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Introduction 

1.1 Introduction 

1-2 

The MSP430 is a 16-bit microcontroller that has a number of special features 
not commonly available with other microcontrollers: 

o Complete system on-a-chip - includes LCD control, ADC, 1/0 ports, 
ROM, RAM, basic timer, watchdog timer, UART, etc. 

o Extremely low power consumption - only 4.2 nW per instruction, typical 

o High speed - 300 ns per instruction @ 3.3 MHz clock, In register and reg-
ister addressing mode 

o RISC structure - 27 core instructions 

o Orthogonal architecture (any instruction with any addressing mode) 

o Seven addressing modes for the source operand 

o Four addressing modes for the destination operand 

o Constant generator for the most often used constants (-1, 0, 1, 2, 4, 8) 

o Only one external crystal required - a frequency locked loop (FLL) oscil­
lator derives all internal clocks 

o Full real-time capability - stable, nominal system clock frequency is avail­
able after only six clocks when the MSP430 is restored from low-power 
mode (LPM) 3; - no waiting for the main crystal to begin oscillation and 
stabilize 

The 27 core instructions combined with these special features make it easy 
to program the MSP430 in assembler or in C, and provide exceptional flexibility 
and functionality. For example, even with a relatively low instruction count of 
27, the MSP430 is capable of emulating almost the complete instruction set 
ofthe legendary DEC PDP-11. 

Note: 

The software examples provided In this document have been tested for func­
tionality and may be used freely for system development. , . 
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1.2 Related Documents 

1.3 Notation 

.and. 

.not. 

.or. 

.xor. 

[ns1 

ACLK 

ACTL.1 

ADC 

AGND 

The following documents are recommended for MSP430 reference: 

o The MSP430 Architecture User's Guide and Module Library (Tlliterature 
number SLAUE1 OB) contains a detailed hardware description. 

o The MSP430 Software User's Guide (Tlliterature number SLAUE11) con­
tilins further information regarding the instruction set, plus other more 
common software information. 

The following abbreviations and special notations are used: 

Logical AND function 

Logical Inversion 

Logical OR function 

Logical Excluslve-OR function 

Square brackets contain the unit for a value (here nanoseconds) 

Auxiliary clock (output of the 32-kHz oscillator) 

Bit 1 (value 21) of the register ACTL 

Analog-to-digital converter 

Ground connection for the ADC; Vss (MSP430x31 x) or AVss 
(MSP43Ox32x) 

Background 

BCD 

Normal program 

Binary coded decimal (numbers 0 to 9 coded binary with 4 bits) 

CPU 

DCO 

(dst) 

Foreground 

I/O 

LCD 

LSB 

MCLK 

MSB 

PC 

R111R2 

R41R3 

RAM 

Central processing unit 

Digitally controlled oscillator 

Destination (location receiving write dala) 

Interrupt driven software parts (interrupt handlers) 

Input and output Port 

Liquid crystal display 

Least significant bit (or byte) 

Master clock (output of the-FLL oscillator) for the CPU 

Most Significant bit (or byte) 

Program counter (RO of register set) 

Resistor R1 is connected in parallel with resistor R2 

32-bit number. MSBs in CPU register R4, LSBs in R3 

Random access memory (data memory) 

MSP430 Microcontroller Family 1-3 



MSP4~O Family 

ROM 

SP 

(sre) 

TOS 

Read only memory (program memory) 

Stack pointer (R1 of register set) 

Source (location supplying read data) 

Top of stack (data word the Stack Pointer SP points to) 
NOTES:lf no units are defined for equations, the following standard units are used: Vott, Ampere, Farad, seconds and Ohm. 

1.4 MSP430 Family 

The MSP430 family currently consists of three subfamilies: 

o MSP430C31x· 

o MSP430C32x 

o MSP430C33x 

All three are described in detail in the MSP430 Family Architecture User's 
Guide and Module Ubrary. The hardware features of the different devices are 
shown in Table 1, Figure 1, Figure 2, and Figure 3. 

Table 1-1. MSP430 Sub-Families Hardware Features 
Hardware Item MSP430C31x MSP430C32x MSP430C33x 

14-bttADC No Yes No 
16-bit timer A No No Yes 

Basic timer Yes Yes Yes 

FLL oscillator Yes Yes Yes 
HW/SWUART Yes Yes Yes 

HW-multiplier No No Yes 

I/O ports with interrupt 8 8 24 

I/O ports without interrupt 0 0 16 

LCD segment lines 23 21 30 
Package 56SS0P 64QFP 100QFP 

Universal timer/port module Yes Yes Yes 

USART (SCI or SPI) No No Yes 

Watchdog timer Yes Yes Yes 
NOTE: Examples and explanations In thiS document are applicable for all MSP430 devices, unless otherwise noted. 
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1.4.1 MSP430C31 X 

XIN XOUT XBUF Vcc Vss RSTINMI po.o PO.7 

..-L----l....,--t-----L.-....J--...1-------------r-'-----'...,--, 

TOI -t-------, 

TOO~-----~ 

CPU 

Incl. 16 Reg. 

Test 
JTAG 

TMS-t-----~ 

TCK 4--------' 
I 
I 
I 
I 
I 

MAS, 16 Bit 

MOB,16Bit 

2141eJ16 KB 128/25eJ512 Power-on-
ROM 

Reset 8116 KB OTP RAM 

'C':ROM SRAM 

'P':OTP 

MAB,4BH 

MCB 

1581t 

I 6 

~----------------------

Figure 1-1. MSP430C31x Block Diagram 

TP.O-S 
CIN 

8 bit Tlmerl 1/0 Port 
Counter TXO BI/Os,AIIWIth 

Serial Protocol Interr. Cap. 

Support 3 Int. Vectors 
AXO 

A13 R23 

Com (h'l 

Ssg 0-18, 22, 23 26 

S"ll27 
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1.4.2 MSP43OC32x 

XIN XOUT XBUF Vee "ss RSTJNMI po.o PO.7 r-- - --t-----L-~-~------------- ~ 

II ~ •• ~ _." I ~I .. - ~-16 kB OTP RAM ~. COunte, 1)(0 8 vo., An WIth 

'C': ROM SRAM Serial Protocol Inter'. Cap. 

TOI 'P': OTP Support RXO 31nt. Vectors 

TDO+----..... 
MAB,16B~ 

Tea1 CPU 

Incl. 16 Reg. JTAG 1----1 

TMS+----..... 
TCK 4--------' 

I 
I 
I 
I 
I 

MOB,16B~ 

I 6 L.. __________ _ 

Ao-6 SVCC 
RI 

Figure 1-2. MSP430C32x Block Diagram 

1.4.3 MSP43OC33x 
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MAB,4B~ 

MCB 

TP.O-O R23 R03 
CIN R33 R13 

Com 11-3 
SegG-19 
Seg20 
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Advantages of the MSP430 Conce~t 

1.5 Advantages of the MSP430 Concept 

The MSP430 concept differs considerably from other microcontrollers and of­
fers some significant advantages over more traditional designs. 

1.5.1 RISC Architecture Without RISC Disadvantages 

Typical RISC architectures show their highest performance in calculation- in­
tensive applications In which several registers are loaded with input data, all 
calculations are made within the registers, and the results are stored back into 
RAM. Memory accesses (iJsing addressing modes) are necessary only for the 
LOAD instructions at the beginning and the STORE instructions at the end of 
the calculations. The MSP430 can be programmed for such operation, for ex­
ample, performing a pure calculation task in the floating point without any 1/0 
accesses. 

Pure RISC architectures have some disadvantages when running real-time 
applications that require frequent 1/0 accesses, however. Time is lost whenev­
er an operand is fetched and loaded from RAM, modified, and then stored back 
into RAM. 

The MSP430 architecture was designed to include the best of both worlds, tak­
ing advantage of RISC features for fast and efficient calculations, and addres­
sing modes for real-time requirements: 

o The RiSe architecture provides a limited number of powerful instructions, 
numerous registers, and single-cycle execution times. 

o The more traditional microcomputer features provide addressing modes 
for al/ instructions. This functionality is further enhanced with 100% ortho­
gonality, allowing any instruction to be used with any addressing mode. 

1.5.2 Real·Time Capability With Ultra-Low Power Consumption 
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The design of the MSP430 was driven by the need to provide full real-time ca­
pability while still exhibiting extremely low power consumption. Average power 
consumption is reduced to the minimum by running the CPU and certain other 
functions of the MSP430 only when it Is necessary. The rest of the time (the 
majority of the time), power is conserved by keeping only selected low-power 
peripheral functions active. 

But to have a true real-time capability, the device must be able to shift from a 
low-power mode with the CPU off to a fully active mode with the CPU and all 
other device functions operating nominally in a very short time. This was ac­
complished primarily with the design of the system clock: 
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o No second high frequency crystal is used - inherent delays can range 
from 20 ms to 200 ms until oscillator stability is reached 

o Instead, a sophisticated FLL system clock generator is used - generator 
output frequency (MCLK) reaches the nominal frequency within 8 cycles 
after activation from low power mode 3 (LPM3) or sleep mode 

This design provides real-time capability almost immediately after the device 
comes out of a LPM - as if the CPU is always active. Only two additional 
MCLK cycles (2 ~ @ fe = 1 MHz) are necessary to get the device from LPM3 
to the first instruction of the interrupt handler. 

1.5.3 Digitally Controlled Oscillator Stability 

The digitally controlled oscillator (DCO) is voltage and temperature depen­
dent, which does not mean that its frequency is not stable. During the active 
mode, the integral error is corrected to approximately zero every 30.5 J.I.S • This 
is accomplished by switching between two different DCO frequencies. One 
frequency is higher than the programmed MCLK frequency and the other Is 
lower, causing the errors to essentially cancel-out. The two DCO frequencies 
are interlaced as much as possible to provide the smallest possible errCir at any 
given time. See System Clock Generator for more information. 

1.5.4 Stack ProceSSing Capability 

The MSP430 is a true stack processor, with most of the seven addressing 
modes implemented for the stack pointer (SP) as well as the other CPU regis­
ters (PC and R4 through R 15). The capabilities of the stack include: 

o Free access to all items on the stack - not only to the top of the stack 
(TOS) 

o Ability to modify subroutine and interrupt return addresses located on the 
stack 

o Ability to modify the stored status register of interrupt returns located on 
the stack 

o No special stack instructions - all of the implemented instructions may 
be used for the stack and the stack pointer 

o Byte and word capability for the stack 

o Free mix of subroutine and interrupt handling - as long as no stack modi­
fication (PUSH, POP, etc.) is made, no errors can occur 

For more information concerning the stack, see Appendix A. 
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1.6 MSP430 Application Operating Modes 

1.6.1 Active Mode 

MSP430 applications fall into two main classes, depending on the power sup­
ply: 

o AC power-driven applications such as electricity meters and AC-powered 
controllers. In these applications, the microcontroller needs to be active 
at all times. The low current consumption of the MSP430 when active 
(900 JJA @ 5 V & fc = 1 MHz) puts it well within the typical low-power cate­
gory now (currently < 40 mAl and in the future as tolerable current con­
sumption diminishes. 

o Battery-powered applications such as gas meters, water flow meters, heat 
volume counters, data loggers, and other controller and remote metering 
tasks. For these applications, power consumption is the key issue since 
operation from a single battery for 1 0 years or longer is often required. The 
average current drawn by the MSP430 needs to be in the range of the self 
discharge current of the battery, approximately 1 JJA to 3 JJA. 

MSP430 has six operating modes, each with different power requirements. 
Three of these modes are important for battery-powered applications: 

o Active mode - CPU and other device functions run all the time 

o Low power mode 3 (LPM3) - the normal mode for most applications dur­
ing 99% to 99.9% of the time. This mode is also called done mode or sleep 
mode 

o Low power mode 4 (LPM4) -'the mode typically used during storage. This 
mode is also called off mode 

Active mode is used for calculations, decision-making, 110 functions, and other 
activities that require the capabilities of an operating CPU. All of the peripheral 
functions may be used, provided that they are enabled. The examples shown 
in this document use the active mode. 

1.6.2 Low Power Mode 3 (LPM3) 
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LPM3 is the most important mode for battery-powered applications. The CPU 
is disabled, but enabled peripherals stay active. The basic timer provides a 
precise time base. When enabled, interrupts restore the CPU, switch on 
MCLK, and start normal operation. Table 1-2 lists the status of the MSP430 
system when in LPM3. 
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Table 1-2. System Status During LPM3 
Active Not Active 

RAM CPU 

ACLK MCLK 

32768 Hz oscillator Disabled peripher-
als 

LCD driver (if enabled) Disabled interrupts 

Basic timer (if enabled) FLL 

I/O ports 

8-bittimer 

Enabled peripherals 

Universal timer/port 

RESET logiC 

LPM3 is activated by the following code: 

; Definitions for the Operating Modes 

GIE .EQU nOah General Interrupt enable in SR 
CPUOFF .EQU OlOh CPU off bit in SR 
OSCOFF .EQU 020h Oscillator off bit in SR 
SCGO .EQU 040h System Clock Generator Bit 0 
SCGl .EQU OaOh System Clock Generator Bit 1 
HOLD .EQU 080h 1: Hold Watchdog 
CNTCL .EQU OOah Watchdog Reset Bit 

Enter LPM3, enable interrupts. The Watchdog 
must be held if the ACLK is used for timing 

MOV 
BIS 

#05AOOh+HOLD+CNTCL,&WDTCTL 
#CPUOFF+GIE+SCG1+SCGO,SR 

Define WD 
Enter LPM3 

After the completion of the interrupt routine the software returns to the instruc­
tion that set the CPUof! bit. The normal wake-up from LPM3 comes from the 
baSic timer, programmed to wake the CPU at regular intervals (ranging from 
0.5 Hz to 64 Hz, or more often) to maintain a software timer. This software timer 
controls all necessary system activities. 

Example 1-1. Interrupt Handling I 

The MSP430 system runs normally in LPM3. The enabled interrupt of the basic 
timer wakes the system once every second. After one minute, measurements 
are made and then the system returns to LPM3. 
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; Interrupt handler for Basic Timer: Wake-up with 1Hz 

BT_HANMOV #05AOOh+CNTCL,&WDTCTL Reset watchdog 

Counter for seconds +1 

1 minute elapsed? 

INC. B SECCNT 

CMP.B #60,SECCNT 

JHS MIN1 

RETI 

Yes, do necessary tasks 

No return to LPM3 

One minute elapsed: Return is removed from stack, a branch to 

the necessary tasks is made. There it is decided how to proceed 

MIN1 INC 

TASK 

CLR 

ADD 

BR 

MINCNT 

SECCNT 

#4,SP 

#TASK 

Minute counter +1 

o -> SECCNT 

House keeping: SR, PC off Stack 

; Do tasks 

; Start of necessary tasks 

All measurements and calculations are made: Return to LPM3 

MOV #05AOOh+HOLD+CNTCL, &WDTCTL; Hold WD 

BIS #CPUOFF+GIE+SCGO+SCG1,SR Enter LPM3 

LPM3 is the lowest current consumption mode that still allows the use of a real­
time clock. The basic timer can interrupt the LPM3 at relatively long time inter­
vals (up to 2 seconds) and update the real-time clock. If the status register is 
not changed during the interrupt routines, the RETI instruction returns to the 
instruction that set the CPUoff bit (and placed the CPU in LPM3). The program 
counter points to the next instruction, which is not executed unless the interrupt 
routine resets the CPUoff bit during its run. 

If the MSP430 is awakened from LPM3, two additional clock cycles are needed 
to load the PC with the interrupt vector address and start the interrupt handler 
(8 clocks compared to 6 when in the active mode). 

Example 1-2. Interrupt Handling 1/ 
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The MSP430 system runs normally in LPM3. The enabled interrupt of the basic 
timer wakes the system once every second. After one minute. measurements 
are made and then the system returns to LPM3. The branch to the task is made 
by resetting the CPUoff bit inside the interrupt routine. 

Interrupt handler for Basic Timer: Wake-up with 1 Hz 
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BT_HANMOV #05AOOh+CNTCL,&WDTCTL Reset watchdog 

INC.B SECCNT counter for seconds +1 
1 minute over? CMP.B #60,SECCNT 

JHS MINI -Yes, do necessary tasks 
No return to LPM3 RETI 

One minute elapsed: CPUoff is reset, the program continues 
after the instruction that set the CPUoff bit (label TASK) 

MINl CLR 
INC 
BIC 

continue 

RETI 

SECCNT 
MINCNT 
#CPUOFF+SCGl+SCGO,O(SP) 

° -> SECCNT 
Minute counter + 1 

; Reset CPUoff-bit to 

at label TASK 

Background part: Return to LPM3 

DONE MOV #05AOOh+HOLD+CNTCL, &WDTCTL; Hold WD 
BIS #CPUOFF+GIE+SCGO+SCGl,SR Enter LPM3 

Program continues here if CPUoff bit was reset inside of the 
Basic Timer Handler. 

TASK 
JMP DONE 

Note: 

Tasks made every minute 
Back to LPM3 

The two 8-bit counters of the universal timer/port may also be used during 
LPM3. If a counter Is incremented by an external signal (inputs CIN, CMPI, 
or TPIN.5) from OFFh to Oh, then the appropriate RCxFG-flag is set. If inter­
rupt is enabled, the CPU wakes up. 

1.6.3 Low Power Mode 4 (LPM4) 

Low power mode 4 (LPM4) is used ifthe absolute lowest supply current is nec­
essary or if no timing is needed or desired (no change of the RAM content is 
allowed). This is normally the case for storage preceding or following the cal­
ibration process. Table 3 lists the status ofthe MSP430 system when in LPM4. 
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Table 1-3. System During LPM4 
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Active Not Active 

RAM CPU 

1/0 ports MCLK 

Enabled interrupts ACLK 

Universal timer/port (external FLL 
clock) 

RESET logic Disabled peripherals 

Disabled interrupts 

Watchdog 

Timers 

Once the MSP430 is waked from LPM4, the software has to decide if it is nec­
essary to either enter LPM4 again (if the wake-up was caused by EMI, for ex­
ample), or to enter one of the other operating modes. To ensure the correct 
decision is made, a code can be placed on a port that can be checked by the 
MSP430 software. Then, the active mode is entered only if this code is present. 

The start-up frequency of the DCO is approximately 500 kHz and may last up 
to 4 seconds until a stable MCLK frequency is reached. To enter the LPM4 the 
following code is necessary: 

Enter LPM4, enable GIE 

BIS #CPUOFF+OSCOFF+GIE+SCGl+SCGO,SR 

The exit from LPM4 is principally the same as described for LPM3. Interrupt 
handler software has to determine if the CPU stays active or if a return to a low­
power mode is necessary. 

When entering the LPM4 the information in control registers SCFIO and SCFI1 
of the system clock frequency integrator (SCFI) remains stored. If at this time 
the ambienttemperature Is high, SCFI1 contains a relatively high value to com­
pensate the negative temperature coefficient of the DCO. If the LPM4 is later 
exited and the ambient temperature is very low, it is possible that the resulting 
DCO frequency, based on the value In SCFI1, will be outside of the oscillator 
range. It is therefore a good programming practice to set the SCFI control reg­
ister to a low value before entering LPM4. 

Enter LPM4, enable GIE 

CLRC 

RRC &SCFIl 

BIS #CPUOFF+OSCOFF+GIE+SCGl+SCGO,SR 

Ensure t~at new MSB is 0 

Use halved tap number 

Enter LPM4 
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Note: 

The two 8-bit counters of the universal timer/port may also be used during 
LPM4. If a counter is incremented by an external signal (inputs CIN, CMP, 
or TPIN.5) from OFFh to Oh, then the appropriate RCxFG-flag is set. If inter­
rupt is enabled, the CPU wakes up. 
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Architecture and Function of the MSP430 14-8it ADC 

Lutz Bierl 

ABSTRACT 
This application report describes the architecture and function of the 14-bit 
analog-to-digital converter (ADC) of the MSP430 family. The principles of the ADC are 
explained and software examples are given. The report also explains the function of all 
hardware registers in the ADC. The References section at the end of the report lists, 
related application reports in the MSP430 14-bit ADC series. 

1 Introduction 
The analog-to-digital converter (ADC) of the MSP430 family can work in two 
modes: the 12-bit mode or the 14-bit mode. Hardware registers aHow easy 
adaptation to different ADC tasks. The foHowing paragraphs describe the modes 
and hardware registers. 

NOTE: The MSP430 Family Architecture Guide and Module 
Ubrary data book[1] is recommended. The hardware-related 
information given there is very valuable and complements the 
information given in this application report. 

NOTE: For related application reports in the MSP430 14-bit ADC 
series, see the References section. 

Figure 1 shows the block diagram of the MSP430 14-bit ADC. 
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Figure 1. Hardware of the 14-81t ADC 

1.1 Characteristics of the 14-Bit ADC 
• Monotonic over the complete ADC range 
• Eight analog inputs; may be switched individually to digital input mode 
• Programmable current source on four analog inputs. Independent of the 

selected conversion Input: current source output and ADC input pins may be 
different 

• Relative (ratio metric) or absolute measurement possible 
• Sample and hold function with defined sampling time 
• End-of-conversion flag usable with interrupt or polling 
• Last conversion result is stored until start of next conversion 
• Low power consumption and possibility to power down the peripheral 
• Interrupt mode without CPU processing possible 
• Programmable 12-bit or 14-bit resolution 
• Four programmable ranges (one quarter of SVcc each) 
• Fast conversion time 
• Four clock adaptations possible (MCLK, MCLKl2, MCLKl3, MCLKl4) 
• Intemal and external reference supply possible 
• Large supply voltage range 
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2 ADC Function and Modes 
The MSP430 14-bit ADC has two range modes and two measurement modes. 

The two range modes are: 
• 14-bit mode: The ADC converts the input range from AVss to SVcc. The ADC 

automatically searches for one of the four ADC ranges (A, B, C, or D) that is 
appropriate for the input voltage to be measured. 

• 12-bit mode: The ADC uses only one of the four ranges (A, B, C, or D). The 
range is fixed by software. Each range covers a quarter of the voltage at the 
SVcc terminal. This conversion mode is used if the voltage range of the input 
signal is known. 

The two measurement modes are: 
• Ratiometric mode: A value is measured as a ratio to other values, 

independent of the actual SVcc voltage. 

• Absolute mode: A value is measured as an absolute value. 

Figure 2 shows different methods to connect analog signals to the MSP430 ADC. 
The methods shown are valid for the 12-bit and 14-bit conversion modes: 
1. Current supply for resistive sensors Rsens1 at analog input AO 
2. Voltage supply for resistive sensors Rsens2 at analog input A 1 
3. Direct connection of input signals Vin at analog input A2 
4. Four-wire circuitry with current supply Rsens3 at output A3 and inputs A4 

andA5 
5. Reference diode with voltage supply Dr1 at analog input A6 

Dr2 at analog input A7 6. Reference diode with current supply 

---'--~~-;SV= 

Rv 

SV= i-------4p--
-+108 

A3 

Rexl AS 1--1-----. 

Vln -'llVIr-..... --j-----IA2 A4 
Ri MSP430C32x 

"'------1 Ai 
AS 

R2 A7i--F.r:. 

OV +5V/3V 

Figure 2. Possible Connections to the Analog-to-Dlgltal Converter 

The calculation formulas for all connection methods shown in Figure 2 are 
explained in the application report, Application Basics for the MSP430 14-Bit 
ADC (SLAA046). [3J 
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2.1 Function of the ADC 

See Figures 1, 9, and 12 for this explanation. The full range of the ADC is made 
by 4x128 equal resistors connected between the SVcc pin and the AVss (AGND) 
pin. Setting the conversion-start (SOC) bit in the ACTL control register activates 
the ADC clock for a new conversion to begin. 

The normal ADC sequence starts with the definition of the next conversion; this 
is done by setting the bits in the ACTL control register with a single instruction. 
The power-down (PD) bit is set to zero; the SOC bit is not changed by this 
instruction. After a minimum 6-JIS delay to allow the ADC hardware to settle, the 
SOC bit may be set. The ADC clock starts after the SOC bit is set, and a new 
conversion starts. 
• If the 12-bit mode is selected (RNGAUTO - 0) then a 12-bit conversion starts 

in a fixed range (A, B, C or D) selected by the bits ACTL.9 to ACTL.1 O. 
• If the 14-bit mode is selected (RNGAUTO = 1), a sample is taken from the 

selected input Ax that is used only for the range decision. The found range 
is fixed afterwards - it delivers the two MSBs olthe result -and the conversion 
continues like the 12-bit conversion. This first decision is made by the block 
range MUX. 

This first step fixes the range and therefore the 2 MSBs. Each range contains a 
block of 128 resistors. 

To obtain the 12 LSBs, a sample is taken from the selected input Ax and is used 
for the conversion. The 12-bit conversion consists of two steps: 
• The seven MSBs are found by a successive approximation using the block 

resistor decode. The sampled input voltage is compared to the voltages 
generated by the fixed 27 (128) equally weighted resistors connected In 
series. The resistor whose leg voltages are closest to the sampled input 
voltage-which means between the two leg voltages-is connected to the 
capacitor array (see Figure 1). 

• The five LSBs are found by a successive approximation process using the 
block capacitor array. The voltage across the selected resistor (the sampled 
voltage lies between the voltages at the two legs of the resistor) is divided into 
25 (32) steps and compared to the sampled voltage. 

After these three sequences, a 14-bit respective 12-blt result is available in the 
register ADAT. 

Figure 3 shows where the result bits of an analog-to-digital conversion come 
from: 

15 13 0 

I.BI, CCiftV8f1i1On 

'4-Bft Conver8Ion 

Figure 3. Sources of the Conversion Result 
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NOTE: The result of the 12-bit conversion does not contain 
range information: the result bits 12 and 13 are both zero.lfthese 
two bits are necessary for the calculation, they need to be inserted 
by software e.g. 2000h for range C. 

2.1.1 ADC Timing Restrictions 

To getthe full accuracy forthe ADC measurements, some timing restrictions need 
to be considered: 

• If the ADCLK frequency is chosen too high, an accurate 14- or 12-bit 
conversion cannot be assured. This is due to the internal time constants of 
the sampling analog input and conversion network. The ADC is still 
functional, but the conversion results show a higher noise level (larger 
bandwidth of results for the same input signal) with higher conversion 
frequencies. 

• If the ADCLK frequency is chosen too low, then an accurate 14- or 12-bit 
conversion cannot be assured due to charge losses within the capacitor array 
of the ADC. This remains true even if the input signal is constant during the 
sampling time. 

• After the ADC module has been activated by resetting the power-down bit, 
at least 6 !J.S (power-up time in Figure 9) must elapse before a conversion is 
started. This is necessary to allow the internal biases to seUle. This power-up 
time is automatically ensured for MCLK frequencies up to 2.5 MHz if the 
measurement is started the usual way: by separation of the definition and the 
start of the measurement inside of the subroutine: 

MOV #xxx, &ACTL Define Me measurement 
CALL #MEASR ; Start measurement with SOC-1 

; ADC result in ADAT 

If higher MCLK frequencies are used, then a delay needs to be inserted between 
the definition and the start of the measurement. See the source of the MEASR 
subroutine in section 2.2.2. The number n of additional delay cycles (MCLK 
cycles) needed is: 

n~ (61J.Sx MCLK)-15 

• If the input voltage changes very fast, then the range sample and the 
conversion sample may be captured in different ranges. See section 2.2.1 if 
this cannot be tolerated. For applications like an electricity meter, this doesn' 
matter: the error occurs as often for the increasing voltage as for the 
decreasing voltage so the resulting error is zero. 

• After the start of a conversion, no modification of the ACTL register is allowed 
until the conversion is complete. Otherwise the ADC result will be invalid. 

The previously described timing errors lead to spikes in the ADC characteristic: 
the ADC seems to get caught at certain steps of the ADC. This is not an ADC 
error; the reasons are violations of the ADC timing restrictions. See Figure 4. The 
x-axis shows the range A from step 0 to step 4096, the y-axis shows the ADC error 
(steps). 
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R •• goA 

~ ~ m ~ i ~ l:! ~ 
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·2 :;; ~ 
·4 
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·8 
l-sar18511 

·10 

·12 

·14 

Figure 4. ADC Spikes Due to Violated Timing Restrictions 

The ADC always runs at a clock rate set to one twelfth of the selected ADCLK. 
The frequency of the ADCLK should be chosen to meet the conversion time 
defined in the electrical characteristics (see data sheet). The correct frequency 
for the ADCLK can be selected by two bits (ADCLK) in the control register ACTL. 
The MCLK clock signal is then divided by a factor of 1,2,3, or 4. See Section 3.5. 

2.1.2 Sample and Hold 

The sampling of the ADC input takes 12 ADCLK cycles; this means the sampling 
gate is open during this time (12 JlS at1 MHz). The sampling time is identical for 
the range decision sample and the data conversion sample. 

The input circuitry of an ADC input pin, Ax, can be seen simplified as an RC low 
pass filter during the sampling period (12/ADCLK): 2 kQ in series with 42 pF. The 
42-pF capacitor (the sample-and-hold capacitor) must be charged during the 12 
ADCLK cycles to (nearly) the final voltage value to be measured, or to within 2-14 
of this value. 

RI Ax 2K 
Closed for Is = 121ADCLK 

r--'l/I/Ir---<::::>--t-.JV\rv-O------O----<I--.. ~ 10 ADC 

Vln 42 pF MSP430C32x 
Csample 

AVss 
L-----<::::>--t-------*--OV 

Figure 5. Simplified Input Circuitry for Signal Sampling 

The sample time limits the internal resistance, Ri, of the source to be measured: 

(Ri + 2 kQ) x 42 pF < ~ ) 12 
l 214 x ADCLK 

Solved for Riwith ADCLK '" 1 MHz this results in: 

Ri < 27.4 kQ 

This means, for the full resolution of the ADC, the internal resistance of the input 
signal must be lower than 27.4 k.Q. 

If a resolution of n bits is sufficient, then the internal resistance of the ADC input 
source can be higher: 
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R· < 12 2 kQ 
I 'rn,2,,) x 42 pF x ADCLK -

For example, to get a resolution of 13 bits with ADCLK = 1 MHz, the maximum 
Ri of the input signal is: 

Ri < n( ) 12 - 2 kQ = 31.7 kQ - 2 kQ = 29.7 kQ 
I 2 13 x 42 pFx 106 

To achieve a result with 13 bit-resolution, Ri must be lower than 29.7 kn. 

2.1.3 Absolute and Relative Measurements 

The 14-bit ADC hardware allows absolute and relative modes of measurement. 

2.1.3.1 Relative Measurements 

As Figure 6 shows, relative measurements use resistances (sensors) that are 
independent of the supply voltage. This is the typical way to use the ADC. The 
advantage is independence from the supply voltage; it does not matter if the 
battery is new (Vee = 3.6 V) or if it has reached the end of life (Vee = 2.5 V). 

~~----~--;SV~ 

Rv Rex A3 
-+108 

Rex! 
A4 

MSP430C32x 
t---------;Al Reene3 

AS 
Reena2 

OV +6 V/3 V 

Figure 6. Relative Measurements With the MSP430C32x 

2.1.3.2 Absolute Measurements 

As Figure 7 shows, absolute measurements measure voltages and currents. The 
reference used for the conversion is the voltage applied to the SVee terminal, 
regardless of whether an extemal reference is used or if SVee is connected to 
AVee internally. An external reference is necessary if the supply voltage AVee (the 
normal reference) cannot be used for reference purposes, for example a battery 
supply. 
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RI cSO"" 
,....-JIJVI,--------+----ISVee 

Rex! 

= VREF 

OV .sV/3V 

Figure 7. Absolute Measurements Using External Reference Voltage 

2.2 Using the ADC In 14-Bit Mode 

The 14-blt mode is used ifthe range of the input voltage exceeds one ADC range. 
The total input signal range Is from analog ground (AVss) to the voltage at SVec 
(external reference voltage or AVec). 

i ADCValue 

Ovartlow 
03~Fh;-------------~~~ 

O3OOOh 

02000h Range A 

01000h 

OOOOOh~~-_4-----+------+-----~ 
Underflow 0 0.26 SVec 0.& aVec 0.75 SVec aVec 

C:J ADO saturation 

Figure 8. Complete 14-Bit ADC Range 

ADO Input 
Voltage 
--+ 

The dashed boxes at the AVss and SVec voltage levels indicate the saturation 
areas of the ADC; the measured results are Oh at AVss and 3FFFh at SVec. The 
saturation areas are smaller than 10 ADC steps. 

The nominal ADC formula for the 14-bit conversion is: 

"N= VAx x214 ... VAx = Nx VREF 
VREF 214 

Where: 
N = 14-bit result of the ADC conversion 
VAx = Input voltage at the selected analog input Ax M 
VREF- Voltage at pin SVec (external reference or Internal AVec) M 
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2.2.1 Timing 

The two ADCLK bits (ACTL.13 and ACTL,14) in the ACTL control register are 
used to select the ADCLK frequency best suited for the ADC. The MCLK clock 
signal can be divided by a factor 1, 2, 3, or 4 to get the best suited ADCLK. 

Using the autorange mode (RNGAUTO/ACTL.11 = 1) executes a 14-bit 
conversion. The selected analog input signal at input Ax is sampled twice. The 
range decision is made after the first sampling of the input signal; the 12-bit 
conversion is made after the second sampling. Both samplings are 12 ADCLK 
cycles in length. Altogether the 14-bit conversion takes 132 ADCLK cycles. See 
Figure 9 for timing details. 

121ADCLK 

~ r -""He";" -, 

ADCLKl12 I Conversion I 
~ Power-up Time I I 

Pd --i. I i I I 

~ I I I 
I I I 

CONY. START I I 
Range Sample I Conversion Sample I 

SAMPLING --nl-..---I~L-------------I--+I- I 
I I I I I 

END OF CONY. ---, I I ~ I . , L ____ .J 

f\t' I I 

Raeel by Softwara (Nonlnlerrupt Model 
or Granting of Interrupt (Inlerrupt_1 

Figure 9. Timing for the 14-bit Analog-to-Dlgltal Conversion 

I Data valid In ADAT 
I EOC Flag set 
I ADCLK DI_ad 

The input signal must be valid and steady during this sampling period to obtain 
an accurate conversion. It is also recommended that no activity occur during the 
conversion at analog inputs that are switched to the digital mode. 

If the input voltage to the ADC changes during the measurement, it is possible 
for the range decision sample to be taken in a different ADC range than the 
conversion sample. The result of these conditions is saturated values: 
• Increasing input voltage: nFFFh with range n = 0 ... 2 
• Decreasing input voltage: nOOOh with range n = 1 ••. 3 

The saturated result isthe best possible result under this circumstance: an analog 
input that changes from 2FFOh to 3020h during the sampling period delivers the 
saturated result 2FFFh and not 2000h. 

The following software sequence can be used to check the result of an AID 
conversion if the two samples (range and conversion) were taken in different 
ranges. If this is the case, the measurement is repeated. 
LM MOV #xxx, &ACTL 

CALL #MEASR 

MOV &ADAT, RS 

AND #OFFFh, RS 

Define measurement 

Measure ADC input 

Copy ADC result 

12 LSBs stay 
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JZ 
CMP 
JEQ 

LM 
#OFFFh,R5 

LM 

Yes, ADC value too high (nOOOh) 

Bits 11 to 0 all IS? 
Yes, ADC value too low (nFFFh) 

Both samples taken in same range 

2.2.2 Software Example 
The often-used measurement subroutine MEASR is shown below. It contains all 
necessary instructions for a measurement that uses polling for the completion 
check. The subroutine assumes a preset ACTL register; all bits except the SOC 
bit must be defined before the setting of the SOC bit. The subroutine may be used 
for 12-bit and 14-bit conversions. Up to an MCLK frequency of 2.5 MHz no 
additional delays are necessary to ensure the power-up time. 

ADC measurement subroutine. 

Call: MOV #xxx,&ACTL Define ADC measurement. Pd~O 

CALL #MEASR Measure with ADC 
BIS #PD,&ACTL Power down the ADC 

ADC result in ADAT 

MEASR BIC.B #ADIFG, &IFG2 Clear EOC flag 

Insert delays here (Naps) 
BIS #SOC, &ACTL Start measurement 

MO BIT.B #ADIFG,&IFG2 Conversion completed? 

JZ MO No 
RET Result in ADAT 

2.3 Using the ADC in 12·Blt Mode 
The following mode is used if the range of the input voltage is known. If, for 
example, a temperature sensor is used whose signal range always fits into one 
range (for example range B), then the 12-bit mode is the right selection. The 
measurement time with MCLK = 1 MHz is only 96 !IS compared with 132 !IS if the 
autorange mode is used. Figure 10 shows the four ranges compared to the 
voltage at SVcc. The possible ways to connect sensors to the MSP430 are the 
same as shown for the 14-bit ADC in Figure 2. 
This mode should be used only if the signal range is known and the saved 36 
ADCLK cycles are a real advantage. 

ADCValue 

OFFFh +----,,.-----, ...... --,.....---,...., ...... 

OCOOh 

0800h 

0400h 

OOOOOh-f~----~----~~----~------~ Input ---+ 
Underflow 0 0.25 SVcc 0.5 SVcc 0.75 SVcc SVcc Voltage VAx 

C::J ADC Saturation «10ADC steps) 

Figure 10. The Four 12·8it ADC Ranges A to 0 
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NOTE: The ADC results OOOOh and OFFFh mean underflow and 
overflow: the voltage at the measured analog input is below or 
above the limits of the programmed range. 

All of the formulas given for the 12-bit mode assume a faultless 
conversion result N: 

O<N<OFFFh 

If underflow or overflow are not checked, erroneous calculation 
results occur. 

Figure 11 shows how any of the four ADC ranges appears to the software: 

i ADCValue 

OF~h4-----------------~---------

n = 0, 1, 2, 3 Range Constant 

oaOOh 

Rangen+1 

OOOOh4-------~--------4_--------
Input--. 

Voltage 
o n x 0.25 SVec (n+1) x 0.25 sVcc SVec 

Figure 11. Single 12·Blt ADC Range 

The nominal ADC formula for the 12-bit conversion is: 

N = VAx - (n x 0.25 x VREF) x 214 .... VAx = VREF x (.JY... + n x 025) 
VREF 214 . 

Where: 
N = 12-bit result of the ADC conversion 
VAx = Input voltage at the selected analog input Ax M 
VREF= Voltage at pin SVcc (external reference or internal AVcc) [V] 
n =. Range constant (n = 0, 1,2, 3 for ranges A, B, C, D) 

To get the 14-bit equivalent N 14 of a 12·bit ADC result N12, the following formula 
may be used: 

N14 = N12 + n x 1000h 

To check if the result of a 12-bit AID conversion is correct, the following software 
sequence can be used: 

MOV lxxx, &ACTL 

CALL tMEASR 

TST &ADAT 

JZ UFL 

CMP #OFFFh,&ADAT 

JEQ OFL 

Define measurement 

Measure ADC input 

Check if underflow (OOOh) 

Underflow: go to error handling 

Check if overflow (OFFFh) 

Overflow: go to error handling 

Result is correct: use ADAT 
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2.3.1 Timing 

The two ADCLK bits (ACTL.13 and ACTL.14) In the ACTL control register are 
used to select the ADCLK frequency best suited for the ADC. The MCLK clock 
signal can be divided by a factor 1, 2, 3, or 4 to get the best suited ADCLK. 

Disabling the autorange mode (RNGAUTO/ACTL.ll = 0) executes a 12-bit 
conversion; the range defined by the ACTL.l 0 and ACTL.9 bits is used. The 
selected analog input signal at input Ax is sampled once; after the sampling, the 
12-bit conversion is executed. The 12-bit conversion takes 96 ADCLK cycles. 
See Figure 12 for timing details. 

121ADCLK New Con_810n 
r--' 
I I 

ADCLKJ12 --:--~ ....... 

PD --tJ. P0W8~Up Time I I I 
CONV.START ~ . !i! ! 

~ II I 
SAMPLING -----f ' I I I 

I I I I 
END OF CONV. ---, I I I I 

L.. j-______________ --! L __ .J 

(\ t I Data valid In ADAT 

Reset by Soflwanl (Nonlntsrrupt Model 
or Granting oIlntsrrupt (Interrupt Mode) 

I EOC Flag se1 
I ADCLK Disabled 

Figure 12. Timing for the 12·Blt AID Conversion 

2.3.2 Software Example 

The measurement of Rsens1 is shown in Figure 2. With MCLK = 2.2 MHz, the 
result is always located in range B. The result must be converted to a 14-bit value 
to be used by software routines written for 14-bit results. 

MOV tADCLK2+RNGB+CSAO+AO+VREF,&ACTL ; Define ADC 

CALL #MEASR Measure with ADC 

MOV &ADAT,RS l2-bit ADC result· to RS 

ADD HOOOh,R5 Add start address of range B 

14'bit value in R5 
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3 The AID Controller Hardware 
Paragraph 2 describes the analog-to-digital conversion. The mnemonics used 
are defined in the appendix. 

3.1 ADC Control Registers 

The AOC control registers are in the MSP430 memory area where only word 
addresses are possible. This means that all registers are word-structured and 
should be accessed by word instructions only. Byte addressing results in a 
nonpredictable operation. 

The access description below the register bits has the following meaning: 

• rw-O read/write bit, reset after power-up clear (PUC) 
• rw-l read/write bit, set after power-up clear 

• rO read as zero 

• read only 
• (w)rO write only. Writing generates a pulse, no reset necessary. Read as 

zero 

3.1.1 ACTL Control Register 

ACTL 

The ACTL control register is the main register for programming the AOC. Its 
content (shown in Figure 13) defines the current operation. All of the bits should 
be changed only after a completed conversion. Otherwise a faulty result will 
occur. 

15 

AD Input Select 

0114h '----'_.....L_-'-_....i-_ ....... _ ..... _I.---'_-'-_-'-_ ...... _ ..... _ ..... --'_--'_--' 
rw-O rw·O rw·O rw·O 

Figure 13. ACTL Control Register 

3.1.1.1 Conversion Start (SOC) 

The SOC write-only bit (see Figure 14) starts an analog-to-digital conversion. The 
conditions of the measurement are defined with the other bits of the ACTL 
register. It is not necessary to reset the bit. The SOC bit is always read as a zero. 

Figure 14. Conversion Start (SOC) 

EXAMPLE: start the AOC as defined by the content of the ACTL register. 

MOV #ADCLK2+RNGA+CSOFF+AO+VREF,&ACTL; Define ADC 

Delay 6us to allow settling 

BIS #SOC,&ACTL ; start ADC conversion 

3.1.1.2 Voltage Reference Bit (VREF) 

The VREF bit (see Figure 15) defines whether an internal or an external reference 
voltage is used for the NO conversion. 
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Figure 15. Voltage Reference Bit (VREF) 

VREF = 0: External reference. The transistor between AVcc and SVcc is 
switched off. The SVcc terminal is an input pin for an external 
reference voltage. The external reference source must be able to 
supply a current up to 80 jIA. The voltage range for the external 
reference is AVcc/2 $ VREF $ AVcc. 

VREF = 1: Internal reference. The transistor between AVec and SVec is 
switched on: the SVcc output terminal is connected to the analog 
supply voltage AVec. No external voltage should be supplied to the 
SVec terminal. 

EXAMPLE: define an AID conversion with the internal reference voltage AVcc. 
MOV ~ADCLK2+RNGAUTO+CSOFF+AO+VREF,&ACTL 

Start an AID conversion with an external reference connected to the SVcc 
terminal (VREF = 0). 

MOV ~ADCLK2+RNGAUTO+CSOFF+AO,&ACTL 

CALL ~MEASR 

Vref - 0 
start the measurement 

3.1.1.3 ADC Input Select Bits 

The four ADC input select bits (see Figure 16) definewhich of the possible eight 
analog inputs is selected for the AID conversion. 

I 0 I A~LK I Po I +~~ I c++- 'ADln~s-lvREFI socl 
Figure 16. ADC Input Selection Bits 

Table 2 lists the possible ADC input selections. 

Table 1. ADC Input Selection Bits 

INPUT 
MNEMONIC 

SELECTED 
COMMENT SELECTION CODE ANALOG INPUT 

0 AO AO Signal at the pin AO Is selected 

Al Al Signal at the pin A 1 Is selected 

2 A2 A2 Signal at the pin A2 Is selected 

3 A3 A3 Signal at the pin A3 is selected 

4 A4 A4 Signal at the pin A4 is selected 

5 AS AS Signal at the pin A5 is selected 

6 AS Not implemented with the MSP43OC32x 

7 A7 Not implemented with the MSP43OC32x 

8-15 None No analog Input Is selected 

EXAMPLE: to start an ADC conversion for analog input A3 with unchanged 
conditions: 

BIC #03Ch+PD, &ACTL 

BIS tA3+S0C, &ACTL 
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3.1.1.4 Current Source Output Select Bits 
The three current source output select bits (see Figure 17) define the analog input 
Ax where the output current of the current source is switched. To switch the 
current source off, ACTL.8 (CSOFF) is set to one. 

OUTPUT 
SELECTION CODE 

o 

2 

3 

4-7 

Figure 17. Current Source Output Select Bits 

Table 2. Current Source Output Select Bits 
MNEMONIC SELECTED COMMENT 

CURRENT OUTPUT 

CSAO AO Current source connected to pin AO 

CSA1 A1 Current source connected to pin A 1 

CSA2 A2 Current source connected to pin A2 

CSA3 A3 Current source connected to pin A3 

CSOFF Off Current source switched off 

EXAMPLE: connect the current source to pin A3, and start measurement at pin 
A4. All other ADC conditions stay unchanged. This example refers to the 
hardware configuration for Rsens3 shown in Figure 2. 

BIC #OlFCh+PD,&ACTL 

BIS #CSA3+A4+S0C,&ACTL 

3.1.1.5 Range Selection Bits 

; Reset SOC and input sel. Bits 

;6 IJ.s delay 
; Start conversion for A4 

The three range select bits (see Figure 18) define the ADC range that is used for 
the conversion. 

RANGE 
SELECTION CODE 

0 

2 

Po Range Select Current Source 

Figure 18. Range Select Bits 
Table 3. Range Select Bits 

MNEMONIC SELECTED COMMENT 
RANGE 

RNGA A o to 0.25 x SVcc 

RNGe e 0.25 to 0.5 x sVcc 

RNGC C 0.5 to 0.75 x sVcc 

3 RNGD 0 0.75 x sVcc to SVcc 

4-7 RNGAUTO A, e, C, 0 Automatic range select 

EXAMPLE: prepare the ACTL register for measurement of analog input A3 using 
the internal reference, and with the current source connected to A3 and fixed to 
range B. 

MOV #RNGB+CSA3+A3+VREF,&ACTL 

3.1.1.6 Power Down Bit (Pd) 

The power-down bit (see Figure 19) reduces the power consumption of the ADC 
to the lowest possible value. It switches off the comparator, the SVcc switch, and 
the current source, 

Architecture and Function of the MSP430 14-Bit ADC 2-23 



The AID Controller Hardware 

I 0 I ~LK l!J +~~ I c++. I 7°+s+ IVREFI soc 1 
Figure 19. Power Down Bit (Pd) 

Pd=O: The ADC is switched on. 
Pd m 1: The SVec switch is off, the comparator is powered down and the 

current source Is off. This ensures the minimum current consumption 
for the ADC. 

EXAMPLE: power down the ADC for minimum current consumption. 
BIS#PD,&ACTL ; Power down the ADC 

3.1.1.7 Clock Frequency Selection Bits 

The two clock frequency selection bits (see Figure 20) select the optimum clock 
frequency for the· ADC. This is necessary due to the relatively low maximum 
ADCLK frequency (1.5 MHz) compared to the maximum MCLK frequency 
(3.3 MHz). 

'-1 o-, .. & .... & .. '~po..,.I-Renge..,.:-Se/ ... ;~ ....... I-c_,..; -8 ........ ; -I~~~o,""+-_"";-"'IV-RE"'~-.so"'cl 

Figure 20. Clock Frequency Selection Bits 

.Table 4. Clock Frequency Selection Bits 

SELECTION CODE MNEMONIC DIVISION FACTOR ADCLK FREQUENCY COMMENT 

0 ADCLK1 MCLK MCLKS 1.5 MHz 

1 ADCLK2 2 MCLKl2 MCLK> 1.5 MHz 

2 ADCLK3 3 MCLK13 MCLK > 3.0 MHz 

3 ADCLK4 4 MCLKl4 (MCLK > 4.5 MHz) 

EXAMPLE: For MCLK = 2.5 MHz, the highest possible ADCLK frequency 
(1.25 MHz) is set. 

MOV #ADCLK2+RNGAUTO+A3+VREF,&ACTL 

3.1.1.8 Bit 15 

Bit 15 (See Figure 21) should always be set to zero to maintain software 
compatibility with future versions of the ADC. 

II A+K I Po I -+. ~~ I au+-+-1 70 ,+ s+ fREFI soc 1 
Figure 21. Bit 15 

3.1.2 AID Data ReglsteT ADAT 
The ADC data register ADAT contains the result of the last AiD conversion. The 
conversion data is valid in the ADAT register at the end of a conversion and stays 
valid until another AiD conversion is started with the setting of the SOC bit 
(ACTL.O). The read-only structure of the ADAT register does not allow 
readlmodifylwrite instructions like ADD or BIC with the ADAT register used as the 
destination: only the instructions BIT, TST and CMP may be used this way. With 
the ADAT register as a source, all instructions may be used. 
Figure 22 shows the result of a 12-bit conversion: the value is always between 
OOOh (underflow) and FFFh (overflow), independent of the ADC range used. The 
miSSing range information (bits 12 and 13) must be added by the software. 
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15 " 0 

rO rO ,0 ,0 

Figure 22. The Data Register ADAT, 12-81t AID Conversion 

Figure 23 shows the result of a 14-bit conversion: the value is between OOOOh 
{underflow} and 3FFFh {overflow}. Result bits 13 ane 12 indicate the range of the 
result: 

• 00 
• 01 
• 10 
• 11 

Range A 
Range B 
Range C 
Range 0 

o to 0.25 x SVcc 
0.25 x SVcc to 0.50 x SVcc 
0.50 x SVcc to 0.75 x SVcc 
0.75 x SVcc to SVcc 

15 13 o 

:~::I 0 1 0 IMSBI I I I I I I I I I I I 
I LSB IACTL.11=1 

,0 ,0 

Figure 23. Data Register ADAT, 14-8it AID Conversion 

To read the result of the last conversion, use a simple MOV instruction: 

MOV &ADAT , RS Copy the ADC result to RS 

; A new conversion may begin 

3.1.3 Input Register AIN 

AIN 

Input register AIN (see Figure 24) is a read-only word register; however, only the 
low byte of the register is implemented. The same access restrictions are valid 
as described for the ADAT register. AIN.O to AIN.7 correspond to the input 
terminals AO to A7. The high byte of the register is read as OOh. Input register AIN 
shows the digital input information at the input terminals that are switched to the 
digital mode {AEN.x = 1}. The formula for the bit AIN.x is: 

AIN.x = Ax .and. AEN.x 

Where: 
AIN.x = Bit x of the input register AIN 
Ax = Logic level at the analog input Ax 
AEN.x = Bit x of the input enable register AEN 

This means, that analog inputs {AEN.x = O} are read as zero. 

0110h L-......I_--L_..J.._....L.._....L.._..I-_.l...........Ii.---L_....L._...I.-_..I-_.l...........I_....J_.....I 
rO 

Figure 24. Input Register AIN 

EXAMPLE: The AS inputterminal is used as a digital input. Test ifthis input is high; 
if yes, jump to label A5HI: 
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INITAS BIS '20h, &AEN 

BIT #020h,&AIN 

JNZ ASH! 

Use pin AS as digital input 

Pin AS high? 

Yes, gete ASH! 

No, AS is low 

NOTE: Only digital inputs with very low activity or controlled 
access (e.g. keyboard scan) should be connected to inputs AD to 
A7. Otherwise, this activity Influences the measurement results of 
the analog inputs. 

3.1.4 Input Enable Register AEN 

AEN 

I nput enable register AEN (see Figure 25) is a read/write word. However, only the 
low byte of the register is implemented. AEN.D to AEN.7 correspond to input 
terminals AD to A7. The high byte of the register is read as OOh. The initial state 
of all bits is reset. 

0112h L......J_......L_..J..._.l...._L-.......L_...J.._..L-_L-.......L_...J.._..L...--JI-........L_-I.._ .... 

Figure 25. Input Enable Register AEN 

Input enable register bits AEN.x control the function of input pins AO to A7: 

AEN.x = 0: Input terminal Ax is used as an analog input. Bit AIN.x is read as 
zero. 

AEN.x = 1: Digital input. The bit read in the AIN register represents the logical 
level at the appropriate Ax terminal. 

EXAMPLE: The A5 and A4input t~rminals are used as digital inputs. An 
application is given with the AIN terminal example. 

BIS #030h,&AEN ; Pin AS and A4 digital inputs 

3.2 Current Source 
A stable, programmable current source is available at the four analog inputs AO 
to A3. With programming resistor Rex between terminals SVcc and Rex!, it Is 
possible to get a defined current, Ics, out of the programmed analog input Ax. Ics 
is directly related to the voltage at SVcc. This allows relative measurements to 
be made using the current source that are independent from the ADC supply 
voltage SVcc. The analog input to be measured and the analog input used for the 
current source are independent of each other; this means that the current source 
may be programmed to input A3 and the measurement taken from inputs A4 and 
A5, as shown in Figure 6 for Rsens3. 

3.2.1 Normal Use of the Current Source 
Figure 26 shows the normal use of the current source: the generated current Ics 
flows through the addressed analog input AO and generates a voltage drop Vin 
at the connected sensor Rsens. This voltage drop Vin is multiplexed to the ADC 
and measured. 
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The current Ics defined by the external resistor Rex is: 

Ics = 0.25 x Vref 
Rex 

The input voltage Vin at the selected analog input with the current Ics and a 
connected sensor Rsens is: 

Vin = Rsens x Ics = Rsens x 0.25· x VREF --+ Rsens = Vin 
Rex Ics 

The ADC result N for an input voltage Vin is: 

N = 214 x Vin --+ Vin = VREF x N 
VREF 214 

The above equations lead to the measured sensor resistance Rsens: 

Rsens = Rex x Vin = Rex VREF x N = Rex x N x 2-12 
0.25 x VREF 0.25 X VREF x 214 

The result N of the AID conversion is: 

Where: 

N = 0.25 X VREF x 214 x Rsens = Rsens x 212 
Rex VREF Rex 

Rex = Resistor between pins SVcc and Rex (defines current Ics) [01 
Rsens= Resistor to be measured (connected between Ax and AGND) [0] 
VREF = Voltage at SVcc. External (VREF a 0) or internal (VREF = 1) M 

AVec C>-_---+ 
SVccSwttch ~ACTL..'(VREF=') 

SVec ~ACTL..'2(Pd=0) 

Rex ~C8I O.25xSVec 

Rex, r-::T::', ---,-, D~_....., ..... '28=-_-I 

VREF 

lea 'N!-==""""-+ 
C~_....., ..... '28=-_-I To 

Resistor 
~._....., ..... '28=-_-I _er 

A ~._......,....:':::28:"---I 

BIIa ACTL..x Indicate Stale 
For Given Example 

I .. 

"-]I~~~~~~ 8:' 

0---0 t-------;-ToIhoADC 

:: ACTL.2,3,4 (0,0.0) IVI" 
ACTL.5(O) 

AGND 

Figure 26. The Current Source 
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ILllcsl 

i 

0 

0 

If the 12-bit conversion is used, the above equations change to: 

0.25 x VREF x Rsens - n x 0.25 x VREF 1 
N= Rex x2 4= (Rsens_ n)X212 

VREF Rex 

This gives, for the unknown resistor Rsens: 

Rsens = Rex x (2~2 + n) 

The code sequence for the measurement shown in Figure 26 is: 

MOV #ADCLK1+RNGA+CSAO+AO+VREF,&ACTL Define ADC 

CALL #MEASR Measure Rsens at AD 

Result in ADAT 

When using the current source, it is not possible to use the full range of the ADC: 
only the range defined with Load Compliance in the Electrical Description is valid 
(0.5 x SVcc, which means only the ranges A and B). Figures 28 and 29 show the 
typical error characteristics of the current source at its limit. Figure 28 shows the 
error characteristic for Vcc = 4.5 V and a relatively high Rex (1 kG). It shows that 
up to a ratio of 0.745 for VAO/SVcc (which means range A, B, and nearly all of 
range C) the current source works correctly. Then ~Ics (the difference between 
the programmed Ics and the real Ics) increases linearly with 

.1 V = Rex 
.11 

The reason is saturated transistorT1 olthe current source. When T1 is saturated, 
only.the external resistor Rex determines the current Ics. Figure 27 shows the 
measurement circuitry and an explanation of the error curves. The small dashed 
box indicates the area that is magnified in Figures 28 and 29. 

~---ISVcc 

O.25XVREF/Rex 
Rsen8=lnflnlle 

Rext 

A1 
ICB 

,..-.!!::=--tAO 

L1V/LlI=Rex Rsens 
O ••• lnflnlto MSP43OC32x 

0.25 0.5 0.75 1.0 VAOIAVcc 

A B C D Rangs--' OV +4.5Y12.5V 

Figure 27. Measurement Circuitry for the Error of the Current Source 
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2.50E-05 
AVec =4.5 11 Rex -1 kO -

2.00E-05 

1.50E-05 

Ales 

1.00E-05 

/ 
./ /. 

/ 
/ 
~ 

/ 

~ 

5.00E-05 

/ 

/ 
V 
/ ~ 

~ V 

./ ~ 
~ 

85C 

25C 
-40C 

0.00E+~.74 0.741 0.742 0.743 0.744 0.745 0.746 0.747 0.746 0.749 0.75 

RatiO VAO IAVec 

Figure 28. Error of the Current Source at the Limit 

Figure 29 gives the characteristic at the other extreme: Vee = 2.5 V and 
Rex = 150 n The slope beyond the operation limit of the current source (here at 
VAO/AVcc = 0.7125) is also: 

LI V = Rex 
Lli 

2.60E~4 

2.00E~4 

1.50E~ 

Alc. 

1.00E~ 

5.00E-05 

O.OOE+OO 

AVec = 2.5 V, Rex=l50 0, T=20-C 

/ 
/ 
V 

/ 
/ 

/ 
/ 

/ 
V 

0.7 0.7025 0.705 0.7076 0.71 0.7125 0.715 0.7175 0.72 0.7225 0.725 0.7275 0.73 
Ratio VAo/AVec 

Figure 29. Error of the Current Source at the Limit 
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The characteristic shown in Figure 29 indicates that the current source works up 
to 71% of the applied AVec under worst case conditions; this includes ADC 
ranges A, Band 84% of range C. If Rex is chosen as 1 kO and SVec is 4.5 V, then 
the current source works up to a ratio of 0.745, which means it covers nearly 98% 
of range C. 

If the current source is used with an external amplifier (operational amplifier) that 
amplifies the output signal coming from the current source, then the full range of 
the ADC can be used with a different ADC input. Figure 30 shows such a circuit. 
The signal at analog input AO can use the full range of the AID converter; the 
signal at A 1 is restricted to the working area of Ics that is shown in Figures 28 and 
29. 

The equations for the circuitry are explained in Application Basics (or the MSP430 
14-8ft ADC Application Report (SLAA046).[3] 

Rex 
Rext 

1 SVec 

Al 
let 

MSP430C32x 
R1 R3 

1 ....... .,. 1 Vm 

AO ......... 1 ...... vp 
v =R1/(R3I1 R4) Raens ~ .-: R4 

AVaa 

DVaa AVec 

T I 
OV +3V(+5V) 

Figure 30. Application of the Current Source With the Full ADC Range at Input AO 

3.2.2 Current Source Used for Level Shifting 

If analog signals that lie partially or totally outside of the ADC range of the 
MSP430 (AVss to SVcc), need to be measured then the current source can be 
used to shift the signal level into the measurable range. 

The current transformer, shown on the left in Figure 31, outputs a secondary 
voltage that is proportional to the primary current, lac. The signed output voltage 
(symmetrical to the AVss voltage) is shifted into the middle of the ADC range by 
a current Ics through the resistor Rsh. This current Ics must be small, due to the 
sensitivity of current transformers to de biasing. 
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To ---4~-~~- To 

SVec 
Charger Load 

Rex 

Rex! Rt 

At Yo 

A2 AO 
CUrrent 

Rc 

MSP430C32x lv~ V~l R2 Shunt 

AVa AVu ~----__ --__ --OV 

AC Measurement 
VA2. Vet + lea x Rsh 

DCM ..... remant 
VAO=VSh+1c8XRc 

Figure 31. Current Measurement With Level Shifting 

The right side of Figure 31 shows the measurement of a signed dc current. Due 
to the two directions of the accumulator current (charge and discharge current) 
level shifting is necessary: the charge current generates a positive voltage, Vsh; 
the discharge current generates a negative VOltage, Vsh, at the shunt. The 
current, Ics, together with resistor Rc, also shifts the voltage drop of the discharge 
current into the ADC range. 

The advantages of level shifting by the current source are: 
• Possibility to measure signals that are outside of the ADC range 
• Omission of the saturation area near the AVss voltage 
• Possible readjustment of the zero current ADC value during periods with no 

current flow 

3.3 SVcc Terminal 

The SVec terminal is the reference for all ADC measurements. The voltage 
applied to this terminal refers to the result value 214 (16,384), regardless of 
whether the reference voltage is applied internally or externally (external VREF). 
The VREF bit located in the ACTL registers defines whether the internal reference 
AVec is used (VREF. 1) or an external voltage is used (VREF = 0). 

3.3.1 SVcc Terminal Used as an Output for the ADC Reference Voltage 

Typically, the SVec terminal is used to supply the reference and voltage to the 
ADC circuitry. It can be activated while measurements are being taken and 
deactivated for low power periods. Figure 32 shows an example of this. All of the 
sensors connected to the MSP430 are powered by the SVec terminal. 

The SVec terminal outputs the AVec voltage if the following conditions are true: 

VSVcc = VREF .and. @ Pd .and. VAVcc 
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VR" 

--.-..... -..-1-lSvee les 
Rv 

Vln -"<'Vv--e----\------I 
R1 

R2 Rsens2 Rsens1 

Rex! 

A3 --+ 
A61---+--___ 
A4 Rsens3 

OV +5 V/3 V 

Figure 32. SVcc Terminal Used as an Output 

Dr1 
~ Vrd 

The voltage, Vin, at analog input A2 is measured in comparison to the voltage at 
SVcc. If the voltage, VREF, at SVcc is known (AVcc is stable and known, ISVcc 
is small), then Vin can be measured exactly. Otherwise an external reference 
diode (or equivalent) may be connected to a free analog input, and its voltage, 
Vrd, is measured. See Figure 32. The formula for Vin is then: 

Vin = Vrd x Nin x R1 + R2 
Nrd R2 

Where: 
Vrd = Voltage of the reference diode [V] 
N in = 14-bit result for Vin 
Nrd = 14-bit result for the voltage Vrd of the reference diode 

3.3.2 SVcc Terminal Used as an Input for the ADC Reference Voltage 

For absolute voltage measurements an external reference voltage, VREF, is 
necessary (see Figure 33). The sensor measurements for Rsens1 to Rsens3 are 
made the same way as with the internal reference voltage. The only difference 
is the VREF bit of the ACTL register: it is set to zero to allow an external reference 
voltage to be used. The formula for Vin is: 

Vin = VREF x ~ x R1 + R2 
214 R2 
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Vref Isvcc 
SVcc 

Rv Rex A3 
--+108 

Rext 
A4 

Vln A2 
R1 Reane3 A1 

AS 
R2 Reans2 AD 

DV +5 V13 V 

Figure 33. SVcc Terminal Used as an Input for a Reference Voltage 

NOTE: If an external voltage reference is used, then it must be 
able to deliver not only the current for the external circuitry but also 
a maximum current of 80 !iA at 5 V to supply the parts of the ADC 
that are connected to SVcc. 

The maximum voltage at SVcc when used as an input is the 
voltage applied to AVcc. 

Measurements with the ADC using external reference voltages down to 1.2 V at 
SVcc showed that the ADC does not change its characteristic. However, the 
noise of the result doubles when compared to a 5..v supply. This is due to the 
voltage-independent noise generated by the ADC. 

3.3.3 Connection of Current Consuming Loads to SVcc 

If the current drawn by the external ADC circuitry exceeds 8 mA, then an external 
switch for the external analog voltage should be considered. A simple PNP 
transistor can be used for this purpose as shown in Figure 34. The SVcc terminal 
is used as an input pin for the external reference voltage (ADC control bit VREF 
= 0). This method allows the full accuracy ofthe ADC also with current consuming 
loads. Output TP.O switches the power to the current consuming loads off and on. 

The schematic in Figure 34 is simplified for clarity. The connection principle . 
shown in Application Basics for the MSP430 14-Bit ADC Application Report 
(SLAA046)[3) needs to be applied, especially with the larger currents flowing 
here. 
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---.... ---_---...... -_.-- +5V/3V 

Rv 

L---~TP.O 

~~-------~AO 
~------~A1 

A2 
RaenS2 Rsens1 A3 

AVaa DVaa 

----~---~---4_~~-----4--~--OV 

Currenl Consuming Analog Parte ~» 8 rnA) 

Figure 34. Connection of Current Consumlng.Loads to SVcc 

The software for switching the PNP transistor follows. The TP-port handling may 
be included in the MEASR subroutine if this is an advantage. The example refers 
to the hardware shown in Figure 34. Rsens1 is measured. 

BIC.B 

BIS.B 

#TPO,&TPD 

#TPO,&TPE 

; TP.O pin is low if enabled 

; Enable TPO: switch PNP on 

MOV #ADCLK+RNGA+CSA2+A2,&ACTL ; ADC: ext. reference 

CALL #MEASR Measure Rsensl at A2 
BIC.B #TPO,&TPE Switch PNP off: TPO Hi-Z 

Result in ADAT 

3.4 Interrupt Handling 
All of the ADC software examples shown previously use polling techniques to 
check for conversion completion. This takes up computing power that can be 
used more effectively if interrupt techniques are used. 

3.4.1 Interrupt Flags 

ADC interrupt flags are not located in the ACTL control register. This allows 
advanced interrupt handling. Several interrupt enable flags in a common byte can 
be disabled and enabled together with minimal effort, something that is 
impossible with flags located in the individual control words. The two flags 
controlling the interrupt of the ADC are: 
IE2 .EQU Olh 

ADIE . EQU 04h 

IFG2 . EQU 03h 

ADIFG . EQU 04h 

3.4.2 Interrupt Handlers 

Interrupt Enable Register 2 

ADC interrupt enable bit (IE2.2) 

INTERRUPT FLAG REGISTER 2 

ADC "EOC" Bit (IFG2.2) 

The interrupt structure of the ADC allows the conversion time to be used for other 
calculations or procesor tasks. Two ADC interrupt handler examples follow: 
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EXAMPLE: analog input AD (without current source) and A 1 (with the current 
source enabled) are measured alternately. The measured 14-bit results are 
stored in address MEASD for input AD and MEAS1 for input A 1. The time interval 
between the two measurements is defined by the 8-bit timer: each timer interrupt 
starts a new conversion for the previously prepared analog input. Other timers 
may also be used for the generation of the time interval. 

Analog input AO Al 

Current Source OFF ON 

Result to MEASO MEASI 

Range selection AUTO AUTO 

Reference . SVcc SVcc 

Initialization part for the ADC: 

MOV #RNGAUTO+CSOFF+AO+VREF,&ACTL 

Enable ADC interrupt BIS.B #ADIE, &IE2 

MOV. B #OFFh-3, &AEN Only AD and Al analog inputs 
Initialize other modules 

ADC interrupt handler: AD and Al are measured alternately. 

The next measurement is prepared but not started. 
The interrupt flag ADIFG is reset automatically 

ADC INT BIT #Al,&ACTL Al result in ADAT? 

JNZ ADI Yes 
MOV &ADAT,MEASO AD value is actual 

MOV #RNGAUTO+CSON+Al+VREF,&ACTL Al next meas. 
RETI 

ADI MOV &ADAT,MEASl Al value is actual 

MOV #RNGAUTO+CSOFF+AO+VREF,&ACTL AD next meas. 
RETI 

8-bit timer interrupt handler: the ADC conversion is started 

for the previously prepared ADC input 

T8BINT BIS #SOC,&ACTL 

RETI 

.SECT "INT_VECO"/OFFEAh 

. WORD ADC_INT 

. SECT "INT_VEC1", OFFFBh 

; start conversion for the ADC 

Execute other timer tasks 

Interrupt vectors 

ADC interrupt vector 

.WORD TBBINT a-bit timer interrupt vector 

The software for the 12-bit conversion is similar to that for the 14-bit conversion, 
the only difference being the replacement of the RNGAUTO bit during the 
initialization of the ACTL control register. Instead, the desired range (RNGA, 
RNGB, RNGC, or RNGD) is included in the initialization part of each 
measurement. 
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NOTE: An independent timer-like that used in the example 
above-is recommended; do not use the ADC interrupt handler 
to restart the ADC. If the ADC interrupt handler starts the next 
conversion, then any interrupt failure leads to a flip-flop effect; the 
missing ADC interrupt does not start a new conversion, and the 
ADC activity ceases. 

EXAMPLE: for best results the CPU is switched off during the ADC 
measurement. The measurement subroutine starts the conversion and switches 
off the CPU afterwards. The interrupt routine called by the conversion completion 
resets the CPUoff bit (SR.4) of the stored status register SR and allows the CPU 
to continue with the measured ADC result. The 12-bit result is moved to R5. 

CPUoff 

GIE 

RNGB 

.equ OlOh 

.equ 008h 

.equ 0200h 

BIC.B #ADIFG,&IFG2 

BIS.B #ADIE,&IE2 

SR: CPU off bit 

SR: General Intrpt enable 

ACTL: Select Range B 

Reset ADC flag 

ADC Intrpt Enable 

EINT Enable GIE interrupt 

MOV #RNGB+CSOFF+Al +VREF, &ACTL ; Define ADC 

CALL #MEASURE 

MOV &ADAT, R5 

Measure with ADC 

Result to R5 

Process result in R5 

subroutine: CPU is switched off to get minimum noise 

MEASURE BIS 

BIS 

NOP 

RET 

#SOC,&ACTL 

#CPUoff,SR 

; start ADC conversion 

Switch CPU off, MCLK active 

wait for completion of ADC 

Interrupt Handler for the Analog-te-Digital Converter 

The CPUoff bit of the saved SR is cleared to allow the 

software to continue after the RETI 

BIC 

RETI 

Interrupt Vectors 

#CPUoff,O(SP); Allow SW run (CPUoff - 0) 

.sect "INT_VEC1",OFFEAh 

; ADC Vector 
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3.5 ADC Clock Generation 

The frequency of the ADC clock, ADCLK, must be in a certain range as discussed 
in section 2.1.1 ADC Timing Restrictions. To allow the adaptation of the ADCLK 
to the full range of the MCLK frequency, four possibilities of prescaling are 
provided: 

• MCLK if MCLK < 1.5 MHz 

• MCLKl2 

• MCLKl3 

if MCLK > 1.5 MHz 

if MCLK > 3.0 MHz 

This allows an MCLKlADCLK combination to be selected for nearly all 
applications that fits the calculation needs, while providing the necessary ND 
conversion speed. 

4 ADC Characteristics 

The next four figures show typical measured ADC characteristics: the absolute 
error (ADC steps) is dependent on the input value (ADC steps from 5 to 16380). 
Error characteristics like these are used with Additive Improvement of the 
MSP43D 14-Blt ADC Characteristic (SlAA047)[4], Linear Improvement of the 
MSP43D 14-Bit ADC Characteristic (SLAA048)[5], and Nonlinear Improvement 
of the MSP43D 14-Bit ADC Characteristic (SlAA050)[6] to illustrate the 
improvements possible by methods using different hardware and software. 

ADCSteps 

Figure 35. Error Characteristic Device 1 

~~a ~1 ~ .~ ~'1"""""1 
8-1 --~ ~ ~~ ____________________________________________ ~ __ -J 

ADCStaps 

Figure 36. Error Characteristic Device 2 
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i]:~~ 
ADCSteps 

Figure 37. Error Characteristic Device 3 

g ~ ~ 

ADCSleps 

Figure 38. Error Characteristic Device 4 

5 Summary 
This application report complements Application Basics for the MSP430 14-Bit 
ADC (SLAAD46)[3] that contains applications of the 14-bit ADC. Additive 
Improvement of the MSP430 14-Bit ADC Characteristic (SLAA047)[4] explains 
different methods to minimize the ADC error, and the limitations of the ADC. 

All five of the application reports in the MSP430 14-bit ADC series include system 
applications (hardware and proven software) using all parts and modes of the 
ADC. 

6 References 
1. MSP430 Family Architecture Guide and Module Library, 1996, Literature 

#SLAUE1DB 

2. Data Sheet, MSP430x32x Mixed Signal Microcontroller, 1998, Literature 
#SLAS164 

3. Application Basics for the MSP430 14-Bit ADC application report, 1999, 
Literature #SLAA046 

4. Additive Improvement of the MSP430 14-Bit ADC Characteristic application 
report, 1999, Literature #SLAA047 

5. Linear Improvement of the MSP430 14-Bit ADC Characteristic application 
report, 1999, Literature #SLAAD48 

6. Nonlinear Improvement of the MSP430 14-Bit ADC Characteristic 
Application Report, 1999, Literature #SLAA05D 

7. MSP430 Metering Application Report, ·1998, Literature #SLAAE1 DC 
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Appendix A Definitions Used With the Application Examples 
; HARDWARE DEFINITIONS 

AIN .egu OllOh Input register (for digital inputs) 

AEN .equ Oll2h 0: analog input 1: digital input 

AeTL .equ 01l4h ADC control register: control bits 

SOC .equ Olh Conversion start 

VREF .equ 02h 0: ext. reference 1: SVcc on 

AO .equ OOh Input AO 

Al .equ 04h Input Al 

A2 .equ OBh Input A2 

A3 .equ Oeh Input A3 

A4 .equ 10h Input A4 

AS ,equ l4h Input AS 

eSAO .equ OOh Current Source to AO 

eSA1 .equ 40h Current Source to Al 

eSA2 .equ BOh Current Source to A2 

eSA3 .equ OeOh Current Source to A3 

eSOFF .equ 100h Current Source off 

CSON .equ OOOh Current Source on 

RNGA .equ OOOh Range select A (0 ... 0.2SXSVcc) 

RNGB .equ 200h Range select B (0.25 .. 0.SOxSVcc) 

RNGC .equ 400h Range select C (0.5 ... 0.7SxSVcc) 

RNGD .equ 600h Range select 0 (0.75 .. SVcc) 

RNGAUTO .equ 800h 1: range selected automatically 

PO .equ 1000h 1 : ADC powered down 

ADCLKl .equ OOOOh ADCLK = MCLK 

ADCLK2 .equ 2000h ADCLK MCLK/2 

ADCLK3 .equ 4000h ADCLK MCLK/3 

ADCLK4 .equ 6000h ADCLK - MCLK/4 

ADAT .egu Ollah ADe data register (12 or 14-bits) 

IFG2 .equ 03h Interrupt flag register 2 

ADIFG .equ 04h ADC "EOC" bit (IFG2.2) 

IE2 .equ 01h Interrupt enable register 

ADIE .equ 04h ADC interrupt enable bit (IE2.2) 

TPD .egu 04Eh TP-port: address data register 

TPE, .equ 04Fh TP-port: address of enable register 

TPO .equ 1 Bit address ,of TP.O 

TPl .equ Bit address of TP.l 
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Application Basics for the MSP430 14-Bit ADC 

Lutz BierI 

ABSTRACT 
This application report gives a detailed overview of several applications for the 14-bit 
analog-ta-digltal converter (ADC) of the MSP430 family. Proven software examples and 
basic circuitry are shown and explained. The 12-bit mode is also considered, when 
possible. The References section at the end of the report lists related application reports 
in the MSP430 14-bit ADC series. 

1 Introduction 
The application report Architecture and Function of the MSP430 1408it ADC[1J 
explained the architecture and function of the MSP430 14-bit analog-to-digital 
converter (ADC). The hardware (registers, current source, used reference, 
interrupt handling, clock generation) was explained in detail and typical ADC 
characteristics were shown. 

Figure 1 shows the block diagram of the MSP430 14-bit ADC. 

AVcoC>-...... --... 
SVccSwltch ~ACTL.l(Vref) 

SV"'r-<::::::>r---I~ ACTL12(Pd) 

Rs, 

128 

128 

128 

128 

~NO<=~~~~--~~ 

Offset 

(AVas) ACTL9. 10(Range) -:;:::jt::=::j~_l..., 
ACTL "(Auto) ,-,-1---+--' 

MI~~~~~~ l~AC~T~L.O:'~::)~:=:t~~~~~~~~~~~~~ ~ 8:1 input 

"" 0---0 A4 
AS Input 
AS MUX ACTL2A (Ax) 
A7 ACTL5 (None) 

SAR.13 SAR.O 

16-8" Memory Ollla Bus, MOB 

Figure 1. MSP430 14-Bit ADC Hardware 
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2 Applications 
This application report shows several methods for connecting resistive sensors, 
bridge assemblies, and analog signals to the ADC. Solutions are given for the 
12-blt and 14-bit conversions, with and without using the integrated current 
source. The equations shown result In voltages and resistances. To calculate the 
sensor values (pressure, current, temperature, light intensity a.s.o) normally with 
non"linear equations, refer to the following sections of Chapter 5: 
• Table Processing (Section 5.2) 
• Temperature Calculations for Sensors (Section 5.5.6) 

- Table Processing for Sensor Calculations 
- Algorithms for Sensor Calculations 
- Coefficient Calculations for the Equations 

• The Floating Point Package (Section 5.6) 

2.1 Connection of Analog Signals and Sensors 
Figure 2 shows possible methods for connecting analog signals to the ADC. The 
methods shown are valid for the 12-bit and 14-bit conversion modes: 
1. Current supply for resistive sensors 
2 .. Voltage supply for resistive sensors 
3. Direct connection of input signals 

Rsens1 at analog input AO 
Rsens2 at analog input A 1 
Vin at analog input A7 

4. Four-wire circuitry with current supply Rsens3 at output A3 and inputs 
A4andA5 

5. Reference diode with voltage supply Dr1 at analog input A6 
6. Reference diode with current supply Dr2 at analog input A2 
The resistance of the wiring, Rwire, in the following equations may be neglected 

. if it is low compared to the sensor resistance. 

SVec t-----..-­
Rex Rv A3 

-+ Ics 

Relit AS 1---+--'" 
~n ~~~--~---~A7 A4 

R1 MSP430C32x 
.------IA1 

A5 

88n83 

M A2t---r~ 

OV 5V/3V 

Figure 2. Possible Connections to the ADC 

2.1.1 . Current Supply for Sensors 

RVd 

The ADC formula for the resistor Rx in figure 3 (Rsens1 in Figure 2) which is fed 
from the current source is (14-bit conversion): 
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N = VAO X 214 = les X (Rx+ 2 X Rwire) X 214 
VREF VREF 

0.25 X VREFx (Rx + 2 X Rwire) . 
N = Rex X 214 = Rx + 2 X RWlrex 212 

Vre' Rex 

This leads to: 

Rx = Rex x 2~2 - 2 x Rwire 

For the 12-bit conversion the formula is: 

N = VAO - n x 0.25 x VREFx 214 = (RX + 2 x Rwire _ n) x 212 
VREF Rex 

This leads to: 

Rx = Rex x (2~2 + n) - 2 x Rwire 

Where: N 
Rx 
Rex 
Rwire 
VREF 

VAO 

n 
Ics 

Rx 

ADC conversion result for resistor Rx 
Sensor resistance [n] 
Current source resistance (defines Ics) [n] 
Wiring resistance (one direction only) [n] 
Voltage at terminal SVcc (internal or external reference) [V] 
Voltage at the analog input AO M 
Range number (0,1,2,3 for ranges A,S,C,D) 
Current generated by the current source [A] 

VREF SVcc 

Rex 

Rex! 

Rwlre res +- MSP430 AD 

Rwlre VAO~ 

OV SV 

Figure 3. Current Supply for the Sensor Rx 
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If the resistance of the wires may be neglected (Rx » Rwire) then the above 
formulas simplify to (14-bit conversion): . 

N = Rx X 212 
Rex Rx= Rex x 2~2 

For the 12-bit conversion the formulas become: 

N = ( Rx - n) x 212 
Rex Rx = Rex x (.1:L + n) 212 

2.1.2 Voltage Supply for Sensors 
The ADC formula for the resistor Rx in figure 4 (Rsens2 in Figure 2) which is 
connected to Vref through the series resistor Rv is (14-bit conversion): 

N = VAl X 214 = Rx + 2 x Rwire. x 214 -+ Rx = Rv x __ N_ - 2 x Rwire 
-VREF Rv+ Rx+ 2 x RWlre 214 - N 

For the 12-bit conversion the formula is: 

N = ( VAl _ n x 0.25) x 214 = ( Rx + 2 x Rwire. - n x 0.25) x 214 
VREF Rv + Rx + 2 x RWlre 

Thjs leads to: 

Rx = Rv x _-:::.,.;1 ___ - 2 x Rwire 
214 1 

N+nx2'2 -

Where: Rv 
VAl 

Rx 

Resistance of the series resistor 
Voltage at the analog input A 1 ----........ 

VIIIIF sVcc 

Rv 

Rwlre 

OV 5V 

Figure 4. Voltage Supply for the Sensor Rx 

[a] 
M 

Ifthe resistance ofthe wires can be neglected (Rx» Rwire), the above formulas 
simplify for the 14-bit conversion to: 

N=~ X214 -+ Rx= Rvx __ N-
Rv+ Rx 214 - N 
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For the 12-bit conversion the formula becomes: 

N = (~ - n x 0.25) x 214 -. Rx = Rv x 1 Rv+ Rx 214 _ 1 
N+nx2'2 

2.1.3 Four-Wire Sensors Circuit 

Four-wire circuits eliminate errors due to the voltage drop caused by the 
connection lines (Rwire) to the sensor. Instead of two lines, four are used-two 
for the measurement current, and two for the sensor voltages. The two sensor 
lines do not carry current; the current at the analog inputs is in the nanoamp 
range, so no voltage drop falsifies the measured values. The four-wire circuit is 
used with a heat volume counter shown in the Section 4.5, Heat Volume Counter .. 

Figure 5 shows the four-wire circuit with its current supply. 

VAEF SVcc 

T Rex 

RWire .-.JCB 
Rex! 

A2 

VA' 
I <~~ ----. A1 

1=0 MSP430 
1=0 ----. 

AO 

R2~ VAO 1 Rwlre 

AVaa 

1 DVaa DVcc 

I T 
OV 5V 

Figure 5. Four·Wlre Circuit With Current Supply 

The difference ~N of the two measurement results for the analog inputs A 1 and 
AOis: 

Applications 

LI N = (VAl - VAn) X 314 = los x ((Rx + Rwire + R2) - (Rwire + R2)) x ,~14 
v REF vREF 

LIN = 0.25 x VREF x Rx X 214 = Rx X 212 
Rex VREF Rex 

This gives for Rx: 

Rx = Rex x LIN 
212 

Where: aN Difference of the two ADC results (here NA 1 - NAO) 

As the two final equations for ~N and Rx show, the influence of the Rwire 
resistances disappears completely. 
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NOTE: 
The two formulas above are valid for 14-bit and 12-bit conversions. If 
the 12-bit ADC results are measured in different ADC ranges, then the 
12-bit results need a correction (the missing two MSBs-13th and 14th 
bits-of the ADC results must be added): . 
Range A: 0 Range B: 1000h Range C: 2000h Range D: not possible 

Resistor R2 is necessary, because the ADC cannot measure down to AVss (0 V) 
due to saturation effects. R2 may be quite small; it is only necessary to get above 
the saturation voltage-'-rlormally less than 30 ADC steps. 

The software to measure t.N is shown next. The hardware of Figure 5 is used: 
Measure upper leg of Rx at input Al and store ADC value. 
The Current Source is connected to A2 

MOV 
CALL 
MOV 

#RNGAUTO+CSA2+Al+VREF,&ACTL 
#MEASR 
&ADAT,R5 

Define ADC 
Upper leg voltage of Rx (Al) 
Store Al value in RS 

Measure lower leg of Rx at input AO. Current Src to A2 

MOV #RNGAUTO+CSA2+AO+VREF,&ACTL ; Define ADC 
CALL #MEASR ; Lower leg voltage of Rx (AO) 

The difference delta N of the 2 measurements is proportional 
to the value Rx: Rx - Rext x del taN x 2A-12 . 

SUB &ADAT,R5 ; R5 contains delta N 
; Calculat~ Rx 

2.1.4 Connection of Bridge AssemblIes 
Bridge assembly sensors are best known for pressure measurement. The 
voltage difference (Vp - Vm) between the two bridge legs changes with the 
pressure to be measured. For clarity, the temperature measurement circuitry that 
is normally necessary is not included. 

·VAIF --_--....... 

OV 3V(5V) 

Figure 6. Connection of Bridge Assemblies 

On the left side of Figure 6, a bridge assembly creates a voltage difference large 
enough to be measured by the ADC with appropriate resolution. The 
measurement result is the difference of the two ADC results measured at the A 1 
and A2 analog inputs. . 
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AN = VA2 - VA1 X 214 __ AV = AN X VREF X 2- 14 = VREF'X LlRb 
VREF Rb 

Where: I1N Difference of the two ADC results (here NA2-NA1) 
VAx Voltage at the ADC input Ax measured to AVss M 

11 V Difference of the two bridge leg voltages (here VA2-VA1) [V] 
I1Rb Change of a single bridge resistance due to measured value 

[OJ 
Rb Nominal value of a single bridge resistor [OJ 

With the above equations, the interesting bridge output value I1RblRb becomes: 

ARb = AN x 2- 14 
Rb 

If the difference of the two measurements is too small to be used, an operational 
amplifier may be used as shown on the right of Figure 6. Here the possibility to 
measure the reference voltage (one of the two bridge legs) is shown too: analog 
input A4 measures the reference that can be used for a better result together with 
the input A3. 

The voltage difference A V between the analog inputs A3 and A4 is: 

A V = V A3 - V M = (v x (Vp - Vm) + Vp) - Vp = v x (Vp - Vm) 

Applications 

AV = R1 x (Vp - Vm) = R1 x VREF «Rb + ARb) - (Rb - ARb)) = R1 x VREF x ARb 
R2 R2 2xRb R2 Rb 

The same voltage difference 11 V described with the ADC equation is: 

AV = VA3 - VA4 = (~:: - ~~:) x VREF = (NA3 - NM) X ~~~F 

Combining the two equations above delivers the interesting two equations: 

AN= vxARbx214=R1 xL1Rbx214 
Rb R2 Rb 

For the bridge output value ARbIRb, the following equation is used: the value 
I1Rb/Rb is necessary for the final calculation ofthe measured item, e.g., pressure 
p = f(I1Rb/Rb): 

ARb = ~ = R2 x NA3 - NM 
Rb vx 214 R1 214 

Where: AN 
AV 

v 
Vp 

Vm 

Difference of the two ADC results (here NA3-NA4) 
Voltage difference of analog inputs A3 And A4 
(VA3-VA4) 
Amplification of the operational amplifier: v=R1/R2 
Voltage of the bridge leg connected to the 
noninverting input 
Voltage of the bridge leg connected to the 
inverting Input 

M 

[V] 

M 
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If the reference input (analog input A4 in Figure 6) is not implemented, then the 
difference of two measurements at the amplifier output (analog input A3 in 
Figure 6) is used. The voltage difference t. V between two measurements is: 

.<1Rb1 -.<1RbO 
.<1V= VA31 - VA30 = (v+ 0.5) x Vrefx Rb 

The same voltage difference t. V described with the ADC equation is: 

.<1 V = VA31- VA30 = (NA31 - NA30) X VREF = (NA31 - NA3o) X VREF 
214 214 214 

The two equations above deliver the equation for t.N, e.g., the ADC value 
representing the difference of two weights: 

.<1N = NA31 - NA30 = (v + 0.5) x .<1Rb1 R/ROO x 214 = (~ + 0.5) x (LJRb1 ;b.<1RbO) x 214 

2.1.5 

And for the difference of the two bridge output values that represent for example 
a weight difference. The value t.RblRb is used for the final calculation of the 
measured item, e.g., the weight G = f(t.RblRb): 

.<1Rb _ .<1Rb1 - .<1 ROO _ NA31-NA30 NA31 - NA30 
Rb - Rb -(v+0.5)x214 (~ + 0.5) x 214 

Where: t.N Difference of the two ADC results (here NA31-NA30) 
NASO ADC result of the 1 st measurement, e.g., the zero point 

of the bridge 
NASt ADC result of the 2nd measurement, e.g., a weight 

measurement 
t.V Volta.ge difference of two analog measurements 

(VA31-VA30) [V] 
VASO Voltage at the analog input A3, e.g., for the zero point 

of bridge [V] 
VASt Voltage at the analog input A3, e.g., a weight 

measurement M 
v Amplification of the operational amplifier: v=R1/R2 
t.RbO Resistor deviation (RbO-Rb) of the 1 st measurement [n) 
t.Rb1 Resistor deviation (Rb1-Rb) of the 2nd measurement [n) 
t.Rb Resistor difference (Rb1-RbO) 
Rb Nominal value of a single bridge resistance [n) 

Reference Measurements 

The simplest way to get a reference voltage Is to use the supply voltage of the 
MSP430. If this is not possible, and a stable reference voltage is needed, e.g. for 
voltage measurements, then a reference diode can be used. Figure 7 shows two 
ways to connect a reference diode to the MSP430: 
• The reference diode Dr1 is fed via the series resistor Rvd 
• The reference diode Dr2 Is fed by the current source of the MSP430 
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vsvcc 
~'---_--ISVcc 

Rvd MSP430C32x 

Rex! 

Vln -'Vvv-..... --+-------fA2 
R1 

...... -----IA1 

R2 

OV 5V/3V 

Figure 7. Connecting Reference Elements 

If the external voltage Vin shown in Figure 7 is to be measured, then the following 
equations may be used. For reference purposes the voltage VDr is used, not the 
unknown supply voltage Vsvcc: 

Vin = R1 + R2 x Nin x Vsvcc 
R2 214 

The unknown voltage Vsvcc is fixed by the measurement of the reference voltage 
VDr: 

VOr = NOr X Vsvcc- Vsvcc = 214 X Va 
214 NOr r 

This leads to: 

Vin = R1 + R2 x Nin x VOr 
R2 NOr 

Where: Vin Input voltage to be measured M 
Vsvcc Supply voltage at terminal SVcc [V] 
VOr Voltage of the reference diode Dr [V] 
Nin ADC measurement resuH for the input voltage Vin 
NOR ADC measurement result for the reference voltage VOr 
R1, R2 Voltage divider for input voltage Vin [0] 

If the supply voltage Vsvcc is overlaid by hum (mains driven supply), then the 
referencing method shown above gives much better results if the reference diode 
Dr is measured twice-once before the input voltage Vin (NorO), and once 
afterwards (NOrl). The two ADC results, Noro and NOrl, are used as follows: 

Vin = R1 + R2 x 2 x Nin x VOr 
R2 NolO + NDr1 

The calculation above uses the mean value of the measured values ofthe voltage 
Vsvcc (linear correction). 

ApplicatIons 
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2.2 14-Bit Analog-Io-Digital Conversion With Signed Signals 

The MSP43D ADC measures unsigned signals from Vref, the voltage applied to 
the terminal SVcc (internal or external), to AVss. If signed measurements are 
necessary then a virtual zero point has to be provided. Signals above this zero 
pOint are treated as positive signals; signals below it are treated as negative ones. 
Four possibilities for a virtual zero point are shown in this chapter: 

• Virtual ground IC: The zero point is provided by a speciallC 

• Split power supply: The zero point is provided by two power supplies 

• Current source: The zero point is provided by the current source and 
a drop resistor 

• Resistor divider: The zero point is provided by a resistor divider 

The signal source is connected to the virtual zero point with its reference potential 
(first two solutions) or to the AVss potential (last two solutions). 

2.2.1 Virtual Ground Ie 
With the phase splitter TLE2426, a common zero pOint is provided which lies 
exactly in the middle of the voltage between the Vref and the AVss potential. The 
reference voltage Vref may be internal (AVcc) or external. All signed input 
voltages are connected to this virtual ground with their reference potential. The 
virtual ground voltage (at analog input AD in Figure 8) is measured after regular 
time intervals, and the measured ADC value is stored and subtracted from the 
measured analog input signal V1 (here at input A 1). This results in a signed, offset 
corrected ADC value for the signal at the analog input A 1. The virtual ground 
method is used with some electronic electriCity meters shown in Section 4.1, 
Electricity Meters. 

VREF 
,----------:5:-:V-;-!SVCC 

r------IA1 
V1 ~ 

2.5V AO 

NOTE: TheV1 ,angeis-l.5V to 1.5 V for V,ef= 3.0 V 

MSP430 

OV 5V 

Figure 8. Virtual Ground Ie for Signed Voltage Measurement 

The formula for the difference of the ADC results aN is: 

LlN = (NA1 _ NAO) = V1 + Vvg x 214 _ Vvg x 214 = ~ x 214 
VREF VREF VREF 
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This leads to the formula for V1: 

V1 = VREF x .!iN 
214 

Where: V1 
aN 
VREF 

Vvg 

Voltage to be measured M 
Difference of the two ADC results (here NA1 - NAO) 
Voltage at the SVcc terminal measured against AVss 
terminal [V] 
Voltage at the AO terminal (0.5 x Vref) [V) 

EXAMPLE: The virtual ground voltage at AO is measured and stored in location 
VIRTGR (register or RAM). The value of VIRTGR is subtracted from the ADC 
value measured at input A 1; this gives the signed, offset corrected value for the 
input signal at the A1 input. The measurement subroutine MEASR shown in 
Section 4.1 is used. 

VIRTGR . EQU R6 ; Virtual Ground ADC value 

Measure virtual ground voltage at input AO and store value 
for reference. MCLK = 3MHz: divide MCLK by 2 

MOV #ADCLK2+RNGAUTO+CSOFF+AO+VREF,&ACTL 
CALL #MEASR Measure AO (virtual ground) 
MOV &ADAT,VIRTGR i Store result: 14-bit value 

Measure analog input signal VI (0 ... 03FFFh) and compute 
a signed, offset corrected value for VI (OEOOOh ... 01FFFh) 

MOV #ADCLK2+RNGAUTO+CSOFF+Al+VREF,&ACTL 
CALL #MEASR Measure Al (input voltage VI) 
MOV &ADAT, RS Read ADC value for VI 
SUB VIRTGR,RS 

2.2.2 Spilt Power Supply 

RS contains signed delta N 
VI = Vref x del taN x 2~-14 

With two power supplies, for example with 2.5 V and -2.5 V. a potential in the 
middle of the MSP430 ADC range can be created. Figure 9 shows this 
arrangement. All Signed input voltages are connected to this voltage with their 
reference potential (0 V). The mid range voltage (at analog input AO) is measured 
after regular time intervals and the measured ADC value is stored and subtracted 
from the measured signal (here at analog input A1). This gives a signed, offset 
corrected result for the analog input A 1. The split power supply method is used 
with some of the electronic electricity meters shown in Section 4.1, Electricity 
Meters. 

Applications 
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2.5 V 

~'1 
SVCC 

Al 

OV 
V~ 

AO MSP430 

O.SXVAEt 
-2.5 V 

-2.5 V 2.5V 

Figure 9. Split Power Supply for Signed Voltage Measurement 

The formula for the difference of the ADC results aN is: 

LlN = (NA1 _ NAO) = V1 + (0.5 x VR£F) x 214 _ (0.5 x VR£F) x 214 = 2'L X 214 
VR£F VR£F VR£F 

This leads to the formula for V1 : 

V1 = VR£F x LlN 
214 

Where: V1 
aN 
VR£F 

Input voltage to be measured 
Difference of the two ADC results (here NA1-NAO) 

Voltage between the SVcc and the AVss terminals 

[V] 

[V] 
The same software example can be used as shown before with the virtual ground 
IC. 

2.2.3 Use of the Current Source 

With the current source method shown in Figure 10, a voltage that is partially or 
completely below the AVss potential can be shifted into the middle of the used 
ADC range of the MSP430. This is accomplished by a drop resistor Rh whose 
voltage drop shifts the input voltage accordingly. This method is especially useful 
if differential measurements are necessary, because the ADC value of the 
signal's midpoint (zero point) is not available as easily as with the two methods 
shown previously. If absolute measurements are necessary, then a calibration or 
a measurement with a known input voltage equal to the zero point is needed. 
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VAEF ---..... ---ISVcc 

Rex 

Rex! 
Rh 

,---'vVlr---jA1 
MSP430 

-1.25 V lo1.25V@5V VI 

-_>-----_-1 AVss 

OV 5V/3V 
NOTE: The V1 range is -0.75 V ... +O.75 V lor Vrel = 3 V 

Figure 10. Current Source Used for Level Shifting 

The example of Figure 11 shows an input signal V1 ranging from -1.25 V to 
1.25 V. To shift the signal's zero voltage (0 V) to the midpoint voltage Vzv of the 
usable ADC range (this range is approximately 0.5 x Vref, so Vzv is 0.25 x Vref) 
a current Ics is used. The necessary current Ics to shift the input signal is: 

Ics = Vzv -> Rh = Vzv = Vzv 
Rh Ics 0.25 x VREF 

Rex 

V1 t ADC Value 

VREF 03FFFh 

0.75 x VREF 03000h 

0.5 x VREF 02000h 

Applications 

0.25 x VREF 01000h +-...L--C.-+--+---+--,-O;;:------ Signal Zero Voltage 

o OOOOOh +------"""'---------.......;;:=== 
Time -. 

Figure 11. Signed Signals Shifted With the Current Source 

Therefore the necessary shift resistor Rh is (Rh includes the internal resistance 
of the voltage source V1): 

Rh = Vzv x Rex 
0.25 x VREF 

with Vzv chosen to: Vzv = 0.25 X VREF -> Rh = Rex 
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Where: Vzv Voltage of the signal midpoint (signal zero voltage) [V] 
VREF Voltage at the SVcc terminal (external or AVcc) [V] 
Rex Resistor between SVcc and Rext terminal (defines Ics) [0] 
Rh Shift resistor [a] 

The voltage VAl at the analog input A 1 is: 

VAl = V1 + Rh x les = V1 + Rh x 0.25 x VREF 
. Rex 

The offset part (Rh x les) of the last equation is typically measured during a time 
when V1 is known to be zero. This offset is stored in the RAM and subtracted from 
any measured value for V1. This leads to signed, offset corrected values for V1. 

The unknown voltage V1 is: 

V1 = VA' _ Rh x 0.25 x VREF = VREF x (J:L _ Rh x 0.25) 
Rex 214 Rex 

With Rh=Rex: V1 = VREF x (2~4 - 0.25 ) 

Figure 12 gives two practical examples for dc and ac measurements using the 
current source. Both applications measure signed voltages that are partially (the 
negative parts) out of the ADC range of the MSP430. 

To Charger _--_- roLoad 
AVecJ2 1 Q SVcc 
AVecJ4 f\ Q Rex AVss \) 

+ 10$ 

~ Rsh ~ 
Rext R1 

A1 VOli. or 

I A2 AD 
Cunent 

+- Re Ie. 

18e+~11 
lve. 

le8 

v~l lVAO VShl 
MSP430032x R2 

Rid 
Shunt 

L--__e-----I AVa. AV .. I-----~--__e-_o OV 
OV 

AC Measurement DC Measurement 

Figure 12. Signed Current Measurement With Level Shifting (Current Source) 

AC Measurement: A current transformer CT is shown. Its output voltage is 
shifted into the ADC range by the current Ics of the current source and the resistor 
Rsh. The tolerable range for Ics is: 
leSmin -< les -< Idcmax 

Icsmin is defined by the ADC specification, and Idcmax is given by the current 
transformer specification. Current transformers normally are sensitive to dc bias 
currents. Rcu is the resistance of the transformer's secondary winding (normally 
Rid» Rcu). 

VA2 = Vet + (Rsh + Reu) x Ics 
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This leads to: 

Vi t v: R h f \.Ii (N 0.25 x (Rsh + ReU)) e = A2 - S X CS = REF X 214 - Rex 

DC Measurement: The charge and discharge currents of an accumulator cause 
a voltage drop at the shunt resistor. This signed voltage drop Vsh is shifted into 
the ADC range by the resistor Rc (normally Rshunt« Rc). 

VAO = Vsh + Re x fcs 

This leads to: 

Vsh = VAO - Re x fes = VREF x (K _ 0.25 x Re) 
214 Rex 

2.2.4 Resistor Divider 

If the input voltages are high - which means normally higher than 10 x VREF -
then, as shown in Figure 13, a simple resistor divider may be used for the level 
shift into the ADC range. 

V1 VA1 

IV11» 
VREF 

VREF SVcc 

R1 

Rh 

OV SVor3V 

Figure 13. Resistor Divider for High Input Voltages 

For input voltages V1 that are much higher than VREF, the following equation is 
valid (Rh » R2): 

R111R2 R2 NAI 
VAl = V1 x R1 IIR2 + Rh + VREF x R1 + R2 = '214 X VREF 

This leads to: V1 = VREF X ( ~~~ - R1 ~ R2) x ( 1 + R1~k) 
To get the full accuracy of the ADC, the condition R1" R2 < 27 kQ must be 
fulfilled. 

Applications 
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For high input voltages V1 the resistors R1 and R2 are normally equaHt is not 
possible or necessary to correct the small error of the input slgnal-so the 
equation simplifies to: 

VAl = V1 x R1 + ~ x Rh + 0.5 x VREF= ~:~x VREF 

This leads to' V1 = VREF X ( NAl - 0 5)' x (1 + 2 x Rh) . 214 ' R1 

The de offset part (0.5 x VRIEF) of the last equation is typically measured during 
a time when V1 is known to be zero. This measured offset is stored in the RAM 
and subtracted from any measured value for V1. This leads to signed, offset 
corrected values for V1. 

For input voltages that have no dc-part (e.g., sinusoidal signals), the zero point 
can be calculated by an integration of the input signal. After a muHiple m of the 
signal period, the 'integrated sum of ADC resuHs equals m times the value of the 
zero point. 

2.3 12-81t Analog-ta-Dlgital Conversion With Signed Signals 

The asymmetrical arrangement of the four ADC ranges reduces the number of 
solutions that are possible with the 12-bit conversion: 
• Normal phase splitter circuits are not able to shift the virtual ground into the 

middle of range A, B C or 0 as it is necessary here. See Table 2 column Vvg 
for the center values of the four ADC ranges. 

• The split power supply method would need two voltages to get the zero point 
into the center of the used range: e.g., 0.625 V and 4.375 V for range A if a 
5-V supply Is used. 

NOTE: The formulas given in this section are valid only if both 
measurements for differences (~N) are measured in the same 
ADC range. Ifthey are measured in different ADC ranges, then the 
12--bit results need a correction (the missing two MSBs of the 
ADC result must be added). The correction numbers are: 

Range A: 0 
Range B: 1000h 
Range C: 2000h 
Range 0: 3000h 

2.3.1 Virtual Ground CIrcuitry 

The phase splitter TLE2426 delivers only one half of the input voHage at its output 
terminal; it cannot be used here. With a simple op amp as shown in Figure 14, 
the necessary output voltages for the four ADC ranges can be obtained: 

R .. R1 + R2. See Table 1 for the relative resistor values. 
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Table 1. Resistor Ratios 

ADCRange VoltageVVG R2 R1 

A 0.125 x VREF 0.125xR 0.875 x R 

B 0.375 x VREF 0.375 x R 0.625 x R 

C 0.625 x VREF 0.625 x R 0.375 x R 

D 0.875 x VREF 0.875 x R 0.125 x R 

Resistors R 1 and R2 can have relatively high resistances. Only the offset current 
of the op amp limits these resistor values. 

