
SPRU014

Second-Generation
TMS320
User's Guide

•• TEXAS
INsrRUMENTS

Second-Generation
TMS320

User's Guide

"' TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (Tl) reserves the right to make changes to or to
discontinue any semiconductor product or service identified in this
publication without notice. Tl advises its customers to obtain the latest
version of the relevant information to verify, before placing orders,
that the information being relied upon is current.

Tl. warrants performance of its semiconductor products to .current
specifications in accordance with Tl's standard warranty. Testing and
other quality control techniques are utilized to the extent Tl deems
necessary to support this warranty. Unless mandated by government
requirements, specific testing of all parameters of each device is not
necessarily performed.

Tl assumes no liability for Tl applications assistance, customer product
design, software performance, or infringement of patents or services
described herein. Nor does Tl warrant or represent that any license,
either express or implied, is granted under any patent right, copyright,
mask work right, o·r other intellectual property right of Tl covering or
relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright© 1987, Texas Instruments Incorporated

_Manual Update __ _

Document Title: Second-Generation TMS320 Users Guide

Document Number: SPRU014 ECN Number: 526628

The following are changes to the Second-Generation TMS320 User's Guide. These changes will
be incorporated in the next revision of the manual. Bars in the right margin indicate changes or
additions to the manual.

3-25 On the top line following the words "which do not affect the accumulator" add a
footnote flag (t)and, on the bottom of the page, add the following footnote:

tBIT instruction may affect the accumulator on the TMS32020 under certain I
circumstances. Refer to Section 4.3, Page 4-45.

4-45 Under the Execution heading, following the words "Affects TC", add the following
warning:

Caution: See note on next page concerning execution by TMS32020 .

.Jis TEXAS
.....,. INSTRUMENTS

I

SPRZ047

4-46

5-32

Change or Add

Under the example given for the Test Bit instruction add the following note:

Note:

This instruction may affect the contents of the accumulator on the TMS32020
if the following conditions occur:

1) Overflow mode set (OVM status register bit is set).

2) Two LSBs of BIT instruction opcode (bits 8 and 9 of the instruction word)
are zero.

3) Addition of accumulator contents with contents of addressed memory
would cause accumulator overflow.

If all of the above conditions are met, the contents of the accumulator will be
replaced by the positive or negative saturation value, depending on the polarity
of the overflow.

This situation can be avoided by any one of the following means:

• Precede BIT instruction with ROVM, and follow BIT with SOVM instruction.

• If direct addressing is being used, reorganize memory so that page relative
locations 0, 4, 8, C, and 10 are not used.

• If indirect addressing is used, select new ARP that is not ARO or AR4, and
restore code later (if necessary) with LARP AR0/4.

• Use BITT instead of BIT. BITT does not affect accumulator under any
circumstances.

• Use TMS320C25 (pin and object code compatible) instead.

This situation occurs only when the BIT instruction is executed by a TMS32020
that is in the saturation mode.

Change or Add

Following the last paragraph of section 5.5.2 (under the words "past processing")
add the following note:

Note:

Under certain circumstances, executing the BIT instruction may affect the
contents of the accumulator on the TMS32020 device. For more information, refer
to the instruction definition in Section 4.3 Page 4-45.

2

I

Contents

Section

1 Introduction
1 .1 General Description
1 .2 Key Features
1 .3 Typical Applications
1.4 How To Use This Manual
1 .5 References

2 Pinouts and Signal Descriptions
2.1 TMS320C2x Pinouts
2.2 TMS320C2x Signal Descriptions

3
3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.5
3.5.1
3.5.2
3.5.3
3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.6.7
3.7
3.7.1
3.7.2
3.7.3
3.8
3.8.1
3.8.2
3.9
3.9.1
3.9.2
3.9.3
3.9.4
3.9.5

Architecture
Architectural Overview
Functional Block Diagram
Internal Hardware Summary
Memory Organization

Data Memory
Program Memory
Memory Maps
Memory-Mapped Registers
Auxiliary Registers
Memory Addressing Modes
Memory-to-Memory Moves

Central Arithmetic Logic Unit (CALU)
Scaling Shifter
ALU and Accumulator
Multiplier, T and P Registers

System Control
Program Counter and Stack
Pipeline Operation
Reset
Status Registers
Timer Operation
Repeat Counter
Powerdown Mode (TMS320C25)

External Memory and 1/0 Interface ..
Memory Combinations
Internal Clock Timing Relationships
General-Purpose 1/0 Pins (BIO and XF)

Interrupts
Interrupt Operation
External Interrupt Interface

Serial Port
Transmit and Receive Operations
Timing and Framing Control
Burst-Mode Operation
Continuous Operation Using Frame Sync Pulses (TMS320C25)
Continuous Operation Without Frame Sync Pulses (TMS320C25)

Page

1-1
1 -3
1-4
1-5
1 . 7
1-9

2-1
2-2
2-3

3-1
3-2
3-5
3-7
3-11
3-11
3-12
3-13
3-16
3-16
3-19
3-20
3-22
3-23
3-24
3-26
3-28
3-28
3-29
3-41
3-42
3-44
3-46
3-46
3-47
3-47
3-48
3-49
3-52
3-52
3-53
3-56
3-58
3-60
3-61
3-62
3-64

iii

3.9.6 Initialization of Continuous Operation Without Frame Sync Pulses
(TMS320C25) 3-66

3.10 Multiprocessing and Direct Memory Access (OMA) 3-68
3.10.1 Synchronization . 3-68
3.10.2 Global Memory 3-69
3.1 0.3 The Hold Function 3- 71

4
4.1
4.1.1
4.1 .2
4.1.3
4.2
4.2.1
4.2.2
4.3

5
5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.3
5.3.1
5.3.2
5.4
5.4.1
5.4.2
5.4.3
5.5
5.5.1
5.5.2
5.6
5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6
5.6.7
5.6.8
5.7
5.7.1
5.7.2
5.7.3
5.7.4
5.7.5

iv

Assembly Language Instructions
Memory Addressing Modes

Direct Addressing Mode
Indirect Addressing Mode
Immediate Addressing Mode

Instruction Set
Symbols and Abbreviations .
Instruction Set Summary

Individual Instruction Descriptions

Software Applications
Processor Initialization
Program Control

Subroutines ..
Software Stack
Timer Operation
Single-Instruction Loops
Computed GOTOs

Interrupt Service Routine
Context Switching
Interrupt Priority

Memory Manage~ent
Block Moves
Configuring On-Chip RAM
Using On-Chip RAM for Program Execution

Fundamental Logical and Arithmetic Operations
Status Register Effect on Data Processing
Bit Manipulation

Advanced Arithmetic Operations
Overflow Management
Scaling
Moving Data
Multiplication
Division
Floating-Point Arithmetic
Indexed Addressing ...
Extended- Precision Arithmetic

Application-Oriented Operations
Companding
FIR/llR Filtering
Adaptive Filtering
Fast Fourier Transforms (FFT)
PIO Control

4-1
4-2
4-2
4-4
4-9
4-10
4-10
4-12
4-17

5-1
5-2
5-7
5-7
5-10
5-11
5-13
5-14
5-16
5-16
5-22
5-23
5-23
5-25
5-28
5-31
5-31
5-32
5-34
5-34
5-35
5-35
5-37
5-42
5-45
5-49
5-49
5-60
5-60
5-61
5-63
5-68
5-75

6
6.1
6.1.1
6.1.2
6.1.3
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.3
6.4
6.5
6.5.1
6.5.2
6.5.3
6.5.4
6.5.5
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.6.6

A
B
c
D
E
F
G
H

Hardware Applications
System Control Circuitry

Powerup Reset Circuit
Crystal Oscillator Circuit
User Target Design Considerations When Using the XDS

Interfacing Memories
Interfacing PROMs
Wait-State Generator
Interfacing EPROMs
Interfacing Static RAMs
Interface Timing Analysis

Direct Memory Access (OMA)
Global Memory
Interfacing Peripherals

Combo-Codec Interface
AIC Interface
Digital-to-Analog (D/ A) Interface
Analog-to-Digital (A/D) Interface
1/0 Ports

System Applications
Echo Cancellation
High-Speed Modem
Voice Coding
Graphics and Image Processing
High-Speed Control
Instrumentation and Numeric Processing

TMS320 Second-Generation Digital Signal Processors Data Sheet
SMJ32020 Data Sheet
TMS320C2x System Migration
Instruction Cycle Timings
Development Support/Part Order Information
Memories, Analog Converters. Sockets, and Crystals
ROM Codes
Quality and Reliability

6-1
6-3
6-3
6-5
6-7
6-10
6-11
6-16
6-19
6-24
6-27
6-29
6-32
6-34
6-34
6-37
6-39
6-40
6-42
6-45
6-45
6-45
6-46
6-47
6-47
6-48

A-1
B-1
C-1
D-1
E-1
F-1
G-1
H-1

v
11

Illustrations

Figure

1 -1
2-1
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-39
3-40
3-41
3-42
3-43
4-1
4-2
5-1
5-2

vi

TMS320 Device Evolution
TMS320C2x Pin Assignments
TMS320C2x Simplified Block Diagram
TMS320C2x Block Diagram
On-Chip Data Memory
Memory Maps .. .
Indirect Auxiliary Register Addressing Example
Auxiliary Register File .. .
Methods of Instruction Operand Addressing
Central Arithmetic Logic Unit (CALU)
Examples of TMS320C25 Carry Bit Operation
Program Counter, Stack, and Related Hardware
Three-Level Pipeline Operation (TMS320C25)
Two-Level Pipeline Operation
TMS320C25 Standard Pipeline Operation
Pipeline Operation of ADD Followed by SACL
Pipeline Operation with Wait States
Pipeline with External Data Bus Conflict
Pipeline Operation of Branch to On-Chip RAM
Pipeline Operation of RET from On-Chip RAM
Status Register Organization
Timer Block Diagram
Four- Phase Clock
BIO Timing Diagram
External Flag Timing Diagram
Interrupt Mask Register (IMR)
Internal Interrupt Logic Diagram
Interrupt Timing Diagram (TMS320C25)
The DRR and DXR Registers
Serial Port Block Diagram
Serial Port Transmit Timing Diagram
Serial Port Receive Timing Diagram
Burst- Mode Serial Port Transmit Operation
Burst-Mode Serial Port Receive Operation
Byte-Mode DRR Operation
Serial Port Transmit Continuous Operation (FSM = 1)
Serial Port Receive Continuous Operation (FSM = 1)
Serial Port Transmit Continuous Operation (FSM = 0)
Serial Port Receive Continuous Operation (FSM = 0)
Continuous Transmit Operation Initialization
Continuous Receive Operation Initialization
Synchronization Timing Diagram (TMS32020)
Synchronization Timing Diagram (TMS320C25)
Global Memory Access Timing
TMS320C25 Hold Timing Diagram
Direct Addressing Block Diagram
Indirect Addressing Block Diagram
On-Chip RAM Configurations
MACD Operation

Page

1 -1
2-2
3-2
3-6
3-12
3-15
3-17
3-18
3-20
3-23
3-25
3-28
3-30
3-31
3-32
3-34
3-35
3-36
3-37
3-38
3-42
3-45
3-49
3-50
3-51
3-53
3-54
3-55
3-57
3-58
3-59
3-60
3-61
3-61
3-62
3-63
3-63
3-65
3-65
3-67
3-67
3-68
3-69
3-70
3-72
4-3
4-4
5-26
5-36

5-3
5-4
5-5
5-6
5-7
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
C-1
E-1'
E-2
E-3
E-4
E-5
F-1
G-1

Execution Time vs. Number of Multiply-Accumulates (TMS32020)
Execution Time vs. Number of Multiply-Accumulates (TMS320C25)
Program Memory vs. Number of Multiply-Accumulates
An In-Place DIT FFT with In-Order Outputs and Bit-Reversed Inputs
An In-Place DIT FFT with In-Order Inputs but Bit-Reversed Outputs
Powerup Reset Circuit .. .
Voltage on TMS320C25 Reset Pin
Crystal Oscillator Circuit
Magnitude of Impedance of Oscillator LC Network
Direct Interface of TBP38L 165-35 to TMS320C25
Interface Timing of TBP38L165-35 to TMS320C25
Interface of TBP38L165-35 to TMS320C25
Interface Timing of TBP38L 165-35 to TMS320C25 (Address Decoding)
One Wait-State Memory Access Timing
Wait-State Generator Design
Wait-State Generator Timing
Interface of WS57C65F-12 to TMS320C25
Interface Timing of WS57C65F-12 to TMS320C25
Interface of TMS27C64-20 to TMS320C25
Interface Timing of TMS27C64-20 to TMS320C25
Interface of CY7C169-25 to TMS320C25
Interface Timing of CY7C169-25 to TMS320C25
Direct Memory Access Using a Master-Slave Configuration
Direct Memory Access in a PC Environment
Global Memory Communication
Interface of TMS320C25 to TCM29C16 Codec
Interface of TLC32040 to TMS320C2x
Synchronous Timing of TLC32040 to.TMS320C2x
Asynchronous Timing of TLC32040 to TMS320C2x
Interface of TLC7524 to TMS32020
Interface Timing of TLC7524 to TMS32020
Interface of TLC0820 to TMS32020
Interface Timing of TLC0820 to TMS32020
1/0 Port Addressing
1/0 Port Processor-to-Processor Communication
Echo Canceller
High-Speed Modem
Voice Coding System .. .
Graphics System .. .
Robot Axis Controller Subsystem ,
Instrumentation System
Serial Port System Migration
TMS320C2x Development Tools
TMS320C2x XDS/22 System Configuration
TMS320 Al B System Configuration
TMS320 Device Nomenclature
TMS320 Development Tool Nomenclature
Crystal Connection .. .
TMS320C2x ROM Code Flowchart•............

5-39
5-40
5-41
5-68
5-69
6-3
6-4
6-5
6-6
6-12
6-13
6-14
6-15
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-25
6-26
6-30
6-31
6-33
6-35
6-38
6-38
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-46
6-46
6-47
6-48
6-48
C-8
E-1
E-6
E-8
E-13
E-14
F-33
G-2

vii

Table

1 -1
1-2
2-1
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
4-1
4-2
4-3
4-4
5-1
5-2
5-3
5-4
6-1
6-2
6-3
6-4
6-5
6-6
D-1
D-2
D-3
D-4
D-5
E-1
E-2
E-3
F-1
H-1
H-2

viii

Tables

TMS320C2x Processors Overview
Typical Applications of the TMS320 Family
TMS320C2x Signal Descriptions
TMS320C2x Internal Hardware
Memory-Mapped Registers
PM Shift Modes .. .
Instruction Pipeline Sequence
Status Register Field Definitions
Interrupt Locations and Priorities
Serial Port Bits, Pins, and Registers
Global Data Memory Configurations
Indirect Addressing Arithmetic Operations
Bit Fields for Indirect Addressing
Instruction Symbols
Instruction Set Summary
Program Space and Time Requirements for µ-/A-Law Companding
256-Tap Adaptive Filtering Memory Space and Time Requirements
Bit-Reversal Algorithm for an 8-Point Radix-2 DIT FFT
FFT Memory Space and Time Requirements
Timing Parameters of TBP38L 165-35 Direct Interface to TMS320C25
Timing Parameters of TBP38L 165-35 to TMS320C25 (Address Decoding)
Wait States Required for Memory/Peripheral Access
Timing Parameters of WS57C64F-12 Interface to TMS320C25
Timing Parameters of TMS27C64-20 Interface to TMS320C25
Timing Parameters of CY7C169-25 Interface to TMS320C25
TMS32020 Instructions by Cycle Class
TMS32020 Instruction Cycle Timings
TMS320C25 Instructions by Cycle Class
Cycle Timings for Cycle Classes When Not in Repeat Mode
Cycle Timings for Cycle Classes When in Repeat Mode
TMS320C2x Digital Signal Processor Part Numbers
TMS320C2x Support Tool Part Numbers
Development Tool Connections to a Target System
Commonly Used Crystal Frequencies
Microprocessor and Microcontroller Tests
TMS320C2x Transistors

Page

1-3
1-5
2-4
3-8
3-16
3-27
3-33
3-43
3-52
3-56
3-70
4-6
4-7
4-11
4-13
5-60
5-67
5-69
5-75
6-13
6-1 !)
5:17
6-21
6-23
6-24
D-2
D-3
D-4
D-5
D-7
E-11
E-1 I
E-12
F-33
H-5
H-5

1. Introduction

The TMS320 family of 16/32-bit single-chip digital signal processors com­
bines the flexibility of a high-speed controller with the numerical capability of
an array processor, offering an inexpensive alternative to custom VLSI and
multichip bit-slice processors for signal processing.

The TMS32010, the first digital signal processor in the TMS320 family, was
introduced in 1983. Since that time, the TMS320 family has established itself
as the industry standard for digital signal processing. The powerful instruction
set, inherent flexibility, high-speed number-crunching capabilities, and inno­
vative architecture have made the high-performance, cost-effective processors
in the TMS320 family the ideal solution to many telecommunications, com­
puter, commercial, industrial, and military applications.

The TM13320 family has now expanded into three generations of processors:
TMS320C1 x, TMS320C2x, and TMS320C3x (see Figure 1-1). Many features
are common among these generations. Some specific features are added in
each processor to provide different cost/performance tradeoffs. Software
compatibility is maintained throughout the family to protect the user's invest­
ment in architecture. Each processor has software and hardware tools to
facilitate rapid design.

TMS320C3x

320C30 • 32-bit float-pt CPU
I ________ __._.._ __ _., • 60-ns instr cycle

TMS320C2x • 2K w RAM
• 4K W ROM

32020 e 16/32-bit CPU • 64 W instr cache
• 16M W total mem w 320C25 • 100-ns instr cycle

~ ~--------__.._...._ __ _., e 544 W data RAM • 32 x 32 - 40-bit mult

~ TMS32QC1 X • 4K W prog ROM
a: • 128K W total mem
~ 32010 • 16/32-bitCPU • 16x16=32-bitmult
ffi 32011 • 160-ns instr cycle • Serial port and timer
a.. 320C10 • 256 W data RAM • Block move/repeat

320C15 e 4K W ROM/EPROM • Multiprocessor l/F
320E15 • 4K W ext prog mem
320C17 • 16 x 16 • 32-bit mult
320E 17 • 2 serial ports

• Companding H/W
• Coprocessor l/F

./

1982 1985

7

• 2 serial ports
• 2 timers
e DMA

1987

Figure 1-1. TMS320 Device Evolution

../

1 -1

Introduction

1-2

This document discusses the second-generation devices (TMS320C2x}
within the TMS320 family. The specific members of the second-generation
TMS320 include:

• TMS32020, an NMOS 20-MHz digital signal processor capable '°f twice
the performance of the TMS320C1 x devices, and

• TMS320C25, a CMOS 40-MHz version of the TMS32020 with twice
the performance of the TMS32020.

Plans for expansion of the TMS320 family include more spinoffs of the exist­
ing generations as well as more powerful future generations of digital signal
processors.

The TMS320 family combines the high performance and specialized features
necessary in digital signal processing (DSP} applications with an extensive
program of development support, including hardware and software develop­
ment tools, product documentation, textbooks, newsletters, DSP design
workshops, and a variety of application reports. See Appendix D for a dis­
cussion of the wide range of development tools available.

Introduction - General Description

1.1 General Description

DEVICE

TMS32020:f:

TMS320C25§

The combination of the TMS320's Harvard-type architecture (separate pro­
gram and data buses) and its special digital signal processing (DSP) instruc­
tion set provide speed and flexibility to produce a microprocessor family
capable of executing 10 MIPS (million instructions per second). The TMS320
family optimizes speed by implementing functions in hardware that other
processors implement through software or microcode. This hardware-inten­
sive approach provides the design engineer with power previously unavailable
on a single chip.

The second generation of the TMS320 family includes two members, the
TMS32020 and the TMS320C25. The architecture of these devices is based
upon that of the TMS32010. Table 1 -1 provides an overview of the
TMS320C2x group of processors with comparisons of technology, memory,
1/0, cycle timing, and package type.

Table 1-1. TMS320C2x Processors Overview

MEMORY 1/0t CYCLE PACKAGE
TECH ON-CHIP OFF-CHIP TIME TYPE

RAM ROM PROG DATA SER PAR OMA (ns) PGA PLCC

NMOS 544 - 64K 64K YES 16x16 YES 200 68 -
CMOS 544 4K 64K 64K YES 16x16 CON 100 68 68

tSER = serial; PAR = parallel; OMA = direct memory access; CON = concurrent OMA.
+Military version available; contact nearest Tl sales office for details.
§Military version planned; contact nearest Tl sales office for availability.

The TMS32020, processed in NMOS technology, is source-code upward
compatible with the TMS32010 and in many applications is capable of two
times the throughput of the TMS320C1 x devices. It provides an enhanced
instruction set (109 instructions), large on-chip data memory (544 words),
large memory spaces, on-chip serial port, and a hardware timer.

The TMS320C25, the newest member of the TMS320 second generation, is
processed in CMOS technology. The TMS320C25 is capable of executing
many instructions in a 100-ns cycle time. It is pin-for-pin and object-code
upward compatible with the TMS32020. The TMS320C25's enhanced fea­
ture set greatly increases the functionality of the device over the TMS32020.
Enhancements include 24 additional instructions (133 total), eight auxiliary
registers, an eight-level hardware stack, 4K words of on-chip program ROM,
a bit-reversed indexed-addressing mode, and the low-power dissipation in­
herent to the CMOS process.

1-3

Introduction - Key Features

1.2 Key Features

1-4

Some of the key features of the TMS320C2x devices are listed below. Features
specific to a particular device are noted by enclosing the device name in pa­
rentheses.

• Instruction cycle timing:
100 ns (TMS320C25)
200 ns (TMS32020)

• 544-word programmable on-chip data RAM
• 4K-word on-chip program ROM (TMS320C25)
• 128K-word total data/program memory space
• 32-bit ALU/accumulator
• 16 x 16-bit parallel multiplier with a 32-bit product
• Single-cycle multiply/accumulate instructions
• Repeat instructions for efficient use of program space and enhanced

execution
· • Block moves for data/program management
• On-chip timer for control operations
• Up to eight auxiliary registers with dedicated arithmetic unit
• Up to eight-level hardware stack
• Sixteen input and sixteen output channels
• 16-bit parallel shifter
• Wait states for communication to slower off-chip memories/peripherals
• Serial port for direct codec interface
• Synchronization input for synchronous multiprocessor configurations
• Global data memory interface
• TMS320C1 x source-code upward compatibility
• Concurrent DMAusing an extended hold operation (TMS320C25)
• Instructions for adaptive filtering, FFTs, and extended-precision arith-

metic (TMS320C25)
• Bit-reversed indexed-addressing mode for radix-2 FFTs (TMS320C25)
• On-chip clock generator
• Single 5-V supply
• Device packaging:

68-pin PGA
68-lead PLCC (TMS320C25)

• Technology:
NMOS (TMS32020)
CMOS (TMS320C25)

• Commercial and military versions available.

Introduction - Typical Applications

1.3 Typical Applications

The TMS320 family's unique versatility and realtime performance offer flexible
design approaches in a variety of applications. In addition, TMS320 devices
can simultaneously provide the multiple functions often required in those
complex applications. Table 1 -2 lists typical TMS320 family applications.

Table 1-2. Typical Aoplications of the TMS320 Family

GENERAL-PURPOSE DSP GRAPHICS/IMAGING INSTRUMENTATION

Digital Filtering 3- D Rotation Spectrum Analysis
Convolution Robot Vision Function Generation
Correl at ion Image Transmission/ Pattern Matching
Hilbert Transforms Compression Seismic Processing
Fast Fourier Transforms Pattern Recognition Transient Analysis
Adaptive Filtering Image Enhancement Digital Filtering
Windowing Homomorphic Processing Phase-Locked Loops
Waveform Generation Workstations

Animation/Digital Map

VOICE/SPEECH CONTROL MILITARY

Voice Mail Disk Control Secure Communications
Speech Vocoding Servo Control Radar Processing
Speech Recognition Robot Control Sonar Processing
Speaker Verification Laser Printer Control Image Processing
Speech Enhancement Engine Control Navigation
Speech Synthesis Motor Control Missile Guidance
Text-to-Speech Radio Frequency Modems

TELECOMMUNICATIONS AUTOMOTIVE

Echo Cancellation FAX Engine Control
ADPCM Transcoders Cellular Telephones Vibration Analysis
Digital PBXs Speaker Phones Antiskid Brakes
Line Repeaters Digital Speech Adaptive Ride Control
Channel Multiplexing Interpolation (DSI) Global Positioning
1200 to 19200-bps Modems X.25 Packet Switching Navigation
Adaptive Equalizers Video Conferencing Voice Commands
DTMF Encoding/Decoding Spread Spectrum Digital Radio
Data Encryption Communications Cellular Telephones

CONSUMER INDUSTRIAL MEDICAL

Radar Detectors Robotics Hearing Aids
Power Tools Numeric Control Patient Monitoring
Digital Audio/TV Security Access Ultrasound Equipment
Music Synthesizer Power Line Monitors Diagnostic Tools
Toys and Games Prosthetics
Solid-State Answering Fetal Monitors
Machines

Many of the TMS320C2x features, such as single-cycle multiply/accumulate
instructions, 32-bit arithmetic unit, large auxiliary register file with a separate
arithmetic unit, and large on-chip RAM and ROM, make the device particularly
applicable in digital signal processing systems. At the same time, general­
purpose applications are greatly enhanced by the large address spaces, on­
chip timer, serial port, multiple interrupt structure, provision for external wait
states, and capability for multiprocessor interface and direct memory access.

1-5

Introduction - Typical Applications

1-6

The TMS320C2x provides the flexibility to be configured to satisfy a wide
range of system requirements. This allows the device to be applied in systems
currently using costly bit-slice processors or custom ICs. Some of the system
configurations are:

• A standalone system using on-chip memory,
• Parallel multiprocessing systems with shared g!oba! data memo;y, or
• Host/peripheral coprocessing using interface control signals.

Introduction - How To Use This Manual

1.4 How To Use This Manual

The purpose of this user's guide is to serve as a reference book for the
TMS320C2x digital signal processors. Sections 2 through 6 provide specific
information about the architecture and operation of the device. Electrical
specifications and mechanical data can be found in the data sheet (Appendix
A).

The following table lists each section and briefly describes the section con­
tents.

Section 2.

Section 3.

Section 4.

Section 5.

Section 6.

Pinouts and Signal Descriptions. Drawings of the PGA and
PLCC packages for TMS320C2x devices. Functional list­
ings of the signals, their pin locations, and descriptions.

Architecture. TMS320C2x design description, hardware
components, and device operation. Functional block dia­
gram and internal hardware summary table.

Assembly Language Instructions. Addressing modes and
format descriptions. Instruction set summary listed ac­
cording to function. Alphabetized individual instruction
descriptions with examples.

Software Applications. Software application examples for
the use of various TMS320C2x instruction set features.

Hardware Applications. Hardware design techniques and
application examples for interfacing to memories, periph-
erals, or other microcomputers/microprocessors. XDS de­
sign considerations. System applications.

Eight appendices are included to provide additional information.

Appendix A.

Appendix. B.

Appendix C.

Appendix D.

Appendix E.

Second-Generation TMS320 Data Sheet. Electrical spec­
ifications, timing, and mechanical data for the TMS320C2x
devices.

SMJ32020 Data Sheet. Electrical specifications, timing,
and mechanical data for this military devices.

TMS320C2x System Migration. Information for upgrading
a TMS320C1 x to a TMS32020-based system and a
TMS32020 to a TMS320C25-based system. ·

TMS320C2x Instruction Cycle Timings. Listings of the
number of cycles for an instruction to execute in a given
memory configuration on the TMS32020 and the
TMS320C25.

Development Support/Part Order Information. Listings of
the hardware and software available to support the
TMS320C2x devices.

1-7

I
,1

ij

,I

:1•. 11,

Introduction - How To Use This Manual

Appendix F.

Appendix G.

Appendix H.

1-8

Memories, Analog Converters, Sockets, and Crystals.
Listings of the Tl memories, analog conversion devices,
and sockets available to support the TMS320C2x devices
in DSP applications. Crystal specifications and vendors.

ROM Codes. Discussion of ROM codes (mask options)
and the procedure for implementation.

Quality and Reliability. Discussion of Texas Instruments
quality and reliability criteria for evaluating performance.

Introduction - References

1.5 References

The following reference list contains useful information regarding functions,
operations, and applications of digital signal processing. These books also
provide other references to many useful technical papers. The reference list is
organized into categories of general DSP, speech, image processing, and di­
gital control theory, and alphabetized by author.

General Digital Signal Processing:

Antoniou, Andreas, Digital Filters: Analysis and Design. New York, NY:
McGraw-Hill Company, Inc .. 1979.

Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1974.

Burrus, C.S. and Parks, T.W .. DFT/FFT and Convolution Algorithms.
New York, NY: John Wiley and Sons, Inc., 1984.

Digital Signal Processing Applications with the TMS320 Family, Texas
Instruments, 1986; Prentice- Hall, Inc., 1987.

Gold, Bernard and Rabiner, Lawrence R.. Theory and Application of
Digital Signal Processing. 'Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1975.

Gold, Bernard and Rader, C.M., Digital Processing of Signals. New
York, NY: McGraw-Hill Company, Inc .. 1969.

Hamming, R.W .. Digital Filters. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1977.

IEEE ASSP DSP Committee (Editor), Programs for Digital Signal Pro­
cessing. New York, NY: IEEE Press, 1979.

Jackson, Leland B .. Digital Filters and Signal Processing. Hingham, MA:
Kluwer Academic Publishers, 1986.

Jones, D.L. and Parks, T.W., A Digital Signal Processing Laboratory
Using the TMS32070. Englewood Cliffs, NJ: Prentice-Hall, Inc .. 1987.

Morris, L. Robert, Digital Signal Processing Software. Ottawa, Canada:
Carieton University, 1 983.

Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Oppenheim, Alan V. and Schafer, R.W., Digital Signal Processing. En­
glewood Cliffs, NJ: Prentice- Hall, Inc .. 1975.

Oppenheim, Alan V. and Willsky, A.N. with Young, l.T .. Signals and
Systems. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

Parks, T.W. and Burrus, C.S .. Digital Filter Design. New York, NY: John
Wiley and Sons, Inc., 1987.

1-9

Introduction - References

1-10

Speech:

Gray, A.H. and Markel, J.D., Linear Prediction of Speech. New York,
NY: Springer-Verlag, 1976.

Jayant, N.S. and Noll, Peter, Digital Coding of Waveforms. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1984.

Papamichalis, Panos, Practical Approaches to Speech Coding. Engle­
wood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Rabiner, Lawrence R. and Schafer, R.W., Digital Processing of Speech
Signals. Englewood Cliffs, NJ: Prentice Hall, Inc., 1978.

Image

Andrews, H.C. and Hunt, B.R., Digital Image Restoration. Englewood
Cliffs, N.J: Prentice Hall, Inc., '1977.

Gonzales, Rafael C. and Wintz, Paul, Digital Image Processing. Reading,
MA: Addison-Wesley Publishing Company, Inc., 1977.

Pratt, William K., Digital Image Processing. New York, NY: John Wiley
and Sons, 1978.

Digital Control Theory:

Jacquot R., 11/lodem Digital Control Systems. New York, NY: Marcel
Dekker, Inc., ·193·1.

Katz, P., Digital Control Using Microprocessors. Englewood Cliffs, NJ:
Prentice .. Hall, Inc., 1 981.

K.uo, B.C., Control Systems. New York, NY: Holt, Fleinholt and
Winston, Inc., 980.

Moroney, P., Issues in the Implementation of Digital Feedback Com­
pensators. Cambridge, MA: The MIT Press, 1 983.

Phillips, C. and Nagle, H., Digital Control System Analysis and Design.
Cliffs, N,J: Prentice·· Hall, Inc., 1984.

2. Pinouts and Signal Descriptions

The TMS320C2x (second-generation TMS320) digital signal processors are
available in a 68-pin grid array (PGA) package. The TMS320C25 is also
packaged in a 68-pin plastic-leaded chip carrier (PLCC).

Adaptor sockets are commercially available to convert a TMS320C25 PLCC
package to a TMS32020-like 68-pin grid array (PGA) footprint, thus main­
taining plug-in compatibility.

When using the XDS emulator, refer to Section 6.1.3 for user target design
considerations

This section provides the pinouts and signal definitions in the following sub­
sections:

• TMS320C2x Pinouts (Section 2.1 on page 2-2)

• TMS320C2x Signal Descriptions (Section 2.2 on page 2-3)

Electrical sp~cifications and mechanical data are given in Appendix A, the
Second-Generation TMS320 Data Sheet.

2-1

Pinouts - TMS320C2x

2.1 TMS320C2x Pinouts

2-2

Figure 2-1 shows pinouts of the PGA packages for the TMS320C2x devices
and the PLCC package for the TMS320C25. Refer to Section 6.1.3 for user
target system design considerations when using the XDS.

68-PIN GB
PIN GRID ARRAY CERAMIC PACKAGE

(TOP VIEW!

2 J 4 5 6 7 8 9 10 11

A • • • • • • • • •
B • t!l • • • • • • • (!1) •
c • • • •
D • • • •
E • • • •
F • • • •
G • • • •
H • • • •
J • • • •
K -· • • • • ti!: • • ••• • • • ,_,

L • • • • • • • • •
68-PIN FN

PLASTIC LEADED CHIP CARRIER PACKAGE

(TOP VIEW)

I~ loEi a:x Q.-NM'<tu:).__l<J: ~~ UU
oom------~~OwfJJUU oaoooooo2mrococuu>>
9 8 765432 1 6867666564636261

Vss 10 60

D7 11 59

D6 12 58 CLKOUT1

D5 13 57 CLKOUT2

D4 14 56 XF

D3 15 55 HOLDA

D2 16 54 DX

D1 17 53 FSX

DO 18 52 X21CLKIN

SYNC 19 51 X1

INTO 20 50 8R
INT1 21 49 STRB

INT2 22 48 RIW

Vee 23 47 P5
DR 24 46 rs

FSA 25 45 5S
AO 26 44 Vss

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

w.-NM~~~~uoomo.-NMV~
W<!<!<!<!<!<!<!U<!<!.-.-.-.-.-.-
> > cccccc

Figure 2-1. TMS320C2x Pin Assignments

Signal Descriptions - TMS320C2x

2.2 TMS320C2x Signal Descriptions

The signal descriptions for the TMS320C2x devices are provided in this sec­
tion. Table 2-1 lists each signal, its pin location (PGA/PLCC), function, and
operating mode(s), i.e., input, output, or high-impedance state as indicated
by I, 0, or Z. The signals in Table 2-1 are grouped according to function and
alphabetized within that grouping.

2-3 1j

Signal Descriptions - TMS320C2x

Table 2-1. TMS320C2x Signal Descriptions

SIGNAL PIN 1/0/Zt DESCRIPTION
(PGA/PLCC)

ADDRESS/DATA BUSES

A15 MSB L10/43 0/Z Parallel address bus A15 (MSB) through AO (LSB).
A14 K9/42 Multiplexed to address external data/program memory or I A13 L9/41 1/0. Placed in high-impedance state in the hold mode.
A12 K8/40
A11 L8/39
A10 K7/38
A9 L7/37
A8 K6/36
A7 K5/34
A6 L5/33
A5 K4/32
A4 L4/31
A3 K3/30
A2 L3/29
A1 K2/28
AO LSB K1/26

015 MSB B6/2 1/0/Z Parallel data bus D15 (MSB) through DO (LSB).
D14 A5/3 Multiplexed to transfer data between the TMS320C2x and
D13 B5/4 external data/program memory or 1/0 devices. Placed~
D12 A4/5 high-impedance state when not outputting or when RS or
D11 B4/6 HOLD is asserted.
D10 A3/7
D9 B3/8
D8 A2/9
D7 B2/11
D6 C1 /12
D5 C2/13
D4 D1 /14
D3 D2/15
02 E1 /16
D1 E2/17
DO LSB F1 /18

INTERFACE CONTROL SIGNALS

DS K10/45 0/Z Data, program, and 1/0 space select signals. Always high
PS J10/47 unless low level asserted for communicating to a
iS J11/46 particular external space. Placed in high-impedance

state in the hold mode.

READY B8/66 I Data ready input. Indicates that an external device is pre-
pared for the bus transaction to be completed. If the device
is not ready (READY= 0). the TMS320C2x waits one cycle
and checks READY again. READY also indicates a bus grant
to an external device after a BR (bus request) signal.

R/W H11 /48 0/Z Read/write signal. Indicates transfer direction when com-
municating to an external device. Normally in read mode
(high). unless low level asserted for performing a write op-
eration. Placed in high-impedance state in the hold mode.

STRB H10/49 0/Z Strobe signal. Always high unless asserted low to indicate
an external bus cycle. Placed in high-impedance state in the
hold mode.

t Input/Output/High-impedance state

2-4

Signal Descriptions - TMS320C2x :~
I

Table 2-1 TMS320C2x Signal Descriptions (Continued)

SIGNAL PIN 1/0/Zt DESCRIPTION
(PGA/PLCC)

MULTIPROCESSING SIGNALS

BR G11 /50 0 Bus request signal. Asserted when the TMS320C2x requires
access to an external global data memory space. READY is
asserted to the device when the bus is available and the
global data memory is available for the bus transaction.

HOLD A7/67 I Hold input. When asserted, the TMS320C2x places the data,
address, and control lines in the high-impedance state.

HOLDA E10/55 0 Hold acknowledge signal. Indicates that the TMS320C2x
has gone into the hold mode and that an external processor
may access the local external memory of the TMS320C2x.

SYNC F2/19 I Synchronization input. Allows clock synchronization of two
or more TMS320C2x's. SYNC is an active-low signal and
must be asserted on the rising edge of CLKIN.

INTERRUPT AND MISCELLANEOUS SIGNALS

BIO B7/68 I Branch control input. Polled by BIOZ instruction. If low, the
TMS320C2x executes a branch. This signal must be active
during the BIOZ instruction fetch.

IACK B11/60 0 Interrupt acknowledge signal. Output is only valid while
CLKOUT1 is low. Indicates receipt of an interrupt and that
the program is branching to the interrupt-vector location
indicated by A15-AO.

INT2 H1 /22 I External user interrupt inputs. Prioritized and maskable
INT1 G2/21 by the interrupt mask register and the interrupt mode bit.
INTO G1 /20

MP/MC A6/1 I Microprocessor I microcomputer mode select pin for the
TMS320C25 only. When asserted low (microcomputer
mode), the pin causes the internal ROM to be mapped into
the lower 4K words of the program memory map. In the
microprocessor mode, the lower 4K words of program me-
mory are external. On the TMS32020, MP/MC must be
connected to Vee·

MSC C10/59 0 Microstate complete signal. Asserted low and valid only
during CLKOUT1 low when the TMS320C2x has just com-
pleted a memory operation, such as an instruction fetch or
a data memory read/write. MSC can be used to generate a
one wait-state READY signal for slow memory.

RS AS/65 I Reset input. Causes the TMS320C2x to terminate execution
and forces the program counter to zero. When brought to a
high level, execution begins at location zero of program
memory. RS affects various registers and status bits.

XF D11/56 0 External flag output (latched software-programmable sig-
nal). Used for signalling other processors in multiprocessor
configurations or as a general-purpose output pin.

t Input/Output/High-impedance state

2-5

Signal Descriptions - TMS320C2x

Table 2-1. TMS320C2x Signal Descriptions (Concluded)

SIGNAL PIN 1/0/Zt DESCRIPTION
(PGA/PLCC)

SUPPLY/OSCILLATOR SIGNALS

CLKOUT1 C11 /58 0 Master clock output signal (CLKIN frequency/4). In this
document (and on the TMS320C25), CLKOUTi rises at the
beginning of quarter-phase 3 (Q3) and falls at the begin-
ning of quarter-phase 1 (Q1). See Appendix C for device
phase definitions.

CLKOUT2 D10/57 0 A second clock output signal. In this document (and on the
TMS320C25), CLKOUT2 rises at the beginning of quar-
ter-phase 2 (02) and falls at beginning of quarter-phase 4
(Q4). See Appendix C for device phase definitions.

Vee A10/61 I Four 5-V supply pins, tied together externally. On the
810/62 TMS32020, pin A6 is also a supply pin.
H2/23
L6/35

Vss 81/10
K11/44

I Three ground pins, tied together externally.

L2/27

X1 G10/51 0 Output pin from the internal oscillator for the crystal. If a
crystal is not used, this pin should be left unconnected.

X2/CLKIN F11/52 I Input pin to the internal oscillator from the crystal. If a
crystal is not used, a clock may be input to the device on this
pin.

SERIAL PORT SIGNALS

CLKR 89/64 I Receive clock input. External clock signal for clocking data
from the DR (data receive) pin into the RSR (serial port re-
ceive shift register). Must be present during serial port
transfers.

CLKX A9/63 I Transmit clock input. External clock signal for clocking data
from the XSR (serial port transmit shift register) to the DX
(data transmit) pin. Must be present during serial port
transfers.

DR J1/24 I Serial data receive input. Serial data is received in the RSR
(serial port receive shift register) via the DR pin.

DX E11/54 0/Z Serial data transmit output. Serial data transmitted from the
XSR (serial port transmit shift register) via the DX pin.
Placed in high-impedance state when not transmitting.

FSR J2/25 I Frame synchronization pulse for receive input. The falling
edge of the FSR pulse initiates the data-receive process,
beginning the clocking of the RSR.

FSX F10/53 1/0 Frame synchronization pulse for transmit input/output. The
falling edge of the FSX pulse initiates the data-transmit
process, beginning the clocking of the XSR. Following re-
set, the default operating condition of FSX is as an input.
This pin may be selected by software to be an output when
the TXM bit in the status register is set to 1.

t Input/Output/High-impedance state

2-6

3. Architecture

The architectural design of the TMS320C2x (second-generation TMS320)
emphasizes overall system speed, communication, and flexibility in processor
configuration. Control signals and instructions provide block memory trans­
fers, communication to slower off-chip devices, and multiprocessing imple­
mentations. Increased throughput for many DSP applications is accomplished
by single-cycle multiply/accumulate instructions, two large on-chip RAM
blocks, eight auxiliary registers with a dedicated arithmetic unit, a serial port,
hardware timer, faster 1/0 for data-intensive signal processing, and other fea­
tures.

Major topics discussed in this section are listed below.

• Architectural Overview (Section 3.1 on page 3-2)
• Functional Block Diagram (Section 3.2 on page 3-5)
• Internal Hardware Summary (Section 3.3 on page 3-7)
• Memory Organization (Section 3.4 on page 3-11)

Data memory and program memory
Memory maps and memory-mapped registers
Auxiliary registers
Memory addressing modes
Memory-to-memory moves

• Central Arithmetic Logic Unit (CALU) (Section 3.5 on page 3-22)
Scaling shifter, ALU, and accumulator
Multiplier, T and P registers

• System Control (Section 3.6 on page 3-28)
Program counter and stack
Pipeline operation
Reset
Status registers
Timer operation
Repeat counter
Powerdown mode

• External Memory and 1/0 Interface (Section 3.7 on page 3-39)
Memory combinations
Internal clock timing relationships
External read and write cycles
General-purpose 1/0 pins \BIO and XF)

• Interrupts (Section 3.8 on page 3-47)
Interrupt operation
External interrupt interface

• Serial Port (Section 3.9 on page 3-51)
Transmit and receive operations
Timing and framing control
Burst mode and continuous mode operation

• Multiprocessing and Direct Memory Access (Section 3.10 on page
3-63)

Synchronization
Global memory
The hold function

3-1

Architecture - Overview

3.1 Architectural Overview

3-2

The TMS320C2x high-performance digital signal processors, like the
TMS320C1 x devices, implement a Harvard-type architecture that maximizes
processing power by maintaining two separate memory bus structures, pro­
gram and data, for full-speed execution. Instructions are included to provide
data transfers between the two spaces. Externally, the program and data
memory can be multiplexed over the same bus so as to maximize the address
range for both spaces while minimizing the pin count of the device.

Increased flexibility in system design is provided by two large on-chip data
RAM blocks (a total of 544 16-bit words), one of which is configurable either
as program or data memory (see Figure 3-1). An off-chip 64K-word directly
addressable data memory address space is included to facilitate implementa­
tions of DSP algorithms.

The large on-chip 4K-word masked ROM on the TMS320C25 can be used to
cost-reduce systems, thus providing for a true single-chip DSP solution (see
Figure 3-1). Programs of up to 4K words can be masked into the internal
program ROM. The remainder of the 64K-word program memory space is lo­
cated externally. Large programs can execute at full speed from this memory
space. Programs may also be downloaded from slow external memory to on­
chip RAM for full-speed operation.

+5 v GND

J_ J_

256-WORD I 288-WORD
DATA (161

INTERRUPTS v- -" DATA/PROG I DATA
I I\ RAM RAM ..
I MULTIPROCESSOR

4K-WORDS ROM INTERFACE
(TMS320C25) -

MULTIPLIER

SERIAL INTERFACE

_L 32-BJT ALU/ACC

D SHIFTERS
ADDRESS (161

L TIMER
,,

Figure 3-1. TMS320C2x Simplified Block Diagram

The TMS320C2x performs two's-complement arithmetic using the 32-bit ALU
and accumulator. The ALU is a general-purpose arithmetic unit that operates
using 16-bit words taken from data RAM or derived from immediate in­
structions or using the 32-bit result of the multiplier's product register. In

Architecture - Overview

addition to the usual arithmetic instructions, the ALU can perform Boolean
operations, providing the bit manipulation ability required of a high-speed
controller. The accumulator stores the output from the ALU and is the second
input to the ALU. The accumulator is 32 bits in length and is divided into a
high-order word (bits 31 through 16) and a low-order word (bits 15 through
0). Instructions are provided for storing the high- and low-order accumulator
words iri memory.

The multiplier performs a 16 x 16-bit two's-complement multiplication with a
32-bit result in a single instruction cycle. The multiplier consists of three ele­
ments: the T Register, P Register, and multiplier array. The 16-bit T Register
temporarily stores the multiplicand; the P Register stores the 32-bit product.
Multiplier values either come from data memory, from program memory when
using the MAC/MACO instructions, or are derived immediately from the
MPYK (multiply immediate) instruction word. The fast on-chip multiplier al­
lows the device to efficiently perform fundamental DSP operations such as
convolution, correlation, and filtering.

The TMS320C2x scaling shifter has a 16-bit input connected to the data bus
and a 32-bit output connected to the ALU. The scaling shifter produces a
left-shift of 0 to 16 bits on the input data, as programmed in the instruction.
The LSBs of the output are filled with zeros, and the MSBs may be either filled
with zeros or sign-extended, depending upon the state of the sign-extension
mode bit of status register ST1. Additional shift capabilities enable the pro­
cessor to perform numerical scaling, bit extraction, extended arithmetic, and
overflow prevention.

The TMS320C2x local memory interface consists of a 16-bit parallel data bus
(015-00), a 16-bit address bus (A15-AO), three pins for data/program me­
mory or 1/0 space select (OS, PS, and TS), and various system control signals.
The R/W signal controls the direction of a data transfer, and the STRB signal
provides a timing signal to control the transfer. When using on-chip program
RAM, ROM, or high-speed external program memory, the TMS320C2x runs
at full speed without wait states. The use of a READY signal allows wait-state
generation for communicating with slower off-chip memories.

Up to eight levels of hardware stack are provided for saving the contents of
the program counter during interrupts and subroutine calls. Instructions are
available for saving the device's complete context. PUSH and POP in­
structions permit a level of nesting restricted only by the amount of available
RAM. The interrupts used in these devices are maskable.

Control operations are supported on the TMS320C2x by an on-chip memo­
ry-mapped 16-bit timer, a repeat counter, three external maskable user inter­
rupts, and internal interrupts generated by serial port operations or by the
timer. A built-in mechanism protects from those instructions that are repeated
or become multicycle due to the READY signal and from holds and interrupts.

An on-chip full-duplex serial port provides direct communication with serial
devices such as codecs, serial A/D converters, and other serial systems. The
interface signals are compatible with codecs and many other serial devices
with a minimum of external hardware. The two serial port memory-mapped
registers (the data transmit/receive registers) may be operated in either an
8-bit byte or 16-bit word mode. Each register has an external clock input, a
framing synchronization input, and associated shift registers.

3-3

Architecture - Overview

3-4

Serial communication can be used between processors in multiprocessing
applications. The TMS320C2x has the capability of allocating global data
memory space and communicating with that space via the BR (bus request)
and READY control signals. The 8-bit memory-mapped global memory allo­
cation register (GREG) specifies up to 32K words of the TMS320C2x data
memory as global external memory. The contents of the register determine the
size of the global memory space. If the current instruction addresses an oper­
and within that space, BR is asserted to request control of the bus. The length
of the memory cycle is controlled by the READY line.

The TMS320C2x supports Direct Memory Access (OMA) to its external
program/data memory using the HOLD and HOLDA signals. Another processor
can take complete control of the TMS320C2x external memory by asserting
HOLD low. This causes the TMS320C2x to place its address, data, and control
lines in the high-impedance state. Signaling between the external processor
and the TMS320C2x can be perrormed using interrupts. On the TMS320C25,
two modes are available: a TMS32020-like mode in which execution is sus­
pended during assertion of HOLD, and a concurrent OMA mode in which the
TMS320C25 continues to execute its program while operating from internal
RAM or ROM, thus greatly increasing throughput in data-intensive applica­
tions.

Architecture - Block Diagram

3.2 Functional Block Diagram

The functional block diagram shown in Figure 3-2 outlines the principal
blocks and data paths within the TMS320C2x processors. Further details of
the functionc•I blocks are provided in the succeeding sections. Refer to Section
3.3, the internal hardware summary, for definitions of the symbols used in
Figure 3-2. The block diagram also shows all of the TMS320C2x interface
pins. Note that the shaded areas on the block diagram indicate enhancements
provided on the TMS320C25.

The TMS320C2x architecture is built around two major buses: the program
bus and the data bus. The program bus carries the instruction code and im­
mediate operands from program memory. The data bus interconnects various
elements, such as the Central Arithmetic Logic Unit (CALU) and the auxiliary
register file, to the data RAM. Together, the program and data buses can carry
data from on-chip data RAM and internal or external program memory to the
multiplier in a single cycle for multiply/accumulate operations.

The TMS320C2x has a high degree of parallelism; e.g., while the data is being
operated upon by the CALU, arithmetic operations may also be implemented
in the Auxiliary Register Arithmetic Unit (ARAU). Such parallelism results in
a powerful set of arithmetic, logic, and bit-manipulation operations that may
all be performed in a single machine cycle.

3-5

Architecture - Block Diagram
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

RJ\'ii 
mi 

READY 
llil 
XF 

mm> 
HOLDA 

llm: DR 

liRi CLKR 

~ 
FSR 

iAfi( DX 
CLKX 
FSX 

MP/MC 
lll'f12-01 

A15-AO 

015-00 

tshifters on TMS32020 (0,. 1, 4) 
NOTE: Shaded areas are for TMS320C25 only, 

Figure 3-2. TMS320C2x Block Diagram 

3-6 



Archite<;ture ···- Internal Hard~are Summary 

3.3 internal Hardware Summary 

The TMS320C2x internal hardware implements functions that other process­
ors typically perform in software or microcode. For example, the device con­
tains hardware for single-cycle 16 x 16-bit multiplication, data shifting, and 
address manipulation. This hardware-intensive approach provides computing 
power previously unavailable on a single chip. 

Table 3-1 presents a summary ot the TMS320C2x internal hardware. This 
surnmary table, which includes the internal processing elements, registers, and 
buses, is alphabetized within each functional grouping. All of the symbols 
used in this table correspond to the symbols used in the block diagram of 
Section :1.2, the succeeding block diagrams in this section, and the text 
tlwouutmut this document. 

3-7 



Architecture - Internal Hardware Summary 

Table 3-1. TMS320C2x Internal Hardware 

UNIT SYMBOL FUNCTION 

Accumulator ACC (31-0) A 32-bit accumulator split in two halves: ACCH (accu-
ACCH(31-16) mulator high) and ACCL (accumulator low). Used for 
ACCL(15-0) storage of.ALU output. 

Arithmetic Logic Unit ALU A 32-bit two's-complement arithmetic logic unit having 
two 32-bit input ports and one 32-bit output port feeding 
the accumulator. 

Auxiliary Register ARAU A 16-bit unsigned arithmetic unit used to perform oper-
Arithmetic Unit ations on auxiliary register data. 

Auxiliary Register File ARO-AR7 A register file containing five/eight 16-bit auxiliary 
(15-0) registers (ARO-AR7), used for addressing data memory, 

temporary storage, or integer arithmetic processing 
through the ARAU. 

Auxiliary Register File AFB(15-0) A 16-bit bus that carries data from the AR pointed to by 
Bus the ARP. 

Auxiliary Register Pointer ARP(2-0) A 3-bit register used to select one of five/eight auxiliary 
registers. 

Auxiliary Register Pointer ARB(2-0) A 3-bit register used to buffer the ARP. Each time the 
Buffer ARP is loaded, the old value is written to the ARB, except 

during an LST (load status register) instruction. When the 
ARB is loaded with an LST1, the same value is also copied 
into ARP. 

Central Arithmetic Logic CALU The grouping of the ALU, multiplier, accumulator, and 
Unit scaling shifter. 

Data Bus D(15-0) A 16-bit bus used to route data. 

Data Memory Address DAB(15-0) A 16-bit bus that carries the data memory address. 
Bus 

Data Memory Page DP(8-0) A 9-bit register pointing to the address of the current 
Pointer page. Data pages are 128 words each, resulting in 512 

pages of addressable data memory space (some locations 
are reserved). 

Direct Data Memory DRB(15-0) A 16-bit bus that carries the 'direct' address for the data 
Address Bus memory, which is the concatenation of the DP register 

with the seven LSBs of the instruction. 

Global Memory GREG(7-0) An 8-bit memory-mapped register for allocating the size 
Allocation Register of the global memory space. 

Instruction Register IR(15-0) A 16-bit register used to store the currently executing in-
struction. 

Interrupt Flag Register IFR(5-0) A 6-bit flag register used to latch the active-low external 
user interrupts INT(2-0) and the internal interrupts 
XINT/RINT (serial port transmit/receive) and TINT (timer) 
interrupts. The I FR is not accessible through software. 

Interrupt Mask Register IMR(5-0) A 6-bit memory-mapped register used to mask interrupts. 

tTMS320C25 only. 

3-8 



Architecture - Internal Hardware Summary 

Table 3-1. TMS320C2x Internal Hardware (Continued) 

UNIT SYMBOL FUNCTION 

Microcall Stackt MCS (15-0) A single-word stack that temporarily stores the contents 
of the PFC while the PFC is being used to address data 
memory with the block move (BLKO/BLKP), multiply-ac-
cumulate (MAC/MACO), and table read/write 
(TBLR/TBLW) instructions. 

Multiplier MULT A 16 x 16-bit parallel multiplier. 

Period Register PRO (15-0) A 16-bit memory-mapped register used to reload the timer. 

Prefetch Countert PFC (15-0) A 16-bit counter used to prefetch program instructions. 
The PFC contains the address of the instruction currently 
being prefetched. It is updated when a new prefetch is 
initiated. The PFC is also used to address data memory 
when using the block move (BLKO/BLKP), multiply-ac-
cumulate (MAC/MACO), and table read/write 
(TBLR/TBLW) instructions. 

Product Register PR(31-0) A 32-bit product register used to hold the multiplier pro-
duct. The PR on the TMS320C25 can also be accessed as 
the most or least significant words using the SPH/SPL 
(store P register high/low) instructions. 

Program Bus P(15-0) A 16-bit bus used to route instructions (and data for the 
MAC and MACO instructions). 

Program Counter PC (15-0) A 16-bit program counter used to address program mem-
ory. The PC always contains the address of the next in-
struction to be executed. The PC contents are updated 
following each instruction decode operation. On the 
TMS32020, the operations of the TMS320C25 prefetch 
counter are performed by the program counter. 

Program Memory Address PAB(15-0) A 16-bit bus that carries the program memory address. 
Bus 

Queue Instruction QIR(15-0) A 16-bit register used to store prefetched instructions. 
Registert 

Random Access Memory RAM (BO) A RAM block with 256 x 16 locations configured either 
(data or program) as data or program memory. 

Random Access Memory RAM (B1) A data RAM block, organized as 256 x 16 locations. 
(data only) 

Random Access Memory RAM (B2) A data RAM block, organized as 32 x 16 locations. 
(data only) 

Repeat Counter RPTC (7-0) An 8-bit counter to control the repeated execution of a 
single instruction. 

Serial Port Data DRR(15-0) A 16-bit memory-mapped serial port data receive 
Receive Register register. Only the eight LSBs are used in the byte mode. 

Serial Port Data DXR(15-0) A 16-bit memory-mapped serial port data transmit 
Transmit Register register. Only the eight LSBs are used in the byte mode. 

Serial Port Receive RSR(15-0) A 16-bit register. used to shift in serial port data from the 
Shift Registert RX pin. RSR contents are sent to the DRR after a serial 

transfer is completed. RSR is not directly accessible 
through software. 

tTMS320C25 only. 

3-9 



Architecture - Internal Hardware Summary 

Table 3-'T TMS320C2x Internal Hardware {Concluded) 

UNIT SYMBOL FUNCTION 

Serial Port Transmit XSR(15-0) A 16-bit register used to shift out serial port data onto 
Shift Registert the DX pin. XSR contents are loaded from DXR at the be-

ginning of a serial port transmit operation. XSR is not di-
rectly accessible through software. 

Shifters - Shifters are located at the ALU input, the accumulator 
output, and the product register output. An in-place shifter 
is also located within the accumulator. 

Stack Stack(15-0) A 4/8 x 16 hardware stack used to store the PC during 
interrupts or calls. The ACCL and data memory values may 
also be pushed onto and popped from the stack. 

Status Registers STO,ST1 Two 16-bit status registers that contain status and 
(15-0) control bits. 

Temporary Register TR(15-0) A 16-bit register that holds either an operand for the mul-
tiplier or a shift code for the scaling shifter. 

Timer TIM (15-0) A 16-bit memory-mapped timer (counter) for timing con-
trol. 

tTMS320C25 only. 

3-10 



Architecture - Memory Organization 

3.4 Memory Organization 

The TMS320C2x provides a total of 544 16-bit words of on-chip data RAM, 
of which 288 words are always data memory and the remaining 256 words 
may be configured as either program or data memory. The TMS320C25 also 
provides 4K words of maskable program ROM. This section explains memory 
management using the on-chip data and program memory, memory maps, 
memory-mapped registers, auxiliary registers, memory addressing modes, and 
memory-to-memory moves. 

3.4.1 Data Memory 

The 544 words of on-chip data RAM are divided into three separate blocks 
(BO, B1, and B2), as shown in Figure 3-3. Of the 544 words, 256 words 
(block BO) are configurable as either data or program memory by instructions 
provided for that purpose; 288 words (blocks B1 and B2) are always data 
memory. A data memory size of 544 words allows the TMS320C2x to handle 
a data array of 512 words (256 words if on-chip RAM is used for program 
memory), while still leaving 32 locations for intermediate storage. See Section 
3.4.3 for memory map configurations. 

The TMS320C2x can address a total of 64K words of data memory. The on­
chip data memory and internally reserved locations are mapped into the lower 
1 K words of the data memory space. Data memory is directly expandable up 
to 64K words while still maintaining full-speed operation. A READY line is 
provided for interface to slower, less-expensive memories, such as DRAMs. 

3-11 



Architecture - Memory Organization 

FROM 
PROGRAM 
COUNTERt 

OR 
FROM 

PREFETCH• 
COUNTER• 

16 

BLOCK B2 
(32 x 16) 

DATA RAM 
BLOCK B1 
(256 x 16) 

1 TMS32020 specific. 
TMS320C25 specific. 

FROM 
AUXILIARY REGISTERS 

OR 
DATA PAGE POINTER 

AND 
DIRECT MEMORY ADDRESS 

16 

DATA/PROG 
RAM (256 x 16) 

BLOCK 80 

Figure 3-3. On-Chip Data Memory 

3.4.2 Program Memory 

3-12 

On-chip program RAM, ROM, or high-speed external program memory can 
be used at full speed with no wait states. Alternatively, the READY line can 
interface the TMS320C2x to slower, less-expensive external memory. A total 
of 64K words of memory space is available. Internal RAM block BO can be 
configured as program memory using instructions for that purpose. Execution 
from this block can be initiated after the memory space has been reconfigured. 
See Section 3.7.1 for a description of instruction execution using various 
memory configurations. 

In addition, the TMS320C25 is equipped with 4K words of on-chip program 
ROM that can be mask-programmed at the factory with a customer's program. 
The on-chip ROM allows program execution at full speed without the need 
for high-speed external program memory. The use of this memory also allows 
the external data bus to be freed for access of external data memory. 



Architecture - Memory Organization 

Mapping of the first 4K-word block of off-chip/on-chip program memory is 
user-selectable by means of the MP/MC (microprocessor/microcomputer) pin 
on the TMS320C25. This permits the designer to accelerate time-to-market 
with a TMS320C25-based product by using external ROM, and cost-reducing 
it later with the 4K internal ROM without any PC-board redesign. Setting 
MP/MC high maps in the block of off-chip memory; holding the pin low maps 
in the block of on-chip ROM. The XF (external flag) pin can be used to toggle 
the MP/MC pin to dynamically enable or disable the on-chip ROM. Note that 
care must be taken and instruction pipeline operation (see Section 3.6.2) un­
derstood when using bank switching. 

The MP/MC pin on the TMS320C25 is a Vee pin on the TMS32020. This 
allows substitution of a TMS320C25 for a TMS32020 since the TMS320C25 
automatically operates in the microprocessor mode and therefore is plug-in 
compatible in the system. See Section 2 for pinouts and signal descriptions. 

3.4.3 Memory Maps 

The TMS320C2x provides three separate address spaces for program memory, 
data memory, and 1/0, as shown in Figure 3-4. These spaces are distin­
guished externally by means of the PS, DS, and IS (program, data, and 1/0 
space select) signals. The PS, DS, TS, and STRB signals are only active when 
external memory is being addressed. During an internal addressing cycle, these 
signals remain inactive high, thus preventing conflicts in memory addressing, 
e.g., when block BO is configured as program memory. 

The on-chip memory blocks BO, B1, and B2 are comprised of a total of 544 
words of RAM. Program/data RAM block BO (256 words) resides in pages 4 
and 5 of the data memory map when configured as data RAM and at ad­
dresses >FFOO to >FFFF when configured as program RAM. Block B1 (al­
ways data RAM) resides in pages 6 and 7, while block B2 resides in the upper 
32 words of page 0. Note that the remainder of page 0 is composed of the 
memory-mapped registers and internally reserved locations, and pages 1 -3 of 
the data memory map consist of internally reserved locations. The internally 
reserved locations may not be used for storage, and their contents are unde­
fined when read. See Section 3.4.4 for further information on the memory­
mapped registers. 

The on-chip RAM is mapped into either the 64K-word data memory or pro­
gram memory space, depending on the memory configuration (see Figure 
3-4). The CNFD/CNFP instructions are used to configure block BO as either 
data or program memory, respectively. The BLKP (block move from program 
memory to data memory) instruction may be used to download program in­
formation to block BO when it is configured as data RAM. Then a CNFP 
(configure block as program memory) instruction may be used to convert it 
to program RAM (see the code example in Section 5.4.2). Regardless of the 
configuration, the user may still execute from external program memory. Note 
that when accessing internal program memory, external control lines remain 
inactive. 

Reset configures block BO as data RAM. Note that, due to internal pipelining, 
when the CNFD or CNFP instruction is used to remap RAM block BO, there 
is a delay before the new configuration becomes effective. This delay is one 
fetch cycle if execution is from internal program RAM. On the TMS32020, a 
delay of one fetch cycle occurs if execution is from external program memory. 
On the TMS320C25, there is a delay of two fetch cycles if execution is from 

3-13 



Architecture - Memory Organization 

3-14 

ROM or external program memory. This is particularly important if program 
execution is from the locations around >FFOO. Accord!ngly, a CNFP instruc­
tion must be placed at location > FEFD in external memory if execution is to 
continue from the first location in block BO. If a CNFP is placed at location 
> FEFD, and the instruction at location > FEFF is a two-word instruction, the 
second word of the instruction will be fetched from the first location in block 
BO. If execution is from above location >FFOO and block BO is reconfigured; 
care must be taken to assure that execution resumes at the appropriate point 
in a new configuration. 

On-chip program ROM on the TMS320C25 is located in the lower 4K words 
of program memory when selected by setting MP/MC = 0. When MP/MC= 
1, the lower 4K words of program memory are external. 



Architecture -:- Memory Organization 

PROGRAM 

0(>00001 
INTERRUPTS 

AND RESERVED 
I EXTERN ALI 

31(>001Fl 
32(>00201 

EXTERNAL 

65,535( >FFFFI '----------' 

IF MP/MC• 1 
(MICROPROCESSOR MODE) 

0(>00001 

31f>001Fl 
321>0020) 

65,279( > FEFFl 
652801 >FFOO) 

65.535(>FFFF) 

PROGRAM 

INTERRUPTS 
AND RESERVED 

(EXTERNAL) 

EXTERNAL 

ON-CHIP 
BLOCK BO 

~-----~ 

IF MP/Jlf • 1 
(MICROPROCESSOR MODE) 

PROGRAM 

0(>00001 
INTERRUPTS 

AND RESERVED 
ION-CHIP ROM) 

31f>001Fl 
32(>00201 ON-CHIP 

ROM 
4015f>OFAFI 
4016f>OFBOI 

RESERVED 

4095f>0FFFI 
4096(>10001 

EXTERNAL 

65.535( >FFFFl 

IFMP/~ • 0 
(MICROCOMPUTER MODE 
ON TMS320C25 ONLY) 

0(>0000) 

5(>0005) 
6(>0006) 

95f>005Fl 
96(>0060) 

127f>007Fl 
128(>0080) 

511(>01FFl 
512(>0200) 

767(>02FFl 
768(>0300) 

1023( >03FFl 
1024(>0400) 

65,5351 > FFFFI 

fa) MEMORY MAPS AFTER A CNFD INSTRUCTION 

0(>0000) 

31(>001Fl 
32(>0020) 

4015f>0FAFl 
40161 >OFBOl 

4095( > OFFF) 
4096(>1000) 

65.2791 > FEFFl 
85,280( >FFOOl 

65,535( >FFFFl 

PROGRAM 

INTERRUPTS 
AND RESERVED 
(ON-CHIP ROM) 

ON-CHIP 
ROM 

RESERVED 

EXTERNAL 

----------------------------
ON-CHIP 

BLOCK BO 

IFMP/~ • 0 
(MICROCOMPUTER MODE, 
ON TMS320C25 ONLY) 

0(>0000) 

5(>0005) 
8(>0006) 

95f>005Fl 
96(>00601 

127f>007Fl 
128(>0080) 

511(>01FFl 
512(>02001 

767(>02FF) 
768(>0300) 

1023( > 03FF) 
1024(>0400) 

65,535(>FFFFl 

fbl MEMORY MAPS AFTER A CNFP INSTRUCTION 

Figure 3-4. Memory Maps 

DATA 

ON-CHIP 
MEMORY-MAPPED 

REGISTERS 

RESERVED PAGEO 

ON-CHIP 
BLOCK B2 

RESERVED PAGES 1-3 

ON-CHIP 
BLOCK BO PAGES 4-5 

ON-CHIP 
BLOCK B1 

PAGES 6-7 

EXTERNAL PAGES 8-511 

DATA 

ON-CHIP 
MEMORY-MAPPED 

REGISTERS 

RESERVED PAGEO 

ON-CHIP 
BLOCK B2 

RESERVED PAGES 1-3 

DOES NOT 
EXIST PAGES 4-5 

ON-CHIP 
BLOCK B1 

PAGES 6-7 

EXTERNAL PAGES 8-511 

3-15 



Architecture - Memory Organization 

3.4.4 Memory-Mapped Registers 

The six registers mapped into the data memory space are listed in Table 3-2 
and are shown in the block diagram of Figure 3-2. 

The memory-mapped registers may be accessed in the same manner as any 
other data memory location, with the exception that block moves using the 
BLKD (block move from data memory to data memory) instruction cannot be 
performed from the memory-mapped registers. 

Table 3-2. Memory-Mapped Registers 

REGISTER ADDRESS 
NAME LOCATION DEFINITION 

DRR(15-0) 0 Seri al port data receive register 
DXR(15-0) 1 Serial port data transmit register 
TIM(15-0) 2 Timer register 
PRD(15-0) 3 Period register 
IMR (5-0) 4 Interrupt mask register 
GREG(7-0) 5 Global memory allocation register 

3.4.5 Auxiliary· Registers 

3-16 

The TMS320C2x provides a register file containing up to eight auxiliary reg­
isters (ARO-AR7). The TMS32020 has five auxiliary registers, and the 
TMS320C25 has eight. This section discusses each register's function and 
how an auxiliary register is selected and stored. 

The auxiliary registers may be used for indirect addressing of data memory or 
for temporary data storage. Indirect auxiliary register addressing (see Figure 
3-5) allows placement of the data memory address of an instruction operand 
into one of the auxiliary registers. These registers are pointed to by a three-bit 
auxiliary register pointer (ARP) that is loaded with a value from 0 through 7, 
designating ARO through AR7, respectively. The auxiliary registers and the 
ARP may be loaded either from data memory or by an immediate operand de­
fined in the instruction. The contents of these registers may also be stored in 
data memory. (Section 4 describes the programming of the indirect address­
ing mode.) 



Architecture - Memory Organization 

AUXILIARY 
REGISTER 
POINTER 
(IN STO) 

AUXILIARY REGISTER FILE 

ARO I > 0 5 3 7 

AR1 I > 5 5 0 

AR2 I > E 9 F TI 

DATA 
MEMORY 

MAP 

LOCATION 

>0000 
----, 

INTERNAL 

>03FF,__ __ __, 
>0400 

EXTERNAL 

ARP [QJIIT] _____. AR3 I > F F 3 A I ___. >FF3A _}"_]"_f _i"_:L 

AR4 I> 0 3 B) >FFFF 

AR5t) > 2 6 B 1 I 

AR6tj > 0 0 0 8 

AR7t) > 8 4 3 Dj 

tTMS320C25 specific. 

Figure 3-5. Indirect Auxiliary Register Addressing Example 

The auxiliary register file (ARO-AR4 on the TMS32020 and ARO-AR7 on the 
TMS320C25) is connected to the Auxiliary Register Arithmetic Unit (ARAU), 
shown in Figure 3-6. The ARAU may autoindex the current auxiliary register 
while the data memory location is being addressed. Indexing by either ± 1 or 
by the contents of ARO may be performed. As a result, accessing tables of 
information does not require the Central Arithmetic logic Unit (CALU) for 
address manipulation, thus freeing it for other operations. 

3-17 



Architecture - Memory Organization 

AUXILIARY REGISTER 7 (AR7) (16)t 

AUXILIARY REGISTER 6 (AR6) (16) t 

AUXILIARY REGISTER 5 (ARS) (16) 

AUXILIARY REGISTER 4 (AR4) (16) 

AUXILIARY REGISTER 3 (AR3 16 

AUXILIARY REGISTER 2 (AR2) (16) 

AUXILIARY REGISTER 1 (AR1) (16) 

AUXILIARY REGISTER 0 (ARO) (16) 

16 

16 

3 
8 LSB 
OFIRt 

INB OUT INA 

16 AUXILIARY REGISTER ARITHMETIC UNIT 
(ARAU) (16) 

AUXILIARY REGISTER FILE BUS (AFB) 16 

AUXILIARY 
REGISTER 
POINTER 
(ARP) (3) 

3 LSB 
OF IR 

3 

AUXILIARY 
REGISTER 
BUFFER 

(ARB) (3) 

3 

t TMS320C25 specific. 

3-18 

Figure 3-6. Auxiliary Register File 

As shown in Figure 3-6, auxiliary register 0 (ARO) or the eight LSBs of the 
instruction registers can be connected to one of the inputs of the ARAU. The 
other input is fed by the current AR (being pointed to by ARP). AR(ARP) re­
fers to the contents of the current AR pointed to by ARP. The ARAU performs 
the following functions: 

AR(ARP) +ARO .... AR(ARP) Index the current AR by adding a 16-bit 
integer contained in ARO. 

AR(ARP) - ARO .... AR(ARP) Index the current AR by subtracting a 
16-bit integer contained in ARO. 

AR(ARP) + 1 .... AR(ARP) Increment the current AR by one. 
AR(ARP) - 1 .... AR(ARP) Decrement the current AR by one. 
AR(ARP) .... AR(ARP) AR(ARP) is unchanged. 



Architecture - Memory Organization 

In addition to the above functions, the ARAU on the TMS320C25 performs 
functions as follows: 

AR(ARP) + IR(7-0) -+ AR(ARP) Add 8-bit immediate value to the cur­
rent AR. 

AR(ARP) - IR(7-0) -+ AR(ARP) Subtract 8-bit immediate value from 
the current AR. 

AR(ARP) + rcARO -+ AR(ARP) Bit-reversed indexing, add ARO with 
reverse-carry (re) propagation (see 
Section 4.1 .2). 

AR(ARP) - rcARO -+ AR(ARP) Bit-reversed indexing, subtract ARO 
with reverse-carry (re) propagation 
(see Section 4.1.2). 

Although the ARAU is useful for address manipulation in parallel with other 
operations, it may also serve as an additional general-purpose arithmetic unit 
since the auxiliary register file can directly communicate with data memory. 
The ARAU implements 16-bit unsigned arithmetic, whereas the CALU imple­
ments 32-bit two's-complement arithmetic. Instructions provide branches de­
pendent on the comparison of the auxiliary register pointed to by ARP with 
ARO. The BANZ instruction permits the auxiliary registers to also be used as 
loop counters. 

The three-bit auxiliary register pointer buffer (ARB), shown in Figure 3-6, 
provides storage for the ARP on subroutine calls and interrupts. 

3.4.6 Memory Addressing Modes 

The TMS320C2x can address a total of 64K words of program memory and 
64K words of data memory. The on-chip data memory is mapped into the 
64K-word data memory space. The on-chip ROM in the TMS320C25 is 
mapped into the program memory space when in the microcomputer mode. 
The memory maps, which change with the configuration of block BO, are de­
scribed in detail in Section 3.4.4. 

The 16-bit data address bus (DAB) addresses data memory in one of the fol­
lowing two ways: 

1) By the direct address bus (DRB) using the direct addressing mode (e.g., 
ADD >10), or 

2) By the auxiliary register file bus (AFB) using the indirect addressing 
mode (e.g., ADD*) 

Operands are also addressed by the contents of the program counter in the 
immediate addressing mode. · 

Figure 3-7 illustrates operand addressing in the direct, indirect, and immediate 
addressing modes. 

3-19 



Architecture - Memory Organization 

INSTRUCTION 

DIRECT ADDRESSING [_§PCODE l dmTJ DP 

I {9 

~L_L,d§_--+[ 
INSTRUCTION '--------' 

OPERAND 

1ND1REcT ADDREss1NG [WcoDE I j§iJ 
l~~/~3-~~_A_R_(_AR_P_) ~ OPERAND 

INSTRUCTION 

IMMEDIATE OPERAND ~CODE !oPERANDI PC 
OR 

PC+1 

Figure 3-7. Methods of Instruction Operand Addressing 

In the direct addressing mode, the 9-bit data memory page pointer (DP) 
points to one of 512 pages, each page consisting of 128 words. The data 
memory address (dma), specified by the seven LSBs of the instruction, points 
to the desired word within the page. The address on the direct address bus 
(DRB) is formed by concatenating the 9-bit DP with the 7-bit dma. 

In the indirect addressing mode, the currently selected 16-bit auxiliary register 
AR(ARP) addresses the data memory through the auxiliary register file bus 
(AFB). While the selected auxiliary register provides the data memory address 
and the data is being manipulated by the CALU, the contents of the auxiliary 
register may be manipulated through the ARAU. See Figure 3-5 for an ex­
ample of indirect auxiliary register addressing. The direct and indirect ad­
dressing modes are described in detail in Section 4.1. 

When an immediate operand is used, it is either contained within the instruc­
tion word itself or, in the case of 16-bit immediate operands, the word fol­
lowing the instruction opcode. 

3.4.7 Memory-to-Memory Moves 

3-20 

The TMS320C2x provides instructions for data and program block moves and 
for data move functions that efficiently utilize the configurable on-chip RAM. 

The BLKD instruction moves a block within data memory, and the BLKP in­
struction moves a block from program memory to data memory. When used 
with the repeat instructions (RPT/RPTK), the BLKD/BLKP instructions effi­
ciently perform block moves from on- or off-chip memory. 

Implemented in on-chip RAM, the DMOV \data move) function on the 
TMS320C2x is equivalent to that of the TMS320C1 x. DMOV allows a word 
to be copied from the currently addressed data memory location in on-chip 
RAM to the next higher location while the data from the addressed location 
is being operated upon in the same cycle (e.g., by the CALU). An ARAU 
operation may also be performed in the same cycle when using the indirect 
addressing mode. The DMOV function is useful for implementing algorithms 
that use the z- 1 delay operation, such as convolutions and digital filtering 



Architecture - Memory Organization 

where data is being passed through a time window. The data move function 
can be used anywhere within blocks BO, B1, or B2. It is continuous across the 
boundary of blocks BO and B1 but cannot be used with off-chip data memory. 
The MACD (multiply and accumulate with data move) and the LTD (load T 
register, accumulate previous product, and move data) instructions use the 
data move function. 

The TBLR/TBLW (table read/write) instructions allow words to be transferred 
between program and data spaces. TBLR is used to read words from on-chip 
ROM or off-chip program ROM/RAM into the data RAM. TBLW is used to 
write words from on-chip data RAM to off-chip program RAM. 

3-21 



Architecture - Central Arithmetic Logic Unit 

3.5 Central Arithmetic Logic Unit (CALU) 

3-22 

The TMS320C2x Central Arithmetic Logic Unit (CALU) contains a 16-bit 
scaling shifter, a 16 x 16-bit parallel multiplier, a 32-bit Arithmetic Logic Unit 
(ALU), a 32-bit accumulator (ACC), and additional shifters at the outputs of 
both the accumulator and the multiplier. This section describes the CALU 
components and their functions. Figure 3-8 is a block diagram showing the 
components of the CALU. In the figure, note that SFL and SFR indicate shifts 
to the left or right, respectively. 

The following steps occur in the implementation of a typical ALU instruction: 

1) Data is fetched from the RAM on the data bus, 
2) Data is passed through the scaling shifter and the ALU where the arith-

metic is performed, and 
3) The result is moved into the accumulator. 

One input to the ALU is always provided from the accumulator, and the other 
input may be transferred from the Product Register (PR) of the multiplier or 
from the scaling shifter that is loaded from data memory. 



Architecture - Central Arithmetic Logic Unit 

,.,.;;,:;::I:;::::::::::::::'::::::::::::::::::::::: PROGRAM BUS :::::::::::::::::::::::::::::::;:::;:;:;:::;:::::::::::;:;:;:;:::::::::::--

sx 
OR 0 

16 

SCALING 
SHIFTER 

SFL(0-16) 

sx 

6 16 

32 

SFR(6) 32 SFL(14) 
~__,~3=2'--. 32 

32 

0 

t TMS320C25 specific. * Shifters on the TMS32020 of 0, 1, or 4. 

0 

Figure 3-8. Central Arithmetic logic Unit (CALU) 

3.5.1 Scaling Shifter 

The TMS320C2x provides a scaling shifter that has a 16-bit input connected 
to the data bus and a 32-bit output connected to the ALU (see Figure 3-8). 
The scaling shifter produces a left shift of 0 to 16 bits on the input data, as 
programmed in the instruction. The LSBs of the output are filled with zeros, 
and the MSBs may be either filled with zeros or sign-extended, depending 
upon the status programmed into the SXM (sign-extension mode) bit of sta­
tus register ST1 . 

The TMS320C2x also contains several other shifters, which allow it to perform 
numerical scaling, bit extraction, extended-precision arithmetic, and overflow 
prevention. These shifters are connected to the output of the multiplier and the 
accumulator. 

3-23 



Architecture - Central Arithmetic Logic Unit 

3.5.2 ALU and Accumulator 

3-24 

The TMS320C2x 32-bit ALU and accumulator implement a wide range of 
arithmetic ·and logical functions, the majority of which execute in a single 
clock cycle. Once an operation is performed in the ALU, the result is trans­
ferred to the accumulator where additional operations such as shifting may 
occur. Data that is input to the ALU may be scaled by the scaling shifter. 

The ALU is a general-purpose arithmetic unit that operates on 16-bit words 
taken from data RAM or derived from immediate instructions. In addition to 
the usual arithmetic instructions, the ALU can perform Boolean operations, 
providing the bit manipulation ability required of a high-speed controller. One 
input to the ALU is always provided from the accumulator, and the other input 
may be provided from the Product Register (PR) of the multiplier or the input 
scaling shifter that has fetched data from the RAM on the data bus. After the 
ALU has performed the arithmetic or logical operations, the result is stored in 
the accumulator. 

The 32-bit accumulator (see Figure 3-8) is split into two 16-bit segments for 
storage in data memory: ACCH (accumulator high) and ACCL (accumulator 
low). Shifters at the output of the accumulator provide a left-shift of 0 to 7 
places on the TMS320C25 and of 0, 1, or 4 places on the TMS32020. This 
shift is performed while the data is being transferred to the data bus for stor­
age. The contents of the accumulator remain unchanged. When the ACCH 
data is shifted left, the LSBs are transferred from the ACCL, and the MSBs are 
lost. When ACCL is shifted left, the LSBs are zero-filled, and the MSBs are 
lost. 

The TMS320C2x supports floating-point operations for applications requiring 
a large dynamic range. The NORM (normalization) instruction is used to nor­
malize fixed-point numbers contained in the accumulator. by performing left 
shifts. The LACT (load accumulator with shift specified by the T register) in­
struction denormalizes a floating-point number by arithmetically left-shifting 
the mantissa through the input scaling shifter. The shift count, in this case, is 
the value of the exponent specified by the four low-order bits of the T register 
(TR). ADDT and SUBT (add to/subtract from accumulator with shift speci­
fied by the T register) instructions have also been provided to allow additional 
arithmetic operations. 

The accumulator overflow saturation mode may be programmed through the 
SOVM and ROVM (set/reset overflow mode) instructions. When the accu­
mulator is in the overflow saturation mode and an overflow occurs, the over­
flow flag is set and the accumulator is loaded with either the most positive or 
the most negative number depending upon the direction of overflow. The 
value of the accumulator upon saturation is > 7FFFFFFF (positive) or 
>80000000 (negative). If the OVM (overflow mode) status register bit is reset 
and an overflow occurs, the overflowed results are loaded into the accumula­
tor without modification. (Note that logical operations cannot result in over­
flow.) 

The TMS320C2x can execute a variety of branch instructions that depend on 
the status of the ALU and accumulator. These instructions incl~de the BV 
(branch on overflow) and BZ (branch on accumulator equal to zero). In ad­
dition, the BACC (branch to address in accumulator) instruction provides the 
ability to branch to an address specified by the accumulator. Bit test in-



Architecture - Central Arithmetic Logic Unit 

structions (BIT and BITT), which do not affect the accumulator, allow the 
testing of a specified bit of a word in data memory. 

The accumulator on the TMS320C25 also has an associated carry bit that is 
set or reset depending on various operations within the device. The carry bit 
allows more efficient computation of extended-precision products and addi­
tions or subtractions. It is also useful in overflow management. The carry bit 
is affected by most arithmetic instructions as well as the shift and rotate in­
structions. It is not affected by loading the accumulator, logical operations, or 
other such nonarithmetic or control instructions. It is also not affected by the 
multiply (MPY, MPYK, and MPYU) instructions, but is affected by the accu­
mulation process in the MAC and MACO instructions. Examples of carry bit 
operation are shown in Figure 3-9. 

c MSB LSB c MSB LSB 

x F F F F F F F F ACC x 0 0 0 0 0 0 0 0 ACC 
+ 1 1 

0 0 0 0 0 0 0 0 0 F F F F F F F F 

x 7 F F F F F F F ACC x 8 0 0 0 0 0 0 0 ACC 
+ 1 (OVM=Ol 1 (OVM=O) 

0 8 0 0 0 0 0 0 0 7 F F F F F F F 

0 0 0 0 0 0 0 0 ACC 0 F F F F F F F F ACC 
+ 0 (ADDC 0 (SUBB 

0 0 0 0 0 0 0 0 1 INSTRUCTION) F F F F F F F E INSTRUCTION) 

Figure 3-9. Examples of TMS320C25 Carry Bit Operation 

The value added to or subtracted from the accumulator, shown in the exam­
ples of Figure 3-9, may come from either the input scaling shifter or the shifter 
at the output of the P register. The carry bit is set if the result of an addition 
or accumulation process generates a carry, or reset to zero if the result of a 
subtraction generates a borrow. Otherwise, it is reset after an addition or set 
after a subtraction. 

The ADDC (add to accumulator with carry) and SUBB (subtract from accu­
mulator with borrow) instructions provided on the TMS320C25 use the pre­
vious value of carry in their addition/subtraction operation (see these 
instructions in Section 4 for more detailed information). 

The one exception to operation of the carry bit, as shown in Figure 3-9, is in 
the use of the ADDH (add to high accumulator) and SUBH (subtract from 
high accumulator) instructions. The ADDH instruction can only set the carry 
bit if a carry is generated, and the SUBH instruction can only reset the carry 
bit if a borrow is generated; otherwise, neither instruction can affect it. 

Two branch instructions, BC and BNC, have been provided for branching on 
the status of the carry bit. The SC, RC, and LST1 instructions can also be used 
to load the carry bit. The carry bit is set to one on a hardware reset. 

The SFL and SFR (in-place one-bit shift to the left/right) instructions on the 
TMS320C2x and the ROL and ROR (rotate to the left/right) instructions on 
the TMS320C25 implement shifting or rotating of the contents of the accu-

3-25 



.. <.Architecture - Central Arithmetic Logic Unit 

mulator through the carry bit. The SXM bit affects the definition of the SFR 
(shift accumulator right) instruction. When SXM = 1, SFR performs an 
arithmetic right shift, maintaining the sign of the accumulator data. When 
SXM = 0, SFR performs a logical shift, shiftii:ig out the LSB and shifting in a 
zero for the MSB. The SFL (shift accumulator left) instruction is not affected 
by the SXM bit and behaves the same in both cases, shifting out the MSB and 
shifting in a zero. Repeat (RPT or RPTK) instructions may be used with the 
shift and rotate instructions for multiple shift counts. 

3.5.3 Multiplier, T and P Registers 

The TMS320C2x utilizes a 16 x 16-bit hardware multiplier, which is capable 
of computing a signed or unsigned 32-bit product in a single machine cycle. 
All multiply instructions, except the MPYU (multiply unsigned) instruction on 
the TMS320C25, perform a signed multiply operation in the multiplier. That 
is, the two numbers being multiplied are treated as two's-complement num­
bers, and the result is a 32-bit two's-complement number. As shown in Figure 
3-8, the following two registers are associated with the multiplier: 

• A 16-bit temporary register (TR) that holds one of the operands for the 
multiplier, and 

• A 32-bit product register (PR) that holds the product. 

The output of the product register can be left-shifted 1 or 4 bits. This is useful 
for implementing fractional arithmetic or justifying fractional products. The 
output of the PR can also be right-shifted 6 bits to enable the execution of 
up to 128 consecutive multiply/accumulates without the possibility of over­
flow. 

An LT (load T register) instruction normally loads the TR to provide one op­
erand (from the data bus), and the MPV (multiply) instruction provides the 
second operand (also from the data bus). A multiplication can also be per­
formed with an immediate operand using the MPYK instruction. In either 
case, a product can be obtained every two cycles. 

Two multiply/accumulate instructions (MAC and MACD) fully utilize the 
computational bandwidth of the multiplier, allowing both operands to be 
processed simultaneously. The data for these operations may reside anywhere 
in internal or external memory, or can be transferred to the multiplier each cy­
cle via the program and data buses. This provides for single-cycle 
multiply/accumulates. when used with repeat (RPT /RPTK) instructions. Note 
that the DMOV portion of the MACO instruction will not function with ex­
ternal data memory addresses. On the TMS32020, the multiplier and multi­
plicand must reside in separate on-chip RAM blocks. On the TMS320C25, the 
MAC and MACD instructions can be used with both operands in either inter­
nal or external memory or one each in on-chip RAM. The SQRA (square/add) 
and SQRS (square/subtract) instructions pass the same value to both inputs 
of the multiplier for squaring a data memory value. 

The MPYU instruction on the TMS320C25 performs an unsigned multipli­
cation, which greatly facilitates extended-precision arithmetic operations. The 
unsigned contents of the T register are multiplied by the unsigned contents 
of the addressed data memory location, with the result placed in the P register. 
This allows operands of greater than 16 bits to be broken down into 16-bit 
words and processed separately to generate products of greater than 32 bits. 



Architecture - Central Arithmetic Logic Unit 

After the multiplication of two 16-bit numbers, the 32-bit product is loaded 
into the 32-bit Product Register (PR) on the TMS320C2x. The product from 
the PR may be transferred to the ALU. 

Four product shift modes (PM) are available at the Product Register (PR) 
output, which are useful when performing multiply/accumulate operations, 
fractional arithmetic, or justifying fractional products. The PM field of status 
register ST1 specifies the PM shift mode, as shown in Table 3-3. 

Table 3-3. PM Shift Modes 

IF PM IS: RESULT 

00 No shift 
01 Left shift of 1 bit 
10 Left shift of 4 bits 
11 Right shift of 6 bits 

Left shifts specified by the PM value are useful for implementing fractional 
arithmetic or justifying fractional products. For example, the product of either 
two normalized, 16-bit, two's-complement numbers or two 015 numbers 
contains two sign bits, one of which is redundant. 01 5 format, one of the 
various types of 0 format, is a number representation commonly used when 
performing operations on non-integer numbers (see Section 5.6.6 for an ex­
planation and examples of 015 representation). The single-bit left-shift 
eliminates this extra sign bit from the product when it is transferred to the ac­
cumulator. This results in the accumulator contents being formatted in the 
same manner as the multiplicands. Similarly, the product of either a normal­
ized, 16-bit, two's-complement or 01 5 number and a 13-bit, two's­
complement constant contains five sign bits, four of which are redundant. 
This is the case, for example, when using the MPYK instruction. Here the 
four-bit shift properly aligns the result as it is transferred to the accumulator. 

Use of the right-shift PM value allows the execution of up to 128 consecutive 
multiply/accumulate operations without the threat of an arithmetic overflow, 
thereby avoiding the overhead of overflow management. The shifter can be 
disabled to cause no shift in the product when working with integer or 32-bit 
precision operations. This allows compatibility with TMS320C1 x code to be 
maintained. Note that the PM right shift is always sign-extended regardless 
of the state of SXM. 

The four least significant bits of the T register (TR) also define a variable shift 
through the scaling shifter for the LACT / ADDT /SUBT (load/add­
to/subtract-from accumulator with shift specified by the TR) instructions. 
These instructions are useful in floating-point arithmetic where a number 
needs to be denormalized, i.e., floating-point to fixed-point conversion. The 
BITT (bit test) instruction allows testing of a single bit of a word in data 
memory based on the value contained in the four LSBs of the TR. 

3-27 



Architecture - System Control 

3.6 System Control 

System control on the TMS320C2x is provided by the program counter, 
hardware stack, PC-related hardware, the external reset signal, interrupts (see 
Section 3.8), the status registers, the on-chip timer, and the repeat counter. 
The following sections describe the function of each of these components in 
system control and pipeline operation. 

3.6.1 Program Counter and Stack 

3-28 

The TMS320C2x contains a 16-bit Program Counter (PC) and a hardware 
stack of four (TMS32020) or eight (TMS320C25) locations for PC storage 
(see Figure 3-10). The program counter addresses internal and external pro­
gram memory in fetching instructions. The stack is used during interrupts and 
subroutines . 

.. ,,,t::t:':tt:r=:t=::r==nr:=t==ttt:tt:::=:n::===t=.P.RQC?R,~~·!?.u.1:i.=:::=::r=:::::::::::r====r=:=:=:=::::::r=== 
16 ;:::;::: 

I 
16 

11111111 

16 

16 ·::::,:: 

l!i.!lii 

16 

t TMS320C25 specific. 
t Four-level stack provided on the TMS32020. 

Figure 3-10. Program Counter, Stack, and Related Hardware 

The program counter addresses program memory, either on-chip or off-chip, 
via the Program Address Bus (PAB). Through the PAB, an instruction is 
fetched from program memory and loaded into the Instruction Register (IR). 
When the IR is loaded, the PC is ready to start the next instruction fetch cycle. 
The PC may address on-chip RAM block BO when BO is configured as pro­
gram memory, or the on-chip ROM provided on the TMS320C25. The PC 
also addresses off-chip program memory through the external address bus 
A 1 5-AO and the external data bus D1 5- DO. 



Architecture - System Control 

Data memory is addressed by the program counter during a BLKD instruction, 
which moves data blocks from one section of data memory to another. The 
contents of the accumulator may be loaded into the PC in order to implement 
"computed GOTO" operations. This can be accomplished using the BACC 
(branch to address in accumulator) or CALA (call subroutine indirect) in­
structions. 

To start a new fetch cycle, the PC is loaded either with PC+1 or with a branch 
address (for instructions such as branches, calls, or interrupts). In the case of 
conditional branches where the branch is not taken, the PC is incremented 
once more beyond the location of the branch address. 

The TMS320C2x also has a feature, which allows the execution of the next 
single instruction N +1 times. N is defined by loading an 8-bit counter RPTC 
(repeat counter). If this repeat feature is used, the instruction is executed, and 
the RPTC is decremented until the RPTC goes to zero. This feature is useful 
with many instructions, such as NORM (normalize contents of accumulator), 
MACO (multiply and accumulate with data move), and SUBC (conditional 
subtract). When used with some multicycle instructions, such as MACO, the 
repeat features can result in these instructions effectively executing in a single 
cycle. 

The stack is 16 bits wide and four (TMS32020) or eight (TMS320C25) levels 
deep. The PC stack is accessible through the use of the PUSH and POP in­
structions. Whenever the contents of the PC are pushed onto the top of the 
stack, the previous contents of each level are pushed down, and the bottom 
(fourth/eighth) location of the stack is lost. Therefore, data will be lost if more 
than four/eight successive pushes occur before a pop. The reverse happens 
on pop operations. Any pop after three/seven sequential pops yields the value 
at the bottom stack level. All of the stack levels then contain the same value. 
Two additional instructions, PSHD and POPD, .push a data memory value 
onto the stack or pop a value from the stack to data memory. These in­
structions allow a stack to be built in data memory for the nesting of 
subroutines/interrupts beyond four/eight levels. 

Note that on the TMS32020, the TBLR/TBLW, MAC/MACO, and 
BLKD/BLKP instructions use one level of the stack. The TMS320C25 contains 
a separate stack for use with these instructions, and no level of the PC is used. 

3.6.2 Pipeline Operation 

Instruction pipelining consists of the sequence of external bus operations that 
occurs during instruction execution. The prefetch-decode-execute pipeline is 
essentially invisible to the user, except in some cases where the pipeline must 
be broken (such as for branch instructions). In the operation of the pipeline, 
the prefetch, decode, and execute operations are independent, which allows 
instruction executions to overlap. Thus, during any given cycle, two or three 
different instructions can be active, each at a different stage of completion, 
resulting in the respective two-level pipeline on the TMS32020 or the three­
level pipeline on the TMS320C25. 

The difference in pipeline levels does not necessarily affect instruction exe­
cution speed, but merely changes the fetch/decode sequence. Most in­
structions execute in the same number of cycles regardless of whether they 
are executed from internal RAM, ROM, or external program memory. The ef-

3-29 



Architecture - System Control 

3-30 

fects of pipelining are included in the instruction cycle timings for the 
TMS32020 and TMS320C25 listed in Appendix D. 

Additional PC-related hardware (see Figure 3-10) is provided on the 
TMS320C25 to allow three-level pipelining for higher performance. Included 
in the related hardware are the Prefetch Counter (PFC), the 16-bit MicroCall 
Stack (MCS) register, the Instruction Register (IR), and the Queue Instruction 
Register (QIR). 

In the three-level pipeline on the TMS320C25, the PFC contains the address 
of the next instruction to be prefetched. Once an instruction is prefetched, the 
instruction is loaded into the IR, unless the IR still contains an instruction 
currently executing, in which case the prefetched instruction is stored in the 
QI R. The PFC is then incremented, and after the current instruction has 
completed execution, the instruction in the QIR is loaded into the IR to be 
executed. 

The PC contains the address of the next instruction to be executed, and is not 
used directly in instruction fetch operations, but merely serves as a reference 
pointer to the current position within the program. The PC is incremented as 
each instruction is executed. When interrupts or subroutine call instructions 
occur, the contents of the PC are pushed onto the stack to preserve return 
linkage to the previous program context. 

The prefetch, decode, and execute operations of the pipeline are independent, 
thus allowing instruction executions to overlap. During any given cycle, three 
different instructions can be active, each at a different stage of completion. 
Figure 3-11 shows the operation of the three-level pipeline for single-word, 
single-cycle instructions executing from either internal program ROM or ex­
ternal memory with no wait states. 

CLKOUT1 _fl_ 
prefetch N N+1 N+2 

decode N-1 N N+1 

execute .. N-2 ~·4 N-1 .. 4 N •"+---

Figure 3-11. Three-Level Pipeline Operation (TMS320C25) 

Pipelining is reduced to two levels when execution is from internal program 
RAM due to the fact that an instruction in internal RAM can be fetched and 
decoded in the same cycle. Thus, separate prefetch and decode operations are 
not required, as shown in Figure 3-12. 



Architecture - System Control 

CLKOUT1 

pref etch 
N N+1 N+2 

decode N 

~·· 
N+1 ••• N+2 ••• 

execute • N-1 ••• N • •• N+1 •+--

Figure 3-12. Two-Level Pipeline Operation 

The following paragraphs describe, in detail, the operation of the TMS320C25 
pipeline. This description, in conjunction with Appendix D, gives sufficient 
information for predicting the operation of the TMS320C25 for hardware in­
terface optimization, accurate program cycle counting, and simulation model­
ling. Often it is not necessary to understand the intricate detail of the pipeline 
to design with the TMS320C25. Therefore, if the user is not specifically in­
terested in these details, it is suggested that this description be skipped. 

The TMS320C25 executes most of its instructions in a single cycle, because 
all the instructions are straight decodes and highly pipelined as opposed to 
microcode. The basic pipeline operation is 3.25 cycles deep where the device 
sequence on any given cycle is fetching the third instruction, decoding the 
second instruction, and executing the first. Figure 3-13 shows the internal 
operation of the TMS320C25 pipeline in reference to quarter phases 1 through 
4 (01-04). 

3-31 



Architecture - System Control 

CLOCK 

CLKOUT1 

CLKOUT2 

STRB 

ADDRESS 

DATA 

DECODE 

RAM RD 

EXECUTE 

STATUS 

AUXREG 

RAM WR 

3-32 

CYCLE 1 CYCLE 2 CYCLE 3 

I 03 I 02 I o3 
I I 03 

I ' 01 I I I I I 
!1 

I 
I 11 I I 11 I 

,, 
I I 

I I I I I I I I I 
I I I I I I I I I I 

_JJ I 
II II I II I II I II I I I I 

I I I I I I I I I I 

i1 I II II 
I II I 

11 
I IL I I I I 

I I I I I I I 

: 
I 
I 
I 
I 

-i 
j 

I 

I I I I I 

IN~T1 : H : l~ST2 h : l~ST3 : ~ 
I I I I I I I I I I I 

I •NST~ I I I I •NST~ I I I •NST~ I I I 
I I I I I 

I l I I I I I I I I I 

INStO I I I IN~T1 I I IN~T2 I I 

~ I I I 
I I I 

I I IN~TO I I I I I INS~2 t-I I I I 
I I I 
I I I I I I I I I I 

INST INSTO I 

I I 
I I 

INSTO ARAU INST1 ARAU 

I 
INS!1 

Figure 3-13. TMS320C25 Standard Pipeline Operation 

The TMS320C25 machine cycle, externally referenced by the falling edges of 
the CLKOUT1 signal, consists of four internal cycles (or CLKIN cycles). This 
allows internal operations of the pipeline to execute as fast as 1 /4 the machine 
cycle. The sequence of a general instruction execution in the pipeline is 
shown in Table 3-4. 



Architecture - System Control 

Table 3-4. Instruction Pipeline Sequence 

CYCLE Q PHASE OPERATION 

1 1 New PC is output on address bus 
2 External read of instruction 
3 External read of instruction 
4 External read of instruction 

2 1 
2 Instruction decode 
3 Instruction decode/ ARAU execution 
4 On-chip RAM access/ARAU execution 

3 1 On-chip RAM access/load new AR value/update ARP 
2 ALU execution 
3 ALU execution 
4 Load accumulator 

4 1 Load status register 

When using an add instruction (e.g., ADD *+,12,AR4), the device fetches the 
instruction in cycle 1 . During 02 and 03 of cycle 2, the instruction is de­
coded. This includes the ALU command decode as well as generation of the 
data operand fetch address. In this case, the address comes from an auxiliary 
register. During 04 of cycle 2 and 01 of cycle 3, the operand is fetched from 
the RAM location. The increment of the auxiliary register is performed during 
03 and 04 of cycle 2, and the value is loaded into the auxiliary register in 01 
of cycle 3. The ARP is also updated in 01 of cycle 3. During 02 and 03 of 
cycle 3, the data is passed through the barrel shifter to execute the 12-bit 
left-shift, and the data is added by the ALU to the contents in the accumulator. 
In 04 of the third cycle, the ALU result is loaded into the accumulator. The 
status of the ALU operation is loaded into the status register in 01 of the 
fourth cycle. The bits being loaded into the status register at this time consist 
of the current ALU status and the ARP associated with the next instruction. 

In the case of a store instruction (e.g., SACL *0-,3,AR2), the device operates 
the first two cycles in the same manner as the ADD instruction. In 01 and 
02 of the third cycle, the data in the accumulator is passed through a barrel 
shifter, left-shifted 3 bits, and zero-filled. The lower 16 bits of the shifted 
value are written to the address specified by the current auxiliary register. 
During 03 and 04 of the third cycle, the index register (ARO) is added to the 
contents of the current auxiliary register and loaded back into the current 
auxiliary register in 01 of the fourth phase. In 01 of the fourth cycle, the 
auxiliary register pointer is changed to AR2. There is no execution phase of 
this instruction. Figure 3-14 shows the ADD and SACL instructions operating 
back-to-back in a program sequence. It is assumed that both instructions re­
side in external, zero wait-state memory and that the data resides in on-chip 
RAM. 

3-33 



Architecture - System Control 

CLOCK 

CLKOUT1 

CLKOUT2 

ml 

ADDRESS 

DATA 

DECODE 

RAM 

EXECUTE 

AUXREG 

3-34 

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 CYCLE 5 

-------+----+--1-~AD~D~R~EA~D~-1:-iSACL WRITE 1----+--+---+--+---+-

I I I ld I l..-1 --11---+--+--+---<--+--<l--+I --< ~DD ~ DUMMY ft__.ii----1--...J---l--

_ __.1_-jl I l.,.___;.....I _1 I I 
--11---T---l--.;......--<l---l ARx: +1 ~ AR..;ARO 8--+--<l--+--1--.:.---1-

Figure 3-14. Pipeline Operation of ADD Followed by SACL 

When the device is reading instructions out of on-chip ROM, the basic inter­
nal operation of the pipeline is the same. The only difference is that the con­
trol lines (i.e., STRB, PS, and R/iiii) are inactive. If the device is fetching the 
instructions from on-chip RAM, the pipeline is shortened to 2.5 cycles since 
the device can fetch the instruction in half a cycle aJ opposed to the full cycle 
required in an external or on-chip ROM fetch. The instruction is fetched dur­
ing 04 and 01, then decoded in 02 and 03. The rest of the pipeline tracks 
as described above. 

Some operations add additional machine cycles to the instruction execution 
without damaging the integrity of the program or hardware. External wait 
states, multiplexed data bus conflicts, two-word in~tructions, and program 
counter discontinuities are included in these operations, as described in the 
following paragraphs. 

Wait States. The TMS320C25 is designed to be interfaced to slower ex­
ternal devices through the use of hardware-generated wait states. This applies 
to the program, data, and 1/0 memory spaces of the Harvard architecture. 
Wait states are a direct delay on the instruction pipeline. Each wait state in­
serted during the instruction fetch contributes an additional machine cycle in 
the pipeline execution of the instruction. In addition, any wait state incurred 
when accessing external data or 1/0 space also contributes an additional ma­
chine cycle to the pipeline execution of the instruction. This factor applies to 
all instructions. Figure 3-15 describes how the pipeline reacts to wait states 
in external program memory. Note that the wait state added in cycle 2 results 
in a no-execution operation in cycle 4. 



Architecture - System Control 

CLOCK 

CLKOUT1 

CLKOUT2 

filili 

ADDRESS 

DATA 

DECODE 

RAM 

EXECUTE 

AUXREG 

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 CYCLE 5 

I 
I 
I 
JL 
I 

II 
I 

WAIT STATE SACL WAIT STATE OR •+ 

I I 
I I 

A~D SAfL 

I I 
ADD READ SACL WRITE 

I 
ADD ACC 

I 
I I I I 

ARx +1 8 AR4~ARO 18 

Figure 3-15. Pipeline Operation with Wait States 

Multiplexed External Data Bus. The external data bus is multiplexed to 
support all three memory spaces of the TMS320C25. Therefore, external 
fetches to multiple spaces in the same instruction add additional machine cy­
cles to the pipeline execution of the instruction. This is due to the fact that 
the external fetch takes a full cycle whereas the internal equivalent takes two 
quarter phases and can be included in the execution stage of the three-deep 
pipeline. Accessing the data memory space is controlled by setting of the data 
page pointer or the value contained in the auxiliary register used in any in­
struction. Also affecting the pipeline in this manner is the access of the 1/0 
bus or the tables in program memory (i.e., IN, OUT, TBLR, and TBLW). Figure 
3-16 shows how the pipeline processes an instruction with external program 
and data access. 

3-35 



Architecture - System Control 

ADDRESS 

DATA 

DECODE 

EX TRAM 

EXECUTE 

AUXREG 

3-36 

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 CYCLE 5 

""1~-r-~-r-~r-~j"°-r-~-r-~t1~1,~-r-1~1,i""-r-i~11~D~UM~IM~Y~~l~-LA~IC;..._~~ 
--lf--......,.~-+~--~-+----t,__A_R4--A-R0---1~ AR2+1 ~f--....... 1~-+1~~:...--+.~-+l~~1f--

Figure 3-16. Pipeline with External Data Bus Conflict 

Two-Word Instructions. All two-word instructions take an additional cy­
cle to fetch the 16-bit immediate operand following the instruction mnemonic. 
The first set of instructions for which this applies is the long immediate in­
structions. The instruction mnemonic is followed by a 16-bit immediate op­
erand to be executed upon in the ALU. The second set applies to those 
instructions that use the PFC register as a second data addressing unit on 
some optimized instructions, e.g., the multiply/accumulate and block move 
instructions (MAC, MACD, BLKP, and BLKD). In the second set, the extra 
cycle only appears once in a repeat loop. The third set involves conditional 
branches not taken. 



Architecture - System Control 

CLOCK 

CLKOUT1 

CLKOUT2 

Sffiii 

AOORESS 

DATA 

OECOOE 

IN STRAM 

DATARAM 

STATUS 

EXECUTE 

AUXREG 

I 

-f 

Program Counter Discontinuities. Since the TMS320C25 is pipelined, a 
change (other than an increment) in the program counter requires that the 
pipeline be flushed. This applies to all branches, subroutine calls, software 
trap, interrupt traps, and return. The pipeline, being three deep, has the next 
instruction already loaded when the branch occurs. At this point, this instruc­
tion will not affect any data or registers, so it is cleared from the pipeline. 
Therefore, two dead execution cycles are inserted while waiting for the pipe­
line to reload. The device only takes one additional cycle if the destination of 
the branch is in on-chip RAM block 0. The pipeline is only two-deep in this 
case and only takes one cycle to reload. Figure 3-17 shows a branch from 
normal execution to an address in on-chip RAM, and Figure 3-18 shows an 
example of a return executed from on-chip RAM to a location in off-chip 
memory. 

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 CYCLE 5 

I I I 
11 
I 

11 I 11 I 

I I 
I I I 

s~e AO:DH f-
I I I 

SUB*-.12,AR ADDH •+ 
I I I I 

I I I I I I 

I I I I I sue READ I I 
I I I 

I I I Pd I I 

µ I I I 
I I I 
I I I I 

! I ~v I I I + t I I 
I I 

I I I I I I I I I I 
I I I I I I ARx -1 e----c= I I I I I I 

Figure S 17. Pipeline Operation of Branch to On-Chip RAM 

3-37 



Architecture - System Control 

CLOCK 

CUtOUT1 

CLKOUT2 

mm 

AOORESS 
I 
I 

DATA 
I 
I 
I 

OECOOE ---1 
IN STRAM §j 

I 
DATARAM I 

I 

STATUS ~ 
I 

EXECUTE I 
I 
I 

AUXREG I 

3-38 

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4 CYCLE 5 

I 
11 I 

ADD *+.12.AR4 SUB *o.,3.AR2 OR *+ 
I I 
I I I I I I I I 

I I R R p 
I I 

REr 
I I I A~D I sy• f-I I I 
I I I 

I I I I I I I I 
I I I I I I I I 
I I I I I I I I 
I I I I I I I I 
I I I I I I ADD I ~ I I I I I I 
I I I I I I I I 
I I I I I I I I I 
I I I I I I I I I 
I I I I I I I I I 
I + I I I I I + t I I I I I I 
I I I I I I 
I I I I I I I I I I 
I I I I I ARx +1 ~ I I I I 

Figure 3-18. Pipeline Operation of RET from On-Chip RAM 

Interrupts are hardware-generated discontinuities to the sequential accessing 
of the program counter. The interrupt is executed based upon instruction ex­
ecution complete, rather than memory operation complete. The instruction 
that is currently executing at the time of an interrupt executes completely. The 
interrupt traps following the completion of that instruction before the start of 
the execution of the next instruction. In this case, the repeated instruction is 
considered one execution; therefore, the repeat loop finishes before the inter­
rupt trap is taken. This gives priority to the algorithm over the interrupt service. 
The interrupt operation in reference to the pipeline execution is illustrated in 
the data sheet timing diagrams (see Appendix A). Note that when interrupt 
vectors reside in external memory running with one wait state, there are two 
interrupt acknowledge (IACK) pulses. If this is a problem, the IACK line should 
be gated with READY. 



Architecture - System Control 

Hardware Aspects of the Pipeline 

Viewing these effects on the pipeline at the hardware level requires additional 
explanation due to the lack of visibility of on-chip operations or optimization 
of the pipeline execution. The following paragraphs describe the effects of 
HOLD/HOLDA, RS, interrupts, accumulator store, on-chip program access, ex-. 
ternal data access, and repeats as they are visible from the pins of the device. 
In the cases of RS, interrupts, and HOLD/HOLDA, the effects on the pipeline 
are shown in the data sheet timing diagrams (see Appendix A). 

Reset. The reset interrupt is a totally non-maskable interrupt. When exe­
cuted, it stops operation of the pipeline and flushes the unexecuted parts. The' 
reset pulse must be at least three CLKOUT cycles wide. After the second, . 
CLKOUT cycle has completed (before the third rising edge of CLKOUT1), the(' 
device has brought all outputs into a high-impedance state. After the rising 
edge of RS, the device begins to fetch the reset vector. Since the pipeline is' 
empty, it does not execute the reset vector branch until two cycles later. If the 
HOLD line is brought low during the active reset, the device does not start the 
fetch of the reset vector until after the active HOLD is removed, and the device 
deactivates the HOLDA line. When HOLD is activated with RS to allow boot" 
loading of the code, the HOLDA line will go active low in three cycles, regard-· . 
less of whether or not the RS line has gone high. This is useful in that the. 
HOLDA line can be used to enable the release of the RS line and guarantee thep' 
required three-cycle reset. 

Interrupts. The effects of an interrupt become apparent on the hardware 
when a interrupt acknowledge (IACK) signal is valid on the rising edge of 
CLKOUT2. This signifies the fetch of the first word of the interrupt vector. If · 
wait states are generated in the memory segment where the interrupt vector 
resides, an additional IACK pulse occurs for each wait state added. If this 
causes a problem with the external interface, IACK can be gated with READY 
to only accept the last interrupt acknowledge pulse. Note that the BIOZ in­
struction tests the level of the BIO pin during the instruction fetch phase of the 
pipeline. 

Hold/Hold Acknowledge. The hold operation, like that of interrupt, takes 
second priority to algorithm execution; therefore, the hold will not be ac­
knowledged until after the currently running instruction is completed (a min­
imum of three cycles). This includes repeated instructions. The next 
instruction, after the final instruction executed before HOLDA, is latched into 
the pipeline and executed two cycles after the HOLDA line goes inactive high. 
The second instruction after the i,1st instruction executed is fetched two cycles 
again after the HOLDA line goes inactive high. If the HM bit of status register 
ST1 is set high, the TMS320C26 stops execution and sits idle until the hold 
is removed. This lowers powef consumption by removing the drive of the 
memory address and control lines and also stopping major parts of the internal 
CPU circuits from switching a:1d drawing power. This can be used as a 
hardware powerdown mode. If the HM bit is low, the TMS320C25 continues 
executing any instruction that can be executed with on-chip resources only. 
This means both program and data reside in on-chip memory. The device will 
continue to operate normally unless an off-chip access is required by an in­
struction, at which time the processor adds wait states until the hold state is 
removed. When running from on-chip resources with HM = 0, the processor: 
acknowledges HOLD with HOl .. DA during a multicycle instruction. 

3-39 



Architecture - System Control 

3-40 

On-Chip Program Access. When executing from on-chip resources, the 
pipeline is visible only in the MSC line, which signals microstate complete 
when active low on the rising edge of CLKOUT2. Note that executing from 
on-chip program memory does not allow instruction accessing of external data 
memory to run in a single cycle. The normal operation of the instruction takes 
only two quarter phases of the execution cycle to fetch the on-chip data me­
mory, whereas off-chip access requires all four quarter phases. The pipeline 
is, however, optimized to handle a repeated instruction that accesses .external 
data memory with only one extra cycle for the first external fetch. 

External Program/Data Access. Visibility of the pipeline when using ex­
ternal program and data memory requires a monitoring of the MSC, STRB, PS, 
and OS lines. The MSC line indicates at the rising edge of CLKOUT2 whether 
or not the cycle is the beginning of a new instruction fetch; i.e., MSC active 
low indicates the completion of an instruction and the acquisition of another 
instruction. The PS (program select) line indicates that the data bus is cur­
rently being used to fetch an instruction. A step in the pipeline is not indicated 
since the PS line remains while the pipeline is fetching instructions externally. 
To track the fetches, the STRB line, which frames external accesses, must be 
monitored. 

The PS line being active low does not necessarily mean that the device is 
fetching an instruction. In the cases of table read/write (TBLR/TBLW), 
multiply/accumulate (MAC/MACO), and block transfer (BLKP) instructions, 
the device uses the PS line active low to access tables. 

To monitor external data memory fetches, the user should watch the data se­
lect (OS) line in conjunction with the STRB line. An active low on the OS line 
indicates the data bus is currently being used to access data memory space. 
This line remains low for two memory fetches in the case of an accumulator 
store followed by an ALU instruction, both operating with off-chip memory. 
However, two STRB pulses will identify the individual access. Likewise, the 
line remains low for many cycles in the case of a repeated instruction. 1/0 
space access operates similarily to data space operation with the OUT and IN 
instructions replacing the save and ALU instruction. 

A clear understanding of this information in conjunction with the data in Ap­
pendix D of the TMS320C2x User's Guide should be sufficient to predict 
correctly the operation of the TMS320C25 pipeline. 



Architecture - System Control 

3.6.3 Reset 

Reset (RS) is a non-maskable external interrupt that can be used at any time 
to put the TMS320C2x into a known state. Reset is typically applied after 
powerup when the machine is in a random state. 

Driving the RS signal low causes the TMS320C2x to terminate execution and 
forces the program counter to zero. RS affects various registers and status bits. 
At powerup, the state of the processor is undefined. For correct system op­
eration after powerup, a reset signal must be asserted low for at least three 
clock cycles to guarantee a reset of the device (see Section 5.1 for other im­
portant reset considerations). Processor execution begins at location 0, which 
normally contains a B (branch) statement to direct program execution to the 
system initialization routine (also see Section 5.1 for an initialization routine 
example). Section 6.1 provides system control circuitry design examples. 

Upon receiving an RS signal, the following actions take place: 

1) A logic 0 is loaded into the CNF (configuration control) bit in status 
register ST1, causing all RAM to be configured as data memory. 

2) The Program Counter (PC) is set to 0, and the address bus A1 5-AO is 
driven with all zeroes while RS is low. 

3) The data bus 015-00 is placed in the high-impedance state. 

4) All memory and 1/0 space control signals (PS, DS, iS, R/W, STAB, and 
BR) are de-asserted by setting them to high levels while RS is low. 

5) All interrupts are disabled by setting the INTM (interrupt mode) bit to 
1. (Note that RS is non-maskable.) The interrupt flag register (IFR) is 
reset to all zeroes. 

6) Status bits: 
0-+ OV and 1 -+ XF (TMS32020); in addition, on the TMS320C25, 
1 -+ SXM, 0 -+ PM, 1 -+ HM, 0 -+ FO, 1 -+ C, and 1 -+ FSM. 
(The remaining status bits on the TMS320C2x are unchanged.) 

7) The global memory allocation register (GREG) is cleared to make all 
memory local. 

8) The RPTC (repeat counter) is cleared. 

9) The DX (data transmit) pin is placed in the high-impedance state. Any 
transmit/receive operations on the serial port are terminated, and the 
TXM (transmit mode) bit is reset to a low level. This configures the FSX 
framing pulse to be an input. A transmit/receive operation may be 
started by framing pulses only after the removal of RS. 

10) The TIM register is set to the maximum value (>FFFF) on reset for both 
the TMS32020 and TMS320C25. The PRO register on the TMS320C25 
is also initialized by reset to >FFFF. The TMS32020 requires a software 
initialization of the PRD register (see Example 5-1 ). The TIM register 
begins decrementing only after RS is de-asserted. 

11) The IACK (interrupt acknowledge) signal is generated in the same man­
ner as a maskable interrupt. 

3-41 



Architecture - System Control 

12) The state of the RAM is undefined following RS. 

13) The ARB, ARP, DP, IMR, OVM, and TC bits are not initialized by reset. 
Therefore, it is critical that these bits be initialized in software by the user 
following reset. 

Execution sta;ts from location 0 of program memory when the RS signal is 
taken high. Note that if RS is asserted while in the hold mode, normal reset 
operation occurs internally, but all buses and control lines remain in the 
high-impedance state. Upon release of HOLD and RS, execution starts from 
location zero. The TMS320C2x can be held in the reset state indefinitely. 

3.6.4 Status Registers 

3-42 

Two status registers, STO and ST1, contain the status of various conditions 
and modes. The status registers can be stored into data memory and loaded 
from data memory, thus allowing the status of the machine to be saved and 
restored for interrupts and subroutines. All status bits are written to and read 
from using LST/LST1 and SST/SST1 instructions, respectively (with the ex­
ception of INTM, which cannot be loaded via an LST instruction). 

Figure 3-19 shows the organization of both status registers, indicating all 
status bits contained in each. Note that the DP, ARP, and ARB registers are 
shown as separate registers in the processor block diagram of Figure 3-2. 
Because these registers do not have separate instructions for storing them into 
RAM, they are included in the status registers. As shown in Figure 3-19, se­
veral bits in the status registers are reserved and read as logic one's by the LST 
and LST1 instructions. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

sro I ARP I ov lovMI I 1NrMI DP 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

sn ARB lcNFI rc lsxMI ct jHMtlFsMtjxFjFolrxMI PM 
ton the TMS32020, bits 5, 6, and 9 of ST1 are logic one's. 

Figure 3-19. Status Register Organization 

Some additional instructions or functions may affect the status bits, as indi­
cated in Table 3-5. 



