NIN

JANUARY 1875
Milt Schwartz
National Semiconductor

IMP-16L DMA —WHAT IT IS AND HOW TO USE IT

INTRODUCTION

This application note discusses the general theory of
the IMP-16L DMA Bus; including timing, bus request,
priority and expansion, bus controller operation, and
peripheral interfacing techniques. Two examples of
priority expansion and three examples of data transfers
are given: CPU read from peripheral device, CPU write
to peripheral device, and direct memory access by a
peripheral device. Table | contains all signal nomencla-
ture and definitions.

With direct memory access (DMA), memory and periph-
eral devices may communicate directly with one another
using a common bus that is time multiplexed. This
direct communication does not reguire the use of the
central processor; therefore the processor may proceed
with independent processing tasks. As a result, the
computation speed of the system is effectively increased.
Direct communication may occur between peripheral
devices and memory, the central processor and memory,
the central processor and a peripheral device, or any two
peripheral devices. To allow this communication, all
devices must be connected to a common bus by the user.

A three-bus structure is used to implement the IMP-16L
DMA capability. This three-bus structure is referred to
as the ““System Data Bus,” and consists of the following:

Data Bus: 16-bit bidirectional, utilizing TRI-STATE®.
Time multiplexed for outputting address and inputting
or outputting data.

Timing Signal Bus: Clocks and data strobes.

Control Signal Bus: Priority operations, bus cycle extend,
peripheral bus request and grant.

BUS OPERATION — GENERAL CONCEPT

As can be seen from Flow Chart 1, the basic idea of the
bus structure is that any device tied to the bus whether
it is CPU, memory or peripheral must ask permission
from the bus controller {logic located on the CPU card)
to use the bus for communicating with any other device.

The bus controller consists of an ordered priority circuit
(which is expandable) and a timing and control circuit.
The priority circuit logic decides what device in order of
importance may use the bus, while the timing and control

ANY DEVICE REQUESTS PERMISSION
] FROM THE BUS CONTROLLER TO

I —

BUS CONTROLLER

YES — YOU GET ONE BUS CYCLE

REQUESTING DEVICE PUTS ADDRESS

OF ANY OTHER DEVICE ON DATA

BUS DURING ADDRESS VALID TIME
AND RESETS ITS BUS REQUEST

| !

DEVICE BEING ADDRESSED DECODES
ADDRESS AND PREPARES T0
OUTPUT DATA DURING READ

DATA VALID TIME OR TAKE IN
DATA AT WRITE DATA VALID TIME

|

REQUESTING DEVICE ACCEPTS DATA
FROM OR OUTPUTS DATA TO THE
ADDRESSED DEVICE, USING BUS
CYCLE EXTEND IF DEVICE HAS
SLOW ACCESS TIME

END OF 1 BUS CYCLE

DEVICE WAITS FOR
ITS PRIQRITY TO
BECOME HIGHEST

Flow Chart 1

circuitry generates signals necessary for synchronous
operation. (See Table | for signal nomenclature.) It
is up to the user to choose which device should have
highest priority. The user should exercise care when
choosing priorities for devices to insure that all will be
serviced within their response timing constraints.

BUS CONTROL

If peripheral devices are to communicate with one
another, a bus-request signal must be generated (IBR*).
This is an asynchronous command by the requestor over
the control signal bus. A separate bus request line is
provided for each device. In response to the request,
permission to use the data bus for one bus cycle is
granted by an ordered prioritizer and must be recognized
synchronously by the requestor. (See Figure 2.) The
user determines the order-of-priority assigned to his
peripherals by hardwiring appropriate connections to
the priority circuit (Figure 3). As soon as the requestor
receives permission to use the bus, address and data must
be available for transmission during the same bus cycle.

© 1975 National Semiconductor Corp.

B15M15/Printed in U.S.A.