Rl 

R2 

VRIF .....-------....:..:::=---------1svcc 

.-----------1 AI 

VI -O.6VIoO.6V@5V ~ VI 

~~~------~-~AO _--0 ....... 

OV 

MSP430 

NOTE: The range for V1 is -0.37 V to 0.37 V if VREF is 3 V 

OV 5V/3V 

Figure 14. Virtual Ground Circuitry for Level Shifting 

The formula for the difference of the ADC results AN measured at the analog 
inputs A 1 and AO is: 

-dN = (NA1 - NAO) = V1 + Vvg X 214 _ Vvg X 214 = ~ X 214 
VREF VREF VREF 

This leads to the formula for V1: 

V1 = VREF x -dN 
214 

Where:V1 
AN 
VREF 
Vvg 

Voltage to be measured inside of one ADC range IV] 
Difference of two ADC results (here NA1-NAO) 
Voltage at the SVcc terminal measured against AVss terminal IV] 
Voltage at the AO Input (center of the used ADC range) M 

EXAMPLE: The center voltage of the C range (at analog input AO) is measured 
and stored in location VIRTGR (register or RAM). The value of VIRTGR is 
subtracted from the ADC value measured at analog input A 1; this gives the 
signed, offset corrected value for the input signal at the A 1 input. The 
measurement subroutine MEASR of section 4.1 is used. 

Measure center voltage of range C at analog input AD and 
store value for reference. MCLK - 3.3MHz: divide MCLK by 3 

MOV #ADCLK3+RNGC+CSOFF+AO+VREF,&ACTL 
CALL #MEASR Measure AO (center voltage) 

Applications 
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MOV &ADAT , VIRTGR Store result: 12-bit value 

Measure analog input signal VI (0 ., .OFFFh) and compute 
a signed, offset corrected value for V1 (OFBOOh ... 07FFh) 

MOV #ADCLK3+RNGC+CSOFF+A1+VREF,&ACTL 
CALL #MEASR Measure Al (input voltage VI) 
MOV &ADAT,RS Read ADC value for V1 
SUB VIRTGR,R5 R5 contains signed delta N 

V1 ~ Vref x del taN x 2'-14 

2.3.2 Use of the Current Source 

For signed signals it is necessary to shift the input signal V1 to the center of the 
ranges A or B. See Figure 15. 

V, VA' VA' 

2000h~ RangeB 
1000h 

Range: 

VREF ----<11>----1 SVcc 

Rex 

Rext 
Rh 

r---'\/Vv----l A 1 
MSP430 

-1.6 V 100.6 V@5V 

AVss 

NOTE: The range for VI is -{l.3? V to 0.3? V if VREF is 3 V 

OV 5Vor3V 

Figure 15. Current Source Used for .Level Shifting 

To get into the center of range n the necessary shift resistor Rh is: 

Rh = 0.25 x VREF x 2n + 1 x Rex _ Rh = (n + 0.5) x Rex 
2 0.25 x VREF 

The unknown voltage V1 measured to its zero point in the center of range n is: 

V1 = VAx- Rh x Ics 

With the above equation for Rh this leads to: 

V1 =0.25 x VREF x .(.l:L + n - Bl1..) 
212 Rex 

2.3.3 Resistor Divider 

The same circuitry is used as shown for the 14-bit conversion. See Figure 13. 
With the 12-bit conversion, it only makes sense to use the A range. This means 
for resistors R1 and R2, if R = R1 + R2: 

R1 = 0.875 x Rand R2 = 0.125 x R. 
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For input voltages V1 that are much higher than VREF, the following equation is 
valid (Rh » R2): 

R111R2 R2 NAl 
VA1 = V1 x R111R2 + Rh + VREF x R1 + R2 = 214 x VREF 

With the above values for R1 and R2 this leads to: 

V1 = VREF x 0.125 x (~~; - 1) x (1 + 0.125 x ~~875 x R) 
To get the full accuracy of the ADC, the condition R111R2 <27 1<0 must be fulfilled. 
This means R < 247 1<0. 

2.4 Reference Resistor Method 

A system that uses sensors normally needs to be calibrated, due to the tolerances 
of the sensors themselves and of the ADC. A way to omit this costly calibration 
procedure is the use of reference resistors. Two methods can be used, depending 
on the type of sensor: 
1. Platinum sensors (e.g., PT500, PT100): These are sensors with a precisely 

known temperature/resistance characteristic. Two precision resistors are 
used with the sensor resistances of the temperatures at the two limits of the 
temperature range. 

2. Other sensors: Nearly all other sensors have insufficiently tight tolerances. 
This makes it necessary to group sensors with similar characteristics, and to 
select the two reference resistors according to the sensor resistances at the 
upper and the lower measurement range limits of these groups. 

If the two reference resistors have-within the needed accuracy-the values of 
the sensors at the measurement range limits (or at other well-defined points) then 
all tolerances are eliminated during the calculation. Therefore, no calibration is 
necessary. 

NOTE: For voltage measurements, the reference method 
described above can be used with two reference voltages instead 
of two resistors. In this case, substitute voltages for the 
resistances used with the next equations. 

2.4.1 Reference Resistor Method Without Amplification 
This method can be used for the input range given by the current source-the A 
and B ranges and part of range C. For details, see Architecture and Function of 
the MSP430 14-Bit ADq1) 

Applications 
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The nominal formulas given in the previous section need to be modified if the 
tolerances of the ADC, the current source, the extemal components, and the 
sensor are considered. The ADC value Nx for a given resistor Rx is now: 

Nx = Rx X 212 x Slope + Offset 
Rex 

The slope and the offset are used for the correction of the measured result Nx. 
For the calculation of the slope and offset measurements with different resistors, 
Rx are necessary. With the hardware shown in figure 16 this calibration process 
can be omitted. 

R.~[ 
svec 

los ~ 
Rext 

AO 

Al 

A2 
MSP430 

Rre! 1 Rx 
~ 

Rret2 

..-: 
AVss 

DVss DVec 

T I 
OV 3V/5V 

Figure 16. Referencing With Precision Resistors - No Amplification 

With two known resistors Rref1 and Rref2 as shown in Figure 16, it is not 
necessary to know the slope and the offset to measure the value of the unknown 
resistor Rx exactly. Measurements are made for Rx, Rref1, and Rref2. The ADC 
results for these three measurements are: 

Nx= Rx X 212 
Rex 

Nref2 = Rref2 x 212 
Rex 

The result of the solved equations shown above leads to: 

Nx- Nref2 
Rx = N f2 N f1 x (Rref2-Rref1) + Rref2 fe - re 

Where: Nx 
Nref1 
Nref2 
Rref1 
Rref2 

ADC conversion result for sensor Rx 
ADC conversion result for reference resistor Rref1 
ADC conversion result for reference resistor Rref2 
Resistance of Rref1 (equals Rxmin) 
Resistance of Rref2 (equals Rxmax) 

[01 
[01 

As shown, only known or measurable values are needed for the computation of 
Rx from Nx. Slope and offset influences of the ADCdisappear completely: 
• The offset disappears due to the two subtractions, one in the numerator and 

one in the denominator of the fraction above. 
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• The slope disappears due to the division 

EXAMPLE: The values of these two reference resistors are chosen here for a 
PT1000 temperature sensor: 

Rref1: 1000 0: The value of Rxmin. The resistance of a PT1 000 sensor at 
O·C (Tmin) 
Rref2: 13800: The value of Rxmax. The resistance of a PT1 000 sensor at 
100·C (Tmax) 

2.4.2 Reference Resistor Method With Amplification 
If amplification is necessary to get a better resolution, then the solution shown 
below may be used. The full AOC range (0 to 3FFFh) can be used at analog input 
A 1 despite the use of the current source at analog input AO. As with the section 
above, the offset and slope disappear; this is also true for the voltage drop at the 
outputs TP.x due to ROSon. The TP port of the measured resistor is switched to 
AVss potential; the other ones are set to Hi-Z. 

The only error source of this arrangement is the difference of the. internal 
resistances of the TP outputs (aROSon). To minimize the influence of different 
internal resistances ROSon, only sensors with a minimum resistance should be 
used, e.g., PT1000 not PT100. 

For the full 14-bit resolution at the analog input Ai the following design equations 
are valid (Rref2 > Rref1). They simplify this way if Rex is chosen to: 

Rex = Rref2 
2 

This results in a maximum voltage of VREF/2-the safe maximum output voltage 
the current source can deliver-at the analog input AO for the maximum resistor 
value Rref2. 

Vm = Rref1 x VREF 
Rref1 + Rref2 

v= VREF =~ 
VREF-2 x Vm R211R3 

The calculated amplification vof the op amp needs to be reduced by 10 to 15% 
to be sure that VA1 does not saturate under worst case conditions. 

App//cstions 
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VRSF 

R2 

SVec 

R1 Rex l 
V=R1/(R2I1R3) 1..... 1 Rext 

MSP43OC32x 
Vm I . ./ A1 

..... 
AO 

--:~ +-
les 

R3 

Rref1 Rx Rref2 
TP.O 

TP.1 

TP.2 

AVss 
OV 

DVss DVcc 

I 
OV 5V/3V 

Figure 17. Referencing With PreCision Resistors - With Amplification 

As Figure 17 shows, with two known resistors Rref1 and Rref2 it is possible to get 
the values of unknown resistors exactly. The result of the solved equations gives: 

Rx = LJNx --: LJNref2 x (Rref2 - Rref1) + Rref2 
LJ Nref2 - LJ Nref1 

Where: t:.Nx 
t:.Nref1 
t:.Nref2 
Vm 

Difference of the two ADC results for Rx (NA1-NAO) 
Difference of the two ADC results for Rref1 (NA1-NAO) 
Difference of the two ADC results for Rref2 (NA1-NAO) 
Voltage generated by the resistor divider R2 and R3 

The differences named above are the differences between the ADC conversion 
results measured at the analog inputs A 1 and AO for each resistor: 
t:.N = NAt - NAO. 
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3 Hum and Noise Considerations 

3.1 Connection of Long Sensor Lines 
If the distance from the MSP430 to the sensor is long (>30 cm) then it is 
recommended to use a shielded cable between the microcomputer and the 
sensor. This avoids spikes at the ADC input that cause measurement errors, and 
also gives protection to the ADC input. Figure 18 shows this schematic on the left 
side. In the same way, four-wire circuitry may be connected to the MSP430. 

If a shielded cable cannot be used, the circuitry shown on the right side of Figure 
18 should be used; the AVss line in parallel to the signal line gives a relatively 
good screening. Twisting the two lines increases the protection. 

To protect the measurement against spikes, hum, and other unwanted noise see 
Section 5.3, Signal Averaging and Noise Cancellation. This section shows 
additional possibilities for the minimization of these influences by software. 

SVcc SVec 

,-_____ , Rv Rv 

I RSEN. I Long cable Rp Rp Long cable 
At A2 

I 
I 

MSP43032X 
L. _____ .J I Shield Shield c C 

No Shield, Twisted Pair 

AVss AVss 

DVss DVcc 

OV I5V 

Figure 18. Sensor Connection via Long Cables With Voltage Supply 

With the circuitry of figure 18, the minimum time tdelay between the switch-on of 
the voltage SVcc and the actual measurement-to get the full 14-bit 
accuracy-is: 

tdelsy> In214 x rmax = 9.704 x rmax = 10 x rmax 

The value of 'tmax is: 

rmsx = (Rp + RsensmaxllRv) x C 

If the current source is used, then: 

Rv = 00: 'rmax = (Rp + Rsensmax) x C 

RSENS 
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3.2 Grounding 

Correct grounding is very important for ADCs with high resolution. There are 
some basic rules that need to be observed1• See Figure 19 also. 
1. Use a separate analog and digital ground plane wherever possible: thin 

traces from the battery to terminals DVss and AVss'should be avoided. 
2. The AVss terminal should serve as a star pOint for all analog ground 

connections e.g. sensors, analog input signals. The DVss terminal should 
serve as a star point for all digital ground connections e.g. switches, keys, 
power transistors, output lines, digital input signals. 

3. The battery and storage capacitor Cb should be connected close together 
(the capacitor Cb is needed for batteries with a relatively high internal 
resistance). From this capacitor two different paths go to the analog and the 
digital supply terminals. Two small capaCitors are connected across the 
digital (Cd) and the analog (Ca) supply terminals. See Figure 19. 

4. .Rules 1 to 3 above are also true for the Vcc paths (DVee and AVec). 
5. The AVss and DVss terminals must be connected together externally; they 

are not connected internally. The same is true for the AVcc and DVcc 
terminals. These connections should be made with the configuration shown 
in Figure 19. 

6. The coil L should be used in very difficult cases. 
7. The connections ofthe capacitor Cb are the star point ofthe complete system. 

This is due to the low impedance of this capacitor. . 

4>--~>-----ISVec 

Rv 

Rex! 

...... ----IA1 
MSP430C32x 

RseNS2 RSSNSI AO 

AVes AVec DVes DVec 

To Other DlgllBl Parts 

To Other Analog Parts 

Figure 19. Analog-to-Digltal Converter Grounding 

If a metalized case is used around the printed circuit board containing the 
MSP430 then it is very important to connect the metallization to the ground 
potential (0 V) of the board. Otherwise the behavior is worse than without the 
metalization. 

1 These grounding rules were developed by E. Haselofl 01 TID. 
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3.3 Routing 

Correct routing for a PC board is very important for minimum noise. Figure 20 
shows a simplified routing that is not optimal; the gray areas receive EMI from 
external sources. For a minimum influence coming from external sources these 
areas must be as small as possible. 

r----------------, 
I 
I 

Figure 20. Routing That Is Sensitive to External EMI 

Figure 21 shows an optimized routing; the areas that may fetch noise have a 
minimum size. 

..--------------------, 

I 

I 
I 
I 

Rv I 
SVec I 

I 
I 
I 

1.. _____ _ 

Figure 21. Routing for Minimum EMI Sensitivity 
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4 Enhancement of the Resolution 

Many applications need a higher resolution than the 14-bit ADC can provide. For 
these applications the following hints may be helpful. 

NOTE: These enhancements make it necessary to pay attention 
to the rules given in Chapter 3. Without observing these rules 
strictly, no enhancement will be seen. 

4.1 16-Bit Mode With the Current Source 

With the use oftwo additional output terminals (I/O-ports or TP-outputs) the 14-bit 
ADC may be expanded to a resolution of nearly 16 bits. The principle is simple: 
the resistor Rex of the current source is modified by paralleling two additional 
resistors (see Figure 23). These resistors have values that represent one half and 
one quarter of a single ADC-step. Due to the fact that these fractions of a step 
are accurate only at one point of the ADC-range, this enhancement gives only 
better resolution, not better accuracy. To get the 16-bit result, four measurements 
are necessary: one for every combination of the two additional resistors. If the 
results of these four measurements are added, a 16-bit result is reached. See 
Figure 22. 

i ADCValue 

XX:x::j ~ 
XXXX-l ~ 

OOOOOh -4------+--+--+--+---
o VO Vl V2 V3 

ADe Input Voltage ----. 
Figure 22. Dividing of an ADC·Step Into Four Steps 

Table 2 shows the different results of these four measurements for the four 
possible input voltages vo toV3 inside of one ADC-step; the table refers to the 
hardware shown in Figure 23. 

Table 2. Measurement Results of the 16-81t Method 

INPUT MEASUREMENT 1 MEASUREMENT 2 MEASUREMENT 3 MEASUREMENT 4 MEAN VALUE 
TP.l: HI-Z TP.l: HI·Z TP.l: HIOUT TP.l: HI OUT 

VOLTAGE TP.O: HI·Z TP.O: HI OUT TP.O: HI·Z TP.O: HI OUT 
(BINARY) 

VO XXXX XXXX XXXX XXXX XXXX.OO 

Vl XXXX XXXX XXXX XXXX+l xxxx.Ol 

V2 XXXX XXXX XXXX+l XXXX+l XXXX.l0 

V3 XXXX XXXX+l XXXX+l XXXX+l XXXX.ll 
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r------ITP.O 
...----iTP.1 

Enhancement of the Resolution 

Simplified Circuity of a TP-oulpul SVec 

Rn 

TP.x 
Vee 

o HI-Z 
o 

Vss. 

R16 R15 
MSP430C32x 

L---<i--..... -I Rexl 

A1 

Rx 

OV 5V 

Figure 23. Hardware for a 16-81t ADC 
The values for resistors R16 and R15 are: 

Rp = 214 X 0.25 x RxO = 212 X RxO 
m m 

Where: Rp Parallel resistor to Rex (here R14 and R15) [oJ 
RxO Sensor resistance at the point of the highest accuracy [OJ 
m Fraction of an ADC step (0.25 or 0.5) 

EXAMPLE: With the hardware shown in Figure 23, four 16-bit measurements 
are made. The result is placed into R5. The software may also be written with a 
loop. The software assumes ascending order for the two TP outputs. 

MOV 
BIC.B 
BIS.B 
CALL 

MOV 
ADD.B 
CALL 
ADD 

ADD.B 

CALL 
ADD 

ADD.B 
CALL 
ADD 

BIC.B 

#RNGAUTO+CSA1+Al+VREF,&ACTL 
#TP1+TPO,&TPE 
#TP1+TPO,&TPD 
#MEASR 

&ADAT,RS 
tTPO,&TPE 
#MEASR 
&ADA1',R5 

#TPO,&TPE 

#MEASR 
&ADAT,RS 

#TPO,&TPE 
#MEASR 
&ADAT,R5 

tTPl+TPO,&TPE 

The measurement routine used above: 

MEASR BIC . B #ADIFG, &IFG2 

BIS #SOC, &ACTL 
MO BIT.B #ADIFG,&IFG2 

JZ MO 
RET 

Define ADC 
TP.O and TP.l to Hi-Z 
Set TPD.O and TPD.l to Hi 
Measure with R1S = R16 = 
Hi-Z 
14-bit value to result 
Set R16 to Hi-Out 
Measure 
Add 14-bit value to 
result 
Set R1S to Hi-Out,R16 
Hi-Z 
Measure 
Add 14-bit value to 
result 

to 

Set R15 and R16 to Hi-Out 
Measure 
Add 14-bit value to 
result 
TP.n off 
16-Bit result 4N in R5 

Clear EOC flag 
Insert delays here (NOPs) 
Start measurement 
Conversion completed? 
No 
Result in ADAT 
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Enhancement of the Resolution 

4.2 Enhanced Resolution Without Current Source 
The principle is explained in the last section. Figure 24 shows a hardware 
proposal for the measurement part ofa scale using the MSP430C32x. With the 
resistor Rn, the resolution of the MSP430 ADC is increased to 15 bits: 
• TP.O is off (Hi-Z): normal measurement 
• TP.O is switched to Vcc: the current into the right bridge leg increases the 

voltage at A 1 by 0.5 steps of the ADC 

Two differential ADC measurements (NAO - NA 1 )-one with TP.O off and one with 
TP.O switched to Vcc-are summed-up and provide (nearly) 1 !Xlit resolution. 
The result of these four measurements is 2 x AN. 

The formulas derived in the Connection of Bridge Assemblies section are valid 
here as well. 

VR.F Pressure Bridge Assembly 
avec 

MSP43OC32c 

AD 1----___ --< 
A1 ~~~~~re~nc~8 __ ~~_~ 

Rn Ieorr 
TRD~~~-4-~--+--~ 

3V(5VI ov 

Figure 24. ADC-Resolution Expanded to 15 Bits 

The formula for Rn to cause a voltage difference AVAO (here 0.5 ADC steps) at 
the ADC input is: 

LI VAO = VREF = Rb x (vee - VREF) x V 
215 2 x Rn + Rb 2 

This gives an approximate value for Rn (Vcc = VREF): 

Rn ... Rb x 213 x R1 
FI2 

Where: AVAO 
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Rb 
Rn 
v 
VREF 
DVcc 
R1.R2 

Change of the input voltage at input AO due to Rn [V) 
Resistance of a half bridge leg (here 350 0) [0) 
Resistance of the resistor for 15 bits resolution [0) 
Amplification of the operational amplifier: v = R1/R2 
Supply voltage at the SVcc terminal (int. or ext.) [V] 
Supply voltage at DVcc terminal (output voltage of TP.O) M 
Resistors defining the amplification of the op amp 



Enhancement of the Resolution 

Without any change to the hardware above, the resolution of the ADC can be 
increased to 15.5 bits (this method is only possible with sensor assemblies like 
those shown in Figure 24, that deliver output voltages near 0.5 x Vref): 
• TP.O is off (Hi-Z): normal measurement 
• TP.O is switched to Vcc: the current into the right bridge leg increases the 

voltage at A 1 by 0.5 steps of the ADC 
• TP.O is switched to Vss: the current out of the right bridge leg decreases the 

voltage at A 1 by 0.5 steps of the ADC 

Three differential ADC measurements (NAO - NA1)-one with TP.O switched to 
Hi-Z, one with TP.O switched to Vss, and one switched to Vcc-are summed-up 
and provide (nearly) 15.5-bit resolution. The calculations following these six 
measurements must be changed for an input value of 3 x N. 

ilVAO is chosen to: .J VAO = VREF 
3 x 214 

The circuitry of Figure 24 leads to very high values of Rn with high amplifications 
v: for the above example Rn = 286 Mn for v = 100. If these resistor values are 
too high, then the circuitry shown in Figure 25 should be used. The registor values 
of R15 and R 16 have the same effect as the circuitry in Figure 24, but are much 
smaller. 

VAEF Pressure Bridge Assembly 
SVcc 

MSP430C32x 

AOt------< 

Rb=3500 

3V/5V OV 

Figure 25. ADC-Resolutlon Expanded to 16 Bits 

The formula for R 15 and R 16 to cause a voltage difference il VAO of 0.5 ADC steps 
for R15 and 0.25 ADC steps for R16 at an ADC input is now: 
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Rn '" 2n x R1 x Rp x Rb 
R2 Rs 2 

Where: n Bit number of resolution resistor (15 or 16) 
Rn Reslstance of resolution resistor (bit n) [a] 
Rb Resistance of a half bridge leg (here 350 0) [a] 
Rp Parallel resistor (chosen to be 1 k: small compared to 1 M) [a] 
Rs Serial resistor (chosen to be 1 M: large compared to 350 0) [a] 

With the circuitry of Figure 25 (v = 100) R15 now becomes 573 k and R16 
becomes 1.15M. 

The necessary four measurements are described in Table 2. Each measurement 
consists of two ADC conversions that are subtracted afterwards (aN = NAO - NA 1). 
The four differences aN are summed and deliver a 16-bit result with nearly two 
bits more resolution than the normal 14-bit result. The result in R5 is 4 x AN. 

EXAMPLE: With the hardware shown in Figure 25, four differential 
measurements for AN are made (aN = NAO - NA1). The four values for AN are 
summed in R5. The software assumes ascending order for the two TP outputs 
(TP.x and TP.x+ 1). 

BIC.B #TPl+TPO,&TPE TP.O and TP.l to Hi-Z 
BIS.B #TP1+TPO,&TPD Set TPD,O and TPD,1 to Hi 
MOV #RNGAUTO+AO+VREF,&ACTL Define ADC 
CALL #MEASR Measure with R15 - R16 - Hi-Z 
MOV &ADAT,R5 14-bit value to result 
MOV #RNGAUTO+Al+VREF,&ACTL Define ADC 
CALL #MEASR Measure with Rl5 = R16 - Hi-Z 
SUB &ADAT,R5 (NAO - NAl) to result 

ADD,B #TPO,&TPE Set R16 to Hi-Out, Rl5 = Hi-Z 
M9V #RNGAUTO+AO+VREF,&ACTL Define ADC 
CALL #MEASR Measure 
ADD &ADAT,R5 Add l4-bit value to result 
MOV #RNGAUTO+Al+VREF,&ACTL Define ADC 
CALL #MEASR Measure 
SUB &ADAT,R5 (NAO - NA1) to result 

ADD,B #TPO,&TPE Set R15 to Hi-Out,Rl6 to Hi-Z 
MOV 'RNGAUTO+AO+VREF,&ACTL Define ADC 
CALL .MEASR Measure 
ADD &ADAT,R5 Add 14-bit value to result 
MOV #RNGAUTO+Al+VREF,&ACTL Define ADC 
CALL #MEASR Measure 
SUB &ADAT,R5 (NAO - NAl) to result 

ADD,B #TPO,&TPE Set Rl5 and Rl6 to Hi-Out 
MOV #RNGAUTO+AO+VREF,&ACTL Define ADC 
CALL #MEASR Measure 
ADD &ADAT,R5 Add 14-bit value to result 
MOV #RNGAUTO+Al+VREF,&ACTL Define ADC 
CALL .MEASR Measure 
SUB &ADAT,R5 (NAO - NA1) to result 

BIC.B #TPl+TPO,&TPE TP.n off 
16-Bit result 4xN in R5 
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4.3 Calculated Resolution of the 16-Bit Mode 

4.3.1 16-81t Mode With the Current Source 

Enhancement of tha Resolution 

To give an idea of how much better the results of the 16-bit mode can be 
compared to the 14-bit mode of the ADC, the results of four calculations are 
shown in Table 3. The table shows the statistical results for the deviations of the 
corrected result in ADC-steps: 
• The first column shows the statistical results for the normal 14-bit ADC 

• The second column shows the statistical results for measurements that have 
the highest accuracy at the lowest sensor value: RxO = 1000 0 

• The third column shows the statistical values if the point of highest accuracy 
is moved to the midpoint of the sensor resistance: RxO = 1190 0 

• The fourth column shows the same as before if the highest sensor value is 
used for the highest accuracy: RxO = 1380 (.I 

Calculation values and explanations: 

Rxmax: 1380.0 0 Highest sensor resistance (100°C for PT1000) 
Rxmin: 1000.0 0 Lowest sensor resistance (O°C for PT1000) 
RxO: Sensor resistance for highest accuracy (3 different values) 
aRx: 0.01 0 Step width for resistance value during calculation 
Rex: 690.0 0 Calculated external resistor for the Current Source 
R 15: Calculated resistor for the 15th bit 
R16: Calculated resistor for the 16th bit 

Table 3. Calculation Results for Different 16-Bit Corrections 

ITEM NO CORRECTION RxO= 10000 RxO= 11900 RxO = 13800 
14-BIT 16-BIT 180BIT 180BIT 

R15 N/A 8.2MO 9.7Ma 11.3MO 

R16 N1A 16.4MO 19.5Ma 22.6MO 

Mean value -0.5001 -0.0538 -0.1250 -0.1767 

Standard deviation 0.2667 0.1019 0.0841 0.0696 

Variance 0.0633 0.0104 0.0071 0.0061 

Table 3 shows the improved resolution especially if the best resolution is 
programmed for the lowest sensor resistance (RxO = 1000 0). The result is 
derived from 38,000 measurements with a step width of 0.01 n The 14-bit results 
show the (correct) inherent error of minus 0.5 steps that is enhanced with the 
three 16-bit modes by a factor of 3 to 9. 

4.3.2 16-8it Mode Without the Current Source 

Circuitry like shown in Figure 25 is normally used: this means the input voltage 
of the analog inputs is always near 0.5 x Vref. Therefore the results of Table 3 
column RxO = 1190 (.I (highest accuracy at the center olthe resistance range) are 
valid. 
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5 Hints and Recommendations 

5.1 Replacement of the First Measurement 

In certain cases the first measurement is discarded. Instead, a second 
measurement is started and used. This method is especially useful if the settling 
time for the ADC is insufficient. 

MOV 
CALL 
CALL 
MOV 

#XX,&ACTL 
tMEASR 
#MEASR 
&ADAT,RS 

5.2 Grounding and Routing 

Define ADC 
1st measurement (not used) 
2nd measurement is used 
for calculations. Result to RS 

With increasing ADC accuracy and CPU frequency, the board layout becomes 
more important. A few hints may help to Increase the performance of the ADC: 
• To avoid cross talk from one ADC input line to the other one, grounded lines 

(AVss potential) between the analog input lines are recommended. 
• Large ground planes (OV potential) should be used wherever possible. Any 

free space on the board should be used for this purpose. 
• Analog input lines should be as short as possible. If this is not possible, input 

filtering may be necessary. 
• To get reliable ADC results in noisy environments, additional hardware and 

software filtering should be used. Chapter 5 describes several methods to do 
this in Section 5.3, Signal Averaging and Noise Cancellation: over sampling, 
continuous averaging, weighted summation, rejection of extremes, and 
synchronization to hum. Tested software examples are included. 

See also sections 3.2 and 3.3. 

5.3 Supply Voltage and.Current 

Completely different environments exist for battery and mains driven systems. A 
few hints are given for these two supplies. More information concerning this topic 
is Included in Section 3.8, Power Supplies. 

5.3.1 Influence of the Supply Voltage 

The supply voltage is used for reference purposes if the Vref-bit (ACTL.1) is set. 
This means achange olthe analog supply voltage AVcc during the measurement 
influences the final ADC result. The same is true for an external reference 
voltage. 

Figure 26 shows a decreasing analog supply voltage with the ADC timing. The 
error of the ADC result N is mainly introduced during the conversion time for the 
12 LSBs ofthe ADC result. The input sample is taken with an AVec voltage VrefO, 
the LSB is generated with an AVec voltage Vref1. The two results have the ratio: 

M VrefO 
No = Vref1 
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The maximum error emax in per cent is therefore: 

emax = M - No x 100 = ( VrefO - 1) x 100 
No Vref1 

Where: No ADC result measured with a stable AVec of VrefO 
Nl ADC result measured with a stable AVcc of Vref1 
emax Maximum error caused by unstable AVee [%] 
VrefO Value of AVee during the sampling of the conversion 

~~ M 
Vref1 Value of AVcc at the end of conversion [V] 

I 
t­
I 
I 

--l 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

Decreasing AVec 

t-
I 
I 
I 
I 

Sampling Conversion Sample End of Conversion I 

Figure 26. Influence of the Supply Voltage 

The result caused by an unstable AVec can normally be detected by its trailing 
series of zeroes or ones. If, during the conversion, one of the leading bits is set, 
or reset, and this bit has the wrong state for the changing reference voltage, then, 
all remaining bits will have the same value, e.g., 1 for a decreasing AVec. 

---. 
Time 

5.3.2 Battery Driven Systems 
If the battery used has a high internal resistance Ri (like some long-life batteries) 
then the parallel capacitor Cb (see Figure 19) must have a minimum capacity 
Cbmin: the supply current for the measurement part-which cannot be delivered 
by the battery-is delivered mainly by Cb; the approximate equation includes the 
small current coming from the battery: 

Cb' t lAM 1 mm 2: meas x A Vb - Ri 

If the battery has a high impedance Ri, then it is recommended to use the kind 
of measurement shown in Architecture and Function of the MSP430 14-Bit 
AOC:[1] the CPU is switched off during the ADC measureme"nt which lowers the 
current out of the battery. 
Between two ADC measurements, the capacitor Cb needs a time tch to become 
charged to Vcc potential for the next measurement. During this charge-up time 
the MSP430 system runs in low power mode 3 to have the lowest possible power 
consumption. The charge time tch to charge Cb to 99% of Vec is: 
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tchmin :2: 5 x Cbmax x Rimax 

Where: Cb Capacitor in parallel to the battery [F] 
lAM Medium system current (MSP430 and ADC) [A] 
tmeas Discharge time of Cb during measurement [s] 
A Vb Tolerable discharge voltage of Cb during time tmeas [V] 
Ri Internal resistance (impedance) of the battery [n] 
tch Charge-up time for the capacitor Cb [s] 

5.3.3 Mains Driven Systems 
No hum, noise, or spikes are allowed for the supply voltages AVcc and DVcc. If 
present, the reliability of the system and the accuracy of the ADC will decrease. 
This is especially true for applications where the AVcc voltage is used for the ADC 
reference [ACTL.1 = 1 (Vref bit)]. See Section 5.3,' Signal Averaging and Noise 
Cancellation for ways to overcome this problem. 

5.3.4 Current Consumption 
Often it is important to know the current consumption of the complete MSP430 
system-which means including the supply current of the MSP430 and its ADC. 
The supply current of the CPU increases nearly linearly with the MCLK frequency 
and the applied supply voltage DVcc, but this is notthecase for the ADC: the main 
component of the ADC supply current is drawn by the resistor divider with its 
4 x 128 resistors. An approximate formula for the nominal current consumption 
Icc of the MSP430C32x is (internal ADC reference): 

ICC = ICCdlgltal + ICCanalog = ( vg~cc x ~~::; x 750 J,LA) + ( V~~cc. x 200 J,LA) 

Where: Icc 
ICCd/gItaI 
ICCanalog 
Vovcc 
VAVcc 
(MeLK 

Complete current consumption of MSP430 (nominal) [IJA] 
Current consumption of the digital parts (IJA] 
Current consumption of the ADC [IJA] 
Voltage at the DVcc terminal M 
Voltage at the AVcc M 
Frequency of the system clock generator (MCLK) [Hz] 

5.4 Use of the Floating Point Package 
For the MSP430 a Floating Point Package exists with two selectable bit lengths: 
32 bit and 48 bit. For calculations with the ADC, results Consisting of several 
multiplications and divisions, it is recommend to use this package: no decrease 
of accuracy is caused by the calculation itself. A detailed description of the 
Floating Point Package and all available mathematical functions is given in the 
MSP430 Application Report. See Section 5.6, The Floating Point Package. 

A small example is given. below: the measured ADC result-in ADC buffer 
ADAT -is corrected with slope and offset. The result (BCD format) is placed into 
the locations BCDMSD, BCDMID and BCDLSD (RAM or registers). 
DOUBLE 
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.EQU 

MOV 
CALL 
CALL 

o 

txxx,&ACTL 
#MEASR 
.FLT_SAV 

Use .FLOAT format (32 bits) 

Define ADC measurement 
Measure. Result to ADAT 
Save registers R5 to R12 



SUB 
MOV 
CALL 

#4,SP 
#ADAT,RPARG 
#CNV_BIN16U 

Additional Information 

Allocate stack for FP result 
Load address of ADC buffer 
convert ADC result to FP 

Calculate: ADCcorr = (ADC result x Slope) + Offset 

MOV 
CALL 
MOV 
CALL 

#Slope, RPARG 
#FLT_MUL 
#Offset,RPARG 
#FLT_ADD 

Load address of slope 
ADC result x Slope 
Load address of offset 
ADC result x Slope + Offset 
Continue with calculations 

The final result is converted to BCD format for the display 

CALL #CNV_FP_BCD 
IN CNVERR 
POP BCDMSD 
POP BCDMID 
POP BCD LSD 

CALL #FLT_REC 

Slope . FLOAT -1 .2345 
Offset . FLOAT 14 .4567 
CNVERR 

6 Additional Information 

convert FP result to BCD 
Result too big for BCD buffer 
BCD number: sign and MSDs 
BCD digits MSD-4 to LSD+4 
BCD digits LSD+3 to LSD 
Stack is corrected by POPs 
Restore registers R12 to RS 
Continue with program 

Slope (fixed, RAM, EEPROM) 
Offset (fixed, RAM, EEPROM) 
start error handler 

This application report is complemented by the Additive Improvement of the 
MSP430 14-Bit ADC Characteristic application report[5] that explains several 
methods to minimize the error of the 14-Bit ADC. For all methods (linear, 
quadratic, cubic and others) the actual improvement for a measured ADC 
characteristic is shown. The enhancement methods discussed are compared 
completely with statistic results, advantages and disadvantages, necessary CPU 
cycles, and storage needs. 
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Appendix A Definitions Used With the Application Examples 
; HARDWARE DEFINITIONS 

AIN 
AEN 

ACTL 
soc 
VREF 
AD 
Al 
A2 
A3 
A4 
A5 
CSAD 
CSA1 
CSA2 
CSA3 
CSOFF 
CSON 
RNGA 
RNGB 
RNGC 
RNGD 
RNGAUTO 
PD 
ADCLKI 
ADCLK2 
ADCLK3 
ADCLK4 

ADAT 

IFG2 
ADIFG 

IE2 
ADIE 

TPD 
TPE 
TPO 
TPI 

.equ OllOh 

.equ 01l2h 

.equ 01l4h 

.equ 01h 

.equ 02h 

.equ DOh 

.equ 04h 

.equ. OSh 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.egu 

.egu 

.egu 

.equ 

.equ 

.equ 

.equ 

.egu 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

OCh 
10h 
14h 
OOh 
40h 
SOh 
OCOh 
100h 
DODh 
OOOh 
.00h 
400h 
600h 
SOOh 
1000h 
OOOOh 
2000h 
4000h 
6000h 

OllSh 

03h 
04h 

Olh 
04h 

04Eh 
04Fh 

Input register (for digital inputs) 
0: analog input 1: digital input 

ADC control register: control bits 
Conversion start 
0: ext. reference 
Input AO 
Input Al 
Input A2 
Input A3 
Input A4 
Input AS 
Current Source to AD 
Current Source to Al 
Current Source to A2 
Current Source to A3 
Current Source off 
Current Source on 

1: SVcc on 

Range select A (0 ... 0.25xSVcc) 
Range select B (0.25 .. 0.50xSVcc) 
Range select C (0.5 ... 0.75xSVcc) 
Range select D (0.75. :SVcc) 
1: range selected automatically 
1: ADC powered down 
ADCLK MCLK 
ADCLK MCLK/2 
ADCLK MCLK/3 
ADCLK - MCLK/4 

ADC data register (12 or 14-bit) 

Interrupt flag register 2 
ADC "EOCH bit (IFG2.2) 

Interrupt enable register 2 
ADC interrupt enable bit (IE2.2) 

TP-port: address data register 
TP-port: ~ddress of enable register 
Bit address of TP.O 
Bit address of TP.l 
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Additive Improvement of the MSP430 14-Bit ADC Characteristic 

Lutz Bieri 

ABSTRACT 
This application report shows different simple methods to Improve the accuracy of the 
14-bit analog-to-digital converter of the MSP430 family. They all use only addition for the 
correction of the analog-to-dlgltal converter characteristic. Different correction methods 
are explained-all without the need for multiplication-which makes them usable for real 
time systems like electronic electricity meters. The methods used differ in RAM and ROM 
allocation, reachable improvement, and complexity. The external hardware for the 
measurement of the analog-to-digltal converter characteristic is also described. For all 
correction methods, proven, optimized software examples are given. The References 
section at the end of the report lists related application reports in the MSP430 14-bit ADC 
series. 

1 Introduction 
The application report Architecture and Function of the MSP430 14-Bit ADC[1] 
gives a detailed overview to the architecture and function of the 14-bit 
analog-to-digital converter (ADC) of the MSP430 family. The principle of the ADC 
is explained and software examples are given. Also included are the explanation 
of the function of all hardware registers contained in the ADC. 

The application report Application Basics for the MSP430 14-Bit ADC[2] shows 
several applications of the 14-bit ADC of the MSP430 family. Proven software 
examples and basic circuitry are shown and explained. 

Figure 1 shows the block diagram of the 14-bit analog-to-digital converter of the 
MSP430 family. 
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128 

128 
C 

ACTL.6.7 128 
B 

ACTL,8 
(CSo1I) 

128 
A 

~ND~~t±i=~--~= -~~J[::::~_-1~, ~-;~ __ +-~ (AVss) ACTt.9. to(Range) 

ACTL.11(Auto) 

M!~~~~~~ l~ACT~LO:(S:OO:)~:::EEEEE~~EEEE~~~~~~-;:C AI 8" 
~: 0"'0 Input 

~ Input 
AS MUX ACTL2.4 (Ax) 
A7 ACTl.5 (None) 

1M" Memory Data Bus, MOB 

Figure 1. The Hardware of the 14-81t Analog-to-Digital Converter 

The methods for the improvement of the ADC described in the next sections are: 
• Correction with the mean value of the full ADC range 
• Correction with the mean values of the four ranges 
• Correction with the centers of the four ranges 
• Correction with multiple sections 

Linear, quadratic, and cubic corrections are explained in Linear Improvement of 
the MSP430 14-Bit ADC Characteristic(3) and nonlinear improvements are 
discussed in the Nonlinear Improvement of the MSP430 14-Bit ADC 
Characteristic(4). 
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2 The External Calibration Hardware for the ADC 
All of the methods of improvement discussed in this report need to know the 
actual errors of the ADC at different points of the four ADC ranges. See Figure 
7 for an example of a noncorrected ADC characteristic. 

2.1 Measurement Methods for the ADC Reference samples 
The characterization of the ADC for this report is made with three different 
methods: . 
• External digital-to-analog converter (DAC): an accurate DAC-controlled by 

the measured MSP430-produces precise analog output voltages that are 
measured with the 14-bit ADC. The difference of the two numbers is the 
absolute error of the ADC. 

• External discrete, precise voltages: the MSP430 controls its input voltage via 
an external analog multiplexer. If only a few accurate input voltages are 
needed, then this method is best. 

• External precision resistors: the MSP430 controls which resistor is 
measured. For systems that measure the resistance of sensors, this method 
is best. 

Several other methods exist to measure the errors of different reference points 
for improvement of the ADC characteristic including: 
• Measurement of a single ADC sample: fastest way, but not recommended 

due to statistical reasons. 
• Multiple measurements of the same point and calculation of the mean value: 

e.g. 16 measurements. 
• Multiple measurements of the errors around a given point and calculation of 

the mean value: e.g. 16 measurements ±8 (or ±32) around the center point 
of interest. 

• External 16-bit DAC: measurement of all possible four pOints (xxx.OO, xxx.01 , 
xxx. 1 0, xxx.l1 for the 14-bit value xxx) and summing them up. This gives an 
additional 2 bits of resolution. 

• Sophisticated statistical methods. 
• Measurement of 12 samples for the same ADC point and rejection of the two 

extreme values. The remaining 10 samples are averaged. 

These error measurement methods may be used for all of the given improvement 
methods in this report. However, they are not discussed with the description of 
the improvement methods. See also Section 5.3, Signal Averaging and Noise 
Cancellation. 

This application report only uses simple measurement methods. 

2.2 External Dlgltal-to-Analog Converter 
The external hardware connected to the MSP430-PC board (see Figure 3) is 
used to obtain the necessary information about the characteristic of the ADC. Its 
main part is a precise 14- or 16-bit digital-ta-analog converter (DAC). Figure 2 
shows the calibration process: 
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Figure 2. Flowchart 1: Calibration With an External Dlgltal-ta-Analog Converter 

The measurement sequence for an ADC point is as follows (see also Figure 2): 
• The MSP430 outputs via its select lines (parallel DAC) or via an output line 

(serial DAC) a 14- or 16-bit number. This number programs the DAC. The 
LCD is not damaged, due to the short duration of the signals (microseconds). 

• The extemal DAC converts the digital number into a precise output voltage 
that corresponds to the input number. 

• The MSP430 measures the output voltage of the DAC and compares the 
result with the number that was the output. The difference (measured ADC 
value - output DAC value) is the absolute error of the ADC at that given point. 

• The measured errors are used for the calculation of the correction values. 
These are stored in the RAM or in an EEPROM and are used forthe correction 
of the ADC characteristic. The format and the number of the stored correction 
values depend on the correction method used: 1 to 64 bytes for the examples 
given here. 
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Figure 3. External, Serially Controlled DAC for ADC Measurement 

The loop from Port to CIN that is closed by the external hardware indicates to the 
MSP430 during the initialization that the measurement of the ADC characteristic 
is active. Like the other DAC control lines, these two liDs may be used for other 
system tasks when not in calibration mode. 

It is also possible to use a parallel DAC for the calibration of the MSP430 ADC. 
The time needed for the measurement of the ADC characteristic is shorter than 
with a serial DAC, but the number of connections between the MSP430 board and 
the calibration unit are much higher than for a serially controlled DAC. Figure 4 
shows this arrangement. 

----' 
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Figure 4. External, Parallel Controlled DAC for ADC Measurement 

2.3 External Discrete, Precise Voltages 
If only a few points of the ADC characteristic need to be known, then only a few 
discrete input voHages are necessary for the calibration process. These few 
points can be generated with a precise, external reference voltage or the supply 
voltage of the MSP430 and a resistor divider providing some defined output 
voltages. Figure 5 shows both possibilities. 
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Figure 5. External, Precise Voltages for Calibration 
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2.4 External Discrete Precision Resistors 

If the task for the MSP430 ADC is to precisely measure resistance-for example 
resistive sensors or platinum-and not external voltages, then this method 
should be considered. The external hardware is a multiplexer that connects 
precision resistors to one of the analog inputs of the MSP430. For external 
resistors with low resistance it may be necessary to use reed relays for this task 
due to the Roson reSistance of the multiplexer paths. Figure 6 shows this solution 
for two external reference resistors: the current source outputs the current Ics at 
the analog input Ax, the voltage drop at the selected external reference resistor 
is measured with the same analog input. The number of the external precision 
resistors may be adapted to the application needs. 

This calibration method includes all onboard error sources such as Rext and the 
ADC characteristic. 

M5P430 pc Board ,------------------------, 
3~S61.B I 

--~ 
501 - 521 1-____ ---' 

5Vee 

M5P43OC32x 
Rext 

Rex 

~ les Calibration 
Connector 

External Relerance Resistors 

r-----------------, 
I 
I 
I 
I 

lea 

AX~----------+~_4~~+__+--_.----------~ 

I 
I Referance I Releranee2 

AV_~------------~~_+--+_--------~--------_+~ 

DVce~------------~~-+--+_----~~~------_, 

To Host TXD DVss ~------2------~~-+-' 

L~~~.:. __ ~~~C_~V .... _ ... _ ....... _~o_~xl_-_-_=_"i_~_-_-_-_-_t_:::t-_-_ItJ 

4-+-----~~--~--~~~ov 

~-----------------
Figure 6. External Precision Resistors for Calibration 

2.5 Storage of the Correction Data 

The correction coefficients as calculated by the MSP430 or a host computer are 
stored in the RAM or in an external EEPROM: 

• The RAM may be used if a battery is permanently connected to the MSP430 
system. 

s An EEPROM is necessary if the supply voltage of the MSP430 system can 
be interrupted e.g. due to the mains supply or a switch. 
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The format of the used £-bit coefficients is given in Nonlinear Improvement ofthe 
MSP430 14-Bit ADC Characteristic, SLAA050 [4J. If the accuracy that can be 
reached with these 8-bit numbers is insufficient, then 16-bit numbers-with 
doubled RAM space and calculation time-may be used. Also the MSP430 
floating point package can be a solution in this case. 

3 Different Improvement Methods 
To allow a comparison between the different improvement methods, the mean 
value, the range, the standard deviation, and the variance of the corrected ADC 
characteristic are given. The nearer these values are to zero, the better the 
performance of the used improvement method. 

The mathematical equations for the used statistical methods follow. They are 
applied to every fourth value of the 16383 corrected samples. 

The mean value x is calculated by summing all of the errors (ei) of all corrected 
samples Ni and dividing this sum by the number of samples k. The mean value 
xis: 

i=k 

X= I ei 
i=1 -k-

The range R is the difference between the largest error emax and the smallest 
error em in (e.g. the most negative error value). The range R is defined as: 

R = emax - emin 

The standard deviation S is defined as: 

i=k (f:i)2 
I ei2 _ i=~ 

i= 1 k _ 1 = j V x k ~ 1 .8= 

The formula for the variance V is: 

i=k (f~i)2 
I e;2 - _'_=_~-
;=1 

V = -----:-k---

i=k ;=k 

IeiL X'x Ie; 
1=1 ;=1 

k 
Where: 

k = Number of included ADC errors ei 
ei = ADC error at ADC step i, ranging from e1 to ek [Steps] 

= Index for ADC errors 
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NOTE: Each measured ADC value needs to be corrected 
individually to get a correct result. If differences are measured 
(AN) then both values have to be corrected and then the 
subtraction executed. A correction of the difference AN alone 
leads to false results. 
It is importantto note the different scaling that is used for the y-axis 
of the graphs with the corrected ADC characteristic. They differ 
significantly, dependent on the amount of improvement. 

The correction coefficients for all improvement methods are 
calculated in such a way that allows addition forthe final correction 
of the measured ADC result. This saves execution time and 
program space. 

All of the calculations used for the correction are made with a floating point 
package (like the MSP430 .FPP4 software). If-as is necessary in real-time 
systems-an integer package is used, then small rounding errors will occur. In 
Nonlinear Improvementofthe MSP430 14-Bit ADC Characteristic[4] the software 
routines and their influence on the accuracy of the final result are explained. 

The improvement methods and their results for this report are demonstrated with 
the characteristic of device 1 due to its worst characteristic compared to the other 
three devices shown in Architecture and Function ofthe MSP430 14-Bit ADC[1]. 

The ADC samples used for the following improvement methods and calculations 
were measured the following way: 
• Twelve samples with the same ADC input voltage-generated by a 16-bit 

DAC-were measured and stored. 
• The maximum and the minimum value of these twelve samples were rejected 

(rejection of extremes). 
• Out of the remaining ten samples the mean value was calculated and used 

afterwards. 

The improvement methods are always shown for the full ADC range (ranges A, 
B, C, and D). If the current source is active, then only ranges A, B, and part of C 
can be used: the same improvement methods with the same formulas are valid 
but with less needed RAM or EEPROM space for the correction coefficients. Due 
to the importance of the current source for several applications, the statistical 
results are also shown for ranges A and B only. 

The 14-bit oriented correction software is also usable if the 12-bit ADC mode is 
used: only the correction coefficients of the applied ADC range are used in this 
case. 

The orientation of this application report to the ADC ranges (single or multiple 
corrections per range) is applicable, due to the visibly different slopes of the four 
ranges inside of an ADC characteristic. See the noncorrected ADC 
characteristics of device 1 (Figure 7) and devices 2 to 4 in [1] for examples. 

3.1 The ADC Characteristic of Device 1 Without Correction 
The noncorrected ADC characteristic of device 1 is shown in Figure 7. Its. 
statistical values are given in the table below Figure 7. 
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The circle in Figure 7 indicates the irregularity located in range B. This irregularity 
is the reason why more sophisticated methods sometimes have worse results 
than simpler ones. 

Device 1 Uncorrected 

ADC Steps [0 to 18383] 

Figure 7_ The Noncorrected Characteristic of Device 1 

The statistical results of the original ADC characteristic of device 1 are: 

Mean Value: 

Range: 

Standard Deviation: 

Variance: 

Full range Ranges A and B only 

~.95 Steps -10.51 Steps 

17.00 Steps 10.80 Steps 

4.74 Steps 

22_51 Steps 

2_61 Steps 

6.80 Steps 

3.2 Correction Methods Using Addition Only 

These four methods are the fastest because they omit the multiplication. The main 
disadvantages are the gaps between the ADC ranges e.g. from ADC step 4095 to 4096, 
and the amount of RAM used, but these methods not only show speed advantages but 
also the best results. The four methods explained below are best for real-time 
applications, where the 50 to 1 00 cycles that are necessary for a correction that uses 
multiplication cannot be spent: they are the fastest way possible for correction. 

3.2.1 Correction With the Mean Value of the Full ADC Range 

The ADC is measured at k equally spaced pOints. The errors of these k 
measurements are calculated and the mean value of these errors is stored and 
used for the correction of the ADC. The correction formula for each ADC sample 
Ni to get the corrected value Nicorr is: 
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i=k 
I-e; 

N· N' 1=1 . /carr = / + --k-

Where: 
= Corrected ADC sample Nicorr 

Ni 
k 

= Measured ADC sample (noncorrected) 
= Number of included ADC errors ei 

[Steps} 
[Steps] 

ei = ADC error i, ranging from e1 to ek [Steps] 

The principle is shown in Figure 8, the full ADC range is corrected with its mean 
value. As with all future principle figures in this report, the black straight line 
indicates the correction value, the scribbled black line indicates the noncorrected 
ADC characteristic, and the white line shows the corrected ADC characteristic. 
The small circles indicate the measured ADC points (the 128 circles of Figure 8 
are not shown). 

Devlca1 

ADCSteps 

Figure 8. Principle of the Error Correction by the Mean Value of the Full Range 

For k = 128-which means 128 samples over the complete ADC range-the 
statistical results are: 

Mean Value: 
Range: 
Standard Deviation: 
Variance: 

Full range 
-0.44 Steps 
17.10 Steps 
4.74 Steps 

22.51 Steps 

Ranges A and B only 
0.15 Steps 

10.80 Steps 
2.61 Steps 
6.80 Steps 

Figure 9 shows the result in a graph. The corrected characteristic is displayed for 
the full range and for the ranges A and B only: 
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Device 1 Corrected with the Mean Value of the ueed Range 
(Full Range and A and B only) 

ADC Steps [0 to 16383] 

Figure 9. Error Correction With the Mean Value of the Used Range 

Advantages: Only one addition is necessary . 
Very fast due to no missing multiplication or shifts 
No gaps; the monotonicity of the ADC characteristic remains 
Only one byte of RAM is needed for the correction coefficient 

Disadvantages: Range, standard deviation and variance are not improved 
Many calibration measurements are necessary 

NOTE: Within the software examples, the format of the integer number 
is noted at the right margin. The meaning of the different notations is: 

0.7 Zero integer bits, 7 fraction bits. Unsigned number 
±4.3 Four integer bits, 3 fraction bits. Signed number 
8.0 Eight integer bits, no fraction bits. Unsigned integer number 

±7.0 Seven integer bits, no fraction bits. Signed integer number 

The software part after each ADC measurement is as follows: 

Correction with the mean value of the full range. 7 cycles 

MOV.B 

SXT 

ADD 

TAB,R5 

R5 

&ADAT,R5 

Correction for full range ±7.0 

Sign extend byte· to word ±15.0 

Corrected ADC value in RS 14.0 

Proceed with corrected ADC value 

The RAM byte TAB contains the correction for the full range: 

the negated mean value 

.bss TAB,l Signed a-bit number ±7.0 
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EXAMPLE: The ADC is measured at nine points (rather than 128 to keep the 
example under control) and the calculated mean value is used for the correction 
of the full ADC range. The measured (k+ 1) errors (for device 1) are shown below. 
The numbers used for the correction are slightly shaded. 

50 2048 4096 

I=k 

L - ei 
~ = 6 + 8 + 13 + 13 + 10 + 5~~ + 3 = 58 = + 65 

Correction: . k 9 9· 

Corrected ADC sample: Nicorr = Ni + 6.5 Valid for the Full ADC range 

7 0 

Format: ±7.0 6.5/20 = 6.5 = 07h I 0 I 0 ' a i 0 i 0 ' 1 i 1 I 1f1j1 
7 0 

±6.1 6.5/2-1 = 13 = ODh '01 616 '6'1'1.6;" 

3.2.2 Correction With the Mean Values of the Four Ranges 

I 
10 

5 

o 
! oS 

~ -10 
-15 

The ADC is measured at (4xk) equally spaced points. The mean value of the k 
errors per range is calculated and used individually for the correction of the four 
ranges A to D. The correction formula for each one of the four ranges is: 

;=k 

L - ei 
N· /11. ;=1 
. lcorr = I + --k-

The principle is shown in Figure 10, each range is corrected with its mean value 
(the eight used samples are drawn only in the range A): 

DevIce 1 Corrected with the center. 01 the lour rang .. 

ADCStepa 

Figure 10. Principle of the Error Correction WIth the Mean Values of the Four Ranges 

For k - 8 (8 samples per range) the statistical results are: 
Full range Ranges A and B only 

Mean Value: ~.31 Steps 0.15 Steps 
Range: 13.5 Steps 9.80 Steps 
Standard Deviation: 2.49 Steps 2.10 Steps 
Variance: 6.20 Steps 4.41 Steps 

Figure 11 shows the graph for k = 8 (eight samples per range, 32 samples over 
the full ADC range): 
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2-100 

Davlce 1 Corrected with the Mean value. of IheFour Ranges 

ADC Slaps [0 to 16383] 

Figure 11. Error Correction With the Mean Values ~f the Four Ranges 

Advantages: Only one addition is necessary for the correction 
Fast due to no multiplication 
Only four bytes are needed for the storage of the correction 
values 

Disadvantages: Range, standard deviation and variance are only slightly 
improved 
Monotonicity is not preserved: gaps appear at the range 
borders. 

The software part after each ADC measurement is as follows: 

Correction with the mean values of the four ranges. 16 cycles 
The four signed correction values are located in four RAM 
bytes starting at label TAB 

MOV &ADAT,RS ADC result Ni to R5 (D ... 3FFFh) 

MOV R5,R6 Copy result for correction 14.0 

SWPB R6 Range bits of result to low byte 

RRA.B R6 Calc. byte address for corr. 5.0 

RRA.B R6 Shift two range bits to LSBs 4.0 

RRA.B R6 3.0 

RRA.B R6 Range bits now 0 to 3 2.0 

MOV.B TAB(R6) ,R6 Correction fram table TAB t7.0 

SXT R6 Signed byte to signed word t15.0 

ADD R6,R5 Corrected result Nicorr in R5 14.0 

Proceed with corrected Nicor"r 14.0 

The fo~r signed correction values are located in four RAM bytes 

starting at label TAB. 

.bss TAB,4 Signed a-bit numbers t7.0 
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EXAMPLE: Range A of the ADC is measured at four points and the mean value 
is used for the correction of this ADC range. The corrections for the other three 
ranges (B, C and D) are calculated the same way. The measured errors for range 
A are shown below (for device 1): 

ADC Step 1024 2048 

Error [Stapsl \IC;;:~t;rl i;iRli1a~iJJ!j~; 
i=k 

I - ei 

Correction: 
~ = 6 + 8 + 12 + 13 = 39 = + 975 
. k 4 4 . 

Corrected ADC sample: Nioorr = Ni + 9.75 

Format: ±7.0 9.75/20", 10 = OAh 

±6.1 9.75/2-1 = 19.5", 14h 

±5.2 9.75/2-2 = 39 = 27h 

Valid for range A 
7 0 

'0,6'0'6'1'0'1'6,.. 
7 0 

,0 '0' 0 ' 1 i 6 ' 1 ' 0;6 I 
7 

'0'0'1'6 1 0'1;1'1' 

3.2.3 Correction With the Center Points of the Four Ranges 

The ADC is measured at the four center points of the ranges A, B, C and 0: the 
ADC steps 2048, 6144, 10240 and 14336. The four errors (ee) at these four 
center pOints are calculated and stored. To each measured ADC sample Ni the 
negated error eo of the pertaining range is added. The correction formula for each 
one of the four ranges is: 

.Moorr = Ni + ee 

Where: 
ec = Negated error at the center of the actual ADC range [Steps] 

The principle is shown in Figure 12, the four AID ranges are corrected individually 
with the errors of their center points: 

DevIce 1 

ADCS1aps 

Figure 12. Principle of the Error Correction With the Centers of the Four Ranges 
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The statistical results of this simple kind of correction are: 

Full range Ranges A and B only 

Mean Value: 0.20 Steps 0.29 Steps 

Range: 

Standard. Deviation: 

13.5 Steps 

2.56 Steps 

6.53 Steps 

9.80 Steps 

2.27 Steps 

5.15 Steps Variance: 

Figure 13 shows the resulting graph: 

Device 1 

ADC Step. [0 to 16383) 

Figure 13. Correction With the Cen~ers of the Four Ranges 

Advantages: Only one addition is necessary for the correction 
Fast due to no multiplication 
Only four bytes are needed .for the storage of the correction 
values 

Disadvantages: The range, standard deviation and variance are only slightly 
improved 
Monotonicity is not preserved: gaps appear at the range 
borders. 

The software part after each ADC measurement is the same one as shown for 
the correction with the mean values of the four ranges. 

EXAMPLE: The center point of range C (10240 steps) of the ADC is measured 
and the result is used for the correction of this ADC range. The other three ranges 
are treated the same way. The measured errors of the centers of the four ADC 
ranges are shown below (for device 1): 

ADC Step 2048 6144 10240 14336 

Error [Steps] -6 -13 0 

2-102 SLAA047 



Different Improvement Methods 

Correction: ec = - (-5) = 5 

Corrected ADC sample: Nioo" .. Ni + 5 Valid for range C 
7 0 

Format: ±7.0 5120 = 5 = 05h 
I 0 I 6 i D f 0 i 6 ' 1 ' 6 ' ,,. 

3.2.4 Correction With Multiple Sections 

I 

The ADC is measured at (p+ 1) equally spaced points of the full range of the ADC. 
This leads to p sections. The resulting errors (ek) are used to calculate the mean 
value for each section and the result (ekm) is stored. To each ADC sample Ni the 
appropriate negated error (ekm) is added. This method can be enhanced up to 
the measurement of all ADC pOints. The correction formula is: 

Nicorr = Ni + ekm ekm = _ ek + ~ + ek 

Where: 
ekm 
k 

= Mean value of the ADC errors at the borders of ADC section ek [Steps} 
= Index for ADC sections (length 214/p), ranging from 0 to p 

p 
ek 
ek+1 

= Number of sections (1:S p < 214) 
= ADC error at the ADC step Ni .. k x 214/p 
= ADC error at the ADC step Ni = (k + 1) x 214/p 

The principle is shown in Figure 14. The full ADC range is divided into eight 
sections {p = 8}. The nine measured ADC samples are indicated with circles. 

Dev!ce1 

ADCSleP8 

[Steps] 
[Steps] 

Figure 14. Principle of the Additive Correction With Multiple Sections (8 sections) 

For p = 8 {section length is 2048 steps} the statistical results are: 
Full range Ranges A and B only 

Mean Value: -0.14 Steps 0.22 Steps 
Range: 8.40 Steps 6.30 Steps 
Standard Deviation: 1.47 Steps 1.37 Steps 
Variance: 2.16 Steps 1.89 Steps 

Figure 15 shows the resutting graph for an additive correction with 8 sections 
(p .. 8) over the full ADC range: 
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Figure 15. Additive Correction With 8 Sections Over the Full ADC Range 

For p = 16 (section length is 1024 steps) the statistical results are: 

Mean Value: 

Range: 

Standard Deviation: 

Variance: 

Full range 
-0.29 Steps 
6.40 Steps 

1.04 Steps 
1.08 Steps 

Ranges A and 8 only 
0.05 Steps 
4.85 Steps 

1.01 Steps 
1.02 Steps 

Figure 16 shows the resulting graph for an additive correction with 16 sections 
(p = 16) over the full ADC range: 

Device 1 Corrected with Sixteen Section. Over the Full ADC Range 

ADC Stepe [0 to 183831 

Figure 16. Additive Correction With 16 Sections Over the Full ADC Range 
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For p ~ 32 (section length is 512 steps) the statistical results are: 
Full range Ranges A and 8 only 

Mean Value: -0.14 Steps -0.05 Steps 
Range: 5.20 Steps 3.65 Steps 
Standard Deviation: 0.77 Steps 0.65 Steps 
Variance: 0.59 Steps 0.42 Steps 

Figure 17 shows the resulting graph for an additive correction with 32 sections 
(p ~ 32) over the full ADC range: 

Device 1 Corrected with 32 Sections Over the ·Full ADC Range 

3r-----------------------------------------------------~ 

·4~ ____________________________________________________ ~ 

ADC Sleps [0 10 18383] 

Figure 17. Additive Correction With 32 Sections Over the Full ADC Range 

For p ~ 64 (section length is 256 steps) the statistical results are: 
Mean Value: -0.08 Steps 0.02 Steps 
Range: 4.60 Steps 3.10 Steps 
Standard Deviation: 0.64 Steps 0.53 Steps 
Variance: 0.41 Steps 0.28 Steps 

Figure 18 shows the resulting graph for an additive correction with 64 sections 
(p ~ 64) over the full ADC range. Note the scaling of Figure 18: only ±3 steps I 
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Device 1 Corrected with 64 SectIons Over ths ADC Range 

ADC Slaps [0 to 18383) 

Figure 18_ Additive Correction With 64 Sections Over the Full ADC Range 

Advantages: Very good improvement with large section counts p 
Fast due to no multiplication 
The section count p Is adaptable to specific applications. 

Disadvantages: Relative large RAM storage is needed for a large section count p 
Gaps appear at the section borders: they get smaller with 
increasing p 

The results for the additive correction with multiple sections are summarized 
below for section counts p ranging from 8 to 64. For comparison purposes, the 
results for p = 4 ( the center of ranges method is used) are given as well. 

p = 4 P = 8 P = 16 P = 32 P = 64 
Mean Value: +0.2 -0.14 -0.29 -0.14 -0.08 Steps 
Range: 13.5 8.40 6.40 5.20 4.60 Steps 
Standard Deviation: 2.56 1.47 1.04 0.77 0.64 Steps 
Variance: 6.53 2.16 1.08 0.59 0.41 Steps 

The improvement of the statistical results with increasing section count p can be 
clearly seen. Figure 19 illustrates this. . 
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Different Improvement Methods 

p=8 p=16 p=32 p=64 Mean 
Section Counl Value xl 0 

Figure 19. Improvement of the ADC Results With IncreaSing Section Count p 

The software part after each ADC measurement follows. The addressing of the 
correction byte can be adapted easily also to 4, 8, 16, and 32 sections. 

Additive correction for 64 sections over the full ADC range. 

The 64 signed correction values are located in the RAM 

bytes starting at label TAB. 11 cycles 

MOV &ADAT,R5 ADC result Ni to R5 (0 ... 3FFFh) 

MOV R5,R6 Copy Ni for correction 14 .0 

SWPB R6 MSBs of result to low byte 6.0 

MOV.B R6,R6 OOh ... 3Fh to R6 (0 .. 63) 6.0 

MOV.B TAB(R6),R6 Corr. eim from table TAB ±4.0 

SXT R6 Extend sign of correction ±4.0 

ADD R6,R5 Nlcorr = Ni + eim 14.0 

Proceed with corrected Nicorr 

The 64 RAM bytes starting at label TAB contain the corrections 

eim for the 64 sections: each one for 256 ADC pOints. 

The bytes are loaded during initialization Signed 8-bit numbers 

.bss TAB,64 ; 0 .. 255 .. 511 .... 16127 .. 16383 ±4. 0 

EXAMPLE: The ADC is measured at nine points (8 sections) like shown in 
Figure 14. The measured errors for device 1 are shown below. The correction 
coefficient ekm of the 2nd section (2048 to 4095 ADC steps, upper half of range 
A) is calculated. 

ADCStap 

Error [Staps] 

6144 

-13 

8192 

-10 

10240 12288 

-5 0 
14338 

o 
18330 

-3 
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. ekm = - ek+12 + ek = _ - 1~ - 8 = + 1.0.5 
Correction: 

Corrected ADC sample: Nico" = Ni + 10.5 Valid for the 2nd section 

Format: ±7.0 10.5/20 = 10.5 .. OBh 
7 0 

I 0 I 0 i 0 ' 0 i 1 i 0 i 1 ' 1111 
7 0 

±6.1 10.5/2-1", 21", 15h '0,6'6' "0"'6", 

3.2.5 Summary of the Additive Corrections 

25 

20 

16 

10 

5 

-5 

·10 

Figure 20 gives an overview of all of the described additive correction methods. 
The results are given for different section counts p: 
• N.C.: the noncorrected device 1 
• P = 1: correction with the mean value of the full ADC range 
• p = 2: correction with the mean values of ranges AlB and C/D 
• P = 4: correction with the center values of the four Ranges 
• p = 8 ... 64: correction with 8 to 64 (multiple) sections over the full ADC range 
As can be seen, the improvement increases significantly from the noncorrected 
device 1 to the additive correction with 64 sections. -

N.C. p=1 p=2 p=4 p=8 p=16 p=32 p=84 Mean 
Section Count Value 

Figure 20. Overview of the Additive Correction Methods 

3.3 Additional Information 
The Linear Improvement of the MSP430 14-8it ADC Characteristk;f,3] shows 
linear methods for the correction of the 14-bit analog-to-digital converter of the 
MSP430. Different correction methods are explained: some with guaranteed 
monotonicity and some using linear regression. The methods discussed differ in 
RAM and ROM allocation, calculation speed, reachable Improvement, and 
complexity. 
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Definitions Used Wtlh the Application Examples 

Appendix A Definitions Used With the Application Examples 

; HARDWARE DEFINITIONS 

ADAT 
ACTL 

.equ 011ah 

.equ 0114h 
ADC data register (12 or 14-bits) 
ADC control register: control bits 
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Linear Improvement of the MSP430 14-Bit ADC Characteristic 

Lutz BierI 

ABSTRACT 
This application report shows different linear methods to improve the accuracy of the 
14-bit analog-to-dlgital converter (ADe) of the MSP430 family. Different correction 
methods are explained: some with monotonicity and some using linear regression. The 
methods used differ in RAM and ROM allocation, calculation speed, reachable 
improvement, and complexity. For all correction methods, proven, optimized, software 
examples are given with 8-bit and 16-bit arithmetic. The References section at the end 
of the report lists related application reports in the MSP430 14-bit ADC series. 

1 Introduction 
The application report Architecture and Function of the MSP430 14-8it ADC(1) 
gives a detailed overview to the architecture and function of the 14-bit 
analog-to-digital converter (ADC) of the MSP430 family. The principle ofthe ADC 
is explained and software examples are given. Also included are the explanation 
of the function of all hardware registers contained in the ADC. 

The application report Application Basics for the MSP430 14-8it ADC(2) shows 
several applications of the 14-bit ADC of the MSP430 family. Proven software 
examples and basic circuitry are shown and explained. 

The application report Additive Improvement of the MSP430 14-8it ADC 
Characteristic[3) explains the external hardware that is needed for the 
measurement of the characteristic of the MSP430's analog-to-digital converter. 
This report also demonstrates correction methods that use only addition. This 
allows the application of these methods in real time systems, were execution time 
can be critical. 

Figure 1 shows the block diagram of the 14-bit analog-to-digital converter of the 
MSP430 family. 
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AY .. I:>-..... --. 
SVccSwlch ~ ____ ~ ACTL1 (Vref) 

SYCC,..O..----I~ ACTt..12(Pd) 
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Input 

A6 YUX ACTL2A (Ax) 
A7 ACTL5 (None) 

A7---- AD 
SAR.1S SAR.O 

1&.a11 Memory Olla B .... MOB 

Figure 1. The Hardware of the 14-81t Analog·to-Dlgltal Converter 

The methods for the improvement of the ADC described in the next sections are: 
• Linear equations with border fit: single linear equation per range 
• Linear equations with border fit: multiple linear equations per range 
• Linear equations with linear regression: single linear equation per range 
• Linear equations with linear regression: multiple linear equations per range 

Quadratic and cubic corrections are explained in the application report Nonlinear 
Improvement of the MSP430 14-8it ADC Characteristic[4j. 

1.1 Correction With Linear Equations 

A good error correction with low RAM requirements is possible if not only the 
offset error-like with the additive methods-but also the slope error of the ADC 
characteristic can be corrected. However, this requires the use of a multiplication. 
The multiplication subroutine used here is is optimized for real time 
environments: it terminates immediately after the unsigned operand-the ADC 
result-becomes zero due to the right shift during the multiplication. The 
subroutine is appended to the first software example (see section 1.2.1.1). The 
full code with explanations and timing is contained in Nonlinear Improvement of 
the MSP430 14-8it ADC Characteristic, SLAA050[4j. 

The generic correction formula for linear correction, which is valid for floating 
point or 16-bit integer arithmetic, is: 
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Nicorr = Ni + (Ni x a1 + aO) 

The optimized 16-bit multiplication subroutine for the above formula-including 
the calculation software-is included in section 1.2.2.1, Linear Regression: 
Single Linear Equation per Range. The full code is described in Section 5.1, 
Integer Calculation Subroutines. 

The floating point example given for the cubic correction-see Nonlinear 
Improvement of the MSP430 14-Bit ADC Characteristic[4]-may be adapted 
easily to the calculation of linear equations: the unused terms-the quadratic and 
cubic terms-are simply left out. 

The formulas to calculate the correction coefficients a1 (slope) and aO (offset) out 
of the two known errors e2 and e1 of the ADC steps N2 and N1 are: 

a1=_82-81 
/II2-M 

The advantages of the negated correction coefficients a1 and aO are: 
• Shorter and faster software: the INV (invert) and INC (increment) instructions 

for th3 negation of the corrections are not necessary 
• The ADAT register (ADC result register) is a read-only register and can be 

used for additions directly. If the correction needs to be subtracted from the 
ADAT register, then an intermediate step is necessary. 

All principle figures of this report-as in Additive Improvement of the MSP430 
14-Bit ADC Characteristic[3)-have the same structure: 
• The black straight line indicates the negated correction value (thiS is to show 

the precision of the correction). 
• The scribbled black line indicates the noncorrected ADC characteristic. 
• The white line shows the corrected ADC characteristic. 
• The small circles indicate the measured ADC points (not all measured 

samples are shown). 

An example using the 16-bit arithmetic is given in section 1.2.2.1, Linear 
Regression: Single Equation per Range. 

All other given equations in the following sectionS assume the use of the 8-bit 
arithmetic as described in Nonlinear Improvement of the MSP430 14-Bit ADC 
Characterisitc,SLAA050[4]. Therefore the correction formulas are adapted to the 
limited, but fast 8-bit arithmetic. This reduced arithmetic makes relative 
addresses for the ADC steps necessary: the full ADC range is divided into 
sections and the ADC value is adapted to 128 subdivisions for the full section. The 
equations for the 8-bit arithmetic are given and explained with each method. 

Introduction 
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1.2 Coefficients Estimation 
With the maximum possible ADC error (±10 steps contained in a band of ±20 
steps) the maximum values for the coefficients a1 and aD are: 

Table 1. Worst Case Coefficients With 8-Bit Arithmetic 

The above maximum coefficients occur for a single equation per range when the 
ADC error changes 20 steps within an ADC range (4096 steps) e.g. from + 10 to 
-10 steps or vice versa. For two and four equations per range, the maximum 
change is appropriately smaller (±10 resp. ±5 steps). This leads to smaller 
coefficients a 1. . 
• The 8-bit arithmetic operates with signed 8-bit coefficients and an ADC result 

that is adapted to a value ranging from 0 to 127. 
• The 16-bit arithmetic uses the full ADC result (0 to 16383) and signed 16-bit 

numbers for the calculations. 
• The floating point calculation also uses the full ADC result (0 to 16383) and 

a 32-bit number format for the calculations. 

NOTE: Within the software examples, at the right margin olthe source 
code the format of the numbers is noted. The meaning of the different 
notations is: 

0.7 No integer bits, 7 fraction bits. Unsigned number 
±4.3 Four integer bits, 3 fraction bits. Signed number 
8.0 Eight integer bits, no fraction bits. Unsigned integer number 

±7.0 Seven integer bits maximum, no fraction bits. Signed integer 
number 

The statistical results are given separately for the full ADC range (ranges A to D) 
and for the ranges A and B only. The reason for the second case is the internal 
current source that is used by many applications: with its use the ADC ranges are 
restricted to the ranges A, B, and the lower part of range C. 

1.2.1 Linear Equations With Border Fit 
If monotonicity of the corrected ADC characteristic is a requirement, then the 
correction methods using the border fit are the right choice. They guarantee, that 
the four ranges continue smoothly at its borders. This feature is important if the 
differences of two ADC results are used for calculations. 

1.2.1.1 Single Linear Equation per Range 

The ADC is measured at the five borders of the four ADC ranges (Ni = 50, 4096, 
8192, 12288, 16330). These five results are used for the calculation of the offsets 
and the slopes of all four ADC ranges. 
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NOTE: The ADC points 0 and 16383 (3FFFh) including small 
bands cannot be measured. This is the reason for the use of steps 
50 and 16330 in the above explanation. 

The formula for the offset aO and the slope a 1 for each one of the four ranges is: 

Nicorr = Ni + [(4~6 -n) x 128 x 81 + ao] 
81= eu-el -128 ao = - el 

Where: 

Introduction 

Nicorr = Corrected ADC sample 
Ni = Measured ADC sample (noncorrected) 

[Steps} 
[Steps) 

n = Range number (0 ... 3 for ranges A ... D) 
al = Slope of the correction 
ao = Offset of the correction 
eu = Error of the ADC at the upper border of the range 
el = Error of the ADC at the lower border of the range 

[Steps] 
[Steps] 
[Steps] 

The term(46::6 - n) x 128 of the equation above is the adaptation of a 

complete section-here a full range-to 128 subdivisions. The calculation of the 
term is made by simple shifts and logical AND instructions and not a division and 
a multiplication. See the initialization part of the software example. 

The principle of the correction with a linear equation for each range (border fit) 
is shown in Figure 2. Border fit means, that the borders of the four ranges A to 
D fit together without gaps from one range to the other one: the border value is 
used for both ranges. 

The improvement methods and their results for this report are demonstrated with 
the characteristic of device 1 and device 2 due to their worst characteristic 
compared to the other three devices shown in Architecture and Function of the 
MSP430 14-Bit ADC. 

Device 1 

ADCSteps 

Figure 2. Principle of the Correction With Border Fit (single linear equation per range) 
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The statistical results for this simple correction method are: 
Full range Ranges A and 8 only 

Mean Value: -0.32 Steps -0.33 Steps 

Range: 5.6 Steps 5.1 Steps 
Standard Deviation: 0.94 Steps 0.99 Steps 

Variance: 0.88 Steps 0.98 Steps 

Figure 3 shows the results of this method in a graph. 

Device 1 Corrected With a Single Linear Equation per Range (Border FII) 

i 
II!. 
g 
w ·1 
g 
c( 

·4L-----________________________ ~ __________________________ ~ 

ADC Steps [0 10 18383] 

Figure 3. Error Correction With Border Fit (single linear equation) 
Advantages: Only five measurements are necessary 

No gaps; the monotonicity of the·ADC characteristic remains 
Low memory needs: 8 bytes only (four slopes and four offsets) 
Good improvement of the ADC characteristic despite low 
expense 

Disadvantages: Multiplication is necessary 

The software part after each ADC measurement is as follows. For lower accuracy 
needs the algorithm may be simplified by the use of less accurate slopes and 
offsets (fewer fraction bits). 

A more detailed description for the 8-bit multiplication is given in Nonlinear 
Improvement of the MSP430 14-8it ADC Characteristic.[4] The numbers at the 
right margin indicate the used number format (integer.fraction) 

Error correction with a Single equation per range 

a-bit arithmetic. Cycles needed: 

Subdivision - 0: 51 cycles 

Subdivision > 3Fh: 100 cycles 

MOV &ADAT, Rs 

MOV Rs,R6 
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ADC result Ni to Rs 

Address info for correction 

int. frct 

14.0 
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AND #OFFFh,RS Delete range bits 

RLA RS Calculate Bubdivision 

RLA RS Prepare (Ni/4096-n)x128 

RLA R5 7 bit ADC info to high byte 

SWPB R5 ADC info to low byte 0 ... 7Fh 

MOV.B R5,IROP1 To MPY operand register 

SWPB R6 MSBs to low byte 0 ... 3Fh 

RRA.B R6 Calculate coeff. address 

RRA.B R6 

RRA.B R6 2n (Range) in R6 0 ... 07h 

BIC #l,R6 0 ... 06h: address of slope al 

MOV.B TAB1(R6),IROP2L Slope a1 

CALL #MPYS8 (Ni/4096-n)x 128 x a1 

RLA lRACL Slope part to aD format 

SWPB lRACL 

SXT lRACL To 16-bit format 

MOV.B TABO(R6),RS Offset aD 

SXT R5 To 16-bit format 

ADD R5,IRACL Ni + correction 

RRA lRACL 

RRA IRACL Carry is used for rounding 

ADDC &ADAT, lRACL Corrected result Nicorr 

Use Nicorr in lRACL 

The 8 RAM bytes starting at label TAB1 contain the correction 

info a1 and aD. The bytes are loaded during the calibration 

.has TABl,l 

.bas TABO,1 

Range A a1: lin. coefficient 

aO: constant coefficient 

12.0 

13.0 

14.0 

15.0 

7.0 

7.0 

6.0 

5.0 

4.0 

3.0 

3.0 

0.9 

±5.9 

±5.10 

±5.2 

±5.2 

±S.2 

±S.2 

±5.1 

±5.0 

14 .0 

±0.9 

±5.2 

.bss TABx,6 Ranges B, C, 0: aI, aD. (like above) 

Run time optimized a-bit Multiplication Subroutines 

IROP1 . EQO R14 

IROP2L . EQO R13 

lRACL . EQO R12 

Onsigned ADC result (7Fh max.) 

Signed factor (80h ... 7Fh) 

Signed result word 

Signed multiply subroutine: IROPl x IROP2L -> lRACL 

MPYS8 CLRlRACL 

TST.B IROP2L 

JGE MAC08 

SWPB IROPI 

SOB IROP1,IRACL 

SWPB IROPI 

o -> 16 bit RESULT 

Sign of factor (slope al) 

Positive sign: proceed 

Negative 

Correct result 

Unear Improvement of the MSP430 14-Bit ADC Characteristic 
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MACUS BIT.B 

JZ 

ADD 

L$Ol RLA 

RRC.B 

JNZ 

RET 

#1, IROP1 

L$01 

IROP2L,IRACL 

IROP2L 

IROPI 

MACU8 

Test actual bit (LSB) 

If 0: do nothing 

If 1: add multiplier to result 

Double multiplier IROP2 

Next bit of IROP1 to LSB 

If IROP1 - 0: finished 

EXAMPLE: The ADC is measured at the five borders of the ADC ranges. The 
measured errors-device 1 is used-are shown below. The correction 
coefficients for the range C are calculated. The correction coefficients for the 
other three ranges may be calculated the same way, using the appropriate border 
errors. 

ADCStep 

Error [Steps] 

50 4096 8192 12288 16330 

-13 -3 

Error coefficients for the range C: 

81 = _eu- el = _ 0 - (- 10) = _.1Q.. = _ 0078125 
128 128 128 . 

ao = -91 = - (-10) = + 10 

( Ni ) (Ni ) Correction: 4096 - n x 128 x a1 + aD = 4096 - 2 x 128 x (- 0.078125) + 10.0 

The correction for the ADC step 11 OOO-Iocated in range C-is calculated: 

( ~~9~ - 2) x 128 x (- 0.078125) + 10.0 = + 3.1 

Corrected ADC sample: Nicorr = Ni + 3.1 Valid for the ADC step 11000 
7 0 

Format: a1: ±0.9 -0.078125/2-41 = -40 = D8h C!]"'T" \\ ' 6 ' 1 ' 1 ' 6 ' 6 ' 0 • 

t' ."' 7 0 

aD: ±5.2 +10.012-2 = +40 = 28h 10 \ 0 ' 1 ' 0 ' 1 , 04 0 ' 0 I 

The number of fractional bits for a1 is derived from the following consideration: 
a1 is maximally to.15625 (see Table 1). This value must be possible with the 
largest number that can be expressed with a signed 8-bit number (7Fh): 

7Fh x 2-9 > 0.15625 = 1~~ > 7Fh X 2- 10 

0.24805 > 0.15625 = 122~ >. 0.124025 

This leads to a valency of 2-4l for the LSB of the 8-bit number. The detailed 
explanation for the calculation of the correction coefficients is given in Nonlinear 
Improvement of the MSP430 14-Bit ADC Characteristic,[4] Calculation of the 
B-Bit Numbers. 

t' ." 
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1.2.1.2 Multiple Linear Equations per Range 

The ADC is measured at (p+ 1) equally distributed points over the full ADC range 
(p = 2m ~ 8). These (p+ 1) results are used for the calculation of the offset and the 
slope of p linear equations valid for the p sections. The formula for the offset aD 
and the slope a1 for each of the p linear equations is (8-bit arithmetic): 

Nico" = Ni + [( N~~4 P - m) x 128 x 81 + ao ] 

(eu-e~ 
81 =-128 

Where: 

80= -el 

Nicorr = Corrected ADC sample [Steps} 
Ni = Measured ADC sample (noncorrected) [Steps] 
n1 = Value of the MSBs of Ni (0 to p-1) 
P = Number of sections over the full ADC range (8 for Figure 4) 
a1 = Slope of the correction 
ao = Offset of the correction [Steps] 
eu = Error of the ADC at the upper border of the section [Steps] 
el = Error of the ADC at the lower border of the section [Steps] 

n 1 ranges from 0 to (p-1) and has a length of IOr12 P bits. This means for n1 : 

• Two linear equations per range (Figure 4): value is 0 ... 7, length is IOr12 8 = 3 
bits; 

• Four linear equations per range (Figure 6): value is 0 ... 15, length is 
IOr12 16 = 4 bits; 

The term ( N~ ~ P - m ) x 128 in the equation above is the adaptation of a 

complete section-here a half range-to 128 subdivisions. The calculation is 
made by simple shifts and logical AND instructions 

1.2.1.3 Two Linear Equations per Range 

The principle for two linear equations per range (p=B) is shown in Figure 4. 

Device 1 Corrected With Eight Linear Equations (Border Fit) 

"iii" 5 

i 0 

~ oS 
w 
(.) ·10 c 
C 

·15 

ADCSteps 

Figure 4. Principle of the Correction With Border Fit (two linear equations per range) 
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The statistical results for two linear equations per range are: 

Full range Ranges A and B only 

Mean Value: -0.29 Steps -0.02 Steps 

Range: 6.49 Steps 5.3 Steps 

Standard Deviation: 0.97 Steps 1.06 Steps 

Variance: 0.94 Steps 1.12 Steps 

Figure 5 shows the result in a graph. 

Device 1 Corrected With Eight Un .. r Equattons (Border FH) 

ADC Steps [0 to 16383] 

Figure 5. Error Correction With Border Fit (two linear ,quatlons per range) 

Advantages: Only few measurements are necessary (p+ 1). Nine for the 
example above 
No gaps; the monotonicity of the ADC characteristic is 
preserved 
Belter correction than with a single linear equation per range 
Low memory needs: 2 x p bytes (16 for the example) 

Disadvantages: Multiplication is necessary 

The software is the same as shown in section 1.2.2.2, Multiple Linear Equations 
. per Range. 

EXAMPLE: The ADC is corrected with eight sections, each one with a length of 
2048 steps (p = 8). The measured errors-(device 1 of Architecture and Function 
of the MSP430 14-BitADC, SLAA045 is used)-are shown below. The correction 
coefficients for the lower section of range C-ADC steps 8192 to 10240 (n1 = 
4)-are calculated. The correction coeffiCients for the other seven sections are 
calculated the same way. 

ADCStep 

nl 

Error [Steps] 

50 

o 
-a 

2048 4096 6144 

123 

-a -13 -13 

8192 10240 12288 14338 16330 

677 
o 0 -3 
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Error coefficients for the lower section of range C: 

8 - 81 - 5 - (- 10) 5 
a1 = - 128 = - 128 = - 128 = - 0.0390625 

aD = - 81 = - (- 10) = + 10 

Correction: (N~~/ - n1) x 128 x 81 + aD = ( N~~4 8 - 4) x 128 x (- 0.03906) + 10.0 

Lower section of range C 

The correction forthe ADC step 9000-located in the lower section of range C-is 
calculated (p = 8, n1 = 4): 

( 90~~4x 8 _ 4) x 128 x (- 0.0390625) + 10.0 = 50.5 x (- 0.0390625) + 10.0 = + 8.027 

Corrected ADC sample: Nicorr = Ni + 8.03 Valid for the ADC step 9000 (range C) 
7 0 

Format: a1: ±0.10 -0.039625/2-10 = -40 = D8h [17" 1 I 1 I 1 ' 0 i 1 ' 1 ' 0 ' 0 I 0 I 
20 2-10 

7 0 

ao: ±5.2 + 10.0/2-2 = 40 = 28h '01 0 '1'6'1'°4°'6, 
.. 2-2 

1.2.1.4 Four Linear Equations per Range 

'i' a. 

I. 
~ 
8 c 

The principle for four linear equations per range (p=16) is shown in Figure 6. 

Device 1 

4 
2 
0 

·2 
·4 
·6 
-8 

·10 
·12 
·14 
·16 

ADCStepa 

Figure 6. Principle of the Correction With Border Fit (four linear equations per range) 

The statistical results for four linear equations per range are: 

Mean Value: 

Range: 
Standard Deviation: 

Variance: 

Full range 
-0.22 Steps 

5.36 Steps 
0.83 Steps 
0.69 Steps 

Ranges A and B only 
0.07 Steps 
4.07 Steps 
0.65 Steps 
0.42 Steps 
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2-128 

Figure 7 shows the result In a graph. 
Device 1 Corrected WIth SlX1een Equations (Border Fit) 

3~----------------------------------------------------~ 

·4L-----------------------------------------------------~ 
ADC S1eps [0 to 18383) 

Figure 7. Error CorrectIon WIth Border FIt (four linear equations per range) 

Advantages: Only a few measurements are necessary (p+ 1). Seventeen for 
the example above 
No gaps; the monotonicity of the ADC characteristic is 
preserved 
Better correction than with one or two linear equations per 
range 
Low memory requirements if p is small: 2 x p bytes (32 for above 
example) 

Disadvantages: Multiplication is necessary 

For 16 linear equations for the full ADC range, the software for each ADC 
measurement is as follows: 

Error correction with four linear equations per range 

(16 for the full ADC range) a-bit arithmetic. Cycles needed: 

Subdivision - 0: 49 cycles 

Subdivision> 3Fh: 101 cycles 

MOV &ADAT,RS 

MOV R5,R6 

AND #03FFh,R5 

RLA RS 

RLA RS 

RLA R5 

RLA R5 

RLA R5 

SWPB R5 

MOV.B R5,IROPl 

SLAA048 

ADC result Ni to R5 

Address info for correction 

Delete 4 MSBs (nl bits) 

Calculate subdivrsion 

Prepare 

«Ni x p/2 A 14)-n1)x 128 

7 bit ADC info to high byte 

ADC info to low byte 0 ... 7Fh 

To MPY operand register 

4.0 

10.0 

11.0 

12.0 

13.0 

14.0 

15.0 

7.0 

7.0 



SWPB R6 Calculate coeff. address 

RRA.B R6 2 x n1 in R6 O ... 01Fh 

BIC #l,R6 0 ... 01Eh: address of slope al 

MOV.S TAS1(R6),IROP2L Slope a1 

CALL #MPYS8 «Ni x p/2A14)-n1)x 128 x a1 

RRA lRACL MPY result to aO format 

SWPS lRACL 

ADD.S TABO(R6),IRACL Offset aO 

SXT IRACL 

RRA lRACL 

RRA lRACL Carry is used for rounding 

ADDC &ADAT,IRACL Corrected result Nicorr 

Proceed with Nicorr in lRACL 

The 32 RAM bytes starting at label TAS1 contain the corr. 

coefficients a1 and aO. The bytes are loaded during the 

initialization. 8-bit, signed numbers 

6.0 

5.0 

5.0 

±0.11 

±3.11 

±3.10 

±3.2 

±5.2 

±5.2 

±5.1 

±5.0 

14.0 

.bss TAB1,l 

.bss TABO,l 

.bss TABx, 30 

Range A lowest quarter: a1 ±0.11 

aO ±5. 2 

Ranges A (3), B, C, D: ai, aO. 

EXAMPLE: The ADC is corrected with sixteen sections, each one with a length 
of 1 024 steps (p = 16). The measured errors (device 1 of Architeture and Function 
of the MSP430 14-Bit ADC, SLAA045 is used.) are shown below. The correction 
coefficients for the lowest section of range C-ADC steps 8192 to 9216 (n1 = 
8)-are calculated. The correction coefficients for the other seven sections are 
calculated the same way. 

ADCSIep 

n1 

Error [Steps] 

8192 9216 10240 

10 

-5 

Error coefficients for the lower section of range C: 

eu - el - 7 - (- 10) 3 
a1 = -128 = - 128 = - 128 = - 0.0234375 

ao = - el= - (- 10) = + 10 

Introduction 

Correction: ( N~~/ _ n1) x 128 x ao + a1 = ( Nl2~416 - 8) x 128 x (- 0.0234375) + 10.0 

Lower section of range C 
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The correction for the ADC step 9000-located in the lower section of range C-is 
calculated (p = 16. n1 = 8): 

( 900~1~ 16 - 8) x 128 x (- 0.0234375) + 10.0 = 101.0 x (- 0.0234375) + 10.0 = + 7.63 

Corrected ADC sample: Nicorr = Ni + 7.63 Valid for the ADC step 9000 (range C) 
7 0 

Format: a1: ±0.11 -0.0234375/2-11 = -48 - DOh ['I'I!::::! I ' I 1 tot , i 0 tot 0 i 0 I 
~ ~ 
7 0 

ao: ±5.2 + 10.0/2-2 = 40 '" 28h I 0 lot 1 i 6 iii 6 , 0 i 0 I 
~ 24 

1.2.2 Linear Equations With Linear Regression 
With linear regression the linear equations that best fit the measured ADC 
characteristic are used. This leads to good results within the ranges but may 
produce gaps at the borders. 

The linear regression formulas (Least Squares Method) for the correction 
coefficients a1 (slope) and aO (offset) are given below. To simplify the real time 
calculations, the negative values of the coefficients are used. The reasons for this 
are the same ones as described in section 1.1. 

i=k I=k 
L Nx L ei /=k 

1-1 ,-1 "N . k -L... xel 
a1 = _ _____ ...:./=_1~ __ 

( 'I,kN)
2 

;=k 

~-LN2 
;=1 

The mean values of Nand e are defined as: 

Where: 

;=k 

Lei 
i§= 1=1 

k 

aO=-(i§-a1x1V) 

N Measured ADC sample (noncorrected) 
ei Error of the ADC sample i 
a1 Slope of the correction (negated) 
ao = Offset of the correction (negated) 
k Number of the measured samples 

Sample index running from 1 to k 

[Steps] 
[Steps] 

[Steps] 

The value N represents different values depending on the calculation method: 
• B-bit arithmetic: the subdivision of Ni within the appropriate section. The 

range for N is 0 ... 127. See the explanation given in section 1.2.1.1 
• Floating Point and 16-bit arithmetic: N equals the full 14-bit ADC value Ni 

The examples used are simplified due to the amount of data involved. 
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1.2.2.1 Single Linear Equation per Range 

The ADC is measured at k points inside each ofthe four ranges. Out ofthese (4xk) 
results, four linear equations are calculated using the Least Squares Method(see 
above formulas). The four slopes and offsets are stored in the RAM or in 
EEPROM. The formula for the corrected value Nicorr is: 

Nicorr = Ni + [(4~6 - n) x 128 x 81 + ao] 
Where: 

n = Range number (0 ... 3) for ADC ranges A .•. D) 
al = Slope calculated by the host or MSP430 
ao = Offset calculated by the host or MSP430 [Steps] 
k = Number of samples for each linear equation (range) 

The term (4~6 - n) x 128 of the above equation is the adaptation of a 

complete section-here a full range-to 128 subdivisions. The calculation is 
made by simple shifts and logical AND instructions. See the initialization part of 
the example below. 

The principle of this method Is shown in Figure 8, the eight measured samples 
are drawn only in range A (k = 8): 

DevIce 1 

ADCSteps 

Introduction 

Figure 8. Principle of the Linear Regression Method (single linear equation per range) 

Mean Value: 

Range: 
Standard Deviation: 

Variance: 

Full range 

0.03 Steps 
5.09 Steps 

0.94 Steps 

0.88 Steps 

Ranges A and B only 

0.12 Steps 
4.85 Steps 

1.00 Steps 

1.00 Steps 

The statistical results for 8 and 16 measurements per range are shown below: 
as it can be seen, 16 samples per range improve the final result only marginally. 

8 Samples per range 16 Samples per Range 

Mean Value: 0.03 Steps 0.07 Steps 
Range: 5.09 Steps 5.04 Steps 
Standard Deviation: . 0.94 Steps 0.92 Steps 
Variance: 0.88 Steps 0.85 Steps 
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Figure 9 shows the resuH of this method: eight samples per range are measured 
(k=8). Note the small range of only ±3 steps. 

Devlce 1. Corrected Wllh Four Linear Equations (Unaar Ragraaalon, EIght Samples par Range) 

ADC S1apa [0 10 16383] 

Figure 9. Error Correction With Linear Regression (single linear equation per range) 

15 

10 

i 
!!l. 5 

~ 
g 0 
oC 

-6 

·10 

Advantages: Good adaptation to the ADC characteristic 
Disadvantages: One multiplication IS necessary 

Small gaps at the borders of the four ranges 
Calculation of the linear regression is necessary during the 
calibration 

Device 1 does not show gaps at the borders of the four ranges-which is purely 
random-therefore another device that shows this disadvantage of the method 
more clearly is included in Figure 10. Note the gaps between the ranges A and 
B and the ranges Band C. 

Davlce2 

ADC S1apa [0 10 16383] 

Figure 10. Device 21 Showing the Typical Gaps at the Range Borders 

1 This Is device 2 from Arohecture end Function of the MSP430 14-B1t ADC Appfication Report #SLAA045. 
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The correction software for the 8-bit arithmetic is identical to the one shown in 
section Single Linear Equation per Range (Border Fit), section 1.2.1.1. 

Here an additional solution with 16-bit integer arithmetic is given. 

Error correction with a single equation per range 

16-bit arithmetic. Cycles needed: 

AOAT value - OOOOh: 47 cycles 

ADAT value 3FFFh: 178 cycles 

MOV &ADAT, IROP1 ADC result Ni to MPY reg. 

MOV IROPl,R6 Calculation of coeff. address 

SWPB R6 MSBs to low byte 0 .. . 3Fh 

RRA.B R6 

RRA.B R6 4n (Range) in R6 0 .. . 0Fh 

BIC '3,R6 0 .. . 0Ch: address of slope a1 

MOV TABl(R6),IROP2L Slope al 

CALL #MPYS Ni x al 

RRA IRACM Only HI result is used 

RRA lRACM To format 4.3 of offset aO 

RRA IRACM 

ADD TABO(R6),IRACM Add Offset aO 

RRA lRACM Nicorr = Ni x a1 + aO 

RRA lRACM 

RRA lRACM Carry is used for rounding 

ADOC &ADAT, lRACM Nicorr in lRACM 

14 .0 

14 .0 

6.0 

5.0 

4.0 

4.0 

0.22 

±4.22 

±4.5 

±4.4 

±4.3 

±S.3 

±S.2 

±S.1 

±S.O 

14 .0 

... Proceed with corr . result Nicorr 

The 16 RAM bytes starting at label TAB1 contain the 

correction info a1 and aO for all four ranges. The bytes 

are loaded during the calibration 

.bss TAB1,2 

.bss TABO, 2 

.bss TABx, 12 

Range A a1: lin. coefficient 

aO: constant coefficient 

Ranges B, C, D: al, aO. 

Run time optimized 16-bit Multiplication Subroutines 

IROP1 . EQU Rll 

IROP2L . EQU R12 

IROP2M . EQU R13 

IRACL . EQU R14 

IRACM . EQU R1S 

Unsigned ADC result (0 .. . 3FFFh) 

Signed factor (8000h ... 7FFFh) 

High word of signed factor (0) 

Result word low 

Result word high 

Signed multiply subroutine: IROP1 x IROP2L -> lRACMIIRACL 

±0.22 

±S.3 

Unear Improvement of the MSP430 14-81t ADC Characteristic 
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MPYS CLR lRACL o -> result word low 

CLR lRACM o -> result word high 

TST IROP2L Sign of factor al 

JGE MACU Positive sign: proceed 

SUB IROP1,IRACM correct result 

MACU CLR IROP2M Clear MSBs multiplier 

L$002 BIT #1, IROPI Test actual bit (LSB) 

JZ L$Ol If 0: do nothing 

ADD IROP2L,IRACL If 1 : add multiplier to result 

ADDC IROP2M,IRACM 

L$Ol RLA IROP2L Double multiplier IROP2 

RLC IROP2M 

RRC IROPl Next bit of IROPl to LSB 

JNZ L$002 If IROPl - 0: finished 

RET 

EXAMPLE: (8-bit arithmetic). The ADC is measured at five points of the ADC 
range A (n ... 0). The measured errors-device 1 is used-are shown below. The 
correction coefficients for the range A are calculated with the linear regression 
method. The correction coefficients for the other three ranges may be calculated 
the same way. The used numbers are shaded. 

ADCStep 

Subdivision 

Error [Steps] 

60 1024 2048 3072 4096 

The correction coefficients for the range A (n=O), are calculated with the formulas 
shown in section 1.2.2. 

a1 = + 0.06326 Negated result of linear coefficient 

ao = + 4.9312 Negated result of constant coefficient 

Correction: [(4~6-0)x128Xa1+ao] =(~x 0.06326+4.9312) 

The correction for the ADC step 2000-Iocated in range A-is calculated: 

~ x 0.06326 + 4.93 = 2~~0 x 0.06326 + 4.93 = + 8.88 

Corrected ADC sample: Nicorr = Ni + 8.9 

Format: 

a1: ±D.9 +0.06326/2-& = +32.4 '" 20h 

aD: ±5.2 +4.93/2-2 = +19.7" 14h 

Valid for the ADC step 2000 
7 

[!fa '0 16 i 1 

t' 
7 

I 6 I 6 ' 

o 
'6'6'6'6'6, 

2" 
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EXAMPLE: (16-bit arithmetic). The ADC is measured at five points of the ADC 
range C. The measured errors-device 1 is used-are shown in the table below. 
The correction coefficients for the range C are calculated with the linear 
regression method. The correction coefficients for the other three ranges may be 
calculated the same way. The used numbers are shaded. 

ADC Step 8192 9216 10240 11254 12288 

Error [Steps] ;wit~~;~;~ti~0~~m;0~, +0.1 

The correction coefficients forthe range C are calculated with the formulas shown 
in section 1.2.2. The full 14-bit ADC result is used for the calculations due to the 
available 16 bits of resolution. 

a1 = -0.0026381701 Negated result of linear coefficient 

ao = + 31.8695 Negated result of constant coefficient 

Correction: Ni x a1 + ao = Ni x (-0.00263817) + 31.8695 

The correction for the ADC step 12000-located in range C-'-is calculated: 

Nix (-0.00263817) + 31.8695= 12000 x (-0.00263817) + 31.8695 = + 0.204 

Corrected ADC sample: Nicorr = Ni + 0.2 

Format: 

Valid for the ADC step 12000 

a1: ±D.22 -0.0026381701/2-22 = -11065.3 '" D4C7h 

Introduction 

15 8 7 0 

C~::!:::~::!:!:=1 I 1 I 1 I 6 ' 1 i 6 i 1 I 6 j 6 I 1 , 1 , 6 ' 6 ' 6 ' , ; 1 i 1 I 
~ ~ ~ 

ao: ±5.3 +31.86958564/2-3 = +254.96 '" OOFFh 
15 8 7 0 

10,6' 0 ' 0 ' 0 ,6' 0' 0 '1' l' 1 I 1 i 14' • l' 1 I 
1.2.2.2 Multiple Linear Equations per Range 

The ADC is measured at (p x k) points over the four ranges (p = 2m ~ 8). Out of 
these (p x k) results p linear equations are calculated using the Least Squares 
Method. The calculated slopes and offsets are stored in the RAM or in EEPROM. 
The formula for the correction is: 

Nicorr = Ni + [( N~~P - n1) x 128 x a1 + ao] 

Where: 
Nicorr = Corrected ADC sample [Steps) 
Ni = Measured ADC sample (noncorrected) [Steps) 
p = Number of sections for the full ADC range. p is a power of 2. 
n1 = Value of the MSBS of Ni. n1 ranges from 0 to (p-1) 
a1 = Slope of the correction 
ao = Offset of the correction 
k = Number of samples for each linear equation (section) 

The value n1 is explained in section Multiple Linear Equations (Border Fit), 
section 1.2.1.2. 
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The term ( N~ ~4 P - n1) x 128 in the above equation is the adaptation of a 

complete section-here a half range-to 128 subdivisions. The calculation is' 
made by simple shifts and logical AND instructions. 

The principle of this method-with four samples within each one of the eight 
sections (k .. 4, P = 8)-is shown in Figure 11, the ADC samples are shown only 
in range A: 

Device 1 

ADCSI8ps 

Figure 11. Principle of the Linear Regression Method (two linear equations per range) 

2.5 

2 

1.5 

i 0.5 
~ 0 

~ -0.5 
0 

-1 Q 
< 

-1.5 

-2 

-2.5 

-3 

The statistical results for 16 points per range-eight samples for each one of the 
eight linear equations (k = 8, P = 8)-are: 

Mean Value: 
Range: 
Standard Deviation: 

Variance: 

Full range 

-0.03 Steps 

4.84 Steps 
0.78 Steps 

0.61 Steps 

Ranges A and B only 

+0.09 Steps 

4.80 Steps 

0.79 Steps 

0.63 Steps 

The result is shown in Figure 12. Note the error range of this figure: only ±3 ADC 
steps. 

Device 1 Corrected With Eight LInear Equations (L1neer Regression Ueed) 

ADC Steps [0 to 16383] 

Figura 12. Error Correction With Linear Regression (two linear equations per range) 
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Advantages: Very good adaptation to the ADC characteristic 
Method can be adapted to specific needs with more equations 
per range 

Disadvantages: Multiplication is necessary 
Small gaps at the borders of the four ranges 
Calculation of linear regresSion is necessary during calibration 
Many measurements are necessary during calibration (64 with 
the above example) 

The correction software for the a-bit arithmetic: 

Error correction with two linear equations per range 

(8 for the full ADC range) 8-bit arithmetic. Cycles needed: 

subdivision 0: 48 cycles 

Subdivision> 3Fh: 97 cycles 

MOV 

MOV 

AND 

RLA 

&ADAT, RS 

RS,R6 

#07FFh,R5 

R5 

RLA R5 

RLA R5 

RLA R5 

SWPB R5 

MOV. B RS,IROPl 

SWPB R6 

RRA.B R6 

RRA.B R6 

BIC #l,R6 

MOV.B TABl(R6),IROP2L 

CALL #MPYS8 

SWPB IRACL 

ADD.B TABO(R6),IRACL 

SXT IRACL 

RRA IRACL 

RRA IRACL 

ADDC &ADAT, lRACL 

ADC result Ni to R5 

Address info for correction 

Delete 3 MSBs (nl bits) 

Calculate subdivision 

Prepare 

((Ni x p/2 AI4)-nl)x 128 

7 bit ADC info to high byte 

ADC info to low byte 0 ... 7Fh 

To MPY operand register 

Calculate coeff. address 

o ... 3Fh to O ... IFh 

2 x nl in R6 0 ... 0Fh 

0., .OEh: address of slope al 

Slope a1 ±0.10 

((Ni x p/2A14)-n1)x 128 x a1 

MPY result to aD format ± 

(nnn)x 128 x al + aO 

To integer format 

Carry is used for rounding 

Corrected result Nicorr 

Proceed with Nicerr in IRACL 

14 .0 

14 .0 

11.0 

13.0 

14 .0 

15.0 

7.0 

7.0 

6.0 

5.0 

4.0 

4.0 

±4.10 

4.2 

±5.2 

±5.2 

±5.1 

±5.0 

14 .0 

The 16 RAM bytes starting at label TAB contain the correction 

coefficients al and aO. The bytes are loaded during the 

initialization. 8-bit , signed numbers 

.bss TABl/l i Range A: al ±0.9 

Linear Improvement of the MSP430 14-8it ADC Characteristio 
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Aclditlonallnformatlon. 

.bas TABO, 1 aO ±5.2 

• bea TABx, 14 Range·S, C, 0: al, aO . 

EXAMPLE: The ADC ranges are split into two sections each. The measured 
errors of five pOints located in the upper section of range ~evice 1 is 
used-are shown below (k = 4, P = 8). The correction coefficients for this section 
are calculated with the linear regression method. The correction coefficients for 
the other seven sections may be calculated the same way. 

ADC Step 6144 6656 7168 7680 8192 

SUbdivision 

Error [Steps) 

The correction coefficients a1 and ao for the upper section of range B (n1 = 3) are 
calculated with the formulas shown in section 1.2.2. The subdivision of the ADC 
step (0 to 127) is used (8-bit arithmetic). 

a1 = + 0.03719 Negated value 
ao = + 14.32 Negated value 

Correction: 

[( N~~/ _ m) x 128 x ao + 81 ] = [( N~~4 8 ,- 3) x 128 x (- 0.03719) + 14.32] 

The correction for the ADC step 7000-located in the upper section of range 
B-is calculated: 

( 70~~4x 8 - 3) x 128 x (- 0.03719) + 14.32 = + 12.33 

Corrected ADC sample: NiCO" = Ni + 12.3 

Format: 
al: ±D.l0 

ao: ±5.2 

-0.03719/2-10 .. -38 = DAh 

+14.3212-2 = 57.3 '" 39h 

2 Additionallnformation 

Valid for ADC step 7000 range B 

C1:l:1'"1 I 1 I 1 ' 6, , 1 i 1 ' 6 i 

2' 

The application report Nonlinear Improvement of the MSP430 14-Bit ADC 
Characteristiq4] shows nonlinear methods such as quadratic and cubic 
corrections for t!le improvement of the 14-bit analog-to-digital converter of the 
MSP430. Also included are the integer multiplication subroutines for the fast 
correction software and considerations to the obtainable accuracy with the 8-bit 
software. Finally all explained correction methods presented are compared by 
ROM and RAM needs, accuracy improvement, and required CPU cycles. 
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Definitions Used With the Application Examples 

Appendix A Definitions Used With the Application Examples 

; HARDWARE DEFINITIONS 

ACTL .equ 0114h ADC control register: control bits 
ADAT .equ Ollah; ADC data register (12 or 14-bits) 
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Nonlinear Improvement of the MSP430 14-8it ADC Characteristic 

Lutz Bieri 

ABSTRACT 
This application report shows nonlinear methods-with quadratic and cubic equations 
-to improve the accuracy of the 14-bit analog-t<HIigital converter (ADe) of the MSP430 
family. The methods used differ in RAM and ROM requirements, calculation speed, 
achievable improvement, and complexity. The influence of the restricted- calculation 
accuracy for 8-blt coefficients is compared to the accuracy of floating-point calculations. 
Finally, a comparison of all improvement methods is given. The References section at the 
end of the report lists related application reports in the MSP430 14-bit ADC series. 

1 Introduction 
The application report Architecture and Function of the MSP430 14-Bit ADql] 
gives a detailed overview of the architecture and function of the 14-bit 
analog-to-digital converter (ADC) olthe MSP430 family. The principle olthe ADC 
is explained and software examples are given. Also included are the explanation 
of the function of aU hardware registers contained in the ADC. 

The application report Application Basics for the MSP430 14-Bit ADq2] shows 
several applications of the 14-bit ADC of the MSP430 family. Proven software 
examples and basic circuitry are shown and explained. 

The application report Additive Improvement of the MSP430 14-Bit ADC 
Characteristic{3] explains the external hardware that is needed for the 
measurement of the characteristic of the MSP430's analog-to-digital converter. 
This report also demonstrates correction methods that use addition only: no 
multiplication is needed. This allows the application of these methods in real-time 
systems, where execution time can be critical. 

The application report Linear Improvement of the MSP430 14-Bft ADC 
Characteristic{4] shows linear improvements using linear equations with border 
fit and correction by linear regression methods. 

Figure 1 shows the block diagram of the 14-bit analog-to-digital converter of the 
MSP430 family. 
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Figure 1. The Hardware of the 14-Blt Analog-to-Digital Converter 
The methods for the improvement of the ADC discussed in this report are: 
• Correction with nonlinear equations 
• Correction with one quadratic equation per range 
• Correction with one cubic equation per range 

1.1 Correction With Quadratic Equations 

The ADC is measured atthree points within all four ranges. These points are used 
for a quadratic correction (one correction for each range). It is recommended to 
use more than one measurement for each one of these three important pOints. 
Additive Improvement ofthe MSP430 14-Bit ADC Characteristic[3] section 2.1 for 
details. Normally these three points are the two borders and the center of the 
actual range. This has two advantages: 
• The ranges continue' smoothly at the common borders. 
• Only nine pOints of the ADC characteristic need to be measured for the full 

ADC range during the calibration. This is due to the common range border 
points. 

But other arrangements are possible. 

The improvement methods and their results for this report are demonstrated with 
the characteristic of device 1 due to its worst characteristic compared to the other 
three devices shown in Architecture and Function of the MSP430 14-Bit ADC. 
Application Report.[1] 
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The formula used for each range with separate factors ax for 8-bit integer 
calculations is: 

Nicorr = Ni + (( (4~6 - n) x 256 f x a2 + (4~6 - n) x 256 x 81 + aD) 

Where: Nicorr 
Ni 
N 
n 
a2 
a1 
aO 

Corrected ADC sample [Steps] 
Measured ADC sample (non-corrected) [Steps] 
Subdivision representing the ADC sample (0 ... 255) 
Range number (0 ... 3 for ranges A. .. D) 
Quadratic Coefficient of the correction [Steps-1] 
Linear coefficient of the correction 
Offset of the correction [Steps] 
Nominal ADC step of the ADC input (DAC output) [Steps] 

The term N = (4~6 - n) x 256 of the equation above is the adaptation of a 

complete section-here a full range-to 256 subdivisions. The calculation of the 
term is made by simple shifts rather than division and a multiplication. Rounding 
is used to achieve better accuracy. See the initialization part of the software 
example. 

The formula above uses the subdivisions (0 to 255) inside of an ADC range (0 
to 4095 steps) instead of the full 14-bit position (0 to 16383 steps) of an ADC point. 
This is to maintain the accuracy of the calculation with limited coefficient length 
(here for 8-bit coefficients). The above formula is used with the 8-bit calculation. 

If floating pOint calculation or 16-bit arithmetic is used, the higher resolution 
makes the range correction unnecessary: the full 14-bit result may be used for 
the calculations. 

Nicorr = Ni + (Ni2 x a2 + Ni x 81 + aD) 

The software example given for the cubic correction in section 1.3-which is 
written in floating point notation-may be adapted easily to quadratic correction: 
the unused cubic part is simply left out and the address calculation for the 
coefficients is modified to three coefficients (a2 .. aO) instead of the four (a3 •. aO). 

To save multiplications, the so-called Homer scheme is used. This scheme is 
applicable for all given examples. The formula using the 8-bit arithmetic now 
becomes: 

Nicorr = Ni + (( (4~6 - n) x 256 x a2 + 81) x (4~6 - n) x 256 x aD) 

The 16-bit formula and the FPP formula now require only two multiplications 
instead of three. 

Introduction 
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Nico" = Ni + ((Ni x tt2. + a1)Ni + ao) 

Figure 2 shows the principle of the correction with four quadratic equations: the 
used correction parabolas are. drawn together with the non-corrected ADC 
characteristic. As with all principle figures in this report, the black straight line 
indicates the correction value, the scribbled black line indicates the 
non-corrected ADC characteristic and the white line shows the corrected ADC 
characteristic. The small circles indioate the measured ADC points. 

Device 1 

5 

~ -10 

-15 

ADCSteps 

Figure 2. Principle of the Error Correction With Four Quadratic Equations 

The statistical results for the quadratic correction are (single measurement for 
each one of the nine ADC steps used for the calculation of the correction 
coeffiCients): 

Mean Value: 
Range: 
Standard Deviation: 
Variance: 

Full range 
-0.08 Steps 
6.78 Steps 
1.05 Steps 
1.11 Steps 

Ranges A and B only 
0.24 Steps 
5.86 Steps 
1.10 Steps 
1.21 Steps 

If each of the nine ADC steps used for the calculation of the correction coefficients 
is measured in a slightly modified way, then the statistical results change also. 
Now the mean value of seven measured ADC steps is taken for the calculation. 
The seven ADC steps are: 

Nn-12, Nn-8, Nn-4, Nn, Nn+4, Nn+8 and Nn+ 12, where Nn is the ADC step used 
in the calculation formula. Now the statistical results are: 

Mean Value: 
Range: 
Standard Deviation: 
Variance: 

Full range 
-0.07 Steps 
6.47 Steps 
1.00 Steps 
1.00 Steps 

Ranges A and B only 
0.11 Steps 
6.02 Steps 
1.12 Steps 
1.24 Steps 

Figure 3 shows the resulting errors of both methods in a graph (differences 
cannot be seen): 
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Figure 3. Error Correction With Four Quadratic Equations 

Advantages: 

Disadvantages: 

Only nine ADC measurements are necessary 
No gaps at the range borders: perfect continuation 
The MSP430 can calculate the correction coefficients 
a2to aO 

Two multiplications are necessary (with Horner 
scheme) 

Introduction 

1.2 Coefficients Estimation 

With the maximum possible ADC error (±10 steps contained in a band of ±20 
steps like shown in Figure 6) the maximum values for the coefficients a2 to aO are 
shown in Table 1. Also given are the valences of the MSBs and the LSBs and the 
possible coefficient range. In Figure 6, the range C shows the worst case for a 
quadratic error curve. This curve is the basis for Table 1. 

Table 1. Worst case Coefficients for Quadratic Equations (8-Blt) 

COEFFICIENT 
MAXIMUM VALENCE OF MSB VALENCE OF LSB COEFFICIENT 

COEFFICIENT (BIT&) (BIT 0) RANGE 

Quadratic coafficient a2 ±6.103515E-4 Z-11 2-17 ±9.7E-4 

Unear coefficient a 1 ±1.171875E-1 2-4 2-10 ±1.25E-1 

Constant coefficient ao ±2.00000E+ 1 2+4 Z-2 ±3.2000E+1 

The integer calculation operates with signed 8-bit coefficients and ax ADC result 
rounded to 8 bits. The floating point calculation uses the full ADC result (0 to 
16383) and a 32-bit format for the calculations. 
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To give an idea concerning the actual magnitudes, the twelve calculated 
correction coefficients ax for device 1 are: 

Table 2. 8-Bit Coefficients for the Four Quadratic Equations of Device 1 

COEFFICIENT RANGE A RANGE B RANGEC RANGED 

a2 

a1 

aO 

9.155273E-5 -1.831055E-4 -2.746582E-5 1.517946E-4 

4.687500E-J 3.281250E-2 -3.0859375E-2 -2.0992208E-2 

6.000000E+O 1.320000E+ 1 9.600000E+O -1.000000E-1 

The three equations to calculate the correction coefficients a2, a1 and aO out of 
the three known errors e3, e2 and e1 at the ADC steps N3, N2 and N1 are: 

81 
(e2 - e1) x (N; - N~) - (a3 - e2) x (N~ - N~) 

(N2 - N1) x (N; - N~) - (N3 - N2 ) x (N~ - N~) 

a2= 
(e2 - a1) - 8 1 X (N2 - N1) 

N~ - N~ 
ao = - (e1 - a2 x N~ - 81 x N1 ) 

NOTE: 

N3, N2, and N 1 can be expressed in ADC steps (0 ... 16383), range steps 
(0 .. .4095) or subdivisions of the range (0 ... 255) for 8-bit calculations. 
In the following, N represents subdivisions. 

As shown with the linear improvements, using more than one quadratic parabola 
per ADC range is also possible. It is only necessary to adapt the 256 subdivisions 
to the sections of the ranges, to calculate the new coefficients a2 to aO, and to 
modify the addressing of the coefficients. 

The software part after each ADC measurement is as follows. The numbers at 
the right border-below inUret-indicate the maximum integer bits and the actual 
number of fraction bits forthe result (integer. fraction). The Horner scheme is used 
for the calculation. 

Quadratic error correction with a single equation per range. 
S-bit arithmetic. Cycles needed: 
Subdivision N = 0: 85 cycles 
Subdivision N > 7Fh: 206 cycles 

MOV 
MOV 
RRA 
RRA 
RRA 
RRA 
ADC.B 
JNC 
DEC.B 

L$l SWPB· 
RRA.B 
RRA.B 
RRA.B 
BIC 

&ADAT,RS 
R5,R6 
R5 
RS 
RS 
RS 
RS 
L$l 
R5 

R6 
R6 
R6 
R6 
#1h, R6 

ADC result Ni to RS 
Address info for correction 
Calculate subdivision 0 ... FFh 
Prepare N = (Ni/4096-n)x2S6 
8 bit ADC info to low byte 

Round subdivision 0 ... FFh 
If result overflows to IOOh: 
Limit subdivision to FFh 

Calculate coefficient address 
0 ... 1Fh 
0 ... 0Fh 
O ... 07h 
O •.• 06h 

int.frct 

14 .0 
14.0 
13.0 
12.0 
11.0 
10.0 
8.0 

B.O 

6.0 
S.O 
4.0 
3.0 
3.0 
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PUSH R6 
RRA.B R6 
ADD @SP+ ,.R6 

Save 0 ... 6h 
0 ... 03h 
0 ... 9h (3n) pointer to a~ 

MOV.B 
MOV.B 

RS,IROPI ; ADC info to MPY register 
TAB2(R6),IROP2L 

Quadr. slope a2 
CALL 
RLA 
ADD 
SWPB 
MOV.B 

#MPYSB N x a2 
IRACL To al format 
#80h,IRACL Round result 
IRACL 
IRACL,IROP2L To MPY register 

MOV.B R5,IROPl ; Subdivision to MPY register 
ADD.B TABl(R6), IROP2L 

Linear slope al added 
CALL #MPYSB ((N x a2) + al) x N 

ADD #80h,IRACL Round result 
SWPB lRACL ; To aO format 
ADD. B TABO (R6) , lRACL 

SXT 
RRA 
RRA 
ADDC 

lRACL 
lRACL 
lRACL 
&ADAT,IRACL 

Add aO 
Correction to 16 bit 
(((N x a2) + al) x N) + aO 
Carry is used for rounding 
Corrected result Nicorr 
Use Nicorr in lRACL 

The 12 RAM bytes starting at label TAB2 contain the 
correction coefficients a2, al and aD for the four ranges. 
The bytes are loaded during the initialization 

. bss TAB2,1 

.bss TABI,l 

. bss TABO,l 

. bss TABx,9 

Range A a2: quadr. coeff . 
a1: lin. coefficient 
aD: constant coett . 

Ranges B, C, D: a2 ... aO . 

3.0 
2.0 
4.0 

B.O 

0.17 
+-0.17 
+-0.18 
+-0.18 
+-0.10 
+-0.10 

8.0 

+-0.10 
+-S.10 

+-S .10 
+-S.2 

+-S.2 
+-S.2 
+-S.l 
+-S.O 

14 .0 

+-0.17 
+-0.10 
+-S.2 

EXAMPLE: The ADC is measured at the two borders and the middle of ADC 
range B (n = 1). The measured errors-device 1 is used-are shown below. The 
three correction coefficients a2, a1, and aO for the range B are calculated with the 
formulas given before. The correction coefficients for the other three ranges may 
be calculated the same way; only the appertaining border'and center errors need 
to be used. Twelve measurements were made for each ADC step, and the two 
extremes were discarded: this leads to one decimal fraction digit. 

ADC Step 4096 6144 8192 
Subdivision N 0 128 256 
Error e [Steps] -13.2 -13.4 -9:6 

Error coefficients for the range B: 

it2 = -{).000183106 

81 = + 0.0328125 

80 = + 13.2 

For better legibility N = (4:6 - n) x 256 is used in the following. 

Correction: 
((N x a2 + 81) x N + 80) = ((N x (- 0.000183106) + 0.0328125) x N + 13.2) 

Introduction 
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The correction for the ADC step 7000-located in range B-is calculated: 

(( ( ~gg~ - 1) x 256 x (- 0.000183106) + 0.0328125) x ( ~gg~ - 1) x 256 + 13.2) = + 13.3 

Corrected ADC sample: Nico" = Ni + 13.3. Valid for ADC step 7000 

Format: a2: ±0.17 -0.000183106/2-17 = -24 = E8h 
7 0 

Q~1~~~i~~~1:~ 11111 i 1 i 0 11 10 i 0 i 0 I 
20 ~17 

7 0 

a1: ±0.10 +0.0328125/2-10 = +33.6 .. 22h ~~o::r: 0 I 0 I 0 i 1 i 0 i 0 i 0 i 1 i 0 I 
aU 2""10 

7 0 

aO: ±5.2 + 13.2/2-2 '" +52.8 .. 35h I 0 I 0 i 1 i 1 i 0 i 1 ! 0 i 1 I 
iJ 2-2 

1.3 Correction With Cubic Equations 
The ADC is measured at the two borders of each range (common to two ranges) 
and at one third and two thirds of each range, which results In 13 measurements: 
e.g., N = 20, 1366, 2731, and 4096 for range A. The errors of these 13 
measurements are used for the calculation of four cubic equations, one for each 
ADC range. It is recommended to use more than one measurement for each of 
these thirteen points. The resulting correction coefficients a3, a2, a1, and aO for 
each ADC range are stored in the RAM or EEPROM. 

The above method has two advantages: 
• The ranges continue smoothly at the common borders. 
• Only thirteen points of the ADC characteristic need to be measured for the full 

ADC range during the calibration. This is due to the common range border 
points. 

The used formula for each range with separate factors ax for an 8-bit integer 
calculation is: 

Nico" = Ni + (foil x a3 + /IP x tt2 + N x a1 + ao) 

Where: N = (4~6 -n) x 256, the ADC result of a range adapted to the 

subdivisions 0 ... 255. 

Where: Nicorr Corrected ADC sample . [Steps] 
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Ni Measured ADC sample (non-corrected) [Steps] 
N Subdivision representing the ADC sample (0 ..• 255) 
n Range number (0 .•. 3 for railges A ... D) 
a3 Cubic coefficient of the correction 
a2 Quadratic coefficient of the correction 
a1 Linear coefficient of the correction 

[Stepr2j 
[Stepr1] 

aO Offset of the correction [Steps] 
Nominal ADC step of the ADC input (DAC output) [Steps] 



I 
l 
~ w 
() 

~ 

The integer formula above uses the subdivision (0 .. 255) inside of an ADC range 
(0 to 4095) instead of the full 14-bit position (0 to 16383) of an ADC point. This 
is to increase the accuracy of the calculation also with limited coefficient length, 
e.g., for 8-bit coefficients. 

If floating point calculation is used, the high resolution of the 24-bit mantissa 
makes the range correction unnecessary. The equation simplifies to: 

Nicorr = Ni + (Nf3 x a3 + Nfl x 82 + Ni x a1 + ao) 

To save multiplications the Horner scheme is used again. This reduces the 
number of multiplications from six to only three. The formula using the 8-bit 
arithmetic now becomes (N represents the actual subdivision 0 ... 255. See 
above): 

Nicorr = Ni + (((N x a3) + a2) x N + a1) x N + aO 

The formula for 16-bit and floating point calculations now becomes: 

Nico" = Ni + (((Ni x a3) + 82) x Ni + a1) x Ni + aO 

Figure 4 shows the principle of the correction with four cubic equations: the 
correction parabolas actually used are printed together with the corrected and 
non-corrected ADC characteristic. The circles indicate the measured ADC 
points. 

Device 1 

4 
2 
0 

-2 
-4 
~ 
~ 

-10 
-12 
-14 
-16 

ADCSteps 

Figure 4. Principle of the Error Correction With Fpur Cubic Equations 

The statistical results for the cubic correction method are: 

Mean Value: 
Range: 
Standard Deviation: 
Variance: 

Full range 
-0.10 Steps 
5.47 Steps 
0.93 Steps 
0.87 Steps 

Ranges A and B only 
-0.28 Steps 
4.97 Steps 
0.97 Steps 
0.94 Steps 

Figure 5 shows the resulting error correction in a graph: 
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Figure 5. Error Correction With Four Cubic Equations 
Advantages: Good adaptation to worst case ADC characteristics 

Low storage needs: 16 bytes RAM or EEPROM 
(integer calculation) 

Disadvantages: 

Monotonicity is ensured due to common samples at the 
range borders 
Only thirteen ADC measurements are necessary for the 
calibration 

Three multiplications are necessary (with HORNER 
scheme) 
Host is necessary for the calculation of the correction 
coefficients ax 

1.4 Coefficients Estimation 
With the maximum possible ADC error (±10 steps contained in a band of ±20 
steps like shown in Figure 6) the maximum values for the coefficients a3 to aD are 
shown in Table 3 (8-bit arithmetic). Also given are the valences of the MSB and 
the LSB and the possible coefficient range. In Figure 6, the range D shows the 
worst case of a cubic error curve. This curve is the basis for Table 3. 

Table 3. Worst Case Cubic Coefficients (8-8It Arithmetic) 

COEFFICIENT 
MAXIMUM VALENCE OF MSB VALENCE OF LSB COEFFICIENT 

COEFFICIENT (Brr8) (BIT 0) RANOE 

Cubic coefficient a3 ±6.357828H 2""18 244 ±7.57H 

Quadratic coefficient a2 ±2.441406E-3 z-9 2""15 ±3.88E-3 

Linear coefficient B1 ±2A73956E-1 ~ z-9 ±2A8E-1 

Constant coefficient sO ±2.00000E+ 1 2+4 z-2 ±3.2OOE+1 

The integer calculation operates with signed 8-bit coefficients and an ADC result 
rounded to 8 bits (256 subdivisions). 
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The floating point calculation uses the full ADC result (0 to 16383) and a 32-bit 
format forthe calculations. To give an example, for device 1 the calculated sixteen 
correction factors a3 to aO are (12-bit ADC info is used): 

Table 4. Correction Coefficients for the Cubic Equations of Device 1 

COEFFICIENT RANGE A RANGEB RANGEC RANGED 

a3 -1.18&-10 -6.483598E-10 3.288326E-11 5.17398E-10 

a2 1.02E-{)6 3.943417E-{)6 -3.497543E-07 -2.655711 E-Q6 

a1 -4.37&-04 -6.153471E-03 -1.486924E-03 3.83333E-03 

aO 6.00E+OO 1.320000E+01 9.600000E+00 -1.000000E-01 

The algorithm to calculate the four correction coefficients a3 to aO out of the four 
measured errors e4, e3, e2 and e1 at the ADC steps N4, N3, N2 and N1 is very 
complex. It is recommended to use a mathematical support software running on 
a host computer for this task. A simple calculation software routine is available 
from Texas Instruments on request. 

For the cubic correction an example using the MSP430 Floating Point Package 
FPP4 is given below. This software example can be adapted easily to linear and 
quadratic correction: 
• The parts not used are deleted (e.g., the parts handling the coefficients a3 and 

a2 if a linear correction is needed) 
• The calculation of the start address of the correction coefficients (address of 

a3 in the example) out of the ADC result is modified slightly. 
; Cubic error correction with a single equation per range. 
; Floating point arithmetic. Cycles needed: 800 to 2400 

DOUBLE .EQU 

MOV 
CALL 
CALL 
SUB 
MOV 
CALL 
SUB 

MOV 
SWPB 
AND 
ADD 
MOV 
CALL 
ADD 
MOV 
CALL 
ADD 
CALL 
ADD 
MOV 
CALL 
ADD 
CALL 
ADD 
MOV 
CALL 
ADD 
CALL 

o 

#xxx,&ACTL 
#MEASR 
#FLT_SAV 
U,SP 
#ADAT,RPARG 
#CNV_BINl6U 
#4,SP 

&A,DAT,R1S 
R1S 
#0030h,R1S 
#a3,R1S 
R1S, RPARG 
#FLT_MUL 
#a2-a3,R1S 
R1S,RPARG 
#FLT_ADD 
U, RPARG 
#FLT_MUL 
#a2-a3,R1S 
RlS,RPARG 
#FLT_ADD 
U,RPARG 
#FLT_MUL 
#a2-a3,R1S 
R1S,RPARG 
tFLTJ.DD 
#4,RPARG 
#FLTJ.DD 

Use .FLOAT format (32 bit) 

Define ADC measurement 
Measure. Result Ni to ADAT 
Save registers R5 to R12 
Allocate stack for FP result 
Load address of ADC buffer 
convert ADC result Ni to FP 
New working space for calc. 

Calc. address of coetf. a3 

Range x 16: reI. address a3 
start address of coeff. block 
Points to actual a3 
a3 x Ni 
Address of a2 
Points to actual a2 
a3 x Ni + a2 
To Ni 
(a3 x Ni+a2)Ni 
Address of al 
Points to actual al 
«a3 x Ni)+a2)Ni + a1 
To Ni 
«(a3 x Ni) + a2)Ni + al)Ni 
To actual aO 

«(a3 x Ni)+a2)N1+al)Ni+aO 
To Ni 
Nicorr - Ni + correction 

NonUnear Improvement of the MSP430 14-8i/ ADC Characteristic 
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POP 2 (SP) 
POP 2(SP) 

Result to top of stack 
POPfi correct the stack 
Continue calc. with Nicorr 
Restore registers R12 to RS 
Normal program continues 

correction coefficients are loaded from EEPROM during init . 

. bss a3,4 Range A: Cubic coefficient a3 

.bas a2,4 Quadratic coefficient a2 

.bss al,.4 Linear coefficient al 

.bss aO,4 Constant coefficient aO 

.. bss ax,48 Ranges B, C and 0: a3 ... aO 

The assembler software part after each ADC measurement is as follows. The 
numbers at the right border-below intfrct-indicate the maximum integer bits 
and the maximum number of fraction bits (integer.fraction). The Horner scheme 
is used for the calculation. 

Cubic error correction with a single equation per range. 
S-bit arithmetic. Cycles needed: 
Subdivision N = 0: lOS cycles; subdivision N > 7Fh: 2S3 cycles 

int.frct 

MOV &ADAT,RS ADC result Ni to R5 14.0 
MOV RS,R6 Address info for correction 14.0 
RRA RS Calculate subdivision 0 .. . FFh 13.0 
RRA R5 Prepare N == (Ni/4096-n)x256 12.0 
RRA R5 8 bit ADC info to low byte 11.0 
RRA RS 10.0 
ADC.B RS Round subdivision 0 .. . FFh S.O 
JNC L$l If result overflows to 100h: 
DEC.B RS Limit sUbdivision to FFh S.O 

L$l SWPB R6 Calculate coeff. address a3 6.0 
BIC.B #OFh,R6 O ... 30h 6.0 
RRA.B R6 0 .. . 1Sh 5.0 
RRA.B R6 0 ... OCh: address of slope a3 4.0 

MOV.B R5, IROP1 Subdivision to MPY register S.O 
MOV.B TAB3(R6),IROP2L Cubic slope a3 0.24 
CALL #MPYSS N x a3 +-0.24 
SIIPB lRACL +-0.16 
RRA.B lRACL To a2 format +-0.15 
ADC.B lRACL Round result +-0.15 
MOV.B lRACL,IROP2L To MPY register +-0.15 

MOV.B R5, IROP1 Subdivision to MPY register 8.0 
ADD.B TAB2(R6),IROP2L Quadr. slope a2 added +-0.15 
CALL #MPYSB ((N x a3 + a2) x N +-0.15 
RLA lRACL To a1 format +-0.16 
RLA lRACL +-0.17 
ADD #OSOh, lRACL Round result +-0.17 
SWPB lRACL +-0.9 
MOV.B lRACL, IROP2L To MPY register +-0.9 

MOV.B R5,IROP1 Subdivision to MPY register B.O 
ADD.B TAB1(R6),IROP2L Linear slope a1 added 0.9 
CALL #MPYSS «N x a3 + a2) x N + a1) x N +-S.9 

RLA lRACL To aO format +-S.10 
ADD #80h,IRACL Round result +-S.lO 
SIIPB lRACL To aO format +-S.2 
ADD.B TABO(R6),IRACL Add aO +-5.2 
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SXT 
RRA 
RRA 
ADDC 

lRACL 
lRACL 
lRACL 
&ADAT,IRACL 

Correction to 16 bit 

Carry is used for rounding 
Corrected result Nicorr 
Use Nicorr in IRACL 

The 16 RAM bytes starting at label TAB3 contain the 
correction coefficients a3, a2, al and aO. The bytes are 
loaded during the initialization 

. bss TAB3,1 

.bss TAB2,1 

.bss TAB1,1 

.bss TABO,l 

. bss TABx,12 

Range A a3: cubic coeff . 
a2: quadr. coeff. 
al: lin. coefficient 
aO: constant coeff. 

Ranges B, C, 0: a3 ... aO 

+-5.2 
+-5.1 
+-5.0 

14.0 

+-0.24 
+-0.15 
+-0.9 
+-5.2 

Introduction 

As shown with the linear improvements, it is also possible to use more than one 
cubic parabola per ADC range. It is only necessary to adapt the 256 subdivisions 
to the sections of the ranges, to calculate the new coefficients, and to modify the 
addressing of the coefficients. 

EXAMPLE: The ADC is measured at the borders and at one third and two thirds 
of ADC range D (n = 3). The measured errors--device 1 is usecl-are shown 
below. The four cubic correction coefficients a3 to aO for the range Dare 
calculated with a math package running on a pc. The correction coefficients for 
the other three ranges maybe calculated the same way using the appertaining 
errors of each range. Twelve measurements were made for each ADC step, the 
two extremes were discarded: this leads to one decimal fraction digit. 

ADCStep 
Subdivision N 
Error e [Steps] 

1228 
o 

0.1 

13653 
85.33 
-1.5 

Error coefficients for the range D: 

a3 = + 0.00000146501 

a2 = -0.000512371 

a1 = + 0.0518045 

aO = -0.10 

15019 
170.67 

-1.1 

16350 
253.9 
-4.0 

For better legibility N = (4~6 -n) x 256 is used in the following. 

Correction: «(N x a3) + 82) x N + a1) x N + aD 

= «(N x 0.00000146501) - 0.000512371) x N + 0.0518045) x N - 0.10 

The correction for the ADC step 1500o-Iocated in range D-is calculated: 

N = ( ~0~0~ - 3) x 256 = 169.5"" 170 

«(170 x 0.00000146501)-0.000512371) x 170 + 0.0518045) x 170-0.10 = + 1.1 

Corrected ADC sample: Nicerr = Ni + 1.1. Valid for ADC step15000 
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Format: a3: ±0.24 +0.00014650112-24 .. +24.58 = 19h 
7 0 

~i.O~o~~~~~~~o~~~~~~~o~~ 0 I 0 I 0 i 0 i 1 i 1 i 0 i 0 i,l 
I!!J .-24 

a2: ±0.15 -0.00051237112-15 =-16.79 .. EFh 
7 0 

[!~1~~~1~~~1=~> 1111 i 1 i 0 i 1 i 1 i 1 111 
20 2-15 

7 0 

a1: ±0.9 +0.0518045/2-9 = +26.52 .. 1Bh [!:i 0 I 0 I 0 i 0 i 1 i 1 i 0 i 1 i,l 
20 ..-e 

7 0 

aO: ±5.2 -0.1/2-2 = -0.4 .. OOh I 0 I " i 0 i 0 i 0 i o! 0 i 0 I 
I!!J .... 
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2 Considerations to the Integer Calculations 
The calculations for this application report were made with a floating point 
package. If the 14-bit ADC is used within a real time system the floating point 
calculation time is normally too long. Therefore the necessary loss of accuracy 
needs to be known if integer calculations with their restricted bit length are used. 
The most time consuming parts are the multiplication subroutines, so they are 
shown first. 

2.1 Multiplication Subroutines 

To reduce the multiplication time as much as possible, two multiplication 
subroutines, which terminate immediately after the operand IROP1 becomes 
zero are shown; this means that the operand with leading zeroes should be in the 
register I ROP1-here the subdivision representing the ADC result.1 

2.1.1 8-Bit Multiplication Subroutine 

If the operands of the multiplication subroutine are normally shorter than 8 bits, 
then the multiplication subroutine below saves time due to its run time 
optimization: the multiplication terminates immediately after IROP1 gets zero due 
to the right shifts during the processing. 
; Run time optimized 8-bit Multiplication subroutines 
; Definitions 

IROP1 
IROP2L 
lRACL 

.EQU R14 

.EQU R13 

.EQU R12 

Unsigned subdivision (DOh ... FFh) 
Signed coefficient (80h ... 7Fh) 
Result word 

; Cycles for specific registers contents without CALL: 

; TASK MACU8 MACS8 MPYS8 IROP1 IROP2 Result (MPYS8) 
;-------------------------------------------------------------

MINIMUM 9 12 13 OOOh x OOOh = OOOOh 
MEDIUM 34 37 38 OOFh x OOFh = OOElh 
MAXIMUM 66 70 71 OFFh x OFFh - FFOlh 

Used registers IROP1, IROP2L, IRACL 

Signed multiply subroutine: IROPI x IROP2L -> IRACL 

MPYS8 CLR lRACL ; 0 -> 16 bit RESULT 

; Signed multiply-and-accumulate subroutine: 
; (IROPI x IROP2L) + lRACL -> lRACL 

MACS8 TST.B 
JGE 
SWPB 
SUB 
SWPB 

IROP2B 
MACU8 
IROPl 
IROPl,IRACL 
IROP1 

Sign of factor 
Positive sign: proceed 
Negative sign: correction nec. 
Correct result word 

Unsigned multiply-and-accumulate subroutine (MAC): 
(IROPI x IROP2L) + lRACL -> lRACL 

MACU8 BIT.B 
JZ 
ADD 

L$Ol RLA 
RRC.B 
JNZ 
RET 

n,IROPl 
L$01 
IROP2L,IRACL 
IROP2L 
IROP1 
MACU8 

Test actual bit (LSB) 
If 0: do nothing 
If 1: add multiplier to resultL$01 
Double multiplier IROP2 
Next bit of IROP1 to LSB 
If IROPl = 0: finished 

1The idea for these subroutines innially came from leslie Meble 01 TIL. 
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2.1.1.1 16-Bit Multiplication Subroutine 

This multiplication subroutine is used if the 8-blt version is not accurate enough. 
Like the 8-bit version, the multiplication terminates immediately after IROP1 
becomes zero due to the right shifts during the processing. All of the shown ADC 
improvement methods may be adapted to the 16-bit multiplication subroutine. 
; Run time optimized 16-bit Multiplication Subroutines 

IROPl . EQU R11 
IROP2L . EQU R12 
IROP2M . EQU Rl3 
IRACL . EQU R14 
IRACM .EQU R1S 

Unsigned ADC result (OOOOh ... 3FFFh)· 
Signed coefficient (8000h ... 7FFFh) 
High word of signed factor (0) 
Result word low 
Result word high 

; Cycles for specific register contents without CALL: 
; TASK MACU MACS MPYS IROP1 I ROP2 Result (MPYS) 
i-------------------------------------------------------------MINIMUM 

MEDIUM 
MAXIMUM 

11 
83 

143 

14 
86 

147 

16 
88 

149 

OOOOh x OOOOh = OOOOOOOOh 
OOFFh x OOFFh ~ 0000FE01h 
3FFFh x FFFFh = FFFFC001h 

Used registers: all of the above ones 

Signed multiply subroutine: IROP1 x IROP2L -> IRACMllRACL 

MPYS 

MACS 

MACU 
L$002 

L$Ol 

CLR 
CLR 
TST 
JGE 
SUB 
CLR 
BIT 
JZ 
ADD 
ADDC 
RLA 
RLC 

RRC 
JNZ 
RET 

IRACL 
IRACM 
IROP2L 
MACU 
IROPI, IRACM 
I ROP2M 
H,IROP1 
L$Ol 
IROP2L,IRACL 
IROP2M, IRACM 
IROP2L 
IROP2M 

IROPl 
L$002 

o -> result word low 
o -> result word high 
Sign of factor a1 
Positive sign: proceed 
; Correct result 
Clear MSBs of multiplier 
Test actual bit (LSB) 
If 0: do nothing 
; If 1: add multiplier to result 

Double multiplier IROP2 

Next bit of IROPl to LSB 
If IROPl = 0: finished 

2.2 Maximum Magnitude of the 8-Blt Coefficients 
To get the maximum accuracy with the limited 8-bit format used for the correction 
coefficients, it is necessary to calculate the worst case magnitude for each one 
of these coefficients. The basis for this calculation is the maximum error of the 
14-bit ADC: 

± 1 0 steps within a band of ±20 steps 

Figure 6 shows examples for the worst case errors of the 14-bit ADC: 
• Range A shows the maximum error band of the ADC: ±20 steps; within this 

error band all errors of different devices are contained. The four dark boxes 
indicate four possible error ranges of ± 10 steps: they are examples for Single 
devices, within such an error band the errors of a single device are contained. 

• Range B gives an example for the maximum linear error: within one range 
(4096 steps) the error changes by 20 steps. 

• Range C is an example for a maximum quadratic error. 
• Range D is an example for a maximum cubic error. This means within an ADC 

range the ADC characteristic moves from an error of + 10 steps at the lower 
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range border to +2.5 then back to +7.5 and back to 0 steps at the upper range 
~~ . 

Examples for Worst case ADC Errors 

Additive, Unsar,Quadratlc and Cubic Worst case CharaClerlatlc8 

Figure 6. Worst Case ADC Error With Different Improvement Methods 

Table 5 shows the worst case values-the largest possible values-for the 8-bit 
correction coefficients that were calculated with the following assumptions: 
• The ADC characteristic uses the full error band of ± 1 0 steps. 
• The ADC characteristic changes its direction as often as the order of the 

correction formula, e.g., twice for a quadratic correction. 
• The correction is made for each range Individually; this means the ADC result 

bits 13 and 12-the bits defining the ADC range-are cleared. 
• The relative ADC result within each range (12 bits) is rounded to eight bits (0 

to FFh) for the calculations (8-blt arithmetic). 
• The linear coefficient a1 of each method must allow a ±10 step correction. 
• The constant coefficient aO of each method must allow a ±20 step correction. 
The maximum correction coefficients calculated with the above assumptions are 
listed in Table 5. (NA means not applicable): 

Table 5. Worst Case Correction Coefficients (8-Bit Arithmetic) 

CUBIC QUADDRATIC LINEAR ADDmVE 
CORRECTION CORRECTION CORRECTION CORRECTION 

a3 ±6.357828E-6 NA NA NA 

a2 ±2.441406E-3 ±6.103515E-4 NA NA 

a1 ±2.473958E-1 ±1.171875E-1 ± 1.562500E-1 NA 

aO ±2.000000E+1 ±2.000000E+ 1 ±2.000000E+1 ±2.000000E+ 1 

2.3 Number Formats of the 8-Bit Coefficients 
The format chosen for the correction data is byte format due to its low storage 
needs and the speed advantages for multiplications. Figure 7 shows a signed 
8-bit number with three fractional bits (±4.3). The range of this number format is 
-16.00 to +15.875. 
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o 
Format Integer Bits ! Frectlon Bits 

7 0 

4.375 0 I 0 0 0 
i 

0 1 I • 
~ 20 a-3 

7 0 

-4.375 I 1 I 1 .0 
i 

0 1 I • 
23 zO 2-3 

Figure 7. Number Format With Integers for 8-Blt Calculations 

For the coefficients a3 and a2 no integer parts exist, due to the small values of 
the resulting numbers. This makes a different format necessary, but the 
philosophy is the same, to pack very small numbers with many leading zeros or 
ones into a single byte. Figure 8 shows the number format of the quadratic 
coefficient a2 used in a cubic correction. All bits of the extended sign have the 
same value as the sign bit (bit 7). 

IntegerBI! 0 r--------------------
Format L __ ... ______ ~~~~~ _______ .l.I_Sl_g_n..lI ______ Frac_tl_On_B_Its _____ ---' 

20 2-15 

7 0 

4x2-15 r-o-r_;-i~;'-;T-o-r_;-i-;-ro 
L __ ~ _____________ _ o I 0 o o o 0 0 I 

zO 2-15 

7 0 

0 0 I '--r-... r-,--T--r---,--' ,.-"-T--r--........ -..,--,...--,.---.,---. 
-4><2""15 L~_~~ __ ~ __ ~ __ l __ ~_ 1 1 -I1_l ..... I'--l _____________ .J 

z-e 
Figure 8. Number Format With Fraction Part Only for 8-Bit Calculations 

2.4 Calculation of the 8-Bit Coefficients 
To get the subdivision N out of the ADC value-ranging from 0 to 3FFFh-a short 
calculation is necessary: 

N = (4~6 - n) x 128 ranging from 0 to 128 for linear correction 
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N = (4:6 - n) x 256 ranging from 0 to 256 for quadratic and cubic 

correction 

With two, three, or four subdivisions N-dependent on the used correction 
method-the coefficients ax are calculated. See the appropriate sections. 
1. To start, it is necessary to find the minimum valence-a power of 2-of bit 6 

(MSB) of the 8-bit number that is sufficient for the worst case value of the 
coefficient ax. The formula for this calculation is: 

VMSB ~ log2laxl-1 

Where: VMSB 
VLSB 
ax 

Valence for the MSB (bit 6) of the 8-bit number 
Valence for the LSB (bit 0) of the 8-bit number 
Decimal correction coefficient (a3 to aO) 

The above formula ensures that the worst case value of the coefficient ax fits into 
an 8-bit twos complement number. 
2. The valence VLSB of the LSB is for 8-bit arithmetic 

VLSB = VMSB - 6 

With this valence VLSB the 8-bit coefficient ax8bit is calculated: 

ax8bit = Viax 
2 LSB 

3. The result ax8bit-which is also named ax in the following equations-is 
converted into a signed hexadecimal number using the twos complement 
format: 

• A positive coefficient is simply converted. 
• A negative coefficient is converted and negated afterwards (complemented 

and incremented). 

EXAMPLE: The worst case value for the cubic correction coefficient a3 is 
±6.357828E-6 (see Table 5). To find the minimum valence of the MSB of the 
number format the equation above is used: 

VMSB ~ log2laxl - 1 = log2 6.357828E - 6 - 1 = - 17.263 - 1 = - 18.263 

VMSB ~ - 18.263 .... VMSB = - 18 

This result means that bit 6-the MSB-of the 8-bit coefficient a3 must have a 
minimum valence of 2-18. For the LSB the valence VLSB becomes: 

VLSB = VMSB - 6 = - 18-6 = - 24 

This means, a3 can cover the number range from -128 x 2"-24 to + 127 x 2-24 
(-7.57E-6 to +7.63E-6) In steps of 2-24 (5.96E-8). 

Calculation: a3: ±0.24 +6.357828E-6/2-24 = + 106.67 .. 6Bh 

This means the worst case of the a3 value results in 107 steps out of 127 steps: 
good resolution and enough reserve are given. The number format-shown for 
the negative worst case value of a3 (-107 = 95h)-is: 
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7 0 

[2~~1~~~~~~~1~~~~~~~1~~ 111 I 0 i 0 i 1 i 0 i 1 i 0 i 1 I 
20 044 

The bits 20 to 2-17 for the above example always have the same value: they 
contain the extended sign: the same value as the sign bit in bit 7 ofthe 8-bit value 
(2s complement arithmetic): 

• Zero for a positive coefficient 

• One for a negative coefficient 

Information iscontained only in the bits 7 to 0 (2-18to 2-24 forthe above example). 
This is possible due to the known maximum value of these coefficients. 

2.5 Accuracy With the 8-Bit Integer Routines 

To show the loss of accuracy when moving from floating point to integer 
calculations with 8-bit coefficients, the results Qf the linear and the cubic 
correction are given. 

2.5.1 Accuracy for the Linear Correction 

The linear correction-which is not sensitive to coefficient truncation due to the 
simple algorithm-is shown with both calculation methods. The correction 
coefficients a1 and aO ofthe linear equation shown in section 1.2.1.1, single linear 
equation per range (with border fit) of Linear Improvement of the MSP430 14-Bit 
ADC Characteristic, SLAA048, [4], were recalculated to fit into signed 8-bit 
constants with their restricted resolution. With these 8-bit coefficients the 
calculations were repeated. The statistictical results in comparison to the floating 
paint results are (full range, 8-bit results after rounding): 

MaanValue: 
Range: 
Standard Deviation: 
Variance: 

32·81t 
Floating Point 
-0.32 Steps 
5.6 Steps 
0.94 Steps 
0.88 Steps 

8-81t Integer 
Calculations 
-0.32 Steps 
6.0 Steps 
0.98 Steps 
0.96 Steps 

Figure 9 compares the corrected ADC characteristics by floating point calculation 
vs .8-bit arithmetic (integer result). The difference of the corrected characteristics 
(FPP result-8-bit result) is displayed also: 

• The white, scribbled line indicates the result of the correction using floating 
point calculations 

• The black, scribbled line indicates the result of the correction with 8-bit 
arithmetic 

• The black line below the above two lines indicates the difference between the 
two corrections using the floating point and the 8·bit arithmetic. The offset is 
chosen as -4 steps, which means -4 steps represent the zero line of the 
difference 
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Device 1 : Comparison between FloaUng Point and II-Blt Arlthmattc 
Single Unear Equation par Range (Border Fit) 

ADC Steps [0 to 18383) 

Figure 9. Comparison of Corrected ADC Characteristics. 8-Bit Results After Rounding 

As can be seen, the loss of accuracy is not critical (max. ±O.5 steps), the statistical 
values are nearly identical. This proves that the 8-bit arithmetic is useful for this 
improvement method due to its speed and storage advantages. 

i 
i. 
~ 
Iii 
g 
<C 

3 

2 

0 

-1 

-2 

-3 

-4 

~ 

The difference between the floating point and the 8-bit arithmetic looks even 
better if the 8-bit result is used before the rounding: the two fraction bits of the 
calculation are used as well. Figure 10 shows this: 

Device 1 : Comparison betWeen Floating Point and II-Blt Arithmetic 
Single Linear equation par Range (Border FIt) 

ADC Stepe [0 to 18383) 

Figure 10. Comparison of Corrected ADC Characteristics. 8-Blt Results Before Rounding 

Nearly no difference now exists between the floating paint and the 8-bit results. 
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2.5.2 Accuracy for the Cubic Correct/on 
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The cubic correction-which is the most sensitive one to coefficient length due 
to the third power multiplication-is also shown with both calculation methods. 

The correction coefficients a3 to aO of the cubic equations shown in Table 4 were 
recalculated to fit into signed 8-bit constants with their restricted resolution. With 
these 8-bit coefficients the calculations were repeated. The results in comparison 
to the floating point results are (full range): 

Mean Value: 
Range: 
Standard Deviation: 
Variance: 

32-Blt 
Floating Point 
-0.10 Steps 
5.47 Steps 
0.93 Steps 
0.87 Steps 

8-Blt Integer 
Calculations 
-0.17 Steps 
6.25 Steps 
1.03 Steps 
1.06 Steps 

Figure 11 compares the corrected ADC characteristics by floating point 
calculation vs 8-bit arithmetic. The difference of the corrected characteristics 
(FPP result-8-bit result) is displayed as well: 
• The white, scribbled line indicates the result of the floating point calculations 
• The black, scribbled line indicates the result of the 8-bit arithmetic 
• The black line below indicates the difference between floating point and 8-bit 

arithmetic. The difference is shown before the rounding of the result (two 
binary digits). The offset is -6 steps, which means -6 steps represent the 
zero line of this difference 

Device 1: Comparison Between Floating Point and 8-Blt ArHhmetlc Four Cubic Equations 

ADC Steps [0 to 16383] 

Figure 11. Comparison of Corrected ADC Characteristics. 8-Blt Results Before Rounding 

The loss of accuracy is not critical (±1 LSB), but higher than with the linear 
improvement method. The statistical values are nearly identical to the floating 
point results. 
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3 Comparison of the Used Improvement Methods 
This section gives an overview to the possible improvements including the effort 
that is needed to implement them (RAM, ROM, number of measurements during 
the calibration, calculation time). 

3.1 Comparison Tables 
Table 6 gives the statistical results for all ofthe previously described improvement 
methods. The definitions of the statistical values are given in the application 
report Additive Improvement of the MSP430 14-Bit ADC Characteristic.[3] The 
most important value of Table 6 is the range: it indicates the worst case value for 
the error of the ADC (here for device 1). For example, a range of 6.0 means, that 
the maximum difference of errors is 6.0. All values are ADC steps. 

Table 6. Comparison Table for the Different Improvement Methods 

CORRECTION METHOD 
MEAN 

RANGE 
STANDARD 

VARIANCE VALUE DEVIATION 

Additive Corrections: 

Mean value of full range -0.44 17.1 4.74 22.51 

Mean value of 4 ranges -0.31 13.5 2.49 620 

Center of ranges 0.20 13.5 2.56 6.53 

Muniple sections (8 sections) -0.14 8.40 1.47 2.16 

(16 sections) -0.29 6.40 1.04 1.08 

(32 sections) 0.14 5.20 0.77 0.59 

(64 sections) -0.08 4.60 0.64 0.41 

Unear equations With Border Fit: 

Single linear equation per range I -0.32 5.60 I 0.94 I 0.88 

Two linear equations per range I -0.29 6.49 I 0.97 I 0.94 

Four linear equations per range I -0.22 I 5.36 I 0.83 I 0.69 

Linear Equations WIth Linear Regression: 

Single linear equation per range I 0.03 5.09 I 0.94 I 0.88 

MuUiple linear equations per range (2) I -0.03 I 4.84 I 0.78 I 0.61 

Correction With Quadratic Equallons I -0.27 I 6.96 I 1.14 I 1.29 

Correction With Cubic Equations: 

B-Bit calculation I -0.17 I 6.25 I 1.03 I 1.06 

Floating point calculation I -0.10 I 5.47 I 0.93 I 0.87 

Table 7 gives the memory (RAM, ROM, EEPROM) requirements and the 
necessary number of CPU cycles for all improvement methods. The meaning of 
the four columns is: 
• RAM/EEPROM: The number of bytes in the RAM or an external EEPROM 

that are needed for the continuous storage ofthe correction coefficients if 8-bit 
arithmetic is used (full range). It indicates words, if 16-bit arithmetic is used 
for the calculations. If the correction coefficients are stored in an external 
memory (e.g., EEPROM), then only a part of this number (the coefficients 
actually used) need RAM space. If the current source is used, then only one 
half of the given number is needed (for the ranges A and B only). 

• ROM: The number of ROM bytes needed for the correction algorithm. The 
multiplication subroutine is not inCluded in this number. 
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• Cycles: The number of CPU cycles needed for the calculation of the 
correction. 

• calibration Samples: The number of ADC samples that are needed for the 
used improvement method. The number of actual measurements for each 
sample is not included in this number. See Measurement Methods for the 
ADC Reference Samples in the application report Additive Improvement of 
the MSP430 14-Bit ADC Characteristic{3] for examples. 

Table 7. Comparison Table for the Different Improvement Methods 

RAM ROM CALIBRATION 
. CORRECTION METHOD EEPROM BYTES CYCLES SAMPLES 

BYTES 

Additive Corrections: 

Mean value of full range 2 10 7 16 .•• 64 

Mean value of 4 ranges 4 24 16 16 ... 64 

Center of ranges 4 24 16 4 

Muftlple sections (8 sectlons) 8 22 13 9 

(16 sections) 16 20 12 17 

(32 sections) 32 18 11 33 

(64 sections) 64 18 11 65 

Linear equations With Bordllr Fit: 

SIngle linear equation per range I 8 J 60 I 51. •. 100 I 5 

Two linear equations per range I 16 I 64 I 48 .•• 97 I 9 

Four linear equations per range I 32 I 56 I .49 .•. 101 I 17 

Linear Equallons With Linear Reg ..... lon: 

Single linear equation per range 

8-BIt calculation 8 60 51 .•• 100 16 ..• 64 

16·Blt calculation 16 44 47 ... 178 16 •.. 64 

MuHiple linear equations per range (2) 16 54 48 ... 97 32 ••. 128 

· Correction WHh Quadratic Equations 12 64 85 .• .206 9 

Correction WIth Cubic Equations: 

8-B~ calculation I 16 I 102 I 108 .. .283 I 13 

Floating point calculation I 64 I 86 1800 ••• 2400 I 13 

3.2 Comparison Graph 

To give an impression of how the discussed improvement methods perform, 
Figure 12 shows the original (non-corrected) characteristic of device 1 and the 
best improvement in one figure: it is the additive correction with 64 sections 
described in the application report Additive Improvement of the MSP430 14-Bit 
ADC Characteristic:[3] 64 sections ofthe ADC range are corrected by the addition 
of individual constants. 
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Uncorrected Characterlstic compared to basi CorracUon 
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Figure 12. Comparison of the Non-Corrected ADC Characteristic and the Best Improvement 

As can be seen, the non-corrected range (17 steps) reduces to a range of less 
than 5 steps. The statistical results are (full range): 

• Best correction: Additive correction of 64 sections for the full ADC range 

• Second best correction: Linear regression with two equations per ADC 
range 

Mean Value: 
Range: 
Standard Deviation: 
Variance: 

Non-Corrected 
Device 1 
-6.95 Steps 
17 Steps 
4.74 Steps 
22.51 Steps 

Best 
Correction 
-0.08 Steps 
4.60 Steps 
0.64 Steps 
0.41 Steps 

2nd Best 
Corrected 
-0.03 Steps 
4.84 Steps 
0.78 Steps 
0.61 Steps 
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4 Selection Guide 
To quickly find the best improvement method for the 14-bit ADC, Table 8 gives a 
hint to which method is best for a given application. The selection criteria are: 

• Accuracy: The range is used. 
• RAM critical: The RAM needed for the coefficients is ~ 8 bytes. 

• Time critical: The calculation time takes ~ 60 cycles on an average. 

This table is taken from the results of device 1. But the table may be usable for 
other MSP430 devices too. With a more regular ADC characteristic than 
device 1, the more complex methods will show better results than the simpler 
ones. 

Table 8. Selection for the Improvement Methods 

NEEDED RAM CRITICAL 
RAM CRITICAL TIME CRITICAL 

RAM AND TIME 
ACCURACY TIME CRITICAL NON-CRITICAL 

High Not possible Single linear Muttlple sections Two linear 
(±2.5 Steps) equation/range (64 sections) equations/range 

(linear regression) (linear regression) 

Medium Not possible Single linear Multiple sections (16 and All others not named 
(±3.5 Steps) equation/range (border fit) 32 sections) 

Low Mean 
(±7Steps) Value/Range 

Center of Ranges 
Multiple Sections 

(a Sections) 

Very Low Mean value of 
(±10Steps) full range 

5 Summary 
The five application reports in this series show many simple-to-realize 
improvements for the accuracy of the 14-bit analog-to-digital converter of the 
MSP430. From a non-corrected error range of 17 steps, it was possible to reduce 
the range to less than ±2.5 steps. Even better, the standard deviation improved 
from 4.74 steps to 0.65 steps. With a larger effort, the results can be even 
better-for example if sophisticated statistical methods are applied. Solutions are 
possible for real-time systems also, e.g., the additive method with its simple and 
fast algorithm. It was also shown, that relatively simple correction methods can 
deliver the best results. 
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Using the MSP430 Universal Timer/Port Module as an 
Analog-to-Digital Converter 

Lutz Bieri 

ABSTRACT 
This application report gives a detailed overview of several applications for theMSP430 
family Universal Timer/Port Module when used as an analog-to-digital converter (ADC). 
Proven software examples and basic circuitry are shown and explained. 

1 The Universal Timer/Port Module 
The function of the Universal Timer/Port Module is completely different from the 
14-bit ADC. The discharge times of a capacitor for different resistors are 
measured and compared. 

The module consists of two independent parts, which work together for the 
measurement of resistors or voltages. 
• Counter with Controller: two S-bit counters, which can be connected in series 

to get a 16-bit counter. Additionally, there is a controller, a comparator input 
(CMPI), and a normal input (CIN). 

• Input/Output Port: five outputs (TP.O ... TP.4), which can be switched to Hi-Z 
and an I/O-port (TP.5). 

Two different inputs are available with the module: 
• The CIN input having a Schmitt-Trigger characteristic. It is normally used for 

resistor measurements. The threshold voltages are the same ones as for the 
other inputs (PO.x). 

• The comparator input CMPI, which is used for the voltage measurement, has 
a threshold voHage Vref that is nominally 0.25 x y CC with small tolerances. 
The threshold voHage Vref itself is temperature independent. The input CMPI 
shares a pin with an LCD select line and must be switched by software to the 
input function. This input function is valid unti.1 the next PUC. The software for 
the activation of the comparator is: 

BIS.B #CPON,&TPD j Switch on the comparator 

The comparator hardware consumes approximately 300 ~, it should be 
switched off therefore when not in use. 

BIC.B tCPON,&TPD ; Switch off the comparator 
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2 x S-SH Counter or 1 x 16-BHCounter with Clock Frequency and Enable Control 

1/0 Port Counter with Controller Control Registers 

Figure 1. Block Diagram of the Universal Timer/Port Module 

Figure 1 shows the minimum hardware required with one sensor Rsens and a 
single reference resistor Rref. 

Rref 
10k 

o 32kHz 

.-----l TP.O 
TP.l 

MSP430 

L--1>----l CIN,CMPI 

em 

V •• 

Vee 

--.... ----..... --- OV 

+5V 

Figure 2. Minimum Sensor Circuit 

The voltage at the capacitor em during the measurement is shown in Figure 3. 
The equation that describes the discharge curve for the sensor (Rsens) is: 

tsens 

Vth Veexe em x Rsens _> Rsens = _ tsens 

Cmxln Vth 
. Vee 

The equation for the reference resistor (Rref) is: 



tref 

Vth VeeXe CmxRref Rref 

The Universal Timer/Port Module 

tref 

CmX In Vth 
Vee 

Vcc -+-~~....t--------~_...!--

~h~----4-----~~--~----+-~------~ 

o 4-----~-----4---+----+_--------+_-------

Figure 3. Timing for the Universal Timer/Port Module ADC 

Where: 
Vth 
Vcc 
tref 
tsens 
tc 

Threshold voltage of the comparator 
Supply voltage of the MSP430 
Discharge time with the reference resistor Rref 
Discharge time with the sensor Rsens 
Charge time for the capacitor 

'M 
M 
[s] 
[s] 
[s] 

The solving of the exponential equation leads to the simple equation in the 
following: 

Rsens 

Rref 

-tsens 
Vth x 

Cmxln­
Vee 

Cmxln Vth 
Vee 

-tref 
Rsens Rref x tsens 

tref 

With two known reference resistors (Rref1 and Rref2) it is possible to compute 
the slope and offset and get the exact values of the unknown resistors. The result 
of the solved equations gives: 
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Where: 
tsens 
tref1 
tref2 
Rref1 
Rref2 

tsens - trej2 
Rsens = X (ftrej2 - Rrefl)+ Rrej2 

trej2 - tref! 

Discharge time.for sensor Rsens 
Discharge time for Rref1 
Discharge time for Rref2 
Resistance of reference resistor Rref1 
Resistance of reference resistor Rref2 

[s] 
[s] 
[s] 
[0] 
[0] 

As shown only known or measurable values are needed for the computation of 
Rsens from tsens. The slope and offset of the measurement disappear 
completely. 

To get a resolution of n bits, the capacitor Cm must have a minimum capacity: 

_2n 
em > Vth..... 

RXmJ. x f x In-­
Vee 

The approximate conversion time tconv is: 

2n 
teonv '" -

f 

The complete conversion time tcompl is (reference and sensor measurement): 

teompi = 2 x (feonv + 5 x em x Rsens ) 

Where: 
f Measurement frequency (ACLK or MCLK) [Hz] 
RXrnin Lowest resistance of sensor or reference resistor [0] 
VthrnaxMaximum value for threshold voltage Vth M 
tconv Conversion time for an analog-to-digital conversion [s] 

Table 1 gives an overview of different resolutions, capacitors, and conversion 
times. The sensor resistance is 1 kn, f = 1.048 MHz: 

Table 1. ADC Conversion With the Timer/Port Module 

Resolution Bits Capacitor Conversion TIme Complete Conversion Time tcompl 
Cm tconv 

8 232nF 256j.1S 2.8rns 

10 1jIF 1 rns 12.0rns 

12 3.7 jIF 4.1 rns 45.2 rns 

14 15 J1F 16.4 rns 182.8rns 

16 60 jIF 65rns 730rns 
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EXAMPLE: Use of the Universal Timer Port as an ADC without an interrupt. The 
measured time values of the two sensors (Rsens1 and Rsens2) and the 
reference resistors (Rref1 and Rref2) are stored in RAM starting at label MSTACK 
(Rref1 location). If an error occurs, OFFFFh is written to the RAM location. 

MSP430 

Enable Control TPtN.5 TPO.S TPE.5 TPD.4 TPE.4 TPO.S TPE.S TPO.2 TPE.2 TPD.l TPE.1 TPD.O ll'E.O 

cmT 
ov 

Figure 4. Schematic of Example 

DEFINITION PART FOR THE UT/PM ADC 

TPCTL .EOU 04Bh TIMER PORT CONTROL REGISTER 

TPSSELO .EOU 040h TPSSEL.O 

ENB .EOU 020h CONTROLS ElN1 OF TPCNT1 

ElNA .EOO 010h AS ENB 

ElN1 .EOU OOBh ENABLE INPUT FOR TPCNT1 

RC2FG .EOO 004h RIPPLE CARRY TPCNT2 

EN1FG .EOO 00lh EN1 FLAG BIT 

TPCNT1 .EOU 04Ch LO B-BIT COUNTER/TIMER 

TPCNT2 .EOU 04Dh HI B-BIT COUNTER/TIMER 

TPD .EOU 04Eh DATA REGISTER 

B16 .EOU OBOh 0: SEPARATE TIMERS 1: 16-BIT TIMER 

CPON .EOU 040h 0: COMP OFF 1: COMP ON 

'IlPDMAX .EOO OOBh BIT POSITION OUTPUT TPD.MAX 

TPE .EOU 04Fh DATA ENABLE REGISTER 

MSTACK .EOU 0240h Result stack 1st word 

NN .EOU 011h TPCNT2 VALUE FOR CHARGING OF C 

MEASUREMENT SUBROUTINE WITHOUT INTERRUPT. TPD.4 ·AND TPD.5 
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ARE NOT USED AND THEREFORE OVERWRITTEN 

INIT·IALIZATION: STACK INDEX <- 0, START WITH TPD.3 

16-BIT TIMER, MCLK, CIN ENABLES COUNTING 

Call: CALL #MEASURE 

Return: Results for TP.3 to TP.O in MSTACK to MSTACK+6 

Result OFFFFh if error 

MEASURE PUSH.B #TPDMAX START WITH SENSOR AT TPD.MAX 

INDEX FOR RESULT STACK CLR R5 

MEASLOP MOV. B #(TPSSELO*3)+ENA,&TPCTL ; Reset flags 

CAPACITOR C IS CHARGED UP FOR> 5 TAU. N-1 OUTPUTS ARE USED 

MLPO 

MOV.B 

MOV.B 

MOV.B 

BIT.B 

JZ 

MOV.B 

CLR.B 

#B16+TPDMAX-1,&TPD ; SELECT CHARGE OUTPUTS 

#TPDMAX-1,&TPE ENABLE CHARGE OUTPUTS 

#NN,&TPCNT2 LOAD NEG. CHARGE TIME 

#RC2FG,&TPCTL 

MLPO 

@SP,&TPE 

&TPCNT2 

CHARGE TIME ELAPSED? 

NO CONTINUE WAITING 

ENABLE ONLY ACTUAL SENSOR 

CLEAR HI BYTE TIMER 

SWITCH ALL INTERRUPTS OFF, TO ALLOW NON-INTERRUPTED START 

OF TIMER AND CAPACITY DISCHARGE 

DINT 

CLR.B 

BIC.B 

MOV.B 

EINT 

&TPCNTl 

@SP,&TPD 

ALLOW NEXT 2 INSTRUCTIONS 

CLEAR· LO BYTE TIMER 

SWITCH ACTUAL SENSOR TO.LO 

#(TPSSELO*3)+ENA+ENB,&TPCTL ; Reset flags 

; COMMON START TOOK PLACE 

Wait until EOC (ENl 1) or overflow error (RC2FG 1) 

MLPl 
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BIT.B 

JNZ 

BIT.B 

JNZ 

#RC2FG,&TPCTL 

MERR 

#EN1,&TPCTL 

MLPl 

OVerflow (broken sensor)? 

Yes, go to error handling 

CIN < Ucomp? 

NO, WAIT 
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ENl = 0: End of Conversion: Store 2 x 8 bit result on MSTACK 

Address next sensor, if no one addressed: End reached 

MOV.B &TPCNT1,MSTACK(R5) STORE RESULT ON STACK 

MOV.B &TPCNT2,MSTACK+l(R5) HI BYTE 

L$301 INCD R5 ADDRESS NEXT WORD 

RRA.B @SP NEXT OUTPUT TPD.x 

JNC MEASLOP IF C-l: FINISHED 

INCD SP HOUSEKEEPING: TPDMAX 

RET 

ERROR HANDLING: ONLY OVERFLOW POSSIBLE (BROKEN SENSOR 7) 

OFFFFh IS WRITTEN FOR RESULT AND SUBROUTINE CONTINUED 

MERR MOV #OFFFFh,MSTACK(RS) Overflow 

JMP L$301 

1.1 Interrupt Handling 

If the Universal Timer/Port Module is used as an ADC for applications that need 
an accuracy greater than 10 bits, the digital noise generated by the running CPU 
has a strong influence on the result. If the flag (EN1) in the hardware register 
TPCTL is polled by software for the signal of a completed conversion then the 
results are normally different. They show a wide distribution that reflects the 
length of the polling loop (Le. the results are concentrated on evenly spaced 
numbers with nothing in between). To avoid this effect the CPU is switched off 
during the conversion and woken-up at the completion of the conversion by the 
ADC interrupt. With this method and adequate hardware, results with much better 
accuracy are possible. 

The influence of the digital noise is shown in Figure 5. The exponential discharge 
curve is relatively flat near the comparator threshold Vth. Therefore noise coming 
from the CPU (or other sources of non-wanted noise) can be under the threshold 
voltage and terminate the conversion. The result is a timer value tdcw that is too 
low. The correct value would be tdcc. The resulting error Ecnv is: 

Where: 
tdew 
tdcc 

Eenv = tdew - ((lee xl 00 
tdee 

Resulting measurement time caused by CPU noise 
Correct measurement time 

[s1 
[s1 
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Vcm 1 

Vlh --1--~-------=::!I'III.J.o=-----

ol-~----~~~~~~ 

- Idcc 
-­Time 

Figure 5. Noise Influence During Measurement 
EXAMPLE: The hardware schematic is shown in Figure 6. Two resistive 
temperature sensors are used (RmeasO and Rmeas1) two reference resistors 
(RrefO and Rref1) that have the resistance ofthe sensors atthe lower (or upper) 
end of the measurement range ar'ld a resistor (Rcharge) that is used only for the 
charge-up of the capaCitor (em). This charge resistor is only necessary if the 
sensors have low resistance (approximately 100 n.). Otherwise, the reference 
resistors can be used for charging. 

RrelO 
TP.O 

TP.1 

TP.2 

MSP43OX3xx 
TP.3 

TP.4 

CIN.CMPI 
Cm 

+3V 

AGND 

Figure 6. Hardware Schematic for Interrupt Example 
The example software works with a status byte (MEASSTAT) that defines the 
current operation. Normally, this byte is zero, which indicates no activity or after 
a complete measurement sequence conversions made. The two reference 
resistors and two temperature sensors are measured one after the other; RrefO 
first, then RmeasO, then Rmeas1 and finally Rref1. 
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The measured discharge times (a direct measure for the relative resistance) are 
placed in successive RAM words starting at label ADCRESULT. 

First these RAM words are set to zero (a value impossible as a measurement 
result). If an error occurs, the zero value indicates an erroneous result. 

The Basic Timer is programmed to 0.5 s interrupt timing. The measurement 
sequence is shown in Figure 7. This sequence can be shortened to one reference 
resistor and one sensor as well as enlarged up to four sensors and two reference 
resistors. It is only necessary to add or delete charging and measurement states 
and the accompanying software parts. 

The modulation mode of the FLL is switched off during the measurement to have 
the exactly same MCLK during all four measurements. Status 9 switches on the 
modulation mode again. 

The software shown can be used for the MSP430C31 x and MSP430C32x. The 
different interrupt enable bits and the different addresses of the interrupt vectors 
are used correctly by the definition of the software switch Type. If this switch is 
defined as 310, the MSP430C31 x is used; otherwise, the MSP430C32x is used . 

.... 0.58 ..... 

( CPUOff_1 

MOD-' 

Measure ........ Measure Measure 
NoacUYiIy e_em RnoIO Charge Om Rm .... Charge Om R ...... ' Charge Om R",,, Conver&ions made 

I 
Status 0 2 3 4 5 6 7 8 9/0 

Figure 7. Measurement Sequence 

Definitions of the MSP430 hardware 

Type .equ 310 310: MSP43C31x 0: others 

BTCTL .equ 040h Basic Timer: Control Reg. 

BTCNT1 .equ 046h Counter 

BTCNT2 .equ 047h Counter 

BTIE .equ OBOh Intrpt Enable 

DIV .equ 020h BTCTL: xCLK/256 

IP2 .equ 004h BTCTL: Clock Divider2 

IPO .equ OOlh Clock DividerO 

SCFQCTL . egu 052h FLL Control Register . 

MOD ,equ OaOh Modulation Bit: 1 ~ off 

CPuoff .equ 010h SR: CPU off bit 

GIE: .equ OOBh SR: General Intrpt enable 
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TPCTL .equ 

TPCNTl .equ 

TPCNT2 .equ 

TPD .equ 

TPE .equ 

.if 

TPIE .equ 

.else 

TPIE .equ 

.endi.f 

IE2 .equ 

TPSSEL1 .equ 

TPSSELO .equ 

ENB .equ 

ENA .equ 

ENl .equ 

RC2FG .equ 

RC1FG .equ 

EN1FG .equ 

B16 .equ 

RrefO .equ 

RmeasO .equ 

Rmeasl .equ 

Rrefl .equ 

Rcharge .equ 

RAM Definitions 

ADCRESULT 

MEASSTAT .equ 

04Bh 

04Ch 

04Dh 

04Eh 

04Fh 

Type=310 

004h 

OOSh 

OOlh 

OSOh 

040h 

020h 

OlOh 

OOSh 

004h 

002h 

OOlh 

OSOh 

OOlh 

002h 

004h 

OOSh 

OlOh 

.equ 

ADCRESULT+S 

Timer Port: Control Reg. 

Counter Reg.Lo 

Counter Reg.Hi 

Data Reg. 

Enable Reg. 

MSP430C3lx? 

ADC: Intrpt Enable Bit 

MSP430C32x configuration 

Intrpt Enable Byte 

Selects clock input (TPCTL) 

Selects clock gate (TPCTL) 

Gate for TPCNTx (TPCTL) 

Carry of HI counter (TPCTL) 

Carry of LO counter (TPCTL) 

End of Conversion Flag ~ 

Use 16-bit counter (TPD) 

TP.O: Reference Resistor 

TP.l: SensorO 

TP.2: Sensorl 

TP.3: Reference 'Resistor 

TP.4: Charge Resistor 

0200h i ADC results (4 words) 

; Measurement Status Byte 

;-=----======-===---=-==-=======--=--==--======--==----=-= 

INIT 
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. sect 

MOV 

MOV.B 

\\INITIJ',OFOOOh Initialization Section 

#0300h,SP ; Initialize Stack Pointer 

#DIV+IP2+IPO,&BTCTL i Basic Timer: 2Hz 



MAINLOOP 

BIS.B 

CLR.B 

CLR.B 

CALL 

iBTIE, &IE2 

&BTCNTI 

&BTCNT2 

iCLRRAM 

It's time to measure the sensors 

MOV.B 

JMP 

#1,MEASSTAT 

MEASURE 

Basic Timer Intrpt Enable 

Clear Basic Timer Regs. 

Clear RAM 

Initialize other Modules 

Main loop of program 

Activate Measurement 

Go to Measurement Part 

Measurement Part: The CPU is switched off to avoid noise 

that would falsify the measurements. Interrupt is used 

to indicate the. end of conversion (and wake-up the CPU). 

The program remains on the NOP until MSTAT9 clears the 

CPUoff-bit of the stored SR on the stack. 

MEASURE CLR 

CLR 

ADCRESULT 

ADCRESULT+2 

CLR ADCRESULT+4 

CLR ADCRESULT+6 

MOV 

NOP 

#CPUoff+GIE,SR 

Clear result buffers 

o indicates error 

CPU off, but MCLK on 

Wait for end of measurement 

Process measured data 

Interrupt Handler for the Basic Timer Interrupt: 2Hz 

PUSH R5 Save Help Register 

CALL #I NCRWTCH Incr. Watch 

MOV.B MEASSTAT,R5 Calculate Handler 

MOV.B TABLE(R5),R5 Offset for PC 

ADD R5,PC Add Offset to PC 

TABLE .BYTE MSTATO-TABLE 0: No activity 

. BYTE MSTATl-TABLE 1: Charge for RrefO 

.BYTE MSTAT:6-TABLE 2 : Measure RrefO 

. BYTE MSTATl-TABLE 3 : Charge for RmeasO 

. BYTE MSTAT4-TABLE 4 : Measure RrneasO 

. BYTE MSTATl-TABLE 5 : Charge for Rmeasl 

The Universal TImer/Port Module 
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.BYTE 

. BYTE 

. BYTE 

. BYTE 

MSTATl MOV.B 

MOV.B 

JMP 

MSTAT2 MOV 

JMP 

MSTAT4 MOV 

JMP 

MSTAT6 MOV 

JMP 

MSTAT8 MOV 

MEASCOM BIS.B 

BIS 

CLR.B 

MOV.B 

No MCLK for ADC, 

MOV.B 

CLR.B 

CLR.B 

BIS.B 

MSTAT6-TABLE 6: Measure Rmeasl 

MSTATI-TABLE 7: Charge for Rrefl 

MSTAT8-TABLE 8: Measure Rrefl 

MSTAT9-TABLE 9: Finished, go on 

#B16+Rcharge,&TPD Charge Cm for 0.5s 

tRcharge,&TPE Use Rcharge 

BT~ET 

tRrefO,R5 Measure RrefO 

MEASCOM To conunon Part 

#RmeasO,RS Measure RmeasO 

MEASCOM To common Part 

#Rmeasl,R5 Measure Rmeasl 

MEASCOM To common Part 

#Rrefl,R5 Measure Rrefl 

#MOD,&SCFQCTL Switch off FLL Modulation 

tSCGO,SR Loop control of.f 

&TPE TP.x to HI-Z 

tB16,&TPD TP.x LO (disabled I ) 

Clear Flags RC2FG, RCIFG, ENIFG 

#TPSSEL1+ENB+ENA,&TPCTL 

&TPCNTl 

&TPCNT2 

R5,&TPE 

Reset Counter LO 

Reset Counter HI 

Enable selected TP.x 

MCLK on, Co~parator on: Intrpt for Uem < Vth 

MOV.B 

BIS.B 

BT_RET INC.B 

MSTATO POP 

RETI 
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#TPSSEL1+TPSSELO+ENB+ENA+EN1,&TPCTL 

#TPIE,&IE2 

MEASSTAT 

R5 

; Enable ADC Intrpt 

To next sta,tus 

If no activity necessary 

.- '.~. 



MSTAT9: Measurements a~e completed, CPU is switched on, 

MSTAT is set to zero: no activity. FLL loop control on 

MSTAT9 BIC 

CLR.B 

BIC.B 

JMP 

#CPUoff+SCGO, 2 (SP) ; Stored SR on stack 

MEASSTAT 

#MOD,&SCFQCTL 

MSTATO 

No activity 

Switch on FLL Modulation 

Return 

End of Basic Timer Handler 

i----------------------------------------------------------
Interrupt Handler for the Analog-to-Digital Converter 

The results in TPCNTI and TPCNT2 are stored starting at 

label ADCRESULT (result for RrefO) 

ADC_INT PUSH 

MOV.B 

SUB 

IN 

RS 

MEASSTAT,RS 

#3,RS 

ADC_F 

Save Help Register 

Build offset for results 

Status for RrefO 

MEASSTAT < 3: error 

Check for correct result: 

If RC2FG - 1: Overflow of the counter (Rx too high) 

If ENl = 1: False interrupt, conversion not finished 

BIT.B 

JNZ 

MOV.B 

MOV.B 

ADC...RET BIC.B 

BIC.B 

ADC_F POP 

RETI 

#RC2FG+ENl,&TPCTL Error? 

ADe_RET Yes, let Oh for error 

&TPCNTl,ADCRESULT(RS) ; Store result 

& TPCNT2,ADCRESULT+l (RS) 

#TPIE,&IE2 ; Disable ADC Intrpt 

#RC2FG+RCIFG+ENIFG,&TPCTL ; Flags - 0 

R5 ; Restore RS 

End of Universal Timer/Port Module Handler 

;----------------------------------------------------------
Interrupt vectors 

. sect 

• WORD 

.if 

'INT_VECTR,OFFE2h 

BT_INT 

Type=310 

Basic Timer Vector 

The Universal Timer/Port Module 
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1.2 

.sect 'INT_VEC1' ,OF);'EAh ; MSP430C31x 

.else 

. sect 'INT_VECl n ,OFFE8h ; Others 

.end1f 

. WORD ADC_INT Timer Port Vector (31x) 

.sect 'INT_VEC2H,OFFFEh 

. WORD INIT Reset Vector 

Connection of Long Sensor Lines 
If it is a long distance from the MSP430C31x to the sensor (>3Ocm), a shielded 
lead between the microcomputer and the sensor is recommended. This gives 
protection to the ADC input. Figure 8 shows the schematic. The protection 
resistors (Rv/2) need to be included in the calculation and are connected in series 
with the sensor. 

To protect the measurement against spikes, hum, and other unwanted noise (see 
Section 5.3, Signal Averaging. Here are some possibilities for the minimization 
of these influences. 

Depending on the actual application, the omission of the two resistors (Rv/2) can 
give the best results. The relatively low internal resistance of the TP.2 output and 
the capacitor alone may get this. 

If a .shielded cable is not possible, a twisted cable or a three-core cable should 
be used. The unused wire is connected to Vss as shown in Figure 8 with Rsens2. 

OV 0-111-.----1 

~~QlIIIIII .. ==~R~V~~~~:~~ .\ TP.O 

Shield MSP430C31x 

rJ 
No shield, twISted wires 

OV "'V 

Figure 8. Connection of Long Sensor Lines 

1.3 Grounding 
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The correct grounding is very important if ADCs with high resolution ari! used. 
There are some basic rules that need to be observed. 

With the MSP430C31x and the MSP430C33x only the Vss p[n exists as a 
common reference point. 
1. Use of separate analog and digital ground planes wherever possible. No thin 

connections from the battery to VSS pin. 
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2. The Vss pin is a star point for all O-V connections 
3. Battery and capacitor are connected together at this star point. See Figure 9. 
4. No common path for analog and digital signals 

_ry Replacement 

-I---~-"'''''' 5V:: 
To other parts 

Rrel 
.---r-,.-/ TP.O 

TP.1 
MS_0C31x 

... J"'"'7""l_-' TP.2 

__ ----lOIN 

Om Vss 

+-----..../1 
Tometallization .-___ -.J 

Figure 9. Grounding for the Universal Timer/Port ADC 

Figure 9 also shows the use of an ac driven power supply. Its Vcc and Vss 
terminals are connected where the battery is normally connected. The capacitor 
across the MSP430 pins can be smaller when a power supply is used. 

If a metallized case is used around the printed-circuit board containing the 
MSP430, then it is very important to connect the metallization to the ground 
potential (OV) of the board. Otherwise, the performance is worse than without the 
metallization. 

1.4 Voltage Measurement With the Universal Timer Port/Module 

The measurement of a restricted voltage range is also possible with the Universal 
Timer/Port Module. Normally a second circuit is used for this purpose. 

This solution needs the least hardware effort. This measurement method delivers 
a very precise result, if a twa-point calibration-with two voltages at the limits of 
the input voltage range-is used. A realized application delivers the following 
results: 
• Accuracy for an input voltage between +8 V and +16 V better than ±10-3 

(±O.1 %). A two-point calibration was used. 
• Temperature deviation between -20°C and +30·C better than 45 ppm/·C 

(worst case) 

1.4.1 Measurement Principle 

The Universal TImer/Port Module of the MSP430 family allows the measurement 
of a restricted voltage range. Normally a second circuit (analog-ta-digital 
converter) is necessary for this task. The measurement principle is explained with 
the Circuitry shown in Figure 10. 
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For the voltage measurement with the MSP430x3xx family, the comparator input 
CMPI-with its well defined threshold voltage 0.25 x Vcc-is used and not the 
analog input CIN with its Schmitt-Trigger characteristic. The comparator input 
CMPI has different names with the different MSP430 family members. This is due 
to the fact that it normally uses the same pin as the highest numbered LCD select 
line. 

The LCD pin is switched from the select function to the comparator function by 
a control bit located in the Universal Timer/Port Module (CPON, TPD.6, address 
04Eh). 

Figure 10 shows a voltage measurement circuit with two different input stages for 
the input voltage Vmeas: 
• Input voltages with a relatively low impedance are connected directly to the 

input VmeasO. The input impedance of the circuitry is approximately 1 06 Ohm 
(see example Figure 12). 

• Input voltages with a very high impedance are connected to the non-inverting 
input of the operational amplifier (Vmeas1) with its input impedance of 
approximately 109 Ohm. 

Only one of the two input stages described in Figure 10 can be used. If more than 
one input voltage. is to be measured, than one of the circuits shown later is to be 
used. 

32kHz o 
Vmeaso Vee +5V 

TP.3 
R1 MSP430 

R1.~~., 
Vmeas1 :. - V c ~ ~ • 

+-.:::.:---...... -1 CMPI 

R2 v .. 

--+-----~--~--------~ 

Figure 10. Voltage Measurement With the Universal Timer/Port Module 

The voltage range for the Input voltage Vin (seen at the input CMPI), can be 
measured with the circuitry shown previously is restricted to 

Vrif(com)1II4X < Yin ::;; Vee (1) 

This means for a supply voltage, Vee - +5V, voltages between 0,26 x 5 V = 1.3 
V and +5 V can be measured. 

With the resistor divider consisting of the two resistors R1 and R2, a nominal input 
voltage range for VmeasO results in 
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RI + R2 ., RI + R2 
VrefX--- < VmeasO :5; .ccx---

R2 R2 
(2) 

The sequence for the measurement of the voltage Vmeas is given in the 
following. The numbers used for the sequence correspond to the numbers of the 
Conversion States shown in Figure 11. The software is contained in this chapter. 

VCm 1 
5 I I 3 I 4 I I 1 Conversion Slates 

v"" 
Vin 

v,., 

Vin • Vmeas x R21(Rl +R2) 

Figure 11. Voltage Measurement 

HighVmeas 

Medium Vrneas 

LowVmeas 

1. The output TP.3 is switched to Hi-Z. The measurement capacitor Cm charges 
to the divided input voltage Vmeas during the time tchv between two voltage 
measurements. 

2. The voltage measurement starts: TP.3 is switched to 0 V and discharges Cm. 
At the same time, the measurement of the time tmeas starts with the 16-bit 
counter ofthe Universal Timer/Port Module. When the threshold voltage Vref 
is reached, the time measurement is stopped automatically. 

3. The measured time tmeas is stored. 
4. TP.3 is switched to Vee and charges the capacitor Cm to the supply voltage 

Vcc. The needed time tchvcc ranges from 5t to 7t dependent on the desired 
aeeuracy. (t ~ R4 x Cm) 

5. The reference measurement starts: TP.3 is switched to 0 V and discharges 
Cm. At the same time, the measurement of the time !vee starts with the 16-bit 
counter. When the threshold voltage Vref is reached, the time measurement 
is stopped automatically. 

6. The measured time tvee is stored. 

NOTE: All formulas only show measured time intervals. The 
conversion of these time intervals tx into the measured counts nx 
can be made with the formula: 

nx 
tx =--

/MCLK 

Where fMCLK represents the CPU frequency MCLK of the MSP430. 
The voltage Vmeas can be calculated with the two measured time intervals tmeas 
and !vee using the following formula: 
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tmeas- wee 

Vmeas 
Rl+R2 

VeeX---xe 't 
R2 

(3) 

Where: 
Vmeas Input voltage to be measured [V] 
Vcc Supply voltage of the MSP430 (used for reference) M 
R1,R2 Input resistor divider at input CMPI [0] 
tmeas Discharge time of the divided Vmeas until Vref is reached [s] 
tvee Discharge time from Vee to Vref [s1 
't Time constant of the discharge circuit ('t .. R4 x Cm) [s] 
Vref Threshold voltage of the comparator input CMPI M 
tconv Time between two complete voltage measurements [s1 

To get a constant value for the value 't, an expensive, highly stable capacitor Cm 
is necessary. To avoid this capacitor, the value 't of the equation (3) is substituted. 
From the equation (4) for the discharge of the capacitor Cm 

tvee 

Vref = Vee X e 't 

't is calculated: 

tvee 
t = . Vee 

In­
Vrej 

where Vee =4 
Vref 

Inserted into equation (3) this leads to: 

Rl + R2 tmeas-'-tvee X In Vee 
Vmeas = Veex---xe tvee Vret 

R2 

(4) 

(5) 

(6) 

With equation 6, Vmeas is calculated. Equation 6 is also used with the software 
example shown in Section 1.4.4.1. 

For the capacitor Cm used for the voltage measurement, it is only important, that 
it owns a constant or a very high isolation resistance. The isolation resistor of the 
capacitor Cm is connected in parallel with the resistor R2 and changes the 
resistor ratio (e.g. due to temperature). 

Equation 6 shows the dependence of the voltage measurement to the supply 
voltage Vcc (which is the reference), the threshold voltage Vref, the accuracy of 
the resistors R1 and R2 and the temperature drift of these values. To get a 
measurement aeeuracy of ±1 % for Vmeas without calibration, the following 
basics are necessary: 
• Stable supply voltage Vee: Vee needs to be within ±25 rriv for the defined 

temperature range. The actual value of Vee does not matter, if a two-point 
calibration is used. 
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• Input CMPI is used for the comparator input: the relatively good defined 
threshold voltage Vref (0.25 x Vcc) allows better results than the normal 
Schmitt-Trigger input CIN with its large tolerances for the threshold voltages. 

• Temperature drift of the resistor divider maximum ±SO ppm/oC 
• Sufficient charge-up times for the measurement capacitor Cm: 

- For an accuracy of one per cent approximately 5't are necessary (e5 = 
148,41) 

- For an accuracy of 0.1 % approximately 7T. are necessary (e7 = 1096.63) 

If a two-point calibration is used, the calculated values for slope and offset are 
stored in an external EEPROM, or if the battery is connected continuously to the 
MSP430 system, they are stored in the RAM. 

1.4.2 Resolution of the Measurement 

The resolution for one counter step nmeas of the voltage measurement is: 

dVmeas Vmeas --- = 
dnmeaa 't X jMCLK 

Vmeas (7) 
R4 x Cmx jMCLK 

This means for the circuit shown in Figure 12 (worst case) (Vmeas = Vmeasmax): 

dVmeas 

dTlnU!aa 

18 3 ---:;-----;:--------6 = 2.7 x 10-
47 X 103 x47x10-9 x 3xlO 

The resolution is for the worst case 2.7 mV for Vaccu = 18 V, Cm = 47 nF, R4 = 
47 kO, fMCLK = 3 MHz. This equals an analog-to-digital converter with a bit length 
a of: 

18V 
a = ld-- = 12,703 

2,7mV 
(8) 

(Id = 1092) The previous result means, the resolution ofthis circuit ranges between 
a 12-bit and a 13-bit analog-to-digital converter. 

For the interesting voltage range at the input CMPI (Vref to Vee) the non-iinear 
characteristic of the exponential function can be substituted by a hyperbola. This 
method has the advantage of no time-consuming exponential function, only one 
division: 

Vmeas 
A 

------+C 
(tmeas- tvcc) + B 

(9) 

The values for A, B, and C can be determined by the solution of three equations 
or with a PC-software program like MATHCAD. 

For the calculation of all of the previous formulas, the MSP430 floating point 
package FPP4 is ideally suited. The package contains all necessary functions 
like the exponential and the logarithm function. An example of its use is given in 
Section 2.2.4.4.1. 
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1.4.3 Measurement Timing 

With the formulas shown previously, the worst case time interval tconv for a 
complete voltage measurement can be calculated. 

This is the time interval that determines the highest repetition rate for a complete 
voltage measurement. The time interval tconv is the sum of all time intervals that 
are shown in Figure 11. 

tconv = tchv + tmeas + tchvcc + tvcc (10) 

With the values that determine the time intervals of equation 10, the worst case 
value for the complete measurement time tconv can be calculated. The accuracy 
is assumed to be 1%. If the accuracy needs to be higher, then the In100 in 
equation 11 must be replaced by the . logarithm of the desired accuracy (e.g. by 
In 1000 for 0.1 %). The time tmeas is assumed to be the maximum one, this means 
forVin = Vcc 

Vcc Vcc 
tconv = IniOO x Cmx RilIR2 +t X In-if+t x IniOO +t x In" if 

Vre .re 
(11 ) 

With the components of Figure 12 (right circuit), the time interval tconv between 
two complete voltage measurements is: 

tconv = Cmx(lniOOxRiIIR2+2xR4xln4+lnlOOxR4) (12) 

tconv = O,155s 

If an accuracy of 0.1 % is used (10-3), the time interval tconv gets 233 ms. With 
a modification of the values for R1, R2, R4, and em, the time interval between 
two complete measurements can be greatly changed. The component 
calculation of Figure 12 was made for a high-precision voltage measurement. 
The values of the components can be changed if the accuracy needs are less 
important. 

1.4.4 Applications 

2-198 

This section shows how to connect different voltage sources to the Universal 
Timer/Port Module. Dependent on the structure of the external voltage source 
different hardware configurations are necessary. 
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1.4.4.1 Voltage Measurement 

Figure 12 shows two circuits for the voltage measurement of a 12-V voHage 
source. The voHage reference is-like with all other circuits too-the supply 
vOltage Vcc. The supply voltage can be between +3 V and +5 V. If the supply 
voltage is changed from +5V, only resistor Rl needs to be modified. 

Two different circuits are shown. The input voltage Vmeas has different influence 
during the conversion. 
• For the right hand circuit in Figure 12, the input voltage Vmeas also shows 

during the reference measurement with Vee a small influence (approximately 
R4/Rl here) 

• Forthe left hand circuit, the output TP.2 isolates the aeeumulatorvoltage from 
the reference measurement. TP.2 is always switched the same way, similar 
to TP.3 (0 V, +5 V, Hi-Z). After the charge of Cm the input voHage does not 
have an influence on the conversion. 

Vmeas (7 -18V) 

Vee 1='----\--; 
TP.2 ........ --...... 
TP.3 

MSP430 

Ves 

--~--~~-~--~-w 

Voltage Measurement without influence by Vmaas 

Vmeas (7 -18y) 

Vee 1-'-"''----\--4 

TP.3 
MSP430 

Vss 

Vollag.M ..... roment 

Figure 12. Voltage Measurement of a Voltage Source 

Software Example: the voltage calculation is mad~ for the right-hand circuit 
shown in Figure 12. The measurements for tmeas and tvee are made as 
described previously. Equation 6 is implemented in software. 

For the calculations the MSP430 floating point package FPP4 is used (32-bit 
format). All subroutine calls call FPP4 functions. 

RAM word ADCref contains the 16-bit resuH of the Vee measurement tvee 

RAM word ADCbatt contains the 16-bit result of the Vmeas measurement tmeas 

Both time intervals are measured with MCLK Cycles. 

Voltage measurement of Vmeas: 

Vrneas = factor * exp«(trneas/tvcc) -1)* In(Vcc/Vref)) 

Where factor = Vce x (R1+R2)/R2 

Input: ADCref: Measured reference value Vee: tvcc 
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, ADCbatt: 

output: Act. Stack 

Calc_VoltSUB U,SP 

MOV #ADCbatt, RPARG 

CALL #CNVJjINl6U 

MOV @RPRES+,x 

MOV @RPRES+,x+2 

MOV #ADCref,RPARG 

CALL #CNV_BINl6U 

MOV #x,RPRES 

CALL #FLTJ)IV 

IN CalC_Error 

MOV #FL~r1, RPARG 

CALL #FLT_SUB 

MOV #FLTLN4,RPARG 

CALL #FLT_MUL 

CALL #FLTJlXP 

IN Calc_Error 

MOV #factor, RPARG 

CALL #FLTjlUL 

Measured voltage value: tmeas 

Calculated voltage vmeas: @SP 

Reserve stack 

ADC value of-voltage tmeas 

Convert to unsigned number 

Store result to x. MSBs 

LSBs 

ADC value of vcc tvcc 

Convert to unsigned number 

Address trneas 

trneas/tvcc 

Error 

Address 1.0 

(trneas/tvcc) - 1.0 

Address Ln(Vcc/Vref) 

[(troeas/tvcc)-l] * In(Vcc/Vref) 

exp[(troeas/tvcc) - l)*ln4] 

Address vcc x (Rl+R2)/R2 

Vrneas ~ factor' exp[ ... ] 

Correction of Vmeas with calculated slope and offset 

vmeas' = fadtor*exp[(troeas/tvcc)-1)*ln4]*slope + offset 

MOV #Slope, RPARG Address slope 

CALL #FLT_MUL vroeas- .. slope 

MOV #Offset, RPARG Address offset 

CALL #FLT_ADD Vmeas' = VIneas • slope + offset 

MOV @RPRES+,6(SP) Corrected vrneas on Stack 

MOV @RPRES+,8(SP) LSBs 

ADD #4,SP Release stack 

RET Return 

Calculation error (N - 1 after return): FFFF,FFFF result 

CalC_Error MOV 

MOV 

ADD 

2-,200 

#OFFFFh,6(SP) 

#OFFFFh,8(SP) 

#4,SP Correct stack 



SETN 

RET 
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set N-bit for error indication 

Return with N - 1 

factor describes supply voltage and resistor·divider 

factor .float 23.292683 

,FLTLN4 .float 1.38629436 

FLTl . float 1.0 

1.4.4.2 Current Measurement 

SV. (3,OM+820k)/820k 

1n Vcc/Vref. (nom. In 4.0) 

Constant 1. 0 

Current that nows through a shunt resistor can also be measured with the 
Universal Timer/Port Module. The generated voltages are small, due to the 
normally low resistance of the shunt (this is because of the generated power 12 
x Rshunt). The voltage across the shunt is not divided by a resistor divider to have 
the full resolution. 
Figure 13 shows the circuit for the current measurement. The voltage across the 
shunt resistor ranges from -0.3 V to Vref (Vref is 0,25 x Vee for the MSP430). The 
value -0.3 V is the most negative voltage that is allowed for an MSP430 input. 
To be able to also measure currents or voltages around the zero point (0 V), an 
inversion of the measurement method shown previously is necessary: The 
capacitor Cm is discharged to the voltage to be measured respective to the 
potential 0 V. Afterwards Cm is charged. During the charge-up, the time interval 
is measured until the comparator threshold Vref. is again reached. This 
measurement method shows a smaller resolution than the method shown 
previously-due to the smaller available voltage range for the charge-up-but is 
able to also measure voltages around the zero point. 

o 32kHz 

Rl ~ Imeas 
TP.O 

MSP430 

CMPI 1-----.. 
Rl »R2 

Cm Rshunt 

Vss 

---.-------------~--------~-OV 

Figure 13. Circuit for the Current Measurement 
Figure 14 shows the voltage at the capaCitor Cm during the measurement of two 
currents: VinO is a positive one, Vin1 is a negative current. As described before, 
the measured time interval tvcc is used for reference purposes. The supply 
voltage Vee is measured. In the previous circuitry, the voltage curve show the 
influence of the state of TP.O (Vss, Vcc, Hi-Z). The equation for the calculation of 
the current Imeas is: 
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Imeas 

tmeas Vrq 
1 --xln (1--» 

---x(Vcc+(Vref-Vcc)xe /Vee Vee 
Rshunt 

Equation 13 looks complicated but it can be substituted by the form 

tmeas x 0,2876821 
lmeas = a+bxe /Vee 

(13) 

where a and b are constants, given by the values of the supply voltage and the 
shunt resistor. 

"" 

vant t f: 
I ~.v !.v 

V ref 

VinO -P---f-

o ;---~----+---~~----~----~--ff-------r---~ 
Vin1 -/----+------i----+.----t-----...300-r 

Vin .. Imeas x Rshunt tchvx .. tchargex tmx .. tmeasx 

Figure 14. Current Measurement 

The circuit shown in Figure 13 owns the advantage that the measurement value 
that represents the voltage 0 V (Vss) is known exactly. It is the value tvcc. This 
means no additional measurements are necessary to know the zero point (Imeas 
.. 0) of the circuit. 

The resolution of the current measurement can be calculated with equation 14. 
For the current Imeas, the difference for the counter steps Anin results in: 

llnin = 't X /MeLK x (In (1 _ Vref - Imeasx Rshunt )_ In (1 _ Vref» 
Vcc- Imeasx Rshunt Vee (14) 

The first logarithm function shows the counter steps for the current Imeas, the 
second one shows the counter steps for a zero current. 
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With R2 = 47 \<.Q, Cm = 33 nF ('1: - 1.55 ms) and fMCLK = 3.3 MHz, equation 14 
results in 1036 counter steps per volt. This means, if 1 A flows through a shunt 
having a resistance of 0.1 n, then the resolution is approximately 10 mA. 

1.5 Temperature Calculation Example 
The temperature of an NTC sensor is calculated out of two time measurements: 
• The time for the sensor Rsens-in parallel with the reference resistor Rref for 

linearization-to reach the lower threshold voltage VT - of the input CIN 
• The time for the reference resistor alone to reach VT - of the input CIN 

The measurement software is contained in Section 2.2.1. 

The reference resistor Rsens is used three ways: 
• As a reference for the measurement 
• For the charge-up of the capacitor Cm before the measurement (eventually 

in parallel with the sensor for fastening) 
• For the linearization of the sensor Rsens (this function defines the resistor 

Rre!) 

Are! 
10k 

....-----1 TP.O 
TP.1 

L--4 ___ --I CIN 

Cm 

o 32kHz 

Vee 

MSP430 

Vss 

---~----~----w 

+5V 

Figure 15. Temperature Measurement 

EXAMPLE: the calculation of the sensor temperature for the hardware shown in 
Figure 15 is given in the following. The Floating Point Package is used for the 
calculations. The sensor characteristic is described in table NTC TAB. For 
sensors with another characteristics only the sensor resistances at the necessary 
temperatures need to be changed. 

Temperature Calculation SW for Timer/Port ADC 

Input: ADCref contains tref (MCLK cycles for Rref alone) 

ADCsens contains tsens (MCLK cycles for Rsensl IRref) 

Output: Temperature on TOS (C) 

CALC_TEMP SUB 

MOV 

CALL 

#FPL,SP 

#ADCsens, RPARG 

#CNV_BIN16U 

Free work space 

tsens (RrefIIRsens) 

Convert tsens to FP (NTC) 
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MOV @RPARG+,FPL+2(SP) To result area 

MOV @RPARG+,FPL+4(SP) 

MOV tADCref,RPARG tref (Rref) 

CALL #CNV~IN16U Convert tref to FP 

ADD #FPL+2, RPARG Point to tsens 

CALL #FLTJlIV tref/tsens (Rref/RrefIIRsens) 

MOV @RPARG+,FPL+2(SP) Store to result area 

MOV @RPARG+,FPL+4(SP) 

MOV tNTC_TAB,R15 store pointer to NTC_TAB 

CTLOOP MOV R15,RPARG Find lower margin 

CALL #FLT_CMP tref/tsens - tab-value 

JHS CTCALC Ratio> tab-value 

ADD #FPL,Rl5 To next ratio in table 

CMF #NTCTEND,Rl5 End of table reaohed? 

JLO CTLOOP No. If yes use last values 

Linear approximation is used between the two temperatures 

CTCALC PUSH R15 Save pOinter to lower ratio 

MOV @SP,4(SP) New work area below pointer 

MOV R15,RPARG 

MOV SP,RPRES 

ADD #FPL+4,RPRES Point to tref/tsens 

CALL tFLT_SUB tref/tsens - (lower ratio) 

MOV #FLT5, RpARG To 5.0 

CALL #FLT....MUL 5. 0* (tref/tsens-lower ratio) 

SUB #FPL,SP 

MOV 2*FPL(SP),RPRES Address lower ratio 

MOV RPRES, RPARG 

SUB tFPL,RPRES Address upper ratio 

CALL 'FLT_SUB Delta ratio 

ADD #FPL,RPRES to 5 x ... 

CALL #FLTJlIV 5xO/delta ratio 

MOV @RPARG+,FPL(SP) 

MOV @RPARG+,FPL+2(SP) 

MOV 2*FPL(SP),RPARG Pointer to lower ratio 

SUB #NTC_TAB,RPARG Delta start of table +90C 

RRA RPARG Divide by 4: .FLOAT length 

RRA RPARG 

PUSH RPARG 
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MOV SP,RPARG 

CALL #CNV_BIN16U Calculate offset (C) 

MOV #FLT5,RPARG 

CALL #FLT_MlIL x SC 

MOV #FLT90,RPRES To +90C 

CALL #FLT_SUB 90C - lower temperature 

ADD #FPL+2,RPARG To delta within 5C ratios 

CALL #FLT....ADD minus offset - - 25 deg 

MOV #FLT25,RPARG 

CALL #FLT_SUB 

MOV @SP+,2*FPL+4(SP) Sensor temperature to TOS 

MOV @SP+,2*FPL+4(SP) 

ADD #2*FPL,SP Free stack 

RET Result on TOS 

FLT5 · float 5.0 Delta T for table NTC_TAB 

FLT90 · float 90.0 T.emp. at table start NTC_TAB 

FLT25 . float 25.0 offset -25 deg 

The NTC table contains the ratios for the temperature range 

-40C to +90C. Table values are for the ratio: 

Rref/(RrefIIRsens) - 1.0 + Rref/Rsens. Rref - 10kOhm 

The sensor resistance Rsens is shown after the temperature 

Temp Rsens 

· float 1.0+1.OE4/0.9B12E3 +95C: 0.9B120 

NTC_TAB . float 1.0+l.0E4/0.1l2BE4 +90C: 1.12BkO 

. float 1.0+1.OE4/0.l301E4 +B5C: 1. 30lkO 

· float 1.0+l.0E4/0.1507E4 +BOC: 1.s07k0 

· float 1.O+1.0E4/0.1751E4 +75C: 1.75lkO 

· float 1.0+1.OE4/0.2043E4 +70C: 2.043kO 

· float 1.O+1.OE4/0.2393E4 +65C: 2.393kO 

· float 1.O+1.OE4/0.28l6E4 +60C: 2.8l6kO 

· float 1.O+1.0E4/0.3327E4 +55C: 3.327kO 

.·float 1.O+1.0E4/0.3949E4 +50C: 3.949kO 

· float 1.0+1.0E4/0.470BE4 +45C: 4.70BkO 

· float 1.0+1.0E4/0.564lE4 +40C: 5.641kO 

· float 1.O+1.OE4/0.6792E4 +35C: 6.792kO 

· float 1.O+1.OE4/0.B2l9E4 +30C: B.219kO 

· float 1.O+1.OE4/l.0000E4 +25C: 10.OOkO 

· float 1.O+1.OE4/1.223E4 +20C: l2.23kO 

The Universal Timer/Port Module 
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. float 1. O+LPE4/1. 505E4 +15C: 15.05kO 

. float 1.0+1.0E4/1.S62E4 +10C: lS.62kO 

. float 1.0+1.0E4/2.319E4 + 5C: 23.19kCl 

. float 1.0+l.OE4/2.905E4 OC: 29.05kO 

. float 1.0+1.0E4/3.663E4 - 5C: 36.63kO 

. float 1.0+l.0E4/4.650E4 -10C: 46.50kO 

. float 1.0+1.0E4/5.945E4 -15C: 59.45kO 

. float 1.0+1.0E4/7.654E4 -20C: 76.54kO 

. float 1.0+1.0E4/9.930E4 -25C: 99.30kO 

. float 1.0+l.0E4/12.9SE4 -30C: 129. SkO 

. float 1.0+1.0E4/17.11E4 -35C: 171.1kO 

. float 1.0+l.0E4/22.73E4 -40C: 227.3kCl 

. float 1.0+1.0E4/30.47E4 -45C: 304.7kO 

NTCTEND . float 1.0+1.0E4/41.21E4 -SOC: 412.1kO 

1.6 Measurement of the Position of a Potentiometer 
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The relative position of a potentiometer can be measured with the hardware 
shown in Figure 16. Independent of the accuracy of the potentiometer itself and 
the resistor Rv the relative position can be found with three measurements. The 
measurement of the two maximum positions allows a secure decision if these 
positions are reached or not. The measurements are: 
1. Measurement of (Rpoti + Rv) with TP.3 
2. Measurement of (Prel x Rpoti + Rv) with TP.4 
3. Measurement of (Rv)with TP.5. Rv is necessary because a zero resistance 

cannot be measured with the Universal TImer/Port Module. 

0 32kHz 

+5V Vee 
TP.O 
TP.1 
TP.2 
TP.3 

TP.4 

ROm RUn Rnto Rref TP.5 

MSP430 

CIN 

Vss 

--~~--------~------------w 

Figure 16. Measurement of a Potentiometer's Position 
The formula to get the relative position Prel'out of the three measurements is: 

Prel = 
t4-tS 

t3-tS 



Where: 
Prel 
t3 
t4 
t5 

The Universal Timer/Port Module 

Relative position of the moving arm (0 to 1) 
Result of the time measurement with TP.3 (Rpoti + Rv) [sl 
Result of the time measurement with TPA (Prel x Rpoti + Rv) [sl 
Result of the time measurement with TP.5 (Rv) [sl 

1.7 Measurement of Sensors With Low Resistance 
Figure 17 shows a hardware solution for low-resistive sensors « 1 1<0). With 
these sensors, the ROSon of the TP-ports (166 0 to 333 0) plays a big role. To 
minimize this influence, NPN-transistors or FETs with Iowan-state resistance can 
be used for the switching of the sensors and reference resistors: The software 
is the same one as shown in Ihe example in Section 1, only the switching of the 
TP-ports TP.O to TP.3 needs to be changed: 
• Sensor or reference resistor off: TP.x is switched to Vss 
• Sensor or reference resistor on: TP.x is switched to Vcc 

Om 

Figure 17. Hardware Schematic for Low-Resistive Sensors 

Another way to eliminate the influence of the ROSon of the TP-ports is the use 
of a multiplexer with very Iowan-state resistance. The multiplexer shown in 
Figure 18 has a typical on-state resistance of only 5 n This is small compared 
to the resistance of nearly all sensors. 
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TP.D ... TP.3 

MSP430x3xx 

1. 

t--L_j------t-i TP.4 

+---------1-1 CINlCMPI 

em Vas 

ov 

Vee 

~v 

Figure 18. Solution With a Low-R'eslstlve Multiplexer 

1.8 Measurement of CapacItance 
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Figure 19. shows the hardware for the measurement of a capacitor Cx using a 
reference capacitor Cref. With the TP.1 output, the capacitor Cref is connected 
to Vss during the reference measurement, with TP.2 the unknown capacitor Cx 
is switched to Vss during the Cx measurement. The TP-ports are otherwise 
switched to Hi-Z. 

o 32kHz 

TP.D 

.----..... ----1 CIN.CMPI 

TP.l 
'---.....----\ TP.2 Vas 

Vee 

DV 

+3V/SV 

Figure 19. Measurement of a Capacitor Cx 
The equation that describes the discharge curve is: 

lref IX 

Vth = Vcc'Xe-(cref+C')XR = VccXe (Cx+C.)xR 

This leads to: 



External Ana/og-To-Digital Converlers 

Where: 
Vth 
Vee 
Iref 
tx 
tc 
Cx 
Cref 
Cs 

ex = ~x(eref+es)-es tref 

Threshold voltage of the comparator 
Supply voltage of the MSP430 
Discharge time with Ihe reference capacitor Cref 
Discharge time with the unknown capacitor Cx 
Charge time for the capacitors 
Capacitor to be measured 
Reference capacitor 
Circuit capacity (may be omitted) 

M 
M 
[s] 
[s] 
[s] 
[F] 
[F] 
[F] 

The voltage at the capacitors Cx and Cre! during the measurement is shown in 
Figure 20. 

Vee4-~--~------------~~--

Vth --I----+-----~I..o-----j'__-+_----..-:::!"""'__ 

O~----~----~--~----+_--------+_----~--

Figure 20. Timing for the Capacity Measurement 

2 External Analog-To-Digital Converters 

2.1 External Analog-To-Digital Converter les 

The MSP430 can also use external ADCs. Figure 21 illustrates how to connect 
three different ADCs to the MSP430. This is especially important for MSP430s 
without an internal ADC. 

Some low-cost possibilities are shown for the connection of 8-bit ADCs to the 
MSP430C31x and MSP430C33x. 
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OV YO llVI 

TL.CIIII34x 
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Figure 21. Analog-to-Dlgital Conversion With External ADCs 

At the right-hand side three different 8-bit ADCs are connected to the MSP430. 
An 8-channel version TLC0838x with the same kind of control is also available. 

Voltages higher than +5 V can be connected to the ADC inputs via resistor 
dividers or operational amplifiers. 

Due to the interrupt capability of all PortO inputs, voltage/frequency converters 
(V/f converters) can also be connected very easily. This is shown at input PO.3. 
For the time base one of the MSP430 timers is used. 

The chapter "Electricity Meters" contains an application that uses an external . 
16-bitADC. 

2.2 R12R Analog-To-Digital Converter 
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Due to its many II0s the MSP430C33x can use the Rl2R method, which allows 
strongly monotone and accurate analog-to-digital converters. Figure 22 shows 
an 8-bit ADC with four analog inputs. For the conversion, the successive 
approximation method is used. This means, that after n approximations-n 
equals the number of implemented bits-the conversion is complete. 

If only one analog input is needed, the multiplexer can be omitted. 

The MSP430C31x family can use the Rl2R method also if enough outputs are 
available (e.g. the O-outputs if no LCD is used) (idea from F. KirchmeierITlD). 
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P4.7 
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Figure 22. R/2R Method for Analog-to-Digltal Conversion 
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Chapter 3 

Hardware Applications 
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·3.1 110 Port Usage 

The each I/O of PortO, Port1, and Port2 has interrupt capability for the leading 
edge and trailing edge of an input signal. This has the following advantages: 

o More than one interrupt input is available 

o Eight resp. 24 external events can wake-up from Low Power 
Modes 3 or4 

o No glue logic is necessary for most applications: all inputs can be ob­
served without the need of gates connecting them to a Single interrupt 
input. 

o Wake-up is possible out of any input state (high or low) 

o Due to the edge-triggered characteristic of the interrupts, no external 
switch-off logic is necessary for long-lasting input signals, therefore no 
multiple interrupt is possible therefore. 

3.1.1 General Usage 

Six peripheral registers controiing the activities of the I/O-PortO are shown in 
Table~1. 

Table 3-1. II00PoriO Registers 
Register Usage state After Reset 

Input register Signals at 110 terminals Signals at 110 terminals 

Output register Content of output buffer Unchanged 

Direction register 0: Input 1: Output Reset to input direction 

Interrupt flags 0: No Interrupt pending Set to 0 
1: Interrupt pending 

Interrupt edges 0: Low to high causes Inter- Unchanged 
rupt 
1: High to low causes Inter-
rupt 

Interrupt enable 0: Disabled Set to 0 
1: Enabled 
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The interrupt vectors, flags and peripheral addresses of I/O-port 0 are shown 
in Table 3-2. 

Table 3-2. Ilo-PoriO Hardware Addresses 
Name Mnemonic Address Contents Vector 

Input Register POIN 010h POIN.7 ... POIN.O -
Output Register POOUT 011h POOUT.7 ... POOUT.O 

Direction Register PODIR 012h PODIR.7 ... PODIR.O -
Interrupt Flags POIFG 013h POIFG.7 ... POIFG.2 OFFEOh 

IFG1.3 002h POIFG.1 OFFF8h 

IFG1.2 002h POIFG.O OFFFAh 

Interrupt Edges POlES 014h POIES.7 ... POIES.O 

I nterrupt Enable POlE 015h POIE.7 ... POIE.2 

IE1.3 OOOh POIE.1 

IE1.2 OOOh POIE.O 

The other I/O-Ports are organized the same way except the following items: 

o Port1 and Port2 contain eight equal II0s, the special hardware for bits 0 
and 1 is not implemented. Additionally, the ports have two function select 
registers, P1 SEl and P2SEl • 

o Port3 and Port4 do not have interrupt capability and registers P31FG, 
P41FG, P31ES, P41ES, P31E and P41E do not exist. Additionally, the ports 
have two function select registers P3SEl and P4SEL. These registers de­
termine if the normalllO-Port function is selected (PxSEL.y = 0) or if the 
terminal Is used for a second function (PxSEL.y = 1) (see Table 3-3). 

The MSP430C33x uses the two function select registers P3SEl and P4SEl 
for the following purposes: 

o P3SEL.y = 1: The limer_A I/O functions are selected (see Table 3-3) 

o P4SEL.y = 1: The USART functions are selected (see the MSP430x33x 
Data Sheet, SLAS163) 
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Table 3-3. TimecA Ilo-Port Selection 

P3SEL.y=O 
P3$EL.y= 1 P3SEL.y= 1 

Compare Mode Capture Mode 

Port 110 P3.0 Port I/O P3.0 Port 110 P3.0 

Port 110 P3.1 Port I/O P3.1 Port 110 P3.1 

Port 110 P3.2 Timer Clock Input TACLK Timer Clock Input TACLK 

Port 110 P3.3 Output TAO Capture input CCIOA 

Port 110 P3.4 Output TA1 Capture input CCI1A 

Port VO P3.5 Output TA2 Capture input CCI2A 

Port 110 P3.6 Output TA3 Capture input CCI3A 

Port 110 P3.7 Output TM Capture input CCI4A 

Example 3-1. Using TimecA in the MSP430C33x System 

An MSP430C33x system uses the limecA. The Capture/Compare 
Blocks are used as follows: 

a An external clock frequency is used: input at terminal TACLK (P3.2) 

a Capture/Compare Block 0: outputs a rectangular Signal at terminal TAO 
(P3.3) 

o Capture/Compare Block 1: outputs a PWM signal at terminal TA 1 (P3A) 

o CaptureiCompare Block 2: captures the input signal atterminalTA2 (P3.5) 
~. 

To initialize Port3 for the previous functions the following code line needs to 
be inserted into the software (for hardware definitions see Section 6.3, Tim­
eeA): 

MOV.B #TA2+TA1+TAO+TACLK,&P3SEL; Initialize Timer I/Os 

Example 3-2. MSP430C33x System uses the USART Hardware for SCI (UART) 

MOV.B 

3-4 

A MSP430C33x system uses the USART hardware for SCI (UART). To initial­
ize terminal P4.7 as URXD and terminal P4.6 as UTXD the following code is 

. used: 

#URXD+UTXD,&P4SEL ; Initialize SCI l/Os 



Example 3-3. The I/O-ports PO.O to PO.3 are used for input only. 

The I/O-ports PO.O to PO.3 are used for input only. Terminals PO.4 to PO.7 are 
outputs and initially set low. The conditions are: 

PO.O Every change is counted 

PO.l Any high-to-low change is counted 

PO.2 Any low-to-high change is counted 

PO.3 Every change is counted 

RAM definitions 

.BSS 

.BSS 

.BSS 

.BSS 

PO_OCNT,2 

PO_1CNT,2 

PO_2CNT,2 

PO_3CNT,2 

Initialization for PortO 

MOV.B 

MOV.B 

MOV.B 

MOV.B 

BIS.B 

#OOOh,&POOUT 

#QFOh,&PODIR 

#OOBh,&POIES 

#OOCh,&POIE 

#OOCh,&IEl 

Counter for PO.O 

Counter for PO.l 

Counter for PO.2 

Counter for PO.3 

output register low 

PO.4 to PO.7 outputs 

PO.O to PO.3 Hi-Lo, PO.2 Lo-Hi 

PO.2 to PO.3 interrupt enable 

PO.O to PO.l interrupt enable 

Interrupt handler for PO.O. Every change is counted 

PO_OHAN INC 

XOR.B 

RET! 

PO_OCNT 

n,&pOIES 

Flag is reset automatically 

Change edge select 

Interrupt handler for PO.l. Any Hi-Lo change is counted 

PO_1HAN INC 

RETI 

Interrupt handler for PO.2 and PO.3 

Flag is reset automatically 
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The flags of all read transitions are reset. Transitions 

occurring during the interrupt routine cause interrupt after 

the RETI 

PO_23HAN PUSH 

MOV.B 

BIC.B 

BIT 

ADC 

BIT 

JNC 

INC 

XOR.B 

L$304 POP 

RETI 

. SECT 

. WORD 

. WORD 

. SECT 

. WORD 

R5 

&POFLG,RS 

RS,&POFLG 

#4,R5 

PO_2CNT 

#8,R5 

L$304 

PO_3CNT 

lIB,POIES 

R5 

"INT_VECT",OFFF8h 

PO_1HAN 

PO_OHAN 

"INT_VECT1",OFFEOh 

PO_23HAN 

Save RS 

Copy interrupt flags 

Reset read flags 

PO.2 flag to carry 

Add carry to counter 

PO.3 flag to carry 

PO.3 changed 

Change edge select 

'Restore RS 

PO.l INTERRUPT VECTOR; 

PO.O INTERRUPT VECTOR; 

PO.2/7 INTERRUPT VECTOR 

3.1.2 Zero Crossing Detection 

With the external components shown in Figure 3-1 it is possible to build a zero 
crossing input for the MSP430. The components shown are designed for an 
external voltage ac = 230 V. With a circuit capacitance (wiring, diodes) of 
C1 = 30 pF as shown in Figure 3-1, the following delays occur (all values for 
ac = 230 V, f = 50 Hz, Vee = +5 V, timing is in lIS): 

Vee 

1 MO 
Vportx 

Vac --~~--~.---~----~­ To Portx 
Ri 

Protection Diodes MSP430 

Figure 3-1. Msp430 Input for Zero-Crossing 



Port Input 
Voltage 

i 

I 
I 
I 
I 
I 

Vac 

VpOrtx 

O;-~~~--4--r------------------~-r~~----
I I I I I 

30)J.S~ I 6)J.S~ I4-i 
J4-54)J.S~ i 16JlS ~ I 

---+ 
Time 

j4-- 65)J.S ~ j4- 30 liS -tt 

Figure 3-2. Timing for the Zero Crossing 

Delay caused by RC (1 Mel x 30 pF): 30 fJS or 0.540 (same value for leading 
and trailing edges). 

Delay caused by input thresholds: 
Leading edge: 24 fJS to 35 fJS. (VT + = 2.3 V to 3.4 V) 
Trailing edge: 14 fJS to 24 fJS. (VT _ = 1.4 V to 2.3 V) 

The resulting delays are: 
Leading edge: 54 fJS to 65 fJS. 
Trailing edge: 6 fJS to 16 fJS. 

These small deviations do not playa role for 50 Hz or 60 Hz phase control ap­
plications with TRIACs. If other input conditions than 230 V and 50 Hz are used 
then the resulting delays can be calculated with the following formulas: 

to "" SVT; S - d(U x sinc.ot) "" U x c.o x cosc.ot 
V V - dt 

Where: 
to 
VT 
Sv 
c.o 
U 

Delay time caused by the input threshold voltage [s] 
Input threshold voltage M 
Slope of the input voltage [VIs] 
Angular frequency 2m [1 Is] 
Peak value of the input voltage Uac M 
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For t .. 0 (zero crossing time) the previous equation becomes: 

VT VT to - .. 
- U XCI) X 1 U XCI) 

3.1.3 Output BufferIng 
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The outputs of the MSP430 (PO.x, P1.x, P2.x, P3.x, P4.x, Ox) have nominal 
internal resistances depending on the supply voltage, Vee: 

Vee = 3 V: Max. 333 a 

Vee = 5 V: Max. 266 a 

(IN .. O.4V max. @ 1.2mA) 

(/lV .. O.4V max. @ 1.5mA) 

These internal resistances are non-linear and are valid only for small output 
currents (see the previous text). If larger currents are drawn, saturation effects 
will limit the output current. 

These outputs are intended for driving digital inputs and gates and normally 
have too high an Impedance level for other applications, such as the driving 
of relays, lines, etc. If output currents greater than the previously mentioned 
ones are needed then output buffering is necessary. Figure 3-3 shows some 
of the possibilities. The resistors shown in Figure 3-3 for the limitation of the 
MSP430 output current are minimum values. The application is designed for 
Vee" 5 V. The values shown in brackets are for Vee" 3 V. 



5V 
D 32kHz 

+-- le=1.5mAx~ (le=1.2mAx~) 

SVec 
2.7 kO (1.8 kO) 

PO.x, Oy t---'lIV\r---I 

MSP430 OV 
+-- Ie = 350 mA 

8.2 kO (3.3 kO) 
PO.x, Oy t---"I/V'v---i 

ULN2OO1A 

PO.x, Oy 

ULN2003 
+-- Ie = 200 mA 

3 kO(2 kO) 
PO.x, Oy t---'lIV\r---I 

OV 5V OV OV 

Figure 3-3. Output Buffering 

3.1.4 Universal Timer/Port 1I0s 

Ifthe Universallimer/Port is not used for analog-to-cligital conversion or is only 
partially used for this purpose, then the unused terminals are available as out­
puts that can be switched to high impedance. The Universallimer/Port can 
be used in three different modes (see Figure 3-4): 

o Two a-bit timers, two inputs, one I/O, and 5 output terminals 
DOne 16-bit timer, two inputs, one I/O, and 5 output terminals 
o An analog-to-digital converter with two to six output terminals 

Ports TPO.O to TPO.5 are completely independent of the analog-to-digital con­
verter. Any of the ports can be used for the sensors and reference resistors. 

After a power-up, the data register is set to zero and all TPO.x ports are 
switched to high impedance. 
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r----~--------------------------------~ I Enable MPS430 I 

li~~-~~£~~~~~~~J 
CIN TPO.S TPO.4 TPO.3 TPO.2 TPO.1 TPO.O 

Figure 3-4. The I/O Section of the Universal Timer/Port Module 

3. 1.4. 1 VOs Used with the Analog-fa-Digital Converter 

The analog-tCHligital conversion uses terminal CIN and at least two of the 
TPO.x terminals (one for the reference and one for the sensor to be measured); 
therefore up to 4 outputs are available. Bit instructions BIS.B, BIC.B, and 
XOR.B can only be used for the modification of the outputs. This is due to the 
location of the control bits in the data register TPD and data enable register 
TPE. The programming of the port is the same as described in the following 
section. 

, 

Note: 

For precise ADC results, changes of the TP-ports during the measurement 
should be avoided. The board layout and the physical distance of the 
switched port determine the influence on the CIN terminal. Spikes coming 
from the switching of ports can change the result of a measurement. This is 
especially true if they occur near the crossing of the threshold voltage. 

3.1.4.2 VOs Used Without the ADC 

3-10 

This mode allows 5 outputs that can be switched to high impedance (TPO.O 
to TPO.4) and one I/O terminal (TPO.5). Additionally, two 8-bit timers or one 
16-bit timer are available. If one of the timers is used, only bit instructions 
BIT.B, BIS.B, BIC.B, or XOR.B can be used to operate the port. The four timer 
control bits are located in the data register TPD and data enable register TPE. 
If the MOV.B instruction is used, all the bits are affected. 



Example 3-4. All Six Ports are Used as Outputs 

All six ports are used as outputs. The possibilities of the port are shown in the 
following: 

Definitions for the Counter Port 

TPD .EQU 04Eh Data Register 

TPE .EQU 04Fh Data Enable Register. 1: 
output enabled 

TPO .EQU OOlh TPO.O bit address 

TPI .EQU 002h TPO.l bit address 

TP2 .EQU 004h TPO.2 bit address 

TP3 .EQU OOSh TPO.3 bit address 

TP4 .EQU OlOh TPO.4 bit address 

TPS .EQU 020h TPO.5 bit address 

Reset all ports and switch all to output direction 

BIC.B 

BIS.B 

#TPO+TP1+TP2+TP3+TP4+TPS,&TPD 

#TPO+TP1+TP2+TP3+TP4+TPS,&TPE 

Data to low 

Enable outputs 

Toggle TPO.O and TPO.4, set TPO.S and TPO.2 afterwards 

XOR.B 

BIS.B 

#TPO+TP4,&TPD 

#TPS+TP2,&TPD 

Toggle TPO.O and TPO.4 

set TPO.S and TPO.2 

Switch TPO.l and TPO.3 to HI-Z state 

BIC.B #TP1+TP3,&TPE HI-Z state for TPO.l 
and TPO.3 

3.1.5 110 Used for Fast Serial Transfers 

The combination of hardware and software, shown in the following, allows a 
fast serial transfer with the MSP430 family. The data line needs to be Px.O. Any 
other port can be used for the clock line. Any data length is possible. The LSB 
is transferred first. This can be easily changed by using RLC instead of RRC. 
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POOUT .EQU Ollh PortO output register 

PODIR .EQU 012h PortO Direction register 

POO .EQU 01h Bit ~ddress of PO.O: Data 

POl .EQU 02h Bit address of PO.1: Clock 

MOV DATA,R5 1st 16bit data to R5 

CALL #SERIAL_FAST_I~IT 1st transfer, initialization 

MOV DATA1,R5 2nd 16bit data to R5 

CALL #SERIAL_FAST 2nd transfer, LSB to MSB 

aso. 

Initialization of the fast serial transfer: uses SERIAL_FAST too 

SERIAL_FAST_INIT 

BIC.B 

BIS.B 

#POO+P01,&POOUT 

#POO+P01,&PODIR 

Initialization part 

Reset PO.O and PO.l 

PO.O,and PO.l to output dir. 

Part f,or 2nd and all following transfers 

SERIAL_FAST 

RRC 

ADDC.B 

BIC.B 

3-12 

RRC 

ADDC.B 

BIC.B 

RRC 

ADDC.B 

BIC.B 

RET 

R5 

#P01,&POOUT 

#POO+POl,&POQUT 

R5 

#P01,&POQUT 

#POO+P01,&POQUT 

Initialization is made 

LSB to carry 

Data out, set clock 

Reset data and clock 

LSB+l to carry 

Data out, set clock 

Reset data and clock 

1 cycle 

4 cycles 

5 cycles 

1 cycle 

4 cycle 

5 cycles 

Output all bits the same way 

R5 ; MSB to carry 

#P01,&POQUT ; -Data out, set clock 

#POO+P01,&POQUT, ; Reset data and clock 

1 cycle 

4 cycles 

5 cycles 



Each bit needs 10 cycles for the transfer, this results in a maximum baud rate for 
the transfer: 

Baud ratemax = 
MCLK 

10 

This means if MCLK = 1.024 MHz then the maximum baud rate is 102.4 kbaud. 

po.o 

MSP430 

PO.1 

Vss vee 

OV 5V 

Data 

Clock 

Figure 3-5. Connections for Fast Serial Transfer 

o o 
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3.2 Storage of Calibration Constants 

Metering devices, such as electricity meters, gas meters etc., normally need 
to store calibration constants (offsets, slopes, limits, addresses, correction 
factors) for use during the measurements. Depending on the voltage supply 
(battery or ac), these calibration constants can be stored in the on-chip RAM 
or in an external EEPROM. Both methods are explained in the following 
sections. 

3.2.1 External EPROM for Calibration Constants 

3-14 

The storage of calibration constants, energy values, meter numbers, and de­
vice versions in external EEPROMs may be necessary if the metering device 
is ac powered. This is because of the possibility of power failures. 

The EEPROM is connected to the MSP430 by dedicated inputs and outputs. 
Three (or two) control lines are necessary for proper function: 

D Data line SDA: an I/O port is needed for this bidirectional line. Data can 
be read from and written to the EEPROM on this line. 

o Clock line SCL: any output line is sufficientforthe clock line. This clock line 
can be used for other peripheral devices as long as no data is present on 
the data line during use. 

D Supply line: if the current consumption of the idle EEPROM is too high, 
then switching of the EEPROM Vee is needed. Three possible solutions 
are shown: 

• The EEPROM is connected to SV ce. This is a very simple way to have 
the EEPROM powered off when not in use. 

• The EEPROM is switched on and off by an external PNP transistor 
driven by an output port. 

• The EEPROM is connected to 5 V permanently, when its power con­
sumption is not a consideration. 



r--------
5V I 5V 
I I 

Sto,!ge of Calibration Constants 

SVCC 

I I 
I I t--'VVv---t PO.x,Oy 

I I MSP430 

VCC Clock 
SCL .... ==-+--1 PO.y,Oy 

X24LCxx 

Ax SDA .... -=D=atB=-......... Po.x 
Vas 

Vas VCC 

OV 
OV 5V 

Figure 3-6. External EPROM Connections 

An additional way to connect an EEPROM to the MSP430 is shown in Section 
3.4, /2C Bus Connection, describing the 12C Bus. 

, 

Note: 

The following example does not contain the necessary delay times between 
the setting and the resetting of the clock and the data bits. These delay times 
can be seen in the specifications of the EEPROM device. With a processor 
frequency 9f 1 MHz, each one of the control instructions needs 5 lIS. 

Example 3-5. External EEPROM Connections 

POOUT .EQU 

PODIR .EQU 

SCL .EQU 

SDA .EQU 

LCDM .EQU 

, 

The EEPROM, with the dedicated 1/0 lines, is controlled with normal I/O 
instructions. The SCl line is driven by 017, the S.DA line is driven by PO.6. The 
line is driven high by a resistor and low by the output buffer. 

Ollh Porta Output register 

O12h Porta Direction register 

OFOh 017 controls SCL, 039h LCD Address 

040h PO.6 CONTROLS SDA 

030h LCD control byte 

INITIALIZE I2C BUS PORTS: 

INPUT DIRECTION: BUS LINE GETS HIGH 

OUTPUT BUFFER LOW: PREPARATION FOR LOW SIGNALS 
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Storage of Calibration Constants 

BIC.B 
BIS.B 
BIC.B 

#SDA,&PODIR 
#SCL,&LCDM+9 
#SDA,&POOUT 

SDA TO INPUT DIRECTION 
SET CLOCK HI 
SDA LOW IF OUTPUT 

START CONDITION: SCL AND SDA ARE HIGH, SDA IS SET LOW, 

AFTERWARDS SCL GOES LO 

BIS.B 

BIC.B 

DATA TRANSFER: 

BIC.B 

BIS.B 

BIC.B 

DATA TRANSFER: 

BIS.B 

BIS.B 

BIC.B 

STOP CONDITION: 

BIC.B 

BIS.B 

#SDA,&PODIR 

#SCL,&LCDM+9 

OUTPUT OF A "1" 

#SDA,&PODIR 

#SCL,&LCDM+9 

#SCL,&LCDM+9 

OUTPUT OF A "0" 

#SDA,&PODIR 

#SCL,&LCDM+9 

#SCL,&LCDM+9 

SDA IS LOW, SCL IS HI, 

#SDA,&PODIR 

#SCL,&LCDM-t9 

SET SDA LO (SDA GETS OUTPUT) 

SET CLOCK LO 

SET SDA HI 

SET CLOCK HI 

SET CLOCK LO 

SET SDA LO 

SET CLOCK HI 

SET CLOCK LO 

SDA IS SET HI 

SET SDA HI 

Set SCL HI 

The examples, shown in the previous text, for the different conditions can be 
implemented into a subroutine, which outputs the contents of a register. This 
shortens the necessary ROM code significantly. Instead of line Ox for the Sel 
line another 1/0 port PO.x can be used. See SeCtion 3.4, /2C Bus Connection, 
for more details of such a subroutine. 

3.2.2 Internal RAM for Calibration Constants 

3-16 

The Intemal RAM can be used for storage of the calibration constants, if a per­
manently connected battery is used for the power supply. The use of low power 
mode 3 or 4 is necessary for these kinds of applications and can get battery 
life times reaching 8 to 12 years. 



M-Bus Connection . 
3.3 M·Bus Connection 

The MSP430 connection to the M-Bus (metering bus) is shown in Figure 3-7. 
Three supply modes are possible when used with the TSS721: 

o Remote supply: The MSP430 is fully powered from the TS8721 

o Remote supplylbattery support: The MSP430 power is supplied normally 
from the TSS721. If this power source fails, a battery is used for backup 
power to the MSP430 

o Battery Supply: The MSP430 is always supplied from a battery. 

All these operating modes are described in detail in the TSS721 M-Bus Trans­
ceiver Applications Book. 

o 32kHz 

METERBU8 

2150 
PO.1 RXD BUSL1 

PO.2TXD T88721 
2150 

Ay/RST/PO.y BUSL.2 

M8P430 
1000 1200 

Ax/PO.x BUSL1 

RXI TSS721 5MB740CA 

AzlRST/PO.z PF BUSL.2 
1000 1200 

Figure 3-7. TSS721 Connections to the MSP430 

Two different TSS721 connections are shown in Figure 3-7: 

o If the 8-bit interval timer with its UART is used then the upper connection 
is necessary. TXI orTX are connected to RXO (PO.1) and RXI or RX is con­
nected to TXO (PO.2). 

o If a strictly software UART or an individual protocol is used, then any input 
and output combination can be used 

The second connection uses a proven hardware for environments with strong 
EMV conditions. The 40-V suppressor diode gives the best results with this 
configuration. 

For more details, see Section 3.8, Power Supplies for MSP430 Systems. 
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/2C Bus Connection . 
3.4 J2C Bus Connection 

TPO.xlPO.8 

PO.b 

MSP430 

vee vss 

I I 
+5V OV 

If more than one device is to be connected to the 12C-Bus, then two I/O ports 
are needed for the control of the 12C peripherals. This is needed to switch SDA 
and SCL to a high-impedance state. 

Figure 3-8 shows the connection of three 12C peripherals to the MSP430: 

o An EEPROM with 128x8-bit data 
o An EEPROM with 2048x8-bit data 
o An 8-bit DAC/ADC 

The bus lines are driven high by the Rp resistors (PO.x Is switched to input 
direction) and low by the output ports itself (PO.x is switched to output direc­
tion). 

+5V 

RP6 Rp 

sel 

I I 
SOA 

sel SOA SCl SOA sel SOA 
A2 ~ A2 ~ Ax * EEPROM A1 .... EEPROM A1 I- ADClDAC AINx ~ 

128x8 AO ~ 2048x8 AO ~ AOUT -vOO Vss voo Vss vOO vss 

I I I I I I 
+5V OV +5V OV +5V OV 

Figure 3-8. /2C Bus Connections 

The following software example shows a complete 12C handler. It is designed 
for an EEPROM 24C65 with the following values: 

o MCLK Frequency: 3.8 MHz 
o Address Length: 13 bits 
o Device Code: selectable by Code definition 

I2C-Handler: Transmission of a-bit data via the I2C-bus 

Author: Christian Hernitscheck TID 

Definitions for 12C Bus 
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SCL .EOU 040h 

SDA .EOU oaOh 

SCLIN .EOU OlOh 

SDAIN .EOU OlOh 

SCLDAT .EOU Ollh 

SDADAT .EOU Ollh 

SCLEN .EOU O12h 

SDAEN .EOU O12h 

Code .equ OAOh 

Address .EOU 0200h 

12CData .EOU 0202h 

Register definitions 

Data .EOU RS 

Count .EOU R6 

Mask .EOU R7 

Initialization in main program 

BIC.B 

BIC.B 

#SCL+SDA,&SDAEN 

#SCL+SDA,&SDADAT 

Subroutines of the I2C-Handler 

12C Bus Connection 

PO.6 controls seL line (pull-up) 

PO.7 controls SDA line (pull-up) 

PO input register PO IN 

PO input register PO IN 

POOUT register address 

PO output direction register PODIR 

PODIR register address 

PO direction register 

Device Code 10 (24C65) 

address pointer for EEPROM 

used for I2C protocol 1 

seL and SDA to input direction 

SCL and SDA output buffer 10 

Continue 

Write a-bit data <data> into EEPROM address <address>: 

Call MOV 

MOV.B 

CALL 

JC 

IN 

<address>, Address 

<data>,I2CData 

U2C_Write 

Error 

Error 

EEPROM data address 

a-bit data 

Call subroutine 

Acknowledge error 

Arbitration error 

Continue program 
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/2C Bus Connection 

Read a-bit data from EEPROM address <address>: 

MOV 

CALL 

JNC 

IN 

<address>, Address 

#I2C_Read 

Error 

Error 

Status Bits on return: 

C: Acknowledge Bit 

N: 1: Arbitration Error 0: no error 

EEPROM data address 

Call subroutine 

Acknowledge error 

Arbitration error 

Data in 12CData (byte) 

Used Registers: RS = Data (pushed onto Stack) 

Used RAM: 

12C_Write 

CALL 

MOV.B 

AND.B 

MOV.B 

JMP 

12C_Read CALL 

MOV.B 

AND.B 

3-20 

R6 = Count (pushed onto Stack) 

R7 = Mask (pushed onto Stack) 

Address 

12CData 

12CData+l 

12CData+2 

12CData+3 

12CData+4 

MOV.B 12CData,I2CData+3 

#ControlByte 

Address+l,I2CData+l 

II'OlFh,I2CData+l 

Address,I2CData+2 

12C 

#ControlByte 

Address+l,I2CData+1 

#OIFh,I2CData+l 

; 

; 

; 

0200h 

0202h 

0203h 

0204h 

020Sh 

0206h 

Data to be written 

Control byte 

Hi byte of EEPROM 

to EEPROM 

address 

Delete A2, Al and AO bits 

Lo byte of EEPROM address 

To common part 

12CData = Control byte 

Hi byte of EEPROM address 

; Delete A2, Al and AO bits 



MOV.B 

MOV.B 

BIS.B 

Address,I2CData+2 

I2CData,I2CData+4 

#01h,I2CData+4 

Common I2C-Handler 

I2C PUSH Count 

PUSH Data 

PUSH Mask 

CLR Count 

BIS.B #SDA,&SDAEN 

MOV.B I2CData, Data 

CALL #I2C_Send 

JC I2C_Stop 

BIT.B #01h,I2CData+4 

JC 12C_SubRead 

Write data (R/W 0) 

I2C_Data INC Count 

CMP #4, Count 

JEQ I2C_Stop 

CALL #I2C_Send 

JNC I2C_Data 

I2C_Stop BIS.B #SCL,&SCLEN 

BIS.B #SDA,&SDAEN 

NOP 

NOP 

NOP 

NOP 

NOP 

NOP 

NOP 

BIC.B #SCL,&SCLEN 

12C Bus Connection 

Lo byte of EEPROM address 

Control byte 2 

, To common part 

Save registers 

Start Condition: set SDA Lo 

Send slave address and RW bit 

Write or Read? 

R/W bit is 1: read 

Stop Condition: 

SCL 'L' 

SDA - 'L' 

Delay 7 cycles 

SCL 'H' 
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/2C Bus Connection 

CALL #NOP9 

BIC.B #SDA,&SDAEN 

CLRN 

I2C~End POP Mask 

POP Data 

POP Count 

RET 

Read data (R/W 1) 

I2C_SubRead INC Count 

CMP #3,Count 

JEQ I2C_SubReadl 

CALL #I2C_Send 

JC I2C_Stop 

JMP I2C_SubRead 

I2C_SubReadl BIS.B #SCL,&SCLEN 

'CALL 

BIC.B 

NOP 

NOP 

NOP 

NOP 

NOP 

BIS.B 

MOV.B 

CALL 

BIS.B 

BIC.B 

#NOP9 

#SCL,&SCLEN 

#SDA,&SDAEN 

I2CData+4,Data 

U2C_Send 

#SCL,&SCLEN 

#SDA,SDAEN 

CLR I2CData 

MOV 

I2C_Readl 

BIT.B 

3-22 

#8,Count 

BIC.B #SCL,&SCLEN 

#SDA,&SDAIN 

Delay 9 cycles 

SDA = 'H' 

Reset error flags 

Restore registers 

Carry info valid 

SCL='L' 

SCL='H' 

Start condition: 

SCL='H', SDA='H' => 'L' 

Send Control Byte 

SCL 

SDA 

'L' 
Input 

Read 8 bits 

SCL = 'H' 

Read data to carry 



RLC.B 

NOP 

NOP 

BIS.B 

NOP 

NOP 

NOP 

NOP 

NOP 

NOP 

12CData 

#SCL,&SCLEN 

/2C Bus Connection 

Store received Bit 

SCL 'L' 

DEC Count 

CALL 

JMP 

Send byte 

12C_Send MOV.B 

12C_Send1 

JC 

BIS.B 

BIS.B 

CALL 

BIC.B 

BIC.B 

CALL 

BIC.B 

BIT.B 

JNC 

RRC.B 

U2CJlckn 

12C_Stop 

Test acknowledge bit to C 

#80h,Mask Bit mask: MSB first 

BIT.B Mask,I2CData(Count) Info bit -> Carry 

12C_Send2 

#SCL,&SCLEN 

#SDA,&SDAEN 

#NOP9 

#SCL,&SCLEN 

BlS.B #SCL,&SCLEN 

#SDA,&SDAEN 

#NOP9 

#SCL,&SCLEN 

#SDA,SDAlN' 

Error_Arbit 

CLRC 

Mask 

Info is 0: SCL 

SDA - 'L' 

SCL 'H' 

Info is 1: SCL 

SDA - 'H' 

SCL - 'H' 

Arbitration 

Next address bit 

'L' 

'L' 
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12C Bus Connection 

NOP 

NOP 

NOP 

JNC 

12C.-Ackn NOP 

NOP 

BIS.B 

BIC.B 

CALL 

BIC.B 

BIT.B 

RET 

12C-Bus Error 

Error_Arbit ADD 

SETN 

tSCL,&SCLEN 

#SDA,&SDAEN 

iNOP8 

tSCL,&SCLEN 

#SDA,&SDAIN 

#2,SP 

JMP 12C_End 

Build control byte 

ControlByte CLR 

MOV.B 

RRC 

12CData 

Address+l,I2CData 

12CData 

RRC 12CData 

RRC 12CData 

RRC 12CData 

AND.B 

ADD.B 

RET 

#OEh,I2CData 

#Code,I2CData 

No Carry: continue 

SCL - 'L' Acknowledge Bit 

SDA = 'H' 

SCL - 'H' 

Read data to carry 

(acknowledge bit) 

Remove return address 

Set arbitration error 

; Hi byte of EEPROM address 

; Shift MSBs to bits 3 .. 1 

A2, A1 and AO 

Add device code (24C65) 

Delay subroutine. Slows down 12C Bus speed to spec 

NOP9 

NOpa 

3-24 

NOP 

RET 

9 cycles delay 

a cycles delay 



Hardware Optimization 

3.5 Hardware Optimization 

The MSP43D permits the use of unused analog inputs (A7 to AD) and segment 
lines (S29 to 52) for inputs and outputs, respectively. The following two sec­
tions explain in detail how to program and use these inputs and outputs. 

3.5.1 Use of Unused Analog Inputs 

Unused analog-to-digital converter (ADe) inputs can be used as digital inputs 
or, with some restrictions, as digital outputs. 

3;5.1.1 Analog Inputs Used for Dlgltsllnputs 

Any ADe input A7 to AD can be used as a digital input. It only needs to be pro­
grammed (for example, during the initialization) for this function. Three things 
are important if this feature is used: 

o Any activity at these digital inputs has to be stopped during ongoing sensi­
tive ADe measurements. This activity will cause noise, which invalidates 
the ADe results. Activity in this case means: 

• No change of the AEN register (switching between digital and analog 
mode) 

• No input change at the digital ADe inputs (this rarely allows changing 
signals at these inputs). 

o All bits that are switched to ADO inputs will read zero when read. There­
fore, it is not necessary to clear them with software after reading. 

o Not all analog inputs are implemented in a given device 

Example 3-6. AD - A4 are used as ADC Inputs and A5 - A7 as Digital Inputs 
AIN 

AEN 

A7EN 

A6EN 

ASEN 

.EQU 

.EQU 

.EQU 

.EQU 

.EQU 

OllOh 

Oll2h 

OBOh 

040h 

020h 

Address DIGITAL INPUT REGISTER 

Address DIGITAL INPUT ENABLE REG. 

Bits in Dig. Input Enable Reg.: 

0: ADC 1: Digital Input 

INITIALIZATION: A7 TO A5 ARE SWITCHED TO DIGITAL INPUTS 

A4 TO AO ARE USED AS ANALOG INPUTS 

MOV #A7EN+A6EN+A5EN,&AEN A7 TO A5 DIGITAL MODE 
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H..ardwa!~ Optimization 

NORMAL PROGRAM EXECUTION: 

CHECK IF A7 OR AS ARE HIGH. IF YES: JUMP TO LABEL L$100 

BIT 

JNZ 

#A7EN+ASEN,&AIN 

L$lOO 

A7 .OR. AS HI? 

YES 

NO, CONTINUE 

CHECK IF ALL DIG. INPUTS A7 TO AS ARE LOW. IF YES: Go to L$200 

TST 

JZ 

&AIN 

L$200 

A7 TO AS LO? 

YES, (ANALOG INPUTS READ ZERO) 

3.5.1.2 Analog Inputs Used as DIgItal Outputs 
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If outputs are needed then the unused ADC inputs with the current source con­
nection can be used with the following restrictions: 

D Only one ADC input can be high at a given time (1 out of n principle) 

D Only the ADC inputs AO to A3 are usable (only they are connected to the 
current source) 

D The outputs can go high only while the ADC is not using the current source. 

D The output current is directly related to the supply voltage, Vee. 

D The output voltage is only about 50% of the supply voltage, Vee. Logic lev­
els have to be carefully monitored. A transistor stage might be necessary 
(if not there already, e.g. for a relay). 

D The output current is the current of the current source. Again; logic levels 
have to be carefully monitored. The pull-down resistor has to be big 
enough to allow the maximum output level. 

The example in Figure 3-9 shows the ADC using inputs AO and A1 as digital 
outputs driving two stages; a transistor stage (energy pulse, e.g. with an elec­
triCity meter) and a 3.3-V gate (3.3 V ensures that the input levels are suffi­
cient). 



Hardware Optimization 

o 32kHz 

ICs = 0.25 x SVCclREXT 
SVcc 

5V 

Rext 

~1C8 
Rex lJ 

Energy Output 
MSP430 

AO _'VVv-..... --I 

OV 3.3v 

A1 H..--t----i JL 
T03VLogic 

OV 

OV OV 

Figure 3-9. Unused ADC Inputs Used as Outputs 

Example 3-7. Controlling Two Inputs as Outputs 

To control the two outputs shown in Figure 3-9, the following software program 
is necessary: 

ACTL .EQU 0114h ADC CONTROL REGISTER ACTL 

VREF .EQU 02h 0: Ext. Reference 1: SVCC ON 

AO .EQU OOOOh AD INPUT SELECT AD 

Al .EQU 0004h Al 

CSAO .EQU OOOOh CURRENT SOURCE TO AO 

CSAI .EQU 0040h Al 

CSOFF .EQU 0100h CURRENT SOURCE OFF BIT 

SET AO HI FOR 3ms: SELECT AO FOR CURRENT SOURCE AND INPUT 

MOV #VREF+AO+CSAO,&ACTL PD = 0, SVCC = on 

CALL #WAIT3MS WAIT 3ms 

BIS #CSOFF,&ACTL CURRENT SOURCE OFF; 

SET Al HI FOR 3ms: SELECT Al FOR CURRENT SOURCE AND INPUT 

MOV #VREF+AI+CSAI,&ACTL PD - 0, svtc = on 

CALL #WAIT3MS WAIT 3ms 
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BIS #CSOFF,&ACTL ; CURRENT SOURCE OFF 

3.5.2 Use of Unused Segment Lines for Digital Outputs 

The LCD driver of the MSP430 provides additional digital outputs, if the seg­
ment lines are not used. Up to 28 digital outputs' are possible by the hardware 
design, but not ali ofthem will be implemented on a given chip. The addressing 
scheme for the digital outputs 02 to 029 is as illustrated in Table 3-4. 

Table 3-4 shows the dependence of the segment/output lines on the 3-bit val­
ue LCDP. When LCDP = 7, all the lines are switched to LCD Mode (segment 
lines). Only groups of four segment lines can be switched to. digital output 
mode. LCDP is set to zero by the PUC (06 to 029 are in use). 

, 

Note: 

Table 3-4 shows the digit environment for a 4-MUX LCD display. The outputs 
00 and 01 are not available: 80 and 81 are always implemented as LCD 
outputs. (digit 1). 

The digital outputs Ox have to be addressed with all four bits. This means that . 
Oh and OFh are to be used for the control of one output. 

Only byte addressing is allowed for the addressing of the LCD controller bytes. 
Except for SO and S 1, the PUC switches the LCD outputs to the digital output 
mode (LCDP = 0). 

Table 3-4. LCD and Output Configuration 
Address 7 6 5 4 3 2 1 0 DlgltNr. LCDP 

03Fh 029 028 Digil15 6100 

03Eh 027 026 Digil14 6100 

03Dh 025 024 Digit 13 5100 

03Ch 023 022 Digit 12 5toO 

03Sh 021 020 Digit 11 4 to 0 S20i821 

03Ah 019 018 Digit 10 4toO 

039h 017 016 Digit 9 3toO 

038h 015 014 Digit 8 3to 0 

037h 013 012 Digit 7 2100 

036h 011 010 Digit 6 2 to 0 810/811 

035h 009 008 Digit 5 1100 

034h 007 006 Digit 4 1 toO 

033h 005 004 Digit 3 0 

032h 003 002 Digit 2 0 

031h h g f e d c b a Digit 1 80/81 
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Example 3-8. 80 to 813 Drive a 4-MUX LCD 

80 to 813 drive a 4-MUX LCD (7 digits). 014 to 017 are set as digital 
outputs. 

LCD Driver definitions: 

LCDM .EQU 030h 

LCDMO .EQU 001h 

LCDM1 .EQU 002h 

MUX .EQU 004h 

LCDP .EQU 020h 

014 .EQU OOFh 

015 .EQU OFOh 

016 .EQU OOFh 

017 .EQU OFOh 

; 

INITIALIZATION: DISPLAY ON: 

014 TO 017 ARE OUTPUTS: 

ADDRESS LCD CONTROL BYTE 

1: LCD on 0: LCD off 

0: high 1: low Impedance 

MUX: static, 2MUX, 3MUX, 4NUX 

Segment/Output Definition LCDM7/6/5 

014 Control Definition 

015 

016 

017 

LCDMO = 1 

HI IMPEDANCE 

4MUX: 

LCDMI = 0 

LCDM4/3/2 

LCDM7/6/5 = 3 

7 

MOV.B #(LCDP*3)+(MUX*7)+LCDMO,&LCDM INIT LCD 

NORMAL PROGRAM EXECUTION: 

SOME EXAMPLES HOW TO MODIFY THE DIGITAL OUTPUTS 014 TO 017: 

BIS.B 

BIC.B 

MOV.B 

MOV.B 

XOR.B 

#014,&LCDM+B 

#015+014,&LCDM+B 

#015+014,&LCDM+B 

#017,&LCDM+9 

#017,&LCDM+9 

SET 014, 015 UNCHANGED 

RESET 014 AND 015 

SET 014 AND 015 

RESET 016, SET 017 

TOGGLE 017, 016 STAYS UNCHANGED 
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3.6 Dlgltal-to-Analog Converters 

3.6: 1 R/2R Method 

3-30 

The MSP430 does not contain a dlgital-ta-analog converter (DAC) on-chip, but 
it is relatively simple to implement the DAC function. Five different solutions 
with distinct hardware and software requirements are shown in the following: 

o The R12R method 
o The weighted-resistors method 
o Integrated DACs connected to the 12C Bus 
o Pulse width modulation (PWM) with the universal timer/port module 
o Pulse width modulation with limer A 

With a CMOS shift register or digital outputs, a DAC can be built for any bit 
length. The outputs Ox of the shift register switch the 2R-resistors to 0 V or Vee 
according to the digital input. The voltage at the non-inverting input and also 
at the output voltage Vout of the operational amplifier is: 

Vout =.!.. xVCC 
n 2 

Where: 
k Value of the digital input word with n bits length 
n Number of 0 outputs, maximum length of input word 
Vee Supply voltage 

Signed output is possible by level shifting or by splitting of the power supply 
(+ Vecl2 and -Vee/2). With split power supplies the voltage althe output ofthe 
operational amplifier is: 

k Vee' (k 1) 
Vout= 2" x Vee - 2 = Vee 2"-'2 

Advantages of the R/2R Method 

o Only two different resistors are necessary (R and 2R) 
o Absolute, monotony over the complete output range 
o Internal impedance independent of the digital value: impedance is 

always R 
o Expandable to any bit length by the adding of shift registers 
o With only three digital outputs (Ox, TPO.x, Portx) , an inexpensive solution 

Is possible. 



Ox,PO.a 
Oy,PO.b 

MSP430 

VCC Vas 

5V OV 

Dlgltal-to-Analof! Converters 

If enough digital outputs are available in an application, then the shift regis­
ter(s) can be omitted. The outputs QA to QH of Figure 3-10 are substituted by 
o outputs, ports or TP outputs of the MSP430. 

LSB 
Shift Register 

2R 

MSB 

vo 
DAC'Output 
To System 0 To VCC 

Figure 3-10. R12R Method for Digital-to-Analog Conversion 

3.6.2 Weighted Resistors Method 

The simplest digital-to-analog conversion method, only (n+3) resistors and an 
operational amplifier are required for an n-bit DAC. This method is used when 
the DAC performance can be low. 

The example shown in Figure 3-11 delivers 2n+ 1 different output voltage steps. 
They can be seen as signed.if the voltage Ved2 is seen as a zero point. The 
output voltage Vout of this DAC is: . 

Vout = V nlnv - I I n x R = V ~e x (1" + (a x 2 -1 + b x 2 - 2 + c x 2 - 3 . . . + x x 2 - (n + 1»)) 

Where: 
Vout Output voltage of the DAC 
Vnlnv Voltage at the noninverting input of the operational 

amplifier (Ved2) 
Vee Supply voltage of the MSP430 and periphery 
R Normalized resistor used with the DAC 
a ... x Multiplication factors for the weighted resistors R to 2n x R: 

+ 1 if port is switched to V ss 
o if port is switched to input direction (high impedanCe) 
-1 if port is lIwitched to Vee 

Normally all ot the ports are switched to the same potential (VSS or Vee) or 
are disabled. This allows signed output voltages referencad to Ved2. 
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o Advantage of the Weighted Resistor-Method: Simplicity 

o Disadvantage: Monotony not possible due to resistor tolerances 

Vee 
Ri 

PO.a 
R2 

PO.b Vo 
R4 DACOulput 

PO.c To System 0 To Vce 
MSP430 

Rn 
PO.x 

Vec Vss OV 

5V OV 

Figure 3-11. Weighted Resistors Method for Digital-ta-Analog Conversion 

3.6.3 Dlgltal-to-Analog Converters Connected Via the 12C Bus 

Figure 3-12 shows two different DACs that are connected to the. MSP430 via 
the 12C Bus: 

o A single output 8-blt DAC (with additional 4 ADC inputs); one analog out­
put. AOUT. is provided. 

o An octuple 6-blt DAC; eight analog outputs. DACO to DAC7. are available 
for the system 
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The generic software program to handle these devices is contained in the 
Section 3.4, /2C Bus Connection, explaining the 12C-Bus. 

5V 
,-I'-:.. 

Rp Rp 

TPO.xlPO.a SCL 

PO.b SDA 

SCL SDA 
DAC 

vmax 

DACx 
Vee Vss 

5V OV 

max.DAC 
Output Voltage 

Outputs To System 

Figure 3-12. 12C-Bus for Digital-ta-Analog Converter Connection 

3.6.4 PWM DAC With the Universal Tlmer/Port Module 

The two timers contained in the universal timer/port module can be used for 
one or two independent PWM generators. The ACLK frequency is used for the 
timing of these PWMs. The basic timer determines the period of the PWM sig­
nals.lts interruQt handler sets the programmed outputs and loads the two timer 
registers TPCNT2 and TPCNT1 with the negated pulse length values (see 
Table 3-5). The universal timer/port module terminates the pulses. Its interrupt 
handler resets the outputs when the counters, TPCNTx, overflow from OFFh 
to DOh. The length of one step is always l/ACLK, which is 30.51758 jJS if a 
32.768 kHz crystal is used. 

Table 3-5 shows the necessary basiC timer frequency, which is dependent on 
the PWM resolution used. 

Table 3-5. Resolution of the PWM-DAC 
Resolution Bits Resolution Steps Beale Timer Frequency 

8 256 128 
7 128 256 
6 64 512 
5 32 1024 
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Table 3-6 shows the values to be written into timer register TPCNT1 or 
TPCNT2 to get a certain PWM output value (related to Vee); It is the d~slred 
value subtracled from the resolution value. The PWM switch (a byte In RAM) 
determines If the output is enabled (1) or disabled (0). 

Table 3-6. Register Values for the PWM-DAC 
PWMOutput 

(Relative to Vee) 

0 
0.25 
0.50 
0.75 
1.00 

TPCNTx Value TPCNTx Value TPCNTx Value TPCNTx Value PWM 

i 

i 

256Step8 128 Steps 64 Steps 32 Steps SwItch 

x x x x 0 
eOh EOh FOh F8h 1 
80h eOh EOh FOh 1 
40h AOh DOh E8h 1 
OOh 80h eOh EOh 1 

Note: 

The interrupt latency time plays an important role for this kind of PWM gen­
eration. Real time programming is necessary. Therefore, the first instruction 
of each interrupt handler must be the EINT instruclion. 

i 

Example 3-9. PWM DAC With Timer/Port Module 

Two PWM outputs with 8-bit resolution are realized. To get the highest speed, 
TPO.2 and TPO.1 are used as outputs (they have the same bit addresses as 
the flags RC2FG and RC1 FG). The schematic is shown in Figure 3-13. The 
output ripple is shown in an exaggerated manner. If the PWM information is 
needed (as for DMC) then the signal at TPO.x is used directly. 

r---------PWM~ut 
~ I4-TUT 

H _-_ n. TPO.x PWM output 

TPO.1 .... -A.I'VIr--e-- DC OUtput ~~~ 
OV 

I I I I TUTXfBTxvCC 

~DCOutput. MSP430 

TPO.2 .... -A.I'VIr--e---1 
Buffered DC Output 

vce Vss I' 
ov 

5V OV '--------- PWM output 

Figure 3-13. PWM for the DAC 
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Figure 3-14 illustrates the counting of the 8-bit counter during the PWM gen­
eration. The interrupt handler ofthe basic timer sets the 8-blt counterto a nega­
tive number of counts (-01) and sets the output to high; the interrupt handler 
of the universal timer/port resets the output to zero when it overflows. 

if.-- 1/128 Hz ---.I 
OFFh ~~r---~--~r-------+---~--------~~~---

~put ~ ______ ~ __ ~~ ______ ~ __ ~ ________ ~ __ ~ __ _ 

I I 
Basic T. RCxFG Basic T. RCxFG BasIeT. 

StarIIPWM 

trCNTx .. 32718 Hz 
258 Steps RMoIuUon 
128 Hz Reps11110n FIala 

At1 .. n1/ACLK 

lei: Intenupt Latency and 
SW Exacuuon nme 
Interrupta Generated 

Figure 3-14. PWM Timing by the Universal Timer/Port Module and Basic Timer 
MSP430 Software for S bit PWM with Universal/Timer Port 

Definitions of the MSP430 hardware 

Type .equ 310 310: MSP43C31x 0: others 

BTCTL . equ 040h Basic Timer: Control Reg . 

BTCNTl .equ 046h Counter 

BTCNT2 .equ 047h Counter 

BTIE .equ OaOh Intrpt Enable 

SSEL .equ OaOh 

DlV .equ 020h BTCTL: xCLK/256 

IP2 .equ 004h BTCTL: Clock Divider2 

IP1 .equ 002h 

lPO .equ 001h Clock DividerO 

SCFQCTL .equ 052h FLL Control Register 

MOD .equ OaOh Modulation Bit: 1 = off 

CPUoff .equ 010h SR: CPU off bit 

GlE .equ OOSh SR: General Intrpt enable 
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AU 

TPCTL .equ 04Bh 

TPCNTl .equ 04Ch 

TPCNT2 .equ 04Dh 

TPD .equ 04Eh 

TPE .equ 04Fh 

TPl .equ 002h 

TP2 .equ 004h 

TP3 .equ OOBh 

TP4 .equ OlOh 

TPS .equ 020h 

.if Type-310 

TPIE .equ 004h 

.else 

TPIE .equ OOBh 

.endif 

IE2 .equ OOlh 

TPSSEL3 .equ OBOh 

TPSSEL2 .equ ·040h 

TPSSELl .equ OBOh 

TPSSELO .equ 040h 

ENB .equ 020h 

ENA .equ OlOh 

ENl .equ OOBh 

RC2FG .equ 004h 

RCIFG .equ 002h 

ENIFG .equ OOlh 

B16 .equ OBOh 

RAM Definitions 

SW_PWM .equ 0200h 

TIM...,PWMl .equ 0201h 

TIM_PWM2 .equ 0202h 

Timer Port: 

Bit address 

MSP430C31x? 

Control Reg. 

Counter Reg.Lo 

Counter Reg.Hi 

Data Reg. 

Enable Reg. 

TPO.l 

TPO.2 

TPO.3 

TPO.4 

TPO.S 

ADC: Intrpt Enable Bit 

MSP4 3 O'C3 2x conf igura tion 

Intrpt Enable Byte 

Selects clock input (TPCTL) 

Selects clock gate (TPCTL) 

Gate for TPCNTx (TPCTL) 

Carry of HI counter (TPCTL) 

Carry of LO counter (TPCTL) 

End of Conversion Flag " 

Use l6-bit counter (TPD) 

Enable bits for TPO.2 and TPO.l 

Calc. PWM result PWMl 

Calc. PWM result PWM2 

i-======================================================== 
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.sect "INIT",OFOOOh 

INIT MOV #0300h,SP 

MOV.B #IP2+IPl+IPO,&BTCTL 

MOV.B #TPSSELO+ENA,&TPCTL 

CLR.B &TPCNTI 

CLR.B &TPCNT2 

CLR.B &TPD 

MOV.B #TPSSEL2+TP2+TPl,&TPE 

BIS.B #TPIE+BTIE,&IE2 

CLR.B SW_PWM 

BIC.B #RC2FG+RC1FG,&TPCTL 

EINT 

Oigital-to-Analog Converters 

Initialization Section 

Initialize Stack Pointer 

Basic Timer 12BHz 

ACLK, EN1~1, TPCNT1 

Clear PWM regs 

output Data = Low 

TPCNT2: ACLK 

INTRPTS on 

No PWM output 

Reset flags 

Continue with SW 

Start both PWMs: calculation results in R6 and R5 

MOV.B 

MOV.B 

BIS.B 

R6,TIM....PWM1 

R5,TIM_PWM2 

np2+TP1, SW_PWM 

Disable PWM2: Output zero 

BIC.B 

(256 - resultl) 

(256 - result2) 

Enable PWM2 and PWMI 

Continue 

Disable PWM2 

Interrupt Handler for the Basic Timer Interrupt: 128Hz 

BIC.B 

MOV.B 

MOV.B 

BIS.B 

RETI 

#RC2FG+RC1FG,&TPCTL 

TIM....PWM2,&TPCNT2 

TIM_PWMl,&TPCNTl 

SW_PWM,&TPD 

Clear flags 

(256 - time2) 

(256 - timel) 

Switch on enabled PWMs 
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; End of Basic Timer Handler 

i----------------------------------------------------------
Interrupt Handler for the Universal Timer/Port Module 

For max. speed TPO.2 and TP"Q.I are used (same bit locations 

as RC2FG and RCIFG). If other locations are used, RLA 

instructions have to be inserted after the flag clearing 

UT_HNDL PUSH.B 

AND 

BIC.B 

BIC.B 

RETI 

&TPCTL 

#RC2FG+RCIFG,O{SP) 

@SP,&TPCTL 

@SP+,&TPD 

INTRPT from where? 

Isolate flags 

Clear set flag{s) 

Reset actual I/O{S) 

End of Universal Timer/Port Module Handler 

;----------------------------------------------------------

. sect "INT_VECT",OFFE2h 

. WORD BT_INT Basic Timer Vector 

.if Type=310 

. sect "INT_VECI",OFFEAh MSP430C3lx 

.else 

.sect "INT_VECI",OFFEBh Others 

.endif 

. WORD UT_HNDL UTP Vector (3lx) 

. sect "INT_VEC2",OFFFEh 

. WORD INIT ; Reset Vector 

Example 3-10. PWM Outputs With 7-Bit Resolution 
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Two PWM outputs with 7-bit resolution are realized. TPO.4 and TPO.3 are used 
as PWM outputs (this makes shifting necessary). The schematic is shown in 
Figure 3-15. Due to the inverting filters at the PWM outputs, the outputs of the 
MSP430 are also Inverted to compensate for this. The output ripple is shown 



Diqital-to-Analog Converters 

in an exaggerated manner. If the PWM information is needed (as for DMC) 
then the signal at TPO.x can be used directly. 

-ill /f-TUT 

TPO.3 t-'\I'V\r-....... -...... 

v=--v- TPO.x PWM Output 

~1/faT~ 

MSP430 

DC Output I I I I TUTXfBTXVCC 

~DCOUlput 
TPO.4 .... "IN'v-<I>-'V'.,!\.,-4H 

VCC Vss 

5V OV 

DC Output 

OV O.5VCC 

PWMOutput 

Figure 3-15. PWM for DAC 

Figure 3-16 illustrates the operation of the B-bit counter during the PWM gen­
eration. The interrupt handler of the basic timer sets the B-bit counter to the 
negative number of counts (-n1) and resets the output to low; the interrupt 
handler of the universal timer/port sets the output to high when it overflows. 
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TPCNTx ii 
~ 11258 Hz ---.t 

~h~------~--~~-------4--~~----­
~1 ~--------~~~~--------~~~~-----

Oh~~------~--~~~-----+----~~----

Basic T. RCxFG Basic T. RCxfG 

trCNTx .. 32788 Hz 
11m ~ Resolution 
258 Hz RapatItIon Rate 

.1.11 = n1/ACLK 

Id: Interrupt Latency and 
SW ExecutIOn Time 

Interrupla 

Figure 3-16. PWM Timing by Universal Timer/Port Module and Basic Timer 
MSP430 Software for 7 bit PWM with Universal/Timer Port 

Definitions of the MSP430 hardware like above 

INIT 

Start 

3-40 

. sect "INIT",OFOOOh 

MOV #0300h,SP 

MOV.B HP2+IP1, &BTCTL Basic 

MOV.B #TPSSELO+ENA,&TPCTL 

CLR.B &TPCNTl 

CLR.B &TPCNT2 

BIS.B #TP4+TP3,&TPD 

MOV.B #TPSSEL2+TP2+TP1,&TPE 

BtS.B #TPIE+BTIE,&IE2 

CLR.B SW_PWM 

BIC.B #RC2FG+RC1FG,&TPCTL 

EINT 

both PWMs: Calculation results in 

MOV.B 

BIS.B 

MOV.B 

BIS.B 

R6,TIM_PWM1 

#TP3,SW_PWM 

R5,TIM_PWM2 

#TP4,SW_PWM 

Initialization Section 

; Initialize SP 

Timer 256Hz 

R6 

ACLK, EN1-1, TPCNT1 

Clear PWM regs 

output Data -

TPCNT2: ACLK 

INTRPTS on 

No output 

Clear flags 

and R5 

(128 - result) 

Enable PWMl 

(128 - result) 

Enable PWM2 

high 
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Disable PWMs: Output is zero 

BIC.B No output 

Interrupt Handler for the Basic Timer Interrupt: 256Hz 

The enabled PWMs are switched on 

BIC.B 

MOY.B 

MOY.B 

BIC.B 

RETI 

#RC2FG+RC1FG,&TPCTL 

TIM_PWM2,&TPCNT2 

TIM_PWM1,&TPCNTl 

SW_PWM,&TPD 

End of Basic Timer Handler 

Clear flags 

(128 - time2) 

(128 - timel) 

Switch on enabled PWMs 

;----------------------------------------------------------
Interrupt Handler for the UT/PM. The PWM-channel that 

caused the interrupt is switched off. 

UT_HNDL PUSH R6 

MOY.B &TPCTL,R6 

AND #RC2FG+RC1FG,R6 

BIC.B R6,&TPCTL 

RLA R6 

RLA R6 

BIS.B R6,&TPD 

POP R6 

RET I 

End of Universal Timer/Port Module Handler 

Save R6 

INTRPT from where? 

Isolate flags 

Clear set flag(s) 

To TPO. 4/TPO. 3 

Set actual I/O(s) 

Restore R6 

;----------------------------------------------------------
; Vectors like with the example before 

Hardware Applications 3-41 



Digital-to-;Ana/og Converte'!.." 

3.6.5 PWM DAC With the Tlmer_A 

Timer_A of the MSP430 family is ideally suited for the generation of PWM sig­
nals. The output unit of each one of the (up to five) capture/compare registers 
is able to generate seven different output modes. The PWM generation de­
pends mainly on which mode of the Timer_A was used. 

o Continuous Mode: the timer register runs continuously upwards and rolls 
over to zero after the value OFFFFh. The capture/compare register 0 is 
used like the other capture/compare registers. This mode allows up to five 
independent timings. The continuous mode is not intended for PWM ap­
plications. But, it can be used for relatively slow PWM applications, if other 
timings are also needed. Interrupt is used for the setting and the resetting 
of the PWM output. The output unit controls the PWM output and the inter­
rupt handler adds the next time interval to the capture/compare register 
and modifies the mode of the output unit (set, toggle, or reset). 

o Up Mode: The timer register counts up to the content of capture/compare 
register 0 (here the period register) and restarts at zero when it reaches 
this value The capture/compare register 0 contains the period Information 
for all other capture/compare registers. 

o Up-Down Mode: The timer register counts up to the content of capture/ 
compare register 0 (here the period register) and counts down to zero 
when it reaches this value. When zero is reached again, the timer register 
counts up again. capture/compare register 0 contains the period informa­
tion for all other capture/compare registers. 

All three modes are explained in detail In the Section 6.3, Timer_A. Software 
program examples are also given. If dc output is needed, the same output fil­
ters can be used as shown in the previous section. The only difference is the 
possible speed of the Timer~ (input frequency can be up to the MCLK fre­
quency). 

3.6.5.1 PWM DAC With T/mer_A Running In Continuous Mode 
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Up to five completely different PWM generations are possible. If the limer 
Register equals one of the four capture/compare latches (programmed to 
compare mode), the hardware task programmed to the output unit is per­
formed (set, reset, toggle etc.) and an interrupt is requested. Figure 3-17 illus­
trates the generation of a PWM Signal with the capture/compare registers O. 
The interrupt handler is reSpOnsible for the following tasks: 

o The time difference (represented by the clock count nx) to the next inter­
rupt Is added to the used capture/compare register by software: once AtO, 
onceAt1 
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o The output unit is programmed to the appropriate mode: set TAO if at1 is 
added, reset TAO if atO is added. 

o Other tasks if necessary 

Note: 

The continuous mode is not the normal mode for PWM generation due to the 
software overhead that is necessary. It is used for this purpose only if other 
independent timings are necessary that cannot be realized with the up mode 
or the up-down mode. 

O~h ~------------------~~------------------~-------

n1 
nO 
Oh~~~~--~~----+-~~~~----+-~--~~--~~~ 

Interrupt Events: 
Example EQUO 

EQUO Interrupte 

Add to To CCRO 
Set Output Unit To Reeet 

Add t1 To CCRO 
Set Output UnIt To Set 

Figure 3-17. PWM Generation with Continuous Mode 

3.6.5.2 PWM DAC With Tlmer_A Running In Up Mode 

Up to four different PWM generations with an equal period (repetition rate) are 
possible. If the timer register equals one of the four capture/compare latches 
(programmed to compare mode), the hardware task programmed to the output 
unit is performed (set, reset, toggle etc.) and an interrupt is requested. During 
the execution of the interrupt handler, the necessary software task is com­
pleted. No reloading of the capture/compare register is necessary except if the 
pulse width changes. If the timer register reaches the programmed value of the 
capture/compare register 0, then it is reset to zero and restarts there. Figure 
3-18 illustrates the generation of two independent PWM signals with the cap­
ture/compare registers 1 and 2. 
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CCROr---------~~----------~--------

CCR1 r-----~~--_r----~~--_+------~ 

CCR2~~----~--_r~~--~--_+~~---­

~~~----~--~~~---+--~~~-----
TA1 Output (CCR1): 
Output Mode 2: PWM TogglelReset or 

I-+--..... of---+....I.--+--+-~- Output Mode 3: PWM Set/Reset 

TA2 Output (CCR2): 
Output Mode 6: PWM Toggle/Set or ........... ,-.--+---J--..f.,--... --+--f-, - Output Mode 7: PWM Re88t1Set 

EQU2 EQU2 EQU2 
EQUO EQU1 EQUO EQU1 EQUO Interrupt Generated 

Figure 3-18. PWM Generation With Up Mode 

3.6.5.3 PWAf..DAC With Tlmer_A Running In Up-Down Mode 
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Up to four different PWM generations with an equal period are possible. If the 
timer register equals one of the four capture/compare latches (programmed 

. to compare mode), the hardware task programmed to the output unit is per­
formed (set, reset, toggle etc.) and an Interrupt is requested. During the inter­
rupt handler, the necessary software task Is completed. No reloading of the 
capture/compare register is necessary except If the pulse width changes. The 
timer register continues to count upward until the value of capture/compare 
register 0 is reached. Then it counts downward to zero. When it reaches the 
value of a capture/compare register, the programmed task is made by the out­
put unit and an interrupt is requested again. When zero is reached, the se­
quence restarts. This way, symmetric PWM generation is possible. The value 
of the capture/compare register is reached twice for each up-down cycle. Fig­
ure 3-19 illustrates the generation of two independent PWM signals with the 
capture/compare registers 1 and 3. 
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OFFFFh 
CCRO 1-----7Ir--------;.k------

CCR1 ~-~~~-----~~~----

Oh~~-4-+4-~~-+--+_r+-4-~~~ 
TAa output (CCRa): I I 
Output Mode 8: PWM TogglelSet or 

t-~--r-irt_f-"1""-f_-;--;-t_+_- Output Mode 4: Toggle 

TA1 Output (CCR1): 
Output Mode 6: PWM Toggle/Set or 

I---+-~r,-+-t-_+_-t_-++_ ...... +_- Output Mode 4: PWM Toggle 

Interrupt Generated 
TIMOV eQU3 I EQuol EQU3 TIMOV EQoo I Eauol EQU3 

EQUl EQUl EQUl EQUl 

Figure 3-19. PWM Generation with Up-Down Mode 

3.7 Connection of Large External Memories 

For a lot of MSP430 applications, it is necessary to be able to store large 
amounts of measured data. For this purpose external memories can be used: 

o Dynamic RAMs like the TMS44460 (1 M x 4 bits) 
o Synchronous Dynamic RAMs like the TMS626402 (2M x 4 bits) 
o Flash memories like the TMS28F512A (512K x 8-bits) 
o EEPROMs 

DRAM versions with a self-refresh featllre are recommended, otherwise the 
necessary refresh cycles would waste too much of the processing time. 