Architecture - System Control 

Table 3-5. Status Register Field Definitions 

FIELD FUNCTION 

ARB Auxiliary Register Pointer Buffer. Whenever the ARP is loaded, the old 
ARP value is copied to the ARB except during an LST instruction. When 
the ARB is loaded via an LST1 instruction, the same value is also copied 
to the ARP. 

ARP Auxiliary Register Pointer. This three-bit field selects the AR to be used in 
indirect addressing. When ARP is loaded, the old ARP value is copied to 
the ARB register. ARP may be modified by memory-reference instructions 
when using indirect addressing, and by the LARP, MAR, and LST in-
structions. ARP is also loaded with the same value as ARB when an LST1 
instruction is executed. 

ct Carry bit. This bit is set to 1 if the result of an addition generates a carry, 
or reset to 0 if the result of a subtraction generates a borrow. Otherwise, 
it is reset after an addition or set after a subtraction, except if the instruc-
tion is ADDH or SUBH. ADDH can only set and SUBH only reset the carry 
bit but cannot affect it otherwise. The shift and rotate instructions also 
affect this bit, as well as the SC, RC, and LST1 instructions. Two branch 
instructions, BC and BNC, have been provided to branch on the status of 
C. C is set to 1 on a reset. 

CNF On-Chip RAM Configuration Control bit. If set to 0, block BO is config-
ured as data memory; otherwise, block BO is configured as program 
memory. T!:ll!._CNF may be modified by the CNFD, CNFP, and LST1 in-
structions. RS resets the CNF to 0. 

DP Data Memory Page Pointer. The 9-bit DP register is concatenated with 
the 7 LSBs of an instruction word to form a direct memory address of 16 
bits. DP may be modified by the LST, LOP, and LDPK instructions. 

FO Format bit. When set to 0, the serial port registers are configured as 16-bit 
registers. When set to 1, the port registers are configured to receive and 
transmit eight-bit bytes. FO may be modified by the FORT and LST1 in-
structions. FO is reset to 0. 

FSMt Frame Synchronization Mode bit. This bit indicates whether the serial port 
operates with or without frame sync pulses. When FSM = 1, the serial 
port operation is initiated following a frame sync pulse on the FSX/FSR 
inputs. When FSM = 0, the FSX/FSR inputs are ignored and the serial 
port operates continuously with no frame sync pulses required. The bit is 
set to 1 by a reset. 

HMt Hold Mode bit. When HM = 1, the processor halts internal execution 
when acknowledging an active HOLD. When HM= 0, the processor may 
continue execution out of internal program memory but puts its external 
interface in a high-impedance state. This bit is set to 1 by a reset .. 

INTM Interrupt Mode bit. When set to 0, all unmasked interrupts are enabled. 
When set to 1, all maskable interrupts are disabled. INTM is set and reset 
by the DINT and EINT instructions. RS and IACK also set INTM. INTM 
has no effect on the unmaskable RS interrupt. Note that INTM is unaf-
fected by the LST instruction. 

ov Overflow Flag bit. As a latched overflow signal, OV is set to 1 when ov-
erflow occurs in the ALU. Once an overflow occurs, the OV remains set 
until a reset, BV, BNV, or LST instruction clears the OV. 

tTMS320C25 only. 

3-43 



Architecture - System Control 

Table 3-5. Status Register Field Definitions (Concluded) 

FIELD FUNCTION 

OVM Overflow Mode bit. When set to 0, overflowed results overflow normally 
in the accumulator. When set to 1, the accumulator is set to either its most 
positive or negative value upon encountering an overflow. The SOVM and 
ROVM instructions set and reset this bit, respectively. LST may also be 
used to modify the OVM. 

PM Product Shift Mode. If these two bits are 00, the multiplier's 32-bit prod-
uct is loaded into the ALU with no shift. If PM = 01, the PR output is 
left-shifted one place and loaded into the ALU, with the LSBs zero-filled. 
If PM = 10, the PR output is left-shifted by four bits and loaded into the 
ALU, with the LSBs zero-filled. PM = 11 produces a right shift of six bits, 
sign-extended. Note that the PR contents remain unchanged. The shift 
takes place when transferring the contents of the PR to the ALU. PM is 
loaded by the SPM and LST1 instructions. The PM bits are cleared by 
RS. 

SXM Sign-Extension Mode bit. SXM = 1 produces sign extension on data as it 
is passed into the accumulator through the scaling shifter. SXM = O sup-
presses sign extension. SXM does not affect the definition of certain in-
structions; e.g., the ADDS instruction suppresses sign extension 
regardless of SXM. This bit is set and reset by the SSXM and RSXM in-
structions, and may also be loaded by LST1. SXM. is set to 1 by RS. 

TC Test/Control Flag bit. The TC bit is affected by the BIT, BITT, CMPR, 
LST1, and NORM instructions. The TC bit is set to a 1 if a bit tested by 
BIT or BITT is a 1, if a compare condition tested by CMPR exists between 
ARO and another AR pointed to by ARP, or if the exclusive-OR function 
of the two MSBs of the accumulator is true when tested by a NORM in-
struction. Two branch instructions. BBZ and BBNZ. provide branching on 
the status of the TC. 

TXM Transmit Mode bit. TXM = 1 configures the serial port's FSX pin to be an 
output. In this mode, a pulse is produced on FSX when DXR is loaded. 
Transmission then starts on the DX pin. TXM = 0 configures the FSX pin 
to be an input. TXM is set and reset by the STXM and RTXM instructions 
and may also be loaded by LST1. RS resets TXM to 0. 

XF XF pin status bit. This status bit indicates the state of the XF pin, a gen-
eral-purpose output pin. XF is set and reset by the SXF and RXF in-
structions or may be loaded by LST1 . XF is set to 1 . by RS. 

3.6.5 Timer Operation 

3-44 

The TMS320C2x provides a memory-mapped 16-bit timer (TIM) register and 
a 16-bit period (PRO) register, as shown in Figure 3-20. The on-chip timer 
is a down counter that is continuously clocked by CLKOUT1 on the 
TMS320C25. The timer on the TMS32020 is clocked by a signal whose fre­
quency is CLKOUT1 /4 or whose period is 4 x CLKOUT1 cycles. 

The Tl M register is set to the maximum value ( > FFFF) on reset for both the 
TMS32020 and TMS320C25. The PRO register on the TMS320C25 is also 
initialized by reset to >FFFF. The TMS32020 requires a software initialization 
of the PRO register (see Example 5-1 ). The TIM register begins decrementing 
only after RS is de-asserted. Following this, the TIM and PRO registers may 
be reloaded under program control. See Section 3.6.3 for reset information. 



Architecture - System Control 

PRO (16) 

16 

CRYSTAL 
OR 

EXTERNAL 
CLOCt< 

DIVIDE (CLOCK) DMDE 
BY 1------+-1 BY t----~ TIM (16) 

(LOAD) ZERO 

FOUR Nt DETECT 

16 TINT 

CLKOUT1 

t The divide ratio where N = 4 on the TMS32020 and N = 1 on the TMS320C25. 

Figure 3-20. Timer Block Diagram 

The TIM register, data memory location 2, holds the current count of the timer. 
At every N x CLKOUT1 cycle where N = 4 on the TMS32020 and N = 1 on 
the TMS320C25, the TIM register is decremented by one. The PRO register, 
data memory location 3, holds the starting count for the timer. A timer inter­
rupt (TINT) is generated every time the timer decrements to zero. The timer 
is reloaded with the value contained in the period (PRO) register within the 
next cycle after it reaches zero so that interrupts can be programmed to occur 
at regular intervals of (PRO + 1) cycles of CLKOUT1 on the TMS320C25 or 
(4 x PRO) cycles of CLKOUT1 on the TMS32020. This feature is useful for 
control operations and for synchronously sampling or writing to peripherals. 
By programming the PRO register from 1 to 65,535 (>FFFF), a TINT can be 
generated every 2 to 65,536 cycles on the TMS320C25. Note that, on the 

'TMS32020, a TINT can be generated every 4 to 262,140 cycles. A PRO reg­
ister value of zero is not allowed. 

The timer and period registers can be read from or written to on any cycle. The 
count can be monitored by reading the TIM register. A new counter period can 
be written to the period register without disturbing the current timer count. 
The timer will then start the new period after the current count is complete. If 
both the PRO and TIM registers are loaded with a new period, the timer begins 
decrementing the new period without generating an interrupt. Thus, the pro­
grammer has complete control of the current and next periods of the timer. 

If the timer is not used, TINT should be masked or all maskable interrupts 
disabled by a DINT instruction. The PRO register can then be used as a gen­
eral-purpose data memory location. If TINT is used, the PRO and TIM registers 
should be programmed before unmasking the TINT. 

3-45 



Architecture - System Control 

3.6.6 Repeat Counter 

The repeat counter (RPTC) is an 8-bit counter, which when loaded with a · 
number N, causes the next single instruction to be executed N + 1 times. The 
RPTC can be loaded with a number from 0 to 255 using either the RPT (re­
peat) or RPTK (repeat immediate) instructions. This results in a maximum of 
256 executions of a given instruction. RPTC is cleared by reset. 

The repeat feature can be used with instructions such as multiply/accumulates 
(MAC/MACO), block moves (BLKD/BLKP), 1/0 transfers (IN/OUT), and ta­
ble read/writes (TBLR/TBLW). These instructions, which are normally multi­
cycle, are pipelined when using the repeat feature, and effectively become 
single-cycle instructions. For example, the table read instruction may take 
three or more cycles to execute, but when repeated, a table location can be 
read every cycle. Note that not all instructions can be repeated (see Section 
4.3 and Appendix D for more information). 

3.6.7 Powerdown Mode (TMS320C25) 

3-46 

When operated in the powerdown mode, the TMS320C25 enters a dormant 
state and requires approximately one-half the power normally needed to sup­
ply the device (see the data sheet, Appendix A). Powerdown mode is invoked 
either by executing an IDLE instruction or by driving the HOLD input low while 
the HM status bit is set to one. 

While in powerdown mode, all of the internal contents of the TMS320C25 are 
maintained to allow operation to continue unaltered when powerdown mode 
is terminated. During that time, the data and address lines and the control 
signals {PS, DS, IS, STRB, and R/W) are all maintained in the high-impedance 
state. Powerdown mode is terminated upon receipt of an interrupt when an 
IDLE instruction is being executed or by removal of the HOLD input. (Refer to 
the IDLE instruction description in Section 4 and the hold function description 
in Section 3.10.3 for further information.) 



Architecture - External Memory and 1/0 Interface 

3.7 External Memory and 1/0 Interface 

The TMS320C2x supports a wide range of system interfacing requirements. 
Data, program, and 1/0 address spaces provide interfacing to memory and 1/0, 
thus maximizing system throughput. The local memory interface consists of: 

• A 16-bit parallel data bus ( D1 5- DO), 
• A 16-bit address bus (A15-AO), 
• Data, program, and 1/0 space select (DS, PS, and iS) signals, and 
• Various system control signals. 

1 ne R/W (read/write) signal controls the direction of the transfer, and STRB 
(strobe) provides a timing signal to control the transfer. 

The TMS320C2x 1/0 space consists of 16 input and 16 output ports. These 
ports provide the full 16-bit parallel 1/0 interface via the data bus on the de­
vice. A single input or output operation, using the IN or OUT instructions, 
typically takes two cycles; however, when used with the repeat counter, the 
operation becomes single-cycle. 

1/0 design is simplified by having 1/0 treated the same way as memory. 1/0 
devices are mapped into the 1/0 address space using the processor's external 
address and data buses in the same manner as memory-mapped devices. 
When addressing internal memory, the data bus must be in the high-impe­
dance state and the control signals go to an inactive state (logic high). Refer 
to Section 5 for the effect instructions have on 1/0. 

Interfacing to memory and 1/0 devices of varying speeds is accomplished by 
using the READY line. When communicating with slower devices, the 
TMS320C2x processor waits until the other device completes its function, 
signals the processor via the READY line, and continues execution (see Sec­
tion 6). 

3.7.1 Memory Combinations 

The exact sequence of operations performed as instructions execute depends 
on the areas in memory where the instructions and operands are located. There 
are six possible combinations of program and data memory since information 
can be located in either internal RAM, external memory, or internal ROM 
(available only on the TMS320C25). The six possible combinations are: 

• Program Internal RAM/Data Internal (Pl/DI) 
• Program Internal RAM/Data External (Pl/DE) 
• Program External/Data Internal (PE/DI) 
• Program External/Data Extern13I (PE/DE) 
• Program Internal ROM/Data l~ternal (PR/DI) on the TMS320C25 
• Program Internal ROM/Data External (PR/DE) on the TMS320C25. 

Appendix D provides cycle timings for instructions both when repeated and 
when not repeated. The following is a summary of program execution, organ­
ized according to memory configuration. 

3-47 



Architecture - External Memory and 1/0 Interface 

Pl/DI or PR/DI 

PE/DI 

When both program and data memory are on-chip, 
the processor runs at full speed with no wait 
states. Note that IN and OUT instructions have 
different cycle timings when program memory is 
internal; IN requires two cycles to execute whereas 
OUT requires only one cycle. 

This memory mode caff run at full speed if external 
program memory is sufficiently fast since internal 
data operations can occur coincident with external 
program memory accesses. If external program 
memory is not fast enough, wait states may be 
generated using the READY input. 

Pl/DE, PE/DE, or PR/DE Additional cycles are required to execute in­
structions that reference an external data memory 
space. At least two cycles are required to execute 
'read from external data memory' instructions such 
as ADD, LAR, etc. Further additional cycles may 
be required due to wait states if external data 
memory is not fast enough to be accessed within 
a single cycle. Note, however, that the 
TMS320C25 has the capability of executing 'write 
to external data memory' instructions in a single 
cycle when program memory is internal (two cy­
cles are required if program memory is also ex­
ternal). Additional cycles are also required in this 
case if external data memory is not sufficiently fast. 

In all memory configurations where the same bus is used to communicate with 
external data, program, or 1/0 space, the number of cycles required to execute 
a particular instruction may further vary depending on whether the next in­
struction fetch is from internal or external program memory. Instruction exe­
cution and operation of the pipeline are discussed in Section 3.6.2 and in the 
succeeding subsections. 

3.7.2 Internal Clock Timing Relationships 

3-48 

The crystal or external clock source frequency is divided to produce an internal 
four-phase clock. The four phases are defined by CLKOUT1 and CLKOUT2, 
as shown in Figure 3-21. In this document (and on the TMS320C25), the 
start of quarter-phase 3 (03) is defined as the rising edge of CLKOUT1. Refer 
to Appendix C for device phase definitions. 



Architecture - External Memory and 1/0 Interface 

Phase # 
(TMS32020) 01 02 03 04 01 02 

Phase.# 
(TMS320C25) 03 04 01 02 03 04 

CLKOUT1 J \ I \ 
CLKOUT2 

01 II : ' I __,_ ___ _,i ~ 

02 '---------.----en~-
03 

04 

Figure 3-21. Four-Phase Clock 

3.7.3 General-Purpose 1/0 Pins (BIO and XF) 

The TMS320C2x has two general-purpose pins that are software-controlled. 
The BIO pin is a branch control input pin, and the XF pin is an external flag 
output pin. 

The BIO pin is useful for monitoring peripheral device status. It is especially 
useful as an alternative to using an interrupt when it 15 necessary not to disturb 
time-critical loops. When the BIO input pin is active (low), execution of the 
BIOZ instruction causes a branch to occur. 

In Figure 3-22, BIO is sampled at the end of Q4 (Q2 on the TMS32020). The 
timing diagram shown is for a sequence of single-cycle, single-word in­
structions without branches located in external memory. Because of variations 
in pipelining due to instructions prior to and following the BIOZ instruction, 
this timing may vary. Therefore, it is recommended that several cycles of setup 
be provided if BIO is to be recognized on a particular cycle. 

3-49 



Architecture - External Memory and 1/0 Interface 

3-50 

CLKOUT1 LFLJ 

A15-AO ~~ VALID }$< VALID JC 
(BRANCH . (NEXT (NEXT INSTRUCTION) 

(BIOZ) ADDRESS) : INSTRUCTION) N+3 OR BRANCH 
fetch N N+1 N+2 .• ADDRESS •' 

BIO-VALID-

Figure 3-22. BIO Timing Diagram 

The XF (external flag) output pin is set to a high level by the SXF (set external 
flag) instruction and reset to a low level by the RXF (reset external flag) in­
struction. XF is set high by RS. 

The relationship between the time the ~XF/RXF instruction is fetched before 
the XF pin is set or reset is shown in Figure 3-23. As with BIO, the timing 
shown for XF is for a sequence of single-cycle, single-word instructions lo­
cated in external memory. Actual timing may vary with different instruction 
sequences. 



Architecture - External Memory and 1/0 Interface 

CLKOUT1 \_ ~ 

STRB ~ _ _,r:-\_~. 

A15-AO 

fetch 

XF 
(SXF) 

XF 
(RXF) 

VALID VALID 

(SXF OR RXF) 
4-~~N~~_..:4-~-N~+~1~-....-~~N_+~2~--t•4-~-N~+~3~-.. 

NOTES: 1. N is the program memory location for the current instruction. 
2. This example only shows the execution of single-cycle instructions 

fetched from external program memory. 

Figure 3-23. External Flag Timing Diagram 

3-51 



Architecture - Interrupts 

3.8 Interrupts 

The TMS320C2x has three external maskable user interrupts (INT2-INTO), 
available for external devices that interrupt the processor. Internal interrupts 
are generated by the serial port (RINT and XINT), by the timer (TINT), and 
by the software interrupt (TRAP) instruction. Interrupts are prioritized with 
reset (RS) having the highest priority and the serial port transmit interrupt 
(XINT) having the lowest priority. 

3.8.1 Interrupt Operation 

3-52 

This subsection details interrupt organization and management. Vector lo­
cations and priorities for all internal and external interrupts are shown in Table 
3-6. The TRAP instruction, used for software interrupts, is not prioritized but 
is included here since it has its own vector location. Each interrupt address 
has been spaced apart by two locations so that branch instructions can be 
accommodated in those locations if desired. 

Table 3-6. Interrupt Locations and Priorities 

INTERRUPT MEMORY 
NAME LOCATION PRIORITY FUNCTION 

RS 0 1 (highest) External reset signal 
INTO 2 2 External user interrupt #0 
INT1 4 3 External user interrupt #1 
002 6 4 External user interrupt #2 

8-23 Reserved locations 
TINT 24 5 Internal timer interrupt 
RINT 26 6 Serial port receive interrupt 
XINT 28 7 (lowest) Serial port transmit interrupt 
TRAP 30 N/A TRAP instruction address 

When an interrupt occurs, it is stored in the 6-bit Interrupt Flag Register (IFR). 
This register is set by the external user interrupts INT(2-0) and the internal 
interrupts RINT, XINT, and TINT. Each interrupt is stored in the IFR until it is 
recognized, and then automatically cleared by the IACK (interrupt acknowl­
edge) signal or the RS (reset) signal. The RS signal is not stored in the IFR. 
No instructions are provided for reading from or writing to the IFR. 

The TMS320C2x has a memory-mapped Interrupt Mask Register (IMR) for 
masking external and internal interrupts. The layout of the register is shown 
in Figure 3-24. A 1 in bit positions 5 through 0 of the IMR enables the cor­
responding interrupt, provided that INTM = 0. The IMR is accessible with 
both read and write operations but cannot be read using BLKD. When the 
IMR is read, the unused bits (15 through 6) are read as one's. The lower six 
bits are used to write to or read from the IM R. Note that RS is not included 
in the IM R. and therefore the IM R has no effect on reset. · 



Architecture - Interrupts 

15 14 13 12 11 10 9 876 5 4 3 2 1 0 

I RESERVED 

Figure 3-24. Interrupt Mask Register (IMR) 

The INTM (interrupt mode) bit, which is bit 9 of status register STO, enables 
or disables all maskable interrupts. INTM = 0 enables all the unmasked in­
terrupts, and I NTM = 1 disables these interrupts. The I NTM is set to 1 by the 
IACK (interrupt acknowledge) signal, the DINT instruction, or a reset. This bit 
is reset to 0 by the EINT instruction. Note that the INTM does not actually 
modify the IMR or IFR. 

The TMS320C2x has a built-in mechanism for protecting multicycle in­
structions from interrupts. If an interrupt occurs during a multicycle instruc­
tion, the interrupt is not processed until the instruction is completed. This 
mechanism also applies to instructions that become multicycle due to the 
READY signal. 

In addition, the device does not allow interrupts to be processed when an in­
struction is being repeated via the RPT or RPTK instructions. The interrupt is 
stored in the IFR until the repeat counter (RPTC) decrements to zero, and then 
the interrupt is processed. Even if the interrupt is de-asserted while the 
TMS320C2x is processing the RPT or RPTK, the interrupt will still be latched 
by IFR and pending until RPTC decrements to zero. 

If both the HOLD line and an interrupt go active during a multicycle instruction 
or a repeat loop, the HOLD takes control of the processor at the end of the in­
struction or loop. When HOLD is released, the interrupt is acknowledged. 

Interrupts cannot be processed between El NT and the next instruction in a 
program sequence. For example, if an interrupt occurs during an EINT in­
struction execution, the device always completes EINT as well as the following 
instruction before the pending interrupt is processed. This insures that a RET 
can be executed before the next interrupt is processed, assuming that a RET 
instruction follows the EINT. The state of the machine, upon receiving an in­
terrupt, may be saved and restored (see Section 5.3.1 ). 

3.8.2 External Interrupt Interface 

Interrupts may be asynchronously edge- or level-triggered. In the functional 
logic organization for INT(2-0), shown in Figure 3-25, the external interrupt 
INTO is connected to an edge-triggered flip-flop. The INTO signal is ORed with 
the interrupt edge flip-flop 0 output and synchronized with internal quarter­
phases 1 and 2 to produce an interrupt signal (see Appendix B for phase re­
lationships on the TMS32020). In this way, the device can handle both 
edge-triggered and level-triggered interrupts. 

Due to the level sensitivity of the external interrupts and the synchronization 
of the interrupts (first on 02, then on 01 of the following machine cycle), it 
is necessary to bring the INT line inactive high at least two cycles before ena­
bling interrupts (EINT). If this criteria is not met the TMS320C25 will imme­
diately take the interrupt trap following the EINT plus the next instruction. 

3-53 



Architecture - Interrupts 

IACK 

RS 

INT (0, 1, OR 2) 

3-54 

If the INTM bit and flag register have been properly enabled, the interrupt 
signal is accepted by the processor. An IACK (interrupt acknowledge) signal 
is then generated. The IACK clears the appropriate interrupt edge flip-flop and 
disables the INTM latch. The logic is the same for INT1 and INT2. 

r-------------------------~ 

I 
IACK 

I 
DINT 

FROM 
I a D DATA 

I BUS 
INTERRUPT 

I MASK 
1+5 V REGISTER INTERRUPT 

MODE 
I 
I 
I 
I 
I 

CLR 

D a 
INTERRUPT 

EDGE 
FF 

SYNC 
FF 

CLK 

a D a 
INTERRUPT 

FLAG 
REGISTER 

CLK 

(INTM) 

IACK 

PRIORITY 
DECODE 

Figure 3-25. Internal Interrupt Logic Diagram 

FROM 
INTERNAL 

INTERRUPTS 

IDLE 
EINT 

TO 
PC 

MACHINE 
STATE 

In a typical interrupt (INT2-INT0) operation, the interrupt is generated by a 
negative-going edge and the IFR bit is set. Since INTM is disabled when the 
interrupt is acknowledged, the level may continue to be present on the INT 
input without generating further interrupts. If the level is removed before an 
EINT instruction is executed, no further interrupts are generated. If a low level 
continues to be present after the EINT, another interrupt is generated after the 
EINT/next instruction sequence. In addition, if the INT pin is pulsed between 
the previous IACK and EINT, another interrupt is generated after EINT/RET, 
because the corresponding IFR bit is again set. 

Figure 3-26 shows an interrupt, interrupt acknowledge, and various other 
signals for the special case of single-cycle instructions. An interrupt generated 
during the current (N) fetch cycle still allows the fetch and execution of that 
instruction. The N+1 and N+2 instructions are also fetched, then discarded, 
and the address N + 1 is pushed onto the top of the stack. The instruction is 
fetched again upon a return command from the interrupt routine. 



Architecture - Interrupts 

CLKOUT1 

CLKOUT2 

INT2-INTO 

A15-AO 

fetch 

execute 

IACK 

Two dummy execute cycles occur on an interrupt, as shown in the timing di­
agram for the TMS320C25 (Figure 3-26). The IACK signal is asserted low 
during CLKOUT1 low when the device initiates a fetch from interrupt location 
I. Therefore, an extemal device can determine the interrupt that occurred by 
latching the address bus value present on A4-A1 with the rising edge of 
CLKOUT2 when IACK is low. 

)( N x N+1 x N+2 x x 1+1 x 1+2 K 
N ;. N+1 

~:4 N+2 ~4 ~4 1+1 
..;4 

1+2 ..; 

:4 
N-2 ~·4 N-1 

.. 4 .. 

NOTES: 1. N is the program memory location for the current instruction. 
2. I is the interrupt vector location in program memory for the active interrupt. 
3. For simplicity, this example only shows the execution of single-cycle instructions 

fetched from external program memory, rather than multicycle instructions. 

Figure 3-26. Interrupt Timing Diagram (TMS320C25) 

3-55 



Architecture - Serial Port 

3.9 Serial Port 

3-56 

A full-duplex on-chip serial port provides direct communication with serial 
devices such as codecs, serial A/0 converters, and other serial systems. The 
interface signals are compatible with codecs and many other serial devices 
with a minimum of external hardware. The serial port may also be used for 
intercommunication between processors in multiprocessing applications. 

Both receive and transmit operations are double-buffered on the TMS320C25, 
·thus allowing a continuous bit stream even if FSX is an output. The use of the 
frame sync mode (FSM) bit provides continuous operation that once initiated 
requires no further frame synchronization pulses. No minimum CLKR/CLKX 
frequency (fmin = 0 Hz) is required for serial port operation. 

The bits, pins, and registers that control serial port operation are listed in Table 
3-7. Availability of a function on a particular device is also indicated. 

Table 3-7. Serial Port Bits, Pins, and Registers 

SERIAL PORT BITS/PINS/REGISTERS TMS32020 TMS320C25 

FO Format bit Yes Yes 
TXM Transmit mode bit Yes Yes 
FSM Frame synchronization mode bit No Yes 

CLKX Transmit clock signal Yes Yes 
CLKR Receive clock signal Yes Yes 
DX Transmitted serial data signal Yes Yes 
DR Received serial data signal Yes Yes 
FSX Transmit framing synchronization signal Yes Yes 
FSR Receive framing synchronization signal Yes Yes 

DXR Data transmit register Yes Yes 
ORR Data receive register Yes Yes 
XSR Transmit shift register No Yes 
RSR Receive shift register No Yes 

The serial port uses two memory-mapped registers: the data transmit register 
( OXR) that holds the data to be transmitted by the serial port, and the data 
receive register (ORR) that holds the received data (see Figure 3-27). Both 
registers operate in either the 8-bit byte mode or 16-bit word mode, and may 
be accessed in the same manner as any other data memory location. Each 
register has an external clock, a framing synchronization pulse, and associated 
shift registers. Any instruction accessing data memory can be used to read 
from or write to these registers; however, the BLKO (block move from data 
memory to data memory) instruction cannot be used to read these registers. 
The OXR and ORR registers are mapped into locations 0 and 1 in the data 
address space. The XSR and RSR registers are not directly accessible through 
software. 



Architecture - Serial Port 

ADDRESS 
MSB LSB 

>0000 DRR 

>0001 DXR 

Figure 3-27. The ORR and DXR Registers 

If the serial port is not being used, the DXR and DRR registers can be used 
as general-purpose registers. In this case, the CLKR or FSR should be con­
nected to a logic low to prevent a possible receive operation from being initi­
ated. 

Three bits in status register ST1 are used to control the serial port operation: 
FO, TXM, and FSM. The FO (format) bit defines whether data to be trans­
mitted and received is an 8-bit byte or a 16-bit word. If FO = 0, the data is 
formatted in 16-bit words. If FO = 1, the data is formatted in 8-bit bytes. In 
the 8-bit mode, only the eight least-significant bits are used for 
transmit/receive operations. The FO bit is loaded by the FORT (format serial 
port registers) instruction. On reset, FO is set to 0. 

The TXM (transmit mode) bit is used to determine if the frame synchronization 
pulse for the transmit operation is generated externally or internally. If TXM 
= 1, the FSX pin becomes an output pin, and a framing pulse is produced on 
the FSX pin every time the DXR register is loaded. This framing pulse is syn­
chronized with the rising edge of CLKX. If TXM = 0, the FSX pin becomes 
an input pin. The TMS320C2x then waits for an external synchronization 
pulse before beginning transmission. On a reset, TXM is set to zero, config­
uring FSX to be an input. The TXM bit can be loaded by the LST1, STXM, 
or RTXM instructions. If DXR on the TMS32020 is loaded before the previous 
word is completely sent, the serial port immediately begins transmitting the 
new word. The bits of the previous word that have not been sent are lost. If 
TXM = 1 on the TMS32020, a new FSX pulse is generated. If TXM = 0, the 
serial port immediately begins transmitting the new word without waiting for 
a new external FSX pulse. 

The FSM (frame synchronization mode) status register bit is used to select 
whether frame sync pulses are required for each serial port transfer. If FSM = 
1, frame sync pulses are required; if FSM = 0, they are not required. FSM is 
set by the SFSM (set frame synchronization mode) instruction and cleared by 
the RFSM (reset frame synchronization mode) instruction. When FSM = 1 
and frame sync pulses are required, an FSX pulse will cause the XSR to be 
loaded with data from the DXR, and transmission will begin. If an FSX is pre­
sented prior to the last bit of the current transmission, the XSR will be reloaded 
from the DXR, thus aborting the current transmission and immediately begin­
ning a new one. 

The frame sync mode is useful in communicating to 'PCM highways.' For ATT 
T1 and CCITT G711 /712 lines, the processor can communicate directly in 
these formats by counting the transmitted/received bytes in software and 
performing SFSM/RFSM instructions as needed to set/reset the FSM bit. 

3-57 



Architecture - Serial Port 

3.9.1 Transmit and Receive Operations 

CARR 

RINT 

DR 

3-58 

The transmit and receive sections of the serial port are implemented separately 
to allow independent transmit and receive operations. Externally, the serial 
port interface is implemented using the six serial port pins. Figure 3-28 shows 
the registers and pins used in transmit and receive operations. Note that on the 
TMS32020, the DXR and XSR are combined as a single register, as well as the 
DRR and RSR. 

16 16 

ORR (16) LOAD) 
DXR (16) 

(LOAD) 

16 LOAD 
CONTROL 

16 

LOGIC 

RSR (16) XSR (16) 

FSR FSX 

CLKR CLKX 

Figure 3-28. Serial Port Block Diagram 

XINT 

DX 

The data on the DX and DR pins is clocked out of or into the XSR or RSR on 
the TMS320C25 by the CLKX or CLKR signal, respectively. On the 
TMS32020, the data on the pins is clocked directly out of the DXR or into the 
DRR. CLKX and CLKR are only required to be present during actual serial port 
transfers, and may be stopped when no data is being transferred. Data bits 
can be transferred in either 8-bit bytes or 16-bit words. Data is clocked out to 
DXR on the rising edges of CLKX, while data is clocked in from DRR on the 
falling edges of CLKR. The MSB of the data is transferred first. 

The XSR and RSR are connected to the DXR and DRR, respectively. For 
transmit operations, the contents of DXR are transferred to XSR when a new 
transmission begins. For a receive operation, the contents of RSR are trans­
ferred to DRR when all of the bits have been received. Thus, the serial port is 
double-buffered since data may be transferred to or from the DXR or DRR 
while another transmit or receive operation is being performed. 



Architecture - Serial Port 

Serial port transfers on the TMS320C25 are generally initiated by a frame sync 
pulse. The exception to this is when the continuous mode of operation is used 
with FSM = 0, as described in a subsequent paragraph. Frame sync pulses are 
input on FSX for transmit operations and on FSR for receive operations. 

The transmit timing diagram is shown in Figure 3-29. The transmit operation 
begins when data is written into the data transmit register (DXR). The 
TMS320C2x begins transmitting data when the frame synchronization pulse 
(FSX) goes low while CLKX is high or going high. The data, starting with the 
MSB, is then shifted out via the DX pin with the rising edge of CLKX. When 
all bits have been transmitted, an internal transmit interrupt (XINT) is gener­
ated on the falling edge of CLKX. When the serial port is not transmitting, 
DX is placed in the high-impedance state. 

DX and FSX are unaffected by assertion of the HOLD input. Upon assertion 
of HOLD, any serial port transmission in progress on the DX pin is completed 
before DX is placed in the high-impedance state. FSX remains configured as 
either an input or output. remaining low if it is an output. 

CLKX~ 

FSX 
(TXM=1) 
~
:::· 

. . 

DX~ 
~--~r 

__ __,_ __ ~: 8 OR 16 BITS+·--~--

XINT -~!\~= --
Figure 3-29. Serial Port Transmit Timing Diagram 

The receive operation is similar to the transmit operation. The receive timing 
diagram is shown in Figure 3-30. Reception is initiated by a frame synchro­
nization pulse on the FSR pin. After FSR goes low, data on the DR pin is 
clocked into the RSR register on the TMS320C25 (ORR register on the 
TMS32020) on every negative-going edge of CLKR. The first data bit is 
considered the MSB, and RSR is filled accordingly. After all the bits have 
been received, (as specified by FO), an internal receive interrupt (RINT) is 
generated on the falling edge of CLKR and the contents of RSR are transferred 
to ORR. If ORR is read before an RINT is received, the bits that have not been 
clocked in yet at the time of the read will contain the data from a previous 
transfer. To prevent a possible overrun of the ORR register, the ORR must be 
read before the next FSR. 

3-69 



Architecture - Serial Port 

CLKR 

FSR 

DR 

8 OR 16 BITS-~-~-

RINT 

Figure 3-30. Serial Port Receive Timing Diagram 

3.9.2 Timing and Framing Control 

3-60 

Upon completion of a serial port transfer, an internal interrupt is generated. 
The RI NT interrupt is generated for a receive operation, and XI NT is generated 
for a transmit operation. RINT and XINT are generated on the rising edge of 
CLKR and CLKX, respectively, after the last bit is transferred. Note that if DRR 
is read before a RINT is received, it will contain the data from the previous 
operation. Similarly, if DXR is loaded more than once after an XINT is gener­
ated (in the continuous transmission mode), only the last value written will 
be loaded into XSR for the next transmit operation. 

When the TMS320C2x is reset, TXM is cleared to zero, and DX is placed in a 
high-impedance state. Any transmit or receive operation that is in progress 
when the reset occurs is terminated. 

The transmit framing synchronization pulse can be generated internally or ex­
ternally. The maximum speed of the serial port is 5 MHz. The timing of the 
serial port signals is compatible with the Tl/Intel 29C1 x series codecs. The 
timing is also compatible with the AMI 83506 series codecs if the frame syn­
chronization signals are inverted. 

Serial port transfers on the TMS320C25 are generally initiated by a frame sync 
pulse, except when the continuous mode of operation is used with FSM = 0. 
Frame sync pulses are input on FSX for transmit operations and on FSR for 
receive operations. If FSM = 1, frame sync pulses are required; if FSM = 0, 
they are not required. FSM is set by the SFSM (set frame synchronization 
mode) instruction and cleared by the RFSM (reset frame synchronization 
mode) instruction. 



Architecture - Serial Port 

3.9.3 Burst-Mode Operation 

CLKX 

In burst-mode serial port operation, transfers are separated in time by periods 
of no serial port activity (the serial port does not operate continuously). For 
burst-mode operation, FSM must be set to one. Timing of the serial port in 
this mode of operation is shown in Figure 3-31 and Figure 3-32. 

crx~~fi _J\ __ '-----....:----~----..:...---___,H'----'--
DX 

(F0=1) 

XINT 

CLKR 

FSR 

DR 
(F0=1) 

RINT 

o!R i 
LOADED I 

XSR 
LOADED 

(DURING CLKX LOW) 

i r DXR 
RELOADED 

XSR 
RELOADED 

Figure 3-31. Burst-Mode Serial Port Transmit Operation 

i 
DRR 

LOADED 
FROM RSR 

Figure 3-32. Burst-Mode Serial Port Receive Operation 

When TXM = 1 (in the transmit operation) and the serial port register DXR is 
loaded, a framing pulse is generated on the next rising edge of CLKX. XSR is 
loaded with the current contents of DXR while FSX is high and CLKX is low. 
Transmission begins when FSX goes low while CLKX is high or is going high. 

3-61 



Architecture - Serial Port 

Figure 3-31 shows the timing for the byte mode (FO = 1 ). XINT is generated 
on the rising edge of CLKX after all 8 or 16 bits have been transmitted and 
DX is placed in the high-impedance state. If DXR is reloaded before the next 
rising edge of CLKX after XINT, FSX will again be generated as shown, and 
XSR will be reloaded. 

The receive operation is similar to the transmit operation. The contents of RSR 
are loaded into DRR while CLKR is low, just after reception of the last bit sent 
by.the transmitting device (see Figure 3-32). RINT is generated on the next 
rising edge of CLKR, and DRR may be read at any time before the reception 
of the final bit of the next transmission. When operating in the byte mode, the 
eight MSBs of the DRR are the contents of the eight LSBs of the DRR prior 
to reception of the current byte, as shown in Figure 3-33 for the TMS320C25. 
On the TMS32020, the most-significant byte is unaffected by successive 8-bit 
receive operations. 

Initial 
Conditions 

After 1st Receive 
(Byte 'A') 

After 2nd Receive 
(Byte 'B') 

Etc. 

MSB LSB 

x y I 
y A I 
A B I 

Figure 3-33. Byte-Mode ORR Operation (TMS320C25) 

3.9.4 Continuous Operation Using Frame Sync Pulses (TMS320C25) 

3-62 

The TMS320C25 provides two modes of operation that allow the use of a 
continuous stream of serial data. When FSM = 1, frame sync pulses are re­
quired. Since DXR is double-buffered, continuous operation is achieved even 
if TXM = 1. Writing to DXR during a serial port transmission does not abort 
the transmission in progress, but instead DXR stores that data until XSR can 
be reloaded. As long as DXR is reloaded before the CLKX rising edge on the 
final bit being transmitted, the FSX pulse will go high on the rising edge of 
CLKX during the transmission of the final bit and fall on the next rising edge 
when transmission of the word just loaded begins. If DXR is not reloaded 
within this period and FSM = 1, the DX pin will be placed in a high-impe-

. dance state for at least one CLKX cycle until DXR is reloaded (as described in 
the previous section). Figure 3-34 and Figure 3-35 show the timing diagrams 
for the continuous operation with frame sync pulses. 



Architecture - Serial Port 

FSX 
(TXM=1) 

DX 
(F0=1) - . :~ 

MSB: . : LSB . . : 

XINT _· __ _IL_ ___ _.,..._ ___ -;----~: 

DJR 1 LOADED 
WITH B 

XSR 
LOADED 

i 
DXR 

LOADED 
WITH C 1 

XSR 
LOADED 

Figure 3-34. Serial Port Transmit Continuous Operation (FSM = 1) 

CLKR 

FSR 

DR 
(F0=1) 

RINT 

. . 
: :~: 

-'-~ : \___;_ __ ,___~---'---;----r-----'-' 

i 
READ 
DRR 

DRR 
LOADED 

FROM RSR 

DRR 
LOADED 

FROM RSR 

Figure 3-35. Serial Port Receive Continuous Operation ( FSM = 1) 

Continuous receive operation with FSM = 1 is identical to that of burst-mode 
operation with the exception that FSR is pulsed during reception of the final 
bit. 

3-63 



Architecture - Serial Port 

3.9.5 Continuous Operation Without Frame Sync Pulses (TMS320C25) 

3-64 

The continuous mode of operation on the TMS320C25 allows transmission 
and reception of a continuous bit stream without requiring frame sync pulses 
every 8 or 16 bits. This mode is selected by setting FSM = 0. 

Figure 3-36 and Figure 3-37 show operation of the serial port for both states 
of FSM to illustrate differences in operation for each case. FSM is initially set 
to one, and frame sync pulses are required to initiate serial transfers. Before the 
completion of the transmission (i.e., before the next serial port interrupt}, the 
FSM but must be reset to zero by means of an RFSM (reset FSM) instruction. 
RFSM can occur either before or after the write to DXR or read from ORR. 
From this point on, the FSX and FSA inputs are ignored, with transmission 
occurring every CLKX cycle and reception occurring every CLKR cycle as long 
as those clocks are present. 

If FSX is configured as an output, it will remain low until FSM is set back to 
one and DXR is reloaded. If DXR is not reloaded with new data every XINT 
(every 8 or 16 CLKX cycles depending on FO), the last value loaded will be 
transmitted on DX continuously. Note that this is different from the case with 
FSM = 1 where DX is placed into a high-impedance state if DXR is not re­
loaded before transmission of the last bit of the current word in XSR. For ex­
ample, if byte C is not loaded into DXR as indicated in Figure 3-36, bits. of 
byte B (B1 -BS) will be retransmitted instead of bits of byte C as shown. 

For receive operations, DAR is loaded from RSA (and an RINT is generated) 
every 8 or 16 CLKR cycles (depending on FO), regardless of whether or not 
ORR has been read. An overrun of DAR is also possible with FSM = 1 if ORR 
is not read before the next RINT. The only way to stop continuous trans­
mission or reception once started, when FSM = 0, is to either stop CLKX or 
CLKR or to perform an SFSM (set FSM) instruction. 

Continuous transmission without frame sync pulses is very useful in commu­
nicating directly to telephone system PCM highways. For ATT T1 and CCITT 
G711 /712 lines, FSX and FSA pulses are generated only every 24 or 32 bytes. 
By counting the transmitted and received bytes in software after an initial FSX 
or FSA. and performing SFSM and RFSM instructions as required, the 
TMS320C25 can easily be made to communicate in these formats. 



Architecture - Serial Port 

CLKX 

FSX 
(TXM=1) 

FSX 
(TXM=O) 

DX 
(F0=1) 

XINT 

i 
DXR 

LOADED 
WITH B r 

XSR 
LOADED 

i r DXR 
LOADED 
WITH C 

RFSM 

Figure 3-36. Serial Port Transmit Continuous Operation (FSM = 0) 

CLKR 

FSR 

DR 
(F0=1) 

RINT 

i 
READ 
DRR 

n 

r 
DRR 

LOADED 
FROM RSR 

h 
Rl r i 

ORR 
DRR LOADED 

FROM RSR 
RFSM 

Figure 3-37. Serial Port Receive Continuous Operation (FSM = 0) 

3-65 



Architecture - Serial Port 

3.9.6 Initialization of Continuous Operation Without Frame Sync Pulses 
(TM S320C25) 

3-66 

FSM is normally initialized during an XINT or RINT service routine to enable 
or disable FSX and FSR, respectively, for the next serial port operation. It is 
necessary to start this mode with FSM = 1 so that the first data transferred 
out of the serial port is the data written to the DXR register. Otherwise, the 
serial port starts transmitting the contents of the shift register before loading 
it with the value stored in the DXR register. Upon each completion of a data 
packet transmission, it loads the data contained in the. DXR register into the 
shift register and continues transmitting. After the first frame pulse has been 
generated by or sent to the TMS320C25, the FSM bit must be reset to 0 using 
the RFSM instruction. This must be done before the next serial port interrupt 
to assure continuous transmission. If continuous transmission is stopped via 
software, this initiation sequence must be repeated to restart the continuous 
mode operation. 

As shown in Figure 3-38 and Figure 3-39, RFSM may occur before a write to 
DXR, regardless of the state of TXM. If TXM = 1, FSX is generated in a normal 
manner on the next rising edge of CLKX, but only once. If TXM = 0, the 
TMS320C25 waits to transmit until FSX is pulsed, but from then on, the FSX 
input is ignored. Note that just as in the case of continuous-mode operation 
without sync pulses described in Section 3.9.5, the first data written to DXR 
(byte A) is output twice unless DXR is reloaded before the second trans­
mission is started. It is important to consider this dummy cycle when using 
continuous-mode serial operation. 

The receive timings are the same as those for the transmit operations with 
TXM = 0. The TMS320C25 waits to receive data until FSR is pulsed, but 
thereafter the FSR input is ignored. No dummy cycle is associated with the 

·receive operation due to the post-buffering nature of DRR as opposed to the 
prebuffering nature of DXR. 



Architecture - Serial Port 

CLKX 

FSX 
(TXM=1) 

FSX 
(TXM=O) 

DX 
(F0=1) 

XINT 

CLKR 

FSR 

DR 
(F0=1) 

RINT 

RFtM i. x!R 

I LOADED 

DXR 
LOADED 
WITH A 

r 
XSR 

RELOADED 

Figure 3-38. Continuous Transmit Operation Initialization 

i 
RFSM 

i 
DRR 

LOADED 
FROM RSR 

Figure 3-39. Continuous Receive Operation Initialization 

3-67 



Architecture - Multiprocessing and OMA 

3.10 Multiprocessing and Direct Memory Access (OMA) 

The flexibility of the TMS320C2x allows configurations to satisfy a wide range 
of system requirements. Some of the system configurations using the 
TMS320C2x are as follows: 

• A standalone system (single processor), 

• A multiprocessor with devices in parallel, 

• A host/slave multiprocessor with shared global data memory space, or 

• A peripheral processor interfaced using processor-controlled signals to 
another device. 

These system configurations are made possible by three specialized features 
of the TMS320C2x: the synchronization function utilizing the SYNC input, the 
global memory interface, and the hold function implemented with the HOLD 
and HOLDA pins. The following sections describe these functions in detail. 

3.10.1 Synchronization 

3-68 

In a multiprocessor environment, the SYNC input can be used to greatly ease 
interface between processors. This input is used to cause each TMS320C2x 
in the system to synchronize their internal clocks, thereby allowing the pro­
cessors to run in lock-step operation. 

Multiple TMS320C2x devices are synchronized by using common SYNC and 
external clock inputs. A negative transition on SYNC sets each processor to 
internal quarter-phase one (01 ). This transition must occur synchronously 
with the rising edge of CLKIN. On the TMS320C25, there is a two CLKIN 
cycle delay following the cycle in which SYNC goes low, before the synchro­
nized 01 occurs. On the TMS32020, there is no delay. 

The timing diagrams for the SYNC input are shown in Figure 3-40 and Figure 
3-41 for the TMS32020 and TMS320C25, respectively. Note that the internal 
clock timing relationships are different in the TMS32020 and TMS320C25 
(see Appendix C and Section 3.7.2). 

CLKIN 

SYNC 

CLKOUT1 

CLKOUT2 

Figure 3-40. Synchronization Timing Diagram (TMS32020) 



Architecture - Multiprocessing and OMA 

CLKIN 

SYNC 

CLKOUT1 

CLKOUT2 

Figure 3-41. Synchronization Timing Diagram (TMS320C25) 

Normally, SYNC is applied while RS is active. If SYNC is asserted after a reset, 
the following can occur: 

1) The processor machine cycle is reset to 01, provided that the timing re­
quirements for SYNC are met. If SYNC is asserted at the beginning of 01, 
03, or 04, the current instruction is improperly executed. If SYNC is as­
serted at the beginning of 02, the current instruction is executed prop­
erly. 

2) If SYNC does not meet the timing requirements, unpredictable processor 
operation occurs. A reset should then be executed to place the processor 
back in a known state. 

3.10.2 Global Memory 

For multiprocessing applications, the TMS320C2x has the capability of allo­
cating global data memory space and communicating with that space via the 
Bfl. (bus request) and READY control signals. 

Global memory is memory shared by more than one processor; therefore, ac­
cess to it must be arbitrated. When using global memory, the processor's ad­
dress space is divided into local and global sections. The local section is used 
by the processor to perform its individual function, and the global section is 
used to communicate with other processors. 

A memor_y-mapped global memory allocation register (GREG) specifies part 
of the TMS320C2x's data memory as global external memory. GREG, which 
is memory-mapped at data memory address location 5, is an eight-bit register 
connected to the eight LSBs of the internal D bus. The upper eight bits of lo­
cation 5 are nonexistent and read as one's. 

The contents of GREG determine the size of the global memory space. The 
legal values of GREG and corresponding global memory spaces are shown in 
Table 3-8. Note that values other than those listed in the table lead to frag­
mented memory maps. 

3-69 



Architecture - Multiprocessing and OMA 

3-70 

Table 3-8. Global Data Memory Configurations 

LOCAL MEMORY GLOBAL MEMORY 
GREG VALUE RANGE #WORDS RANGE #WORDS 

ooooooxx >O - >FFFF 65,536 ------------- 0 
10000000 >O - >7FFF 32,768 >8000 - >FFFF 32,768 
11000000 >O - >BFFF 49,152 >COOO - >FFFF 16,384 
11100000 >0->DFFF 57,344 >EOOO - >FFFF 8,192 
11110000 >0->EFFF 61,440 >FOOO - >FFFF 4,096 
11111000 >O - >F7FF 63,488 >F800 - >FFFF 2,048 
11111100 >O - >FBFF 64,512 > FCOO - > FFFF 1,024 
11111110 >O - >FDFF 65,024 >FEOO - >FFFF 512 
11111111 >O - >FEFF 65,280 >FFOO - >FFFF 256 

When a data memory address, either direct or indirect, corresponds to a global 
data memory address (as defined by GREG), BR is asserted low with DS to 
indicate that the processor wishes to make a global memory access. External 
logic then arbitrates for control of the global memory, asserting READY when 
the TMS320C2x has control. The length of the memory cycle is controlled by 
the READY line. One wait-state timing is shown in Figure 3-42. Note that all 
signals not shown have the same timing as in the normal read or write case. 