} 8sn 0} Moy pue si } 1eYM-YINA T9L-dINI

SEL-NV

TABLE I. Signals Available to the User

NAME | WHERE GENERATED DESCRIPTION

TIMING BUS SIGNALS

ICLKA CPU Card
ICLKA™ CPU Card
ICLKG CPU Card
ICLKB CPU Card
ICLKB*® CPU Card

Interface Bus Clock A, Same Phase as CLKA
Interface Bus Clock A

Interface Bus Clock B, Same Phase as CLKB
Interface Bus Clock B

Interface Address Data Strobe

1ADS CPU Card Interface Address Data Strobe

IADS" CPU Card Interface Write Data Strobe, Same Phase as
WDS on CPU

IWDS CPU Card Interface Write Data Strobe

Iwps* CPU Card interface Read Data Strobe, Same Phase as
RDS on CPU

1RDS™ CPU Card Interface Read Data Strobe

BICLKB CPU Card Buffered Bus Clock B

CONTROL BUS SIGNALS

IRMC™ CPU Card and User
wme® CPU Card and User
IRPC® CPU Card and User
wpc* CPU Card and User
IBHLD* CPU Card and User

Interface Read Memory Cycle, Open Collector
Interface Write Memory Cycle, Open Collector
Interface Read Peripheral Cycle, Open Collector
Interface Write Peripheral Cycle, Open Collector

Interface Bus Hold, Input to Timing and Control
Circuit, Used to Extend Bus Cycle, Open Collector

IBRO® CPU Card Interface Bus Request 0, Highest Priority Input

iBR1" CPU Card Interface Bus Request 1, Second Highest Priority

IBR2® CPU Card Interface Bus Request 2, Third Highest Priority

1BR3" CPU Card Interface Bus Request 3, Fourth Highest Priority

PSO” CPU Card Interface Priority Select 0, Corresponds to tBRO™

Ps1t CPU Card Interface Priority Select 1, Corresponds to 1BR1*

ps2* CPU Card Interface Priority Select 2, Corresponds to IBR2"

1Ps3* CPU Card Interface Priority Select 3, Corresponds to 1BR3”

APVD* CPU Card Interface Approve Out (Note 1}

APVI® CPU Card Interface Priority Approve In (Note 1), Normaily
Connected to APVO" if no Priority Expansion

1Al CPU Card Interface Inverter A Input {Note 2}

1BI CPU Card Interface Inverter B Input (Note 2)

ici CPU Card Interface Inverter C Input (Note 2)

1Dt CPU Card Interface Inverter D Input (Note 2}

1A0 CPY Card Interface Inverter A Output (Note 2)

180 CPU Card Interface Inverter B Output {Note 2}

10 CPU Card Interface Inverter C Output (Note 2}

1DO CPU Card Interface Inverter D Output (Note 2)

DATA BUS SIGNALS

1DB00 CPU Card Interface Data Bit 0
1DBOY CPU Card Interface Data 8it 1
1DBO2 CPU Card Interface Data Bit 2
10803 CPU Card Interface Data Bit 3
1DBO4 CPU Card Interface Data Bit 4
1DBOS CPU Card Interface Data Bit 5
1DBOS CPU Card interface Data Bit 6
1DBO7 CPU Card interface Data Bit 7
10808 CPU Card Interface Data Bit 8
1DB09 CPU Card Interface Data Bit 8
1DB10 CPU Card interface Data Bit 10
1DB11 CPU Card Interface Data Bit 11
10812 CPU Card Intertace Data Bit 12
1DB13 CPU Card Interface Data Bit 13
iDB14 CPU Card interface Data Bit 14
1DB15 CPU Card Interface Data Bit 15

Note 1: Provide for expansion of DMA bus to more than four
DMA devices.

Note 2: Spare inverters.

Note 3: The asterisk (*) indicates that the associated signal is
an active low signal (that is, ICLKB and ICLKB* are complement
signals; 1ICLKB is the active high, and ICLKB* is the active low).

(See timing requirements of Figure 7 for address and
data valid.) A bus cycle is normally about 1us in
duration. However, provisions are made to extend this
time for slow responding peripheral devices or memory.
(See Figure 2.) To extend the bus cycle, the user may
generate a signal IBHLD™ (interface bus hold). This
signal must be a low level and must make the transition
to the low level during the time that address data strobe

(IADS¥} is low and ICLKB™ is high. The duration of the
extended bus cycle may be up to 4us and may
asynchronously end with a low-to-high transition. By
definition, the duration of a bus cycle is the time
interval between the negative-going edge of IADS™ and
the positive-going edge of write data strobe (IWDS*) or
read data strobe (IRDS*). A new bus cycle may be
initiated simultaneously with the ending of the previous
one. This condition is true whether or not a bus hold has
been performed.

