‘y'ﬁmms

INSTRUMENTS

*ip
Second-Generation
TMS320

User’s Guide

&
S
2
o
s.
&

X2O0CESNLL

1989 1989 Digita! Signal Processor Products



Second-Generation
TMS320
User’s Guide

g

EXAS
INSTRUMENTS



IMPORTANT NOTICE

Texas Instruments (T1) reserves the right to make changes to or to discontinue
any semiconductor product or service identified in this publication without
notice. Tl advises its customers to obtain the latest version of the relevant in-
formation to verify, before placing orders, that the information being relied
upon is current.

T! warrants performance of its semiconductor products to current specifica-
tions in accordance with Tl's standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this
warranty. Unless mandated by government requirements, specific testing of
all parameters of each device is not necessarily performed.

Tl assumes no liability for Tl applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does Tl warrant or represent that license, either express or implied, is
granted under any patent right, copyright, mask work right, or other intellec-
tual property right of Tl covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are
used. i

Copyright © 1989, Texas Instruments Incorporated



Contents

Section

1 Introduction

1.1 General Description . . . . . . . . ..
1.2 KeyFeatures . . . . . . . . ..
1.3 Typical Applications . . . . . . . . e
14 How To Use ThisManual . . . . . ... .. .. ... .. .......
1.5 References . . . . . . .. e e
2 Pinouts and Signal Descriptions

21 TMS320C2x Pinouts . . . . . . . . . . ..
2.2 TMS320C2x Signal Descriptions . . . . . . . . . . . .. .o
3 Architecture

3.1 Architectural Overview . . . . . . . . . L
3.2 Functional Block Diagram . . . . . . ... .. .. .. e e e
3.3 Internal Hardware Summary . . . . . . . . . ... ... o
3.4 Memory Organization . . . . . . . . . . . . . e
3.4.1 Data Memory . . . . . . . . . . e
3.4.2 Program Memory . . . . .. .. .. ... .. e e e e e e e e
343 Memory Maps . . . . . .. e e e
3.4.4 Memory-Mapped Registers . . . . . . . . .. .. ...
345 Auxiliary Registers . . . . . ...
346 Memory Addressing Modes . . . . . ... ..o
347 Memory-to-Memory Moves . . . . . . ... ..o
3.5 Central Arithmetic Logic Unit (CALU) . . . . . .. .. .. ... ......
3.5.1 Scaling Shifter . . . . . . ...
3.5.2 ALU and Accumulator . . . . . . ... L
353 Multiplier, T and P Registers . . . . . . . . . ... ... ... .....
3.6 System Control . . . . . . ...
3.6.1 Program Counter and Stack . . . . . . . ... ... ... .. e e e .
3.6.2 Pipeline Operation . . . . . . . . . . .. ...
3.6.3 Reset . . . . e e
364 Status Registers . . . . . . . . ...
3.6.5 Timer Operation . . . . .. ... ... ...... e e e e e e
3.6.6 Repeat Counter . . ... .. .. e
3.6.7 Powerdown Mode (TMS320C25) . ... ... .. ... ........
3.7 External Memory and I/O Interface . . . . . . . .. ... ... .. .....
3.7.1 Memory Combinations . . . . . . . . .. ... ..
3.7.2 Internal Clock Timing Relationships . . . . . . ... ... ... ....
373 General-Purpose 1/0 Pins (BTOand XF) . . . .. ... ... ......
3.8 Interrupts . . . . . .. e
3.81 Interrupt Operation . . . . . . . . . . . . e
3.8.2 External Interrupt Interface . . . . . . . . .. . ... L.
3.9 Serial Port . . . ..
3.9.1 Transmit and Receive Operations . . . . . . . . ... ... .......
3.9.2 Timing and Framing Control . . . . . . . .. ... ... ........
393 Burst-Mode Operation . . . . . . . . .. ... .. o
394 Continuous Operation Using Frame Sync Pulses (TMS320C25) . . . .
395 Continuous Operation Without Frame Sync Pulses (TMS320C25)

3-14
3-16
3-16
3-19
3-20
3-22
3-23
3-24
3-26
3-28
3-28
3-29
3-41
3-42
3-44
3-46
3-46
3-47
3-47
3-48
3-49
3-52
3-52
3-63
3-56
3-58
3-60
3-61
3-62
3-64



3.9.6 Initialization of Continuous Operation Without Frame Sync Pulses

3.10 Multiprocessing and Direct Memory Access (DMA) . . . .. ... ....
3.101 Synchronization . . . . . . . . . ... e
3.10.2 Global Memory . . . . . . . ... e
3.10.3 The Hold Function . . . . . . . . .. .. ... ... .. ...

4 Assembly Language Instructions

41 Memory Addressing Modes . . . . . ... Lo
411 Direct Addressing Mode . . . . . . . .. ... oo
41.2 Indirect Addressing Mode . . . . . .. ... Lo oo
41.3 Immediate Addressing Mode . . . . . . ... ... L
4.2 Instruction Set . . . . . .. Lo e
421 Symbols and Abbreviations . . . . . . . .. ... . 0oL,
4.2.2 Instruction Set Summary . . . . . .. Lo
4.3 Individual Instruction Descriptions . . . . . . . .. ... ...,

5 Software Applications

5.1 Processor Initialization . . . . . .. ... oL o
5.2 Program Control . . . . . . .. L
5.2.1 Subroutines . . . . . . L L e e
5.2.2 Software Stack . . . . . .. L
523 Timer Operation . . . . . . . . . . . e
5.2.4 Single-Instruction Loops . . . . . . . . ... . o
5.2.5 Computed GOTOs . .. . . . . . . . e
5.3 Interrupt Service Routine . . . . . . . ... ... ... ...
5.3.1 Context Switching . . . . . . . . ... ..
53.2 Interrupt Priority . . . . . . ... L
5.4 Memory Management . . . . ... ... ...... e e
541 Block Moves . . . . . . . . L
5.4.2 Configuring On-Chip RAM . . . . . . . . . . ... ... ... ...,
5.4.3 Using On-Chip RAM for Program Execution . . . .. .. .. ... ...
5.5 Fundamental Logical and Arithmetic Operations . . . . . . . ... ... ..
5.5.1 Status Register Effect on Data Processing . . . . . .. .. ... ....
5.5.2 Bit Manipulation . . . . . . .. ...
5.6 Advanced Arithmetic Operations . . . . . . . . . . . . .. ... . ...,
5.6.1 Overflow Management . . . . . . . . . .. . ... ... ...
5.6.2 Scaling . . . . L e e e
5.6.3 Moving Data . . . . . . . . . . . ...
5.6.4 Multiplication . . . . . . ...
5.6.5 Division . . . . . . e
5.6.6 Floating-Point Arithmetic . . . . . . . . . .. .. ... ... .. ....
5.6.7 Indexed Addressing . . . . . . . . . . ...
5.6.8 Extended-Precision Arithmetic . . . . . . . . ... .. ...
5.7 Application-Oriented Operations . . . . . . . . . . . .. .. ... .....
5.7.1 Companding . . . . . . . L e
5.7.2 FIR/HR Filtering . . . . . . . . . . . e
573 Adaptive Filtering .. . . . . . . .
5.7.4 Fast Fourier Transforms (FFT) . . . . . . . . .. .. ... ... .. ..
5.75 PID Control . . . . . . . . . e



wivs

abhwih=

PODONDNDNDNNNNNONNNNANNON DD
OaAPBWN-=-

coooononnannORWNNNNNN DD

OO WN-—-

TIOTMMUOwW>

Hardware Applications

System Control Circuitry . . . . . . . . ... ... .. ...
Powerup Reset Circuit . . . . . .. .. ... ......
Crystal Oscillator Circuit . . . . . . .. ... ......

User Target Design Considerations When Using the XDS

Interfacing Memories . . . . . . . .. .. ...
Interfacing PROMs . . . . . . ... ... ...,
Wait-State Generator . . . . . . .. .. ... ...,
Interfacing EPROMs . . . . . . . .. ... oL
Interfacing Static RAMs . . . . . . ... ... .....
interface Timing Analysis . . . . . . . ... .... ...

Direct Memory Access (DMA) . . . . .. . ... ... ...

Global Memory . . . . .. . ... ... .. ... . . . ...

Interfacing Peripherals . . . . . .. .. ... ... .
Combo-Codec Interface . . . . ... ... .......
AlCInterface . . . ... ... ... ... ... ...
Digital-to-Analog (D/A) Interface . . . ... .. .... ‘
Analog-to-Digital (A/D) Interface . . ... . ... ...
I/OPorts . . . . . e e e

System Applications . . . . ... .00
Echo Cancellation . . . . . .. ... .. .. .......
High-Speed Modem . . . . . ... ...........
Voice Coding . . . . . . .. .. ... ... ...
Graphics and Image Processing . . . ... .. ... ..
High-Speed Control . . . . . .. . ... ... .....
Instrumentation and Numeric Processing . . . . . . ..

Second-Generation TMS320 Data Sheet
SMJ32020/C25 Data Sheets

TMS320C2x System Migration

Instruction Cycle Timings

TMS320E25 EPROM Programming

Memories, Analog Converters, Sockets, and Crystals
ROM Codes

Quality and Reliability

Development Support/Part Order Information

[ [l
- d e ) ) wd e -

_IOmmpow>



NOAN-PRRRAWOWWRROWWRRNNRNNORNNNNON A2 S asas sl ORUORRWN =SS

U 1 1} 1 1 1 1 1 ] 1 ) 1 1 1 1 1 L ' 1
WNOOWONOTTRARWN—L,OOONATPWN_L,OCOONIIATRWN—O

Illustrations

Figure Page
TMS320 Device Evolution . ... .. ... . e 1-2
TMS320C2x Pin Assignments . ..........ouriineniennnn.. 2-2
TMS320C2x Simplified Block Diagram . ........................... 3-4
TMS320C2x Block Diagram ...t 3-7
On-Chip Data Memory . ... .. .. e 3-13
Memory Maps .. ... e 3-15
Indirect Auxiliary Register Addressing Example . .................... 3-17
Auxiliary Register File . ... ... .. ... . . e 3-18
Methods of Instruction Operand Addressing  ....................... 3-20
Central Arithmetic Logic Unit (CALU) ... ... .. .. .. ... ......... 3-23
Examples of TMS320C25 Carry Bit Operation . ..................... 3-25
Program Counter, Stack, and Related Hardware ..................... 3-28
Three-Level Pipeline Operation (TMS320C25) ....... et 3-30
Two-Level Pipeline Operation . ......... ... .. . .. ... . ... .. 3-31
TMS320C25 Standard Pipeline Operation .. ............ ... ........ 3-32
Pipeline Operation of ADD Followed by.SACL ...................... 3-34
Pipeline Operation with Wait States . ............................. 3-35
Pipeline with External Data Bus Conflict .......................... 3-36
Pipeline Operation of Branch to On-Chip RAM .. ... ... ............. 3-37
Pipeline Operation of RET from On-Chip RAM .. ... ... ... ... ..... 3-38
Status Register Organization . .......... ... ... ...ttt 3-42
Timer Block Diagram ........................ e e 3-45
Four-Phase Clock ....... ... ... ... . . . .. e 3-49
BTO Timing Diagram . ...\ttt 3-50
External Flag Timing Diagram . ......... ... . ... ... . .. iiiiin... 3-51
Interrupt Mask Register (IMR) ... .. .. . . . . 3-52
Internal Interrupt Logic Diagram .. .......... ... . .. 3-54
Interrupt Timing Diagram (TMS320C25) ........ ... ... ... .. ....... 3-55
The DRR and DXR Registers . .......... .t 3-57
Serial Port Block Diagram . ... .. .. ... . 3-58
Serial Port Transmit Timing Diagram . ......... ... ... ... ... ....... 3-59
Serial Port Receive Timing Diagram  ................ ... ... ....... 3-60
Burst-Mode Serial Port Transmit Operation  ........................ 3-61
Burst-Mode Serial Port Receive Operation  ......................... 3-61
Byte-Mode DRR Operation (TMS320C25) ........... ... ... 3-62
Serial Port Transmit Continuous Operation (FSM =1) ............... 3-63
Serial Port Receive Continuous Operation (FSM =1) ................ 3-63
Serial Port Transmit Continuous Operation (FSM =0) ............... 3-65
Serial Port Receive Continuous Operation (FSM=0) ................ 3-65
Continuous Transmit Operation Initialization  ....................... 3-67
Continuous Receive Operation Initialization ........................ 3-67
Synchronization Timing Diagram (TMS32020) ..................... 3-68
Synchronization Timing Diagram (TMS320C25) .................... 3-69
Global Memory Access Timing ... ... .. .t 3-70
TMS320C25 Hold Timing Diagram . ................ .. ... .. uu.. 3-72
Direct Addressing Block Diagram . .......... ... ... ... .. ... . ... 4-3
Indirect Addressing Block Diagram . ......... ... ... ... ... .. . . ... 4-4
On-Chip RAM Configurations  ........... ..., 5-27
MACD Operation . ... i e 5-37

0101A-bwwwwwwwwwwwwwwwwwwwmc:owwwwwwwwwwwwwwwwwwwwwmw—\



I I R I R I R R I e e e e S e e T A S A S A T T A R R A R T S |

P WWWWWWWNNNNNNNNNN 22 a2 a2 200N WON_,2PdORMW

DO PWN_LPOO0OONOODTPLPWN_L,OOONOAPWN-O

ot

[oBuNeE2E N NN N NN RN N Nl e le e e e Ne o Moo e e Ne Ne NN Ne e Ne>Ne Mo Mo Mo Mo IS 6 IO N6 I

[N

I AR

Execution Time vs. Number of Multiply-Accumulates (TMS32020) ..... 5-40

Execution Time vs. Number of Multiply-Accumulates (TMS320C25) .... 5-41
Program Memory vs. Number of Multiply-Accumulates . .............. 5-42
An In-Place DIT FFT with In-Order Outputs and Bit-Reversed Inputs .... 5-69
An In-Place DIT FFT with In-Order Inputs but Bit-Reversed Outputs .... 5-70
Powerup Reset Circuit . ... ... e 6-3

Voltage on TMS320C25 Reset Pin . . ... ... ... . . it iiiiiinannnn 6-4

Crystal Oscillator Circuit .. ... ... .. e e e 6-5

Magnitude of Impedance of Oscillator LC Network . ................. 6-6

Direct Interface of TBP38L165-35 to TMS320C25 .................. 6-12
Interface Timing of TBP38L165-35 to TMS320C25 .................. 6-13
Interface of TBP38L165-35t0 TMS320C25 ........................ 6-14
Interface Timing of TBP38L165-35 to TMS320C25 (Address Decoding) . 6-15
One Wait-State Memory Access Timing  ................ccuiiiniu.. 6-17
Wait-State Generator Design .. .. ... ... 6-18
Wait-State Generator Timing .. ......... ... i 6-19
Interface of WS57C65F-12 to TMS320C25 ........ ... . ... ....... 6-20
Interface Timing of WS57C65F-12 to TMS320C25 .................. 6-21
Interface of TMS27C64-20 to TMS320C25 ............ .. ... ...... 6-22
Interface Timing of TMS27C64-20 to TMS320C25 .................. 6-23
Interface of CY7C169-25 to TMS320C25  ..............ciuninnn. 6-25
Interface Timing of CY7C169-25 to TMS320C25 ................... 6-26
Direct Memory Access Using a Master-Slave Configuration  ........... 6-30
Direct Memory Access in a PC Environment . ....................... 6-31
Global Memory Communication . ..............couiiiiiinuneennn. 6-33
Interface of TMS320C25 to TCM29C16 Codec . . .................... 6-35
Interface of TLC32040 to TMS320C2x . .......... ... ... vtinn... 6-38
Synchronous Timing of TLC32040 to TMS320C2x .................. 6-38
Asynchronous Timing of TLC32040 to TMS320C2x ................. 6-38
Interface of TLC7524 to TMS32020 ... ... ... it 6-39
Interface Timing of TLC7524 to TMS32020 .......... ... ... ... ..... 6-40
Interface of TLCO820 to TMS32020 .. ... ... .t 6-41
Interface Timing of TLC0820 to TMS32020 .......... P 6-42
1/0 Port Addressing .. ... ... e 6-43
1/0 Port Processor-to-Processor Communication .................... 6-44
Echo Canceller .......... e 6-45
High-Speed Modem ... ... ... . . . . e 6-45
Voice Coding System . ... ... . e 6-46
Graphics System ... ... e 6-47
Robot Axis Controller Subsystem .. ......... ... ... ... ... ... ... 6-47
Instrumentation System .. ... .. ... e 6-48
Serial Port System Migration ........... . ... ... . Cc-9

Crystal Connection .. ... ... i e e F-33
TMS320 ROM Code Flowchart ... ... . ... ... . ... G-2

TMS320C2x Development Tools ... ... i e 1-1

TMS320C2x XDS/22 System Configuration ......................... 1-8

TMS320 AIB2 System Configuration . ...... ... ... .. .............. 1-9

TMS320 Device Nomenclature ............ ... . .. 1-15
TMS320 Development Tool Nomenclature .......................... 1-16

vii



Table

IIT0000UPOOORRANANALEAWROEWVEWEEY =2
AL MRS RWNPRWNSPRWN_ONDTRWN =N

-
OJN—‘"Q

viii

Tables

Page
TMS320C2x Processors OVEIVIEW ... ...ttt 1-3
Typical Applications of the TMS320C Family ........................ 1-6
TMS320C2x Signal Descriptions . ....... ... it 2-4
TMS320C2x Internal Hardware ........ ... ... . i 3-9
Memory-Mapped Registers .. ........... .. . . . e 3-16
PM Shift Modes .. ... .. 3-27
Instruction Pipeline Sequence ............. ... . . ..., 3-33
Status Register Field Definitions . ........... .. ... .. ... ... ..... 3-43
Interrupt Locations and Priorities . ............ . .. . . 3-52
Serial Port Bits, Pins, and Registers . ......... ... ... ... .. . . ... 3-56
Global Data Memory Configurations .............................. 3-70
Indirect Addressing Arithmetic Operations  ...................... ... 4-6
Bit Fields for Indirect Addressing  ......... ... .. .. . ... ... .. L. 4-7
Instruction Symbols ... ... .. 4-11
Instruction Set Summary ....................................... 4-13
Program Space and Time Requurements for u-/A-Law Companding . ..... 5-61
256-Tap Adaptive Filtering Memory Space and Time Requirements  ..... 5-68
Bit-Reversal Algorithm for an 8-Point Radix-2 DITFFT ............... 5-70
FFT Memory Space and Time Requirements ........................ 5-76
Timing Parameters of TBP38L165-35 Direct Interface to TMS320C25 ... 6-13
Timing Parameters of TBP38L165-35 to TMS320C25 (Address Decoding)  6-15
Wait States Required for Memory/Peripheral Access  ................. 6-17
Timing Parameters of WS57C64F-12 Interface to TMS320C25 ......... 6-21
Timing Parameters of TMS27C64-20 Interface to TMS320C25 ......... 6-23
Timing Parameters of CY7C169-25 Interface to TMS320C25 .......... 6-24
TMS32020 Instructions by Cycle Class . .......... ... ... .......... D-2
TMS32020 Instruction Cycle Timings . .......... ..., D-3
TMS320C25 Instructions by Cycle Class  .......................... D-4
Cycle Timings for Cycle Classes When Not in Repeat Mode  ........... D-5
Cycle Timings for Cycle Classes When in Repeat Mode ............... D-7
Commonly Used Crystal Frequencies ................. .. .. ....... F-33
Microprocessor and Microcontroller Tests  ......................... H-5
TMS320C2x Transistors . . ...ttt H-5
TMS320C2x Digital Signal Processor Part Numbers . ................. 1-12
TMS320C2x Support Tool Part Numbers . .................... ..... 1-13
Development Tool Connections to a Target System  ................... 1-13



Section 1

Introduction

. _______________________________________________________________________________________________________
— n —
.

The TMS320 family of 16/32-bit single-chip digital signal processors com-
bines the flexibility of a high-speed controiler with the numerical capability of
an array processor, offering an inexpensive alternative to custom VLSI and
multichip bit-slice processors for signal processing.

The TMS32010, the first digital signal processor in the TMS320 family, was
introduced in 1983. Since that time, the TMS320 family has established itself
as the industry standard for digital signal processing. The powerful instruction
set, inherent flexibility, high-speed number-crunching capabilities, and inno-
vative architecture have made the high-performance, cost-effective processors
in the TMS320 family the ideal solution to many telecommunications, com-
puter, commercial, industrial, and military applications.

The TMS320 family has now expanded into three generations of processors:
TMS320C1x, TMS320C2x, and TMS320C3x (see Figure 1-1). Many features
are common among these generations. Some specific features are added in
each processor to provide different cost/performance tradeoffs. Software
compatibility is maintained throughout the family to protect the user’s invest-
ment in architecture. Each processor has software and hardware tools to fa-
cilitate rapid design.

This document discusses the second-generation devices (TMS320C2x)
within the TMS320 family. The specific second-generation TMS320 family
members are:

[ ) TMS32020, an NMOS 20-MHz digital signal processor capable of twice
the performance of the TMS320C1x devices,

® TMS320C25, a CMOS 40-MHz version of the TMS32020 with twice
) the performance of the TMS32020,

(] TMS320C25-50, a CMOS enhanced-speed (50-MHz) version of the
TMS320C25, and

® TMS320E25, a version of the TMS320C25 (40-MHz) with on-chip
ROM replaced by secure, on-chip EPROM.

1-1



Introduction

' § TMS320C3x
320C30 - 32-bit fit-pt CPU
« 80-ns Instr cyc
+ 2KW RAM
+ 4KW ROM
+ B4W Instr Cache
TMS320C2x - 16MW total mem
32 x 32 = 40-bit mukt
2 Serial ports
32020 - 16/32-bit CPU * 2 Timers
320C25 - 80 ns Instr cyc + DMA
320E25 - 544W data RAM
w + 4KW ROM/EPROM
e +128KW total mem
. 16 = 32-bit multi
§ TMS320C1x : 16 x p:n .’z multiplier
S « Block move/repeat
& « Multiprocessor I/F
& 32010 - 16/32-bit CPU
320C10 - 160-ns Instr cyc
320C14 - 256W data RAM
320E14 - 4KW ROM/EPROM
320C15 - 4KW ext prog mem
320E16 - 16 x 16 = 32-bit mukt
320C17 - Serial ports
320E17 - Timers
TIME >

Figure 1-1. TMS320 Device Evolution

Plans for expansion of the TMS320 family include more spinoffs of the exist-
ing generations as well as more powerful future generations of digital signal
processors.

The TMS320 family combines the high performance and specialized features
necessary in digital signal processing (DSP) applications with an extensive
program of development support, including hardware and software develop-
ment tools, product documentation, textbooks, newsletters, DSP design
workshops, and a variety of application reports. See Appendix | for a dis-
cussion of the wide range of development tools available.

1-2



Introduction - General Description

1.1 General Description

The combination of the TMS320’s Harvard-type architecture (separate pro-
gram and data buses) and its special digital signal processing (DSP) instruc-
tion set provide speed and flexibility to produce a microprocessor family
capable of executing 12.8 MIPS (million instructions per second). The
TMS320 family optimizes speed by implementing functions in hardware that
other processors implement through software or microcode. This hardware-
intensive approach provides the design engineer with power previously una-
vailable on a single chip.

The second generation of the TMS320 family includes four members:
TMS32020, TMS320C25, TMS320C25-50, and TMS320E25. The architec-
ture of these devices is based upon that of the TMS32010. Table 1-1 provides
an overview of the TMS320C2x group of processors with comparisons of
technology, memory, 1/0, cycle timing, and package type.

Table 1-1. TMS320C2x Processors Overview

MEMORY
DEVICE TECH| ON-CHIP OFF-CHIP /ot CYCLE PACKAGE
RAM ROM/ PROG DATA TIME TYPE*
EPROM SER PAR DMA| (ns) |PGA PLCC CER
TMS32020% NMOS| 544 - 64K 64K |YES 16x16 YES | 200 68 - -
TMS320C25% CMOS| 544 4K 64K 64K |YES 16x16 CON| 100 68 68 -
TMS320C25-508|CMOS| 544 4K 64K 64K |YES 16x16 CON| 80 - 68 -
TMS320E25% CMOS| 544 4K 64K 64K |YES 16x16 CON| 100 - - 68

tSER = serial; PAR = parallel; DMA = direct memory access; CON = concurrent DMA.

tMilitary version available; contact nearest Tl Field Sales Office for availability.

§Military version planned; contact nearest Tl Field Sales Office for details.

*PGA = 68-pin grid array; PLCC = plastic-leaded chip carrier; CER = surface mount ceramic-leaded chip
carrier (CER-QUAD).

The TMS32020, processed in NMOS technology, is source-code upward
compatible with the TMS32010 and in many applications is capable of two
times the throughput of the TMS320C1x devices. It provides an enhanced
instruction set (109 instructions), large on-chip data memory (544 words),
large memory spaces, on-chip serial port, and a hardware timer.

The TMS32GC25, an enhanced version of the TMS32020, is processed in
CMOS technology. The TMS320C25 is capable of executing 10 million in-
structions per second. It is pin-for-pin and object-code upward compatible
with the TMS32020. The TMS320C25's enhanced feature set greatly in-
creases the functionality of the device over the TMS32020. Enhancements
include 24 additional instructions (133 total), eight auxiliary registers, an
eight-level hardware stack, 4K words of on-chip program ROM, a bit-reversed
indexed-addressing mode, and the low-power. dissipation inherent to the
CMOS process.

The TMS3206C25-50 is a high-speed version of the TMS320C25. It is capable
of an instruction cycle time of less than 80 ns. It is architecturally identical to
the 40-MHz version of the TMS320C25 and is pin-for-pin and object-code
compatible with the TMS320C25. '

1-3



Introduction - General Description

1-4

The TMS320E25 is identical to the TMS320C25, with the exception that the
on-chip 4K-word program ROM is replaced with a 4K-word on-chip program
EPROM. On-chip EPROM allows realtime code development and modifica-
tion for immediate evaluation of system performance.

Note:

Throughout this document, "TMS320C25"” refers to the TMS320C25,
TMS320C25-50, and TMS320E25 unless stated otherwise. Where ap-
plicable, “ROM” includes the on-chip EPROM of the TMS320E25.




Introduction - Key Features

1.2 Key Features

Some of the key features of the TMS320C2x devices are listed below. Features
which pertain to a particular device are noted by enclosing the device name
within parentheses.

Instruction cycle timing:

- 80-ns (TMS320C25-50)

- 100-ns (TMS320C25 and TMS320E25)
- 200-ns (TMS32020)

544-word programmable on-chip data RAM

4K-word on-chip program ROM (TMS320C25 and TMS320C25-50)
Secure 4K-word on-chip program EPROM (TMS320E25)
128K-word total data/program memory space

32-bit ALU/accumulator

16- x 16-bit parallel multiplier with a 32-bit product

Single-cycle multiply/accumulate instructions

Repeat instructions for efficient use of program space and enhanced
execution

Block moves for data/program management

On-chip timer for control operations

Up to eight auxiliary registers with dedicated arithmetic unit

Up to eight-level hardware stack

Sixteen input and sixteen output channels

16-bit parallel shifter

Wait states for communication to slower off-chip memories/peripherals
Serial port for direct codec interface

Synchronization input for synchronous multiprocessor configurations
Global data memory interface

TMS320C1x source-code upward compatibility

Concurrent DMA using an extended hold operation (except TMS32020)

Instructions for adaptive filtering, FFT, and extended-precision
arithmetic (except TMS32020)

Bit-reversed indexed-addressing mode for radix-2 FFT (except
TMS32020)

On-chip clock generator

Single 5-V supply

Device packaging:

- 68-pin PGA (TMS32020 and TMS320C25)

-  68-lead PLCC (TMS320C25 and TMS320C25-50)

—  68-lead CER-QUAD (TMS320E25)

Technology:
- NMOS (TMS32020)
- CMOS (TMS320C25, TMS320C25-50, and TMS320E25)

Commercial and military versions available.

1-5



introduction - Typical Applications

1.3 Typical Applications

The TMS320 family’s unique versatility and realtime performance offer flexible
design approaches in a variety of applications. In addition, TMS320 devices
can simultaneously provide the multiple functions often required in those
complex applications. Table 1-2 lists typical TMS320 family applications.

Table 1-2. Typical Applications of the TMS320 Family

GENERAL-PURPOSE DSP

GRAPHICS/IMAGING

INSTRUMENTATION

Digital Filtering
Convolution
Correlation

Hilbert Transforms

Fast Fourier Transforms
Adaptive Filtering
Windowing

Waveform Generation

3-D Rotation

Robot Vision

Image Transmission/
Compression

Pattern Recognition
Image Enhancement
Homomorphic Processing
Workstations
Animation/Digital Map

Spectrum Analysis
Function Generation
Pattern Matching
Seismic Processing
Transient Analysis
Digital Filtering
Phase-Locked Loops

VOICE/SPEECH

CONTROL

MILITARY

Voice Mail

Speech Vocoding
Speech Recognition
Speaker Verification
Speech Enhancement
Speech Synthesis
Text-to-Speech

Disk Control

Servo Control
Robot Control

Laser Printer Control
Engine Control
Motor Control

Secure Communications
Radar Processing

Sonar Processing

Image Processing
Navigation

Missile Guidance

Radio Frequency Modems

TELECOMMUNICATIONS

AUTOMOTIVE

Echo Cancellation
ADPCM Transcoders
Digital PBXs

Line Repeaters
Channel Multiplexing

FAX .
Cellular Telephones
Speaker Phones
Digital Speech
Interpolation (DSI)

Engine Control
Vibration Analysis
Antiskid Brakes
Adaptive Ride Control
Global Positioning

Digital Audio/TV
Music Synthesizer
Toys and Games
Solid-State Answering
Machines

1200 to 19200-bps Modems X.25 Packet Switching Navigation

Adaptive Equalizers Video Conferencing Voice Commands

DTMF Encoding/Decoding Spread Spectrum Digital Radio

Data Encryption Communications Cellular Telephones
CONSUMER INDUSTRIAL MEDICAL

Radar Detectors Robotics Hearing Aids

Power Tools Numeric Control Patient Monitoring

Security Access
Power Line Monitors

Ultrasound Equipment
Diagnostic Tools
Prosthetics

Fetal Monitors

Many of the TMS320C2x features, such as single-cycle multiply/accumulate
instructions, 32-bit arithmetic unit, large auxiliary register file with a separate
arithmetic unit, and large on-chip RAM and ROM, make the device particularly

applicable in digital signal processing systems.

At the same time, general-

purpose applications are greatly enhanced by the large address spaces, on-

1-6



Introduction - Typical Applications

chip timer, serial port, multiple interrupt structure, provision for external wait
states, and capability for multiprocessor interface and direct memory access.

The TMS320C2x provides the flexibility to be configured to satisfy a wide
range of system requirements. This allows the device to be applied in systems
currently using costly bit-slice processors or custom ICs. Some of the system
configurations are:

[ ] A standalone system using on-chip memory,
] Parallel multiprocessing systems with shared global data memory, or
[ ] Host/peripheral coprocessing using interface control signals.

1-7



Introduction - How To Use This Manual

1.4 How To Use This Manual

The purpose of this user's guide is to serve as a reference book for the
TMS320C2x digital signal processors. Sections 2 through 6 provide specific
information about the architecture and operation of the device. Appendix A
furnishes electrical specifications and mechanical data information.

1-8

The following table lists each section and briefly describes the section con-

tents.

Section 2.

Section 3.

Section 4.

Section 5.

Section 6.

Pinouts and Signal Descriptions. Packaged drawings for
TMS320C2x devices. Functional listings of the signals,
their pin locations, and descriptions.

Architecture. TMS320C2x design description, hardware
components, and device operation. Functional block dia-
gram and internal hardware summary table.

Assembly Language Instructions. Addressing modes and
format descriptions. Instruction set summary listed ac-
cording to function. Alphabetized individual instruction
descriptions with examples.

Software Applications. Software application examples for
the use of various TMS320C2x instruction set features.

Hardware Applications. Hardware design techniques and
application examples for interfacing to memories, periph-
erals, or other microcomputers/microprocessors. XDS de-
sign considerations. System applications.

Nine appendices are included to provide additional information.

Appendix A.

Appendix B.

Appendix C.

Appendix D.

Appendix E.

Second-Generation TMS320 Data Sheet. Electrical spec-
ifications, timing, and mechanical data for the TMS320C2x
devices.

SMJ32020/C25 Data Sheets. Electrical specifications,
timing, and mechanical data for the SMJ32020 and
SMJ320C25 military devices.

TMS320C2x System Migration. Information for upgrading
a TMS320C1x to a TMS32020-based system and a
TMS32020 to a TMS320C25-based system.

TMS320C2x Instruction Cycle Timings. Listings of the
number of cycles for an instruction to execute in a given
memory configuration on the TMS32020 and the
TMS320C25.

TMS320E25 EPROM Programming. Programming hard-
ware description and methodology.




Introduction - How To Use This Manual

Appendix F.

Appendix G.
Appendix H.

Appendix I.

Memories, Analog Converters, Sockets, and Crystals.
Listings of the Tl memories, analog conversion devices,
and sockets available to support the TMS320C2x devices
in DSP applications. Crystal specifications and vendors.

ROM Codes. Discussion of ROM codes (mask options)
and the procedure for implementation.

Quality and Reliability. Discussion of Texas Instruments
quality and reliability criteria for evaluating performance.

Development Support/Part Order Information. Listings of
the hardware and software available to support the
TMS320C2x devices.

1-9



Introduction - References

1.5 References

The following reference list contains useful information regarding functions,
operations, and applications of digital signal processing. These books also
provide other references to many useful technical papers. The reference list is
organized into categories of general DSP, speech, image processing, and di-
gital control theory; if known, each category is alphabetized according to the
author’s last name.

General Digital Signal Processing:

Antoniou, Andreas, Digital Filters: Analysis and Design. New York, NY:
McGraw~HilI Company, Inc., 1979.

Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1974.

Burrus, C.S. and Parks, TW., DFT/FFT and Convolution Algorithms.
New York, NY: John Wiley and Sons, Inc., 1984.

Digital Signal Processing Applications with the TMS320 Family, Texas
Instruments, 1986; Prentice-Hall, Inc., 1987.

Gold, Bernard and Rader, C.M., Digital Processing of Signals. New
York, NY: McGraw-Hill Company, Inc., 1969.

Hamming, R.W., Digital Filters. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1977.

IEEE ASSP DSP Committee (Editor), Programs for Digital Signal Pro-
cessing. New York, NY: IEEE Press, 1979.

Jackson, Leland B., Digital Filters and Signal Processing. Hingham, MA:
Kluwer Academic Publishers, 1986.

Jones, D.L. and Parks, T.W., A Digital Signal Processing Laboratory
Using the TMS32010. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Lim, Jae and Oppenheim, Alan V. (Editors), Advanced Topics in Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988.

Morris, L. Robert, Digital Signal Processing Software. Ottawa, Canada:
Carletor University, 1983.

Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Oppenheim, Alan V. and Schafer, R.W., Digital Signal Processing. En-
glewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Oppenheim, Alan V. and Willsky, A.N. with Young, |.T., Signals and
Systems. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

Parks, T.W. andBurrus, C.S., Digital Filter Design. New York, NY: John
Wiley and Sons, Inc., 1987.



Introduction - References

Rabiner, Lawrence R., Gold and Bernard, Theory and Application of Di-
gital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Treichler, J.R., Johnson, Jr., C.R. and Larimore, M.G., A Practical Guide
to Adaptive Filter Design. New York, NY: John Wiley and Sons, Inc.,
1987.

Speech:

Gray, A.H. and Markel, J.D., Linear Prediction of Speech. New York,
NY: Springer-Verlag, 1976.

Jayant, N.S. and Noll, Peter, Digital Coding of Waveforms. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1984.

Papamichalis, Panos, Practical Approaches to Speech Coding. Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1987. )

Rabiner, Lawrence R. and Schafer, R.W., Digital Processing of Speech
Signals. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Image Processing:

Andrews, H.C. and Hunt, B.R., Digital Image Restoration. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1977.

Gonzales, Rafael C. and Wintz, Paul, Digital Image Processing. Reading,
MA: Addison-Wesley Publishing Company, Inc., 1977.

Pratt, William K., Digital Image Processing. New York, NY: John Wiley
and Sons, 1978.

Digital Control Theory:

Jacquot, R., Modern Digital Contro/ Systems. New York, NY: Marcel
Dekker, Inc., 1981.

Katz, P., Digital Control Using Microprocessors. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1981.

Kuo, B.C., Digital Control Systems. New York, NY: Holt, Reinholt and
Winston, Inc., 1980.

Moroney, P., Issues in the Implementation of Digital Feedback Com-
pensators. Cambridge, MA: The MIT Press, 1983.

Phillips, C. and Nagle, H., Digital Contro/ System Analysis and Design.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.



Introduction - References




Section 2

Pinouts and Signal Descriptions

|
—

The TMS320C2x (second-generation TMS320) digital signal processors are
available in one or more of three package types. The TMS32020 and the
40-MHz TMS320C25 are available in a 68-pin grid array (PGA) package. The -
TMS320C25 (40-MHz and 50-MHz versions) are available in a plastic
68-lead chip carrier (PLCC) package. The TMS320E25 is packaged in a ce-
ramic surface mount 68-lead chip carrier (CER-QUAD) package. All TMS320
packages conform to JEDEC specifications.

Conversion sockets that accept PLCC and CER-QUAD packages and have a
PGA footprint are commercially available. For more information, refer to Ap-
pendix F.

When using the XDS emulator, refer to Section 6.1.3 for user target design
considerations.

This section provides the pinouts and signal definitions in the following sub-
sections:

® TMS320C2x Pinouts (Section 2.1 on page 2-2)
[ ] TMS320C2x Signal Descriptions (Section 2.2 on page 2-3)

Electrical specifications and mechanical data are given in Appendix A.

Note:

Throughout this document, “TMS320C25” refers to the TMS320C25,
TMS320C25-50, and TMS320E25 unless stated otherwise. Where ap-
plicable, "ROM” includes the on-chip EPROM of the TMS320E25.

2-1



Pinouts - TMS320C2x

2.1 TMS320C2x Pinouts

Figure 2-1 shows pinouts of the PGA, PLCC, and CER-QUAD packages for
the TMS320C2x devices. Note that the pinout and external dimensions of
PLCC and CER-QUAD are identical.

68-PIN GB
PIN GRID ARRAY CERAMIC PACKAGE?
(TOP VIEW)
1 2 345 6 7 8 9 1011
A ® @ © @6 06 0 0 0 o
Bl @@ e o @0 00 0 @ e
Cc [ Y [ Y ]
D o e L)
E [ ] ® 0
F ® ¢ L N )
G e @ o o
H [ 2 | [ Y
J [ I [ I J
K| o @ o @ o 0o 0 0 0 @@
L ® ®© 6 o @ ® 0 0 o
68-PIN FN
PLASTIC LEADED CHIP CARRIER PACKAGE
AND
68-PIN FQ CER-QUAD PACKAGE
(TOP VIEW)
2 x
o
oruntesi oL, %% 00
880coooo§‘51§|$6‘6‘>>
( 98 7664 3 2 16867666564636261
vss o 60} TACK
- D7f1t 59} MSC
pejl12 s8] cLkouT1
psf13 57[j cLkouT2
Dallha 56 ] XF
p3fis 55 [| HOLDA
D2}{j16 54 1 DX
D1 |17 53 (] FSX
poflis 52 (] x2/CLKIN
SYNC 1o 51 x1
INTO 20 50| BR
INT1 JJ21 49 [} STRB
INT2 [J22 48[|RW
vee fl23 47(}Ps
DR [J24 . 46[11S
FSR{l2s 45| DS
AO []26 44{lvgs
3_7.28293031 3233'215.2_5‘3637383940414243
B<¥232853232:523%¢
> s PR

Figure 2-1. TMS320C2x Pin Assignments

2-2



Signal Descriptions - TMS320C2x

2.2 TMS320C2x Signal Descriptions

The signal descriptions for the TMS320C2x devices are provided in this sec-
tion. Table 2-1 lists each signal, its pin location (PGA, PLCC, and
CER-QUAD), function, and operating mode(s), i.e., input, output, or high-
impedance state as indicated by |, O, or Z. The signals in Table 2-1 are
grouped according to function and alphabetized within that grouping.

2-3



Signal Descriptions - TMS320C2x

Table 2-1. TMS320C2x Signal Descriptions

SIGNAL PIN 1/0/z% DESCRIPTION
(PGA/PLCCY)
ADDRESS/DATA BUSES
A15 MSB L10/43 Q/z Parallel address bus A15 (MSB) through AO (LSB).
Al4 K9/42 Multiplexed to address external data/program memory or
A13 L9/41 1/0. Placed in high-impedance state in the hold mode.
A12 K8/40
Al1 L8/39
A10 K7/38
A9 L7/37
A8 K6/36
A7 K5/34
A6 L5/33
A5 K4/32
Ad L4/31
A3 K3/30
A2 L3/29
A1l K2/28
AO LSB K1/26
D15 MSB B6/2 1/0/Z | Parallel data bus D15 (MSB) through DO (LSB).
D14 A5/3 Multiplexed to transfer data between the TMS320C2x and
D13 B5/4 external data/program memory or I/0 devices. Placed in
D12 A4/5 high-impedance state when not outputting or when RS or
D11 B4/6 H%LD is asserted.
D10 A3/7
D9 B3/8
D8 A2/9
D7 B2/11
D6 C1/12
D5 C2/13
D4 D1/14
D3 D2/15
D2 E1/16
D1 E2/17
DO LSB F1/18
INTERFACE CONTROL SIGNALS
DS K10/45 0/z Data, program, and 1/0 space select signals. Always high
PS J10/47 unless low level asserted for communicating to a
IS J11/46 particular external space. Placed in high-impedance
state in the hold mode. )
READY B8/66 | Data ready input. Indicates that an external device is pre-
pared for the bus transaction to be completed. If the device
is not ready (READY = 0), the TMS320C2x waits one cycle
and checks READY again. READY also indicates a bus grant
to an external device after a BR (bus request) signal.
R/W H11/48 0/2 Read/write signal. Indicates transfer direction when com-
municating to an external device. Normally in read mode
(high), unless low level asserted for performing a write op-
eration. Placed in high-impedance state in the hold mode.
STRB H10/49 0/Z Strobe signal. Always high unless asserted low to indicate
an external bus cycle. Placed in high-impedance state in the
hold mode. i

t Pin numbers apply to CER-QUAD as well as PLCC.
¥ Input/Output/High-impedance state

2-4




Signal Descriptions - TMS$320C2x

Table 2-1. TMS320C2x Signal Descriptions (Continued)

SIGNAL

PIN
(PGA/PLCCY)

1/0/z%

DESCRIPTION

MUL

TIPROCESSING SIGNALS

G11/50

0

Bus request signal. Asserted when the TMS320C2x requires
access to an external global data memory space. READY is
asserted to the device when the bus is available and the
global data memory is available for the bus transaction.

A7/67

Hold input. When asserted, the TMS320C2x places the data,
address, and control lines in the high-impedance state.

E10/55

Hold acknowledge signal. Indicates that the TMS320C2x
has gone into the hold mode and that an external processor
may access the local external memory of the TMS320C2x.

F2/19

Synchronization input. Allows clock synchronization of two
or more TMS320C2x’s. SYNC is an active-low signal and
must be asserted on the rising edge of CLKIN.

INT

ERRUPT

AND MISCELLANEOUS SIGNALS

B7/68

Branch control input. Polled by BIOZ instruction. If low, the
TMS320C2x executes a branch. This signal must be active
during the BIOZ instruction fetch.

B11/6Q

Interrupt acknowledge signal. Output is only valid while
CLKOUT1 is low. Indicates receipt of an interrupt and that
the program is branching to the interrupt-vector location
indicated by A15-A0. :

H1/22
G2/21
G1/20

External user interrupt inputs. Prioritized and maskable
by the interrupt mask register and the interrupt mode bit.

AB6/1

Microprocessor/microcomputer mode select pin for the
TMS320C25. When asserted low (microcomputer mode),
the pin causes the internal ROM to be mapped into the
lower 4K words of the program memory map. In the micro-
processor mode, the lower 4K words o_fmp_rogram memory
are external. On the TMS32020, MP/ MC must be con-
nected to V ¢cc.

<l
7
Ol

C10/59

Microstate complete signal. Asserted low and valid only
during CLKOUT1 low when the TMS320C2x has just com-
pleted a memory operation, such as an instruction fetch or
a data memory read/write. MSC can be used to generate a
one wait-state READY signal for slow memory.

AB/65

Reset input. Causes the TMS320C2x to terminate execution
and forces the program counter to zero. When brought to a
high level, execution begins at location zero of program
memory. RS affects various registers and status bits.

XF

D11/56

External flag output (latched software-programmable sig-
nal). Used for signalling other processors in multiprocessor
configurations or as a general-purpose output pin.

