12. The master-slave cache system of claim 9 wherein the 
master cache further comprises: 

canceling means, coupled to the binding means, for 
sending a cancel signal from the tag pipeline to the data 
pipeline when the pipelines are bound together and the 
tag pipeline does not signal a hit from the hit means, the 
cancel signal canceling a transfer from the data RAM 
array; 

wherein the canceling means sends the element-hit iden 
tifier to the data pipeline when the pipelines are bound 
together and the tag pipeline signals a hit, the data 
pipeline including means for selecting a sub-line of 
data from the data RAM array in response to the 
element-hit identifier. 

whereby the tag pipeline sends the element-hit identifier 
directly to the data pipeline when the pipelines are 
bound together and whereby a first sub-line of data is 
read from the data RAM array in a single flow of the 
data pipeline bound to the tag pipeline. 

13. The master-slave cache system of claim 1 wherein the 
master cache further comprises: 

loop-back means, in the tag pipeline and coupled to the 
tag arbitration means and the data arbitration means, 
for arbitrating for a second flow through the tag pipe 
line and a simultaneous flow through the data pipeline 
when an exceptional event occurs in the tag pipeline 
after accessing the tag RAM array, 

wherein the exceptional event is a master-cache miss, or 
a bus-Snoop hit. 

14. The master-slave cache system of claim 13 wherein 
the second flow invalidates the tag when the exceptional 
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event is the bus-snoop hit, the data pipeline writing invalid 
sub-line valid bits to the slave cache when the slave-valid 
indicators in the tag RAM array indicates that a snoop 
address of the bus snoop also has valid data in the slave 
cache, 
whereby the master cache performs a cache management 

operation for the slave cache by using the slave-valid 
indicators in the master cache. 

15. The master-slave cache system of claim 13 wherein 
the loop-back means further comprises: 

intervening compare means, coupled to the tag pipeline, 
for comparing addresses of intervening requests in the 
tag pipeline after the tag arbitration means but before 
the loop-back means, and for canceling any intervening 
requests which have an index portion of the address 
match an index portion of a loop-back request's 
address, 

whereby intervening requests in the tag pipeline are 
canceled when the index portions of the addresses 
match. 

16. The master-slave cache system of claim 1 wherein the 
slave cache comprises a slave instruction cache for supply 
ing instructions to the CPU and a slave data cache for 
supplying data operands to the CPU's execution pipeline, 
the slave instruction cache being read-only by the CPU but 
the slave data cache being readable and writeable by the 
CPU. 

17. Amethod for processing a bus snoop from an external 
bus, the method comprising the steps of: 

receiving a snoop address from an external bus, the bus 
Snoop address having a tag portion and an index 
portion; 

loading a snoop source register with the snoop addresses 
and artbitrating for control of a tag pipeline; 

reading a plurality of tags having an index portion of an 
address matching the index portion of the snoop 
address; 

comparing the plurality of tags to the tag portion of the 
snoop address; 

when none of the plurality of tags match the tag portion 
of the snoop address, signaling completion of the bus 
snoop to the external bus and clearing the snoop source 
register; 
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when a matching tag in the plurality of tags matches the 

tag portion of the snoop address: 
arbitrating for a loop-back flow in the tag pipeline; 
when the matching tag indicates that data is modified 

and not yet written back to the external bus, per 
forming a series of flows in the data pipeline to 
transfer data for the matching tag from a master 
cache to the external bus; 

marking the matching tag as invalid during the loop 
back flow in the tag pipeline; 

when the matching tag indicates that a slave cache 
coupled to a processor has a copy of the data for a 
matching line, sending the index portion of the snoop 
address and an invalid tag to the slave cache to 
invalidate the matching tag in the slave cache; and 

signaling completion of the bus snoop to the external 
bus and clearing the snoop source register, 

whereby bus snoops are processed by the master cache for 
the slave cache. 

18. The method of claim 17 wherein the step of sending 
the index portion of the snoop address and an invalid tag to 
the slave cache to invalidate the matching tag in the slave 
cache comprises sending from the data pipeline to the slave 
cache the index portion of the snoop address and the invalid 
tag, 

whereby the data pipeline and not the tag pipeline sends 
the invalid tag to the slave cache. 

19. The method of claim 17 further comprising the step of: 
when arbitrating for the loop-back flow, comparing the 

index portion of the snoop address to an index portion 
of an intervening address, the intervening address being 
for an intervening request in the tag pipeline before the 
snoop address; 

canceling the intervening request when the index portion 
of the snoop address matches the index portion of the 
intervening address, 

whereby intervening requests in the tag pipeline are 
canceled when the index portions match. 