BUS PRIORITY

To gain control of the bus for one cycle, the requestor
synchronously (with negative-going edge of ICLKB)
sends a negative-going signal IBR™ (interface bus request)
to the bus controller on the CPU card. If this IBR* is
the highest priority at the time, then a corresponding
negative-going signal IPS* {Interface Priority Select) is
immediately sent from the priority network (Figure 3)
to the requesting peripheral device. The peripheral
device must synchronously sample and latch the IPS™
signal on the negative-going edge of ICLKB*. IBR™ may
go high as soon as 1ADS™ is generated. The peripheral
then must generate the correct signal for the type of bus
transaction required, namely IRPC*, IWPC*, IRMC*,
IWMC™ (Figures 1 and 6). |f back-to-back cycles are
desired, then the peripheral holds IBR* low through the
complete cycle. Upon termination of the present bus
cycle {positive-going edge of IRDS™), the IBR™ of the
same peripheral device immediately is recognized if it is
still the highest priority. The bus cycle then repeats itself
as previously described. Again, IBR* must be held low
until the next IADS* is generated. No device which
makes more than two back-to-back requests should be
given higher priority than the CPU, as the CPU must be
guaranteed access to the bus once every 8us.

PRIORITY EXPANSION

Refer to Figures 4 and 5 for expansion techniques. Note
that whatever expansion techniques are utilized, a signal
must be sent from the priority circuit to the bus timing
control section of the CPU card. This signal line must be
connected to the CPU card input pin labeled APVICPU*.
When a logic 1, this signal indicates that a bus request
(IBR™) has been generated.

PERIPHERAL INTERFACE TECHNIQUES
First Situation

The CPU is the BOSS (bus master) and requests data
(reads) from a peripheral device using the RIN or
Load? instructions. It is assumed that 8 bits of peripheral
device address are necessary for this example and that
the CPU is expecting 16 bits of data to be returned.

The following sequence of events occurs {refer to Figures
1,2, 3, 6 and 7). The CPU generates an IBR™, if this is
the highest priority at the time, a corresponding IPS* is

Note 1: IRPC*, iWPC*, IRMC*, IWMC* are used for decoding
by memory and other peripherals.

*Denotes an active low signal.

!
|
1cLxee LI LI |
oLk —H — — o
TING | BICLKB
g — /i — —_
SIGNALS fe—0
—| 90—
IcLka®
LI LT
1CLKA 1 1 1
CONTROL BUS WM, IRPC, IWPC*
SIGRALS | 'PMC*. IMMC® IRPC, IWPE* ——y —
iApS* ——)
TIMING
BUS
SIGNALS
s —— 1
nooressvay ———F L
oS —— —
TIMING
8US
SIGNALS
s — | -
WRITE CYCLE DATA VALID oo [|-
IRDS® 1 —
TIMING
BUS
SIGNALS
1808 I L
READ CVELE DATA VALID I |-
Al timing s typical and expressed in nanaseconds.
All above signals are avatae to the user at the adge connector of the CPY card,
- readwerite cycle data valid and address valid times are for reference anly.
Refer 10 1MP-16L users mnwal pub. =4200028, chapter 7.
FIGURE 1. System Timing
[senionenar cou/sus [
| controrLen | costroLten | | MewoRv
r 1; 'Y 4 3 'Y
16817 BIDIRECTIONAL
y ' BATA 505
TIMING SIGNAL 8US
SYSTEM BUS
L 2 CONTROL SIGNAL BUS

FIGURE 1A. System Data Bus Structure

generated by the priority network on the CPU card. The
first CLKB (negative-going edge) after IPS* is generated
causes signals 1ADS* and IRPC*, and simultaneously all
IPS* signals are forced “high” (disabled). The bus cycle
is initiated by the negative-going edge of IADS¥. IADS™
is used as a gating signal by the CPU to put the 8-bit
address on the bus. The peripheral device addressed
must decode the address bits and latch the decoded
signal using IRPC*, IADS and ICLKB (positive-going
edge). When the address is decoded, the peripheral
device gates its data to the bus during IRDS time. The
CPU gates the data in using IRDS and CLKA ({positive-
going edge). The bus cycle is terminated by the positive-
going edge of IRDS*.