T Pin numbers apply to CER-QUAD as well as PLCC.
¥ Input/Output/High-impedance state

2-5




Signal Descriptions - TMS320C2x

Table 2-1. TMS320C2x Signal Descriptions (Concluded)

SIGNAL PIN 1/0/2% DESCRIPTION
(PGA/PLCCT)
SUPPLY/OSCILLATOR SIGNALS
CLKOUT1 C11/58 (0] Master clock output signal (CLKIN frequency/4). In this
document (and on the TMS320C25), CLKOUT1 rises at the
beginning of quarter-phase 3 (Q3) and falls at the begin-
ning of quarter-phase 1 (Q1). See Appendix C for device
phase definitions.
CLKOUT2 D10/57 (0] A second clock output signal. In this document (and on the
TMS320C25), CLKOUT2 rises at the beginning of quar-
ter-phase 2 (Q2) and falls at beginning of quarter-phase 4
(Q4). See Appendix C for device phase definitions.
Vee A10/61 | Four 5-V supply pins, tied together externally. On the
B10/62 TMS32020, pin A6 is also a supply pin.
H2/23
L6/35
Vss B1/10 I Three ground pins, tied together externally.
K11/44
L2/27
X1 G10/51 (o] Output pin from the internal oscillator for the crystal. If a
crystal is not used, this pin should be left unconnected.
X2/CLKIN F11/52 | Input pin to the internal oscillator from the crystal. If a
crystal is not used, a clock may be input to the device on this
pin.
SERIAL PORT SIGNALS
CLKR B9/64 | Receive clock input. External clock signal for clocking data
from the DR (data receive) pin into the RSR (serial port re-
ceive shift register). Must be present during serial port
transfers.
CLKX A9/63 1 Transmit clock input. External clock signal for clocking data
from the XSR (serial port transmit shift register) to the DX
(data transmit) pin. Must be present during serial port
transfers. -
DR J1/24 I Serial data receive input. Serial data is received in the RSR
(serial port receive shift register) via the DR pin.
DX E11/54 0/z Serial data transmit output. Serial data transmitted from the
XSR (serial port transmit shift register) via the DX pin.
Placed in high-impedance state when not transmitting.
FSR J2/25 | Frame synchronization pulse for receive input. The falling
edge of the FSR pulse initiates the data-receive process,
beginning the clocking of the RSR.
FSX F10/53 1710 Frame synchronization pulse for transmit input/output. The

falling edge of the FSX pulse initiates the data-transmit
process, beginning the clocking of the XSR. Following re-
set, the default operating condition of FSX is as an input.
This pin may be selected by software to be an output when
the TXM bit in the status register is set.to 1.

T Pin numbers apply to CER-QUAD as well as PLCC.
t Input/Output/High-impedance state

2-6




Signal Descriptions - TMS320C2x

2-7



Signal Descriptions - TMS320C2x

2-8



Section 3

Architecture

The architectural design of the TMS320C2x (second-generation TMS320)
emphasizes overall system speed, communication, and flexibility in processor
configuration. Control signals and instructions provide block memory trans-
fers, communication to slower off-chip devices, and multiprocessing imple-
mentations. Increased throughput for many DSP applications is accomplished
by single-cycle multiply/accumulate instructions, two large on-chip RAM
blocks, eight auxiliary registers with a dedicated arithmetic unit, a serial port,
hardware timer, faster 1/0 for data-intensive signal processing, and other fea-

tures.

Major topics discussed in this section are listed below.

Architectural Overview (Section 3.1 on page 3-3)
Functional Block Diagram (Section 3.2 on page 3-6)
Internal Hardware Summary (Section 3.3 on page 3-8)

Memory Organization (Section 3.4 on page 3-12)
Data memory and program memory
Memory maps and memory-mapped registers
Auxiliary registers
Memory addressing modes
Memory-to-memory moves
Central Arithmetic Logic Unit (CALC) (Section 3.5 on page 3-22)
Scaling shifter, ALU, and accumulator
Multiplier, T and P registers

System Control (Section 3.6 on page 3-28)
Program counter and stack
Pipeline operation
Reset
Status registers
Timer operation
Repeat counter
Powerdown modes
External Memory and I/0 Interface (Section 3.7 on page 3-47)
Memory combinations
Internal clock timing relationships
General-purpose |/0 pins (BIO and XF)

Interrupts (Section 3.8 on page 3-52)
Interrupt operation
External interrupt interface

3-1



Architecture

® Serial Port (Section 3.9 on page 3-56)
Transmit and receive operations
Timing and framing control
Burst mode and continuous mode operation

(] Multiprocessing and Direct Memory Access (Section 3.10
on page 3-68)
Synchronization
Global memory
The hold function

Note:

Throughout this document, "TMS320C25" refers to the TMS320C25,
TMS320C25-50, and TMS320E25 unless stated otherwise. Where ap-
plicable, "ROM” includes the on-chip EPROM of the TMS320E25.

3-2



Architecture - Overview

3.1 Architectural Overview

The TMS320C2x high-performance digital signal processors, like the
TMS320C1x devices, implement a Harvard-type architecture that maximizes
processing power by maintaining two separate memory bus structures, pro-
gram and data, for full-speed execution. Instructions are included to provide
data transfers between the two spaces. Externally, the program and data
memory can be multiplexed over the same bus so as to maximize the address
range for both spaces while minimizing the pin count of the device.

Increased flexibility in system design is provided by two large on-chip data
RAM blocks (a total of 544 16-bit words), one of which is configurable either
as program or data memory (see Figure 3-1). An off-chip 64K-word directly
addressable data memory address space is included to facilitate implementa-
tions of DSP algorithms.

The large on-chip 4K-word masked ROM on the TMS320C25 can be used to
cost-reduce systems, thus providing for a true single-chip DSP solution (see
Figure 3-1). Programs of up to 4K words can be masked into the internal
program ROM. The remainder of the 64K-word program memory space is lo-
cated externally. Large programs can execute at full speed from this memory
space. Programs may also be downloaded from slow external memory to on-
chip RAM for full-speed operation.

The 4K-word on-chip EPROM on the TMS320E25 allows realtime code de-
velopment and modification for immediate evaluation of system performance.
Instructions can be executed from the EPROM at full speed. The EPROM is
equipped with a security mechanism allowing the user to protect proprietary
information. A programming adaptor socket is available from Texas Instru-
ments that provides 68- to 28-pin conversion for programming with standard
PROM programmers. Refer to Appendix E for details.

3-3



Architecture - Overview

3-4

+5V GND

4

INTERRUPTS 266-WORD | 288-WORD
— "] DATA/PROG DATA  DATA (16)

RAM RAM MULTIPROCESSOR
~ 4-K WORDS ROM/EPROM INTERFACE
(TMS320C25/E25) “ y
MULTIPLIER
SERIAL INTERFACE
_E—- 32-BIT ALU/ACC et
[ SHIFTERS ‘
—[ ADDRESS (16}
TIMER

Figure 3-1. TMS320C2x Simplified Block Diagram

The TMS320C2x performs two’s-complement arithmetic using the 32-bit ALU
and accumulator. The ALU is a general-purpose arithmetic unit that operates
using 16-bit words taken from data RAM or derived from immediate in-
structions or using the 32-bit result of the multiplier’s product register. In
addition to the usual arithmetic instructions, the ALU can perform Boolean
operations, providing the bit manipulation ability required of a high-speed
controller. The accumulator stores the output from the ALU and is the second
input to the ALU. The accumulator is 32 bits in length and is divided into a
high-order word (bits 31 through 16) and a low-order word (bits 15 through
0). Instructions are provided for storing the high- and low-order accumulator
words in memory.

The multiplier performs a 16 x 16-bit two’s-complement multiplication with a
32-bit result in a single instruction cycle. The multiplier consists of three ele-
ments: the T Register, P Register, and multiplier array. The 16-bit T Register
temporarily stores the multiplicand; the P Register stores the 32-bit product.
Multiplier values either come from data memory, from program memory when
using the MAC/MACD instructions, or are derived immediately from the
MPYK (multiply immediate) instruction word. The fast on-chip multiplier al-
lows the device to efficiently perform fundamental DSP operations such as
convolution, correlation, and filtering.

The TMS320C2x scaling shifter has a 16-bit input connected to the data bus
and a 32-bit output connected to the ALU. The scaling shifter produces a
left-shift of O to 16 bits on the input data, as programmed in the instruction.
The LSBs of the output are filled with zeros, and the MSBs may be either filled
with zeros or sign-extended, depending upon the state of the sign-extension
mode bit of status register ST1. Additional shift capabilities enable the pro-



Architecture - Overview

cessor to perform numerical scaling, bit extraction, extended arithmetic, and
overflow prevention.

The TMS320C2x local memory interface consists of a 16-bit parallel data bus
(D15-D0), a 16-bit address bus (A15-A0), three pins for data/program
memory or 1/0 space select (DS, PS, and 1S), and various system control sig-
nals. The R/W signal controls the direction of a data transfer, and the STRB
signal provides a timing signal to control the transfer. When using on-chip
program RAM, ROM/EPROM, or high-speed external program memory, the
TMS320C2x runs at full speed without wait states. The use of a READY sig-
nal allows wait-state generation for communicating with slower off-chip
memories.

Up to eight levels of hardware stack are provided for saving the contents of
the program counter during interrupts and subroutine calls. Instructions are
available for saving the device’s complete context. PUSH and POP in-
structions permit a level of nesting restricted only by the amount of available
RAM. The interrupts used in these devices are maskable.

All control operations are supported on the TMS320C2x by an on-chip
memorymapped 16-bit timer, a repeat counter, three external maskable user
interrupts, and internal interrupts generated by serial port operations or by the
timer. A built-in mechanism protects from those instructions that are repeated
or become multicycle due to the READY signal and from holds and interrupts.

An on-chip full-duplex serial port provides direct communication with serial
devices such as codecs, serial A/D converters, and other serial systems. The
interface signals are compatible with codecs and many other serial devices
with a minimum of external hardware. The two serial port memory-mapped
registers (the data transmit/receive registers) may be operated in either an
8-bit byte or 16-bit word mode. Each register has an external clock input, a
framing synchronization input, and associated shift registers.

Serial communication can be used between processors in multiprocessing
applications. The TMS320C2x has the capability of allocating global data
memory space and communicating with that space via the BR (bus request)
and READY control signals. The 8-bit memory-mapped global memory allo-
cation register (GREG) specifies up to 32K words of the TMS320C2x data
memory as global external memory. The contents of the register determine the
size of the global memory space. if the current instruction addresses an oper-
and within that space, BR is asserted to request control of the bus. The length
of the memory cycle is controlled by the READY line.

The TMS320C2x supports Direct Memory Access (DMA) to its external
program/data memory using the HOLD and HOLDA signals. Another processor
can take complete control of the TMS320C2x external memory by asserting
HOLD low. This causes the TMS320C2x to place its address, data, and control
lines in the high-impedance state. Signaling between the external processor
and the TMS320C2x can be performed using interrupts. On the TMS320C25,
two modes are available: a TMS32020-like mode in which execution is sus-
pended during assertion of HOLD, and a concurrent DMA mode in which the
TMS320C25 continues to execute its program while operating from internal
RAM or ROM, thus greatly increasing throughput in data-intensive applica-
tions.

3-5



Afchitecture - Block Diagram

3.2 Functional Block Diagram

3-6

The functional block diagram shown in Figure 3-2 outlines the principal
blocks and data paths within the TMS320C2x processors. Further details of
the functional blocks are provided in the succeeding sections. Refer to Section
3.3, the internal hardware summary, for definitions of the symbols used in
Figure 3-2. The block diagram also shows all of the TMS320C2x interface
pins. Note that the shaded areas on the block diagram indicate enhancements
provided on the TMS320C25.

The TMS320C2x architecture is built around two major buses: the program
bus and the data bus. The program bus carries the instruction code and im-
mediate operands from program memory. The data bus interconnects various
elements, such as the Central Arithmetic Logic Unit (CALU) and the auxiliary
register file, to the data RAM. Together, the program and data buses can carry
data from on-chip data RAM and internal or external program memory to the
multiplier in a single cycle for multiply/accumulate operations.

The TMS320C2x has a high degree of parallelism; e.g., while the data is being
operated upon by the CALU, arithmetic operations may also be implemented
in the Auxiliary Register Arithmetic Unit (ARAU). Such parallelism results in
a powerful set of arithmetic, logic, and bit-manipulation operations that may
all be performed in a single machine cycle.



Architecture - Block Diagram

16 f16

'/ /, QR06) /// /]

IR(16)

2~ N
255
I‘é °g¢
2Bl x%X33
Hi 4 -
16 16
RIW —a— C(16)
STRE ———
READY ———
BR —a—— T 16 MUX
XF F b
<] 16
HOLD —»— 5
HOLDA—=—— 2 p
08 | i
RS ——=—f 2 16
AR 16 el 16
v, s ”, STACK
/ADDRESS
MP/T——J 7 rr/ (8 x 16)
WF(2.0) ——~—— /"‘°°
ROM/ /
’EPRO /]
A15-A0 6 [ 9% 2 2
r AL /.
INSTRUCTION
NSTRUCTIO 777,
4
16 /447,
[ gt
16
= e
N 2
D15-D0 2 e 16

STO(16)

ST1116)

RPTC(8)
IFR(6)

DR
CLKR
FSR
———DX
‘ CLKX
—FSX

// // RSR(16)
V, //,xsnue)
DRR(16)
DXR(16)
TIM(16)
PRD(16)
IMR(6)

GREG(8)

.\\\
KNS

iiiiii:PROGRAM BUS:

Y
16

ARO(16)

AR1(16)

AR2(16)

AR3(16)

AR4(16)
AR5(16)
AR6(16)

AR7(16)
|

I ARAU(16) I

16

MUX
16

BLOCK B2
(32 x 16)

DATA RAM
BLOCK B1
(256 x 16)

7 LS8
FROM IR

[ “swiFtero-16) ]

TR(16)

DATA/PROG
RAM (256 x 16}
BLOCK BO

16

MULTIPLIER

PR(32)

432

SHIFTER(-6,0,1.4)

Zg,a ACCHHG)] ACCL(16) ]
32

l SHIFTERS(0-7)1 I

116

TShifters on TMS32020 (0, 1, 4)
NOTE: Shaded areas are for TMS320C25 and TMS320E25.

Figure 3-2. TMS320C2x Block Diagram

3-7



Architecture - Internal Hardware Summary

3.3 Internal Hardware Summary

3-8

The TMS320C2x internal hardware implements functions that other proces-
sors typically perform in software or microcode. For example, the device
contains hardware for single-cycle 16 x 16-bit multiplication, data shifting,
and address manipulation. This hardware-intensive approach provides com-
puting power previously unavailable on a single chip.

Table 3-1 presents a summary of the TMS320C2x internal hardware. This
summary table, which includes the internal processing elements, registers, and
buses, is alphabetized within each functional grouping. All of the symbols
used in this table correspond to the symbols used in the block diagram of
Section 3.2, the succeeding block diagrams in this section, and the text
throughout this document.



Architecture - Internal Hardware Summary
Table 3-1. TMS320C2x Internal Hardware
UNIT SYMBOL FUNCTION
Accumulator ACC (31-0) | A 32-bit accumulator split in two halves: ACCH (accu-
ACCH(31-16)| mulator high) and ACCL (accumulator low). Used for
ACCL(15-0) | storage of ALU output.

Arithmetic Logic Unit ALU A 32-bit two's-complement arithmetic logic unit having
two 32-bit input ports and one 32-bit output port feedmg
the accumulator.

Auxiliary Register ARAU A 16-bit unsigned arithmetic unit used to perform oper-

Arithmetic Unit ations on auxiliary register data.

Auxiliary Register File ARO-AR7 A register file containing five/eight 16-bit auxiliary

(156-0) registers (ARO-AR7), used for addressing data memory,
temporary storage, or integer arithmetic processing
) through the ARAU.

Auxiliary Register File AFB(15-0) | A 16-bit bus that carries data from the AR pointed to by

Bus the ARP.

Aucxiliary Register Pointer | ARP(2-0) A 3-bit register used to select one of five/eight auxiliary
registers.

Auxiliary Register Pointer | ARB(2-0) A 3-bit register used to buffer the ARP. Each time the

Buffer ARP is loaded, the old value is written to the ARB, except
during an LST (load status register) instruction. When the
ARB is loaded with an LST1, the same value is also copied
into ARP.

Central Arithmetic Logic CALU The grouping of the ALU, multiplier, accumulator, and

Unit scaling shifter.

Data Bus D(15-0) A 16-bit bus used to route data.

Data Memory Address DAB(15-0) | A 16-bit bus that carries the data memory address.

Bus

Data Memory Page DP(8-0) A 9-bit register pointing to the address of the current

Pointer page. Data pages are 128 words each, resulting in 512
pages of addressable data memory space (some locations
are reserved).

Direct Data Memory DRB(15-0) | A 16-bit bus that carries the 'direct’ address for the data

Address Bus memory, which is the concatenation of the DP register
with the seven LSBs of the instruction.

Global Memory GREG(7-0) | An 8-bit memory-mapped register for allocating the size

Allocation Register of the global memory space.

Instruction Register iR(15-0) A 16-bit register used to store the currently executing in-
struction.

Interrupt Flag Register IFR(5-0) A 6-bit flag register used to latch the active-low external
user interrupts INT(2-0) and the internal interrupts
XINT/RINT (serial port transmit/receive) and TINT (timer)
interrupts. The IFR is not accessible through software.

Interrupt Mask Register IMR(5-0) A 6-bit memory-mapped register used to mask interrupts.

3-9




Architecture - Internal Hardware Summary

Table 3-1. TMS320C2x Internal Hardware (Continued)

Shift Registert

UNIT SYMBOL FUNCTION

Microcall Stackt MCS (15-0) | A single-word stack that temporarily stores the contents
of the PFC while the PFC is being used to address data
memory with the block move (BLKD/BLKP), multiply-
accumulate (MAC/MACD), and table read/write (TBLR/ -
TBLW) instructions.

Multiplier MULT A 16 x 16-bit parallel multiplier.

Period Register PRD (15-0) | A 16-bit memory-mapped register used to reload the timer.

Prefetch Countert PFC (15-0) | A 16-bit counter used to prefetch program instructions.
The PFC contains the address of the instruction currently
being prefetched. It is updated when a new prefetch is
initiated. The PFC is also used to address program memory
when using the block move (BLKP), multiply-accumulate
(MAC/MACD), and table read/write (TBLR/TBLW) in-
structions and to address data memory when using the
block move (BLKD) instruction.

Product Register PR(31-0) A 32-bit product register used to hold the multiplier pro-
duct. The PR on the TMS320C25 can also be accessed as
the most or least significant words using the SPH/SPL
(store P register high/low) instructions.

Program Bus P{15-0) A 16-bit bus used to route instructions (and data for the
MAC and MACD instructions).

Program Counter PC (15-0) A 16-bit program counter used to address program mem-
ory. The PC always contains the address of the next in-
struction to be executed. The PC contents are updated
following each instruction decode .operation. On the
TMS32020, the operations of the TMS320C25 prefetch
counter are performed by the program counter.

Program Memory Address| PAB(15-0) A 16-bit bus that carries the program memory address.

Bus i

Queue Instruction QIR(15-0) A 16-bit register used to store prefetched instructions.

RegisterT

Random Access Memory RAM (BO) A RAM block with 256 x 16 locations configured either

(data or program) as data or program memory.

Random Access Memory RAM (B1) A data RAM block, organized as 256 x 16 locations.

(data only) :

Random Access Memory RAM (B2) A data RAM block, organized as 32 x 16 locations.

(data only)

Repeat Counter RPTC (7-0) | An 8-bit counter to control the repeated execution of a
single instruction.

Serial Port Data DRR(15-0) | A 16-bit memory-mapped serial port data receive

Receive Register register. Only the eight LSBs are used in the byte mode.

Serial Port Data DXR(15-0) | A 16-bit memory-mapped serial port data transmit

Transmit Register register. Only the eight LSBs are used in the byte mode.

Serial Port Receive RSR(15-0) | A 16-bit register used to shift in serial port data from the

RX pin. RSR contents are sent to the DRR after a serial
transfer is completed. RSR is not directly accessible
through software.

tSpecific to TMS320C25 and TMS320E25.




Architecture - Internal Hardware Summary

Table 3-1. TMS320C2x Internal Hardware (Concluded)
UNIT SYMBOL FUNCTION
Serial Port Transmit XSR(15-0) | A 16-bit register used to shift out serial port data onto

Shift Registert

the DX pin. XSR contents are loaded from DXR at the be-
ginning of a serial port transmit operation. XSR is not di-
rectiy accessible through software.

Shifters - Shifters are located at the ALU input, the accumulator
output, and the product register output. An in-place shifter

. is also located within the accumulator.
Stack Stack(15-0) | A 4/8 x 16 hardware stack used to store the PC during

interrupts or calls. The ACCL and data memory values may
also be pushed onto and popped from the stack.

Status Registers STO,ST1 Two 16-bit status registers that contain status and
{15-0) control bits.
Temporary Register TR(15-0) A 16-bit register that holds either an operand for the mul-
tiplier or a shift code for the scaling shifter.
Timer TIM (15-0) | A 16-bit memory-mapped timer (counter) for timing con-

trol.

tSpecific to TMS320C25 and TMS320E25.



Architecture - Memory Organization

3.4 Memory Organization

3.4.1 Data

The TMS320C2x provides a total of 544 16-bit words of on-chip data RAM,
of which 288 words are always data memory and the remaining 266 words
may be configured as either program or data memory. The TMS320C25 also
provides 4K words of maskable program' ROM, while the TMS320E25 pro-
vides 4K words of EPROM. This section explains memory management using
the on-chip data and program memory, memory maps, memory-mapped reg-
isters, auxiliary registers, memory addressing modes, and memory-to-memory
moves.

Memory

The 544 words of on-chip data RAM are divided into three separate blocks
(BO, B1, and B2), as shown in Figure 3-3. Of the 544 words, 256 words
(block BO) are configurable as either data or program memory by instructions
provided for that purpose; 288 words (blocks B1 and B2) are always data
memory. A data memory size of 544 words allows the TMS320C2x to handle
a data array of 512 words (256 words if on-chip RAM is used for program
memory), while still leaving 32 locations for intermediate storage. See Section
3.4.3 for memory map configurations.

The TMS320C2x can address a total of 64K words of data memory. The on-
chip data memory and internally reserved locations are mapped into the lower
1K words of the data memory space. Data memory is directly expandable up
to 64K words while still maintaining full-speed operation. A READY line is
provided for interface to slower, less-expensive memories, such as DRAMs.

3.4.2 Program Memory

On-chip program RAM, ROM/EPROM, or high-speed external program
memory can be used at full speed with no wait states. Alternatively, the
READY line can interface the TMS320C2x to slower, less-expensive external
memory. A total of 64K words of memory space is available. Internal RAM
block BO can be configured as program memory using instructions for that
purpose. Execution from this block can be initiated after the memory space
has been reconfigured.  See Section 3.7.1 for a description of instruction ex-
ecution using various memory configurations.

Additionally, the TMS320C25 is internally equipped with 4K words of pro-
grammable ROM. This on-chip program ROM can be mask-programmed at
the factory with a customer’s program. The TMS320E25 provides a 4K-word,
on-chip EPROM. Either on-chip ROM or EPROM allows program execution
at full speed without the need for high-speed external program memory. The
use of this memory also allows the external data bus to be freed for access of
external data memory.



Architecture - Memory Organization

FROM
PROGRAM
COUNTERT
OR
FROM
COUNTERY
FROM
AUXILIARYOFFEEGISTERS
DATA PAGE POINTER
AND
DIRECT MEMORY ADDRESS
Y Y
16 ) 16 116
y y
MUX MUX
16
16
BLOCK B2
(32 x 16)
DATA RAM DATA/PROG
BLOCK B1 RAM (256 x 16)
(256 x 16) BLOCK BO

1 TMs32020 speaific.
Both TMS320C25 and TMS320E25.

Figure 3-3. On-Chip Data Memory

Mapping of the first 4K-word block of off-chip/on-chip program memory is
user-selectable by means of the MP/MC (microprocessor/microcomputer) pin
on the TMS320C25. Setting MP/MC to a high maps in the block of off-chip
memory; holding the pin at a low maps in the block of on-chip ROM. Con-
sequently, compatible products which depend upon external memory from the
ROM can be manufactured in a shorter time frame than the TMS320C25.
Eventually, the off-chip memory device can be replaced by an on-chip memory
device at a lower cost since the PC board will not require any modification.

in another mapping technique, the XF (external flag) pin is used to toggle the
MP/MC pin by dynamically enabling or disabling the on-chip ROM. Note that
care must be taken and the instruction pipeline operation (see Section 3.6.2)
must be understood when using this method.

The MP/MC pin on the TMS320C25 is a V¢ pin on the TMS32020. This
allows substitution of a TMS320C25 for a TMS32020 since the TMS320C25
automatically operates in the microprocessor mode and therefore is plug-in
compatible in the system. See Section 2 for pinouts and signal descriptions.



Architecture - Memory Organizaiion

3.4.3 Memory Maps

3-14

The TMS320C2x provides three separate address spaces for program memory,
data memory, and 1/0, as shown in Figure 3-4. These spaces are distin-
guished externally by means of the PS, DS, and 1S (program, data, and 1/0O
space select) signals. The PS, DS, 1S, and STRB signals are only active when
external memory is being addressed. During an internal addressing cycle, these
signals remain inactive high, thus preventing conflicts in memory addressing,
e.g., when block BO is configured as program memory.

The on-chip memory blocks (B0, B1, and B2) consist of a total of 544 words
of RAM. Program/data RAM block BO (256 words) resides in pages 4 and 5
of the data memory map when configured as data RAM and at addresses
OFFOOh to OFFFFh when configured as program RAM. Block B1 (always data
RAM) resides in pages 6 and 7, while block B2 resides in the upper 32 words
of page 0. Note that the remainder of page O is composed of the memory-
mapped registers and internally reserved locations, and pages 1-3 of the data
memory map consist of internally reserved locations. The internally reserved
locations may not be used for storage, and their contents are undefined when
read. See Section 3.4.4 for further information on the memory-mapped reg-
isters.

The on-chip RAM is mapped into either the 64K-word data memory or pro-
gram memory space, depending on the memory configuration (see Figure
3-4). The CNFD/CNFP instructions are used to configure block BO as either
data or program memory, respectively. The BLKP (block move from program
memory to data memory) instruction may be used to download program in-
formation to block BO when it is configured as data RAM. Then a CNFP
(configure block as program memory) instruction may be used to convert it
to program RAM (see the code example in Section 5.4.2). Regardless of the
configuration, the user may still execute from external program memory. Note
that when accessing internal program memory, external control lines remain
inactive. i

Reset configures block BO as data RAM. Note that, due to internal pipelining,
when the CNFD or CNFP instruction is used to remap RAM block BO, there
is a delay before the new configuration becomes effective. This delay is one
fetch cycle if execution is from internal program RAM. On the TMS32020, a
delay of one fetch cycle occurs if execution is from external program memory.
On the TMS320C25, there is a delay of two fetch cycles if execution is from
ROM or external program memory. This is particularly important if program
execution is from the locations around OFFOOh. Accordingly, a CNFP instruc-
tion must be placed at location OFEFDh in external memory if execution is to
continue from the first location in block BO. If a CNFP is placed at location
OFEFDh, and the instruction at location OFEFFh is a two-word instruction, the
second word of the instruction will be fetched from the first location in block
BO. If execution is from above location OFFOOh and block BO is reconfigured,
care must be taken to assure that execution resumes at the appropriate point
in a new configuration.

The on-chip program ROM can be mapped into the lower 4K words of pro-
gram memory. This ROM is enabled when MP/MC is set to a logic low. To
disable the on-chip ROM and use these lower addresses externally, MP/MC
must be set to a logic high.



Architecture - Memory Organization

PROGRAM
0(0000h) INTERRUPTS
AND RESERVED
(ON-CHIP
311001Fh) ROM/EPROM)
32(0020h) ON-CHIP
EPROM/ROM
4015(0FAFh)
4016(0FBOh)
RESERVED
4095(0FFFh)
4096(1000h)
EXTERNAL
65,535(0FFFFh)
IF MP/MC = 0
(MICROCOMPUTER MODE

ON TMS320C25)

0(0000h)

5(0005h)
6(0006h)

95(005Fh)
96(0060h)

127(007Fh)
128(0080h)

511(01FFh)
512(0200h)

767(02FFh)
768(0300h)

1023(03FFh)
1024(0400h)

65,5635(0FFFFh)

(a) MEMORY MAPS AFTER A CNFD INSTRUCTION

PROGRAM
0(0000h) | \\reRRUPTS
AND RESERVED
(EXTERNAL)
31(001Fh)
32(0020h)
EXTERNAL
65,535(0FFFFh)
IF MP/MC = 1
(MICROPROCESSOR MODE)
PROGRAM
0(0000h) INTERRUPTS
AND RESERVED
(EXTERNAL)
31(001Fh)
32(0020h)
EXTERNAL
66,279(0FEFFh)
65,280(0FFOOh) ON-CHIP
BLOCK BO
65,535(0FFFFh)
IF MP/MIC = 1
(MICROPROCESSOR MODE)

PROGRAM
0(0000h) INTERRUPTS
AND RESERVED
(ON-CHIP
31(001Fh) ROM/EPROM)
32(0020h) ON-CHIP
ROM/EPROM
4015(0FAFh)
4016(0FBOh)
RESERVED
4095(0FFFh)
4096(1000h)
EXTERNAL
65,279(0FEFFh)
65,280(0FFO0h) ON-CHIP
BLOCK BO
65,5635(0FFFFh)
IF MP/MC = 0
(MICROCOMPUTER MODE
ON TMS320C25)

0(0000h)

5(0005h)
6(0006h)

95(005Fh)
96(0060h)

127(007Fh)
128(0080h)

511(01FFh)
512(0200h)

767(02FFh)
768(0300h)

1023(03FFh)
1024(0400h)

65,5635(0FFFFh)

{b) MEMORY MAPS AFTER A CNFP INSTRUCTION
Figure 3-4. Memory Maps

DATA

ON-CHIP
MEMORY-MAPPED
REGISTERS

RESERVED

ON-CHIP
BLOCK B2

RESERVED

ON-CHIP
BLOCK BO

ON-CHIP
BLOCK B1

EXTERNAL

DATA

ON-CHIP
MEMORY-MAPPED
REGISTERS

RESERVED

ON-CHIP
BLOCK B2

RESERVED

DOES NOT
EXIST

ON-CHIP
BLOCK B1

EXTERNAL

PAGE 0

PAGES 1-3

PAGES 4-6

PAGES 6-7

PAGES 8-5611

PAGE 0

PAGES 1-3

PAGES 4-5

PAGES 6-7

PAGES 8-511



Architecture - Memory Organization

3.4.4 Memory-Mapped Registers

The six registers mapped into the data memory space are listed in Table 3-2
and are shown in the block diagram of Figure 3-2.

The memory-mapped registers may be accessed in the same manner as any
other data memory location, with the exception that block moves using the
BLKD (block move from data memory to data memory) instruction cannot be
performed from the memory-mapped registers.

Table 3-2. Memory-Mapped Registers

REGISTER ADDRESS

NAME LOCATION DEFINITION
DRR(15-0) 0 Serial port data receive register
DXR{15-0) 1 Serial port data transmit register
TIM(15-0) 2 Timer register
PRD(15-0) 3 Period register
IMR (5-0) 4 Interrupt mask register
GREG(7-0) 5 Global memory allocation regnster

3.4.5 Auxiliary R\egisters

The TMS320C2x provides a register file containing up to eight auxiliary reg-
isters (ARO-AR7). The TMS32020 has five auxiliary registers, and the
TMS320C25 has eight. This section discusses each register’s function and
how an auxiliary register is selected and stored.

The auxiliary registers may be used for indirect addressing of data memory or
for temporary data storage. Indirect auxiliary register addressing (see Figure
4-2) allows placement of the data memory address of an instruction operand
into one of the auxiliary registers. These registers are pointed to by a three-bit
auxiliary register pointer (ARP) that is loaded with a value from O through 7,
designating ARQ through AR7, respectively. The auxiliary registers and the
ARP may be loaded either from data memory or by an immediate operand de-
fined in the instruction. The contents of these registers may also be stored in
data memory. (Section 4 describes the programming of the indirect address-
ing mode.)



Architecture - Memory Organization

ARS 26B1h
AR6 0008h

AR7 843Dh

AUXILIARY REGISTER FILE DATA
MEMORY
ARO LocATION MAP

AUXILIARY 0000h

REGISTER AR1 INTERNAL
03FFh

(IN STO) EXTERNAL

ARrP[o[ 1[1}—»ar3 [0 F F 3 A h|—»oFF3an(3121h
AR4 OFFFFh

1Both TMS320C25 and TMS320E25.

Figure 3-5. Indirect Auxiliary Register Addressing Example

The auxiliary register file (ARO-AR4 on the TMS32020 and ARO-AR7 on the
TMS320C25) is connected to the Auxiliary Register Arithmetic Unit (ARAU),
shown in Figure 3-6. The ARAU may autoindex the current auxiliary register
while the data memory location is being addressed. Indexing by either +1 or
by the contents of ARO may be performed. As a result, accessing tables of
information does not require the Central Arithmetic Logic Unit (CALU) for

address manipulation, thus freeing it for other operations.



Architecture - Memory Organization

AUXILIARY REGISTER 7 (ART) (16) T

JERRRRRD

AUXILIARY REGISTER 6 (AR6) (16)T
AUXILIARY REGISTER 5 (AR5) (16)7
AUXILIARY REGISTER 4 (AR4) (16)

3 AUXILIARY AUXILIARY
AUXILIARY REGISTER 5 (AR3) (16) 3 REGISTER | ,a.| REGISTER
AUXILIARY REGISTER 2 (AR2) (16) ¢ isB POINTER > BUFFER
AUXILIARY REGISTER 1 (AR1) (16) s  OF Rt (ARP) (3) (ARB) (3)
AUXILIARY REGISTER O (ARO) (16) |4~ ¢ :

¥ )

16 MUX

-~

16 AUXILIARY REGISTER ARITHMETIC UNIT
(ARAU) (16)

INB ouT IN A

AUXILIARY REGISTER FILE BUS (AFB)

1 Both TMS320C25 and TMS320E25.

Figure 3-6. Auxiliary Register File

As shown in Figure 3-6, auxiliary register O (ARO) or the eight LSBs of the
instruction registers can be connected to one of the inputs of the ARAU. The
other input is fed by the current AR (being pointed to by ARP). AR(ARP) re-
fers to the contents of the current AR pointed to by ARP. The ARAU performs

the following functions:

AR(ARP) + ARO - AR(ARP)
AR(ARP) - ARO - AR(ARP)
AR(ARP) + 1 - AR(ARP)

AR(ARP) - 1 AR(ARP)
AR(ARP) AR(ARP)

1

Index the current AR by adding a 16-bit
integer contained in ARO.

Index the current AR by subtracting a
16-bit integer contained in ARO.
Increment the current AR by one.
Decrement the current AR by one.
AR(ARP) is unchanged.



Architecture - Memory Organization

In addition to the above functions, the ARAU on the TMS320C25 performs
functions as follows:

AR(ARP) + IR(7-0)

1

AR(ARP) Add 8-bit immediate value to the cur-
rent AR.

AR(ARP) Subtract 8-bit immediate value from
the current AR.

AR(ARP) Bit-reversed indexing, add ARO with
reverse-carry (rc) propagation (see
Section 4.1.2).

AR(ARP) - rcARO - AR(ARP) Bit-reversed indexing, subtract ARO

with reverse-carry (rc) propagation

(see Section 4.1.2).

AR(ARP) - IR(7-0)

i

\

AR(ARP) + rcARO

Although the ARAU is useful for address manipulation in parallel with other
operations, it may also serve as an additional general-purpose arithmetic unit
since the auxiliary register file can directly communicate with data memory.
The ARAU implements 16-bit unsigned arithmetic, whereas the CALU imple-
ments 32-bit two’s-complement arithmetic. Instructions provide branches de-
pendent on the comparison of the auxiliary register pointed to by ARP with
ARO. The BANZ instruction permits the auxiliary registers to also be used as
loop counters.

The three-bit auxiliary register pointer buffer (ARB), shown in Figure 3-6,
provides storage for the ARP on subroutine calls and interrupts.

3.4.6 Memory Addressing Modes

The TMS320C2x can address a total of 64K words of program memory and
64K words of data memory. The on-chip data memory is mapped into the
64K-word data memory space. The on-chip ROM in the TMS320C25 is
mapped into the program memory space when in the microcomputer mode.
The memory maps, which change with the configuration of block BO, are de-
scribed in detail in Section 3.4.4.

The 16-bit data address bus (DAB) addresses data memory in one of the fol-
lowing two ways:

1) By the direct address bus (DRB) using the direct addressing mode (e.g.,
ADD 10h), or

2) By the auxiliary register file bus (AFB) using the indirect addressing
mode (e.g., ADD *).

Operands are also addressed by the contents of the program counter in the
immediate addressing mode.

Figure 3-7 illustrates operand addressing in the direct, indirect, and immediate
addressing modes.



Architecture - Memory Organization

DIRECT ADDRESSING

INSTRUCTION

OPERAND

INSTRUCTION

INDIRECT ADDRESSING

IMMEDIATE OPERAND | OPCODE JOPERAND)| PC—# INSTRUCTION

3 AR (ARP) 16 OPERAND

INSTRUCTION

pPC+1 — OPERAND

Figure 3-7. Methods of Instruction Operand Addressing

in the direct addressing mode, the 9-bit data memory page pointer (DP)
points to one of 512 pages, each page consisting of 128 words. The data
memory address (dma), specified by the seven LSBs of the instruction, points
to the desired word within the page. The address on the direct address bus
(DRB) is formed by concatenating the 9-bit DP with the 7-bit dma.

In the indirect addressing mode, the currently selected 16-bit auxiliary register
AR(ARP) addresses the data memory through the auxiliary register file bus
(AFB). While the selected auxiliary register provides the data memory address
and the data is being manipulated by the CALU, the contents of the auxiliary
register may be manipulated through the ARAU. See Figure 3-5 for an ex-
ample of indirect auxiliary register addressing. The direct and indirect ad-
dressing modes are described in detail in Section 4.1.

When an immediate operand is used, it is either contained within the instruc-
tion word itself or, in the case of 16-bit immediate operands, the word fol-
lowing the instruction opcode.

3.4.7 Memory-to-Memory Moves

3-20

The TMS320C2x provides instructions for data and program block moves and
for data move functions that efficiently utilize the configurable on-chip RAM.

The BLKD instruction moves a block within data memory, and the BLKP in-
struction movas a block from program memory to data memory. When used
with the repeat instructions (RPT/RPTK), the BLKD/BLKP instructions effi-
ciently perform block moves from on- or off-chip memory.

Implemented in on-chip RAM, the DMOV (data move) function on the
TMS320C2x is equivalent to that of the TMS320C1x. DMOV allows a word
to be copied from the currently addressed data memory location in on-chip
RAM to the next higher location while the data from the addressed location
is being operated upon in the same cycle (e.g., by the CALU). An ARAU
operation may also be performed in the same cycle when using the indirect
addressing mode. The DMOV function is useful for implementing algorithms
that use the z° delay operation, such as convolutions and digital filtering
where data is being passed through a time window. The data move function



Architecture - Memory Organization

can be used anywhere within blocks BO, B1, or B2. It is continuous across the
boundary of blocks BO and B1 but cannot be used with off-chip data memory.
The MACD (multiply and accumulate with data move) and the LTD (load T
register, accumulate previous product, and move data) instructions use the
data move function.

‘The TBLR/TBLW (table read/write) instructions allow words to be transferred
between program and data spaces. TBLR is used to read words from on-chip
ROM or off-chip program ROM/RAM into the data RAM. TBLW is used to
write words from on-chip data RAM to off-chip program RAM.

3-21



Architecture - Central Arithmetic Logic Unit

3.5 Central Arithmetic Logic Unit (CALU)

3-22

The TMS320C2x Central Arithmetic Logic Unit (CALU) contains a 16-bit
scaling shifter, a 16 x 16-bit parallel multiplier, a 32-bit Arithmetic Logic Unit
(ALU), a 32-bit accumulator (ACC), and additional shifters at the outputs of
both the accumulator and the multiplier. This section describes the CALU
components and their functions. Figure 3-8 is a block diagram showing the
components of the CALU. In the figure, note that SFL and SFR indicate shifts
to the left or right, respectively.

The following steps occur in the implementation of a typical ALU instruction:

1) Data is fetched from the RAM on the data bus,

2) Data is passed through the scaling shifter and the ALU where the arith-
metic is performed, and

3) The result is moved into the accumulator.

One input to the ALU is always provided from the accumulator, and the other
input may be transferred from the Product Register (PR) of the multiplier or
from the scaling shifter that is loaded from data memory.



Architecture - Central Arithmetic Logic Unit

SCALING
SHIFTER

SFL(0-16)

MULTIPLIER |«—21€
PR@2)

MUX
32
MUX
32
B
| ALU(32
32
{32 ]
ACCH(16) | ACCL(16) 0
IEE {e

[_sro-nt | [ _sFLo-71t }+—o0

DATA'BUS

I Both TMS8320C25 and TMS320E25.
Shifters on the TMS32020 of 0, 1, or 4.

Figure 3-8. Central Arithmetic Logic Unit (CALU)

3.56.1 Scaling Shifter

The TMS320C2x provides a scaling shifter that has a 16-bit input connected
to the data bus and a 32-bit output connected to the ALU (see Figure 3-8).
The scaling shifter produces a left shift of 0 to 16 bits on the input data, as
programmed in the instruction. The LSBs of the output are filled with zeros,
and the MSBs may be either filled with zeros or sign-extended, depending
upon the status programmed into the SXM (sign-extension mode) bit of sta-
tus register ST1.

The TMS320C2x also contains several other shifters, which allow it to perform
numerical scaling, bit extraction, extended-precision arithmetic, and overflow
prevention. These shifters are connected to the output of the multiplier and the
accumulator.

3-23



Architecture - Central Arithmetic Logic Unit

3.6.2 ALU and Accumulator

3-24

The TMS320C2x 32-bit ALU and accumulator implement a wide range of
arithmetic and logical functions, the majority of which execute in a single
clock cycle. Once an operation is performed in the ALU, the result is trans-
ferred to the accumulator where additional operations such as shifting may
occur. Data that is input to the ALU may be scaled by the scaling shifter.

The ALU is a general-purpose arithmetic 'unit that operates on 16-bit words
taken from data RAM or derived from immediate instructions. In addition to
the usual arithmetic instructions, the ALU can perform Boolean operations,
providing the bit manipulation ability required of a high-speed controller. One
input to the ALU is always provided from the accumulator, and the other input
may be provided from the Product Register (PR) of the multiplier or the input
scaling shifter that has fetched data from the RAM on the data bus. After the
ALU has performed the arithmetic or logical operations, the result is stored in
the accumulator.

The 32-bit accumulator (see Figure 3-8) is split into two 16-bit segments for
storage in data memory: ACCH (accumulator high) and ACCL (accumulator
low). Shifters at the output of the accumulator provide a left-shift of O to 7
places on the TMS320C25 and of 0, 1, or 4 places on the TMS32020. This
shift is performed while the data is being transferred to the data bus for stor-
age. The contents of the accumulator remain unchanged. When the ACCH
data is shifted left, the LSBs are transferred from the ACCL, and the MSBs are
lost. When ACCL is shifted left, the LSBs are zero-filled, and the MSBs are
lost.

The TMS320C2x supports floating-point operations for applications requiring
a large dynamic range. The NORM (normalization) instruction is used to nor-
malize fixed-point numbers contained in the accumulator by performing left
shifts. The LACT (load accumulator with shift specified by the T register) in-
struction denormalizes a floating-point number by arithmetically left-shifting
the mantissa through the input scaling shifter. The shift count, in this case, is
the value of the exponent specified by the four low-order bits of the T register
(TR). ADDT and SUBT (add to/subtract from accumulator with shift speci-
fied by the T register) instructions have also been provided to allow additional
arithmetic operations.

The accumulator overflow saturation mode may be programmed through the
SOVM and ROVM (set/reset overflow mode) instructions. When the accu-
mulator is in the overflow saturation mode and an overflow occurs, the over-
flow flag is set and the accumulator is loaded with either the most positive or
the most negative number depending upon the direction of overflow. The va-
lue of the accumulator upon saturation is 7FFFFFFFh (positive) or
80000000h (negative). If the OVM (overflow mode) status register bit is reset
and an overflow occurs, the overflowed results are loaded into the accumula-
tor without modification. (Note that logical operations cannot result in over-
flow.)

The TMS320C2x can execute a variety of branch instructions that depend on
the status of the ALU and accumulator. These instructions include the BV
(branch on overflow) and BZ (branch on accumulator equal to zero). In ad-
dition, the BACC (branch to address in accumulator) instruction provides the
ability to branch to an address specified by the accumulator. Bit test in-



Architecture - Central Arithmetic Logic Unit

structions (BIT and BITT), which do not affect the accumulator, allow the
testing of a specified bit of a word in data memory.

The accumulator on the TMS320C25 also has an associated carry bit that is
set or reset depending on various operations within the device. The carry bit
allows more efficient computation of extended-precision products and addi-
tions or subtractions. It is also useful in overflow management. The carry bit
is affected by most arithmetic instructions as well as the shift and rotate in-
structions. It is not affected by loading the accumulator, logical operations, or
other such nonarithmetic or control instructions. It is also not affected by the
multiply (MPY, MPYK, and MPYU) instructions, but is affected by the accu-
mulation process in the MAC and MACD instructions. Examples of carry bit
operation are shown in Figure 3-9.

C MsB LSB C MsB LSB

X FFFF FFFFE ACC X 0000 0000 ACC
1 - 1

1 0000 0000 0O FFFF FFFF

X TFFF FFFF ACC X B0OOO 0000 ACC
+ 1 (OVM=0) - 1 (OVM=0)

0 8000 0000 1 TFFF FFFF

1 0000 0000 ACC 0 FFFF FFFF ACC

0 (ADDC 0 (SUBB

+ -
0 0000 00O 1 INSTRUCTION) 1 FFFF FFFE INSTRUCTION)

Figure 3-9. Examples of TMS320C25 Carry Bit Operation

The value added to or subtracted from the accumulator, shown in the exam-
ples of Figure 3-9, may come from either the input scaling shifter or the shifter
at the output of the P register. The carry bit is set if the result of an addition
or accumulation process generates a carry, or reset to zero if the result of a
subtraction generates a borrow. Otherwise, it is reset after an addition or set
after a subtraction.

The ADDC (add to accumulator with carry) and SUBB (subtract from accu-
mulator with borrow) instructions provided on the TMS320C25 use the pre-
vious value of carry in their addition/subtraction operation (see these
instructions in Section 4 for more detailed information).