Figure 3-20 shows the simplest way to control external memory. The unused 
LCD segment lines are used for addressing and control of the external 
memory. Four bidirectional 110 lines of port 0 (or another available port) are 
used for the bidirectional exchange of data. The necessary steps to read from 
or write to the example TMS44460 DRAM memory are: 

1) Output row address to address lines A9 to AO 
2) Set the RAS control line low 
3) Output column address to address lines A9 to AO 
4) Set CAS control lines low and reset them back to high 
5) If a read is desired, set OE low and W control lines high. Then read data 

from 004 to 001. 
6) If a write is desired, set OE high, set W low, and then write the data to 004 

to 001. 
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The proposal shown in Figure 3-20 needs approximately 200 MCLK cycles 
for each block of 4-bit nibbles when the O-output lines are used. 

Control 
OE TPO.x10 

TPO.x113 VI 
TPO.xte CA~AS1 

TPO.x113 RAS 
x 

012~21 
10 Address 

A9-A0 

4 Data 
DQ4-DQ1 PO.z 

Figure 3-20. External Memory Control With MSP430 Ports 

Example 3-11. External Memory Connected to the Outputs 

N .EQU 

For the circuit shown in Figure 3-20, the 10 address lines of an external 
memory are connected to the O-outputs, 012 (LSB) to 021 (MSB). The sub­
routine 0 _HNDLR is used for the row and column addressing. The driver soft­
ware and the subroutine call follows: 

10/2 10 O-outputs are controlled (013 to 04) 

O_STRT .EQU 037h Control byte for 012 and 013 (1st byte) 

MOV #03FFh,R5 Start with row addressing 

CALL #O_HNDLR 

output @RAS signal 

MOV R9,R5 Column address in R9 

CALL #O_HNDLR Output column address 

Output @CAS signals 

Subroutine outputs address info in RS to O-outputs 

Bit 0 is written to the MSB of the O-outputs. RS is destroyed 

Execution time: 69 cycles for 8 O-outputs (including CALL) 
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129 cycles for 16 o-outputs (like above) 

R6 

RS,R4 

Clear counter 

Copy actual info 



AND 

MOV.B 

RRA 

RRA 

INC 

CMP 

JNZ 

RET 

#3,R4 

TAB(R4),0_STRT(R6) 

RS 

RS 

R6 

#N,R6 

O_HN 

Connection of Large Extemal Memories 

Isolate next two address bits 

Write address bits 

Prepare next two address bits 

Increment counter 

Through? 

No, next two bits 

Table contains bit pattern used for the O-outputs 

TAB . BYTE O,OFh,OFOh,OFFh . ; Patterns 00, 01, 10, 11 

Figure 3-21 gives an example to use when the LCD segment lines are not 
available. Two 8-bit shift registers are used for addressing and control of the 
external memory. Four bidirectional VO lines of port 0 (or another available 
port) are used for the exchange of data. Instead of outputting the address and 
control signals in parallel, this solution's signals are output in series. The out­
put enable signals G2 and G1 are used to omit bad signals that are due to the 
shifting ofthe information. The example shown in Figure 3-21 needs approxi­
mately 500 cycles for each block of 4-bit nibbles. 

COM -" ~S6'.B SEL -./ _Em 
Control 

TPO.xlO S1 F OE 
TPO.xI& so E ~ W 
TPO.xI(jI G2-G1 D CAS4-CAS1 
TPO.xI& CLK C RAS 

MSP430X SR B-A A9-A8 

TMS44460 

~ 
QH' 

Serial Date In S1 
TPO.xlO 

4 

II 
SO Addrese 

PO.1i ~ G2-G1 H-A A7-AO 
CLK 

IrDQ~1 SR 

Date 

Figure 3-21. External Memory Control With Shift Registers 

With nearly the same two hardware solutions, other external memories can be 
controlled also. 
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o Synchronous Dynamic RAM (TMS626402 2M x 4 bits) with 12 address 
lines and 6 control lines. Rowand column addressing is used. It also uses 
4 data bits. 

o Flash memory (TMS28F512A 512K x 8-bit) with 16 address lines and 
3 control lines. Direct addressing is used. It also uses 8 data bits. 

Any combination of unused outputs (port, TPO.x, Oy) and·shift registers can 
be used. If DRAMs without self-refresh are used, the low address bits should 
be controlled by a complete port (port 1 ,2, 3, or 4) to get minimum overhead 
for the refresh task. 

The different versions of the MSP43OC33x allow a much simpler and faster 
solution because of the five available I/O ports. Figure 3-22 illustrates the con­
nection of an AT29LV01 OA EEPROM (128K x 8 bit) to the MSP430C33x. The 
example shown in Figure 3-22 needs approximately 30 to 50 MCLK cycles for 
each byte read or written. The control lines at the MSP430 are II0s with no se­
cond function. All the peripheral functions are available and can be used freely. 
The MSP30C31 x and 32x can address this type of memory by its TPO.x and 
Ox ports. 

COM -" 'iS6 .B'iS61B SEL -,/ _am 
Control P3.o OE 

P3.1 W 
P4.i CE 
P4.0 Ai6 

MSP430C33x AT29LVOi0A 
8 Address 

Ai5-A7 PO 
8 Address 

A7-AO P2 , 
Pi 

8 Data U07-1100 

Figure 3-22. EEPROM Control With Direct Addressing by 110 Ports 
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Figure 3-23.shows the use of an MSP430C33x for the addressing of an exter­
na11-MB RAM. The actual address of the external memory is stored in I/O 
Ports PO, P2, and P4. The special architecture of the MSP430 allows this 
method to be used. This method results in the fastest possible access time. 
The software used for addressing and reading of the next byte is in the follow­
ing text (this assumes that the address ports are initialized). 

') 



L$l 

INC.B 

JNC 

ADC.B 

MOV.B 

MOV.B 

MOV.B 

MOV.B 

&P20UT 

L$l 

&POOUT 

&PlIN, RlS 

Connection of Large External Memories 

Address next Byte 

No carry to AlS .. AS 

Carry to AlS .. AS 

Read data at Portl 

Cycles 

4 

2 

The reading of a byte needs (4 + 2 + 3) = 9 cycles. An MCLK frequency of 3.8 
MHz results in a read time of 2.371JS. This access time can be compared with 
the internal access time of an 8-bit microcomputer. The initialization of a 64-KB 
memory block is shown in the following text (memory block 1). 

#O,&P20UT 

#O,&POOUT 

#CSl+WE,&P40UT 

COM ~ 
SEL roI 

P4.5 
P4.4 

MSP430C33x 

PO 

P2 

Pi 

P4.0 -
P4.1 -
P4.2 -
P4.3 -

--tS6 

A7 •. AD = 00 

AlS .. AS = 00 

Address memory block1 

.B--tS61B __ 0 

Control 
OE 
WE 

Memory 0 
64kx8Blt 

8 Addre .. 
A15-A8 

8 Addre .. 
A7-AO , 

8 Data 
I/07-VOO 

r CE 

r-. CE Memory 1 
Decoder R CEMemory2 
~ CEMemory3 

12 CE Memory 4 to 15 

Cycles 

4 

4 

Figure 3-23. Addressing of 1-MB RAM With the MSP430C33x 

Figure 3-24 shows how to address an external 1-MB RAM with an 
MSP430C31 x. The actual address olthe external memory (stored in the inter­
nal RAM) is output with the O-outputs (alternative use of the select lines) and 
the 6 TP ports. The software for addressing and reading of the next bytes is 
given in the following text (the address ports are initialized). 
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INC.B 

JNC 

ADC.B 

Address A1S to AB is output to 017 to 010. 

Address next byte 

No carry to A1S .. AB 

Carry to A1S .. AB 

This part is necessary for only 0.4% of all accesses 

MOV.B 

MOV 

AND 

MOV.B 

RRA 

RRA· 

MOV 

AND 

. A1S_B,R14 

R14,R1S 

#3,R15 

TAB(R15),&036h 

R14 

R14 

R14, R15 

#3,R15 

A1S .. B -> R14 

Next 2 address bits 

A9 .. B to 011 .. 10 

Next 2 address bits 

Address A7 .. 6 aso. 

4 x the same A15.;6 

Address bits A7 to AO output to TP-Port and 027/26 

L$l 

TAB 

3-50 

MOV.B 

MOV.B 

AND 

MOV.B 

MOV.B 

.BYTE 

A7_0,&TPD 

A7_0,R1S 

#3,R15 

TAB(R15),&LCDx 

&POIN,R15 

0, OFh, OFOh, OFFh 

A7 .. A2 to TP-Port 

A!. .AD generated 

A!. .AO in R1S 

Al .. AO to 027 and 026 

Read data at PortO 

Process data 

For O-outputs 

Cycles 

4 

2 

4 

3 

1 

2 

6 

1 

1 

1 

2 

36 

6 

3 

2 

6 

3 



Connection of Large External Memories 

The reading of one byte needs 26 cycles (addresses A 15 - AS are unchanged) 
or 83 cycles when A 15 - AS must be changed. An MCLK frequency of 3.8 MHz 
results in 6.9 J1S or 21.S J1S for one byte, respectively. 

The decoding of the 64-KB memory blocks is made with a normal4-to-16 line 
decoder. 

COM P 156 .B SEL __ 0 

07 
Control 

OE 
08 WE 

MSP430C31x 
Memory 0 

64 kx 8 Bit 

8 Addre88 
A15-A8 017/10 

~ 027/26 Addre88. 
A7-A0 

TPO.IHI 
8 Date 

PO 1/07-1/00 

09 - TP CE 

023 - ~. CE Memory 1 
022 - Decoder R CEMemory2 
018 - CE Memory 3 

~ CE Memory 4 to 15 

Figure 3-24. Addressing of 1-MB RAM With the MSP430C31x 
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3.8 Power Supplies for MSP430 Systems 

There are various ways to generate the supply voltage(s) for the MSP430 sys­
tems. Due to the extremely low-power consumption ofthe MSP430 family, this 
is possible with batteries, accumulators, the M-Bus, fiber-optic lines, and ac. 
Every method uses completely different hardware and is explained in depth. 
Wherever possible, the formulas necessary for the hardware design are given 
too. 

3.8.1 Battery-Power Systems 

3-52 

Due to the extremely low current consumption of the MSP430 family it is pos­
sible to run an MSP430 system with a O.5-Ah battery more than 10 years. This 
makes possible applications that were impossible before. To reach such ex­
tended time spans, it is only necessary to observe some simple rules. The 
most important one is to always switch off the CPU when its not needed (e.g., 
after the calculations are completed). This reduces the current consumption 
from an operational low of 400 !.IA down to 1.6 !.IA. 

The Figures 3-25 and 3-26 are drawn in a way that makes it easier to see how 
the battery needs to be connected to get the highest accuracy out of the ADC. 

Figure 3-25 illustrates the MSP430C32x with its separated digital and analog 
supply terminals. This provides a separation of the nOise-generating digitai 
parts and the noise-sensitive analog parts. 

Figure 3-26 shows how to best separate the two parts for the MSP430 family 
members with common supply terminals for the analog and digital parts of the 
chip. 

If the battery used has a high internal resistance, RI, (like some long-life batter­
ies) then the parallel capacitor Cch muSt have a minimum capacity. The supply 
current for the measurement part (which cannot be delivered by the battery) 
is delivered via CCh. The equation includes the small current coming from the 
battery. 

( lAM 1 ) echmin ~ tmeas x IN - if 
ch I 

Between two. measurements, the capacitor Cch needs time, tch, to get 
charged-up to Vee for the next measurement. During this charge-up time, the 
MSP430 system runs in low-power mode 3 to have the lowest possible power 
consumption. The charge-up time, tch, to charge Cch to 99% of Vee is: 



RV 

Where: 
lAM 
tmeas 
tNch 
RI 

Power Supplies for MSP430 Systems 

Medium system current (MSP430 and peripherals) 
Discharge time of Cch during measurement 
Tolerable discharge of Cch during time tmeas 
Internal resistance of the battery 

(A) 
(s) 
(V) 
(0) 

COM 
SEL 2.3. 'i. 123'iS61.B ._0 

Rext 

e-------IAf 
MSP430C323 

To Other 
Analog Parts AGND 

AO PO.x, TPO.y 1+----+ 1108 

o V ...---It-.. 3 V 

To Other 
Digital Parts 

Figure 3-25. Battery-Power MSP430C32x System 
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RREF COM 2.3. t.t. 12:3t.f:S6 TDP.O 

SEL 
RMEAS1 

TPO.1 

__ m 
RMEAS2 

MSP430C31x 
TPO.2 

po.x, TPO.y 1108 
crN 

C1 Vss Vee 

To Other 
To Other ! system Parts 

System Pans OV 
AGND 

Figure 3-26. Battery-Power MSP430C31x System 

, 

Note: 

The way the battery is connected to the MSP430 (shown in Figures 3-25 and 
3-26) is not restricted to battery-driven MSP430 systems. The decoupling 
of the analog and the digital parts is necessary for all methods of supplied 
power. The following schematics are drawn in a simpler way to give better 
readability. 

3.8.2 Accumulator-Driven Systems 

The MSP430 can also be supplied from an accumulator. An advantage of this 
solution is thatthe MSP430 can also take over the battery management for the 
accumulator. 

o Current Measurement: Summing up of the charge and discharge currents. 
If these currents (measured with Sign) are multiplied with constants that 
are unique for the accumulator type used (e.g. NiCd,Pb) then it is possible 
to have a relatively accurate value for the actual charge. The current is 
measured with a shunt. The measured voltage drop is shifted into the 
middle of the ADC range by the current Ics (generated by the MSP430's 
internal current source) that flows through Rc. This method allows signed 
current measurements. 
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o Temperature Measurement: All of the internal processes of an accumula­
tor (e.g., maximum charge, self discharge) are strongly dependent on the 
temperature of the pack. Therefore, the temperature of the pack is mea­
sured with a sensor and used afterwards with the calculations. When the 
MSP430's current source is used, the voltage drop of its current Ics across 
the sensor resistance is measured with the ADC input A2. 

o Voltage Measurement: The voltage of an accumulator pack is an indica­
tion of the states full charge and complete discharge. Therefore, the volt­
age of the pack is measured with the voltage divider consisting of R1 and 
R2. 

o Charge Control: Dependent on the result of the charge calculations, the 
MSP430 can decide if the charge transistor needs to be switched on or off. 
This decision can also be made in PWM (Pulse Width Modulation) mode. 
Figure 3-27 shows three possible charge modes. If replaceable accumu­
lators are used, the charge control is not needed. 

o Rest Mode Handling: During periods of non-use, the low power mode 3 
of the MSP430 allows the control of the rest mode. The rest mode has 
nearly· no current consumption. In fact, the supply current has the same 
magnitude as the self-discharge current of the accumulator. All system pe­
ripheralsare switched off; the MSP430 wakes-up at regular intervals, 
which are controlled by its basic timer. It then calculates, every few hours, 
the amount of self discharge of the accumulator. This calculated value is 
subtracted from the actual charge level. 

Figure 3-27 illustrates an MSP430 system driven by an accumulator. The bat­
tery management is done by the MSP430 also. The hardware needed is sim­
ple. As shown in the figure, just a few resistors and a temperature sensor. The 
actual charge of the accumulator is indicated in the LCD with a bar graph rang­
ing from Empty to Full. 

All necessary constants and a security copy ofthe actual charge are contained 
in an external EEPROM typically with 128 x 8 bits. 
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I'romSyatem ~ 

,----., 
I Keyboard ~ 
L ___ .J 

RCV 

TXD 

Note: 

The hardware shown In Figure 3-27 can also be used for an intelligent accu­
mulator controller. Only the hardware necessary for this task is shown. The 
measurement parts for voltage, current, and temperature are exactly the 
same as shown. 

COM =:> 123'-1561.8 -~ SEL 

PO.x --------sVcc -
.ICS 

PO.y 
Rex 1 To System +5 V 

Rext - I Voltage I 
VCC I Regulator I ± 

ToChe 
PO.l 

PO.2 A2 
Temp8l'lJture Ia.. 

~ T Accul 
R1 --: I 

VOltage 

rger 

AI ..l I CLK 
PO.3 Currant 

EEPROM "' 
AO 

~ 0818 PO.4 He 
ShUnt 

MSP430C32X A2 

TPO.O 

~ Vss OV 

VTPO. I L-+ 
Full Charge PWM Charge Trlckle Mode TIme 

Figure 3-27. Accumulator-Driven MSP430 System With Battery Management 

3.8.3 AC-Drlven Systems 
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The current consumption of microcomputer systems gets more and more im­
portant for ac-driven systems. The lower the power consumption of a micro­
computer system, the simpler and cheaper the power supply can be 
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3.8.3.1 Transformer Power Supplies 

. Transformers have two big advantages: 

o Complete isolation from ac. This is an important security attribute for most 
systems. 

o Very good adaptation to the needed supply voltage. This results in a good 
power efficiency. 

Most ac-driven applications are only possible because of the isolation from the 
ac the transformer provides. 

Half-Wave Rectification 

t 
VCH 

Half-wave rectification uses only one half-wave of the transformer's secondary 
voltage, VSEC, for the powering of an application. Figure 3-28 illustrates the 
voltages used with the equations. 

~- ---1-
H:.....,r--~-~-----~......,H--I---+ Vsec x-12 = Vchmax 

Vce .. i4---- tcils -----lit I 
~~---- T ----~~ 

Figure 3-28. Voltages and Timing for the Half-Wave Rectification 

o Advantages 

• Simplified hardware 
• Rectification with the voltage drop of only one diode 

o Disadvantages 

• Charge capacitor, CCH, must have doubled capacity compared to full­
wave rectification 

• Higher ripple on the dc supply voltage 
• DC flows through the transformer's secondary winding 

Figure 3-29 shows the most simple ac driven power supply. The positive half­
wave of the transformer's secondary side charges the load capacitor, CCH •. 
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The capacitor's voltage Is stabilized with a Zener diode having a Zener voltage 
equal to the necessary supply voltage V cc of the MSP430. 

Two conditions must be met before a final calculation is possible: 

VSECmin x /2 - hVch > Vz 

and: 

T VSECmin x /2 - hVch - Vz 
2 x Cchmin < Rv < IAMmax . 

The charge capacitor, CCH, must have a minimum capacity: 

( I) C . >Ix ...L+ AM 
chmm-2 RV V x/2-v SECmln z 

The peak-to-peak ripple voltage VN(PP), of the supply voltage, VCC, is: 

V 
CC II Rz 

lAM 
Vnpp .. -.!..!7;v---

Rv + -I C_C II Rz 
AM 

The final necessary secondary voltage, VSEC, ofthe ac transformer is (a V CH 
= O.1xVCHmax): 

Where: 
lAM 
T 
aVch 
Vee 
Vz 
Rz 
Rv 
Vsec 

1 [ 0.45 x T x lAM 1 
VSECmin ~ /2 x _ 0.45xT + Vz 

Cchmln Rv 

Medium system current (MSP430 and peripherals) 
Period of the ac frequency 
Discharge of Cch during time tdis 
Supply voltage of the MSP430 system 
Voltage of the Zener diode 
Differential resistance of the Zener diode 
Resistancg of the series resistor 
Secondary (effective) voltage of the transformer 
(full load conditions) 

[A] 
[s] . 

M 
M 
M 
[AV/aA] 
[0] 

M 



Power Supplies for MSP430 Sy~tems 

Nonreguleted Voltage 

To Peripherals 

RV 

DZ CCH 

OV Vss 

Figure 3-29. Half-Wave Rectification With 1 Voltage and a Zener Diode 

Figure 3-30 shows a simplified power supply that uses a voltage regulator like 
the JlA78L05. The charge capacitor, Cch, must have a minimum capacity: 

lAM x tdis 
Cchmin ~ IN 

ch 

The peak-to-peak ripple VN(PP) on the output voltage Vreg depends on the 
used voltage regulator. The regulators ripple rejection value can be seen in its 
specification. The necessary secondary voltage Vsec of the ac transformer 
under full load conditions is: 

The discharge time tdis used with the previous equations is: 

( 
AV ) arcos 1 _ ch 

. VSEC x./2 
1 - 2n 

Where: 
tdis Discharge time of Cch [s] 
V d Voltage drop of one rectifier diode M 
Vr Dropout voltage (voltage difference between output 

and input) of the voltage regulator for function M 
Vreg Nominal output voltage of the voltage regulator M 
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For first estimations the value of·tdis is calculated for two different discharge 
values: 

o 10% discharge of Cch during tdis 
o 30% discharge of Cch during tdis 

Nonragulated voltage 

tdis = O.93T 
tdis = O.88T 

To Perlpherala 

Figure 3-30. Half-Wave Rectification With One Voltage and a Voitage Regulator 
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Figure 3-31 shows an MSP430 system that uses two supply voltages: +5 V 
and -5 V. The negative supply voltage is used for analog interfaces. Simple 
resistor dividers interface the 10-V analog part into the 5 V range of the 
MSP430. The formulas for the calculation of the charge capacitor, Cch, and 
the necessary secondary voltage, Vsec, are the. same as shown for the circuit­
ry in Figure 3-30. The same circuitry can be used for a system with +2.5 V and 
-2.5 V (see Figure 3-37 for more details). 
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To Peripherals 

VREG 
~~---+~----------"~Vcc 

lAM -7"0<"-- 5V 'b 2.5V 
-- OV 

A1 
MSP430 

~----~~~-----.e--4~----__ --~~~'-;VSS 
OV~ __ --, 

CcH 

1-+----+--*----+ -a V To System 
--~...-- 5V 
-r--I--'- 0 V 
--""-- -a V 

Input 

Figure 3-31. Half-Wave Rectification With Two Voltages and Two Voltage Regulators 

Full-Wave Rectification 

Full-wave rectification uses both half-waves of the secondary voltage, Vsec, 
for the powering of the application. 

i~1 ~lH __ ---f' 
VCH 1 - _I 

1 I Vsec x .J2 = VChrnax 

I 1 I! 

VCC IiII tI tdls I 
14 T ~I 

Figure 3-32. Voltages and Timing for Full-Wave Rectification 

o Advantages 

• Smaller charge capacitor Cch 
• Lower ripple voltage 
• No dc current through transformer's secondary winding 

o Disadvantages 

• Four diodes or a transformer with center tap is necessary 
• Voltage drop of two diodes in series (except with a transformer having 

a center tap) 
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Figure 3-33 shows a simple power supply that uses a !1A78L05 voltage regu­
lator. The charge capacitor, Cch, must have a minimum capacity: 

lAM x 'dis 
Cchmin ~ AV 

ch 

The peak-to-peak ripple, Vnpp, on the voltage, Vcc, depends on the voltage 
regulator used. The ripple rejection value can be seen in the voltage regulator 
specification. The necessary secondary voltage, Vsec, of the ac transformer 
is for the upper rectifier with four diodes (full load conditions): 

1 ( lAM ) VSECmin ~ r;; x Vreg + Vr + 2 x Vd + 'dis x -C--
,,2 chmin 

For the center tap transformer, Vd, in the previous equation is multiplied by one 
(1 x Vd). The discharge time tdis used with the previous equations is: 

'dis = T x 

For first estimations the value of tdis is calculated for two different discharge 
values: . 

o 10% discharge of Cch during tdis 
o 30% discharge of Cch during tdis 

Nonregulated Voltage 

tdis = O.43T 
tdis = 0.38T 

To Peripherals 

Figure 3-33. Full Wave Rectification for one Voitage with a Voitage Regulator 
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Figure 3-34 shows an MSP430 system that uses two supply voltages: 
+2.5 V and -2.5 V. The formulas for the calculation of the charge capacitor, 
Cch, and the necessary secondary voltage, Vsec, are the same as given for 
the circuitry in Figure 3-33. The circuitry of Figure 3-34 can also be used for 
a system with +5-V and -5-V supply (see Figure 3-31 for more details). 

Also shown, is how to connect a TRIAC used for ac motor control. The relative­
ly high gate current needed is taken from the non-regulated positive voltage. 
This reduces the noise within the regulated MSP430 supply. The current flow­
ing through the motor is measured with the ADC for control purposes. The 
ADC result for D V (measured at AD) is subtracted from the current ADC value 
and results in a signed, offset-corrected value. If a single supply voltage is 
used (+5V only), the current source can be used to shift the signed current in­
formation into the range of the ADC. See Figure 3-27 for the current measure­
ment circuit. 

To Perlpher-ra.;;.ls __ --, 

2.SV Vcc 

MSP430 

>-.... -IA1 

HH--4~---I Vss TPO. 
o 

AC 

Current Measurement 

Figure 3-34. Full-Wave Rectification for Two Voltages With Voltage Regulators 

3.8.3.2 Capacitor Power Supplies 

OV 

Applications that do not need isolation from the ac supply or that have a de­
fined connection to the ac supply (like electricity meters) can use capacitor 
power supplies. The transformer is not needed and only the series capacitor, 
Cm, must have a high voltage rating due to the voltage spikes possible on ac 
source. 
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The ac resistance of the series capacitor, em, is used in a voltage divider. This 
means relatively low power losses. The active power losses are restricted to 
the protection resistor, Rm, connected in series with em. This protection resIs­
tor is necessary to limit the current spikes due to voltage spikes and high fre­
quency parts overlaid to the ac voltage. The current lac through the circuitry 
is: 

..-L-c + Rm ICIlx m 

Where: 
Vac 

. fac 
Cl) 

em 
Rm 

Vac 
__ 1_+R2 
CIl2xc~ m 

acvoltage 

Vac 

Nominal frequency of the ac 
Circle frequency of the ac: Cl) = 2m 
Series capacitor 
Series resistor 

lAM 
---+ 

lvcc 

[V] 
[Hz] 
[1/s] 
[F] 
[0] 

The previous formula for lac is valid for all shown capacitor power supplies. The 
formula assumes low voltages will be generated « 5% of the ac voltage). For 
a de current, lAM, the necessary ac current lac is: 

lac ~ lAM x fi = lAM x 2.221 

The capacitor, em, is: 

1 
Cmmin ~ ,,- f • x --;::::.====::===== "". x acmln 2 

( Vacmin x 12)' 2 
ltxlAM . - Rmmax 

This formula for Cm is valid for all shown capacitor supplies. The calculated 
value for em includes the tolerances for the ac voltage and the ac frequency; 
the minimum values used for Vac and fac ensure this. 

The protection resistor, Rm, for a maximum spike current Imax generated by 
a voltage spike Vspike is: 
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The charge capacitor, Cch, must have a minimum capacity: 

'AM x T 
eohmin;:: 2 x tNoh 

o Advantages 

• No transformer necessary 
• Very simple hardware 

o Disadvantages 

• No isolation from ac 

Capacitor Supplies for a Single Voltage 

Figure 3-35 shows the simplest capacitor power supply. The Zener diode used 
for limiting the voltage ofthe charge capacitor, Cch, is used for the voltage reg­
ulation too. The peak-to-peak ripple voltage, Vnpp, on voltage, Vee, is: 

Vnpp " 'AM x -e T 2 
ch x 

The voltage of the Zener diode, Oz, is: 

VZ"Vee+Vd 

Cch is calculated as shown in Section 3.8.3.2, Capacitor Power Supplies. 

To Peripherals 

VC 
5V 

--+ 
AC lAM MSP430 

Vz=5.8V DZ CeH 

QV 
Vss 

Figure 3-35. Simple Capacitor Power Supply for a Single Voltage 

Figure 3-36 shows a hardware proposal for a regulated output voltage, Vee. 
The voltage, Vz, of the Zener diode, Oz, must be: 

'AM Vz ;:: Vd + Vreg + Vr + T x 2 e . 
x ohmln 
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Cch is calculated as shown in Section3.B.3.2, Capacitor Power Supplies. 

To Peripherals 

AC 

ov 

Figure 3-36. Capacitor Power Supply for a Single Voltage 

Capacitor Supplies for TWo Voltages 

CM 

Applications that need two voltages (e.g., +2.5 V and -2.5 V) can also use a 
capacitor supply. 

Figure 3-37 shows a split power supply with two regulated output voltages. 
Together, they deliver the supply voltage, Vee. The split power supply allows 
the measurement of the voltage of the O-V line at AO. This value can be sub­
tracted from all other measured analog inputs. This results in offset corrected, 
signed values. The voltage, Vz, of each Zener diode, Oz, must be: 

lAM 
Vz~Vr+Vreg+Tx2 e . 

x chmln 

The two charge capacitors, Cch, must have the values: 

lAM x T 
echmin ~ AV ch x 2 

To Peripherals 

-l f-"v\I'\r-+~+--+--I 
RM 

AC 

To Peripherals 

Figure 3-37. Split Capacitor Power Supply for Two Voltages 
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AC 
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Figure 3-38 shows a split power supply for +2.5 V and -2.5 V made in a com­
pletely different way. It is capable of delivering relatively large output currents 
due to the buffer transistors. If the high current capability is not needed, the 
transistors can be omitted and the loads connected to the outputs of the two 
operational amplifiers directly. The reference for all voltages is a reference 
diode, LMx85. The highly stabie 1.25 V output of this diode is multiplied by two 
(for +2.5V) or multiplied by -3 and added to the reference value, which delivers 
-2.5 V. The voltage drop of each one of the two diodes, D, is compensated by 
the series connection of the two Zener diodes, Dz. The required Zener voltage, 
Vz, of the two diodes Dz is: 

Where: 
VeE 
Vom 

Basis-Emitter voltage of a transistor 
Maximum peak output voltage swing of the 
operational amplifier with VC 

[V] 

[V] 

~CM 

RM 
D D 

DZ 
To Peripherals 

CCH 

ov 

To Peripherals 

Figure 3-38. Split Capacitor Power Supply for Two Voltages With Discrete Components 
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3.8.4 Supply From Other System DC Voltages 

3.8.4.1 Zener DIode 

Existing dc voltages ofthe controlled system, like + 12 V or +24 V, can be used 
for the supply to the MSP430 system. This is possible due to the low current 
consumption of the MSP430. So there is nearly no power wasted in the voltage 
regulator for Vee. If relays and other power consuming peripherals need to be 
used, the system dc voltage, Vsys, can be used (see Figure 3-40). This solu­
tion has two advantages: 

o The switching noise is generated outside of the MSP430 supply 

o The power for the switched parts does not increase the power of the 
MSP430 supply 

Figure 3-39 and 3-40 show four different possible supplies for an MSP430 
system from an existing +12 V (or +24 V) power supply. 

A simple configuration of a series resistor Rv with a Zener diode Dz delivers 
an output voltage of +3 V or +5 V. The resistor (Rv) is: 

Where: 
Vz 
Iz 
Vsys 

Vsysmin - Vz 
Rvmax > ....... -..,....,..­

Izmin + lAM 

Zener voltage of the Zener diode 
Current through the Zener diode 
Nominal system voltage 

M 
[Al 
M 

3:8.4.2 Zener DIode and OperatIonal Amplifier 
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If larger currents or a higher degree of decoupling Is necessal)', then an opera­
tional amplifier can be used additionally. This way the series resistor Rv can 
have a much higher resistance than without the operational amplifier. The 
NPN buffer transistor is only necessary if the operational amplifier cannot out­
put the needed system current. The series resistor Rv is calculated with: 

Vsysmin - Vz 
Rvmax > ~-7-'-"'"'--­Izm1n 
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3.8.4.3 Reference Diode With Operational Amplifier 

5V 

The low voltage of a reference diode (e.g., LMx85) is amplified with an opera­
tional amplifier and also buffered. The series resistor, Rv, feeds only the refer­
ence diode and has a relatively high resistance. Therefore, it is calculated the 
same way as shown in Section 3.8.4.2, Zener Diode. The output voltage, Vout, 
is calculated with: 

Vout = Vz x R1 ~2 R2 

VSYS (12 V to 24 V) 

R1 (3xR) 

5V 

5V 
DZ VZ=5V DZ 

---.--------~~--------~~------------____ --------OV 
Zener Diode Supply Zener Diode With Operational 

Amplifiers Supply 
Reference Diode With Operational 

Amplifiers Supply 

Figure 3-39. Simple Power Supply From Other DC Voltages 

3.8.4.4 Integrated Voltage Regulator 

Figure 3-40 illustrates the use of an integrated voltage regulator. Here a 
TPS7350 (regulator plus voltage supervisor) is used, so a highly-reliable sys­
tem initialization is possible. The TPS7350 also allows the use of the RST/NMI 
terminal of the MSP430 as described in Section 5.7, Battery Check and Power 
Fail Detection. The RST/NMI terminal is used while running a normal program 
as an NMI (Non-Maskable Interrupt). This makes possible the saving of impor­
tant data in an external EEPROM in case of power failure. This is because PG 
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D1 

cs 

outputs a negative signal starting at Vee = 4.75 V, which allows a lot of activities 
until Veemln of the MSP430 (2.5 V) is reached. 

VSYS 

TP73060 IAl!..,.. [ +5V 
OUT Vcc 

IN SENSE MSP430 

PG ResetlNMI 
TPO.x DZ 

101J.1' 
Vss 

Vz=VSYS+3V 

OV 

Figure 3-40. Power Supply From Other DC Voltages With a Voltage Regulator 
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With two additional components (an RC combination) the MSP430 system can 
be protected against spikes and bridging of supply voltage dropouts is po&­
sible. The diode, 01, protects the capacitor, Cb, against discharge during 
dropouts in voltage Vsys. The series resistor, Rv, is: 

(VSYSmin - Vd"- Vee - Vr) 
Rvmax < lAM + lregmax 

The minimum capacity of Cb is: 

At x (lAM + Ireg) 
> ------~--------~~--~-------------

Vsysmin - (lAM + lregmax) x Rvmax - Vrmax - Veemln 

Where: 
lAM 

Ireg 
Vsys 
Vd 
Vr 
Vee 
At 

System current (medium value MSP430 and 
peripherals) [A) 
Supply current of the voltage regulator [A) 
System voltage (e.g., +12 V) M 
Diode forward voltage ( < 0.7 V) M 
Dropout voltage of the voltage regulator for function M 
Supply voltage of the complete MSP430 system M 
Dropout time of V sys to be bridged [s) 
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3.8.5 Supply From the M Bus 

If the MSP430 system is connected to the M-Bus, three possibilities exist for 
the supply of the MSP430: 

o Battery Supply: The supply of the MSP430 is completely independent of 
the M-Bus. This method is not shown in Figure 3-41 , because it is the nor­
mal way the MSP430 is. powered (see Section 3.S.1, Battery Driven Sys­
tems). 

OM-Bus Supply: The MSP430 system is always supplied by the M-Bus. 
During off phases of the M-Bus, the MSP430 is not powered. 

o Mixed Supply: Normally the M-Bus supplies the MSP430 and only during 
off phases of the M-Bus does the battery of the MSP430 provide power. 

3.8.5.1 M-Bus Supply 

The MSP430 is always powered from the M-Bus. The TSS721 power fail sig­
nal, PF, indicates to the MSP430 failure of the bus voltage. This early warning 
enables the MSP430 to save important data in an external EEPROM. The ca­
pacitor, ech, must have a capacity that allows this storage: 

Where: 
lAM 

tstore 

Voo 
VCCmin 

lAM x Istore C h . > ..,.-!':!!!l..-;-;'=::<"" 
C min - VOO - VCCmin 

System current (MSP430 and EEPROM) 
Processing time to store important data into 
the EEPROM 
Supply voltage delivered from the TSS721 
Minimum supply voltage of the complete MSP430 
system 

[AI 

[sl 
[V] 

M 
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3.8.5.2 Mixed Supply 

The MSP430 is powered from the M-Bus while bus voltage is available. During 
times without bus voltage. the battery powers the MSP430. Therefore. a small­
er battery can be used when normal bus power is available. The MOS transis­
tor switches to the battery when there is a dropout of the M-Bus voltage. DetailS 
are described in the TSS721 M-Bus Transceiver Application Report. 

CCH 
ov~~I~~------------~~~ 

Vss vee 
RX TXI 

MSP430 TX 
PO.O 

M-BUS Supply 

RXI 
PF 

TSS721 

BSS84 

OV~~~~-'----~--------"--, 

1N6263 

Vss vcc BAT VDD VS BUSL 1 

MSP430 TSS721 

Meter Bus 

2150 

2150 

2150 

2150 
GND STC sc RIS RIDD BUSL2 J....JI.Mr __ 

Mixed Supply 

o V ~t--'--'--__ --' 

Figure 3-41. Supply From the M Bus 
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3.S.6 Supply Via a Fiber-Optic Cable 

The MSP430 needs a supply current of only 400llA, if supplied with a voltage 
of 3 V and operating with an MCLK of 1 MHz. This low power can be trans­
mitted via a glass-fiber (fiber-optic) cable. This allows completely isolated 
measurement systems, which are not possible with other microcomputers. 
This transmission mode is an advantage for applications in strong electric or 
magnetic fields. 

Because the data transmitted from the host to the MSP430 is also used for the 
supply ofthe MSP430 system, a certain amount of light is required continuous­
ly and is independent of the transmitted data. Possible ways to reach this are: 

D Use of extended charge periods between host-to-MSP430 data transfers. 
The MARK level of the RS232 protocol Is used for this purpose. This meth­
od is shown in Figure 3-42 with every logical one, stop bit, and MARK level 
used for the supply. . 

D Use of a transmission code that always transmits the same number of 
ones and zeroes, independent ofthe transmitted data. (e.g., the Bi-Phase 
Code) 

To achieve a positive current balance, a few conditions must be met: 

D The complete hardware design uses ultra-low-power devices (operational 
amplifiers, reference diode, measurement parts etc.). 

D The MSP430 is in Low Power Mode 3 anytime processing power is not 
needed. 

D The measurement unit is switched on only during the actual measurement 
cycle. 

D All applicable hints given in Section 4.9, U1tra-Low-Power Design with the 
MSP430 Family are used. 

3.8.6.1 Description of the Hardware 

The host sends approximately. 15 mW of optical power into the fiber-optic 
cable. This optical power is made with a laser diode consuming 30 mW of elec­
trical power. At the other end of the fiber-optic cable, the optical power is con­
verted into 6 mW of electrical power with a power-converter diode. The open­
circuit voltage of the power converter (approximately 6 V) decreases to 5 V 
with the load represented by the MSP430. The received electrical energy is 
used to charge the capacitor, Coh. The charge-up time required is approxi­
mately 300 ms for a capacitor with 30 IIF. 
The uppermost operational amplifier is used for the voltage regulation of the 
system supply voltage (3 V to 4 V). 
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If Ii stabilized supply voltage is unnecessary, then this operational amplifier 
can be omitted, as well as the diodes and pull-up resistors althe RST/NMI and 
PO.1 inputs. 

The reference for the complete system is an LMx85 reference diode. This ref­
erence voltage (1.25 V) is used for several purposes: trigger threshold for the 
Schmitt-triggers, reference for the calculation of Vee, and reference for the 
voltage regulator. 

The operational amplifier in the middle works as a reset controller. The 
Schmitt-trigger switches the RST/NMI input of the MSP430 to a high level 
when VC reaches approximately 4 V. The RST/NMI input is set low when VC 
falls below 2.5 V. 

The· third operational amplifier decodes the information out of the charge volt­
age and data of the· power converter output. This decoder also shows a 
Schmitt-trigger characteristic. 

The measured data is sent back to the host by an IR LED controlled by an NPN 
transistor. The data format used here is an inverted RS232 protocol and has 
no current flow for the MARK information (e.g. stop bits). 

3.8.6.2 Working Sequence 

3-74 

The normal sequence for a measurement cycle is as follows: 

1) The host starts a measurement sequence with the transmission of steady 
light. This time period is used for the initial charge-up of the ch~rge capaci­
tor, Cch. 

2) When this capacitor has enough charge, which means a capacitor voltage 
(VC) of approximately 4 V is reached, then the reset-Schmitt-trigger 
switches the RST/NMI input ofthe MSP430 from low to high. The MSP430 
program starts with execution 

3) The MSP430 program initializes the system and signals its readiness to 
the host by the transmission of a defined code via the back channel (a se­
cond fiber-optic cable). 

4) After the receive of the acknOWledge, the· host sends the first control 
instruction (data) to the MSP430. 

5) The MSP430 executes the received.control instruction and sends back the 
measured result to the host via the back channel. 
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6) Items 4 and 5 are repeated as often as needed by the host. 

aLight Flbar-Optlc () 