\~-~! 

~~~~~~~~-V_A_L_ID~~~~~~~~~~~ 

~~~-"-~~~~ll!T 

~~~~~~~~-V_A_L_ID~~~~~~~~~~~ 

~

Figure 3-42. Global Memory Access Timing

Architecture - Multiprocessing and OMA

3.10.3 The Hold Function

The TMS320C2x supports Direct Memory Access (OMA) to its local (off­
chip) program, data, and 1/0 spaces. Two signals, HOLD and HOLDA, are
provided to allow another device to take control of the processor's buses.
Upon receiving a HOLD signal from an external device, the processor ac­
knowledges by bringing HOLDA low. The processor then places its address
and data buses as well as all control signals (PS, DS, TS, R/W, and STRB) in the
high-impedance state. The serial port output pins, DX and FSX, are not af­
fected by HOLD. Signaling between the external processor and the
TMS320C2x can be performed using interrupts.

The timing for the HOLD and HOLDA signals is shown in Figure 3-43. HOLD
has the same setup time as READY and is sampled at the beginning of quar­
ter-phase 3 (see Appendix C for phase relationships on the TMS32020). If
the setup time is met, it takes three machine cycles before the buses and
control signals go to the high-impedance state. Note that unlike the external
interrupts INT(2-0), HOLD is not a latched input. The external device must keep
HOLD low until it receives a HOLDA from the TMS320C2x.

If the TMS320C2x is in the middle of a multicycle instruction, it will finish the
instruction before entering the hold state. After the instruction is completed,
the buses are placed in the high-impedance state. This also applies to in­
structions that become multicycle due to insertion of wait states or to the use
of RPT/RPTK instructions.

After HOLD is de-asserted, program execution resumes from the same point at
which it was halted. HOLDA is removed synchronously with HOLD, as shown
in Figure 3-43. If the setup time is met, two machine cycles are required be­
fore the buses and control signals become valid.

HOLD is not treated as an interrupt. If the TMS320C2x was executing the IDLE
instruction before entering the hold state, it resumes executing IDLE once it
leaves the hold state.

The hold function on the TMS320C25 has two distinct operating modes:

• A TMS32020-like mode, in which execution is suspended during as­
sertion of HOLD, and

• A TMS320C25 concurrent DMA mode, in which the TMS320C25 con­
tinues to execute its proqram while operating from internal RAM or
ROM, thus greatly increasing throughput in data-intensive applications.

The operating mode is selected by the HM (hold mode) status register bit on
the TMS320C25. The HOLD signal is pulled low, as shown in the first part of
Figure 3-43. When HM = 1, the TMS320C25 halts program execution and
enters the hold state directly. When HM = 0, the processor enters the hold
state directly, as shown in Figure 3-43, if program execution is from external
memory or if external data memory is being accessed. If program e~ecution is
from internal memory, however, and if no external data memory accesses are
required, the processor enters the hold state externally, but program execution
continues internally. This allows more efficient system operation since a pro­
gram may continue executi •. y while an external DMA operation is being per­
formed.

3-71

Architecture - Multiprocessing and OMA

3-72

Program execution ceases until HOLD is removed if the processor is in a hold
state with HM = 0 and an internally executing program requires an external
access, or if the program branches to an external address. Also, if a repeat
instruction that requires the use of the external bus is executing with HM = 0
and a hold occurs, the hold state is entered after the current bus cycle. If this
situation occurs with HM = 1, the hold state will not be entered until the re­
peat count is completed. HM is set and reset by the SHM (set hold mode}
and RHM (reset hold mode) instructions, respectively.

All interrupts are disabled while HOLD is active with HM = 1. If an interrupt
is received during this period, the interrupt is latched and remains pending.
HOLD itself does not affect any interrupt flags or registers. If HM = 0, inter­
rupts function normally.

CLKOUT1

STRB

HOLD

A15-AO J __ N_~X~ __ N+_1_~X~ __ N+_2_~>}-: ---~~

P~R~~· ~~=x __ v_AL_ID_~'f. __, __ _

R/W

015-00 @ -®
fetch :• N .:.----~-.:

execute
N-2 +:+--- N-1 : ··--___.,. N .;.

--.-----.-------·--;-----

NOTES: 1. N is the program memory location for the current instruction.
2. This example only shows the execution of single-cycle instructions

fetched from external program memory.

Figure 3-43. TMS320C25 Hold Timing Diagram

Architecture - Multiprocessing and OMA

CLKOUT1

STRB

HOLD

A15-AO < N+2 x N+2 x N+3 x N+4 x
PS, D...Q, j ~ VALID x VALID x VALID x: ORIS :

R/W

D15-DO ® ® ~
fetch ;4 N+2 .:4 N+3 .:4 N+4 .:

execute N+1 . 4 DUMMY
M

N+2 ..
HOLDA

Figure 3-43. TMS320C25 Hold Timing Diagram (Concluded)

3-73

4. Assembly Language Instructions

The TMS320C2x instruction set supports numeric-intensive signal processing
operations as well as general-purpose applications, such as multiprocessing
and high-speed control. TMS320C1 x source code is upward-compatible with
TMS320C2x source code. TMS32020 object code is upward-compatible with
TMS320C25 object code.

This section describes the assembly language instruotions for the TMS320C2x
niicroprocessor. Included in this section are the following major topics:

• Memory Addressing Modes (Section 4.1 on page 4-2)
Direct addressing
Indirect addressing (using eight auxiliary registers)
Immediate addressing

• Instruction Set (Section 4.2 on page 4-10)
Symbols ar;id abbreviations used in the instructions
Instruction set summary (listed according to function)

• Individual Instruction Descriptions (Section 4.3 on page 4-17)
Presented in alphabetical order and providing the following:

- Assembler syntax
- Operands
- Execution
- Encoding
- Description
- Words
- Cycles
- Repeatability
- Example(s)

4-1

Assembly Language Instructions

4.1 Memory Addressing Modes

The TMS320C2x instruction set provides three memory addressing modes:

• Direct addressing mode
• Indirect addressing mode
• Immediate addressing mode

Both direct and indirect addressing can be used to access data memory. Direct
addressing concatenates seven bits of the instruction word with the nine bits
of the data memory page pointer to form the 16-bit data memory address.
Indirect addressing accesses data memory through the auxiliary registers. In
immediate addressing, the data is based on a portion of the instruction
word(s). The following sections describe each addressing mode and give the
opcode formats and some examples for each mode.

4.1.1 Direct Addressing Mode

4-2

In the direct memory addressing mode, the instruction word contains the
lower seven bits of the data memory address (dma). This field is concatenated
with the nine bits of the data memory page pointer (DP) register to form the
full 16-bit data memory address. Thus, the DP register points to one of 512
possible 128-word data memory pages, and the 7-bit address in the instruc­
tion points to the specific location within that data memory page. The DP
register is loaded through the LOP (load data memory page pointer), LDPK
(load data memory page pointer immediate), or LST (load status register STO)
instructions.

Note:

The data page pointer is not initialized by reset and is therefore undefined
after powerup. The TMS320C2x development tools, however, utilize de­
fault values for many parameters, including the data page pointer. Because
of this, programs that do not explicitly initialize the data page pointer may
execute improperly, depending on whether they are executed on a
TMS320C2x device or using a development tool. Thus, it is critical that
all programs initialize the data page pointer in software.

Assembly Language Instructions

Figure 4-1 illustrates how the 16-bit data address is formed.

7 LSBS FROM
INSTRUCTION .
REGISTER (IR)

16-BIT DATA ADDRESS

Figure 4-1. Direct Addressing Block Diagram

Direct addressing can be used with all instructions except CALL, the branch
instructions, immediate operand instructions, and instructions with no oper­
ands. The direct addressing format is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Opcode I, 0 dma I
Bits 15 through 8 contain the opcode. Bit 7 = 0 defines the addressing mode
as direct and bits 6 through 0 contain the data memory address (dma).

Example of Direct Addressing Format:

ADD 9,5 Add to accumulator the contents of data memory location
9 left-shifted 5 bits.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

lo o o o o o lolo 0 0 0 0

The opcode of the ADD 9,5 instruction is >05 and appears in bits 15 through
8. The notation >nn indicates nn is a hexadecimal number. The shift count
of >5 appears in bits 11 through 8 of the opcode. The data memory address
>09 appears in bits 6 through 0.

4-3

Assembly Language Instructions

4.1.2 Indirect Addressing Mode

4-4

The auxiliary registers (AR) provide flexible and powerful indirect addressing.
Five auxiliary registers (ARO-AR4) are provided on the TMS32020, and eight
auxiliary registers (ARO-AR7) are available on the TMS320C25. To select a
specific auxiliary register, the Auxiliary Register Pointer (ARP) is loaded with
a value from 0 through 4 or 7, designating ARO through AR4 or AR7, respec­
tively (see Figure 4-2).

ARB (3) r.--.=---1 ARP (3)

(ARP= 2)

tTMS320C25 specific.

AUXILIARY
REGISTERS

ARO (16)
AR1 (16)
AR2 (16)
AR3 (16)
AR4 (16)
AR5 (16) t
ARB (16)t
AR7 (16) t

16 16

ARAU (16)

16

16-BIT DATA ADDRESS

Figure 4-2. Indirect Addressing Block Diagram

The contents of the auxiliary registers may be operated upon by the Auxiliary
Register Arithmetic Unit (ARAU), which implements 16-bit unsigned arith­
metic. The ARAU performs auxiliary register arithmetic operations in the same
cycle as the execution of the instruction. (Note that the increment or decre­
ment of the indicated AR is always executed after the use of that AR in the
instruction.)

In indirect addressing, any location in the 64K data memory space can be ac­
cessed via the 16-bit addresses contained in the auxiliary registers. These may
be loaded by the instructions LAR (load auxiliary register), LARK (load auxil­
iary register immediate), and LRLK (load auxiliary register long immediate).
The auxiliary registers on the TMS320C25 may be modified by ADRK (add to
auxiliary register short immediate) or SBRK (subtract from auxiliary register
short immediate). The TMS320C2x auxiliary registers may also be modified
by the MAR (modify auxiliary register) instruction or, equivalently, by the in­
dire.ct addressing field of any instruction supporting indirect addressing.
AR(ARP) denotes the auxiliary register selected by ARP

Assembly Language Instructions

The following symbols are used in indirect addressing, including bit-reversed
(BR) addressing:

Contents of AR(ARP) are used as the data memory address.

Contents of AR(ARP) are used as the data memory address, then
decremented after the access.

*+ Contents of AR(ARP) are used as the data memory address, then
incremented after the access.

*0- Contents of AR(ARP) are used as the data memory address, and the
contents of ARO subtracted from it after the access.

*0+ Contents of AR(ARP) are used as the data memory address, and the
contents of ARO added to it after the access.

*BRO- Contents of AR(ARP) are used as the data memory address, and the
contents of ARO subtracted from it, with reverse carry (re) propa­
gation, after the access (TMS320C25 specific).

*BRO+ Contents of AR(ARP) are used as the data memory address, and the
contents of ARO added to it, with reverse carry (re) propagation, af­
ter the access (TMS320C25 specific).

There are two main types of indirect addressing with indexing:

• Regular indirect addressing with increment or decrement, and
• Indirect addressing with indexing based on the value of ARO:

Indexing by adding or subtracting the contents of ARO, or
Indexing by adding or subtracting the contents of ARO with the
carry propagation reversed (for FFTs on the TMS320C25).

In either case, the contents of the auxiliary register pointed to by the ARP re­
gister are used as the address of the data memory operand. Then, the ARAU
performs the specified mathematical operation on the indicated auxiliary reg­
ister. Additionally, the ARP may be loaded with a new value. All indexing op­
erations are performed on the current auxiliary register in the same cycle as the
original instruction.

Indirect auxiliary register addressing allows for post-access adjustments of the
auxiliary register pointed to by the ARP. The adjustment may be an increment
or decrement by one or based upon the contents of ARO.

Bit-reversed addressing modes on the TMS320C25 allow efficient 1/0 to be
performed for the resequencing of data points in a radix-2 FFT program. The
direction of carry propagation in the ARAU is reversed when this mode is se­
lected and ARO is added to/subtracted from the current auxiliary register.
Typical use of this addressing mode requires that ARO first be set to a value
corresponding to one-half of the array size, and AR(ARP) be set to the base
address of the data (the first data point). See Section 5.7.4 for an FFT example
using bit-reversed addressing modes.

4-5

Assembly language Instructions

4-6

Indirect addressing can be used with all instructions except immediate oper­
and instructions and instructions with no operands. The indirect addressing
format is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Opcode 1 l 1ov l 1Nc l DEC l NAR l Y

Bits 1 5 through 8 contain the opcode, and bit 7 = 1 defines the addressing
mode as indirect. Bits 6 through 0 contain the indirect addressing control bits.

Bit 6 contains the increment/decrement value (IDV). The IDV determines
whether ARO will be used to increment or decrement the current auxiliary
register. If bit 6 = 0, an increment or decrement (if any) by one occurs to the
current auxiliary register. If bit 6 = 1, ARO may be added to or subtracted from
the current auxiliary register as defined by bits 5 and 4.

Bits 5 and 4 control the arithmetic operation to be performed with AR(ARP)
and ARO. When set, bit 5 indicates that an increment is to be performed. If bit
4 is set, a decrement is to be performed. Table 4-1 shows the correspondence
of bit pattern and arithmetic operation.

Table 4-1. Indirect Addressing Arithmetic Operations

BITS ARITHMETIC OPERATION
6 5 4

0 0 0 No operation on AR(ARP)
0 0 1 AR(ARP) - 1 -+ AR(ARP)
0 1 0 AR(ARP) + 1 -+ AR(ARP)
0 1 1 Reserved
1 0 0 AR(ARP) - ARO -+ AR(ARP) [reverse carry propagation]t
1 0 1 AR(ARP) - ARO -+ AR(ARP)
1 1 0 AR(ARP) + ARO -+ AR(ARP)
1 1 1 AR(ARP) + ARO -+ AR(ARP) [reverse carry propagation]t

tTMS320C25 specific.

Bit 3 and bits 2 through 0 control the Auxiliary Register Pointer (ARP). Bit 3
(NAR) determines if a new value is loaded into the ARP. If bit 3 = 1, the
contents of bits 2 through 0 (Y = next ARP) are loaded into the ARP. If bit
3 = 0, the contents of the ARP remain unchanged.

Table 4-2 shows the bit fields, notation, and operation used for indirect ad­
dressing.

Assembly Language Instructions

Table 4-2. Bit Fields for Indirect Addressing

INSTRUCTION FIELD BITS NOTATION OPERATION
15 - 8 7 6 5 4 3 2 1 0

+-Opcode-+ 1 0 0 0 0 +- y No manipulation of ARs/ ARP

+-Opcode-+ 1 0 0 0 1 +- y *,Y Y -+ ARP

+- Opcode -+ 1 0 0 1 0 +- y -+ . - AR(ARP)-1 -+ AR(ARP)

+-Opcode-+ 1 0 0 1 1 +- y -+ ·-,Y AR(ARP)-1 -+ AR(ARP)
Y-+ ARP

+-Opcode-+ 1 0 1 0 0 +- y -+ ·+ AR(ARP) +1 -+ AR(ARP)

+-Opcode-+ 1 0 1 0 1 +- y -+ •+,Y AR(ARP) +1 -+ AR(ARP)
Y-+ ARP

+-Opcode-+ 1 1 0 0 0 +- y -+ *BRO- AR(ARP)-rcARO-+ AR(ARP)t

+-Opcode-+ 1 1 0 0 1 y -+ *BRO-,Y AR(ARP)-rcARO -+ AR(ARP)
Y-+ ARPt

+- Opcode -+ 1 1 0 1 0 +- y -+ ·o- AR(ARP)-ARO -+ AR(ARP)
I---'--
+-Opcode-+ 1 1 0 1 1 +- y -+ *0-,Y AR(ARP)-ARO-+ AR(ARP)

Y-+ ARP

+-Opcode-+ 1 1 1 0 0 +- y -+ ·o+ AR(ARP) +ARO -+ AR(ARP)

+-Opcode-+ 1 1 1 0 1 +- y -+ *O+,Y AR(ARP) +ARO -+ AR(ARP)
Y-+ ARP

+-Opcode-+ 1 1 1 1 0 +- y -+ *BRO+ AR(ARP) +rcARO -+ AR(ARP)t

+-Opcode-+ 1 1 1 1 1 +- y -+ *BRO+,Y AR(ARP) +rcARO -+ AR(ARP)
Y-+ ARPt

tBR = bit-reversed addressing mode and re = reverse carry propagation (TMS320C25).

For some instructions, the notation in Table 4-2 includes a shift code, e.g.,
*O+ ,8,3 where 8 is the shift code and Y = 3.

The CMPR (compare auxiliary register with ARO), and BBZ/BBNZ (branch if
TC bit equal/not equal to zero) instructions facilitate conditional branches
based on comparisons between the contents of ARO and the contents of
AR(ARP).

The auxiliary registers may also be used for temporary storage via the load and
store auxiliary register instructions, LAR and SAR, respectively.

The following examples illustrate the indirect addressing format:

Example 1:

ADD *+,8 Add to the accumulator the contents of the data memory
address defined by the contents of the current auxiliary
register. This data is left-shifted 8 bits before being
added. The current auxiliary register is autoincremented
by one. The opcode is >08AO, as shown below.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

lo o o o o o o 0 0 0 0 0 0

4-7

Assembly Language Instructions

Example 2:

ADD *,8

Example 3:

ADD *-,8

Example 4:

ADD *0+,8

Example 5:

ADD *0-,8

Example 6:

ADD *+,8,3

Example 7:

ADD *BR0-,8

Example 8:

ADD *BR0+,8

4-8

As in Example 1, but with no autoincrement; the opcode
is >0880.

As in Example 1, except that the current auxiliary register
is decremented by one; the opcode is >0890.

As in Example 1, except that the contents of auxiliary
register ARO are added to the current auxiliary register;
the opcode is >08EO.

As in Example 1, except that the contents of auxiliary
register ARO are subtracted from the current auxiliary re­
gister; the opcode is >0800.

As in Example 1, except that the auxiliary register pointer
(ARP) is loaded with the value 3 for subsequent in­
structions; the opcode is >08AB,

The opcode is >OSCO. The contents of auxiliary register
ARO are subtracted from the current auxiliary register with
reverse carry propagation (TMS320C25).

The opcode is >08FO. The contents of auxiliary register
ARO are added to the current auxiliary register with re­
verse carry propagation (TMS320C25).

Assembly Language Instructions

4.1.3 Immediate Addressing Mode

In immediate addressing, the instruction word(s) contains tl10 value of the
immediate operand. The TMS320C2x has both single-word (8-bit and 13-bit
constant) short immediate instructions and two-word (16-bit constimt) lono
immediate instructions. The immediate operand is contained within the in­
struction word itself in short immediate instructions. In long immediate in­
~tructions, the word following the instruction opcode is used as the immediate
operand.

The following short immediate instructions contain the immediate operand in
the instruction word and execute within a single instruction cycle. The length
of the constant operand is instruction-dependent. Note that the ADDK, ADRK,
SBRK, and SUBK instructions are available on the TMS320C25.

ADDK

ADRK

LACK

LARK

LARP

LDPK

MPYK

~PTK

SBRK

SUBK

Add to accumulator short immediate (8-bit absolute constant)

Add to auxiliary register short immediate (8-bit absolute con­
stant)

Load accumulator short immediate (8-bit absolute constant)

Load auxiliary register :>11ort immediate (8-bit absolute constant)

Load auxiliary register pointer (3-bit constant)

Load data memory page pointer immediate (9-bit constant)

Multiply immediate (13-bit two's-complement constant)

Repeat instruction as specified by immediate value (8-bit con­
stant)

Subtract from auxiliary register short immediate (8-bit absolute
constant)

Subtract from accumulator short immediate (8-bit absolute
constant).

Example of short immediate addressing format:

RPTK 99 Execute the instruction following this instruction 100 times.

With the RPTK instruction, the immediate operand is contained as a part of the
instruction opcode. The instruction format for RPTK is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 1 0 0 0 8-Bit Constant J

4-9

Assembly Language Instructions

4.2

For long immediate instructions, the constant is a 16-bit value in the word
following the opcode. The 16-bit value can be optionally used as an absolute
constant or as a two's-complement value.

ADLK

ANDK

LALK

LRLK

ORK

SBLK

XORK

Add to accumulator long immediate with shift (absolute or two's
complement)

AND immediate with accumulator with shift

Load accumulator long immediate with shift (absolute or two's
complement)

Load auxiliary register long immediate

OR immediate with accumulator with shift

Subtract from accumulator long immediate with shift (absolute
or two's complement)

Exclusive-OR immediate with accumulator with shift.

Example of long immediate addressing format:

ADLK 16384,2 Add to the accumulator the value 16384 with a shift to
the left of two, effectively adding 65536 to the contents
of the accumulator.

The ADLK instruction uses the word following the instruction opcode as the
immediate operand. The instruction format for ADLK is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

11
0 Shift 0 0 0 0 0 0 0

16-Bit Constant

Instruction Set

The following sections list the symbols and abbreviations used in the instruc­
tion set summary and in the instruction descriptions. The complete instruction
set summary is organized according to function. A detailed description of each
instruction is listed in the instruction set summary.

4.2.1 Symbols and Abbreviations

4-10

Table 4-3 lists symbols and abbreviations used in the instruction set summary
(Table 4-4) and the individual instruction descriptions.

Assembly Language Instructions

SYMBOL

A
ACC
ARB
ARn
ARP

B
BIO
c

CM
CNF

D
DATn
dma
DP
FO

FSM
HM

I
INTM

K
MCS
>nn
ov

OVM
p

PA
PC

PFC
PM
pma

PRGn
R

RPTC
s

STn
SXM

T
TC

TOS
TXM

x
XF

I I
< >

[l
()
{ }

Table 4-3. Instruction Symbols

Port address
Accumulator

MEANING

Auxiliary register pointer buffer
Auxiliary register n (ARO, AR1 assembler symbols equal to 0 or 1)
Auxiliary register pointer
4-bit field specifying a bit code
Branch control input
Carry bit
2-bit field specifying compare mode
On-chip RAM configuration control bit
Data memory address field
Label assigned to data memory location n
Data memory address
Data page pointer
Format status bit
Frame synchronization mode bit
Hold mode bit
Addressing mode bit
Interrupt mode flag bit
Immediate operand field
Microcall stack
nn = hexadecimal number (others are decimal values)
Overflow mode flag bit
Overflow mode bit
Product register
Port address (PAO-PA15 assembler symbols equal to 0 through 15)
Program counter
Pref etch counter
2-bit field specifying P register output shift code
Program memory address
Label assigned to program memory location n
3-bit operand field specifying auxiliary register
Repeat counter
4-bit left-shift code
Status register n (STO or ST1)
Sign-extension mode bit
Temporary register
Test control bit
Top of stack
Transmit mode bit
3-bit accumulator left-shift field
XF pin status bit
Is assigned to
An absolute value
User-defined items
Optional items
Contents of
Alternative items, one of which must be entered
Blanks or spaces must be entered where shown.

4-11

Assembly Language Instructions

4.2.2 Instruction Set Summary .

4-12

Table 4-4 shows the instruction set summary for the TMS320C25 processor,
which is a superset of the TMS320C1 x and TMS320C2x instruction sets.
Included in the instruction set are four special groups of instructions to im­
prove overall processor throughput and ease of use.

e Extended-precision arithmetic (ADDC, SUBB, MPYU, BC, BNC, SC,
and RC)

e Adaptive filtering (M PY A, M PYS, and ZALR)
e Control and 1/0 (RHM, SHM, RTC, STC, RFSM, and SFSM)
e Accumulator and register (SPH, SPL, ADDK, SUBK, ADRK, SBRK, ROL,

and ROR).

The instruction set summary is arranged according to function and alphabet
ized within each functional grouping. Additional information is presented in
the individual instruction descriptions in the following section. The symbol t
indicates instructions that are specific to the TMS320C2x instruction set. The
symbol + indicates instructions that are specific to the TMS320C25 instruction
set.

Assembly Language Instructions

Table 4-4. Instruction Set Summary

ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS

Mnemonic and Description Words

ABS Absolute value of accumulator 1
ADD Add to accumulator with shift 1
ADDC:t: Add to accumulator with carry 1
ADDH Add to high accumulator 1
ADDK:t: Add to accumulator short immediate 1
ADDS Add to low accumulator with sign-extension 1

suppressed
ADDTt Add to accumulator with shift specified 1

by T register
ADLKt Add to accumulator long immediate 2

with shift
AND AND with accumulator 1
AND Kt AND immediate with accumulator with shift 2
CMPLt Complement accumulator 1
LAC Load accumulator with shift 1
LACK Load accumulator short immediate 1
LACTt Load accumulator with shift specified 1

LALKt
by T register

Load accumulator long immediate 2
with shift

NEGt Negate accumulator 1
NOR Mt Normalize contents of accumulator 1
OR OR with accumulator 1
OR Kt OR immediate with accumulator with shift 2
ROL:t: Rotate accumulator left 1
ROR:t: Rotate accumulator right 1
SACH Store high accumulator with shift 1
SACL Store low accumulator with shift 1
SBLKt Subtract from accumulator long immediate 2

with shift
SF Lt Shift accumulator left 1
SF Rt Shift accumulator right 1
SUB Subtract from accumulator with shift 1
SUBB:t: Ssubtract from accumulator with borrow 1
SUBC Conditional subtract 1
SUBH Subtract from high accumulator 1
SUBK:t: Ssubtract from accumulator short immediate 1
SUBS Subtract from low accumulator with 1

SUBTt
sign extension suppressed

Subtract from accumulator with shift specified 1
by T register

XOR Exclusive-OR with accumulator 1
XOR Kt Exclusive-OR immediate with accumulator 2

with shift
ZAC Zero accumulator 1
ZALH Zero low accumulator and load high accumulator 1
ZALR:t: Zero low accumulator and load high accumulator 1

with rounding
ZALS Zero accumulator and load low accumulator 1

with sign extension suppressed

tThese instructions are specific to the TMS320C2x instruction set.
:!:These instructions are specific to the TMS320C25 instruction set.

16-Bit Opcode
MSB

11 00 111 0 0001
0000 ssss I DOD
0100 0011 I ODD
0100 1000 I ODD
11 00 1100 KKKK
0100 1 001 I DOD

0100 1010 I ODD

11 01 ssss 0000

0100 1 11 0 I DOD
11 01 ssss 0000
11 00 1 11 0 0010
0010 ssss I ODD
11 00 1 01 0 KKKK
0100 0010 I DOD

11 01 ssss 0000

1100 1 11 0 0010
11 00 111 0 1010
0100 11 01 I ODD
11 01 ssss 0000
1100 111 0 0011
11 00 1 11 0 0011
011 0 1 xxx I ODD
011 0 oxxx I ODD
11 01 ssss 0000

11 00 111 0 0001
11 00 111 0 0001
0001 ssss I ODD
0100 1 111 I ODD
0100 0111 I DOD
0100 0100 I ODD
11 00 11 01 KKKK
0100 01 01 I ODD

0100 0110 I ODD

0100 1100 I ODD
11 01 ssss 0000

11 00 1010 0000
0100 0000 I ODD
0111 1011 I ODD

0100 0001 I DOD

LSB

1011
DODD
DODD
DODD
KKKK
DODD

DODD

0010

DODD
0100
0111
DODD
KKKK
DODD

0001

0011
0010
DODD
0101
0100
0101
DODD
DODD
0011

1000
1 001
DODD
DODD
DD.DD
DODD
KKKK
DODD

DODD

DODD
0110

0000
DODD
DODD

DODD

4-13

Assembly Language Instructions

Table 4-4. Instruction Set Summary (Continued)

AUXILIARY REGISTERS AND DATA PAGE POINTER INSTRUCTIONS

Mnemonic and Description Words 16-Bit Opcode
MSB LSB

ADRK+ Add to auxiliary register short immediate 1 0111 111 0 KKKK KKKK
CMPRt Compare auxiliary register wiih auxiiiary i 1100 111 0 0101 OOKK

register ARO
LAR Load auxiliary register 1 0011 ORRR I DDD DDDD
LARK Load auxiliary register short immediate 1 1100 ORRR KKKK KKKK
LARP Load auxiliary register pointer 1 0101 0101 1000 1 RRR
LDP Load data memory page pointer 1 01 01 0010 I DOD DODD
LDPK Load data memory page pointer immediate 1 1100 100K KKKK KKKK
LRLKt Load auxiliary register long immediate 2 1101 ORRR 0000 0000
MAR Modify auxiliary register 1 01 01 0101 I DOD DODD
SAR Store auxiliary register 1 0111 ORRR I ODD DODD
SBRK+ Subtract from auxiliary register short immediate 1 0111 1111 KKKK KKKK

T REGISTER. P REGISTER. AND MULTIPLY INSTRUCTIONS

Mnemonic and Description Words

APAC Add P register to accumulator 1
LP Ht Load high P register 1
LT Load T register 1
LTA Load T register and accumulate previous product 1
LTD Load T register. accumulate previous product, 1

and move data
LTPt Load T register and store P register in 1

accumulator
LTSt Load T register and subtract previous 1

product
MA Ct Multiply and accumulate 2
MACDt Multiply and accumulate with data move 2
MPV Multiply (with T register, store product in 1

P register)
MPYA+ Multiply and accumulate previous product 1
MPYK Multiply immediate 1
MPYS:t: Multiply and subtract previous product 1
MPYU+ Multiply unsigned 1
PAC Load accumulator with P register 1
SPAC Subtract P register from accumulator 1
SPH+ Store high P register 1
SPL+ Store low P register 1
SP Mt Set P register output shift mode 1
SQRAt Square and accumulate 1
SOR St Square and subtract previous product 1

tThese instructions are specific to the TMS320C2x instruction set.
+These instructions are specific to the TMS320C25 instruction set.

4-14

16-Bit Opcode
MSB LSB

11 00 111 0 0001 0101
0101 0011 I DDD DODD
0011 11 00 I DOD DDDD
0011 11 01 I DDD DODD
0011 1111 I DDD DODD

0011 111 0 I DDD DDDD

01 01 1011 I DDD DODD

0101 1101 I DOD DODD
01 01 1100 I DOD DODD
0011 1000 I DDD DDDD

0011 1010 I DOD DODD
101K KKKK KKKK KKKK
0011 1 011 I DDD DDDD
11 00 1111 I DOD DODD
11 00 111 0 0001 0100
11 00 1110 0001 0110
0111 1101 I DOD DODD
0111 1100 I DDD ODDO
1100 111 0 0000 10KK
0011 1 001 I DDD DDDD
01 01 1010 I ODD DODD

Assembly Language Instructions

Table 4-4. Instruction Set Summary (Continued)

BRANCH/CALL INSTRUCTIONS

Mnemonic and Description Words
MSB

B Branch unconditionally 2 1111
BACCt Branch to address specified by accumulator . 1 11 00
BANZ Branch on auxiliary register not zero 2 1111
BBNZt Branch if TC bit ¢ 0 2 1111
BBZt Branch if TC bit = 0 2 1111
sci Branch on carry 2 0101
BGEZ Branch if accumulator ~ 0 2 1111
BGZ Branch if accumulator > 0 2 1111
BIOZ Branch on 1/0 status = 0 2 1111
BLEZ Branch if accumulator S C 2 1111
BLZ Branch if accumulator < 0 2 1111
BNC:I: Branch on no carry 2 0101
BNVt Branch if no overflow 2 111 1
BNZ Branch if accumulator ¢ 0 2 1111
BV Branch on overflow 2 1111
BZ Branch if accumulator = 0 2 1111
CALA Call subroutine indirect 1 11 00
CALL Call subroutine 2 111 1
RET Return from subroutine 1 11 00
TRAPt Software interrupt 1 11 00

1/0 AND DATA MEMORY OPERATIONS

Mnemonic and Description Words

BLKOt Block move from data memory to data memory 2
BLKPt Block move from program memorv to rlata 2

memory
DMOV Data move in data memory 1
FORrt Format serial port regiirters 1
IN Input data from port 1
OUT Output data to port 1
RFSMt Reset serial port frame synchronization mode 1
RTXMt Reset serial port transmit mode 1
RX Ft Reset external flag 1
SFSM:I: Set serial port frame synchronization mode 1
STX Mt Set serial port transmit mode 1
SXFt Set external flag 1
TBLR Table read 1
TBLW Table write 1

tThese instructions are specific to the TMS320C2x instruction set.
:!:These instructions are specific to the TMS320C25 instruction set.

MSB

11 11
1111

01 01
1100
1000
111 0
11 00
11 00
11 00
11 00
11 00
11 00
0101
01 01

16-Bit Opcode

1111 1 DOD
111 0 0010
1 011 1 ODD
1 001 1 DOD
1000 1 ODD
111 0 1 DOD
0100 1 DOD
0001 1 ODD
1 01 0 1 ODD
0010 1 ODD
0011 1 DOD
1111 1 ODD
0111 1 DOD
01 01 1 DOD
0000 1 DOD
0110 1 DOD
111 0 0010
111 0 1 DOD
111 0 0010
111 0 0001

16-Bit Opcode

11 01 I DOD
1100 I DOD

0110 I ODD
111 0 0000
AAAA I ODD
AAAA I DOD
111 0 0011
111 0 0010
111 0 0000
111 0 0011
111 0 0010
111 0 0000
1000 I DOD
1 001 I DOD

LSB

ODDO
01 01
DODD
DODD
DODD
DODD
DODD
DODD
DODD
DODD
DODD
ODDO
DODD
DODD
DODD
DODD
0100
DODD
0110
111 0

LSB

DODD
DODD

DODD
111 K
DODD
ODDO
0110
0000
11 00
0111
0001
1101
DODD
DODD

4-15

Assembly Language Instructions

Table 4-4. Instruction Set Summary (Concluded)

CONTROL INSTRUCTIONS

Mnemonic and Description Words

Birt Test bit 1
a1nt Test bit specified by T register 1
CNFDt Configure block as data memory 1
CNFPt Configure block as program memory 1
DINT Disable interrupt 1
EINT Enable interrupt 1
IDLEt Idle until interrupt 1
LST Load status register STO 1
LST1t Load status register ST1 1
NOP No operation 1
POP Pop top of stack to low accumulator 1
POPDt Pop top of stack to data memory 1
PSHDt Push data memory value onto stack 1
PUSH Push low accumulator onto stack 1
RC:f: Reset carry bit 1
RHM:f: Reset hold mode 1
ROVM Reset overflow mode 1
RPTt Repeat instruction as specified by data memory 1

value
RPTKt Repeat instruction as specified by immediate 1

value
RSX Mt Reset sign-extension mode 1
RTC:f: Reset test/control flag 1
sc:t: Set carry bit 1
SHM:f: Set hold mode 1
SOVM Set overflow mode 1
SST Store status register STO 1
SST1t Store status register ST1 1
SSXMt Set sign-extension mode 1
STC:t: Set test/control flag 1

tThese instructions are specific to the TMS320C2x instruction set.
:f:These instructions are specific to the TMS320C25 instruction set.

4-16

16-Bit Opcode
MSB

1 001 BBBB I DDD
01 01 0111 I DDD
11 00 111 0 0000
1100 111 0 0000
11 00 111 0 0000
11 00 111 0 0000
1100 111 0 0001
0101 0000 I DOD
0101 0001 I DDD
01 01 0101 0000
11 00 111 0 0001
0111 1010 I DDD
0101 0100 I DDD
1100 111 0 0001
11 00 111 0 0011
11 00 111 0 0011
11 00 111 0 0000
0100 1 011 I DDD

11 00 1 011 KKKK

11 00 111 0 0000
11 00 111 0 0011
1100 111 0 0011
11 00 111 0 0011
11 00 111 0 0000
0111 1000 I DDD
0111 1 001 I DDD
11 00 111 0 0000
11 00 111 0 0011

LSB

DDDD
DDDD
0100
01 01
0001
0000
1 111
DDDD
DDDD
0000
11 01
DDDD
DDDD
11 00
0000
1000
0010
DDDD

KKKK

0110
0010
0001
1 001
0011
DDDD
DDDD
0111
0011

Assembly Language Instructions

4.3 Individual Instruction Descriptions

Each instruction in the instruction set summary is described in the following
pages. Instructions are listed in alphabetical order. Information, such as as­
sembler syntax, operands, operation, encoding, description, words, cycles, and
examples, is provided for each instruction. An example instruction is provided
to familiarize the user with the special format used and explain its content.
Refer to Section 4.1 for further information on memory addressing. Code ex­
amples using many of the instructions are given in Section 5 on Software
Applications.

4-17

EXAMPLE Example Instruction EXAMPLE

Syntax
Direct: [<label>] EXAMPLE <dma>[,<shift>]

Indirect: [<label>] EXAMPLE {ind}[,<shift>[,<next ARP>]]
Immediate: [<label>] EXAMPLE [<constant>]

Each instruction begins with an assembler syntax expression. The optional
comment field that concludes the syntax is not included in the syntax ex­
pression. Space(s) are required between each field (label, command, op­
erand, and comment fields) as shown in the syntax. The syntax example
illustrates both direct and indirect addressing, as well as immediate ad­
dressing in which the operand field includes <constant>.

The indirect addressing operand options, including bit-reversed (BR) ad­
dressing, are as follows:

TMS32020: {*l*+l*-1*0+1*0-}
TMS320C25: {*I*+ I* -1*0+1*0-l*BRO+ l*BRO-}

Operands 0 :s; dma :s; 127
0 :s; next ARP :s; 7

0 :s; constant :s; 255

Operands may be constants or assembly-time expressions referring to
memory, 1/0 and register addresses, pointers, shift counts, and a variety of
constants. The operand values used in the example syntax are shown. Note
thatthe next ARP on the TMS32020 is :s; 4 for auxiliary registers ARO-AR4.

Execution (PC) + 1 -> PC
(ACC) + [(dma) x 2shift] -> ACC

If SXM = 1:
Then (dma) is sign-extended.

If SXM = 0:
Then (dma) is not sign-extended.

Affects OV; affected by OVM and SXM.
Affects C (TMS320C25) ..

An example of the instruction operation sequence is provided, describing
the processing that takes place when the instruction is executed. Condi­
tional effects of status register specified modes are also given. Those bits
in the TMS320C2x status registers affected by the instruction are also
listed.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

4-18

Direct: I 0 0 0 ol Shift I ol Data Memory Address I
Indirect: I 0 0 0 o I Shift I 1 I See Section 4.1

Immediate: I 0 0 13-Bit Constant

Opcode examples are shown of both direct and indirect addressing or of the
use of an immediate operand.

EXAMPLE

Description

Words

Cycles

'20

'C25

'20

'C25

Example Instruction EXAMPLE

Instruction execution and its effect on the rest of the processor or memory
contents are described. Any constraints on the operands imposed by the
processor or the assembler are discussed. The description parallels and
supplements the information given by the execution block.

The digit specifies the number of memory words required to store the in­
struction and its extension words.

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1 1 +p 1 +p - -
1 1 1+p 1 +p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p - -
n n n+p n+p n n

The table shows the number of cycles required for a given TMS320C2x in­
struction to execute in a given memory configuration when executed as a
single instruction or in the repeat mode. The column headings in the tables
indicate the program source location (Pl, PE, or PR) and data destination
or source (DI or DE), defined as follows:

Pl The instruction executes from internal program memory (RAM).
PR The instruction executes from internal program memory (ROM).
PE The instruction executes from external program memory.
DI The instruction executes using internal data memory.
DE The instruction executes using external data memory.

The number of cycles required for each instruction is given in terms of the
program/data memory and 1/0 access times as defined in the following
listing:

p Program memory wait states. Represents the number of clock cycles
the device waits for external program memory to respond to an ac­
cess. Tac is the access time, in nanoseconds, (maximum) required
by the TMS320C2x for an external memory access to be made with
no wait states. T mem is the memory device access time, and T p is the
clock period (4/crystal frequency).

p = O; If T mem :S Tac
p = 1 ; If Tac < T mem :s; (T p + Tad
p = 2; If (T p + Tac)< T mem :S (T p x 2 + Tad
p = k; If [T p x (k-1) + Tad< T mem :s; (T p x k + Tad

d Data memory wait states. Represents the number of cycles the de­
vice must wait for external data memory to respond to an access.
This number is calculated in the same way as the p number.

1/0 memory wait states. Represents the number of cycles the device
must wait for external 1/0 memory to respond to an access. This
number is calculated in the same way as the p number.

4-19

EXAMPLE

Example

4-20

Example Instruction EXAMPLE

Other abbreviations used in the tables and their meanings are as follows:

br Branch from ...
int Internal program memory.
INT Interrupt.
ext External program memory.
n fhe number of times an instruction is executea when using the R'PT

or RPTK instruction.

Refer to Appendix D for further information on instruction cycle classifica­
tions and timings

ADD DATl,3 (DP = 101
or
ADD *,3 If current auxiliary register contains 1281.

Data
Memory

1281

Before Instruction

>8

ACC ~I ... ____ >_2~
c

After Instruction

Data
Memory I >8. 1281_ _____

ACC @] · ... 1 ___ >_4_2~
c

The sample code presented in the above format shows the effect of the
code on memory and/or registers. The use of the carry bit (C) provided on
the TMS320C25 is shown in the small box.

ABS

Syntax

Operands

Execution

Encoding

Absolute Value of Accumulator

[<label>] ABS

None

(PC) + 1 -+ PC
I (ACC) I -+ ACC

Affects OV; affected by OVM.
Affects C (TMS320C25).
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3

11 0 0 0 0 0 0

ABS

2 1 0

0 1=1J
Description If the contents of the accumulator are greater than or equal to zero, the ac­

cumulator is unchanged by the execution of ABS. If the contents of the
accumulator are less than zero, the accumulator is replaced by its two's­
complement value.

Words

Cycles

'20

'C25

'20

'C25

Note that >80000000 is a special case. When the overflow mode is not set,
the ABS of >80000000 is >80000000. When in the overflow mode, the
ABS of >80000000 is > 7FFFFFFF. In either case, the OV status bit is set.
The carry bit (C) on the TMS320C25 is always reset to zero by the exe­
cution of this instruction.

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p - -
1 1 1 +p 1 +p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p - -
n n n+p n+p n n

Example ABS

Before Instruction

ACC ~I >1234

c
ACC ~I >FFFFFFFF

c

After Instruction

ACC @] I >1234

c
ACC @]I ___ >_1 __.

c

4-21

ADD Add to Accumulator with Shift ADD

Syntax
Direct: [<label>] ADD <dma>[,<shift>]

Indirect: [<label>] ADD {ind}[, <shift>[, <next ARP>]]

Operands

Execution

Encoding

0 s dma s 127
0 s next ARP s 7
0 s shift s 15 (defaults to 0)

(PC) + 1 -+ PC
(ACC) + [(dma) x 2shift] -+ ACC

If SXM = 1:
Then (dma) is sign-extended.

If SXM = 0:
Then (dma) is not sign-extended.

Affects OV; affected by OVM and SXM.
Affects C (TMS320C25).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: l 0 0 0 ol Shift I ol Data Memory Address I
Indirect: I 0 0 0 ol Shift I 1 I See Section 4.1

Description

Words

Cycles

'20
'C25

'20
'C25

Example

4-22

The contents of the addressed data memory location are left-shifted and
added to the accumulator. During shifting, low-order bits are zero-filled.
High-order bits are sign-extended if SXM = 1 and zero-filled if SXM = 0.
The result is stored in the accumulator.

1

Cycle Timings for a Single Instruction
Pl/01 Pl/OE PE/01 PE/OE PR/01 PR/DE

1 2+d 1 +p 2+d+p - -
1 2+d 1 +p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p - -
n 1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

ADD DATl,3 (DP = 10)
or
ADD *, 3 If current auxiliary register contains 1281.

Data
Memory

1281

Before Instruction

>8

ACC ~1~ ______ >2~
c

Data
Memory

1281

After Instruction

>8

ACC @11 _______ >_4_2_

c

ADDC

Syntax

Add to Accumulator
with Carry CTMS320C25) ADDC

Direct: [<label>] ADDC <dma>
Indirect: [<label>] ADDC {ind}[,<next ARP>]

Operands 0 s dma s 127
0 s next ARP s 7

Execution (PC) + 1 -+ PC
(ACC) + (dma) + (C) -+ ACC

Affects OV and C; affected by OVM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I 0 0 0 0 0 0 Data Memory Address

Indirect: ._l _o ____ o __ o __ o __ o ____ ...___..__ ___ s_ee_S_ec_ti_o_n_4_.1 ___ __,

Description The contents of the addressed data memory location and the value of the
carry bit are added to the accumulator. The carry bit is then affected in the
normal manner.

Words

Cycles

Example 1

'C25

'C25

The ADDC instruction can be used in performing multiple-precision arith­
metic.

Pl/DI 1
1 I
n l

ADDC OATS
or
ADDC *

Data
Memory

1029

Cycle Timings for a Single Instruction

Pl/DE 1 PE/DI l PE/DE l PR/DI l PR/DE

2+d I 1+p l 2+d+p l 1 I 2+d

Cycle Timings for a Repeat Execution

1 +n+nd l n+p J 1 +n+nd+p I n J 1 +n+nd

(DP ~ 8)

If current auxiliary register contains 1029.

Before Instruction After Instruction

Data
>4 Memory >4

1029

ACC El I >13 ACC @1 I >18

c c

4-23

ADDC

Example 2

4-24

Add to Accumulator
with Carry (TMS320C25)

ADDC DATS
or

(DP = 8)

ADDC

ADDC * If current auxiliary register contains 1029.

Before Instruction

Data
Memo~ >O

1029

ACC 12] I > FFFFFFFF

c

After Instruction

Data
Memory

1029
>O

ACC l2J I >O

c

ADDH Add to High Accumulator ADDH

Syntax
Direct [<label>] ADDH <dma>

Indirect: [<label>] ADDH {ind}[,<next ARP>]

Operands

Execution

Encoding

0 :S dma :S 1 27
0 :S next ARP :S 7

(PC) + 1 --> PC
(ACC) + [(dma) x216] ->ACC

Affects OV; affected by OVM.
Affects C (TMS320C25).
Low-order bits of the ACC not affected.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I 0 0 0 0 0 ol 0 Data Memory Address

Indirect: I 0 0 0 0 0 ol See Section 4.1

Description

Words

Cycles

'20
'C25

'20
'C25

Example

The contents of the addressed data memory location are added to the upper
half of the accumulator (bits 31 through 16). Low-order bits are unaffected
by ADDH. The carry bit (C) on the TMS320C25 is set if the result of the
addition generates a carry; otherwise, C is unaffected. The carry bit can
only be set, not reset, by the ADDH instruction.

The ADDH instruction may be used in performing 32-bit arithmetic.

Cycle Timings for a Single Instruction
Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1 +p 2+d+p - -
1 2+d 1 +p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p - -
n 1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

ADDH DATS
or

(DP = 8)

ADDH * If current auxiliary register contains 1029.

Data
Memory

1029

Before Instruction

>4

ACC ITl~I ~~~>_13___.
c

Data
Memory

1029

After Instruction

>4

ACC ITl~I ~->_4_0_0_1_3~
c

4-25

ADDK

Syntax

Operands

Execution

Encoding

Add to Accumulator
Short Jmmediate (TMS320C25)

[<label>] ADDK <constant>

0 :S constant :S 255

(PC) + 1 -+PC
(ACC) + 8-bit positive constant -+ ACC

Affects OVM and C; affected by OVM.
Not affected by SXM.

15 14 13 12 11 10 9 8 7
I 1 o o o ol

6 5 4 3 2
8-Bit Constant

ADDK

0

Description The 8-bit immediate value is added, right-justified, to the accumulator with
the result replacing the accumulator contents. The immediate value is
treated as an 8-bit positive number, regardless of the value of SXM.

Words

Cycles

Example

4-26

'C25

'C25

Cycle Timings for a Single Instruction

Pl/DI l Pl/DE l PE/DI l PE/DE l PR/DI l PR/DE

1 I 1 I 1+p I 1+p I 1 I 1

Cycle Timings for a Repeat Execution

not repeatable

ADDK >5

Before Instruction After Instruction

ACC ~ I > 79B2E1 ACC @] I >79B2E6

c c

Add to Accumulator
ADDS with Sign-Extension Suppressed ADDS

Syntax
Direct: [<label>] ADDS <dma>

Indirect: [<label>] ADDS {ind}[.<next ARP>]

Operands

Execution

0 s dma ..,; 127
0 s next ARP s 7

(PC) + 1 -+ PC
(ACC) + (dma) -+ ACC
(dma) is a 16-bit unsigned number.

Affects OV; affected by OVM.
Affects C (TMS320C25).
Not affected by SXM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I 0 0 0 0 0 0 Data Memory Address

lndirect:j ~ _o ____ o __ o ____ o __ o __ ~-~---s_e_e_S_e_c_ti_o_n_4_.1 ___ ~

Description

Words

Cycles

'20
'C25

'20
'C25

Example

The contents of the specified data memory location are added with sign­
extension suppressed. The data is treated as a 16-bit unsigned number,
regardless of SXM. The accumulator behaves as a signed number. Note
that ADDS produces the same results as an ADD instruction with SXM
0 and a shift count of 0.

Cycle Timings for a Single Instruction
Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

ADDS
or
ADDS

1 2+d 1 +p 2+d+p - -
1 2+d 1 +p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p - -
n 1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

DAT11 (DP = 6)

* If current auxiliary register contains 779.

Data
Memory

779

Before Instruction

>F006

ACC ~ l.__ ___ >_3_.

c

Data
Memory

779

After Instruction

>F006

ACC @]~I ~~>_F_0_0_9~
c

4-27

Add to Accumulator
ADDT with Shift Specified by T Register ADDT

Syntax
Direct: [<label>) ADDT <dma>

Indirect: [<label>] ADDT {ind}[,<next ARP>]

Operands 0 :S dma :S 127
0 :S next ARP :S 7

Execution (PC) + 1 -+ PC
(ACC) + [(dma) x 2T register(3-0)] -+ (ACC)

If SXM = 1:
Then (dma) is sign-extended.

If SXM = 0:
Then (dma) is not sign-extended.

Affects OV; affected by SXM and OVM.
Affects C (TMS320C25).

Encoding 15 14 13 12 11 10 9 8 7

Direct: I 0 0 0 0 ol 0

Indirect: I 0 1 ' 0 0 0 ol

6 5 4 3 2 0

Data Memory Address I
See Section 4.1

Description The data memory value is left-shifted and added to the accumulator, with
the result replacing the accumulator contents. The left-shift is defined by
the four LS~s of the T register, resulting in shift options from 0 to 15 bits.
Sign extension on the data memory value is controlled by SXM.

Words

Cycles

'20
'C25

'20
'C25

Example

4-28

Cycle Timings for a Single Instruction
Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for .a Repeat Execution
n 2n+nd n+p 2n+nd+p - -
n 1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

AODT DAT127
or
ADDT *

(DP = 4)

If current auxiliary register contains 639.

Add to Accumulator
ADDT with Shift Specified by T Register ADDT

Before Instruction After Instruction

Data Data

I Memory I >9 Memory >9
639 639

T I >FF94 T I >FF94

ACC ~I >F715 ACC @]I >F7A5

c c

4-29

ADLK

Syntax

Operands

Execution

Encoding

Add to Accumulator
Long Immediate with Shift

[<label>] ADLK <constant>[, <shift>]

16-bit constant
0 :S shift :S 15 (defaults to 0)

(PC) + 2-+ PC
(ACC) + [constant x 2shift] -+ ACC

If SXM = 1:
Then -32768 :S constant :S 32767.

If SXM = 0:
Then 0 :S constant :S 65535.

Affects OV; affected by OVM and SXM.
Affects C (TMS320C25).

15 14 13 12 11 10 9 8 7 6

11 o I Shift 0 0
16-bit Constant

5
0

ADLK

4 3 2 0
0 0 0

Description The 16-bit immediate value, left-shifted as specified, is added to the accu­
mulator. The result replaces the accumulator contents. SXM determines
whether the constant is treated as a signed two's-complement number or
as an unsigned number. The shift count is optional and defaults to zero.

Words 2

Cycles
Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

'20 2 2 2+2p 2+2p - -
'C2.5 2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

'20 not repeatable - -
'C25 not repeatable

Example ADLK 5,8

Before Instruction After Instruction

ACC ~I >10EF ACC @] I >15EF

c c

4-30

ADRK

Syntax

Operands

Execution

Encoding

Add to Auxiliary Register
Short Immediate CTMS320C25)

[<label>] ADRK <constant>

0 ::; constant ::; 255

(PC) + 1 -+ PC
AR(ARP) + 8-bit positive constant -+ AR(ARP)

15 14 13 12 11 10 9 8 7 6

I o ol
5 4 3 2

8- Bit Constant

ADRK

0

Description The 8-bit immediate value is added, right-justified, to the currently selected
auxiliary register with the result replacing the auxiliary register contents.
The addition takes place in the ARAU, with the immediate value treated as
an 8-bit positive integer.

Words

Cycles

Pl/DI I
'C25 1 l
'C25

Example ADRK >BO

AR5

Cycle Timings for a Single Instruction

Pl/DE l PE/DI l PE/DE l PR/DI l PR/DE

1 l 1 +p l 1+p l 1 J 1

Cycle Timings for a Repeat Execution

not repeatable

(ARP = 5)

Before Instruction

>4321 AR5

After Instruction

>43A1

4-31

AND AND with Accumulator AND

Syntax
Direct: [<label>] AND <dma>

Indirect: [<label>] AND {ind}[, <next ARP>]

Operands 0 :S dma :S 127
0 :S next ARP :S 7

Execution (PC) + 1 -+ PC
(ACC(15-0)).AND.(dma) -+ ACC(15-0)
0 -+ ACC(31-16)

Not affected by SXM.

Encoding 15 14 13 12 11 10 9 8 7

Direct: I 0 0 0 ol 0

Indirect: I 0 0 0 ol

6 5 4 3 2 0

Data Memory Address I
See Section 4.1

Description The lower half of the accumulator is ANDed with the contents of the ad­
dressed data memory location. The upper half of the accumulator is ANDed
with all zeroes. Therefore, the upper half of the accumulator is always ze­
roed by the AND instruction.

Words

Cycles

'20
'C25

'20
'C25

Example

4-32

Cycle Timings for a Single Instruction
Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

AND
or
AND

1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p - -
n 1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

DAT16 (DP = 4)

* If current auxiliary register contains 528.

Before Instruction After Instruction

Data Data
Memo~ >FF

528
Memo~ >FF

ACC ~ I >12345678

c

528

ACC ~ I >00000078

c

ANDK

Syntax

Operands

Execution

Encoding

AND Immediate
with Accumulator with Shift

[<label>] ANDK <constant>[,<shift>]

16-bit constant
0 s shift s 15 (defaults to 0)

(PC) + 2 -+ PC
(ACC(30-0)) .AND. [(constant x 2shift)] -+ ACC(30-0)

ANDK

0 -+ ACC(31) and all other bit positions unoccupied by shifted constant.

Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

11 o I Shift 0 0 0 0 0 0

16-bit Constant

Description The 16-bit immediate constant is left-shifted as specified and ANDed with
the accumulator. The result is left in the accumulator. Low-order bits below
and high-order bits above the shifted value are treated as zeroes, clearing
the corresponding bits in the accumulator. Note that the accumulator's
most-significant bit is always zeroed regardless of the shift-code value.

Words

Cycles

'20
'C25

'20
'C25

Example

2

Cycle Timings for a Single Instruction
Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

2 2 2+2p 2+2p - -
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution
not repeatable - -

not repeatable

ANDK >FFFF,12

Before Instruction

ACC ~ I >12345678

c

After Instruction

ACC ~I >02345000

c

4-33

APAC

Syntax

Operands

Execution

Encoding

Add P Register to Accumulator

[<label>] APAC

None

(PC) + 1 PC
(ACC) + (shifted P register) ACC

Affects OV; affected by PM and OVM.
Affects C (TMS320C25).
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

11 0 0 0 0 0 0 0

APAC

0
o 1 I

Description The contents of the P register are shifted as defined by the PM status bits
and added to the contents of the accumulator. The result is left in the ac­
cumulator: APAC is not affected by the SXM bit of the status register; the
P register is always sign-extended.

The APAC instruction is a subset of the LTA, LTD, MAC, MACO, MPYA,
and SORA instructions.

Words 1

Cycles

Example

4-34

'20

'C25

'20

'C25

Pl/DI

1

1

n

n

APAC (PM

p

ACC

Cycle Timings for a Single Instruction

Pl/DE PE/DI P.E/DE PR/DI PR/DE

1 1+p 1 +.p - -
1 1+p 1 +p 1 1

Cycle Timings for a Repeat Execution

n n+p n+p - -
n n+p n+.p n n

0)

Before Instruction After Instruction

I >40 p I >40

~I >20 ACC @1 I >60

c c

B

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

'20

'C25

'20

'C25

Branch Unconditionally

[<label>] B <pma>[,{ind}[,<next ARP>]]

0 ::;; pma ::;; 65535
0 ::;; next ARP ::;; 7

pma-> PC
Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2
See Section 4.1

Program Memory Address

B

0

The current auxiliary register and ARP are modified as specified, and control
passes to the designated program memory address (pma). Note that no
AR or ARP modification occurs if nothing is specified in those fields. Pma
can be either a symbolic or a numeric address.

2

B

Cycle Timings for a Single Instruction

Pl/DI J Pl/DE PE/DI l PE/DE PR/DI PR/DE

2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p

False Condition:
Destination anywhere:

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable - -
not repeatable

PRG191 191 is loaded into the program counter, and
the program continues running from that
location_

4-35

BACC Branch to Address Specified by Accumulator BACC

Syntax

Operands

Execution

Encoding

[<label>] BACC

None

(ACC(15-0)) -+ PC

15 14 13 12 11

I , 0 0

10 9 8 7 6 5 4 3 2 0
0 0 0 0 0 0 , I

Description The branch uses the lower half of the accumulator (bits 15-0) for the
branch address.

Words

Cycles

Example

4-36

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI

±
Pl/DE

±
PE/DI 1 PE/DE

±
PR/DI 1 PR/DE

2 2 2+p 2+p - I -
Destination on-chip RAM:

2 2 2+p 2+p 2 2
Destination on-chip ROM:

3 3 3+p 3+p 3 3
Destination external memory:

3+p 3+p 3+2p 3+2p 3+p 3+p

Cycle Timings for a Repeat Execution

not repeatable 1 - 1 -
not repeatable

BACC

Before Instruction After Instruction

PC I >16E4 PC I >9545

ACC ~I >F7FF9545 ACC ~I >F7FF9545

c c

BANZ

Syntax

Operands

Execution

Encoding

Branch on Auxiliary Register Not Zero

[<label>] BANZ <pma>[,{ind}[,<next ARP>]]

0 s pma s 65535
0 :S next ARP s 7

If AR(ARP) 'f: 0:
Then pma -+ PC;
Else (PC) + 2 -+ PC.

Modify AR(ARP) as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 See Section 4.1

Program Memory Address

BANZ

0

Description Control is passed to the designated program memory address (pma) if the
current auxiliary register is not equal to zero. Otherwise, control passes to
the next instruction. The current auxiliary register and ARP are also modi­
fied as specified.

The current auxiliary register is either incremented or decremented from zero
when the branch is not taken. Note that the AR modification defaults to
* - (decrement current AR by one) when nothing is specified, making it
compatible with the TMS320C1 x. Pma can be either a symbolic or a nu­
meric address.

Words 2

Cycles

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI I Pl/DE PE/DI I PE/DE PR/DI

2 (br int-to-int) 2+p (int-to-ext) -
2+p (ext-to-int) 2+2p (ext-to-ext) -

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2
Destination on-chip ROM:

3 3 3+2p 3+2p 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p

False Condition:
Destination anywhere:

2 2 2+2p 2+2p 2

Cycle Timings for a Repeat Execution

not repeatable -
not repeatable

PR/DE

-
-

2

3

3+p

2

-

4-37

BANZ

Example 1

Example 2

4-38

Branch on Auxiliary Register Not Zero BANZ

BANZ PRG35,*-

Before Instruction After Instruction

AR >1 AR >O

PC >46 PC >35

or

AR >O AR >FFFF

PC >46 PC >48

BANZ PRG64,*+

or

Before Instruction After Instruction

AR >FFFF AR >O

PC >117 PC >64

AR >O AR >1

PC >117 PC >119

Note:

BANZ is designed for loop control using the auxiliary registers as loop
counters. Using *O+ or *0- allows modification of the loop counter by
a variable step size. Care must be exercised when doing this, however,
because the auxiliary registers behave as modulo 65536 counters, and.
zero may be passed without being detected if ARO > 1.

BBNZ

Syntax

Operands

Execution

Encoding

Branch on Bit Not Equal to Zero

[<label>] BBNZ <pma>[.{ind}[,<next ARP>]]

0 s pma s 65535
0 S next ARP S 7

If test/control (TC) status bit = 1:
Then pma PC;
Else (PC) + 2 PC.

Modify AR (ARP) and ARP as specified.

Affected by TC.

15 14 13 12 11 10 9 8 7 6 5 4 3 2
0 0 See Section 4.1

Program Memory Address

BBNZ

0

Description The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address if TC = 1. Other­
wise, control passes to the next instruction. Note that no AR or ARP
modification occurs if nothing is specified in those fields. Pma can be either
a symbolic or a numeric address. Note that the TC bit may be affected by
the BIT, BITT, CMPR, LST1, NORM, RTC, and STC instructions.

Words 2

Cycles

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI I Pl/DE PE/DI I PE/DE PR/DI

2 (br int-to-int) 2+p (int-to-ext) -
2+p (ext-to-int) 2+2p (ext-to-ext) -

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2
Destination on-chip ROM:

3 3 3+2p 3+2p 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p

False Condition:
Destination anywhere:

2 2 2+2p 2+2p 2

Cycle Timings for a Repeat Execution

not repeatable -
not repeatable

PR/DE

-
-

2

3

3+p

2

-

Example BBNZ PRG650 If TC = 1, 650 is loaded into the program
counter; otherwise, the program counter
is incremented by 2.

4-39

BBZ

Syntax

Operands

Execution

Encoding

Branch on Bit Equal to Zero

[<label>] BBZ <pma>[,{ind}[,<next ARP>]]

0 :s; pma :s; 65535
0 :s; next,ARP :s; 7

If test/control (TC) status bit = 0:
Then pma -+ PC;
Else (PC) + 2 -+ PC.

Modify AR(ARP) and ARP as specified.

Affected by TC bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 0 0 See Section 4.1

Program Memory Address

BBZ

0

Description The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address if TC = 0. Other­
wise, control passes to the next instruction. No AR or ARP modification
occurs if nothing is specified in those fields. Pma can be either a symbolic
or a numeric address. Note that the TC bit is affected by the BIT, BITT,
CMPR, LST1. NORM, RTC, and STC instructions.

' Words 2

Cycles

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI l Pl/DE PE/DI l PE/DE PR/DI PR/DE

2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p

False Condition:
Destination anywhere:

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable - -
not repeatable

Example BBZ PRG325 If TC = O, 325 is loaded into the program
counter; otherwise, the program counter
is incremented by 2.

4-40

BC

Syntax

Operands

Execution

Encoding

Branch on Carry CTMS320C25)

[<label>] BC <pma>[,{ind}[,<next ARP>]]

0 s pma s 65535
0 s next ARP s 7

If carry bit C = 1 :
Then pma -+ PC;
Else {PC) + 2 -+ PC.

Modify AR{ARP) and ARP as specified.

Affected by C.

BC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 See Section 4.1

Program Memory Address

Description The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address if the carry bit C
1. Otherwise, control passes to the next instruction. Note that no AR or
ARP modification occurs if nothing is specified in those fields. Pma can
be either a symbolic or a numeric address.

Note that the carry bit C is affected by all add, subtract, and accumulate
instructions as well as the ABS, LST1, NEG, RC, SC, rotate, and shift in­
structions. The carry bit is not affected by execution of BC, BNC, or non­
arithmetic instructions.

Words 2

Cycles

'C25

'C25

Example

·-
Cycle Timings for a Single Instruction

Pl/DI l Pl/DE l PE/DI l PE/DE l PR/DI l PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p

False Condition:

BC

Destination anywhere:
2

PRG512

2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

If the carry bit c = 1, 512 is loaded into
the program counter; otherwise, the PC is
incremented by 2.

4-41

BGEZ

Syntax

Operands

Execution

Encoding

Branch if Accumulator
Greater Than or Equal to Zero

[<label>] BGEZ <pma>[,{ind}[,<next ARP>]]

0 s pma s 65535
0 s next ARP s 7

If (ACC) ~ 0:
Then pma -+ PC;
Else (PC) + 2 -+ PC.

Modify AR (ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 0 0 See Section 4.1

Program Memory Address

BGEZ

0

Description The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the con -
tents of the accumulator are greater than or equal to zero. Otherwise,
control passes to the next instruction. Note that no AR or ARP modification
occurs if nothing is specified in those fields. Pma can be either a symbolic
or a numeric address.

Words 2

Cycles

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI I Pl/DE PE/DI I PE/DE PR/DI PR/DE

2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p

False Condition:
Destination anywhere:

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable - -
not repeatable

Example BGEZ PRG217 217 is loaded into the program counter if
the accumulator is greater than or equal
to zero.

4-42

BGZ

Syntax

Operands

Execution

Encoding

Branch if Accumulator Greater Than Zero

[<label>] BGZ <pma>[,{ind}[,<next ARP>]]

0 :s; pma :s; 65535
0 :s; next ARP :s; 7

If (ACC) > 0:
Then pma -+ PC;
Else (PC) + 2 -+ PC.

Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 0 0 See Section 4.1

Program Memory Address

BGZ

0

Description The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the con­
tents of the accumulator are greater than zero. Otherwise, control passes
to the next instruction. Note that no AR or ARP modification occurs if
nothing is specified in those fields. Pma can be either a symbolic or a nu­
meric address.

Words 2

Cycles

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI I Pl/DE PE/DI I PE/DE PR/DI

2 (br int-to-int) 2+p (int-to-ext) -
2+p (ext-to-int) 2+2p (ext-to-ext) -

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2
Destination on-chip ROM:

3 3 3+2p 3+2p 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p

False Condition:
Destination anywhere:

2 2 2+2p 2+2p 2

Cycle Timings for a Repeat Execution

not repeatable -
not repeatable

PR/DE
-
-

2

3

3+p

2

-

Example BGZ PRG342 342 is loaded into the program counter if
the accumulator is greater than zero.

4-43

BIOZ

Syntax

Operands

Execution

Encoding

Branch on 1/0 Status Equal to Zero

[<label>] BIOZ <pma>[,{ind}[,<next ARP>]]

0 s pma s 65535
0 s next ARP s 7

If BIO= 0:
Then pma -+ PC;
Else (PC) + 2 -+ PC.

Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 0 See Section 4.1

Program Memory Address

BIOZ

0

Description The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the BIO
pin is low. Otherwise, control passes to the next instruction. Note that no
AR or ARP modification occurs if nothing is specified in those fields. Pma
can be either a symbolic or a numeric address.

BIOZ in conjunction with the BIO pin can be used to test if a peripheral is
ready to send or receive data. Polling the BIO pin using BIOZ may be pre­
ferable to an interrupt when executing time-critical loops.

Words 2

Cycles

Example

4-44

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI l Pl/DE PE/DI l PE/DE PR/DI PR/DE

2 (br int-to-int) 2 +p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p

False Condition:
Destination anywhere:

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable - -
not repeatable

BIOZ PRG64 If the BIO- pin is active (low), then
a branch to location 64 occurs.

BIT Test Bit

Syntax
Direct: [<label>] BIT <dma>,<bit code>

Indirect: [<label>] BIT {ind}, <bit code>[, <next ARP>]

Operands

Execution

0 s dma s 1 27
0 s next ARP s 7
0 s bit code s 1 5

(PC) + 1 -+ PC
(dma bit at bit address (15-bit code)) -+TC.

Affects TC.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2

BIT

0

Direct:! __ o __ o __ l __ B_i_t _c_od_e __ l _o_l._ __ o_at_a_M_e_m_o_ry_A_dd_r_es_s __ ~

Indirect: .._I __ o __ o __ _._ __ B_i_t _c_od_e __ l _1~l..__ ___ se_e_S_e_c_ti_on_4._1 ___ _.

Description The BIT instruction copies the specified bit of the data memory value to the
TC bit of status register ST1. Note that the BITT, CM PR, LST1, and NORM
instructions also affect the TC bit in status register ST1. A bit code value
is specified that corresponds to a certain bit address in the instruction, as
given by the following table:

Words

Cycles

'20

'C25

'20

'C25

Bit Code
Bit Address 1110~ft

(LSB) 0 1 1 1
1 1 1 0
2 1 1 0 1
3 1 1 0 0
4 1 0 1 1
5 1 0 1 0
6 1 0 0 1
7 1 0 0 0
8 0 1 1 1
9 0 1 1 0

10 0 1 0 1
11 0 1 0 0
12 0 0 1 1
13 0 0 1 0
14 0 0 0 1

(MSB) 15 0 0 0 0

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI

1 2+d 1+p 2+d+p -
1 2+d 1 +p 2+d+p 1

Cycle Timings for a Repeat Execution

n 2n+nd n+p 2n+nd+p -
n 1 +n+nd n+p 1 +n+nd+p n

PR/DE

-
2+d

-
1 +n+nd

4-45

BIT

Example

4-46

BIT >0,>8
or
BIT *,8

Data
Memory
>F400

TC

Test Bit BIT

(DP = 488)

If current auxiliary register contains >F400.

Before Instruction After Instruction

Data
>7E98 Memory >7E98

>F400

>O I TC >1

•

BITT Test Bit Specified by T Register BITT

Syntax
Direct [<label>] SITT <dma>

Indirect: [<label>] SITT {ind}[,<next ARP>]

Operands 0 s dma s 127
0 s next ARP s 7

Execution (PC) + 1 -+ PC
(dma bit at bit address (15-T register(3-0))) -+TC

Affects TC.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct I 0 0 0 1 I 0 Data Memory Address I

Indirect: ._I _o ____ o ____ o _____ __. _ _._ ____ s_ee_s_e_c_ti_on_4_.1 ___ _,

Description The SITT instruction copies the specified bit of the data memory value to
the TC bit of status register ST1. Note that the BIT, CMPR, LST1, and
NORM instructions also affect the TC bit in status register ST1. The bit
address is specified by a bit code value contained in the LSBs of the T
register, as given in the following table:

Words

Cycles

'20

'C25

'20

'C25

Bit Address

(LSB) 0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

(MSB) 15

Bit Code
~£1Q

1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

0 1 1 1
0 1 1 0
0 1 0 1
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1
0 0 0 0

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI

1 2+d 1+p 2+d+p -
1 2+d 1+p 2+d+p 1

Cycle Timings for a Repeat Execution

n 2n+nd n+p 2n+nd+p -
n 1 +n+nd n+p 1 +n+nd+p n

PR/DE

-
2+d

-
1 +n+nd

4-47

BITT

Example

4-48

Test Bit Specified by T Register BITT

BITT >O

or
BITT *

Data
Memory
>7800

TR

TC

Value in T register points to bit 14 of
data word (DP= 240).

If current auxiliary register contains >7800.

Before Instruction After Instruction

Data
>4DC8 Memory

>7800
>4DC8

>1 TR >1

>O I TC >1

BLEZ

Syntax

Operands

Execution

Encoding

Branch if Accumulator
Less Than or Equal to Zero

[<label>] BLEZ <pma>[,{ind}[,<next ARP>]]

0 :S pma s 65535
0 :S next ARP :S 7

If (ACC) :S 0:
Then pma -+ PC;
Else (PC) + 2 -+ PC.

Modify AR(ARP) and ARP as specified.

BLEZ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 See Section 4.1

Program Memory Address

Description The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the con­
tents of the accumulator are less than or equal to zero. Otherwise, control
passes to the next instruction. Note that no AR or ARP modification occurs
if nothing is specified in those fields. Pma can be either a symbolic or a
numeric address.

Words 2

Cycles

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI l Pl/DE PE/DI l PE/DE PR/DI

2 (br int-to-int) 2+p (int-to-ext) -
2+p (ext-to-int) 2+2p (ext-to-ext) -

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2
Destination on-chip ROM:

3 3 3+2p 3+2p 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p

False Condition:
Destination anywhere:

2 2 2+2p 2+2p 2

Cycle Timings for a Repeat Execution

not repeatable -
not repeatable

PR/DE

-
-

2

3

3+p

2

-

Example BLEZ PRG63 63 is loaded into the program counter if
the accumulator is less than or equal to
zero.

4-49

Block Move
BLKD from Data Memory to Data Memory

Syntax
Direct: [<label>] BLKD <dma1 >,<dma2>

Indirect: [<label>] BLKD <dma1 >,{ind}[,<next ARP>]

Operands

Execution

0 s dma1 s 65535
0 s dma2 s 127
0 s next ARP s 7

TMS32020:

(PC) + 2 -+ TOS
dma1 -+PC

If (repeat counter) ¢ 0:
Then (dma1, addressed by PC) -+ dma2,
Modify AR(ARP) and ARP as specified,
(PC) + 1 -+ PC,
(repeat counter) - 1 -+ repeat counter.

Else (dma1, addressed by PC) -+ dma2
Modify AR(ARP) and ARP as specified.

· (TOS) -+PC

TMS320C25:

(PC) + 2-+ PC
(PFC) -+ MCS
dma1 -+PFC

If (repeat counter) ¢ 0:
Then (dma1, addressed by PFC) -+ dma2,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 -+ PFC,
(repeat counter) - 1 -+ repeat counter.

Else (dma1, addressed by PFC) -+ dma2
Modify AR(ARP) and ARP as specified.

(MCS) -+PFC

15 14 13 12 11 10 9 8 7 6 5 4 3 2

BLKD

0 Encoding

Direct: 0 0 Data Memory Address 2

Data Memory Address 1

Indirect: 1 0 See Section 4.1

Data Memory Address 1

Description Consecutive memory words are moved from a source data memory block
to a destination data memory block. The starting address (lowest) of the
source block is defined by the second word of the instruction. The starting
address of the destination block is defined by either the dma contained in
the opcode (for direct addressing) or the current AR (for indirect address­
ing). In the indirect addressing mode, both the current AR and ARP may
be modified in the usual manner. In the direct addressing mode, dma2 is
used as the destination address for the block move but is not modified upon

4-50

BLKD
Block Move

from Data Memory to Data Memory BLKD

repeated executions of the instruction. Thus, the contents of memory at the
dma2 address will be the same as the contents of memory at the last dma1
address in a repeat sequence. RPT or RPTK must be used with the BLKD
instruction, in the indirect addressing mode, if more than one word is to be
moved. The number of words to be moved is one greater than the number
contained in the repeat counter RPTC at the beginning of the instruction.
At the end of this instruction, the RPTC contains zero and, if using indirect
addressing, AR(ARP) will be modified to contain the address after the end
of the destination block. Note that the source and destination blocks do
NOT have to be entirely on-chip or off-chip. However, BLKD cannot be
used to transfer data from a memory-mapped register to any other location
in data memory.

The PC points to the instruction following BLKD after execution. Interrupts
are inhibited during a BLKD operation used with RPT or RPTK.

The BLKD instruction on the TMS32020 uses one level of stack. Therefore,
the value on the bottom of the stack is lost since the stack is pushed and
popped during the instruction operation.

Words 2

Cycles
Cycle Timings for a Single Instruction

Pl/DI 1 Pl/DE 1 PE/DI 1 PE/DE l PR/DI I PR/DE

'20 Data source internal:t
3 3+d 3+2p 3+d+2p - -

Data source external:t
3+d 4+2d 3+d+2p 4+2d+2p - -

'C25 Source data in on-chip RAM:
3 3+d 3+2p 3+d+2p 3 3+d

Source data in external memory:
4+d 4+2d 4+d+2p 4+2d+2p 4+d 4+2d

Cycle Timings for a Repeat Execution

'20 Data source internal:t
2+n 2+n+nd 2+n+2p 2+n+nd+2p - -

Data source external:t
2+n+nd 2+2n+2nd 2+n+nd 2+2n+2nd - -

+2p +2p

'C25 Source data in on-chip RAM:
2+n 2+n+nd 2+n+2p 2+n+nd+2p 2+n 2+n+nd

Source data in external memory:
3+n+nd 2+2n+2nd 3+n+nd 2+2n+2nd 3+n+nd 2+2n+2nd

+2p +2p

tColumn headings 'DI/DE' refer to data destination.

4-51

Block Move
BLKD from Data Memory to Data Memory BLKD

Example RPTK 2
BLKD >F400,*+ If current auxiliary register contains 1030.

dma1

Before Instruction After Instruction

Data Data
Memory >7F98 Memory >7F98
62464 62464

Data Data
Memory >FFE6 Memory >FFE6
62465 62465

Data Data
Memory >9522 Memory >9522
62466 62466

dma2

Before Instruction After Instruction

Data Data
Memory >8DEE Memory >7F98

1030 1030

Data Data
Memory

1031
>9315 Memory

1031
>FFE6

Data Data
Memory >2531 Memory >9522

1032 1032

4-52

Block Move
BLKP from Program Memory to Data Memory

Syntax
Direct: [<label>] BLKP <pma>,<dma>

Indirect: [<label>] BLKP <pma>,{ind}[,<next ARP>]

Operands

Execution

Encoding

0 :S pma :S 65535
0 :s; dma :s; 127
0 :s; next ARP :S 7

TMS32020:

(PC) + 2 -+ TOS
pma-+ PC

If (repeat counter) ¢. 0:
Then (pma, addressed by PC) -+ dma,
Modify AR(ARP) and ARP as specified,
(PC) + 1 -+ PC,
(repeat counter) - 1 -+ repeat counter.

Else (pma, addressed by PC) -+ dma
Modify AR(ARP) and ARP as specified.

(TOS) -+ PC

TMS320C25:

(PC) + 2 -+ PC
(PFC) -+ MCS
pma-+ PFC

If (repeat counter) ¢. 0:
Then (pma, addressed by PFC) -+ dma,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 -+ PFC,
(repeat counter) - 1 -+ repeat counter.

Else (pma, addressed by PFC) -+ dma
Modify AR(ARP) and ARP as specified.

(MCS) -+PFC

15 14 13 12 11 10 9 8 7 6 5 4 3 2

BLKP

0

0 0 0 Direct: 1----------------'---'----D_at_a_M_e_m_o_ry'"--A_dd_r_es_s __ --1

Program Memory Address

Indirect: 1 0 0 See Section 4.1

Program Memory Address

Description Consecutive memory words are moved from a source program memory
block to a destination data memory block. The starting address (lowest)
of the source block is defined by the second word of the instruction. The
starting address of the destination block is defined by either the dma con­
tained in the opcode (for direct addressing) or the current AR (for indirect
addressing). In the indirect addressing mode, both the ARP and the current
AR may be modified in the usual manner. In the direct addressing mode,
dma is used as the destination address for the block move but is not modi-

4-53

BLKP
Block Move

from Program Memory to Data Memory BLKP

tied by repeated executions of the instruction. Thus, the contents of mem­
ory at the dma address will be the same as the contents of memory at the
last pma address in a repeat sequence. RPT or RPTK must be used with the
BLKP instruction if more than one word is to be moved. The number of
words to be moved is one greater than the number contained in the repeat
counter RPTC at the beginning of the instruction. At the end of this in­
struction, the RPTC contains zero and, if using indirect addressing,
AR(ARP) will be modified to contain the address after the end of the des­
tination block. Note that source and destination blocks do NOT have to
be entirely on-chip or off-chip.

The PC points to the instruction following BLKP after execution. Interrupts
are inhibited during a BLKP operation.

The BLKD instruction on the TMS32020 uses one level of stack. Therefore,
the value on the bottom of the stack is lost since the stack is pushed and
popped during the instruction operation.

If the MP/MC pin on the TMS320C25 is low at the time of execution of this
instruction and the program memory address used is less than 4096, an
on-chip ROM location will be read.

Words 2

Cycles

Cycle Timings for a Single Instruction

Pl/DI l Pl/DE l PE/DI l PE/DE l PR/DI I PR/DE

'20 Program source internal:t
3 3+d 3+2p 3+d+2p - -

Program source external:t
3+p 4+d+p 3+3p 4+d+3p - -

'C25 Table in on-chip RAM:
3 3+d 4+2p 4+d+2p 4 4+d

Table in on-chip ROM:
4 4+d 4+2p 4+d+2p 4 4+d

Table in external memory:
4+p 4+d+p 4+3p 4+d+3p 4+p 4+d+p

Cycle Timings for a Repeat Execution

'20 Program source internal:t
2+n 2+n+nd 2+n+2p 2+n+nd+2p - -

Program source external:t
2+n+np 2+2n+nd 2+n+np 2+2n+nd+np - -

+np +2p +2p

'C25 Table in on-chip RAM:
2+n 2+n+nd 3+n+2p 3+n+nd+2p 3+n 3+n+nd

Table in on-chip ROM:
3+n 3+n+nd 3+n+2p 3+n+nd+2p 3+n 3+n+nd

Table in external memory:
3+n+np 2+2n+nd 3+n+np 2+2n+nd+np 3+n+np 2+2n+nd

+np +2p +2p +np

tColumn headings 'DI/DE' refer to data destination.

4-54

Block Move
BLKP from Program Memory to Data Memory BLKP

Example RPTK 2
BLKP 65120,*+ If current auxiliary register contains 2048.

pma

Before Instruction After Instruction

Program
Memory
65120

>A089
Program
Memory
65120

>A089

Program Program
Memory >2DCE Memory >2DCE
65121 65121

Program
Memory
65122

>3A9F
Program
Memory
65122

>3A9F

dma

Before Instruction After Instruction

Data Data
Memory >1234 Memory >A089

2048 2048

Data Data
Memory >2005 Memory >2DCE

2049 2049

Data Data
Memory

2050
>E98C Memory

2050
>3A9F

4-55

BLZ

Syntax

Operands

Execution

Encoding

Branch if Accumulator Less Than Zero

[<label>] BLZ <pma>[,{ind}[,<next ARP>]]

0 s pma :S 65535
0 s next ARP s 7

If (ACC) < 0:
Then pma --> PC;
Else (PC) + 2 -+ PC.

Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 0 See Section 4.1

Program Memory Address

BLZ

0

Description The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the con­
tents of the accumulator are less than zero. Otherwise, control passes to the
next instruction. Note that no AR or ARP modification occurs when no­
thing is specified in those fields. Pma can be either a symbolic or a numeric
address.

Words 2

Cycles

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI I Pl/DE PE/DI I PE/DE PR/DI

2 (br int-to-int) 2+p (int-to-ext) -
2+p (ext-to-int) 2+2p (ext-to-ext) -

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2
Destination on-chip ROM:

3 3 3+2p 3+2p 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p

False Condition:
Destination anywhere:

2 2 2+2p 2+2p 2

Cycle Timingli! for a Repeat Execution

not repeatable -
not repeatable

PR/DE

-
-

2

3

3+p

2

-

Example BLZ PRG481 481 is loaded into the program counter if
the accumulator is less than zero.

4-56

BNC

Syntax

Operands

Execution

Encoding

Description

Branch on No Carry (TMS320C25)

[<label>) BNC <pma>[,{ind}[,<nextARP>]]

0 :s; pma :s; 65535
0 :s; next ARP :s; 7

If carry bit C = 0:
Then pma --> PC;
Else (PC) + 2 --> PC.

Modify AR(ARP) and ARP as specified.

Affected by C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 0 See Section 4.1

Program Memory Address

BNC

0

The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address if the carry bit C =
0. Otherwise, control passes to the nexf instruction. Note that no AR or
ARP modification occurs when nothing is specified in those fields. Pma
can be either a symbolic or a numeric address.

Note that the carry bit C is affected by all add, subtract, and accumulate
instructions as well as the ABS, LST1, NEG, RC, SC, rotate, and shift in­
structions. The carry bit is not affected by execution of the BC, BNC, or
nonarithmetic instructions.

Words 2

Cycles

'C25

'C25

Example

Cycle Timings for a Single Instruction

Pl/DI l Pl/DE 1 PE/DI 1 PE/DE l PR/DI l PR/DE

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p

False Condition:

BNC

Destination anywhere:
2

PRG325

2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable

If the carry bit C = 0, 325 is loaded into
the program counter. Otherwise, the PC is
incremented by 2.

4-57

BNV

Syntax

Operands

Execution

Encoding

Branch if No Overflow

[<label>] BNV <pma>[,{ind}[,<next ARP>]]

0 S pma s 65535
0 s next ARP s 7

If overflow OV status bit = 0:
Then pma -+ PC;
Else (PC) + 2 -+ PC and 0 OV.

Modify AR(ARP) and ARP as specified.

Affects OV; affected by OV.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 See Section 4.1

Program Memory Address

BNV

0

Description The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the OV
(overflow flag) is clear. Otherwise, the OV is cleared, an.d control passes
to the next instruction. Note that no AR or ARP modification occurs if
nothing is specified in those fields. Pma can be either a symbolic or a nu­
meric address.

Words 2

Cycles

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI I Pl/DE PE/DI I PE/DE PR/DI

2 (br int-to-int) 2+p (int-to-ext) -
2+p (ext-to-int) 2+2p (ext-to-ext) -

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2
Destination on-chip ROM:

3 3 3+2p 3+2p 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p

False Condition:
Destination anywhere:

2 2 2+2p 2+2p 2

Cycle Timings for a Repeat Execution

not repeatable -
not repeatable

PR/DE

-
-

2

3

3+p

2

-

Example BNV PRG315 315 is loaded into the program counter
if the overflow flag is clear. OV is
cleared.

4-58

BNZ

Syntax

Operands

Execution

Encoding

Branch if Accumulator Not Equal to Zero

[<label>] BNZ <pma>[,{ind}[,<next ARP>]]

0 s; pma s; 65535
0 s; next ARP s; 7

If (ACC) ¢ 0:
Then pn.a PC;
Else (PC) + 2 PC.

Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 0 See Section 4.1

Program Memory Address

BNZ

0

Description The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the con­
tents of the accumulator are not equal to zero. Otherwise, control passes
to the next instruction. Note that no AR or ARP modification occurs if
nothing is specified in those fields. Pma can be either a symbolic or a nu­
meric address.

Words 2

Cycles

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI I Pl/DE PE/DI I PE/DE PR/DI PR/DE

2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p

False Condition:
Destination anywhere:

2 2 2+2p L+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable - -
not repeatable

Example BNZ PRG320 320 is loaded into the program counter
if the accumulator does not equal zero.

4-59

BV

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-60

'20

'C25

'20

'C25

Branch on Overflow

[<label>] BV <pma>[,{ind}[,<next ARP>]]

0 S pma s 65535
0 s next ARP s 7

If overflow (OV) status bit = 1:
Then pma -+ PC and 0 -+ OV;
Else (PC) + 2 -+ PC.

Modify AR(ARP) and ARP as specified.

Affects OV; affected by OV.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 0 0 0 See Section 4.1

Program Memory Address

BV

0

The current auxiliary register and ARP are modified as specified, and the
overflow flag is cleared. Control passes to the designated program memory
address (pma) if the OV (overflow flag) is set. Otherwise, control passes
to the next instruction. Note that no AR or ARP modification occurs if
nothing is specified in those fields. Pma can be either a symbolic or a nu­
meric address.

2

Cycle Timings for a Single Instruction

Pl/DI l Pl/DE PE/DI I PE/DE PR/DI PR/DE

2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p

False Condition:
Destination anywhere:

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable - -
not repeatable

BV PRG610 If an overflow has occurred since the over­
flow flag was last cleared, then 610 is
loaded in the program counter. OV is
cleared.

BZ

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

'20

'C25

'20

'C25

Branch if Accumulator Equals Zero

[<label>] BZ <pma>[,{ind}[,<next ARP>]]

0 s pma s 65535
0 s next ARP s 7

If (ACC) = 0:
Then pma __,. PC;
Else (PC) + 2 -+ PC.

Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 0 See Section 4.1

Program Memory Address

BZ

0

The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the con­
tents of the accumulator are equal to zero. Otherwise, control passes to the
next instruction. Note that no AR or ARP modification occurs if nothing is
specified in those fields. Pma can be either a symbolic or a numeric ad­
dress.

2

Cycle Timings for a Single Instruction

Pl/DI 1 Pl/DE PE/DI 1 PE/DE PR/DI PR/DE

2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2 2
Destination on-chip ROM:

3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p

False Condition:
Destination anywhere:

2 2 2+2p 2+2p 2 2

Cycle Timin~JS for a Repeat Execution

not repeatable - -
not repeatable

'"

BZ PRG102 102 is loaded into the program counter if
the accumulator is equal to zero.

4-61

CALA

Syntax

Operands

Execution

Encoding

Call Subroutine Indirect

[<label>] CALA

None

(PC) + 1 TOS
(ACC(15-0)) -+ PC

CALA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
~1-1--~--o---o------------0---0---0-----o---o------o---"O""l

Description The current program counter is incremented and pushed onto the top of the
stack. Then, the contents of the lower half of the accumulator are loaded
into the PC. The carry bit on the TMS320C25 is unaffected by this in­
struction.

The CALA instruction is used to perform computed subroutine calls.

Words

Cycles

'20
'C25

'20
'C25

Cycle Timings for a Single Instruction

Pl/DI l Pl/DE l PE/DI l PE/DE l PR/DI

2 J 2 J 2+p l 2+p 1 -
Destination on-chip RAM:

2 2 2+p 2+p 2
Destination on-chip ROM:

3 3 3+p 3+p 3
Destination external memory:

3+p 3+p 3+2p 3+2p 3+p

Cycle Timings for a Repeat Execution

not repeatable I -
not repeatable

Example CALA

4-62

l PR/DE

1 -
2

3

3+p

I -

CALA Call Subroutine Indirect CALA

Before Instruction After Instruction

PC >25 PC >83

ACC >83 ACC >83

Stack >32 Stack >26
(20) >75 (20) >32

>84 >75
>49 >84

Stack >32 Stack >26
(C25) >75 (C25) >32

>84 >75
>49 >84

>O >49
>O >O
>O >O
>O >O

4-63

CALL

Syntax

Operands

Execution

Encoding

Call Subroutine

[<label>] CALL <pma>[,{ind}[.<next ARP>]]

0 ::;; pma ::;; 65535
0 ::;; next ARP ::;; 7

(PC) + 2 TOS
pma PC

15 14 13 12 11 10 9 8 7; 6 5 4 3 2

0 See Section 4.1

Program Memory Address

CALL

0

Description The current auxiliary register and ARP are modified as specified, and the
PC (program counter) is incremented by two and pushed onto the top of
the stack. The specified program memory address (pma) is then loaded into
the PC. Note that no AR or ARP modification occurs if nothing is specified
in those fields. Pma can be either a symbolic or a numeric address.

Words 2

Cycles

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI l Pl/DE PE/DI l PE/DE PR/DI

2 (br int-to-int) 2+p (int-to-ext) -
2+p (ext-to-int) 2+2p (ext-to-ext) -

True Conditions:
Destination on-chip RAM:

2 2 2+2p 2+2p 2
Destination on-chip ROM:

3 3 3+2p 3+2p 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p

False Condition:
Destination anywhere:

2 2 2+2p 2+2p 2

Cycle Timings for a Repeat Execution

not repeatable -
not repeatable

Example CALL PRG109

4-64

PR/DE

-
-

2

3

3+p

2

-

CALL Call Subroutine

Before Instruction

PC >33

Stack >71
(20) >48

>16
>80

Stack >71
(C25) >48

>16
>80

>O
>O
>O
>O

PC

Stack
(20)

Stack
(C25)

CALL

After Instruction

>60

>35
>71
>48
>16

>35
>71
>48
>16
>80

>O
>O
>O

4-65

CMPL Complement Accumulator CMPL

Syntax [<label>] CMPL

Operands None

Execution (PC) + 1 - PC
{ACC) - ACC

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 1 0 0 0 0 0 0 0 1 I
Description The contents of the accumulator are replaced with its logical inversion

(one's complement).

Words

Cycles
Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

'20

'C25

'20

'C25

Example CMPL

4-66

1
1

n
n

1 1 +p 1+p - -
1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution

n n+p
n n+p

Before Instruction

ACC ~ I > F7982513

c

n+p - -
n+p n n

After Instruction

ACC ~I >0867DAEC

c

CMPR

Syntax

Operands

Execution

Encoding

Compare Auxiliary Register
with Auxiliary Register ARO CMPR

[<label>] CMPR <constant>

0 ~CM~ 3

(PC) + 1 -+ PC
Compare AR(ARP) to ARO, placing result in TC bit of status register ST1.

Affects TC.
Not affected by SXM; does not affect SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
11 0 0 0 0 0 0 0 I CM

Description The CMPR instruction performs the following comparisons dependent on

Words

Cycles

'20

'C25

'20

'C25

Example

the value of CM:

If CM = 00, test if AR(ARP) = ARO
If CM = 01, test if AR(ARP) < ARO
If CM = 10, test if AR(ARP) >ARO
If CM = 11, test if AR(ARP) ¢. ARO

If the result of a test is true, a one is loaded into the TC status bit. Other­
wise, TC is loaded with a zero. The auxiliary registers are treated as un­
signed integers in the comparison.

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1 +p - -
1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p - -
n n n+p n+p n n

CMPR 2 (ARP = 4)

Before Instruction After Instruction

ARO >FFFF ARO >FFFF

AR4 >7FFF AR4 >7FFF

TC >1 TC l>OI I

4-67

CNFD

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

'20

'C25

'20

'C25

Example

4-68

Configure Block as Data Memory CNFD

[<label>] CNFD

None

(PC) + 1 -+ PC
0 -+ RAM configuration control (CNF) status bit

Affects CNF.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

11 0 0 0 0 0 0 0 0 o o I
On-chip RAM block 0 is configured as data memory. The block is mapped
to locations 512 through 767 in data memory. This instruction is the
complement of the CNFP instruction and sets the CNF bit in status register
ST1 to a zero. CNF is also loaded by the CNFP and LST1 instructions.

On the TMS32020, the instruction fetch immediately following a CNFD or
CNFP instruction uses the old CNF value. The second fetch uses the new
CNF value, even if it is the fetch of the second word of a two-word in­
struction.

On the TMS320C25, the next two instruction fetches immediately follow­
ing a CNFD or CNFP instruction use the old value of CNF.

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1 1 +p 1 +p - -
1 1 1 +p 1 +p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p - -
n n n+p n+p n n

CNFD A zero is loaded into the CNF status bit, thus
configuring block BO as data memory (see
memory maps in Section 3. 4) .

CNFP

Syntax

Operands

Execution

Encoding

Configure Block as Program Memory CNFP

[<label>] CNFP

None

(PC) + 1 -+ PC
1 RAM configuration control (CNF) status bit

Affects CNF.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
I 1 o o o o o o o o o 1 I

Description On-chip RAM block 0 is configured as program memory. The block is
mapped to locations 65280 through 65535 in program memory space. This
instruction is the complement of the CNFD instruction and sets the CNF
bit in status register ST1 to a one. CNF is also loaded by the CNFD and
LST1 instruction.

Configuring this block as program memory allows the use of the program
counter as an address generator to access data from on-chip RAM. Used
in conjunction with the repeat instructions, this allows two data memory
locations to be addressed simultaneously, one from the auxiliary registers
and one from the program counter. Instructions that take advantage of this
feature are the MAC, MACO, BLKD, and BLKP instructions.

On the TMS32020, the instruction fetch immediately following a CNFD or
CNFP instruction uses the old CNF value. The second fetch uses the new
CNF value, even if it is the fetch of the second word of a two-word in­
struction.

On the TMS320C25, the next two instruction fetches immediately follow­
ing a CNFD or CNFP instruction use the old value of CNF.

Words 1

Cycles

Example

'20

'C25

'20

'C25

Pl/DI

1

1

n

n

CNFP

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1+p 1 +p - -
1 1 +p 1 +p 1 1

Cycle Timings for a Repeat Execution

n n+p n+p - -
n n+p n+p n n

The CNF bit is set to a logic 1, thus config­
uring block BO as program memory (see memory
maps in Section 3.4)

4-69

DINT

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

'20

'C25

'20

'C25

Example

4-70

Disable Interrupt DINT

[<label>] DINT

None

(PC) + 1 -> PC
1 -+ interrupt mode (INTM) status bit

Affects INTM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
I 1 o o ., o o o o o o o o

The interrupt mode (INTM) status bit is set to logic 1. Maskable interrupts
are disabled immediately after the DINT instruction executes. Note that the
LST instruction does not affect INTM.

The unmaskable interrupt, RS, is not disabled by this instruction, and the
interrupt mask register (IMR) is unaffected. Interrupts are also disabled by
a reset.

.---

Pl/DI

1

1

n

n

DINT

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1 +p 1+p - -
1 1 +p 1+p 1 1

Cycle Timings for a Repeat Execution

n n+p n+p - -
n n+p n+p n n

Maskable interrupts are disabled, and INTM is
set to one.

DMOV Data Move in Data Memory DMOV

Syntax
Direct: [<label>] DMOV <dma>

Indirect: [<label>] DMOV {ind}[,<next ARP>]

Operands

Execution

0 :s; dma :s; 127
0 :s; next ARP :s; 7

(PC) + 1 -> PC
(dma) --+ dma + 1

Affected by CNF.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I 0 0 0 0 0 Data Memory Address

Indirect: ~I _o ____ o ____ o ______ o~-~---s_e_e_s_e_c_ti_on_4_.1 ___ ~

Description The contents of the specified data memory address are copied into the
contents of the next higher address. DMOV works only within the on-chip
data RAM blocks BO, 81, and B2. It works within block BO if it is config­
ured as data memory, and the data move function is continuous across the
boundaries of blocks BO and B1; ie., it works for locations 512 to 1023.
The data move function cannot be used on external data memory. If used
on external data memory or memory-mapped registers, DMOV will read the
specified memory location but will perform no other operations.

Words

Cycles

'20

'C25

'20

'C25

When data is copied from the addressed location to the next higher lo­
cation, the contents of the addressed location remain unaltered.

The data move function is useful in implementing the z-1 delay encountered
in digital signal processing. The D MOV function is included in the LTD and
MACO instructions (see the LTD and MACO instructions for more infor­
mation).

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1 +p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 2n+nd n+p 2n+nd+p - -
n 1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

4-71

DMOV Data Move in Data Memory DMOV

Example DMOV DAT8 (DP=4)
or
DMOV * If current auxiliary register contains 520.

Before Instruction After Instruction

Data Data
Memory >43 Memory >43

520 520

Data Data
Memory

521
>2 Memory

521
>43

4-72

EINT

Syntax

Operands

Execution

Encoding

Enable Interrupt EINT

[<label>] EINT

None

(PC) + 1 -+ PC
0 --> interrupt-mode (I NTM) status bit

Affects INTM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
I , o o o o o o o o o o o I

Description The interrupt-mode flag (INTM) in the status register is cleared to logic 0.

Words

Cycles

'20

'C25

'20

'C25

Example

Maskable interrupts are enabled after the instruction following EINT exe­
cutes. This allows an interrupt service routine to re-enable interrupts and
execute a RET instruction before any other pending interrupts are pro­
cessed. Note that the LST instruction does not affect INTM. (See the DINT
instruction for further information.)

Pl/DI

1

1

n

n

EINT

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1+p 1+p - -
1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n+p n+p - -
n n+p n+p n n

Unmasked interrupts are enabled, and INTM is
set to zero.

4-73

FORT

Syntax

Operands

Execution

Encoding

Format Serial Port Registers

[<label>] FORT <constant>

Constant = 0 or 1

(PC) + 1 PC
Constant -+format (FO) status bit

Affects FO.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

11 0 0 0 0 0 0 0

FORT

0

Description The format (FO) status bit is loaded by the instruction with the LSB speci­
fied in the instruction. The FO bit is used to control the formatting of the
transmit and receive shift registers of the serial port. If FO = 0, the registers
are configured to receive/transmit 16-bit words. If FO = 1, the registers are
configured to receive/transmit 8-bit bytes. FO is set to zero on a reset.

Words

Cycles

Example

4-74

'20

'C25

'20

'C25

Pl/01

1

1

n

n

FORT 1

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1+p 1+p - -
1 1 +p 1+p 1 1

Cycle Timings for a Repeat Execution

n n+p n+p - -
n n+p n+p n n

The FO status bit is loaded with 1, making
the bit length of the serial port 8 bits.

IDLE

Syntax

Operands

Execution

Encoding

Idle Until Interrupt

[<label>] IDLE

None

TMS32020:

(PC) + 1 -+ PC

TMS320C25:

(PC) + 1 -+ PC
0 -+ interrupt mode (INTM) status bit

Affects INTM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

11 0 0 0 0 0 0

IDLE

0

Description The IDLE instruction forces the program being executed to wait until an
interrupt or reset occurs. The PC is incremented only once, and the device
remains in an idle state until interrupted. On the TMS32020, the INTM bit
must be set to zero in order for the maskable interrupts to be recognized.
On the TMS320C25, INTM is automatically set to zero. Execution of the
IDLE instruction causes the TMS320C25 to enter the powerdown mode
(see Section 3.6.7).

Words
Cycles

Example

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI I Pl/DE I PE/DI I PE/DE I PR/DI I PR/DE

1 (min waits for INT) J 1 +p (min waits for INT) J - l -
(Interrupt) destination on-chip ROM:

3 (min waits for INT)
(Interrupt) destination external memory:

3+2p (min waits for INT)

Cycle Timings for a Repeat Execution

not repeatable l - l -
not repeatable

IDLE The processor idles until a reset or unmasked
interrupt occurs.

4-75

IN Input Data from Port IN

Syntax
Direct: [<label>] IN <dma>,<PA>

Indirect: [<label>] IN {ind},<PA>[,<next ARP>]

Operands

Execution

0 :S dma :S 127
0 :S next ARP :S 7
0 :S port address PA :S 15

(PC) + 1 ... PC
Port address ... address bus A3-AO
0 ... address bus A15-A4
Data bus D15-DO ... dma

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Direct: I 0 0 0 I Port Address I o I Data Memory Address

Indirect: l._ __ o __ o __ o_,l...___P_o_rt_A_d_d_re_ss_ l _1 ... l ____ s_ee_sec_ti_on_4._1 __ __....

Description The IN instruction reads a 16-bit value from one of the external 1/0 ports
into the specified data memory location. The IS line goes low to indicate
an 1/0 access, and the STRB, R/W, and READY timings are the same as for
an external data memory read.

Words

Cycles

Example

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 +i 2+d+i 2+p+i 3+d+p+i - -
2+i 2+d+i 2+p+i 3+d+p+i 2+i 2+d+i

Cycle Timings for a Repeat Execution

n+ni 2n+nd+ni 2n+p+ni 3n+nd+p+ni - -
1 +n+ni 2n+nd+ni 1 +n+p+ni 1 +2n+nd+p 1 +n+ni 2n+nd+ni

+ni

IN STAT,PA5 Read in word from peripheral on port
address 5. Store in data memory
location STAT.

or

LRLK
LARP
IN

1,520
1
*-,PAl,O

Load ARl with decimal 520.
Load ARP with decimal 520.
Read in word from peripheral on' port
address 1. Store in data memory
location 520. Decrement ARl to 519.
Load the ARP with O.

LAC Load Accumulator with Shift

Syntax
Direct: [<label>] LAC <dma>[,<shift>]

Indirect: [<label>] LAC {ind}[,<shift>[,<nextARP>]]

Operands 0 :S dma :S 127
0 :S next ARP :S 7
0 :S shift :S 15 (defaults to 0)

Execution (PC) + 1 -+ PC
(dma) x 2shift --> ACC

If SXM = 1:
Then (dma) is sign-extended.

If SXM = 0:
Then (dma) is not sign-extended.

Affected by SXM.

Encoding 15 14 13 12 11 10 9 8
Direct: I 0 0 oj Shift

Indirect: I 0 0 o I Shift

7 6

I oj

I , I

5 4 3 2

Data Memory Address

See Section 4.1

LAC

0

Description The contents of the specified data memory address are left-shifted and
loaded into the accumulator. During shifting, low"order bits are zero-filled.
High-order bits are sign-extended if SXM = 1 and zeroed if SXM = 0.

Words 1

Cycles

Example

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction
Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1 +p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p - -
n 1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

LAC DAT6,4 (DP = 8)
or
LAC *,4 If current auxiliary register contains 1030.

Data
Memory

1030

Before Instruction

>1

ACC ~ I >12345678

c

Data
Memory

1030

After Instruction

>1

ACC ~l.__~~->-10__,
c

4-77

LACK

Syntax

Operands

Execution

Encoding

Load Accumulator Immediate Short

[<label>] LACK <constant>

0 s constant s 255

(PC) + 1 -+ PC
8-bit positive constant -+ ACC

Not affected by SXM.

15 14 13 12 11 10 9
I , o o o

8 7 6 5 4 3 2

o I 8- Bit Constant

LACK

0

Description The 8-bit constant is loaded into the accumulator right-justified. The upper
24 bits of the accumulator are zeroed (i.e., sign extension is suppressed).

Words

Cycles

Example

4-78

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1 1 +p 1 +p - -
1 1 1 +p 1+p 1 1

Cycle Timings· for a Repeat Execution

not repeatable - -
not repeatable

LACK >15

Before Instruction After Instruction

ACC ~I >31 ACC ~I >15

c c

LACT

Syntax

Load Accumulator with
Shift Specified by T Register LACT

Direct: [<label>) LACT <dma>
Indirect: [<label>] LACT {ind}[,<next ARP>]

Operands 0 s dma s 127
0 s next ARP s 7

Execution (PC) + 1 PC
(dma) x 2T register(3-0) ACC

If SXM = 1:
Then (dma) is sign-extended.

If SXM = 0:
Then (dma) is not sign-extended.

Affected by SXM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: j 0 0 0 0 0 ol 0 Data Memory Address

Indirect: j 0 0 0 0 0 ol See Section 4.1

Description The LACT instruction loads the accumulator with a data memory value that
has been left-shifted. The left-shift is specified by the four LSBs of the T
register, resulting is shift options from 0 to 15 bits. Using the T register's
contents as a shift code provides a variable shift mechanism.

Words

Cycles

Example

'20

'C25

'20

'C25

LACT may be used to denormalize a floating-point number if the actual
exponent is placed in the four LSBs of the T register and the mantissa is
referenced by. the data memory address. Note that this method of denor­
malization can only be used when the magnitude of the exponent is four
bits or less.

Pl/DI

LACT
or
LACT

1

1

n

n

DA Tl

*

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

2+d 1+p 2+d+p - -
2+d 1 +p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

2n+nd n+p 2n+nd+p - -
1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

(DP = 6)

If current auxiliary register contains 769.

4-79

LACT

4-80

Load Accumulator with
Shift Specified by T Register LACT

Data
Memory

769

Before Instruction

>1376

ACC ~ I >98F7EC83

c rl ~ -->-30_1_4~

Data
Memory

769

After Instruction

>1376

ACC ~~' __ >_1_3_7_60__,
c

T ,_, __ >_3_0-14~

LALK Load Accumulator Long Immediate with Shift LALK

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example 1

'20

'C25

'20

'C25

Example 2

[<label>] LALK <constant>[.<shift>]

1 6-bit constant
0 ::5 shift ::5 15 (defaults to 0)

(PC) + 2-> PC
Constant x 2shift -> ACC

lfSXM = 1:
Then -32768 ::5 constant ::5 32767.

If SXM = 0:
Then 0 ::5 constant ::5 65535.

Affected by SXM.

15 14 13 12 11 10 9 8 7 6

o I Shift 0 0

16- Bit Constant

5 4 3 2 0
0 0 0 0 0

The left-shifted 16-bit immediate value is loaded into the accumulator. The
shifted 16-bit constant is sign-extended if SXM = 1; otherwise, the high­
order bits of the accumulator (past the shift) are set to zero. Note that the
MSB of the accumulator can only be set if SXM = 1 and a negative number
is loaded. The shift count is optional and defaults to zero.

2

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

2

2

LALK

LALK

2 2+2p 2+2p - -
2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable - -
not repeatable

>F794,8 (SXM=l)

Before Instruction

ACC ~ I > 1 2345678

c

>F794,8 (SXM=O)

Before Instruction

ACC ~ I > 12345678

c

After Instruction

ACC ~ I > FFF79400

c

After Instruction

ACC ~ I > F79400

c

4-81

LAR load Auxiliary Register LAR

Syntax
Direct: [<label>] LAR <AR>,<dma>

Indirect: [<label>] LAR <AR>,{ind}[,<next ARP>]

Operands 0 s dma s 127
0 s auxiliary register AR s 7
0 s next ARP s 7

Execution (PC) + 1 -+ PC
(dma) -+ auxiliary register AR

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3' 2 0

Direct: I 0 0 0 I AR I o! Data Memory Address

Indirect: I 0 0 0 AR I , I See Section 4. 1

Description The contents of the specified data memory address are loaded into the
designated auxiliary register (AR).

Words

Cycles

Example 1

4-82

'20

'C25

'20

'C25

The LAR and SAR (store auxiliary register) instructions can be used to load
and store the auxiliary registers during subroutine calls and interrupts. If
an auxiliary register is not being used for indirect addressing, LAR and SAR
enable the register to be used as an additional storage register, especially
for swapping values between data memory locations without affecting the
contents of the accumulator.

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1 +p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 2n+nd n+p 2n+nd+p - -

n 2n+nd n+p 2n+nd+p n 2n+nd

LAR ARO,DATlO (DP = 4)

Before Instruction After Instruction

Data Data
Memory

522
>18 Memory

522
>18

ARO >6 ARO >18

LAR

Example 2

Load Auxiliary Register

LARP AR4
LAR AR4,*-

Data
Memory

617

AR4

Note:

Before Instruction

>32

>617

Data
Memory

617

AR4

LAR

After Instruction

>32

>32

LAR, in the indirect addressing mode, ignores any AR modifications if
the AR specified by the instruction is the same as that pointed to by the
ARP. Therefore, in Example 2, AR4 is not decremented after the LAR
instruction.

4-83

LARK

Syntax

Operands

Execution

Encoding

Load Auxiliary Register Immediate Short

[<label>] LARK <AR>, <constant>

0 s; constant s; 255
0 s; auxiliary register AR s; 7

(PC) + 1 -+ PC
8-bit constant -+ auxiliary register AR

15 14 13 12 11 10 9 8 7 6 5 4 3 2

I 1 0 0 0 I AR 8- Bit Constant

LARK

0

Description The 8-bit positive constant is loaded into the designated auxiliary register
(AR) right-justified and zero-filled (i.e., sign-extension suppressed).

Words

Cycles

'20

'C25

'20

'C25

Example

4-84

LARK is useful for loading an initial loop counter value into an aw~iliary
register for use with the BANZ instruction.

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p - -
1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

not repeatable - -
not repeatable

LARK AR0,>15

ARO

Before Instruction

>O ARO

After Instruction

>15

LARP

Syntax

Operands

Execution

Encoding

load Auxiliary Register Pointer

[<label>] LARP <constant>

0 s constant s 7

(PC) + 1 PC
(ARP) ARB
Constant ARP

Affects ARP and ARB.

LARP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 0 0 0 0 0 0 0 ARP

Description The auxiliary register pointer is loaded with the contents of the three LSBs
of the instruction (a 3-bit constant identifying the desired auxiliary register).
The old ARP is copied to the ARB field of status register ST1. ARP can also
be modified by the LST, LST1, and MAR instructions, as well as any in­
struction that is used in the indirect addressing mode.

Words

Cycles

'20

'C25

'20

'C25

Example

The LARP instruction is a subset of MAR; i.e., the opcode is the same as
MAR in the indirect addressing mode. The following instruction has the
same effect as LAR P:

~ Pl/DI

1

1

n

n

LARP 1

MAR *,<constant>

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1 +p 1 +p - -·
1 1 +p 1 +p 1 1

Cycle Timings for a Repeat Execution

n n+p n+p - -
n n+p n+p n n

Any succeeding instructions will use
auxiliary register ARl for indirect
addressing.

4-85

LOP Load Data Memory Page Pointer LOP

Syntax
Direct: [<label>] LDP <dma>

Indirect: [<label>] LDP {ind}[,<next ARP>]

Operands 0 s dma s 127
0 s next ARP s 7

Execution (PC) + 1 -+ PC
Nine LSBs of (dma) -+data page pointer register (DP) status bits

Affects DP.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I 0 0 0 0 ol 0 Data Memory Address

Indirect: I 0 0 0 0 o I See Section 4.1

Description The nine LSBs of the contents of the addressed data memory location are
loaded into the DP (data memory page pointer) register. The DP and 7-bit
data memory address are concatenated to form 16-bit data memory ad­
dresses. The DP may also be loaded by the LST and LDPK instructions.

Words

Cycles
Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

'20 1 2+d 1 +p 2+d+p - -
'C25 1 2+d 1 +p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

'20 n 2n+nd n+p 2n+nd+p - -
'C25 n 2n+nd n+p 2n+nd+p n 2n+nd

Example LDP DAT127 (DP = 511)
or
LDP * If current auxiliary register contains 65535.

Before Instruction After Instruction

Data Data
Memory
65535

>FEDC Memory
65535

>FEDC

DP I >1 FF I DP I ?ocl I

4-86

LDPK

Syntax

Operands

Execution

Encoding

Load Data Memory Page Pointer Immediate

[<label>] LDPK <constant>

0 s constant s 511

(PC) + 1 -+ PC
Constant -+ data memory page pointer (DP) status bits

Affects DP.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

I 1 0 0 0 0 DP

LDPK

0

Description The DP (data memory page pointer) register is loaded with a 9-bit constant.

Words

Cycles

'20

'C25

'20

'C25

Example

The DP and 7-bit data memory address are concatenated to form 16-bit
direct data memory addresses. DP ~ 8 specifies external data memory.
DP = 4 through 7 specifies on-chip RAM blocks BO or B1. Block B2 is
located in the upper 32 words of page 0. DP may also be loaded by the
LST and LDP instructions.

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1 1 +p 1 +p - -
1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

not repeatable - -
not repeatable

LDPK 64 The data page pointer is set to 64.

4-87

LPH Load High P Register LPH

Syntax
Direct: [<label>] LPH <dma>

Indirect: [<label>] LPH {ind}[,<next ARP>]

Operands 0 s; dma s; 127
0 s; next ARP s; 7

Execution (PC) + 1 -+ PC
(dma)-+ P register(31-16)

Encoding 1 5 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I O O 0 O O Data Memory Address I

Indirect: ._I _o ____ o ____ o __ o ____ ...____. ____ s_e_e_s_e_ct_io_n_4_._1 __ __,

Description The P register high-order bits are loaded with the contents of data memory.

Words

Cycles

'20

'C25

'20

'C25

Example

4-88

The low-order P register bits are unaffected.

The LPH instruction is particularly useful for restoring the high-order bits
of the P register after subroutine calls or interrupts.

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1 +p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 2n+nd n+p 2n+nd+p - -
n 1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

LPH DATO (DP = 4)
or
LPH * If current auxiliary register contains 512.

Before Instruction After Instruction

Data Data
Memory >F79C Memory >F79C

512 512

p >30079844 p >F79C9844

LRLK

Syntax

Operands

Execution

Encoding

Load Auxiliary Register Long Immediate

[<label>] LRLK <AR>,<constant>

0 s auxiliary register s 7
0 s constant s 65535

(PC) + 2 -+ PC
Constant -+ AR

Not affected by SXM; does not affect SXM.

15 14 13 12 11 10 9 8 7 6
o ol AR I 0 0

16-Bit Constant

5 4 3
0 0 0

LRLK

2 0
0 0

Description The 16-bit immediate value is loaded into the auxiliary register specified by
the AR field. The specified constant must be an unsigned integer, and its
value is not affected by SXM.

Words 2

Cycles

Pl/DI

2 '20

'C25
t---

'20

'C25

L

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

2 2+2p 2+2p - -
2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable - -
not repeatable

Example LRLK AR3,>3080

AR3

Before Instruction

>7F80 AR3

After Instruction

>3080

4-89

LST load Status Register STO LST

Syntax
Direct: [<label>] LST <dma>

Indirect: [<label>] LST {ind}[,<next ARP>]

Operands 0 s dma s 1 27
0 s next ARP s 7

Execution (PC) + 1 --+ PC

Encoding

(dma) --+status register STO

Affects ARP, QV, OVM, and DP.
Does not affect INTM or ARB.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I 0 0 0 0 0 o I 0 Data Memory Address I
Indirect: I 0 0 0 0 0 ol See Section 4.1

Description Status register STO is loaded with the addressed data memory value. Note
that the INTM (interrupt mode) bit is unaffected by LST. ARB is also un­
affected even though a new ARP is loaded. If a next ARP value is specified
via the indirect addressing mode, the specified value is ignored. Instead,
ARP is loaded with the value contained within the addressed data memory
word.

Words

Cycles

Example 1

4-90

'20

'C25

'20

'C25

The LST instruction is used to load status register STO after interrupts and
subroutine calls. The STO contains the status bits: OV (overflow flag) bit,
OVM (overflow mode) bit, INTM (interrupt mode} bit, ARP (auxiliary reg­
ister pointer), and DP (data memory page pointer). These bits were stored
(by the SST instruction) in the data memory word as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I ARP I ov I OVM I 1 I 1NTM I DP

Pl/DI

LARP
LST

1
1

n
n

0
*,l

Cycle Timings for a Single Instruction
Pl/DE PE/DI PE/DE PR/DI PR/DE
2+d 1+p 2+d+p - -
2+d 1 +p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution
2n+nd n+p 2n+nd+p - -
2n+nd n+p 2n+nd+p n 2n+nd

The data memory word addressed by the
contents of auxiliary register ARO is
loaded into status register STO, except
for the INTM bit. Note that even though
a next ARP value is specified, that value
is ignored, and even though a new ARP is
loaded, the old ARP is not loaded into ARB.

LST Load Status Register STO LST

Example 2 LST >60 (DP = 0)

Before Instruction After Instruction

Data Data
Memory >2404 Memory >2404

96 96

STO >6EOO STO >2604

ST1 >0580 ST1 >0580

Example 3 LARP AR4 (AR4 = >3FF)
LST *-

Before Instruction After Instruction

AR4 >3FF AR4 >3FE

Data Data
Memory

1023
>CE06 Memory

1023
>CE06

STO >FC04 STO >CC06

ST1 >E780 ST1 >E780

Example 4 LARP AR4 (AR4 = >3FF)
LST *-,1

Before Instruction After Instruction

AR4 >3FF AR4 >3FE

Data Data
Memory >EE04 Memory >EE04

1023 1023

STO >EEOO STO >EE04

ST1 >F780 ST1 >F780

4-91

LST1 Load Status Register ST1 LST1

Syntax
Direct: [<label>] LST1 <dma>

Indirect: [<label>] LST1 {ind}[,<next ARP>]

Operands

Execution

0 ::; dma ::; 127
0 ::; next ARP ::; 7

(PC) + 1 -+ PC
(dma) -+status register ST1
(ARB) -+ARP

Affects ARP, ARB, CNF, TC, SXM. XF, FO, TXM. and PM.
Affects C, HM, and FSM (TMS320C25)

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I 0 0 0 0 0 0 Data Memory Address I

Indirect: I _o ____ o ____ o __ o __ o ______...._ ___ se_e_s_e_c_tio_n_4_._, ___ _,

Description Status register ST1 is loaded with the data memory value. The bits of the
data memory value. which are loaded into ARB, are also loaded into ARP
to facilitate context switching. Note that if a next ARP value is specified
via the indirect addressing mode, the specified value is ignored.

Words

Cycles

4-92

'20

'C25

'20

'C25

LST1 is used to load status bits after interrupts and subroutine calls. ST1
contains the status bits: ARB (auxiliary register pointer buffer), CNF (RAM
configuration control) bit, TC (test/control) bit, SXM (sign-extension
mode) bit, XF (external flag) bit, FO (serial port format) bit, TXM (transmit
mode) bit. and the PM (product register shift mode) bit. ST1 on the
TMS320C25 also contains the status bits: C (carry) bit, HM (hold mode)
bit, and FSM (frame synchronization mode) bit. On the TMS32020, bits
5, 6, and 9 are one's. The bits loaded into status register ST1 from the data
memory word are as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I ARB I CNF I TC I sxM I ct I 1 PM I
ton the TMS32020, bits 5, 6, and 9 are one's.

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1 +p 2+d+p - -
1 2+d 1 +p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

" ~ 2n+nd n+p 2n+nd+p - -
n 2n+nd n+p 2n+nd+p n 2n+nd

LST1 Load Status Register ST1 LST1

Example 1 LARP 3
LSTl *- The data memory word addressed by the

contents of auxiliary register AR3
replaces the status bits of status
register STl, and AR3 is decremented.

Example 2 LSTl >61 (DP = 0)

Before Instruction After Instruction

Data Data
Memory >0580 Memory >0580

97 97

STO >ACOO STO >OCOO

ST1 >0581 ST1 >0580

Example 3 LARP AR4 (AR4 = >3FE)
LSTl *-

Before Instruction After Instruction

AR4 >3FE AR4 >3FD

Data Data
Memory >4F90 Memory >4F90

1022 1022

STO >FC04 STO >5C04

ST1 >E780 ST1 >4F90

Example 4 LARP AR4 (AR4 = >3FE)
LSTl *-,1

Before Instruction After Instruction

AR4 >3FE AR4 >3FD

Data Data
Memory >6190 Memory >6190

1022 1022

STO >FE04 STO >7E04

ST1 >0593 ST1 >6190

4-93

LT Load T Register

Syntax
Direct [<label>] LT <dma>

Indirect: [<label>] LT {ind}[,<next ARP>]

Operands 0 s dma s 127
0 s next ARP s 7

Execution (PC) + 1 -+ PC
(dma) -+ T register

Encoding 15 14 13 12

Direct: I 0 0

Indirect: I 0 0

11 10 9 8

0 ol

0 o I

7
0

LT

6 5 4 3 2 0

Data Memory Address

See Section 4.1

Description The T register is loaded with the contents of the specified data memory
address (dma). The LT instruction may be used to load the T register in
preparation for multiplication. See the LTA LTD, LTP, LTS, MPV, MPYK,
MPYA MPYS, and MPYU instructions.

Words

Cycles

Example

4-94

'20

'C25

'20

'C25

LT
or
LT

Pl/DI

1

1

n

n

DAT24

*

Data
Memory

1048

T

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

2+d 1+p 2+d+p - -
2+d 1 +p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

2n+nd i1+p 2n+nd+p - -
1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

(DP = 8)

If current auxiliary register contains 1048.

Before Instruction After Instruction

:~:aj
Data

Memory >62
1048

: : >I] T >62

LTA Load T Register and Accumulate Previous Product LTA

Syntax
Direct: [<label>] LTA <dma>

Indirect: [<label>] LTA {ind}[,<next ARP>]

Operands

Execution

0 :s; dma :s; 1 2.7
0 :S next ARP :s; 7

(PC) + 1 -+PC
(dma) -+ T register
(ACC) + (shifted P register) -+ ACC

Affects OV; affected by OVM and PM.
Affects C (TMS320C25).

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Direct: I o o o o Data Memory Address I

Indirect: ._I _o __ o _________ o ____,__ ___ s_ee_s_e_c_ti_on_4_.1 ___ __,

Descriptior

Words

Cycles

'20
'C25

'20
'C25

Example

The T register is loaded with the contents of the specified data memory
address (dma). The contents of the product register, shifted as defined by
the PM status bits, are added to the accumulator, with the result left in the
accumulator.

The function of the L TA instruction is included in the LTD instruction.

Pl/DI
1

1

n
n

LTA DAT36
or
LTA *

Cycle Timings for a Single Instruction
Pl/DE PE/DI PE/DE PR/DI PR/DE
2+d 1+p 2+d+p - -
2+d 1 +p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution
2n+nd n+p 2n+nd+p - -

1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

(DP = 6, PM = 0)

If current auxiliary register contains 804.

4-95

LTA Load T Register and Accumulate Previous Product LTA

Before Instruction After Instruction

Data Data
Memory >62 Memory >62

804 804

T I >3 T I >62

p I >F p I >F

ACC ~I >5 ACC @]I >14

c c

4-96

LTD

Syntax

Load T Register, Accumulate
Previous Product. and Move Data

Direct: [<label>] LTD <dma>

LTD

Indirect: [<label>] LTD {ind}[,<next ARP>]

Operands

Execution

0 S dma S 127
0 S next ARP s 7

(PC) + 1 - PC
(dma) ..,. T register
(dma) - dma + 1
(ACC) + (shifted P register) ..,. ACC

Affects OV; affected by OVM and PM.
Affects C (TMS320C25).

Encoding 15 14 13 1 2 11 1 0 9 8 7 6 5 4 3 2 0

Direct: I O O 0 Data Memory Address

Indirect: I 0 o ______________. ____ s_e_e_s_e_ct_io_n_4_._1 __ ___.

Description The T register is loaded with the contents of the specified data memory
address (dma). The contents of the P register, shifted as defined by the
PM status bits, are added to the accumulator, and the result is placed in the
accumulator. The contents of the specified data memory address are also
copied to the next higher data memory address.

Words

Cycles

'20

'C25

'20
'C25

This instruction is valid for blocks B1 and B2, and is also valid for block
BO if block BO is configured as data memory. The data move function is
continuous across the boundary of blocks BO and B1, but cannot be used
with external data memory or memory-mapped registers. This function is
described under the instruction DMOV. Note that if used with external data
memory, the function of LTD is identical to that of LT A.

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1 +p 2+d+p - -
1 2+d 1 +p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 2n+nd n+p 2n+nd+p - -
n 1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

4-97

LTD

Example

4-98

Load T Register, Accumulate
Previous Product, and Move Data

LTD DAT126 (DP= 7, PM= 0)
or

LTD

LTD * If current auxiliary register contains 1022.

Before Instruction After Instruction

Data Data
Memory

1022
>62 Memory

1022
>62

Data Data
Memory

1023
>O Memory

1023
>62

T I >3 T I >62

p I >F p I >F

ACC ~I >5 ACC @l I >14

c c

LTP
Load T Register and Store
P Register in Accumulator LTP

Syntax
Direct: [<label>] LTP <dma>

Indirect: [<label>) LTP {ind}[,<next ARP>]

Operands

Execution

0 s dma s 127
0 s next ARP s 7

(PC) + 1 -+ PC
(dma) -+ T register
(shifted P register) -+ ACC

Affected by PM.

Encoding 15 14 13 12 11 10 9

Direct: I o O

8 7

o I o
6 5 4 3 2 0

Data Memory Address

Indirect: l.__o __ o ___________ o__.l _ _._ ____ s_e_e_S_e_c_tio_n_4_.1 ___ __,

Description The T register is loaded with the contents of the addressed data memory
location, and the product register is stored in the accumulator. The shift at
the output of the product register is controlled by the PM status bits.

Words

Cycles

Example

'20

'C25

'20

'C25

LTP
or
LTP

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 2n+nd n+p 2n+nd+p - -
n 1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

DAT36 (DP = 6, PM = 0)

* If current auxiliary register contains 804.

Before Instruction After Instruction

Data Data
Memory I >62 Memory >62

804 804

T I >3 T I >62

p I >F p I >F

ACC f81 I >5 ACC f81 I >F

c c

4-99

LTS Load T Register, Subtract Previous Product

Syntax
Direct: [<label>] LTS <dma>

Indirect: [<label>] LTS {ind}[,<next ARP>]

Operands

Execution

O's dma s 127
0 s next ARP s 7

(PC) + 1 PC
(dma) T register
(ACC) - (shifted P register) -> ACC

Affects OV; affected by PM and OVM.
Affects C (TMS320C25).

LTS

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I 0 0 0 0 Data Memory Address

Indirect: I _o ____ o ______ o ____ _._ _ _.__ ___ s_e_e_S_e_c_ti_o_n _4_.1 ___ __.

Description The T register is loaded with the contents of the addressed data memory
location. The contents of the product register, shifted as defined by the
contents of the PM status bits, are subtracted from the accumulator. The
result is left in the accumulator.

Words

Cycles
Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

'20 1 2+d 1 +p 2+d+p - -
'C25 1 2+d 1 +p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

'20 n 2n+nd n+p 2n+nd+p - -
'C25 n 1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

Example LTS DAT36 (DP = 6, PM = 0)
or
LTS * If current auxiliary register contains 804.

Before Instruction After Instruction

Data Data
Memory >62 Memory >62

804 804

T I >3 T I >62

p I >F p I >F

ACC ~I >5 ACC @JI >FFFFFFF6

c c

4-100

MAC Multiply and Accumulate

Syntax
Direct: [<label>] MAC <dma>,<pma>

Indirect: [<label>) MAC <pma>,{ind}[.<next ARP>]

Operands

Execution

Encoding

0 s; pma s; 65535
0 s; dma s; 1 27
0 s; next ARP s; 7

TMS32020:

(PC) + 2 -+ TOS
(pma) -+ PC

If (repeat counter) ¢ 0:
Then (ACC) + (shifted P register) -+ ACC,
(dma) -+ T register,
(dma) x (pma, addressed by PC) -+ P register,
Modify AR(ARP) and ARP as specified,
(PC) + 1 -+ PC,
(repeat counter) - 1 -+ repeat counter.

Else (ACC) + (shifted P register) -+ ACC
(dma) -+ T register
(dma) x (pma, addressed by PC) -+ P register
Modify AR(ARP) and ARP as specified.

(TOS) -+ PC

Affects OV; affected by OVM and PM.

TMS320C25:

(PC) + 2 -+ PC
(PFC) -+ MCS
(pma) -+ PFC

If (repeat counter) ¢ 0:
Then (ACC) + (shifted P register) -+ ACC,
(dma) -+ T register,
(dma) x (pma, addressed by PFC) -+ P register,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 -+ PFC,
(repeat counter) - 1 -+ repeat counter.

Else (ACC) + (shifted P register) -+ ACC
(dma) -+ T register
(dma) x (pma, addressed by PFC) -+ P register
Modify AR(ARP) and ARP as specified.

(MCS) -+PFC

Affects C and OV; affected by OVM and PM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

MAC

0
Direct: O O O O Data Memory Address

1--~~~~~~~~~~~~--'-~-'-~~~~~~.:__~~~~-1

Program Memory Address

Indirect: o 0 0 See Section 4.1

Program Memory Address

4-101

MAC

Description

Multiply and Accumulate MAC

The MAC instruction multiplies a data memory value (specified by dma)
by a program memory value (specified by pma). It also adds the previous
product, shifted as defined by the PM status bits, to the accumulator. The
data and program memory locations on the TMS320C25 may be any non­
reserved, on-chip or off-chip memory locations. If the program memory is
block BO of on-chip RAM, then the CNF bit must be set to one. On the
TMS32020, data and program memory locations must reside on-chip. Note
that on both devices, the upper eight bits of the program memory address
should be set to >FF in order to address BO program RAM, and the upper
six bits of dma should be set to 0 to address a location below 1024. When
used in the direct addressing mode, the dma cannot be modified during
repetition of the instruction.

When the MAC instruction is repeated, the program memory address con­
tained in the PC/PFC is incremented by one during its operation. This en­
ables accessing a series of operands in memory. MAC is useful for long
sum-of-products operations, since MAC becomes a single-cycle instruction
once the RPT pipeline is started.

Words 2

Cycles

Example

4-102

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI I Pl/DE f PE/DI f PE/DE

±
PR/DI f PR/DE

3 1 N/A 3+2p N/A - -
Table in on-chip RAM:

3 4+d 4+2p 5+d+2p 4 5+d
Table in on-chip ROM:

4 5+d 4+2p 5+d+2p 4 5+d
Table in external memory:

4+p 5+d+p 4+3p 5+d+3p 4+p 5+d+p

Cycle Timings for a Repeat Execution

2+n 1 N/A l 2+n+2p J N/A l - l -
Table in on-chip RAM:

2+n 2+2n+nd 3+n+2p 3+2n+nd+2p 3+n 3+2n+nd
Table in on-chip ROM:

3+n 3+2n+nd 3+n+2p 3+2n+nd+2p 3+n 3+2n+nd
Table in external memory.
3+n+np 3+2n+nd 3+n+np 3+2n+nd+np 3+n+np 3+2n+nd

+np +2p +2p +np

SPM
CNFP
LARP
LRLK
RPTK
MAC

3

1
1,768
255

Select a shift-right-by-6 mode on PR output.
Config block BO as program memory (>FFXX).
Use ARl to address block Bl.

>FFOO,*+

Point to lowest location in RAM block Bl.
Compute 256 sum-of-product operations.
Multiply/accumulate and increment ARl.

MAC Multiply and Accumulate MAC

The following example shows register and memory contents before and af­
ter the third step repeat loop:

Before Instruction After Instruction

AR1 >302 AR1 >303

RPT >FD RPT >FC

PC/PFC >FF02 PC/PFC >FF03

Data Data
Memory >23 Memory >23

770 770

Program
I Memory

65282
>FAAA

Program
Memory
65282

>FAAA

p I >458972 p I >FFFF453E

ACC !8l I >723EC41 ACC @11 >7250266

c c

4-103

MACO Multiply and Accumulate with Data Move

Syntax
Direct: [<label>] MACO <dma>,<pma>

Indirect: [<label>] MACO <pma>,{ind}[.<next ARP>]

Operands

Execution

0 s pma s 65535
0 s dma s 127
0 s next ARP s 7

TMS32020:

(PC) + 2 -+ TOS
(pma) -+ PC

If (repeat counter) ¢ 0:
Then (ACC) + (shifted P register) -+ ACC,
(dma) -+ T register,
(dma) x (pma, addressed by PC) -+ P register,
Modify AR(ARP) and ARP as specified,
(PC) + 1 -+ PC,
(repeat counter) - 1 -+ repeat counter.

Else (ACC) + (shifted P register) -+ ACC
(dma) -+ T register ·
(dma) x (pma, addressed by PC) -+ P register
Modify AR(ARP) and ARP as specified.

(TOS) -+PC

Affects OV; affected by OVM and PM.

TMS320C25:

(PC) + 2-+ PC
(PFC) -+ MCS
(pma) -+ PFC

If (repeat counter) ¢ 0:
Then (ACC) + (shifted P register) -+ ACC,
(dma) -+ T register,
(dma) x (pma, addressed by PFC) -+ P register,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 -+ PFC,
(repeat counter) - 1 -+ repeat counter.

Else (ACC) + (shifted P register) -+ ACC
(dma) -+ T register
(dma) x (pma, addressed by PFC) -+ P register
Modify AR(ARP) and ARP as specified.

(MCS) -+PFC

Affects C and OV; affected by OVM and PM.

MACO

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Direct: o 0 0 0 0 Data Memory Address

Program Memory Address

Indirect: o o o o See Section 4.1
1--~~~~~~~~~~~~-'---'~~~~~~~~~~~~

Program Memory Address

4-104

MACO Multiply and Accumulate with Data Move MACO

Description The MACO instruction multiplies a data memory value (specified by dma)
by a program memory value (specified by pma). It also adds the previous
product, shifted as defined by the PM status bits, to the accumulator. The
data and program memory locations on the TMS320C25 may be any non­
reserved, on-chip or off-chip memory locations. If the program memory is
block BO of on-chip RAM, then the CNF bit must be set to one. On the
TMS32020, data and program memory locations must reside on-chip. Note
that on both devices, the upper eight bits of the program memory address
should be set to >FF in order to address BO program RAM, and the upper
six bits of dma should be set to 0 to address a location below 1024. When
used in the direct addressing mode, the dma cannot be modified during
repetition of the instruction. If MACO addresses one of the memory­
mapped registers or external memory as a data memory location, the effect
of the instruction will be that of a MAC instruction (see the DMOV in­
struction description).

MACO functions in the same manner as MAC, with the addition of data
move for block BO, B1, or B2. Otherwise, the effects are the same as for
MAC. This feature makes MACO useful for applications such as convo­
lution and transversal filtering.

When the MACO instruction is repeated, the program memory address
contained in the PC/PFC is incremented by one during its operation. This
enables accessing a series of operands in memory. When used with RPT
or RPTK, MACO becomes a single-cycle instruction once the RPT pipeline
is started.

Words 2

Cycles

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI l Pl/DE l PE/DI l PE/DE l PR/DI

3 I N/A I 3+2p I N/A I -
Table in on-chip RAM:

3 4+d 4+2p 5+d+2p 4
Table in on-chip ROM:

4 5+d 4+2p 5+d+2p 4
Table in external memory:

4+p 5+d+p 4+3p 5+d+3p 4+p

Cycle Timings for a Repeat Execution

2+n I N/A I 2+n+2p I N/A I -
Table in on-chip RAM:

2+n 2+2n+nd 3+n+2p 3+2n+nd+2p 3+n
Table in on-chip ROM:

3+n 3+2n+nd 3+n+2p 3+2n+nd+2p 3+n
Table in external memory:
3+n+np 3+2n+nd 3+n+np 3+2n+nd+np 3+n+np

+np +2p +2p

l PR/DE

I -
5+d

5+d

5+d+p

I -
3+2n+nd

3+2n+nd

3+2n+nd
+np

4-105

MACO

Example

4-106

Multiply and Accumulate with Data Move MACO

SPM
SOVM
CNFP
LARP
LRLK
RPTK

MACD

0

3
3,1023
255

>FFOO,*-

Select no shift mode on PR output.
Set overflow mode.

Config block BO as program memory (>FFXX).
Use AR3 to address block Bl.
Point to highest location in RAM block Bl.
Compute 1 sample of a length-256
convolution.
Multiply/accumulate, shift data word in
block Bl, and decrement AR3.

The foll.owing example shows register and memory contents before and af­
ter the third step repeat loop:

Before Instruction After Instruction

AR1 >3FD AR1 >3FC

RPT >FD RPT >FC

PC/PFC >FF02 PC/PFC >FF03

Data Data
Memory >23 Memory >23

1021 1021

Data Data
Memory

1022
>7FC Memory

1022
>23

Program
Memory
65282 I >FAAA

Program
Memory
65282 I >FAAA

p I >458972 p I >FFFF453E

ACC ~I >723EC41 ACC @l I >76975B3

c c

Note:

The data move function for MACO can only occur within on-chip data
RAM blocks BO, B1, and B2.

MAR Modify Auxiliary Register MAR

Syntax
Direct [<label>] MAR <dma>

Indirect: [<label>] MAR {ind}[,<next ARP>]

Operands

Execution

Encoding

0 S dma s 127
0 s next ARP s 7

(PC) + 1 -+ PC
Modifies ARP, AR(ARP) as specified by the indirect addressing field
(acts as a NOP in direct addressing).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct I 0 0 0 0 0 Data Memory Address I
Indirect: I 0 0 0 0 See Section 4.1

Description

Words

Cycles

Example 1

'20

'C25

'20

'C25

Example 2

The MAR instruction acts as a no-operation instruction in the direct ad­
dressing mode. In the indirect addressing mode, the auxiliary registers and
the ARP are modified; however, no use is made of the memory being refer­
enced. MAR is used only to modify the auxiliary registers or the ARP. The
old ARP is copied to the ARB field of status register ST1. Note that any
operation that MAR performs can also be performed with any instruction
that supports indirect addressing. ARP may also be loaded by an LST in­
struction.

In the direct addressing mode, MAR is a NOP. Also, the instruction LARP
is a subset of MAR (i.e., MAR *,4 performs the same function as LARP 4).

Pl/DI

1

1

n

n

MAR *,1

ARP

MAR *-

AR1

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1 +p 1+p - -
1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n+p n+p - -
n n+p n+p n n

Load the ARP with 1

Before lm;~rnction After Instruction

I o I ARP

Decrement current auxiliary register (in this
case, ARl)

Before Instruction

>35 AR1

After Instruction

>34

4-107

MAR

Example 3

4-108

Modify Auxiliary Register MAR

MAR *+,5 Increment current auxiliary register (ARl) and
load ARP with 5.

AR1

ARP

Before Instruction

>34 AR1

ARP

After Instruction

>35

5

MPV Multiply MPV

Syntax
Direct: [<label>] MPY <dma>

Indirect: [<label>] MPY {ind}[,<next ARP>]

Operands 0 :s; dma :s; 127
0 :s; next ARP :s; 7

Execution (PC) + 1 -+ PC
(T register) x (dma) -+ P register

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Direct: I 0 0 0 0 ol 0 Data Memory Address

Indirect: I 0 0 0 0 ol See Section 4.1

Description The contents of the T register are multiplied by the contents of the ad­
dressed data memory location. The result is placed in the P register.

Words

Cycles

Example

'20
'C25

'20
'C25

MPY
or
MPY

Pl/DI
1
1

n
n

DAT13

*

Data
Memory

1037

T

p

Cycle Timings for a Single Instruction
Pl/DE PE/DI PE/DE PR/DI PR/DE
2+d 1+p 2+d+p - -
2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution
2n+nd n+p 2n+nd+p - -

1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

(DP = 8)

If current auxiliary register contains 1037.

Before Instruction After Instruction

Data
>7 Memory

1037
>7

>6 T >6

>36 p >2A

4-109

MPYA
Multiply and Accumulate

Previous Product CTMS320C26) MPYA

Syntax
Direct: [<label>] MPYA <dma>

Indirect: [<label>] MPYA {ind}[,<next ARP>]

Operands 0 s dma s 127
0 s next ARP s 7

Execution (PC) + 1 -+ PC
(ACC) + (shifted P register) -+ ACC
(T register) x (dma) -+ P register

Affects C and OV; affected by OVM and PM.

Encoding 15 14 13 12 11 10 9 8 7 6

Direct: I 0 0 0 ol 0

Indirect: I 0 0 0 o I

5 4 3 2 0

Data Memory Address I
See Section 4.1

Description The contents of the T register are multiplied by the contents of the ad­
dressed data memory location. The result is placed in the P register. The
previous product, shifted as defined by the PM status bits, is also added to
the accumulator.

Words

Cycles
Cycle Timings for a Single Instruction

Pl/DI I Pl/DE I PE/DI I PE/DE I PR/DI I PR/DE

'C25 1 l 2+d l 1+p l 2+d+p l 1 l 2+d

Cycle Timings for a Repeat Execution

'C25 n l 1 +n+nd l n+p 11 +n+nd+p I n l 1 +n+nd

Example MPYA DAT13 (DP = 6, PM = 0)
or
MPYA * If current auxiliary register contains 781.

Before Instruction After Instruction

Data Data
>1 I Memory >7 Memory

781 781

T I >6 T I >6]

p I >36 p I >2A I
ACC ~I >54 ACC @I I >SA I

c c

4-110

MPYK

Syntax

Operands

Execution

Encoding

Multiply Immediate

[<label>] MPYK <constant>

-4096 :5 constant ::5 4095
-212 :5 constant ::5 212 - 1

(PC) + 1 -> PC
(T register) x constant -> P register

Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

I 1 0 1 I 13-Bit Constant

MPYK

0

Description The contents of the T register are multiplied by the signed, 13-bit constant.

Words

Cycles

Example

'20
'C25

'20
'C25

The result is loaded into the P register. The immediate field is right-justified
and sign-extended before multiplication, regardless of SXM.

Pl/DI

1

1

MPYK -9

T

p

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1+p 1+p - -
1 1 +p 1 +p 1 1

Cycle Timings for a Repeat Execution

not repeatable

not repeatable

Before Instruction

>7

>2A

T

p

- -

After Instruction

>7

>FFFFFFC1

4-111

MPYS
Multiply and Subtract

Previous Product (TMS320C25) MPYS

Syntax
Direct: [<label>) MPYS <dma>

Indirect: [<label>) MPYS {ind}[,<next ARP>]

Operands

Execution

0 s dma s 127
0 s next ARP s 7

(PC) + 1 -+ PC
(ACC) - (shifted P register) -+ ACC
(T register) x (dma) -+ P register

Affects C and OV; affected by OVM and PM.

Encoding 15 14 13 12 11 10 9 8 7 6

Direct: I o O 0 0

5 4 3 2 0

Data Memory Address

Indirect: I _o __ o _______ o ____ ~_.__ ___ s_ee_s_e_c_ti_o_n _4_.1 ___ ~

Description The contents of the T register are multiplied by the contents of the ad­
dressed data. memory location. The result is placed in the P register. The
previous product, shifted as defined by the PM status bits, is also sub­
tracted from the accumulator.

Words

Cycles
Cycle Timings for a Single Instruction

Pl/DI l Pl/DE l PE/DI l PE/DE I PR/DI l PR/DE

'C25 1 I 2+d I 1 +p l 2+d+p I 1 l 2+d

Cycle Timings for a Repeat Execution

'C25 n l 1 +n+nd l n+p J 1 +n+nd+p l n l 1 +n+nd

Example MPYS DAT13 (DP = 6, PM = 0)
or
MPYS * If current auxiliary register contains 781.

Before Instruction After Instruction

Data Data
Memory >7 Memory >7

781 781

T I >6 T I >6

p I >36 p I >2A

ACC ~I >54 ACC OJ I >1E

c c

4-112

MPYU Multiply Unsigned (TMS320C25) MPYU

Syntax
Direct: [<label>] MPYU <dma>

Indirect: [<label>] MPYU {ind}[,<next ARP>]

Operands 0 s dma s 127
0 s next ARP s 7

Execution (PC) + 1 -+ PC
Unsigned (T register) x unsigned (dma) -+ P register

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I 0 0 0 Data Memory Address

Indirect: l~ ____ o __ o _______ __..___. ____ s_ee_Se_c_t_io_n_4_.1 ___ __.

Description The unsigned contents of the T register are multiplied by the unsigned
contents of the addressed data memory location. The result is placed in the
P register. Note that the multiplier acts as a 17 x 17-bit signed multiplier for
this instruction, with the MSB of both operands forced to zero.

Words

Cycles

'C25

'C25

Example

The shifter at the output of the P register will always invoke sign-extension
on the P register when PM = 3 (right-shift by 6 mode). Therefore, this shift
mode should not be used if unsigned products are desired.

The MPYU instruction is particularly useful for computing multiple-preci­
sion products, such as when multiplying two 32-bit numbers to yield a
64-bit product.

Cycle Timings for a Single Instruction
Pl/DI l Pl/DE 1 PE/DI l PE!E_E l PR/DI 1 PR/DE

1 l 2+d 1 1 +p l 2+d+p l 1 l 2+d
Cycle Timings for a Repeat Execution

n l 1 +n+nd J n+p J 1 +n+nd+p J n J 1 +n+nd

MPYU DAT16 (DP = 4)
or
MPYU * If current auxiliary register contains 528.

Before Instruction After Instruction

Data Data
Memory >FFFF Memory >FFFF

528 528

T >FFFF T >FFFF

p >1 p >FFFE0001

4-113

NEG

Syntax

Operands

Execution

Encoding

De~cription

Words

Cycles

'20

'C25

'20

'C25

Example

4-114

Negate Accumulator

[<label>] NEG

None

(PC) + 1 -+ PC
(ACC) x -1 -+ ACC

Affects OV; affected by OVM.
Affects C (TMS320C25).

15 14 13 12 11 10 9 8 7 6 5 4 3 2

11 0 0 0 0 0 0 0 0

NEG

0

1 I
The contents of the accumulator are replaced with its arithmetic comple­
ment (two's complement). The OV bit is set when taking the NEG of
>80000000. If OVM = 1, the accumulator contents are replaced with
> 7FFFFFFF. If OVM = 0, the result is >80000000. The carry bit C on the
TMS320C25 is reset to zero by this instruction for all nonzero values of the
accumulator, and set to one if the accumulator equals zero.

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1

1

n

n

NEG

1 1 +p 1 +p - -
1 1 +p 1+p 1 1

Cycle Timings for a Repeat Execution

n n+p

n n+p

Before Instruction

ACC ~ I > FFFFF228

c

n+p - -
n+p n n

After Instruction

ACC @I I >008

c

NOP

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

'20

'C25

'20

'C25

Example

[<label>] NOP

None

(PC) + 1 -+ PC

No Operation

15 14 13 12 11 10 9 8 7 6 5 4 3 2

NOP

0
I o o o o o o o o o o o o I
No operation is performed. The NOP instruction affects only the PC. NOP
functions in the same manner as the MAR instruction in the direct ad­
dressing mode; NOP has the same opcode as MAR in the direct addressing
mode with dma = 0.

The NOP instruction is useful as a pad or temporary instruction during
program development.

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1 1 +p 1 +p - -
1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p - -
n n n+p n+p n n

NOP

4-115

NORM

Syntax

Operands

Execution

Encoding

Normalize Contents of Accumulator

[<label>] NORM (TMS32020)
[<label>] NORM {ind} (TMS320C25)

None

TMS32020:

(PC) + 1 -+ PC

If (ACC(31)).XOR.(ACC(30)) = 0:
Then TC-+ 0,

(ACC) x 2 -+ ACC,
Modify AR(ARP) as specified;

Else TC-+ 1.

Affects TC; affected by TC.

TMS320C25:

(PC) + 1 -+ PC

If (ACC) = 0:
Then TC-+ 1;
Else, if (ACC(31)).XOR.(ACC(30)) = 0:
Then TC-+ 0,

(ACC) x 2 -+ ACC,
Modify AR(ARP) as specified;

Else TC-+ 1.

Affects TC; affected by TC.

NORM

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
~,-,-------0---0-------------0--~ -M-o-d-if_y_A_R__,,.__0 ___ 0 ______ 2_)

Description The NORM instruction is provided for normalizing a signed number that 1s
contained in the accumulator. Normalizing a fixed-point number separates
it into a mantissa and an exponent. To do this, the magnitude of a sign­
extended number must be found. ACC bit 31 is exclusive-ORed with ACC
bit 30 to determine if bit 30 is part of the magnitude or part of the sign ex­
tension. If they are the same, they are both sign bits, and the accumulator
is left-shifted to eliminate the extra sign bit. The AR(ARP) is modified as
specified to generate the magnitude of the exponent. It is assumed that
AR(ARP) is initialized before the normalization begins. The default mod­
ification of the AR(ARP) is an increment.

Words

4-116

Multiple executions of the NORM instruction may be required to completely
normalize a 32-bit number in the accumulator. Although using NORM with
RPT or RPTK does not cause execution of NORM to "fall out" of the repeat
loop automatically when the normalization is complete, no operation is
performed for the remainder of the repeat loop. Note that NORM functions
on both positive and negative two's-complement numbers.

NORM

Cycles

Example 1

'20

'C25

20

'C25

Example 2

Normalize Contents of Accumulator NORM

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1 +p - -
1 1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n n

n n

31-Bit Normalization:

LARP
LARK

LOOP NORM
BBZ

1
1,0
*+
LOOP

15-Bit Normalization:

LARP
LARK
RPTK

NORM

1
1,15
14

·•-

n+p n+p -
n+p n+p n

Use ARl for exponent sturage.
Clear out exponent counter.
One bit is normalized.

-
n

If TC = O, magnitude not found yet.

Use ARl to store the exponent.
Initialize exponent counter.
15-bit normalization is specified
(yielding a 4-bit exponent and 16-bit
mantissa).
NORM automatically stops shifting
when the first significant magnitude
bit is found, performing NOPs for the
remainder of the repeat loop.

The first method is used to normalize a 32-bit number and yields a 5-bit
exponent magnitude. The second method is used to normalize a 16-bit
number and yields a 4-bit exponent magnitude. If the number requires only
a small amount of normalization, the first method may be preferable to the
second. This results because Example 1 runs only until normalization is
complete. Example 2 always executes all 1 5 cycles of the repeat loop.
Specifically, Example 1 is more efficient if the number requires five or less
shifts. If the number requires six or more shifts, Example 2 is more efficient.

NQte:

The TMS32020 accepts only the NORM instruction (no operand).
Source code compatibility of the TMS320C25 with the TMS32020 al­
lows the NORM instruction to also be used without a specified oper­
and. In that case, any comments on the same line as the instruction will
be interpreted as the operand. If the first character is an asterisk (*),
then the instruction will be assembled as NORM * with no auxiliary
register modification taking place upon execution. The user is therefore
advised to replace the NORM instructions with NORM •+ when the
default modification of increment is desired.

The resulting value in the auxiliary register will not be the real exponent
of the number for all modification options. However, it can always be
used to obtain the exponent.

4-117

OR OR with Accumulator OR

Syntax
Direct: [<label>] OR <dma>

Indirect: [<label>] OR {ind}[,<next ARP>]

Operands

Execution

0 :S dma s 127
0 :S next ARP :S 7

(PC) + 1 -+ PC
(ACC(15-0)) .OR.dma -+ ACC(15-0)
(ACC(31-16)) -+ ACC(31-16)

Not affected by SXM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 O

Direct: I 0 0 O 0 O Data Memory Address I
Indirect: l...._o ____ o __ o ______ o __ _.___....._ ___ se_e_s_e_c_ti_on_4._1 ___ J

Description The low-order bits of the accumulator are ORed with the contents of the
addressed data memory location. The high-order bits of the accumulator
are ORed with all zeroes. Therefore, the upper half of the accumulator is
unaffected by this instruction.

Words

Cycles

'20

'C25

'20

'C25

Example

4-118

Pl/DI

1

1

n

n

OR DAT8
or
OR *

Data
Memory

1032

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

2+d 1+p 2+d+p - -
2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

2n+nd n+p 2n+nd+p - -
1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

(DP = 8)

Where current auxiliary register contains 1032.

Before Instruction

>FOOO
Data

Memory
1032

After Instruction

>FOOO

ACC ~~I __ >_10_0_0_0_2~
c

ACC ~ l.___>_1 o_F_o_o2___,
c

ORK

Syntax

Operands

Execution

Encoding

OR Immediate with Accumulator with Shift

[<label>] ORK <constant>[.<shift>]

16-bit constant
0 :::; shift :::; 15 (defaults to 0)

(PC) + 2-+ PC
(ACC(30-0)).0R.[constant x 2shift] -+ ACC(30-0)
(ACC(31)) -+ ACC(31)

Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5

11 o I Shift 0 0 0

16-Bit Constant

4 3
0 0

ORK

2 0

0

Description The left-shifted 16-bit immediate constant is ORed with the accumulator.

Words

Cycles

'20
'C25

'20
'C25

Example

The result is left in the accumulator. Low-order bits below and high-order
bits above the shifted value are treated as zeroes. The corresponding bits
of the accumulator are unaffected. Note that the most-significant bit of the
accumulator is not affected, regardless of the shift code value.

2

Cycle Timings for a Single Instruction
Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

2 2 2+2p 2+2p - -
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution
not repeatable - -

not repeatable

ORK >FFFF,8

Before Instruction

ACC ~ I >12345678

c

After Instruction

ACC ~ I >12FFFF78

c

4-119

OUT Output Data to Port OUT

Syntax
Direct: [<label>) OUT <dma>,<PA>

Indirect: [<label>] OUT {ind},<PA>[,<next ARP>]

Operands

Execution

0 s dma s 127
0 s next ARP s 7
0 s port address PA s 15

(PC) + 1 -+ PC
Port address PA -+ address bus A3-AO
0 -+ address bus A15-A4
(dma)-+ data bus D15-DO

Encoding

Direct:

15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 Port Address 0 Data Memory Address

0

Indirect: ... I ______ o_._l __ P_o_rt_A_d_d_re_s_s _ _.__1__...l ____ s_e_e_S_e_c_ti_o_n_4_.1 ___ _

Description The OUT instruction writes a 16-bit value from a data memory location to
the specified 1/0 port. The IS line goes low to indicate an 1/0 access, and
the STRB, R/W, and READY timings are the same as for an external data
memory write. OUT is a single-cycle instruction when in the Pl/DI memory
configuration (see Appendix E).

Words

Cycles

Example

4-120

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 +i 2+d+i 2+p+i 3+d+p+i - -
1 +i 2+d+i 2+p+i 3+d+p+i 1 +i 2+d+i

Cycle Timings for a Repeat Execution

n+ni 2n+nd+ni 2n+p+ni 3n+nd+p+ni - -
n+ni 2n+nd+ni 1 +n+p+ni 1 +2n+nd+p n+ni 2n+nd+ni

+ni

OUT >78,7 (DP = 4) Output data word stored in data
memory location >78 to peripheral on
port address 7.

OUT *,>F Output data word referenced by current
auxiliary register to peripheral on port
address >F ..

PAC

Syntax

Operands

Execution

Encoding

Load Accumulator with P Register PAC

[<label>] PAC

None

(PC) + 1 PC
(shifted P register) ACC

Affected by PM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
I 1 o o o o o o o o o I

Description The contents of the P register are loaded into the accumulator, shifted as
specified by the PM status bits.

Words

Cycles

Example

'20

'C25

'20

'C25

Pl/DI

1

1

n

n

PAC

p

ACC

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1 +p 1+p - -
1 1+p 1 +p 1 1

Cycle Timings for a Repeat Execution

n n+p n+p - -
n n+p n+p n n

(PM = 0)

Before Instruction After Instruction

I >144 p I >144

~I >23 ACC ~I >144

c c

4-121

POP

Syntax

Operands

Execution

Encoding

Pop Top of Stack to Low Accumulator

[<label>] POP

None

(PC) + 1 -+ PC
(TOS) -+ ACC(15-0)
0-+ ACC(31-16)
Pop stack one level.

15 14 13 12 11 10 9 8 7 6 5 4 3 2
I , o o o o o o

POP

0
o , I

Description The contents of the top of the stack (TOS) are copied to the low accu­
mulator, and the stack popped after the contents are copjed. The upper half
of the accumulator is set to all zeros.

Words

Cycles

'20

'C25

'20

'C25

The hardware stack is a last-in, first-out stack with four\(TMS32020) or
eight (TMS320C25) locations. Any time a pop occurs, every stack value
is copied to the next higher stack location, and the top value is removed
from the stack. After a pop, the bottom two stack words will have the same
value. Because each stack value is copied, if more than three/seven pops
(due to POP, POPD, or RET instructions) occur before any pushes occur,
all levels of the stack contain the same value. No provision exists to check
stack lJnderflow.

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

2 2 2+p 2+p - -
1 1 1 +p 1+p 1 1

Cycle Timings for a Repeat Execution

2n 2n 2n+p 2n+p - -
n n n+p n+p n n

Example POP

4-122

POP Pop Top of Stack to Low Accumulator

Before Instruction

ACC ~I >82

Stack
(20)

Stack
(C25)

c
>45
>16

>7
>33

>45
>16

>7
>33
>42
>56
>37
>61

After Instruction

ACC ~ (>45

Stack
(20)

Stack
(C25)

c
>16

>7
>33
>33

>16
>7

>33
>42
>56
>37
>61
>61

POP

4-123

POPD Pop Top of Stack to Data Memory POPD

Syntax
Direct: [<label>] POPD <dma>

Indirect: [<label>] POPD {ind}[,<next ARP>]

Operands 0 s dma s 127
0 s next ARP s 7

Execution (PC) + 1 -+ PC
(TOS) dma
POP stack one level.

Encoding 15 14 13 12 11

Direct: I 0

Indirect: I 0

10 9 8 7

0 ol 0

0 ol

6 5 4 3 2 0

Data Memory Address

See Section 4.1

Description The value from the top of the stack is transferred into the data memory lo­
cation specified by the instruction. The values are also popped in the lower
three (TMS32020) or seven locations (TMS320C25) of the stack. The
hardware stack is described in the previous instruction POP. The lowest
stack location remains unaffected. No provision exists to check stack un­
derflow.

Words

Cycles

'20
'C25

'20
'C25

Example

4-124

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI

2 2+d 2+p 2+d+p -
1 1 +d 1+p 2+d+p 1

Cycle Timings for a Repeat Execution

2n 2n+nd
n n+nd

POPD DATlOO (DP = 8)
or

2n+p 2n+nd+p -
n+p 1 +n+nd+p n

PR/DE

-
1 +d

-
n+nd

POPD * If current auxiliary register contains 1124.

POPD Pop Top of Stack to Data Memory POPD

Before Instruction After Instruction

Data Data
Memory

1124
>55 Memory

1124
>92

Stack >92 Stack >72
(20) >72 (20) >8

>8 >44
>44 >44

Stack >92 Stack >72
(C25) >72 (C25) >8

>8 >44
>44 >81
>81 >75
>75 >32
>32 >AA
>AA >AA

4-125

PSHD Push Data Memory Value onto Stack PSHD

Syntax
Direct: [<label>] PSHD <dma>

Indirect: [<label>] PSHD {ind}[,<next ARP>]

Operands 0 s dma s 127
0 s next ARP s 7

Execution (dma) -+ TOS
(PC) + 1 -+ PC
Push all stack locations down one level.

Encoding 15 14 13 12 11 10 9 8 7

Direct: I 0 0 0 0 ol 0

Indirect: I 0 0 0 0 oj

6 5 4 3 2 0

Data Memory Address I
See Section 4.1

Description The value from the data memory location specified by the instruction is
transferred to the top of the stack. The values are also pushed down in the
lower three (TMS32020) or seven locations (TMS320C25) of the stack,
as described in the instruction PUSH. The lowest stack location is lost.

Words

Cycles

'20

'C25

'20

'C25

Example

4-126

1

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI

2 2+d 2+p 2+d+p -
1 2+d 1+p 2+d+p 1

Cycle Timings for a Repeat Execution

2n 2n+nd 2n+p
n 1 +n+nd n+p

PSHD DAT127 (DP = 3)
or

2n+nd+p -
1+n+nd+p n

PR/DE

-
2+d

-
1 +n+nd

PSHD * If current auxiliary register contains 511.

PSHD Push Data Memory Value onto Stack PSHD

Data
Memory

511

Stack
(20)

Stack
(C25)

Before Instruction

>65

>2
>33
>78
>99

>2
>33
>78
>99
>42
>50

>O
>O

Data
Memory

511

Stack
(20)

Stack
(C25)

After Instruction

>65

>65
>2

>33
>78

>65
>2

>33
>78
>99
>42
>50

>O

4-127

PUSH

Syntax

Operands

Execution

Encoding

Push Low Accumulator onto Stack

[<label>] PUSH

None

(PC) + 1 -+ PC
Push all stack locations down one level.
(ACC(15-0)) -+ TOS

15 14 13 12 11 10 9 8 7 6 5 4 3 2
I , o o o o o o

PUSH

0
o ol

Description The contents of the lower half of the accumulator are copied onto the top
of the hardware stack. The stack is pushed down before the accumulator
value is copied.

Words

Cycles

'20

'C25

'20

'C25

Example

4-128

The hardware stack is a last-in, first-out stack with four (TMS32020) or
eight locations (TMS320C25). If more than four/eight pushes (due to
CALA, CALL, PSHD, PUSH, or TRAP instructions) occur before a pop, the
first data values written will be lost with each succeeding push.

Pl/DI

2

1

2n

n

PUSH

ACC

Stack
(20)

Stack
(C25)

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

2 2+p 2+p - -
1 1+p 1 +p 1 1

Cycle Timings for a Repeat Execution

2n 2n+p

n n+p

Before Instruction

~I >7 I
c

[]] 5
3
0

>2
>5
>3
>O

>12
>86
>54
>3F

2n+p

n+p

ACC

Stack
(20)

Stack
(C25)

- -
n n

After Instruction

~I >7 I
c

[]] 2
5
3

>7
>2
>5
>3
>O

>12
>86
>54

RC

Syntax

Operands

Execution

Encoding

Reset Carry Bit (TMS320C25)

[<label>] RC

None

(PC) + 1 -+PC
0 -+ carry bit C in status register ST1

Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2
,, 0 0 0 0 0 0 0

RC

0

o ol
Description The carry bit C in status register ST1 is reset to logic zero. The carry bit

may also be loaded directly by the LST1 and SC instructions.

Words 1

Cycles
Cycle Timings for a Single lmn:ruction

Pl/DI I Pl/DE I PE/DI I PE/DE I PR/DI I PR/DE

'C25 1 l 1 l 1+p l 1 +p l 1 l 1

Cycle Timings for a Repeat Execution

'C25 n I n I n+p I n+p I n I n

Example RC The carry bit C is reset to logic zero.

4-129

RET

Syntax

Operand$

Execution

Encoding

Return from Subroutine

[<label>] RET

None

(TOS) -+PC
Pop stack one level.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

11 0 0 0 0 0 0 0

RET

0

o I
Description The contents of the top stack register are copied into the program counter.

Words

Cycles

Example

4-130

'20

'C25

'20

'C25

The stack is then popped one level. RET is used with CALA and CALL for
subroutines. -

Cycle Timings for a Single Instruction

P~/DI I Pl/DE I PE/DI I PE/DE I PR/DI I PR/DE

2 l 2 l 2+p 1 2+p l - l -
Destination on-chip RAM:

2 2 2+p 2+p 2 2
Destination on-chip ROM:

3 3 3+p 3+p 3 3
Destination external memory:

3+p 3+p 3+2p 3+2p 3+p 3+p

Cycle Timings for a Repeat Execution

not repeatable l - I -
not repeatable

RET

Before Instruction After Instruction

PC >96 PC >37

Stack >37 Stack >45
(20) >45 (20) >75

>75 >21
>21 >21

Stack >37 Stack >45
(C25) >45 (C25) >75

>75 >21
>21 >3F
>3F >45
>45 >6E
>6E >6E
>6E >6E

RFSM

Syntax

Operands

Execution

Encoding

Reset Serial Port Frame
Synchronization Mode CTMS320C25)

[<label>] RFSM

None

(PC) + 1 -> PC
0 -> FSM status bit in status register ST1

Affects FSM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

11 0 0 0 0 0 0

RFSM

0

ol
Description The RFSM status bit resets the FSM status bit to logic zero. In this mode,

external FSR pulses are not required to initiate the receive operation for
each word received, but rather only one FSR pulse is required to initiate a
"continuous mode" of operation. The same holds true for FSX when TXM
= 0. After the first FSR/FSX pulse, these inputs are then in a "don't care"
state. If TXM = 1, FSX is pulsed the first time DXR is loaded, but remains
low thereafter. See Section 3.9 for further details on the operation of the
serial port. FSM may also be loaded by the LST1 and SFSM instructions.

Words

Cycles

Pl/DI I
'C25 1 l
'C25 n l

Example RFSM

Cycle Timings for a Single Instruction

Pl/DE I PE/DI I PE/DE I PR/DI I PR/DE

1 l 1+p l 1+p l 1 l 1

Cycle Timings for a Repeat Execution

n l n+p I n+p I n I n

FSM is reset, putting the serial port
in a mode of operation where frame
synchronization pulses are not required.
This allows a continuous bit stream to
be transmitted/received without FSX/FSR
pulses every 8/16 bits.

4-131

RHM

Syntax

Operands

Execution

Encoding

Reset Hold Mode {TMS320C25) RHM

[<label>] RHM

None

(PC) + 1 -> PC
0 -> HM status bit in status register ST1

Affects HM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
11 0 0 0 0 0 0 o ol

Description The RHM instruction resets the HM status bit to logic zero. In this mode,
the TMS320C2x is not halted during the assertion of HOLD when executing
from on-chip program memory (either RAM or ROM), but instead places
its external buses in the high-impedance state and continues execution
until an external access must be made. External access can mean (in addi­
tion to the normal connotation) the following conditions:

Words

Cycles

Example

4-132

'C25

'C25

MP /'M'"C CNF PC

0 0 PC 4096

0 1 4096 s PC s 65279

0 Any PC value (normal
TMS32020-type hold mode)

PCs 65279

HM can also be loaded by the LST1 and SHM instructions.

Pl/DI 1
1 I
n 1

RHM

Cycle Timings for a Single Instruction

Pl/DE I PE/DI I PE/DE 1 PR/DI 1 PR/DE

1 I 1 +p I 1+p I 1 I 1

Cycle Timings for a Repeat Execution

n I n+p I n+p I n J n

HM is reset, implementing the TMS320C25
hold mode for on-chip program execution.

ROL

Syntax

Operands

Execution

Encoding

Rotate Accumulator Left CTMS320C25)

[<label>] AOL

None

(PC) + 1 -+PC
(ACC(31)) -+ C
(ACC(30-0)) -+ ACC(31 -1)
(C, before AOL) ACC(O)

Affects C.
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2
11 0 0 0 0 0 0

ROL

1 0

o ol
Description The AOL instruction rotates the accumulator left one bit. The MSB is

shifted into the carry bit, and the value of the carry bit from before the exe­
cution of the instruction is shifted into the LSB.

Words 1

Cycles
Cycle Timings for a Single Instruction

Pl/DI I Pl/DE I PE/DI I PE/DE I PR/DI I PR/DE

'C25 1

'C25 n

Example ROL

l 1 l 1 +p l 1 +p l 1 l 1

Cycle Timings for a Repeat Execution

l n l n+p

Before Instruction

ACC El I > 80001234

c

l n+p l n l n

After Instruction

ACC El I >60002469

c

4-133

ROB

Syntax

Operands

Execution

Encoding

Rotate Accumulator Right (TMS320C25)

[<label>] ROR

None

(PC) + 1 PC
(ACC(O)) -+ C
(ACC(31 -1)) -+ ACC(30-0)
(C, before ROR) -+ ACC(31)

Affects C.
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

11 0 0 0 0 0 0

ROR

0

o 1 I
Description The ROR instruction rotates the accumulator right one bit. The LSB is

shifted into the carry bit, and the value of the carry bit from before the exe­
cution of the instruction is shifted into the MSB.

Words

Cycles
Cycle Timings for a Single Instruction

Pl/DI I Pl/DE I PE/DI l PE/DE l PR/DI l PR/DE

'C25 1

'C25 n

Example ROR

4-134

J 1 l 1+p l 1 +p I 1 I 1

Cycle Timings for a Repeat Execution

l n l n+p

Before Instruction

ACC @l I > 80001 234

c

l n+p l n l n

After Instruction

ACC @l I >5800091 A

c

ROVM

Syntax

Operands

Execution

Encoding

Reset Overflow Mode

[<label>] ROVM

None

(PC) + 1 PC
0 OVM status bit in status register STO

Affects OVM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

11 0 0 0 0 0 0 0 0 0

ROVM

0

ol
Description The OVM status bit is reset to logic zero, which disables the overflow mode.

Words

Cycles

Example

'20

'C25

'20

'C25

If an overflow occurs with OVM reset, the OV (overflow flag) is set, and the
overflowed result is placed in the accumulator.

OVM may also be loaded by the LST and SOVM instructions.

Pl/DI

1

1

n
n

ROVM

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1+p 1+p - -
1 1+p 1+p 1 1

Cycle Timings for a Repeat Execution

n

n

n+p n+p - -
n+p n+p n n

The overflow mode bit OVM is reset,
disabling the overflow mode on any
subsequent arithmetic operations.

4-135

RPT

Syntax

Repeat Instruction as
Specified by Data Memory Value RPT

Direct: [<label>] RPT <dma>
Indirect: [<label>] RPT {ind}[,<next ARP>]

Operands

Execution

0 :S dma :S 1 27
0 :S next ARP :S 7

(PC) + 1 -+ PC
(dma(7-0)) -+ RPTC

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I 0 O 0 O 0 Data Memory Address I
Indirect: ._I _o ____ o __ o ____ o ____ _.___.__ ___ ._s_ee_s_e_c_ti_on_4_.1 ___ _,

Description The eight LSBs of the addressed data memory value are loaded into the
repeat counter (RPTC). This causes the following instruction to be exe­
cuted one time more than the number loaded into the RPTC (provided that
it is a repeatable instruction). Interrupts are masked out until the next in­
struction has been executed the specified number of times. (Interrupts
cannot be allowed during the RPT/next instruction sequence, because the
RPTC cannot be saved during a context switch.) The RPTC counter is
cleared on a RS.

Words

Cycles

'20
'C25

'20
'C25

Example

4-136

RPT and RPTK are especially useful for repeating instructions, such as
BLKP, BLKD, IN, MAC, MACO, NORM, OUT, TBLR, TBLW, and others.

Cycle Timings for a Single Instruction
Pl/DI Pl/DE· PE/DI PE/DE PR/DI

1 2+d 1+p 2+d+p -
1 2+d 1+p 2+d+p 1

Cycle Timings for a Repeat Execution
not repeatable

RPT DAT127 (DP = 31)
SFR
or

not repeatable
-

PR/DE
-

2+d

-

RPT * If current auxiliary register contains 4095.
SFR

APT
Repeat Instruction as

Specified by Data Memory Value

Before Instruction

Data
Memory >C

4095

ACC ~ I >12345678
c

Data
Memory

4095

After Instruction

>C

ACC @]~I ~~>1_2_3_4_5~
c

APT

4-137

RPTK

Syntax

Operands

Execution

Encoding

Repeat Instruction as
Specified by Immediate Value

[<label>] RPTK <constant>

0 :s; constant :s; 255

(PC) + 1 PC
Constant RPTC

15 14 13 12 11 10 9 8 7 6 5 4 3 2

I 1 0 0 0 8-Bit Constant

RPTK

0

Description The 8-bit immediate value is loaded into the RPTC (repeat counter). This
causes the following instruction to be executed one time more than the
number loaded into the RPTC (provided that it is a repeatable instruction).
Interrupts are masked out until the next instruction has been executed the
specified number of times. (Interrupts cannot be allowed during the
RPT /next instruction sequence because the RPTC cannot be saved during
a context switch.) The RPTC is cleared on a RS.

Words

Cycles

'20

'C25

'20

'C25

Example

4-138

RPT and RPTK are especially useful for repeating instructions, such as
BLKP, BLKD, IN, MAC, MACD, NORM, OUT, TBLR, TBLW, and others.

Pl/DI

LRLK
LARP
ZAC
MPYK
RPTK
SQRA
APAC

1

1

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1 +p 1 +p -
1 1+p 1+p 1

Cycle Timings for a Repeat Execution

not repeatable -

AR2,>200
2

0
2
*+

not repeatable

Load AR2 with the address of X.

Clear the accumulator.
Clear the P register.
Repeat next instruction 3 times.
Compute X**2 + Y**2 + Z**2.

-
1

-

RSXM

Syntax

Operands

Execution

Encoding

Reset Sign-Extension Mode RSXM

[<label>] RSXM

None

(PC) + 1 -+ PC
0 -+ SXM sign-extension mode status bit

Affects SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
,, 0 0 0 0 0 0 0 0 ol

Description The RSXM instruction resets the SXM status bit to logic zero, which sup­
presses sign-extension on shifted data memory values for the following
arithmetic instructions: ADD, ADDT, ADLK, LAC, LACT, LALK, SBLK, SUB,
and SUBT.

Words

Cycles

Example

'20

'C25

'20

'C25

The RSXM instruction affects the definition of the SFR instruction. SXM
may also be loaded by the LST1 and SSXM instructions.

Pl/DI

1

1

n

n

RSXM

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1+p 1+p - -
1 1+p 1 +p. 1 1

Cycle Timings for a Repeat Execution

n n+p n+p - -
n n+p n+p n n

SXM is reset, disabling sign-extension on
subsequent instructions.

4-139

RTC

Syntax

Operands

Execution

Encoding

Reset Test/Control Flag (TMS320C25)

[<label>] RTC

None

(PC) + 1 -+ PC
0 --+ TC test/control flag in status register ST1

Affects TC.

15 14 13 12 11 10 9 8 7 6 5 4 3 2
I , o o o o o o o

RTC

0

o I
Description The TC (test/control) flag in status register ST1 is reset to logic zero. TC

may also be loaded by the LST1 and STC instructions.

Words

Cycles
Cycle Timings for a Single Instruction

Pl/DI I Pl/DE I PE/DI I PE/DE I PR/DI I PR/DE

'C25 1 J 1 l 1+p l 1 +p l 1 l 1

Cycle Timings for a Repeat Execution

'C25 n l n I n+p I n+p I n I n

Example RTC TC (test/control) flag is reset to logic zero.

4-140

RTXM

Syntax

Operands

Execution

Encoding

Reset Serial Port Transmit Mode

[<label>] RTXM

None

(PC) + 1 -+ PC
0 -+ TXM transmit mode status bit

Affects TXM mode bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

11 0 0 0 0 0 0 0 0

RTXM

0

o o I
Description The RTXM instruction resets the TXM status bit, which configures the serial

port transmit section in a mode where it is controlled by an FSX (external
framing pulse). The transmit operation is started when an external FSX
pulse is applied. TXM may also be loaded by the LST1 and STXM in­
structions.

Words

Cycles

Example

'20

'C25

'20

'C25

Pl/DI

1

1

n

n

RTXM

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1 +p 1 +p - -
1 1+p 1 +p 1 1

Cycle Timings for a Repeat Execution

n n+p n+p - -
n n+p n+p n n

TXM is reset, configuring FSX as an input.

4-141

RXF

Syntax

Operands

Execution

Encoding

Reset External Flag RXF

[<label>] RXF

None

(PC) + 1 -+ PC
O -+ XF external flag pin and status bit

Affects XF.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
,, 0 0 0 0 0 0 0 o ol

Description The XF pin and XF status bit in status register ST1 are reset to logic zero.

Words

Cycles

Example

4-142

'20

'C25

'20

'C25

XF may also be loaded by the LST1 and SXF instructions.

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1 1 +p 1 +p - -
1 1 1 +p 1 +p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p - -
n n n+p n+p n n

RXF XF pin and status bit are reset to logic zero.

SACH Store High Accumulator with Shift SACH

Syntax
Direct: [<label>] SACH <dma>[,<shift>]

Indirect: [<label>] SACH {ind}[,<shift>[,<next ARP>]]

Operands

Execution

Encoding

0 s dma s 127
0 S next ARP s 7
0 s shift s 0, 1, or 4 (defaults to 0) on the TMS32020
0 s shift s 7 (defaults to 0) on the TMS320C25

(PC) + 1 -+ PC
16 MS Bs of (ACC) x 2shift -+ dma

Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I 0 0 I Shift I ol Data Memory Address

Indirect: I 0 0 Shift I , I See Section 4.1

Description

Words

Cycles

'20
'C25

'20
'C25

Example

The SACH instruction copies the entire accumulator into a shifter, where it
shifts the entire 32-bit number 0, 1, or 4 bits on the TMS32020, or any­
where from 0 to 7 bits on the TMS320C25.lt then copies the upper 16 bits
of the shifted value into data memory. The accumulator itself remains un­
affected.

Cycle Timings for a Single Instruction
Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1 +p 3+d+p -
1 1+d 1 +p 2+d+p 1

Cycle Timings for a Repeat Execution
n 2n+nd n+p

n n+nd n+p

SACH DATl0,4 (DP = 4)
or

3n+nd+p -
1 +n+nd+p n

-
1 +d

-
n+nd

SACH *,4 If current auxiliary register contains 522.

Before Instruction

ACC ~ I >4208001

Data
Memory

522

c

>O

After lnstructior1

ACC ~ I >4208001

Data
Memory

522

c

>4208

4-143

SACL Store low Accumulator with Shift SACL

Syntax
Direct: [<label>] SACL <dma>[,<shift>]

Indirect: [<label>] SACL {ind}[,<shift>[.<next ARP>]J

Operands

Execution

Encoding

0 s dma s 127
0 s next ARP s 7
0 s shift s 0, 1, or 4 (defaults to 0) on the TMS32020
0 s shift s 7 (defaults to 0) on the TMS320C25

(PC) + 1 -+ PC
16 LSBs of (ACC) x 2shift -+ dma

Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

Direct I 0 0 o I Shift I ol Data Memory Address

Indirect: l 0 0 o I Shift See Section 4.1

0

Description The low-order bits of the accumulator are shifted left 0, 1, or 4 bits on the
TMS32020 or anywhere from 0 to 7 bits on the TMS320C25, as specified
by the shift code, and stored in data memory. The low-order bits are filled
with zeros, and the high-order bits are lost. The accumulator itself is unaf­
fected.

Words

Cycles

'20
'C25

'20
'C25

Example

4-144

Cycle Timings for a Single Instruction
Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1 +p 3+d+p - -
1 1 +d 1 +p 2+d+p 1 1 +d

Cycle Timings for a Repeat Execution
n 2n+nd n+p
n n+nd n+p

SACL DATll,1 (DP = 4)
or

3n+nd+p - -
1 +n+nd+p n n+nd

SACL *,1 If current auxiliary register contains 523.

Before Instruction

ACC ~I >7C638421

Data
Memory

523

c

>5

After Instruction

ACC ~ I > 7C638421

Data
Memory

523

c

>842

SAR Store Auxiliary Register SAR

Syntax
Direct: [<label>] SAR <AR>,<dma>

Indirect: [<label>] SAR <AR>,{ind}[,<next ARP>]

Operands

Execution

Encoding

0 s; dma s; 1 27
0 s; auxiliary register AR s; 7
0 s; next ARP s; 7

(PC) + 1 --> PC
(AR) --+ dma

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I 0 oj AR I oj Data Memory Address

Indirect: I 0 o I AR I , I See Section 4.1

Description

Words

Cycles

Example 1

'20

'C25

'20

'C25

The contents of the designated auxiliary register (AR) are stored in the ad­
dressed data memory location.

When modifying the contents of the current auxiliary register in the indirect
addressing mode, SAR ARn (when n = ARP) stores the value of the auxil­
iary register contents before it is incremented, decremented, or indexed by
ARO.

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1 +p 3+d+p - -
1 1 +d 1+p 2+d+p 1 1+d

Cycle Timings for a Repeat Execution

n 2n+nd n+p 3n+nd+p - -
n n+nd n+p 1 +n+nd+p n n+nd

SAR ARO,DAT30 (DP = 6)
or
SAR ARO,* If current auxiliary register contains 798.

Before Instruction After Instruction

ARO >37 ARO >37

Data Data
Memory >18 Memory >37

798 798

4-145

SAR Store Auxiliary Register SAR

Example 2 LARP ARO
SAR ARO,*O+

ARO >401 ARO >802

Data Data
Memory >O Memory

1025 1025
>401

4-146

SBLK

Syntax

Operands

Execution

Encoding

Subtract from Accumulator
Long Immediate with Shift

[<label>] SBLK <constant>[, <shift>]

16-bit constant
0 s shift s 15 (defaults to 0)

(PC) + 2 --+ PC
(ACC) - [constant x 2shift] --+ ACC

If SXM = 1:
Then -32768 s constant s 32767.

If SXM = 0:
Then 0 s constant s 65535.

Affects OV; affected by OVM and SXM.
Affects C (TMS320C25).

15 14 13 12 11 10 9 8 7 6

11 o I Shift 0 0
16- Bit Constant

5
0

SBLK

4 3 2 0
0 0 0

Description The immediate field of the instruction is subtracted from the accumulator.

Words

Cycles

'20
'C25

'20
'C25

Example

The result replaces the accumulator contents. SXM determines whether the
constant is treated as a signed two's-complement number or as an un­
signed number. The shift count is optional and defaults to zero.

2

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

2 2 2+2p 2+2p - -
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable - -
not repeatable

SBLK 5,12

Before Instruction

ACC ~I >3FCOEF

After Instruction

ACC !TI I >3F70EF

c c

4-147

SBRK

Syntax

Operands

Execution

Encoding

Subtract from Auxiliary Register
Short Immediate (TMS320C25)

[<label>] SBRK <constant>

0 s constant s 255

(PC) + 1 -+ PC
AR(ARP) - 8-bit positive constant -+ AR(ARP)

15 14 13 12 11 10 9 8 7 6

I o 1 I
5 4 3 2

8-Bit Constant

SBRK

0

Description The 8-bit immediate value is subtracted, right-justified, from the currently
selected auxiliary register with the result replacing the auxiliary register
contents. The subtraction takes place in the ARAU, with the immediate
value treated as an 8-bit positive integer.

Words

Cycles

Pl/DI I
'C25 1 l
'C25

Example SBRK >FF

AR7

4-148

Cycle Timings for a Single Instruction

Pl/DE I PE/DI I PE/DE T PR/DI I PR/DE

1 l 1 +p I 1+p l 1 l 1

Cycle Timings for a Repeat Execution

not repeatable

(ARP = 7)

Before Instruction

>O AR7

After Instruction

>FF01

SC

Syntax

Operands

Execution

Encoding

Set Carry Bit CTMS320C25)

[<label>] SC

None

(PC) + 1 -+ PC
1 -+ carry bit C in status register ST1

Affects C.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

11 0 0 0 0 0 0 0

SC

0

o 1 I
Description The carry bit C in status register ST1 is set to logic one. The carry bit may

also be loaded directly by the LST1 and RC instructions.

Words

Cycles

Example

'C25

'C25

SC

Pl/DI I
1 l
n I

Cycle Timings for a Single Instruction

Pl/DE I PE/DI I PE/DE I PR/DI I PR/DE

1 l 1+p 1 1+p l 1 1 1

Cycle Timings for a Repeat Execution

n I n+p I n+p I n 1 n

Carry bit C is set to logic one.

4-149

SFL

Syntax

Operands

Execution

Encoding

Shift Accumulator left

[<label>] SFL

None

TMS32020:

(PC) + 1 -+ PC
(ACC(30-0)) -+ ACC(31 -1)
0-+ ACC(O)

Not affected by SXM bit.

TMS320C25:

(PC) + 1 -+ PC
(ACC(31)) -+ C
(ACC(30-0)) -+ ACC(31-1)
0-+ ACC(O)

Affects C.
Not affected by SXM bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

11 0 0 0 0 0 0 0

SFL

0

o o I
Description The SFL instruction shifts the entire accumulator left one bit. The least­

significant bit is filled with a zero. On the TMS32020, the most-significant
bit is lost. On the TMS320C25, the most-significant bit is shifted into the
carry bit (C). Note that SFL, unlike SFR. is unaffected by SXM.

Words
Cycles

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

'20

'C25

'20

'C25

Example SFL

4-150

1

1

n

n

1 1+p 1+p - -
1 1 +p 1 +p 1 1

Cycle Timings for a Repeat Execution

n n+p

n n+p

Before Instruction

ACC ~ I > 80001234

c

n+p - -
n+p n n

After Instruction

ACC ill I >60002468

c

SFR

Syntax

Operands

Execution

Encoding

Shift Accumulator Right

[<label>] SFR

None

TMS32020:
(PC) + 1 -+ PC
If SXM = 0:
Then (ACC(31-1)) ACC (30-0) and 0 ACC(31).

If SXM = 1:
Then (ACC(31-1)) ACC(30-0) and (ACC(31)) -+ ACC(31).

Affected by SXM bit.

TMS320C25:
(PC) + 1 PC
If SXM = 0:
Then (ACC(O)) -+ C

(ACC(31-1)) ACC (30-0) and 0-+ ACC(31).
If SXM = 1:
Then (ACC(O)) C

(ACC(31 -1)) -+ ACC(30-0) and (ACC(31)) ACC(31).

Affects C.
Affected by SXM bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2
,, 0 0 0 0 0 0 0

SFR

0
o , I

Description The SFR instruction shifts the accumulator right one bit. If SXM = 1, the
instruction produces an arithmetic right shift. The sign bit (MSB) is un­
changed and is also copied into bit 30. Bit 0 is shifted into.the carry bit (C).

Words

Cycles

'20

'C25

'20

'C25

If SXM = 0, the instruction produces a logical right shift. All of the accu­
mulator bits are shifted by one bit to the right. The least-significant bit is
shifted into the carry bit, and the most-significant bit is filled with a zero.

On the TMS32020, note that bit 0 is lost.

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p - -
1 1 1+p 1 +p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p - -
n n n+p n+p n n

4-151

SFR

Example 1 SFR

Example 2 SFR

4-152

Shift Accumulator Right

(SXM = 0)

Before Instruction

ACC ~ I > 80001234

c
(SXM = 1)

ACC ~ I > 80001234

c

After Instruction

ACC @I I >5800091A

c

ACC @I I > 0800091A

c

SFR

SFSM

Syntax

Operands

Execution

Encoding

Set Serial Port Frame
Synchronization Mode CTMS320C25)

[<label>] SFSM

None

(PC) + 1 -> PC
1 -> FSM status bit in status register ST1

Affects FSM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

11 0 0 0 0 0 0

SFSM

0

Description The SFSM instruction sets the FSM status bit to logic one. In this mode,
an external FSR pulse is required for a receive operation, and an external
FSX pulse is required if TXM = 0. If TXM = 1, FSX pulses are generated in
the normal manner every time the transmit shift register XSR is loaded. See
Section 3.7 for details on the operation of the serial port. FSM may also be
loaded by the LST1 and RFSM instructions.

Words

Cycles

Pl/DI 1
'C25 1 I
'C25 n 1

Example SFSM

Cycle Timings for a Single Instruction

Pl/DE 1 PE/DI 1 PE/DE l PR/DI l PR/DE

1 I 1+p I 1+p l 1 l 1

Cycle Timings for a Repeat Execution

n l n+p 1 n+p l n l n

FSM is set, putting the serial port in a
mode of operation where frame synchronization
pulses are required for each word to be
transmitted or received.

4-153

SHM

Syntax

Operands

Execution

Encoding

Set Hold Mode CTMS320C25)

.[<label>] SHM

None

(PC) + 1 -+ PC
1 -+ HM status bit in status register ST1

Affects HM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2
11 0 0 0 0 0 0

SHM

0
o , I

Description The SHM instruction sets the HM status bit to logic one. In this mode, the
TMS320C25 is halted in the normal manner whenever HOLD is asserted,
regardless of the PC value or the state of the MP/MC pin. HM may also be
loaded by the LST1 and RHM instructions.

Words

Cycles

Example

4-154

'C25

'C25

Pl/DI l
1 I
n I

SHM

Cycle Timings for a Single Instruction

Pl/DE l PE/DI l PE/DE l PR/DI l PR/DE

1 I 1 +p I 1+p I 1 I 1

Cycle Timings for a Repeat Execution

n I n+p I n+p J n I n

HM is set, implementing the normal
(TMS32020-type) hold mode of operation.

SOVM

Syntax

Operands

Execution

Encoding

Set Overflow Mode SOVM

[<label>] SOVM

None

(PC) + 1 -> PC
1 overflow mode (OVM) status bit

Affects OVM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
11 0 0 0 0 0 0 0 0 0

Description The OVM status bit is set to logic one, which enables the overflow (satu­
ration) mode. It an overflow occurs with OVM set, the overflow flag OV is
set, and the accumulator is set to the largest representable 32-bit positive
(>7FFFFFFF) or negative (>80000000) number according to the direction
of overflow.

Words

Cycles

'20

'C25

'20

'C25

Example

OVM may also be loaded by the LST and ROVM instructions.

Pl/DI

1

1

n

n

SOVM

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1+p 1+p - -
1 1 +p 1 +p 1 1

Cycle Timings for a Repeat Execution

n n+p n+p - -
n n+p n+p n n

The overflow mode bit OVM is set, enabling
the overflow mode on any subsequent
arithmetic operations.

4-155

SPAC

Syntax

Operands

Execution

Encoding

Subtract P Register from Accumulator

[<label>] SPAC

None

(PC) + 1 -+ PC
(ACC) - (shifted P register) -+ ACC

Affects OV; affected by PM and OVM.
Affects C (TMS320C25).
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

11 0 0 0 0 0 0 0

SPAC

0

ol
Description The contents of the P register, shifted as defined by the PM status bits, are

subtracted from the contents of the accumulator. The result is stored in the
accumulator. Note that SPAC is unaffected by SXM; the P register is always
sign-extended.

The SPAC instruction is a subset of LTS, MPYS, and SORS.

Words

Cycles
Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

'20 1 1 1 +p 1 +p - -
'C25 1 1 1 +p 1 +p 1 1

Cycle Timings for a Repeat Execution

'20 n n n+p n+p - -
'C25 n n n+p n+p n n

Example SPAC (PM = 0)

Before Instruction After Instruction
p I >24 p I >24

ACC ~I >3C ACC [II I >18

c· c

4-156

SPH Store High P Register (TMS320C25l SPH

Syntax
Direct: [<label>] SPH <dma>

Indirect: [<label>] SPH {ind}[,<next ARP>]

Operands 0 s dma s 127
0 s next ARP s 7

Execution (PC) + 1 -> PC
(PR shifter output (31-16)) dma

Affected by PM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I 0 0 0 Data Memory Address

Indirect: l.__o ___________ o __ _.__..._ ___ s_e_e_s_e_c_tio_n_4_.1 ___ __,

Description The high-order bits of the P register, shifted as specified by the PM bits,
are stored in data memory. Neither the P register nor the accumulator are
affected by this instruction. High-order bits are sign-extended when the
right-shift by 6 mode is selected. Low-order bits are taken from the low P
register when left-shifts are selected.

Words

Cycles

Example

'C25

'C25

Pl/DI l

SPH
or
SPH

1 I
n I

DAT3

*

p

Data
Memory

515

Cycle Timings for a Single Instruction
Pl/DE l PE/DI J PE/DE l PR/DI l PR/DE
1 +d I 1 +p I 2+d+p I 1 I 1+d

Cycle Timings for a Repeat Execution
n+nd I n+p } 1 +n+nd+p} n I n+nd

(DP = 4, PM = 2)

If current auxiliary register contains 515.

Before Instruction After Instruction

>FE0798:BJ p >FE079844

Data
>45'67] Memory >E079

515

4-157

SPL Store Low P Register CTMS320C25) SPL

Syntax
Direct: [<label>] SPL <dma>

Indirect: [<label>] SPL {ind}[,<next ARP>]

Operands 0 :S dma :s; 127
0 :s; next ARP :s; 7

Execution (PC) + 1 -+PC
(PR shifter output (15-0)) -+ dma

Affected by PM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I 0 0 ol 0 Data Memory Address I
Indirect: I 0 0 o I See Section 4.1

Description The low-order bits of the P register, shifted as specified by the PM bits, are
stored in data memory. Neither the P register nor the accumulator are af­
fected by this instruction. High-order bits are taken from the high P register
when the right-shift by 6 mode is selected. Low-order bits are zero-filled
when left-shifts are selected.

Words

Cycles

Example

4-158

'C25

'C25

Pl/DI I
1 I
n I

SPL DAT3
or
SPL *

p

Data
Memory

515

Cycle Timings for a Single Instruction

Pl/DE J PE/DI T PE/DE I PR/DI I PR/DE

1 +d I 1 +p I 2+d+p l 1 1 1 +d

Cycle Timings for a Repeat Execution

n+nd I n+p J 1 +n+nd+p I n 1 n+nd

{DP = 4, PM = 2)

If current auxiliary register contains 515.

Before Instruction After Instruction

>FE079844 I p >FE079844

Data
>4W!] Memory >8440

515

SPM

Syntax

Operands

Execution

Encoding

Set P Register Output Shift Mode

[<label>] SPM <constant>

0 :S constant :S 3

(PC) + 1 -+ PC
Constant -+ product register shift mode (PM) status bits

Affects PM.

SPM

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

I 1 0 0 0 0 0 0 0 0 I PM

Description The two low-order bits of the instruction word are copied into the PM field
of status register ST1. The PM status bits control the P register output
shifter. This shifter has the ability to shift the P register output either one
or four bits to the left or six bits to the right, or to perform no shift. The bit
combinations and their meanings are shown below.

Words

Cycles

'20

'C25

'20

'C25

Example

PM ACTION

00 No shift of multiplier output
01 Output left-shifted 1 place and zero-filled
10 Output left-shifted 4 places and zero-filled
11 Output right-shifted 6 places, sign-extended; LSB bits lost.

The left-shifts allow the product to be justified for fractional arithmetic. The
right-shift by six bits has been incorporated to implement up to 128 multi­
ply-accumulate processes without the possibility of overflow occurring. PM
may also be loaded by an LST1 instruction.

Pl/DI

1

1

SPM 3

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1+p 1+p - -
1 1+p 1 +p 1 1

Cycle Timings for a Repeat Execution

not repeatable - -
not repeatable

Product register shift mode 3 is selected,
causing all subsequent transfers from the
product register to the ALU to be shifted
to the right six places.

4-159

SORA Square and Accumulate Previous Product

Syntax
Direct: [<label>] SORA <dma>

Indirect: [<label>] SORA {ind}[,< next ARP>]

Operands

Execution

0 :S dma :S 127
0 :S next ARP :S 7

(PC) + 1 -+PC
(ACC) + (shifted P register) ACC
(dma) -+ T register
(dma) x (dma) -+ P register

Affects OV; affected by PM and OVM.
Affects C (TMS320C25).

SORA

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I O O O O O Data Memory Address I

Indirect: I _o __ o _______ o __ o _____...__ ___ s_ee_s_e_c_ti_on_4._1 ___ _,

Description The contents of the P register, shifted as defined byJhe PM status bits, are
added to the accumulator. The addressed data mem ry value is then loaded
into the T register, squared, and stored in the P register.

Words

Cycles

Example

4-160

'20

'C25

'20

'C25

Cycle Timings for 11 Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 2n+nd n+p 2n+nd+p - -
n 1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

SQRA DAT30 (DP = 6, PM = 0)
or
SQRA * If current auxiliary register contains 79&.

Before Instruction After Instruction

Data
I

Data
Memory >F I Memory >F

798 798

T I >3] T I >F

p I >12C I p I >E1

ACC l8J I >1F4 I ACC @I I >320

c c

SORS Square and Subtract Previous Product

Syntax
Direct: [<label>] SQRS <dma>

Indirect: [<label>] SQRS {ind}[,< next ARP>]

Operands 0 s dma s 127
0 s next ARP s 7

Execution (PC} + 1 ->PC

Encoding

(ACC) - (shifted P register) -> ACC
(dma) -> T register
(dma) x (dma) -> P register

Affects OV; affected by PM and OVM.
Affects C (TMS320C25).

15 14 13 12 11 10 9 8 7 6 5 4

SQRS

3 2 0

Direct: I 0 0 0 ol 0 Data Memory Address]

Indirect: I 0 0 0 ol See Section 4.1

Description The contents of the P register, shifted as defined by the PM status bits, are
subtracted from the accumulator. The addressed data memory value is then
loaded into the T register, squared, and stored into the P register.

Words

Cycles

Example

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1 +p 2+d+p - -
1 2+d 1 +p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 2n+nd n+p 2n+nd+p - -
n 1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

SQRS DAT9 (DP = 6, PM = 0)
or
SQRS * If current auxiliary register contains 777.

Before Instruction After Instruction

Data Data
Memory >8 Memory >8

777 777

T I >1124 T I >8

p I >190 p I >40

ACC ~I >1450 ACC El I >12CO

c c

4-161

SST Store Status Register STO SST

Syntax
Direct: [<label>] SST <dma>

Indirect: [<label>] SST {ind}[,<next ARP>]

Operands 0 :S dma :S 127
0 :S next ARP :S 7

Execution (PC) + 1 -+ PC
(status register STO) -+ dma

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I 0 0 0 ol 0 Data Memory Address

Indirect: I 0 0 0 ol See Section 4.1

Description

Words

Cycles

4-162

'20

'C25

'20

'C25

Status register STO is stored in data memory.

In the direct addressing mode, status register STO is always stored in page
0 regardless of the value of the DP register. The processor automatically
forces the page to be 0, and the specific location within that page is defined
in the instruction. Note that the DP register is not physically modified. This
allows storage of the DP register in the data memory on interrupts, etc., in
the direct addressing mode without having to change the DP. In the indi­
rect addressing mode, the data memory address is obtained from the auxil­
iary register selected. (See the LST instruction for more information.)

The SST instruction can be used to store status register STO after interrupts
and subroutine calls. The STO contains the status bits: OV (overflow flag)
bit, OVM (overflow mode) bit, !NTM (interrupt mode) bit, ARP (auxiliary
register pointer) bit, and DP (data memory page pointer) bit. The status
bits are stored in the data memory word as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

ARP I ov I OVM I 1 I 1NTM I DP

Note that SST * may be used to store status register STO anywhere in data
memory, while SST in the direct addressing mode is forced to page 0.

Cycle Timings for a Single Instruction
Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1 +p 3+d+p - -
1 1 +d 1 +p 2+d+p 1 1 +d

Cycle Timings for a Repeat Execution
n 2n+nd n+p 3n+nd+p - -
n n+nd n+p 1 +n+nd+p n n+nd

SST Store Status Register STO SST

Example SST DAT96 (DP = don't care)
or
SST * If current auxiliary register contains 96.

Before Instruction After Instruction

Status Status
Register

STO
>A408 Register

STO
>A408

Data Data
Memory

96
>A Memory

96
>A408

4-163

SST1 Store Status Register ST1 SST1

Syntax
Direct: [<label>] SST1 <dma>

Indirect: [<label>] SST1 {ind}[,<next ARP>]

Operands 0 s dma s 127
0 s next ARP s 7

Execution (PC) + 1 -+ PC
(status register ST1) -+ dma

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I O O O O Data Memory Address I

Indirect: ~I _o _________ o __ o __ ~-~---s_ee_s_e_c_ti_on_4_.1 ___ ~

Description Status register ST1 is stored in data memory. In the direct addressing mode,
status register ST1 is always stored in page 0 regardless of the value of the
DP register. The processor automatically forces the page to be 0, and the
specific location within that page is defined in the instruction. Note that
the DP register is not physically modified. This allows the storage of the
DP in the data memory on interrupts, etc., in the direct addressing mode
without having to change the DP. In the indirect addressing. mode, the data
memory address is obtained from the auxiliary register selected. (See the
LST1 instruction for more information.)

Words

Cycles

4-164

'20

'C25

'20

'C25

SST1 is used to store status bits after interrupts and subroutine calls. ST1
contains the status bits: ARB (auxiliary register pointer buffer), CNF (RAM
configuration control) bit, TC (test/control) bit, SXM (sign-extension
mode) bit, XF (external flag) bit, FO (serial port format) bit, TXM (transmit
mode) bit, and the PM (product register shift mode) bit. ST1 on the
TMS320C25 also contains the status bits: C (carry) bit, HM (hold mode)
bit, and FSM (frame synchronization mode) bit. The bits loaded into status
register ST1 from the data memory word are as follows:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARB I CNF I rc I sxM I ct I 1 1 jHMt I FSMt I xF I FO I rxM I PM I
ton the TMS32020, bits 5, 6, and 9 are one's.

Note that SST1 * may be used to store status register ST1 anywhere in data
memory, while SST1 in the direct addressing mode is forced to page 0.

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 3+d+p - -
1 1 +d 1+p 2+d+p 1 1 +d

Cycle Timings for a Repeat Execution

n 2n+nd n+p 3n+nd+p - -
n ntnd n+p 1 +n+nd+p n n+nd

SST1 Store Status Register ST1 SST1

Example SSTl DAT97 (DP = don't care)
SSTl * If current auxiliary register contains 97.

Before Instruction After Instruction

Status Status
Re~~ter >A7EO R~~ter >A7EO

Data Data
Memory >B Memory >A7EO

97 97

4-165

SSXM

Syntax

Operands

Execution

Encoding

Set Sign-Extension Mode

[<label>] SSXM

None

(PC) + 1 --> PC
1 --> SXM status bit in status register ST1

Affects SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2
,, 0 0 0 0 0 0 0 0

SSXM

0

Description The SSXM instruction sets the SXM status bit to logic 1, which enables
sign-extension on shifted data memory values for the following arithmetic
.instructions: ADD, ADDT, ADLK, LAC, LACT, LALK, SBLK, SUB, and
SUBT.

Words

Cycles

'20

'C25

'20

'C25

Example

4-166

SSXM also affects the definition of the SFR instruction. SXM may also be
loaded by the LST1 and RSXM instructions.

Pl/DI

1

1

n

n

SSXM

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1 +p 1+p - -
1 1+p_ 1 +p 1 1

Cycle Timings for a Repeat Execution

n n+p n+p - -
n n+p n+p n n

SXM is set, enabling sign extension on
subsequent instructions.

STC

Syntax

Operands

Execution

Encoding

Set Test/Control Flag CTMS320C25) STC

[<label>] SSXM

None

(PC) + 1 -. PC
1 -+TC test/control flag in status register ST1

Affects TC.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

11 0 0 0 0 0 0 0 , I
Description The TC (test/control) flag in status register ST1 is set to logic one. TC may

also be loaded by the LST1 and RTC instructions.

Words

Cycles

Example

'C25

'C25

Pl/DI l 1

n l
STC

Cycle Timings for a Single Instruction

Pl/DE ! PE/DI l PE/DE ! PR/DI ! PR/DE

1 1+p 1 +p 1 1

Cycle Timings for a Repeat Execution

n l n+p l n+p 1 n 1 n

TC (test/control) flag is set to logic one.

4-167

STXM

Syntax

Operands

Execution

Encoding

Set Serial Port Transmit Mode STXM

[<label>] STXM

None

(PC) + 1 -+ PC
1 -+ TXM status bit in status register ST1

Affects TXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
11 0 0 0 0 0 0 0 0 o 1 I

Description The STXM instruction sets the TXM status bit to logic 1, which configures
the serial port transmit section to a mode where the FSX pin behaves as an
output. A pulse is produced on the FSX pin each time the DXR register is
loaded internally. The transmission is initiated by the negative edge of this
pulse. TXM may also be loaded by the LST1 and RTXM instructions. If the
FSM status bit is a logic zero and serial port operation has already started,
the FSX pin will be driven low if TXM = 1.

Words

Cycles
Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

'20 1 1 1+p 1+p - -
'C25 1 1 1+p 1 +p 1 1

Cycle Timings for a Repeat Execution

'20 n n n+p n+p - -
'C25 n n n+p n+p n n

Example STXM TXM is set, configuring FSX as an output.

4-168

SUB Subtract from Accumulator with Shift SUB

Syntax
Direct: [<label>] SUB <dma>[,<shift>]

Indirect: [<label>] SUB {ind}[,<shift>[,<next ARP>]]

Operands

Execution

0 :s; dma :s; 127
0 :s; next ARP :s; 7
0 :s; shift :s; 15 (defaults to 0)

(PC) + 1 PC
{ACC) - [{dma) x 2shift] ACC

If SXM = 1:
Then (dma) is sign-extended.

If SXM = 0:
Then (dma) is not sign-extended.

Affects OV; affected by OVM and SXM.
Affects C (TMS320C25).

Encoding 15 14 13 12 11 10 9 8 7

Direct: I 0 0 0 I Shift I ol

Indirect: I 0 0 0 Shift I 1 I

6 5 4 3 2 0

Data Memory Address I
See Section 4.1

Description The contents of the addressed data memory location are left-shifted and
subtracted from the accumulator. During shifting, low-order bits are zero­
filled. High-order bits are sign-extended if SXM = 1 and zero-filled if SXM
= 0. The result is stored in the accumulator.

Words

Cycles

'20

'C25

'20

'C25

Example

Pl/DI

1

1

n

n

SUB DAT80
or
SUB *

Data
Memory

1104

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

2+d 1+p 2+d+p - -
2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

2n+nd n+p 2n+nd+p - -
1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

(DP = Bl

If current auxiliary register contains 1104.

Before Instruction After Instruction

Data
>11 Memory >11

1104

ACC ~I >24 ACC [I I >13

c c

4-169

SUBB

Syntax

Subtract from Accumulator
with Borrow (TMS320C25) SUBB

Direct: [<label>] SUBS <dma>
Indirect: [<label>] SUBS {ind}[,<next ARP>]

Operands 0 s dma s 127
0 s next ARP s 7

Execution (PC) + 1 -+ PC
(ACC) - (dma) - (C) -+ ACC

Affects C and OV; affected by OVM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: l 0 0 0 1 I 0 Data Memory Address I

Indirect: I _o ____ o __ o _______ ___._....._ ____ s_ee~S_e_c_ti_o_n_4_.1 ___ _,

Description The contents of the addressed data memory location and the value of the
carry bit are subtracted from the accumulator. The carry bit is then affected
in the normal manner (see Section 3.5.2).

Words

Cycles

'C25

'C25

Example

4-170

Pl/DI l

SUBB
or
SUBB

1 1
n l

DATS

*

Data
Memory

1029

Cycle Timings for a Single Instruction

Pl/DE l PE/DI l PE/DE l PR/DI l PR/DE

2+d l 1+p 1 2+d+p I 1 I 2+d

Cycle Timings for a Repeat Execution

1 +n+nd J n+p J 1 +n+nd+pl n I 1 +n+nd

(DP = 8)

If current auxiliary register contains 1029.

Before Instruction

>6
Data

Memory
1029

After Instruction

>6

ACC @] I >6 ACC @] I >FFFFFFFF

c c
In the above example, C is ongma1o; teroed, presumably from the result ot
a pr~vious subtract instruction that performed a borrow. The effective op­
eration performed was 6 - 6 - (0) = -1, generating another borrow .(and
resetting carry again) in the process.

The SUBB instruction can be used in performing multiple-precision arith­
metic.

SUBC Conditional Subtract SUBC

Syntax
Direct: [<label>] SUBC <dma>

Indirect: [<label>] SUBC {ind}[,<next ARP>]

Operands 0 s dma s 127
0 s next ARP s 7

Execution (PC) + 1 -+ PC
(ACC) - [(dma) x 215] -+ALU output

If ALU output ;:: 0:
Then (ALU output) x 2 + 1 -+ ACC;
Else (ACC) x 2 -+ ACC.

Affects OV.
Affects C (TMS320C25).
Not affected by OVM (no saturation) or SXM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I 0 0 0 0 0 Data Memory Address

Indirect: I _o ____ o __ o __ o _____ __, _ __._ ____ s_e_e_s_e_c_ti_o_n _4_.1 ___ __.

Description The SUBC instruction performs conditional subtraction, which may be used
for division. The 16-bit dividend is placed in the low accumulator, and the
high accumulator is zeroed. The divisor is in data memory. SUBC is exe­
cuted 16 times for 16-bit division. After completion of the last SU BC, the
quotient of the division is in the lower-order 16-bit field of the accumulator,
and the remainder is in the high-order 16 bits of the accumulator. SUBC
assumes the.divisor and the dividend are both positive.

Words

Cycles

'20
'C25

'20
'C25

If the 16-bit dividend contains less than 16 significant bits, the dividend
may be placed in the accumulator left-shifted by the number of leading
non-significant zeroeJl. The number of executions of SUBC is reduced from
16 by that number. One leading zero is always significant.

Note that SUBC affects OV but is not affected by OVM, and therefore the
accumulator does not saturate upon positive or negative overflows when
executing this instruction.

Cycle Timings for a Single Instruction
Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1 +p 2+d+p - -
1 2+d 1 +p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p - -
n 1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

4-171

SUBC

Example

4-172

Conditional Subtract SUBC

RPTK 15
SUBC DAT2
or

(DP = 4)

RPTK 15
SUBC * If current auxiliary register contains 514.

Data
Memory

514

Before Instruction

>7

ACC 181 1 ___ >_4_1

c

Data
Memory

514

Atter Instruction

>7

Ace OJl~_>_2_0_0_09 __
c

SUBH Subtract from High Accumulator SUBH

Syntax
Direct: [<label>] SUBH <dma>

Indirect: [<label>) SUBH {ind}[,<next ARP>]

Operands 0 s dma s 127
0 s next ARP s 7

Execution (PC) + 1 -+ PC
(ACC) - [(dma) x 216) -+ ACC

Affects OV; affected by OVM.
Affects C (TMS320C25).

Encoding 15 14 13 12 11 10

Direct: I 0 0 0 0

Indirect: I 0 0 0 0

9

0

0

8 7

ol 0

ol

6 5 4 3 2 0

Data Memory Address I
See Section 4.1

Description The contents of the addressed data memory location are subtracted from the
upper 16 bits of the accumulator. The 16 low-order bits of the accumulator
are unaffected. The result is stored in the accumulator. The carry bit C on
the TMS320C25 is reset if the result of the subtraction generates a borrow;
otherwise, C is unaffected.

Words

Cycles

'20
'C25

'20
'C25

Example

The SUBH instruction can be used for performing 32-bit arithmetic.

Cycle Timings for a Single Instruction
Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1+p 2+d+p - -
1 2+d 1 +p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution
n 2n+nd n+p
n 1 +n+nd n+p

SUBH DAT33
or

(DP = 6)

2n+nd+p - -
1 +n+nd+p n 1 +n+nd

SUBH * If current auxiliary register contains 801.

Data
Memory

801

Before Instruction

>4

ACC f8l~l~_>_A_0_0_1_3~
c

Data
Memory

801

After Instruction

>4

ACC O)l.__~>_6_0_0_13__,
c

4-173

SUBK

Syntax

Operands

Execution

Encoding

Subtract from Ac;cumulator
Short Immediate (TMS320C25)

[<label>] SUBK <constant>

0 :s; constant :s; 255

(PC) + 1 PC
(ACC) - 8-bit positive constant ACC

Affects C and OV: affected by OVM.
Not affected by SXM.

15 14 13 12 11 1.0 9 8 7 6 5 4 3 2

I 1 0 0 O 1 I 8-Bit Constant

SUBK

0

Description The 8-bit immediate value is subtracted, right-justified, from the. accu­
mulator with the result replacing the accumulator contents. The immediate
value is treated as an 8-bit positive number, regardless of the value ofSXM.

Words

Cycles
Cycle Timings for a Single Instruction

Pl/DI l Pl/DE l PE/DI 1 PE/DE l PR/DI l PR/DE

'C25 1 I 1 I 1+p I 1+p I 1 I 1

Cycle Timings for a Repeat Execution

'C25 not repeatable

Example SUBK >12

Before Instruction After Instruction

ACC ~I >37 ACC [!]I >25

c c

4-174

SUBS

Syntax

Subtract from Low Accumulator
with Sign-Extension Suppressed SUBS

Direct: [<label>] SUBS <dma>
Indirect: [<label>] SUBS {ind}[,<next ARP>]

Operands

Execution

0 S dma s 127
0 s next ARP s 7

(PC) + 1 -+ PC
(ACC) - (dma) -+ ACC

Affects OV; affected by OVM.
Affects C (TMS320C25).
Not affected by SXM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I 0 0 0 0 0 0 Data Memory Address I

Indirect: l.__o ____ o __ o __ o ____ o __ ~~~---s_e_e_s_e_c_tio_n_4_._1 __ ~

Description The contents of the addressed data memory location are subtracted from the
accumulator with sign-extension suppressed. The data is treated as a 16-
bit unsigned number, regardless of SXM. The accumulator behaves as a
signed number. SUBS produces the same result as a SUB instruction with
SXM = 0 and a shift count of 0.

Words

Cycles

'20

'C25

'20

'C25

Example

Pl/DI

SUBS
or
SUBS

1

1

n

n

DAT2

*

Data
Memory

2050

Cycle Timings for a Single Instruction

Pl/DE PE/DI PE/DE PR/DI PR/DE

2+d 1+p 2+d+p - -
2+d 1 +p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

2n+nd n+p 2n+nd+p - -
1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

(DP = 16)

If current auxiliary register contains 2050.

Before Instruction

>F003

Before Instruction

Data
Memory

2050

After Instruction

>F003

After Instruction

ACC [811 >F105 ACC OJ I >102

c c

4-175

SUBT

Syntax

Subtract from Accumulator
with Shift Specified by T Register SUBT

Direct: [<label>] SU BT <dma >
Indirect: [<label>] SUBT {ind}[,<next ARP>]

Operands 0 s dma s 127
0 s next ARP s 7

Execution (PC) + 1 -+ PC
(ACC) _ [(dma) x 2T register(3-0)] -+ (ACC)

Encoding

If SXM = 1:
Then (dma) is sign-extended.

If SXM = 0:
Then (dma) is not sign-extended.

Affects OV; affected by SXM and OVM.
Affects C (TMS320C25).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I 0 0 0 0 o!o I Data Memory Address =]
Indirect: I 0 0 0 0 0 I 1 I See Section 4.1

Description The data memory value is left-shifted and subtracted from the accumulator.

Words

Cycles

Example

4-176

'20

'C25

'20

'C25

The left-shift is defined by the four LSBs of the T register, resulting in shift
options from 0 to 15 bits. The result replaces the accumulator contents.
Sign-extension on the data memory value is controlled by the SXM status
bit.

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1 +p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 2n+nd n+p 2n+nd+p - -
n 1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

SUBT DAT127 (DP = 4)
or
SUBT * If current auxiliary register contains 639.

SUBT
Subtract from Accumulator

with Shift Specified by T Register SUBT

Before Instruction After Instruction

Data Data
Memory >6 Memory >6

639 639

T I >FF98 T I >FF98

ACC ~I >FDA5 ACC [DI >F7A5

c c

4-177

SXF

Syntax

Operands

Execution

Encoding

Description

Words

Cycles

Example

4-178

'20

'C25

'20

'C25

Set External Flag SXF

[<label>] SXF

None

(PC) + 1 --+ PC
1 _,. external flag (XF) pin and status bit

Affects XF.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
11 0 0 0 0 0 0 0 0

The XF pin and the XF status bit in status register ST1 are set to logic 1.
XF may also be loaded by the LST1 and RXF instructions.

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p - -
1 1 1 +p 1 +p 1 1

Cycle Timings for a Repeat Execution

n n n+p n+p - -
n n n+p n+p n n

SXF The XF pin and status bit are set to logic 1.

TBLR Table Read

Syntax
Direct: [<label>] TBLR <dma>

Indirect: [<label>] TBLR {ind}[.<next ARP>]

Operands

Execution

0 :s; dma :s; 127
0 :S next ARP :S 7

TMS32020:

(PC) + 1 -+ TOS
(ACC(15-0)) --+ PC

If (repeat counter) ¢ 0:
Then (pma) -+ dma,
Modify AR(ARP) and ARP as specified,
(PC) + 1 -+ PC,
(repeat counter) - 1 -+ repeat counter.

Else (pma) -+ dma
Modify AR(ARP) and ARP as specified.

(TOS) -+PC

TMS320C25:

(PC) + 1 -+ PC
(PFC) ... MCS
(ACC(15-0)) -+ PFC

If (repeat counter) ¢ 0:
Then (pma, addressed by PFC) ... dma,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 -+ PFC,
(repeat counter) - 1 -+ repeat counter.

Else (pma, addressed by PFC) ... dma
Modify AR(ARP) and ARP as specified.

(MCS) --+ PFC

Encoding 15 14 13 12 11 10 9 8 7 6

o I o I Direct: I O 0 0 o

TBLR

5 4 3 2 0
Data Memory Address I

Indirect: [_o ____ o _____ o __ o __ o l _1__.l ____ s_e_e _se_c_ti_on_4_.1 __ __.

Description The TBLR instruction transfers a word from a location in program memory
to a data memory location specified by the instruction. The program mem­
ory address is defined by the low-order 16 bits of the accumulator. For this
operation, a read from program memory is performed, followed by a write
to data memory. When in the repeat mode, TBLR effectively becomes a
single-cycle instruction, and the program counter that contains the ACCL
is incremented once each cycle. On the TMS32020, the contents of the
lowest stack location are lost when using the TBLR instruction.

Words

If the MP/MC pin on the TMS320C25 is low at the time of execution of this
instruction and the program memory address used is less than 4096, an
on-chip ROM location will be read.

4-179

TBLR Table Read TBLR

Cycles
Cycle Timings for a Single Instruction

Pl/DI 1 Pl/DE l PE/DI l PE/DE 1 PR/DI l PR/DE

'20 Table in internal program memory:
3 3+d 3+p 3+d+p - -

Table in external program memory:
3+p 4+d+p 3+2p 4+d+2p - -

'C25 Table in on-chip RAM:
2 2+d 3+p 3+d+p 3 3+d

Table in on-chip ROM:
3 3+d 4+p 4+d+p 4 4+d

Table in external memory:
3+p 3+d+p 4+2p 4+d+2p 4+p 4+d+p

Cycle Timings for a Repeat Execution

'20 Table in internal program memory:
2+n 2+n+nd 2+n+p 2+n+nd+p - -

Table in external program memory:
2+n+np 2+2n+nd 2+n+np 2+2n+nd+np - -

+np +p +p

'C25 Table in on-chip RAM:
1 +n 1 +n+nd 2+n+p 2+n+nd+p 2+ri 2+n+nd

Table in on-chip ROM:
2+n 2+n+nd 3+n+p 3+n+nd+p 3+n 3+n+nd

Table in external memory:
2+n+np 1 +2n+nd+np 3+n+np 2+2n+nd+np 3+n+np 2+2n+nd

+p +p +np

Example TBLR DAT6 (DP = 4)
TBLR * If current auxiliary register contains 518.

Before Instruction After Instruction

ACC >23 ACC >23

Program Program
Memory >306 Memory >306

23 23

Data Data
Memory >75 Memory >306

518 518

4-180

TBLW Table Write TBLW

Syntax
Direct: [<label>] TBLW <dma>

Indirect: [<label>] TBLW {ind}[,<next ARP>]

Operands 0 :S dma :S 1 27

Execution

0 :S next ARP :S 7

TMS32020:

(PC) + 1 -+ TOS
(ACC(15-0)) -+ PC

If (repeat counter) ¢ 0:
Then {dma) -+ pma,
Modify AR(ARP) and ARP as specified,
(PC) + 1 -+ PC,
(repeat counter) - 1 -+ repeat counter.

Else (dma) -+ pma
Modify AR(ARP) and ARP as specified.

(TOS)-+ PC

TMS320C25:

(PC) + 1 -+ PC
(PFC)-+ MCS
(ACC(15-0)) -+ PFC

If (repeat counter) ¢ 0:
Then (dma, addressed by PFC) -+ pma,.
Modify AR(ARP) and ARP as specified,
(PFC) + 1 PFC,
(repeat counter) - 1 -+ repeat counter.

Else {dma, addressed by PFC) -+ pma
Modify AR(ARP) and ARP as specified.

(MC:S) -+ PFC

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: I 0 O O O O Data Memory Address I

Indirect:! _o ____ o _____ o __ o __ l_1_l...._ ___ s_ee_s_e_c_ti_on_4_.1 ___ _.

Description The TBLW instruction transfers a word in data memory to program memory.

Words

The data memory address is specified by the instruction, and the program
memory address is specified by the lower 12 bits of the accumulator. A read
from data memory is followed by a write to program memory to complete
the instruction. When in the repeat mode, TBLW effectively becomes a
single-cycle instruction, and the program counter that contains the ACCL
is incremented once each cycle. On the TMS32020, the contents of th&
lowest stack location are lost when using the TBLW instruction.

If the MP/MC pin on the TMS320C25 is low at the time of execution of this
instruction and the program memory address used is less than 4096, an
on-chip ROM location will be addressed but not written to.

4-181

TBLW Table Write TBLW

Cycles
Cycle Timings for a Single Instruction

Pl/DI I Pl/DE I PE/DI I PE/DE j PR/DI j PR/DE

'20 Table in internal program memory:
3 3+d 3+p 3+d+p - -

Table in external program memory:
3+p 4+d+p 3+2p 4+d+2p - -

'C25 Table in on-chip RAM:
2 3+d 3+p 4+d+p 3 4+d

Table in on-chip ROM:
not applicable

Table in external memory:
2+p 3+d+p 3+2p 4+d+2p 3+p 4+d+p

Cycle Timings for a Repeat Execution

'20 Table in internal program memory:
2+n 2+n+nd 2+n+p 2+n+nd+p - -

Table in external program memory:
2+n+np 2+2n+nd 2+n+np 2+2n+nd+np - -

+np +p +p

'C25 Table in on-chip RAM:
1 +n 2+n+nd 2+n+p 3+n+nd+p 2+n 3+n+nd

Table in on-chip ROM:
not applicable

Table in external memory:
1 +n+np 1 +2n+nd+np 2+n+np 2+2n+nd+np 2+n+np 2+2n+nd

+p +p +np

Example TBLW DATS (DP = 32)
TBLW * If current auxiliary register contains 4101.

Before Instruction After Instruction

ACC >257 ACC >257

Data Data
Memory

4101
>4339 Memory

4101
>4339

Program Program
Memory >306 Memory >4339

257 257

4-182

TRAP

Syntax

Operands

Execution

Encoding

Software Interrupt

[<label>] TRAP

None

(PC) + 1 stack
30 PC

Not affected by INTM; does not affect INTM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

11 0 0 0 0 0 0

TRAP

0

ol
Description The TRAP instruction is a software interrupt that transfers program control

to program memory location 30 and pushes the program counter plus one
onto the hardware stack. The instruction at location 30 may contain a
branch instruction to transfer control to the TRAP routine. Putting the PC
+ 1 onto the stack enables an RET instruction to pop the return PC (points
to instruction after the TRAP) from the stack.

Words

Cycles

E:xample

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI I Pl/DE l PE/DI l PE/DE I PR/DI I PR/DE

2 1 2 l 2+p l 2+p 1 - l -
Destination on-chip RAM:

2 2 2+p 2+p 2 2
Destination on-chip ROM:

3 3 3+p 3+p 3 3
Destination external memory:

3+p 3+p 3+2p 3+2p 3+p 3+p

Cycle Timings for a Repeat Execution

not repeatable 1 - l -
not repeatable

TRAP Control is passed to program memory location
30. PC + 1 is pushed onto the stack.

4-183

XOR Exclusive-OR with Accumulator XOR

Syntax
Direct: [<label>] XOR <dma>

Indirect: [<label> l XOR {ind}[, <next ARP>]

Ooerands 0 ~ dma ~.127
0 ~ next ARP ~ 7

Execution (PC) + 1 -+ PC
(ACC(15-0)) .XOR.dma -+ ACC(15-0)
(ACC(31-16)) -+ ACC(31-16)

Not affected by SXM.

Encoding 15 14 13 12 11 10 9 8

Direct: I 0 0 0 0 o I
Indirect: I 0 0 0 0 o I

7 6 5 4 3 2 1 0

0 Data Memory Address I
See Section 4.1

Description The low half of the accumulator is exclusive-ORed with the contents of the
addressed data memory location. The upper half of the accumulator is not
affected by this instruction.

Words

Cycles

Example

4-184

'20

'C25

'20

'C25

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

1 2+d 1 +p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution

n 2n+nd n+p 2n+nd+p - -
n 1 +n+nd n+p 1 +n+nd+p n T 1 +n+nd

XOR DAT127 (DP = 511)
or
XOR * If current auxiliary register contains 65535.

Data
Memory
65535

Before Instruction

>FOFO

ACC ~ I >12345678

c

Data
Memory
65535

After Instruction

>FOFO

ACC ~ I > 1234A688

c

XORK XOR Immediate with Accumulato.r with Shift XORK

Syntax

Operands

Execution

Encoding

[<label>] XORK <constant>[,<shift>]

16-bit constanl
0 s shift s 15 (defaults to 0)

(PC) + 2 PC
(ACC(30-0)).XOR.[constant x 2shift] ACC(30-0)
(ACC(31)) ACC(31)

Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5

11 o I Shift 0 0 0

16-Bit.Constant

4 3 2 1 0
0 0 01

Descri.ption The left-shifted 16-bit immediate constant is exclusive-ORed with the ac­
cumulator, leaving the result in the accumulator. Low-order bits below and
high-order bits above the shifted value are treated as zeroes~ thus not af­
fecting the corresponding bits of the accumulator. Note that ttmm.ost-sig­
nificant bit of the accumulator is not affected, regardless of the shift code
value.

Words

Cycles

'20

·c25

'20

'C25

Example

2

Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI 'PE/DE PR/DI PR/DE

2 2 2+2p 2+2p - -
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable - -
not repeatable

XORK >FFFF,8

Before Instruction

ACC ~ I >12345678

c

After Instruction

ACC ~ I >12CBA978

c

4-185

ZAC

Syntax

Operands

Execution

Encoding

Zero Accumulator

[<label>] ZAC

None

{PC) + 1 PC
0-+ ACC

15 14 13 12 11 10 9 8 7
I , 0 0 0 0 0

ZAC

6 5 4 3 2 0
0 0 0 0 0 0 ol

Description The contents of the accumulator are replaced with zero. The ZAC instruc­
tion has been implemented as a special case of LACK. {ZAC assembles as
LACK 0.)

Words

Cycles
Cycle Timings for a Single Instruction

Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

'20

'C25

'20

'C25

Example ZAC

4-186

1

1

1 1+p 1 +p - -
1 1+p 1 +p 1 1

Cycle Timings for a Repeat Execution

not repeatable - -
not repeatable

Before Instruction

ACC ~ I > A5A5A5A5

After Instruction

ACC ~I >O

c c

ZALH
Zero Low Accumulator

and Load High Accumulator ZALH

Syntax
Direct: [<label>] ZALH <dma>

Indirect: [<label>] ZALH {ind}[,<next ARP>]

Operands 0 :S dma :S 127
0 :S next ARP :S 7

Execution (PC) + 1 -+ PC
0 -+ ACC(15-0)
(dma) -+ ACC(31 -16)

Encoding 15 14 13 12 11

Direct: I 0 0 0 0

Indirect: I 0 0 0 0

10 9 8 7

0 0 ol 0

0 0 ol

6 5 4 3 2 0

Data Memory Address I
See Section 4.1

Description ZALH loads a data memory value into the high-order half of the accumula­
tor. The low-order bits of the accumulator are zeroed.

Words

Cycles

'20
'C25

'20
'C25

Example

ZALH is useful for 32-bit arithmetic operations.

Pl/DI
1
1

n
n

ZALH DAT3
or
ZALH *

Data
Memory

4099

Cycle Timings for a Single Instruction
Pl/DE PE/DI PE/DE PP/DI PR/DE
2+d 1+p 2+d+p - -
2+d 1+p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution
2n+nd n+p 2n+nd+p - -

1 +n+nd n+p 1 +n+nd+p n 1 +n+nd

(DP = 32)

If current auxiliary register contains 4099.

Before Instruction After Instruction

Data
>3F01 Memory >3F01

4099

ACC ~'~~>_77_F_F_F_F~
c

ACC ~ I >3F010000

c

4-187

ZALR
Zero Low Accumulator, Load High

Accumulator with Rounding CTMS320C25l ZALR

Syntax
Direct: [<label> l ZALR <dma>

Indirect: [<label>] ZALR {ind}[,<next ARP>]

Operands 0 s dma s 127
0 s next ARP s 7

Execution (PC) + 1 -+ PC
>8000 -+ ACC(15-0)
(dma)-+ ACC(31-16J

Encoding 15 14 13 12 11

Direct: I 0

Indirect: I 0

10 9 8 7

0 I o

0 I 1

6 5 4 3 2 0

I Data Memory Address I
I See Section 4.1

Description The ZALR instruction loads a data memory value into the high-order half
of the accumulator with rounding the value by adding 1 /2 LSB; i.e., the 15
low bits (bits 0-1.4) of the accumulator are set to zero and bit 15 of the
accumulator is set to one.

Words

Cycles

'C25

'C25

Example

4-188

ZALR is a derivative instruction from ZALH.

Pl/DI I
1 l
n I

ZALR DAT3
or
ZALR *

Data
Memory

4099

Cycle Timings for a Single Instruction
Pl/DE I PE/DI I PE/DE I PR/DI I PR/DE
2+d l 1+p l 2+d+p l 1 l 2+d

Cycle Timings for a Repeat Execution
1 +n+nd J n+p J 1 +n+nd+p J n l 1 +n+nd

(DP = 32)

If current auxiliary register contains 4099.

Before Instruction

>3F01
Data

Memory
4099

After Instruction

>3F01

ACC ~ l.___>_77_F_F_F_F _,
c

ACC ~ I >3F018000

c

ZALS

Syntax

Zero Accumulator, Load Low Accumulator
with Sign-Extension Suppressed ZALS

Direct: [<label>] ZALS <dma>
Indirect: [<label>] ZALS {ind}[,<next ARP>]

Operands 0 s dma s 127
0 s next ARP s 7

Execution (PC) + 1 -+ PC
0 -+ ACC(31-16)
(dma) -+ ACC(15-0)

Not affected by SXM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

Direct: [o 0 0 0 0 0 0 Data Memory Address I

Indirect: l.__o ____ o __ o __ o __ o __ o __ ...___.._ ___ s_e_e_s_e_c_tio_n_4._1 ___ _,

Description The contents of the addressed data memory location are loaded into the 16
low-order bits of the accumulator. The upper half of the accumulator is
zeroed. The data is treated as a 16-bit unsigned number rather than a
two's-complement number. Therefore, there is no sign-extension with this
instruction, regardless of the state of SXM. (ZALS behaves the same as a
LAC instruction with no shift and SXM = 0.)

Words

Cycles

'20
'C25

'20
'C25

Example

ZALS is useful for 32-bit arithmetic operations.

Pl/DI
1
1

n
n

ZALS DATl
or
ZALS *

Cycle Timings for a Single Instruction
Pl/DE PE/DI PE/DE PR/DI PR/DE
2+d 1 +p 2+d+p - -
2+d 1 +p 2+d+p 1 2+d

Cycle Timings for a Repeat Execution
2n+nd n+p 2n+nd+p - -

1 +n+nd n+p 1 +n+nd+p n 1+n+nd
,_.,.....,..,.

(DP = 6)

If current auxiliary register contains 769.

Before inntr1Jction

Data
Memory

769

After Instruction

>F7FF

ACC ~~I ~~>_F_7_F_F~
c

4-189

5. Software Applications

The TMS320C2x microprocessor/microcomputer design emphasizes overall
speed, communication, and flexibility. Many instructions are tailored to digital
signal processing tasks, providing single-cycle multiply/accumulates, adaptive
filtering support, and many other features. General-purpose instructions sup­
port floating-point, extended-precision, logical processing, and control appli­
cations.

This section provides explanations of how to use the various TMS320C2x
processor and instruction set features along with assembly language coding
examples. More information about specific applications can be found in the
book, Digital Signal Processing Applications with the TMS320 Family.

Major topics discussed in this section are listed below.

• Processor Initialization (Section 5.1 on page 5-2)

• Program Control (Section 5.2 on page 5- 7)
Subroutines
Software stack
Timer operation
Single-instruction loops
Computed GOTOs

• Interrupt Service Routines (Section 5.3 on page 5-16)
Context switching
Interrupt priority

• Memory Management (Section 5.4 on page 5-23)
Block moves
Configuring on-chip RAM
Using on-chip RAM for program execution

• Fundamental Logical and Arithmetic Operations (Section 5.5 on page
5-31)

Status register effects
Bit manipulation

• Advanced Arithmetic Operations (Section 5.6 on page 5-34)
Overflow management
Scaling
Moving data
Multiplication
Division
Floating-point arithmetic
Indexed addressing
Extended-precision arithmetic

• Application-Oriented Operations (Section 5.7 on page 5-60)
Companding
Filtering
Fast Fourier Transforms (FFT)
PIO control.

5-1

Software Applications - Processor Initialization

5.1 Processor Initialization

5-2

Prior to the execution of a digital signal processing algorithm, it is necessary
to initialize the processor. Generally, initialization takes place anytime the
processor is reset.

When reset is activated by applying a low level to the RS (reset) input for at
least three cycles, the TMS320C2x terminates execution and forces the pro­
gram counter (PC) to zero. Program memory location 0 normally contains a
B (branch) instruction in order to direct program execution to the system in­
itialization routine. The hardware reset also initializes various registers and
status bits.

After reset, the processor should be initialized to meet the requirements of the
system. Instructions should be exec\jted that set up operational modes, me­
mory pointers, interrupts, and the remaining functions necessary to meet sys­
tem requirements.

To configure the processor after reset, the following internal functions should
be initialized:

• Memory-mapped registers

• Interrupt structure

• Mode control (OVM, SXM, FO, TXM, PM; plus HM and FSM on
TMS320C25)

• Memory control (CNF)

• Auxiliary registers and the auxiliary register pointer (ARP)

• Data memory page pointer (DP).

The OVM (overflow mode), TC (test/control flag), and IMR (interrupt mask
register) bits are not initialized by reset. The auxiliary register pointer (ARP),
auxiliary register pointer buffer (ARB), and data memory page pointer (DP}
are also not initialized by reset.

Example 5-1 and Example 5-2 show coding for initializing the TMS32020 and
TMS320C25, respectively, to the following machine state, in addition to the
initialization performed during the hardware reset:

• All interrupts enabled

• Overflow mode (OVM) disabled

• Data memory page pointer (DP) set to zero

• Auxiliary register pointer (ARP) set to four (TMS32020} or seven
(TMS320C25)

• Internal memory filled with zero.

Software Applications - Processor Initialization

Example 5-1. Processor Initialization (TMS32020)

*

TITL 'PROCESSOR INITIALIZATION'
IDT 'EXAMPLE'
DEF RESET,INTO,INT1,INT2
DEF TINT,RINT,XINT,USER
REF ISRO,ISR1,ISR2
REF TIME,RCV,XMT,PROC

* PROCESSOR INITIALIZATION FOR THE TMS32020.
* RESET AND INTERRUPT VECTOR SPECIFICATION.
* BRANCHES FOR EXTERNAL AND INTERNAL INTERRUPTS.
*

AORG >0000
RESET B INIT RS- BEGINS PROCESSING HERE.
*
INTO B ISRO INTO- BEGINS PROCESSING HERE.
INTl B ISRl INTl- BEGINS PROCESSING HERE.
INT2 B ISR2 INT2- BEGINS PROCESSING HERE.
*

AORG >0018
TINT B TIME TIMER INTERRUPT PROCESSING.
RINT B RCV SERIAL PORT RECEIVE PROCESSING.
XINT B XMT SERIAL PORT TRANSMIT PROCESSING.
*
USER B PROC TRAP VECTOR PROCESSING BEGINS.
* * THE BRANCH INSTRUCTION AT PROGRAM MEMORY LOCATION 0 DIRECTS
* EXECUTION TO BEGIN HERE FOR RESET PROCESSING THAT INITIAL­
* IZES THE PROCESSOR. WHEN RESET IS APPLIED, THE FOLLOWING
* CONDITIONS ARE ESTABLISHED FOR THE STATUS AND OTHER
* INTERNAL REGISTERS:
*
* ARP ov OVM 1 INTM DP
* STO: xxx 0 x 1 1 xxxxxxxxx
*
* ARB CNF TC SXM 11111 XF FO TXM PM
* STl: xxx 0 x x 11111 1 0 0 xx
*
* REGISTER ADDRESS DATA
* ORR >0000 xx xx xx xx xx xx xx xx
* DXR >0001 xx xx xxxx xx xx xx xx
* TIM >0002 1111 1111 1111 1111
* PRO >0003 xx xx xx xx xxxx xx xx
* IMR >0004 1111 1111 llXX xx xx
* GREG >0005 1111 1111 0000 0000
*
* RESERVED XINT RINT TINT INT2 INTl INTO
* IMR: 1111111111 x x x x x x
*
INIT ROVM DISABLE OVERFLOW MODE.

LDPK 0 POINT DP REGISTER TO DATA PAGE 0.
LARP 4 POINT TO AUXILIARY REGISTER 4.
LACK >3F LOAD ACCUMULATOR WITH >3F.
SACL 4 ENABLE ALL INTERRUPTS"VIA IMR.
LALK >FFFF LOAD ACCUMULATOR WITH >FFFP.
SACL 3 INITIALIZE PERIOD REGISTER.
SSXM SET SIGN-EXTENSION MODE TO 1.
SPM 0 SET PM BITS TO 0.

5-3

Software Applications - Processor Initialization

5-4

* * INTERNAL DATA MEMORY INITIALIZATION.
*

ZAC ZERO THE ACCUMULATOR.
LARK AR4 ,>60 POINT TO BLOCK B2.
RPTK 31
SACL *+ STORE ZERC IN ALL 32 LOCATIONS.

*
LRLK AR4,>200 POINT TO BLOCK BO.
RPTK 255
SACL *+ ZERO ALL OF PAGES 4 AND 5.

*
LRLK AR4,>300 POINT TO BLOCK Bl.
RPTK 255
SACL *+ ZERO ALL OF PAGES 6 AND 7.

* * THE PROCESSOR IS INITIALIZED. THE REMAINING APPLICATION-
* DEPENDENT PART OF THE SYSTEM (BOTff ON- AND OFF-CHIP) SHOULD
* NOW 3E INITIALIZED.
*

EINT ENABLE ALL INTERRUPTS.

Software Applications - Processor Initialization

Example 5-2. Processor Initialization (TMS320C25}

TITL 'PROCESSOR INITIALIZATION'
IDT 'EXAMPLE'
DEF RESET,INT0,INT1,INT2
DEF TINT,RINT,XINT,USER
REF ISRO,ISR1,ISR2
REF TIME,RCV,XMT,PROC

* PROCESSOR INITIALIZATION FOR THE TMS320C25.
* RESET AND INTERRUPT VECTOR SPECIFICATION.
* BRANCHES FOR EXTERNAL AND INTERNAL INTERRUPTS.
*

AORG >0000
RESET B !NIT RS- BEGINS PROCESSING HERE.
*
INTO B !SRO INTO- BEGINS PROCESSING HERE.
INT! B ISRl INT!- BEGINS PROCESSING HERE.
INT2 B ISR2 INT2- BEGINS PROCESSING HERE.
*

AORG >0018
TINT B TIME TIMER INTERRUPT PROCESSING.
RINT B RCV SERIAL PORT RECEIVE PROCESSING,
XINT B XMT SERIAL PORT TRANSMIT PROCESSING.
*
USER B PROC TRAP VECTOR PROCESSING BEGINS.
*
* THE BRANCH INSTRUCTION AT PROGRAM MEMORY LOCATION 0 DIRECTS
* EXECUTION TO BEGIN HERE FOR RESET PROCESSING THAT INITIAL­
* IZES THE PROCESSOR. WHEN RESET IS APPLIED, TaE FOLLOWING
* CONDITIONS ARE ESTABLISHED FOR THE STATUS AND OTHER
* INTERNAL REGISTERS:
*
* ARP ov OVM 1 INTM DP
* STO: xxx 0 x 1 1 xxxxx:,;.xxx
*
* ARB CNF TC SXM c 11 HM FSM XF FO TXM PM
* STl: xxx 0 x 1 1 11 1 1 1 0 0 00
*
* REGISTER ADDRESS DATA
* DRR >0000 xxxx xx xx xxxx xxxx
* DXR >0001 xx xx xx xx xx xx xx xx
* TIM >0002 1111 1111 1111 1111
* PRD >0003 llll 1111 1111 lllJ

" !MR >0004 1111 1111 llXX XXX}
* GREG >0005 1111 1111 0000 oooc
*
* RESERVED XINT RINT TINT INT2 INT! INTO
* !MR: 1111111111 x x x x x x
*
!NIT ROVM DISABJ.E OVERFLOW MODE

LDPK 0 POINT DP REGISTER TO DATA PAGE o.
LARP 7 POINT TO AUXILIARY REGISTER 7.
LACK >3F LOAD ACCUMULATOR WITH >3F.
SACL 4 ENABLE ALL INTERRUPTS VIA !MR.

5-5

Software Applications - Processor Initialization

5-6

* * INTERNAL DATA MEMORY INITIALIZATION.
*

ZAC ZERO THE ACCUMULATOR.
LARK AR7,>60 POINT TO BLOCK B2.
RPTK 31
SACL *+ STORE ZERO IN ALL 32 LOCATIONS.

*
LRLK AR7,>200 POINT TO BLOCK BO.
RPTK 255
SACL *+ ZERO ALL OF PAGES 4 ANC 5,

*
LRLK AR?,>300 POINT TO BLOCK Bl.
RPTK 255
SACL *+ ZERO ALL OF PAGES b' AMD 7.

*
* THE PROCESSOR IS INIT.IALIZED. THE REMAINING APPLICATION·
*DEPENDENT PART OF THE SYSTEM (BOTH ON'- AND OFF-CHIP). SHOULD
* NOW BE INITIALIZED.
*

EINT ENABLE ALL INTERRUPTS.

Software Applications - Program Control

5.2 Program Control

To facilitate the TMS320C2x's use in general-purpose high-speed processing,
a variety of instructions are provided for software stack expansion, subroutine
calls, timer operation, single-instruction loops, and external branch control.
Descriptions and examples of how to use these features of the TMS320C2x
are given in this section.

5.2.1 Subroutines

The TMS320C2x has a 16-bit Program eounter <PC) and a four-level
(TMS32020) or eight-level (TMS320C25) hardware stack for PC storage.
The CALL and CALA subroutine calls store the current contents of the pro­
gram counter on the top of the stack. The RET (return from subroutine) in­
struction then pops the top of the stack to the program counter.

Example 5-3 illustrates the use of a subroutine to determinP. the square root
of a 16-bit number. Processing proceeds in the main routine to the point
where the square root of a number should be taken. At this point a CALL is
hlade to the subroutine, transferring control to that section of the program
memory for execution and then returning to the callina routine via the RET
instruction when execution has completed.

5-7

Software Application& - Program Control

Example 5-3. Subroutines

5-8

* AUTOCORRELATION
* * THIS ROUTINE PERFORMS A CORRELATIO~ OF TWO VECTORS AND THEN
* CALLS A SQUARE ROOT SUBROUTINE THAT WILL DETERMINE THE RMS
* AMPLITUDE OF THE WAVEFORM.
*
AUTOC

*

LAC ENERGY
CALL SQRT
SACL ENERGY

* SQUARE ROOT
* * THIS SUBROUTINE DETERMINES rHE SQUARE ROOT OF A NUMBER X
* THAT IS LOCATED IN THE LOW HALF OF THE ACCUMULATOR WHEN
* THE ROUTINE. IS CALLED. THE FRACTIONAL SQUARE ROOT OF X IS
* TAKEN, WHERE 0 < X < 1 AND WHERE 1 IS REPRESENTED BY
* >7FFF. THE RESULT IS RETURNED TO THE CALLING ROUTINE IN
* THE ACCUMULATOR
*
STO EQU >60
STl EQU >61
NUMBER EQU >62
TEMPR EQU >63
GUESS EQU >64
*
SQR'r SST STO

SS Tl STl
LDPK 0
SSXM
SPM 1
.::>ACL NUMBER
LARP ARl
LARK ARl,11
LALK >800
SACL GUESS
SACL TEMPR
SACH ROOT
LAC NUMBER
SBLK >200
BLZ SQRTLJ?
LAC GUESS,3
SACL GUESS
SACL TEMPR
LARK ARl,14

* * SQUARE ROOT LOOP
*
SQRTLP SQRA TEMPR

ZALH NUMBER
SPAC
BLZ NEXTLP
ZALH TEMPR
SACH ROOT

SAVED STATUS REGISTER STO ADDRESS
SAVED STATUS REGISTER STl ADDRESS
NUMBER X WHOSE SQUARE ROOT IS TAKEN
INTERMEDIATE ROOTS
SQUARE ROOT OF X

SAVE STATUS REGISTER STO.
SAVE STATUS REGISTER STl.
LOAD DATA PAGE POINTER = 0.
SET SIGN-EXTENSION MODE.
LEFT-SHIFT PR OUTPUT TC ACCUMULATOR.
SAVE X.
INITIALIZE VARIABLES FOR SQUARE ROOT.
12 ITERATIONS
ASSUME X IS LESS THAN >200.
SET INITIAL GUESS TO >BOO.
SET FIRST INTERMEDIATE ROOT TO >800.
SET SQUARE ROOT VALUE TC 0.
LOAD X INTO THE ACCUMULATOR.
TEST IF X IS LESS THAN >200.
IF YES, TAKE THE ROOT;
IF NO, THEN REINITIALIZE.
SET INITIAL GUESS TO >4000.
SET FIRST INTERMSDIATE ROOT TO >4000.
15 ITERATIONS

SQUARE TEMPORARY (INTERMEDIATE) ROOT.
CHECK IF RESULT IS LESS THAN X.

IF IT'S NOT, SKIP ROOT UPDATE.
IF IT IS, SET ROOT EQUAL TEMPR.

Software Applications - Program Control

NEXTLP LAC GUESS,15 SCALE DOWN GUESS BY 2 TO CONVERGE.
SACH GUESS
ADDH ROOT ADD CURRENT ROOT ESTIMATE.
SACH TEMPR UPDATE TEMPORARY ROOT VALUE.
BANZ SQRTLP REPEAT SPECIFIED NO. OF ITERATIONS.
LAC ROOT LOAD THE ROOT OF X.
LSTl STl RESTORE STATUS REGISTER STl.
LST STO RESTORE STATUS REGISTER STO.
RE'!'

Hardware stack allocation involves its use in interrupts, subroutine calls,
pipelined instructions, and the emulator (XDS). The TMS320C2x disables all
interrupts when taking an interrupt trap. If interrupts are enabled more than
one instruction before the return of the interrupt service routine, the routine
can also be interrupted, thus using another level of the hardware stack. This
condition should be considered when. managing the use of the stack. When
nesting subroutine calls, each call uses a level of the stack. The number of
levels used by the interrupt must be remembered as well as the depth of the
nesting of subroutines. One level of the stack is reserved for the emulator
(XDS) to be used for breakpoint/single-step operations. If the XDS is not
used, this extra level is available for internal use. Given these constraints, the
following listings describe possible aHocations of the hardware stack levels:

TMS32020:

- 1 level reserved for emulator (XDS) stack
- 1 level reserved for TRAP (software interrupt) instruction
- 1 level reserved for interrupt service routines (ISR)
- 1 level available for subroutine calls.

TMS320C25:

- 1 level reserved for emulator (XDS) stack
- 1 level reserved for TRAP (software interrupt) instruction
- 1 level reserved for interrupt service routines (ISR)
- 5 levels available for subroutine calls.

or:

- 1 level reserved for emulator (XDS) stack
- 1 level reserved for TRAP (software interrupt) instruction
- 2 levels .reserved for interrupt service routines (ISR)
- 4 levels available for subroutine calls.

When two levels are allocated for ISRs on the TMS320C25, the individual
ISRs can utilize one level of subroutine calls or one level of interrupt nesting.

5-9

Software Applications - Program Control

5.2.2 Software Stack

Provisions have been made on the TMS320C2x for extending ttie hardware
stack into data memory. This is useful for deep subroutine nesting or stack
overflow protection.

The hardware stack is accessible via the accumulator using the PUSH and
POP instructions. Two additional instructions, PSHD and POPD, are included
in the instruction set so that the stack may be directly stored to and recovered
from data memory.

A software stack can be implemented by using the POPD instruction at the
beginning of each subroutine in order to save the PC in data memory. Then
before returning, a PSHD is used to put the proper value back onto the top
of the stack.

When the stack has three (TMS32020) or seven (TMS320C25) values stored
on it and two or more values are to be put on the stack before any other values
are popped off, a subroutine that expands the stack is needed, such as shown
in Example 5-4. In this example, the main program stores the stack starting
location in memory in AR2 and indicates to the subroutine whether to push
data from memory onto the stack or pop data from the stack to memory. If a
zero is loaded into the accumulator before calling the subroutine, the subrou­
tine pushes data from memory to the stack. If a one is loaded into the accu­
mulator, the subroutine pops data from the stack to memory.

Since the CALL instruction uses the stack to save the program counter, the
subroutine pops this value into the accumulator and utilizes the BACC
(branch to address specified by accumulator) instruction to return to the main
program. This prevents the program counter from being stored into a memory
location. The subroutine in Example 5-4 uses the BANZ (branch on auxiliary
register not zero) instruction to control all of its loops.

Example 5-4. Software Stack Expansion

5-10

* THIS ROUTINE EXPANDS THE STACK WHILE LETTING THE MAIN
* PROGRAM DETERMINE WHERE TO STORE THE STACK CONTENTS OR FROM
* WHERE TO RECOVER THEM.
*
STACK LARP 2

BNZ PO
POP
RPTK 6
PSHD *+
BACC

PO POP
MAR *­
RPTK 6
POPD *­
MAR *+
BACC

USE AR2.
IF POPD IS NEEDED, GOTO PO.
ELSE, SAVE PROGRAM COUNTER.
LOAD REPEAT COUNTER.
PUT MEMORY IN STACK.
RETURN TO MAIN PROGRAM.
SAVE PROGRAM COUNTER.
ALIGN STACK POINTER.
LOAD REPEAT COUNTER.
PUT STACK IN MEMORY.
REALIGN STACK POINTER.
RETURN TO MAIN PROGRAM.

Software Applications - Program Control

5.2.3 Timer Operation

The TMS320C2x provides a 16-bit on-chip timer and its associated interrupt
to perform various functions at regular time intervals. The timer is a down
counter that is continuously clocked by CLKOUT1 on the TMS320C25, and
counts (PRO + 1) cycles of CLKOUT1. The timer is clocked by CLKOUT1 /4
on the TMS32020, and counts (4 x PRO) cycles of CLKOUT1. By pro­
gramming the period (PRO) register from 1 to 65,535 (>FFFF), a timer inter­
rupt (TINT} can be generated every 2 to 65,536 cycles on the TMS320C25.
Note that a Tl NT can be generated every 4 to 262, 140 cycles on the
TMS32020. (A period register value of zero is not allowed.)

Two memory-mapped registers are used to operate the timer. The timer (TIM)
register, data memory location 2, holds the current count of the timer. At every
CLKOUT1 cycle, the TIM register is decremented by one. The PRO register,
data memory location 3, holds the starting count for the timer. When the TIM
register decrements to zero, a timer interrupt (Tl NT) is generated. In the fol­
lowing cycle, the contents of the PRO register are loaded into the TIM register.
In this way, a TINT is generated every (PRO + 1) cycles of CLKOUT1 on the
TMS320C25 or (4 x PRO) cycles of CLKOUT1 on the TMS32020.

The timer and period registers can be read from or written to on any cycle. The
count can be monitored by reading the TIM register. A new counter period
can be written to the PRO register without disturbing the current timer count.
The timer will then start the new period after the current count is complete. If
both the PRO and TIM registers are loaded with a new periC>d;tt'fe timer begins
decrementing the new period without generating an interrupt. Thus, the pro­
grammer has complete control of the current and next periods of the timer.

The TIM register is set to the maximum value on reset (>FFFF) for both the
TMS32020 and TMS320C25. The PRO register is also initialized by reset on
the TMS320C25 to >FFFF. The TMS32020 requires a software initialization
of the PRO register (see Example 5-1). The TIM register begins decrementing
only after RS is de-asserted. If the timer is not used, TINT should be masked.
The PRO register can then be used as a general-purpose data memory lo­
cation. If TINT is used, the PRO and TIM registers should be programmed
before unmasking the TINT.

5-11

Software Applications - Program Control

Example 5-5 and Example 5-6 show the assembly code that implements the
use of the timer to divide down the CLKOUT1 signal. To generate a 9600-Hz
clock signal, the PRO register should be loaded with 520. In the timer inter­
rupt service routine, the XF line is toggled. The XF output is also used as an
input for BIO in this example. The output of XF will provide a 50-percent duty
cycle clock signal as long as the main routine or other interrupt routines do
not disable interrupts. Interrupts may be disabled by direct or implied use of
DINT, or by executing instructions in the repeat mode. The value for the PRO
register is calculated as follows:

TMS32020:

CLKOUT1 /(4 x PRO) = 2 x frequency of signal
5 MHz/(4 x 65) = 2 x 9600 Hz(= 9615 Hz for divided signal)

TMS320C25:

CLKOUT1 /(PRO + 1) = 2 x frequency of signal
10 MHz/(520 + 1) = 2 x 9600 Hz (= 9597 Hz for divided signal)

Example 5-5. Clock Divider Using Timer (TMS32020)

5-12

* SETUP FOR INTERRUPT SERVICE ROUTINE.
*

LACK 65
SACL DMA3
LACK 8
OR DMA4
SACL DMA4
EINT

LOAD THE PERIOD REGISTER.

ENABLE THE TIMER INTERRUPT.
ENABLE INTERRUPTS.

* I/O SERVICE ROUTINE.
*
TIME BIOZ SET! CHECK THE CURRENT XF STATE.

RXF XF WAS HIGH; SET IT LOW.
EINT ENABLE INTERRUPTS.
RET RETURN TO INTERRUPTED CODE.

SET! SXF XF WAS LOW; SET IT HIGH.
EINT ENABLE INTERRUPTS.
RET RETURN TO INTERRUPTED CODE.

Software Applications - Program Control

Example 5-6. Clock Divider Using Timer (TMS320C25)

* SETUP FOR INTERRUPT SERVICE ROUTINE.
*

LALK 520
SACL DMA3 LOAD THE PERIOD REGISTER.
LACK 8
OR DMA4
SACL DMA4 ENABLE THE TIMER INTERRUPT.
EINT ENABLE INTERRUPTS.

* I/O SERVICE ROUTINE.
*
TIME BIOZ SETl CHECK THE CURRENT XF STATE.

RXF XF WAS HIGH; SET IT LOW.
EINT ENABLE INTERRUPTS.
RET RETURN TO INTERRUPTED CODE.

SE Tl SXF XF WAS LOW; SET IT HIGH.
EINT ENABLE INTERRUPTS.
RET RETURN TO INTERRUPTED CODE.

5.2.4 Single-Instruction Loops

When programming time-critical high-computational tasks, it is often neces­
sary to repeat the same operation many times. For these cases, repeat in -
structions that allow the execution of the next single instruction N +1 times
are provided. N is defined by an eight-bit repeat counter (RPTC), which is
loaded by the RPT or RPTK instructions. The instruction immediately follow­
ing is then executed, and the RPTC is decremented until it reaches zero.

When using the repeat feature, the instruction being repeated is fetched only
once. As a result, many multicycle instructions become single-cycle when re­
peated. This is especially useful for 1/0 instructions, such as TBLR/TBLW,
IN/OUT, or BLKD/BLKP.

Since the instruction is fetched and internally latched, the program bus can
be used to fetch or write a second operand in parallel to operations using the
data bus. With the instruction latched for repeated execution, the program
counter can be loaded with a data address and incremented on succeeding
executions to fetch data in successive memory locations. As an example, the
MAC instruction fetches the multiplicand from program memory via the pro­
gram bus. Simultaneous with the program bus fetch, the second multiplicand
is fetched from data memory via the data bus. In addition to these data fetches,
preparation is made for accesses in the following cycles by incrementing the
program counter and by indexing the auxiliary register. TBLR is another ex­
ample of an instruction that benefits from simultaneous transfers of data on
both the program and data buses. In this case, data values from a table in
program memory may be read and transferred to data memory. When re­
peated, the program overhead of reading the instruction from program memory
must be executed only once, thus allowing the rest of the executions to op­
erate in a single cycle.

5-13

Software Applications - Program Control

Programs, such as those implementing digital filters, require loops that execute
in a minimum amount of time. Example 5-7 shows the use of the RPT or
RPTK instructions.

Example 5-7. Instruction Repeating

* THIS ROUTINE USES THE RPT INSTRUCTION TO SET UP THE LOOP
* COUNTER IN ONE CYCLE. THE FOLLOWING EQUATION IS IMPLEMENTED
* IN THIS ROUTINE:
*
*
*
*
*
*
*
*

\
I

10

I = 1

X(I) x Y(I)

* THIS ROUTINE ASSUMES THAT THE X VALUES ARE LOCATED IN
* ON-CHIP RAM BLOCK BO, AND THE Y VALUES IN BLOCK Bl. WHEN
* REPLACING RPT NUM WITH RPTK 9, THE PROGRAM WILL EXECUTE
* THE SAME WAY.
*
SERIES LARP AR4

CNFP
LACK 9
SACL NUM ;
LRLK AR4,>300;
MPYK >O
ZAC
RPT
MAC
APAC
RET

NUM I

>FFOO I*+ ;

CONFIG BLOCK BO AS PROGRAM MEMORY.
SET COUNTER TO 9.
(NUM) = 9.
POINT AT BEGINNING OF DATA.
CLEAR P REGISTER.
CLEAR ACCUMULATOR.
EXECUTE NEXT INSTRUCTION 10 TIMES.
MULTIPLY-ACCUMULATE; INCREMENT AR4.

RETURN TO MAIN PROGRAM.

5.2.5 Computed GOTOs

5-14

Processing may be executed in a time- and process-dependent or selected
way. Following a specific time or date. processing path may then result in s.e­
lecting one of several processing options.

A simple computed GOTO can be programmed in theTMS320C2x by using
the CALA instruction. This instruction uses the contents of the accumulator
as the direct address of the call. Thus, the call address can be computed in the
ALU, as shown in Example 5-8.

Software Applications - Program Control

Example 5-8. Computed GOTO

* TASK CONTROLLER
* * THIS MAIN TASK ROUTINE CONTROLS THE ORDER OF EXECUTION
* AND SCHEDULING OF TASKS. WHEN AN INTERRUPT OCCURS, THE
* INTERRUPT SERVICE ROUTINE IS EXECUTED TO PROCESS THE INPUT
* AND OUTPUT DATA SAMPLES. AFTER THE INTERRUPT SERVICE
* ROUTINE HAS COMPLETED, THE PROCESSOR BEGINS EXECUTION WITH
* THE INSTRUCTION FOLLOWING THE IDLE INSTRUCTION. THIS
* ROUTINE SELECTS THE TASK APPROPRIATE FOR THE CURRENT
* SAMPLE CYCLE, CALLS THE TASK AS A SUBROUTINE, AND BRANCHES
* BACK TO THE IDLE TO WAIT FOR THE NEXT SAMPLE INTERRUPT
* WHEN THE SCHEDULED TASK HAS COMPLETED EXECUTION.
*
WAIT IDLE

LAC
SUB
BGEZ
LACK

OVRSAM SACL
ADLK
TBLR
LAC
CALA
B

*
TSKSEQ EQU

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

SAMPLE
ONE
OVRSAM
15
SAMPLE
TSKSEQ
TEMP
TEMP

WAIT

$
DUMMY
DUMMY
DUMMY
DUMMY
BDCLK2
DUMMY
OUT
DECODE
DEMODB
DUMMY
AGCUPT
DUMMY
BDCLKl
DUMMY
DUMMY
DUMMY

WAIT FOR SAMPLE INTERRUPT.
FETCH SAMPLE COUNT VALUE.
DECREMENT THE SAMPLE COUNT.
TEST FOR END OF BAUD INTERVAL.
INIT COUNT FOR NEW BAUD INTERVAL.
SAVE NEW COUNT VALUE.
ADD TASK TABLE BASE ADDRESS.
READ SUBROUTINE TASK ADDRESS.
LOAD ACCUMULATOR FOR TASK CALL.
EXECUTE APPROPRIATE TASK.

15 - UNUSED CYCLE
14 - UNUSED CYCLE
13 - UNUSED CYCLE
12 - UNUSED CYCLE
11 - COMPUTE ENERGY E(ll)
10 - UNUSED CYCLE
9 - COMMUNICATE WITH CT-CONTROLLER
8 - DECODE/GET SCRAMBLED DIBIT
7 - DEMODULATE IN MIDDLE OF BAUD
6 - UNUSED CYCLE
5 - UPDATE AGC EVERY 3RD BAUD
4 - UNUSED CYCLE
3 - COMPUTE ENERGY E(3)
2 - UNUSED CYCLE
1 - UNUSED CYCLE
0 - UNUSED CYCLE

5-15

Software Applications - Interrupt Service Routine

5.3 Interrupt Service Routine

Interrupts on the TMS320C2x are prioritized and vectored. When an interrupt
occurs, the corresponding flag is set in the Interrupt Flag Register (IFR). If
the corresponding bit in the Interrupt Mask Register (IMR) is set and inter­
rupts are enabled (INTM==O), then interrupt processing begins.

When the interrupt vector is loaded into the program counter,. interrupts are
disabled (INTM==1) and a branch is made to the appropriate routine via the
branch instruction stored at the associated vector location. Since all .interrupts
are disabled, interrupt processing may proceed without further interruption
unless the interrupt service routine (ISR) re-enables interrupts.

Unless the interrupt service routines are simple 1/0 handlers, the processing
in each ISR generally must assure that the processor context is preserved
during execution. The context must be saved before executing the routine it­
self and restored when the routine is finished. A common routine or routines
individualized for each interrupt may be used to secure the context of the
processor during interrupt processing. Context switching is also useful for
subroutine calls, especially when extensive use is made of the stack or auxil­
iary registers. Code examples of context switching and an interrupt service
routine are provided in this section.

5.3.1 Context Switching

5-16

Context switching, commonly required when processing a subroutine call or
interrupt, may be quite extensive or simple, depending on the system require­
ments. On the TMS320C2x, the program counter is st.erect automatically on
the hardware stack. If there is any import1'11t information in the other
TMS320C2x registers, such as the status or auxiliary registers, these must be
saved by software command. A stack in data memory, identified by an auxil­
iary register, is useful for storing the machine state when processing interrupts.

Examples of saving and restoring the state of the TMS32020 are given in Ex­
ample 5-9 and Example 5-10. Auxiliary register 4 (AR4) is used in both ex­
amples as the stack pointer. As the stack grows, it expands into lower memory
addresses. The registers saved are the status registers (STO and ST1), accu­
mulator (ACCH and ACCL), product register (PR), temporary register (TR),
all four levels of the hardware stack, and the auxiliary registers (ARO through
AR4).

Software Applications - Interrupt Service Routine

Example 5-9. Context Save (TMS32020)

*

TITL 'CONTEXT SAVE'
DEF SAVE

* CONTEXT SAVE ON SUBROUTINE CALL OR INTERRUPT.
*
* ASSUME AR4 IS THE STACK POINTER AND AR4 = 128.
*
SAVE LARP 4

MAR *-
; (ARP) -> ARB, 4 -> ARP,AR4

AR4
*
* SAVE THE STATUS REGISTERS.

SSTl *- ; STl -> (127)' AR4
SST *- ; STO -> (126)' AR4

*
* SAVE THE ACCUMULATOR.

SACH *- ; ACCH -> (12 5) ' AR4
SACL *- ; ACCL -> (124)' AR4

* * SAVE THE P REGISTER.
SPM 0 NO SHIFT ON PR OUTPUT

*

PAC
SACH *­
SACL *-

PRH -> (123),
PRL-> (122),

* SAVE THE T REGISTER.

*

MPYK >1
PAC
SACL *- ; TR -> (121) '

* SAVE ALL FOUR LEVELS OF THE HARDWARE
RPTK 3
POPD *- TOS (4) -> (120)'

STACK(3) -> (119)'
STACK(2) -> (118)'
BOS (1) -> (117),

*
* SAVE AUXILIARY REGISTERS ARO THROUGH

SAR ARO,*- ARO -> (116)'
SAR ARl, *- ARl -> (115) '
SAR AR2, *- AR2 -> (114)'
SAR AR3, *- AR3 -> (113)'

*
* SAVE IS COMPLETE.

AR4
AR4

AR4

STACK.

AR4
AR4
AR4
AR4

AR3.
AR4
AR4
AR4
AR4

128
127

126
125

124
123

122
121

120

119
118
117
116

115
114
113
112

5-17

Software Applications - Interrupt Service Routine

Example 5-10. Context Restore (TMS32020)

TITL 'CONTEXT RESTORE'
DEF RESTOR

5-18

* * CONTEXT RESTORE AT THE END OF A SUBROUTINE OR INTERRUPT.
* * ASSUME AR4 IS THE STACK POINTER AND AR4 ~ 112.
*
RESTORLARP 4 ; (ARP) -> ARB, 4 -> ARP,AR4

MAR *+ AR4
*
* RESTORE AUXILIARY REGISTERS ARO THROUGH AR3.

LAR AR3, *+ (113) -> AR3, AR4
LAR AR2, *+ ; (114) -> AR2, AR4
LAR ARl, *+ i (115) -> ARl, AR4
LAR ARO I*+ i (116) -> ARO, AR4

*
* RESTORE ALL FOUR LEVELS OF THE HARDWARE STACK.

RPTK 3
PSHD *+ (117) -> BOS (1) I AR4

(118) -> STACK(2), AR4
(119) -> STACK(3), AR4
(120) -> TOS (4) I AR4

*

112
113

114
115
116
117

118
119
120
121

* THE RETURN PC IS NOW ON THE HARDWARE STACK FOR THE
* RET INSTRUCTION. NOTE THAT THE LOWER 16 BITS OF THE
* P REGISTER MUST BE LOADED VIA THE T REGISTER AND THAT
* THE STACK POINTER IS POINTING AT THE VALUE TO BE LOADED
* IN THE T REGISTER.
*
* RESTORE THE LOW P REGISTER.

MAR *+ ; AR4 122
LT *- i (122) -> TR, AR4 121
MPYK >l ; (TR) -> PRL, AR4 121

*
* RESTORE THE T REGISTER.

LT *+ (121) -> TR, AR4 122
MAR *+ AR4 123

*
* RESTORE THE HIGH p REGISTER.

LPH *+ (123) -> PRH, AR4 124
*
* RESTORE THE ACCUMULATOR.

ZALS *+ (124) -> ACCL, AR4 125
ADDH *+ (125) -> ACCH, AR4 126

*
* RESTORE THE STATUS REGISTERS.

LST *+ (126) -> STO, AR4 127
LSTl * (127) -> STl, AR4 128

* * RESTORE IS COMPLETE.
EINT ; ENABLE INTERRUPTS.
RET ; RETURN TO INTERRUPTS OR CALLING ROUTINE.

Software Applications - Interrupt Service Routine

Examples of saving and restoring the state of the TMS320C25 are given ir
txample 5-11 and Example 5-12. Auxiliary register 7 (AR7) is used in both
examples as the stack pointer. As the stack grows, it expands into lower
memory addresses. The registers saved are the status registers (STO and ST1),
accumulator (ACCH and ACCL), product register (PR), temporary register
(TR), all eight levels of the hardware stack, and the auxiliary registers (ARO
through AR6).

The routines in Example 5-11 and Example 5-12 are protected against inter­
rupts, allowing context switches to be nested. This is accomplished by the
use of the MAR * - and MAR * + instructions at the beginning of the context
save and context restore routines, respectively. Note that the last instruction
of the context save decrements AR7 while the context restore is completed
with an additional increment of AR7. This prevents the loss of data if a context
save or restore routine is interrupted.

5-19

Software Applications - Interrupt Service Routine

Example 5-11. Context Save (TMS320C25)

5-20

*

TITL 'CONTEXT SAVE'
DEF SAVE

* CONTEXT SAVE ON SUBROUTINE CALL OR INTERRUPT.
*
* ASSUME AR7 IS THE STACK POINTER AND AR7 = 128.
*
SAVE LARP AR7 ; (ARP) -> ARB, 7 -> ARP,AR7

MAR *- AR7
*
* SAVE THE STATUS REGISTERS.

SS Tl *- ; STl -> (127) / AR7
SST *- ; STO -> (126) I AR7

*
* SAVE THE ACCUMULATOR.

SACH *- ; ACCH -> (125) / AR7
SACL *- ; ACCL -> (124) I AR7

*
* SAVE THE P REGISTER.

SPM 0 NO SHIFT ON PR OUTPUT
SPH *- ; PRH -> (123) / AR7
SPL *- ; PRL -> (122) / AR7

*
* SAVE THE T REGISTER.

MPYK 1 ; PR = TR
SPL *- ; TR -> (121) / AR7

*
* SAVE ALL EIGHT LEVELS OF THE HARDWARE STACK.

RPTK 7
POPD *- TOS (8) -> (120) / AR7

* STACK(7) -> (119) / AR7
* STACK(6) -> (118) / AR7
* STACK(5) -> (117) / AR7
* STACK(4) -> (116) / AR7
* STACK(3) -> (115) / AR7
* STACK(2) -> (114) / AR7
* BOS (1) -> (113) / AR7
*
* SAVE AUXILIARY REGISTERS ARO THROUGH AR6.

SAR ARO,*- ARO -> (112) / AR7
SAR ARl, *- ARl -> (111) / AR7
SAR AR2, *- AR2 -> (110) / AR7
SAR AR3, *- AR3 -> (109) / AR7
SAR AR4, *- AR4 -> (108), AR7
SAR AR5, *- AR5 -> (107) / AR7
SAR AR6, *- AR6 -> (106) / AR7

*
* SAVE IS COMPLETE.

128
127

126
125

124
123

122
121

120

119
118
117
116
115
114
113
112

111
110
109
108
107
106
105

Software Applications - Interrupt Service Routine
~~~~~~~~~~~~~ 