The one exception to operation of the carry bit, as shown in Figure 3-9, is in
the use of the ADDH (add to high accumulator) and SUBH (subtract from
high accumulator) instructions. The ADDH instruction can only set the carry
bit if a carry is generated, and the SUBH instruction can only reset the carry
bit if a borrow is generated; otherwise, neither instruction can affect it.

Two branch instructions, BC and BNC, have been provided for branching on
the status of the carry bit. The SC, RC, and LST1 instructions can also be used
to load the carry bit. The carry bit is set to one on a hardware reset.

The SFL and SFR (in-place one-bit shift to the left/right) instructions on the
TMS320C2x and the ROL and ROR (rotate to the left/right) instructions on
the TMS320C25 implement shifting or rotating of the contents of the accu-
mulator through the carry bit. The SXM bit affects the definition of the SFR

3-25



vArchitecture - Central Arithmetic Logic Unit

(shift .accumulator right) instruction. When SXM = 1, SFR performs an
arithmetic right shift, maintaining the sign of the accumulator data. When
SXM = 0, SFR performs a logical shift, shifting out the LSB and shifting in a
zero for the MSB. The SFL (shift accumulator left) instruction is not affected
by the SXM bit and behaves the same in both cases, shifting out the MSB and
shifting in a zero. Repeat (RPT or RPTK) instructions may be used with the
shift and rotate instructions for multiple shift counts.

3.5.3 Muitiplier, T and P Registers

3-26

The TMS320C2x utilizes a 16 x 16-bit hardware multiplier, which is capable
of computing a signed or unsigned 32-bit product in a single machine cycle.
All multiply instructions, except the MPYU (multiply unsigned) instruction on
the TMS320C25, perform a signed multiply operation in the multiplier. That
is, the two numbers being multiplied are treated as two’'s-complement num-
bers, and the result is a 32-bit two’s-complement number. As shown in Figure
3-8, the following two registers are associated with the multiplier:

° A 16-bit temporary register (TR) that holds one of the operands for the
multiplier, and -

® A 32-bit product register (PR) that holds the product.

The output of the product register can be left-shifted 1 or 4 bits. This is useful
for implementing fractional arithmetic or justifying fractional products. The
output of the PR can also be right-shifted 6 bits to enable the execution of
up to 128 consecutive multiply/accumulates without the possibility of over-
flow.

An LT (load T register) instruction normally loads the TR to provide one op-
erand (from the data bus), and the MPY (multiply) instruction provides the
second operand (also from the data bus). A multiplication can also be per-
formed with an immediate operand using the MPYK instruction. In either
case, a product can be obtained every two cycles.

Two multiply/accumulate instructions (MAC and MACD) fully utilize the
computationa! bandwidth of the multiplier, allowing both operands to be
processed simultaneously. The data for these operations may reside anywhere
in internal or external memory, or can be transferred to the multiplier each cy-
cle via the program and data buses. This provides for single-cycle
multiply/accumulates when used with repeat (RPT/RPTK) instructions. Note
that the DMOCV portion of the MACD instruction will not function with ex-
ternal data memory addresses. On the TMS32020, the multiplier and multi-
plicand must reside in separate on-chip RAM blocks. On the TMS320C25, the
MAC and MACD instructions can be used with both operands in either inter-
nal or external memory or one each in on-chip RAM. The SQRA (square/add)
and SQRS (square/subtract) instructions pass the same value to both inputs
of the multiplier for squaring a data memory value.

The MPYU instruction on the TMS320C25 performs an unsigned multipli-
cation, which greatly facilitates extended-precision arithmetic operations. The
unsigned contents of the T register are multiplied by the unsigned contents
of the addressed data memory location, with the result placed in the P register.
This allows operands of greater than 16 bits to be broken down into 16-bit
words and processed separately to generate products of greater than 32 bits.



Architecture - Central Arithmetic Logic Unit

After the multiplication of two 16-bit numbers, the 32-bit product is loaded
into the 32-bit Product Register (PR) on the TMS320C2x. The product from
the PR may be transferred to the ALU.

Four product shift modes (PM) are available at the Product Register (PR)
output, which are useful when performing multiply/accumulate operations,
fractional arithmetic, or justifying fractional products. The PM field of status
register ST1 specifies the PM shift mode, as shown in Table 3-3.

Table 3-3. PM Shift Modes

IF PM IS: RESULT
00 No shift
01 Left shift of 1 bit
10 Left shift of 4 bits
11 Right shift of 6 bits

Left shifts specified by the PM value are useful for implementing fractional
arithmetic or justifying fractional products. For example, the product of either
two normalized, 16-bit, two’s-complement numbers or two Q15 numbers
contains two sign bits, one of which is redundant. Q15 format, one of the
various types of Q format, is a number representation commonly used when
performing operations on non-integer numbers (see Section 5.6.6 for an ex-
planation and examples of Q15 representation). The single-bit left-shift
eliminates this extra sign bit from the product when it is transferred to the ac-
cumulator. This results in the accumulator contents being formatted in the
same manner as the multiplicands. Similarly, the product of either a normal-
ized, 16-bit, two’s-complement or Q15 number and a 13-bit, two’s-
complement constant contains five sign bits, four of which are redundant.
This is the case, for example, when using the MPYK instruction. Here the
four-bit shift properly aligns the result as it is transferred to the accumulator.

Use of the right-shift PM value allows the execution of up to 128 consecutive
multiply/accumulate operations without the threat of an arithmetic overflow,
thereby avoiding the overhead of overflow management. The shifter can be
disabled to cause no shift in the product when working with integer or 32-bit
precision operations. This allows compatibility with TMS320C1x code to bs
maintained. Note that the PM right shift is always sign-extended regardless
of the state of SXM.

The four least significant bits of the T register (TR) also define a variable shift
through the scaling shifter for the LACT/ADDT/SUBT (load/add-
to/subtract-from accumulator with shift specified by the TR) instructions.
These instructions are useful in floating-point arithmetic where a number
needs to be denormalized, i.e., floating-point to fixed-point conversion. The
BITT (bit test) instruction allows testmg of a single bit of a word in data
memory based on the value contained in the four LSBs of the TR.

3-27



‘Architecture - System Control

3.6 System Control

System control on the TMS320C2x is provided by the program counter,
hardware stack, PC-related hardware, the external reset signal, interrupts (see
Section 3.8), the status registers, the on-chip timer, and the repeat counter.
The following sections describe the function of each of these components in
system control and pipeline operation.

3.6.1 Program Counter and Stack

3-28

The TMS320C2x contains a 16-bit Program Counter (PC) and a hardware
stack of four (TMS32020) or eight (TMS320C25) locations for PC storage
(see Figure 3-10). The program counter addresses internal and external pro-
gram memory in fetching instructions. The stack is used during interrupts and
subroutines. '

TO PROGRAM _ 3
ADDRESS BUS

(8 x 16)

1;Both TMS320C25 and TMS320E25.
Four-level stack provided on the TMS32020.

Figure 3-10. Program Counter, Stack, and Related Hardware

The program counter addresses program memory, either on-chip or off-chip,
via the Program Address Bus (PAB). Through the PAB, an instruction is
fetched from program memory and loaded into the Instruction Register (IR).
When the IR is loaded, the PC is ready to start the next instruction fetch cycle.
The PC may address on-chip RAM block BO when BO is configured as pro-
gram memory, or the on-chip ROM provided on the TMS320C25. The PC
also addresses off-chip program memory through the external address bus
A15-A0 and the external data bus D15-DO. :

Data memory is addressed by the program counter during a BLKD instruction,
which moves data blocks from one section of data memory to another. The
contents of the accumulator may be loaded into the PC in order to implement



Architecture - System Control

"computed GOTO” operations. This can be accomplished using the BACC
(branch to address in accumulator) or CALA (call subroutine indirect) in-
structions.

To start a new fetch cycle, the PC is loaded either with PC+1 or with a branch
address (for instructions such as branches, calls, or interrupts). In the case of
conditional branches where the branch is not taken, the PC is incremented
once more beyond the location of the branch address.

The TMS320C2x also has a feature, which allows the execution of the next
single instruction N+1 times. N is defined by loading an 8-bit counter RPTC
(repeat counter). If this repeat feature is used, the instruction is executed, and
the RPTC is decremented until the RPTC goes to zero. This feature is useful
with many instructions, such as NORM (normalize contents of accumulator),
MACD (multiply and accumulate with data move), and SUBC (conditional
subtract). When used with some multicycle instructions, such as MACD, the
repeat features can result in these instructions effectively executing in a single
cycle.

The stack is 16 bits wide and four (TMS32020) or eight (TMS320C25) levels
deep. The PC stack is accessible through the use of the PUSH and POP in-
structions. Whenever the contents of the PC are pushed onto the top of the
stack, the previous contents of each level are pushed down, and the bottom
(fourth/eighth) location of the stack is lost. Therefore, data will be lost if more
than four/eight successive pushes occur before a pop. The reverse happens
on pop operations. Any pop after three/seven sequential pops yields the value
at the bottom stack level. All of the stack levels then contain the same value.
Two additional instructions, PSHD and POPD, push a data memory value
onto the stack or pop a value from the stack to data memory. These in-
structions allow a stack to be built in data memory for the nesting of
subroutines/interrupts beyond four/eight levels.

Note that on the TMS32020, the TBLR/TBLW, MAC/MACD, and
BLKD/BLKP instructions use one level of the stack. The TMS320C25 contains
a separate stack, MCS, for use with these instructions; no level of the PC stack
is used.

3.6.2 Pipeline Operation

Instruction pipelining consists of the sequence of external bus operations that
occurs during instruction execution. The prefetch-decode-execute pipeline is
essentially invisible to the user, except in some cases where the pipeline must
be broken (such as for branch instructions). In the operation of the pipeline,
the prefetch, decode, and execute operations are independent, which allows
instruction executions to overlap. Thus, during any given cycle, two or three
different instructions can be active, each at a different stage of completion,
resulting in the respective two-ievel pipeline on the TMS32020 or the three-
level pipeline on the TMS320C25.

The difference in pipeline levels does not necessarily affect instruction exe-
cution speed, but merely changes the fetch/decode sequence. Most in-
structions execute in the same number of cycles regardless of whether they
are executed from internal RAM, ROM, or external program memory. The ef-
fects of pipelining are included in the instruction cycle timings for the
TMS32020 and TMS320C25 listed in Appendix D.

3-29



Architecture - System Control

3-30

Additional PC-related hardware (see Figure 3-10) is provided on the
TMS320C25 to allow three-level pipelining for higher performance. Included
in the related hardware are the Prefetch Counter (PFC), the 16-bit MicroCall
Stack (MCS) register, the Instruction Register (IR), and the Queue Instruction
Register (QIR). -

In the three-level pipeline on the TMS320C25, the PFC contains the address
of the next instruction to be prefetched. Once an instruction is prefetched, the
instruction is loaded into the IR, unless the IR still contains an instruction
currently executing, in which case the prefetched instruction is stored in the
QIR. The PFC is then incremented, and after the current instruction has
completed execution, the instruction in the QIR is loaded into the IR to be
executed.

The PC contains the address of the next instruction to be executed, and is not
used directly in instruction fetch operations, but merely serves as a reference
pointer to the current position within the program. The PC is incremented as
each instruction is executed. When interrupts or subroutine call instructions
occur, the contents of the PC are pushed onto the stack to preserve return
linkage to the previous program context.

The prefetch, decode, and execute operations of the pipeline are independent,
thus allowing instruction executions to overlap. During any given cycle, three
different instructions can be active, each at a different stage of completion.
Figure 3-11 shows the operation of the three-level pipeline for single-word,
single-cycle instructions executing from either internal program ROM or ex-
ternal memory with no wait states.

ovom ] r“T 1] L

prefetch ; - N+1 : N+2 :
decode « N-1 ;:< N ye N+1 ye
execute N-2 » N1 " N

Figure 3-11. Three-Level Pipeline Operation (TMS320C25)

Pipelining is reduced to two levels when execution is from internal program
RAM due to the fact that an instruction in internal RAM can be fetched -and
decoded in the same cycle. Thus, separate prefetch and decode operations are
not required, as shown in Figure 3-12. .



Architecture - System Control

CLKOUT1 l

z |Z —
y.
Y

execute “

pretetch « »e N+1 e N+2 e
decode < »e N+1 :< N+2 ye
. N1 N — N+

Figure 3-12. Two-Level Pipeline Operation

The following paragraphs describe, in detail, the operation of the TMS320C25
pipeline. This description, in conjunction with Appendix D, gives sufficient
information for predicting the operation of the TMS320C25 for hardware in-
terface optimization, accurate program cycle counting, and simulation model-
ling. Often it is not necessary to understand the intricate detail of the pipeline
to design with the TMS320C25. Therefore, if the user is not specifically in-
terested in these details, it is suggested that this description be skipped.

The TMS320C25 executes most of its instructions in a single cycle, because
all the instructions are straight decodes and highly pipelined as opposed to
microcode. The basic pipeline operation is 3.25 cycles deep where the device
sequence on any given cycle is fetching the third instruction, decoding the
second instruction, and executing the first. Figure 3-13 shows the internal
operation of the TMS320C25 pipeline in reference to quarter phases 1 through
4 (Q1-Q4).

3-31



Architecture - System Control

CLOCK

CLKOUT1

CLKOUT2

STRB

ADDRESS

DATA

DECODE

RAMRD

EXECUTE

STATUS

AUXREG

RAMWR

3-32

L

2

Q.

L

CYCLE 1

Q1i02
]
_31_

CYCLE 2

L]

Q1
L—+——
e
I -

CYCLE 3

n

=]
-

4

=

LT

figna

| Q2
|
|
|
|
|
|
l
T
|
|
|
[

Figure 3-13. TMS320C25 Standard Pipeline Operafion

The TMS320C25 machine cycle, externally referenced by the falling edges of
the CLKOUT?1 signal, consists of four internal cycles (or CLKIN cycles). This
allows internal operations of the pipeline to execute as fast as 1/4 the machine

cycle. The sequence of a general instruction execution in the pipeline is

shown in Table 3-4.

INST1 =i INST2 =8 )
T T 1] T 1)
| | | | |
1 = ! — ]
: . msnI f : INST2 | INST3 | :
INSTO INST1 INST2 j‘
INSTO T INST2  }—
|
INST ACC INSTO ACC {
__'I , ! | | ] | |
. ' INST T 2 ' NST1/
l | | |
| i ) i
-—-:—‘ INSTO ARAU HLOAD INST1 ARAU HLOAD INST2 ARAUHLOAD}—
1) . T
L 1
. | INST1 ,




Architecture - System Control

Table 3-4. Instruction Pipeline Sequence

CYCLE | Q PHASE OPERATION

New PC is output on address bus
External read of instruction
External read of instruction
External read of instruction

Instruction decode
Instruction decode/ARAU execution
On-chip RAM access/ARAU execution

On-chip RAM access/load new AR value/update ARP
ALU execution

ALU execution

Load accumulator

= IBPWON=|PRWON=IRWON-=

Load status register

When using an add instruction (e.g.,, ADD *+,12,AR4), the device fetches the
instruction in cycle 1. During Q2 and Q3 of cycle 2, the instruction is de-
coded. This includes the ALU command decode as well as generation of the
data operand fetch address. In this case, the address comes from an auxiliary
register. During Q4 of cycle 2 and Q1 of cycle 3, the operand is fetched from
the RAM location. The increment of the auxiliary register is performed during
Q3 and Q4 of cycle 2, and the value is loaded into the auxiliary register in Q1
of cycle 3. The ARP is also updated in Q1 of cycle 3. During Q2 and Q3 of
cycle 3, the data is passed through the barrel shifter to execute the 12-bit
left-shift, and the data is added by the ALU to the contents in the accumulator.
In Q4 of the third cycle, the ALU resuit is loaded into the accumulator. The
status of the ALU operation is loaded into the status register in Q1 of the
fourth cycle. The bits being loaded into the status register at this time consist
of the current ALU status and the ARP associated with the next instruction.

In the case of a store instruction (e.g., SACL *0-,3,AR2), the device operates
the first two cycles in the same manner as the ADD instruction. In Q1 and
Q2 of the third cycle, the data in the accumulator is passed through a barrel
shifter, left-shifted 3 bits, and zero-filled. The lower 16 bits of the shifted va-
lue are written to the address specified by the current auxiliary register. During
Q3 and Q4 of the third cycle, the index register (ARO) is added to the contents
of the current auxiliary register and loaded back into the current auxiliary reg-
ister in Q1 of the fourth phase. In Q1 of the fourth cycle, the auxiliary register
pointer is changed to AR2. There is no execution phase of this instruction.
Figure 3-14 shows the ADD and SACL instructions operating back-to-back
in a program sequence. It is assumed that both instructions reside in éxternal,
zero wait-state memory and that the data resides in on-chip RAM.

3-33



Architecture - System Control

CLOCK

CLKOUT1

CLKOUT2

ADDRESS

DATA

DECODE

EXECUTE

AUXREG

3-34

CYCLE 1 | CYCLE 2 | CYCLE 3 | CYCLE 4 | CYCLE 5
L L A T O L
J | L | L
_ l I | | | L
il | 1 | J L |
ADD  *+12,AR4 }{ sacL *0.3.AR2 |} H =l
0 e e i
ADD SACL
ADD READ SACL WRITE
ADD__ HAce DUMMY
{_ARx_+1 Jfoap | ARO‘-ARO LOAD)

Figure 3-14. Pipeline Operation of ADD Followed by SACL

When the device is reading instructions out of on-chip ROM, the basic inter-
nal operation of the pipeline is the same. The only difference is that the con-
trol lines (i.e., STRB, PS, and R/W) are inactive. If the device is fetching the
instructions from on-chip RAM, the pipeline is shortened to 2.5 cycles since
the device can fetch the instruction in half a cycle as opposed to the full cycle
required in an external or on-chip ROM fetch. The instruction is fetched dur-
ing Q4 and Q1, then decoded in Q2 and Q3. The rest of the pipeline tracks
as described above.

Some operations add additional machine cycles to the instruction execution
without damaging the integrity of the program or hardware. External wait
states, multiplexed data bus conflicts, two-word instructions, and program
counter discontinuities are included in these operations, as described in the
following paragraphs.

Wait States. The TMS320C25 is designed to be interfaced to slower ex-
ternal devices through the use of hardware-generated wait states. This applies
to the program, data, and 1I/O memory spaces of the Harvard architecture.
Wait states are a direct delay on the instruction pipeline. Each wait state in-
serted during the instruction fetch contributes an additional machine cycle in
the pipeline execution of the instruction. In addition, any wait state incurred
when accessing external data or I/O space also contributes an additional ma-
chine cycle to the pipeline execution of the instruction. This factor applies to
all instructions. Figure 3-15 describes how the pipeline reacts to wait states
in external program memory. Note that the wait state added in cycle 2 results
in a no-execution operation in cycle 4.



Architecture - System Control

CYCLE 1 | CYCLE 2 | CYCLE 3 | CYCLE 4 | CYCLES
e sigigigigipigigigigigigigipigigipipliy
a2 103 /a4 a1 /a2 03 las ;a1 1 a2 a3 ! as a1 | a2 a3 | aa a1 |02 a3
cLKoUT1 J | | J | | l |
CLKOUT2 _J | [ | | | | L
sTRE | | |
ADD *+,12,AR4 WAIT STATE SACL *0-,3,AR2 [ wairstate OR *+
T T T
DATA | ] ' } | -
DECODE ADD SACL
T
|
RAM ADD READ ¢ SACL WRITE
|
E ADD AcC : oummy H
1
J

T ARx_+1 HLOAD T AR4-ARO HLOA T

Figure 3-15. Pipeline Operation with Wait States

Multiplexed External Data Bus. The external data bus is multiplexed to
support all three memory spaces of the TMS320C25. Therefore, external
fetches to multiple spaces in the same instruction add additional machine cy-
cles to the pipeline execution of the instruction. This is due to the fact that
the external fetch takes a full cycle whereas the internal equivalent takes two
quarter phases and can be included in the execution stage of the three-deep
pipeline. Accessing the data memory space is controlled by setting of the data
page pointer or the value contained in the auxiliary register used in any in-
struction. Also affecting the pipeline in this manner is the access of the 1/0
bus or the tables in program memory (i.e., IN, OUT, TBLR, and TBLW). Figure
3-16 shows how the pipeline processes an instruction with external program
and data access.

3-35



Architecture - System Control

CYCLE 1 | CYCLE 2 | CYCLE 3 | CYCLE 4 | CYCLE 5

e s igis iy igigNpipigigipigigipgipiplin
a2 {03104 101 |0z a3 ]os a1 Jo2 a3las 01|02 a3los]ar]az;a3
CLKOUT ] L l | 1 | l |
CLKOUT2 __J | | L |
—
sm (L J | I | J | [
75 | |
55 |
ADDRESS SACL *0-,3,AR2 LAC *+ DATA SPACE | DATA SPACE
T ¥ T T 1]
DATA } — WRITE | ‘EH
DECODE SACL LAC
T
L
EXTRAM SACL WRITE LAC READ
1
EXECUTE DUMMY e H_
AR4-ARO LOAI AR2 +1 LOA! ‘I(

Figure 3-16. Pipeline with External Data Bus Conflict

Two-Word Instructions. All two-word instructions take an-additional cy-
cle to fetch the 16-bit immediate operand following the instruction mnemonic.
The first set of instructions for which this applies is the long immediate in-
structions. The instruction mnemonic is followed by a 16-bit immediate op-
erand to be executed upon in the ALU. The second set applies to those
instructions that use the PFC register as a second data addressing unit on
some optimized instructions, e.g., the multiply/accumulate and block move
instructions (MAC, MACD, BLKP, and BLKD). In the second set, the extra
cycle only appears once in a repeat loop. The third set involves conditional
branches not taken.

3-36



Architecture - System Control

ety iy iy RSty Ep By Ry iy Epl pEy iy iy

ADDRESS

DATA

DECODE

INSTRAM

DATARAM

STATUS

EXECUTE

AUXREG

Program Counter Discontinuities. Since the TMS320C25 is pipelined, a
change (other than an increment) in the program counter requires that the
pipeline be flushed. This applies to all branches, subroutine calls, software
trap, interrupt traps, and return. The pipeline, being three deep, has the next
instruction already loaded when the branch occurs. At this point, this instruc-
tion will not affect any data or registers, so it is cleared from the pipeline.
Therefore, two dead execution cycles arc inserted while waiting for the pipe-
line to reload. The device only takes one additional cycle if the destination of
the branch is in on-chip RAM block 0. The pipeline is only two-deep in this
case and only takes one cycle to reload. Figure 3-17 shows a branch from
normal execution to an address in on-chip RAM, and Figure 3-18 shows an
example of a return executed from on-chip RAM to a location in off-chip
memory.

CYCLE 1 | CYCLE 2 | CYCLE 3 | CYCLE 4 | CYCLE §

a Q2 Qa3 | a4 a1 Q2 a3

[ J | J | | | J
- | | | ] L | | J
—
| l | | | |
]
BV OFFOOh - ADD *+.,12.AR4 4
| |
1 _“l 1
BV sus ADDH
suB*-,12.4R4 ADDH_*+
i
t SUB READ
|
|
BV
BV sus H

ARx -1 LOAD

Figure 3-17. Pipeline Operation of Branch to On-Chip RAM

3-37



Architecture - System Control

CYCLE 1 | CYCLE 2 | CYCLE 3 | CYCLE 4 | CYCLE 5
S R N U g g Oy Oy O
Q2 | 03 1 04 | 01 0z | @3 Qs ! @ | 02! a3 |04 | a1 a2 ! @3 @ ! a1 | 02 | @3
cLKoUT1 J | J | | | [
cwourz || L | L ] | [ L L
1
STRE ! ] ] l | | [~
{ apo +i12ara  {  sus ‘o.3arz OR *+
| | |
DATA J— — J-
DECODE — RET ADD SuUB
INSTRAM  RET
DATARAM ADD
STATUS
.
EXECUTE RET a0 H
ARx +1_ HLoAD)

3-38

Figure 3-18. Pipeline Operation of RET from On-Chip RAM

Interrupts are hardware-generated discontinuities to the sequential accessing
of the program counter. The interrupt is executed based upon instruction ex-
ecution complete, rather than memory operation complete. The instruction
that is currently executing at the time of an interrupt executes completely. The
interrupt traps following the completion of that instruction before the start of
the execution of the next instruction. In this case, the repeated instruction is
considered one execution; therefore, the repeat loop finishes before the inter-
rupt trap is taken. This gives priority to the algorithm over the interrupt service.
The interrupt operation in reference to the pipeline execution is illustrated in
the data sheet timing diagrams (see Appendix A). Note that when interrupt
vectors reside in external memory running with one wait state, there are two
interrupt acknowledge (1ACK) pulses. If this is a problem, the TACK line should
be gated with READY.



Architecture - System Control

Hardware Aspects of the Pipeline

Viewing these effects on the pipeline at the hardware level requires additional
explanation due to the lack of visibility of on-chip operations or optimization
of the pipeline execution. The following paragraphs describe the effects of
HOLD/HOLDA, RS, interrupts, accumulator store, on-chip program access, ex-
ternal data access, and repeats as they are visible from the pins of the device.
In the cases of RS, interrupts, and HOLD/HOLDA, the effects on the pipeline
are shown in the data sheet timing diagrams (see Appendix A).

Reset. The reset interrupt is a totally non-maskable interrupt. When exe-

- cuted, it stops operation of the pipeline and flushes the unexecuted parts. The
reset pulse must be at least three CLKOUT cycles wide. After the second
CLKOUT cycle has completed (before the third rising edge of CLKOUT1), the
device has brought all outputs into a high-impedance state. After the rising
edge of RS, the device begins to fetch the reset vector. Since the pipeline is
empty, it does not execute the reset vector branch until two cycles later. If the
HOLD line is brought low during the active reset, the device does not start the
fetch of the reset vector until after the active HOLD is removed, and the device
deactivates the HOLDA line. When HOLD is activated with RS to allow boot-
loading of the code, the HOLDA line will go active low in three cycles, regard-
less of whether or not the RS line has gone high. This is useful in that the
HOLDA line can be used to enable the release of the RS line and guarantee the
required three-cycle reset.

Interrupts. The effects of an interrupt become apparent on the hardware
when a interrupt acknowledge (TACK) signal is valid on the rising edge of
CLKOUT2. This signifies the fetch of the first word of the interrupt vector. If
wait states are generated in the memory segment where the interrupt vector
resides, an additional TACK pulse occurs for each wait state added. If this
causes a problem with the external interface, TACK can be gated with READY
to only accept the last interrupt acknowledge pulse. Note that the BIOZ in-
struction tests the level of the BIO pin during the instruction fetch phase of the
pipeline.

Hold/Hold Acknowledge. The hold operation, like that of interrupt, takes
second priority to algorithm execution; therefore, the hold will not be ac-
knowledged until after the currently running instruction is completed (a min-
imum of three cycles). This includes repeated instructions. The next
instruction, after the final instruction executed before HOLDA, is latched into
the pipeline and executed two cycles after the HOLDA line goes inactive high.
The second instruction after the last instruction executed is fetched two cycles
again after the HOLDA line goes inactive high. If the HM bit of status register
ST1 is set high, the TMS320C25 stops execution and sits idle until the hold
is removed. This lowers power consumption by removing the drive of the
memory address and control lines and also stopping major parts of the internal
CPU circuits from switching and drawing power. This can be used as a
hardware powerdown mode. |f the HM bit is low, the TMS320C25 continues
executing any instruction that can be executed with on-chip resources only.
This means both program and data reside in on-chip memory. The device will
continue to operate normally unless an off-chip access is required by an in-
struction, at which time the processor adds wait states until the hold state is
removed. When running from on-chip resources with HM = 0, the processor
acknowledges HOLD with HOLDA during a multicycle instruction.

3-39



Architecture - System Control

3-40

On-Chip Program Access. When executing from on-chip resources, the
pipeline is visible only in the MSC line, which signals microstate complete
when active low on the rising edge of CLKOUT2. Note that executing from
on-chip program memory does not allow instruction accessing of external data
memory to run in a single cycle. The normal operation of the instruction takes
only two quarter phases of the execution cycle to fetch the on-chip data
memory, whereas off-chip access requires all four quarter phases. The pipe-
line is, however, optimized to handle a repeated instruction that accesses ex-
ternal data memory with only one extra cycle for the first external fetch.

External Program/Data Access. Visibility of the pipeline when using ex-
ternal program and data memory requires a monitoring of the MSC, STRB, PS,
and DS lines. The MSC line indicates at the rising edge of CLKOUT2 whether
or not the cycle is the beginning of a new instruction fetch; i.e., MSC active
low indicates the completion of an instruction and the acquisition of another
instruction. The PS (program select) line indicates that the data bus is cur-
rently being used to fetch an instruction. A step in the pipeline is not indicated
since the PS line remains while the pipeline is fetching instructions externally.
To track the fetches, the STRB line, which frames external accesses, must be
monitored.

The PS line being active low does not necessarily mean that the device is
fetching an instruction. In the cases of table read/write (TBLR/TBLW),
multiply/accumulate (MAC/MACD), and block transfer (BLKP) instructions,
the device uses the PS line active low to access tables.

To monitor external data memory fetches, the user should watch the data se-
lect (DS) line in conjunction with the STRB line. An active low on the DS line
indicates the data bus is currently being used to access data memory space.
This line remains low for two memory fetches in the case of an accumulator
store followed by an ALU instruction, both operating with off-chip memory.
However, two STRB pulses will identify the individual access. Likewise, the
line remains low for many cycles in the case of a repeated instruction. /O
space access operates similarily to data space operation with the OUT and IN
instructions replacing the save and ALU instruction.

A clear understanding of this information in conjunction with the data in Ap-
pendix D of this TMS320C2x User's Guide should be sufficient to correctly
predict the operation of the TMS320C25 pipeline.



Architecture - System Control

3.6.3 Reset

Reset (RS) is a non-maskable external interrupt that can be used at any time
to put the TMS320C2x into a known state. Reset is typically applied after
powerup when the machine is in a random state.

Driving the RS signal low causes the TMS320C2x to terminate execution and
forces the program counter to zero. RS affects various registers and status bits.
At powerup, the state of the processor is undefined. For correct system op-
eration after powerup, a reset signal must be asserted low for at least three
clock cycles to guarantee a reset of the device (see Section 5.1 for other im-
portant reset considerations). Processor execution begins at location 0, which
normally contains a B (branch) statement to direct program execution to the
system initialization routine (also see Section 5.1 for an initialization routine
example). Section 6.1 provides system control circuitry design examples.

Upon receiving an RS signal, the following actions take place:

1) A logic 0 is loaded into the CNF (configuration control) bit in status
register ST1, causing all RAM to be configured as data memory.

2) The Program Counter (PC) is set to 0, and the address bus A15-A0 is
driven with all zeroes while RS is low.

3) The data bus D15-DO is placed in the high-impedance state.

4)  All memory and 1/0 space control signals (PS, DS, TS, R/W, STRB, and
BR) are de-asserted by setting them to high levels while RS is low.

5)  All interrupts are disabled by setting the INTM (interrupt mode) bit to
1. (Note that RS is non-maskable.) The interrupt flag register (IFR) is
reset to all zeroes.

6)  Status bits:
For all TMS320C2x devices, 0 = OV, 1 - XF, 0 » FO, and 0 » TXM.
Except for the TMS32020, 1 - SXM, 0 - PM, 1 - HM, 1 - C, and
1 - FSM. (The remaining status bits on the TMS320C2x are un-
changed.)

7) The global memory allocation register (GREG) is cleared to make all
memory local. i

8) The RPTC (repeat counter) is cleared.

8) The DX (data transmit) pin is placed in the high-impedance state. Any
transmit/receive operations on the serial port are terminated, and the
TXM (transmit mode) bit is reset to a low level. This configures the FSX
framing pulse to be an input. A transmit/receive operation may be
started by framing pulses only after the removal of RS.

10) The TIM register is set to the maximum value (OFFFFh) on reset for both
the TMS32020 and TMS320C25. The PRD register on the TMS320C25
is also initialized by reset to OFFFFh. The TMS32020 requires a software
initialization of the PRD register (see Example 5-1). The TIM register
begins decrementing only after RS is de-asserted.

11) The IACK (interrupt acknowledge) signal is generated in the same man-
ner as a maskable interrupt.

3-41



Architecture - System Control

12) The state of the RAM is undefined following RS.

13) The ARB, ARP, DP, IMR, OVM, and TC bits are not initialized by reset.
Therefore, it is critical that these bits be initialized in software by the user
following reset.

Execution starts from location O of program memory when the RS signal is
taken high. Note that if RS is asserted while in the hold mode, normal reset
operation occurs internally, but all buses and control lines remain in the
high-impedance state. Upon release of HOLD and RS, execution starts from
location zero. The TMS320C2x can be held in the reset state indefinitely.

3.6.4 Status Registers

3-42

Two status registers, STO and ST1, contain the status of various conditions
and modes. The status registers can be stored into data memory and loaded
from data memory, thus allowing the status of the machine to be saved and
restored for interrupts and subroutines. All status bits are written to and read
from using LST/LST1 and SST/SST1 instructions, respectively (with the ex-
ception of INTM, which cannot be loaded via an LST instruction).

Figure 3-19 shows the organization of both status registers, indicating all
status bits contained in each. Note that the DP, ARP, and ARB registers are
shown as separate -registers in the processor block diagram of Figure 3-2.
Because these registers do not have separate instructions for storing them into
RAM, they are included in the status registers. As shown in Figure 3-19, se-
veral bits in the status registers are reserved and read as logic one’s by the LST
and LST1 instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

sto | ARP | ov fovm] 1 JinTm] DP |

15 14 13 12 1 10 9 g 7 6 5 4 3 2 1 0

sT1 | ARB |cNF[ TC [sxm] ct |1 1 [Hmt]Fsmt|xF[Fo|[Txm] Pm |

. tOn the TMS32020, bits 5, 6, and 9 of ST1 are logic one's.

Figure 3-19. Status Register Organization

Some additional instructions or functions may affect the status bits, as indi-
cated in Table 3-5.



Architecture - System Control

Table 3-5. Status Register Field Definitions

FIELD FUNCTION

ARB Auxiliary Register Pointer Buffer. Whenever the ARP is loaded, the old
ARP value is copied to the ARB except during an LST instruction. When
the ARB is loaded via an LST1 instruction, the same value is also copied
to the ARP.

ARP Auxiliary Register Pointer. This three-bit field selects the AR to be used in
indirect addressing. When ARP is loaded, the old ARP value is copied to
the ARB register. ARP may be modified by memory-reference instructions
when using indirect addressing, and by the LARP, MAR, and LST in-
structions. ARP is also loaded with the same value as ARB when-an LST1
instruction is executed.

ct Carry bit. This bit is set to 1 if the result of an addition generates a carry,
or reset to O if the result of a subtraction generates a borrow. Otherwise,
it is reset after an addition or set after a subtraction, except if the instruc-
tion is ADDH or SUBH. ADDH can only set and SUBH only reset the carry
bit, but cannot affect it otherwise. These instructions will also affect this
bit: SC, RC, LST1, shift, and rotate. Two branch instructions, BC and
BNC, have been provided to branch on the status of C. Cis setto 1 on
a reset.

CNF On-Chip RAM Configuration Control bit. If set to 0, block BO is config-
ured as data memory; otherwise, block BO is configured as program
memory. The CNF may be modified by the CNFD, CNFP, and LST1 in-
structions. RS resets the CNF to 0.

DP Data Memory Page Pointer. The 9-bit DP register is concatenated with
the 7 LSBs of an instruction word to form a direct memory address of 16
bits. DP may be modified by the LST, LDP, and LDPK instructions.

FO ‘1 Format bit. When set to 0, the serial port registers are configured as 16-bit
registers. When set to 1, the port registers are configured to receive and
transmit eight-bit bytes. FO may be modified by the FORT and LST1 in-
structions. FO is reset to 0.

FSmt Frame Synchronization Mode bit. This bit indicates whether the serial port
operates with or without frame sync pulses. When FSM = 1, the serial
port operation is initiated following a frame sync pulse on the FSX/FSR
inputs. When FSM = 0, the FSX/FSR inputs are ignored and the serial
port operates continuously with no frame sync pulses required. The bit is
set to 1 by a reset.

HMt Hold Mode bit. When HM = 1, the processor halts internal execution
when acknowledging an active HOLD. When HM = 0, the processor may
continue execution out of internal program memory but puts its external
interface in a high-impedance state. This bit is set to 1 by a reset.

INTM Interrupt Mode bit. When set to 0, all unmasked interrupts are enabled.
When set to 1, all maskable interrupts are disabled. INTM is set and reset
by the DINT and EINT instructions. RS and IACK also set INTM. INTM
has no effect on the unmaskable RS interrupt. Note that INTM is unaf-
fected by the LST instruction.

ov Overflow Flag bit. As a latched overflow signal, OV is set to 1 when ov-
erflow occurs in the ALU. Once an overflow occurs, the OV remains set
until a reset, BV, BNV, or LST instruction clears the OV.

tBoth TMS320C25 and TMS320E25.

3-43



Architecture - System Control

Table 3-5. Status Register Field Definitions (Concluded)

FIELD FUNCTION

OVM Overflow Mode bit. When set to 0, overflowed results overflow normally
in the accumulator. When set to 1, the accumulator is set to either its most
positive or-negative value upon encountering an overflow. The SOVM and
ROVM instructions set and reset this bit, respectively. LST may also be
used to modify the OVM.

PM Product Shift Mode. If these two bits are 00, the multiplier’s 32-bit prod-
uct is loaded into the ALU with no shift. If PM = 01, the PR output is
left-shifted one place and loaded into the ALU, with the LSBs zero-filled.
If PM = 10, the PR output is left-shifted by four bits and loaded into the
ALU, with the LSBs zero-filled. PM = 11 produces a right shift of six bits,
sign-extended. Note that the PR contents remain unchanged. The shift
takes place when transferring the contents of the PR to the ALU. PM is
loaded by the SPM and LST1 instructions. The PM bits are cleared by
RS.

SXM Sign-Extension Mode bit. SXM = 1 produces sign extension on data as it
is passed into the accumulator through the scaling shifter. SXM = 0 sup-
presses sign extension. SXM does not affect the definition of certain in-
structions; e.g., the ADDS . instruction suppresses sign extension
regardless of SXM. This bit is set and reset by the SSXM and RSXM in-
structions, and may also be loaded by LST1. SXM is set to 1 by RS.

TC Test/Control Flag bit. The TC bit is affected by the BIT, BITT, CMPR,
LST1, and NORM instructions. The TC bit is set to a 1 if a bit tested by
BIT or BITT is a 1, if a compare condition tested by CMPR exists between
ARO and another AR pointed to by ARP, or if the exclusive-OR function
of the two MSBs of the accumulator is true when tested by a NORM in-
struction. Two branch instructions, BBZ and BBNZ, provide branching on
the status of the TC.

TXM Transmit Mode bit. TXM = 1 configures the serial port’s FSX pin to be an
output. In this mode, a pulse is produced on FSX when DXR is loaded.
Transmission then starts on the DX pin. TXM = 0 configures the FSX pin
to be an input. TXM is set and reset by the STXM and RTXM instructions
and may also be lcaded by LST1. RS resets TXM to 0.

XF XF pin status bit. This status bit indicates the state of the XF pin, a gen-
eral-purpose output pin. XF is set and reset by the SXF and RXF in-

structions or may be loaded by LST1. XF is set to 1 by RS.

3.6.5 Timer Operation

3-44

~The TMS320C2x provides a memory- mapped 16-bit timer (TIM) register and

a 16-bit period (PRD) reglster as shown in Figure 3-20. The on-chip timer
is a down counter that is continuously clocked by CLKOUT1 on the
TMS320C25. The timer on the TMS32020 is clocked by a signal whose fre-
quency is CLKOUT1/4 or whose period is 4 x CLKOUT1 cycles.

The TIM register is set to the maximum value (OFFFFh) on reset for both the
TMS32020 and TMS320C25. The PRD register on the TMS320C25 is also
initialized by reset to OFFFFh. The TMS32020 requires a software initializa-
tion of the PRD register (see Example 5-1). The TIM register begins decre-
menting only after RS is de-asserted. Following this, the TIM and PRD
registers may be reloaded under program control. See Section 3.6.3 for reset
information.



Architecture - System Control

CRYSTAL [ PVPE] (cLock | [OVDE - '(16) (LOAD) | zgRro
EXTERNAL " | |DETECT
CLOCK FOUR Nt Y

y

CLKOUT1

f The divide ratio where N = 4 on the TMS32020 and N = 1 on the TMS320C25.

Figure 3-20. Timer Block Diagram

The TIM register, data memory location 2, holds the current count of the timer.
At every N x CLKOUT1 cycle where N = 4 on the TMS32020 and N = 1 on
the TMS320C25, the TIM register is decremented by one. The PRD register,
data memory location 3, holds the starting count for the timer. A timer inter-
rupt (TINT) is generated every time the timer decrements to zero. The timer
is reloaded with the value contained in the period (PRD) register within the
next cycle after it reaches zero so that interrupts can be programmed to occur
at regular intervals of (PRD + 1) cycles of CLKOUT1 on the TMS320C25 or
(4 x PRD) cycles of CLKOUT1 on the TMS32020. This feature is useful for
control operations and for synchronously sampling or writing to peripherals.
By programming the PRD register from 1 to 65,535 (OFFFFh), a TINT can be
generated every 2 to 65,5636 cycles on the TMS320C25. Note that, on the
TMS32020, a TINT can be generated every 4 to 262,140 cycles. A PRD reg-
ister value of zero is not allowed.

The timer and period registers can be read from or written to on any cycle. The
count can be monitored by reading the TIM register. A new counter period can
be written to the period register without disturbing the current timer count.
The timer will then start the new period after the current count is complete. If
both the PRD and TIM registers are loaded with a new period, the timer begins
decrementing the new period without generating an interrupt. Thus, the pro-
grammer has complete control of the current and next periods of the timer.

If the timer is not used, either TINT is to be masked or all maskable interrupts
are to be disabled by a DINT instruction. The PRD register can then be used
as a general-purpose data memory location. If TINT is used, the PRD and TIM
registers are to be programmed before unmasking the TINT.

3-45



Architecture - System Control

3.6.6 Repeat Counter

The repeat counter (RPTC) is an 8-bit counter, which when loaded with a
number N, causes the next single instruction to be executed N + 1 times. The
RPTC can be loaded with a number from 0 to 255 using either the RPT (re-
peat) or RPTK (repeat immediate) instructions. This results in a maximum of
256 executions of a given instruction. RPTC is cleared by reset.

The repeat feature can be used with instructions such as multiply/accumulates
(MAC/MACD), block moves (BLKD/BLKP), I/0 transfers (IN/OUT), and ta-
ble read/writes (TBLR/TBLW). These instructions, which are normally multi-
cycle, are pipelined when using the repeat feature, and effectively become
single-cycle instructions. For example, the table read instruction may take
three or more cycles to execute, but when repeated, a table location can be
read every cycle. Note that not all instructions can be repeated (see Section
4.3 and Appendix D for more information).

3.6.7 Powerdown Modes (TMS320C25)

3-46

When operated in either of two powerdown modes, the TMS320C25 enters a
dormant state and requires approximately one-half the power normally needed
to supply the device (see the data sheet, Appendix A). Depending upon the
application, one powerdown mode is invoked by executing an IDLE instruc-
tion while the other mode is invoked by driving the HOLD input low while the
HM status bit is set to one.

While in a powerdown condition, all of the internal contents of the
TMS320C25 are retained. This allows the operation to continue unaltered
after the powerdown condition is terminated. If the powerdown mode was
entered by driving HOLD low with HM = 1, the data and address busses and

. the interface control signals (PS, DS, IS, STRB, and R/W) are all maintained in

high-impedance states. |f the mode was entered by the IDLE instruction, only
the data bus goes to a tri-state condition; address bus and interface control
signals are maintained in a steady-state condition and can still be driven. In
accordance with the execution process, the powerdown mode may be termi-
nated either by removing the HOLD input or by applying an interrupt signal
during the IDLE operation. For application and other information, refer to the
descriptions of the IDLE instruction in Section 4 and the hold function in
Section 3.10.3.



Architecture - External Memory and 1/0O Interface

3.7 External Memory and 1/0 Interface

The TMS320C2x supports a wide range of system interfacing requirements.
Data, program, and |I/0O address spaces provide interfacing to memory and 1/0,
thus maximizing system throughput. The Iocal memory interface consists of:

° A 16-bit parallel data bus (D15-D0),

L} A 16-bit address bus (A15-A0),

®  Data, program, and 1/0 space select (DS, FS, and 1S) signals, and
° Various system control signals.

The R/W (read/write) signal controls the direction of the transfer, and STRB
(strobe) provides a timing signal to control the transfer.

The TMS320C2x 1/0 space consists of 16 input and 16 output ports. These
ports provide the full 16-bit parallel 1/0 interface via the data bus on the de-
vice. A single input or output operation, using the IN or OUT instructions,
typically takes two cycles; however, when used with the repeat counter, the
operation becomes single-cycle.

1/0 design is simplified by having I/O treated the same way as memory. 1/0
devices are mapped into the I/O address space using the processor’s external
address and data buses in the same manner as memory-mapped devices.
When addressing internal memory, the data bus must be in the high-impe-
dance state and the control signals go to an inactive state (logic high). Refer
to Section 5 for the effect instructions have on 1/0.

Interfacing to memory and |/0 devices of varying speeds is accomplished by
using the READY line. When communicating with slower devices, the
TMS320C2x processor waits until the other device completes its function,
signals the processor via the READY line, and continues execution (see Sec-
tion 6).