From Host PPC-SE-sM 

PowarConv 

~~~ 
A 

erter 

VC 

" IR·LED 

Charge 

.. ... 

:;: r-
CCH ~ 

~~ 

OV 

1N229-SMA 

]BSpaca 
ilia Mark 

OV 

VC 
2.4xR1 

~l .... 
Rl :::: 

~ .. .... I~ 

=:f:'$1078CN 

.... I~ 

Figure 3-42. Supply via Fiber-Optic Cable 

3.8.6.3 Conclusion 

SVCC av 
Vec T 

AXV'--
Analog Data 

I'r-
Vss Maaa.Unlt 

Raaat 
RST/NMI PO.x ~ Contral 

XBUF 132~ Clock 

VREF 
AO ~ AGND 

Data 
PO.1 (RCV) . 

PO.2(TXD} 

The illustrated concepts for supplying the MSP430 family with power demon­
strate the numerous ways this can be done. Due to the extreme low power con­
sumption of the MSP430 family, it is possible to supply them with all known 
power sources. Even fiber-optic cables can be used. 
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Chapter 4 

Application Examples 

Several MSP430 application examples are given in the following sections. 
Common to nearly all of them is the storage of calibration data, tables, 
constants, etc. in the external EEPROMs. External EEPROMs are used for 
safety reasons. If the microcomputer fails completely, it is still relatively easy 
to read out the accumulated consumption values. This is usually impossible 
if these values reside in internal EEPROMs. 

These EEPROMs can also store tables that describe the principal errors of a 
given measurement principle that is dependent on the input value (current, 
flow, heat etc.). The MSP430, with its excellent table processing capabilities, 
can determine the right starting value out of these tables and calculate the lin­
ear, quadratic or cubic approximation value. The following figure shows the 
principal error of a meter. The complete range starting at 1 % up to 200% is di­
vided into sub ranges of different length. A stored table would contain the start­
ing point, the different distances and the inherent error at the beginning of each 
range. With this information, the MSP430 can calculate the error at any pOint 
of the measurement range. 
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4.1 Electricity Meters 

4.1.1 Overview 

Pulses 

The MSP430 can be used in two completely different kinds of electronic elec­
tricity meters. The difference between the two methods is mainly where the 
electrical energy 

W= fUX,Xdt 

is measured: 

D The electrical energy is measured in a front-end separated from the 
MSP430. Several methods exist for doing that: Hall effect sensors, Ferra­
ris wheel pick-ups, analog multipliers, etc. The interface to the MSP430 
is normally a train of pulses, where every pulse represents a defined 
amount of energy (Ws, kWs, Wh). All family members can be used for this 
purpose. 

D The electrical energy is calculated by the MSP430 itself, using its 14-bit 
analog-to-digital converter (ADC) for the measurement of current and voH­
age. Only the MSP430C32x can be used for this purpose. 

The two different methods are shown in Figure 4-1 

o 32kHz 
.-------~ 

sv COM 
ee SEL 3t.t5 Eil.B 

_IBI~ 
MSP430C31x 

PO.x 1--. Perlphsrals Voltage 

o 32kHz 

COM 
sVcc SEL 

MSP430C32x 

LCD 

PO.xl--. 

Frontend PO.y 
Peripherals 

Current 

Vss Vee Vss Vee 

Figure 4-1. Two Measurement Methods for Electronic Electricity Meters 
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The 'second method is mainly used with the electricity meters described in this 
chapter. The unnecessary front end gives a cost advantage when compared 



to the two-chip solution. An example for the 1 st method that uses a front end 
is shown at the end of this chapter. 

4.1.2 The Measurement Principle 

The principle used (Reduced Scan Principle) measures current and voltage 
in regular time intervals and multiplies the current and voltage samples. The 
multiplication results are summed up, with the sum representing the con­
sumed energy (Ws, kWh). While the method normally used measures voltage 
and current at exactly the same time, the Reduced Scan Principle (a protected 
TI method) alternately measures voltage and current samples. Every sample 
is used twice; once it is multiplied with the value measured before and once 
with the value measured afterwards. To further reduce the required multiplica­
tions, these two multiplications are reduced to one by using the sum of the two 
voltage samples. This measurement principle is shown in Figure 4-3. 

The following shows the measurement sequence for a single-phase measure­
ment. Current and voltage are measured alternately. The time, (1, represents 
the angle between related voltage and current samples. 

~a-.l 
I I 

Voltage Current VOltage 

1/ARR t ~ ! 
I+- Repetition Time --I 

Current 

I 
--+ Time 

Figure 4-2. Timing for the Reduced Scan Principle (Single Phase) 

Where: 

, 

(1 Inherent Phase Shift of the Measurement Method [rad] 
Repetition Time Length of a complete measurement cycle [s] 
1/ARR lime Distance between two ADC Conversions [s1 

Note: 

The Reduced Scan Principle is intellectual property of Texas Instruments. 
This measurement principle may be used only with the microcomputers pro­
duced by Texas Instruments. 
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o Sampling Point --+ Time 

Figure 4-3. Reduced Scan Measurement Principle 
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The measured energy W (for a single phase) is: 

t=QQ 

W = I in x (un- 1 + un+1) x bot 

Where: 

1=0 

W 
in 
un-1 

un+1 
.1.t 

Accumulated energy [Ws] 
Current sample at time tn [A] 
Voltage sample at time tn-1 [V] 
Voltage sample at time tn+ 1 [V] 
Sampling interval between appertaining voltage 
and current measurements [s] 



4.1.2.1 The Inherent Error of the Reduced Scan Principle 

The Reduced Scan Principle has a small inherent error caused by the phase 
shift At, once inductive and once capacitive, due to the time interval between 
voltage and current measurements. Any calculated energy sample shows this 
error, it is independent of the phase angle q> between voltage and current. The 
value, e, of this error is: 

e = (cos (6.1 x f x 2lt).- 1) x 100 

where: 
e Error [%) 

At Sampling interval between voltage and current 
measurements [s] 
AC frequency [Hz] 

For example, with the values (f = 60 Hz, At = 300 ~) the inherent error.is 
-0.639%. This error can be eliminated during runtime by a multiplication of the 
accumulated energy with the correction factor c: 

c = 1 
oos(6.t x f x 2:n:) 

The correction factor, c, is normally included in the calibration constants (slope 
and offset) and not used explicitly. 

For a multiple-phase electricity meter, the Reduced Scan Principle is used for 
all phases one after the other. This is described in the following chapters. 

Derivation of the Inherent e"or 

The flawless equation (except the quantization error) for the electric energy W 
is: 

t-= 
W = L in x un x 6.1 

tzO 

The equation used for the Reduced Scan Principle is: 

t-~ 

W = L in x (Un_ 1 + Un+1) x 6.t 
t-O 
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Where: 
un = U x sinrot Voltage sample at time t 

Current sample at time t 
Voltage sample at time t - 6t 
Voltage sample at time t + 6t 

in .;, I x sin(rot+cp) 
un-l .. U x sin(rot-«) 
Un+ 1 = U x sin(rot+a.) 
a. Angle in radians between current and voltage samples (a. .. ro6t .. 21tXfxA.t) 

Time between appertaining current and voltage samples 6t 
cp Phase angle in radians between voltage and current 

The error e of an energy sample due to the Reduced Scan Principle is: 

e = erroneous - 1 
correct 

0.5 x I x sln(6lt + <PI x (U x sin(6lt - a) + U x sin(6l1 + a) ) 1 
e = U x sin6l1 x I x sin(6lt + <p) -

e = 0.5 x·(sin(6lt -.n) x sin(6lt + a» _ 1 
sm6lt 

e = 0.5 x (sin6lt x cos a - sina x oo~6lt + sin6lt x coso. + sin a x COS6lt) _ 1 
Sln6lt 

e = 0.5 x (2 x ~ln6lt x cosa) _ 1 = cos a _ 1 
Sln6lt 

or in percent 

e = (oosa - 1) x 100 = (cos(2n x f x At) - 1) x 100 

This result means that the error of each energy sample calculated with the Re­
duced Scan Principle shows a constant value e. This inherent error depends 
only on the angle a. between the current and the voltage samples; it is indepen­
dent of the phase angle cp and of the sample point of the measurement inside 
the sine wave. So for all samples, the same correction can be used. 

4.1.2.2 The Advantages of the Reduced Scan Principle 
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1) Only 50% of the measurements are necessary because every measured . 
current or voltage sample is used twice 

2) Only 50% of the multiplications are necessary because two voltage sam­
ples are added before the multiplication 

3) Only one ADC is needed compared to up to six with the usual method. 



4) The computing power gained by reducing the number of multiplications 
can be used by the microcomputer for other system tasks. The MSP430 
is able to do the task of the front-end and of the host computer. 

5) The Reduced Scan PrinCiple is nearly independent of frequency devi­
ations of the ac. See Section 4.1.2.4 for results. 

6) The Reduced Scan Principle is also nearly independent of the interrupt la­
tency time of the microcomputer. See Section 4.1.2.5 for results. 

The Reduced Scan Measurement Principle is implemented in an evaluation 
board for a 3-phase meter, which shows a typical error of 0.2%. 

4.1.2.3 Measurement Errors for Some Sampling Frequencies 

Table 4-1 gives an overview for the measurement errors dependent on the 
sampling frequency. The inherent error shows the error for the ac frequency 
(50 Hz or 60 Hz). The 3rd harmonics error shows the corrected measurement 
error for the 3rd harmonic ofthe ac frequency (150 Hz or 180 Hz). The 5th har­
monies error shows the corrected measurement error for' the 5th harmonic of 
the ac frequency (250 Hz or 300 Hz). For any number of measurements (cur­
rent and voltage samples together) for a full period, a rough error estimation 
can be made with this table. 

Application Examples 4-7 



Table 4-1. Errors Dependent on the Sampling Frequency 
Sample Frequencies 

Messurements 
Single Phase Two Phase Three Phase Inherent per Full Period 

(50Hz) (60Hz) (50Hz) Error 
20 1000 2400 3000 -4.89% 

30 1500 3600 4500 -2.19% 

40 2000 4800 6000 -1.23% 

50 2500 6000 7500 -0.78% 

60 3000 7200 9000 -0.55% 

70 3500 8400 i -0.40% 

80 4000 9600 -0.30% 

90 4500 :j: -0.24% 

100 5000 -0.20% 

110 5500 -0.16% 

120 6000 -0.13% 

130 6500 -0.11% 

140 7000 -0.10% 

160 8000 -0.08% 

180 9000 -0.06% 

200 10000 -0.05% 
t The errors of the harmOniCS are corrected by the value of the Inherent error 
:t: Sampling frequencies above 10000Hz are not possible due to the speed of the ADC 

(132 ADCLKslconverslon @ ADCLK = 1.5MHz) 

4.1.2.4 Measurement Error for Deviations of the AC Frequency 

Errors 
3rd 5th 

Harmonlct Harmonlct 
-36.4% -95.2% 

-16.9% -47.8% 

-9.7% -28.0% 

-6.2% -18.3% 

-4.3% -13.4% 

-3.2% -9.5% 

-2.4% -7.3% 

-1.9% -6.0% 

-1.6% -4.7% 

-1.3% -3.9% 

-1.1% -3.2% 

-0.9% -2.7% 

-0.8% -2.4% 

-0.6% -1.9% 

-0.5% -1.5% 

-0.4% -1.2% 

lithe ac frequency deviates from the nominal value used during the calibration, 
then a small error is generated. Table 4-2 shows this error dependent on the 
sample frequency and the ac frequency deviation. The introduced error, Fmd, 
is: 

F = (COS(A! x (f + Af) x 211:) _ 1) x 100 
md cos(A! x f x 211:) 
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Where: 
Fmd Error due to the ac frequency deviation from the 

nominal frequency [%) 
At lime between related current and voltage samples [s] 
f Nominal ac frequency (used during calibration) [Hz) 
At Frequency deviation of the ac frequency during runtime [Hz) 

Table 4-2. Errors dependent on the AC Frequency Deviation 

Measurement 
per full Period 

20 

40 

80 

130 

Sample Frequencies Errors 

Single Phase Three Phase Two Phase 
(50Hz) Il.flf = +0.5% IJ.f/f = + f .00/. Il.flf = +5.0% (50Hz) (60Hz) 

1000 2400 3000 -0.051% -0.103% -0.523% 

2000 4800 6000 -0.012% -0.025% -0.127% 

4000 -0.003% -0.006% -0.030% 

6500 -0.001% -0.002% -0.010% 

The errors for negative frequency deviations are the same as shown in 
Table 4-2 but with positive signs. The ADC is assumed to be error-free, this 
way only the influence of the frequency deviation is shown. 

The additional error due to the deviation of the ac frequency can be reduced 
to nearly zero by the measurement of the actual ac frequency and an appropri­
ate correction of the calculated energy. 

4.1.2.5 Measurement Error Dependent on the Interrupt Latency Time 

The calibration of an electricity meter is made normally in an environment with­
out interrupt activity. This can be completely different to the real time environ­
ment where the meter has to measure the electric energy later. Therefore the 
interrupt latency time (here the time the interrupt request of the sampling time 
base is delayed by other interrupts) can have an influence on the accuracy of 
the measurement. Table 4-3 shows the errors introduced by different interrupt 
latency times. The calibration is made with a maximum interrupt latency time 
of 5J.1.S (due to missing interrupt activities): this is the maximum delay caused 
by the completion of the current instruction (indexed,indexed mode) with 
MCLK = 1 MHz. The conditions used for the simulations of Table 4-3 are: 

D The simulation conditions are the same ones as described in section 4.1.3 
except where noted otherwise. 

D The given interrupt latency times are the maximum values; each voltage 
and current sample is delayed by a random time interval ranging between 
zero and this maximum value. 

D The ADC is assumed to be error-free (except the range transition error), 
this way only the influence of the interrupt latency time is shown. 
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o For other values of MCLK than 1 MHz , the shown latency times are not 
given in microseconds but CPU cycles. 

o The used current Is 100% except for the last line (1 %) 

o The measurement time is 20 seconds 

Table 4-3. Errors dependent on the Interrupt Latency Time 

Measurement 
Single Maximum Interrupt Latency Time 
Phase 5 lIS per Full Period (50 Hz) (C8l1br.) 20 lIS 40 lIS SOlIS 160 jJ.S 

20 1000 -0.0013% -0.0010% +0.0023% +0.0052% +0.0103% 

40 2000 -0.0010% +0.0010% -0.0005% -{).0053% -{).0113% 

80 4000 +0.0007% +0.0002% -0.0035% -{).0053% -0.0292% 

130 6500 -0.0011% +0.0002% -0.0006% -0.0025% -t 

cos'P.0.5 6500 -0.0011% 00/. +0.0001% -0.0055% -t 

1%ln 6500 .-0.0098% -0.0175% +0.0170% -0.0786% -t 
t Interrupt latency time IS greater than sampling Interval 

Table 4-3 shows the extreme low influence of the interrupt latency time: even 
non-realistic high latency times like 160 ~ result in negligible influence. This 
means that the Reduced Scan Principle is not sensitive to the interrupt latency 
time of the system. 

I 

Note: 

The errors shown in Table 4-3 are won by the use of random values for the 
interrupt latency time. Despite the relatively long simulation time (20 sec­
onds) every simulation made under exactly the same conditions returned 
therefore a slightly different error. 

4.1.2.6 Measurement Error Due to Overvoltage and Overcurrent 
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With the simulation conditions described in Section 4.1.3, The Ana/og-to-Digi- . 
tal Converter arthe MSP430C32x, the ADC measures up to 111 % ofthe maxi­
mum current or voltage without additional error. It is important to know how the 
electricity meter behaves if the input values are above these limits: there must 
be a smooth transition and no oscillations or sudden changes. Due to the satu­
ration the ADC shows for overflow and underflow, the errors shown in Table 
4-4 result. The ADC is assumed to be error-free (with the exception of the 
range transition error), so only the effect of the overflow is shown. 



Table 4-4. Errors dependent on Overvoltage and Overcurrent 
Load Current 100%Vnom 110%Vnom 120%Vnom 1300/.Vnom 

100% 0% 0% -2.4% -6.5% 

110% 0% 0% -2.4% -6.5% 

120% -2.4% -2.4% -4.7% -8.6% 

130% -6.5% -6.5% -8.6% -12.3% 

4.1.3 The Analog-to-Digital Converter of the MSP430C32x 

The analog-to-digital converter (ADC) of the MSP430 measures the voltage 
between its AVss and SVccconnections with a resolution of 14 bits. The 
signed voltages coming from the current and voltage interfaces are shifted into 
the unsigned range of the ADC by simple interfaces described below. The 
MSP430 subtracts the measured or calculated offset value from every mea­
sured current or voltage sample: this enables signed, offset corrected mea­
surements. 

t ADC Value (Steps) 

3FFFh -f---:~"'7"~----- 95%SVcc 

-+ 
Time 

+-----_~",c---- 5%SVCC 
OOOOh AVSS 

Figure 4-4. Allocation of the ADC Range 

Figure 4-4 shows the placement of the current and voltage coming from the 
voltage dividers and the current interfaces into the analog-to-digital convert­
er's range. All calculations and proposals base on a use of 90% of the ADC 
range for nominal (100%) values of current and voltage. This means up to 
111 % of the nominal values are still measured correctly. This allocation may 
be changed if necessary. 

Table 4-5 shows the influence of the analog-te-digital converter's perfor­
mance to the accuracy of the measurement of the electric energy. Two in­
fluences are involved: 

1) The deviation of the ADC from the linearity. Each one of the four ranges 
A, B, C and D has calculated deviations up to 20 ADC steps compared to 
the two ranges bordering on it. 
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2) The saturation effect at the range limits: if the sample for the definition of 
the range is taken in another range than the sample for the 12-bit conver­
sion (36 ADCLKs later) than the result is xFFFh for increasing input signals 
and xOOOh for decreasing input signals (x denotes the number of the range 
where the range sample was taken). As the results show, the two satura­
tion effects compensate nearly to zero. 

Note: 

The deviations of the analog-to-digital converter used with the examples be­
low (±20 steps) are greater than the specified ones. These large deviations 
are used only to show the relative independence of the overall accuracy from 
the ADC error. The actual, specified deviations are ±10 steps. 

It is recommended not to use the exact midpoint of the supply voltage Vcc 
(Vccl2) for the common reference point. This is due to the possible Slight 
slope deviation at the border of two ADC ranges (here B and C). This may 
influence the accuracy for the lowest currents. 

Table 4-5 shows also the influence for some extreme deviations of the analog­
to-digital converter characteristic. Figure 4-5 explains the meaning ofthe used 
graphics: it shows the second deviation curve of Table 4-5 in detail. 

t ADC Error (Steps) 

20 

~----r---~---r---r~~ 
FFFh ADC Value 

Range A 

Figure 4-5. Explanation of ADC Deviation (2nd Column of Table 4-5) 
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The function shows the deviation at any point of the four ADC ranges. Due to 
the monotony of the ADC the errors at the range limits are always equal. The 
errors shown in Table 4-5 were calculated with a PASCAL program. The fol­
lowing steps were taken: 

1) Measurement and calculation of the error at 5% of the nominal current. 

2) Measurement and calculation of the error at 100% of the nominal current 

3) Calculation of the slope and offset for the correction (calibration) 

4) Simulation of voltage and current samples: any sample is modified with 
the ADC error (exactly like during calibration). 

5) Correction of all measured values with the calculated slope and offset 

6) Calculation of the resulting error 

The saturation effect at the range limits is always included. The first column 
of Table 4-5 with an ideal ADC characteristic (zero deviation) shows only this 
effect and the finite ADC resolution. This column can be used as a reference 
for the errors of the other five columns. 

The calculations are made with the following conditions: 

o Virtual Ground location in the ADC range: 8190 steps (1 FFEh) 49.98% of full ADC range 
5s (calibration points are measured this time) 
9s 

o Measurement time for calibration points: 
o Measurement time for different loads: 
o AC frequency: 
o Cosine q>: 
o Sample frequency: 
o Voltage: 
o Current: 

Note: 

50 Hz 
1 (0 0 ) 

, 2048 Hz (488.3 IJ.S sample distance) 
100% V pp uses 90% of the ADC range 
100% Ipp uses 90% of the ADC range 

The drawings on top of the columns of Table 4-5 indicate the ADC error in 
dependence ofthe ADC value. Figure 4-5 shows the drawing above the sec­
ond column in a magnified form. 
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Table 4--5. Errors With One Current Range and Single Calibration Range 

-
Load 

Current 

-
0.1% +0.n71% 

1% -0.0114% 

2% +0.0620% 

Calibr. P. -0.0001% 
5% 

10% +0.0005% 

25% 0% 

50% -0.0001% 

75% +0.0001% 

calibr. P. -0.0002% 
100% 

~ Pt ~ ~ J?+4 
+7.79% -2.93% +0.45% +0.57% +3.94% 

+0.83% -0.24% 0% +0.01% +0.38% 

+0.50% +0.01% +0.01% 0% +0.24% 

0% 0% 0% 0% 0% 

-0.19% -0.01% 0% 0% -0.09% 

-0.27% -0.01% % 0% -0.13% 

-0.31% -0.01% 0% 0% -0.15% 

-0.17% 0% 0% 0% -0.09% 

0% 0% 0% 0% 0% 

The large errors at 0.1 % of the nominal current resultfrom the relatively far dis-­
tance from the 5% calibration point and from the missing resolution of the ADC 
at this small load. The peak-to-peak value of the ADC result is only 14.7 steps. 
These errors can be reduced drastically by using one of the following methods. 

4.1.3.1 Methods to reduce the Error of the Energy Measurement 

Three relatively simple methods are given to reduce the error of the energy 
measurement. In any case, the values used for the correction are stored in the 
EEPROM and are loaded into the RAM during the initialization. 

Using a Second Hardware Range 

This method is shown with all hardware examples. An analog switch like the 
TLC4016 SYfitches a second resistor in parallel to the one used for the low cur­
rent range. Both ranges uses its own set of calibration constants (slope and 
offset) that are measured during two Independent calibration runs for every 
phase. The advantage of this method is the real increase of resolution for the 
low current range. 

Using a Second calibration Range 
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This method only uses a second set of calibration constants (slope and offset) 
without additional hardware for the low current range (e.g., from 0.1 % to 5% 
of the nominal current). This method needs two calibrations per phase, but 
uses only three measurements (one measurement is used for both ranges). 



Table 4-6 shows the enhancement of the accuracy when a second calibration 
run is made for the low current range, 0.1 % to 5% of the nominal value. The 
calculations are made with the same conditions used with Table 4-5. The en­
hancement can be seen with a comparison of the two tables. The errors, for 
the range 5% to 1 00% of the nominal current, are the same as shown in 
Table 4-5. 

Table 4-6. Errors With One Current Range and Two Calibration Ranges 

Load 

~ Pt hA-~ ~ Current 
I I I I 

-
Calibr.P. 

+0.004% +0.004% +0.002% +0.005% +0.005% +0.003% 0.1% 

0.5% -0.236% -0.002% -0.251% -0.163% -0.161% -0.119% 

1% -0.075% +0.190% -0.003% -0.041% -0.040% +0.056% 

2% -0.018% +0.262% +0.098% -0.005% -0.012% +0.122% 

3% -0.006% +0.062% +0.024% -0.013% -0.012% +0.022% 

4% -0.010% -0.035% -0.025% -0.009% -0.007% -0.023% 

Calibr.P. 
0.000% 0.000% 0.000% 0.000% 0.000% O.Oqo% 5% 

Measurement of the ADCs Characteristic 

This method uses the actual deviations of the ADC for a rough correction of 
the measurement results. During a first run, the ADC characteristic is mea­
sured and correction constants are calculated for any of 8 to 32 software sub­
ranges of the ADC. These correction constants are written into the EEPROM 
and loaded into the RAM for use. For every subrange, one byte is needed, 
which allows corrections up to ±127 steps. The correction for the samples 
needs only seven instructions per 14-bit value. The advantage of this method 
is the adaptation to the actual deviation of the individual ADC. Figure 4-6 
shows the correction with the ADC characteristic using only 8 correction val­
ues. The deviations reduce to one quarter of the original ones. If the correction 
shows a step near the virtual zero point like shown in Figure 4-6, the sub­
ranges 81 and CO can be corrected in a way that omits this step. Chapter 2, 
The Analog-To-Digital Converters gives more information. 
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i ADC Deviation (Steps) . 

20 

RangeD 

Range A ~ 
SubrangOI Subrango I .Corrected ADC Characterlatlc 

All A1 

o Correction Valuaa For The Subrangaa 

Agure 4-6. Use of the Actual ADC Characteristic for Corrections (8 Subranges Used) 

4.1.3.2 Dependencs on the Voltage and the Phase Angle cp 

Table 4-7 shows the dependence of the MSP430 using the Reduced Scan 
Principle on the load current. the ac voltage and the phase angle. cpo between 
current and voltage. The ADC is assumed to be error-free; the saturation effect 
at the range limits is included. Single calibration with only one range is used. 
Nominal voltage is used for the load current dependence and nominal current 
(100%) is used with the voltage dependence. The calculations are made with 
the same Conditions used for the calculations in Table 4-5. 

Table 4-7. Errors in Dependence on Current, Voltage and Phase Angle 
Angle,!, Load Current ACVoitage 

1% 100/0 100% 80% 800/0 1100/0 

Ind. -80' +4.119% +0.447% +0.046% +0.048% +0.047% +0.045% 

-60' +0.857% +0.099% +0.010% +0.009% +0.010% +0.010% 

-40' +<>.257% +0'032% +0.003% +0.003% +0.003% +0.004% 

-20' +0.047% +0.009% +0.001% 0.000% +0.001% +0.001% 

0' -0.011% +0.001% 0.000% 0.000% 0.000% 0.000% 

+20' +0.043% +0.004% 0.000% , +0.001% +0.001% 0.000% 

+40' +0.248% +0.021% 0.000% +0.004% +0.003% +0.001% 

+60' +0.844% +0.075% +0.007% +0.012% +0.009% +0.005% 

Cap. +80' +4.051% +0.376% +0.037% +0.056% +0.046% +0.031% 

4.1.3,3 Derivation of the Measurement Formulas 
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The electronic meter equivalent of the meter constant of a Ferraris wheel me­
ter (revolutions per kWh) is the meter constant. Cz. that defines (ADC steps)2 
per Ws. The corrected equation used for the electric energy W is: 

1-~ 

W = cos(2n ~ f x At) x ~ in x (Un_ 1 + un+1) x At [Ws] 



With the ADC results ADCi (current sample) ADCu (voltage sample) and 
ADCOu and ADCOi (zero volt samples) the previous equation gets: 

I-~ 

W = cos(2lt ~ f x At) x I ki x (ADCin - ADCOi) x ku x (ADCUn_ 1 + ADcun+ 1 - 2 x ADcou) x At 
1-0 

Separation into variable and constant values results in: 

I-~ 

W = cos(2lt ~ f x At) x At x ki x ku x ~(ADCin - ADCOi) x (ADCun_1 + ADCun+ 1 - 2 x ADcou) 

Where: 
f 
At 

ki 

ku 

ADCin 
ADCun-1 

ADCun+1 

ADCOu 
ADCOi 

AC frequency 
Sampling interval between appertaining 
voltage and current samples 
Current multiplication factor 
See Section 4.1.4.5 for more details 
Voltage multiplication factor. 
See section 4.1.4.6 for more details 

[Hz) 

[s] 
[A/step). 

[V/step] 

ADC value of current sample taken at time tn 
ADC value of voltage sample taken at 
time tn-1 (tn - At) 
ADC value of voltage sample taken at time 
tn+ 1 (tn + .6t) 
ADC value of voltage zero point (measured or calculated) 
ADC value of current zero point (measured or calculated) 

The first, constant part of the equation is the inverse value of the meter 
constant ,Cz: 

cos(lbt x f x At) 
Cz = At x kl x ku [Steps2/Wsl 

The values for kl and ku for different interfaces are explained in detail In Sec­
tion 4.1.4. 

For a system using a current transformer and a resistor divider for the voltage, 
the previous equation gets: 

W __ 1 SVCC x wsec SVCC x (Rm + Rc) 
-=--'--:--..,-,:" x At x x x 
cos(lbt x f x At) 214 x wprim x Rsec 214 x Rc 

t=OD 

I(ADCin - ADCOi) x (ADCUn_ 1 + ADCun+1 - 2 x ADCOU) 
I~O 
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Where: 
Rsec 

wsec 
Wprim 
SVCC 

Rm 

Rc 

Load resistor (s.econdary) of the current 
transformer [0] 
Secondary windings of the current transformer 
Primary windings of the current transformer 
Voltage at terminal SVCC (AVCC or external 
reference voltage) M 
Voltage divider: resistor between ac connection 
and analog input [0] 
Voltage divider: resistor between analog input 
and zero volts [01 

The first, constant part of the equation is the inverse value of the meter 
constant Cz: 

cos(2;t x f x At~ x 228 x wprim x Rsec x Rc 

2 
AI x SVCC x wsec x (Rm + Re) 

With the previous value of ez, the equation for the energy W is: 
t-~ 

I(ADCin - ADCOi) x (ADCUn ':' 1 + ADCun+1 - 2 x ADCOU) 
W = ~t-~O ______ ~ ________ ,, __________________ _ 

Cz 

If the energy W is to be expressed in kWh: 
t-~ 

I (ADCin - ADCOi) x (ADCun_ 1 + ADCun+ 1 - 2 x ADCOU) 
W = ~t-~O __________________ ~ ________________ _ 

3.6 x 109 x Cz 

[Steps2/Ws] 

[Ws] 

[kWh] 

The value W needs to be corrected with the slope and offset calculated during 
the calibration process. 

4.1.4 Analog Interfaces to the MSP430 

This chapter describes some important topics that can affect the overall accu­
racy of the electricity meter. 

4.1.4.1 Analog and Digital Grounding 
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The following schematics are drawn in a simplified manner to make them easi­
er to understand. In reality, It is necessary to decouple the analog and the digi­
tal part as shown in Figure 4-7. This is to avoid digital noise on the analog sig­
nals to be measured. 



230 V 
Reference 

-41--4~---tSVcc 

REXT 

'--1-_"'-,-01..:.11.:.98'-1 A 1 MSP430C323 

Current AO 

A5 

AVss AVCC DVSS DVCC 
ToAVCC 

To Other + ____ -J To Other DlgllIl Parts 
Analog Paris AGND 

o V .--il--" 5 V 

"--y--J 
Powar Supply 

Figure 4-7. MSP430 14-Bit ADC Grounding 

4.1.4.2 ADC Input Considerations 

The ADC accurately operates up to 1.5 MHz. If the processor clock MClK is 
higher than this frequency, it is recommended that one of the prescaled ADC . 
clocks (ADCll<) be used. The possible prescaled frequencies for the ADClK 
are MClK, MClKl2, MClKl3 and MClKl4. 

The sampling of the ADC to get the range information takes 12 ADClK cycles. 
This means, the sampling gate is open during this time (12 J1S at ADClK = 1 
MHz). The input of an ADC terminal can be seen as an RC low-pass filter, 2 
1<0 together with 42 pF. The 42-pF capacitor must be charged during the 12 
ADClK cycles to the final value in order to be measured. This means charged 
within Z-14 of this value. This time limits the internal resistance RI of the source 
to be measured: 

(Ri + 2 kQ) x 42 pF < 14 12 
In 2 x ADCLK 

Solved for Rio the result is 27.4 k.Q. This means, to get the full 14-bit resolution 
of the ADC, the internal resistance of the input signal must be lower than 27.4 
1<0. The given examples use lower source resistances at the ADC inputs. 
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4.1.4.3 Offset Treatment 

If the voltage and current samples contain offsets, the equation for the mea­
sured energy W is: 

t-= 

W = I(~n + Ou) x (in + 0,) x At 
t-O ' 

t_m 

W = I (un x in + un x OJ + jn x 0u + OJ x Ou) x At 
1-0 

Where: 
Ou Offset of voltage measurement [V] 
OJ Offset of current measurement [A] 
un Sum of the two voltage samples un-1 'and un+1 M 

The terms (un x OJ) and (in x Ou) get zero when summed-up over one full period 
(the jntegral of a sine curve from 0 to 2n is zero) but the term (Oi x Ou) is added 
erroneously to the sum buffer with each sample result. If one of the two offsets 
can be made zero then the error term (Oi x Ou) is eliminated: this is the case 
-for all proposals. Two different ways are used: 

o Voltage representing OV is measured (see Sections 4.1.4.4.1 and 
4.1.4.4.2) , 

o Summed-up ADC value for a full period is used for this purpose (see Sec­
tion 4.1.4.4.3). 

4.1.4.4 Adaptation to the Range of the Analog-ta-Digital Converter 

Split Power Supply 
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The analog-to-cfigital converter of the MSP430 is able to measure unsigned 
voltages ranging from AVss up to the reference voltage applied to the input 
SVcc. If signed measurements, as for electricity meters, are necessary then 
a virtual zero point must be provided. Voltages above this zero point are 
treated as positive ones, voltages below it are treated as negative voltages. 
A few possibilities are shown how to provide this virtual zero point. For more 
information see Section 3.8, Power Supplies for the MSP430. 

To get a common reference voltage in the middle of the ADC's voltage range, 
two voltage regulators with output voltages of +2.5 V and -2.5 V can be used. 
In this case, the common zero connection is the reference for all current and 
voltage measurements. This zero point is connected to one of the analog in­
puts (AO in Figure 4-8). The measured ADC value of this reference voltage is 



subtracted from every voltage and current sample. This way signed, offset cor­
rected measurement values are generated. 

The schematic is shown in Figure 4-8. 

I T 
SVec 

AVec 
2.5 V 

2.5 V 

A1 $ -4.3V102.3V 
OV AO 

MPS43OC32x 

-4.5 V AVss 

. DVss DVec 

I I 
-2.5 V 2.5 V 

Figure 4-8. Split Power Supply for Level Shifting 

Use of a Virtual Ground Ie 
A virtual ground IC can be used to get a measurement reference in the middle 
of the ADC range. The TLE2426 is used for this purpose. All current and volt­
age inputs are referenced to the virtual ground output of this circuit. The main 
advantage is the ability to measure the ADC value of this reference without the 
need to switch off the voltage and current inputs. 

The measured value (at analog input AO), is subtracted from every measured 
current or voltage sample, which generates Signed, offset corrected results 
(see Figure 4-9). 

Typical electrical characteristics of the TLE2426: 

Supply Current 
Output Impedance 
Output Current Capability 
Power Rating at 25°C 
Derating Factor above 25°C 

170 !lA 
0.00750 
±20mA 
725mW 
5.8mW/oC 

No load connected 

For sink and source 
For the Small Outline Package 
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5V 

.---------iA1 

1-...... --~Iio;L;LlAO 
MPS43OC32x 

'-------O;;..V"-IAVSS 

DVss DVCC 

OV 5V 

Figure 4-9. Virtual Ground Ie for Level Shifting 

Resistor Interface (Software Offset) 
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This method uses the fact that the integral of a sine curve is zero, if integrated 
over the angle 21t. Two counters add up the ADC results separately for each 
voltage and current signal. These counters contain the two offsets (in ADC 
steps) after a full period of the ac frequency. These offsets are subtracted from 
the appertaining ADC samples. The results are signed, offset corrected sam­
ples. The current and voltage signals are shifted into the middle of the ADC 
range by simple voltage dividers or with the help of the internal current source. 

Without A Current Source 

The necessary shift of the signed voltage and current signals is made by resis­
tor dividers. The resistor divider of the voltage part is also used for the adapta­
tion of the ac voltage to the ADC range. The current part allows two (or more) 
current ranges. With the closed range switch, high currents can be measured. 
With the switchopen, a better resolution for the low currents is possible. No dc 
flows through the current transformer due to the high input resistance of the 
ADC inputs. 



230 V 
--~ 

1 T 
~ 

AVec 
SVcc 

5V 

1.6Mf.l 22kf.l 

~ 
AO 

H-o~l A1 

TLC40161 
MPS43OC32x 

Range SwItch 
22kf.l 

OV 
AVSS 

DVSS DVCC 

I I 
OV 5V 

Figure 4-10. Resistor Interface Without Current Source 

With A Current Source 

Four ACe inputs can be used with the internal current source. A current, de­
fined by an external resistor Rex, is switched to the ACe input and the voltage 
drop at the external circuitry is measured with the ACe. This current is relative 
to the reference voltage SVcc and delivers constant results also with different 
values of SVcc. If a second current range is needed, a reed relay is needed 
to switch the second load resistor of the current transformer. 

, 

Note: 

The signal at the current transformer has a negative going part-outside of 
the ACe voltage range-therefore a TLC4016 cannot be used). 

The current Ics flows through the current transformer's secondary windings. 
This will need to be checked to see if it is usable. 
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IIOa: 230 V 
~ -- 1 T 

sVcc 
AVcc 
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Figure 4-11. Resistor Interface With Current Source 

Note: 

If the current source is used, only ADC ranges A and B can be used. This is 
because of the supply voltage the current source needs for operation. The 
resolution is therefore only one-half of the normal value. The midpoint of the 
ADC range is then 01 OOOh. 

4.1.4.5 Current Measurement 

Shunt 

4-24 

The main problem of the current measurement is the large dynamic range of 
the input values; ranging from 0.1 % up to 1000% of the nominal value. The 
common methods used to solve this problem are shown in Figure 4-12 and 
are explained in the following text. If range switches are used, it is recom­
mended that a hysteresis for the range selection criteria be used. 

The load current IL flows through a resistor Rshunt (0.3 mO to 3.0 mO) and the 
voltage drop of this resistor (shunt) is used for the current measurement. Due 
to the small voltage drop, especially with low currents, it is necessary to amplify 
this voltage drop with an operational amplifier. This operational amplifier can 
have only a very small phase shift (0.1 0) to get the needed accuracy. The out-



put voltage VOut. which is proportional to the current IL. is measured by the 
MSP430. The amount of VOut is: 

Vout = - Iload x Rshunt x ~~ (open switch. low current) 

R2i I R3 
Vout = - Iload x Rshunt x -R-1- (closed switch. high current) 

The value ki lA/step]. used for the calculation of the meter constant Cz (see 
Section 4.1.3.3) is: 

SVcc R1 
ki = - -- X -.o--""-~ 

214 Rshunt x R2 

ki 
SVcc R1 

---x.".-----:-''-';:v;;--;--;::;.:;-
214 Rshunt x R2i I R3 

o Advantages 

• Resistive behavior 

• Simple 

(open switch. low current. 
see Figure 4-12) 

(closed sw~ch. high current) 

• More than one range possible with switches 

o Disadvantages 

• High losses with high currents 

• Very low output voltage with small currents (amplifier necessary) 

• Only usable with single-phase meters 
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Figure 4-12. Current Measurment 

Current Transformer ' 
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The secondary current Isee of the current transformer, which is 

flows through a resistance Rsec (the resulting resistance of the two resistors 
R2 and R3) and generates a voltage VOUT, which is measured by the MSP430: 

wprlm 
Vout = wsee x Iload x Rsee 

Where: 
Rsec= R2 
Rsec .. R211R3 

(switch open, low cU,rrents) 
(switch closed, high currents) 

The value ki [A/step], used for the calculation of the meter constant Cz (see 
Section 4.1.3.3) is: 

SVcc wsee 
ki = - -- x =---'~=<---

214 Rsee x wprim 
(see Figure 4-12) 

o Advantages 

• Isolation from ac 

• High accuracy for the magnitude of the current (0.1 % reachable) 



Ferrite Core 

• More than one range possible with switched resistors 

o Disadvantages 

• Sensible to dc current: may lead to saturation 

• Costly 

The load current Iload flows through a ferrite core with a single winding. The 
ferrite core has a small air gap. The magnetic flux crossing this air gap goes 
through an air-core coil, which is not loaded. The small output voltage VIc of 
this coil is amplified, integrated, and measured by the MSP430. The voltage 
gain of the preamplifier is used for the range switching. The ferrite core be­
haves as an inductivity L i.e. the output voltage VIc is: 

dl load 
VIc = di x L 

This means, the voltage VIc has a leading phase shift of 90° compared to Iload. 
This phase shift can be corrected by two methods: 

1) Software shift: All current samples are delayed by the time representing 
90° of the ac frequency. This is possible with a circulating buffer and a 
carefully chosen sampling frequency. 

2) Analog shift: An integrator combined with a pre-amplifier is used as shown 
in Figure 4-13. 

The value ki [Alstep], used for the calculation of the meter constant Cz (see 
Section 4.1.3.3) is : 

SVcc ex R1 ki = ---x--
214 v x L 

The formula is valid only ifR2 »R1 (normal case). 

o Advantages 

• Isolation from the ac 

• No saturation possible by dc parts of the load current due to the air gap 

o Disadvantages 

• Low output voltage due to loose coupling 

• Output voltage leads 90° compared to load current 
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• Fast load current changes cause relatively high output voltages (di/dt) 

• Circular buffering or amplification and integration necessary 

ov VOUT 

Compensated Ferrite Core -2.5 V 

Ferrite Core 

Figure 4-13. Current Measurment With a Ferrite Core 

Compensated Ferrite Core 
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The load current !load flows through a closed ferrite core with a primary wind­
ing wprim (normally a single winding). The magnetic flux created by the primary 
winding is sensed by the sensor winding wsense. The voltage of the sense 
winding is amplified and the output current of the amplifier is sent through the 
secondary winding wsee in a way that compensates the primary flux to (nearly) 
zero. This means that the driving of the resistor Rsee is made by the amplifier 
and not by the ferrite core. The compensated ferrite core shows only negligible 
errors. It is only necessary to distribute the two windings in a very equable way 
over the entire core (not as it is shown in Figure 4-13 for simplicity). Additional 
current ranges are possible with switched resistors in parallel with Rsec. The 
output voltage Vout is: 

Wprim Vout = II ad x Rsec x ___ ..L:..::..:.:...----,=_-
o wsensex Rsec 

wsec + vXRsense 

The term wsense x Rseclv x Rsense is the remaining error of the compensated 
ferrite core. 



The value ki [A/step], used for the calculation of the meter constant Cz (see 
Section 4.1.3.3) is (the error term is not included due to its low value): 

SVcc 1 wsec 
ki = ---x--x--

214 Rsec. wprim 

o Advantages 

• Isolation from ac 

• Nearly complete compensation of the ferrite core's hysteresis and 
nonlinearity errors 

o Disadvantages 

• Amplifier necessary 

• Difficulties to stabilize feedback loop 

4.1.4.6 Voltage Measurement 

The problem of the current measurement, the large dynamic range, does not 
exist for the voltage measurement. AC voltage always has a nearly constant 
value. Two measurement methods are used normally. 

ILOAD. 
Live ----..... -----, 

RM Load 

Ne~ml ----~---~ 
I--- ADC 

RC 1 VSEC 

- .... --OV 

Resistor Divider 

Figure 4-14. Voltage Measurement 

Live --1'-;::;:;:;=:;::::;--, 

Neutml --.... -+----+-..1 
VSEC 

+----
OV ADC 

Voltage Transformer 

Load 
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Resistor Divider 

Voltage Transfomer 

The ac voltage Vac is adapted to the range of the ADC by a simple resistor di­
vider. All of the examples given use this method. The amount of Vsec is: 

Vsec = Rm R~ Rc x Vac 

The value ku [V/step], used for the calculation of the meter constant Cz (see 
Section 4.1.3.3) is: 

SVcc Rm + Rc ku = --x---214 Rc 
[V/step] (see Figure 4-14) 

A voltage transformer is used if the ac voltage is very high or if galvanic isola­
tion is needed. Protection (PR) at the secondary side is needed, due to the low 
output impedance of the voltage transformer. 

The amount of Vsec is: 

Wsec 
Vsec = -.- x Vac 

wpnm 

The value ku [Vlstep], used for the calculation of the meter constant Cz (see 
Section 4.1.3.3) is: 

SVcc wprim 
ku = --x--

214 wsec 
[V/step] (see Figure 4-14) 

4.1.5 Single-Phase Electricity Meters 
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The next two electronic electricity meter proposals are made for the measure­
ment of European ac. From the utility, one phase and ground are wired into the 
house. In this way a nominal voltage of 230 V is available. ' 

The reduced scan principle is applied exactly as described in Section 4.1. 

To measure the electric energy consumed, a current transformer or a shunt 
resistor is necessary, both solutions are shown. The voltage of the phase is 
also measured. With this configuration, the energy consumption of the load 
can be measured exactly. 

The measurement sequence for a Single-phase meter is shown in Figure 4-2. 

The ADC of the MSP430 measures the voltage between the AVss and SVcc 
connections with a resolution of 14 bits. To shift the signed voltages coming 



from the current transformer and voltage divider into the unsigned range of the 
ADC, a split power supply with +2.5 V and -2.5 V is used. The common ground 
of the two power supplies has a voltage of one-half of the voltage SVcc. This 
voltage is used as a base for the ADC voltages. The MSP430 measures this 
base voltage at regular intervals and subtracts it from every measured current 
or voltage sample. In this way, signed measurement is possible. 

To have a reference for the measurements a reference diode LM385-2.5 is 
used. The voltage of this diode is measured in regular intervals and the mea­
sured value is used as a base for the·SVcc relative ADC measurements. 

4.1.5.1 Current Measurement With a Shunt 

The solution which uses a shunt resistor for the measurement of the load cur­
rent is shown in Figure 4-15. The load current Iload flows through the shunt, 
which has a resistance of approximately 1.0 mOo The voltage drop at the shunt 
is amplified and measured by the MSP430. The output voltage Vout seen at the 
ADC of the MSP430 is like described in Section 4.1.4.5.1. 

If needed, additional current ranges can be implemented (three analog 
switches of the TLC4016 are not used). 

A backup battery allows the time information (provided by the basic timer) to 
be kept and is also used during power-down periods. All current-consuming 
peripherals may be switched off. Therefore; the reference diode, the range 
switch, and the amplifier are switched off by the SVcc output. The EEPROM 
is switched off with a TP-output. 

A prepayment interface is connected to the MSP430. It allows the ac to be 
switched on after the insertion of a valid prepayment card. 
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Figure 4-15. Single-Phase Electricity Meter With Shunt Resistor 

4.1.5.2 Current Measurement With a Current Transformer 

4-32 

The solution, which uses a current transformer for the measurement of the 
load current, is shown in Figure 4-16. The secondary current Isec of the trans­
former flows through two paralleled resistors and generates a voltage V sec 
which is measured by the MSP430. For currents greater than a certain value, 
the resistor with the lower value is switched on by the analog switch TLC4016. 
For low currents, this switch is· opened to get a higher voltage and, therefore, 
a better resolution. The range switch algorithm uses a certain hysteresis to 
avoid too much switching. 



If needed, additional current ranges can be implemented with the three analog 
switches of the TLC4016 that are not used. 

An AC Down signal out of the power supply connected to the interrupt 1/0 ter­
minal PO.6 allows the MSP430 to save important values (Le., energy con­
sumption) in the EEPROM in case of a power-fail. See Section 5.7, Battery 
Check and Power Fail Detection. 

The RF-readout module is connected to free outputs; this can be an unused 
segment line, a TP output, or an 1/0 pin of PortO. The timing for the RF readout 
is made by the internal Basic limer. It delivers the needed interrupt frequen­
cies. The supply voltage needed for the RF interface is done with a step-up 
voltage supply. It transforms the available 5 V to 6 V or more. 

Live - ...... --""'--'-U_.A~---~I:-LO-A-D----, 2.5 V RF·Antenna 

WSEC I ISEC--+ -2.5 V 

t-...JVR2vv--." Load 
1I1IL1'" 

T+_-f=r~;:T-__ -;::==~_Se=I-~u,p-FreqUenCY Neutral-
Range 

RF-Inlertace 

MOD 2.5 V 
Switch 

4.3MO = 
2.6 V 

Voltage 

33kr.l 82kr.l Current 

OV-4-+--__ --+---------; 
Reference 

LMX85U,e' 

-2.5 V 

AcDown 

AVCC 

SVec 
TP.O 

At 

AO TP.l 

A5 

A4 

PO.l 

AVSS 
PO.3 

PO.8 
PO.4 

DVss DVec PO.5 

-4.5 V 2.6 V 

2.3. 'i. 123"'561.8 

Key 
~2.5V 

PulseWs 

__ lkWhl 

Figure 4-16. Single-Phase Electricity Meter With Current Transformer and RF Readout 
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4.1.5.3 Calculations 

For four single-phase versions, the typical values are calculated: 

o Version with minimum current consumption (low CPU and ADC speed) 

o Compromise between current consumption and resolution (medium CPU 
speed, medium ADC speed). The basic timer is used for the time base. 

o Compromise similar to 2, but with the use of the universal timer/port mod­
ule for the time base. 

o Version with high resolution due to sampling speed. If necessary, the ADC 
Clock can be up to 1.5 MHz. 

Table 4-8. Typical Values for a Single-Phase Meter 

ITEM 
MINIMUM COMPROMIZE 1 COMPROMIZE 2 CONSUMPTION 

AC Frequency 50Hz 50 Hz 

lime Base for ARR AClKl18 Basic limer 2048 Hz 

MClK (CPU Clock) 0.754 MHz 0.754 MHz 

ADC Clock (ADCLK) 0.754 MHz 0.754 MHz 

N (MClKlAClK) 23 23 

ADC Repetition Rate ARR 1620.4 Hz 2048 Hz 

Phase Repetition Rate (ARRl2) . 910.22 Hz 1024 Hz 

Phase Repetition Time (21ARR) 1098.63118 976.56118 

Measurements per 360· (50 Hz)t 36.4 41.0 

Sample Phase Shift a 9.88" 8.790 

Inherent Error:!: -1.5% ~1.2% 

ADC Conversion lime te (14 bits) 175.1118 175.1118 

Interrupt Overhead tl 22 MClKa§ 29.2118 29.21'8 

lime per Measurement tc + tl 204.3118 204.31lS 

lime between interrupts l/ARR 549.3118 488.31's 

ADC loading (tc + til x ARR 37.2% 41.8% 

CPU loading by MPysf 19.3% 21.8% 

Approx. Icc (nominel) for 
820 IlA 6201lA MSP430C323 

t ADC conversions per complete mains period (voltage and current samples) 
:I: The Inherent Error-a constant value-ls compensated with the calibration values 
§ lime from ADC Interrupt acknowledge until next conversion is started (after 22 MClKs) 
\I One Signed multiplication per phase repetttion time; 160 cycles for each one 
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50Hz 

AClKl9 

1.048 MHz 

1.048 MHz 

32 

3640.9 Hz 

1620.4 Hz 

549.32118 

72.8 

4.940 

-0.37% 

125.89118 

10.5118 

136.4118 

274.71lS 

49.7% 

27:.6% 

10351lA 

HIGH 
RESOLUTION 

50Hz 

AClKl5 

2.195 MHz 

1.097 MHz 

67 

6553.6 Hz 

3276.8 Hz 

305.18118 

131.1 

2.750 

-0.11% 

120.251J.S 

10.01lS 

130.3118 

152.6I's 

85.4% 

23.8% 

1872jJ.A 



4.1.6 Dual-Phase Electricity Meters 

Vr 

I 

The measurement sequence for a dual-phase electricity meter is shown in 
Figure 4-17. 

~ a---' 
I I 

Vs Ir Is Vr Va Ir Is Vr 

I I I , I I I I 
~1/ARR I • Time 
I I r Repetition Time ~ 

Figure 4-17. Timing for the Reduced Scan Principle (Dual-Phase Meter) 

Where: 
Repetition Time 1 {Phase Repetition Rate. 

Length of a Complete Measurement Cycle 
1/ARR Repetition Rate of the ADC 
a Inherent Phase Shift of the Measurement Method 
Vx Voltage sample Phase x 
Ix Current sample Phase x 

Two electronic electricity meters are shown, designed for the measurement of 
US domestic ac. As power connections, two phases and a neutral line are led 
into the house. This enables the use of two voltages: 120 V and 240 V. 

To measure the electric energy used, two current transformers are necessary. 
The voltage of each phase is measured directly. With this configuration, the 
energy consumption of any load connection can be measured exactly. Loads 
from any phase to neutral (120 V) are measured as well as loads connected 
between the two phases (240 V). 

4.1.6.1 Current Measurement With Current Transformers and Virtual Ground IC 

A solution which lJses two current transformers for the measurement of the 
load currents is shown in Figure 4-18. The secondary current Isec of the trans­
former flows through two parallel resistors and generates a voltage V sec, which 
Is measured by the MSP430. For currents greater than a certain value, the re­
sistor with the lower value is switched on by the analog switch TLC40161. For 
low currents this switch is opened to get a higher voltage and, therefore, a bet­
ter resolution. The range switch algorithm used has a certain hysteresis to 
avoid too much switching. 

The virtual ground IC delivers a voltage exactly in the middle between SVcc 
and AVss. All measurements refer to'this potential. The virtual ground voltage 
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itself is measured with the analog input A5 and the measured value is sub­
tracted from each voltage and current sample. 

If needed, additional current ranges can be implemented with the two analog 
switches of the TLC4016 that are not used. 

A backup battery allows the time information (provided by the basic timer) to 
be kept during power-down periods. All current-consuming peripherals can be 
switched off; the reference diode, the range switches, the virtual ground with 
the SVcc output, and the EEPROM with a TP output. 

Current Transformer 

Live --..... -...,.,..~-----.... .-, --
Range Load 
Switch 120V 

Load 

Neutral-.-~~--+-~~---t 
240 V 

Load 
120V 

Live -f .... +-+-vvUJ--H---6---1 -- 32kHz 

U 

2x2.2MC TP.O 

TP.1 COM 2.1~. I 23'iS61.B SEL 
5V AVec 

__ !kWh! 

SVec TP.3 

Curre," 
AO 

A1 TP.2 

VOl 
A2 

e A3 
2x33kO 

82110 Virtual Ground 
PO.2 

Reference 
A5 PO.1 
A4 

PO.3 

LMx86Uref 
~2.5V 

AVSS PO.4 

OV DVSS DVCC PO.5 PuIaeWs 

I- 4.5V 

OV BV Backup Battery 

Figure 4-18. Dual-Phase Electricity Meter With Current Transformers and Virtual Ground 
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4.1.6.2 Current Measurement With Current Transformers and Software Offset 

Figure 4-19 shows a two-phase electricity meter that uses voltage dividers to 
get reference voltages in the middle of the supply voltage for current and volt­
age inputs. The resistors of this voltage dividers are chosen to be smaller than 
the maximum source impedance of the ADC (see Section 4.1.4.2, ADC Input 
Considerations). To getthe ADC value ofthe virtual midpoint ofthe ADC range, 
the software offset method is used (see Section 4.1.4.4.3, Resister Interface 
(Software Offset). This value is subtracted from each voltage and current 
sample to get signed, offset-corrected results. 

No backup battery is provided. This means, tbat in regular time intervals, the 
actual amount of the energy consumption needs to be stored in the EEPROM. 
If the power supply used provides an ac down, this storage is only needed 
when this signal is activated. 

An ac down signal from the power supply connected to the interrupt 1/0 termi­
nal PO.6 allows the MSP430 to save important values (Le., energy consump­
tion) in the EEPROM in case of a power failure (see Section 5.7, Battery Check 
and Power Fail Detection). 
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Figure 4-19. Dual-Phase Electricity Meter With Current Transformers and Software Offset 

4.1.6.3 Calculations 

For three dual-phase versions, the typical values are calculated: 

o Version with minimum current consumption 

o Compromise between current consumption and resolution 

o Version with high resolution due to sampling speed. If necessary, the ADC 
Clock can be set up to 1.5 MHz (see Table 4-10). 



.. 
Table 4-9. Typical Values for a Dual-Phase Meter 

ITEM MINIMUM COMPROMISE CONSUMPTION 

AC Frequency 60Hz 60 Hz 

Time Base for ARR ACLKl9 ACLK17 

MCLK (CPU Clock) 0.754 MHz 1.048 MHz 

ADC Clock (ADCLK) 0.754 MHz 1.048 MHz 

N (MCLKlACLK) 23 32 

ADC Repetition Rate ARR 3640.9 Hz 4681.1 Hz 

Phase Repetition Rate (ARR/4) 910.22 Hz 1170.3 Hz 

Phase Repetition Time (4/ARR) 1098.63 !IS 854.5 !IS 

Measurements per 360' (60 Hz)t 30.34 39.0 

Sample Phase Shift ex 11.86' 9.22' 

Inherent Error; -2.10% -129% 

ADC Conversion Time te (14 bits) 175.1 !IS 125.9 !IS 

Interrupt Overhead til 29.2 !IS 21.0 !IS 

Time per Measurement te + ti 204.3 iJS 146.9 !IS 

Time between interrupts l/ARR 274.7 !IS 213.6 !IS 

ADC Loading (te + ti)xARR 74.4% 68.8% 

CPU Loading by MPyslf 38.6% 35.7% 

Approx. Icc (typical) for MSP430 820jJA 1035 jJA 

t ADC conversions per complete ac cycle and phase (voltage and current samples) 
; The Inherent Error, a constant value, is compensated with the calibration values 
§ Time from ADC interrupt acknowledge until next conversion is started (after 22 MCLKs) 
If Two Signed mu~iplications per phese repeWion time; 160 cycles for each one 

4.1.7 Three-Phase Electricity Meters 

HIGH 
RESOLUTION 

60 Hz 

ACLKJ5 

2.195 MHz 

1.097 MHz 

67 

6553.6 Hz 

1638.4 Hz 

610.35 !IS 

54.6 

6.59' 

-0.66% 

120.3 iJS 

10.0 !IS 

130.3 !IS 

152.6 iJS 

85.4% 

23.8% 

1872 jIA 

Two electronic electriCity meters are discussed and designed for the measure­
ment of European domestic ac. As power connections, three phases and a 
neutral connection are led into the house. This enables the use of two voHages: 
230 V (phase to neutral) and 400 V (phase to phase). 

To measure the electric energy used, three current transformers or ferrite 
cores are necessary. The voltage of each phase is measured directly. With this 
configuration, the energy consumption of any load connection can be mea­
sured exactly. Loads from any phase to neutral (230 V) are measured as well 
as loads connected between the phases (400 V). 
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The measurement sequence is shown in Figure 4-20. 

Vr Vs Vt 

I I I 
~1/ARR 

i4-- a---.l 
I I 
Ir Is It Vr 

I I I I 
I 
I I 

~ Repetition Time ~I 

Vs Vt 

I I 
• Time 

Figure 4-20. Normal Timing for the Reduced Scan Principle (Three-Phase Meters) 

Where: 

Vr 

I 

Repetition Time 

1/ARR 
a. 

1/Phase Repetition Rate. 
Length of a Complete Measurement Cycle 
Repetition Rate of the ADC 
Inherent Phase Shift of the Measurement Method 

If a more evenly spaced sequence is desired (Le., for better distribution of the 
multiplications), the following sequence can be used. Current and voltage 
samples are made alternating. 

i4-- a---.l 
I I 

It Vs Ir Vt Is Vr It Vs 

I I I I I I I I 
~1/ARR I • Time 

I I 
~ Repetition Time ~ 

Figure 4-21. Evenly Spaced Timing for the Reduced Scan Principle (Three-Phase Meters) 

4.1.7.1 Current Measurement With Ferrite Cores and Software Offset 

4-40 

Figure 4-22 shows a three-phase electricity meter that uses voltage dividers 
to get reference voltages in the middle of the supply voltage for each voltage 
input. The resistors of these voltage dividers are chosen to be smaller than the 
maximum source impedance of the ADC (see Section 4.1.4.2, ADC Input Con­
siderations). To get the ADC value of the virtual middle of the ADC range, the 
software offset method is used. This value is subtracted from each voltage and 
current sample to get signed, offsel-corrected results. The range is selected 
by different amplifications of the coil preamplifier. 



The reference is provided by the stable +5 V supply. 

If needed and with more TLC4016 ICs, additional current ranges can be imple­
mented. 

A backup battery allows the time information (provided by the basic timer) to 
be kept during power-down periods. All current-consuming peripherals can be 
switched off; including, the resistor dividers, the range switches, the amplifiers 
(integrators) by the SVcc output, and the EEPROM with a TP output. 
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Figure 4-22. Three-Phase Electricity Meter With Ferrite Cores and Software Offset 
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4.1.7.2 Current Measurement With Current Transformers and Split Power Supplies 

The six analog inputs of the MSP430C32x only allow the measurement of the 
three currents and three voltages without external circuitry. If a reference diode 
is needed (Le., because the power supply cannot be used as a reference) or 
one of the methods using a ground that needs to be measured is used, then 
an analog multiplexer, like the TLC4016, is needed (see Figure 4-23). With its 
three outputs (TP.3 to TP.5) the MSP430 selects the phase to be measured. 

No backup battery is provided, this means that in regular time intervals, the ac­
tual amount of energy consumption needs to be stored in the EEPROM. If the 
power supply used provides an ac Down, this storage would only necessary 
when this signal was activated. 

The same circuitry can be used with a virtual ground IC. Only a few modifica­
tions are necessary (see Figure 4-18). 

An ac down signal from the power supply connected to the interrupt I/O termi­
nal PO.6 allows the MSP430 to save important values (Le., energy consump­
tion) in the EEPROM in case of a power failure (see Section 5. 7, Battery Check 
and Power Fail Detection). 
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Figure 4-23. Electricity Meter With Current Transformers and Split Power Supply 

4.1.7.3 Calculations 
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For four three-phase electricity meters, the typical values are calculated: 

o Version with minimum current consumption 

o Compromise between current consumption and resolution 

o Version with high resolution. This version can be used with an MCLK fre­
quency of 3.3 MHz, when a maximum calculation performance is needed. 



o Version with the highest resolution due to the maximum sampling speed 

Table 4-10. Typical Values for a Three-Phase Meter 
MINIMUM HIGH ITEM SUPPLY COMPROMISE RESOLUTION CURRENT 

AC Frequency 50 Hz 50 Hz 

Time Base for ARR 
Basic Timer 4096 AClKJ6 Hz 

MClK (CPU Clock) 1.048 MHz 2.097 MHz 

ADC Clock (ADCll<) 1.048 MHz 1.048 MHz 

N (MClKJAClK) 32 64 

ADC Repetition Rate ARR 4096Hz 5461.3 Hz 

Phase Repetition Rate (ARR/6) 682.67 Hz 910.22 Hz 

Phase Repetition Time (61ARR) 1464.81J.S 1098.63 1J.S 

Measurements per 360· (50 Hz)t 27.3 36.4 

Sample Phase Shift a 13.19· 9.88· 

Inherent Error:!: -2.6% -1.5% 

ADC Conversion Time tc (14 bits) 125.91J.S 125.91J.S 

Interrupt Overhead ti§ 21.0 IJ.S 10.51J.S 

Time per Measurement tc + ti 146.9 lIS 136.4 lIS 

Time between interrupts 1/ARR 244.1 lIS 183.11J.S 

ADC loading 60.2% 74.5% 

CPU loading by MPYs~ 31.3% 20.8% 

Approx. Icc (typical) for MSP430 1035 ItA 1800 ItA 
t ADC conversions per complete ac cycle and phase (voltage and current samples) 
:I: The Inherent Error, a constant value, is compensated with the calibration values 
§ TIme from ADC interrupt acknowledge until next conversion is startlld (after 22 MClKs) 
11 Three signed multiplications per phase repetition time; 160 cycles for each one 

4.1.7.4 TImIng and Software 

50 Hz 

AClKJ5 

2.195 MHz 

1.097 MHz 

67 

6553.6 Hz 

1092.3 Hz 

915.531J.S 

43.7 

8.24· 

-1.03% 

120.31J.S 

10.0 lIS 

130.3 lIS 

152.61J.S 

85.4% 

23.8% 

1872 ItA 

HIGHEST 
RESOLUTION 

50 Hz 

Basic Timer 
8192 Hz 

2.949 MHz 

1.475 MHz 

90 

8192 Hz 

1365.33 Hz 

723.41J.S 

54.6 

6.59· 

-0.66% 

89.5 lIS 

7.5J.LS 

97.0 lIS 

122.1 lIS . 

73.3% 

20.8% 

2423 ItA 

The timing in Figure 4-24 is shown for the compromise solution in Section 
4.1.7.3, Calculations, (see Figure 4-22). The interrupt of the universal timerl 
port module (UT/PM) reads out the actual ADC result, prepares and starts the 
next measurement. The ADC interrupt is not used. 

The instruction timing is shown in CPU cycles (MClK = 2.097 MHz). The ADC 
timing uses an ADCLK = 1.048 MHz (MCLKl2). 

Register R5 is used exclusively by the interrupt handler (status word) to reduce 
the execution time of the interrupt handler. 

Figure 4-24 shows the timing without latencies due to other interrupts. If these 
latencies are included, the overall timing can increase by several cycles. This 
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22c 

makes strict real time programming necessary. For example, any interrupt ser­
vice handler (except the UT/PM handler) must have the instruction EINT (En­
able Interrupt) at its beginning. 

Calculations show that the interrupt latency time does not influence the mea­
surements. The statistical distribution results in an error are nearly zero (see 
Section 4.1.2.5, Measurement Error in Dependence of the Interrupt Latency 
Time). 

UT/PM Interupt UT/PM Interupt 
Start Conversion 

c';;;;';'i;co;;;-p;'-'----G-+ I RaadADC q....---IRETI 

132 ADCLKS (te) 

"- ~ tl I I ACLK = 32!768 kHz l.-- 3Bc ---..: I MCLK = 2.0972 kHz 
I I ADCLK = 1,.0486 kHz 

J'II 136.4p.8 ------... ~ I 

i4~--------- 183.1 p.8 ---------..... ~ ACLKl6 

~~--------- 152.6p.8 ---------~~ ACLKl5 

Figure 4-24. Timing for the Reduced Scan Principle 

The interrupt software used is: (Register R5 is reserved for the interrupt han­
dling to get the shortest possible time) 

Hardware Definitions 

ADAT .EQU OllBh ADC l4-bit result buffer 

ACTL .EQU O1l4h ADC control word 

M2 .EQU 02000h ADC prescaling: ADCLK = MCLK/2 

Rauto .EQU OBOOh Automatic range selection 

CSoff .EQU OlOOh Current Source off 

A5 .EQU Ol4h Analog input A5: Vt 

A4 .EQU OlOh Analog input A4: Vs 

A3 .EQU OOCh Analog input A3: Vr 

A2 .EQU OOSh Analog input A2: It 

Al .EQU 004h Analog input AI: Is 

AD .EQU OOOh Analog input AO: Ir 

soc .EQU OOlh Conversion Start 
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TPCTL 

RCIFG 

TPCNTI 

.EQU 

.EQU 

.EQU 

RAM Definitions 

04Bh 

002h 

04Ch 

UT/PM control word 

UT/PM interrupt flag 

UT/PM counter 

ADCTAB . WORD 0,0,0,0,0,0 Ir,Vt,Is,Vr,It,Vs storage; 

MCLK Cycles 

; Interrupt Latency 6 

UT_HNDLR MOV 

MOV 

TAB . WORD 

&ADAT,ADCTAB(RS) 

TAB(RS),PC 

Store act. ADC result 

Go to individual handler 

Vt,Is,Vr,It,Vs,Ir Six meas. handlers 

Individual handler parts for each phase (current and voltage) 

The next sample is selected and the measurement started. 

vt MOV #M2+Rauto+CSoff+AS+CS,&ACTL Select vt 

JMP UT_COM 

Is MOV #M2+Rauto+CSoff+Al+CS,&ACTL Select Is 

JMP UT_COM 

Vr MOV #M2+Rauto+CSoff+A3+CS,&ACTL Select Vr 

JMP UT_COM 

It MOV #M2+Rauto+CSoff+A2+CS,&ACTL Select It 

JMP UT_COM 

Vs MOV #M2+Rauto+CSoff+A4+CS,&ACTL Select Vs 

JMP UT_COM 

Ir MOV #M2+Rauto+CSoff+AO+CS,&ACTL ; Select Ir 

MOV #-2,RS Restart sequence with 

Common part: time base is subtracted from UT/P. UT/P Flag is 

reset. Next measurement is prepared 

SUB.B 

BlC.B 

ADD 

*6,&TPCNTI 

#RCIFG,&TPCTL 

#2, RS 

ACLK/6 is time base 

Reset UT lNTRPTflag 

To next measurement 

Vt 

6 

3 

6 

; 2 

6 

; 2 

6 

; 2 

6 

; 2 

6 

; 2 

6 

2 

S 

4 

1 
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RETI 

UT_HNDLR MOV 

ADD 

MOV 

TAB . WORD 

; Return from INTRPT 5 

Nearly the same interrupt handler can be used with sample timing defined by 
the basic timer. The differences are: 

o No resetting of the interrupt flag is necessary. It resets automatically. 

o No reloading of the timer register is necessary. The timer runs 
continuously. 

This shortens the interrupt handler by 12 cycles. 

&ADAT,ADCTAB(RS) 

#2,RS 

TAB-2(R5),PC 

Vt,Is,Vr,It,Vs,Ir 

; Interrupt Latency 6 

Store actual ADC result 

; To next measurement 

Go to individual handler 

Six measurement handlers 

6 

1 

Individual handler parts for each phase (current and voltage) 

The next sample is selected and the measurement started. 

Vt MOV 

RETI 

Is MOV 

RETI 

Vr MOV 

RETI 

It MOV 

RETI 

Vs MOV 

RETI 

Ir MOV 

CLR 

RETI 
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#M2+Rauto+CSoff+AS+CS,&ACTL ; Select vt 6 

Return from INTRPT 5 

#M2+Rauto+CSoff+Al+CS,&ACTL Select Is 6 

5 

#M2+Rauto+CSoff+A3+CS,&ACTL Select Vr 6 

5 

#M2+Rauto+CSoff+A2+CS,&ACTL Select It 6 

5 

#M2+Rauto+CSoff+A4+CS,&ACTL Select Vs 6 

5 

#M2+Rauto+CSoff+AO+CS,&ACTL ; Select Ir 6 

R5 Restart sequence 1 

Return from interrupt 5 

The previous interrupt handler can also be adapted to the electricity meter 
shown in Figure 4-23. The input selection with the TP outputs must be in-



cluded into the parts serving the three ac voltages. The selected ADCinput is 
A3 for all voltage measurements. 

4.1.8 Measurement of Voltage, Current, Apparent Power, and Reactive Power 

The reduced scan principle measures only active power. If reactive power or 
apparent power is to be measured, other methods have to be used. The imple­
mented measurement method also depends on the main application of the 
electricity meter. A meter for the measurement of reactive power only probably 
uses a different algorithm than an electricity meter for active power that does 
the reactive power measurement as a background task only. This section 
shows simple methods that use as much as possible the voltage and current 
samples measured for the active power calculation. 

4. 1.B. 1 Measurement of Voltage and Current 

The measurement of voltage and current is possible by summing up the abso­
lute values ofthe ADC results during integer numbers of full periods. The result 
is an indication of the average value of the voltage Vavrg respective of the cur­
rent lavrg. If corrected as shown, the current and voltage values can be used 
for other purposes. The formula for a sinusoidal voltage is shown in the follow­
ing. The one for the current is equivalent to it. 

Vavrg x p 
r;:: = 1.11 x Vavrg 

2,2 

4.1.8.2 Measurement of the Apparent Power 

The apparent power is defined by the formula Papp = U x I. There is no exact 
definition for the apparent power when harmonics are included. A possible 
solution is to use the voltage and current samples (see Section 4.1.8.1 , Mea­
surement of Voltage and Current) taken for the active power measurement. 
These samples are made absolute and summed up for an integer number of 
ac periods. If these summed-up values, representing the average value, are 
multiplied and corrected the apparent power is the result. 

The correction is necessary due to the difference of the average value and the 
effective value of a sinusoidal current or voltage (see Section 4.1.8.1). The ap­
parent energy Wapp is: 

Wapp = Vavrg x lavrg x 1.11 2 x t 
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4.1.8.3 Measurement of the Reactive Power 

Delay of Samples 

Two simple methods exist for the measurement of the reactive power: 

o Delay of the voltage (or current) samples for the time representing 90· 
(1tI2) of the ac frequency. 

o Calculation of the apparent power and the active power 

With a carefully chosen sampling frequency, the angle 90° (1tI2) can be made 
an integer multiple of the sampling interval. If each voltage sample is delayed 
with a RAM-based by this integer number and multiplied with the actual current 
sample, the result is the reactive power. 

EXAMPLE: ac frequency 50 Hz, 90° are 5 ms, with a sampling frequency of 
2000 Hz the necessary FIFO buffer is 5 ms x 2000 Hz = 10 words. For every 
phase 20 bytes of RAM are needed for the FIFO. 

Calculation out of the Apparent Power 

The apparent power is calculated as described in Section 4.1.8.2. The reactive 
power is calculated with the values of the active power and the apparent power 
by the form ula: 

Wreact = jWapp2 - wact2 

Note: 

All the calculations described previously can be made with the MSP430 float­
ing-pOint package. It is available with two lengths of mantissa; 24 bits and 40 
bits (see Section 5.6, The Floating Point Package). 

4.1.9 Calculation of the System Current Consumption 
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The base of the following current consumption table is derived from the follow­
ing data sheet information: 



Table 4-11. Current Consumption of the System Components 
Device lee fose Vee TA 

MSP430C32x (ADC on)t 1000 J,IA 1 MHz 5V -40'C 10 85'C 

TLC4016 20 J,IA N/A 5V 25'C 

TLE2426 170J,IA N/A 5V 25'C 

TSS721'1: 18mAmax. N/A 5V -40'C"lo 85'C 

EEPROM 24AA01§ 100 J,IA max. N/A 5V 0'Cl070'C 

OPAMP TLC1 079 40 J,IA N/A 5V 25'C 

LM385-2.51l 30 J,IA N/A 5V 

LCD 20mmx100mm# 26 J,IA N/A 5V 

Cryslalll 2J,IA 32.768 kHz N/A 
t The supply current of the MSP430 (excluding the ADC) depends on the MCLK In a linear manner. The supply current oflhe ADC 

depends mainly on the current flowing through the internal resistor divider and is, therefore, treated as constant. 
:I: Power for the TSS721 is taken from the M-BUS, so the electricity meter's supply is not used. 
§ Standby current of the Microchip EEPROM. Read and write currents are 1 mA and 3 mAo The EEPROM can be switched off 

completely during the standby periods. 
II The reference diode can be switched off when not used for the reference measurements. 
# A typical current value of 13 nNmm2 Is used. 
II A typical driver power of 10 IlW Is assumed. 

With the previous data, the system consumption is calculated under the follow­
ing conditions: 

o The compromise solutions shown in Sections 4.1.5, 4.1.6, and 4.1.7 are 
used for the six hardware proposals 

o Nominal current consumption is assumed for all system components 

o The ac voltage has its nominal value 

o The ac load current is assumed to be zero. This eliminates the influence 
of different current interfaces. 
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Table 4-12. System Current Consumption for Six Proposals 

Device 

MSP430C32x 

TLC4016 

TLE2426 

TSS721 

EEPROM 
OPAMPs 

LM385-2.5 

LCD I Crystal 

Resislor Dividers 

System Current 

VoHage Path 

Single Single Dual Phase Dual Phase Three Phase 
Phase Phase Virtual Software Three Phase Current 
Shunt Current GroundlC Offset Ferrite Core Transf. Transf. 

820J,tA 820 J,tA 1035 J,tA 1035 J,tA 1800 J,tA 1800 J,tA 

20 J,tA 20 J,tA 20 J,tA 20 J,tA 20 J,tA 40 J,tA 

- - 170 J,tA - - -
- - - - - -

100 J,tA 100 J,tA 100 J,tA 100 J,tA 100 J,tA 100 J,tA 

40 J,tA - - - 40 J,tA -
30 J,tA 30 J,tA 30 J,tA 30 J,tA 30 J,tA 30 J,tA 

28 J,tA 28 J,tA 28 J,tA 28 J,tA 28 J,tA 28 J,tA 

- - - 134 J,tA 134 J,tA -
1038 J,tA 998 J,tA 1383 J,tA 1347 J,tA 2152 J,tA 1998 J,tA 

12mW 12mW 13mW 15mW 44mW 37mW 

The value given for the voltage path shows the power needed for the voltage 
dividers adapting the ac voltage to the analog inputs. All phases of a system 
are included as well as dc and ac energy. 

4.1.10 System Components 

The complete electricity meter system consists of the following parts. The sys­
tem components not described until now are explained in the following: 

CJ The microcomputer MSP430C32x with its 14-bit ADC 
CJ The LCD with up to 10.5 digits (4 MUX) 
CJ The EEPROM with 128 bytes (256 bytes) 
CJ The current interface and the current range switches 
CJ The power supply including the ADe offset generation 
CJ The M-Bus interface (TSS721) 
CJ The infrared interface 
CJ The reference diode (LM385-2.5) 
CJ Other peripherals 

The last four components are not necessary in all applications, they can be 
omitted when not necessary. 

4.1.10.1 The Microcomputer MSP430 

The MSP430 is described in detail in Chapter 1. 
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4.1.10.2 The LCD 

4.1.10.3 The EEPROM 

Any customized LCD can be connected to the MSP430, as long as it meets 
the electrical specifications (i.e., maximum capacitance per segment and 
common lines). Every segment ofthe LCD can be controlled independently of 
the others. This means 256 (or 512) (3 MUX) possible combinations. SL 
means number of segment lines. 

The number of digits dependent on the multiplexing scheme: 

4MUX 
3MUX 
2MUX 
1 MUX 

digits = SU2 
digits =SU3 
digits = SU4 
digits =SU8 

The unused segments H (decimal points) of the digits can be used for the dis­
play of complete words (kWh, Ws, Low Tariff, etc.). This is used within the fig­
ures showing the electricity meter proposals. 

The EEPROM contains data that must not be lost during power down cycles. 

o Calibration data (slopes and offsets for every range and phase) 
o Meter number and other device related numbers 
o Summed-up energy (stored in regular intervals (e.g., every 12 hours)) 
o Other data (e.g., statistical data) 
o Error characteristics (current transformer, ADC, etc.). 

For the summed-up energy, a kind of circular buffer can be used, which avoids 
the use of the same cells for every update. No painter should be used for this 
purpose. A simple check for the lowest stored energy value determines the 
next storage location. This check can be made during the power-up sequence 
and the result is stored in the RAM for later use. This pointer is updated after 
each write cycle to the EEPROM. A checksum or an CRC (cyclic redundancy 
check) can be used for the safety of the stored data. 

The tables containing the error characteristics of the current transformer and 
the ADC can be used for correction purposes if needed. 

Dependent on the amount of data to be stored, an EEPROM with 128 bytes 
or 256 bytes is required. The EEPROM is driven with a software handler. Clock 
and data lines are set and reset by software (also see Section 3.2, Storage of 
Calibration Constants, and Section 3.4, 12C Bus Connections). The EEPROM 
can be switched off by an output, if it is not in use to save current. 
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4.1.10.4 The Range Switches 

The resolution and accuracy of an electricity meter can be increased if more 
than one current range is used. The analog switch TLC4016 with its four chan­
nels is suited very well for this purpose. The MSP430 decides independently, 
for any phase, which current range is to be used. The ranges should be over­
lapping and the design should use a SCHMITI-trigger characteristic for the 
change in ranges. This is done to avoid too many changes. 

4.1.10.5 Power Supplies 

The stability of the power supply used decides if a reference voltage (see Sec­
tion 4.1.10.8) is necessary or not. If the power supply is stable enough, it can 
be used as the reference also. This simplifies the system in three ways: 

o No reference measurements are necessary in regular time intervals (e.g., 
every second) that makes the omission of one sample necessary. 

o No correction calculations are needed to correct the summed-up energy 
values. 

o No reference diode and additional hardware is necessary. The analog in-
put can be used for other purposes. 

The stability of the power supply should be better than a factor of 4 of the de­
sired accuracy of the electricity meter. This is due to the quadratic influence 
of SVcc. See Section 4.1.3.3. More information is given in the Section 3.8, 
Power supplies for the MSP430.. . 

4.1.10.6 The M·Bus Interfsce TSS721 (Option) 

The M-Bus interface allows the connection of the electricity meter to networks. 
The M·Bus interface uses the on-chip UART or one input and one output with 
a software driven protocol. 

Applications of the M·Bus interface: 

o Calibration: connection to the calibration hardware 

o Automatic readout by a host: the actual consumption and other interesting 
values can be read out with a customer defined protocol. 

o Tariff switching: the host defines the actual tariff by sending the appropri­
ate information 

o Test: start of ROM-based testing routines or down-loading and starting of 
RAM-based test routines 



Instead of the M-Bus, any other bus can be used with the MSP430. 

4.1.10.7 The Infrared Interface 

The infrared interface allows bidirectional data transfer for calibration, test, 
and readout. One of the PO-ports can be used with its interrupt capability for 
bidirectional transfers. 

4.1.10.8 The Voltage Reference 

4.1.10.9 Peripherals 

4.1.10.10 Summary 

To have a reference for the measurements, a reference diode LM385-2.5 can 
be used. The voltage of this diode is measured in regular intervals and the 
measured value is used as a base for the SVcc relative AOC measurements. 
To reduce the supply current, the LM385 can be switched on only during the 
reference measurements.(see Figure 4-15). 

No reference diode is necessary if a 5-V voltage regulator (or two 2.5-V regula­
tors) is used with the necessary accuracy and long term stability (see Section 
4.1.10.5, Power Supplies). 

The stability of the reference should be better than a factor of 4 as the desired 
accuracy of the electricity meter. 

Some options show how to interface the MSP430 to other devices. 

o Pulse Output: this outputchanges Its state when a certain energy amount 
Is consumed and Is usable during calibration or accuracy checks. Me­
chanical displays can use this pulse output. 

o Key Interface: keys can be Interfaced very simply to the inputs of the 
MSP430. Interrupt is possible with all PortO inputs. 

o LEOs: currents up to 1.5 mA @ 0.4 V voltage drop can be driven without 
external buffers .. 

o Relays: driving is possible with a simple npn transistor and two resistors. 

The crystal buffer output XBUF provides four different, software selectable fre­
quencies that may be used for the peripherals. These frequencies are: MCLK, 
ACLK (32.768kHz), ACLKl2 (16.384kHz), ACLKl4 (8.192kHz). 

As this chapter shows it is possible to build cost-effective, domestiC electricity 
meters based on the ultra-low-power mixed-Signal RISC-processor MSP430. 

Application Examples 4-55 



The 14-bit ADC and the reduced scan principle eliminate the need for a special 
front end. All necessary system functions are realized with the on-chip periph­
erals of the MSP430C32x. With appropriate calibration methods, the devi­
ations of the ADC can nearly be eliminated. This allows electricity meters to 
be built for classes 2, 1 and 0.5 ranging from Single-phase meters to three­
phase meters. 

A customer developed a Single-phase electricity meter with the following prop­
erties: 

o Class 0.5 meter for the range 0.5 A to 130 A 
o Error within 0.2% from 300 mA to 40 A 
o Use of the full 14-bit ADC range for current and voltage 
o Reduced scan principle is used for the energy calculation (inclusive 

correction formula) 
o Use of a virtual ground and use of the measurement result for the offset 

correction 
o Current transformer is used for current measurement (a low cost version 

is planned with a shunt) 
o Single range only for current measurement (no range switches) 
o Meaningful current measurements down to 25 mA . 

4.1.11 Electricity Met~r With an External ADC 
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Modern three-phase electriCity meters of the upper classes must provide an 
enormous calculation power. Additional to the multiplications cif the current 
and voltage samples for the active power measurement, it is necessary to cal­
culate additional, very computation intensive values: 

o Apparent power for all phases 
o Sum of the capacitive reactive power 
o Sum of the inductive reactive power 
o Calculation of the coscp for every phase 

These calculations need to be done in real time, a microcomputer with high 
throughput like the MSP430C33x is necessary. 

With an external ADC three different scan principles can be used: 

o The reduced scan principle that was used with all electricity meters shown 
in the previous sections. Only one ADC is necessary for current and volt­
age with this method. 

o The alternating scan principle-a TID invention-that also needs only a 
single ADC. Due to pending patent reasons, It cannot be explained further. 
The hardware is Identical to the hardware for the reduced scan principle. 



Mains 

~ 

II 

~ 
TO The Load 

o The typical way with two ADCs: one for the voltage path(s) and one for the 
current path(s). 

Figure 4-25 shows a three-phase electricity meter with a 16-bit ADC. This 
single ADC allows the application of the reduced scan principle and the alter­
nating scan principle. With this hardware in use, class 0.2 is reachable. 

1f.BHADC 
U 

32kHz 

OV OV 

Xln Xout 

AGND DGND 
Voltage R UR 4 MHz 

BO CLK 
US 

B1 RD PO.3 Pulse OUtputs 
UT 

CNVST POA 
CurrentR 

B2 AcUva Power R 
IR CNfL PO.5 B3 Active Power S 
IS 

B4 00-015 Active Power T 
B5 BUSVnNT cap. Reactive Power 

B8 CS PO.7 Ports Ind. Reactive Power 
5V B7 INPUT 

SELECT 
TP.2-TP.4 Apparent Power R 

LMx85 
VDD DVDD 

Apparent Power S 

Apparent Power T 
OV 

-6V BV 5V 

Analog TP.x 5V 

MSP430C33x V 
LEDs 

5V 

123~2.1~. 123~S6'.B COM 
SEL 

TP.y 

MAINSUF PO.1 

CoUpllng-Capa P4.x 0-- 5V 
UTXD Key(s) 

URXD 
Sysl8lll 

+ PO.O 

Vee 5V 

PO.2 Digital 
Vss OV 

Figure 4-25. Electricity Meter With an External 16-Bit ADC 
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4.1.12 Error Simulation for an MSP430C32x-Based Electricity Meter 

4.1.12.1 Abstract 

The simulation methods that lead to the results shown in this chapter are ex­
plained in detail. 

The way the calculation of the error of a simulated electricity meter built with 
the MSP430C32x family is shown in detail. A single-phase is simulated; this 
can be the only phase or one phase of a poly-phase meter. The error simulator 
(I:S) simulates nearly exact an MSP430C32x working as an electronic elec­
tricity meter. All influences due to the MSP430 hardware are taken into ac­
count. 

o The error due to the characteristic of the ADC 

o The error due to the interrupt latency of the MSP430 interrupt system 

o The error due to the range transition for samplEls at the boundaries of the 
four ADC ranges 

o The error due to the used reduced scan principle for the measurement 

4.1.12.2 Common Measurement Conditions 

4. 1.12.3 Callbrstlon 
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The ES asks at the beginning for' the conditions that are used for all measure­
ment pOints (they are written to the listing file): 

o Listing path name 

o The characteristic of the ADC; the ADC errors (in steps) at the five range 
boundaries are defined. See Figure 4-25 for explanation. 

o The time interval between voltage and current sample pairs (sampling in­
terval) 

o The nominal ac frequency 

o The maximum interrupt latency time; the worst-case value for the time in­
terval from an interrupt request to the actual start of the interrupt handler. 

o The correct ADC value for the external reference voltage 0 V 

o The measurement time for each measurement 

The next step is the calibration for the simulated system. Two calibrations are 
necessary for the complete current range (the ranges shown In the following 
can be changed if needed): 



o One for the current range from 0% to 5% of the maximum current. The cal­
ibration points are 0.5% and 5% of the maximum current. 

o One for the current range from 5% to 111 % of the maximum current. The 
calibration pOints are 5% and 100% of the maximum current. 

The calculated energy for the low and the high calibration points are summed­
up for five seconds each. The conditions are: 

0 Voltage = 100% Nominal ac voltage 

0 CoS<p = 1 Resistive load 

0 Frequency deviation = 0 Nominal ac frequency 

0 Third harmonic in current = 0 No distortion, pure sine 

o Interrupt latency time = 5 lIS No interrupt activity except 
from the basic timer 

o Measurement time for each calibration point = 5 s 

The calculation for the calibration part is made exactly the same way as de­
scribed in Section 4.1.4 for the error calculations. 

The slope and the offset for the correction formulas are calculated with the er­
rors calculated for these two calibration points when compared to the correct 
energy values. The correct energy W is calculated with the formula: 

W = U x I x I x COscp 

4.1.12.4 Conditions for the Load Curve 

Next the ES asks for the special conditions used for a load curve: 

o The start current, the delta current, and the maximum current as a per-
centage of the maximum current 

o The voltage value as a percentage of the nominal voltage 

o The phase angle between voltage and current in degrees 

o The frequency deviation from the no.minal ac frequency 

o The percentage of the 3rd harmonic overlaid to the current path 

o The.running time for each measurement 

With the input of the values, the load curve is calculated and the results are 
written to the listing output. 
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4.1.12.6 Energy Calculation 

The ES now calculates the error for the measurement pOints the same way the 
MSP430 hardware does it: 

o The ES calculates the real ADC value for the given 0 V reference and trun­
cates it. This is the ADC value including the ADC error 

Calculation of the Voltage Sample 

4-60 

The voltage sample used by the ADC to define the actual ADC range (bits 13 
and 12 of the ADC result) is taken: 

o The sampling time for the next voltage sample is calculated with the de­
fined value of the sampling interval; last voltage sample time + 2 x sam­
pling interval. 

o To this calculated voltage sampling time, a random value ranging from 
zero up to the defined maximum interrupt latency time is added. This simu­
lates the interrupt latency time of the MSP430's interrupt system. 

o The correct value ofthe next voltage sample is calculated including the fre­
quency deviation and the given voltage value. The result is a signed ADC 
value (steps, but with a fractional part). 

o The o-V value defined during the common measurement conditions is 
added to the volfage value. This shifts the signed voltage value into the 
unsigned ADC range. 

o This voltage value is modified with the ADCerror defined by the ADC char­
acteristic and truncated afterwards to get an integer value between aOaOh 
to 3FFFh. Overflow and underflOW leads to the results 3FFFH and ooaOh 
respectively. This value is used for the range transition check. 

o The real ADC value of the O-V reference (as seen by the ADC) is sub­
tracted from the truncated voltage value. This is the signed integer voltage 
value used for the calculations. 

The same procedure as shown above is made for a second voltage sample 
measured 361JS later: this second sample is used by the ADC for the 12-bit con­
version.lfthe two samples are lOcated in different ADC ranges-<:lue to the fast 
changing input voltage-then the saturated ADC result for the range of the 1 st 
sample is used, exactly like the MSP430 hardware does it. This treatment sim­
ulates the range transition error of the ADC. If the two samples are located in 
the same ADC range, then the ADC value of the second sample is used for 
the energy calculation: 



calculation of the Current Samples 

Each voltage sample is multiplied with the sum of two current samples; the cur­
rent sample, one sampling interval before it, and one sampling interval after 
it. Both are sampled the same way (in reality each current sample is used 
twice, only one measurement is made). 

The current sample used by the ADC to define the actual ADC range is taken: 

o The sampling time for the next current sample is calculated with the de­
fined value of the sampling interval; actual voltage sample time + sampling 
interval. 

o To this calculated current sampling time, a random value ranging from 
zero up to the defined maximum interrupt latency time is added. This simu­
lates the interrupt latency time of the MSP430. 

o The correct value of the next current sample is calculated including the 
percentage of the current, the frequency deviation, the phase angle, and 
the percentage of the 3rd harmonic. The result is a signed ADC value 
(steps, but with fractional part). 

o The O-V value defined during the common measurement conditions is 
added to the current value. This shifts the current value into the ADC range 

o The current value is modified with the ADC error defined by the ADC char­
acteristic and truncated to get an integer value between OOOOh and 
3FFFh. Overflow and underflow lead to the results 3FFFH and OOOOh, re­
spectively. This value is used for the range transition check. 

o The real ADC value of the O-V reference (as seen by the ADC) is sub­
tracted from the truncated current value. This is the signed integer current 
value used for the calculations. 

The same procedure, as previously shown, is made for a second current sam­
ple measured 36 jJ.S later. This second sample is used by the ADC for the 12-bit 
conversion. The same steps are used, as previously described, for the voltage 
samples. This second sample is used for the energy calculation. 

calculation of the Energy Value 

o The two calculated current samples described in Section 4.1.4.2 are add­
ed and are multiplied afterwards with the voltage sample located between 
them (see Section 4.1.4.1). The result is divided by two (two samples are 
added) and summed-up to the energy buffer containing Werror 

o After the defined measurement time, the energy buffer is multiplied by the 
slope and corrected with the offset (both from the calibration part) 
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o Then the error calculation is made with the normal error formula: 

W -w e = error correct x 100 
wcorrect 

Where: 
e Measurement error in per cent 
Werror Summed-up energy during simulation 
Wcorrect Calculated energy with the formula shown at Section 4.1.2 

4.1.12.6 Explanation FIgures 

Figure 4-26 shows the placement of the current and voltage coming from the 
voltage and the current interfaces into the ADC's range. All calculations are 
based on a use of 90% of the ADC range for nominal (100%) values of current 
and voltage. This means up to 111 % of the magnitude of the nominal values 
are still measured correctly. This allocation can be changed if necessary. 

Figure 4-27 shows the ADC qharacteristic that produces the worst case er­
rors. The ADC characteristic Is defined at the boundaries of the four ADC 
ranges. The values shown are As = 0, Ae = +10, Be = 0, Ce = -10 and 
De=O. 

t ADC Value (Steps) 

3FFFh 100% SVec 

OOOOh AVss 

96%SVcc 

OV 

--+ 
Time 

5%SVcc 

Figure 4-26. Allocation of the ADC Range 
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t ADC Error (Steps) 

10 

As 

ADCValue 

-10 

Figure 4-27. Explanation of the ADC Deviation 

4.1.12.7 Conclusion 

The previous description shows that all steps made from the hardware of an 
MSP430 ADC are also included in the simulation of the ADC's performance. 
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Gas Meter 

4.2 Gas Meter 
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A gas meter is shown in Figure 4-28 that contains all peripherals modern gas 
meters can have. The volume interface is shown as a mechanical meter and 
on the left-hand side for an electronic solution: 

o The mechanical interface uses contacts to give the volume information to 
the MSP430. The output Oz is used for scanning. reducing this way the 
current flow if one or more contacts are closed permanently. 

o The electronic interface outputs electrical signals to the MSP430 as long 
as the enable input is high. The signals V1 and V2 are 90° out of phase 
to allow a reliable distinction of the gas flow direction. 

The gas temperature is measured with the ADC of the MSP430. This allows 
a much better accuracy for the volume measurement, because the depen­
dence of the gas volume to the temperature can be taken into account (laws 
of Boyle-Mariotte and Gay-Lussac). 

Any combination of the peripherals shown can be used for a given solution. 
It is not necessary to have all of them implemented. 

The MSP430 is normally in low-power mode 3 (Icc = 1.6 !IA nominal), but all 
enabled interrupt sources wake it up: 

o Volume Interface: any change of the volume interface when the output Oz 
is active (Hi) 

o Basic Timer: this continuously running timer can regularly wake-up the 
MSP430 in a very large, programmable time range (2-16s up to 2 s). Its 
frequency is derived from the crystal frequency (32 kHz). 

o Key push: all PortO inputs have an interrupt capability. 

OM-BUS Activity: via the PO.O interrupt (RCD). 

o Insertion of a card into the card interface. All PortO inputs have interrupt 
capability. 
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Figure 4-28. Gas Meter With MSP430C32x 

The gas meter can also be built-up with the MSP430C31x or MSP430C33x 
versions. The only difference is the connection of the temperature sensor to 
the MSP430. The followimg figure shows this configuration. 
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Gas Meter 

ov -l ClN 

RREF 
TP.1 

Gas 
TP.O Temperature 

RaENS 
MSP43OXC31x 

~ GassFJow 

-~.,..~-IPO.& 
_...J 

V1 Volume L-~,...-... PO.8 
V2 Interface __ ...J 

LCD 

123a.tS61B __ IT] 

OX 

PO.O 

TXDt---+I 

Reo r---L-_...J 
PO.31+--..... 

Mode/LCD 
A1t----C~+ 

Oyl----+ PuluUers ~ 
;----101 

..... ~-~;......I 

JU V1 

JUV2 

Figure 4-29. Gas Meter With MSP430C31x 
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Figure 4-30 shows the gas meter of the next generation. All system parts­
with the exception of the EEPROMs-are contained on-chip with the 
MSP430C33x. The interface for the measurement of the gas volume is the 
same one as shown in Figure 4-29 

The MSP430 normally uses the low power mode 3 (Icc = 2 ~ typically), but 
enabled interrupts wake-up the CPU within B cycles. See Section 1.4.2, The 
Low Power Mode 3 for an explanation. 
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Figure 4-30. MSP430C336 Gas Meter 

The EEPROMs (128K x 8 Bits) connected to the MSP430 store the usage pro­
file of the gas meter. The consumed gas volume is recorded in dependence 
of time. By a regularly occurring read-out-via infrared interface, M-BUS or 
USART -it is possible for the gas producer to predict the gas consummation 
very precisely. With applications that do not need this feature, only a small EE­
PROM (128x8 Bit) is necessary. It contains the system and calibration data 
and a security copy of the summed-up consummation. The supply voltage for 
the EEPROMs is switched on and off with unused select lines (O-outputs) of 
the on-chip LCD driver. 
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Gas Meter . 
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External peripherals which are not necessary for a given application can be 
omitted. 

The MSP430 is normally in low-power mode 3 (Icc = 2 JlA nominal), but all en­
abled interrupt sources will wake it up: 

o Volume Interface: any change of the volume interface when the output 
TP.5 is active (high). All Port2 inputs have interrupt capability. 

o BasiC Timer: this continuously running timer can regularly wake-up the 
MSP430 in a very large, programmable time range (2-16s up to 2 s). Its 
frequency is derived from the crystal frequency (32 kHz). 

o Key push: all Port1 inputs have interrupt capability. 

OM-BUS Activity: via the USART interrupt. 

o Insertion of a card into the card interface: all Port1 inputs have interrupt 
capability 



Water Flow Meter 

4.3 Water Flow Meter 

=> 

The water flow meter uses an electronic interface to the rotating part ofthe me­
ter. These signals are 90° out of phase for a reliable scanning of the flow direc­
tion. The MSP430 is in low-power mode 3 normally, but every change coming 
from the volume interface wakes it up. 

The water flow meter can also be built up with the MSP430C31 x version of the 
MSP430 family. The only difference is the connection of the sensor for the wa­
ter temperature. See the previous gas meter solution with the MSP430C31 x 
version for details. 
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Figure 4-31. Electronic Water Flow Meter 
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Heat Allocation Counter 

4.4 Heat Allocation Counter 

Twisted Pair 

A heat allocation counter with the possibility of sending out the consumption 
information via RF frequencies is shown in the following figure. The RAM infor­
mation is scrambled by the DES standard and sent out using the biphase code 
with .19.2 kBaud. The software routines used for the scrambling and the trans­
mission are contained in Section 5.5.7. Data Security. 

The heat consumption is computed from the measured room temperature and 
the heater temperature. The heat consumption is summed up in the RAM and 
can be read out by the LCD, the M-BUS connection or the RF interface. 

The calibration constants and all other important data are contained in the 
MSP430's RAM. Low-power mode 3 (CPU off, oscillator on) is used normally; 
the CPU wakes-up at regular intervals (e.g., 3 minutes), measures the heater 
and the room temperature. and then calculates the actual energy consumption 
of the radiator. The formulas used take into account the non-linear characteris­
tics given by the thermodynamic theory. This is possible by the use of tables 
or quadratic or cubic equations. 
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SEL 123liS61.B __ IT] 

Figure 4-32. Electronic Heat Allocation Meter With MSP430C32x 

4-70 

The heat allocation meter can be built-up also with the MSP430C31 x version. 
Figure 4-33 shows the schematic for this configuration. 
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Figure 4-33. Electronic Heat Allocation Meter With MSP430C31x 
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Heat Volume Counter . 

4.5 Heat Volume Counter 

I waterFlow 

The heat volume counter shown in Figure 4-34 was developed for relatively 
long sensor lines. An LC filter is used to prevent spikes and noise at the analog 
inputs of the MSP430. The system nonnally runs in low-power mode 3 (CPU 
off, oscillator on) but any change at one ofthe inputs will wake-up the MSP430. 

Every platinum sensor from 100 0 to 1500 0 can be used with the MSP430. 
The current source is able to drive them. 

Inlat ,.....J1J(!I.~rnrY'l._--I 

+ OU\Iat'-'IIQi,~r'0~""'-I 
PI100lPlSOO 

Enable 
Volu"" !---'V""1 _________ .. 
Interface V2 

::....JLJ V1 

~V2 

Figure 4-34. Heat Volume Counter MSP430C32x 
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The four-wire circuitry can also be used here. It is possible to use only five ana­
log inputs with the following schematic. The signals at A2 and A5 can share 
one input and one resistor connected to AVss. 
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Figure 4-35. Heat Volume Counter With 4-Wire-Circuitry MSP430C32x 

Figure 4-36 shows the same heat volume counter as Figure 4-35 but with an 
enlargement of the ADC resolution to 16 bits. The principle is explained in 
Chapter 2. 
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Figure 4-36. Heat Volume Counter With 16 Bits Resolution MSP430C32x 
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Battery Charge MaJ.?' 

4.6 Battery Charge Meter 

The battery charge meter shown in Figure 4-37 monitors the charge of a bat­
tery by means of the measurement of all relevant parameters: 

o Battery voltage is measured with the voltage divider R1/R2. This voltage 
is used for the recognition of the end of charge (the battery voltage re­
duces in a defined manner) and for safety reasons. 

o Battery current: the voltage across a shunt gives an exact indication of the 
current flowing. The low shunt voltage is shifted into the AOC range by a 
resistor R3 using the current source of the MSP430. The battery current 
is measured signed (positive sign means charge, negative sign means 
discharge) to give the possibility of treating charge and discharge currents 
differently. 

o Battery temperature: the resistance of the temperature sensor is mea-
sured with the current of the current source. 

The battery charge meter shown is not restricted concerning the magnitude 
of voltage, current, or capacity of the batteries controlled. These depend only 
on the design of the shunt resistor, the voltage divider, and the calibration 
constants used. It can be used for cascaded batteries as well as for single 
ones. This means, it is applicabie from camcorders to forklifts. 

The reference voltage for the system is delivered by the voltage regulator out­
put. Therefore, the voltage needs to be sufficiently stable. Referencing by a 
reference diode (LMx85) is also possible. This reference diode can be mea­
sured at regular intervals and the result stored. It is not necessary to have the 
reference always switched on. 

The charge indication can be given with a numerical LCD or, as shown in the 
following, with a battery symbol showing 20% steps. Other methods for indica­
tion are also possible (e.g. LEOs with different colors that are enabled for a 
short time by a key stroke). 

The voltage regulator needs to have a very low supply current, not exceeding 
some micro amps. This is needed because of the long periods the system can 
be in rest mode (no load). The charge part shown is not necessary for all ap­
plications. It can be omitted if, for example, the available space is not provided. 

The charge transistor Q1 is switched on by the MSP430 if a certain (low) 
charge level is reached. The charge current can be fine tuned by PWM. If the 
charge current is above the maximum current the transistor is switched off due 
to safety reasons. 

The host connection (for example via 232 using the MSP430's UART) can be 
used for the transfer of data; charge, temperature, voltage, current, and other 
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Battery Charge Meter 

To Charger 

system related data. In the other direction, the host can transfer Instructions; 
stop or start of charge, start of data transmission, etc. 

The EEPROM contains the characteristic of the controlled accumulator (maxi­
mum current, nominal capacity, end of charge criteria etc.) The EEPROM also 
contains the actual capacity (dependent on age and charge cycles) and a safe­
ty copy of the actual charge register. For additional hardware proposals see 
Section 5.7, Battery Check and Power Fail Detection. 

To Host 

~ 
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Current R3 
AO J---'I/I,fy-f---l--' 

R2 Shunt 

Figure 4-37. Battery Charge Meter MSP430C32x 
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Connection of Sensors 

4.7 Connection of Sensors 

The MSP430 family allows the connection of nearly all types of sensors. Some 
special connections are shown in the following sections. 

4.7.1 Sensor Connection and Linearization 

VI 

Figure 4-38 shows the connection of simple resistive sensors to the 
MSP430C32x. The current source resistor Rex needs to be calculated in a way 
that allows its use for both sensor circuits (Rsens2 and Rsens3). 

The different connections, shown in Figure 4-38, are described in detail in 
Chapter 2, The Analog-to-Digital Converters. 

Rex 
SVee SVee 

R1 RV A3 

ICs+ 
AS 
A4 

A1 
RSENS4 

AO AS 
RSENS RSE A7 

RUN R1 --<_-..... --..... -_-IAGND AGND I--~~-~~ 

V Vee 

OV 3Vor5V 

Figure 4-38. Resistive Sensors Connected to MSP430C32x 

4.7.1.1 ~oltage Supply 

The sensor Rsens1, in Figure 4-38, is connected this way. Resistor Rv sup­
plies the sensor and is used for the Linearization also. The optimum value of 
Rv with dependence of Rsens is: 

Rv = Rm x (Ru + Roj - 2 x Ru x Ro 
Ru + Ro - 2 x Rm 

Where: 
Ru 
Ro 
Rm 

Sensor resistance at the lower temperature limit Tu 
Sensor resistance at the upper temperature limit To 
Sensor resistance at the midpoint temperature (To + Tu)/2 

The ACC values measured are independent of the supply voltage Vcc be­
cause the measurements are made relative to Vcc. 
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Connection of Sensors 

4.7.1.2 Current Supply 

Sensor Rsens2, in Figure 4-38, is connected this way. If a linearization of the 
sensor is desired, the same formula used for the resistor Rv with voltage sup­
ply can be used for the resistor Rlin (see Section 4.7.1.1, . Voltage Supply). 

4.7.1.3 Use of Reference Resistors 
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Two measurement methods with reference resistors are possible; use of one 
reference resistor, and, use of two reference resistors: 

o Measurement with one reference resistor: the reference resistor is chosen 
so that it equals the sensor resistance at the most important measurement 
point. Eventually, sensor and reference resistors are selected as pairs. 
The offset error is completely eliminated. So, only the slope error needs 
to be corrected. 

o Measurement with two reference resistors: the two reference resistors 
represent the sensor resistances at the limits of the measurement range. 
This method also corrects the influence of the internal resistance (RDSon 
of the TP outputs). If sensor and reference resistors are paired, no calibra-
tion is necessary with this method. . 

With two reference resistors Rref1 and Rref2 it is possible to compute slope 
and offset and to get the value of an unknown resistors Rx exactly: 

Rx = Nx - Nref1 x (Rref2 - Rref1) + Rref1 
Nref2 - Nref1 

Where: 
Nx 
Nref1 
Nref2 
Rref1 
Rref2 

ADC conversion result for Rx 
ADC conversion result for Rref1 
ADC conversion result for Rref2 
Resistance of Rref1 
Resistance of Rref2 

[0] 
[0] 

As previously shown, only known or measurable values are needed for the cal­
culation of Rx from Nx. Slope and offset of the ADC are corrected 
automatically. 
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Figure 4-39. Measurement With Reference Resistors 

4.7.1.4 Connection of Bridge Assemblies 

Connection of Sensors 

This kind of sensor is best known for pressure measurement: the voltage dif­
ference of the bridge legs changes with the pressure to be measured. 
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Figure 4-40. Connection of Bridge Assemblies 

Figure 4-40 shows on its left side a bridge assembly that creates a voltage dif­
ference that is big enough to be measured by the ADe of the MSP430. The 
measurement result is the difference of the two results of the analog inputs A2 
and A 1. Due to the temperature dependence of most bridge assemblies, a 
compensation of this dependence is necessary. The sensor, Temp1, is used 
to measure the temperature of the bridge legs. It is integrated in some bridge 
assemblies. 
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The used formula is: 

P = MWP x (Ve + (t - Tk) x Tke) + Yo + (T - Tk) x Tko 

Where: 
P 
MWP 
Ve 
T 
Tke 
Va 
Tko 
Tk 

Pressure to be measured 
Difference of the measured values at A2. and A 1 
Sensitivity of the pressure sensor 
Temperature of the sensor 
Temperature coefficient of the sensitivity 
Offset 
Temperature coefficient of the offset 
Temperature dUriAg Calibration (e.g. +252C) 

The units depend on the system used (hP, kg/m2, kg/mm2 a.s.o.) 

If the difference of the two measurements is too small to be used, an operation­
al amplifier, as shown in Figure 4-40, can be used. Here the ability to measure 
the reference voltage (one of the two bridge legs) is shown also. Analog input 
A4 measures the reference that can be used for the A3 input. The same formu­
la as shown previously can be used when MWP is calculated as shown in the 
following. 

MWP Difference of the measured values at A4 and A3: 
MWP = (A3 - A4) 

The actual measured voltage difference AV between the analog inputs A3 and 
A4is: 

IN = V A3 - V A4 = v x (Vp - Vm) + Vp - Vp = v x (Vp - Vm) 

Where: 
AV Voltage difference between analog inputs A3 and A4 M 
v Amplification of the operational amplifier: v = R1/R2 
Vp Voltage at the bridge leg connected to the non-inverting 

input M 
Vm Voltage at the bridge leg connected to the inverting input M 

The use of the reference input A4 results in correct values for the measure­
ments. If just the differences of two A3 measurements are used, the result 
needs to be corrected due to the following behavior: 

IN = V A32 - V A31 = v x (Vp2 - Vp1 - (Vm2 -. Vm1» + Vp2 - Vp1 

!J.V = (v + 1)(Vp2 - Vp1) - v x (Vm2 - Vm1) 
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It is shown that the voltage differences of the two bridge legs are amplified by 
different factors (v resp v+ 1). 

4.7.1.5 Fixing of Bridge Assemblies Into One ADC Range 

Bridge assemblies normally output only small signals, which makes amplifica­
tion necessary, and have a relatively high temperature dependency. Both ef­
fects together can shift the small amplifier output range over a large input 
range olthe ADC. The four ranges A, B, C, and D olthe ADC do not necessarily 
conform (slope and offset). Figure 4-41 shows a simplified characteristiC of the 
ADC of the MSP430. Two different output ranges of the operational amplifier 
are indicated. The simplest way to get high accuracy is to fix the output range 
of the amplifier to only one ADC range; the one where the calibration was 
made. 

t ADC Error (Steps) -.I ~ Range 2 

10 Range1~ ~ I I 

OFFfh 

I I 
I 
I 

IF .... 2FFFt\ SFF'" '--+ 
ADCYalue 

Range A Range B Range C Range D 

-10 

Figure 4-41. Simplified ADC Characteristic 

This fix is made by two TP outputs with the resistor values Rand 3R (see Fig­
ure 4-42). The software modifies the output state of these two TP outputs in 
a way thatfor a known state olthe bridge (e.g., no load for a scale), the amplifi­
er output is within a certain range of the ADC. Due to the possible TP-port out­
put states Vee, Vss and high impedance, nine different and nearly equally 
spaced correction currents lcorr are available. The correction is possible for 
the positive and for the negative direction. The correction current lcorrcan also 
be fed into the bridge leg, Vm. The equation to calculate the correction resis­
tors Rand 3R is: 

SVCC _ SVcc 
Rb xvx 2 
2 RII 3R + Rb 

2 

Where: 
Rb Resistance of a bridge leg [0] 
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R Resistance of the correction resistor [0] 
v Amplification of the operational amplifier: v = R1/R2 

SVeet----~r----"-__, 

MSP430X32x 

A3 

A4 

TRO 

TR1 

AGND 
Vss vee 

OV 3Vor5V. 

Figure 4-42. Fixing of Bridge Assemblies Into One ADC Range 

4.7.2 Connection of Special Sensors 

4. 7.2. 1 Gas Sensors 

Not just analog sensors can be connected to members of the MSP430 family. 
Nearly all existing sensors can be connected to the MSP430 in a simple way. 
The following examples show this. 

The Figure 4-43 shows the connection of two gas sensors (CH4, hydrogen, 
alcohol, carbon monoxide, ozone, etc.). The gas sensor at the right side of the 
figure (connected to AO) is supplied by the internal current source of the 
MSP430C32x. where the current flowing through the sensor is defined by the 
resistor, Rex. The gas sensor shown on the left side of Figure 4-43 (connected 
to A 1), owns a load resistance, RL. where the output voltage Can be measured 
with the ADC input A 1. 

Both sensors are heated by a pulse-width modulated voltage. The midpoint 
current Is 133 rnA, the power is 120 mW. The measurement of the sensor re­
sistances is always made during the period with no current flow. 

The temperature dependence of the sensor is corrected by the measurement 
of the sensor temperature. This is made by sensor Temp2. 

Only the MSP430C32x can be used for this kind of sensors. They are not po­
tential free so the Universal Timer/Port cannot be used. 
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5V o 32kHz 5V 

VH 
IL...fl 

1----,\/1,/\,---1 POyx,Oz 

IH = 63 - 80 mA(SP-xx) 
IH = 200 mA(ST·xx) 

-+ ...J 
FIS SP·xx1ST·xx 

3 

VH 
L 

PO.x,Oy 1-..JV\J\r----I 

SVec 1----­

. MSP430x32x 

Rext 

Rex 

r---I A3 AO~---+--~~ 

A1 J---..... ---tc, 1 

OV A21-----. 

'--1 

~-+-----_I A4 

1 
A NO 

FlSBp·xx 
AGNO 

RL AGNO 

AGNO OV OV SV 

Figure 4-43. Gas Sensor Connection to the MSP430C32x 

The left part of Figure 4-43 shows the connection of another gas sensor. The 
heating of the sensor is done with 5-V dc. The connection is only possible as 
shown. Therefore, the current source cannot be used. Temperature com­
pensation of the measurement result is needed here also. Sensor Temp1 is 
used for this purpose. 

4.7.2.2 Digital Sensors 

Figure 4-44 shows two digital thermometers. They are controlled by instruc­
tions via the data bus DO. The signed measurement result (9 bits) and other 
internal registers are accessible via the data bus DO. The circuit shown on the 
left uses a clock line for the data transfer, the right one differs the signals by 
their length (short is 1, long is 0). 
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I 
8Vec.Vee 

rOD 
DQ ~ .... PO.y 

GND 

D 81820 I 
AGND 

Vss vee Vss Vee 
To Other 081820 I I 

OV 6V OV 3V(5V) 

Figure 4-44. Connection of Digital Sensors (Thermometer) 

4.7.2.3 Sensors With Frequency Output 
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The output signal of these sensors is a frequency that is proportional to the 
measured value. This output frequency can be connected to any of the eight 
inputs of PortO and counted via interrupt with a simple software routine. The 
frequency is the number of interrupts occurring in a one second window de­
fined by the basic timer. 

If the frequencies to be measured.are above 30 kHz. the Universal Timer/Port 
or the a-bit Interval Timer/Counter can be used for counting. 

The left part of Figure 4-45 shows the connection of the linear light-frequency 
converter (TSL220) to the MSP430. The TSL220 outputs a frequency propor­
tlonalto the Incoming light intensity. The range of this output frequency is de­
fined by the capacitor. ct. Timer_A is ideally suited for these applications (see· 
Section 6.3, The TimecA). 
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r------Isvcc, Vee 

f'U1J1. 1thn 
OUT PO.y PO.x,eIN Data 

Veo 

TAx 
GND 

TSL220 Sensor 

AGND AGND 

VSS Vee 

OV 3Vor5V 

Figure 4-45. Connection of Sensors With Frequency Output Respective Time Output 

4.7.2.4 Time Measurements 

4.7.2.5 Hall Sensors 

If the information to be measured is represented by pulse distances or pulse 
widths, it is also easily measured with the MSP430. The right side of 
Figure 4-45 shows how this is done. 

The signal to be measured is connected to one of the eight inputs of PortO. 
Each one of these 1I0s allows interrupt on the trailing and on the leading edge. 
With the basic timer, an appropriate timing is selected forthe desired resolution 
and the measurement is made. 

The Universal Timer/Port can be used for this purpose also. The pulse to be 
measured is connected to terminal CIN and the time is measured from edge 
to edge. 

Even better resolution is possible with Timer_A. The input signal is connected 
to one of the TA inputs and a capture register is used for the time measure­
ments (see Section 6.3, The Timer_A). 

Digital hall sensors have an output signal that indicates when the magnetic flux 
flowing through them is larger or smaller than a certain value. They normally 
show a hysteresis. 

Figure 4-46 shows the connection of a revolution counter realized with the 
TL3101. Everytime one of the wings breaks the magnetic flux through the 
TL3101, a negative pulse is generated and outputed. These pulses are 
counted by the MSP430 with interrupts. 

Application Examples 4-85 



Connection of Sensors 

.--------ISVcc. vee 

Il..Jl.Jt PO., 

TL3101 

'--------iAGND 

OV 3V(5V) 

Figure 4-46. Revolution Counter With a Digital Hall Sensor 

OUT 

Magnetic Flux 

Analog hall sensors output a signal that is proportional to the magnetic flux 
through them. For these applications, only the MSP430C32x with its 14-bit 
ADC can be used. During the calibration, the ADC value at a known magnetic 
flux is measured and used for the correction ofthe slope. The ADC value mea­
sured at magnetic flux zero is subtracted from any measured value. The calcu­
lated correction values are stored in the RAM or in an external EEPROM. For 
the correction of the temperature coefficient of the hall sensor, a temperature 
sensor can be used. 

Figure 4-47 shows the connection of an analog hall- sensor to the 
MSP430C32x and the typical output voltage dependent on the magnetic flux. 

SVee 
oulput 

Rex 
·vee 

Rext 

0.8 

A1 

0.8 

A2 

AGND 
0.7 

Vss Vee -25 0 215 
MagnetiC Flux 
DensitymT 

OV BV 

Figure 4-47. Measurement of the Magnetic Flux With an Analog Hall Sensor 
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RFReadout 

The read-out of metering devices gets more and more important. The next pro­
posals show electricity meters having the possibility to send their consumption 
information via an RF-transmitter to a host having an RF-receiver. For data se­
curity reasons the information sent is normally encrypted with the DES encryp­
tion algorithm (data encryption standard). The normally used frequency forthis 
purpose is 433 MHz. But, any other allocated frequency can be used. The 
modulation mainly used is amplitude modulation, but Biphase modulation can 
also be used (see Section 4.8.4, RF-Interface Module). 

4.8.1 MSP430 Electricity Meter 

Figure 4-48 shows an electricity meter with the MSP430C32x. This single­
chip microcomputer contains all necessary peripherals on-chip except the EE­
PROM. The measurement of voltage and current is made with an internal 
14-bit ADC. 

The interface to ac is shown only for the phase R. The other two phases Sand 
T use the same interfaces. 

The RF readout is connected to a free output. This can be an unused segment 
line or an output bit of PortO. The timing for the RF readout is made by the inter­
nal basic timer. It delivers the necessary interrupt frequencies. The supply volt­
age needed for the RF-interface is done with a step-up voltage supply that 
transforms the available 5 V to 6 V or more. 

The shown hardware proposal uses the reduced scan principle a way of mea­
surement that needs only one ADC. Every measured current sample is used 
twice; once with the voltage sample measured before and once with the one 
measured after it. This reduces the number of needed samples without loosing 
accuracy. A second advantage is reducing by half the number of needed multi­
plications. This advantage is especially important for microcomputers that do 
not have a hardware multiplier like most members of the MSP430 family (see 
Section 4.1, Electricity Meters). 
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Figure 4-48. MSP430C32x EE Meter With RF Readout 

4.8.2 MSP430 Electricity Meter With Front End 
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Figure 4-49 shows an electricity meter with the MSP430C31x. This single­
chip microcomputer contains all necessary peripherals on-Chip except the EE­
PROM and an ADC. The measurement of voltage and current is made with a 
external front end. This front end does the scanning, multiplying, and delivers 
pulses to the MSP430 with a defined value per pulse (Wslpulse, kWslpulse 
etc.). The MSP430 counts and accumulates these pulses. 

The interface to the ac is shown only for the phase R. The other two phases 
Sand T use the same Interface. 



AC 

N R S T 

II 
U 

Us 
Uy 

RFReadout 

The RF readout is connected to a free output. This can be an unused segment 
line or an output port of PortO. The timing for the RF readout is made by the 
internal basic timer, the TimecA, or by the Universal Timer/Port Module. All 
of these are able to create the necessary interrupt signals. 

RF-Anl8l'lna 

8V Vee 

RF-Module 

MOD OV 

OUT 2.1 Li. 123"1S61B 
__ lkWh! 

IR 1-3 
,...-<II--...... +--!!!--I ... Fronlend PO.m 

II 
~ 

ToLoad8 

IS 

IT 

OV 

L....---:R=-an-ge-=c:-on:-tro:-I:------1 PO.n 

Key 
PO.. ~+ 

PulaeWs 

...... --+lH f- 4.5 V 

Backup Battery 4.5V 2.5V 

. Figure 4-49. MSP430 EE Meter With RF Readout 
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" 

4.8.3 MSP430 Ferraris-Wheel Electricity Meter With RF Readout 

If an RF readout is needed for conventional Ferraris-wheel electricity meters, 
an MSP430C31 x can be used. An optical or magnetic pick-up counts the revo­
luti(ms ofthe disk and outputs a signal to the MSP430. The MSP430 computes 
the used energy and displays it on the LCD. In regular intervals, the measured 
energy is transmitted using the RF module. 

8V Vee 

RF·Module 

MOD OV 

OUT 2.1'1. 123t.fS61B 

t-~~~~+I PO.m 

Plck.up 

PO.z ~ + 

PulaaWa 

..... ~HI- -45V 

Backup Battery ...,2.tiV 2.5V 

__ !kWh! 

Figure 4-50. MSP430 With a Ferraris-Wheel Meter and RF Readout 
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4.8.4 RF-Interface Module 

The RF-interface module is normally connected to a supply voltage coming 
from the power supply of the EE Meter. If this voltage is not available, the step­
up power supply (shown in Figure 4-51) can be used. An existing supply volt­
age (here 3 V) is transformed by the step-up circuit to 8 V and regulated down 
to the desired 6 V. The step-up frequency is delivered by the microcomputer. 
This frequency starts at a relatively high value and is then lowered to get a 
good power efficiency. 

Complete RF-interface modules are available from several sources. 

8V 6V 

. f..-----, f ~ 
3 V _.rY'Irn._ ...... -I ...... ..-:--I Vcc 

L1 

1flIL1' Stap'up Frequency --'I!I.fIr--I 
Voltage 

C1 Regulator 

GND--------~~--__ --~ 

RF 
Modulator 

GND 

Modulation ------------------------------1 MOD 

Figure 4-51. RF-Interface Module 

Modulation modes used are: 

RF·Antanna 

o Amplitude modulation-the 433-MHz oscillator is switched on for a logic 
1 and switched off for a logic 0 (100% modulation). 

o Biphase modulation-the information is represented by a bit time consist­
ing of one-half bit without modulation and one-half bit with full modulation. 
A logic 1 starts with 100% modulation, a logic 0 starts with rio modulation. 

o Biphase space--a logic 1 (space) is represented by a constant signal dur­
ing the complete bit time. A logic 0 (mark) changes the signal in the middle 
of the bit time. The signal is changed after each transmitted bit. A station­
ary transmitter off is also treated as a mark state. 
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Information 

Amplitude 
Modulation 

BI·Phase Space 

The last two modulation modes do not have a dc part. Figure 4-52 shows all 
three modulations modes. 

o o o o 

Figure 4-52. RF-Modulation Modes 

4.8.5 Protocol 
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The protocol used with the RF readout is not yet defined. One way is to split 
the data into blocks of 64 bits and transmit these 64-bit blocks (with or without 
encrypting them with the DES encryption algorithm). 

Another way is to use the M-BUS protocol. If the long-frame format is used, 
data blocks up to 252 bytes can be transmitted in one frame. If the DES algo· 
rithm is used, these data blocks should have a length of 8 bytes (64 bits) due 
to the definition of the DES algorithm. Figure 4-53 shows a long frame block 
for 8 bytes of data. This block can be adapted to the needs ofthe wireless read­
out, for example the use of a 16-bit checksum due to the higher error probabilI­
ty of this kind of transmission. 
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Figure 4-53. M-8US Long Frame Format 
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RFReadout 

To allow the receiver hardware to adapt to the signal strength, a preheader 
needs to be transmitted in front of the data. This preheader has the same 
length as the data block and transmits customer owned information (e.g., a se­
ries of marks, which results in an alternating sequence of transmitter on and 
off Signals in bit length). Figure 4-54 shows the sequence of a data transfer. 

Pre-Heeder Firat Data Block Second Data Block 

Figure 4-54. Sequence of Data Transmission 

4.8.6 RF Readout With Other Metering Applications 

The RF readout solutions shown can also be used for gas meters, water me­
ters, heat allocation meters, and other metering applications. The voltage sup­
ply for the RF part needs to be adapted to the battery used. A battery with a 
high internal resistance needs a large capacitor in parallel to deliver the neces­
sary current. 
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4.9 Ultra-Low-Power Design With the MSP430 Family 

To get all the low-power advantages that the MSP430 family can provide, 
some rules need to be kept in mind. This section gives an overview of these 
rules. 

4.9.1 The Ultra Low Power Concept of the MSP430 
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A lot of microcomputer applications need to be driven by a battery. It is impor­
tant for these applications ~o run as long as possible with as small a battery as 
possible. To reach a battery life longer than 5 years, often the configuration 
shown in Figure 4-55 is used: 

o A low-frequency oscillator feeds a prescaler that outputs a pulse every 
second (or in longer intervals), which sets a flip-flop. This pulse delivers 
the needed time base with the accuracy of the crystal. 

o The flip-flop switches on the supply voltage of the microcomputer. The mi­
crocomputer measures the necessary system values with an external 
ADC (necessary if the accuracy needed exceeds 8 bits) and calculates the 
results afterwards. . 

o The results are summed-up in an external RAM and are displayed with an 
external LCD driver. 

o After the completion of all necessary activities, the microcomputer resets 
the flip-flop and switches itself off in this way. The current consumption of 
the system reduces to the value that is drawn by the oscillator, the RAM 
and the LCD driver. 

The system shown in Figure 4-55 needs a relatively large battery due to the 
high number of external system components (>5 Ah). 
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LCD 

123--t561B 
--~ 

ov 

Figure 4-55. Conventional Solution for a Battery-Driven System 

The MSP430 family allows the realization of the system shown previously as 
a one-chip solution with all the external components shown being on-chip pe­
ripherals. Figure 4-56 shows this advanced MSP430 solution. The cost ad­
vantage with fewer external components is obvious. 

LCD 

123--t561B 
--~ 

PO.x Peripherals 

---... Port AO 
Signals ~ Port A1 8eneors 

--+ Port A2 

vss VDD 

0.5 Ah BaIIery 

. Figure 4-56. Solution With MSP430 for a Battery-Driven System 

The only constantly active components are the 32-kHz,osciliator, the basic tim­
er (which wakes-up the CPU in regular time intervals), the RAM, the LCD driv­
er, and the interrupt circuitry. The CPU, the ADC, and other peripherals are 
switched-on only when needed. 
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The advantages of this concept are: 

o Smaller boards due to reduced chip count 
o Lower assembly cost with fewer components 
o Simplicity of design 
o Lower current consumption (smaller power supply or battery needed) 
o Faster development 

The following examples use the current characteristic shown in Figure 4-57 
(these values are only approximated and are not assured). 

NOMINAL CHARACTERISTICS OF LPM3 AND LPM4, NO 
PERIPHERAL MODULE ACTIVE 

4.3 

LP~ 3/ 

1.8/ 
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1.8 - ~PM4 

0.055 o 
-40 

0.055 
o 

1.1 

0.05 ~ < 
20 40 60 85 

T - Temperature -"C 

Figure 4-57. Approximated Characteristics for the Low Power-Supply Currents 

4.9.2 Current Consumption and Battery Life 
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To reduce the current consumption of an MSP430 system as far as possible, 
it is necessary to use low power mode 3 nearly all the time. The basic timer, 
LCD, and interrupt circuitry are switched on. The CPU is switched off and is 
active only in programmed time intervals (e.g., every second). The current 
consumption characteristic of such a system, that is active every second and 
that measures and calculates only once a minute, looks as seen in 
Figure 4-58. 
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Figure 4-58. Current Consumption Characteristic 

'ee = 

Where (all times in seconds): 
t1 Time interval between two measurements (here 60 s) 
t2 Time interval between two wake-ups (here 1 s) 
t-nm Processing time after the wake-up. Typically 25 J.I.S to 1 ms. 

(e.g., incrementing of a second counter, check if t1 elapsed) 
tADe Processing time with switched-on ADC 

(100 J.I.S to 150 J.I.S per measurement) 
tproc Processing time with enabled CPU. Typically 1 ms to 100 ms. 

(e.g., calculations after measurements) 
tLPM3 Time, the system runs in low power mode 3 

The average current Icc taken out of the battery by the MSP430 is: 

1 (11 ( 11 )) IT i2 x Irim x 'AM + Iproc x 'AM + tADe x 'AMAD + t1 - i2 x trim - lADe - Iproc x 'LPM3 

This can be simplified, if tTlm, tADe and tproc are much shorter than t1 (normal 
case): 

'ee .. ~ x trim x 'AM + il(lproc x 'AM + tADe x 'AMAD) + 'LPM3 

EXAMPLE: with T A = 20·C, t1 = 60 S, t2 = 1 s, tTlm = 0.5 ms, tADe = 0.15 ms and 
tproc = 10 ms a medium current Icc results: 

'ee .. 1~ x 0.5 ms x 0.35 rnA + s6s (10 ms x 0.35 mA + 0.15 ms x 0.8 mAl + 1.6 IIA = 1.83 IIA 
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With the previous example, the current consumption increases by 15% when 
compared to the consumption of low power mode 3 (1.6 J1A). 

4.9.3 Minimization of the System Consumption· 

The overall current consumption of an MSP430 system is composed of three 
components: 

o The consumption of the MSP430 
o The self-discharge of the battery 
o The consumption of the other system components 

The minimization of the current consumption of each o(these three parts is dis­
cussed in detail. 

4.9.3.1 Consumption of the MSP430 
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The low power mode 3 needs to be the normal mode. Active mode and active 
mode with ADC are used only when necessary. The rules for the minimization 
of the current consumption are: 

o Leaving of the low power mode 3 (wake-up) as rarely as possible, for ex­
ample only every two seconds. 

o The program executed after the wake-up should be as short as possible 
(e.g. incrementing of a counter and test, if other activities are necessary). 
If this is not the case, immediately return to the low power mode 3. 

o The time intervals between active periods (calculations) should be as long 
as possible (e.g., 60 s or longer). 

o Only the necessary peripherals should be switched-on (e.g., the ADC 
should be on only during a conversion). After the completion of a conver­
sion, the ADC should be switched-off. This can be supported by the use 
of the ADC interrupt. The interrupt service routine of the ADC switches off 
the ADC supply SVcc after the conversion is completed. 

o Use of the interrupt capability of PortO to react to external changes. The 
inputs can interrupt using the leading or trailing edge of an input signal. 
This ensures the detection of any changes at the inputs without current­
wasting polling. 

o Extremely long calculations (Mclaurin-series, Taylor-series) should be 
avoided. Instead tables should be used. The seven addressing modes, 
provided by the MSP430, are tailored especially for fast table processing. 

o Subroutine CALls should be avoided in frequently used software parts 
due to the overhead time they need. Instead, the code should be rein-
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serted two or three times (like a MACRO). More ROM space may be need­
ed, but lewer CPU cycles are needed. 

D Short loops should be avoided due to the overhead needed for the loop 
control. Instead, the loop should be placed into a linear code sequence. 

D For longer software parts, the working registers R4 to R15, should be 
used. This results in shorter execution times and in less needed ROM 
space. 

D Immediate stop 01 the calculation il ORe 01 the lactors-and therefore the 
result too-is zero 

II the previouly mentioned recommendations are applied, the current con­
sumption 01 the active mode is 01 second order only. The exceptionally high 
calculation power 01660 million instructions per Ws (MIPS/w) allows it to ig­
nore the influence of a single instruction. Much more important is the current 
consumption during the low power mode 3. 

4.9.3.2 Self Discharge of the BsUery 

The self discharge element of the current consumption can not be Influenced. 
The battery manulacturer recommendations should be followed. It is recom­
mended that the battery be placed in a relatively cool location inside of the 
case. This means do not place the battery next to hot parts (e.g., the radiator 
to be measured with a heat cost allocator). 

An estimation value often used for the self discharge of a battery during 10 
years, is to calculate only with 70% of the nominal charge. This relates to 3.5% 
self discharge per year. Expressed by a discharge current this means 2 pA for 
a 0.5 Ah battery. 

4.9.3.3 Current Consumption of Other System Components 

Crystal 

This current is composed of different parts. The most important ones are dis­
cussed. 

The desire for good quality and a low frequency (32,768 Hz) results in a need 
for a driver power ranging from 1 J!W to 10 J!W. With a supply voltage of 3 V, 
the current consumption ranges from 333 nA to 3.33 pA (with an average of 
1 pA). This current is always being consumed, because the 32-kHz oscillator 
is used for the time base. 

Liquid Crystal Display 

The desire lor good quality and a low Irequency (128 Hz) results in a need for 
current consumption of approx. 13 nNmm2 segment area. For an LCD with 
100 mm2, this means a current near 1 pA (1.3 pA). 
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External Circuitry 

The MSP430 allows the optimization ofthe chosen LCD with external resistors 
for the threshold generation. 

Keys and switches connected to inputs that can be closed during long periods 
(e.g. the contact of a flow meter with no consumption) should have the possibil­
ity to be switched-off. This is done to avoid the currentflowing through the inter­
nal or external pulldown resistor. Figure 4-59 shows three examples: 

If a contact is closed longer than a defined time, the external pulldown resistor 
or the contact is switched off. From then on a regular polling is necessary to 
monitor contact.lfthe contact opens again, the normal mode is installed again. 

OV 

MSP430 
3 V --o---(C>---< ..... -i--. 

Internal Pulldown Reelstor 

From System - _...J External Pulldown Resistor 

OX,PO.y,TP.z 

3V 

6 
No Pulldown Resistor 

OV 

Figure 4-59. Connection of Keys to Inputs 
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Inputs of the MSP430 should always have a defined potential, otherwise a cur­
rent flows inside of the input circuitry. Figure 4-59 shows three possible ways 
to connect an Input to a defined potential. 

o Input with an internal pulldown resistor: The key'is switched off with an out­
put. This is made by switching the output to Vss (DVss) or to high imped­
ance. 

o Input with an external pulldown resistor: The resistor itself is switched to 
the potential given by the switCh. This means that if the switch is open Vss 
potential, when it is closed Vcc potential. 

o No pulldown resistor: The switch connects to defined potentials in both 
positions 
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External circuitry (e.g., sensors) should be turned off if not in use. This can be 
established by the use of the SVcc terminal. (Figure 4-60, left). If the current 
is too high for the SVcc terminal (I >1 OmA), then a pnp transistor may be used 
forthis purpose (Figure 4-60, right). The SVcc terminal is used then as a refer­
ence input for the ADC. 

While a 1-k.Q sensor sinks 3 rnA when always connected to a voltage Vcc = 
3V, the same sensor sinks a very low average current if connected only every 
60 s during the conversion time of the ADC (135j1S @ ADCLK = 1 MHz): 

I - 3Vx135us - 675 A sensor - 1 kOx60s - . n 

The average currentthrough the sensor is now only 6.75 nA if it is consequent­
ly switched on only during the conversion time. 

32kHz _riDE 3V 

PO.X,Oy 

~ 
f...- [<10mA 

sVec sVcc f"'- [ >10mA 

MSP430X32x 

External 
ClrcuHry - A3 AO 

External 
Clrculby 

1 
AVss AVss 

1 

DVss DVec 

1 I~ 
Figure 4-60. Turnoff of External Circuits 

With the consumption values now known, the lifetime of the battery can be cal­
culated: 

Where: 
tBatt Lifetime of the battery in hours 
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Qeat! Usable charge of the battery in Ah 
(70% of 0,5 Ah for this example) 

Icc Supply current of the MSP430 in A 
(1.831JA for this example) 

ISys Current through the external circuitry 
(crystal, LCD, peripherals) in A (2.31JA for this example) 

For a free-air temperature T A = 20°C and the consumption values calculated 
before the lifetime of the battery is: 

teat! = 0.7 x 0.5 Ah = 84745 h 
1.83 IlA + 2.3 IlA 

This number of hours is equivalent to 9.6 years. 

For ambienttemperatures deviating from T A = 209C the typical values for ILPM3 
can be seen in Figure 4-57. The exact values for the self-discharge of a battery 
can be found in the device specification. 

4.9.4 Correct Termination of Unused Terminals (3xx Family) 
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MSP430 terminals not used need to be treated in a defined manner. 
Table 4-13 defines the correct termination for every terminal not used in a giv­
en application. The termination shown assures lowest supply current. 
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Table 4-13. Termination of Unused Terminals 

PIN POTENTIAL COMMENT 

AVec OVcc Necessary for EPROM programming also 

AVss OVss Same as AVec 
SVec Open Can be used as a low impedance output 

Rex! Open 

AO to A7 Open Switched to analog inputs: AEN.x - 0 

Xin Vcc If no crystal is used 

Xout Open If no crystal is used 

XBUF Open Output disabled 

CIN Vss Can be used as a digital input 

TPO.O to TPO.5 Open TP.5 switched to output direction, others to high impedance 

PO.Oto PO.7 Open Unused ports switched to output direction 

R03 Vss Display off: LCOMO - 0 
R13 Vss 

R23 Vss 

R33 Open 

SOtoS1 Open 

S3to S20 Open Switched to output direction 

ComOtoCom3 Open 

RST/NMI OVcc resp. Vcc Pull-up resistor 100 kO 

TOO Refer to the specific device data sheet 

TOI Refer to the specific device data sheet 

TMS Refer to the specific device data sheet 
TCK Refer to the specific device data sheet 
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4.10 Other MSP430 Applications 

4.10.1 Controller for a Heating Installation 
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A very big part of the energy consumed in Europe is used for the heating of 
rooms. An intelligent controller for heating is a good investment. The controller 
shown in Figure 4-61 has the following possibilities for the optimum alignment: 

o Opening and closing of the mixing valve (regulates the mix of hot boiler 
water with the warm reflux). 

o Control of the burner (off/on). 

o Control of the circulation pump (off/on respective of the speed control with 
a TRIAC). If the outdoor temperature is above a programmable limit (e.g. 
20°C) then the circulation pump is off. 

o Supervision of the boiler temperature: measurement with a temperature 
sensor. 

o Supervision of all temperature sensors (feasibility checks) 

The criteria for all of these decisions comes from the following inputs: 

. 0 The measured outdoor temperature is the most important value. It is mea­
sured with an outdoor temperature sensor. 

o The system and calibration data stored in an EEPROM: 

• The individual characteristic of the building stored as the slope and off­
set for the characteristic of the temperature of the Circulating water to 
the outside temperature 

• The dependence of the boiler temperature on the outdoor tempera­
ture 

• The outdoor temperature that stops the activity ofthe circulating pump 
(above this temperature only the warm water supply stays active) 

• The minimum switch-on time of the burner (a burner must be on for a 
minimum time to stay within given environmental limits) 

• Recording of errors for the field service (maintenance) 

o The mean value of the outdoor temperature for the last 24 hours. This 
gives a value for the storage of heat in the walls and influences the neces­
sary amount of energy. 



Other M,SP430 AppHcations 

o The chosen mode: 

• Summer Mode: Only the warm water supply is on, the mixing valve is 
always closed, the circulation pump is always off 

• Winter Mode: Normal heating is on 

• Maintenance Mode: For repair and maintenance only 

• Day Mode: the heating installation runs always independent of the 
time 

• Night Mode: the heating installation runs always with the lowered val­
ues for the night 

• Switch-off or temperature lowering during the night (circulating pump 
on resp. off) 

The advantages of a microcomputer controlled heating installation are: 

o Self calibration of the complete system is possible: learning phase and fi­
nal optimization. 

o Exact tuning of the optimum mixing temperature due to the involvement 
of all relevant data 

o Exact knowledge of the timing for the temperature lowering at evening 

o Optimum usage of the heating material with minimum pollution 

o Different concepts are possible for the control of the heating installation 
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r----4--''Mr-I TPO.1 

MPS43031x 

.-------+~Nv-lTPO.2 1/0 
1/0 
1/0 

1/0 

1/0 I/O 

OV 5V 

MON 23:'15 
2lB!~D 

Open Mixing Value 

Close Mixing Value 

Burner on 
Circulation Pump on 
(TRIAC Control) 

Figure 4-61. Intelligent Heating Installation Control With the MSP430 
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In a very similar manner to the heating installation controller of Figure 4-61, 
for a house with more than one zone or area, the MSP430 can also be used 
in a temperature controller for a single-family home. Figure 4-62 illustrates this 
example. The boiler control is made by a second MSP430 or by the same 
MSP430 as shwon in the figure (with the 232 driver shown dotted). The room 
temperature selection-is made with a potentiometer or a small keypad. Both 
possibilities are shown in Figure 4-62. 
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TUE 22:--t9 
2D.lr-¢-D 

Room Temperature Sensor ..... -"IQ'v-i 

_"'IA1\r-t TPO.2 
TDX to Boller Controller 
RCV From Boller Controller 

-j C1 o V I---+---i CIN Burner on 

Pump on 

110 

Vss VCC 

OV 5V 

Figure 4-62. Heating Installation Controller for a Single-Family Home 

4.10.2 Pocket Scale 

Figure 4-63 shows a simple battery-driven scale. The measurement is made 
with a strain gauge bridge that changes its resistance ratio when loaded with 
a weight. A tare key allows it to zero the scale in an unloaded state. The mea­
sured zero value of the ADC is stored hi the RAM and subtracted from every 
measurement value. To hold the highly temperature-dependent bridge assem­
bly in the ADC range where the calibration was made, a simple hardware fix 
is added to the MSP430. The fixing of the bridge output Is made by two TP out­
puts with the resistor values Rand 3R (see Figure 4-63). The software modi­
fies the output state of these two TP outputs in a way, that for a known state 
of the bridge (e.g. no load), the amplifier output is within a certain range of the· 
ADC. Due to the possible TP-port output states Vee, Vss and high impedance, 
nine different and nearly equally spaced correction currents lcorr are avail­
able. The correction is possible for the positive and for the negative direction 
(signed correction). The correction current Icorr can also be fed into the bridge 
leg Vm if needed. 

The calibration data (e.g., slope and offset) is located in the RAM or-if exis­
tent-in an external EEPROM. 

The software normally uses the low power mode 3 (LPM3) whenever possible 
to reduce the current consumption: 
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o After the completion of a measurement and accompanying calculation, 
the result is moved to the LCD controller and the external components are 
switched off with SVcc. The CPU is then switched off (with the LCD staying 
on). 

o With the On/Off key the scale can be switched off, which means that the 
LPM3 is used until the On/Off key is pressed once more. 

It is also possible to use the low power mode 4 (Icc = 0.1 jJA) instead of the 
LPM3. 

I~S6B 
--~ 

Ranga 
+ --&-C 

On/Off 
+ ---o--"""C 
Tare Key 
+~ 

o 32kHz 

SVcc 
COM 
SEL 

MSP430C32x 

A31---..... -C 

A4 
Reference 

PO.3 3R 
TP.O· Icorr 

PO.4 TP.1 +-+ 
R 

PO.II AOND 

Vee Vss 

3 V/1.6 p.A i t--it--.. 

3V 

Bridge AlI88I11bly (Strain Gauge) 

RB 

RS 

Figure 4-63. Simple Battery Driven Scale 

4.10.3 Remote Control Applications 
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The MSP430 can also be used for remote control applications like a car lock 
or a TV remote control. 

o During the inactive time periods LPM3 or LPM4 may be used. This pro­
longs the life of the battery~ven for relatively small ones-to several 
years. 

o The Interrupt capability of all PortO inputs (8) ensures an extremely fast re­
sponse to a pressed key. Without polling of the keypad, the software is 
within 8 cycles at the start of the interrupt handler. 
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Figure 4-64 shows a transmitter for security applications. The storage of the 
secret code for the execution of the function is shown in three ways (only one 
is actually in use): 

o Storage in a small EEPROM 

o Storage in a diode matrix. An inserted diode means a 1 otherwise a O. The 
maximum number of diodes defines the number of possible codes (2n). 

o Rolling Code: The software generates random numbers and stores them 
in the RAM. These random numbers are synchronized for the transmitter 
and the receiver. Any activation of the key means a step to the next code. 
No external hardware is necessary 

If the current through the infrared diode is less than 20 rnA, then the npn tran­
sistor can be replaced by parallel TP ports. This is shown in Figure 4-64. 

TP.4 

TP.3 

TP.2 

PO.7 
MSP430C31x 

r-"':':';¥--I 02-On 

3V 

~ PO.y '__---' 
PortO 

VCC 

TP.1 ........ \I\I\,--~ 

Vss 

3 V/1.611A i t--It:-~l-____ ..J 
3V 

Figure 4-64. Remote Control Transmitter for Security Applications 

A remote control transmitter for audio or video sets is shown in Figure 4-65. 
Normally for this purpose, no external memory is necessary just a keypad with 
a lot of keys. The high currents through the IR diode need another power stage 
with a very large capacitor in parallel. This is necessary because the battery 
cannot deliver the high peak currents. 
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o 32kHz 3V 

MSP430C31x 
2.20 

Ox q PO.y '-------' 
PortO 

TP.4 

TP.3 

TP.2 

Vee VSS 

.,. 1 mF 

3V11.ellAl r ir-:-_____ .... -1 
3V 

Figure 4-65. Remote Control Transmitter for AudioNideo 

IR-Slgnal 
of Remota Control Tr. 

\ 

The MSP430 can be used also for the remote control receiver. Only a simple, 
inexpensive IR receiver without decode logic is necessary for this application. 
The received instruction can be decoded directly by the MSP430 with its high 
calculation power. This is possible for all the modulation modes used (ampli­
tude modulation, biphase code, biphase space code). The decoded signal is 
used immediately (car lock application) or given to a host computer (video set). 

o 32kHz 

Pre-Bit Info 

J J 
MSP430C31x 

IR ---u--uu-u-u-
PO.l (RXD) 110 I-~n~. 

l1li III I11III l1li To The Controlled System 

'\ 
Pre-Bit 

OV 3V/6V 

Figure 4-66. Remote Control Receiver With the MSP430 

4.10.4 Sub-Controller for a TV Set 

4-110 

The following functions of a TV set can be handled by a an MSP430: 

o Receive of the IR remote control signals. Only a simple and inexpensive 
IR receiver without decode logic is necessary. The received information 
Is decoded by software and Is sent to the host computer in serial or parallel 
form. 
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D Keypad scan 

D Channel display and control of LEOs. 

D Protection for children: This is done by programming a key sequence that 
protects the TV set against unauthorized use. 

D Security function for the host computer: If the host computer does not re­
spond within a given time interval, the MSP430 resets the host. 

D Real-Time Clock: The 32-kHz ACLK frequency is used for the clock func­
tion of the complete system. This can also be used for turn-off sequences; 
if for longer than 10 minutes, no sender was active, or no remote control 
input was received. 

If an MSP430 is used for the functions described previously, then anything can 
be switched off except the IR receiver. The power consumption decreases to 
few milliwatts. 

All necessary data and instructions use the infobus (watchdog response, key­
board inputs, remote control signals, LED information etc.). 

0 32kHz 

LCDorLEDs 

SEL 

Pre-BII Info COM 

J J MSP430C31x 

'lJL.fln...flf" AC TV Set 
1055, 6 J18IBII 

Receiver 
PO.1 (RXD) 

...... -~1I0 

b::-::-::-.Tubs Heating (PWM) 
TV-Controller 

n 
~----------~----~~I~ Information Bus 

110""'----------1 Out 
Watchdog In 

110 RESET 
Watchdog Out 

OV 5V 

Figure 4-67. MSP430 in a TV Set 
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4.10.5 Sub-Controller of a Personal Computer 

elephone 
Network 

The MSP430 can handle the energy management and switch off all currently 
unused peripherals (disk, screen, CPU, etc). When they are needed again, it 
can switch them on in a defined manner. Within an ac-powered PC, the 
MSP430 can take over the following functions: 

o Switching off the PC when it is not used for a defined time period. 

o Watchdog function for the host computer 

o Defined switch off for all currently unused peripherals 

o Defined turn on procedure for needed peripherals 

o Keyboard/keypad scan 

o Real time clock: The basic timer with its accurate crystal frequency is used 
for the time base 

32kH rlDh' z 

Data/lnstructlona 
PO 

ox 
Wstchdoa Out RESET 

Ringer Frequency 
PO.1 (RCV) PO 

Watchdoa In 

Interface Oy 
Disk On/Off PC-Interface 

Control Or Screen On/Off 
Oz 

~ 

PO CPU On/Off 

in 
Op 

Keyboard INTERPT 
Om 

Real-time Clock 
PO 

,..---., MSP430C31x 
To Modem/ ,I Kayboard ~ FAX·Hardware P1 

'-___ ...I 

VSS VCC 

I I 
OV 5V 

Figure 4-68. MSP430 in an AC-Powered Personal Computer 
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If the personal computer is powered by a battery (i.e., a Laptop computer), an 
MSP430C32x can take over the complete battery management: 

o Turn on and turn off of the charger as indicated by the charge state of the 
battery 

o Calculation of the actual charge state out of weighted charge and dis­
charge currents 
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D Battery protection against overcharge, overload, and excessive 
temperatures 

D Measurement of current, voltage, and temperature of the battery. The on­
chip 14-bit ADC is used for this purpose. 

D Transmit of the measured and calculated battery state to the host 
computer. 
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Figure 4-69. MSP430 in a Battery-Powered Personal Computer With Battery 
Management 
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4.10.6 Subcontroller of a FAX Device 

Interface 

n 

Telephone 
Network 

Within a FAX device, the MSP430C31 x can take over the following functions: 

o Switch off of the device if no activity is needed 

o Switch on for a recognized telephone call 

o Keyboard scan and information transmit to the host computer 

o Display control for a 12.5-digit LCD display 

o Real-time clock for the complete system 

o Watchdog function with the on-chip watchdog 

o 32kHz 

Ringer Frequency 2.3. a.t. 123'iS61.B PO.1 (RXD) SEL 

COM 
Control _"IErrorl 1+-------1~I/O 

MSP430C31x Malna Fax Equipment 

FAX·Hardware 

Figure 4-70. MSP43D-Control/ed FAX Device 

4-114 



Digital Motor Control 

4.11 Digital Motor Control 

4.11.1 Introduction 

The MSP430 family is shown with digital motor control (DMC) applications. 
Several hardware proposals are given for pulse width modulation (PWM) and 
TRIAC-control applications for electric motors. Numerous circuit and pulse 
diagrams show the application of the MSP430 family for different electric-mo­
tor types and control concepts. For each hardware proposal the applicable 
motor types are named. 

The application of DMC has some advantages compared to conventional con­
cepts for motor control: 

o Better energy efficiency 
o Better control of motor behavior (speed, torque, direction of rotation) 
o Easy supervision of important motor conditions (temperature, current, 

speed) 
o Use of smaller motors due to the better adaptability to the given application 
o Use of motor types not applicable without DMC (brush less dc motors, re-

luctance motors) 

If the accuracy of fixed-point calculations is not sufficient then a floating point 
package (FPP), designed especially for real time applications, is available 
from TID. This memory and speed optimized FPP can be configured for two 
different number formats: 32 bits or 48 bits. The high speed results from the 
RISC-mode it uses (mainly single~cle instructions) and the Involved hard­
ware multiplier (see Section 5.6, The Floating Point Package). 

Additionally a C Compiler with a very good code efficiency is available. 

4.11.1.1 The MSP430 Family 

The MSP430 family with its 16-bit RISC architecture is capable to realize very 
advanced control concepts. This is especially true for the MSP430C33x with 
its hardware multiplier (16 x 16 bits) and its 16-bit limer_A allowing fourinde­
pendent PWM-outputs. All MSP430 family members use the same instruction 
set and the same CPU. This eases the use of existing user software enor­
mously. 

Operating frequencies up to 3.8 MHz and singl~cle instructions when the 
register/register addressing mode is used for the source and the destination­
the normal addressing combination for real-time applications-results in cal­
culation speeds formerly only known by DSPs. This high throughput allows 
calculations and algorithms needing more than 16 times the capability of 8-bit 
microcomputers. 
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Actually, the MSP430 family consists of three different subfamilies. The hard­
ware peripherals of the different stlbfamilies are listed in Table 4-14. The in­
struction set is the same for all members of the family. 

Table 4-14. Peripherals of the MSP430 Sub-Families 
HARDWARE ITEM MSP430x31x MSP430x32x MSP430x33x 

LCD Segment lines 23 21 30 

14-BitADC No Yes No 

Universal Timer/Port Module Yes Yes Yes 

I/Os with Interrupt 8 8 24 
1I0s without Interrupt 0 0 16 

16-Bit Timer_A No No Yes 

USART (SCI or SPI) No No Yes 

HW/SWUART Yes Yes Yes 

Watchdog Timer Yes Yes Yes 

16 x 16 HW Multiplier No No Yes 

Basic Timer Yes Yes Yes 

Oscillator FLL Yes Yes Yes 

LPM3 (Sleep Mode) Yes Yes Yes 

LPM4 (Off Mode) Yes Yes Yes 

Package 56SS0P 64QFP 100QFP 

The Low Power Modes 
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The MSP430 family is designed for minimum power consumption. This fea­
ture-which allows full CPU activity with only 400-11A current consumption 
(730 IIA for the MSP430C33x) for an MCLK frequency of 1 MHz-reduces the 
size of the power supply to a minimum. Five different LPMs are implemented. 
The nominal supply currents lAM are shown for the MSP430C33x. The supply 
voltage is 5 V and the temperature range is from TA = -40 to 85°C. 

o LPMO: the CPU is switched off, the 32-kHz oscillator (ACLK) the main 
clock MCLK (with enabled loop control) and the peripherals are active. lAM 
= 120 IIA 

o LPM1: the CPU is switched off, ACLK, peripherals, and MCLK (with dis­
abled loop control) are active. lAM = 120 IIA. 

o LPM2: the CPU and MCLK are switched off, ACLK and peripherals are ac­
tive. lAM = 1811A. 

o LPM 3: the CPU is switched off, ACLK is active, the basic timer, the watch­
dog, and the interrupt hardware can be active (if enabled). lAM = 5.211A. 
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D LPM4: all parts of the MSP430 are off, only the RAM and the interrupt hard-
ware are powered. lAM = 0.4 f.,IA. 

The motor control software can use these low-power modes to reduce the 
power consumption to a minimum after the completion of the necessary cal­
culations and control functions. 

4.11.1.2 The 16-81t Tlmer_A 

The features of the MSP430 TimecA are very important for the pulse width 
modulation necessary for the DMC (see Section 6.3, The Timer_A, for ex­
planations of the possibilities of this timer. 

4.11.1.3 The Universal Timer/Port Module 

MSP430 family members that do not contain the Timer_A, contain at least the 
Universal Timer PortfModule (UTPM), a combination of two 8-bit timers with 
a common control unit and inputs and outputs. The UTPM is primarily thought 
as an ADC but it is also able to handle timing tasks that are not too complex. 
To get an interrupt request after a certain number of MCLK or ACLK cycles it 
is only necessary to load the negated number of cycles into the count registers 
TPCNT1 and TPCNT2. When the 16-bit counter (used with MCLK) or one of 
the 8-bit counters (used with ACLK) overflows to zero, the corresponding inter­
rupt flag (RC2FG or RC1 FG) is set and an interrupt is requested. This method 
allows precise timings for TRIAC control or PWM control in the range of 128 
Hz to 4000 Hz (repetition rate). This frequency range allows the replacement 
of PWM-control arrangements realized by relays, a solution sometimes need­
ed in automotive applications. 

The UTPM can be used for: 

D Low-frequency pulse width modulation (see Section 3.6.4, PWM DAC 
With Universal Timer/Port Module); up to two independent PWM outputs 
are possible. 

D Measurement of the MCLK frequency when used without a crystal (see 
Section 6.5.8, Use Without Crysta~ 

D TRIAC-triggering: time measurement starting with the zero crossing of the 
acvoltage . 

D Other time measurements 
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Figure 4-71. Block Diagram of the UTPM (16-Bit Timer Mode) 

Figure 4-72 shows the generation of a low-frequency PWM with the UTPM 
alone. The timing for the period and for the pulse width is made by it. If the 
ACLK frequency is used for the timing. then two PWM outputs with up to 
256-Hz repetition rate are possible. The resolution for this case is 128 steps. 

The formula for the period t of the PWM frequency is: 

t = at1 + at2 = n1 + n2 
felk 

The formulas for the pulse width at1 and the corresponding value n1 are (the 
negative value of n1 is loaded hito TPCNTx): 

at1 = f1- - n1 = felk x at1 
elk 

n2 and ~t2 are calculated the same way as n1 and ~t1. 
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" Figure 4-72. Low-Frequency PWM-Timing generated With the Universal Timer/Port 
Module 
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Figure 4-73 shows a solution that is synchronized by the basic timer (only one 
PWM timing is shown). Its interrupt (here with 256 Hz) sets the enabled PWM 
outputs and loads TPCNT1 and TPCNT2 with the corresponding negated 
clock cycles. The PWM outputs are reset by the interrupt software of the 
UTPM. The software is described in the Section 3.6.4. PWM DAC With the Uni­
versal Timer/Port Module). 

\4- f (112 56 Hz) ~ 
OFFh ......... ---+--=*----+---:~I_---
~1 ......... ---~~~---~~~I_--~ 

fTCNTx = 32768 Hz 
128 Steps Resolullon 
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Oh~~--+--~~---+-~~~--
!.t1 = n1lACLK t = n1/fBT !.ti !.t1 

Output "---.,,;=---+'---11.-----+1---11--- Id: Interrupt Latency and SW 
r execution Time 

Basic T. RCxFG Basic T. RCxFG Interrupts 

Figure 4-73. Low Frequency PWM Timing by Universal Timer/Port Module and Basic 
Timer 

4.11.1.4 The Basic Timer 

Additional to the timers mentioned previously a third timer exists that is respon­
sible for the time base (date and time). This timer runs completely independent 
of the other timers and outputs frequencies (0.5 Hz to 65536 Hz) derived from 
the crystal (ACLK) or the system clock generator (MCLK). This way the lim­
er_A and the UTPM are completely free for real time operations. 

4.11.1.5 The Watchdog Timer 

This 15-bit timer can be used for simple timer tasks or for security purposes. 
If it is not reset during a selectable time interval. then the watchdog timer resets 
the MSP430. This allows to reinstall the lost system integrity. The watchdog 
timer is switched on during the powerup and is active immediately. 

4.11.2 Digital Motor Control With Pulse Width Modulation (PWM) 

Two modes of the limer.fi-the Up Mode and the Up/Down Mode-are de­
veloped especially for PWM generation. These two modes are used with all 
hardware proposals of this section. 
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4.11.2 •. 1 Single Output Stages 

If only one direction of rotation is necessary, or the change of the direction of 
rotation can be made with a relay having change over contacts, then a single 
output stage can be used. 

The direction of rotation of the motor is changed by a relay that switches the 
polarity of the field winding. For only one direction of rotation, this relay is 
omitted and the field winding is connected in a fixed way. All of the examples 
shown can use the high-frequency PWM (> 15kHz) or the low-frequency PWM 
(100 Hz and higher). 

The formulas for the coming circuit proposals are: 

V nCCRx V - --Y!!L x n 
m = nCCRO x motor'" nCCRx - V motor CCRO 

Where: 
Vm Mean voltage at the motor M 
V motor Voltage of the motor power supply M 
nCCRx Content of Compare Register x 
nCCRO Content of Compare Register 0 (Period Register) 

If the Up Mode of the Tlmer_A is used, then nCCRO must be substituted by 
nccRo+1. 

Single Output Stage With a Bipolar Power Transistor 

4-120 

Figure 4-74 shows a single output stage with an npn power transistor. The 
PWM signal generated by Tlmer_A is amplified by two inverters and con­
nected to the base of the power transistor. The inverters used must be able to 
drive the relatively high base current of the power transistor. Eventually sever­
al inverters need to be connected in parallel at the outputs, where serial resis­
tors force an equal current distribution. Figure 4-74 shows such a driver stage 
at the lower right-hand corner. A simple configuration with only a pnp and an 
npn transistor is possible. This driver stage is shown In Figure 4-74 at the low- . 
er left-hand corner. The EEPROM connected to the MSP430 contains the 
characteristic of the controlled motor. 
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Figure 4-74. Transistor Output Stage Allowing Both Directions of Rotation 

o Applicable for 

• DC motors, universal motors 

o Advantages 

• Minimum component count for only one direction of rotation 

Single Output Stage With a MOSFET Power Transistor 

Instead of npn power transistors it is possible to use power MOSFETs or 
IGBTs. Figure 4-75 shows a circuit with a dual MOSFET TPIC2202 and the 
appropriate MOSFET driver SN75372. An MSP430C33x controls two PWM 
outputs. If the calculations for the control of the motors are not too complex 
then it is possible to control up to four motors with a single MSP430C33x. 

If a change of the rotation direction is needed then a relay can be used as 
shown in Figure 4-74. 

The temperature of the motors can be observed with a temperature sensor, 
e.g., an NTC sensor. Figure 4-75 shows the circuitry needed for the connec-
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tion of two temperature sensors to the ADC inputs of the MSP430C33x. The 
motor temperatures are measured in appropriate time intervals to be sure, that 
typical circumstances are present. In case of a overly high motor temperature, 
the microcomputer switches off the MOSFET power transistor and switches 
on a fault indication LED. 

The observation of the motor current is realized with an operational amplifier 
working as a comparator. The circuitry shown allows eight different thresholds, 
a number that can be mOdified easily if neCessary. The control ports P3.x 
switch between the high state and the high-impedance state to get eight differ­
ent thresholds (corresponding to eight different temperatures). 
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Figure 4-75. Control for Two MOSFET Output Stages 
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o Applicable for 

• DC motors, permanently excited dc motors 

o Advantages 

• Control for two motors with minimum chip count 

The MOSFETs shown in Figure 4-75 allow up to 7.5-A continuous current si­
multaneously for both transistors. The TPIC2202, having only one source ter-
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minai, allows only the measurement of the sum of both motor currents. If it is 
necessary to observe the motor currents independently, then the TPIC5201 
can be used. This dual power MOSFET features two source terminals. For mo­
tor currents up to 3 A, the 15-V supply for the SN75372 is not necessary, a 5-V 
supply is sufficient for switching on of the MOSFETs. 

4.11.2.2 H-Brldge Output Stages 

An H-bridge means the fourfold expense for power drivers compared to a 
single output stage. But if integrated drivers are used, the resulting expense 
is often lower than with a single output stage because the change of the direc­
tion of rotation is included with the H-bridge. 

H-Brldges for Low Motor Voltages 

For voltages up to 36 V, TI offers several solutions. Into this range belong the 
automotive sector and industrial control applications working with 24-V supply 
voltage. 

Output Stage With a MOSFET BrIdge 

Motor control applications working with relatively low voltages can use the Tex­
as Instruments H-bridge TPIC5424. This device is able to switch currents up 
to 3 A at a maximum voltage of 60 V. The complete circuit diagram is shown 
in Figure 4-76. 

The gate voltage necessary for the turn-on of the upper MOSFETs of the 
bridge is generated by a bootstrap circuit. This gate voltage must be at least 
5 V higher than the motor voltage. The MSP430 generates this support voltage 
using two capacitors and the low impedance power driver BT1. 

Three simple solutions are possible for the generation of the higher gate volt­
age: 

o PWM-output TA3 is used with the full PWM frequency (e.g. 19.2 kHz) 

o PWM-output TAO is used with the divided PWM frequency (e.g. 9.6 kHz 
for 19.2 kHz). This is due to the only possible output mode for the period 
register, CCRO: Toggle/Toggle Mode. This way has the advantage that no 
other timer output is needed. Figure 4-76 illustrates this solution. 

o One of the available output frequencies of the XBUF output is used: ACLK, 
ACLK/2 or ACLKl4 corresponding to 32.768 kHz, 16.384 kHz or 8192 Hz. 

Solutions 2 and 3 have the advantage of an always usable output voltage. 
They are independent of the PWM output driving the electric motor. 
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Note: 

The power inverter shown, BT1, can be replaced by some parallelec:l---flot 
used otherwise-output ports of the MSP430C33x. They are toggled by a 
software routine, driven by the interrupts of the period register CCRO. , . 

A possible driver circuit for a pulldown outpLit is shown on the upper left-hand 
corner in Figure 4-76: the additional npn transistor lowers the output imped­
anceforthe positive supply voltage 12 V.ln this way the supply voltage VCC2 
(18 V), which is needed for the output voltage of the SN75372, is generated. 

The two lower MOSFETs of the H-bridge are driven in a static manner from the 
MSP430 with 5-V signals. This is possible because the TPIC5424 is designed 
for logic drive signals (0 to 5 V). 

As shown in Figure 4-76, the TPIC5424 has integrated all the necessary 
protection diodes on-chip, therefore, no external components are needed. The 
signals at the MOSFET gates are shown in Figure 4-76 in the lower right-hand 
corner. 

An exceedingly high motor current is detected by the overcurrent detection cir­
cuit. If a fixed voltage level, according to a maximum current value, is exceed­
ed (e.g. by a blocking of the motor or by a current flow through one of the. H­
bridge halves), the comparator output switches off the lower drivers T2 and T 4 
and the additionally requested PO.O or NMI interrupt (highest priority) takes 
steps to switch off the output stages completely. The overcurrent detection can 
be realized with more than one level as shown in Figure 4-75. The motor tem­
perature can be measured the same way as shown in Figure 4-75. 

o Applicable for 

• Permanently excited dc motors 

o Advantages 

• Few components necessary 

• Both directions of rotation possible 
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Figure 4-76. PWM Motor Control With a MOSFET H-Bridge 

H-Bridge for a Brush/ess DC Motor 

Figure 4-77 shows the control circuitry for a brush less dc motor. Complemen­
tary power MOSFETs are used for the output stages. The advantage of this 
solution is that no gate voltage above the motor voltage Vmotor is necessary. 
The H-bridge is switched over dependent on a position indicator working with 

Application Examples 4-125 



Digital Motor Control 

4-126 

the Hall effect. If the change of polarity is necessary for the motor voltage, the 
Hall sensor requests interrupt and the MSP430 switches over the H-bridge. 

The necessary delay times (ts in Figure-77), which prevent a short circuit in 
the H-bridge halves, are generated by software. If this happens, the over cur­
rent detection switches off the two lower MOSFET drivers T2 and T 4. The si­
multaneously requested interrupt at input PO.O will force the software to 
switch-off all of the MOSFET drivers completely until the lost synchronism is 
built-up again. 

The direction of rotation can be reversed by changing the current flow direction 
relatively to the location of the rotor. This is possible because the field is gener­
ated normally with a permanent magnet (see pulse diagram in Figure 4-77). 

The circuitry shown does not need a tachometer because the signal of the Hall 
sensor can be used for the measurement of the number of revolutions per sec­
ond. 

The TLE2144 operational amplifiers are used as MOSFET drivers with their 
outputs and as AND gates with their inputs. The circuitry used with the eight 
equal resistors allows the two control outputs PO.4 and PO.5 to switch the PWM 
signal to the proper MOSFET transistors. The PWM-output TA f is able to 
switch off both operational amplifier drivers and to switch on the driver pre­
pared by PO.4 or PO.5. This solution leaves three compare/capture latches for 
other purposes. 

The type of control (only one-half of the bridge is switched by the PWM Signal, 
the other half is switched on in a static manner) decreases the switching 
losses. 

o Applicable for 

• Brushless dc motors 

o Advantages 

• Both directions of rotation possible 

• Robust motors without brush wear usable 

• Control of the motor speed without expense (Hall sensor) 
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Figure 4-77. PWM Motor Control for Brushless DC Motor 

The circuitry shown in Figure 4-77 can be used for other kinds of motors too. 
The driving signals for the H-bridge need to be changed in this case (see Fig­
ure 4-76) for a de motor. The measurement of the motor temperature is pos­
sible the same way as shown in Figure 4-75. 

H-BrJdge With Integrated Output Stages 

Figure 4-78 shows an integrated H-bridge motor controller made with an 
L293. Two H-bridges of this type are integrated in a single package. The rota­
tion direction of the motor is controlled with the static output P1.1. The pulse 
width ofthe PWM outputTA 1 defines the effective output voltage for the motor. 

If the rotation direction is changed then the PWM signal at output TA 1 needs 
to be inverted. The output signal that represents the highest output voltage for 
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The motor current is observed with a threshold detection circuit (analog 
comparator at Input PO.O). The motor current can be compared to four analog 
thresholds. The resistor connected to output Pl.0 ensures that the enable in­
put of the L293 is switched off during the initialization of the MSP430. No cur­
rent can flow through the motor during this time. 

o Applicable for 

• Permanently excited de motors 

o Advantages 

• Change of rotation direction is included 



5V 

TA1 

P1.0 

P3.O 

NMIPO.1 

P3.2 

V 

ov 

Digital Motor Control 

• Minimum hardware, single chip only 

• Built-in overheating protection 

• Full PWM resolution for both rotation directions 

• No generation of delay times necessary (included in the L293) 
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Figure 4-79. Integrated PWM Motor Control With Dynamic Rotation Direction 

Figure 4-79 shows the L293 used with a dynamic definition of the rotation di­
rection. Input 4A is always driven with the inverted signal of input 3A. The in­
verter at input 4A can be omitted if the inverted signal at 4A is generated by 
a second PWM output (e.g. TA2). The CapturelCompare Latch CCR2 portion 
is always loaded with the same value as CCR 1, but the inverted output mode 
of the output unit 1 is used (e.g. set/reset instead of reset/set). 

Motor standstill can be done in two ways (see the diagrams in Figure 4-79): 
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o With a PWM impulse ratio equal to one (see the left-hand side of the dia­
gram) 

o By switching the enable input of the L293. low (here P1.0, see the right-
hand side of diagram) 

With the same PWM output frequency, the dynamic control allows only half of 
the resolution when compared to the static control shown in Figure 4-78. One 
resolution bit is necessary for the sign of the direction of rotation. 

o Applicable for 

• Permanently excited dc motors 

o Advantages 

• Change of rotation direction is included 

• Minimum hardware, single chip only 

• Built~in overheating protection 

• Sliding transition possible for the change of the rotation direction 

• No generation of delay times necessary (included in the L293) 

The two circuits shown In Figures 4-78 and 4-79 can be controlled together 
with a single MSP430C33x. Both figures can be integrated Into one schematic 
with only slight modifications. 

If a lower motor current is sufficient, the L293D can be used. 

Both the L293 and the L293D feature built-in overheating protection that 
switches off the device during over temperature events. 

H-Bridge for High Motor Voltages 
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Electric motors with voltages above 60 V need completely different driver con­
cepts. The motor drive is most often made with IGTBs. The voltages and cur­
rents necessary for driving these semiconductors are delivered from special 
driver ICs. These ICs also contain the necessary safety circuits. An example 
for such a driver circuit is shown in Figure 4-80. The MSP430 defines the rota­
tion direction with the PWM outputs TA 1 and TA2. Only one of the PWM out­
puts is active, the other switches on the lower transistor of the other half of the 
bridge (static). This way the cirCuitry shown in Figure 4-80 is able to run the 
motor in both directions. As the supply voltage for the motor, the rectified ac 
voltage of 230 V is used. 

The capture/compare register 4 works as a capture latch. It is used for the 
speed measurement of the motor (input TA4). 
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Figure 4-80. PWM Motors Control for High Motor Voltages 

The MSP430 software does not need monitor any condition where both 
transistors of either half of the bridge are switched on simultaneously. Built-in 
delay times in the IR2130 preventthis state. In case of an overcurrent, the built­
in overcurrent detection at the input Itrip switches off the IR2130 completely. 
An output fault indicates this state and an undervoltage at the Vee terminal of 
the IR2130 with a low signal. 
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The gate voltage of the two upper power transistors, which must be higher than 
the motor voltage, is generated by the IR2130 with th-e help of a bootstrap gene 
erator. The output signals VS2 and VS 1 drive this internal generator. External­
ly, only two diodes and two storage capacitors are needed. Static operation is 
not possible in this configuration. The generation of the gate voltage makes 
dynamic operation necessary. VS1 or VS2 must also be active during motor 
idle (lower bridge transistors off). 

With the unused IR2130 output L03, a second motor (M2) can be driven with 
the PWM TA3 output. For the change of rotation direction, a relay is needed. 
The circuitry for this is shown in Figure 4-74. Motor M2 is driven as desribed 
in Section 4.11.2.1, Single Output Stages. M2 is completely independant from 
M1. 

o Applicable for 

• DC motors with direct ac circuit connection, universal motors 

o Advantages 

• Both rotation directions are possible due to H-bridge 

• Direct ac circuit connection possible 

• Built-in delay times 

• Full PWM resolution for both rotation directions 

• High motor power possible 

4.11.2.3 Three-Phase Motor Control 
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The MSP430C33x is also able to control 3-phase electric motors. This is due 
to the following hardware features: 

o Three synchronized PWM outputs (Timer_A) 

o Table processing capabilities (indirect, indirect with autoincrement, and in­
dexed addressing modes) 

o Hardware multiplier (16x16 bit) with immediate 32-bit result 

o Up to 3.8-MHz CPU frequency; 263-ns execution time for single-cycle in-
structions (register/register mode) 

These features together allow the generation ofthree PWM output signals that 
are phase shifted 120· relative to the others. The repetition rate should be near 
20 kHz to prevent it from being heard. With a PWM frequency of 16 kHz, nearly 
8-bit resolution is possible. The system works as follows: 
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D The repetition rate of the PWM pulses is defined by the content of the peri­
od register CCRO. This value is always the same. 

D The pulse width for the three PWM signals is defined by registers CCR1 
- CCR3. Each CCR controls one phase. 

D The nominal pulse widths for the generation of a sine curve are contained 
in a byte table (nominal 100% values). Dependent on the angle counter. 
the actual values are read out individually for each phase by indexed ad­
dressing. 

D The frequency of the motor voltage is defined by the modification frequen­
cy of the angle counter. The hardware multiplier is used here for the neces­
sary calculations. 

D The motor voltage is defined by the mOdified pulse width (table value multi­
plied by the percentage of the voltage). The hardware multiplier is used 
also for this task 

The complete hardware diagram is shown in Figure 4-82. The interface to the 
motor is made by an IR2130 motor controller. This chip includes the necessary 
safety functions for overcurrent detection and generation of the necessary 
dead times for the output transistors. 

The formula for the timer value nCCRx is: 

Vm (~~~:~ - 0.5) x V motor -. nCCAx = (V ~~or + 0.5) x nCCRO 

Where: 
Vm Mean voltage at the motor phases 

(-Vmotor/2 to +Vmotor/2) 
Vmotor Voltage of the motor power supply 
nCCRx Content of Compare Register x 

M 
M 

nCCRO Content of Compare Register 0 (Period Register) 

If the up mode of the limer~ is used. then nCCRO must be substituted by 
nccRo+1. 

D Applicable for 

• Three-phase motors like induction motors 

• Open loop control method 

• Voltagelfrequency method 

Figure 4-81 shows some PWM outputs for different phase voltages. 
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Figure 4-81. PWM Outputs for Different Phase Voltages 
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Note that zero volt for a motor phase is generated by a pulse width of 0.5 rela­
tive to the period. 
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Figure 4-82. PWM Motors Control for High Motor Voltages 

4.11.2.4 Low-Frequency Pulse Width Modulatfon . 

The PWM examples demonstrated in the circuits of this section are primarily 
thought for high repetition rates (16 kHz and more) but a lot of motor control 
applications do not need these high repetition rates. For these applications the 
same hardware proposals can be used with an output controlled by the Univer­
sal Timer/Port Module. If fed by the ACLK (32 kHz), it allows for example the 
following combinations: 

o 128-Hz repetition rate with a resolution of 256 steps or 
o 256-Hz repetition rate with a resolution of 128 steps 
o 512-Hz repetition rate with a resolution of 64 steps 
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Other combinations are possible too. If the MCLK is used as input frequency 
then the repetition rates and the resolution can be even higher, but the interrupt 
latency time plays an increasing role due to the software-based structure of 
this timer module: the PWM output is controlled by an interrupt handler arid not 
by a hardware module as with the Timer_A. The characteristics of this kind of 
control are very similar to the TRIAC control due to the low repetition rates. 

This way of motor control can substitute the PWM-control solutions realized 
with relays, as it is implemented in some automotive applications. 

More details of the PWM generation are described in Section 3.6.4, PWM DAC 
With the Universal Timer/Port Module. 

o Applicable for 

• All motors controllable by TRIACs 

• DC motors 

4.11.2.5 Bandwidth of the MSP430 Solutions for PWM Control 
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Figure 4-83 shows the bandwidth of solutions the MSP430 family offers for 
PWM control systems; starting from a minimum system with a MSP430C312 
up to a maximum system using a MSP430C337. 

The minimum system with the MSP430C312 gets its information concerning 
the motor control (reference speed, direction of rotation, on/off) normally from 
a host via the I/O terminals or the SW/HW UART (RS232 link). It allows rela­
tively slow PWM frequencies (",1 kHz). 

The maximum system with the MSP430C337 is shown in the following. Its ca­
pabilities allow complete system control, not just the motor handling. 

The PWM control for a Single-phase motor normally does not use 100% of the 
MSP430 CPU. This being known, many functions of the host computer can be 
taken over by the MSP430 (e.g., when used in a tumbler or a dish washer con­
troller). This is especially true for versions of the MSP430 having large memo­
ries and many 1/0 lines. 
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Figure 4-83. Minimum System and Maximum System Using the MSP430 Family 

In Figure 4-83 all components not absolutely needed are omitted. 

The hardware proposals shown are not only usable for the motor type named 
in the text, but also for other motor types when the needed hardware changes 
are made (e.g. the adding of a Hall sensor (position indication sensor) for a 
brushless dc motor). 

If needed the application shown can be completed with one or more of the fol­
lowing features: 

o Temperature sensors for the measurement of the motor temperature(s) 

o Temperature sensors for the driver Ie 
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o Tachometer for the measurement of the motor speed or the rotor position 

o Inputs for light sensors (safety. movement. flame observation etc.) 

o Analog inputs for the measurement of the motor voltage (improvement of 
control) 

o Connections to a host via the USART (SPI or SCI). HW/SW-UART or 
ports 

o Some of the possibilities shown in Figure 4-83 (keys. LEOs. relays. LCD 
etc) 

Caused by the numerous peripherals of the MSP430 family. all of these pre­
vious functions can be implemented easily and cheaply. 

4.11.3 Digital Motor Control With TRIACs 

With the help of a TRIAC (TRiode for ac) the following electric motor types can 
be controlled: 

o Universal motors 

o DC motors (connected via a bridge rectifier. See Figure 4-84) 

o Capacitor motors 

o Single-phase asynchronous motors 

o Single-phase synchronous motors 

The timing forthe TRIAC control Is possible with the Universal Timer/Port Mod­
ule and the Timer_A. Both can deliver the timing in the range from 0.5 ms to 
20 ms with the needed resolution. 

4.11.3.1 Motor Connection and Control 
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The electric motor can be connected to ac directly or via a bridge rectifier. Both 
possibilities are shown in Figure 4-84. It is possible to control ac motors as well 
as de motors with a TRIAC. 
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Figure 4-84. TRIAC Control for AC Motors and DC Motors 

The RC combination switched in parallel to the TRIAC (see Figure 4-84) pre­
vents the turn-on of the TRIAC in case the voltage changes too fast (large dvl 
dt). Switching ac transients, therefore, do not cause errors. Otherwise, this RC 
combination greatly reduces switching noise (EMV). 

With the circuitry of the left hand side of Figure 4-84, the current through the 
TRIAC can be measured in the positive and negative direction. The current 
source of the MSP430 shifts the signed input voltage of the TRIAC current into 
the unsigned range of the 14-bit ADC. The zero point of the ADC can be cali­
brated during periods without TRIAC current. 

4.11.3.2 TRIAC Control 

A TRIAC normally cannot be controlled directly from a microcomputer. Two 
factors cause this: 

o A normal microcomputer output cannot provide the necessary current for 
the TRIAC gate. The gate current is near 100 mAo 

o During the triggering of the TRIAC, the TRIAC gate generates a voltage 
that can pull the microcomputer output above or below the supply volt­
ages, Vcc with respect to Vss. This can lead to destruction of the output, 
to latch-up, or to a hang up of the software. 

Both of the previous mentioned disadvantages are eliminated when a simple 
transistor stage is added between the microcomputer output and the TRIAC 
gate. 

o The current amplification of the transistor provides the necessary gate cur­
rent using the limited output current of the microcomputer 
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o The voltage range of the transistor collector withstands even strong volt-
age peaks generated by the TRIAC gate. 

Depending on whether a negative or positive gate current is used, an npn- or 
a pnp-tr'ansistor is used. Both possibilities are shown in Figure 4-85. The su­
perior circuit arrangement depends on the gate characteristics of the TRIAC 
used. The gate current needed is normally lower if a negative-going gate trig­
ger pulse is used. 

Overcurrent 
Detector 

Figure 4-85. Positive and Negative TRIAC Gate Control 
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The TRIAC gate can be controlled in a static or in a dynamic manner. 

o Static Gate Control: a long gate pulse switches on the TRIAC safely. The 
disadvantage of this method is the high gate current that is needed. 

o Dynamic Gate Control: a sequence of short pulses (duration approximate­
ly 10 IJ.S) switches on the TRIAC. If the first pulse does not have enough 
energy, one of the following pulses switches the TRIAC on safely. This 
method needs little energy and lessings the load on the power supply. One 
of the MSP430 timers can be left running in PWM mode or the setting/re­
setting by software can also do this job. 
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Figure 4-86. Static and Dynamic TRIAC Gate Control 

The time tdelay in Figure 4-86 represents the time delay measured from the 
zero croSSing of the ac voltage to the triggering of the TRIAC. The conduction 
angle is defined in this way. 

The sequence of software steps is different for the Timer_A and the Universal 
Timer/Port Module. 

Universal Timer/Port Module 

o The time tdelay is calculated by the MSP430 software depending on the 
control algorithm 

o The negated number of cycles (MCLK or ACLK) corresponding to the re­
sult ~elay is loaded into the counter registers TPCNT1 and TPCNT2 after 
the zero crossing of the ac voltage 

o The timer requests an interrupt after the elapsed time tdelay (TPCNT2 
overflows). 

o The called interrupt handler finally triggers the TRIAC, which switches the 
ac voltage to the load. 
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Tlmer_A (Continuous Mode) 

o The time tdelay is calculated by the MSP430 software depending on the 
, control algorithm 

o The number of cycles (MCLK or ACLK) corresponding to the result tdelay 
is added to one of the compare registers CCRx after the zero crossing of 
the ac voltage 

o The output unit x is programmed to the mode that outputs the desired trig­
ger pulse 

o The CCRx requests an interrupt after the elapsed time tdelay (CCRx equals 
the timer register). 

o The output unit x triggers the TRIAC, which switches the ac voltage to the 
load. . 

o If dynamic gate control is used, the called interrupt handler outputs several 
trigger pulses by software or by using the PWM capability of Timer_A. 

4.11.3.3 Control Algorithms 
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The value to be controlled (speed/velocity, current consumption, or torque) is 
influenced with the conduction angle of the TRIAC. This conduction angle (see 
Figure 4-86) is defined by tdelay, the time the TRIAC triggering is delayed with 
reference to the zero crossing of the ac voltage. 

For the control algorithms (that need to run in real time) two different methods 
are used: 

o Normal calculation of the algorithm: For this method, the MSP430c33x is 
well suited very because of its hardware multiplier on-chip. This allows a 
very-high calculation speed. (10 to 20 times higher than possible with an 
8-bit CPU. 

o Use of tables (especially with very high control speeds): For this method, 
the MSP430 Is also very well suited because of its addressing modes, indi­
rect, indirect autoincrement, and indexed, allow for a very simple and fast 
access to table values. 

With TRIAC controls, normally everything necessary for the controlling is cal­
culated directly. For de machines, PIO control is possible without the use of 
characteristics because of their linear behavior. 

Exception: With asynchronous machines most often a voltage/frequency or a 
currentlfrequency characteristic method is used that uses description tables. 
These are located in the ROM (normalized form) or in an "external memory. 
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4.11.3.4 Cost Reduction 

To lower the cost of the complete system, two possibilities exist. They are de­
scribed in the following two sections. 

Nonregulated Voltage for the TRIAC Control 

To minimize the cost for the power supply, it is possible to split the parts for the 
supply of the MSP430 and for the TRIAC control. The TRIAC control does not 
need a regulated voltage supply, so this voltage can be supplied directly from 
the charge capacitor Cch. Figure 4-87 illustrates this method. This solution 
has another advantage; the two supplies are separated completely. The power 
part interferes with the control part very little. The npn transistor can be 
replaced by an unused driver on the board. 

To The AC Voltage Cch 

OV 

Non-Regulatad Voltage 

TP.x 
MSP430 

vss 

Figure 4-87. Nonregulated Voltage for the TRIAC Control 

Use Without a Crystal 

Despite the relatively low cost of a 32-kHz crystal, it can be advantageous to 
leave this component out."The TRIAC control requires the measurement olthe 
ac frequency. This is required to know the exact time of the zero crossing of 
the ac voltage. If no crystal is used, the DCO frequency can be controlled by 
the measurement of a full ac period with one of the MSP430 timers. The formu­
la for the calculation of the MCLK frequency fMCLK out of the timer value nand 
the ac frequency fac is: 

fMCLK = n x k x fac 

Where: 
fMCLK Output frequency of the DCO [Hz] 
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fae AC frequency [Hz] 
n Measurement result in the timer register 
k Predivider constant of the timer used (1, 2, 4, 8) 

The measured DCC frequency fMCLK can be adjusted to the desired value by 
taking measurements in regular time intervals. The calculated value of fMCLK 
is used as a time base for the TRIAC triggering. More details are given in Sec­
tion 6.3.8.7, MSP430 Operation Without Crystal. 

4.11.3.5 Bandwidth of the MSP430 Solutions for. TRIAC Control 
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Figure 4-88 shows the available bandwidth the MSP430 family offers. Starting 
from a minimum system with an MSP430C312 up to a maximum system using 
the MSP430C337 a lot of solutions are possible. 

For the application ofthe MSP430 for a TRIAC motor control the same consid­
erations are valid as made before for the PWM applications. 

It is possible with an MSP430 to control more than one electric motor. The sec­
ond motor can also be controlled as shown with a TRIAC-then the TRIAC 
control circuit is simply doubled-or the TAx output of the MSP430C33x is 
used for the PWM control of the second motor. 
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Figure 4-88. Minimum System and Maximum System With the MSP430 Family 

In Figure 4-88, all circuitry not needed to demonstrate the application is 
omitted. 

4.11.4 Motor Measurements 

The methods shown for the measurement of the needed values like tempera­
ture, speed/velocity, etc are valid for PWM and TRIAC controls. 

4.11.4.1 Overc:urrent Detection 

Many applications make it necessary to detect increased motor current and 
to start provisions when this occurs. An example for this is the blocking of a 
motor. 

Independent, if the high current consumption is detected by a threshold com­
parison or by a current measurement In any case, the software has to take 
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Threshold Detection 
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steps against the overcurrent with the switch-off of the motor and the prevent­
ing of further gate triggering or by switching off the PWM output. 

MSP430 family members that do not have an ADC on-Chip must simplify the 
overcurrent detection to the detection of a passed-over threshold value. A sim­
ple operational amplifier is used, it compares the voltage generated by the mo­
tor current over a shunt with the calculated threshold. If this fixed threshold i& 
reached, an interrupt is requested. Figure 4-89 shows this method of overcur­
rent detection on its upper side. The threshold itself is defined by the two resis­
tors at the inverting input of the operational amplifier. If the voltage at the shunt 
resistor gets higher than this threshold, the positive edge of the operational 
amplifier output generates an interrupt signal. 

If one threshold is not sufficient because the motor current needs to be better 
defined, a variable threshold, as shown in Figure 48-9 on the lower side, can 
be used. The MSP430 defines the desired threshold by the switching of the 
resistors 2R and 4R. If the outputs use the high, the low, and the high-imped­
ance states, then 9 different thresholds are possible with this circuit. 

The NMI input (non-maskable interrupt) can be used also for the overcurrent 
detection. No disabling is possible and the fastest response is assured. 
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Figure 4-89. Over current Detection With Single and Multiple Thresholds 

Current Measurement 

MSP430 family members having an on-chip ADC (MSP43DC32x). can mea­
sure the current of both half-waves of the motor current. This allows a much 
better judgment of the behavior of the motor system than is possible with a sim­
ple threshold comparison. The voltage at the shunt. which is proportional to 
the motor current. is shifted into the range of the ADC (AVss to SVcc) with the 
voltage drop of Ics at Rv. Ics is the output current of the MSP430 current 
source. The voltage at the shunt is measured with one of the ADC inputs AD 
to A5. The resolution at these analog inputs is 305ILV for a supply voltage of 
5 V. If this is not sufficient. a simple amplifier is used. The zero point can be 
measured during periods with zero current. Figure 4-90 shows the measure­
ment of the motor current. 
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Figure 4-90. Motor Voltage Measurement and Current Measurement 

4.11.4.2 Voltage Measurement 

Figure 4-90 shows, at the left-hand side, how to measure the ac voltage (or 
another voltage) if needed. The diode prevents a negative voltage at the 
analog input AO. In this way, only the positive half wave can be measured. If 
both half waves are needed, the same way as shown for the motor current path 
and can be used. The voltage drop of Ics at resistor Rv shifts the signed input 
voltage into the range of the ADC. 

4.11.4.3 Zero Crossing Detection 
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The detection of the zero crossing time of the ac voltage is very important with 
the TRIAC control because the zero crossing time represents the reference 
point for the phase control. The absolutely accurate zero crossing time is not 
necessary to get because in any case a certain minimum voltage must be 
reached at the TRIAC to hold it in the on-state. Figure 4-91 shows a simple 
circuit for this purpose. Via a resistor with a high resistance, the ac is con­
nected to an interrupt input of the MSP430. This interrupt input is protected by 
a Zener diode (3.5 V), which protects against positive or negative overvol­
tages. The two edges of the square wave input signal give a very good indica­
tion for the positive and the negative zero crossing of the ac voltage. The time 
error of the zero crossing is due to this circuit arrangement and is approximate­
ly 60 lIS. 
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A second possibility for the detection of the zero crossing is shown on the left­
hand side of Figure 4-91. In case of a heavy disturbed ac voltage, the opera­
tional amplifier used as a Schmitt trigger gives an uhdisturbed zero crossing 
signal. 

4.11.4.4 Measurement of the Motor Speed 

If the control of an electric motor's speed is desired, a tachometer or something 
similar is necessary at the motor's shaft. The output signal of this tachometer 
is connected directly to an interrupt input of the MSP430 or is amplified with 
a simple operational amplifier when the output signal is t~o low. The second 
method is shown in Figure 4-91. With the capture latches the TImer_A pro­
vides, very precise timing measurements are possible. 

4.11.4.5 SupelVls/on of the Motor Temperature 

To avoid the overheating ofthe motor, a temperature sensor (e.g. an NTC sen­
sor) can be connected to MSP430 family members that have an ADC on-chip. 
In Figure 4-91 , this possibility is shown for the analog input A 1. Other MSP430 
members can use the Universal Timer/Port Module as an ADC (see 
Figure 4-91). The software has to take steps when a high temperature is de­
tected (e.g. tum-off of the motor, tum-on of an error indication, and other 
things). 
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4.11.4.6 Change of the Rotation Direction 

If 0 Ports 
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In Figure 4-92, it is shown how the rotation direction can be changed for a uni­
versal motor (single-phase series commutator motor). The field winding is 
changE!d with a relay having two change over contacts. The same way the mo­
tor winding can be changed over. 

5V 

VCC 

Direction 
01 Rotation 

230VAC 

Figure 4-92. Change of the Direction of Rotation for a Universal Motor 

4.11.5 Conclusion 

The application examples shown for the MSP430 family demonstrate the ex­
cellent suitability of this microcontroller for the digital control of electric motors. 
This is true for PWM control as well,as for TRIAC control. The numerous on­
chip hardware modules like an ADC, I/O ports, and other helpful peripherals 
also ease the task. The total software compatibility of the MSP430 family mem­
bers allows its use in software development. Table 4-15 gives an overview of 
the capabilities of the MSP430 sub-families: 

Table 4-15. Capabilities of the MSP430 Sub-Families 
CAPABILITY MSP430x31x MSP430x32x MSP430x33x 

20kHz PWM Control No No Yes 

Slow PWM Control « 1 kHz) Yes Yes Yes 

TRIAC Control Yes Yes Yes 

Single Phase PWM Motor Control Yes Yes Yes 

Three Phase PWM Motor Control No No Yes 

Voltage/Current Measurement No Yes No 

Voltage/Current Comparison Yes Yes Yes 

Temperature Measurement yeS Yes Yes 

Speed Measurement Yes Yes Yes 
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5.1 Integer Calculation Subroutines 

Integer routines have important advantages compared to all other calculation 
subroutines: 

o Speed: Highest speed is possible especially when no loops are used 

o ROM space: Least amount of ROM space is needed for these subroutines 

o Adaptability: With the following definitions it is very easy to adapt the sub­
routines to the actual needs. The necessary calculation registers can be 
located in the RAM or in registers. 

The following definitions are valid for all of the following integer subroutines. 
They can be changed as needed. 

Integer Subroutines Definitions: Software Multiply 

IRBT .EQU 

IROPl .EQU 

IROP2L .EQU 

IROP2M .EQU 

IRACL .EQU 

IRACM .EQU 

R9 

R4 

R5 

R6 

R7 

R8 

Bit test register MPY 

First operand 

Second operand low word 

Second operand high word 

Result low word 

Result high word 

; Hardware Multiplier 

ResLo .EQU 

ResHi .EQU 

SumExt .EQU 

O13Ah 

O13Ch 

O13Eh 

HW_MPYer: Result reg. LSBs 

Result register MSBs 

Sum Ext. Register 

All multiplication subroutines shown in the following section permit two differ­
ent modes: 

o The normal multiplication: the result of the multiplication is placed into the 
re~ult registers 

o The multiplication and accumulation function (MAC): the result of the multi­
plication is added to the previous content of the result registers. 

5.1.1 Unsigned Multiplication 16 x 16-Bits 
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The following subroutine performs an unsigned 16 x 16-bit multiplication (label 
MPYU) or multiplication and accumulation (label MACU). The multiplication 



subroutine clears the result registers IRACL and IRACM before the start. The 
MACU subroutine adds the result of the multiplication to the contents of the 
result registers. 

The multiplication loop starting at label MACU is the same one as the one used 
for the signed multiplication. This allows the use of this subroutine for signed 
and unsigned multiplication if both are needed. The registers used are shown 
in the Figure 5-1 : 

15 o 
Bit rest Register 

Multiplicand 

R6IROP2M R5IROP2L Multiplier 

R81RACM R71RACL Accumulsted Result 

Figure 5-1. 16 x 16 Bit Multiplication - Register Use 
EXECUTION TIMES FOR REGISTERS CONTENTS (CYCLES) without CALL: 

; TASK MACU MPYU EXAMPLE 

;-------------------------------------------------------------
MINIMUM 

MEDIUM 

MAXIMUM 

132 

148 

164 

134 

150 

166 

OOOOOh x OOOOOh - OOOODDODDh 

DA5A5h x D5A5Ah = 03A763E02h 

DFFFFh x OFFFFh = OFFFEOOOlh 

UNSIGNED MULTIPLY SUBROUTINE: IROPI x IROP2L -> IRACM/IRACL 

USED REGISTERS IROPl, IROP2L, IROP2M, IRACL, IRACM, IRBT 

MPYU CLR 

CLR 

IRACL 

IRACM 

o -> LSBs RESULT 

o -> MSBs RESULT 

UNSIGNED MULTIPLY AND ACCUMULATE SUBROUTINE: 

(IROPI x IROP2L) + IRACMilRACL -> IRACMiIRACL 

MACU 

L$002 

CLR 

MOV 

BIT 

IROP2M 

#1,IRBT 

IRBT,IROPI 

MSBs MULTIPLIER 

BIT TEST REGISTER 

TEST ACTUAL BIT 
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JZ 

ADD 

ADDC 

L$01 RLA 

RLC 

RLA 

JNC 

RET 

L$01 IF 0: DO NOTHING 

IROP2L,IRACL IF 1: ADD MULTIPLIER TO RESULT 

IROP2M,IRACM 

IROP2L MULTIPLIER x 2 

IROP2M 

IRBT NEXT BIT TO TEST 

L$002 IF BIT IN CARRY: FINISHED 

If the hardware multiplier is implemented then the previous subroutines can 
be substituted by MACROs. For source and destination, all seven addressing 
modes are possible. If register indirect or register indirect with 8utoincrement 
addressing modes are used to address the result, a NOP is necessary after 
the MACRO call to allow the completion of the multiplication. The ~umExt Reg­
ister contains the carry after the MAC instruction; 0 (no carry) or 1 (carry oc­
curred). 

Macro Definition for the unsigned multiplication 16 x 16 bits 

MPYU . MACRO argl,arg2 

MOV 

MOV 

.ENDM 

argl,&0130h 

arg2,&0138h 

Multiply the contents of two registers 

MPYU 

MOV 

MOV 

IROP1, IROP2L 

ResLo,R6 

ResHi,R7 

Unsigned MPY 16x16 

Result in ResHilResLo 

CALL the MPYU macro 

Fetch LSBs of result 

Fetch MSBs of result 

Multiply the operands located in a table, R6 points to 

5-4 

MOV 

MPYU 

NOP 

MOV 

#ResLo,R5 

@R6+,@R6 

@R5+,R7 

Pointer" to LSBs of result 

CALL the MPYU macro 

NOP: allow completion of MPYU 

Fetch LSBs of result 



MOV @R5,R8 Fetch MSBs of result 

Macro Definition for the unsigned multiplication and 

accumulation 16 x 16 bits 

MACU . MACRO argl,arg2 Unsigned MAC 16x16 

Carry in SurnExt MOV 

MOV 

.ENDM 

argl,&0134h 

arg2,&0138h 

Result in SumExtlResHilResLo 

Multiply and accumulate the contents of two registers 

MPYU 

MACU 

ADC 

R5,R6 

IROP1,IROP2L 

&SumExt,RAM 

Initialize SumExtlResHilResLo 

Add IROPl x IROP2 to result 

Add carry to RAM extension 

5.1.1.1 Run Time Optimized Unsigned Multiplication 16 x 16-Blts 

If the operands ofthe multiplication subroutine are shorter than 16 bits, the pre" 
vious multiplication subroutine MPYU can be optimized during run time 

The multiplication stops immediately after the operand IROP1 equals zero. 
This indicates that the operand with leading zeroes should be in IROP1. This 
run time optimized subroutine can be used instead of the normal subroutine. 
(The subroutine was developed by Leslie Mable/UK). 

EXECUTION TIMES FOR REGISTERS CONTENTS (CYCLES) without CALL: 

TASK MACU MPYU IROPl IROP2 

;-------------------------------------------------------------
MINIMUM 

MEDIUM 

MAXIMUM 

18 

90 

170 

20 

92 

172 

OOOOOh x OOOOOh = OOOOOOOOOh 

OOOFFh x OFFFFh = OOOFEFFOlh 

OFFFFh x OFFFFh = OFFFEOOOlh 

UNSIGNED MULTIPLY SUBROUTINE (Run time optimized): 

IROPl x IROP2L -> IRACMIIRACL 

USED REGISTERS IROP1, IROP2L, IROP2M, IRACL, IRACM 
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MPYU CLR 

CLR 

IRACL 

IRACM 

o -> LSBs RESULT 

o -> MSBs RESULT 

UNSIGNED MULTIPLY AND ACCUMULATE SUBROUTINE: 

(IROP1 x IROP2L) + IRACMIIRACL -> IRACMllRACL 

MACU' 

L$002 

L$01 

CLR 

BIT 

JZ 

ADD 

ADDC 

RLA 

RLC 

RRC 

JNZ 

RET 

IROP2M 

#1, IROP1 

L$Ol 

IROP2L,IRACL 

IROP2M,IRACM 

IROP2L 

IROP2M 

IROP1 

L$002 

MSBs MULTIPLIER 

TEST ACTUAL BIT (LSB) 

IF 0: DO NOTHING 

IF 1: ADD MULTIPLIER TO RESULT 

Double MULTIPLIER IROP2 

Next bit of IROP1 to LSB 

If IROP1 = 0: finished 

5.1.1.2 Fast Unsigned Square Function 

For some applications, a fast square function is necessary. Two different solu­
tions are given: 

o For 16-bit unsigned numbers without rounding 

o For 14-bit unsigned numbers with rounding. This version is adapted to the 
output of the ADC of the MSP430C32x family. . 

Both use table processing; an offset to a table containing the squared input 
numbers is built. The given cycles include the move of the operand into R5. 

Fast unsigned squaring for a 16 bit number. The upper 16 bits 

of the result are moved to RS. No rounding is used. 7 cycles 

MOV.B 

RLA 

MOV 

DATA+1,RS 

RS 

SQTAB(RS),RS 

MSBs to R5 

Number x 2 (word table address) 

MSBs~2 to RS 

Squared value in R5 

Fast unsigned squaring for a 14 bit number: The upper 16 bits of 

the result are added to a buffer SQSUM. Rounding is used. 



18 cycles. If registers are used for the sum: 12 cycles 

MOV &ADAT,R5 ADC result to R5 

ADD #80h,R5 Round high byte 

SWPB R5 MSBs to LSBs 

RLA.B R5 Number x 2 (word table address) 

ADD SQTAB(R5),SQSUM Add MSBs~2 to SQSUM 

ADC SQSUM+2 Add carry 

Continue 

Table with squared values. Length may be adapted to the maximum 

possible input number. 

SQTAB . word ($-SQTAB) * ($-SQTAB)/4 0 x 0 ~ 0 

. word ($-SQTAB) * ($-SQTAB)/4 1 x 1 1 

. word ($-SQTAB)* ($-SQTAB)/4 2 x 2 = 4 

. word ($-SQTAB) * ($-SQTAB)/4 OFFh x OFFh = OFE01h 

. word OFFFFh Max. for 0100h x 0100h 

5.1.2 Signed Multiplication 16 x 16-Bits 

The following subroutine performs a signed 16 x 16-bit multiplication (label 
MPYS) or multiplication and accumulation Oabel MACS). The multiplication 
subroutine clears the result registers IRACL and IRACM before the start. The 
MACS subroutine adds the result of the multiplication to the contents of the re­
sult registers. The register used is the same as with the unsigned multiplica­
tion. Therefore, Figure 5-1 is also valid. 

EXECUTION TIMES FOR REGISTERS CONTENTS (CYCLES) without CALL: 

TASK MACS MPYS EXAMPLE 

i-------------------------------------------------------------
MINIMUM 

MEDIUM 

MAXIMUM 

138 

155 

172 

140 

157 

174 

OOOOOh x OOOOOh = OOOOOOOOOh 

OA5A5h x 05A5Ah OEOIC3E02h 

OFFFFh x OFFFFh 000000001h 

SIGNED MULTIPLY SUBROUTINE: IROPI x IROP2L -> IRACMIIRACL 

USED REGISTERS IROP1, IROP2L, IROP2M, IRACL, IRACM, IRBT 
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MPYS CLR 

CLR 

IRACL 

IRACM 

o -> LSBs RESULT 

o -> MSBs RESULT 

SIGNED MULTIPLY AND ACCUMULATE SUBROUTINE: 

(IROP1 x IROP2L) + IRACMIIRACL -> IRACMIIRACL 

MACS TST 

JGE 

SUB 

L$OOl TST 

JGE 

SUB 

; THE REMAINING 

MACU CLR 

MOV 

L$OO2 BIT 

JZ 

ADD 

ADDC 

L$Ol RLA 

RLC 

RLA 

JNC 

RET 

IROP1 MULTIPLICAND NEGATIVE ? 

L$OOl 

IROP2L,IRACM YES, CORRECT RESULT REGISTER 

IROP2L MULTIPLIER NEGATIVE ? 

MACU 

IROP1,IRACM ; YES, CORRECT RESULT REGISTER 

PART IS EQUAL TO THE UNSIGNED MULTIPLICATION 

IROP2M MSBs MULTIPLIER 

#l,IRBT BIT TEST REGISTER 

IRBT,IROP1 TEST ACTUAL BIT 

L$Ol IF 0: DO NOTHING 

IROP2L,IRACL IF 1: ADD MULTIPLIER TO RESULT 

IROP2M,IRACM 

IROP2L MULTIPLIER x 2 

IROP2M 

IRBT NEXT BIT TO TEST 

L$OO2 IF BIT IN CARRY: FINISHED 

If the hardware multiplier is implemented then the previous subroutines can 
be substituted by MACROs. For source and destination, all seven addressing 
modes are possible. If register indirect or register indirect with autoincrement 
addressing modes are used to address the reSUlt, then a NOP is necessary 
after the MACRO call to allow the completion olthe multiplication. The SumExt 
Register contains the sign of the result in ResHi and ResLo; OOOOh (positive 
result) or OFFFFh (negative result). 

Macro Definition for the signed multiplication 16 x 16 bits 

MPYS . MACRO arg1,arg2 Signed MPY 16x16 

MOV arg1,&0132h 

MOV arg2,&0138h 
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.ENDM Result in SumExtlResHilResLo 

Multiply the contents of two registers 

MPYS 

MOV 

MOV 

MOV 

IROPl,IROP2 

&ResLo,R6 

&ResHi,R7 

&SumExt,R8 

CALL the MPYS macro 

Fetch LSBs of result 

Fetch MSBs of result 

Fetch Sign of result 

Multiply the operands located in a table, R6 points to 

MOV #ResLo,RS Pointer to LSBs of result 

MPYS @R6+,@R6 CALL the MPYS macro 

NOP NOP: allow completion 

MOV @RS+,R7 Fetch LSBs of result 

MOV @RS+,R8 Fetch MSBs of result 

MOV @RS,R9 Fetch sign of result 

Macro Definition for the signed multiplication and 

accumulation 16 x 16 bits. The accumulation is made in the 

RAM: MACHi, MACmid and MAClo. If more than 48 bits are used 

for the accumulation, the SumExt register is added to all 

further RAM extensions (here shown for only one) . 

MACS . MACRO argl,arg2 Signed MAC 16x16 

MOV argl,&0132h Signed MPY is used 

MOV arg2,&0138h 

ADD &ResLo,MAClo Add LSBs to result 

ADDC &ResHi,MACmid Add MSBs to result 

ADDC &SumExt , MAChi Add SumExt to MSBs 

.ENDM 

Multiply and accumulate signed the contents of two tables 

of MPYS 

MACS 2(R6),@RS+ CALL the MACS macro 

Accumulation is yet made 
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5.1.2.1 Fast Signed Square Function 

For some applications, a fast signed square function is necessary (e.g. if the 
RMS value of an input signal needs to be calculated). Two different solutions 
are given: 

o For 16-bit signed numbers without rounding 

o For 14-bit signed numbers with rounding. This version is adapted to the 
output of the ADC of the MSP430C32x family. 

Both use table processing; an offset to a table containing the squared input 
numbers is built. The given cycles include the move of the operand into R5. 

Fast signed squaring for a 16 bit number. The upper 16 bits 

of the result are moved to RS. No rounding is used. 10-12 cycles 

MOV.B DATA+1,R5 MSBs of number to RS 

TST.B RS Check sign of input number 

JGE L$l Positive sign 

INV.B RS Negative sign: 

INC.B RS Use absolute value 

L$l RLA RS Number x 2 (word table 

MOV SQTAB(R5),RS MSBs h 2 from table to 

Squared value in. RS 

Squaring for a signed 14 bit value: 

Change the unsigned ADC value (0 to 3FFFh) to a signed value 

by the subtraction of the measured zero point of the system: 

ADC result to.RS 

RS 

address) 

MOV 

SUB 

&ADAT,RS 

VALO,RS Subtract measured O-point 

Fast signed squaring for a 14 bit number. The upper 16 bits of 

the result are added to a buffer SQSUM. Rounding is used. 

If registers are used for the sum: lS-17 cycles 

5-10 

RLA 

ADD 

BIC 

RS 

IIBOh,R5 

1I0FFh,RS 

One bit more resolution 

Round to high byte 

Delete lower byte 



JGE L$l Sign? 

INV RS Absolute value of ADC result 

INC RS Complement + increment 

L$l SWPB RS MSBs to LSBS 

RLA.B RS Number x 2 (word table address) 

ADD SQTAB(RS),SQSUM Add MSBs A 2 to SQSUM 

ADC SQSUM+2 Add carry 

Continue 

Table with squared values. Length may be adapted to the maximum 

possible input number. 

SQTAB . word 

. word 

. word 

.word 

. word 

($-SQTAB) * ($-SQTAB)/4 o x 0 = 0 

($-SQTAB)*($-SQTAB)/4 1 x 1 1 

($-SQTAB) * ($-SQTAB)/4 2 x 2 4 

($-SQTAB) * ($-SQTAB)/4 07Fh x 07Fh 

($-SQTAB) * ($-SQTAB)/4 OaOh x OaOh 

The errors for a single squaring are in the range of 1 %. But, if rounding Is used 
and several squared inputs are summed-up, the resulting error gets much 
smaller. For example, if a sinusoidal input voltage is measured in distances of 
15°, then an error of less than 0.24% results. 

If the previous method is used for the measurement of RMS values, then for 
a decision, it usually is not necessary to calculate the square root out of the 
accumulated squared inputs. It is much faster to use the accumulated value 
itself. 

5.1.3 Unsigned Multiplication 8 x IJ.Bits 

The following subroutine performs an unsigned 8 x 8-bit multiplication (label 
MPYU8) or multiplication and accumulation (label MACU8). The multiplication 
subroutine clears the result register IRACL before the start. The MACU sub­
routine adds the result ofthe multiplication to the contents of the result register. 
The upper bytes of IROP1 and IROP2L must be zero when the subroutine is 
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called. The MOV.B instruction used for the loading ensures these bits are 
cleared. The registers used are shown in the Figure 5-2: 

15 0 

00 RS Bit Test Reglater IRBT 

" 00 R4 Multiplicand IROP1 

00 RS Multiplier IROP2l 

R7 Accumulated Result IRAel 

Figure 5-2. 8 x 8 Bit Multiplication - Register use 
EXECUTION TIMES FOR REGISTERS CONTENTS (CYCLES) without CALL: 

TASK MACU8 MPYU8 EXAMPLE 

;-------------------------------------------------------------
MINIMUM 

MEDIUM 

MAXIMUM 

58 

62 

66 

59 

63 

67 

OOOh x OOOh OOOOOh 

OA5h x 05Ah 03A02h 

OFFh x OFFh = OFE01h 

UNSIGNED BYTE MULTIPLY SUBROUTINE: IROP1 x IROP2L -> IRACL 

USED REGISTERS IROPl, IROP2L, lRACL, IRBT 

MPYU8 CLR IRACL o -> RESULT 

UNSIGNED BYTE MULTIPLY AND ACCUMULATE SUBROUTINE: 

(IROP1 x IROP2L) +IRACL -> IRACL 

MAcue MOV #l,IRBT BIT TEST REGISTER 

L$OO2 BIT IRBT,IROP1 TEST ACTUAL BIT 

JZ L$Ol IF 0: DO NOTHING 

ADD IROP2L,IRACL IF 1: ADD MULTIPLIER TO 

L$Ol RLA IROP2L MULTIPLIER x 2 

RLA.B IRBT NEXT BIT TO TEST 

RESULT 

JNC L$OO2 IF BIT IN CARRY: FINISHED 

RET 
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If the hardware multiplier is implemented, the previous subroutines can be 
substituted by MACROs. For source and destination, all seven addressing 
modes are possible. If register indirect or register indirect with autoincrement 
addressing modes are used to address the result, a NOP is necessary after 
the MACRO call to allow the completion of the multiplication. If byte instruc­
tions are used for loading the multiplier registers, the high byte is cleared like 
a CPU register. 

Macro Definition for the unsigned multiplication 8 x 8 bits 

MPYU8 . MACRO argl,arg2 

MOV.B 

MOV.B 

.ENDM 

arg1,&0130h 

arg2,&0138h 

Unsigned MPY 8x8 

OOxx to 0130h 

OOyy to 0138h 

Result in ResLo. ResHi 0 

Multiply the contents of two registers (lOW bytes) 

MPYU8 

MOV 

IROP1,IROP2L 

&ResLo,R6 

CALL the MPYU8 macro 

Fetch result (16 bits) 

Macro Definition for the unsigned multiplication and 

accumulation 8 x 8 bits 

MACU8 . MACRO arg1,arg2 

MOV.B 

MOV.B 

.ENDM 

arg1,&0134h 

arg2,&0138h 

Unsigned MAC 8x8 

OOxx 

OOyy 

Result in SumExtlResHilResLo 

Multiply and accumUlate the low bytes of two registers 

MACU8 IROP1,IROP2 CALL the MACU8 macro 

5.1.4 Signed Multiplication 8 x 8-Bits 

The following subroutine performs a signed 8 x 8-bit multiplication (label 
MPYS8) or multiplication and accumulation (label MACS8). The multiplication 
subroutine clears the result register IRACL before the start, the MACS8 sub­

. routine adds the result ofthe multiplication to the contents ofthe result register. 
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The register usage is the same as with the unsigned 8 x 8 multiplication. There­
fore, Figure 5-2 Is also valid. 

The part starting with label MACU8 is the same as used with the unsigned mul­
tiplication. 

EXECUTION TIMES FOR REGISTER CONTENTS (CYCLES) without CALL: 

TASK MACSB MPYSB EXAMPLE 

i-------------------------------------------------------------
MINIMUM 

MEDIUM 

MAXIMUM 

64 

75 

B6 

65 

76 

B7 

OOOh x OVOh - OOOOOh 

OA5h x 05Ah = OE002h 

OFFh x OFFh = OOOOlh 

SIGNED BYTE MULTIPLY SUBROUTINE: IROPI x IROP2L -> IRACL 

USED REGISTERS IROPl, IROP2L, IRACL, IRBT 

MPYSB CLR IRACL o -> RESULT 

SIGNED BYTE MULTIPLY AND ACCUMULATE SUBROUTINE: 

(IROPI x IROP2L) +IRACL -> IRACL 

MAcse TST.B IROPI MULTIPLICAND NEGATIVE 

JGE L$lOl NO 

SWPB IROP2L YES, CORRECT RESULT 

SUB IROP2L, IRACL 

SWPB IROP2L RESTORE MULTIPLICATOR 

L$lOl TST.B IROP2L MULTIPLICATOR NEGATIVE 

JGE MACUB 

SWPB IROPl YES, CORRECT RESULT 

SUB IROP1,IRACL 

SWPB IROPl 

THE REMAINING PART IS THE UNSIGNED MULTIPLICATION 

MACUB 

L$002 

5-14 

MOV 

BIT 

#l,IRBT 

IRBT,IROPl 

BIT TEST REGISTER 

TEST ACTUAL BIT 

? 

? 



L$Ol 

JZ 

ADD 

RLA 

RLA.B 

JNC 

RET 

L$Ol 

IROP2L,IRACL 

IROP2L 

IRBT 

L$002 

IF 0: DO NOTHING 

IF 1: ADD MULTIPLIER TO RESULT 

MULTIPLIER x 2 

NEXT BIT TO TEST 

IF BIT IN CARRY: FINISHED 

If the hardware multiplier is implemented, the previous subroutines can be 
substituted by MACROs. For source and destination, all seven addressing 
modes are possible. If register indirect or register indirect with autoincrement 
addressing modes are used to address the result, a NOP is necessary after 
the MACRO call to allow the completion of the multiplication. if byte instruc­
tions are used for loading the multiplier registers, the high byte is cleared like 
a CPU register. 

Macro Definition for the signed multiplication 8 x 8 bits 

MPYS8 . MACRO argl,arg2 Signed MPY 8x8 

MOV.B argl,&0132h OOxx 

SXT &0132h Extend sign: OOxx or FFxx 

MOV.B arg2,&013Bh OOyy 

SXT &013Bh Extend sign: 09yy or FFyy 

.ENDM Result in SumExtlResHilResLo 

Multiply the contents of two registers signed (low bytes) 

MPYS8 

MOV 

MOV 

IROP1,IROP2 

&ResLo,R6 

&ResHi,R7 

CALL the MPYSB macro 

Fetch result (16 bits) 

Only sign: 0000 or FFFF 

Macro Definition for the signed multiplication and 

accumulation 8 x 8 bits. The accumulation is made in the 

RAM: MACHi, MACmid and MAClo. If more than 48 bits are used 

for the accumulation, the SumExt register is added to all 

further RAM extensions 

MACS8 . MACRO arg1,arg2 

MOV.B argl,&0132h 

Signed MAC 8x8 

MPYS is used 
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SXT &0132h Extend sign: OOxx or FFxx 

MOV.B arg2, &0138h OOyy 

SXT &0138h Extend sign 

ADD &ResLo,MAClo Accumulate LSBs 16 bits 

ADDC &Reslii,MACmid 

ADDC &SumExt, MAChi Add SumExt to MSBs 

.ENDM 

Multiply and accumulate signed the contents of two byte tables 

MACS8 2{R6),@RS+ CALL the MACS8 macro 

Accumulation is yet made 

5.1.5 Unsigned Division 32116-Blts 

The subroutine performs an unsigned 32-bit by 16-bit division. If the result 
does not fit into 16 bits, the carry is then set after return. If a valid result is ob­
tained, the carry is reset after a return. The. register usage is shown in 
Figure 5-3. The subroutine was developed by Mr. Leipold/L&G. 

IROP2M IROP2L Dividend 

Remelnder 15 0 

IROP1 Divisor 

IRACL Result 

IRBT Counter 

Figure 5-3. Unsigned Division - Register Use 
; EXECUTION CYCLES FOR REGISTER CONTENTS (without CALL): 

; DIVIDE CYCLES EXAMPLE 

;------------------------------------------------------~--------------------------

5-16 

242 

237 

240 

Oxxxxxxxxh OOOOOh - OFFFFh 

03A763E02h OSASAh = OASASh 

OFFFE0001h OFFFFh = OFFFFh 

C = 1 

C - 0 

C - 0 



USED REGISTERS IROP1, IROP2L, IRACL, IRBT, IROP2M 

UNSIGNED DIVISION SUBROUTINE 32-BIT BY 16-BIT 

IROP2MIIROP2L IROP1 -> IRACL REMAINDER IN IROP2M 

RETURN: CARRY 0: OK CARRY - 1: QUOTIENT> 16 BITS 

DIVIDE CLR IRACL CLEAR RESULT 

MOV #17, IRBT INITIALIZE LOOP COUNTER 

DIV1 CMF IROP1,IROP2M 

JLO DIV2 

SUB IROP1, IROP2M 

DIV2 RLC IRACL 

JC DIV4 Error: result> 16 bits 

DEC IRBT Decrement loop counter 

JZ DIV3 Is 0: terminate w/o error 

RLA IROP2L 

RLC IROP2M 

JNC DIV1 

SUB IROP1,IROP2M 

SETC 

JMP DIV2 

DIV3 CLRC No error, C = 0 

DIV4 RET Error indication in C 

A 32-bit divided by 32-bit numbers (XDIV) is given in the square root section. 

5.1.6 Signed Division 32116-Blts 

The subroutine performs a signed 32-bit by 16-bit division. If the result does 
not fit into 16 bits, the carry is then set after a return. If a valid result is obtained, 
the carry is reset after a return. The register IRACM contains the extended sign 
(OOOOh or OFFFFh) of the signed result in IRACL. The register usage is shown 
in the Figure 5-4: 
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15 

lSi IROP2M IROP2L Dividend 

Remalncler 15 0 

IROP1 Divisor 

IRACM lsi IRACL Reeuh 

Extended Sign 

IRBT Counter 

Figure 5-4. Signed Division - Register Use 
; EXECUTION CYCLES FOR REGISTER CONTENTS (without CALL): 

;DIVIDE CYCLES EXAMPLE 

;---------------------------------------------------------------------------------
MINIMUM 15 

268 

258 

Oxxxxxxxxh OOOOOh - Oyyyyh 

OE01C3E02h 

000000001h 

05A5Ah 

OFFFFh 

OA5A5h 

OFFFFh 

C - 1 

C = 0 

C o 

USED REGISTERS IROP1, IROP2L, IROP2M, IRACL, IRBT 

SIGNED DIVISION SUBROUTINE 32-BIT BY 16-BIT 

IROP2MIIROP2L 

RETURN: CARRY 

DIVS CLR 

TST 

JGE 

INV 

INV 

INC 

ADC 

INV 

DIVS1 TST 

JEQ 

JGE 

INV 

5-18 

IROP1 -> IRACL REMAINDER IN IROP2M 

0: OK 

IRACM 

IROP2M 

DIVS1 

IROP2M 

IROP2L 

IROP2L 

IROP2M 

IRACM 

IROP1 

DIVSERR 

DIVS2 

IROP1 

CARRY = 1: QUOTIENT> 16 BITS 

Sign of result 

Check sign of dividend 

Is neg.: I dividend I 

Invert sign of result 

Check sign of divisor. C = 1 

Divisor is 0': error. C 1 

Sign is neg.: I divisor I 



INC IROPl 

INV IRACM Invert sign of result 

DIVS2 CALL #DIVIDE Call unsigned division 

JC DIVSERR C - 1: error 

TST IRACM Test sign of result 

JZ DIVS3 

INV IRACL Is neg.: negate result 

INC lRACL 

DIVS3 CLRC No error occured: C - 0 

DIVSERR RET Error: C - 1 

5.1.7 Shift Routines 

The results of the previous subroutines (MPY, DIV) accumulated in IRACMI 
I RACL have to be adapted to different numbers of bits after the decimal point 
because they are too large to fit into 32 bits. The following subroutines can do 
this function. If other types of number shifting is necessary, the subroutines can 
be constructed as shown for the 6-bit shifts (subroutine SHFTRS6). No tests 
are made for overflow. 

Signed shift right subroutine for IRACM/IRACL 

Definitions see above 

SHFTRS6 CALL #SHFTRS3 Shift 6 bits right signed 

SHFTRS3 RRA IRACM Shift MSBs, bitO -> carry 

RRC IRACL Shift LSBs, carry -> bitlS 

SHFTRS2 RRA lRACM 

RRC IRACL 

SHFTRSI RRA IRACM 

RRC IRACL 

RET 

Unsigned shift right subroutine for IRACM/lRACL 

SHFTRU6 CALL 

SHFTRU3 CLRC 

RRC 

RRC 

#SHFTRU3 

IRACM 

IRACL 

Shift 6 bits right unsigned 

Clear carry 

Shift MSBs, bitO -> carry, 0 -> bit15 

Shift LSBs, carry -> bitlS 
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SHFTRU2 CLRC 

RRC lRACM 

RRC IRACL 

SHFTRUl CLRC 

RRC lRACM 

RRC IRACL 

RET 

Signed/unsigned shift left subroutine for lRACM/lRACL 

SHFTL6 CALL #SHFTL3 Shift 6 bits left 

SHFTL3 RLA lRACL Shift LSBs, bitO -> carry 

RLC lRACM Shift MSBs, carry -> bit15 

SHFTL2 RLA lRACL 

RLC lRACM 

SHFTLl RLA lRACL 

RLC lRACM 

RET 

5.1.8 Square Root Routines 

The square root of a number is often needed in computations. Two different 
methods are given: . 

o A very fast method for 32-bit integer numbers 

o A normal method for 32-bit numbers that can have a fractional part 

5. 1.B. 1 Square Root for 32·8It Integer Numbers 

The square root of a 30-bit integer number is calculated. The result contains 
15 correct fractional bits. The subroutine uses the method known from the find­
ing of a square root by hand. This method is much faster than the widely known 
NEWTONIAN method and only 720 cycles are needed. This subroutine was 
developed by Jllrg MOiler Software-Art GmbHlZurlch. The C program code 
needed is also shown: 

unsigned long y, h; 

int i; 

h = x; 

x = y = 0; 
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for (i = 0; i < 32; i++) 

II X ist eigentlich 2*x 

x «= 1; X++i 

if (y < x) 

x -= 2; 

else 

y -= x; 

x++; 

y «= 1; 

if (h & Minus) 

h «= 1; 

y «= 1; 

if (h & Minus) 

h «= 1; 

return Xi 

II 4*x + 1 

II <y, h> 

y++; 

y++; 

Square Root of a 32-bit number. 

x_MSB .equ R4 

x_LSB .equ R5 

y_MSB .equ R6 

y_LSB .equ R7 

h~SB .equ Ra 

h_LSB .equ R9 

i .equ R10 

Call: 

«= 2 

Result: 32-bit-nurnber in x~SB (16 bit integer part) 

x_LSB (16 bit fraction) 

Range for x: a <= x <= 40000000h 

Range for result: 0 <= SQRT <- aooO.OOOOh 

Max. Error: OOOO.0002h 

Calculation Time: 720 cycles (t = 720/MCLK) 
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Examples: sqrt (10000000h) = 4000.0000h 

Sqrt 

sqrtlO 

Sqrtl2 

Mov 

Mov 

Clr 

Clr 

Clr 

Clr 

Mov 

sqrt 

sqrt 

SetC 

R1c 

Rlc 

Sub 

Subc 

Jhs 

Add 

Addc 

Sub 

Inc 

Rla 

R1c 

Rlc 

Rlc 

Rla 

R1c 

Rlc 

Rlc 

Dec 

Jne 

Ret 

(2710h) = OOOO.0064h 

(2h) 000l.6a09h = 92681 

x~SB,~SB 

x_LSB,h_LSB 

x~SB 

xJ,SB 

y~SB 

y_LSB 

#32,1 

x_LSB 

x~SB 

x_LSB,y_LSB 

x_MSB,y_MSB 

Sqrtl2 

x_LSB,y_LSB 

x_MSB,y_MSB 

#2,x_LSB 

x_LSB' 

h_LSB 

h_MSB 

y_LSB 

y_MSB 

h_LSB 

h~SB 

y_LSB 

y_MSB 

i 

SqrtlO 

x «= 1; x++; 

y.l -= x.l; 

if (y.l & Minus) 

y.l += x.l; 

x.l-=2;} 

x.l++; 

<y.l, HilfsReg> «= 2 

<y.l, HilfsReg> «= 1 

<y.l, HilfsReg> «= 1 

5.1.8.2 Square Root for 32-Bit Numbers 
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culating the square root. The number of iterations depends on the length of the 



Ah 

Al 

XNh 

XNl 

.EQU 

.EQU 

.EQU 

.EQU 

RB 

R9 

operand. The subroutine was developed by A. MiihlhoferlTlO. The general for­
mula is: 

!(A=x 

Xn+I=.!...(m-l)xXn+~) 
m X.m- I 

Where m = 2 (square root) 

.[A = X 

x'+l=ix(x.+~) 
2 x. 

xo='% 
To calculate AlXn a division is necessary. This is done with the subroutine 
XOIV. The result of this division has the same integer format as the divisor Xn. 
This makes an easy operation possible. 

; High word of A 

; Low word of A 

RIO 

Rll 

; High word of result 

;Low word of result 

Square Root 

The valid range for the operand is from OOOO.0002h to 

7FFF.ffffh 

EXAMPLE: SQR(2)=1.6a09h 

SQR 

SQR...,l 

SQR(7fff.ffffh) 

SQR(OOOO.0002h) 

.EQU $ 

MOV Ah,XNh 

MOV Al,XNl 

RRA XNh 

RRC XNl 

CALL #XDIV 

ADD R13,XNl 

ADDC R12,XNh 

B5.04f3h 

O.016ah 

set XO to A/2 

approximation 

XO=A/2 

R12xR13=A/Xn 

Xn+l=Xn+A/Xn 

for the first 
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RRA XNh Xn+l-l/2(Xn+A/Xn) 

RRC XNl 

CMF XNh,Rl2 is high word of Xn+l = Xn 

JNE SQR_l no, another approximation 

CMF XNl,Rl3 yes, is low word of Xn+l = Xn 

JNE SQR_l no, another approximation 

SQR_3 RET yes, result is XNh.XNl 

Extended unsigned division 

RBIR9 / RlOIR1l = R121Rl3, remainder is in Rl41Rl5 

XDIV .EQU 

PUSH 

PUSH 

PUSH 

PUSH 

MOV 

CLR 

CLR 

CLR 

CLR 

L$36l RLA 

RLC 

RLC 

RLC 

CMP 

JLO 

JNE 

CMP 

JLO 

L$363 SUB 

SUBC 

L$364 RLC 

RLC 

DEC 

JNZ 

5-24 

$ 

R8 

R9 

RlO 

Rll 

4/48,R7 

RlS 

Rl4 

Rl2 

Rl3 

R9 

R8 

RlS 

Rl4 

RIO,Rl4 

L$364 

L$363 

Rll,RlS 

L$364 

Rll,RlS 

RlO,R14 

Rl3 

Rl2 

R7 

L$361 

Save operands onto the stack 

Counter=48 

Clear remainder 

Clear result 

Shift one bit of R81R9 to R141RlS 

Is subtraction necessary? 

No 

Yes 

Rll-RlS 

No 

Yes, subtract 

Shift result to Rl21Rl3 

Are 48 loops over ? 

No 



POP Rll Yes, restore operands 

POP RIO 

POP R9 

POP RS 

RET 

5.1.9 Signed and Unsigned 32-Bit Compares 

The following examples show optimized routines for the comparison of values 
longer than 16 bits. They can be enlarged to any length (Le., 48 bit, 64 bit etc.). 

Comparison for unsigned 32-bit numbers: RIIIRI2 with R131R14 

CMP 

JNE 

CMP 

L$I JLO 

JEQ 

LO 

EQUAL 

Rll, R13 Compare MSBs 

L$l MSBs are not equal 

R12, R.14 Equality: Compare LSBs too 

LO Jumps are used for MSBs and LSBs 

EQUAL 

R13IR14 > Rll1RI2 

R131R14 < Rll1R12 

RI31 R14 Rlll R12 

The approach shown can be adapted to any number length, only additional 
comparisons have to be added: 

Comparison for unsigned 4S-bit numbers: RIOIRIIIR12 with 

R13 I R14 IRIS 

CMP 

JNE 

CMP 

JNE 

CMP 

L$l JLO 

JEQ 

LO 

EQUAL 

RIO,R13 

L$l 

Rll,R14 

L$I 

R12,R15 

LO 

EQUAL 

Compare MSBs 

MSBs are not equal 

Equality: Compare MSBs-l too 

MSBs-l are not equal 

Equality: Compare LSBs too 

Jumps are used for all words 

R131R141R15 > RIOIRIIIR12 

R131R141R15 < RIOIRIIIR12 

R131R141R15 RIOIRIIIR12 
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Comparison for signed 32-bit numbers: RllIRl2 with Rl31R14 

CMP 

JLT 

JNE 

CMP 

JLO 

JEQ 

HI 

LO 

EQUAL 

Comparison 

Rl3IR14IRl5 

L$l 

HI 

LO 

EQUAL 

CMP 

JLT 

JNE 

CMP 

JNE 

CMP 

JLO 

JEQ 

Rll,Rl3 

LO 

HI 

Rl2,R14 

LO 

EQUAL 

for signed 48-bit 

RIO,R13 

LO 

HI 

Rll,R14 

L$l 

Rl2,Rl5 

LO 

EQUAL 

numbers: 

Compare MSBs signed 

Rl3 < Rll 

Not LO, not EQUAL: only HI rests 

Equality: Compare LSBs too 

'LSBS use unsigned jumps! 

Not LO, not EQUAL: only HI rests 

Rl31Rl4 > RllIRl2 

Rl31R14 < RIIIR12 

Rl31Rl4 = RIlIRl2 

RlOIRllIRl2 with 

Compare MSBs signed 

Not LO, not EQUAL: only HI rests 

Equality: Compare MSBs-l too 

MSBs-l are not equal 

Equality: Compare LSBs too 

Used for MSBs-l and LSBs 

Not LO, not EQUAL: only HI rests 

Rl3IR14IRl5 > RlOIRllIR12 

R131Rl41R15 < RlOIRllIR12 

R131R14IR15 = RI0lRllIR12 

5.1.10 Random Number Generation 

5-26, 

The linear congruential method is used (Introduced by D. Lehmer in 1951). 
The advantages of this method are speed, code simplicity, and ease of use. 
However, if care is not taken in choosing the multiplier and increment values, 
the results can quickly degenerate. This algorithm produces 65,536 unique 
numbers with very good correlation. Therefore, the random numbers repeat 
in the same sequence every 65,536. Within this sequence, only the LSB exhib­
its Ii repeatable pattern every 16 calls. 

The linear congruential method has the following form: 

Rndnum n = (Rndnum n- 1 X MULT), + INC(modM) 



Where: 
Rndnumn 
Rndnumn_1 
MULT 
INC 
M 

Current random number 
Previous random number 
Multiplier (unique constant) 
Increment (unique constant) 
Modulus (word width of MSP430 = 16 bits = 64K) 

Many hours of research have been done to identify the optimal choices for the 
constants MULTand INC. The constant used in this implementation are based 
on this research. If changes are made to these numbers, extreme care must 
be taken to avoid degeneration. The following text is a more detailed look at 
the algorithm and the numbers used: 

o M: M is the modulus value and is typically defined by the word width of the 
processor. The linear congruential algorithm returns a random number be­
tween 0 and 65,536 and is NOT internally bounded. If the user requires 
a minimax limit, this must be coded externally to this routine. The result 
is not actually divided by 65,536. The result register is allowed to overflow, 
thus implementing the modulus. 

o SEED: The first random number in the sequence is called the seed value. 
This is an arbitrary constant between 0 and 64K. Zero can be used. This 
is OK if the code is allowed 3 calls to warm up before the numbers are con­
sidered valid. The number 21,845 was used in this implementation be­
cause it is 1/3 of the modulus (65,536). 

o MULT: Based on random number theory, this number should be chosen 
such that the last three digits are even-2-1 (such as xx821 , x421 , etc.). 
The number 31,821 was used in this implementation. 

o INC: In general, this constant can be any prime number related to M. Two 
values were actually tested in this implementation: 1 and 13,849. Re­
search shows that INC should be chosen based on the following formula: 
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(Using M=65,536 leads to INC=13,849) 

The following code describes the first equation. Three subroutines are used 
to generate random numbers. Furthermore, the initialization of corresponding 
constants and of a RAM-variable storing the random number is included. The 
symbol names of the 1 st equation are strictly used in the code underneath. The 
first time, an initialization routine INIRndnum must be called. Then a subrou­
tine Rndum 16 is called to calculate the random numbers as oiten as needed. 
The code necessary and the description of the subroutine MPYU can be found 
in Section 5.1.1, UnSigned Multiplication 16 x 16-blts. 

INITIALIZE CONSTANTS FOR RANDOM NUMBER GENERATION 

SEED 

MULT 

INC 

HW~PY 

.set 

.set 

.set 

.set 

21845 

31821 

13849 

o 

ALLOCATION RANDOM NUMBER IN RAM-ADDRESS 200h 

.bss Rndnum,2,0200h 

Arbitrary seed value (65536/3) 

Multiplier value (last 3 

Digits are even-2-1) 

1 and 13849 have been tested 

1: HW-MPYer on chip 

SUBROUTINE: INITIALIZE RANDOM NUMBER GENERATOR: 

Load the SEED value and produce the 1st random number 

INIRndnum .equ $ 

MOV #SEED,Rndnum 

SUBROUTINE: GENERATES NEXT RANDOM NUMBER 

HW~PY = 0: 169 cycles 

HW~PY - 1: 26 cycles 

Rndnum16 .equ $ 

5-28 

.if 

MOV 

MOV 

HW~Y=O 

Rndnum,IROP2L 

#MULT, IROP1 

Uses Rndnum16 

Initialize generator 

No MPYer 

Prepare. multiplication 

Prepare multiplication 



CALL 

ADD 

#MPYU 

HNC,IRACL 

Call unsigned MPY (5.1.1) 

Add INC to low word of product 

Overwrite old random number with low word of new product 

MOV IRACL,Rndnum Result to Rndnum and IRACL 

.else HW MPYer on chip 

MPYU Rndnum, #MULT Rndnum x MULT 

MOV &ResLo, Rndnum Low word of product 

ADD #INC,Rndnum Add INC to low word 

.endif 

RET Random number in Rndnum 

EXAMPLE: Use of the Random Generator (1st call and succeeding calls). 

First call: produce the 1st random number 

CALL HNIRndum ; Initialize generator 

Second and all other calls to get the next random number 

CALL #Rndnum16 ; Next random number to register 

; IRACL and location Rndnum 

Algorithm from TMS320DSP Designer's Notebook Number 43 Random Num­
ber Generation on a TMS320C5x. 7/94 

5.1.11 Rules for the Integer Subroutines 

Despite the fact that the subroutines shown previously can only handle integer 
numbers, it is possible to use numbers with fractional parts. It is necessary only 
to define for each number where the virtual decimal point is located. Relatively 
simple rules define where the decimal point is located for the result. 

For calculations with the integer subroutines, it is almost impossible to remem­
ber where the virtual decimal point is located. It is good programming practice 
to indicate in the comment part -of the software listing where the decimal point 
is currently located. The indication can have the following form: 

where 
N 
M 

N.M 

Worst-case bit count of integer part (allows additional assessments) 
Number of bits after the virtual decimal point 
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The rules for determining the location of the decimal point are simple: 

o Addition and subtraction: Positions after the decimal point have to be 
equal. The position is the same for the result. 

o Multiplication: Positions after the decimal point can be different. The two 
positions are added to get the result's position after the decimal point. 

o Division: Positions after the decimal point can be different. The two posi­
tions are subtracted to get the result's position. (Dividend - divisor) 

Table 5-1. Examples for the Virtual Decimal Point 
First Operand Operation Second Operand Result 

NNN.MMM + NNNN.MMM NNNN.MMM 
NNN.M x NN.MMM NNNNN.MMMM 

NNN.MM - NN.MM NNN.MM 

NNNN.MMMM : NN.MMM NN.M 

NNN.M + NNNN.M NNNN.M 
NNN.MM x NN.MMM NNNNN.MMMMM 

NNN.M - NN.M NNN.M 

NNNN.MMMMM : NN.M NN.MMMM 

If two numbers have to be divided and the result needs n digits after the deci­
mal pOint, the dividend has to be loaded with the number shifted appropriately 
to the left and zeroes filled into the lower bits. The same procedure can be used 
if a smaller number is to be divided by a larger one. 

EXAMPLES for the division: 

Table 5-2. Rules for the Virtual Decimal Point 
First Operand Operation Second Operand Result 

(Shifted) 

NNNN.OOO : NN NN.MMM 
NNNN.OOO : NN.M NN.MM 
NNNN.OOO : N.MM NNN.M 
O.MMMOOO : NN.M O.MMMMM 
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EXAMPLE for a source using the number indication: 

MOV #01234h,IROP2L Constant 12.34h loaded 8.8 

MOV R15,IROP1 Operand fetched 2.3 

CALL #MPYS Signed MPY 10.11 

CALL #SHFTRS3 Remove 3 fraction bits 10.8 

ADD #00678h,IRACL Add Constant 6.78h 10.8 

ADC lRACM Add carry 10.8 
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Table Processing 

5.2 Table Processing 

One of the development targets of the MSP430 was the capability of process­
ing tables because software can be written more legible and more functional 
when using tables. The addressing modes, the instruction set, and the word! 
byte structure make the MSP430 an excellent table processor. The arrange­
ment of information in tables has several advantages: 

o . Good visibility 
o Simplifies changes: enlargements and deletions are made easily 
o Low software overhead: Short programs 
o High speed: Fastest way to access data 

Generally, two ways exist of arranging data in tables: 

o Data is arranged in blocks, each block containing the complete informa­
tion of one item 

o Data is arranged in several tables, each table containing one or two kinds 
of information for all items. 

Max. Pressure Max. Pressure Item 0 

MPY I EEPROM Block 0 

Offset MelI. Pressure Hemn 

Max. Pressure 

MPY 1 EEPROM 
MPY EEPROM I Item 0 

Block 1 

Offset 
MPY EEPROM Hemn 

Mex. Pressure 
Offset Hem 0 

MPY I EEPROM Block n 

Offset Offset Hemn 

Block Arrangement Of Date Deta In Several Tebles 

Figure 5-5. Data Affangement in Tables 

EXAMPLE: A table arranged in blocks is shown. Some examples for random 
access are given. The addressed tables refer to Figure 5-6 

;Block Arrangement of data 

TABLE . WORD 2095 Maximum pressure item 0 
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TEEPR . BYTE 

TMPY .BYTE 

TOFFS . WORD 

TABN . WORD 

. WORD 

. BYTE 

. BYTE 

. WORD 

16 

3 

014S6h 

3084 

2010 

37 

3 

004S6h 

EEPROM start address 

Multiply constant 

Offset correction value 

Maximum pressure item 1 

Table Processlnq 

Maximum pressure item N 

EEPROM start address 

Multiply constant 

Offset correction value 

Access examples for the above block arrangement: 

RS points to the 1st word of a block (max. pressure) 

Examples how to access the other values are given: 

MOV @RS,R6 

MOV.B TEEPR-TABLE(RS),R7 

CMP.B TMPY-TABLE(RS),R8 

MOV &ADAT,R9 

ADD TOFFS-TABLE(RS),R9 

ADD lFTABN-TABLE,RS 

Copying of block arranged data to registers 

MOV 

MOV.B 

MOV.B 

MOV 

@RS+,R6 

@RS+,R7 

@RS+,R8 

@RS+,R9 

RS points to next item's block now 

Copy max. pressure to R6 

EEPROM start to R7 

Same constant as in R8? 

ADC result to R9 

Correct ADC result 

Address.next item's block 

Copy max. pressure to R6 

EEPROM start to R7 

MPY constant to R8 

Offset to R9 

EXAMPLE: A table arranged in several tables is shown. Some examples for 
random access. are given. The addressed tables refer to Figure 5-5 

Arrangement of data in several tables 

TMAXPR . WORD 209S Maximum pressure item 0 
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Table Processing 

WORD 3084 Maximum pressure item 1 

. WORD 2010 Maximum pressure item N 

TEEMPY .BYTE 16,3 EEPROM start, MPY constant 

. BYTE 37,3 item 1 

.BYTE 37,114 item N 

TOFFS . WORD 014S6h Offset correction value 

. WORD 004S6h item N 

Access examples for the above arrangement: 

RS contains the item number x 2: (word offset) 

Examples with identical functions as for the block arrangement 

shown in the example before 

5.2.1 

MOV TMAXPR(RS),R6 Copy max. pressure to R6 

MOV.B TEEMPY(RS),R7 EEPROM start to R7 

CMP.B TMPY+1(RS),RS Same constant as in RS? 

MOV &ADAT,R9 ADC result to R9 

ADD TOFFS(RS), R9 Correct ADC result 

INCD RS Address next item 

Two Dimensional Tables 

The output value of a function often depends on two (or more) input values. 
If there is no algorithm for such a function, then a two (or more) dimensional 
table is needed. Examples of such functions are: 

o The entropy of water depends on the inlet temperature and the outlet tem­
perature. An approximation equation of the twelfth order is needed for this 
problem if no table is used. 

o The ignition angle of an Otto-motor depends on the throttle opening and 
the motor revolutions per minute. 

Figure 5-6 shows a function like the one described. The output value T de­
pends on the input values X and Y. 



Table Processing 

T 

Figure 5-6. Two-Dimensional Function 

A table contains the output values T for all crossing points of X and Y that have 
distances of ~ and Il Y respectively. For every point in between these table 
points, the output value can be calculated. 
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Table Processing 

W-o--- AX ---~ 

Figure 5-7. Algorithm for Two-Dimensional Tables 

The calculation formuias are: 

f(X, Yb) = 
X-~ X-~ 

---x (T10- TOO)+ TOO = --;--X x (T10- TOO)+ TOO 
Xa + 1-Xa Ll 

X-Xa 
f(X, Yb+ 1) ;:: --x (T11- T01)+ T01 

flX 

Y-Yb 
f(X, Y) = --x (f(X, Yb+ 1)-(f(X, Yb»+ f(X, Yb) 

flY 

These formulas need division. There are two possible ways to avoid the divi­
sion: 

o To choose the values for !J.X and flY in such a way that simple shifts can 
do the divisions (!J.X = 0.25, 0.5, 1, 2, 4 etc.) 

o To use adapted output values T' within the table 

T'xy;:: Txy 
flXflY 



ITEM 

Detta 

Input value lonnat 

Starting value 

End value 

Input value (RAM. reg) 

Table Processing 

This adaptation leads to: 

f(X, Yb) 
~ = (X - Xa) x (T'10 - T'OO)+ T'OO 

f(X, Yb+ 1) 

.1.Y 
= (X - Xa) x (T'11 - T' 01)+ T'01 

f(X, Y) = (Y _ Yb)X f(X, Yb + 1) _ f(X, Yb»)+ f(X, Yb) X A Y 
AY AY AY 

The output value f(X,Y)is now calculated with multiplications only. 

EXAMPLE: A 2-dimensional table is given . .1.X and .1. Yare chosen as multiples 
of 2. The integer subroutines are used for the calculations 

Note: 

The software shown is not a generic example. It is tailored to the input values 
given. If other .1.X and .1. Y values are used. the adaptation parts and masks 
have to be changed. 

X V COMMENT 

2 4 AX and AV 

8.2 7.1 Bits before/alter decimal point 

0 0 XO rasp. VO 

42 56 XM resp. YN 

XiN YIN Assembler mnemonic 

; Two dimensional table processing 

XIN .EQU R15 

YIN .EQU R14 

XM .EQU 42 

YN .EQU 56 

XCL .EQU 7 

YCL .EQU 7 

XAYB .EQU R13 

ZCFLG .EQU 0 

Address definitions for the 4 table points: 

unsigned X value, register or RAM 

unsigned Y value, register or RAM 

Number of X rows 

Number of Y columns 

Mas"k for fraction and dX 

Mask for fraction and dY 

Rel. address of (XA,YB), register 

Flag: 0: 2-dim 1: 3-dimensional 
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TI!,bIe Processing 

TOO 

TOI 

TIO 

Tll 

.EQU 

.EQU 

.EQU 

.EQU 

TABLE 

TABLE+2 

TABLE+(YN*2) 

TABLE+(YN*2)+2 

(XA,YB) 

(XA,YB+1) 

(XA+I,YB) 

TABLE (XAYB) 

TABLE+2(XAYB) 

TABLE+(YN*2) (XAYB) 

(XA+1,YB+I) TABLE+(YM*2)+2(XAYB) 

Table for two dimensional processing. Contents are signed 

numbers. 

TABLE . WORD 

. WORD 

. WORD 

0101Sh, ... 073A7h (XO,YO) (XO,Yl) ... (XO,YN) 

02222h, ... OBE21h (Xl,YO) (XI,Yl) ... (X1,YN) 

OA730h, ... 06BD1h (XM,YO) (XM,Y1) ... (XM,YN) 

Table calculation software 2-dimensional. Approx. ,700 cycles 

Input value X in XIN, Input value Y in YIN 

Result T in lRACL, same format as TABLE contents 

Calculation of YB out of YIN. One less adaption due to 

word table. Relative address of (XO,YB) to lRACL 

TABCAL2 CLR I RACK 0 -> Hi result register 

MOV YIN,IRACL Y -> Lo result register 

RRA IRACL Shift out fraction part 

RRA lRACL Adapt to dY = 4 

BIC #l,IRACL Word address needed 

Calculation of XA out of XIN. One less adapt ion due to 

word table. Relative address of' (XA,YB) to IRACL (TOO) 

MOV XIN,IROPI X ->"Multiplicand 

RRA IROPI Shift out fraction part 

RRA IROP1 Adapt to dX = 2 

BIC #I,IROP1 Word address needed 

MOV IIYN,IROP2L Max., Y (YN) to multipl. 
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Table Processing 

CALL 

MOV 

.IF 

ADD 

.ENDIF 

tMACS 

IRACL,XAYB 

ZCFLG 

OFFZC,XAYB 

ReI address (XA,YB) 

to storage register 

If 3-dimensional calculation 

Add offset for actual table 

ReI. address of ZC 

Calculation of f(X,YB) = (XIN-XA)/dX x (T10-TOO) + TOO 

MOV XIN,IROP1 build (XIN - XA) 

AND tXCL,IROPl Fraction and dX rests 

MOV T10(XAYB),IROP2L T10 -> IROP2L 

SUB TOO(XAYB),IROP2L T10 - TOO 

CALL #MPYS (XIN - XA)(T10 - TOO) 

CALL #SHFTRS3 :dX, to integer 

ADD TOO (XAYB) , IRACL (XIN-XA) (TlO-TOO)+TOO 

PUSH IRACL Result on stack 

Calculation of f(X,YB+l) 

(XIN-XA) still in IROP1 

(XIN-XA)/dX x (T11-TOl) + T01 

MOV 

SUB 

CALL 

CALL 

ADD 

Tl1(XAYB),IROP2L 

TOl(XAYB),IROP2L 

#MPYS 

#SHFTRS3 

TOl(XAYB), IRACL 

TIl -> IROP2L 

TIl - TOI 

(XIN - XA)(TII - TOl) 

:dX, to integer 

(XIN-XA) (Tll-TOl)+TOl 

Calculation of f(X,Y) = (YIN-YB)/dY' x (f(X,YB)-f(X,YB+l) + 

f(X,YB) 

MOV YIN, IROPI build (YIN - XB 

AND tYCL,IROPl Fraction and dX rests 

SUB @SP,IRACL f(X,YB+l)-f(X,YB) 

MOV IRACL,IROP2L Result to multiplier 

CALL #MPYS (YIN-YB) (f .. -f .. ) 

CALL #SHFTRS3 :dY, to integer 

Software AppHcations 

13.0 

13.0 

8.2 

1.2 

16.0 

16.0 

17.2 

15.0 

15.0 

16.0 

16.0 

17.2 

15.0 

15.0 

7.1 

2.1 

16.0 

18.1 

16.0 
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Table Processing 

ADD 

RET 

@SP+,IRACL ; (YIN-YB) (f .. -f .. )+f .. 

; Result T in lRACL 

15.0 

16.0 

The table, used with the previous example uses unsigned values for X and Y 
(the upper left hand table of Figure 5-8 shows this). If X or Y or both are signed 
values, the structure of the table and its entry paint have to be changed. The 
following examples in Figure 5-8 show how to do that. 

YO YN Y-N-1 YO YN 
.. ______ --1 XO 

1---...... ----1 XO 

'--_____ ...... XM ..... __ ..... ___ ,.,XM 

X Unsigned Y Unsigned X Unsigned Y Signed 

• Location Of Address TABLE 

YO YN Y-N-1 YO YN 
X-M-1 X-M-1 

.. --------t XO 1---.. ------4 XO 

..... _____ --' XM ~ ____ ~ ______ ~ XM 

X Signed Y Unsigned X Signed Y Signed 

Figure 5-8. Table Configuration for Signed X and Y 

The previous tables are shown in assembler code: 

; X unsigned, Y unsigned 

TABLE . WORD OlOlSh, ... 073A7h (XO ,YO) ... (XO, YN) 

• WORD 02222h, ... 08E2lh (Xl,YO) ... (Xl,YN) 

. WORD OA73h, ... 068Dlh (XM, YO) ... (XM, YN) 

X unsigned, Y signed 

5-40 



TABLE 

. WORD 

. WORD 

. WORD 

. WORD 

030l7h, ... 093A2h 

02233h, ... 0872lh 

030l7h, ... 093A2h 

OOl73h, ... 0785lh 

(XO,Y-N-l) ... (XO,Y-l) 

(XO,YO) ... (XO,YN) 

(Xl,Y-N-l) ... (Xl,YN) 

(XM,Y-N-l) ... (XM,YN) 

Table Processing 

X signed, Y unsigned 

TABLE 

. WORD 

. WORD 

. WORD 

. WORD 

. WORD 

. WORD 

030l7h, ... 093A2h 

080l2h, ... OB3Clh 

040l9h, ... OD3A3h 

02233h, ... 0872lh 

030l7h, ... 093A2h 

OOl73h, ... 07851h 

(X-M-l,YO) ... (X-M-l,YN) 

(X-M,YO) ..... (X-M,YN) 

(X-l,YO) ... (X-l,YN) 

(XO,YO) .... (XO,YN) 

(Xl,YO) .... (Xl,YN) 

(XM,YO) .... (XM,YN) 

X signed, Y signed 

TABLE 

. WORD 

. WORD 

. WORD 

. WORD 

. WORD 

. WORD 

. WORD 

030l7h, ... 093A2h 

08012h, ... OB3Clh 

04019h, ... OD3A3h 

02233h, ... 0872lh 

02233h, ... 0872lh 

030l7h, ... 093A2h 

00173h, ... 0785lh 

(X-M-l,Y-N-l) (X-M-l,YN) 

(X-M,Y-N-l) ... (X-M,YN) 

(X-l,Y-N-l) ... (X-l,YN) 

(XO,Y-N-l) .... (XO,Y-l) 

(XO,YO) ....... (XO,YN) 

(Xl,Y-N-l) .... (Xl,YN) 

; (XM, Y-N-l) .... (XM, YN) 

The entry label TABLE always points to the word or byte with the coordinates 
(XO,YO). 

5.2.2 Three-Dimensional Tables 

If the output value T depends on three input variables X, Y and Z. a three di­
mensional table is necessary for the crossing pOints. Eight values TOOO to 
T111 are used for the calculation of the output value T. 
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Table Pf0C6ss/ng 

The simplest way is to compute these figures is to calculate the output values 
for both two-dimensional tables f(X,Y,Zc) and f(X,Y,Zc+ 1) with the subroutine 
TABCAL2. The two results are used for the final calculation: 

Z_Zc 
f(X, Y, Z) = x (f(X, Y, Zc + t) - (f(X, Y, Zc) )+ f(X, Y, Zc) 

. ZC+t-ZC 

The following figure shows this method. The output values Txxx are calculated 
for Zc and for Zc+ 1. Out of these two output values, the final value fIX, Y,Z), is 
calculated. 

fIX, V,Z) 

... , ... 1 0 .... , .... " 
z-L.c----~Z--~ZC+1 

Figure 5-9. Algorithm for a Three-Dimensional Table 

rrEM 

Delta 

Input value fonnat 

Starting value 

End value 

EXAMPLE: f1. three-dimensional table is given. AX and flY and AZ are chosen 
as multiples of 2. The integer subroutines are used for calculations. 

x y Z ·COMMENT 

2 4 256 AX,AY,/lZ. 

8.2 7.1 0 Bits after decimal point 

0 0 0 XC, YO,ZO 

42 56 214_1 XM,YN,ZP 

Input value (RAM, register) XIN YIN ZIN Assembler mnemonic 

XIN 

YIN 

5-42 

.EQU 

.EQU 

R15 

R14 

unsigned X value, register or RAM 

unsigned Y value, register or RAM 



Table Processing 

ZIN .EQU R13 unsigned Z value, register or RAM 

XM .EQU 42 Number of X rows 

YN .EQU 56 Number of Y columns 

XCL .EQU 7 Mask for fraction and dX 

YCL .EQU 7 Mask for fraction and dY 

ZCL .EQU OFFh Mask for deltaZ 

XAYB .EQU R12 ReI. address of (XA,YB), register 

ZCFLG .EQU 1 Flag: 0: 2-dim. 1: 3-dim. Table 

OFFZC .EQU Rll Relative offset to actual 

Three dimensional table 

TABL3D . WORD 01015h, ... 073A7h (XO,YO,ZO) ... (XO,YN,ZO) 

. WORD 02222h, ... 08E21h (XM,YO,ZO) ... (XM,YN,ZO) 

. WORD OA730h, ... 068D1h (XO,YO,Zl) ... (XO,YN,ZI) 

. WORD OlOA5h, ... 09BA7h (XM,YO,ZI) ... (XM,YN,ZI) 

. WORD 02BC2h, ... 08E4Ih (XO, YO, ZP) ... (XO, YN, ZP) 

. WORD OA980h, ... 023D1h ; (XM,YO,ZP) ... (XM,YN,ZP) 

Table calculation software 3-dimensional 

Input values: X in XIN, Y in YIN, Z in ZIN 

Result is located in IRACL, same format as TABLE content 

Calculation of ZC out of ZIN. One less adapt ion due to 

word table. 

(XO,YO,ZC) 

TABCAL3 MOV 

SWPB 

MOV.B 

ZIN,IROP1 

IROPI 

IROPI,IROPI 

Z -> Operand register 

Use only upper byte (dZ -256) 

Adapt to dZ = 256 

Calculation of ,relative address of (XO,YO,ZC) to IRACL 

Corrected for word table 

14.0 

6.0 
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Table Processing 

MOV 

CALL 

MOV 

#YN*2*XM,IROP2L 

#MPYU 

lRACL,OFFZC 

Table length for dZ 

ReI address (XO,YO,ZC) 

to storage register 

Calculation of f(X,Y,ZC):·The table block for ZC is used 

CALL 

PUSH 

#TABCAL2 

IRACL 

f(X,Y,ZC) -> lRACL 

Save f(X,Y,ZC) 

Calculation of f(X,Y,ZC+I): The table block for ZC+I is used 

ADD 

CALL 

#YN*2*XM,OFFZC 

#TABCAL2 

Calculation of f(X,Y,Z) 

MOV. ZIN,IROP1 

AND nCL,IROP1 

SUB @SP,IRACL 

MOV lRACL,IROP2L 

CALL #MPYS 

CALL #SHFTRS6 

CALL #SHFTRS2 

ReI. adress (XO,YO,ZC+1) 

f(X,Y,ZC+1) -> lRACL 

build (YIN - XB 

Fraction and dZ rests 

f(X,Y,ZC+l)-f(X,Y,ZC) 

Result to multiplier 

(ZIN-ZC) (f .. -f .. ) 

:dZ, to integer 

13.0 

13.0 

16.0 

16.0 

6.8 

0.8 

16.0 

16.8 

16.2 

16.0 

ADD @SP+,IRACL (ZIN-ZC) (f. .-f .. )+f. . . 15. ° 
RET Result in IRACL 
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5.3 Signal Averaging and Noise Cancellation 

If the measured signals contain noise, spikes, and other unwanted signal com­
ponents, it may be necessary to average the ADC results. Six different meth­
ods are mentioned here: 

1 ) Oversampling: Several measurements are added-up and the accu­
mulated sum is used for the calculations. 

2) Continuous Averaging: A circular buffer is used for the measured 
samples. With every new sample a new average value can be calcu­
lated. 

3) Weighted summation: The old value and the new one are added to­
gether and divided by two afterwards. 

4) Wave Digital Filtering: Complex filter algorithms, which need only 
small amounts of calculation power, are used for the signal condition­
ing. 

5) AeJection of Extremes: the largest and the smallest samples are re­
jected from the measured values and the remaining samples are add­
ed-up and averaged. 

6) Synchronization of the measurements to hum 

The advantages and disadvantages of the different methods are shown in the 
following sections. 

5.3.1 Oversampling 

SUMLO 

SUMHI 

Oversampling is the simplest method for the averaging of measurement re­
sults. N samples are added-up and the accumulated sum is divided by N after­
wards or is used as it is with the following algorithm steps. It is only necessary 
to remember that the accumulated value is N-times too large. For example, the 
following formula, used for a single measurement, needs to be modified when 
N samples are summed-up as shown: 

L ( Slope x ADC + Offset) 
V normal = Slope x ADC + Offset ~ V oversample= 

N 

.EQU 

.EQU 

R4 

R5 

EXAMPLE: N measurements have to be summed-up in SUM and SUM+2. The 
number N is defined in A6 

LSBs of sum 

MSBs of sum 
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S/g~1 Averaging and NOiS? Cancellation 
liip 

CLR 

CLR 

MOV 

OVSLOP CALL 

ADD 

ADC 

DEC 

JNZ 

SUMLO 

SUMHI 

U6,R6 

#MEASURE 

&ADAT,SUMLO 

SUMBI 

R6 

OVSLOP 

o Advantages 

• Simple programming 

o Disadvantages 

Init of registers 

Sum-up 16 samples of the ADC 

Result in ADAT 

LSD of accumulated sum 

MSD 

Decr. "N counter: 0 reached? 

Yes, 16 samples in SUMBIISUMLO 

• High current cons.umption due to number of ADC conversions 

• Low suppression of spikes etc. (by N) 

5.3.2 Continuous Averaging 

5-46 

A very simple and fast way for averaging digital signals is continuous averag­
ing. A circular buffer is fed at one end with the newest sample and the oldest 
sample and is deleted at the other end (both items"share the same RAM loca­
tion). To reduce the calculation time, the oldest sample is subtracted from the 
actual sum and the new sample is added to the sum. The actual sum (a 32-bit 
value containing N samples) is used by the background. For calculations, it is 
only necessary to remember that it contains the accumulated sum of N sam­
ples. The same rule is valid for oversampling. 



-10 

40 

1 

Signal Averaging and Noise Cancellation 

The characteristic of this averaging is similar to a comb filter with relatively 
good suppression of frequencies that are integral multiples of the scanning fre­
quency. The frequency behavior is shown in the following figure. 

0.0625 0.125 0.25 0.5 

---+ 
Input Frequency 

Seen Frequency 

Attenuation dB 

Figure 5-10. Frequency Response of the Continuous Averaging Filter 

N .BQU 

.BSS 

.BSS 

16 

o Advantages 

• Low current consumption with only one measurement 

• Fast update of buffer 

• Good suppression of certain frequencies (multiples of scan 
frequency) 

• Low-pass filter characteristic 

o Disadvantages 

• RAM allocation: N words are needed for the circular buffer 

EXAMPLE: An interrupt driven routine (e.g. from the ADC, which Is started by 
the basic timer) that updates a circular buffer with N items is shown. The actual 
sum CFSUM is calculated by subtracting of the oldest sample and adding of 
the newest one. CFSUM and CFSUM+2 contain the sum of the latest N sam­
ples. 

CFSTRT,N*2 

CFSUM,4 

; Circular buffer with N items 

; Address of 1st item 

Accumulated sum 32 bits 
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.BSS 

CFHND PUSH 

MOV 

CMP 

JLO 

MOV 

CFPOI,2 

RS 

CFPOI,RS 

#CFSTRT+(N*2),RS 

L$300 

IICFSTRT,R5 

Points to next (= oldest) item 

Save RS 

Actual address to RS 

Outside circ. buffer? 

No 

Yes, reset pointer 

The oldest item is subtracted from the sum. The newest item 

overwrites the oldest one and is added to the sum 

L$300 

5.3.3 

SUB @RS,CFSUM Subtract oldest item from CFSUM 

SBC CFSUM+2 

MOV &ADAT,O(RS) Move actual item to buffer 

ADD @RS+,CFSUM Add latest ADC result to CFSUM 

ADC CFSUM+2 

MOV RS,CFPOI Update pointer 

POP RS Restore RS 

RETI 

Weighted Summation 

The weighted sum of the measurements before and the current measurement 
result are added and then divided by two. This gives every measurement result 
a certain weight. 

Table 5-3. Sample Weight 
MEASUREMENT TIME WEIGHT COMMENT 

10 0.5 Actual measurement 
to-lot 0.25 Last measurement 

10-2t..1 0.125 

10-3d1 0.0625 

10-4lol 0.03125 

10-MI 2""<n+1) 

o Advantages 

• Low current consumption due to one measurement only 

• Low pass filter characteristic 
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WSHND 

.BSS. 

ADD 

RRA 

Signal Averaging and Noise Cancellstlon 

• Very short code 

• Only one RAM word needed 

o Disadvantages 

• Suppression of spikes not sufficient (factor 2 only for actual sample) 

EXAMPLE: The update of the actual sum WSSUM is shown. 

WSSUM,2 

&ADAT,WSSUM 

WSSUM 

Accumulated weighted sum 

Add actual measurement to sum 

New sum divided by 2 

Continue with value in WSSUM 

5.3.4 Wave Digital Filtering 

Wave digital filters (WDFs) have notable advantages: 

o Excellent stability even under nonlinear operating conditions resulting 
from overflow and roundoff effects 

o Low coefficient word length requirements 

o Inherently good dynamic range 

o Stability under looped conditions 

Compared with the often used averaging of measured sensor data, the digital 
filtering has advantages: Lowpass filtering with sharp cut-off region, notch fil­
tering of noise. 

For the design of WDF algorithms specialized CAD programs have been de­
signed to speed-up the top-down design from filter specification to the ma­
chine program for the processor: 

o LWDF _DESIGN allows the design of Lattlce-WDFs 

o LWDF _ COMP transforms a Lattice-WDF structure into an assembler pro­
gram for the MSP430 

o DSP430 allows fast transient simulations of the filter algorithms on a mod­
el of the MSP430, analYSis of frequency response, check of accuracy and 
stability proof. 

The programs enable the users of the MSP430 to solve special measurement 
problems by means of robust digital filter algorithms. . 
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A complete description of the WDF algorithms and development tools is given 
in the "TEXAS INSTRUMENTS Technical Journal' November/December 
1994. 

o Disadvantages 

• Complex algorithm. Support software needed for finding algorithm 

o Advantages 

• Low current consumption because only one measurement per time 
slice needed 

• Good attenuation inside stopband 

• Good dynamic stability 

5.3.5 Rejection of Extremes 

N .EQU 

.IF 

.BSS 

. ELSE 

.BSS 
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This averaging method measures (N+2) ADC-samples and rejects the largest 
and the smallest values. The remaining N samples are added-up and the ac­
cumulated sum is divided by N afterwards or is used as it is with the next algo­
rithm steps. It is only necessary to remember thai the added-up value is N­
times too large. 

o Disadvantages 

• Current consumption high due to (N+2) ADC conversions 

o Advantages 

• Simple programming 

• Very good suppression of spikes (extremes are rejected) 

• Small amount of RAM needs (4 words) 

The following software example adds six ADC samples, subtracts the two ex­
tremes, and retums with the sum of the four medium samples. The constant 
N can be changed to any number, but the summing-up buffer SESUM needs 
two words if N exceeds' two. It is an advantage to use powers of two for N due 
to the simple divisions needed (right shifts only). Register use is possible for 
SESUM, SEHI and SELO. 

Sample count used -2 

N>2 

SESUM,4 Summing-up buffer 

SESUM,2 N<-2 



.ENDIF 

.BSS 

.BSS 

.BSS 

SEHND CLR 

.IF 

CLR 

.ENDIF 

MOV.B 

MOV 

CLR 

SEHI,2 

SELO, 2 

SECNT,l 

SESUM 

N>2 

SESUM+2 

#N+2,SECNT 

#OFFFFh,SELO 

SEHI 

Signal Averaging and Noise Cancellation 

Largest ADC result 

Smallest ADC result 

Counter for N+2 

Initialize buffers 

Sample count +2 to counter 

ADCmax -> SELO 

ADCrnin -> SEHI 

N+2 measurements are made and summed-up in SESUM 

SELOOP CALL #MEASURE 

MOV &ADAT,R5 

ADD R5,SESUM 

. IF N>2 

ADC SESUM+2 

.ENDIF 

CMP R5,SEHI 

JHS L$l 

MOV R5,SEHI 

L$l CMP R5,SELO 

JLO L$2 

MOV R5,SELO 

L$2 DEC.B SECNT 

JNZ SELOOP 

ADC result to &ADAT 

Copy ADC result to R5 

Use 2nd sum buffer if N>2 

Result > SEHI? 

No 

Yes, actualize SEHI 

Result < SELO? 

No 

Counter - 1 

N+2 not yet reached 

N+2 measurements are made, extremes are subtracted now 

from summed-up result. Return with N-times value in SESUM 

SUB 

.IF 

SELO,SESUM 

N>2 

SBC SESUM+2 

Subtract lowest result 

Necessary if N>2 
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.ENDIF 

SUB 

. IF 

SEHI,SESUM 

N>2 

SBC SESUM+2 

.ENDIF 

RET 

Subtract highest result 

Necessary if N>2 

5.3.6 Synchronization of the Measurement to Hum 

If hum plays a role during measurements then a synchronization to the ac fre­
quency can help to overcome this problem. Figure 5-11 shows the influence 
of the ac voltage during the measurement of a single sensor. The necessary 
number of measurements (here 10 are needed) is split into two equal parts, 
the second part is measured after exactly one half of the period Tac of the ac 
frequency. The hum introduced to the two parts is equal but has different signs. 
Therefore the accumulated influence (the sum) is nearly zero. 

i 
ACVoltage 

V1 

-V1 

Figure 5-11. Reduction of Hum by Synchronizing to the AC Frequency. Single 
Measurement 
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If the basic timer is used forthe timing then the following numbers of basic timer 
interrupts can be used. 
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Table 5-4. Basic Timer Frequencies for Hum Suppression 
AC Frequency fac 

50Hz 

60Hz 

t 
ACVoltage 

V1 

Basic Timer Frequency 
fBT 

4096Hz 

2048Hz 

Number of BT 
lnterrupts k 

41 

17 

The formulas to get the above errors are: 

e, = (TBT X2k-l)X100 
TAc 

er = sin( TBT X2kX21t)X1OO 
TAc 

Time Error 8t 
mex. 

0.097% 

-0.39% 

Residual Error er mu 

0.61% 

-2.45% 

where: 
at 
er 

Maximum time error due to fixed basic timer frequency (in %) 
Maximum remaining Influence of the hum (in %) compared to a 
measurement without hum cancellation 

TBT 
Tac 
k 

Period of basic timer frequency (1lfBT) 
Period of ac (1lfaC> 
Number of basic timer interrupts to reach Tad2 respective of Tac 

If difference measurements are used, the two measurements to be subtracted 
should be made with a delay of exactly one ac period. Both measurements 
have the same influence from the hum and the result, the difference of both 
measurements, does not show the error. This measurement method is used 
with heat meters, where the temperature difference of the water inlet and the 
water outlet is used for calculations. 

Figure5-12. Reduction of Hum by Synchronizing to the AC Frequency. Differential 
Measurement 
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Ifthe basic timer is used for the timing then the following numbers of basic timer 
interrupts can be used. 

Table 5-5. Basic Timer Frequencies for Hum Suppression 
AC Frequency fac 
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50Hz 

60Hz 

Baale Timer Frequency Number of Interrupts Time "rror 8t 
fBT . k . max. 

2048Hz 

1024Hz 

41 

17 

The formulas to get the previous results are: 

( TBr ) et = --xk-J xJOO 
TAc 

0.097% 

-0.39% 

er = sin( TBr X k x 21t) x ZOO 
TAC 

Residual Error et mex. 

0.61% 

-2.45% 

The software needed for the modification of the Basic Timer frequency without 
the loss of the exact time base is shown in Section 6.1.1, Change of the Basic 
Timer Frequency. 



Real-Time Applications 

5.4 Real-Time Applications 

5.4.1 Active Mode 

Real-time applications for microprocessors are defined often as follows: 

o The controlling processor is able, under worst case conditions, to finish the 
necessary control algorithms before the next sample of the control input 
arrives. 

The architecture of the MSP430 is ideally suited for real time applications due 
to its system clock generation. The system clock MCLK of the CPU is not gen­
erated by a second crystal, which needs a lot of time until it is oscillating with 
the nominalfrequency. But, by the multiplication ofthe frequency ofthe 32-kHz 
crystal that is oscillating continuously. 

The active mode shows the fastest response to interrupts because all of the 
internal clocks are operating at their nominal frequencies. The active mode is 
recommended when the speed of the MSP430 is the critical factor of an ap­
plication. 

5.4.2 Normal Mode Is Low-Power Mode 3 (LPM3) 

This mode is used for battery-driven systems where the power consumption 
plays an overwhelming role. Battery lifetimes over ten years are only possible 
when the CPU is switched off whenever its processing capability is not need­
ed. 

Despite the switched-off CPU, the MSP430 is at the start address of the inter­
rupt handler within eight MCLK cycles; the system clock oscillator is then work­
ing at the correct frequency. This means true real-time capability, no delay due 
to the slow coming-up of the main oscillator crystal (up to 400 ms) is slowing 
down the system behavior. 

See Section 6.5, The System Clock Generator, for the details of the program­
ming. 

5.4.3 Normal Mode is Low-Power Mode 4 (LPM4) 

The low power mode 4 is used if there are relatively long time elapses between 
two interrupt events. The power consumption goes below 0.1 mA if this mode 
is used All oscillators are switched off and only the RAM and the interrupt hard­
ware are powered. 

Despite this inactivity the MSP430 CPU is at the start of the interrupt handler 
within eight cycles of the programmed DCC tap. See Section 6.5, The System 
Clock Generatorfor the details of the speed-up of the CPU. 
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5.4.4 Recommendations for Real-Time Applications 
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o Switch on the GIE bit (SR.3) as soon as possible. Within the interrupt han­
dlers, only the tasks that do not allow interruption should be completed 
first. This allows nested interrupts and avoids the blocking of other inter­
rupts. 

o Interrupt handlers (foreground) should be as short as possible. All calcula­
tions should be made in the background part of the program. The commu­
nication between these two software parts is made by status bytes. See 
Section 9.2.5, Flag Replacement by Status Usage. 

o Use status bytes and calculated branches. 

o The interrupt capability of the 1/0 ports makes input polling superfluous. 
Any change of an input is seen immediately. Use of the ports this way is 
recommended. 

o Disabling and enabling of the peripheral interrupts during the software run 
is not recommended. Additional interrupt requests can result from these 
manipulations. The use of status bytes is recommended instead. They in­
form the software if an interrupt is valid or not. If not, it is neglected. 



General-Purpose Subroutines 

5.5 General-Purpose Subroutines 

The following, tested software examples can be of help during the software de­
velopment phase. The examples can not fit into any application, but they can 
be modified easily to the user's needs. 

5.5.1 Initialization 

For the first power-on, it is necessary to clear the internal RAM to get a defined 
basis. If the MSP430 is battery powered and contains calibration factors or oth­
er important data in its RAM, it is necessary to distinguish between a cold start 
and a warm start. The reason for this is the possibility of initializations caused 
by electromagnetic interference (EM I). If such an erroneous initialization is not 
checked for legality, EMI influence could destroy the RAM content by clearing 
the RAM with the initialization software routine. Testing can be done by 
comparing RAM bytes with known content to their nominal value. These RAM 
bytes could be identification codes or non-critical test pattems (e.g. A5h, FOh). 
If the tested RAM locations contain the correct pattern, a spurious signal 
caused the initialization and the normal program can continue. If the tested 
RAM bytes differ from the nominal value, the RAM content is destroyed (e.g. 
by a power loss) and the initialization routine is invoked. The RAM is cleared 
and the peripherals are initialized. 

The cold start software contains the waiting loop for the DCO, which is needed 
to set it to the correct frequency. See Section 6.5, The System Clock Genera­
tor, and Section 6.6, The RESET Function. 

Initialization part: Check if Cold Start or Warm Start: 

RAM location 0200h decides kind of initialization: 

Cold Start: content differs from OASFOh 

Warm Start: content is OASFOh 

INIT CMP 

JEQ 

#OASFOh,&0200h 

EMIINI 

Test content of &200h 

Correct content: No reset 

Control RAM content differs from OASFO: RAM needs to be 

cleared, peripherals needs to be initialized 

MOV 

CALL 

MOV 

#0300h,SP 

#RAMCLR 

#OASFOh,&0200h 

Init. Stack Pointer 

Clear complete RAM 

Insert test word 
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System frequency MCLK is .set to 2.048MHz 

MOV.B 

MOV.B 

#64-1,&SCFQCTL 

iFN_2,&SCFIO 

64 x 32kHz - 2.048MHz 

DCa current for 2MHz 

Waiting loop for the DCO of the FLL to settle: 130ms 

L$1 

CLR 

INC 

RS 

RS 

3 x 6SS36us 186ms 

JNZ L$1 

EMI caused initialization: Periphery needs to be initialized: 

Interrupts need to be enabled again 

EMINI 

5.5.2 RAM clearing Routine 

The RAM is cleared starting at label RAMSTRT up to label RAM END (inclu­
sive). 

Definitions for the RAM block (depends on MSP430 type) 

RAMSTRT .EQU 

RAMEND .EQU 

; Subroutine for 

RAMCLR CLR 

RCL CLR.B 

INC 

CMF 

JLO 

RET 

0200h 

02FEh 

the clearing 

RS 

RAMSTRT(RS) 

RS 

of the 

; Start of RAM 

; Last RAM address (return address) 

RAM block 

Prepare index register 

1st RAM address 

Next address 

#RAMEND-RAMSTRT+1,RS RAM cleared? 

RCL No, once more 

Yes, return 

5.5.3 Binary to BCD Conversion 
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The conversion of binary to BCD and vice versa is normally a time consuming 
task. Five divisions by ten are necessary to convert a 16-bit binary number to 
BCD. The DADO instruction reduces this to a loop with five instructions. 
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THE BINARY NUMBER IN R12 IS CONVERTED TO A 5-DIGIT BCD 

NUMBER CONTAINED IN R14 AND R13: R141R13 

BINDEC MOV 

CLR 

CLR 

L$1 RLA 

DADD 

DADD 

DEC 

JNZ 

RET 

U6,R15 LOOP COUNTER 

R14 o -> RESULT MSD 

R13 o -> RESULT LSD 

R12 Binary MSB to carry 

R13,R13 RESULT x2 LSD 

R14,R14 MSD 

R15 THROUGH? 

L$1 

; YES, RESULT IN R141R13 

The previous subroutine can be enlarged to any length ofthe binary partsimply 
by the adding of registers for the storage of the BCD number (a binary number 
with n bits needs approximately 1.2 x n bits for BCD format). 

If numbers containing fractions have to be converted to BCD, the following al­
gorithm can be used: 

1) Multiply the binary number as often with 5 as there are fractional bits. For 
example if the number looks like MMM.NN, then multiply it with 25. Ensure 
that no overflow will take place. 

2) Convert the result of step 1 to BCD with the (eventually enlarged) subrou­
tine BIN DEC. The BCD result is a number with the same number of frac­
tional digits as the binary number has fractional bits. 

EXAMPLE: The hexadecimal number OA8Bh has the binary formal 
MMM.NNN. The decimal value is therefore 337,375. The steps to get the BCD 
number are: 

3) OA8Bh is to be multiplied by 53 or 12510 due to its 3 fractional bits. 
OA8Bh x 12510 ~0525DFh 

4) 0525DFh has the decimal equivalent 337,375. The correct BCD number 
with 3 fractional digits. 

To convert the previous example, the basic subroutine BINDEC needs to be 
enlarged. Two binary registers are necessary to hold the input number. 

THE BINARY NUMBER IN R121R11 IS CONVERTED TO AN B-DIGIT BCD 

NUMBER CONTAINED IN R14 AND R13: R141R13 

Max. hex number in R121R11: 05F5EOFFh (999999999) 
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BINDEC MOV #32,R15 LOOP COUNTER 

CLR R14 0 -> RESULT MSD 

CLR R13 0 -> RESULT LSD 

L$l RLA Rll MSB of LSBs to carry 

RLC R12 Binary MSB to carry 

DADD R13,R13 RESULT x2 LSD 

DADD R14,R14 MSD 

DEC R15 THROUGH? 

JNZ L$l 

RET YES, RESULT IN R141R13 

5.5.4 BCD to Binary 

This subroutine converts a packed 16-bit BCD word to a 16-bit binary word by 
multiplying each digit with its decimal value (100,101, ... ). To reduce code 
length, the HORNER scheme is used as follows: 

R5 = XO+1O(Xl+10(X2+lOX3) 

The packed BCD number contained in R4 is converted to a binary 

number contained in R5 