Example 5-12. Context Restore (TMS320C25) 

* 

TITL 'CONTEXT RESTORE' 
DEF RESTOR 

* CONTEXT RESTORE AT THE END OF A SUBROUTINE OR INTERRUPT. 
* 
* ASSUME AR7 IS THE STACK POINTER AND AR7 = 105. 
* 
RESTORLARP AR7 

MAR *+ 
; (ARP) -> ARB, 7 -> ARP,AR7 

AR7 
* 
* RESTORE AUXILIARY REGISTERS ARO THROUGH AR6. 

LAR AR6, *+ (106) -> AR6, AR7 
LAR AR5,*+ (107) -> AR5, AR7 
LAR AR4,*+ (108) -> AR4, AR7 
LAR AR3,*+ (109) -> AR3, AR7 
LAR AR2,*+ ( 110) -> AR2, AR7 
LAR ARl,*+ (111) -> ARl, AR7 
LAR ARO,*+ ( 112) -> ARO, AR7 

* 
* RESTORE ALL EIGHT LEVELS OF THE HARDWARE STACK. 

RPTK 7 
PSHD *+ ( 113) -> BOS ( 1) I AR7 

* ( 114) -> STACK(2), AR7 
* ( 115) -> STACK(3), AR7 
* ( 116) -> STACK(4), AR7 
* ( 117) -> STACK(5) I AR7 
* ( 118) -> STACK(6) I AR7 
* ( 119) -> STACK(?), AR7 
* (120) -> TOS ( 8) I AR7 
* 

105 
106 

107 
108 
109 
110 
111 
112 
113 

114 
115 
116 
117 
118 
119 
120 
121 

* THE RETURN PC IS NOW ON TOP OF THE STACK FOR THE RET 
* INSTRUCTION. THE LOWER 16 BITS OF THE P REGISTER MUST 
* BE LOADED VIA THE T REGISTER AND THE STACK POINTER BE 
* POINTING AT THE VALUE TO BE LOADED IN THE T REGISTER. 
* 
* RESTORE THE LOW 

MAR *+ 

* 

LT *­
MPYK 1 

P REGISTER. 
; SKIP T REGISTER, 
; (122) -> TR, 
; (TR) -> PRL 

* RESTORE THE T REGISTER. 
LT *+ ( 121) -> TR, 
MAR *+ SKIP P REGISTER LOW, 

* 
* RESTORE THE HIGH p REGISTER. 

LPH *+ (123) -> PRH, 
* 
* RESTORE THE ACCUMULATOR. 

ZALS *+ (124) -> ACCL, 
ADDH *+ (125) -> ACCH, 

* 
* RESTORE THE STATUS REGISTERS. 

LST *+ (126) -> STO, 
LS Tl *+ (127) -> STl, 

* 
* RESTORE IS COMPLETE. 

EINT ENABLE INTERRUPTS. 

AR7 
AR7 

AR7 
AR7 

AR7 

AR7 
AR7 

AR7 
AR7 

122 
121 

122 
123 

124 

125 
126 

127 
128 

RET ; RETURN TO INTERRUPTS OR CALLING ROUTINE. 

5-21 



Software Applications - Interrupt Service Routine 

5.3.2 Interrupt Priority 

Interrupts on the TMS320C2x are prioritized in hardware. This allows inter­
rupts that occur simultaneously to be serviced in a prioritized order. Some­
times priority may be determined by frequency or rate of occurrence. An 
infrequent, but lengthy, interrupt service routine (ISR) might need to be in­
terrupted by a more frequently occurring interrupt. In the. routine of Example 
5-13, the JSR for INT1 temporarily modifies the interrupt mask register {IMR) 
to permit interrupt processing when an interrupt on INTO (but no other inter­
rupt) occurs. When the routine has finished processing, the I MR is restored 
to its original state. Example 5-13 is written for the TMS320C25; however, 
AR4 can be substituted for AR7 when using the TMS32020. 

Example 5-13. Interrupt Service Routine 

5-22 

* 

TITL 'INTERRUPT SERVICE ROUTINE' 
DEF ISRl 
REF IMR 

* INTERRUPT PROCESSING FOR EXTERNAL INTERRUPT INTl-. 
* 
* THIS ROUTINE MAY BE INTERRUPTED BY AN INTERRUPT FROM 
* EXTERNAL INTERRUPT INTO-, BUT NO OTHER. 
* 
ISRl LARP AR7 7 --> ARP 

MAR *- AR7 AR7 - 1 
SS Tl *- STl --> *AR7, AR7 AR7 - 1 
SST *- STO --> *AR7, AR7 AR7 - 1 
SACH *- ACCH --> *AR7, AR7 AR7 - 1 
SACL *- ACCL --> *AR7, AR7 AR7 - 1 
LDPK 0 DP = 0 
PSHD IMR IMR --> TOS 
LACK >0001 MASK FOR INTO-
AND IMR MASK CURRENT IMR CONTENTS. 
SACL IMR ACC --> IMR 
EINT ENABLE INTERRUPTS. 

* 
* MAIN PROCESSING SECTION FOR ISRl. 

* 
DINT DISABLE INTERRUPTS. 
LDPK 0 DP = 0 
POPD IMR TOS --> IMR 
LARP AR7 7 --> ARP 
MAR *+ AR? AR7 + 1 
ZALS *+ *AR7 --> ACCL, AR/ AR7 + 1 
ADDH *+ *AR7 --> ACCH, AR7 AR7 + 1 
LST *+ *AR7 --> STO, AR7 AR7 + 1 
LSTl *+ *AR7 --> STl, AR7 AR7 + 1 
EINT ENABLE INTERRUPTS. 
RET 

THE 



Software Applications - Memory Management 

5.4 Memory Management 

The structure of the TMS320C2x memory map is programmable and can vary 
for each application. Instructions are provided for moving blocks of data or 
program memory, configuring a block of on-chip data RAM as program 
memory, and defining part of external data memory as global. Explanations 
and examples of moving, configuring, and manipulating memory are provided 
in this section. 

5.4.1 Block Moves 

Since the TMS320C2x directly addresses a large amount of memory, blocks 
of data or program code can be stored off-chip in slow memories and then 
loaded on-chip for faster execution. Data can also be moved from on-chip to 
off-chip for storage or for multiprocessor data transfers. 

The BLKD and BLKP instructions facilitate memory-to-memory block moves 
on the TMS320C2x. The BLKD instruction moves a block within data memory 
as shown in Example 5-14. Data may also be transferred between data mem­
ory and program memory by means of the TBLR and TBLW instructions. The 
instructions IN and OUT are used to transfer data between the data memory 
and the 1/0 space. 

Example 5-14. Moving External Data to Internal Data Memory with BLKD 

* THIS ROUTINE USES THE BLKD INSTRUCTION TO MOVE A BLOCK OF 
* EXTERNAL DATA MEMORY (DATA PAGES 8 AND 9) TO INTERNAL BLOCK 
*Bl (DATA PAGES 6 AND 7). 
* 
MOVED LARP AR2 

LRLK AR2,>300; 
RPTK 255 
BLKD >400, *+ 
RET 

DESTINATION IS BLOCK Bl IN RAM. 
REPEAT NEXT INSTRUCTION 256 TIMES. 
MOVE EXTERNAL BLOCK TO BLOCK Bl. 
RETURN TO MAIN PROGRAM. 

For systems that have external program memory but no external data memory, 
BLKP can be used to move program memory blocks into data memory. Ex­
ample 5-15 demonstrates how to use the BLKP instruction. 

Example 5-15. Moving Program Memory to Data Memory with BLKP 

* THIS ROUTINE USES THE BLKP INSTRUCTION TO MOVE DATA VALUES 
* FROM PROGRAM MEMORY INTO DATA MEMORY. SPECIFICALLY, THE 
* VALUES IN LOCATIONS 2, 3, 4, AND 5 IN PROGRAM MEMORY ARE 
* MOVED TO LOCATIONS 512, 513, 514, AND 515 IN DATA MEMORY. 
* 
MOVEP LARP AR2 ; 

LRLK AR2, 512 ; 
RPTK 3 
BLKP >2, *+ 
RET 

SET REFERENCE FOR INDIRECT ADDRESSING. 
LOAD BEGINNING OF BLOCK BO IN AR2. 
SET UP LOOP. 
PUT DATA INTO DATA RAM. 
RETURN TO MAIN PROGRAM. 

Another method for transferring data from program memory into data memory 
makes use of the TBLR instruction. By using the TBLR instruction, a calcu-

5-23 



Software Applications - Memory Management 

lated, rather than predetermined, location of a block of data in program mem­
ory may be specified for transfer. A routine using this approach is shown in 
Example 5-16. 

Example 5-16. Moving Program Memory to Data Memory with TBLR 

* THIS ROUTINE USES THE TBLR INSTRUCTION TO MOVE DATA VALUES 
*FROM PROGRAM.MEMORY INTO DATA MEMORY. BY USING THIS ROUTINE, 
* THE PROGRAM MEMORY LOCATION IN THE ACCUMULATOR FROM WHICH 
* DATA IS TO BE MOVED TO A SPECIFIC DATA MEMORY LOCATION CAN 
* BE SPECIFIED. ASSUME THAT THE ACCUMULATOR CONTAINS THE 
* ADDRESS IN PROGRAM MEMORY FROM WHICH TO TRANSFER THE DATA. 
* 
TABLER LARP AR3 

LRLK AR3, 380 ; 
RPTK 127 
TBLR *+ 
RET 

DESTINATION ADDRESS =PAGE 7. 
TRANSFER 128 VALUES. 
MOVE DATA INTO DATA RAM. 
RETURN TO CALLING PROGRAM. 

In cases where systems require that temporary storage be allocated in the 
program memory, TBLW can be used to transfer data from internal data 
memory to external program memory. The code in Example 5-17 demonstrates 
how this may be accomplished. 

Example 5-17. Moving Internal Data Memory to Program Memory with TBLW 

* THIS ROUTINE USES THE TBLW INSTRUCTION TO MOVE DATA VALUES 
* FROM INTERNAL DATA MEMORY TO EXTERNAL PROGRAM MEMORY. THE 
* CALLING ROUTINE MUST SPECIFY THE DESTINATION PROGRAM MEMORY 
* ADDRESS IN THE ACCUMULATOR. ASSUME THAT THE ACCUMULATOR 
* CONTAINS THE ADDRESS IN PROGRAM MEMORY INTO WHICH THE DATA 
* IS TRANSFERRED. 
* 
TABLEW LARP AR4 

LRLK AR4, 380 ; 
RPTK 127 
TBLW *+ 
RET 

SOURCE ADDRESS= PAGE 7. 
TRANSFER 128 VALUES. 
MOVE DATA TO EXTERNAL PROGRAM RAM. 
RETURN TO CALLING PROGRAM. 

The IN and OUT instructions are used to transfer data between the data 
memory and the 1/0 space, as shown in Example 5-18 and Example 5-19. 

Example 5-18. Moving Data from 1/0 Space into Data Memory with IN 

5-24 

* THIS ROUTINE USES THE IN INSTRUCTION TO MOVE DATA VALUES 
* FROM THE I/O SPACE INTO DATA MEMORY. DATA ACCESSED FROM 
* I/O PORT 15 IS TRANSFERRED TO SUCCESSIVE MEMORY LOCATIONS 
* ON DATA PAGE 5. 
* 
INPUT LARP AR2 

LRLK AR2,>2CO 
RPTK 63 
IN PA15, *+ 
RET 

DESTINATION ADDRESS = PAGE 5. 
TRANSFER 64 VALUES. 
MOVE DATA INTO DATA RAM. 
RETURN TO CALLING PROGRAM. 



Software Applications - Memory Management 

Example 5-19. Moving Data from Data Memory to 1/0 Space with OUT 

* THIS ROUTINE USES THE OUT INSTRUCTION TO MOVE DATA VALUES 
* FROM THE DATA MEMORY TO THE I/O SPACE. DATA IS TRANSFERRED 
* TO I/O PORT 8 FROM SUCCESSIVE MEMORY LOCATIONS ON DATA 
* PAGE 4. 
* 
OUTPUT LARP AR4 

LRLK AR4,>200; SOURCE ADDRESS = PAGE 4. 
RPTK 63 TRANSFER 64 VALUES. 
OUT PAS,*+ 
RET 

5.4.2 Configuring On-Chip RAM 

MOVE DATA FROM DATA RAM. 
RETURN TO CALLING PROGRAM. 

The large amount of external memory and the configurability of on-chip RAM 
simplify the downloading of data or program memory into the TMS320C2x. 
Also, since data in the RAM is preserved when redefining on-chip RAM, block 
BO can be configured dynamically as either data or program memory. Figure 
5-1 illustrates the changes in on-chip RAM when switching configurations. 

On-chip memory is configured by a reset or by the CNFD and CNFP in­
structions. Block BO is configured as data memory by executing CNFD or re­
set. A CNFP instruction configures block BO as program memory. 

5-25 



Software Applications - Memory Management 

5-26 

PROGRAM 
BUS 

PROGRAM 
BUS 

DATA 
BUS 

DATA 
BUS 

MEMORY-MAPPED 
REGISTERS 

MEMORY 
LOCATIONS 

'-------~ 

} 
DATA 0-5 
(>0000->0005) 

BLOCK B2 

'-------~ 

} 
DATA 96-127 
(>0060->007F) 

BLOCK BO 

'-------~ 

} 
DATA 512-767 
(>0200->02FF) 

BLOCK B1 

~-----~ 

} 
DATA 768-1023 
(>0300->03FF) 

MEMORY-MAPPED 
REGISTERS 

.__ _____ ___, 

BLOCK B2 

.__ _____ ___, 

BLOCK BO 

BLOCK 81 

.__ _____ ___, 

MEMORY 
LOCATIONS 

} DATA 0-5 
(>0000->0005) 

} 
DATA 96-127 
(>0060->007F) 

} 
PROG 65280-65535 
(>FFOO->FFFF) 

} 
DATA 768-1023 
(>0300->03FF) 

Figure 5-1. On-Chip RAM Configurations 

Configuring block BO as program memory is useful for implementing adaptive 
filters or similar applications at full speed with only on-chip memories. Exam­
ple 5-20 illustrates the use of the configuration modes to utilize block BO as 
data and program memory while executing from on-chip program ROM. 



Software Applications - Memory Management 

Example 5-20. Configuring and Using On-Chip RAM 

* 

TITL 'ADAPTIVE FILTER' 
DEF ADPFIR 
DEF X, Y 

* THIS 128-TAP ADAPTIVE FIR FILTER USES ON-CHIP MEMORY BLOCK 
* BO FOR COEFFICIENTS AND BLOCK Bl FOR DATA SAMPLES. THE 
* NEWEST INPUT SHOULD BE IN MEMORY LOCATION X WHEN CALLED. 
* THE OUTPUT WILL BE IN MEMORY LOCATION Y WHEN RETURNED. 
* 
COEFFP EQU >FFOO BO PROGRAM MEMORY ADDRESS 
COEFFD EQU >0200 BO DATA MEMORY ADDRESS 
ONE EQU >7A CONSTANT ONE (DP=6) 
BETA EQU >7B ADAPTATION CONSTANT (DP=6) 
ERR EQU >7C SIGNAL ERROR (DP=6) 
ERRF EQU >7D ERROR FUNCTION (DP=6) 
y EQU >7E FILTER OUTPUT (DP=6) 
x EQU >7F NEWEST DATA SAMPLE (DP=6) 
FRSTAP EQU >0380 NEXT NEWEST DATA SAMPLE 
LAST AP EQU >03FF OLDEST DATA SAMPLE 
* 
* FINITE IMPULSE RESPONSE (FIR) FILTER. 
* 
ADPFIR CNFP 

MPYK 0 
LAC ONE I 14 
LARP AR3 
LRLK AR3, LASTAP 

FIR RPTK 127 

* 

MACD COEFFP , * -
CNFD 
APAC 
SACH y I 1 
NEG 
ADD X, 15 
SACH ERR, 1 

CONFIGURE BO AS PROGRAM: 
Clear the P register. 
Load output rounding bit. 

Point to the oldest sample. 

128-tap FIR filter. 
CONFIGURE BO AS DATA: 

Store the filter output. 

Add the newest input. 
err (n) = x(n) - y(n) 

* LMS ADAPTATION OF FILTER COEFFICIENTS. 
* 

* 
ADAPT 

* 

LT ERR 
MPY 
PAC 
ADD 
SACH 
LARP 
LARK 
LRLK 
LRLK 
DMOV 
LT 
MPY 

BETA 

ONE, 14 
ERRF,l 
AR3 
ARl,127 
AR2,COEFFD 
AR3,LASTAP 
x 
ERRF 
*-,AR2 

ZALH * ,AR3 
ADD ONE I 15 
APAC 
MPY *- ,AR2 
SACH *+,0,ARl 
BANZ ADAPT,*-,AR2 
RET 

128-TAP FIR FILTER. 
errf(n) =beta * err(n) 
ROUND THE RESULT. 

128 COEFFICIENTS TO UPDATE. 
POINT TO THE COEFFICIENTS. 
POINT TO THE DATA SAMPLES. 
INCLUDE NEWEST SAMPLE. 

P = 2*beta*err(n)*x(n-k) 

LOAD ACCH WITH ak(n). 
LOAD ROUNDING BIT. 
ak(n+l) = ak(n) + P 
P = 2*beta*err(n)*x(n-k) 
STORE ak(n+l). 
END OF LOOP TEST. 
RETURN TO CALLING ROUTINE. 

5-27 



Software Applications - Memory Management 

Note that a more definitive example of the use of the TMS320C25 for adaptive 
filtering is provided in Section 5. 7 .3. 

5.4.3 Using On-Chip RAM for Program Execution 

5-28 

In using on-chip memory (block BO) for program execution, this memory must 
first be loaded with executable code from external memories while configured 
as data memory. On-chip execution is initiated by using the CNFP instruction 
to reconfigure block BO as program memory and performing a branch or call 
to an on-chip RAM address. By configuring block BO as program memory and 
executing from this internal memory, full-speed execution can be achieved in 
systems using slower external memory. Example 5-21 illustrates how a pro­
gram may be written to be loaded into and executed from on-chip memory. 

One group of instructions, the branch/call instructions, are impacted by the 
location of execution. Normally, by using labels, the assembler properly de­
termines the location to which a branch is taken. Since the code is relocated 
prior to execution from on-chip memory, it is necessary to alter the address 
determined by the assembler for branch instructions. This alteration is neces­
sary so that the branch address that is determined can be consistent with the 
address space used during execution. In Example 5-21, this is accomplished 
by adding an offset value (OFFSET) to the branch label representing the des­
tination address in the operand field for each branch instruction. The offset 
address is determined by use of an EQU (equate) directive that subtracts the 
assembler location of the code to be relocated (equivalent to base-0 address­
ing) from the base address of the relocation address (internal block BO ad­
dress in this case). 



Software Applications - Memory Man; 

Example 5-21. Program Execution from On nory 

AORG 0 
RESET B 
* 

INIT 

* BRANCHES FOR EXTERNAL OR INTERNAL INTL RUPTS FOLLOW HERE AT 
* THE DESIGNATED LOCATIONS AS REQUIRED. 

* 
AORG >20 

* 
* A BRANCH INSTRUCTION AT PROGRAM MEMORY LOCATION 0 DIRECTS 
* PROCESSOR EXECUTION HERE. 

* 
* INITIALIZE THE PROCESSOR. 
* 
INIT ROVM 

SSXM 
LDPK 0 
SPM 0 
LARP AR4 
LARK AR4,PRD 
LALK >FFFF 
SACL *+ 
SACL *+ 
ZAC 
SACH * 

* 

DISABLE OVERFLOW MODE. 
SET SIGN EXT 'SION. 
POINT DP RE 'ER TO DATA MEMORY PAGE 0. 
NO SHIFT OK JDUCT REGISTER OUTPUT. 
USE AUXILIA. REGISTER 4 (SET ARP = 4). 
POINT AR4 TO PERIOD REGISTER. 
SET ACCUMULATOR TO >FFFF. 
LOAD PERIOD REGISTER WITH MAXIMUM VALUE. 
ENABLE ALL INTERRUPTS VIA IMR. 
CLEAR ACCUMULATOR. 
CLEAR GREG TC MAKE ALL MEMORY LOCAL. 

* LOAD TIME-CRITICAL CODE FROM EXTERNAL SLOW MEMORY TO INTERNAL RAM. 
* 

LARP 
LRLK 
RPTK 
BLKP 

* 

ARI 
ARI,BLKO 
PROGL-I 
PROG,*+ 

USE AUXILIARY REGISTER 1 (SET ARP = I). 
POINT ARI TO RECONFIGURABLE BLOCK BO. 
LOAD REPEAT ''JUNTER WITH BLOCK LENGTH. 
MOVE CODE FROM PROG MEMORY TO ON-CHIP RAM. 

* INITIALIZE PARAMETERS FOR EXECUTION. 
* 

LDPK 
LACK 
SACL 
LRLK 
RPTK 
BLKP 
CNFP 
LALK 
BACC 

* 

6 
I 
ONE 
ARI,BLKO+PROGL 
COEFL-I 
COEF, *+ 

>FFOO 

POINT DP REGISTER TO DATA MEMORY PAGE 6. 
SET ACCUMULATOR TO >OOOI. 
STORE VALUE OF I. 
POINT ARI TO INTERNAL MEMORY ADDRESS. 
LOAD REPEAT COUNTER WITH BLOCK LENGTH. 
MOVE DATA FROM PROG MEMORY TO ON-CHIP RAM. 
CONFIGURE BLOCK BO AS PROGRAM MEMORY. 
LOAD ACC WITH PROG ADDR IN INTERNAL RAM. 
BRANCH TO ON-CHIP EXECUTION ADDRESS. 

* SIGNAL PROCESSING CODE TO BE EXECUTED FROM ON-CHIP RAM. 
* 
PROG EQU $ 
LPTS BIOZ GET-PROG+ONCHIP WAIT FOR INPUT SIGNAL. 

B LPTS-PROG+ONCHIP BRANCH IF NO SIGNAL. 
GET OUT FILOUT,PA2 OUTPUT LAST FILTER OUTPUT. 

IN FILIN,PA2 INPUT NEW SIGNAL SAMPLE. 
LRLK ARl,BLKI+SIGNAL POINT ARI TO SIGNAL DATA TO PROCESS. 
ZAC CLEAR THE ACCUMULATOR. 
MPYK 0 CLEAR THE P REGISTER. 

5-29 



Software Applications-·: · 11anagement 

PROGE 
PROGL 
ON CHIP 
* 

RPTK 
MACO 
APAC 
SACH 
B 
EQU 
EQU 
EQU 

15 
ONCHIP+COEF:F, 

FILOUT,1 
LPTS-PROG+ONCHIP 
$ 
PROGE-PROG 
>FFOO 

,'EPEAT MACO INSTRUCTION FOR 16 TAPS. 
MULTIPLY, ACCUMULATE, SAMPLE DELAY. 
ACCUMULATE THE LAST PRODUCT. 
SAVE THE RESULT. 
LOOP TO WAIT FOR NEXT SAMPLE. 
SAVE THE RESULT. 
PROGRAM CODE LENGTH. 
BASE ADDRESS EXECUTION. 

* COEFFICIENT DATA TO BE LOADED INTO ON:...CHIP RAM. 
* 
COEF 

COE FE 
COE FL 
* 

DATA 
DATA 
DATA 
DATA 
EQU 
EQU 

385,-1196,1839,-2009 
1390,407,-4403,19958 
19958,-4403,407,1390 
-2009,1839,-1196,385 
$ 
COEFE-COEF ; COEFFICIENT DATA LENGTH. 

* INTERNAL MEMORY CONSTANTS 
* 
BLKO 
BLKl 
* 

EQU >200 
EQU >300 

* DATA PAGE 0 (BLOCK B2) - DATA MEMORY LABELS. 
* 

DORG 0 
DRR BSS 1 SERIAL PORT DATA RECEIVE REGISTER. 
DXR BSS 1 SERIAL PORT DATA TRANSMIT REGISTER. 
TIM BSS 1 TIMER REGISTER. 
PRO BSS 1 PERIOD REGISTER. 
IMR BSS 1 INTERRUPT MASK REGISTER. 
GREG BSS 1 GLOBAL MEMORY ALLOCATION REGISTER. 
* * DATA PAGE 4 (BLOCK BO) - DATA MEMORY LABELS. 
* 

DORG 0 
BO BSS PROGL ; LOCATIONS FOR INTERNAL PROGRAM CODE. 
COE FF BSS CO EFL ; LOCATIONS FOR COEFFICIENT MEMORY. 
* * DATA PAGE 6 (BLOCK Bl) - DATA MEMORY LABELS. 
* 

DORG 0 
ONE BSS 1 RESERVED FOR DATA VALUE OF 1. 
FILOUT BSS 1 FILTER OUTPUT SIGNAL VALUE. 
FILIN BSS 1 FILTER INPUT SIGNAL VALUE. 
SIGNAL BES 14 LAST SIGNAL DELAY VALUE. 

END 

5-30 



Software Applications - Logical/Arithmetic Operations 

5.5 Fundamental Logical and Arithmetic Operations 

Although the TMS320C2x instruction set is oriented toward digital signal 
processing, the same fundamental operations of a general-purpose processor 
are included. This section explains basic operations of the TMS320C2x Cen­
tral Arithmetic Logic Unit (CALU), particularly accumulator operations, the 
status register effect on data processing, and bit manipulation. 

The TMS320C2x provides a complete set of logical operations, including 
AND, OR, XOR, and CMPL (complement) instructions. This enables the de­
vice to perform any logical function. These instructions may be used to per­
form sign magnitude to two's complement or the reverse conversions. 

The contents of the accumulator may be stored in data memory using the 
SACH and SACL instructions or stored in the stack by using the PUSH in­
struction. The accumulator may be loaded from data memory using the ZALH 
and ZALS instructions, which zero the accumulator before loading the data 
value. The ZAC instruction zeroes the accumulator. POP can be used to re­
store the accumulator contents from the stack. 

The accumulator is also affected by the ABS and NEG instructions. ABS re­
places the contents of the accumulator with the absolute value of its contents. 
NEG generates the arithmetic complement of the accumulator in two's­
complement form. 

5.5.1 Status Register Effect on Data Processing 

Three data processing options allow the ALU to automatically suppress sign 
extension, manage overflow, or scale product accumulations. These options 
are enabled or disabled through bits in the status registers. These options 
function in parallel with normal execution of the instructions and cause no 
additional machine cycles, therefore no performance overhead. 

The sign-extension mode option is used to determine whether or not the 
shifted data values fetched for ALU operations should be sign-extended. The 
SXM status bit controls this operation. This bit is set to '1' for enabling sign 
extension using the SSXM instruction, and set to 'O' for suppressing sign ex­
tension using the RSXM instruction. This operation affects all the instructions 
that include a shift of the incoming data value (i.e., ADD, ADDT, ADLK, LAC, 
LACT, LALK, SBLK, SFR, SUB, ar:d SUBT). 

The overflow mode option is usc.d to minimize the effects of an arithmetic 
overflow by forcing the accumulftvr to saturate at the largest positive value 
(or in the case of underflow, the iargest negative value). The OVM status bit 
controls this operation. The overflow mode is enabled by setting the OVM bit 
to a '1' using the SOVM instruction, and reset using the ROVM instruction. 
This feature affects all alithmetic operations in the ALU. 

The product register shift mode option forces all products to be shifted before 
they are accumulated. The products can be left-shifted one bit to delete the 
extra sign bit in the multiply of two 16-bit signed numbers. The products can 
be left-shifted four bi.ts to delete the extra sign bits in multiplying a 16-bit data 
value by a 13-bit constant. Fie product shifter can also be used to shift all 
products six bits to the right allow up to 128 product accumulations with­
out the threat of an arithmefr overflow, thereby avoiding the overhead of ov-

5-31 



Software Applications - Logical/Arithmetic Operations 

erflow management.· The shifter can be disabled to cause no shift in the 
product when working with integer or 32-bit precision operations. This also 
maintains compatibility with TMS320C1 x code. These operations are con­
trolled by the value contained in the PM bits of status register ST1. The PM 
bits are set using the SPM instruction. This feature affects all the instructions 
that use the product of the multiplier (i.e., APAC, LT A, LTD, LTP, L TS, MAC, 
MACO, MPYA, MPYS, PAC, SPAC, SPH, SPL, SORA, and SQRS). 

5.5.2 Bit Manipulation 

The BIT instruction tests any of the 16 bits of the addressed data word. The 
specified bit is copied into the TC of the status register. The bit tested is 
specified by a bit code in the opcode of the instruction. Either the BBZ 
(branch on TC bit = 0) or BBNZ (branch on TC bit = 1) instructions check 
the bit and allow branching to a service routine. 

Bit testing is useful in control applications where a number of states or con­
ditions may be latched externally and read into the TMS320C2x via an IN in­
struction. At this point, individual bits can be tested and branches taken for 
appropriate processing. 

Since the BIT instruction requires the bit code to be specified with the in­
struction, it cannot be placed in a loop to test several different bits of a data 
word or bits determined by prior processing for efficient use. The TMS320C2x 
also has a BITT instruction in which the bit code is specified in the T register. 
Since the T register can easily be modified, BITT may be used to test all bits 
of a data word if placed within a loop or to test a bit location determined by 
past processing. 

Example 5-22. Using BIT and BBZ 

5-32 

* THIS ROUTINE USES THE BIT INSTRUCTION TO TEST THE CONDITION 
* OF AN EXTERNAL MUX. BIT 4 DETERMINES THE UTILITY OF THE 
* REMAINING DATA. IF ZERO, A COUNTER IS INCREMENTED. IF ONE, 
* ADDITIONAL PROCESSING OCCURS AND THE COUNTER IS CLEARED. 
* THE ROUTINE IS INVOKED WHENEVER A TIMER INTERRUPT OCCURS. 
* 
TIME SST STO SAVE STA'I'US REGISTER STO. 

LDPK 0 
LARP AR3 
IN DAT,PAS Il.EAD IN VALUE. 
BIT DAT,>B TES'I' BIT 4. 
BBZ INCR BRANCH AND INCREMENT IF POSITIVE. 

LARK AR3,0 CLEAR 1rHE COUNTER. 
LST STO RELOAD THE STATUS REGISTER. 
EINT ENAB.\.,E INTERRUPTS. 
RET RE'J'URN ·ro INTERRUPTED ROUTINE. 

* 
INCR MAR *+ IJ\!CREMENT THE COUNTER. 

LST STO RELOAD THE STATUS REGISTER. 
EIN'r ENl\BLE INTERRUPTS. 
RET RE'~URN TO INTERRUPTED ROUTINE. 



Software Applications - Logical/Arithmetic Operations 

Example 5-23. Using BITT and BBNZ 

* THIS ROUTINE USES THE BITT INSTRUCTION TO TEST THE CONDITION 
* OF AN EXTERNAL MUX. A BIT IN THE MUX IS SIGNIFICANT ONLY 
* WHEN PRIOR PROCESSING HAS DESIGNATED THE BIT TO BE ACTIVE. 
* INDIVIDUAL PROCESSING WILL TAKE PLACE BASED UPON THE STATE 
* OF THE TESTED BIT. THE BITS ARE TESTED EACH TIME A TIMER 
* INTERRUPT OCCURS. 
* 
TIME SST STO 

LDPK 0 
LARP AR3 
LAR AR3,BCNT 
LRLK AR3 ,BTBL 
IN DAT,PAB 
B LTEST,*-,4 

TMLOOP LT *+,3 
BITT DAT 
BBNZ LTEST 

LTEST BANZ TMLOOP,*-,4 
LST STO 
EINT 
RET 

SAVE STATUS REGISTER STO. 

LOAD COUNT OF ACTIVE BITS. 
LOAD THE BIT TABLE ADDRESS. 
READ IN VALUE. 

LOAD BIT CODE. 
TEST SPECIFIED BIT. 
BRANCH IF BIT IS ONE. 

RELOAD THE STATUS REGISTER. 
ENABLE INTERRUPTS. 
RETURN TO INTERRUPTED ROUTINE. 

5-33 



Software Applications - Advanced Arithmetic Operations 

5.6 Advanced Arithmetic Operations 

The TMS320C2x provides special instructions that facilitate efficient exe­
cution of arithmetic-intensive DSP algorithms, such as MACD, SORA, SUBC, 
and NORM. Explanations and examples of how to use these instructions with 
overflow management and for data moves, multiplications, division, float­
ing-point arithmetic, indexed addressing, and extended-precision arithmetic 
are included in this section. 

5.6.1 Overflow Management 

5-34 

The TMS320C25 has four features that can be used to handle overflow man­
agement. These include the branch on overflow conditions, accumulator sat­
uration (overflow mode), product register right shift, and accumulator right 
shift. These features provide several options for overflow protection within an 
algorithm. 

A program can branch to an error handler routine on an overflow of the ac­
cumulator by using the BV (branch on overflow) instruction or bypass .an error 
handler by using the BNV (branch if no overflow) instruction. These in­
structions can be performed after any ALU operation that may cause an ac­
cumulator overflow. 

The overflow mode is a feature useful for DSP applications. This mode sim­
ulates the saturation effect characteristic of analog systems. When enabled, 
any overflow in the accumulator results in the accumulator contents being 
replaced with the largest positive value (> 7FFFFFFF) if the overflowed num­
ber is positive, or the largest negative value (>80000000) if negative. The 
overflow mode is controlled by the OVM bit of status register STO and can be 
changed by the SOVM (set overflow mode), ROVM (reset overflow mode), 
or LST (load status register) instructions. Overflows can be detected in soft­
ware by testing the OV (overflow) bit in status register STO. When a branch 
is used to test the overflow bit, OV is automatically reset. Note that the OV 
bit does not function as a carry bit. It is set only when the absolute value of a 
number is too large to be represented in the accumulator, and it is not reset 
except by specific instructions. 

Another method of overflow management, which applies to multiply-accu­
mulate operations, is the use of the right shifter of the product register. The 
right shifter, which operates with no cycle overhead, allows up to 128 accu­
mulations without the possibility of an overflow. The least-significant six bits 
of the product are lost, and the MSBs are filled with sign bits. This feature is 
initiated by setting the PM bits of status register ST1 to '11' using the SPM 
or LST1 instructions. 

The TMS320C2x also has a right shift of the accumulator (using the SFR in­
struction) to scale down the accumulator when it nears overflow. 



Software Applications - Advanced Arithmetic Operations 

5.6.2 Scaling 

Scaling the data coming into the accumulator or already in the accumulator is 
useful in signal processing algorithms. This is frequently necessary in adapta­
tion or other algorithms that must compute and apply correction factors or 
normalize intermediate results. Scaling and normalizing are implemented on 
the TMS320C2x via right and left shifts in the accumulator and shifts of data 
on the incoming path to the accumulator. 

Right and left shifts of the accumulator can be performed using the SFL and 
SFR instructions. SFL performs a logical left shift. SFR performs logical or 
arithmetic right shifts depending on the state of the SXM bit in the status 
register. A one in the SXM bit, corresponding to sign-extension enabled, 
causes an arithmetic shift to be performed. 

In addition to the shift instructions, data can be left-shifted 0 to 1 5 bits when 
the accumulator is loaded using a LAC instruction, and left-shifted 0, 1, or 4 
bits on the TMS32020 or 0 to 7 bits on the TMS320C25 when storing from 
the accumulator using SACH or SACL instructions. These shifts can be used 
for loading numbers into the high 16 bits of the accumulator and renormaliz­
ing the result of a multiply. The incoming left shift of 0 to 1 5 bits can be 
supplied in the instruction itself or can be taken from the lowest four bits of 
the T register. Left shifts of data fetched from data memory are available for 
loading the accumulator ( LAC/LACT}, adding to the accumulator 
(ADD/ADDT), and subtracting from the accumulator (SUB/SUBT). The 
contents of the P register may also be shifted prior to accumulation. 

5.6.3 Moving Data 

Many DSP applications must perform convolution operations or other oper­
ations similar in form. These operations require data to be shifted or delayed. 
The DMOV, LTD, and MACO instructions can perform the needed data moves 
for convolution. 

The data move function allows a word to be copied from the currently ad­
dressed data memory location in on-chip RAM to the next higher location 
while the data from the addressed location is being operated upon (e.g., by 
the CALU). The data move and the CALU operation are performed in the same 
cycle. In addition, an ARAU operation may also be performed in the same cy­
cle when using the indirect addressing mode. The data move function is useful 
in implementing algorithms, such as convolutions and digital filtering, where 
data is being passed through a time window. It models the z-1 delay operation 
encountered in those applications. The data move function is continuous 
across the boundary of the on-chip data memory blocks BO, 81, and 82. 
However, the data move function cannot be used if off-chip memory is refer­
enced. 

In Example 5-24, the following equation is implemented: 

2 

Y(n) = L H(k) X(n-k) 

k=O 

5-35 



Software Applications - Advanced Arithmetic Operations 

5-36 

where the H values stay the same, and the X values are shifted each time the 
microprocessor performs one of the following series of multiplications (similar 
to operations performed in Fl R filters): 

First Series: 
Second Series: 
Third Series: 

Y(2) = (HO)(X2)+(H1 )(X1 )+(H2)(XO) 
Y(3) = (HO)(X3)+(H1)(X2)+(H2)(X1) 
Y(4) = (HO)(X4)+(H1)(X3)+(H2)(X2) 

The MACD instruction, which combines accumulate and multiply operations 
with a data move, is tailored to the type of calculation shown in the summa­
tion equation above. In order to use MACD, the H values. have been stored 
in block BO, configured as program RAM, and the X values have been read 
into block B1 of data RAM as shown in Figure 5-2. 

PROGRAM 
BLOCK BO 

PC-~H2 >FFOO 

I H1 >FF01 

1 HO >FF02 

(COEFFICIENTS) 

DATA 
BLOCK 81 

>300~· X2 1 
>301 X1 

>302 XO -AR1 

(SAMPLES} 

Figure 5-2. MACO Operation 

Also in Example 5-24, the summation in the above equation is performed in 
the reverse order, i.e., from K = 2 to 0, due to the operation of the data move 
function. This results in the oldest X value being used and discarded first. 

If the MACD instruction is replaced with the following two instructions, then 
the MAC instruction can be utilized with the same results. 

MAC * 
DMOV *-

In cases where many more than three MACD instructions are required, the 
RPT or RPTK instructions may be used with MACO, yielding the same com­
putational results but using less assembly code. 



Software Applications - Advanced Arithmetic Operations 

Example 5-24. Using MACO for Moving Data 

* THIS ROUTINE IMPLEMENTS A SINGLE PASS OF A THIRD-ORDER FIR 
* FILTER. IT IS ASSUMED THAT THE H AND X VALUES HAVE ALREADY 
* BEEN LOADED INTO THEIR RESPECTIVE MEMORY LOCATIONS, THAT 
* THE ACCUMULATOR AND P REGISTER ARE BOTH RESET TO ZERO, AND 
* THAT ARl IS POINTING AT XO. NOTE THAT THE MACD INSTRUCTION 
* MAY BE USED IN THE REPEAT MODE, BUT IT IS NOT IMPLEMENTED 
* HERE. 
* 
FIR CNFP CONFIGURE BLOCK BO AS PROGRAM MEMORY. 

LARP 1 ARl SHOULD POINT AT THE X VALUES. 
MAC >FFOO,*- p = (XO) (H2) 
MACD >FFOl,*- ACC (XO) (H2) 
MACD >FF02, * ACC = (XO) (H2) + (Xl) (Hl) 
APAC ACC = (XO) (H2) + (Xl) (Hl) + (X2) (HO) 
CNFD CONFIGURE BLOCK BO AS DATA MEMORY. 
RET RETURN TO MAIN PROGRAM. 

5.6.4 Multiplication 

The TMS320C2x hardware multiplier normally performs two's-complement 
16-bit by 16-bit multiplies and produces a 32-bit result in one processor cycle. 
A single TMS320C25 instruction, MPYU, can be used to multiply two 16-bit 
unsigned numbers. To multiply two operands, one operand must be loaded 
into the T register (TR). The second operand is moved by the multiply in­
struction to the multiplier, which then produces the product in the P register 
(PR). Before another multiply can be performed, the contents of the PR must 
be moved to the accumulator. A single-multiply program is shown in Example 
5-25. By pipelining multiplies and PR moves, most multiply operations can 
be performed with a single instruction. 

A common operation in DSP algorithms is the summation of products. The 
MAC instruction, normally performed in multiple cycles, adds the contents of 
the PR to the accumulator and then simultaneously reads two values and 
multiplies them. When using the MAC instruction, a data memory value is 
multiplied by a program memory value. One of the operands can come from 
block B1 or B2 in on-chip data memory while the other operand may come 
from block BO. Block BO must be configured as program memory when it 
supplies the second operand. Pipelining of the MAC instruction with a repeat 
instruction results in an execution time for each succeeding multiply-and-ac­
cumulate operation of only one cycle. 