Second Situation

The CPU is the bus master and writes data to the
peripheral using ROUT or Store? instructions. Eight
bits of address are used and the CPU transmits 16 bits
of data to the peripheral device. The following sequence
of events occur (refer to Figures 1, 2, 3, 6 and 8). The
CPU generates an IBR*. If this is the highest priority at
the time, then a corresponding IPS* is generated by the
priority network on the CPU card. The first CLKB
negative-going edge after IPS™ is generated causes signals
IADS* and IWPC*, and all IPS* signals are simultaneously
forced high (disabled). The bus cycle is initiated with the
negative-going edge of IADS*. 1ADS™ is used as a gating

CAN START NEXT BUS
CYCLE IMMEDIATELY

15T BUS CYCLE IND BUS CYCL

touka I NIl g M Tl I -

as_J m_mn.rn mn. rn n mn n rn._
m-_]____j |

mose] - I
IRDS* I _‘ I—r—

[

18HLD* = |
| |
i]

Wots 1 BHLD® muctnot ke s 1" "0 wansicion whike ICLKE & 4 1.

Mete 2: Requesting peripberal must recogeize IPS* and use 1CLKB to “Latch.”

FIGURE 2. Bus Cycle Extend Timing

> v
R1
o DMESK
3 4 1
IBR3* 3
Lowest : DMaDs? .
i :u > sy
-1
- r-—"""""""="-""""" A
L |
12| pmass?
o |
[|
ol I
PRIORITY NETWORK LOGIC 1 I
|
—-d

T)] i L. OMrss
5] omnauz3 1) ¢ omranna
128] 3 3
9 X 3

126
Lt

[3 a
1e I: o[@)t > nos
1 _1 | ‘z DM74500 | 1l
iy L 10

[v IRDS
L DM7S0 § ommse w

TIMING AND CONTROL LOGIC a

Note 1: Normally APVO® is connected to APVICPU®. However, if priority is expanded,
1his connection must be broken,

FIGURE 3. CPU Logic

P e a7 e
A A
HIGHEST 0 3
s o—4— irsa
3 U crvare b
2 s jo—td 1
1

PRIDRITY owares 4 [OT——0112 purasz

1
I3 -

3
—'—() 4 ()—'——

Eour
INPUTS 13 PRIORITY 15 USEDAS 5
ﬂ ENCODER 10F3

2 3103 oecoper ©
—f—o 7
-—-‘—o]

o——)
P T oween

Lo o e e | — S OEIMLA)

CPU CARD

FIGURE 4. Priority Expansion Method No. 1

DMY4HaY

APVO* FROM CPU >-—| >0—
r

ons :Do__.,ss.

RESET

TO INPUT APVICPU®
PIN 96 ON CPU CARD

RESET

Detail A is circuitry that is past of a peripheral.

FIGURE 5. Priority Expansion Method No. 2

45V

e uf] ohz
IGLKBY e DMAHT — 1AMC? _———] -
3 | r T 7 usgn SELECTS VALUES FOR
L —— L af- [o— | RAND € TO DETERMINE
L3L] TIME CONSTANT OF THE
::Do_wm- ONE SHOT
— 2 PERIPHERAL DEVELOPS | — | |
THESE INPUTS, ONLY
NEEDED WHEN PERIPHERAL il | |
BUS MASTER fr— = 0s. DM7AHOT
— LKA .
1a08 a ISHLDH
4HO1
iy useR |
wege ENABLE L DMS602 4
Nate : DM7T4HD1 is apen collector and requires poitag resistor.
Note 2: R, IWME, IRPC*, IWPC* mast be conmected t respective signals
generated o0 GPU card.
FIGURE 6. Possible Methods for impl of Interface

Signals Generated by the Peripheral

signal by the CPU to put the 8-bit address on the bus.
The peripheral device decodes the address and latches
the decoded signals using IWPC*®, 1ADS and ICLKB
(positive-going edge). Next, the CPU gates the 16 data
bits on the bus during IWDS* time using WDS and WRP
as gating signals. {WDS occurs at the same time as IWDS™.)
The peripheral device must take data from the bus using
IWDS* and ICLKB (positive going edge). The bus cycle
is terminated with the positive going edge of IWDS*.

It may be noted that the benefits of using memory
reference instructions such as store, load, add, etc. rather

than RIN, ROUT are speed and flexibility of data
manipulation because all four accumulators may be used.
To achieve these benefits memory and peripheral area
locations should be allocated prior to system design.