BCDBIN MOV 

CLR 

CLR 

SHFT4 RLA 

RLC 

RLA 

RLC 

RLA 

RLC 

RLA 

RLC 

ADD 

CLR 

DEC 

JZ 
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#4,R8 

R5 

R6 

R4 

R6 

R4 

R6 

R4 

R6 

R4 

R6 

R6,R5 

R6 

R8 

END 

LOOP COUNTER ( 4 DIGITS ) 

SHIFT LEFT DIGIT INTO R6 

THROUGH CARRY 

THROUGH ? 

YES 



MPYlO RLA 

MOV 

RLA 

RLA 

ADD 

JMP 

RS 

RS,R7 

RS 

RS 

R7,RS 

SHFT4 

NO, MULTIPLICATION WITH 10 

DOUBLED VALUE 

VALUE X 8 

NEXT DIGIT 

RET END RESULT IS IN RS 

5.5.5 Keyboard Scan 

A lot of possibilities exist for the scanning of a keyboard, which also includes 
jumpers and digital input signals. If more input signals exist than free inputs, 
scanning is necessary. The scanning outputs can be I/O-ports and unused 
segment outputs, On. The scanning input can be I/O ports and analog inputs, 
An, switched to the function of digital inputs, If I/O ports are used for inputs, 
wake-up by input changes is possible. The select line(s) of the interesting in­
puts (keys, gates etc.) are set high and the interrupt(s) are enabled for the de­
sired signal edges. If one of the desired input signal changes occurs, an inter­
rupt is given and wake-up takes place. 

Figure 5-13 shows a keyboard with 16 keys. 

32kHz 

dD~' LCD 

COM 

"""" 3'f561B 
SEL -v' __ 1!!i3 

MSP430 

Ox/PO •• ... 
:: OyIPD.b :: OzlPO.c 

OkIPO.d ri+- 0= 

An/PO.w 0 0 0 0 

Am/PO.X 
0 0 0 0 

Ao/PO.y 
0 0 0 0 

Ap/PO.z . . 0 0 

Figure 5-13. Keyboard Connection to MSP430 

Figure 5-14 shows some possibilities for connecting external signals to the 
MSP430: 
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o The first row contains keys. The decoupling diode in the row selection line 
prevents a pressed key from shorten other signals. If more than one key 
can be activated simultaneously, then all keys need to have a decoupling 
diode. 

o The second row contains diodes. This is a simple way to identify the ver­
sion used to a system. 

o The third row selects digital signals coming from peripherals with outputs 
that can be switched to high-Impedance mode. 

o The fourth row uses an analog switch to connect digital signals to the 
MSP430. The output of a CMOS gate and the output of a comparator are 
shown. 

The rows containing keys need to be debounced. If a change is seen at these 
inputs, the information is read in and stored. A second read is made after 10 
ms to 100 ms, and the Information read is compared to the first one. If both 
reads are equal, the information is used. Otherwise, the procedure is re­
peated. The basic timer can be used for this purpose. 

LCD 

3'i561B 
--~ MSP430 

XC 
4018 

AnlPO.w 
X # 

1B 1A 

AmlPO.x 
X # 

2B 2A 

AOIPO.'I 
X # 

3B 3A 
AplPO.z 

X # 
4B 4A 

Figure 5-14. Connection of Different Input Signals 
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5.5.6 Temperature Calculations for Sensors 

Several sensors can be connected to the MSP430. Chapter 2, The Analog-to­
Digital Converters, describes the different possible ways of doing this. Inde­
pendent of the ADC or sensor type used, a binary number N is finally delivered 
from the ADC that represents the measured value K: 

K = f(N) 

where: 
K 
N 

Measured value (temperature, pressure etc.) 
Result of ADC 

The function f(N) is normally non-linear for sensors, and, therefore, a calcula­
tion is needed to get the measured value K. The linearization of sensors by 
resistors is described in Section 4.7.1, Sensor Connection and Linearization. 

Two methods of how to represent the function, f(N), are described: 

o Table processing 

o Algorithms (linear, quadratic, cubiC or hyperbolic equations) 

5.5.6.1 Table Processing for Sensor Calculations 

The ADC measurement range used is divided into parts, each of them having 
a length of 2M bits. For any multiple of 2M the output value K is calculated and 
stored In a one-dimensional table. 

This table is used for linear interpolation to get the values for ADC results be­
tween two table values. Figure 5-15 shows such a non-linear sensor charac­
teristiC. 

o I aN J Nm 

ADCValueN 

Figure ~ 15. Nonlinear Function K = f(N) 
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DN 

.BSS 

.BSS 

.EQU 

Steps for the development of a sensor table: 

1) Definition of the external circuitry used at the ADC inputs (see Chapter 2, 
The Analog-to-Digital Converters) 

2) Definition of the output format of the table contents (bits after decimal 
pOint, M.N) 

3) Calculation of the voltage at the analog input Ax for equally spaced (aN) 
ADC values n 

4) Calculation of the sensor resistances for the previous calculated analog 
input voltages 

5) Calculation of the input values K (temperature, pressure etc.) that cause 
these sensor resistances 

6) Insertion of the calculated input values K in the format defined with 2. into 
the table 

EXAMPLE: A sensor characteristic is described In a table TABLE. The ADC 
results are divided in distances Llli = 128 starting at value NO = 256. The output 
value K is content of this table. The ADC result is corrected with offset and 
slope coming from the calibration procedure. 

OFFSET,2 

SLOPE,2 

128 

Offset from calibration 10.0 

Slope from calibration 1.10 

Delta N 

Table contains signed values. The decimal point may be anywhere 

TABLE . WORD 

TABCALI MOV 

ADD 

MOV 

CALL 

02345h, ... ,00F3h ; KO, Kl, ... KM 

&ADAT,IROP1 

OFFSET,IROP1 

SLOPE,IROP2L 

#MPYS 

ADC result N to IROP1 

Correct offset 

Slope 

(ADC+OFFSET)xSLOPE 

Corrected ADC value in IRACMllRACL. 

CALL 

MOV 

#SHFTLS6 

lRACM,XIN 

Result to lRACM 

Copy it 

14.0 

10.0 

1.10 

15.10 

15.0 
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Calculation of NA address. One less adaptation due to 

word table (2 bytes/item). 

MOV 

SWPB 

BIC.B 

SUB 

MOV 

MOV 

XIN,IROP1 

!ROP1 

#1, IROP1 

#2,IROP1 

TABLE(IROP1),R15 

TABLE+2(IROP1),R14 

N -> Multiplicand 15.0 

Adapt to deltaN = 128 14.0 

Even word address needed 8.0 

Adapt to NO = 256 (2 x deltaN) 

KA from table 

KA+l from table 

; K «XIN-KA)/deltaN) x (KA+1 - KA) + KA 

SUB 

MOV 

SUB 

MOV 

CALL 

CALL 

CALL 

ADD 

RET 

R15,XIN 

R14,IROP2L 

R15,IROP2L 

XIN,IROP1 

#MPYS 

#SHFTRS6 

#SHFTRS1 

R15, IRACL 

XIN - KA 

KA+1 

KA+1 - KA) 

XIN - KA 

(XIN ~ KA) x (KA+1 - KA) 

/deltaN 

del taN = 2~7 

+ KA, result in IRACL 

5.5.6.2 Algorithms for Sensor Calculations 

Linear Equation 

Quadratic Equation 

If the sensor characteristic can be described by a function, K = f(N), then no 
table processing is necessary. The value K can be calculated out of the ADC 
result N. The coefficients an and bn can be found with PC computer software 
(e.g. MATH CAD) , with formulas by hand, or by the MSP430 itself. Thesecate­
gories are for example: 

K alX N +ao 
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Cubic Equation 

Root Equation 

K = oo±,JbIXN +bo 

Hyperbolic Equation 

5-66 

K 
bI 

--+00 
N+bo 

Steps for the development of a sensor algorithm: 

1) Definition of the hardware circuitry used at the ADC inputs (See Chapter 
2, The ADC, for the different possibilities) 

2) Definition of the format of the algorithm (floating point: 2- or 3-word pack­
age, integer software: bits after decimal point M.N) 

3) Definition of a value for K to be measured (temperature, pressure etc.) 

4) Calculation of the nominal sensor resistance for the previous chosen val­
ueofK 

5) Calculation of the voltage at the analog input Ax for this sensor resistance 
(See Chapter 2, The ADC, for the formulas used with the different circuits) 

6) Calculation of the ADC result N for this input voltage at analog input Ax 

7) Repetition of steps 3 to 6 depending on the algorithm used: twice for linear 
equations, three times for quadratic, hyperbolic and root equations, four 
times for cubic equations. 

8) Decision of the sensor characteristic: look for best suited equation. 

9) Calculation of the coefficients an and bn out of the calculated pairs of val­
ues Kn and the ADC result Nn. See Section 5.5.6.3, CoefficientCalculation 
for the Equations. 

EXAMPLE: A quadratic behavior is given for a sensor characteristic: 

K = Cl2xN 2 +aIxN+oo 

with N representing the ADC result. The corrected ADC result (see the pre­
vious text) is stored In XIN. The three terms are stored in the ROM locations· 
A2, A 1 and AO. 
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A2 . WORD 07FE3h Quadratic term +-0.14 

Al . WORD 00346h Linear term +-0.14 

AO . WORD 01234h Constant term +-15.0 

QUADR MOV XIN,IROP1 Corrected ADC result 14 .0 

MOV A2,IROP2L Factor A2 +-0.14 

CALL #MPY ; XIN x A2 14.14 

ADD Al,IRACL (XIN x A2) + Al +-0.14 

ADC IRACM ; Carry to HI reg 

CALL #SHFTL3 ; To IRACM 14.1 

MOV IRACM,IROP2L (XIN x A2) + Al -> IROP2L 14.1 

CALL #MPYS (XIN x A2) + AI') x XIN 28.1 

CALL #SHFTL2 Result to IRACM 15.0 

ADD AO,IRACM Add AO 15.0 

The signed 16-bit result is located in IRACM. 

RET 

The Horner-scheme used above can be expanded to any level. It is only nec­
essary to shift the multiplication results to the right to ensure that the numbers 
always fit into the 32-bit result buffer IRACM and IRACL The terms A2, A 1, 
AO can also be located in RAM. 

If lots of calculations need to be done, then the use of the floating point pack­
age should be considered. See Section 5.6, The Floating Point Package, for 
details. 

5.5.6.3 Coefficient Calculation for the Equations 

With two pairs (linear equation), three pairs (quadratic, hyperbolic and root 
equations), or four pairs (cubic equations) of Kn and Nn, the coefficients an and 
bn can be calculated. The formulas are shown in the following. 

where: 
Kn Calculation result for the ADC result Nn 

(e.g. temperature, pressure) 
Nn Input value for the calculation e.g. ADC result 
an Coefficient for the Nn value of the polynoms 
bn Coefficients for the hyperbolic and root equations 
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Linear equation: 

Quadratic Equation: 

Cubic Equation: 

Root Equation: 

5-66 

K alxN+ao 

ao 
KIXN2-K2X NI 

N2-NI 

(K2 -K1 )-al x(N2 -N1) 
N;-Nf 

ao 

= (K2 -K1)X(N; -N;)-(K3 -K2)X(N; -Nf) 
al (N2 -N1)X (N; -N;)=(N3 -N2)X (N; -Nf) 

The equations forthe four coefficients an are too complex. Shift the calculation 
task to the calibration PC and use MATHCAD or something similar to it. 

(N2 -N1 )X(K; -Kf}-(N3 -NI)X(K; -Kf) 
ao = O.5x (N2 -NI)X(K3 -K1 }-(N3 -N1 )X(K2 -K1) 



General-Purpose Subroutines 

Hyperbolic Equation: 

bo 

ao 

K 
bi 

--+ao 
N+bo 

(Nj XK3 -NIKt)X (N2 -NI )-(N2 X K2 -NI XKJ)X(Nj -NI ) 

(Nj -NJ )X(K2 -KJ )-(N2 -NJ)X(Kj -KJ) 

ao = 

(KJ-ao) x (NJ + bo) 

(Nj XK3 -NJKt)+boX(Kj -KJ) 

Nj-NJ 

EXAMPLE: the sensor used has a quadratic characteristic R = d2XK2 + d1 xK 
+ do. This means, the value K is described best by the root equation (inverse 
to the quadratic characteristic of the sensor): 

K = ao±.JblxN+bo 

where the sensor resistance R is replaced by the ADC result N. During the cal­
ibration with the values for Kn 0, 200, and 400, the following ADC Results, Nn, 
were measured: 

Calc.Value Kn ('C, hP, VI ADCValueNn 

K1 0 N1 4196 

K2 200 N2 4430 

K3 400 N3 4652 

With the previous numbers the coefficients ao' bo and b1 can be calculated: 

(4430-4196)x (400 2 _02 }-(4652-4196)X (2002 _02) 
0.5 X = 4000 

(4430-4196)x (400-0)-(4652-4196)x (200-0) 

(2002 - 02 }-2 x 4000 x (200 - 0) 
-6666.6667 

4430-4196 

bo = (0-4000)2 - (-6666.6667) x 4196 = 43.97371E6 

With the above calculated coefficients, the negative root value is to be used: 

K = ao-.JbJxN +bo 
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5.5.7 Data Security Applications 

If consumption data is transmitted via telephone lines or sent by RF then it is 
normally necessary to encrypt this data to make it completely unreadable. For 
these purposes the DES (Data Encryption Standard) is used more and more, 
and is becoming the standard in Europe also. The next ~o sections show how 
to implement the algorithms of this standard and how the encrypted data can 
be sent by the MSP430. 

5.5.7.1 Data Encryption Standard (DES) Routines 

5-70 

7 

The DES works on blocks of 64 bits. These blocks are modified in several 
steps and the output is also a block with 64 totally-scrambled bits. It is not the 
intention of this section to show the complete DES algorithm. Instead, a sub­
routine is shown that is able to do all of the necessary permutations In a very 
short time. The subroutine mentioned can do the following pennutations (the 
tables mentioned refer to the booklet Data Encryption Algorithm from ANSI): 

o Initial Permutation: 64-bits plain text to 64-bit encrypted text via table IP 

o 32-bit to 48-bit permutation via table E 

o 48-bit to 32-bit permutation via tables S1 to S8 

o 32-bit to 32-bit permutation via table P 

o Inverse initial Permutation: 64-bits to 64-bit via table IP-1 

The permutation subroutine is written In a code and time optimized manner to 
get the highest data throughput with the lowest ROM space requirements. 

For each kind of permutation a description table is necessary that contains the 
following information for every bit to be permuted: 

5 3 2 o 

I Rep. Bit I EOT +POSIUO~ 

Where: 
Rep. Bit 

EOT 

Repetition Bit: The actual bit is contained twice in the 
output table. The next byte (with Rep. = 0) contains the 
address for the second insertion. This bit is only used 
during the 32-bit to 48-bit permutation 
End of Table Bit: This bit is set in the last byte of a 
permutation table 



0101 3 I 5 

Description Teble 
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Byte Index The byte address 0 to 7 inside the output block 
Bit Position The bit address 0 to 7 inside the output byte 

The following figure shows the permutation of bit i. The description table con­
tains at address i the information: 

Repetition Bit = 0: The bit i is to be inserted into the output table only once 
EOT = 0 Bit i is not the last bit in the description table 
Byte Index = 3: The relative byte address inside the output table is 

3 (PTOUT+3) 
Bit Position = 5: The bit position inside the output byte is 5 (020h) 

Bit Position 

Bit Address 7 5 0 

11 0 

III 3 

III 

64 641 7 

Output Teble 
Byte Index 

Input Table 

Figure 5-16. DES Encryption Subroutine 

Note: 

The bit numbers used in the DES specification range from 1 to 64. The 
MSP430 subroutines use addresses from 0 to 63 due to the computer archi­
tecture. 

The software subroutines for the previously described permutations follow. 
The subroutines PERMUT and PERM_BIT are used for all necessary per­
mutations (see previous). The subroutines shown have the following needs: 

o The initialization of the subroutine PERMUT decides which permutation 
takes place. The address of the actual description table is written to pointer 
register PTPOI. 

o Permutations are always made from table PTIN (input table) to table 
PTOUT (output table). 

o Only 1 s are processed during the permutation. This saves 50% of proc­
eSSing time. The output buffer is therefore cleared initially by the PERMUT 
subroutine. 
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o The output buffer must start with an even address (word instructions are 
used for clearing) 

Main loop for a permutation run, Tables with up to 6,4 bits are 

permuted to other tables, 

Definitions for the permutation software 

PTPOI ,EOO R6 Pointer to description table 

PTBYTP ,EOO R7 Byte index input table 

PTBITC ,EOO Ra Bit counter inside input byte 

,BSS PTIN,a Input table 64 bits 

,BSS PTOOT,a Output table 64 bits 

EOT ,EOO 040h End of table indication bit 

REP ,EOO OaOh Repetition bit 

Call for the "Initial Permutation", Description table is 

starting at label IP (64 bytes for 64 bits), 

MOV 

CALL 

#IP,PTPOI 

#PERMOT 

Load description table pointer 

Process Initial Permutation 

Permutation subroutine, Table PTIN is permuted to table PTOOT 

PERMOT CLR 

CLR 

CLR 

CLR 

CLR 

PERML CLR 

L$502 RRA,B 

JNC 

L$501 CALL 

L$500 INC 

TST,B 

IN 
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PTBYTP 

PTOOT 

PTOOT+2 

PTOOT+4 

PTOOT+6 

PTBITC 

PTui (PTBYTP) 

L$500 

#PERM_BIT 

PTPOI 

-l(PTPOI) 

L$501 

Clear byte index input table 

Clear output table a bytes 

Bit counter (bits inside byte) 

Next input bit to Carry 

If bit = 0: No activity nec, 

Bit = 1: Insert bit to output 

Incr, description table pointer 

REP bit set for last bit? 

Yes, process 2nd output bit 
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One input table bit is processed. Check if byte limit reached 

INC.B PTBITC 

CMP.B #8,PTBITC 

JLO L$502 

INC.B PTBYTP 

BIT.B #EOT,-l(PTPOI) 

JZ PERML 

RET 

Incr. bit counter 

Bit 8 (outside byte) reached? 

Yes, address next byte 

End of desc. table reached? 

No, proceed with next byte 

Permutation subroutine for one bit: A set bit of the input is 

set in the output depending on the information of a 

description table pointed too by pointer PTPOI 

20 cycles + CALL (5 cycles) 

PERM_BIT .EQU $ 

MOV.B @PTPOI,R4 Fetch description word 

MOV R4,R5 Copy it 

BIC.B #REP+EOT,R4 Clear Repetition bit and EOT 

RRA.B R4 Move Index Bits to LSBs 

RRA.B R4 to form byte index to PTBIT 

RRA.B R4 

AND.B #07h,R5 Mask out index for output table 

BIS.B PTBIT(R5),PTOUT(R4) Set bit in output table 

RET 

PTBIT .BYTE 1,2,4,8, 10'h, 20h, 40h, 80h Bit table 

IP 

Description Table for the Initial Permutation. 64 bits of 

the input table are permuted to 64 bits in the output table 

(IP-l table contains these numbers) 

.BYTE 

. BYTE 

40-1 

8-1 

Bit 1 -> position 40 

Bit 2 -> position 8 
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E 

. BYTE EOT+25-1 ; Bit 64 -> pos. 25, End of table 

Description Table for the Expansion Function E. 32 bits of 

the input table are permuted to 48 bits in the output table 

.BYTE 

. BYTE 

. BYTE 

.BYTE 

.BYTE 

REP+2-1 Bit 1 -> position 2 and 48 

48-1 Bit 1 -> position 48 

3-1 Bit 2 -> pos. 3 

REP+1-1 Bit 32 -> pOSition 1 and 47 

EOT+47-1 Bit 32 -> pos. 47, End of table 

Processing time for a 64-bit block: The most time consuming parts for the en­
cryption are the permutations. All other operations are simple moves or exclu­
sive ORs (XOR). This means that the number of pennutations multiplied with 
the number of cycles per bit gives an estimation of the processing time needed. 
Every bit needs 43 cycles to be permuted. 

The necessary number of permutations is: 

1) Initial Permutation 
2) 32-bit to 48-bit permutation 
3) 48-bit to 32-bit permutation 
4) 32-bit to 32-bit permutation 
5) Inverse initial Permutation: 
6) Key permutations choice 1 
7) Key permutations choice 2 

Sum of permutations 

64 
16x48 
16x32 
16x32 

64 
56 

16x48 

2744 

Number of cycles typically (2744 x 43 x 0.5) 58996 cycles 32 ones in block 

maximum (2744 x 43) 117992 cycles 64 ones in block 

For a block with 64 bits approximately 59 ms are needed with an MCLK of 
1 MHz. 

ROM space: The needed ROM space can be divided into the following parts: 

1) Main program (approx.) 
2) Subroutines 
3) Tables for permutations 

400 bytes 
100 bytes 
570 bytes 

5-74 



General-Purpose Subroutines . 
Sum of bytes 1070 bytes 

The complete DES encryption software fits into 1 K bytes. 

5.5.7.2 Output Sequence for 19.2-kHz B/phase Space Code 

Information 

BI·Phase Space 

The encrypted information is normally output with a Biphase Code. Figure 
5-17 shows such a modulation. At the beginning of a bit, a level change oc­
curs. A zero bit has an additional level change in the middle of the bit, a one 
bit has the same information during the whole bit. 

o o o o 

Figure 5-17. Biphase Space Code 

The output sequence is written for PO.4 (as shown in Section 4.4, Heat Alloca­
tion Counte". This means that no constant of the constant generator can be 
used. If PO.O, PO.1, PO.2, or PO.3 are used, the instructions that address the 
ports are one cycle shorter and the delay subroutines have to be adapted. 

The following output sequence is written with counted instructions per bit due 
to the normal use of batteries (Vee = 3V) for these applications. This means 
the maximum MCLK is 2.2 MHz. If the supply voltage is 5 V, MCLK frequencies 
up to 3.3 MHz are possible. These high operating frequencies allow the use 
of interrupt driven output sequences. 

The interrupt approach makes strict real time programming necessary. Any in­
terrupt handler must be interruptible (EINT is one of the first instructions of any 
interrupt handler). Hardware examples are shown in Section 4.8, RF Readout. 

OUTl92 OUTPUTS THE RAM STARTING AT " RAMS TART " BITWISE 

IN BI-PHASE-CODE. EVERY 040h ADDRESSES A SCAN IS MADE 

TO READ PO.l WHERE THE WATER FLOW COUNTER IS LOCATED. THE 

4 SCAN RESULTS ARE ON THE STACK AFTER RETURN FOR CHECKS 

NOPs ARE INCLUDED TO ENSURE EQUAL LENGTH OF EACH BRANCH. 
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All interrupts must be disabled during this output subroutine! 

CALL #NOPx MEANS x CYCLES OF DELAY. MCLK = IMHz 

OUTPUT 

PORT 

RAMSTART 

RAMEND 

SCAND 

Rw 

Rx 

Ry 

Rz 

OUT192 

; FETCH 

WORDLP 

OUTPUT 

BITLOP 

.EQU OlOh 

.EQU Ollh 

.EQU 0200h 

.EQU 0300h 

.EQU 040h 

.EQU R15 

.EQU R14 

.EQU R13 

.EQU R12 

BIC.B #OUTPUT,&PORT 

MOV #RAMSTART,Ry 

MOV #RAMSTART+SCAND,Rw 

NEXT WORD AND OUTPUT IT 

MOV #l6,Rz 

MOV @Ry,Rx 

NEXT BIT: Change output state 

XOR.B #OUTPUT,&PORT 

PO.4: 

PORTO 

Start of output info 

End of output info 

Scan delta (addresses) 

Register allocation 

Reset output port 

WORD POINTER 

NEXT SCAN ADDRESS 

BIT COUNTER 

FETCH WORD 

CHANGE OUTPUT PORT 

CHECK IF NEXT SCAN OF WATER FLOW IS NECESSARY: Ry >= Rw 

SCAN 

BITT 
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CMP 

JHS 

NOP 

NOP 

NOP 

NOP 

NOP 

JMP 

ADD 

PUSH 

RRC 

Rw,Ry 

SCAN 

BITT 

#SCAND,Rw 

&PORT 

Rx 

YES 

NO 

NEXT SCAN ADDRESS 

PUSH INFO OF PORT 

NEXT BIT TO CARRY 

CYCLES 

2 

5 

5 

1 

2 

5 

2 

2 

5 

1 
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JNC OUTO BIT o 

BIT 1: OUTPUT PORT IS CHANGED IN THE MIDDLE OF BIT 

CALL 

XOR.B 

JMP 

#NOP9 

#OUTPUT,&PORT 

CHECK 

CHANGE OUTPUT PORT 

BIT 0: OUTPUT PORT STAYS DURING COMPLETE BIT 

OUTO CALL #NOP16 OUTPUT STAYS HI 

END OF LOOP: CHECK IF COMPLETE WORD OR END OF INFO 

CHECK DEC 

JZ 

CALL 

JMP 

Rz 

L$1 

#NOP15 

BITLOP 

COMPLETE WORD OUTPUT: ADDRESS NEXT WORD 

L$1 ADD #2,Ry 

CMP #RAMEND,Ry 

JEQ' COMPLET YES· 

NOP 

NOP 

JMP WORDLP 

COMPLET ; 

16 BITS OUTPUT? 

YES 

NO, NEXT BIT 

POINTER TO NEXT 

RAM OUTPUT? 

NO, NEXT WORD 

4 SCANS ON STACK 

WORD 

NOP Subroutines: The Subroutine inserts defined numbers of 

cycles when called. The number xx of the called label defines 

the number of cycles including CALL (5 cycles) and RET 

NOP16 NOP CALL #NOPxx needs 5 cycles 

NOP15 NOP 

NOP14 NOP 

NOPl3 NOP 

2 

9 

5 

2 

16 

1 

2 

15 

:2 

:2 

2 

2 

2 

:2 
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NO!?12 NO!? 

NO!? 11 NO!? 

NO!?10 NO!? 

NO!? 9 NO!? 

NO!? 8 RET RET needs 3 cycles 

5.5.8 Status/Input Matrix 

A few subroutines are described that handle the inputs coming from keys. sig­
nals etc. They check. Ifthe Inputs are valid. for the given status ofthe program. 

5.5.8.1 Matrix with Few Valid Combinations 

The following subroutine checks if for a given program status an input (e.g .• 
via the keyboard) is valid or not; and. if valid. which response is necessary. This 
solution is recommended if only few valid combinations exist out of a large pos­
sible number (see Figure 5-18). 

1"1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 I 
~I I 

:1 H I tiJ11111111 rl 
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Input --. 

Figure 5-18. Matrix for Few Valid Combinations 

o Call 

• Input number in R5 

• Status in R4 

o Return 

• R4 ~ 0: Input not valid (not included in the table) 

• R4 # 0: task number in R4 
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CALL 

STIMTRX 

L$3 

L$2 

Mav 

MaV 

CALL 

MaV.B 

ADD 

CMP.B 

JEQ 

INC 

TST.B 

JNE 

CLR 

RET 

MaV.B 

RET 

STATUS,R4 

INPUT,R5 

#STIMTRX 

STTAB(R4), R4 

#STTAB,R4 

@R4+,RS 

L$2 

R4 

0(R4) 

L$3 

R4 

@R4,R4 
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Program status to R4 

New input to RS 

Check validity 

R4 contains info 

Start of table for status 

Table address to R4 

New input included in table? 

Yes, output it 

No, skip response byte 

End of status table? (0) 

No, try next input 

Yes, end of table reached 

Input invalid, return with R4 0 

Input valid, return with task 

number in R4 

Table with relative start addresses for the status tables 

STTAB . BYTE STO-STTAB,STl-STTAB,ST2-STTAB, ... STIS-STTAB 

Status tables: valid inputs,response, .. ,0 (uP to 15 inputs) 

STO 

STI 

ST2 

STIS 

CALL 

. BYTE 

.BYTE 

. BYTE 

. BYTE 

Mav 

MaV 

CALL 

STIMTRX MaV.B 

INS,AKTOO,O 

IN1,AKTOl,IN4,AKT03,0 

INlS,AKTOO,IN6,AKT06,O 

INS,AKT02,0 

Status 0 table 

Status 1 table 

Status 2 table 

Status 3 to 14 

Status IS table 

With a small change, the. task to do is also executed within the subroutine: 

STATUS,R4 

INPUT,RS 

#STIMTRX 

STTAB(R4),R4 

Program status to R4 

New input ;to R5 

Check validity and execute task 

R4 = 0: invalid input 

Start of table for status 
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ADD #STTAB,R4 

L$3 CMP,B @R4+,R5 

JEQ L$2 

INC R4 

TST,B 0(R4) 

JNE L$3 

CLR R4 

RET 

L$2 MOV,B @R4,R4 

ADD R4,PC 

AKTOO 

RET 

AKT01 

RET 

AKT06 

RET 

AKT03 

RET 

to R4 

New input included? 

Yes, proceed 

No, skip task address 

End of status table? (0) 

No, try next input 

End of table reached 

Input invalid, return with R4 0 

Input valid, go to task 

offset to AKTOO in R4 

Task 00 

Task 01 

Task 06 

Task 03 

Table with relative start addresses for the status tables 

STTAB ,BYTE STI-STTAB,ST2-STTAB", ,ST15-STTAB 

Status tables: valid inputs,task-table_start,O 

STI 

ST2 

ST3 

ST15 

5.5.8.2 
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,BYTE IN5,AKTOO-AKTOO,0 ; Status 1 table· 

,BYTE INl,AKT01-AKTOO,IN4, AKT03-AKTOO,0 

,BYTE INI5,AKTOO-AKTOO,IN6,AKT06-AKTOO,O 

Status 4 to 14 

,BYTE IN5,AKT02-AKTOO,0 Status 15 table 

Matrix WIth Valid Combinations Only 

The following subroutine executes the tasks belonging to the 16 possible STA­
TUS/INPUT combinations. The handler start addresses must be within 254 
bytes relative to the label STTAB, The number of combinations can be en­
larged to any value. 



CALL CALL 

STIMTRX MOV.B 

MOV.B 

RLA 

RLA 

ADD 

MOV.B 

ADD 

STTAB . BYTE 

. BYTE 

. BYTE 

.BYTE 

Gene!al-Purpose Subroutines 

o Call 

• Input number in RAM byte INPUT (four possibilities 0 to 3) 

• Program status in RAM byte STATUS (four possibilities 0 to 3) 

o Return 

• No information returned 

#STIMTRX 

STATUS,R4 

INPUT,RS 

R4 

R4 

R5,R4 

STTAB(R4),R4 

R4,PC 

AKTOO-STTAB 

AKTOl-STTAB 

; Execute task for input 

; Program status OOxx 

;.Input (key, Intrpt,) Oyy 

STATUS x 4: OOxx -> OxxO 

OxxO -> OxxOO 

Build ta~le offset: Oxxyy 

Offset of Start of table 

Handler start to PC 

Action STATUS 0, INPUT = 0 

Action STATUS 0, INPUT = 1 

AKT02-STTAB,AKT03-STTAB,AKT04-STTAB,AKTOS-STTAB 

AKT12-STTAB,AKT13-STTAB,AKT14-STTAB,AKT1S-STTAB 

Aotion handlers for the 16 STATUS/INPUT xy combinations 

AKTOO 

RET 

AKT01 

RET 

AKT32 

RET 

AKT33 

RET 

Handler for task 0,0 

Handler for task 0,1 

Tasks 02 to 31 

Handler for task 3,2 

Handler for task 3,3 

The next subroutine also executes the tasks belonging to the 16 possible STA­
TUSIINPUT combinations. Here the handler start addresses can be located 
in the complete 64K-byte address space. The number of STATUSIINPUT 
combinations can be enlarged to any value. 
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o Call 

• Input number In RAM byte INPUT (five possibilities 0 to 3) 

• Program status in RAM byte STATUS (four possibilities 0 to 3) 

o Return 

• No information returned 

CALL CALL #STIMTRX ; Execute task for input 

STIMTRX MOV STATUS,R4 Program status OOxx 

MOV INPUT,R5 Input (key, Intrpt) Oyy 

RLA R4 OOxx -> OxxO 

RLA R4 OxxO -> OxxOO 

ADD R5,R4 Oxxyy table offset 

RLA R4 To word addresses 

MOV STTAB(R4) ,PC Offset of Start of table 

STTAB . WORD AKTOO Action STATUS - 0, INPUT = 0 

. WORD AKTOl Action STATUS 0, INPUT - 1 

Action handlers AKT02 to AKT32 

. WORD AKT33 Action STATUS = 3, INPUT = 3 
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5.6 The Floating-Point Package 

5.6.1 General 

Floating-point arithmetic is necessary if the range of the numbers used is very 
large. When using a floating-point package, it is normally not necessary to take 
care if the limits of the number range are exceeded. This is due to a number 
ratio of about 1 078 If comparing the largest to the smallest possible number (re­
member: the number of smallest particles in the whole universe is estimated 
to 1084). The disadvantages are the slower calculation speed and the ROM 
space needed. 

A floating-point package with 24-bit and 40-bit mantissa exists for the 
MSP430. The number range, resolution, and error indication are explained as 
well as the conversion subroutines used as the interface to binary and binary­
coded-decimal (BCD) numbers. Examples are given for many subroutines 
and applications, like the square root, are included in the software example 
chapter. 

The floating-point package makes use ofthe RISC architecture ofthe MSP430 
family. During the initialization of the subroutines, the arguments are copied 
into registers R4 to R15 and the complete calculations take place there. After 
the completion of the calculation, the result is placed on top of the stack. 

The floating-point package (FPP) consists of 3 files supporting the . FLOAT for­
mat (32 bits) and the .DOUBLE format (48 bits): 

o FPPDEF4.ASM: the definitions used with the other two files 

o FPP04.ASM: the basic arithmetic operations add, subtract, multiply, di­
vide and compare 

o CNV04.ASM: the conversions from and to the binary and the BCD format 

Notes: 

The file FPP04.ASM can be used without the conversions, but the conver­
sion subroutines CNV04.ASM need the FPP04.ASM file. This is due to the 
common completion parts contained in FPP04.ASM. 

The explanations given for the FPP version 04 are valid also for the FPP ver­
sion 03. The only difference between the two versions is the hardware multi­
plier that is included in the version 04. Other differences are mentioned in the 
ajoining sections. FPP4 is upward compatible to FPP3. 

The assembly time variable DOUBLE defines which format is to be used: 
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DOUBLE=O: 
DOUBLE .. 1: 

Two word format .FLOAT with 24-bit mantissa 
Three word format .DOUBLE with 40-bit mantissa 

The assembly time variable SW_UFLOW defines the reaction after a software 
underflow: 

SW_UFLOW = 0: Software underflow (result is zero) is not treated as 
an error 

SW _ UFLOW .. 1: Software underflow is treated as an error (N is set) 

The assembly time variable HW_MPY defines if the hardware multiplier is 
used or not during the multiplication subroutine: 

HW_MPY = 0: 
HW_MPY = 1: 

No use, the multiplication is made by a software loop 
The 16 x 16 bit hardware multiplier is used 

The FPP supports the four basic arithmetic operations, comparison, conver­
sion subroutines and two register save/restore functions: 

FLT_ADD 
FLT_SUB 
FLT_MUL 
FLT_DIV 
FLT_CMP 
FLT_SAV 
FLT_REC 
CNV_BINxxx 
CNV_BCD_FP 
CNV_FP_BIN 
CNV_FP_BCD 

Addition 
Subtraction 
Multiplication 
Division 
Comparison 
Saving of all used registers on the stack 
Restoring of all used registers from the stack 
Binary to floating point conversions 
BCD to floating point conversion 
. Floating point to binary conversion 
Floating point to BCD conversion 

5.6.2 Common Conventions 

5-84 

The use of registers containing the addresses of the arguments saves time 
and memory space. The arguments are not affected by the operations and can 
be located either in ROM or RAM. Before the call for an operation, the two 
pointers RPARG and RPRES are loaded with the address(es) of the most sig­
nificantword MSW ofthe argument(s). After the return from the call, both pOint­
ers and the stack pointer, SP, point to the result.(on the stack) for an easy con­
tinuation of arithmetical expressions. 
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Note: 

The result of a floating point operation is always written to the address the 
stack pointer (SP) points to when the subroutine is called. The address con­
tained in register RPRES is used only for the addressing of Argument 1. 

The results of the basic arithmetic operations (add, subtract, multiply and di­
vide) are also contained in the RAM address@SPorO(SP), and the registers 
RESULT_MID and RESULT_LSB after the return from these subroutines. 
Using these registers for data transfers saves program space and execution 
time. 

Between FPP subroutine calls, all registers can be used freely. The result of 
the last operation is stored on the stack. See previous note. 

If, at an intermediate stage of the basic arithmetic operations, a renormaliza­
lion shift of one or more bit positions to the left is required, then valid bits are 
available for the shift into the low-order bit positions during renormalization. 
These bits are named guard bits. With some other FPPs having no guard 
bits, zeroes are shifted in, which means a loss of accuracy. 

The registers that hold the pointers are called: 

o RPRES Pointer to Argument 1 and Result 

o RPARG Pointer to Argument 2 and Result 

The following choices can be used to address the two operands: 

1) RESULTNEW =@(RPRES)<operator>@(RPARG) 
2) RESULT NEW = @(RPRES) <operator> RESULT OLD 
3) RESULTNEW = RESULTOLD <operator> @(RPARG) 

o To 1: RPRES and RPARG both point to the·arguments for the next opera­
tion. This is the default and is independent of the address pointed to either 
a new argument or a result. The result of the operation is written to the ad­
dress in the SP. 

o To 2: RPRES points to the argument 1, RPARG still points to the result of 
the last operation residing on the top of the stack (TOS). This calling form 
allows the operations (argument 2 - result) and (argument 2 / result) . 

. 0 To 3: RPARG points to argument 2, RPRES still points to the result of the 
last operation residing on the top of the stack. This calling form allows the 
operations (result - argument 2) and (result / argument 2). 
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Note: 

Formulas 2 and 3 are not equal. they allow use of the result on the TOS in 
two ways with division and subtraction. No time is needed and no ROM-con­
suming moves are necessary if the result is the divisor or the subtrahend for 
the next operation. 

Common to these subroutines is: 

1) The pointers RPARG and RPRES point to the addresses of the input num­
bers. They always pOint to the MSBs of these numbers. 

2) The input numbers are not modified. except the last result on the stack. 
if it is used as an operand. 

3) The result is located on the top of the stack (TOS). the stack pOinter. 
RPARG. and RPRES point to the most significant word of the result 

4) Every floating point number represents a valid value. No invalid combina­
tions like Not a Number, Denormalized Number, or Infinity exist. In this 
way. the MSP430 FPP has a larger range than other FPPs and allows a 
higher speed with less memory used. This is because no unnecessary 
checks for invalid numbers are made. 

5) Every floating point operation outputs a valid floating point number that 
can be used immediately by other operations. 

6) If a result is too large (exceeds the number range). the signed maximum 
number is ·output. An error indication is given in this case (see Table 5-6. 
Error Indication). 

7) The CPU registers used are modified within the FPP subroutines. but do 
not contain valid data after a return from the subroutine. This means. they 
can be used freely between the FPP subroutines for other purposes. 

5.6.3 The Basic Arithmetic Operations 

5.6.3.1 Addition 
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The FPP is designed for fast and memory saving calculations. So register in­
structions are ideally suited for this operation. A common save and recall rou­
tine for the registers used at the beginning and the end of an arithmetical ex­
pression is an additional option. The subroutines FLT_SAV and FLT_REC 
should be applied as shown in the following examples. 

o FLT _ADD: The floating point number pointed to by the register RPARG is 
added to the floating point number pointed to by the register RPRES. The 



DOUBLE .EQU 

MOV 

MOV 

CALL 

IN 

MOV 

MOV 

0 
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25th bit (41 st bit in case of DOUBLE format) of the calculated mantissa is 
used for rounding. It is added to the result. 

RESULT on TOS = @(RPRES) + @(RPARG) 

o Errors: Normal error handling. See Section 5.6.3.5, Error Handling, for a 
detailed description. 

o Output: The floating point sum of the two arguments is placed on the top 
of the stack. The stack painter pOints to the same location as it did before 
the subroutine call. 

The stack pointer, RPRES, and RPARG pOint to the MSBs of the floating 
point sum. If an error occurred (N = 1 after return), the result is the number 
that best represents the correct result: 0 resp. ±3.4 x 1038. 

o EXAMPLE: The floating point number (.FLOAT format) contained in the 
ROM starting at address NUMBER is added to the RAM location pointed 
to by R5. The result is written to the RAM addresses RES and RES+2 
(LSBs). 

R5,RPRES Address of Argument 1 in R5 

#NUMBER,RPARG Address of Argument 2 

#FLT_ADD Call add subroutine 

ERR_HND Error occurred, check reason 

@RPRES+,RES Store FPP result (MSBs) 

@RPRES+,RES+2 LSBs 

Continue with program 

5.6.3.2 Subtraction 

o FLT _SUB: The floating point number pointed to by register RPARG is sub­
tracted from the floating point number pOinted to by register RPRES. With 
proper loading of the two input pOinters, it is possible to calculate (Argu­
ment1 - Argument2) and (Argument2 - Argument1). The 25th bit (41 st bit 
In case of DOUBLE format) of the calculated mantissa is used for rounding 
and is subtracted from the result. 

RESULT on TOS = @(RPRES) - @(RPARG) 

o Errors: Normal error handling. See Section 5.6.3.5, Error Handling, for a 
detailed description. 

o Output: The floating point difference of the two arguments is placed on top 
of the stack. The stack pointer points to the same location as it did before 
the subroutine call. 
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DOUBLE . EQU 

MOV 

MOV 

CALL 

IN 

. MOV 

MOV 

MOV 

The stack pointer, RPRES, and RPARG point to the MSBs of the floating 
point difference. If an error occurred (N .. 1 after return), the result is the 
number that best represents the correct result; 0 resp. ±3.4 x 1038. 

o EXAMPLE: The floating point number (.DOUBLE format) contained in the 
ROM locations starting at address NUMBER is subtracted from RAM loca­
tions pointed to by R5. The result is written to the RAM addresses pointed 
to by R5 • 

1 

RS,RPRES Address of Argumentl in RS 

#NUMBER,RPARG Address of Argument2 

#FLT_SUB «RS)) - (NUMBER) -> TOS 

ERR_HND Error occurred, check reason 

@RPRES+,O(RS) Store FPP result (MSBs) 

@RPRES+,2(RS) 

@RPRES,4(RS) LSBs 

Continue with program 

5.6.3.3 Multiplication 
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o FLT _MUL: The floating point number pointed to by the register RPARG is 
multiplied by the floating point number pointed to by the register RPRES. 
The 25th and 26th bit (41 st and 42nd bit in case of DOUBLE format) ofthe 
calculated mantissa are used for rounding. 

If a shift is necessary to getthe MSB ofthe mantissa setthen the LS8-1 is 
shifted into the mantissa and the LS8-2 is added to the result. 

Ifthe MSB ofthe mantissa is set, only the LS8-1 Is added to the result. The 
multiplication subroutine returns the same result regardless of whether. the 
hardware multiplier is used (HW_MPY = 1) or not (HW_MPY = 0). 

RESULT on TOS = @(RPRES) x @(RPARG) 

o Errors: Normal error handling. See Section 5.6.3.5, Error Handling, for a 
detailed description. 

o Output: The floating point product of the two arguments is placed on the 
top of the stack. The stack pointer pOints to the same location as it did be­
fore the subroutine call. 

The stack pOinter, RPRES, and RPARG point to the MSBs of the floating 
point product. If an error occurred (N = 1 after return), the result is the num­
ber that best represents the correct result; 0 resp. ±3.4 x 1038. 

o SpeclaICases:OxO=O OxX.O XxO=O 



DOUBLE .EQU 

MOV 

CALL 

IN 

PI . FLOAT 

5.6.3.4 Division 

0 
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o EXAMPLE: The result of the last operation, a floating point number 
(.FLOAT format) on the top of the stack, is multiplied by the constant Tt. 

#PI,RPARG Address of constant PI 

#FLT_MUL «RPRES) ) x (PI) -> TOS 

ERR_END Error occurred, check reason 

Continue with program 

3.1415926535 Constant PI 

o FLT_DIV: The floating point number pointed to by the register RPRES is 
divided by the floating point number painted to by the register RPARG. 
With proper loading of the two input pointers, it is possible to calculate (Ar­
gument1 I Argument2) and (Argument21 Argument1). The 25th bit (41 st 
bit in case of DOUBLE format) of the calculated mantissa is used for 
rounding and is added to the result. 

RESULT on TOS= 
@(RPRES) 

@(RPARG) 

o Errors: Normal error handling. See Section 5.6.3.5, Error Handling, for a 
detailed description. Division by zero is indicated also. 

o Output: The floating paint quotient of the two arguments is placed on the 
top of the stack. The stack pointer points to the same location as it did be­
fore the subroutine call. 

The stack pointer, RPRES, and RPARG paint to the MSBs of the floating 
point quotient. If an error occurred (N = 1 after return), the result is the num­
ber that best represents the correct result. For example, the largest num­
ber that can be represented if a division by zero was made. 

o Special Cases: 010 = 0 OIX = 0 -X/O = max. neg. number 

+X/O = max. pas. number 

o EXAMPLE: The floating point number (.DOUBLE format) contained in the 
ROM locations starting at address NUMBER is divided by the RAM loca­
tions pointed to by R5. The result is written to the RAM addresses pointed 
to by R5. 
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DOUBLE .EQU 1 

MOV R5,RPARG 

MOV #NUMBER,RPRES 

CALL #FLT_DIV 

IN ERR_HND 

MOV @RPRES+,O(R5) 

MOV @RPRES+,2(RS) 

MOV @RPRES,4(R5) 

Address of dividend 

Address of divisor 

(NUMBER) / «RS» -> TOS 

Error occurred, check reason 

Store FPP result (MSBs) 

LSBs 

Continue with program 

Examples for the Basic Arithmetic Operations 

DOUBLE .EQU o 

CALL 

5-9.0 

The following example shows the following program steps for the . FLOAT for­
mat: 

1 ) The registers used R5 to R 12 are saved on the stack. 

2) Four bytes are allocated on the stack to hold the results of the operations. 

3) The address to a 12-<1igitBCD-buffer is loaded into pointer RPARG and 
the BCD-to-floating point conversion is called. The resulting floating point 
number is written to the result space previously allocated. 

4) The resulting floating point number is multiplied with a number residing in 
the memory address VAL3. RPARG pOints to this address. 

5) To the last result, a floating point number contained in the memory address 
VAL4 is added 

6) The final result is converted back to BCD format (6 bytes) that can be dis­
played in the LCD. 

7) The final result is copied to the RAM addresses BCDMSD, BCDMID and 
BCDLSB. The three necessary POP instructions correct the stack pointer 
to the value after the save register subroutine. 

8) The registers used, R5 to R12, are restored from the stack. The system 
environment is exactly the same now as before the floating point calcula­
tions. 

Use .FLOAT format 

Normal program 

Save registers RS to Rl2 



SUB 

MOV 

CALL 

#4,SP 

#BCDB,RPARG 

#CNV_BCD_FP 
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Allocate stack for result 

Load address of BCD-buffer 

Convert BCD number to FP 

Calculate (BCD-number x VAL3) + VAL4 

MOV 

CALL 

MOV 

CALL 

CALL 

IN 

POP 

POP 

POP 

CALL 

VAL3 . FLOAT 

VAL4 . FLOAT 

CNVERR 

#VAL3,RPARG Load address of slope 

#FLT_MUL Calculate next result 

#VAL4,RPARG Load address of offset· 

#FLT_ADD Calculate next result 

#CNV_FP_BCD Convert final FP result to BCD 

CNVERR Result too big for BCD buffer 

BCDMSD BCD number MSDs and sign 

BCDMID BCD digits MSD-4 to LSD+4 

BCD LSD BCD digits LSD+3 to LSD 

Stack is corrected by POPs 

#FLT_REC Restore registers R5 to R12 

Continue with program 

-1.2345 . Slope 

14.4567 Offset 

Start error handler 

The next example shows the following program steps for the .DOUBLE format: 

1) The registers used, R5 to R15, are saved on the stack. 

2) Six bytes are allocated on the stack to hold the results of the operations. 

3) The ADC buffer address of the MSP430C32x (14-bit result) is written to 
RPARG and the last ADC result converted into a floating point number. 
The resulting floating point number is written to the result space previously 
allocated. 

4) The resulting floating point number is multiplied with a number located at 
the memory address VAL3. RPARG pOints to this address. 

5) To the last result, a floating point number contained in the memory address 
VAL4 is added. 

6) The final result is converted back to binary format (6 bytes) and can be 
used for integer calculations. 
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DOUBLE .EQU 

CALL 

SUB 

MOV 

CALL 

1 

7) The resulting binary number is copied to the RAM addresses BINMSD, 
BINMID, and BINLSB. The three necessary POP instructions correct the 
stack pointer to the value after the save register subroutine. 

8) The registers used, R5 to R15, are restored from the stack. The system 
environment is now exactly the same as it was before the floating point cal­
culations. 

; Use .DOUBLE format 

Normal program 

lI6,SP 

lIADAT,RPARG 

lICNV_BIN16U 

Save registers R5 to R15 

Allocate stack for result 

Load address of ADC data buffer 

Con.vert unsigned result to FP 

Calculate (ADC-Result x VAL3) + VAL4 

VAL3 

VAL4 

5.6.3.5 

5-92 

MOV #VAL3,RPARG Load address of slope 

CALL #FLTJIDL Calculate next result 

MOV #VAL4,RPARG Load address of offset 

CALL #FLT_ADD Calculate next result 

CALL lICNV_FP_BIN Convert final FP result to binary 

POP BINMSD Store MSBs of result and s-ign 

POP BINMID Store MIDs and LSBs 

POP BINLSD Stack is corrected by POPs 

CALL #FLT_REC restore registers R5 to R15 

Continue with program 

. DOUBLE 1.2E-3 Slope 0.0012 

. DOUBLE 1.44567E1 Offset 14.4567 

Error Handling 

Errors during the operation affect the status bits in the status register SR. If the 
N-bit contained in the status register is reset to zero, no error occurred. If the 
N-blt is set to one, an error occurred. The kind of error can be seen in 
Table 5-6. The columns .FLOAT and .DOUBLE show the returned results for 
each error. 
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Table 5-6. Error Indication Table 

Error 

No error 

Overflow positive 

Overflow negative 

Underflow 

Divide by zero 
Dividend positive 
Dividend negative 

Status .FLOAT .DOUBLE 

N-O xxxx,xxxx xxxx,xxxx,xxxx 
N=1, C=1, Z=1 FF7F,FFFF FF7F,FFFF,FFFF 

N-1, C.1, Z=O FFFF,FFFF FFFF,FFFF,FFFF 

N-1, C.O, Z=O 0000,0000 0000,0000,0000 

Na1, C=O, Z=1 
FF7F,FFFF FF7F,FFFF,FFFF 
or FFFF,FFFF or FFFF,FFFF,FFFF 

Software underflow is only treated as an error if the variable SW_UFLOW is 
set to one during assembly. 

5.6.3.6 Stack Allocation 

Addressn 

Addressn·4 

Addrassn-ll 

Addrass n·12 

Addrassn-18 

Address n·20 

Addrass n·24 

R12 
Rll 
R5 
R8 
R7 
R8 
RS 

Rl0 

Before calling an operation 4 (resp. 6) bytes on the stack have to be reserved 
for the result. The following return address of the operation occupies another 
2 bytes. The subroutines need one subroutine level during the calculations for 
the common initialization subroutine. The allocation in Figure 5-19 is shown 
for the use of FLT_SAV. 

t- SP During MAIN Addrassn 
Program 

Addrassn"" 

Addrassn-8 

Addrassn-12 

Addrassn-18 

R15 
R14 
RS 
RS 
R7 
R8 
RS 
Rl0 

t- SP During MAIN 
Program 

Return FLT _SAY Rl1 
RllllUltLSBs Addrass n-2O R12 
RIlllUItMSBs ~ SP Alter Retum R13 

Retum FLT·xxx ~ SP During FLT _xxx Addral8 n·24 Retum FLT SAY 
ResuhLSBs 

Addrass n-28 RIlllUItMIDs 
ResullMSBs t- SP Altar Retum 

Addrass n-32 Retum FLT-xxx t- SP During FLT_xxx 

Figure 5-19. Stack Allocation for . FLOAT and .DOUBLE Formats 

The FPP-subroutines correctly work only when the previous allocation is pro­
vided. This means the SP points to the return address on the stack. If the FPP­
subroutines are called inside of a subroutine, a new result area must be allo­
cated because the return address of the calling subroutine is now at the loca­
tion the SP pOints to. The return address is overwritten in this case. The follow­
ing example shows the correct procedure: 
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SUBR SUB #(ML/8)+1,sP 

MOV @RPARG+,O(SP) 

MOV @RPARG+,2(SP) 

.if DOUBLE=l 

MOV @RPARG,4(SP) 

.endif 

MOV SP,RPARG 

MOV txx, RPRES 

CALL tFLT_xxx 

MOV @SP+,result 

MOV @SP+,result+2 

.if DOUBLE=l 

MOV @SP+,result+4 

. end if 

RET 

Allocate new result area 

Fetch argument 2 to new 

result area 

Point again to argument 2 

Point to argument 1 

Use new result area for calc. 

Continue with calculations 

Free allocated stack 

Store result, correct SP 

Note that it is strongly recommended that conscientious housekeeping be pro­
vided for SP to avoid stack overflow. 

5.8.3.7 Number Range and Resolution 

. Float Format 

Most positive number 

Least positive number 

Zero 

Least negative number 

Most negative number 

Resolution 

.DOUBLE Format 

Most positive number 

5-94 

E = exponent of the floating point number. See Section 5.6.5, Internal Data 
Representation for more information . 

FF7F,FFFF 2127 x (2 - 2-23) = 3.402823 x 1038 

0000,0001 2-128 x (1 + 2-23) = 2.938736 x 10-39 

0000,0000 0 =0.0 

0080,0000 _2-128 = -2.938736 x 10-39 

FFFF,FFFF _2127 x (2 - 2-23) = -3.402823 x 1038 

= 119.2093 x 10-9 2E 

FF7F,FFFF,FFFF 2127 x (2 - 2-39) = 3.402824 x 1038 



The Floating-Point Package 

Least positive number 0000,0000,0001 2-128 x (1 + 2-39) = 2.938736 x 10-39 

Zero 0000,0000,0000 0 = 0.0 

Least negative number 0080,0000,0000 _2-128 = -2.938736 x 10-39 

Most negative number FFFF,FFFF,FFFF _2127 x (2 - 2-39) = -3.402824 x 1038 

Resolution = 1.818989 x 10-12 x 2E 

5.6.4 Calling Conventions for the Comparison 

The comparison subroutine works much faster than a floating subtraction. 
Only the signs are compared in a first step to find out the relation of the two 
arguments. When the signs of the two operands are equal, the mantissas are 
compared. After the comparison, the status bits of the status register (SA) hold 
the result: The registers RPRES and RPARG point to the same location the 
SP pOints to (for the FPP version 3 they were not defined). 

Table ~7. Comparison Results 

MOV 

MOV 

CALL 

JEQ 

JHS 

EQUAL 

ARG1_GT_ARG2 

Relations Status 

Argument 1 > Argument 2 C.l, Z.O 

Argument 1 < Argument 2 C=O,z,.O 

Argument 1 = Argument 2 C=1,Z=1 

The calling and use of the returned status bits is shown in the next example: 

#ARG1,RPRES 

#ARG2,RPARG 

#FLT_CMP 

EQUAL 

ARG1_GTJ.RG2 

point to Argument 1 MSBs 

Point to Argument 2 MSBs 

Comparison: result to SR 

Condition for program flow 

ARGl is greater than ARG2 

ARGl is less than ARG2 

ARGl and ARG2 are equal 

ARGl is greater than ARG2 

Other possibilities after the return 

CALL Comparison: result to SR 
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JHS 

CALL 

JNE 

CALL 

JLO 

#FLT_CMP 

ARGl_NE_ARG2 

#FLT_CMP 

ARGl_LT_ARG2 

ARGl is greater/equal ARG2 

ARGI is less than ARG2 

Comparison: result to SR 

@RPRES not equal to @RPARG 

ARGI is equal to ARG2 

Comparison: result to SR 

ARGI is less than ARG2 

ARGI is greater/equal ARG2 

5.6.5 Internal Data Representation 

31 

Exponent 

e7 eO 

47 

The following description explains both the FLOAT and the DOUBLE formats. 
The two floating point formats consist of a floating point number whose: 

o 8 most significant bits represent the exponent 

o 24 (or 40 in the case of DOUBLE format) least significant bits hold the sign 
and the mantissa. 

16 15 o 

18m I 
Mantissa FLOAT 

m22 mO 

32 31 16 15 o 

Exponent 
18m I 

e7 m3S 

~ ______ ~ __ ~~~ __ ~ ______ M __ an_tl_8_~ ______ ~ ______________ ~1 DOUBLE 

eO mO 

Figure 5-20. Floating Point Formats for the MSP430 FPP 

Where: 
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Sm 
mx 
ex 
x 

Sign of floating point number (sign of mantissa) 
Mantissa bit x 
Exponent bit x 
Valence of bit 

The value N of a floating point number is 



S.B.S.1 
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Note: 

The only exception to the previous equation is the floating zero. It is repre­
sented by all zeroes (32 if FLOAT format or 48 if DOUBLE format). No nega­
tive zero exists, the corresponding number (0080,0000) is a valid non-zero 
number and is the smallest negative number. 

A frequently asked question is why the MSP430 floating point format does not 
conform to the widely used IEEE format. There are two main reasons why this 
is not the case: 

1) The MSP430 is often used in a real time environment where calculations 
need to be completed before the next input data are present. 

2) Battery-supplied applications make calculations quickly to produce longer 
battery lifes (up to 10 years for example). 

These two main reasons make a run-time optimized floating point package 
necessary. The format of the floating-point number plays an important role in 
reaching this target. 

o With the MSP43O-format, every floating-point number represents a valid 
value. No invalid combinations like Not a Number, Denormalized Number, 
or Infinity exist. This way the MSP430 FPP has a larger range than other 
FPPs. This allows a higher speed with the smallest memory usage. This 
eliminates the need for unnecessary checks for invalid numbers. 

o The exponent of the IEEE-format is located in two bytes because of the 
location of the sign in the MSB of the floating point number. With the 
MSP430-format, the exponent resides completely within the high byte of 
the most significant word and can, therefore, use the advantages of the 
byte-oriented architecture of the MSP430. No shifts and no bit handling 
are necessary to manipulate the exponent. 

ComputatIon of the MantIssa M 

22 

M = 1 + 2,(m; x 2 1- 23 ) FLOAT 
i=O 

38 

M 1 + 2,(m; X 2;-39 ) DOUBLE 
;=0 

The result of the previous calculation is always: 
2>M~ 1 

Format 

Format 
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Because the M8B of the normalized mantissa is always 1 , a most significant 
non-sign bit is implied providing an additional bit of precision. This bit is hidden 
and called hidden bit. The sign bit is located at this place instead: 

8m - 0: positive Mantissa 

8m .. 1: negative Mantissa 

Note: 

The mantissa of a negative floating point number is NOT represented as a 
2's-complement number, only the sign bit (8m) decides if the floating-point 
number is positive or negative. 

5.6.5.2 Computation of the Exponent E 

7 

E = I(e{ x 2i) - 128 
{=o 

The M8B of the exponent indicates whether the exponent is positive or nega­
tive. 

M8B of exponent = 0: The exponent is negative 

M8B of exponent = 1: The exponent is positive 

The reason for this convention is the representation of the number zero. This 
number is represented by all zeroes. 

5.6.6 Execution Cycles 

x 

Y 
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In the following evaluation the variables 

. float 3.1416 ; Resp .. double 3.1416 

. float 3.1416*100 ; Resp .. double 3.1416*100 

MOV 

MOV 

CALL 

are the base for the calculations. The shown cycles include the addressing of 
one operand and the subroutine call itself: 

tX,RPRES 

tY,RPARG 

*FLT_xxx 

Address 1st operand 

Address 2nd operand 

X <op> Y 

Result on TOS 

Table 5-8 shows the number of cycles needed for the previously shown cal­
culations: 
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Table 5-8. CPU Cycles needed for Calculations 
Operation .FLOAT .DOUBLE Comment 

Addition X+V 184 207 

Subtraction X-V 1n 199 

Multiplication XxV 395 692 Software Loop 

Multiplication XxV 153 213 Hardware MPVer 

Division XIV 405 756 

Comparison X-V 37 41 

5.6.7 Conversion Routines 

5.B.7.1 General 

CNV_BCD_FP 

CNV_FP_BIN 

CNV_FP_BCD 

To allow the conversion of integer numbers to floating point numbers and vice 
versa, the following subroutines are provided (both for .FLOAT and .DOUBLE 
format): 

Convert 16-bit, 32-bit, or 40-bH signed and unsigned integer binary numbers to the float­
ing point formal. See Section 5.6.7.2, Binary to Floating Point Conversions. 

Convert a signed 12-digit BCD number to the floating point format 

Convert a floating point number to a signed 5 byte integer (40 bits) 

Convert a floating point number to a signed 12-digit BCD number 

Common to these subroutines is: 

1) The pointer RPARG points to the address of the input number 

2) The input number is not modified, except when it is the result of the pre­
vious operation on the TOS 

3) The result is located on the top of the stack (TOS) , SP, RPARG, and 
RPRES point to the most significant word of the result 

4) Only integers are converted. See Section 5.6.7.3, Handling af Naninteger 
Numbers, for the handling of non-integer numbers 

5) The result is normally calculated using truncation, except when rounding 
is specified. The assembly-time variable SW_RND defines which mode 
is to be used. 

SW_AND = 0: Truncation is used, the trailing bits are cut off 

SW _AND = 1: Rounding is used, the first unused bit is added to the 
number 

See Section 5.6.7.4, Rounding and Truncation, for details. 
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ML .egu 
FPL .egu 

SUB 
SUB 

or SUB 
or SUB 

24 

6) The subroutines can be used for 2-word (.FLOAT format) and 3-word 
(.DOUBLE format) floating point numbers. The assembly time variable 
DOUBLE defines which mode is to be used: 

DOUBLE = 0: Two word format .FLOAT 

DOUBLE = 1: Three word format .DOUBLE 

7) All conversion subroutines need two (three) allocated words on the top of 
the stack. These words contain the result after the completed operation. 
A simple instruction is used for this allocation. It is the same allocation that 
is necessary anyway for the basic arithmetic operations. The possible in­
structions follow: 

For . FLOAT. ML = 40 for . DOUBLE 
(ML/B)+l Length of one FP number 
#4,SP .FLOAT format allocation 
#6,SP .DOUBLE format allocation 

#(ML/B)+l,SP For both formats 
#FPL,SP For both formats 

8) The FPP04.ASM package is needed. The completion routines of this file 
are used too 

5.6.7.2 Conversions 

The possible conversions are described in detail in the follOwing sections. In­
put and output format~, error handling and number range are given for each 
conversion. 

Binary to Floating Point Conversions 

15 

Binary numbers, 16-bit, 32-bit, and 40-bit long, are converted to floating pOint 
numbers. The subroutine call used defines if the binary number is treated as 
a signed or an unsigned number. No errors are pOSSible, the N-bit of SR is al­
ways cleared on return. Six different conversion calls are provided: 

CNV _BIN16 The 16-bit number, RPARG points to, is treated as a 16-bit 
signed number (see Figure 5-21. 

Range: -32768 to + 32767 (08000h to 07FFFh) 

o 

Addressn ~I ~I _______________ --,M~f--- RPARG 

Sign 

Figure 5-21. Signed Binary Input Buffer Format 16 Bits 
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Addressn 
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CNV _BIN16U The 16-bit number, RPARG points to, is treated as a 16-bit 
unsigned number (see Figure 5-22). 

Range: Oto + 65535 (OOOOOh to OFFFFh) 

o 

~ Mf---- RPARG 

Figure 5-22. Unsigned Binary Input Buffer Format 16 Bits 

15 

CNV _BIN32 The 32-bit number, RPARG points to, is treated as a 32-bit 
signed number (see Figure 5-23). 

Range: -231 to +231 - 1 (08000,OOOOh to 07FFF,FFFFh) 

o 

Addressn+2 1-"1'"""---------------11 ___ _ 
Address n ~ RPARG 

Sign 

Figure 5-23. Signed Binary Input Buffer Format 32 Bits 

Addreasn+2 

Addressn 

15 

CNV _BIN32U The 32-bit number, RPARG points to, is treated as a 32-bit 
unsigned number (see Figure 5-24). 

Range: 0 to 232 - 1 (OOOOO,OOOOh to OFFFF,FFFFh) 

o 

~-----------------L-S-B~~ __ - __ 
~ ~ ~~ 

Sign 

Figure 5-24. Unsigned Binary Input Buffer Format 32 Bits 

CNV_BIN40 The 48-bit number, RPARG points to, is treated as a 40-bit 
signed (unsigned number) (see Figure 5-25). 

Range signed: -240 + 1 to +240 - 1 
(OFFOO,OOOO,OO01 h to OOOFF,FFFF,FFFFh) 
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Range unsigned:· 0 to +240 - 1 
(OOOOO,OOOO,OOOOh to OOOFF,FFFF,FFFFh) 

15 o 

='=1 ... ___ 8_lg_n_B_yte ___ -"' ____ ~_:_~_: __ __'liIt--- RPARG 

Figure 5-25. Binary Number Format 48 Bit 

15 

The previous conversion subroutines convert the 16-bit, 32-bit, or 48-bit num­
bers to a sign extended 48-bit number contained in the registers BIN_MSB, 
BIN_MID, and BIN_LSB. Depending on the call (signed or unsigned) used, the 
leading bits are sign extended or cleared. The resulting 48-bit number is con­
verted afterwards. This allows an additional subroutine call: 

CNV_BIN The 48-bit signed number contained in the registers 
BIN_MSB to BIN_LSB (3 words) is converted to a floating 
point number (see Figure 5-26). 

Range signed: _240 + 1 to +240 - 1 
(OFFOO,OOOO,0001 h to OOOFF,FFFF,FFFFh) 

Range unsigned: 0 to +240 - 1 
(OOOOO,OOOO,OOOOh to OOOFF,FFFF,FFFFh) 

o 
LSBs 

Sign Byte MSBs 

Figure 5-26. Binary Number Format 48 Bit 

, 
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Note: 

Input values outside of the 40-bit range, shown previously, do not generate 
error messages. The leading bits are truncated and only the trailing 40-bits 
are converted to the floating point format. 



DOUBLE .EQU 

MOV 

CALL 

MOV 

MOV 

MOV 

1 

Errors: 

Output: 

. FLOAT 

The Floating-Point Package 

No error is possible, the N-bit of SR is always cleared on return. 

The output depends on the floating point format chosen. The 
format is selected with the assembly time variable DOUBLE. 

The two-word floating point result is written to the top of the stack . 
The SP, RPRES, and RPARG point to the MSBs of the floating 
point number . 

. DOUBLE The three-ward floating point result is written to the top of the 
stack. The SP, RPRES, and RPARG point to the MSBs of the 
lIoating point number. 

EXAMPLE: The 32-bit signed binary number contained in RAM locations BIN­
LO and BINHI (MSBs) is converted to a three-word floating point number. The 
result is written to the RAM addresses RES, RES+2 and RES+4 (LSBs). 

Define .DOUBLE format 

#BINHI,RPARG Address of binary MSSs 

#CNV_BIN32 Call conversion subroutine 

@RPRES+,RES store MSBs of result 

@RPRES+,RES+2 

@RPRES,RES+4 Store LSBs of result 

Binary Coded Decimal to Floating Point Conversion 

Address n+4 

Addresan+2 

Addressn 

15 

Binary coded decimal numbers (BCD numbers), 12 digits in length, are con­
verted to floating point numbers. The MSB of the MSD word contains the sign 
of the BCD number: . 

MSB '" 0: positive BCD number 

MSB '" 1: negative BCD number 

o 

Sign 

Figure 5-27. BCD Buffer Format 
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DOUBLE .EQU 

MOV 

CALL 

MOV 

MOV 

0 

CNV _BCD _FP 'The 12-cJigit number (contained in 3 words, see Figure 5-27), 
RPARG points to, is converted to a floating point number. 

Range: 

Errors: 

Output: 

. FLOAT 

-8 x 1011 +1 to +8 x 1011 _1 

No error is possible, the N-blt of the Status Register Is always 
cleared on return. If non-BCD numbers are contained in the 
BCD-buffer, the result will be erroneous. If the MSD of the input 
number is greater than 7, then the input number is treated as a 
negative number. 

A floating point number on the top of the stack: 

The two-word floating point result is written to the top of the stack . 
The stack pointer SP, RPRES and RPARG point to the MSBs of 
the floating point number • 

. DOUBLE The three-word floating point result is written to the top of the 
stack. The stack pointer SP, RPRES arid RPARG point to the 
MSBs of the floating point number. 

EXAMPLE: The signed BCD number contained in the RAM locations starting 
at label BCDHI (MSDs) is to be converted to a two word floating point number. 
The result is to be written to the RAM addresses RES, and RES+2 (LSBs). 

#BCDHI,RPARG 

Define .FLOAT format 

Address of BCD MSDs 

#CNV~CD_FP 

@RPRES+,RES 

@RPRES,RES+2 

Call conversion subroutine 

Store FP result (MSBS) 

LSBs 

Continue with program 

Floating Point to Binary Conversion 

15 

Addre88n+4 

Addre88n+2 

Addressn 

The floating point number pointed to by register RPARG is converted to a 
40-bit signed binary number located on the top of the stack after conversion 
(see Figure 5-28). 

o 
LSBs 

SIGN BYTE (0 OR FF) MSB. SP,RPARG 

Figure 5-28. Binary Number Format 
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DOUBLE .EQU 

MOV 

CALL 

IN 

MOV 

MOV 

MOV 

1 
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CNV _FP _BIN The floating point number at the address in RPARG is con­
verted to a 40-bit signed binary number. 

Range signed: -240 + 1 to + 240 - 1 
(OFFOO,OOOO,0001 h to OOOFF,FFFF,FFFFh) 

Errors: If the absolute value of the floating point number is greater than 
240-1, then the N bit in the status register is set to one. Otherwise, 
the N bit is cleared. 
The result, put on top of the stack, is the largest signed binary 
number (saturation mode). 

Output: A 40-bit signed, binary number at the top of the stack. The sign 
uses a full byte • 

. FLOAT SP, RPRES, and RPARG point to the MSBs of the three-word 
binary result. An additional word is inserted. It is the responsibility 
of the calling software to correct the stack by one level upwards 
after the result is read . 

• DOUBLE SP, RPRES, and RPARG point to the MSBs of the three-word 
binary result. 

EXAMPLE: The floating point number (.DOUBLE format) contained in the 
RAM locations starting at label FPHI (MSBs) is converted to a 40-bit signed 
binary number. The result is written to the RAM addresses RES, RES+2, and 
RES+4 (LSBs). 

#FPHI,RPARG Address of FP MSBs 

#CNV_FP_BIN Call conversion subroutine 

ERR_HND IFP number I is too big 

@RPRES+,RES Store binary result (MSBs) 

@RPRES+,RES+2 

@RPRES,RES+4 LSBs 

Continue with program 

Floating Point to Binary-Coded Decimal Conversion 

The floating point number at the address in RPARG is converted to a signed 
12-cJigit BCD number located on the top of the stack after conversion (see Fig­
ure 5-27). The MSD of the result has a maximum value of 7 because the sign 
bit uses the MSB position. 

CNV]P _BCD The floating point number at the address in RPARG Is 
converted to a 12-digit signed BCD number. 
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DOUBLE . EQU 

MOV 

CALL 

IN 

MOV 

MOV 

MOV 

ERR_HND 
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Range: 

Errors: 

Output: 

.FLOAT 

Three errors, at different stages of the conversion, are possible. 
These errors set the N-bit in the status register: 

• The exponent value of the floating point number is greater 
than 39, which represents an absolute value greater than 
1.0995 x 1012 

• The absolute value ofthe floating point number is greater than 
8x1011_1 

• The absolute value is greater than 1 x 1012 

Otherwise, the N bit is cleared. 

The result, on the top of the stack, is the largest signed BCD 
number in case of an error; 

A 12-c1igit signed BCD number at the top of the stack 
(see Figure 5-27). 

SP, RPRES, and RPARG point to the MSDs of the three-word 
BCD result. An additional word is inserted. It is the responsibility 
of the calling software to correct the stack by one level upwards 
after the reading of the result. 

.DOUBLE SP, RPRES and RPARG point to the MSDs of the three-word 
BCD result. 

EXAMPLE: The floating point number (.FLOATformat) contained in RAM loca­
tions starting at label FPHI (MSBs) is converted to a 12-digit BCD number. The 
result is written to RAM addresses RES, RES+2, and RES+4 (LSDs) . 

0 

#FPHI,RPARG Address of FP MSBs 

#CNV_FP_BCD Call conversion subroutine 

ER~HND IFP number I is too big 

@SP+,RES Store BCD result (MaDs) 

@SP,RES+2 SP is corrected 

2 (SP), RES+4 LSDs 

Continue with program 

Correct error here 
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5.6.7.3 Handling of Non-Integer Numbers 

The conversion subroutines handle only integer numbers when converting to 
or from floating point numbers. The reasons for this restriction are: 

1) The stack grows if non-integer handling is included 

2) The necessary program code of the conversion software grows larger 

3) The integration of non-integer numbers is easier outside ofthe conversion 
subroutines 

4) The execution time grows longer due to the necessary successive divi­
sions or multiplies by 10. This cannot be tolerated in real time environ­
ments. 

Binary to Floating-Point Conversion 

MOV 

CALL 

SUB.B 

If the location of the decimal point in the binary or hexadecimal number is 
known, the correction of the result is as follows: 

The resulting floating point number is divided by the constant 2n for binary 
numbers or 16m for hexadecimal numbers (with m = 0.25 n). This is made sim­
ply by subtracting n from the exponent of the floating-point number. Overflow 
or underflow is not possible due to the restricted range of the binary input (_240 
+ 1 to +240 -1) compared to the range of the floating-point numbers (-1032 to 
+1032). 

EXAMPLE: The binary 32-bit signed number contained in the RAM locations 
starting at label BINHI (MSBs) is converted to a floating-point number 
(.DOUBLE format). The virtual decimal point of the binary input number is 5 
bits left to the LSB. This means the integer input number is 32-times too large. 
For example, the binary butter contains 1011000 (8810) but the real number is 
10.11000 (2.7510: 88/32 = 2.75) 

#BINHI,RPARG 

#CNV_BIN32 

#S,leSP) 

Address of binary buffer MSBs 

Call conversion subroutine 

Correct result's expo by 2 A S 

Continue with corrected number 

Binary-Coded Decimal (BCD) to Floating-Point Conversion 

If the location of the decimal point in the BCD number is known, the correction 
of the result is as follows: 

The resulting floating-point number is divided by the constant 1 on after the con­
version. Overflow or underflow is not possible due to the restricted range ofthe 
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DOUBLE 

FLT1000 

DOUBLE 

LOOP 

DBL10 

.EQU 

MOV 

CALL 

MOV 

CALL 

. FLOAT 

.EQU 

MOV 

CALL 

MOV 

CALL 

DEC.B 

JNZ 

BCD input number (-8 x 1011 +1 to +8 x 1011 -1) compared to the range of 
the floating-point numbers (-1032 to + 1032). 

EXAMPLE: The BCD number contained in the RAM locations starting at label 
BCDHI (MSDs) is converted to a floating-point number (.FLOAT format). The 
virtual decimal point of the BCD input number is 3 digits left to the LSD. This 
means the integer input number is 1000-times too large. For example, the 
BCD buffer contains 123456 and represents the number 123.456 

0 

#BCDHI,RPARG Address of BCD buffer MSDs 

#CNV_BCD_FP Call conversion subroutine 

#FLT1000, RPARG Address of constant 1000 

#FLT_DIV Correct result by 1000 

Continue with corrected input 

1000 Correction constant 1000 

If the location of the decimal point relative to the number's end is contained in 
a byte DPL (content> 0) the following code can be used. 

1 

#BCDHI,RPARG 

#CNV_BCD_FP 

#DBL10,RPARG 

#FLT_DIV 

DPL 

LOOP 

Address of BCD buffer MSDs 

Call conversion subroutine 

Divide result by 10 as often -

as DPL defines 

DPL - 1 

.DOUBLE 10 

Repeat as often as necessary 

Continue with corrected input 

Correction constant 10 

Floating Point to Binary Conversion 
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If the binary result should contain n binary digits after the deci!T1al point then 
the following procedure may be used. 

The floating-point number is multiplied by the constant 2" before the conver­
sion call. This is made simply by adding of n to the exponent of the floating­
point number. Overflow can occur if the floating-point number is very large. A 
very large floating-point number cannot be converted to binary format. 

EXAMPLE: The floating-point number contained In the RAM locations starting 
at label FPHI (MSBs) is to be converted to a binary number (.FLOAT format). 
Four fractional bits of the resulting binary number should be included in the ra-



DOUBLE .EQU 

MOV 

MOV 

ADD.B 

MOV 

CALL 

MOV 

ADD.B 

CALL 
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suit. This means the result needs to be 16-times larger. For example, the float­
ing-point number is 12.125 and the resulting binary number is 110000102 
(C216) not only 11002 (C16)' 

° FPHI,O(SP) MSBs of FP number to TOS 

FPHI+2,2(SP) LSBs to TOS+2 

U,l(SP) Correct exponent by 2A4 

SP,RPARG Act. pointer (if not yet done) 

iCNV_FP_BIN Call conversion subroutine 

Result includes 4 add. bits 

If the floating point number to be converted can be modified then a simplified 
code can be used. 

#FPHI,RPARG 

U,l(RPARG) 

#CNV_FP_BIN 

Address of FP number MSBs 

Correct exponent by 2A4 

Call conversion subroutine 

Result includes 4 add. bits 

Floating Point to BlnBry Coded DecImal Conversion 

If the BCD result of this conversion contains n digits after the decimal point, 
the following procedure can be used. 

The floating-point number is multiplied by the constant 10n before the conver­
sion call. Overflow can occur if the floating-point number is very large. A very 
large floating-point number cannot be converted to BCD format due to the buff­
er length limit (12 digits maximum). 

EXAMPLE: The floating-point number contained in the RAM locations starting 
at label FPHI (MSBs) is converted to a BCD number (.DOUBLE format). Two 
fractional digits should be included in the BCD result. This means the BCD re­
sult needs to be 100-times larger. 

For example, the floating-point number is 12.12510, the resulting BCD number 
written to the TOS is 121210 (SW_RND = 0) respective 121310 (SW_RND = 
1) not only 1210. 

DOUBLE . EQU 1 

MOV 

MOV 

CALL 

CALL 

iFPHI,RPARG 

#DBL100,RPRES 

#FLT_MUL 

#CNV_FPJlIN 

Address of FP number (MSBS) 

Address of constant 100 

FP number x 100 -> TOS 

Call conversion subro~tine 
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DBL100 .DOUBLE 100 

Result includes 2 add. digits 

Constant 100 

5.6.7.4 Rounding and Truncation 

Two different modes for conversions can be selected during the assembly of 
the conversion subroutines. 

Truncation: Intermediate results of the conversion process are used as they 
are independent of the status of the next lower bits. This is the 
case if SW_RND = 0 is selected during assembly. 

Rounding: Intermediate results of the conversion process are rounded 
depending on the status of the 1 st bit not included in the current 
result (LSB-1). If this bit is set (1), the intermediate result is 
incremented. Otherwise, the result is not affected. If a carry 
occurs during the incrementing, the exponent is also corrected. 
Rounding is used if SW_RND = 1 is selected during assembly. 

Rounding is applied (when SW _RND = 1) at the following conversion steps: 

Binary to Floating Point: .FLOAT: the MSB of the truncated word is added to 
the 24-bit mantissa 

. DOUBLE: all 40 Input bits are Included, no rounding 
is possible 

BCD to Floating Point: like with the binary to floating point conversion 

Floating Point to Binary: the 2-1 bit (the bit representing 0.5) of the floating 
point number is added to the binary Integer result 

Floating Point to BCD: The 2-1 bit (the bit representing 0.5) of the floating 
point number is added to the binary integer that is 
converted to a BCD number. 

If rounding Is specified during assembly (SW _RND = 1), the ROM code of the 
conversion subroutines is approximately 26 bytes larger than with truncation 
selected (SW_RND = 0). 

5.6.7.5 Execution Cycles 
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To illustrate how long data conversion takes, the required cycles for each con­
version are given for the converted values 1 and the largest possible value (8 
x 1011 -1 for BCD conversions and 240 -1 for binary conversions). The cycle 
count is given for the .FLOAT and for the .DOUBLE format and rounding is 
used. 
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The cycle count for each conversion includes the loading of the pointer 
RPARG, the subroutine call and the conversion itself. 

Table 5-9. Execution Cycles of the Conversion Routines 

Conversion .FLOAT1 .FLOATmax .DOUBLE1 .DOUBLEmax 

CNV BIN40 418 67 422 71 

CNV BCD FP 1223 890 1227 894 

CNV_FP_BIN 535 67 531 63 

CNV FP BCD 1174 706 1170 701 

5.6.8 Memory Requirements of the Floating Point Package 

The memory requirements of an implemented floating-point package depend 
on the routines used and the precision applied. The following values refer to 
a completely implemented package. Truncation is used with the conversion 
routines. The given numbers indicate bytes. 

Table 5-10. Memory Requirements without Hardware Multiplier 

Package .FLOAT .DOUBLE 

Basic Arithmetic Operations 604 696 

Conversion Subroutines 342 338 

Complete FPP 946 1034 

Table 5-11. Memory Requirements with Hardware Multiplier 

Package .FLOAT .DOUBLE 

Basic Ar~hmetic Operations 638 786 

Conversion Subroutines 342 338 

Complete FPP 980 1124 

5.6.9 Inclusion of the Floating-Point Package Into the Customer Software 

This section shows how to insert the floating-point package into the user's soft­
ware. The symbolic definition of the working registers makes it necessary to 
include the FPP-definition file (FPPDEF4.ASM) before the customer's soft­
ware. Otherwise, the assembler allocates an address word for every use of 
one of the working registers during the first pass of the assembler. During the 
second assembler pass, this proofs to be wrong and the assembler run fails. 
The two files FPP04.ASM and CNV04.ASM need to be located together as 
shown in the following examples. This is due to the common parts that are con­
nected with jumps. 

The constant DOUBLE decides which FPP version is generated. It is assumed 
that the FPP files are located in a directory named c: \fpp . If this is not 
the case, then the name of this directory is to be used. 
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. text OeOOOh 

STACK .egu 0600h 

DOUBLE .egu 1 

SW_UFLOW .egu 0 

SW_RND .egu 1 

HW..-MPY .egu 1 

. copy c:\fpp\fppdef4.asm 

. copy c:\fpp\fpp04.asm 

. copy c:\fpp\cnv04.asm 

Customer software starts here 

START MOV #STACK,Si? 

Power-up ~tart address: 

. sect 

. word 

"RstVect",OFFFEh 

START 

ROM/EPROM start address 

Initial value for SP 

Use .DOUBLE format FPP 

Underflow is no 'error 

Use rounding for conversions 

Use the hardware multiplier 

FPP Definitions 

FPP file 

FPP Conversions 

Allocate stack 

User's SW starts here 

; Reset vector 

A second possibility is shown in the following. The FPP is located after the 
user's software: 

. text OEOOOh 

STACK .egu 0300h 

DOUBLE .egu 0 

SW_UFLOW .equ 1 

SW_RND .egu 0 

HW..-MPY .egu 0 

. copy c:\fpp\fppdef4.asm 

Customer software starts here 

5-112 

ROM start address 

Initial value for SP 

Insert .FLOAT format FPP 

Underflow is an error 

No rounding for conversions 

No hardware multiplier 

FPP Definitions 



START MOV 

. copy 

. copy 

#STACK,SP 

c:\fpp\fpp04.asm 

c:\fpp\cnv04.asm 

The Floating-Point Pa~e 

Allocate stack 

End of user's software 

Copy FPP file 

Copy conversions 

Power-up start address: 

. sect "RstVect",OFFFEh 

. word START Reset vector 

5.6.10 Software Examples 

The following subroutines for mathematical functions use the same conven­
tions like the basic arithmetic functions described previously. 

o RPARG points to the operand X for single operand functions (InX, eX) 

o RPRES points to the first operand (base) and RPARG to the second one 
if two operands are used (e.g. for the power function ab) 

o The result of the operation is placed on the top of the stack, RPARG, 
RPRES and SP pOint to the result. 

5.6.10.1 Square Root Subroutine 

The following subroutine shows the use of the floating-point package for the 
calculation of the square root of a number X. The NEWTONIAN approach is 
used: 

x.+/ = O.5x (:t. + x) 
x. 

The subroutine uses the RPARG register as a pOinter to the number X and 
places the result on the top of the stack. 

The algorithm used for the first estimation - exponentl2 and different correc­
tion for even and odd exponents - leads to the worst case estimation errors 
of +8% and -13%. This relatively exact estimations lead to only four iteration 
loops to get the full accuracy. 

The number range of X for the square-root function contains all positive num­
bers including zero. Negative values for X return the previous result on the top 
of the stack and the N bit set as an error indication. 
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The calculation errors for the square-root function are shown in the following 
table. They indicate relative errors. 

Table 5-12. Relative Errors of the Square Root Function 
X .FLOAT 

+3.Ox10-39 6.8><10-8 

0.0 0 

1.0 0 

6.0 +5.4xlQ-9 

8.0 +6.7xl0-8 

+3.4xl038 +4.6xlQ-9 

Calculation times: 

.FLOAT with hardware multiplier: 

.FLOAT without hardware multiplier: 

.DOUBLE with hardware multiplier: 

.DOUBLE 

0 

0 

+1.3x1Q-12 

+1.3xlQ-12 

+2.2x1Q-11 

2300 cycles 

2300 cycles 

4000 cycles 

Comment 

Smallest FPP number 

Zero 

Largest FPP number 

4 iterations 

(no multiplication used) 

4 iterations 

.DOUBLE without hardware multiplier: 4000 cycles 

Square Root Subroutine XAO.S Result on TOS - (@RPARG)AO.S 

Call: MOV 

CALL 

#addressX, RPARG 

Range: 0 -< X < 3.4xlOA+38 

Errors: X < 0: N - 1 

Stack: FPL + 2 bytes 

RPARG points to address of X 

Call the square root function 

RPARG, RPRES and SP point to 

result XAO.S. N-bit for error 

Result: previous result 

Calculates the square root of the number X, RPARG points to. 

SP, RPARG and RPRES point to the result on TOS 

FLT_SQRT .equ $ 

TST.B 

IN 
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o (RPARG) 

SQRTJRR 

Argument negative? 

Yes, return with N = 1 
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MOV @RPARG+,2(SP) 

MOV @RPARG+,4(SP) 

,if DOUBLE-l 

MOV @RPARG+,6(SP) 

,endif 

CLR HELP 

,if DOUBLE=l 

TST 6(SP) 

JNE SQO 

,endif 

TST 4(SP) 

JNE SQO 

TST 2(SP) 

JEQ SQ3 

SQO PUSH #4 

pusa FPL+4(SP) 

PUSH FPL+4(SP) 

,if DOUBLE=l 

PUSH FPL+4(SP) 

,endif 

Copy X to result area 

Check for X 0 

X = 0: result 0, no error 

Loop count (4 iterations) 

Push X on stack for Xn 

1st estimation for XAO,s: exponent even: 0,5 x fraction + 0,5 

exponent odd: fraction ,or, O,30h 

exponent/2 

RRA,B l(SP) Exponent/2 

JC SQl Exponent even or odd? 

RRA,B @SP Exponent is even: 

JMP SQ2 0,5 + 0,5 x fraction 

SQl BIS,B 030h,0(SP) Exponent is odd: correction 

SQ2 XOR,B #040h,1(SP) Correct exponent 

SQLOOP MOV SP,RPARG Pointer to Xn 

MOV SP,RPRES 

ADD #FPL+4,RPRES Pointer to X 
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SUB 

CALL 

ADD 

CALL 

DEC.B 

MOV 

MOV 

.if 

MOV 

.endif 

DEC 

JNZ 

MOV 

MOV 

.if 

MOV 

.endif 

ADD 

SQ3 BR 

SQRT_ERR MOV 

JMP 

#FPL,SP 

#FLTJlIV 

#FPL,RPARG 

#FLT....ADD 

l(RPRES) 

@SP+,FPL-2(SP) 

@SP+,FPL-2(SP) 

DOUBLE-l 

@SP+,FPL-2(SP) 

FPL(SP) 

SQLOOP 

@SP+,FPL+2(SP) 

@SP+,FPL+2(SP) 

DOUBLE-l 

@SP+,FPL+2(SP) 

#2,SP 

#FLT_END 

#FN,HELP 

SQ3 

Allocate stack for result 

X/xn 

Point to xn 

X/xn + xn 

0.5 x (X/xn +xn) = xn+l 

xn+l -> xn 

Decrement loop counter 

N = 0 (FLTJ.DD) 

Rpot to result space 

Skip loop count 

To completion part 

Root of negative number: N = 1 

5.6.10.2 Cubic-Root Subroutine 
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The cubic root of a number is calculated the same as the square root, using 
the Newtonian approach. The formula for the cubic root of X is: 

Xn+l = .!~Xn + .!.) 
3 x; 

The subroutine uses the RPARG register as a pointer to the number X and 
places the result on the top of the stack. 

The algorithm used for the first estimation - exponentl3 and a constant fraction 
value ±1.4 - leads to worst case estimation errors of +40% and -37%. This 
estimation leads to four (.FLOAT) or five (.DOUBLE) iteration loops to get the 
full accuracy. 

The number range of X for the cubic-root function contains all numbers includ­
ing zero. No error is possible. 
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The calculation errors for the cubic-root function are shown in the following 
table. They indicate relative errors. 

Table 5-13 Relative Errors of the Cubic Root Function 
X .FLOAT 

-3.4028xl ()38 1.2xlo-a 

-1.0 0 

-2.9387xl0-39 1.7xl0-7 

0.0 0 

+2.9387xl0-39 -1.7xl0-7 

+1.0 0 
+3.4028xl ()38 -1.2xlo-a 

Calculation times: 

.FLOAT with hardware multiplier: 

.FLOAT without hardware multiplier: 

.DOUBLE with hardware multiplier: 

.DOUBLE 
+2.2xl0-13 

0 

-3.8xl 0-13 

0 

+3.8xl0-13 

0 

-2.2xl 0-13 

5000 cycles 

6100 cycles 

10200 cycles 

.DOUBLE without hardware multiplier: 12600 cycles 

Comment 
Most negative number 

-1.0 

Least negative number 

Zero 

Least positive number 

+1.0 

Most positive number 

4 iterations 

5 iterations 

Cubic Root Subroutine XA1/3 Result on TOS = (@RPARG)Al/3 

Call: MOV 

CALL 

Formula: 

Range: 

Errors: 

Stack: 

#addressX, RPARG RPARG points to X 

Call the cubic root function 

RPARG, RPRES, SP point to result 

Result on the top of the stack 

xn+l = 1/3(2xn + X x xnA-2) 

No errors possible 

2 x FPL + 2 bytes 

Calculates the cubic root of the number X, RPARG points to. 

SP, RPARG and RPRES point to the result on TOS 
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@RPARG+,2(SP) 

MOV @RPARG+, 4 (SP) . 

. if DOUBLE-1 

MOV @RPARG+,6(SP) 

. end if 

.if DOUBLE=l 

TST 6(SP) 

JNE CBO 

.endif 

TST 4(SP) 

JNE CBO 

TST 2(SP) 

JEQ CB3 

CBO .equ $ 

.if DOUBLE-O 

PUSH #4 

.else 

PUSH #5 

. end if 

PUSH FPL+4(SP) 

PUSH FPL+4(SP) 

.if DOUBLE=l 

PUSH FPL+4(SP) 

.endif 

1st· estimation for X~1/3: 

MOV.B l(SP) ,RPARG 

AND #OeOh,O(SP) 

ADD #Oe034h,0(SP) 

TST.B RPARG 

IN DCL$2 

DCL$l DEC.B l(SP) 

ADD.B #3,RPARG 

IN CBLOOP 

5-118 

Copy X to result area 

Check for x - ° 

x = 0: result 0 

Loop count 

.FLOAT 4 iterations 

.DOUBLE 5 iterations 

Push X on stack for Xn 

exponent/3, fraction +-1.4 

Exponent of X OOxx 

Only sign of X remains 

+-1.4 for 1st estimation 

Exponent's sign? 

positive 

Neg. exp.: exponent - 1 

Add 3 until OaOh is reached 

OaOh is reached, 



DCL$3 

DCL$2 

CBLOOP 

CB3 

FLT3 

FLT3 

JMP 

INC.B 

SUB.B 

IN 

MOV 

DCL$l 

l(SP) 

#3, RPARG 

DCL$3 

SP,RPARG 

MOV SP,RPRES 

SUB 

CALL 

ADD 

CALL 

INC.B 

ADD 

CALL 

MOV 

CALL 

MOV 

#FPL,SP 

#FLT_MUL 

#2*FPL+4,RPRES 

#FLT_DIV 

FPL+l(SP) 

#FPL,RPARG 

#FLT_ADD 

#FLT3,RPARG 

#FLT_DIV 

@SP+,FPL-2(SP) 

MOV @SP+,FPL-2(SP) 

.if DOUBLE=l 

MOV @SP+,FPL-2(SP) 

. end if 

DEC FPL(SP) 

JNZ CBLOOP 

MOV 

MOV 

@SP+,FPL+2(SP) 

@SP+,FPL+2(SP) 

.if DOUBLE=l 

MOV @SP+,FPL+2(SP) 

.endif 

ADD 

CLR 

BR 

.if 

. DOUBLE 

.else 

. FLOAT 

#2,SP 

HELP 

#FLT_END 

DOUBLE-l 

3.0 

3.0 
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Continue 

Pos. exp.: exponent + 1 

Subtr. 3 until oaOh is reached 

Continue 

Point to xn 

Allocate stack for result 

xn"2 

Point to A 

X/xn h2 

xn·x 2 

Point to 2xn 

X/xn h2 + 2xn 

1/3 x (X/xnh2 + 2xn) 

xn+1 -> xn 

Decr. loop count 

xn+1 

Result to result area 

Cubic root to result space 

Skip loop count 

No error 

Normal termination 

Constant for cubic root 

Software Applications 5-119 



The Ff?Btlng-Polnt Package 

.endif 

5.6.10.3 Fourth-Root Subroutine 

SUB 

MOV 

CALL 

IN 

CALL 

MOV 

MOV 

.if 

MOV 

.endif 

The fourth root of a number is calculated by calling the square root subroutine 
twice. 

EXAMPLE: the fourth root is calculated for a number residing in RAM at ad­
dress NUMBER (MSBs). The fourth root is written to RESULT. The previous 
result on TOS must not be overwritten. 

#ML/8+1,SP 

·#NUMBER,RPARG 

tFLT_SQRT 

ERROR 

#FLT_SQRT 

@SP+,RESULT 

@SP+,RESULT+2 

DOUBLE=l 

@SP+,RESULT+4 

Allocate work area 

Address of NUMBER to RPARG 

Square root of NUMBER on TOS 

NUMBER is negative 

Fourth root on TOS 

4th root MSBs 

Correct SP to previous result 

LSBs for DOUBLE 

5.6.10.4 Other Root Subroutines 

Using the same calculations shown previously, higher roots can also be calcu­
lated using the Newtonian approach. The generic formula for the mth root out 
of A is: 

X.+l = .!...«m-l)x. + A_J m x: 
To get short calculation times - which means only few iterations are necessary 
- the choice of the first estimation xo is very important. For the above formula 
a good first iteration Xo is (M = mantissa, E = exponent): 

(M-1) 
xo = (-m-- + 1) X 2E1m 

5.6.10.5 Calculet/ons WIth Intermedlste Results 
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If a calculation cannot be executed simply and has intermediate results, a new 
result space is used. This is done by subtracting 4 (.FLOAT) or 6 (.DOUBLE) 
from the stack pointer. 



FPL .equ 

SUB 

MOV 

MOV 

CALL 

SUB 

MOV 

MOV 

CALL 

ADD 

CALL 

MOV 

MOV 

.if 

MOV 

.endif 

The Floating-Point Package 

EXAMPLE: The following function for e is to be calculated. The example is val­
id for both formats: 

axb 
c 

e = -
d 

(ML/8)+1 Length of a FPP number 

#FPL,SP Allocate result space 0 (RSO) 

#a,RPRES Address argument 1 

#b,RPARG Address argument 2 

#FLT_MUL a x b -> RSO 

#FPL,SP Allocate result space 1 (RSl) 

#c,RPRES Address c 

#d,RPARG Address d 

#FLTJ)lV c/d -> RSl 

#FPL,RPRES Address (a x b) in RSO 

#FLT_SUB e - (a x b) - c/d -> RSl 

@SP+,FPL-2(SP) Result e to RSO 

@SP+,FPL-2(SP) Overwrite (a x b) with e 

DOUBLE-l 

@SP+,FPL-2(SP) LSBs for DOUBLE 

Housekeeping is made, SP pOints to RSO again, but not 

RPARG and RPRES 

SUB 

MOV 

MOV 

CALL 

MOV 

CALL 

EXAMPLE: The multiply-and-add (MAC) function for e shown in the following 
is calculated. The example is written for both formats: 

en+1 = axb + en 

#ML/8+l,SP 

h,RPRES 

#b,RPARG 

#FLT_MUL 

#e,RPARG 

#FLT_ADD 

Allocate result space 

Address argument 1 

Address argument 2 

a x b 

Address e 

(a x b)+ e 
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MOV 

@RPARG+,e 

@RPARG+,e+2 

Actualize e with result 

MIDs or LSBs 

.if DOUBLE-l 

MOV 

.endif 

@RPARG+,e+4 LSBs' 

SP and RPRES still point to the result, RPARG may be used 

for the next argument address. 

5.6.10.6 Absolute Value of a Number 

BIC 

If the absolute value of a number is needed, this is done by simply resetting 
the sign bit of the number. 

EXAMPLE: the absolute value of the result on the top of the stack is needed. 

#080h,O{SP) I result I on TOS 

5.6. 10.7 Change of the Sign of a Number 

XOR 

If a sign change is necessary (multiplication by -1), this is done by simply in­
verfing the sign bit of the number. 

EXAMPLE: the sign of the result on the top of the stack is changed. 

#080h,O{SP) ; Negate result on TOS 

5.6.10.8 Integer Value of a Number 

The integer value of a floating-point number can be calculated with the subrou­
tine FLT _INTG in the following example. The pointer RPARG is loaded with the 
address of the number. The result is then placed on the top of the stack. No 
error is possible. Numbers below one are returned as zero. The subroutine can 
handle .FLOAT and .DOUBLE formats. 

Calculate the integer value of the number RPARG points to. 

Result: on top of the stacK. RPARG, RPRES and SP point to it 

Call MOV 

CALL 

FLT_INTG MOV.B 

MOV 

5-122~ 

#number, RPARG 

1 (RPARG) ,COUNTER 

@RPARG+,2{SP) 

Address to RPARG 

Call subroutine 

Result on TOS 

Exponent to COUNTER 

MSBs and Exponent 



INTGLP 

L$30 

MOV 

.if 

MOV 

.endif 

MOV 

.if 

MOV 

.endif 

MOV 

JMP 

CLRC 

RRC.B 

.if 

RRC 

.endif 

RRC 

DEC 

CMP 

JHS 

BIC 

.if 

BIC 

BIC 

.else 

BIC 

.endif 

MOV 

ADD 

MOV 

RET 

MOV 

CALL 
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@RPARG+,4(SP) LSBs . FLOAT 

DOUBLE-l 

@RPARG,6(SP) LSBs . DOUBLE 

#OFFFFh,ARG2_MSB Mask for fractional part 

DOUBLE=l 

#OFFFFh,ARG2_MID 

#OFFFFh,ARG2_LSB 

L$30 

Shift 0 in always 

ARG2-.MSB Shift mask to next lower bit 

DOUBLE=l 

ARG2_MID 

ARG2_LSB 

COUNTER Shift as often as: 

#OaOh,COUNTER SHIFT COUNT = EXPONENT - 07Fh 

INTGLP 

ARG2_MSB,2(SP) Mask out fracto part 

DOUBLE-l 

ARG2-.MID,4(SP) For .DOUBLE format 

ARG2_LSB,6(SP) 

ARG2_LSB,4(SP) For .FLOAT format 

SP,RPARG Both pointer to result's MSBs 

#2,RPARG 

RPARG,RPRES 

; Return with Integer on TOS 

EXAMPLE: the integer value of the floating pOint number residing at address 
VOL1 is placed on TOS. 

#VOLl,RPARG 

# FLT_INTG 

Load pointer with address 

Calculate integer of VOLl 
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Integer on TOS 

5.6.10.9 Fractional Part of a Number 

The fractional part of a floating-point number can be calculated with the sub­
routine FLT]RCT in the following example. The pointer RPARG is loaded 
with the address of the number. The result Is placed on the top of the stack. 
No error is possible. The subroutine can handle both floating-point formats. 
The subroutine calls the subroutine FLT_INTG shown previously. 

Integer values or very large numbers return a zero value due to the given reso­
lution. 



MOV 

CALL 

The Floating-Point Package 

EXAMPLE: the fractional part of the floating-point number R5 points to is 
placed on TOS. 

R5,RPARG 

#FLT_FRCT 

Load pointer with address 

Calculate fractional part 

Fractional part on TOS 

5.6.10.10 Approximation of Integrals 

Simpson's Rule states that the area A limited by the function f(x), the x-axis, 
Xo and xN is approximately: 

yO f---Jr 

-+x 

Figure 5-29. Function ((x) 

The subroutine SIMPSON, in the following code, processes N+1 inputs 
pointed to by register RPARG and computes the area A after the measurement 
of sample N. The result is written back to the RAM location A. 

This integration method can be used for the calculation of the apparent power 
with electronic electricity meters. The absolute values of current and voltage 
are added up and are multiplied afterwards. . 

Subroutine for the approximation of integrals. Samples 

yO to yN are processed and stored in location A. 

Nmax = 254 (if larger, a word has to be used for INDEXn) 
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Call: 

LOOP 

N 

A 

INDXn 

FLT3 

h 

A 

INDXn 

FLT3 

h 

SIMPSON 

YEVEN 

5-126 

CLR.B 

MOV 

CALL 

eMP.B 

JLO 

.equ 

.if 

.equ 

,equ 

. float 

. float 

.else 

.equ 

.equ 

. double 

. double 

.endif 

SUB 

MOV 

INDEXn 

#sample, RPARG 

#SIMPSON 

#N+l,INDEXn 

LOOP 

8 

DOUBLE=O 

0200h 

0204H 

3.0 

0.32 

0200h 

0206H 

3.0 

0.32 

#(ML/8)+1,SP 

@RPARG+,O(SP) 

MOV @RPARG+,2(SP) 

.if DOUBLE=l 

MOV @RPARG,4(SP) 

.endif 

CMP.B 

JEQ 

CMP.B 

JEQ 

BIT 

JZ 

INC.B 

INC.B 

MOV 

MOV 

#O,INDXn 

YO 

iN, INDXn 

YN 

n,INDXn 

YEVEN 

l(SP) 

l(SP) 

#A,RPARG 

SP,RPRES 

Before 1st call: n - 0 

Address of yn 

Process sample yn 

YN processed? 

No, proceed 

Yes, integral in A 

Max. index (must be even) 

summed up value (integral) 

Index n (0 to N) 

Difference h: yn+1 - yn 

Summed up value (integral) 

Index n (0 to N) 

Difference h: yn+1 - yn 

Allocate new workspace 

Fetch yn 

1st value yO? 

Last value yN? 

Odd or even n? 

Odd: value x 4 

,Even: value x 2 

Fetch summed-up value A 

New sample yn on TOS 



YN 

YO 

INTLOP 

CALL 

JMP 

MOV 

MOV 

CALL 

MOV 

CALL 

MOV 

CALL 

MOV 

MOV 

.if 

MOV 

.endit 

INC.B 

RET 

CLR.B 

CALL 

CMP.B 

JLO 

lfFLT_ADD 

YO 

#A,RPARG 

SP,RPRES 

#FLTj.DD 

#FLT3,RPARG 

#FLT_DIV 

#h,RPARG 

#FLT_MUL 

@SP+,A 

@SP+,A+2 

DOUBLE-l 

@SP+,A+4 

INDXn 

Add it'to A 

Store added result in A 

Last value yN: calculate 

New sample yn on TOS 

Add last result to A 

To constant 3.0 
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Divide summed-up value by 3.0 

Multiply with distance h 

Store result to A 

and correct stack 

Next n 

Return with integral in A 

EXAMPLE: The function f(x) described by the calculated results on top of the 
stack is integrated using Simpson's rule .. 

INDXn 

#SIMPSON 

#N+l, INDXn 

INTLOP 

Initialization: INDXn = 0 

Calculation, result on TOS 

Process samples yO to yN 

Last sample yN processed? 

No, continue 

Yes, result in A 

5.6. 10. 11Statistlcal Calculations 

The mean value, the standard deviation, and the variance of measured sam­
ples can be calculated with the following subroutines. , 

o STAT_INITclears the RAM locations used for data gathering. 

o STAT_PREP adds the input sample to the RAM location SUMYi, the 
squared input sample to SUM2Yi and increments the sample counter N. 
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o STAT_CALC calculates mean, standard deviation, and variance from 
these three values and writes them back to the RAM locations used for 
data recording. 

i=N 

~> 
Mean Value = .!::L­

N 

Variance = i=1 

N 

StandardDeviation = 1=1 

N-J 

I=N I=N 
LYI2 -MeanValuex LYI 

= i=l i=1 

N 

I Variance x N 
V N-J 

RAM locations for the input samples: 

N 

SUMYi 

SUM2Yi 

.equ 

.equ 

.equ 

0200h 

N+(ML/8)+1 

SUMYi+(ML/8)+1 

Number of input samples (binary) 

Summed-up samples yi 

Sum of squared samples yi 

The same RAM-locat'ions are used for the three results: 

MEANV .equ 

STDDEV .equ 

VARIANCE .equ 

.if 

FLTl . DOUBLE 

.else 

FLTl . FLOAT 

. end if 

5-128 

N 

SUMYi 

SUM2Yi 

DOUBLE-l 

1.0 

1.0 

Mean Value after return 

Standard Deviation after return 

Variance after return 

Floating 1. 0 
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STAT_INIT initializes the RAM-locations for statistics 

STAT_INIT CLR N Clear sample counter 

CLR SUM2Yi Clear sum of squared samples 

CLR SUM2Yi+2 

.if DOUBLE=l 

CLR SUM2Yi+4 

.endif 

CLR SUMYi Clear sum of input samples 

CLR SUMYi+2 

.if DOUBLE=l 

CLR SUMYi+4 

. end if 

RET 

STAT_PREP sums-up the sample pointed to by RPARG in SUMYi 

(summed-up yi) and in SUM2Yi (summed-up squared yi) . 

The binary sample counter N is incremented 

STAT_PREP PUSH 

SUB 

MOV 

CALL 

MOV 

CALL 

MOV 

RPARG 

#(ML/B)+1,SP 

RPARG,RPRES 

#FLTJ«JL 

#SUM2Yi,RPRES 

#FLT_ADD 

@SP,SUM2Yi 

MOV 2(SP),SUM2Yi+2 

.if DOUBLE=1 

MOV 4(SP),SUM2Yi+4 

.endif 

Save address of input sample 

Allocate stack space 

Copy input sample address 

(yi)A2 

Add (yi)A2 to SUM2Yi 

(yi)A2 + SUM2Yi 

Sum back to SUM2Yi 

MOV (ML/B)+1(SP),RPARG ; Fetch sample address 

MOV #SUMYi,RPRES Add yi to SUMYi 

CALL 

MOV 

MOV 

#FLTj.DD 

@SP+,SUMYi 

@SP+,SUMYi+2 

.if DOUBLE=1 

MOV @SP+,SUM2Yi+4 

Summed-up yi 

House keeping 
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. end if 

ADD 

INC 

RET 

#2,SP 

N 

Remove sample address 

Increment N 

STAT_CALC calculates the Mean Value, the Variance and the 

Standard Deviation from the N samples input to the subroutine 

STAT_PREP. 

The three calculated statistical values are stored in: 

Mean Value: 

Variance: 

Standard Deviation: 

N 

SUM2Yi 

SUMYi 

STAT_CALC SUB 

MOV #N,RPARG 

CALL #CNV_BIN16U 

SUB # (ML/8)+1 ,SP 

MOV #SUMYi,RPRES 

CALL #FLT_DIV 

MOV @SP,MEANV 

MOV 2(SP),MEANV+2 

.if DOUBLE=l 

MOV 4 ( SP) ,MEANV+4 

.endif 

#(ML/8)+1,SP ; Allocate stack space 

Convert N to FP-format 

Binary to FPP on TOS 

To save N on stack 

Summed-up yi/N 

Mean Value on TOS 

Store Mean Value 

The Mean Value on TOS is used for the calculation 

of the Variance: 

Variance = (Sum(yiA2) - Mean Value x Sum(yi)/N)/N 

MOV #SUMYi,RPARG Mean Value x Sum(yi) 

CALL #FLTJIDL 

MOV #SUM2Yi,RPRES To Sum(yiA2) 

CALL #FLT_SUB Sum(yiA2) - MY x Sum(yi) 

ADD # (ML/8)+l,RPARG Point to N 

CALL #FLT.J>IV Varia!'ce on TOS 

MOV @SP,VARIANCE Store Variance 
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MOV 2(SP),VARIANCE+2 

.if DOUBLE=l 

MOV 4(SP),VARIANCE+4 

.endif 

The Variance on TOS is used for the calculation of the 

standard Deviation: Std Dev. ~ SQUROOT(Variance x N/(N-l) 

ADD 

CALL 

MOV 

MOV 

.if 

MOV 

.endif 

MOV 

MOV 

CALL 

MOV 

CALL 

CALL 

MOV 

MOV 

.if 

MOV 

.endif 

RET 

CALL 

STATLOP MOV 

CALL 

CALL 

#(ML/8)+l,RPARG 

#FLT_MUL 

@SP+,STDDEV 

@SP+,STDDEV+2 

DOUBLE=l 

@SP+,STDDEV+4 

#FLTl,RPARG 

SP,RPRES 

#FLT_SUB 

#STDDEV,RPRES 

#FLT_DIV 

#FLT_SQRT 

@SP+,STDDEV 

@SP+,STDDEV+2 

DOUBLE~l 

@SP+,STDDEV+4 

Point to N 

Variance x N 

Store value for later use 

Build N-l 

point to N 

N-l on TOS 

point to (Variance x N) 

Variance x N/(N-l) 

StdDev = SQROOT(Var x N/(N-l» 

store Standard Deviation 

EXAMPLE: The normal calling sequence for the statistical calculations is 
shown In the following. The input samples are contained in the ADC-result reg­
isterADAT. 

#STAT_INIT 

#ADAT, RPARG 

#CNV_BINl6U 

# STAT_PREP 

Initialization: clear used RAM 

Set pointer to ADC-result 

Convert ADC-result to FP on TOS 

Process samples yl to yN 

Continue 
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CMP.B 

JLO 

#xx,N 

STATLOP 

yN processed? 

No, next sample 

N samples are pre-processed: Calculate Mean Value, Variance, 

and Standard Deviation out of SUMYi, SUM2Yl and N 

CALL Call calculation subroutine 

Results in"sample locations 

5.6.10.12 Complex Calculations 

Complex numbers of the form (a + jb) can be used in calculations also. The 
four basic arithmetic operations are shown for complex numbers. Pointers 
RPARG and RPRES are used in the same way as with the normal FPP subrou­
tines. They point to the real parts of the complex numbers used for input and 
to the result on the TOS after the completion of the subroutine. The real and 
imaginary part of a complex number need to be allocated in the way shown in 
Figure 5-30 (shown for .FLOAT format). 

Stack Usage: The subroutines need up to 36 bytes (.DOUBLE) or 28 bytes 
(.FLOAT) of stack space (complex division). Not included in this numbers is the 
initially allocated result space. No error handling is provided. It is assumed that 
the numbers used stay within the range of the floating-point package. 

Stack COnfiguration 

AcIdr8as n SP During MAIN Program 

Add ..... n-4 Irna Ina Part MS8s 

Add ..... !HI Real Part SP Alter Return 
Return CMPLX-xxx 

Addre18 n·12 
AdditIOn Result Space 

AcIdr8as~x~ __________ ~I_ 

RAM/ROM COnfiguratIOn 

Add ..... n+4 Imaginary Part MS8s AcIdr8as n+8 ~ l 
'= ~_ .... : ",M_ 

Figure 5-30. Complex Number on TOS and in Memory (.FLOAT Format) 
FPL .equ (ML/B)+l ; Length of an FP-number (bytes) 

; Complex calculation is made with the complex numbers RPARG 
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and RPRES point to. 

Call: MOV 

MOV 

CALL 

#argl,RPRES 

#arg2,RPARG 

#CMPLJCxxx 

Address argument1 

Address argument2 

Calculate arg1 op arg2 

Result on TOS. Pointed to 

by SP, RPARG and RPRES 

Complex Subtraction: (a + jb) - (c + jd). @RPRES - @RPARG. 

Stack Usage: 16 bytes (.DOUBLE) 

CMPLX_SUB MOV 

JMP 

#OFFFFh,HELP 

CL$1 

12 bytes (.FLOAT) 

Define subtraction 

To common part 

Complex Addition: (a + jb) + (c + jd). @RPRES + @RPARG 

Stack Usage: 16 bytes (.DOUBLE) 12 bytes (.FLOAT) 

CMPLX....ADD CLR HELP Define addition 

CL$1 PUSH RPRES Save argument pointer 

.if DOUBLE=l 

PUSH lO(RPARG) LSBs imaginary part d 

PUSH 8 (RPARG) MIDS imaginary part d 

.endif 

PUSH 6 (RPARG) The coming words depend on 

PUSH 4 (RPARG) DOUBLE 

PUSH 2 (RPARG) LSBs real part c 

PUSH @RPARG MSBs real part c 

TST HELP Addition or subtraction? 

JZ CA 

Subtraction: the complex number (c + jd) is negated 

CA 

XOR 

XOR 

MOV 

CALL 

#080h,O(SP) 

#080h,FPL(SP) 

SP,RPARG 

IIFLT_ADD 

Negate real part c 

.; Negate imaginary part d 

Point to c 

Add real parts (a + c) 
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MOV @SP+,2*FPL+2(SP) To real storage 

MOV @SP+,2*FPL+2(SP) Housekeeping 

.if DOUBLE=l 

MOV @SP+,2*FPL+2(SP) 

.endif 

MOV SP,RPARG Point to d 

MOV FPL(SP),RPRES Restore RPRES 

ADD IIFPL,RPRES To imaginary part b 

CALL #FLT~D Add imaginary parts 

MOV @SP+,2*FPL+2(SP) To imaginary storage 

MOV @SP+,2*FPL+2(SP) Housekeeping 

.if DOUBLE=l 

MOV @SP+,2*FPL+2(SP) 

.endif 

ADD #2,SP Skip saved RPRES 

JMP CMPLX_RT Result on TOS 

Complex Division: (a + jb)/(c + jd). @RPRES/@RPARG 

The Complex Division uses the inverted divisor and 

the multiplication afterwards: 

(a + jb)/(c + jd) - (a + jb) x l/(c + jd) 

with: l/(c + jd) - (c ~ jd)/(CA 2 + ·dA 2) 

" Stack Usage: 36 bytes (.DOUBLE) 28 bytes (.FLOAT) 

(b + d) 

CMPLXJ)IV PUSH 

PUSH 

SUB 

MOV 

CALL 

SUB 

MOV 

RPRES 

RPARG 

#FPL,SP 

RPARG,RPRES 

#FLT_MUL 

#FPL,SP 

2*FPL(SP),RPARG 

Save RPRES (dividend a + jb» 

Save RPARG (divisor·c + jd) 

Allocate result space 
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ADD #FPL, RPARG 

MOV 

CALL 

ADD 

RPARG,RPRES 

tFLT_MUL 

#FPL,RPARG 

Fetch real part c 

c A 2 

Allocate result space 

Fetch imaginary part d 

Copy address of d 

d A 2 

to c A 2 



CALL #FLT_ADD c A 2 + d A 2 

PUSH FPL(SP) Copy c A 2 + d A 2 

PUSH FPL(SP) 

.if DOUBLE-1 

PUSH FPL(SP) 

.endif 

MOV SP,RPARG To (c2 +d2) 

MOV 3*FPL(SP), RPRES Pointer to (c + jd) 

ADD #FPL,RPRES Address d 

CALL flFLT_DIV d/(c A 2 + d A 2) imago part 

XOR flOBOh,O(SP) -d/(cA 2 + d2) 

MOV @SP+,2*FPL-2(SP) store imaginary part 

MOV @SP+,2*FPL-2(SP) to final location 

.if DOUBLE=l 

MOV @SP+,2*FPL-2(SP) 

.endif 

MOV SP,RPARG To copy of c A 2 + d A 2 

MOV 2*FPL(SP),RPRES To (c + jd) 

CALL #FLT_DIV c/(cA 2 + d2) 

Prepare the interface to the multiplication and call it: 

RPARG pOints to l/(c + jd) 

RPRES points to (a + jb) 

yet made by FLT_DIV 

MOV 2*FPL+2(SP),RPRES ; address of (a + jb) 

CALL #CMPLX_MUL (a +jb) x l/(c +jd) 

MOV #FPL, HELP Result to final location 

CDIVL MOV @SP+,2*FPL+4(SP) 

DEC HELP 

JNZ CDIVL 

JMP CMPLX_RET To common housekeeping 

Complex Multiplication: (a + jb}x(c + jd). @RPRES x @RPARG 

;(a + jb)x(c + jd) = ac + jad + jbc - bd 

; Stack Usage: 24 bytes (.DOUBLE) 1B bytes (.FLOAT) 

The Floating-Point Package 
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CMPLXJIDL PUSH 

PUSH 

RPRES 

RPARG 

real Part ac - bd 

SUB #FPL,SP 

CALL #FLTJ4UL 

SUB #FPL,SP 

MOV 2*FPL(SP),RPARG 

MOV 2*FPL+2 ('SP) , RPRES 

ADD #FPL,RPARG 

ADD #FPL,RPRES 

CALL #FLTJIDL 

ADD #FPL,RPRES 

CALL #FLT_SUB 

MOV @SP,FPL(SP) 

MOV 2(SP),FPL+2(SP) 

.if DOUBLE~l 

MOV 4(SP),FPL+4(SP) 

.endif 

Imaginary Part j(ad + be) 

MOV 2*FPL(SP),RPARG 

MOV 2*FPL+2(SP),RPRES 

ADD #FPL,RPARG 

CALL #FLTJIDL 

SUB #FPL,SP 

MOV 3*FPL(SP),RPARG 

MOV 3*FPL+2(SP),RPRES 

ADD #FPL,RPRES 

CALL #FLTJIDL 

ADD #FPL,RPARG 

CALL #FLTJDD 

MOV @SP+,4*FPL+4(SP) 
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Save pointer to (a + jb) 

Save pointer to (c + jd), 

Allocate result space for 

a x c 

a x c 

Allocate result space for b x d 

To c + jd 

To a + jb 

To jd 

To jb 

jb x jd -bd 

To a x c 

(a x c) - (b x d) 

Store ac - bd 

To c + jd 

To a + jb 

To jd 

a x d 

Allocate result space for b x c 

To c + jd 

To a + jb 

To b 

b xc 

To a x d 

ad + bc 

To imaginary result 



MOV @SP+,4*FPL+4(SP) 

.if DOUBLE-l 

MOV @SP+,4*FPL+4(SP) 

.endif 

ADD #FPL,SP To real result 

MOV @SP+,FPL+4(SP) To real result 

MOV @SP+,FPL+4(SP) 

.if DOUBLE=l 

MOV .@SP+,FPL+4(SP) 

.endif 

RPARG, RPRES and SP point to the real part of the result 

on the TOS 

CMPLX_RET ADD 

CMPLX_RT MOV 

ADD 

MOV 

RET 

SUB 

MOV 

MOV 

CALL 

MOV 

CALL 

MOV 

MOV 

MOV 

MOV 

.if 

MOV 

#4,SP 

SP,RPARG 

#2,RPARG 

RPARG,RPRES 

Skip pointers 

EXAMPLE: The complex number at address CN1 is divided by a complex 
number at address CN2. The result (on TOS) is added to a RAM value CST3 
and stored there. 

#2*FPL,SP Allocate result space 

#CN1,RPRES Address of CNl 

#CN2,RPARG Address of CN2 

#CMPLX..J)IV CN1/CN2 -> TOS 

#CST3,RPARG Address of CST3 

#CMPLX.-ADD CN1/CN2 + CST3 -> TOS 

@RPARG+,CST3 Store result in CST3 

@RPARG+,CST3+2 Save result space 

@RPARG+,CST3+4 

@RPARG+,CST3+6 

DOUBLE-l 

@RPARG+,CST3+8 
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MOV@RPARG+,CST3+10 

.endif 

ADD #2*FPL,SP 

Continue wi·th complex calc. 

Terminate complex calc. 

5.6.10.13 Trigonometric and Hyperbolic Functions 

5-138 

Four subroutines are shown for the calculation of ~he sine, cosine, hyperbolic 
sine, and hyperbolic cosine. All four subroutines use the same kernel, only the 
initialization part is different for each of them. Expansion in series is used for 
the calculation. The formulas are (X is expressed in radians): 

Sine function: 

sin X = 
n X2n-1 

" ( 1)n+1 
k(2n-l)/ -

Cosine function: 

n x2n 

cos X = L-x(-lr 
o (2n)! 

Hyperbolic sine function: 
• n X2n-1 

smhX = L( ) 
1 2n-1! 

Hyperbolic cosine function: 

• x 2• 
coshX= L­

o (2n)! 

The number r.ange for X is ±2n: for all four functions. Outside of this range, the 
error increases relatively fast due to the fast growing terms of the sequences 
(x2n and x2n+1). 

If the trigonometric functions have to be calculated for numbers outside of this 
range, two possibilities exist: 

o Sine and cosine: addition or subtraction of 2n: until the number X is back 
in the range ±2n:. The subroutine FLT _RNG can be used for this purpose. 
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o Hyperbolic sine and cosine: increase of the software variable Nmax (nor­
mally 30.0. see the following software) that defines the number of itera­
tions. If this variable is changed to 120.0 (60 iterations). the deviations in 
the range 10-12 (.DOUBLE format) or. 10-6 (.FLOATformat) are possible 
for X input values up to 65. The input number that delivers results near the 
maximum numbers ±1038• 

Note: 

The following subroutines are optimized for ROM space and accuracy. but 
not for run time. They are not intended as part of a floating point package. 
but as a place to begin if needed. 

The calculation errors for the trigonometric functions are shown in the follow­
ing table. They indicate absolute errors; the difference to the correct values. 

Table 5-14. Errors of the Trigonometric Functions 

Angle X 

0 

±1cI2 

±7t 

±21t 

.FLOAT .DOUBLE 

Sin Cos Sin Cos 
0 -20 x 10-9 0 0 

-21 x 10-9 -64 x 10-9 - 0 0 
3.8 x 10-9 -225 x 10-9 0 0 

-1.3 x 10-6 2xl0-6 0 -SOx 10-12 

The errors of the hyperbolic functions are shown in the following table. They 
indicate relative errors. The differences to the correct values are related to the 
correct values. 

Table 5-15. Errors of the Hyperbolic Functions 
Angle X 

0 

±JrI2 
±7t 

±211: 

.FLOAT .DOUBLE 

Hyperbolic Sine Hyperbolic Cosine Hyperbolic Sine Hyperbolic Cosine 

0 0 0 0 

85 x 10-9 160 x 10-9 -126 x 10-12 255 x 10-12 

55 x 10-9 100 x 10-9 -242 x 10-12 -474x-10-12 

34 x 10-9 218 x 10-9 -153x 10-12 -309 x 10-12 

Calculation times (Nmax = 30.0: 15 iterations). The number of cycles is the 
same one for all four functions: 

. FLOAT with hardware multiplier: 

.FLOAT without hardware multiplier: 

.DOUBLE with hardware multiplier: 

18000 cycles 

26000 cycles 

28000 cycles 
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.DOUBLE without hardware multiplier: 42000 cycles 

Sine, Cosine, Hyperbolic Sine, Hyperbolic Cosine of X (radians) 

Call: MOV 

CALL 

#addressX, RPARG 

# FPP.-xxx 

Range: -2xPi < X < +2xPi 

accuracy 

RPARG points to operand X 

; Call the function 

RPARG, RPRES, SP point to result 

for larger numbers FAST loss of 

Stack allocation: (4 x FPL + 4) words are needed (Basic FPP 

Functions are included) 

Initialization for the trigonometric and hyperbolic functions 

+--------------+-------+-------+--------+-----~--+ 

1 INIT 1 'sin X 1 cos X 1 sinh X 1 cosh X I. 

+--------------+-------+-------+--------+--------+ 

Sign Mask qaoh OaOh OOOh OOOh 

1 n 1.0 0.0 1.0 0.0 

Series Term X 1.0 X 1.0 

Result Area X 1 1.0 X 1.0 

+--------------+-------+-------+--------+--------+ 

FPL .equ (ML/a)+l Length of FPP numbers (bytes) 

Floating Point Sine Function: Result on TOS - SIN(@RPARG) 

Prepare the stack with the initial constants 

#80h Sign mask (toggle) 

JMP SINc 

Hyperbolic Sine Function: Result on TOS SINH(@RPARG) 

SINc 
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PUSH 

#OOh 

#0 

.if DOUBLE=! 

Sign mask (always pos.) 

n: 1 



PUSH #0 

.endif 

PUSH #oaOOOh 

.if DOUBLE~l 

PUSH 4 (RPARG) 

.endif 

PUSH 

PUSH 

JMP 

2 (RPARG) 

@RPARG 

TRIGCOM 

.FLOAT 1.0 

Series term: X 

To cormnon part 

Floating Point Cosine Function: Result on TOS 

Prepare the stack with the initial constants 

COS(@RPARG) 

taOh Sign mask (toggle) 

JMP COSc 

Hyperbolic Cosine Function: Result on TOS = COSH(@RPARG) 

FLT_COSH PUSH 

COSc PUSH 

#OOh 

# 

.if DOOBLE~l 

PUSH #0 

.endif 

PUSH tOOh 

. if DOUBLE~l 

PUSH #0 

.endif 

PUSH 

PUSH 

#0 

#OaOOOh 

Sign mask (always pos.) 

n: 0 

.FLOAT 0.0 

Series term: 1.0 

.FLOAT 1.0 

Cormnon part for sin X, cos X, sinh X and cosh X 

The functions are realized by expansions in series 

TRIGCOM .equ $ 

The Floating-Point Package 
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.if DOUBLE=l 

PUSH 4 (RPARG) 

.endif 

PUSH 2 (RPARG) 

PUSH @RPARG 

MOV RPARG,RPRES 

CALL #FLT_MUL 

Push X onto stack (gets XA2) 

XA2 is calculated once 

Both pOinters to X 

XA2 to actual stack 

ADD #FPL, RPARG Copy series term to result space 

MOV @RPARG+,3*FPL+4(SP) ; is X or 1.0 

MOV @RPARG+,3*FPL+6(SP) 

.if DOUBLE-l 

MOV @RPARG+,3*FPL+8(SP) 

.endif 

SUB #FPL,SP Result space for calculations 

MOV SP,RPRES 

The actual series term is multiplied by XA2/(n+l)x(n+2) to 

get the next-series term 

TRIGLOP MOV 

ADD 

CALL 

MOV 

#FLT2,RPARG Address of .FLOAT 2.0 

#3*FPL,RPRES' Address n 

#FLT_ADD n + 2 

@RPARG+,3*FPL(SP) (n+2) -> n 

MOV @RPARG+,3*FPL+2(SP) 

.if DOUBLE=l 

MOV @RPARG+,3*FPL+4(SP) 

.endit 

Build (n+l)x(n+2) for next term. (n+2)A2 - (n+2) (n+l)x(n+2) 
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MOV 

CALL 

ADD 

CALL 

RPRES, RPARG 

#FLT_MUL 

t3*FPL,RPARG 

#FLT_SUB 

Both point to (n+2) 

(n+2)A2 

Point to old n 

(n+2)A2 -(n+2) = (n+l)x(n+2) 
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The series term is divided by (n+l)x{n+2) 

ADD #2*FPL,RPRES Point to series term 

CALL #FLT_DIV Series term/{n+l)x{n+2) 

ADD #FPL,RPARG Point to xh2 

CALL #FLTJWL ST x Xh2/{n+l)x{n+2) 

IN TRIGERR Error, status in SR and 

The sign of the new series term is modified dependent on 

the sign mask. 0: always positive 080h: alternating + 

HELP 

XOR 4*FPL{SP),O{SP) Modify sign with sign mask 

MOV @RPARG+,2*FPL{SP) Save new series term 

MOV @RPARG+,2*FPL+2{SP) 

.if DOUBLE=l 

MOV @RPARG+,2*FPL+4{SP) 

.endif 

ADD 

CALL 

MOV 

#3*FPL+4,RPARG Point to result area 

#FLT-ADD Old sum + new series term 

@RPARG+,4*FPL+4{SP) ; Result to result area 

MOV @RPARG+,4*FPL+6{SP) 

.if DOUBLE=l 

MOV @RPARG+,4*FPL+8{SP) 

.endif 

Check if enough iterations are made: iterations Nmax/2 

CMP 

JLO 

Nmax,3*FPL{SP) 

TRIGLOP 

Compare n with Nmax 

Only MSBs are used 

Expansion in series done. Error indication (if any) in HELP 

The completion part of the FPP is used 

TRIGERR ADD 

BR 

#4*FPL+2,SP 

#FLT_END 

Housekeeping: free stack 

To completion part of FPP 

Software AppHcatlons 5-143 



The Floating-Point Package 

.if DOUBLE~l 

FLT2 .DOUBLE 2.0 constant 2.0 

.else 

FLT2 . FLOAT 2.0 

.endif 

Nmax . FLOAT 30.0 ; Iterations x 2 (NSBs used only) 

5.6.10.14 Other Trigonometric and Hyperbolic Functions 

t X sinX an = 
cos X 

5-144 

With the previous calculated four functions (sin, cosin, hyperbolic sin, and hy­
perbolic cosin), five other important functions can be calculated: tangent, co­
tangent, hyperbolic tangent, hyperbolic cotangent, and exponential functions. 

cot X = cosX 
sin X 

t hX sinhX an =-­
cosh X 

X· 
eX = L -;;! = sinh X+ cosh X 

coth X = cosh X 
sinh X 

To calculate one of the five functions, the two functions it consists of are calcu­
lated and combined. 

The errors ofthe five functions can be calculated with the errors ofthetwo func­
tions used and are shown in Table 5-14 and Table 5-15: 

o tan X, cot X, tanh X and coth X: the resulting error is the difference of the 
two errors 

o exp X: the resulting error is the sum of the two errors 

Calculation times (Nmax = 30.0: 15 iterations). The number of cycles is the 
same one for all five functions: 

.FLOAT with hardware multiplier: 

. FLOAT without hardware multiplier: 

.DOUBLE with hardware multiplier: 

36000 cycles 

52000 cycles 

56000 cycles 

.DOUBLE without hardware multiplier: 84000 cycle$ 

The same software kernel is used for all five functions. The number contained 
in R4 decides which function is executed. The range for all five functions is ±27t. 
For larger numbers a relatively fast loss of accuracy occurs. 



Tangent of X (radians) 

Call: MOV 

CALL 

#addressX, RPARG 

#FLT_TAN 

Cotangent of X (radians) 

Call: MOV 

CALL 

#addressX, RPARG 

#FLT_COT 

#2,R4 

TRCCOMl 

Hyperbolic Tangent of X (radians) 

Call: MOV 

CALL 

FLT_TANH MOV 

JMP 

iaddressX, RPARG 

#FLT_TANH 
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RPARG points to operand X 

Call the tangent function 

RPARG, RPRES, SP point to result 

Offset for tan X 

Go to common handler 

RPARG points to operand X 

Call the cotangent function 

RPARG, RPRES, SP point to result 

Offset for cot X 

Go to common handler 

RPARG points to operand X 

Call the hyperbolic tangent 

RPARG, RPRES, SP point to result 

Offset for tanh X 

Go to common handler 

Hyperbolic Cotangent of X (radians) 

Call: MOV 

CALL 

#addressX, RPARG 

#FLT_COTH 

RPARG points to addres·s of X 

Call the hyperbolic cotangent 

RPARG, RPRES, SP point to result 

Offset for coth X 

Go to common handler 
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Exponential function of X (ex) 

Call: MOV 

CALL 

#addressX, RPARG 

iFLT_EXP 

#8,R4 

RPARG points to operand X 

Call the exponential function 

RPARG, RPRES, SP point to result 

Of.fset for exp X 

Common Handler for tan, cot, tanh, coth and exponent function 

Range: -2xPi < X < +2xPi. For larger numbers FAST loss of 

accuracy 

TRI_COM1 .equ $ 

MOV 

MOV 

.if 

MOV 

.endif 

SUB 

SUB 

CALL 

IN 

SUB 

ADD 

CALL 

ADD 

CALL 

MOV 

MOV 

.if 

MOV 

.endif 

TERR2 ADD 

BR 

FT1 .word 

5-146 

@RPARG+,2(SP) 

@RPARG+,4(SP) 

DOUBLE-1 

@RPARG,6(SP) 

#FPL,SP 

U,RPARG 

FT1(R4) 

TERR2 

#FPL,SP 

#FPL+2,RPARG 

FT2(R4) 

#FPL,RPRES 

FT3(R4) 

@SP+,2*FPL(SP) 

@SP+,2*FPL(SP) 

DOUBLE=l 

@SP+,2*FPL(SP) 

#FPL,SP 

#FLT_END 

FLT_SIN 

Copy X to result space 

AI1.ocate new result space 

Point to X again 

Calculate 1st function 

Error: error code in HELP 

Allocate cosine result space 

Point to X 

Calculate 2nd function 

Point to result of 1st function 

1st result .OP. 2nd result 

Final result to result area 

Skip 1st result 

Error code in HELP 

tan = sin/cos 1st function 



. word 

. word 

. word 

. word 

FT2 . word 

. word 

. word 

. word 

. word 

FT3 . word 

. word 

. word 

. word 

. word 

FLT_COS 

FLT_SINH 

FLT_COSH 

FLT_COSH 

FLT_COS 

FLT_SIN 

FLT_COSH 

FLT_SINH 

FLT_SINH 

FLT.J)IV 

FLT_DIV 

FLT_DIV 

FLT_DIV 

FLT_ADD 

cot - cos/sin 

tanh = sinh/cosh 

coth - cosh/sinh 

exp * cosh + sinh 
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tan = sin/cos 

cot - cos/sin 

2nd function 

tanh = sinh/cosh 

coth - cosh/sinh 

exp = cosh + sinh 

tan sin/cos 3rd function 

cot = cos/sin 

tanh sinh/cosh 

coth = cosh/sinh 

exp = cosh + sinh 

If the argument X for trigonometric functions is outside of the range ±21t then 
the subroutine FLT _RNG may be used. The subroutine moves the angle X into 
the range ±It. 

Subroutine FLT_RNG moves angle X into the range -Pi < X < +Pi 

Call: MOV 

CALL 

#addressX, RPARG 

#FLT_RNG 

Range: -lOOxPI < X < +100xPI 

FLT RNG PUSH @RPARG -

AND #080h,O(SP) 

SUB #FPL,SP 

.if DOUBLE-1 

PUSH 4 (RPARG) 

.endif 

PUSH 2 (RPARG) 

PUSH @RPARG 

BIC #080h,O(SP) 

RPARG points to operand X 

Call the function 

RPARG, RPRES, SP point to result 

loss of accuracy increases with X 

Save sign of X on stack 

Only sign remains 

Reserve space for JAn x Pi 

X on stack 

IXI remains 
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FR1 MOV FLT2PI,FPL(SP) 

MOV FLT2PI+2,FPL+2(SP) 

.if DOUBLE=l 

MOV FLT2PI+4,FPL+4(SP) 

.endif 

'CMP 

JHS 

@SP,FLTPI 

FR2 

2xPi to stack 

Pi - IXI 

Pi > IXI: range process done 

Successive approximation by subtracting 2An x2Pi 

FR3 INC.B FPL+1(SP) 2Pi x 2 

CMP @SP,FPL(SP) 2An·x 2Pi - IXI 

JLO FR3 2"'n x 2Pi < IXI 

DEC.B FPL+1(SP) 2""n x 2Pi > IXI divide by 2 

MOV SP,RPRES Address IXI 

MOV SP,RPARG 

ADD #FPL,RPARG Address 2An x 2Pi 

CALL #FLT_SUB IXI - 2 .... n x 2Pi 

JMP FR1 Check if in range now 

Move.X (now between -Pi and +Pi) to old result space 

FR2 

FLTPI 

FLT2PI 

FLTPI 
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XOR 2*FPL(SP),O(SP) 

MOV @SP+,2*FPL+2(SP) 

MOV @SP+,2*FPL+2(SP) 

.if DOUBLE-1 

MOV @SP+,2*FPL+2(SP) 

.endif 

ADD #FPL+2,SP 

BR iFLT_END 

.if DOUBLE=l 

.DOUBLE 3.141592653589793 

.DOUBLE 3.141592653589793*2 

.else 

. FLOAT 3.141592653589793 

Correct sign of X 

Result to old RS 

To return address of FLT_RNG 

Pi 

2xPi 

Pi 



The Floating-Point Package 

FLT2PI . FLOAT 3.141592653589793*2 2xPi 

.endif 

5.6.10.15 Faster Approximations for TrIgonometric Functions 

If the calculation times of the previous iterations are too long and the high accu­
racy is not needed (e.g. for the calculation of pulse widths for PWM), tables or 
cubic equations can be used. The table method is described in the MSP430 
Software User's Guide (literature number SLAUE11). 

With the following four definition points, a cubic approximation to the sin curve 
is made. The range is 0 to 1tI2. All other angles must be adapted to this range. 

X1:= 0.0000000000 SIN X1:= 0.0000000000 (0°) 

X2:= 0.3490658504 SIN X2:= 0.3420201433 (20°) 

X3:= 1.2217304760 SIN X3:= 0.9396926208 (70°) 

X4:= 1.5707963270 SIN X4:= 1.0000000000 (90°) 

The resulting multiplication factors are: 

SIN X = -0.11316874 X3-o.063641170 XII2 +1.01581976 X 

The following results and errors are obtained with the previous factors: 

X=O, SIN X = 0.000000000 0.00% (0°) 

X=1t!12 SIN X = 0.259548457 +0.28% (15°) 

X .. 1tI6 SIN X = 0.498189297 -0.36% (30°) 

X:=1tI4 SIN X = 0.703738695 -0.47% (45°) 

X:=1tI3 SIN X .. 0.864012827 -0.23% (60°) 

X:= 51t112 SIN X .. 0.966827870 +0.09% (75°) 

X:=1tI2 SIN X .. 1.000000000 0.00% (90°) 

The error of the previous approximation is within ±a.5% from 0 to 27t. Calcula­
tion times: 

.FLOAT with hardware multiplier: 

.FLOAT without hardware multiplier: 

.DOUBLE with hardware multiplier: 

880 cycles 

1600 cycles 

1150 cycles 

.DOUBLE without hardware multiplier: 2550 cycles 
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Sine Approximation: Sin X = A3xX~3 + A2xX~2 + AlxX + AO 

Input range for X: 0 =< X =< Pi/2 

The terms Ax are stored in a table starting with the cubic term 

MOV 

MOV 

CALL 

HORNER .equ 

.if 

PUSH 

.endif 

PUSH 

PUSH 

SUB 

MOV 

CALL 

ADD 

MOV 

CALL 

ADD 

CALL 

ADD 

MOV 

CALL 

ADD 

CALL 

ADD 

MOV 

CALL 

MOV 

.if 

MOV 

.endH 

MOV 

ADD 
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#X,RPARG 

#A3,R4 

# HORNER 

$ 

DOUBLE=l 

4 (RPARG) 

2 (RPARG) 

@RPARG 

#FPL,SP. 

R4,RPRES 

#FLT_MUL 

#FPL,R4 

R4,RPRES 

#FLT...AJ)D 

#FPL,RPARG 

#FLTJroL 

#FPL,R4 

R4,RPRES 

#FLT...AJ)D 

#FPL,RPARG 

#FLT_MUL 

#FPL,R4 

R4,RPRES 

#FLT_ADD 

@SP+,2*FPL(SP) 

DOUBLE=l 

@SP+,2*FPL(SP) 

@SP+,2*FPL(SP) 

'#FPL,SP 

Address of X (radians) 

Address of cubic term for sine 

Cubic approximation 

Use approximated value Sin X 

R4 points to cubic term 

Store X on stack 

for later use 

Locate new result space 

Address cubic term A3 

XxA3 

Address quadratic term A2 

XxA3 + A2 

to X 

X~2xA3 + XxA2 

Address linear term Al 

X~2xA3 + XxA2 + Al 

to X 

X~3xA3 + X~2xA2 + XxAl 

Address constant term AO 

X~3xA3 + X~2xA2 + XxAl + AO 

Copy to result area 

SP to return address 



A3 

A2 

A1 

AO 

A3 

A2 

A1 

AO 
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BR ; Use standard FPP return 

Multiplication factors for the Sine generation (0 to Pi/2) 

SIN X = -0.11316874 X3-0.063641170 X~2 +1.01581976 X 

.if 

. DOUBLE 

. DOUBLE 

. DOUBLE 

. DOUBLE 

.else 

. FLOAT 

. FLOAT 

. FLOAT 

. FLOAT 

.endif 

DOUBLE-1 

-0.11316874 cubic term 

-0.063641170 quadratic term 

1.01581976 linear term 

0.0 constant term 

-0.11316874 cubic term 

-0.063641170 quadratic term 

1.01581976 linear term 

0.0 constant term 

Note: 

The HORNER algorithm (used previously) can be used for several other pur­
poses. It is only necessary to load the register R4 with the starting address 
of the appropriate block containing the factors (address A3 with the previous 
example). 

I 

5.6.10.16 The Natural Logarithm Function 

The natural logarithm of a number X is calculated with the following formula: 

InX = :t (X-l)" X (_l)n-I 
I n 

The number range of X for the natural logarithm contains all positive numbers 
except zero. Values of X less than or equal to zero return the largest negative 
number (-3.4x1 038) and the N bit set as an error indication. 

The calculation errors for the natural logarithm function are shown in the fol­
lowing table. They indicate relative errors. The errors of the .DOUBLE routine 
are estimated: no logarithm values greater than 12 digits were available. 
Table 5-16 shows the relative large errors - especially for the . FLOAT format 
- for input values X very near to 1.0. This is due to the (X -1) operation neces­
sary for the calculation. Algorithms used should avoid the calculation of the 
logarithm of numbers very close to 1.0. 
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Table 5-16. Relative Errors of the Natural Logarithm Function 
X .FLOAT .DOUBLE Comment 

2.938736Xl0-39 -1.5Xl0-7 -4.5Xlo-12 Smallest FPP number 

1.00 0 O. 

1.0001 -3.5Xl0-5 -1.4Xl0-8 Missing resolution 

1.00001 +5.2Xl0-3 -aXl0-8 at results near zero 

1.000001 +6.7Xl!l4 +2.4Xlo-7 See above 

1.95 +1.5Xlo-7 +5Xlo-12 

loS +3.6Xl0-8 +1.5Xlo-11 

1012 +3.6X10-8 +4.5X1o-12 

3.402823X1 ()38 +1.5Xl0-7. +4.5X1o-12 Largest FPP number 

Calculation times: 

.FLOAT with hardware multiplier: 

.FLOAT without hardware multiplier: 

.DOUBLE with hardware multiplier: 

13000 cycles 13 iterations 

16000 cycles 

34000 cycles 22 iterations 

.DOUBLE without hardware multiplier: 43000 cycles 

Natural Logarithm Funotion: Result on TOS - LN(@RPARG) 

Call: MOV #addressX,RPARG RPARG points to operand X 

CALL #FLT_LN Call the function lnX 

Range: +2.9x10~-38 < X < +3.4x10~38 

Errors: X - 0: N = 1, C = 1, Z = 0 

X < 0: N = 1, C = 1, Z - 0 

Stack usage: 3 x FPL + 6 bytes 

#0 

.if DOUBLE=1 

PUSH 4 (RPARG) 

5-152 

RPARG, RPRES and SP point to lnX 

Result: -3.4E38 

Resul t: -3 .. 4E38 

N binary (divisor, power) 

Push X onto stack 
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. end if 

PUSH 

PUSH 

2 (RPARG) 

@RPARG 

Check for the legal range of X: ° < X 

MOY 

CALL 

JHS 

#FLTO,RPRES 

#FLT_CMP 

LNNEG 

Check valid range: ° < X 

X is negative 

If X is 1.0 then 0.0 is used for the result 

MOY 

CALL 

JEQ 

#FLT1,RPRES 

#FLT_CMP 

LN1PO 

Check if X= 1 

X is 1: result is 0.0 

The exponent of X is multiplied with ln2. Then In1.5 is added 

to correct the division by 1.5. Result is base for final result 

SUB #FPL,SP 

MOY.B 1 (RPARG) ,HELP 

XOR .BOh,HELP 

SXT HELP 

MOY HELP,O(SP) 

MOV SP,RPARG 

CALL #CNV_BIN16 

MOV #FLN2,RPARG 

CALL #FLT_MUL 

MOV #FLN1P5,RPARG 

CALL #FLT_ADD 

MOV @RPARG+,2*FPL+4(SP) 

MOV @RPARG+,2*FPL+6(SP) 

.if DOUBLE=l 

MOV @RPARG+,2*FPL+B(SP) 

.endif 

Reserve working space 

Copy exponent of X 

Correct sign of exponent 

Exponent to FP format 

To ln2 

exp x ln2 

To In1. 5 

exp x ln2 + ln1.5 

; To result area 
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The mantissa of x is converted into the range -0.33 to +0.33 

to get fast convergion 

LNLOP 

5-154 

ADD flFPL',SP 

MOV SP,RPRES 

MOV.B flSOh,l(SP) 

MOV #FLTlPS, RPARG 

CALL flFLT.J)IV 

MOV #FLTl,RPARG 

CALL #FLT_SUB 

.if DOUBLE-l 

PUSH 

.endif 

#0 

PUSH #0 

PUSH FLTl 

.if DOUBLE=l 

PUSH #0 

.endif 

PUSH #0 

PUSH FLTl 
SUB <, tlFPL,SP 

.equ $ 

MOV SP,RPRES 

ADD #2*FPL,RPRES 

MOV SP,RPARG 

ADD #3*FPL,RPARG 

CALL #FLTJroL 

MOV @RPARG+,2*FPL(SP) 

MOV @RPARG+, 2*FPL+2 (SP) 

.if DOUBLE=l 

MOV 

.endif 

CALL 

@RPARG+,2*FPL+4(SP) 

Back to X 

RPRES points to X 

1. 0 =< X < 2.0 

To . FLOAT 1. 5 

2/3 =< X < 4/3 

To . FLOAT 1. 0 

-1/3 =< X < +1/3 

N (FLT1.0) on stack 

Working area 

To XAN 

To X 

r(N+l) 

New XA(N+1) _> XAN 

RPARG points to N 



INC 

BIT 

JNZ 

Incr. binary N 

N even? 
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XOR 

4*FPL(SP) 

#l,4*FPL(SP) 

LNl 

#80h,0(SP) ; Yes, change sign of XAN/N 

LN1 ADD 

CALL 

MOV 

MOV 

#4*FPL+4,RPARG 

#FLT_ADD 

@RPARG+,4*FPL+4(SP) 

@RPARG+,4*FPL+6(SP) 

.if DOUBLE~l 

MOV @RPARG+,4*FPL+8(SP) 

. end if 

Float N is incremented 

MOV 

ADD 

CALL 

MOV 

#FLT1,RPARG 

#FPL,RPRES 

#FLT.-ADD 

@RPARG+,FPL(SP) 

MOV @RPARG+,FPL+2(SP) 

.if DOUBLE=l 

MOV @RPARG+,FPL+4(SP) 

.endif 

Check if enough iterations are made 

CMP #LNIT,4*FPL(SP) 

JLO LNLOP 

ADD #4*FPL+2,SP 

LNE BR #FLT_ENO 

LN1PO ADO #FPL+2,SP 

BR #RESO 

LNNEG ADO #FPL+2,SP 

MOV #OFFFFh,2(SP) 

Point to result area 

Old result + new one 

New result to result area 

To . FLOAT 1. ° 
To N 

N+l to N area 

Compare with 

HELP = ° 
Housekeeping: 

nec. iterations 

free stack 

To completion. Error in HELP 

X-I: result = ° 
X <= 0: -3.4E38 result 

MSBs negative 
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FLTO 

FLTI 

FLTIP5 

FLNIP5 

FLN2 

LNIT 

FLTO 

FLTI 

FLTIP5 

FLNIP5 

FLN2 

LNIT 

FLTMOD 

FLTMOD 

5.6.10.17 

5-156 

BR #DBL_OVERFLOW 

.if DOUBLE=l 

. DOUBLE 

. DOUBLE 

. DOUBLE 

. DOUBLE 

. DOUBLE 

.equ 

.else 

. FLOAT 

. FLOAT 

. FLOAT 

. FLOAT 

. FLOAT 

.equ 

.eodif 

MOV 

CALL 

MOV 

CALL 

.if 

. FLOAT 

.else 

. DOUBLE 

.eodif 

0.0 0.0 

1.0 1.0 

1.5 1.5 

0.405465108107 101.5 

0.6931471805599 102.0 

22 Number of iterations 

0.0 

1.0 

1.5 

0.405465108107 

0.6931471805599 

13 

To calculate the logarithm of X based to the number 10 the following sequence 
may be used: 

#addressX, RPARG ; Address of X 

#FLT_LN ; Calculate loX 

#FLTMOD,RPARG 

#FLT_MUL 10X/lo10 = 10gX 

10gX on TOS 

DOUBLE=O 

0.4342944819033 10g10/1010 

0.4342944819033 10g10/1010 

The Exponential Function 

The exponential function eX is calculated. The number range of X is: -88.72 
:5 X:5 +88.72. Values of X outside of this range return zero (X < -88. 72) respec­
tive the largest positive number (+3.4x1 038) and the N bit set as an error indica­
tion. 

The calculation errors for the exponential function are shown in the following 
table. They indicate relative errors. 
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Table 5-17. Errors of the Exponential Function 
X .FLOAT .DOUBLE Result 

-88.72 -9.4X1o-7 -4.5X1O-11 2.9470911X1Q-39 

-12.3456 -1.7X1o-S -1.5X1o-11 4.348846154014X1o-S 

0.0 0 0 1.0 
2""41 -4.5X1o-13 -4.5X1o-13 1.0 

2-25 -30X10-9 1.0+29.8X10-9 

+88.72 -2.8X1o-S -4.5X1o-11 Most positive FPP number 

Calculation times: 

.FLOAT with hardware multiplier: 3200 cycles 

. FLOAT without hardware multiplier: 5100 cycles 

.DOUBLE with hardware multiplier: 4500 cycles 

.DOUBLE without hardware multiplier: 7500 cycles 

Exponential Function: e~X. 

Call: MOV 

CALL 

#addressX,RPARG 

#FLT_EXP 

Range: -88.72 < X < +88.72 

Errors: 

Result on TOS ~ e~(@RPARG) 

RPARG points to operand X 

Call the expo function 

RPARG, RPRES, SP point to result 

X> +88.72: N = 1, C = 1, Z 1 Result: +3.4E38 

X < -88.72: N ~ 1, C = 0, Z 0 Result: 0.0 if SW_UFLOW = 1 

N - 0, C = x, Z = x Result: 0.0 if SW_UFLOW - 0 

Stack usage: 3 x FPL + 4 bytes 

@RPARG+,2(SP) Copy X to result area 

MOV @RPARG+,4(SP) 

.if DOUBLE=l 

MOV @RPARG,6(SP) 

.endif 
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Check if X is inside limits: -BB.72 < X< +BB.72 (B631h,721Bh) 

MOV 2 (SP) ,COUNTER MSBs, exp and sign of X 

SIC tOBOh,COUNTER IXI 

CMP tOB631h,COUNTER IXI > 88.721 ln3.4xlOA3B=BB.72 

JLO EXP_L3 IXI is in range 

JNE EXP_RNGOUT X > B8.72 .or. X < -B8.72: 

CMP 1I07217h,4(SP) Check LSBs 

JHS E;XP_RNGOUT LSBs show: IXI > B8.72 

Prepar.e exponent of result: N = X/ln2 (rounded) 

EXP_L3 MOV SP,RPRES 

SUB #FPL,SP New working area 

ADD t2,RPRES To X (result area) 

MOV IIFLTLN2I,RPARG To 2/1n2 (allows MPY) 

CALL IIFLTJ(UL 2 x X/ln2 

CALL lICNV_FP_BIN 2 x X/ln2 -> binary 

.if DOUBLE-l 

SUB lI2,SP LSBs contain N 

ADD #FPL-2,RPARG To N 

.else 

ADD lIFPL,RPARG To binary N 

.endif N is at correct place yet 

RRA @RPARG /2 for rounding 

JNC EXPLl No carry, no rounding 

TST o (RPARG) Sign of N 

IN EXPLl 

INC o (RPARG) Round N 

EXPLl CALL #CNV_BINl6 N -> FPP format Xn 

Calculation of g: g = X - Xn*(Cl + C2) 
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MOV 

CALL 

#EXPC, RPARG 

#FLTJ(UL 

Cl + C2 

Xn*(Cl + C2) 

error 
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ADD 

CALL 

'FPL+4, RPRES 

'FLT_SUB 

Calculation of mantissa R(g): 

To X 

9 = X - Xn*(Cl + C2) 

R(g) = 0.5 + g*P(Z)/(Q(z) - g*P(z» 

SUB 

CALL 

.FPL,SP 

.FLTJroL 

Calculation of g*P(Z): g*P(z) 

SUB .FPL,SP 

MOV #EXPPl,RPARG 

CALL #FLTJroL 

MOV #EXPPO, RPARG 

CALL #FLT_ADD 

ADD #2*FPL,RPARG 

CALL #FLTJroL 

MOV @SP+,2*FPL-2(SP) 

MOV @SP+,2*FPL-2(SP) 

.if DOUBLE=l 

MOV @SP+,2*FPL-2(SP) 

.endif 

g*(pl*z + pO) 

Area for g*P(z) 

To pl, RPRES points to z 

pl*z 

To pO 

pl*z + pO 

To 9 

g*P(z) = g*(pl*z + pO) 

Store g*P(z) 

Calculation of Q(z): Q(z) = (ql*z + qO) .FLOAT format 

SUB 

.if 

MOV 

ADD 

CALL 

MOV 

CALL 

.else 

MOV 

Q(z) = (q2*z + ql)*z + qO .DOUBLE format 

#FPL,SP 

DOUBLE=l 

#EXPQ2,RPARG 

#FPL,RPRES 

#FLT_MUL 

#EXPQ1,RPARG 

#FLT_ADD 

#EXPQ1,RPARG 

Area for Q(z) 

Quadratic equation 

To q2 

To z 

q2*z 

TO ql 

q2*z + ql 

Linear equation 

To ql 
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.endif 

ADD 

CALL 

MOV 

CALL 

IIFPL,RPRES 

#FLT_MUL 

#EXPQO,RPARG 

IIFLTJ,DD 

To Z 

(q2*z + q1)*z resp. q1*z 

To qO 

(q2*z + q1)*z + qO or q1*z + qO 

Result mantissa R(g) = 0.5 + g*P(z)/(Q(Z) - g*P(z» 

ADD #2*FPL,RPARG 

CALL #FLT_SUB 

ADD #2*FPL,RPRES 

CALL #FLT_DIV 

MOV #FLTOPS, RPARG 

CALL #FLT_ADD 

MOV @SP+,3*FPL+2(SP) 

MOV @SP+,3*FPL+2(SP) 

.if DOUBLE-1 

MOV @SP+,3*FPL+2(SP) 

.endif 

Insert exponent N+l to result 

ADD 

SETC 

#2*FPL,SP 

ADDC.B @SP+,3(SP) 

To g*P(z), RPRES to Q(z) 

Q(z) - g*P(z) 

To g*P(z) 

g*P(z)/(Q(z) - g*P(z» 

To 0.5 

R(g)=O.S + 

store R(g) 

To binary N 

N + 1 

g*P(z)/(Q(z)-g*P(z» 

to result area 

Add N + 1 to exponent of result 

To normal return, HELP = 0 

X is out of range: test if overflow (+) or underflow (-) 

EXP_RNGOUT TST.B 2(SP) 

JGE 

BR 

EXP_OVFL BR 

.if 

EXP_OVFL 

#DBL':'UNDERFLOW 

#DBL_OVERFLOW 

DOUBLE=l 

Overflow? (sign positive) 

Yes, error: handling in FPP04 

Underflow: depends on SW_UFLOW 

FLTLN2I .double +1.4426950408889634074*2 2/ln2 
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EXPC 

EXPP1 

EXPPO 

EXPQ2 

EXPQ1 

.double +0.693359375-2.1219444005469058277E-4 

.double +0.595042549776E-2 

.double 0.24999999999992 

.double +0.29729363682E-3 

.double +0. 5356751764522E-1 

;p1 

;pO 

;q2 

;q1 
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c1+c2 

FLTOP5 .equ $ both are 0.5 

EXPQO .double +0.50000000000000E+0 qO 

.else 

FLTLN21 . float +1.4426950408889634074*2 

EXPC . float +0. 693359375-2.1219444005469058277E-4 

EXPP1 . float +0.00416028863 

EXPPO . float 0.24999999950 

EXPQ1 . float +0.04998717878 

FLTOP5 .equ $ both are 0.5 

EXPQO . float +0.50000000000 

.endif 

5.6.10.18 The Power Function 

The power function AB is calculated. The number range for A and B is: 

2.9 x 10-39 ~A ~ 3.4x 1Q38 
-88.72 ~ B x InA ~ + 88.72 

For the error handling, see the header of the software. 

The used formula is: 

The calculation errors for the power function are shown in the following table. 
They indicate relative errors. 

Table 5-18. Relative Errors of the Power Function 
X .FLOAT .DOUBLE Result 
11 0 0 1.0 

(3.4X1038)0 0 0 1.0 

(5.5X1 Q4D)2 -aX1o-7 0 3.025X1 Q-39 

1.0000788 -4.X1Q-O -9X1o-1O 1.0061768 

1.000071267513 -6.5% -7X1o-7 3.4027X1038 
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05 o o 0.0 
0.1-0 -1.3Xl0-7 -1.6Xl0-10 105 

The previous table shows the large errors for small bases raised by very large 
exponents. This Is due to the natural logarithm function. 

Calculation times: 

.FLOAT.wlth hardware multiplier: 

.FLOAT without hardware multiplier: 

. DOUBLE with hardware multiplier: 

17000 cycles 

20000 cycles . 

40000 cycles 

.DOUBLE without hardware multiplier: 50000 cycles 

Power Function: A~B. 

Call: MOV 

MOV 

CALL 

lIaddressA,RPRES 

iaddressB,RPARG 

Range: 2.9x10~-39 < A < 3.4x10~+38 

-88.72 < Bx1nA < +88.72 

Errors: A < 0: 

Result on TOS = (@RPRES)~(@RPARG) 

RPRES points to operand A 

RPARG pOints to operand B 

Call the power function 

RPARG, RPRES and SP point to AAB 

N - 1, C = 1, Z = O· Result: -3.4E38 

B x 1nA > +88.72: N = 1, C = 1, Z - 1 Result: +3.4E38 

B x lnA < -88.72: 

N = 1, C = 0, Z = 0: Result: 0.0 if SW_UFLOW = 1 

N = 0, C - x, Z - x: Result: 0.0 if SW_UFLOW - 0 

B x lnA > 3.4E38: Error handling of multiplication 

stack: FPL + 4 + (3 x FPL + 8) bytes 

FLT_PQWR .equ 

.if 

TST 

$ 

DQUBLE=1 

4 (RPRES) 

JNZ PWRL1 

.endif 
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TST 2 (RPRES) 

JNZ PWRLl A # 0 

TST o (RPRES) 

JZ POWRO A 0: result - 0 

PWRLl PUSH RPARG Save pointer to exponent B 

SUB #FPL,SP Working area 

MOV RPRES,RPARG Pointer to base A 

CALL #FLT_LN InA 

IN PWERR A is negative 

MOV FPL(SP),RPARG Pointer to exponent 

CALL #FLT_MUL BxlnA 

IN PWERR B is too large. HELP # 0 

CALL #FLT_EXP e~(BxlnA) = AAB 

PWERR MOV @SP+,FPL+2(SP) To result area 

MOV @SP+,FPL+2(SP) 

.if DOUBLE=l 

MOV @SP+,FPL+2(SP) 

.endif 

ADD #2,SP Skip exponent pointer 

BR #FLT_END Error code in HELP 

POWRO BR #RESO A 0: A~B = 0 
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5.7 Battery Check and Power Fall DetectIon 

The detection of the near loss of the supply voltage is shown for battery driven 
and for ac-powered MSP430 systems. 

Described in the following section are several methods of how to check if the 
voltage of a battery or an accumulator is above the minimum supply voltage 
of the MSP43D-system. Possibilities are given for the family members having 
the 14-bit ADC on-chip and also for the members without it. 

Three ways, with different hardware, are given to detect power fail situations 
for ac-driven systems. 

For all examples, applications, schematics, diagrams, and proven software 
code are given for a better understanding. 

5.7.1 Battery Check 

In microcomputer systems driven by a battery or an accumulator it is neces­
sary to detect when the lowest usable supply voltage is reached. A battery 
check executed In regular time intervals ensures that the supply voltage Is stili 
sufficient. If the lowest acceptable voltage is reached, normally with an added 
security value, a warning can be given with the LCD. The deciSion algorithms 
used can be very different: 

o Simple checks; if the low threshold is reached or not 

o Sophisticated methods using the speed of the voltage reduction (IN/At) 
dependent on the discharge behavior of the actual battery or accumulator 
type. For even better estimations the temperature of the battery can also 
be taken into account. 

5.7.1.1 Battery Check With the 14-Blt ADC 
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Due to the ratiometric measurement principleofthe·ADC, the measured digital 
value of a constant, known reference voltage is an indication of the supply volt­
age of the MSP430C32x. The measured value is inversely proportional to the 
supply voltage Vcc. Figure 5-31 shows the connecting of the voltage refer­
ence for all three explained variants. 

Using the auto mode of the ADC, the digital result, N, for an analog input volt­
age Vin is: 

N = INTlvin x 214 
VSVcc 
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With a reference voltage Vref (Vin) of 1.2 V, the supply voltage Vcc (exactly 
VSVcc) can be measured in steps of approximately 0.3 mV near the voltage 
VCCmin = 2.5 V. 

Note: 

If the other analog parts connected to the SVcc-terminal cause a voltage 
drop that cannot be neglected, it is recommended that the reference diode 
be connected to an unused TP-output or an O-output. Otherwise, the result­
ing voltage drop corrupts the result and the calculated value for Vcc is too 
small. 

32kHz 

rlD~' 
sVcc. TP.x 

To Other Analog Parts 
R=82kn 

MSP43OC32x 

A3 

~~ LMx85-1.2 
VREF = 1.236 V 

AVss 

DVss DVcc 

I I 
OV 3V 

Figure 5--31. Connection of the Voltage Reference 

Battery Check With a Reference Measurement 

To get the reference for later battery checks, a measurement of the reference 
voltage (Vref) is made with Vcc = VCCmin. The result is stored in RAM. If the 
battery should be tested, another measurement is made and the result is 
compared to the stored value. The result of the comparison determines the 
status of the battery. 

o If the actually measured value exceeds the stored one, then Vcc < VCCmln 
and a battery low indication Is given by software. 

o If the actually measured value is lower than the stored one, then Vcc > 
VCCmin 
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EXAMPLE: The battery check with a reference measurement is shown for the 
analog input A3 (see Figure 5-31). During the calibration, a reference mea­
surement is made with the lowest tolerable Vee (VCCmin). The battery check 
is then made in regular time intervals (in this example, every hour). 

RAM storage for the ADC value measured for Vref with Vccmin 

ADVref .EQU 02021i ADC value for Vref' at Vccmin 

Vccmin (+ security value) is adjusted. A certain code 

at PortO or a temporary jumper between an input and an 

output leads to this software part 

CALL 

MOV 

#MEAS_A3 

&ADAT,ADVref 

Vref connected to A3 

Store reference ADC value 

One hour elapsed: check if Vcc is above Vccmin. 

CALL 

CMP 

JLO 

#MEAS_A3 

ADVref,&ADAT 

VCCok 

Vref connected to A3 

(ADAT) - (ADVref) 

Vcc > Vccmin 

The actual vcc is lower than Vccmin. Indicate 'Battery 

LoW" in the LCD. 

CALL 

VCCok 

Output warning with LCD 

Continue program 

\ 
Measurement subroutine for analog input A3. Result in ADAT 

L$lOl 
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#ADIFG,&IFG2 ; Reset ADC flag ADIFG 

MOV #ADCLK2+RNGAUTO+CSOFF+A3+VREF+CS,&ACTL 

BIT.B 

JZ 

RET 

#ADIFG,&IFG2 

L$lOl 

CONVERSION COMPLETED? 

IF Z=l: NO 

Yes, return. Result in ADAT 
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o Advantages 

• Very precise definition of one voltage 

• Small amount of software code 

• Different reference elements possible without software modifications 

o Disadvantages 

• Calibration necessary 

• Relation to only one supply voltage value is known (calibration volt­
age) 

Battery Check With the Calculation of the Voltage 

FPL .equ 

If no reference measurement during a calibration phase is possible, the value 
of the supply voltage Vee can be determined by calculation. 

The formula is: 

Vee = 214 x Vref 
N 

With: 
N 
Vref 

ADC result of the measurement of Vref 
Voltage of the reference diode IV] 

EXAMPLE: The actual supply voltage (Vcc) needs to be checked. The pre­
vious formula is used for the calculation after the measurement of the refer­
ence voltage (Vref). The MSP430 floating point package (32-bit .FLOAT ver­
sion) is used for all calculations. The hardware is shown in Figure 5-31. 

(ML/B)+l Length of FPP number 

; Normal program sequence 

One hour elapsed: eheek if Vee is above Veemin or not. 

CALL 

SUB 

CALL 

MOV 

CALL 

#FLT_SAV 

#FPL,SP 

#MEASj.3 

#ADAT,RPARG 

#CNV_BINl6U 

Save FPP registers on stack 

Allocate stack for result 

Measure ref. diode at A3 (N) 

Address of ADC result 

Convert ADC result N to FP 

Calculate Vcc = 2~l4 x Vref/(ADC-Result) 

Software Applications 5-167 



Battery Check and Power Fail Detection 

MOV 

CALL 

ADD.B 

MOV 

CALL 

JHS 

CALL 

BATT_ok ADD 

CALL 

Vref . FLOAT 

VCCmin . FLOAT 

IIVref,RPRES Load address of Vref voltage 

IIFLT_DIV Calculate vref/N (N on TOS) 

U4,l(RPRES) Vee = 2Al4 x Vref/N (exp+l4) 

tVCCmin, RPARG Compare Vee to VCCmin 

tFLT_CMP Vee - VCCmin 

BATT_ok Vee> VCCmin: ok 

#BATT_LOW Give "Battery Low" Indication 

#FPL,SP Correct SP (result area) 

#FLT_REC Restore FP registers 

Continue with program 

1. 235 Voltage of ref. diode 1. 235V 

2.5 Vcemin MSP430: 2.5V 

o Advantages 

• Battery voltage is known (trend calculation possible) 

o Disadvantages 

I!I Error of the reference element is not eliminated 

• Calculation takes time 

Battery Check With a Fixed Value for Comparison 
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This method uses a fixed ROM4:>ased value for the decision; If Vcc is sufficient 
or not. According to the data sheet of the LMx85-1.2, the typical voltage of this 
reference diode is 1.235 V with a maximum deviation of ±0.012 V. Therefore, 
the fixed comparison value (Nref) for the minimum supply voltage (VCCmin) can 
be calculated: 

Nrej= INTlvref x 214 
Vccmin 

With VCCmin = 2.5 V and Vref = 1.235 V ± 0,012 V: 

Nref = INTI(1.235±0,012 V) X214 1 =8093 ±78 
2.5 V 

To ensure that the voltage of the battery is above VCCmin, the reference value 
should be set to: 
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Nref = 8093 - 78 = 8015 

Every measured value below 8015 indicates that the battery voltage is higher 
than the calculated value, even under worst-case conditions. If the measured 
value is above 8015, a Battery Low warning should be given. 

EXAMPLE: The battery check with a fixed value for comparison is executed. 
The hardware needed is shown in Figure ~1. The comparison value is 
stored in ROM at address VCCmin. 

One hour elapsed: check if Vcc is above Vccmin or not. 

CALL 

CMP 

JLO 

#MEAS-.A3 

VCCmin,&ADAT 

VCCok 

Vref connected to A3 

(ADAT) - (VCCmin) 

Vcc > Vccmin 

The actual Vcc is lower than Vccmin. Output "Battery 

Low" to the LCD. 

CALL Output warning to the LCD 

VCCok Continue program 

ROM storage for the calculated ADC value: Vref at Vccmin. 

(worst case value) . 

VCCmin . WORD 8015 ADC value 1.235V at 2.5V 

o Advantages 

• Small amount of software code 

o Disadvantages 

• Error of the reference element is not eliminated 

• Fixed reference element 

• Relation to only one supply voltage value is known 

5.7.1.2 Battery Check With an External Comparator 

With an operational amplifier used as a comparator, a simple battery check can 
be implemented for MSP430 family members that do not have the 14-blt ADC. 
Figure ~2 shows two possibilities: 
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R1 
621<0 

R2 
56110 

1) On the left, a simple Go/No Go solution. The voltage at PO.7 is high, when 
Vcc is above VCCmin and is low when Vcc is below this voltage. The thresh-
old voltage VCCmin is: . 

VCCmin = Vref X (R1 + 1) 
R2 

2) On the right, a circuit that allows the comparison of the battery voltage 
(Vee) to three different voltage levels; two of them can be determined, the 
third results from the calculated resistor values for R1, R2 and R3. This 
allows to distinguish four ranges of the supply voltage: 

o Vee < Vthmin The supply voltage is below the lowest threshold 

o Vthmin < Vce < Vthmid The supply voltage is between Vthmin and Vthmid 

o Vthmid < Vee < Vthmax The supply voltage is between Vthmid and Vthmax 

o Vthmax < Vcc 

r--4_---~ TP.O 

MSP430 

PO.7 

y------~ vss 
vee 

ov 3V 

The supply voltage is above the maximum threshold 

.-----------1 TP.1 

rl-----I TP.O 

R3 R1 
680110 62110 

R2 
56110 VREF=1.2V 

MSP430 

PO.7 

'-4 ....... --..... -1 Vss 
Vee 

OV 3V . 

Figure 5-32. Battery Check With an External Comparator 

The three different threshold levels are: 
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o Resistor R3 is switched off (TP.1 is switched to Hi-Z): 

Vthmid =Vrefx (R1 +1) 
R2 
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o R3 is switched to Vee by TP.1 : 

R111R3 
Vthmin =Vrefx (--+1) 

R2 

o R3 is switched to Vss by TP.1 : 

R1 ) Vthmax = Vref x (--+ 1 
R211R3 

If the comparator's output (Vout) is high, Vee is above the selected threshold 
voltage, if Vout is low, then Vee is below this voltage. 

The calculation of the resistors R1 to R3 starts with the desired threshold volt­
age (Vthmld), R1 and R2 are derived from it. Then, the low threshold voltage 
(Vthmin) defines the value of R3. The 3rd threshold (Vthmax) results from the 
other two threshold voltages. 

The resistor values shown in Figure 5-32 define the following threshold val­
ues: 

Vthmin = 2.52 V (calculated with second step) 

Vthmid = 2.66 V (calculated first) 

Vthmax = 2.78 V (results from the other two thresholds) 

EXAMPLE: With the hardware shown in Figure 5-32 (circuit on right side), the 
"actual battery voltage (Vce) Is compared to three different thresholds. This al­
lows the differentiation of four different ranges for Vec. For any of the four sup­
ply levels, different actions are started at the appropriate labels (not shown). 
Dependent on the speed of the MSP430 and the comparator used, NOPs may 
be necessary between the setting of the TP-ports and the bit test instructions 
BIT.B. 

One hour elapsed: check the range Vcc falls in now. 

BIS.B #TPO+TP1,&TPD TP.O and TPl active high 

BIS.B #TPO+TP1,&TPE Comparison with Vthmin 

BIT.B #P07,POIN Comparator output 

JZ BATTlo Vee < Vthmin 

BIC.B #TP1,&TPE TP.l to HI-Z 

BIT.B #P07,POIN Comparator output 
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JZ 

BIC.B 

BIS.B 

BIT.B 

JNZ 

BA1:'Tmiq 

#TP1,&TPD 

UP1,&TPE 

#P07,POIN 

BATThi 

o Advantages 

Vthmin < Vee < Vthmid 

TP.l active to Vss 

Check Vthmax 

Comparator output 

Vee > Vthmax 

Vthmid < Vee < Vthmax 

• Four ranges defined (more ranges are possible if desired) 

• Very fast software 

• Different reference elements are possible without software change 

o Disadvantages 

• Hardware effort (except if an unused operational amplifier of a quad­
pack can be used) 

5.7.1.3 Battery Check ·Wlth the Universal Timer/Port Module 
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The Universallimer/Port module allows a relatively aeeurate measurement 
of the battery voltage (Vcc). The principle (see Figures 5-33 and 5-34) is as 
follows: the capacitor (e), also used for the other measurements, is charged­
up to the vohage (Vref) of the reference diode. e is then discharged with Rref 
and the time tref until ve reaches the lower threshold VIT - of the Input elN is 
measured. Afterwards, e is charged-up fully to the supply voltage (Vcc) and 
the discharge time (tVee) is also measured. Vee is then: 

tVee-tref 

Vee Vref x e 1: 

With: 
Vee Actual supply voltage of the MSP430 M 
Vref Voltage of the reference diode M 
tref lime to discharge C from Vref to VIT - [s] 
tVcc lime to discharge e from Vee to VIT - [s] 
"t lime constant for discharge: "t = Rref x C [s] 
VIT - Lower threshold voltage of input elN [V] 
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Figure 5-33. Discharge Curves for the Battery Check With the Universal Timer/Port 
Module 

Two hardware possibilities are shown in Figure 5-34: 

o The left side uses the existing ADC hardware for the battery check too. 

o The right side uses different battery check hardware. This avoids any influ­
ence from the battery check and creates precise ADC-measurement 
hardware. 

See the application report, Voltage Measurement with the Universal Timer/ 
Port Module, in Chapter 2 for more information. Here a formula is given that 
Is independent of the time constant (t). 
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RD 

Battery Check CombIned 
With Measurement Part 

o 32kHz 

TP.1 TP.O 
TP.2 

MSP430 

ClN TP.5 

Vss Vss 

OV 3V 

RREF 

c 
RD 

Ballary Check Separated 
From Measurement Pert 

Figure 5-34. Battery Check With the Universal Timer/Port Module 

5-174 

The conditions to be met for the reference voltage (Wef) are: 

Vref > VT - Vref must be higher than the lower threshold voltage VT - of 
the input CIN at VCCmax 

Vref < VCCmin Only voltages above Vref can be measured 

The previous conditions mean for an MSP430 system supplied with 3 V: Vref 
= 1.5 V to 2.5 V. 

The measurement sequence like shown in Figure 5-33 is described for the 
left-side circuitry of Figure 5-34 (the following sequence of numbers refer to 
the Conversion States of Figure 5-33): 

1 ) Switch outputs TP.1 to TP.3 to HI-Z 

2) Charge capaCitor C with resistor (Rref) until input CIN gets high (or up to 
Vee). then switch-off Rref (TP.1 is set to HI-Z) 

3) Discharge capacitor C with the reference diode and Rd to Vref (TP.3 is set 
to LO): Discharge time: td > 5 x Rd x C. Set TP.3 to HI-Z. 

4) Discharge capacitor C from Vref to VIT - with Rref (TP.1 set to LO). Mea­
sure discharge time tref' 

5) Charge capacitor C with Rref to Vcc (tcharge > 5 x Rref x C) 

6) Discharge capacitor C from Vcc to VIT - with Rref (TP.1 set to LO). Mea­
sure discharge time (tVcc) 
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7) Calculate Vcc with the formula shown previously 

For the supply voltage range of a 3-V system (Vee = 2.5V to 3.5V) and a refer­
ence voltage of Vref = 2.3 V, the exponential part of the equation can be re­
placed by a linear function: 

( tVee-tre/ ) Vee=Vre/x 1.29x +0.97 
't 

If the Universal TimerlPort Module is used in an ADC application with high ac­
curacy (like a heat volume counter) then the battery-check circuitry should be 
connected to other I/0s as shown in Figure 5-34 on the right side. This way 
the measurement of the sensors cannot be influenced by the battery-check 
circuitry. 

The software shown in the application report, Using the MSP430 Universal 
Timer/Port Module as an Analog-to-Dlgltal Converter in Chapter 2, can also 
be used for the battery check with only a few modifications. 

o Advantages 

• Minimum hardware effort if measurement part exists anyway 

• Supply voltage is known after the measurement 

o Disadvantages 

• Slow measurement 

5.7.2 Power Fall Detection 

AC driven systems need a much faster indication of a power-down situation 
than battery-driven systems. It is a matter of milliseconds, not of hours ordays. 
Therefore, other methods are used. Three of them are described in the follow­
ing text. 

o The non-regulated side of the power supply is observed. If the voltage 
(VC) ofthe charge capacitor falls below a certain level (VCmin), an interrupt 
is requested. 

o The voltage at the secondary side of the ac transformer is observed. A suf­
ficient level change there resets the watchdog. If the secondary voltage 
is too low or ceases, an interrupt is requested. 

o The non-regulated side of the power supply is observed with a TLC7701. 
The output of this supply voltage supervisor requests an NMI interrupt or 
resets the microcomputer. 
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The interrupt requested by the previous three solutions is used to start the nec­
essary emergency actions: 

o Switching-off all loads to lengthen the available time for the emergency 
actions 

o Reduction of the system clock MCLK to 1 MHz to be able to use Vcc down 
to VCCmin 

o Storage of all important values into an external EEPROM 

o Use of LPM3 finally to bridge the power failure eventually 

The three hardware proposals can be used with all members of the MSP430 
family. The power-fail detection is also called ac-low detection. It issues the 
ae-Iow signal. 

5.7.2.1 Power-Fall Detection by Observation of the Charge Capacitor 
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Here the voltage level of the charge capacitor (Cch) is observed. If the voltage 
level of this capaCitor falls below a certain voltage level (VCmin), an interrupt 
is requested. With the circuit shown in Figure 5-35, VCmin is: 

(R3+ 1) 
R4 

Vee x ---=R:-::'1--

(R2 +1) 

R1, R2, R3 and R4 are chosen in a way that delivers the desired threshold volt­
age (VCmin)' The regulated supply voltage (Vcc) is used as a reference. The 
NMI (non-maskable interrupt) can be used to get the fastest possible re­
sponse. 

The remaining time (trem) for actions after a power-fail interrupt is approxi­
mately: 

itT ) Cch trem=\yCmin -Vccmin -Vr X-l-
AM 

Where: 
trem Approximate time from interrupt to the reaching of VCCmin [s1 
Cch Capacity of the charge capacitor [F] 
lAM Supply current of the MSP430 system (medium value) [A1 

. VCmin Voltage at the charge capaCitor that causes ac-low interrupt M 
VCCmin Lowest supply voltage for the MSP430 M 
Vr Dropout voltage (voltage difference between output and input) 

of the voltage regulator for function M 
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~-.... ---"'::"":--I vCC 

MSP430 

po.o, NMI 

------~--~~L---~~~-----~vss 
ov 

Figure 5-35. Power Fail Detection by Observation of the Charge Capacitor 
With the following component values for the hardware shown in Figure 5-.35, 
trem for emergency tasks can be calculated with the following formula. 

CCH = 50 /LF. VCCrnln = 2.5 V, Vr = 1 V, lAM = 2 mA, Vz = 10 V, VCrnin = 7 V 

trem = (7V -2.5V -lV)x 50JlF = 87.5ms 
2mA 

This remaining time trem = 87.5 ms allows between 14000 and 87500 instruc­
tions (dependent on the addressing modes) for the saving of important values 
.in an EEPROM and other emergency tasks. 

. 

Note: 

The capacitor power supply shown in Figure 5-.35 is used only to demon­
strate this hardware possibility. A normal transformer supply as shown with 
the other hardware examples can also be used . 
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AC 

The equations shown previously are only valid if the dropout voltage (Vr) of the 
used voltage regulator (Vr = VC - Vee) is relatively low. Vr must be: 

Vr < VCO _ Vreg X VCO 
VCmin 

Where: 
VCO Lowest voltage at Cch that outputs low voltage to the MSP430 input M 
Vreg Nominal output voltage of the voltage regulator [V] 

If this condition for Vr Is not possible, then another approach is necessary. Fig­
ure 5-37 shows a circuitry that is independent of the previously described re­
striction. 

1-___ 5;;...v;.......-j vee 

R3 

MSP430 

PO.O,NMI 

--------~----~~--~--~~----~vss 

Figure 5-37. Power-Fail Detection by Observation of the Charge Capacitor 

The threshold voltage level (VCmin) for the interrupt Is : 
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( R2 
VCmln =Vrefx -+1) 

R3 

The time remaining (trem) for emergency tasks can be calculated: 

. Cch 
trem= (VCmin - VC'inin - Vr)x-­

lAM 

If brown outs are a serious problem, the hardware proposal shown in Figure 
5-37 can be used with the RESET/NMI terminal as described in Section 
5.7.2.3, Power-Fail Detection with a Supply Voltage Supervisor. Instead of the 
inverted RESET output of the TLC7701, the output of the operational amplifier 
is used. 
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EXAMPLE: The interrupt handler and its initialization is shown for the power­
fail detection by observation of the charge capacitor with a comparator. After 
the completion of the emergency tasks, a test is made to check if the supply 
voltage is still low. If not, the software restarts at label PF _INIT. Otherwise, 
LPM3 is entered to eventually bridge the power failure. The basic timer checks 
with its interrupt handler In regular intervals for an indication that the voltage 
is above Vemin again. The hardware shown in Figure 5-35 is used. 

SYSTAT contains the current system status: calibration, 

normal run, power fail aso. 

SYSTAT .BQU 0200h ; System status byte 

The program starts at label INIT if a power-up occurs 

INIT Normal initialization 

The program restarts at label PF_INIT if the supply voltage 

returns before Vccmin is reached (short power fail) 

#0300h,SP Restart after power fail 

Special initialization 

Initialization: Prepare PO.O for power fail detection. 

BIS.B #POIFGO,&IBI Enable PO.O interrupt 

BIS.B #POO,&POIES Intrpt for trailing edge 

BIC.B #POIFGO,&IFGl Reset flag (safety) 

Continue with initialization 

BINT Enable GIB 

MAINLOOP MOV.B #NORMAL,SYSTAT Start normal program 

PO.O Interrupt Handler: the voltage VC at Cch fell below a 

minimum voltage Vcmin. Switch off all loads and interrupts 

except Basic Timer interrupt. 

#PD,&ACTL ADC to Power down 

Software Applications 5-179 



Battery Check and Power Fail Deteeti~n 

MOV.B 

BIC.B 

CLR.B 

1I32-1,&SCFQCTL 

1I0ICh,&SCFIO 

&TI?D 

MCLK back to IMHz' 

DCO current source to IMHz 

Reset all TI?-ports 

Store values to EEI?ROM 

All tasks are done, return to I?F_INIT if vcc is above Vccmin 

otherwise go to LI?M3 to bridge eventually the power fail time 

BIT.B 

JNZ 

MOV.B 

BIS 

JMI? 

#I?OO,&POIN 

I?F_INIT 

#PF,SYSTAT 

Vcc above Vcmin again? 

Yes, restart program 

System state is 'Power Fail" 

#CPUoff+GIE+SCG1+SCGO,SR Set LPM3 

; Continue here from BT 

Basic Timer Interrupt Handler: a check is made for power 

fail: if actual, only the return of vcc is checked. If Vcc is 

above VCmin, LPM3 is terminated by modification of stack info 

BT_HNDLR CMP.B 

JNE 

BIT.B 

JZ 

BIC 

RETI 

BT$1 

. SECT 

. WORD 

. SECT 

. WORD 

. WORD 

. WORD 
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lIPF,SYSTAT 

BT$l 

#POO,&POIN 

BT_RTI 

System in "Power Fail" state? 

No, normal system states 

Yes: Vcc above VCmin again? 

No, return to LI?M3 

#CI?Uoff+SCG1+SCGO,O(SI?) ; Yes, leave LI?M3 

Normal Basic Timer handler 

"INT_VECO",OFFE2h 

BT_HNDLR Basic Timer Vector 

"INT_VECI",OFFFAh 

POO_HNDLR I?O.O Inrtpt Vector 

0 NMI not used 

INIT Reset Vector 
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o Advantages 

• Precise due to the use of the +5V regulator voltage for reference pur­
poses 

• Fast response to charge losses 

. 0 Disadvantages 

• Hardware effort (except an unused operational amplifier of a multiple 
pack can be used) 

5.7.2.2 Power-Fall Detection WIth the Watchdog 

AcJl1 

The ac-Iow detection can also be made with the internal watchdog. The watch­
dog is reset twice by one half-wave of the ac voltage (Vtr). If this does not oc­
cur, due to a power fail, the watchdog initializes the system. The reason for the 
system reset can be checked during the initialization routine and the neces­
sary emergency actions taken. See the introduction of this section for details 
of these actions. 

The advantage of this method is the unnecessary operational amplifier, the dif­
ficulty is to react to brown-out conditions. The ac voltage is still active but too 
low for an error-free run. If a brown out can be excluded or is impossible due 
to the hardware design, the watchdog solution is a very cheap and reliable pos­
sibility for ac-Iow detection. 

If the restricted interval possibilities (only eight discrete time intervals) of the 
watchdog timer cannot satisfy the system needs, the watchdog timer can be 
. used as a normal timer and the needed interval built by summing-up shorter 
intervals with software. 

5V vcc 
VTR 1 MQ 

MSP430 
VPO.O 

PO.O,NMI 

'----------<.-------<.----1 Vss 

Figure 5-38. Power-Fail Detection With the Watchdog 
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With the component values shown in Figure 5-38, a square wave out of the 
ac voHage (Vtr) is reached (the MSP430 inputs have Schmitt-trigger charac­
teristics). The voltages Vtr + and Vtr-atthe transformer output (Vtr) that switch 
the input voltage at the NMI (or PO.x) input are +7 V and +2 V, respectively. 
If these two voltage thresholds are carefully adapted to the actual environ­
ment, brown-out conditions can also be handled very safely. The equation for 
trem is: 

trem <!: 

Where: 
Vtr+ 
Vd 
tWO 

( ) Cch 
Vtr+ -VcGnin -Vr~Vd x lAM -twD 

Transformer voltage that switches the PO.O input to high M 
Voltage drop of one rectifier diode M 
Watchdog interval [s] 

All other definitions are equal to those explained in Section 5.7.2.1 , Power Fail 
Detection by Observation of the Charge Capacitor. 

.,.t~ " VTR+ ~ 
VTR-~~ 

I I f 
~ 

E) 
I I 

PowerIaII 

Vpo.o 

I I 
I I 
I watchdog I + R_t + 

Vd 

Watchdog 
~ 

I I 
I I 
I Watchdog I + Reset + WatChdog Not R_t 

I . 
Watchdog I 

Interval twd -+! 

VCCmlntf------~------~~----_\----------~~~----a---~ 

Figure 5-39. Voltages for the Power-Fail Detectio(l With the Watchdog 
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EXAMPLE: An MSP430 system running with MCLK = 2 MHz uses the watch­
dog for power-fail detection. The watchdog uses the tap with (tMCLK x 215) = 
16 ms (value after reset). After the completion ofthe emergency tasks, the soft-
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ware checks if the ac voltage is back again with a loop. This is made by check­
ing if PO.O goes high. If this is the case, the initialization part is entered. The 
circuit shown in Figure 5-38 is used. 

Power-up and'watchdog reset start at label INIT. The reason 

for the reset needs to be known (power-up or watchdog) 

INIT BIT.B 

JNZ 

#WDTIFG, &IFGI 

WD_RESET 

Reset by watchdog? 

Yes; power fail 

Normal reset caused by RESET pin or power-up: Init. system 

MAINLOOP 

BIS.B 

MOY.B 

MOY 

BIS.B 

EINT 

Jt4, &SCFIO 

#64-1,&SCFQCTL 

Switch DCO to 2MHz drive 

FLL to 2MHz 

#OSAOOh+CNTCL,&WDTCTL ; Reset watchdog 

#POIEO,&IEI Enable PO.O intrpt 

Continue initialization 

Finally set GIE 

Start main program 

Reset caused by watchdog: missing main means power fail 

Supply current is minimized to enlarge active time. All 

interrupts except PO.O interrupt are switched off 

WD_RESET BIC.B #03Fh,&TPD Switch off all TP-outputs 

Switch off other loads 

BIS #PD,&ACTL Power down ADC 

MOY.B #32-I,&SCFQCTL MCLK back to IMHz 

BIC.B #OICh,&SCFIO DCO drive to IMHz, FN_x 

Store values to EEPROM 

All tasks are done: check if mains is back (PO.O gets HI). 

Llow BIT.!'! 

JZ 

BR 

#POO,&POIN 

Llow 

UNIT 

Actual state of PO.O pin 

Still low 

PO.O is HI, initialize 

0 
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.' 

The POO_HNDLR is called twice each period of the mains 

voltage. The watchdog is reset to indicate normal run, 

the edge selection bit of PO.O is inverted. 

POO_HNDLR MOV 

XOR.B 

RETI 

#05AOOh+CNTCL,&WDTCTL ; Reset watchdog 

#POO,&POIES Invert edge select for Po.o 

. SECT "INT_VECl",OFFFAh 

. WORD 

. WORD 

. WORD INIT 

PO.O Inrtpt Vector 

NMI not used 

Reset Vector 

o Advantages 

• Minimum hardware effort 

• Minimum software effort 

• Very fast 

• Brown out conditions can be handled by a precise hardware definition 

o Disadvantages 

• Remaining time trem can be calculated only for worst case 

5.7.2.3 Power-Fall Detection With a Supply Voltage Supervisor 
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For extremely safe MSP430 applications, a TLC7701 supply voltage supervi­
sor can be used. The voltage (VC) of the charge capacitor (Cch) is observed. 
The output signal/RESET indicates if VC is higher or lower than the threshold 
voltage (Vth). Figure 5-40 shows the schematic for this application. The output 
signal/RESET ofthe TLC7701 is used in two different ways, depending on the 
actual state of the application. 

o During power-up, the TLC7701 output is used as a reset signal. The 
MSP430 is held in the reset state until VC reaches a certain voltage (Vth) 
(e.g., supply voltage + regulator voltage drop) (see Figure 5-41). 

o During run mode the RESET/NMI terminal of the MSP430 is switched to 
NMI-mode (Non-Maskable Interrupt) by software. If VC falls below Vth, 
an NMI is requested. The interrupt handler can start all necessary emer­
gency tasks. See the introduction of this section for the description of 
these tasks. 
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Note: 

This method is quite different from the normal use of the TLC7701. If used 
the normal way, the device outputs a reset signal in case of a Vee that is too 
low. This reset signal stops the CPU of the connected microcomputer and 
gives no opportunity to save important values to an EEPROM. 

With the method described, the output of the voltage regulator can also be 
observed. This allows the use of a TLC7705. The remaining time (trem) is 
shorter due to the lower threshold voltage used on the output side. For this 
application, the TPS7350, which includes the voltage regulator and the sup­
ply voltage supervisor, is ideally suited. 

Figure 5-40. Power-Fail Detection with a Supply Voltage Supervisor 

Figure 5-41 shows the different system states of the voltage supervisor solu­
tion. The voltage (VC) drawing is simplified for a better understanding of the 
system function. The different system states (shown in Figure 5-41) are: 

1) The TLC7701 output is low until the voltage (Vth) is reached. The RESET! 
NMI input of the MSP430 is a reset input after the power-up, so the 
MSP430-CPU is inactive. 

2) After reaching Vth (and the expiration of the delay trc) , the MSP430 starts 
working and switches the RESET!NMI input to NMI-mode (interrupt in­
put). 

3) If VC goes below Vth due to a power fail, an interrupt is requested and the 
necessary tasks (e.g., EEPROM saving.) are started. Finally the RESET! 
NMI terminal is switched to the RESET function. 

4) If (as shown in Figure 5-41 ) the power fail is short in duration (Vout is high 
again), the software continues at labellNIT (after the elapse of trc). 
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5) If a real power fail occurs, the emergency tasks are completed and the re­
set mode for the RESET/NMI terminal is switched on again. 

6) This means stop for all MSP430 activities until ac power rises VC above 
Vth. The MSP430 then restarts with a normal power-up sequence as 
shown with system state 1. 

Powerfall NMI·lnterupt + .. MCLI( = 1 MHz cpu Stops 

~-~ + + 
VTH+---~------~~----~~~~--~------~-----

VCCmln~~~---------++-----------------~::::~~~~---

+1 !~~t v~1 ~ r " 
Reset I NMI II 

. 14-~ -- tREM ---.t~ 

I Undefined 

I I 2 
Reset 
lal 

NMI 

4 

Reset 

5 Ie System Statas 

Figure 5-41. Voltages for the Power-Fail Detection With a Supply Supervisor 
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The formula for the remaining time (trem) is (the time available for emergency 
tasks): 

trem 

Where: 

(v ) Cch 
th-Vcc . -Vr x--

1IUn lAM 

trem Approximate time from power-fail interrupt to the reaching 
of VCCmin [s1 

Vth Threshold voltage for VC. Below this value Vout is low M 
VCCmin Lowestsupply voltage for the MSP430 M 
Vr Dropout voltage of the voltage regulator M 
Cch Capacity of the charge capacitor Cch [F] 
lAM Supply current of the MSP430 system (medium value) [A1 

The threshold voltage (Vth) of the TLC7701 can be calculated by: 

Vth = Vref x (Rl +1) 
R2 
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Where: 
Vref Voltage of the internal reference diode of the TLC7701: +1.1 V 
R2 Resistor from SENSE input to 0 V. Nominal value 100 kQ to 200 kQ 

The delay (trc) after the return of VC is defined by the capacitor (Ct) shown in 
Figure 5-40. If this delay is not desired, Ct is omitted. The formula tre is: 

trc = 21 kQ x Ct 

EXAMPLE: The MSP430 system shown in Figure 5-40 with its initialization 
and run-time software. 

Initialization: prepare RESET/NMI as an NMI interrupt input. 

INIT MOV 

EINT 

MAINLOOP 

#OSAOOh+NMI+NMIES+CNTCL,&WDTCTL ; 1->0 edge 

Continue with initialization 

Enable interrupt 

Start normal program here 

NMI Interrupt Handler: an oscillator fault or the trailing 

edge of the TLC7701 caused interrupt due to the low input 

voltage VC. Check first the cause of the interrupt. 

The load is reduced to gain time for emergency actions. 

NMI_HNDLR BIT.B #OFIFG,IFG1 Oscillator fault? 

JNZ OSCFLT Yes, proceed there 

BIC.B #03Fh,&TPD Switch off all TP-outputs 

Switch off other loads 

BIS lIPD,&ACTL ADC Power down 

MOV.B lI32-1,&SCFQCTL MCLK back to lMHz 

BIC.B lI01Ch,&SCFIO DCO drive to lMHz 

Store values to ,EEPROM 

All tasks are done: switch RESET/NMI to RESET function. 

CPU stops until next power-up sequence. If the TLC7701 output 

is high again (mains back) the program restarts at INIT 

MOV 

BR 

lIOSAOOh+CNTCL,&WDTCTL ; PC is set to INIT 

#INIT ; Short power fail: Vcc high 
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. SECT "INT_VEC1",OFFFCh 

. WORD 

. WORD 

5.7.3 Conclusion 
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NMI vector 

Reset Vector 

o Advantages 

• Extremely safe: can handle any environment with the appropriate 
software and hardware combination 

o Disadvantages' 

• Hardware effort (TLC7701 needed) 

The concepts shown for battery check and power-fail detection are only pos­
sible due to the MSP430's hardware features: 

o Battery-driven systems can be realized only with microcomputers that 
need only a very low supply current 

o In ac-driven systems, the available security of MSP430 systems is due to 
three unique MSP430 features: 

1) The low current consumption allows the remaining charge of the (relatively 
small) charge capacitor to be used for a lot of emergency tasks in case of 
a power fail 

2) The high speed of the CPU allows to finish all these necessary emergency 
tasks during the remaining time from power-fail detection to the reaching 
of the lowest usable supply voltage. 

3) The wide supply voltage range (+5.5 V down to +2.5 V) increases the time 
remaining for these tasks. 

These three features together allow relatively simple hardware solutions for 
MSP430 systems, especially the use of small charge capacitors. 
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6.1 The Basic Timer 

The basic timer is normally used as a time base; it is programmed to interrupt 
the background program at regular time intervals. Table 6-1 shows all possible 
basic timer interrupt frequencies that can be set by the control bits in byte 
BTCTl (address 040h). The values shown are for MClK = 1.048 MHz. 

Table 6-1. Basic Timer Interrupt Frequencies 

SSEL--G SSEL=1 
IP2 IP1 IPO DIV=O DIV=1 DIV=O DIV=1 

0 0 0 16348 HZ 64Hz 1524288 Hz) 64HZ 

0 0 1 8192HZ 32Hz [262144 Hz) 32HZ 

0 1 0 4096HZ 16Hz [131072 Hz) 16HZ 

0 1 1 2048HZ 8Hz 65536 Hz 8HZ 

1 0 0 1024HZ 4Hz 32768 Hz 4HZ 

1 0 1 512HZ 2Hz 16348 Hz 2HZ 

1 1 0 256HZ 1 Hz 8192 Hz 1 HZ 

1 1 1 128HZ 0.5 Hz 4096 Hz 0.5 HZ 

Note: Interrupt frequencies shown in [brackets) exceed the maximum allowable frequency and 
cannot be used. 

Example 6-1. Basic Timer Control 

; DEFINITION PART FOR THE BASIC TIMER 

BTCNT2 .EQU 047h 

BTCTL .EQU 040h 

SSEL .EQU OSOh 

RESET .EQU 040h 

DIV .EQU 020h 

FRFQ .EQU OOSh 

IP .EQU 00lh 

IE2 .EQU 001h 

BTIE .EQU OSOh 

.BSS TlMER,4 

.BSS BTDTOL,l 

6-2 

Basic Timer Counter2 (O.ss) 

BASIC TIMER CONTROL BYTE: 

0: ACLK 

0: RUN 

0: fBT1-fBT 

1: MCLK 

1: RESET BT 

1: fBT1=12SHz 

LCD FREQUENCY DIVIDER 

BT FREQUENCY Selection bits 

INTERRUPT ENABLE BYTE 2: 

BT INTERRUPT ENABLE BIT 

O.ss COUNTER 

LAST READ BT VALUE 



INITIALIZATION FOR 1 SECOND TIMING: 32768:(256x128)=1 

Input frequency ACLK: 

Input division by 256: 

Add. input division by 128: 

LCD frequency = 128Hz: 

Initialization part 

HLD .EQU 040h 

SSEL = 0 

DIV - 1 

IP - 6 

FRFQ = 3 

1: Disable BT 

MOV.B 

BIS.B 

#(DIV+(6*IP)+(3*FRFQ»,&BTCTL ; 1s interval 

#BTIE,&IE2 ; ENABLE INTRPT BASIC TIMER 

INTERRUPT HANDLER BASIC TIMER 

The register BTCNT2 needs to be read twice 

BTHAN 

L$300 

PUSH 

MOV.B 

CMP.B 

JNE 

R5 

&BTCNT2,R5 

&BTCNT2,R5 

L$300 

SAVE USED REGISTER 

READ ACTUAL TIMER VALUE 

ENSURE DATA INTEGRITY 

READ AGAIN IF NOT EQUAL 

R5 CONTAINS ACTUAL TIMER VALUE, BTDTOL CONTAINS LAST VALUE 

READ. THE DIFFERENCE IS ADDED TO 'THE 1S COUNTER 

PUSH.B 

MOV.B 

SUB.B 

ADD 

ADC 

POP 

RETI 

. SECT 

• WORD 

BTDTOL 

R5,BTDTOL 

@SP+,R5 

R5,TIMER 

TIMER+2 

R5 

"Int_Vect",OFFE2h 

BTHAN 

SAVE LAST TIMER VALUE 

ACTUAL VALUE -> LAST VALUE 

ACTUAL - LAST VALUE ->'R5 

16-BIT DIFFERENCE ~O COUNTER 

Carry to high word 

Restore R5 

Basic Timer Interrupt Vector 

The Basic Timer 

On-Chip Peripherals 6-3 



The Basic TImer 

6.1.1 Change of the Basic Timer Frequency 

If the basic timer is used as a time base (for example as a base for a clock), 
then it is necessary to compensate If the frequency is changed during the nor­
mal rUI1. The necessary operations are different for changing from a faster fre­
quency to. a slower one than for the reverse operation. The timer register 
where the interrupts are counted needs to be implemented for the highest 
used basic timer frequency. 

Slow to fast change: The change should be done only inside the basic timer 
interrupt routine. The status is to be changed to the new time value. 

Fast to slow change: The change should only be done inside the basic timer 
interrupt routine. Afterward, all bits of the software timer register that represent 
the higher basic timer frequencies shOUld be reset to zero. This is the correct 
time for the lower frequency. 

Example 6-2. Basic Timer Interrupt Handler 

HIF 

LOF 

LOBIT 

.EQU 

.EQU 

.EQU 

.BSS 

.BSS 

BT_INT PUSH 

STTAS 

CHGT8 

MOV.S 

BR 

. WORD 

• WORD 

. WORD 

. WORD 

MOV.B 

BIC.S 

BIS.S 

A basic timer interrupt handler that works with two frequencies, 1 Hz and 8 Hz, 
is shown below. All necessary status routines are shown. The handler may be 
used for all other possible frequency combinations as well. The background 
software changes the status according to the needs. 

8 

1 

HIF/LOF 

TIMER,2 

BTSTAT,1 

R5 

STSTAT,RS 

STTAB(R5) 

ST1HZ 

ST8HZ 

CHGT8 

CHGT1 

#2,BTSTAT 

Hi frequency is 8Hz 

Lo frequenqy is 1Hz 

LSB position of low frequency 

16-bit timer register 

status byte 

Save R5 

R5 contains status (0, 2, 4, 6) 

Got to appropr. routine 

STO: 1Hz interrupt 

ST2: 8Hz interrupt 

ST4: Change to 8Hz interrupt 

ST6: Change to 1Hz interrupt 

Change to 8Hz interrupt 

#IP2+IP1+IPO,&BTCTL ; Clear frequ. bits 

#IP1+IPO,&STCTL ; Set 8Hz, use BT1HZ for INCR. 



BT1HZ 

BTBHZ 

CHGT1 

6.1.2 

The BasIc Timer 

ADD #LOBIT,TIMER Incr. bit 3 of the 125ms timer 

POP RS 

RETI No change of status 

INC TIMER Incr. bit 0 of the 125ms timer 

POP RS 

RETI No change of status 

INC TIMER Incr. bit 0 (evtl. carry) 

BIC #LOBIT-1,TIMER Reset 8Hz bits to zero 

MOV.B #O,BTSTAT New status: 1Hz interrupt 

BIC.B #IP2+IP1+IPO,&BTCTL Clear frequ. bits 

BIS.B #DIV+IP2+IP1,&BTCTL Set 1Hz 

POP RS 

RETI 

. SECT nInt_Vectn,OFFE2h 

. WORD BT_INT Basic Timer Interrupt Vector 

Elimination of Crystal Tolerance Error 

For normal measurement purposes, the accuracy of 32768 Hz crystals is more 
than sufficient. But, if highly accurate timing has to be maintained for years, 
then it is necessary to know the frequency deviation from the exact frequency 
of the crystal used (together with the oscillator). An example for such an ap­
plication is an electricity meter that must change the tariff at given times each 
day without any possibility of synchronizing the internal timer to a reference. 

The time deviations for two crystal accuracies (+ 1 Hz and +10 ppm) are shown 
in Table 6-2. The data in the table indicates the amount of time required to ac­
cumulate a given time error. 

Table 6-2. Crystal Accuracy 

ACCURACY DEVIATION = ± 1 S DEVIATION .. ± 1 m DEVIATION = ± 1 h 

32768 Hz, ± 1 Hz 9.10 hours 22.7Sdays 3.74 years 

32768 Hz, ± 10 ppm 27.77 hours 69.44 days 11.40 years 
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If these time deviations are not acceptable, then a calibration and correction 
are necessary: 

1) The crystal frequency is measured and the deviation stored in the RAM 
or EEPROM. All other interrupts have to be disabled during this measure­
ment to get correct results. 

2) The measured time deviation of the crystal is used for a correction that 
takes place at regular time intervals. 

The crystal frequency can be measured during the calibration with a timing sig­
nal of exactly 10 or 16 seconds at one of the ports with interrupt capability. The 
MSP430 counts its Internal oscillator frequency, ACLK, during this time with 
one of the timers (8-bit timer or 16-bit timer) and gets the deviation to 
32768 Hz. The deviation measured is added at appropriate time intervals 
(32768 s x 10 or 32768 s x 16) to the timer register that counts the seconds. 

3~56'B 
--~ AO 

Temperature 

calibration I------f 
Unit 

Rgure 6-1. Crystal Calibration 

. 6-6 

If necessary, the temperature behavior of the crystal can also be taken into ac­
count. Figure 6-2 shows the typical temperature dependence of a crystal. TO 
is the nominal frequency at a particular temperature. Above and below this 
temperature, the frequency is always lower (negative temperature coefficient). 
The frequency deviation increases with the square of the temperature devi­
ation (-0.035 ppm/oC2 for the example) . 
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O~--~~--~~~--~--~~---­

~.5 +----::I~--------~~ Crystal Temperature OC 

-7 

Frequency 
Deviation ppm 

Figure 6-2. Crystal Frequency Deviation With Temperature 

The quadratic equation that describes this temperature behavior is approxi­
mately (To = +19°C): 

Ilf :::: -O.035x(T-19Y 

Where: 
Ilf 
T 

Frequency deviation in ppm 
Crystal temperature in °C 

To use the equation shown above, simply measure the crystal temperature 
(PC board temperature) every hour and calculate the frequency deviation. 
These deviations are added up until an accumulated deviation of one second 
is reached. The counter for seconds is then incremented by one and one sec­
ond is subtracted from the accumulated deviation, leaving the remainder in the 
accumulation register. 

Example 6-3. Quadratic Crystal Tempe;ature Deviation Compensation 

The crystal temperature is measured each hour (3600 s) and calculated. The 
result - with the dimension ppm/l 024 - is added up in RAM location PPMS. 
If PPMS reaches 1024, one second is added to seconds counter SECONDS 
and PPMS is reduced by 1024. The numbers atthe right margin show the digits 
before and after the assumed decimal point. 
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Quadratic temperature compensation after each hour: 

tcorr = -I (T-19)A2 x -0.035ppml x t 

Tmax = To+40C, Tmin - To-40C 

To .SET 19 Turning point of temperature 

PPM .SET 35 -0.035ppm/(T-To)A2 

.BSS PPMS,2 RAM word for adding-up deviation 

.BSS SECOND, 2 RAM word for seconds counting 

TIMCORR CALL #MEASTEMP ;Meas. crystal temperature 6.4h 

POP IROP2L Result to IROP2L 6.4h 

SUB #(To*10h),IROP2L T - To 6.4h 

MOV I'ROP2L,IROPl Copy result 

CALL #MPYS IT-ToI A2 (always pos.) 12.8 

CALL #SHFTRS6 Adapt IT-ToI A2 12.2 

ADC lRACL Rounding 

MOV lRACL,IROP2L IT-ToI A2 -> IROP2L 12.2 

tcorr = 3600 x -0.035 x lE-6 x (T-19)A2 s/h 

L$006 MOV 

CALL,' 

# (36*PPM) , IROPl 

iMPYS 

36 x PPM/1E4 ms/h 

Signed multiplication 

lRAC contains: 36s x PPM x 4 (To-T)A2 x 1E-7 s/h 

- 36s x PPM x 4 (To-T)A2 x lE-4 ms/h 

CALL #SHFTLS6 to lRACM 

lRACM contains: tcorr - 4 x dT x 36 x PPM/l024 

Correction: 0.25 x lE-7 x 1024 - 1/39062.5 

ADD 

CMp 

JLO 

INC 

SUB 

L$200 RET 

6-8 

lRACM,PPMS 

#39062,PPMS 

L$200 

SECONDS 

#39062,PPMS 

Add-up deviation 

One second deviation reached? 

; Yes, add one second 

and adjust deviation counter 
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6; 1.3 Clock Subroutines 

SBC 

MIN 

HOURS 

.BOU 

.BOU 

.BOU 

The following two subroutines provide 24-hour clocks - one using decimal 
counting (RTCLKD) and one using hexadecimal Counting (RTCLK). These 
subroutines are called every second by the basic timer handler. 

0200H 

0201H 

0202H 

Byte for counting of seconds 

Byte for counting of minutes 

Byte for counting of hours 

Subroutine provides a decimal clock: 00.00.00 to 23.59.59 

RTCLKD SBTC 

DADC.B 

CMP.B 

JLO 

CLR.B 

DADC.B 

CMP.B 

JLO 

CLR.B 

DADC.B 

CMP.B 

JLO 

CLR.B 

RTRBTD RET 

SBC 

#060H,SBC 

RTRETD 

SBC 

MIN 

#060H,MIN 

RTRETD 

MIN 

HOURS 

#024H,HOURS 

RTRBTD 

HOURS 

Entry every second 

Increment seconds 

One minute elapsed? 

No, return (C = 0) 

Yes, clear seconds (C = 1) 

Increment minutes with set carry 

00.00.00 Return to caller 

C - 1: one day elapsed 

Subroutine provides a hex clock: 00.00.00 to 17.3B.3B 

RTCLK INC.B SBC Entry point every second 

CMP.B #60,SEC Increment seconds 

JLO RTRBT One minute elapsed? 

CLR.B SEC No, return to caller 

INC.B MIN Yes, clear seconds 

CMP.B #60,MIN Increment minutes 

JLO RTRET 
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CLR.B MIN 

INC.B HOURS 

CMP.B #24,HOURS 

JLO RTRET 

CLR.B HOURS 00.00.00 

RTRET RET C = 1: one day elapsed 

The next subroutine increments the date with each call. The handling of leap­
years is included. The data is stored in binary format. 

DAY 

MONTH 

YEAR 

DATE 

NOFEB 

.EQU 

.EQU 

.EQU 

PUSH 

INC.B 

MOV.B 

MOV.B 

CMP.B 

0203h 

0204h 

0206h 

RS 

DAY 

MONTH,RS 

MT-1(RS) ,RS 

#2,MONTH 

JNE NOFEB 

BIT i3,YEAR 

JNZ NOFEB 

INC 

CMP.B 

RS 

RS,DAY 

JLO DATRET 

MOV.B III ,DAY 

INC.B MONTH 

CMP.B- #13 ,MONTH 

JLO DATRET 

MOV.B IIl,MONTH 

INC YEAR 

DATRET POP RS 

RET 

Day of month 1 - 31 (byte) 

Month 1 - 12 (byte) 

Year 1990 - 2399 (word) 

Save RS 

To next day of month 

Look for length of month 

February now? 

Yes, Leap Year? 

Yes, 29 days for February 

One month elapsed? 

No 

Yes, start with 1st day 

of next month 

Year over? 

No 

Yes, start with 1st month 

of next year 

Restore RS 

Table with the length of the 12 months 
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MT . BYTE 

.BYTE 

31+1,28+1,31+1,30+1,31+1,30+1 January to June 

31+1,31+1,30+1,31+1,30+1,31+1 July to December 

The Basic Timer 

6.1.4 The Basic Timer Used as a 16-Bit Timer 

BTCTL .equ 

DIV .equ 

BTCNTl .equ 

BTCNT2 .equ 

L$l 

MOV.B 

MOV.B 

MOV.B 

CMP.B 

JNE 

SWPB 

ADD 

The two 8-bit registers BTCNT1 and BTCNT2 may be connected together and 
used as a simple 16-bit timer counting the ACLK. This 16-bit value can be used 
for time measurements by calculating the difference of two readings. The 
problem is that the two registers cannot be read with just one instruction, so 
BTCNT1 can overflow between the two readings and deliver an incorrect re­
sult. The following software corrects this possible error. If the LSBs change 
during the register read, then a second reading is made. This second register 
read is likely correct because of the relatively long time interval (30.5115). If in­
terrupts between the readings can occur, then the interrupt can be disabled 
with the DINT instruction. 

040h 

020h 

046h 

047h 

Basic Timer1 Control Register 

Clock for BTCNT2 is ACLK/256 

LSBs of Basic Timerl 

MSBs of Basic Timerl 

#DIV+xx,BTCTL 

&BTCNT1,R5 

&BTCNT2,R6 

&BTCNTl,R5 

L$l 

R6 

R5,R6 

Define BT as a l6-bit counter 

Read LSBs of Basic Timer1 OOyy 

Read MSBs OOxx 

LSBs still the same? 

No, read once more, 30.Sus time 

Yes, prepare l6-bit result xxOO 

Correct result in R6 now: xxyy 

If the result of the first reading is important, then the following subroutine may 
be used. The 16-bit value is read and corrected if an overflow to 0 may have 
happened between the reading of the low and high bytes. 

Read-out of the Basic Timer running as a l6-bit timer 

MOV.B 

MOV.B 

CMP.B 

JHS 

&BTCNT1,R5 

&BTCNT2,R6 

R5,&BTCNTl 

L$l 

Read LSBs OOyy 

Read MSBs OOxx 

BTCNTl still >= R5? 

Yes, no overflow 
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Transition from OFFh to 0 occurred with LSBs, read actual 

MSB, it now has the value +l. 

MOV.B &BTCNT2,R6 Read actual MSBs OOxx 

DEC.B R6 MSB - 1 is correct 

L$1 SWPB R6 MSBs to high byte xxOO 

ADD R5,R6 16-bit value to R6: xxyy 
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The Watchdog Timer 

6.2 The Watchdog Timer 

The internal watchdog of the MSP430 family may be used as a simple timer 
or as a watchdog that ensures system integrity. The watchdog function is en­
abled after power-on reset or a system reset. This means that if there are diffi­
culties after the start-up of the MSP430, the watchdog will reset the system as 
often as it is needed for it to start successfully. The watchdog mode is de­
scribed in this chapter. 

6.2.1 Supervision of One Task With the Watchdog 

In Section 5.7.2.2 Power Fail Detection With the Watchdog, an example is giv­
en of how to use the watchdog forthe supervision of a power fail task only. This 
example shows the necessary hardware and the software needed to detect 
an impending power failure. As long as ac line voltage is present, an interrupt 
occurs for each polarity change of the ac line. These interrupts reset the watch­
dog, preventing it from timing out. If the line voltage falls below a certain level 
or fails completely, these interrupts disappear and the watchdog is not reset. 
When the watchdog times out, it initializes the MSP430 system. 

6.2.2 Supervision of Multiple Tasks With the Watchdog 

Normally, the watchdog can only supervise one task at a time. If this task does 
not reset the watchdog, the MSP430 is initialized by the watchdog. In complex 
systems, more than one function needs to be supervised to assure correct sys­
tem functionality. This is possible with a small software effort - each super­
vised function sets a bit in a RAM byte if it runs correctly. The mainloop then 
resets the watchdog only if all bits are set. This approach can be enlarged to 
any number of supervised functions if more than one byte is used. 

Example 6-4. Watchdog Supervision of Three Functions 

A system running with MCLK = 3 MHz uses the watchdog for the supervision 
of three functions. 

o Power Fall - by the checking of the 60 Hz AC line (see section Battery 
Check and Power Fail Detection for details) 

o Function 1 - a check is made if the software reaches this background 
part regularly 

o Function 3 - a check is made if this interrupt handler is called regularly 
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Each supervised function sets a dedicated bit in RAM byte WOB in intervals 
less than 10.66 ms (power-up value of the watchdog with MCLK = 3 MHz) if 
everything is functioning normally. The mainloop checks this byte (WOB) and 
resets the watchdog ONLYif all three bits are set (07h). If one of the functions 
fails. the watchdog is not reset and will therefore reset the system. 

HARDWARE DEFINITIONS 

ACTL .EQU 

PD .EQU 

IFG2 .EQU 

POO .EQU 

IEl .EQU 

POIEO .EQU 

IFGl .EQU 

POIFGO .EQU 

POlES .EQU 

SCFQCTL .EQU 

SCFIO .EQU 

WDTCTL .EQU 

WDTIFG .EQU 

CNTCL .EQU 

WDB .EQU 

0114h 

1000h 

003h 

00lh 

OOOh 

004h 

002h 

004h 

014h 

052h 

OSOh 

0120h 

01h 

OOBh 

020:2h 

.TEXT OEOOOh 

ACC CONTROL REGISTER: 

1: ACC POWERED DOWN 

INTERRUPT FLAG REGISTER :2 

PO.O Bit Address 

Intrpt Enable Reg. 1 Addr. 

PO.O Intrpt Enable Bit 

Intrpt Enable Reg. 1 Addr. 

PO.O Flag Bit 

Intrpt Edge Sel. Reg. Addr. 

Sys Clk Frequ. Control Reg. 

Sys Clk Frequ. Integr. Reg. 

Watchdog Timer Control Reg. 

Watchdog flag 

Watchdog Clear Bit 

RAM byte for functional bits 

Software Start Address 

Watchdog reset and Power-up both start at label INIT. The 

reason for the reset needs to be known 

INIT BIT.B 

JNZ 

#WDTIFG,&IFGl 

WD_RESET 

Reset by watchdog? 

Yes; check reason 

Normal reset caused by RESET pin or power-up: lnit. system 
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INITl BIS.B #8,&SCFIO Switch DCO to 3MHz drive ' 

MOV.B #96-1,&SCFQCTL FLL to 3MHz MCLK 

MOV #05AOOh+CNTCL,&WDTCTL ; Define watchdog 

BIS.B #POIEO,&IEl Enable PO.O interrupt 

BIS.B #POO,&POIES To trailing edge 

BIC.B #POIFGO,&IFGl Reset flag (safety) 

Continue initialization 

CLR.B WDB Clear Functional Bits 

EINT Enable GIE 

BR #MAINLOOP Go to MAINLOOP 

Reset is caused by watchdog: check reason and handle 

individually 

WD_RESET MOV.B WDB,R5 Build handler address 

MOV.B TAB(R5),R5 

SXT R5 Offsets may be negative! 

ADD RS,PC 

JAB . BYTE INITl-TAB All functions failed: hang-up 

. BYTE PF-TAB power fail and function 3 

. BYTE FIF3-TAB Function 1 and 3 failed 

. BYTE F3-TAB Function 3 failed 

. BYTE PF-TAB Power fail and function 1 

. BYTE PF-TAB Power fail 

,BYTE FI-TAB Function 1 failed 

. BYTE INITI-TAB All bits set: hang-up 

Missing mains voltage means power fail. 

supply current is minimized to enlarge active time 

PF BlC.B #03Fh,&TPD Switch off all TP-outputs 

Switch off other loads 

BIS #PD,&ACTL Power down ADC 

MOV.B #32-1,&SCFQCTL MCLK back to IMHz 

BlC.B #OlCh,&SCFIO DCO drive to IMHz 

The Watchdog Timer 

On-Ghip Peripherals 6-15 



The Watchdog Timer ••• • 

Store values to EEPROM 

All tasks are done: LPM3 to bridge eventually the power fail 

BIS #CPUoff+GIE+SCG1+SCGO,SR 

JMP INITl ; Continue here eventually 

The handlers for all failures except power fail. 

Every failure can be handled individually 

Fl 

F3 

FIF3 

Function 1 failed 

Function 3 failed 

Function 1 and 3 failed 

Background: Main Loop. If RAM-byteWOB'contains 07h then the 

watchdog is reset: all 3 supervised functions are OK. 

MAINLOOP CMP.B 

JNE 

MOV 

CLR.B 

L$l 

#07h,WOB 

L$l 

Test WOB 

WOB does not contain 7: continue 

#OSAOOh+CNTCL,&WOTCTL ; All OK: reset watchdog 

WOB Clear WOB 

Continue Mainloop 

Function 1: if the software reaches this address, the 

supervision bit 1 is set in WOB. This indicates normal run 

BIS.B n,WOB Set supervision bit 1 

Function 3: if the software reaches this interrupt handler, the 

supervision bit 3 is set in WOB. This indicates normal run 

INT_HNOLR 

BIS.B 

RETI 
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The POO_HNDLR is called each the mains changes polarity. 

The bit 2 in WDB is set to indicate: "No Power Fail". 

POO_HNDLR BIS.B #2h,WOB 

XOR. B #POO, &POIES 

RET I 

. SECT "INT_VECl", OFFFAh 

. WORD POO_HNDLR 

.WORD 0 

.WORD INIT 

Set mains control bit 

Invert edge select for PO.O 

PO.O Inrtpt Vector 

NMI not used 

Reset Vector 

The Watchdog Timer 

The interrupt handler for the watchdog operation can be simplified if a strict 
priority exists for the processing steps. If, for example, the priority Is from pow­
er fail (highest priority), to function 3, and function 1 (lowest priority), then the 
watchdog handler may look like this: 

Reset is caused by watchdog: check reason and handle with 

priority from power fail to function 1. 

WD_RESET BIT.B #2,WDB Power fail? 

JZ PF Yes, prepare for it 

BIT.B U,WOB Function 3 failed? 

JZ F3 Yes, handle it 

BIT.B #l,WOB Function 1 failed? 

JZ Fl Yes, handle it 

JMP INITl Hang-up occurred (WOB 7) 
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1:1 UN d 

6.3 The nmer_A 

6.3.1 Introduction 
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. The 16-bit Timer_A is a relatively complex timer consisting of the 16-bit timer 
register and several capture/compare registers. All capture/compare registers 
are identical, but one of them (CCRO) is used for additional functions. The ar­
chitecture of the Timer_A shows some similarity to the MSP430 CPU - both 
of them use the principle of orthogonality (equal features for all registers). 

The Timer_A, whose block diagram is shown in Figure 6-3, has several regis­
ters available for different tasks. These registers are described in Section 6.3.2 
The Timer_A Hardware. 

Note: 

The software and hardware examples shown are related to the MSP430x33x 
family. Other MSP430 family members may use other I/O ports and address­
es for the Timer_A registers and signals, Also, the number of capture/ 
compare registers may be different. The programming principle will stay un­
changed; only address definitions need to be modified. 

It is recommended that the data book MSP430 Family Architecture Guide 
and Module Library (TI literature number SLAUE10B) be consulted. The 
hardware related information given there is very valuable and complements 
the information in this chapter. 

The architecture of the Timer_A is not restricted to the configuration shown in 
Figure 6-3. Different family members of the MSP430 family have different con­
figurationsof the Timer_A: 

o The minimum configuration is the timer register block and the capture/ 
compare block o. This allows one timing but no pulse width modulation 
(PWM). 

o The next possible configuration is the timer register block and the capture/ 
compare blocks 0 and 1. This allows two independenttimings or one PWM 
timing. 

o The configuration Implemented in the MSP430x33x family allows up to 
five independent timings or three PWM signals and a capture input for the 
speed control (for a 3-phase digital motor control, for example). 

o Larger configurations are also possible - eight capture/compare blocks 
for very complex applications, for example. 

The upper limit for the number of capture/compare registers is only the over­
head coming from the actualization of the registers .and the overhead from the 
interrupts, themselves. 



CCI801 

TAOCCIOA 
I 

ACLK --0 TAO 
GND --0 

VCC --0 

CCI811 
I 

TA1CCl1A 
ACLK --0 TA1 
GND --0 

VCC --0 

CCl821 
I 

TA2CCI2A 
ACLK --0 

GND --0 

TA3 

TA4 

Figure 6-3. The Hardware of the 16-Bit Time,-A (Simplified MSP430x33x Configuration) 
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Applications for the Timer_A can be: 

o Generation of up to five independenttimings (MSP430x33x configuration) 

o Frequency generation - using the output units, the internal generated 
timings can be output to the external periphery of the MSP430 

o Generation of the timing for RF transmission (amplitude modulation, bi­
phase code, biphase space modulation) for the transfer of metered data 
(gas meters, electric meters, heat allocation meters, etc.) 

o Realization of a software SPI 

o Realization of a software UART 

o Digital motor control (DMC) - the MSP430x33x is able to control a 
3-phase electric motor with PWM in closed loop mode 

o TRIAC control for electric motors and other power applications 

o Time measurement, period measurement, pulse width measurement 

o Frequency measurement (using the capture mode for low frequencies) 

o Analog-to-digital converter (ADC) - a single-slope ADC can be built using 
the capture mode. Normal 1/0 ports switch the reference resistors and 
sensors 

o DTMF generation - the DTMF frequency pairs can be generated by soft­
ware and output by three external operational amplifiers for filtering and 
mixing. See the third part of this chapter for hardware and software details 

o Crystal replacement - the frequency locked loop (FLL) of the MSP430 
may be locked to the ac line frequency instead of the 32-kHz frequency 
of a crystal. This eliminates the need for a crystal and provides a better 
adaptation to the ac line frequency (for DMC applications, for example) 

o PWM generation with the output units 

o Real Time Clock (RTC) - if fed by the ACLK (32 kHz), the Timer-.A can 
be used as an ATC with all low power modes. Time intervals of up to two 
seconds In steps of 2-15 s are possible. 



6.3.1.1 Definitions Used with the Application Examples 

HARDWARE DEFINITIONS 

TAIV .equ 12Eh Timer_A Vector Register 

TACTL .equ 160h Timer...A Control Register 

Bits of the TACTL'Register: 

TAIFG .equ 00lh Interrupt flag 

TAlE .equ 002h Interrupt enable bit 

CLR .equ 004h Reset TAR and Input Divider 

MSTOP ,equ OOOh Stop Mode 

MUP .equ 010h Up Mode 

MCONT .equ 020h Continuous Mode 

MUPD .equ 030h Up/Down Mode 

D1 .equ OOOh Input Divider: Pass 

D2 .equ 040h /2 

D4 .equ 080h /4 

D8 .equ OCOh /8 

ISTACLK .equ OOOh Input Selector:TACLK 

ISACLK .equ 100h ACLK 

ISMCLK .equ 200h MCLK 

ISINCLK .equ 300h I NCLK 

CCTLO . equ 162h Capture/Compare Control Reg . 

CCTL1 . equ i64h Capture/Compare Control Reg . 

CCTL2 .equ 166h Capture/Compare Control Reg. 

CCTL3 . equ 168h Capture/Compare Control Reg . 

CCTL4 .equ 16Ah Capture/Compare Control Reg. 

Bits in the CCTLx Registers: 

CCIFG .equ 00lh Interrupt flag 

COV .equ 002h Capture overflow flag 

OUT .equ 004h Output bit 

CCI .equ 008h Input signal 

CCIE .equ 010h Interrupt enable bit 

OMOO .equ OOOh Output Mode: output only 

OMSET .equ 020h set 

OMTR .equ 040h toggle/reset 

0 

1 

2 

3 

4 
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OMSR .equ 060h set/reset 

OMT .equ OaOh toggle 

OMR .equ OAOh reset 

OMTS .equ OCOh toggle/set 

OMRS .equ OEOh reset/set 

CAP .equ lOOh Capture/Compare switch 

SCCl .equ 400h Synchronized CCl 

SCS .equ aOOh Async/sync switch 

lSCCIA .equ OOOh Capture input: CClxA 

ISCCIB .equ lOOOh CClxB 

lSGND .equ 2000h GND 

lSVCC .equ 3000h Vcc 

CMDlS .equ OOOh Capture mode: disabled 

CMPE .equ 4000h rising edge 

CMNE .equ BOOOh falling edge 

CMBE .equ OcOOOh both edges 

CCRO .equ l72h Capture/Compare Register 0 

CCRl .equ l74h Capture/Compare Register 1 

CCR2 .equ l76h Capture/Compare Register 2 

CCR3 .equ l7Bh capture/Compare Register 3 

CCR4 .equ l7Ah capture/Compare Register 4 

TAR .equ Ol70h Timer Register 

TAO .equ DOBh Bit address TAO Port3: P3.3 

TAl .equ OlOh Bit address TAl port3: P3.4 

TA2 .equ 020h Bit address TA2 Port3: P3.S 

TA3 .equ 040h Bit address TA3 Port3: P3.6 

TA4 .equ OaOh Bit address TA4 Port3: P3.7 

P3SEL .equ OlBh Port3 Select Register 

P3DlR .equ OlAh Port3 Direction Register 

P30lJT .equ Oi9h Port3 Direction Register 

Definitions of other used peripherals 

SCFQCTL .equ OS2h FLL Multiplier and Mod. Bit 
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M .equ 

SCFIO .equ 

FN_2 .equ 

FN_3 .equ 

SCFIl .equ 

POFG .equ 

POlE .equ 

IEl .equ 

POIE.O .equ 

CBCTL .equ 

CBE .equ 

CBACLK .equ 

CBMCLK .equ 

BTCTL .equ 

BTCNTl .equ 

WDTCTL .equ 

CNCTL .equ 

HOLD .equ 

GIE 

CPUOFF 

SCGO 

SCGl 

.equ 

.equ 

.equ 

.equ 

080h 

OSOh 

004h 

008h 

OSlh 

Ol3h 

OlSh 

o 
4 

OS3h 

OOlh 

OOOh 

006h 

040h 

046h 

l20h 

008h 

080h 

008h 

OlOh 

040h 

080h 

Modulation Bit 

Current Switches FN_x, FLL 

DCO Switch for 2MHz 

DCO Switch for 3MHz 

Taps of DCO 

PortO Flag Register Address 

PortO Interrupt Enable Reg. 

Interrupt Enable Register 

PO.O Interrupt Enable Bit 

Crystal Buffer Control 

Enable XBUF output 

ACLK is output at XBUF 

MCLK is output at XBUF 

Basic Timer Control Register 

Basic Timer Counter 1 

Watchdog Control Register 

Reset Watchdog Bit 

Stop Watchdog 

Bits in the Status Register SR 

General Interrupt Enable 

CPU-Off bit 

Low Power Mode Bits 

The Timer_A 

6.3:2 Timer_A Hardware 

TimecA has a modular structure, giving it considerable flexibility. At least one 
capture/compare block is necessary for all configurations, and an almost un­
limited number of capture/compare blocks may be connected to the timer reg­
ister block (see Figure 6-4). The general function ofthese blocks is described 
I;>elow. The user software controls the TimecA with the registers that are de­
scribed there. 

Several registers control the function of Timer_A. Every capture/compare reg­
ister (CCRx) has its own control register CCTLx and the timer register (TAR) 
is also controlled by its own control register TACTL. This section describes all 
registers contained in the TimecA. 

On-Chip Peripherals 6-23 



Thenmer A 

The TimecA registers have two common attributes: 

a All registers, with the exception of the interrupt vector register (TAIV), can 
be read and written to 

a All registers are word-structured and should be accessed therefore by 
word instructions only. Byte addressing results in a nonpredictable opera­
tion. 

Example 6-5. Timer Register Low Byte 

If only the information contained in the low byte of the timer register Is wanted, 
then the following code sequence may be used: 

MOV 

MOV.B 

MOV 

SWPB 

MOV.B 

&TAR,RS 

RS,RS 

Read the complete TAR: yyxxh 

OOxxh to RS 

If only the high byte information of the timer register is wanted: 

&TAR,RS 

RS 

RS,RS 

Read the complete TAR: yyxxh 

Swap bytes: yyxxh -> xxyyh 

OOyyh to RS 

Table 6-3 shows the mnemonics and the hardware addresses of the Timer_A 
registers. 

Table 6-3. Timer_A Registers 

REOISTER NAME ABBREVIATION REGISTER TYPE ADDRESS INITIAL STATE 

Timer....A control register TACTL Read/Wrlte 160h POR Reset 

Timer register TAR ReadlWrHe 170h POR Reset 

CaplCom Control Register 0 CCTLO ReadlWrtte 162h POR Reset 

Cepture/Compare Register D CCRD ReadlWrlte 172h POR Reset 

Cap/Com Control Register 1 CCTL1 Read/Write 164h POR Reset 

Capture/Compare Register 1 CCR1 ReadIWrHe 174h PORReset 

Cap/Com Control Register 2 CCTL2 ReadlWrite 166h PORReset 

Capture/Compare Register 2 CCR2 ReadlWrite 176h POR Reset 

Cap/Com Control Register 3 CCTL3 Read/Write 16Sh POR Reset 

Capture/Compare Register 3 CCR3 Read/Write 178h POR Reset 

CaplCom Control Register 4 CCTL4 ReadlWrite 16Ah PORReset 

Capture/Compare Register 4 CCR4 ReadlWrite 17Ah PORReset 

Interrupt Vector Register TAIV Read only 12Eh (PORReset) 

Note: Futureextensions - more capture/compare registers - will use the reserved addresses 16Ch. 16Eh. 17Ch. and 17Eh. 
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6.3.2.1 The Timer Register Block 

TAClK -0---<0..11-, 
AClK --0 

MClK --0 

INClK --0 

The timer register block is the main block of the TImer_A. Even the simplest 
version contains this block, which includes the timer register (TAR). The timer 
register block consists of the following parts: 

o Input Multiplexer - selects the timer input signal out of four possible 
sources 

o Input Divider - selects the division factor for the timer input signal (1 , 2, 
4,8) 

o Timer Register TAR - a 16-bit counter 

o Mode Control - selects one of the possible four modes (Stop, Continu­
ous, Up, Up/Down) 

o Timer Control Register TACTL - contains all control bits for the timer 
register Block 

o Timer Vector Register TAIV - contains the vector of the interrupt with 
the actual highest priority 

o Interrupt Logic 

DC to MClK Data 

POR/ClR TIMOV 
Sst_TAIFG 

MeO 
o 

Equo 

Paas 
1/2 
1/4 
1/8 

Tlm.rBuB 
1 
o 
1 

From COR Blocka __ ~nT----I.!!!!:=~~:!l 

Figure 6-4. The Timer Register Block 
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6.3:2.1.1 The Timer Register (TAR) 

CLR 

BIS 

The timer register (TAR) is the main register of the timer. The timer input fre­
quency - selected from four different sources - is prescaled by the input di­
vider (by a factor of 1, 2, 4, or 8) and counted with this 16-bit register. The timer 
register Information is distributed to all other registers via the 16-bit tmer bus. 
This register contains the counted information in all three timer modes (Figure 
6-4). 

The timer register is incremented with the positive edge of Its input signal, timer 
clock. The CCIFG flags and the TAIFG flag are also set with the positive edge 
if the programmed conditions are true. 

The maximum resolution forthe limer_A is 1 ifMCLKmax. This relates to a max­
imum inputfrequencyforthetimerregisterequaltofMCLKmax (currently 4 MHz, 
250 ns resolution for the MSP430C33x). 

The 16 bits of the timer register can be cleared by two methods: 

&TAR 

.CLR,&TACTL 

o -> TAR, nothing else 

; Clear TAR, lnp. Div. + .count dir 

The second method clears not only the timer register, but also the content of 
the input divider and sets the count direction of the timer register to upward. 

6.3.2.1.2 The Tlmer_A Control Register TACTL 

TACTL 

160h 

The timer control register (TACTL) contains all bits that control the timer regis­
ter (TAR) and its operation. The control bits are reset with the power-on reset 
(POR) signal but the power-up clear (PUC) signal dOes not affect them. This 
allows a continued limecA operation if the watchdog times out or the watch­
dog security key is violated. The timer control register (Figure 6-5) is a word 
register and should therefore be accessed· with word instructions only. 

rw-
(0) 

Input 
Select 

rw­
(0) 

rw-
(0) 

rw­
(0) 

rw- (w)- rw- rw­
(0) (0) (0) (0) 

Figure 6-5. Timer Control Register (TACTL) 
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If the operation of the limer_A needs to be modified - with the exception of 
the TAIFG and TAlE bits-then the limer_A should be halted during the modi­
fication of the control bits. After the change of the TACTL register, limecA is 
restarted. Without this procedure, unpredictable behavior Is possible. 
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Example 6-6. The Timer_A Control Register TACTL 

The timer should be restarted in continuous mode. This is accomplished with 
two instructions. The first instruction defines the new state of the timer (except 
the mode), and stops it (Mode Control = 00). The second instruction sets the 
mode control bits to continuous mode and restarts the timer operation. 

Input Selection: MCLK 
Input Divider: /4, cleared 
Interrupt: enabled, TAlE = 1, TAIFG = 0 

MOV #ISMCLK+D4+CLR+TAIE,&TACTL; Define new state 

BIS #MCONT,&TACTL ; Restart continuous Mode 

The control bits of the Timer control register are explained below. 

Timer Interrupt Flag TAIFG 

This flag indicates a timer overflow event: the timer register TAR reached the 
value zero. The way to get the flag TAIFG set depends on the mode used: 

o Continuous Mode - TAIFG is set if the timer counts from OFFFFh to 
OOOOh. 

o Up Mode - TAl FG is set ifthe timer counts from the CCRO value to OOOOh. 

o Up/Down Mode - TAIFG is set if the timer counts down to OOOOh. 

See the The Timer Vector Register TA/V section for examples how to use the 
TAIFG flag. 

Timer Overflow Interrupt Enable Bit TAlE 

This bit enables and disables the interrupt for the timer interrupt flag TAIFG: 

TAlE = 0: Interrupt is disabled 

TAlE = 1: Interrupt is enabled 

An interrupt is requested only if the TAIFG bit, the TAlE bit, and the GIE (SR.3) 
bit are set. The sequence of the bit setting does not matter. If two out of the 
three bits (mentioned above) are 1, and the third is set afterward, an interrupt 
will be requested. 
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Example 6-7. Timer Overflow Interrupt Enable Bit TAlE 

BIC 

BIS 

Interrupt is enabled for the TAIFG flag. A pending interrupt is cleared. 

#TAIFG,&TACTL 

#TAIE,&TACTL 

Clear TAIFG flag 

Enable interrupt for TAIFG 

Timer Clear Bit CLR 

The timer register (TAR) and the input divider are cleared, after POR or if bit 
CLR is set by the software. The CLR bit is automatically reset by the hardware . 
and always read as O. The limer_A starts operation with the next positive edge 
of the timer clock. The counting starts in upward direction if it is not halted by 
cleared Mode Control bits. 

Example 6-8. Timer Clear Bit CLR 

BIt3 

Timer_A is restarted after the calibration process. It needs a complete reset: 
up/down mode, upward count direction, interrupt enabled, MCLK passed to 
the timer register, input divider cleared. 

MOV tISMCLK+Dl+CLR+TAIE,&TACTL; Define state 

BIS #MUPD,&TACTL ; Start Up/Down Mode 

Not used. Read as O. To maintain software compatibility, this bit should NOT 
be set. 

Mode Control Bits 

The two mode control bits define the operation of the limer_A. Table 6-4 lists 
the four possible modes. See Section 6.3.3 The Timer Modes for a detailed 
description of the timer modes. " the mode control bits are cleared (stop 
mode), a restart of the timer operation is possible exactly at the point where 
the operation was halted, including the count direction information used with 
the up/down mode. 

Table 6-4. Mode Control Bits 

MODE CONTROL BITS COUNT MODE COMMENT 

0 Stop Mode TImer is halted 

1 Up Mode Count up to CCRO and restert at 0 

2 Continuous Mode Count up to OFFFFh and restart at 0 

3 Up/Down Mode Count up to CCRO and back to 0, restart 
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Example 6-9. Mode Control Bits 

limer_A is stopped and restarted in continuous mode. 

BIC iMUP+MCONT,&TACTL; Stop Timer_A 

BIS iMCONT,&TACTL Restart in Cont. Mode 

Input Divider Control Bits 

The two input divider control bits allow the use of a prescaled input frequency 
(timer clock) for the timer register (TAR). A prescaler may be necessary be­
cause of any of the following: 

D The MCLK frequency (up to 4 MHz) is too high for the task. 

D The MCLK frequency leads to an overflow of the timer register (TAR) dur­
ing the necessary measurement periods. This makes a RAM extension of 
the TAR necessary. which takes time and occupies RAM space. 

D The resulting resolution is not necessary. 

D The resulting timer register contents lead to numbers that are too large 
during the calculations. 

D Power savings is important. 

If one the above reasons is true. then a prescaled input frequency should be 
used. The possible prescale factors are shown in Table 6-5. 

Table 6-5. Input Divider Control Bits 

INPUT DIVIDER BITS MODE COMMENT 

0 Pass Input signal is passed to the Timer Register 

1 +2 Input signal is divided by 2 

2 +4 Input signal Is divided by 4 

3 +8 Input signal Is divided by 8 

Example 6-10. Input Divider Control Bits 

The input divider is changed from pass mode (0) to divide-by-4 mode (2): 

BIC #MUP+MCONT,&TACTL ; stop Timer-A 

BIS #MUP+D4+CLR,&TACTL ; Continue in Up Mode 
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Input Selection Bits 

The three input selection bits select the input signal of the input divider. Four 
different sources are provided as shown in Table 6-6. The INCLK input may 
be used for a fourth input source with other family members. 

Table 6-6. Input Selection Bits (MSP430x33x - Source Depends on MSP430 Type) 

INPUT SELECT BITS SIGNAL COMMENT 

0 TACLK Signal at the external pin TACLK is used 

1 ACLK ACLKisused 

2 MCLK MCLKisused 

3 INCLK MCLK for the MSP43OC33x 

4-7 NfA Reserved for future expansion 

The highest timer resolution is possible with the internal MCLK signal: the full 
range of the MClK frequency may be used. If the external pin TACLK (P3.2 
for the MSP430C33x) is selected, then the maximum input frequency is re­
stricted due to the internal capacities of the signal path. See the specification 
for actual limits. 

Example 6-11. Input Selection Bits 

Mode 

Bit 11 to 15 

6-30 

Tlmer_A is initialized. Continuous mode, interrupt enabled, ACLK - divided 
by 2 - routed to the timer register, timer register and input divider are cleared. 

MOV #ISACLK+D2+CLR+TAIE,&TACTL Define state 
BIS #MCONT,&TACTL ; Start timer: Cont. 

Not used. Read as O. To maintain software compatibility, these bits should 
NOT be set to 1. 
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6.3.2.1.3 The Timer Vector Register TAIV 

15 

. This 16-bit register contains an even vector ranging from 0 (no interrupt pend­
ing) via 2 (CCR1 interrupt) to 10 (timer overflow interrupt TIMOV). See Figure 
6-6 and Table 6-7 for more information. 

o 
TAIV 

12Eh 
I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 l,nte:;uPI v~or I 0 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ H~~~H~ ~ 

Figure 6-6. Timer Vector Register (TAIV) 

If more than one interrupt is pending. then the vector with the highest priority 
is placed into the TAIV register. See figure 6-7. Table 6-7 illustrates the inter­
rupt priority scheme of Timer_A: 

Table 6-7. Timer Vector Register Contents 

INTERRUPT 
PRIORITY 

Highest 

Lowest 

HTIMOV 

ADD 

RETI 

JMP 

JMP 

JMP 

JMP 

INTERRUPT SOURCE FLAG VECTOR VECTOR REGISTER 
ADDRESS CONTENTS 

Capture/Compare 0 CCIFGO OFFF2h NlA 

Capture/Compare 1 CCIFG1 OFFFOh 2 

Capture/Compare 2 CCIFG2 OFFFOh 4 

Capture/Compare 3 CCIFG3 OFFFOh 6 

Capture/Compare 4 CCIFG4 OFFFOh 8 

Timer OVerflow TAIFG OFFFOh 10 

Reserved NlA 12 

No interrupt pandlng NlA 0 

The timer vector register allows a very fast response to the differenttimer inter­
rupts. Its content is simply added to the program counter (PC). using a JMP 
table located directly after the ADD instruction: 

&TAIV,PC 

HCCR1 

HCCR2 

HCCR3 

HCCR4 

INTRPT with highest priority 

0: No INTRPT pending 

2: CCIFG1 caused INTRPT 

4: CCIFG2 caused INTRPT 

6: CCIFG3 caused INTRPT 

8: CCIFG4 caused INTRPT 

10: TAIFG is reason 
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MOV 

MOV 

TTAB . WORD 

. WORD 

. WORD 

. WORD 

. WORD 

. WORD 

MOV 

CMP 

JEQ 

CMP 

JEQ 

BIT 

JNZ 

BIT 

JNZ 

MODO BIC 

MOD1 BIC 
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If the corresponding interrupt handlers are out of the reach of JMPs (more than 
±511 words), then a word table containing the handler start addresses may be 
used: 

&TAIV,RS TAIV contains vector: o - 10 
TTAB(RS} ,PC Write handler address to PC 

PRETI 0: No INTRPT pending, RETI 

HCCR1 2: CCIFG1 caused INTRPT 

. HCCR2 4: CCIFG2 caused INTRPT 

HCCR3 6 : CCl;FG3 caused INTRPT 

HCCR4 8 : CCIFG4 caused INTRPT 

HTIMOV 10: TAIFG is reason 

A third (slower) method is to read the content of the register TAIV and to use 
the read value for the decision of where to proceed (the interrupt flag with the 
highest priority is reset by the MOV instruction): 

&TAIV,RS Actual vector to R5. Reset flag 

#2,R5 Check for CCIFG1 interrupt 

HCCRl 2: CCIFGl caused INTRPT 

#4,RS Check for CCIFG2 interrupt 

HCCR2 , ; 4: CCIFG2 caused INTRPT 
a.s.o. 

The next software example shows a method that does not use the register 
TAIV. A normal skip chain is used. Only the software for blocks 0 and 1 is shown 
(this example makes the advantages of using the TAIV register obvious): 

tCCIFGO,&CCTLO Block 0: Flag set? 

MODO Yes, serve it 

#CCIFG1,&CCTL1 Block 1: Flag set? 

MOD1 Yes, serve it 

Continue with skip chain 

#CCIFGO,&CCTLO Reset CCIFGO flag 

Start handler for block 0 

#CCIFG1,&CCTL1 Reset CCIFG1 flag 

Start handler for block 1 

The capture/compare block 0 is not included in the TAIV register; it has its own 
interrupt vector located at address OFFF2h. The shorter interrupt latency time 
of register CCRO, makes it the preferred choice for the most time critical ap­
plications. The vector for the other Timer~ interrupts is located at address 
oFFFOh. 
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The Timer A 

Note: 

The timer vector register contains only the vectors of timer blocks with en­
abled interrupt (set CCIEx resp. TAlE bits). Blocks with disabled interrupt bits 
(reset CCIEx resp. TAlE bits) can be checked by software if their CCIFG 
resp. TAIFG flag is set and the flag must be reset by software too. See the 
skip chain example above . 

No interrupt flag (CCIFGx or TAIFG) needs to be reset if the register TAIV is 
used. The act of reading of the timer vector register TAIV resets the interrupt 
flag automatically that determines the actual register content. The interrupt 
flag with the next lower priority level defines the timer vector register TAIV af­
terward. 

. 

Note: 

Any access to the timer vector register (read or write) resets the interrupt flag 
with the highest priority. The timer vector register should be read only and 
the read data should be used to determine the interrupt handler with the high­
est priority. otherwise the data is lost . 
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CCII 
EQUI 
CAPI 

Timer Clock 

CCI2 
EQU2 
CAP2 

Timer Clock 

CCI3 
EQU3 
CAP3 

Timer Clock 

0014 
EQU4 
CAP4 

Timer Clock 

T 
Tim 

Imer'FFFF' 
e,='CCRO' 

Mode 
Time, Clock 

Figure 6-7 shows the internal interrupt logic that controls the register TAIV. 
The five controlling inputs are shown. 

Priority Encoder TAIV Access Vector Generator 

rg- CCIFGl (Flag) 

~ 
S J .I 

~rJ 
2 

Sel 
CCIEI (Interrupt Enable) 

--+-
IRACC (Interrupt Acknowledge) '--

-s--- ooIFG2 _ 

~ J ) 
4 

S tj-Sel 
CCIE2 

--+-
IRACC 

~ -s--- CCIFG3 _ Interrupt_Servlce_Rs 

J ) 
6 

S 

tJ Sel -CCIE3 

--+-
IRACC 

~ -s--- CCIFG4 _ TAIV Contsnt (0-10) 

J 
, 

tJ-' 
8 

S .I 
Sel -CCIE4 

--+-
IRACC I '" -
-s--- TAIFG (Flag) _ 1; J ) 10 
S -
Sel 

TAlE (Interrupt Enable) 

4-
IRACC (Reset Flag) '" 

Figure 6-7. Simplified Logic of the Timer Interrupt Vector Register 

6-34 

quest 



The Timer A 

6.3.2.2 The Cspture/COmpBl'8 Register Blocks 

OOISll 
I 

TA 1 COil A --<:>-<>"-, 

AOLKCOl1B --0 

GND --0 

Vco --0 

CCll 

Figure 6-8 illustrates the capture/compare register block 1. The others, with 
the exception of the capture/compare register block 0, are identical The CCRO 
block has additional functions. See section The Period Register CCRO, below. 

,...----, Capture 

TAl 

OOMll 00M10 
o 0 Disabled 
o 1 Positive Edge 
1 0 Negative Edge 
1 Both Edges 

1b Other Capture/Compare BtockS 

Figure 6-8. Capture/Compare BLock 1 

6.3.2.2.1 The Cspture/COmpBl'8 Registers CCRx 

CCRx 

17yh 

15 

These registers may be used individually as oompare registers or as capture 
registers. Any combination is possible. 

o 

I I I I I I I I I I I 1 1- I I I I 
rw-(O) rw-{O) rw-(O) rw-(O) rw-(O) rw-(O) rw-{O) 

Figure 6-9. The Capture/Compare Registers CCRx 

o Compare Mode With Continuous Mode - the register CCRx contains 
the time information for the next interrupt. Within the interrupt handler, the 
time Information for the next interrupt is prepared. The number An (corre­
sponding to the time interval at from the last interrupt to the next one) is 
added to CCRx. The interrupt latency time does not playa role in this meth­
od. See the example in section The Continuous Mode. 

The output units may be used to generate output changes at output pins 
TAx with an exactly defined timing, independent of interrupt latency times. 

o Compare Mode With Up Mode or Up/Down Mode - the capture! 
compare' register 0 is used as the period register with these two modes. 
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The register CCRx contains the time interval between interrupts respec­
tive the pulse width of the output signal at TAx. The registers CCRx are 
modified depending on the result of the control calculations. If no pulse 
width change is necessary, the timing is repeated without CPU interven­
tion. 

o Capture Mode With Continuous Mode - a register (CCRx) used with 
the capture mode, copies the timer register at the precise moment the se­
lected capture conditions are satisfied. This allows very accurate mea­
surements of timings independent of the interrupt latency time. If the time 
intervals to be captured are longer than 65536 timer register steps, then 
a RAM extension (TIMAEXT) is necessary. This RAM extension is increm­
ented with the TAIFG interrupt and used with the calculations as shown 
below: 

n eapt = 65536 X next + 1I.rAR 

This means: with the continuous mode the RAM extension contains simply 
the extendedtimer bits 17 through 31. No correction or calculation is nec­
essary. 

o Capture Mode With Up Mode - this method of capturing is exactly the 
same as described above for the continuous mode. But the up mode uses 
only a part of the timer register range. If the time interval to be captured 
is longer than the content of the period register (CCRO), then a RAM exten­
sion (TIMAEXT) is necessary. This RAM extension is incremented with the 
CCIFGO or TAIFG Interrupt and used with the calculations as shown be­
low: 

o Capture Mode With Up/Down Mode -this method of capturing is exact­
ly the same as described above for the continuous mode. But the up/down 
mode uses only a part of the timer register range and this part is counted 
up and down. Therefore, the actual count direction should also be consid­
ered. If the time Interval to be captured is longer than the doubled content 
ofthe period register (CCRO), then a RAM extension (TIMAEXT) is neces­
sary. This RAM extension is incremented with the CCIFGO interrupt and 
with the TAIFG interrupt. The LSB of the RAM extension (TIMAEXT) indi­
cates the count direction. The RAM extension TIM32 must be initialized 
to zero. 



Where: 
ncapt 
next 
nCCRO 
nTAR 

LSB of TIMAEXT = 0 - Timer register counts upwards 

LSB of TIMAEXT = 1: Timer register counts downwards 

Resulting cycle value for captured signals (> 16 bits) 
Content of the timer register RAM extension TIMAEXT 
Content of the period register CCRO 

The TimecA 

Captured content of the timer register TAR (captured in CCRx) 

Figure 6-10 illustrates the logic used for the capture/compare registers. 

CClx 

Figure 6-10. Function of the Capture/Compare Registers (CCRx) 
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6.3.2.2.2 The Capture/Compare Control RegIsters CCTLx 

CCTLx 

162h 
to 
16Ah 

rw-
(0) 

Each capture/compare block has its own control word CCTLx. Figure 6-11 il­
lustrates the organization ofthese control words - it is the same for all ofthem. 
The main bit of these registers is the CAP bit (CCTLx.8), which determines if 
the capture/compare block works in the capture mode or in the compare mode. 

rw- rw- rw- rw- rw-
(0) (0) (0) (0) (0) 

rw-
(0) 

rw­
(0) 

rw- rw- rw-
(0) (0) (0) 

Figure 6-11. Timer Control Registers (CCTLx) 

The POR signal resets all bits of the registers (CCTLx), but the PUC signal 
does not affect them. This permits continuation with the same timing after a 
watchdog reset, if this is necessary. 

Capture/Compare Interrupt Flag CCIFG 
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This flag indicates two different events depending on the mode in use: 

ill Capture Mode 

If set, it indicates that a timer register value was captured in the corre­
sponding capture/compare register (CCRx). 

• Compare Mode 

If set, it indicates that the timer register value was equal to the data 
contained in the corresponding capture/compare register (CCRx). 
The signal EaUx is also generated. 

The CCI FGO flag is reset automatically when the interrupt request is accepted~ 
It is a single-source interrupt flag and its interrupt vector is located at address 
OFFF2h. 

The reset of the CCIFG1 to CCIFGx flags depends on: 

• The timer vector register TAIV is used 

The flag that determines the actual vector word (content of TAIV) is 
reset automatically after the register TAIV is read. 

• The timer vector register TAIV is not used 

The flags CCIFG1 to CCIFGx must be reset by the interrupt handler 



BIT 

JZ 

BIC 

The Timer_A 

If the interrupt capability is not enabled for a capture/compare block then the 
flag CCIFGx must be tested to check ifthe block x needs service. The CCIFG 
flag must be reset by software for this case: 

#CCIFG,&CCTLx 

NO_FLAG 

#CCIFG,&CCTLx 

Flag set? 

No continue 

Yes, reset flag 

Execute task for block x 

Example 6-12. Capture/Compare Interrupt Flag CCIFG 

See the examples in section The Timer Vector Register TAIl/. Examples forthe 
treatment of the CCIFG flags are given there. 

Capture Overflow Flag COY 

This flag indicates two different events depending on the mode in use: 

• Compare Mode 

No function. The COY bit is always reset, independent of the state 
of the capture input. 

• Capture Mode 

The capture overflow flag COY is set if a second capture event oc­
curred before the first capture sample was read out of the capture 
register (CCRx). The COY flag allows the software to detect the loss 
of synchronization and helps to reacquire synchronization. The COY 
flag Is not reset by the reading ofthe CCRx register and must be reset 
by software. 

Example 6-13. Capture Overflow Flag COV 

HCCR2 BIT 

JNZ 

MOV 

The interrupt handler of capture/compare block 2 - running in capture mode 
- checks first to see if a capture overflow occurred. 

#COV,&CCTL2 

COV2 

&CCR2,CAPST02 

Capture overflow ? 

Yes, handle it 

Store valid captured value 

Proceed with task 

Error handler for Capture/Compare Block 2 
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RET I 

Output Bit OUT 

#COV, &CCTL2 Reset overflow flag COy 

Check reason for overflow 

The state of the output bit OUT defines the output signal (TAx) of output unit 
x if the output mode 0 (output only) is selected. See section The Output Units 
for details. The state of the output signal (TAx) is always indicated by this bit, 
independent of the output mode in use. A modification of the output signal is 
possible only if the output mode 0 is selected. The OUT bit allows the definition 
of the start condition for PWM. 

Example 6-14. Output Bit OUT 

The output unit 3 is not used currently by Timer_A. To place TA3 in a defined 
state, output mode 0 is used and output TA3 is reset. 

BIC #OEOh+OUT,&CCTL3; output only·to OUT3: 0 

BIC 

BIS 

If output TA3 should be set initially the following sequence is used: 

#OEOh,&CCTL3 

#OUT,&9CTL3 

Output only to OUT3 

; Set OUT3 

Capture/Compare Input Bit CCI 

The CCI bit allows to read the state of the selected capture input: the input sig­
nal (CClxA at pin TAx, ACLK, Vee or Vss) can be read independent of the se­
lected mode. See figure 6-10 for details. 

Example 6-15. Capture/Compare Input Bit CCI 

The timer block 4 - running in capture mode - uses different software parts 
for the leading and the trailing edges of the input signal. The interrupt handler 
checks via the CCI4 bit which edge is the actual one. 

Initialization part: Capture both edges, TA4 input, 

synchronized capture, Capture Mode, interrupt enabled 
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MOV 

HCCR4 .equ 

BIT 

JNZ 

RETI 

TA4POS 

RETI 

#CMBE+ISCCIA+SCS+CAP+CCIE,&CCTL4 Initialize 

$ 

#CCI,&CCTL4 

TA4POS 

Interrupt handler Block 4 

Input signal positive? 

Yes: leading edge occurred 

No, handle trailing edge 

Handle leading edge 

The Timer A 

Capture/Compare Interrupt Enable Bit CCIE 

This bit enables and disables the interrupt for the capture/compare interrupt 
flag CCIFGx: 

CCIE = 0: Interrupt is disabled 
CCI E = 1: Interrupt is enabled 

Interrupt Is requested only if the CCIFG bit, the corresponding CCIE bit, and 
the GIE bit (SR.3) are set. The sequence of the bit setting does not matter. If 
two out of the above-mentioned three bits are 1 and the third is set afterward, 
an interrupt will be requested. 

Example 6-16. Capture/Compare Interrupt Enable Bit CCIE 

BIC 

The interrupt of timer block 2 is disabled. Now the interrupt should be enabled 
again. But if the CCIFG2 flag is set, no interrupt should occur. Ail other bits in 
register CCTL2 should retain their states. 

ffCCIE,&CCTL2 Disable interrupt Block 2 

Continue 

The interrupt for Timer Block 2 is enabled again. 

A pending interrupt is cleared 

BIC 

BIS 

#CCIFG,&CCTL2 

ffCCIE,&CCTL2 

Reset CCIFG2 flag 

Enable interrupt Block 2 
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Output Mode Bits 

These three bits define the behavior of the output unit x. Table 6-8 illustrates 
the influence ofthe signals EQUx and EQUO to the output signal TAx. The table 
shows the actions when timer register TAR is equal to CCRx or CCRO. Table 
6-8 is valid for all timer modes. 

Table 6-8. Output Modes of the Output Units 

OUTPUT MODE NAME TAR COUNTED UP TO CCRx TAR COUNTED UP TO CCRO 

0 Output only TAx is set according to bit OUTx (CCTLx.2) 

1 Set Sets output No action 

2 Toggle/Reset Toggles output Resets output 

3 SetlReset Sets Output Resets output 

4 Toggle Toggles output No action 

5 Reset Resets output No action 

6 Toggle/Set Toggles output Sets output 

7 Reset/Set Resets output Sets output 

See the examples given in the section The Output Units. 

Capture/Compare Select Bit CAP 

The CAP bit defines if the capture/compare block works in the capture mode 
or in the compare mode. This bit influences the function of nearly aU other con­
trol bits located in the same capture/compare control register. See figure 6-1 0 
for an explanation of the used logic. 

CAP = 0: The compare mode is selected 
CAP = 1: The capture mode is selected 

Example fr.17. Capture/Compare Select Bit CAP 

Bit 9 
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The use of this bit is explained with aU other control bits. 

Not used. Read as O. To maintain software compatibility this bit should NOT 
be set to 1. 
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Synchronized Capture/Compare Input SCCI 

• Compare Mode 

TheSCCI bit is the output of a transparent latch. This latch is in trans­
parent mode as long as the timer register TAR is equal to CCRx. The 
SCCI bit stores the selected capture input (ACLK, Vee, or Vss) when 
the timer register TAR becomes unequal to register CCRx. 

• Capture Mode 

The state of this bit is not defined. No EQUx signal is available in cap-
ture mode. ' 

Example 6-18. Synchronized Capture/Compare Input SCCI 

The timer bock 4 - running in capture mode - uses different software parts 
for the two possible states of the ACLK signal when the EQU4 Signal comes 
true. The Interrupt handler checks via the SCCI4 bit the state of the ACLK sig­
nal when CCR4 was equal to the timer register (TAR). The read information 
is shifted into a RAM word DATA. 

Initialization part: ACLK, Compare Mode, interrupt enabled 

Output Unit disabled, clear CCIFG 

MOV #ISCCIB+OMOO+CCIE,&CCTL4 ; Init. Timer_A 

HCCR4 MOV 

BIT 

JNZ 

RRC 

RET I 

TMPOS RRC 

RETI 

&CCR4,DATA 

#SCCI,&CCTL4 

TA4POS 

DATA 

DATA 

Interrupt handler Block 4 

ACLK signal -> Carry 

ACLK was high during EQU4 

Shift captured info in DATA 

Execute task for low input 

Shift captured info in DATA 

EXecute task for high input 

Synchronization of capture Signal Bit SCS 

The capture signal can be read in asynchronous mode or synchronized with 
the selected timer clock. The SCS bit selects the mode to be used. See also 
Figure 6-10 for a depiction of the internal logic. 
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• SCS=O 
The asynchronous capture mode sets the CCIFG flag immediately 
when the capture conditions are met (rising edge, falling edge, both 
edges) and also immediately captures the timer register. This mode 
may be used if the period of the captured data is much longer than 
the period of the selected timer clock. The captu'red data may be in­
correct for high input frequencies at terminal TAx. 

• SCS=1 
The synchronous capture mode - which is used normally - syn­
chronizes the setting of the CCIFG flag and the capturing of the se­
lected capture input with the selected timer clock. The captured data 
is always valid. 

Example 6-19. Synchronization of Capture Signal Bit SCS 

See Example for Capture Compare Input bit CCI. 

Capture/Compare Input Selection Bits 

These two bits select the input signal to be captured. The operation for the cap­
tured signal is different for capture mode and compare mode: 

• Compare Mode 
The selected Input signal is read and stored with the EQUx signal. 
See the description of the SCCI bit, above. 

• Capture Mode 
The selected input signal captures the timer register TAR into the 
capture/compare register CCRx when the conditions defined in the 
capture mode bits are met. See the description of the capture mode 
bits below. 

Table 6-9. Capture/Compare Input Selection Bits (MSP430x33x) 

INPUT SELECTION BITS INPUT SIGNAL COMMENT 

0 CClxA Signal at the external pin TAx Is selected 

1 CClxB ACLK is selected 

2 VSS For software capturing 

3 VCC For software capturing 

Capture Mode Selection Bits. 

These two bits select the capture operation for the input signal to be captured: 



• Compare Mode 

No function. 

• Capture Mode 

TheTIme,-A 

The content of the timer register TAR is stored in the capturel 
compare register CCRx when the capture condition is true forthe se­
lected input signal. The capture conditions are listed in Table 6-1 O. 

Table 6-10. Capture Mode Selection Bits 

CAPTURE MODE BITS COMMENT 

0 Capture mode is disabled 

1 Capturing is done with the rising edge (0 to 1) 

2 Capturing is done with the failing edge (1 to 0) 

3 Capturing is done for both edges 

Example 6-20. Capture Mode Selection 

The capture/compare block 3 - running in capture mode - measures the pe­
riod of the input signal CCI3A at terminal TA3. The measurement Is made con­
tinuously between two rising edges. The calculated period is stored in the RAM 
location PERIOD for the use by the background software. The actual value of 
CCR3 is stored in OLDVAL for the next calculation. Timer_A uses the continu­
ous mode. 

Initialization part: Capture rising edge, TA3 input, 

synchronous capture, Capture Mode, interrupt enabled 

PERIOD .equ 

OLDVAL .equ 

MOV 

HCCR3 .equ 

PUSH 

MOV 

SUB 

POP 

RETI 

0200h 

0202h 

Calculated period 

Storage of last pos. edge time 

#CMPE+ISCCIA+CAP+CCIE+SCS,&CCTL3 Init. 

$ Interrupt handler Block 3 

&CCR3 Captured TAR, rising edge 

@SP,PERIOD 

OLDVAL,PERIOD New - old = period 

OLDVAL For next calculation 
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6.3.2.2.3 The Period Register CCRO 
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The purpose of register CCRO changes with the used timer mode. 

o ContInuous Mode - If this mode Is used, CCRO is a capture/compare 
register exactly like the other four registers (CCR1 to CCR4). See section 
The TimecA Modes for details. 

o Up Mode or UpiDown Mode - with one of these modes selected, the 
register CCRO works as the perloQ register for the TImer_A, which defines 
the length of the timer period. Whenever the timer register (TAR) reaches 
the value of CCRO (EQUO = 1), the following actions occur, depending on 
the mode in use: 

• UpMode 

The timer register is cleared with the next timer clock and restarts 
from the value O. This continues automatically without any software 
intervention ·necessary. See section The Timer_A Modes. 

• Up/Down Mode 

The timer register changes the count direction and starts to count 
down to 0 with the next timer clock. If 0 is reached, the timer register 
counts up again with the next timer clock until the value of CCRO is 
reached again. This continues automatically without any further soft­
ware intervention necessary. See section The TimecA Modes. 

With the up mode or up/down mode selected, the EQUO signal is valid if the 
timer register (TAR) equals the period register (CCRO). or if it is greater than 
CCRO. This is not the case for the other registers (CCRx). 

The value 0 is not a valid content for the period register: the TImer_A blocks. 

The content of the period register CCRO is not modified normally. The timer 
period is a constant value (50 ~ for a repetition rate of 20 kHz - this means 
200 cycles for a 4 MHz MCLK). But this value may also be modified if neces­
sary. 



6.3.3 Timer Modes 

limer_A provides three different operating modes as well as the stop mode: 

o Continuous Mode - the normal mode, except when high-speed PWM 
generation is necessary 

o Up Mode - used for high-speed, asymmetric PWM generation 

o Up/Down Mode - used for high-speed, symmetric PWM generation 

o Stop Mode - limecA is halted, all control bits retain their status 

One of the. advantages of Timer _A is the absolute synchrony of all timings and 
output signals. This is due to the single timer register (TAR) that controls all 
timings. This synchrony is very important for the interdependence of timings, 
for example, if the MSP43D is used with a 3-phase digital motor control applica­
tion (OMC). 

The equations shown in the next sections use the following abbreviations: 

at Time interval cretween two similar interrupts [s1 
t Time e.g. period of a PWM signal [s1 
lpw Pulse width of a PWM signal Is] 
M Cycle value added to a CCRx register (timer clock cycles) 
n Number - content of a register (CCRx) 
k Predivider constant of the input divider (1, 2, 4 or 8) 
fClK Input frequency at the input divider input of TimecA [Hz] 
nCCRO Content of the period register CCRD 

The calculation formulas and explanations for the capture mode are given in 
the section Capture/Compare Blocks. 

6.3.3.1 The ContInuous Mode 

This mode allows up to five completely independent, synchronous timings. 
The capture/compare register, CCRD, works exactly the same as the other 
registers (CCRx) when running in continuous mode. 

Note: 

The signal EQUD has the same influence on the Mode Control Logic as it 
does in the other timer modes. This means that only the Sst, Reset, and 
Toggle modes should be used if independent output signals are desired. 

Figure 6-12 shows two independent timings generated by capture/compare 
registers CCRD and CCR1. The content of the capture/compare registers 
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(CCRx) is updated by software during each interrupt sequence by the addition 
of a calculated value, An. The value An represents a time interval, At, ex­
pressed in timer clock cycles. The software is described below. See the exam-
ple for details. . 

The formulas for a given time interval, At, respective the corresponding cycle 
value An are: 

At = f:J.n x k ~ f:J.n 
feLl( 

The limitation for An is: 

= 
At ><feLl( 

k 

If this limitation is not given, a RAM extension for-the timer register and the cap­
ture/compare registers must be used. 

The number of timer steps between two equal timer register contents is 65536 
(1 OOOOh).lf the time interval An is smaller than 65536, no checks for overflow 
are necessary between two interrupts. The calculated next register content is 
always correct. 

OAT~~------------------~~-.~------~------~r---

CCROg 

Interrupt Events: 
Example EQUO 

Example EQU1 

Figure 6-12. Two Different Timings Generated With the Continuous Mode 
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Example 6-21. Continuous Mode 

The software for the example illustrated in figure 6-12 is shown below. The 
system clock frequency is 1.048 MHz. capture/compare Block 0 - running in 
compare Mode - uses a constant interrupt repetition rate of 20971 cycles 
(equivalent to atO = 20.0 ms @ 1.048 MHz), capture/compare Block 1 - run­
ning in compare mode - uses 17476 cycles (equivalent to at1 = 16.67 ms). 
These cycle values are added to the corresponding capture/compare regis­
ters, CCRO and CCR 1 , respectively. They define the time for the next interrupt 
(previous cycle count + number of cycles an). 

The capture/compare block 2 runs in capture mode. It checks if the time inter­
val between two positive input edges is shorter than a given value stored in 
MIN. If this is the case, the error byte ERR is set to 1. 

Initialization of the Timer_A: Cont. Mode, /1, interrupt 

enabled, MCLK - 1.04BMHz. Output Units 0 and 1 not used. 

INIT MOV #ISMCLK+CLR+TAIE,&TACTL ; Prepare Timer_A 

MOV #OMOO+CCIE,&CCTLO CCRO: timing only 

MOV #OMOO+CCIE,&CCTL1 CCR1: timing only 

MOV #CMPE+SCS+CAP+CCIE,&CCTL2 ; CCR2: capt. TA2 

MOV #20971,&CCRO delta to 20ms 

MOV #l7476,&CCRI delta t1 = 16. 6667ms 

BIS.B #TA2,&P3SEL P3.5 (CCI2A) Timer.-A input 

BIS #MCONT,&TACTL Start initialized timer 

Continue 

C/C Block 0 uses a repetition rate of 20971 cycles (20ms) 

TIMMODO .EQU 

ADD 

RETI 

$ 

#20971,&CCRO 

Start of handler6 

Prepare next INTRPT 

TaskO starts here 

Interrupt handlers for Capture/Compare Blocks I to 4. 

(The C/C Blocks 3, 4 and timer overflow are not shown) 

$ Interrupt latency time 
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ADD &TAIV,PC Add Jump table offset 

RETI TAIV - 0: No interrupt 

JMP TIMMOD1 TAIV ~ 2: C/C Block 1 

JMP TIMMOD2 TAIV = 4: C/C Block 2 

JMP TIMMOD3 TAIV - 6: C/C Block 3 

JMP TIMMOD4 TAIV - 8: C/C Block 4 
TIMOVH TAIV = 10 : Timer OVFL 

C/C Block 1 uses a repetition rate of 17476 cycles (16.67ms) 

TIMMODI .EQU 

ADD 

RET I 

$ 

#17476, &CCR1 

vector 2: C/C Block 1 

Add time interval 

Taskl starts here 

Back to main program 

C/C Block 2 checks if the time interval between two pos. 

input edges is shorter than a given value in MIN 

TIMMOD2 .EQU 

BIT 

JNZ 

PUSH 
SUB 

ADD 

CMP 

JLO 
COV2 

RET2 
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MOV.B 

BIC 

RETI 

$ 

#COV, &CCTL2 

COV2 

&CCR2 

OLDC2,0(SP) 

@SP,OLDC2 

@SP+,MIN" 

RET2 
#I,ERR 

#COV, &CCTL2 

Vector "4: C/C Block 2 

Frequency much too high? 

Yes, overflow I 

Time of last transition 

Time difference to stack 

Old + difference = new 

Time interval >= MIN 

Yes, ok 
No, set error state 1 

Reset overflow flag 

Back to main program 

The tasks started by the interrupt handlers are not shown; these include: 

o Incrementing software counters 

o Checks after regular time intervals (keyboard, watchdog reset, etc.) 

o Input tests 

o Update of status bytes, etc. 

o Measurementintervals 

o Frequency generation with the output units 



6.3.3.2 The Up Mode 

The Timer A 

The up mode is mainly used for the generation of asymmetric PWM signals. 
These PWM signals are absolutely synchronous due to the single timer regis­
ter used for all signals. The period of the PWM repetition frequency is loaded 
into the period register (CCRO) and the pulse width for each ofthe outputs, TA 1 
through TA4, is loaded into the capture/compare registers, CCR1 through 
CCR4. The formula for a given timer period, t, with respect to the correspond­
ing cycle value neeRO is (neeRO < 65536): 

(nccRO + 1) xk 
t = --+- nCCRO = t xfcLK_1 

k fCLK 

The formula for a given pulse width tpw and the corresponding cycle value n 
(the content of CCRx) is (n < 65536): 

n xk tpw xfeLK 
tpw = -- --+- n = 

fCLK k 

As long as no modifications to the period register or the capture/compare reg­
isters are made, the PWM signals are repeated without any CPU intervention 
necessary. The number of timer clock cycles between two equal timer register 
contents is neeRO +1. 
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OFFFFh 

CCROr---------~5a~--------.. ~------~ 

CCR2~~----~--~~~--~--_H~~-----­

Oh~~----+---~~----~--~~~------

CCR1: 
TA1 output 1--'-__ +-__ -/--' __ ........ __ --+_ .... _ output Mode 2: PWM Toggle/Reset or 

Output Mode 3: PWM Set/Reset 

CCR2: 
TA2 Output I-+--"I--+-I--.."...--P--""""'" Output Mode 8: PWM Toggle/Set or 

Output Mode 7: PWM Reset/Set 

CCRO: 
TAO Output 1--........ - Output Mode 4: PWM Toggle 

~+----4--~~~--~---*~--
E U2 E U2 Interrupts Generated 

EQUO EQU1 EQU1 EQUO 
TIMOV TIMOV 

Figure 6-13. Three Different Asymmetric PWM Timings Generated With the Up Mode 
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If the timer register (TAR) reaches the content of capture/compare register 
CCRx (EQUx .. 1), with compare mode selected for capture/compare block x, 
then the content of the output unit x is modified. Depending on the output mode 
defined in the control register CCTLx, the output is toggled, set, reset, or not 
affected. If the interrupt for the capture/compare block is enabled, an interrupt 
is also generated. 

Ifthe timer register (TAR) counts up to the content ofthe period register CCRO 
(EQUO ... 1), then the timer register (TAR) is reset to 0 with the next timer clock 
and the content of the output units are toggled, set, reset, or not affected, de­
pending on the selected output mode in control register CCTLx. The timer reg­
ister continues with the counting starting at o. If the interrupt for the reaching 
of CCRO is enabled, then an interrupt is also requested. See Figure 6-13. 
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Notes: 

The three interrupts caused by the TAIFG flag, the CCIFGO flag, and CCIFGx 
flags do not occur simultaneously if used with the up mode: 

o The CCIFGx flag is set when the capture/compare register x equals the 
timer register (TAR) (EQUx = 1) 

o The CCIFGO flag is prepared when the timer register equals the period 
register CCRO (EQUO = 1 ). The CCI FGO flag is delayed one timer clock cycle 
and set, therefore, together with the TAIFG flag (timer register TAR contains 
0) 

o The TAIFG flag is set when the timer register is reset to 0 (TIMOV = 1) 

This means for the up mode: only one interrupt handler is necessary together 
for the TAIFG flag and the CCIFGO flag. 

If the period register CCRO contains 0, then the timer register TAR continues 
counting until it also reaches O. Then the counting stops until a nonzero value 
is written to CCRO. 

Example 6-22. Three Different Asymmetric PWM Timings Generated With the Up Mode 
The software for the example illustrated in figure 6-13 is shown below. cap­
ture/compare block 1 generates a negative pulse with output unit 1, capture! 
compare block 2 generates a positive pulse with the output unit 2 and capture! 
compare block 0 (the period register block) outputs an evenly spaced output 
pulse with its output unit o. The initializing part of the example Is also shown. 
If no tasks must be executed (here tasks 0, 1, and 2), the interrupts may be 
switched off; the pulse generation continues. 

Initialization of the Timer-A: Up Mode, /1, interrupt 

enabled, MCLK = 3.8MHz 

INIT MOV 

MOV 

MOV 

MOV 

MOV 

MOV 

MOV 

BIS.B 

BIS 

#ISMCLK+D1+CLR+TAIE,&TACTL ; Prepare Timer_A 

#OMT+CCIE,&CCTLO ; CCRO: toggle TAO 

#OMTR+CCIE,&CCTL1 ; CCR1: toggle/reset TAl 

#OMRS+CCIE,&CCTL2 ; CCR2: reset/set TA2 

#190-1,&CCRO fccrO = 20kHz 

#114, &CCR1 

#48, &CCR2 

tpw1 - 30us 

tpw2 - 12.6us 

#TA2+TA1+TAO,&P3SEL; Enable TA2,TA1 TAO 

#MUP,&TACTL ; Start init. timer. Up Mode 
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; Continue 
Interrupt handler for the Period Register CCRO 
C/C Block 0 outputs a signal with 1/2 of the frequency 
of the other C/C Blocks (50%/50%). It also increments the 
RAM extension of the Timer Register TIMAEXT. It is 
initialized to: toggle (EQUO) 

TIMMODO .EQU 
INC 

RETI 

$ 

TIMAEXT 
start of handler 
Incr .. timer extension 
TaskO starts here 

Interrupt handlers for Capture/Compare Blocks 1 to 4. 

TIM_HND .EQU $ Interrupt latency time 
ADD &TAIV,PC Add Jump table offset 
RETI TAIV - 0: No interrupt 
JMP TIMMODl TAIV - 2: C/C Block 1 
JMP TIMMOD2 TAIV - 4 : C/C Blcck 2 
JMP TIMMOD3 TAIV = 6 : C/C Block 3 
JMP TIMMOD4 TAIV = s: C/C Block 4 

TIMOVH TAIV - 10: Timer OVFL 

C/C Block 1 outputs a negative pulse automatically. It is 
; initialized to: toggle/reset (EQU1/EQUO) 

TIMMODl .EQU 

RETI 

$ Vector 2: C/C Block 1 
Task1 starts here 
Back to main program 

C/C Block 2 outputs a positive pulse automatically. It is 
initialized tc: reset/set (EQU2/EQUO) 

TIMMOD2 .EQU $ 

RETI 
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Vector 4: C/C Block 2 
Task2 starts here 
Back to main program 

The tasks started by the interrupt handlers are not shown; these may include: 
o Pulse width modulation for control purposes with the output units 
o DC generation (DAC) with the output units 
o Tasks like those shown for the continuous mode, but with special treat­

ment due to the short period. The RAM extension (TIMAEXT) must there­
fore be taken into account for measurement. 
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6.3.3.3 The Up/Down Mode 

The up/down mode is a symmetric PWM mode. Up to four absolutely synchro­
nous PWM outputs may be generated. The advantage of this PWM mode is 
a minimum of generated harmonics due to the distributed switching of the out­
put units. The half period of the PWM repetition frequency is loaded into the 
capture/compare register (CCRO) and a calculated number for the pulse width 
for each one of the used outputs (TAx) is loaded into the capture/compare reg­
isters (CCRx). 

The formulas for a given time period, t, of the Timer_A frequency with respect 
to the corresponding cycle value, nCCRO, are: 

2 xnCCRO xk t xfcLK 
t = -+ nCCRO = ---

fCLK 2 xk 

The formulas for a given pulse width time, tpw, with respect to the correspond­
ing cycle value, n, are: 

tpw = 
2 xn xk 

fCLK 
-+ n = 

tpw xfcLK 

2 xk 

As long as no modifications to the period register or the capture/compare reg­
isters are made, the PWM signals are repeated indefinitely without any CPU 
intervention. 

OFFFFh 
CCRO~----~~~------------~--~-----.~ 

CCR1~----~~~----------~~~~-----+-

TA3 Output COR3: 
t-~I--i--I--I--I-_""--I'---I--+--+-___ Output Mode 8: PWM Toggle/Set or 

Output Mode 4: Toggle 

i--i-- COR1: 
TA 1 Output r---i;---+-i--F==t=~\Ill..:::;t==:.q....;..-t--i-- Output Mode 2: PWM Toggle/Reset or 

Output Mode 4: PWM Toggle 
TIMOV EQU3 I EQUOI EQU3 TIMOV EQU3 I EQUOI EQU3 

EQU1 EQU1 EQU1 EQU1 Interrupts Generated 

Figure 6-14. Two Different Symmetric PWM Timings Generated with the Up/Down Mode 
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If the timer register (TAR) reaches the content of capture/compare register, 
CCRx (EQUx = 1), and the corresponding capture/compare block is switched 
to the compare mode, then the content of output unit x is modified (toggled, 
set, reset, or not affected) depending on the output mode of the control register 
(CCTLx). If the interrupt for the capture/compare block is enabled, then an in­
terrupt is also generated. 

The timer register TAR reverses its count direction when it reaches the content 
of the period register (CCRO), and the content of output unit x is modified again 
(toggled, set, reset, or not affected) depending on the output mode of the con­
trol register (CCTLx). Ifthe interruptforthe reaching of CCRO is enabled, then 
an interrupt is also requested. If the timer register reaches the value 0 again, 
it starts counting upward with the next timer clock cycle. If the interrupt for the 
reaching of 0 is-enabled (TIMOV = 1), then an interrupt is also requested with 
the TAIFG flag. See Figure 6-14. 

Note: 

If the period register (CCRO) contains 0, then the timer register (TAR) contin­
ues counting until it also reaches O. Then the counting stops until a nonzero 
value is written to CCRO. 

Example ~23. Two Different Symmetric PWM Timings Generated With the Up/Down 
Mode 

TlMAEXT .EQU-

The software for the example illustrated in figure 6-,-14 is shown below. cap­
ture/compare block 3 generates a negative pulse with output unit 3 at the out­
put TA3. capture/compare block 1 generates a positive pulse - symmetrically 
to the zero point - with the output unit 1 atthe output TA 1. The initializing part 
of the example is also shown. If no software tasks must be executed, the inter-

_ rupts for the capture/compare blocks 0, 1, and 3 may be switched off. 

200h ; RAM extension (bits 17 - 23) 

Initialization of Timer_A: Up/Down Mode, /2, interrupt 

; enabled, MCLK = 3.BMHz 

INIT MOV #ISMCLK+D2+CLR+TAIE,&TACTL ; Prepare Timer_A 

MOV tOMOO+CCIE,&CCTLO ; CCRO: normal I/O pin 

MOV #OMTR+CCIE,&CCTLl ; CCR1: toggle/reset TAl 

MOV #OMTS+CCIE,&CCTL3 ; CCR3: toggle/set TA3 

MOV U90,&CCRO fccrO = 5kHz 

MOV U14,&CCRl tpwl = l20.0us 

MOV #48, &CCR3 tpw3 = 50. Sus 
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BIS.B 

BIS 

#TA3+TA1,&P3SEL 

#MUPD,&TACTL 

Enable TA3 and TAL outputs 

start initialized timer 

i Continue 

Interrupt handler for the Period Register CCRO 

Block a sets the RAM extension TlMAEXT of the Timer Register 

(count down). The LSB of TlMAEXT indicates the 

count direction: LSB ~ 0: count up 

LSB 1: count down 

This indication is necessary if the Capture Mode is used. 

The count direction indication is self-synchronizing 

TIMMODO .EQU 

BIS 

RETI 

$ 

n,TlMAEXT 

start of handler 

LSB ~ 1: count down now 

TaskO starts here 

Interrupt handlers and decision (only 3 handlers shown) 

TIM_HND .EQU $ 

ADD &TAIV,PC 

RETI 

JMP TIMMOD1 

JMP TIMMOD2 

JMP TIMMOD3 

JMP TIMMOD4 

Timer Register reached zero: 

TIMOVH .EQU 

INC 

RETI 

$ 

TlMAEXT 

LSB is 

Interrupt latency time 

Add Jump table offset 

TAl V = 0: No interrupt 

TAIV 2: C/C Block 

TAIV 4: C/C Block 

TAIV 6: C/C Block 

TAIV = 8: C/C Block 

set to a (count up) 

TIMOV interrupt 

TAIV - 10: Block 5 

1 

2 

3 

4 

C/C Block 1 outputs a positive pulse automatically. 

Initialized to: toggle/reset (EQU1/EQUO) 

TIMMOD1 . EQU $ Vector 2: C/C Block 1 

The Timer A 
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R~TI 

Taskl starts here 

Back to main program 

C/C Block 3 outputs a negati~e pulse automatically. 

Initialized to: toggle/set (EQU3/EQUO) 

TIMMOD3 .EQU $ 

RET! 

Vector 6: C/C Block 3 

Task3 starts here 

Back to main program 

The tasks started by the interrupt handlers are not shown; these may be: 

o Symmetric pulse width modulation for control purposes with the output 
units 

o DC generation (DAC) with the output units 

o Tasks like those shown for the continuous mode, but with special treat­
ment due to the changing count direction and short period. The RAM ex­
tension TIMAEXT must therefore be taken into account for measure­
ments. 

6.3.3.4 The Stop Mode 

The stop mode halts the timer register without the change of any control regis­
ter. The timer actions can then continue on from exactly where they were 
stopped. 

Example 6-24. The Stop Mode 

BIC 

BIS 
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The limer_A running in up/down mode is stopped. Afte{ a certain time, it 
should continue from exactly where it was halted, incldding the count direction. 

#MUPD,&TACTL 

#MUPD,&TACTL 

Halt Timer_A 

Proceed without Timer~ 

Continue with Up/Down Mode 
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6.3.3.5 Applications of the Timer Modes 

Table 6-11 gives an overview of the different applications of the Timer _A 
modes, together with the capture/compare registers. 

Table 6-11. Combinations of Timer_A Modes 

COMBINATIONS CAPTURE/COMPARE REGISTER 0 CAPTURE/COMPARE REGISTER X 

Continuous Mode 

Cl Interrupt timing 

Cl Slow PWM generation 

Compare register Cl TRIAC timing 

Cl SW/HW UART (transmitter) 
Same as for capture/compare register 0 

Cl SW/HWSPI 

Cl Capturing of internal and external events 

Capture register Cl SW/HW UART (receiver) 

Cl Revolutions measurement 

Up Mode 

0 Interrupt timing 

0 Asymmetric PWM generation 

Compare register Fixed to period register Cl Digital motor control 

Cl TRIAC timing 

Cl SWIHW UART (transmitter) 

Cl Capturing of iilt. and ext. events 

Capture register Not possible due to period register function Cl SW/HW UART (receiver) 

Cl Revolutions measurement 

UpJDown Mode 

Compare register Fixed to period register Cl Symmetric PWM generation 

Cl Digital motor control 

Capture register Not possible due to period register function Cl (Capturing of internal and external events is 
difficu~ due to up/down counting) 
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6.3.4 The TlmecA Interrupt Logic 

6.3.4. 1 Interrupt Sources 

Several interrupt sources exist within the limecA hardware. An interrupt is re­
quested only if the interrupt of the corresponding timer block is enabled (inter­
rupt enable bit TAlE or CCIEx is set) and the general interrupt enable bit GIE 
(SR.3) is also set. If more than one interrupt is pending, then the interrupt with 
the highest priority is first in line for servicing. An interrupt is also requested 
immediately if any interrupt enable bit (CCIEx or TAlE) is set and the corre­
sponding interrupt flag and GIE (SR.3) were already set. 

Timer Register Block - The timer interrupt flag TAIFG requests an interrupt 
if the timer register reaches 0 and the interrupt enable bit TAlE is set. The 
TAIFG flag is set, dependent on the actual mode: 

a Continuous Mode - after the overflow from OFFFFh to OOOOh 

a Up Mode - one timer clock after the timer period in CCRO is reached 

a Up/Down Mode - when the value OOOOh is reached during the count-
down 

Capture/Compare Block x - The capture/compare interrupt Flags CCIFGx 
are set if one of the following conditions is met. An interrupt is requested only 
if the corresponding interrupt enable bit CCIEx arid GIE are also set. 

a . Capture Mode - an input value is captured in register CCRx (the capture 
condition at the selected input came true) 

a Compare Mode - the timer register counted to the value contained in 
register CCRx 

6.3.4.2 Inte"upt Vectors 
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Two interrupt vectors are associated with the limer_A module. 

a The single-source vector for the capture/compare register CCRO has the 
highest priority of alilimer_A interrupts. The capture/compare register 
CCRO is used to define the timer period during the up mode and the up/ 
down mode. Therefore, it requires the fastest service. This interrupt vector 
is located at address OFFF2h. 

a The multi-source interrupt vector for all other interrupt sources of the lim­
er_A (capture/compare registers x and limer Overflow). A 16-blt vector 
word - the timer vector register (TAIV) --- indicates the interrupt with the 
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highest priority. The register TAl V is normally added to the Program Count­
er allowing a simple and fast decision without the need for a time consum­
ing skip chain. See the section explaining the timer vector register (TAIV) 
for details. The mUlti-source interrupt vector is located at address OFFFOh. 

All interrupt flags (CCIFGx and TAIFG) can be accessed by the CPU. The in­
ternal priorities of the Timer _A are listed in Table 6-12 (for the MSP430x33x 
configuration). 

Table 6-12. Timer_A Interrupt Priorities 

INTERRUPT PRIORITY INTERRUPT SOURCE FLAG NAME VECTOR ADDRESS 

Highest Capture/Compare Register 0 CCIFGO OFFF2h 

Capture/Compare Register 1 CCIFGl OFFFOh 

Capture/Compare Register 2 CCIFG2 OFFFOh 

capture/Compare Register 3 CCIFG3 OFFFOh 

Capture/Compare Register 4 CCIFG4 OFFFOh 
Lowest TImer Overflow TAIFG OFFFOh 

Example 6-25. Timer_A Vectors 

The following software shows a possible definition for the nmer_A vectors. 

Timer_A Interrupt vectors 

. SECT 

. WORD 

. WORD 

. SECT 

. WORD 

"TIMVEC",OFFFOh 

TIM_HND 

TIMMODO 

"INITVEC",OFFFEh 

INIT 

Timer-A Vector Address 

Vector for all Blocks except 0 

Vector for Timer Block 0 

RESET Vector 

Start address 
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6.3.5 The Output Units 

Each capture/compare register (CCRx) is connected to an output unit x that 
controls the corresponding pulse output (TAx). Eight output modes exist and 
can be selected individually for each capture/compare block by the three out­
put mode bits (OUTMODx) located in the capture/compare control register 
(CCTLx). For Table 6-13, it is assumed, that the corresponding control signal 
P3SEL.y is setto 1. See Figure 6-17 for details. The rightmost column of Table 
6-13 indicates the behavior of the output TAx if the EQUx and EQUO signals 
are valid simultaneously. 

Table 6-13. Output Modes of the Output Units 

OUTPUT MODE 

0 

1 

2 

3 
4 

5 

6 

7 
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MODE NAME ACTION FOR EQUx ACTION FOR EQUO ACTION FOR EQUx .and. EQUO 

Output only TAx is set according to bH OUTx (CCTLx.2) 

Set Sets output TAx No action Sets output TAx 

Toggle/Reset Toggles output TAx Resets output TAx Sets output TAx 

Set/Reset Sets output TAx· Resets output TAx Sets output TAx 

Toggle Toggles output TAx No action Toggles output TAx 

Reset Resets output TAx No action Resets output TAx 

Toggle/Set Toggles output TAx Sets output TAx Resets output TAx 

Reset/Set Resets output TAx Sets outpUt TAx Resets output TAx 

The dependence ofthe output units on the EQUO signal (shown in Table 6-13) 
limits the output unit 0 to the following output modes if the up mode or up/down 
mode is used (the other four output modes output the static signals shown in 
the rightmost column of Table 6-13). 

o Output Mode 0 

Output Mode - TAO outputs content of the OUTx bit (CCTLx.2) 

o Output Mode 1 

Set output - TAO is set from the EQUO signal 

o Output Mode 4 

Toggle output - TAO is toggled from the EQUO signal 

o Output Mode 5 

Reset output - TAO is reset from the EQUO signal 

If the output mode needs to be changed during the program run (from Setto 
Reset, for example), then the output Signal TAx will not change.its state falsely 



Mode Transitions 

Output Modes· 0 

Output only 

The Timer A 

if at least one of the three OUTMOD bits retains the 1 state. If this is not the 
case, (with a change from output mode set to toggle, for example - mode 1 
to mode 4), then for a transition time, the output mode 0 may be addressed and 
will transfer the content ofthe bit OUTx into the output flip-flop. This may cause 
glitches at the output terminal. 

Figure 6-15 shows the unsafe output mode changes. It indicates that all 
changes via the output mode 7 are safe. 

2 3 4 5 6 7 

Set ToggleIResat SetIR8S8I Toggle Reeet Toggle/Set ReeetlSet 

Figure 6-15. Unsafe Output Mode Changes 

Example 6-26. Safe Output Mode Changes 

The following code may be used for safe changes. 

To avoid Output Mode 0, the change is made via Output Mode 7 

Example: Output Mode x to 4 

BIS 

BIC 

#OMRS,&CCTL1 

#OMSR,&CCTL1 

Set Output Mode 7 (OMRS) 

Reset LSBs with Output Mode 3 

If one of the safe changes is possible, then only the different bits are changed: 

Change output Mode from Set to Reset (1 to 5) 

BIS #OMT,&CCTL1 ; Set MSB (OMT) for 1 to 5 

Change output Mode from Reset to Set (5 to 1) 

BIC #OMT,&CCTL1 ; Reset MSB (OMT) for 5 to 1 

If, for initialization purposes, a certain state of the output signal TAx is neces­
sary, then the output mode 0 can be used. For the output mode toggle, the out­
put signal OUTx is reset: 

Reset output signal TAl and switch output Unit 1 to toggle 

mode 
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BIC 

BIS 

Timer Clock 

EQUx 

#OMRS+OUT,&CCTLl 

#OMT,&CCTLl 

OUTl = 0, output mode = 0 

Start toggle mode wit OUTl = 0 

If the input signals EaUO and EaUx occur simultaneously. then the output sig­
nal Outx behaves as shown in the rightmost column of Table 6-13. 

Figure 6-16 illustrates the simplified structure of the output units. All of the in­
puts that influence the behavior of the output Outx are shown. The reason that 
some mode changes are safe and some are not is the NOR gate that decodes 
the output mode o. 

OUTx(CCTLx.2j 

LogIc 
Output Slgnel Outx 

EQUO output~----~~~---; 

~ 
Output Mode Bits 

(CCTLx.5-7) 

Timer Clock -+---i> 

Jl 
Output Mode 0 

Figure 6-16. Simplified Logic of the Output Units 
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6.3.5.1 Output Unit VOs 

The bits located in the selection register P3SEL (address 01 Bh) and the CAPx 
bits (CCTLx.8) define the function of the Port3 pins (the MSP430C/P33x con­
figuration is shown - Other family members may use a different implementa­
tion, but the principle is the same). 

Table 6-14. Timer_A IIO-Port Selection 

P3SEL.y=O 
P3SEL.y= 1 P3SEL.y= 1 
CAPx.O CAPx= 1 

PortVO P3.0 Port 1/0 P3.0 Porti/O P3.0 

PortVO P3.l Porti/O P3.1 Porti/O P3.l 

Port 1/0 P3.2 Timer Ciock input TACLK Timer clock Input TACLK 

PortVO P3.3 Output TAO capture input CCIOA 

Port 1/0 P3.4 Output TAl Capture Input CCI1A 

Port 1/0 P3.5 Output TA2 capture input CCI2A 

PortVO P3.6 Output TA3 Capture input CCI3A 

Port 1/0 P3.7 Output TA4 Capture input CCI4A 

Figure 6-17 illustrates the Timer _A interface to the external world. Six Port3 
I/O terminals (MSP430C33x) may be selected individually as normal 
Port3 I/Os or as Timer_A I/Os. The control bit P3SEL.y selects the function: 

o P3SEL.y=0 

The I/O pin Is connected to the Port3 module (input or output) 

o P3SEL.y = 1 

The 1J0pin is connected to the Timer_A module (TAx output or 
CClxA input) 
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P3SEL.y 

P3DIR.y ---I--i""", 

CAP.x --+----C,""" 

P3OUT.y --+---,""" 

110 Direction 

Port31/0 

PWMOutput 

I CaPlrelnput 

">----4t-<~> P3.y I TAx I CClxA 
Oua---I--i""", 

P3IN.y ---1---4"_---------. 
I y=X+ 3 1 

Capture Input CClxA 

Figure 6-17. Connection of the Port3 Terminals to the Timer_A (MSP430C33x 
Configuration) 

Example 6-27. Port3 Output Control 

The initialization for the use of the TA2 and TA 1 outputs for PWM is shown. 
They are disconnected from the Port3 logic by the setting of the bits P3SEL.5 
and P3SEL.4. 

Initialize the Timer_A: MCLK, Stop Mode, INTRPT enabled, /2 

MOV #ISMCLK+D2+CLR+TAIE,&TACTL ; Define Timer_A 

MOV #200-1,&CCRO ; Define period 200 cycles 

Initialize Control Registers CCTL2 and CCTL1: Reset/set 

mode, INTRPT enabled, Compare Mode, Clear flags 

MOV #OMRS+CCIE,&CCTLl ; CCIFGl = 0, 

MOV #OMRS+CCIE,&CCTL2 ; CCIFG2 = 0 

Initialize capture Compare Registers to PWM duty 
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MOV 

MOV 

nOO,&CCRl 

#50,&CCR2 

50% PWM 

25% PWM 

The Timer A 
-; 

Prepare Timer~ Output Units TA2 and TAl (P3.5 and P3.4) 

MOV.B #TA2+TAl,&P3SEL Connect to Output Units 

BIS #MUP,&TACTL ; Start Timer_A in Up Mode 

6.3.5.2 Pulse Width Modulation in the Continuous Mode 

The continuous mode is not intended for PWM, but may be used for this pur­
pose in two ways. The timing can be controlled from: 

o One capture/compare register only 

o One capture/compare register and additional capture/compare register 0 

6.3.5.2.1 One Capture/Compare Register only 

The same capture/control register x sets and resets the outputTAx. The output 
modes toggle or altemating set and reset are used. For the second method 
(Set and Reset), the interrupt handler modifies the output mode in addition to 
the adding of the time interval to the register CCRx. PWM values near 0% and 
100% must be realized with software. See also Section 6.3.6 The Limitations 
of TimecA. 

The output modes and their usability for the first method of PWM in the continu­
ous mode are listed below: 

o Set Mode - used to get the output signal into the set state. It is necessary 
to alternate with the reset mode to get a PWM output signal 

o Toggle/Reset - not usable due to the influence of capture/compare reg­
ister 0 

o Set/Reset - not usable due to the influence of capture/compare register 
o 

o Toggle - usable, but a defined start position must be initialized. Other­
wise, an inverted output signal is generated 

o Reset Mode - used to get the output signal into the reset state. It is nec­
essary to altemate with the set mode to get a PWM output signal 
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o Toggle/Set - not usable due to the influence of capture/compare regis­
ter 0 

o Reset/Set - not usable due to the influence of capture/compare register 
o 

OFFFFh I------------:~ ....... ---------~r_--

Oh~~+_r_-_+_r--+-+-~~--~~-~~---~~--

Interrupt Event: 
EQU1 

TA1 Output Signal 
Toggle or Alternating 

Set and R_t 

Output Mode To Set Output Mode To Reaet Change 01 Pulae Width 

Figure 6-18. PWM Generation in the Continuous Mode (CCR1 only controls TA 1) 

6.3.5.2.2 One Capture/Compare Register and Additional capture/Compare Register 0 

The capture/compare register CCRO has the same function as with the other 
two timer modes: it switches back the PWM output TAx into a defined state. 
Figure 6-19 shows PWM generation using the reset/set mode. This method 
allows PWM with higher repetition rates than the method described previously. 
With no pulse width modifications, the time interval between two interrupts are 
always identical. 

The capture/compare register 0 may be used for more than one PWM output 
used this method. The output frequency of capture/compare register 0 may be 
chosen in such a way that also supports other purposes - an auxiliary fre­
quency output at TAO, for example. See also Figure 6-13. 

The output modes and their usability for the second method of the continuous 
mode are listed below: 

o Set - used to get the output signal TAx Into a defined set state initially. 

o Toggle/Reset - usable, self-synchronizing PWM 

o Set/Reset - usable, self-synchronizing PWM 
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o Toggle-not usable dueto the missing influence of capture/compare reg­
ister 0 

o Reset Mode - used to get the output signal TAx into a defined reset state 
initially 

o Toggle/Set - usable, self-synchronizing PWM 

o Reset/Set - usable, self-synchronizing PWM 

OFFF~ ~----------------~~~------------------~r----

Interrupt Events: 
EQUO Sets TA1 

EQU1 ReHtsTA1: 
Toggle/Set or Reset/Set 

TA1 OUtput SIgnal 

Mode To Reaet 
or Toggle by 

EQU1 Handler 

Figure 6-19. PWM Generation in the Continuous Mode (CCRO and CCRl control TA 1) 

Example 6-28. PWM near 0% and 100% 

PWMper .EQU 

The PWM output values near 00/0 and 1 00% must be realized with special soft­
ware code. A simple way to do this is to use the timer vector register (TAIV) 
once more after each completed interrupt handler to check to see if another 
timer interrupt is pending. The software example below shows this solution. 
It is applicable to all PWM modes. See figure 6-19. It saves 9 to 11 cycles if 
an additional Tlmer_A interrupt is pending. 

333 ; PWM period (Timer Clock cycles) 

Interrupt handler for the Period Register CCRO. 

To handle PWM duties near 0% or 100% a check is made if 

other timer interrupts are pendent: return to TIMLHND 

On-Chip Peripherals 6-69 



TIMMODO .EQU 

INC 

ADD 

$ 

TIMAEXT 

#PWMper,&CCRO 

start of handler 

Incr. timer extension 

Add period length to CCRO 

TaskO starts here 

Fall through to TIM_HND 

Interrupt handlers for Capture/Compare Blocks 

TIlLHND .EQU $ Interrupt latency time 

ADD &TAIV,PC Add Jump table offset 

RETI TAIV = 0: No interrupt 

JMP TIMMOD1 TAIV = 2: C/C Block 1 

JMP TIMMOD2 TAIV = 4: C/C Block 2 

JMP TIMMOD3 TAIV = 6: C/C Block 3 

JMP TIMMOD4 TAIV = 8: C/C Block 4 

TIMOVH TAIV = 10: Block 5 

C/C Block 1 returns to the timer interrupt handler after 

completion to look for pendent timer interrupts 

TIMMOD1 .EQU 

ADD 

JMP 

$ 

#PWMper,&CCR1 

Vector 2: C/C Block I 

Add period length to CCR1 

Task! starts here 

Pendent INTRPTs ? 

6.3.5.3 Pulse WIdth Modulation In the Up Mode 
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The up mode permits all pulse widths from 0% to 100% without any special 
treatment necessary. The calculation software delivers results ranging from 0 
to nCCRO+ 1. Like Figure 6-20 illustrates, the full range of PWM output signals 
is possible. 

The output modes and their usability for the up mode are listed below. 

D Set Mode - used to get the output signal initially into a defined set state. 

D Toggle/Reset - outputs self-synchronizing negative pulses without 
CPU activity. 



Output Mode 
TAR 

Toggle/Set TAx 
Reset/Set 

Toggle/Reset TAx 
SetlReset 
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o Set/Reset - outputs self-synchronizing negative pulses without CPU ac­
tivity. 

o Toggle - this mode cannot be used with the up mode. It outputs a signal 
with 50% duty and doubled period for all contents of register CCRx, except 
for CCRx > CCRO. These contents retain the la~ state of output Outx due 
to the missing EQUx signal. 

o Reset Mode - used to get the output signal initially into a defined reset 
state. 

o Toggle/Set - outputs self-synchronizing positive pulses without CPU ac­
tivity. 

o Reset/Set - outputs self~synchronizing positive pulses without CPU ac­
tivity. 

Figure 6-20 illustrates the four usable output modes for PWM in the up mode. 

Note: 

No interrupts are generated from the capture/compare blocks x for CCRx '" 
o and for CCRx > CCRO. For these two cases, a special treatment is neces­
sary. See the software examples in section Software Examples for the Up 
Mode. 

CCRx=O CCRx=1 CCRx=2 CCRx=CCRO CCRx>CCRO 
4 

100% 80% 

No EQUx Interrupt EQUx No EQUx Interru 

Figure 6-20. PWM Signals at TAx in the Up Mode (CCRO contains 4) 
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6.3.5.4 Pulse Width Modulation in the UplDown Mode 

The output modes and their usability for the. up/down mode are listed below. 

D Set Mode - used to get the output signal initially into a defined set state. 

D Toggle/Reset - outputs self-synchronizing positive pulses without CPU 
activity. The limer_A hardware can produce all of the theoretically pos­
sible nCCRO+ 1 states. But special treatment is necessary if register CCRx 
contains O. Then the output signal Outx toggles only once per period, 
which means the output shows a 50% duty and not 0%. See figure 6-21. 

D Set/Reset - cannot be used with up/down mode. 

D Toggle - should not be used with the up/down mode. 

D Reset Mode - used to get the output signal initially into a defined reset 
state. 

D Toggle/Set - outputs self-synchronizing negative pulses without CPU. 
activity. See Toggle/Reset, above, for restrictions. 

D Reset/Set - cannot be used with up/down mode. 

As figure 6-21 also shows, the missing PWM values of 0% for toggle/reset and 
100% for toggle/set can be output if CCRx contains a greater value than 
CCRO. 

Example 6-29. Pulse Width Modulation in the Up/Down Mode 

The checking software for output mode togglelreset is shown. All PWM values 
from 1 to nCCRO are valid. The value 0 is emulated by a number greater than 
nCCRO. R5 contains the calculated PWM value. 

PWM value in RS i.s checked to be in limits 1 to nCCRO 

CMP 

JHS 

MOV 

R5,&CCRO 

L$l 

&CCRO,RS 

If 0% PWM is needed: OFFFFh to R5 

L$l 
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TST 

JNZ 

RS 

L$2 

PWM value =< nCCRO? 

Yes, proceed 

No, upper limit (100% PWM) 

Zero value? 

No, proceed 



MOV 

L$2 

Output Mode 

Toggle/Set 

#OFFFFh,R5 Use largest, unsigned number 

Result in RS is in limits 

The Timer A· . 

The above correction limits the maximum period length nCCRO to OFFFEh. 

Figure 6-21 illustrates the two possible PWM modes for the up/down mode. 
They correct themselves after one period. max. 

50% Toggle/Reset 
~~~~~~~-+-++---~~~----~-r-----+-