3.7.1 Memory Combinations

The exact sequence of operations performed as instructions execute depends
on the areas in memory where the instructions and operands are located. There
are eight possible combinations of program and data memory since informa-
tion can be located in either internal RAM, external memory, or internal
ROM/EPROM (available on TMS320C25 /TMS320E25). The eight possible
combinations are:

Program Internal RAM/Data Internal (P1/Dl)

Program Internal RAM/Data External (P!/DE)

Program External/Data Internal (PE/DI)

Program External/Data External (PE/DE)

Program Internal ROM/Data Internal (PR/DI) on the TMS320C25
Program Internal EPROM/Data Internal (PR/DI) on the TMS320E25
Program Internal ROM/Data External (PR/DE) on the TMS320C25
Program Internal EPROM/Data External (PR/DE) on the TMS320E25

3-47



Architecture - External Memory and 1/0 Interface

Appendix D provides cycle timings for instructions both when repeated and
when not repeated. The following is a summary of program execution, organ-
ized according to memory configuration.

Pi/Dl or PR/DI When both program and data memory are on-
chip, the processor runs at full speed with no wait
states. Note that IN and OUT instructions have
different cycle timings when program memory is
internal; IN requires two cycles to execute whereas
OUT requires only one cycle.

PE/DI This memory mode can run at full speed if ex-
ternal program memory is sufficiently fast since
internal data operations can occur coincident with
external program memory accesses. If external
program memory is not fast enough, wait states
may be generated using the READY input.

PI/DE, PE/DE, or PR/DE Additional cycles are required to execute in-
structions that reference an external data memory
space. At least two cycles are required to execute
‘read from external data memory’ instructions such
as ADD, LAR, etc. Further additional cycles may
be required due. to wait states if external data
memory is not fast enough to be accessed within
a single cycle. Note, however, that the
TMS320C25 has the capability of executing ‘write
to external data memory’ instructions in a single
cycle when program memory is internal (two cy-
cles are required if program memory is also ex-
ternal). Additional cycles are also required in this
case if external data memory is not sufficiently fast.

In all memory configurations where the same bus is used to communicate with
external data, program, or 1/0O space, the number of cycles required to execute
a particular instruction may further vary depending on whether the next in-
struction fetch is from internal or external program memory. Instruction exe-
cution and operation of the pipeline are discussed in Section 3.6.2 and in the
succeeding subsections.

3.7.2 Internal Clock Timing Relationships

3-48

The crystal or external clock source frequency is divided to produce an internal
four-phase clock. The four phases are defined by CLKOUT1 and CLKOUT2,
as shown in Figure 3-21. In this document (as well as on the TMS320C25
and TMS320E25), the start of quarter-phase 3 (Q3) is defined as the nsmg
edge of CLKOUT1. Refer to Appendix C for device phase definitions.



Architecture - External Memory and 1/0 Interface

Phase #
(TMe32020) | o1 | a2 a3 las | a1 12 |
Phase # : . : : ) .
(tvsazoc2s) | a3 | a4 | o1l 0z [ a3 | a4 |
CLKOUTY
CLKOUT2

o T T
L
o T L
L

Figure 3-21. Four-Phase Clock

3.7.3 General-Purpose I/0 Pins (BIO and XF)

The TMS320C2x has two general-purpose pins that are software-controlled.
The BIO pin is a branch control input pin, and the XF pin is an external flag
output pin.

The BIO pin is useful for monitoring peripheral device status. It is especially
useful as an alternative to using an interrupt when it is necessary not to disturb
time-critical loops. When the BIO input pin is active (low), execution of the
B!0Z instruction causes a branch to occur.

In Figure 3-22, BIO is sampled at the end of Q4 (Q2 on the TMS32020). The
timing diagram shown is for a sequence of single-cycle, single-word in-
structions without branches located in external memory. Because of variations
in pipelining due to instructions prior to and following the BIOZ instruction,
this timing may vary. Therefore, it is recommended that several cycles of setup
be provided if BIO is to be recognized on a particular cycle.

3-49



Architecture - External Memory and 1I/O Interface

CLKOUT1

CcLKOUT2 N\_/ \ / \_‘_

STRB

A15-A0 >@< VALID >®< VALID >®< VALID >®< VALID

. (BRANCH : INEXT __(NEXT INSTRUCTION)
(BI0Z) . ADDRESS) : INSTRUCTION) N+3 OR BRANCH
feteh e N g N+ L N+2 »e ADDRESS

T —— . RSO AR R KR
SAK0SKY e s
SRRXXRER VA LID XXX KKK K XX XX KR XXX DX XK AKX KKK XXX KE
POOABAN A O AAASOAABAAOAN

BIO

Figure 3-22. BIO Timing Diagram

savehe XF (external flag) output pin is set to a high level by the SXF (set ex-
ternal flag) instruction and reset to a low level by the RXF (reset external flag)

instruction. XF is set high by RS.

The relationship between the time the SXF/RXF instruction is fetched before
the XF pin is set or reset is shown in Figure 3-23. As with BIO, the timing
shown for XF is for a sequence of single-cycle, single-word instructions lo-
cated in external memory. Actual timing may vary with different instruction

sequences.

3-50



Architecture - External Memory and 1/0O Interface

CLKOUT1 \__/—_\ / \ /——\_/—\_
A15-A0 :>®< VALID >®< VALID >®< VALID >®< VALID ><:

P (SXF %R RXF)

. N+ 1 N N+ 2 : N+ 3.

fetch < »- >4 > < >
XF

(SXF) . /
XF :

(RXF) \

- NOTES: 1. N is the program memory location for the current instruction.
2. This example only shows the execution of single-cycle instructions
fetched from external program memory.

Figure 3-23. External Flag Timing Diagram

3-51



Architecture - Interrupts

3.8 Interrupts

3.8.1

3-52

The TMS320C2x has three external maskable user interrupts (INT2-INTO),
available for external devices that interrupt the processor. [nternal interrupts
are generated by the serial port (RINT and XINT), by the timer (TINT), and
by the software interrupt (TRAP) instruction. Interrupts are prioritized with
reset (RS) having the highest priority and the serial port transmit interrupt
(XINT) having the lowest priority.

Interrupt Operation

This subsection details interrupt organization and management. Vector lo-
cations and priorities for all internal and external interrupts are shown in Table
3-6. The TRAP instruction, used for software interrupts, is not prioritized but
is included here since it has its own vector location. Each interrupt address
has been spaced apart by two locations so that branch instructions can be
accommodated in those locations if desired.

Table 3-6. Interrupt Locations and Priorities

INTERRUPT MEMORY
NAME LOCATION PRIORITY FUNCTION
RS 0 1 (highest) External reset signal
INTO 2 2 External user interrupt #0
INT1 4 3 External user interrupt #1
INT2 6 4 External user interrupt #2
8-23 Reserved locations
TINT 24 5 Internal timer interrupt
RINT 26 6 Serial port receive interrupt
XINT 28 7 (lowest) Serial port transmit interrupt
TRAP 30 N/A TRAP instruction address

When an interrupt occurs, it is stored in the 6-bit Interrupt Flag Register (IFR).
This register is set by the external user interrupts INT(2-0) and the internal
interrupts RINT, XINT, and TINT. Each interrupt is stored in the IFR until it is
recognized, and then automatically cleared by the TACK (interrupt acknowl-
edge) signal or the RS (reset) signal. The RS signal is not stored in the IFR.
No instructions are provided for reading from or writing to the IFR. ‘

The TMS320C2x has a memory-mapped Interrupt Mask Register (IMR) for
masking external and internal interrupts. The layout of the register is shown
in Figure 3-24. A 1 in bit positions 5 through O of the IMR enables the cor-
responding interrupt, provided that INTM = 0. The IMR is accessible with
both read and write operations but cannot be read using BLKD. When the
IMR is read, the unused bits (15 through-6) are read as one’s. The lower six
bits are used to write to or read from the IMR. Note that RS is not included
in the IMR; and therefore the IMR has no effect on reset.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
{ RESERVED [ XINT{RINT| TINT|TNT2|TNT1 |TNTO|

Figure 3-24. Interrupt Mask Register (IMR)



Architecture - Interrupts

The INTM (interrupt mode) bit, which is bit 9 of status register STO, enables
or disables all maskable interrupts. INTM = 0 enables all the unmasked in-
terrupts, and INTM = 1 disables these interrupts. The INTM is set to 1 by the
IACK (interrupt acknowledge) signal, the DINT instruction, or a reset. This bit
is reset to O by the EINT instruction. Note that the INTM does not actually
modify the IMR or IFR.

The TMS320C2x has a built-in mechanism for protecting multicycle in-
structions from interrupts. If an interrupt occurs during a multicycle instruc-
tion, the interrupt is not processed until the instruction is completed. This
mechanism aiso applies to instructions that become multicycle due to the
READY signal.

In addition, the device does not allow interrupts to be processed when an in-
struction is heing repeated via the RPT or RPTK instructions. The interrupt is
stored in the !FR until the repeat counter (RPTC) decrements to zero, and then
the interrupt is processed. Even if the interrupt is not used while the
TMS320C2x is processing the RPT or RPTK, the interrupt will still be latched
by IFR and pending until RPTC decrements to zero.

If both the HOLD line and an interrupt go active during a multicycle instruction
or a repeat loop, the HOLD takes control of the processor at the end of the in-
struction or loop. When HOLD is released, the interrupt is acknowledged.

Interrupts cannot be processed between EINT and the next instruction in a
program sequence. For example, if an interrupt occurs during an EINT in-
struction execution, the device always completes EINT as well as the following
instruction before the pending interrupt is processed. This insures that a RET
can be executed before the next interrupt is processed, assuming that a RET
instruction follows the EINT. The state of the machine, upon receiving an in-
terrupt, may be saved and restored (see Section 5.3.1).

3.8.2 External Interrupt Interface

Interrupts may be asynchronously edge- or level-triggered. In the functional
logic organization for INT(2-0), shown in Figure 3-25, the external interrupt
INTO is connected to an edge-triggered flip-flop. The TNTO signal is ORed with
the interrupt edge flip-flop Q output and synchronized with internal quarter-
phases 1 and 2 to produce an interrupt signal (see Appendix B for phase re-
lationships on the TMS32020). In this way, the device can handle both
edge-triggered and level-triggered interrupts.

Due to the level sensitivity of the external interrupts and the synchronization
of the interrupts (first on Q2, then on Q1 of the following machine cycle), the
TNT line must be set to an inactive high at least two cycles before the enabling
interrupts (EINT). If this criteria is not met, the TMS320C25 will immediately
take the interrupt trap following the EINT plus the next instruction.

If the INTM bit and mask register have been properly enabled, the interrupt
signal is accepted by the processor. An IACK (interrupt acknowledge) signal
is then generated. The TACK clears the appropriate interrupt edge flip-flop and
disables the INTM latch. The logic is the same for INT1 and TNT2.

3-53



Architecture - Interrupts

INT (0, 1, OR 2)

3-54

!
1
|_lACK
: |
] DINT
| FROM
a D|————DATA
BUS
INTERRUPT :
e INTERRUPT
REGISTER i P
__.,<}L_(__)_° s

IACK

|
|
|
i
D Q
T0

| s G

INTERRUPT
| REGISTER PROCESSOR
! o MACHINE
{ M "STATE
| L T
' R
] LOGIC FOR EACH EXTERNAL INTERRUPT | pTERNAL

Figure 3-25. Internal Interrupt Logic Diagram

In a typical interrupt (INT2-INTO) operation, the interrupt is generated by a
negative-going edge and the IFR bit is set. Since INTM is disabled when the
interrupt is acknowledged, the level may continue to be present on the TNT
input without generating further interrupts. If the level is removed before an
EINT instruction is executed, no further interrupts are generated. If a low level
continues to be present after the EINT, another interrupt is generated after the
EINT/next instruction sequence. In addition, if the INT pin is pulsed between
the previous TACK and EINT, another interrupt is generated after EINT/RET,
because the corresponding IFR bit is again set.

Figure 3-26 shows an interrupt, interrupt acknowledge, and various other
signals for the special case of single-cycle instructions. An interrupt generated
during the current (N) fetch cycle still allows the fetch and execution of that
instruction. The N+1 and N+2 instructions are also fetched, then discarded,
and the address N+1 is pushed onto the top of the stack. The instruction is
fetched again upon a return command from the interrupt routine.



Architecture - Interrupts

Three dummy execute cycles occur on an interrupt, as shown in the timing
diagram for the TMS320C25 (Figure 3-26). The TACK signal is asserted low
during CLKOUT1 low when the device initiates a fetch from the interrupt lo-
cation I. Note that TACK is a valid signal only when CLKOUT1 is low. An
external device can determine which interrupt had occurred by latching the
address bus value present on A4-A1 with the rising edge of CLKOUT2 when
TACK is low.

CLKOUT1

CLKOUT2

STRE - : : / : :
Wz-iﬁ?o-;\ 5 ; 5 : ;
A15A0 : N XN+1XN+2XN+3X 1 X|+1X|+z

N N+ 1. .N+2 1 S+ 1 el t2
FETCH : : . . : .
. N-2.. N-1.. N _.DUMMY : DUMMY : I DUMMY e
: R . : N1 :
EXECUTE : ; : N

NOTES: 1. N is the program memory location for the current instruction.
2. | is the interrupt vector location in program memory for the active interrupt.
3. For simplicity, this example only shows the execution of single-cycle instructions
fetched from external program memory, rather than multicycle instructions.

Figure 3-26. Interrupt Timing Diagram (TMS320C25)

3-55



Architecture - Serial Port

3.9 Serial Port

3-56

A full-duplex on-chip serial port provides direct communication with serial
devices such as codecs, serial A/D converters, and other serial systems. The
interface signals are compatible with codecs and many other serial devices
with a minimum of external hardware. The serial port may also be used for
intercommunication between processors in multiprocessing applications.

Both receive and transmit operations are double-buffered on the TMS320C25,
thus allowing a continuous bit stream even if FSX is an output. The use of the
frame sync mode (FSM) bit provides continuous operation that once initiated
requires no further frame synchronization pulses. No minimum CLKR/CLKX
frequency (fmin = O Hz) is required for serial port operation.

The bits, pins, and registers that control serial port operation are listed in Table
3-7. Availability of a function on a particular device is also indicated.

Table 3-7. Serial Port Bits, Pins, and Régisters

SERIAL PORT BITS/PINS/REGISTERS TMS32020 | TMS320C25
FO Format bit Yes Yes
TXM  Transmit mode bit Yes Yes
FSM  Frame synchronization mode bit No Yes
CLKX Transmit clock signal y Yes Yes
CLKR Receive clock signal Yes Yes
DX Transmitted serial data signal Yes Yes
DR Received serial data signal Yes Yes
FSX  Transmit framing synchronization signal Yes Yes
FSR  Receive framing synchronization signal Yes Yes
DXR  Data transmit register Yes Yes
DRR Data receive register Yes Yes
XSR  Transmit shift register No Yes
RSR  Receive shift register No Yes

The serial port uses two memory-mapped registers: the data transmit register
(DXR) that holds the data to be transmitted by the serial port, and the data
receive register (DRR) that holds the received data (see Figure 3-27). Both’
registers operate in either the 8-bit byte mode or 16-bit word mode, and may
be accessed in the same manner as any other data memory location. Each
register has an external clock, a framing synchronization pulse, and associated
shift registers. Any instruction accessing data memory can be used to read
from or write to these registers; however, the BLKD (block move from data
memory to data memory) instruction cannot be used to read these registers.
The DXR and DRR registers are mapped into locations O and 1 in the data
address space. The XSR and RSR registers are not directly accessible through
software. ‘



Architecture - Serial Port

ADDRESS
MSB LS8
0000h | DRR |
0001h { DXR |

Figure 3-27. The DRR and DXR Registers

If the serial port is not being used, the DXR and DRR registers can be used
as general-purpose registers. In this case, the CLKR or FSR should be con-
nected to a logic low to prevent a possible receive operation from being initi-
ated.

Three bits in status register ST1 are used to control the serial port operation:
FO, TXM, and FSM. The FO (format) bit defines whether data to be trans-
mitted and received is an 8-bit byte or a 16-bit word. If FO = 0, the data is
formatted in 16-bit words. If FO = 1, the data is formatted in 8-bit bytes. In
the 8-bit mode, only the eight least-significant bits are used for
transmit/receive operations. The FO bit is loaded by the FORT (format serial
port registers) instruction. On reset, FO is set to 0.

The TXM (transmit mode) bit is used to determine if the frame synchronization
pulse for the transmit operation is generated externally or internally. If TXM
=1, the FSX pin becomes an output pin, and a framing pulse is produced on
the FSX pin every time the DXR register is loaded. This framing pulse is syn-
chronized with the rising edge of CLKX. If TXM = 0, the FSX pin becomes
an input pin. The TMS320C2x then waits for an external synchronization
pulse before beginning transmission. On a reset, TXM is set to zero, config-
uring FSX to be an input. The TXM bit can be loaded by the LST1, STXM,
or RTXM instructions. If DXR on the TMS32020 is loaded before the previous
word is completely sent, the serial port immediately begins transmitting the
new word. The bits of the previous word that have not been sent are lost. If
TXM = 1 on the TMS32020, a new FSX pulse is generated. If TXM = 0, the
serial port immediately begins transmitting the new word without waiting for
a new external FSX pulse.

The FSM (frame synchronization mode) status register bit is used to determine
whether frame sync pulses are required for each serial port transfer. When
FSM = 1, frame sync pulses are required; consequently, they are not required
when FSM = 0. FSM is set by the SFSM (set frame synchronization mode)
instruction and cleared by the RFSM (reset frame synchronization mode) in-
struction. When FSM = 1 and frame sync pulses are required, an FSX pulse
will cause the XSR to be Icaded with data from the DXR, and transmission
will begin. If an FSX is presented prior to the last bit of the current trans-
mission, the XSR will be reloaded from the DXR, thus aborting the current
transmission and immediately beginning a new one.

The frame sync mode is useful in communicating to ‘'PCM highways.” For ATT
T1 and CCITT G711/712 lines, the processor can communicate directly in
these formats by counting the transmitted/received bytes in software and
performing SFSM/RFSM instructions as needed to set/reset the FSM bit.

3-57



Architecture - Serial Port

3.9.1 Transmit and Receive Operations

RINT

DR

3-58

—————»{ RSR (18) !L J} XSR (16) ‘___,

r 1 (CLEAR) (CLEAR)
(CARRY) | By TE/WORD COUNTER [(CLOCK] (CLOCK)|BYTE/WORD COUNTER (CARRY)

The transmit and receive sections of the serial port are implemented separately
to allow independent transmit and receive operations. Externally, the serial
port interface is implemented using the six serial port pins. Figure 3-28 shows
the registers and pins used in transmit and receive operations. Note that on the
TMS32020, the DXR and XSR are combined as one single register; the DRR
and RSR are combined as another single register.

LOGIC
Ir DRR (16) -{LoaD) | DXR (16)
'
(LOAD)
16 LOAD 16
CONTROL
LOGIC '

FSR FSX v
CLKR CLKX

Figure 3-28. Serial Port Block Diagram

Data is clocked onto the DX pin from the XSR of the TMS320C25 by a CLKX
signal. Data is clocked into the RSR of the TMS320C25 from the DR pin by
a CLKR signal. On the TMS32020, the data on the pins is clocked directly
out of the DXR or into the DRR. CLKX and CLKR are only required to be
present during actual serial port transfers, and may be stopped when no data
is being transferred. Data bits can be transferred in either 8-bit bytes or 16-bit
words. Data is clocked out to DXR on the rising edges of CLKX, while data is
clocked in from DRR on the falling edges of CLKR. The MSB of the data is
transferred first.

The XSR and RSR are connected to the DXR and DRR, respectively. For
transmit operations, the contents of DXR are transferred to XSR when a new
transmission begins. For a receive operation, the contents of RSR are trans-
ferred to DRR when all of the bits have been received. Thus, the serial port is
double-buffered since data may be transferred to or from the DXR or DRR
while another transmit or receive operation is being performed.



Architecture - Serial Port

Serial port transfers on the TMS320C25 are generally initiated by a frame sync
pulse. The exception to this is when the continuous mode of operation is used
with FSM = 0, as described in a subsequent paragraph. Frame sync pulses are
input on FSX for transmit operations and on FSR for receive operations.

The transmit timing diagram is shown in Figure 3-29. The transmit operation
begins when data is written into the data transmit register (DXR). The
TMS320C2x begins transmitting data when the frame synchronization pulse
(FSX) goes low while CLKX is high or going high. The data, starting with the
MSB, is then shifted out via the DX pin with the rising edge of CLKX. When
all bits have been transmitted, an internal transmit interrupt (XINT) is gener-
ated on the rising edge of CLKX. When the serial port is not transmitting, DX
is placed in the high-impedance state.

DX and FSX are unaffected by assertion of the HOLD input. Upon assertion
of HOLD, any serial port transmission in progress on the DX pin is completed
before DX is placed in the high-impedance state. FSX remains configured as
either an input or output, remaining low if it is an output.

DX ——~—————<MSB>(X ees : b : :

8 OR 16 BITS+————

XINT . § § : e : /\

Figure 3-29. Serial Port Transmit Timing Diagram

The receive operation is similar to the transmit operation. The receive timing
diagram is shown in Figure 3-30. Reception is initiated by a frame synchro-
nization pulse on the FSR pin. After FSR goes low, data on the DR pin is
clocked into the RSR register on the TMS320C25 (DRR register on the
TMS32020) on every negative-going edge of CLKR. The first data bit is
considered the MSB, and RSR is filled accordingly. After all the bits have
been received, (as specified by FO), an internal receive interrupt (RINT) is
generated on the rising edge of CLKR and the contents of RSR are transferred
to DRR.

Note that on the TMS32020, the DRR should not be read before an RINT is
received; otherwise, the bits that have not been clocked at the time of the read
will contain the data from a previous transfer. Similarly, an overrun of the DRR
register will be prevented by having the DRR read before the next FSR.

3-59



Architecture - Serial Port

CLKR /_\M\ W
oR ____.< X >< XLSB\ '

<+————————B OR 16 BITS—-‘—--———-——>

RINT : : 2 L ; /\}

Figure 3-30. Serial Port Receive Timing Diagram

3.9.2 Timing and Framing Control

3-60

Upon completion of a serial port transfer, an internal interrupt is generated.
The RINT interrupt is generated for a receive operation, and XINT is generated
for a transmit operation. RINT and XINT are generated on the rising edge of
CLKR and CLKX, respectively, after the last bit is transferred. Note that if DRR
is read before a RINT is received, it will contain the data from the previous
operation. Similarly, if DXR is loaded more than once after an XINT is gener-
ated (in the continuous transmission mode), only the last value written will
be loaded into XSR for the next transmit operation.

When the TMS320C2x is reset, TXM is cleared to zero, and DX is placed in a
high-impedance state. Any transmit or receive operation that is in progress
when the reset occurs is terminated.

The transmit framing synchronization pulse can be generated internally or ex-
ternally. The maximum speed of the serial port is 5 MHz. The timing of the
serial port signals is compatible with the Tl/Intel 29C1x series codecs. The
timing is also compatible with the AMI S3506 series codecs if the frame syn-
chronization signals are inverted.

Serial port transfers on the TMS320C25 are generally initiated by a frame sync
pulse, except when the continuous mode of operation is used with FSM = 0.
Frame sync pulses are input on FSX for transmit operations and on FSR for
receive operations. If FSM = 1, frame sync pulses are required; if FSM = 0,
they are not required. FSM is set by the SFSM (set frame synchronization
mode) instruction and cleared by the RFSM (reset frame synchronization
mode) instruction.



Architecture - Serial Port

3.9.3 Burst-Mode Operation

In burst-mode serial port operation, transfers are separated in time by periods
of no serial port activity (the serial port does not operate continuously). For
burst-mode operation, FSM must be set to one. Timing of the serial port in
this mode of operation is shown in Figure 3-31 and Figure 3-32.

ckx [\ A\ O\ /
e S A NS S S S S S NS NS Y B N
e e 0D €3 5 TR T T D €00 e e D 6
S e
LR S S S SRS S S S S S '
! !

DXR DXR
LOADED RELOADED

XSR

XSR
LOADED RELOADED
(DURING CLKX LOW)

Figure 3-31. Burst-Mode Serial Port Transmit Operation

kR [\ / / LS .
S X0 S S N S S S S SO SONY A
oy ——— a1 A2 X AS):(M'XAS Y\ a6 Y A7 )(Aa
S - e € R
RNT S e
DRR

LOADED
FROM RSR

Figure 3-32. Burst-Mode Serial Port Receive Operation

When TXM = 1 (in the transmit operation) and the serial port register DXR is
loaded, a framing pulse is generated on the next rising edge of CLKX. XSR is
loaded with the current contents of DXR while FSX is high and CLKX is low.

3-61

’



Architecture - Serial Port

Transmission begins when FSX goes low while CLKX is high or is going high.
Figure 3-31 shows the timing for the byte mode (FO = 1). XINT is generated
on the rising edge of CLKX after all 8 or 16 bits have been transmitted and
DX is placed in the high-impedance state. If DXR is reloaded before the next
rising edge of CLKX after XINT, FSX will again be generated as shown, and
XSR will be reloaded.

The receive operation is similar to the transmit operation. The contents of RSR
are loaded into DRR while CLKR is low, just after reception of the last bit sent
by the transmitting device (see Figure 3-32). RINT is generated on the next
rising edge of CLKR, and DRR may be read at any time before the reception
of the final bit of the next transmission. When operating in the byte mode, the
eight MSBs of the DRR are the contents of the eight LSBs of the DRR prior
to reception of the current byte, as shown in Figure 3-33 for the TMS320C25.
On the TMS32020, the most-significant byte is unaffected by successive 8-bit
receive operations.

MSB LSB
Initial
Conditions X Y
After 1st Receive
(Byte ‘A’) Y A
After 2nd Receive
(Byte 'B) A B

Etc.

Figure 3-33. Byte-Mode DRR Operation (TMS320C25)

3.9.4 Continuous Operation Using Frame Sync Pulses (TMS320C25)

3-62

The TMS320C25 provides two modes of operation that allow the use of a
continuous siream of serial data. When FSM = 1, frame sync pulses are re-
quired. Since DXR is double-buffered, continuous operation is achieved even
if TXM = 1. Writing to DXR during a serial port transmission does not abort
the transmission in progress, but instead DXR stores that data until XSR can
be reloaded. As long as DXR is reloaded before the CLKX rising edge on the
final bit being transmitted, the FSX pulse will go high on the rising edge of
CLKX during the transmission of the final bit and fall on the next rising edge
when transmission of the word just loaded begins. If DXR is not reloaded
within this period and FSM = 1, the DX pin will be placed in a high-impe-
dance state for at least one CLKX cycle until DXR is reloaded (as described in
the previous section). Figure 3-34 and Figure 3-35 show the timing diagrams
for the continuous operation with frame sync pulses.



Architecture - Serial Port

CLKX

o S S S S S S S S Y B

(Fo%:XA7XABXB1X:BZXBSXB.tXBs):(Bsme:Bsxc1Xch:
e B

1 !

DXR DXR
LOADED LOADED
WITH B WITH C

XSR XSR
LOADED LOADED

Figure 3-34. Serial Port Transmit Continuous Operation (FSM = 1)

(FOE%:XA7XA8X;§BXBZXBSXBA);(BSXBG};(W;X%;_Xmixczx:
wo i T
i | I

READ READ
DRR DRR
DRR DRR
LOADED LOADED
FROM RSR : FROM RSR

Figure 3-35. Serial Port Receive Continuous Operation (FSM = 1)

Continuous receive operation with FSM = 1 is identical to that of burst-mode
operation with the exception that FSR is pulsed during reception of the final
bit.

3-63



Architecture - Serial Port

3.9.5 Continuous Operation Without Frame Sync Pulses (TMS320C25)

. 3-64

The continuous mode of operation on the TMS320C25 allows transmission
and reception of a continuous bit stream without requiring frame sync pulses
every 8 or 16 bits. This mode is selected by setting FSM = 0.

Figure 3-36 and Figure 3-37 show operation of the serial port for both states
of TXM to illustrate differences in operation for each case. FSM is initially set
to one, and frame sync pulses are required to initiate serial transfers. Before the
completion of the transmission (i.e., before the next serial port interrupt), the
FSM but must be reset to zero by means of an RFSM (reset FSM) instruction.
RFSM can occur either before or after the write to DXR or read from DRR.
From this point on, the FSX and FSR inputs are ignored, with transmission
occurring every CLKX cycle and reception occurring every CLKR cycle as long
as those clocks are present.

If FSX is configured as an output, it will remain low until FSM is set back to
one and DXR is reloaded. If DXR is not reloaded with new data every XINT
(every 8 or 16 CLKX cycles depending on FO), the last value loaded will be
transmitted on DX continuously. Note that this is different from the case with
FSM = 1 where DX is placed into a high-impedance state if DXR is not re-
loaded before transmission of the last bit of the current word in XSR. For ex-
ample, if byte C is not loaded into DXR as indicated in Figure 3-36, bits of
byte B (B1-B8) will be retransmitted instead of bits of byte C as shown.

For receive operations, DRR is loaded from RSR (and an RINT is generated)
every 8 or 16 CLKR cycles (depending on FO), regardless of whether or not
DRR has been read. An overrun of DRR is also possible with FSM = 1 if DRR
is not read before the next RINT. The only way to stop continuous trans-
mission or reception once started, when FSM = 0, is to either stop CLKX or
CLKR or to perform an SFSM (set FSM) instruction.

Continuous transmission without frame sync pulses is very useful in commu-
nicating directly to telephone system PCM highways. For ATT T1 and CCITT
G711/712 lines, FSX and FSR pulses are generated only every 24 or 32 bytes.
By counting the transmitted and received bytes in software after an initial FSX
or FSR and performing SFSM and RFSM instructions as required, the
TMS320C25 can easily be made to communicate in these formats.



Architecture - Serial Port

X
(TXM=1) : R

FSX
(TXM=0)

DX
(Fo=1)

1 | ! |

DXR DXR XSR
LOADED . LOADED LOADED
WITH B WITH C
XSR RFSM
LOADED

0)

Figure 3-36. Serial Port Transmit Continuous Operation (FSM

CLKR

FSR

(FOE;; A
RINT /__—‘\ /—\
! I !

READ READ DRR
DRR DRR LOADED
. FROM RSR
DRR RFSM
LOADED
FROM RSR

Figure 3-37. Serial Port Receive Continuous Operation (FSM = 0)

3-65



Architecture - Serial Port

3.9.6 Initialization of Continuous Operation Without Frame Sync Pulses

3-66

(TMS320C25)

FSM is normally initialized during an XINT or RINT service routine to enable
or disable FSX and FSR, respectively, for the next serial port operation. It is
necessary to start this mode with FSM = 1 so that the first data transferred
out of the serial port is the data written to the DXR register. Otherwise, the
serial port starts transmitting the contents of the shift register before loading
it with the value stored in the DXR register. Upon each completion of a data
packet transmission, it loads the data contained in the DXR register into the
shift register and continues transmitting. After the first frame pulse has been
generated by or sent to the TMS320C25, the FSM bit must be reset to 0 using
the RFSM instruction. This must be done before the next serial port interrupt
to assure continuous transmission. If continuous transmission is stopped via
software, this initiation sequence must be repeated to restart the continuous
mode operation.

As shown in Figure 3-38 and Figure 3-39, RFSM may occur before a write to
DXR, regardless of the state of TXM. If TXM = 1, FSX is generated in a normal
manner on the next rising edge of CLKX, but only once. If TXM = 0, the
TMS320C25 waits to transmit until FSX is pulsed, but from then on, the FSX
input is ignored. Note that just as in the case of continuous-mode operation
without sync pulses described in Section 3.9.5, the first data written to DXR
(byte A) is output twice unless DXR is reloaded before the second trans-
mission is started. It is important to consider this dummy cycle when using
continuous-mode serial operation.

The receive timings are the same as those for the transmit operations with
TXM = 0. The TMS320C25 waits to receive data until FSR is pulsed, but
thereafter the FSR input is ignored. No dummy cycle is associated with the
receive operation due to the post-buffering nature of DRR as opposed to the
prebuffering nature of DXR.



Architecture - Serial Port

CLKX

FSX
(TXM=1)

i ——
A |'A.v XX "O 0 4’5'!0 X000 "b" Q'h 00

l‘t.llﬁ’t‘l‘l‘c‘l’o"‘l’l‘0.1‘D.Q‘I‘b'l'l'0'0’0"'0"’#"')‘0""
D A

FSX
(TXM=0)

R R RN R RN
X0 ) 0

X '-'»‘:':‘:':‘:‘:':':':‘:‘:‘:‘:’:’ ':'u‘:'uWv‘|‘.':‘:':‘:':':‘:':'o':':':':':':':':‘:‘:':':':‘:’:’:':’.‘n 20
u_tuuuuuuuu'unlnnuuuuunnu-yuuuuuuuucuuunnuu 0

Foop —*——-*—(A1XA2XA3XA4XASXA6XA7XA8X A1XA2:[
XNT %}
RFTSM xln
LOADED

DXR

XSR
LOADED RELOADED
WITH A

Figure 3-38. Continuous Transmit Operation Initialization

CLKR

X 0
o
KX e e AR ol
e
o'o'o'o't’o"'-'~"’o'o‘cﬂ'o'o'b't‘c'c"'o'n'o'n't’c't‘«'-'0’!'»'#’.’.'4'a'c’o‘n’o‘u'o'n'fﬁo'q’o'n'o‘u'q’v'n‘o%ﬂ‘n‘fo‘n DR AR

. . . MSB . . . . . o
RNT ; : : : : : : [\
| i

RFSM DRR

LOADED
FROM RSR

FSR

R XXX XXX XXX XX

Figure 3-39. Continuous Receive Operation Initialization

3-67



Architecture - Multiprocessing and DMA

3.10 Multiprocessing and Direct Memory Access (DMA)

The flexibility of the TMS320C2x allows configurations to satisfy a wide range
of system requirements. Some of the system configurations using the
TMS320C2x are as follows:

(] A standalone system (single processor),
A multiprocessor with devices in parallel,
A host/slave multiprocessor with shared global data memory space, or

A peripheral processor interfaced using processor-controlled signals to
another device.

These system configurations are made possible by three specialized features
of the TMS320C2x: the synchronization function utilizing the SYNC input, the
global memory interface, and the hold function implemented with the HOLD
and HOLDA pins. The following sections describe these functions in detail.

3.10.1 Synchronization

3-68

In a multiprocessor environment, the SYNC input can be used to greatly ease
interface between processors. This input is used to cause each TMS320C2x
in the system to synchronize their internal clocks, thereby allowing the pro-
cessors to run in lock-step operation.

Multiple TMS320C2x devices are synchronized by using common SYNC and
external clock inputs. A negative transition on SYNC sets each processor to
internal quarter-phase one (Q1). This transition must occur synchronously
with the rising edge of CLKIN. On the TMS320C25, there is a two CLKIN
cycle delay following the cycle in which SYNC goes low, before the synchro-
nized Q1 occurs. On the TMS32020, there is no delay.

The timing diagrams for the SYNC input are shown in Figure 3-40 and Figure
3-41 for the TMS32020 and TMS320C25, respectively. Note that the internal
clock timing relationships are different in the TMS32020 and TMS320C25
(see Appendix C and Section 3.7.2).

S

]
1]
]
— i
SYNC :
)
; i
' i E '
CLKOUT1 —\___/ ) 4
= E | i
= : = '
CLKOUT2 : y \ !
1 1

Figure 3-40. Synchronization Timing Diagram (TMS32020)



Architecture - Multiprocessing and DMA

CLKIN

SYNC

CLKOUT1

CLKOUT2

T

Figure 3-41. Synchronization Timing Diagram (TMS320C25)

Normally, SYNC is applied while RS is active. |f SYNC is asserted after a reset,
the following can occur:

1) The processor machine cycle is reset to Q1, provided that the timing re-
quirements for SYNC are met. If SYNC is asserted at the beginning of Q1,
Q3, or Q4, the current instruction is improperly executed. If SYNC is as-
serted at the beginning of Q2, the current instruction is executed prop-
erly.

2) If SYNC does not meet the timing requirements, unpredictable processor
operation occurs. A reset should then be executed to place the processor
back in a known state.

3.10.2 Global Memory

For multiprocessing applications, the TMS320C2x is capable of allocating
global data memory space and communicating with that space via the BR (bus
request) and READY control signals.

Global memory is memory shared by more than one processor; therefore, ac-
cess to it must be arbitrated. When using global memory, the processor’s ad-
dress space is divided into local and global sections. The local section is used
by the processor to perform its individual function, and the global section is
used to communicate with other processors.

A memory-mapped global memory allocation register (GREG) specifies part
of the TMS320C2x’s data memory as global external memory. GREG, which
is memory-mapped at data memory address location 5, is an eight-bit register
connected to the eight LSBs of the internal D bus. The upper eight bits of lo-
cation 5 are nonexistent and read as one's.

The contents of GREG determine the size of the global memory space. The
legal values of GREG and corresponding global memory spaces are shown in
Table 3-8. Note that values other than those listed in the table lead to frag-
mented memory maps.

3-69



Architecture - Multiprocessing and DMA

Table 3-8. Global Data Memory Configurations

LOCAL MEMORY GLOBAL MEMORY
GREG VALUE RANGE # WORDS RANGE # WORDS
000000XX Oh - OFFFFh 65,636 | ------------- 0
10000000 Oh - 07FFFh 32,768 08000h - OFFFFh 32,768
11000000 Oh - OBFFFh 49,152 0CO000h - OFFFFh 16,384
11100000 Oh - ODFFFh 57,344 OEQOOh - OFFFFh 8,192
11110000 Oh - OEFFFh 61,440 OF00Oh - OFFFFh 4,096
11111000 Oh - OF7FFh 63,488 OF800h - OFFFFh 2,048
11111100 Oh - OFBFFh 64,512 OFCOOh - OFFFFh 1,024
11111110 Oh - OFDFFh 65,024 OFEOOh - OFFFFh 512
11111111 Oh - OFEFFh 65,280 OFFOOh - OFFFFh 256

When a data memory address, either direct or indirect, corresponds to a global
data memory address (as defined by GREG), BR is asserted low with DS to
indicate that the processor wishes to make a global memory access. External
logic then arbitrates for control of the global memory, asserting READY when
the TMS320C2x has control. The length of the memory cycle is controlled by
the READY line. One wait-state timing is shown in Figure 3-42. Note that all
signals not shown have the same timing as in the normal read or write case.

CLKOUT1

STRB

: : i : /_..__
wos i z : .
K

VALID

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv "
REERXTTXTIXTXTYIN, Ry o‘o‘o.o.o.o’o.o.o.o‘o‘o'o’o’o;,
et RO XXX
RN L0000

s’o‘o:o‘o:o‘o‘o‘o‘o’o’o}:»:o‘0:0'0'0'0:
KA

READY

Figure 3-42. Global Memory Access Timing

3-70



Architecture - Multiprocessing and DMA

3.10.3 The Hold Function

The TMS320C2x supports Direct Memory Access (DMA) to its local (off-
chip) program, data, and I/O spaces. Two signals, HOLD and HOLDA, are
provided to allow another device to take control of the processor's buses.
Upon receiving a HOLD signal from an external device, the processor ac-
knowledges by bringing HOLDA low. The processor then places its address
and data buses as well as all control signals (PS, DS, TS, R/W, and STRB) in the
high-impedance state. The serial port output pins, DX and FSX, are not af-
fected by HOLD. Signaling between the external processor and the
TMS320C2x can be performed using interrupts.

The timing for the HOLD and HOLDA signals is shown in Figure 3-43. HOLD
has the same setup time as READY and is sampled at the beginning of quar-
ter-phase 3 (see Appendix C for phase relationships on the TMS32020). If
the setup time is met, it takes three machine cycles before the buses and
control signals go to the high-impedance state. Note that unlike the external
interrupts (INT2 - TNTO), HOLD is not a latched input. The external device must
keep HOLD low until it receives a HOLDA from the TMS320C2x.

If the TMS320C2x is in the middle of a multicycle instruction, it will finish the
instruction before entering the hold state. After the instruction is completed,
the buses are placed in the high-impedance state. This also applies to in-
structions that become multicycle due to insertion of wait states or to the use
of RPT/RPTK instructions.

After HOLD is de-asserted, program execution resumes from the same point at
which it was halted. HOLDA is removed synchronously with HOLD, as shown
in Figure 3-43. If the setup time is met, two machine cycles are required be-
fore the buses and control signals become valid.

HOLD is not treated as an interrupt. If the TMS320C2x was executing the IDLE
instruction before entering the hold state, it resumes executing IDLE once it
leaves the hold state.

The hold function on the TMS320C25 has two distinct operating modes:

L} A TMS32020-like mode, in which execution is suspended during as-
sertion of HOLD, and

® A TMS320C25 concurrent DMA mode, in which the TMS320C25 con-
tinues to execute its program while operating from internal RAM or
ROM, thus greatly increasing throughput in data-intensive applications.

The operating mode is selected by the HM (hold mode) status register bit on
the TMS320C25. The HOLD signal is pulled low, as shown in the first part of
Figure 3-43. When HM = 1, the TMS320C25 halts program execution and
enters the hold state directly. When HM = 0, the processor enters the hold
state directly, as shown in Figure 3-43, if program execution is from external
memory or if external data memory is being accessed. |f program execution is
from internal memory, however, and if no external data memory accesses are
required, the processor enters the hold state externally, but program execution
continues internally. This allows more efficient system operation since a pro-
gram may continue executing while an external DMA operation is being per-
formed.

3-7



Architecture - Multiprocessing and DMA

3-72

Program execution ceases until HOLD is removed if the processor is in a hold
state with HM = 0 and an internally executing program requires an external
access, or if the program branches to an external address. Also, if a repeat
instruction that requires the use of the external bus is executing with HM = 0
and a hold occurs, the hold state is entered after the current bus cycle. If this
situation occurs with HM = 1, the hold state will not be entered until the re-
peat count is completed. HM is set and reset by the SHM (set hold mode)
and RHM (reset hold mode) instructions, respectively.

All interrupts are disabled while HOLD is active with HM = 1. If an interrupt
is received during this period, the interrupt is latched and remains pending.
Therefore, HOLD itself does not affect any interrupt flags or registers. When
HM = 0, interrupts function normally.

CLKOUT1 U \\_/ \_/—\_/—\_

STRB

HOLD S\ ; ; B :
A15-A0 ¢ N X N+t >< N+2 >————

P—gh%' :X VALID X VALID )/ \——
R -

D15-DO @ @ : : :
fetoh +—N—~—>< -——Nil———m——-—'—————><——'————+

execute P N-2 X N-1 »e N > - >

HOLDA : : : \ :

NOTES: 1. N is the program memory location for the current instruction.
2. This example only shows the execution of single-cycle instructions
fetched from external program memory.

Figure 3-43. TMS320C25 Hold Timing Diagram



Architecture - Multiprocessing and DMA

STRB

A15-A0 < N+2 X N+2 x N+3 X N+4 X

i : ; N f
D15-00 — : : e (Ve O (Ve

fetch

V..
'y
v

A

I_
|

LY.L
r'S
v
a
LN
>
b 4
7'

execute R —> ¢

HODA ./

Figure 3-43. TMS320C25 Hold Timing Diagram (Concluded)

3-73



Architecture - Multiprocessing and DMA

3-74



Section 4

Assembly Language Instructions

The TMS320C2x instruction set supports numeric-intensive signal processing
operations as well as general-purpose applications, such as multiprocessing
and high-speed control. TMS320C1x source code is upward-compatible with
TMS320C2x source code. TMS32020 object code is upward-compatible with
TMS320C25 object code.

This section describes the assembly language instructions for the TMS320C2x
microprocessor. Included in this section are the following major topics:

L Memory Addressing Modes (Section 4.1 on page 4-2)
Direct addressing
Indirect addressing (using eight auxiliary registers)
Immediate addressing

e Instruction Set (Section 4.2 on page 4-10)
Symbols and abbreviations used in the instructions
Instruction set summary (listed according to function)

® Individual Instruction Descriptions (Section 4.3 on page 4-17)
Presented in alphabetical order and providing the following:
- Assembler syntax
- Operands
- Execution
- Encoding
- Description
- Words
- Cycles
- Repeatability
- Example(s)

Note:

Throughout this document, “TMS320C25" refers to the TMS320C25,
TMS320C25-50, and TMS320E25 unless stated otherwise. Where ap-
plicable, “ROM” includes the on-chip EPROM of the TMS320E25.

4-1



Assembly Language Instructions

4.1 Memory Addressing Modes

The TMS320C2x instruction set provides three membry addressing modes:

® Direct addressing mode
[ ] Indirect addressing mode
° Immediate addressing mode

Both direct and indirect addressing can be used to access data memory. Direct
addressing concatenates seven bits of the instruction word with the nine bits
of the data memory page pointer to form the 16-bit data memory address.
Indirect addressing accesses data memory through the auxiliary registers. In
immediate addressing, the data is based on a portion of the instruction
word(s). The following sections describe each addressing mode and give the
opcode formats and some examples for each mode.

4.1.1 Direct Addressing Mode

4-2

In the direct memory addressing mode, the instruction word contains the
lower seven bits of the data memory address (dma). This field is concatenated
with the nine bits of the data memory page pointer (DP) register to form the
full 16-bit data memory address. Thus, the DP register points to one of 512
possible 128-word data memory pages, and the 7-bit address in the instruc-
tion points to the specific location within that data memory page. The DP
register is loaded through the LDP (load data memory page pointer), LDPK
(load data memory page pointer immediate), or LST (load status register STO)
instructions.

Note:

The data page pointer is not initialized by reset and is therefore undefined
after powerup. The TMS320C2x development tools, however, utilize de-
fault values for many parameters, including the data page pointer. Because
of this, programs that do not explicitly initialize the data page pointer may
execute improperly, depending on whether they are executed on a
TMS320C2x device or using a development tool. Thus, it is critical that
all programs initialize the data page pointer in software.




Assembly Language Instructions

Figure 4-1 illustrates how the 16-bit data address is formed.