Third Situation

The peripheral device is the bus master and communicates
directly with memory. For this example, the peripheral
device presents 16 address bits on the bus and expects
16 data bits in return. The following sequence of events
occur {refer to Figures 1, 2, 3, 6, and 9). The peripheral

Note 2: If a load or store or any standard instruction other than RIN. ROUT is used then the peripheral address should be in an unused

memaory area.

d how to use

IS an

device generates an IBR¥, if this peripheral is the highest
priority at the time; then a corresponding IPS¥

generated by the priority network on the CPU card. The
first CLKB after IPS* causes IADS* to be generated
from the CPU. Simultaneously, the peripheral must
generate an IRMC™. Again, all IPS* signals are forced
high on the negative-going edge of the same CLKB
signal that generated IADS*. Now, the peripheral device
is the BUS master. The peripheral has the address bits
ready in a TRI-STATE register awaiting 1ADS™ as a
gating signal to output the address over the bus to
memory. Memory latches the address and outputs 16
bits of data on the bus during IRDS. The peripheral
device must be ready to clock in the data using IRDS
and ICLKB {(positive-going edge}. The bus cycle ends
simultaneously with the positive-going edge of IRDS™.

CONCLUSION
As can be seen from the preceeding examples, the

direct memory access feature (DMA) of the IMP-16L
affords easy interface to peripherals using standard TTL

cry

GND ALL UNUSED INPUTS

2BITS

6BIT
COMPARATOR |gyreut
DMR13 pe——g
ADDR.
DECODE
STROBE

6 BITS|

SBIT
COMPARATOR
DMS136

IADS

ICLKB

IWPC*

_ 16 BITS

ICLKB

wos* —E(O)

16-BITIN

FLIP-FLOP
DATAIN
ENABLE

IMP-16L DMA-what i

logic elements. The advantages of the DMA feature are
high throughput per bus cycle, straight forward decoding
at ‘the peripheral, capability of the central processor to
proceed with independent processing tasks, ease of
interface to floppy discs, conventional discs, and nine
channel magnetic tapes.

PERIPRERAL

FIGURE 8. Typical Interface for the Case where CPU Writes
to Peripheral

F——_—————————
| USER INPUT
g !
s 18R*
GND ALL UNUSED
CONTROLLER [
| NPUTS ON DME136 SEE FIGURE 3 1 1RDS*
| OB 1
28ITS serm QuTRUT DETAIL
l 4 g T |
| STROBE |
| -y | 16817 TRISTATE
| ADDRESS OUTPUT
|—IRos | BEGISTER ENABLE
! MEMORY [TRISTATE |O——tt— 1ADS"
| —cua | s | 4DMas5T
ADDR QUAD D
| pata | pataeus/ seims QECODER | FLIPFLOP
| T e < SBITS ~—
L | oM8135 |
I | 7y
U STROBE |
L |
| | aos | 16817
IN DATA
| iwe | REGISTER
4.DMa551
| |mee 1RDS .
I ICEKB
[4— user cLock .
16:B1T
I OUTDATA | TRISTATE I
| \ 16 REGISTER | ENABLE e
| AT s I CONTROL
QUAD D . 1
15 ‘
FLIPFLOP R DATA PERIPHERAL i + | SIGNALS [ICLKE"
| [usel _I_‘ﬂ SEE FIGURE 6
FOR l¢— tros
b e —————— — oo
Nore: Sigaals IRDS and CLKA are shown for clarity but are inside the CPU cord. | le——1roc+
IR ——

FIGURE 7. Typical Interface for the Case where CPU
Reads Data from the Peripheral

FIGURE 9. Typical Interface Circuit for a Peripheral
Communicating Directly with Memory

Manufactured under one or more of the foilowing U.S. patents: 3083262, 3189758, 3231797, 33013356, 3317671, 3323071, 39382107] 3408542, 3421025, 3426423, 3440498, 3518750, 3519897, 3557431, 3560765.

AN-135

Nati f ductor C.
2900 Semiconductor Drive, Santa Clara California 95051, (408) 732-5000/TWX {910) 339-9240
National Semiconductor GmbH

808 Fuerstenfeldbruck, Industriestrasse 10, West Germany, Tele. (08141) 1371/Telex 05- 27649
National Semiconductor (UK) Ltd.

Larkfield Industrial Estate, Greenock, Scotiand, Tele. (0475) 33251/ Telex 778-632

3566218, 3571630, 3575609, 3579059, 3593069, 3597640, 3607469, 3617859, 1531]12 363!)52 3638131, 648071, 551565 %!

Nationai does not assume any respons:bility for use of any Circurtry described; no circuit patent licenses are implied; and Natiomal reserves the right, at any time without notice, to change said circuitry.