33% 87% 100% 0% 

EQUO EQUO EQUO EQUO 

EQUx EQUx EQUx' 

Figure 6-21. PWM Signals at Pin TAx With the Up/Down Mode (CCRO contains 3) 

6.3.6 Limitations of the nmer_A 

This section details how to check to see if the limitations imposed by the archi­
tecture ofthe limer_A are not exceeded. The abbreviations used in this chap­
ter are: 

tintrpt 
Ptask 

Povhd 

fMCLK 
frep 
uCPU 
tlLmax 

Time for a complete interrupt sequence [sj 
Executed MCLK cycles for the task itself during the interrupt 

handler (e.g. incrementing of a counter). The necessary 
cycle count of an instruction depends on the addressing 
modes used. [sj 

Sum of MCLK cycles for the overhead of an interrupt sequence. 
See software overhead. [sj 

System clock frequency MCLK [Hz] 
Repetition rate of an event (e.g. an interrupt request) [Hzj 
CPU loading by a given task. Ranges from 0 to 1 (100%) 
Maximum (worst case) of the interrupt latency time due to other 

enabled interrupts [s1 
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The execution time tlntrpt for a complete interrupt sequence is the same for all 
three timer modes: 

t. = P,,,! + Povlul 
_pI foCLK 

The software overhead Povhd differs slightly for the three possible Timer_A in­
terrupt sources: 

o Capture/Compare Block CCRO 11 cycles (6 + 0 + 5) 

o Capture/Compare Blocks CCR1 to CCR4 16 cycles (6 + 5 + 5) 

o Timer Overflow TAIFG 14 cycles (6 + 3 + 5) 

The software overhead Povhd consists of three parts: 

• Getting to the first instruction of the interrupt handler by the CPU (6 
cycles) 

• Decision part: addition of timer vector register (TAIV) to the program 
counter and execution of the JMP instruction (0 to 5.cycles) 

• Return from interrupt instruction RETI (5 cycles). 

These software overhead cycles refer to the minimized software structure 
shown in all software examples. This structure is valid for all three timer 
modes. 

To get the complete interrupt loading, all execution times of the enabled inter­
rupts are summed up during one period. 

To getthe loading ucpu (ranging from 0 to 1 ) olthe CPU by the interrupt activity, 
the following formula Is used: 

ucpu = :£(t1nlrpt X frep) 

EXAMPLE 
Two Timerj. interrupts are active in continuous mode. The system clock fre­
quency fMCLK Is 2.097MHz. 

1) CCR1: repetition rate 1.2 kHz -16 cycles for the task, 16 cycles overhead 

2) CCR3: repetition rate 2.0 kHz - 22 cycles for the task, 16 cycles overhead 

( 16+16 22+16) 
ucpu = 1: 2.097E6 x 1.2E3 + 2.097E6 x 2.0E3 =0.0545 

. The above result means a CPU loading of approximate 5.5% due to the Tim­
er_A. 
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6.3.6.1 Limitations of the Continuous Mode 

Interrupt Handling - the shortest repetitive time interval, teRmin, between 
two similar timer events using a compare register CCRx is: . 

p ... """", + pOVHD 
t CRmin = t [/..max + 

fMCLK 

The shortest repetitive time interval, tCLmln, between two interrupt events using 
a capture register CCRx is: 

p ... """", + pOVHD 
tCLmin = t [/..max + 

fMCLK 

Tlie time, ttaskmax, for the capture mode is the time to read the captured time 
value and to test and reset the COV flag. 

o Software Ovemead - the interrupt loading ranges from one interrupt re­
quest (request from CCIFGx) up to six Interrupt requests (requests from 
TAIFG, CCIFGO, and all CCIFGx flags). 

o Output Units - for relatively high PWM repetition rates special treatment 
may be necessary for PWM duties near the limits 0% and 100%. 

Maximum Resolution: 

r = k 

fCLK 

where: r is equivalent to the period of the timer clock 

6.3.6.2 Limitations of the Up Mode 

o Interrupt Handling -the worst case sum of all the execution times need­
ed by all interrupts during one timer period must be less than the timer peri­
od (defined by the period register, CCRO). Otherwise, the interrupt part will 
loose the synchronization due to overload. 

This means: 

(nCCRO + 1) xk 
fCLK 

1 
>-­

fMCLK 

o Software Ovemead - the overhead ranges from zero (PWM is output 
automatically after the loading ofthe timer registers), upto six interrupt re­
quests per period (interrupt requests from TAIFG, CCIFGO, and from all 
CCIFGx flags). 
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o Outputunlts-aI/ values ranging from 0% to 100% for pulse width modu­
lation (PWM) are possible without special treatment. 

o Maximum Resolution - for a given repetition rate, frep, of the timer out­
put, a maximum resolution, r, is possible: 

r = /MCLKmax = neCRO + 1 
Irq> 

This means that with a maximum system clock frequency of 4 MHz and a repe­
tition rate of 20 kHz for a PWM output - due to audibility - a resolution of 200 
steps is possible (0.50/0). 

6.3.6.3 Limitations of the Up/Down Mode 
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o Interrupt Handling - the worst case sum of all the execution times need­
ed by all interrupts during one timer period must be less than the doubled 
period defined by the period register CCRO. Otherwise, the interrupt part 
will loose the synchronization due to overload. 

2 xnCCRO xk 1 >--
fCLK /MCLK 

,=2 x"ccRD Xk 
jCLK 

:E PIDB_ + povhd 
.=0 

o Software Overhead - the overhead ranges from zero (PWM is output 
automatically after the loading of the timer registers) up to ten interrupt re­
quests per full period (interrupt requests from TAIFG, CCIFGO, and 2 inter­
rupts per CCIFGx). 

o Output Units -the pulse width zero (0%) needs a special software treat­
ment. Without this, the hardware outputs a 50% pulse width instead. This 
behavior will be changed in future versions. 

o Maximum Resolution - for a given repetition rate, frep,.of the timer out­
put, a maximum resolution, r, is possible: 

fMCLKmtIX 
r = --- = neCRO 

2 xfrep 

This means that with a maximum system clock frequency of 4 MHz and a repe­
tition rate of 20 kHz for a PWM output - due to audibility - a resolution of 100 
steps is possible (1.0%). The resolution of the up/down mode is less than it is 
in the up mode. With the same timer clock, the up mode delivers (nCCRO+2) 
different pulse widths and the up/down mode delivers (nCCRO+ 1) different 
pulse widths - but with a reduced output frequency due to the up and down 
counting. This means the resolution is approximately one half the resolution 
of the up mode. 
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6.3.7 Miscellaneous 
The frequencies generated by the Timer _A may also be used as the timebase 
lor other tasks il defined appropriately: 

o Serial Communication Interface (SCI) - If for an MSP430, a second 
UART (RS232) is needed, then with a timer frequency of 19.2 kHz (8 x 2.4 
kHz) a software UART with 2400 baud can be implemented. This software 
UART uses the interrupt generated with the reaching of the content of the 
period register, CCRO (CCIFGO = 1), for the synchronization of the UART 
software. 

o Timing Intervals for Control- These important control values can also 
be derived from the timer frequency by an appropriate software prescal­
ing. This timing may be used for calculations, keyboard scan, measure­
ment starts, etc. 

6.3.8 Software Examples for the Continuous Mode 

FLLMPY .equ 

TCLK .equ 

This section shows several proven application examples for the Timer_A. 
Whenever possible, the abbreviations used in the Architecture Guide and 
Module Library are used. 

All examples use the value FLLMPY - it defines the master clock frequency 
fMCLK. 

/ MeLK = FLLMPY x/crystal 

If this frequency, fMeLl(, is too high for the application (for example: it causes 
values forthe timer registers exceeding the 16-bit range), then the Input divider 
of the Timer _A may be used. It allows a prescaling by 1, 2, 4, and 8. For pres­
caling by 2, the definitions at the start of each example are simply changed to: 

100 

FLLMPY*32768/2 

FLL multiplier for 3.2768MHz 

; Timer Clock = 1.6384MHz 

The Input Divider D2 is used to get MCLK/2 for the TCLK 

MOV #ISMCLK+D2+TAIE+CLR,&TACTL ; Use D2 divider 

Note: 

The software and hardware examples shown here are specific to the 
MSP430C/P33x family. Other MSP430 family members may use other I/O 
ports and addresses for the Timer_A registers and signals. The program­
ming principles are unchanged - only address definitions may need to be 
modified. 
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The software examples were tested with the software simulator and an 
EVK330 evaluation kit. 

For all examples, the loading of the CPU is given. The terms used are defined 
below: 

o Overhead - the sum of necessary CPU cycles to get to the first instruc­
tion of the interrupt handler and to get back to the interrupted program se­
quence (wakeup cycles, storing of PC and SR, determination of the inter­
rupt source, and RETI cycles) 

o Task - the CPU cycles used for the interrupt task: incrementing of a 
counter, calculations, etc. 

Advantages of the Continuous Mode: 

• Five complete, independent timings and captures are possible. 
Any mix is possible 

• No dominance by a period register 

Disadvantages of the Continuous Mode: 

• Software update necessary for the capture/compare registers to 
allow continuous run 

• Speed limit due to the necessary software update 

6.3.8.1 Common InltlallzaUon SubrouUne 
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The initialization subroutine INITSR is used by all examples. It executes the 
following tasks: 

o A check is made if the initialization subroutine is called after applying the 
supply voltage (the RAM word INITKEY does not contain OF05Ah) or after 
an external reset or watchdog reset (INITKEY contains OF05Ah). If the ap­
plying of the supply voltage caused the reset, then the RAM is cleared and 
the INITKEY is initialized to OF05Ah. 

o The system clock oscillator is programmed with the FLL multiplier N. This 
defines the MCLK frequency fMCLK. See above. 

o The correct DCa switch FN_x for the chosen MCLK frequency (fMCLK) is 
set. These switches allow the system clock oscillator to operate with one 
of the center taps of the digitally controlled oscillator (000). This way ihe 
DCa operates always in a nonsaturated condition. 
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o A delay of 30000 clock cycles is included to give the oscillator time to settle 
at the correct frequency. 

Common Initialization Subroutine 

Check the INITKEY value first: 

If value is OFOSAh: a reset occurred, RAM is not cleared 

otherwise Vcc'was switched on: complete initialization 

INITSR CMP 

INO 

INl 

JEQ 

CALL 

MOV 

MOV.B 

.if 

MOV.B 

.else 

.if 

MOV.B 

.else 

.if 

MOV.B 

.else 

MOV.B 

.endif 

.endif 

.endif 

MOV 

DEC 

JNZ 

RET 

#OFOSAh,INITKEY 

INO 

#RAMCLR 

#OFOSAh,INITKEY 

PUC or POR? 

Key is ok, continue program 

Restart completely: clear RAM 

Define 'initialized stateR 

#FLLMPY-l,&SCFQCTL Define MCLK frequency 

FLLMPY < 48 

#O,&SCFIO 

FLLMPY < 80 

#FN_2,&SCFIO 

FLLMPY < 112 

#FN_3,&SCFIO 

#FN_4,&SCFIO 

nOOOO,R5 

RS 

INI 

Use the right DCO current: 

MCLK < 1.SMHz: FN~ off 

1.SMHz < MCLK < 2.SMHz? 

2.SMHz < MCLK < 3.SMHz? 

Yes, FN_3 on 

MCLK > 3.SMHz: FN_4 on 

Allow the FLL to settle 

at the correct DCO tap 

during 30000 cycles 

Return from initialization 

Subroutine for the clearing of the RAM block 

.bss INITKEY,2,0200h OFOSAh: initialized state 
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RAMSTRT .equ 

RAMEND .equ 

RAMCLR CLR 

RCL CLR 

.INCD 

CMP 

JLO 

RET 

0200h 

OSFEh 

RS 

RAMSTRT(RS) 

RS 

Start of RAM 

Highest RAM address (33x) 

Prepare index register 

1st RAM address 

Next word address 

#RAMEND-RAMSTRT+2,RS ; RAM cleared? 

RCL No, once more 

; Yes, return 

6.3.8.2 Generation of Five Independent Timings 

The software example explains the use of the timer vector register (TAIV) and 
the overhead of the interrupt handling. It refers to figure 6-22. The interrupt 
handler of timer block x adds the appropriate time interval, At, to the corre­
sponding compare register, CCRx. The MCLK frequency (3.2768 MHz) is 
used also for the timer clock. The five timings generated are defined as follows 
(see also Table 6-15): 

o Capture/Compare Block 0 - a positive pulse with a 10kHz repetition 
rate is generated and output at terminal TAO; The pulse is reset by the in­
terrupt handler of timer block O. The pulse is used for the precise triggering 
of an external analog-to-digital converter. The error of the repetition rate 
due to the MCLK frequency used is -{)'097% 

o Capture/Compare Block 1 - an internal interrupt with variable timing is 
generated. The cycle count is stored in the RAM word TIM1 REP. The max­
imum value of this cycle count is OFFFFh, the minimum value is 1000. The 
output terminal TA 1 is not used. 

o Capture/Compare Block 2 - a square wave with a fixed 1 kHz repetition 
rate is generated and output at terminal TA2. The pulse is used as a refer­
ence for external devices. The error of the repetition rate due to the MCLK 
frequency used is -244 ppm. 

o Capture/Compare Block 3 - an internal interrupt with a fixed 200 Hz 
repetition rate is generated. The outputterminal TA3 is not used. The error 
of the repetition rate due to the MCLK frequency used is -244 ppm. 

o Capture/Compare Block 4 - a square wave with a variable output fre­
quency is generated and output at terminal TA4. The output frequency 
starts at 409.6 Hz (4000 cycles) and increases up to 1638.4 Hz (1000 
cycles). The square wave is used for the control of an external DC/DC con­
verter. 
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The formula for calculating the value, An, that is added to the timer register 
(TAR) depends on the application. Forthe internal interrupts (CCR1 and CCR3 
in the example) and the external pulse (CCRD in the example), An is: 

t:.n = /)J x /CLK 
k 

For the external-generated square wave signals with the frequency fext 
(CCR2 and CCR4 in the example) An is: 

/),.n = /CLK 
k x2 x/ext 

Where: 
fClK 
fext 
k 

Frequency at the input of the input divider 
Frequency to be output with toggle mode 
Input divider constant (1, 2, 4, 8) 

[Hz] 
[Hz] 

At Time interval to be generated [s1 

Table 6-15. Short Description of the five independent Timings 

CAPTURE! 
COMPARE BLOCK 

a 
1 

2 

3 

4 

TIME INTERVAL (TIMER SIGNAL TYPE COMMENT 
CLOCK CYCLES) 

328 External Pulse: 10kHz ADC repetMian rate 

Variable Internal Cycle count stored In TIM1 REP (min 1000) 

1638 External 1 kHz @ 3.2768 MHz (error: -244 ppm) 

16384 Internal Fixed frequency 200 Hz 

400010 1000 External Increasing frequency for ext. DC/DC converter 

The software example is written for an fMClK of 3.276 MHz. If other frequen­
cies are used, the time intervals need to be adapted. Subsequent examples 
show methods of writing frequency-independent software. Figure 6-22 illus­
trates the five timings described above: 
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OFFFFh 

Timer Reglater 

Ohi-t==========~~~~~========~~/"'~ILI 66536mmer Clock 

External Pulses 
10 kHz at TAO 

variable Internal 
Interrupt CCR1 

External Frequency 
1kHzatTA2~UUUU~~~~~UUUU~~~~~UUUU~~~~UUUU~ 

Fixed Internal Interrupt 200 Hz +..L. ____ ..L ____ -A ____ ---'L-____ ""'-_ 

Increasing Frequency JtLC1..L1.CLCLl:J..r:U~O'OJDl]lJlIlllDllIIDIDlDll~ 
atTA4 

Time ---+ 

Figure 6-22. Five Independent Timings Generated in the Continuous Mode 

The timing of the signals output at the TAx pins (the dedicated 1/0 pins of the 
Timer_A) is independent of interrupt latency: the TAx outputs are set, reset or 
toggled exactly at the programmed time (contained in the capture/compare 
register x) by the output unit x. The requested interrupt when this occurs is .. 
used to update the capture/compare register x and to execute necessary 
tasks. 

Example 6-30. Five independent Timings Generated in the Continuous Mode 

The software example also shows how to output the MCLK frequency at the 
output terminal XBUF for reference purposes. For example, an external ASIC 
may be driven by this frequency. . 

Software example: five independent timings using the 

Continuous Mode of the 16-bit Timer~ 

Hardware definitions 

FLLMPY .equ 

TCLK .equ 

STACK .equ 

RAM definitions 

100 

FLLMPY*32768 

600h 

FLL multiplier for 3.2768MHz 

TCLK: FLLMPY x fcrystal 

Stack initialization address 



TIMIREP 

TIM4REP 

TIMAEXT 

lNlT 

;-

.equ 202h 

.equ 204h 

.equ 206h 

.text OFOOOh 

MOV tSTACK,SP 

CALL UNITSR 

Repetition rate Block I 

Repetition rate Block 4 

Extension for Timer Register 

Software start address 

Initialize Stack Pointer 

lnit. FLL and RAM 

Initialize the Timer_A: MCLK, Cont. Mode, INTRPT on 

MAINLOOP 

MOV 

MOV 

MOV 

MOV 

MOV 

MOV 

MOV 

MOV 

MOV.B 

MOV 

MOV 

MOV 

MOV 

tISMCLK+TAIE+CLR,&TACTL 

#OMSET+CCIE,&CCTLO ; Set, lNTRPT on 

#OMOO+CCIE,&CCTLI No output, lNTRPT on 

#OMT+CCIE,&CCTL2 Toggle, INTRPT on 

#OMOO+CCIE,&CCTL3 No output, INTRPT on 

#OMT+CCIE,&CCTL4 Toggle, INTRPT on 

tOFFFFh,TIMIREP start value Block 1 

UOOO,TIM4REP Start value Block 4 

#TA4+TA2+TAO,&P3SEL ; Define TAx outputs 

#1,&CCRO 

#l,&CCRl 

#1,&CCR2 

#l,&CCR3 

Immediate start 

with defined contents 

for the Capture/Compare 

Registers 

MOV #1,&CCR4 

CLR 

MOV.B 

BIS 

EINT 

TIMAEXT Clear TAR extension 

#CBMCLK+CBE,&CBCTL ; Output MCLK at XBUF pin 

#MCONT,&TACTL start Timer 

Enable interrupt 

Continue in background 

Interrupt handler for Capture/Compare Block O. An -ext. ADC 

is started every IOOus (326 cycles @ 3.2766MHz MCLK) with 

a positive pulse at TAO (set exactly from Output Unit). 

The Timer A 
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The interrupt flag CCIFGO is, reset automatically. 

$ start of handler TIMMODO .EQU 

ADD 

BIC 

BIS 

RETI 

#328,&CCRO 

#OMRS+OUT,&CCTLO 

#OMSET,&CCTLO 

Prepare next INTRPT (10kHz) 

Reset TAO 

Back to Set Mode .' 

Return from Interrupt 

Timer Block 3 generates an internal used Sms interrupt 

16384/3.2768MHz = O.OOSs 

vector 6: Block 3 TIMMOD3 .EQU 

ADD 

$ 

U6384,&CCR3 'Add time interval (Sms) 

Task3 starts here, 

Fall through to TIM_HND 

Interrupt handlers for Capture/Compare Blocks 1 to' 4. 

,The interrupt flags CCIFGx are reset by the reading 

of the Timer vector Register TAIV 

TIM,..HND .EQU $ Interrupt latency 

ADD &TAIV,PC Add Jump table offset 

RETI ; Vector 0: No 

JMP TIMMOD1 Vector 2: Block 1 

JMP TIMMOD2 vector 4: Block 2 

JMP TIMMOD3 Vector 6: Block 3 

JMP TIMMOD4 Vector 8: Block 4 

Block 5. Timer Overflow Handler: the Timer Register is 

expanded into the RAM location TIMEXT (MSBs) 

TIMOVH .EQU 

INC 

RETI 

$ 

TIMAEXT 

Vector 10: TIMOV Flag 

Incr. Timer extension 

interrupt 

Block 1 uses a variable repetition rate defined in TIM1REP 

6-84 



Repetition Rate = 3.2768MHz/(TIM1REP) 

TIMMOD1 .EQU 

ADD 

RETI 

$ 

TIM1REP,&CCR1 

Vector 2: Block 1 

Add time interval 

Task1 starts here 

Back to main program 

The used time interval delta t2 is 1638 cycles. This 

delivers an external 1kHz signal (1638/3.2768MHz = 500us) 

Vector 4: Block 2 TIMMOD2 .EQU 

ADD 

$ 

U638,&CCR2 Add time interval (1/2 period) 

Task2 starts here 

RETI Back to main program 

Block 4 uses a variable repetition rate starting at 4000 

cycles and going down to 1000 cycles. It is used for an 

external DCjDC converter. Toggle Mode is used 

TIMMOD4 .EQU $ Vector 8: Block 4 

ADD TIM4REP,&CCR4 Add time interval (1/2 

CMP nOOO,TIM4REP Final value reached? 

JLO T41 Yes, no modification 

SUB #l,TIM4REP No, modify interval 

T41 RETI Back to main program 

period) 

. sect HTIMVECH,OFFFOh Timer_A Interrupt Vectors 

. word TIM_HND Timer Blocks 1 to 4 

. word TIMMODO Vector for Timer Block ° . sect HINITVECH,OFFFEh Reset Vector 

. word INIT 

The Timer A 

The example above results in a maximum (worst case) CPU loading UCPU 
(ranging from 0 to 1) by the TimecA activities: 

1 
ucpu = -/1 I:{ n inJrpt x f rep ) 

MCLK 
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Where: 
fMCLK 
n'ntrpt 
frap 

Frequency of the DCO 
Number of cycles executed by the interrupt handler 
Repetition rate of the interrupt handler 

CCRO - repetition rate 10kHz 
CCR1 - repetition rate 3.27 kHz 
CCR2 - repetition rate 2.0 kHz 
CCR3 - repetition rate 0.2 kHz 
CCR4 - repetition rate 3.27 kHz 
TIMOV - repetition rate 50 Hz 

15 cycles for the task, 11 cycles overhead 
6 cycles for the task, 16 cycles overhead 
5 cycles for the task, 16 cycles overhead 
5 cycles for the task, 20 cycles overhead 
17 cycles for the task, 16 cycles overhead 
4 cycles for the task, 14 cycles overhead 

[Hz] 

[Hz] 

26 cycles 
22 cycles 
21 cycles 
25 cycles 
33 cycles 
18 cycles 

u - 26 x104 + 22 x3276.8 + 21 x 2000 + 25 x200 + 33 x 3276. 8 + 18 x50 _ 0 15 
CPU - 3.2768 x106 - • 

The result above means a CPU loading of approximative 15% due to the Tim­
er_A (the tasks of the timer blocks 1, 2, and 3 are not included). 

6.3.8.3 DTMF Generation 

Modern telephones use dual-tone multi-frequency (DTMF) signaling for the 
dialing process. A pair of frequencies defines each of the 16 possible numbers 
and characters, and are selected from the matrix shown in Table 6-16. Two 
Timer_A outputs (TA2 and TA 1) are used to generate the frequency pair. Exter­
nal filters clean up the waveform and mix the two frequencies. The length of 
the output signals is normally 65 ms to 100 ms. 

Table 6-16. DTMF Frequency Pairs 

FREQUENCY 1209 Hz 1336 Hz 1477 Hz 1633 Hz 

697Hz 1 2 3 A 

770Hz 4 5 6 B 

852Hz 7 8 9 C 

941 Hz . 0 # 0 
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Table 6-17 shows the errors of the generated DTMF frequencies caused by 
the timer clock frequency used. Rounding is used for the timer values to get 
the smallest possible errors. 

Table 6-17. Errors of the DTMF Frequencies Caused by the MCLK 

FLL MULTIPUER N 

FREQUENCY 

697 Hz 

770 Hz 

852 Hz 

941 Hz 

1209 Hz 

1336Hz 

1477Hz 

1633Hz 

JlIl 
r-----, 

MSP430 

J1fL 

VCC Vss 

5V OV 

32 64 96 116 

1.048 MHz 2.096 MHz 3.144 MHz 3.801 MHz 

+0.027% +0.027% +0.027% +0.027% 

-0.015% -0.016% +0.033% -0.016% 

+0.059% -0.023% +0.005% +0.031% 

+0.029% +0.029% +0.029% +0.035% 

-0.079% +0.036% +0.036% -0.003% 

+0.109% -0.018% +0.025% +0.025% 

-0.009% -0.009% -0.009% -0.009% 

+0.018% +0.018% +0.018% +0.018% 

Figure 6-23 shows a proven hardware solution to mix the two output frequen­
cies. A low-pass filter is used for the high output frequency and another one 
for the low output frequency. The outputs of these low-pass filters are summed 
by a third operational amplifier. The filter hardware was developed by Robert 
Siwy/Bavaria. . 

Fillers 

HlghDTMF 

LowDTMF 

Mixer 

2.2 Ill" 
>--_*--l L DTMF 

I Output 

T'00nF 

OV 

All Components ara 10% Tolerance 

Figure 6-23. DTMF Filters and Mixer 
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The two low-pass filters and the mixer are shown in figure s-.23. The symmetri-
. cal output pulses at TA2 and TA1 bias the filter amplifiers with Vccl2. 

The component values are valid for the specification of the German public tele­
phone system. The positive supply voltage .for the operational amplifiers is 
switched by a TP output or an 0 output. 

With the two resistors R1 and R2, the filters can be adapted to the specifica­
tions of the telephone systems in other countries. These resistors define the 
high and low DTMF frequency parts of the DTMF output signal. 

Example 6-31. DTMF Software 

The following DTMF software routine is independent of the timer clock fre­
quency used. During the assembly, the new timer values are calculated. The 
length of the DTMF output signal is defined with the value DL - its value is 
in milliseconds. 

Hardware definitions 

FLLMPY .equ 

TCLK .equ 

DL .equ 

STACK .equ 

RAM definitions 

STDTMF .equ 

TIMAEXT .equ 

LENGTH .equ 

3.2 

FLLMPY*32768 

82 

600h 

202h 

204 

206h 

FLL,multiplier for l.048MHz 

TCLK: FLLMPY x fcrystal 

DTMF signal length (65 .. 100ms) 

Stack initialization address 

status Hi and Lo frequency 

Timer Register Extension 

DTMF length counter 

.text OFOOOh Software start address 

Initialize the Timer_A: MCLK, Cont. Mode, INTRPT enabled 

Prepare Timer_A output Units, MCLK = 1.048MHz (autom.) 

INIT 

6-88 

MOV 

CALL 

#STACK,SP 

UNITSR 

; Initialize Stack Pointer SP 

; Init. FLL and RAM 

MOV #ISMCLK+TAIE+CLR,&TACTL ; Define Timer 

MOV.B #TA2+TAl,&P3SEL ; TA2 and TAl at P3.5/4 



MAINLOOP 

CLR 

BIS 

EINT 

TIMAEXT 

#MCONT,&TACTL 

Clear TAR extension 

Start Timer_A 

Enable interrupt 

Continue in main loop 

A key was pressed: SDTMF contains the table offset of the 

two frequencies (0 .. 6,0 .. 6) in the high and low bytes 

MOV &TAR,R5 For immediate start: 

ADD FDTMFLO,R5 Short time offset 

MOV R5,&CCRI 1st change after O.71ms 

MOV R5,&CCR2 1/(2x697) =O.71ms 

MOV #OMT+CCIE,&CCTLl Toggle, INTRPT on 

MOV #OMT+CCIE,&CCTL2 Toggle, INTRPT on 

MOV.B STDTMF,R5 Counter for 82ms 

RRA R5 # of low frequ. changes 

MOV.B DTMFL(R5) ,LENGTH for the signal length. 

Continue background 

CCRO interrupt handler (not implemented here) 

TIMMODO 

RETI 

Interrupt handler for Capture/Compare Registers 1 to 4 

TI)LHND ADD &TAIV, PC Serve highest priority request 

RETI No interrupt pending: RETI 

JMP HCCRl CCRl request (low DTMF frequ.) 

JMP HCCR2 CCR2 request (high DTMF fr.) 

JMP HCCR3 CCR3 request 

JMP HCCR4 CCR4 request 

TIMOVH INC TIMAEXT Extension of Timer~ 32 bit 

RET! 

The Tlmer_A 
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Low DTMF frequencies: TAl is toggled by Output unit 1 

Output changes of TAl are counted to control signal length 

HCCRl PUSH. 

MOV.B 

ADD 

DEC.B 

JNZ 

R5 Save used register 

STDTMF,R5 Status low DTMF frequency 

FDTMFLO(R5),&CCRl Add length of half period 

LENGTH Signal length DL elapsed? 

TARET No 

Yes, terminate DTMF signal: disable interrupts, Output only 

TARET 

BIC 

BIC 

POP 

RETI 

#OMRS+OUT+CCIE,&CCTLl 

#OMRS+OUT+CCIE,&CCTL2 

Reset TAl 

Reset TA2 

R5 Restore R5 

Return from interrupt 

High DTMF frequencies: TA2 is toggled by Output Unit 2 

HCCR2 PUSH R5 Save used register 

MOV.B STDTMF+l,R5 Status high DTMF frequency 

ADD FDTMFHI(RS),&CCR2 Add length of half period 

POP R5 Restore R5 

RETI Return from interrupt 

HCCR3 Task controlled by·CCR3 

RETI 

HCCR4 Task controlled by CCR4 

RETI 

Table with the DTMF frequencies: the table contains the 

number of MCLK cycles for a half period. The values are 

adapted to the actual MCLK frequency during the assembly 

Rounding assures the smallest possible frequency error 

FDTMFLO . word 

. word 

6-90 

«TCLK/697)+1)/2 

«TCLK/770)+1)/2 

Lo DTMF frequ. 

770Hz 

697Hz 
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. word {{TCLK/852)+1)/2 852Hz 

. word {{TCLK/941)+1)/2 941Hz 

FDTMFHI . word {{TCLK/1209)+1)/2 Hi DTMF frequ. 1209Hz 

. word {{TCLK/1336)+1)/2 1336Hz 

. word {{TCLK/1477)+1)/2 1477Hz 

. word {{TCLK/1633)+1)/2 1633Hz 

Table contains the number of half periods for the signal 

length DL (ms). The low DTMF frequency is used for the timing 

DTMFL . byte 

. byte 

. byte 

. byte 

.sect 

. word 

. word 

.sect 

2*697*DL/1000 

2*770*DL/1000 

2*852*DL/1000 

2*941*DL/1000 

"TIMVEC",OFFFOh 

"INITVEC",OFFFEh 

. word INIT 

Number of half periods 

per DL ms 

Timer-A Interrupt Vectors 

Timer Block 1 .. 4 Vector 

Vector for Timer Block ° 
Reset Vector 

Example 6-32. DTMF Software - Faster 

FLLMPY .equ 

TCLK .equ 

DL .equ 

STDTMF .equ 

TIMAEXT .equ 

LENGTH .equ 

DTMFLO .equ 

DTMFHI .equ 

Another software ,solution that is faster - but needs more RAM - is shown 
below. The table containing the length of the half waves is read only once for 
the two DTMF frequencies and the read values are stored in RAM words 
DTMFLO and DTMFHI. The Tlmer_A interrupt routines use these two values. 
The tables are the same as with the example above. 

32 FLL multiplier for l.048MHz 

FLLMPY*32768 TCLK: FLLMPY x fcrystal 

82 DTMF time ms (65 .. 10Oms) 

202h status Hi and Lo frequency 

204 Timer Register Extension 

206h DTMF length counter 

J08h Half wave of low frequency 

20Ah Half wave of high frequency 
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STACK .equ 600h 

.text OFOOOh 

Stack initialization address 

Software start address 

Initialize the Timer~: MCLK, Cont. Mode, INTRPT enabled 

Prepare Timer~ Output Units, MCLK = 1.048MHz (autom.) 

INIT MOV lISTACK,SP. Initialize Stack Pointer 

CALL #INITSR Init. FLL and RAM 

MOV lIISMCLK+TAIE+CLR,&TACTL • Start Timer 

MOV.B lITA2+TAl,&P3SEL TA2 and TAl at P3.S/4 

CLR TlMAEXT Clear TAR extension 

BIS #MCONT,&TACTL Start Timer_A 

EINT Enable interrupt 

MAINLOOP Continue in main loop 

A key was pressed: STDTMF contains the table offset of the 

two frequencies (0 .. 6,0 .. 6) in the high and low bytes 

MOV 

ADD 

MOV 

MOV 

&TAR,RS 

FDTMFLO,R5 

R5,&CCRl 

R5,&CCR2 

For immed:iate start': 

Short time offset 

1st change after 0.71ms 

1/(2x697) = 0.7lms 

Fetch the two cycle counts for the DTMF frequencies 

Mainloop 
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MOV.B STD~MF+1,RS ; High DTMF frequency 

MOV FDTMFHI(RS),DTMFHI ; Length of half period 

MOV.B STDTMF,RS ; Low DTMF frequency 

MOV FDTMFLO(R5),DTMFLO ; Length of half period 

RRA 

MOV.B 

MOV 

MOV 

RS 

DTMFL(RS),LENGTH 

#OMT+CCIE,&CCTLl 

#OMT+CCIE,&CCTL2 

Counter for length 

prepare byte index 

# of low frequ. changes 

Toggle, INTRPT on 

Toggle, INTRPT on 

SP 

to 



CCRO interrupt handler (not implemented here) 

TIMMODO 

RETI 

Interrupt handler for Capture/Compare Registers 1 to 4 

TIM_HND ADD &TAIV,PC Serve highest priority request 

RETI No interrupt pending: RET I 

JMP HCCRl CCRl request (low DTMF frequ.) 

JMP HCCR2 CCR2 request (high DTMF fr.) 

JMP HCCR3 CCR3 request 

JMP HCCR4 CCR4" request 

TIMOVH INC TIMAEXT Extension of Timer_A 32 bit 

RETI 

Low DTMF frequencies: TAl is toggled by Output Unit 1 

HCCRl ADD 

DEC.B 

JNZ 

DTMFLO,&CCRl 

LENGTH 

TARET 

Add length of half period 

DL ms elapsed? 

No 

Terminate DTMF output: disable interrupts, Output only 

TARET 

BIC 

BIC 

RETI 

#OMRS+OUT+CCIE,&CCTLl 

#OMRS+OUT+CCIE,&CCTL2 

Reset TAl 

Reset TA2 

; Return from interrupt 

High DTMF frequencies: TA2 is toggled by Output Unit 2 

HCCR2 

HCCR3 

ADD 

RETI 

DTMFHI,&CCR2 Add length of half period 

Return from interrupt 

Task controlled by CCR3 

The Timer A 
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RET! 

HCCR4 Task controlled by CCR4 

RET! 

Tables and interrupt vectors are identical to the previous 

example 

The second example, with maximum frequencies on both channels, results in 
a maximum CPU loading, uCPU (ranging from 0 to 1), by the Timer_A activities 
due to OTMF generation: 

Where: 
fMeL!( 
nintrpt 
frep 

1 
ucpu = -;::- I (ninlrpt x f rep) 

J",CLK 

Frequency of the system clock oscilator (OCO) 
Number of cycles executed by the interrupt handler 
Repetition rate of the interrupt handler 

[Hz] 

[Hz] 

CCR1 - repetition rate 2x941 Hz 
CCR2 - repetition rate 2x1633 Hz 

12 cycles for the task, 16 cycles overhead 
6 cycles for the task, 16 cycles overhead 

28 cycles 
22 cycles 

U = 28 x2 x941 +22 x2 x1633 0.12 
CPU 1.048 x106 

This result shows a worst case CPU loading of approximate 12% due to the 
OTMF generation. This loading occurs only during the 82 ms activity. 

6.3.8.4 TRIAC Control 
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TRIAC control for electric motors (OMC) or other loads is a simple task when 
using the Timer_A. The software loads one of the capture/compare registers 
(CCR4 with this example), prepares the output unit to change the TAx output 
after the desired time, and continues with the background task .. When the 
loaded time interval elapses, the output unit fires the TRIAC gate at exactly the 
programmed time and requests an interrupt. The interrupt handler can use dy­
namic control (several short pulses to save current) or static control (one long 
gate pulse), which is used with this example. See figure 6-25 for details. 

The TRIAC control software contains some security features. They ensure 
that no gate triggering of the previous half wave can last into the next half wave 
and cause gate triggering there also: 
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• The zero crossing part (PO.O handler) immediately switches off 
the gate signal by setting of the TA4 terminal to high 

• The PO.O handler calculates a value, OFFTIME, that defines a 
time for the actual half wave where the gate signal must be 
switched off at the latest 

• The timer block 4 handler checks before each switch-on of the 
TRIAC gate to see if the on-time of the gate exceeds the calcu­
lated value, OFFTIME, or not. If the value in OFFTIME is exceed­
ed, then it is used for the maximum on time 

The TRIAC control software is independent of the ac line frequency. For each 
full wave of the line voltage, the period is measured and used for the security 
features. The calculation software also uses the timer clocks value of the half­
period stored in RAM location MAINHW. 

Figure 6-24 shows the hardware for the TRIAC control in this example. The 
temperature measurement, the overcurrent detection, and the revolution con­
trol are not included in the software example. 

After power up, the TA4 terminal is switched to input mode. The base resistor 
of the PNP transistor switches the gate of the TRIAC off and prevents the mo­
tor from running. 

ov 
-L 

COM 
ClN 

__ Ci3 SEL TP.2 RSENS2 

RSENS1 

MCLK XBUF 

230VACLlna 

,.-.::..t ..... ------f PO.o 

P0.4 
3.BV 

TP.1 

TP.O 
230 V ACLlna 

MSP430 

TA4 

Overcurrenl 
__ ~ __ ~ ______ -+ __ ~ ____ -+~DI~NC~d~~~ __ ~~~ __ ~~~ ____ ~~~ OV 

. Figure 6-24. TRIAC Control With Timer_A 
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Figure 6-25 shows a TRIAC control with three different conduction angles. Dy­
namic control and static control is included. 

The software example is written for the static control only. but it is relatively 
easy to add additional states to the TRIAC handler (timer block 4). which 
means more than one gate pulse per half wave. 

typically 
5to8Puises 

Dynamic Control 
-t----

TA40utput 
Static Control 

~----~~--------~~------~~~---

Voltage 

ACLIne 

Figure 6-25. Static and Dynamic TRIAC Gate Control 
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The software shown below works up to a timer clock frequency (fClK) of MCLK 
(in this case due to k = 1): 

Where: 
felK 
k 
fUNE 

feLl( < 216 X k X 2 xfUNE 

Input frequency at the input divider input of TimecA 
Pre-divider constant of the input divider (1. 2. 4 or 8) 
AC line frequency used 

[Hz] 

[Hz] 

If fClK is higher than defined above. then the input divider of limer_A must be 
used. This restriction is caused by the 16-bit structure of limer_A and the 
RAM. 
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Example 6-33. Triac Control 

The check to see if the gate pulse starts after the security time, SEC, is not in­
cluded below. It must pccur during the calculation. 

Definitions for the TRIAC control software 

FLLMPY 

TCLK 

.equ 

.equ 

SEC .equ 

Gate_on .equ 

RAM definitions 

TlMAEXT .equ 

OFFTlME .equ 

MAINHW .equ 

PRVTAR .equ 

FlRANGL .equ 

STTRIAC .equ 

STACK .equ 

. text 

32 

FLLMPY*32768 

FLL multiplier for 1.048MHz 

TCLK (Timer Clock) [Hz] 

(500*TCLK/1000)/lOOO ; Security time (500us) 

(1200*TCLK/IOOO)/1000 ; TRIAC Gate on (1200us) 

202h Timer Register Extension 

204h Time when gate MuST be off 

206h Length of half wave (TCLK) 

208h Value of TAR at last pos. edge 

20Ah Half wave - conduction angle 

20Ch Control byte (0 = off) 

600h Stack initialization address 

Start of ROM code 

Initialize the Timer_A: MCLK, Cont. Mode, INTRPT enabled 

Prepare Timer_A Output Units 

INIT MOV 

CALL 

MOV 

MOV 

BIS.B 

BIS.B 

CLR 

CLR.B 

BIS 

MOV.B 

EINT 

#STACK,SP 

UNITSR 

Initialize Stack Pointer SP 

Init. FLL and RAM 

#ISMCLK+TAIE+CLR,&TACTL Init. Timer 

#OMOO+CCIE+OUT,&CCTL4 ; Set TA4 high 

#TA4,&P3SEL 

#POIEO, &lEl 

TlMAEXT 

STTRIAC 

#MCONT,&TACTL 

TA4 controls gate transistor 

Enable PO.O interrupt 

Clear TAR extension 

TRIAC off status (0) 

Start Timer-A in Cont. Mode 

#CBMCLK+CBE,&CBCTL ; MCLK at XBUF pin 

; Enable interrupt 
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MAINLOOP Continue in mainloop 

Some control examples: 

Start electric motor: checked result (TCLK cycles} in R5. 

The result is the time difference from the zero crossing 

to the first gate pulse measured in Timer Clock cycles 

MOV 

MOV.B 

R5,FIRANGL 

#l,STTRIAC 

Gate delay to FIRANGL 

Activate TRIAC control 

Continue in background 

The motor is running. A new calculation result is available 

in R5. It will be used with·the next mains half wave 

MOV RS,FlRANGL Gate delay to FlRANGL 

Continue in background 

Stop motor: switch off TRIAC control 

CLR.B STTRIAC ; Disable TRIAC control 

MOV #OMOO+CCIE+OUT,&CCTL4 ; TRIAC gate off 

; Continue with background 

Interrupt handlers for Capture/Compare Blqcks 1 to 4. 

The interrupt flags CCIFGx are reset when reading 

the Timer Vector Register TAIV 

TIM_HND EINT Real time environment 

ADD &TAIV,PC Add "Jump table" offset 

RETI Vector 0: No interrupt 

JMP TIMMODl Vector 2: Block 1 

JMP TIMMOD2 Vector 4 : Block 2 

JMP TIMMOD3 Vector 6 : Block 3 

JMP TIMMOD4 Vector 8 : Block 4 

Block- 5. Timer Overflow Handler: the Timer Register is 
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expanded into the RAM location TIMAEXT (16"MSBs) 

TIMOVH .EQU 

INC 

JMP 

$ 

TIMAEXT 

TIM_HND 

Vector 10: TIMOV Flag 

Incr. Timer extension 

Another Timer-A interrupt? 

The interrupt handlers for the Timer Blocks a to 3 follow 

They are not implemented here 

TIMMODO .equ 

TIMMOD1 .equ 

TIMMOD2 . equ 

TIMMOD3 .equ 

RETI 

$ 

$ 

$ 

$ 

Handler for Timer Block a 

Handler for Timer Block 1 

Handler for Timer Block 2 

Handler for Timer Block 3 

Timer Block 4: interrupt handler for the TRIAC control 

TIMMOD4 PUSH RS Save help register RS 

MOV.B STTRIAC,RS Status of TRIAC control 

MOV.B CC4TAB(RS) ,RS Fetch offset to status handler 

ADD R5,PC Branch to status handler 

CC4TAB . byte STATEO-CC4TAB Status 0: No TRIAC activity 

. byte STATEO-CC4TAB Status 1: activition made 

. byte STATE2-CC4TAB Status 2: 1st gate pulse 

. byte STATE3-CC4TAB Status 3: TRIAC gate off 

. even 

TRIAC status 2: gate is switched on for "Gate_ON" time 

The On time is shortened to the OFFTIME value if the 

OFFTIME is before the Gate_On time 

STATE2 MOV 

ADD 

INV 

&CCR4,RS 

#Gate_On,&CCR4 

RS 

INC RS 

ADD OFFTIME,R5 

; Copy time of interrupt 

Set end of ON state 

; Negate last INTRPT time 

OFFTIME - last INTRPT time 

The Tlme,-A 
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CMP 

JHS 

OFFTIME later than next INTRPT? 

Yes, ok 

The calculated ON time ends after OFFTIME: OFFTIME is used 

MOV OFFTIME,&CCR4 

ST20 MOV 

INC.B 

#OMSET+CCIE,&CCTL4 ; Prepare for gate off 

STTRIAC TRIAC status + 1 

TRIAC status 0: No activity. TRIAC is off always 

STATEO POP R5 Restore help register 

RETI Return from interrupt 

TRIAC status 3: gate pulse is output. 

No activity until next half wave. 

STATE3 MOV #OMOO+CCIE+OUT,&CCTL4 ; Gate off (TA4 high) 

MOV.B #1, STTRIAC ; TRIAC status: wait for O-cross. 

JMP STATEO 

PO.O Handler: the mains voltage causes interrupt with each 

zero crossing. The TRIAC gate is switched off first, to 

avoid the ignition of the corning half wave. Hardware debounce 

is necessary for the mains signal! See schematic 

POO_HNDLR MOV 

PUSH 

XOR.B 

MOV 

#OMOO+CCIE+OUT,&CCTL4 ; Switch off TRIAC 

R5 Save used register 

#l,&POIES Change interrupt edge of PO.O 

&TAR,R5 O-crossing time to R5 

The shorter positive halfwave is measured (TCLK cycles) 
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BIT.B 

JZ 

MOV 

JMP 

#1, &POIN 

POl 

R5,PRVTAR 

P03 

Positive edge of mains? 

No, 

Yes, for next HW calculation 

Save time of O-crossing 



POl MOV 

SUB 

R5,MAINHW 

PRVTAR,MAINHW 

Measure pos. mains half wave 

Difference is length of pos. HW 

If STTRIAC is not 0 ( 0 

firing is prepared 

inactivity) then the next gate 

P03 TST.B 

JZ 

MOV.B 

STTRIAC 

P02 

#2,STTRIAC 

STTRIAC 0: no activity 

STTRIAC > 0: prep. next firing 

The TRIAC firing time is calculated: Timer Reg. + FIRANGL 

MOV 

ADD 

R5,&CCR4 

FIRANGL,&CCR4 

TAR to CCR4 

TAR + delay -> CCR4 

MOV #OMR+CCIE+OUT,&CCTL4 ; TA4 is reset by INTRPT 

The worst case switch-off time for the TRIAC is calculated: 

Zero crossing time + half period - security time 

This calculation ensures a safe distance to the next zero 

crossing of the mains 

ADD MAINHW,R5 TAR + MAINHW 

SUB #SEC,R5 Subtract security time 

MOV R5,OFFTIME worst; case switch-off time 

P02 POP R5 Restore R5 

RETI 

. sect "TIMVEC",OFFFOh Timer~ Interrupt Vectors 

. word TI~HND Timer Blocks 1 .. 4 Vector 

. word TIMMODO Vector for Timer Block 0 

. sect 'POOVEC",OFFFAh Po.o Vector 

. word POO_HNDLR 

. sect HINITVEC',OFFFEh Reset Vector 

. word INIT 

The Timer A 

The TRIAC control example results in a nominal CPU loading uCpu (ranging 
from 0 to 1): 

1 
= -- 1: (n/ntrPI x j rep) 

jMCLK 
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Where: 
fMCLK 
nintrpt 
frep 

Frequency of the system clock generator (DCO) 
Number of cycles executed by the interrupt handler 
Repetition rate of the interrupt handler 

[Hz] 

[Hz] 

CCR4 - repetition rate 100Hz 
PO.O - repetition rate 100Hz 

79 cycles for the task, 16 cycles overhead 
60 cycles for the task, 11 cycles overhead 

95 cycles 
71 cycles 

UCPU 
= 100 x 95+100x 71 0.016 

1.048 x 106 . 

This shows a CPU loading of approximately 1.6% due to the static TRIAC con­
trol. 

6.3.8.5 Mixture of Capture and Compare Modes 
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Any mix of capture and compare mode is possible with the Timer_A. The fol­
lowing software example shows two timer blocks using the capture mode and 
three timer blocks using the compare mode. For formulas, see Section 6.3.8.2. 

o Capture/Compare Block 0 - a short negative pulse with a 1 kHz repeti­
tion rate is generated and output at the terminal TAO. The pulse is reset 
to high by the interrupt handler of timer block O. The pulse is used for the 
precise triggering of an external peripheral. The error of the repetition rate 
due to the MCLK frequency used is -0.055%. 

o Capture/Compare Block 1 - the period of the input signal at the CCI1 A 
input terminal is measured in timer clock cycles. The period is measured 
from leading edge to leading edge of the input signal. The last measured 
value is stored in the RAM word PERIOD. The maximum period length that 
can be measured this way is k x 216/fCLK' 

o Capture/Compare Block 2 - a square wave with a variable repetition 
rate is generated and output at the terminal TA2. The actual cycle count 
for one half-wave is stored in the RAM word TIM2REP. 

o Capture/Compare Block 3 - the event time of the trailing edge of the 
input signal at the CCI3A input terminal is captured. The last captured val­
ue is stored in the RAM word STOR3. 

o Capture/Compare Block 4 - a square wave with a variable output fre­
quency is generated and output at the TA4 terminal. The output frequency 
starts at 4 kHz and decreases to 1 kHz. The square wave Is used for the 
control of an external peripheral. 
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The software routine is independent of the MCLK frequency used. Only the 
FLL multiplier constant, FLLMPY, needs to be redefined if another MCLK fre­
quency is selected. 

Table 6-18. Short Description of the Capture and Compare Mix 

TIMER BLOCK TIME INTERVAL OUTPUT UNIT COMMENT 

0 1 ms outputs frequency Negative pulses: 1 kHz 

1 External Not used 
Measures period of signal at input CCll A. leading edge to 
leading edge. Minimum signal length: 2 ms 

2 Variable Outputs frequency Length of a half-period stored in TIM2REP. (2 kHz max) 

3 External. Not used 
captures event time of the trailing edge of the Signal input 
at CCI3A. Maximum signal - 500 Hz 

4 250 f1S to 1 ms Outputs frequency Decreasing frequency from 4 kHz to 1 kHz 

OFFFFh 

Timer Register 

The maximum frequencies and minimum signal length shown do not indicate 
the limits of the Timer_A. They are given for the calculation of the loading of 
the CPU only. 

Figure 6-26 illustrates the above described five tasks: 

Oht~========~~~~~========~~/ 6SS36/T1mer Clock 
Externel Pulses 

1 kHzatTAO 

Signal"at CCI1A 

Capture Intarrupt CCRl 

Variable Frequency 
atTA2 

Signal at CCI3A 

Capture Interrupt ceR3 Captured Trailing Edge 

Decreaalng Frequency· 
atTA4 IIIDIIIIHJOllOO 

Tlma ---+ 

Figure 6-26. Mixture of Capture Mode and Compare Mode With the Continuous Mode 
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The software example also shows how to output the ACLK frequency at output 
terminal XBUF for reference purposes. An external device may be driven by 
this stabfe and precise crystal-controlled frequency. 

A special method is used for the return from interrupt. The interrupt handlers 
of the five timer blocks do not return normally with a RETI instruction but jump 
back to the start of the timer handler for a test to see if another llmer_A inter­
rupt is pending. This makes it necessary to enable the interrupt at the start of 
the timer handler. Otherwise, the interrupt latency time will get too long for oth­
er interrupts. 

Example 6-34. Mixed Capture and Compare Modes 
Software example: three independent timings and two inputs 

with capturing. The Continuous Mode of Timer_A is used 

FLLMPY .equ 64 FLL multiplier for 2.096MHz 

TCLK .equ FLLMPY*32768 TCLK: FLLMPY x fcrystal 

OLDRE .equ 202h .Time of last edge at CCllA 

PERIOD .equ 204h Calc. period of CCllA event 

TIM2REP .equ 206h Repetition rate Block 2 

STOR3 .equ 208h Last neg. edge. at CCI3A 

TIM4REP .equ 20Ah Repetition rate Block 4 

TIMAEXT .equ 20Ch Extension for Timer Register 

STACK .equ 600h Stack initialization address 

. text OFOOOh Software start address 

INIT MOV #STACK,SP Initialize Stack Pointer 

CALL UNITSR Init. FLL and RAM 

Initialize the Timer~: MCLK, Cant. Mode, INTRPT on 

Inputs (CCIxA) and outputs (Tax) of Timer~ are defined 
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MOV #ISMCLK+TAIE+CLR,&TACTL 

MOV #OMR+CCIE,&CCTLO; Reset Mode, INTRPT on 

MOV #CMPE+ISCCIA+SCS+CAP+CCIE,&CCTLl ; 

MOV #OMT+CCIE,&CCTL2; Toggle, INTRPT on 

MOV iCMNE+ISCCIA+SCS+CAP+CCIE,&CCTL3 ; 

MOV 

MOV 

#OMT+CCIE,&CCTL4 

#OFFFFh,TIM2REP 

Toggle, INTRPT on 

Start value Block 2 



MAINLOOP 

MOV 

MOV.B 

MOV 

MOV 

MOV 

CLR 

MOV.B 

BIS 

EINT 

#«TCLK/4000)+1)/2,TIM4REP ; 4kHz start frequ. 

#TA4+TA3+TA2+TA1+TAO,&P3SEL ; Define I/Os 

#l,&CCRO Immediate start 

#1,&CCR2 for the Capture/compare 

#1,&CCR4 Registers 

TlMAEXT Clear TAR extension 

#CBACLK+CBE,&CBCTL ; Output ACLK at XBUF pin 

#MCONT,&TACTL Start Timer 

Enable interrupt 

continue in background 

Interrupt handler for Capture/Compare Block O. An ext. 

peripheral is started every lms with a negative pulse at 

TAO (set exactly in time by Output Unit 0). The handler 

resets the negative signal. 

TIMMODO .EQU 

ADD 

$ ; Start of handler 

#«2*TCLK/l000)+1)/2,&CCRO For next INTRPT 

MOV #OMOO+CCIE+OUT,&CCTLO; Set TAO: pulse off 

BIS #OMR,&CCTLO Back to Reset Mode 

Fall through to TI~HND 

Interrupt handlers for Capture/Compare Blocks 1 to 4. 

The interrupt flags CCIFGx are reset by the reading 

of the Timer vector Register TAIV 

TIM_HND .EQU $ Start of Timer_A handler 

EINT Allow interrupt nesting 

THO ADD &TAIV,PC Add Jump table offset 

RETI Vector 0: No interrupt 

JMP TIMMODl Vector 2: Block 1 

JMP TIMMOD2 Vector 4 : Block 2 

JMP TIMMOD3 Vector 6: Block 3 

JMP TIMMOD4 Vector B: Block 4 

Block 5. Timer Overflow Handler: the Timer Register is 
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expanded into the RAM location TlMEXT (MSBs) 

TIMOVH .EQU 

INC 

JMP 

$ 

TlMAEXT 

THO 

Vector 10: TIMOV Flag 

Incr. Timer extension 

Test for other interrupts 

Timer Block 1 measures the period of an input signal at 

pin CCI1A. The interval between two rising edges is measured 

TIMMOD1" .EQU $ Vector 2: Block 1 

MOV &CCR1,PERIOD Time of captured rising edge 

SUB OLDRE,PERIOD Calculate period (difference) 

MOV &CCRl,OLDRE Store actual edge time 

JMP THO Test for another interrupts 

The used time interval delta t2 is stored in TIM2REP. 

TIMMOD2 .EQU 

ADD 

JMP 

$ 

TIM2REP,&CCR2 

THO 

Vector 4: Block 2 

Add time interval 

Task2 starts here 

Test for another interrupts 

Timer Block 3stores the time for a trailing edge at CCI3A 

STOR3 contains the time of the latest trailing edge 

TIMMOD3 .EQU 

MOV 

JMP 

$ 

&CCR3,STOR3 

THO 

Vector 6: Block 3 

Store event time 

Test for another interrupts 

Block 4 uses a variable repetition rate starting at 4kHz 

cycles and going down to 1kHz. 

TIMMOD4 .EQU 

ADD 

$ 

TIM4REP,&CCR4 

vector 8: Block 4 

Add time interval 

CMP #((TCLK/lOOO)+l)/2,TIM4REP ; Final value? 

JHS THO ; Yes, no modification 
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INC TIM4REP No, modify interval 

JMP THO Test for other interrupts 

. sect "TIMVEC",OFFFOh Timer_A Interrupt Vectors 

. word TI!CHND Timer Blocks 1 .. 4 vector 

. word TTMMODO Vector for Timer Block 0 

.sect "INITVEC",OFFFEh Reset vector 

. word INIT 

The software example above results in a maximum (worst case) CPU loading 
uCPU (ranging from 0 to 1) by the TImer_A activities: 

1 
ucpu = -/1 1: (ninlrP1 x f rep) 

MCLK 

Where: 
fMCLK 
nintrpt 
frep 

Frequency of the system clock generator (DCO) 
Number of cycles executed by the interrupt handler 
Repetition rate of the interrupt handler 

CCRO - repetition rate 1 kHz 
CCR1- rep. rate max. 0.5 kHz 
CCR2 - repetition rate 2 kHz 
CCR3 - repetition rate 0.5 kHz 
CCR4 - repetition rate 8 kHz 
TIMOV - rep. rate 32 Hz@2 MHz 

15 cycles for the task, 15 cycles overhead 
18 cycles for the task, 22 cycles overhead 
6 cycles for the task, 22 cycles overhead 
6 cycles for the task, 22 cycles overhead 
17 cycles for the task, 22 cycles overhead 
4 cycles for the task, 20 cycles overhead 

30 x103 +40 x 500 + 28 x2000+28 x 500 + 39 x 8000 + 24 x32 
uCPu = 

2.096 x106 

[Hz] 

[Hz] 

30 cycles 
40 cycles 
28 cycles 
28 cycles 
39 cycles 
24 cycles 

0.21 

This shows a worst case CPU loading of approximate 21 % due to the TimecA 
(the task of the timer block 2 is not included). If fMCLK is chosen to be 3.B MHz, 
then the CPU loading is only 11.5%, max. 

Any pending TImer_A interrupt during the return phase saves 6 cycles be­
cause of the code In this example. 
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6.3.6.6 Applications Exceeding the 16-81t Range of the Tlmer_A 

If the periods of the internal interrupt timings or the time Intervals to be captured 
are longer than one period ofthe timer register, then a special method is neces­
sary to take care of the larger time periods. The same is true if a half period 
of a generated output frequency is larger than the period of the Timer_A. 

This special method, using extension registers for the capture/compare regis­
ters is necessary if: 

216 X k 
tSiGNAL > 

fCLK 

Where: 
tSIGNAl 
felK 

Time interval to be measured or generated 
Input frequency at the input divider input of Tlmer_A 
Predivider constant of the input divider (1, 2, 4 or 8) 

[Hz) 
[Hz) 

k 

Figure 6-27 illustrates the hardware and RAM registers used with the 
compare mode if the compared values exceed the range of 16 bits (values are 
greater than 65535): 

15 o 

~------------------~ 

Timer Clock 

Timer 

Comparison 
Value 

At 

Figure 6-27. Compare Mode with Timer Values Greater than 16 Bit (shown for CCRt) 
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Figure 6-28 illustrates the hardware and RAM registers used with the capture 
mode if the captured values exceed the range of 16 bits (values are greater 
than 85535): 



15 o 
TIMOV 

Carry 

The Timer A 

Figure 6-28. Capture Mode With Timer Values Greater than 16 Bit (shown for CCR3) 

Figure 6-29 illustrates five examples. The tasks are defined as follows: 

o Capture/Compare Block 0 - a symmetric 1 kHz signal is generated and 
output at terminal TAO. It is used for the control of external peripherals (e.g. 
ADCs). 

o Capture/Compare Block 1 - an internal interrupt with a period At1 = 1 s 
(considerably longer than the timer register period) is generated. 

o Capture/Compare Block 2 - the length, At2, ofthe high part ofthe input 
signal at the CCI2A input terminal is measured and stored in the RAM 
words PP2MSB and PP2LSB. The captured time of the leading edge is 
stored in the RAM words TIM2MSB and TIM2LSB. 

o Capture/Compare Block 3 - the event time of the leading edge of the 
signal at the CCI3A input pin is captured. The captured value is stored in 
the RAM words TIM3MSB and TIM3LSB. 

o Capture/Compare Block 4 - Asymmetrical, external signal is output at 
terminal TA4. The time interval, At4, between two output signal edges is 
defined in TIM4MSB and TIM4LSB. 

The RAM extension of the timer register TIMAEXT is used for all applications 
exceeding the 16-bit range ofthe Timer_A. Due to the low priority of the TIMOV 
interrupt, however, checks are necessary in the application software to see if 
the RAM extension is updated yet or not. 

The software routine is independent of the MCLK frequency used. Only the 
FLL multiplier constant, FLLMPY, needs to be redefined if another MCLK fre­
quency is selected. For the example, 3.801 MHz is used. 

The task of capture/compare block 0 shows that tasks extending the 16-bit 
range of the limer_A may be mixed with normal tasks that fit into the 
16-bit range. 
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Table 6-19. Short Description of the Capture and Compare Mix 

TIMER BLOCK TIME INTERVAL OUTPUT UNIT COMMENT 

0 1 ms Outputs frequency Pulses: 1 kHz @ 3.801 MHz 

1 1 s. Not used 
Generation of an Internal reference frequency: 18 for 
time and date 

2 External event Input pin CCI2A is used 
Measures high signal part.Stored in PP2MSB and 
PP2LSB 

3 External event Input pin CCI3A Is used 
Captures event time of the leading edge of the Input 
signal- stored In TIM3 MSB and TIM3 LSB 

4 Variable ~uts frequency 
Symmetric output signal - half period is defined by 
TIM4 MSB and TIM4 LSB 

Figure 6-29 illustrates the four tasks described above (not to scale): 

Content of TIMAEXT 

OFFFFh 

Timer Reglater 

4h 5h 8h 7h 

Oh-r-M~----------~--------~--~----------~'----
Frequency Generation 

1 kHzatTAO 

Internal 
Interrupt OCRI 

Time Measurement 
aICCI2A 

capturing of Leading 
Edges al OCI3A 

OutpUI Signal 
Generallon al TA4 

'----All (la) ----~ 

captured Edge 

If-- AI4 
1-------1 

Figure 6-29. Five Different Timings Extending the Normal Time,-A Range 
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Example 6-35. Extending the Normal Timer_A Range 

The assembler definitions for T1 (V1 sMSB and V1 sLSB) show a way to define 
times exceeding the range of one word. 

FLLMPY 

TCLK 

T1 

V1sMSB 

.equ 

.equ 

.equ 

.equ 

116 

FLLMPY*3276B 

1 

3. B01MHz 

TCLK: FLLMPY x fcrystal 

T1 is I second 

T1*FLLMPY*3276B/65536 ; MSBs of 1s value 

V1sLSB .equ (T1*FLLMPY*3276B)-«Tl*FLLMPY*3276B/65536)*65536) 

TIM2MSB .equ 202h 

TIM2LSB .equ 204h 

PP2MSB 

PP2LSB 

.equ 

.equ 

TIM3MSB .equ 

206h 

20Bh 

20Ah 

TIM3LSB .equ 20Ch 

TIM4MSB .equ 20Eh 

TIM4LSB .equ 210h 

TlMAEXT .equ 

TlMAEXTl .equ 

TlMAEXT4 .equ 

STACK .equ 

212h 

214h 

216h 

600h 

.text OFOOOh 

INIT MOV 

CALL 

#STACK,SP 

UNITSR 

Time of leading edge at CCI2A 

Length of high signal at CCI2A 

Time of leading edge at CCI3A 

Time interval between TA4 edges 

Extension for Timer Register 

Extension for Timer Block 1 

Extension for Timer Block 4 

Stack initialization address 

Software start address 

Initialize Stack Pointer 

Init. FLL and RAM 

Initialize the Timer_A: MCLK, Cant. Mode, INTRPT on 

MOV #ISMCLK+TAIE+CLR,&TACTL 

MOV #OMT+CCIE,&CCTLO Toggle Mode, INTRPT on 

MOV #OMOO+CCIE,&CCTLl No output, INTRPT on 

MOV 

MOV 

#CMBE+ISCCIA+SCS+CAP+CCIE,&CCTL2 

#CMPE+ISCCIA+SCS+CAP+CCIE,&CCTL3 

Both edges 

+ edge 

MOV #OMT+CCIE,&CCTL4; Toggle Mode, INTRPT on 

MOV.B #TA4+TA3+TA2+TAO,&P3SEL ; Define timer I/Os 
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MOV 

CLR 

MOV 

n,&CCRO 

TIMAEXT 

tVlsLSB,&CCRl 

MOV #VlsMSB,TIMAEXTl 

MOV 

MOV 

TIM4LSB,&CCR4 

TIM4MSB,TIMAEXT4 

Immediate start for TAO 

Clear Timer Register extension 

Next INTRPT time block 1 

Next INTRPT time block 4 

MOV.B 

BIS 

EINT 

#CBMCLK+CBE,&CBCTL ; Output MCLK at XBUF pin 

ltMCONT,&TACTL 

MAINLOOP 

Start Timer 

Enable interrupt 

Continue in background 

Interrupt handler for Capture/Compare Block O. An external 

peripheral is started every lms with the negative edge of 

TAO (set exactly from Output unit 0). 

TIMMODO .EQU $ ; Start of handler 

ADD #«TCLK/lOOO)+l)/2,&CCRO'; For next INTRPT 

RETI 

Interrupt handlers for Capture/compare Blocks 1 to 4'. 

The interrupt flags CCIFGx are reset by the reading 

of the Timer Vector Register'TAIV 

TI!CHND .EQU $ Start of Timer_A handler 

ADD &.TAIV,PC Add Jump table offset 

RETI Vector 0: No interrupt 

JMP TIMMODl Vector 2: Block 1 

JMP TIMMOD2 Vector 4: Block 2 

JMP TIMMOD3 Vector 6: Block 3 

JMP TIMMOD4 Vector 8: Block 4 

Block 5. Timer Qverflow Handler: the Timer Register is 

expanded into the RAM location TIMAEXT (MSBs 16 to 31) 

TIMOVH 
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.EQU 

INC 

$ 

TIMAEXT 

Vector 10: TIMOV Flag 

Incr. Timer extension 



RETI 

Timer Block 1 gen. the Is reference used for date and time 

TIMMODI .EQU 

BIT 

JNZ 

TM12 CMP 

JEQ 

RETI 

TMll TST 

IN 

PUSH 

INC 

CMP 

JNE 

T13 ADD 

ADDC 

CALL 

JNC 

CALL 

TMIR RETI 

$ 

liTAIFG,&TACTL 

TMll 

TIMAEXT,TIMAEXTI 

T13 

&CCRI 

TM12 

TlMAEXT 

O(SP) 

@SP+,TIMAEXTI 

TMIR 

#VlsLSB,&CCRI 

#VlsMSB,TIMAEXTI 

#RTCLK 

TMIR 

#DATE 

Vector 2: Block 1 

TIMOV pending? 

Yes, checks necessary 

MSBs also equal? 

Yes 

TAIFG = 1: check CCRI 

CCRI > 7FFFh: correct values 

TlMAEXT not yet updated 

Updated value of TIMAEXT 

MSBs equal? 

No, return 

Yes, prepare next INTRPT (Is) 

MSBs of 1 second 

Increment time by Is 

if C = 1: incr. date 

00.00 o'clock: next day 

Capture Mode: the high part of the CCI2A input signal is 

measured. The result is stored in PP2MSB and PP2LSB. 

TIMMOD2 .EQU 

BIT 

JZ 

MOV 

MOV 

BIT 

JZ 

TST 

IN 

$ 

#CCI,&CCTL2 

TM21 

&CCR2,TIM2LSB 

TIMAEXT,TIM2MSB 

#TAIFG,&TACTL 

TM2RET 

&CCR2 

TM2RET 

Vector 4: Block 2 

Input signal high? 

No,calculation necessary 

Store LSBs of capt. time 

MSBs of capt. time 

TIMOV pending? 

No, values are correct 

Yes, check CCR2 

CCR2 > 7FFFh: correct values 
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INC 

TM2RET RETI 

TM21 MOV 

MOV 

BIT 

JZ 

TST 

IN 

INC 

TM22 SUB 

SUBC 

RETI 

TIM2MSB 

&CCR2,PP2LSB 

TIMAEXT,PP2MSB 

#TAIFG,&TACTL 

TM22 

&CCR2 

TM22 

TIM2MSB 

TIM2LSB,PP2LSB 

TIM2MSB,PP2MSB 

MSBs not yet updated 

High part is calculated 

Store LSBs of capt. time 

MSBs of capt. time 

TIMOV pending? 

No, values are correct 

Yes, check CCR2 

CCR2 > 7FFFh: correct values 

MSBs not yet updated 

Build difference 

Task 2 to do 

Timer Block 3 captures the time of a leading edge at CCI3A 

TIM3MSB and TIM3LSB contain the time of the actual edge 

TIMMOD3 .EQU $ vector 6: Block 3 

MOV &CCR3,TIM3LSB Store LSBs of event time 

MOV TIMAEXT,TIM3MSB MSBs of event time 

BIT #TAIFG,&TACTL TIMOV pending? 

JZ TM31 No, values are correct 

TST &CCR3 Yes, check CCR3 

IN TM31 CCR3 > 7FFFh: correct 

INC TIM3MSB MSBs not yet updated 

TM3l Task 3 to do 

RETI 

Timer Block 4 gen. a symmetric pulse at pin TA4 

f = 0.5 X TCLK/TIM4xSB 

TIMMOD4 .EQU 

BIT 

JNZ 

TM42 CMP 
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$ 

#TAIFG,&TACTL 

TM41 

TIMAEXT,TIMAEXT4 

Vector 8: Block 4 

TIMOV pending? 

Yes, checks necessary 

MSBs also equal? 

values 



TM41 

T43 

TM4R 

JEQ 

RETI 

TST 

IN 

PUSH 

INC 

CMP 

JNE 

ADD 

ADDC 

XOR 

RET! 

. sect 

. word 

. word 

.sect 

. word 

T43 

&CCR4 

TM42 

TIMAEXT 

O{SP) 

@SP+,TIMAEXT4 

TM4R 

TIM4LSB,&CCR4 

TIM4MSB,TlMAEXT4 

#OUT,&CCTL4 

"TIMVEC",OFFFOh 

TIM_HND 

TIMMODO 

"INITVEC",OFFFEh 

INIT 

Interval is reached 

TAIFG ~ 1: check CCR4 

CCR4 > 7FFFh: correct values 

TIMAEXT not yet updated 

Updated value of TlMAEXT 

MSBs equal? 

No, return 

LSBs of interval 

MSBs of interval 

Toggle TA4 without Output Unit 

Task 4 

Timer_A Interrupt Vectors 

Timer Blocks 1 .. 4 Vector 

Vector for Timer Block 0 

Reset Vector 

The Timer A 

The example above results in a nominal CPU loading uCpu (ranging from 0 
to 1) by the Timer_A activities: 

Where: 
fMCLK 
nintrpt 
frep 

CCRO - repetition rate 1 kHz 
CCR1 - repetition rate 58 Hz 
CCR2 - rep. rate max. 58 Hz 
CCR3 - rep. rate max. 58 Hz 
CCR4 - rep. rate max. 58 Hz 
TIMOV - 58 Hz with 3.8 MHz 

1 
ucpu = -/1 I: (nlnlrP' x frep) 

MCLK 

Frequency of the system clock (DCO) 
Number of cycles executed by the interrupt handler 
Repetition rate of the interrupt handler 

5 cycles for the task, 11 cycles overhead 
16 cycles for the task, 16 cycles overhead 
30 cycles for the task, 16 cycles overhead 
25 cycles for the task, 16 cycles overhead 
32 cycles for the task, 16 cycles overhead 
4 cycles for the task, 14 cycles overhead 

[Hz) 

[Hz) 

16 cycles 
32 cycles 
46 cycles 
41 cycles 
48 cycles 
18 cycles 
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_16x103 +32x58+46x 58+41x58+48x58+18x58 0007 
ucpu - 3.801 X 106 • 

This results in a nominal CPU loading of approximate 0.7% due to the TimecA 
activities (the tasks of the timer blocks 2, 3, and 4 are not included). If fMCLK 
is chosen to be 1 MHz, then the CPU loading is 2.6%, max. 

B.3.B.7 MSP430 Operation Without a Crystal 

The MSP430 may be used without a 32 kHz crystal. The FLL loop is opened 
and a DCO tap with a frequency near the desired frequency is used (the de­
pendence of the MCLK frequency on the DCO tap used is shown in the 
MSP43D Architecture Guide and Module Library). If an application requires a 
relatively stable MCLK frequency, DCO control by software is possible. The 
MCLK frequency is compared to the AC line frequency or another external 
stable reference frequency. No capture/compare register is necessary, but if 
one is used, LCD operation is also possible. 

5V vcc 

VCC Xln Xout 
CIN I-----e 

Software Regulated MCLK XBUF 

Temperature Measurement 

Reference Frequency 230 V AC Line '\; 
MSP430 

TP.2 J--,J~....-4I 

TP.1 ........ ~....-4I 

TP.O j...-.JVV\,-J 

Rret 

10M 3liS61B ._IEI 
..--4_-l PO.7 

COM 
SEL 

3.5 V 

Figure 6-30. MSP430 Operation Without Crystal 
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Any external reference frequency, fREF, may be used if it is in the range: 

k X2 16 f 
..2!f!:!£. -.-,,- < fREF < 100 

Jcuc 
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The lower limit prevents overflow of the result, the upper (arbitrary) limit pre­
vents overloading ofthe CPU (the control task needs approximately SO cycles 
per reference period). 

I! the reference frequency is far above the main frequency (kilo Hertz range), 
then it is recommended to use the PO.O input due to its dedicated interrupt vec­
tor. 

I! the reference frequency disappears, then the MCLI< frequency continues to 
work with the actual 000 value until the reference frequency appears again. 
The frequency of the system clock generator does not step down to the lowest 
DCO frequency due to the open Qontrolloop. 

Example 6-36. Operation Without Crystal 

LCD .equ 

An ac line-powered system works without a crystal. The line frequency, fMAINS 
is connected to PO.7, causing interrupt for each positive edge. The PO.7 inter­
rupt handler calculates the cycle difference between two interrupts - which 
is the number of MCLK cycles during one mains period - and compares this 
difference to a maximum value, HID, and a minimum value, LOWD. If the dif­
ference is out of these limits, the DCO is corrected in small steps· (22 of 
nDeOmod). See Section 6.S The System Clock Generatorfor an explanation 
of nDeOmod. The nominal value ofthe frequency fMClK is chosen to 2 MHz. The 
hardware is shown in Figure 6-30. 

The software example below works up to a maximum frequency fClK: 

ICLK < 216XkxlMAlNS 

Where: 
fClK Input frequency at the input divider input of TImer_A 

Predivider constant of the input divider (1, 2, 4 or 8) 
AC Line frequency used 

[Hz] 

[Hz] 
k 
fMAINS 

If no LCD is used, then the value LCD is set to 0: 

o ; No LCD used 

The value fleD used with the example is calculated: 

Where: 
fFRAME 
MUX 

lieD = IFRAME X 2 x MUX 

Recommended frame frequency for the used LCD 
Driving method for the used LCD (1, 2, 3, or 4 MUX) 

[Hz] 
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Hardware definitions 

FLLMPY .equ 

TCLK .equ 

FMAIN .equ 

FLCD .equ 

LOWD .equ 

HID .equ 

TCLK LCD .equ 

RAM definitions 

TARSTOR . equ 

CNTMAINS .equ 

STACK .equ 

64 only for FN_x selection 

40*50000 Timer input clock 2.0MHz = MCLK 

50 Mains frequency 50Hz 

256 4MUX: fFRAME po 256/8 = 32Hz 

TCLK/FMAIN*99/100 Lower MCLK limit 99% TCLK 

TCLK/FMAIN*101/100 ; Upper MCLK limit 101% 

1 

202h 

204h 

300h 

; 1: LCD drive implemented too 

Last TAR content for delta 

Mains frequency counter 

Stack address 

. text' OFOOOh Software start address 

INIT MOV 

CALL 

#STACK,SP 

UNITSR Initialize RAM, set FN_2 

Prepare System Clock Generator for operation without crystal 

BIS.B 

CLR.B 

MOV.B 

#SCGO,SR 

&SCFQCTL 

#050h,&SCFIl 

FLL: loop Control off 

Modulation on 

Tap 10: 2MHz (nom. with FN_2) 

Initialize the Timer~: MCLK, Cont. Mode, INTRPT on 
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MOV #ISMCLK+MCONT+TAIE,&TACTL 

MOV 

BIS.B 

BIC.B 

.if 

MOV.B 

.endif 

MOV.B 

EINT 

#OMOO+CCIE,&CCTL4 TA4 not used, Intrpt on 

#OeOh,&POIE Enable INTRPT for PO.7 (mains) 

#080h,&POIES INTRUPT for leading edge 

LCD=l If LCD is needed too 

#O,&BTCTL Prepare Basic Timer. Use fLCD 

#CBMCLK+CBE,&CBCTL MCLK at XBUF pin 



MAINLOOP 

Interrupt handler PortO: PO.2 to PO.7. The mains input 

is at pin PO.7 

P072_HNDL PUSH 

BIT.B 

JZ 

MOV 

SUB 

MOV 

CMP 

JHS 

INC.B 

P07Tl CMP 

JLO 

DEC 

P07T2 INC 

P062 MOV.B 

BIC.B 

P072RET POP 

RETI 

.if 

R5 

#080h,&POFG 

P062 

&TAR,R5 

TARSTOR,R5 

&TAR,TARSTOR 

#LOWD,R5 

P07TI 

&SCFII 

#HID,R5 

P07T2 

&SCFIl 

CNTMAINS 

&POIFG,R5 

R5,&POIFG 

R5 

LCD=l 

Save R5 

PO.7 (mains) INTRPT? 

.No, check PO. 6 to PO. 2 

Act. Timer Register 

Build delta MCLK cycles 

For next MCLK measurement 

fMCLK < lower MCLK limit? 

No, check upper limit 

Yes, increase DCO frequency 

fMCLK > upper MCLK limit? 

No, return 

Yes, decrease DCO frequency 

Mains counter + 1 (time base) 

Read PO flags 

Reset read flags (PO.7 to PO.2) 

Process inputs PO.6 to PO.2 

All done, return 

If LCD is needed too 

Interrupt handlers for Capture/Compare Blocks 1 to 4. 

TIM_HND ADD &TAIV,PC Add Jump table offset 

RETI vector 0: No interrupt 

JMP TIMMODl Vector 2: Block 1 

JMP TIMMOD:2 vector 4: Block :2 

JMP TIMMOD3 vector 6 : Block 3 

JMP TIMMOD4 vector 8: Block 4 

RETI ; TIMOV not used here 

On-Chip Peripherals 
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The interrupt handlers for the Timer Blocks 0 to 3 follow 

They are not implemented here 

TIMMODO .equ $ Handler for Timer Block 

TIMMODl .equ $ Handler for Timer Block 

TIMMOD2 .equ $ Handler for Timer Block 

TIMMOD3 .equ $ Handler for Timer Block 

RETI 

Timer Block 4: interrupt handler for the LCD drive. The 

BTCNTl register - which generates fLCD - is incremented 

twice with the fLeD period to generate both edges 

TIMMOD4 ADD.B 

ADD 

RET I 

.endif 

i010h,&BTCNTl ; Toggle BTCNT1.4 

#TCLK/(2*FLCD),&CCR4 ; Add 1/(2*fLCD) 

End of LCD drive part 

0 

1 

2 

3 

. sect "TIMVEC",OFFFOh Timer~ Interrupt Vectors 

. word TIM_HND Timer Blocks 1 .. 4 Vector 

. word TIMMODO Vector for Timer Block 0 

.sect "P072VEC",OFFEOh ; PO.x Vector 

. word P072_HNDLR Handler for PO.7 to PO.2 

.sect "INITVEC',OFFFEh Reset Vector 

. word INIT 

:rhe example results in a maximum (worst case) CPU loading uCpu (ranging 
from 0 to 1) by the limecA activities: 

Where: 
fMCLK 
nintrpt 
frep 

LCD timing - 2><256 Hz 
MCLK frequency control 50 Hz 

~i-120 

1 
ucpu = -fl :E (n inrrp, x f rep ) 

MCLK 

Frequency of the system clock (DCO) 
Number of cycles executed by the Interrupt handler 
Repetition rate of the interrupt handler 

10 cycles for the task, 16 cycles overhead 
49 cycles for the task, 11 cycles overhead 

[Hz] 

[Hz] 

26 cycles 
60 cycles 
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u = 26 x512 + 60 x50 = 0.008 
CPU 2.0 x106 

This results in a CPU loading of approximate 0.8% due to the Timer_A tasks, 
the LCD timing, and the MCLK control. 

6.3.8.8 RF Timing Generation 

rlOh32kHz 

Xln Xout 

Vee 

Different modulation methods for RF timing generation are shown in Figure 
6-32. All are used with metering devices (electric meter, water meter, gas ma­
ter, heat allocation meters, etc.) for the long-distance readout ofthe consump­
tion. 

For the generation of the modulated RF, normally a regulated 6-V supply volt­
age is used. If this voltage is not available, the stejrUp power supply shown 
in figure 6-31 may be used. An existing supply voltage (here 3 V) is trans­
formed by the step-up circuit to 8 V and regulated down to the desired 6 V. The 
step-up frequency is delivered by the MSP430. The XBUF output, with its four 
possible output frequencies, is used. The sequence starts with the ACLK fre­
quency (32.768 kHz) and then lowers to ACLKl2 and ACLKl4. In this way, the 
CPU is not loaded with the frequency generation at all. Figure 6-31 illustrates 
the connection of an RF interface module to an MSP430. 

V 
3V 8V 6V 

1 L J J ,."..,...,.. .... L --=-- Vee 
Voltage RF-Antenna ~~I MSP430 

Step-Up Frequency -:: F: Regulator 
RF·Module XBUF 

lIULf ~" e 

Vss 1 GND 

TAO Modulation 
Modulation 

Figure 6--31. RF Interface Module Connection to the MSP430 

Modulation modes used are: 

o Amplitude Modulation - the RF oscillator is switched on for a logical 1 
and switched off for a logical 0 (100% modulation). 

o Blphase Code - the information is represented by a bit time consisting 
of one half bit without modulation and one half bit with full modulation. A 
logical 1 starts with 100% modulation, a logical 0 starts with no modulation. 

On-Chip Peripherals 6-121 



The Timer A 

InformaUon 096h 

Amplitude 
Modulation 

Blphaae Space 

o Blphase Space - a logical 1 (space) is represented by a constant signal 
during the complete bit time. A logical o (mark) changes the signal in the 
middle of the bit time. The signal changes after each transmitted bit. 

The last two modulation modes do not have a dc part. Figure 6-32 shows all 
three modulations modes. If the LSBs are transmitted first, the information 
sent is 096h. 

o o o o 

I I 
Bit Length -III14-~~ Tlme~ 

Figure 6-32. RF Modulation Modes 
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The timer block 0 is used with the software examples for all three modes due 
to the following two reasons: 

o The fastest possible response. The decision making with the timer vector 
register is not necessary for the timer block 0 - it uses its own, dedicated 
interrupt vector. 

o The capture/compare register 0 interrupts not only if the timer register and 
CCRO are equal (like with the other CCRs), but also if the timer register 
contains a higher value. This prevents the loss of synchronity due to other 
interrupts during the transmission. 

The software of the other four timer blocks is not shown with the following soft­
ware routines. Many examples of their use are given in the previous examples. 
The software examples also show how to output the ACLKl2 frequency at out­
put terminal XBUF. This accurate frequency may be used for the clocking of 
external peripherals. 
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6.3.8.8.1 RF Amplitude Modulation 

This is the simplest method - a set data bit (1) switches on the RF, a zero data 
bit switches off the RF. 

Informatlon 096h 

Amplitude 
Modulation 

o 

Figure 6-33. Amplitude Modulation 

o o o 

Time --+ 

o If the speed of the software is not sufficient, dedicated registers (R4 to 
R15) may be used for RFDATA and RFCOUNT. This register method is 
used with the biphase code and biphase space software. See sections 
8.8.2 and 8.8.3. 

o "the MSB needs to be output first, then the instruction RRA RFDATA 

(after label TMOl) is simply replaced by RLA RFDATA 

Example 6-37. Amplitude Modulation Methods 
Software example: Amplitude Modulation methods. 

Hardware definitions 

FLLMPY .equ 

TCLK .equ 

fRF .equ 

48 

FLLMPY*32768 

19200 

FLL multiplier for 1.S72MHz 

TCLK: FLLMPY x fcrystal 

Bit rep. frequency (Baud Rate) 

Bit-1ength .equ «2*TCLK/fRF)+1)/2; Bit length (TCLK cycles) 

STACK .equ 600h ; Stack initialization address 

RAM definitions. Use dedicated CPU registers (R4 to R1S) 

if the speed is not sufficient 

RFDATA .equ 

TlMAEXT .equ 

RFCOUNT .equ 

202h 

204h 

206h 

16 bit data to be sent 

32 bit extension Timer_A 

Counter for 16 bits (byte) 
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INIT 

.text OFOOOh 

MOV 

CALL 

#STACK,SP 

UNITSR 

Software start address 

Initialize Stack Pointer 

• Init. FLL and RAM 

Initialize the Timer~: MCLK, C~nt. Mode, no INTRPT 

MAINLOOP 

MOV tISMCLK+CLR,&TACTL 

MOV 

MOV.B 

CLR 

MOV.B 

BIS 

EINT 

#OMOO,&CCTLO 

#TAO,&P3SEL 

TIMAEX~ 

#3,&CBCTL 

iMCONT,&TACTL 

Reset TAO, INTRPT off 

Define TAO output 

Clear TAR extension 

Output ACLK/2 at XBUF pin 

Start ·Timer 

Enable interrupt 

Continue in background 

A 16 bit value is to be output. R5 contains data 

MOV R5,RFDATA Value into data word 

MOV.B U6+2,RFCOUNT Bit count+2 to RFCOUNT 

MOV &TAR,&CCRO For fast response: 

ADD UOO,&CCRO Time of 1st bit test 

MOV tOMOO+CCIE,&CCTLO Enable interrupt for CCRO 

Continue in background 

Test in background if 16 bits are output: RFCOUNT - 0 

TST.B 

JZ 

RFCOUNT 

BPCJW)E 

output completed? 

Yes, interrupt bit is reset 

No· continue 

Interrupt handler for Capture/Compare Block O. 

Data in RFDATA is output: LSB first 
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TIMMODO .EQU 

ADD 

DEC.B 

JNZ 

MOV 

RE'l'I 

TMOl RRA 

JC 

MOV 

RETI 

TM02 MOV 

RETI 

.Beet 

. word 

.sect 

. word 

The Timer A 

$ Start of CCRO handler 

#Bit_Length,&CCRO Time of next bit change 

RFCOUNT Bit count - 1 

TMOl Not zero: continue 

#OMR, &CCTLO Finish output: reset TAD 

INTRPT off 

RFDATA Next bit of RFDATA 

TM02 Bit is one 

#OMR+CCIE,&CCTLO Bit is 0: prepare reset 

#OMSET+CCIE,&CCTLO ; Bit is 1: prepare set 

"TIMVEC",OFFF2h Timer_A Interrupt Vector 

TIMMODO Vector for Timer Block 0 

"INITVEC",OFFFEh Reset Vector 

INIT 

The example results in a maximum (worst case) CPU loading ucpu (ranging 
from 0 to 1) by the limer_A activities: 

1 33 x19200 
ucpu = jMCLK (nimrp• x j rep) = . 1.572E6 0.44 

Where: 
fMClK 
nlntrpt 
frep 

Frequency of the system clock (OCO) 
Number of cycles executed by the interrupt handler 
Repetition rate of the interrupt handler 

[Hz] 

[Hz] 

The RF amplitude modulation loads the CPU to 44% of its capacity when run­
ning with 1.572 MHz. 
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6.3.8.8.2 RF Blphase Code Modulation 

Information 096h 

BipllaseCode 

The biphase code modulation represents each data bit by a change of the in­
formation in the middle of the sent data bit: 

o Data bit is 0: the information starts with 0 (RF off) and in the middle of the 
info bit the RF is switched on for the remaining half of the bit time. 

o Data bit is 1: the information starts with 1 (RF on) and in the middle of the 
info bit the RF is switched off for the remaining half of the bit time. 

o o o o 

Time --+ 

Figure 6-34. Biphase Code Modulation 

Due to the information change in the middle of the data bit, biphase code mod­
ulation needs twice the repetition rate of amplitude modulation - 38400 bits! 
second for a baud rate of 19200. Therefore, a system clock frequency of 1.048 
MHz is not sufficient for this modulation. Instead, 1.606 MHz is selected for the 
MCLK frequency for biphase modulation. All members of the MSP430 family 
can use this frequency. 

The information is not converted in real time due to the high transmission rate 
of 38400 bits/second. The conversion is made before the transmission - by­
tes from eight arbitrary addresses (ADDRESSO to ADDRESS7) are converted 
and the bit pattern stored in a RAM block of 128 bits in length. This 128-bit buff­
er is output in real time. 

Example 6-38. Biphase Code Modulation 
Software example: Bi-Phase Code Modulation 

Input in R6 Output in RS 

Some examples: 096h -> 06996h Input -> output 

OOOh -> OAAAAh 

OFFh -> OS555h 

069h -> 09669h 

Ollh -> OA9A9h 
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Hardware definitions 

FLLMPY .equ 49 ; FLL multiplier for 1.606MHz 

TCLK .equ FLLMPY*32768 TCLK: FLLMPY x fcrystal 

fRF .equ 38400 Bit rep. frequency 

Bit_Length .equ «2*TCLK/fRF)+1)/2 ; Bit length (TCLK cycles) 

STACK .equ 600h ; Stack initialization address 

RAM Definitions 

.equ 202h 

TlMAEXT .equ 212h 

Converted data 16 bytes 

32 bit extension Timer_A 

Software start address 

INIT 

.text OFOOOh 

MOV 

CALL 

JlSTACK,SP 

UNlTSR 

Initialize Stack Pointer 

lnit. FLL and RAM 

Initialize the Timer_A: MCLK, Cont. Mode, INTRPT on 

MAINLOOP 

MOV lIISMCLK+TAIE+CLR,&TACTL 

MOV #OMOO,&CCTLO Reset TAO, INTRPT off 

MOV.B 

CLR 

MOV.B 

BIS 

EINT 

lITAO,&P3SEL 

TlMAEXT 

#3,&CBCTL 

#MCONT,&TACTL 

Define TAO output 

Clear TAR extension 

Output ACLK/2 at XBUF pin 

Start Timer 

Enable interrupt 

Continue in background 

64 bits of data is to be output with Bi-Phase Code Modul. 

The data is converted into a 128-bit RAM block with the 

Bi-Phase Code sequence 

CLR 

MOV 

MOV.B 

RS 

#RF_BLK,R8 

ADDRESSO,R6 

For Bi-Phase Space necessary 

Address 8 word send block 

1st data byte to R6 
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CALL 

MOV 

MOV.B 

CALL 

MOV 

MOV 

MOV 

MOV 

#BI_PHASE_CODE 

R5,O(R8) 

ADDRESS7,R6 

#BI_PHASE_CODE 

R5,14(R8) 

#RF_BLK+16,R9 

#16+1,R6 

@R8+,R5 

Convert it to 16 bits 

Converted data to RF-Block 

Convert next 6 bytes same way 

8th data byte to convert to R6 

Convert to 16 bits 

Converted data to RF-Block 

1st word after RF_BLK 

Bit count for 1st 16 bits 

1st 16 bits for output 

Switch off all interrupts to allow exact RF timing. This is 

not necessary if ALL OTHER interrupt handlers start with 

an EINT instruction 

MOV 

ADD 

MOV 

&TAR,&CCRO 

nOO,&CCRO 

#OMOO+CCIE,&CCTLO 

For fast response: 

Time of 1st bit test 

Enable interrupt for CCRO 

; Continue in background 

Test in background if 128 bits are output: INTRPT of Timer 

Block ° is switched off by the INTRPT handler 

BIT 

JZ 

#CCIE,&CCTLO 

BPC...,MADE 

output completed? 

Yes 

No continue 

Interrupt handler for Capture/Compare Block ° 
Data in RF_BLK is output: LSB first 

TIMMODO .EQU $ Start of CCRO handler 

ADD #Bit_Length,&CCRO For next INTRPT 

DEC R6 Bit count - 1 

JNZ TM01 Not zero: continue 
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MOV @R8+,R5 Next 16 bits for output 

MOV #l6,R6 Bit count 

CMP R9,R8 End of buffer reached? 

JHS TM03 Yes, finish output 

TM01 RRC R5 Next data· bit to carry 

JC TM02 Bit is one 

MOV #OMR+CCIE,&CCTLO Bit is 0: prepare reset 

RETI 

TM02 MOV #OMSET+CCIE,&CCTLO Bit is 1: prepare set 

RETI 

TM03 MOV #OMR,&CCTLO Output complete: 

RETI Reset TAO, INTRPT off 

Subroutine transforms the data byte in R6 (8 bits) to 

Bi-Phase Code in R5 (16 bits). CALL + 86 cycles/byte 

BI_PHASE_CODE 

BIPL 

MOV 

RRA 

RRC 

BIT 

RRC 

XOR 

DEC 

JNZ 

RET 

.sect 

. word 

. sect 

.equ $ 

#8,R7 

R6 

R5 

#8000h,R5 

R5 

#8000h,R5 

R7 

BIPL 

"TIMVEC",OFFF2h 

TIMMODO 

"INITVEC",OFFFEh 

. word INIT 

Conversion routine 

Convert 8 bits 

LSB to Carry 

Bit to R5 MSB 

Copy bit once more 

to R5 

and invert it 

Bit count - 1 

8 bits not yet converted 

16 info bits in R5 

Timer~ Interrupt Vector 

Vector for Timer Block 0 

Reset Vector 

The Timer A 

The example results in a CPU loading ucpu (ranging from 0 to 1) by the Tim­
er_A activities: 
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1 ) _ (27 x15116 + 34 xlI 16) x2 x19200 
ucpu = jMCLK 1: (n;nt'Pt X frep - 1.606E6 0.66 

Where: 
fMCLK 

nlntrpt 
frep 

Frequency of the system clock (DCO) 
Number of cycles executed by the Interrupt handler 
Repetition rate of the interrupt handler 

[Hz) 

[Hz) 

This results in a MSP430 CPU load of 66% when outputting Biphase Code 
Modulation at 19200 baud with an MCLK frequency of 1.606 MHz. 

RF Biphase Space Modulation 

Information 096h 

BI·Phase Space 

The realtime software - that outputs the 128-bit block - is exactly the same 
as the biphase code modulation shown in Section 8.8.2. Only the subroutine 
that converts the binary data to the biphase space code is different -the actu­
al bit depends also on the previous bit. Therefore, only the different conversion 
subroutine is shown below. The CPU loading is, due to the equal real time part, 
is also 66%, like it is for the biphase code modulation. . 

o o o o 

Time --. 

Figure 6-35. Biphase Space Modulation 

Example 6-39. Biphase Space Modulation 

The information cannot be converted in real time due to the high transmission 
speed of 38400 bits/second. The conversion is made before the transmission: 
bytes from eight arbitrary addresses (ADDRESSO to ADDRESS7) are con­
verted and the bit pattern is stored in a RAM block with 128 bits in length. This 
128-bit buffer is output in real time by the timer block O. See Section 8.8.2. 

Subroutine converts the data byte in R6 (8 bits) to 

Bi-Phase Space Code in R5 (16 bits). CALL + 162 cycles/byte 

R5 contains the MSB (2nd half bit) of the last conversion. 
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Input in R6 

Some examples: 096h 

OOOh 

OFFh 

069h 

Ollh 

Oi6h 

OOOh 

OFFh 

#B,R7 

BPSL R9 

#BOOOh,RS 

R9 

R6 

-> 

-> 

-> 

-> 

-> 

-> 

-> 

-> 

MOV 

CLR 

BIT 

RLC 

RRC 

RLC 

MOV.B 

SWPB 

CLRC 

RRC 

R9 

BPSTAB(R9),R9 

R9 

RS 

RRA RS 

ADD 

DEC 

JN2; 

RET 

R9,RS 

R7 

BPSL 

Output in RS 

02B4Dh Prevo 2nd half bit 

OS5S5h 

03333h 

04D2Bh 

054abh 

OAB4Dh 

o 

OAAAAh Prevo 2nd half bit = 1 

OCCCCh 

Conversion routine 

Number of bits 

Table Pointer 

Test last half bit (MSB RS) 

Bit to LSB 

Next info bit 

2 bit table address in R9 

Data for 2 bits to be sent 

OOxO -> xOOO 

Free two bits for new data 

in RS 

Insert new data to MSBs 

Bit count - 1 

8 bits not yet converted 

16 info bits in R5 

The Timer A 

Table with 2-b1t info for all possible four bit combinations 

BPSTAB . byte 

. byte 

. byte 

. byte 

Prev Half-Bit Curro Bit Info Bits 

040h 0 0 10 

OCOh 0 1 11 

OBOh 1 0 01 

OOOh 1 1 00 

The example results in a constant CPU loading ucpu (ranging from 0 to 1) by 
the TimecA activities of 66%, as with the biphase code modulation due to the 
equal RF part. 
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8.3.8.9 Real Time Clock 

OFFFFh 

Timer Register 

T/le Timer_A can also be used as a real time clock (RTC) , especially in the low 
power mode 3 (LPM3). The ACLK is summed up and when one of the capturel 
compare registers is equal to the timer register (TAR), then an interrupt wakes 
up the CPU. The interrupt handler adds the time interval to the capturel 
compare register and returns to LPM3. Due to the available five capturel 
compare registers, up to five independent wake up frequencies may be pro­
grammed. Their handlers have the same structure as shown here for timer 
block 1. 

The timer overflow delivers an additional 0.5 Hz wake up frequency 
(216132768 Hz = 2 s). If this timing is sufficient, no interrupt by a capture! 
compare register is necessary. 

Oh ~~~~----------------------------------~~-=~ 

ACLKPul_ 
32.788 kHz 

Wake Up 0.25 s 
Timer Block 1 

WskeUp2s 

__ -----------------2s------------------~ 

Timer Overflow ~ ....... -------------------------------....... -. ---+ 
Time 

Figure 6-36. Real Time Clock Application of the Time,-A 

The software example shows a real time application with a wake up every 0.25 
s initiated by timer block 1 (the software for the other timer blocks is not shown). 
The 0.25 s interrupt increments a RAM counter (RTC_CNT) and updates the 
time and date if a full second has elapsed. 

Example 6-40. Real Time Clock Application of the Timer_A 
Software example: Real Time Clock application of the 

Timer_A running in the Continuous Mode 

Hardware definitions 
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FLLMPY .equ 

TCLK .equ 

RTC_DELTA .equ 

STACK .equ 

RAM definitions 

RTC_CNT . equ 

TlMAEXT .equ 

32 

FLLMPY*32768 

32768/4 

600h 

202h 

204h 

FLL multiplier for l.048MHz 

TCLK: FLLMPY x fcrystal 

ACLK delta for 4Hz wake-up 

Stack initialization address 

RTC counter for the 4Hz 

TAR extension 

.text OFOOOh Software start address 

INIT MOV 

CALL 

#STACK,SP 

UNITSR 

Initialize Stack Pointer 

Init. FLL and RAM 

Initialize the Timer~: ACLK, Cont. Mode, INTRPT on 

MAINLOOP 

MOV #ISACLK+TAIE+CLR,&TACTL 

CLR &CCRO Defined start value 

CLR 

MOV 

MOV.B 

BIS 

EINT 

TlMAEXT Clear TAR extension 

#OMOO+CCIE,&CCTLl CCRl used for RTC 

#CBACLK+CBE,&CBCTL ; output ACLK at XBUF pin 

#MCONT,&TACTL Start Timer 

Enable interrupt 

Continue in background 

Enter LPM3. The watchdog must be held (ACLK continues) 

MOV #05AOOh+HOLD+CNTCL,&WDTCTL ; Hold watchdog 

BIS #CPUOFF+GIE+SCGl+SCGO,SR ; Enter LPM3 

Interrupt handlers for Capture/Compare Blocks 1 to 4. 

The interrupt flags CCIFGx are reset by the reading 

of the Timer Vector Register TAIV 

On-Chip Peripherals 
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TIMJiND ADD &TAIV,PC Add Jump table offset 

RETI vector 0: No interrupt 

JMP TIMMOD1 Vector 2 : Block 1 

JMP TIMMOD2 Vector 4: Block 2 

JMP TIMMOD3 Vector 6 : Block 3 

JMP TIMMOD4 Vector 8: Block 4 

Block 5. Timer Overflow Handler: the Timer Register is 

expanded into the RAM location TIMAEXT (MSBs). TIMAEXT is 

incremented every 28 

TIMOVH .EQU 

INC 

RETI 

$ 

TIMAEXT 

Vector 10: TIMOV Flag 

Incr. Timer extension 

0.5Hz task starts here 

Timer Block 1 is used for the Real Time Clook 

Repetition Rate - 4Hz (0.25s) 

TIMMOD1 .EQU $ Vector 2: Block 1 

ADD #RTC_DELTA,&CCR1 Add time interval (0.25s) 

RTC Task 4Hz starts here 

INC RTC_CNT Increment 4Hz counter 

BIT #3,RTC_CNT one second elapsed? 

JZ TASK Yes 

RETI No, back to LPM3 

TASK CALL #RTCLK Time + Is 

JNC TMI If carry: 00.00· o'clock 

CALL #DATE ·Next day 

TM1 RETI Return to LPM3 

.sect "TIMVEC",OFFFOh Timer_A Interrupt Vectors 

. word TI)LHND Vector for blocks 1 to 4 

. word TIMMODO Vector for Timer Block 0 

. sect "INITVEC",OFFFEh 

. word INIT Reset Vector 
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The example results in a maximum (worst case) CPU loading uCPU (ranging 
from 0 to 1) by the Timer_A activities: 

CCR1 - repetition rate 4 Hz 16 cycles for the task, 16 cycles overhead 
TIMOV - repetition rate 0.5 Hz 4 cycles for the task, 14 cycles overhead 

1 J. ) = 32 x4 + 18x 0.5 = 0.00013 
ucpu = jMCLK 1: (nintrpt X rep 1.048E6 

Where: 
fMCLK 

nintrpt 
frep 

Frequency of the system clock (OCD) 
Number of cycles executed by the interrupt handler 
Repetition rate of the interrupt handler 

32 cycles 
18 cycles 

[Hz] 

[Hz] 

This result means that the MSP430 CPU uses the low power mode 3 during 
99.987% of the time when running the RTC software shown (time and date 
tasks are not included). 
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6.3.8. 10 ConclusIon 

This section demonstrated the many and versatile possibilities ofthe Timer_A 
running in the continuous mode. Any mixture of capture and compare modes 
is possible with the five capture/compare registers (CCAx). It is also possible 
to change the mode of a capture/compare register during the run: a capture/ 
compare register used in capture mode during the calibration process may be 
used as a compare register during the normal run and vice versa. 

Also worth mentioning is the absolute synchronization of the generated tim­
ings. This is a resuH of the single timer register used for all capture/compare 
registers. This feature is very important for digital motor control applications. 
The readlwrlte feature of all the Timer_A registers additionally offers possibili­
ties beyond the scope of this discussion. 

6.3.9 Software Examples for the Up Mode 

FLLMPY .equ 
fper . equ 

TCLK .equ 
PERIOD .equ 
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This section shows several proven application examples for the Timer _A run­
ning in the up mode. The software definitions appear near the beginning of this 
section. Whenever pOSSible, the abbreviations defined in the MSP430 Archi­
tecture Guide and Module Library are used with the software examples. 

The software examples are written to be independent of the MCLK frequency 
in use. Only the FLL multiplier constant, FLLMPY, and the period for the period 
register need to be redefined If another combination is needed. The source 
lines for the definition of these important values are: 

122 1. FLL multiplier 
19200 2 . PWM Repetition rate 
FLLMPY*32768/4 3. FLLMPY x fcrystal/4 
«2*TCLK/fper)+1)/2 4. Period of the PWM 

o Definition of the CPU frequency fMCLK. The multiplier FLLMPY for the 
digitally Controlled oscillator (DCO) is defined. The value for the actual fre­
quencyfMCLKis (FLLMPYx215). The value 122 stands for fMCLK = 122 
x 215 = 3.9977 MHz. 

o Definition ofthe desired repetition rate. The value 19200 stands for fper 
= 19.2 kHz. 

o Definition ofthe Inputfrequencyfor the Timer Register (TAR). The ex­
pression /4 indicates that the input divider is set to the Divide-by-Four 
mode. The shown value stands for TCLK = 3.9977 MHzl4 = 999.424 kHz. 
Only the selected predlvlder for the Input divider (here /4) needs to be de­
fined. 

o Calculation of the TCLK cycles for the defined period. This expression 
is used for the rounding of the result. No change is necessary for this line. 
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6.3.9.1 Common Remarks 

The up mode is designed primarily for pulse width modulation (PWM) or DC 
generation applications. If none of these applications is needed, then the con­
tinuous mode, with its five independent timings, should be used. 

Advantages of the Up Mode: 

o Free run without CPU load for stable PWM values (e.g. DAC, PWM) 

o High PWM frequency is possible due to the pure hardware control 

o Clever selected timings are usable for more than one real time job 

Disadvantages of the Up Mode: 

6.3.9.1.1 Initialization 

6.3.9.1.2 Timer Clock 

o Dominance of the period register - it defines the time frame for all other 
capture/compare blocks (C/C Blocks) 

o Current switching occurs at the saine time for all PWM outputs - this is 
the case when the timer register (TAR) equals the period register CCRD 

The initialization subroutine, INITSR, is used in all examples. This subroutine 
was described in Section 6.3.8.1. It includes the following tasks: 

o Checks the reason for the initialization (switch on of the supply voltage, 
watchdog interrupt, or activation of the RESET input) 

o Clears the RAM - or not - depending on the result of the above check. 

o Programs the system clock oscillator (multiplication factor N and optimum 
current switch FN_2, FN_3, or FN_ 4) 

o Allows the digitally controlled oscillator to settle at the appropriate tap, pro­
viding the correct MCLK frequency 

The information in this section is also valid for the continuous mode and the 
up/down mode. 

All software examples use the value FLLMPY - it defines the master clock 
frequency, fMCLK. 
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I MeL!( = FLLMPY xl crystal 

If this frequency, fMCLK Is too high for the application (it causes values for the 
timer registers exceeding the range from 0 to 65535, for example), then the 
input divider of the Timer_A may be used. This allows a prescaling of 1, 2, 4, 
or 8 for the timer input frequencies (fMCLK. fACLK or fTACLK) 

Example 6-41. Prescaling Factor of 2 

FLLMPY .equ 

TCLK .equ 

For a required prescaling of 2, the definitions at the start of each example are 
simply changed to: 

100 

FLLMPY*3276B/2 

FLL multiplier for 3.2768MHz 

Timer Clock = 1.6384MHz 

Input Divider D2 is used to get MCLK/2 for the TCLK 

MOV iISMCLK+D2+MUP+TAIE+CLR,&TACTL ; Use /2 divider 

The examples normally use an internally generated timer clock - the MCLK 
or the ACLK. It is also possible to use an external clock. This clock signal is 
connected to the TACLK terminal and selected with the following code se­
quence during the initialization: 

Ext. clock, Up Mode, Interrupt enabled, Timer Reg. cleared 

MOV #ISTACLK+MUP+TAIE+CLR,&TACTL 

BIS.B #TACLK,&P3SEL ; External clock to Timer_A 

6.3.9.1,3 Timing Considerations 
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The five independent timings provided by the continuous mode are not pos­
sible anymore in the noncontinuous modes because the period register 
(CCRO) dictates the timing frame for all other capture/compare blocks. There­
fore, the period of the timer must be chosen very carefully to allow all the nec­
essary timings. For example, a period chosen for PWM with 19.2 kHz also al­
lows the timing for a software UART running at 2400 baud (19200/8) or 4800 
baud (19200/4). 



TIMACNT 
TIMACYCx 
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To allow comparison and capturing also with the noncontinuous modes, it is 
a good practice to have not only a register that counts the overflows (period 
counter) -like TIMAEXT used with the continuous mode - but also a 16-bit 
or 32-bit register that counts the TCLK cycles. This allows the use of simple 
additions for the calculation of a time point. Otherwise, a multiplication is nec­
essary (period counter x period length) to get the elapsed time. The examples 
given use both registers: 

Period counter 
Cycle counter 

counts the number of full periods 
counts the cycles of the timing (one or more words) 

See also figure 6-43; the contents of these two registers are shown there for 
an example. 

Frequencies used by the CPU and the Timer_A. The following software ex­
amples are (nearty) independent of the MCLK and timer clock frequency in 
use. During the assembly, the new values for the period register and the timer 
clock frequency are calculated. A worst case calculation is necessary if a 
fMCLK that is too low is used. 

Update of Extension Registers. Unlike the case with the continuous mode, 
the update of these extension registers is made with the interrupt handler of 
the period register (CCRO). This has three reasons: 

o The interrupt of the period register occurs one cycle before the TIMOV in­
terrupt 

o The period register (CCRO) has the highest interrupt priority of alilimer_A 
interrupts 

o A dedicated interrupt vector (address FFF2h) allows the fastest response 
to interrupt requests 

Real Time Environment. For all applications of the Timer_A running in one 
of the noncontinuous modes and using interrupt frequencies in the kilohertz 
range, it is recommended that strict real time environment programming be 
used. Otherwise, interrupt handlers are delayed and information may be lost. 
To achieve a real time environment, the following simple rules should be ap­
plied to all interrupt handlers: 

o The first instruction after the processing of time critical data - Timer~ 

related data for the Timer_A handlers, for example - should be the EINT 
(Enable Interrupt) instruction. This allows nested interrupts, a feature pos­
sible due to the stack architecture of the MSP430 family. 

o I nterrupt handlers should be as short as possible. Only the absolutely nec­
essary tasks should ~e executed (incrementing of counters, update of the 
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status bytes, etc.). The time consuming main tasks should be shifted to the 
background, where the software executes them according to the status 
byte information. 

Output Units. The PWM examples shown all use the set/reset mode or the 
reset/set mode of the output units. This has the advantage..,.. compared to the 
use of toggling - that no incorrect pulse widths can be generated during the 
change of the pulse width. 

6.3.9.1.4 Interrupt Overhead 

The calculations for the CPU loading that are appended to the software exam­
ples split the necessary cycles for each capture/compare block into two parts: 

o Overhead - This part sums the cycles that are necessary for the CPU 
to execute the interrupt (saving of the program counter and the status reg­
ister, decision on which interrupt needs to be served, restoring of the CPU 

. registers). 

o Update or Task - This part actually does the work that needs to be done 
(incrementing of counters, changing of status bytes, etc.). 

The number of overhead cycles shown with the examples are derived from the 
following sequences: 

• Interrupt ofthe period register CCRD (or other interrupt sources with a 
dedicated vector): 

Cycles from interrupt request to 1 st instruction of the interrupt handler: 6 cycles 
5 cycles Return from Interrupt instruction: RETI 

Sum of overhead 

• Interrupt of capture/compare registers CCR1 to CCR4: 

Cycles from interrupt request to 1 st instruction of the interrupt handler: 
Decision which source caused the interrupt: ADD &TAIV, PC 

Addressed jump instruction: JMP TIMMODx 

Return from Interrupt instruction RETI 

Sum of overhead 

• Interrupt of the timer register TIMOV: 

11 cycles 

6 cycles 
3 cycles 
2 cycles 
5 cycles 

16 cycles 

This interrupt needs the same number of cycles as the interrupt of 
the capture/compare registers, but without the JMP TIMMODx in­
struction. This results in 14 cycles overhead. 
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6.3.9.2 Update of the Capture/Compare Registers 

If the capture/compare registers are updated asynchronously with the periodic 
timing of the Timer_A, the output pulses may become too long or may be miss­
ing. Therefore, a synchronous update should be used, which means the PWM 
value is written into a buffer, read out from this buffer at the correct time, and 
then written into the capture/compare register. Three possibilities exist for the 
synchronous update: 

1) - Frequent update by the appropriate Interrupt Handler 

2) Infrequent update by the appropriate Interrupt Handler 

3) Update by the interrupt handler of capture/compare block 0 

The three possibilities are described in the following paragraphs. To find the 
appropriate solution for a given timing problem, the following decision path 
maybe used: 

D Is an individual interrupt task necessary for one are more than one of the 
capture/compare blocks? If yes, use solution 1, otherwise continue. 

D Is a very fast update of the capture/compare registers necessary? If yes, 
use solution 1, otherwise solution 2. 

Frequent Update by the Appropriate Interrupt Handler 

The interrupt handler of capture/compare block x updates the capturel 
compare register CCRx with the repetition rate defined by the period register 
(CCRO). This method is necessary if an additional task is to be executed by 
the interrupt handler - medium preparation effort in the background, fast C/C 
register change. 

This method is used with Generation of Asymmetric Pulse Width Modulation 
and RF Timing Generation. The following software examples refer to the first 
application. 

If the range for the PWM output values is limited from 1 cycle to (period-1) 
cycles, then the following simple update sequence may be used: 

R6 contains new PWM info for CCR2. Range: I to (period-I). 

MOV.B R6,TA2PWM ; Actualize PWM buffer 

If the PWM output values 0% or 100% are actually used (CCRx = 0 resp. CCRx 
~ period), then a special treatment is necessary due to the not-generated inter­
rupt request of the capture/compare block x under these circumstances. The 
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new CCRx value is then written immediately. To determine these special 
cases, the following update sequence may be used: . 

R6 contains new PWM info for CCR2. Range: 0 to full period. 

Check if an immediate update is necessary: 

This is the case for CCR2 = 0 .or. CCR2 >= period 

Software is written for a constant Period Register CCRO 

CMP IIPERIOD,&CCR2 CCR2 actually >= period? 

JHS L$21 Yes, update CCR2 immediately 

TST &CCR2 No, CCR2 = O? 

JNZ L$22 CCR2 > 0: normal procedure 

L$21 MOV R6,&CCR2 No interrupt: immed. update 

L$22 MOV.B R6;TA2PWM Actualize TA2PWM buffer 

Continue 

Infrequent Update by the Appropriate Interrupt Handler 

R6 contains: 

MOV 

BIS.B 

BIS 

; ... 
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The interrupt handler of capture/compare block x UPdates the capture/ 
compare register (CCRx) with a repetition rate given by the calculation speed 
of the background program. If a new PWM value is calculated for a capture! 
compare block, then an individual flag is set and the interrupt for this capture! 
compare block is enabled. The first asynchronous interrupt is rejected and the 
second one (synchronous) is used for the update of the capture/compare reg­
ister x. An interrupt task is possible only with the update repetition rate. This 
method is used if the PWM values for the update are not available at the same 
time - minimum interrupt overhead, Individual C/C register change. 

This method is used with Digital-to-Analog Conversion and TRIAC Control. 
The following software examples refer to the first application. 

If the range for the PWM output values is limited from 1 cycle to (periocl-1) 
cycles, then the following simple update sequence may be used: 

new PWM info for CCR2. Range: 1 to (period-1). 

R6,DACOOV Actualize DACO pulse length 

#i,FLAG Set update flag for DACO 

#CCIE,&CCTL2 Enable interrupt for DACO 

Continue in background 
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If the output values 0% or 100% are actually used (CCRx = 0 resp. CCRx ~. 
period), then a special treatment is necessary. The interrupt of the capture! 
compare block x is not generated in these cases. To determine these special 
cases, the following update sequence may be used: 

R6 contains the new PWM info for CCR2. Range: a to period. 

The interrupt is enabled individually for the update. 

A check is made if a special treatment is necessary: 

CCR2 = a .or. CCR2 >= period 

Software is written for a variable Period Register CCRa 

MOV R6,DACaOV Actualize DAca pulse length 

CMP &CCR2,&CCRa CCR2 >- period actually? 

JLO L$21 Yes, update CCR2 immediat. 

TST &CCR2 No, is CCR2 = a actually? 

JNZ L$22 No, proceed normally 

L$21 MOV R6,&CCR2 Update CCR2 immediately 

JMP L$23 Update made, no interrupt 

L$22 BIS.B #I,FLAG set update flag for DACa 

BIS #CCIE, &CC.TL2 Enable interrupt f~r DACO 

L$23 Continue in background 

For a constant period register (CCRO). the sequence is: 

Software is written for a constant period register CCRa 

MOV 

CMP 

JHS 

TST 

R6,DACOOV 

#PERIOD,&CCR2 

L$21 

&CCR2 

Actualize DAca pulse length 

CCR2 >- period actually? 

Yes, update CCR2 immediat. 

No, is CCR2 = a actually? 

Same as above; 
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Update by the Interrupt Handler of Capture/Compare Block 0 

The interrupt handler of capture/compare block 0 updates the capture/ 
compare registers (CCRx) with the repetition rate given by the period register 
JCCRO). No additional tasks are possible for the other capture/compare blocks 
- their interrupts are disabled. The output units control the TAx outputs with­
out software overhead - minimum interrupt overhead. fastest C/C register 
change. If an update is made from relatively large CCRx values to small ones 
(approximately interrupt latency time). then 100% pulses may occur. There­
fore. this method is only recommended for small changes of the PWM value. 
This method can be used only if: 

o A very fast update is necessary 

o Only a minimum overhead can be tolerated (no additional handler is need­
ed. the CCRO handler is only slightly longer due to this operation) 

o Erroneous output pulses with 100% length can be tolerated 

An example for this update method is given in section Capturing with the Up 
Mode for capture/compare block 4. 

These three possibilities may be mixed if it is advantageous. The examples of 
this section apply the same solution for all capture/compare blocks. 

Table 6-20 shows the overhead calculation and the percentage of the update 
overhead for the three different update methods. The calculation results are 
based on: 

Where: 
fMCLK 
fupdate 
fper 

Frequency of the DCO (MCLK) 
Update frequency for the capture/compare registers 
Tlmer_A repetition rate (defined by the period register CCRO) 
Number of C/C blocks used for the PWM generation 

4.0 MHz 
100kHz 

19.2 kHz 
3 n 

Table 6-20. Interrupt Overhead for the three different Update Methods 

UPDATE METHOD OVERHEAD FORMULA (CPU CYCLES) OVERHEAD PERCENTAGE 

Frequent Update wtth appropriate Handler nXfperx22 31.7% 

Infrequent Update with appropriate Handler n X fupdate x 44 3.3% 

Update by Capture/Compere Block 0 nXfperX6 8.6% 

i 

Note: 

No interrupts are generated - and therefore no interrupt overhead - for 
capture/compare registers containing 0 or a value greater than or equal to 
the period register (CCRO). 

i 
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6.3.9.3 Generation of Asymmetric Pulse Width Modulation (PWM) 

The medium output voltage VPWM at the pin TAx resp. the necessary register 
content nccrx for a given voltage VPWM is: 

nCCRx tpw 
== Vccx == Vccx- -7 ncCRx 

nCCRO + 1 tper 
VPWM ( ) -v: x \nCCRO + 1 

cc 

Where: 
VPWM 
Vee 
nCCRO 

neeRx 

tpw 
tper 

Medium output voltage at the TAx pin 
Supply voltage of the system 
Content of the period register CCRO 
Content of the capture/compare register CCRx 
Time generated by the capture/compare register 
Period generated by the period register CCRO 

M 
[V] 

[s1 
[s1 

Table 6-21 shows the necessary content of a capture/compare register CCRx 
to get some defined unsigned output values for VPWM: 

Table 6-21. Output Voltages for unsigned PWM 

OUTPUT VOLTAGE (VPWM) CONTENT OF COAx "CCRx 

OV 0 

0.25 x Vee (nCCRO + 1) x 0.25 

0.5 x Vee (neCRO + 1) x 0.5 

0.75 x Vce (neeRO + 1) x 0.75 

Vee (nCCRO + 1) 

If the output voltage is seen as a signed voltage -like for 3-phase digital motor 
control- then the voltage 0.5 x Vee is seen as the 0 point. The signed output 
voltage VPWM gets: 

VPWM == vccx~:::l-O.5) '-+ nccRx = (:::+O.5)x(nccRo+l) 

Table 6-22 shows the contents of a capture/compare register (CCRx) required 
to get some defined values for a signed output voltage VPWM: 
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Table 6-22. Output Voltages for Signed PWM 

OUTPUT VOLTAGE (VPWM) CONTENT OF CCRx "CCRx COMMENT 

-0.5 x Vee 0 Most negative output voltage 

-0.25 x Vee (neeRO + 1) x 0.25 Hall negative output voltage 

OV (neeRO + 1) x 0.5 o voltage 

0.25 x Vee (nCCRO + 1) X 0.75 Hall pos~lve output voltage 

0.5 x V"" n""Qn+ 1 Most posftive output voltage 

Example 6-42. Generation of Two PWM Output Signals 
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The software example shows the generation of two PWM output signals at the 
output terminals TA1 and TA2: 

o Output Pin TA 1 - a positive PWM signal. The length of the active high 
part is defined in the RAM location TA 1 PWM (TCLK cycles). 

o Output Pin TA2 - a negative PWM signal. The length of the active low 
part is defined in the RAM location TA2PWM (TCLK cycles). 

Additional tasks need to be executed by the interrupt handlers of the capturel 
compare blocks 1 and 2, therefore an individual handler is used for both of 
them. 

The system clock frequency in use is 4 MHz (exactly fMCLK = 122 x 32768 = 
3.9977 MHz), and the pulse repetition frequency is 19.2 kHz to allow the use 
of this frequency for other timings as well (a software UART with 4800 baud 
= 19.2 kHzl4, for example). For this application, bytes are sufficient for 
TA 1 PWM and TA2PWM because the maximum possible value of its content 
is 209. (4.0 MHzl19200 = 208.33). 

The output unit 0 outputs 9600 Hz without any overhead. This signal may be 
used for peripherals or for synchronization - the Signal is always present, 
even if the signals at TA 1 and TA2 disappear due to an output Signal with 0% 
or 100% pulse width. 

The example uses the Frequent Update by the Appropriate Interrupt Handler. 
See Section 6.3.9.2 for details. 



Timer Register Content i 
OFFFFh 

CCROr-----------~----------~~----------

CCR1 r-----~~--_i------~~--~----~~--

CCR2~~~--4_--_i~~--~----~~~-----­
Oh~~----_r----~~----_r----~~--------

i--!-- COR1: 
TA1 Output t--I-----i---t--l-----I---t---'-- Output Mode 7: PWM Reset/Set 

r--IPW1 ~ 
CCR2: 

TA2 Output t--+----~-----,Io-+-----+---~ ...... +- Output Mode 3: PWM Set/Reset 

H-tPW2 

TAO Output t--;---4--+--i------+-----I--;--
E U2 

EQUO 
(TIMOV) 

I E U2 
EQU1 EQUO 

(TIMOV) 

E U2 
EQU1 EQUO 

(TIMOY) 

CORO: 
Output Mode 4: PWM Toggle 

Interrupts Generated 

Figure 6-37. Three Different Asymmetric PWM-Timings Generated With the Up Mode 

Software example: 

TAO: symmetric output signal 9.6kHz 

TAl: positive PWM signal 19.2kHz. Length in TA1PWM 

TA2: negative PWM signal 19.2kHz. Length in TA2PWM 

Hardware definitions 

FLLMPY .equ 

fper .equ 

TCLK .equ 

PERIOD .equ 

STACK .equ 

RAM definitions 

TAIPWM .equ 

TA2PWM .equ 

122 

19200 

FLLMPY*32768 

FLL multiplier for 3.9977MHz 

19.2kHz repetition rate 

TCLK: FLLMPY x fcrystal 

((2*TCLK/fper)+I)/2 ; Period of output signals 

600h 

202h 

203h 

; Stack initialization address 

Pulse length Block 1 (0 .. 209) 

Pulse length Block 2 (0 .. 209) 
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TlMACYCO .equ 

TlMACYC1 .equ 

TlMACNT .equ 

. text 

INIT MOV 

CALL 

204h 

206h 

208h 

#STACK,SP 

#INITSR 

Low cycle counter (bits 15 .. 0) 

High cycle counter (31 .. 16) 

Counts # of periods 

Software start address 

Initialize Stack Pointer 

Init. FLL and RAM 

Initialize the Timer_A: MCLK, Up Mode, INTRPTs on 

MAINLOOP 

MOV #ISMCLK+CLR,&TACTL ; Define Timer_A 

MOV 

MOV 

MOV 

#PERIOD-1,&CCRO 

#0,&CCR1 

#0,&CCR2 

Period to Period Register 

TAl: pulse width 

TA2: pulse width 

o 
o 

MOV #OMT+CCIE,&CCTLO TAO: Toggle Mode 

MOV #OMRS+CCIE, &CCTL1 TAl: Reset/Set Mode 

MOV #OMSR+CCIE,&CCTL2 TA2: Set/Reset Mode 

MOV.B 

MOV.B 

CLR.B 

CLR.B 

CLR 

CLR 

CLR 

BIS 

EINT 

#TA2+TAl+TAO,&P3SEL ; Define Timer_A I/Os 

#CBMCLK+CBE,&CBCTL ; Output MCLK at XBUF pin 

TA1PWM Start value Block 1: OV 

TA2PWM Start value Block 2: OV 

TIMACYCO Clear low cycle counter 

TlMACYC1 Clear high cycle counter 

TIMACNT Clear period counter 

#MUP,&TACTL start Timer in Up Mode 

Enable interrupts 

Continue in background 

Calculations resulted in new PWM values. The new results 

are stored in R6 (C/C Block 1) and R7. (C/C Block 2) 

Check if immediate update is necessary: 

CCRx = a .or. >= period. 

CMP #PERIOD,&CCR1 CCR1 actually >= period? 
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L$l1 

L$12 

L$2l 

L$22 

JHS 

TST 

JNZ 

MOV 

MOV.B 

CMP 

JHS 

TST 

JNZ 

MOV 

MOV.B 

L$l1 

&CCRI 

L$12 

R6,&CCRl 

R6,TAIPWM 

#PERIOD,&CCR2 

L$21 

&CCR2 

L$22 

R7,&CCR2 

R7,TA2PWM 

Yes, update CCRI immediately 

No, is CCRI = O? 

CCRI > 0: normal procedure 

No interrupt: immed. update 

Actualize TAlPWM buffer 

CCR2 actually >= period? 

Yes, update CCR2 immediately 

No, CCR2 = O? 

CCR2 > 0: normal procedure 

No interrupt: immed. update 

Actualize TA2PWM buffer 

Continue in background 

Interrupt handler for CCRO: the Period Register. The cycle 

counters and the period counter are updated. 

A symmetric 9.6kHz signal is output by the Output Unit 0 

Return from interrupt via 'the handler of C/C Blocks 1 to 4. 

TIMMODO ADD 

ADC 

INC 

#PERIOD,TIMACYCO ; Add (fixed) period to 

TIMACYCI 

TIMACNT 

cycle counters 

Period counter +1 

TaskO (if any) 

Fall through to TIM_HND 

Interrupt handlers for Capture/Compare Blocks 1 to 4. 

The actual interrupt flag CCIFGx is reset by the 

reading of the Timer Vector Register TAIV 

TIM_HND ADD &TAIV,PC Add Jump table offset 

RETI Vector 0: No interrupt 

JMP TIMMODI Vector 2: Block 1 

JMP TIMMOD2 Vector 4: Block 2 

JMP TIMMOD3 Vector 6 : Block 3 (not 

JMP TIMMOD4 Vector 8: Block 4 (not 

pending 

shown) 

shown) 

RETI Vector 10: TIMOV not used 

On-Chip Peripherals 
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Capture/Compare Block 1 outputs a positive PWM signal at TAl 

The pulse width is defined in TAlPWM (0 .. PERIOD) 

TIMMODI MOV.B 

EINT 

RETI 

TAlPWM,&CCRl Pulse width to CCRI 

Allow nested interrupts 

Task1 starts here 

Back to main program 

Capture/Compare Block 2 outputs a negative PWM signal at TA2 

The pulse width is defined in TA2PWM (0 .. PERIOD) 

TIMMOD2 MOV.B 

EINT 

RETI 

TA2PWM,&CCR2 Pulse width to CCR2 

Allow nested interrupts 

Task2 starts here 

Back to main program 

The tasks for the C/C Blocks 3 and 4 are not shown 

TIMMOD3 Handler for C/C Block 3 

RETI 

TIMMOD4 Handler for C/C Block 4 

RETI 

. sect "TIMVEC",OFFFOh Timer_A Interrupt Vectors 

. word TIM_HND C/C Blocks 1 to 4 

. word TIMMODO Capture/Compare Block 0 

. sect "INITVEC" , OFFFEh Reset Vector 

. word INIT 

The example results in a nominal CPU loading uCpu (ranging from 0 to 1) by 
the Timer_A activities: 
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Where: 
fMCLK 
nintrpt 
frep 

1 
= -- ~ (n1nJ'P' X f rep) 

/MeLK 

Frequency of the system clock (DCO) 
Number of cycles executed by the interrupt handler 
Repetition rate of the interrupt handler 

[Hz] 

[Hz] 



! 

The TimecA 

Note: 

The formula and the definitions given above are also valid for all subsequent 
software examples. They are therefore not repeated. 

CCRO - repetition rate 19.2kHz 
CCR1 - repetition rate 19.2kHz 
CCR2 - repetition rate 19.2kHz 

13 cycles for the task, 14 cycles overhead 
6 cycles for the update, 17 cycles overhead 
6 cycles for the update, 17 cycles overhead 

27 cycles 
23 cycles 
23 cycles 

19200 x (27 +23+23) 
ucpu = 3.9977 X ]06 = 0.35 

This result shows a CPU loading of 35% due to the Timer_A (the tasks of the 
capture/compare blocks 1 and 2 are not included). 

6.3.9.4 Dlgltal-to-Analog Conversion (DC Generation) 

TA2 

TA3 

l' 
OV 

MSP430 

TA4 

vee Vss ov 

5V OV 

With the Timer _A running in the up mode, a maximum of four digital-to-analog 
converters (DACs) can be created. With appropriate external filters, dc output 
voltages are available. 

The Figure 6-38 shows Simple hardware solutions for cleaning up the output 
dc voltage. The ripple shown on the dc output voltages is exaggerated for ex­
planation purposes. 

O.5VCC 

TA2 PWM Output 

TA3 PWM output 

DAC1 Output Voltage 

~ 14- TDAC1 

.. H ~ TA3 PWM Output 

~iIII---__ ~~ 1lfCCRO 

I I I I TDAC1 x fCCRO x vee 

~ DAC10utputVoitage 

~ I4-TDAC2 

lJ r TA4PWM Output 

~~------~f-~1/Jf~CCCRROO 
I I I I TDAC2 x fCCRO x VCC 

~~ 'T -+ - - -T-t- - - f DAC2 Output Voltage 

Figure 6-38. Digital-to-Analog Conversion 
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Example 6-43. Digital-to-Analog Conversion 

This software example creates three DACs that are updated at individual times 
and relatively infrequently compared to the repetition rate defined by the peri­
od register (CCRO): 

o DACO - output TA2, positive output signal, output value stored in 
DACOOV. 

o DAC1 - output TA3, positive output signal, output value stored in 
DAC10V. 

o DAC2 - output TA4, negative output signal, output value stored in 
DAC20V. 

The higher the selected output frequency at the TAx outputs, the better the 
suppression of the ac part of the output signal is. 

The interrupt is used only after a new PWM value is calculated and needs to 
be transferred to the capture/compare register. The update rate is approxi­
mately 500 Hz. 

The repetition frequency for all three DAC outputs is 3.072 kHz, the system 
clock frequency selected is 3.1457 MHz. This results in 1024 different steps 
(10 bits resolution) for the DAC output voltages. 

This example uses the Infrequent Update by the Appropriate Interrupt Han­
dIer. See Section 6.3.9.2 for details. The software is written for a variable peri­
od register. 

Software example: three independent DACs at TA2, TA3 and TA4 

Hardware definitions 

FLLMPY .equ 

fper .equ 

TCLK .equ 

PERIOD .equ 

STACK .equ 

; RAM definitions 

DACOOV .equ 

DAClOV .equ 
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96 

3072 

FLLMPY*32768 

FLL multiplier for 3.14S7MHz 

3.072kHz repetition rate 

TCLK: FLLMPY x fcrystal 

((2*TCLK/fper)+I)/2 ; Period of output signal 

600h 

202h 

204h 

; Stack initialization address 

Output value DACO (10 bits) 

Output value DACI (10 bits) 



DAC20V .equ 

TIMACYCO .equ 

TIMACYCl .equ 

TIMACNT .equ 

FLAG .equ 

.text 

206h 

208h 

20Ah 

20Ch 

20Eh 

Output value DAC2 (10 bits) 

Cycle counter low (bits 15 .. 0) 

Cycle counter high (bits 31 .. 16) 

Period counter 

Flag register for DACs 

Software start address 

Initialize the Timer_A: MCLK, Up Mode, CCRO INTRPT enabled 

Prepare Timer_A Output Units, MCLK = 3.l457MHz 

INIT MOV #STACK,SP Initialize Stack Pointer SP 

CALL HNITSR Init. FLL and RAM 

MOV #ISMCLK+CLR,&TACTL ; Define Timer_A 

MOV #OMOO+CCIE,&CCTLO Enable INTRPT Per. Reg. 

MOV #OMRS,&CCTL2 DACO: Reset/Set 

MOV #OMRS,&CCTL3 DACl: Reset/Set 

MOV #OMSR,&CCTL4 DAC2: Set/Reset 

MOV #PERIOD-l,&CCRO Load Period Register 

CLR &CCR2 DACO: 0% output 

CLR &CCR3 DACl" 

CLR &CCR4 DAC2 

MOV.B #TA4+TA3+TA2,&P3SEL ; Output Unit I/Os 

CLR TIMACNT Clear period counter 

CLR TIMACYCO Clear cycle counters 

CLR TIMACYCI 

CLR.B FLAG Disable update of DACs 

BIS #MUP,&TACTL Start Timer_A with Up Mode 

EINT Enable interrupts 

MAINLOOP Continue in background 

Calculations for the new DAC values start. 

The new results in R6 are written to DACxOV after completion 

The interrupt is enabled individually for the update. A check 

is made if special treatment is necessary: 

CCRx = 0 .or. >= period 

On-Chip Peripherals 
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Software is written for a variable period register CCRO 

L$2l 

L$22 

L$23 

L$3l 

L$32 

L$33 

L$41 

L$42 

6-154 

MOV 

CMP 

JLO 

TST 

JNZ 

MOV 

JMP 

BIS.B 

BIS 

.equ 

MOV 

CMP 

JLO 

R6,DACOOV 

&CCR2,&CCRO 

L$2l 

&CCR2 

L$22 

R6,&CCR2 

L$23 

#l,FLAG 

#CCIE,&CCTL2 

$ 

R6,DAC10V 

&CCR3,&CCRO 

L$3l 

TST &CCR3 

JNZ L$32 

MOV 

JMP 

BIS.B 

R6,&CCR3 

L$33 

#2 ,FLAG 

BIS #CCIE,&CCTL3 

.equ 

MOV 

CMP 

JLO 

TST 

JNZ 

MOV 

JMP 

llIS.B 

BIS 

$ 

R6,DAC20V 

&CCR4,&CCRO 

L$4l 

&CCR4 

L$42 

R6,&CCR4 

L$43 

#4,FLAG 

#CCIE,&CCTL4 

Calculate DACO value to R6 

Actualize DACO pulse length 

CCR2 >- period actually? 

Yes, update CCR2 immediat. 

No, is CCR2 = 0 actually? 

No, proceed normally 

Update CCR2 immediately 

update made, calc. CCR3 PWM 

Set update flag for DACO 

Enable interrupt for DACO 

Calculate DACl value to R6 

Actualize DACl pulse length 

See comment for DACO 

Calculate DAC2 value to R6 

Actualize DAC2 pulse length 

See comment for DACO 



L$43 Continue in background 

Interrupt handler of the Period Register CCRO. 

A way is shown how to update the cycle counters if the 

timer period is variable during the program flow 

TIMMODO SETC 

ADDC 

ADC 

INC 

EINT 

RETI 

&CCRO,TlMACYCO 

TlMACYCl 

TlMACNT 

Period - (CCRO)+l 

Add actual period to 

cycle counters TlMACYCx 

Period counter +1 

Allow nested interrupts 

TaskO (if any) 

Interrupt handler for Capture/Compare Registers 1 to 4 

TIM_HND ADD &TAIV,PC Serve highest priority 

RETI No interrupt pending 

JMP TIMMODl CCR1 request 

JMP TIMMOD2 DACO request 

JMP TIMMOD3 DAC1 

JMP TIMMOD4 DAC2 

RETI Timer overflow disabled 

Capture/Compare Block 1 interrupt handler. May be used for 

comparison or capturing. Not implemented here. 

TIMMODl Handler start 

RETI 

DACx updates. Interrupt is used only if a new result is 

calculated. Update frequency is 0.5kHz. The 1st interrupt 

is rejected, due to the always set interrupt flag CCIFGx. 

The 2nd synchronous interrupt updates the C/C Block. 

requ. 

TIMMOD2 BIT.B #l,FLAG Update possible? (flag - 0) 

On-Chip Peripherals 
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JNZ T20 

MOV DACOOV, &CCR2 

BIC #CCIE,&CCTL2 

RETI 

T20 BIC.B n,FLAG 

RETI 

DACl update. Same as above for DACO 

TIMMOD3 BIT.B #2,FLAG 

JNZ T30 

MOV DAC1OV,&CCR3 

BIC #CCIE,&CCTL3 

RET I 

T30 BIC.B 1t2,FLAG 

RETI 

DAC2 update. Same as above for DACO 

TIMMOD4 BIT.B #4 ,FLAG 

JNZ T40 

MOV DAC20V,&CCR4 

BIC #CCIE,&CCTL4 

RETI 

T40 BIC.B #4,FLAG 

RETI 

.sect "TIMVEC",OFFFOh 

. word TIM_HND 

. word TIMMODO 

.sect "INITVEC",OFFFEh 

. word INIT 

No, asynchronous interrupt 

Yes, update DACO 

Disable interrupt 

Indicate update readiness 

Return from interrupt 

update possible? (flag = 0) 
No, asynchronous interrupt 

Yes, update DACl 

Disable interrupt 

Indicate readiness 
Return from interrupt 

update possible? (flag = 0) 
No, asynchronous interrupt 

Yes, ·update DAC2 

Disable interrupt 

Indicate readiness 

Return from interrupt 

Timer~ Interrupt Vectors 

Vector for C/C Block 1. .4 

Vector for C/C Block ° Reset Vector 

This example results in a maximum CPU loading ucpu (ranging from 0 to 1 ) 
by the Timer_A activities (maximum update frequencies on all three DAC 
channels): 

CCRO - repetition rate 3.072 kHz 
CCR2 - repetition rate 0.5 kHz 
CCR3 - repetition rate 0.5 kHz 
CCR4 - repetition rate 0.5 kHz 
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16 cycles for the task, 11 cycles overhead 
27 cycles for the update, 32 cycles overhead 
27 cycles for the update, 32 cycles overhead 
27 cycles for the update, 32 cycles overhead 

27 cycles 
59 cycles 
59 cycles 
59 cycles 
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_ 3072 x27 +500 x(59+59 +59) -00 
ucpu - 3.1457 x106 - • 55 

Note that an update for the capture/compare blocks 2 to 4 needs two interrupt 
services. The above result means a worst case CPU loading of approximate 
5.5% due to the three DACs. 

If all three tasks are updated with a 100 Hz update rate, then the CPU is loaded 
with only 3.2%. 

6.3.9.5 TRIAC Control 

TRIAC control for electric motors (DMC) or other loads is also possible with 
the up mode of the TimecA. But the time frame, defined by the period register, 
does not allow the same resolution as with the continuous mode. The control 
software now counts the number of periods and fires the TRIAC after the 
reaching of the programmed number. 

The medium resolution pmed is: 

Where: 
fMAINS 
tper 

1 
pmed = ------

2 X /MAINS X tper 

AC Line frequency 
Period of the Timer_A, defined by CCRO 

[Hz] 
[s] 

The integrated energy E 6f a sine half wave dependent on the time t is de­
scribed by the equation: 

E~l-cosro t=1-cos21tft 
1 

t = 0 ... 2f 

Due to this nonlinear energy increase, the worst case resolution Pmin - near 
theangle1tl4 (90°) -is reduced by a factorof1tl2 (1.57) compared to the me­
dium resolution Pmed: 

1 
pmin = 

2 x/MAlNS X tperx 1t /2 

The TRIAC control software contains fewer security features than the version 
shown for the continuous mode: 

o The zero crOSSing part (PO.O handler) immediately switches the gate sig­
nal off by setting terminal TAO to high. This prevents the firing for the next 
half wave. 
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>1 M 

This means, the background software has to check to see ifthe calculated time 
forthe firing ofthe TRIAC - the number oftimer periods after the zero crosSing 
of the ac line voltage (FIRANGL) - is not too near to the next zero crossing. 

No capture/compare register is needed for the TRIAC control- only the peri­
od register with its interrupt and output unit 0 is used. This frees the remaining 
capture/compare blocks for other taskS. 

Figure 6-39 shows the hardware for the TRIAC control of this example. After 
power up, the TAO terminal is switched to input mode - the base resistor of 
the PNP transistor switches the gate of the TRIAC off and prevents a run of 
the motor. The necessary hardware debounce for the zero crossing signal at 
PO.O is made with the internal capacity, Cz, of the zener diode. 

J1.J"L PWM Output 2 

J1.J"L PWM Output 1 

5V 

Figure 6-39. TRIAC Control with Time,-A 
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Figure 6-40 illustrates the software example given below. The period of CCRO 
is not shown in to scale - 160 steps make one half wave of the 50 Hz line. 
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PO.Olnput 

Zero Craning .-+----"'------l-----.J-------'-----

TAO Output to 

TRIAC Gate -+----'-...... ...I--------"L....a,,:--:=-=-~--+_'-+-....... ---

Voltage 

AC 

Figure 6-40. Signals for the TRIAC Gate Control With Up Mode 

Example 6-44. Static TRIAC Control 

A static TRIAC control software example is shown. The calculated number of 
periods until the TRIAC gate is fired after the zero crossing of the ac line volt­
age, is contained in the RAM word FIRANGL. 

The medium resolution Pmed is 160 steps per 50 Hz line half wave 
(16 kHzl100 Hz = 160). The minimum resolution, Pmln, is 102 steps (160 x 217t 
= 102), which means approx. 1 % resolution. See the equations above. 

At the TA 1 and TA2 terminals, positive PWM signals are output. The period is 
defined by the Period register CCRO, the pulse length (TCLK cycles) is con­
tained in the RAM bytes TA1PWM and TA2PWM. The update is made with 
1 kHz. 