5-37 



Software Applications - Advanced Arithmetic Operations 

Example 5-25. Multiply 

* THIS ROUTINE MULTIPLIES TWO VALUES IN DATA MEMORY LOCATIONS 
* >200 AND >201 WITH THE RESULT STORED IN >202 AND >203. 
* 
MUL LRLK ARl,>200 

LARP 1 
LT *+ 
MPY *+ 
PAC 
SACL *+ 
SACH * 
RET 

POINT AT BLOCK BO. 

GET FIRST VALUE AT >200. 
MULTIPLY BY VALUE AT >201. 
PUT RESULT IN ACCUMULATOR. 
STORE LOW WORD AT >202. 
STORE HIGH WORD AT >203. 
RETURN TO MAIN PROGRAM. 

The pipelining of the MAC and MACO- instructions incurs a certain amount 
of overhead in execution. In those cases where speed is more critical than 
program memory, it may be beneficial to use LTA or LTD and MPV in­
structions rather than MAC or MACO. Example 5-26 and Example 5-27 show 
an implementation of multiply-accumulates using the MAC instruction. Ex" 
ample 5-28 shows an implementation of multiply-accumulates using the 
LTA-MPY instruction pair. Figure 5-3, Figure 5-4, and Figure 5-5 provide 
graphically the information necessary to determine the efficiency of use for 
each of the techniques. 

Example 5-26. Multiply-Accumulate Using the MAC Instruction (TMS32020) 

* CLOCK TOTAL CLOCK PROGRAM TOTAL PROGRAM 
* CYCLES CYCLES MEMORY MEMORY 
* 

LARP ARl 1 1 
LRLK ARl,>300 2 2 
CNFP 1 1 
ZAC 1 1 
MPYK 0 1 1 
RPTK N-1 1 1 
MAC >FFOO,*+ 2 + N 2 
APAC 1 10 + N 1 10 

Example 5-27. Multiply-Accumulate Using the MAC Instruction (TMS320C25) 

* CLOCK TOTAL CLOCK PROGRAM TOTAL PROGRAM 
* CYCLES CYCLES MEMORY MEMORY 
* 

LARP ARl 1 1 
LRLK ARl,>300 2 2 
CNFP 1 1 
ZAC 1 1 
MPYK 0 1 1 
RPTK N-1 1 1 
MAC >FFOO,*+ 3 + N 2 
APAC 1 11 + N 1 10 

5-38 



Software Applications - Advanced Arithmetic Operations 

Example 5-28. Multiply-Accumulate Using the LTA-MPY Instruction Pair 

* 
* 
* 

ZAC 
LT Dl 
MPY Cl 
LTA D2 
MPY C2 

LTA DN 
MPY CN 
APAC 

CLOCK TOTAL CLOCK PROGRAM TOTAL PROGRAM 
CYCLES CYCLES MEMORY 

1 1 
1 1 
1 1 
1 1 
1 1 

2N 2N 

1 1 
1 1 
1 2 + 2N 1 

24- ... : .... : .... : .... : .... : .... : .... '· .. : ... : ... ; ....... . 

. 22-· .. ; ... ·' .. ,; ... ; .. ,; .... : .... : .... : .... : .... ;, ... ; .. . 
: : : : : : : : : : . 

! l~:·•••• 1 ••• ·······••••.••• 1••••1••••:•••L•••'•••• ··•••I••••• 
~ 10-· .. t .... : ... ·i .. 4 .... : .... : .... : .... : .... : .... : .... i- .. 
§ 8 - ... ; .... : .. + .. : .... : .... : .... : .... ~- .. ; .... : ... -~ ... 
rJS 6 -· .. ~- .. 4 .. -~ .. -~ .. ··~ .. ··~·· .. : .. -·~·· ··~·· ··~· .. ~- .. 

: : : : : : : : : : : 
4 - .. ·: .. ··: .... : .... : ... ·~ 0 MAC0 IMPLEMENTATION ...... 
2 - .... ; .... ; ... ; ... ; o~ LTA-MPY IMPLEMENTATION 

: : : : x - BREAK-EVEN POINT 

T T T T T T T T T T T 
1 2 3 4 5 6 7 8 9 10 11 

NUMBER OF MULTIPLY-ACCUMULATES TO BE 
PERFORMED 

MEMORY 

2 + 2N 

Figure 5-3. Execution Time vs. Number of Multiply-Accumulates 
(TMS32020) 

5.39 



Software Applications - Advanced Arithmetic Operations 

24-1 .. -~ .. ··: .. ··:·· ··:·· ··:·· "':·· .. ~- .. ;· .. :· .. ·:· .. ~ .. . 

22 + .. ; .... ; ... : ... : .... : .... : .... : .... : .... : .. ··0· ..... . 
: : ·: : : : : : : . : 

! : :· ••··i· ••· •• ~ ••· •: ••·••.••·•I•·••·•·••!·••=·••··.••· i· ••· i· ••· • 
d 14-1· .. '." .. ~ .. ~ .. ·: .. ··'. .. -~·· ··'.·· ··'.·· ··:·· ··'.·· .. i· .. 
~ 12 -1 .. ·! .. ··: .. ··: .... : .. ·-<?·· .. :·· .. :·- .. ~- .. ~- '· -:· .. ·; .. . 

~ 10 + .. ; .... : ... ·i .. ~ .. ··: .... : .... : .... : .. · .. : .... : .... : ... . 
§ 8 -1 ... ; .. -·: .. -~-· .. : .... : .... : .... : .... : ... ; .... : ... -~ .. . 

~ 6 -+ .. ~· .. ~ .. ·~ .. ·~ .. ··~ .. ··~·· ··~·· ·-~·· ··~·· .. ~-· .. ~· .. 
: : : : : : : : 

4 _, .. ·: .. ··: .... , .. ··:··;~ .MAc· 1.MPLEMENi-AnoN ..... . 
2 _, .... ; .... ; .... ; ... ; o~ LTA-MPY IMPLEMENTATION 

: : : : x - BREAK-EVEN POINT 

I I I I I I I I I I I 
1 2 3 4 5 6 7 8 9 10 11 

NUMBER OF MULTIPLY-ACCUMULATES TO BE 
PERFORMED 

Figure 5-4. Execution Time.vs. Number of Multiply-Accumulates 
(TMS320C25) 



Software Applications - Advanced Arithmetic Operations 

24-1 ... : .... , ....................................... ~ .. . 

22-1· .. ;, .. : . .. ,:, ... : .. _; .................. -.... 0 ... ;, .. 

CD 20-1 .. ,; ...................... · .. "· .. " .. 0 .. ·" .. ·' .. 
0 . 

g§ 18 -I· .. : ... ,, .... . : .......... .. o. ·:: .. .. : .. 
s: -
~ 16 -I .......... ',, .. Q. 

>-g§ 14 -I -¢ 

~ 12 -I ... : .... ' .... : ...... .;, ... : .. 

~ 10 + ~ ........ ·i«· .................. ~ ... •· . ~ .. 
a: 8 8 -I.. .. .9 .. ..; .. 
a: : : : : 
a_ 6 -I· .. , ... El .. ·:· ... , .. 

4 -I ... ~ .... : .... : ... : .... : .. 
: • =MAC IMPLEMENTATION 

2 .. :· .. : o = L TA-MPY IMPLEMENTATION 
: x = BREAK-EVEN POINT 

~ T T T T T I T T I I 
1 2 3 4 5 6 7 8 9 10 11 

NUMBER OF MULTIPLY-ACCUMULATES TO BE 
PERFORMED 

Figure 5-5. Program Memory vs. Number of Multiply-Accumulates 

In numerical analysis, it is often necessary to square numbers along with 
adding or subtracting. The TMS320C2x has two instructions, SORA and 
SQRS, that accomplish this in a single machine cycle. The result of the pre­
vious operation in the PR is first added to the accumulator if SORA is used, 
or subtracted from the accumulator if SORS is used. Then the data value ad­
dressed is squared, and the result is stored in the PR. Example 5-29 uses the 
SQRA instruction to perform the computation. 

5-41 



Software Applications - Advanced Arithmetic Operations 

Example 5-29. Using SQRA 

* THIS ROUTINE USES THE SQRA INSTRUCTION TO COMPUTE THE 
* SQUARE OF THE DISTANCE BETWEEN TWO POINTS WHERE D**2 
* IS DEFINED AS FOLLOWS: 
* 
* D**2 = (XA - XB)**2 + (YA - YB)**2 
* 
DIST LAC XA 

SUB XB 
SACL XT XT XA - XB 

* 
LAC YA 
SUB YB 
SACL YT YT = YA - YB 

* 
SQRA XT (P) = XT**2 
ZAC (ACC) = 0 
SQRA YT (P) = YT**2, (ACC) = XT**2 
APAC (ACC) = XT**2 + YT**2 = D**2 

* 
RET RETURN TO MAIN PROGRAM. 

When performing multiply-and-accumulate operations, it may be desirable to 
shift the product before adding it to the accumulator. This can be accom­
plished simultaneously with the MAC instruction by using the product shift 
mode on the TMS320C25. This mode, controlled by two bits in the PM field 
of status register ST1, shifts the value from the PR while it is transferred to the 
accumulator. The contents of the PR are not shifted. 

5.6.5 Division 

5-42 

Division is implemented on the TMS320C2x by repeated subtractions using 
SUBC, a special conditional subtract instruction. Given a 16-bit positive div­
idend and divisor, the repetition of the SUBC command 16 times produces a 
16-bit quotient in the low accumulator and a 16-bit remainder in the high 
accumulator. 

SUBC implements binary division in the same manner as is commonly done 
in long division. The dividend is shifted until subtracting the divisor no longer 
produces a negative result. For each subtract that does not produce a negative 
answer, a one is put in the LSB of the quotient and then shifted. The shifting 
of the remainder and quotient after each subtract produces the separation of 
the quotient and remainder in the low and high halves of the accumulator. 

There are similarities between long division and the SUBC method of division. 
Both methods are used to divide 33 by 5. 



Software Applications - Advanced Arithmetic Operations 

LONG DIVISION: 

0000000000000110 
0000000000000101 )0000000000100001 

-101 
110 

-101 

SUBC METHOD: 

132 HIGH ACC I 
0000000000000000 

-10 
-10 

I 
0000000000000000 

-10 
-10 

-11 

I LOW ACC 9 
0000000000100001 (1) 
1000000000000000 
0111111111011111 

I I 
0000000001000010 (2) 
1000000000000000 
0111111110111110 

I 

Quotient 

Remainder 

COMMENT 

Dividend is loaded into ACC. The 
divisor is left-shifted 15 and sub­
tracted from ACC. The subtraction 
is negative, so discard the result 
and shift left the ACC one bit. 

2nd subtract produces negative 
answer, so discard result and shift 
ACC (dividend) left. 

0000000000000100 
-10 

0000000000000001 

0010000000000000 
1000000000000000 
1010000000000000 

(14) 14th SUBC command. The result 
Is positive. Shift result left and 
replace LSB with '1'. 

0000000000000011 0100000000000001 (15) Result is again positive. Shift 
-10 1000000000000000 result left and replace LSB with '1'. 

0000000000000000 1100000000000001 

0000000000000001 1000000000000011 (16) Last subtract. Negative answer, so 
-10 1000000000000000 discard result and shift ACC left. 

- 1111111111111101 

0000000000000011 0000000000000110 

REMAINDER QUOTIENT 

Answer reached after 16 SUBC 
Instructions. 

The condition of the divisor, less than the shifted dividend, is determined by 
the sign of the result, both the dividend and divisor must be positive when 
using the SUBC command. Thus, the sign of the quotient must be determined 
and the quotient computed using the absolute value of the dividend and di­
visor. 

Integer and fractional division can be implemented with the SUBC instruction 
as shown in Example 5-30 and Example 5-31, respectively. When imple­
menting a divide algorithm, it is important to know if the quotient can be re­
presented as a fraction and the degree of accuracy to which the quotient is to 
be computed. For integer division, the absolute value of the numerator must 
be greater than the absolute value of the denominator. For fractional division, 
the absolute value of the numerator must be less than the absolute value of 
the denominator. 

5-43 



Software Applications - Advanced Arithmetic Operations 

Example 5-30. Using SUBC for Integer Division 

* THIS ROUTINE IMPLEMENTS INTEGER DIVISION. 
* 
DNl LT NUMERA GET SIGN OF QUOTIENT. 

MPY DEN OM 
PAC 
SACH TEMSGN SAVE SIGN OF QUOTIENT. 
LAC DEN OM 
ABS 
SACL DEN OM MAKE DENOMINATOR POSITIVE. 
LAC NUMERA ALIGN NUMERATOR. 
ABS 

* 
* IF DIVISOR AND DIVIDEND ARE ALIGNED, DIVISION CAN START 
* HERE. 
* 

RPTK 15 
SUBC DEN OM 16-CYCLE DIVIDE LOOP. 
SACL QUOT 
LAC TEMSGN 
BGEZ DONE DONE IF SIGN IS POSITIVE. 
ZAC 
SUB QUOT 
SACL QUOT NEGATE QUOTIENT IF NEGATIVE. 

DONE LAC QUOT 
RET RETURN TO MAIN PROGRAM. 

Example 5-31. Using SUBC for Fractional Division 

* THIS ROUTINE IMPLEMENTS FRACTIONAL DIVISION. 
* 
DNl LT NUMERA GET SIGN OF QUOTIENT. 

MPY DEN OM 
PAC 
SACH TEMSGN SAVE SIGN OF QUOTIENT. 
LAC DEN OM 
ABS 
SACL DENOM MAKE DENOMINATOR POSITIVE. 
ZALH NUMERA ALIGN NUMERATOR. 
ABS 

* 
* IF DIVISOR AND DIVIDEND ARE ALIGNED, DIVISION CAN START 
* HERE. 
* 

RPTK 14 
SUBC DEN OM 15-CYCLE DIVIDE LOOP. 
SACL QUOT 
LAC TEMSGN 
BGEZ DONE DONE IF SIGN IS POSITIVE. 
ZAC 
SUB QUOT 
SACL QUOT NEGATE QUOTIENT IF NEGATIVE. 

DONE LAC QUOT 
RET RETURN TO MAIN PROGRAM. 

5-44 



Software Applications - Advanced Arithmetic Operations 

5.6.6 Floating-Point Arithmetic 

Floating-point numbers are often represented on microprocessors in a two­
word format of mantissa and exponent. The mantissa is stored in one word. 
The exponent, the second word, indicates how many bit positions from the left 
the decimal point is located. If the mantissa is 16 bits, a 4-bit exponent is 
sufficient to express the location of the decimal point. Because of its 16-bit 
word size, the 16/4-bit floating-point format functions most efficiently on the 
TMS320C2x. The theory and implementation of floating-point arithmetic has 
been presented in an application report in the book, Digital Signal Processing 
Applications with the TMS320 Family. 

Operations in the TMS320C2x central ALU are performed in two's­
complement fixed-point notation. To implement floating-point arithmetic, 
operands must be converted to fixed point for arithmetic operations, and then 
converted back to floating point. 

Conversion to floating-point notation is performed by normalizing the input 
data (i.e., shifting the MSB of the data word into the MSB of the internal 
memory word). The exponent word then indicates how many shifts are re­
quired. To multiply two floating-point numbers, the mantissas are multiplied 
and the exponents added. The resulting mantissa must be renormalized. 
(Since the input operands are normalized, no more than one left shift is re­
quired to normalize the result.) 

Floating-point addition or subtraction requires shifting the mantissa so that 
the exponents of the two operands match. The difference between the expo­
nents is used to left-shift the lower power operand before adding. Then, the 
output of the add must be renormalized. 

TMS320C2x instructions useful in floating-point operations are the NORM, 
LACT, ADDT, and SUBT instructions. NORM may be used to convert fixed­
point numbers to floating-point. LACT may be used to convert back to 
fixed-point numbers. Addition and subtraction can be computed in floating 
point using ADDT and SUBT. 

Example 5-32 and Example 5-33 perform a floating-point multiply on the 
TMS32020 and TMS320C25, respectively. The mantissas are assumed to be 
in 01 5 format. 015, one of the various types of 0 format, is a number repre­
sentation commonly used when performing operations on non-integer num­
bers. In 0 format, the 0 number (15 in 01 5) denotes how many digits are 
located to the right of the binary point. A 16-bit number in 015 format, 
therefore, has an assumed binary point immediately to the right of the most 
significant bit. Since the most significant bit constitutes the sign of the num­
ber, then numbers represented in 01 5 may take on values from +1 (repres­
ented by +0.99997 ... ) to -1. 

5-45 



Software Applications - Advanced Arithmetic Operations 

Example 5-32. Using NORM for Floating-Point Multiply (TMS32020) 

5-46 

* THIS SUBROUTINE PERFORMS A FLOATING-POINT MULTIPLY USING 
* THE NORM INSTRUCTION. THE INPUTS AND OUTPUTS' ARE OF THE 
* FORM: 
* 
* C = MC * 2**EC 
* 
* SINCE THE MANTISSAS, MA AND MB, ARE NORMALIZED, MC CAN BE 
* NORMALIZED WITH A LEFT SHIFT OF EITHER 0 OR 1 IN THE 
* ACCUMULATOR. THE EXPONENT OF THE RESULT IS ADJUSTED 
*APPROPRIATELY. FOR EXAMPLE, MULTIPLICATION OF THE TWO 
* NUMBERS A AND B, WHERE A= 0.1 * 2**2 AND B = 0.1 * 2**4, 
* PROCEEDS AS FOLLOWS: 
* 
* 
* 
* 
MULT 

* 

* 

* 

1) A * B 
2) A * B 

LAC EA 
ADD EB 
SACL EC 
LT MA 
MPY MB 
PAC 

SFL 
LARP ARO 
LAR ARO,O 

NORM 

SACH MC 

0.01 * 2**6 
0.1 * 2**5 (NORMALIZED RESULT) 

EC = EXPONENT OF RESULT BEFORE 
NORMALIZATION. 

(ACC) = MA * MB 

TAKES CARE OF REDUNDANT SIGN BIT. 

ARO IS INITIALIZED TO 0. 

FINDS MSB AND MODIFIES ARO. 

MC = MA * MB (NORMALIZED) 
SAR ARO,TMP 
LAC EC 
SUB TMP 
SACL EC 
RET RETURN TO MAIN PROGRAM. 



Software Applications - Advanced Arithmetic Operations 

Example 5-33. Using NORM for Floating-Point Multiply (TMS320C25) 

* THIS SUBROUTINE PERFORMS A FLOATING-POINT MULTIPLY USING 
* THE NORM INSTRUCTION. THE INPUTS AND OUTPUTS ARE OF THE 
* FORM: 
* 
* 
* 

C = MC * 2**EC 

* SINCE THE MANTISSAS, MA AND MB, ARE NORMALIZED, MC CAN BE 
* NORMALIZED WITH A LEFT SHIFT OF EITHER 0 OR 1 IN THE 
* ACCUMULATOR. THE EXPONENT OF THE RESULT IS ADJUSTED 
*APPROPRIATELY. FOR EXAMPLE, MULTIPLICATION OF THE TWO 
* NUMBERS A AND B, WHERE A= 0.1 * 2**2 AND B = 0.1 * 2**4, 
* PROCEEDS AS FOLLOWS: 
* 
* 
* 

* 
MULT 

* 

* 

* 

1) A * B 
2) A * B 

LAC EA 
ADD EB 
SACL EC 
LT MA 
MPY MB 
PAC 

SFL 
LARP AR5 

0.01 * 2**6 
0.1 * 2**5 (NORMALIZED RESULT) 

EC = EXPONENT OF RESULT BEFORE 
NORMALIZATION. 

(ACC) = MA * MB 

TAKES CARE OF REDUNDANT SIGN BIT. 

LAR AR5,EC AR5 IS.INITIALIZED WITH EC. 

NORM *- FINDS MSB AND MODIFIES AR5. 

SACH MC MC = MA * MB (NORMALIZED) 
SAR AR5,EC 
RET RETURN TO MAIN PROGRAM. 

Floating-point implementation programs often require denormalization as well 
as normalization to return results in a 16-bit format. Example 5-34 and Ex­
ample 5-35 are tailored for denormalizing numbers that were normalized using 
the NORM instruction. This program assumes that the mantissa is in the ac­
cumulator and the exponent is in an auxiliary register, which is the format of 
the NORM instruction after execution. 

5-47 



Software Applications - Advanced Arithmetic Operations 

Example 5-34. Using LACT for Denormalization (TMS32020) 

* THIS ROUTINE DENORMALIZES NUMBERS NORMALIZED BY THE NORM 
* INSTRUCTION. THE DENORMALIZED NUMBER WILL BE IN THE 
* ACCUMULATOR. 
* 
DENORM LARP 1 USE ARl TO POINT AT BLOCK BO. 

LRLK ARl,>200 
SAR ARO,*+ STORE EXPONENT AT >200. 
SACH *- STORE MANTISSA AT >201. 

* 
* SUBTRACT EXPONENT FROM 16 TO DETERMINE THE NUMBER OF SHIFTS 
* REQUIRED TO DENORMALIZE. 
* 

OUT 

LAC * 
BZ OUT 
LACK >10 
SUB * 
SACL * 
LT *+ 
LACT * 
RET 
MAR *+ 
ZALH * 
RET 

LOAD ACCUMULATOR WITH EXPONENT. 
CHECK FOR ZERO EXPONENT. 

DENORMALIZE NUMBER. 
RETURN TO MAIN PROGRAM. 
POINT TO MANTISSA. 
LOAD ACCUMULATOR WITH RESULT. 
RETURN TO MAIN PROGRAM. 

Example 5-35. Using LACT for Denormalization (TMS320C25) 

5-48 

* THIS ROUTINE DENORMALIZES NUMBERS NORMALIZED BY THE NORM 
* INSTRUCTION (NORM *-). THE DENORMALIZED NUMBER WILL BE IN 
* THE ACCUMULATOR. 
* 
DENO RM LARP 1 USE ARl TO POINT AT BLOCK BO. 

LRLK ARl,>200 
SAR AR4,*+ STORE EXPONENT AT >200. 
SACH *- STORE MANTISSA AT >201. 

* 
LAC * LOAD ACCUMULATOR WITH EXPONENT. 
BZ OUT CHECK FOR ZERO EXPONENT. 
LT *+ 
LACT * DENORMALIZE NUMBER. 
RET RETURN TO MAIN PROGRAM. 

OUT MAR *+ POINT TO MANTISSA. 
ZALH * LOAD ACCUMULATOR WITH RESULT. 
RET RETURN TO MAIN PROGRAM. 



Software Applications - Advanced Arithmetic Operations 

5.6.7 Indexed Addressing 

The Auxiliary Register Arithmetic Unit (ARAU) allows the next indirect ad­
dress to be calculated using increment/decrement calculations or indexed ad­
dressing in parallel to the current arithmetic operation. For example, in the 
multiplication of two matrices, the operation requires addressing across the 
rows (incrementing the address by one) or down the columns (incrementing 
by n). Example 5-36 gives the code for multiplying a row times a column of 
two 1 0 x 1 0 matrices. The first matrix resides in data RAM block B1, and the 
second matrix resides in block BO. 

Example 5-36. Row Times Column 

* 

LARK 
LARP 
LRLK 
CNFP 
ZAC 
MPYK 
RPTK 
MAC 
APAC 

O,>A 
1 
l,>300 

0 
9 
>FF00,*0+ 

SET INDEX TO 10. 
USE ARl FOR ADDRESSING THE COLUMN. 
POINT ARl TO THE START OF BLOCK Bl. 
SET BO TO PROG ADDRESS FOR PIPELINE. 
INITIALIZE THE ACCUMULATOR. 
CLEAR THE PRODUCT REGISTER. 
REPEAT 10 TIMES AS MATRIX DIMENSION. 
MULTIPLY ROW TIMES COLUMN. 
EXECUTE FINAL ACCUMULATION. 
ACCUMULATOR CONTAINS PRODUCT. 

The algorithm in Example 5-36 executes in 22 machine cycles. The key to this 
performance is the parallel addressing of both multiplicands simultaneously. 
The operation is made possible by the use of the data bus to fetch one multi­
plicand and the program bus to fetch the other. The auxiliary register indexes 
down the column of one matrix while the PC generates incremental address­
ing of each row of the other matrix. Each cycle of the repeat loop performs the 
following operations: 

1) Accumulates the previous product, 
2) Multiplies the row element times the column element, 
3) Increments the row address, and 
4) Indexes the column address. 

5.6.8 Extended-Precision Arithmetic 

Numerical analysis, floating-point computations, or other operations may re­
quire arithmetic to be executed with more than 32 bits of precision. Since the 
TMS320C2x are 16/32-bit fixed-point processors, software is required for the 
extended-precision of arithmetic operations. Subroutines that perform the 
extended-arithmetic functions for both the TMS32020 and TMS320C25 are 
provided in the examples of this section. The technique consists of performing 
the arithmetic by parts, similar to the way in which longhand arithmetic is 
done. 

The TMS320C25 has two features that help to make extended-precision cal­
culations more efficient. One of the features is the carry status bit. This bit is 
affected by all arithmetic operations of the accumulator (ABS, ADD, ADDC, 
ADDH, ADDK, ADDS, ADDT, ADLK, APAC, LTA. LTD, LTS, MAC, MACD, 
MPYA. MPYS, NEG, SBLK, SPAC, SORA, SQRS, SUB, SUBB, SUBC, SUBH, 
SUBK, SUBS, and SUBT). The carry bit is also affected by the rotate and shift 
accumulator instructions (ROL, ROR, SFL, and SFR) or may be explicitly 

5-49 



Software Applications - Advanced Arithmetic Operations 

5-50 

modified by the load status register ST1 (LST1 ), reset carry (RC), and set carry 
(SC) instructions. For proper operation, the overflow mode bit should be reset 
(OVM = 0) so that the accumulator results will not be loaded with the satu­
ration value. Note that this means that some additional code may be required 
if overflow of the most significant portion of the result is expected. 

The carry bit is set whenever the addition of a value from the input scaling 
shifter or the P register to the accumulator contents generates a carry out of 
bit 31. Otherwise, the carry bit is reset since the carry out of bit 31 is a zero. 
One exception to this case is the ADDH instruction which can only set the 
carry bit. This allows the accumulation to generate the proper single carry 
when either the addition to the lower or upper half of the accumulator actually 
causes the carry. The following examples help to demonstrate the significance 
of the carry bit on the TMS320C25 for additions: 

c MSB LSB c MSB LSB 
x F F F F F F F F ACC x F F F F F F F F ACC 

+ 1 +FF FF F F F F 
0 0 0 0 0 0 0 0 1 F F F F F F F E 

x 7 F F F F F F F ACC x 7 F F F F F F F ACC 
+ 1 +FF FF F F F F 

0 8 0 0 0 0 0 0 0 1 7 F F F F F F E 

x 8 0 0 0 0 0 0 0 ACC x 8 0 0 0 0 0 0 0 ACC 
+ 1 +FF FF F F F F 

0 8 0 0 0 0 0 0 1 1 7 F F F F F F F 

0 0 0 0 0 0 0 0 ACC F F F F F F F F ACC 
+ 0 (ADDC) + 0 (ADDC) 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

1 8 0 0 0 F F F F ACC 1 8 0 0 0 F F F F ACC 
+ 0 0 0 0 0 0 0 0 (ADDH) + 7 F FF 0 0 0 0 (ADDH) 

1 8 0 0 0 F F F F 1 FF FF F F F F 

Example 5-37 shows an implementation of two 64-bit numbers added to each 
other to obtain a 64-bit result. This example, which adds 16-bit parts and 
generates a carry (C) bit in the accumulator, will run on the TMS32020. 



Software Applications - Advanced Arithmetic Operations 

Example 5-37. 64-Bit Addition (TMS32020) 

* TWO 64-BIT NUMBERS ARE ADDED TO EACH OTHER PRODUCING A 
* 64-BIT RESULT. THE NUMBERS X (X3 ,X2 ,Xl,XO) AND Y 
* (Y3,Y2,Yl,YO) ARE ADDED RESULTING IN W (W3 ,W2 ,Wl,WO). 
* 
* X3 X2 Xl XO 
* + Y3 Y2 Yl YO 
* -----------
* W3 W2 Wl WO 
* 
ADD64 ZALS XO ACC 00 XO 

ADDS YO ACC 00 XO + 00 YO C WO 
SACL WO 
SACH CARRY 
LAC CARRY ACC 00 c 
ADDS Xl ACC 00 c + 00 Xl 
ADDS Yl ACC 00 c + 00 Xl + 00 Yl C Wl 
SACL Wl 
SACH CARRY 
LAC CARRY ACC 00 c 
ADDS X2 ACC 00 c + 00 X2 
ADDS Y2 ACC 00 c + 00 Y2 + 00 Y2 C W2 
SACH CARRY 
LAC CARRY ACC 00 c 
ADDS X3 ACC 00 c + 00 X3 
ADDS Y3 ACC 00 c + 00 X3 + 00 Y3 C W3 
SACL W3 
RET 

Example 5-38 performs the same addition as Example 5-37 but is specific to 
the TMS320C25. This implementation makes use of the carry (C) status bit, 
adding 32-bit parts. 

Example 5-38. 64-Bit Addition (TMS320C25) 

* TWO 64-BIT NUMBERS ARE ADDED TO EACH OTHER PRODUCING A 
* 64-BIT RESULT. THE NUMBERS X (X3,X2,Xl,XO) AND Y 
* (Y3,Y2,Yl,YO) ARE ADDED RESULTING IN W (W3,W2,Wl,WO). 
* 
* X3 X2 Xl XO 
* + Y3 Y2 Yl YO 
* -----------
* W3 W2 Wl WO 
* 
ADD64 ZALH Xl ACC Xl 00 

ADDS XO ACC Xl XO 
ADDS YO ACC Xl XO + 00 YO 
ADDH Yl ACC Xl XO + Yl YO Wl WO 
SACL WO 
SACH Wl 
ZALH X3 ACC X3 00 
ADDC X2 ACC X3 X2 + c 
ADDS Y2 ACC X3 X2 + 00 Y2 + c 
ADDH Y3 ACC X3 X2 + Y3 Y2 + c W3 W2 
SACL W2 
SACH W3 
RET 

5-51 



Software Applications - Advanced Arithmetic Operations 

5-52 

In a similar way to addition, the carry bit on the TMS320C25 is reset whenever 
the input scaling shifter or the P-register value subtracted from the accu­
mulator contents generates a borrow into bit 31. Otherwise, the carry bit is 
set since no borrow into bit 31 is required. One exception to this case is the 
SUBH instruction which can only reset the carry bit. This allows the gener­
ation of the proper single carry when either the subtraction from the lower or 
upper half of the accumulator actually causes the borrow. The following ex­
amples help to demonstrate the significance of the carry bit for subtractions: 

c MSB LSB c MSB LSB 

x 0 0 0 0 0 0 0 0 ACC x 0 0 0 0 0 0 0 0 ACC 
1 - FF FF F FF F 

0 F F F F F F F F 0 0 0 0 0 0 0 0 1 

x 7 F F F F F F F ACC x 7 F F F F FF F ACC 
1 - FF FF F FF F 

7 F F F F F F E 0 8 0 00 0 0 0 0 

x 8 0 0 0 0 0 0 0 ACC x 8 0 0 0 0 0 0 0 ACC 
1 - FF FF F FF F 

7 F F F F F F F 0 8 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 ACC 0 F F F F F FF F ACC 
0 (SUBS) 0 (SUBS) 

0 F F F F F F F F F F F F F F F E 

0 8 0 0 0 F F F F ACC 0 8 0 0 0 F F F F ACC 
- 0 0 0 1 0 0 0 0 (SUBH) - FF FF 0 0 0 0 (SUBH) 

0 7 F F F F F F F 0 8 0 0 1 · F FF F 

Example 5-39 implements the subtraction of two 64-bit numbers on the 
TMS32020. A borrow (8) is generated within the accumulator for each of the 
16-bit parts of the subtraction operation. 



Software Applications - Advanced Arithmetic Operations 

Example 5-39. 64-Bit Subtraction (TMS32020) 

* TWO 64-BIT NUMBERS ARE SUBTRACTED, PRODUCING A 64-BIT 
* RESULT. THE NUMBER Y (Y3,Y2,Yl,YO) IS SUBTRACTED FROM 
* X (X3,X2,Xl,XO) RESULTING IN W (W3,W2,Wl,WO). 
* 
* 
* 
* 
* 
* 
SUB64 

X3 X2 Xl XO 
- Y3 Y2 Yl YO 

ZALS 
SUBS 
SACL 
SACH 
LAC 
ADDS 
SUBS 
SACL 
SACH 
LAC 
ADDS 
SUBS 
SACL 
SACH 
LAC 
ADDS 
SUBS 
SACL 
RET 

W3 W2 Wl WO 

XO 
YO 
WO 
BORROW 
BORROW 
Xl 
Yl 
Wl 
BORROW 
BORROW 
X2 
Y2 
W2 
BORROW 
BORROW 
X3 
Y3 
W3 

ACC 
ACC 

ACC 
ACC 
ACC 

ACC 
ACC 
ACC 

ACC 
ACC 
ACC 

00 XO 
00 XO - 00 YO B WO 

B 
B + 00 Xl 
B + 00 Xl - 00 Yl B Wl 

B 
B + 00 X2 
B + 00 X2 - 00 Y2 B W2 

B 
B + 00 X3 
B + 00 X3 - 00 Y3 B W3 

The advantage of using the carry (C) status bit on the TMS320C25 in imple­
menting the same subtraction as Example 5-39 is shown in the coding of Ex­
ample 5-40. 

Example 5-40. 64-Bit Subtraction (TMS320C25) 

* TWO 64-BIT NUMBERS ARE SUBTRACTED, PRODUCING A 64-BIT 
* RESULT. THE NUMBER Y (Y3,Y2,Yl,YO) IS SUBTRACTED FROM 
* X (X3,X2,Xl,XO) RESULTING IN W (W3,W2,Wl,WO). 
* 
* X3 X2 Xl XO 
* - Y3 Y2 Yl YO 
* -----------
* W3 W2 Wl WO 
* 
SUB64 ZALH Xl ACC Xl 00 

ADDS XO ACC Xl XO 
SUBS YO ACC Xl XO - 00 YO 
SUBH Yl ACC Xl XO - Yl YO Wl WO 
SACL WO 
SACH Wl 
ZALS X2 ACC 00 X2 
SUBB Y2 ACC 00 X2 - 00 Y2 - c 
ADDH X3 ACC X3 X2 - 00 Y2 - c 
SUBH Y3 ACC X3 X2 - Y3 Y2 - c W3 W2 
SACL W2 
SACH W3 
RET 

5-53 



Software Applications - Advanced Arithmetic Operations 

5-54 

The second feature of the TMS320C25 aiding in extended-precision calcu­
lations is the MPYU (unsigned multiply) instruction. The MPYU instruction 
allows two unsigned 16-bit numbers to be multiplied and the 32-bit result 
placed in the product register in a single cycle. Efficiency is gained by the 
ability to generate partial products from the 16-bit portions of a 32-bit or 
larger value instead of having to split the value into 15-bit or smaller parts. 

Example 5-41 and Example 5-42 show implementations of multiplying two 
32-bit numbers to obtain a 64-bit result. The coding of Example 5-41 will 
perform the 32-bit multiply on a TMS32020. The advantage in using the 
MPYU instruction can be observed in Example 5-42, which will execute on 
the TMS320C25. 



Software Applications - Advanced Arithmetic Operations 

Example 5-41. 32 x 32-Bit Multiplication (TMS32020) 

* TWO 32-BIT NUMBERS ARE MULTIPLIED, PRODUCING A 64-BIT RESULT. 
* THE NUMBERS X (Xl,XO) AND Y (Yl,YO) ARE MULTIPLIED RESULTING 
*IN W (W3,W2,Wl,WO). 
* 
* Xl XO 
* x Yl YO 
* -----------
* XO*YO 
* Xl*YO 
* XO*Yl 
* Xl*Yl 
* -----------
* W3 W2 Wl WO 
* 
* THE PROCEDURE FOR MULTIPLICATION IS TO SEPARATE THE 32-BIT 
* MAGNITUDE VALUES OF X AND Y INTO THREE PARTS OF 2, 15, AND 15 
* BITS EACH. THE MULTIPLICATION BY PARTS THEN PRODUCES A 5-PART 
* RESULT OF 3, 15, 15, 15, AND 15 BITS, WHICH ARE RECOMBINED 
* INTO FOUR DATA WORDS OF 16 BITS EACH. 
* 
* X2 Xl XO 
* x Y2 Yl YO 
* -----------------
* XO*YO 
* Xl*YO 
* XO*Yl 
* X2*YO 
* Xl*Yl 
* XO*Y2 
* X2*Yl 
* Xl*Y2 
* X2*Y2 
* -----------------
* W4 W3 W2 Wl WO 
* 
* DETERMINE THE SIGN OF THE PRODUCT. 
* 
MPY32 ZALS Xl 

* 
* TAKE 
* 
ABSX 

ABSY 

XOR Yl 
SACH SIGN, l 

THE ABSOLUTE 

ZALH Xl 
ADDS XO 
ABS 
SACH Xl,l 
AND M7FFF 
SACL XO 
ZALS Xl 
SACH X2,l 
AND M7FFF 
SACL Xl 
ZALH Yl 
ADDS YO 
ABS 
SACH Yl,l 

ACCL = SXXX XXXX XXXX XXXX 
ACCL = S--- ----
SAVE THE PRODUCT SIGN O=+, l=-. 

VALUE OF BOTH X AND Y AND REPARTITION. 

ACC Xl 00 
ACC Xl XO 

SAVE 1x2x11. 

SAVE 1xo1. 

SAVE 1x21. 

SAVE IXll. 
ACC Yl 00 
ACC = Yl YO 

SAVE IY2Yl I. 

5-55 



Software Applications - Advanced Arithmetic Operations 

* 

AND 
SACL 
ZALS 
SACH 
AND 
SACL 

M7FFF 
YO 
Yl 
Y2,l 
M7FFF 
Yl 

SAVE IYO I. 

SAVE IY21. 

SAVE JYll. 

* MULTIPLY IXI AND IYI TO PRODUCE JWJ. 
* 
MULT 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 
* 

* 

* 

* 

* 

* 

* 

5-56 

LAC 
AND 
SACL 
LT 
MPY 
PAC 
SACH 
AND 
SACL 
ZALS 

MPY 

LTA 

MPY 

LTA 

SACH 
AND 
SACL 
ZALS 

MPY 

LTA 

MPY 

LTA 

MPY 

LTA 

SACH 
AND 
SACL 
ZALS 

MPY 

LTA 

MPY 

APAC 

ADD 

X2 
Y2 
W4 
XO 
YO 
WO 
Wl,l 
M7FFF 
WO 
Wl 

Yl 

Xl 

YO 

XO 

W2,l 
M7FFF 
Wl 
W2 

Y2 

Xl 

Yl 

X2 

YO 

Xl 

W3,l 
M7FFF 
W2 
W3 

Y2 

X2 

Yl 

W4,15 

'AND' FUNCTION IS A 1-BIT BY 
1-BIT MULTIPLICATION. 
SAVE PARTIAL JW41. 
T XO 
T = XO, P = XO*YO 
T = XO, P = XO*YO, ACC XO*YO 
SAVE PARTIAL IWlJ. 

SAVE IWO I. 
T = XO, P = XO*YO 
ACC = XO*Y0*2**-16 
T = XO, P = XO*Yl 
ACC = XO*Y0*2**-16 
T = Xl, P = XO*Yl 
ACC = XO*Yl + XO*Y0*2**-16 
T = Xl, P = Xl*YO 
ACC = XO*Yl + XO*Y0*2**-16 
T = XO, P = Xl*YO 
ACC = Xl*YO + XO*Yl + XO*Y0*2**-16 
SAVE PARTIAL IW2J. 

SAVE jWl I. 
T = XO, P = Xl*YO 
ACC = (Xl*YO+XO*Yl)*2**-16 
T = XO, P = XO*Y2 
ACC = (Xl*YO+XO*Y1)*2**-16 
T = Xl, P = XO*Y2 
ACC = XO*Y2 + (Xl*YO+XO*Yl)*2**-16 
T = Xl, P = Xl*Yl 
ACC = XO*Y2 + (Xl*YO+XO*Y1)*2**-16 
T = X2, P = Xl*Yl 
ACC = Xl*Yl + XO*Y2 + (Xl*YO+XO*Y1)*2**-16 
T = X2, P = X2*YO 
ACC = Xl*Yl + XO*Y2 + (Xl*YO+XO*Y1)*2**-16 
T = Xl, P = X2*YO 
ACC = X2*YO + Xl*Yl +XO*Y2 

+ (Xl*YO+XO*Yl)*2**-16 
SAVE PARTIAL JW3J. 

SAVE IW2 I. 
T = Xl, P = X2*YO 
ACC = (X2*YO+Xl*Yl+XO*Y2)*2**-16 
T = Xl, P = Xl*Y2 
ACC = (X2*YO+Xl*Yl+XO*Y2)*2**-16 
T = X2, P = Xl*Y2 
ACC = Xl*Y2 + (X2*YO+Xl*Yl+XO*Y2)*2**-16 
T = X2, P = X2*Yl 
ACC Xl*Y2 + (X2*YO+Xl*Yl+XO*Y2)*2**-16 
ACC X2*Yl + Xl*Y2 

+ (X2*YO+Xl*Yl+XO*Y2)*2**-16 
ACC X2*Y2*2**15 + X2*Yl + Xl*Y2 

+ (X2*YO+Xl*Yl+XO*Y2)*2**-16 



Software Applications - Advanced Arithmetic Operations 

SACH W4,l SAVE IW4 I. 
AND M7FFF 
SACL W3 SAVE IW3 I. 

* 
* RECOMBINE W AND GENERATE TWO'S-COMPLEMENT RESULT. 
* 

ZAC 
SUB SIGN 
SACL SIGN SIGN 0=+, -1=-. 

* 
LAC Wl,15 ACC = IWl 001 
ADD WO ACC = IWl WOI 
ADD SIGN 
XOR SIGN COMPLEMENT WO WHEN SIGN -1. 
SACL WO SAVE WO. 
SAC:~ Wl SAVE PARTIAL 1w11. 
LAC W2,14 ACC = IW2 001 
AD:C Wl ACC = 1w2 w1 I 
XOR SIGN COMPLEMENT Wl WHEN SIGN -1. 
SACL Wl SAVE Wl. 
SACH W2 SAVE PARTIAL 1w21. 
LAC W3, 13 ACC ~ jW3 001 
ADD W2 ACC = IW3 W21 
XOR SIGN COMPLEMENT W2 WHEN SIGN -1. 
SACL W2 SAVE W2. 
SACH W3 SAVE PARTIAL IW3 I. 
LAC W4, 12 ACC = IW4 001 
ADD W3 ACC = IW4 W31 
XOR SIGN COMPLEMENT W3 WHEN SIGN -1. 
SACL W3 SAVE W3. 
RET 

5-57 



Software Applications - Advanced Arithmetic Operations 

Example 5-42. 32.x 32-Bit Multiplication (TMS320C25) 

5-58 

* TWO 32-BIT NUMBERS ARE MULTIPLIED, PRODUCING A 64-BIT 
* RESULT. THE NUMBERS X (Xl,XO) AND Y (Yl,YO) ARE 
*MULTIPLIED RESULTING IN W (W3,W2,Wl,WO). 
* 
* 
* x 
* 
* 
* 
* 
* 
* 
* 
* 
* DETERMINE 
* 
MPY32 ZALS 

XOR 
SACH 

* 

Xl XO 
Yl YO 

XO*YO 
Xl*YO 
XO*Yl 

Xl*Yl 

W3 W2 Wl WO 

THE SIGN OF THE PRODUCT. 

Xl ACCL = SXXX XXXX 
Yl ; ACCL = S--- ----
SIGN,1 ; SAVE THE PRODUCT 

xxxx xx xx 

SIGN O=+, 1=-. 

* TAKE THE ABSOLUTE VALUE OF BOTH X AND Y. 
* 
ABSX ZALH Xl ACC = Xl 00 

ADDS XO ACC = Xl XO 
ABS 
SACH Xl SAVE 1x11. 
SACL XO SAVE 1xo1. 

ABSY ZALH Yl ACC = Yl 00 
ADDS YO ACC = Yl XO 
ABS 
SACH Yl SAVE IYlJ. 
SACL YO SAVE IYOJ. 

* 
* MULTIPLY IXI AND IYI TO PRODUCE IWI. 
* 
MULT LT XO T = XO 

MPYU YO T = XO, P = XO*YO 
SPL Wl SAVE IWOJ. 
SPH WO SAVE PARTIAL 1w11. 
MPYU Yl T XO, p XO*Yl 
LTP Xl T = Xl, p = XO*Yl, ACC = XO*Yl 
MPYU YO T = Xl, p = Xl*YO, ACC = XO*Yl 
ADDS Wl T = Xl, p = Xl*YO, 

* ACC = XO*Yl + XO*Y0*2**-16 
MPYA Yl T = Xl, p = Xl*Yl, 

* ACC = Xl*YO + XO*Yl + XO*Y0*2**-16 
SACL Wl SAVE 1w11. 
SACH W2 SAVE PARTIAL 1w21. 
ZALS W2 P = Xl*Yl, 

* ACC = (Xl*YO + XO*Y1)*2**-16 
BNC SUM TEST FOR CARRY FROM W2. 
ADDH ONE 

SUM APAC ACC = Xl*Yl + (Xl*YO + XO*Y1)*2**-16 
SACL W2 SAVE 1w21. 
SACH W3 SAVE IW3j. 



Software Applications - Advanced Arithmetic Operations 

* 
* TEST THE SIGN OF THE PRODUCT; NEGATE IF NEGATIVE. 
* 

LAC SIGN 
BZ DONE RETURN IF POSITIVE,. 

* 
ZALH Wl ACC IWl 001 
ADDS WO ACC = IWl WOI 
CMPL 
ADD ONE ACC = Wl WO AND CARRY GENERATION 
SACL WO SAVE WO. 
SACH Wl SAVE Wl. 
ZALS W2 ACC 100 W2j 
ADDH W3 ACC = IW3 W21 
CMPL 
ADDC ONE ACC = W3 W2 
SACL W2 SAVE W2. 
SACH W3 SAVE W3. 

DONE RET 

5-59 



Software Applications - Application-Oriented Operations 

5.7 Application-Oriented Operations 

The TM$320C2x has been designed to provide efficient implementations of 
many common digital signal processing algorithms. The architecture sup­
porting these design features was discussed in Section 3. In general, the fea­
tures provide efficient solutions to numerically intensive problems usually 
characterized by multiply/accumulates. Some device-specific features that aid 
in the implementation of specific algorithms include companding, filtering, 
Fast Fourier Transforms (FFT), and Pl D control. These applications require 1/0 
performed either in parallel or serial. Hardware requirements for 1/0 are dis­
cussed in Sections 3 and 6. 

5.7.1 Companding 

5-60 

In the area of telecommunications, one of the primary concerns is the 1/0 
bandwidth in the communications channel. One way to minimize this band­
width is by companding (COMpress/exPAND). Companding is defined by 
two international standards, A-law and µ-law, both based on the compression 
of the equivalent of 13 bits of dynamic range into an 8-bit code. The standard 
employed in the United States and Japan is µ-law companding. The European 
standard is referred to as A-law companding. Detailed descriptions and code 
examples of µ-law and A-law companding are presented in an application re­
port on companding routines included in the book, Digital Signal Processing 
Applications with the TMS320 Family. 

The technique of companding allows the digital sample information corre­
sponding to a 13-bit dynamic range to be transmitted as 8-bit data. For pro­
cessing in the TMS320C2x, it is necessary to convert the 8-bit (logarithmic) 
sign-magnitude data to a 16-bit two's-complement (linear) format. Prior to 
output, the linear result must be converted to the compressed or companded 
format. Table lookup or conversion subroutines may be used to implement 
these functions. 

Software ro.utines for µ-law and A-law companding, flowcharts, companding 
algorithms, and detailed descriptions are provided in the application report on 
companding routines mentioned above. The algorithm space and time re­
quirements for µ-law and A-law companding on the TMS32020/C25 are 
given in Table 5-1. 

Table 5-1. Program Space and Time Requirements for µ-/A-Law 
Companding 

FUNCTION MEMORY WORDS 
Program 

µ-Law: 
Compression 74 
Expansion 276 

A-Law: 
Compression 100 
Expansion 276 

tAssuming initialization 
+worst case 

Data 

8 
2 

8 
2 

PROGRAM CYCLES TIME (µs) REQDt 
Initialization Loop:!: '20 'C25 

19 45 9 45 
14 5 1 0.5 

19 50 10 5 
14 5 1 0.5 



Software Applications - Application-Oriented Operations 

In expanding from the 8-bit data to the 13-bit linear representation, table 
lookup is very effective since the table length is only 256 words. This is es­
pecially true for a microcomputer design since the TMS320C25 has 4K words 
of mask-programmable ROM. The table lookup technique requires three in­
structions (four words of program memory), one data memory location, 256 
words of table memory, and seven instruction cycles (program in on-chip 
ROM) to execute. 

LAC SAMPLE 
ADLK MUTABL 
TBLR SAMPLE 

LOAD 8-BIT DATA. 
ADD THE CONVERSION TABLE BASE ADDRESS. 
READ THE CORRESPONDING LINEAR VALUE. 

The above conversion could be programmed as a subroutine. This would 
eliminate the need for a table, but would increase execution time and require 
additional.. data memory locations. 

When the output data has been determined in a system transmitting com­
panded data, a compression of the data must be performed. The compression 
reduces the data back to the 8-bit format. Unless memory for a table of length 
16384 is acceptable, the table lookup approach must be abandoned for con­
version routines. Details of these implementations may be found in the appli­
cation report on companding. 

Access to new companding code as it becomes available is provided via the 
TMS320 DSP Bulletin Board Service. The bulletin board contains TMS320 
source code from application reports included in Digital Signal Processing 
Applic<1tions with the TMS320 Family. See the TMS320 Family Development 
Support Reference Guide for information on how to access the bulletin board. 

5.7.2 FIR/llR Filtering 

Digital filters are a common requirement for digital signal processing systems. 
The filters fall into two basic categories: Finite Impulse Response (FIR) and 
Infinite Impulse Response (llR) filters. For either category of filter, the coeffi­
cients of the filter (weighting factors) may be fixed or adapted during the 
course of the signal processing. The theory and implementation of digital fil­
ters has been presented and discussed in an application report (see the book, 
Digital Signal Processing Applications with the TMS320 Family). The 
TMS320C25 reduces the execution time of all filters by virtue of its 100-ns 
instruction cycle time. 

II R filters benefit from the 100-ns instruction cycle time of the TMS320C25. 
llR filters typically require fewer multiply/accumulates. Correspondingly, the 
amount of data memory for samples and coefficients is not usually the limiting 
factor. Because of sensitivity to quantization of the coefficients themselves, 
llR filters are usually implemented in cascaded second-order sections. This 
translates to instruction code consisting of LTD-MPV instruction pairs rather 
than MACDs. Example 5-43 provides an implementation of a second-order 
llR filter. 

5-61" 



Software Applications - Application-Oriented Operations 

Example 5-43. Implementing an llR Filter 

5-62 

* 
* THE FOLLOWING EQUATIONS ARE USED TO IMPLEMENT AN IIR FILTER: 
* 
* d(n) x(n) + d(n-l)al + d(n-2)a2 
* y(n) - d(n)bO + d(n-l)bl + d(n-2)b2 
* 
START IN XN,PAO INPUT NEW VALUE XN 

LAC XN,15 LOAD ACCUMULATOR WITH XN 
* 

LT DNMl 
MPY Al 

* 
LTD DNM2 
MPY A2 

* 
APAC 
SACH DN,l d(n) x(n) + d(n-l)al + d(n-2)a2 
ZAC 
MPY B2 

* 
LTD DNMl 
MPY Bl 

* 
LTD DN 
MPY BO 

* 
APAC 
SACH YN,l y(n) = d(n)bO + d(n-l)bl + d(n-2)b2 
OUT YN,PAl YN IS THE OUTPUT OF THE FILTER 

Fl R filters also benefit from the faster instruction cycle time. In addition, an 
FIR filter requires many more multiply/accumulates than does the llR filter 
with equivalent sharpness at the cutoff frequencies and distortion and atten­
uation in the passbands and stopbands. The TMS320C2x can help solve this 
problem by making longer filters feasible to implement. This is accomplished 
by allowing the coefficients to be fetched from program memory at the same 
time as a sample is being fetched from data memory. The simple implementa­
tion of this process uses the MACO instruction with the RPT /RPTK instruc­
tion. 

RPTK 255 
MACD COEFFP, * -

The coefficients on the TMS32020 may be stored anywhere in on-chip RAM. 
Filters of up to 256 taps can be implemented at an execution speed of 200 
ns per tap. 

The coefficients on the TMS320C25 may be stored anywhere in program 
memory (reconfigurable on-chip RAM, on-chip ROM, or external memories). 
When the coefficients are stored in on-chip ROM or externally, the entire on­
chip data RAM may be used to store the sample sequence. Ultimately, this 
allows filters of up to 512 taps to be implemented on the TMS320C25. The 
filter executes at full speed or 1 00 ns per tap as long as the memory supports 
full-speed execution. 



Software Applications - Application-Oriented Operations 

5.7.3 Adaptive Filtering 

With Fl R/ 11 R filtering, the filter coefficients may be fixed or adapted. If the 
coefficients are adapted or updated with time, then another factor impacts the 
computational capacity. This factor is the requirement to adapt each of the 
coefficients, usually with each sample. The MPYA or MPYS and ZALR in­
structions on the TMS320C25 aid with this adaptation to reduce the exe­
cution time. 

A means of adapting the coefficients on the TMS320C2x is the Least-Mean­
Square (LMS) algorithm given by the following equation: 

tJi<{I+ 1) = tJi<(I) + 28 e(i) x(i-k) 

where e(i) = x(i) - y(I) 

N-1 

and y(i) = L bk x(i-k) 

k=O 

Quantization errors in the updated coefficients can be minimized if the result 
is obtained by rounding rather than truncating. For each coefficient in the filter 
at a given point in time, the factor 2*B*e(i) is a constant. This factor can then 
be computed once and stored in the T register for each of the updates. Thus, 
the computational requirement has become one multiply/accumulate plus 
rounding. Without the new instructions, the adaptation of each coefficient is 
five instructions corresponding to five clock cycles. This is shown in the fol­
lowing instruction sequence: 

LRLK AR2,COEFFD LOAD ADDRESS OF COEFFICIENTS. 
LRLK AR3,LASTAP LOAD ADDRESS OF DATA SAMPLES. 
LARP AR2 
LT ERRF errf = 2*B*e(i) 

ZALH * ,AR3 ACC bk(i)*2**16 
ADD ONE, 15 ACC bk(i)*2**16 + 2**15 
MPY *-,AR2 
APAC ACC bk(i)*2**16 + errf*x(i-k) + 2**15 
SACH *+ SAVE bk{i+l). 

When the M PY A and ZALR instructions on the tMS320C25 are used, the 
adaptation reduces to three instructions corresponding to three clock cycles, 
as shown in the following instruction sequence. Note that the processing or­
der has been slightly changed to incorporate the use of the MPYA instruction. 
This is due to the fact that the accumulation performed by the MPYA is the 
accumulation of the previous product. 

5-63 



Software Applications - Application-Oriented Operations 

5-64 

LRLK AR2,COEFFD LOAD ADDRESS OF COEFFICIENTS. 
LRLK AR3,LASTAP LOAD ADDRESS OF DATA SAMPLES. 
LARP AR2 
LT ERRF errf = 2*B*e(i) 

ZALR * ,AR3 ACC = bk(i)*2**16 + 2**15 
MPYA *-,AR2 ACC = bk(i)*2**16 + errf*x(i-k) + 2**15 

* PREG = errf*x(i-k+l) 
SACH *+ SAVE bk(i+l). 

Example 5-44 shows a routine to filter a signal and update the coefficients. 
Example 5-45 and Example 5-46 provide the conclusion to the adaptive FIR 
filter routine for the TMS32020 and TMS320C25, respectively. 

Adaptive filter length is restricted both by execution time and memory. There 
is obviously more processing to be completed per sample due to the adapta­
tion, and the adaptation itself dictates that the coefficients be stored in the 
reconfigurable block of on-chip RAM. Thus, the practical limit of an adaptive 
filter with no external data memory is 256 taps. 



Software. Applications - Application-Oriented Operations 

Example 5-44. 256-Tap Adaptive FIR Filter 

* 

TITL 'ADAPTIVE FILTER' 
DEF ADPFIR 
DEF X, Y 

* THIS 256-TAP ADAPTIVE FIR FILTER USES ON-CHIP MEMORY BLOCK 
* BO FOR COEFFICIENTS AND BLOCK Bl FOR DATA SAMPLES. THE 
* NEWEST INPUT SHOULD BE IN MEMORY LOCATION X WHEN CALLED. 
* THE OUTPUT WILL BE IN MEMORY LOCATION Y WHEN RETURNED. 
* ASSUME THAT THE DATA PAGE IS 0 WHEN THE ROUTINE IS CALLED. 
* 
COEFFP EQU >FFOO 
COEFFD EQU >0200 
* 
ONE EQU >7A 
BETA EQU >7B 
ERR EQU >7C 
ERRF EQU >7D 
y EQU >7E 
x EQU >7F 
FRSTAP EQU >0300 
LAST AP EQU >03FF 
* 
* FINITE IMPULSE RESPONSE 
* 
ADPFIR CNFP 

MPYK 0 
LAC ONE, 14 
LARP AR3 
LRLK AR3, LASTAP 

FIR RPTK 255 

* 

MACD COEFFP , * -
CNFD 
APAC 
SACH Y, 1 
NEG 
ADD X,15 
SACH ERR, 1 

BO PROGRAM MEMORY ADDRESS 
BO DATA MEMORY ADDRESS 

CONSTANT ONE (DP=O) 
ADAPTATION CONSTANT (DP=O) 
SIGNAL ERROR (DP=O) 
ERROR FUNCTION (DP=O) 
FILTER OUTPUT (DP=O) 
NEWEST DATA SAMPLE (DP=O) 
NEXT NEWEST DATA SAMPLE 
OLDEST DATA SAMPLE 

(FIR) FILTER. 

CONFIGURE BO AS PROGRAM: 
Clear the P register. 
Load output rounding bit. 

Point to the oldest sample. 

256-tap FIR filter. 
CONFIGURE BO AS DATA: 

Store the filter output. 

Add the newest input. 
err(i) = x(i) - y(i) 

* LMS ADAPTATION OF FILTER COEFFICIENTS. 
* 

* 

* 

LT ERR 
MPY BETA 
PAC 
ADD ONE, 14 
SACH ERRF, 1 

MAR *+ 
LAC X 
SACL * 

LRLK AR2 , COEFFD 
LRLK AR3, LASTAP 
LT ERRF 
MPY *-,AR2 

errf(i) = beta * err(i) 
ROUND THE RESULT. 

INCLUDE NEWEST SAMPLE. 

POINT TO THE COEFFICIENTS. 
POINT TO THE DATA SAMPLES. 

P = 2*beta*err(i)*x(i-255) 

5-65 



Software Applications - Application-Oriented Operations 

Example 5-45. Adaptive Filter Routine Concluded (TMS32020} 

5-66 

* 
ADAPT ZALH * , AR3 

* 

* 

* 

* 

ADD ONE, 15 
APAC 
MPY *- ,AR2 
SACH *+ 

ZALH * ,AR3 
ADD ONE, 15 
APAC 
MPY *- ,AR2 
SACH *+ 

ZALH * ,AR3 
ADD ONE, 15 
APAC 
MPY *- ,AR2 
SACH *+ 

ZALH * ,AR3 
ADD ONE, 15 
APAC 
MPY *- ,AR2 
SACH *+ 

ZALH * 
ADD ONE, 15 
APAC 
SACH *+ 

RET 

LOAD ACCH WITH b255(i). 
ADD ROUNDING BIT. 
b255(i+l) = b255(i) + p 
P = 2*beta*err(i)*x(i-254) 
STORE b255(i+l). 

LOAD ACCH WITH b254(i). 
ADD ROUNDING BIT. 
b254(i+l) = b254(i) + p 
P = 2*beta*err(i)*x(i-253) 
STORE b254(i+l). 

LOAD ACCH WITH b253(i). 
ADD ROUNDING BIT. 
b253(i+l) = b253(i) + p 
P = 2*beta*err(i)*x(i-252) 
STORE .b253 ( i+l). 

LOAD ACCH WITH bl(i). 
ADD ROUNDING BIT. 
bl(i+l) = bl(i) + p 
P = 2*beta*err(i)*x(i-0) 
STORE bl(i+l). 

LOAD ACCH WITH bO(i). 
ADD ROUNDING BIT. 
bO(i+l) = bO(i) + P 
STORE bO(i+l). 

RETURN TO CALLING ROUTINE. 



Software Applications - Application-Oriented Operations 

Example 5-46. Adaptive Filter Routine Concluded (TMS320C25) 

* 
ADAPT ZALR * ,AR3 LOAD ACCH WITH b255(i) & ROUND. 

b255(i+l) = b255(i) + p 
* 

* 

* 

* 

* 

* 

* 

* 

MPYA *-,AR2 

SACH *+ 

ZALR * ,AR3 
MPYA *-,AR2 

SACH *+ 

ZALR * ,AR3 
MPYA *-,AR2 

SACH *+ 

ZALR * ,AR3 
MPYA *-,AR2 

SACH *+ 

ZALR * 
APAC 
SACH *+ 

RET 

P = 2*beta*err(i)*x(i-254) 
STORE b255(i+l). 

LOAD ACCH WITH b254(i) & ROUND. 
b254(i+l) = b254(i) + p 
P = 2*beta*err(i)*x(i-253) 
STORE b254(i+l). 

LOAD ACCH WITH b253(i) & ROUND. 
b253(i+l) = b253(i) + p 
P = 2*beta*err(i)*x(i-252) 
STORE b253(i+l). 

LOAD ACCH WITH bl(i) & ROUND. 
bl(i+l) = bl(i) + p 
P = 2*beta*err(i)*x(i-0) 
STORE b 1 ( i + 1) . 

LOAD ACCH WITH bO(i) & ROUND. 
bO(i+l) = bO(i) + P 
STORE bO ( i + 1) . 

RETURN TO CALLING ROUTINE. 

Table 5-2 provides a comparison of data memory, program memory, and CPU 
cycles for a 256-tap adaptive FIR filter implementation using the TMS32020 
and TMS320C25. Note that n = 256 in the table. 

Table 5-2. 256-Tap Adaptive Filtering Memory Space and Time 
Requirements 

DEVICE WORDS IN MEMORY CPU CYCLES 
Data Program 

TMS32020 5 + 2n 29 + 5n 30 + 6n 
TMS320C25 5 + 2n 30 + 3n 33 + 4n 

5-67 



Software Applications - Application-Oriented Operations 

5.7.4 Fast Fourier Transforms (FFT) 

5-68 

Fourier transforms are an important tool often used in digital signal processing 
systems. The purpose of the transform is to convert information from the time 
domain to the frequency domain. The inverse Fourier transform converts in­
formation back to the time domain from the frequency domain. Implementa­
tions of Fourier transforms that are computationally efficient are known as Fast 
Fourier Transforms (FFTs). The theory and implementation of FFTs on the 
TMS32020 has been discussed in an application report in the book, Digital 
Signal Processing Applications with the TMS320 Family. The TMS320C25 
reduces the execution time of all FFTs by virtue of its 100-ns instruction cycle 
time. 

In addition to the shorter cycle time, an addressing feature has been added to 
the TMS320C25 which provides execution speed and program memory en­
hancements for radix-2 FFTs. As demonstrated in Figure 5-6 and Figure 5-7 
the inputs or outputs of an FFT are not in sequential order, i.e., they are 
scrambled. The scrambling of the data addressing is a direct result of the ra­
dix-2 FFT derivation. Observation of the figures and the relationship of the 
input and output addressing in each case reveal that the address indexing is 
a bit-reversed order, as shown in Table 5-3. As a result, either the data input 
sequence or the data output sequence must be scrambled in association with 
the execution of the FFT. 

STAGE 1 STAGE 2 STAGE 3 
x(O) X(O) 

x(4) X( 1) 

x(2) X(2) 

x(6) X(3) 

x( 1 l X(4) 

x(5) X(5) 

x(3) X(6) 

x(7) X(7) 

LEGEND FOR TWIDDLE FACTOR: Wo = wg w 1 = w ~ w2 = w ~ w 3 = w ~ 

Figure 5-6. An ln-Place·DIT FFT with In-Order Outputs and 
Bit- Reversed Inputs 



Software Applications - Application-Oriented Operations 

STAGE 1 STAGE 2 STAGE 3 
x(O) X(O) 

xi 1 I X(4) 

x(2) X(2) 

x(3) X(6) 

x(4) X( 1) 

x(5) X(5) 

x(6) X(3) 

x(7) X(7) 

Figure 5-7. An In-Place DIT FFT with In-Order Inputs but 
Bit-Reversed Outputs 

Table 5-3. Bit-Reversal Algorithm for an 8-Point Radix-2 DIT FFT 

INDEX BIT PATTERN BIT-REVERSED PATTERN BIT-REVERSED INDEX 

0 000 000 0 
1 001 100 4 
2 010 010 2 
3 011 110 6 
4 100 001 1 
5 101 101 5 
6 110 011 3 
7 111 111 7 

On the TMS32020, the bit reversal is handled by loading the accumulator with 
pairs of points that needed to be swapped and then storing them back in the 
swapped locations. An addressing feature that uses reverse carry-bit propa­
gation allows the TMS320C25 to scramble the inputs or outputs while it is 
performing the 1/0. The addressing mode is. part of the indirect addressing 
implemented with the auxiliary registers and the associated arithmetic unit. In 
this mode (a derivative of indexed addressing), a value (index) contained in 
ARO is either added or subtracted from the auxiliary register being pointed to 
by the ARP. However, instead of propagating the carry bit in the forward di­
rection, it is propagated in the reverse direction. The result is a scrambling in 
the address access. 

The procedure for generating the bit-reversal address sequence is to load ARO 
with a value corresponding to one-half the length of the FFT and to load an­
other auxiliary register, e.g., AR1, with the base address of the data array. Im­
plementations of FFTs involve complex arithmetic; as a result, there are two 
data memory locations (one real and one imaginary) associated with every 

5-69 



Software Applications - Application-Oriented Operations 

5-70 

data sample. Generally, the samples are stored in memory in pairs with the real 
part in the even address locations and the imaginary part in the odd address 
location. This means that the offset from the base address for any given sample 
is twice the sample index.. Real input data is easily transferred into the data 
memory and stored in the scrambled order, with every other location in the 
data memory representing the imaginary part of the data. 

The following list shows the contents of auxiliary register AR1 when ARO is 
initialized with a value of 8 (8-point FFT) and when data is being transferred 
by the code that follows. 

MSB 
ARO: 0 0 0 0 0 0 0 0 

AR1: 0 0 0 0 0 0 1 0 

RPTK 7 
IN *BRO+,PAO 

AR1: 0 0 0 0 0 0 0 

AR1: 0 0 0 0 0 0 0 

AR1: 0 0 0 0 0 0 0 

AR1: 0 0 0 0 0 0 0 

AR1: 0 0 0 0 0 0 0 

AR1: 0 0 0 0 0 0 0 

AR1: 0 0 0 0 0 0 0 

AR1: 0 0 0 0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

LSB 
0 0 0 8-Point FFT 

0 0 0 0 Base Address 

0 0 0 0 XR(O) 

0 0 0 XR(4) 

0 

0 0 

0 

0 

0 0 XR(2) 

0 0 XR(6) 

0 XR(1) 

0 XR(5) 

0 XR(3) 

0 XR(7) 

Example 5-4 7 consists of lists of macros used in the implementation of FFTs. 
The first macro implements the bit reversal in the way necessary for the 
TMS32020 and is not necessary for implementations on the TMS320C25. 



Software Applications - Application-Oriented Operations 

Example 5-47. FFT Macros 

BITREV $MACRO PR,PI,QR,QI 

* * BIT REVERSAL CODE - SWAP PR AND QR, SWAP PI AND QI. 
* 

* 
COMBO 
* 

ZALH :PR: 
ADDS :QR: 
SACL :PR: 
SACH :QR: 
ZALH :PI: 
ADDS :QI: 
SACL : PI: 
SACH :QI: 
$END 

$MACRO Rl,Il,R2,I2,R3,I3,R4,I4 

* CALCULATE PARTIAL TERMS FOR R3, R4, I3, AND I4. 
LAC :R3:,14 ACC (l/4)(R3) 
ADD :R4: ,14 ACC (1/4) (R3+R4) 
SACH :R3: ,1 R3 := (1/2) (R3+R4) 
SUB :R4: ,15 ACC ·= (1/4) (R3+R4)-(l/2) (R4) 
SACH :R4:,l R4 ·= (l/2)(R3-R4) 
LAC : 13:, 14 ACC · = ( 1/4) ( I3) 
ADD :I4: ,14 ACC {1/4) (I3+I4) 
SACH :13:,1 13 (l/2)(13+I4) 
SUB :I4:,15 ACC ·= (l/4)(13+I4)-(l/2)(I4) 
SACH :I4:,l I4 := (l/2)(13-I4) 

* 
* CALCULATE PARTIAL TERMS FOR R2, R4, I2, AND I4. 

LAC :Rl:,14 ACC ·= (l/4)(Rl) 
ADD :R2: ,14 ACC (1/4) (Rl+R2) 
SACH :Rl: ,1 Rl := (l/2)(Rl+R2) 
SUB :R2: ,15 ACC := (1/4) (Rl+R2)-(l/2) (R2) 
ADD :I4:,15 ACC (l/4)[(Rl-R2)+(13-I4)] 
SACH :R2: R2 ·= (l/4)[(Rl-R2)+(I3-I4)] 
SUBH : I4: ACC ( 1/4) [ (Rl-R2 )- ( I3-I4)] 
DMOV :R4: I4 := R4 = (1/2) (R3-R4) 
SACH :R4: R4 (l/4)[(Rl-R2)-(13-I4)] 
LAC :Il: ,14 ACC ·= (1/4) (Il) 
ADD :I2: ,14 ACC (1/4) (Il+I2) 
SACH :Il: ,1 Il (1/2) (Il+I2) 
SUB :I2: ,15 ACC := (1/4) (Il+I2)-(l/2) (I2) 
SUB :I4:,15 ACC ·= (l/4)[(Il-I2)-(I3-I4)] 
SACH :I2: I2 (l/4)[(Il-I2)-(13-I4)] 
ADDH :I4: ACC ·= (l/4)[(Il-I2)+(13-I4)] 
SACH :I4: I4 ·= (l/4)[(Il-I2)+(13-I4)] 

* 
* CALCULATE PARTIAL TERMS FOR Rl, R3, Il, AND I3. 

LAC :Rl:,15 ACC ·= (l/4)(Rl+R2) 
ADD :R3:,15 ACC := (l/4)[(Rl+R2)+(R3+R4)] 
SACH :Rl: Rl (1/4) [(Rl+R2)+(R3+R4)] 
SUBH :R3: ACC := (l/4)[(Rl+R2)-(R3+R4)] 
SACH :R3: R3 := (1/4) [(Rl+R2)-(R3+R4)] 
LAC :Il: ,15 ACC ·= (1/4) (Il+I2) 
ADD :13:,15 ACC ·= (l/4)[(Il+I2)+(I3+I4)] 
SACH :Il: Il := (l/4)[(Il+I2)+(I3+I4)] 
SUBH :13: ACC ·= (l/4)[(Il+I2)-(13+I4)] 
SACH :13: 13 := (l/4)[(Il+I2)-(13+I4)] 
$END 

5-71 



Software Applications - Application-Oriented Operations 

5-72 

* 
ZERO $MACRO PR,PI,QR,QI 
* 
* CALCULATE Re[P+Q] AND Re[P-Q] 

* 

LAC :PR:, 15 ACC . := 
ADD : QR: , 15 ACC : = 
SACH :PR: PR ·= 
SUBH :QR: ACC 

{1/2) (PR) 
(1/2) (PR+QR) 
(1/2) (PR+QR) 
(1/2) (PR+QR)-(QR) 

SACH :QR: QR ·= (l/2)(PR-QR) 

* CALCULATE Im(P+Q] AND Im(P-Q] 
LAC :PI: ,15 ACC ·= (l/2)(PI) 
ADD :QI:,15 ACC := (1/2) (PI+QI) 

(1/2) (PI+QI) 
(1/2) (PI+QI)-(QI) 
(1/2) (PI-QI) 

SACH :PI: PI ·= 
SUBH :QI: ACC := 
SACH :QI: QI 
$END 

* 
PIBY4 
* 

$MACRO PR,PI,QR,QI,W 

LT :W: T REGISTER := W=COS(PI/4)=SIN(PI/4) 
LAC :QI:, 14 ACC ·= (1/4) (QI) 
SUB :QR:, 14 ACC := (1/4) (QI-QR) 
SACH :QI:, 1 QI (1/2) (QI-QR) 
ADD :QR:, 15 ACC ·= (1/4) (QI+QR) 
SACH :QR:, 1 QR := ( 1/2) ( QI+QR) 
LAC :PR:, 14 ACC ·= ( 1/4) (PR) 
MPY :QR: P REGISTER := ( 1/4) (QI+QR) *W 
APAC ACC (1/4) [PR+(QI+QR)*W) 
SACH :PR:, 1 PR := (1/2) [PR+(QI+QR)*W] 
SPAC ACC := (1/4) (PR) 
SPAC ACC ·= (1/4) [PR-(QI+QR)*W) 
SACH :QR: ,1 QR := (1/2) [PR-(QI+QR)*W] 
LAC :PI:, 14 ACC (1/4) (PI) 
MPY :QI: P REGISTER := ( 1/4) (QI-QR) *W 
APAC ACC := (1/4) [PI+(QI-QR)*W) 
SACH :PI:, l PI := (1/2) [PI+(QI-QR)*W) 
SPAC ACC ·= (l/4)(PI) 
SPAC ACC := (1/4) [PI-(QI-QR)*W) 
SACH :QI:, l QI := (1/2) [PI-(QI-QR)*W] 
$END 

* 
PIBY2 $MACRO PR,PI,QR,QI 
* 
* CALCULATE Re[P+jQ) 

LAC :PI:, 15 
SUB :QR:, 15 
SACH :PI: 
ADDH :QR: 
SACH :QR: 

* 
* CALCULATE Im[P+jQ] 

LAC :PR:, 15 
ADD :QI:,15 
SACH :PR: 
SUBH :QI: 
DMOV :QR: 
SACH :QR: 
$END 

AND Re[P-jQ] 
ACC ·= (l/2)(PI) 
ACC := (l/2)(PI-QR) 
PI ·= (l/2)(PI-QR) 
ACC := (l/2)(PI-QR)+(QR) 
QR := (1/2) (PI+QR) 

AND Im[P-jQ) 
ACC := (1/2) (PR) 
ACC := (1/2) (PR+QI) 
PR := (1/2) (PR+QI) 
ACC := (l/2)(PR+QI)-(QI) 
QR -> QI 
QR ·= (l/2)(PR-QI) 



Software Applications - Application-Oriented Operations 

* 
PI3BY4 $MACRO PR,PI,QR,QI,W 
* 

LT :W: T REGISTER W=COS(PI/4)=SIN(PI/4) 
LAC :QI:, 14 ACC (1/4) (QI) 
SUB :QR:, 14 ACC (1/4) (QI-QR) 
SACH :QI:, l QI (1/2) (QI-QR) 
ADD :QR:, 15 ACC ( 1/4) (QI+QR) 
SACH :QR:, 1 QR ( 1/2) (QI+QR) 
LAC :PR:, 14 ACC ( 1/4) (PR) 
MPY :QI: p REGISTER (1/4) (QI-QR)*W 
APAC ACC (1/4) (PR+(QI-QR)*W] 
SACH :PR:, 1 PR (1/2) [PR+(QI-QR)*W] 
SPAC ACC ( 1/4) (PR) 
SPAC ACC (1/4) (PR-(QI-QR)*W] 
MPY :QR: p REGISTER ( 1/4) ( QI+QR) *W 
SACH :QR:, 1 QR (1/2) [PR-(QI-QR)*W] 
LAC : PI:, 14 ACC (l/4)(PI) 
SPAC ACC (1/4) [PI-(QI+QR)*W] 
SACH :PI:, 1 PI ( 1/2) [PI-(QI+QR) *W] 
APAC ACC (l/4)(PI) 
APAC ACC (1/4) [PI+(QI+QR)*W] 
SACH :QI:, 1 QI (1/2) [PI+(QI+QR)*W] 
$END 

Example 5-48 shows the bit-reversal addressing capability of the TMS320C25 
for implementing an 8-point DIT FFT. On the TMS320C25 the following in­
structions input the data and store it in memory in the bit-reversed sequence: 

RPTK 7 
IN *BRO+,PAO 

This code combines the functions of input and bit-reversal addressing which 
were previously implemented separately on the TMS32020. The following 
implementation uses a separate bit-reverse macro: 

RPTK 7 
IN *O+,PAO 

BITREV XlR,XlI,X4R,X4I 
BITREV X3R,X3I,X6R,X6I 

5-73 



Software Applications - Application-Oriented Operations 

Example 5-48. An 8-Point DIT FFT 

5-74 

XOR 
XOI 
XlR 
XlI 
X2R 
X2I 
X3R 
X3I 
X4R 
X4I 
X5R 
X5I 
X6R 
X6I 
X7R 
X7I 
w 
WVALUE 
* 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
>5A82 ; VALUE FOR SIN(45) OR COS(45) 

* INITIALIZE FFT PROCESSING. 
* 
FFT 

* 

SPM 0 
SSXM 
ROVM 
LDPK 4 
LALK WVALUE 
SACL W 

NO SHIFT OF PR OUTPUT 
SET SIGN-EXTENSION MODE. 
RESET OVERFLOW MODE. 
SET DATA PAGE POINTER TO 4. 
GET TWIDDLE FACTOR VALUE. 
STORE SIN(45) OR COS(45). 

* INPUT SAMPLES, STORING IN BIT-REVERSED ORDER. 
* 

* 

LARK 
LRLK 
LARP 
RPTK 
IN 

AR0,8 
ARl,>200 
ARl 
7 
*BRO+ ,PAO ; 

LOAD LENGTH OF FFT IN ARO. 
LOAD ARl WITH DATA PAGE 4 ADDRESS. 

ONLY REAL-VALUED INPUT 

* lST & 2ND STAGES COMBINED WITH DIVIDE-BY-4 INTERSTAGE 
* SCALING. 
* 

* 

COMBO XOR,XOI,XlR,XlI,X2R,X2I,X3R,X3I, 
COMBO X4R,X4I,X5R,X5I,X6R,X6I,X7R,X7I. 

* 3RD STAGE WITH DIVIDE-BY-2 INTERSTAGE SCALING. 
* 

* 

ZERO 
PIBY4 
PIBY2 
PI3BY4 

XOR,XOI,X4R,X4I 
XlR,XlI,X5R,X5I,W 
X2R,X2I,X6R,X6I 
X3R,X3I,X7R,X7I,W 

* OUTPUT SAMPLES, SUPPLYING IN SEQUENTIAL ORDER. 
* 

LRLK ARl,>200 
RPTK 15 
OUT *+,PAO 
RET 

LOAD ARl WITH DATA PAGE 4 ADDRESS. 

COMPLEX-VALUED OUTPUT 



Software Applications - Application-Oriented Operations 

Table 5-4 provides a comparison of execution speed, program memory, and 
data memory for an 8-point DIT FFT implementation using the TMS32020 
and TMS320C25. 

Table 5-4. FFT Memory Space and Time Requirements 

DEVICE WORDS IN MEMORY CPU CYCLES TIME 
Data Program (µs) 

TMS32020 17 169 216 43.2 
TMS320C25 17 153 178 17.8 

5.7.5 PIO Control 

Control systems are concerned with regulating a process and achieving a de­
sired behaviour or output from the process. A control system consists of three 
main components: sensors, actuators, and a controller. Sensors measure the 
behavior of the system. Actuators supply the driving force to ensure the de­
sired behaviour. The controller generates actuator commands corresponding 
to the error conditions observed by the sensors and the control algorithms 
programmed in the controller. The controller typically consists of an analog 
or digital processor. 

Analog control systems are usually based on fixed components and are not 
programmable. They are also limited to using single-purpose characteristics 
of the error signal, such as P (proportional), I (integral), and D (derivative), 
or their combination. These limitations, along with other disadvantages of 
analog systems such as component aging and temperature drift, are causing 
digital control systems to increasingly replace analog systems in most control 
applications. 

Digital control systems that use a microprocessor/microcontroller are able to 
implement more sophisticated algorithms of modern control theory, such as 
state models, deadbeat control, state estimation, optimal control, and adaptive 
control. Digital control algorithms deal with the processing of digital signals 
and are similar to DSP algorithms. The TMS320C2x instruction set can 
therefore be used very effectively in digital control systems. 

The most commonly used algorithm in both analog and digital control systems 
is the PIO (Proportional, Integral, and Derivative) algorithm. The classical PIO 
algorithm is given by 

u (t) = Kp e(t) + Ki J edt + Kd de/dt 

The Pl D algorithm must be converted into a digital form for implementation 
on a microprocessor. Using a rectangular approximation for the integral, the 
Pl D algorithm can be approximated as 

u(n) = u(n-1) + K1 e(n) + K2 e(n-1) + K 3 e(n-2) 

This algorithm is implemented in Example 5-49. 

5-75 



Software Applications - Application-Oriented Operations 

Example 5-49. PIO Control 

5-76 

* 
* THIS 
* 
UN 
EO 
El 
E2 
Kl 
K2 
K3 
* 

TITL 'PID CONTROL' 
DEF PID 

ROUTINE IMPLEMENTS A PID ALGORITHM. 

EQU 0 OUTPUT OF CONTROLLER 
EQU 1 LATEST ERROR SAMPLE 
EQU 2 PREVIOUS ERROR SAMPLE 
EQU 3 OLDEST ERROR SAMPLE 
EQU 4 GAIN CONSTANT 
EQU 5 GAIN CONSTANT 
EQU 6 GAIN CONSTANT 

* ASSUME DATA PAGE 0 IS SELECTED. 
* 
PID 

* 

IN 
LAC 
LT 
MPY 
LTD 
MPY 
LTD 
MPY 
APAC 

EO,PAO 
UN 
E2 
K2 
El 
Kl 
EO 
KO 

SACH UN, 1 
OUT UN,PAl 

READ NEW ERROR SAMPLE 
ACC = u(n-1) 
LOAD T REG WITH OLDEST SAMPLE 
P = K2*e(n-2) 
ACC = u(n-l)+K2*e(n-2) 
P = Kl*e(n-1) 
ACC = u(n-l)+Kl*e(n-l)+K2*e(n-2) 
P = KO*e(n) 
ACC = u(n-l)+KO*e(n)+Kl*e(n-1) 

+K2*e(n-2) 
STORE OUTPUT 
SEND IT 

The Pl D loop takes 13 cycles to execute (2.6 µs at a 20-M Hz clock rate or 1.3 
µsat a 40-MHz clock rate). The TMS320 can also be used to implement more 
sophisticated algorithms such as state modeling, adaptive control, state esti­
mation, Kalman filtering, and optimal control. Other functions that can be 
implemented are noise filtering, stability analysis, and additional control loops. 



6. Hardware Applications 

The TMS320C2x has the power and flexibility to satisfy a wide range of sys­
tem requirements. The 128K address space for program and data memory can 
be used to interface external memories or to implement single-chip solutions. 
Peripheral devices can be interfaced to the TMS320C2x to perform analog 
signal acquisition at different levels of signal quality. 

Information and examples on how to interface the TMS320C2x to external 
devices are presented in this section. The examples given are general enough 
to be easily adapted for a particular system requirement. For more detailed in­
formation, refer to the application reports, "Hardware Interfacing to the 
TMS32020" and "TMS32020 and MC68000 Interface," included in the book, 
Digital Signal Processing Applications with the TMS320 Family, Volume I. 
Refer also to the application report, Hardware Interfacing to the TMS320C25, 
published separately. Appendix F provides listings and brief information re­
garding Tl memories, peripherals, and analog conversion devicPc; that are used 
in many of the applications in this section. 

The following buses, port and control signals provide system interface to the 
TMS320C2x processor: 

• 16-bit address bus (A1 5-AO) 
• 16-bitdatabus(D15-DO) 

• Serial port 
• PS, DS, iS (program, data, 1/0 space select) 
• R/W (read/write) and STRB (strobe) 
• READY and MSC (microstate complete) 
• HOLD and HOLDA (hold acknowledge) 
• INT(2-0) and IACK (interrupt acknowledge) 
• BIO (branch control) and XF (external flag) 
• SYNC (synchronization) and BR (bus request) 

Major hardware applications discussed in this section are listed below and on 
the next page. 

• System Control Circuitry (Section 6.1 on page 6-3) 
Powerup reset circuit 
Crystal oscillator circuit 
User target design considerations when using the XDS 

• Interfacing Memories (Section 6.2 on page 6-10) 
Interfacing PROMs 
Wait-state generator 
Interfacing EPROMs 
Interfacing static RAMs 
Interface timing analysis 

• Direct Memory Access (Section 6.3 on page 6-29) 

6-1 



Hardware Applications 

6-2 

• Global Memory (Section 6.4 on page 6-32) 

• Interfacing Peripherals (Section 6.5 on page 6-34) 
Combo-codec interface 
AIC interface 
D/A interface 
A/D interface 
1/0 ports 

• System Applications (Section 6.6 on page 6-45) 
Echo cancellation 
High-speed modem 
Voice coding 
Graphics and image processing 
High-speed control 
Instrumentation and numeric processing 



Hardware Applications - System Control Circuitry 

6.1 System Control Circuitry 

The system control circuitry performs functions that are critical for proper 
system initialization and operation. A powerup reset circuit design and a 
crystal oscillator circuit design are presented in this section. The powerup re­
set cin;;uit assures that a reset of the part occurs only after the oscillator is 
running and stabilized. The oscillator circuit described allows the use of 
third-overtone crystals that are more readily available at frequencies above 20 
MHz. For a more detailed discussion of system control circuitry, refer to the 
application report, Hardware Interfacing to the TMS320C25. 

6.1.1 Powerup Reset Circuit 

The reset circuit shown in Figure 6-1 performs a powerup reset; i.e., the 
TMS320C2x is reset when power is applied. Note that the switch circuit must 
include debounce circuitry. Driving the RS signal low initializes the processor. 
Reset affects several registers and status bits (see Section 3.6.2 for a detailed 
description of the effect of reset on processor status). 

TMS320C25 

+5V AS 

DGND 

Figure 6-1. Powerup Reset Circuit 

6-3 



Hardware Applications - System Control Circuitry 

6-4 

For proper system initialization, the reset signal must be applied for at least 
three CLKOUT cycles, i.e., 300 ns for a TMS320C25 operating at 40 MHz. 
Upon powerup, it can take several to hundreds of milliseconds before the 
system oscillator reaches a stable operating state. Therefore, the powerup reset 
circuit should generate a low pulse on the reset line until the oscillator is stable 
(i.e., 100 to 200 ms). 

The voltage on the reset pin (RS) is controlled by the R1 C1 network (see 
Figure 6-1 ). After a reset this voltage rises exponentially according to the time 
constant R1 C1, as shown in Figure 6-2. 

VOLTAGE 

/v - Vee 11-e-tfTJ 

Vee ~------

v, 

TIME 

Figure 6-2. Voltage on TMS320C25 Reset Pin 

The duration of the low pulse on the reset pin is approximately t,, which is the 
time it takes for the capacitor C1 to be charged to 1 .5 V. This is approximately 
the voltage at which the reset input switches from a logic level 0 to a logic 
level 1. The capacitor voltage is given by 

V = V cc [ 1 - e - ~ ] 
where T = R1 C1 is the reset circuit time constant. Solving (1) fort gives 

t = - R 1C1 ln [ 1 - _y_ ] Vee 
For example, setting the following: 

R1 = 1 Mn 
C1 = 0.47 µF 

Vee= 5 v 
v = v, = 1.5 v 

(1) 

(2) 

gives t = t1 = 167 ms. In this case, the reset circuit of Figure 6-1 can generate 
a low pulse of long enough duration (167 ms) to ensure the stabilization of 
the oscillator upon powerup in most systems. 



Hardware Applications - System Control Circuitry 

6.1.2 Crystal Oscillator Circuit 

The crystal oscillator circuit shown in Figure 6-3 is designed to operate at 
40.96 MHz. Since crystals with fundamental oscillation frequencies of 30 MHz 
and above are not readily available, a parallel-resonant third-overtone oscilla­
tor is used. If a packed clock oscillator is used, oscillator design is of no 
concern. A third-overtone 40.96-MHz crystal is shown in Figure 6-3. 

TMS320C25 

40.96 MHz 
+5 v D 

10 k!l 
74AC04 

4.7 k!l 

C • 20 pF 

10 k!l T 10.1,..F 

"=' L • 1.8 µH 

47pFJ 

74AS04 

~ • DIGITAL GROUND 

Figure 6-3. Crystal Oscillator Circuit 

The 74AS04 inverter in Figure 6-3 provides the 180-degree phase shift that a 
parallel oscillator requires. The 4. 7-kn resistor provides the negative feedback 
that keeps the oscillator in a stable state; i.e., the poles of the system are con­
strained in a narrow region about the jw axis of the s-plane (analog domain). 
The 10-kn potentiometer is used to bias the 74AS04 in the linear region. 

In a third-overtone oscillator, the crystal fundamental frequency must be at­
tenuated so that oscillation is at the third harmonic. This is achieved with an 
LC circuit that filters out the fundamental, thus allowing oscillation at the third 
harmonic. 

The impedance of the LC network must be inductive at the crystal fundamental 
frequency and capacitive at the third harmonic. The impedance of the LC cir­
cuit is given by 

z(w) 

L 
c 

Therefore, the LC circuit has a pole at 

I 

(3) 

(4) 

6-5 



Hardware Applications - System Control Circuitry 

iz (wll 

6-6 

At frequencies significantly lower than wp, the 1/(wC) term in (3) becomes 
the dominating term, while wL can be neglected. This gives 

z(w) = jwL for W << Wp (5) 

In (5), the LC circuit appears inductive at frequencies lower than wp. On the 
other hand, at frequencies much higher than wp, the wL term is the dominant 
term in (3), and 1 /(wC) can be neglected. This gives 

I 
z(w) = -. -

JWC 
for W >> Wp (6) 

The LC circuit in (6) appears increasingly capacitive as frequency increases 
above wp. This is shown in Figure 6-4, which is a plot of the magnitude of the 
impedance of the LC circuit of Figure 6-3 versus frequency. 

Based on the discussion above, the design of the LC circuit proceeds as fol­
lows: Choose the pole frequency wp approximately halfway between the 
crystal fundamental and the third harmonic. The circuit now appears inductive 
at the fundamental frequency and capacitive at the third harmonic. 

In the oscillator of Figure 6-3, wp = 26.5 MHz, which is approximately half­
way between the fundamental and the third harmonic; and C = 20 pf. Then, 
using (4), L = 1.8 µH. 

1 
"'P • ,/Li; 

CAPACITIVE 
REGION 

w 
(rad/s) 

Figure 6-4. Magnitude of Impedance of Oscillator LC Network 



Hardware Applications - System Control Circuitry 

6.1.3 User Target Design Considerations When Using the XDS 

The architecture for the TMS320C2x emulator (XDS) maximizes speed and 
performance. No external serial logic levels have been added to any of the 
address, data, or control signals other than those added to the setup times of 
READY, RS, BiO, and HOLD, and the propagation delay of HOLDA (hold ac­
knowledge). The additional loading on outputs induced by the XDS is com­
prehended in the XDS and TMS320C2x device design, thus allowing the user 
the full drive as specified in the TMS320C2x device data sheet. The DC load­
ing characteristics of inputs is defined in Chapter 9 of the TMS320C2x XDS 
User's Guide. 

The emulator architecture works closely with the user's system design to allow 
the user's memory to have maximum access times. Areas of close interaction 
between the emulator and target system are: 

• Bus control 
• READY timing and memory substitution 

• Reset and hold 
• Miscellaneous considerations. 

Bus Control 

When the emulator is halted from the keyboard or any of the breakpoint 
functions, the current state of the device being emulated is extracted by the 
control processor. This processor communicates with the emulated device 
over the emulated device's data bus. Additional communication is generated 
by commands entered from the keyboard. 

Before communication between the control processor and the device being 
emulated begins, the control processor generates an interlock sequence on the 
emulated device's HOLD input in order to define data bus ownership. Once the 
target HOLD is deactivated, this interlock prevents the target system from re­
ceiving an active HOLDA until the emulator has completed accessing the pro­
cessor resources. The emulator will not attempt to use the data bus until the 
interlock is successful, thus guaranteeing that it will not try to use the data bus 
when HOLDA is asserted to the target system. 

When communication between the control processor and the device being 
emulated is complete, the hold interlock is released, and the target system can 
again receive hold acknowledge when HOLD is asserted. At this point, the 
emulator is waiting for another command from the keyboard. Communication 
between the device being emulated and the control process occurs when DS, 
PS, TS, and HOLDA are all high. 

The target system should drive the data bus only when the following condi­
tions are met: 

• HOLDA is active, or 
• DS, PS, or TS is active and R/W is high. 

The XDS hardware uses the data bus only while the above signals are inactive. 
When these rules are not followed, the XDS gives a 'PROCESSOR SYNC 
LOST' 1160 error. This error may also be caused by signal-to-signal shorts in 

6-7 



Hardware Applications - System Control Circuitry 

6-8 

the target system, misalignment of the target connector, poor grounding of the 
target connector, or wiring errors on the target system. 

READY and Memory Substitution 

Since the XDS adds one internal level of 7 ns in series with the READY input, 
the user's system is left with only 10 ns to generate READY. This can be ac­
complished by generating READY with a 10-ns TIBPAL 16R4 device. READY 
should be generated off DS, PS, or TS and the decode of the address lines. 

The target system must present a valid READY high on each external access, 
even when using the XDS substitution memory. Suggested implementation 
of READY logic on the target system should hold READY high until target 
memory requiring wait states is addressed. 

The XDS provides two types of memory substitution: fast static RAM at a fixed 
address and slower dynamic RAM at mappable addresses. The user is re­
sponsible for deselecting target memory residing in the same address of the 
emulator's fast static memory if this emulator memory is mapped in. (Note that 
the target should not drive the data bus on a read.) This fast static emulator 
substitution memory consists of 8K words of fast static RAM, which can be 
individually mapped in as 4K words of program memory starting at address 
0000 and 4K words of data memory starting at location 0000. In this case, the 
target system cannot drive the data bus even though DS or PS is active. Al­
though this emulator static RAM can operate with zero wait states, target wait 
states can be modeled by the user using the target READY signal. However, 
this sensitivity requires that the target system eventually respond with a valid 
READY high or the emulator waits until it does. 

The slower dynamic RAM controls bus access through the os or PS control 
signals. The target system can drive the data bus when PS or TS is asserted. 
Emulator logic assures that DS, PS, and TS are returned to their inactive state 
when the dynamic RAM substitution memory uses the data bus on reads. 

The dynamic RAM substitution memory always uses more than one clock to 
return data. An access to address space mapped to the dynamic substitution 
memory is accompanied by the assertion of DS or PS, and STRB. When the 
target logic generates a READY high condition, the device appears to com­
plete the memory cycle by driving DS, PS, TS, or STR B to their inactive states 
at their normal switching times. The device under emulation is held not ready 
for at least one extra clock cycle or until the memory substitution data is 
available. The memory substitution data is then driven onto the data bus on 
reads while all bus control signals at the target connector are high. 

Note that additional wait states can be added with the use of the target 
READY line. In this case, the memory control lines model the target access 
timing. However, the program cycle count is affected by the additional cycles 
internal to the emulator's access of the dynamic RAM. Since the system re­
sponds to the READY line, the target must eventually return a valid READY 
high on each access. 

Miscellaneous Considerations 

When the XDS is powered-up, the device under emulation is placed in the run 
mode with all memory substitution turned off. The control processor does not 
attempt to communicate with the device under emulation until the user com­
municates with the emulator. If the target system is asserting RS, HOLD, or not 



Hardware Applications - System Control Circuitry 

READY continuously to the device under emulation, the control processor 
cannot gain control of the device under emulation and reports a 'PROCESSOR 
SYNC LOST 1160 error. This condition can be caused by a powered-up em­
ulator plugged into a powered-down target system. Although the RS, HOLD, 
and READY are pulled up with resistors on the emulator, the impedance of the 
powered-down target system can assert a control signal or load the data bus 
so that the XDS cannot function properly. 

The conductive foam on the XDS target cable must be removed along with the 
foam on the logic show pod prior to XDS powerup. Failure to do so can also 
cause the 'PROCESSOR SYNC LOST 1160 error. 

TMS320C25 Designs Using HOLD and HOLDA. When the target system 
asserts HOLD active low while the emulator is processing user-envoked com­
mands requiring access of the device-under-emulation resources, the target 
will not receive HOLDA until the command is complete. 

When interfacing to dynamic RAM in the target system, the user should use 
READY rather than HOLD to insert refresh cycles. A user-invoked command 
could hold off HOLDA long enough to lose charge in the dynamic cells. Like­
wise, the refresh cycle in a 'RAS ONLY REFRESH' system could conflict with 
the emulator system controlling addressing during command processing if the 
address lines to the DRAMs are not buffered. 

Stack Usage. An interrupt is used to halt the device being emulated, thereby 
using one of the emulated device stack locations. When an XDS is to be used, 
the applications programmer should reserve one level of the stack for code 
development. 

Transmission Line Phenomena. Since the XDS target cable is approxi­
mately 20 inches, use of advanced CMOS or fast/advanced Schottky TTL may 
cause line reflections (ringing above input thresholds) on input lines to the 
XDS. Series termination resistors (22 to 68 ohms) can help to eliminate this 
problem. In some cases where significant additional signal length is added to 
XDS outputs, the series resistors on the XDS may not be sufficient to control 
reflections. In this case, additional corrective actions may be necessary. 

Clock Source. The XDS does not support the use of a crystal in the target 
system. The emulator's clock source can be selected from three sources: 

1) A clock (with TTL levels) driven up the target cable on pin F11 (PGA) 
or pin 35 (PLCC), 

2) A socketed changeable crystal on the emulator board (Y1 ), or 
3) A socketed changeable canned TTL oscillator on the EMU (U9). 

TMS32020/TMS320C25. The XDS supports both the TMS32020 and 
TMS320C25. The operating frequencies are 20 MHz and 40 MHz, respec­
tively. The unit is shipped configured as a TMS320C25 emulator, but it can 
easily be converted to a TMS32020 emulator by replacing the TMS320C25 
device on the emulator with the TMS32020 device found in the spare parts 
kit. The crystal, TTL oscillator, and/or input clock frequency must be adjusted 
to correspond to TMS32020 specifications. See Section 9 in the TMS320C2x 
XDS User's Guide for additional timing and loading information. 

6-9 



Hardware Applications - Interfacing Memories 

6.2 Interfacing Memories 

6-10 

The TMS320C2x can be interfaced with PROMs, EPROMs, and static RAMs. 
The speed, cost, and power limitations imposed by a particular application 
determine the selection of a specific memory device. If speed and maximum 
throughput are desired, the TMS320C2x can run with no wait states. In this 
case, memory accesses are performed in a single machine cycle. Alternatively, 
slower memories can be accessed by introducing an appropriate number of 
wait states or slowing down the system clock. The latter approach is more 
appropriate when interfacing to memories with access times slightly longer 
than those required by the TMS320C2x at full speed. 

When wait states are required, the number of wait states depends on the me­
mory access time (see Section 6.2.3). With no wait states, the READY input 
to the TMS320C2x can be pulled high. If one or more wait states are required, 
the READY input must be driven low during the cycles in which the 
TMS320C2x enters a wait state. 

The TMS320C2x implements two separate and distinct memory spaces: pro­
gram space (64K words) and data space (64K words). Distinction between 
the two spaces is made through the use of the PS (program space) and OS 
(data space) pins. A third space, the 1/0 space, is also available for interfacing 
with peripherals. This space is selected by the TS (1/0 space) pin, and is dis­
cussed in Section 6.5. 

The following brief discussion describes the TMS320C2x read and write cy­
cles. For the memory read and write timing diagrams, refer to the TMS320C2x 
Data Sheet of Appendix A. For further information about read and write op­
eration, see Sections 3.7.3 and 3.7.4. Throughout this section, Q is used to 
indicate the duration of a quarter phase of the output clock (CLKOUT1 or 
CLKOUT2). Memory interfaces discussed in this section assume that the 
TMS320C2x is running at 40 MHz; i.e., Q = 25 ns. 

In a read cycle, the following sequence occurs: 

1) Near the beginning of the machine cycle (CLKOUT1 goes low), the ad­
dress bus and one of the memory select signals (PS, OS, or iS) becomes 
valid. R/W goes high to indicate a read cycle. 

2) STRB goes low no less than tsu(A) = Q-12 ns after the address bus is 
valid. 

3) Early in the second half of the cycle, the READY input is sampled. 
READY must be stable (low or high) at the TMS320C25 no later than 
td(SL-R) = Q-20 ns after STRB goes low. 

4) With no wait states (READY is high), data must be available no later 
than ta(SL) = 20-23 ns after STRB goes low. 

The sequence of events that occurs during an external write cycle is the same 
as the above, with the following differences: 

1) R/W goes low to indicate a write cycle. 

2) The data bus begins to be driven approximately concurrently with STRB 
going low. 



Hardware Applications - Interfacing Memories 

3) The data bus enters a high-impedance state no later than tdis(D) = 0+15 
ns after STRB goes high. 

6.2.1 Interfacing PROMs 

Program memory in a TMS320C2x system can be implemented through the 
use of PROMs. Two different approaches for interfacing PROMs to the 
TMS320C2x can be taken depending on whether or not any of the memories 
in the system require wait states. When no wait states are required for any of 
the memories, READY can be tied high, and the interface to the PROMs be­
comes a direct connection. In this first approach, address decoding is not re­
quired since the system contains only a small amount of one type of memory. 
When some of the system memories require wait states, address decoding 
must be performed to distinguish between two or more memory types with 
different access times. In the second approach, a valid READY signal that 
meets the TMS320C2x timing requirements must be provided. An efficient 
method of accomplishing this is to use one section of circuitry to generate the 
address decode, and a second, independent section to generate the READY 
signal. These two approaches are discussed in this section. For more detailed 
information, see Hardware Interfacing to the TMS320C25. 

An example of a no-wait-state memory system is the direct PROM interface 
design shown in Figure 6-5. In this design, the TMS320C25 is interfaced with 
the Texas Instruments TBP38L 165-35, a low-power 2K x 8-bit PROM. The 
interface timing for the design of Figure 6-5 is shown in Figure 6-6. The same 
techniques can be used with both of the TMS320C2x devices. The 
TMS320C25 has been chosen for the following examples because it has the 
most stringent timing requirements. 

The TMS320C25 expects data to be valid no later than 20-23 ns after STRB 
goes low. (This is 27 ns for a TMS320C25 operating at 40 MHz.) The access 
times of the TBP38L 165-35 are 35 ns maximum from address ta(A)• and 20 
ns maximum from chip enable ta(S)· On the TMS320C25, address becomes 
valid a minimum of t5u = 0-12 ns = 13 ns before STRB goes low. Therefore, 
the data appears on the data bus within 27 ns after STRB goes low, as required 
by the TMS320C25. 

When a read cycle is followed by a write cycle, care must be taken to avoid 
bus conflict. Bus conflict also may occur when a TMS320C25 write cycle is 
followed by a memory read cycle. In this case, the TMS320C25 data lines 
must enter a high-impedance state before the memory starts driving the data 
bus. 

6-11 



Hardware Applications - Interfacing Memories 

TBP3BL 165-35 

~ SAO 00 9 DO 

K1 ~ 
7 A1 

10 D1 
AO 

~ 
01 

D2,"' K2 6 A2 02 
11 

A1 D3~ j 5 A3 
13 

A2 L3 

~ 
03 

D4>-K3 4 A4 04 14 
A3 D5>-

~ 
3 A5 05 15 

A4 L4 
~ D6>-2 16 

A5 
K4 

~ 
A6 06 

D7>-

~ 
1 17 

A6 L5 A7 07 
'\ 23 K5 

~ 
AS A7 

/ 22 A9 K6 AS 
/ 21 A10 

A9 L7 
G1 G2 G3 

K7 A10 20 1S 19 
T 74ALS04 

M - J10 
PS 

s 
STRB 

H10 
3 
2 R/W 

H11 

0 +5 v c j 1 kf! 2 
5 READY BS 

20 1S 19 
DO F1 

~ 
G1 G2 G3 

D1 E2 AO 
E1 

~ 
A1 00 9 D8 

D2 

~ 10 D9_~ 
D2 A2 01 D3 11 D1q_~ 
D1 

~ 
A3 02 D4 

~ 13D1f'~ C2 A4 03 D5 14 D1N 
C1 ~ 

A5 04 
D6 

~ 15 D1N 
82 A6 05 

D7 16 D1N 
A2 ~ 

A7 06 
DS ~ 11 D1N 07 D9 B3 A8 

"' "'--. A3 A9 D10 

~ D11 84 A10 

D12 A4 TBP3SL 165-35 
D13 B5 >-
D14 A5 -"'-
D15 86 -"'-

""' 
Figure 6-5. Direct Interface of TBP38L165-35 to TMS320C25 



Hardware Applications - Interfacing Memories 

CLKOUT1 

A15-AO. 

\ ____ / 
tsu r 

I 

\ A •,~~~~~~~~J I 
•t I 

I I 

VALID 

\__ 

PS __ J 

I 
1---ta(Sl----j 1--tdis -91 

D15-DO~~~~~~~~~~~~~~~--<{•;~~D-A-TA~IN~--}~~~~~-

Figure 6-6. Interface Timing of TBP38L165-35 to TMS320C25 

The most critical timing parameters of the TBP38L 165-35 direct interface to 
the TMS320C25 are summarized in Table 6-1. 

Table 6-1. Timing Parameters of TBP38L165-35 Direct Interface to 
TMS320C25 

DESCRIPTION SYMBOL USED IN VALUE 
FIGURE 6-6 

Address setup time tsu 13 ns (min) 
TM P38L 165-35 access time from chip enable ta(S) 20 ns (max) 
TMP38L165-35 disable time tdis 15 ns (max) 

The second design example considers the interface of PROMs to the 
TMS320C25 using address decoding. An approach that can be used to meet 
the READY timing requirements is shown in Figure 6-7. This design utilizes 
one address decoding scheme to generate READY, and a second address de­
coding scheme to enable the different memory banks. In this design, the 
memories with no wait states are mapped at the upper half (upper 32K) of the 
program space. The lower half is used for memories with one or more wait 
states. This decoding is implemented with the 74AS20 four-input NANO gate. 

Address decoding is implemented by the 74AS138. This decoding separates 
the program space into eight segments of BK words each. The first four of 
these segments (lower 32K of address space) are enabled by the YO, Y1, Y2; 
and Y3 outputs of the 74AS138. These segments are used for memories with 
one or more wait states. The other four segments select memories with no wait 
states (the TBP38L 165s are mapped in segment 5, starting at address >8000). 
Note that in Figure 6-7, R/W is used to enable the 74AS1 38. This prevents a 
bus conflict from occurring if an attempt is made to write to the PROMs. Fig­
ure 6-8 shows the timing for the circuit shown in Figure 6-7. READY goes 
high 10 ns (worst case) after the address has become valid. 

6-13 



Hardware Applications - Interfacing Memories 

T 
M 
s 
3 
2 
0 
c 
2 
5 

A7 
AS 
A9 

A10 
A13 
A14 K9 

L10 A15 
PS J10 

R/W H11 

OS K10 
iS J11 

+5V 

74AS13S 
A 

2 G2B 
3 

B 
c 

4 
G2A 

6 G1 Y4 
1 kO 

READY~B~S'--~~~~~~-l 

11 
':' 

00 
9 DO 

01 10 01 

02 11 02 

03 13 03 
14 04 

04 
15 05 

05 
06 16 06 

07 17 07 

MEMS EL 

+5 v 
1 kO 

20 1S 19 
G1G2G3 
AO 00 
A1 
A2 
A3 
A4 
AS 
AS 
A7 
AS 
A9 
A10 

01 
02 
03 
04 
05 
06 
07 

9 
10 
11 
13 
14 
15 
16 
17 

TBP3SL 165-35 

OS 
09 
010 
011 
012 
013 
014 
015 

Figure 6-7. Interface of TBP38l165-35 to TMS320C25 

6-14 



Hardware Applications - Interfacing Memories 

CLKOUT1 ~------------'/ \.....___ 

CLKOUT2 

i 

MEMSTRB 

I I 
I I 
I I 

IA I\ 
~11 ~-I _t_1 ______ _ 

PSA~~'.~~·--~~ VALID i ~ 
I I 
I •I t2 I 

~-------11 -\J.ll I r-
MEMS EL I 

I 
~13 I 
I I I 

I I i \_ READY 

I I 
I--- t4---! -f j-tdis 

D15-DO ------------l~-· ---DA_T_A-IN---~}~-------

Figure 6-8. Interface Timing of TBP38L 165-35 to TMS320C25 (Address 
Decoding) 

The most critical timing parameters of the TBP38L 165-35 interface with ad­
dress decoding to the TMS320C25 are summarized in Table 6-2. 

Table 6-2. Timing Parameters of TBP38L165-35 to TMS320C25 
(Address Decoding) 

DESCRIPTION SYMBOL USED IN VALUE 
FIGURE 6-8 

Propagation delay through the 74AS04 t1 5 ns (max) 
Propagation delay through the 74AS138 tz 10 ns (max) 
Address valid to READY t3 10 ns (max) 
TBP38L165-35 disable time tdis 15 ns (max) 

6-15 



Hardware Applications - Interfacing Memories 

6.2.2 Wait-State Generator 

6-16 

The READY input of the TMS320C2x allows the capability to interface with 
memory and peripherals that cannot be accessed in a single cycle. The num­
ber of cycles in a memory or 1/0 access is determined by the state of the 
READY input. If READY is high when the TMS320C2x samples the READY 
input, the memory access ends at the next falling edge of CLKOUT1. If READY 
is low, the memory cycle is extended by one machine cycle, and all other sig­
nals remain valid. Figure 6-9 shows a one-wait state memory access. Note that 
for on-chip program and data memory accesses, the READY input is ignored. 
Refer to Hardware Interfacing to the TMS320C25 for detailed information re­
garding wait-state generation. 

The automatic generation of one wait state can be accomplished by the use 
of the MicroState Complete (MSC) signal. The MSC output is asserted low 
during CLKOUT1 low to indicate the beginning of an internal or external 
memory or 1/0 operation (see Figure 6-9). By gating MSC with the address 
and PS, OS, and/or TS, a one-wait READY signal can be generated. 