DATA BUS (16

7 LSBS FROM
INSTRUCTION
REGISTER (IR)

16-BIT DATA ADDRESS

Figure 4-1. Direct Addressing Block Diagram

Direct addressing can be used with all instructions except CALL, the branch
instructions, immediate operand instructions, and instructions with no oper-
ands. The direct addressing format is as follows:

1514 1312110 9 8 7 6 5 4 3 2 1 O

Opcode I 0 l dma J

Bits 15 through 8 contain the opcode. Bit 7 = O defines the addressing mode
as direct, and bits 6 through O contain the data memory address (dma).

Example of Direct Addressing Format:

ADD 9,5 Add to accumulator the contents of data memory location
9 left-shifted 5 bits.

1514 13121110 9 8 7 6 5 4 3 2 1 0
0000010 1]oloo0o 01 001

The opcode of the ADD 9,5 instruction is 05h and appears in bits 15 through
8. The notatton nnh indicates nn is a hexadecimal number. The shift count
of 5h appears in bits 11 through 8 of the opcode. The data memory address
09h appears in bits 6 through O.

4.3



Assembly Language Instructions

4.1.2 Indirect Addressing Mode

4-4

The auxiliary registers (AR) provide flexible and powerful indirect addressing.
Five auxiliary registers (AR0O-AR4) are provided on the TMS32020, and eight
auxiliary registers (ARO-AR7) are available on the TMS320C25. To select a
specific auxiliary register, the Auxiliary Register Pointer (ARP) is loaded with
a value from O through 4 or 7, designating ARO through AR4 or AR7, respec-
tively (see Figure 4-2).

3 3 AUXILIARY

REGISTERS

[(ARB (@) f+~—{ ARP (3) ARO (16)
(ARP = 2) 3 AR1 (16)

> AR2 (16) ——

AR3 (16
AR4 (16
AR (16) T
ARG (16) T
AR7 (16) T 16
16

16 §
ARAU (16)

v
16-BIT DATA ADDRESS
tBoth TMS320C25 and TMS320E25

Figure 4-2. Indirect Addressing Block Diagram

The contents of the auxiliary registers may be operated upon by the Auxiliary
Register Arithmetic Unit (ARAU), which implements 16-bit unsigned arith-
metic. The ARAU performs auxiliary register arithmetic operations in the same
cycle as the execution of the instruction. (Note that the increment or decre-
ment of the indicated AR is always executed after the use of that AR in the
instruction.)

In indirect addressing, any location in the 64K data memory space can be ac-
cessed via the 16-bit addresses contained in the auxiliary registers. These may
be loaded by the instructions LAR (load auxiliary register), LARK (load auxil-
iary register immediate), and LRLK (load auxiliary register long immediate).
The auxiliary registers on the TMS320C25 may be modified by ADRK (add to
auxiliary register short immediate) or SBRK (subtract from auxiliary register
short immediate). The TMS320C2x auxiliary registers may also be modified
by the MAR (modify auxiliary register) instruction or, equivalently, by the in-
direct addressing field of any instruction supporting indirect addressing.
AR(ARP) denotes the auxiliary register selected by ARP.



Assembly Language Instructions

The following symbols are used in indirect addressing, including bit-reversed
(BR) addressing:

* Contents of AR(ARP) are used as the data memory address.

- Contents of AR(ARP) are used as the data memory address, then
decremented after the access.

*+ Contents of AR(ARP) are used as the data memory address, then
incremented after the access.

*0- Contents of AR(ARP) are used as the data memory address, and the
contents of ARO subtracted from it after the access.

0+ Contents of AR(ARP) are used as the data memory address, and the
contents of ARO added to it after the access.

*BRO- Contents of AR(ARP) are used as the data memory address, and the
contents of ARO subtracted from it, with reverse carry (rc) propa-
gation, after the access (TMS320C25).

*BRO+ Contents of AR(ARP) are used as the data memory address, and the
contents of ARO added to it, with reverse carry (rc) propagation, af-
ter the access (TMS320C25).

There are two main types of indirect addressing with indexing:

[ ] Regular indirect addressing with increment or decrement, and

® Indirect addressing with indexing based on the value of ARO:
Indexing by adding or subtracting the contents of ARO, or
Indexing by adding or subtracting the contents of ARO with the
carry propagation reversed (for FFTs on the TMS320C25).

In either case, the contents of the auxiliary register pointed to by the ARP re-
gister are used as the address of the data memory operand. Then, the ARAU
performs the specified mathematical operation on the indicated auxiliary reg-
ister. Additionally, the ARP may be loaded with a new value. All indexing op-
erations are performed on the current auxiliary register in the same cycle as the
original instruction.

Indirect auxiliary register addressing allows for post-access adjustments of the
auxiliary register pointed to by the ARP. The adjustment may be an increment
or decrement by one or based upon the contents of ARO.

Bit-reversed addressing modes on the TMS320C25 allow efficient 1/0 to be
performed for the resequencing of data points in a radix-2 FFT program. The
direction of carry propagation in the ARAU is reversed when this mode is se-
lected and ARO is added to/subtracted from the current auxiliary register.
Typical use of this addressing mode requires that ARO first be set to a value
corresponding to one-half of the array size, and AR(ARP) be set to the base
address of the data (the first data point). See Section 5.7.4 for an FFT example
using bit-reversed addressing modes.

45



Assembly Language Instructions

4-6

Indirect addressing can be used with all instructions except immediate oper-
and instructions and instructions with no operands. The indirect addressing
format is as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Opcode [ 1 ] iov|inc|pec|nNAR| y |

Bits 15 through 8 contain the opcode, and bit 7 = 1 defines the addressing
mode as indirect. Bits 6 through O contain the indirect addressing control bits.

Bit 6 contains the increment/decrement value (IDV). The IDV determines
whether ARO will be used to increment or decrement the current auxiliary
register. If bit 6 = 0, an increment or decrement (if any) by one occurs to the
current auxiliary register. If bit 6 = 1, ARO may be added to or subtracted from
the current auxiliary register as defined by bits 5 and 4.

Bits 5 and 4 control the arithmetic operation to be performed with AR(ARP)
and ARO. When set, bit 5 indicates that an increment is to be performed. If bit
4 is set, a decrement is to be performed. Table 4-1 shows the correspondence
of bit pattern and arithmetic operation.

Table 4-1. Indirect Addressing Arithmetic Operations

BITS ARITHMETIC OPERATION
6 5 4
0 0 O No operation on AR(ARP)
0O 0 1 AR(ARP) - 1 = AR(ARP)
o 1t 0 AR(ARP) + 1 — AR(ARP)
o 1 1 Reserved
1 0 O AR(ARP) - ARO = AR(ARP) [reverse carry propagation]T
1 0 1 AR(ARP) - ARO = AR(ARP)
1 1 0 AR(ARP) + ARO — AR(ARP)
1 1 1 AR(ARP) + ARO — AR(ARP) [reverse carry propagation]t

tBoth TMS320C25 and TMS320E25.

Bit 3 and bits 2 through O control the Auxiliary Register Pointer (ARP). Bit 3
(NAR) determines if a new value is loaded into the ARP. If bit 3 = 1, the
contents of bits 2 through O (Y = next ARP) are loaded into the ARP. I[f bit
3 = 0, the contents of the ARP remain unchanged.

Table 4-2 shows the bit fields, notation, and operation used for indirect ad-
dressing. For some instructions, the notation in Table 4-2 includes a shift
code, e.g., *0+,8,3 where 8 is the shift code and Y = 3.



Assembly Language Instructions

Table 4-2. Bit Fields for Indirect Addressing

INSTRUCTION FIELD BITS NOTATION OPERATION
15 - 87 6543210
“Opcode—> 1 0 0 0 0 Y - * No manipulation of ARs/ARP
“Opcode—> 1 0 0 01 <Y —~>)| Y Y = ARP
“Opcode— 1 0 01 0 <Y — *- AR(ARP)-1 = AR(ARP)
“Opcode—> 1 0 01 1 <Y ->] ™Y AR(ARP)-1 = AR(ARP)
Y = ARP
“Opcode—> 1 01 00 <Y >} "+ AR(ARP)+1 = AR(ARP)
“Opcode—* 1 01 01 <Y —=>| *+Y AR(ARP)+1 = AR(ARP)
Y - ARP
“Opcode—=+ 1 1 0 0 0 <Y —| "BRO- AR(ARP)-rcARO = AR(ARP)t
“Opcode—+ 1 1 0 01 <Y =} *BRO-Y AR(ARP)-rcARO — AR(ARP)
Y = ARPT
“Opcode—=> 1 1 01 0 <Y ~>| *0- AR(ARP)-ARO — AR(ARP)
“Opcode—> 1 1 011 <Y =] *0-Y AR(ARP)-ARO — AR(ARP)
Y = ARP
“Opcode—> 1 11 00 «<Y =] "0+ AR(ARP)+ARO — AR(ARP)
“Opcode— 1 1 1 01 <Y -] *0+Y AR(ARP)+ARO — AR(ARP)
Y — ARP
“Opcode—= 1 1 11 0 <Y —=>| *“BRO+ AR(ARP)+rcARO = AR(ARP)T
“Opcode—+ 1 1 1 1 1 <Y —>| *"BRO+)Y AR(ARP)+rcARO = AR(ARP)
Y — ARPT

tBR = bit-reversed addressing mode and rc = reverse carty propagation (TMS320C25).

The CMPR (compare auxiliary register with ARO), and BBZ/BBNZ (branch if
TC bit equal/not equal to zero) instructions facilitate conditional branches
based on comparisons between the contents of ARO and the contents of
AR(ARP).

The auxiliary registers may also be used for temporary storage via the load and
store auxiliary register instructions, LAR and SAR, respectively.

The following examples illustrate the indirect addressing format:

Example 1:

ADD *+,8 Add to the accumulator the contents of the data memory
address defined by the contents of the current auxiliary
register. This data is left-shifted 8 bits before being
added. The current auxiliary register is autoincremented
by one. The opcode is 08A0h, as shown below.

1514 13121110 9 8 7 6 5 4 3 2 1 0
lo o o o1 00 of1fo 1 0 0 0 0 0

4-7



Assembly Language Instructions

4-8

Example 2:
ADD *.,8

Example 3:
ADD *-.8

Example 4:
ADD *0+,8

Example 5:
ADD *0-,8

Example 6:

-~ ADD *+.,8,3

Example 7:

ADD *BRO-,8

Example 8:

ADD *BRO+.,8

As in Example 1, but with no autoincrement; the opcode
is 0880h.

As in Example 1, except that the current auxiliary register
is decremented by one; the opcode is 0890h.

As in Example 1, except that the contents of auxiliary
register ARO are added to the current auxiliary register;
the opcode is 08EOh.

As in Example 1, except that the contents of auxiliary
register ARQ are subtracted from the current auxiliary re-
gister; the opcode is 08DO0h.

As in Example 1, except that the auxiliary register pointer
(ARP) is loaded with the value 3 for subsequent in-
structions; the opcode is 08ABh.

The opcode is 08COh. The contents of auxiliary register
ARO are subtracted from the current auxiliary register with
reverse carry propagation (TMS320C25).

The opcode is 08F0Oh. The contents of auxiliary register
ARO are added to the current auxiliary register with re-
verse carry propagation (TMS320C25).



Assembly Language Instructions

4.1.3 Immediate Addressing Mode

In immediate addressing, the instruction word(s) contains the value of the
immediate operand. The TMS320C2x has both single-word (8-bit and 13-bit
constant) short immediate instructions and two-word (16-bit constant) long
immediate instructions. The immediate operand is contained within the in-
struction word itself in short immediate instructions. In long immediate in-
structions, the word following the instruction opcode is used as the immediate
operand.

The following short immediate instructions contain the immediate operand in
the instruction word and execute within a single instruction cycle. The length
of the constant operand is instruction-dependent. Note that the ADDK, ADRK,
SBRK, and SUBK instructions are available on the TMS320C25.

ADDK Add to accumulator short immediate (8-bit absolute constant)

ADRK Add to auxiliary register short immediate (8-bit absolute con-
stant)

LACK Load accumulator short immediate (8-bit absolute constant)

LARK Load auxiliary register short immediate (8-bit absolute constant)

LARP Load auxiliary register pointer (3-bit constant) .

LDPK Load data memory page pointer immediate (9-bit constant)

MPYK Multiply immediate (13-bit two’s-complement constant)

RPTK Repeat instruction as specified by immediate value (8-bit con-
stant)

SBRK Subtract from auxiliary register short immediate (8-bit absolute
constant)

SUBK Subtract from accumulator short immediate (8-bit absolute
constant).

Example of short immediate addressing format:
RPTK 99  Execute the instruction following this instruction 100 times.

With the RPTK instruction, the immediate operand is contained as a part of the
instruction opcode. The instruction format for RPTK is as follows:

15141312111019 8 7 6 5 4 3 2 1 O
Tt 1 0 0 1 0 1 1 8-Bit Constant

4-9



Assembly Language Instructions

For long immediate instructions, the constant is a 16-bit value in the word
following the opcode. The 16-bit value can be optionally used as an absolute
constant or as a two's-complement value.

ADLK

ANDK

LALK

LRLK
ORK
SBLK

XORK

Add to accumulator long immediate with shift (absolute or two's
complement)

AND immediate with accumulator with shift

Load accumulator long immediate with shift (absolute or two’s
complement)

Load auxiliary register long immediate
OR immediate with accumulator with shift

Subtract from accumulator iong immediate with shift (absolute
or two's complement)

Exclusive-OR immediate with accumulator with shift.

Example of long immediate addressing format:
ADLK 16384,2 Add to the accumulator the value 16384 with a shift to

the left of two, effectively adding 65536 to the contents
of the accumulator.

The ADLK instruction uses the word following the instruction opcode as the
immediate operand. The instruction format for ADLK is as follows:

15 14 13121110 9 8 7 6 5 4 3 2 1 O

1

1

0 1 Shift 0 0 0 000 1 O

16-Bit Constant




Assembly Language Instructions

4.2 Instruction Set

The following sections list the symbols and abbreviations used in the instruc-
tion set summary and in the instruction descriptions. The complete instruction
set summary is organized according to function. A detailed description of each
instruction is listed in the instruction set summary.

4.21 Symbols and Abbreviations

Table 4-3 lists symbols and -abbreviations used in the instruction set summary
(Table 4-4) and the individual instruction descriptions.

Table 4-3. Instruction Symbols

SYMBOL MEANING
A Port address
ACC Accumulator
ARB Auxiliary register pointer buffer
ARn Auxiliary register n {ARO, AR1 assembler symbols equal to 0 or 1)
ARP Auxiliary register pointer
B 4-bit field specifying a bit code
BIO Branch control input
C Carry bit
CM 2-bit field specifying compare mode
CNF On-chip RAM configuration control bit
D Data memory address field
DATn Label assigned to data memory Iocatlon n
dma Data memory address
DP Data page pointer
FO Format status bit
FSM Frame synchronization mode bit
HM Hold mode bit
| Addressing mode bit
INTM Interrupt mode flag bit
K immediate operand field
MCS Microcall stack
nnh nnh = hexadecimal number (others are decimal values)
oV Overflow mode flag bit
OovM Overflow mode bit
P Product register
PA Port address (PAQ-PA15 assembler symbols equal to O through 15)
PC Program counter
PFC Prefetch counter
PM 2-bit field specifying P register output shift code
pma Program memory address
PRGn Label assigned to program memory location n
3-bit operand field specifying auxiliary register
RPTC Repeat counter
S 4-bit left-shift code
STn Status register n {STO or ST1)
SXM Sign-extension mode bit
T Temporary register
TC Test control bit
TOS Top of stack -
XM Transmit mode bit
X 3-bit accumulator left-shift field
XF XF pin status bit
d is assigned to
| An absolute value
< > User-defined items
[1] Optional items
() Contents of
{1} Alternative items, one of which must be entered
Blanks or spaces must be entered where shown.




Assembly Language Instructions

4.2.2 Instruction Set Summary

Table 4-4 shows the instruction set summary for the TMS320C25 processor,
which is a superset of the TMS320C1x and TMS32020 instruction sets. In-
cluded in the instruction set are four special groups of instructions to improve
overall processor throughput and ease of use. )

Extended-precision arithmetic (ADDC, SUBB, MPYU, BC, BNC, SC,
and RC)

Adaptive filtering (MPYA, MPYS, and ZALR)
Control and 1/0 (RHM, SHM, RTC, STC, RFSM, and SFSM)

Accumulator and register (SPH, SPL, ADDK, SUBK, ADRK, SBRK, ROL,
and ROR).

The instruction set summary is arranged according to function and alphabet-
ized within each functional grouping. Additional information is presented in
the individual instruction descriptions in the following section. The symbol t
indicates instructions that are specific to the TMS320C2x instruction set. The
symbol 1 indicates instructions that are specific to the TMS320C25/E25 in-
struction set.



Assembly Language Instructions

Table 4-4. Instruction Set Summary

ACCUMULATOR MEMORY REFERENCE INSTRUCTIONS

with sign extension suppressed

Mnemonic and Description Words 16-Bit Opcode
MSB LSB
ABS Absolute value of accumulator 1 1100 1110 0001 1011
ADD Add to accumulator with shift 1 0000 SSsSs | DDD DDDD
ADDC* Add to accumulator with carry 1 0100 0011 | DDD DDDD
ADDH  Add to high accumulator ) 1 0100 1000 | DDD DDDD
ADDK? Add to accumulator short immediate 1 1100 1100 KKKK KKKK
ADDS Add to low accumulator with sign-extension 1 0100 1001 | DDD DDDD |
suppressed
ADDTt  Add to accumulator with shift specified 1 0100 1010 | DDD DDDD
by T register .
ADLKT  Add to accumulator long immediate 2 1101 SSSS 0000 0010
with shift '
AND AND with accumulator 1 0100 1110 | bDDD DDDD
ANDK?  AND immediate with accumulator with shift 2 1101 SSSS 0000 0100
CMPLT Complement accumulator 1 1100 1110 0010 0111
LAC Load accumulator with shift 1 0010 SSSS | bDD DDDD
LACK Load accumulator short immediate 1 1100 1010 KKKK KKKK
LACTT  Load accumulator with shift specified 1 0100 0010 | DDD DDDD
by T register
LALKt  Load accumulator long immediate 2 1101 SSSS 0000 0001
with shift
NEGT Negate accumulator 1 1100 1110 0010 0011
NORMT Normalize contents of accumulator 1 1100 1110 1010 0010
OR OR with accumulator 1 0100 1101 | DDD DDDD
ORKT OR immediate with accumulator with shift 2 1101 SSSS 0000 0101
ROL¥ Rotate accumulator left 1 1100 1110 0011 0100
ROR¥ Rotate accumulator right 1 1100 1110 0011 0101
SACH Store high accumulator with shift 1 0110 1XXX | DDD DDDD
SACL Store low accumulator with shift 1 0110 OXXX | DDD DDDD
SBLK?  Subtract from accumulator long immediate 2 1101 SSSS 0000 0011
with shift
SFLT Shift accumulator left 1 1100 1110 0001 1000
SFRT Shift accumulator right 1 1100 1110 0001 1001
SUB Subtract from accumulator with shift 1 0001 SSSS | bDDD DDDD
SUBB*  Ssubtract from accumulator with borrow 1 0100 1111 | bbD DDDD
SUBC  Conditional subtract 1 0100 0111 | DDD DDDD
SUBH  Subtract from high accumulator 1 0100 0100 | DDD DDDD
SUBK?*  Ssubtract from accumulator short immediate 1 1100 1101 KKKK KKKK
SUBS Subtract from low accumulator with 1 0100 0101 | DDD DDDD
sign extension suppressed
SUBTt  Subtract from accumulator with shift specified 1 0100 0110 | DDD DDDD
by T register
XOR Exclusive-OR with accumulator 1 0100 1100 | DDD DDDD
XORKT  Exclusive-OR immediate with accumulator 2 1101 S8SSS 0000 0110
with shift
ZAC Zero accumulator 1 1100 1010 0000 0000
ZALH Zevo low accumulator and load high accumulator 1 0100 0000 | DDD DDDD
ZALRY  Zero low accumulator and load high accumulator 1 0111 1011 | DDD DDDD
with rounding
ZALS Zero accumulator and load low accumulator 1 0100 0001 | DDD DDDD

tThis instruction is specific to the TMS320C2x instruction set.

¥This instruction is specific to the TMS320C25/E25 instruction set.



Assembly Language Instructions

Table 4-4. Instruction Set Summary (Continued)

AUXILIARY REGISTERS AND DATA PAGE POINTER INSTRUCTIONS
Mnemonic and Description Words 16-Bit Opcode
‘MSB LSB

ADRK¥  Add to auxiliary register short immediate 1 0111 1110 KKKK KKKK
CMPRt  Compare auxiliary register with auxiliary 1 1100 1110 0101 OOKK

register ARO - : :
LAR Load auxiliary register 1 0011 ORRR | DDD DDDD
LARK Load auxiliary register short immediate 1 1100 ORRR KKKK KKKK
LARP Load auxiliary register pointer 1 0101 0101 1000 1RRR
LDP Load data memory page pointer 1 0101 0010 | bDD DDDD
LDPK Load data memory page pointer immediate 1 1100 100K KKKK KKKK
LRLKT  Load auxiliary register long immediate 2 1101 ORRR 0000 0000
MAR Modify auxiliary register 1 0101 0101 | DDD DDOCD
SAR Store auxiliary register 1 0111 ORRR | DDD DDDD
SBRK*  Subtract from auxiliary register short immediate 1 0111 1111 KKKK KKKK

T REGISTER, P REGISTER, AND MULTIPLY INSTRUCTIONS
Mnemonic and Description Words 16-Bit Opcode
MSB LSB

APAC Add P register to accumulator 1 1100 1110 0001 0101
LPHT Load high P register 1 0101 0011 | DDD DDDD
LT Load T register 1 0011 1100 | bDD DDDD
LTA Load T register and accumulate previous product 1 0011 1101 | DDD DDDD
LTD Load T register, accumulate previous product, 1 0011 1111 | DDD DDDD

and move data :
LTPT Load T register and store P register in 1 0011 1110 | DDD DDDD

accumulator
LTSt Load T register and subtract previous 1 0101 1011 | bDD DDDD

product
MACt Multiply and accumulate 2 0101 1101 | DDD DDDD
MACDT Multiply and accumulate with data move 2 0101 1100 | DDD DDDD
MPY Multiply (with T register, store product in 1 0011 1000 | DDD DDDD

P register)
MPYA}  Multiply and accumulate previous product 1 0011 1010 | DDD DDDD
MPYK  Multiply immediate 1 101K KKKK KKKK KKKK
MPYS*  Multiply and subtract previous product 1 0011 1011 | DDD DDDD
MPYU}  Multiply unsigned 1 1100 1111 | DDD DDDD
PAC Load accumulator with P register 1 1100 1110 0001 0100
SPAC Subtract P register from accumulator 1 1100 1110 0001 0110
SPHt Store high P register 1 0111 1101 | DDD DDDD
SPL¥ Store low P register 1 0111 1100 | DDD DDDD
SPmT Set P register output shift mode 1 1100 1110 0000 10KK
SQRAT  Square and accumulate 1 0011 1001 | DDD DDDD
SQRST  Square and subtract previous product 1 0101 1010 .1 DDD DDDD

tThis instruction is specific to the TMS320C2x instruction set.
1This instruction is specific to the TMS320C25/E25 instruction set.




Assembly Language Instructions

Table 4-4. Instruction Set Summary (Continued)

BRANCH/CALL INSTRUCTIONS
Mnemonic and Description Words 16-Bit Opcode

MSB LSB
B Branch unconditionally 2 1111 1111 1DDD DDDD
BACCt Branch to address specified by accumulator 1 1100 1110 0010 0101
BANZ Branch on auxiliary register not zero 2 1111 1011 1DDD DDDD
BBNZT  Branch if TC bit # 0 2 1111 1001 1DDD DDDD
BBZt Branch if TC bit = 0 2 1111 1000 1DDD DDDD
BCH Branch on carry 2 0101 1110 1DDD DDDD
BGEZ Branch if accumulator = 0 2 1111 0100 1DDD DDDD
BGZ Branch if accumulator > 0 2 1111 0001 1DDD DDDD
BIOZ Branch on I/0 status = 0 2 1111 1010 1DDD DDDD
BLEZ Branch if accumulator < 0 2 1111 0010 1DDD DDDD
BLZ Branch if accumulator < 0 2 1111 0011 1DDD DDDD
BNCH Branch on no carry 2 0101 1111 1DDD DDDD
BNVT Branch if no overflow 2 1111 0111 1DDD DDDD
BNZ Branch if accumulator # 0 2 1111 0101 1DDD DDDD
BV Branch on overflow 2 1111 0000 1DDD DDDD
BZ Branch if accumulator = 0 2 1111 0110 1DDD DDDD
CALA Call subroutine indirect 1 1100 1110 0010 0100
CALL Call subroutine 2 1111 1110 1DDD DDDD
RET Return from subroutine 1 1100 1110 0010 0110
TRAPT  Software interrupt 1 1100 1110 0001 1110

1/0 AND DATA MEMORY OPERATIONS
Mnemonic and Description Words 16-Bit Opcode

MSB LSB
BLKDY  Block move from data memory to data memory 2 1111 1101 | DDD DDDD
BLKPT  Block move from program memory to data 2 1111 1100 | DDD DDDD

memory

DMOV Data move in data memory 1 0101 0110 | DDD DDDD
FORT'  Format serial port registers 1 1100 1110 0000 111K
IN Input data from port 1 1000 AAAA | DDD DDDD
out Output data to port 1 1110 AAAA | DDD DDDD
RFSM? Reset serial port frame synchronization mode 1 1100 1110 0011 0110
RTXM?T  Reset serial port transmit mode 1 1100 1110 0010 0000
RXFt Reset external flag 1 1100 1110 0000 1100
SFSM}  Set serial port frame synchronization mode 1 1100 1110 0011 0111
STXMT  Set serial port transmit mode 1 1100 1110 0010 0001
SXFt Set external flag 1 1100 1110 0000 1101
TBLR Table read 1 0101 1000 | DDD DDDD
TBLW  Table write 1 0101 1001 | DDD DDDD

tThis instruction is specific to the TMS320C2x instruction set.
1This instruction is specific to the TMS320C25/E25 instruction set.



Assembly Language Instructions

Table 4-4. Instruction Set Summary (Concluded)

CONTROL INSTRUCTIONS

Mnemonic and Description ) Words 16-Bit Opcode

MSB LSB
BITt Test bit 1 1001 BBBB | DDD DDDD
BITTt Test bit specified by T register 1 0101 0111 |1 DDD DDDD
CNFDt  Configure block as data memory 1 1100 1110 0000 0100
CNFPt  Configure block as program memory 1 1100 1110 0000 0101
DINT Disable interrupt 1 1100 1110 0000 0001
EINT Enable interrupt 1 1100 1110 0000 0000
IDLET Idle until interrupt 1 1100 1110 0001 1111
LST Load status register STO 1 0101 0000 1DDD DDDD
LST1t Load status register ST1 1 0101 0001 | DDD DDDD
NOP No operation 1 0101 0101 0000 0000
POP Pop top of stack to low accumulator 1 1100 1110 0001 1101
POPDt  Pop top of stack to data memory 1 0111 1010 | DDD DDDD
PSHDT  Push data memory value onto stack 1 0101 0100 | DDD DDDD
PUSH Push low accumulator onto stack 1 1100 1110 0001 1100 |
RCt Reset carry bit 1 1100 1110 0011 0000
RHM% Reset hold mode 1 1100 1110 0011 1000
ROVM  Reset overflow mode 1 1100 1110 0000 0010
RPTT Repeat instruction as specified by data memory 1 0100 1011 | DDD DDDD

value
RPTKT  Repeat |nstruct|on as specified by immediate 1 1100 1011 KKKK KKKK
value

RSXMT Reset sign-extension mode 1 1100-1110 0000 0110
RTC* Reset test/control flag 1 1100 1110 0011 0010
Sc* Set carry bit 1 1100 1110 0011 0001
SHM?*  Set hold mode 1 1100 1110 0011 1001
SOVM  Set overflow mode 1 1100 1110 0000 0011
SST Store status register STO 1 0111 1000 | DDD DDDD
SST1t  Store status register ST1 1 0111 1001 | DDD DDDD
SSXMT  Set sign-extension mode 1 1100 1110 0000 0111
STCt Set test/control flag 1 1100 1110 0011 0011

1This instruction is specific to the TMS320C2x instruction set.
$This instruction is specific to the TMS320C25/E25 instruction set.



Assembly Language Instructions

4.3 Individual Instruction Descriptions

Each instruction in the instruction set summary is described in the following
pages. Instructions are listed in alphabetical order. Information, such as as-
sembler syntax, operands, operation, encoding, description, words, cycles, and
examples, is provided for each instruction. An example instruction is provided
to familiarize the user with the special format used and explain its content.
Refer to Section 4.1 for further information on memory addressing. Code ex-
amples using many of the instructions are given in Section 5 on Software
Applications.



EXAMPLE

Example Instruction

Syntax

Direct:
Indirect:
Immediate:

[<label>] EXAMPLE <dma>[,<shift>]
[<label>] EXAMPLE {ind}[,<shift>[,<next ARP>]]
[<label>] EXAMPLE [<constant>]

Each instruction begins with an assembler syntax expression. The optional
comment field that concludes the syntax is not included in the syntax ex-
pression. Space(s) are required between each field (label, command, op-
erand, and comment fields) as shown in the syntax. The syntax example
illustrates both direct and indirect addressing, as well as immediate ad-
dressing in which the operand field includes <constant>.

The indirect addressing operand options, including bit-reversed (BR) ad-
dressing, are as follows:

TMS32020: {*|*+]*-[*0+|*0-}
TMS320C25:  {*|*+|*-|*0+|*0-|*BRO+|*BRO-}

Operands 0 < dma < 127
0 <nextARP <7
0 < constant < 255
Operands may be constants or assembly-time expressions referring to
memory, 1/0 and register addresses, pointers, shift counts, and a variety of
constants. The operand values used in the example syntax are shown. Note
that the next ARP on the TMS32020 is < 4 for auxiliary registers ARO-AR4.
Execution (PC) +1 - PC )
(ACC) + [(dma) x 2shift] - AccC
If SXM = 1:
Then (dma) is sign-extended.
If SXM = Q:
Then (dma) is not sign-extended.
Affects OV; affected by OVM and SXM.
Affects C (TMS320C25).
An example of the instruction operation sequence is provided, describing
the processing that takes place when the instruction is executed. Condi-
tional effects of status register specified modes are also given. Those bits
in the TMS320C2x status registers affected by the instruction are also
listed.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct: l 0 0 o0 0 I Shift I 0 I Data Memory Address I
Indirect:f 0 0. 0 o] Shift | 1] See Section 4.1 |
Immediate:| 10 0 L 13-Bit Constant ]

Opcode examples are shown of both direct and indirect addressing or of the
use of an immediate operand.



Example Instruction

EXAMPLE

Instruction execution and its effect on the rest of the processor or memory
contents are described. Any constraints on the operands imposed by the
processor or the assembler are discussed. The description parallels and
supplements the information given by the execution block.

1

The digit specifies the number of memory words required to store the in-
struction and its extension words.

Cycle Timings for a Single Instruction

Description
Words
Cycles
20
‘C25
20
‘C25

P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n+p n+p - -
n n+p n+p n n

The table shows the number of cycles required for a given TMS320C2x in-
struction to execute in a given memory configuration when executed as a
single instruction -or in the repeat mode. The column headings in the tables
indicate the program source location (Pl, PE, or PR) and data destination

or source (DI or DE), defined as follows:

Pl The instruction executes from internal program memory (RAM).
PR  The instruction executes from internal program memory (ROM).
PE  The instruction executes from external program memory.

DI The instruction executes using internal data memory.

DE The instruction executes using external data memory.

The number of cycles required for each instruction is given in terms of the
program/data memory and /O access times as defined in the following
listing:

p Program memory wait states. Represents the number of clock cycles
the device waits for external program memory to respond to an ac-
cess. Ty is the access time, in nanoseconds, (maximum) required
by the TMS320C2x for an external memory access to be made with
no wait states. Tmem is the memory device access time, and Tp, is the
clock period (4/crystal frequency).

p=0 If Tmem < Tac

p=1 HTae <Tmem = (Tp + Tac)

p=2 If(Tp *+ Tac)< Tmem < (Tp x 2 + Tae)

p=k If[Tp x (k-1) + Tacl< T mem < (Tp x k + Tyc)

d Data memory wait states. Represents the number of cycles the de-
vice must wait for external data memory to respond to an access.
This number is calculated in the same way as the p number.



EXAMPLE

Example Instruction

Example

4-20

i 1/0 memory wait states. Represents the number of cycles the device
must wait for external I/O memory to respond to an access. This
number is calculated in the same way as the p number.

Other abbreviations used in the tables and their meanings are as follows:

br Branch from ...

int Internal program memory.

INT Interrupt.

ext External program memory.

n The number of times an instruction is executed when using the RPT
or RPTK instruction.

Refer to Appendix D for further information on instruction cycle classifica-
tions and timings.

ADD DAT1,3 ;(DP = 10)

or
ADD *,3 ;If current auxiliary register contains 1281.
Before Instruction After Instruction
Data Data
1281 1281

YN | RS o m—TH
C C

The sample code presented in the above format shows the effect of the
code on memory and/or registers. The use of the carry bit (C) provided on
the TMS320C25 is shown in the small box.



Absolute Value of Accumulator

ABS

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
20
'C25
20
'C25
Example

[<label>] ABS

None
(PC) +1 » PC
|(ACC)| = ACC

Affects OV; affected by OVM.
Affects C (TMS320C25).
Not affected by SXM.

15 14 13
[+ 1 0

12 11 10 9
0 1 1 1

0

If the contents of the accumulator are greater than or equal to zero, the ac-
cumulator is unchanged by the execution of ABS. If the contents of the
accumulator are less than zero, the accumulator is replaced by its two’s-
complement value.

Note that 80000000h is a special case. When the overflow mode is not set,
the ABS of 80000000h is 80000000h. When in the overflow mode, the
ABS of 80000000h is 7FFFFFFFh. In either case, the OV status bit is set.
The carry bit (C) on the TMS320C25 is always reset to zero by the exe-
cution of this instruction.

1

Cycle Timings for a Single Instruction
P1/Di PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p - -

1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution

n n n+p n+p - -

n n n+p n+p n n

ABS

After Instruction

nce [ 12n ]
C

e o —
C

Before Instruction

C
C

4-21



ADD Add to Accumulator with Shift

Svnta)(
Direct: [<label>] ADD <dma>[,<shift>]
Indirect: [<label>] ADD ({ind}[,<shift>[,<next ARP>]]

Operands 0 < dma < 127
0O < nextARP < 7
0 < shift < 15 (defaults to 0)

Execution (PC) +1 —» PC .
(ACC) + [(dma) x 2shift] - AcC

If SXM = 1:
Then (dma) is sign-extended.
If SXM = 0:

Then (dma) is not sign-extended.

Affects OQV; affected by OVM and SXM.
Affects C (TMS320C25).

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct: I 0O 0 0 o I Shift | 0 I Data Memory Address l
Indirect:] 0 0 0 0| Shift [ 1] See Section 4.1 B

Description  The contents of the addressed data memory location are left-shifted and
added to the accumulator. During shifting, low-order bits are zero-filled.
High-order bits are sign-extended if SXM = 1 and zero-filled if SXM = 0.
The result is stored in the accumulator.

Words 1
Cycles
Cycle Timings for a Single Instruction
Pi/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 2+d 1+p 2+d+p - -
'‘C25 1 2+d 1+p 2+d+p 1 2+d
~ Cycle Timings for a Repeat Execution
'20 n 2n+nd n+p 2n+nd+p - -
'C25 n 1+n+nd n+p 1+n+nd+p n 1+n+nd
Example ADD DAT1,3 ;(DP = 10)
or
ADD *,3 ;If current auxiliary register contains 1281.
Before Instruction After Instruction

Data Data

Magary Maga

1281 1281

acc o
C C

4-22



Add to Accumulator

ADDC with Carry (TMS320C25) ADDC
Syntax
Direct: [<label>] ADDC <dma>
Indirect: [<label>] ADDC {ind}[,<next ARP>]
Operands 0 <dma < 127
0 < next ARP < 7
Execution (PC) +1 - PC
(ACC) + (dma) + (C) » ACC
Affects OV and C; affected by OVM.
Encoding 15 14 13 12 11 10 9 7 6 5 4 2 1 0
Direc:| 0 1 0 0 0 1 1]o | Data Memory Address |
Indirect:{ 0 1 0 0 0 1 1] | See Section 4.1 |

Description
Words
Cycles
'C25
‘C25

The contents of the addressed data memory location and the value of the
carry bit are added to the accumulator. The carry bit is then affected in the
normal manner.

The ADDC instruction can be used in performing multiple-precision arith-

metic.
1
Cycle Timings for a Single Instruction
P1/Dl PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n I 1+n+nd I n+p I 1+n+nd+p I n | 1+n+nd

4-23



Add to Accumulator

ADDC with Carry (TMS320C25) ADDC
Example 1 ADDC DATS ;(DP = 8)
or
ADDC * ;If current auxiliary register contains 1029.
Before Instruction After Instruction

Data Data
N —— - @
C C

Example 2 ADDC DATS ;(DP = 8)
or
ADDC * ;If current auxiliary register contains 1029.
Before Instruction After Instruction .

Data Data
ACC OFFFFFFFFh ACC
C c

4-24



Add to High Accumulator

ADDH

Syntax
Direct: [<label>] ADDH <dma>
Indirect: [<label>] ADDH {ind}[,<next ARP>]
Operands 0 < dma < 127
0 < next ARP <7
Execution (PC) +1 - PC
(ACC) + [(dma) x 216] - AcC
Affects OV; affected by OVM.
Affects C (TMS320C25).
Low-order bits of the ACC not affected.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct: L 0 1 0o o0 1 c o0 0 ] 0 I Data Memory Address |

Indirect{0 1 0 0 1 0 0 of1 |

Description

Words

Cycles

’

20

'C25

20
'C25

Example

See Section 4.1 I

The contents of the addressed data memory location are added to the upper
half of the accumulator (bits 31 through 16). Low-order bits are unaffected
by ADDH. The carry bit (C) on the TMS320C25 is set if the result of the
addition generates a carry; otherwise, C is unaffected. The carry bit can
only be set, not reset, by the ADDH instruction.

The ADDH instruction may be used in performing 32-bit arithmetic.
] ‘

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
2n+nd n+p 2n+nd+p - -
n 1+n+nd n+p 1+n+nd+p n 1+n+nd
ADDH DATS ; (DP = 8)
or
ADDH * ;If current auxiliary register contains 1029.

Before Instruction After Instruction

Data Data
1029 1029

C C

4-25



Add to Accumulator

4-26

ADDK Short Immediate (TMS320C25) ADDK
Syntax [<label>] ADDK <constant>
Operands 0 < constant < 255
- Execution (PC) +1 = PC

(ACC) + 8-bit positive constant > ACC

Affects OVM and C; affected by OVM.

Not affected by SXM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(1 1 o o 1 1 o o] 8-Bit Constant |
Description  The 8-bit immediate value is added, right-justified, to the accumulator with

the result replacing the accumulator contents. The immediate value is

treated as an 8-bit positive number, regardless of the value of SXM.
Words 1
Cycles

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'C25 1 1 1+p " 1+p 1 1
Cycle Timings for a Repeat Execution
'C25 not repeatable

Example ADDK 5h

Before Instruction After Instruction

ace {[_memzen ] acc [§ [_voszeon ]
C C



ADDS

Add to Accumulator

with Sign-Extension Suppressed ADDS

Syntax

Direct:
Indirect:

Operands

Execution

Encoding

Indirect] 0 1 0 0 1 0 0O

Description

Words

Cycles

‘20
'C25

20
‘C25

Example

[<label>] ADDS <dma>
[<label>] ADDS ({ind}[,<next ARP>]

0 <dma <127
0 < next ARP < 7

(PC) +1 - PC
(ACC) + (dma) = ACC
(dma) is a 16-bit unsigned number.

Affects OV; affected by OVM.

Affects C (TMS320C25).

Not affected by SXM.

10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11

Direct|0 1 0 0 1 0 o0

1 I 0 I Data Memory Address l

A EN

See Section 4.1 J

The contents of the specified data memory location are added with sign-
extension suppressed. The data is treated as a 16-bit unsigned number,
regardless of SXM. The accumulator behaves as a signed number. Note
that ADDS produces the same results as an ADD instruction with SXM =
0 and a shift count of 0.

1

Cycle Timings for a Single Instruction
P1/Di Pi/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
2n+nd n+p 2n+nd+p - -
1+n+nd n+p 1+n+nd+p n 1+n+nd
ADDS DAT11 ; (DP = 6)
or
ADDS * ;If current auxiliary register contains 779.
Before Instruction After Instruction
Data Data
Memory 0F006h Memory OF006h

soe Q] ace [§ oo ]
C C

4-27



Add to Accumulator

ADDT with Shift Specified by T Register ADDT
Syntax

Direct: [<label>] ADDT <dma>
Indirect: [<label>] ADDT ({ind}[,<next ARP>]

Operands 0 <dma < 127
0 < next ARP <7
Execution (PC) +1 - PC )
(ACC) + [(dma) x 2T register(3-0)] - (ACC)
If SXM = 1:
Then (dma) is sign-extended.
If SXM = 0:
Then (dma) is not sign-extended.
Affects OV, affected by SXM and OVM.
Affects C (TMS320C25).
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Directt|0 1 0o 0o 1 0o 1 oo | Data Memory Address |
Indirect| 0 1 0 0 1 0 1 o1 | See Section 4.1 |

The data memory value is left-shifted and added to the accumulator, with
the result replacing the accumulator contents. The left-shift is defined by
the four LSBs of the T register, resulting in shift options from 0 to 15 bits.
Sign extension on the data memory value is controlled by SXM.

Words 1

Description

Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
‘20 1 2+d 1+p 2+d+p - -
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
20 n 2n+nd n+p 2n+nd+p - -
'‘C25 n 1+n+nd n+p 1+n+nd+p n 1+n+nd

4-28




Add to Accumulator

ADDT with Shift Specified by T Register ADDT
Example ADDT DAT127 ;(DP = 4)
or
ADDT * ;If current auxiliary register contains 639.
Before Instruction After Instruction
Data Data
Memory Memory
639 639
T OFF94h T OFF94h
ACC OF715h ACC @ OF7A5h
C C

4-29



Add to Accumulator

ADLK Long Immediate with Shift ADLK
Syntax [<label>] ADLK <constant>[,<shift>]
Operands 16-bit constant
0 < shift < 15 (defaults to 0)
Execution (PC) +2 - PC _
(ACC) + [constant x 2shift] - AcC
If SXM = 1:
Then -32768 < constant < 32767.
If SXM = 0:
Then 0 < constant < 65535.
Affects OV; affected by OVM and SXM.
Affects C (TMS320C25).
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
1 1 0 1| Shift [0 o o o o o 1 o
16-bit Constant
Description  The 16-bit immediate value, left-shifted as specified, is added to the accu-
mulator. The result replaces the accumulator contents. SXM determines
whether the constant is treated as a signed two’s-complement number or
as an unsigned number. The shift count is optional and defaults to zero.
Words 2
Cycles
Cycle Timings for a Single Instruction
P1/Dl PI/DE PE/DI PE/DE PR/DI PR/DE
20 2 2 2+2p 2+2p - -
'C25 2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
20 not repeatable ] - -
'C25 not repeatable
Example ADLK 5,8

4-30.

After Instruction

Acc o] 15EFh
C

Before Instruction

C



Add to Auxiliary Register

ADRK Short Immediate (TMS320C25) ADRK
Syntax [<label>] ADRK <constant>
Operands 0 < constant < 255
Execution (PC) +1 - PC
AR(ARP) + 8-bit positive constant - AR(ARP)
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
fo 1 1 1 1 1 1 0] 8-Bit Constant
Description  The 8-bit immediate value is added, right-justified, to the currently selected
auxiliary register with the result replacing the auxiliary register contents.
The addition takes place in the ARAU, with the immediate value treated as
an 8-bit positive integer.
Words 1
Cycles
Cycle Timings for a Single Instruction
Pl/DI Pl/DE PE/DI PE/DE PR/DI PR/DE
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
'C25 not repeatable
Example ADRK 80h ;(ARP = 5)

Before Instruction After Instruction

AR5 AR5 43A1h

4-31



AND 'AND with Accumulator
Syntax
Direct: [<label>] AND <dma>
Indirect: [<label>] AND {ind}[,<next ARP>]
Operands 0 < dma < 127
0 < nextARP <7
Execution (PC) +1 - PC
(ACC(15-0)).AND.(dma) = ACC(15-0)
0 - ACC(31-16)
Not affected by SXM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct: LO 1 0 0 1 1 1 0 I 0 ] Data Memory Address l
Indirecttf0 1 o o 1 1 1 o1 ] See Section 4.1 ]
Description  The lower half of the accumulator is ANDed with the contents of the ad-
dressed data memory location. The upper half of the accumulator is ANDed
with all zeroes. Therefore, the upper half of the accumulator is always ze-
roed by the AND instruction.
Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 2+d 1+p 2+d+p - -
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
'20 2n+nd n+p 2n+nd+p - -
'C25 1+n+nd n+p 1+n+nd+p n 1+n+nd
Example AND DAT16 ;(DP = 4)
or
AND * ;If current auxiliary register contains 528.