The example uses the Infrequent Update by the Appropriate Interrupt Handler. 
See Section 6.3.9.2 for details. 

; Definitions for the TRIAC control software 

FLLMPY .equ 

fper .equ 

TCLK .equ 

PERIOD .equ 

OP .equ 

64 

16000 

FLLMPY*32768 

FLL multiplier for 2.096MHz 

16.000kHz repetition rate 

TCLK (Timer Clock) [Hz] 

{{2*TCLK/fper)+1)/2 ; Period in Timer clocks 

2 TRIAC gate pulse length (per.) 
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RAM definitions 

TlMACYCO .equ 202h Timer Register Extensions: 

TlMACYC1 .equ 204h Cycle counters 

TlMACNT .equ 206h Counter of periods 

FlRANGL .equ 208h Half wave - conduction angle 

FIRTIM .equ 20Ah Fire time rel. to TlMACNT 

TA1PWM .equ 20Ch PWM cycle count for· Block 1 

TA2PWM .equ 20Dh PWM cycle count for Block 2 

STTRIAC .equ 20Eh Control byte (0 off) Status 

FLAG .equ 20Fh 1: update for PWM necessary 

STACK .equ 600h Stack initialization address 

. text start of ROM code 

Initialize the Timer_A: MCLK, Up Mode, INTRPT enabled 

Prepare Timer_A Output Units 

INIT MOV #STACK,SP Initialize Stack Pointer SP 

CALL HNITSR Init. FLL and RAM 

MOV #ISMCLK+CLR,&TACTL ; Init. Timer 

MOV #PERIOD-1,&CCRO ; Period to CCRO 

MOV #OMOO+CCIE+OUT,&CCTLO ; Set TAO high 

MOV #OMRS,&CCTL1 TAl: pos. PWM pulses 

MOV #OMRS,&CCTL2 TA2: pos; PWM pulses 

BIS.B #TA2+TA1+TAO,&P3SEL ; Define timer outputs 

BIS.B #POIEO,&IE1 Enable PO.O interrupt (mains) 

CLR TlMACYCO Clear low cycle counter 

CLR TlMACYC1 Clear high cycle counter 

CLR TlMACNT Clear period counter 

CLR.B STTRIAC TRIAC off status (0) 

CLR.B FLAG No update 

CLR.B TAIPWM TAl: no output (0% duty cycle) 

CLR.B TA2PWM TA2: no output (0% duty cycle) 

BIS #MUP,&TACTL Start Timer_A in Up Mode 

MOV.B #CBMCLK+CBE,&CBCTL ; MCLK at XBUF pin 
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EINT 

MAINLOOP 

Some TRIAC control examples: 

Enable interrupts 

Continue in mainloop 

Start electric motor: checked result (Timer_A periods) in R5 

The result is the time difference from the zero crossing 

of the mains voltage (PO.O) to the first gate pulse 

(measured in Timer_A periods) 

MOY 

MOY.B 

R5,FIRANGL 

#2,STTRIAC 

Delay (periods) to FIRANGL 

Activate TRIAC control 

Continue in background 

The motor is running. A new calculation result is available 

in RS. It will be used with the next mains half wave 

MOY RS,FIRANGL Delay (periods) to FIRANGL 

Continue in background 

stop motor: switch off TRIAC control 

CLR.B 

BIC 

BIS 

STTRIAC 

#OMRS,&CCTLO 

#CCIE+OUT,CCTLO 

Disable TRIAC control 

TRIAC gate off 

TAO high, Output only Mode 

Continue with background 

Calculations for the new PWM values start. 

The new results in R6 are written to TAxPWM after completion 

The interrupt is enabled individually for the update. A check 

is made if special treatment is necessary: 

Actual CCRx = 0 .or. >= period 

Software is written for a constant period register CCRO 

MOY.B 

CMP 

R6,TAlPWM 

#PERIOD,&CCRl 

Calculate TAlPWM value to R6 

Actualize pulse length 

CCRl >- period actually? 

On-Chip Peripherals 
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JHS L$l1 Yes, update CCRl immediat. 

TST &CCRl No, is CCRl = 0 actually? 

JNZ L$l2 No, proceed normally 

L$l1 MOV R6,&CCRl update CCRl immediately 

JMP L$l3 Update made, calc. next PWM 

L$l2 BIS.B U,FLAG set update flag for TAlPWM 

BIS *CCIE,&CCTLl Enable interrupt 

L$l3 .equ $ 

Calculate TA2PWM value to R6 

MOV.B R6,TA2PWM Actualize pulse length 

CMP *PERIOD,&CCR2 CCR2 >= period actually? 

JHS L$2l Yes, update CCR2 immediat. 

TST &CCR2 No, is CCR2 = 0 actually? 

JNZ L$22 No, proceed normally 

L$2l MOV R6,&CCR2 update CCR2 immediately 

JMP L$23 Update made, continue 

L$22 BIS.B #2 ,FLAG Set update flag for TA2PWM 

BIS *CCIE,&CCTL2 Enable interrupt for DACO 

L$23 Continue in background 

Interrupt handler for CCRO: the Period Register: 

- The cycle counters and the period counter are updated: 

- The TRIAC control task is executed 

TIMMODO ADD 

ADC 

INC 

#PERIOD,TlMACYCO 

TlMACYCl 

TlMACNT 

Add (fixed) period to 

Cycle counters 

Increment period counter 

Interrupt handler for the TRIAC control 
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EINT 

PUSH 

MOV.B 

MOV 

RS 

STTRIAC,RS 

STTAB(RS) ,PC 

-Allow nested interrupts 

Save help register RS 

Status of TRIAC control 

Branch to status handler 



STTAB . word STATED Status D: No TRIAC activity 

. word STATED Status 2: activation pcssibLe 

. word STATE4 Status 4: wait for gate pulse 

. word STATE6 Status 6: wait for gate off 

TRIAC status 4: gate is switched on for OP periods after the 

value in FIRTIM is reached 

STATE4 CMP 

JNE 

FIRTIM,TIMACNT 

STATED 

TRIAC gate time reached? 

No 

BIS #OMR+CCIE,&CCTLD ; Prepare for gate on pulse 

ADD.B #2,STTRIAC ; Next TRIAC status (6) 

TRIAC status D: No activity. TRIAC is off always 

STATED POP 

RETI 

RS Restore help register 

Return from interrupt 

TRIAC status 6: gate pulse is active. Check if it's time 

to switch the gate off. 

STATE6 MOV FIRTIM,RS 

ADD #OP,RS Gate-on time (periods) 

CMP RS,TIMACNT On-time terminated? 

JLO STATED No 

BIC #OMRS,&CCTLD Yes, prepare TRIAC Gate off 

BIS #OMSET+CCIE,&CCTLD; 

MOV.B #2,STTRIAC TRIAC status: 

JMP STATED Wait for next zero crossing 

Interrupt handler for capture/Compare Blocks 1 to 4 

TIM_HND ADD 

RETI 

JMP 

JMP 

RETI 

&TAIV,PC 

TIMMODl 

TIMMOD2 

Serve highest priority requ. 

No interrupt pending 

PWM 1 request 

PWM 2 request 

Not used 

On-Chip Peripherals 

The Timer A 

6-163 



The Timer A 

RETI 

RETI 

Not used 

Timer oyerflow disabled 

C/C Block updates. Interrupt is used only if a new result is 

calculated. Update frequency is 1.0kHz. The 1st interrupt 

is rejected, due to the always set interrupt flag CCIFGx. 

The 2nd synchronous interrupt updates the C/C Register. 

TIMMOD1 BIT.B #1,FLAG Update possible? (flag = 0) 

JNZ TIO No, asynchronous interrupt 

MOV.B TAlPWM,&CCR1 Yes, update C/C Block I 

BIC IICCIE,&CCTLI Disable interrupt 

RETI 

TIO BIC.B III,FLAG Indicate: ready for update 

RET I Return from interrupt 

TIMMOD2 BIT.B J;2,FLAG Update possible? (flag = 0) 

JNZ T20 No, asynchronous interrupt 

MOV.B TA2PWM, &CCR2 Yes, update C/C Block 2 

BIC #CCIE,&CCTL2 Disable interrupt 

RETI 

T20 BIC.B #2,FLAG Indicate: ready for update 

RETI Return from interrupt 

Po.o Handler: the mains voltage causes interrupt with each 

zero crossing. The TRIAC gate is switched off first, to 

avoid the ignition for the actual half wave. 

Hardware debounce is necessary for the mains signal! 

POO_HNDLR BIC 

BIS 

EINT 

XOR.B 

JOMRS,&CCTLO 

#CCIE+OUT,&CCTLO 

#1,&POIES 

Switch off TRIAC gate 

Allow nested interrupts 

Change interrupt edge of PO.O 

If STTRIAC is not 0 ( 0 = inactivity) then the next gate 

firing is prepared: STTRIAC is set to 4 
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TST.B 

JZ 

MOV.B 

STTRIAC 

POO 

#4, STTRIAC 

STTRIAC = 0: no activity 

STTRIAC > 0: prep. next firing 

The Timer A 

The TRIAC firing time is calculated: TlMACNT + FlRANGL 

MOV 

ADD 

POO RETI 

. sect 

. word 

. word 

.sect 

. word 

. sect 

. word 

TIMACNT,FIRTIM Period counter 

FlRANGL,FIRTIM TIMACNT + delay -> FIRTIM 

"TIMVEC",OFFFOh Timer_A Interrupt Vectors 

TIILHND C/C Blocks 1 .. 4 Vector 

TIMMODO Vector for C/C Block 0 

"POOVEC",OFFFAh PO.O Vector 

POO_HNDLR 

"INITVEC",OFFFEh Reset Vector 

INIT 

The TRIAC control example results in a nominal CPU loading ucpu (ranging 
from 0 to 1) for the active TRIAC control (STIR lAC = 4): 

CCRO - repetition rate 16 kHz 
CCR1 - repetition rate 1 kHz 
CCR2 - repetition rate 1 kHz 
PO.O - repetition rate 100 Hz 

32cycles for the task, 11 cycles overhead 
27 cycles for the update, 32 cycles overhead 
27 cycles for the update, 32 cycles overhead 
32 cycles for the task, 11 cycles overhead 

43 cycles 
59 cycles 
59 cycles 
43 cycles 

16.0 x103 x43+1.0 x103 x (59 +59)+100 x47 

2.096 x106 
= 0.39 

The above result means a CPU loading of approximate 39% due to the static 
TRIAC control. The necessary tasks for the update of the period counter and 
the cycle counters are included. The PWM activities alone load the CPU with 
less than 6% using this method (fupdate = 1 kHz). 
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6.3.9.6 RF Timing Generation 

Informallon 096h 

Amplitude 
Modulation 

Blphasa Space 

The repetition rate used in the up mode must be a multiple of the data change 
frequency. The three different modulation methods and its conversion subrou­
tines were explained in depth in the section RF generation. 

The RF modulation modes described earlier were: 

o Amplitude Modulation - the RF oscillator is switched on for a logical 1 
and switched off for a logical 0 (100% modulation). 

o Biphase Code - the information is represented by a bit time consisting 
of one half bit without modulation and one half bit with full modulation. A 
logical 1 starts with 100% modulation, a logical Ostarts with no modulation. 

o Blphase Space - a logical 1 (space) is represented by a constant signal 
(100% or 0% modulation) during the complete bit time. A logical 0 (mark) 
changes the signal in the middle of the bit time. The signal changes after 
each transmitted bit. This means, the previous bit influences the current 
bit. 

Figure 6-41 shows the three different modulation modes for an input byte con­
taining the value 96h. 

o o o o 

Bit Length "*--.J Tlma-. 

Figure 6-41. RF Modulation Modes 
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The capture/compare block 0 is used with the software example due to two 
facts: 

o The fastest possible response. Decision making with the timer vector reg­
ister is not necessary for the capture/compare block 0 - it uses its own, 
dedicated interrupt vector. The vector address is OFFF2h. 

o The capture/compare block 0 delivers the necessary timing anyway. The 
use of the period register therefore frees the remaining capture/compare 
registers for other tasks. 

Example 6-45. RF Modulation Modes 

The real time task common to all three modulation modes is given below. The 
background software prepares a 128-bit block starting at address RF _BlK, 
containing the information to be output in the desired coding format. This 
12S-bit buffer is output in real time with the same handler for all three modula­
tion modes. 

The selected half-bit repetiti~n frequency is 19200 Hz, because 38400 Hz is 
too high a PWM frequency (increased switching losses, too few resolution 
steps). 

The capture/compare blocks 1 to 3 are used for the PWM generation. The 
table processing used allows (nearly) simultaneous update of all three cap­
ture/compare blocks. The method used is the fastest one for updating. The 
number range for the PWM is from 1 to (period-1), therefore, the fast update 
- without range checks - is possible. 

The CPU registers RS and RS are reserved for the RF timing. RS contains the 
data to be output currently, RS pOints to the next data word. They must not be 
overwritten by other tasks. 

The conversion subroutines forthe biphase code and biphase space modula­
tion are described in the section RF Generation. 

The example uses the Frequent Update by the Appropriate Interrupt Handler. 
See Section 6.3.9.2 for details. 

Hardware definitions 

FLLMPY .equ 

fRF .equ 

TCLK .equ 

PERIOD .equ 

122 

19200 

FLLMPY*32768 

FLL multiplier for 3.998MHz 

Half-bit rep. frequency 

TCLK: FLLMPY x fcrysta1 

«2*TCLK/fRF)+1)/2 ; Bit length (TCLK cycles) 
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stack initialization address 

Converted data 128 bits 

Cycle counter Timer-A 

Period counter Timer-A 

Status of RF transmission 

Value for C/C Block 1 

Value for C/C Block 2 

Value for C/C Block 3 

; Software start address 

Initialize Stack Pointer 

Init. FL~ and RAM 

Initialize the Timer_A: MCLK, Up Mode, INTRPT on for CCRx 

MOV #ISMCLK+CLR,&TACTL ; MCLK, TIMOV off 

MOV ~OMOO+CCIE,&CCTLO Reset TAO, INTRPT on 

MOV #OMSR+CCIE,&CCTLl TAl: Set/Reset 

MOV #OMSR+CCIE,&CCTL2 TA2: Set/Reset 

MOV #OMSR+CCIE,&CCTL3 TA3: Set/Reset 

MOV #PERIOD-l,&CCRO 19.2kHz period 

MOV.B lIl,&CCRl Minimum PWM length 

MOV.B U,&CCR2 

MOV.B U,&CCR3 

MOV.B #TA3+TA2+TAl+TAO,&P3SEL Define timer outputs 

CLR TlMACYC Clear cycle counter 

CLR TlMACNT Clear period counter 

MOV.B U,TAlPWM Minimum PWM output 

MOV.B #1,TA2PWM 

MOV.B #l,TA3PWM 

MOV.B #CBMCLK,&CBCTL Output MCLK at XBUF pin 

CLR.B RFSTAT RF status = 0 
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MAINLOOP 

BIS 

EINT 

#MUP,&TACTL Start Timer in Up Mode 

Enable interrupts 

Continue in background 

The data to be transmitted by RF is converted into a 

12B-bit RAM block starting at address RF_BLK with the 

appropriate conversion routine. The subroutines described 

in Part III are used. See there for explanation. 

R5 and R8 are reserved for the RF transmissioni 

MOV.B 

CALL 

MOV 

ADDRESSO,R6 

#BI_PHASE-.xxx 

RS,O(RB) 

1st data byte to R6 

Convert it to 16 bits 

Converted data to RF-B1ock 

Continue with converting 

Initialize transmission of the converted data (12B-bit) 

MOV 

MOV 

MOV.B 

#RF_BLK,RB 

@RB+,R5 

#16+1,RFSTAT 

Start of 128-bit block 

1st 16 bits for output to R5 

Bit count for 1st 16 bits 

Continue in background 

Test in background if 12B bits are output: RFSTAT ° 
TST.B 

JZ 

RFSTAT 

BPC_MADE 

Output completed? 

Yes, RFSTAT = ° 
No, continue 

New values for the three PWM channels are read from a table 

MOV 

MOV.B 

MOV.B 

MOV.B 

ANGLE,R15 ; Actual angle for DMC 

TABLE+OO(R15),TA1PWM Update PWM channels 

TABLE+12(R1S),TA2PWM out of a sine table 

TABLE+24(R1S),TA3PWM 

; Continue in background 

On-Ghip Peripherals 
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A second example is given for a 64 bit block: 

Initialize transmission of only 64 bits: the start address 

differs, the end address is again RF_BLK+16 

TABLE 

MOV 

MOV 

MOV.B 

. byte 

#RF_BLK+B,RB 

@RS+,R5 

U6+1,RFSTAT 

Start of 64-bit block 

1st 16 bits for output to R5 

Bit count for 1st 16 bits 

Continue in background 

1,15,29,43 ... PERIOD-1 PWM table 

Interrupt handler for Capture/Compare Block 0 (CCRO) 

Data in RF_BLK is output: LSB first. 

The Output Unit outputs the data bit prepared during the last 

period. The data bit for the next period is prepared now. 

Output is completed, when (last word +4) is addressed by RS. 

TIMMODO ADD 

INC 

TM01 

TM04 

TM02 
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EINT 

TST.B 

JZ 

DEC.B 

JNZ 

MOV 

CMP 

JHS 

MOV.B 

RRC 

JC 

MOV 

RETI 

MOV 

lIPERIOD,TlMACYC 

TIMACNT 

RFSTAT 

TM03 

RFSTAT 

TM01 

@RS+,R5 

#RF_BLK+1S,RS 

TM04 

#l6,RFSTAT 

RS 

TM02 

#OMR+CCIE,&CCTLO 

#OMSET+CCIE,&CCTLO 

Add period to cycle counter 

i Increment period counter 

Allow nested interrupts 

RF transmission underway? 

No, return from interrupt 

Yes, bit count - 1 

Not zero: continue 

Next 16 bits for output 

End of buffer+2 reached? 

Yes, finish output (RFSTAT=O) 

Bit count for next word 

Next data bit to carry 

Bit is one 

Bit is 0: prepare reset 

Bit is 1: prepare set 



TM03 RETI 

Interrupt handlers for Capture/Compare Blocks 1 to 4. 

The actual interrupt flag CCIFGx is reset by the 

reading of the Timer Vector Register TAIV 

TIILHND ADD &TAIV,PC Add Jump table offset 

RET I Vector 0: No interrupt pending 

JMP TIMMOD1 Vector 2: Block 1 

JMP TIMMOD2 Vector 4: Block 2 

JMP TIMMOD3 Vector 6: Block 3 

RETI Vector 8 : Block 4 (not used) 

.RETI Vector 10: TIMOV not used 

Capture/compare Block 1 outputs a positive PWM signal at TAl 

The pulse width is defined in TA1PWM (1 .. PERIOD-1) 

TIMMOD1 MOV. B 

RETI 

TA1PWM,&CCR1 Pulse width to CCR1 

Back to main program 

Capture/Compare Block 2 outputs a positive PWM signal at TA2 

The pulse width is defined in TA2PWM (1 .. PERIOD-1) 

TIMMOD2 MOV.B 

RETI 

TA2PWM,&CCR2 Pulse width to CCR2 

Back to main program 

Capture/Compare Block 3 outputs a positive PWM signal at TA3 

The pulse width is defined in TA3PWM (1 .. PERIOD-1) 

TIMMOD3 MOV.B TA3PWM,&CCR3 Pulse width to CCR3 

RETI Back to main program 

.sect "TIMVEC",OFFFOh Timer_A Interrupt Vector 

. word TIILHND Vector C/C Blocks 1 to 3 

. word TIMMODO Vector for C/C Block 0 

. sect "INITVEC",OFFFEh Reset Vector 

.word INIT 
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The Timer A 

6-171 



The Timer A 

The RF timing generation example results in a nominal CPU loading ucPU 
(ranging from 0 to 1) for the active transmit (RFSTAT > 0): 

CCRO - repetition rate 19.2 kHz 
CCR1 - repetition rate 19.2 kHz 
CCR2 - repetition rate 19.2 kHz 
CCR3 - repetition rate 19.2 kHz 

30 cycles for the task, 11 cycles overhead 
6 cycles for the update, 16 cycles overhead 
6 cycles for the update, 16 cycles overhead 
6 cycles for the update, 16 cycles overhead 

41 cycles 
22 cycles 
22 cycles 
22 cycles 

The above example results· in a medium CPU loading uCPU (ranging from 0 to 
1) by the TlmecA activities: 

u =_1_1: n. x )=19.2X103 X(41+22+22+22)=0.51 
CPU fMcLK (,ntrpt frep 3.998 x 106 

The result means that the MSP430 CPU is loaded 20% when outputting the 
RF buffer with 19200 baud and an MCLK frequency of 4 MHz. The updates of 
the cycle counters and the period counter are included. The update of the 
PWM registers adds 31%, if used. 

6.3.9.7 Softwsre UART 

With a carefully chosen timer period, a software UART can be implemented 
relatively simply. The complete software, a status-controlled handler, will be 
the topic of an external application report. This report will describe a full-duplex 
UART controlled by the timing of Timer_A. 

6.3.9.8 Compsrlson With the Up Mode 

Comparison with the up mode is made the same way as described in the sec­
tion Applications exceeding the 16-8it Range of the TimecA for thecontinu­
ous mode. As in that case, the timings to be created exceed the period of the 
timer register and external RAM extensions are therefore necessary. 

6.3.9.9 Cspturlng WIth the Up Mode 
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If the periods of the Internal interrupt timings or the time intervals to be captured 
are longer than one period ofthe timer register, then a special method is neces­
sary to take care of the longer time periods. The same is true if a half period 
of a generated output frequency is longer than the period of the Timer_A. 

This special method, with the use of extension registers for the capture! 
compare registers, is necessary if: 

(nccrll + 1) xk 
tS/GNAL > 

fCLK 
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Where: 
tSIGNAl lime interval to be captured [s] 
fClK Input frequency at the input divider input of limer_A [Hz] 
k Pre-divider constant of the input divider (1, 2, 4 or 8) 
nCCRO Content of period register CCRO 

Figure 6-42 Illustrates the hardware and RAM registers used with the capture 
mode if the captured values are greater than one period of the limer_A. 

15 o 

15 Cycle Counter 
o Timer Clock 

carry to TIMACYC1 

16-Blt CaptUred Value 

Figure 6-42. Capture Mode with the Up Mode (shown for CCR 1) 

Figure 6-43 illustrates five examples. The tasks are defined as follows: 

o Capture/Compare Block 0 - outputs a symmetrical 9.6 kHz signal. The 
edges contain the information forthe period generated by the period regis­
ter (CCRO). This signal is always available (the PWM signals of the cap­
ture/compare blocks disappear for pulse widths of 0% and 100%). 

o Capture/Compare Block 1 - generates a positive PWM signal with the 
period defined by the period register. The pulse length is stored in the RAM 
word TA1 PWM. A dedicated interrupt handler is used. 

o Capture/Compare Block 2 -the length, At2, of the high part of the input 
signal althe CCI2A input terminal is measured and stored in the RAM word 
PP2. The captured time of the leading edge is stored in the RAM word 
TIM2. The max. repetition rate used is 2 kHz. 

o Capture/Compare Block 3 - the event time of the leading edge of the 
signal at the CCI3A input terminal is captured. The last captured value is 
stored in the RAM word TIM3. The max. repetition rate used is 3 kHz. 

o Capture/Compare Block 4 - generates a negative PWM signal with the 
period defined by the period register. The pulse length is stored in the RAM 
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word TA4PWM. Update is made with the interrupt handler of capture! 
compare block o. 

For the example, 3.801 MHz is used. The resolution is 224 steps due to the 
repetition frequency of 16.969 kHz (3.801 MHzl16.969 kHz = 224). 

Table 6-23. Short Description of the Capture and PWM Mix 

ClCBLOCK 

O· 

1 

2 

3 

4 

6-174 

TIME INTERVAL TIMERI/Os COMMENT 

Doubled period Outputs 0.5 X Period register CCRO. Output of a symmetrical 8.484 kHz signal 
PWM Frequency 

Period Outputs PWM Generation of PWM. Pulse length stored in TAl PWM. Dedicated 
1 .. PERIOD-1 interrupt handler for update. 

External event Input pin CCI2A Measures high signal part <l.t2. Length of posttive signal part is 
is used stored in PP2. Maximum input frequency is 2 kHz. 

External event Input pin CCI3A Captures event time t3 of the trailing edge of the input signal. 

Period 

is used Event time t3 stored in TIM3. Maximum input frequency is 3 kHz. 

Outputs PWM 0 Generation of PWM. Pulse length stored In TA4PWM. Update by 
-100% capture/compare block o. 

Note: 

The maximum input frequencies for capturing purposes shown above are 
used for the overhead calculation only. The limits of the TlmecA hardware 
allow it to capture much higher input frequencies. 

Figure 6-43 illustrates the four tasks described above - they are not shown 
to scale. 



Period Counter TIMACNT 
Cycle Counter TIMACYC 

n 
nxPerlod 

n+1 
(n+1) x Period 

n+2 
(n+2) x Period 

CCRO 
Timer Reglaler TAR 

CCR1 

v / / ,/ 
CCR4 

Oh 

PWM Signalal TA1 

PWM Signal al TA4 

Time Measuremenl 
81CCI2A 

/1 
: 
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~ 
I 
J 

/1 
! 
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I 

Ceplurlng of Leading 
Edgea al CCl3A 

Caplured Edge 13 ... 

I 

Doubled Period 81 TAO I I 

Figure 6-43. PWM Generation and Capturing With the Up Mode 

Example 6-46. PWM Generation and Capturing With the Up Mode 
; Timer-A used for PWM-generation and capturing. 

FLLMPY 

fper 

TCLK 

PERIOD 

.equ 

.equ 

.equ 

.equ 

RAM Definitions 

TAIPWM .equ 

TIM2 .equ 

PP2 .equ 

TIM3 .equ 

TA4PWM .equ 

TlMACYCO .equ 

TlMACYCl .equ 

116 

16969 

FLLMPY*32768 

fMCLK = 3.801MHz 

16.969kHz repetition rate 

TCLK: FLLMPY x fcrystal 

«2*TCLK/fper)+1)/2 ; frep = 19.969kHz 

202h 

204h 

206h 

208h 

20Ah 

20Ch 

20Eh 

PWM pulse length TAl 

Time of leading edge at CCI2A 

Length of high part at CCI2A 

Time of leading edge at CCI3A 

PWM pulse length for TA4 

.cycle counter low 

Cycle counter high 

The TimecA 

n+3 
(n+3) x PerIod 

,/ 
VI 

i 
I 

I J--

L 

I 
Tlme-+ 
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TIMACNT .equ 

STACK .equ 

. text 

INIT MOV 

CALL 

210h 

600h 

#STACK,SP 

#INITSR 

Period counter 

Stack initialization address 

Software start address 

Initialize Stack Pointer 

Init. FLL and RAM 

Initialize the Timer_A: MCLK, Up Mode, INTRPTs on 

MOV 

MOV 

MOV 

MOV 

MOV 

MOV 

MOV 

MOV.B 

CLR 

CLR 

CLR 

MOV 

MOV 

MOV.B 

BIS 

EINT 

MAINLOOP 

#ISMCLK+CLR,&TACTL; NO,TIMOV interrupt 

#PERIOD-1,&CCRO Define period 

#OMT+CCIE,&CCTLO Toggle TAO, INTRPT on 

#OMRS+CCIE,&CCTLl Reset/Set Mode, INTRPT on 

#CMBE+ISCCIA+SCS+CAP+CCIE,&CCTL2 

#CMPE+ISCCIA+SCS+CAP+CCIE,&CCTL3 

Both edges 

Pos. edge 

#OMSR,&CCTL4 ; Set/Reset Mode, no INTRPT 

#TA4+TA3+TA2+TA1+TAO,&P3SEL ; Define I/Os 

TlMACYCO Clear low cycle counter 

TlMACYC1 Clear high cycle counter 

TIMACNT Clear period counter 

#l,TAlPWM TAl pulse length = 1 

#O,TA4PWM TM pulse length 0 

#CBACLK+CBE,&CBCTL ; Output ACLK at XBUF pin 

#MUP,&TACTL Start Timer in Up Mode 

Enable 'interrupts 

Continue in background 

Calculations for the new PWM values start. 

The new result in R6 is written to TA1PWM after completion. 

The PWM range is from 1 to PERIOD-I: no checks necessary 

MOV.B R6,TA1PWM 

Calculate TAIPWM value to R6 

Actualize pulse length 

The new result in R6 is written to TA4PWM after completion. 

The PWM range is from 0% to 100%: ,no checks necessary 
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MOV.B R6,TA4PWM 

Calculate TA4PWM value to R6 

Actualize pulse length 

Continue in background 

Interrupt handler for the Period Register CCRO. 8.484kHz 

are output at TAO for synchronization. 

Update CCR4 TIMMODO MOV 

ADD 

TA4PWM, &CCR4 

#PERIOD,TIMACYCO Actualize cycle counters 

ADC TIMACYC1 

INC 

RETI 

TIMACNT Incr. period counter 

Interrupt handlers for Capture/Compare Blocks 1 to 4. 

The interrupt flags CCIFGx are reset by the reading 

of the Timer vector Register TAIV 

TIM...,HND ADD &TAIV,PC Add Jump table offset 

RETI Vector 0: No interrupt 

JMP TIMMOD1 Vector 2: Block 1 

JMP TIMMOD2 Vector 4: Block 2 

JMP TIMMOD3 Vector 6: Block 3 

RETI Update by C/C Block 0 

pending 

RETI Vector 10: TIMOV not used 

Capture/Compare Block I generates a positive PWM signal at 

output TAl. Pulse width is defined in TA1PWM 

TIMMODI MOV 

EINT 

RETI 

TAIPWM, &CCRI Define pulse width 

Allow nested interrupts 

Task1 starts here 

The high part of the CCI2A input signal is measured. 

The result is stored in PP2. The complete handler is time 

critical: nested interrupts cannot be used. 
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First a check is made if the cycle counter TIMACYCO contains 

the value corresponding to the captu~ed value in CCR2, or if 

TIMACYCO is yet updated due to interrupt latency time. 

TIMMOD2 CMP 

JHS 

BIT 

JNZ 

SUB 

TM20 

TM2l 

BIT 

JZ 

MOV 

ADD 

RETI 

MOV 

ADD 

SUB 

RETI 

&CCR2,&TAR 

TM20 

ltCCIFG,&CCTLO 

TM20 

#PERIOD,&CCR2 

#CCI,&CCTL2 

TM21 

TIMACYCO,TIM2 

&CCR2,TIM2 

TIMACYCO,PP2 

&CCR2,PP2 

TIM2,PP2 

Occurred overflow of TAR?' 

NQ, Timer Reg. > capt. value 

Yes, TIMACYCO yet updated? 

No, value matches with CCR2 

Yes, use CCR2 for correction 

Input signal high? 

No, time for calculation 

Yes, store cycle counter 

Time for leading edge in TIM2 

High part is calculated: 

Event time of trailing edge 

Add captured time 

Subtr. time of leading edge 

Length of high part in PP2 

Capture/Compare Block 3 captures the time of trailing edges 

at CCI3A. TIM3 stores the time of the actual edge 

TIMMOD3 

TM30 
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CMP 

JHS 

BIT 

JNZ 

SUB 

MOV 

ADD 

RETI 

. sect 

. word 

&CCR3,&TAR 

TM30 

#CCIFG,CCTLO 

TM30 

#PERIOD,&CCR3 

TIMACYCO,TIM3 

&CCR3,TIM3 

"TIMVEC",OFFFOh 

TIM_HND 

Occurred overflow of TAR? 

No, Timer Reg. > capt. value 

Yes, TIMACYCO yet updated? 

No, value matches with CCR3 

Yes, use CCR3 for correction 

Store sum of cycle counter 

and captured event time 

Timer_A Interrupt Vectors 

; C/C Blocks 1 .. 4 Vector 
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. word TIMMODO Vector for C/C Block 0 

. sect "INITVEC",OFFFEh Reset Vector 

. word INIT 

The above example results in a maximum (worst case) CPU loading ucpu 
(ranging from 0 to 1) by the Timer_A activities: 

CCRO - repetition rate 16.969 kHz 
CCR1 - repetition rate 16.969 kHz 
CCR2 - repetition rate max. 2 kHz 
CCR3 - repetition rate max. 3 kHz 
CCR4 - repetition rate 16.969 kHz 

19 cycles for the task, 11 cycles overhead 
6 cycles for the update, 17 cycles overhead 
60 cycles for the update, 32 cycles overhead 
20 cycles for the update, 16 cycles overhead 
6 cycles for the update, 0 cycles overhead 

30 cycles 
23 cycles 
92 cycles 
36 cycles 
6 cycles 

6.3.9.10 Conclusion 

The above result means a worst case CPU loading of approximate 34% due 
to the Timer_A activities (the tasks of the capture/compare blocks 2, 3 and 4 
are not included). 

This section demonstrated the possibilities of the Timer-.A running in the up 
mode. Despite the dominance of the period register (CeRO) it is possible to 
capture signals, compare time intervals, and create timings in a real-time envi­
ronment - all this in parallel with the pulse width modulation generated with 
the up mode. 
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6.3.10 Software Examples for the Up/Down Mode 

FLLMPY ,equ 

fper ,equ 

TCLK ,equ 

HLFPER ,equ 

6-180 

This section shows several proven application examples for the limecA run­
ning in the up/down mode. Software definitions appear in the appendix. When­
ever possible, the abbreviations defined in the MSP430 Architecture Guide 
and Module Library are used. 

The software examples are independent of the MCLK frequency in use. Only 
the FLL multiplier constant, FLLMPY, and the repetition rate, fpe ... need to be 
redefined if another combination is needed. The source lines for the definition 
of these important values ,are: 

122 l. FLL multiplier 

19200 2. PWM Repetition rate 

FLLMPY*32768/4 3. FLLMPY x fcrystal/4 

(TCLK/fper)/2 4. Half Period of the PWM 

Note: 

The definitions assume an external crystal or an external frequency at the 
XIN input with a frequency of 32.768 kHz (215 Hz). , 

1) Definition of the CPU frequency fMCLK. The multiplier FLLMPV for the 
digitally controlled oscillator (OCO) is defined. The value for the actual fre­
quency fMCLK is (FLLMPV x 215). The value 122 stands for fMCLK = 122 
x215 = 3.9977 MHz. 

2) Definition of the desired repetition rate. The value 19200 stands for a 
repetition rate of 19.2 kHz, which means 19200 complete up and down 
counts of the timer register TAR. 

3) Definition ofthe Inputfrequency for the Timer Register (TAR). The ex­
pression /4 indicates that the input divider is switched to the Divide-by­
Fourmode. The value shown stands for TCLK = 3.9977 MHz /4 = 999.424 
kHz. Only the predivider used for the input divider (here /4) needs to be 
defined. 

4) Calculation ofthe TCLK cycles for the defined half period. The full pe­
riod consists of the half period counting up to the content of the period reg­
ister CCRO and the one counting down to 0 again. No change is necessary 
for this line. 



6.3.10.1 Common Remarks 

The up/down mode should be considered only for pulse width modulation 
(PWM) or DC generation. The advantage of this special PWM mode is the con­
tributed switching of the output signals - unlike the up mode that switches on 
all output pulses at exactly the same time (when the timer register TAR is reset 
to 0), the up/down mode switches on and off the output pulses symmetrical to 
the 0 content of the timer register. See figure 6-44. Ifthis feature is not needed, 
then the up mode with its simpler handling or the continuous mode with its five 
independent timings should be used. 

Advantages of the Up/Down Mode: 

o Distributed current switching (e.g. for digital motor control (DMC) applica-
tions) 

o Free run without CPU loading for fixed PWM values (DAC, DMC) 

o High PWM frequency possible due to pure hardware control 

o Clever timings of the period register are usable for more than one real-time 
job 

o For a given PWM repetition rate, an equally spaced second interrupt is 
available from the timer overflow interrupt, TIMOV. This doubles the avail­
able resolution for some applications 

Disadvantages of the Up/Down Mode: 

o Dominance of the period register - defines the time frame 

o Direction change of the period register during the run needs special soft­
ware handling. Interrupt-driven count direction indication is necessary for 
the software. 

o Capturing has an inherent uncertainty for capturing values near the zero 
point (TAR = 0) and the middle of the period (TAR = CCRO). 

o RAM extension for the timer register is necessary due to the normally short 
period. 

o Change of the pulse width may cause an erroneous signal during one peri­
od. 
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6.3.10.1.1 Initialization 

The. initialization subroutine INITSR is used by all examples. This subroutine 
was explained and included in section Software Examples of the Continuous 
Mode. It includes the following tasks: 

o Checks the reason for the initialization (switch on of the supply voltage, 
watchdog interrupt, or activation of the RESET input) 

o Clears the RAM - or not - depending on the result of the check above 

o Programs the system clock oscillator (multiplication factor N and optimum 
current switch FN_2, FN_3, or FN_ 4) 

o Allows the digitally controlled oscillator to settle at the appropriate tap, pro­
viding the correct MCLK frequency 

6.3.10.1.2 TImer Clock 

For the timer clock, there is no difference between the up mode and the up/ 
down mode. See section Software Examples for the Up Mode for detaiis. 

6.3.10.1.3 Timing Considerations 
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As with the up mode, the independence of the five timings provided by the con­
tinuous mode is not possible with the up/down mode. The period register 
(CCRD) dictates the timing frame for all other capture/compare blocks. With 
the up/down mode, things are a littie bit more complex due to the count direc­
tion change of the timer register (TAR) when it reaches the content of the peri­
od register (CCRD). 

Two additional RAM registers - as with the up mode - are used for the man­
agement of the compared or captured data: 

o TI MACNT - Period counter. This register counts the number of half peri­
ods. Its bit D (LSB) functions as the count direction bit for the timer register 
TAR: 

• TIMACNT.D = D - Timer register counts upward to nCCRD 

• TIMACNT.D = 1 - Timer register counts downward to D 

o TIMACYCx - Cycle counter. Counts the TCLK cycles of the timing (one 
or more words) 

See also figure 6-48. The contents of these two registers, including the count 
direction bit, are shown there for an example. Figure 6-52 gives an explana­
tion of the update of these two registers. 



BIS 

INC 

Update of Extension Registers - Unlike with the continuous mode and the 
up mode, the update of these extension registers is made with the interrupt 
handlers of both the period register (CCRO) and the timer overflow interrupt 
(TIMOV). The reason is the count direction bit that needs to be updated each 
half period (up and down count direction). The main part is executed by the 
interrupt handler of the period register due to its higher interrupt priority and 
faster interrupt response. The method used for the update of the extension 
registers allows an automatic self synchronization: 

#l,TlMACNT CCRO: TlMACNT always odd 

TlMACNT Timer Overflow: increment 

Real Time Environment - See section Software Examples for the Up Mode 
for details. There is no difference between the up mode and the up/down 
mode. 

Output Units - The shown PWM examples all use the toggle/reset mode 
(positive output pulses) or the toggle/set mode (negative output pulses) of the 
output units. The other output modes are not applicable for PWM generation 
in the up/down mode. 

6.3.10.1.4 Interrupt Overhead 

The calculations for the CPU loading that are appended to the software exam­
ples split the necessary cycles for an interrupt into two parts: 

o Overhead - This part sums the cycles that are necessary for the CPU 
to execute the interrupt (saving of the program counter and the status reg­
ister, decision as to which interrupt needs to be serviced, and restoring of 
the CPU registers). 

o Update or Task - This actually does the work that needs to be done (in­
crementing of counters, changing of status bytes, reading of input informa­
tion, etc.). 

Like it is for the up mode, the number of overhead cycles is: 

Interrupt of the period register CCRO 11 MCLK cycles 
Interrupt of capture/compare registers x: 16 MCLK cycles 
Interrupt of the timer register overflow: 14 MCLK cycles 
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6.3.10.2 Differences Between the TlmerJ. Versions 

Two versions of the T1mer_A hardware exist. They differ only in the perfor­
mance of the up/down mode: 

o The version in the current MSP430C33x outputs a 50% PWM signal with 
a doubled period if the capture/compare register contains O. See Figure 
6-44. 

o The improved version running in the MSP430C11 x, MSP430C33xA, and 
all future family members outputs a fixed voltage (0% or 100% PWM) for 
the capture/compare register content = O. See Figure 6-45. 

CCRx=O CCRx=1 CCRx = CCRCl-1 CCRx = CCRO CCRx>CCRO 

output Mode 

TogglelSet 

TogglelReMt 

CCRO TIMOV 
Contelns3 

Figure 6-44. PWM Signals at Pin TAx for the CUffent MSP430C33x Version 
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CCRx=O CCRx=1 CCRx = CCRO-l CCRx = CCRO CCRx>CCRO 

Output Mode 

Toggle/Set 

CCRO TIMOV 
Con18ln83 

Figure 6-45. PWM Signals at Terminal TAx for the Improved MSP430C11x Version 

The software examples are applicable to both versions - the distinction is 
made by a software flag named TAVO: 

TAVO = 0 - the limer_A version of the current MSP430C33x is used 
TAVO = 1 - the improved TimecA version for the MSP430C11 x is used 

Both versions output the correct 0 value for CCRx > CCRO. The longest half 
period that can be used is OFFFEh, due to the value OFFFFh neceS$ary for O. 

6.3.10.2.1 .MACRO Definition for the PWM Range Check 

Due to the behavior of the limer _A running in the up/down mode, checks must 
be made to determine if the calculated PWM values are in the acceptable 
range or not. 

! 

Note: 

These checks are not necessary if tables that contain valid data only are 
used, - OFFFFh for the output value 0 and the content of the period register 
CCRO as the maximum value (1 00%), for example. 

To get a legible source, these checks are written as an assembler macro. This 
macro replaces the following two checks: 

o If the calculated PWM value is greater than the half period contained in the 
period register CCRO 

o If the calculated PWM value is 0 
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If one of these two possibilities is true, then a corrected value is used. 

The macro is designed for two modes. They are distinguished by the software 
flag PERIOD_VAR: 

o Fixed period - period register CCRO always contains the same value. 
PERIOD_VAR - 0 

o Variable period - CCRO contains variable values. PERIOD_VAR = 1 

The macro also distinguishes between the two Timer_A hardware versions 
(see Section 6.3.10.2 for detailS): 

o The current MSP430C33x hardware: 

o The improved MSP430Cllx hardware: 

TAVO=O 

TAVO= 1 

Example 6-47. Macro Code 
The MACRO corrects input values addressed by argl 

(0 to OFFFEh) to valid input values. 

The four destination addressing modes are valid for argl. 

CHCK_PWM_RNG 

.if 

CMP 

JLO 

MOV 

.else 

CMF 

JHS 

MOV 

.endif 

L$l? .equ 

.if 

TST 

JNZ 

MOV 

L$2? .equ 

.endif 
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. macro argl 

PERIOD_VAR-O 

#HLFPER+l,argl 

L$l? 

#HLFPER,argl 

argl,&CCRO 

L$l? 

&CCRO,argl 

$ 

TAVO=O 

argl 

L$2? 

#OFFFFh,argl 

$ 

argl: address of PWM value 

Fixed or variable period? 

Fixed: result> HLFPER? 

No, proceed 

Yes, use HLFPER (100%) 

Variable period 

Result> Period Register? 

No, proceed 

Yes, use HLFPER (100%) 

MSP430x33x or xlxx? 

MSP430x33x: 

is argl = O? 

Yes, use max. value 
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.endm 

The call of the above macro is 

; Definitions for the .MACRO 

PERIOD_VAR .equ 0 

TAVO .equ 0 

Fixed period 

MSP430x33x version 

MOV R6,TAIPWM 

Check calc. PWM value in R6 

Corrected value to buffer 

or 

MOV HELP,TAIPWM 

Check PWM value in HELP 

Update buffer 

, 

Note: 

Software written for the MSP430C33x version ofthe Timer _A is upward com­
patible with the MSP430C11 x version - it will also run well with the improved 
TimecA hardware (only an unnecessary check for zero is made). 

6.3.10.3 Update of the Capture/Compare Registers 

As with the up mode, only a synchronous update will give undisturbed output 
pulses. The update with the accompanying interrupt handler is not possible for 
the up/down mode - the required toggling results in unpredictable output 
pulses for this kind of update. Four possibilities are shown here for the syn­
chronous update by the Interrupt Handlers of capture/compare block 0 and the 
timer overflow: 

1) Frequent common update of the capture/compare registers by the CCRO 
handler 

2) Frequent common update of the capture/compare registers by the TI MOV 
handler 

3) Infrequent common update 

4) Infrequent individual update 

Unlike with the continuous mode and the up mode, only the interrupts of the 
period register (CCRO) and the timer overflow (TIMOV) are enabled for all of 
the four update modes. 

The four possibilities are described in the following paragraphs. To find the ap­
propriate solution for a given timing problem, the following decision path may 
be used: 
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D Is a very fast update of the capture/compare registers necessary? If yes, 
use solution 1 or 2, If no, continue. 

D Are all of the new update values available at the same time? If yes, use 
solution 3, otherwise use solution 4. 

6.3.10.3.1 Frequent Common Update by CCRO 

The interrupt handler of capture/compare block 0 updates the capture! 
compare registers CCRx with the repetition rate defined by the period register 
CCRO. 

This update mode is used for the Digital Motor Control with Symmetric Pulse 
Width Modulation. 

If the range for the PWM output values is limited from 1 cycle to (CCRO) cycles, 
then the following simple update sequence may be used: 

R6 contains new PWM info for CCR2. Range: 1 to (CCRO). 

MOV R6,TA2PWM ; Actualize PWM buffer 

If the calculation results for the PWM output values can be 0% or >100%: 

CCRx> CCRO .or. CCRx = 0 

CCRx>CCRO 

for the current MSP430C330x 

.for the MSP430Cll Ox, 

then a special treatment is necessary due to the special behavior of the cap­
ture/compare logic under these circumstances. The capture/compare register 
x value then needs to be modified. To determine these special cases, the fol­
lowing update sequence may be used (the macro CHCK_PWM_RNG is ex­
plained in Section. 6.3.1 0.2.1 .MACRO Definition for the PWM Range Checl<): 

R6 contains the calculated PWM info for CCR2. 

Range: 0 to HLFPER+x. Check if a modification is necessary 

Software is written for a constant Period Register CCRO 

PERIOD_VAR .equ 0 

TAVO .equ o 

MOV R6,TA2PWM 
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Constant period 

MSP430x3.3x version 

Correct R6 if out of range 

Actualize TA2PWM buffer 

Continue 
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If a variable period is used - the content of the period register CCRO changes 
during the program flow - then the lines above change to: 

R6 contains the calculated PWM info for CCR2. 

Range: a to HLFPER+x. Check if a modification is necessary 

Software is written for a variable Period Register CCRa 

PERIOD_VAR .equ 1 Variable period 

MSP43ax33x version TAva .equ 

MOV 

o 

R6,TA:2PWM 

Correct R6 if out of range 

Actualize TA2PWM buffer 

Continue 

The part of the code that modifies the PWM values of the Timer_A looks like 
this: 

Handler of the Period Register CCRa 

TIMMODO MOV TAIPWM, &CCRl Modify C/C Block 1 synchr. 

MOV TA2PWM, &CCR2 Modify C/C Block :2 synchr. 

MOV TA3PWM,&CCR3 Modify C/C Block 3 synchr. 

ADD #2*HLFPER,TIMACYCa 

Other tasks of .the handler 

RETI 

6.3.10.3.2 Frequent Common Update by the Timer Overflow TIMOV 

PERIOD_VAR .equ a 

TAVO .equ 1 

If the interrupt handler of the period register CCRO has to perform many tasks, 
then it is advised to shift one half of these tasks to the interrupt handler of the 
timer overflow (TIMOV). This handler has the lowest interrupt priority, but with 
the up/down mode, this does not playa role because the interrupts of the cap­
ture/compare blocks 1 to 4 are normally disabled. The same background soft­
ware is used as is shown with the update by the period register (CCRO) (the 
macro CHCK_PWM_RNG is explained in Section 6.3.10.2.1 .MACRO Defini­
tion for the PWM Range Checl<). 

Fixed period 

MSP430xllx version 

Calc. PWM value in R7 
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MOV 

TIILHND ADD 

RETI 

RETI 

RETI 

RETI 

JMP 

R7,TA2PWM 

Correct R7 if out of range 

Actualize TA2PWM buffer 

Continue 

The part of the code that modifies the PWM values of the Timer_A looks like 
this: 

&TAIV,PC 

TIMMOD4 

Serve highest Timer_A request 

No request 

C/C Block 1: INTRPT disabled 

C/C Block 2: INTRPT disabled 

C/C Block 3: INTRPT disabled 

C/C Block 4: capturing 

Handler of the Timer Overflow TIMOV 

TIMOV MOV 

MOV 

TAIPWM,&CCRl 

TA2PWM,&CCR2 

MOV TA3PWM,&CCR3 

INC 

RETI 

TlMACNT 

Timer~ reached zero: 

Modify C/C Blocks x 

'Actualize half period counter 

6.3.10.3.3 Infrequent Common Update 

The interrupt handlers ofthe capture/compare block 0 orthe timer overflow up­
date the capture/compare registers CCRx with a repetition rate given by the 
calculation speed of the background program. If new PWM values are calcu­
lated or read for all capture/compare blocks, then a common flag is set and the 
update is enabled in this way. This solution is used if the PWM values for the 
update are available at (nearly) the same time - by table prdcessing, for ex­
ample. 

This update mode is used with the example TRIAC Control. 

If the range for the calculated PWM output values is limited from 1 cycle to 
(CCRO) cycles, then the following simple update sequence may be used: 

R6 to RB contain new PWM info for Output Units 1 to 3 

Range: 1 to (CCRO). 

6-190 



MOV 

MOV 

MOV 

BIS.B 

R6,TA1PWM 

R7,TA2PWM 

R8,TA3PWM 

#i,FLAG 

Actualize CCRl pulse length 

CCR2 

CCR3 

Set update flag 

Intrpt handler resets FLAG 

If the output values 0% or >1 00% are actually used, then a special treatment 
is necessary. To correct these special cases, the following update sequence 
may be used (the macro CHCK_PWM_RNG is explained in Section 6.3.1 0.2.1 
.MACRO Definition for the PWM Range Check): 

R6 to R8 contain new PWM info for Output Units 1 to 3. 

Range: 0 to (CCRO)+x. 

Check if a correction is necessary. 

L$l 

CHK_PWM_RNG R6 Check the PWM range 

MOV R6,TA1PWM Write corrected R6 to buffer 

CHK_PWM..,RNG R7 Check the PWM range 

MOV R7,TA2PWM Write corrected R7 to buffer 

CHK_PWM_RNG R8 Check the PWM range 

MOV 

BIS.B 

BIT.B 

JZ 

MOV 

MOV 

MOV 

BIC.B 

RRA.B 

R8,TA3PWM Write corrected R8 to buffer 

U,FLAG Start common update 

Continue in background 

The update part of the code in the interrupt"handlers of the period register 
CCRO or the timer overflow TIMOV looks like this: 

#l,FLAG Is update flag set? 

L$1 No, continue 

TA1PWM,&CCRl Actualize CCR1 pulse length 

TA2PWM,&CCR2 dito CCR2 

TA3PWM,&CCR3 dito CCR3 

#l,FLAG Reset update flag 

Continue INTRPT handler 

Ifthe other seven bits ofthe RAM byte FLAG are not used, then a faster version 
of the above update sequence may be usSd. The resetting of the bit is not nec­
essary and saves 4 cycles. 

FLAG ; Is update flag FLAG. 0 set? 

On-Chip Peripherals 6-191 



ThaT/mer A 

L$l 

JNC 

MOV 

MOV 

MOV 

L$l 

TA1PWM, &CCRl 

TA2PWM, &CCR2 

TA3PWM,&CCR3 

No, continue 

Actualize CCRl pulse length 

dito CCR2 

, dito CCR3 

Continue INTRPT handler 

6.3.10.3.4 Infrequent Individual Update 

The interrupt handler of the period register or the limer Overflow update the 
capturefcompare register CCRx with a repetition rate given by the calculation 
speed of the background program. If a new PWM value is calculated for a cap­
ture/compare block, then an individual flag is set and the update for this cap­
turefcompare block is made. This method is used if the PWM values for the 
update are not available at the same time. This update mode is used with the 
example capturing with the Up/Down Mode. It is the update mode with the low­
est overhead. The macro CHCK_PWM_RNG is detailed in Section 6.3.10.2.1 
.MACRO Definition for the PWM Range Check. 

R6 contains new PWM info for CCR1. Range: 0 to (CCRO)+x. 

Check if a modification is necessary: 

Software is written for a variable Period Register CCRO 

TAVO .equ 

MOV 

BIS 

o 

R6/TA1PWM 

#2,FLAG 

MSP430X33x version 

Variable period 

Check/correct result in R6 

Actualize TA1PWM buffer 

Start update of CCRl 

Start calculation for CCR2 

R6 contains new PWM info for CCR2. Range: 0 to (CCRO)+x 
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MOV 

BIS 

R6,TA2PWM 

#4,FLAG 

Actualize TA2PWM buffer 

Start update of CCR2 

Continue 

The interrupt handler of the period register CCRO or the timer overflow (TI­
MOV) decodes the necessary task as follows (4 to 20 MCLK cycles are need­
ed): 



ADD 

RETI 

JMP 

JMP 

MOV 

P2 MOV 

CLR 

RETI 

Pl MOV 

CLR 

RETI 

The Timer A 

TIMOV or CCRO handler 

FLAG,PC Flag contains 0 to 6 

0: No update necessary 

Pl 2: Update CCRl 

P2 4: Update CCR2 

TAlPWM,&CCRl 6: Update CCR2 and CCRl 

TA2PWM, &CCR2 4: Update only CCR2 

FLAG 

TAlPWM,&CCRl 2: Update only CCRI 

FLAG 

The above sequence may be changed easily for the update of three capture/ 
compare registers (like is used for three phase DMC). 

6.3.10.3.5 Overhead for the Update 

These four update modes may be mixed if this is an advantage. 

Table 6-24 shows the overhead calculation and the percentage of the update 
overhead for the four different update methods. The calculation results are 
based on: 

fMCLK 
fupdate 
fper 

Frequency of the system clock generator (MCLI<) 4 MHz 
1 kHz 

12kHz 
3 n 

Update frequency for the capture/compare registers 
limer_A repetition rate defined by the period register CCRO 
Number of C/C blocks used for the PWM generation 

Table 6-24. Interrupt Overhead for the Four Different Update Methods 

UPDATE METHOD 

Frequent Update with CCRO 
Frequent Update with TIMOV 

Infrequent Common Update 

Infrequent Individual Update 

. OVERHEAD FORMULA (CPU CYCLES) OVERHEAD PERCENTAGE 

nxfoerx6 5.4% 

nxfoerx6 5.4% 

(foer x 6) + (fuodate x (n x 6 + 4)) 2.3% 

(foer-fuodatel x 3 + (fuodate x 15) 1.2% 

Note: 

No interrupt is generated - and therefore no interrupt overhead - for capture/ 
compare registers containing a value greater than the content of the period 
register CCRO (output TAx = 0 for Toggle/Reset resp. TAx = 1 for Toggle/Set). 
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6.3.10.4 Dlgltai Motor Control With Symmetric Pulse Width Modulation 

The medium output voltage V PWM atthe TAx terminal with respect to the neces­
sary register content (nCCRx) for a given voltage VPWM is: 

VPWM = Vee X nccRx 

nCCRO 

tpw VPWM 
Vee X - ~ nCCRx = -- x neCRO 

~er Vee 

Where: 
VPWM 

VCC 
nCCRO 
nCCRx 
tpw 
tper 

Medium output voltage at the TAx terminal 
Supply voltage of the system 
Content of the period register CCRO 
Content of the capture/compare register CCRx 
Time generated by the capture/compare register 
Period generated by the period register CCRO 

[V] 
[V] 

[s] 
[s] 

Table 6-25 shows the necessary content of a capture/compare register CCRx 
to get some defined values for an unsigned output voltage VPWM: 

Table 6-25. Output Voltages for Unsigned PWM 

VPWM 
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OUTPUT VOLTAGE (VPWM) CONTENT OF CCRx "CCRx 

OV 0 

0.25 x VCC nCCRO x 0.25 

0.5 x VCC nCCRO x 0.5 

0.75 x VCC "CCRO x 0.75 

Vcc nccRO 

If the output voltage is seen as a signed voltage -like for 3-phase digital motor 
control- then the voltage 0.5 x V cC is seen as the 0 point. The signed output 
voltage VpWM gets: 

( 
nccRx ) Veex ---0.5 
nCCRO 

( VPWM ) 
~ nccRx = --+ 0.5 x nCCRO 

Vee 

To calculate the value for nCCRx for the sine of a given angle, a., the formula 
is (full Vce range): 

1 + sina 
neCRx = ---X neCRO 

2 

Table 6-26 shows the necessary contents of a capture/compare register 
CCRx to get some defined values for a signed output voltage VPWM. 
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Table 6-26. Output Voltages for Signed PWM 

OUTPUT VOLTAQE (VPWM) CONTENT OF CCRx nCOAx COMMENT 

(CCRx) 

i 
(CCRO) 

(CCRO)/2 

0 

-0.5 x Vce 0 Most negative output voltage 

-0.25 X Vee neCRO x 0.25 Half negative output voltage 

OV neeRO X 0.5 o voltage 

0.25 X Vee "eeRO x 0.75 Half positive output voltage 

0.5 X Vee nr.r.Rn Most positive output voltage 

Figure 6-46 shows some of the output voltages listed above for a three-phase 
system. 

Phsse 
Voltage 

i 
Vmmax 

120" • I 
-Vmmax 

vmo:]Il 

Ul JU 
I I 
I I 

I 
I 

U 
--+ 

Tlma 

. Figure 6-46. PWM Outputs for Different Phase Voltages 

Note that a volt for a motor phase is generated by a pulse width of one half of 
the length of the period. 

Example 6-48. PWM Outputs for Different Phase Voltages 

The software example shows the generation of PWM output signals for a 
three-phase electric motor. The MSP430 delivers the PWM output signals and 
controls the speed of the motor by the input signal CCI4A coming from the 
tach/generator. 

The capture/compare blocks 1 to 3 are used for the generation of the PWM 
signals for the three phases. 

The capture/compare block 4 is used for the capturing of the speed signal com­
ing from the shaft of the motor. Up to 6000 rpm (100 rev/sec) are used with this 
example, with four output pulses per revolution. The positive edge of the input 
Signal is captured and requests interrupt. 
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All security functions are included in the external control chip 1R2130 (over cur­
rent, delays for the transistors, etc.). 

~~ 2.3.~. 123t.fS61.B __ !Error! 

TA4~------------------------------------~~-J 

15v--_e------e--r~ 

Vcc 5V 

TAO 5kHz 

MSP430C33x 74HCOO 

VSS 

OV 

TA1 LIN1 

TA2 

TA3 

'------; HIN1 

UN2 

'--==:---; HIN2 

UN3 

L-____ ; HIN3 

v~I-+_~-------+--~----~_e~ 

VS11-..---------.. 4 ..... 
L031------------t--f------t--t---, 

L01 ~------__+_l 

PO.x I---t>----I FAULT L021---------....::=r--f---' 

VS~---.------~~~~--.--e------~~-e--

5V 
Itrlp 

Overcurrent 
Adjustment 

r-~----------~------------~-----OV 

Figure 6-47. PWM Motors Control for High Motor Voltages 
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The system clock frequency is 4 MHz (exactly fMCLK" 122 x 32768 = 3.9977 
MHz). The pulse repetition frequency is 12 kHz. 

The output unit 0 outputs 6 kHz without any overhead. This signal may be used 
for peripherals or for synchronization. The signal is always present, even if the 
signals at the TAx outputs disappear due to an output signal with 0% or 100% 
pulse width. 

The example uses the frequent common update of the compare/compare reg­
ister. See Section 6.3.10.3.1 Frequent Common Update by CCRO for details. 
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Figure 6-48 shows the output signals at the times that they have phase shifts 
of 0·. +120· and -120·. 

TIMACYCO 

Direction Bit 

TIMACNT 

OFFFFh 

2nxlhlfper 
o 

2n 

(2n + 2) x thlfper (2n + 4) x lhlfper 
1 0 1 0 

2n+1 2n+2 2n+3 2n+4 

CCRO ~--------~--------~--------~k-------~r---------~ 
CCM r-------~~~----~r_------~~~------r_------~ 

CCR1 

CCR3 ~~-+--~~T---r-~rlr.~--+---;-~---r--~~~-+--~­
Oh ~~--~--~~--~--~~--~---+~r-~---+~~--~--+-

TA10u1put 0" 
I-i---_+---t-!-"t----r--;+;---+---t-I-f"--+---~:_;_--_+-__t- (0.5 x Vmotor) 

TA2 Output I-+---+---I-+-"I----r---f++---+----t-!-f----+--+ir+---+----f~ 120· 
(0.93 x Vmotor) 

TA30utpul -120· 
i+--I----+-+-+--I--f-+-+--+--+-ii-+-+--f-iH---I---t- (0.07 x Vmotor) 

TlMOV EQUO TIMOV EQUO TIMOV Interrupts 

Figure 6-48. Symmetric PWM Timings Generated With the Up/Down Mode 

Example 6-49. Symmetric PWM Timings Generated With the Up/Down Mode 
Software example: 

TAO: symmetric output signal 6.0kHz 

TAl: positive PWM signal 12.0kHz. Length in TA1PWM 

TA2: positive PWM signal 12.0kHz. Length in TA2PWM 

TA3: positive PWM signal 12.0kHz. Length in TA3PWM 

Hardware definitions 

FLLMPY .equ 122 FLL multiplier for 3.9977MHz 

fper .equ 12000 12.0kHz repetition rate 

TCLK .equ FLLMPY*32768 TCLK: FLLMPY x fcrystal 

HLFPER .equ (TCLK/fper)/2 Period of output signals 
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TAVO .equ 

PERIOD_VAR .equ 

STACK .equ 

RAM definitions 

TAlPWM .equ 

TA2PWM .equ 

TA3PWM .equ 

CPT4 .equ 

TlMACYCO .equ 

TlMACYCl .equ 

TlMACNT .equ 

. text 

INIT MOV 

CALL 

0 

0 

600h 

202h 

204h 

206h 

208h 

20Ah 

20Ch 

20Eh 

#STACK,SP 

HNITSR 

MSP430C33x Timer_A 

Invariable period in CCRa 

Stack initialization address 

Pulse length Block 1 (0 .. 167) 

Pulse length Block 2 (0 .. 167) 

Pulse length Block 3 (0 .. 167) 

Captured motor shaft events 

Low cycle counter (15 .. 0) 

High cycle counter (31 .. 16) 

Period Counter, Bit 0 = Dir 

Software start address 

Initialize Stack Pointer 

Init. FLL and RAM 

Initialize the Timer_A: MCLK, Up/Down Mode, INTRPTs on for 

TIMOV, Period Register and C/C Block 4 (Capture Mode) 
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MOV #ISMCLK+CLR+TAIE,&TACTL ; Define Timer_A 

MOV 

MOV 

MOV 

MOV 

MOV 

MOV 

MOV 

MOV 

MOV 

MOV 

MOV.B 

MOV 

#HLFPER,&CCRO 

#HLFPER/2,R5 

R5,&CCRI 

R5,&CCR2 

R5,&CCR3 

#OMT+CCIE,&CCTLO 

#OMTR,&CCTL1 

#OMTR,&CCTL2 

#OMTR,&CCTL3 

Period Register 

Value for OV to R5 

TAl: pulse width = OV 

TA2: as before 

TA3: as before 

TAO: Toggle Mode 

TAl: Toggle/Reset Mode 

TA2: Toggle/Reset Mode 

TA3: Toggle/Reset Mode 

#CMPE+ISCCIA+SCS+CAP+CCIE,&CCTL4 ; +edge shaft 

#TA4+TA3+TA2+TAl+TAO,&P3SEL ; Define I/Os 

R5,TAlPWM Start value Block 1: av 



MOV RS,TA2PWM Start value Block 2: OV 

MOV RS,TA3PWM Start value Block 3: OV 

CLR TIMACYCO Clear low cycle counter 

CLR TIMACYC1 Clear high cycle counter 

CLR TlMACNT Clear period counter 

MOV.B #CBMCLK+CBE,&CBCTL ; output MCLK at XBUF pin 

BIS #MUPD,&TACTL Start in Up/Down Mode 

EINT Enable interrupts 

MAINLOOP Continue in background 

Calculations resulted in new PWM values. The new results 

are stored in R6 (C/C Block 1), R7 (C/C Block 2) and RB 

(C/C Block 3). Check if ranges are valid: 

CHCK_PWM_RNG R6 Correct R6 range 

MOV R6,TA1PWM 

CHCK_PWM_RNG R7 Correct R7 range 

MOV R7,TA2PWM 

CHCK_PWM_RNG R8 Correct R8 range 

MOV R8,TA3PWM 

Continue in background 

Read the last captured value of the tacho generator 

MOV CPT4,R6 For calculations 

control algorithm for speed 

Interrupt handler for CCRO: the ·period Register. The cycle 

counters and the half period counter are updated. 

A symmetric 6.0kHz signal is output by the Output Unit 0 

TIMACYCO points to next the O-crossing of the TAR 

TIMMODO MOV TA1PWM,&CCR1 Update PWM registers 

MOV TA2PWM,&CCR2 
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MOV TA3PWM,&CCR3 

ADD #2*HLFPER,TIMACYCO ; Add fixed period to 

cycle counters ADC 

BIS 

RETI 

TIMACYC1 

#l,TIMACNT Half period counter +1 (Down) 

Interrupt handlers for capture/Compare Blocks 1 to 4 

and Timer Overflow. 

Only the timer overflow interrupt and the C/C Block 4 are 

used. The other interrupts are disabled. The PWM generation 

is made by the timer hardware and updated by the CCRO intrpt 

TIM_HND ADD 

RETI 

&TAIV,PC Add Jump table offset 

No interrupt pending 

RETI C/C Block 1: Intrpt disabled 

RETI C/C Block 2: Intrpt disabled 

RETI C/C Block 3 : Intrpt disabled 

JMP TIMMOD4 C/C Block 4: Capturing used 

Timer overflow: the half period counter is incremented 

'l'IMOV INC 

RETI 

TIMACNT Make TIMACNT even (DIR 

Back to main program 

C/C Block 4 captures the revolutions of the motor. Dependent 

on the count direction of TAR, CCR4 is added or subtracted. 

The positive edge of the input signal at TA4 is captured 

and requests interrupt. Time out cannot occur due to 

low input frequency. 

UP) 

TIMMOD4 MOV TIMACYCO,CPT4 Cycle counter fOr calculation 

BIT #l,TIMACNT Direction UP? 

JNZ T40 No, DOWN (1) 

Direction is UP 

ADD &CCR4,CPT4 Build time of captured event 

RET I Back to main program 
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T40 SUB 

RET I 

.sect 

. word 

. word 

.sect 

. word 

The Timer A 

Direction is DOWN 

&CCR4,CPT4 Build time of captured event 

"TIMVEC",OFFFOh Timer_A Interrupt vectors 

TIM_HND C/C Blocks 1 to 4 

TIMMODO Capture/Compare Block 0 

"INITVEC",OFFFEh Reset vector 

INIT 

The example results in a nominal CPU loading uCPU (ranging from 0 to 1) by 
the Timer_A activities: 

Where: 
fMCLK 

nintrpt 
frep 

Note: 

Frequency of the system clock (DCO) 
Number of cycles executed by the interrupt handler 
Repetition rate of the interrupt handler 

[Hz] 

[Hz] 

The formula and the definitions given above are also valid for all subsequent 
software examples. Therefore they are not repeated. 

! 

CCRO - repetition rate 12 kHz 
CCR4 - repetition rate 0.4 kHz 
TIMOV - repetition rate 12 kHz 

32 cycles for the task, 11 cycles overhead 
18 cycles for the task, 16 cycles overhead 
4 cycles for the update, 14 cycles overhead 

43 cycles 
34 cycles 
18 cycles 

12000 X (43+ 18)+400 x 34 
------'~-...:.---- = 0.186 

3.9977xl06 

The result means a CPU loading of 19% due to the Timer _A for the digital mo­
tor control task. 

6.3.10.5 TRIAC Control 

TRIAC control for electric motors (DMC) or other loads is possible using the 
up/down mode as shown with the up mode of the Timer_A. But due to the seo-
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Cz 

OV 

ond interrupt coming from the timer overflow (TIMOV), the doubled resolution 
is possible as with the up mode. The control software now counts the number 
of half periods and fires the TRIAC after the reaching of the calculated value. 

The medium resolution Pmed is: 

1 
pmed = ------

2 X jMAINS X thlfiJer 

Where: 
fMAINS 
thlfper 

AC line frequency 
Half period of the Timer_A, defined by CCRa 

[Hz] 
[s] 

All considerations and formulas shown for the up mode are also valid for the 
up/down mode, except the doubled resolution for the same PWM period. 
Again, no capture/compare register is needed for the TRIAC control because 
only the period register with its interrupt and output unit 0 is used. This frees 
the remaining capture/compare blocks for other tasks. 

Figure 6-49 shows the hardware for the TRIAC control of this example. The 
TRIAC hardware is exactly the same hardware as used with the up mode. In 
addition, a second three-phase motor is controlled by the same MSP430. 

230VAC Revolutions 

Zero CrQ8S1ng 

5V 

>1 M Vee 

PO.O 

3.5 V MSP430 
OVercurrent 

Vss Detection OV 
PO.7 

Vrnotor 

TA1 

TA2 Driver 

TA3 

OV 

Figure 6-49. TRIAC Control and 3-Phase Control With the Time,-A 
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Figure 6-50 illustrates the software example given below. The timer register 
(TAR) is not shown to scale - 320 steps make one half wave of the 50-Hz line. 

Zero Crossing 4-----f------I-----O+-----....... ----

TAO Output to 
TRIAC Gate -+ ___ --'-""-"-'-_____ -=-'"-':::-:::::-=--:--__ '-'-+.1-__ _ 

Voltages 

AC 

Figure 6-50. Signals for the TRIAC Gate Control With Up/Down Mode 

Example 6-50. Static TRIAC Control Software 

A static TRIAC control software example is shown. The calculated number of 
half periods until the TRIAC gate is fired after the zero crossing of the AC line 
voltage, is contained in the RAM word FIRANGL. 

The medium resolution Pmed is 320 steps per line half wave (2 x 16 kHz/1 00 Hz 
= 320). The minimum resolution, Pmin, is 204 steps (320 x 2ht = 204) which 
means approximately. 0.5% resolution. See the equations above. 

At the TA1, TA2, and TA3 terminals negative PWM signals for digital motor 
control are output. The half period is deti ned by the period register (CCRO), the 
actual pulse length (TCLK cycles) is contained in the RAM words TA 1 PWM, 
TA2PWM, and TA3PWM. The common update is made with ",1 kHz. 

The speed of the TRIAC-controlled motor is measured with the input signal at 
input TA4 (CCI4A). The negative edges are captured and an interrupt is re­
quested afterward. 
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The example uses the infrequent common update executed by the timer over­
flow handler. See Section 6.3.1 0.3 Update of the Capture/Compare Registers­
for details. 

Definitions for the TRIAC control software 

FLLMPY .'equ 

fper .equ 

TCLK .equ 

HLFPER .equ 

OP .equ 

TAVO .equ 

PERIOD_VAR .equ 

RAM definitions 

TIMACYCO .equ 

TIMACYC1 .equ 

TlMACNT .equ 

FIRANGL .equ 

FIRTIM .equ 

TA1PWM .equ 

TA2PWM .equ 

TA3PWM .equ 

STTRIAC .equ 

FLAG .equ 

CPT4 .equ 

STACK .equ 

. text 

122 

16000 

FLLMPY*32768 

(TCLK/fper)/2 

4 

0 

0 

202h 

204h 

206h 

208h 

20Ah 

20Ch 

20Eh 

210h 

212h 

213h 

214h 

600h 

FLL multiplier for 4.0MHz 

16.000kHz repetition rate 

TCLK (Timer Clock) [Hz) 

Half period in Timer clocks 

TRIAC gate pulse length 

MSP430C33x Timer_A 

Fixed half period in CCRO 

Timer Register Extensions: 

Cycle counters 

Counter for half periods 

Half wave - conduction angle 

Fire time rel. to TIMACNT 

PWM cycle count C/C Block 1 

Control byte (0 

C/C Block 2 

C/C Block 3 

off) Status 

1: update for PWM request 

Captured shaft value 

Stack initialization address 

Start of ROM code 

Initialize the Tirner-A: MCLK, UP/Down Mode. Enable INTRPT 

for C/C Blocks 0 and 4 and Timer Overflow TIMOV. 

prepare Timer_A Output Units 

INIT 

6-204 

MOV 

CALL 

IISTACK,SP 

UNITSR 

Initialize Stack Pointer SP 

Init. FLL and RAM 



MAINLOOP 

MOV #ISMCLK+CLR+TAIE,&TACTL ; Init. Timer 

MOV #HLFPER, &CCRO ; Half period to CCRO 

MOV #OMOO+CCIE+OUT,&CCTLO ; Set TAO high, Output 

MOV 

MOV 

MOV 

MOV 

BIS.B 

BIS.B 

MOV.B 

CLR 

CLR 

CLR 

CLR.B 

MOV 

MOV 

MOV 

MOV.B 

BIS 

EINT 

#OMTS,&CCTLl 

#OMTS,&CCTL2 

#OMTS,&CCTL3 

TAl: neg. PWM pulses 

TA2: neg. PWM pulses 

TA3: neg. PWM pulses 

#CMNE+ISCCIA+SCS+CAP+CCIE,&CCTL4 ; -edge shaft 

#TA4+TA3+TA2+TAl+TAO,&P3SEL ; Define I/Os 

#POIEO, &IEl Enable PO.O interrupt mains 

#CBMCLK+CBE,&CBCTL ; MCLK at XBUF pin 

TlMACYCO Clear low cycle counter 

TlMACYCl Clear high cycle counter 

TlMACNT Clear half period counter 

STTRIAC TRIAC off status (0) 

#HLFPER/2,TAlPWM TAl: OV 

#HLFPER/2,TA2PWM TA2: OV 

#HLFPER/2,TA3PWM TA3: OV 

#I,FLAG Update PWM registers CCRx 

#MUPD,&TACTL Start Timer-A (UpjDown) 

Enable interrupts 

Continue in mainloop 

Some TRIAC control examples: 

Start electric motor: checked result (half periods) in R5 

The result is the time difference from the zero crossing 

of the mains voltage (PO.O) to the first gate pulse 

(measured in Timer_A half periods) 

MOV 

MOV.B 

R5,FlRANGL 

#2,STTRIAC 

Delay (half per.) to FlRANGL 

Activate TRIAC control 

Continue in background 

The motor is running. A new calculation result is available 

in R5. It" will be used with the next mains half wave 
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MOV RS,FlRANGL Delay (half per.) to FlRANGL 

Continue in background 

stop motor: switch off TRIAC control, TRIAC gate off 

CLR.B 

BIS 

STTRIAC 

#OUT,CCTLO 

Disable TRIAC control 

TAO high, Output only Mode 

Continue with background 

Read the captured value of the tacho generator 

MOV CPT4,R6 

Control algorithm for speed 

Preparation for the new PWM values start. A table with 

valid values only is used: no check is necessary 

MOV ANGLE,R6 CUrrent phase angle 

MOV TABLE(R6),TAlPWM Phl: add o degrees 

MOV TABLE+l20(R6),TA2PWM Ph2: add 120 degrees 

MOV TABLE+240(R6),TA3PWM Ph3: add 240 degrees 

BIS.B n,FLAG Initiate cornrnpn update 

Continue in background 

TABLE . word HLFPER/2,lOO, ... sin 0 to sin 600 

Interrupt handler for CCRO: the Period Register. 

- The cycle counters and the half period counter are updated 

- The TRIAC control task is executed 

TIMMODO ADD 

ADC 

BIS 

#2*HLFPER,TIMACYCO ; Add (fixed) period to 

TIMACYCO cycle counters 

n,TIMACNT Half period counter +1 (Down) 

Interrupt handler for the TRIAC control. Entry point also 

from the Timer Overflow handler 
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TRIACC EINT Allow nested interrupts 

PUSH RS Save help register RS 

MOV.B STTRIAC,RS Status of TRIAC control 

MOV STTAB(RS) ,PC Branch to status handler 

STTAB . word STATEO Status 0: NO TRIAC activity 

. word STATEO Status 2: activation possible 

. word STATE4 Status 4: wait for gate pulse 

. word STATE6 Status 6: wait for gate off 

TRIAC status 4: TRIAC gate is switched on for ·Op· half 

periods after the value in FIRTIM is reached 

STATE4 CMP 

JNE 

BIC 

ADD.B 

FIRTIM,TIMACNT 

STATEO 

#OUT,&CCTLO 

#2,STTRIAC 

TRIAC gate time reached? 

No 

Yes, TRIAC gate on 

Next TRIAC status (6) 

TRIAC status 0: No activity. TRIAC is off always 

STATEO POP 

RETI 

RS Restore help register 

Return from interrupt 

TRIAC status 6: gate pulse is active. Check if it's time 

to switch off the TRIAC gate. 

STATE6 MOV FIRTIM,RS Time TRIAC firing 

ADD #OP,RS Gate-on time (half periods) 

CMP RS,TIMACNT On-time terminated? 

JLO STATEO No 

BIS lIOUT,&CCTLO Yes, TRIAC gate off 

MOV.B #2,STTRIAC TRIAC status 2: 

JMP STATEO Wait for next zero crossing 

Interrupt handler for C/C Blocks 1 to 4 and Timer Overflow 

&TAIV,PC Serve highest priority requ. 
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RETI No interrupt pending 

RETI C/C Block 1: INTRPT off 

RETI C/C Block 2: INTRPT off 

RETI C/C Block 3: INTRPT off 

JMP TIMMOD4 C/C Block 4 : Speed measurement 

The Timer Overflow interrupt handler: 

- Updates the PWM registers if necessary: FLAG.Q 1 

- The TRIAC control task is executed 

TIMOV INC TIMACNT Incr. period counter (UP) 

BIT.B n,FLAG Update necessary? 

JZ TRIACC No, to TRIAC ·control task 

MOV TAIPWM,&CCRI Yes update C/C Blocks 

MOV TA2PWM,&CCR2 

MOV TA3PWM,&CCR3 

BIC.B n,FLAG· Clear update flag 

JMP TRIACC To TRIAC control task 

C/C Block 4 captures the revolutions of the motor. Dependent 

on the count direction of TAR, the captured TAR value in 

CCR4 is added or subtracted. CPT4 contains the 16-bit value 

of the captured negative edge of the signal at TA4. 

TIMMOD4 MOV TIMACYCQ,CPT4 Save cycle counter 

BIT #l,TlMACNT Direction UP? 

JNZ T40 No, DOWN {ll 

Directioll is UP: 

ADD &CCR4,CPT4 Build time of captured 

RETI Back to main program 

Direction is DOWN: 

T40 SUB &CCR4,CPT4 Build time of captured 

RETI 

PO.O Handler: the mains voltage causes interrupt with each 

zero crossing. The TRIAC gate is switched off first, to 
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avoid the ignition for the actual half wave. 

Hardware debounce is necessary for the mains signal! 

POO_HNDLR BIS 

EINT 

XOR.B 

#OUT,&CCTLO 

#l,&POIES 

Switch off TRIAC gate 

Allow nested interrupts 

Change intrpt edge of PO.O 

If STTRIAC is not 0 ( 0 = inactivity) then the next TRIAC 

gate firing is prepared: STTRIAC is set to 4 

TST.B 

JZ 

MOV.B 

STTRIAC 

POO 

#4,STTRIAC 

TRIAC control active? 

STTRIAC = 0: no activity 

Yes, STTRIAC > 0 

The TRIAC firing time is calculated: TIMACNT + FIRANGL 

(current time + angle) in half periods 

MOV TIMACNT,FIRTIM Half period counter 

ADD FIRANGL,FIRTIM TIMACNT + delay -> FIRTIM 

POO RETI 

.sect "TIMVEC", OFFFOh Timer_A Interrupt Vectors 

. word TIM_HND Vector for C/C Blocks 1 .. 4 

. word TIMMODO Vector for C/C Block 0 

. sect "POOVEC",OFFFAh PO.O Vector 

. word POO_HNDLR 

. sect "INITVEC',OFFFEh Reset Vector 

. word INIT 

The Timer A 

The TRIAC control example results in a nominal CPU loading uCPU (ranging 
from 0 to 1) for the active TRIAC control (STIR lAC = 4): 

CCRO - repetition rate 16 kHz 
TIMOV - repetition rate 16 kHz 
CCR4 - repetition rate 0.4 kHz 
PO.O - repetition rate 100 Hz 
Update - 1 kHz (TIMOV) 

35cycles for the task, 11 cycles overhead 
34 cycles for the update, 14 cycles overhead 
18 cycles for the update, 16 cycles overhead 
17 cycles for the task, 11 cycles overhead 
22 cycles for the task, 0 cycles overhead 

46 cycles 
48 cycles 
34 cycles 
28 cycles 
22 cycles 
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16.0 X 103 x (46 +48)+0.4X103 x34+100x28+1.0x103 x22 
= ----------~--~~--------~---------------------

4.0 x 106 
0.386 

This results in a CPU loading of approximate 39% due to the static TRIAC con­
trol. The necessary tasks for the update ofthe half period counter and the cycle 
counters are included. The PWM activities alone load the CPU with less than 
1 % this way (fupdate = 1 kHz). 

6.3.10.6 RF Timing Generation 
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The repetition rate of the up/down mode In use must be a multiple of the data 
change frequency. The timing is now made by the Interrupts ofthe period regis­
'ter and of the timer overflow. This allows the output of biphase code modulation 
and biphase space modulation with a 19.2 kHz repetition rate. The three differ­
ent modulation methods and their conversion subroutines were discussed in 
detail in the section Software Examples for the Continuous Mode. The soft­
ware shown in this section may be used with the following, simple modifica­
tions: 

1) The repetition frequency is also chosen to 19.2 kHz, but the equally 
spaced TIMOV interrupt allows a 38.4 kHz time frame. 

2) The output handler for the 128-bit buffer is executed by the interrupt han­
dlers of the period register and the timer overflow (TIMOV) to get the 
doubled bit rate (as shown for the TRIAC control example in Section 
6.3.10.5). 

3) The output unit 0 uses the output only mode (exactly as shown for the 
TRIAC control example in Section 6.3.10.5). The interrupt handler of the 
period register CCRO sets and resets the output TAO by software. 

Figure 6-51 shows the biphase code modulation for an input byte containing 
the value 96h. The other two modulation modes work the same way. The tim­
ing of the interrupts is shown below: 
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° ° ° ° 
Information 096h 

BI.phase Code 

OCRO~~'-~~~~r-+-~~~r-~~~-'~--w-~­

Timer Register TAR 

Direction Bit 
(TIMACNT.O) 

Interrupts 

o~~~~--~----~---.----.---~--~~--~-
1°111°11° 101 1 °11 1 ° 

1 i 1 BltLength H i 1 .1.. 1 Time --+ 
• TIMOV • 

EQUO Bit Langth = 1/19200 s EQUO 

Figure 6-51. Biphase Code Modulation With the Up/Down Mode 

6.3.10.7 Comparison With the Up/Down Mode 

Comparison with the up/down mode is nearly impossible due to the uncertain­
ty of the direction of the actual count. If comparison - which means precise 
interrupts or switching of the corresponding output unit - is important, then 
the up mode or the continuous mode should be used. With the up/down mode 
- and its normally high repetition rates - only interrupt-driven software 
switching is .possible. The TRIAC Control example shows a method to use the 
interrupts of the period register (CCRO) and the timer overflow (TIMOV) for the 
control of outputs. 

6.3.10.8 Capturing with the Up/Down Mode 

Capturing of events is not as easy as with the continuous mode or the up mode. 
The reason is the changing count direction of the timer register (TAR) In the 
middle of the timer period. Due to the interrupt latency time. tiL, an uncertainty 
zone exists at the two points where the timer register changes its direction. 
This uncertainty zone has the length 2 x tiL. The interrupt latency time. tiL. de­
pends on the actual software - it ranges from 6 MCLK cycles to the longest 
program sequence with disabled interrupt. See also figure 6-52. 

To get the time of an event with least calculation effort, the method shown in 
figure 6-62 is used: 
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o The interrupt handler of the period register CCRO adds the length of a peri­
od to the cycle counters TIMACYCx. This is done in such a way, that these 
counters pOint forward to the next time point in which the timer register 
(TAR) reaches 0 again (TIMOV interrupt). 

o The interrupt handler of the period register also sets the bit 0 (LSB) of the 
half period counter TIMACNT. This bit is used as the direction bit and indi­
cates with this 1 the downward count direction. 

o The interrupt handler of the timer overflow (TIMOV) increments the bit 0 
(LSB) of the half period counter TIMACNT and sets it to 0 (upward count 
direction). 

The setting (CCRO) and incrementing (TIMOV) of the direction bit 
(TIMACNT.O) results in an incrementing that is self synchronizing. 

To calculate the time of an event at terminal TAx, it is only necessary to read 
the actual direction bit: 

o If the direction bit TIMACNT.O is 0 (upward count), then the captured time 
(0 to nCCRO) in the capture/compare register x is added to the cycle count 
in TIMACYCO. The captured event occurred after the time stored in TIMA­
CYCO. 

o If the direction bit TIMACNT.O is 1 (downward count), then the captured 
time (0 to nCCRO) in the capture/compare register x is subtracted from the 
cycle count in TIMACYCO. The captured event occurred before the time 
stored in TIMACYCO. 

The sections Dlgita/ Motor Control and TRIAC Control also contain examples 
for the use of capturing with the up/down mode. 



TIMACYCD 

i TIMACNT 

Direction Bit 

Time Register TAR 

nCCRD 

nCCRx1 

2nxnCCRD 

2n 

Up 

2(n + 1) x nCCRD 
I 2n + 1 2n+2 
I Down Up 
I 
I 
I ~ Uncertainty Zone 

The Time,-A 

2(n + 2) x nCCRD 

2n+3 2n+4 

Down Up 

Dh~--------~I~I----~~--'I----+-------~--------~ 

I Capt 1 I Capt2 I 
EQUD TIMOV EQUD 

CCRD Handler Wrltee I CCRD Handler Writes 
Interrupts 

2(n + 1) x nCCRD to TIMACYCO: I 2(n + 2) x nCCRD to TIMACYCD: 
Incr. TIMACNT (Dlr = Down) + Incr. TIMACNT (Dlr = Down) 

--+ 
Time 

III - • 
Capt 1 = 2(n + 1) x nCCRD - nCCRx1 Subtract CCRx I Add CCRx 

TIMACYCO Points to This Time: 
Incr. TIMACNT (Dlr = Up) Capt 2 = 2(n + 1) x nCCRD + nCCRx2 

Figure 6-52. Capturing With the Up/Down Mode 

Figure 6-£3 illustrates the hardware and RAM registers used with the up/down 
mode for capturing. The RAM words TIM31 and TIM30 store the time of the 
last captured event. Figure 6-£3 refers to the capture/compare block 3 of the 
following example. 
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Timer Clock 

32-Blt Ceptured Value 

Figure 6-53. Capture Mode With the Up/Down Mode (Capture/Compare Block 3) 
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Figure 6-54 illustrates five tasks. They are exactly the same tasks that are 
used for the up mode in the section Software Examples for the Up Mode (only 
the capture/compare block 3 part - that captures the leading edge of an input 
signal- is extended to 32 bits). This way a comparison is possible between 
the up mode and the up/down mode. The tasks are defined as follows: 

o Capture/Compare Block 0 - outputs a symmetrical 8.484 kHz signal. 
The edges contain the information for the period generated by the period 
register CCRO. This signal is always available for external peripherals (the 
PWM signals of the capture/compare blocks disappear for pulse widths of 
0% and 1 00%). 

o Capture/Compare Block 1 - generates a positive PWM signal with the 
half period defined by the period register CCRO. The pulse length is stored 
in the RAM word TA 1 PWM; it ranges from 1 to HLFPER. 

o Capture/Compare Block 2 - the length, At2, olthe high part olthe input 
signal at the CCI2A input terminal is measured and stored in the RAM word 
PP2. The captured time of the leading edge is stored in the RAM word 
TIM2. The maximum repetition rate used is 2 kHz. 

o Capture/Compare Block 3 - the event time of the leading edge of the 
signal at the CCI3A input terminal is captured. The last captured value 
(TCLK cycles, 32 bits length) is stored in the RAM words TIM30 and 
TIM31. The maximum repetition rate used is 3 kHz. See also figure 6-53. 



o CapturelCompare Block 4 - generates a negative PWM signal with the 
period defined by the period register. The pulse length is stored in the RAM 
word TA4PWM; it ranges from 0 to HLFPER. 

For the example, 3.801 MHz is used. The resolution for the PWM is 224 steps 
due to the repetition frequency of 16.969 kHz (3.801 MHzl16.969 kHz = 224). 
The Infrequent Individual Update Mode is used. See Section 6.3.10.3 for de­
tails. 

The maximum input frequencies for capturing purposes mentioned above are 
used for the overhead calculation only. The limits of the Timer_A hardware al­
low the capture much of higher input frequencies. 

Figure 6-54 illustrates the four tasks described above - they are not shown 
to scale: 
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TIMACYCO 2nxnCCRO (2n + 2) x nCCRO (2n + 4) x nCCRO 

Direction Bit 1 I 0 1 I 
I I 

Timer Register 

CCRO 
CCR4 

CCR1 

Oh 

TA10utput 

TA40utput 

Time Measurement 
atCCI2A 

Capturing of Leading 
Edges at CCI3A 

Doubled Period at 
TAO I I I 

Interrupts Capt 20 Capt 3 Capt21 I 
TIMOV EOUO TIMOV EOUO TIMOV 

Figure 6-54. PWM Generation and Capturing With the Up/Down Mode 

Example 6-51. TimecA Used for PWM Generation and Capturing 

; Timer_A used for PWM-generation and Capturing. 

FLLMPY .equ 

fper . equ 

TCLK .equ 

HLFPER .equ 

TAVO .equ 

PERIOD_VAR .equ 
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116 

16969 . 

FLLMPY*32768 

(TCLK/fper)/2 

0 

0 

fMCLK = 3.801MHz 

16.969kHz repetition rate 

TCLK: FLLMPY x fcrystal 

fper = 16.969kHz 

MSP430C33x version 

Fixed period 

0 

---+ 
Time 



RAM Definitions 

TAlPWM 

TIM2 

PP2 

TIM30 

TIM3l 

.equ 

.equ 

.equ 

.equ 

.equ 

TA4PWM .equ 

TlMACYCO .equ 

TlMACYCl .equ 

TlMACNT .equ 

FLAG 

STACK 

INIT 

.equ 

.equ 

. text 

MOV 

CALL 

202h 

204h 

206h 

20Sh 

20Ah 

20Ch 

20Eh 

2l0h 

2l2h 

214h 

600h 

#STACK,SP 

UNITSR 

PWM pulse length TAl 

Time of leading edge at CCI2A 

Length of high part at CCI2A 

Time of leading edge 

at CCI3A 

LSBs 

MSBs 

PWM pulse length for TA4 

Cycle counter low 

Cycle counter high 

Half period counter. BitO 

Update information 

Stack initialization address 

Software start address 

Initialize Stack Pointer 

Init. FLL and RAM 

Dir 

Initialize the Timer_A: MCLK, Up/Down Mode, INTRPTs on 

for TIMOV, C/C blocks 0, 2, and 3 

MOV #ISMCLK+CLR+TAIE,&TACTL'; Define Timer_A 

MOV 

MOV 

MOV 

MOV 

MOV 

MOV 

MOV.B 

MOV.B 

CLR 

CLR 

CLR 

MOV 

MOV 

#HLFPER,&CCRO Define half period 

#OMT+CCIE,&CCTLO Toggle TAO, INTRPT on 

#OMTR,&CCTLI Toggle/Reset Mode 

#CMBE+ISCCIA+SCS+CAP+CCIE,&CCTL2 Both edges 

#CMPE+ISCCIA+SCS+CAP+CCIE,&CCTL3 Pos. edge 

#OMTS,&CCTL4 ; Toggle/Set Mode 

#TA4+TA3+TA2+TAl+TAO,&P3SEL ; Define I/Os 

#CBACLK+CBE,&CBCTL ; Output ACLK at XBUF pin 

TlMACYCO 

TlMACYCl 

TlMACNT 

#l,TAlPWM 

#0,TA4PWM 

Clear low cycle counter 

Clear high cycle counter 

Clear half period counter 

TAl pulse length 1 

TA4 pulse length 0 
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MAINLOOP 

MOV 

BIS 

EINT 

#6 ,FLAG 

#MUPD,&TACTL 

Actualize PWMs immed. 

start Timer in Up/Down Mode 

Enable interrupts 

Continue in background 

Calculations for ·the new PWM values start. 

The new result in R6 is written to TAIPWM after completion. 

The PWM range is from 1 to HLFPER-l: no checks necessary 

MOV 

BIS 

R6,TAIPWM 

#2 ,FLAG 

Calculate TAL value to R6 

Actualize pulse length 

Initiate update 

Continue in background 

The new result in R6 is written to TA4PWM after completion. 

The PWM range is from 0% to 100%: check necessary 

MOV 

BIS 

R6,TA4PWM 

U,FLAG 

Calculate TA4 value to R6 

Check and correct result 

Actualize pulse length 

Initiate update 

Continue in background 

Use the measured high part i~ PP2 for calculations 

MOV PP2,R7 Read measured pulse length 

Control algorithm 

Use the captured 32 bit value in TIM3l/TIM30 for calculations 

MOV 

MOV 

TIM3l,R7 

TIM30,R6 

Captured MSBs 

Captured LSBs 

Control algorithm 

Interrupt handler for the Period Register CCRO. B.4B4kHz 

are output at TAO for synchronization. 
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TIMMODO ADD #2*HLFPER,TIMACYCO Actualize cycle counters 

ADC TIMACYCl 

BIS 

RETI 

j/I,TIMACNT Incr. half period counter 

Dir = Down 

Interrupt handlers for Capture/Compare Blocks 1 to 4. 

The interrupt flags CCIFGx are reset by the reading 

of the Timer Vector Register TAIV 

TIM_HND ADD 

RETI 

&TAIV, PC. Add Jump table offset 

Vector 0: No interrupt pending 

RETI C/C Block 1: INTRPT disabled 

JMP TIMMOD2 C/C Block 2: Capt. both edges 

JMP TIMMOD3 C/C Block 3: Capt. pos. edge 

RETI C/C Block 4: INTRPT disabled 

TIMOV Interrupt: dependent on FLAG the CCRl and CCR4 

PWM registers are updated. 

TIMOV INC TIMACNT Incr. half period cnt (Down) 

P4 

P1 

ADD FLAG,PC .' FLAG with update info 

RET I 0: Nothing to do 

JMP PI 2: Update CCRl 

JMP P4 4: Update CCR4 

MOV TA1PWM,&CCRI 6 : Update CCR1 and CCR4 

MOV TA4PWM,&CCR4 4: 

CLR FLAG 

RETI 

MOV TAIPWM, &CCRI 2: Update CCR1 

CLR FLAG 

RETI 

The high part of the CCI2A input signal is measured. 

The result is stored in PP2. The complete handler is time 

critical: nested interrupts cannot be used. 
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TIMMOD2 BIT 

JZ 

MOV 

BIT 

JNZ 

ADD 

RETI 

T20 SUB 

RETI 

TM21. MOV 

BIT 

JNZ 

ADD 

JMP 

T22 SUB 

T23 SUB 

RETI 

#CCI,&CCTL2 

TM21 

TIMACYCO,TIM2 

#l,TIMACNT 

T20 

&CCR2,TIM2 

&CCR2,TIM2 

TIMACYCO,PP2 

#l,TIMACNT 

T22 

&CCR2,PP2 

T23 

&CCR2,PP2 

TIM2,PP2 

Input signal high? 

No, time for calculation 

Build time of event 

Pos. edge: count direction Up? 

No; Down (1) 

Direction is Up 

Build time of pos. edge in TIM2 

Direction is Down 

Build time of pos. edge in TIM2 

Neg. edge: High part is calc. 

Event time of trailing edge 

Direction Up? 

No, Down (1) 

Direction is Up 

Time of trailing edge in PP2 

To calculation of high part 

Direction is Down 

Time of trailing edge in PP2 

Subtr. time of leading edge 

Length of high part in PP2 

Capture/Compare Block 3 captures the time of leading edges 

at CCI3A. TIM3x stores the 32 bit time of the actual edge 

TIMMOD3 MOV TIMACYCO,TIM30 Store cycle counters (32 bit) 

MOV TIMACYC1,TIM31 

BIT #l,TIMACNT Count direction Up? 

JNZ T30 No, Down (1) 

Direction is Up 

ADD &CCR3,TIM30 Time of pos. edge in TIM3x 

ADC TIM31 

RETI 

Direction is Down 

T30 . SUB &CCR3,TIM30 Time of pos. edge in TIM3x 
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SBC 

RETI 

. sect 

. word. 

. word 

. sect 

. word 

The Time,-A 

TIM31 

"TIMVEC",OFFFOh Timer_A Interrupt vectors 

TIM_HND CjC Blocks 1 .. 4 Vector 

TIMMODO Vector for CjC Block 0 

"INITVEC",OFFFEh Reset Vector 

INIT 

The above example results in a maximum (worst case) CPU loading ucpu 
(ranging from 0 to 1) by the Timer_A activities: 

CCRO - repetition rate 16.969 kHz 13 cycles for the task, 11 cycles overhead 24 cycles 
28 cycles 
96 cycles 
46 cycles 
12 cycles 
21 cycles 

CCR1 - update rate 1 kHz 12 cycles for the update, 16 cycles overhead 
CCR2 - rep. rate max. 2 kHz 64 cycles for the update, 32·cycles overhead 
CCR3 - rep. rate max. 3.0kHz 30 cycles for the update, 16 cycles overhead 
CCR4 - update rate 1.0kHz 12 cycles for the update, 0 cycles overhead 
TIMOV - rep. rate 16.969kHz 7 cycles for the task, 14 cycles overhead 

U ",J 6. 969 X 103 x45+1.0x103 x40+2~Ox103 x96+3.0x103 x46 =0.298 
CPU 3.801 x 106 

6.3.10.9 Conclusion 

This results In a worst case CPU loading of approximate 29% due to the Tim­
er_A activities. 

This section demonstrated the possibilities of the Timer_A running in the up/ 
down mode. Despite the dominance ofthe period register CCRO and its chang­
ing direction during a period, it is possible to capture signals, compare time in­
tervals, and create timings in a real-time environment - all this in parallel with 
the pulse width modulation generated with the up/down mode. 
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6.4 The Hardware Multiplier 

The 16 x 16-bit hardware multiplier of the MSP430 family is detailed in the fol­
lowing sections. Function and modes are discussed, and proven application 
examples are given for this fast and versatile peripheral. Also shown is a com­
parison of the speed of solutions using this peripheral compared to pure soft~ 
ware solutions. The hardware multiplier can also execute the Signed Multiply 
and Accumulate function. The register to be used for the Operand 1 has the 
address 136h. The function is the same as for the Signed Multiplyfunction, ex­
ceptthatthe new product is added to the accumulated sum in the SumHi/Sum­
Lo registers. The SurhExt register indicates the sign of the accumulated sum. 
It is the user's responsibilty to ensure that no overflow can occur (by worst­
case calculation of the factors used). 

6.4.1 Function of the Hardware Multiplier 

6-222 

The hardware multiplier allows three different multiply operations (modes): 

o The multiplication for unsigned 16-bit and a-bit operands 

o The multiplication for signed 16-bit and 8-bit operands 

o The multiply-and-accumulate function (MAC) for unsigned 16-bit and a-bit 
operands 

Any mixture of operand lengths (16 bits and a bits) is possible. If assisting soft­
ware is used, other operations are also possible - the signed Multiply-and­
Accumulate function, for example. 
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15 rw o 

Operand 1 
(Address Defines Operation) 

Mods 

• Accessible Register 

8=0 
8=1 

MAC C=O 
C=1 

Figure 6-55. Block Diagram of the MSP430 16 x 16-Bit Hardware Multiplier 

Figure 6-55 shows the hardware modules of the MSP430 multiplier. The ac­
cessible registers are explained in the following sections. The hardware of Fig­
ure 6-55 does not precisely depict the actual circuitry - it illustrates how the 
programmer sees the hardware multiplier. 

6.4.1.1 Hardware and Register 

The Hardware Multiplier is not part of the MSP430 CPU - it is a peripheral like 
the limer_A or the Basic limer. This means its activities do not interfere with 
the CPU activities. The multiplier registers are normal peripheral registers that 
are loaded and read with the CPU instructions. The registers that the program­
mer can access are explained in this section. 

The hardware multiplier registers are not affected by POR or PUC. 

With the exception of the SumExt register, all other registers can be read from 
and written to. 
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Definitions for the Hardware Multiplier appear in Section 6.4.3. 

r--------------------------~ 

MSP430 
CPU 

Including 
t6 Reglstsrs 

Tesl 

JTAG 

Address 
Bust6-BIls 

ROM RAM 

1/'-____ -' 

Data Bus 
1I1 .. BII8 

Hardware 
MPYer 

~--------------------------~ 
Figure 6-56. The Internal Connection of the MSP430 16 x 16-Bit Hardware Multiplier 

6.4.1.2 The~Opsrand1 Registers 
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The MSP430 hardware multiplier mode to be used is selected by the hardware 
address where the Operand 1 is written: 

o Address 130h - the unsigned multiplication is executed 

o Address 132h - the signed multiplication is executed 

o Add,...s 134h -the unsigned Multiply-and-Accumulatefunction is exe­
cuted 

Only the address used for the operand1 determines which operation the multi­
plier will execute (after the modification of the operand2). No operation is 
started with the modification of the operand register 1 alone. 
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Example 6-52. Multiply Unsigned 

MOV 

MOV 

A MPY (multiply unsigned) operation is defined and started. The two operands 
reside in R14 and R15. 

R15,&l30h 

R14, &l38h 

Define MPY operation 

Start MPY with operand 2 

Product in SumHilSurnLo 

6.4.1.3 The Opersnd2 Register 

The operand register 2 (at address 138h) is common for all three multiplier 
modes. The modification of this register (normally with a MOV instruction) 
starts the selected multiplication of the two operands contained in the operand 
1 and 2 registers. The result is written immediately into the three hardware reg­
isters: Sum Ext, SumHi, and SumLo. The result can be accessed with the next 
instruction unless the indirect addressing modes are used for the source ad­
dressing. 

6.4.1.4 The SumLo Register 

This 16-bit register contains the lower 16 bits of the calculated product or 
summed result. All instructions may be used to access or modify the SumLo 
register. The high byte cannot be accessed with byte instructions. 

6.4.1.5 The SumHI RegIster 

This 16-blt register contains - dependent on the previously executed opera­
tion - the following information: 

o MPY Unsigned Multiply - the most significant word of the calculated 
product. 

o MPYS Signed Multiply - the most significant word including the sign of 
the calculated product. Two's complement notation is used for the product. 

o MAC Unsigned Multlply-and-Accumulate - the most significant word 
of the calculated sum. 

All instructions may be used with the SumHi register. The high byte cannot be 
accessed with byte Instructions. 
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6.4.1.6 The SumExt Register 

The Sum Ext register (sum extension) eases the use of calculations with re­
sults exceeding the range of 32 bits. This read only register contains the infor­
mation that is needed for the most significant parts of the result - the informa­
tion for the bits 32 and higher. The content of the Sum Extension Register is 
different for the three multiplication modes: 

o MPY Unsigned Multiply - Sum Ext always contains O. No carry is pos­
sible and the maximum result possible is: OFFFFh x OFFFFh = 
OFFFE0001 h. 

o MPYS Signed Multiply - Sum Ext contains the extended sign of the 
32-bit result (bit 31). This means that if the result of the multiplication is 
negative (MSB = 1), then SumExt contains OFFFFh. Ifthe result is positive 
(MSB = 0), then SumExt contains OOOOh. 

o MAC Unsigned Multiply-and-Accumulate-SumExt contains the carry 
of the accumulate operation. SumExt contains 0001 if a carry occurred 
during the accumulation of the new product. Sum Ext contains 0 if no carry 
occurred. 

The sum extension register improves multiple word operations. No time wast­
ing and ROM-space wasting conditional jumps are necessary - ordinary 
adds are used instead. 

The new product of a MPYS operation (multiplicands in R14 and R15) is added 
to a signed 64-bit result located in the RAM words RESULT to RESULT +6: 

Example6-53. 64-8it Result 
MOV 

MOV 

ADD 

ADDC 

ADDC 

ADDC 
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R15,&MPYS First operand 

R14,&OP2 Start MPYS with operand 2 

SumLo,RESULT Lower 16 bits of result 

SumHi,RESULT+2 Upper 16 bits 

SumExt", RESULT+4 Result bits 32 to 47 

SumExt,RESULT+6 Result bits 48 to 63 

Note: 

It is strongly recommended the MACROs defined in section Assembler 
.MACROS be used instead of the method shown above. The code above is 
much less descriptive than the MACROs, using known abbreviations like 
MPYU, MPYS and MACU. 

With the software shown above, no checks and conditional jumps are neces­
sary. The result always contains the Signed, accumulated slim automatically. 
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6.4.1.7 Rules for the Hardware Multiplier 

o The hardware multiplier is a word module. The hardware registers can be 
addressed in word mode or in byte mode, but the byte mode can address 
the lower bytes only (the upper byte cannot be addressed). 

o The operand registers of the hardware multiplier (addresses 0130h, 
0132h, 0134h and 0136h) behave like the CPU working registers AO to 
A15 if modified in byte mode - the upper byte is cleared in this case. This 
allows 6-bit and 16-bit multiplications in any mixture. See the examples in 
Section 6.4.2.4. 

o The foating point package (FPP) version 4 uses the hardware multiplier 
if the variable HW_MPY is defined as 1: 

.equ 1 

See chapter 5.6 for details. 

o If the result of a hardware multiplier operation is addressed with indirect 
mode or indirect-autoincrement mode, a NOP Instruction is necessary af­
ter the multiplication to allow the completion of the multiplication. See the 
examples in Section 6.4.3.1. 

6.4.2 Multiplication Modes 

Three different multiplication modes are available. They are explained in the 
following sections. 

6.4.2.1 Unsigned Multiply 

The two operands written to the operand registers 1 and 2 are treated as un­
signed numbers with: 

• OOOOOh 

• OFFFFh 

as the smallest number 

as the largest number. 

The maximum possible result is reached for the operands: 

OFFFFh x OFFFFh = OFFFE0001 h 

No carry is possible, the Sum Ext register always contains O. Table 6-27 shows 
the products for some special multiplicands. 
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Table 6-27. Results With the Unsigned Multiply Mode 

OPERANDS SumExt SumHI SumLo 

0000 x 0000 0000 0000 0000 

0001 x 0001 0000 0000 0001 

7FFFx7FFF 0000 3FFF 0001 

FFFFxFFFF 0000 FFFE 0001 

7FFFx FFFF 0000 7FFE 8001 

8000 x 7FFF 0000 3FFF 8000 

8000xFFFF 0000 7FFF 8000 

8000 x 8000 0000 4000 0000 

6.4.2.2 Signed Multiply 

The two operands written to the operand registers 1 and 2 are treated as 
signed twO's complement numbers with: 

• 08000h as the most negative number (-32768) 

• 07FFFh as the most positive number (+32767) 

The SumExt register contains the extended sign of the calculated result: 

• SumExt = OOOOOh: the result is positive 

• Sum Ext = OFFFFh: the result is negative 

Table 6-28. Results With the Signed Multiply Mode 

OPERANDS SumExt SumHI SumLo 

0000 x 0000 0000 0000 0000 

0001 x 0001 0000 0000 0001 

7FFFx7FFF 0000 3FFF 0001 

FFFFxFFFF 0000 0000 0001 

7FFFxFFFF FFFF FFFF 8001 

8000 x 7FFF FFFF COOO 8000 

8000 x FFFF 0000 0000 8000 

8000 x 8000 0000 4000 0000 
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8.4.2.3 Multlply-and-Accumulats (MAC) 

The two operands written to the operand registers 1 and 2 are treated as un­
signed numbers (Oh to OFFFFh). The maximum possible result is reached for 
the input operands: 

OFFFFh x OFFFFh = OFFFE0001 h 

This result is added to the previous content of the two sum registers (SumLo 
and SumHi). If a carry occurs during this operation, the SumExt register con­
tains 1, otherwise it is cleared. 

• SumExt = OOOOOh: no carry occurred during the accumulation 

• SumExt = 00001 h: a carry occurred during the accumulation 

For the results of Table 6-29, it is assumed that SumHi and Sum Lo contain the 
accumulated content COOO,OOOO before the execution of each of the shown 
examples. See Table 6-27 for the results of an unsigned multiplication without 
accumulation. 

Table 6-29. Results With the Unsigned Multiply-and-Accumulate Mode 

OPERANDS SumExt SumHI SumLo 
0000 x 0000 0000 COOO 0000 

0001 x 0001 0000 COOO 0001 

7FFFx7FFF 0000 FFFF 0001 

FFFFxFFFF 0001 BFFE 0001 

7FFFxFFFF 0001 3FFE 8001 

80oox7FFF 0000 FFFF 8000 

8000xFFFF 0001 3FFF 8000 

8000 x 8000 0001 0000 0000 

8.4.2.4 Word Lengths for the Multiplication 

The MSP430 hardware multiplier allows all combinations that are possible 
with 8-bit and 16-bit operands. The examples given in Section 6.4.3 for 8-bit 
and 16-bit operands may be adapted to mixed length operands. 

It must be taken into account that the input operand registers operand1 and 
operand2 behave like CPU registers - the high register byte is cleared if the 
register is modified by a byte instruction. 

This eases the use with 8-bit operands. Examples for the 8-bit operand are giv­
en for all three modes of the hardware multiplier. 
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Use the 8-bit operand in R5 for an unsigned multiply. 

MOV.B R5,&MPY ; The high byte is cleared 

,. Use an 8-bit operand for a signed multiply. 

MOV.B 

SXT 

R5,&MPYS 

&MPYS 

The high byte is cleared 

Extend sign to high byte, 

Use an 8-bit operand for a multiply-and-accurnulate. 

MOV.B R5,&MAC ; The high byte is cleared 

Operand2 is loaded as shown above for operand1 . This allows all four possible 
combinations for the input operands: 

16x16 8x16 16x8 8x8 

The MACROS that can be modified are shown in the next section. 

6.4.3 Programming the Hardware Multiplier 

At the beginning. the registers of the hardware multiplier are defined In accor­
dance with the MSP430 Family Architecture Guide and Module Library. This 
avoids confusion. 

MSP430 Hardware Multiplier Definitions 

MPY .equ l30h Multiply unsigned 

MPYS .equ l32h Multiply signed 

MAC .equ 134 Multiply-and-Accumulate 

OP2 .equ 138h Operand 2 Register 

SurnLo .equ 013Ah Result Register LSBs 15 .. 0 

SumHi .equ 013Ch Result Register MSBs 32 .. 16 

SumExt .equ 013Eh Sum Extension Register 47 .. 33 
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6.4.3.1 Assembler .MACROS 

Due to the MACRO construction of the multiply instructions for source and des­
tination (normally two MOV instructions form the multiplication sequence). all 
seven addressing modes are possible. If the register indirect or register indi­
rectwith autoincrementaddressing modes are used to address the result. then 
a NOP is necessary after the .MACRO call to allow the completion ofthe multi­
plication.The named addressing modes access the source operand so fast. 
that they do not allow the completion of the multiplication. 

Examples are given with each .MACRO definition. The execution cycles de­
pend on the addressing modes used for the multiplier and the multiplicand. 

The given MACROs can easily be changed to subroutines. An example is giv­
en for the unsigned multiplication: 

Subroutine Definition for the unsigned multiplication 

16 x 16 bits. The two operands are contained in R4 and RS 

MPYU_16 MPYU16 R4,RS 

RET 

Unsigned MPY 16 x 16 

Result in SumHilSumLo 

6.4.3.2 Unsigned Multiplication 16 x 16-blts 

; Macro Definition for the unsigned multiplication 16 x 16 bits 

MPYU16 . MACRO arg1,arg2 

MOV 

MOV 

.ENDM 

arg1,&0130h 

arg2,&0138h 

; Unsigned MPY 16x16 

; Result in SumHilSumLo 

Multiply the contents of the two registers R4 and R5 

MPYU16 R4,R5 

MOV SumLo,R6 

MOV SumHi,R7 

MPY R4 and R5 unsigned 

LSBs of result to R6 

MSBs of result to R7 

Continue 

Multiply the contents located in a table, R6 points to 

The result is addressed in indirect mode: a NOP is necessary 
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to allow the completion of the multiplication 

MOV #SumLo,R5 Pointer to LSBs of result 

MPYU16 @R6+,@R6 MPYU the table contents 

NOP Allow completion of MPYU16 

MOV @R5+,R7 Fetch LSBs of result 

MOV @R5,R8 Fetch MSBs of result 

Continue 

Macro Definition for the unsigned multiplication and 

accumulation 16 x 16 bits 

MACU16 . MACRO arg1,arg2 

MOV 

MOV 

.ENDM 

argl,&0134h 

arg2,&0138h 

Unsigned MAC 16x16 

Carry in SumExt 

Result in SumExtlSumHilSumLo 

Multiply-and-accumulate the contents of registers R5 and R6 

to the previous content (IROP1 x IROP2L) of the Sum registers 

MPYU16 IROP1,IROP2L 

MACU16 R5,R6 

ADD &SumExt,RAM 

Initialize Sum registers 

Add (R5 x R6) to result 

Add carry to RAM extension 

Continue 

6.4.3.3 Signed Multiplication 16x 1f$-blt 

The following software examples perform Signed 16 x 16-bit multiplications 
(MPYS16) or signed Multfplication and Accumulation (MACS16). 

The Sum Ext register contains the extended sign of the result in SumHi and 
SumLo: OOOOh (positive result) or OFFFFh (negative result). 

Macro Definition for the signed multiplication 16 x 16 bits 

MPYS16 . MACRO arg1,arg2 Signed MPY 16x16 bits 

MOV arg1,&0132h 

MOV arg2,&0138h 
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.ENDM Result in SumExtlSumHilSumLo 

Multiply the contents of two registers R4 and R5 

MPYSl6 

MOV 

MOV 

MOV 

R4,R5 

&SumLo,R6 

&SumHi,R7 

&SumExt,R8 

MPY signed R4 and RS 

LSBs of result to R6 

MSBs of result to R7 

Sign of result to R8 

Continue 

Multiply the contents located in a table, R6 points to 

The result is addressed in indirect mode: a NOP is necessary 

to allow the completion of the multiplication 

MOV #SumLo,RS Pointer to LSBs of result 

MPYS16 @R6+,@R6 MPY signed table contents 

NOP Allow completion of MPYS16 

MOV @RS+,R7 LSBs of result to R7 

MOV @RS+,R8 MSBs of result to R8 

MOV @RS,R9 Sign of result to R9 

Continue 

Macro Definition for the signed multiplication-and­

accumulation 16 x 16 bits. The accumulation is made in the 

RAM: MACHi, MACmid and MAClo. If more than 48 bits are used 

for the accumulation, the SumExt register is added to all 

further extensions (RAM or registers) here shown for only 

one extension (48 bits) . 

MACS16 . MACRO arg1,arg2 Signed MAC 16x16 bits 

MOV argl,&0132h Signed MPY is used 

MOV arg2,&0138h 

ADD &SumLo,MAClo Add LSBs to result 

ADDC &SumHi,MAcmid Add MSBs to result 

ADDC &SumExt,MA~hi Add SumExt to MSBs 

.ENDM 
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Multiply and accumulate signed the contents of two tables 

MACS16 2(R6),@R5+ MACS for the table contents 

Accumulation is yet made 

6.4.3.4 Unsigned Multiplication B x B-blts 

If byte instructions are used for the loading of the hardware multiplier registers, 
then the high byte of these registers is cleared like a CPU register. This behav­
ior is used with the unsigned 8 x 8-bits multiplications. 

Macro Definition for the unsigned multiplication 8 x 8 bits 

MPYU8 . MACRO arg1,arg2 

MOV.B 

MOV.B 

.ENDM 

argl,&0130h 

arg2,&0138h 

Unsigned MPY 8x8 

OOxx to 0130h 

OOyy to 0138h 

Result in SumLo. SumHi - 0 

Multiply the contents of the low bytes of two registers 

MPYU8 

MOV 

R12,R15 

&SumLo,R6 

MPY low bytes of R12 and R15 

16 bit result to R6 

SumExt - SumHi = 0 

Macro Definition for the unsigned multiplication-and­

accumulation 8 x 8 bits 

MACU8 . MACRO argl,arg2 

MOV.B 

MOV.B 

.ENDM 

argl,&0134h 

arg2,&0138h 

Unsigned MAC 8x8 

OOxx 

OOyy 

Result in SumExtlSumHilSumLo 

Multiply-and-accumulate the low bytes of R14 and a table 

MACU8 R14,@R5+ CALL the MACU8 macro (R5+l) 
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6.4.3.5 Signed Multiplication 8 x B-blts 

If byte instructions are used for the loading of the hardware multiplier registers, 
then the high bytes of their registers are cleared like a CPU register. It therefore 
needs only to be sign-extended. 

Macro Definition for the signed multiplication 8 x 8 bits 

MPYS8 . MACRO arg1,arg2 Signed MPY 8x8 

MOV.B arg1,&0132h OOxx 

SXT &0132h Extend sign: OOxx or FFxx 

MOV.B arg2,&0138h OOyy 

SXT &0138h Extend sign: OOyy or FFyy 

.ENDM Result in SumExtlSumHilSurnLo 

Multiply signed the low bytes of RS and location EDE 

MPYS8 

MOV 

MOV 

RS,EDE 

&SurnLo,R6 

&SumHi, R7 

CALL the MPYS8 macro 

Fetch result (16 bits) 

Sign: 0000 or FFFF 

Macro Definition for the signed multiplication and 

accumulation 8 x 8 bits. The accumulation is made in the 

locations MACHi, MACrnid and MAClo (registers or RAM) 

If more than 48 bits are used for the accumulation, the 

SumExt register is added to all further RAM extensions 

MACS8 . MACRO arg1,arg2 Signed MAC 8x8 bits 

MOV.B arg1,&0132h MPYS is used 

SXT &0132h Extend sign; OOxx or FFxx 

MOV.B arg2,&0138h OOyy 

SXT &0138h Extend sign 

ADD &SumLo,MAClo Accumulate LSBs 16 bits 

ADDC &SumHi,MACmid Accumulate MIDs 

ADDC &SumExt, MAChi Add SurnExt to MSBs 

.ENDM 

Multiply-and-accumulate signed the contents of two byte 
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tables 

MAese 2(R6),@R5+ CAL~ the MACSe macro (R5+1) 

Accumulation is yet made 

6.4.3.6 Interrupt Usage 

Operating in the foreground only (interrupt handlers). the hardware multiplier 
can be used freely. If the hardware multiplier is used in the foreground andthe 
background, or in nested interrupt handlers, however, there are additional con­
siderations. 

The hardware multiplier may be used in interrupt handlers and in the back­
ground (which is not typical real-time programming practice) .if three rules are 
observed: 

o The loading of the two registers operand 1 (MPY, MPYS and MAC) and op­
erand2 may not be separated by an interrupt using the multiplier. The input 
information for operand1 cannot be restored due to the three input regis­
ters that are possible. See the example below. 

o The registers operand1 and operand2 cannot be reread by the back­
ground software - they may be overwritten by the interrupt handler. 

o The operand1 information cannot be used for more than one multiplication 
- only the operand2 register is changed for the next multiplication. The 
floating point package, FPP4, uses this method to speed up the calcula­
tion. so It must be changed. The place is indicated. 

Background: multiplication is used together with interrupt 

The interrupt latency time is increased by 9 cycles. 

The NOP is necessary: one additional instruction may 

be executed after the DINT instruction 

DINT 

NOP 

MPYUl6 R4, R6 

EINT 

Ensure non-interrupted -

load of the MPYer registers 

(R4) x (R6) -> Sum 

Allow interrupts again 

Continue with result 

The interrupt handler must save and restore the Sum registers 

&SumLo Save the SumLo register 
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PUSH 

PUSH 

MPYUl6 

POP 

POP 

POP 

RETI 

&SumHi 

&SumExt 

#X,Cl 

&SumExt 

&SumHi 

&SumLo 

Save the SumHi register 

Save the SumExt register 

Call unsigned MPY: X x Cl 

Continue with MPYer result 

Restore SumExt register 

SumHi register 

SumLo register 

Return to background 

The Hardware Multiplier 

6.4.3.7 Speed Comparison with Software Multiplication 

Table 6-30 shows the speed increase for the different 16 x 16-bit multiplication 
modes. 

o The cycles given for the software loop include the subroutine call (CALL 
#MULxx). the subroutine itself. and the RET instruction. Only CPU regis­
ters are used for the multiplication. 

o The cycles given for the hardware multiplier include the loading of the mul­
tiplier operand registers operand1 and operand2 from CPU registers. and 
- in the case of the signed MAC operation - the accumulation of the 
48-bit result to three CPU registers (see Section 6.4.3.1.2). 

Table 6-30. CPU Cycles Needed for the Different Multiplication Modes 

OPERATION SOFTWARE LOOP HARDWARE MPYer SPEED INCREASE 

Unsigned MuHiply MPY 139 ... 171 8 17.4 ... 21.4 

UnSigned MAC 137 ... 169 8 17.1 ... 21.1 

Signed MuHiply MPY 145 •.. 179 8 18.1 ... 22.4 

Signed MAC 143 ... 177 17 8.4 ... 10.4 

6.4.3.8 Software Hints 

If the operand1 is used for more than one multiplication in sequence. then it 
is not necessary to move it again into the operand1 register. The first example 
shows two unsigned multiplications with the content of address TONI. Four by­
tes and six CPU cycles are saved compared to the normal procedure. 

Multiply TONI x R6 and TONI x RS. Results to diff. locations 

MPYUl6 TONI,R6 TONI x R6 -> SumHilSumLo 
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MOV &SumLo,R7 Resul t to R8 I R7 • 

MOV &SumHi,R8 

MOV 

MOV 

RS,&0138h 

&SumLo,RESULT 

; TONI still in &0130h 

; TONI x RS -> SumHilSumLo 

MOV &SumHi,RESULT+2; Result to RESULT+2IRESULT 

The second example shows three multiply-and-accumulate operations with 
the same operand1. The three operands2 cannot be added simply and multi­
plied once -.,.. their sum may exceed the range of 16 bits. Eight ROM bytes and 
twelve CPU cycles are saved by using this method compared to the normal 
procedure. 

Multiply-and accumulate TONI x R6, TONI x RS and TONI x EDE 

The accumulated result is moved to RESULT .. RESULT+4 

MACU16 TONI,R6 

ADD &SUmExt,RESULT+4 

MOV RS,&0138h 

ADD &SumExt,RESULT+4 

MOV EDE,&0138h 

MOV . &SumLo, RESULT 

MOV &SumHi,RESULT+2 

ADD &SumExt,RESULT+4 

; Initialize Sumxxx registers 

; TONI x R6 + SumHilSumLo 

Add carry to extension 

; Add TONI x RS to Sumxxx 

Add carry to extension 

Add TONI x EDE to sumxxx 

TONI x (RS+R6+EDE) in Sumxxx 

Result to RESULT .. RESULT+4 

6.4.3.9 Speed Increase for the Floating Point Package 

.if 

X . float 
y . float 

.else 

X . double 
y . double 

.endif 
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The hardware multiplier only increases the speed of floating point multiplica­
tion. For the speed evaluation shown, the variables X and Yare used. they 
are defined as follows: 

DOUBLE=O 32-bit format 

3.1416 3.1416 

3.1416*100 314.16 

48-bit format 

3.1416 3.1416 

3.1416*100 314 .16 

The execution cycles shown Include the addressing of one operand and the 
subroutine CALL, itself: 



MOV 

MOV 

CALL 

#X,RPRES 

#Y,RPARG 

#FLT_MUL 

Address 1st operand 

Address 2nd operand 

Call the MPY subroutine 

Product X x Y on TOS 

The Hardware Muniplier 

Table 6-31 shows the number of necessary cycles needed for the 
multiplication: 

Table 6-31. CPU Cycles Needed for the FPP Multiplication (FLT_MUL) 

OPERATION .FLOAT .DOUBLE COMMENT 

Multiplication X x y 395 692 Software loop 

Multiplication X x y 153 213 Hardware MPYer used 

Speed increase 2.58 3.25 SW cycleslHW cycles 

Due to the speed advantage of the hardware multiplier only for multiplication, 
it is recommended that divisions be replaced by multiplications wherever pos­
sible. This is most simple for divisions by constants, like is shown in the next 
example. 

Example 6-54. Division by Multiplication 

DOUBLE .equ 

HW..,MPY .equ 

MOV 

CALL 

FLTe . float 

HW..,MPY .equ 

MOV 

0 

1 

The division of the last result - on top of the stack - by the constant 
2.7182818 is replaced by a multiplication with the constant 1/2.7182818. This 
reduces the calculation time by a factor of 4051153 = 2.65. First, the original 
sequence: 

Use the .FLOAT format 

Use the HW-MPYer 

#FLTe, RPARG Address ,constant e 

#FLT_DIV TOS/e: Division 405 cycl. 

Quotient on TOS 

2.7182818 Constant e 

The above division is replaced by a multiplication using the hardware 
multiplier: 

1 ; Use the HW-MPYer 

#FLTei,RPARG Address constant lie 
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FLTei 

CALL #FLTJ4UL TOS xl/e. MPY 153 cycles 

Result on TOS 

. float 0.3678794 Constant l/e 

If the .DOUBLE version (48 bits) of FPP4 is used, then the division execution 
time is decreased by a factor of 7561213 = 3.55. 

6.4.4 Software Applications 

Typical proven software examples are given for the application of the hard­
ware multiplier. The comments indicate for some examples the location of the 
(think hexa-) decimal point: 

±2.13 

~'-..... 
I s I Integer Bits 1 Fraction Bits I 
~ 0 

6.4.4.1 Multiplication Exceeding 16 Bits 

6-240 

The first software example shows the unsigned multiplication of two 4O-bit 
numbers (the MSBytes contain 0) - 48 bits of the result are used subsequent­
ly. The lower 32 bits of the product are not used. The first operand is contained 
in the registers ARG1_xxx and the second operand in ARG2_xxx. The result 
is placed into RESULT_xxx (CPU registers or RAM). The multiply routine is ab­
stracted from the FPP4 package. 

The execution time for CPU registers is 94 cycles. 
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MulUpller MulUpllcand 

x 
39 o 39 o 

31 o 

00 ARGCLSB )( ARG2_MSB 

Intermediate Products 

MSB MID LSB Final Product 

79 32 

Figure 6-57. 40 x 4D-Bit Unsigned Multiplication MPYU40 

; Register Definitions for the 40 x 40 unsigned MPY and MAC 

ARGIJ1SB .equ R5 Argument 1 (Multiplicand) 

ARGIJ1ID .equ R6 

ARG1_LSB .equ R7 

ARG2_MSB .equ R8 Argument 2 (Multiplier) 

ARG2J1ID .equ R9 

ARG2_LSB .equ RIO 

RESULT_MSB .equ Rll Result (Product) 
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RESOLTJ{ID .egu 

RESULT_LSB .egu 

MPY040 CLR 

CLR 

CLR 

MAC040 MPY016 

MAC016 

ADD 

ADDC 

MPY016 

MAC016 

MAC016 

ADD 

ADDC 

ADDC 

MPY016 

MAC016 

ADD 

ADDC 

MPY016 

ADD 

RET 
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R12 

R13 

RESOLTJ{SB Clear Result 

RESOLT_MID 

RESOLT_LSB 

ARG2_LSB,ARG1J{ID ; Bits 16 to 47 

ARG1_LSB,ARG2J{ID 

&SumHi,RESOLT_LSB 

&SumExt,RESOLT_MID 

ARG1_MSB,ARG2_LSB ; Bits 32 to 63 

ARG1_LSB,ARG2J{SB 

ARG1J{ID,ARG2_MID 

&SumLo,RESOLT_LSB 

&SurnHi,RESOLTJ{ID 

&SumExt, RESOLTJ{SB' 

ARG1_MSB,ARG2J{ID ; Bits 48 to 79 

ARG2_MSB,ARGl_MID 

&SumLo,RESOLTJ{ID 

&SumHi,RESOLT_MSB 

ARGl_MSB,ARG2_MSB ; Bits 64 to 79 

&SumLo,RESULT_MSB 

48 MSBs in result 

The second software example shows all four possible multiplication routines 
for two 32-bit numbers; the full 64-bit result may be used afterward. The signed 
16 x 16-blt hardware multiplication MPYS cannot be used; it is designed forthe 
special case of 16 x 16 bits. So the unsigned multiplication MPY is used with 
a correction of the final sum at the start of the subroutine. 

Execution times (without CALL): 

MACU32 58 cycles 
MPYU32 64 cycles 
MACS32 64 to 68 cycles 
MPYS32 68 to 72 cycles 

unsigned MAC 
unsigned MPY 
signed MAC 
signed MPY 
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Muhlpller Multiplicand 

Is I OP2HI OP2LO X I S I OP1HI OP1LO 

15 o 15 0 15 o 15 0 

31 0 

OP2LOxOP1LO 

OP2LO x OP1HI 

OP2Hlx OP1LO 

I OP2Hlx OP1HI 

Product 

Is I SUM3 SUM2 SUM1 SUMO 

63 0 

Figure ~58. 32 x 32-Bit Signed Multiplication MPYS32 

Example ~55. 32 x 32-bit Multiplication and MAC Functions 

SUM3 .equ 

SUM2 .equ 

SUM1 .equ 

SUMO .equ 

OP1HI .equ 

OP1LO .equ 

OP2HI .equ 

OP2LO .equ 

All four possible 32 x 32-bit multiplication and MAC functions are shown below. 
The defined operands and result registers maybe working registers (as de­
fined) or RAM locations. 

R15 Result: sign and MSBs 

R14 (registers or RAM locations) 

R13 

R12 LSBs 

Rll 1st operand: sign and MSBs 

RlO LSBs 

R9 2nd operand: sign and MSBs 

R8 LSBs 

The unsigned 32 x 32 bit multiplication 

MPYU32 CLR 

CLR 

SUM3 

SUM2 

CLR SUM1 

Clear the result registers 

64 cycles 
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CLR .SUMO 

JMP MS321 Proceed at common part 

The signed 32 x 32 bit multiplication 

MPYS32 CLR 

CLR 

SUM3 

SUM2 

CLR SUMl 

CLR SUMO 

Clear the result registers 

68 to 72 cycles 

The signed 32-bit 'Multiply-and-Accumulate" subroutine 

The final result is corrected. 64 to 68 cycles 

MACS32 TST OPIHI Operandl negative? 

JGE MS320 No 

SUB OP2LO,SUM2 Yes, correct final sum 

SUBC OP2HI,SUM3 

MS320 TST OP2HI Operand2 negative? 

JGE MS32l No 

SUB OPlLO,SUM2 Yes, correct final sum 

SUBC OPlHI,SUM3 

The unsigned 32-bit 'Multiply-and-Accumulate" subroutine 

MACU32 .equ $ 58 cycles 

Main part for all multiplication subroutines 

MS321 MPYU16 OPILO,OP2LO LSBs x LSBs 

ADD &SumLo, SumO Add product to result 

ADDC &SumHi,Suml 

ADC Sum2 Necessary only for MACx32 

ADC Sum3 

MPYU16 OPlLO,OP2HI LSBs x MSBs 
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MACU16 OP2LO,OP1HI 

ADD &SurnLo,Suml 

ADDC &SumHi,Sum2 

ADDC &SumExt,Sum3 

MPYU16 OP1HI,OP2HI 

ADD &SumLo,Sum2 

ADDC &SurnHi,Sum3 

RET 

LSBs x MSBs 

Add accumulated products 

to result 

The HB"!"YB"! Multiplier 

Necessary only for MACx32 

MSBs x MSBs 

Add product to final result 

Sensor Characteristics 

For many applications, the digital values delivered by analog-to-digital con­
verters. 1/0 ports, or calculation results must be corrected or adapted. A com­
mon method is to use polynomials for this purpose. For example a cubic poly­
nomial to calculate the corrected output value y from the input value x is: 

y = a3 X x3 + a2 X x2 + al x x + ao 

With the hardware multiplier, a common solution may look like the following 
code. This subroutine is written for the highest possible speed - the coeffi­
cients 83 to ao have decreasing numbers of bits after the (think hexa-) decimal 
point. If this cannot be tolerated, then shifts and stores between the multiplica­
tions are necessary. The input value x stays in operand1 (MPYS 0132h) and 
is used for all three multiplications. 

Example 6-56. Value Correction 

The output value of the ADC is corrected with a cubic polynomial. All values 
are scaled to values less than 1 to get the maximum resolution. The coeffi­
cients an used for correction are: 

a3: +0.01 82:-0.25 a1: -0.5 

The HORNER scheme is used for the computation: 

y = «((a3 xx) + a2 )x x + al )X x + ao 

aO: +0.999 

The numbers +--a.b in the code comments indicate the bits before and after 
the decimal point of the numbers used. 

Execution time (without CALL): 45 cycles 
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Polynomial Calculation for y = a3x h3 +a2Xh2 +alxhl +aOxhO 

Result in SumHi reg.ister 

POLYNOM MPYS16 X,A3 +-0.15 x +-0.15 (+-1.14) 

ADD A2,&SumHi +-1.14 + +-1.14 -> +-1.14 

MOV &SumHi,&OP2 +-1.14 x +-0.15 (+-2.13) 

ADD Al,&SumHi +-2.13 + +-2.13 -> +-2.13 

MOV &SumHi,&OP2 +-2.13 x +-0.15 (+-3.12) 

ADD AO,&SumHi +-3.12 + +-3.12 -> +-3.12 

RET SumHi: +-3.12 

Table of coefficients 

A3 

A2 

Al 

AD 

. word 

.word 

. word 

. word 

+100*08000h/10000 ; +O.Oi (+-0.15) 

-2500*04000h/10000 -0.25 (+-1.14) 

-5000*02000h/10000 -0.5 (+-2.13) 

+9999*01000h/10000 +0.9999 (+-3.12) 

6.4.4.3 Table calculation 

The .MACRO instructions used for the different multiplication possibilities (8 
bits versus 16 bits, signed and unsigned, multiply and multiply-and-accumu­
late) have the advantage to allow all seven addressing modes of the MSP430 
architecture for source and destination. Therefore, the MPY instructions are 
ideal for table processing - both operands of a multiply instruction can also 
be addressed Indirectly. An example for the table calculation is given in Section 
6.4.4.5 

6.4.4.4 Wave Digital Filters 
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The main advantage of wave digital filters is that for fixed coefficients, no mUlti­
plication is needed. Instead, an optimized shift-and-add sequence is used for 
the filter algorithm. But this optimization is not possible if Adaptive Filter Algo­
rithms are used, which means changing coefficients. In this case, a hardware 
multiplier has significant advantages - the calculation time is independent of 
the coefficients used. 
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6.4.4.5 Finite Impulse Response (FIR) Digital Filter 

The formula for a simple FIR filter is: 

Yn = ao x xn + al x xn-l + a2 X xn-2 + ... ak x Xn-k 

-+-----........ Yn 

Yn = ao xn + 81 xn·1 •••• +ak xn-k 

Figure 6-59. Finite Impulse Response Filter 

The example below shows an algorithm that uses the last ADC result for the 
input of a seventh-order FIR filter. The coefficients an are stored in ROM (fixed 
coeffiCients) or in RAM (adaptable coefficients). The filter maybe changed eas­
ily to a higher order: 

o The value k must be changed to the desired order 

o (k+ 1) words in RAM must be allocated for the input samples xn starting at 
label X 

o The table with the coefficients an must be enlarged to (k+ 1) coeffiCients 

Execution time: 28 CPU cycles are necessary per filter tap. 

The example does not show a real filter - for example, for a linear phase re­
sponse the coefficients an must be: 

which means: aO = ak, a1 = ak-1 etc. 
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Input Values . Coefficients 

Xn-1 

xn·k+1 Sk-1 

R5-+ Xn-k X R6-+ sk An 

I s I R7 R8 R9 I Rssult Registers 

15 o 15 o 15 0 

Figure 6-60. Storage for the Finite Impulse Response Filter 

The special "Multiply-and-Accumulate" .MACRO accumulates the 

products X x An in the registers R71R81R9. 

Execution time: 19 cycles for the example below with the 

indirect addressing mode used for both operands. 

MACS16 . MACRO arg1,arg2 Signed MAC 16x16 

MOV arg1,&0132h Signed MPY is used 

MOV arg2,&0138h Start MPYS 

ADD &SumLo,R9 Add LSBs to result 

ADDC &SumHi,R8 Add MSBs to result 

ADDC &SumExt,R7 Add SumExt to result 

.ENDM Result in R71R81R9 

Definitions: 

- Value k defines the order of the FIR-filter 

- OFFSET is used to get signed values (EOOOh .. 1FFFh) out of 

the unsigned 14-bit ADC results (0 ... 3FFFh) 

- X defines the address for the oldest input sample x(n-x) 

in a sample buffer with (x+1) words length 

X 

OFFSET 
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.equ 

.equ 

7 

02000h 

(x + 1)samples are used -

to get signed ADC values 



The Hardware Multiplier 

x .equ 0200h x(n-k) sample address 

With the Timer_A interrupt the calculation is made 

TIMA_INT PUSH RS Save R5 and R6 

PUSH R6 

MOV #X,RS Address xn buffer (oldest x) 

MOV #An,R6 Address an constants (ak) 

MOV &ADAT,2*k(R5) New ADC sample to xn 

SUB #OFFSET, 2*k(RS) ; Create signed value for xn 

CLR R7 ; Clear result reg. (MSBs) 

CLR R8 

CLR R9 

TAOO MACS16 @RS+,@R6+ ak * xn-k added to R71R81R9 

MOV @RS,-2(R5) xn-k+1 -> xn-k 

CMP #X+2+(2*k),R5 Through? (RS points outside) 

JNE TAOO No, once more 

POP R6 Restore RS and R6 

POP R5 

BIS #CS,&ACTL Start next ADC conversion 

RETI Result: +-17.30 (3 words) 

The constants An are fixed in ROM. Format: +-0.15 

(1 bit sign, IS bits fraction) 

Range: -0.99996 to +0.99996 

An . word +9999*8000h/l0000 ak +0.9999 

. word -9999*8000h/l0000 ak-l -0.9999 

ak-2 to a2 

. word +SOOO*8000h/l0000 al +O.S 

. word -SOOO*8000h/l0000 aO -0.5 
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8.4.4.8 Fast Fourier Transform Algorithm 

The buffer - located in the RAM - the pointer that pQR points to, is trans­
formed and overwritten with the result of the fast Fourier transformation (FFT). 
The formula used for each block consists of real and imaginary numbers: 

PRi' (PRi + (QRI X WRi + QIi X WIi)/2 real part of Pi 
PIi' (PII + (QII x WRi - QRi x WIi)/2 imaginary part of Pi 
QRi' (PRi - (QRi X WRI + QII x WIi)/2 real part of Qi 
QIi' (Pli - (QIi x WRi - QRi x WIi)12 imaginary part of QI 
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Where: 
WRI 
Wli 
OJ 

i 
PRI 
PRi' 

cos (i x 2 1t IN) = cos (00 x i) 
sin (i x 2 1t IN) = sin (00 x i) 
2m 
Index number 
Real part of PRi before FFT 
Real part of PRI after FFT 

Figure 6~1 shows the allocation of the three tables in the RAM and ROM of 
the MSP430. 

Execution time: the buffer shown, with eight complex numbers each for the P 
.and Q part, needs 717 cycles (without CALL) for the transformation (185 J.1S 
@4MHz). 
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Slne/CoIIIna Table 

PO Real pWI-+ sinO 
PIValuea 

PO Imaginary sin (1/SIt) 

Addressss 

Pn-1 Real 
1 sin (4181t1 cosO 

Pn-1 Imaginary sin (51S1t) cos (1/SIt) 

pQR-+ QOReal 

QO Imaginary 
QlValues 

SIn (8/SIt) cos (21S1t) 

sin (7/SIt) cos (31S1t) 

sin (10/SIt) cos (8/SIt) 

Qn-1 Real sin (11/SIt) cos (7/8,,) 

Qn-1lmaglnary 

Figure 6-61. RAM and ROM Allocation for the Fast Fourier Transformation Algorithm 

Algorithm: 'FFT' optimized butterfly radix 2 for MSP430x33x 

Originally developed by M.Christ/TID for TMS320CBO 

Input data: PRO,PIO,PR1,?I1, ...... ,QRn-1,QIn-1 (16 bit words) 

Algorithm: 

PR' 

PI' 

(PR+(QR*WR+QI*WI»/2 

(PI+(QI*WR-QR*WI»/2 

QR' = (PR-(QR*WR+QI*WI»/2 

QI' (PI-(QI*WR-QR*WI»/2 

Procedure: 

real = (QR*WR+QI*WI)/2 

imag (QI*WR-QR*WI)/2 

WR=cos(wt) 

WI=sin(wt) 
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PR' PR/2 + real 

OR' PR/2 real 

PI' PI/2 + imag 

01' PI/2 - imag 

N .equ 16 16 point complex FFT 

N2 .equ N*2 Byte count (OR - PRJ 

pOR .equ RS Pointer to QRi 

pWI .equ R6 Pointer to sine table tabs in 

real .equ R7 storage OR x WR + OI.x WI 

imag .equ R8 Storage 01 x WR + OR x WI 

TEMP .equ R9 Temporary storage 

TEMPl .equ RIO 

The subroutine FFT is called after the loading of the 

pointer to ORO. 

Call: MOV 

CALL 

tOR,pQR 

iFFT 

Pointer to ORO of block (RAM) 

Call the FFT subroutine 

Input table contains results 

Definition of the input table located in the RAM 

.bss PR,2,0200h PRO Preal 

.bss PI,2 PIO Pimaginary 

.bss PRi,N2-4 PR1, PIl. .. PRn-l, Pln-l 

.bas OR,2 ORO Oreal 

.bss 01,2 010 Oimaginary 

.bss ORi,N2-4 OR1, OIl ... ORn-l , OIn-l 

start of the FFT subroutine. pOR contains address of ORO 

FFT MOV itabsin,pWI Pointer to sin 0 
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Execution of the 4 multiplications. The halfed result is 

calculated without additional shifts due to the format 2.14 

Calculation of the real part: real = (OR x WR + 01 x WI)/2 

FFTLOP MPYS16 @pOR+,tabcos-tabsin(pWI); 

MOV &SumHi,real 

MPYS16 @pOR,@pWI 

ADD &SumHi,real 

Calculation of the imaginary part: 

imag - (01 x WR - OR x WI)/2 

store (OR x WR)/2 (2.14) 

(01 x WI)/2 (2.14) 

store real part 

MPYS16 

MOV 

MPYS16 

SUB 

@pOR+,tabcos-tabsin(pWI); 

&SumHi,imag 

-4 (pQR) , @pWI+ 

&SUmHi,imag 

Store (or x WR)/2 (2.14) 

(OR x WI)/2 (2.14) 

Btore imaginary part 

Calculation of PR', PI', OR', 01'. pOR points to ORi+1 

Calculation of PR': PR' = (PR + (OR x WR + 01 x Wr»/2 

MOV -N2-4(pOR) ,TEMP PRi to TEMP 

RRA TEMP PRi/2 

MOV TEMP,TEMP1 Copy PRi/2 

ADD real,TEMP1 PRi/2 + (ORxWR + OIxWI)/2 

MOV TEMP1,-N2-4(pOR) ; to PR' (1.15) 

Calculation of OR': OR' = (PR - (OR x WR + 01 x WI»/2 

SUB 

MOV 

real,TEMP 

TEMP,-4(POR) 

PR/2 - (ORxWR + OIxWI)/2 

to OR' (1.15) 

Calculation of PI': PI' (PI + (01 x WR - OR x WI»/2 

MOV 

RRA 

MOV 

-N2-2(pOR) ,TEMP 

TEMP 

TEMP,TEMP1 

PI 

PI/2 

Copy PI/2 

The "!.!'ifwaTe Multiplier 
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ADD 

MOV 

imag, TEMPI 

TEMP1,-N2-2(pQR) 

PI/2 + (QIxWR - QRxWI)/2 

to PI' (1.15) 

Calculation of QI': QI' (PI - (QI x WR - QR x WI»/2 

SUB 

MOV 

imag,TEMP 

TEMP,-2(pQR) 

PI/2 - (QI*WR+QR*WI)/2 

to Q1' (1.15) 

To next input data. Check if FFT is finished 

CMP 

JLO 

RET 

#tabsinO, pWL 

FFTLOP 

Through? (pWI 

No 

tabsinO) 

Yes, return 

Sine and cosine table. Format: s.fraction (1.15) 

tabs in . word +0000*8000h/10000 sin 0.0 0.00000 

. word +3827*8000h/10000 sin 1t/8 0.38268 

. word +7071*8000h/10000 sin 21t/8 0.70711 

. word +9239*8000h/10000 sin 31t/8 0.92388 

tabcos . word 10000*8000h/lOOOO-1 ; sin 41t/8 cos 0.0 

. word +9239*8000h/lOOOO sin 51t/8 cos 1t/8 

. word +7071*8000h/lOOOO sin 61t/8 cos 21t/8 

. word +3827*8000h/lOOOO sin 71t/8 cos 31t/8 

tabsinO . word +0000*8000h/lOOOO cos 41t/8 

. word -3827*8000h/lOOOO cos 51t/8 

. word -7071*8000h/10000 cos 61t/8 

. word -9239*8000h/lOOOO cos 71t/8 

An example is given for the FFT: 

The following table contains 32 values that are the data 

for the FFT 

16 point complex FFT radix 2 DIT 

DataSt 
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. word 

. word 

014abh,02e90h,Of6d4h,005d3h 

004b2h,Ofecdh,Of78ch,Ofcb2h 

PRO, PIO .. PIl 

PR2, PI2 .. PI3 
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. word 0093ch,004fOh,Offb5h,OO17ch PR4, PH .. PI5 

. word Ofbebh,002a5h,Of3a3h,Ofb38h PRG, PIG .. PI? 

. word O1854h,02a29h,Offb9h,Of9beh ORO, 010 .. OIl 

. word Ofa49h,00907h,OOalOh,Of99bh OR2, 012 .. 013 

. word 0030ch,Ofdadh,Ofa2ah,OO2e3h OR4, 014 .. 015 

. word Ofddbh,0029bh,Ofdf9h,00225h ORG,OI6. OI? 

The following 32 values are output by the FFT 

Result . word 

. word 

.word 

. word 

. word 

. word 

. word 

. word 

6.4.4.7 Conclusion 

0167fh,02c5ch,Ofa16h,OOO13h PR' 0 .. PI' 1 

00384h,0049ch,Ofabeh,Of879h PR'2 .. PI'3 

00374h,OOOf2h,OO24dh,OO2e2h PR' 4 .. PI' 5 

Offa4h,00128h,Ofb2ah,OfdOlh PR'6 .. PI'7 

Ofe2bh,00233h,Ofcbdh,OO5bfh OR'O .. 01' 1 

OO12dh,Ofa30h,Ofccdh,OO438h OR'2 .. 01'3 

005c7h,003fdh,Ofd67h,Ofe99h OR' 4 .. 01' 5 

Ofc47h,0017ch,Of879h,Ofe36h OR'6 .. 01' 7 

As shown by the examples, the hardware multiplier has its biggest advantages 
when used for signed and unsigned 16-bit operands. But also for other ap­
plications -like for a-bit operands, 32-bit operands or floating point numbers 
- the speed increase is valuable compared to the pure software solution. 
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6.5 The System Clock Generator 

The system clock generator of the MSP430 family provides many features not 
available with other microcomputers. To allow the full use of all the possibilities, 
some basics concerning the function of the oscillator are needed. A detailed 
description of the hardware Is given in the MSP430 Family Architecture User's 
Guide and Module Ubrary, chapter Osci/lator and System Clock Generator. 

The output frequency, MCLK, of the system clock generator is generated in a 
digitally controlled oscillator (DCO), having 32 taps. Each one of these taps 
represents a typical output frequency ranging from 500 kHz to 4 MHz. These 
tap frequencies depend on temperature and supply voltage, and referencing 
to a crystal is therefore necessary. 

Software definitions for the programming examples 

SCGl .equ OBOh System Clock Generator Control Bit 1 

SCGO .equ 040h System Clock Generator Control Bit 0 

OSCoff .equ 020h If 1: Oscillator off 

CPUoff .equ OlOh If 1: CPU off 

GIE .equ OOBh General Interrupt Enable Bit 

SCFIO . equ 050h System Clock Frequency Integrator Reg . 

FN_2 .equ 004h DCO current switch for 2 x fnom 

SCFIl .equ 051h DCO tap register 2~9 to 2~2 

TAP .equ OOBh 2~5 bit in SCFI1 

SCFQCTL .equ 052h System Clock Frequency Control Register 

M .equ OBOh Modulation Bit in SCFQCTL. M = 1: off 

6.5.1 Initialization 

After the application of the supply voltage, Vcc; the system clock frequency 
fsystem is initialized to 1.024 MHz, if a 32.768 kHz crystal is used. This is auto­
matically made by setting of the multiplication factor, N, to 32 and clearing of 
the FN_x bits in the control bytes SCFIO and SCFI1. If the CPU is always on 
afterward and 1.024 MHz is the desired frequency, then there is nothing else 
to do. 

8.5.1.1 First &lttlng of the DCO Taps during Initialization 

6-256 

The digitally controlled oscillator of the MSP430 starts at tap 0, which means 
at the lowest possible frequency ('" 500 kHz). To get from one tap to the next 



INIT 

L$l 

MOV 

DEC 

The System C1oc: Generator 

one, 210 (1024) cycles are needed. Thirty-two taps are implemented, so 32 x 
1024 cycles are needed, worst case, to get to the correct DCD tap. The initiali­
zation routine should therefore have a length of 32000 cycles. If this is not the 
case, a delay routine should be added to guarantee this length. An example 
is given below: 

#11000,R5 

R5 

Loop Control is on (SCGl = SCGO = 0) 

Init delay to allow DCO·setting 

11000 x 3 cycles = 33000 cycles 

JNZ L$1 

BR #MAINLOOP Start program 

6.5.2 Entering of Low Power Mode 3 

The low power mode 3 (LPM3 -crystal on, DCD and loop control off) is the 
normal mode for battery-powered systems. Enabled interrupts (e.g. the basic 
timer) wake up the CPU. LPM3 is entered with the following source code: 

BIS #CPUoff+GIE+SCG1+SCGO,SR; Enter LPM3 

6.5.3 Wake-Up From Interrupts In Low Power Mode 3 

BT_HAND INC 

RETI 

Wake-up from LPM3 clears only bit SCG1 (LPM1). Due to the set bit SCGO, 
the loop control of the DCD is off. Normal interrupt routines are too short to al­
low the loop control to adjust the DCD tap -1 024 cycles are necessary to get 
from one tap to the other one. It is not necessary, therefore, to switch on the 
loop control. The CPU uses the DCD tap set during the last adaptation. A nor­
mal, short interrupt routine looks like this: 

COUNTER LPM1: Loop Control stays off: 

; DCO is on for 17 cycles only 

If woken-up from LPM3, the interrupt latency time (6 cycles) is increased by 
typo 2 j.LS@ 1 MHz versus 1 j.LS@ 2 MHz (if FN_2 = 1). This means 8 cycles 
are typically needed from the interrupt event to the start of the Interrupt han­
dier. The time the DCD needs to settle to the nominal frequency is typically 4 
cycles. This means interrupt handlers are processed with the correct frequen­
cy. 

6.5.4 Adaptation of the DCO Tap During Calculations 

The DCD tap of the system clock generator should be updated during longer 
on times of the CPU (e.g. during calculations). This is necessary especially if 
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accurate timing of the instructions is needed. During all calculations that ex­
ceed 100 cycles in length, the loop control of the DCO should be switched on. 
The way to do this is to reset the SCGO bit in the status register after the wake­
up: 

Calculations are necessary. Allow adaptation of the DCO tap 

BIC 

RETI 

#SCGO,SR Switch on DCO loop control 

Calculate energy (>100 cycles) 

Return to LPM3 with adapted DCO tap 

The RETI instruction restores the CPU mode from the stack as it was when 
the interrupt occurred. 

6.5.5 Wake-Up From Interrupts In Low Power Mode 4 

The low power mode 4 normally lasts much longer than the low power mode 
3 - it may last for months until a stored module is woken-up for calibration. 
This means that the environment temperature may have changed seriously. 
lfthe LPM4 was entered at a high temperature, the used DCOtap will be a rela­
tively high one due to the negative temperature coefficient of the DCO. If then 
the device is woken-up at a low temperature and the crystal turns on fast, this 
high DCO tap may lead to a very high DCO frequency, a frequency the system 
cannot operate with. Therefore, It is a good programming practice, to program 
a low DCO tap before entering LPM4: 

Enter Low Power Mode 4: Set DCO tap to 2 
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MOV.B #TAP*2,&SCFll ; Set DCO tap to 2 

BIS #CPUoff+OSCoff+GIE+SCG1+SCGO,SR ; Enter LPM4 

If woken-up from LPM4, it may last up to seconds until the crystal has reached 
its nominal frequency. The frequency Integrator counts down continuously as 
long as the crystal oscillator has not started its operation. This lasts until the 
lowest DCO tap (with the lowest system frequency) is reached. After the start 
of the crystal oscillator, .the loop control will set the system frequency to its cor­
rect value by stepping up the taps. 
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6.5.6 Change of the System Frequency 

The system clock frequency fsystem depends on two values: 

jsrSlem = N X jcrySlal 

Where: 
N Multiplication factor of the DCO loop (SCFQCTL contains N-1) 
fcrystal Frequency of the crystal (normally 32.768 kHz) 

The normal way to change the system clock frequency is to change the multi­
plication factor N. The system clock frequency control register SCFQCTL is 
loaded with (N-1) to get the new frequency. To allow the DCO to work always 
in one of the center taps (13 to 18), three switches FN_2 to FN_ 4 are imple­
mented in the register SCFIO. It gives a safety not to be at the frequency limits 
ofthe DCO. These switches increase the internal current ofthe DCO and allow 
higher output frequencies if set. The switch nearest to the programmed DCO 
output frequency should be used. 

The switches FN_x typically settle within ±1 tap if the change is from the nomi­
nal frequency of one switch to the nominal frequency of the other one. For ex­
ample, if in the example below, the initial system frequency is 1 MHz, then the 
new tap is one of the neighboring taps. This means, to settle at 2 MHz, needs 
a maximum of 1024 cycles (0.5 ms) only. If FN_2 is not used, it would take up 
to 16 x 1024 cycles (8 ms) because the misalignment could be up to 16 taps. 

, 

Note: 

The switches FN_2, FN_3, and FN_ 4 need to be set correctly in dependence 
of the system clock frequency, fsystem' Otherwise, erroneous behavior of the 
system will result. Only one switch may be in use at the same time - the one 
that is nearest to the actual frequency should be used. FN_2 controls fre­
quencies near 2 MHz, FN_3 controls frequencies around 3 MHz, and FN_ 4 
controls frequencies around 4 MHz. 

Change system frequency to 2.048MHz (fcrystal = 32.768kHz) 

N = 64 Multiply 32kHz by 64 to get 2.048MHz 

FN_2 = 1: Adjust DCO current to 2MHz output frequency 

M - 0 Switch on modulation 

MOV.B 

MOV.B 

#64-1,&SCFQCTL 

#FN_2,&SCFIO 

64 x 32kHz = 2.048MHz, M - 0 

Adjust DCO current to 2MHz 
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6.5.7 The Modulation Bit M 

The modulation bit M (SCFQCTL.7) switches off. and on the influence of the 
5 LSBs (NOCOmod) of the system clock frequency integrator: 

o M = 0 - the modulation is on. This means 8111 0 bits of the integrator influ­
ence the DCO. The used tap of the DCO may be changed with every clock 
cycle to get the correct system clock frequency. This is the case if the pro­
grammed frequency lies exactly between two tap frequencies. 

o M = 1-the modulation is off. This means only the 5 MSBs (Noco) ofthe 
integrator influence the DCO. The used tap of the DCO is changed only 
after 1 024 clock cycles (forfsystem = 1 MHz) to get the correct system clock 
frequency. If the programmed frequency lies exactly between two tap fre­
quencies, then 1024 cycles are output with the lower tap frequency and 
1024 cycles are output with the upper tap frequency. 

In any case, independent of the modulation status, the integral error of the 
DCO will be zero. 

The modulation may be switched off If a series of MCLK cycles is needed with 
exactly the same length (for measurements with the universal timer/port mod­
ule, for example). To get this, the loop control also should be switched off. 

Ensure stable, non regulated output pulses with equal length: 

BIS.B 

BIS.B 

#SCGO,SR 

#M,&SCFQCTL 

Switch off loop control 

Switch off modulation 

Use non-regulated MCLK 

Return to a regulated MCLK with closed loop and modulation 
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BIC.B 

BIC.B 

#SCGO,SR 

#M,&SCFQCTL 

Switch on loop control 

Switch on modulation 
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6.5.8 Use Without Crystal 

If for an application, no precise timing is necessary, then the crystal may be 
omitted. If no ACLK is present (due to the missing crystal), then the DCO will 
run with its lowest frequency, which is approximately 500 kHz. No special in­
structions are necessary to get this behavior. 

If this lowest DCC frequency is too low, then a higher DCO tap (eg. 10) may 
be used. This tap normally results in an MCLK frequency near 1 MHz. It is Im­
portant to switch off the FLL loop, otherwise the FLL control will step down to 
tap 0 slowly. The software for this use of the DCO follows: 

Initialization of the DCO for non-crystal mode: 

Loop control off, tap number = 10: MCLK ~ 1MHz 

BIS.B 

CLR.B 

MOV.B 

#SCGO,SR 

&SCFIO 

#050h,&SCFIl 

Switch off loop control 

Reset FN_x bits 

Set bits for tap number 10 

If an external reference like the ac line is available, then the a.ctual MCLK fre­
quency can be controlled simply by the counting of the MCLK output with one 
of the timers (e.g. for one ac line period). An example is given in section The 
Timer_A where the control of an LCD is also shown without a crystal and miss­
ing LCD control frequency due to the missing ACLK 

6.5.9 High System Frequencies Together With the 14-blt ADC 

The maximum MCLK without input division is 1.5 MHz (132 cycles are needed 
for a conversion). To allow the full range of the system clock MCLK, together 
with the active ADC, a clock divider is included in the ADC module. It allows 
the division of the system frequency MCLK by factors of 1, 2, 3, and 4. See 
section Analog-ta-Digital Converters for examples. 

6.5.10 Dependencies of the System Clock Generator 

If the DCO runs with an open loop, its frequency depends on the temperature 
and the supply voltage, Vee. Nominal values for these dependencies are: 

o Temperature dependence: -:5.6 kHzWC x MHz) 

o Voltage dependence: +60 kHZ/(V x MHz) 

These two dependencies are brought to zero if the DCO loop is closed (SR­
bits: SCGO .. SCG1 = OscOff = 0). See the next section for short term devi­
ations of the system clock generator (MCLK). 
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6.5.11 Short Time Accuracy of the System Clock Generator 

The error of the system clock generator is zero for long time periods 
(compared to the system frequency fsystem)' Normally, no tap of the DCC can 
deliver the correct system frequency, fsystem, which is defined for the settled 
state to 

Therefore, the system clock generator switches continuously between two ad­
jacent DCC taps - the one with a lower frequency fN and the tap with a higher 
frequency fN+ 1. This switching between the two DCCtaps Noco and Noco+ 1 
is interlaced in such a way that it results in a small error at any time within the 
ACLK period. The resulting error for a complete ACLK period is nearly zero 
and the integral error for a longer period is zero. 

Figure 6-62 shows the use of the 1 D bits of the registers SCFID and SCFI1. 
The five MSBs Nococontrolthe DCC-taps, the five LSBs NOCOmod control the 
modulation scheme of the DCC. 

Bits located in the System Clock Frequency Integrator Registers SCFIO and SeFI1 

4 0 4 0 

x x x x x J x x x x x 

~ ~ 
NOCO NocOmod 

ceo Tap Control (0 •• 31) oeo Modulation Control (0 .. 31) 

Figure 6-62. Control of the DCa by the System Clock Frequency Integrator 
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Figure 6-63 illustrates the DCC switching between the lower and the higher 
DCC tap for selected values of NOCOmod. 
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NOCOmod Value 0/ the 5 LSBs 01 the 
System CIocI< Frequency Integrator 

131 JJj;::. =================-;;;;Am~ax =================:;J. L 
24~ 
16 

15 

5-1 ___ .-JIr=-::Amax ~~ ____ --'n .... __ _ 
4-1 __ ~n n n nL-__ 
3-1 _________ ---'fl~ ________ ~rl~ ________ ~rl~ ________ _ 

2~------~fl .... ------_=~---....... fl .... ~----­
-t---------------....... rl$ UpperCOOTapFrequencyl.!.,_ 

. fA""er COO Tap Frequency'" active 
o 

o 25 30 31 0 --5 10 15 20 

I, MCLK Cycles 1 MHz 'I 
I<E'~;-------------- OneACLKCycle ------------+l~. 

Figure 6-63. Switching of The DCO Taps Dependent on NDCOmod 

Table 6-32 lists the errors of the system clock generator. The assumptions for 
Table 6-32 are: 

o The frequency step from the lower tap frequency fN to the higher tap fre­
quency fN+ 1 is 10% (multiplication factor 1.1). 

o The two frequencies, fN and fN+ 1, allow an error free system frequency 
during one ACLK period - the two frequencies result in zero error if used 
with the shown NOCOmod' 

o The crystal error is not included -the crystal is considered to be errorfree. 

o The system frequency is normalized to 1 MHz. For all other frequencies, 
the resulting errors can be calculated simply by a relation to 1 MHz. 

o The FLL has settled, which means, it has had enough time (e.g. during cal­
culation sequences) to switch to the appropriate DCC taps. 

Three errors of the system clock generator are calculated in Table 6-32: 
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o The maximum time deviation, terr, during an ACLK period for a system 
with ideal tap frequencies (assumption 2 above). This inherent time devi­
ation is mainly due to the length of Amax. 

o The worst case time deviation, terr max' during an ACLK period for a sys­
tem with ideal tap frequencies. To get this time deviation, the calculation 
is made with the DCD frequencies for a value of NOCOmod that is one step 
above the correct frequencies. This results in the maximum possible time 
deviation for the FLL, independent of the tap frequencies. 

o The worst case value of the integrated time deviation terr pel'" This is the 
largest deviation seen at the end of a complete ACLK period. 

! 

Note: 

The three errors named above do not accumulate - on the contrary, they 
get smaller with each ACLK period and tend to reach zero. This is a very im­
portant property of the system clock generator. 

Values in brackets are used for calculations only, shading indicates the fre­
quency used (fN resp. fN+1) for the error calculation. 

Table 6-32. System Clock Generator Error 
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Note: 

. The values shown in Table 6-32 get smaller with increasing frequency. If fN 
is 2 MHz. for example. the values are only one-half of the table values. 
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NOCOmod Value of the five LSBs of the system clock frequency integrator 
fN DCO output frequency of the DCO tap Noco (lower frequency) 
fN+ 1 DCO output frequency of the DCO tap Noco+ 1 (higher frequency) 
Amax Longest sequence with the same tap within the switching scheme for a 

terr 
given value of NOCOmod measured in MCLK cycles. See figure &-63 

Maximum time deviation (time error) within an ACLK period due to 

[MHz] 
[MHz] 

Amax. terr is the inherent error for a given value of NOCOmod. [ns] 
terr max Worst case time deviation (time error) within an ACLK period due to Amax. 

The higher error results from the correction with the tap frequencies for 
(NOCOmod + 1). For a full ACLK period the error reduces to terr per [ns] 

terrper Worst case time error for a complete ACLK period (30.5 f.I.S). 
The error results from the correction with the tap frequencies 
for (NOCOmod+ 1). 

fsystem Nominal, errorless value of the system frequency. Here 1 MHz. 

The formulas used for the error calculations are: 

[ns] 
[MHz) 

terr = !::.max x - ---. (1 1) terr = b.maxX(_l ___ l_) 

terrper 

fo /system or for shaded cells fo + 1 /system 

The formulas for terr max are the same as for terr, but tap frequencies fN and 
fN+ 1 of (NOCOmod+ 1) are used. 

The formula for terr per also uses the tap frequencies fN and fN+ 1 of 
(NOCOmod+ 1). 

= (32-NDcomod)X(~-_1_)+NDcomodX(-1-__ 1_) 
fo /system fN + 1 /system 

6.5.12 The Oscillator Fault Interrupt Flag 

If the value Noco contained in the DCO tap control byte SCFI1 moves out of 
its valid range: 

o <NDCO < 28 

the oscillator fault interrupt flag OFIFG (located in IFG1.1) is set. If the oscilla­
tor interrupt enable bit OFIE (located in IE1.1) is also set, an interrupt is re­
quested. 

On-Chlp Peripherals 6-265 



The sy;;tem Clock Generator 

6.5.13 Conclusion 
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Note: 

The interrupt vector of the oscillator fault interrupt flag is shared with the non 
maskable interrupt (NMI).lt is necessary, therefore, to test the oscillator fault 
interrupt flag first to determine the cause of the interrupt. 

The oscillator fault interrupt flag is set after the supply voltage is applied to the 
MSP43 , due to the start ofthe DCO atthe lowestfrequency (Noco = 0). When 
the interrupt is granted, the oscillator interrupt enable bit OFIE is reset auto­
matically to disable further interrupt requests. The oscillator fault interrupt flag 
OFIFG must be reset by software. 

The time deviations listed in Table - 6-32 demonstrate the small error 
introduced by the modulation of the DCO. The largest time deviation inside of 
one ACLK period is 177 ns. This is relatively small compared to the inherent 
digital uncertainty, which is one MCLK cycle (1 J..LS @ 1 MHz). The time devi­
ations of the system clock generator do not accumulate, but get smaller with 
the next ACLK period. Therefore, the overall error tends-to move toward zero 
for a longer time period. The system clock generator, with its output frequency 
fsystem (MCLK),ls therefore usable for precise time measurements like a nor­
mal crystal oscillator. 
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6.6 The RESET Function 

The RESET functions of the MSP430 family are described in detail below. 
Many problems can be avoided if the RESET functions are completely under­
stood. Normally, the internal RESET hardware, together with the watchdog 
timer, avoids these problems. Under certain circumstances, however, addi­
tional external hardware is necessary. Several methods are described. 

6.6.1 Description of the MSP430 RESET Function 

The MSP430 generates two different internal RESET signals: 

o The power-on reset signal (POR). 

o The power-up clear signal (PUC). 

These two signals are not available externally - they are used only internally 
(on-chip). Figure 6-64 gives a simplified overview of the RESET function. The 
numbers at the gate inputs refer to the signals described in sections 6.6.1 .1 
and 6.6.1.2. 

Vee 

POR Detect 
Set Q PORn 

Reset 

RST/NMI _~-------<l 

U 

Watchdog Selected (WDTCTL.4) 
watchdog Overflow 

Watchdog Flag 

Security Violation 

r---;=====+;r-~S~ '----_ .... 

Figure 6-64. Simplified MSP430 RESET Circuitry 

! 

Note: 

The power on detection circuit is not a supply voltage supervisor. Control of 
the supply voltage is normally performed by linear circuits. Stable supply 
voltage to the MSP430 must be maintained at all times, including when it is 
in low power mode 3 and 4. 
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6.6.1.1 The Power-On Reset Signal 

The power-on reset signal, POR, is caused by two completely different exter­
nal events: 

o The power-on detection circuitry detects the rise of the supply voltage, 
Vcc (power-on signal). 

o The RST/NMI terminal is resetto VSS and setto Vcc afterward. This is the 
case only if the reset terminal is switched to the RESET function (default 
after power-on) and not to the NMI function. The RESET function is used 
if WDTCTL.5 = O. 

(NMI stands for non maskable interrupt, an external interrupt inputthat cannot 
be disabled by the interrupt enable bit (GIE) in the status register (SR). Each 
interrupt event will request an interrupt. The NMI function Is used if WDTCTL.5 
= 1). 

6.6.1.2 The Power-Up Clear Signal 

The power-up clear signal, PUC, can be caused by several events: 

o The power-on detection circuitry detects the rise of the supply voltage 
(Vce). This event also causes the POR signal. 

o The RST/NMI terminal is reset to VSS and then set to Vec afterward (see 
above). This event also causes the POR signal. 

o The expiring of the Watchdog Tmer if programmed to the watchdog mode 
(WDTCTL.4 = 0). The watchdog function is always active after PUC and 
POR. 

o The use of an invalid password for the writing to the watchdog control word 
WDTCTL (security violation). This reset generation is independent of the 
watchdog function - it also occurs if the watchdog is used in timer mode 
(WDTCTL.4 = 1) . 

6.6.1.3 Common Operations for Power-Up and Power-On Reset 
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If one of the events described above occurs, the following operations are 
started: 

o The digital 110 ports (PortO to Port4) are set to the input direction. 

o The 1/0 flags are set to 0 as discussed in the description of the peripherals. 

o The address contained in the vector at address OFFFEh is written into the 
Program Counter PC (software start address). 
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o The Status Register SR of the CPU is reset to O. This means: 

• The CPU is set to the active mode. 

• The maskable interrupts are disabled by the reset GIE-bit (SR.4). 

• The loop control for the system clock generator is switched on (the 
FLL is active). 

• The system clock generator is set to an MCLK frequency of 1 MHz @ 
fACLK = 32.768 kHz. 

o The digitally controlled oscillator (DCO) in the system clock generator 
(FLL for MCLK) is set to its lowest output frequency (DCO tap 0). The rea­
son for this is to also include the possible malfunction of the system clock 
generator. Otherwise the erroneous FLL frequency is also active during 
the restoring phase of the system functionality with a fatal effect: the sys­
tem cannot come up correctly. 

o The RST/NMI terminal is configured to the RESET function. 

o The Watchdog Timer is configured as a watchdog driven by the system 
clock MCLK. 

o The CPU starts operation althe address written into the Program Counter 
(from address OFFFEh) after the RST/NMI terminal.is set to Vee voltage. 

6.6.1.4 Differences Between Power-Up Reset and Power-On Reset 

The few differences between the two reset signals are detailed below. 

6.6.1.4.1 Peculiar to The Power-On Reset Signal 

o The power-on reset signal (POR) also generates the PUC Signal. 

o The power-on reset signal sets (1) or resets (0) the peripheral bits en­
closed in round brackets (see Architecture User's Guide). These bits (all 
ofthe peripheral bits ofthe 16-8it Timer_A, for example) are not influenced 
by the PUC signal. For example, rw-(O) means a readable and writable 
peripheral bit that is set to 0 by the POR signal only, but not by the PUC 
Signal. 

The reason is that some functions may not be modified by watchdog events. 
These functions are mostly controlled by software. 

6.6.1.4.2 Peculiar to The Power-Up Clear Signal 

o The power-up clear signal (PUC) does not also generate the POR signal. 
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o The power-up clear signal (PUC) sets or resets the peripheral bits not en­
closed in round brackets (see Architecture User's Guide). For example, 
rw-{) means a readable and writable bit that is set to 0 by the POR and 
PUC signals. 

6.6.1.5 The RSTINMI Termlnsl Hardware 
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Some important facts that need to be considered when using the MSP430 
RST/NMI terminal: 

o The RST/NMI terminal does not have a pulldown or pullup resistor. The 
user must ensure a stable DVee or Vee voltage level atthe RST INMI ter­
minal during normal operation. Otherwise, hum or noise will generate arbi­
trary system resets if the terminal is left unconnected (floating). 

o The RST/NMI terminal is an input pin only. No RESET signal is output if 
an internal RESET occurs (by a watchdog overflow, for example). If exter­
nal devices must also be reset, then two possibilities exist (see Figure 
6-65, right side): 

• An o-output is used. This output is set and reset by a short software 
routine during the initialization phase following the RESET signal. The 
state of an O-output is not defined after the power up. 

• An 1/0 terminal (one of PortO to Port4) or a TP terminal is used. This 
teoninal is connected to V 88 (DV 88) with a resistor (=1 0 ka). While the 
RESET signal is active, the pin is switched to the input direction 
(compared to the HI-Z state) and the resistor pulls down the 1I0termi­
nat This low signal resets all external devices Immediately. The sub­
sequent initialization software switches the terminal to an active high 
Signal. The external RESET signal is terminated. (A positive RESET 
signal can be generated in the same way. The resistor is connected to 
the supply voltage Vee, the initialization software outputs an active 
low signal.) 

o The power-on detection circuitry is only able to detect a new, slow rise of 
the supply voltage (V eel after a power fail, if V ce falls below a defined volt­
age; VeCmln. If this cannot be guaranteed, external hardware is recom­
mended. See the next section for the details of this hardware. 

o To guarantee a successful RESET, the low signal at the RST/NMI terminal 
needs a minimum length of time (treset). This minimum time is 2 J.I.S. 
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PUC-Signal 

Vee PO.x,TP.y 

Rrst -by-' 
PO.y,TP.z 

lJ' RST/NMI 

MSP430 

O.x SOftware Signal 

v .. 

Figure 6-65. Generation of RESET-Signals for External Peripherals 

6.6.2 RESET With the Internal Hardware, Including the Watchdog 

6.6.2.1 Restrictions 

The internal power-on detection hardware of the MSP430 allows very reliable 
initializations for the complete system. If, due to special circumstances, this 
normal process fails, the watchdog (which is completely different from that in 
most other microcomputer systems in that it is active after power on) resets 
the MSP430 once mor.e. 

The oscillator fault flag OFIFG is set as long as the system clock frequency 
MCLK is outside of the frequency limits. The flag information is set by the FLL 
hardware - if the DCO reaches its frequency limits then the flag OFIFG is set 
(IFG1.1 = 1). This flag must be reset by software. 

Note: 

The oscillator fault interrupt uses the same interrupt vector (OFFFCh) as the 
NMI interrupt. This means that the interrupt handler first has to check the 
cause ofthe interrupt ifthe NMI function is also used. This is possible by test­
ing of the OFIFG flag (IFG1.1) or by testing the NMI flag. (IFG1.4). 

The frequency limits of the digitally controlled oscillator are reached if the 
system clock frequency integrator register SCFI1 contains 0 or:2: OEOh (cor­
responds to DCO taps 0 or :2: 28). See the Architecture User's Guide. 
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6.6.2.2 Start-Up of the Crystal 

The ultra low power design used for the crystal oscillator ofthe MSP430 results 
in a relatively long time before it reaches oscillating stability. This may take up 
to four seconds. Until the crystal oscillator has reached a stable ACLK frequen­
cy (32 kHz), the digitally controlled oscillator (DCO) of the system clock gener­
ator remains at its lowest frequency (see appropriate data sheet). This is not 
a problem for most of the MSP430 applications. The crystal oscillator is 
switched on after power on, and runs continuously with no off periods. 

The tap used is defined by the five most significant bits of the FLL register 
SCFI1 at address 051 h. The actual value of register SCFI1 can be stored to 
provide quick return to the former system clock frequency (MCLK) in case of 
a RESET. The stored value needs to be checked, otherwise'the value that 
caused an oscillator fault is restored again and again, which results in a system 
hangup. 

6.6.3 . Reliable RESET With Slowly Rising Power Supplies 

To get reliable RESET conditions with power supplies that exhibit very slowly 
increasing voltages (A V/At), or with voltage dropouts that do not reach the low­
erthreshold voltage (V min) ofthe POR detection circuitry (approximately 0.4V, 
see data sheet), some external hardware is recommended. Some possibilities 
are shown in this chapter. 

! 

Note: 

No call for emergency tasks is possible with all the solutions shown in this 
section. The RESET signal goes low without any warning to the software. If 
it is necessary to save important RAM contents in an external EEPROM and 
to execute defined emergency tasks before the RESET signal goes active, 
then the solutions shown in the section Battery Check and Power Fail Detec­
tion should be considered. Voltage supervision is performed at the regulator 
input and signals the loss of the supply voltage via the RST/NMI terminal 
switched to the NMI function. This early warning allows the execution of 
emergency tasks before power fails completely. 

6.6.3.1 RESET With B Switch 
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This is the most simple RESET hardware for the MSP430. It Is normally used 
if the battery is soldered into the system and the calibration constants reside 
in the RAM. But this solution may also be used for all other supply systems. 
If calibration constants are stored In the RAM, then a check at the start of the 
initialization routine is necessary if a Warmstart (system is calibrated) or a 
Coldstart (RAM is nonvalid) occurred. This distinction is normally made with 
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special constants written to the RAM during the calibration process. These 
'constants use bit patterns that are relatively improbable (e.g. 05AFOh) due to 
their mix of Os and 1 s. See section Software Applications for more details. 

To reset the MSP430, the switch (Figure 6-66) is pressed for a moment and 
then released. The Vss potential at the RSTINMI terminal initiates the POR 
and the PUC signals. 

RSTINMI 

MSNa0C323 

PO.x.TP.y 10----.... VOs 

OV 
An 1---- Analog Inputs '-----Iv .. 

Figure 6-66. Battery-Powered System With RESET Switch 

6.6.3.2 PNP Transistor With Zener Diode 

This simple hardware (Figure 6-67) may be used if the supply voltage of the 
MSP430 is delivered from a higher system voltage, Vsys, of 6 V to 15 V. The 
PNP transistor, together with the 3.3-V or 4.5-V Zener diode, delivers the sup­
ply voltage and the RESET signal for the MSP430 system. The fast rise of the 
supply voltage Vee provides a reliable power up. 

----!-...... ---------- Vsys+5V .• +l0V 

t-I ... ~-,v",cc::.........t oVcc 

+---IAVcc 

MSP430C3xx 

$Vee 

i 
Voltage 

vz-l----.:Ir'=-F==v=~==1~~-
+---1 RST/NMI 

AVss ov •• 

--~~~------4---~-------W 

Figure 6-67. Simple RESET Circuit With a PNP Transistor 
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6.6.3.3 Operational Amplifier With Reference Diode 

VC 
+0--...... --1 

Cch 

Supply from: 
Accumulator 
Mains RectHier 
Capacitor Supply 

With an operational amplifier used as a comparator (an unused operational 
amplifier in a dual or quad package, for example) a simple and reliable RESET 
circuit can be built. Figure 6-68 illustrates this solution. During the start-up 
phase of the supply voltage, the voltage of the nonconducting reference diode 
is higher than the divided voltage at the noninverting input of the comparator. 
This causes the output voltage of the comparator to be low and the MSP430 
is held in the reset state. When the supply voltage reaches the minimum volt­
age, V CCmin, (defined by Vz, R2, and R3) then the comparator outputs a high 
signal and the MSP430 starts with its program. The value of VCCmin is: 

Vee .. i• = Vref x C; + 1) 

vJ Spike Voltage Orop-out 

t t 
Powerfail 

t 
Vcc 

VCCmin 

RST/NMI 

MSP430 

Vss ov 

I undefined 

Figure 6-68. RESET Circuit With a Comparator and a Reference Diode 
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For reliable results, the operational amplifier used should be able to operate 
with relatively small supply voltages (approximately 1 V). 

For the calculation of the resistor values for R2 and R3, see the formulas below 
for figure 6-69. Resistor R4 is simply set to infinite (00) to getthe values for this 
solution. 

Circuitry similar to above is used in Figure 6-69. The only difference is the 
Schmitt trigger characteristic of the RESET circuitry - it rejects false RESET 
signals caused by hum, nOise, and spikes. Two independent voltage threshold 
voltages, VTH+ and VTH-, can be calculated with the reference voltage Vref 
and the three resistors R2, R3, and R4. The formulas follow below. 



VC 
+<>-_--1 

Cch 

Supply from: 
Accumulator 
Mains Rectifier 
Capacnor Supply 

Vee 

RSTINMI 

MSP430 

v.s 
OV 
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vJ Spike VoHage Drop-out 

+ + 
Powerfail 

+ 
V1h+ 

vth-

Figure ~9. RESET Circuit With a Schmitt Trigger and a Reference Diode 

All of the resistors (R2, R3, and R4) are relative to a calculated resistor Ri, 
which is the resulting resistance of the paralleled resistors R2 and R3. The val­
ue of Ri depends on the input offset current (Ioff) of the operational amplifier 
and the maximum tolerable error voltage (Ue) caused by loff. The maximum 
value of Ri is calculated first: 

Ri < 
Ue 

Ioff 

With the calculated value of Ri, the three resistors (R2, R3, and R4) are calcu­
lated next: 

R4 = R·X( VTH+XVm- 1) 
l Vref X (vTH+-VTH-) 
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R2 = RiX( 1 ) 
Vref X( Ri + 1\ 
V77i+ R4 ) 

Example 6-57. RESET Circuit" 
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R4 

A RESET circuit similar to that shown in Figure 6-69 is built with the following 
behavior: 

RST/NMI is Vss for Vee <2.5 V 

RSTINMI is Vee for Vee> 3 V 

Vref= 1.25 V 

loffmax = ± 200 nA (maximum offset current of the inverting input) 

Maximum voltage error due to loff: ± 150 mV 

Ri < 150mV ~ Ri < 0.75Mo. 
200nA 

0.75Mo. X( 3V x 2.5V ;\ 
1.25V x (3V -2.5V) J 9Mo. 

1 . 
R3 = O.75Mo. xf-) = 137Mo. \1 _ 1.25V X (0.75Mo. +J\ 

3V 9Mo.) 

R2 = 0.75Mo. x ( 1 ) = 1.67Mo. 
1.25V x (0.75Mo. + 1\ 

3V 9Mn ') 

Figure 6-70 illustrates the connection of an operational amplifier with an out­
put voltage higher than Vee (here the unregulated voltage V cl to the MSP430 
RSTINMI terminal. The diode protects the RST/NMI terminal and resistor Rrst 
provides the positive voltage. 



Non-regulated Voltage 

VoHage Regulator 
+3V >+----.......-'''-'-1 Vee 

Rrst 
Do-V ___ ";"'-I-4~~---'_-+_-I Vss 
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MSP<I30 

Supply VoHage Supervisor >...-*..-..... =-1 RSTINMI 

\/lei AD 

Figure 6-70. RESET Generation With a Comparator 

6.6.3.4 Supply Voltage Supervisors 

The use of a supply voltage supervisor is one of the best methods of getting 
a reliable RESET signal. All necessary parts such as reference, program­
mable delay, output stage, and so on are integrated in a single IC. Only a few 
external components are necessary. Two different solutions are explained: 

o The TL770x supply voltage supervisor. 

o The TP3750 supply voltage supervisor and regulator. This IC integrates 
two functions: supply voltage regulation, and supply voltage supervision. 

6.6.3.4.1 TL7701 Supply Voltage Supervisor 

The schematic for a supervised MSP430 is shown In Figure 6-71. The 
TLC7701 is programmed with the resistors R1 and R2 to reset the MSP430 
when the output voltage of the 5-V regulator falls below VCCmin (2.5 V). 

+5V 
Vee 

Vout 
RSTINMI 

MSP<I3O 

Vas 
DV 

Figure 6-71. Power Fail Detection With a Supply Voltage Supervisor 
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Figure 6-72 shows the different system states of the voltage supervisor solu­
tion. The voltage vee is drawn in a simplified manner for a better understand­
ing of the system function. The different System States (shown below in Figure 
6-72) are: 

o Upto a certain voltage, the output of the TLC7701 is undefined due to the 
too-low supply voltage. After this voltage is reached, the TLC7701 output 
is low until the voltage (VCCmin - defined by R1 and R2) is reached. The 
RST/NMI input of the MSP430 is a reset input after the power up, so the 
MSP430 CPU is inactive. 

o After the reaching of the voltage VCCmin (and the expiration of the delay 
time, trc), the MSP430 begins operation. 

o If the supply voltage (Vee) drops below VCCmin due to a voltage dropout, 
the RSTINMI input is pulled low, stopping the CPU. 

o After the return of Vee and the expiration of the delay time trc, the RSTI 
NMI input is pulled high again and the CPU starts at the address contained 
in the reset vector (OFFFEh). 

o If a real power fail occurs, the RSTINMI input is held low until the voltage 
region with undefined output is reached. This voltage is so low that CPU 
operation is not possible. 

Vottage Drop-out Powertail RESET 

t t t 

Vcc",in +----,tL------~t1_--------=""k:__---

4 5 

Figure 6-72. System Voltages With a Power Supply Supervisor 

The threshold voltage VCCmin of the TLC7701 is: 
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Vre! 
R2 
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VCCmin = Vref X (:~ +1) 
Voltage of the internal voltage reference of the TLC7701: + 1.1 V 
Resistor from SENSE input to GND. Nominal value: 100 kO to 200 kO 

The delay trc after the return of Ve is defined by the capacitor Ct shown in Fig­
ure 6-71. If this delay is not desired, capacitor Ct is omitted. The formula for 
the delay time trc is: 

trc = 21kO. x Ct 

6.6.3.4.2 TP3750 Supply Voltage Supervisor and Regulator 

Figure 6-73 illustrates the use of a TPS7350 (regulator plus voltage supervi­
sor), ensuring a highly reliable system initialization. The TPS7350 also allows 
the use of the RSTINMI terminal of the MSP430 as described in section Battery 
Check and Power Fail Detection. The RST/NMI terminal is used during normal 
program operation as an NMI (non maskable interrupt) input. This gives the 
possibility to save important data in an external EEPROM in case of power fail. 
This is possible because the PG terminal outputs a negative signal starting at 
Vee = 4.75 V, which allows a large number of activities until VCCmin of the 
MSP430 (2.5 V) is reached. 

Diode D, together with series resistor Rvand capacitor Cb allow the MSP430 
system to bridge short voltage dropouts or disturbances of the supply voltage 
V sys' The diode (D) prevents the rapid discharge of Cb by the other peripherals 
connected to V sys and increases the possible active time for the MSP430 after 
loss of V sys . 

...... --------------- vsys (+7Vto+24V) 

PO.6 

1-..... +--1 RSTINMI 
PO.O I~":;;;;::'-_~ 

MSP430 

Vss 

OV 

Figure 6-73. Power Supply From Other DC Voltages With a Voltage Regulator/Supervisor 
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6.6.4 Conclusion 
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It is an old truth that many difficulties are caused by the implementation of the 
RESET sections of projects. The hardware of the MSP430 family is designed 
to minimize these difficulties as much as possible without special consider­
ations or external components. But when special circumstances exceed the 
builtin capabilities of the MSP430, the solutions shown in this section may help 
to significantly simplify the development phase of a project. 
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6.7 The Universal Timer/Port Module 

The Universal Timer/Port module consists of two independent parts that work 
together for the measurement of resistors or voltages. 

o Counter With Controller - two 8-bit counters, which may be connected 
in series to get a 16-bit counter. In addition, there is a controller, a 
. comparator input CMPI, and a normal input CIN. 

o Input/Output Port - five outputs (TP.O ... TP.4) that can be switched to 
Hi-Z and an I/O port, TP.5 

Three different inputs are available with the module: 

o The CIN input have a Schmitt trigger characteristic. It is normally used for 
resistor measurements. The threshold voltages are the same as for the 
other inputs (PO.x). 

o The comparator input CMPI-which is used for the voltage measurement 
- has a threshold voltage Vref(com) that is nominally 0.25 x Vcc with small 
tolerances. The threshold voltage (Vref(com)) itself, is temperature inde­
pendent. The input CMPI shares a terminal with an LCD select line and 
must be switched by software to the input function. This input function is 
valid until the next PUC. 

o The I/O terminal TP.5, which may be used as a clock input or an enable 
input. 

Figure 6-74 shows the block diagram of the Universal Timer/Port module 
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2 x 8-Bit Counter or 1 x 18-B1tCounter with Clock Frequency and Enable Control 

ItO Port Counter with Controller Control Registers 

Figure 6-74. Block Diagram of the Universal Timer/Port Module 

6.7.1 Universal TimerlPort Used as an Analog-ta-Dlgltal Converter 

Applications Of the Universal Timer/Port Module as an ADC are described in 
section Analog-to-Digital Converters. This section shows other applications, 
such as simple timers and similar functions. 

6.7.2 Universal TlmerlPort Used as a Timer 
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MSP430 family members that do not contain the Timer_A are equipped with 
at leastthe Universal Timer/Port module, a combination 01 two 8-bit timers with 
a common control unit. The Universal Timer/Port module is primarily regarded 
as an ADC, but It is also able to handle timing tasks that are not excessively 
complex. To get an interrupt request after a certain number of MCLK or ACLK 
cycles, it is only necessary to load the negated number of clocks into the count 
registers TPCNT1 and TPCNT2. When the 16-blt counter (used with the 
MCLK) or one of the 8-bit counters (used with the ACLK) overflows to 0, the 
RC2FG flag (or RC1 FG Ilag) is set and an interrupt is requested. This method 
allows precise timings for TRIAC control or PWM control in the range of 128 Hz 
to 4000 Hz (repetition rate). 

The Universal Timer/Port module can be used for: 



Event Count 
ACLK 0 1 
MCLK 1 0 
MCLK 1 1 
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o Low frequency pulse width modulation: up to two independent PWM-out­
puts. 

o Measurement of the MCLK frequency e.g. if used without crystal (see sec­
tion Use Without Crysta~ 

o Triggering: time measurement starting with the zero crossing of the mains 
voltage 

o Other time measurements 

Carry: 
Set RC2FG-Flag 

LSB Data MSBDa" 

Figure 6-75. Block Diagram of the Universal Timer/Port Module (16-Bit Timer Mode) 

6.7.2.1 Continuous Mode 

Read-out of 

MOV.B 

MOV.B 

CMP.B 

JHS 

The Universal Timer/Port module can be used like the Timer_A in continuous 
mode, allowing it to measure time differences. The 16-bit value is read out and 
corrected if an overflow to 0 occurred between the readings of the low and high 
bytes. The input frequency may be the ACLK or the MCLK. 

the UTP!M running as a 1S-bit timer 

&TPCNT1,RS Read LSBs OOxx 

&TPCNT2,R6 Read MSBs OOyy 

RS,&TPCNT1 TPCNT1 still >= RS? 

L$1 Yes, no overflow 

Transition from OFFh to 0 occured, read actual MSB; 

it now has the correct (value + 1). 

L$1 

MOV.B 

DEC.B 

SWPB 

ADD 

&TPCNT2,R6 

R6 

R6 

RS,RS 

Read actual MSBs OOyy 

MSB - 1 is correct 

MSBs to high byte yyOO 

Build 1S-bit value in RS yyxx 
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6.7.2.2 Pulse Width Modulation Mode 

Figure 6-76 shows the generation of low frequency PWM with the Universal 
Timer/Port module. If the ACLK is used for the timing, then two PWM outputs 
with up to 256 Hz are possible. The software is-described in the paragraph 
PWM Digital-to-Analog Converter with the Universal Timer/Port Module of 
section Digital-ta-Analog Converters. 

OFFh )----:;;r---.:"j----:*--7i-----

4~---r--~---_r-~~----

Oh+------4----+-------+---r---------

Output 

RC2FG RC2FG RC2FG RC2FG Intenupts 

Figure 6-76. Low Frequency PWM Timing Generated With the Universal Timer/Port 
Module . 
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6.8 The Crystal Buffer Output 

32kHz 

Xin Xout 

XBUF 

AI 

On 

MSP43OC32x 

AO 
PortO 

Vss Vee 

This is a relatively simple module, but it can be very helpful. It allows the use 
of frequencies generated by the MSP430 for external modules without any in­
fluence to the accuracy of the crystal. Figure 6-77 shows an application with 
two MSP430s. The right side MSP430 uses the buffered crystal output - @ 
32 kHz - of the left side MSP430. This allows both to be run with the accuracy 
of a crystal controlled oscillator, but only one crystal is necessary. The right 
side MSP430 uses the XBUF terminal for the output of the MCLK frequency 
to drive an external ASIC. 