An alternative approach for the generation of wait states when interfacing with 
memories and peripherals consists of a wait-state generator. In this design, 
READY must be valid (low or high) no later than Q-20 ns = 5 ns after STRB 
goes low. If READY is high, then the memory/peripheral access is completed 
with the present machine cycle. If READY is low, the access is extended to the 
next machine cycle; i.e., a wait state is introduced. The number of wait states 
required depends on the access time ta of the particular memory device or 
peripheral. If ta < 40 ns, no wait states are required. If 40 ns < ta < 140 ns, 
one wait state must be inserted. In general, N wait states are required for a 
particular access if 

TMS32020: 

TMS320C25: 

[200(N-1) + 85]ns <ta s [200N + 85]ns 

[100(N-1) + 40]ns <ta s [100N + 40]ns 



Hardware Applications - Interfacing Memories 

CLKOUT1 

STRB 

A15-AO, 
PS, 0§, 

OR IS 

R/W 

READY 

D15-DO 
(FOR READ 

OPERATION) 

D15-DO 
(FOR WRITE 
OPERATION) 

MSC 

=-=-
~~~~~~~~~V_A_Ll_D~~~~~~~~~~ 

~~~~~~~~~V_A_L_ID~~~~~~~~~~ 

~~~~----<~~~~~~-D_AT_A_o_u_T~~~~~~t---

- ~ ~
Figure 6-9. One Wait-State Memory Access Timing

The information on the number of wait states required for a memory or pe­
ripheral access is summarized in Table 6-3.

Table 6-3. Wait States Required for Memory/Peripheral Access

NUMBER OF WAIT TMS32020 TMS320C25
STATES REQUIRED ACCESS TIME ACCESS TIME

0 ta < 85 ns ta < 40 ns
1 85 ns < ta < 285 ns 40 ns < ta < 140 ns
2 285 ns < ta < 485 ns 140 ns < ta < 240 ns
3 485 ns < ta < 685 ns 240 ns < ta < 340 ns
4 685 ns < ta < 885 ns 340 ns < ta < 440 ns

A wait-state generator design and timing are shown in Figure 6-10 and Figure
6-11, respectively. In the case of one wait state, time t1 in Figure 6-11 is the
time from address valid to memory select of the particular device that requires
the wait state. This corresponds to the propagation delay through the address
decode logic. For a 74AS138 decoder, t1 = 10 ns (max).

Time t2 is the time from memory select going low to CLKOUT2 going low.

t2 = tp + t5u = 11 ns + 20 ns = 31 ns

6-17

Hardware Applications - Interfacing Memo'jies

6-18

Time t3 is the time from CLKOUT2 gorng low to READY going high.

t.3 = 1 9 ns + 5 ns = 24 ns

READY must remain high until it is sampled again, shortly after CLKOUT1
goes high. In Figure 6-10, READY remains high well after CLKOUT1 goes
high. At the falling edge of CLKOUT2, the inputs to the J-K flip-flop are J =
1 and K = Q = 1, and the flip-flop is in the toggle mode. When CLKOUT2
goes low, a goes back to logic 1. READY goes low and stays low until one
of the inputs of the 74AS30 is pulled low.

To implement two wait states, a second J-K flip-flop is utilized as shown in
Figure 6-10. This delays READY going high by an additional machine cycle
(see Figure 6-11). If more wait states are required, additional J-K flip-flops
must be included in the wait-state generator design.

1 k{l
+5 v

10
PRE PRE

~a ~a
8

...
13 ...

I/) _,
Yz 74ALS20A <(....

2 K
12

CLR
FROM
TMS320C25:

CLKOUT2

RS

....
;,I::

K Q
CLR

§
9

READY
TO
TMS320C25

t Connections to other devices in the system that require two wait states. (Inputs not used by other
devices should be pulled up.)

t Connections to other devices in the system that require one wait state. (Inputs not used by other
devices should be pulled up.)

§Connections to other devices in the system that require zero wait states. (Inputs not used by other
devices should be pulled up.)

Figure 6-10. Wait-State Generator Design

CLKOUT2

A15-AO,
f>-s, os, rs

READY

A15.AO,
PS, os, rs

READY

I r---r-•2
VALID

I I
___ _._: I

:\!.~' --'-~~~--';---
I I
I I ---l 1-- 13

., ~ 1-- ~1 ____ _

VALID

Figure 6-11. Wait-State Generator Timing

6.2.3 Interfacing EPROMs

ONE WAIT
STATE

TWO WAIT
STATES

EPROMs can be a valuable tool for debugging TMS320C2x algorithms during
the prototyping stages of a design, and may even be desirable for production.
Two different EPROM interfaces to the TMS320C2x. are discussed: a direct
interface of an EPROM that requires no wait states, and EPROM interfaces
that require one and two wait states.

A direct interface similar to that used for PROMs may be implemented when
EPROM access time meets the TMS320C2x timing specifications. A Texas
Instruments TMS27C292-35 2K x 8-bit EPROM can interface directly to the
TMS320C25 with no wait states. The TMS27C292-35 is a CMOS EPROM
with access times of 35 ns from valid address and 25 ns from chip select.

When slower, less costly EPROMs are used, a simple flip-flop circuit (see
Section 6.2.2 for wait-state generator design) can be used to generate one or
more wait states. Figure 6-12 shows an EPROM interface with one wait state,
where Wafer Scale WS57C64F-12 SK x 8-bit EPROMs are interfaced to the
TMS320C25. The WS57C64F-12 is the slowest member of the WS57C64F
EPROM series, but still meets the specifications for one wait state. With
slower EPROMs, however, data output turnoff can be slow, and must be taken
into consideration in the design. The WS57C64F-12s are mapped at address
>2000. Figure 6-13 provides tne interface timing diagram.

6-19

Hardware Applications - Interfacing Memories

6-20

TMS320C25

y 1 14 MEMSEL

G2B 5

WAIT-STATE
GENERATOR

(ONE WAIT STATE)

REAOY~6-8--+--~-~-

WS57C64F-12

74AS32

OO 11 DO
01 12 01
02 13 02
03 15 03
04 16 04
05 17 05
06 18 06
0719 07

+5 v

PGM 27

OE
22

22

1 k!1

OE 11 08
00 12 09 01 t-----"-;;..,..
02 13 010
03 15 011
04 16 012
05 17 013
06 18 014
07 19 015

+5V

1 kfl

PGM 27

WS57C64F-12

Figure 6-12. Interface of WS57C65F-12 to TMS320C25

Hardware Applications - Interfacing Memories

CLKOUT1

CLKOUT2

f--!-t2 ______ ,
DTSTR I

i---------t3-~~~~~--,

015-DO -------------------<{ VALID ?-:-
Figure 6-13. Interface Timing of WS57C65F-12 to TMS320C25

Table 6-4 summarizes the most critical timing parameters of the
WS57C64F-12 interface to the TMS320C25.

Table 6-4. Timing Parameters of WS57C64F-12 Interface to
TMS320C25

DESCRIPTION SYMBOL USED IN VALUE
FIGURE 6-13

Address valid to MEMSEL low ti 10 ns (max)
STRB low to DTSTR low t2 5.8 ns (max)
TMS320C25 address valid to WS57C64F-12 t3 130 ns (max)

data valid
STRB high to WS57C64F-12 output disable t4 40.8 ns (max)

An EPROM interface with two wait states is shown in Figure 6-14, in which
the TMS27C64-20 is interfaced to the TMS320C25. The TMS27C64-20 is a
CMOS BK x 8-bit EPROM with an access time of 200 ns. The timing diagram
is shown in Figure 6-15.

6-21

Hardware Applications - Interfacing Memories

6-22

74AS138
1 A

2 B

3 c
1-'-'~---'4-<1 G2A

1-'-'-'-'----'6'-' G 1

YO 15

5

---~

WAIT-STATE
GENERATOR

(TWO WAIT
STATES)

74ALS244A

1Y1 18 DO

1Y2 16 01

1Y3 14 02

1Y4
12 03

2Y1 9 04

2Y2 7 05

2Y3 5 06

2Y4 3 07

2G

19
1 k{l

74AS32

20 19

01
11 2 1G 2G 18 08
12 4 1A1 1Y1 16 09

02 1A2 1Y2
13 6 1A3 1Y3 14 010

03
15 S 1A4 1Y4

12 011
04
05 16 11 2A1 2Y1 9 012

06
17 13

2A2 2Y2 7 013
18 15 2A3 2Y3 5 014

07
19 17 3 015

08 2A4 2Y4

A4

A5

A6

A7
AS

A9

A10

A11
A12

+5V 74ALS244A
1 k{l

TMS27C64-20

Figure 6-14. Interface of TMS27C64-20 to TMS320C25

Hardware Applications - Interfacing Memories

CLKOUT1 \ I \ I \ I _

CLKOUT2 I \ I \ I \
STRB

-1 t2 '--
I

DTSTR ~ I
PS/Riiii.~ VALID ~ A15-AO

I I
It,.,._ I

MEMSEL I '{ 1;-
I I
I I
I I I__ READY I
I I

t3
I --I t4 i--

D15-DO { VALID 2--
Figure 6-15. Interface Timing of TMS27C64-20 to TMS320C25

Table 6-5 summarizes the most critical timing parameters of the
TMS27C64-20 interface to the TMS320C25.

Table 6-5. Timing Parameters of TMS27C64-20 Interface to
TMS320C25

DESCRIPTION SYMBOL USED IN VALUE
FIGURE 6-15

Address valid to MEMSEL low t1 10 ns (max)
STRB low to DTSTR low t2 5.8 ns (max)
TMS320C25 address valid to TMS27C64-20 t3 220 ns (max)

data valid
STRB high to TMS27C64-20 output disable t4 18.8 ns (max)

For detailed information regarding EPROM interfacing, see the apaplication
report, Hardware Interfacing to the TMS320C25.

6-23

Hardware Applications - Interfacing Memories

6.2.4 Interfacing Static RAMs

6-24

Interfacing external RAM to the TMS320C2x can be useful for expanding in­
ternal data memory or implementing additional RAM program memory. Static
RAM can be used as data memory to extend the TMS320C2x 544-word in­
ternal RAM. When used as program memory, object code can be downloaded
into the RAM and executed. In the first case, the static RAM is mapped into
the data space, while in the second case it is mapped into the program space.

In cases where RAMs of different speeds are used, separate schemes for ad­
dress decoding and READY generation can be used to meet READY timing
requirements in a similar manner to that used for the PROM interface de­
scribed in Section 6.2.1. RAMs with similar access times may then be grouped
together in one segment of memory.

The static RAM for this interface is the Cypress Semiconductor CY7C169-25
4K x 4-bit static RAM. This RAM has a 25-ns access time from address ta(A)
and a 15-ns access time from chip enable ta(CE)- Note that these access times
are fast enough so that a wait-state generator is not required for this interface.
If, however, RAMs that require wait states are used in the system, the wait­
state generator described in Section 6.2.2 can be used.

The design shown in Figure 6-16 utilizes a similar approach to the one de­
scribed in Sections 6.2.1 and 6.2.3; i.e., one address decoding scheme is used
to generate READY, and a second address decoding scheme enables the static
RAM. In this design, RAMs with no wait states are mapped at the lower half
(lower 32K words) of the TMS320C25 data space. The upper half is used for
memories with one or more wait states. Figure 6-17 shows the timing for
memory read and write cycles.

Table 6-6 summarizes the most critical timing parameters of the CY7C1 69-25
interface to the TMS320C25.

Table 6-6. Timing Parameters of CY7C169-25 Interface to
TMS320C25

DESCRIPTION SYMBOL USED IN VALUE
FIGURE 6-17

Address valid to READY valid t1 10.8 ns (max)
STRB low to MEMSEL low tz 8.5 ns (max)
STRB high to MEMSEL high t3 7.5 ns (max)
CLKOUT1 low to TMS320C25 data bus t4 15 ns (max)

entering the high-impedance state
MEMSEL low to CY7C169-25 driving the t5 5 ns (min)

data bus
MEMSEL low to CY7C169-25 data valid t6 15 ns (max)
MEMS EL high to CY7C169-.25 entering t1 15 ns (max)

the high-impedance state
Data setup time for a write ta 32 ns (min)
Data hold time tg 7.5 ns (min)

Hardware Applications - Interfacing Memories

TMS320C25
CY7C169-25

Figure 6-16. Interface of CY7C169-25 to TMS320C25

6-25

Hardware Applications - Interfacing Memories

6-26

CLKOUT1

DS.----,

A15-AO ____ _, VALID

I
i-t1-j

READY

R/W

TMS320C25
D15-DO

CY7C169-25

I
I
I
I -I
I
I
I
I
l--t4--l

I

--------~

I

I
I

I
I
I
J-t2j

\l
I

I
I
I

I
i--1s--i

--1 ts !--- I

m 1/04-1/01 --------------

R/W ~

I
I
I
I
I
I
I
f--t3--I

I
I

/:
I
I
I

I
--1

I
I

_

~

I- t7
I
I

}

~

__, 1--tg
---ts----1 !

TMS320C25 ------------<IXXXXXXY ~.
D15-DO ~ ~

CY7C169-25
1/04-1/01 ____ ,,

Figure 6-17. Interface Timing of CY7C169-25 to TMS320C25

READ
CYCLE

WRITE
CYCLE

Hardware Applications - Interfacing Memories

6.2.5 Interface Timing Analysis

When interpreting TMS320C25 timing specifications, particularly in the area
of memory interface timing, it is necessary to understand clock input and clock
timing relationships shown in timing diagrams as compared with the actual
data sheet specifications. If interpreted incorrectly, the specifications may
suggest that interfacing to the device is more constrained than necessary.
Without exception, the TMS320C25 meets every specification given in the
data sheet (Appendix A). Some timings are specified more conservatively than
others, due to yield distributions, etc., but at the minimum stated, each
TMS320C25 is guaranteed by Texas Instruments to conform explicitly to the
data sheet timings.

Clock input and internal clock timing relationships must be considered in the
interpretation of output timing characteristics and requirements. At the clock
input to the device, only the rising edges of the clock are used to initiate
transitions on internal clocks and output signals. Thus, with an input clock of
a stable frequency (regardless of duty cycle variation within specifications),
extremely symmetric timing is exhibited throughout the device. A significant
consequence of this is that CLKOUT1, CLKOUT2, and STRB timing skews
(with respect to each other) and high and low pulse widths are integer mul­
tiples of Q (the input clock period or one-fourth of the output clock period)
to within a few nanoseconds. This occurs because transitions on the output
signals are initiated directly from the internal clocks (Q1 -04), and driven
through identical output buffer circuits. Since the internal clocks are very
symmetric, close tracking of these outputs results. The large skews in these
timings, as shown in the data sheet, are a factor of temperature and process.
Since there is no variation in process and negligible variation in temperature
across a single device, the skew of the outputs relative to the inputs is con­
sistent for all outputs. Regardless of the magnitude of such skews, interfaces
to the TMS320C25 can be designed independent of these skews in most
cases.

Interface timings to be considered include READY, memory read, and MSC
timings. With regard to READY, there are two pairs of related timings in which
one timing can be met without the other one being met, with the device still
guaranteed to function properly. These pairs of timings are td(SL-R) and
td(C2H-R). and th(SL-R) and th(C2H-R). These front-end and back-end
READY timings are specified with respect to STRB and CLKOUT2. For zero
wait-state accesses, READY is referenced to STRB, but for wait-state accesses,
STRB remains low and another timing reference is required. Note that the ac­
tual timings for each of these parameter pairs are identical and the timings with
respect to CLKOUT2 and STRB are equivalent. Therefore, it READY timing
meets the requirements with respect to one of these references (but not nec­
essarily the other), the timing requirements of the device are satisfied regard­
less of the actual skews between the two signals. For the purpose of interface
timing, td(C2-S) can be assumed to be 0 ns with respect to other signals on
the TMS320C25. The same is also true of td(C1 -S) and tw(SL); these timings
can be assumed to be Q and 2Q, respectively. These relationships are ac­
counted for in specifications and device testing.

In memory read operations, the two key timings, ta(A) and t5u(D)R, are related
by ta(A) = t5u(A) + tw(SL) - t5u(D)R. However, when the worst case tw(SL)
specifications are used in this equation to generate an expression for t8 (A), the
result differs from the specification for t8 (A) in the data sheet. Both the spec-

6-27

Hardware Applications -- Interfacing Memories

6-28

ification for ta(A) and t5u (D) R are tested explicitly on the device and guaran­
teed. This again justifies the assumption that tw(SL) can be assumed to be
20 with respect to other signals on the device. This is confirmed by the fact
that if tw(SL) = 20 is used to calculate ta(A), consistency results in all of
these related timings. If an interface is designed where t5u(D)R is met but
ta(A) is not met due to actual signal skews, the interface is still guaranteed to
function with the TMS320C25. The same is true (but not as likely in reality)
if an interface is designed where ta(A) is met but t5u(D)R is not. Thus, even
if tw(SL) is actually less than 20, meeting either ta(A) or t5u(D)R is still suf­
ficent to guarantee a valid memory cycle since both parameters are guaranteed
independently.

Note that when considered in the absolute sense, timings such as tw(SL) will
have some finite tolerance, although considerably less than that specified. For
example, if STRB is used to generate a WE pulse for a device that specifies a
minimum WE low pulse width, the data sheet specification for STRB low pulse
width must be used for a worst-case design.

With regard to MSC timing, the th(C2H-R) timing is a constraint that must be
satisfied, and the td(MSC) is a parameter more conservatively specified than
many other timings. When considering these timing parameters and
CLKOUT1 /CLKOUT2 skews, the MSC does not meet worst-case timings for
generating READY, the purpose for which the MSC signal was intended. The
READY timing will be met by MSC, however, regardless of when MSC goes
high. This timing is explicitly guaranteed by th(M-R) = 0, even though MSC
exhibits some finite skew from CLKOUT1.

Hardware Applications - Direct Memory Access (OMA)

6.3 Direct Memory Access (OMA)

Some advanced hardware design concepts supported by the TMS320C2x in­
clude Direct Memory Access (OMA) and global memory (see Section 6.4).
Direct memory access can be used for multiprocessing by temporarily halting
the execution of one or more processors to allow another processor to read
from or write to the halted processor's local off-chip memory. Direct memory
access to external program/data memory is performed using the HOLD and
HOLDA signals.

The multiprocessing is typically a master-slave configuration. The master may
initialize a slave by downloading a program into its program memory space
and/or provide the slave with the necessary data to complete a task. In a
typical TMS320C2x direct memory access scheme, the master may be a gen­
eral-purpose CPU, another TMS320C2x, or perhaps even an analog-to-digital
converter. A simple TMS320C2x master-slave configuration is shown in Fig­
ure 6-18. The master TMS320C2x takes complete control of the slave's ex­
ternal memory by asserting HOLD low via its external flag (XF). This causes the
slave to place its address, data, and control lines in a high-impedance state.
By asserting RS in conjunction with HOLD, the master processor can load the
slave's local program memory with the necessary initialization code on reset
or powerup. The two processors can be synchronized using the SYNC pin to
make the transfer over the memory bus faster and more efficient.

After control of the slave's buses is given up to the master processor, the· slave
alerts the master of this fact by asserting HOLDA. This signal may be tied to the
master TMS320C2x's BIO pin. The slave's XF pin may be used to indicate to
the master when it has finished performing its task and needs to be repro­
grammed or requires additional data to continue processing. In a multiple
slave configuration, the priority of each slave's task may be determined by ty­
ing the slave's XF signals to the appropriate INT(2-0) pin on the master
TMS320C2x.

6-29

Hardware Applications - Direct Memory Access (OMA)

6-30

TMS320C2x
(MASTER)

XF

BIO

INTO-INT2

MASTER
DATA

MEMORY
(RAM)

IACK

A15-AO

D15-DO

R/W

MASTER
PROGRAM
MEMORY

(ROM)

BUFFER
AND

LOGIC

SLAVE
PROGRAM
MEMORY

(RAM)

TMS320C2x
(SLAVE)

HOLD

HOLDA

XF

BIO

A15-AO

D15-DO

SLAVE
DATA

MEMORY
(RAM)

Figure 6-18. Direct Memory Access Using a Master-Slave
Configuration

A PC environment presents another example of a potential direct memory ac­
cess scheme where a system bus (the PC-bus) is used for data transfer. In this
configuration, either the master CPU or a disk controller may place data onto
the system bus. which can be downloaded into the local memory of the
TMS320C2x. Here the TMS320C2x acts more like a peripheral processor with
multifunction capability. In a speech application, for example, the master can
load the TMS320C2x's program memory with algorithms to perform such
tasks as speech analysis, synthesis, or recognition, and fill the TMS320C2x's
data memory with the required speech templates. In another application ex­
ample, the TMS320C2x can serve as a dedicated graphics engine. Programs
can be stored in TMS320C2x program ROM or downloaded via the system
bus into program RAM. Data can come from PC disk storage or provided di­
rectly by the master CPU.

Figure 6-19 depicts a direct memory access using a PC environment. In this
configuration, decode and arbitration logic is used to control the direct mem­
ory access. When the address on the system bus resides in the local memory
of the peripheral TMS320C2x, this logic asserts the HOLD signal of the
TMS320C2x while sending the master a not-ready indication to allow wait
states. After the TMS320C2x acknowledges the direct memory access by as­
serting HOLDA, READY is asserted and the information transferred.

Hardware Applications - Direct Memory Access (OMA)

MASTER
CPU

,---, ADDRESS LOCAL
ADDRESS B rPROGRAM/DATA

•<'------1----+..., UF MEMORY · (RAM}
,,._ ___ --1--__ _...., FE

DATA
R HI,!---__; ADDRESS DATA

ADDRESS f--.'li
DATA~j't

s
t
'!!'

'---J

TMS320C2x

DECODE/

DISK
CONTROLLER

M ADDRESS

i
ARBITRATION r------.i HOLD

LOGIC

IN'-t-----+-~READY
f-4-----l HOLDA

AODOESS f+-11 ~ ~-l--LO_C_A~L
DATA 1-jl p~.£w

l ADDRESS JJ l, DATA

J

Figure 6-19. Direct Memory Access in a PC Environment

6-31

Hardware Applications - Global Memory

6.4 Global Memory

6-32

For multiprocessing applications, the external memory of the TMS320C2x can
be divided into local and global sections. Special registers and pins included
on the TMS320C2x allow multiple processors to share up to 32K words of
global data memory space. This implementation facilitates efficient "shared
data" multiprocessing where data is transferred between two or more proces­
sors. Unlike a direct memory access (DMA) scheme, reading or writing global
memory does not require one of the processors to be halted.

Global memory can be used in various digital signal processing tasks such as
filters or modems, where the algorithm being implemented may be divided into
sections with a distinct processor dedicated to each section. In this multi­
processor scheme, the first and second processors may share global data
memory, as well as the second and third, the third and fourth, etc. Arbitration
logic is required to determine which section of the algorithm is executing and
which processor has access to the global memory. With multiple processors
dedicated to distinct sections of the algorithm, throughput may be increased
via pipelined execution.

The size of the global memory is programmable between 256 and 32K lo­
cations in data memory by loading the global register (GREG). After global
memory is defined in the GREG, the TMS320C2x asserts the BR (bus request)
signal before each global memory access. The processor then inserts wait
states until a bus grant is given by asserting the READY line. Figure 6-20 il­
lustrates such a global memory interface. Since the processors can be syn­
chronized by using the SYNC pin, the arbitration logic may be simplified and
the address and data bus transfers more efficient (see Section 3.10.1 for in­
formation on synchronization).

The SYNC pin on the TMS320C2x may also be used to synchronize several
processors to allow for execution of redundant fail-safe systems. SYNC permits
instruction broadcasting between several processors and lock-step execution
after initial synchronization.

Hardware Applications - Global Memory

TMS320C2x TMS320C2x

BR f-------..i ARBITRATION f-4------l BR

READY LOGIC READY

A15-AO

D15-DO

PROGRAM
MEMORY

GLOBAL
DATA

MEMORY

SYNC
GENERATION

LOGIC
CLOCK

A15-AO

D15-DO

PROGRAM
MEMORY

Figure 6-20. Global Memory Communication

6-33

Hardware Applications - Interfacing Peripherals

6.5 Interfacing Peripherals

Most DSP systems implement some amount of 1/0 using peripherals in addi­
tion to any memory included in the system. This usually includes analog input
and output, which can be performed through the parallel and serial 1/0 ports
on the TMS320C2x.

When accessing the external parallel 1/0 ports, the access to the data bus is
multiplexed over the same pins as for a program/data memory access. The 1/0
space is selected by the TS signal going active low, and the address of the port
is placed on address bits A3-AO. Address bits A15-A4 are held low.

This section describes hardware interfaces to a TCM29C16 combo-codec, a
TLC32040 analog interface circuit (AIC}, a digital-to-analog (D/A} converter,
and an analog-to-digital (A/D).

6.5.1 C'ombo-Codec Interface

6-34

Some areas of speech, telecommunications, and many other applications re­
quire low-cost analog-to-digital (A/D) and digital-to-analog {D/A) convert­
ers. Combo-codecs are most effective in serving DSP system data-conversion
requirements. Combo-codecs are single-chip pulse-code-modulated encod­
ers and decoders (PCM codecs), designed to perform the encoding {A/D
conversi,on) and decoding (DIA conversion), as well as the antialiasing and
smoothing filtering functions. Since combo-codecs perform these functions
in a single 300-mil DIP package at low cost, they are extremely economical
for providing system data-conversion functions.

Combo-codecs interface directly to the TMS320C2x by means of the serial
port and provide a companded, PCM-coded digital representation of analog
input samples. This PCM code is easily translated into linear form by the
TMS320C2x for use in processing. The design discussed here and shown in
Figure 6-21 uses a Texas Instruments TCM29C16 codec, interfaced using the
serial port of the TMS320C25.

The TMS320C2x serial port provides direct synchronous communication with
serial devices. The interface signals are compatible with codecs and other se­
rial components so that minimal external hardware is required. Externally, the
serial port interface is implemented using the following pins on the
TMS320C25:

• DX (transmitted serial data)
• CLKX (transmit clock)
• FSX (transmit framing synchronization signal)
• DR (received serial data)
• CLKR (receive clock)
• FSR (receive framing synchronization signal)

Data on DX and DR are clocked by CLKX and CLKR, respectively. These
clocks are only required during serial transfers on the TMS320C25. On the
TMS32020, the clocks must be present at all times if the serial port is being
used. Note that the TMS320C25 is double-buffered.

Hardware Applications - Interfacing Peripherals

500 kl!

+5 v

16 4
TMS320C25 Vee PON

DR J1 11 PCMOUT GSX
15

F11 6 PWRD+
2

DX PCMIN

CLKX
A9

DCLKR 5
ANALOG

100 kl! OUTPUT

CLKR
eg MCLK 9 CLKR/X Vee

1

J2
FSX FSA DGND

FSA 10 8
F10 FP

.,,.
FSX .,,. -5 v

74AS869 74ALS04A

14 CLK 1QAl"3----'-t
1 so H 10

2
S1 G 9

F11 3 5 4 1CKe CLKIN CLK Q
1CLR 11 ENT F 8

+5 v
CLR

R1 - 1
+5 v

1 MO 4 6

C1 -
0.47 µF +5 v

T l~
10 kll

74AC04

47pFT 10 kl! 10.1µF

e -ANALOG GROUND

":" L • 1.8 µH

.,!,. • DIGITAL GROUND

Figure 6-21. Interface of TMS320C25 to TCM29C16 Codec

Serial port transfers are initiated by framing pulses on the FSX and FSR pins
for transmit and receive operations, respectively. For transmit operations, the
FSX pin can be configured as an input or an output. This option is selected
by the transmit mode (TXM) bit of status register ST1. In this design, FSX is

6-35

Hardware Applications - Interfacing Peripherals

6-36

assumed to be configured as an input; therefore, transmit operations are initi­
ated by a framing pulse on the FSX pin. Upon completion of receive and
transmit operations, an RINT (serial port receive interrupt) and an XINT (serial
port transmit interrupt) are generated, respectively. Interface timing of the
TMS320C25 to the TCM29C16 corresponds to the burst-mode serial port
transmit and receive eperations shown in Figure 3-28 and Figure. 3-29, re­
spectively. Continuous-mode operation using framing pulses or without
framing pulses is also possible.

The format (FO) bit of status register ST1 is used to select the format (8-bit
byte or 16-bit word) of the data to be received or transmitted. For interfacing
the TMS320C25 to a codec, the format bit should be set to 1, formatting the
data in 8-bit bytes.

The TMS320C25 interfaces directly to the codec, as shown in Figure 6-21,
with no additional logic required. The PCM µ-law data generated by the codec
at the PCMOUT pin is read by the TMS320C25 from the data receive (DR)
pin, which is internally connected to the receive serial register (RSA). The data
transmitted from the data transmit (DX) pin of the TMS320C25 is received
by the PCMIN input of the codec. During the digital-to-analog conversion,
this µ-law companded data must be converted back to a linear representation
for use in the TMS320C25. The resulting analog waveform is lowpass-filtered
by the codec's internal smoothing filter. Therefore, no additional filtering is
required at the codec output (PWRO+). Software companding routines ap­
propriate for use on the TMS320C25 are provided in the book,' Digital Signal
Processing Applications with the TMS320 Family.

The software required to initialize the TMS320C25-codec interface is provided
in the Combo-Codec Interface section of the application report, Hardware In­
terfacing to the TMS320C25. This report also presents detailed information
regarding codec interfacing.

A combo-codec configured in the fixed-data-rate mode requires the following
external clock signals:

• A 2.048-MHz clock to be used as the master clock, and
• 8-kHz framing pulses to initialize the data transfers.

Both of these signals can be derived from the 40.96- MHz system clock with
appropriate divider circuitry. This is the primary justification for selecting
40.96-MHz as the system clock frequency. The clock divider circuit consists
of a 74AS74 D-type flip-flop, 74HC390 decade counter, and 74AS869 8-bit
up/down counter. The hardware connections between these devices are
shown in Figure 6-21.

To generate the 2.048-MHz master clock for the combo-codec, a division by
20 of the 40.96-MHz system clock is required. The 74HC390 contains on­
chip two divide-by-2 and two divide-by-5 counters. Since the 74HC390
cannot be clocked with frequencies above approximately 27 MHz, a 74AS74
configured as a divide-by-2 of the 40.96-MHz clock is used.

The 74AS869 is configured to generate the 8-kHz clock pulse (the ripple carry
output is 2.048 MHz/256 = 8 kHz). This pulse is used by the TMS320C25
and codec as a framing pulse to initiate data transfers.

The level of the analog input signal is controlled using the TL072 opamp
connected in the inverting configuration (see Figure 6-21). Using the

Hardware Applications - Interfacing Peripherals

500-kO potentiometer, the gain of this circuit can be varied from 0 to 5. The
output of the 0.01 -µF coupling capacitor drives the TCM29C16's internal
opamp. This opamp is connected in the inverting configuration with unity gain
(feedback and input impedances having the same value of 100 kO).

6.5.2 AIC Interface

For applications such as modems, speech, control, instrumentation, and ana­
log interface for DSPs. a complete analog-to-digital (A/D) and digital-to-an­
alog (D/A) input/output system on a single chip may be desired. The
TLC32040 analog interface circuit (AIC) integrates on a single monolithic
CMOS chip a bandpass, switched-capacitor, antialiasing-input filter, 14-bit
resolution A/D and D/A converters, and a lowpass, switched-capacitor, out­
put-reconstruction filter. The TLC32040 offers numerous combinations of
master clock input frequencies and conversion/sampling rates, which can be
changed via digital processor control.

Four serial port modes on the TLC32040 allow direct interface to TMS320C2x
processors. When the transmit and receive sections of the AIC are operating
synchronously, it can interface to two SN54299 or SN74299 serial-to-parallel
shift registers. These shift registers can then interface in parallel to the
TMS320C2x, other TMS320 digital signal processors, or to external Fl FO cir­
cuitry. Output data pulses are emitted to inform the processor that data
transmission is complete or to allow the DSP to differentiate between two
transmitted bytes. A flexible control scheme is provided so that the functions
of the AIC can be selected and adjusted coincidentally with signal processing
via software control. Refer to the TLC32040 data sheet for detailed informa­
tion on timing and device functions.

The AIC is easily interfaced to the TMS320C2x serial ports, as shown in Figure
6-22. The TMS320C2x can communicate with the AIC either synchronously
or asynchronously depending on the information in the control register. The
operating sequence for synchronous communication with the TMS320C2x,
shown in Figure 6-23, is as follows:

1) The FSX or FSR pin is brought low.
2) One 16-bit word is transmitted or one 16-bit byte is received.
3) The FSX or FSR pin is brought high.
4) The EODX or EODR pin emits a low-going pulse.

For asynchronous communication, the operating sequence is similar, but FSX
and FSR do not occur at the same time (see Figure 6-24). For proper opera­
tion, the TXM bit in the TMS320C2x control register should be set to 0 so that
the FSX pin of the TMS320C2x is configured as an input, the format (FO)
status bit is set to 0, and the AIC WORD/BYTE pin is at logic high. After each
receive and transmit operation, the TMS320C2x asserts an internal receive
(RINT) and transmit (XINT) interrupt, which may be used to control program
execution.

6-37

Hardware Applications - Interfacing Peripherals

TMS320C2x TLC32040

CLKOUT MSTR CLK
FSX FSX

DX DX
FSR FSR

DR DR
CLKX ! SHIFT CLK
CLKR

Figure 6-22. Interface of TLC32040 to TMS320C2x

SHIFT CLK

6-38

DR D15

DX D15

Figure 6-23. Synchronous Timing of TLC32040 to TMS320C2x

Figure 6-24. Asynchronous Timing of TLC32040 to TMS320C2x

For further information regarding the AIC interface, see page 11 -196 of Linear
and Interface Circuits Applications, Volume 3: Peripheral Drivers, Data Acqui­
sition Systems, Hall-Effect Devices, published by Texas Instruments.

Hardware Applications - Interfacing Peripherals

6.5.3 Digital-to-Analog (D/A) Interface

TMS32020

The high-speed operation of the internal logic circuitry of the TLC7524 8-bit
digital-to-analog (D/A) converter allows an interface to the TMS32020 with
a minimum of external circuitry required. Figure 6-25 shows the interface cir­
cuitry, which consists of one SN74ALS138 3-to-8-line decoder used to de­
code the address of the peripheral.

A15-AO ~~-~~S:Jr:smm~m;j>

74ALS138
AO A
A1 B
A2 c
A3 G2B

TS G2A
TLC7524 Vref

+5 v G1 YO cs REF
RFB

STRB WR
OUT1

DO-D7 8 DO-D7 OUT2

V0 = -V ref & where D = digital Input

Figure 6-25. Interface of TLC7524 to TMS32020

When the TMS32020 executes an OUT instruction (see Figure 6-28), the
peripheral address is placed on the address bus and the IS line goes low, in­
dicating that the address on the bus corresponds to an 1/0 port and not ex­
ternal data or program memory. A low level at iS enables the 74ALS138
decoder, and the Y-output, corresponding to the address on the bus, is
brought low. When the Y-output is brought low, the TLC7524 is enabled and
the data appearing on the data bus is latched into the D/ A converter by
STRB. The controlling software for the D/A interface is given on page 11-204
of Linear and Interface Circuits Applications, Volume 3: Peripheral Drivers,
Data Acquisition Systems, Hall-Effect Devices, published by Texas Instru­
ments.

6-39

Hardware Applications - Interfacing Peripherals

CLKOUT1

CLKOUT2

A15-AO, TS

015-DO

Figure 6-26. Interface Timing of TLC7524 to TMS32020

6.5.4 Analog-to-Digital (A/D) Interface

6-40

The TMS320C2x can be interfaced to 8-bit A/D converters, such as the
TLC0820. However, because the control circuitry of the TLC0820 operates
much more slowly than the TMS320C2x, it cannot be directly interfaced. In
the TLC0820 to TMS32020 interface design shown in Figure 6-27, the fol­
lowing logic devices are used in the interface circuit:

• A 3-line to 8-line decoder (SN74ALS138)

e A quad 2-input NAND gate (SN74LSOO)

• A hex inverter (SN74LS04)

e A quad 2-input OR gate (SN74LS32)

e A quad D-type flip-flop (SN74LS175)

Hardware Applications - Interfacing Peripherals

TMS32020

~ 74ALS138

I

A
B
c

I G2B
rs G2A Y1

G1 YO I
I_

R/W

STRB

TO
TMS32020

I +5 v

TLC0820

MODE
cs

INT

RD

WR

DO
D1
D2
D3
D4
D5
D6
D7

READYt--~~~~~~~--~~~~~~~~~~~~~~~~

D15-DOl¥"""-""'-'-"'~-""~~..:.....:c.....c....;;_;;_..:wc.c.w.c~"'=:..::;_;;_~~--""'---'--'-'-"-.c:..;_..:._:.:._.:.......:._.:._.:_..._:__:._;

Figure 6-27. Interface of TLC0820 to TMS32020

The 74LS138 decodes the addresses assigned to the TLC0820. One of the
addresses is used when performing a write operation; the other is used for a
read operation. The two different addresses are necessary to ensure that the
correct number of wait states is provided for the write and read operations.
The controlling software for the A/D interface is given on page 11-206 of
Lin-ear and Interface Circuits Applications, Volume 3: Peripheral Drivers, Data
Acquisition Systems, Hall-Effect Devices, published by Texas Instruments.

With the TMS32020 running at 20 MHz and the TLC0820 configured as slow
memory, three wait states are necessary to provide a write pulse of sufficient
length. After conversion has begun (with the rising edge of the WR signal), the
TMS32020 must wait at least 600 ns before the conversion result can be read.
Sufficient delay should be provided in software. To read the conversion result,
sufficient wait states must be provided to allow for the data access time (320
ns minimum) of the TLC0820. As shown in the IN instruction timing diagram
of Figure 6-28, two wait states are provided when accessing port 1.

6-41

Hardware Applications - Interfacing Peripherals

CLKOUT1

CLKOUT2

~~5R7& ~~---------A_D_D_R_Es_s_vA_L_ID _________)<W<

READY

D15-DO --------------------<(DATA IN >--
Figure 6-28. Interface Timing of TLC0820 to TMS32020

6.5.5 1/0 Ports

6-42

1/0 design on the TMS320C2x is treated the same way as memory. The 1/0
address space is distinguished from the local program/data memory space by
the TS signal. TS goes low at the beginning of the memory cycle. All other
control signals and timing parameters are the same as those for the
program/data external memory interface.

The TMS320C2x software instructions can access 16 input and 16 output
ports. The four least significant bits of the address bus specify the particular
port being accessed. A pair of 74AS138s can be used to fully decode these
address bits (see Figure 6-29).

Hardware Applications - Interfacing Peripherals

TMS320C2x
SIGNALS

A3

IS

A2

A1

AO

IS

A3

A2

A1

AO

+5

74AS138

G1

G2A

-r-4 G"2s

c

B

A

74AS138

VWG1

G2A

"G2s

c
B

A

Y7 1/0 PORT

Y6 1/0 PORT

Y5 1/0 PORT

Y4 1/0 PORT

Y3 1/0 PORT

Y2 1/0 PORT

Y1 1/0 PORT

YO 1/0 PORT

Y7 1/0 PORT

Y6 1/0 PORT

Y5 1/0 PORT

Y4 1/0 PORT

Y3 1/0 PORT

Y2 1/0 PORT

Y1 1/0 PORT

YO 1/0 PORT

Figure 6-29. 1/0 Port Addressing

15

14

13

12

11

10

9

8

7

6

5

4

3

2

0

A simple interface between two processors can be implemented using up to
16 bidirectional 1/0 ports connected to the TMS320C2x. An interprocessor
communication path can be formed by memory-mapping peripherals to the
1/0 ports of the TMS320C2x. In this manner, the TMS320C2x can connect
to parallel A/Ds, registers, FIFOs, two-port memories, or other peripheral de­
vices. In a multiprocessing scheme, intelligent peripherals can be memory­
mapped into the 1/0 ports. Here the TMS320C2x can communicate with
UARTs, general-purpose microprocessors, disk controllers, video controllers,
or other peripheral processors.

Using an 8-bit general-purpose microprocessor, such as Tl's TMS70C42, for
a keyboard interface is an example of a TMS320C2x 1/0 port multiprocessing
scheme, as shown in Figure 6-30. The TMS70C42 may be mapped into the
TMS320C2x 1/0 space using latches to store the transferred data. In a single
or multiple 1/0 port multiprocessing configuration, the four LSBs of the ad­
dress bus are decoded to determine which of the 16 1/0 ports on the
TMS320C2x is being accessed. The TMS320C2x selects the 1/0 space (TS)
for its external bus and reads/writes data using the IN/OUT instructions.

Processor-controlled signals between the TMS320C2x and the peripheral de­
vice indicate when data is available to be read. This interprocessor commu-

6-43

Hardware Applications - Interfacing Peripherals

6-44

nication is facilitated by using the input and output pins of the TMS70C42 (or
other peripheral processor). In an 1/0 multiprocessing configuration, the 1/0
port address space is limited, and data transfers are relatively slow compared
to a direct memory access or global memory configuration.

TMS320C2x TMS70C42

fS ,__ ___ ___,.._, DECODE r------- CONTROL

PA3-PAO LOGIC PINS

D15-DO :.-..I 1----.,-----t---i

PROGRAM
MEMORY

L
A
T
c
H

L
A
T
c
H

Figure 6-30. 1/0 Port Processor-to-Processor Communication

Hardware Applications - System Applications

6.6 System Applications

The TMS320C2x is used in a wide variety of systems. Several applications in
the areas of telecommunications, graphics and image processing, high-speed
control, instrumentation, and numeric processing are described in the follow­
ing paragraphs to illustrate basic approaches to system design using the
TMS320C2x.

6.6.1 Echo Cancellation

Digital signal processing is extensively used in telecommunications applica­
tions. In echo cancellation, an adaptive FIR filter performs the modelling
routine and signal modifications required to adaptively cancel the echo caused
by impedance mismatches in telephone transmission lines. The TMS320C25's
large on-chip RAM of 544 words and on-chip ROM of 4K words allow it to
execute a 256-tap adaptive filter (32-ms echo cancellation) without external
data or program memory. Figure 6-31 shows a common configuration for an
echo canceller that uses a TCM29C16 codec interface.

TMS320C25

6.6.2 High-Speed Modem

TCM29C16 -.. ---- CODEC

Figure 6-31. Echo Canceller

LINE
INTERFACE

In high-speed modems, a signal processor is used to perform functions such
as modulation/demodulation, adaptive equalization, and echo cancellation.
The TMS320C2x large memory space allows it to support multiple standards
such as Bell 103, Bell 212A, V.22 bis, V.29, V.32, and V.33, as well as pro­
prietary algorithms. The modem shown in Figure 6-32 consists of the host
interface, controller, DSP, and analog front-end.

6-45

Hardware Applications - System Applications

HOST
INTERFACE

DSP
CONTROLLER

BUS -----
TMS70C42

CONTROLLER
TMS320C2x

DIGITAL
1/0

Figure 6-32. High-Speed Modem

ANALOG

DAA/
HYBRID

PHONE
LINES

6.6.3 Voice Coding

6-46

Voice coding techniques, such as full-duplex 32-kbps adaptive differential
pulse-code modulation (CCITT G.721), 16-kbps subband coding, and linear
predictive coding, are frequently used in voice transmission and storage. The
speed of the TMS320C2x in performing arithmetic computations, normaliza­
tion, and bit manipulation enables it to implement these functions usually in­
ternally (i.e., with np external devices). Figure 6-33 shows a voice coding
system consisting of a TMS320C2x DSP, TCM29C16 codec or TLC32040
AIC, and optional external. memory.

TMS320C2x --
I

•
EXTERNAL

DATA
MEMORY

(OPTIONAL)·

TCM29C16
CODEC

OR
TLC32040

Ajk

~

ANALOG
INTERFACE

Figure 6-33. Voice Coding System

Hardware Applications - System Applications

6.6.4 Graphics and Image Processing

In graphics and image processing applications, a signal processor's ability to
interface with a host processor is important. The TMS320C2x multiprocessor
interface enables it to be used in a variety of host/coprocessor configurations
(see Figure 6-34 for an example of a graphics system configuration). Graph­
ics and image processing applications can use the large directly addressable
external data memory space and global memory capability to allow graphical
images in memory to be shared with a host processor, thus minimizing data
transfers. Indexed indirect addressing modes on the TMS320C2x allow ma­
trices to be processed row-by-row when matrix multiplication is performed for
3-D image rotation, translation, and scaling.

r--~~~-..CONTROLr--~~~-.. DISPLAY
INTERFACE

DISPLAY H
0

TMS320C2x ADDRESS TMS34010 s---.... T DSP GSP TMS34070
COLOR

PALETTE B
u
s

MEMORY
PROM

OR
SAAM

(OPTIONAL)

DATA

TMS4256
DRAM

TMS4461
VRAM

Figure 6-34. Graphics System

6.6.5 High-Speed Control

High-speed control applications, such as robotics, use the TMS320C2x gen­
eral-purpose features for bit manipulation, logical operations, timing synchro­
nization, and fast data transfers (10 million 16-bit words per second). In
addition to the numeric-intensive control functions typical of robotic applica­
tions, the TMS320C2x provides a host interface whereby a robot can com­
municate to a central host processor (see Figure 6-35). The TMS320C2x is
also used in the closed-loop systems of disk drives for signal conditioning,
filtering, high-speed computing, and multichannel multiplexing.

6-47

Hardware Applications - System Applications

ROBOT ARM

SYSTEM 1/0
-. POSITION

SHAFT ENCODER

·MANAGER TMS320C2x INTERFACE PRESSURE
~

CPU
CONTROLLER A/D - D/A H_AMP} ~ i_MOTOR]

1 AXIS 1

' 1
MEMORY WAIT STATE/ AXISn

PROM ADDRESS j-.- TO
OR DECODE PERIPHERALS

SRAM
(OPTIONAL)

Figure 6-35. Robot Axis Controller Subsystem

6.6.6 Instrumentation and Numeric Processing

6-48

Instrumentation, such as spectrum analyzers, require a large data memory
space and a processor such as the TMS320C2x capable of performing long­
length FFTs and generating high-precision functions with minimal external
hardware. Figure 6-36 shows an example of an instrumentation system. Nu­
meric processing applications benefit from the high throughput, multiproc­
essing, and data memory expansion capabilities of the TMS320C2x.

Host DATA 110
CPU ·--- __ __,11MS320C2x ___ INTERFACE --- ANALOG

MEMORY AID _ D/A INTERFACE

Figure 6-36. Instrumentation System

• 1 00-ns Instruction Cycle Time

• 544 Words of Programmable On-Chip Data
RAM

• 4K Words of On-Chip Program ROM

• 128K Words of Data/Program Space

• 32-Bit ALU/Accumulator

• 16 x 16-Bit Multiplier with a 32-Bit Product

• Block Moves for Data/Program Management

• Repeat Instructions for Efficient Use of
Program Space

• Serial Port for Direct Codec Interface

• Synchronization Input for Synchronous
Multiprocessor Configurations

• Wait States for Communication to Slow
Off-Chip Memories/Peripherals

• On-Chip Timer for Control Operations

• Single 5-V Supply

e Packaging: 68-Pin PGA and 68-Pin PLCC

• Commercial and Military Versions Available

• NMOS Technology:
- TMS32020 200-ns cycle time

• CMOS Technology:
- TMS320C25 1 00-ns cycle time

This data sheet provides complete design
documentation for the second-generation
devices of the TMS320 family. This facilitates
the selection of the devices best suited for user
applications by providing all specifications and
special features for each TMS320 member. This
data sheet is divided into four major sections:
architecture, electrical specifications (NMOS and
CMOS), timing diagrams, and mechanical data.
In each of these sections, generic information is
presented first, followed by specific device
information. An index is provided for quick
reference to specific information about a device.

description

A

8

c
D

E

F

G

H

J

K

v55 10
07 1 l

06 12

D5 13
04 14

03 15
02 16
01 17

DO 18
SYNC 19

INTO 20
INT1 21
INT2 22

Vee 23
DR 24

FSR 25

TMS320 SECOND-GENERATION
DIGITAL SIGNAL PROCESSORS

MAY 1987--REVISED SEPTEMBER 1987

68-PIN GS
PIN GRID ARRAY CERAMIC PACKAGEt

(TOP VIEW)

2 3 4 5 6 7 8 9 10 11

• • • • • • • • •
• t!') • • • • • • • (~) c

• • • •
• • • •
• • • •
• • • •
• • • •
• • • •
• • • • . ~) (~ .

• • • • • • • • •

68-PIN FN
PLASTIC LEADED CHIP CARRIER PACKAGEt

!TOP VIEW)

lu >-
o .- NM -=tin~ 19~ ~~uu

~~~~~~~~~~~~ldd~~ 
9 8 7 6 5 4 3 2 1 6867666564636261 

60~ IACK 
59 MSC 

58 CLKOUT1 
57 CLKOUT2 
56 XF 

55 HOLDA 

54 DX 
53 FSX 

52 X2/CLKIN 
51 X1 

so BR 
49 STAB 

48 R/W 
47 PS 
46 iS 
45 1iS 

AO 26 44 Vss 
27 28 29 30313233 34 35 36 37 38 394041 42g 

tsee Pin Assignments Table and Pin Nomenclature Table 
{Page 2) for location and description of all pins. 

The TMS320 family of 16/32-bit single-chip digital signal processors combines the flexibility of a high­
speed controller with the numerical capability of an array processor, thereby offering an inexpensive 
alternative to multichip bit-slice processors. The highly paralleled architecture and efficient instruction set 

PRODUCTION DATA dacumants contain infonnation 
currant as of publication data. Products conform 
to specifications per the terms of Texas Instruments 
standard warranty. Production processing does not 
necessarily incluila testing of all parameters. 

TEXAS"" 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 

Copyright© 1987, Texas Instruments Incorporated 

A-1 



TMS320 SECOND-GENERATION 
DEVICES 

PGA/PLCC PIN ASSIGNMENTS 

FUNCTION PIN FUNCTION PIN FUNCTION PIN FUNCTION PIN 

AO K1/26 A12 K8/40 02 El/16 014 A5/3 

A1 K2/28 A13 L9/41 03 02/15 015 86/2 

A2 L3/29 A14 K9/42 04 01/14 DR Jl/24 

A3 K3/30 A15 Ll0/43 05 C2/13 OS Kl0/45 

A4 L4/31 BIO 87/68 06 C1/12 DX El 1/54 

A5 K4/32 BR G11/50 07 82/11 FSR J2/25 

A6 L5/33 CLKOUT1 C11/58 08 A2/9 FSX Fl0/53 

A7 K5/34 CLKOUT2 010/57 09 83/8 HOLD A7/67 

AB K6/36 CLKR 89/64 010 A3/7 HOLDA El0/55 

A9 L7/37 CLKX A9/63 011 84/6 IACK 811/60 

A10 K7/38 DO F1/18 012 A4/5 INTO Gl/20 

A11 LB/39 01 E2/17 013 85/4 INT1 G2/21 

ton the TMS32020, MP/MC must be connected to Vee· 

PIN NOMENCLATURE 

SIGNALS 1101zt DEFINITION 

Vee I 5-V supply pins 

Vss I Ground pins 

X1 0 Output from internal oscillator for crystal 

X2/CLKIN I Input to internal oscillator from crystal or external clock 

CLKOUT1 0 Master clock output (crystal or CLKIN frequency/4) 

CLKOUT2 0 A second clock output signal 

FUNCTION PIN FUNCTION 

INT2 H1/22 Vee 
rs J11/46 Vee 
MP/MCI A6/1 Vss 
MSC C10/59 Vss 
P5 Jl0/47 Vss 
READY 88/66 XF 

RS A8/65 X1 

R/W H11/48 X2/CLKIN 

STR8 H10/49 

SYNC F2/19 

Vee Al0/61 

~ 810/62 

015-00 1/0/Z 16-bit data bus 015 IMSBI through DO ILSBI. Multiplexed between program, data, and 1/0 spaces. 

A15-AO O/Z 16-bit address bus A 15 IMS81 through AO ILS8) 

i'S, 55, rs O/Z Program, data, and 1/0 space select signals 

R/W O/Z Read/write signal 

S'fRB O/Z Strobe Signal 

RS I Reset input 

INT2-INTO I External user interrupt il"/puts 

MP/MC I Microprocessor/microcomputer mode select pin 

MSC 0 Microstate complete signal 

iACK 0 Interrupt acknowledge signal 

PIN 

H2/23 

L6/35 

81/10 

K11/44 

L2/27 

011/56 

Gl0/51 

F11/52 

READY I Data ready input. Asserted by external logic when using slower devices to indicate that .the current bus 

transaction is complete. 

BR 0 Bus request signal. Asserted when the TMS320C25 requires access to an external global data memory 

space. 

XF 0 External flag output (latched software-programmable signal) 
mm; I Hold input. When asserted, TMS320C25 goes into an idle mode and places the data, address, and 

control lines in the high impedance state. 

flOiJ5A 0 Hold acknowledge signal 

~ I Synchronization input 

BiO I Branch control input. Polled by BIOZ instruction. 

DR I Serial data receive input 

CLKR I Clock for receive input for serial port 

FSR I Frame synchronization pulse for receive input 

DX 0/Z Serial data transmit output 

CLKX I Clock for transmit output for serial port 

FSX 1/0/Z Frame synchronization pulse for transmit. Configurable as either an input or an output. 

t 1/0/Z denotes input/output/high-impedance state. 

A-2 TEXAS"" 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001 



TMS320 SECOND-GENERATION 
DEVICES 

provide speed and flexibility to produce a MOS microprocessor family capable of executing 1 0 MIPS (million 
instructions per second). The TMS320 family optimizes speed by implementing functions in hardware that 
other processors implement through microcode or software. This hardware-intensive approach provides 
the design engineer with processing power previously unavailable on a single chip. 

The TMS320 family consists of three generations of digital signal processors. The first generation contains 
the TMS32010 and its spinoffs. The second generation includes the TMS32020 and TMS320C25, which 
are described in this data sheet. The TMS320C30 is the third-generation processor, designed for higher 
performance. Many features are common among the TMS320 processors. Specific features are added 
in each processor to provide different cost/performance tradeoffs. Software compatibility is maintained 
throughout the family to protect the user's investment in architecture. Each processor has software and 
hardware tools to facilitate rapid design. 

introduction 

The TMS32010, the first NMOS digital signal processor in the TMS320 family, was introduced in 1983. 
Its powerful instruction set, inherent flexibility, high-speed number-crunching capabilities, and innovative 
architecture have made this high-performance, cost-effective processor the ideal solution to many 
telecommunications, computer, commercial, industrial, and military applications. Since that time, the 
TMS320C10, a low-power CMOS version of the industry-standard TMS32010, and other spinoff devices 
have been added to the first generation of the TMS320 family. 

The second generation of the TMS320 family (referred to as TMS320C2x) includes two members, the 
TMS32020 and the TMS320C25. The architecture of these devices is based upon that of the TMS32010. 

The TMS32020, processed in NMOS technology, is source-code compatible with the TMS32010 and in 
many applications is capable of two times the throughput of the first-generation devices. Its enhanced 
instruction set (109 instructions), large on-chip data memory (544 words). large memory spaces, on-chip 
serial port, and hardware timer make the TMS32020 a powerful addition to the TMS320 family. 

The TMS320C25 is the newest member of the TMS320 second generation. It is processed in CMOS 
technology, is capable of an instruction cycle time of 100 ns, and is pin-for-pin and object-code compatible 
with the TMS32020. The TMS320C25's enhanced feature set greatly increases the functionality of the 
device over the TMS32020. Enhancements include 24 additional instructions (133 total), eight auxiliary 
registers, an eight-level hardware stack, 4K words of on-chip program ROM, a bit-reversed indexed­
addressing mode, and the low-power dissipation inherent to the CMOS process. 

Table 1 provides an overview of the second-generation TMS320 processors with comparisons of memory, 
1/0, cycle timing, power, package type, technology, and military support. For specific availability, contact 
the nearest Tl sales office. 

TABLE 1. TMS320 SECOND-GENERATION DEVICE OVERVIEW 

MEMORY 
l!Ot 

DEVICE ON-CHIP OFF-CHIP 

RAM ROM PROG DATA SER PAR OMA 

TMS32020t INMOSI 544 - 64K 64K YES 16 x 16 YES 

TMS320C25t ICMOSI 544 4K 64K 64K YES 16 x 16 CON 

tsER = serial; PAR = parallel; OMA = direct memory access; CON = concurrent OMA. 
*Military version planned; contact nearest Tl sales office for availability. 
§PLCC version planned; contact nearest Tl sales office for availability. 

TEXAS. 
INSTRL'MENTS 

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001 

CYCLE 

TIMER TIME 

Ins) 

YES 200 

YES 100 

TYP PACKAGE 

POWER TYPE 

lmWl PGA PLCC 

1250 68 -

500 68 68§ 

A-3 



TMS320 SECOND-GENERATION 
DEVICES 

Key Features: TMS32020 

• 200-ns Instruction Cycle Time 

• 544 Words of On-Chip Data RAM 

• 128K Words of Total Data/Program Memory 
Space 

• Wait States for Communication to Slower Off. 
Chip Memories 

• Object Code Compatible with the TMS32010 

• Single-Cycle Multiply/Accumulate Instructions 

• Repeat Instructions 

• Global Data Memory Interface 

• Block Moves for Data/Program Management 

• Five Auxiliary Registers with Dedicated 
Arithmetic Unit 

• Serial Port for Multiprocessing or Interfacing to 
Codecs, Serial Analog-to-Digital Converters, etc. 

• On-Chip Clock Generator 

• Single 5-V Supply 

• NMOS Technology 

• 68-Pin Grid Array (PGA) Package 

Key Features: TMS320C25 

• 100-ns Instruction Cycle Time 

• 4K Words of On-Chip Program ROM 

e 544 Words of On-Chip RAM 

• 128K Words of Total Program/Data Memory 
Space 

• Wait States for Communications to Slower Off. 
Chip Memories 

• Object-Code Compatible with the TMS32020 

• 24 Additional Instructions to Support Adaptive 
Filtering, FFTs, and Extended-Precision Arithmetic 

• Block Moves for Data/Program Management 

• Single-Cycle Multiply/Accumulate Instructions 

• Eight Auxiliary Registers with Dedicated 
Arithmetic Unit 

• Bit-Reversed Indexed-Addressing Mode for 
Radix-2 FFTs 

• Double-Buffered Serial Port 

• On-Chip Clock Generator 

• Single 5-V Supply 

• CMOS Technology 

• 68-Pin Grid Array (PGA) Package and 
68-Lead Chip Carrier {PLCC) Package 

INTERRUPTS 

D 

INTERRUPTS 

D 

A-4 TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001 

+5V GND 

256-WORD I 288-WORD 
DATA/PROGi DATA 

RAM I RAM 

MULTIPLIER 

32-BIT ALU/ACC SERIAL 

INTERFACE 
SHIFTERS 

i----------1 ADDRESS (161 

TIMER 

+5 v GND 

256-WORD I 288-WORD I/'----. 
DATA/PROG: DATA DATA (16} 

RAM I RAM 

4K-WORDS ROM 

MULTIPLIER 

32-BIT ALUIACC 

SHIFTERS 

MULTI­
PROCESSOR 
4 .. 
INTERFACE 

SERIAL 

INTERFACE 

1--------... •ADDRESS 116} 
TIMER 



architecture 

TMS320 SECOND-GENERATION 
DEVICES 

The TMS320 family utilizes a modified Harvard architecture for speed and flexibility. In a strict Harvard 
architecture, program and data memory lie in two separate spaces, permitting a full overlap of instruction 
fetch and execution. The TMS320 family's modification of the Harvard architecture allows transfers 
between program and data spaces, thereby increasing the flexibility of the device. This modification permits 
coefficients stored in program memory to be read into the RAM, eliminating the need for a separate 
coefficient ROM. It also makes available immediate instructions and subroutines based on computed values. 

Increased throughput on the TMS320C2x devices for many DSP applications is accomplished by means 
of single-cycle multiply/accumulate instructions with a data move option, up to eight auxiliary registers 
with a dedicated arithmetic unit, and faster 1/0 necessary for data-intensive signal processing. 

The architectural design of the TMS320C2x emphasizes overall speed, communication, and flexibility in 
processor configuration. Control signals and instructions provide floating-point support, block-memory 
transfers, communication to slower off-chip devices, and multiprocessing implementations. 

32-bit ALU/accumulator 

The 32-bit Arithmetic Logic Unit (ALU) and accumulator perform a wide range of arithmetic and logical 
instructions, the majority of which execute in a single clock cycle. The ALU executes a variety of branch 
instructions dependent on the status of the ALU or a single bit in a word. These instructions provide the 
following capabilities: 

• Branch to an address specified by the accumulator 
• Normalize fixed-point numbers contained in the accumulator 
• Test a specified bit of a word in data memory. 

One input to the ALU is always provided from the accumulator, and the other input may be provided from 
the Product Register (PR) of the multiplier or the input scaling shifter which has fetched data from the 
RAM on the data bus. After the ALU has performed the arithmetic or logical operations, the result is stored 
in the accumulator. 

The 32-bit accumulator is split into two 16-bit segments for storage in data memory. Additional shifters 
at the output of the accumulator perform shifts while the data is being transferred to the data bus for 
storage. The contents of the accumulator remain unchanged. 

scaling shifter 

The TMS320C2x scaling shifter has a 16-bit input connected to the data bus and a 32-bit output connected 
to the ALU. The scaling shifter produces a left shift of 0 to 16 bits on the input data, as programmed 
in the instruction. The LSBs of the output are filled with zeroes, and the MSBs may be either filled with 
zeroes or sign-extended, depending upon the status programmed into the SXM (sign-extension model bit 
of status register ST 1 . 

16 x 16-bit parallel multiplier 

The 16 x 16-bit hardware multiplier is capable of computing a signed or unsigned 32-bit product in a 
single machine cycle. The multiplier has the following two associated registers: 

• A 16-bit Temporary Register (TRI that holds one of the operands for the multiplier, and 
• A 32-bit Product Register (PR) that holds the product. 

Incorporated into the instruction set are single-cycle multiply/accumulate instructions that allow both 
operands to be processed simultaneously. The data for these operations may reside anywhere in internal 
or external memory, and can be transferred to the multiplier each cycle via the program and data buses. 

Four product shift modes are available at the Product Register IPR) output that are useful when performing 
multiply/accumulate operations, fractional arithmetic, or justifying fractional products. 

TEXAS "'!J 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001 

A-5 



A-6 

TMS320 SECOND-GENERATION 
DEVICES 

functional block diagram (TMS320C2xl 

DATA RAM 
BLOCK B1 
1258 )( 161 

18 

ST11181 

RPTCIBI 

'"-;:=::::"::::"'::"'===--·· 
r-------CLKR .------··· DX 

CLKX 
FSX 

i::•:•: 0 : 0 : 0 : 0 :•: 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :·:::0 :•:•:DATA BUS :·:::·:·::: 0 ::::::::::::::::::::::::::::::::::: 0 :::::::·: 0 :•:•:•:•: 0 : 0 :•:::• 

t Shifters on TMS32020 (0, 1, 41 
NOTE: Shaded areas are for TMS320C25 only. 

LEGEND: 
ACCH = Accumut.tor high IFR = Interrupt 0.9 register 
ACCl = Accurmfttor tow IMR = Interrupt mask register 
ALU = Arlthl'Mtic logic unit IR "' lns1ructlon reglstlll' 
ARAU = Audary register slthmedc unit MCS "' Mlet0call S1acti. 
ARB = Auxllary register pointer butter QIR = Queue Instruction register 
ARP = Auxllmry r91later pointer PR = Product register 
DP = D.ta ..,.mory page pointer PRO = Period register tor tlmet' 
ORR = Serl91 port dltll rKflive regilt• TIM = Tims 
DXR = hri9I port dlta tr.....ar: regilter TR = Tempor.-y register 

TEXAS.., 
INSTRUMENTS 

PC = Program counter 
PfC = Prefetch count., 
RPTC = Repeat insbucdan counter 
OREG = OloHI memory allocetlon rft911ter 
RSR =Seritlportntc:flivellhfftregleter 
XSR = Serial port transmit shift reglster 
AAO-AR7 = AuxHi•ry registers 
STO,ST1 = Statu. rftgiaten 
c - Carrv bit 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 



timer 

TMS320 SECOND-GENERATION 
DEVICES 

The TMS320C2x provides a memory-mapped 16-bit timer for control operations. The on-chip timer (TIMI 
register is a down counter that is continuously clocked by CLKOUT1 on the TMS320C25. The timer is 
clocked by CLKOUT1 /4 on the TMS32020. A timer interrupt (TINT) is generated every time the timer 
decrements to zero. The timer is reloaded with the value contained in the period (PRDI register within the 
next cycle after it reaches zero so that interrupts may be programmed to occur at regular intervals of 
PRD + 1 cycles of CLKOUT1 on the TMS320C25 or 4 x PRO x CLKOUT1 cycles on the TMS32020. 

memory control 

The TMS320C2x provides a total of 544 16-bit words of on-chip data RAM, divided into three separate 
blocks (BO, B1, and B2). Of the 544 words, 288 words (blocks B1 and B21 are always data memory, and 
2 56 words (block BO) are programmable as either data or program memory. A data memory size of 544 
words allows the TMS320C2x to handle a data array of 512 words (256 words if on-chip RAM is used 
for program memory), while still leaving 32 locations for intermediate storage. When using block BO as 
program memory, instructions can be downloaded from external program memory into on-chip RAM and 
then executed. 

When using on-chip program RAM, ROM, or high-speed external program memory, the TMS320C2x runs 
at full speed without wait states. However, the READY line can be used to interface the TMS320C2x 
to slower, less-expensive external memory. Downloading programs from slow off-chip memory to on-chip 
program RAM speeds processing while cutting system costs. 

The TMS320C2x provides three separate address spaces for program memory, data memory, and 1/0. 
The on-chip memory is mapped into either the 64K-word data memory or program memory space, depending 
upon the memory configuration (see Figure 1 ). The CNFD (configure block BO as data memory) and CNFP 
(configure block BO as program memory) instructions allow dynamic configuration of the memory maps 
through software. Regardless of the configuration, the user may still execute from external program memory. 

The TMS320C2x has six registers that are mapped into the data memory space: a serial port data receive 
register, serial port data transmit register, timer register, period register, interrupt mask register, and global 
memory allocation register. 

interrupts and subroutines 

The TMS320C2x has three external maskable user interrupts INT2-INTO, available for external devices that 
interrupt the processor. Internal interrupts are generated by the serial port (RINT and XINT), by the timer 
(TINT), and by the software interrupt (TRAP) instruction. Interrupts are prioritized with reset (RS) having 
the highest priority and the serial port transmit interrupt (XINT) having the lowest priority. All interrupt 
locations are on two-word boundaries so that branch instructions can be accommodated in those locations 
if desired. 

A built-in mechanism protects multicycle instructions from interrupts. If an interrupt occurs during a 
multicycle instruction, the interrupt is not processed until the instruction is completed. This mechanism 
applies to instructions that are repeated and to instructions that become multicycle due to the READY signal. 

external interface 

The TMS320C2x supports a wide range of system interfacing requirements. Program, data, and 1/0 address 
spaces provide interface to memory and 1/0, thus maximizing system throughput. 1/0 design is simplified 
by having 1/0 treated the same way as memory. 110 devices are mapped into the 1/0 address space using 
the processor's external address and data buses in the same manner as memory-mapped devices. Interface 
to memory and 1/0 devices of varying speeds is accomplished by using the READY line. When transactions 
are made with slower devices, the TMS320C2x processor waits until the other device completes its function 
and signals the processor via the READY line. Then, the TMS320C2x continues execution. 

TEXAS"" 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

A-7 



TMS320 SECOND-GENERATION 
DEVICES 

PROGRAM 

0(>0000) 
INTERRUPTS 

AND RESERVED 
(EXTERNAL) 

311>001FI 
32(>00201 

EXTERNAL 

65,535( > FFFF) 
~------~ 

IF MP/MC - 1 
!MICROPROCESSOR MODE) 

PROGRAM 

01>0000) 
INTERRUPTS 

AND RESERVED 
I EXTERNAL) 

311>001F) 
32(>00201 

EXTERNAL 

65,2791 > FEFFI 
652801 > FFOOI ON-CHIP 

BLOCK BO 

A-8 

65,5351>FFFFI '---------' 

IF MP/MC - 1 
(MICROPROCESSOR MODE) 

PROGRAM 

0(>0000) 
INTERRUPTS 

AND RESERVED 
ION-CHIP ROM) 

31(>001FI 
32(>0020) ON-CHIP 

ROM 
4015(>0FAF) 
4016(>0FBOl 

RESERVED 

4095( > OFFF) 
4096( >1000) 

EXTERNAL 

65,535(>FFFF) 

IF MP/MC - 0 
(MICROCOMPUTER MODE 
ON TMS320C25 ONL YI 

0(>0000) 

5(>0005) 
6(>0006) 

95(>005F) 
96(>00601 

127(>007FI 
128(>00801 

511(>01FF) 
5121>02001 

7671>02FFI 
768(>03001 

10231>03FFI 
1024( >04001 

65,535( > FFFFI 

lal MEMORY MAPS AFTER A CNFD INSTRUCTION 

01>0000) 

311 >001FI 
32(>0020) 

4015(>0FAFI 
4016(>0FBO) 

4095( >OFFF) 
4096( > 1000) 

65,2791 >FEFFI 
65,2801 >FFOO) 

65,5351 > FFFFI 

PROGRAM 

INTERRUPTS 
AND RESERVED 
ION-CHIP ROMI 

ON-CHIP 
ROM 

RESERVED 

EXTERNAL 

------------------------------
ON-CHIP 

BLOCK BO 

IF MP/MC - 0 
!MICROCOMPUTER MODE 
ON TMS320C25 ONL Yl 

0(>0000) 

5(>0005) 
61>0006) 

951>005F) 
96(>0060) 

1271>007FI 
128(>0080) 

511(>01FFI 
512(>02001 

767(>02FFI 
768(>0300) 

1023(>03FFI 
10241 >0400) 

65,5351 >FFFF) 

(bl MEMORY MAPS AFTER A CNFP INSTRUCTION 

FIGURE 1. MEMORY MAPS 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 

DATA 

ON-CHIP 
MEMORY-MAPPED 

REGISTERS 

RESERVED PAGE 0 

ON-CHIP 
BLOCK B2 

RESERVED PAGES 1-3 

ON-CHIP 
BLOCK BO PAGES 4-5 

ON-CHIP 
BLOCK 81 

PAGES 6-7 

EXTERNAL PAGES 8-511 

DATA 

ON-CHIP 
MEMORY-MAPPED 

REGISTERS 

RESERVED PAGE 0 

ON-CHIP 
BLOCK 82 

RESERVED PAGES 1-3 

DOES NOT 
EXIST PAGES 4-5 

ON-CHIP 
BLOCK B1 

PAGES 6-7 

EXTERNAL PAGES 8-511 



TMS320 SECOND-GENERATION 
DEVICES 

A full-duplex serial port provides communication with serial devices, such as codecs, serial A/D converters, 
and other serial systems. The interface signals are compatible with codecs and many other serial devices 
with a minimum of external hardware. The serial port may also be used for intercommunication between 
processors in multiprocessing applications. 

The serial port has two memory-mapped registers: the data transmit register (DXR) and the data receive 
register (DRR). Both registers operate in either the byte mode or 16-bit word mode, and may be accessed 
in the same manner as any other data memory location. Each register has an external clock, a framing 
synchronization pulse, and associated shift registers. One method of multiprocessing may be implemented 
by programming one device to transmit while the others are in the receive mode. The serial port on the 
TMS320C25 is double-buffered and fully static. 

multiprocessing 

The flexibility of the TMS320C2x allows configurations to satisfy a wide range of system requirements 
and can be used a~ follows: 

• A standalone processor 
• A multiprocessor with devices in parallel 
• A slave/host multiprocessor with global memory space 
• A peripheral processor interfaced via processor-controlled signals to another device. 

For multiprocessing applications, the TMS320C2x has the capability of allocating global data memory space 
and communicating with that space via the BR (bus request) and READY control signals. Global memory 
is data memory shared by more than one processor. Global data memory access must be arbitrated. The 
8-bit memory-mapped GREG (global memory allocation register) specifies part of the TMS320C2x's data 
memory as global external memory. The contents of the register determine the size of the global memory 
space. If the current instruction addresses an operand within that space, BR is asserted to request control 
of the bus. The length of the memory cycle is controlled by the READY line. 

The TMS320C2x supports DMA (direct memory access) to its external program/data memory using the 
HOLD and HOLDA signals. Another processor can take complete control of the TMS320C2x's external 
memory by asserting HOLD low. This causes the TMS320C2x to place its address, data, and control lines 
in a high-impedance state, and assert HOLDA. On the TMS320C25, program execution from on-chip ROM 
may proceed concurrently when the device is in the hold mode. 

instruction set 

The TMS320C2x microprocessor implements a comprehensive instruction set that supports both numeric­
intensive signal processing operations as well as general-purpose applications, such as multiprocessing 
and high-speed control. The TMS32020 source code is upward-compatible with TMS320C25 source code. 
TMS32020 object code runs directly on the TMS320C25. 

For maximum throughput, the next instruction is prefetched while the current one is being executed. Since 
the same data lines are used to communicate to external data/program or 1/0 space, the number of cycles 
may vary depending upon whether the next data operand fetch is from internal or external memory. Highest 
throughput is achieved by maintaining data memory on-chip and using either internal or fast external program 
memory. 

addressing modes 

The TMS320C2x instruction set provides three memory addressing modes: direct, indirect, and immediate 
addressing. 

Both direct and indirect addressing can be used to access data memory. In direct addressing, seven bits 
of the instruction word are concatenated with the nine bits of the data memory page pointer to form the 
16-bit data memory address. Indirect addressing accesses data memory through the auxiliary registers. 
In immediate addressing, the data is based on a portion of the instruction word(s). 

TEXAS -I/} 
INSTRUMENTS 

POST OFF!CE BOX 1443 • HOUSTON. TEXAS 77001 

A-9 



TMS320 SECOND-GENERATION 
DEVICES 

A-10 

In direct memory addressing, the instruction word contains the lower seven bits of the data memory address. 
This field is concatenated with the nine bits of the data memory page pointer to form the full 16-bit address. 
Thus, memory is paged in the direct addressing mode with a total of 512 pages, each page containing 
128 words. 

Up to eight auxiliary registers (ARO-AR7) provide flexible and powerful indirect addressing (five on the 
TMS32020, eight on the TMS320C25). To select a specific auxiliary register, the Auxiliary Register Pointer 
(ARP) is loaded with a value from 0 to 7 for ARO through AR7, respectively. 

There are seven types of indirect addressing: auto-increment or auto-decrement, post-indexing by either 
adding or subtracting the contents of ARO, single indirect addressing with no increment or decrement, 
and bit-reversal addressing (used in FFTs on the TMS320C25 only) with increment or decrement. All 
operations are performed on the current auxiliary register in the same cycle as the or[ginal instruction, 
following which the current auxiliary register and ARP may be modified. 

repeat feature 

A repeat feature, used with instructions such as multiply/accumulates, block moves, 1/0 transfers, and 
table read/writes, allows a single instruction to be performed up to 256 times. The repeat counter (RPTC) 
is loaded with either a data memory value (APT instruction) or an immediate value (RPTK instruction). The 
value of this operand is one less than the number of times that the next instruction is executed. Those 
instructions that are normally multicycle are pipelined when using the repeat feature, and effectively become 
single-cycle instructions. 

instruction set summary 

Table 2 lists the symbols and abbreviations used in Table 3, the TMS320C25 instruction set summary. 
Table 3 consists primarily of single-cycle, single-word instructions. Infrequently used branch, 1/0, and CALL 
instructions are multicycle. The instruction set summary is arranged according to function and alphabetized 
within each functional grouping. The symbol (t) indicates those instructions that are not included in the 
TMS32010 instruction set. The symbol (l) indicates instructions that are not included in the TMS32020 
instruction set. 

TABLE 2. INSTRUCTION SYMBOLS 

SYMBOL MEANING 

B 4-bit field specifying a bit code 

CM 2-bit field specifying compare mode 

D Data memory address field 

FO Format status bit 

I Addressing mode bit 

K Immediate operand field 

PA Port address (PAO through PA 15 are predefined 

assembler symbols equal to 0 through 15, respectively.) 

PM 2-bit field specifying P register out~ut shift code 

R 3-bit operand field specifying auxiliary register 

s 4-bit left-shift code 

x 3-bit accumulator left-shift field 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001 



TMS320C25 

TABLE 3. TMS320C25 INSTRUCTION SET SUMMARY 

ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS 

NO. INSTRUCTION BIT COOE 
MNEMONIC DESCRIPTION 

WORDS 

ABS Absolute value of accumulator 1 

ADD Add to accumulator with shift 1 

ADDct Add to accumulator with carry 1 

ADDH Add to high accumulator 1 

ADDKt Add to accumulator short immediate 1 

ADDS Add to tow accumulator with sign 1 

extension suppressed 

ADDrt Add to accumulator with shift specified by 1 

T register 

ADLKt Add to accumulator long immediate with shift 2 

AND AND with accumulator 1 

ANDKI AND immediate with accumulator with shift 2 

CMPLt Complement accumulator 1 

LAC Load accumulator with shift 1 

LACK Load accumulator immediate short 1 

LAcrt Load accumulator with shift specified by T register 1 
LALK! Load accumulator long immediate with shift 2 

NEG! Negate accumulator 1 

NORM! Normalize contents of accumulator 1 

OR OR with accumulator 1 

ORKI OR immediate with accumulator with shift 2 
ROL t Rotate accumulator left 1 

RORt Rotate accumulator right 1 

SACH Store high accumulator with shift 1 

SACL Store low accumulator with shift 1 
SBLKI Subtract from accumulator long immediate with shift 2 

SFL t Shift accumulator left 1 
srnt Shift accumulator right 1 

SUB Subtract from accumulator with shift 1 

suBBt Subtract from accumulator with borrow 1 

SUBC Conditional subtract 1 

SUBH Subtract from high accumulator 1 

SUBKt Subtract from accumulator short immediate 1 

SUBS Subtract from tow accumulator with sign 1 

extension suppressed 

SUBTt Subtract from accumulator with shift specified by 1 

T register 

XOR Exclusive-OR with accumulator 1 
XORKt Exclusive-OR immediate with accumulator with shift 2 

ZAC Zero accumulator 1 

ZALH Zero low accumulator and load high accumulator 1 

ZALRt Zero low accumulator and load high accumulator 1 

with rounding 

ZALS Zero accumulator and load low accumulator with 1 

sign extension suppressed 

trhese instructions are not included in the TMS32010 instruction set. 
:!:These instructions are not included in the TMS32020 instruction set. 

TEXAS"" 
INSTRUMENTS 

151413121110 9 8 
1 1 0 0 1 1 1 0 

0 0 0 0 -s-

0 1 0 0 0 0 1 1 

0 1 0 0 1 0 0 0 

1 1 0 0 1 1 0 0 

0 1 0 0 1 0 0 1 

0 1 0 0 1 0 1 0 

1 1 0 1 -s-

0 1 0 0 1 1 1 0 

1 1 0 1 -s-
1 1 0 0 1 1 1 0 

0 0 1 0 -s-

1 1 0 0 1 0 1 0 

0 1 0 0 0 0 1 0 

1 1 0 1 -s-

1 1 0 0 1 1 1 0 

1 1 0 0 1 1 1 0 

0 1 0 0 1 1 0 1 

1 1 0 1 -s-

1 1 0 0 1 1 1 0 

1 1 0 0 1 1 1 0 

0 1 1 0 1 +-X-+ 

0 1 1 0 0 +-X-+ 

1 1 0 1 -s-

1 1 0 0 1 1 1 0 

1 1 0 0 1 1 1 0 

0 0 0 1 -s-

0 1 0 0 1 1 1 1 

0 1 0 0 0 1 1 1 

0 1 0 0 0 1 0 0 

1 1 0 0 1 1 0 1 

0 1 0 0 0 1 0 1 

0 1 0 0 0 1 1 0 

0 1 0 0 1 1 0 0 

1 1 0 1 -s-
1 1 0 0 1 0 1 0 

0 1 0 0 0 0 0 0 

0 1 1 1 1 0 1 1 

0 1 0 0 0 0 0 1 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 

7 6 5 4 3 2 1 0 

0 0 0 1 1 0 1 1 

I --o-
I --D-

I --D-

-K-

I --D-

I --D-

0 0 0 0 0 0 1 0 

I --a-
0 0 0 0 0 1 0 0 

0 0 1 0 0 1 1 1 

I --D-

-K-

I --D-

0 0 0 0 0 0 0 1 

0 0 1 0 0 0 1 , . 
1 --a-
I --o-
0 0 0 0 0 1 0 1 

0 0 1 1 0 1 0 0 

0 0 1 1 0 1 0 1 

I --D-

I --D-

0 0 0 0 0 0 1 1 

0 0 0 1 1 0 0 0 

0 0 0 1 1 0 0 1 

I --D-

I -o-
I --o-
I --D-

-K-

I --D-

I --D-

I --D-

0 0 0 0 0 1 1 0 

0 0 0 0 .o 0 0 0 

I --a-
I --o-
I --D-

A-11 



TMS320C25 

TABLE 3. TMS320C25 INSTRUCTION SET SUMMARY !CONTINUED) 

AUXILIARY REGISTERS AND DATA PAGE POINTER INSTRUCTIONS 

MNEMONIC DESCRIPTION 
NO. INSTRUCTION BIT CODE 

WORDS 
151413121110 9 B 7 B 5 4 3 2 1 0 

ADRK' Add to auxiliary register short immediate 1 0 1 1 1 1 1 1 0 .. K-
CMPRt Compare auxiliary register with auxiliary register ARO 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0"""CM• 
LAR Load auxiliary register 1 0 0 1 1 0 _R__.. I -o---+ 
LARK Load auxiliary register short immediate 1 1 1 0 0 0 -~ -K-
LARP Load auxiliary register pointer 1 0 1 0 1 0 1 0 1 1 0 0 0 1 -~ 
LOP Load data memory page pointer 1 0 1 0 1 0 0 1 0 I -o---+ 
LDPK Load data memory page pointer immediate 1 1 1 0 0 1 0 0 DD.. 

LRLKt Load auxiliary register long immediate 2 1 1 0 1 0 _R__.. 0 0 0 0 0 0 0 0 
MAR Modify auxiliary register 1 0 1 0 1 0 1 0 1 I -o---+ 
SAR Store auxiliary register 1 0 1 1 1 0 _R__.. I ~ 

SBRK* Subtract from auxiliary register short immediate 1 0 1 1 1 1 1 1 1 .. I{-

T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS __, 
MNEMONIC DESCRIPTION 

NO. INSTRUCTION BIT CODE 

WORDS 

APAC Add P register to accumulator 1 
LPH1 Load high P register 1 
LT Load T register 1 
LTA Load T register and accumulate previous product 1 
LTD Load T register, accumulate previous product, 1 

and move data 

LTPt Load T register and store P register in accumulator 1 
LTSt Load T register and subtract previous product 1 
MACt Multiply and accumulate 2 
MAcDt Multiply and accumulate with data move 2 
MPV Multiply (with T register, store product in P register) 1 
MPYAI Multiply and accumulate previous product 1 
MPYK Multiply immediate 1 

MPYS* Multiply and subtract previous product 1 

MPYU* Multiply unsigned 1 

PAC Load accumulator with P register 1 

SPAC Subtract P register from accumulator 1 

SPHI Store high P register 1 

SPL* Store low P register 1 
SPM1 Set P register output shift mode 1 
SORAt Square and accumulate 1 
SQRSt ~are and subtract previous ~oduct 1 

trhese instructions are not included in the TMS32010 instruction set. 
:t.:rhese instructions are not included in the TMS32020 instruction set. 

A-12 TEXAS~ 
INSTRUMENTS 

151413121110 9 
1 1 0 0 1 1 1 

0 1 0 1 0 0 1 
0 0 1 1 1 1 0 

0 0 1 1 1 1 0 
0 0 1 1 1 1 1 

0 0 1 1 1 1 1 

0 1 0 1 1 0 1 

0 1 0 1 1 1 0 
0 1 0 1 1 1 0 
0 0 1 1 1 0 0 
0 0 1 1 1 0 1 

1 0 1 

0 0 1 1 1 0 1 
1 1 0 0 1 1 1 

1 1 0 0 1 1 1 

1 1 0 0 1 1 1 

0 1 1 1 1 1 0 
0 1 1 1 1 1 0 
1 1 0 0 1 1 1 
0 0 1 1 1 0 0 
0 1 0 1 1 0 1 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

B 7 6 5 4 3 2 1 0 

0 0 0 0 1 0 1 0 1 
1 I -o---+ 
0 I -o---+ 
1 I -o---+ 
1 I -o---+ 

0 I -D-

1 I -o---+ 
1 I -o---+ 
0 I -D-

0 I -o---+ 
0 I -D-

K 

1 I -o---+ 
1 I -o---+ 
0 0 0 0 1 0 1 0 0 
0 0 0 0 1 0 1 1 0 
1 I -o---+ 
0 I -o---+ 
0 0 0 0 0 1 O..,.PM• 

1 I -o---+ 
0 I -o---+ 



TMS320C25 

TABLE 3. TMS320C25 INSTRUCTION SET SUMMARY (CONTINUED) 

BRANCH/CALL INSTRUCTIONS 

NO. INSTRUCTION BIT CODE 
MNEMONIC DESCRIPTION 

WORDS 
151413121110 9 8 7 6 5 4 3 2 1 0 

B Branch unconditionally 2 1 1 1 1 1 1 1 1 1 -o---
BAcct Branch to address specified by accumulator 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 1 

BANZ Branch on auxiliary register not zero 2 1 1 1 1 1 0 1 1 1 -o---
BBNzt Branch if TC bit * 0 2 1 1 1 1 1 0 0 1 1 -o---
BBzt Branch if TC bit = 0 2 1 1 1 1 1 0 0 0 1 -o---
sci Branch on carry 2 0 1 0 1 1 1 1 0 1 -o---
BGEZ Branch if accumulator ~ 0 2 1 1 1 1 0 1 0 0 1 -o-
BGZ Branch if accumulator > 0 2 1 1 ., 1 0 0 0 1 1 -o---
BIOZ Branch on 1/0 status = 0 2 1 1 1 1 1 0 1 0 1 -o---
BLEZ Branch if accumulator :S 0 2 1 1 1 1 0 0 1 0 1 -o---
BLZ Branch if accumulator < 0 2 1 1 1 1 0 0 1 1 1 -o---
BNCI Branch on no carry 2 0 1 0 1 1 1 1 1 1 -o---
BNVt Branch if no overflow 2 1 1 1 1 0 1 1 1 1 -o---
BNZ Branch if accumulator :# 0 2 1 1 1 1 0 1 0 1 1 -o---
BV Branch on overflow 2 1 1 1 1 0 0 0 0 1 -o---
BZ Branch if accumulator = 0 2 1 1 1 1 0 1 1 0 1 -o---
GALA Call subroutine indirect 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 
CALL Call subroutine 2 1 1 1 1 1 1 1 0 1 -o---
RET Return from subroutine 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 1 0 

1/0 AND DATA MEMORY OPERATIONS 

NO. INSTRUCTION BIT CODE 
MNEMONIC DESCRIPTION 

WORDS 

BLKDT Block move from data memory to data memory 2 
BLKPl Block move from program memory to data memory 2 

DMOV Data move in data memory 1 
FORTt Format serial port registers 1 

IN Input data from port 1 

OUT Output data to port 1 
RFSMI Reset serial port frame synchronization mode 1 
RTXMt Reset serial port transmit mode 1 
RXFt Reset external flag 1 
SFSMt Set serial port frame synchronization mode 1 
STXMt Set serial port transmit mode 1 
SXFt Set external flag 1 

TBLR Table read 1 

TBLW Table write 1 

t These instructions are not included in the TMS32010 instruction set. 
:t: These instructions are not included in the TMS32020 instruction set. 

TEXAS""' 
INSTRUMENTS 

151413121110 9 8 

1 1 1 1 1 1 0 1 

1 1 1 1 1 1 0 0 

0 1 0 1 0 1 1 0 

1 1 0 0 1 1 1 0 

1 0 0 0 -PA-

1 1 1 0 -PA-

1 1 0 0 1 1 1 0 

1 1 0 0 1 1 1 0 
1 1 0 0 1 1 1 0 

1 1 0 0 1 1 1 0 

1 1 0 0 1 1 1 0 

1 1 0 0 1 1 1 0 

0 1 0 1 1 0 0 0 

0 1 0 1 1 0 0 1 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001 

7 6 5 4 3 2 1 0 
I -o---
I -o---
I -o-
0 0 0 0 1 1 1 FO 

I -o---
I -o---
0 0 1 1 0 1 1 0 

0 0 1 0 0 0 0 0 

0 0 0 0 1 1 0 0 

0 0 1 1 0 1 1 1 

0 0 1 0 0 0 0 1 

0 0 0 0 1 1 0 1 

I -o---
I -o---

A-13 



TMS320C25 

TABLE 3. TMS320C25 INSTRUCTION SET SUMMARY (CONCLUDED) 

CONTROL INSTRUCTIONS 

MNEMONIC OESCRIPTION 
NO. INSTRUCTION BIT CODE 

WORDS 
151413121110 9 8 7 6 5 4 3 2 1 0 

BITt Test bit 1 

BITTt Test bit specified by T register 1 

CNFDt Configure block as data memory 1 

CNFPt Configure block as program memory 1 

DINT Disable interrupt 1 

EINT Enable interrupt 1 

IDLEt Idle uhtil interrupt 1 

LST Load status .register STO 1 

LST1t Load status register ST1 1 

NOP No operation 1 

POP Pop top of stack to low accumulator 1 

POPDt Pop top of stack to data memory 1 
PSHDt Push data memory value onto stack 1 

PUSH Push low accumulator onto stack 1 

RC* Reset carry bit 1 

RHM* Reset hold mode 1 

ROVM Reset overflow mode 1 
RPTt Repeat instruction as specified by data memory value 1 
RPTKt Repeat instruction as specified by immediate value 1 

RSXMt Reset sign-extension mode 1 

RTC* Reset test/control flag 1 

Sc* Set carry bit 1 

SHM* Set hold mode 1 

SOVM Set overflow mode 1 

SST Store status register STO 1 
ssnt Store status register ST 1 1 

ssxMt Set signwextension mode 1 

srci Set test/control flag 1 

TRAPt Software interrupt 1 

tThese instructions are not included in the TMS32010 instruction set. 
trhese instructions are not included in the TMS32020 instruction set. 

A-14 TEXAS~ 
INSTRUMENlS 

1 0 0 

0 1 0 

1 1 0 
1 1 0 
1 1 0 
1 1 0 

1 1 0 

0 1 0 

0 1 0 

0 1 0 

1 1 0 

0 1 1 

0 1 0 
1 1 0 
1 1 0 
1 1 0 
1 1 0 
0 1 0 
1 1 0 
1 1 0 
1 1 0 
1 1 0 
1 1 0 
1 1 0 

0 1 1 

0 1 1 

1 1 0 

1 1 0 

1 1 0 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 

1 

1 

0 

0 
0 

0 

0 
1 

1 

1 

0 
1 

1 

0 

0 

0 

0 

0 
0 

0 
0 

0 

0 

0 
1 

1 

0 

0 

0 

-s- I -o-
0 1 1 1 I -o-
1 1 1 0 0 0 0 0 0 1 0 0 

1 1 1 0 0 0 0 0 0 1 0 1 

1 1 1 0 0 0 0 0 0 0 0 1 

1 1 1 0 0 0 0 0 0 0 0 0 

1 1 1 0 0 0 0 1 1 1 1 1 

0 0 0 0 I -o-
0 0 0 1 I -D-

0 1 0 1 0 0 0 0 0 0 0 0 
1 1 1 0 0 0 0 1 1 1 0 1 

1 0 1 0 I -o-
0 1 0 0 I -o-
1 1 1 0 0 0 0 1 1 1 0 0 

1 1 1 0 0 0 1 1 0 0 0 0 
1 1 1 0 0 0 1 1 1 0 0 0 
1 1 1 0 0 0 0 0 0 0 1 0 

1 0 1 1 I -o-
1 0 1 1 -K-
1 1 1 0 0 0 0 0 0 1 1 0 
1 1 1 0 0 0 1 1 0 0 1 0 

1 1 1 0 0 0 1 1 0 0 0 1 

1 1 1 0 0 0 1 1 1 0 0 1 

1 1 1 0 0 0 0 0 0 0 1 1 

1 0 0 0 I -o-
1 0 0 1 I -o-
1 1 1 0 0 0 0 0 0 1 1 1 

1 1 1 0 0 0 1 1 0 0 1 1 

1 1 1 0 0 0 0 1 1 1 1 0 



development support 

TMS320 SECOND-GENERATION 
DEVICES 

Texas Instruments offers an extensive line of development support products to assist the user in all aspects 
of TMS320 second-generation-based design and development. These products range from development 
and application software to complete hardware development and evaluation systems such as the XDSl22. 
Table 4 lists the development support products for the second-generation TMS320 devices. 

System development begins with the use of the SoftWare Development System (SWDSI or Emulator (XDS). 
These tools allow the designer to evaluate the processor's performance, benchmark time-critical code, 
and determine the feasibility of using a TMS320 device to implement a specific algorithm. 

Software and hardware can be developed in parallel by using the macro assembler/linker, simulator, and 
SoftWare Development System for software development and the XDS for hardware development. The 
assembler/linker translates the system's assembly source program into an object module that can be 
executed by the simulator, XDS, or SWDS. The XDS provides realtime in-circuit emulation and is a powerful 
tool for debugging and integrating software and hardware modules. 

Additional support for the TMS320 products consists of extensive documentation and three-day DSP design 
workshops offered by the Tl Regional Technology Centers (RTCs). The workshops provide hands-on 
experience with the TMS320 development tools. Refer to the TMS320 Family Development Support 
Reference Guide for further information about TMS320 development support products and DSP workshops. 
When technical questions arise regarding the TMS320, contact the Texas Instruments TMS320 Hotline, 
(713) 274-2320. 

TABLE 4. TMS320 SECOND-GENERATION SOFTWARE AND HARDWARE SUPPORT 

SOFTWARE TOOLS PART NUMBER 

Macro Assembler/linker 

VAX VMS TMDS3242210-08 

Tl/IBM MS/PC-DOS TMDS3242810-02 

Simulator 

VAX VMS TMDS3242211-08 

Tl/IBM MS/PC-DOS TMDS3242811-02 

SoftWare Development System (SWDS} TMDS3268821 

Digital Filter Design Package (DFDP) 

IBM PC-DOS DFDP-IBM002 

DSP Software Library 

VAX VMS TMDC3240212-18 

Tl/IBM MS/PC-DOS TMDC3240812-12 

HARDWARE TOOLS PART NUMBER 

Analog Interface Board (AIB} RTC/EVM320C-06 

XDS/22 Emulator TMDS3262221 

XDS/22 Upgrade 

Customer Upgrade TMDS3282226 

TMS320 Desijln Kit TMS320DDK 

TEXAS -1/1 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001 

A-15 



TMS320 SECOND-GENERATION 
DEVICES 

documentation support 

A-16 

Extensive documentation supports the second-generation TMS320 devices from product announcement 
through applications development. The types of documentation include data sheets with design 
specifications, complete user's guides, and 750 pages of application reports published in the book, Digital 
Signal Processing Applications with the TMS320 Family. An application report, Hardware Interfacing to 
the TMS320C25, is available for that device. 

A series of DSP textbooks is being published by Prentice-Hall and John Wiley & Sons to support digital 
signal processing research and education. The TMS320 newsletter, Details on Signal Processing, is published 
quarterly and distributed to update TMS320 customers on product information. The TMS320 DSP bulletin 
board service provides access to large amounts of information pertaining to the TMS320 family. 

Refer to the TMS320 Family Development Support Reference Guide for further information about TMS320 
documentation. To receive copies of second-generation TMS320 literature, call the Customer Response 
Center at 1-800-232-3200. 

TEXAS~ 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001 



TMS32020 

absolute maximum ratings over specified temperature range (unless otherwise noted) t 

Supply voltage range, Vcct ........................................... -0.3 V to 7 V 
Input voltage range .................................................. -0.3 V to 7 V 
Output voltage range ................................................. - 0.3 V to 7 V 
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.0 W 
Operating free-air temperature range ....................................... 0 °C to 70 °C 
Storage temperature range .......................................... - 55 °C to 150 °C 

tstresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating 
only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating 
Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect 
device reliability. 

*All voltage values are with respect to V55. 

recommended operating conditions 

Vee Supply voltage 

Vss Supply voltage 

All inputs except eLKIN 
V1H High-level input voltage 

CLKIN 

All inputs except CLKIN 
V1L Low-level input voltage 

CLKIN 

loH High-level output current 

IOL low-level output current 

TA Operating free-air temperature (see Notes 1 and 2) 

NOTES: 1. Case temperature (Tc) must be maintained below 90°C. 
2. ReJA = 36°C/Watt, AeJC = 6°C/Watt. 

MIN NOM MAX 

4.75 5 5.25 

0 

2 vcc+o.3 
2.4 vcc+o.3 

-0.3 0.8 

-0.3 0.8 

300 

2 

0 70 

electrical characteristics over specified free-air temperature range (unless otherwise noted) 

PARAMETER TEST CONDITIONS MIN TYPl MAX 

VoH High-level output voltage Vee = MIN, 'OH = MAX 2.4 3 

VOL Low-level output voltage Vee = MIN, loL = MAX 0.3 0.6 

lz Three-state current Vee= MAX -20 20 
,, Input current v1 = Vss to Vee -10 10 

TA= 0°C, Vee= MAX, Ix = MAX 360 

'cc Supply current TA= 25°C, Vee= MAX, Ix = MAX 250 

Tc = so 0 c, Vee= MAX, Ix = MAX 285 

c, Input capacitance 15 

Co Output capacitance 15 

tAll typical values are at Vee= 5 V, TA= 25°C. 

~ 

UNIT 

v 
v 
v 
v 
v 
v 

µA 

mA 
oc 

UNIT 

v 
v 

µA 

µA 

mA 

mA 

mA 

pF 

pf 

I~_~ Caution. This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic 
~ fields. These circuits have been qualified to protect this device against electrostatic discharges (ESO) of up to 2 kV according 
to MIL-STD-883C, Method 3015; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum 
rated voltages to these high-impedance circuits. During storage or handling, the device leads should be shorted together or the device 
should be placed in conductive foam. In a circuit, unused inputs should always be connected to an appropriate logic voltage level, preferably 
either Vee or ground. Specific guidelines for handling devices of this type are contained in the publication ''Guidelines for Handling Electrostatic­
Discharge Sensitive (ESDSl Devices and Assemblies" available froril Texas Instruments. 

TEXAS. 
INSTRUMENTS 

A-17 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 



TMS32020 

CLOCK CHARACTERISTICS AND TIMING 

The TMS32020 can use either its internal oscillator or an external frequency source for a clock. 

internal clock option 

The internal oscillator is enabled by connecting a crystal across X1 and X2/CLKIN (see Figure 2). The 
frequency of CLKOUT1 is one-fourth the crystal fundamental frequency. The crystal should be fundamental 
mode, and parallel resonant, with an effective series resistance of 30 ohms, a power dissipation of 1 mW, 
and be specified at a load capacitance of 20 pF. 

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 

Ix Input clock frequency TA ~ 0°C to 70°C 6.7 20.5 MHz 

fsx Serial port frequency TA ~ 0°C to 70°C 50 2563 kHz 

C1, C2 TA ~ 0°C to 70°C 10 pF 

JC2 
FIGURE 2. INTERNAL CLOCK OPTION 

external clock option 

An external frequency source can be used by injecting the frequency directly into X2/CLKIN with X 1 left 
unconnected. The external frequency injected must conform to the specifications listed in the following table. 

switching characteristics over recommended operating conditions (see Note 3) 

PARAMETER 

tc{Cl CLKOUT1 /CLKOUT2 cycle time 

td{CIH-Cl CLKIN high to CLKOUT1 /CLKOUT2/STRB high/low 

tf{C) CLKOUT1 /CLKOUT2/STRB fall time 

tr(C) CLKOUT1 /CLKOUT2/STRB rise time 

tw{CL} CLKOUT1 /CLKOUT2 low pulse duration 

twJCH} CLKOUT1/CLKOUT2 high pulse duration 

td(C1-C2) CLKOUT1 high to CLKOUT2 low, CLKOUT2 high to CLKOUT1 high, etc. 

NOTE 3: 0 ~ 1 /4tc{C)· 

A-18 TEXAS.,,, 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001 

MIN 

195 

25 

20-15 

20-15 

0-10 

TYP MAX UNIT 

597 ns 

60 ns 

10 ns 

10 ns 

20 20+15 ns 

20 20+15 ns 

o 0+10 ns 



timing requirements over recommended operating conditions (see Note 31 
\ 

ti;_t_Cll_ CLKIN cycle time 

tf(Cll CLKIN fall time 

tr!Cll CLKIN rise time 

tw(CILI CLKIN low pulse duration, tc(Cll = 50 .ns (see Note 41 

twJ_CIHI CLKIN high pulse duration, tc(Cll = 50 ns (see Note 41 

tsu(SI SYNC setup time before CLKIN low 

th(SI SYNC hold time from CLKIN low 

NOTES: 3. a = 1/4tc(CI· 
4. CLKIN duty cycle llr(Cll + lw[CIH1l/tc(Cll must be within 40-60%. 

2.15 v 

FROM OUTPUT + 25!1 

UNDER TEST TEST 
POINT 

I Ct= 100pF 

'=' 

FIGURE 3. TEST LOAD CIRCUIT 

"'+--~ 1.88V.,. ---~- --- - V1H(MINI 

~::~~::: --- ------ V1t<MAXI 

0 

(a) INPUT 

Wd--~--- •oHIMINl 2.2v- ---- --- -
o.av __ ---- _ 
0.6 V.. Vol IMAX) 

0 

(bl OUTPUTS 

FIGURE 4. VOLTAGE REFERENCE LEVELS 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 

TMS32020 

MIN NOM MAX UNIT 

48.8 150 ns 

10 ns 

10 ns 

10 40 ns 

10 40 ns 

10 Q-10 ns 

15 ns 

A-19 



TMS32020 

MEMORY AND PERIPHERAL INTERFACE TIMING 

switching characteristics over recommended operating conditions (see Note 31 

PARAMETER MIN TYP MAX UNIT 

td(C1-S) STRB from CLKOUT1 (if STAB is present) 0-15 0 0+15 ns 

td(C2-S) CLKOUT2 to STAB (if STAB is present) -15 0 15 ns 

tsu(A) Address setup time before S'fRB low (see Note 5) 0-30 ns 

th(A) Address hold time after STAB high (see Note 5) 0-15 ns 

tw(SLl STAB low pulse duration (no wait states, see Note 6) 20 ns 

tw(SH) S'i"RB high pulse duration (between consecutive cycles, see Note 6) 20 ns 

tsu(D)W Data write setup time before ST'RB high (no wait states) 20-45 ns 

th(D)W Data write hold time from S'fRB high 0-15 0 ns 

ten(D) Data bus starts being driven after STAB low (write cycle) 0 ns 

tdis(D) Data bus three-state after STRB high (write cycle) 0 0+30 ns 

td(MSC) MSC valid from CLKOUT1 -25 0 25 ns 

NOTES: 3. 0 = 1 /4tc(C). 
5. A 15-AO, PS, OS, iS, R/W, and liR timings are all included in timings referenced as "address." 
6. Delays between CLKOUT1 /CLKOUT2 edges and STAB edges track each other, resulting in tw(SL) and tw(SH) being 20 

with no wait states. 

timing requirements over recommended operating conditions (see Note 31 

MIN NOM 

tru,& Read data access time from address time (read cycle, see Notes 5 and 71 

ts\i.[QlR Data read setup time before STAB high 40 

tQJQLR Data read hold time from S'fRB high 0 

t<tl_SL-8.L READY valid after STAB low (no wait states) 

t\!l_C2H-fil_ READY valid after CLKOUT2 high 

thl_SL-fil_ READY hold time after STAB low (no wait states) 0-5 

thl_C2H-fil_ READY hold after CLKOUT2 high 0-5 

t\!l_M-fil_ READY valid after MSC valid 

thl_M-BJ READY hold time after MSC valid 0 

NOTES: 3. 0 = 1 /4tc(C). 

A-20 

5. A 15-AO, PS, OS, iS, R/W, and BR timings are all included in timings referenced as "address." 
7. Read data access time is defined as ta(A) = tsu(A) + tw(SL) - tsu(D)R· 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001 

MAX UNIT 

30-70 ns 

ns 

ns 

0-40 ns 

0-40 ns 

ns 

ns 

20-50 ns 

ns 



TMS32020 

RS, INT, BIO, AND XF TIMING 

switching characteristics over recommended operating conditions (see Note 31 

PARAMETER MIN TYP MAX UNIT 

td(RS) CLKOUT1 low to reset state entered 45 ns 

td(IACK) CLKOUT1 to IACK valid -25 0 25 ns 

td(XF) XF valid before falling edge of STRB Q-30 ns 

NOTES: 3. Q = 1/4tc(C)· 
8. RS, INT, and BIO are asynchronous inputs and can occur at any time during a clock cycle. However, if the specified setup 

time is met, the exact sequence shown in the timing diagrams will occur. 

timing requirements over recommended operating conditions (see Note 31 

MIN NOM MAX UNIT 

tsu(IN) INT/iiiO/RS setup before CLKOUT1 high 50 ns 

th(IN) INT/BiO/RS hold after CLKOUT1 high 0 ns 

tf(IN) INT/BIO fall time 15 ns 

tw(IN) INT/BiO low pulse duration tc(Cl ns 

tw(RS) RS low pulse duration 3tc(C) ns 

NOTES: 3. Q =_!!.4tc(Cl:.__ 
8. RS, INT, and BIO are asynchronous inputs and can occur at any time during a clock cycle. However, if the specified setup 

time is met, the exact sequence shown in the timing diagrams will occur. 

HOLD TIMING 

switching characteristics over recommended operating conditions (see Note 31 

PARAMETER MIN TYP MAX UNIT 

td(C1L-AL) HOLDA low after CLKOUT1 low -25 25 ns 

tdis(AL-A) HOil5A low to address three-state 15 ns 

tdis(C1 L-A) Address three-state after CLKOUT1 low (ll"O[l) mode, see Note 9) 30 ns 

td(HH-AH) FR:illi high to HOLDA high 50 ns 

ten(A-C1L) Address driven before CLKOUT1 low (HOLD mode, see Note 9) 10 ns 

NOTES: 3. Q = 1 /4tc(C)· 
9. A15-AO, ~. 155, iS, mii, and R/iiiitimings are all included in timings referenced as "address." 

timing requirements over recommended operating conditions (see Note 31 

MIN NOM MAX UNIT 

td(C2H-H) HOUi valid after CLKOUT2 high Q-45 ns 

NOTE 3: 0 = 1 /41c(C)· 

TEXAS. 
INSTRUMENTS 

A-21 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 



TMS32020 

SERIAL PORT TIMING 

switching characteristics over recommended operating conditions (see Note 31 

PARAMETER MIN 

1d(CH-DXI DX valid after CLKX rising edge (see Note 10) 

1d(FL-DXI DX valid after FSX falling edge (TXM = 0, see Note 101 

td(CH-FSI FSX valid after CLKX rising edge (TXM = 1 I 

NOTES: 3. Q = 1 /4tc(CJ· 
10. The last occurrence of FSX falling and CLKX rising. 

timing requirements over recommended operating conditions (see Note 31 

tc(SCKJ 

tf(SCKJ 

tr(SCKJ 

tw(SCKJ 

tw(SCKJ 

tsu(FSJ 

th(FSJ 

tsu(DRJ 

th(DRJ 

NOTES: 

A-22. 

Serial port clock (CLKX/CLKRJ cycle time 

Serial port clock (CLKX/CLKRJ fall time 

Serial port clock (CLKX/CLKRJ rise time 

Serial port clock (CLKX/CLKRJ low pulse duration (see Note 11 J 

Serial port clock (CLKX/CLKRJ high pulse duration (see Note 11 I 

FSX/FSR setup time before CLKX/CLKR falling edge (TXM = OJ 

FSX/FSR hold time after CLKX/CLKR falling edge (TXM = 0) 

DR setup time before CLKR falling edge 

DR hold time after CLKR falling edge 

3. Q = 1 /4tc(Ci. 
11. The duty cycle of the serial port clock must be within 40-60%. 

TEXAS.,, 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 

MIN 

390 

150 

150 

20 

20 

20 

20 

TYP 

NOM 

MAX UNIT 

100 ns 

50 ns 

60 ns 

MAX UNIT 

20,000 ns -
50 ns 

50 ns 

12,000 ns 

12,000 ns 

ns 

ns 

ns 

ns 



TMS320C25 

absolute maximum ratings over specified temperature range I unless otherwise noted) t 

Supply voltage range, Vee* ........................................... -0.3 V to 7 V 
Input voltage range .................................................. -0.3 V to 7 V 
Output voltage range ................................................. -0.3 V to 7 V 
Continuous power dissipation ................................................. 1.5 W 
Operating free-air temperature range ....................................... 0 °C to 70 °C 
Storage temperature range .......................................... - 55 °C to 150 °C 

tstresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating 
only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating 
Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect 
device reliability. 

*All voltage values are with respect to V55. 

recommended operating conditions 

MIN NOM MAX UNIT 

Vee Supply voltage 4.75 5 5.25 v 
Vss Supply voltage 0 v 

All inputs except CLKIN/CLKX/CLKR/INT 10-21 2.35 Vcc+0.3 v 

V1H ~igh-level input voltage INT 10-2) 2.5 Vcc+0.3 v 
CLKIN/CLKX/CLKR 3.5 Vcc+0.3 v 
All inputs except CLKIN -0.3 0.8 v 

V1L Low-level input voltage 
CLKIN -0.3 0.8 v 

IOH High-level output current 300 p.A 

IOL Low-level output current 2 mA 

TA Operating free-air temperature 0 70 •c 

electrical characteristics over specified free-air temperature range lunless otherwise noted) 

PARAMETER TEST CONDITIONS MIN TvPt MAX UNIT 

VQH High-level output voltage Vee = MIN~ IOH = MAX 2.4 3 v 
Vol Low-level output voltage Vee = MIN. loL = MAX 0.3 0.6 v 
lz Three-state current Vee= MAX -20 20 p.A 

11 Input current V1 = Vss to Vee -10 10 p.A 

~L Normal 185 
Ice Supply curreni_[ldle/HOLD TA = o•c, Vee = MAX. Ix =MAX mA 

100 

C1 Input capacitance 15 pF 

Co Output capacitance 15 pF 

tA11 typical values are at Vee= 5 v, TA= 25°C . 

• . '..,-~Caution. This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic 
~ fields. These circuits have been qualified to protect this device against electrostatic discharges IESO) of up to 2 kV according 
to MIL-STD-883C, Method 3015; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum 
rated voltages to these high-impedance circuits. During storage or handling, the device leads should be shorted together or the device 
should be placed in conductive foam. In a circuit, unused inputs should always be connected to an appropriate logic voltage level, preferably 
either Vee or ground. Specific guidelines for handling devices of this type are contained in the publication "Guidelines for Handling Electrostatic­
Discharge Sensitive (ESDS) Devices and Assemblies'' available from Texas Instruments. 

TEXAS.,, 
INSTRUMENIB 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 

A-23 



TMS320C25 

CLOCK CHARACTERISTICS AND TIMING 

The TMS320C25 can use either its internal oscillator or an external frequency source for a clock. 

internal clock option 

fx 

fsx 

The internal oscillator is enabled by connecting a crystal across X1 and X2/CLKIN (see Figure 2). The 
frequency of CLKOUT1 is one-fourth the crystal fundamental frequency. The crystal should be either 
fundamental or overtone mode, and parallel resonant, with an effective series resistance of 30 ohms, a 
power dissipation of 1 mW, and be specified at a load capacitance of 20 pf. Note that overtone crystals 
require an additional tuned LC circuit (see the application report, Hardware Interfacing to the TMS320C25). 

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 

Input clock frequency TA~ 0°C to 70°C 6.7 40.96 MHz 

Serial port frequericy TA~ 0°C to 70°C 0 5,120 kHz 

Cl. C2 TA~ 0°C to 70°C 10 pF 

CRYSTAL 

0 
JC2 

FIGURE 2. INTERNAL CLOCK OPTION 

external clock option 

An external frequency source can be used by injecting the frequency directly into X2/CLKIN with X 1 left 
unconnected. The external frequency injected must conform to the specifications listed in the following table. 

switching characteristics over recommended operating conditions (see Note 31 

PARAMETER MIN TYP MAX UNIT 

tcfCI CLKOUT1 /CLKOUT2 cycle time 97.7 597 ns 

td(CIH·CI CLKIN high to CLKOUT1 /CLKOUT2/STRB high/low 5 30 ns 

tffCI CLKOUT1 /CLKOUT2/S'ffii3 fall time 5 ns 

tr( Cl CLKOUT1 /CLKOUT2/S'ffii3 rise time 5 ns 

tw(CLI CLKOUT1 /CLKOUT2 low pulse duration 20-8 20 20+8 ns 

tw(CHI CLKOUT1/CLKOUT2 high pulse duration 20-8 20 20+8 ns 

td(C1-C21 CLKOUT1 high to CLKOUT2 low, CLKOUT2 high to CLKOUT1 high, etc. 0-5 0 0+5 ns 

NOTE 3: 0 ~ 1/4tc(C)· 

A-24 TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001 



timing requirements over recommended operating conditions (see Note 31 

tc(CI) CLKIN cycle time 

tf(CI) CLKIN fall time 

'riCll CLKIN rise time 

tw(CILI CLKIN low pulse duration. tc(Cll = 50 ns (see Note 41 

tw(CIHI CLKIN high pulse duration, tc(CI) = 50 ns (see Note 41 

tsu(SI SYNC setup time before CKLIN low 

th ISi SYNC hold time from CLKIN low 

NOTES: 3. Q = 1 /4tc(CI· 
4. CLKIN duty cycle ltr(CI) + tw1C1H11!tc(CI) must be within 40-60%. 

2.15 v 

FROM OUTPUT + 25{! 

UNOER TEST TEST 
POINT 

I cl= 100 pf 

"::' 

FIGURE 3. TEST LOAD CIRCUIT 

'"+--~ 1.88 v- ---~- - -- - V1H (MINI 

0.92 v-
0.80 V- --- =====:. V1llMAXI 

0 

la) INPUT 

2.2v- ---- --- -
VoH (MINI 

o.av __ _ ___ _ 
2.4Vd---~-_ ----

0.6 y -±===~=-=::..:=..=:..:::.=~==-Vol (MAXI 
0 

(bl OUTPUTS 

FIGURE 4. VOLTAGE REFERENCE LEVELS 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001 

TMS320C25 

MIN NOM MAX UNIT 

24.4 150 ns 

5 ns 

5 ns 

5 20 ns 

5 20 ns 

5 Q-5 ns 

8 ns 

A-25 



TMS320C25 

MEMORY AND PERIPHERAL INTERFACE TIMING 

switching characteristics over recommended operating conditions (see Note 3) 

PARAMETER MIN TYP MAX UNIT 

td(Cl-~ ml! from CLKOUTl (if mJ! is present) Q-6 Q 0+6 ns 

td(C2-SI CLKOUT2 to smli (if ml! is present) -6 0 6 ns 

tsul& Address setup time before ml! low (see Note 51 0-12 ns 

th(A) Address hold time after ml! high (see Note 51 0-8 ns 

tajl)LI '§TFfB low pulse duration (no wait states, see Note 6) 20 ns 

tw(SHI ml! high pulse duration (batween consecutive cycles, see Note 61 20 ns 

tsu(D)W Data write setup time, before ~ high (no wait states) 20-20 ns 

th(DIW Data write hold time from ml! high 0-10 o ns 

ten( DI Data bus starts baing driven after ml! low (write cycle) 0 ns 

tdi!!lQL Data bus three-state after mJ! high (write cycle) o 0+15 ns 

td(MSCI ~ valid from CLKOUTl -12 0 12 ns 

NOTES: 3. 0 = 1 /4tc(C)· 
5. A 15-AO, 155, OS, ~. R/W, and iili timings are all included in timings referenced as "address." 
6. Delays between CLKOUT1/CLKOUT2 edges and "S'fmi edges track each other, resulting in tw(Sll and tw(SHI being 20 with 

no wait states. 

timing requirements over recommended operating conditions (see Note 31 

MIN 

ta(A) Read data access time from address time (read cycle, see Notes 5 and 7) 

tsu(DIR Data read setup time before ml! high 23 

tt:!!QLR Data read hold time from §'!'mi high 0 

td_(SL-R}_ READY valid after §'!'mi low (no wait states) 

td(C2H-R) READY valid after CLKoui:2 high 

t~L-RI READY hold time after §'!'mi low (no wait states) 0+3 

tl:!l.C2H-RI READY hold after CLKOUT2 high Q+3 

tctl_M-f!L READY valid after ~ valid 

th(M-RI READY hold time after ~ valid 0 

NOTES: 3. a = 1/4tc(C)· 
5. A 15-AO, 155, OS, ~. R/W, and iili timings are all included in timings referenced as "address." 
7. Read data access time is defined as ta(AI = tsu(AI + tw(SLI - •su(DIR· 

A-26 TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 

NOM MAX UNIT 

30-35 ns 

ns 

ns 

Q-20 ns 

Q-20 ns 

ns 

ns 

20-25 ns 

ns 



TMS320C25 

RS, INT. BIO, and XF TIMING 

switching characteristics over recommended operating conditions (see Note 31 

PARAMETER MIN TYP MAX UNIT 

td(RS) CLKOUT1 low to reset state entered 22 ns 

td(IACKI CLKOUT1 to iACR valid -6 0 12 ns 

tdi_XEl XF valid before falling edge of S'fAli Q-15 ns 

NOTES: 3. Q = 1/4tc(C)· 
8. RS, INT, and BiO" are asynchronous inputs and can occur at any time during a clock cycle. However, if the specified setup 

time is met, the exact sequence shown in the timing diagrams will occur. 

timing requirements over recommended operating conditions (see Note 31 

MIN NOM MAX UNIT 

tsu(INI INT /BiO/RS setup before CLKOUT 1 high 32 ns 

th(IN) INT /BIO/RS hold after CLKOUTl high 0 ns 

tf(IN) INT/liil5 fall time 8 ns 

tw(INI INT /BIO low pulse duration tel Cl ns 

tw_LRSl_ RS low pulse duration 3t!;{_Q_ ns 

NOTES: 3. Q = 1/4tc(C)· 
8. RS, INT, and BIO are asynchronous inputs and can occur at any time during a clock cycle. However, if the specified setup time 

is met, the exact sequence shown in the timing diagrams will occur. 

HOLD TIMING 

switching characteristics over recommended operating conditions (see Note 31 

PARAMETER MIN TYP 

tdlC1L-AL) HOLDA low after CLKOUTl low 0 

tdislAL-A) HOLDA low to address three-state 0 

tdis!C1L-A) Address three-state after CLKOUTl low IHOC!i mode, see Note 9) 

td(HH-AH) HOLD high to HOLDA high 

ten1A-C1L) Address driven before CLKOUTl low !HOLD mode, see Note 9) 

NOTES: 3. Q = 1 /4tc(C)· 
9. A 15-AO, PS, OS, iS, STRB, and R/W timings are all included in timings referenced as "address." 

timing requirements over recommended operating conditions (see Note 31 

td(C2H-H) HOLD valid after CLKOUT2 high 

NOTE 3: Q = 1/4tc(CI· 

TEXAS~ 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001 

MIN NOM 

MAX UNIT 

10 ns 

ns 

20 ns 

25 ns 

8 ns 

MAX UNIT 

Q-24 ns 

A-27 



TMS320C25 

SERIAL PORT TIMING 

switching characteristics over recommended operating conditions (see Note 31 

PARAMETER MIN TYP MAX UNIT 

td(CH-DX) DX valid after CLKX rising edge !see Note 10) 75 ns 

td(FL-DX) DX valid after FSX falling edge (TXM = 0, see Note 10) 40 ns 

td(CH-FSl FSX valid after CLKX rising edge ITXM = 1 l 40 ns 

NOTES: 3. Q = 1/4tc(C)· 
10. The last occurrence of FSX falling and CLKX rising. 

timing requirements over recommended operating conditions (see Note 3) 

MIN NOM MAX UNIT 

tc(SCK) Serial port clock (CLKX/CLKR) cycle time 200 ns 

tf(SCK) Serial port clock (CLKX/CLKR) fall time 25 ns 

tr(SCK) Serial port clock (CLKX/CLKR) rise time 25 ns 

twiSCKl Serial port clock (CLKX/CLKR) low pulse duration (see Note 11) 80 ns 

tw!SCK) Serial port clock ICLKX/CLKRI high pulse duration (see Note 11) 80 ns 

tsu(FS) FSX/FSR setup time before CLKX/CLKR falling edge ITXM = 0) 18 ns 

th(FS) FSX/FSR hold time after CLKX/CLKR falling edge ITXM = 0) 20 ns 

tsu(OR) DR setup time before CLKR falling edge 10 ns 

th(DRI DR hold time after CLKR falling edge 20 ns 

NOTES: 3. Q = 1 /4tc(C)· 
11. The duty cycle of the serial port clock must be within 40-60%. 

A-28 TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 



TIMING DIAGRAMS 

TMS320 SECOND-GENERATION 
DEVICES 

This section contains all the timing diagrams for the TMS320 second-generation devices. Refer to the top corner 
for the specific device. 

Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, 
unless otherwise noted. 

clock timing 

X/2CLKIN 
I I I 
I I I I I I 
I r---1-•suiSI I ~•sulSI 

--4.. i 1---rhiSI ~ 11 : 

SVNC !'\ ! ..lf I 

I I 
•w1c1L1...i-..i 

\ I ! •diCIH-Ci-r---1 
......_..,dlCIH-Ci --------tolCl--------t 

\_ 
! : t---•wiCL)---1 I 

CLKOUT1-.;.------'lf i \ v~twtCHl---i\i.l'-:-----
1 t----;•dtCIH-C) i ...,.j '--tr1c1 ....J l--•11c1 

---j-'\_ I I I 

STRBi\ I I I 
~,----1;..---J I 
'--•dtCIH-CI I •ctCl 

I I I l..--t ___. 
CLKOUT2 __A"'i ___ ......,i,__ __ ""'\\J._ '1 A N wlCLl w 

I I I 1---•wtCH>----l I I I 
l-tdtC1-c21-I I 1-•dtC1-C2)--I I I tr1c1--I l..-

:...dlC1-C21-r•diC,·Clr-1 ...,.j ~•11c1 

TEXAS. 
INSTRUMENTS 

A-29 

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001 



TMS320 SECOND-GENERATION 
DEVICES 

memory read timing 

r1c11c1-s11 

\.C I t 
'll: I ti 

1 i-1c11c1-s11 

CLKOUT2 \ _______ _,;T i \l'--... 1--· __ _.,.,/ 
I I 1' I 

- l--'dCC2-SI I I::: 
---------.. I -- _ lclCC2-SI 

~ /1--tw(SH)--I\ 
1su1Al-..-J I t..---.-

1 '---•wcSLI----' I . i ti.CAI 

\ ____ _ 
CLKOUT1 

A15-AO, ----... 
111.l'll.61. VALIO 

ORll ----' 
I 

~ 
READY~i~ 

-tt.cSL-RltJ ......lr--tt.cDJR 

D15-DO --------'-----<( D~:A )>------
memory write timing 

A-30 

CLKOUT1 

I CLKOUT2 \....._ ____ __, 

A15-AO.----... 
111.Jll.61. 

ORiS----' 

\ 
r--t-1•uCAI 
I 

I 
I 

VALID 

\ 
;T 

I 
i-----t-'hlAI 

I 
I 
I 

I 

\ 

RtW ~ ~,.. ........ ....--

READY~~ 
toulDIW~'hlDIW 

DATA OUT 

TEXAS.,, 
INSTRUMENTS 

'--1c11o1D1-

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 



TMS320 SECOND-GENERATION 
DEVICES 

one wait-state memory access timing 

CLKOUT1 ~ ;1' 
""1 -------' I 

\...__ _ __,/ \_ 
I I 
I I 

i /: \ ;T 
I I '------J I 
I I I 
I I I 

! ~: : I 
I ~~I---+----------+-!----' 

CLKOUT2 \~--

I I r----t"'hlC2H-RI 

~~=~:~ : VALID ; : ~ 
I r----t"'h!C2H-RI ld(C2H-Rt-l 1-- I 
'dlC2H-Ri-I r--~i ~ 

READY It 1 ~ 
I I 

D16-DO 
IFOR READ 

OPERATION) 

D15-DO 
!FOR WRITE 

OPERATION) 

I I~ L- 1 I 1-'dlM-Rt-I I I I I hlM-Rt 
I I I I L..tdlM RI-I I 
I I 'hlM-Rt--1 t--1 I -
I I I I I I ( DATA )>-------
1 I I I l . IN . 
I I I I I 

l • :DATAOUT : 

I I I I I 

... ~ ~ ~ 
_j I -I t-td(MSCI 
--r -ld(MSCI 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 

A-31 



TMS320 SECOND-GENERATION 
DEVICES 

reset timing 

CLKOUT1 

SERIAL POAT "§Jl!88iifll§lllil8888!§l8~---+----+-----~----l CONTROLS* X 

tcontrol signals are 'fiS, IS, A/W, and XF. 
*Serial pon controls are DX and FSX. 

A-32 TEXAS.,, 
INSTRUMENIB 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 



interrupt timing (TMS32020) 

CLKOUT1 

-.i tsuflN) 
11 I I 

INT2-INTO ~'wllNI ! 
11 I -+1 ,._ •11w1 I 

A15-AO ~ FETCH N x 
I 

- ~'hllNI 

I~ : 
I I 
I I 

FETCH N+ 1 x FETCH I 

TMS320 SECOND-GENERATION 
DEVICES 

x FETCH I + 1 - x:: 
IACK -- ~ 

._ 

interrupt timing (TMS320C25) 

'dllACKI .... - -+' +- 'dllACKl 

TEXAS~ 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 

A-33 



TMS32020 

BIO timing 

CLKOUT1 

A15-AO 

I 
I 
I 
I 
I 
I 
I 

I FETCH 
I BRANCH ADDRESS 

PC=N 
lsu(IN) --j j-" 

FETCH 
NEXT INSTRUCTION 

l--' r-lh(IN) OR BRANCH ADDRESS 

BIO~VALID 

external flag timing 

CLKOUT1 

A15-AO 

PC• N - 1 PC=N PC=N+1 I 

A-34 

I 
I 

XF~ VALID 

TEXAS "J> 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 



BIO timing 

CLKOUT1 

I FETCH FETCH 
I BRANCH ADDRESS NEXT INSTRUCTION 

A15-AO 

BIO~VALID 

external flag timing 

CLKOUT1 

A15-AO 

PC~N PC~N+1 PC~N+2 I 
I 
I 

TMS320C25 

XF~ __ i ___ v_A_L_m __ _ 

TEXAS.,,, 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001 

A-35 



TMS32020 

HOLD timing (part Al 

CLKOUT1 

CLKOUT2 

_.J ,..__ ld(C2H-H} t ----1 
I 

A15-AO N + 2 

~ ...... ~~~~-
~ ...... ~~~~-
-.,i L.-tdis{C1L-Al 

P5.iJ!.~ 
OR IS VALID ~ VALID w 

R/W 

I I 

01s-Do~---~~~~~~~---c~~-~~~~----r!~r:-~-----
l.....,l,...-1dislAL-Al 

~----------------------t-~ I 
I I 
I --------

.....,1 i..-td{C1L-AL} 

FETCH 
N N + NIA N/A 

EXECUTE 
N - N DUMMY DEAD 

tHOLD i~ an asynchronous input and can occur at any time during a clock cycle. If the specified timing is met, the exact sequence shown 
will occur; otherwise, a delay of one CLKOUT2 cycle will occur. 

A-36 TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001 



TMS32020 

HOLD timing (part Bl 

CLKOUT1 

CLKOUT2 

....., i.,... lenlA-C 1 L) 

I 
__, ,..._,dlC2H-H)t 

HOLD ____ _,;1' 

VALID ) _ ___, 

R/w----------------

D15-DO~~~~~~ ..... ~~~~~~~~~~-..~~~~-< >-------... ~ 
__, ..... ldiHH-AH) 

HOLDA JI 
A15-AO m N + 2 ~ N + 3 > 

FETCH N/A N/A N + 2 N + 3 

EXECUTE .. DEAD .. . DEAD . .. N + 1 . .. N + 2 .. 
t HOLD is an asynchronous input and can occur at any time during a clock cycle. If the specified timing is met, the exact sequence shown 

will occur; otherwise, a delay of one CLKOUT2 cycle will occur. 