Before Instruction After Instruction

Data Data

Memory I OFFhi Memory m

ACC 12345678h ACC 00000078h
C C

4-32



AND Immediate

ANDK with Accumulator with Shift ANDK
Syntax [<label>] ANDK <constant>[,<shift>]
Operands 16-bit constant
0 < shift < 15 (defaults to 0)
Execution (PC) +2 » PC )
(ACC(30-0)).AND.[(constant x 2shifty] - ACC(30-0)
0 —» ACC(31) and all other bit positions unoccupied by shifted constant.
Not affected by SXM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 0 1] Shift [ o o o o o 1 o0 o
16-bit Constant
Description  The 16-bit immediate constant is left-shifted as specified and ANDed with
the accumulator. The result is left in the accumulator. Low-order bits below
and high-order bits above the shifted value are treated as zeroes, clearing
the corresponding bits in the accumulator. Note that the accumulator’s
most-significant bit is always zeroed regardless of the shift-code value.
Words 2
Cycles
Cycle Timings for a Single Instruction
Pl/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 2 2 2+2p 2+2p - -
'C25 2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
20 not repeatable T - -
'C25 not repeatable
Example ANDK OFFFFh, 12

Before Instruction After Instruction

: C C

4-33



APAC

Add P Register to Accumulator

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

20
'C25

20
'C25

Example

4-34

[<label>] APAC
None

(PC) +1 > PC
(ACC) + (shifted P register) = ACC

Affects QV; affected by PM and OVM.
Affects C (TMS320C25).
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[t 1 0o o 1 1 1 0 0 0 0 1 0 1 0 1]

The contents of the P register are shifted as defined by the PM status bits
and added to the contents of the accumulator. The result is left in the ac-
cumulator. APAC is not affected by the SXM bit of the status register; the
P register is always sign-extended.

The APAC instruction is a subset of the LTA, LTD, MAC, MACD, MPYA,
and SQRA instructions.

1

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/Di PE/DE PR/DI PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n+p n+p - -
n n+p n+p n n
APAC ;(PM = 0)
Before Instruction After Instruction
P 40h P 40h
ACC 20h Acc [o] 60h

o [X]



Branch Unconditionally B

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
'20
‘C25
20
'C25
Example

[<label>] B <pma>[,{ind}[,<next ARP>]]

0 < pma < 65535
0 < next ARP <7

pma = PC
Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

T 1 1 1 1 1 1 1 1] See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified, and control
passes to the designated program memory address (pma). Note that no
AR or ARP modification occurs if nothing is specified in those fields. Pma
can be either a symbolic or a numeric address.

2

Cycle Timings for a Single Instruction

P1/DI I PI/DE PE/DI | PE/DE PR/DI PR/DE
2 (br int-to-int) 2+p (int-to-ext) - -
2+p {ext-to-int) 2+2p (ext-to-ext) - -

True Conditions:
Destination on-chip RAM:
2 2

2+2p 2+2p 2 2

Destination on-chip ROM:

3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p

False Condition:

Destination anywhere: -

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable [ - -

not repeatable

B PRG191 ;191 is loaded into the program counter,
;and the program continues running from
;that location.

4-35



BACC

Branch to Address Specified by Accumulator

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
'20
‘C25
20
‘C25
Example

4-36

[<label>] BACC
None
(ACC(15-0)) = PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[+ 1+ 0 0o 1t 1 1 0 o o 1 0o o 1 o 1]

The branch uses the lower half of the accumulator (bits 15-0) for the
branch address.

1

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 2 2+p 2+p - -
Destination on-chip RAM: ‘
2 2 2+p 2+p 2 2
Destination on-chip ROM:
3 3 3+p 3+p 3 3
Destination external memory:
3+p 3+p 3+2p 3+2p 3+p 3+p
Cycle Timings for a Repeat Execution
not repeatable j - l -
not repeatable

BACC

Before Instruction After Instruction

PC 16E4h PC 9545h

acc [¥ [oFrrrsssn ] acc [ [oF7rrosesn |
C - C



Branch on Auxiliary Register Not Zero BANZ

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

‘20

'C25

20
'C25

[<label>] BANZ <pma>[,{ind}[,<next ARP>]]

0 < pma < 65535
0 < next ARP <7

If AR(ARP)# O:
Then pma = PC;
Eise (PC) + 2 » PC.
Modify AR(ARP) as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 1 1 1 0 1 1 1] See Section 4.1

Program Memory Address

Control is passed to the designated program memory address (pma) if the
current auxiliary register is not equal to zero. Otherwise, control passes to
the next instruction. The current auxiliary register and ARP are also modi-
fied as specified.

The current auxiliary register is either incremented or decremented from zero
when the branch is not taken. Note that the AR modification defaults to

(decrement current AR by one) when nothing is specified, making it
compatlble with the TMS320C1x. Pma can be either a symbollc or a nu-
meric address.

2

Cycle Timings for a Single Instruction

PI/DI | PI/DE PE/DI | PE/DE PR/DI PR/DE
2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -

True Conditions:
Destination on-chip RAM:
2 2

2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p

False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution
not repeatable - l -
not repeatable

4-37



BANZ Branch on Auxiliary Register Not Zero

Example 1 BANZ PRG35, *-
Before Instruction After Instruction
Pc Pc
or
AR AR OFFFFh
PC 46h PC 48h
Example 2 BANZ PRG64 , *+
Before Instruction After Instruction
AR oFFFFh AR
PC 117h PC 64h
or
PC 117h PC 119h
Note:

BANZ is designed for loop control using the auxiliary registers as loop
counters. Using *0+ or *0- allows modification of the loop counter by
a variable step size. Care must be exercised when doing this, however,
because the auxiliary registers behave as modulo 65536 counters, and
zero may be passed without being detected if ARO > 1.

4-38



Branch on Bit Not Equal to Zero BBNZ

Syntax [<label>] BBNZ <pma=>{/{ind}[,<next ARP>]]

Operands 0 < pma < 65535
0 < next ARP < 7

Execution If test/control (TC) status bit = 1:
Then pma - PC;
Eise (PC) + 2 - PC.
Modify AR (ARP) and ARP as specified.

Affected by TC.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
11 1 1 1 0o 0 1 1] See Section 4.1
Program Memory Address

Description  The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address if TC = 1. Other-
wise, control passes to the next instruction. Note that no AR or ARP
modification occurs if nothing is specified in those fields. Pma can be either
a symbolic or a numeric address. Note that the TC bit may be affected by
the BIT, BITT, CMPR, LST1, NORM, RTC, and STC instructions.

Words 2

Cycles
Cycle Timings for a Single Instruction
PI/DI | PI/DE PE/DI | PE/DE PR/DI PR/DE
'20 2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -
'C25 | True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
'20 not repeatable - -
'‘C25 not repeatable
Example BBNZ PRG650 ;If TC = 1, 650 is loaded into the

;program counter; otherwise, the
;program counter is incremented
;by 2.
; 2

4-39



BBZ

Branch on Bit Equal to Zero

Syntax [<label>] BBZ <pma>[{ind}[,<next ARP>]]
Operands 0 < pma < 65535
0 < next ARP < 7
Execution If test/control (TC) status bit = O:
Then pma - PC;
Else (PC) + 2 - PC.
Modify AR(ARP) and ARP as specified.
Affected by TC bit.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 0 0 o0 1] See Section 4.1
Program Memory. Address
Description  The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address if TC = 0. Other-
wise, control passes to the next instruction. No AR or ARP modification
occurs if nothing is specified in those fields. Pma can be either a symbolic
or a numeric address. Note that the TC bit is affected by the BIT, BITT,
CMPR, LST1, NORM, RTC, and STC instructions.
Words 2
Cycles
. Cycle Timings for a Single Instruction
PI/DI | PI/DE PE/DI | PE/DE PR/DI PR/DE
20 2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -
'C25 | True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
20 not repeatable - -
'‘C25 not repeatable
Example BBZ PRG325 ;If TC = 0, 325 is loaded into the

4-40

;program counter; otherwise, the
;program counter is incremented
;by 2

r




Branch on Carry (TMS320C25) BC

Syntax [<label>] BC <pma>[{ind}[,<next ARP>]]

Operands 0 < pma < 65535
0 < next ARP <7

Execution If carry bit C = 1:
Then pma = PC;
Else (PC) + 2 = PC.
Modify AR(ARP) and ARP as specified.

Affected by C.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
0 1 0 1 1 1 1 0 1] See Section 4.1
Program Memory Address

Description  The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address if the carry bit C is
high. Otherwise, control passes to the next instruction. Note that no AR
or ARP modification occurs if nothing is specified in those fields. Pma can
be either a symbolic or a numeric address.

Note that the carry bit C is affected by all add, subtract, and accumulate
instructions as well as the ABS, LST1, NEG, RC, SC, rotate, and shift in-
structions. The carry bit is not affected by execution of BC, BNC, or non-
arithmetic instructions.

Words 2
Cycles
Cycle Timings for a Single Instruction
p/DI | PYyDE | PE/DI | PE/DE | PR/DI | PR/DE
'C25 | True Conditions:
Destination on-chip RAM: .
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
'C25 not repeatable
Example BC PRG512 ;If the carry bit C = 1, 512 is loaded

;into the program counter; otherwise,
;the PC is incremented by 2.

4-41



Branch if Accumulator

BGEZ Greater Than or Equal to Zero BGEZ
Syntax [<label>] BGEZ <pma>[{ind}[,<next ARP>]]
Operands 0 < pma < 65535
0 < next ARP <7
Execution If (ACC) = O:
Then pma = PC;
Eise (PC) + 2 » PC.
Modify AR (ARP) and ARP as specified.
Encoding 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 1 1 0 1 0 0 1| See Section 4.1
Program Memory Address
Description  The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the con-
tents of the accumulator are greater than or equal to zero. Otherwise,
control passes to the next instruction. Note that no AR or ARP modification
occurs if nothing is specified in those fields. Pma can be either a symbolic
or a numeric address.
Words 2
Cycles
Cycle Timings for a Single Instruction
PI/DI | PI/DE PE/DI | PE/DE PR/DI PR/DE
'20 2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -
'C25 | True Conditions: :
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
'20 not repeatable J - -
'C25 not repeatable
Example BGEZ PRG217 ;217 is loaded into the program

4-42

;counter if the accumulator is
;jgreater than or equal to zero.



Branch if Accumulator Greater Than Zero BGZ

Syntax
Operands
Execution
Encoding
Descriptien
Words
Cycles
20
'C25
20
'C25
Example

[<label>] BGZ <pma=>[,{ind}[,<next ARP>]]

0 < pma < 65535
0 < nextARP < 7

If (ACC) > 0:
Then pma - PC,
Else (PC) + 2 » PC.
Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 1 1| See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the con-
tents of the accumulator are greater than zero. Otherwise, control passes
to the next instruction. Note that no AR or ARP modification occurs if
nothing is specified in those fields. Pma can be either a symbolic or a nu-
meric address.

2
Cycle Timings for a Sihgle Instruction
PI/DI | PI/DE PE/DI | PE/DE PR/DI PR/DE
2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -
True Conditions:
Destinaticn on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:

2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution )
not repeatable - I -

not repeatable
BGZ PRG342 ;342 is loaded into the program

;counter if the accumulator is
;jgreater than zero.

4-43



BlOZ

Branch on I/O Status Equal to Zero

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

Example

4-44

‘20

'C25

20
'C25

[<label>] BIOZ <pma>[J{ind}[,<next ARP>]]

0 < pma < 65535
0 < next ARP <7

If BIO = O:
Then pma = PC;
Else (PC) + 2 » PC. .
Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 1 0 1] See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the BIO
pin is low. Otherwise, control passes to the next instruction. Note that no
AR or ARP modification occurs if nothing is specified in those fields. Pma
can be either a symbolic or a numeric address.

BIOZ in conjunction with the BIO pin can be used to test if a peripheral is
ready to send or receive data. Polling the BIO pin using BIOZ may be pre-
ferable to an interrupt when executing time-critical loops.

2

Cycle Timings for a Single Instruction

P1/DI ] PI/DE PE/DI L PE/DE PR/DI PR/DE
2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -

True Conditions:
Destination on-chip RAM:
2 2

2+2p 2+2p 2 2

Destination on-chip ROM:
3 3 3+2p 3+2p 3 3

Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p

False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution
not repeatable I - | .-
not repeatable

BIOZ PRG64 ;If the BIO pin is active (low),
;then a branch to location 64
;occurs.



Test Bit

BIT

Syntax

Direct:
Indirect:

Operands

Execution

Encoding

Direct:l 1 0o 0 1 l

Indirect:|1 0 0 1|

[<label>] BIT <dma>,<bit code>
[<label>] BIT {ind} <bit code>[,<next ARP>]

0 < dma < 127

0 < next ARP <7

0 < bitcode < 15

(PC) +1 - PC

(dma bit at bit address (15-bit code)) = TC.

Affects TC.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BitCode | 0] H

Data Memory Address

Bit Code I 1 I See Section 4.1 I

The BIT instruction copies the specified bit of the data memory value to the
TC bit of status register ST1. Note that the BITT, CMPR, LST1, and NORM
instructions also affect the TC bit in status register ST1. A bit code value
is specified that corresponds to a certain bit address in the instruction, as
given by the following table:

Bit Code

Bit Address 11109 8
(LSB) 0 1111
1 17110

2 1101

3 17100

4 1011

5 1010

6 1001

7 17000

8 0111

9 0110

10 0101
1 0100
12 0011
13 0010
14 0001
(MSB) 15 0000

Description
Words
Cycles
20
'C25
'20
'C25

Cycle Timings for a Single Instruction
PI1/DI PI/DE PE/DI PE/DE PR/DI ' PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
2n+nd n+p 2n+nd+p - -
1+n+nd n+p 1+n+nd+p n 1+n+nd

4-45



BIT Test Bit
Example BIT Oh,8h ;(DP = 488)
or
BIT *,8 ;If current auxiliary register contains OF400h.
Befor‘e Instruction After Instruction
Data Data
Memory 7E98h Memory 7E98h
OF400h 0OF400h
e o

4-46

Special circumstances and results have been identified when using this in-
struction with the TMS32020. Under the following conditions, the BIT in-
struction may affect the contents within the accumulator:

1)  The overflow mode is set (the OVM status register bit is set to one).
2)  And, the two LSBs of the BIT instruction opcode word are zero.
a) If direct memory addressing is used, every fourth data word is
affected while all other locations remain unaffected.
b)  If indirect memory addressing is used, the two LSBs will be zero
when a new ARP is not selected or when a new ARP is selected
and that ARP is O or 4.
3) And, adding the contents of the accumulator and the contents of the
addressed data memory location, shifted by 2(Pit code) "cayuses an ov-
erflow of the accumulator.

When all of these conditions are met, the contents of the accumulator will
be replaced by a positive or negative saturation value, depending on the
polarity of the overflow. To avoid this phenomenon, see “"TMS32020
PRODUCT NOTIFICATION" in Appendix A.



Test Bit Specified by T Register

BITT

Syntax

Direct:
Indirect:

Operands

Execution

Encoding

[<label>] BITT <dma>

[<label>] BITT {ind}[,<next ARP>]

0 <dma < 127
0 < next ARP <7

(PC) +1 - PC
(dma bit at bit address (15-T register(3-0))) = TC

10 9

7 6

5

4

2 1

0

Direct:l 0 1

1

1]o0 |

Data Memory Address

Affects TC.

15 14 13 12 11
1 0
1 0

Indirect:[ 0 1

Description
Words
Cycles
'20
‘'C25
'20
'C25

1

1] ]

See Section 4.1

The BITT instruction copies the specified bit of the data memory value to

the TC bit of status register ST1.
NORM instructions also affect the TC bit in status register ST1.

Note that the BIT, CMPR, LST1, and
The bit

address is specified by a bit code value contained in the LSBs of the T
register, as given in the following table:

Bit Address

(LSB) O

CONOUTAhWN =

10
11
12
13
14

(MSB) 15

CO0CO00O00OR=_rasaaa Wy
OO0 === 0000===2= |07

()
=0

CO—==200==00=="00=--

Qo

=000, 0=20=_0~=0= |0

Cycle Timings for a Single Instruction

Pl/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
2n+nd n+p 2n+nd+p - -
1+n+nd n+p 1+n+nd+p n 1+n+nd

4-47



BITT

Test Bit Specified by T Register

Example BITT

or
BITT

4-48

Oh ;Value in T register points to bit 14 of
;data word (DP = 240).
* ;If current auxiliary register contains 7800h.
Before Instruction After Instruction
Data Data
Memory 4DC8h Memory 4DC8h
7800h 7800h
C | e



Branch if Accumulator

BLEZ Less Than or Equal to Zero BLEZ
Syntax [<label>] BLEZ <pma>[{ind}[,<next ARP>]]
Operands 0 < pma < 65535
0 <next ARP <7
Execution If (ACC) <O
Then pma - PC;
Else (PC) + 2 - PC.
Modify AR(ARP) and ARP as specified.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 1 0 1 | See Section 4.1
Program Memory Address
Description  The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the con-
tents of the accumulator are less than or equal to zero. Otherwise, control
passes to the next instruction. Note that no AR or ARP modification occurs
if nothing is specified in those fields. Pma can be either a symbolic or a
numeric address.
Words 2
Cycles
Cycle Timings for a Single Instruction
P1/DI l PI/DE PE/DI I PE/DE PR/DI PR/DE
20 2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -
'C25 | True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
20 not repeatable L - I -
'C25 not repeatable
Example BLEZ PRG63 ;63 is loaded into the program counter if

;the accumulator is less than or equal to
;zero.

4-49



BLKD

Block Move
from Data Memory to Data Memory BLKD

Syntax
Direct:
Indirect:

Operands

Execution

Encoding
Direct:

Indirect:

Description

4-50

[<label>] BLKD <dmal>,<dma2>
[<label>] BLKD <dma1l>{ind}[,<next ARP>]

0 < dmal < 65535
0 < dma2 < 127
0 < next ARP <7

TMS32020:

(PC) + 2 - TOS
dmal - PC

If (repeat counter) # O:

Then (dma1, addressed by PC) - dma2,
Modify AR(ARP) and ARP as specified,
(PC) + 1 - PC,

(repeat counter) - 1 — repeat counter.

Else (dma1, addressed by PC) - dma2
Modify AR(ARP) and ARP as specified.
(TOS) —» PC

TMS320C25:

(PC) +2 > PC
(PFC) - MCS
dmal - PFC

If (repeat counter) # O:

Then (dma1, addressed by PFC) —» dma2,
Modify AR(ARP) and ARP as specified,
(PFC) +1 = PFC,

(repeat counter) - 1 — repeat counter.

Else (dma1, addressed by PFC) — dma2
Modify AR(ARP) and ARP as specified.
(MCS) - PFC
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 0 1] 0 I Data Memory Address |
Data Memory Address1

11 1 1 1 1 0 1)1 See Section 4.1
Data Memory Address1

Consecutive memory words are moved from a source data memory block
to a destination data memory block. The starting address (lowest) of the
source block is defined by the second word of the instruction. The starting
address of the destination block is defined by either the dma contained in
the opcode (for direct addressing) or the current AR (for indirect address-
ing). In the indirect addressing mode, both the current AR and ARP may
be modified in the usual manner. In the direct addressing mode, dma2 is
used as the destination address for the block move but is not modified upon
repeated executions of the instruction. Thus, the contents of memory at the



BLKD

Block Move
from Data Memory to Data Memory BLKD

Words

Cycles

‘20

'C25

'20

'C256

dma2 address will be the same as the contents of memory at the last dma1
address in a repeat sequence.

RPT or RPTK must be used with the BLKD instruction, in the indirect ad-
dressing mode, if more than one word is to be moved. The number of
words to be moved is one greater than the number contained in the repeat
counter RPTC at the beginning of the instruction. At the end of this in-
struction, the RPTC contains zero and, if using indirect addressing,
AR(ARP) will be modified to contain the address after the end of the des-
tination block. Note that the source and destination blocks do NOT have
to be entirely on-chip or off-chip. However, BLKD cannot be used to
transfer data from a memory-mapped register to any other location in data
memory.

The PC points to the instruction following BLKD after execution. Interrupts
are inhibited during a BLKD operation used with RPT or RPTK.

The BLKD instruction on the TMS32020 uses one leve! of stack. Therefore,
the value on the bottom of the stack is lost since the stack is pushed and
popped during the instruction operation.

2
Cycle Timings for a Single Instruction
p/Di | PyDE | PE/DI | PE/DE | PR/DI | PR/DE
Data source internal:t
3+d 3+2p 3+d+2p - -
Data source external:t
3+d 4+2d 3+d+2p 4+2d+2p - -
Source data in on-chip RAM:
3+d 3+2p 3+d+2p 3 3+d
Source data in external memory:
4+d 4+2d A+d+2p  4+2d+2p 4+d 4+2d

Cycle Timings for a Repeat Execution

Data source internal:t
2+n 2+n+nd 2+n+2p 2+n+nd+2p - -
Data source external:T
2+n+nd 2+2n+2nd 2+n+nd 2+2n+2nd - -
+2p +2p

Source data in on-chip RAM:
2+n 2+n+nd 2+n+2p 2+n+nd+2p 2+n 2+n+nd

Source data in external memory:
3+n+nd  2+2n+2nd 3+n+nd 2+2n+2nd 3+n+nd 2+2n+2nd

+2p +2p

tColumn headings ‘DI/DE’ refer to data destination.

4-51



Block Move

BLKD from Data Memory to Data Memory BLKD
Example RPTK 2 .
BLKD OF400h, *+ ;If current auxiliary register
;contains 1030.
dmal
Before Instruction After Instruction
Data Data
Memory 7F98h Memory 7F98h
62464 62464
Data Data
Memory OFFE6h Memory OFFE6h
62465 62465
Data Data
Memory 9522h Memory 9522h
62466 62466
dma2
Before Instruction After Instruction
Data Data
Memory 8DEEh Memory 7F98h
1030 1030
Data Data
Memory 9315h Memory OFFEGh
1031 1031
Data Data
Memory 2531h Memory 9522h
1032 1032

4-52



Block Move

BLKP from Program Memory to Data Memory BLKP
Syntax
Direct: [<label>] BLKP <pma>,<dma>
Indirect: [<label>] BLKP <pma> {ind}[,<next ARP>]
Operands 0 < pma < 65535
0 < dma < 127
0 < next ARP < 7
Execution TMS32020:
(PC) + 2 > TOS
pma = PC
If (repeat counter) # O:
Then (pma, addressed by PC) — dma,
Modify AR(ARP) and ARP as specified,
(PC) +1 - PC,
(repeat counter) - 1 = repeat counter.
Else (pma, addressed by PC) — dma
Modify AR(ARP) and ARP as specified.
(TOS) - PC
TMS320C25:
(PC) +2 - PC
(PFC) - MCS
pma = PFC
If (repeat counter) # O: ‘
Then (pma, addressed by PFC) = dma,
Modify AR(ARP) and ARP as specified,
(PFC) +1 - PFC,
(repeat counter) - 1 — repeat counter.
Else (pma, addressed by PFC) — dma
Modify AR(ARP) and ARP as specified.
(MCS) - PFC
 Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direct: | 1 1 1 1 1 1 0 0 I 0 ] Data Memory Address
Program Memory Address
Indirect:{ 1 1 1 1 1 1 0 of1] See Section 4.1
Program Memory Address
Description  Consecutive memory words are moved from a source program memory

block to a destination data memory block. The starting address (lowest)
of the source block is defined by the second word of the instruction. The
starting address of the destination block is defined by either the dma con-
tained in the opcode (for direct addressing) or the current AR (for indirect
addressing). In the indirect addressing mode, both the ARP and the current
AR may be modified in the usual manner. In the direct addressing mode,
dma is used as the destination address for the block move but is not modi-
fied by repeated executions of the instruction. Thus, the contents of mem-

4-53



BLKP

Block Move

from Program Memory to Data Memory BLKP

Words

Cycles

4-54

20

'C25

'20

'C25

ory at the dma address will be the same as the contents of memory at the
last pma ad_dress in a repeat sequence.

RPT or RPTK must be used with the BLKP instruction if more than one
word is to be moved. The number of words to be moved is one greater than
the number contained in the repeat counter RPTC at the beginning of the
instruction. At the end of this instruction, the RPTC contains zero and, if
using indirect addressing, AR(ARP) will be modified to contain the address
after the end of the destination block. Note that source and destination
blocks do NOT have to be entirely on-chip or off-chip.

The PC points to the instruction following BLKP after execution. Interrupts
are inhibited during a BLKP operation.

The BLKD instruction on the TMS32020 uses one level of stack. Therefore,
the value on the bottom of the stack is lost since the stack is pushed and
popped during the instruction operation.

If the MP/MC pin on the TMS320C25 is low at the time of execution of this
instruction and the program memory address used is less than 4096, an
on-chip ROM location will be read.

2
Cycle Timings for a Single Instruction
p/Di | PyDE | PE/DI | PE/DE | PR/DI | PR/DE
Program source internal:T
'3 3+d 3+2p 3+d+2p - -
Program source external:t
3+p 4+d+p 3+3p 4+d+3p - -
Table in on-chip RAM:
3 3+d 4+2p 4+d+2p 4 4+d
Table in on-chip ROM:
4 4+d 4+2p 4+d+2p 4 4+d
Table in external memory:
4+p 4+d+p 4+3p 4+d+3p 4+p 4+d+p
Cycle Timings for a Repeat Execution
Program source internal:T
2+n 2+n+nd 2+n+2p 2+n+nd+2p - -
Program source external:t
2+n+np 2+2n+nd 2+n+np 2+2n+nd+np - -
+np +2p +2p
Table in on-chip RAM: ]
2+n 2+n+nd 3+n+2p 3+n+nd+2p 3+n 3+n+nd
Table in on-chip ROM:
3+n 3+n+nd 3+n+2p 3+n+nd+2p 3+n 3+n+nd
Table in external memory:
3+n+np 2+2n+nd 3+n+np 2+2n+nd+np 3+n+np 2+2n+nd
+np +2p +2p +np

tColumn headings 'Di/DE’ refer to data destination.

'



Block Move

BLKP from Program Memory to Data Memory BLKP
Example RPTK 2
BLKP 65120, *+ ;If current auxiliary register

;contains 2048.

pma
Before Instruction After Instruction
Program Program
Memory 0A089h Memory 0A089h
65120 65120
Prbgram Program
Memory 2DCEh Memory 2DCEh
65121 65121
Program - Program
Memory 3A9Fh Memory 3A9Fh
65122 65122
dma
Before Instruction _ After Instruction
Data Data
Memory 1234h Memory 0A089h
2048 2048
Data Data
Memory 2005h Memory 2DCEh
2049 2049
Data Data
Memory OE98Ch Memory : 3A9Fh
- 2050 2050

4-55



BLZ Branch if Accumulator Less Than Zero
Syntax [<label>] BLZ <pma>[{ind}[,<next ARP>]]
Operands 0 < pma < 65535
0 < next ARP <7
Execution If (ACC) < 0:
Then pma - PC;
Else (PC) + 2 » PC.
Modify AR(ARP) and ARP as specified.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 1 1 1 | See Section 4.1
Program Memory Address
Description  The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the con-
tents of the accumulator are less than zero. Otherwise, control passes to the
next instruction. Note that no AR or ARP modification occurs when no-
thing is specified in those fields. Pma can be either a symbolic or a numeric
address.
Words 2
Cycles
Cycle Timings for a Single Instruction
PI/DI | PI/DE PE/DI | PE/DE PR/DI PR/DE
20 2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -
'C25 True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
20 not repeatable . - -
'C25 not repeatable
Example BLZ PRG481 ;481 is loaded into the program counter

4-56

;1f the accumulator is less than zero.



Branch on No Carry (TMS320C25) BNC

Syntax [<label>] BNC <pma>[{ind}[,<next ARP>]]

Operands 0 < pma < 65535
0 < next ARP <7

Execution If carry bit C = 0:
Then pma - PC;
Else (PC) + 2 - PC.
Modify AR(ARP) and ARP as specified.

Affected by C.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 1 1 1 1 1 1 I See Section 4.1
Program Memory Address

Description  The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address if the carry bit C is
low. Otherwise, control passes to the next instruction. Note that no AR
or ARP modification occurs when nothing is specified in those fields. Pma
can be either a symbolic or a numeric address.

Note that the carry bit C is affected by all add, subtract, and accumulate
instructions as well as the ABS, LST1, NEG, RC, SC, rotate, and shift in-
structions. The carry bit is not affected by execution of the BC, BNC, or
nonarithmetic instructions.

Words 2

Cycles

Cycle Timings for a Single Instruction
p/pi | pype | PeE/pl | PE/DE | PR/DI | PR/DE

'C25 | True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2

Destination on-chip ROM:
3 3

3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:

Destination anywhere:

2 2 2+2p 2+2p 2 2

. Cycle Timings for a Repeat Execution
‘C25 not repeatable
Example BNC PRG325 ;If the carry bit C = 0, 325 is loaded into

;the program counter. Otherwise, the PC is
jincremented by 2.

4-57



BNV

Branch if No Overflow

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
20
'C25
'20
'C25
Example

[<label>] BNV <pma>[{ind}[,<next ARP>]]

0 < pma < 65535
0 < next ARP <7

If overflow QV status bit = O:

Then pma —» PC;

Else (PC) + 2 » PCand 0 = OV.
Modify AR(ARP) and ARP as specified.

Affects QV; affected by OV.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

11 1 1 0 1 1 1 1] See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the OV
(overflow flag) is clear. Otherwise, the OV is cleared, and control passes
to the next instruction. Note that no AR or ARP modification occurs if
nothing is specified in those fields. Pma can be either a symbolic or a nu-

meric address.
2

Cycle Timings for a Single Instruction

PI/DI | PI/DE PE/DI | PE/DE PR/DI PR/DE
2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -

True Conditions:

Destination on-chip RAM:

2 2 2+2p 2+2p 2 2

Destination on-chip ROM:

3 3 3+2p 3+2p 3 3

‘Destination external memory: )

3+p 3+p 3+3p 3+3p 3+p 3+p

False Condition:

Destination anywhere:

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable - I -

not repeatabie

BNV PRG315 ;315 is loaded into the program counter
;1f the overflow flag is clear. OV is
;cleared.




Branch if Accumulator Not Equal to Zero BNZ

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
20
'C25
'20
'C25
Example

[<label>] BNZ <pma>[{ind}[,<next ARP>]]

0 < pma < 65535
0 < next ARP < 7

If (ACC) # O:
Then pma - PC;
Else (PC) + 2 - PC.
Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1 1 1 1 0 1 0 1 1 | See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the con-
tents of the accumulator are not equal to zero. Otherwise, control passes
to the next instruction. Note that no AR or ARP modification occurs if
nothing is specified in those fields. Pma can be either a symbolic or a nu-
meric address.

2

Cycle Timings for a Single Instruction

Pl/DI | PI/DE PE/DI [ PE/DE PR/DI PR/DE
2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -

True Conditions:
Destination on-chip RAM:
2 2

2+2p 2+2p 2 2

Destination on-chip ROM:

3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p

False Condition:

Destination anywhere:

2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable - -

not repeatable

BNZ PRG320 ;320 is loaded into the program counter
;if the accumulator does not equal zero.

4-59



BV Branch on Overflow
Syntax [<label>] BV <pma>[{ind}[,<next ARP>]]
Operands 0 < pma < 65535
0 < next ARP <7
Execution If overflow (OV) status bit = 1:
Then pma = PC and 0 - QV;
Else (PC) + 2 - PC.
Modify AR(ARP) and ARP as specified.
Affects OV, affected by OV.
Encoding 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 1 1 0 0 0 0o 1| See Section 4.1
Program Memory Address
Description  The current auxiliary register and ARP are modified as specified, and the
overflow flag is cleared. Control passes to the designated program memory
address (pma) if the OV (overflow flag) is set. Otherwise, control passes
to the next instruction. Note that no AR or ARP modification occurs if
nothing is specified in those fields. Pma can be either a symbolic or a nu-
meric address.
Words 2
Cycles
Cycle Timings for a Single Instruction
P/DI | PI/DE PE/DI | PE/DE PR/DI PR/DE
'20 2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -
'C25 True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
'20 not repeatable - ] -
'‘C25 not repeatable
Example BV PRG610 ;If an overflow has occurred since the

4-60

;overflow flag was last cleared, then 610
;is loaded in the program counter. And, OV
;1s cleared.



Branch if Accumulator Equals Zero BZ

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
'20
'C25
20
'C25
Example

[<label>] BZ <pma>[{ind}[,<next ARP>]]

0 < pma < 65535
0 < next ARP <7

If (ACC) = 0:
Then pma = PC;
Eise (PC) + 2 - PC.
Modify AR(ARP) and ARP as specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

1 1 1 1 0 1 1 0 1| See Section 4.1

Program Memory Address

The current auxiliary register and ARP are modified as specified. Control
then passes to the designated program memory address (pma) if the con-
tents of the accumulator are equal to zero. Otherwise, control passes to the
next instruction. Note that no AR or ARP modification occurs if nothing is
specified in those fields. Pma can be either a symbolic or a numeric ad-
dress.

2

Cycle Timings for a Single Instruction

PI/DI | PI/DE PE/DI | PE/DE PR/DI PR/DE
2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -

True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2

Destination on-chip ROM:
3 3

3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable - -

not repeatable

BZ PRG102 ;102 is loaded into the program counter if
;the accumulator is equal to zero.

4-61



CALA

Call Subroutine Indirect

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

4-62

20
'C25

'20
'C25

[<label>] CALA
None

(PC) + 1 - TOS
(ACC(15-0)) — PC

15 14 13 12 11 100 9 8 7 6 65 4 3 2 1 0
[+ 1 0 0o 1 1 1 0 o o 1 o o 1 o0 o]

The current program counter is incremented and pushed onto the top of the
stack. Then, the contents of the lower half of the accumulator are loaded
into the PC. The carry bit on the TMS320C25 is unaffected by this in-
struction.

The CALA instruction is used to perform computed subroutine calls.
1

Cycle Timings for a Single Instruction

P1/Dl PI/DE PE/DI PE/DE PR/DI PR/DE

2 2 2+p 2+p - -
Destination on-chip RAM:
2 2 2+p 2+p 2 2
Destination on-chip ROM:
3 3 3+p 3+p 3 3
Destination external memory:
3+p 3+p 3+2p 3+2p 3+p 3+p

Cycle Timings for a Repeat Execution

not repeatable - -

not repeatable




Call Subroutine Indirect

CALA

Example

CALA

PC
ACC

Stack
(20)

Stack
(C25)

~

Before Instruction
25h

83h

32h
75h
84h
49h

32h
75h
84h
49h
Oh
Oh
Oh
Oh

PC
ACC

Stack
(20)

Stack
(C25)

After Instruction
83h

83h

26h
32h
75h
84h

26h
32h
75h
84h
49h

Oh

Oh

Oh

4-63



CALL Call Subroutine
Syntax [<label>] CALL <pma>[{ind}[,<next ARP>]]
Operands 0 < pma < 65535
0 < next ARP <7
Execution (PC) +2 > TOS
pma - PC
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 1 1 1 0 1] See Section 4.1
Program Memory Address
Description  The current auxiliary register and ARP are modified as specified, and the
PC (program counter) is incremented by two and pushed onto the top of
the stack. The specified program memory address (pma) is then loaded into
the PC. Note that no AR or ARP modification occurs if nothing is specified
in those fields. Pma can be either a symbolic or a numeric address.
Words 2
Cycles
Cycle Timings for a Single Instruction
PI/DI | PI/DE PE/DI | PE/DE PR/DI PR/DE
20 2 (br int-to-int) 2+p (int-to-ext) - -
2+p (ext-to-int) 2+2p (ext-to-ext) - -
‘C25 | True Conditions:
Destination on-chip RAM:
2 2 2+2p 2+2p 2 2
Destination on-chip ROM:
3 3 3+2p 3+2p 3 3
Destination external memory:
3+p 3+p 3+3p 3+3p 3+p 3+p
False Condition:
Destination anywhere:
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
'20 not repeatable l - -
'C25 not repeatable

4-64




Call Subroutine

CALL

Example CALL PRG109

PC

Stack
(20)

Stack
(C25)

Before Instruction
33h

71h
48h
16h
80h

71h
48h
16h
80h
Oh
Oh
Oh
Oh

PC

Stack
(20)

Stack
(C25)

After Instruction

35h
71h
48h
16h

35h
71h
48h
16h
80h
Oh
Oh
Oh

4-65



CMPL ‘ Complement Accumulator

Syntax [<label>] CMPL
Operands None
Execution (PC) +1 = PC
(ACC) —» ACC
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[+ 1+ 0o o 1 1 1 0 0 0 1 0 0 1t 1 1]

Description The contents of the accumulator are replaced with its logical inversion
(one’s complement).

Words 1
Cycles
Cycle Timings for a Single Instruction
Pl/DI Pl/DE PE/DI. PE/DE PR/DI PR/DE
20 1 1 1+p 1+p - -
‘'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
‘20 n n n+p n+p - -
'C25 n n n+p n+p n n
Example CMPL
Before Instruction After Instruction

C c

4-66



Compare Auxiliary Register

CMPR with Auxiliary Register ARO CMPR
Syntax [<label>] CMPR <constant>
Operands 0<CMc<3
Execution (PC) +1 - PC
Compare AR(ARP) to ARO, placing result in TC bit of status register ST1.
Affects TC.
Not affected by SXM; does not affect SXM.
Encoding 5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[r+ 1 0 0o 1 1 1 0 0 1 0 1 0 0] cm |
Description  The CMPR instruction performs the following comparisons dependent on
the value of CM: :
If CM = 00, test if AR(ARP) = ARO
If CM = 01, test if AR(ARP) < ARO
If CM = 10, test if AR(ARP) > ARO
If CM = 11, test if AR(ARP) # ARO
If the result of a test is true, a one is loaded into the TC status bit. Other-
wise, TC is loaded with a zero. The auxiliary registers are treated as un-
signed integers in the comparison.
Words 1
Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 1 1 1+p 1+p - -
‘C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
20 n n+p n+p - -
‘C25 n n+p n+p n n
Example CMPR 2 ; (ARP = 4)
Before Instruction After Instruction
ARO OFFFFh ARO OFFFFh
AR4 7FFFh AR4 7FFFh
e e

4-67



CNFD

Configure Block as Data Memory

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

20
'C25

20
'C25

Example

4-68

[<label>] CNFD
None

(PC) +1 > PC
0 = RAM configuration control (CNF) status bit

Affects CNF.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[+ 10 0o 1 1 1 0 o 0o 0o 0o 0 1 0 o]

On-chip RAM block 0 is configured as data memory. The block is mapped
to locations 512 through 767 in data memory. This instruction is the
complement of the CNFP instruction and sets the CNF bit in status register
ST1 to a zero. CNF is also ioaded by the CNFP and LST1 instructions.

On the TMS32020, the instruction fetch immediately following a CNFD or
CNFP instruction uses the old CNF value. The second fetch uses the new
CNF value, even if it is the fetch of the second word of a two-word in-
struction.

On the TMS320C25, the next two instruction fetches immediately follow-
ing a CNFD or CNFP instruction use the old value of CNF.

1

Cycle Timings for a Single Instruction
Pi/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p - -

1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n - n+p n+p - -
n n+p n+p n n

CNFD ;A zero is loaded into the CNF status bit, thus

;econfiguring block BO as data memory (see
;memory maps in Section 3.4).



Configure Block as Program Memory

CNFP

[<label>] CNFP
None

(PC) +1 > PC
1 - RAM configuration control (CNF) status bit

Affects CNF.

5 14 13 12 11 10 8 8 7 6 5 4 3 2 1 0
[+ 1 0o 0o 1 1 1 0 0 0 0 0 0 1 0 1]

On-chip RAM block 0 is configured as program memory. The block is
mapped to locations 65280 through 65535 in program memory space. This
instruction is the complement of the CNFD instruction and sets the CNF
bit in status register ST1 to a one. CNF is also loaded by the CNFD and
LST1 instruction.

Configuring this block as program memory allows the use of the program
counter as an address generator to access data from on-chip RAM. Used
in conjunction with the repeat instructions, this allows two data memory
locations to be addressed simultaneously, one from the auxiliary registers
and one from the program counter. Instructions that take advantage of this
feature are the MAC, MACD, BLKD, and BLKP instructions.

On the TMS32020, the instruction fetch immediately following a CNFD or
CNFP instruction uses the old CNF value. The second fetch uses the new
CNF value, even if it is the fetch of the second word of a two-word in-
struction.

On the TMS320C25, the next two instruction fetches immediately follow-
ing a CNFD or CNFP instruction use the old value of CNF.

1

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
'20
'C25
'20
'C25
Example

Cycle Timings for a Single Instruction
Pi/Di Pi/DE PE/DI PE/DE PR/Dl PR/DE

1 1 1+p 1+p - -

1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n+p n+p - -

n n n+p n+p n n

CNFP ;The CNF bit is set to a logic 1, thus config-

;uring block BO as program memory (see memory
;maps in Section 3.4).

4-69



DINT Disable Interrupt
Syntax [<label>] DINT
Operands None
Execution (PC) +1 - PC
1 — interrupt mode (INTM) status bit
Affects INTM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| 1 1 0 0 1 1 1 0 0 0 0 0 0 0 o 1 ]
Description  The interrupt mode (INTM) status bit is set to logic 1. Maskable interrupts
are disabled immediately after the DINT instruction executes. Note that the
LST instruction does not affect INTM.
The unmaskable interrupt, RS, is not disabled by this instruction, and the
interrupt mask register (IMR) is unaffected. Interrupts are also disabled by
a reset.
Words 1
Cycles
‘ Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE ~PR/DI PR/DE
'20 1 1 1+p 1+p - -
‘C25 1 1 1+p 1+p 1 . 1
Cycle Timings for a Repeat Execution
20 n . n n+p n+p - -
‘C25 n n n+p n+p n n
Example DINT ;Maskable interrupts are disabled, and INTM is

4-70

;set to one.



Data Move in Data Memory

DMOV

Syntax

Direct: [<label>] DMOV <dma>
Indirect: [<label>] DMOV {ind}[,<next ARP>]

Operands

Execution

Encoding

Direct:| 0 1 0 1 0 1 1

Indirect:{ 0 1 0 1 0 1 1

Description

Words

Cycles

'20
'C25

20
‘C25

0 < dma < 127
0 <next ARP <7

(PC) +1 - PC
(dma) =» dma + 1

Affected by CNF.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 l 0] J Data Memory Address ]

0 I 1 I See Section 4.1 I

The contents of the specified data memory address are copied into the
contents of the next higher address. DMOV works only within the on-chip
data RAM blocks BO, B1, and B2. It works within block BO if it is config-
ured as data memory, and the data move function is continuous across the
boundaries of blocks BO and B1; ie., it works for locations 512 to 1023.
The data move function cannot be used on external data memory. If used
on external data memory or memory-mapped registers, DMOV will read the
specified memory location but will perform no other operations.

When data is copied from the addressed location to the next higher lo-
cation, the contents of the addressed location remain unaltered.

The data move function is useful in implementing the z-! delay encountered
in digital signal processing. The DMOV function is included in the LTD and
MACD instructions (see the LTD and MACD instructions for more infor-
mation).

1
Cycle Timings for a Single Instruction
Pi/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p - -
1+n+nd n+p 1+n+nd+p n 1+n+nd

4-71



DMOV

Data Move in Data Memory

Example DMOV  DAT8 ; (DP=4)
or
DMOV *
Before Instruction

Data Data
Memory 43h Memory
520 520
Data Data
Memory Memory
521 521

4-72

;If current auxiliary register contains 520.

After Instruction

43h



Enable Interrupt

EINT

[<label>] EINT
None

(PC) +1 - PC
0 - interrupt-mode (INTM) status bit

Affects INTM.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
f1r 1 o o 1 1 1 0o 0 0 0 0 0 0 O O]

The interrupt-mode flag (INTM) in the status register is cleared to logic 0.
Maskable interrupts are enabled after the instruction following EINT exe-
cutes. This allows an interrupt service routine to re-enable interrupts and
execute a RET instruction before any other pending interrupts are pro-
cessed. Note that the LST instruction does not affect INTM. (See the DINT
instruction for further information.)

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
20
‘C25
'20
‘C25
Example

1
Cycle Timings for a Single Instruction
Pi/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n+p n+p - -
n n+p n+p n n
EINT ;Unmasked interrupts are enabled, and INTM

;is set to zero.

4-73



FORT Format Serial Port Registers
Syntax [<label>] FORT <constant>
Operands Constant = 0 or 1
Execution (PC) +1->PC
Constant — format (FO) status bit
Affects FO.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
{1 1+ o o 1 1 1 0 0 0 0 0 1 1 1[0f
Description  The format (FO) status bit is loaded by the instruction with the LSB speci-
fied in the instruction. The FO bit is used to control the formatting of the
transmit and receive shift registers of the serial port. If FO = 0, the registers
are configured to receive/transmit 16-bit words. If FO = 1, the registers are
configured to receive/transmit 8-bit bytes. FO is set to zero on a reset.
Words 1
Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
‘ '20 1 1 1+p 1+p - -
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
'20 n n n+p n+p - -
‘C25 n n n+p n+p n n
Example FORT 1 ;The FO status bit is loaded with 1, making

4-74

;the bit length of the serial port 8 bits.



Idle Until Interrupt . IDLE

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
'20
'C25
'20
'C25
Example

[<label>] IDLE
None

TM$32020:
(PC) +1 > PC

TMS320C25:

(PC) +1 - PC
0 - interrupt mode (INTM) status bit

Affects INTM.

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
(1 1+ o o 1 1 1 0o 0 0 0 1 1 1 1 1}

The IDLE instruction forces the program being executed to wait until an
interrupt or reset occurs. The PC is incremented only once, and the device
remains in an idle state until interrupted. On the TMS32020, the INTM bit
must be set to zero in order for the maskable interrupts to be recognized.
On the TMS320C25, INTM is automatically set to zero. Execution of the
IDLE instruction causes the TMS320C25 to enter the powerdown mode
(see Section 3.6.7). The on-chip timer continues to operate normally after
execution of an IDLE instruction. ‘

1
Cycle Timings for a Single Instruction
PI/DI | PI/DE PE/DI | PE/DE PR/DI PR/DE
1 (min waits for INT) 1+p {(min waits for INT) - -
(Interrupt) destination on-chip ROM:
{min waits for INT)
(Interrupt) destination external memory: -
3+2p (min waits for INT)
Cycle Timings for a Repeat Execution
not repeatable I - L -
not repeatable
IDLE ;The processor idles until a reset or unmasked

;interrupt occurs.