32kHz 10 Peripherals 

32kHz 
Xin XBUF 

3.2MHz ClK ASIC 

Xoul 

Data 16 Ports Peripherals 
Port2 .. 3 

MSP430 

ontral 8 COM 3"'561.83"'56 PortO 
SEl 

__ [§E] 

Vss 

Figure 6-77. Two MSP430sRunning From the Same Crystal 

Only a single instruction is needed to implement the output of an internal fre­
quency at the XBUF terminal: 

Hardware definitions for the Crystal Buffer 

CBCTL .equ 053h Crystal Buffer Control Byte 

CBE .equ OOlh Enable XBUF output 

CBACLK .equ OOOh ACLK is output at XBUF 

CBACLK2 .equ 002h ACLK/2 is output at XBUF 

CBACLK4 .equ 004h ACLK/4 is output at XBUF 

CBMCLK .equ 006h MCLK is output at XBUF 

; Output the crystal frequency ACLK at pin XBUF 
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MOY.B #CBACLK+CBE,&CBCTL ; ACLK to XBUF pin 

Output the half crystal frequency ACLK/2 at pin XBUF 

MOY.B #CBACLK2+CBE,&CBCTL ; ACLK/2 to XBUF pin 

Output the crystal frequency ACLK divided by four at pin.XBUF 

MOY.B #CBACLK4+CBE,&CBCTL ACLK/4 to XBUF pin 

output the MCLK frequency at pin XBUF 

MOV.B #CBMCLK+CBE,&CBCTL ; MCLK to XBUF pin 

As shown with the previous definitions, four different frequencies can be output 
at terminal XBUF. With the CBE bit, these four frequencies can be enabled or 
disabled. The four possible frequencies are: 

0 MCLK The frequency of the system clock generator (DCO): 500 kHz 
t04MHz 

0 ACLK The frequency of the crystal (normally 32768 Hz) 

0 ACLKl2 The halved crystal frequency (normally 16384 Hz) 

0 ACLKl4 The crystal frequency divided by 4 (normally 8192 Hz) , 

The crystal-buffer control byte CBCTL is a write-only byte. This means the rull 
information must always be written to it. The following code sequence provides 
an output of ACLK and not -as it is intended - to outputthe MCLK frequency: 

Switch off and on the MCLK at pin XBUF 
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MOV.B 

BIC.B 

BIS.B 

MOY.B 

#CBMCLK+CBE,&CBCTL ; MCLK to XBUF pin 

#CBE,&CBCTL 

#CBE,&CBCTL 

MCLK off 

WRONG: ACLK is output NOT MCLK 

#CBMCLK+CBE,&CBCTL ; CORRECT: MCLK on again 
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Figure 6-78 shows an application with a DC/DC converter that is controlled 
by the output frequency of the XBUF terminal. The converter is driven with the 
frequency that fits best the actual status (8.192 kHz, 16.384 kHz or 
32.768 kHz). The sequence starts with the high output frequency and steps 
down after the buildup of the voltage to the 8 kHz frequency. No software over­
head is necessary for the generation of this frequency. 

32kHz +6V 

XIN XOUT tJ RF-Antenna 
3V/1.6uA L --Vet; Voltage Vee 

Regul. HF-
CIN Modul 

TP.O 

TP.1 
Vss GND 

PO.O 
Modulation (Data) Mod. 

TP.2 XBUF 
32kHz/16kHz/8kHz 

MSP430C31x 

PO.4 COM0-3 123'-1561.8 
PO.3 SEL __ ITempl 
PO.112 

LCD 

Figure 6-78. The Crystal Buffer Output Used for a DC/DC Converter 
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6.9 The USART Module 
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The universal synchronous asynchronous receiveltransmit communication In­
terface (USART) - whose block diagram is shown in figure 6-79 - can work 
in two different modes: the asynchronous mode and the synchronous mode. 
This section describes the software routines usable for the asynchronous 
mode (SCI, RS232). 

I 

Note: 

It is recommended to also consult the data book MSP430 Family Architec­
ture Guide and Module Library. The hardware-relatef.! information given 
there is very valuable and complements the information given in this section. 

The examples and the hardware definitions shown use the addresses of the 
MSP430x33x. Future MSP430 family members may have different hard­
ware addresses - especially for the I/O ports used. 

The hardware features of the USART module substantially exceed the exam­
ples shown in this section. To get the USART running quickly, the UART mode 
is recommended, with or without the interrupt capability. The most often used 
features are included in the examples given. 

Figure 6-79 shows the block diagram of the MSP430 USART module. 
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S NC 

I 0 URXD 
I 

I STE 
I ------<J 

UTXD 

SIMO 

UCLK 
Control Registers 

Figure 6-79. The MSP430 Family USART Hardware 

6.9.1 Introduction 

This chapter gives a short overview to the use of the MSP430 universal syn­
chronous, asynchronous receivel1ransmit communication interface (USART) 
as an RS232 interface (also called serial controller interface, SCI). Tested soft­
ware examples with and without the use of the interrupt capability are given 
for the transmission and the reception of UART signals (universal asynchro­
nous receivel1ransmit). Full duplex mode is used for all examples running in 
the active mode and the low power mode 3 (LPM3). 

If the USART is switched to the UART mode - made by setting the SYNC bit 
UCTL.2 to 0 - then the hardware of figure 6-79 reduces to the parts used by 
the UART as shown in figure HO. 
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-RXE 

~Isteno I 
f T.~~~<l 

URXD 
1 

UCLKS 

IUl_1IIIIIl 

UTXD 

UCLK 
Control Registers 

Figure 6-80. The USART Switched to the UART Mode 

6.9.1.1 Definitions Used With the Application Examples 

The abbreviations used for the hardware definitions are consistent with the 
MSP430 Architecture User's Guide, except for the stop bit definition (SP), 
which Is a predefined symbol of the MSP430 assembler for the system stack 
pointerSP. 

HARDWARE DEFINITIONS 

UCTL .equ 

SWRST .equ 

SYNC .equ 

CHAR .equ 

SP_ .equ 

6-290 

070h 

001h 

004h 

010h 

020h 

USART Control Register 

1: Software Reset 0: Run 

1: UART Mode 

1: 8 Data Bits 

1: 2 stop Bits 

0: SCI Mode 

0: 7 Data Bits 

0: 1 stop Bit 



PEV 

PENA 

UTCTL 

TXEPT 

URXSE 

SSELO 

SSEL1 

URCTL 

RXERR 

URXEIE 

BRK 

OE 

PE 

FE 

UMCTL 

UBRO 

UBR1 

URXBUF 

UTXBUF 

IFG2 

URXIFG 

UTXIFG 

IE2 

URXIE 

UTXIE 

ME2 

URXE 

UTXE 

P4SEL 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

.equ 

040h 

OSOh 

071h 

001h 

OOSh 

010h 

020h 

072h 

OOlh 

OOSh 

OlOh 

020h 

040h 

oaOh 

073h 

074h 

07Sh 

076h 

077h 

003h 

001h 

002h 

001h 

OOlh 

002h 

OOSh 

001h 

002h 

01Fh 

The USART Module 

1: Even Parity 0: Odd Parity 

1: Parity enabled 0: Parity dis. 

Transmit Control Register 

1: Transmitter empty 

Clock Selection 0: Ext. Clock 

1: ACLK 2,3: MCLK 

Receive Control Register 

1: Receive Error 0: No Error 

1: all Char. 0: only w/o Error 

1: Break detected 0: ok 

1: Overrun Error 

1: Parity Error 

1: Frame Error 

0: ok 

0: ok 

0: ok 

Modulation Control Reg. m7 .. mO 

Baud Rate Register 0 

Baud Rate Register 1 

Receive Buffer 

Transmit Buffer 

SFRs: Flags 

Receive Flag IFG2.0 

Transmit Flag IFG2.1 

SFRs: Interrupt Enable Bits 

Receive Intrpt Enable Bit IE2.0 

Transmit Intrpt Enable Bit IE2.1 

SFRs: Mode Enable Bits 

Receiver Module Enable Bit ME2.0 

Transmitter Mod. Enable Bit ME2.1 

Port4 Sel. Reg. (I/O <-> USART) 
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URXD .equ 

UTXD .equ 

SCGl .equ 

SCGO .equ 

CPUoff .equ 

GIE .equ 

SCFQCTL .equ 

SCFIO .equ 

FN_2 .equ 

FN_3 .equ 

FN_4 .equ 

OSOh 

040h 

OSOh 

040h 

OlOh 

OOSh 

052h 

050h 

004h 

OOSh 

OlOh 

Receive Input P4.7 

Transmit Output P4.6 

Low Power Mode bit 1 

Low Power Mode bit 0 

Switches CPU off 

General Interrupt Enable Bit 

FLL multiplier and M bit 

FLL current switches 

Switch for 2 MHz 

Switch for 3 MHz 

Switch for 4 MHz 

6.9.1.2 MSP430 UART Attributes 
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A short overview to the USART running in the UART mode is given below: 

o 7-bit and 8-bit data length is selectable 

o Error detection for the receive path: 

• Frame error. The stop bits have space potential. 

• Parity error. Parity is enabled and the parity bit has the wrong value. 

• Overrun error. The next character is read in before the last one is read 
out by the software. 

• Break detect. The URXD terminal has low potential for more than 10 
bits 

o Baud rate generation possible also from 32 kHz crystal due to the modula­
tion register 

o Interrupt-driven transmit and receive functions 

o Two independent interrupt vectors. one for transmit and one for receive 

o Full functionality also during LPM3 

o End-of-frame flag usable with interrupt or polling 



6.9.1.3 Data Format 

Name 

Mark 

Space 

The USART Module 

The RS232 data format is used. Figure 6-81 shows how this format is seen 
at the MSP430 ports (URXD and UTXD) and Figure 6-82 how it is defined on 
the transmission line. The format shown in Figures 6-81 and 6-82 is: 

o Seven data bits. The least significant bit follows the start bit 

o Parity enabled. The parity bit follows the most significant bit of the data 

o No address bit. This is the normal case 

o Two stop bits 

Data 

SlOP 
BIIs 

Signal Level 

Vee 

OV 

Figure 6-81. The RS232 Format (Levels at the MSP430) 

Name 

The signal on the transmission line has the inverted state as seen at the 
MSP430 ports and different voltage potentials. Figure 6-82 shows this. 

Data 

Slop 
BIIs 

I 

Signal Level 

>+3V 

c-3V 

Figure 6-82. The RS232 Format (Levels on the Transmission Line) 

6.9.1.4 UART Hardware Registers 

The USART is controlled by seven control registers and one read-only register. 
All are 8-bit registers and therefore should be accessed only with byte instruc-
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UCTl 

070h 

UTCTL 

071 
h 

URCTL 

072h 

tions. Figure 6-83 gives an overview to these eight registers including the 
names, assembler mnemonics, hardware addresses and the initial states. The 
register and bit (:Iefinitions are contained in Section 6.9.1. 

Register Name Mnemonic Register Access 
USAIITConInII Regleler UCTL _no 
Tranllllll eon ..... Reg_ UTCTL _no 
_01 .. COntrol Regleler URCTL Reod/Wrno 
Modulalton COntrol Reg. UMCTL --Baud _ Regl_ 0 UBRO _no 
Baud RateReg"'r I UBRI _rite 
ReceIve Butrer URXBUF _001, 
Tranarnft B_ UTXBUF -
1 PENA 1 PEV 1 SP 1 CHAR 1..-1 SYNC 1 MM ISWRSTI 
rw-O rw-O rw-O rw-O rw-o tw-o rw-o rw-l 

I"""".IO .. L 1 SSEL ISSELO IURXSEITXWakeI""-ITXEPT1 
rw-O rw-O rw-01 rw-D rw-o rw-o rw-o rw-1 

UBRO 
074h 

UBRI 

07511 

UMCTL 

07311 

Address Initial State 
07Qh 8eobelow 
071h S8ebeloW 
072h 8eobeloW 
073h unchanged 
074h unchanged 
076h unchanged 
07eh unchanged 
077b uncIIanged 

1 2' 1 2' 1 2' 12' 1 2' 1 221 2' 1 2· 
~ M ~ ~ ~ M M M 

I ,216 I 2'4 ( 2'3 I 2'2 I 2; I 2'0 I 2 8 I 2 8 

M tw M M tw tw M 

Im'I~I~Im4I~I~lm'l~ 1 
M M tw tw tw M tw tw 

URXBUF I ' 
076h . 2 1 2· 1 2' 1 2' 1 2' 1 221 2' 1 2· UTXBUF I ' 

077h . 2 I 2° I 2 5 I 24 1 2' 1 22 1 2' 1 2· 
r r t r IWlWrwrvt M rw rtf rw 

Figure 6-83. USART Control Registers Used for the UART Mode 

6.9.2 Baud Rate Generation 
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To generate the desired baud rate from a relatively high frequency (1 MHz to 
5 MHz) is a simple task. The resulting baud rate error is small due to the large 
integer part of the quotient compared to the truncated fractional part. This 
changes completely if the timebase is a crystal of only 32 kHz. Then the error 
due to the truncated fractional part of the quotient gets large and leads to the 
loss of synchrony at the trailing bits of the frame. The MSP430 USART there­
fore uses a correction to keep the baud rate error small. The modulation regis­
ter, UMCTL, contains 8-bit data to correct the baud rate of the received or 
transmitted UART signal. The bits define how the predivider information con­
tained in the two baud rate registers UBRO and UBR1 is used: 

o A 0 bit in the UMCTL register means that the information contained in 
UBR1/UBRO is used as is. 

o A 1 bit means thatthe 16-bit content of UBR 1/UBRO is incremented by one 
and used with this value. The content of UBR1/UBRO is not changed. 



UCLK ,>--OI...IC~ 

Start ~ 

BRCLK~ 
Counter 

o 

I nI2 In/2-1In12-21 

7 0 7 
...------, 

Compare 0 or 1 

1 0 1 nl2 n/2-1 1 
1 1 n/2 In/2-1In/2-21 
1 1 nI2 In/2-11n12-21 

Start 

The USART Module 

BITCLK 

121110lnl21 
I 1 1 0 1 nl2 InI2-11 
I 1 1 n/2 In/2-1In/2-21 

BITCLK~ ~ I 

.y'~'---I..--IN-T-(n-/2-),-m-=-o- n(even), m=o-1 l1li
1
_II1II

1
1----

Divide by INT(n/2)+m(-1) n (odd) or n(even)+m(c1) 

n(odd)+m(-l) 

Figure 6-84. The Baud Rate Generator 

The LSB (mO) of register UMCTL is used for the start bit, the next bit (m 1) is 
used for the LSB of the data, and so on. After the use of bit m7, the bit se­
quence mO to m7 is used again. See figure 6-85 for an explanation. 

Example 6-58. 4800 Baud from 32 kHz Crystal 

The baud rate of 4800 is needed from a crystal frequency of 32,768Hz. This 
is necessary because the UART also needs to run during the low power mode 
3. With only the ACLK avail!!ble, the theoretical division factor - the truncated 
value is the content of the baud rate register UBR (UBR1/UBRO) - is: 
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FractIon AddItIon 

UBR = 32768 = 6.82667 
4800 

This means the baud rate register, UBR1, (MSBs) is loaded with 0 and the 
UBRO register contains 6. To get a rough value for the 8-bit modulation register, 
UMCTL, the fractional part (0.826667) is multiplied by 8 (the number of bits in 
the register UMCTL): 

UMCTL = 0.82667 x 8 = 6.613 

The rounded result, 7, is the number of 1 s to be placed into the modUlation reg­
ister, UMCTL. The resulting, corrected baud rate with the UMCTL register con­
taining seven 1s is: 

BaudRate 

This results in an average baud rate error of: 

B udR· E 4766.2545-4800 100 
a aterror= x = 

4800 
-0.703% 

To get the bit sequence for the modulation register, UMCTL, that fits best, the 
following algorithm can be used. The fractional part of the theoretical division 
factor is summed eighttimes and if a carry to the integer part occurs, the actual 
m-bit is set. Otherwise it is cleared. An example with the above fraction 
0.82667 follows: 

0.82667 + 0.82667 = 1.65333 
1.65333 + 0.82667 = 2.48000 
2.48000 + 0.82667 = 3.30667 
3.30667 + 0.82667 = 4.13333 
4.13333 + 0.82667 = 4.96000 
4.96000 + 0.82667 = 5.78667 
5.78667 + 0.82667 = 6.61333 
6.61333 + 0.82667 = 7.44000 

Carry to next Integer 
Yes 
Yes 
Yes 
Yes 
No 
Yes 
Yes 
Yes 

UMCTL 
mO 
m1 
m2 
m3 
m4 
m5 
m6 
m7 

Bits 
1 
1 
1 
1 
o 
1 
1 
1 
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The result ofthe calculated bits m7 .•. mO (11101111b) is EFh with seven 1s.ln 
Section 6.9.3.3.2, a software macro (CALC_UMCTL) is contained that uses 
the algorithm shown above. It calculates for every combination of the USART 
clock and the desired baud rate, the optimum value for the modulation register, 
UMCTL. For the above example, the algorithm also finds EFh with its seven 
1s. 
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A second software macro (CALC _ USR) calculates the values for the two USR 
registers. 

Example 6-59. 2400 Baud From 32 kHz ACLK 

Precise 
Timing 

-

-
Rough 

Approxlmatto n 

-
Corrected 

Timing 

UMCTL Bits (8 Dh) 

Start 
Bit 

1UG 

Start 
Bit 
14 

Start 
Bit 
14 

rna 
1 

Figure 6-85 gives an example for a baud rate of 2400 generated with the ACLK 
frequency (32,768 Hz). The data format for figure 6-85 is: 

Eight data bits, parity enabled, no address. bit, two stop bits. Figure 6-85 
shows three different frames: 

o The upper frame is the correct one with a bit length of 13.65333 ACLK 
cycles (32,76812400 = 13.65333) 

o The middle frame uses a rough estimation with 14 ACLK cycles for the bit 
length 

o The lower frame shows a corrected frame using the best fit (60h) for the 
modulation register. 

It can be seen that the approximation with 14 ACLK cycles accumulates an er­
ror of more than 0.3 bit length after the second stop bit. The error of the cor­
rected frame is only 0.011 bit length. The error of the crystal clock is not yet 
included, but it adds to the above errors. 

I 
V co 

LSB MSB Parity Stop 
Bit BIt(s) 

13.15 13.85 13.85 13.85 13.85 13.85 13.85 13.85 13.85 13.85 13.85 
OV 

I I 

LSB MSB Parity Stop 
Bit BIt(s) 

14 14 14 14 14 14 14 14 14 14 14 

-..oJ ~or 
I 

LSB MSB Parity 
Bit 

Stop 
Blt(S) 

13 14 14 13 14 14 13 14 13 14 14 

rnl rn2 rn3 rn4 rn5 rn6 rn7 rna rnl rn2 rn3 
a 1 1 0 1 1 0 1 0 1 1 -~ Error 

Figure 6-85. Baud Rate Correction Function 
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Tables 6-33 and 6-34 contain the average errors (full frame) for the normally 
used baud rates when produced with the described baud rate generation. 

The software examples contain software MACROs that automatically insert 
the correct values for the UBR registers and the modulation register, UMCTL. 
The software MACROs - that do not need ROM or RAM - may be hidden 
in the listing by a .mnolist assembler directive. See Section 6.9.3.3.2. 

6.9.2.1 Baud Rate Generation With the MCLK 
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Table 6-33 shows the optimum values for the UBR and UMCTL registers. The 
UART clock is the MCLK (1,048 MHz). The values for the UMCTL and 
UBR1/UBRO registers are calculated by the software MACROs In Section 
6.9.3.3.2. The crystal error is not included. 

Table 6-33 contains the following columns: 

Baud Rate - The baud rate for the data exchange (transmit and receive use 
the same baud rate) 

Division Factor - The quotient UARTCLKlbaud rate 

UBR11UBRO Content - The truncated 16-bit hexadecimal result of the divi­
sion factor (UARTCLKlbaud rate). The value is calculated by the software 
macro CALC_UBR. The high byte is the UBR1 value, the low byte is the UBRO 
value 

Calculated UMCTL Content - The 8-blt result that fits best for the modula­
tion register. It is calculated by the software macro CALC_UMCTL. 

Used Fraction - The number of 1 s in the Modulation Register divided by 
eight. It is an approximation to the truncated fractional part of the division fac­
tor. 

Mean Error - The resulting error of a complete character caused by the 
approximation to the division factor 
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Table 6-33. Baud Rate Register UBR Content (MCLK = 1,048 MHz) 

BAUD DIVISION UBR1IUBRO CALCULATED UMCTL FRACTION MEAN 
RATE FACTOR CONTENT CONTENT USED ERROR(%) 

110 9532.51 253Ch 55h 0.5 +0.000 

300 3495.25 OOA7h 44h 0.25 0.000 

600 1747.63 06D3h 60h 0.625 +0.000 

1200 873.81 0369h EFh 0.875 '-0.007 

2400 436.91 01B4h FFh 1.000 -0.002 

4800 218.45 OOOAh AAh 0.50 -0.023 

9600 109.23 006Dh 88h 0.25 -o.Q18 

19200 54.61 0036h AOh 0.625 -0.027 

38400 27.31 00lBh 24h 0.25 +0.220 
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6.9.2.2 Baud Rate Generation With the ACLK 

With the relatively low ACLK frequency (32,768 Hz), the modulation register 
UMCTL becomes much more important compared to the normally high MCLK 
frequency used for the UART timing. Table 6-34 shows the optimum values 
for the UBR and UMCTL registers for commonly used baud rates generated 
with the ACLK (32,768 Hz). The table values are calculated by the MACROs 
described in Section 6.9.3.3.2. The crystal is considered to be without frequen­
cy error. The table columns are described in Section 6.9.2.1. 

Table 6-34. Baud Rate Registers UBR Content (ACLK = 32,768 Hz) 

BAUD DIVISION UBR1IUBRO CALCULATED UMCTL FRACTION MEAN 
RATE FACTOR CONTENT CONTENT USED ERROR(%) 

110 297.8909 0129h FFh 1.00 -0.04 

300 109.2267 0060h 88h 0.25 -0.02 

600 54.6133 0036h AOh 0.625 -0.02 

1200 27.3067 001Bh 24h 025 +0.21 

2400 13.6533 ooOOh 60h 0.625 +0.21 

4800 6.8267 0006h EFh 0.875 -0.71 

9600 3.4133 0003h 4Ah 0.375 +1.12 

19200 1.7067 -
38400 0.8533 -
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6.9.3 Software Routines 

The following sections show proven software routines, subroutines, and soft­
ware MACROs for the UART mode of the USART. 

, 

Note: 

The program sequence for the initialization ofthe UART is important. As long 
as the SWRST bit (UCTL.O) is set, the receive and transmit control registers 
URCTL and UTCTL cannot be initialized. The program sequences given in 
the software examples comply with this fact and are therefore recommen­
ded. 

As long as the SWRST bit is set, the following control bits are held in the 0 
state: TXWAKE, RXERROR, RXWAKE, BRK, OE, FE, PE, URXIFG, URXIE, 
UTXIE. 

The following control bits are held in the 1 state: UTXIFG, TXEPT 

8.9.3.1 Nonlnterrupt Processing 

The simplest way to use the USART is in the UART mode. The interrupt is not 
enabled, the software checks if it is possible to output the next byte (UTXIFG 
= 1) and it checks if a new character is received (URXIFG = 1). 

Example 6-60. Full Duplex Modem 

STACK .equ 

A full duplex UART software running without the use of the UART interrupt is 
shown. It is designed for: 

0 Baud rate: 1200 baud 

0 The MCLK (1.048 MHz) is used for the UART clock 

0 Eight data bits 

0 Two stop bits 

0 Parity enabled with odd parity 

0 Receive of errorfree characters only 

0600h ; Stack start address 

Definitions for the UART part: user defined 
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Baudr .equ 

FLLMPY .equ 

UARTCLK .equ 

1200 

32 

FLLMPY*3276B 

Baudrate is 1200 Baud 

FLL multiplier for ·1,048MHz 

MCLK is used for UARTCLK 

The content for the UMCTL and UBR registers are calculated. 

The two software macros do not use RAM or ROM, they only 

define the variables CUMCTL, CUBRI and CUBRO for the 

UART registers UMCTL, UBRI and UBRO 

INIT 

CALC_UMCTL 

CALC_UBR 

. text 

MOV 

CALL 

#STACK,SP 

#INITSR 

Calc, Modulation Reg. content 

Calculate UBRI/UBRO contents 

Software start address 

Initialize Stack Pointer 

Init. FLL and RAM 

Proceed with initialization 

Initialize the UART: Odd parity, B data bits, 2 stop bits 

MCLK for UART clock 

MAINLOOP 

MOV,B 

MOV.B 

MOV.B 

BIS,B 

BIS.B 

MOV,B 

MOV.B 

MOV.B 

#CUMCTL,&UMCTL 

#CUBRO,&UBRO 

#CUBRl,&UBRl 

#URXD+UTXD,&P4SEL 

lIUTXE+URXE,&ME2 

Modulation Register 

Baud Rate Register low 

Baud Rate Register high 

Select RXD + TXD at Port4 

Enable USART Moduls 

lIPENA+SP_+CHAR,&UCTL ; USART Control Register 

tSSELl+SSELO,&UTCTL ; Transmit Control Reg. MCLK 

1I0,&URCTL Receive Control Register 

Continue with initialization 

Start Mainloop 

UART parts within the mainloop. 

The software checks these two parts regularly. 

UART Receive part: 
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check if a new character is received 

R7 contains the received information. 

BIT.B 

JZ 

#RXERR,&URCTL 

L$3 

Error during receive? 

No 

BIC.B 

JMP 

Error handling 

#FE+PE+OE+BRK+RXERR,&URCTL ; Clear error flags 

L$3 

L$2 

BIT.B 

JZ 

MOV.B 

L$2 

#URXIFG,&IFG2 

L$2 

&URXBUF, R7 , 

UART Transmit part: 

; Cpntinue in mainloop 

Character received? 

No, proceed in mainloop 

Yes, move character to R7 

Continue in mainloop 

check if the next character can be transmitted. 

R6 contains information to be transmitted. 

BIT.B #UTXIFG,&IFG2 

JZ L$l 

MOV.B R6,&UTXBUF 

MOV.B src,R6 

L$l 

BR #MAINLOOP 

Interrupt vectors 

.sect 

.word 

"INITVEC",OFFFEh 

INIT 

Transmit buffer empty? 

No, wait 

Empty: move info to TX buffer 

Next character to R6 

Continue with mainloop 

End of mainloop 

Reset Vector 

Program Start Address 

If the above software is to be used with the ACLK for the UART clock, then only 
the following two source lines need to be modified: 

UARTCLK .equ 

MOV.B 

32768 ; ACLK is used for UARTCLK 

#SSELO,&UTCTL ; Transmit Control Register ACLK 

All other necessary modifications are made automatically by the macros 
CALC_UMCTL and CALC_UBA. 
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6.9.3.2 Interrupt Processing 

This is the normal mode for the use of the UART. Interrupt is requested if the 
general interrupt enable bit GIE (SR.3) is set and . 

o A character is transmitted and the transmit interrupt is enabled (IE2.1 = 1) 
or 

o A character is received and the receive interrupt is enabled (IE2.0 = 1) 

I 

Note: 

If an error occurred during the reception of a character, then the error flags 
of the Receive control register (PE, FE, BRK, and RXERR) must be reset 
within the UART interrupt handler. Otherwise, the set error flags will block the 
next interrupt. This is not the case for the overrun error flag OE. 

6.9.3.2.1 MCLK Used tor the UART Clock 

The following example is for when the MCLK is used for the generation of the 
UART clock or for external frequencies in the MCLK range (500 kHz to 
3.8 MHz). 

For high baud rates - higher than 38400 baud - dedicated CPU registers 
may be necessary to lower the interrupt overhead. The time for the saving and 
restoring of the register is not necessary. The software example shown in Sec­
tion 6.9.3.2.2 uses dedicated registers. 

Example 6-61. Full Duplex UART 
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Full duplex UART software using the two UART interrupts is shown. It is de­
signed for: 

o Baud rate: 19200 baud 

o The MCLK (3.144 MHz) is used for the UART clock 

o Seven data bits 

o One stop bit 

o Parity enabled with even parity 

o Receive of errorfree characters only 

Transmit Part - the start address xxxx is loaded into the pointer TXPOI and 
the number of characters to be output is loaded into the character count 



STACK .equ 
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TXCNT. The interrupt routine outputs the programmed character sequence 
starting at address xxxx. 

Receive Part-the start address yyyy of a RAM buffer is loaded into the point­
er RCPOI and the number of characters to be received is loaded into the char­
acter count RCCNT. The interrupt routine receives the characters and stores 
them into the buffer. Only error-free characters are accepted. 

0600h ; Stack start address 

Definitions for the UART part 

Baudr .equ 

FLLMPY .equ 

UARTCLK .equ 

. even 

.bss 

.bss 

.bss 

.bss 

19200 

96 

FLLMPY*32768 

TXPOI,2 

RCPOI,2 

TXCNT,l 

RCCNT,l 

Baudrate is 19200 Baud 

FLL multiplier for 3,144MHz 

MCLK is used for UARTCLK 

Word boundary 

Pointer to transmit buffer 

Pointer to receive buffer 

Counter/status for transmit 

Counter/status for receive 

The content for the UMCTL and UBR registers are calculated 

The two software macros do not use RAM or ROM 

INIT 

CALC_UMCTL 

CALC_UBR 

. text 

MOV 

CALL 

#STACK,SP 

UNITSR 

Calculate Mod. Reg. content 

Calculate UBRI/UBRO contents 

Software start address 

Initialize Stack Pointer 

Init. FLL and RAM 

Proceed with initialization 

Initialize the UART: Even parity, 7 data bits, 1 stop bit 

MCLK for UART clock, only errorfree characters to URXBUF 

MOV.B #CUMCTL,&UMCTL Modulation Register 
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MAINLOOP 

MOV.B 

MOV.B 

BIS.B 

BIS.B 

MOV.B 

MOV.B 

MOV.B 

BIS.B 

CLR.B 

CLR.B 

EINT 

#CUBRO,&UBRO Baud Rate Register low 

#CUBRl,&UBRl Baud Rate Register high 

#URXD+UTXD,&P4SEL Select RXD +·TXD at Port4 

#UTXE+URXE,&ME2 Enable USART Moduls 

#PENA+PEV,&UCTL USART control Register 

#SSELl+SSELO,&UTCTL ; Transmit Control Reg. MCLK 

#O,&URCTL Receive Control Register 

#UTXIE+URXIE,&IE2 Enable USART interrupts 

TXCNT Disable transmit 

RCCNT Disable receive 

Continue with initialization 

Enable interrupt 

Start of Mainloop 

Preparation for the reception of m bytes. The input 

buffer starts at address yyyy 

TST.B RCCNT Data input completed? 

JNZ L$l No, wait 

MOV #yyyy, RCPOI Buffer start address to RCPOI 

MOV.B #m,RCCNT Number of bytes to RCCNT 

L$l Continue in mainloop 

Stop the reception of data. The currently received character 

is input completely 

CLR.B RCCNT status to zero 

Continue 

Preparation for the transmission of n bytes starting at 

address xxxx. A check is made if the last transmit operation 

is really completed. 
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BIT.B 

JZ 

#TXEPT,&UTCTL 

L$2 

Transmit part ready? 

No, buffers are not yet empty 



L$2 

MOV.B 

MOV 

MOV.B 

#n-l,TXCNT 

#xxxx+l,TXPOI 

xxxx,&UTXBUF 

Ready, init. byte count 

Init. transmit buffer pointer 

First info byte to TX buffer 

continue in background 

stop the transmission of data. The currently sent character 

is transmitted completely 

CLR.B TXCNT Status to zero 

Interrupt Handlers 

Interrupt handler for the UART Receive part. 

RCINT 

RCRET 

RCERR 

TST.B 

JZ 

BIT.B 

JNZ 

DEC.B 

PUSH 

MOV 

MOV.B 

INC 

MOV 

POP 

RET I 

BIC.B 

RETI 

RCCNT Reception allowed? 

RCRET No, status is 0 

#RXERR,&URCTL Error during receive? 

RCERR Yes 

RCCNT No, Byte count -1 

R5 Save R5 

RCPOI,R5 Pointer to buffer 

&URXBUF,O(R5) Next byte to buffer 

RS To next buffer byte 

R5,RCPOI Update pointer 

R5 Restore R5 

; Error handling 

#FE+PE+OE+BRK+RXERR,&URCTL ; Clear error flags 

Interrupt handler for the UART Transmit part. 

TXINT TST.B 

JZ 

TXCNT 

TXRET 

Something to transmit? 

No, buffer is empty 

The USART Module 
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DEC.B 

PUSH 

MOV 

MOV.B 

MOV 

POP 

TXRET RETI 

TXCNT 

R5 

TXPOI,R5 

@R5+,&UTXBUF 

R5,TXPOI 

R5 

Byte count -1 

Pointer to buffer· 

Next byte for output. 

Update pointer 

Interrupt vectors 

. sect "SCIVEC",OFFECh USART Interrupt Vectors 

. word TXINT Transmit Vector 

.word RCINT Receive Vector 

.sect "INITVEC",OFFFEh Reset Vector 

. word INIT Program Start Address 

6.9.3.2.2 ACLK Used for the UART Clock 

The following example is for when the ACLK is used for the generation of the 
UART clock or for extemal frequencies lower than 100 kHz. It is very similar 
to that of Section 6.9.3.2.1. The ACLK can also be used as the UART clock. 
See that section for details. 

This section shows another approach, however. The CPU is normally off and 
leaves the LPM3 only when the programmed number of received or trans­
mitted characters is reached. 

Example 6-62. Full Duplex UART With Interrupt 
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Full duplex UART software using the UART interrupt is shown. II is designed 
for: 

o Baud rate: 2400 baud 

o The ACLK (32,768 Hz) is used for the UART clock 

o Eight data bits 

o Two stop bit 

o Parity enabled with odd parity 

o Receive of errorfree characters only 

o The CPU normally uses the low power mode 3 (LPM3) 
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¥¥ 

Transmit Part - the start address xxxx of the output sequence is loaded into 
the pOinter TXPOI and the number of characters m is loaded into the character 
count TXCNT. The interrupt routine outputs the character sequence and when 
TXCNT reaches 0 (output completed), it resets the CPUoff bit of the stored sta­
tus register on the stack. This manipulation omits the return to LPM3 and initial­
izes the next transmit sequence. R6 is exclusively used for the transmit part. 

Receive Part - the start address yyyy of a RAM buffer is loaded into the point­
er RCPOI and the number of characters n is loaded into the character count 
RCCNT. The interrupt routine receives the characters and stores them in the 
buffer until RCCNT reaches 0 (input completed). Then it resets the CPUoff bit 
of the stored status register on the stack. This manipulation omits the return 
to LPM3 and allows the processing of the received data. Only errorfree charac­
ters are accepted. R7 is exclusively used for the receive part. 

0600h ; Stack start address 

Definitions for the UART part 

Baudr 

FLLMPY 

UARTCLK 

INIT 

.equ 2400 

.equ 64 

.equ 32768 

.bss TXCNT,l· 

.bss RCCNT,l 

CALC_UMCTL 

CALC_UBR 

. text 

MOV 

CALL 

#STACK,SP 

#INITSR 

Baudrate is 2400 Baud 

FLL multiplier for 2,096MHz 

ACLK is used for UARTCLK 

counter/status for transmit 

Counter/status for receive 

Calculate Mod. Reg. content 

Calculate UBRI/UBRO contents 

Software start address 

Initialize Stack Pointer 

lnit. FLL and RAM 

Proceed with initialization 

Initialize the UART: Odd parity, 8 data bits, 2 stop bits 

ACLK used for the UART clock 

MOV.B lICUMCTL,&UMCTL Modulation Register 
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MAINLOOP 

MOV.B 

MOV.B 

BIS.B 

BIS.B 

MOV.B 

MOV.B 

MOV.B 

BIS.B 

CLR.B 

CLR.B 

EINT 

iCUBRO,&UBRO Baud Rate Register low 

*CUBRl,&UBRl Baud Rate Register high 

iURXD+UTXD,&P4SEL Select RXD + TXD at Port4 

#UTXE+URXE,&ME2 Enable USART Moduls 

#PENA+SP_+CHAR,&UCTL ; USART Control Register 

#SSELO,&UTCTL Transmit Contr. Reg. ACLK 

#O,&URCTL Receive Control Register 

#UTXIE+URXIE,&IE2 Enable USART interrupts 

TXCNT Disable transmi·t 

RCCNT Disable receive 

Continue with initialization 

Enable interrupt (GIE = 1) 

Start Mainloop 

Preparation for the reception of m bytes. Buffer starts 

at address yyyy. R7 is a dedicated register for receive 

L$l 

TST.B 

JNZ 

MOV 

MOV.B 

RCCNT 

L$l 

#yyyy,R7 

#m,RCCNT 

Ready? 

No, RCCNT > ° 
Receive buffer start address 

Number of bytes 

stop the reception of data. The actually received character 

is input completely 

CLR.B RCCNT Status is zero 

Preparation for the transmission of n bytes starting at 

address XXXX .• R6 is a dedicated register for transmit. 

The check for the empty TX buffer is faster, but needs more 

ROM bytes. 

TST.B TXCNT Ready for next characters? 
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JNZ 

BIT,B 

JZ 

MOV,B 

MOV 

MOV,B 

L$2 

L$2 

#UTXIFG,&IFG2 

L$2 

#n-l,TXCNT 

#xxxx+l,R6 

XXXX,&UTXBUF 

No, TXCNT > ° 
TX part also ready? 

No, busy 

Ready, init, byte count 

Init, transmit buffer pointer 

First info byte to TX buffer 

Continue in background 

Stop the transmission of data, The actually sent character 

is transmitted completely 

CLR,B TXCNT Status is zero 

After the completion of all tasks, the program enters LPM3 

PLPM3 BIS #CPUoff+GIE+SCGl+SCGO,SR Enter LPM3 

An interrupt handler cleared the CPUoff bit on the stack., 

Checks are made if activity is needed: 

Receive: 

Transmit: 

TST,B 

JZ 

TST,B 

receive input buffer full 

transmit buffer output completely 

other interrupt handlers 

RCCNT Receive completed? 

PROCRC Yes, process received 

TXCNT Transmit completed? 

data 

JZ NXTTX Yes, prepare next characters 

Other handlers? 

JMP PLPM3 Back to LPM3 

Interrupt Handlers 

Interrupt handler for the UART Receive part, R7 is used 

only for the receive part 

The USART Module 
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RCINT 

RCRET 

RCERR 

TST.B 

JZ 

BIT.B 

JNZ 

DEC. B 

MOV.B 

INC 

TST.B 

JNZ 

BIC 

RETI 

BIC.B 

RETI 

RCCNT Reception allowed? 

RCRET No, status is ° 
#RXERR,&URCTL Error during receive? 

RCERR Yes 

RCCNT Byte count -1 

&URXBUF,O(R7) Next byte to buffer 

R7 To next buffer byte 

RCCNT Buffer filled? 

RCRET No, proceed 

#CPUoff+SCGl+SCGO,O(SP) ; Active Mode after RETI 

; Error handling 

#FE+PE+OE+BRK+RXERR,&URCTL ; Clear error flags 

Interrupt handler for the UART Transmit part. R6 is used 

only for the transmit part 

TXINT TST.B TXCNT Something to transmit? 

JZ TXRET No, buffer is empty 

DEC.B TXCNT Byte count -1 

MOV.B @R6+,&UTXBUF Next byte for output 

TST.B TXCNT Buffer output? 

JNZ TXRET No, proceed 

BIC #CPUoff+SCG1+SCGO,O(SP) ; Active Mode after RETI 

TXRET RETI 

Interrupt Vectors 
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.sect 

. word 

. word 

.sect 

. word 

"SCIVEC",OFFECh 

TXINT 

RCINT 

"INITVEC",OFFFEh 

INIT 

USART Interrupt Vectors 

Transmit Vector 

Receive Vector 

Reset Vector 

Program Start Address 
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6.9.3.3 Subroutines and .MACROs 

The subroutines and assembler .MACROs used with the previous examples 
are contained in this section. 

6.9.3.3.1 Subroutines 

The initialization subroutine INITSR -which is explained in detail in the sec­
tion TimecA - checks first if a power-up clear (PUC) or a power-on reset 
(POR) has occurred: 

o Power-Up Clear - the supply voltage is switched on, the RAM is cleared 

o Power-On Reset - a reset occurred (RST/NMI terminal or by watchdog) 
the RAM is not changed 

The two situations are distinguished by the content of the word INITKEY. If it 
contains OF05Ah, the power-on reset state is assumed. Otherwise the power­
up clear state is assumed. 

The subroutine selects the correct current switch FN_x for the system clock 
generator and waits 30000 clock cycles to ensure that it has locked at the cor­
rect oscillator tap. 

Common Initialization Subroutine 

Check the INITKEY value first: 

If value is OFOSAh: a reset occurred, RAM is not cleared 

otherwise Vcc was switched on: complete initialization 

INITSR CMP #OFOSAh,INITKEY PUC or POR? 

INO 

JEQ INO Key is ok, continue program 

CALL #RAMCLR Restart completely: clear RAM 

MOV #OFOSAh,INITKEY Define "initialized staten 

MOV.B 

.if 

MOV.B 

.else 

.if 

MOV.B 

#FLLMPY-l,&SCFQCTL ; Define MCLK frequency 

FLLMPY < 48 

#O,&SCFIO 

FLLMPY < 80 

#FN_2,&SCFIO 

Use the right DCO current: 

MCLK < 1.SMHz: FN_x off 

1.SMHz < MCLK < 2.SMHz? 
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.else 

.if 

MOV.B 

.else 

MOV.B 

.endif 

.endif 

.endif 

MOV 

IN1 DEC 

JNZ 

RET 

FLLMPY < 112 

#FN_3,&SCFIO 

#FN_4,&SCFIO 

nOOOO,RS 

RS 

IN1 

2.SMHz < MCLK < 3.SMHz? 

Yes, FN_3 on 

MCLK. > 3.SMHz: FN_4 on 

Allow the FLL to settle 

at the correct DCO tap 

during 30000 cycles 

Return from initialization 

Subroutine for the clearing of the RAM block 

.bss INITKEY,2,0200h OFOSAh: initialized state 

RAMSTRT .equ 0200h Start of RAM 

RAMEND .equ OSFEh Highest RAM address (33x) 

RAMCLR CLR R5 Prepare index register 

RCL CLR RAMSTRT(RS) 1st RAM address 

INCD RS Next word address 

CMP #RAMEND-RAMSTRT+2,RS ; RAM cleared? 

JLO RCL No, once more 

RET Yes, return 
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.mnolist 

The USART Module 

The following two software macros calculate the values for the UART baud 
rate generator that fit best. They do not use ROM or RAM - they only define 
the three variables CUBR1, CUBRO, and CUMCTL that are used during the 
initialization of the UART registers UBR1, UBRO, and UMCTL. 

; Do not list macro calls 

The values for the Modulation Registers UBR1jUBRO are 

calculated: CUBR1 and CUBRO contain the truncated result 

of the division UARTCLK/Baudr 

CUBRl 

CUBRO 

.equ 

.equ 

.endm 

UARTCLK/(Baudr*256} ; Baud Rate Reg. High 

(UARTCLK/Baudr}-256*CUBRl ; Baud Rate Reg. Low 

The calculation for the content of the Modulation Register UMCTL follows. 
Seven bits of resolution are used . 

. macro 

Modulation Register content: the rounded fraction of 

CMOD = UARTCLK/Baudr is calculated 

Binary format of CMOD: O.XXXXXXX 

Then the 8 bits of UMCTL are built. 

Inputs: 

Output: 

UARTCLK, Baudr 

CUMCTL 

Frequencies [Hz] 

8-bit UMCTL register value 

CMOD .equ ««256*UARTCLK}/Baudr}-256*(UARTCLK/Baudr}}+1}/2 

M$OO 

M$10 

C$O 

M$10 

C$O 

.equ 

.if 

.equ 

.equ 

.else 

.equ 

.equ 

CMOD+CMOD 

M$00>127 

M$00-128+CMOD 

1 

M$OO+CMOD 

o 

Fraction x 2 

Overflow to integer? 

Yes, subtract 1.000000 

UMCTL.O = 1 

No, add fraction 

UMCTL.O = 0 
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.endif 

.if M$10>127 Overflow to integer? 

M$20 .equ M$10-128+CMOD Yes, subtract 1.000000 

C$l .equ 2 UMCTL.l = 1 

.else 

M$20 .equ M$10+CMOD No, add fraction 

C$l .equ 0 UMCTL.l = 0 

. end if 

.if M$20>127 Overflow to integer? 

M$30 .equ M$20-128+CMOD Yes, subtract 1.000000 

C$2 .equ 4 UMCTL.2 = 1 

.else 

M$30 .equ M$20+CMOD No, add fraction 

C$2 .equ 0 UMCTL.2 = 0 

. end if 

.if M$30>127 Overflow to integer? 

M$40 .equ M$30-128+CMOD Yes, subtract 1.000000 

C$3 .equ 8 UMCTL.3 = 1 

.else 

M$40 .equ M$30+CMOD No, add fraction 

C$3 .equ 0 UMCTL.3 = 0 

.endif 

.if M$40>127 Overflow to integer? 

M$50 .equ M$40-128+CMOD Yes, subtract 1.000000 

C$4 .equ 10h UMCTL.4 = 1 

.else 

M$50 .equ M$40+CMOD No', add fraction 

C$4 .equ 0 UMCTL.4 = 0 

.endif 

.if M$50>127 Overflow to integer? 

M$60 .equ M$50-128+CMOD Yes, subtract 1.000000 

C$5 .,equ 20h UMCTL.5 = 1 

.else 

M$60 .equ M$50+CMOD No, add fraction 

C$5 .equ 0 UMCTL.5 = 0 

.endif 
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M$70 

C$6 

M$70 

C$6 

C$7 

C$7 

CUMCTL 

.if 

.equ 

.equ 

.e1se 

.equ 

.equ 

.endif 

.if 

.equ 

.else 

.equ 

. end if 

.equ 

.endm 

M$60>127 

M$60-12S+CMOD 

40h 

M$60+CMOD 

o 

M$70>127 

SOh 

o 

Overflow to integer? 

Yes, subtract 1.000000 

UMCTL.6 - 1 

No, add fraction 

UMCTL.6 - 0 

Overflow to integer? 

UMCTL.7 - 1 

UMCTL.7 - 0 

The USART Module 

C$7+C$6+C$5+C$4+C$3+C$2+C$1+C$0 Add bits 
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6.10 The 8-Blt Interval Timer/Counter 

.6.10.1 Introduction 

6-318 

The 8-Bit Interval Timer/Counter peripheral is included in all members of the 
MSP430x3xx family. This timer/counter - its block diagram is shown in Figure 
6-86 - can work, like its name suggests, in two different modes: the timer 
mode and the counter mode. This section describes software routines usable 
for the UART mode (SCI, RS232) that use the timer mode of the 8-Blt Timer/ 
Counter. The software examples shown in the subsequent sections adapt 
themselves to the needs defined by the user (number of data bits, number of 
stop bits, baud rate, error detection and handling, clock frequency, and so on). 
This self-adaptation is accomplished through the use of the conditional as­
sembly feature of the MSP430 assembler. 

The hardware of the 8-Bit Interval Timer/Counter module supports the receive 
and transmit of UART data on a bit basis: one data bit is received or transmitted 
between two interrupts, not a complete frame consisting of a start bit, data bits, 
a parity bit and stop bits. This means that the interrupt overhead is relatively 
large due to the interrupt request after each received or transmitted data bit. 
On the other hand, the advantage is the complete flexibility of the data format 
- only software defines the number and meaning of . the transferred bits. Any 
protocol is possible. 

Figure 6-86 shows the block diagram of the complete MSP430 a-Bit Interval 
Timer/Counter module. 

The 8-Bit Interval Timer/Counter module allows only the half duplex mode. 
This means that the module can receive data or it can transmit data, but not 
receive and transmit data simultaneously. The user software must therefore 
determine which mode should be active. In the following software examples, 
this is accomplished by the initialization subroutines. 
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Receive 

L_"':::::'::4~=~ PO.l-BbT/C 1n1 .. rupl Lagle 

Transmit 

TCDAT 
044h 

TCPLD 
043h 

Figure 6-86. MSP430 8-Bit Interval Timer/Counter Module Hardware 

6.10.1.1 Definitions Used With the Application Examples 

MDB 

The abbreviations used for the hardware definitions are consistent with the 
MSP430 Architecture User's Guide. 

HARDWARE DEFINITIONS 

a-BIT TIMER/COUNTER 

TCCTL 

RXD 

TXD 

.equ 

.equ 

.equ 

042h 

OOlh 

002h 

T/C Control Register 

Receive signal at PO.l 

Next data bit for transmission 
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RXACT .equ 004h 

ENCNT .equ 008h 

TXE .equ 010h 

ISCTL .equ 020h 

SSELO .equ 040h 

SSEL1 .equ 080h 

TCPLD .equ 043h 

TCDAT .equ 044h 

1: detect start bit 0: off, reset FF 

Counter TCDAT enabled 

1: TXD to PO.2 0: POOUT.2 to PO.2 

Intrpt source: 0: PO.1 1: Carry TCDAT 

Clock source. 0: PO.1 

1: MCLK 2: ACLK 3: PO.1 .and. MCLK 

TIC 8-Bit Pre-load Register 

TIC 8-Bit Counter 

OTHER DEFINITIONS 

IE1 .equ 

POIE1 .equ 

POlES .equ 

SCG1 .equ 

SCGO .equ 

CPUoff .equ 

GIE .equ 

0 

8 

O14h 

080h 

040h 

010h 

008h 

Interrupt Enable Register 1 

PO.l Interrupt Enable Bit (RCV) 

PO Interrupt Edge Select Register 

Low Power Mode bit 1 

Low Power Mode bit 0 

"Switches CPU off 

General Interrupt Enable Bit 

6.10.1.2 Attributes of B UART Implemented with the B-Blt TImer/Counter 
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A short overview to the UART mode of the 8-Bit Timer/Counter module ap­
pears below: 

D Half duplex mode - either transmit or receive mode is possible, but not 
both simultaneously. 

o Any data length and format is possible. This is due to the software con­
trolled data sequence. 

D Error detection made by software: 

• Frame error - The stop bits have space potential or the start bit has 
mark potential in its middle 

• Parity error - Parity is enabled and the parity bit has the wrong value. 

• Overrun error - The next character is read in before the last one is 
read out by the software. This is not possible with the given software. 
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o Baud rate generation possible from the MCLK (500 kHz through 3.3 MHz) 
.and from the ACLK signal (32,768 kHz crystal). 

o Interrupt-driven transmit and receive functions. 

o One interrupt vector for transmit and receive mode. Mode selection is 
made by software. 

o Full functionality also during LPM3 (with ACLK only) 

o Restricted baud rate range due to the length of the 8-Bit counter register 
TCDAT 

o One full bit length (1/baud rate) is available for the read out or modification 
of the data. The time window for the reception and transmission of data 
is significantly enlarged compared to a pure software solution. 

6.10.1.3 The Data Format 

Name 

Mark 

Space 

The data format used with the software examples Is the RS232 format. Figure 
6-87 shows how this format is seen at the MSP430 ports (PO.1 for receive and 
PO.2 for transmit) and Figure 6-88 shows how it is defined for the transmission 
line between the transmitter and the receiver. 

The data format used with the Figures 6-87 and 6-88 is: 

o Seven data bits. The least significant bit follows the start bit 

o Parity enabled. The parity bit follows the most significant bit of the data 

o No address bit. This is the normal case 

o Two stop bits 

Data 

Stop 
Bits 

Signal Level 

Vee 

OV 

Figure 6-87. RS232 Format (Levels at the MSP430) 
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Name 

The signal on the transmission line has the Inverted state as seen at the 
MSP430 ports and different voltage potentials. Figure 6-88 shows this. 

Data 

Stop 
Bits 

I 

Signal Level 

<-3V 

Figure 6-88. The RS232 Format (Levels on the Transmission Line) 

6.10.2 Function of the UART Hardware 

6.10.2.1 The Hardware Registers 

The 8-8it Timer/Counter module is controlled by one control register and two 
data registers. All are 8-bit registers and should therefore be accessed only 
with byte instructions. Figure 6-89 and Table 6-35 show an overview of these 
three registers, including the names, assembler mnemonics, hardware ad­
dresses, and the initial states. The detailed function of the control bits is de­
scribed in the MSP430 Architecture Guide and Module Library. 

Note: 

When a write access to the Counter Register TCDAT is performed, then the 
Information stored in the Preload Register TCPLD is loaded to TCDAT - and 
not the data addressed by the instruction. 

The data contained in TCDAT can be read at address 044h. 

Table 6-35. UART Hardware Registers 

REGISTER NAME MNEMONIC ACCESS ADDRESS INITIAL STATE 

TIC Control Register TCCTL ReadIWrtte 042h Reset 

TIC Preload Register TCPLD ReadIWrite 043h Unchanged 

TIC Counter Register TCDAT Read Only 044h Unchanged 
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0 

TCCTL 

042h 
SSELl SSELO ISCTL TXE ENCNT RXACT TXD RXD 

rw-O rw-O rw-O rw-O rw-O rw-O rw-O r(-1) 

0 

TCPLD 

043h 

rw rw rw rw rw rw rw rw 

7 

TCDAT 

044h 

r(w) r(w) r(w) r(w) r(w) r(w) r(w) r(W) 

Figure 6-89. UART Hardware Registers 
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6. 10.2.2 The Tl'Bnsmlt Mode 

If the 8-Bit Timer/Counter module is switched to the transmit mode - done by 
the initializing software of the module - then the hardware of figure 6-86 
works as shown in Figure 6-90. Active data lines are drawn solid. nonactive 
data paths are drawn in gray color. The MCLK is selected for the UART timing. 

POIES.l 

PO.l 
l> .. _,;.;.R';.;.ji~,-,=-J.;... ---H.'tq 

Not acUvt; Half Ouplwr. 

MDB 
L.... ___ *-==-_ PO. 1 - BbT/C Interrupt Logic 

Figure 6-90. The B-Bit Timer/Counter Transmit Mode 
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Initialization for the transmit mode is done by the subroutine TXINIT. The main 
steps for the transmission of a character are: 

o loading of the data word RTDATA with the character to be transmitted, in­
cluding the address bit information (if defined) 

o Initializing of the a-Bit Timer/Counter and the RAM bytes RTERR and 
RTSTAT 

• Selecting of the clock frequency for the counter TCDAT (MClK or 
AClK) (SSELx bits) 

• Activation of the interrupt request by the carry of the a-bit counter reg­
ister TCDAT (ISCTl = 1) 

• Selecting of the TXD output data instead of the PO.2 output register 
data for the PO.2 pin (TXE = 1) 

• Setting of the TXD bit to mark (1) (TXD = 1). This value is transferred 
to the TXD output with the first counter interrupt. It guarantees a lead­
ing mark signal of at least one bit time. 

• Enabling of the B-Bit Timer/Counter: the counter starts with the se­
lected clock (ENCNT = 1) 

• loading of the counter with one half of a bit time. After this time inter­
val, the TXD output is set to mark (1) if not yet set 

• loading of the pre-load register TCPlD with a full bit time interval 
(1 /baud rate). This time interval is used for the leading mark before the 
start bit 

• loading ofthe transmit status byte RTSTATwith the status for the start 
bit 

• loading of the error byte RTERR with a start value (0 resp. 1) that da­
livers the correct parity bit of the complete character 

• Enabling of the interrupt for the B-Bit Timer/Counter. Interrupt is re­
quested now approximately after each time interval 1 /baud rate. This 
time can change from bit to bit. See Section 6.1 0.3 Baud Rate Genera­
tion and Correction. 

o loading of the TXD bit during the interrupt handler with the information of 
the next but one bit to be output (start bit, data bits, address bit, parity bit, 
stop bits) 

o Sampling of the information for the parity bit, if parity is enabled. 

o Output of the nondata Signals (start bit, parity bit, stop bits) dependent on 
the selected format 
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o Turning off of the hardware after the complete output of a character, to 
save energy. 

Start LSB 
Bh 

0$3 i 0$4 i 0$5 

(1 
Used Correction Bit 

Figure 6-91. Interrupt Timing for the Transmit Mode 
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MSB Stop 
Bltls) 

C$10 i 0$11 i 
(1 

Disable UART Interrupt 
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6.10.2.3 The Receive Mode 

If the 8-Bit Timer/Counter module is switched to the receive mode - done by 
the initializing software of the module - then the hardware of Figure 6-86 
works like shown in Figure 6-92. As with Figure 6-90, active data lines are 
drawn solid, nonactive data paths are drawn in gray color. The ACLK is used 
for the UART timing. 

POIES.l 

'------+i---- PO.1·-SbTIC ln1efrupl Logic 

MCLK 

Edge 
detect 

>---_ ......... _ ... - ..... _ ....... 

ACLK 

PO.2 

Figure 6-92. The B-Bit Timer/Counter in Receive Mode 

MOB 

Mse 

S8 
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Initialization for the receive mode is done by the subroutine RCINIT. The main 
steps for the reception of a character are: 

0 Initializing of the 8-Bit Timer/Counter and the RAM bytes RTERR and 
RTSTAT: 

• Selecting the clock frequency for the counter (MCLK or ACLK) 
(SSELx bits) 

• Activation ofthe interrupt request by the carry ofthe 8-bit counter Reg-
ister TCDAT (ISCTL = 1) 

• Reset of the edge-detect flip-flop (RXACT = 0) 

• Preparing of the a-Bit Timer/Counter to start with the next negative 
transition of the PO.1 input signal from mark to space (1 to 0). The 
counter starts with the selected clock signal (ACLK or MCLK) after the 
next negative transition. (POIES.1 = 1) 

• Loading of the counter with one half of a bit time. (If an input signal 
change at PO.1 occurs from mark to space, then after this time interval 
an interrupt is requested and the start signal is checked In its middle if 
it is still iow (0).) 

• Loading of the pre-load Register TCPLD with a full bit time interval 
(1/baud rate). This time interval is used for the test in the middle of the 
LSB 

• Loading ofthe receive status byte RTSTATwith the status for the start 
bit 

• Loading of the error byte RTERR with a start value that delivers 0 if the 
parity of the complete character is correct 

• Enabling of the interrupt for the 8-Bit Timer/Counter. Interrupt is re-
quested now approximately after the time interval 1/baud rate. This 
time changes slightly from bit to bit. See Section 6.10.3 Baud Rate 
Generation and Correction. 

• Setting the data word RTDATA to O. 

• Activation of the edge-detect flip-flop: it detects the negative edge of 
the start bit and starts the counter (RXACT = 1). 

• Enabling of the UART interrupt (POIE1 = 1). 

0 Reading of the RXD bit during the interrupt handler with the information 
of all bits (start bit, data bits, address bit, parity bit, stop bits). The read in-
formation is shifted into the data word RTDATA. 

0 Sampling of the information for the parity bit, if parity is enabled. 
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o Check of the nondata signals (start bit, parity bit, stop bits), dependent on 
the selected format 

o Selling of the error bits TCPE and TCFE dependent on the bit check. If no 
error occurred, the error byte RTERR contains 0 

o Turning off of the timer/counter hardware after the complete reception of 
a character: interrupt and clock are switched off. 

I~I~I I II I II-H = 
i i C$O i C$1 i C$2 i C$3 i C$4 i C$5 i C$6 i C$7 i csa i C$9 i C$10 i C$11 i 

1/(2 x Baud JJ t Inwrrup, in Middl. Us.d (!ectlon Bft r J ~ :~. UA£ Lrrupt 
01111. StartBft 

Interrupt Program Time Interval ts 

Figure 6-93. Interrupt Timing for the Receive Mode 
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6.10.3 The Baud Rate Generation and Correction 
The short counter register TCDAT of the 8-bit timer/counter allows the use of 
the MCLK for only very few baud rates. For aU other baud rates, the maximum 
value 255 for the quotient MCLKlbaud rate is exceeded. Therefore, the use of 
the ACLK (32,768 Hz) is necessary for most of the usual baud rates. But the 
use of the ACLK frequency causes another problem: 

Generating the desired baud rate from a relatively high frequency (1 MHz to 
5 MHz) is a simple task. The resulting baud rate error is small due to the large 
integer part of the quotient compared to the truncated fractional part. This 
changes completely if the time base is a crystal of only 32 kHz. Then the error 
due to the truncated fractional part of the quotient grows large and leads to the 
loss of synchrony at the trailing bits of the frame. The MSP430 UART software 
therefore uses a correction to keep the baud rate error small. The baud rate 
correction calculates correction information· (9 to 13 bits, dependent on the 
frame length) as to how to correct the baud rate of the received or transmitted 
UART signal. The calculated bits C$O to C$12 define how the predivlder infor­
mation contained in the baud rate registers TCPLD and TCDAT is used: 

o C$x = 0 - the calculated time interval is used as is. 

o C$x = 1 - the calculated time interval Is prolonged by one timer period 
(MCLK or ACLK) and used with this value. 

The value C$O is used for the start bit, the value C$1 for the LSB of the data, 
and so on. See Figure 6-94 for an explanation. 

Example 6-63. Baud Rate Generation 
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A baud rate of 2400 baud is needed from a crystal frequency of 32,768 Hz. The 
frame length used is the minimum length: start bit, seven data bits, no address 
bit, no parity, and one stop bit. This results in a frame length of nine bits. The 
use of the ACLK is necessary due to two reasons: 

o The UART also needs to run during the low power mode 3, when the 
MCLK is not available. 

o The maximum MCLK frequency would be 255 x 2400 = 612 kHz. This fre­
quency is too low for most of the applications (and cannot be guaranteed 
for the system clock generator). 

With only the ACLK available, the theoretical division factor UBR - the trun­
cated value is the base for one of the two contents of the Pre-Load Register 
TCPLD-is: 

UBR 
32768 
2400 

13.653333 
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This means - because the register counts upward - that the pre-load regis­
ter TCPLD normally contains -13 (OF3h). To get a rough value for the 9-bit 
baud rate correction C$O to C$8, the fractional part (0.653333) of the above 
division is multiplied by 9 (the number of calculated bits for the baud rate 
correction): 

Number o/Ones = 0.653333 x 9 = 5.88000 

The rounded result, 6, is the number of 1 sto be used with the baud rate correc­
tion. The resulting, corrected, baud rate with the 6 1 s of the baud rate correc­
tion is (6 bits have a length of 14 ACLK periods, 3 have a length of 13 ACLK 
periods): 

BaudRate 
32768 

2397.6585 

This results in an average baud rate error of: 

2397.6585-2400 00 
Baud Rate Error = 2400 xl -fJ.0975% 

To get the bit sequence for the baud rate correction that fits best, the following 
algorithm can be used. The fractional part ofthe theoretical division factor USR 
is summed nine times and if a carry to the integer part occurs, the current C$x 
bit is set. Otherwise, it is cleared. An example for the calculation of 9 bits with 
the above fraction (0.653333) follows: 

Fraction Addition Carry to next Integer Correction Bits 

0.653333 + 0.653333 = 1.306667 Yes C$O 1 
1.306667 + 0.653333 = 1 .959999 No C$1 0 
1.959999 + 0.653333 = 2.613332 Yes (;$2 
2.613332 + 0.653333 = 3.266667 Yes C$3 
3.266667 + 0.653333 = 3.919999 No C$4 0 
3.919999 + 0.653333 = 4.573331 Yes C$5 1 
4.573331 + 0.653333 = 5.226664 Yes C$6 1 
5.226664 + 0.653333 = 5.879997 No C$7 0 
5.879997 + 0.653333 .. 6.533333 Yes C$8 
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The result of the calculated bits C$8 ... C$0 (1 0110 1101b) is 16Dh with six 
ones. The software example contains a macro loop (starting at label MODTAB) 
that uses the algorithm shown above and calculates, for every combination of 
the UART clock and the desired baud rate, the optimum value for the baud rate 
correction. For the above example (9 bit frame length), the macro also deter­
mines 16Dh with its six ones. 

Example 6-64. 2400 Baud From ACLK 
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Figure 6-94 gives an example for a baud rate of 2400 baud generated with the 
ACLK frequency (32,768 Hz). The data format for figure 6-94 is: 

Eight data bits, parity enabled, no address bit, and two stop bits. Figure 6-94 
shows three different frames: 

o The upper frame is the correct one with a bit length of 13.65333 ACLK 
cycles. (32,768/2400 .. 13.65333) 

o The middle frame uses a rough estimation with 14 ACLK cycles for the bit 
length 

o The lower frame uses a corrected frame with the best fit 
(C$11 •.. C$O .. OB6Dh) for the baud rate correction. 

It can be seen that the approximation with 14 ACLK cycles accumulates an er­
ror of more than 0.3 bit length after the second stop bit. The error of the cor­
rected frame is only 0.001 bit length. The error of the crystal clock is not yet 
included, and it adds to the above errors. . 
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I 
V co 

MSB Psrlty Stop 
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Figure 6-94. Baud Rate Correction 

Tables 6-36 and 6-37 contain the average errors (full frame with maximum 
length. 13 bits) for the normally used baud rates resulting from the described 
baud rate generation. The software examples contain a looped macro. It cal­
culates - dependent on the frame length used - for all the bits the optimum 
length. 

6.10.3.1 Baud Rate Generation With the MCLK 

Table 6-36 shows the optimum values for the 8-bit counter register TCDAT. 
The UART clock is the MCLK (1,048 MHz). The crystal error is not included. 
The mean error is calculated for a medium frame length of eleven bits: start 
bit, eight data bits, parity enabled, and one stop bit. Table 6-36 contains the 
following columns: 

o Baud Rate - The baud rate for the data exchange (transmit and receive 
use the same baud rate) 

o Division Factor - The quotient UARTCLKlbaud rate. It indicates the 
number of MCLK cycles for a data bit 

o a-Bit Counter Register - The truncated 8-bit hexadecimal result of the 
diviSion factor (UARTCLKlbaud rate). The value that is loaded into the 
hardware register TCDAT is (1 OOh -table value). This is duetothe upward 
count of the 8-bit counter. 
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o Baud Rate Correction - The 13-bit result that fits best for the baud rate 
correction. It is calculated by the software macro starting at label MOD­
TAB. If frames with less than 13 bits are used, then-the MSBs of this num­
ber are omitted. 

o Used Fraction - The number of 1 s in the baud rate correction sequence 
divided by eleven (the frame length used for the calculation). It is an 
approximation of the truncated fractional part of the division factor. 

o Mean Error - The resulting error of a complete character caused by the 
approximation of the division factor 

The length of the 8-bit counter register allows only a very limited range for the 
baud rate. An MCLI< frequency of 1.048 MHz is assumed. For other frequen­
cies, the baud rates change accordingly (e.g. for 2.096 MHz the usable baud 
rates are 960'1 and 19200 baud). The reasons for this restriction are: 

o From 110 baud to 2400 baud, the 8-bit counter register is too small to hold 
the necessary number for the result of the division MCLKlbaud rate: the 
number contained in the column 8-Bit Counter Register is greater than 
OFFh. 

o Beginning at 9600 baud, the CPU cycles between two UART interrupts are 
too few for correct handling (e.g. only 54 CPU cycles @ 1.048 MHz for 
19200 baud). See Section 4.4. The maximum baud rate depends strongly 
on the amount of interrupt activity due to the other peripherals. 

Note: 

The assembler outputs an error message if the resulting value for the TCDAT 
register is greater than 255. This is an indication of a baud rate that is too low. 

I 

.~i------------------------------------------~ Note: 

Baud rates that result in TCDAT register values lower than 100 make strictly 
real time processing rules necessary. Interrupt handlers must be as short as 
possible and interruptible. See Section 4.4 for hints how to speed-up the 
UART. 
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Table 6-36. Baud Rate Register TCDAT Contents (MCLK = 1,048 MHz) 

BAUD DIVISION 8-BIT COUNTER BAUD RATE FRACTION MEAN 
RATE FACTOR REGISTER CORRECTION USED ERROR(%) 

110 9532.51 253Ch -
300 3495.25 ODA7h -
600 1747.63 06D3h -
1200 873.81 0369h -
2400 436.91 01B4h -
4800 218.45 OODAh 14AAh 0.4545 -0.002 

9600 109.23 006Dh 1088h 0.1818 +0.044 

19200 54.61 0036h -
38400 27.31 001Bh -

6.10.3.2 Baud Rate Generation With the ACLK 

With the relatively low ACLK frequency (32,768 Hz), the baud rate correction 
becomes much more important compared 10 the normally high MCLK frequen­
cy used for the UART liming. Table 6-37 shows the optimum values for Ihe 
counter register TCDAT and the correction values for commonly used baud 
rates generated with the ACLK (32,768 Hz). The table values are calculated 
by the macro starting at the label MODTAB. The crystal is assumed to be with­
out frequency error. The meaning of the table columns is explained in Section 
6.10.3.1. As for Table 6-36, the mean error is calculated for a medium frame 
length of eleven bits: start bit, eight data bits, parity enabled, and one stop bit. 

Table 6-37. Baud Rate Register TCDAT Contents (ACLK = 32,768 Hz) 

BAUD DIVISION 8-BIT COUNTER BAUD RATE FRACTION MEAN 
RATE FACTOR REGISTER CORRECTION USED ERROR(%) 

110 297.8909 0129h -
300 109.2267 006Dh 1088h 0.1818 +0.04 

600 54.6133 0036h 15DAh 0.6363 -0.04 

1200 27.3067 001Bh 1124h 0.2727 +0.12 

2400 13.6533 OOODh lB6Dh 0.6363 +0.12 

4800 6.8267 0006h lBEFh 0.8181 +0.13 

9600 3.4133 0003h 094Ah 0.3636 +1.46 

19200 1.7067 - - - -
38400 0.8533 - - - -

On-Chip Peripherals 6-335 



The 8-8it Interval Timer/Counter 
1:1 1:1 d 

6.10.4 Software Routines 

The following sections show proven software routines for the UART mode of 
the 8-Bit Timer/Counter. 

Note: 

The program sequences for the initialization of the UART software are impor­
tant. The example code should not be modified. See the subroutines TXINIT 
and RCINIT. 

Note: 

Any protocol is possible due to the software control for the data sequence. 
It is only necessary to adapt the two tables RTTAB and MODTAB of the two 
software examples that follow. 

The software routines are shown for interrupt use only. It makes no sense to 
use the noninterrupt solution (polling) because the time intervals between two 
signal bits are relatively short - a 100% loading of the CPU would be the re­
sult. This is due to the bit orientation of the 8-Bit Timer/Counter hardware. 

The initialization subroutine INITSR and the RAM initialization subroutine 
RAMCLR are explained in detail in section The TimecA, paragraph Common 
Initialization Routine. 

6.10.4.1 MCLK Used for UART Clock 

The following example is for use when MCLK used for the generation of the 
UART clock. For high baud rates - higher than 9600 baud @ 1 MHz - dedi­
cated CPU registers may be necessary to lower the interrupt overhead. The 
time for the saving and restoring of the register is not necessary. See Section 
6.10.4.4. 

Example 6-65. Half Duplex UART with Interrupt 
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Half duplex UART software using the interrupt of the 8-Bit Timer/Counter is 
shown below. The software is designed for: 

o Baud rate: 4800 baud 

o The MCLK (1,048 MHz) is used for the UART clock 

o The active mode of the CPU is used . 

o Seven data bits 



UARTCLK 

Baudr 

CHARC 

ADDR 

PAR 

PAREV 

STB 
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o Parity enabled with even parity 

o No address bit included 

o One stop bit 

o Reception of all characters (the error byte RTERR contains an error indi-
cation) 

o UART signals like shown in figure 6-87 (mark = Vee. space = Vss) 

The following seven software switches and the value for the UARTCLK need 
to be defined for the UART operation (see also the examples in the software 
part). Functions that are not enabled. do not use memory space: the adjacent 
code is left out by Conditional Assembly. . 

If the MCLK is used for the UART timing. then the MCLK frequency must be given here. 
Normally the MCLK is defined by multiplication of the crystal frequency with the FLL multi­
plier. 

Baud rate used [Hz]. For 1.048 MHz MCLK frequency. the range is from 4800 baud to 
9600 baud. With special care. 19200 baud is also possible. The range of usable baud 
rates increases linearly with the MCLK frequency used. 

Number of data bits. The UART software allows 7 and 8 data bits. but the table structure 
of the software eases the adaptation to other bit counts. 

Inclusion of an address bit (1) or not (0). See the MSP430 Architecture Guide for an ex­
planation of this feature. 

Enables (1) or disables (0) a parity check. A parity error sets bit TCPE (RTERR.O). 

If parity is enabled (PAR = 1). even (1) or odd (0) parity is used for the data check. 

Defines the number of stop bits. Possible values are 1 or 2 stop bits 

TCERRT Defines the treatment of detected errors. If the received character is correct. the byte 
RTERR contains O. The possible values for the switch TCERRT are: 

TCERRT = 0: the current. erroneous character is discarded and the receive function is initialized 
for a new start bit check. This means the software tries to find a valid start bit. 

TCERRT = 1: the error is indicated in byte RTERR. the reception of the current character contin-
ues. 

Possible errors are: 

TCPE (RTERR.O) = 1 - parity error. The sum of 1 s contained in the data bits. the address bit. and the 
parity bit is not correct. It is not odd for odd parity OR even for even parity 

TCFE (RTERR.1) = 1 - frame error. This means the middle of the start bit is high. or one of the stop 
bits is low. This error is normally caused by a software start inside of a character frame. 
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7-BH Data 
No Address Bit 

7-Bit Data 
Address Bit 

8-Bit Data 
No Address Bit 

8-Bit Data 
Address Bit 

Transmit Mode: the data to be transmitted is loaded right-aligned into the 
RAM word RTDATA. The address bit - if enabled by ADDR = 1 - is included. 
No error is possible. Four examples forthe data in RTDATA are shown in figure 
6-95. The completion of the transmission is indicated by a value of 
(TX6-RTTAB) in the status byte RTSTAT. A relative number (TX6-RTTAB) is 
necessary due to the many possible data formats. 

15 7 0 

o 
I 

0 
I 

7-Bit Data 

15 7 0 

o IADRI 7-Bit Data 

15 8 7 0 

o B-Bit Data 

15 8 7 o 

o 8--Bit Data 

Figure 6-95. Transmitted Data Format 
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Receive Mode: the received data is loaded left-aligned into the RAM word 
RTDATA (see Figure 6-96). This means that, depending on the address bit 
and the number of data bits contained in the data word, a shift is necessary 
to get a single byte containing the received character. The input format used 
is necessary due to the address bit. The completion of the reception is indi­
cated by a value of (RC6-RTTAB) in the status byte RTSTAT. A relative num­
ber is necessary due to the many possible data formats. If no error occurred, 
then the error byte RTERR contains 0, otherwise it contains the reason of the 
error in its LSBs: 

oBit TCPE (RTERR.O) is set: a parity error occurred 

O· Bit TCFE (RTERR.1) is set: a frame error occurred. This can be Caused 
by a start bit having a mark signal (1) or a stop bit having a space signal 
(0). 
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15 

7-BitData 7-BitData 
No Address Bit 

15 

7-Bit Data 

Address Bit I ADRI 7-Bit Data 

15 

8-BitData a-Bit Data 
No Address Bit 

15 

8--Bit Data 

Address Bit IADRI B-BR Data 

Figure 6-96. Received Data Format 

Definitions for the common part 

STACK 

FLLMPY 

.equ 

.equ 

0300h 

32 

Definitions for the OART part 

a 7 

I o I 0 

a 7 

0 

8 7 

0 

a 7 

0 

Stack start address 

FLL multiplier for 1,048MHz 

Data format: 4800 Baud, even parity, 7 data bits, 1 stop bit 

MCLK for OART clock, also erroneous characters to input 

buffer 

Baudr .equ 4800 Baud rate is 4800 Baud 

OARTCLK .equ FLLMPY*32768 MCLK is used for OARTCLK 

CHARC .equ 7 Length: 7: 7 bits 8: a bits 

ADDR .equ 0 Address bit: 1: yes 0: no 

PAR .equ 1 Parity 0: disabled 1 : enabled 

PAREV .equ 1 Parity 0: odd 1: even 

STB .equ 1 Stop bits: 1: one 2: two 

TCERRT .equ 1 0: error restart 1: indication 
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TCPE 

TCFE 

CUBR 

INIT 

MAINLOOP 

.equ 

.equ 

.equ 

. even 

.bss 

.bss 

.bss 

. text 

MOV 

CALL 

EINT 

1 

:I 

-(UARTCLK/Baudr) 

RTDATA,2 

RTERR,l 

RTSTAT,l 

#STACK,SP 

#INITSR 

Parity error: RTERR.O = 1 

Frame error: RTERR.l = 1 

Content B-Bit Counter 

Word boundary 

Data for receive/transmit 

Error byte 

status byte 

Software start address 

Initialize Stack Pointer 

Init. FLL and RAM 

Proceed with initialization 

Enable interrupts 

Mainloop starts here 

Prepare transmission of one character from RAM word RTDATA 

Info is. contained· right aligned in LSBs. No error possible 

MOV 

CALL 

CMP.B 

JEQ 

#xxx,RTDATA 

#TXINIT 

#TX6-RTTAB,RTSTAT 

CHARTX 

Character xxx to RTDATA 

Initialize the transmit part 

Continue with background 

Check for completion: 

Character transmitted? 

Yes, .prepare next one 

No, continue 

Prepare the reception of one character to RAM word RTDATA 

Info is contained left aligned in the LSBs. Errors in RTERR 

CALL 

6-340 

#RCINIT Initialize the receive part 

Continue in background 

Check for completion: 
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CMP.B 

JNE 

TST.B 

JNZ 

CLRC 

RRC 

BR 

#RC6-RTTAB,RTSTAT 

NO_CHAR 

RTERR 

ERRHDL 

RTDATA 

#MAINLOOP 

One character received? 

No, continue 

Yes, error? 

Yes, check reason 

No, shift a 0 in MSB 

RTDATA+l contains 7-bit data 

Process data in RTDATA+l 

Back to main loop 

Common interrupt handler for transmit and receive functions. 

The carry of TCDAT is switched to the PO.l interrupt request. 

Interrupt time interval of the 8-bit timer is: l/Baud rate 

The single status byte RTSTAT contains the actual status: 

Idle: 

Transmit: 

Receive: 

TXRCINT PUSH 

MOV.B 

MOV.B 

ADD 

RTTAB . BYTE 

RTSTAT 0 No UART activity 

RTSTAT 1 ... TX6-RTTAB-1 Active 

TX6-RTTAB Character output 

RTSTAT RC-RTTAB ... RC6-RTTAB-1 Active 

RC6-RTTAB 

RS 

RTSTAT,RS 

RTTAB(RS), RS 

RS,PC 

RTSTATO-RTTAB 

Char. received 

Save R5 

Receive/transmit status 

offset to handler address 

RTTAB+RTSTATx-RTTAB -> PC 

Offset RTSTAT = 0 (inactive) 

Transmit states 

TX . BYTE TXSTAT1-RTTAB TX: Start bit 

. BYTE TXSTAT2-RTTAB TX: LSB 

. BYTE TXSTAT2-RTTAB TX: LSB+l 

.BYTE TXSTAT2-RTTAB TX: LSB+2 

. BYTE TXSTAT2-RTTAB TX: LSB+3 

. BYTE TXSTAT2-RTTAB TX: MSB-3 

.BYTE TXSTAT2-RTTAB TX: MSB-2 

.if CHARC=8 Data length 7 or.8 bits? 

. BYTE TXSTAT2-RTTAB TX: MSB-l 
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.endif 

.BYTE TXSTAT2-RTTAB 

.if ADDR=l 

. BYTE TXSTAT3-RTTAB 

.endU 

.if PAR=l 

. BYTE TXSTAT4-RTTAB 

.endif 

. BYTE TXSTATS-RTTAB 

.if STB=2 

. BYTE TXSTATS-RTTAB 

.endif 

TX6 . BYTE TXSTAT6-RTTAB 

TX: MSB 

Address bit? 

TX: Address bit 

Parity enabled? 

TX: Parity bit 

TX: stop bit 1 

Two stop bits? 

TX: stop bit 2 

TX: Frame output completed 

Receive states: interrupt occurs in the middle of the bits 

RC .BYTE RCSTAT1-RTTAB RC: start bit 

. BYTE RCSTAT2-RTTAB RC: LSB 

. BYTE RCSTAT2-RTTAB RC: LSB+1 

. BYTE RCSTAT2-RTTAB ., RC: LSB+2 

. BYTE RCSTAT2-RTTAB RC: LSB+3 

. BYTE RCSTAT2-RTTAB RC: MSB-3 

. BYTE RCSTAT2-RTTAB RC: MSB-2 

.if CHARC=8 Data length 7 or 8 bits? 

. BYTE RCSTAT2-RTTAB RC: MSB-1 

.endif 

.BYTE RCSTAT2-RTTAB RC: MSB 

.if ADDR=l Address bit? 

. BYTE RCSTAT3-RTTAB RC: Address bit 

. end if 

.if PAR=l Parity enabled? 

. BYTE RCSTAT4-RTTAB RC: Parity bit 

. end if 

. BYTE RCSTATS-RTTAB RC: stop bit 1, parity. check 

.if STB=2 Two stop bits? 

.BYTE RCSTAT6-RTTAB RC: stop bit 2 
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RC6 

.endif 

.BYTE TXSTAT6-RTTAB RC: Frame received 

Transmit software part. Interrupt after output bit. 

The bit length and data of the next but one bit is defined 

TXSTAT1 BIC.B 

JMP 

TXSTAT 3 . equ 

TXSTAT2 RRA 

, JC 

TXO BIC.B 

#TXD,&TCCTL 

TXRET 

$ 

RTDATA 

TX1 

#TXD, &TCCTL 

JMP TXRET 

TX1 .equ 

.if 

XOR.B 

.endif 

TXSTAT5 .equ 

BIS.B 

$ 

PAR=l 

n,RTERR 

$ 

#TXD,&TCCTL 

Start bit: output space (0) 

To common interrupt return 

Address bit (if defined) 

Data bit: next one to carry 

Data is 1 

Output data 0: reset TXD 

Output 1 with parity count 

Parity enabled? 

Toggle LSB for parity 

Stop bit: output 1 wlo parity 

Data is 1: set TXD 

Tasks are made, the next but one bit length is loaded to the 

pre-load register TCPLD. The bit length for the current bit was 

loaded with the current interrupt. 

TXRET MOV.B RTSTAT,RS ; Transmit status to RS 

MOV.B MODTAB-1(R5),&TCPLD ; Next but one bit length 

JMP RTRET ; To common RETI part 

.if PAR=l Parity enabled? 

TXSTAT4 BIT.B #l,RTERR Yes, check parity value 

JNZ TX1 Output mark (1) . TCPE 0 

JMP TXO Output space (0). TCPE 0 

. end if 
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One full character is received or transmitted. The UART 

hardware is switched off. The status for a completed 

character is: 

Receive Mode: RC6-RTTAB 

Transmit Mode: TX6-RTTAB 

TXSTAT6 BIC.B 

BIC.B 

JMP 

#POIEl,&IEl ; Disable TCDAT carry interrupt 

#RXACT+ENCNT,&TCCTL ; Stop T/C, conserve power 

RTSTATO ; To RETI w/o status change 

Receive software part. Interrupt occurs in the middle of the 

bit. The bit length of the next but one bit is defined 

RCSTATI BIT.B lIRXD,&TCCTL Check middle of start bit 

JZ RCRET Start bit is 0: ok 

.if TCERRT-l Error, indication wished? 

BIS.B #TCFE,RTERR Frame error bit TCFE set 

.endif 

JMP RCERR Start bit is 1; error 

RCSTAT4 .equ $ Parity bit is received normally 

RCSTAT3 .equ $ Address bit too 

RCSTAT2 BIT.B #RXD,&TCCTL Data bits: info to carry 

RRC RTDATA Shift data into MSB 

.if PAR=l Parity enabled? 

IN RCI Data is a 1: adjust parity 

JMP RCRET Data is a 0: all done 

RCI XOR.B #l,RTERR Yes, adjust odd/even info 

.endif 

Tasks are made, the next but one bit length is loaded to the 

pre-load register TCPLD. The bit length for the next bit was 

loaded with the current interrupt. 

info 

RCRET MOV.B 

MOV.B 

RTSTAT,RS ; Transmit status to RS. Length 

MODTAB-{RC-TX){RS),&TCPLD ; next but one bit 
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RTRET INC.B 

RTSTATO POP 

RETI 

RTSTAT 

RS 

To next receive status 

Restore RS 

Stop bit handling: RXD must be high. Parity is checked also: 

Parity bit RTERR.O (TCPE) must be 0 

RCSTATS .equ 

.if 

RLA 

.if 

BIT.B 

JNZ 

.endif 

. end if 

RCSTAT6 BIT.B 

JNZ 

.if 

BIS.B 

JMP 

.endif 

$ 

PAR-1 

RTDATA 

TCERRT-O 

#l,RTERR 

RCERR 

#RXD,&TCCTL 

RCRET 

TCERRT-I 

#TCFE,RTERR 

RCRET 

Parity check during stop bit 1 

Parity enabled? 

Shift out parity bit 

Restart for error? 

Yes, check parity value TCPE 

Not 0: error. TCPE stays 1 

Stop bit (1 or 2) high? 

Yes, Parity and stop bits ok 

No, Error indication wished? 

Yes, set frame error bit 

Continue with frame 

No, to error handler RCERR 

Error handling: two different ways can be selected: 

TCERRT 

TCERRT 

RCERR 

RCERR 

0: restart, start bit check. Current char. is discarded 

1: error indication in RTERR. Reception continues. 

.if 

BIC.B 

EINT 

CALL 

JMP 

.else 

.equ 

.endif 

TCERRT-O 

#POIE1,&IE1 

#RCINIT 

RTSTATO 

RCRET 

Error indication wished? 

No, intrpt disabled: UART off 

Allow nesting 

Restart receive task 

Yes, continue 

Table MODTAB contains the calculated bit lengths that fit 
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best. Sequence: start bit, LSB ... MSB, (address bit), 

(parity), stop bits + one bit more for the turn-off 

Only the necessary bytes - dependent on the frame length -

are included. An bits are calculated individually. 

Resolution of the calculation is 10 bits 

MODTAB 

CMOD 

.equ 

.equ 

.eval 

$ ; Calculate fraction (UARTCLK/Baudr) 

«(1024*UARTCLK)/Baudr)-1024*(UARTCLK/Baudr» 

CMOD,M$OO 

.mnolist 

. loop 

.eval 

.if 

.eval 

.mUst 

9+(ADDR=1)+(PAR=1)+(CHARC=8)+(STB=2)+1 

CMOD+M$OO,M$OO 

M$OO>1023 

M$00-1024,M$00 

Carry to integer? 

Yes 

Bit # 

. byte CUBR-1 C$x = 1: Bit one cycle longer 

.rnnolist 

.else 

.mlist 

. byte CUBR C$x 0: Bit normal-length 

.mnolist 

.endif 

.endloop 

. even To word boundary 

Subroutines 

The subroutine prepares the 8-Bit Timer/Counter hardware to 

transmit data. Initialize control byte TCCTL: 

SSEL1/SSELO: 1/0 for MCLK frequency 

ISCTL: -1 Carry of TCDAT register causes PO.1 intrpt 

TXE: 1 Output PO.2 to TXD, disable POOUT.2 

TXD 1 Set TXD (PO.2) to high (mark) 

ENCNT: 1 Enable clock to the TCDAT register 

TXINIT MOV.B #SSEL1+ISCTL+TXE+TXD+ENCNT,&TCCTL 

MOV.B #TX-RTTAB,RTSTAT ; Transmit status for start bit 
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JMP RTINIT To common part 

The subroutine prepares the 8-Bit Timer/Counter hardware to 

receive data. Initialize control byte TCCTL: 

SSEL1/SSELO: I/O for MCLK frequency 

ISCTL: 1 Carry of TCDAT register causes PO.1 intrpt 

TXE: 1 Enable output buffer for PO.2 

TXD: 1 Set TXD (PO.2) to high (mark) 

RXACT: ° Reset Edge Detect Flip-Flop 

RCINIT MOV.B #SSEL1+ISCTL+TXD+TXE,&TCCTL 

MOV.B 

CLR 

BIS.B 

#RC-RTTAB,RTSTAT 

RTDATA 

#2,&POIES 

Receive status start bit 

Clear data word 

Neg. edge detect for PO.l 

Common part for transmit and receive. The parity bit RTERR.O 

is initialized in a way, that always zero is returned, if 

the parity is ok. 

RTINIT MOV.B #CUBR/2,&TCPLD 

MOV.B #O,&TCDAT 

MOV.B MODTAB,&TCPLD 

.if (PAR=l) & (PAREV=O) 

MOV.B #l,RTERR 

.else 

MOV.B #O,RTERR 

. endif 

BIS.B #POIE1,&IE1 

BIS.B #RXACT,&TCCTL 

RET 

Interrupt Vectors 

. sect 

. word 

.sect 

. word 

"SCIVEC",OFFF8h 

TXRCINT 

"INITVEC",OFFFEh 

INIT 

Half bit time to 1st intrpt 

Load half bit time to TCDAT 

Bit time for 1st bit 

Odd Parity enabled? 

Odd parity: RTERR.O 1 

No parity .or . even parity 

TCDAT carry intrpt enabled 

Receive: enable edge detect. 

HW/SW UART Vectors 

Common TX/RC Vector 

Reset Vector 

Program Start Address 
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6.10.4.2 ACLK Used for the UART Clock 

With the ACLK used for the UART clock, two different methods are possible. 

o ACLK used with the active mode - the only difference to the last section 
is the use of the ACLK instead of the MCLK. 

o ACLK used with the low power mode 3 - The CPU is switched off normal­
ly (LPM3) but the UART activity continues. This method is necessary for 
low power applications. 

The two different methods are described in the next two sections. 

6.10.4.2.1 ACLK With the Active Mode 

The ACLK can be used for the UART ciock in very much the same way as the 
MCLK (see Section 6.10.4.1 for details). The use of the ACLK may be neces­
sary if the needed baud rate is too low for the MCLK frequency in use. For ex­
ample, with an MCLK of 1.048 MHz, the lowest (usual) baud rate is 4800 baud. 

To use the ACLK with the active mode, it is only necessary to change two parts 
of the software example of Section 6.10.4.1: 

o The definition line for the UART clock: 

UARTCLK .equ 32768 ; ACLK is used for UART.CLK 

o The initialization subroutin.es TXINIT and RCINIT. Instead of the MCLK, 
the ACLK needs to be defined with the initialization subroutines (SSELO 
= 1, SSEL 1 = 0). The simplest way is to use the subroutines of this Section 
(6.10.4.2). 

6.10.4.2.2 ACLK With the Low Power Mode 3 

This section shows another approach. With this example, the CPU is normally 
off and leaves .the LPM3 only for the interrupt handling and after a complete 
character is received or transmitted. 

Example 6-66. Half duplex UART With Interrupt 
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o The ACLK (32,768 Hz) is used for the UART clock 

o Eight data bits 

o Parity enabled with odd parity 

o Address bit included 

o Two stop bits 

o Reception of correct characters only (no error indication, restart instead) 

o The CPU normally uses the low power mode 3 (LPM3) 

o UART signals like shown in figure 6-87 (mark = Vee, space = Vss) 

The software switches have the same function as described in Section 
6.10.4.1. The UARTCLK is defined with the crystal frequency. 

Also, this example uses a looped calculation for the correction of the bits. Not 
only eight different bits are calculated, but all ofthe bits of a frame (9 to 13) are 
calculated individually. See the software part starting at the label MODTAB. 

Transmit Mode: the data to be transmitted is loaded right-aligned into the 
RAM word RTDATA. The address bit - if enabled by ADDR = 1 - is included. 
No error is possible. Four examples for the data in RTDATA are shown in figure 
6-95. The completion of the transmission is indicated by the value 
(TX6-RTTAB) in the status byte RTSTAT. The interrupt routine outputs the 
character and resets after the completion the CPUoff bit and the SCG1 and 
SCGO bits of the stored status register on the stack. This manipulation omits 
the return to LPM3 and initializes the next transmit sequence. 

Receive Mode: the received data is loaded left-aligned into the RAM word 
RTDATA. This means that depending on the address bit and the number of 
data bits contained in the data word, a shift is necessary to get a single byte 
containing the received character. Examples for the data are shown in figure 
6-96. The input format used is necessary due to the address bit. The comple­
tion of the reception is indicated by the value (RC6-RTTAB) in the status byte 
RTSTAT. After the reception of a complete character, the interrupt handler re­
sets the CPUoff bit and the SCG 1 and SCGO bits of the stored status register 
on the stack. This manipulation omits the return to LPM3 and allows the proc­
essing of the received data. The error handling is the same as shown for the 
example in Section 6.10.4.1. 
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Definitions for the common part 

STACK 

FLLMPY 

.equ 

.equ 

0300h 

32 

Stack start address 

FLL multiplier for 1,048MHz 

Definitions for the UART. Data format: 

odd parity, 8 data bits, address bit, 2 stop bits 

ACLK for UART clock, only correct characters to input buffer 

Baudr .equ 2400 Baud rate is 2400 Baud 

UARTCLK .equ 32768 ACLK is used for UARTCLK 

CHARC .equ 8 Length: 7: 7 bits 8: 8 bits 

ADDR .equ 1 Address bit: 1 yes o no 

PAR .equ 1 Parity 0: disabled 1: enabled 

PAREV .equ 0 Parity 0: odd 1: even 

STB .equ 2 Stop-bits: 1 : one 2 : two 

TCERRT .equ 0 0: error restart 1: indication 

TCPE .equ 1 Parity error: RTERR.O = 1 

TCFE .equ 2 Frame error: RTERR.1 1 

CUBR .equ -(UARTCLK/Baudr) Content 8-Bit Counter 

. even Word boundary 

.bss RTDATA,2 Data for recei ve/tra'nsmi t 

.bss RTERR,l Error byte 

.bss RTSTAT,l Status byte 

. text Software start address 

INIT MOV #STACK,SP Initialize Stack Pointer 

CALL HNITSR Init. FLL and RAM 

Proceed with initialization 

EINT Enable interrupts 

Prepare the transmission of one character from RAM word 
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RTDATA. Info is con~ained right aligned in the LSBs. No error 

is possible 

MOV 

CALL 

#xxx,RTDATA 

#TXINIT 

Character xxx to RTDATA 

Initialize the transmit part 

Continue with background 

Prepare the reception of one character to RAM word RTDATA 

CALL #RCINIT Initialize the receive part 

Continue in background 

After the completion of all background tasks, enter LPM3 

PLPM3 BIS #CPUoff+GIE+SCGl+SCGO,SR Enter LPM3 

An interrupt handler cleared the CPUoff, SCGl and SCGO bits 

of the SR on the stack. Checks are made if activity is 

needed; 

Receive Mode; 

Transmit Mode; 

CMP.B 

JEQ 

CMP.B 

JEQ 

JMP 

one character is received 

one character is output completely 

other interrupt handlers 

#RC6-RTTAB,RTSTAT One character received? 

CHAR_RC Yes, process character 

#TX6-RTTAB,RTSTAT One character transmitted? 

CHAR_TX Yes, prepare next one 

Check other reasons 

PLPM3 Back to LPM3 

Common interrupt handler for transmit and receive functions. 

The carry of TCDAT is switched to the PO.l interrupt request 

Interrupt time interval of the B-bit timer is: l/Baud rate 

The single status byte RTSTAT contains the actual status; 

Idle: RTSTAT o 
Transmit: RTSTAT = 1 ... TX6-RTTAB-l 

No activity 

Active 
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Receive: 

TXRCINT PUSH 

MOV.B 

MOV.B 

ADD 

RTTAB .BYTE 

TX6-RTTAB Character output 

RTSTAT - RC-RTTAB ... RC6-RTTAB-l Active 

RC6'-RTTAB Char. received 

RS Save RS 

RTSTAT,RS Receive/transmit status 

RTTAB{RS),RS Offset to handler -> RS 

RS,PC RTTAB+RTSTATx-RTTAB -> PC 

RTSTATO-RTTAB Offset RTSTAT = a (inactive) 

! 

Like shown for MCLK version 

Note: 

The Interrupt handler for the UART when using the ACLK for the the UART 
clock is the same as the handler for when the MCLK is used. Only the small 
software part after the completion of a received or sent character (at label 
TXSTAT6) is slightly different. It resets the CPUoff, SCG1, and also SCGO 
bits (SR.4 to SR.6) to allow a software activity after the return from interrupt 
RETI. Also, the first instructions of the initialization subroutines are different. 
These parts are shown below. 

One full character is received or transmitted. The UART 

hardware is switched off, the LPM3 is terminated to wake-up 

the CPU after the RETr. The status for a completed character 

is: 

Receive Mode: RC6 - RTTAB 

Transmit Mode: TX6 - RTTAB 

#POIE1,&IEl ; Disable TCDAT carry interrupt TXSTAT6 BIC.B 

BIC.B 

BIC 

JMP 

#RXACT+ENCNT,&TCCTL ; Stop T/C, conserve power 

#SCG1+SCGO+CPUoff,2(SP) ; Terminate LPM3 

RTSTATO ; To RETI 

Subroutines 

The subroutine prepares the a-Bit Timer/Counter hardware to 

transmit data. Initialize control byte TCCTL: 

SSEL1/SSELO: 0/1 for ACLK frequency 
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; 'ISCTL: 1 Carry of TCDAT register causes PO.1 intrpt 

TXE: 1 Enable output buffer for PO.2 

TXD 1 Set TXD (PO.2) to high (mark) 

ENCNT: 1 Enable clock to the TCDAT register 

TXINIT MOV.B #SSELO+ISCTL+TXE+TXD+ENCNT,&TCCTL 

MOV.B 

JMP 

#TX-RTTAB,RTSTAT 

RTINIT 

Transmit status, start bit 

To common part 

The subroutine prepares the 8-Bit Timer/Counter hardware to 

receive data. 'Initialize control byte TCCTL: 

SSEL1/SSELO: 0/1 for ACLK frequency 

ISCTL: 1 Carry of TCDAT register causes PO.1 intrpt 

TXE: 1 Enable output buffer for PO.2 

TXD: 1 Set TXD (PO.2) to high (mark) 

RXACT: 0 Reset the Edge Detection Flip-Flop 

RCINIT MOV.B #SSELO+ISCTL+TXD+TXE;&TCCTL; Control byte 

MOV.B 

CLR 

BIS.B 

#RC-RTTAB,RTSTAT 

RTDATA 

#2,&POIES 

Receive status, start bit 

Clear data word 

Neg. edge detection on PO.1 

Common part for transmit and receive. The parity bit RTERR.O 

is initialized in a way, that always zero is returned, if the 

parity is ok. 

RTINIT MOV.B #CUBR/2,&TCPLD Half bit time to 1st intrpt 

MOV.B #O,&TCDAT Load half bit time to TCDAT 

MOV.B MODTAB,&TCPLD Bit time for 1st bit 

.if (PAR=l)&(PAREV=O) Odd Parity enabled? 

MOV.B #l,RTERR Odd parity: RTERR.O 1 

.else 

MOV.B #O,RTERR No parity .or . even parity 

. endif 

BIS.B #POIE1,&IE1 TCDAT carry intrpt enabled 

BIS.B #RXACT,&TCCTL Receive: enable edge detect. 
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RET 

Interrupt Vectors 

. sect "SCIVEC",OFFF8h 

. word TXRCINT 

. sect "INITVEC",OFFFEh 

. word INIT 

HW/SW UART Vectors 

Common TX/RC Vector 

Reset Vector 

Program Start Address 

6.10.4.3 CPU Loading and Memory Space 

6.10.4.3.1 CPU Loading 

The CPU loading due to the UART activity can be calculated with simple for­
mulas. The formulas are slightly different for the transmit and the receive 
mode, because they have different medium cycles per bit. The numbers are 
given for a frame with 8 data bits, parity enabled, no address bit, and two stop 
bits. This results in 13 interrupts per frame (the turn off of the 8-Bit Timer! 
Counter is included). The transmitted [resp.] received character is OAAh with 
its sequence of ones and zeros. 

The cycle count includes: 6 
n 
5 

cycles to get to the 1 st instruction of the interrupt handler 
cycles for the interrupt handler itself 
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cycles for the RETI instruction 

Not included are: the initialization subroutines, the data preparation for the 
transmit mode, and the data processing for the receive mode. 

Transmit Mode - the sum of cycles for a complete frame is 708 cycles. The 
medium cycle count per transmitted bit is 708/13 = 54.46 cycles. 

Receive Mode - the sum of cycles for a complete frame is 699 cycles. The 
medium cycle count per received bit is 699!13 = 53.77 cycles. 

The formula to calculate the percentage for the CPU load due to the UART ac­
tivity is: 

CPULoad BaudRatex c x 100 
!MeL!( 
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=-------------~--------~~~-------------

Where: 
CPULoad 
fMCLK 
BaudRate 
c 

Loading of the MSP430 CPU by the UART 
system clock used for the UART 
Used baud rate of the UART 
MCLK cycles per bit used by the interrupt handler 

[%] 
[Hz] 
[Hz] 

If MCLK = 1.048 MHz and the baud rate = 4800 Hz, then the CPU loading is 
approximately 24.7%. 

6.10.4.3.2 Memory Space 

The memory space needed by the 8-Bit Timer/Counter UART depends on the 
UART format used and the enabled options. The minimum version is shown 
first and the additional bytes due to the enabled functions afterward. The num­
bers given include the interrupt handler TXRCINT and the two initialization 
subroutines TXINIT and RCINIT. 

Minimum Version: (7 data bits, no address bit, no parity, one stop bit, error indication). 

8 data bits 
Address bit included 
Parity enabled 
Two stop bits 
Error restart enabled 

Maximum Version: 

202 ROM bytes, 4 RAM bytes 
+ 4 bytes 
+ 2 bytes 
+30 bytes 
+ 2 bytes 
+ 16 bytes 

256 ROM bytes, 4 RAM bytes. 

6.10.4.4 UART Speed-Up Possibilities 

The following ideas on how to speed up the UART come from Mark Buccini TI/Atlanta. It must be deter­
mined for each application if these possibilities can be used. 

6.10.4.4.1 Dedicated CPU Register for the Status 

The use of a dedicated CPU register for the status makes the saving and re­
storing of the needed register unnecessary. If it is incremented by two, it can 
step through a word table with minimum overhead. 

; Initialization for transmit 

TXINIT Like described before 

MOV #TX-RTTAB,R5 Initialize transmit status 
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TXRCINT MOV 

RTTAB ,WORD 

TX 

RTRET 

,WORD 

,WORD 

INCD 

RTSTATO RETI 

RTTAB(R5) ,PC 

RTSTATO 

TXSTATI 

TXSTAT2 

R5 

Start of handler to PC 

Address for R5 - 0 (inactive) 

Transmit states: 

TX: start bit 

TX: LSB 

Return from interrupt 

To next status (steps of 2) 

The autoincrement addressing mode may also be used to speed up the interrupt handler: 

Initialization for transmit 

TXINIT 

MOV #TX,R5 

Like described before 

Initialize transmit status 

R5 contains the address of the current table word 

TXRCINT MOV 

RTTAB ,WORD 

TX 

RTRET 

,WORD 

,WORD 

RETI 

RTSTATO DECD 

RETI 
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@R5+,PC 

RTSTATO 

TXSTATI 

TXSTAT2 

R5 

start of handler to PC 

Address - RTTAB (inactive) 

Transmit states: 

TX: Start bit 

TX: LSB 

Return from interrupt 

Next status yet in R5 

Completed: last status 
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6.10.4.4.2 No Baud Rate Correction 

No baud rate correction is needed if the MCLK is used for the baud rate Gener­
ation. This allows a shorter interrupt handler with fewer cycles and less pro­
gram space. 

6.10.4.4.3 Word Table Instead of a Byte Table 

If a word table instead of the byte table is used for the distribution at the start 
of the interrupt handler, then more program space is needed, but the execution 
is faster. See Section 6.10.4.4.1. 

6.1 0.4.4.4 Mixture of the Methods 

The two sources for the UART clock are detailed in sections 6.10.4.1 (MCLK) 
and 6.10.4.2 (ACLK) may be mixed to get the best of both worlds: 

Transmit Mode - the program normally uses the LPM3. If a character needs 
to be output, then the active mode with its MCLK is used. The software is identi­
cal to the transmit mode shown in Section 6.10.4.1. 

Receive Mode - the program normally uses the LPM3 with the interrupt of 
the PO.1 pin activated on negative edges (start bit). 

o The initialization subroutine is the same as shown in Section 6.1 0.4.1 with 
the exception of: 

• The bit ISCTL in the control register TCCTL is reset to enable the inter­
rupt at pin PO.1 for negative edges. 

o The next start bit wakes up the MSP430, which starts the following activi­
ties: 

• The control loop of the system clock generator is closed to get a con­
trolled MCLK frequency (SCGO = 0) 

• The interrupt source is switched from the input pin PO.1 to the carry of 
the 8-bit counter (ISCTL = 1) 

o The MCLK stays active until the complete character Is received. The 
LPM3 is activated again after the processing of the received data. 
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6.11 The Comparator_A 

The Comparator_A module is contained in some members of the 
MSP430xl xx family. It can be used for precise analog measurements. Figure 
6-97 shows the versatile hardware of the module. 

Figure 6-97. Comparator_A Hardware 
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6.11.1 Definitions Used With the Application Examples 

The abbreviations used for the hardware definitions are consistent with the 
MSP430 Architecture User's Guide. 

HARDWARE DEFINITIONS 

COMPARATOR_A 

CACTL1 .equ OS9h 

CAIFG .equ 001h 

CAIE .equ 002h 

CArES .equ 004h 

CAON .equ OOSh 

CAREFO .equ 010h 

CAREF1 .equ 020h 

CARSEL .equ 040h 

CAEX .equ OSOh 

CACTL2 .equ OSAh 

CAOUT .equ 001h 

CAF .equ 002h 

P2CAO .equ 004h 

P2CA1 .equ OOSh 

CACTL24 .equ 010h 

CACTL2S .equ 020h 

CACTL26 .equ 040h 

CACTL2? .equ OSOh 

CAPD .equ OSBh 

CAPDO .equ 001h 

CAPD1 .equ 002h 

CAPD2 .equ 004h 

CAPD3 .equ OOSh 

CAPD4 .equ 010h 

CAPDS .equ 020h 

CAPD6 .equ 040h 

CAPD? .equ OaOh 

Control Register 1 

Interrupt Flag 

Interrupt Enable Flag 

Edge Select 0: rising 1: falling 

Supply 0: off 1: off 

00: off 01: 0.5xVcc 

10: 0.2SxVcc 11: Vref 

Reference to: 0: CAD 1: CAl 

0: CAO -> + 1: CAl -> + 

Control Register 2 

CA Output 

Output Filter 0: off 1: on 

Switch CAO 0: off 1: CAO 

Switch CAl 0: off 1: CAl 

Software Bits 

Control Register 3 

Input Buffer Switches Port 2 

0: Input Buffer enabled 

1: Input Buffer disabled 

on 

on 

Avoid current through input buffers 

with analog signals 

On-Chip Peripherals 6-359 



The Comparator_A 

6.11.1.1 Attributes of the Comparatof_A 
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The hardware allows all combinations of comparisons. The bit CAOUT 
(CACTL.O) contains the result of the comparison: 

o Comparison of two external inputs 

o Comparison of each external input with 0.25 x Vee or 0.5 x Vee 

o Comparison of each external input with an internal reference voltage 

o An analog filter can be switched to the CAOUT output 

o The module has interrupt capability for the leading and the trailing edge 
of the output signal CAOUT 



The Comparator A . 
6.11.2 Fast Comparator Input Check 

Often a very fast sampling of sequential input values is necessary. The follow­
ing measurement sequence is the fastest way to do this with the Compara­
toeA inputs. After the n input checks, a majority test - or something equiva­
lent - can be made for a decision. Figure 6-98 shows the hardware used for 
the example. The software samples the voltage generated by the current 
Imeas through resistor Rm. A voltage drop higher than 0.25 x Vee sets CA­
OUT, a lower voltage drop resets CAOUT. After n samples, the number of 
sampled 1 s is checked. Any other input combination may also be used. 

Figure 6-98. Fast Comparator Input Check Circuitry 
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Fast test for the state of the Comparator_A input 

MOV.B 

MOV.B 

MOV 

MOV.B 

ADD.B 

ADD.B 

#CARSEL+CAREFl+CAON,&CACTLl 

#PCAO,&CACTL2 

Define Comp~ mode 

#CACTL2,Rl5 

@Rl5,R5 

@Rl5,R5 

@Rl5,R5 

Prepare pointer to reg. CACTL2 

sample CAOUT (CAOUT = CACTL2.0) 

Add next sample 

Add following samples 

Add sample n 

Test if CAOUT showed more than n/2 times a positive result 

SUB 

CMP.B 

JHS 

#n*PCAO,R5 

#1+ (n/2) , R5 

POS 

or an even faster decision: 

Correct result 

R5 - (1+n/2) 

More samples are 1 

More samples are 0 

Test if CAOUT showed more than n/2 times a positive result 

6-362 

CMP.B 

JHS 

#n*PCAO+l+(n/2),RS 

POS 

RS-n*PCAO+(1+n/2) 

More samples are 1 

More samples are 0 
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6.11.3 Voltage Measurement 

Figure 6-99 shows hardware that can be used for the measurement of exter­
nal voltages. The supply voltage is used for reference. The measurement prin­
ciple is the same one as shown in section Voltage Measurement with the 
Universal Timer Port/Module. 

m+~+~ m+~+~ 
0.25xVccx 2 < Yin <Vccx 

R +R3 R2+R3 

Figure 6-99. Voltage Measurement 
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7.1 Hints and Recommendations 
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During the software development for the first MSP430 projects, a lot of experi­
ence was acquired. The following hints and recommendations are for all pro­
grammers and system designers having more experience with 4-bit and 8-bit 
microcomputers than with 16-bit systems. Also mentioned are deviations the 
MSP430 family shows when compared to other 16-bit architectures (e.g., the 
function of the carry bit as an inverted zero bit with some instructions). 

o Frequently Used Bits: these bits should always be located in bit positions 
0, 1, 2, 3, 7, or 15. The first four bits can be set, reset, and tested with 
constants coming from the constant generator (1,2,4,8), and the last two 
can be easily tested with the conditional jump instructions IN and JGE: 

TST.B RSTAT 
JGE BIT7LO 
TST MSTAT 

TEST Bit7 (OV <-.0) 

'JUMP IF MSB OF BYTE IS 0 
TEST Bit15 (OV <- 0) 
JUMP IF MSB OF WORD IS 1 IN BIT15HI 

o Use of BCD arithmetic: If simple up/down counters are used and are to 
be displayed. This saves time and ROM space because no unnecessary 
binary-BCD conversion is needed. 

EXAMPLE: Counter1 (four BCD digits) is incremented. Counter2 (eight BCD 
digits) is decremented by one. 

CLRC DADD adds Carry bit tool 
DADD #OOOl,COUNTERl INCREMENT COUNTERl DECIMALLY 
CLRC 
DADD #9999h,COUNTER2 DECREMENT B DIGIT COUNTER2 
DADO #9999h,COUNTER2+2 ; DECIMALLY 

o Conditional Assembly: This feature of the MSP430 assembler allows 
more than one version out of one source of code. This drastically reduces 
the effort to maintain software. Only one version needs to be updated if 
changes are necessary. See Section 9.2.1, Conditional Assembly and 
Floating Point Software Examples. 

o Use of Bytes: Use bytes wherever appropriate. The MSP430 allows the 
use of every instruction with bytes. The only exceptions are the instruc­
tions SWPB, SXT, and CALL. 

,[I Use of Status Bytes or Words: Use status bytes or words, not flags for 
the storage of states. This allows extremely fast branching with only one 
instruction to the appropriate handler. Otherwise, a time (and ROM) con­
suming skip chain is necessary (also see Section 9.2). 
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o Computing Software: Use integer routines if speed is essential. Use the 
floating point package if complex or very accurate calculations are need­
ed. 

o Bit Handling Instructions: 

With the bit handling instructions (BIS, BIT and BIC) more than one bit can 
be handled simultaneously. Up to 16 bits can be handled with a single in­
struction. 

The BIS instruction is equivalent to the logical OR and can be used this 
way. 

The BIC instruction is equivalent to the logical AND with the inverted 
source and can be used this way. 

o Use of the Addressing Modes: 

Use the symbolic mode for random accesses 

Use the absolute mode for fixed hardware addresses such as peripheral 
addresses 

Use the indexed mode for random accesses in tables 

Use the register mode for time critical processing and as the normal one 

Use assigned registers for extremely critical purposes. If a register always 
contains the same information, then it is not necessary to save it and to 
load it afterwards. The same is true for the restoring of the register when 
the task is done. 

o Stack Operations: 

All items on the stack can be accessed directly with the indexed mode. 
This allows completely new applications compared with architectures that 
have only simple hardware stacks. 

The stack size is limited only by the available RAM, not by hardware regis­
ter limitations. 

Note: 

The previously mentioned possibilities make strict housekeeping necessary. 
Every program part that uses the stack has to ensure that only relevant infor­
mation remains on the stack and that all irrelevant data is removed. If this rule 
is not used consequently, the stack will overflow or underflow. If complex 
stack handling is used, it is advised to draw the stack with its items and the 
stack pointer as shown with the examples Argument Transfer with Subrou­
tine Calls in Chapter 9. The drawn stack allocation gives a good overview. 
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EINT 
CLRC 
ADCRS 

o The Program Counter (PC): The PC can be accessed as every other reg­
ister with all instructions and all addressing modes. Be very careful when 
using this feature. Do not use byte instructions when accessing the PC, 
due to the clearing of. the upper byte when used. 

o The Status Register (SR): The SR can be accessed in register mode 
only. Every status bit can be set or reset alone or together. This feature can 
be used for status transfer in subroutines. The FPP uses this type of status 
transfer. 

o Enabling of the General Interrupt: The instruction that follows the enab­
ling of the interrupt is executed before an interrupt is accepted: 

Enable interrupt (GIE) 
; This instruction is executed before 
; the 1st interrupt is accepted 

o High-Speed Multiplication: If the fastest possible speed is necessary for 
multiplications and the hardware multiplier is not available, then the loop 
overhead can be omitted. 

Straight through programming: the effort used for the looping can be 
saved if the shifts and adds are programmed straight through. The routine 
ends at the known MSB of the multiplicand (here, at bit 13 due to an ADC 
result (14 bits) that is multiplied): 

EXECUTION TIMES FOR REGISTER USE· (CYCLES, CALL not included): 

TASK CYCLES EXAMPLE 

i-------------------------------------------------------------
MINIMUM 
MEDIUM 
MAXIMUM 

80 
96 

112 

OOOOOh x OOOOOh = OOOOOOOOOh 
OA5A5h x 05A5Ah = 03A763E02h 
OFFFFh x OFFFFh = OFFFEOOOlh 

Fast Multiplication Routine: Part used by signed and unsigned 
Multiplications. R5 x R4 -> R81R7 

MACUF CLR R6 MSSs MULTIPLIER 

RRA R4 LSS to carry 
JNC L$Ol IF ZERO: SKIP ADD 
ADD R5,R7 IF ONE: ADD MULTIPLIER TO RESULT 
ADDC R6,R8 

L$01 RLA RS MULTIPLIER x 2 
RLC R6 ; 



L$02 

L$014 

L$111 
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RRA R4 LSB+1 to carry 
JNC L$02 
ADD R5,R7 
ADDC R6,R8 
RLA R5 
RLC R6 

same way for bits 2 to 12 

RRA R4 MSB to carry (here bit13) 
JNC L$014 
ADD R5,R7 
ADDC R6,R8 No shift for multiplier necessary 
RET Return with result in R81R7 

o Emulation of Jump If Positive: No jump if positive is provided, only a 
jump if negative. But after several instructions it is possible to use the jump 
If greater than or equal (JGE) for this purpose. But it must be certain that 
the instruction preceding the JGE resets the overflow bit V. The following 
instructions ensure this: 

TST, SXT, RRA, BIT, AND. 

The use of this emulation should be noted in the comment field to ease 
software modifications. 

o Special Use of the Carry Bit: The following instructions have a special 
feature that is valuable during serial to parallel conversion. The carry acts 
as an inverted zero bit. This means ifthe result of an operation is zero then 
the carry is reset and vice versa. The instriJctions having this feature are: 

RLA 
BIT 
JZ 
INC 

BIT 
RLC 

XOR, SXT, INV, BIT, AND. 

Without using this feature a typical sequence for the conversion of an 110-
port bit to a parallel word would look like the following: 

R5 Free bit 0 for next info 
#l,&IOIN PO.O high? 
L$l1l 
R5 Yes, set bit 0 

Info in bit 0 

Using this feature, the previous sequence is shortened to two instructions: 

#l,&IOIN 
R5 

PO.o high? .NOT.Zero -> carry 
; Shift bit (in Carry) into R5 
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o The Carry Bit Used for Increments: The carry bit can be used if incre­
ments by one are necessary. 

EXAMPLE: If the RAM word COUNT is greater than or equal to the value 1000 
then a word COUNTER is.to be incremented by one. 

CMP 
ADC 

nOOO,COUNT 
COUNTER 

; COUNT >= 1000 
; If yes, (C = 1) incr. COUNTER 

o Immediate Addition of the Carry Bit: The carry bit can be added immedi­
ately. No conditional jumps are necessary for counters longer than 16 bits. 
A 48-bit counter is incremented. 

ADD 

ADC 
ADC 

R5,COUNT 
COUNT+2 
COUNT+4 

Low part of COUNT 
; Medium part 
; High part of 48-bit counter 

o Fall Through Programming: ROM space is saved if a subroutine call that 
is located immediately before a RET instruction is changed. The called 
subroutine is located after the instruction before the CALL. and the pro­
gram falls through it. This saves 6 bytes of ROM: The CALL itself and the 
RET instruction. The 12C handler uses this mode. 

Normal way: SUBR2 is called, afterwards returned 

SUBR1 
MOV R5,R6 
CALL #SUBR2 
RET 

Call subroutine 

"Fall Through" solution: SUBR2 is located after SUBR1 

SUBR1 

SUBR2 

MOVR5,R6 Fall through to SUBR2 

RET 

0 

RLA 
RLC 
RRA 
RRC 

0 

Start of subroutine SUBR2 

Shift Operations for 32-8lt Numbers: If shifts with numbers greater than 
16 bits are necessary. the shift operations for the upper words must be 
RLC or RRC. If RLA or RRA are used then only zeroes are shifted in 

RII MSB of low byte to carry 
Rl2 RLA is wrong here! 
Rl2 LSB of high byte to carry 
R11 RRA is wrong here! 

Interrupt Handlers: The length of interrupt handlers should be kept as 
short as possible. All necessary calculations should be made in the back­
ground program (main program). The activation and control can be made 
easily with status bytes. 
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o Decimal Subtraction: No instruction is provided, but a simple way is pos­
sible. The copy instruction is only necessary if the minuend may not be 
modified. 

EXAMPLE: OP1 is subtracted from OP2 decimally 

MOV OP1,R5 Copy Opl 
ADD #6666h,R5 OPl into range 6666h to FFFFh 
INV R5 Build 9999 complement 
SETC 
DADO R5,OP2 OP2 - OPl -> OP2 (dec. ) 

o Timer Wake-Up Out of Low Power Modes: The two 8-bit counters of the 
universal timer/port can also be used during the low power modes 3 and 
4. If a counter is incremented by an external signal (inputs CIN, CMP, or 
TPIN.5) from OFFh to Oh, then the appertaining RCxFG-flag is set. If an 
interrupt is enabled, the CPU wakes up. 
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Several steps are necessary to complete a system consisting of an MSP430 
and its peripherals with the necessary performance. Typical and recom­
mended development steps are shown in the following. All of the tasks men­
tioned should be done carefully in order to prevent trouble later on. 

1) Definition of the tasks to be performed by the MSP430 and its peripherals 

2) Selection of the MSP430 version that fits best 

3) Worst case timing conSiderations for all of the tasks to be done (interrupt 
timing, calculation times, I/O etc.) 

4) Drawing of a complete hardware schematic. Deciding which hardware op-
tions are used (supply voltage, pull-downs at the I/O-ports, etc.) 

5) Worst case design for all of the external components 

6) Organization of the RAM and - if present - of the external EEPROM 

7) Flowcharting of the complete software 

8) Coding of the software with an editor 

9) Assembling of the program with the ASM430 Assembler 

10) Removing of the logical errors found by the ASM430 Assembler 

11) Testing of the software with the SIM430 Simulator and an emulation board 

12) Repetition of the steps 7 to 10 until the software is free of errors 
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7.3 Most Frequent Software Errors 
During software development, the same errors are made by nearly all assem­
bler programmers. The following list contains the errors which are most often 
heard of and experienced. 

o Missing Housekeeping During Stack Operations: If items are removed 
from or placed onto the stack during subroutines or interrupt handlers, it 
is mandatory to keep track of these operations. Any wrong positioning of 
the stack pointer will lead to a program crash, due to the wrong data written 
into the program counter. 

o Missing Initialization of the Stack Pointer: The stack painter needs to 
be initialized before the EINT instruction is executed or a CALL is used. 
The normal instruction to be used is: 

MOV #0300h,SP ; Locate stack at high RAM 

o Use of the Wrong Jump Instructions: The conditional jump instructions 
JLO and JLT, or JHS, and JGE, give different results if used for numbers 
above 07FFFh. It is therefore necessary to always distinguish between 
signed and unsigned jump instructions. 

o Wrong Completion Instructions. Despite their virtual similarity, subrou­
tines and interrupt handlers need completely different actions for comple­
tion. 

• Subroutines end with the RET instruction. Only the address ofthe next 
instruction (the one following the subroutine call) is popped from the 
stack. 

• Interrupt handlers end with the RETI instruction. Two items are 
popped from the stack, first the status register is restored and after­
wards the address (the address of the next instruction after the inter­
rupted one) is popped from the stack to the program counter. 

• If RETI and RET are used incorrectly, a wrong item is written into the 
PC. This means that the software will continue at random addresses 
and will hang-up. 

o Addition and Subtraction of Numbers With Differently Located Deci­
mal Points: if numbers with virtual decimal points are used the addition 
or subtraction of numbers with different fractional bits leads to errors. It is 
necessary to shift one of the operands in a way to aChieve fractional parts 
of aquallength. See "Rules for the Integer Subroutines." 

o Byte Instructions Applied to Working Registers: byte instructions al­
ways clear the upper byte of the used working registar (except CMP.B, 
TST.B, BIT. B). It is necessary therefore to use word instructions if opera­
tions in working registars can exceed the byte range. 
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o Use of Byte Instructions With the Program Counter as Destination 
Register: if the PC is the destination register byte instructions do not make 
sense. The clearing of the PC high byte is certainly wrong in any case. 
Instead, a register is to be used before the modification of the PC with the 
byte information. See 9.2.5. 

o Use of Falsely Addressed Branches and Subroutine Calls: The des­
tination of branches and calls is used indirectly, and this means the content 
of the destination is used as the address. These errors occur most often 
with the symbolic mode and the absolute mode: 

CALL MAIN 

CALL iMAIN 

; Subroutine's address is stored in MAIN 

; Subroutine starts at address MAIN 

The real behavior is easily seen when looking to the branch instruction. It is 
an emulated instructton using the MOV instruction: 

BR 

MOV 

MAIN 

MAIN,PC 

; Emulated instruction BR 

; Emulation by MOV instruction 

The addressing for the CALL instruction is exactly the same as for the BR 
instruction. 

o Counters and TImers Longer Than 16-Bits: if counters or timers longer 
than 16 bits are modified by the foreground (interrupt routines) and used 
by the background, it is necessary to disable the timer interrupt (most sim­
ply with the GIE bit in SR) during the reading of these words. If this is not 
done, the foreground can modify these words between the reading of two 
words. This would mean that one word read contains the old value and the 
other one the modified value. 

EXAMPLE: The timer interrupt handler increments a 32-bit timer. The back­
ground software uses this timer for calculations. The disabling of the interrupts 
prevents the timer interrupt that occurs between the reading of TIMLO and 
TIMHI, which can falsify the read information. This can be the case if TIMLO 
overflows from OFFFFh to OOOOh during the interrupt routine. TIMLO is read 
with the old information OFFFFh and TIMHI contains the new information x+ 1. 

INC 

ADC 

RETI 

TIMLO 

TIMHI 

Incr. LO word 

Incr. HI word 

Background part copies TIMxx for calculations 

DINT ; GIE <- 0 



; First 

NOP 
MOY 
MOY 
EINT 

TIMLO,R4 
TIMHI,R5 

Most F,~uent Software Errors 

DINT needs 2 cycles 
Copy LSDs 
COPY MSDs 
Enable interrupt again 

o Counters Used by Foreground and Background: If counters are modi­
fied by the foreground and read and cleared by the background, care is 
to be taken that no counts are lost. With the following example. it is pos­
sible to loose a count if the interrupt occurs between the MOV and the CLR 
instruction. The additional count is not recognized because CNTR (with 
its content 1) is cleared. 

the WRONG sequence is shown: 

I NT_HAN INCCNTR Incr. counter CNTR WRONG! 
RET! by interrupts 

Background program 
MOY CNTR, STORE Read CNTR 
CLR CNTR A count may be lostl 

To avoid loosing a count, the following solutions are possible for the back­
ground part. 

Background part switches off the interrupt during reading 

DINT 
MOY CNTR,STORE 
CLR CNTR 
EINT 

GIE <- 0 (inactive after MOY) 
Read CNTR 
Clear unmodified CNTR 
Enable interrupt again 

Background part uses difference of contents. If interrupt occurs 
after the PUSH instruction, 1 remains in CNTR. 

PUSH CNTR 
SUB @SP,CNTR 
POP STORE 

Copy CNTR 
Subtract read number from CNTR 
Place read info to STORE 

Simplified version of above: if CNTR is yet changed it contains 
despite correct value (1) 

MOY 
SUB 

CNTR, STORE 
STORE,CNTR 

; Copy CNTR to STORE 
; Subtract STORE of current CNTR 

o Use of the PUSH Instruction: When using sophisticated stack process­
ing. it is often overlooked that the PUSH instruction decrements the stack 
pOinter first and moves the item afterwards. 
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EXAMPLE: The return address stored at TOS is to be moved one word down 
to free space for an argument. 

PUSH @SP 

PUSH 2 (SP) 

WRONG! 1st free word (~OS-2) is copied 
; on itself 
; Correct, old TOS is pushed 1 word down 

EXAMPLE: The stored SP does not point to the same stack address after the 
restoring. It points to the (address -2) afterwards. 

PUSH SP 
POP SP 

; Store SP-2 on stack 
; Restore SP-2 to SP !! 

D Use of the Autoincrement Mode: The source register is incremented im­
mediately after the reading of the source operand. This means if the 
source register is also used for the addressing of the destination operand, 
it contains the incremented value when used. 

D Register Overflow: If registers do not have the necessary length, nega­
tive numbers (MSB = 1) or too small numbers (register is reset to zero by 
overflow) can result. The length of registers needs to be evaluated with 
worst case methods. 

o Interrupt Blocking: Long interrupt routines should be avoided. If they are 
necessary, the GIE bit located in the SR should be set (instruction EINT) 
at the start of these routines. Otherwise, the disabled interrupt blocks all 
other interrupt sources. 

D Real Time Processing: If the algorithm used is longer than the time slot 
that is available, errors will occur. Worst case evaluations are necessary 
to ensure the algorithm fits into the time slot. 

D Write-Only Registers: The complete information always needs to be writ­
ten to these registers. Otherwise, the bits not included in the source of the 
instruction are reset. The crystal buffer control register (CBCTL) is an ex­
ample for this register type. 

D Port Select Registers: I/O ports with dual functions -like the Port3 forthe 
Timer_A (MSP430C33x) - must be switched to the second function. 
Otherwise, the normal port function is active. To switch Port3 completely 
to the Timer_A functions, the following code is needed during the initializa­
tion routine. If the BaSic Timer is not initialized, the LCD will not work cor­
rectly. 

MOV.B #TACLK+TA4+TA3+TA2+TA1+TAO,&P3SEL 

D If the basic timer is not initialized, the LCD will not work properly. 
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7.4 Most Frequent Hardware Errors 

o Crystal Connection: The crystal oscillator is connected to AVCC and 
AVSS. This means that these two terminals must be connected to DVCC 
and DVSS, otherwise the crystal will not oscillate. 

o Open Inputs: Every input must have a defined potential. Otherwise, hum 
and noise will influence the program flow. In addition, the supply current 
increases. See Section 4.9.4, Correct Termination of Unused Terminals. 

o Crystal Turnon Time: If woken-up from the low power mode 4, the crystal 
needs a relatively long time until it runs with the correct frequency. This can 
last up to four seconds. Correct timing is not possible until the crystal 
reached its nominal frequency. Until this, the DCO steps down to its lowest 
frequency ('" 500 kHz). See Section 6.5, The System Clock Generator. 

o Frequency-lockedloop considerations 

BIC 

• FLL Turnon TIme: If woken-up from LPM3, the FLL needs approxi­
mately 6 cycles to reach the nominal frequency. This also means, the 
1 st instruction of an interrupt handler is executed with the correct fre­
quency. 

• Setting Time: The FLL needs a certain non-interrupted time to set the 
control value of the digitally-controlled oscillator (DCO). If this time is 
not provided, no control forthe DCO is possible. It remains at the same 
tap. This time is best spent during initialization by a software loop with 
a worst case length of 28 x 32 x 30.5 !IS = 27.3 ms. To allow the system 
clock the adaptation of the DCO to the eventually changed tap, the 
FLL-Ioop should be closed during longer calculations. This is done 
simply with the instruction: 

#SCGO,SR ; Turn on FLL-loop control 

o Supply Voltage for Battery-Powered Systems: if certain batteries are 
used the supply voltage may fall below the lower voltage limit during Active 
Mode (especially if the ADC is used) due to the high internal resistance of 
these batteries. A capacitor is necessary then in parallel with the battery. 

o Supply Voltage for AC-Powered Systems: No hum, noise, or spikes are 
allowed. If these are present, the reliability of the system and the accuracy 
of the ADC will decrease. 

o EEPROM Clocking: For some EEPROMs, the minimum clock duration 
is longer than one MSP430 instruction. This means that NOPs have to be 
included into the clock timing. See the specification of the EEPROM used. 
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7.5 Checklist for Problems 

7.5.1 Hardware Related Problems 

1) Initialization circuit connected? An RC circuit is not sufficient in most 
cases. 

2) Fan-out of bus or outputs taken into account? 

3) Open inputs (interrupt, init, inputs etc.): every input must be connected to 
a defined voltage level. Otherwise, undefined signals (normally the ac fre­
quency) are seen at the inputs. See Section 4.9.4, Correct Termination of 
Unused Terminals. 

4) Crystal turn-on time not taken into account (may be upto seconds for low-
power devices)? 

5) Correct levels at all inputs? (low and high levels) 

6) Input signals in specified limits: thresholds, frequency and edges? 

7) Supply voltage in specified limits, no spikes, no noise etc. 

8) External interrupt signals too short (no response from interrupted system) 

9) External EEPROM, clock out of the MSP430 too fast or too short? See EE­
PROM specification. 

10) RESET signals with spikes or false voltage levels? This is an often occur­
ring reason for problems. 

7.5.2 Software RelatedProblems 
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1) Register overflow (registers, memory and peripheral registers) causes 
negative numbers or sawtooth characteristic of results (numbers are too 
small then) 

2) PWMapplications: loading of the pulse length register needs to be syn­
chronized to the output change. Otherwise, undefined pulses are output 
during the change of this register 

3) Output frequency too high? (register load time longer than pulse length?) 

4) Real-time applications: is used algorithm shorter than the available time 
interval also under worst case conditions? 

5) Conditional jumps: signed and unsigned jumps used correctly? For exam­
ple JHS and JGE are completely different instructions. The same is true 
for JLO and JLT. 
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6) Missing housekeeping during stack operations? If the return values for the 
SR and the PC - stored on the stack during an interrupt - are overwritten 
with data: this can cause the setting of the OSCoff bit in the SR during the 
RETI instruction. Which means, the program execution ceases. 

7) Read-out of two-word-registers without disabling the interrupt? (if over­
flow occurs one word may contain the old number, the other one the new 
number) 

8) Multiple word shifts: correct shift instruction used for the MSBs(no arith­
metic shifts: they shift in always zeroes) 

9) SP Initialization: forgotten or made after the interrupt enabling with EINT? 

10) Interrupt handlers: long lasting parts without enabling the interrupt again 
(blocks all other interrupt activities)? 

11) If the second function of a port register is used: are the select bits in the 
PxSEL register set? 

12) Are all the peripherals initialized? 

7.6 Run Time Estimation 

To get a quick overview concerning the speed of a given piece of software, the 
following estimations may be used: 

o If the code contains all addressing modes then the estimation for the need­
ed runtime trun is: 

trun '" 0.75 cycles/byte 

o If the code contains only or predominant register mode addressing then 
the estimation for the needed runtime trun is: 

!run '" 0.5 cycles/byte 
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8.1 Introduction 
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The Instruction set of the ultra low power-microcomputer MSP430 family dif­
fers strongly from the instruction sets used by other 8-bit and 16-bit microcom­
puters. The reasons why this instruction set is appreciated though, are ex­
plained in the following pages in detail. It is the return to clarity and especially 
the return to orthogonality, an attribute of microcomputer architectures that 
has disappeared more and more during the last 20 years. A customer com­
mented that it is an instruction set to fall in love with. 

The MSP430 Family was developed to fulfill the ever increasing requirements 
of Texas Instruments Ultra Low Power microcomputers. It was not possible to 
increase the computing power and the real-time processing capability of the 
MSP430 predecessor (TSS400) as far as was needed. Therefore, a complete 
new 16-bit architecture was developed to stay competitive and be viable for 
several years. 

The benchmark numbers shown in relation to competition's products (bytes 
used, number of program lines) are taken from an unbiased comparison exe­
cuted by a British software consultant. 
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8.2 Reasons for the Popularity of the MSP430 

The following sections are intended to explain the different reasons why the 
MSP430 instruction set, which closely mirrors the architecture, has become 
so popular. 

8.2.1 Orthogonality 

This notation of computer science means that a single operand instruction can 
use any addressing mode or that any double operand instruction can use any 
combination of source and destination addressing modes. Figure 8-1 shows 
this graphically: tlie existing combinations fill the complete possible space. 

Addressing Modes 
Destination 

t Addressing Modes Source 

Instructions 

Figure B-1. Orthogonal Architecture (Double Operand Instructions) 

The opposite of orthogonal, a non-orthogonal architecture is shown in Figure 
B-2. Any instruction can use only a part ofthe existing addressing modes. The 
possible combinations are arranged like small blocks in the available space. 

Architecture and Instruction Set 
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t Addressing Modes Source 

~ 
Instructions 

Figure B-2. Non-Drthogonal Architecture (Dual Operand Instructions) 

8.2.2 Addressing Modes 

The MSP430 architecture has seven possibilities to address its operands. 
Four of them are implemented in the CPU, two of them result from the use of 
the program counter (PC) as a register, and a further one is claimed by index­
ing a register that always contains a zero (status register). 

The single operand instructions can use all of the seven addressing modes, 
the double operand instructions can use all of them for the source operand, 
and-four of them for the destination operand. Figure 8-3 shows this context: 

Double Operand Instructlons-
Mnemonic Source,Destination 

tv l1 
Register Register 
Indexed Indexed 
Absolute 
Symbolic 
Immediate 
Register indirect 

Absolute 
Symbolic 

Register indirect autoincrement 

12 Instructions 28 Combinations 

Figure 8--3. Addressing Modes 

Single Operand Instructions 
Mnemonic Des~tion 

Register 
Indexed 
Absolute 
Symbolic 
1m-mediate 
Register indirect 
Register indirect autoincrement 

7 Instructions 7 Addressing Modes 
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8.2.2.1 Register Addressing 

The operand is contained in one of the registers RO to R15. This is the fastest 
addressing mode and the one that needs the least memory. Example: 

Add the contents of R7 to the contents of R8 

ADD R7,R8 ; ( R7) + (R8) --t (R8) 

8.2.2.2 Indirect Register Addressing 

The register used contains the address of the operand. The operand can be 
located anywhere in the entire memory space (641<). Example: 

Add the byte addressed by R8 to the contents of R9 

ADD.B @R8,R9 ; ((R8» + (R9) --t (R9) 

8.2.2.3 Indirect Register Addressing With Autolncrement 

The register used contains the address of the operand. This operand can be 
located anywhere in the entire memory space (64K). After the access to the 
operand the used register is incremented by two (word instruction) respective 
one (byte instruction). The increment occurs immediately after the reading of 
the source operand. Example: 

Copy the byte operand addressed by R8 to R9 
and increment the pointer register R8 by one afterwards 

MOV.B @R8+,R9 ; ((R8» --t (R9), (R8) + 1 --t (R8) 

8.2.2.4 Indexed Addressing 

The address of the operand is the sum of the index and the contents of the reg­
ister used. The index is contained in an additional word located after the in­
struction word. Example: 

Compare the 2nd byte of a table addressed by RS with the 
low Byte of R1S. Result to the Status Register SR 

CMP.B 1(R5),R1S ; (R1S) - (1 + (RS» 

If the register in use is the program counter then two additional, important ad­
dressing modes result: 
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8.2.2.5 ImmedIate Addressing 

Any 16-bit or 8-bit constant can be used with an instruction. The PC pOints to 
the following word after reading the instruction word. By the use of the register 
indirect autoincrementaddressing mode, this word (the immediate value) can 
be read and the PC is incremented by two afterwards. The word after the in­
struction word is treated this way as an 8-bit or a 16-bit immediate value. Ex­
ample: 

Test bit 8 in the 3rd word of a table RIO points to. 
start address of the table is O(RIO), 3rd word is 4(RIO) 

BIT lI0100h,4(RIO) ; Bit 8 - I? 

The assembler inserts for the instruction above: 

BIT 
,WORD 

,WORD 

@PC+,4(RIO) 
OIOOh 
0004h 

Executed instruction 
Source constant OIOOh 
Index 4 of the destination 

8.2.2.6 Symbolic Addressing 
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This is the normal addressing mode for the random access to the entire 64K 
memory space. The word located after the instruction word contains the differ­
. ence in bytes to the destination address relative to the PC. This difference can 
be seen as an index to the PC. Any address in the 64K memory map is ad­
dressable this way, both as a source and as a destination. 

Example: $ = address the PC points to 

Subtract the contents of the ROM word EDE from the contents 
,. of the RAM word TONI 

SUB EDE,TONI ; (TONI) - (EDE) --t (TONI) 

The assembler inserts for the instruction above: 

SUB X(PC) ,Y(PC) 
.WORD X 

,WORD Y 

Executed instruction 
Index X - EDE-$ 
Index Y - TONI-$ 
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8.2.2.7 Absolute Addressing 

Addresses that are fixed (e.g., the hardware addresses of the peripherals like 
ADC, UART) can be addressed absolutely. The absolute addressing mode is 
a special case of the indexed addressing mode. The register used (SR) always 
contains a zero in this case (without loosing its former information!). Example: 

set the Power Down Bit in the ADC Control Register ACTL 

BIS '#PD, &ACTL ; Power Down Bit ADC <- 1 

The assembler inserts for the instruction above: 

BIS @PC+,X(SR) Executed instruction 
. WORD OlOOOh PD Bit Hardware Address 
. WORD 00114h X: Hardware Address of ACTL 

8.2.3 RiSe Architecture Without RiSe Disadvantages 

Classic RISC architectures provide several addressing modes only for the 
LOAD ano STORE instructions; all other instructions can only access the (nu­
merous) registers. The MSP430 can be programmed this way too. An example 
of this programming style is the floating point package FPP4. The registers are 
loaded during the initialization, the calculations are made exclusively in the 
registers, and the result is placed onto the stack. 

In real time applications, this kind of programming is less usable, here it is im­
portant to access operands at random addresses without any delays. An ex­
ample of this is the incrementing of a counter during an interrupt service rou­
tine: 

Pure RISC program sequence for the incrementing of a counter 

INT_HND PUSH RS Save register 
LOAD RS,COUNTER Load COUNTER to register 
INC RS Increment this register 
STORE R5 , COUNTER Store back the result 
POP R5 Restore used register 
RETI Return from interrupt 

The MSP430 program sequence for the incrementing of a counter 

INT_HND INC COUNTER ; Increment COUNTER 
RETI ; Return from interrupt 

As shown in the previous example, the pure RISC architecture is not optimal 
in cases with few calculations, but necessary for fast access to the memory. 
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Here, the MSP430 architecture is advantageous due to the random access to 
the entire memory (641<) with any instruction, seven source addressing modes 
and four destination addressing modes. 

8.2.4 Constant Generator 

One of the reasons for the high code efficiency of the MSP430 architecture is 
the constant generator. The constants, appearing most often in assembler 
software, are small numbers. Out of these, six were chosen for the constant 
generator: 

Table 8-1. Constants implemented in the Constant Generator 
CONSTANT 

-1 
0 

+1 
+2 
+4 

+8 

8.2.5 Status Bits 
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HEX REPRESENTATION USE 
OFFFFh Constant, all bits are one 

OOOOOh Constant, all bits are zero 

0OOO1h Constant. Increment for byte addresses 
00OO2h Constant, Increinent for word addresses 

0OOO4h Constant, value for bit tests 

0OOO8h Constant, value for bit tests 

These six constants can also be used for byte processing. Only the lower byte 
is in use then. 

The use 6f numbers out of the constant generator has two advantages: 

Memory Space: The constant does not need an additional 16 bit word as it 
is the case with the normal immediate mode. Two useless addressing modes 
of the status registers SR and all four addressing modes of the otherwise un­
serviceable register R3 are used. 

Speed: The constant generator is implemented inside the CPU which results 
in an access time similar to a general purpose register (shortest access time). 

Most of the emulated instructions use the constant generator. See Chapter 
The MSP430 InstructIon Set for examples. 

The influence of the instructions to the status bits contained in SR is not as uni­
form as the instructions appear. Dependent on the main use of the instruction, 
the status bits are influenced in one of the following three ways shown: 

1) Not at all, the status bits are not affected. This is, for example, the case 
with the instructions bit clear, bit set and move. 
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2) Normal: the status bits reflect the result of the last instruction. This is used 
with all arithmetical and logical instructions (except bit set and bit clear) 

3) Normal, but the carry bit contains the inverted zero bit. The logical instruc­
tions XOR (exclusive or), BIT (bit test) and AND use the carry bit for the 
non-zero information. This feature can save ROM space and time. No 
preparations or conditional jumps are necessary. The tested information, 
which is contained in the carry bit, is simply shifted into a register or a RAM 
word respective byte. 

8.2.6 Stack Processing 

The stack processing capability of the MSP430 allows any nesting of inter­
rupts, subroutines, and user data. It is only necessary to have enough RAM 
space. Due to the function of the SP as a general purpose register, it is possible 
to use all seven of the addressing modes for the SP. This allows any needed 
manipulation of data on the stack. Any word or byte on the stack can be ad­
dressed and may therefore be read and written. (The addressing modes im­
plemented for the MSP430 were chosen primarily for the addressing of the 
stack; but they proved to be very effective also for the other registers). 

8.2.7 Usability of the Jumps 

Remarkable is the uncommonly wide reach of the jumps which is ±512 words. 
This value is eight times the reach of other architectures that use normally 
±128 bytes. Inside program parts it is, therefore, necessary only very rarely to 
use the branch instruction with its normal two memory words and longer exe­
cution time. The implemented eight jumps are classified in three categories: 

1) Signed jumps: Numbers range from -32768 to +32767 (word instructions) 
respective -128 to +127 (byte instructions) 

2) UnSigned jumps: Numbers range from 0 to 65535 respective 0 to 255 

3) Unconditional jump: (replaces the branch instruction normally) 

8.2.8 Byte and Word Processor 

Any MSP430 instruction is implemented for byte and word processing. Excep­
tions are only the instructions where a byte instruction would not make sense 
(subroutine call CALL, return from interrupt RETI) or instructions that are used 
as an interface between words and bytes (swap bytes SWPB, sign extension 
SXT). The addressable memory ofthe MSP430 is divided into bytes and words 
as shown in Figure 8-4. 
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15 

Byte Address n+ 1 Byte Address n 

Byte Address n+3 Byte Address n+2 

Byte Address n+5 Byte Address n+4 

o 
Word Address n 

Word Address n+2 

Word Address n+4 

Figure 8-4. Word and Byte Addresses of the MSP430 

This way, the entire 64K address space is organized. The planned memory ex­
tension will be addressed in the same clear manner. Due to this memory orga­
nization, any table can be allocated in the most favorable manner. Dependent 
on the maximum value of the operands, the table can be implemented as a 
byte table or a word table. Any general purpose register from R4 to R 15 can 
be used as a pointer to the tables. The implemented addressing modes in­
dexed, indirect, and indirect with autoincrement are intended for table proc­
essing. 

8.2.9 High Register Count 

15 

In addition to the PC andthe SP, which are usable for several purposes, twelve 
identical general purpose registers (R4 to R15) are available. Anyone of these 
registers can be used as a data register, as an address pOinter, as an auto-in­
crementing address pointer, and as an index register. The bottleneck olthe ac­
cumulator architectures, which have to pass any operation through the accu­
mulator (with corresponding LOAD arid STORE instructions), does not exist 
for the MSP430. 

PC 

SP 

SR 

CG2 

R4 

o 
RO Program Counter 

R1 Stack Pointer 

R2 Status Register and CG1 

R3 Constant Generator 2 

R4 General-Purpose Register R4 

General-Purpose Registers R5 to R14 

R15 General-Purpose Register R15 

Figure 8-5. Register Set of the MSP430 
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8.2.10 Emulation of Non-Implemented Instructions 

8.2.11 No Paging 

The 27 implemented instructions allow the emulation of additional 24 instruc­
tions. This is normally reached with the help of the constant generator, but oth­
er ways are used also. As the constants used are taken from the constant gen­
erator, no additional memory space is needed. 

The assembler automatically inserts the correct instructions if emulated in­
structions are used. The emulation of the 24 instructions led to a remarkable 
smaller central processing unit. The MSP430 CPU is even smaller than some 
4-bit CPUs. The emulated instructions are completely listed in Section 8.4.2, 
Emulated Instructions. 

The 16-bit architecture of the MSP430 allows the direct addressing of the en­
tire 64K memory bytes without paging of the memory. This feature greatly sim­
plifies the development of software. 
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8.3 Effects and Advantages of the MSP430 Architecture 

The reasons for the popularity of the MSP430 instruction set (and by it its archi­
tecture) shown in Section B.2, have effects and advantages that also result in 
money saved. These effects and advantages are shown and explained in the 
following. 

8.3.1 Less Program Space 

The direct access to any address, without loading of the previous address into 
a register, together with the constant generator results in program lengths for 
a given task that are between 55% and 90% compared to other microcomput­
ers. This means that with the MSP430, a 4K version may be sufficient where 
with other microcomputers a 6K or BK version is needed. 

8.3.2 Shorter Programs 

Any necessary code line is a source of errors. The less code lines that are nec­
essary for a given task, the simpler a program is to read, understand, and ser­
vice. The MSP430 needs between 33% and 55% of the code lines compared. 
to its competition's products. The reason for this is the same as described pre­
viously. Any address can be accessed directly and that both for the source op- . 
erand and for the destination operand. It is not necessary to create trouble­
some 16-bit addresses, handle the operands byte-wise, and store the final re­
sult afterwards indirectly via a composed destination address. All this happens 
with only one MSP430 instruction. 

8.3.3 Reduced Development Time 

The clearly smaller program length and the less troublesome access to ROM, 
RAM, and other peripherals reduce the necessary development time. In addi­
tion to that advantage, the considerations omit completely how the actual 
problem can be solved at all with the given architecture. A part that can take 
up to one third of the development time with other architectures. (Whoever has 
developed with 4-bit microcomputers knows what is meant). 

8.3.4 Effective Code Without Compressing 
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The clear assembler language ofthe MSP430 allows, from the start, the writing 
of dense and legible code. If the developed program is well prepared and 
coded clearly, it is nearly impossible to reduce the program length seriously 
afterwards by compressing. This is no disadvantage, It simply means that opti­
mized code was developed from the start. 
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8.3.5 Optimum C Code 

The C compiler of a microcomputer can use only the instructions that have a 
regular structure. Typical CISC (complex instruction set computer) instruc­
tions, which normally show strong addressing mode restrictions, are not used 
by the compilers. Instead, the compilers emulate the complex instructions with 
several ofthe simple instructions, resulting in a use of only 30% (!) of the imple­
mented instructions. 

This is completely different with the MSP430. As the instructions (apart from 
the executed operation) are completely uniform, 100% ofthem are used by the 
compiler and not just 30%. As logical and arithmetical operations are executed 
directly and not by composed instructions, the execution time of the compiled 
code is shorter and less memory space is needed. Therefore, the same advan­
tages that are valid for assembler programming are valid also for high-level 
language programming. 
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8.4 The MSP430 Instruction Set 

In the following are all implemented and emulated instructions. 

Description of the used abbreviations: 
@ 
* 

o 
1 
V 
N 
Z 
C 
src 
dst 
xx.B 
Label 

Logical NOT-Function 
Status Bit is affected by the instruction 
Status Bit is not affected by the instruction 
Status Bit is cleared by the instruction 
Status Bit is set by the instruction 
Overflow Bit in Status Register SR 
Negative Bit in Status Register SR 
Zero Bit in Status Register SR 
Carry Bit in Status Register SR 
Source Operand with,] Addressing Modes 
Destination Operand with 4 Addressing Modes 
Byte Operation of the Instruction xx 
Label of the source or destination 

8.4.1 Implemented Instructions 

The instructions that are implemented in the CPU follow. 

8.4.1.1 Two Operand Instructions 

ADD ADD.B src,dst Add src to dst 
ADDC ADDC.B src,dst Add src + Carry to dst 
AND AND.B src,dst src .and. dst ~ dst 
BIC BIC.B src,dst @src .and. dst ~ dst 
BIS BIS.B src,dst src .or. dst ~ dst 
~IT BIT.B src,dst src .and. dst ~ SR 
CMP CMP.B src,dst Compare src and dst (dst - src) 
DADO DADD.B src,dst Add src + Carry to dst (dec.) 
MOV MOV.B src,dst Copy src to dst 
SUB SUB.B src,dst Subtract src from dst 
SUBC SUBC.B src,dst Subtract src with Carry from dst 
XOR XOR.B src,dst src .xor. dst ~ dst 
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Status Bits 
V N Z C 

0 *@Z 

0 *@Z 

*@Z 
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8.4.1.2 Single Operand Instiuctlons 

8.4.1.3 

The operand (src or dst) can be addressed with all seven addressing modes. 

Status Bits 
V N Z C 

CALL dst Subroutine call 
PUSH PUSH.B src Copy operand onto stack 
RETI Interrupt return 
RRA RRA.B dst Rotate dst right arithmetically 0 
RRC RRC.B dst Rotate dst right through Carry 
SWPB dst Swap bytes 
SXT dst Sign extension into high byte 0 *@Z 

CondlflonalJun1ps 

JC 
JHS 
JEQ 
JZ 
JGE 
JLT 
JMP 
IN 
JNC 
JLO 
JNE 
JNZ 

The status bits are not affected by the jumps. With the signed jumps (JGE, 
JLT), the overflow bit is evaluated also, so that the jumps are executed correct­
ly even in the case of overflow. Some jumps are the same (JC/JHS, JZlJEQ, 
JNC/JLO, JNElJNZ) but two mnemonics are used to get a better understand­
ing of the program code. In case ofa comparison JHS gives a better under­
standing of the code than JC. 

Label 
Label 

. Label 
Label 
Label 
Label 
Label 
Label 
Label 
Label 
Label 
Label 

Jump if Carry = 1 
Jump if dst is higher or same than src. (C = 1) 
Jump if dst equals src (Z = 1) 
Jump if Zero Bit = 1 
Jump if dst is greater than or equal to src (N .xor. V = 0) 
Jump if dst is less than src (N .xor. V = 1) 
Jump unconditionally 
Jump if Negative Bit = 1 
Jump if Carry = 0 
Jump if dst is lower than src (C = 0) 
Jump if dst is not equal to src (Z = 0) 
Jump if Zero Bit = 0 
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Benefits 

The specification for the architecture of the MSP430 CPU contains the follow­
ing requirements in order of importance: 

1) High proceSSing speed 
2) Small CPU area on-chip 
3) High ROM efficiency 
4) Easy software development 
5) Usable into the future 
6) High flexibility 
7) Usable for modern programming techniques 

The following shows the finding of the optimum architecture out of the previous 
list of priorities. Several of the listed solutions affect more than one item of the 
list of priorities; these are shown at the item where they have the biggest im­
pact. 

8.5.1 High Processing Speed 

To increase the processing speed to a multiple of the speed of 4-bit or a-bit mi­
crocomputers, software and hardware related attributes were chosen. 

Hardware related attributes 

o Using 16-bit words, the analog-to-digital converter result can be pro­
cessed immediately. Two operands (source and destination) are possible 
in one instruction. 

o No microcoding: every instruction is decoded separately and allows one­
cycle instructions. This is the case for register-to-register addressing, the 
normal addressing mode used for time critical software parts. 

o Interrupt capability for anyone of the a I/O-Ports: The periodical polling of 
the inputs is not necessary. 

o Vectored interrupts: This allows the fastest reaction to interrupts. 

Software related attributes 

o Implementation of the constant generator: The six most often used 
constants (-1. 0, 1. 2. 4, 8) are retrieved from the CPU with the highest 
possible speed. 

o High register count: Twelve commonly usable registers allow the storage 
of all time critical values to achieve the fastest possible access. 
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8.5.2 Small CPU Area 

To get low overall cost for the MSP430, the smallest CPU without limiting its 
processing capability was achieved: 

D Use of a RISC structure: With few but strong instructions, any algorithm 
can be processed. Together with the constant generator, all commonly 
used instructions, not contained in the implemented instructions, are 
executable. 

D Use of 100% orthogonality: Every instruction inside one of the three in­
struction formats is completely similar to the other ones. This results in a 
strongly simplified CPU. 

D Only three instruction formats: Restriction to dual operand instructions, 
single operand instructions, and conditional jumps. 

8.5.3 High ROM Efficiency 

To solve a given task with a small ROM, the following steps were taken: 

D Implementation of seven addressing modes: The possibility to select out 
of seven addressing modes for the source and out of four addressing 
modes for the destination allows direct access to all operands without any 
intermediate operations necessary. 

D Placing of PC, SP, and SR inside of the register set: The possibility to ad­
dress these as registers saves ROM space. 

D Wide reach of the conditional jumps: Due to the eightfold jump distance 
of the MSP430 compared to other microcomputers, in most cases a 
branch instruction, that normally needs two words, is not necessary. 

D Use of a bytelword structure: ROM and RAM are addressable both as by­
tes and as words. This allows the selection of the most favorable format. 

8.5.4 Easy Software Development 

Nearly all of the previously mentioned attributes of the architecture ease the 
development of software for the MSP430. 

8.5.5 Usability on Into the Future 
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The chosen von-Naumann-architecture allows a simple system expansion far 
beyond the currently addressable 64K bytes. If necessary, memory expansion 
up to 16M bytes is possible. 
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8.5.6 Flexibility of the Architecture 

To ensure that all intended peripheral modules, including currently unknown 
ones, can be connected easily to the MSP430 system. The following defini­
tions were made: 

o Placing of the peripheral control registers into the memory space (memory 
mapped I/O). The use of the normal instructions for the peripheral mod­
ules makes special peripheral instructions superfluous. 

o All of the control registers and data registers of the peripheral modules can 
be read and written to. 

8.5.7 Usable for Modern Programming Techniques 

8.6 Conclusion 

Programming techniques like position independent coding (PIC), reentrant 
coding, recursive coding, or the use of high-level languages like C force the 
implementation of a stack pointer. The system SP is therefore implemented 
as a CPU register. 

This section demonstrates that the instruction set and the architecture of the 
MSP430 are easy to understand and that it is easy too to write software for the 
MSP430. Everyone who has written large program parts with the MSP430 as.­
sembler language has an antipathy to adapt again to the more or less unstruc­
tured architectures of the other 4-bit, 8-bit, and 16-bit microcomputers. 
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9.1 CPU Registers 
All of the MSP430 CPU registers can be used with all instructions. 

9.1.1 The Program Counter PC 

One of the main differences from other microcomputer architectures relates 
to the Program Counter (CPU register RO) that can be used as a normal regis­
ter with the MSP430. This means that all of the instructions and addressing 
modes can be used with the Program Counter too. A branch, for example, is 
made by simply moving an address into the PC: 

MOV #LABEL,PC 
MOV LABEL, PC 
MOV @R14,PC 

Note: 

Branch to address LABEL 
Branch to the address contained in address LABEL 
Branch indirect, indirect R14 

The Program Counter always points to even addresses. This means that the 
LSB is always zero. The software has to ensure that no odd addresses are 
used if the Program Counter is involved. Odd PC addresses will result in non­
predictable behavior. 

9.1.2 Stack Processing 

9. 1.2. 1 .use of the System Stack Pointer (SP) 
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The system stack pointer (CPU register R1) is a normal register like the others. 
This means it can use the same addressing modes. This gives good access 
to all items on the stack, not only to the one on the top of the stack. 

The system stack pointer (SP) is used for the storage of the following items: 

o Interrupt return addresses and status register contents 
o Subroutine return addresses 
o Intermediate results 
o Variables for subroutines, floating point package etc. 

When using the system stack, remember that the microcomputer hardware 
also uses the stack painter for interrupts and subroutine calls. To ensure the 
error-free running of the program it Is necessary to do exact housekeeping for 
the system stack. 

Note: 

The Stack Pointer always paints to even addresses. This means the LSB is 
always zero. The software has to ensure that no odd addresses are used if 
the Stack Pointer is involved. Odd SP addresses will end up in non-predict­
able results. 
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If bytes are pushed on the system stack, only the lower byte is used, the upper 
byte is not modified. 

PUSH 
PUSH.S 
MOV.B 

!lOSh 
!lOSh 
l(SP),RS 

OOOSh -> TOS 
xxOSh -> TOS 
Address odd byte 

9.1.2.2 Software Stacks 

MOV 

DECD 
MOV 

MOV 

DECR4 
MOV.B 

Every register from R4 to R 15 can be used as a software stack pointer. This 
allows independent stacks for jobs that have a need for this. Every part of the 
RAM can be used for these software stacks. 

EXAMPLE: R4 is to be used as a software stack pointer. 
#SW_STACK,R4 Init. SW stack pointer 

R4 Decrement stack pointer 
item,O(R4) Push item on stack 

Proceed 
@R4+,item2 Pop item from stack 

Software stacks can be organized as byte stacks also. This is not possible for 
the system stack, which always uses 16-bit words. The example shows R4 
used as a byte stack pointer: 

Init. SW stack pointer 

Decrement stack pointer 
item,O(R4) ; Push item on stack 

Proceed 
MOV.B @R4+,item2 ; Pop item from stack 

9.1.3 Byte and Word Handling 
Every memory word is addressable by three addresses as shown In the 
Figure 9-1: 

o The word address: An even address N 
o The lower byte address: An even address N 
o The upper byte address: An odd address N+ 1 

If byte addressing is used, only the addressed byte Is affected. No carry or 
overflow can affect the other byte. 

Note: 

Registers RD to R 15 do not have an address but are treated in a special way. 
Byte addressing always uses the lower byte of the register. The upper byte 
is set to zero if the instruction modifies the destination. Therefore, all instruc­
tions clear the upper byte of a destination register except CMP.B, TST.B, 
BIT.B and PUSH.B. The source is never affected. 
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ADD 

The wayan instruction treats data is defined with its extension: 

o The extension .B means byte handling 
o The extension .W (or none) means word handling 

EXAMPLES: The next two software lines are equivalent. The 16-bit values 
read in absolute address 050h are added to the value in R5. 

&OSOh,RS 

ADD.W &OSOh,RS 

; ADD 16-BIT VALUE TO RS 

; ADD 16-BIT VALUE TO RS 

The 8-bit value read in the lower byte of absolute address 050h is added to the 
value contained in the lower byte of R5. The upper byte of R5 is set to zero. 

ADD.B &OSOh,RS ; ADD a-BIT VALUE TO RS 

Bit 15 8 7 0 

I Upper Byte I Lower Byte 

Odd Address N+ 1 Even Address N 

Word Address N 

Figure 9-1. Word and Byte Configuration 

9.1.4 

9-4 

If registers are used with byte instructions the upper byte of the destination reg­
ister Is setto zero for all instructions except CMP.B, TST.B, BIT.B and PUSH.B. 
It is therefore necessary to use word instructions if the range of calculations 
can exceed the byte range. . . 

EXAMPLE: The two signed bytes OP1 and OP2 have to be added together 
and the result stored in word OP3. 

MOV.B OP1,R4· Fetch 1st operand 
SXT R4 Change to word format 
MOV.B OP2,OP3 Fetch 2nd operand 
SXT OP3 Change to word format 
ADD.W R4,OP3 16-bit result to OP3 

Constant Generator 

A statistical look at the numbers used with the Immediate Mode shows that a 
few small numbers are in use most often. The six most often used numbers 
can be addressed with the four addressing modes of R3 (constant generator 
2) and with the two not usable addressing modes of R2 (status register). The 
six constants that do not need an additional 16-bit word when used with the 
immediate mode are: 



Table 9-1. Constant Generator 
NUMBER 

+0 

+1 

+2 

+4 

+8 

-1 

EXPLANATION HEXADECIMAL REGISTER FIELD AD 

Zero OOOOh R3 00 

Positive one 0001h R3 01 

Positive two 0002h R3 10 

Positive four 0004h R2 10 

Positive eight 0008h R2 11 

Negative one FFFFh R3 11 

The assembler inserts these ROM-saving addressing modes automatically 
when one of the previously described immediate constants is encountered. 
But, only immediate constants are replaceable this way, not (for example) in­
dex values. 

If an immediate constant out of the constant generator is used, the execution 
time is equal to the execution time of the register mode. 

The most often used bits of the peripheral registers are located in the bits ad­
dressable by the constant generator whenever possible. 

9.1.5 Addressing 

The MSP430 allows seven addressing modes for the source operand and four 
addressing modes for the destination. The addressing modes used are: 

Table 9-2. Addressing Modes 
ADDRESS BITS 

src dst 
00 0 

01 1 

01 1 

01 1 

10 -
11 -
11 -

SOURCE MODES DESTINATION MODES EXAMPLE 

Register Register R5 

Indexed Indexed TAB(R5) 

Symbolic SymboUc TABLE 

Absolute Absolute &BTCTL 

Indirect - @R5 

Indirect autoincrement - @R5+ 

Immediate - #TABLE 

The three missing addressing modes for the destination operand are not of 
much concern for the programming. The reason is: 

Immediate Mode: Not necessary forthe destination; immediate operands can 
always be placed into the source. Only in a very few cases it is necessary to 
have two immediate operands in one instruction 
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ADD 

CMP 

CMP 

Indirect Mode: If necessary, the Indexed Mode with an index of zero is usable. 
For example: 

#l6,O(R6) 

R5,O(SP) 

; @R6 + 16 -> @R6 

; R5 equal to TOS? 

The second previously shown example can be written in the following way, 
saving 2 bytes of ROM: 

@SP,R5 ; R5 equal to TOS? (R5-TOS) 

Indirect Autoincrement Mode: With table processing, a method that saves 
ROM space and reduces the number of used registers to one can be used: 

EXAMPLE: The content of TAB1 is to be written into TAB2. TAB1 ends at the 
word preceding TAB1 END. 

MOV #TABI, R5 

LOOP MOV.B @R5+,TAB2-TABI-I(R5) 

Initialize pointer 

Move TAB1 -> TAB2 

End of TABI reached? 

No, proceed 

LOOP 

9-6 

CMP 

JNE 

MOV 

MOV 

#TAB1END,R5 

LOOP 

Yes, finished 

The previous example uses only one register instead of two and saves three 
words due to the smaller initialization part. The normally written, longer loop 
is shown in the following 

#TABI,R5 ;Initialize pointers 

#TAB2,R6 

MOV.B @R5+,O(R6) ;Move TAB1 -> TAB2 

INC 

CMP 

JNE 

R6 

#TABIEND,R5 ;End of TAB1 reached? 

LOOP ;No, proceed 

;Yes, finished 

In other cases it can be possible to exchange source and destination operands 
to have the auto increment feature available for a pointer. 

Each of the seven addressing modes has its own features and advantages: 

Register Mode: Fastest mode, least ROM requirements 

Indexed Mode: Random access to tables 

Symbolic Mode: Access to random addresses without overhead by loading 
of pOinters 

Absolute Mode: Access to absolute addresses independent of the current 
program address 
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Indirect Mode: Table addressing via register; code saving access to often ref­
erenced addresses 

Indirect Autolncrement Mode: Table addressing with code saving automatic 
stepping; for transfer routines 

Immediate Mode: Loading of pointers, addresses or constants within the in­
struction, 

With the use of the symboliC mode an interrupt routine can be as short as pos­
sible. An interrupt routine is shown that has to increment a RAM word COUNT­
ER and to do a comparison if a status byte STATUS has reached the value 5. 
If this is the case, the status byte is cleared. Otherwise, the interrupt routine 
terminates: 

INTRPT INC COUNTER ;Increment counter 

;STATUS = 5? CMP.S #5,STATUS 

JNE INTRET 

CLR. B STATUS ; STATUS =, 5: clear it 

INTRET RETI 

No loading of pointers or saving and restoring of registers is necessary. The 
action is done immediately, without any overhead. 

9.1.6 Program Flow Control 

9.1.6.1 Computed Branches and Cslls 

MOV 

The branch instruction is an emulated instruction that moves the destination 
address into the program counter: 

dst, PC, ; EMULATION FOR BR @dst 

The ability to access the program counter in the same way as all other registers 
provides interesting options: 

1) The destination address can be taken from tables: see Section 9.2.5 
2) The destination address can be calculated 
3) The destination address can be a constant. This is the usual method of 

getting the address. 

9.1.6.2 Nesting of Subroutines 

Due to the stack orientation of the MSP430, one of the main problems of other 
architectures does not playa role here at all. Subroutine nesting can proceed 
as long as RAM is available. There is no need to keep track of the subroutine 
calls as long as all subroutines terminate with the Return from Subroutine in-
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struction RET. If subroutines are left without the RET instruction, some house­
keeping is necessary; popping of the return address or addresses from the 
stack. 

9.1.6.3 Nesting of Interrupts 

Nesting of interrupts gives no problem at all, provided there is enough RAM 
for the stack. For every occurring interrupt, two words on the stack are needed 
for the storage of the status register and the return address. To enable nested 
interrupts, it is necessary to only include an EINT instruction into the interrupt 
handler. If the interrupt handlers are as short as possible (a good real-time 
practice), nesting may not be necessary. 

EXAMPLE: The basic timer interrupt handler is woken-up with 1 Hz only, but 
has to do a lot of things. The interrupt nesting is therefore used. The latency 
time is 8 ciock cycles only. 

Interrupt handler for Basic Timer: Wake-up with 1Hz 

BT_HAN EINT Enable interrupt for nesting 
INC,B SECCNT Counter for seconds +1 
CMP.B lI60,SECCNT 1 minute elapsed? 
JHS MIN1 Yes, do necessary tasks 
RETI No return to LPM3 

One minute elapsed: Return is removed from stack, a branch to 
the necessary tasks is made, There it is decided how to proceed 

MIN1 INC 
CLR 

RETI 

MINCNT 
SECCNT 

Minute counter +1 
o -> SECCNT 
Star.t of necessary tasks 
Tasks completed 

9.1.6.4 Jumps 

9-8 

Jumps allow the conditional or unconditional leaving of the linear program flow. 
Jumps cannot reach every address of the address space. But they have the 
advantage of needing only one word and only two MeL!( cycles. The 10-bit 
offset field allows jumps of 512 words maximum forward and 511 words, maxi­
mum, backwards. This is four to eight times the normal reach of a jump. Only 
in a few cases, the 2-word branch is necessary. 

Eight Jumps are possible with the MSP430; four of them have two mnemonics 
to allow better readability: 



Table 9-3. Jump Usage 
MNEMONIC 

JMP label 

JEQlabel 

JZlabel 

JNE label 

JNZ label 

JHS label 

JClabel 

JLO label 

JNC label 

JGE label 

JLTlabel 

IN label 

AND 

BIT 

RRA 

SXT 

TST 

MOV 

TST 

JGE 

CONDITION APPUCATIONS 

Unconditional Jump Program control transler 

JumpifZ=1 After comparisons: src = dst 

Jump il Z = 1 Test lor zero contents 

Jump il Z = 0 After comparisons: src # dst 

JumpilZ=O Test lor nonzero contents 

Jump ilC = 1 After unsigned comparisons: dst ~ src 

JumpilC-1 Test lor a set carry 

JumpilC- 0 After unsigned comparisons dst < src 

JumpilC=O Test lor a reset carry 

Jump il N .xOR. V - 0 After signed comparisons: dst ~ src 

Jump il N .XOR. V = 1 After signed comparisons: dst < src 

JumpilN=1 Test lor the sign of a result: dst < 0 

Note: 

It is important to use the appropriate conditional jump for signed and un­
signed data. For positive data (0 to 07FFFh or 0 to 07Fh) both signed and 
unsigned conditional jumps operate similarly. This changes completely 
when used with negative data (OaOOOh to OFFFFh or OaOh to OFFh): the 
signed conditional jumps treat negative data as smaller numbers than the 
positive ones, and the unsigned conditional jumps treat them as larger num" 
bers than the positive ones. 

No Jump if Positive is provided, only a Jump if Negative. But after several in­
structions, it is possible to use the Jump if Greater Than or Equal for this pur­
pose.lt must be ensured that only the instruction preceding the JGE resets the 
overflow bit V. The following instructions ensure this: 

src,dst 

src,dst 
dst 

dst 

dst 

v <- 0 

v <- 0 

v <- 0 

V <- 0 

V <- 0 

If this feature is used, it should be noted within the comment for later software 
modifications. For example: 

ITEM,R7 

R7 

ITEMPOS 

FETCH ITEM 

V <- 0, ITEM POSITIVE? 

V=O: JUMP IF >= 0 
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OV 

9-10 

Note: 

If addresses are computed only the unsigned jumps are adeql,late. Address­
es are always unsigned, positive numbers. 

No Jump if Overflow is provided. If the status of the overflow bit Is needed from 
the software, a simple bit test can be used (the BIT instruction clears the over­
flow bit, but Its state Is read correctly before): 

.EQU OlOOh Bit address in SR 

BIT 
JNZ 

#OV,SR 
OVFL 

Test Overflow Bit and clear it 
If OV = 1 branch to label OVFL 
If OV = 0 continue here 
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9.2 Special Coding Techniques 

The flexibility of the MSP430 CPU together with a powerful assembler allows 
coding techniques not available with other microcomputers. The most impor­
tant ones are explained in the following sections. 

9.2.1 Conditional Assembly 

DEBUG .set 
ACTL .set 
ADAT .set 
IFG2 .set 
ADIFG .set 

For a detailed description of the syntax please refer to MSP430 Family Assem­
bler Language Tools User's Guide. 

Conditional assembly provides the ability to compile different lines of source 
into the object file depending on the value of an expression that is defined in 
the source program. This makes it easy to alter the behavior of the code by 
modifying one single line in the source. 

The following example shows how to use of conditional assembly. The exam-
, pie allows easy debugging of a program that processes input from the ADC 

by pretending that the input of the ADC is always 07FFh. The following is the 
routine used for reading the input of the ADC. It returns the value read from 
ADC input AO in RB. 

1 ;1= debugging mode; 0= normal mode 
01l4h 
01l8,h 
3 
4 

get-fiDC_value: 

WAIT 

.IF DEBUG=l 
MOV #07FFh,R8 
. ELSE 
BIC #60,&ACTL Input channel is AO 
BIC.B #ADIFG,&IFG2 
BIS #l,&ACTL Start conversion 
BIT.B #ADIFG,&IFG2 
JZ WAIT Wait until conversion' is ready 
MOV &ADAT,R8 
.ENDIF 
RET 

With a little further refining of the code, better results can be achieved. TI1e 
following piece of code shows more built-in ways to debug the written code. 
The second debug code, where debug=2, returns 0700h and OBOOh alternat­
ing. 
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DEBUG .SET 

ACTL .SET 
ADAT .SET 
IFG2 .SET 
ADIFG . SET 

1 

01l4h 
01l8h 
3 
4 

1= debug mode 1; 2= deb. mode 2; 0= 
normal mode 

; get_ADC_value: 

VAR 
OSC 

WAIT 

. SECT "VAR"'0200h 

. WORD, 0700h 

.IF DEBUG=l Return a constant value 
MOV #07FFh,R8 
.ELSEIF DEBUG=2 Return alternating values 
MOV '#OFOOh,R8 
SUB OSC,R8 
MOV R8,OSC 
.ELSE 
BIC #60h,&ACTL Input channel is AO 
BIC #ADIFG,&IFG2 
BIS #l,&ACTL Start conversion 
BIT #ADIFG,&IFG2 
JZ WAIT Wait until conversion is ready 
MOV &ADAT,R8 
.ENDIF 
RET 

Conditional assembly is not restricted to the debug phase of software develop­
ment. The main use is normally to get different software versions out of one 
source. For every version only the necessary software parts are assembled 
and the unneeded parts are left out by conditional assembly. The big advan­
tage is the single source that is maintained. 

An example of this is the MSP430 floating point package with two different 
number lengths (32 and 48 bits) contained in one source. Before assembly the 
desired length is defined by an .EQU directive. See Section 5.6, The Floating 
Point Package for details. 

9.2.2 Position Independent Code 
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, The architecture of the MSP430 allows the easy implementation of position 
independent code (PIC). This is a code, which may run anywhere in the ad­
dress space of a computer without any relocation needed. PIC is possible with 
the MSP430 because of the allocation of the PC inside of the register bank. 
The addressability of the PC is often used. Links to other PIC blocks are pos­
sible only by references to absolute addresses (pointers). 
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EXAMPLE: Code is transferred to the RAM from an outside storage (EPROM, 
ROM, or EEPROM) and executed there at full speed. This code needs to be 
PIC. The loaded code may have several purposes: 

a Application specific software that is different for some versions 
a Additional code that was not anticipated before mask generation 
a Test routines for manufacturing purposes 

9.2.2.1 Referencing of Code Inside Position Independent Code 

The referenced code or data is located in the same block of PIC as the program 
resides. 

Jumps 

Jumps are position independent anyway: their address information is an offset 
to the destination address. 

Branches 

ADD @PC,PC 
.WORD DESTINATION-$ 

Subroutine Calls 

Branch to label DESTINATION 
Address pointer 

; Calling a subroutine starting at the label SUBR: 

SC MOV PC,Rn 
ADD #SUBR-$,Rn 
CALL Rn 

Operations on Data 

Address SC+2 -> Rn 
Add offset (SUBR - (SC+2» 
SC+2+SUBR-(SC+2» = SUBR 

The symbolic addressing mode is position independent. An offset to the PC 
is used. No special addressing is necessary 

MOV DATA,Rn 
CMP DATAl,DATA2 

Jump Tables 

DATA is addressed 
symbolically 

The status contained in Rstatus decides where the SW continues. Rstatus 
contains a multiple of 2 (0,2,4 ... 2n). Range: +512 words, -511 words 

ADD Rstatus,PC Rstatus - (2x status) 
JMP STATUSO Code for status = 0 
JMP STATUS2 Code for status 2 

JMP STATUSn Code for status 2n 
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9.2.2.2 

9-14 

ADD 
TABLE . WORD 

.WORp 

. WORD 

Branch Tables 

The status contained in Rstatus decides where the SW continues. Rstatus 
contains a multiple of 2 (0, 2, 4 ... 2n). Range: complete 64K 

TABLE (RstatuS) ,PC Rstatus = status 
STATUSO-TABLE Offset for status 0 

STATUS2-TABLE Offset for status 2 

STATUSn-TABLE Offset for status 2n 

Referencing of Code Outside of PIC (Absolute) 

BR 

The referenced code or data is located outside the block of PIC. These ad­
dresses can be absolute addresses only (e.g. for linking to other blocks or pe­
ripheral addresses). 

Branches 

Branching to the absolute address DESTINATION: 

#DESTINATION ; #DESTINATION -> PC 

Subroutine Calls 

Calling a subroutine starting at the absolute address SUBR: 

CALL #SUBR ; IISUBR -> PC 

CMP 
ADD 

PUSH 

Operations on Data 

Absolute mode (indexed mode with status register SR = 0). SR does not loose 
its information! 

&DATA1,&DATA2 
&DATAl,Rn 

&DATA2 

Branch Tables 

DATAl + 0 = DATAl 

DATA2 -> stack 

The status contained in Rstatus decides where the SW continues. Rstatus 
steps in increments of 2. The table is located in absolute address space: 

MOV TABLE(Rstatus) ,PC Rstatus - status 

.sect xxx 
TABLE .WORD STATUSO 

Table in absolute address space 

Code for status = 0 
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TABLE 
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.WORD STATUS2 Code for status = 2 

.WORD STATUSn Code for status = 2n 

MOV 
ADD 

ADD 
MOV 

. WORD 

. WORD 

. WORD 

Table is located in PIC address space, but addresses are absolute: 

Rstatus,Rhelp Rstatus contains status 

PC,Rhelp Status + L$l -> Rhelp 
#TABLE-L$l,Rhelp Status+L$l+TABLE-L$l 
@Rhelp,PC Computed address to PC 

STATUSO Code for status = 0 

STATUSl Code for status 2 

STATUSn Code for status - 2n 

The previously shown program examples can be implemented as MACROs 
if needed. This would ease the usage and enhance the legibility. 

9.2.3 Reentrant Code 

If the same subroutine is used by the background program and interrupt rou­
tines, then two copies of this subroutine are necessary with normal computer 
architectures. The stack gives a method of programming that allows many 
tasks to use a single copy of the same routine. This ability of sharing a subrou­
tine for several tasks is called reentrancy. 

Reentrancy allows the calling of a subroutine despite the fact that the current 
task has not yet finished using the subroutine. 

The main difference of a reentrant subroutine from a normal one is that the re­
entrant routine contains only pure code. That is, no part of the routine is modi­
fied during the usage. The linkage between the routine itself and the calling 
software is possible only via the stack (i.e. all arguments during calling and all 
results after completion have to be placed on the stack and retrieved from 
there). The following conditions must be met for reentrant code: 

o No usage of dedicated RAM; only stack usage 
o If registers are used, they need to be saved on the stack and restored from 

there. 

EXAMPLE: A conversion subroutine Binary to BCD needs to be called from 
the background and the interrupt part. The subroutine reads the Input number 
from TOS and places the 5-digit result also on TOS (two words). The subrou­
tines save all registers used on the stack and restore them from there or com­
pute directly on the stack. 
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POSH R7 
CALL #BINBCD 

MOV @SP+,LSD 
MOV @SP+, MSD 

R7 CONTAINS THE BINARY VALUE 
TO BE CONVERTED TO BCD 

BCD-LSDs FROM STACK 
BCD-MSD ' FROM STACK 

9.2.4 Recursive Code 

Recursive subroutines are subroutines that call themselves. This is not pos­
sible with typical architectures; stack processing is necessary for this often 
used feature. A simple example for recursive code is a line printer handler that 
calls itself for the inserting of a form feed after a certain number of printed lines. 
This self-calling allows the use all of the existent checks and features of the 
handler without the need to write it more than once. The following conditions 
must be met for recursive code: 

o No use of dedicated RAM; only stack usage 

o A termination item must exist to avoid infinite nesting (e.g., the lines per 
page must be greater than 1 with the above line printer example) 

o If registers are used, they need to be saved and restored on the stack 

EXAMPLE: The line printer handler inserts a form feed after 70 printed lines 

LPHAND POSH R4 Save R4 

L$500 

CMP #70,LINES 
JLT L$500 
CALL #LPHAND 
,BYTE CR,FF 

70 lines printed? 
No, proceed 

Yes, output Carriage Return 

and Form Feed 

9.2.5 Flag Replacement by Status Usage 
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Flags have several disadvantages when used for program control: 

o Missing transparency (flags may depend on other flags) 
o Possibility of nonexistent flag combinations if not handled very carefully 
o ' Slow speed: the flags can be tested only serially 

The MSP430 allows the use of a status (contained in a RAM byte or register), 
which defines the current program part to be used. This status is very descrip-
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tive and prohibits nonexistent combinations. A second advantage is the high 
speed of the decision. Only one instruction is needed to get to the start of the 
appropriate handler (see Branch Tables). 

The program parts that are used currently define the new status dependent on 
the actual conditions. Normally the status is only incremented, but it can be 
changed to be more random too. 

EXAMPLE: The status contained in register Rstatus decides where the soft­
ware continues. Rstatus contains a multiple of 2 (0, 2, 4 ... 2n) 

Range: Complete 64K 

MOV TABLE(Rstatus),PC ;Rstatus - status 

TABLE .WORD STATUSO Address handler for status 0 

. WORD 

. WORD 

STATUSO 

INCD 
JMP 

STATUS 2 Address handler for status = 2 

STATUSn Address handler for status = 2n 

start handler status 0 

Rstatus Next status is 2 
HEND Common end 

The previous solution has the disadvantage of using words even if the dis­
tances to the different program parts are small. The next example shows the 
use of bytes for the branch table. The SXT instruction allows backward refer­
ences (handler starts at lower addresses than TABLE4). 

BRANCH TABLES WITH BYTES: Status in R5 (0, 1, 2, .. n) 
Usable range: TABLE4-128 to TABLE4+126 

TABLE4 

PUSH.B TABLE4(R5) STATUSx-TABLE4 -> STACK 
SXT 
ADD 
. BYTE 

.BYTE 

. BYTE 

@SP Forward/backward references 
@SP+,PC TABLE4+STATUSx-TABLE4 -> PC 
STATUSO-TABLE4 DIFFERENCE TO START OF 

HANDLER 
STATUSI-TABLE4 

STATUSn-TABLE4 ; Offset for status = n 

If only forward references are possible (normal case), the addressing range 
can be doubled. The next example shows this: 

Stepping is forward only (with doubled forward range) 
Status is contained in R5 (0, 1, .. n) 
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Usable range: TABLES to TABLES+2S4 

TABLES 

PUSH.B TABLES (RS) ; STATUSx-TABLE -> STACK 
CLR.B 
ADD 
. BYTE 

. BYTE 

. BYTE 

l(SP) Hi byte <- 0 
@SP+,PC TABLE+STATUSx-TABLE -> PC 
STATUSO-TABLES DIFFERENCE TO START OF 

HANDLER 
STATUSl-TABLES 

STATUSn-TABLES ; Offset for status = n 

The previous example can be made shorter and faster if a register can be 
used: 

Stepping is forward only (with doubled forward range) 
Status is contained in R5 (0, 1, 2 .. n) 
Usable range: TABLES to TABLES+2S4 

TABLES 

MOV.B TABLE5(R5),R6 STATUSx-TABLE5 -> R6 
ADD R6,PC TABLE5+STATUSx-TABLE5 -> PC 
. BYTE STATUSO-TABLE5 DIFFERENCE TO STA'RT OF 

HANDLER 
. BYTE STATUSl-TABLE5 

. BYTE STATUSn-TABLE5 ; Offset for status = n 

The addressable range can be doubled once more with the following code. 
The status (0, 1, 2, .. n) is doubled before its use. 

The addressable range may be doubled with the following code: 
The "forward only" version with an available register (R6) is 
shown: Status 0, 1, 2 ... n 
Usable range: TABLE6 to TABLE6+510 

MOV.B TABLE6(RS),R6 (STATUSx-TABLE6)/2 
RLA R6 STATUSx-TABLE6 
ADD R6,pC TABLE6+STATUSx-TABLE6 -> PC 

TABLE6 .BYTE (STATUSO-TABLE6)/2 Offset for Status - 0 
.BYTE (STATUSl-TABLE6)/2 

.BYTE (STATUSn-TABLE6)/2 Offset for Status - ri 

9.2.6 Argument Transfer With Subroutine Calls 
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Subroutines often have arguments to work with. Several methods existfor the 
passing of these arguments to the subroutine: 



o On the stack 
o In the words (bytes) after the subroutine call 
o In registers 
o The address is contained in the word after the subroutine call 

The passed information itself may be numbers, addresses, counter contents, 
upper and lower limits etc. It only depends on the application. 

9.2.6.1 Arguments on the Stack 

PUSH 

PUSH 

CALL 

SUBR MOV 

MOV 

MOV 

ADD 

RET 

The arguments are pushed on the stack and read afterwards by the called sub­
routine. The subroutine is responsible for the necessary housekeeping (here, 
the transfer of the return address to the top of the stack). 

o Advantages: 

• Usable generally; no registers have to be freed for argument passing 

• Variable arguments are possible 

o Disadvantages: 

• Overhead due to necessary housekeeping 

• Not easy to understand 

EXAMPLE: The subroutine SUBR gets its information from two arguments 
pushed onto the stack before being called. No information is given back and 
a normal return from subroutine is used. 

argumentO 1st ARGUMENT FOR SUBROUTINE 

argument1 2nd ARGUMENT 

#SUBR SUBROUTINE CALL 

4 (SP), Rx COPY ARGUMENTO TO Rx 

2(SP),Ry COpy ARGUMENT1 TO Ry 

@SP,4(SP) RETURN ADDRESS TO CORRECT LOC. 
#4,SP PREPARE SP FOR NORMAL RETURN 

PROCESSING OF DATA 

NORMAL RETURN 
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After the subroutine call, the stack looks as follows: After the RET, it looks like this: 

TOS before CALL SP ~ 

Argumento AddreuN+4 

Argument1 AddreBSN+2 

SP ~ Return Addreu AddreseN 

Figure 9-2. Argument Allocation on the Stack 

PUSH 

PUSH 

CALL 
POP 

POP 

POP 

SUBR MOV 

MOV 

PUSH 

MOV 

MOV 
MOV 

RET 

9-20 

EXAMPLE: The subroutineSUBR gets its information from two arguments 
pushed onto the stack before being called. Three result words are returned on 
the stack. It is the responsibility of the calling program to pop the results from 
the stack. 

argumentO 1st ARGUMENT FOR SUBROUTINE 

argumentl 2nd ARGUMENT 

#SUBR SUBROUTINE CALL 
R15 RESULT2 -> R15 

R14 RESULTl -> R14 

R13 RESULTO -> R13 

4(SP),Rx COpy ARGUMENTO TO Rx 

2(SP),Ry COpy ARGUMENTl TO Ry 

PROCESSING CONTINUES 

2(SP) SAVE RETURN ADDRESS 

RESULTO,6(SP) 1st RESULT ON STACK 

RESULT1,4(SP) 2nd RESULT ON STACK 

RESULT2,2(SP) 3rd RESULT ON STACK 
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After the subroutine call, the stack looks as follows: After the RET, it looks like this: 

TOS before CALL 

Argumento AddressN+4 ResultO 

Argument1 AddressN+2 Result1 

SP ~ Return Address AddressN SP ~ Result2 

Figure 9-3. Argument and Result Allocation on the Stack 

Note: 

If the stack is involved during data transfers, it is very important to have in 
mind that only data at or above the top of stack (TOS, the word the SP pOints 
to) is protected against overwriting by enabled interrupts. This does not allow 
the SP to move above the last item on the stack. Indexed addressing is need­
ed instead. 

9.2.6.2 Arguments Following the Subroutine Call 

The arguments follow the subroutine call and are read by the called subrou­
tine. The subroutine is responsible for the necessary housekeeping (here, the 
adaptation of the return address on the stack to the 1 st word after the argu­
ments). 

o Advantages: 

• Very clear and easily readable interface 

o Disadvantages: 

• Overhead due to necessary housekeeping 

• Only fixed arguments possible 

EXAMPLE: The subroutine SUBR gets its information from two arguments fol­
lowing the subroutine call. Information can be given back on the stack or in reg­
isters. 

CALL #SUBR 

.WORD START 

.BYTE 24,0 

SUBROUTINE CALL 

START OF TABLE 

LENGTH OF TABLE, FLAGS 
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SUBR MOV @SP, RS 
MOV @RS+,R6 

MOV @RS+,R7 

MOV RS,O(SP) 

RET 

1st instruction after CALL 

COPY ADDRESS 1st ARGUMENT TO RS 

MOVE 1st ARGUMENT TO R6 
MOVE ARGUMENT BYTES TO R7 

ADJUST RETURN ADDRESS ON STACK 

PROCESSING OF DATA 

NORMAL RETURN 

9.2.6.3 Arguments In Registers 

SUBR 

MOV 

MOV 

CALL 

RET 

The arguments are moved into defined registers and used afterwards by the 
subroutine. 

CI Advantages: 

• Simple interface and easy to understand 
• Very fast 
• Variable arguments are possible 

CI Disadvantages: 

• Registers have to be freed 

EXAMPLE: The subroutine SUBR gets its information from two registers which' 
are loaded before the calling. Information can be given back, or not with the 
same registers. 

argO,RS 

arg1,R6 

#SUBR 

1st ARGUMENT FOR SUBROUTINE 

2nd ARGUMENT 

SUBROUTINE CALL 

PROCESSING OF DATA 

NORMAL RETURN 

9.2.7 Interrupt Vectors in RAM 

9-22 

If the destination address of an interrupt changes with the program run, it is 
valuable to have the ability to modify the pointer. The vector itself (which re­
sides in ROM) cannot be changed but a second pOinter residing in RAM can 
be used for this purpose. 

EXAMPLE: The interrupt handler for the basic timer starts at location BTHAN 1 
after initialization and at BTHAN2 when a certain condition is met (for example, 
when a calibration is made). 

BASIC TIMER INTERRUPT GOES TO ADDRESS BTVEC. THE INSTRUCTION 
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"MOV @PC,PC" WRITES THE ADDRESS IN BTVEC+2 INTO THE PC: 

THE PROGRAM CONTINUES AT THAT ADDRESS 

.sect "VAR",0200h 

BTVEC .word 0 

.word 0 

RAM START 

OPCODE "MOV @PC,PC" 

ACTUAL HANDLER START ADDR. 

; THE SOFTWARE VECTOR BTVEC IS INITIALIZED: 

INIT MOV 

MOV 

#04020h,BTVEC 

#BTHANl,BTVEC+2 

; OPCODE "MOV @PC,PC 

; START WITH HANDLER BTHANI 

; INITIALIZATION CONTINUES 

THE CONDITION IS MET: THE BASIC TIMER INTERRUPT IS HANDLED 

AT ADDRESS BTHAN2 STARTING NOW 

MOV #BTHAN2,BTVEC+2 ; CONT. WITH ANOTHER HANDLER 

THE INTERRUPT VECTOR FOR THE BASIC TIMER CONTAINS THE RAM 

ADDRESS OF THE SOFTWARE VECTOR BTVEC: 

.sect "BTVect",OFFE2h 

.WORD BTVEC 

VECTOR ADDRESS BASIC TIMER 

FETCH ACTUAL VECTOR THERE 
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9.3 Instruction Execution Cycles 

9.3.1 Double Operand Instructions 

With the following scheme, it is relatively easy to remember how many cycles 
a double operand instruction will need to execute. Figure 9-4 shows the num­
ber of cycles for all 28 possible combinations of the source and destination ad­
dressing modes. All similar addressing modes are condensed. 

X(Rdst) 
SYMBOLIC 

Rdst &ABSOLUT 

Rsrc 1t 4 

@Rsrc, @Rsrc+, #N 2t 5 

X(Rsrc), SYMBOLIC, &ABSOLUT 3 6 

t: Add one cycle If Rds! is PC 

Figure 9-4. Execution Cycles for Double Operand Instructions 

EXAMPLE: the instruction ADD #500h, 16 (R5) needs 5 cycles for the 
execution. 

9.3.2 Single Operand Instructions 

9-24 

The simple and clear scheme of the double operand instructions is not applica­
ble to the six single operand instructions. They differ too much. Figure 9-5 
gives an overview. 



Rdst 

@Rdst 

@Rdst+, #N 

X(Rdst), SYMBOLIC, &ABSOLUT 

SWPB 
SXT 
RRx 

1 

3 

3 

4 

PUSH 

3 

4 

4 

5 

Figure 9-5. Execution Cycles for Single Operand Instructions 

Instruction Execution Cycles 

CALL 

4 

4 

5 

5 

EXAMPLE: the instruction PUSH # 5 0 a h needs 4 cycles for the execution. 

9.3.3 Jump Instructions 

All seven conditional jump Instructions need two cycles for execution, inde­
pendent if the jump condition is met or not. The same is true for the uncondi­
tional jump instruction, JMP. 

9.3.4 Interrupt Timing 

An enabled interrupt sequence needs eleven cycles overhead: 

o Six cycles for the storage of the PC and the SR on the stack until the first 
instruction of the interrupt handler is started 

o Five cycles for the return from interrupt-by the instruction RETI-until the 
first instruction of the interrupted program is started. 

If the interrupt is requested during the low power modes 3 or 4, then additional 
two cycles are needed. 
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