TEXAS~ 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001 

A-37 



TMS320C25 

HOLD timing (part A) 

CLKOUT1 

CLKOUT2 

A15-AO 

PS.~.~ 
OR IS 

R/W 

r- ld(C2H-HJ t 

I 

N 

VALID ~ 

N + 1 N + 2 

tj-----tj ____ _ 
_.., 1.- ldis(C1L-AI 

VALID w 

I I 
D15-D0~~~~~~~~~~~~---~~~~~~~~~~~~1--10--~~~~~~ 

1-.1,.- ldislAL-AI 
~~~~~~~~~~~~~~~~~~~~~....._ I 

~M I I
I -,o:..~~~~~-

-.1 l.-td(C1L-ALJ

FETCH
N N +

EXECUTE
N - 2 N - 1 N

t HOLD is an asynchronous input and can occur at any time during a clock cycle If the specified timing is met. the exact sequence shown
will occur; otherwise. a delay of one CLKOUT2 cycle will occur.

A-38 TEXAS~
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

HOLD timing (part B)

CLKOUT1

CLKOUT2

....., '--•en(A-C1LJ

STRB -----r~----------'i" I
,...ld(C2H-HJ t

I
I

I I
I I
I I
I I

PS.OS. I MXY
ORIS -------r1-----------<~

I I I I

R/W -------;1.-----------W'
I

TMS320C25

VALID)

I

015-00 -------Tl-----------i---------------~
I

-.,11'9-ld(HH-AHJ

-----~j1'1 HOLDA -

A15-AO -----------------""'m N + 2 ~----N +_2 ___,)

FETCH N + 2

EXECUTE N + 1

tHOLD 1s an asynchronous input and can occur at any time during a clock cycle. If the specified timing is met, the exact sequence shown
will occur; otherwise, a delay of one CLKOUT2 cycle will occur.

TEXAS.
INSTRUMENTS A-39

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001

TMS320 SECOND-GENERATION
DEVICES

serial port receive timing

serial port transmit timing

A-40

CLKX

FSX
(INPUT,TXM=o.OJ

TEXAS.
INSTRUMENTS

POST OFFIC,E BOX 1443 e HOUSTON, TEXAS 77001

MECHANICAL DATA

TMS320 SECOND-GENERATION
DEVICES

68-pin GB grid array ceramic package

TOP VIEW

lr28,448 (1.1201~
27.432 (1.080)

117,0~J~67011

THERMAL RESISTANCE CHARACTERISTICS

I l_=rT
AeJA

Re JC

PARAMETER

Junction-to-free-air

thermal resistance

Junction-to-case
thermal resistance

MAX UNIT

36 °C/W

6 °C/W

4.953 (0.1951

~-------~-~

28,448 (1.1201
27.432 (1.0801

17.02 0.670)

_l

2.032 (0.0801 tn· .r:. ========:i•----. 1.397 (0.0551 I 1.£ MAX

3.302(0.130irr-~ rr l11I~trrmt::(0.0621 DIA
2.794 (0.1101 0.406 (0.0161 1,473 (0.058)

2•54 (O.lOO BOTTOM VIEW
T.P.

L + 00000008--T
K <B00 0 0 0 0 0 00 + -t2.54!0.1001

J 00 00 T.P.

H00
G00
F00
E00
D00

00
00
00
00
00

c 0 0 0 0 ---r::-1,52~J~0601

B 000 0 0 0 0 0 0ei0 _j_ 4PLACES

A 000000008---*-
2 3 4 5 6 1 a s 10 11 Li.2110.0501

NOM

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

TEXAS.
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

-· A-41

TMS320C25

68-pin plastic leaded chip carrier package ITMS320C25 only)

~0,25 10.010) R MAX

"" IN 3 PLACES

1,27 10.0501 T.P.
!SEE NOTE Bl

23,62 10.9301
23. 11 10.9101

!AT SEATING PLANE!

I 0.94 (0.0371 R I o.69 10.0211

I
I

SEATING PLANE 25,02 (0.985)

0,81 (0.0321 1 r0,66 (0.026)

~.1152 (0.0601 MIN

JLL0,64 (0.025) MIN

o,51 10.0201 I
0,36 (0.014)

LEAD DETAIL

25,27 (0.995)
25,02 10.985)

24,33 (0.956)
24, 13 10.9501
!SEE NOTE Al

1,22 10.048) x 450
1.07 (0.0421

THERMAL RESISTANCE CHARACTERISTICS

PARAMETER MAX UNIT

RoJA
Junction-to-free-air

thermal resistance
46 •c1w

Ro JC
Junction-to-case
thermal resistance

11 •ctw

NOTES: A. Centerline of center pin each side is within 0, 10 (0.004) of package centerline as determined by this dimension.

A-42

B. Location of each pin is within 0, 127 (0.005) of true position with respect to center pin on each side.

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES.

TEXAS ""' INSTRUMENTS
POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

TMS320 SECOND-GENERATION
DEVICES

INDEX

accumulator 5
ALU ... 5
architecture 5-9

block diagram 4, 6

description 1, 3
development support 1 5
OMA .. 9
documentation support 1 6

electrical specifications
TMS32020 17-22
TMS320C25 23-28

external interface 7

instruction set 9-14
interrupts ... 7

key features 4

mechanical data 41, 42
memory .. 7, 8
microcomputer/microprocessor mode 8
multiplier ... 5
multiprocessing 9

package types 41, 42
pin nomenclature 2
pinouts ... 1

repeat feature 10

serial port ... 9
shifter .. 5
subroutines .. 7

thermal data 41-42
timer ... 7
timing diagrams 29-40

TEXAS.
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

A-43

• S Temperature ... -55°C to 100°C

• 200-ns Instruction Cycle Time

• 544 Words of Programmable On-Chip Data
RAM

• 128K Words of Data/Program Space

• Sixteen Input and Sixteen Output Channels

• 16-Bit Parallel Interface

• Directly Accessible External Data Memory
Space

• Global Data Memory Interface

• 16-Bit Instruction and Data Words

• 32-Bit ALU and Accumulator

• Single-Cycle Multiply/Accumulate
Instructions

• 0 to 16-Bit Scaling Shifter

• Bit Manipulation and Logical Instructions

• Instruction Set Support for Floating-Point
Operations

• Block Moves for Data/Program Management

• Repeat Instructions for Efficient Use of
Program Space

• Five Auxiliary Registers and Dedicated
Arithmetic Unit for Indirect Addressing

• Serial Port for Direct Codec Interface

• Synchronization Input for Synchronous
Multiprocessor Configurations

• Wait States for Communication to Slow
Off-Chip Memories/Peripherals

• On-Chip Timer for Control Operations

• Packaging:
- 68 Pin Ceramic Leaded Chip Carrier
- 68 Pin Grid Array

• Three External Maskable User Interrupts

• Input Pin Polled by Software Branch
Instruction

• Programmable Output Pin for Signaling
External Devices

• 2.4-Micron NMOS Technology

• Single 5-V Supply

• On-Chip Clock Generator

• Standard and Class B Processing
SM Prefix-Standard
SMJ Prefix-Class B

Vss 10

D7 11

D6 12

D5p13
D4 14

D3 15

D2 16

D1 17

DO 18

SYNC 19

INTO 20

INT1 21

lNT2 22

Vee 23

DA 24

FSA 25

SMJ32020
DIGITAL SIGNAL PROCESSOR

OCTOBER 1987

68-PIN FJ PACKAGE
CERAMIC LEADED CHIP CARRIER

(TOP VIEW)

>-loo a: x

!~~~~g~~~i~~1aa~~
g 8 7 6 5 4 3 2 1 6867666564636261

60 IACK
59 MSC

58 CLKOUT1

57 CLKOUT2
56 XF

55 HOLDA

54 ox
53 FSX

52 X2/CLKIN
51 X1

so BR
49 STAB
48 RtW
47 PS
46 iS
45 OS

AO ~ 2627 2829 30 31 32 33 34 35 36 37 38 39 4041 42 43
44

Vss

68-PIN GB
PIN GRID ARRAY CERAMIC PACKAGEt

(TOP VIEW)

2 3 4 5 6 7 8 9 10 11

A • • • • • • • • •
B • (~ • • • • • • • r!) •
c • • • •
D • • • •
E • • • •
F • • • •
G • • • •
H • • • •
J • • • •
K • f!) • • • • • • • f!) •
L • • • • • • • • •

tsee Pin Assignments Table (Page 2) and Pin Nomenclature
Table (Page 3) for location and description of all pins.

Copyright© 1987, Texas Instruments Incorporated

TEXAS.
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001

B-1

B-2

SMJ32020
DIGITAL SIGNAL PROCESSOR

description

The SMJ32020 Digital Signal Processor is a second-generation member of the SMJ320 group of military
VLSI digital signal processors and peripherals. The SMJ32020 supports a wide range of digital signal
processing applications, such as tactical communications, guidance, military modems, sonar, signal
processing/Al, image processing, speech processing, spectrum analysis, audio processing, digital filtering,
high-speed control, graphics, and other computation-intensive applications.

With a 200-ns instruction cycle time and an innovative memory configuration, the SMJ32020 performs
operations necessary for many realtime digital signal processing algorithms. Since most instructions require
only one cycle, the SMJ32020 is capable of executing five million instructions per second. On-chip data
RAM of 544 1 6-bit words, direct addressing of up to 64K words of external data memory space and 64K
words of external program memory space, and multiprocessor interface features for sharing memory
minimize unnecessary data transfers to take full advantage of the capabilities of the processor.

PGA/CLCC PIN ASSIGNMENTS

FUNCTION PIN FUNCTION PIN FUNCTION PIN FUNCTION PIN FUNCTION PIN FUNCTION PIN

AO Kl/26 A12 KB/40 D2 El/16 D14 A5/3 INT2 Hl/22 Vee H2/23
Al K2/28 A13 L9/41 D3 D2/15 D15 66/2 iS Jl 1/46 Vee L6/35

A2 L3/29 A14 K9/42 D4 Dl/14 DR Jl/24 Vee A6/1 · Vss Bl/10

A3 K3/30 A15 Ll0/43 D5 C2/13 BS Kl0/45 MSC Cl0/59 Vss Kl 1/44

A4 L4/31 BIO 87/68 D6 Cl/12 DX El 1/54 i5S Jl0/47 Vss L2/27

A5 K4/32 BR Gl 1/50 D7 82/11 FSR J2/25 READY 88/66 XF Dl 1/56

A6 L5/33 CLKOUTl Cl 1/58 DB A2/9 FSX Fl0/53 RS AB/65 Xl Gl0/51

A7 K5/34 CLKOUT2 Dl0/57 D9 83/8 HOLD A7/67 R/W Hl 1/48 X2/CLKIN Fl 1/52

AB K6/36 CLKR 89/64 DlO A3/7 HOLDA El0/55 STAB Hl0/49

A9 L7/37 CLKX A9/63 Dll 84/6 IACK 811/60 SYNC F2/19

AlO K7/38 DO Fl/18 D12 A4/5 INTO Gl/20 Vee Al0/61

All LB/39 Dl E2/17 D13 85/4 INTl G2/21 vcc 810/62

TEXAS.
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001

SIGNALS 1101zt

Vee I

Vss I

X1 0

X2/CLKIN I

CLKOUT1 0

CLKOUT2 0

D15-DO I/Oil

A15-AO Oil

PS, DS, iS O/Z

R/W Oil

STRB Oil

iiS I

INT2-INTO I

MSC 0

IACK 0

READY I

6R 0

XF 0

HOLD I

HOLDA 0

SYNC I

BIO I

DR I

CLKR I

FSR I

DX Oil

CLKX I

FSX 110/l

PIN NOMENCLATURE

OEFINITION

5-V supply pins

Ground pins

Output from internal oscillator for crystal

Input to internal oscillator from crystal or external clock

Master clock output (crystal or CLKIN frequency/4)

A second clock output signal

SMJ32020
DIGITAL SIGNAL PROCESSOR

16-bit data bus 015 (MSB) through DO (LSB). Multiplexed between program, data, and 1/0 spaces.

16-bit address bus A 15 IMSBI through AO ILSBI

Program, data, and 1/0 space select signals

Read/write signal

Strobe signal

Reset input

External user interrupt inputs

Microstate complete signal

Interrupt acknowledge signal

Data ready input. Asserted by external logic when using slower devices to indicate that the current bus

transaction is complete.

Bus request signal. Asserted when the SMJ32020 requires access to an external global data memory

space.

External flag output (latched software-programmable signal)

Hold input. When asserted, SMJ32020 goes into an idle mode and places the data, address, and

control lines in the high Impedance state.

Hold acknowledge signal

Synchronization input

Branch control input. Polled by BIOZ instruction.

Serial data receive input

Clock for receive input for serial port

Frame synchronization pulse for receive input

Serial data transmit output

Clock for transmit output for serial port

Frame synchronization pulse for transmit. Configurable as either an input or an output.

t1;01z denotes input/output/high-impedance state.

TEXAS.
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001

B-3

SMJ32020
DIGITAL SIGNAL PROCESSOR

functional block diagram

RtW

STiiii
READY

iiR
XF

iiOlD
HOUiA

MSc"
iiiii
Rs

IACK

A15-AO

015-00

8-4

16

16 16

DATA RAM
BLOCK B1

1256 x 16)

16

PROGRAM BUS

16

IRl16J

ST0116)

ST1116J

RPTCIBJ

IFRl6)

16

16

16
DRRl161

16
DXRl16)

16
TIMl161

PRDl16J
6

IMRl6}

GREGl8J

PROGRAM BUS

16

SHIFTERI0-161

7 LSB
FROM IR

16

TEXAS~
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

16

TR(16)

MULTIPLIER

32

ACCH(16) ACCL(16)

32

SHIFTERS(O, 1.41

16

DR

CLKR
FSR

DX

CLKX

FSX

architecture

SMJ32020
DIGITAL SIGNAL PROCESSOR

The SMJ32020 architecture is based upon that of the TMS32010, a first-generation member of the TMS320
family. The SMJ32020 increases performance of DSP algorithms through innovative additions to the TMS
architecture. SMJ32010 source code is upward-compatible with SMJ32020 source code and can be
assembled using the TMS32020 Macro Assembler.

Increased throughput on the SMJ32020 for many DSP applications is accomplished by means of single­
cycle multiply/accumulate instructions with a data move option, five auxiliary registers with a dedicated
arithmetic unit, and faster 1/0 necessary for data-intensive signal processing.

The architectural design of the SMJ32020 emphasizes overall speed, communication, and flexibility in
processor configuration. Control signals and instructions provide floating-point support, block-memory
transfers, communication to slower off-chip devices, and multiprocessing implementations.

Two large on-chip RAM blocks, configurable either as separate program and data spaces or as two
contiguous data blocks, provide increased flexibility in system design. Maintaining program memory off­
chip allows large address spaces from which large programs of up to 64K words can operate at full speed.
Programs can also be downloaded from slow external memory to high-speed on-chip RAM. A 64K-word
data memory address space is included to facilitate implementation of DSP algorithms. The VLSI
implementation of the SMJ32020 incorporates all of these features as well as many others, such as a
hardware timer, serial port, and block data transfer capabilities.

32-bit ALU/accumulator

The 32-bit Arithmetic Logic Unit (ALU) and accumulator perform a wide range of arithmetic and logical
instructions, the majority of which execute in a single clock cycle. The ALU executes a variety of branch
instructions dependent on the status of the ALU or a single bit in a word. These instructions provide the
following capabilities:

Branch to an address specified by the accumulator
• Normalize fixed-point numbers contained in the accumulator
• Test a specified bit of a word in data memory.

One input to the ALU is always provided from the accumulator, and the other input may be provided from
the Product Register (PR) of the multiplier or the input scaling shifter which has fetched data from the
RAM on the data bus. After the ALU has performed the arithmetic or logical operations, the result is stored
in the accumulator.

The 32-bit accumulator is split into two 16-bit segments for storage in data memory. Additional shifters
at the output of the accumulator perform shifts while the data is being transferred to the data bus for
storage. The contents of the accumulator remain unchanged.

scaled shifter

The SMJ32020 scaling shifter has a 16-bit input connected to the data bus and a 32-bit output connected
to the ALU. The scaling shifter produces a left shift of 0 to 16 bits on the input data, as programmed
in the instruction. The LSBs of the output are filled with zeroes, and the MSBs may be either filled with
zeroes or sign-extended, depending upon the status programmed into the SXM (sign-extension mode) bit
of status register STO.

TEXAS " INSTRUMENTS
POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

B-5

B-6

SMJ32020
DIGITAL SIGNAL PROCESSOR

16 x 16-bit parallel multiplier

The SMJ32020 has a two's-complement 16 x 16-bit hardware multiplier, which is capable of computing
a 32-bit product in a single machine cycle. The multiplier has the following two associated registers:

• A 16-bit Temporary Register (TR) that holds one of the operands for the multiplier, and
• A 32-bit Product Register (PR) that holds the product.

Incorporated in the instruction set are single-cycle multiply/accumulate instructions that allow both operands
to be processed simultaneously. The data for these operations resides in the on-chip RAM blocks and can
be transferred to the multiplier each cycle via the program and data buses.

Four product shift modes are available at the Product Register (PR) output that are useful when performing
multiply/accumulate operations, fractional arithmetic, or justifying fractional products.

timer

The SMJ32020 provides a memory-mapped 16-bit timer for control operations. The on-chip timer (TIM)
register is a down counter that is continuously clocked by an internal clock. This clock is derived by dividing
the CLKOUT1 frequency by 4. A timer interrupt (TINT) is generated every time the timer decrements to
zero. The timer is reloaded with the value contained in the period (PRO) register within the same cycle
that it reaches zero so that interrupts may be programmed to occur at regular intervals of 4 x (PRO) cycles
of CLKOUT1.

memory control

The SMJ32020 provides a total of 544 16-bit words of on-chip data RAM, divided into three separate
blocks (BO, B1, and B2). Of the 544 words, 288 words (blocks B1 and B2) are always data memory, and
256 words (block BO) are programmable as either data or program memory. A data memory size of 544
words allows the SMJ32020 to handle a data array of 512 words (256 words if on-chip RAM is used
for program memory), while still leaving 32 locations for intermediate storage. When using block BO as
program memory, instructions can be downloaded from external program memory into on-chip RAM and
then executed.

When using on-chip program RAM or high-speed external program memory, the SMJ32020 runs at full
speed without wait states. However, the READY line can be used to interface the device to slower, less­
expensive external memory. Downloading programs from slow off-chip memory to on-chip program RAM
speeds processing while cutting system costs.

The SMJ32020 provides three separate address spaces for program memory, data memory, and 1/0. The
on-chip memory is mapped into either the 64K-word data memory or program memory space, depending
upon the memory configuration. The CNFD (configure block BO as data memory) and CNFP (configure
block BO as program memory) instructions allow dynamic configuration of the memory maps through
software. Regardless of the configuration, the user may still execute from external program memory.

Six registers are mapped into the data memory space: a serial port data receive register, serial port data
transmit register, timer register, period register, interrupt mask register, and global memory allocation
register.

TEXAS 'f
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001

0(>0000)

31(>001Fl
32(>0020)

65,535(>ffff)

0(>0000)

31t>001Fl
32(>0020)

65.279(>FEFFI
65,280(> FFOOI

65.535(>ffff)

PROGRAM

INTERRUPTS
AND RESERVED

(EXTERNAL)

EXTERNAL

PROGRAM

INTERRUPTS
AND RESERVED

(EXTERNAL)

EXTERNAL

ON-CHIP
BLOCK BO

DATA
0(>0000)

ON-CHIP
MEMORY-MAPPED

REGISTERS
5(>0005)
6(>0006)

RESERVED
95(>005f)
96(>0060) ON-CHIP

127(>007f)
BLOCK B2

128(>0080)
RESERVED

511(>01Ffl
512(>0200) ON-CHIP

767(>02FF)
BLOCK BO

768(>0300) ON-CHIP

1023(> 03ff) BLOCK Bl

1024(>0400)
EXTERNAL

65,535(>Ff ff)

SMJ32020
DIGITAL SIGNAL PROCESSOR

110

or-::::1
15~

~ PAGE 0

~ PAGES 1-3

;.. PAGES 4-5

~ PAGES 6-7

;.. PAGES 8-511

(a) ADDRESS MAPS AFTER A CNFD INSTRUCTION

0(>0000)

5(>0005)
6(>0006)

95(>005f)
96(>0060)

127(>007Fl
128(>0080)

511(>01Ffl
512(>0200)

767(>02Ffl
768(>0300)

1023(>03Ffl
1024(>0400)

66,535(> Ffffl

DATA

ON-CHIP
MEMORY-MAPPED

REGISTERS

RESERVED
~

ON-CHIP
BLOCK 82

RESERVED ~

DOES NOT
~ EXIST

ON-CHIP
~ BLOCK B1

EXTERNAL ~

(bl ADDRESS MAPS AFTER A CNFP INSTRUCTION

FIGURE 1. MEMORY MAPS

TEXAS ..
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

1/0

or-::::1
15~

PAGE 0

PAGES 1-3

PAGES 4-5

PAGES 6-7

PAGES 8-511

B-7

B-8

SMJ32020
DIGITAL SIGNAL PROCESSOR

interrupts and subroutines

The SMJ32020 has three external maskable user interrupts INT2-INTO, available for external devices
that interrupt the processor. Internal interrupts are generated by the serial port (RINT and XINT), by the
timer (TINT), and by the software interrupt (TRAP) instruction. Interrupts are prioritized with reset (RS) having
the highest priority and the serial port transmit interrupt (XINT) having the lowest priority. All interrupt
locations are on two-word boundaries so that branch instructions can be accommodated in those locations
if desired.

A built-in mechanism protects multicycle instructions from interrupts. If an interrupt occurs during a
multicycle instruction, the interrupt is not processed until the instruction is completed. This mechanism
applies both to instructions that are repeated or become multicycle due to the READY signal.

external interface

The SMJ32020 supports a wide range of system interfacing requirements. Program, data, and 1/0 address
spaces provide interface to memory and 1/0, thus maximizing system throughput. 1/0 design is simplified
by having 1/0 treated the same way as memory. 1/0 devices are mapped into the 1/0 address space using
the processor's external address and data buses in the same manner as memory-mapped devices. Interface
to memory and 1/0 devices of varying speeds is accomplished by using the READY line. When transitions
are made with slower devices, the processor waits until the other device completes its function and signals
the processor via the READY line. Then, the SMJ32020 continues execution.

A serial port provides communication with serial devices, such as codecs, serial A/D converters, and other
serial systems. The interface signals are compatible with codecs and many other serial devices with a
minimum of external hardware. The serial port may also be used for intercommunication between processors
in multiprocessing applications.

The serial port has two memory-mapped registers: the data transmit register (DXR) and the data receive
register (DRR). Both registers operate in either the byte mode or 16-bit word mode, any may be accessed
in the same manner as any other data memory location. Each register has an external clock, a framing
synchronization pulse, and associated shift registers. One method of multiprocessing may be implemented
by programming one device to transmit while the others are in the receive mode.

multiprocessing

The flexibility of the SMJ32020 allows configurations to satisfy a wide range of system requirements and
can be used as follows:

A standalone processor
A multiprocessor with devices in parallel
A slave/host multiprocessor with global memory space
A peripheral processor interfaced via processor-controlled signals to another device.

For multiprocessing applications, the SMJ32020 has the capability of allocating global data memory space
and communicating with that space via the BR (bus request) and READY control signals. Global
memory is data memory shared by more than one processor. Global data memory access must be arbitrated.
The 8-bit memory-mapped GREG (global memory allocation register) specifies part of the SMJ32020's
data memory as global external memory. The contents of the register determine the size of the global
memory space. If the current instruction addresses an operand within that space, BR is asserted to request
control of the bus. The length of the memory cycle is controlled by the READY line.

The SMJ32020 supports DMA (direct memory access) to its external program/data memory using the
HOLD and HOLDA signals. Another processor can take complete control of the SMJ32020's external
memory by asserting HOLD low. This causes the SMJ32020 to place its address, data, and control
lines in a high-impedance state, and assert HOLDA.

TEXAS '1J
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

instruction set

SMJ32020
DIGITAL SIGNAL PROCESSOR

The SMJ32020 microprocessor implements a comprehensive instruction set that supports both numeric­
intensive signal processing operations as well as general-purpose applications, such as multiprocessing
and high-speed control. The SMJ32010 source code is upward-compatible with SMJ32020 source code.

For maximum throughput, the next instruction is prefetched while the current one is being executed. Since
the same data lines are used to communicate to external data/program or 1/0 space, the number of cycles
may vary depending upon whether the next data operand fetch is from internal or external program memory.
Highest throughput is achieved by maintaining data memory on-chip and using either internal or fast external
program memory.

addressing modes

The SMJ32020 instruction set provides three memory addressing modes: direct, indirect, and immediate
addressing.

Both direct and indirect addressing can be used to access data memory. In direct addressing, seven bits
of the instruction word are concatenated with the nine bits of the data memory page pointer to form the
16-bit data memory address. Indirect addressing accesses data memory through the five auxiliary registers.
In immediate addressing, the data is based on a portion of the instruction wordls).

In direct memory addressing, the instruction word contains the lower seven bits of the data memory address.
This field is concatenated with the nine bits of the data memory page pointer to form the full 16-bit address.
Thus, memory is paged in the direct addressing mode with a total of 512 pages, each page containing
128 words.

Five auxiliary registers IARO-AR4) provide flexible and powerful indirect addressing. To select a specific
auxiliary register, the Auxiliary Register Pointer (ARP) is loaded with either 0, 1, 2, 3, or 4 for ARO through
AR4, respectively.

There are five types of indirect addressing: auto-increment or auto-decrement, post-indexing by either adding
or subtracting the contents of ARO, or single indirect addressing with no increment or decrement. All
operations are performed on the current auxiliary register in the same cycle as the original instruction,
followed by a new ARP value being loaded.

repeat feature

A repeat feature, used with instructions such as multiply/accumulates, block moves, 1/0 transfers, and
table read/writes, allows a single instruction to be performed up to 256 times. The repeat counter IRPTC)
is loaded with either a data memory value IRPT instruction) or an immediate value IRPTK instruction). The
value of this operand is one less than the number of times that the next instruction is executed. Those
instructions that are normally multicycle are pipelined when using the repeat feature, and effectively become
single-cycle instructions.

instruction set summary

Table 1 lists the symbols and abbreviations used in Table 2, the instruction set summary. Table 2 consists
primarily of single-cycle, single-word instructions. Infrequently used branch, 1/0, and CALL instructions
are multicycle. The instruction set summary is arranged according to function and alphabetized within each
functional grouping. The symbol It) indicates those instructions that are not included in the SMJ32010
instruction set.

TEXAS -IJ1
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

B-9

SMJ32020
DIGITAL SIGNAL PROCESSOR

SYMBOL

B

CM
D

FO
I

K

PA

PM

R

s
x

B-10

TABLE 1. INSTRUCTION SYMBOLS

MEANING

4-bit field specifying a bit code

2-bit field specifying compare mode

Data memory address field

Format status bit

Addressing mode bit

Immediate operand field

Port address (PAO through PA 15 are predefined

assembler symbols equal to 0 through 15,

respectively).

2-bit field specifying P register output shift code

3-bit operand field specifying auxiliary register

4-bit left-shift code

3-bit accumulator left-shift field

TEXAS.,,
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001

MNEMONIC

ABS

ADD

ADDH

ADDS

ADDT1

ADLK1

AND

ANDK1

CMPL1

LAC

LACK

LACT1

LALK1

NEG1

NORM1

OR

ORK1

SACH

SACL

SBLK1

SFL 1

SFR1

SUB

SUBC

SUBH

SUBS

suBrt

XOR

XORK1

ZAC

ZALH

ZALS

SMJ32020
DIGITAL SIGNAL PROCESSOR

TABLE 2. INSTRUCTION SET SUMMARY

ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS

NO. INSTRUCTION BIT CODE
DESCRIPTION

WORDS
151413121110 9 8 7 6 5 4 3 2 1 0

Absolute value of accumulator 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1

Add to accumulator with shift 1 0 0 0 0 -s- I -D-

Add to high accumulator 1 0 1 0 0 1 0 0 0 I -D-

Add to low accumulator with 1 0 1 0 0 1 0 0 1 I -a-
sign extension suppressed

Add to accumulator with shift specified by 1 0 1 0 0 1 0 1 0 I -D-

T register

Add to accumulator long immediate with shift 2 1 1 0 1 -s- 0 0 0 0 0 0 1 0

AND with accumulator 1 0 1 0 0 1 1 1 0 I -D-

AND immediate with accumulator with shift 2 1 1 0 1 -s- 0 0 0 0 0 1 0 0

Complement accumulator 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1

Load accumulator with shift 1 0 0 1 0 -s- I -D-

Load accumulator immediate short 1 1 1 0 0 1 0 1 0 -K-

Load accumulator with shift specified by T register 1 0 1 0 0 0 0 1 0 I -a-
Load accumulator long immediate with shift 2 1 1 0 1 -s- 0 0 0 0 0 0 0 1

Negate accumulator 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 1 1

Normalize contents of accumulator t 1 1 0 0 1 1 1 0 1 0 1 0 0 0 1 0

OR with accumulator 1 0 1 0 0 1 1 0 1 I -D-

OR immediate with accumulator with shift 2 1 1 0 1 -s- 0 0 0 0 0 1 0 1

Store high accumulator with shift 1 0 1 1 0 1 +-X-+ I -D-

Store low accumulator with shift 1 0 1 1 0 0 +-X-+ I -D-

Subtract from accumulator long immediate with

shift 2 1 1 0 1 -s- 0 0 0 0 0 0 1 1

Shift accumulator left 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 0

Shift accumulator right 1 1 1 0 0 1 1 1 0 0 0 0 1 1 0 0 1

Subtract from accumulator with shift 1 0 0 0 1 -s- I -a-
Conditional subtract 1 0 1 0 0 0 1 1 1 I -D-

Subtract from high accumulator 1 0 1 0 0 0 1 0 0 I -D-

Subtract from low accumulator with sign 1 0 1 0 0 0 1 0 1 I -a-
extension suppressed

Subtract from accumulator with shift specified by 1 0 1 0 0 0 1 1 0 I -D-

T register

Exclusive-OR with accumulator 1 0 1 0 0 1 1 0 0 I -D-

Exclusive-OR immediate with accumulator with shift 2 1 1 0 1 -s- 0 0 0 0 0 1 1 0

Zero accumulator 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0

Zero low accumulator and load high accumulator 1 0 1 0 0 0 0 0 0 I -D-

Zero accumulator and load low accumulator with 1 0 1 0 0 0 0 0 1 I -a-
sign extension suppressed

trhese instructions not included in the SMJ32010 instruction set.

TEXAS..,,
INSTRUMENTS

POST OFF!CE BOX 1443 • HOUSTON, TEXAS 77001

B-11

SMJ32020
DIGITAL SIGNAL PROCESSOR

TABLE 2. INSTRUCTION SET SUMMARY !CONTINUED)

AUXILIARY. REGISTERS AND DATA PAGE POINTER INSTRUCTIONS

NO. INSTRUCTION BIT CODE
MNEMONIC DESCRIPTION

WORDS
151413121110 9 8 7 6 5 4 3 2 1 0

CMPR1 Compare auxiliary register with auxiliary register ARO 1 1 1 0 0 1 1 1 0 0 1 0 1 0 O~CM,.

LAR Load auxiliary register 1 0 0 1 1 0 .__R_,.. I -o-

LARK Load auxiliary register immediate short 1 1 1 0 0 0 .__R_,.. -K-

LARP Load auxiliary register pointer 1 0 1 0 1 0 1 0 1 1 0 0 0 1 .__R_,..

LOP Load data memory page pointer 1 0 1 0 1 0 0 1 0 I -o-

LDPK Load data memory page pointer immediate 1 1 1 0 0 1 0 0 K

LRLK t Load auxiliary register long immediate 2 1 1 0 1 0 .__R-+ 0 0 0 0 0 0 0 0

MAR Modify auxiliary register 1 0 1 0 1 0 1 0 1 I ~--D___.

SAR Store auxiliary register 1 0 1 1 1 0 .__R_,.. I -o-

T REGISTER. P REGISTER. AND MULTIPLY INSTRUCTIONS

NO. INSTRUCTION BIT CODE
MNEMONIC DESCRIPTION

WORDS
151413121110 9 8 7 6 5 4 3 2 1 0

APAC Add P register to accumulator 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 1

LPH1 Load high P register 1 0 1 0 1 0 0 1 1 I -o---

LT Load T register 1 0 0 1 1 1 1 0 0 I -o-

LTA Load T register and accumulate previous product 1 0 0 1 1 1 1 0 1 I -o-

LTD Load T register, accumulate previous product, 1 0 0 1 1 1 1 1 1 I -o-
and move data

LTP1 Load T register and store P register in accumulator 1 0 0 1 1 1 1 1 0 I -o-
LTS1 Load T register and subtract previous product 1 0 1 0 1 1 0 1 1 I -o-
MAC! Multiply and accumulate 2 0 1 0 1 1 1 0 1 I -o-

MAcot Multiply and accumulate with data move 2 0 1 0 1 1 1 0 0 I -o-

MPV Multiply (with T register, store product in P register) 1 0 0 1 1 1 0 0 0 I -o-

MPYK Multiply immediate 1 1 0 1 ----K

PAC Load accumulator with P register 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1. 0 0

SPAC Subtract P register from accumulator 1 1 1 0 0 1 1 1 0 0 0 0 1 0 1 1 0

SPMt Set P register output shift mode 1 1 1 0 0 1 1 1 0 0 0 0 0 1 O• PM,.

SQRA1 Square and accumulate 1 0 0 1 1 1 0 0 1 I -o-

SORSt Square and subtract previous product 1 0 1 0 1 1 0 1 0 I -o-
trhese instructions not included in the SMJ32010 instruction set.

B-12 TEXAS""'
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001

MNEMONIC

B

BAcct

BANZ

BBNzt

BBzt

BGEZ

BGZ

BIOZ

BLEZ

BLZ

BNVI

BNZ

BV

BZ

CALA

CALL

RET

MNEMONIC

BIT!

BITTt

CNFD1

CNFP1

DINT

EINT

IDLE!

LST

LST1 t

NOP

POP

POPDt

PSHDl

PUSH

ROVM

RPTt

RPTKt

RSXMt

SOVM

SST

SSTtl

ssxMt

TRAP!

SMJ32020
DIGITAL SIGNAL PROCESSOR

TABLE 2. INSTRUCTION SET SUMMARY (CONTINUED)

BRANCH CALL INSTRUCTIONS

NO. INSTRUCTION BIT COOE
OESCRIPTION

WORDS
151413121110 9 8 7 6 5 4 3 2 1 0

Branch unconditionally 2 1 1 1 1 1 1 1 1 1 -o-
Branch to address specified by accumulator 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 1

Branch on auxiliary register not zero 2 1 1 1 1 1 0 1 1 1 -o-
Branch if TC bit * 0 2 1 1 1 1 1 0 0 1 1 -o-
Branch if TC bit = 0 2 1 1 1 1 1 0 0 0 1 -D-
Branch if accumulator 2: 0 2 1 1 1 1 0 1 0 0 1 -o-
Branch if accumulator > 0 2 1 1 1 1 0 0 0 1 1 -o-
Branch on 1/0 status = 0 2 1 1 1 1 1 0 1 0 1 -D-
Branch if accumulator :s 0 2 1 1 1 1 0 0 1 0 1 -o-
Branch if accumulator < 0 2 1 1 1 1 0 0 1 1 1 -o-
Branch if no overflow 2 1 1 1 1 0 1 1 1 1 -o-
Branch if accumulator * 0 2 1 1 1 1 0 1 0 1 1 -o-
Branch on overflow 2 1 1 1 1 0 0 0 0 1 -o-
Branch if accumulator = 0 2 1 1 1 1 0 1 1 0 1 -o-
Call subroutine indirect 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0
Call subroutine 2 1 1 1 ,. 1 1 1 0 1 -o-
Return from subroutine 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 1 0

CONTROL INSTRUCTIONS

NO. INSTRUCTION BIT CODE
DESCRIPTION

WORDS
151413121110 9 8 7 6 5 4 3 2 1 0

Test bit 1 1 0 0 1 -s- I -o-
Test bit specified by T register 1 0 1 0 1 0 1 1 1 I -o-
Configure block as data memory 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0
Configure block as program memory 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 0 1

Disable interrupt 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1

Enable interrupt 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0

Idle until interrupt 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 1

Load status register STO 1 0 1 0 1 0 0 0 0 I -o-
Load status register ST1 1 0 1 0 1 0 0 0 1 I -D-

No operation 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
Pop top of stack to low accumulator 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 1

Pop top of stack to data memory 1 0 1 1 1 1 0 1 0 I -D-

Push data memory value onto stack 1 0 1 0 1 0 1 0 0 I -o-
Push low accumulator onto stack 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 0 0
Reset overflow mode 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 0
Repeat instruction as specified by data memory value 1 0 1 0 0 1 0 1 1 I -o-
Repeat instruction as specified by immediate value 1 1 1 0 0 1 0 1 1 -K-

Reset sign~extension mode 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0
Set overflow mode 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1

Store status register STO 1 0 1 1 1 1 0 0 0 I -D-

Store status register ST 1 1 0 1 1 1 1 0 0 1 I -D-

Set sign-extension mode 1 1 1 0 0 1 1 1 0 0 0 0 0 0 1 1 1

Software interrupt 1 1 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0

tThese instructions not included in the SMJ32010 instruction set.

TEXAS~
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001

B-13

SMJ32020
DIGITAL SIGNAL PROCESSOR

TABLE 2. INSTRUCTION SET SUMMARY (CONCLUDED}

·110 ANO DATA MEMORY OPERATIONS

MNEMONIC DESCRIPTION
NO. INSTRUCTION BIT CODE

WOROS
151413121110 9 8 7 6 5 4 3 2 1 0

BLKDT Block move from data memory to data- memory 2 1 1 1 1 1 1 0 1 I -o-
BLKP1 Block move from program memory to data memory 2 1 1 1 1 1 1 0 0 I -o-
DMOV Data move in data memory 1 0 1 0 1 0 1 1 0 I -o-
FORTI Format serial port registers 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 FO

IN Input data from port 1 1 0 0 0 -PA- I -o-
OUT Output data to port 1 1 1 1 0 "4---PA-+ I -o-
RTXM1 Reset serial port transmit mode 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0
RXFI Reset external flag 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0
STXMI Set serial port transmit mode 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 1

sxFt Set external flag 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 1

TBLR Table read 1 0 1 0 1 1 0 0 0 I -o-
TBLW Table write 1 0 1 0 1 1 0 0 1 I -o-

trhese instructions not included in the SMJ32010 instruction set.

B-14 TEXAS.
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

development support

SMJ32020
DIGITAL SIGNAL PROCESSOR

Texas Instruments offers an extensive line of development support products to assist the user in all aspects
of SMJ320 second-generation-based design and development. These products range from development
and application software to complete hardware development and evaluation systems such as the XDS/22.
Table 4 lists the development support products for the second-generation SMJ320 devices.

System development begins with the use of the SoftWare Development System (SWDS) or Emulator (XDS).
These tools allow the designer to evaluate the processor's performance, benchmark time-critical code,
and determine the feasibility of using a SMJ320 device to implement a specific algorithm.

Software and hardware can be developed in parallel by using the macro assembler/linker, simulator, and
SoftWare Development System for software development and the XDS for hardware development. The
assembler/linker translates the system's assembly source program into an object module that can be
executed by the simulator, XDS, or SWDS. The XDS provides realtime in-circuit emulation and is a powerful
tool for debugging and integrating software and hardware modules.

Additional support for the SMJ320 products consists of extensive documentation and three-day DSP design
workshops offered by the Tl Regional Technology Centers (RTCs). The workshops provide hands-on
experience with the TMS320 development tools. Refer to the TMS320 Family Development Support
Reference Guide for further information about TMS320 development support products and DSP workshops.
When technical questions arise regarding the TMS320, contact the Texas Instruments TMS320 Hotline,
(713) 274-2320.

TABLE 4. TMS320 SECOND-GENERATION SOFTWARE AND HARDWARE SUPPORT

SOFTWARE TOOLS PART NUMBER

Macro Assembler/Linker

VAX VMS TMDS3242210-08

Tl/IBM MS/PC-DOS TMDS3242810-02

Simulator

VAX VMS TMDS3242211-08

Tl/IBM MS/PC-DOS TMDS3242811-02

SoftWare Development System (SWDSJ TMDS3268821

Digital Filter Design Package (DFDPJ

IBM PC-DOS DFDP-IBM002

OSP Software Library

VAX VMS TMDC3240212-18

Tl/IBM MS/PC-DOS TMDC3240812-12

HARDWARE TOOLS PART NUMBER

Analog Interface Board (AIBl RTC/EVM320C-06

XDS/22 Emulator TMDS3262221

XDS/22 Upgrade

Customer Upgrade TMDS3282226

TMS320 Desill_n Kit TMS320DDK

TEXAS '1J
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

8-15

SMJ32020
DIGITAL SIGNAL PROCESSOR

documentation support

B-16

Extensive documentation supports the second-generation TMS320 devices from product announcement
through applications development. The types of documentation include data sheets with design
specifications, complete user's guides, and 750 pages of application reports published in the book, Digital
Signal Processing Applications with the TMS320 Family. An application report, Hardware Interfacing to
the TMS320C25, is available for that device.

A series of DSP textbooks is being published by Prentice-Hall and John Wiley & Sons to support digital
signal processing research and education. The TMS320 newsletter, Details on Signal Processing, is published
quarterly and distributed to update SMJ320 customers on product information. The TMS320 DSP bulletin
board service provides access to large amounts of information pertaining to the SMJ320 family.

Refer to the TMS320 Family Development Support Reference Guide for further information about SMJ320
documentation. To receive copies of second-generation TMS320 literature, call the Customer Response
Center at 1-800-232-3200.

TEXAS...,
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

SMJ32020
DIGITAL SIGNAL PROCESSOR

absolute maximum ratings over specified temperature range (unless otherwise noted) t

Supply voltage range, Vcct -0.3 V to 7 V
Input voltage range . . -0.3 V to 7 V
Output voltage range . -0.3 V to 7 V
Continuous power dissipation . 2.0 W
Minimum operating free-air temperature . - 55 °C
Maximum operating case temperature . . . 100°C
Storage temperature range . . . - 55 °C to 150 °C

t Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating
Conditions'' section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect
device reliability.

+All voltage values are with respect to V55.

recommended operating conditions

MIN NOM MAX UNIT

Vee Supply voltage 4.5 5 5.5 v
Vss Supply voltage 0 v

All inputs except CLKIN 2.2
V1H High-level input voltage v

CLKIN 2.6

All inputs except CLKIN 0.8
V1L Low-level input voltage v

CLKIN 0.8

IOH High-level output current 300 µA

IOL Low-level output current 2 mA

Tc Operating case temperature 100 oc

TA Operating free-air temperature -55 oc

electrical characteristics over specified free-air temperature range (unless otherwise noted)

PARAMETER TEST CONDITIONS MIN TYP§ MAX UNIT

VoH High-level output voltage Vee = MIN, loH = MAX 2.4 3 v
VOL Low-level output voltage Vee = MIN, loL = MAX 0.3 0.6 v
lz Three-state current Vee = MAX -20 20 µA

11 Input current V1 = Vss to Vee -10 10 µA

TA = -55°c. Vee = MAX, fx = MAX 400

ice Supply current TA = 25°C, Vee = MAX. fx = MAX 250 mA

Tc = 1oo•c. Vee =MAX. fx = MAX 285

C1 Input capacitance 15 pF

Co Output capacitance 15 pF

§All typical values are at Vee 5 V, TA 25°C.

·~ Caution. This device contains circuits to protect its inputs and outputs against damage due to high static voltages or electrostatic
fields. These circuits have been qualified to protect this device against electrostatic discharges (ESD) of up to 2 kV according

to MIL·STD-883e, Method 3015; however, it is advised that precautions be taken to avoid application of any voltage higher than maximum
rated voltages to these high-impedance circuits. During storage or handling, the device leads should be shorted together or the device
should be placed in conductive foam. In a circuit, unused inputs should always be connected to an appropriate logic voltage level, preferably
either Vee or ground. Specific guidelines for handling devices of this type are contained in the publication ''Guidelines for Handling Electrostatic­
Oischarge Sensitive (ESOS) Devices and Assemblies" available from Texas Instruments.

TEXAS.,,
INSTRUMENTS

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

B-17

SMJ32020
DIGITAL SIGNAL PROCESSOR

CLOCK CHARACTERISTICS AND TIMING

The SMJ32020 can use either its internal oscillator or an external frequency source for a clock.

internal clock option

Ix

fsx

The internal oscillator is enabled by connecting a crystal across X 1 and X2/CLKIN (see Figure 2). The
frequency of CLKOUT1 is one-fourth the crystal fundamental frequency. The crystal should be fundamental
mode, and parallel resonant, with an effective series resistance of 30 ohms, a power dissipation of 1 mW,
and be specified at a load capacitance of 20 pf.

PARAMETER TEST CONOITIONS MIN TYP MAX UNIT
Input clock frequency

-55°C MIN
6.7 20 MHz

Serial port frequency
TA ~

417.5 2500 kHz
Tc ~ 1oo•c MAX

Cl, C2 10 pF

X1

CRYSTAL

D

FIGURE 2. INTERNAL CLOCK OPTION

external clock option

An external frequency source can be used by injecting the frequency directly into X2/CLKIN with X 1 left
unconnected. The external frequency injected must conform to the specifications listed in the following table.

switching characteristics over recommended operating conditions (see Note 1)

PARAMETER

tclCI CLKOUTl /CLKOUT2 cycle time

td(CIH-CI CLKIN high to CLKOUTl /CLKOUT2/STRB high/low

t11c1 CLKOUTl /CLKOUT2/STRB fall time

trlCI CLKOUTl /CLKOUT2/STRB rise time

tw(CLI CLKOUTl /CLKOUT2 low pulse duration

twlCHI CLKOUTl /CLKOUT2 high pulse duration

td(C1-C21 CLKOUTl high to CLKOUT2 low, CLKOUT2 high to CLKOUTl high, etc.

NOTE 1: 0 ~ 1 /4tc(C)·

B-18 TEXAS -1/J
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001

MIN

200

15

20-15

20-15

0-10

TYP MAX UNIT

600 ns

50 ns

10 ns

10 ns

20 20+15 ns

20 20+15 ns

0 0+10 ns

SMJ32020
DIGITAL SIGNAL PROCESSOR

timing requirements over recommended operating conditions (see Note 1)

MIN NOM MAX

tc(Cll CLKIN cycle time 50.0 150

tw{CILI CLKIN low pulse duration, tc(Cll = 50 ns {see Note 21 20

tw(CIHI CLKIN high pulse duration. tc(Cll = 50 ns (see Note 21 20

tsulSI SYNC setup time before CLKIN low 10

th{SI ~ hold time from CLKIN low 20-10

NOTES: 1. Q = 114tc{CI.
2. CLKIN duty cycle ltr(Cll + tw{CIHliltc{Cll must be within 40-60%. Rise and fall times must be less than 10 ns.

2.165 v

FROM OUTPUT + 75!1

UNDER TEST TEST
POINT

I CL= 100pf

':'

FIGURE 3. TEST LOAD CIRCUIT

'"1---~ 1.aav- ---~- --- - V1HIMINJ

0.92 v-
o.ao v- --- ====== V1LIMAX)

0

la) INPUT

Wd--~--- 'oHIMINl 2.ov- ---- --- -
O.BV -- ---- -
0.6 V - Vol IMAX)

0

lbl OUTPUTS

FIGURE 4. VOLTAGE REFERENCE LEVELS

TEXAS.
INSTRUMENlS

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001

UNIT

ns

ns

ns

ns

ns

B-19

SMJ32020
DIGITAL SIGNAL PROCESSOR

clock timing

X2/CLKIN

CLKOUT1 -----1
I

i'+ I
1-J_ I I ~ tdlCIH-CI I

CLKOUT2
ltdtC1-C2J -ie---41'---t::=:~

I I
lie•---<•otl-td(C1-C2l

B-20 TEXAS.
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001

SMJ32020
DIGITAL SIGNAL PROCESSOR

MEMORY AND PERIPHERAL INTERFACE TIMING

switching characteristics over recommended operating conditions (see Note 1 I

PARAMETER

tdlCl-SI STAB from CLKOUT1 (if STAB is present)

td(C2-SI CLKOUT2 to STRB lif STAB is present)

tsu(A) Address setup time before STAB low (see Note 3)

th(Al Address hold time after STAB high (see Note 3)

twlSLI STAB low pulse duration (no wait states, see Note 4)

twlSHI STAB high pulse duration (between consecutive cycles, see Note 4)

tsulDIW Data write setup time before STAB high (no wait states)

th(D)W Data write hold time from STAB high

ten I DI Data bus starts being driven after STAB low (write cycle)

td1slDI Data bus three-state after STAB high (write cycle)

td(MSCI MSC valid from CLKOUT1

trhese values were derived from characterization data and are not tested.
NOTES: 1. 0 ~ 1 /4tclCI.

MIN

0-25

-15

0·-35

0-15

20-45

0-15

o1

-25

3. A15-AO, PS, ITS, TS, R/W, and BR timings are all included in timings referenced as "address."

TVP MAX UNIT

0 0+25 ns

0 15 ns

ns

ns

20 ns

20 ns

ns

0 ns

ns

0 0+301 ns

0 25 ns

4. Delays between CLKOUT1/CLKOUT2 edges and STRB edges track each other, resulting in tw(Sl) and tw(SH) being 20
with no wait states.

timing requirements over recommended operating conditions (see Note 1 I

t!!l_& Read data access time from address time (read cycle, see Notes 3 and 5)

ts\!J_QLR Data read setup time before STAB high

tlJ.j_Ql_R Data read hold time from STRB high

t<jlSL-fil_ READY valid after STAB low (no wait states)

t<jlC2H-fil_ READY valid after CLKOUT2 high

tbJSL-fll_ READY hold time after STRB low (no wait states)

tlJ.j_C2H-fil_ READY hold after CLKOUT2 high

tdJM-F!L READY valid after MSC valid

tlJ.j_M-fil_ READY hold time after MSC valid

trhese values were derived from characterization data and are not tested.
NOTES: 1. 0 ~ 1/4tc(C).

MIN NOM

40

0

0-5

0-51

01

3. A 15-AO, PS, DS, iS, R/W, and BR timings are all included in timings referenced as "address."
5. Read data access time is defined as ta(A) = tsu(A) + tw(SL) - tsu(D)R·

TEXAS.,,
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001

MAX UNIT

30-75 ns

ns

ns

0-40 ns

0-401 ns

ns

ns

20-501 ns

ns

B-21

SMJ32020
DIGITAL SIGNAL PROCESSOR

memory read timing

memory write timing

B-22

oo----tcl(C1-SI

CLKOUT1

I ~ tcl(C1·SI

CLKOUT2 \,_ ___ _,(: ! \ ! /
tc11c2-s1 -*--! iH- ld(C2-SI

)- /r tw1sH1 -4
lsu(AI 11• ---ii I I

,.._- lw(SLI I i.-.-.i,.. lh(AI

~.!/itY>i. VALID
OR iS

I

R/W --
READY

D15-DO

CLKOUT1

CLKOUT2 I \
'~~~__, ~~~__,/

A15-AO,
iii.ff.as.
OR iS

R/W

READY

D15-00

\ __ ___,A '
lsu(AI r lh(AI

TEXAS.
INSTRUMENTS

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001

SMJ32020
DIGITAL SIGNAL PROCESSOR

one wait-state memory access timing

CLKOUT1

CLKOUT2

A15-AO.llii.
P5.i5S.RiW.
ORIS

READY

D15-DO
(FOR READ
OPERATION!

015-00
(FOR WRITE
OPERATION)

) /: \ I _
I I

!/ii\ j \ ___ _
I I i i I

i ~ I i I /
i i ! H lh(C2H-Rl

~~~j--= 
1d(M-Rl i• " I I ld(M-Rl I lh(M-Rl 

i I ---+; h lh(M-Rl I i i fDAfA\>----
1 I I I I I '--.!!L.J 
I I I I I I i I I I I I 

: i .Ml DATA OUT • 
11 ~ I I 

I I I I I I 

• ~ +..... 
--.: jt- ld(MSC) I I 

-+l !°"" ld(MSC) 

TEXAS~ 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001 

B-23 



SMJ32020 
DIGITAL SIGNAL PROCESSOR 

RS, INT, BIO, AND XF TIMING 

switching characteristics over recommended operating conditions (see Notes 1 and 61 
PARAMETER MIN TYP MAX UNIT 

ld(RS) CLKOUTl low to reset state entered 45t ns 

ldOACK) CLKOUTl to ~ valid -25 0 25 ns 

td(XF) XF valid before falling edge of ~ Q-35 ns 

tThese values were derived from characterization data and are not tested. 
NOTES: 1. Q = 1 /4tc(Cl:__ 

6 'Fm', ffiif, and BIO are asynchronous inputs and can occur at any time during a clock cycle. However, if the specified setup 
time is met, the exact sequence shown in the timing diagrams will occur. iNT/BiO fall time must be less than 10 ns. 

timing requirements over recommended operating conditions (see Notes 1 and 61 

MIN NOM MAX UNIT 

tsullNI Tfil'f/111~~ setup before CLKOUTl high 50 ns 

tlillNI Tfil'f/lil~/li!i hold after CLKOUT1 high 0 ns 

tw(IN) TfilT /Iii~ low pulse dura~ion tc(Cl ns 

tw(RS) A! low pulse duration 3tc(Cl ns 

NOTES: 1. Q = 1 /4tc(Cl:__ 
6. A'S, INT, and BIO are asynchronous inputs and can occur at any time during a clock cycle. However, if the specified setup 

time is met, the exact sequence shown in the timing diagrams will occur. TNT/BiO fall time must be less than 10 ns. 

tcontrol signals are OS, iS; R/W anq XF. 
*serial port controls are DX and FSX. 

B-24 TEXAS""' 
INSTRUMENTS 

POST OFFICE BOX 1443' e HOUSTON. TEXAS 77001 



interrupt timing 

CLKOUT1 

INT2-INTO 

A15-AO 

IACK 

BIO timing 

CLKOUT1 

A15-AO 

PC=N 
I 
I 

•suUNI~ 

• 

SMJ32020 
DIGITAL SIGNAL PROCESSOR 

FETCH I x FETCH I+ 1 x:: 

PC=N+1 
I I 

lh(INl_.i ~ 
I I PC=N+2 

OR BRANCH ADDRESS 

VALID~ 

TEXAS""' 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 

B-25 



SMJSMJ32020 
DIGITAL SIGNAL PROCESSOR 

external flag timing 

CLKOUT1 

A15-AO 

XF 

B-26 

PC=N+1 I 
---VA_Ll_D_ 

TEXAS ..tf 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001 



SMJ32020 
DIGITAL SIGNAL PROCESSOR 

HOLD TIMING 

switching characteristics over recommended operating conditions (see Note 1) 

PARAMETER MIN TYP 

tdlCl L·ALI HOLDA low after CLKOUT1 low 25 

tdislAL·AI HOLDA low to address three"state 15 

tdislC 1 L·AI Address three-state after CLKOUT1 low (HOLD mode, see Note 7) 

tdiHH·AHI HOLD high to HOLDA high 

tenlA·C 1 LI Address driven before CLKOUT1 low {HOLD mode, see Note 7) 

NOTES: 1. Q ~ l /4tclCI· 
7. A15-AO, PS, 55, IS, STAB, and R/W timings are alt included in timings referenced as "address." 

timing requirements over recommended operating conditions (see Note 1) 

HOLD valid after CLKOUT2 high 

tThese values were derived from characterization data and are not tested. 

NOTE L 0 ~ 1 /4tc(C)· 

HOLD timing (part A) 

CLKOUT1 

CLKOUT2 

HOLD 

A15-AO ~ N ~ N+1 * PS,DS, ~ VALID ~ VALID * DRIB 

R/W 

D15-DO G G 
N N+1 

FETCH 

N-1 N 
EXECUTE 

HOLDA 

MIN NOM 

I I 

N+2 • I I 

VALID ~ 
I I 

~~+- 'dis(C1L-Ai 
I I 
I I 
I I 
I I 

N/A I I N/A 

i 
I 

DUMMY ! DEAD 
II 

-.i I+- 'dis(AL-AI 

I 
II 

I 
II 

ld(C1 L-ALI -ti I+-

MAX UNIT 

25 ns 

ns 

3ot ns 

50 ns 

10t ns 

MAX UNIT 

ns 

tHOLD is an asynchronous input and can occur at any time during a dock cycle. If the specified timing is met, the exact sequence shown 
will occur; otherwise, a delay of on CLKOUT2 cycle will occur. 

TEXAS .,, 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001 

B-27 



SMJ32020 
DIGITAL SIGNAL PROCESSOR 

HOLD timing (part Bl 

CLKOUT1 

CLKOUT2 

STRB 
I 

HOLD 

~ld(C2H-Hlt 

I 
I 
I 

A15-AO I 
I 
I 
I 

PS.~. I 
OR IS I 

I 
I 
I 

R/W 
I 
I 
I 
I 

I 
:.-- len1A-C1LJ ~ 

I 

I • N+2 * N+3 ) 
I • VALID * VALID ) 
I 
I 

• I 
D15-DO I 

I 0 ©--
I 
I 

N/A N/A N+2 N+3 
FETCH 

DEAD DEAD N+1 N+2 
EXECUTE 

I 
I 
I I 

HOLDA -.l f rt-- lcl!HH-AHJ 
! I 

tHQLD is an asynchronous input and can occur at any time during a clock cycle. If the specified timing is met, the exact sequence shown 
will occur; otherwise, a delay of on CLKOUT2 cycle will occur. 

B-28 TEXAS,,, 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001 



SMJ32020 
DIGITAL SIGNAL PROCESSOR 

SERIAL PORT TIMING 

switching characteristics over recommended operating conditions (see Note 1 I 

PARAMETER MIN TYP MAX UNIT 

'dlCH DXI DX valid after CLKX rising edge (see Note 8) 100 ns 

tdlFL-DXI DX valid after FSX falling edge (TXM = 0, see Note 8) 50 ns 

tdlCH-FS) FSX valid after CLKX rising edge (TXM = 1) 60 ns 

NOTES: 1. Q •o 1 /4tc(CI· 
8. The last occurrence of FSX falling and CLKX rising 

timing requirements over recommended operating conditions (see Note 1) 

MIN NOM MAX UNIT 

tc(SCKI Serial port dock (CLKX/CLKR) cycle time 400 24,000 ns 

twiSCKI Serial port clock (CLKX/CLKR) low pulse duration (see Note 9) 0.5tciSCKI ns 

'wlSCKI Serial port clock (CLKX/CLKRl high pulse duration (see Note 9) 0.5tclSCKI ns 

lsulFSI FSX/FSR setup time before CLKX/CLKR falling edge (TXM = 0) 20 ns 

'hlFSI FSX/FSR hold time after CLKX/CLKR falling edge (TXM ~ 0) 20 ns 

lsulDRI DR setup time before CLKR falling edge 20 ns 

lh(DR) DR hold time after CLKR falling edge 20 ns 

NOTES: 1. Q ~ 1 /41c(Ci· 
9. The duty cycle of the serial port clock must be within 40-60%. Serial port clock (CLKX/CLKR) rise and fall times must 

be less than 50 ns. 

serial port receive timing 

CLKR 

~tc!SCKJ __..., 
I '+-------* tw(SCK) 

~~ I ~ 'hlFS} I f tf(SCKI-.: ·~ tw(SCK} 

1" 11 .,[. -..: i.-•hiDRl 
_JI I: j\ 1 I 

I I , I I I I l ~---------------
1+-tJ. tsulFSI ,._......_ tsu(ORJ 

~~ 

FSR 

DR 

serial port transmit timing 

:t-- tc(SCK) ---+1 
tw(SCKJ -+t ~ : 

CLKX 

I th(FS) I tf(SCK) ..: 14- : i t (SCK) 

..... -----~ i l+~ w 
FSX if ii \:: c i : 
(INPUT,TXM=Ol -¥":,[ ::, i'S, 

tdiFL OX) _..,._ b 1d(CH-DX) ' \ 

DX r: .-•sulFSI' { N=1 CD~ 
-+i )*- tdiCH-FSJ _ _.,! ~ td!CH-FSI 

FSX .J \~ 
!OUTPUT,TXM=1)__/j .\.'-·--------! ·-----------

TEXAS~ 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 

B-29 



SMJ32020 
DIGITAL SIGNAL PROCESSOR 

MECHANICAL DATA 

68-pin GB pin grid array ceramic package 

B-30 

TOP VIEW 

28,448 (1.120) 
r-----27,432 (1.080)-----i 

I 111.0~6~670) 1 I 

THERMAL RESISTANCE CHARACTERISTICS 

'I I~ 1.448 (1.120) 
7 ,432 (1.080) 

ReJA 

ReJC 

PARAMETER 
Junction-to-free-air 

thermal resistance 

Junction-to-case 

thermal resistance 

MAX UNIT 

36 °C/W 17.02 (0.670) 
NOM 

6 °C/W 

~~-J_ 
4,953 (0. 706) 

2,794 (0.110) tn.C' =======:::LI---, 1,397 (0.055) 
f L.£ MAX 

3.302 (0.130) rr-r rr tl III IT IDJ: (0.060) OIA 
2,794 (0.110) 0,!406 (0.0151. NOM 

2•54 (0. 100l~ BOTTOM VIEW 
T.P. ~.i--f-i.-'----------~ 

L + 0000000(3-f 

K @00 0 0 0 0 0 00 + -t2.54(0.100) 

J 0 0 00 T.P. 

H 00 00 

G 00 00 

F00 00 

E00 00 

000 00 

c 0 0 0 0 1.52:6~060) 
8 000 0 0 0 0 0 0~=£" 4PLACES 

0 0 0 0 0 0 0 0 e--*-A 
1 2 3 4 5 6 7 8 9 10 11 "T 1.2110.0501 

NOM 

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

TEXAS.,, 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 



FJ ceramic leaded chip carrier packages 

20.52 (0.8081 
20, 19 (0.7951 

SMJ32020 
DIGITAL SIGNAL PROCESSOR 

THERMAL RESISTANCE CHARACTERISTICS 

PARAMETER 

ReJA 
Junction-to-free-air 

thermal resistance 

Re JC 
Junction-to-case 
thermal resistance 

2,41 (0.09511 
1.91 10.075) 

I 

MAX UNIT 

36 °C/W 

6 °C/W 

L 3.56 (0.140) 
3,05 (0.120) 

ALL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES 

TEXAS ""' INSTRUMENTS 
POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001 

B-31 





C. TMS320C2x System Migration 

This appendix contains information necessary to upgrade a first-generation 
TMS320 (TMS320C1 x) program to a TMS32020-based system or a 
TMS32020 program to a TMS320C25-based system. The information con­
sists of a detailed list of the programming differences and hardware and timing 
differences between the respective processors. 

The two major sections are as follows: 

• TMS320C1 x to TMS32020 System Migration (Section C.1 on page 
C-2) 

• TMS32020 to TMS320C25 System Migration (Section C.2 on page 
C-4) 

C-1 



Appendix C - TMS320C1x to TMS32020 System Migration 

C.1 TMS320C1x to TMS32020 System Migration 

C-2 

This section !ists the programming differences that shcu!d be considered in 
migrating from a TMS320C1 x to a TMS32020 processor. 

1) Instructions are compatible only at the mnemonic level. TMS320C1 x 
source programs should be reassembled using a TMS32020 assembler 
before execution. 

2) The memory map on the TMS32020 is different from the memory map 
on the TMS320C1 x. Page 0 of the TMS32020's data memory map 
contains only block B2 (32 words) and the memory-mapped registers. 
The primary on-chip RAM blocks BO and B1 reside on pages 4-7 when 
all RAM is configured as data memory. It should be noted that there 
may be cases in TMS320C1 x programs where the BANZ instruction has 
been used to implement both a loop counter and a memory address 
pointer for tables based at location 0 in memory. Since blocks BO, B1, 
and B2 in the TMS32020 are located at addresses other than 0, pro­
grams being migrated from the TMS320C1 x to the TMS32020 should 
implement this type of BANZ loop using two separate auxiliary registers, 
one for loop count and one for memory address. 

3) The SXM bit must be set to 1 and the PM bits must be set to 0 to ensure 
that TMS32020 CALU operations behave in the same manner as the 
TMS320C1 x. The SXM and PM bits are unaffected by a reset and are in 
a random state after powerup. 

4) The organization of status register STO is different on the two processors 
as shown below. 

TMS320C1 x Status Register STO: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I ov I OVM I 1NTM I 1 1 I ARP I 1 1 1 1 I DPI 
TMS32020 Status Register STO: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

ARP I ov lovMI 1 l1NrMI DP 
5) In the direct addressing mode, the SST (store status register STO) in­

struction of the TMS32020 sets DP = 0, rather than 1 as on the 
TMS320C1 x. The SST1 instruction also sets DP = 0 in the direct ad­
dressing mode. Note that in the direct addressing mode, data memory 
addressing values should be between 96 and 127 to store the status 
registers in block B2. 

6) When modifying the contents of the current auxiliary register in the in­
direct addressing mode on the TMS32020, the SAR (store auxiliary 
register) instruction for ARn when n = ARP stores the value of the aux­
iliary register contents BEFORE it is incremented, decremented, or in­
dexed by ARO. The TMS320C1 x stores the incremented/decremented 
value. 



Appendix C - TMS320C1x to TMS32020 System Migration 

7) All of the TMS32020 branch and call instructions, except for BACC 
(branch to address specified by accumulator) and CALA (call subroutine 
indirect), allow both auxiliary register and auxiliary register pointer 
(ARP) modification in the seven LSBs of the opcode. 

8) The SACL (store low accumulator with shift) instruction on the 
TMS32020 allows shift codes of 0, 1, and 4. 

9) A multiplication of >8000 x >8000 on the TMS32020 yields the correct 
result of >40000000, not >COOOOOOO as on the TMS320C1 x. 

10) The multiply instructions, MPV and MPYK, are not interrupt-protected 
on the TMS32020 since the capability now exists to restore the P reg­
ister directly. 

11) The IN and OUT opcodes now have a 4-bit port address to allow for a 
total of 16 1/0 ports on the TMS32020. 

12) A TBLW (table write) instruction on the TMS32020 to program memory 
locations 0-7 can be distinguished externally from an OUT instruction 
to port addresses 0-7 via the PS and IS (program and 1/0 space select) 
strobes. 

13) The SUBC (conditional subtract) instruction is a true single-cycle in­
struction on the TMS32020 and can be used with the repeat in­
structions, RPT or RPTK. On the TMS320C1 x, SUBC cannot be 
followed immediately by another instruction that uses the accumulator. 

14) When modifying the auxiliary registers in the indirect addressing mode 
on the TMS32020, the auxiliary registers act as 16-bit, rather than 8-bi!t 
counters (i.e., 'wraparound' occurs modulo 216, instead of modulo 2° 
as on the TMS320C1 x). When used with the BANZ (branch on auxiliary 
register not zero) instruction, the auxiliary registers on the TMS32020 
act as 16-bit counters, rather than 9-bit counters as OJi the TMS320C1 x. 

C-3 



Appendix C - TMS32020 to TMS320C25 System Migration 

C.2 TMS32020 to TMS320C25 System Migration 

C-4 

This section lists the programming, hardvvare, and timing differences that 
should be considered in migrating from the TMS32020 to the TMS320C25. 

1) Instructions are fully compatible at the object code level. TMS32020 
object (memory image) code can be used directly on the TMS320C25 
processor. 

2) Instructions are compatible at the source code level. The NORM in­
struction that previously had no operands now has an optional operand 
to define the auxiliary register modification. Any comments on the same 
line in the source code file will be interpreted as the operand if no other 
operand is specified. NORM instructions should be modified to specify 
the default operand, • +. 

3) When zero is loaded into the accumulator and the NORM instruction is 
executed, the auxiliary register (ARx) on the TMS320C25 is modified 
and the TC is set on the first execution. On the TMS32020, the auxiliary 
register (ARx) is incremented each execution cycle and the TC is not set. 

4) Execution cycle timings of instructions have been modified. Most 
TMS320C25 instructions execute in a single machine cycle. The number 
of cycles for some multicycle instructions have been changed. Refer to 
Appendix D for detailed information on instruction cycle timings. By 
following the entries in this appendix, the key timing differences can be 
noted. 

5) The IDLE instruction automatically sets the INTM bit in status register 
STO to a zero. This assures that an external interrupt will 'wake up' the 
processor. The instruction also requires three memory cycles to execute 
on the TMS320C25 rather than one as on the TMS32020. 

6) In general, all branch, call, and return instructions that reload the pro­
gram counter (PC) should be counted as three-cycle instructions when 
evaluating code execution timings on the TMS320C25. 

7) When an interrupt occurs, one additional instruction cycle will be pres­
ent on the TMS320C25 prior to interrupt acknowledge. When the device 
is released from the hold mode, there will be one additional cycle pre­
ceding the first valid memory fetch. 

8) The store instructions (SACH, SACL, etc.) execute in one less cycle on 
the TMS320C25 than on the TMS32020 when data is stored to external 
data memory. 

9) The MAC and MACO instructions require one extra cycle, going from 
three to four cycles. The extra cycle is in the instruction read and setup 
overhead, and repeated execution will be one cycle per execution as on 
the. TMS32020. 



Appendix C -TMS32020 to TMS320C25 System Migration 

10) The delay for a new memory configuration to become effective when 
using the CNFD or CNFP instructions on the TMS320C25 is two in­
struction fetches (for single-cycle instructions) when executing from 
external memory or internal ROM, as compared to one instruction fetch 
for the TMS32020. Thus, on the TMS320C25, a CNFP instruction must 
be placed at location 65277 if execution is to continue from the first lo­
cation in block BO. When execution is from internal RAM on the 
TMS320C25, however, this delay is one instruction fetch as on the 
TMS32020. 

11) The timer on the TMS320C25 is clocked by CLKOUT1 and counts PRO 
+ 1 CLKOUT1 cycles, whereas the timer on the TMS32020 is clocked 
by CLKOUT1 /4 and counts 4 x PRO cycles. Therefore, to count an 
equivalent amount of time on the TMS320C25 using the same input 
clock frequency, PRO values from the TMS32020 must first be multi­
plied by four and then decremented by one. If different input clock fre­
quencies are used, this must also be accounted for by multiplying the 
PRO value for the TMS320C25 obtained above by the ratio of the 
TMS320C25 input clock frequency to the TMS32020 input clock fre­
quency. 

12) To simplify device timing descriptions, the internal clock phase reference 
numbers have been redefined in the TMS320C25. The new clock phase 
definitions have quarter-phase 1 (01) begiRning a bus cycle, as op­
posed to a cycle beginning with 03 as in the TMS32020. Note that no 
changes have been made to any of the device logic; the clock phases 
have merely been renamed. 

13) The effect of the SYNC input, although functionally the same on the 
TMS32020 and TMS320C25, is delayed by two cycles on the 
TMS320C25 from that of the TMS32020. Accordingly, the exact tim­
ings produced with the application of SYNC on the two devices may 
differ depending on the clock phase in which SYNC is applied. Due to 
the two-cycle offset between the clock phase definitions on the two 
devices (see the previous paragraph) and the two-cycle delay in the ef­
fect of SYNC on the TMS320C25, the clock timings produced when the 
two devices are running in synchronization are identical. That is, a 
TMS32020 and a TMS320C25 can be operated together in synchroni­
zation in a system using the same SYN~ input. 

14) On the TMS320C25, both the timer (TIM) and period (PRO) registers 
are initialized to >FFFF on reset, while on the TMS32020, only the TIM 
register is initialized. 

15) Several bits (C, HM, and FSM) have been added to status register ST1 
on the TMS320C25, as shown below. 

TMS3?020 Status Register ST1: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

I ARB I CNF I TC lsxMI PM I 
TMS320C25 Status Register ST1: 

15 14 13 12 11 10 9 87 6 5. 43 2 0 

I ARB lcNFI TC lsxMI c I HM I FSM lxFjFOjTxMI PM 

C-5 



Appendix C -TMS32020 to TMS320C25 System Migration 

C-6 

The FSM, HM, and C status register bits are initialized by reset and are 
all set to one when reset occurs. Note that the new bits are assigned 
polarities in such a way that the values of the corresponding bits on the 
TMS32020 invoke a TMS32020-like operation on the TMS320C25. 

The SXM and PM status register bits that were previously uninitialized 
on the TMS32020 are now initialized by reset on the TMS320C25. 
When the TMS320C25 is reset, SXM is set to one, and the PM bits are 
set to zero. 

16) Four differences between the serial ports on the TMS32020 and 
TMS320C25 that impact system migration are: 

a) The double-buffering on the TMS320C25 serial port greatly in­
creases the amount of time available for processing serial port in­
terrupts and affects how the FSR and FSX pulse are used. As a 
result of the double-buffering, both edges of the FSR and FSX 
pulses are used on the TMS320C25 instead of only the falling 
edge, as is the case on the TMS32020. 

On the TMS32020, the falling edge of the FSX pulse is used to 
start transmission of the data present in the OXR (transmit regis­
ter). Likewise, the falling edge of the FSR pulse is used to start 
reception of data into the ORR (receive register). The limitations 
on the FSR and FSX pulses are a minimum setup time (20 ns) and 
a minimum hold time (20 ns). Once serial port operation begins, 
the receipt or transmission of the register's contents, either 8 or 16 
bits, is completed even if the FSR or FSX signals change to a logic 
high level. A new transfer of data into the ORR or out of the DXR 
only begins when the next falling edge of the FSR or FSX pulses 
occurs. 

On the TMS320C25, the double-buffering affects the use of the 
FSR and FSX pins and consequently the serial port operation itself. 
For the transmit operation, the TMS320C25 provides a separate 
XSR (transmit shift register), necessitating the use of the rising 
edge of the FSX pulse. Data is transferred from the OXR to the XSR 
on the first falling CLKX (serial transmit clock) following a rising 
FSX. At this point, the data is in the XSR and waiting to be shifted 
out or transmitted. Transmission begins on the first falling CLKX 
following the falling FSX, and continues with the subsequent bits 
in the XSR as long as the FSX signal remains low. If the FSX sig­
nal goes high before the last transmission has completed, the 
contents of the DXR are transferred to the XSR and the previous 
transmission is aborted. Transmission of this new information be­
gins after the FSX signal goes low again. 

Similarly for the receive operation, the TMS320C25 has a separate 
RSR (receive shift register). In this case, the data is transferred 
from the RSR to the ORR when the last bit has been received. 
Therefore, if a new transfer is initiated by toggling the FSR pin, the 
previous reception is aborted and the contents of RSR are not 
transferred to ORR. 

Consequently, there is one additional limitation on the FSR and 
FSX pulses on the TMS320C25. FSR and FSX must have a mini-



Appendix C -TMS32020 to TMS320C25 System Migration 

mum low pulse duration to allow the complete transfer of all 8 or 
16 bits of data into and out of RSR and XSR, respectively. 

Unlike the TMS32020, loading the DXR does not interfere with 
transmission. There is no restriction on when the DXR can be 
loaded when using external FSX. Correspondingly, DRR may be 
read at any time during the reception of the current data, extending 
the time allowed to respond to the receive interrupt and to read the 
previous word of data. 

b) The fully static operation of the TMS320C25 effectively places no 
lower limit on serial port clock frequency. 

c) Serial port interrupts are generated half of a CLKR or CLKX cycle 
later on the TMS320C25 than they are on the TMS32020. Spe­
cifically, on the TMS32020, RINT and XINT are generated on the 
falling edge of CLKR and CLKX, respectively, during transfer of the 
last bit. On the TMS320C25, RINT and XINT are generated on the 
rising edge of CLKR or CLKX after the last bit has been transferred. 
This should not be critical for TMS32020 programs running on the 
TMS320C25 since double-buffering of the serial port on the 
TMS320C25 allows more time for processing of serial port inter­
rupts. Some modification of TMS32020 programs may, however, 
be required to take advantage of the double-buffering, depending 
on how serial port interrupt servicing is implemented. 

d) The DAR behaves differently when operating the TMS320C25 se­
rial port in byte mode than it does on the TMS32020. On the 
TMS32020, the contents of the most-significant byte of DAR re­
main unchanged once byte mode is initiated by executing a FORT 
instruction. On the TMS320C25, however, each time a new byte 
is received, the previous contents of the least-significant byte of 
DAR are transferred to the most significant byte of DRR. 

Figure C-1 illustrates the behavior of DAR on both the TMS32020 
and the TMS320C25 processors. 

C-7 



Appendix C -TMS32020 to TMS320C25 System Migration. 

TMS320C25 TMS32020 

MSB LSB MSB LSB 
Initial I v v I I x y I 

Conditions I " I I I I 

After 1 st Receive y A I x A (Byte 'A') 

After 2nd Receive I A I B I x B (Byte 'B') 

Etc. 

Figure C-1. Serial Port System Migration 

C-8 



D. Instruction Cycle Timings 

This appendix details the instruction cycle timings for the TMS32020 and 
TMS320C25 processors. Instructions for each device are first listed in a table 
according to cycle classification. Then each class of instructions is listed in 
another table(s), showing the number of cycles required for a given 
TMS320C2x instruction to execute in a given memory configuration when 
executed as a single instruction or in the repeat mode. The column headings 
in the tables indicate the program source location (Pl, PE, or PR) and data 
destination or source (DI or DE), defined as follows: 

Pl The instruction executes from internal program memory (RAM). 
PR The instruction executes from internal program memory (ROM). 
PE The instruction executes from external program memory. 
DI The instruction executes using internal data memory. 
DE The instruction executes using external data memory. 

The number of cycles required for each instruction is given in terms of the 
program/data memory and 1/0 access times as defined in the following listing: 

p Program memory wait states. Represents the number of clock cycles the 
device waits for external program memory to respond to an access. 
Tac is the access time, in nanoseconds, (maximum) required by the 
TMS320C2x for an external memory access to be made with no wait 
states. T mem is the memory device access time, and T p is the clock pe­
riod {4/crystal frequency). 

p = O; If T mem S Tac 
p = 1 ; If Tac < T mem S (T p + Tad 
p = 2; If (T p + Tad< T mem S (T p x 2 + Tad 
p = k; If [Tp x (k-1) + T8c]< T mem S (Tp x k + T8c) 

d Data memory wait states. Represents the number of cycles the device 
must wait for external data memory to respond to an access. This 
number is calculated in the same way as the p number. 

1/0 memory wait states. Represents the number of cycles the device 
must wait for external 1/0 memory to respond to an access. This num­
ber is calculated in the same way as the p number. 

Other abbreviations used in the tables and their meanings are as follows: 

br Branch from ... 
int Internal program memory. 
INT Interrupt. 
ext External program memory. 
n The number of times an instruction is executed when using the RPT or 

RPTK instruction. 

0-1 



Appendix D - TMS32020 Instruction Cycle Timings 

D.1 TMS32020 Instruction Cycle Timings 

CLASS 

I 

II 

Ill 

IV 

v 
VI 

VII 

VIII 

IX 

x 
XI 

XII 

XIII 

D-2 

Table D-1 lists the Tl\llS32020 instructions according to cycle classification. 
Table D-2 shows the number of cycles required for a given TMS32020 in­
struction to execute in a given memory configuration when executed as a 
single instruction or in the repeat mode, respectively. 

Table D-1. TMS32020 Instructions by Cycle Class 

INSTRUCTION 

ADD ADDH ADDS ADDT AND BIT BITT DMOV LAC LACT 
LAR LOP LPH LST LST1 LT LTA LTD LTP LTS 
MPY OR RPT SORA SQRS SUB SUBC SUBH SUBS SUBT 
XOR ZALH ZALS ( RPT not repeatable) 

SACH SACL SAR SST SST1 

ABS APAC CMPL CMPR CNFD CNFP DINT EINT FORT LACK 
LARK LARP LDPK MAR MPYK NEG NOP NORM PAC ROVM 
RPTK RSXM RTXM RXF SFL SFR SOVM SPAC SPM SSXM 
STXM SXF ZAC 
(LACK, LARK, LDPK, MPYK, RPTK, SPM, ZAC not repeatable) 

ADLK ANDK LALK LRLK ORK SBLK XORK (all not repeatable) 

MAC MACO 

B BANZ BBNZ BBZ BGEZ BGZ BIOZ BLEZ BLZ BNV 
BNZ BV BZ CALL (all not repeatable) 

BACC CALA POP PUSH RET TRAP 
(BACC, CALA RET, TRAP not repeatable) 

IN OUT 

TBLR TBLW 

BLKD 

BLKP 

POPD PSHD 

IDLE (not repeatable) 



Appendix D -TMS32020 Instruction Cycle Timings 

Table D-2. TMS32020 Instruction Cycle Timings 

CLASS WHEN NOT IN REPEAT MODE WHEN IN REPEAT MODE 

Pl/DI Pl/DE PE/DI PE/DE Pl/DI Pl/DE PE/DI PE/DE 

I 1 2+d 1 +p 2+d+p n 2n+nd n+p 2n+nd+p 

II 1 2+d 1 +p 3+d+p n 2n+nd n+p 3n+nd+p 

Ill 1 1 1 +p 1 +p n n n+p n+p 

IV 2 2 2+2p 2+2p not repeatable 

v 3 N/A 3+2p N/A 2+n N/A 2+n+2p N/A 

VI 2 (br int-to-int) 2 +p (int-to-ext) not repeatable 
2+p (ext-to-int) 2+2p (ext-to-ext) not repeatable 

VII 2 2 2+p 2+p 2n 2n 2n+p 2n+p 

VIII 1 +i 2+d+i 2+p+i 3+d+p+i n+ni 2n+nd+ni 2n+p+ni 3n+nd+p 
+ni 

IX Table in internal program memory: Table in internal program memory: 
3 3+d 3+p 3+d+p 2+n 2+n+nd 2+n+p 2+n+nd+p 

Table in external program memory: Table in external program memory: 
3+p 4+d+p 3+2p 4+d+2p 2+n+np 2+2n+nd 2+n+np+p 2+2n+nd 

+np +np+p 

x Data source internal:t Data source internal:t 
3 3+d 3+2p 3+d+2p 2+n 2+n+nd 2+n+2p 2+n+nd 

+2p 
Data source external:t Data source external:t 
3+d 4+2d 3+d+2p 4+2d+2p 2+n+nd 2+2n+2nd 2+n+nd 2+2n+2nd 

+2p +2p 

XI Program source internal:t Program source internal:t 
3 3+d 3+2p 3+d+2p 2+n 2+n+nd 2+n+2p 2+n+nd 

+2p 
Program source external:t Program source external:t 
3+p 4+d+p 3+3p 4+d+3p 2+n+np 2+2n+nd 2+n+np 2+2n+nd 

+np +2p +np+2p 

XII 2 2+d 2+p 2+d+p 2n 2n+nd 2n+p 2n+nd+p 

XIII 1 (minimum 1 +p (minimum not repeatable 
waits for I NT) waits for INT) 

tColumn headings 'DI/DE' refer to data destination. 

0-3 



Appendix D - TMS320C25 Instruction Cycle Timings 

0.2 TMS320C25 Instruction Cycle Timings 

CLASS 

I 

II 

Ill 

IV 

v 
VI 

VII 

VIII 

IX 

x 
XI 

XII 

XIII 

XIV 

xv 

D-4 

T~hla n '2 1;c-+c- +ha Tl\JIC::".2')()("'"')1; inc+r"11rtinnc ':lrrnr'rlinn tn r\lrlo rl~:u:'.'cifir':ltin.n 
I Ut.JIV - ._, """'"'"" \.llV • IYI ......... .._._, ..... .._..., "'""'"''-"'"'"''"'''._. ._.'-'..,V'"""'t:J .......... , ..... , ..... ...,,.,,....,...,,,,...,._...,,..,...,,. 

Table D-4 and Table D-5 show the number of cycles required for a given 
TMS320C25 instruction to execute in a given memory configuration when 
executed as a single instruction or in the repeat mode, respectively. 

Table D-3. TMS320C25 Instructions by Cycle Class 

INSTRUCTION 

ADD ADDC ADDH ADDS ADDT AND BIT BITT DMOV LAC 
LACT LPH LT LTA LTD LTP LTS MPY MPYA MPYS 
MPYU PSHD OR RPT SQRA SQRS SUB SUBB SUBC SUBH 
SUBS SUBT XOR ZALH ZALR ZALS ( R PT not repeatable) 

LAR LDP LST LST1 

POPD SACH SACL SAR SPH SPL SST SST1 

ABS ADDK ADRK APAC CMPL CMPR CNFD CNFP DINT EINT 
FORT LACK LARK LARP LDPK MAR MPYK NEG NOP NORM 
PAC POP PUSH RC RFSM RHM ROL ROR ROVM RPTK 
RSXM RTC RTXM RXF SBRK SC SFL SFR SFSM SHM 
SOVM SPAC SPM SSXM STC STXM SUBK SXF ZAC 
(ADDK, ADRK, LACK, LARK, LDPK, MPYK, RPTK, SBRK, SPM, SUBK, and ZAC 
not repeatable) 

ADLK ANDK LALK LRLK ORK SBLK XORK (All not repeatable) 

MAC MACD 

B BANZ BBNZ BBZ BC BGEZ BGZ BIOZ BLEZ BLZ 
BNC BNV BNZ BV BZ CALL (All not repeatable) 

BACC CALA RET TRAP (All not repeatable) 

IN 

OUT 

TBLR 

TBLW (Table in ROM not applicable) 

BLKD 

BLKP 

IDLE (not repeatable) 



Appendix D - TMS320C25 Instruction Cycle Timings 

Table D-4. Cycle Timings for Cycle Classes When Not in Repeat Mode 

CLASS Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE 

I 1 2+d 1+p 2+d+p 1 2+d 

II 1 2+d 1 +p 2+d+p 1 2+d 

Ill 1 1 +d 1 +p 2+d+p 1 1+d 

IV 1 1 1 +p 1+p 1 1 

v 2 2 2+2p 2+2p 2 2 

VI Table in on-chip RAM: 
3 4+d 4+2p 5+d+2p 4 5+d 

Table in on-chip ROM: 
4 5+d 4+2p 5+d+2p 4 5+d 

Table in external memory: 
4+p 5+d+p 4+3p 5+d+3p 4+p 5+d+p 

VII True Conditions: 
Destination on-chip RAM: 
2 2 2+2p 2+2p 2 2 

Destination on-chip ROM: 
3 3 3+2p 3+2p 3 3 

Destination external memory: 
3+p 3+p 3+3p 3+3p 3+p 3+p 

False Condition: 
Destination anywhere: 
2 2 2+2p 2+2p 2 2 

VIII Destination on-chip RAM: 
2 2 2+p 2+p 2 2 

Destination on-chip ROM: 
3 3 3+p 3+p 3 3 

Destination external memory: 
3+p 3+p 3+2p 3+2p 3+p 3+p 

IX 2+i 2+d+i 2+p+i 3+d+p+i 2+i 2+d+i 

x 1 +i 2+d+i 2+p+i 3+d+p+i 1 +i 2+d+i 

XI Table in on-chip RAM: 
2 2+d 3+p 3+d+p 3 3+d 

Table in on-chip ROM: 
3 3+d 4+p 4+d+p 4 4+d 

Table in external memory: 
3+p 3+d+p 4+2p 4+d+2p 4+p 4+d+p 

XII Table in on-chip RAM: 
2 3+d 3+p 4+d+p 3 4+d 

Table in on-chip ROM: 
not applicable 

Table in external memory: 
2+p 3+d+p 3+2p 4+d+2p 3+p 4+d+p 

D-5 



Appendix D - TMS320C25 Instruction Cycle Timings 

Table 0-4. Cycle Timings for Cycle Classes When Not in Repeat Mode 
(Concluded) 

lr1 Ai::i::I P1tn1 --· ,.._ .. ,_. 
.J_ . . , - .J_ 

. _,_ . 
-'-

. _, __ 
-1. . ··1-· .J_ . .. , --Pt!Ot: Pt:tnt PR/nt PA/nt: 

XIII Source data in on-chip RAM: 
3 3+d 3+2p 3+d+2p 3 3+d 

Source data in external memory: 
4+d 4+2d 4+d+2p 4+2d+2p 4+d 4+2d 

XIV Table in on-chip RAM: 
3 3+d 4+2p 4+d+2p 4 4+d 

Table in on-chip ROM: 
4 4+d 4+2p 4+d+2p 4 4+d 

Table in external memory: 
4+p 4+d+p 4+3p 4+d+3p 4+p 4+d+p 

xv (Interrupt) destination on-chip ROM 
3 (minimum waits for INT) 

(Interrupt) destination external memory 
3+2p (minimum waits for INT) 

D-6 



Appendix D - TMS320C25 Instruction Cycle Timings 

Table D-5. Cycle Timings for Cycle Classes When in Repeat Mode 

CLASS Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE 

I n 1+n+nd n+p 1 +n+nd+p n 1 +n+nd 

II n 2n+nd n+p 2n+nd+p n 2n+nd 

Ill n n+nd n+p 1 +n+nd+p n n+nd 

IV n n n+p n+p n n 

v not repeatable 

VI Table in on-chip RAM: 
2+n 2+2n+nd 3+n+2p 3+2n+nd+2p 3+n 3+2n+nd 

Table in on-chip ROM: 
3+n 3+2n+nd 3+n+2p 3+2n+nd+2p 3+n 3+2n+nd 

Table in external memory: 
3+n+np 3+2n+nd+np 3+n+np+2p 3+2n+nd+np 3+n+np 3+2n+nd+np 

+2p 

VII not repeatable 

VIII not repeatable 

IX 1 +n+ni 2n+nd+ni 1 +n+p+ni 1 +2n+nd+p 1 +n+ni 2n+nd+ni 
+ni 

x n+ni 2n +nd+ni 1 +n+p+ni 1 +2n+nd+p n+ni 2n+nd+ni 
+ni 

XI Table in on-chip RAM: 
1 +n 1 +n+nd 2+n+p 2+n+nd+p 2+n 2+n+nd 

Table in on-chip ROM: 
2+n 2+n+nd 3+n+p 3+n+nd+p 3+n 3+n+nd 

Table in external memory: 
2+n+np 1 +2n+nd+np 3+n+np+p 2+2n+nd+np 3+n+np 2+2n+nd+np 

+p 

XII Table in on-chip RAM: 
1+n 2+n+nd 2+n+p 3+n+nd+p 2+n 3+n+nd 

Table in on-chip ROM: 
not applicable 

Table in external memory: 
1 +n+np 1 +2n+nd+np 2+n+np+p 2+2n+nd+np+p 2+n+np 2+2n+nd+np 

XIII Source data in on-chip RAM: 
2+n 2+n+nd 2+n+2p 2+n+nd+2p 2+n 2+n+nd 

Source data in external memory: 
3+n+nd 2+2n+2nd 3+n+nd+2p 2+2n+2nd+2p 3+n+nd 2+2n+2nd 

XIV Table in on-chip RAM: 
2+n 2+n+nd 3+n+2p 3+n+nd+2p 3+n 3+n+nd 

Table in on-chip ROM: 
3+n 3+n+nd 3+n+2p 3+n+nd+2p 3+n 3+n+nd 

Table in external memory: 
3+n+np 2+2n+nd+np 3+n+np+2p 2+2n+nd+np 3+n+np 2+2n+nd+np 

+2p 

xv not repeatable 

D-7 





E. Development Support/Part Order Information 

This section provides development support information, device part numbers, 
and support tool ordering information for all TMS320C2x (second-generation 
TMS320) products. Figure E-1 shows the software and hardware develop­
ment tools available for the TMS320C2x, including the development environ­
ment when using the C compiler (see Section E.1.4). 

c 
COMPILER 

ASSEMBLER 
SOURCE 

CODE 

ASSEMBLER 

LINKER 

DFDP 

OBJECT 
FORMATTER 

PROM PROGRAMMER 

DOWNLOAD "LINKED" OBJECT CODE 

SIMULATOR SWDS 

Figure E-1. TMS320C2x Development Tools 

E-1 



Appendix E - Development Support/Part Order Information 

E-2 

Extensive documentation, including application reports, user's guides, and 
textbooks, is available to support DSP design, research, and education. To 
order TMS320 literature, contact the Tl Customer Response Center (CRC) 
hotline number, 1 -800-232-3200. For more information about support pro­
ducts and documentation, refer to the TMS320 Family Development Support 
Reference Guide. 

The nearest Tl field sales office can be contacted for support tool availability 
or further details (see list of sales offices and distributors at end of book). For 
technical support, contact the TMS320 DSP hotline, (713) 274-2320. 

The major topics discussed in this section are listed below. 

• Development Support (Section E.1 on page E-3) 
TMS320C2x Macro Assembler/Linker 
TMS320C2x Simulator 
TMS320C2x SoftWare Development System (SWDS) 
TMS320C25 C Compiler 
TMS320C2x Emulator (XDS/22) 
TMS320C2x XDS/22 Upgrade 
TMS320 Analog Interface Board 
TMS320 Design Kit 
Digital Filter Design Package (DFDP) 
DSP Software Library 
TMS320 DSP Hotline/Bulletin Board Service 

• Part Order Information (Section E.2 on page E-11) 
Device part numbers 
Software and hardware support tools part numbers 
Device and support tool prefix designators 
Device and support tool nomenclature 



Appendix E - Second-Generation TMS320 Development Support 

E.1 Second-Generation TMS320 Development Support 

Texas Instruments offers extensive development support and complete doc­
umentation with the second-generation TMS320 digital signal processors. 
Tools are provided to evaluate the performance of the processors, develop al­
gorithm implementations, and fully integrate the design's software and hard­
ware modules. Development operations are performed with the TMS320C2x 
Macro Assembler/Linker, Simulator, SoftWare Development System (SWDS), 
C Compiler, Emulator (XDS), and other support products. 

A description and key features for each TMS320C2x development support 
tool is provided in the following subsections. For more information about 
support products, refer to the TMS320 Family Development Support Refer­
ence Guide. For ordering information, see Section E.2. 

E.1.1 TMS320C2x Macro Assembler/Linker 

The TMS320C2x Macro Assembler translates TMS320C2x assembly language 
source code into executable object code. The assembler allows the program­
mer to work with mnemonics rather than hexadecimal machine instructions 
and to reference memory locations with symbolic addresses. The macro as­
sembler supports macro calls and definitions along with conditional assembly. 

The TMS320C2x Linker permits a program to be designed and implemented 
in separate modules that will later be linked together to form the complete 
program. The linker resolves external definitions and references for relocatable 
code, creating an object file that can be executed by the TMS320C2x Simu­
lator, Emulator, or DSP device. The output of the linker can be downloaded 
into the simulator, XDS, SWDS, or PROM programmer. 

The following key features distinguish the TMS320C2x Macro 
Assembler/Linker: 

• Macro capabilities and library functions 

• Conditional assembly 

• Relocatable modules 

• Complete error diagnostics 

• Symbol table and cross reference. 

The macro assembler/linker is currently available for the VAX/VMS and 
MS/PC-DOS operating systems. 

E-3 



Appendix E - Second-Generation TMS320 Development Support 

E.1.2 TMS320C2x Simulator 

The T~.'!S320C2x Simulator is a soft\AJare program that simulates operation of 
the TMS320C2x to allow program verification. In the debug mode, the state 
of the simulated TMS320C2x can be monitored while the program is execut­
ing. The simulator uses the object code produced by the TMS320C2x Macro 
Assembler/Linker. During program execution, the internal registers and mem­
ory of the simulated device are modified as each instruction is interpreted by 
the host computer. Once program execution is suspended, the internal reg­
isters and both program and data memories can be inspected and/or modified. 
In addition, files can be associated with the 1/0 ports. 

The following features highlight simulator capability for effective TMS320C2x 
software development: 

• Program debug/verification 

• Single-step option 

• Trace/breakpoint capabilities 

• Full access to simulated registers and memories 

• 1/0 device simulation. 

The simulator is currently available for the VAX/VMS and MS/PC- DOS oper­
ating systems. 

E.1.3 TMS320C2x SoftWare Development System (SWDS) 

E-4 

The SoftWare IJevelopment System (SWDS) is a PC-resident tool that allows 
software simulation in realtime for the TMS320C2x. The SWDS provides the 
system interface necessary to write, assemble/link, load, and debug the 
TMS320C2x code on a PC workstation. The SWDS is capable of single­
stepping through the code or setting software breakpoints for monitoring 
register or memory contents during execution. It can also associate files with 
1/0 ports so that specific 1/0 values may be used during test and debug. 

The SWDS consists of three parts: 

1) A circuit board, resident in the PC, that contains the TMS320C2x and 
program and data memory. 

2) Two small cable adaptor boards situated outside the PC and connected 
to the SWDS via two 40-conductor ribbon cables. The cable adaptor 
boards included with the system are: 
a) The PGA Adaptor Connector that connects the SWDS to a 

TMS320C2x target system via a 68-pin grid array footprint. 
b) The Analog Interface Board (AIB) Adaptor Connector that con­

nects the SWDS directly to the TMS320 AIB. 
3) Software that includes TMS320C2x assembler/linker software, the DSP 

Software Library (see Section E.1.10), and SWDS monitor software. 

The SWDS is designed to function in the IBM-PC/AT and compatible envi­
ronment, as well as in any Tl PC environment (including the Tl Business Pro). 
MS-DOS version 2.0 or later is required. 



Appendix E - Second-Generation TMS320 Development Support 

The development system occupies 64K bytes of PC memory. It is equipped 
with 24K words (48 kbytes) of static RAM, and allows the TMS320C2x to 
execute at full speed. Note that the SWDS does not address target memory. 

The SWDS is configured to emulate the TMS320C25 upon shipment; i.e., a 
TMS320C25 and a 40-MHz oscillator are on-board. A TMS32020 and a 
20-MHz crystal are included with the system to accommodate TMS32020 
emulation. The target system may supply a TTL clock source, in which case 
the upper limit on the clock speed is dictated by the speed of the processor 
on the PC board. If the user's target system has no provision for a clock 
source, the external clock is specified in the debug monitor initialization com­
mand and an external crystal is connected to the SWDS. 

E.1.4 TMS320C25 C Compiler 

A full Kernigan and Ritchie C compiler is provided for the TMS320C25. The 
compiler accepts a digital signal processing program written in the widely 
used C language and outputs TMS320C2x assembly language source code. 
The TMS320C2x mnemonics are then converted to object code by a 
TMS320C2x assembler. 

This high-level language compiler allows time-critical routines written in as­
sembly language to be called from within the C program. The converse is also 
available; assembly routines may call C functions. The output of the compiler 
can be edited prior to assembly/link to further optimize the performance of the 
code. The compiler is also capable of accepting other programs written in C. 
Refer back to Figure E-1 for a diagram of the development environment when 
using the C compiler. 

Included with the shipment of the TMS320C25 C compiler is an enhanced 
assembler/linker. The output of this assembler/linker can be downloaded and 
used with any of the existing tools (simulator, XDS, SWDS, or PROM pro­
grammer). 

The compiler is currently available for the VAX/VMS and MS/PC-DOS oper­
ating systems. 

E.1.5 TMS320C2x Emulator (XDS} 

The TMS320C2x Emulator (XDS/22) is a user-friendly system that has all the 
features necessary for realtime in-circuit emulation. This allows integration of 
hardware and software modules in the debug mode. By setting breakpoints 
based on internal conditions or external events, execution of the program can 
be suspended and control given to the debug mode. In the debug niode, all 
registers and memory locations can be inspected and modified. Single-step 
execution is available. Full-trace capabilities at full speed and a reverse as­
sembler that translates machine code back into assembly instructions also in­
crease debugging productivity. Using a standard RS-232-C port, the object 
file produced by the TMS320C2x Macro Assembler/Linker can be down­
loaded into the emulator, which then can be controlled through a terminal. 

Two 4K x 16-word banks of high-speed static RAM can be mapped into a 
fixed address space starting at 0 for both program and data memory. Also 
available are 64K words of dynamic RAM, which can be mapped into the us­
er's program and data address spaces. The XDS is capable of executing out 
of target memory to utilize the full TMS320C2x program/data address range. 

E-5 



Appendix E - Second-Generation TMS320 Development Support 

E-6 

For multiprocessing configurations, up to nine emulators can be daisy-chained 
together. 

The XDS/22 emulator is a completely self-contained system with power sup­
ply. With three RS-232-C ports, the XDS/22 Emulator can be interfaced to a 
terminal, host computer for source or object downloading/uploading capabil­
ities, and printer or PROM programmer. 

The key features of the TMS320C2x XDS/22 Emulator are as follows: 

• 40-MHz full-speed in-circuit emulation 
• Supports all second-generation TMS320 family members 
• PLCC target connector with pin grid array (PGA) adaptor 
• 4K words each of program and data memory (zero wait states) 
• 64K-word PROM memory expansion board (wait states) 
• Breakpoint trace, and timing (BTT} capabilities 
• Single-step execution 
• Line-by-line assembler /reverse assembler 
• Enhanced decimal parameter entry and display 
• Use of target system CLKIN signal or internal crystal 
• Host-independent upload/download capabilities to/from program or 

data memory 
• Ability to inspect and modify registers and program/data memory 
• Supports multiprocessor configurations 
• Logic tracing with extended data/address logic analyzer interface. 

Figure E-2 shows a block diagram of a typical system configuration using the 
TMS320C2x XDS/22 Emulator. 

USER'S 
TERMINAL 

PROM 
PROGRAMMER 

OR 
LINE 

PRINTER 

+ I 
I 
I 
I 
I 
I 

XDS 
TMS320 

WORK 
STATION 

TARGET 
SYSTEM 

HOST 
COMPUTER 

SYSTEM 

Figure E-2. TMS320C2x XDS/22 System Configuration 



Appendix E - Second-Generation TMS320 Development Support 

E.1.6 TMS320C2x XDS/22 Upgrade 

Texas Instruments offers a TMS320C2x XDS upgrade kit, which can extend 
the functionality of existing development systems at a minimum of cost 
through an enhancement of current customer equipment. For example, the 
upgrade kit can enable a TMS32020 XDS/22 to emulate operation of both 
second-generation devices. Upgrade kits allow upgrade only within a gener­
ation, not from a first- to a second-generation XDS. 

The TMS320C2x XDS upgrade kit consists of the following contents: 

e Firmware (2 PALs, 2 EPROMs) 
• TMS320C25 and crystal 
• 4K x 16 high-speed static RAM (2 sets) 
• 40- MHz breakpoint, trace, and timing board 
• PGA/PLCC target connector. 

E.1.7 TMS320 Analog Interface Board 

The TMS320 Analog Interface Board (AIB) is an analog-to-digital, digital­
to-analog conversion board used as a preliminary target system with either the 
TMS320C2x SWDS, XDS, or another emulator (see Figure E-3). The AIB is 
an educational tool that provides a simple, inexpensive way to become familiar 
with digital signal processing (DSP) techniques. 

The Al B allows testing of application programs with analog 1/0 by providing 
an interface to the TMS320C2x. The AIB provides 12-bit A/D and 0/A con­
verters with expansion ports for additional A/D and D/A converters. Key 
features of the Al B are as follows: 

• 12-bit analog-to-digital converter with sample and hold 
• 12-bit digital-to-analog converter 
• One 16-bit output port for additional D/A or user-defined application 
• One 16-bit input port for additional A/D or user-defined application 
• Two lowpass filters; an audio amplifier 
• Prototyping area for user applications. 

The AIB runs at full speed up to 20 MHz for TMS320 family members. The 
AIB sample rate clock, derived from the TMS320 CLKOUT signal, may be 
programmed to provide periodic analog input, output, or both. There are two 
analog lowpass filters on the AIB. One filter on the A/D input band-limits the 
input to minimize aliasing effects. The other filter smooths the output of the 
D/A. Filter frequency response is controlled by varying the external compo­
nents in the filter stages. Filter cutoff is set to 4.7 kHz, but may be (plug) 
programmed. An audio ampiifier that drives an 8-ohm speaker is provided for 
applications with audio output 

An AIB adaptor board is required to convert the 40-pin dual-inline socket for 
the TMS320C1 x to accommodate the 68-pin grid array package of the 
TMS32020. An additional adaptor socket is necessary for TMS320C25 oper­
ation. Contact the nearest Ti Sales Office for a list of commercially available 
adaptor socket vendors. 

E-7 



Appendix E - Second-Generation TMS320 Development Support 

USER'S 
TERMINAL 

POWER 
SUPPLY 

POWER 
CABLE 

TMS320 
AIB 

Figure E-3. TMS320 AIB System Configuration 

ANALOG 
OUT 

ANALOG 
IN 

E.1.8 TMS320 Design Kit 

E-8 

The TMS320 DSP Design Kit has been created by Texas Instruments to aid 
the user in becoming familiar with the TMS320 family of digital signal pro­
cessors, thus accelerating the evaluation of these devices. The kit contains the 
following: 

• Samples: one TMS32020G BL, one TMS3201 ONL; one Codec 
(TCM2916), and four preprogrammed PROMs (TBP38L165-45). 

• AD PCM Design Example using the TMS32010. 

• FFT Design Example using the TMS32020. 

• Digital Signal Processing Applications with the TMS320 Family, a 
comprehensive 750-page book filled with TMS320 applications. 

• Digital Signal Processing Software Library, containing source code for 
most of the DSP applications discussed in the Applications Book as well 
as other valuable routines. 

• TMS320C1 x and TMS320C2x User's Guides. 

• Latest copy of the TMS320 quarterly newsletter, Details on Signal Pro­
cessing. 

The Design Kit is available through local Tl authorized distributors or directly 
from Texas Instruments. Contact the nearest Tl Sales Office for more infor­
mation. 



Appendix E - Second-Generation TMS320 Development Support 

E.1.9 Digital Filter Design Package (DFDP) 

The Digital Filter Design Package (DFDP) from Atlanta Signal Processors, Inc. 
(ASPI) is a user-friendly, menu-driven software package intended to speed 
the design of digital filters with floating-point accuracy or fixed-point econ­
omy in a variety of filter structures. The package consists of four interactive 
filter design modules capable of performing the following functions: 

1) Designing Fl R filters (Kaiser window) 
2) Designing FIR filters (Parks-McClellan) 
3) Designing llR filters (Butterworth, Chebychev I and II, and elliptic) 
4) Generating TMS320C1 x or TMS320C2x assembly code by converting 

the ASCII file containing the filter coefficients into fully commented as­
sembly language code for those devices. 

Cascade and parallel structures as well as higher-performance lattice, normal­
ized lattice, and orthogonal forms are included in the modules. 

The DFDP can design filters to meet any piecewise linear response specifica­
tion, evaluate filter characteristics before and after coefficient quantization, 
and design special-purpose FIR filters, such as multiband filters, differentia­
tors, Hilbert transformers, and raised-cosine filters. The DFDP can also gen­
erate coefficients for filter implementations on any general-purpose processor 
or signal processing chip, as well as fully commented assembly language code 
for a variety of DSP chips. Magnitude, log magnitude, and impulse responses 
can be plotted for printer or screen display; in addition, the phase, group delay, 
and pole-zero map can be plotted for II R filters. After the filter is designed, 
the user can generate code associated with the filter using the CG EN design 
module. 

The DFDP runs on the IBM PS/2, IBM PC/XT/AT, and compatible systems. 
Operating systems must have 192 kbytes of memory available. For more in­
formation, contact Atlanta Signal Processors, Inc. ( 404-892-7265) or the 
nearest Tl field sales office. 

E.1.10 DSP Software Library 

The Digital Signal Processing Software Library contains the major DSP rou­
tines (FFT, FIR/llR filtering, and floating-point operations) and application 
algorithms (echo cancellation, ADPCM, and DTMF coding/decoding) pre­
sented in the book, Digital Signal Processing Applications with the TMS320 
Family. These routines and algorithms are written in either TMS320C1 x 
and/or TMS320C2x source code. In addition, macros for the TMS320C1 x are 
included in the library. 

The software package consists of four diskettes for use with the Tl/IBM 
MS/PC-DOS (v!')rsion 1.1 or later) or a 1600 BPI magnetic tape for the 
VAX/VMS version. All the directories on the MS/PC-DOS version are con­
tained on the magnetic tape for the VMS version. Each directory contains a 
README.LIS file briefly describing the contents of the files in the directory 
and the reference to the code. The book, Digital Signal Processing Applica­
tions with the TMS320 Family, is the major reference for the theory and al­
gorithms, and also provides printed code in the appendices of each application 
report. 

E-9 



Appendix E - Second-Generation TMS320 Development Support 

The software library and applications book are included in the purchase of a 
TMS320 Design Kit (see Section E.1.7). The library can also be ordered sep­
arately through Tl (see Table E-2 for ordering information). 

All the software in the library is copyrighted by Texas Instruments. The library 
is continually being updated; therefore, check the TMS320 DSP Bulletin 
Board (713-274-2323) for update information. 

E.1.11 TMS320 DSP Hotline/Bulletin Board Service 

E-10 

The TMS320 group at Texas Instruments provides a DSP Hotline to answer 
TMS320 technical questions such as device problems, development tools, 
documentation, upgrades, and new TMS320 products. The hotline is open 
five days a week from 8:00 AM to 4:30 PM Central Time. The phone number 
is (713) 274-2320. For pricing and availability of TMS320 devices and de­
velopment tools, contact the nearest Tl sales office. To order literature, call the 
Customer Response Center (CRC) at (800) 232-3200. 

The TMS320 DSP Bulletin Board Service is a telephone-line computer bulletin 
board that provides access to information pertaining to TMS320 devices. 
Specification updates for current or new TMS320 devices and development 
tools are communicated via the bulletin board as the information becomes 
available. The Bulletin Board Service can be accessed by dialing (713) 
274-2323 with a 1200-bps modem. 

The bulletin board contains TMS320 source code from the application reports 
included in the book, Digital Signal Processing Applications with the TMS320 
Family. The bulletin board also provides new DSP application software as it 
becomes available. See the TMS320 Family Development Support Reference 
Guide for information on how to access the bulletin board. 



Appendix E - Part Order Information 

E.2 Part Order Information 

This section provides the device and support tool part numbers. Table E-1 
lists the part numbers for all the second-generation members of the TMS320 
family. Table E-2 gives ordering information for TMS320C2x hardware and 
software support tools. Table E-3 provides a list and description of the de­
velopment tool connections to a target system. A discussion of the TMS320 
family device and development support tool prefix and suffix designators is 
included to assist in understanding the TMS320 product numbering system. 

Table E-1. TMS320C2x Digital Signal Processor Part Numbers 

OPERATING PACKAGE TYPICAL 
DEVICE TECHNOLOGY FREQUENCY TYPE DISSIPATION 

TMS32020G BL 2.4-µm NMOS 20 MHzt Ceramic 68-pin PGA 1200 mW 

TMS320C25G BL 1.8-µm CMOS 40 MHz+ Ceramic 68-pin PGA 450 mW 

TMS320C25FNL 1.8-µm CMOS 40 MHz+ Plastic 68-lead PLCC 450mW 

tMilitary version available. 
+Military version planned; contact nearest sales office for availability. 

Table E-2. TMS320C2x Support Tool Part Numbers 

TOOL DESCRIPTION OPERATl~G SYSTEM PART NUMBER 

SOFTWARE 

Macro Assembler/Linker VAX VMS TM DS3242210-08 
MS/PC-DOS TM DS3242810-02 

Simulator VAX VMS TMDS3242211-08 
MS/PC-DOS TMDS3242811-02 

SoftWare Development System MS/PC-DOS TMDS3268821 

C Compiler (TMS320C25) VAX VMS TM DS3242255-08 
MS/PC-DOS TM DS3242855-02 

Digital Filter Design Package IBM PC-DOS DFDP/IBM002 

DSP Software Library VAX VMS TMDC3240212-18 
MS/PC-DOS TMDC3240812-12 

HARDWARE 

XDS/22 Emulatort TMDS3262221 

XDS/22 Upgrade: 
Customer Upgradet TMDS3282226 

Analog Interface Board RTC/EVM320C-06 

Analog Interface Board Adaptor RTC/ADP320A-06 

TMS320 Design Kit TMS320DDK 

tSee Table E-3 for a list of connections to a target system. 

E-11 



Appendix E - Part Order Information 

Table E-3. Development Tool Connections to a Target System 

TOOL I TARGET CONN. I INCL. I OPT. I PART NUMBER 

TMS320C25 XDS/22 68-pin PGA/PLCC x 
68-pin PGA/PLCC x TMDX3288825 
68-pin PGA x TM DX3288820 

TMS320C25 XDS/22 68-pin PGA/PLCC x 
Upgrade 68-pin PGA/PLCC x TMDX3288825 

68-pin PGA x TMDX3288820 

E.2.1 Device and Development Support Tool Prefix Designators 

E-12 

To assist the user in understanding the stages in the product development 
cycle, Texas Instruments assigns prefix designators in the part number no­
menclature. A device prefix designator has three options: TMX, TMP, and 
TMS, and a development support tool prefix designator has two options: 
TM DX and TMDS. These prefixes are representative of the evolutionary stages 
of product development from engineering prototypes (TMX/TM DX) through 
fully qualified production devices (TMS/TMDS). This development flow is 
defined below. 

Device Development Evolutionary Flow: 

TMX Experimental device that is not necessarily representative of the final 
device's electrical specifications. 

TMP Final silicon die that conforms to the device's electrical specifications 
but has not completed quality and reliability verification. 

TMS Fully qualified production device. 

Support Tool Development Evolutionary Flow: 

TMDX Development support product that has not yet completed Texas In­
struments internal qualification testing. 

TMDS Fully qualified development support product. 

TMX and TMP devices and TMDX development support tools are shipped 
against the following disclaimer: 

"Developmental product is intended for internal evaluation purposes." 

Note: 

Texas Instruments recommends that prototype devices (TMX or TMP) not 
be used in production systems since their expected end-use failure rate is 
undefined but predicted to be greater than standard qualified production 
devices. 



Appendix E - Part Order Information 

TMS devices and TMDS development support tools have been fully charac­
terized and the quality and reliability of the device has been fully demon­
strated. Texas Instruments standard warranty applies. 

E.2.2 Device and Development Support Tool Nomenclature 

In addition to the prefix, the device nomenclature includes a suffix that follows 
the device family name. This suffix indicates the package type (e.g., N, FN, 
or GB) and temperature range (e.g., L). Figure E-4 provides a legend for 
reading the complete device name for any TMS320 family member. 

TMS 320 C 25 GB L 

PREFIX --------' 
TMX = experimental device 
TMP = prototype device 
TMS = qualified device 
SMJ = MIL-STD-883C 

DEVICE FAMILY 
320 = TMS320 family 

TECHNOLOGY-------~ 

C =CMOS 
E = CMOS EPROM 
No letter = NMOS 

DEVICE-------------' 
1 st-gen. DSP: 

10 
11 
15 
17 

2nd-gen. DSP: 
20 
25 

3rd-gen. DSP: 
30 

L TEMPERATURE RANGE 
L = o to 1o·c 
s = -55 to 1oo·c 
M = -55 to 125·c 
A = -40 to 85°C 

PACKAGE TYPE 
N =plastic DIP 
JD =ceramic DIP 

side-brazed 
FN = plastic leaded CC 
GB = ceramic PGA 
FJ = ceramic leaded CC 
FD = leadless ceramic CC 

Figure E-4. TMS320 Device Nomenclature 

E-13 



Appendix E - Part Order Information 

E-14 

Figure E-5 provides a legend for reading the part number for any TMS320 
hardware or software development tool. 

TMDS 32 

QUALIFICATION STATUj I 
TMDX =prototype 

42810-02 

TMDS = qualified 

DEVICE FAMILY 
32 = TMS320 family 

PRODUCT TYPE ------'""' 
4 =software 
6 =hardware 
8 =upgrade 

LMEDIUMt 
2 = 5 1 /4" floppy disk 
8 = 1600 BPI magnetic tape 

S/W FORMATt 
0 = object code 
1 = source code 

~--SEQUENCE NUMBER* 

GENERATION 
1 = 1st gen. 
2 =2nd gen. 
3 =3rd gen. 

SOFTWARE OPERATING SYSTEM or HARDWARE MODEL 
02 = 1st-gen. VAX VMS 11 = XDS/11 
08 =1st-gen. Tl/IBM MS/PC-DOS 22 = XDS/22' 
22 = 2nd-gen. VAX VMS 88 =target connector 
28 =2nd-gen. Tl/IBM MS/PC-DOS 
32 = 3rd-gen. VAX VMS 
38 =3rd-gen. Tl/IBM MS/PC-DOS 

t Software only. 
t Hardware only. 

Figure E-5. TMS320 Development Tool Nomenclature 



F. Memories, Analog Converters, Sockets, and Crystals 

This appendix provides product information regarding memories, analog con­
verters, and sockets, which are manufactured by Texas Instruments and com­
patible with the TMS320C2x. Information is also given regarding crystal 
frequencies, specifications, and vendors. 

The contents of the major areas in this appendix are listed below. 

• Tl Memories and Analog Converters (Section F.1 on page F-2) 
EPROM memories 
Codecs and filters 
Analog interface circuits 
AID and D/A converters. 

• Tl Sockets for PGA and PLCC Packages (Section F.2 on page F-28) 
Production sockets 
Burn-in/test sockets. 

• Crystals (Section F.3 on page F-33) 
Commonly used crystal frequencies 
Crystal specification requirements 
Vendors of suitable crystals. 

F-1 



Appendix F - Tl Memories and Analog Converters 

F.1 Tl Memories and Analog Converters 

F-2 

This section provides pages of product information taken from data sheets for 
EPROM memories, codecs, analog interface circuits, and D/A and D/A con­
verters. 

All of these devices can be interfaced with TMS320C2x processors (see Sec­
tion 6 for hardware interface designs). Refer to Digital Signal Processing Ap­
plications with the TMS320 Family for additional information on interfaces 
using memories and analog conversion devices. 

The following paragraphs give the name of each device and where the data 
sheet for that device is located in order to obtain further specification infor­
mation if desired. 

Data sheets for EPROM memories are located in the MOS Memory Data Book 
(SMYD006). The name of the device and the page number in the book on 
which the device is introduced are listed. 

TMS27C64 
TMS27C128 
TMS27C256 
TMX27C512 

(page 6-21) 
(page 6-29) 
(page 6-37) 
(page 6-45) 

Another EPROM memory, TMS27C291 /292, is described in a data sheet 
(SMLS291 A). 

The TCM29C1 3/14/16/17 codecs and filters are described in the data sheet 
beginning on page 2-111 of the Telecommunications Circuits Data Book 
{SCT001 ). An analog interface for the DSP using a codec and filter is pro­
vided by the TCM29C18/19 (data sheet number SCT021 ). 

The data sheet for the TLC32040 analog interface circuit is provided in the 
Interface Circuits Data Book, beginning on page 2-271. 

In the same book are data sheets for AID and D/A converters. The name of 
the device and the page on which it is introduced are as follows: 

TLC0820 
TLC1 205/1225 
TLC7524 

(page 2-113) 
(page2-181) 
(page 2-243) 



ADVANCE 
INFORMATION 

TMS27C64 
65,536-BIT ERASABLE PROGRAMMABLE READ-ONLY MEMORY 

• Organization ... SK x S 

• Single 5-V Power Supply 

• Pin Compatible with Existing 641< EPROMs 
and TMS2732A 

• All Inputs/Outputs Fully TTL Compatible 

• Max Access/Min Cycle Time 
'27C64·1, '27C64-15 150 ns 
'27C64·2, '27C64-20 200 ns 
'27C64, '27C64-25 250 ns 
'27C64·3, '27C64-30 300 ns 
'27C64·4, '27C64-45 450 ns 

• HVCMOS Technology 

• 3-State Output Suffers 

• 400 mV Guaranteed DC Noise Immunity 
with Standard TTL Loads 

• Low Power Dissipation IVcc = 5.25 V) 
-Active ... 15S mW Worst Case 
-Standby ... 1.4 mW Worst Case 

(CMOS-Input Levels) 

description 

AO-A12 
E 
G 
GND 
NC 
i5GM 
01-08 
Vee 
Vpp 

SEPTEMBER 1905 

J PACKAGE 
!TOP VIEW! 

Vpp Vee 
A12 PGM 

A7 NC 
A6 AB 
A5 A9 
A4 A11 
A3 G 
A2 A10 
A1 E" 
AO 08 
01 07 
02 06 
03 05 

GND 04 

PIN NOMENCLATURE 

Address Inputs 

Chip Enable/Power Down 

Output Enable 

Ground 

No Connection 

Program 

Outputs 

5-V Power Supply 

12. 5-V Power Supply 

The TMS27C64 series are 65,536-bit, ultraviolet-light erasable, electrically programmable read-only 
memories. These devices are fabricated using HVCMOS technology for high speed and simple interface 
with MOS and bipolar circuits. All inputs (including program data inputs) can be driven by Series 74 TTL 
circuits without the use of external pull-up resistors, and each output can drive one Series 74 TTL circuit 
without external resistors. The data outputs are three-state for connecting multiple devices to a common 
bus. The TMS27C64 is pin compatible with existing 28-pin ROMs and EPROMs. It is offered in a dual-in­
line ceramic package (J suffix) rated for operation from 0 °C to 70 °C. 

Since these EPROMs operate from a single 5-V supply (in the read mode). they are· ideal for use in 
microprocessor-based systems. One other ( 12. 5 Vl supply is needed for programming, but all programming 
signals are TTL level. For programming outside the system, existing EPROM programmers can be used. 
Locations may be programmed singly, in blocks, or at random. 

operation 

There are seven modes of operation for the TMS27C64 listed on the following page. Read mode requires 
a single 5-V supply. All inputs are TTL level except for Vpp during programming ( 12. 5 V) and 1 2 V on 
A9 for signature mode. 