4-75



IN Input Data from Port
Syntax
Direct: [<label>] IN <dma>,<PA>
Indirect: [<label>] IN {ind},<PA>[,<next ARP>]
Operands 0 < dma < 127
0 < next ARP <7
0 < port address PA < 15
Execution (PC) +1 - PC
Port address — address bus A3-AQ
0 — address bus A15-A4 '
Data bus D15-D0 - dma
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct: I 1 0 0 0 I Port Address l 0 | Data Memory Address |
Indirect:| 1 0 0 0| PortAddress | 1] See Section 4.1 |
Description  The IN instruction reads a 16-bit value from one of the external 1/0 ports
into the specified data memory location. The IS line goes low to indicate,
an 1/0 access, and the STRB, R/W, and READY timings are the same as for
an external data memory read.
Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 1+i 2+d+i 2+p+i 3+d+p+i - -
'C25 2+i 2+d+i 2+p+i 3+d+p+i 2+i 2+d+i
Cycle Timings for a Repeat Execution
'20 n+ni 2n+nd+ni 2n+p+ni’ |[3n+nd+p+ni - -
‘C25 1+n+ni 2n+nd+ni | 1+n+p+ni |1+2n+nd+p| T1+n+ni 2n+nd+ni
+ni
Example IN STAT,PAS ;Read in word from peripheral on port
;address 5. Store in data memory
;location STAT.
or
LRLK 1,520 ;Load ARl with decimal 520.
LARP 1 ;Load ARP with decimal 520.
IN *- ,PA1,0 ;Read in word from peripheral on port

4-76

;address 1. Store in data memory
;location 520. Decrement ARl to 519.
;Load the ARP with O.



Load Accumulator with Shift LAC

Syntax
Direct: [<label>] LAC <dma>[,<shift>]
Indirect: [<label>] LAC {ind}[,<shift>[,<next ARP>]]
Operands 0 < dma < 127
0 < next ARP < 7
0 < shift < 15 (defaults to 0)
Execution (PC) +1 » PC
(dma) x 2shift 5 Acc
If SXM = 1:
Then (dma) is sign-extended.
If SXM = 0:
Then (dma) is not sign-extended.
Affected by SXM.
Encoding 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direct:| 0 0 1 0] Shift | o] Data Memory Address |
Indirect{ 0 0 1 0] Shift [ 1] See Section 4.1 |
Description  The contents of the specified data memory address are left-shifted and
loaded into the accumulator. During shifting, low-order bits are zero-filled.
High-order bits are sign-extended if SXM = 1 and zeroed if SXM = 0.
Words 1
Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 2+d 1+p 2+d+p - -
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
'20 2n+nd n+p 2n+nd+p - -
‘C25 1+n+nd n+p 1+n+nd+p n 1+n+nd
Example LAC  DAT6,4 ;(DP = 8)
or
LAC *,4 ;If current auxiliary register
;contains 1030.
Before Instruction After Instruction
Data Data

C

C

4-77



LACK Load Accumulator Immediate Short
Syntax [<label>] LACK <constant>
Operands 0 < constant < 255
Execution (PC) +1 - PC
8-bit positive constant - ACC
Not affected by SXM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
{1 1 0o o 1 o 1 of 8-Bit Constant [
Description  The 8-bit constant is loaded into the accumulator right-justified. The upper
24 bits of the accumulator are zeroed (i.e., sign extension is suppressed).
Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 1 1 1+p 1+p - -
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
'20 not repeatable J - -
'‘C25 not repeatable
Example LACK 15h

4-78

Before Instruction After Instruction

C



Load Accumulator with

LACT Shift Specified by T Register LACT
Syntax
Direct: [<label>] LACT <dma>
Indirect: [<label>] LACT ({ind}[,<next ARP>]
Operands 0 < dma < 127
0 < next ARP <7
Execution (PC) +1 > PC
(dma) x 2T register(3-0) 5 ACC
If SXM = 1:
Then (dma) is sign-extended.
If SXM = 0:
Then (dma) is not sign-extended.
Affected by SXM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
Direct: D 1 0O 0 0 0 1 0 LO I Data Memory Address l
Indirec:] 0 1 0 0o o0 o 1 o1 | See Section 4.1 |
Description  The LACT instruction loads the accumulator with a data memory value that
has been left-shifted. The left-shift is specified by the four LSBs of the T
register, resulting is shift options from O to 15 bits. Using the T register’s
contents as a shift code provides a variable shift mechanism.
LACT may be used to denormalize a floating-point number if the actual
exponent is placed in the four LSBs of the T register and the mantissa is
referenced by the data memory address. Note that this methoa of denor-
malization can only be used when the magnitude of the exponent is four
» bits or less.
Words 1
Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
‘20 1 2+d 1+p 2+d+p - -
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
‘20 n 2n+nd n+p 2n+nd+p - -
'C25 n 1+n+nd n+p 1+n+nd+p n 1+n+nd

4-79



Load Accumulator with

LACT Shift Specified by T Register LACT
Example LACT DAT1 ;(DP = 6)
or .
LACT * ;If current auxiliary register contains 769.
Before Instruction After Instruction
Data Data
Memory 1376h Memory 1376h
769 769
ACC 98F7EC83h ACC 13760h
C v C
T 3014h T 3014h

4-80



Load Accumulator Long Immediate with Shift LALK
Syntax [<label>] LALK <constant>[,<shift>]
Operands 16-bit constant
0 < shift < 15 (defaults to 0)
Execution (PC) + 2 -» PC
Constant x 2shift - Acc
If SXM = 1:
Then -32768 < constant < 32767.
If SXM = 0:
Then O < constant < 65535.
Affected by SXM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
11 0 1] Shift l]o o o o 0o 0 0 1
16-Bit Constant
Description  The left-shifted 16-bit immediate value is loaded into the accumulator. The
shifted 16-bit constant is sign-extended if SXM = 1; otherwise, the high-
order bits of the accumulator (past the shift) are set to zero. Note that the
MSB of the accumulator can only be set if SXM = 1 and a negative number
is loaded. The shift count is optional and defaults to zero.
Words 2
Cycles
Cycle Timings for a Single Instruction
PI/DI Pl1/DE PE/DI PE/DE PR/DI PR/DE
20 2 2 2+2p 2+2p - -
'C25 2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
‘20 not repeatable r - r -
'C25 not repeatable
Example 1 LALK OF794h,8 ; (SXM=1)
Before Instruction After Instruction
ACC 12345678h ACC OFFF79400h
C C
Example 2 LALK O0F794h,8 ; (SXM=0)

After Instruction

C

Before Instruction

C

4-81



LAR

Load Auxiliary Register

Syntax

Direct: [<label>] LAR <AR>,<dma>
Indirect: [<label>] LAR <AR>{ind}[,<next ARP>]

Operands 0 < dma < 127
0 < auxiliary register AR < 7
0 < next ARP < 7
Execution (PC) +1 = PC
(dma) — auxiliary register AR
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:tfo o 1 1 o] A | o] Data Memory Address |
Indirec:t| 0 0 1 1 o] AR [ 1] See Section 4.1 |
Description The contents of the specified data memory address are loaded into the
designated auxiliary register (AR).
The LAR and SAR (store auxiliary register) instructions can be used to load
and store the auxiliary registers during subroutine calls and interrupts. If
an auxiliary register is not being used for indirect addressing, LAR and SAR
enable the register to be used as an additional storage register, especially
for swapping values between data memory locations without affecting the
contents of the accumulator.
Words 1
Cycles

‘20
'C25

20
'C25

4-82

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p - -
n 2n+nd n+p 2n+nd+p n 2n+nd




Load Auxiliary Register LAR

Example 1 LAR  ARO,DAT10 ;(DP = 4)
Before Instruction After Instruction
Data Data
Memary Memory
522 522
ARO ARO 18h
Example 2 LARP AR4
LAR  AR4,*-
Before Instruction After Instruction
Data Data
Memory 32h Memory 32h
617 617
AR4 617h AR4 32h

Note:

LAR, in the indirect addressing mode, ignores any AR modifications if
the AR specified by the instruction is the same as that pointed to by the
ARP. Therefore, in Example 2, AR4 is not decremented after the LAR
instruction.

4-83



LARK

Load Auxiliary Register Immediate Short

[<label>] LARK <AR>,<constant>

0 < constant < 255
0 < auxiliary register AR < 7

(PC) +1 - PC
8-bit constant — auxiliary register AR

15 14 13 12 1

[1 1 0 o0 of

10 9 8
AR |

7 6 5 4 3 2 1 0

8-Bit Constant l

"~ The 8-bit positive constant is loaded into the designated auxiliary register

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
'20
'C25
20
'C25
Example

4-84

(AR) right-justified and zero-filled (i.e., sign-extension suppressed).

LARK is useful for loading an initial loop counter value into an auxiliary
register for use with the BANZ instruction.

1
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
not repeatable - ] -
" not repeatable
LARK  ARO,15h
Before Instruction After Instruction
ARO ARO



Load Auxiliary Register Pointer

LARP

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

'20
'C25

‘20
'C25

Example

[<label>] LARP <constant>
0 < constant < 7

(PC) +1 - PC
(ARP) — ARB
Constant - ARP

Affects ARP and ARB.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 o 1 0o 1 0 1 1 0 0 0

The auxiliary register pointer is loaded with the contents of the three LSBs
of the instruction (a 3-bit constant identifying the desired auxiliary register).
The old ARP is copied to the ARB field of status register ST1. ARP can also
be modified by the LST, LST1, and MAR instructions, as well as any in-
struction that is used in the indirect addressing mode.

The LARP instruction is a subset of MAR; i.e., the opcode is the same as
MAR in the indirect addressing mode. The following instruction has the
same effect as LARP:

MAR *,<constant>

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p - -

1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution

n n n+p n+p - -
n n+p n+p n n

LARP 1 ;Any succeeding instructions will use

;auxiliary register AR1 for indirect
;addressing.

4-85



LDP

Syntax

Direct:
Indirect:

Operands

Execution

Encoding

Load Data Memory Page Pointer

[<label>] LDP <dma> ,
[<label>] LDP {ind}[,<next ARP>]

0 < dma < 127
0 < next ARP < 7

(PC) +1 - PC
Nine LSBs of (dma) — data page pointer register (DP) status bits

Affects DP.
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Direct|0 1 0 1 0 o 1 oo | Data Memory Address |

Indirect:f 0 1 0o 1 0 o 1 o1 | See Section 4.1 |

Description

Words

Cycles

The nine LSBs of the contents of the addressed data memory location are
loaded into the DP (data memory page pointer) register. The DP and 7-bit
data memory address are concatenated to form 16-bit data memory ad-
dresses. The DP may also be loaded by the LST and LDPK instructions.

1

Cycle Timings for a Single Instruction

Pl/DI PI/DE PE/DI PE/DE PR/DI PR/DE

‘20
‘C25

20
'C25

1 2+d 1+p

2+d+p - -

1 2+d 1+p

2+d+p

1

Cycle Timings for a Repeat Execution

n 2n+nd n+p

2n+nd+p

2n+nd n+p

2n+nd+p

n

Example

. 4-86

LDP DAT127 ;(DP = 511)

or

LDP * ;If current auxiliary register
;contains 65535.

Before Instruction - After Instruction
Data Data

Memiory OFEDCh Memory OFEDCh
65535 65535

DP 1FFh DP ODCh



Load Data Memory Page Pointer Immediate

LDPK

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
'20
'C25
20
'C25
Example

[<label>] LDPK <constant>
0 < constant < 511

(PC) +1 - PC

Constant = data memory page pointer (DP) status bits

Affects DP.

1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[t 1 0 o 1 o of DP |

The DP (data memory page pointer) register is loaded with a 9-bit constant.
The DP and 7-bit data memory address are concatenated to form 16-bit
direct data memory addresses. DP > 8 specifies external data memory.
DP = 4 through 7 specifies on-chip RAM blocks BO or B1. Block B2 is
located in the upper 32 words of page 0. DP may also be loaded by the
LST and LDP instructions.

1
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
not repeatable l - I -
not repeatable
LDPK 64 ;The data page pointer is set to 64.

4-87



LPH Load High P Register

Syntax
Direct: [<label>] LPH <dma>
Indirect: [<label>] LPH {ind}[,<next ARP>]

Operands 0 < dma < 127
0O <next ARP <7

Execution (PC) +1 - PC
(dma) — P register(31-16)

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Directt{0 1 0 1 0 0 1 1]o0| Data Memory Address |
indirec:{ 0 1 0 1 0o o 1 1[1] See Section 4.1 |

Description  The P register high-order bits are loaded with the contents of data memory.
The low-order P register bits are unaffected.

The LPH instruction is particularly useful for restoring the high-order bits
of the P register after subroutine calls or interrupts.

Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 2+d 1+p 2+d+p - -
‘C25 1 : 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
'20 n 2n+nd n+p 2n+nd+p - -
'C25 n 1+n+nd n+p 1+n+nd+p n 1+n+nd
Example LPH DATO ; (DP = 4)
or
LPH * ;If current auxiliary register

;contains 512.

Before Instruction After Instruction
Data Data
Memory OF79Ch Memory 0F79Ch
512 512

P 30079844h P 0F79C9844h

4-88



Load Auxiliary Register Long Immediate

LRLK

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
'20
‘C25
20
'C25
Example

[<label>] LRLK <AR>,<constant>

0 < auxiliary register < 7
0 < constant < 65535

(PC) +2 > PC
Constant = AR

Not affected by SXM; does not affect SXM.

15 14 13 12 11 10 9 8 7 6

AR [ o o o

16-Bit Constant

1 1 0 1 o]

The 16-bit immediate value is loaded into the auxiliary register specified by
the AR field. The specified constant must be an unsigned integer, and its
value is not affected by SXM.

2
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 2 2+2p 2+2p - -
2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
not repeatable - l -
not repeatable
LRLK AR3,3080h
Before Instruction After Instruction
AR3 7F80h AR3 3080h

4-89



LST

Load Status Register STO

Syntax

Direct:
Indirect:

Operands

Execution

Encoding

Direct:t[|0 1 0 1 0 0 0

Indirect:

Description

Words

Cycles

4-90

20
'C25

20
'C25

[<label>] LST <dma>
[<label>] LST {ind}[,<next ARP>]

0 < dma < 127
0 <nextARP <7

(PC) +1 - PC

(dma) — status register STO

Affects ARP, OV, OVM, and DP.

Does not affect INTM or ARB.

1 9 8 7 6 5 4 3 2 1 O
ofo | Data Memory Address |

15 14 13 12 11

o 1+ 0o 1 0 o o of1] See Section 4.1 |

Status register STO is loaded with the addressed data memory value. Note
that the INTM (interrupt mode) bit is unaffected by LST. ARB is also un-
affected even though a new ARP is loaded. If a next ARP value is specified
via the indirect addressing mode, the specified value is ignored. Instead,
ARP is loaded with the value contained within the addressed data memory
word.

The LST instruction is used to load status register STO after interrupts and
subroutine calls. The STO contains the status bits: OV (overflow flag) bit,
OVM (overflow mode) bit, INTM (interrupt mode) bit, ARP (auxiliary reg-
ister pointer), and DP (data memory page pointer). These bits were stored
(by the SST instruction) in the data memory word as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[ ARp | ovjovm] 1 [INTM | DP

1

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
2n+nd n+p 2n+nd+p - -
2n+nd n+p 2n+nd+p n 2n+nd




Load Status Register STO

LST

Example 1 LARP 0

LST *,1

Example 2 LST 60h

Data
Memory
96
STO
ST1

Example 3 LARP AR4

LST *—

AR4

Data
Memory
1023

STO
ST1

Example 4 LARP

LST

AR4
*- 1

AR4

Data
Memaory
1023

STO
ST1

;The data memory word addressed by the
;contents of auxiliary register ARO is

;loaded into status register STO, except

;for the INTM bit. Note that even though a

;next ARP value is specified, that value

;is ignored, and even though a new ARP is
;loaded, the old ARP is not loaded into ARB.

;(DP = 0)

w
(]
e
o
=)
(0]
5
(2]
@Q
o
c
(2]
o
o
3

2404h

6EOOh
0580h

; (AR4 = 3FFh)

3FFh

OCEO6h

OFCO4h
OE780h

[s2]
(]
=+
o]
=
(]
5
(2]
-
=
c
O
o
]
3

; (AR4 = 3FFh)

3FFh

OEEO4h

OEEOOh
OF780h

os]
(0]
=
o
=
@
5
(2}
-+
=
c
(2]
=
]
3

Data
Memory
96

STO
ST1

AR4
Data
Memory
1023

STO
ST1

AR4

Data
Memory
1023

STO
ST1

>
-
—*
(5]
4
5
12}
~—
=
c
o
f=d
o
3

2404h

2604h
0580h

3FEh

O0CEO6h

0CCO6h
0E780h

3FEh

OEEO4h

OEEO4h
OF780h

> >
= =
o) @
L e
5 5
v 1]
~ —*
= =
c c
13 3]
o =3
o o
= 5

4-91



LST1 Load Status Register ST1

Syntax
Direct: [<label>] LST1 <dma>
Indirect: [<label>] LST1 {ind}[,<next ARP>]

Operands 0 < dma < 127
0 < next ARP < 7

Execution (PC) +1 -» PC
(dma) — status register ST1
(ARB) = ARP

Affects ARP, ARB, CNF, TC, SXM, XF, FO, TXM, and PM.
Affects C, HM, and FSM (TMS320C25)

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct: I 0 1 0 1 o o0 o0 1 I 0 I Data Memory Address ]
Indirec:] 0 1 0 1 0 0 o0 1[1 ]| See Section 4.1 |

Description  Status register ST1 is loaded with the data memory value. The bits of the
data memory value, which are loaded into ARB, are also loaded into ARP
to facilitate context switching. Note that if a next ARP value is specified
via the indirect addressing mode, the specified value is ignored.

LST1 is used to load status bits after interrupts and subroutine calls. ST1
contains the status bits: ARB (auxiliary register pointer buffer), CNF (RAM
configuration control) bit, TC (test/control) bit, SXM (sign-extension
mode) bit, XF (external flag) bit, FO (serial port format) bit, TXM (transmit
mode) bit, and the PM (product register shift mode) bit. ST1 on the
TMS320C25 also contains the status bits: C (carry) bit, HM (hold mode)
bit, and FSM (frame synchronization mode) bit. On the TMS32020, bits
b, 6, and 9 are one’s. The bits loaded into status register ST1 from the data
memory word are as follows:

15 14 13 1211 10 9 8 7 6 5 4 3 2 1 0
| ArB  |cNF| TC |sxm]| cf |} 1 1 |Hmf [ Fsmt{xFlFo|TXM]| Pm |
tOn the TMS32020, bits 5, 6, and 9 are one's.

Words ‘ 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 2+d 1+p 2+d+p - -
‘C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
20 n 2n+nd n+p 2n+nd+p - -
'C25 n 2n+nd n+p 2n+nd+p n 2n+nd

4-92



Load Status Register ST1

LST1

LARP 3
LST1 *—

Example 1

Example 2 LST1 61lh

Data
Memory
97

STO
ST1

LARP AR4
LST1 *-

Example 3

AR4

Data
Memory
1022

STO
ST1

AR4
-1

Example 4 LARP

LST1
AR4

Data
Memory

STO
ST1

;The data memory word addressed by the
;contents of auxiliary register AR3
;replaces the status bits of status
;register ST1l, and AR3 is decremented.

; (DP = 0)

w
(0]
e
o
=2
(o]
=)
[7]
-+
=
c
(2]
=
o
o]

0580h

0ACOOh
0581h

; (AR4 = 3FEh)

3FEh

4F390h

OFCO4h
0E780h

W
@
e
o
=
)
5
w
—*
)
c
o
=
o
5

; (AR4 = 3FEh)

3FEh

6190h

OFEO4h
0593h

W
o)
]
o]
2
@
5
1%2]
~*
s
c
3)
o
o
5

Data
Memory
97

STO
ST1

AR4

Data
Memory
022

STO
ST1

AR4

Data
Memory

STO
ST1

>
=
)
o
5
[Z]
<
c
(2]
=
)
3

0580h

0COOh
0580h

3FDh

4F90h

5C04h

3FDh

6190h

7EO04h
6190h

3 3
(] [+
: :
5 5
w w
~* —
: :
c c
o] o
3 ) 3

4-93



LT

Load T Register

Syntax
Direct: [<label>] LT <dma>
Indirect: [<label>] LT {ind}[,<next ARP>]
Operands 0 < dma < 127
0 < next ARP <7
Execution (PC) +1 - PC
(dma) = T register
Encoding 15 14 13 12 11 160 9 8 7 6 5 4 3 2 1 O
Direct{0 0 1 1 1 1 o0 oo | Data Memory Address |
Indirec:| 0 0 1 1 1 1 o0 of1 ] See Section 4.1 |
Description The T register is loaded with the contents of the specified data memory
address (dma). The LT instruction may be used to load the T register in
preparation for multiplication. See the LTA, LTD, LTP, LTS, MPY, MPYK,
MPYA, MPYS, and MPYU instructions.
Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 2+d 1+p 2+d+p - -
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
20 2n+nd n+p 2n+nd+p - -
‘'C25 1+n+nd n+p 1+n+nd+p n 1+n+nd
Example LT DAT24 ; (DP = 8)
or
LT * ;If current auxiliary register
;contains 1048.
Before Instruction After Instruction
Data Data
Memory Memory
1048 1048
T T o2

4-94



Load T Register and Accumulate Previous Product

LTA

Syntax
Direct:
Indirect:

Operands

Execution

Encoding

Directt| 0 0 1 1 1 1 0

Indirect] 0 0 1 1 1 1 0

Description

Words

Cycles

[<label>] LTA <dma>
[<label>] LTA {ind}[,<next ARP>]

0 <dma < 127
0 < next ARP <7

(PC) +1 - PC

(dma) — T register

(ACC) + (shifted P register) -~ ACC
Affects OV; affected by OVM and PM.
Affects C (TMS320C25).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Memory Address I

1]o |

See Section 4.1 |

101 ]

The T register is loaded with the contents of the specified data memory
address (dma). The contents of the product register, shifted as defined by
the PM status bits, are added to the accumulator, with the result left in the
accumulator.

The function of the LTA instruction is included in the LTD instruction.

‘20
‘C25

‘20

‘C25

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p - -
n 1+n+nd n+p 1+n+nd+p n 1+n+nd

4-95



LTA Load T Register and Accumulate Previous Product

Example LTA DAT36 ;(DP = 6, PM = 0)
or
LTA * ;If current auxiliary register
;contains 804.

Before Instruction After Instruction
Data Data
Memory Memory
804 804
T T 62
P OFh P OFh
Ace acc g
C C

4-96



Load T Register, Accumulate

LTD Previous Product, and Move Data LTD
Syntax
Direct: [<label>] LTD <dma>
Indirect: [<label>] LTD {ind}[,<next ARP>]
Operands 0 <dma <127
0 < next ARP <7
Execution (PC) +1 = PC
(dma) — T register
(dma) = dma + 1
(ACC) + (shifted P register) = ACC
Affects OV; affected by OVM and PM.
Affects C (TMS320C25).
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:t{o o 1 1 1 1 1 1]o0] Data Memory Address |
Indirect{ 0 0o 1 1 1 1 1 1[1] See Section 4.1 |
Description  The T register is loaded with the contents of the specified data memory
address (dma). The contents of the P register, shifted as defined by the
PM status bits, are added to the accumulator, and the result is placed in the
accumulator. The contents of the specified data memory address are also
copied to the next higher data memory address.
This instruction is valid for blocks B1 and B2, and is also valid for block
BO if block BO is configured as data memory. The data move function is
continuous across the boundary of blocks BO and B1, but cannot be used
with external data memory or memory-mapped registers. This function is
described under the instruction DMOV. Note that if used with external data
memory, the function of LTD is identical to that of LTA.
Words 1
Cycles

20
'C25

'20
'C25

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI 'PE/DE PR/DI PR/DE
1 2+d . 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p - -
1+n+nd n+p 1+n+nd+p n 1+n+nd

4-97



Load T Register, Accumulate

LTD Previous Product, and Move Data LTD
Example LTD DAT126  ;(DP = 7, PM = 0)

or '

LTD * ;If current auxiliary register

;contains 1022.

Before Instruction After Instruction
Data Data
Memory Memory
1022 1022
Data Data
Memry Memary
1023 1023
T T 62h

OFh

e e RS [ —

o
(=]
m
=
0

4-98



Load T Register and Store
LTP P Register in Accumulator LTP

Syntax
Direct: [<label>] LTP <dma>
Indirect: [<label>] LTP {ind}[,<next ARP>]

Operands 0 <dma < 127
0 <nextARP <7

Execution  (PC) + 1 - PC
(dma) - T register
(shifted P register) = ACC

Affected by PM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct|0 o0 1 1 1 1 1 oo | Data Memory Address |
Indirect:{ 0 0 1 1 1 1 1 o1 | See Section 4.1 |

Description  The T register is loaded with the contents of the addressed data memory
location, and the product register is stored in the accumulator. The shift at
the output of the product register is controlled by the PM status bits.

Words 1

Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
‘20 1 2+d 1+p 2+d+p - -
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
20 n 2n+nd n+p 2n+nd+p - -
'C25 n 1+n+nd n+p 1+n+nd+p n 1+n+nd
Example LTP DAT36 ;(DP = 6, PM = 0)
g‘rI‘P * ;If current auxiliary register

;contains 804.

Before Instruction After Instruction
Data Data
Memory 62h Memory 62h
804 804

4-99



LTS

Load T Register, Subtract Previous Product

Syntax

Direct: [<label>] LTS <dma>
Indirect: [<label>] LTS {ind}[,<next ARP>]

Operands

Execution

Encoding

Direct:{ 0 1 0 1 1 0 1

indirect| 0 1 0 1 1 0 1

Description

Words

Cycles

20
'C25

20
'C25

Example

4-100

0 < dma < 127
0 < next ARP < 7

(PC) +1 - PC
(dma) — T register
(ACC) - (shifted P register) - ACC

Affects OV, affected by PM and OVM.
Affects C (TMS320C25).

15 14 13 12 11 10 9 8 7 6 b5 4 3 2 1 0

1 I 0 | Data Memory Address l -

AER

See Section 4.1 ]

The T register is loaded with the contents of the addressed data memory
location. The contents of the product register, shifted as defined by the
contents of the PM status bits, are subtracted from the accumulator. The
result is left in the accumulator.

1

Cycle Timings for a Single Instruction
Pl/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
2n+nd n+p 2n+nd+p - -
1+n+nd n+p 1+n+nd+p n 1+n+nd

LTS DAT36
or
LTS *

;(DP = 6, PM = 0)

;If current auxiliary register
;contains 804.

Before Instruction After Instruction

Data Data
Mamory Maary
804 804
T .
: .
ACC Acc [o] [ oFFFFFFF6h
C C



Multiply and Accumulate

MAC

Syntax
Direct: [<label>] MAC <pma>,<dma>
Indirect: [<label>1 MAC <pma> {ind}[,<next ARP>]

0 < pma < 65535
0 < dma < 127
0 < next ARP < 7

Operands

Execution TMS32020:

(PC) + 2 » TOS
(pma) — PC

If (repeat counter) # O:
Then (ACC) + (shifted P register) - ACC,
(dma) = T register,
(dma) x (pma, addressed by PC) — P register,
Modify AR{ARP) and ARP as specified,
(PC) + 1 = PC,
(repeat counter) - 1 - repeat counter.

Eilse (ACC) + (shifted P register) - ACC

(dma) = T register

(dma) x {pma, addressed by PC).— P register

Modify AR(ARP) and ARP as specified.
(TOS) » PC

Affects OV; affected by OVM and PM.

TMS320C25:

(PC) +2->PC
(PFC) » MCS
(pma) - PFC

If (repeat counter) # O:
Then (ACC) + (shifted P register) - ACC,
(dma) — T register,
(dma) x (pma, addressed by PFC) — P register,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 = PFC,
(repeat counter) - 1 — repeat counter.

Else (ACC) + (shifted P register) - ACC

(dma) — T register

(dma) x (pma, addressed by PFC) — P register

Modify AR(ARP) and ARP as specified.
(MCS) — PFC

Affects C and OV; affected by OVM and PM.

4-101



MAC

Multiply and Accumulate

Encoding

Direct:

Indirect:

Description

Words

Cycles

4-102

'20
'C25

20
'C25

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 1 0 1 I 0 [ Data Memory Address

Program Memory Address

o 1 0 1 1 1 o0 1]1] See Section 4.1

Program Memory Address

The MAC instruction multiplies a data memory value (specified by dma)
by a program memory value (specified by pma). It also adds the previous
product, shifted as defined by the PM status bits, to the accumulator.

The data and program memory locations on the TMS320C25 may be any
nonreserved, on-chip or off-chip memory locations. If the program memory
is block BO of on-chip RAM, then the CNF bit must be set to one. On the
TMS32020, data and program memory locations must reside on-chip. Note
that on both devices, the upper eight bits of the program memory address
should be set to OFFh in order to address BO program RAM, and the upper
six bits of dma should be set to 0 to address a location below 1024. When
used in the direct addressing mode, the dma cannot be modified during
repetition of the instruction.

When the MAC instruction is repeated, the program memory address con-
tained in the PC/PFC is incremented by one during its operation. This en-
ables accessing a series of operands in memory. MAC is useful for long
sum-of-products operations, since MAC becomes a single-cycle instruction
once the RPT pipeline is started.

2

Cycle Timings for a Single Instruction

P1/DI Pl/DE PE/DI PE/DE PR/DI PR/DE

3 N/A 3+2p N/A - -

Table in on-chip RAM:
3 4+d 4+2p 5+d+2p 4 5+d
Table in on-chip ROM:
4 5+d 4+2p 5+d+2p 4 5+d
Table in external memory:
4+p 5+d+p 4+3p 5+d+3p 4+p 5+d+p
Cycle Timings for a Repeat Execution
2¢n | N/A ] 2+n+2p | oA ] - e
Table in on-chip RAM:
2+n 2+2n+nd 3+n+2p 3+2n+nd+2p 3+n 3+2n+nd
Table in on-chip ROM:
3+n 3+2n+nd 3+n+2p 3+2n+nd+2p 3+n- 3+2n+nd

Table in external memory:
3+n+np 3+2n+nd 3+n+np 3+2n+nd+np 3+n+np 3+2n+nd

+np +2p +2p +np




Multiply and Accumulate MAC

Example SPM 3 ;Select a shift-right-by-6 mode

;on PR output.

CNFP ;Configure block BO as program
;memory (OFFXXh).

LARP 1 ;Use ARl to address block Bl.

LRLK 1,768 ;Point to lowest location in
;RAM block Bl.

RPTK 255 ;Compute 256 sum-of-product
;operations.

MAC OFFOOh,*+ ;Multiply/accumulate and
;increment AR1.

The following example shows register and memory contents before and af-
ter the third step repeat loop:

Before Instruction After Instruction
AR1 302h AR1 303h
RPT OFDh RPT OFCh
PC/PFC OFF02h PC/PFC OFFO3h
Data Data ’
Memory 23h Memory 23h
770 770
Program Program
Memory OFAAAh Memory OFAAANh
65282 65282
P 458972h P OFFFF453Eh
ACC 723EC41h Acc [o] [ 7250266h
Cc C

4-103



MACD Multiply and Accumulate with Data Move

Syntax .
Direct: [<label>] MACD <pma>,<dma>
Indirect: [<label>] MACD <pma>{ind}[,<next ARP>]

Operands 0 < pma < 65535
0 < dma < 127
0 < next ARP <7

Execution TMS32020:

(PC) + 2 » TOS
(pma) = PC

If (repeat counter) # O:
Then (ACC) + (shifted P register) - ACC,
(dma) = T register,
(dma) x (pma, addressed by PC) = P register,
(dma) = dma + 1,
Modify AR(ARP) and ARP as specified,
(PC) +1 = PC,
(repeat counter) - 1 — repeat counter.

Else (ACC) + (shifted P register) = ACC

(dma) — T register

(dma) x (pma, addressed by PC) — P register

(dma) - dma +1,

Modify AR(ARP) and ARP as specified.
(TOS) - PC

Affects OV; affected by OVM and PM.

TMS320C25:

(PC) +2 - PC
(PFC) = MCS
(pma) » PFC

If (repeat counter) # O:
Then (ACC) + (shifted P register) - ACC,
(dma) — T register,
(dma) x (pma, addressed by PFC) — P register,
(dma) —= dma + 1,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 - PFC,
(repeat counter) - 1 — repeat counter.

Else (ACC) + (shifted P register) = ACC

(dma) — T register

(dma) x (pma, addressed by PFC) — P register

(dma) - dma + 1,

Modify AR(ARP) and ARP as specified.
(MCS) —» PFC

Affects C and OV; affected by OVM and PM.

4-104



Multiply and Accumulate with Data Move | MACD

Encoding
Direct:

Indirect:

Description

Words

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

o 1 0 1 1 1 0 o]o] Data Memory Address
Program Memory Address

o 1 0 1 1 1 0 o1 ] See Section 4.1

Program Memory Address

The MACD instruction muitiplies a data memory value (specified by dma)
by a program memory value (specified by pma). It also adds the previous
product, shifted as defined by the PM status bits, to the accumulator.

The data and program memory locations on the TMS320C25 may be any
nonreserved, on-chip or off-chip memory locations. If the program memory
is block BO of on-chip RAM, then the CNF bit must be set to one. On the
TMS32020, data and program memory locations must reside on-chip. Note
that on both devices, the upper eight bits of the program memory address
should be set to OFFh in order to address BO program RAM, and the upper
six bits of dma should be set to 0 to address a location below 1024. When
used in the direct addressing mode, the dma cannot be modified during
repetition of the instruction. If MACD addresses one of the memory-
mapped registers or external memory as a data memory location, the effect
of the instruction will be that of a MAC instruction (see the DMOV in-
struction description).

MACD functions in the same manner as MAC, with the addition of data
move for block BO, B1, or B2. Otherwise, the effects are the same as for
MAC. This feature makes MACD useful for applications such as convo-
lution and transversal filtering.

When the MACD instruction is repeated, the program memory address
contained in the PC/PFC is incremented by one during its operation. This
enables accessing a series of operands in memory. When used with RPT
or RPTK, MACD becomes a single-cycle instruction once the RPT pipeline
is started.

Note:

The data move function for MACD can only occur within the data
blocks, BO-B2, of the on-chip RAM.

4-105



MACD Multiply and Accumulate with Data Move

Cycles
Cycle Timings for a Single Instruction
Pi/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 3 N/A 3+2p N/A - -
‘C25 | Table in on-chip RAM:
3 4+d 4+2p 5+d+2p 4 5+d
Table in on-chip ROM:
4 5+d 4+2p 5+d+2p 4 5+d
Table in external memory:
4+p 5+d+p 4+3p 5+d+3p 4+p 5+d+p
Cycle Timings for a Repeat Execution
20 2+4n | N/A ] 2+n+2p | O N/A | - | -
‘C25 | Table in on-chip RAM:
2+n 2+2n+nd 3+n+2p 3+2n+nd+2p 3+n 3+2n+nd
Table in on-chip ROM:
3+n 3+2n+nd 3+n+2p 3+2n+nd+2p 3+n 3+2n+nd
Table in external memory:
3+n+np 3+2n+nd 3+n+np 3+2n+nd+np 3+n+np 3+2n+nd
+np +2p +2p +np
Example SPM 0 ;Select no shift mode on PR output.
) SOVM ;Set overflow mode.
CNFP ;Configure block BO as program
;memory (OFFXXh).
LARP 3 ;Use AR3 to address block Bl.
LRLK 3,1023 ;Point to highest location in
;RAM block Bl.
RPTK 255 ;Compute 1 sample of a length-256
;convolution.
MACD OFFOOh,*- jMultiply/accumulate, shift data word

;in block Bl, and decrement AR3.

The following example shows register and memory contents before and af-
ter the third step repeat loop:

458972h P OFFFF453Eh
ACC 723EC41h ACC [(_T_l 76975B3h

Before Instruction After Instruction
AR1 3FDh AR1 : 3FCh
RPT OFDh RPT OFCh
PC/PFC OFF02h PC/PFC OFFO3h
Mo 23h Mo 23h
emory [ 23h | emory | 23h |
10217 10217
Date 7FCh Mo 23h
gv [___7rcn ] s
10227 1022 "
Program Program
Memory OFAAAQ Memory OFAAARQ
65282 65282

4-106



Modify Auxiliary Register

MAR

Syntax

Direct:
Indirect:

Operands

Execution

Encoding

Directt|0 1 0 1 0 1 0

Indirect:lo 1.0 1 0 1 O

[<label>] MAR <dma>
[<label>] MAR {ind}[,<next ARP>]

0 < dma < 127
0 <next ARP <7

(PC) +1 - PC
Modifies ARP, AR(ARP) as specified by the indirect addressing field
(acts as a NOP in direct addressing).

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 l 0 l Data Memory Address ]

See Section 4.1 |

1]

The MAR instruction acts as a no-operation instruction in the direct ad-
dressing mode. In the indirect addressing mode, the auxiliary registers and
the ARP are modified; however, no use is made of the memory being refer-
enced. MAR is used only to modify the auxiliary registers or the ARP. If a
next ARP is specified, the old ARP is copied to the ARB field of status re-
gister ST1. Note that any operation that MAR performs can also be per-
formed with any instruction that supports indirect addressmg ARP may
also be loaded by an LST instruction.

In the direct addressing mode, MAR is a NOP. Also, the instruction LARP
is a subset of MAR (i.e., MAR *,4 performs the same function as LARP 4).

1

Description
\
Words
Cycles
'20
‘C25
20
'‘C25

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n+p n+p - -
n n+p n+p n n

4-107



MAR Modify Auxiliary Register
Example 1 MAR *,1 ;Load the ARP with 1.
Before Instruction After Instruction
Example 2 MAR *- ;Decrement current auxiliary register (in
;this case, AR1).
Before Instruction After Instruction
AR1 35h AR1 34h
Example 3 MAR *+,5 ;Increment current auxiliary register (AR1)
;and load ARP with 5.
Before Instruction After Instruction
AR1 34h AR1 35h

4-108



Multiply MPY
Syntax
Direct: [<label>] MPY <dma>
Indirect: [<label>] MPY {ind}[,<next ARP>]
Operands 0 <dma < 127
0 < next ARP <7
Execution (PC) +1 - PC
(T register) x (dma) — P register
Encoding. 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
Direct:l 0o 0 1 1 1 0O 0 o0 I 0 I Data Memory Address |
Indirec:{0 0 1 1 1 o0 o o1 | See Section 4.1 |

Description  The contents of the T register are multiplied by the contents of the ad-
dressed data memory location. The result is placed in the P register.
Words 1
Cycles
Cycle Timings for a Single Instruction
P!/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 2+d 1+p 2+d+p - -
‘C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
20 n 2n+nd n+p 2n+nd+p - -
'C25 1+n+nd n+p 1+n+nd+p n 1+n+nd
Example MPY DAT13 ; (DP = 8)
or
MPY * ;If current auxiliary register
;contains 1037.
Before Instruction After Instruction
Data Data
Memory 7h Memory 7h

1037 1037

-
—

6h
P 36h P

6h

2Ah

4-109



Multiply and Accumulate.

MPYA Previous Product (TMS320C25) MPYA
Syntax
Direct: [<label>] MPYA <dma>
Indirect: [<label>] MPYA {ind}[,<next ARP>]
Operands 0 < dma < 127
0 < next ARP <7
Execution (PC) +1 - PC
(ACC) + (shifted P register) = ACC
(T register) x (dma) — P register
Affects C and OV, affected by OVM and PM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0

Directt{0 0 1 1 1 0 1

Indirect:{| 0 0 1 1 1 0 1

-Description

Words

Cycles

'C25
'C25

Example

4-110

oo |

Data Memory Address J

o]

See Section 4.1 l

The contents of the T register are multiplied by the contents of the ad-
dressed data memory location. The result is placed in the P register. The
previous product, shifted as defined by the PM status bits, is also added to

the accumulator.
1

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n ] 1+n+nd | n+p I 1+n+nd+p | n l 1+n+nd
MPYA DAT13 ;(DP = 6, PM = 0)
or
MPYA * ;If current auxiliary register

;contains 781.

Before Instruction

Data Data

781 781

r r

P 36h P

ACC 54h Acc [o]
C C

After Instruction



Multiply Immediate

MPYK

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
20
'C25
20
'C25
Example

[<label>] MPYK <constant>

-4096 < constant < 4095
-212 < constant < 212 - 1

(PC) +1 - PC
(T register) x constant = P register

Not affected by SXM.

7 6 5 4 3 2 1 0
13-Bit Constant |

15 14 13 12
[1 o 1]
The contents of the T register are multiplied by the signed, 13-bit constant.

The result is loaded into the P register. The immediate field is right-justified
and sign-extended before multiplication, regardless of SXM.

1

1 10 9 8

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
not repeatable - I -
not repeatable
MPYK -9
Before Instruction After Instruction
T T
2Ah P OFFFFFFC1h

4-111



Multiply and Subtract
MPYS Previous Product (TMS320C25) MPYS

Syntax
Direct: [<label>] MPYS <dma>
Indirect: [<label>] MPYS {ind}[,<next ARP>]

Operands 0 <dma < 127
0 <next ARP <7

Execution (PC) +1 - PC
(ACC) - (shifted P register) - ACC
(T register) x (dma) — P register

Affects C and OV; affected by OVM and PM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direct: lﬁ 0 1 1 1 0o 1 1 l 0 I Data Memory Address I
Indirect] 0 0 1 1 1 0 1 1|1 ] See Section 4.1 |

Description  The contents of the T register are multiplied by the contents of the ad-.
dressed data memory location. The result is placed in the P register. The
previous product, shifted as defined by the PM status bits, is also sub-
tracted from the accumulator.

Words 1
Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
‘C25 n | 1+n+nd | n+p l1+n+nd+p| n I 1+n+nd
Example MPYS DAT13 ;(DP = 6, PM = 0)
or
MPYS * ;If current auxiliary register contains 781.
Before Instruction After Instruction
Data Data
781 781
T T
P 36h P 2Ah
acc acc
c Cc

4-112



Multiply Unsigned (TMS320C25) MPYU

Syntax

Direct: [<label>] MPYU <dma>
Indirect: [<label>] MPYU {ind}[,<next ARP>]

Operands 0 <dma < 127
0 < next ARP <7
Execution (PC) +1 - PC
Unsigned (T register) x unsigned (dma) — P register
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direct:{1 1 0 o0 1 1 1 1]0] Data Memory Address |
Indirect:[ 1 1 0 o 1 1 1 1] ] See Section 4.1 |
Description  The unsigned contents of the T register are multiplied by the unsigned
contents of the addressed data memory location. The result is placed in the
P register. Note that the multiplier acts as a 17 x 17-bit signed multiplier for
this instruction, with the MSB of both operands forced to zero.
The shifter at the output of the P register will always invoke sign-extension
on the P register when PM = 3 (right-shift by 6 mode). Therefore, this shift
mode should not be used if unsigned products are desired.
The MPYU instruction is particularly useful for computing multiple-preci-
sion products, such as when multiplying two 32-bit numbers to vyield a
64-bit product.
Words 1
Cycles
Cycle Timings for a Single Instruction
Pl/Di PI/DE PE/DI PE/DE PR/DI PR/DE
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
'C25 n { 1+n+nd | n+p [1+n+nd+p| n [ 1+n+nd
Example MPYU DAT16 ;(DP = 4)

or
MPYU * ;If current auxiliary register contains 528.
Before Instruction After Instruction
Data Data
Memory CFFFFh Memory OFFFFh
528 528
T OFFFFh T OFFFFh
P P OFFFE0001h

4-113



NEG

Negate Accumulator

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

20
'C25

‘20
'C25

Example

4-114

[<label>] NEG
None

(PC) +1 - PC

(ACC) x -1 = ACC

Affects OV; affected by OVM.

Affects C (TMS320C25).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[1 1 o .0 1 1 1 0o 0 0o 1 0 0 0 1 1]

The contents of the accumulator are replaced with its arithmetic comple-
ment (two’s complement). The OV bit is set when taking the NEG of
80000000h. If OVM = 1, the accumulator contents are replaced with
7FFFFFFFh. If OVM = Q, the result is 80000000h. The carry bit C on the
TMS320C25 is reset to zero by, this instruction for all nonzero values of the
accumulator, and set to one if the accumulator equals zero.

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p - -

1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution

n n n+p n+p - -

n n n+p n+p n n

NEG

After Instruction

Acc [o] 0DD8h
C

Before Instruction

C



No Operation

NOP

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

20
'C25

‘20
'C25

Example

[<label>] NOP
None
(PC) +1 - PC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[0 1 0o 1 0 1 0 1 0 0 0 0 0 0 0 O]

No operation is performed. The NOP instruction affects only the PC. NOP
functions in the same manner as the MAR instruction in the direct ad-
dressing mode; NOP has the same opcode as MAR in the direct addressing
mode with dma = 0.

The NOP instruction is useful as a pad or temporary instruction during
program development.

1

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/Dl PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n+p n+p - -
n n+p n+p n n
NOP

4-115



NORM

Normalize Contents of Accumulator

Syntax

Operands

Execution

Encoding

Description

Words

4-116

[<label>] NORM (TMS32020)
[<label>] NORM {ind} (TMS320C25)

None

TMS32020:
(PC) +1 - PC

If (ACC(31)).XOR.(ACC(30)) = 0:
Then TC - O,
(ACC) x 2 = ACC,
Modify AR(ARP) as specified;
Else TC = 1.

Affects TC; affected by TC.

TMS320C25:
(PC) +1 - PC
If (ACC) = 0:
Then TC = 1;
Else, if (ACC(31)).XOR.(ACC(30)) = 0:
Then TC - 0,
(ACC) x 2 = ACC,
Modify AR(ARP) as specified;
Else TC - 1.