ADVAICE llFORMATIDN documents cantoin 

:==:;=J'=~i:...~htc:=:=: 
illlla Ind Dlhlf -Hication1 ire soliject to change 
without 10tie1. 

TEXAS.,, 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

Copyright ~ 1985, Texas Instruments Incorporated 

F-3 



F-4 

ADVANCE 
INFORMATION 

TMS27C128 
131,072-BIT ERASABLE PROGRAMMABLE READ-ONLY MEMORY 

OCTOBER 1984-REVISED SEPTEMBER 1985 

• Organization ••• 16K x 8 J PACKAGE 

ITOP VIEWI 
• Single 5·V Power Supply 

• Pin Compatible with Existing 84K and 
128K EPROMs 

Vee 
'PGM 
A13 
AS 
A9 • All Inputs/Outputs Fuly TTL Compatible 

• Max Access/Min Cycle Time 
'27C128·1, '27C128·15 150 ns 
'27C128-2, '27C128-20 200 ns 
'27C128. '27C128-25 250 ns 
'27C128-3. '27C128-30 300 ns 
'27C128-4, '27C128-45 450 ns 

• HVCMOS Technology 

• 3-State Output Suffers 

• 400 mV Guaranteed DC Noi1& Immunity 
with Standard TTL Loads 

01 
02 
03 

GND ..... __ _,..... 

PIN NOMENCLATURE 

• Low Power Dissipation 1Vcc=5.25 VI 
-Active ..• 158 mW Worst Cue 

AO-A13 

'E 
Address Inputs 

Chip Enable/Power Down 

Output Enable -Standby •.• 1.4 mW Worst Ca1& 
!CMOS-Input Levels) 

description 

Cl" 
GND 
'PGM 

Ground 

Program 

01-08 Outputs 

Vee 5-V Power Supply 

Vpp 12.5-V Power Supply 

The TMS27C 128 series are 131,072-bit, ultraviolet-light erasable, electrically programmable read-only 
memories. These devices are fabricated using HVCMOS technology for high speed and simple interface 
with MOS and bipolar circuits. All inputs (including program data inputs) can be driven by Series 74 TTL 
circuits without the use of external pull-up resistors, and each output can drive one Series 74 TTL circuit 
without external resistors. The data outputs are three state for connecting multiple devices to a common 
bus. The TMS27C128 is pin compatible with existing 28-pin ROMs and EPROMs. It is offered in a dual-in­
line ceramic package IJ suffix) rated for operation from 0°C to 70°C. 

Since these EPROMs operate from a single 5-V supply (in the read model, they are ideal for use in 
microprocessor-based systems. One other 112. 5 VI supply is needed for programming, but all programming 
signals are TTL level. For programming outside the system, existing EPROM programmers can be used. 
Locations may be programmed singly, in blocks, or at random. 

operation 

There are seven modes of operation for the TMS27C 128 listed on the following page. Read mode requires 
a single 5-V supply. All inputs are TTL level except for Vpp during programming (12.5 VI and 12 Von 
A9 for signature mode. 

ADVAllCE llFORMATIOI docam11111 cutai1 

ittfonn- Oft -~"""""" 11 '"c:=Ltt S:=t-...=!·:·:.joct ......... 
wilH•t utiH. 

TEXAS.,, 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON. TEXAS 77001 

Copyright © 1985, Texas Instruments Incorporated 



TMS27C256 
262,144-BIT ERASABLE PROGRAMMABLE READ-ONLY MEMORY 

SEPTEMBER 1984 - REVISED NOVEMBER 1985 

• Organization •.. 32K x 8 

• Single 5-V Power Supply 

• Pin Compatible with Existing 128K and 
256K EPROMs 

• All Inputs/Outputs Fully TTL Compatible 

• Max Access/Min Cycle Time 
'27C256-1, '27C256-17 
'27C256-2, '27C256-20 
'27C256, '27C256-25 
'27C256-3, '27C256-30 
'27C256-4, '27C256-45 

e HVCMOS Technology 

• 3-State Output Buffers 

170 ns 
200 ns 
250 ns 
300 ns 
450 ns 

• 400 mV Guaranteed DC Noise Immunity 
with Standard TTL Loads 

• Low Power Dissipation !Vee = 5.25 VI 
-Active .•• 210 mW Worst Case 
-Standby ... 1.4 mW Worst Case 

(CMOS-Input Levels) 

description 

AO-A14 

E 
G 
GND 
01-08 

Vee 
Vpp 

Vpp 
A12 

A7 
A6 
A5 
A4 
A3 
A2 

J PACKAGE 
ITOPVIEWI 

vee 
A14 
A13 
A8 
A9 
A11 
Cl 
A10 
E 
as 
07 
06 
05 
04 

PIN NOMENCLATURE 

Address Inputs 

Chip Enable/Power Down 

Output Enable 

Ground 

Outputs 
5-V Power Supply 

12.5-V Power Supply 

The TMS27C256 series are 262, 144-bit, ultraviolet-light erasable, electrically programmable read-only 
memories. These devices are fabricated using HVCMOS technology for high speed and simple interface 
with MOS and bipolar circuits. All inputs (including program data inputs) can be driven by Series 74 TTL 
circuits without the use of external pull-up resistors, and each output can drive one Series 74 TTL circuit 
without external resistors. The data outputs are three state for connecting multiple devices to a common 
bus. The TMS27C256 is pin compatible with existing 28-pin ROMs and EPROMs. It is offered in a dual-in­
line ceramic package IJ suffix) rated for operation from O °C to 70 °C. 

Since these EPROMs operate from a single 5-V supply (in the read mode), they are ideal for use in 
microprocessor-based systems. One other ( 12. 5 V) supply is needed for programming, but all programming 
signals are TTL level. For programming outside the system, existing EPROM programmers can be used. 
Locations may be programmed singly, in blocks, or at random. 

operation 

There are seven modes of operation for the TMS27C256 listed on the following page. Read mode requires 
a single 5-V supply. All inputs are TTL level except for Vpp during programming (12.5 V) and 12 Von 
A9 for signature mode. 

PRODUCTIOI DATA docoments conllin ialormatian 
c11rrtBt 11 at pulllication dltl. Products cenfarm ta 
specific1tion1 per the terms of T ax11 Instruments 

:=:-r1~·r::.~'li ~!.~::i:r :.r::::::i!~· not 
TEXAS .. 

INSTRUMENTS 

Copyright S 1985, Texas Instruments Incorporated 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001 

F-5 



ADVANCE 
INFORMATION 

TMS27C512 
524,288-BIT ERASABLE PROGRAMMABLE READ-Oil Y MEMORY 

• Organization ... 641< x 8 

• Single 5-V Power Supply 

• Pin Compatible with Existing NMOS 512K 
EPROMs 

• All Inputs/Outputs Fully TTL Compatible 

• Max Access/Min Cycle Time 
'27C512-2, '27C512·20 
'27C512, '27C512-25 
'27C512·3, '27C512-30 
'27C512-4, '27C512-45 

e HVCMOS Technology 

• 3-State Output Buffers 

200 ns 
250 ns 
300 ns 
450 ns 

• 400 mV Guaranteed DC Noise Immunity 
with Standard TTL loads 

• Low Power Dissipation !Vee = 5.25 V) 
-Active ... 263 mW Worst Case 
-Standby ... 1.4 mW Worst Case 

(CMOS-Input Levels) 
AO-A15 

E 
GND 

NOVEMBER 1985 - REVISED AUGUST 1986 

A15 
A12 

A7 
A6 
AS 
A4 
A3 
A2 
A1 
AO 
Q1 
02 
03 

GND 

J PACKAGE 

(TOP VIEW! 

Vee 
A14 
A13 
AB 
A9 
A11 
Gtvpp 
A10 
'E 
08 
07 
06 
05 
04 

PIN NOMENCLATURE 

Address Inputs 

Chip Enable/Power Down 

Ground 
description 01-08 

Vee 
l!/Vpp 

Outputs 

The TMS27C512 series are 524,288-bit, 
ultraviolet-light erasable, electrically 
programmable read-only memories. These 
devices are fabricated using HVCMOS 
technology for high speed and simple interface 
with MOS and bipolar circuits. All inputs 

5-V Power Supply 

12. 5-V Power Supply/ 

Output Enable 

(including program data inputs) can be driven by Series 74 TTL circuits without the use of external pull-up 
resistors, and each output can drive one Series 74 TTL circuit without external resistors. The data outputs 
are three state for connecting multiple devices to a common bus. The TMS27C512 is pin compatible with 
existing 28-pin ROMs and EPROMs. It is offered in a dual-in-line ceramic package (J suffix) rated for operation 
from 0°C to 70°C. 

Since these EPROMs operate from a single 5-V supply (in the read mode), they are ideal for use in 
microprocessor-based systems. One other ( 12. 5 V) supply is needed for programming, but all programming 
signals are TTL level. For progra.111ning outside the system, existing EPROM programmers can be used. 
Locations may be programmed singly, in blocks, or at random. 

operation 

F-6 

There are seven modes of operation for the TMS'>7C(.; 2 listed on the following page. Read mode requires 
a single 5-V supply. All inputs are TTL level except for Vpp during. programming (12.5 V) and 12 Von 
A9 for signature mode. 

ADVANCE INFORMATION documents contain 
information on new eroducts in the sampling or 
preproduction phase of development Charactenstic 
data and other specifications are subject to change 
without notice. 

TEXAS~ 
INSTRUMENTS 

POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001 

Copyright © 1986, Texas Instruments Incorporated 



ADVANCE 
INFORMATION 

TMS27C291, TMS27C292 
16,384-BIT UV ERASABLE PROGRAMMABLE READ-ONLY MEMORIES 

• Organization ... 2K x 8 

• ·Single 5-V Power Supply 

• Pin Compatible with Existing 2K x 8 
Bipolar/CMOS PROMs 

• All Inputs/Outputs TTL Compatlble 

• High Speed 

• Max Access/Min Cycle Time 
vcc±5% 

'27C291-3 '27C292-3 35 ns 
'27C291 '27C292 45 ns 
'27C291-5 '27C292-5 50 ns 

Vcc±10% 
'27C291-45 '27C292-45 45 ns 
'27C291-50 '27C292-50 50 ns 

• Low-Power CMOS Technology 

• 3-State Output Buffers 

• 400 mV Guaranteed DC Noise Immunity 
with Standard TTL Loads 

• Low Power Dissipation ... 394 mW Max 

• Eraseable 

• 100% Pretestable 

SEPTEMBER 1986-REVISED NOVEMBER 1986 

A7 
A6 
A5 
A4 
A3 
A2 
A1 
AO 
Q1 
02 
Q3 

GND 

J PACKAGE 

ITOP VIEW) 

Vee 
AB 
A9 
A10 
s1t 
s2t 
53t 
QB 
07 
Q6 
05 
Q4 

PIN NOMENCLATURE 

AO·A10 

GND 
01-08 
51, s2.s3 
Vee 

Address Inputs 

Ground 

Outputs 

Chip Selects 

5-V Power Supply 

tpins 18-20 have different pin assignments and 
functions in the program mode (see page 3). 

description 

The TMS27C291 and TMS27C292 series are 16,384-bit, ultraviolet-light erasable, electrically 
programmable read-only memories. These devices are fabricated using CMOS technology for high speed 
and simple interface with MOS and bipolar circuits. All inputs (including program data inputs) can be driven 
by Series 7 4 TTL circuits without the use of external pull-up resistors, and each output can drive eight 
Series 74 TTL circuits without external resistors. The data outputs are three state for connecting multiple 
devices to a common bus. These devices are pin compatible with existing 24-pin PROMs and EPROMs. 
They are offered in dual-in-line ceramic packages (J suffix). The package for the TMS27C291 is designed 
for insertion in mounting-hole rows on 7,62-mm (300-mil) centers, and the package for the TMS27C292 
is designed for insertion on 15,24-mm (600-mil) centers. The TMS27C291 and TMS27C292 are guaranteed 
for operation from 0°C to 70°C. 

operation 

There are eight modes of operation for the TMS27C291 and TMS27C292 listed on the following page. 
Read mode requires a single 5-V supply. All inputs are TTL or CMOS levels except for Vpp (pin 20) during 
programming (13.5 VI. 

TEXAS.,, 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 

Copyright © 1986, Texas Instruments Incorporated 

F-7 



TMS27C291, TMS27C292 

F-8 

16,384-BIT UV ERASABLE PROGRAMMABLE READ-ONLY MEMORIES 

FUNCTION 

(PINS) Read 
Output 
Disable 

s11Vppt 
V1L V1H (20) 

S2/VFYt 
V1H x (19) 

53/PGMt 
V1H x (18) 

Vee 
vee Vee 124) 

A9 x x 122) 

AO x x (8) 

Q1-Q8 

(9-17) DouT Hl-Z 

tpin assignment for program mode. 
ix can be V1L or V1H-
§Programming levels for V1L and V1H· 

read/output disable 

Output 
Disable 

x 

V1L 

x 

Vee 

x 

x 

Hl-Z 

MODE 

Output Program Program Fast Blank Check 
Disable Verify Inhibit Program Ones 

x Vpp Vpp Vpp V1L 

x V1L § V1H§ V1H§ V1L 

V1L V1H§ V1H§ V1L § Vpp 

Vee Vee Vee Vee Vee 

x x x x x 

x x x x x 

Hl-Z Dour Hl-Z 01N Ones 

Blank Check 
Zeros 

Signature 

V1L V1L 

V1H V1H 

Vpp V1H 

Vee vee 

x Vpp Vpp 

x V1L V1H 

CODE 
Zeros MFGIDev 

97 02 

When the outputs of two or more TM527C291 's or TM527C292's are connected in parallel on the same 
bus, the output of any particular device in the circuit can be read with no interference from the competing 
outputs of the other devices. To read the output of the TM527C291 or TM527C292, a low-level signal 
is applied to Sl and a high-level signal is applied to 52 and 53. Any other combination of logic states on 
these three inputs will disable the outputs. Output data is accessed at pins 01 through 08. 

erasure 

Before programming, the TM527C291 or TM527C292 is erased by exposing the chip through the 
transparent lid to high intensity ultraviolet light (wavelength 2537 angstroms). The recommended minimum 
exposure dose (UV intensity x exposure time) is fifteen watt-seconds per square centimeter. A typical 
12 milliwatt per square centimeter, filterless UV lamp will erase the device in 21 minutes. The lamp should 
be located about 2-5 centimeters above the chip during erasure. It should be noted that normal ambient 
light contains the correct wavelength for erasure. Therefore, when using the TM527C291 or TM527C292, 
the window should be covered with an opaque label. 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 1443 e HOUSTON, TEXAS 77001 



ADVANCE 
INFORMATION 

TCM29C13, TCM29C14, TCM29C16, TCM29C17 
COMBINED SINGLE-CHIP PCM CODEC AND FILTER 

• Replaces Use of TCM2910A and 
TCM2911 A in Tandem with TCM2912B/C 

• Reliable Silicon-Gate CMOS Technology 

• Low Power Consumption: 
Operating Mode ... 80 mW Typical 
Power-Down Mode ... 5 mW Typical 

• Excellent Power Supply Rejection Ratio Over 
Frequency Range of 0 to 50 kHz 

FEATURE 

Number of Pins: 

24 

20 

16 

µ-law/A-law Codmg: 

p-law 

A-law 

Data Timing Rates: 

Variable Mode 

02765, APRIL 1986 

FEATURE TABLE 

29C13 29C14 29C16 29C17 

x 
x 

x x 

x x x 
x x x 

• No External Components Needed for 
Sample, Hold, and Auto-Zero Functions 64 kHz to 2.048 MHz x x x x 

• Precision Internal Voltage References 

• Direct Replacement for Intel 2913, 2914, 
2916, and 2917 

Fixed Mode 

1.536 MHz 

1.544 MHz 

2.048 MHz 

x x 
x x 
x x x x 

e Formerly TCM4913, TCM4914, TCM4916, 
TCM491 7, Respectively 

Loopback Test Capability x 

TCM29C13 
J DUAL-IN-LINE PACKAGE 

!TOP VIEW) 

V99 Vee 
PWRO+ GSX 

PWRO- ANLG IN·· 

ANLG IN+ 
PON ANLG GNO 

CLKSEL 6 ASEL 

DCLKR 7 TSX/DCLKX 

PCM IN PCM OUT 

FSR/TSRE FSX/TSXE 

DGTL GND 11 CLKA/CLKX 

NC-No internal connection 

8th-Bit Signaling 

TCM29C14 
J DUAL-IN-LINE PACKAGE 

(TOP VIEW) 

Vss Vee 
PWRO+ GSX 

PWRO- ANLG IN -

GSR 4 ANLG JN+ 

PON ANLG GNO 

CLKSEL NC 

ANLG LOOP SIG XI ASEL 

SIGR TSX/DCLKX 

DCLKR PCM OUT 

PCM IN FSX/TSXE 

FSR/TSRE 11 CLKX 

OGTL GNO CLKR 

TCM29C14 ... FN PACKAGE 

!TOP VIEW) 

I + ~ 

0 0 "' a: a: l'.Il ux _J 

U $: $: OJ U(,f) Z z a_ a_>> l'.J <( 

4321282726 

12 13 14 15 16 17 1B 

25 

24 

23 

22 

21 

20 

19 

ANLG IN+ 
ANLG GND 

NC 

SIGXIASEL 

TSX/DCLKX 

NC 

PCM OUT 

x 

TCM29C16. TCM29C17 
J DUAL-IN-LINE PACKAGE 

!TOP VIEW) 

Vee 
PWRO+ GSX 

PWRO- ANLG IN-

PON ANLG GNO 
OCLKR TSX/DCLKX 

PCM OUT 

FSRITSRE FSX/TSXE 

DGTL GNO 

Caution. These devices have limited built-in gate protection. The leads should be shorted together or the device 
placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 

ADVANCE INFORMATION documents contain 
information on new ~roducts in the samplinp or 
preproduction phase of development. Characteristic 
data and other specifications are subject to change 
without notice. 

TEXAS -I/} 
INSTRUMENTS 

POST OFFICE BOX 225012 • DALLAS. TEXAS 75265 

Copyright © 1986, Texas Instruments Incorporated 

fl) 

.'t:: 
:::s 
(,) .... 

(..) 

fl) 
c: 
0 ·.;:; 
ca 

.5= 
c: 
:::s 
E 
E 
0 
(,) 
Q) 

Qi 
I-

F-9 



.... 
CD 
CD' 
(') 
0 
3 
3 
c: 
:J 
(i' 
C» ... s· 
:J 
en 
(") 
::;· 
(') 
c: 
;:;: 
en 

TCM29C13, TCM29C14, TCM29C16, TCM29C17 
COMBINED SINGLE-CHIP PCM CODEC AND FILTER 

desciiption 

The TCM29C13, TCM29C14, TCM29C16, and TCM29C17 are single-chip pulse-code-modulated encoders 
and decoders (PCM codecs) and PCM line filters. These devices provide all the functions required to interface 
a full-duplex (4-wire) voice telephone circuit with a time-division-multiplexed (TDM) system. These devices 
are intended to replace the TCM291 OA or TCM2911 A in tandem with the TCM2912B/C. Primary 
applications of the devices include: 

• Line Interface for Digital Transmission and Switching of T1 Carrier, PABX, and Central Office 
Telephone Systems 

• Subscriber Line Concentrators 
• Digital Encryption Systems 
• Digital Voice Band Data Storage Systems 
• Digital Signal Processing 

These devices are designed to perform the transmit encoding (A/D conversion) and receive decoding (D/ A 
conversion) as well as the transmit and receive filtering functions in a pulse-code-modulated system. They 
are intended to be used at the analog termination of a PCM line or trunk. 

The TCM29C13, TCM29C14, TCM29C16, and TCM29C17 provide the bandpass filtering of the analog 
signals prior to encoding and after decoding. These combination devices perform the encoding and decoding 
of voice and call progress tones as well as the signaling and supervision information. 

The TCM29C13, TCM29C14, TCM29C16, and TCM29C17 are characterized for operation from 0°C to 
70°C. 

functional block diagram 

TRANSMIT 
SECTION 

RECEIVE 
SECTION 

t TCM29C 14 ONLY 
*TCM29C13, TCM29C16, AND TCM29C17 ONLY 

AUTO 
ZERO 

SAMPLE 
ANO HOLD 
ANDDAC 

COMPARA· 
TOR 

ANALOG 

SUCCESSIVE 
APPROX I· 
MATION 

OUTPUT 
REGISTER 

PCM OUT 

TSX/DCLKX 

SIGX/ASEL 

T~~~~~~Ll----------<lf---+-FSX/TSXE 

BUFFER 

REFER· 
ENCE 

LOGIC CLKX 

TcaNTiiol" - - - - -

I SECTION 

I r----,L..LL CLKSEL 

I 
I 

CONTROL 
LOGIC 

L---------
DIGITAL 

TD ANALOG 
CONTROL 

LOGIC 

INPUT 
REGISTER 

iiDN 
ANLG Loopt 

PCM IN 

DLCKR 

Vee Vee OGTL ANLG FSR/TSRE 
GND GND CLKRt 

F-10 TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 225012 • DALLAS, TEXAS 75265 



• Reliable Silicon-Gate CMOS Technology 

• Low Power Consumption 
Operating Mode ... 80 mW 
Power-Down Mode ... 5 mW 

,.-Law Coding 

• Excellent Power Supply Rejection Ratio over 
Frequency Range of 0 to 50 kHz 

• No External Components Needed for 
Sample, Hold, and Auto-Zero Functions 

• Precision Internal Voltage References 

• Single Chip Contains A/D, D/A. and 
Associated Filters 

description 

FEATURE TABLE 

16 Pins 

,.-Law Coding 

Variable Mode: 

64 kHz to 2.048 MHz 

Fixed Mode: 

2.048 MHz (TCM29C18), 

1.536 MHz ITCM29C19l 

8-Blt Resolution 

12-Bit Dynamic Range 

TCM29C18, TCM29C19 
ANALOG INTERFACE FOR OSP 

03036, AUGUST 1987 

N DUAL-IN·LINE PACKAGE 

ITOP VIEW) 

Vss Vee 
PWRO+ GSX 
PWRO- ANLG IN 

PDN ANLG GND 
DCLKR TSX/DCLKX 

PCM IN PCM OUT 
FSR/TSRE FSX/TSXE 

DGTL GND CLK 

The TCM29C18 and the TCM29C19 are low-cost single-chip pulse-code-modulated encoders and decoders 
(PCM codecs) and PCM line filters. lhese devices incorporate both the A/D and D/A functions, an anti­
aliasing filter (A/Dl. and a smoothing filter (D/A). The TCM29C18 and the TCM29C19 are ideal for use 
with the TMS320 family members, particularly those featuring a serial port such as the TMS32020, 
TMS32011, and TMS320C25. 

Primary applications of these devices include: 

Digital Encryption Systems 
Digital Voice-Band Data Storage Systems 
Digital Signal Processing 

These devices are designed to perform encoding of analog input signals (A/D conversion) and decoding 
of digital PCM signals (D/A conversion). They are useful for implementation in the analog interface of a 
digital-signal processing system. Both devices also provide band-pass filtering of the analog signals prior 
to encoding and smoothing after decoding. 

The analog input is encoded into an 8-bit digital representation by use of the wlaw encoding scheme 
(CCITT G. 711) which equates to 12 bits of resolution for low amplitude signals. Similarly, the decoding 
section converts 8-bit PCM data into an analog signal with 12 bits of dynamic range. The filter characteristics 
(bandpass) for the encoder and decoder are determined by a single clock input (CLK). The filter roll-off 
( - 3 dB) is derived by: 

fco = k • fCLK/256 for the TCM29C18 or fco = k • fCLK/192 for the TCM29C19 

where k has a value of 0.44 for the high-frequency roll-off point, and a value of 0.019 for the low-frequency 
roll-off point. 

2 
0 
i== 
<( 
:E 
a: 
0 
u.. 
2 

w 
0 
2 
<( 
> c 
<( 

ADVANCE IMFORMATIOI docu•onll contain 

TEXAS.., 
Copyright © 1987, Texas Instruments Incorporated 

=::.:~.r=.~c:::".:=Y.= 
- ond othll' lplCification1 1ra subject to ch1191 
without natlce. INSTRUMENTS F-11 

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 



)> 
c 
< 
)> 
2 
(") 
m -2 .,, 
0 
:a s: 
)> 
:::! 
0 
2 

TCM29C18, TCM29C19 
ANALOG INTERFACE FOR DSP 

d&scription (continued! 

The sampling rate of the ADC is determined by the Frame Sync Clock, FSX; the sampling rate of the DAC 
is determined by the Frame Sync Clock, FSR. Once a conversion is initiated by FSX or FSR, data is clocked 
in or out on the next consecutive eight clock pulses in the fixed data rate mode: Likewise, data may also 
be transferred on the next eight consecutive clock pulses of the data clocks, DCLKX and DCLKR, in the 
variable data rate mode. In the variable data rate mode, DCLKX and DCLKR are independent, but must 
be in the range from fCLK/32 to fCLK· 

The TCM29C 18 and TCM29C 19 are characterized for operation over the temperature range of 0 °C to 70 °C. 

functional block diagram 

PWRO+ 

PWRO-

TRANSMIT 
SECTION 

RECEIVE 
SECTION 

AUTO 
ZERO 

SAMPLE 
AND HOLD 
ANDDAC 

BUFFER 

REFER· 
ENCE 

COMPARA· 
TOR 

CONTROL 

SUCCESSIVE 
APPROX I· 
MATION 

OUTPUT 
REGISTER 

PCM OUT 

"i'SX/OCLKX 

11----------'__,1----ll-FSX/TSXE 

LOGIC H----------<,__-il-CLK 

TcoNTROL - - - - -

I SECTION 

I 
I 
I 

CONTROL 
LOGIC 

L---------
DIGITAL 

TO ANALOG 
CONTROL 

LOGIC 

INPUT 
REGISTER 

PCMIN 

DCLKR 

Vee Vee OGTL ANLG FSR/TSRE 
GND GND 

F-12 TEXAS .Jf 
INSTRUMENTS 

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 



• ADVANCED LinCMOS™ Silicon Gate Process 
Technology 

• 14-Bit Dynamic Range ADC and DAC 

• 10-Bit ADC and DAC Linearity Over Any 
1 0-Bit Range 

• Variable ADC and DAC Sampling Rate Up to 
19,200 Samples per Second 

• Switched-Capacitor Antialiasing Input Filter 
and Output-Reconstruction Filter 

• Serial Port for Direct Interface to 
TMS32011, TMS32020, and TMS32025 
Digital Processors 

• Synchronous or Asynchronous ADC and 
DAC Conversion Rates with Programmable 
Incremental ADC and DAC Conversion 
Timing Adjustments 

• Serial Port Interface to SN54299 or 
SN74299 Serial-to-Parallel Shift Registers 
for Parallel Interface to TMS3201 0 or Other 
Digital Processors 

description 

TLC32040M, TLC32040I 
ANALOG INTERFACE CIRCUIT 

02964, FEBRUARY 1987 

J OR N PACKAGE 

(TOP VIEW) 

NU NU 

RESET NU 

EODR IN+ 

FSR IN-

DR AUX IN+ 

MSTR eLK AUX IN-

VDD OUT+ 

REF OUT-

DGTL GND Vee+ 
SHIFT eLK Vee-

EODX ANLG GND 

DX ANLG GND 

WORD/BYTE NU 

FSX NU 

NU Nonusable; no external connection 
should be made to these pins 

The TLC32040 is a complete analog-to-digital and digital-to-analog input/output system on a single 
monolithic CMOS chip. This device integrates a bandpass switched-capacitor antialiasing input filter, a 
14-bit resolution A/D converter, four microprocessor-compatible serial port modes, a 14-bit resolution D/A 
converter, and a low-pass switched-capacitor output-reconstruction filter. The device offers numerous 
combinations of Master Clock input frequencies and conversion/sampling rates, which can be changed 
via digital processor control. 

Typical applications for this IC include modems (7 .2-, 8-, 9.6-, 14.4-, and 19.2-kHz sampling rate), analog 
interface for digital signal processors, speech recognition/storage systems, industrial process control, 
biomedical instrumentation, acoustical signal processing, spectral analysis, data acquisition, and 
instrumentation recorders. Four serial modes, which allow direct interface to the TMS32011, TMS32020, 
and TMS32025 digital signal processors, are provided. Also, when the transmit and receive sections of 
the Analog Interface Circuit(AIC) are operating synchronously, it will interface to two SN54299 or SN74299 
serial-to-parallel shift registers. These serial-to-parallel shift registers can then interface in parallel to the 
TMS32010, other digital signal processors, or external FIFO circuitry. Output data pulses are emitted to 
inform the processor that data transmission is complete, or to allow the DSP to differentiate between two 
transmitted bytes. A flexible control scheme is provided so that the functions of the IC can be selected 
and adjusted coincidentally with signal processing via software control. 

The antialiasing input filter comprises seventh-order and fourth-order CC-type (Chebyshev/elliptic 
transitional) low-pass and high-pass filters, respectively, and a fourth-order equalizer. The input filter is 
implemented in switched-capacitor technology and is preceded by a continuous time filter to eliminate 
any possibility of aliasing caused by sampled data filtering. When no filtering is desired, the entire composite 
filter can be switched out of the signal path. A selectable, auxiliary, differential analog input is provided 
for applications where more than one analog input is required. 

ADVANCED LinCMOS"" is a trademark of Texas Instruments Incorporated 

PRODUCT PREVIEW documents contain information 
on products in the formative or design phase of 
development. Characteristic data and other 
specifications are design goals. Tex as Instruments 
reserves the right to change or discontinue these 
products without notice. 

TEXAS~ 
INSTRUMENTS 

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 

Copyright© 1987, Texas Instruments Incorporated 

s: w -> w 
a: c.. 
1-
(.) 
::::> 
c 
0 
a: c.. 

F-13 



"'O 
:::lJ 
0 
c 
c 
0 
-t 
"'O 
:::lJ 
m 
< -m 
:E 

TLC32040M, TLC32040I 
ANALOG INTERFACE CIRCUIT 

description (continued) 

The A/D and DI A converters each have 14 bits of resolution with 10 bits of integral linearity guaranteed 
over any 10-bit range. The A/D and D/A architectures guarantee no missing codes and monotonic operation. 
An internal voltage reference is provided to ease the design task and to provide complete control over 
the performanc!l of the IC. The internal voltage is brought out to a pin and is available to the designer. 
Separate analog and digital voltage supplies and grounds are provided to minimize noise and ensure a wide 
dynamic range. Also, the analog circuit path contains only differential circuitry to keep noise to an absolute 
minimum. The only exception is the DAC sample-and-hold, which utilizes pseudo-differential circuitry. 

The output-reconstruction filter is a seventh-order CC-type (Chebyshev/elliptic transitional low-pass filter 
with a fourth-order equalizer) and is implemented in switched-capacitor technology. This filter is followed 
by a continuous-time filter to eliminate images of the digitally encoded signal. 

The TLC32040M is characterized for operation over the full military temperature range of - 55 °C to 125 °C, 
and the TLC320401 is characterized for operation from -40 °C to 85 °C. 

functional block diagram 

IN+ 

IN-

AUX IN+ 

FILTER 

AID 

r--
1 

- - ".::El~ s_::n~ - - - - ! INTERNAL 
""'I VOLTAGE 

AUX IN-

I REFERENCE 
L,: _ 

FILTER 

OUT++-+------< 
DIA 

OUT- +-t-----i 

TRANSMIT SECTION 

Vee+ Vee- ANLG DTGL VDD REF 
GND GND IDIGI 

SERIAL 
PORT 

lI 

MSTR CLK 

SHIFT CLK 

WORD/BYTE 

DX 

F-14 TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 



PRINCIPLES OF OPERATION 

analog input 

TLC32040M, TLC32040I 
ANALOG INTERFACE CIRCUIT 

Two sets of analog inputs, IN+, IN - , and AUX IN+, AUX IN - , are provided. Each input set can be operated 
in either differential or single-ended modes, since sufficient common-mode range and rejection are provided. 
Normally, the IN+ and IN - inputs are used; however, the auxiliary inputs, AUX IN+ and AUX IN - , can 
be used if a second input is required. The gain for the IN+, IN - , and auxiliary AUX IN+ and AUX IN -
inputs can be programmed to either 1, 2, or 4 (see the Gain Control Table). Either input circuit can be 
selected via software control. It is important to note that a wide dynamic range is assured by the differential 
internal analog architecture and by the separate analog and digital voltage supplies and grounds. 

A/D bandpass filter, A/D bandpass filter clocking, and A/D conversion rate timing 

The A/D bandpass filter can be selected or bypassed via software control. The frequency response of this 
filter is presented in the following pages. This response results when the switched-capacitor filter clock 
frequency is 288 kHz. Several possible options can be used to attain a 288-kHz switched-capacitor filter 
clock. When the filter clock frequency is not 288 kHz, the filter transfer function is frequency-scaled by 
the ratio of the actual clock frequency to 288 kHz. The low-frequency roll-off of the high-pass section 
is 300 kHz. However, the high-pass section low-frequency roll-off can be changed to 200 kHz with a metal 
mask option. 

The Internal Timing Configuration and AIC DX Data Word Format sections of this data sheet indicate the 
many options for attaining a 288-kHz bandpass switched-capacitor filter clock. These sections indicate 
that the RX Counter A can be programmed to give a 288-kHz bandpass-switched capacitor filter clock 
for several Master Clock input frequencies. 

The A/D conversion rate is then attained by frequency-dividing the 288-kHz bandpass switched-capacitor 
filter clock with the RX Counter B. Thus, unwanted aliasing is prevented because the A/D conversion rate 
is an integral submultiple of the bandpass switched-capacitor filter sampling rate, and the two rates are 
synchronously locked. 

A/D converter performance specifications 

Fundamental performance specifications for the A/D converter circuitry are presented in the A/D converter 
operating characteristics section of this data sheet. The realization of the A/D converter circuitry with 
switched-capacitor techniques provides an inherent sample-and-hold. 

analog output 

The analog output circuitry is an analog output power amplifier. Both noninverting and inverting amplifier 
outputs are brought out of the IC. This amplifier can drive transformer hybrids or low-impedance loads 
directly in either a differential or single-ended configuration. 

D/A low-pass filter, D/A low-pass filter clocking, and D/A conversion rate timing 

The frequency response of this filter is presented in the following pages. This response results when the 
low-pass switched-capacitor filter clock frequency is 288 kHz. Like the A/D filter, the transfer function 
of this filter is frequency-scaled when the clock frequency is not 288 kHz. A continuous-time filter is provided 
on the output of the D/A low-pass filter to greatly attenuate any switched-capacitor clock feedthrough. 

The D/A conversion rate is then attained by frequency-dividing the 288-kHz switched-capacitor filter clock 
with TX Counter B. Thus, unwanted aliasing is prevented because the D/A conversion rate is an integral 
submultiple of the switched-capacitor low-pass filter sampling rate, and the two rates are synchronously 
locked. 

. TEXAS -l.f1 
INSTRUMENTS 

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 

~ w -> w 
a: c.. 
t­u 
:::> 
c 
0 
a: c.. 

F-15 



"'O 
:c 
0 c 
c: 
0 
-I 
"'O 
:c 
m 
!$ 
m :e 

TLC32040M, TLC320401 
ANALOG INTERFACE CIRCUIT 

PRINCIPLES OF OPERATION (continued} 

asynchronous versus synchronous operation 

If the transmit section of the AIC (low-pass filter and DACI and receive section (bandpass filter and ADC) 
are operated asynchronously, the low-pass and band-pass filter clocks are independently generated from 
the Master Clock signal. Also, the D/A and A/D conversion rates are independently determined. If the 
transmit and receive sections are operated synchronously, the low-pass filter clock drives both low-pass 
and band-pass filters. In synchronous operation, the A/D conversion timing is derived from, and is equal 
to, the D/A conversion rate timing. (See description of the WORD/BYTE pin in the Pin Functional Description 
Section.I 

D/A converter performance specifications 

Fundamental performance specifications for the D/ A converter circuitry are presented in the Di A converter 
operating characteristics section of the data sheet. The D/ A converter has a sample-and-hold that is realized 
with a switched-capacitor ladder. 

system frequency response correction 

Sin xix correction circuitry is performed in digital signal processor software. The system frequency response 
can be corrected via DSP software to ± 0. 1 dB accuracy to a band-edge of 3000 Hz for all sampling rates. 
This correction is accomplished with a first-order digital correction filter, which requires only seven TMS320 
instruction cycles. With a 200-ns instruction cycle, seven instructions represent an overhead factor of 
only 1.1 % and 1.3% for sampling rates of 8 and 9.6 kHz, respectively (see the sin xix Correction Section 
for more details). 

serial port 

The serial port has four possible modes that are described in detail in the pin description section. These 
modes are briefly described below. 

testing 

1. The transmit and receive sections of the AIC are operated asynchronously, and the AIC serial 
port interfaces directly with the TMS32011. 

2. The transmit and receive sections of the AIC are operated asynchronously, and the AIC serial 
port interfaces directly with the TMS32020 and the TMS32025. 

3. The transmit and receive sections of the AIC are operated synchronously, and the AIC serial port 
interfaces directly with the TMS32011. 

4. The transmit and receive sections of the AIC are operated synchronously, and the AIC serial port 
interfaces directly with the TMS32020, TMS32025, or two SN54299 or SN74299 serial-to­
parallel shift registers, which can then interface in parallel to the TMS32010, to any other digital 
signal processor, or to external FIFO circuitry. 

An addendum accompanying this data sheet fully describes the test capabilities of the IC, provided by 
the design. 

internal voltage reference 

The internal reference eliminates the need for an external voltage reference, and thus provides overall circuit 
cost reduction. Additionally, the internal reference makes the performance of the IC less susceptible to 
noise. Thus, the internal reference eases the design task ar-1 orovides complete control over the performance 
of the IC. The internal reference is brought out to a pi.1 and is available to the designer. To keep the amount 
of noise on the reference signal to a minimum, an externdl capacitor may be connected between REF and 
ANLG GND. 

F-16 TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 



TLC32040M, TLC32040I 
ANALOG INTERFACE CIRCUIT 

PRINCIPLES OF OPERATION (continued) 

reset 

A reset function is provided to initiate serial communications between the AIC and DSP and to allow fast, 
cost-effective testing during manufacturing. The reset function will initialize all AIC registers, including 
the control register. The reset pin has an internal pull-up resistor. After a negative-going pulse on the RESET 
pin, the AIC will be initialized. This initialization allows normal serial port communications activity to occur 
between AIC and DSP (see AIC DX Data Word Format section). 

loop back 

This feature allows the user to test the circuit remotely. In loopback, the OUT+ and OUT - pins are internally 
connected to the IN+ and IN - pins. Thus, the DAC bits (d15 to d21, which are transmitted to the DX 
pin, can be compared with the ADC bits (d15 to d2), which are received from the DR pin. An ideal comparison 
would be that the bits on the DR pin equal the bits on the DX pin. However, in practice there will be some 
difference in these bits due to the ADC and DAC output offsets. 

The loopback feature is implemented with digital signal processor control by transmitting the appropriate 
serial port bit to the control register (see AIC Data Word Format section). 

PIN 
DESCRIPTION 

NAME NO. 110 
ANLG GND 17,18 Analog ground return for all internal analog circuits. Not internally connected to DGTL GND. 

AUX IN+ 24 I Noninverting auxiliary analog input stage. This input can be switched into the bandpass filter and A/D converter 

path via software control. If the appropriate bit in the Control register ts a 1, the auxiliary inputs will replace 

the IN+ and IN - inputs. If the bit is a 0, the IN+ and IN - inputs will be used (see the AIC DX Data Word 

Format section). 

AUX IN- 23 I Inverting auxiliary analog input (see the above AUX IN+ pin description). 

DGTL GND 9 Digital ground for all internal logic circuits. Not internally connected to ANLG GND. 

DR 5 0 This pin is used to transmit the ADC output bits from the AIC to the TMS320 serial port. This transmission 

of bits from the AIC to the TMS320 serial port is synchronized with the SHIFT CLK signal. 

DX 12 I This pin is used to receive the DAC input bits and timing and control information from the TMS320. This serial 

transmission from the TMS320 serial port to the AIC is synchronized with the SHIFT CLK signal. 

EODR 2 0 (See the WORD/BYTE pin description and the Serial Port Timing Diagram.) During the word-mode 

timing, this signal is a low-going pulse that occurs immediately after the 16 bits of A/D information have been 

transmitted from the AIC to the TMS320 serial port. This signal can be used to interrupt a microprocessor 

upon completion of serial communications. Also, this signal can be used to strobe and enable external serial-

to-parallel shift registers, latches, or external FIFO RAM, and to facilitate parallel data bus communications 

between the AIC and the serial-to-parallel shift registers. During the byte-mode timing, this signal goes low 

after the first byte has been transmitted from the AlC to the TMS320 serial port and is kept low until the 

second byte has been transmitted. The TMS32011 can use this low-going signal to differentiate between 

the two bytes as to which is first and which is second. 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 

s: 
w 
> w 
a: 
0.. 

I­
(.) 
:::> 
c 
0 
a: 
0.. 

F-17 



TLC32040M, TLC3204DI 
ANALOG INTERFACE CIRCUIT 

PIN 
DESCRIPTION 

NAME NO. 1/0 

EODX 11 0 (See the WORD/liY'fE pin description and the Serial Port Timing Diagram.) During the word-mode 

timing, this signal is a low-going pulse that occurs immediately after the 16 bits of O/A converter and control 

or register information have been transmitted from the TMS320 serial Port to the AIC. This signal can be used 

to interrupt a microprocessor upon the completion of serial communications. Also, this signal can be used 

to strobe and enable external seriaHo-parallel shift registers, latches, or an external FIFO RAM, and to facilitate 

parallel, data-bus communications between the AIC and the seriai.to-parallel shift registers. During the byte-

mode timing, this signal goes low after the first byte has been transmitted from the TMS320 serial port to 

the AIC and is kept low until the second byte has been transmitted. The TMS32011 can use this low-going 

signal to differentiate between the two bytes as to which is first and which is second. 

FSR 4 0 In the serial transmission modes, which are described in the WORD/BYTE pin description, the FSA pin is held 

low during bit transmission. When the FS1i pin goes low, the TMS320 serial port will begin receiving bits from 

the AIC via the DR pin of the AIC. The most significant DR bit will be present on the DR pin before FSR goes 

low. (See Serial Port Timing and Internal Timing Configuration Diagrams.) 

FSX 14 0 When this pin goes low, the TMS320 serial port will begin transmitting bits to the AIC via the 

DX pin AIC. In all serial transmission modes, which are described in the WORD/BYTE pin description, the FSX 
pin is held low during bit transmission (see Serial Port Timing and Internal Timing Configuration Diagrams). 

IN+ 26 I Noninverting input to analog input amplifier stage 

IN- 25 I Inverting input to analog input amplifier stage 

MSTR CLK 6 I The Master Clock signal is used to derive all the key logic signals of the AIC, such as the Shift Clock, the 

switched-capacitor filter clocks, and the A/D and O/A timing signals. The Internal Timing Configuration diagram 

shows how these key signals are derived. The frequencies of these·key signals are synchronous submultiples 

of the Master Clock frequency to eliminate unwanted aliasing when the sampled analog signals are transferred 

between the switched~capacitor filters and the A/O and D/A converters (see the Internal Timing Configuration). 

OUT+ 22 0 Noninverting output of analog output power amplifier. Can drive transformer hybrids. or high-impedance loads 

directly in either a differential or a single-ended configuration. 

OUT- 21 0 Inverting output of analog output power amplifier; functionally identical with and complementary to OUT+ . 

REF 8 The internal voltage reference is brought out to this pin. 

RESET 2 I A reset function is provided to initialize the TA, TA', TB, RA, RA', AB, and control registers. This 

reset function initiates serial communications between the AIC and OSP. The reset function will initialize all 

AIC registers including the control register. After a negative-going. pulse on the RrSIT 
pin, the AIC registers will be initialized to provide an 8-kHz data conversion rate for a 5.184-MHz master clock 

input signal. The conversion rate adjust registers, TA' and RA', will be reset to 1 . The CONTROL register bits 

will be reset as follows (see AIC DX Data Word Format section). 

d7 = 1. d6 = 1, d5 = 1. d4 = 0,d3 = o. d2 = 1 

This initialization allows normal serial-port communication to occur between AIC and OSP. This pin has an 

internal pull-up resistor and is set to a high logic level unless it is pulled to ground. 

SHIFT CLK 10 0 The Shift Clock signal is obtained by dividing the Master Clock signal frequency by four. This signal is used 

to clock the serial data transfers of the AIC, described in the WORD/BYTE pin description 

below (see the Serial Port Timing and Internal Timing Configuration diagram), 

VDD 7 Digital supply voltage, 5 V ± 5% 

Vee+ 20 Positive analog supply voltage, 5 V ± 5% 

Vee- 19 Negative analog supply voltage - 5 V ± 5% 

F-18 TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 



PIN 

NAME NO. 1/0 

WORD/BYTE 13 I 

DESCRIPTION 

This pin, in conjunction with a bit in the CONTROL register, 

TLC32040M, TLC32040I 
ANALOG INTERFACE CIRCUIT 

is used to establish one of four serial 

modes. These four serial modes are described below. This pin has an internal pull-up resistor and is set to 

a logic high unless it is pulled to ground., 

AIC transmit and receive sections are operated asynchronously. 

The following description applies when the AIC is configured to have asynchronous transmit and receive sections. 

If the appropriate data bit in the Control register is a 0 (see the AIC DX Data Word Format), the transmit and 

receive sections will be asynchronous. 

L Serial port will directly interface with the serial port of the TMS32011 and communicates in two 

8-bit bytes. The operation sequence is as follows (see Serial Port Timing diagrams). 

1. The FSX or FSA pin is brought low. 

2. One 8-bit byte is transmitted or one 8-bit byte is received. 

3. The EODX or EODR pin is brought low. 

4. The FSX or FSA pin emits a positive frame-sync pulse that is 

four Shift Clock cycles wide. 

5. One 8-bit byte is transmitted or one 8-bit byte is received. 

6. The EODX or EODA pin is brought high. 

7. The FSX or FSR pin is brought high. 

H Serial port will directly interface with the serial port of the TMS32020 and communicates in one 

16-bit word. The operation sequence is as follows (see Serial Port Timing diagrams): 

1. The FSX or FSR pin is brought low. 

2. One 16-bit word is transmitted or one 16-bit word is received. 

3. The FSX or FSA pin is brought high. 

4. The EODX or EODR pin emits a low-going pulse. 

A/C transmit and receive sections are operated synchronously. 

If the appropriate data bit in the Control register is a 1, the transmit and receive sections will be configured 

to be synchronous. In this case, the bandpass switched-capacitor filter and the AID conversion timing will 

be derived from the TX Counter A, TX Counter 8, and TA, TA', and TB registers, rather than the RX Counter 

A, RX Counter B, and RA, RA', and RB registers. In this case, the AIC FSX and FSR timing will be identical, 

as will the EODX and EODR timing. The synchronous operation sequences are as follows (see Serial Port Timing 

diagrams). 

L Serial port will directly interface with the serial port of the TMS32011 and communicates in two 

8-bit bytes. The operation sequence is as follows (see Serial Port Timing diagrams): 

1. The FSX and FSR pins are brought low. 

2. One 8·bit byte is transmitted and one 8wbit byte is received. 

3. The EODX and EODR pins are brought low. 

4. The FSX and ~pins emit positive frame-sync pulses that are 

four Shift Clock cycles wide. 

5. One 8-bit byte is transmitted and one 8-bit byte is received. 

6. The EODX and EODR pins are brought high. 

7. The FSX and FSA pins are brought high. 

H Serial port will directly interface with the serial port of the TMS32020 and communicates in one 

16-bit word. The operation sequence is as follows (see Serial Port Timing diagrams): 

1. The FSX and FSR pins are brought low. 

2. One 16-bit word is transmitted and one 16-bit word is received. 

3. The FSX and FSA pins are brought high. 

4. The EODX or EODR pins emit low-going pulses. 

Since the transmit and receive sections of the AIC are now synchronous. the AIC serial port, with additional 

NOR and AND gates, will interface to two SN54299 or SN74299 serialwto-parallel shift registers. Interfacing 

the AIC to the SN54299 or SN74299 shift register allows the AIC to interface to an external FIFO RAM and 

facilitates parallel, data bus communications between the AIC and the digital signal processor. 

sequence is the same as the above sequence (see Serial Port Timing diagrams). 

TEXAS,,, 
INSTRUMENTS 

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 

The operation 

F-19 



"'tJ 
::D 
0 
c 
c 
C') 
-I 
"'tJ 
::D 
m 
< -

TLC32040M, TLC320401 
ANALOG INTERFACE CIRCUIT 

INTERNAL TIMING CONFIGURATION 

MASTER CLOCKr - - - - - - - - - - - , SHIFT CLOCK 
5.i84MHz1i11 DIVIDE BY 4 ,_ ______ _,_ ___ •i.296 MHz Iii 

i0.368 MHz 121 - - - - - - _ - __ - _.J 2.592 MHz 121 

20. 736 MHz ti I 
4i.472MHz121----

------, 
XTAL TMS320 
OSC DSP 

OPTIONAL EXTERNAL CIRCUITRY 
FOR FULL DUPLEX MODEMS 

- --;5'3.6kHz- -- --1 
DIVIDE CLOCK 1 i I COMMERCIAL I 

EXTERNAL I 
FRONT-END I 

FULL-DUPLEX 

I SPLIT -BAND I 
FILTERSt I L __________ ::.J 

TA REGISTER 
15 BITS) 

do.di -o.o 
do.di• 1.1 I 

TA' REGISTER 
16 BITS! 
i2's COMPLI 

do.di -o.i 
do.di - i .o* 

TX COUNTER A 
(TA• 91i11 
(TA • is 1211 
16 BITS) 

RA REGISTER 
15 BITS! 

DIVIDER CIRCUITRY 

TB REGISTER 
16 BITS) 

TX COUNTER B 
TB-40; 7 .2 kHz 
TB-36; 8.0 kHz 
TB-30; 9.6 kHz 
TB• 20; i4.4 kHz 
TB• 15; 19.2 kHz 

DIVIDER CIRCUITRY 

LOWPASS 
SWITCHED 
CAP FILTER 
CLK - 288 kHz 
SQUARE WAVE 

D/A 
CONVERSION 
FREQUENCY 

BANDPASS 
SWITCHED 
CAP FILTER I 
CLK • 288 kHz I SQUARE WAVE 

RB REGISTER I 
(6 BITS} I 

I 
do.di -o.o do.di -o. i 

I do.di - i.i* do.di - i.o• RX COUNTER B 
RB•40; 7 .2 kHz 

A/D I RX COUNTER A RB-36; 8.0 kHz I IRA• 91i11 RB· 30; 9.6 kHz 
CONVERSION 

IRA • is 1211 RB• 20; i 4.4 kHz 
FREQUENCY 

I 16 BITS) RB-i5; i9.2 kHz 

L ---- --- - ---- ---- J 
NOTE: Frequency 1, 20. 736 MHz, is used to show how 153.6 kHz (for a commercially available modem split-band filter clock), popular 

speech and modem sampling signal frequencies, and an internal 288-kHz switched-capacitor filter clock can be derived synchronously 
and as submultiples of the crystal oscillator frequency. Since these derived frequencies are synchronous submultiples of the crystal 
frequency, aliasing does not occur as the sampled analog signal passes between the analog converter and switched-capacitor filter 
stages. Frequency 2, 41.472 MHz, is used to show that the AIC can work with high-frequency signals, which are used by high­
speed digital signal processors. 

tsplit-band filtering can alternatively be performed after the analog input function via software in the TMS320. 
tThese control bits are described in the AIC DX Data Word Format section. 

F-20 
TEXAS~ 

INSTRUMENTS 
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 



explanation of internal timing configuration 

TLC32040M, TLC320401 
ANALOG INTERFACE CIRCUIT 

All of the internal timing of the AIC is derived from the high-frequency clock signal that drives the Master 
Clock input pin. The Shift Clock signal, which strobes the serial port data between the AIC and DSP, is 
derived by dividing the Master Clock input signal frequency by four. 

TX Counter A and TX Counter B, which are driven by the Master Clock signal, determine the DI A conversion 
period timing. Similarly, RX Counter A and RX Counter B determine the A/D conversion period timing. In 
order for the switched-capacitor low-pass and band-pass filters to meet their transfer function specifications, 
the frequency of the clock inputs of the switched-capacitor filter must be 288 kHz. If the frequencies of 
the clock inputs are not 288 kHz, the filter transfer function frequencies are scaled by the ratios of the 
clock frequencies to 288 kHz. Thus, to obtain the specified filter responses, the combination of Master 
Clock frequency and TX Counter A and RX Counter A values must yield 288-kHz switched-capacitor clock 
signals. These 288-kHz clock signals can then be divided by the TX Counter Band RX Counter B to establish 
the DI A and A/D conversion period timings. 

TX Counter A and TX Counter Bare reloaded every D/A conversion period, while RX Counter A and RX 
Counter B are reloaded every A/D conversion period. The TX Counter B and RX Counter Bare loaded with 
the values in the TB and RB Registers respectively. Via software control, the TX Counter A can be loaded 
with either the TA Register, the TA Register less the TA' Register, or the TA Register plus the TA' Register. 
By selecting the TA Register less the TA' Register option, the upcoming conversion period timing will occur 
earlier by an amount of time that equals TA' times the signal period of the Master Clock. By selecting 
the TA Register plus the TA' Register option, the upcoming conversion period timing will occur later by 
an amount of time that equals TA' times the signal period of the Master Clock. Thus, the DI A conversion 
timing can be advanced or retarded. An identical ability to alter the A/D conversion timing is provided. 
In this case, however, the RX Counter A can be programmed via software control with the RA Register, 
the RA Register less the RA' Register, or the RA Register plus the RA' Register. 

The above feature is particularly useful for modern applications. This feature allows controlled changes 
in the A/D and D/A conversion timing. This feature can be used to enhance signal-to-noise performance, 
to perform frequency-tracking functions, and to generate nonstandard modern frequencies. 

If the transmit and receive sections are configured to be synchronous (see WORD/BYTE pin description), 
then both the low-pass and bandpass switched-capacitor filter clocks are derived from TX Counter A. Also, 
both the D/A and A/D conversion timing are derived from the TX Counter A and TX Counter B. When the 
transmit and receive sections are configured to be synchronous, the RX Counter A, RX Counter B, RA 
Register, RA' Register, and RB Registers are not used. 

~ 
w -> w 
a: 
CL. 

l­o 
::> 
c 
0 a: 
CL. 

TEXAS l/1 
INSTRUMENTS F-21 

POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 



TLC0820A, TLC0820B 
ADVANCED LinCMOS™ HIGH-SPEED B·BIT ANALOG-TO-DIGITAL 

CONVERTERS USING MODIFIED "FLASH" TECHNIQUES 

• Advanced LinCMOS™ Silicon-Gate 
Technology 

• 8-Bit Resolution 

• Differential Reference Inputs 

• Parallel Microprocessor Interface 

• Conversion Access Time Over Temperature 
Range 

Write-Read Mode ... 1 .18 ,.s and 1. 92 ,.s 
Read Mode ... 2.6 ,.s Max 

• No External Clock or Oscillator Components 
Required 

• On-Chip Track-and-Hold 

• low Power Consumption ... 50 mW Typ 

• Single 5-V Supply 

• TLC08208 is Direct Replacement for 
National Semiconductor ADC08208/BC and 
Analog Devices AD7820l/C/U; 
TLCOB20A is Direct Replacement for 
National Semiconductor ADC0820C/CC and 
Analog Devices AD7820K/B/T 

02873, SEPTEMBER 1986-REVISED DECEMBER 1987 

TLC0820AM. TLC0820BM ... OW. J OR N PACKAGE 
TLC0820AI. TLC0820BI ... OW OR N PACKAGE 

TLC0820AC. TLC0820BC ... OW OR N PACKAGE 

ITOPVIEWI 

ANLG IN Vee 
ILSBI DO NC 

01 OFLW 
02 07 IMSBI 
03 06 

WR/ROY 05 
MODE 04 

RD cs 
INT REF+ 

GND REF-

TLC0820AM. TLC0820BM ... FK PACKAGE 
TLC0820AI. TLC082081 ... FN PACKAGE 

TLC0820AC. TLC08208C ... FN PACKAGE 

(TOP VIEW) 

02 18 OFLW 

description 
03 

WR/ROY 
MODE 7 

RD 8 

17 07 IMSBI 
16 06 

The TLC0820A and TLC0820B are Advanced 
LinCMOS™ 8-bit analog-to-digital converters 
each consisting of two 4-bit "flash" converters, 
a 4-bit digital-to-analog converter, a summing 
(error) amplifier, control logic, and a result latch 
circuit. The modified "flash" technique allows 
low-power integrated circuitry to complete an 
8-bit conversion in 1. 18 microseconds over 
temperature. The on-chip track-and-hold circuit 
has a 1 00-nanosecond sample window and 
allows the TLC0820A and TLC0820B to convert 
continuous analog signals having slew rates of 
up to 100 millivolts per microsecond without 
external sampling components. TTL-compatible 
three-state output drivers and two modes of 
operation allow interfacing to a variety of 
microprocessors. Detailed information on 
interfacing to most popular microprocessors is 
readily available from the factory. 

15 05 
14 04 

9 10 11 12 13 

NC -No internal connection 

The TLC0820AM and TLC0820BM are available in the OW or N plastic and'the J ceramic packages and 
are characterized for operation over the full military temperature range of - 55 °C to 125 °C. The TLC0820AI 
and TLC0820BI are characterized for operation from -40°C to 85°C. The TLC0820AC and TLC0820BC 
are characterized for operation from 0 °C to 70 °C. 

Advanced LinCMOS is a trademark of Texas Instruments. 

F-22 

ADVANCE INFORMATION documents contain 
information on new ,roducts in the samplinp or 
preproduction ph11a of development. Charactenstic 
data and other specifications are subject to change 
without notice. 

TEXAS'-!} 
INSTRUMENTS 

POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 

Copyright © 1986, Texas Instruments Incorporated 

z 
0 
j:: 
c:t 
:2: 
cc 
0 
u.. 
z 
w 
(.) 
z 
c:t 
> c 
c:t 



)> 
c 
< 
)> 
2 
(") 
m 
2 .,, 
0 
:a s: 
)> 
::! 
0 
2 

TLC0820A, TLC08208 
ADVANCED LinCMOS™ HIGH-SPEED 8-BIT ANALOG-TO-DIGITAL 
CONVERTERS USING MODIFIED "FLASH" TECHNIQUES 

functional block diagram 

REF+ -'-(1-'2"-I ________ ..._. ::!:~~A:~-
REF - _<1_1_1 ________ _._.. 4 4 

-, -, 

ANLG IN 
(11 

MOOE 
(71 

WR/ROY 
(61 

cs (131 

RD 
(81 

DIGITAL 
CONVERTER 

.---------+--+--! (4 MSBsl 

~ ,___ -1 

+1 

..... 

4 

t- 4-BIT 

;-+- Tg1;~T:LL~G t--

'--1 
'-----I 

CONVERTER 

4-BIT FLASH 
ANALOG-TO-

DIGITAL 
4 

CONVERTER 
(4 LSBsl 

TEXAS~ 
INSTRUMENTS 

OUTPUT 
LATCH 

ANO 
3-STATE 
BUFFERS 

11 
TIMING 

AND 
CONTROL 

POST OFFICE BOX 655012 e DALLAS. TEXAS 75265 

~ OFLW 

.---El. 00 ILSBI 

i---E!- 01 

~ 02 

~ 03 DIGITAL 

i-J!!L 04 OUTPUTS 

~ 05 

~ 06 

i-!.!Zl. 07 (MSBI 

~ INT 

F-23 



PRODUCT 
PREVIEW 

TLC1205A, TLC1205B, TLC1225A, TLC1225B 
SELF-CALIBRATING 12-BIT-PLUS-SIGN UNIPOLAR OR BIPOLAR 

ANALOG-TO-DIGITAL CONVERTERS 

e ADVANCED LinCMOS'" Technology 

• Self-Calibration Eliminates Expensive 
Trimming at Factory and Offset Adjustment 
in the Field 

• 12-Bit Plus Sign Unipolar or Bit Bipolar 

• ± Y, and ± 1 LSB Linearity Error in Unipolar 
Configuration 

• 10 µs Conversion Time (Mode 2) 
(clock = 2.6 MHz) 

20 µs Conversion Time (Mode 1) 
(clock = 2.6 MHz) 

• Compatible with All Microprocessors 

• True Differential Analog Voltage Inputs 

• 0 to 5 V Analog Voltage Range with Single 
5-V Supply (Unipolar Configuration) 

• - 5 V to 5 V Analog Voltage Range with 
± 5-V Supplies (Bipolar Configuration) 

• Low Power ... 25 mW Maximum 

• Replaces National Semiconductor ADC1205 
and ADC1225 in Mode 1 Operation 

description 

The TLC1205 and TLC1225 converte~ are 
manufactured with Texas Instruments highly 
efficient ADVANCED LinCMOS" technology. 
Either of the TLC1205 or TLC1225 CMOS 
analog-to digital converters can be operated as 
a unipolar or bipolar converter. A unipolar input 
(0 to 5 V) can be accommodated with a single 

02982, FEBRUARY 1987 

TLC1205 
J OR N DUAL-IN-LINE PACKAGE 

!TOP VIEW) 

ANLG Vee- DGTL Vee 
IN- D 12/D7 /0 (status) 

IN+ D1 2/D6/SARS 
ANLG GND D12/D5/0/Dl5 

REF D12/D4/0/Dl4 

ANLG Vee+ D11/D3/0/Dl3 
VOS D1 O/D2/BYST/Dl2 

CLK IN D9/D 1/EOC/DI1 
WR D8/DO/INT /DIO 
cs INT 
RD READY OUT 

DGTL GND STATUS 

TLC1225 
J OR N DUAL-IN-LINE PACKAGE 

tTOP VIEW) 

ANLG Vee 
IN-

READY OUT 

DGTL Vee 
D12 
D11 
D10 
D9 
DS 
D7 
D6 
D5/Dl5 
D4/Dl4 
D3/Dl3 
D2/Dl2 
D1/Dl1 

110 
BUS 

1/0 

BUS 

5-volt supply, while a bipolar input ( - 5 V to 5 V) requires the addition of a 5-volt negative supply. 
Conversion is performed via the successive-approximation method. The 24-pin TLC 1 205 outputs the 
converted data in two 8-bit bytes, while the TLC1225 outputs the converted data in a parallel word and 
interfaces directly to a 16-bit data bus. Negative numbers are given in the 2's complement data format. 
All digital signals are fully TTL and CMOS compatible. 

These converters utilize a self-calibration technique by which seven of the internal capacitors in the 
capacitive ladder of the A/D conversion circuitry can be automatically or manually calibrated. l,f the 
converters are operated in Mode 1, one of the seven internal capacitors is calibrated during the first part 
of the conversion sequence. For example, one capacitor is calibrated during the first conversion. The next 
capacitor is calibrated during the second conversion. If the converters are operated in Mode 2, the internal 
capacitors are calibrated during a nonconversion, capacitor-calibrate cycle in which all seven of the internal 
capacitors are calibrated at the same time. A Mode 2 conversion requires only 10 µs (2.6 MHz clock) after 
the nonconversion, capacitor-calibrating cycle has been completed. The calibration or conversion cycle 
may be initiated at any time by issuing the proper address to the data bus. The self-calibrating techniques 
eliminate the need for expensive trimming of thin-film resistors at the factory and provide excellent 
performance at low cost. 

ADVANCED LinCMOS'~ is a trademark of Texas Instruments Incorporated 

PRODUCT PREVIEW documents contain information 
on products in the formative or design phase of 
development. Characteristic data and other 
specifications are design goals. Tex as Instruments 
reserves the right to change or discontinue these 
products without notice. 

TEXAS. 
INSTRUMENTS 

POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 

Copyright© 1987, Texas Instruments Incorporated 



TLC1205A. TLC1205B, TLC1225A, TLC1225B 
SELF-CALIBRATING 12-BIT-PLUS-SIGN UNIPOLAR OR BIPOLAR 
ANALOG-TO-DIGITAL CONVERTERS 

functional block diagram 

PRODUCT 
PREVIEW 

..... 8-BIT 

r - - - -MiCRoPRoCESSOR - - - - , 

I I 

ANLG Vee-

IN+ 

IN­

REF 

R 

.---1 

r 
~ 

11----1 

1/0 BUS ~ 

VOS 

INT 

cs ~ 

WR 

RD -,.-

EADY OUT 

STATUS + 

l Bl 8 8-BIT SWITCH 
CALIBRATION 

<7 I CONTROL 
DAC 13-BIT 

CAPACITOR DAC 

l }o•• 
I ~ 8-BIT SAR 

AND S/H 
REGISTER 1 

REGISTER 2 

13-BIT 8 ALU 

CAPACITOR DAC * AND S/H 4 8-BIT H- ~ 8-WORD 

L 
13 CALIBRATION RAM 

--,-13 DAC ADDRESS ADDRESS 
13 COUNTER COUNTER 

5 V - 10 V TRANSLATOR 1 2 

13-BIT SWITCH CONTROL CLOCKS 

13 BIT SAR 6 
INPUT DATA LATCHES 

13-BIT CALIBRATION 
CONTROL LOGIC .... 

l 13 I r---i 
13-BIT DAT A LATCH '7 

1 6 
I 

I MUX CONTROL ,.-
# ",__I ROM 

TLC1205: # - 8 
-, r,r,-1 

TLC1225: # - 13 I '---l 
PROGRAM 

' I COUNTER 

' 

~- _ !_J-j- - --

(TLC1205 ONLY) 

I 

I 
I 
I 
I 
I 

8-BIT I 
OATA I 
PATH I 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

- _ _J 

In Mode 1, these converters are replacements for National Semiconductor ADC 1205 and ADC 1225 
integrated circuits. The Mode 1 conversion time for guannteed accuracy is 51 clock cycles. In the Mode 2 
operation, these devices are no longer true replacements. However, the Mode 2 conversion time for 
guaranteed accuracy is only 26 clock cycles. 

The TLC1205AM, TLC1205BM, TLC1225AM, and TLC1 225BM are characterized for operation over the 
full military temperature range of -55°C to 125°C. The TLC1205AI, TLC1205BI, TLC1225AI, and 
TLC122581 are characterized for operation from - 40 °C to 85 °C. 

TEXAS,,, 
INSTRL:MENTS 

POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 

F-25 



ADVANCE 
INFORMATION 

• Advanced LinCMOS™ Silicon-Gate 
Technology 

• Easily Interfaced to Microprocessors 

• On-Chip Data Latches 

• Guaranteed Monotonicity 

• Segmented High-Order Bits Ensure Low­
Glitch Output 

• Designed to be Interchangeable with Analog 
Devices AD7524, PMI PM-7524, and Micro 
Power Systems MP7524 

• Fast Control Signaling for Digital Signal 
Processor Applications Including Interface 
with TMS320 

KEV PERFORMANCE SPECIFICATIONS 

Resolution 8 Bits 

Linearity error % LSB Max 

Power dissipation 
5 mW Max 

at v00 ~ 5 v 
Settling time 100 ns Max 

Propagation delay 80 ns Max 

TLC7524 
Advanced LinCMOS™ 8-BIT MULTIPLYING 

DIGITAL·TO·ANALOG CONVERTER 
03008. SEPTEMBER 1986 

D OR N PACKAGE 

(TOP VIEW) 

OUT1 RFB 
OUT2 REF 

GND Voo 
DB7 WR 
DB6 cs 
DB5 DBO 
DB4 DB1 
DB3 DB2 

description 

The TLC7524 is an Advanced LinCMOS™ 8-bit digital-to-analog converter (OAC) designed for easy interface 
to most popular microprocessors. 

The TLC7524 is an 8-bit multiplying DAC with input latches and with a load cycle similar to the "write" 
cycle of a random access memory. Segmenting the high-order bits minimizes glitches during changes in 
the most-significant bits, which produce the highest glitch impulse. The TLC7524 provides accuracy to 
Y2 LSB without the need for thin-film resistors or laser trimming, while dissipating less than 5 milliwatts 
typically. 

Featuring operation from a 5-V to 15-V single supply, the TLC7524 interfaces easily to most microprocessor 
buses or output ports. Excellent multiplying (2 or 4 quadrant) makes the TLC7524 an ideal choice for many 
microprocessor-controlled gain-setting and signal-control applications. 

The TLC75241 is characterized for operation from - 25 °C to 85 °C, and the TLC7524C is characterized 
for operation from 0 °C to 70 °C. 

Advanced LinCMOS is a trademark of Texas Instruments lncorporc;kd 

F-26 

ADVANCE INFORMATION documents contain 
information on new products in the samplin~ or 
preproduction phase of development. Characteristic 
data and other specifications are subject to change 
without notice. 

TEXAS -lj} 
INSTRUMENTS 

POST OFFICE BOX 65hC\:' •DALLAS, TEX.l\S 75265 

Copyright© 1986. Texas Instruments Incorporated 

IJ 
(. 
;c 
< ... ... 

' < 



, 

' .. .. , , 
) 
'1 

Ill' , 
) 
l 
Ill' 
II 

> 
j 
) 
:Ill' 

TLC7524 
Advanced LinCMOS™ 8-BIT MULTIPLYING 
DIGITAL-TO-ANALOG CONVERTER 

functional block diagram 

cs (121 

WR (131 

087 086 
(MS81 

Voo 
(141 

085 

OATAINPUTS 

operating sequence 

080 
(LS81 

2R 

R 

(161 

11 I 

(21 

(31 

RF8 

OUT1 

OUT2 

GNO 

llllj4'-----tsu(CSl-----l .. ~~11--.. .!I- th(CSI ----- ( ~'-----

WR 

080-087 

1 
I 

l'f---tw(WRI~ 
I 

"'--------11 
14""-lsu(Ol--.i 
I ~th!OI 

TEXAS • 
INSTRUMENTS 

POST OFFICE BOX 655012 • DALLAS. TEXAS 75265 

ADVANCE 
INFORMATION 

F-27 





Appendix F -Tl Sockets 

IC SOCKETS 
PLASTIC LEADED CHIP CARRIER 
PERFORMANCE SPECIFICATIONS 

Mechanical 
Recommended PCB thickness range: 0.062 in to 0.092 in 
Recommended PCB hole size range: 0.032 in to 0.042 in 
Vibration: 1 5 G 
Shock: 100 G 
Solderability: Per MIL-STD 202, Method 208 
Insertion force: 0. 59 lbs per position 
Withdrawal force: 0.25 lbs per position 
Normal force: 200 g min, 450 g typ 
Wipe: 0.075 in min 
Durability: 5 cycles min 
Contact retention: 1. 5 lbs min 

Electrical 
Current carrying capacity: 1 A 
Insulation resistance: 5000 MO min 
Dielectric withstanding voltage: 1000 V ac rms min 
Capacitance: 1.0 pF max 

Environmental 
Operating temperature: 
Operating: - 40°C to 85 °C 
Storage: - 40 °C to 95 °C 
Temperature cycling with humidity: will conform to final EIA 

specifications 
Shelf life: 1 year min 

MATERIALS 
Body - Ryton R-4 140% glass) U/L 94-VO rating 
Contacts - CDA 510 spring temper 
Contact finish - 90/10tin (200 µin -400 µin) over40 µin 

copper 

Contact factory for detailed information 

PLASTIC LEADER CHIP CARRIER CPR SERIES 

I~ ~ 

I 6 0 'w' () 

(-_) A 

l 0 () i 

I ' 

i _} 
A 

Device guide barriers not shown 

-DEVICE GUIDE 
BARRIERS 

UNIQUE, HIGH 

/
NORMAL FORCE 

CONTACT 

EASILY 
AUTO INSERTED___.___!\ 

, CLOSED BOTTOM 
DESIGN 

PART NUMBER SYSTEM 

ClPR lPH 1XXX -lX -1:o~tact surface 1 _tin lead 

plating 
Contact spacing 1 - 0.050 in 

Numberofpos 1044,052,068. 0841 
Plated thru hole, solder tail 

Tl socket Series 
Plastic leaded chip carrier 

Pos A B c 
44 

21,43 17,78 12,70 
10.844 (0.7001 10.5001 

52 
23,98 20,32 15,24 

(0.9441 10.8001 10.6001 

68 
29,06 25,40 20,32 

11.1441 11.0001 10.8001 

84 
34,14 30,48 25,40 

11.3441 11.2001 11.0001 

Extraction tool available, consult factory. 



Appendix F - Tl Sockets 

F-30 

PRODUCT FEATURES 
Can be loaded by top actuated insertion or press-in 

insertion, either manually or automatically 
High reliability due to high pressure contact point 
Open body and high stand-off design provide high efficiency 

in heat dissipation 
High durability up to 10,000 cycles 
Compact design 

PERFORMANCE SPECIFICATIONS 

Mechanical 
Durability: 10,000 cycles 
Operating Temperature: 180°C max 
Electrical 
Contact rating: 1 .0 A per contact 
Contact resistance: 30 mil max 
Insulation resistance: 1000 Mil min 
Dielectric withstanding voltage: 500 V ac rms min 

MATERIALS 
Body - ultem glass filled IU/L 94 VO) 
Contact - copper alloy 
Plating - overall gold plate 

PLCC BURN-IN/TEST SOCKETS CPJ SERIES 

1,27 10.050) 

L 5,08 I0.200t 

12.90 (0.5071--1 

0,50 -11-
(0.0201 

Dimensions in parentheses are inches 
Contact factory for detailed information 

3.00 10.118) 

1,30 10.051) 

PART NUMBER SYSTEM 

CPJ AA33A - XXX B 

IC SOCKETS 
PLCC BURN-IN/TEST 

l --- 1 Number of positions 

Tl series socket 

SIZES: 18 PIN 
22 PIN 



Appendix F - Tl Sockets 

PERFORMANCE SPECIFICATIONS 

Mechanical 
Accommodates IC leads 0.015 in to 0.021 in diameter 
Recommended PCB thickness range: 0.062 in to 0.092 in 
Recommended PCB hole size range: 0.032 in to 0.042 in 
Recommended hole grid pattern: 0.100 in ± 0.002 in each 

direction 
Vibration: 15 G, 10-2000 Hz per MIL-STD 1344A, 

Method 2005.1 Test Condition Ill 
Shock: 100 G, sawtooth waveform, 2 shocks each direction 

per MIL-STD 202, Method 213, Test Condition I 
Durability: 5 cycles, 10 mO max contact resistance change 

per MIL-STD 1344, Method 2016 
Solderability: per MIL-STD 202, Method 208 
Insertion force: 3.6 oz (102 g) per pin typ using 0.018 in 

diameter test pin 
Withdrawal force: 0.5 oz ( 14 g) per pin min using 0.018 in 

diameter test pin 

Electrical 
Contact rating: 1 .0 A per contact 
Contact resistance: 20 mO max initial 
Insulation resistance: 1000 MO at 500 V de per 

MIL-STD 1344, Method 3003.1 
Dielectric withstanding voltage: 1000 V ac rms 

per MIL-STD 1344, Method 3001.1 
Capacitance: 1.0 pF max per MIL-STD 202, Method 305 
Environmental 
Operating temperature: - 65 °C to 125 °C, gold; - 40 °C to 

100°c. tin 
Corrosive atmosphere: 1 0 mo max contact resistance 

change when exposed to 22% ammonium sulfide for 
4 hours 

Gas tight: 10 mo max contact resistance change when 
exposed to nitric acid vapor for 1 hour 

Temperature soak: 10 mO max contact resistance change 
when exposed to 105 °C temperature for 48 hours 

Shell life: 12 months min 

MATERIALS 
Body - PBT polyester U/L94-VO rating 
On request, G 1 O/FR4 or Mylar film 
Outer sleeve - Machined Brass (QQ-B-6261 
Inner contact - Beryllium copper (QQ-C-530) heat treated 
Plating: (specified by part number) 

PIN GRID ARRAY I r-@@@@@@@@@@@ 
@@@@@@@@@@@ 
@@@@@@@@@@@ 

A B @@@@@@@@@@@ 

@@@@@@@@©©@ 
©©@©©©©©©©© 
©©©@©©©©©©© ·'*' ©@©©©©©© 

1.3/2,0 2,54 
(0.05/0.081 TYP IO.l0!0. 121 (0.1001 TYP NONCUMULATIVE 

3.614.6 .,--C'.'.I I 
IO 

1410 181~ w w w w w w w w w w ~ 
2.6L.a1 ...j~0~:13DIA ~ ~10.0~;15mA 

(0.105/0.1501 

IC SOCKETS 
HIGH DENSITY PIN GRID ARRAY 

Inner contact - 30 µin gold over 50 µin nickel or 100 µin 
tin/lead over 50 µin nickel 

Outer sleeve - 10 µin gold over 50 µin nickel or 50 1<in 
tin/lead over 50 Jtin nickel 

PART NUMBER SYSTEM 

C X G XX - XXX X 

W/W S/T 

X lli-Xin1ength 

~~~~-+-~~~~--< 

-0.510 long 9-0.105/0.150

Plating

P/N Sleeve Clip
0 Gold Gold

Tin Gold

Pin
Grid
Array

Body Style and Orientation

Contact Loading Pattern

Number of Pins
024 10 324

Overall Grid Size
5 x 5 = 05 to 18 x 18 = 18

BODY MATERIAL
G - Glass Filled Epoxy
P - PBT Polyester

Tl Socket

Insulator Size A
±0.010

9x9 10.9501 24, 13
10x 10 11.0501 26,67
11x11 (1.1501 29,21
12x 12 11.250131,75
13x 13 11.3501 34,29
14x 14 I 1.4501 36,83
15x15 11.5501 39,37
16x 16 11.650141,91
17x 17 I 1. 7501 44,45
18x 18 I 1.8501 46,99

t Noncumulative
Dimensions in parentheses are inches
Consult factory for detailed information

B
±0.005t

10.BOOI 20,32
10.9001 22,86
I 1.0001 25.40
11.100127,94
11.2001 30,48
11.3001 33.02
11.4001 35,56
11.500138,10
I 1.6001 40,64
I 1. 7001 43, 18

F-31

Appendix F - Tl Sockets

IC SOCKETS
BURN-IN/TEST PIN GRID ARRAY
PERFORMANCE SPECIFICATIONS

Mechanical
Accommodates IC leads per specific IC device
Recommended PCB thickness range: 0.062 in to O.og2 in
Recommended PCB hole size range: 0.032 in to 0.042 in
Durability: 5000 cycles, 10 m!l max contact resistance

change per MIL-STD 1344, Method 2016
Solderability: per MIL-STD 202, Method 208
Electrical
Contact rating: 1.0 A per contact
Contact resistance: 20 mO max initial
Insulation resistance: 1 .0 MO at 500 V de per

MIL-STD 1344, Method 3003.1
Dielectric withstandirig voltage: 700 V ac rms per

MIL-STD 1344, Method 3001.1
Capacitance: 1 .0 pF max per MIL-STD 202, Method 305
Environmental
Operating temperature: - 65 °C to 170 °C
Humidity: 10 m{l max contact resistance change when

tested per MIL-STD 202, Method 103B
Temperature soak; 10 m{l max contact resistance change

when exposed to 105°C temperature for 48 hours
Shelf life: 12 months max

MATERIALS
Body - CZF Series: PPS (polyphenylen sufide) glass filled

U/L 94 VO rating, - 65 °C to 170 °C
Contact - Beryllium copper
Plating: t Overall gold plate min 4 µin over min 70 µin nickel

plating

t For additional plating option consult the factory.

BURN-IN TEST PIN GRID ARRAY

F·32

f

.t.
2.54J

10.1001

48.00 - 59.94
{1.891 - {2.361

33.02
(1.301

14.98
(0.5901

CLOSED BOTTOM
DESIGN

PART NUMBER SYSTEM

I'' ' \ 1 ~· ,_,,,, ~ FORCE DUAL
BEAM CONTACT

SYSTEM

c xx x xxx xx 01 l 1 LPlating
37 - overall gold plate

Number of positions

Configuration
W-11x11x2

Style ZF - Zero force

Tl Series socket

8.99
(0.3541

Dimensions in parentheses are inches
Contact factory for detailed information

Appendix F - Crystals

Vendors of crystals suitable for use with TMS320 devices are listed below.

F-34

RXD, Inc.
Norfolk, NB
(800) 228-8108

CTS Knight, Inc.
Contact the local distributor.

,N.E.L. Frequency Controls, Inc.
Burlington, WI
(414) 763-3591

G. ROM Codes

Board space is often a critical concern in many DSP applications. In order to
reduce chip count and provide the customer with a single-chip solution, Texas
Instruments offers microcomputer versions for TMS320C2x (second­
generation TMS320) devices. The on-chip ROM of these processors can be
masked with the customer's own code. This allows the user to take advantage
of the general-purpose features of Tl's digital signal processors while at the
same time customizing the processor to suit a specific application.

To facilitate design, all prototype work is performed using a standard
TMS320C2x microprocessor. TMS320C2x development tools permit a de­
signer to test and refine algorithms for immediate results. When the algorithm
has been finalized, the customer can submit the code to Texas Instruments to
be masked into the on-chip ROM of the device.

The MP/MC (microprocessor/microcomputer) mode, offered on maskable
TMS320C2x devices such as the TMS320C25, can shorten design and field
upgrade cycle times, thereby reducing expense. This mode permits the cus­
tomer to use the TMS320C2x as a standard device operating out of external
program memory. When TMS320C2x code is altered during design, the de­
lays associated with new silicon processing are avoided. Field upgrade cycle
times and the associated expense of inventory obsolescence when the code
is altered are also avoided. Note that the TMS32020 has no on-chip ROM
and operates in the microprocessor mode only.

An entire algorithm or an often-used routine may be masked into the on-chip
ROM space of a TMS320C2x device. TMS320C2x programs can also be ex­
panded using external memory. With a reduced chip count and this program
memory flexibilty, multiple functions can be more easily implemented in a
single hardware device, thus enhancing a product's capabilities. The
TMS320C25 with 4K words of on-chip ROM can be ordered as a masked
device. The customer's code must fit within the specified ROM size of the
processor.

Figure G-1 illustrates the procedure flow for implementing TMS320C2x
masked parts. With any masked device order, there is a one-time charge of
$6000 for mask tooling which includes 10 prototypes. A non-cancellable
minimum production order per year of 5000 units is required for the
TMS320C25.

G-1

Appendix G - ROM Codes

CUSTOMER TMS320C2Ji DESIGN

CUSTOMER SUBMITS:
- TMS320C2x NEW CODE RELEASE FORM
- PRINT EVALUATION AND ACCEPTANCE FORM (PEAFI
- PURCHASE ORDER FOR MASK CHARGE/10 PROTOTYPES
- TMS320C2x CODE

TEXAS INSTRUMENTS RESPONDS:
- CUSTOMER CODE INPUT INTO Tl SYSTEM
- CODE SENT BACK TO CUSTOMER FOR VERIFICATION

NO

Tl PROl;>UCES 1 Q PROTOTYPES

NO

TMS320C2x PRODUCTION

Figure G-1. TMS320C2x ROM Code Flowchart

G-2

Appendix G - ROM Codes

Leadtimes for the first 10 prototype units begin when the customer has
formally verified that Tl has recorded his code correctly. Leadtimes for the first
production order begin once the customer formally approves the masked pro­
totypes. The typical leadtime for masked TMS320C2x prototypes is 8 to 1 0
weeks and for masked TMS320C2x production 12 to 16 weeks. Texas In­
struments constantly strives to improve these leadtimes and reserves the right
to make changes at any time. Please contact the nearest Tl Sales Office for
current leadtimes, further information on these procedures, and confirmation
of the mask/production requirements.

A TMS320C2x ROM code may be submitted in one of the following formats
(the preferred media is 51/4" floppies):

FLOPPY:
EPROM:
PROM:

Tl Cross-Assembler Format
TMS27C64, TMS2508, TMS2516, TMS2532, TMS2564
TBP28S166, TBP28S86

When a code is submitted to Texas Instruments for a masked device, the code
is reformatted to accommodate the Tl mask generation system. System level
verification by the customer is therefore necessary. Although the code has
been reformatted, it is important that the changes remain transparent to the
user and not affect the execution of the algorithm. The formatting changes
made involve deletion of all address tags (unnecessary in a ROM code device)
and addition of data in the reserved locations of the ROM for device ROM test.
Note that because these changes have been made, a checksum comparison is
not a valid means of verification.

ROM code algorithms may also be submitted by secure electronic transfer via
a modem. Contact the nearest Tl sales office for further information.

With each masked device order, the customer must sign a disclaimer stating:

"The units to be shipped against this order were assembled, for
expediency purposes, on a prototype (i.e., non-production qualified)
manufacturing line, the reliability of which is not fully characterized.
Therefore, the anticipated inherent reliability of these prototype units
cannot be expressly defined."

and a release stating:

"Any masked ROM device may be resymbolized as Tl standard prod­
uct and resold as though it were an unprogrammed version of the
device at the convenience of Texas Instruments."

ROM codes will be deleted from the Tl system after one year from the last
delivery.

G-3

H. Quality and Reliability

The quality and reliability performance of Texas Instruments Microprocessor
and Microcontroller Products, which includes the three generations of
TMS320 digital signal processors, relies on feedback from:

• Our customers

• Our total manufacturing operation from front-end wafer fabrication to
final shipping inspection

• Product quality and reliability monitoring.

Our customer's perception of quality must be the governing criterion for
judging performance. This concept is the basis for Texas Instruments Corpo­
rate Quality Policy, which is as follows:

"For every product or service we offer, we shall define the require­
ments that solve the customer's problems, and we shall conform to
those requirements without exception."

Texas Instruments offers a leadership reliability qualification system, based on
years of experience with leading-edge memory technology as well as years of
research into customer requirements. Quality and reliability programs at Tl are
therefore based on customer input and internal information to achieve con­
stant improvement in quality and reliability.

H-1

Appendix H - Quality and Reliability

H.1 Reliability Stress Tests

H-2

Accelerated stress tests are performed on new semiconductor products and
process changes to ensure product reliability excellence. The typical test en­
vironments used to qualify new products or major changes in processing are:

• High-temperature operating life
• Storage life
• Temperature cycling
• Biased humidity
• Autoclave
• Electrostatic discharge
• Package integrity
• Electromigration
• Channel-hot electrons (performed on geometries less than 2.0 µm).

Typical events or changes that require internal requalification of product in­
clude:

• New die design, shrink, or layout
• Wafer process (baseline/control systems, flow, mask, chemicals, gases,

dopants, passivation, or metal systems)
• Packaging assembly (baseline control systems or critical assembly

equipment)
• Piece parts (such as lead frame, mold compound, mount material, bond

wire, or lead finish)
• Manufacturing site.

Tl reliability control systems extend beyond qualification. Total reliability
controls and management include product ramp monitor as well as final pro­
duct release controls. MOS memories, utilizing high-density active elements,
serve as the leading indicator in wafer-process integrity at Tl MOS fabrication
sites, enhancing all MOS logic device yields and reliability. Tl places more
than 200,000 MOS devices per month on reliability test to ensure and sustain
built-in product excellence.

Table H-1 lists the microprocessor and microcontroller reliability tests, the
duration of the test, and sample size. The following defines and describes
those tests in the table.

AOQ (Average Outgoing Quality) Amount of defective product in a pop­
ulation, usually expressed in terms of
parts per million (PPM).

FIT (Failure In Time)

Operating lifetest

Estimated field failure rate in number
of failures per billion power-on device
hours; 1000 FITS equals 0.1 percent
fail per 1000 device hours.

Device dynamically exercised at a high
ambient temperature (usually 125°C)
to simulate field usuage that would

Appendix H - Quality and Reliability

High-temperature storage

Biased humidity

Autoclave (pressure cooker)

Temperature cycle

Thermal shock

PINO

Mechanical Sequence:
Fine and gross leak
Mechanical shock

PINO (optional)
Vibration, variable frequency

Constant acceleration

Fine and gross leak

expose the device to a much lower
ambient temperature (such as 55°C).
Using a derived high temperature, a
55°C ambient failure rate can be cal­
culated.

Device exposed to 150°C unbiased
condition. Bond integrity is stressed in
this environment.

Moisture and bias used to accelerate
corrosion-type failures in plastic
packages. Conditions include 85°C
ambient temperature with 85-percent
relative humidity (RH). Typical bias
voltage is +5 V and ground on alter­
nating pins.

Plastic-packaged devices exposed to
moisture at 121°C using a pressure of
one atmosphere above normal pres­
sure. The pressure forces moisture
permeation of the package and accel­
erates corrosion mechanisms (if pres­
ent) on the device. External package
contaminates can also be activated
and caused to generate inter-pin cur­
rent leakage paths.

Device exposed to severe temperature
extremes in an alternating fashion
(-65°C for 15 minutes and 150°C for
15 minutes per cycle) for at least 1000
cycles. Package strength, bond qual­
ity, and consistency of assembly pro­
cess are stressed in this environment.

Test similar to the temperature cycle
test, but involving a liquid-to-liquid
transfer, per MIL-STD-883C, Method
1011.

Particle Impact Noise Detection test.
A non-destructive test to detect loose
particles inside a device cavity.

Per MIL-STD-883C, Method 1014.5
Per MIL-STD-883C, Method 2002.3,
1500 g, 0.5 ms, Condition B
Per MIL-STD-883C, Method 2020.4
Per MIL-STD-883C, Method 2007.1,
20 g, Condition A
Per MIL-STD-883C, Method 2001.2,
20 kg, Condition D, Y1 Plane min
Per MIL-STD-883C, Method 1014.5

H-3

Appendix H - Quality and Reliability

H-4

Electrical test

Thermal Sequence:
Fine and gross leak
Solder heat (optional)
Temperature cycle
(10 cycles minimum)

Thermal shock
(10 cycles minimum)

Moisture resistance
Fine and gross leak
Electrical test

Thermal/Mechanical Sequence:
Fine and gross leak
Temperature cycle
(10 cycles minimum)

Constant acceleration

Fine and gross leak
Electrical test

Electrostatic.discharge
Solderability
Solder heat

Salt atmosphere

Lead pull

Lead integrity

Electromigration

Resistance to solvents

To data sheet limits

Per MIL-STD-883C, Method 1014.5
Per MIL-STD-750C, Method 1014.5
Per MIL-STD-883C, Method 1010.5,
-65 to +150°C, Condition c
Per MIL-STD-883C, Method 1011.4,
-55 to +125°C, Condition B
Per MIL-STD-883C, Method 1004.4
Per MIL-STD-883C, Method 1014.5
To data sheet limits

Per MIL-STD-883C, Method 1014.5
Per MIL-STD-883C, Method 1010.5,
-65 to +150°C, Condition c
Per MIL-STD-883C, Method 2001.2,
30 kg, Y1 Plane
Per MIL-STD-883C, Method 1014.5
To data sheet limits

Per MIL-STD-883C, Method 3015
Per MIL-STD-883C, Method 2003.3
Per MIL-STD-750C, Method 2031,
10 sec
Per MIL-STD-883C, Method 1009.4,
Condition A, 24 hrs min
Per MIL-STD-883C, Method 2004.4,
Condition A
Per MIL-STD-883C, Method 2004.4,
Condition 81
Accelerated stress testing of con -
ductor patterns to ensure acceptable
lifetime of power-on operation
Per MIL-STD-883C, Method 2015.4

Appendix H - Quality and Reliability

Table H-1. Microprocessor and Microcontroller Tests

TEST DURATION SAMPLE SIZE
PLASTIC CERAMIC

Operating life, 125°C, 5.0 V 1000 hrs 195 195
Operating life, 150°C, 5.0 v 1000 hrs 77• 77
Storage life, 150°C 1000 hrs 129 129
Biased 85°C/85 percent RH, 5.0 V 1000 hrs 129 -
Autoclave, 121°C, 1 ATM 240 hrs 105 -
Temperature cycle, -65 to 150°C 1000 eye 129 129
Thermal shock, -65 to 150°C 500 eye 129 129
Electrostatic discharge, ± 2 kV 12 12
Latch-up (CMOS devices only) 5 5
Mechanical sequence - 38
Thermal sequence - 38
Thermal/mechanical sequence - 38
PINO - 15
Internal water vapor - 5
Solderability 22 22
Solder heat 22 22
Resistance to solvents 12 12
Lead integrity 15 15
Lead pull 15 -
Lead finish adhesion 15 15
Salt atmosphere 15 15
Flammability (UL94-VO) 3 -
Thermal impedance 5 5

*If junction temperature does not exceed plasticity of package.

Table H-2 provides a list of the TMS320C2x devices, the approximate number
of transistors, and the equivalent gates. The numbers have been determined
from design verification runs.

Table H-2. TMS320C2x Transistors

DEVICE # TRANSISTORS #GATES

NMOS: TMS32020 SOK 27K

CMOS: TMS320C25 160K 40K

Tl Qualification test updates are available upon request at no charge. Tl will
consider performing any additional reliability test(s), if requested. For more
information on Tl quality and reliability programs, contact the nearest Tl field
sales office.

H-5

Appendix H - Quality and Reliability

Note:

Texas Instruments reserves the right to make changes in MOS Semicon­
ductor test limits, procedures, or processing without notice. Unless prior
arrangements for notification have been made, Tl advises all customers to
reverify current test and manufacturing conditions prior to relying on
published data.

Index

A

A/D converters (Tl) F-2
A/D interface 6-40
ABS

Absolute Value of Accumulator 4-21
Absolute Value of Accumulator

ABS 4-21
accumulator 3-8, 3-24
adaptive filtering 5-63
ADD 3-33

Add to Accumulator with Shift 4-22
Add P Register to Accumulator

APAC 4-34
Add to Accumulator with Shift

ADD 4-22
Add to High Accumulator

ADDH 4-25
ADDC

Add to Accumulator with Carry
(TMS320C25) 4-23

ADDH
Add to High Accumulator 4-25

addition 3-25, 5-35, 5-50
ADDK

Add to Accumulator Short Immediate
(TMS320C25) 4-26

address bus (A 15-AO) 2-4
addressing modes 4-2
ADDS

Add to Accumulator with Sign-Exten­
sion Suppressed 4-27

ADDT 3-24
Add to Accumulator with Shift Speci­

fied by T Register 4-28
ADLK

Add to Accumulator Long Immediate
with Shift 4-30

ADRK
Add to Auxiliary Register Short Imme­

diate (TMS320C25) 4-31
AIC interface 6-37
A-law/µ-law companding 5-60

analog converters (Tl) F-2
analog interface board (AIB) E-7
analog interface circuits (Tl) F-2
AND

AND with Accumulator 4-32
AND with Accumulator

AND 4-32
ANDK

AND Immediate with Accumulator
with Shift 4-33

APAC
Add P Register to Accumulator 4-34

applications 1 -5
architectural overview 3-2
architecture 3-1
arithmetic logic unit (ALU) 3-8, 3-24
arithmetic operations 5-31 , 5-34
assembler C-2, E-3
assembly language instructions 4-1
auxiliary register arithmetic unit

(ARAU) 3-8, 3-17, 3-20, 5-49
auxiliary register file bus (AFB) 3-8, 3-19
auxiliary register pointer (ARP) 3-8,

3-16, 3-20, 3-43
auxiliary register pointer buffer

(ARB) 3-8, 3-19, 3-43
auxiliary registers 3-8, 3-16, 4-4, C-2

B

B
Branch Unconditionally 4-35

BACC
Branch to Addre,ss Specified by Accu­

mulator 4-36
BANZ

Branch on Auxiliary Register Not
Zero 4-37

BBNZ 5-32
Branch on Bit Not Equal to
Zero 4-39

BBZ 5-32

lndex-1

Index

Branch on Bit Equal to Zero 4-40
BC

Branch on Carry
(TMS320C25) 4-41

BGEZ

BGZ

Branch if Accumulator Greater Than or
Equal to Zero 4-42

Branch if Accumulator Greater Than
Zero 4-43

BIO- 2-5, 3-49
BIOZ

Branch on I
0 Status Equal to Zero 4-44

BIT 3-25, 5-32
Test Bit 4-45

bit manipulation 5-32
bit-reversed (BR) addressing 3-18, 4-5,

4-7, 5-68
BITT 3-25, 5-32

Test Bit Specified by T Register 4-47
BLEZ

Branch if Accumulator Less Than or
Equal to Zero 4-49

BLKD 3-20, 5-23
Block Move from Data Memory to Data

Memory 4-50
BLKP 3-20, 5-23

Block Move from Program Memory to
Data Memory 4-53

block diagram 3-5
block moves 3-20, 5-23
blocks BO-B2 3-9, 3-11, 3-13, C-2
BLZ

Branch if Accumulator Less Than
Zero 4-56

BNC
Branch on No Carry

(TMS320C25) 4-57
BNV 5-34

Branch if No Overflow 4-58
BNZ

Branch if Accumulator Not Equal to
Zero 4-59

BR- 2-5, 3-70
Branch if Accumulator Equals Zero

BZ 4-61
Branch if Accumulator Greater Than Zero

BGZ 4-43
Branch if Accumulator Less Than Zero

BLZ 4-56
Branch if Accumulator Not Equal to Zero

BNZ 4-59
Branch if No Overflow

BNV 4-58

lndex-2

Branch on Auxiliary Register Not Zero
BANZ 4-37

Branch on Bit Equal to Zero
BBZ 4-40

Branch on Bit Not Equal to Zero
BBNZ 4-39

Branch on Carry (TMS320C25)
BC 4-41

Branch on I
0 Status Equal to Zero

BIOZ 4-44
Branch on No Carry (TMS320C25)

BNC 4-57
Branch on Overflow

BV 4-60
Branch to Address Specified by Accumula­

tor
BACC 4-36

Branch Unconditionally
B 4-35

branches 3-25, 3-37, 5-28, C-4
bulletin board E-1 0
burst-mode operation 3-61
BV 5-34

BZ

c

Branch on Overflow 4-60

Branch if Accumulator Equals
Zero 4-61

C compiler E-5
CALA 5-7

Call Subroutine Indirect 4-62
CALL 5-7

Call Subroutine 4-64
Call Subroutine

CALL 4-64
Call Subroutine Indirect

CALA 4-62
calls 5-28, C-4
carry bit (C) 3-25, 3-43, 5-50, C-6
central arithmetic logic unit (CALU) 3-8,

3-22
CLKOUT1 2-6, 3-44, 3-48
CLKOUT2 2-6, 3-48
CLKR 2-6, 3-56, C- 7
CLKX 2-6, 3-56, C- 7
clock phases 3-48, C-5
clock timing 3-44, 3-48
CMPL

Complement Accumulator 4-66
CMPR

Index

Compare Auxiliary Register with Aux­
iliary Register ARO 4-67

CNF 3-43
CNFD 3-13, 5-25, C-5

Configure Block as Data
Memory 4-68

CNFP 3-13, 5-25, C-5
Configure Block as Program

Memory 4-69
codec interface 6-34
codecs (Tl) F-2
companding 5-60

A-law/µ-law 5-60
sign-magnitude data 5-60
two· s-complement data 5-60

Complement Accumulator
CMPL 4-66

computedGOTO 5-14
Conditional Subtract

SUBC 4-171
Configure Block as Data Memory

CNFD 4-68
Configure Block as Program Memory

CNFP 4-69
context switching 5-16
continuous-mode operation 3-62, 3-64,

3-66
control system 6-4 7
convolution 5-36
crystal oscillator circuit 6-5
crystals F-33
cycle timings (instructions) C-4, D-1

D

D/A converters (Tl) F-2
DI A interface 6-39
data address bus (DAB) 3-8, 3-19
data bus (01 5-DO) 2-4, 3-8
data memory 3-11
data memory addressing 3-19
data memory expansion 3-11
data memory page pointer (DP) 3-8,

3-20, 3-43
Data Move in Data Memory

DMOV 4-71
data moves 3-20, 5-35
data receive register (ORR) 3-9, 3-16,

3-56, C- 7
data transmit register (DXR) 3-9, 3-16,

3-56
decode (pipeline) 3-29
denormalization 5-4 7

development support E-1
analog interface board (AIB) E-7
C compiler E-5
DFDP (digital filter design

package) E-9
DSP Software Library E-9
emulator (XDS) E-5
macro assembler/linker E-3
simulator E-4
SoftWare Development System

(SWDS) E-4
TMS320 Design Kit E-8
TMS320 DSP bulletin board

service E-1 0
TMS320 DSP hotline E-1 0
XDS/22 upgrade E-7

digital filter design package
(DFDP) E-9

digital filters 5-61
DINT

Disable Interrupt 4-70
direct address bus (ORB) 3-8, 3-19
direct addressing mode 3-19, 4-2, C-2
direct memory access (OMA) 3-71, 6-29
Disable Interrupt

DINT 4-70
disk drives 6-4 7
division 5-42
DMOV 3-20, 5-35

Data Move in Data Memory 4- 71
DR 2-6, 3-56
DS- 2-4, 3-13
DSP Software Library E-9
DX 2-6, 3-56

E

echo cancellation 6-45
EINT 3-53, 3-54

Enable Interrupt 4-73
electrical specifications A-1
emulator (XDS) E-5
Enable Interrupt

EINT 4-73
EPROM interfacing 6-1 9
EPROM memories (Tl) F-2
EXAMPLE

Example Instruction 4-18
Example Instruction

EXAMPLE 4-18
Exclusive-OR with Accumulator

XOR 4-184
execute (pipeline) 3-29

lndex-3

Index

extended-precision arithmetic 5-49
external clock (CLKX) 3-56
external flag (XF) 3-44, 3-50
external memory interface 3-4 7
external program/data access 3-40

F

Fast Fourier Transforms (FFT) 5-68
fetch (pipeline) 3-29
filtering 5-61
FIR filters 5-61
fixed-point conversion
floating-point arithmetic
floating-point conversion

5-45

4-116
3-24, 5-45

3-27, 4-79,

format bit (FO) 3-43, 3-56
Format Serial Port Registers

FORT 4-74
FORT C-7

Format Serial Port Registers 4-74
frame sync pulses 3-56, 3-60, 3-62
frame synchronization mode bit

(FSM) 3-43, 3-56, C-6
framing control 3-60
FSR 2-6, 3-56
FSX 2-6, 3-56

G

gates H-5
global memory 3-69, 6-32
global memory allocation register

(GREG) 3-8, 3-16, 3-69. 3-70, 6-32
graphics 6-4 7

H

hardware applications 6-1
direct memory access (OMA) 6-29
disk drives 6-4 7
echo cancellation 6-45
global memorv 6-32
graphics 6-4 7
higt1-speed control 6-4 7
high-speed modem 6-45
image processing 6-4 7
instrumentation 6-48

lndex-4

interfacing memories 6-10
interfacing peripherals 6-34
numeric processing 6-48
robotics 6-4 7
system applications 6"45
system control circuitry 6-3
user target design using XDS 6-7
voice coding 6-46

hardware stack 3-·10, 3-28, 5-9, 5-10,
5-16

Harvard architecture 1 -3
HOLD- 2-5, 3-39, 3-53, 3-71
hold mode (HM) 3-43, C-6
HOLDA- 2-5, 3-39, 3-71
hotline E-10

1/0 interface 3-4 7, 6-42
1/0 port addressing 3-4 7, 6-42
IACK- 2-5, 3-52, 3-54
IDLE 3-71,C-4

Idle Until Interrupt 4-75
Idle Until Interrupt

IDLE 4-75
II R filters 5-61
image processing 6-4 7
1mmea1ate aadressing mode 3-19, 4-9
IN 3-47, 5-23

Input Data from Port 4-76
indexed addressina 5-49
indirect addressing mode 3-1 9, 4-4, 5-35
init1a11zat1on 3-66, 5-2
Input Data from Port

IN 4-76
instruction cycle timings D-1
instruction pipeline 3-29
instruction register (IR) 3-8, 3-30
instruction set summary 4-12
instructions (assembly language) 4-1
instrumentation 6-48
interface timing analysis 6-27
interfacing memories 6-1 0
interfacina oeripherals 6-34
internal hardware summary 3-7
interrupt acknowledge (IACK) 3-52,

3-54
interrupt flag register (IFR) 3-8, 3-52,

5-16
interrupt mask register (IMR) 3-8, 3-16,

3-52,5-16
interrupt mode (INTM) 3-43, 3-52, 3-53,

3-54

Index

interrupts 2-5, 3-39, 3-52, 3-54, 3-71,
5-16, C-4

external interrupt interface 3-53
operation 3-52
priorities 3-52, 5-22
service routine 5-16
vector locations 3-52, 5-16

IS- 2-4, 3-13

K

key features 1 -4

L

LAC
Load Accumulator with Shift 4-77

LACK
Load Accumulator Immediate

Short 4-78
LACT 3-24, 5-45

Load Accumulator with Shift Specified
by T Register 4-79

LALK

LAR

Load Accumulator Long Immediate
with Shift 4-81

Load Auxiliary Register 4-82
LARK

Load Auxiliary Register Immediate
Short 4-84

LARP
- Load Auxiliary Register Pointer 4-85

LOP
Load Data Memory Page

Pointer 4-86
LDPK

Load Data Memory Page Pointer Im-
mediate 4-87

1ett shifts 3-27, 5-31
linker E-3
Load Accumulator Immediate Short

LACK 4-78
Load Accumulator Long Immediate with

Shift
LALK 4-81

Load Accumulator with P Register
PAC 4-121

Load Accumulator with Shift
LAC 4-77

Load Auxiliary Register
LAR 4-82

Load Auxiliary Register Immediate Short
LARK 4-84

Load Auxiliary Register Long Immediate
LRLK 4-89

Load Auxiliary Register Pointer
LARP 4-85

Load Data Memory Page Pointer
LOP 4-86

Load Data Memory Page Pointer Immedi­
ate

LDPK 4-87
Load High P Register

LPH 4-88
Load Status Register STO

LST 4-90
Load Status Register ST1

LST1 4-92
Load T Register

LT 4-94
Load T Register and Accumulate Previous

Product
LTA 4-95

Load T Register, Subtract Previous Product
LTS 4-100

logical operations 5-31
loop control 5-1 3
LPH

Load High P Register 4-88
LRLK

LST

Load Auxiliary Register Long Immedi­
ate 4-89

Load Status Register STO 4-90
LST1

Load Status Register ST1 4-92
LT

Load T Register 4-94
LTA 5-39

Load T Register and Accumulate Pre­
vious Product 4-95

LTD 5-39

LTP

LTS

Load T Register, Accumulate Previous
Product, and Move Data 4-97

Load T Register and Store P Register
in Accumulator 4-99

Load T Register, Subtract Previous
Product 4-100

lndex-5

Index

M

MAC 5-37, 5-38, C-4
Multiply and Accumulate 4-101

MACO 5-37, 5-38, C-4
Multiply and Accumulate with Data

Move 4-104
macro assembler E-3
MAR

Modify Auxiliary Register 4-107
mask options 3-12, G-1
memory 3-11, 5-23, C-2

addressing modes 3-19, 4-2
auxiliary registers 3-16
block moves 5-23
data memory 3-11
global memory 3-69, 6-32
memory expansion 3-11, 3-12
memory maps 3-13
memory-mapped registers 3-16
program memory 3-12

memory addressing modes 3-19, 4-2
direct addressing 3-19, 4-2, C-2
immediate addressing 3-19, 4-9
indirect addressing 3-19, 4-4

memory combinations 3-47
memory interface 6-10
memory management 5-23
memory maps 3-13
memory products (Tl) F-2
memory-mapped registers 3-13, 3-16
microcall stack (MCS) register 3-9, 3-30
microcomputer mode 2-5, 3-12, 3-15
microprocessor mode 2-5, 3-12, 3-15
modem 6-45
Modify Auxiliary Register

MAR 4-107
MP/MC- 2-5, 3-15
MPY 5-38, C-3

Multiply 4-109
MPYA

Multiply and Accumulate Previous
Product (TMS320C25) 4-110

MPYK C-3
Multiply Immediate 4-111

MPYS
Multiply and Subtract Previous Prod­

uct (TMS320C25) 4-112
MPYU 3-26

Multiply Unsigned
(TMS320C25) 4-113

MS/PC-DOS E-9
MSC- 2-5, 6-16
multiplexed external data bus 3-35

lndex-6

multiplication 5-37, 5-54, C-3
multiplier 3-9, 3-26, 5-37
Multiply

MPY 4-109
Multiply and Accumulate

MAC 4-101
Multiply and Accumulate with Data Move

MACO 4-104
Multiply Immediate

MPYK 4-111
Multiply Unsigned (TMS320C25)

MPYU 4-113
multiprocessing 3-68

N

NEG
Negate Accumulator 4-114

Negate Accumulator
NEG 4-114

No Operation
NOP 4-115

nomenclature E-14
NOP

No Operation 4-115
NORM 3-24, 5-45, C-4

Normalize Contents of
Accumulator 4-116

normalization 5-45, 5-47
Normalize Contents of Accumulator

NORM 4-116
numeric processing 6-48

0

on-chip program RAM execution 5-28
on-chip program ROM 3-14
on-chip RAM 3-9, 3-13, 5-25
on-chip RAM configuration control bit

(CNF) 3-43
OR

OR with Accumulator 4-118
OR Immediate with Accumulator with Shift

ORK 4-119
OR with Accumulator

OR 4-118
ordering information E-11
ORK

OR Immediate with Accumulator with
Shift 4-119

Index

oscillator circuit 6-5
OUT 3-47, 5-23

Output Data to Port 4-120
Output Data to Port

OUT 4-120
overflow flag (OV) 3-43, 5-34
overflow managment 5-34
overflow mode (OVM) 3-44, 5-31, 5-34
overflow saturation mode 3-24

p

P register (PR) 3-25. 3-26, 5-37
PAC

Load Accumulator with P
Register 4-121

part numbers E-11
PC stack 5-7
PC/MS-DOS E-9
period register (PRO) 3-9, 3-16, 3-44,

5-11, C-5
peripheral interface 6-34
PIO control 5-75
pinouts 2-2
pipeline operation 3-29

decode 3-29
execute 3-29
fetch 3-29
prefetch 3-29
three-level pipeline 3-29
two-level pipeline 3-29
wait states 3-29

PM bits 3-44. 5-42. C-2
POP 3-29

Pop Top of Stack to Low
Accumulator 4-122

Pop Top of Stack to Data Memory
POPD 4-124

Pop Top of Stack to Low Accumulator
POP 4-122

POPD 3-29, 5-10
Pop Top of Stack to Data

Memory 4-124
powerdown mode 3-46
powerup reset circuit 6-3
prefetch (pipeline) 3-29
prefetch counter (PFC) 3-9, 3-30
product quality/reliability H-1
product register (PR) 3-9, 3-26, 5-37
product shift mode (PM) bits 3-27, 3-44,

5-32, 5-42, C-6
program access (on-chip) 3-40
program address bus (PAB) 3-9

program bus 3-9
program counter (PC) 3-9, 3-28, 3-37
program memory 3-12
program memory expansion 3-1 2
PROM interfacing 6-11
prototype devices G-1
PS- 2-4, 3-13
PSHD 3-29,5-10

Push Data Memory Value onto
Stack 4-126

PUSH 3-29
Push Low Accumulator onto

Stack 4-128
Push Data Memory Value onto Stack

PSHD 4-126
Push Low Accumulator onto Stack

PUSH 4-128

a
quality/reliability H-1
queue instruction register (QIR) 3-9,

3-30
015 format 3-27, 5-45

R

R/W- 2-4
RAM interfacing 6-24
RC

Reset Carry Bit (TMS320C25) 4-
129

READY 2-4, 3-70
receive framing synchronization signal

(FSR) 3-56
receive shift register (RSR) 3-9, 3-56
received serial data (DR) 3-56
reliability tests H-2
repeat counter (RPTC} 3-9, 3-29, 3-46,

3-53, 5-13
reset (RS-) 2-5, 3-39, 3-41, 3-52, C-5
Reset Carry Bit (TMS320C25)

RC 4-129
reset circuit 6-3
Reset External Flag

RXF 4-142
Reset Hold Mode (TMS320C25)

RHM 4-132
Reset Overflow Mode

ROVM 4-135

lndex-7

Index

Reset Serial Port Transmit Mode
RTXM 4-141

Reset Sign-Extension Mode
RSXM 4-139

Reset Test
Control Flag (TMS320C25)

RTC 4-140
RET 3-37,3-5a 5-7

Return from Subroutine 4-1 30
Return from Subroutine

RET 4-130
reverse-carry (re) propagation 3-18, 4-5,

4-7, 5-68
RFSM

Reset Serial Port Frame Synchroniza­
tion Mode (TMS320C25) 4-131

RHM
Reset Hold Mode

(TMS320C25) 4-132
right shift 3-27, 5-31
RINT 3-52. C-7
robotics 6-47
ROL

Rotate Accumulator Left
(TMS320C25) 4-133

ROM codes G-1
ROR

Rotate Accumulator Right
(TMS320C25) 4-134

Rotate Accumulator Left (TMS320C25)
ROL 4-133

Rotate Accumulator Right (TMS320C25)
ROR 4-134

ROVM 3-24, 5-31, 5-34
Reset Overflow Mode 4-135

RPT 3-46, 3-53, 5-13
Repeat Instruction as Specified by

Data Memory Value 4-136
RPTC 3-29
RPTK 3-46, 3-53, 5-13

Repeat Instruction as Specified by Im­
mediate Value 4-138

RSXM 5-31
Reset Sign-Extension Mode 4-139

RTC
Reset Test

RTXM

Control Flag (TMS320C25) 4-
140

Reset Serial Port Transmit Mode 4-
141

RXF 3-50
Reset External Flag 4-142

lndex-8

s
SACH C-4

Store High Accumulator with
Shift 4-143

SACL 3-33, C-4
Store Low Accumulator with

Shift 4-144
SAR

Store Auxiliary Register 4-145
SBLK

Subtract from Accumulator Long Im­
mediate with Shift 4-14 7

SBRK
Subtract from Auxiliary Register Short

Immediate (TMS320C25) 4-148
SC

Set Carrv Rit (TMS320C25) 4-149
scaling 5-35
scaling shifter 3-23
serial port 3-56, C-6

burst-mode operation 3-61
continuous-mode operation 3-62,

3-64, 3-66
timing and framing control 3-60
transmit/receive operations 3-58

serial-port clock (CLKR)_ 3-56
Set Carry Bit (TMS320C25)

SC 4-149 •
Set External Flag

SXF 4-178
Set Hold Mode (TMS320C25)

SHM 4-154
Set Overflow Mode

SOVM 4-155
Set P Register Output Shift Mode

SPM . 4-159
Set Serial Port Transmit Mode

STXM 4-168
Set Sign-Extension Mode

SSXM 4-166
Set Test

Control Flag (TMS320C25)
STC 4-167

SFL 3-:lt>, 5-35
Shift Accumulator Left 4-150

SFR 3-:!6, o-34
Shift Accumulator Right 4-151

SFSM
Set Serial Port Frame Synchronization

Mode (TMS320C25) 4-153
Shift Accumulator Left

SFL 4-150
Shift Accumulator Right

Index

SFR 4-151
shift modes ';j-27, 3-44, 5-31, 5-42
snifters 3-10, 5-34

accumulator 3-23
::iccumulator output 3-23, 5-34
product register output 3-23, 5-34
scaling shifter 3-23

SHM
Set Hold Mode (TMS320C25) 4-

154
signal descriptions 2-1
sign-extension mode 5-31
sign-extension mode bit (SXM) 3-26,

3-44, 5-31, C-6
sign-magnitude data 5-31 , 5-60
simulator E-4
single-instruction loops 5-13
sockets ITIJ t=-28
software applications 5-1
SoftWare Development System

(SWDS) E-4
Software Interrupt

TRAP 4-183
software library E-9
software stack 5-10
software stack expansion 5-10
SOVM 3-24, 5-31, 5-34

Set Overflow Mode 4-1 55
SPAC

Subtract P Register from
Accumulator 4-156

specifications A-1
SPH

SPL

Store High P Register
(TMS320C25) 4-157

Store Low P Register
(TMS320C25) 4-158

SPM 5-32, 5-34
Set P Register Output Shift

Mode 4-159
SORA 3-26, 5-41

Square and Accumulate Previous Pro­
duct 4-160

SORS 3-26, 5-41
Square and Subtract Previous

Product 4-161
Square and Accumulate Previous Product

SORA 4-160
Square and Subtract Previous Product

SQRS 4-161
square-root routine 5-7
SST

Store Status Register STO 4-162
SST1

Store Status Register ST1 4-164
SSXM- -5::r1

Set Sign- Extension Mode 4-166
stack 3-28, 5-7, 5-9
static RAM mtertacing 6-24
status registers 3-10, ';j-42, 5-31, C-2,

C-5
STC

Set Test
Control Flag (TMS320C25) 4-

167
Store Auxiliary Register

SAR 4-145
Store High Accumulator with Shift

SACH 4-143
Store High P Register (TMS320C25)

SPH 4-157
Store Low Accumulator with Shift

SACL 4-144
Store Low P Register (TMS320C25)

SPL 4-158
Store Status Register STO

SST 4-162
Store Status Register ST1

SST1 4-164
STRB- 2-4
STXM

Set Serial Port Transmit Mode 4-168
SUB

Subtract from Accumulator with
Shift 4-169

SUBB
Subtract from Accumulator with Bor­

row (TMS320C25) 4-170
SUBC 5-4~. C-3

Conditional Subtract 4-171
SUBH

Subtract from High Accumulator 4-
173

SUBK
Subtract from Accumulator Short Im­

mediate (TMS320C25) 4-174
subroutines 5-7
SUBS

Subtract from Low Accumulator with
Sign-Extension Suppressed 4-175

SUBT 3-24
Subtract from Accumulator with Shift

Specified by T Register 4-176
Subtract from Accumulator with Shift

SUB 4-169
Subtract from High Accumulator

SUBH 4-173
Subtract P Register from Accumulator

SPAC 4-156

lndex-9

Index

subtraction 3-25, 5-35, 5-52
SXF 3-50

Set External Flag 4-178
SXM 5-31, C-2
SYNC- 2-5, 3-68
synchronization 3-68, C-5
system applications 6-45
system control 3-28
system control circuitry 6-3
system migration C-1

T

T register (TR) 3-26, 5-37
Table Read

TBLR 4-179
Table Write

TBLW 4-181
TBLR 3-21, 5-23

Table Read 4-179
TBLW 3-21, 5-23

Table Write 4-181
temporary register (TRI 3-10, 3-26, 5-37
Test Bit

BIT 4-45
Test Bit Specified by T Register

BITT 4-47
test control flag bit (TC) 3-44
timer 3-10, 3-44, 5-11, C-5
timer interrupt (Tl NT) 3-45, 3-52, 5-11
timer register (Tl M) 3-16, 3-44, 5-11
timing analysis for interfacing 6-27
timing control 3-60, 5-11
TMS320 Design Kit E-8
TMS320 development tool

nomenclature E-14
TMS320 device nomenclature E-13
TMS320 DSP bulletin board service E-10
TMS320 DSP hotline E-10
TMS320C1 x to TMS32020 system mi-

gration C-2
TMS320C25 1 -3
TMS32020 1 -3
TMS32020 to TMS320C25 system mi­

gration C-4
transistors H-5
transmit framing synchronization signal

(FSX) 3-56
transmit mode bit (TXM) 3-44, 3-56
transmit shift register (XSR) 3-10, 3-56

lndex-10

transmitted serial data (DX) 3-56
TRAP 3-52

Software Interrupt 4-183
two's-complement data 5-32, 5-38,

5-45, 5-60
two-word instructions 3-36

u
user target design using Xli>S 6-7

v
VAX/VMX E-9
vcc 2-6
voice coding 6-46
vss 2-6

w
wait states 3-34, 6-16
wait-state generator 6-16

x
XDS design considerations 6-7
XDS emulator E-5
XDS/22 upgrade E-7
XF 2-5,3-44, 3-50
XI NT 3-52, C-7
XOR

Exclusive-OR with Accumulator 4-
184

XOR Immediate with Accumulator with
Shift

XORK 4-185
XORK

XOR Immediate with Accumulator with
Shift 4-185

XSR 3-56
X1 2-6
X2/CLKIN 2-6

Index

z
ZAC

Zero Accumulator 4-186
ZALH

Zero Low Accumulator and Load High
Accumulator 4-187

ZALR

Zero Low Accumulator, Load High
Accumulator with Rounding
(TMS320C25) 4-188

ZALS
Zero Accumulator, Load Low Accu­

mulator with Sign-Extension Sup­
pressed 4-189

Zero Accumulator
ZAC 4-186

lndex-11

December 1987
Printed in U.S.A .

'!>
TEXAS

INSTRUMENTS SPRU014