Affects TC; affected by TC.

15 14 1312 11 10 9 8 7 6 565 4 3 2 1 0
[1 1 0o o 1 1 1 0 1] ModifyAR | 0 0 1 0]

The NORM instruction is provided for normalizing a signed number that is
contained in the accumulator. Normalizing a fixed-point number separates
it into a mantissa and an exponent. To do this, the magnitude of a sign-
extended number must be found. ACC bit 31 is exclusive-ORed with ACC
bit 30 to determine if bit 30 is part of the magnitude or part of the sign ex-
tension. If they are the same, they are both sign bits, and the accumulator
is left-shifted to eliminate the extra sign bit.

The AR(ARP) is modified as specified to generate the magnitude of the
exponent. It is assumed that AR(ARP) is initialized before the normaliza-
tion begins. The default modification of the AR(ARP) is an increment.

Multiple executions of the NORM instruction may be required to completely
normalize a 32-bit number in the accumulator. Although using NORM with
RPT or RPTK does not cause execution of NORM to “fall out” of the repeat
loop automatically when the normalization is complete, no operation is
performed for the remainder of the repeat loop. Note that NORM functions
on both positive and negative two’'s-complement numbers.

1 ~



Normalize Contents of Accumulator NORM
Cycles
Cycle Timings for a Single Instruction
PI/DI Pi/DE PE/DI PE/DE PR/DI PR/DE
20 1 1 1+p 1+p - -
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
20 n n n+p n+p - -
'C25 n n n+p n+p n n
Example 1 31-Bit Normalization:
LARP 1 ;Use ARl for exponent storage.
LARK 1,0 ;jClear out exponent counter.
LOOP NORM . *+ ;One bit is normalized.
BEZ LOOP ;If TC = 0, magnitude not found yet.
Example 2 15-Bit Normalization:

LARP ;Use ARl to store the exponent.

LARK 1,15 ;Initialize exponent counter.

RPTK 14 ;15-bit normalization is specified
; (yielding a 4-bit exponent and
;16-bit mantissa).

NORM * - ;NORM automatically stops shifting

;when the first significant magnitude
;bit is found, performing NOPs for
;the remainder of the repeat loop.

The first method is used to normalize a 32-bit number and yields a 5-bit
exponent magnitude. The second method is used to normalize a 16-bit
number and yields a 4-bit exponent magnitude. If the number requires only
a small amount of normalization, the first method may be preferable to the
second. This results because Example 1 runs only until normalization is
complete. Example 2 always executes all 15 cycles of the repeat loop.
Specifically, Example 1 is more efficient if the number requires five or less
shifts. If the number requires six or more shifts, Example 2 is more efficient.

Note:

The TMS32020 accepts only the NORM instruction (no operand).
Source code compatibility of the TMS320C25 with the TMS32020 al-
lows the NORM instruction to also be used without a specified oper-
and. In that case, any comments on the same line as the instruction will
be interpreted as the operand. If the first character is an asterisk (*),
then the instruction will be assembled as NORM * with no auxiliary
register modification taking place upon execution. The user is therefore
advised to replace the NORM instructions with NORM *+ when the
default modification of increment is desired.

The resulting value in the auxiliary register will not be the real exponent
of the number for all modification options. However, it can always be
used to obtain the exponent.

4-117



OR OR with Accumulator
Syntax
~ Direct: [<label>] OR <dma>
Indirect: [<label>] OR {ind}[,<next ARP>]
Operands 0 <dma <127
- O<nextARP <7
Execution (PC) +1 = PC
(ACC(15-0)) .OR.dma - ACC(15-0)
(ACC(31-16)) = ACC(31-16)
Not affected by SXM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direc:| 0 1 0 0 1 1 0 1[0 | Data Memory Address |
Indirect] 0 1 0 o 1 1 o 1[1] See Section 4.1 |
Description The low-order bits of the accumulator are ORed with the contents of the
addressed data memory location. The high-order bits of the accumulator
are ORed with all zeroes. Therefore, the upper half of the accumulator is
unaffected by this instruction.
Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/Dl PR/DE
'20 1 2+d 1+p 2+d+p - -
‘C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
'20 2n+nd n+p 2n+nd+p - -
'C25 n 1+n+nd n+p 1+n+nd+p n 1+n+nd
Example OR DATS8 ; (DP = 8)
or
OR * ;Where current auxiliary register

4-118

;contains 1032.

Before Instruction After Instruction

Data Data
Memory OFOOOh M1emory OFOOOh
AccC 100002h AcC 10F002h
c c



OR Immediate with Accumulator with Shift ORK

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
'20
‘C25
'20
‘C25
Example

[<label>] ORK <constant>[,<shift>]

16-bit constant
0 < shift < 15 (defaults to 0)

(PC) + 2 - PC _
(ACC(30-0)).0R.[constant x 2shift] » ACC(30-0)
(ACC(31)) > ACC(31)

Not affected by SXM.
15 14 43 12 11 10 9 8 7 6 5 4 3 2 1 0

11 0 1] Shift [0 0o o o o 1 o0 1

16-Bit Constant

The left-shifted 16-bit immediate constant is ORed with the accumulator.
The result is left in the accumulator. Low-order bits below and high-order
bits above the shifted value are treated as zeroes. The corresponding bits
of the accumulator are unaffected. Note that the most-significant bit of the
accumulator is not affected, regardless of the shift code value.

2

Cycle Timings for a Single Instruction

P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
2 2 2+2p 2+2p - -
2 2 2+2p 2+2p 2 2

Cycle Timings for a Repeat Execution

not repeatable - I -

not repeatable

ORK  OFFFFh,8

Before Instruction After Instruction

. C c

4-119



ouT

Output Data to Port
Syntax
Direct: [<label>] OUT <dma>,<PA>
Indirect: [<label>] OUT {ind},<PA>[,<next ARP>]
Operands 0 < dma < 127
0 <next ARP <7
0 < port address PA < 15
Execution (PC) +1 - PC
Port address PA — address bus A3-A0
0 — address bus A15-A4
(dma) — data bus D15-D0O
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direct: I 1 1 1 0 I Port Address I 0 J Data Memory Address ] .
indirect:{ 1 1 1 0| PortAddress | 1| See Section 4.1 ]
Description  The OUT instruction writes a 16-bit value from a data memory location to
the specified 1/0 port. The IS line goes low to indicate an I/O access, and
the STRB, R/W, and READY timings are the same as for an external data
memory write. OUT is a single-cycle instruction when in the P1/DI memory
configuration (see Appendix I).
Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 1+i 2+d+i 2+p+i 3+d+p+i - -
'C25 1+i 2+d+i 2+p+i 3+d+p+i 1+i 2+d+i
Cycle Timings for a Repeat Execution
'20 n+ni 2n+nd+ni 2n+p+ni {3n+nd+p+ni - -
'C25 n+ni 2n+nd+ni | 1+n+p+ni {1+2n+nd+p n+ni 2n+nd+ni
+ni
Example ouT 78h,7 ;(DP = 4) Output data word stored in data

4-120

;memory location 78h to peripheral on
jport address 7.

or

ouT *,0Fh ;jOutput data word referenced by current
,aux111ary reglster to peripheral on port
;address OFh.



Load Accumulator with P Register

PAC

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
20
'C25
'20
‘C25
Example

[<label>] PAC

None
(PC) +1

- PC

(shifted P register) - ACC
Affected by PM.

15 14

13 12 1

10 9 8

[1 1

0o o0 1

1 0

The contents of the P register are loaded into the accumulator, shifted as
specified by the PM status bits.

1

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n+p n+p - -
n n+p n+p n n
PAC ; (PM = 0)
Before Instruction After Instruction
P .

c

C

4-121



POP

Pop Top of Stack to Low Accumulator

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

‘20
'C25

20
'C25

4-122

[<label>] POP
None

(PC) +1 - PC
(TOS) = ACC(15-0)
0 - ACC(31-16)
Pop stack one level.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[t *+ o 0o 1 1 1 o 0 0 0 1 1 1 o0 1|

The contents of the top of the stack (TOS) are copied to the low accu-
mulator, and the stack popped after the contents are copied. The upper half
of the accumulator is set to all zeros.

The hardware stack is a last-in, first-out stack with four (TMS32020) or
eight (TMS320C25) locations. Any time a pop occurs, every stack value
is copied to the next higher stack location, and the top value is removed
from the'stack. After a pop, the bottom two stack words will have the same
value. Because each stack value is copied, if more than three/seven pops
(due to POP, POPD, or RET instructions) occur before any pushes occur,
all levels of the stack contain the same value. No provision exists to check
stack underflow.

1
Cycle Timings for a Single Instruction
PI/DI . PI/DE PE/DI PE/DE PR/D! PR/DE

2 2 2+p 2+p - -

1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution

2n 2n 2n+p 2n+p - -

n n n+p n+p n n




Pop Top of Stack to Low Accumulator

POP

Example

POP

Before Instruction

C

Stack
(20)

Stack
(C25)

45h
16h

7h
33h

45h
16h

7h
33h
42h
56h
37h
61h

After Instruction

C

Stack
(20)

Stack
(C25)

16h

7h
33h
33h

16h

7h
33h
42h
56h
37h
61h
61h

4-123



POPD

Pop Top of Stack to Data Memory

Syntax

Direct: [<label>] POPD <dma>
Indirect: [<label>] POPD {ind}[,<next ARP>]

Operands

Execution

Encoding

0 < dma < 127
0 <nextARP <7

(PC) +1 - PC
(TOS) -+ dma
POP stack one level.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct: l o 1 1 1 1 0o 1 0 | 0 I Data Memory Address ]
Indirec:| 0 1 1 1 1 0 1 o1 | See Section 4.1 |

The value from the top of the stack is transferred into the data memory lo-

4-124

Description
Words
Cycles
'20
'‘C25
'20
‘C25

cation specified by the instruction. The values are also popped in the lower
three (TMS32020) or seven locations (TMS320C25) of the stack. The
hardware stack is described in the previous instruction POP. The lowest
stack location remains unaffected. No provision exists to check stack un-

derflow.
1
Cycle Timings for a Single Instruction
P1/Dl PI/DE PE/DI PE/DE PR/DI PR/DE
2 2+d 2+p 2+d+p - -
1 1+d 1+p 2+d+p 1 1+d
Cycle Timings for a Repeat Execution
2n 2n+nd 2n+p 2n+nd+p - -
n n+nd n+p 1+n+nd+p n n+nd




Pop Top of Stack to Data Memory

POPD

Example POPD DAT100

or
POPD *

Data
Memory
1124

Stack
(20)

Stack
(C25)

;(DP = 8)

;If current auxiliary register
;contains 1124.

Before Instruction

55h

92h
72h

8h
44h

92h
72h
8h
44h
81h
75h
32h
O0AAh

Data

Memory

1124

Stack
(20)

Stack
(C25)

After Instruction

92h

72h

8h
44h
44h

72h
8h
44h
81h
75h
32h
O0AAh
0AAh

4-125



PSHD

Push Data Memory Value onto Stack

Syntax
Direct: [<label>] PSHD <dma>
Indirect: [<label>] PSHD {ind}[,<next ARP>]

Operands 0 < dma < 127
0 < next ARP < 7
Execution (dma) —» TOS
(PC) +1 » PC
Push all stack locations down one level.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:| 0 1 0 1 0 1 0 ofo | Data Memory Address |
Indirect] 0 1 0 1 0 1 0 of1] See Section 4.1 |

Description The value from the data memory location specified by the instruction is
transferred to the top of the stack. The values are also pushed down in the
lower three (TMS32020) or seven locations (TMS320C25) of the stack,

as described in the instruction PUSH. The lowest stack location is lost.
Words 1

Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
‘20 2 2+d 2+p 2+d+p - -
‘'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
'20 2n 2n+nd 2n+p 2n+nd+p - -
'C25 n 1+n+nd n+p 1+n+nd+p n 1+n+nd

4-126




Push Data Memory Value onto Stack PSHD

Example PSHD  DAT127 ; (DP = 3)
or
PSHD * ;If current auxiliary register
;contains 511.

Before Instruction After Instruction

Data Data

Memory 65h Memory 65h
511 511

Stack 2h Stack 65h
(20) 33h (20) 2h
78h 33h
99h 78h
Stack 2h Stack 65h
(C25) 33h (C25) 2h
78h 33h
99h 78h
42h 99h
50h 42h
Oh 50h
Oh Oh

4-127



PUSH

Push Low Accumulator onto Stack

Syntax
Operands

Execution

" Encoding

Description

Words

Cycles

20
'C25

'20
‘'C25

Example

4-128

[<label>] PUSH
None

(PC) +1 - PC

Push all stack locations down one level.

(ACC(15-0)) = TOS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fr 1+ o o 1 1 1 0 0 0 0 1 1 1 0 O]

The contents of the lower half of the accumulator are copied onto the top
of the hardware stack. The stack is pushed down before the accumulator
value is copied.

The hardware stack is a last-in, first-out stack with four (TMS32020) or
eight locations (TMS320C25). If more than four/eight pushes (due to
CALA, CALL, PSHD, PUSH, or TRAP instructions) occur before a pop, the
first data values written will be lost with each succeeding push.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE

2 2 2+p 2+p - -

1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution

2n 2n 2n+p 2n+p - -

n n n+p n+p n n

PUSH

After Instruction

C

Before Instruction

C

Stack 2h Stack 7h
(20) 5h (20) 2h
3h 5h

Oh 3h

Stack 2h Stack 7h
(C25) 5h (C25) 2h
3h 5h

Oh 3h

12h Oh

86h 12h

B4h 86h

3Fh 54h




Reset Carry Bit (TMS320C25)

RC

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

[<label>] RC
None

(PC) +1 - PC
0 - carry bit C in status register ST1

Affects C.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[t 1+ 0 0o 1 1 1 0 0 0 1 1 0 0 0 0]

The carry bit C in status register ST1 is reset to logic zero. The carry bit
may also be loaded directly by the LST1 and SC instructions.

1

Cycle Timings for a Single Instruction

'C25
'C25

Example

Pl/DI

PI/DE

PE/DI

PE/DE

PR/DI

PR/DE

1

1+p

1+p

1

Cycle Timings for a Repeat Execution

n

n+p

l

n+p

l

n

RC

;The carry bit C is reset to logic zero.

4129



RET

Return from Subroutine

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
20
'‘C25
'20
'C25
Example

4-130

[<label>] RET
None

(TOS) » PC
Pop stack one level.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 17 0o o 1. 1 1 0o 0o o 1 0 0 1 1 0]

The contents of the top stack register are copied into the program counter.
The stack is then popped one level. RET is used with CALA and CALL for
subroutines., :

1

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/Di PR/DE
2 2 2+p 2+p - -
Destination on-chip RAM:
2 2 2+p 2+p 2 2
Destination on-chip ROM:
3 3 3+p 3+p 3 3
Destination external memory: .
3+p 3+p 3+2p 3+2p 3+p 3+p
Cycle Timings for a Repeat Execution
not repeatable - -
not repeatable ‘
RET
Before Instruction After Instruction
PC ) 96h PC 37h
Stack 37h Stack 45h
(20) 45h (20) 75h
75h 21h
21h 21h
Stack 37h Stack 45h
(C25) 45h (C25) 75h
75h 21h
21h 3Fh
3Fh 45h
45h 6Eh
6Eh 6Eh
6Eh 6Eh




Reset Serial Port Frame

RFSM Synchronization Mode (TMS320C25) RFSM
Syntax [<label>] RFSM
Operands None
Execution (PC) +1 > PC
0 — FSM status bit in status register ST1
Affects FSM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
(1 1+ o o 1t 1 1 0 0 0 1 1 0 1 1 0f
Description  The RFSM status bit resets the FSM status bit to logic zero. In this mode,
external FSR pulses are not required to initiate the receive operation for
each word received, but rather only one FSR pulse is required to initiate a
“continuous mode” of operation. The same holds true for FSX when TXM
= 0. After the first FSR/FSX pulse, these inputs are then in a “don’t care”
state. If TXM = 1, FSX is pulsed the first time DXR is loaded, but remains
low thereafter. See Section 3.9 for further details on the operation of the
serial port. FSM may also be loaded by the LST1 and SFSM instructions.
Words 1 ‘
Cycles .
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
'C25 n I n | n+p I n+p l n | n
Example RFSM ;FSM is reset, putting the serial port

;in a mode of operation where frame
;synchronization pulses are not required.
;This allows a continuous bit stream to
;be transmitted/received without FSX/FSR
;pulses every 8/16 bits.

4-131



Reset Hold Mode (TMS320C25)

RHM
Syntax [<label>] RHM
Operands None
Execution (PC) +1 - PC
0 = HM status bit in status register ST1
Affects HM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1+ 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0
Description The RHM instruction resets the HM status bit to logic zero. In this mode,
the TMS320C2x is not halted during the assertion of HOLD when executing
from on-chip program memory (either RAM or ROM), but instead places
its external buses in the high-impedance state and continues execution
until an external access must be made. External access can mean (in addi-
tion to the normal connotation) the following conditions:
MP/MC CNF PC
0 0 PC 4096
0 1 4096 < PC < 65279
1 0 Any PC value (normal
TMS32020-type hold mode)
1 1 PC < 65279
HM can also be loaded by the LST1 and SHM instructions.
Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
'C25 n l n l n+p I n+p I n | n
Example RHM ;HM is reset, implementing the TMS320C25

4-132

;hold mode for on-chip program execution.



Rotate Accumulator Left (TMS320C25)

ROL

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

[<label>] ROL

None

(PC) +1 > PC

(ACC(31)) = C
(ACC(30-0)) = ACC(31-1)
(C, before ROL) = ACC(0)

Affects C.
Not affected by SXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[+ 1+ 0o o 1 1 1 0o o 0o 1 1 0 1 0 0]
The ROL instruction rotates the accumulator left one bit. The MSB is

shifted into the carry bit, and the value of the carry bit from before the exe-
cution of the instruction is shifted into the LSB.

1

Cycle Timings for a Single Instruction

'C25
‘'C25

Example

P1/DI

Pl/DE

PE/DI

PE/DE

PR/DI

PR/DE

1

1+p

1+p

1

Cycle Timings for a Repeat Execution

n

l

n+p

n+p

n

T

ROL

Before Instruction

C

After Instruction

C

4-133



ROR Rotate Accumulator Right (TMS320C25)
Syntax [<label>] ROR
Operands None
Execution (PC) +1 - PC

(ACC(0)) - C

(ACC(31-1)) = ACC(30-0)

(C, before ROR) - ACC(31)

Affects C.

Not affected by SXM.
Encoding 5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[+ 1+ o o 1 1 1 0o 0 0 1 1 0 1 0 1|
Description The ROR instruction rotates the accumulator right one bit. The LSB is

shifted into the carry bit, and the value of the carry bit from before the exe-

cution of the instruction is shifted into the MSB.
Words 1
Cycles

Cycle Timings for a Single Instruction
P1/DI Pl/DE PE/DI PE/DE PR/DI PR/DE
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
'C25 n l n l n+p | n+p I n I n

Example ROR

4-134

After Instruction

Acc [o] [ 5800091Ah
c

Before Instruction

Acc [o] [ 0B0001234h
c



Reset Overflow Mode

ROVM

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

20
'C25

20
'C25

Example

[<label>] ROVM
None

(PC) +1 - PC
0 - OVM status bit in status register STO

Affects OVM.

15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 O
[t 1+ 0o o 1 1 1 0 0 0 0 O O O 1 O]

The OVM status bit is reset to logic zero, which disables the overflow mode.
If an overflow occurs with OVM reset, the OV (overflow flag) is set, and the
overflowed result is placed in the accumulator.

OVM may also be loaded by the LST and SOVM instructions.
1

Cycle Timings for a Single Instruction
P1/D1 PI/DE PE/DI PE/DE PR/DI PR/DE

1 1 1+p 1+p - -

1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution

n n+p n+p - -

n n n+p n+p n n

ROVM ;The overflow mode bit OVM is reset,

;disabling the overflow mode on any
;subsequent arithmetic operations.

4-135



Repeat Instruction as
RPT Specified by Data Memory Value RPT

Syntax
Direct: [<label>] RPT <dma>
Indirect: [<label>] RPT {ind}[,<next ARP>]

Operands 0 <dmac<127
0 <next ARP <7

Execution (PC) +1 = PC
(dma(7-0)) - RPTC

Encoding 15 14 13 12 11 10 9 8 7 6v 5 4 3 2 1 0
Directt{0 1 0 0 1 0 1 1]o0| Data Memory Address |
Indirect{0 1 0o o 1 0o 1 1]1 | See Section 4.1 l

Description The eight LSBs of the addressed data memory value are loaded into the
repeat counter (RPTC). This causes the following instruction to be exe-
cuted one time more than the number loaded into the RPTC (provided that
it is a repeatable instruction). Interrupts are masked out until the next in-
struction has been executed the specified number of times. (Interrupts
cannot be allowed during the RPT/next instruction sequence, because the
RPTC cannot be saved during a context switch.) The RPTC counter is
cleared on a RS.

RPT and RPTK are especially useful for repeating instructions, such as
BLKP, BLKD, IN, MAC, MACD, NORM, OUT, TBLR, TBLW, and others.

Words 1

Cycles
Cycle Timings for a Single Instruction
P1/D1 PI/DE PE/DI ~ PE/DE PR/DI PR/DE
‘20 1 2+d 1+p 2+d+p - -
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
20 not repeatable ] - ] -
'C25 not repeatable

4-136



Repeat Instruction as

RPT Specified by Data Memory Value RPT
Example RPT DAT127 ; (DP = 31)
SFR
or
RPT * ;If current auxiliary register
;contains 4095.
SFR
Before Instruction After Instruction
Data Data
Memory OCh Memory 0Ch
4095 4095

sce [ [(zmmmrmn ] ace [ [Tz ]
C (o}

4-137



Repeat Instruction as

4-138

RPTK Specified by Immediate Value RPTK
" Syntax [<label>] RPTK <constant>
Operands 0 < constant g 255
Execution (PC) +1 - PC
Constant = RPTC
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[v+ 1 0 o 1 o 1 1] 8-Bit Constant |
Description The 8-bit immediate value is loaded into the RPTC (repeat counter). This
causes the following instruction to be executed one time more than the
number loaded into the RPTC (provided that it is a repeatable instruction).
Interrupts are masked out until the next instruction has been executed the
specified number of times. (Interrupts cannot be allowed during the
. RPT/next instruction sequence because the RPTC cannot be saved during
a context switch.) The RPTC is cleared on a RS.
RPT and RPTK are especially useful for repeating instructions, such as
BLKP, BLKD, IN, MAC, MACD, NORM, OUT, TBLR, TBLW, and others.
Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI Pi/DE PE/DI PE/DE PR/DI PR/DE
'20 1 1 1+p 1+p - -
‘C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
20 not repeatable I - -
‘C25 not repeatable
Example LRLK AR2,200h ;Load AR2 with the address of X.
LARP 2
ZAC ;Clear the accumulator.
MPYK 0 jClear the P register.
RPTK 2 ;Repeat next instruction 3 times.
SQRA *+ ;Compute X**2 + Y**2 + Zx*2,
APAC



Reset Sign-Extension Mode

RSXM

[<label>] RSXM
None

(PC) +1 - PC
0 —» SXM sign-extension mode status bit

Affects SXM.

15 14 13 12 11 10 9 8 7 6 5 4
(1t 1 o 0o 1 1 1 0 0 0 0 O

3 2 1 0
0 1 1 0]

The RSXM instruction resets the SXM status bit to logic zero, which sup-
presses sign-extension on shifted data memory values for the following
arithmetic instructions: ADD, ADDT, ADLK, LAC, LACT, LALK, SBLK, SUB,
and SUBT.

The RSXM instruction affects the definition of the SFR instruction. SXM
may also be loaded by the LST1 and SSXM instructions.

1

Syntax
Operands
‘Execution
Encoding
Description
Words
Cycles
'20
'C25
20
‘C25
Example

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n+p n+p - -
n n n+p n+p n n
RSXM ;SXM is reset, disabling sign-extension on

;subsequent instructions.

4-139



RTC Reset Test/Control Flag (TMS320C25)
Syntax [<label>] RTC
Operands None
Execution (PC) +1 ->PC
0 — TC test/control flag in status register ST1
Affects TC.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[t 1 0 0 1 1 1 0 0 0 1 1 0 0 1 0]
Description The TC (test/control) flag in status register ST1 is reset to logic zero. TC
may also be loaded by the LST1 and STC instructions.
Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'C25 1 1 1+p ' 1+p 1 1
Cycle Timings for a Repeat Execution
'C25 n ) [ n L n+p I n+p l n I n
Example RTC ;TC (test/control) fklag is reset to logic zero.

4-140



Reset Serial Port Transmit Mode

RTXM

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

‘20
'C25

20
'C25

Example

[<label>] RTXM
None

(PC) +1 - PC
0 —» TXM transmit mode status bit

Affects TXM mode bit.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ftr *+ o o 1 1 1 0 0 0 1 0 0 0 0 Of

The RTXM instruction resets the TXM status bit, which configures the serial
port transmit section in a mode where it is controlled by an FSX (external
framing pulse). The transmit operation is started when an external FSX
pulse is applied. TXM may also be loaded by the LST1 and STXM in-
structions.

1
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n+p n+p - -
n n+p n+p n n
RTXM ;TXM is reset, ‘conf iguring FSX as an input.

4-141



RXF Reset External Flag
Syntax [<label>] RXF
Operands None
Execution (PC) +1 - PC
0 - XF external flag pin and status bit
Affects XF.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
: [+ 1+ o o 1 1 1 0o 0 0 0 0 1 1 0 O]
Description  The XF pin and XF status bit in status register ST1 are reset to logic zero.
XF may also be loaded by the LST1 and SXF instructions.
Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 1 1+p 1+p - -
‘C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
20 n n+p n+p - -
'C25 n n+p n+p n n
Example RXF ;XF pin and status bit are reset to logic zero.

4-142




Store High Accumulator with Shift

SACH

Syntax

Direct: [<label>] SACH <dma>[,<shift>]
Indirect: [<label>] SACH {ind}[,<shift>[,<next ARP>]]

Operands

Execution

Encoding

Directt {0 1 1 o0 1| shift

Indirect:| 0 1 1 0 1] shift

Description

Words

Cycles

0 < dma < 127

0 < next ARP <7

0 < shift £ 0,1, or 4 (defaults to 0) on the TMS32020
0 < shift < 7 (defaults to 0) on the TMS320C25

(PC) +1 = PC
16 MSBs of (ACC) x 2shift » dma

Not affected by SXM.

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Memory Address I

[ o]

See Section 4.1 I

[ ]

The SACH instruction copies the entire accumulator into a shifter, where it
shifts the entire 32-bit number 0, 1, or 4 bits on the TMS32020, or any-
where from 0 to 7 bits on the TMS320C25.1t then copies the upper 16 bits
of the shifted value into data memory. The accumulator itself remains un-
affected.

1

Cycle Timings for a Single Instruction
Pi/Di Pl/DE PE/DI PE/DE PR/DI

PR/DE

Example

‘20
'C25

20
'C25

2+d

1+p

3+d+p - -

1+d

1+p

2+d+p

1

1+d

Cycle Timings for a Repeat Execution

2n+nd

n+p

3n+nd+p

n+nd

n+p

1+n+nd+p

n

n+nd

SACH DAT10,4

* 4

= 4)

;contains 522.

Before Instruction

C

Memory

Data

Memory

;If current auxiliary register

After Instruction

C

4208h

4-143



SACL Store Low Accumulator with Shift
Syntax
Direct: [<label>] SACL <dma>[,<shift>]
Indirect: [<label>] SACL {ind}[,<shift>[,<next ARP>]]
Operands 0 <dma < 127
0 < next ARP <7
0 < shift < 0, 1, or 4 (defaults to 0) on the TMS32020
0 < shift < 7 (defaults to 0) on the TMS320C25
Execution (PC) +1 - PC
16 LSBs of (ACC) x 2shift » dma
Not affected by SXM.
Encoding i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:l 0o 1 1 0 0 I Shift l 0 I Data Memory Address I
Indirect:{ 0 1 1 o o] shit | 1] See Section 4.1 i
Description  The low-order bits of the accumulator are shifted left 0, 1, or 4 bits on the

TMS32020 or anywhere from O to 7 bits on the TMS320C25, as specified
by the shift code, and stored in data memory. The low-order bits are filled
with zeros, and the high-order bits are lost. The accumulator itself is unaf-
fected.

Words 1
Cycles
Cycle Timings for a Single Instruction
P1/Di PI/DE PE/DI PE/DE PR/DI PR/DE
'20 1 2+d 1+p 3+d+p - -
'C25 1 1+d 1+p 2+d+p 1 1+d
Cycle Timings for a Repeat Execution
20 2n+nd n+p 3n+nd+p - -
'C25 n+nd n+p 1+n+nd+p n n+nd
Example SACL DAT11,1 ; (DP = 4)

4-144

or

SACL *,1

Data
Memory

;If current auxiliary register

;contains 523.

Before Instruction

CcC .

Data

Memory

After Instruction

ACC 7C638421h
- .
[ 8a2n |




Store Auxiliary Register

SAR

Syntax
Direct: [<label>] SAR <AR>,<dma>
Indirect: [<label>] SAR <AR>{ind}[,<next ARP>]
Operands 0 <dma < 127
0 < auxiliary register AR < 7
0 < next ARP < 7
Execution (PC) +1 - PC
(AR) - dma
Encoding 15 14 13 12 11 10 9 7 6 4 1 0
Direct:l 0 1 1 0 I AR | 0 I Data Memory Address j
Indirect:| 0 1 1 0| AR | 1] See Section 4.1 |

Description
Words
Cycles
20
'C25
20
'C25

The contents of the designated auxiliary register (AR) are stored in the ad-
dressed data memory location.

When modifying the contents of the current auxiliary register in the indirect
addressing mode, SAR ARn (when n = ARP) stores the value of the auxil-
iary register contents before it is incremented, decremented, or indexed by

ARO.
1
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 3+d+p - -
1 1+d 1+p © 2+d+p 1 1+d
Cycle Timings for a Repeat Execution )
2n+nd n+p 3n+nd+p - -
n+nd n+p 1+n+nd+p n n+nd

4-145



SAR Store Auxiliary Register

Example 1 SAR ARO,DAT30 ;(DP = 6)
or
SAR ARO,* ;If current auxiliary register
;contains 798.

Before Instruction After Instruction

ARO 37h ARO 37h
Data Data

Memory 18h Memory
798 - 798 -

Example 2 LARP ARO
SAR ARO, *0+

ARO 401h ARO 802h
Data Data

Memory Memory 401h
1025 1025

4-146



Subtract from Accumulator

SBLK Long Immediate with Shift SBLK
Syntax [<label>] SBLK <constant>[,<shift>]
Operands . 16-bit constant

0 < shift < 15 (defaults to 0)

Execution (PC) +2 - PC )
(ACC) - [constant x 2shift] - AcCC

If SXM = 1: )
Then -32768 < constant < 32767.
If SXM = 0:

Then 0 < constant < 65535.

Affects OV; affected by OVM and SXM.
Affects C (TMS320C25).

Encoding 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
1 1 0 1] Shift lo o o o o o 1 1
16-Bit Constant

Description  The immediate field of the instruction is subtracted from the accumulator.
The result replaces the accumulator contents. SXM determines whether the
constant is treated as a signed two’s-complement number or as an un-
signed number. The shift count is optional and defaults to zero.

Words 2

Cycles
Cycle Timings for a Single Instruction
P1/D1 PI/DE PE/DI PE/DE PR/DI PR/DE
20 2 2 | 2+2p 2+2p - ' -
'C25 2 2 2+2p 2+2p 2 2
Cycle Timings for a Repeat Execution
‘20 not repeatable l - ] -
'C25 not repeatable
Example SBLK 5,12
Before Instruction After Instruction

C C

4-147



Subtract from Aljxiliary Register

SBRK Short Immediate (TMS320C25) SBRK
Syntax [<label>] SBRK <constant>
Operands 0 < constant <255
Execution (PC) +1 - PC
AR(ARP) - 8-bit positive constant -~ AR(ARP)
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
fo 1t 1 1 1 1 1 1] 8-Bit Constant |
Description  The 8-bit immediate value is subtracted, right-justified, from the currently
selected auxiliary register with the result replacing the auxiliary register
contents. The subtraction takes place in the ARAU, with the immediate
value treated as an 8-bit positive integer.
Words 1
Cycles )
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
‘C25 not repeatable
Example SBRK OFFh ; (ARP = 7)

4-148

Before Instruction After Instruction

AR7 AR7 OFFO1h



Set Carry Bit (TMIS320C25) SC
Syntax [<label>] SC
Operands None
Execution (PC) +1 - PC
1 - carry bit C in status register ST1
Affects C.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 1 0
[t 1+ 0o 0o 1 1 1 0 0 O 1 0 0 1|
Description  The carry bit C in status register ST1 is set to logic one. The carry bit may
also be loaded directly by the LST1 and RC instructions.
Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
'C25 n J n l n+p 1 n+p l n l n
Example sC ;Carry bit C is set to logic one.

4-149



SFL Shift Accumulator Left
Syntax [<label>] SFL
Operands None
Execution TMS32020:
(PC) +1 - PC
(ACC(30-0)) = ACC(31-1)
0 - ACC(0)
Not affected by SXM bit.
TMS320C25:
(PC) +1 - PC
(ACC(31)) » C
(ACC(30-0)) = ACC(31-1)
0 - ACC(0)
Affects C.
Not affected by SXM bit.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[1+ 1+ 0o o 1 1 1 o o 0 0 1 1 0 0 Of
Description  The SFL instruction shifts the entire accumulator left one bit. The least-
significant bit is filled with a zero. On the TMS32020, the most-significant
bit is lost. On the TMS320C25, the most-significant bit is shifted into the
carry bit (C). Note that SFL, unlike SFR, is unaffected by SXM.
Words 1
Cycles
Cycle Timings for a Single Instruction
Pl/Dl PI/DE PE/DI PE/DE PR/DI PR/DE
20 1 1 1+p 1+p - -
‘'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
20 n n+p n+p - -
'C25 n n+p n+p n n
Example SFL

4-150

After Instruction

C

Before Instruction

C



Shift Accumulator Right

SFR

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

‘20

‘C

25

20

‘C

25

[<label>] SFR
None

TMS32020:
(PC) + 1 - PC
If SXM = 0:
Then (ACC(31-1)) = ACC (30-0) and 0 - ACC(31).
If SXM = 1: '

Then (ACC(31-1)) = ACC(30-0) and (ACC(31)) - ACC(31).

Affected by SXM bit.

TMS320C25:
(PC) + 1 = PC
If SXM = 0:
Then (ACC(0)) = C
(ACC(31-1)) —» ACC (30-0) and 0 — ACC(31).
If SXM = 1:
Then (ACC(0)) » C
(ACC(31-1)) = ACC(30-0) and (ACC(31)) = ACC(31).

Affects C.
Affected by SXM bit.

15 14 13 12 11 10 9 8 7

[1 1 0 o 1 1 1 0 0 0

The SFR instruction shifts the accumulator right one bit.

If SXM = 1, the instruction produces an arithmetic right shift. The sign bit
(MSB) is unchanged and is also copied into bit 30. Bit O is shifted into the

carry bit (C).

If SXM = 0, the instruction produces a logical right shift. All of the accu-
mulator bits are shifted by one bit to the right. The least-significant bit is
shifted into the carry bit, and the most-significant bit is filled with a zero.

On the TMS32020, note that bit O is lost.

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/Dl PE/DE PR/DI PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p - -
n n n+p n+p n n

4-151



SFR

Shift Accumulator Right

Example 1

‘ Example 2

4-152

SFR ; (SXM = 0)

Before Instruction

C

SFR ;(SXM = 1)

C

After Instruction

Acc [o] [ 5800091Ah
C

Acc [o] [0D800091Ah
C



Set Serial Port Frame

SFSM Synchronization Mode (TMS320C25) SFSM
Syntax [<label>] SFSM
Operands None
Execution (PC) +1 = PC
1 - FSM status bit in status register ST1
Affects FSM.
Encoding 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 O
[t 1 0o o 1 1 1 0 o0 0 1 1 0 1 1 1]
Description  The SFSM instruction sets the FSM status bit to logic one. In this mode,
an external FSR pulse is required for a receive operation, and an external
FSX pulse is required if TXM = 0. If TXM = 1, FSX pulses are generated in
the normal manner every time the transmit shift register XSR is loaded. See
Section 3.7 for details on the operation of the serial port. FSM may also be
loaded by the LST1 and RFSM instructions.
Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
'C25 n I n I n+p I n+p I n l n
Example SFSM ;FSM is set, putting the serial port in a

;mode of operation where frame synchronization
;jpulses are required for each word to be
;transmitted or received.

4-153



SHM

Set Hold Mode (TMS320C25)

Syntax
Operands

Execution

Encoding

Description

Words

Cycles

Example

4-154

'C25

'C25

.[<label>] SHM

None

(PC) +1 - PC

1 = HM status bit in status register ST1

Affects HM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[+ 1+ o o 1 1 1 0 0 0 1 1 1 0 0 1]

The SHM instruction sets the HM status bit to logic one. In this mode, the
TMS320C25 is halted in the normal manner whenever HOLD is asserted,
regardless of the PC value or the state of the MP/MC pin. HM may also be
loaded by the LST1 and RHM instructions.

1

Cycle Timings for a Single Instruction
P1/Di PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p 1 1
‘ Cycle Timings for a Repeat Execution
n l n+p I n+p I n | '

;HM is set, implementing the normal
; (TMS32020-type) hold mode of operation.

SHM



Set Overflow Mode

SOvVMm

[<label>] SOVM
None

(PC) +1 - PC
1 — overflow mode (OVM) status bit

Affects OVM. ‘
15 14 13 12 11 10 9 8 7 6 565 4 3 2 1 O

[+ 1 0o o 1 1 1 0 0 0 0 0 0 O 1 1]

The OVM status bit is set to logic one, which enables the overflow (satu-
ration) mode. If an overflow occurs with OVM set, the overflow flag OV is
set, and the accumulator is set to the largest representable 32-bit positive
(7FFFFFFFh) or negative (80000000h) number according to the direction
of overflow.

OVM may also be loaded by the LST and ROVM instructions.
1

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
20
'C25
‘20
'C25
Example

Cycle Timings for a Single Instruction
Pl/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n+p n+p - -
n | n n+p n+p n n
SOVM ;The overflow mode bit OVM is set, enabling

;the overflow mode on any subsequent

;arithmetic operations.

4-155



SPAC

Subtract P Register from Accumulator

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
'20
'C25
20
‘C25
Example

4-156

[<label>] SPAC

None
(PC) +1 - PC
(ACC) - (shifted P register) » ACC

Affects OV; affected by PM and OVM.
Affects C (TMS320C25).
Not affected by SXM.

15 14 13 12 11
[1 1 o0

10 9
o 1 1 1

8
0

7
0

0

The contents of the P register, shifted as defined by the PM status bits, are
subtracted from the contents of the accumulator. The result is stored in the
accumulator. Note that SPAC is unaffected by SXM; the P register is always
sign-extended.

The SPAC instruction is a subset of LTS, MPYS, and SQRS.
1

Cycle Timings for a Single Instruction
Pl/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n n+p n+p - -
n n n+p n+p n n
SPAC ; (PM = 0)
Before Instruction After Instruction
’

P
e Qson]  aec P

C



Store High P Register (TMS320C25)

SPH

Syntax
Direct:
Indirect:

Operands

Execution

Encoding

[<label>] SPH <dma>
[<label>] SPH {ind}[,<next ARP>]

0 <dma < 127
0 < next ARP < 7

(PC) +1 - PC

(PR shifter output (31-16)) = dma
Affected by PM.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direct:/| 0 1 1 1 1 1 0o 1]o| Data Memory Address |
11 1 0 1]1] See Section 4.1 |

lndirect:L 0 1 1

Description

Words

Cycles

'C25
'C25

Example

The high-order bits of the P register, shifted as specified by the PM bits,
are stored in data memory. Neither the P register nor the accumulator are
affected by this instruction. High-order bits are sign-extended when the
right-shift by 6 mode is selected. Low-order bits are taken from the low P
register when left-shifts are selected.

1

Cycle Timings for a Single Instruction

PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1+d 1+p 2+d+p 1 1+d
Cycle Timings for a Repeat Execution
n [ n+nd [ n+p [ 1+n+nd+p I n l n+nd
SPH DAT3 ;(DP = 4, PM = 2)
or
SPH * ;If current auxiliary register contains 515.
Before Instruction After Instruction
P OFEQ079844h P OFE079844h
Data Data
Memory 4567h Memory 0OE079h
515 515

4-157



4-158

SPL Store Low P Register (TMS320C25)
Syntax
Direct: [<label>] SPL <dma>
Indirect: [<label>] SPL {ind}[,<next ARP>]
Operands 0 < dma < 127
0 < nextARP < 7
Execution (PC) +1 - PC
(PR shifter output (15-0)) = dma
Affected by PM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct:l 0 1 1 1 1 1 0 o0 | 0 | Data Memory Address j
Indirect:] 0 1 1 1 1 1 o o1 | See Section 4.1 |
‘Description  The low-order bits of the P register, shifted as specified by the PM bits, are
stored in data memory. Neither the P register nor the accumulator are af-
fected by this instruction. High-order bits are taken from the high P register
when the right-shift by 6 mode is selected. Low-order bits are zero-filled
when left-shifts are selected.
Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'C25 1 1+d 1+p 2+d+p 1 1+d
Cycle Timings for a Repeat Execution
‘C25 n I n+nd I n+p [1+n+nd+p| n I n+nd
Example SPL  DAT3 ;(DP = 4, PM = 2)
or
SPL * ;If current auxiliary register contains 515.

After Instruction

OFE079844h

Before Instruction

P OFE079844h P

Data Data
Memory 4567h Memory 8440h
515 515



Set P Register Output Shift Mode

SPM

Syntax [<label>] SPM <constant>
. Operands 0 < constant < 3
Execution (PC) +1 - PC
Constant = product register shift mode (PM) status bits
Affects PM.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
(1t 1 0 0o 1 1 1 0 0 0 0 O o| pm |

Description  The two low-order bits of the instruction word are copied into the PM field
of status register ST1. The PM status bits control the P register output
shifter. This shifter has the ability to shift the P register output either one
or four bits to the left or six bits to the right, or to perform no shift. The bit

combinations and their meanings are shown below.

PM ACTION

00 No shift of multiplier output

01 Output left-shifted 1 place and zero-filled

10 Output left-shifted 4 places and zero-filled

11 Output right-shifted 6 places, sign-extended; LSB bits lost.

The left-shifts allow the product to be justified for fractional arithmetic. The
right-shift by six bits has been incorporated to implement up to 128 multi-
ply-accumulate processes without the possibility of overflow occurring. PM

may also be loaded by an LST1 instruction.
Words 1

Cycles
Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 1 1 1+p 1+p - -
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
20 not repeatable - -
'C25 not repeatable
Example SPM 3 ;Product register shift mode 3 is selected,

;causing all subsequent transfers from the
;product register to the ALU to be shifted

;to the right six places.

4-159



SQRA

Square and Accumulate Previous Product

Syntax

Direct:
Indirect:

Operands

Execution

Encoding

Direct[0 0 1 1 1 0 0

Indirectt] 0 0 1 1 1 0 0

Description

Words

Cycles

[<label>] SQRA <dma>
[<label>] SQRA {ind}[,<next ARP>]

0 < dma < 127
0 <next ARP < 7

(PC) +1 > PC

(ACC) + (shifted P register) = ACC
(dma) — T register .

(dma) x (dma) — P register

Affects OV; affected by PM and OVM.
Affects C (TMS320C25).

15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 O

1 | 0 | Data Memory Address I

111 ]

See Section 4.1 ) I

The contents of the P register, shifted as defined by the PM status bits, are
added to the accumulator. The addressed data memory value is then loaded
into the T register, squared, and stored in the P register.

1

20
'C25

20
'C25

Example

4-160

Cycle Timings for a Single Instruction
Pi/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p - -
n 1+n+nd n+p 1+n+nd+p n 1+n+nd
SQRA DAT30 ;(DP = 6, PM = 0)
or
SQRA * ;If current auxiliary register

;contains 798.

Before Instruction After Instruction

Data Data
Memory Memory
8 798



Square and Subtract Previous Product

SQRS

Syntax
Direct:
Indirect:

Operands

Execution

Encoding

Direct: [0 1 0 1 1 0 1

Indirec:{ 0 1 0 1 1 0 1

Description

Words
Cycles
20
'C25

‘20
'C25

Example

[<label>] SQRS <dma>
[<label>] SQRS {ind}[,<next ARP>]

0 < dma < 127
0 < next ARP < 7

(PC) +1 - PC ,

(ACC) - (shifted P register) - ACC
(dma) — T register

(dma) x (dma) — P register

Affects OV; affected by PM and OVM.
Affects C (TMS320C25).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 l 0 I Data Memory Address I

0 I 1 ] See Section 4.1 I

The contents of the P register, shifted as defined by the PM status bits, are
subtracted from the accumulator. The addressed data memory value is then
loaded into the T register, squared, and stored into the P register.

1

Cycle Timings for a Single Instruction
PI/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
2n+nd n+p 2n+nd+p - -
1+n+nd n+p 1+n+nd+p n 1+n+nd
SORS DAT9 ;(DP = 6, PM = 0)
or
SQRS * ;If current auxiliary register contains 777.
Before Instruction After Instruction
Data Data
Memory Memory
777 777
T 1124h T
P 190h P 40h
1450h ACC 12C0h
C

>
o
o
0 [X]

4-161



SST

Store Status Register STO

Syntax

Direct: [<label>] SST <dma>
Indirect: [<label>] SST {ind}[,<next ARP>]

Operands

Execution

Encoding

Direct|0 1 1 1 1 0 0

Indirect:| 0 1 1 1 1 0 0

0 <dma <127
0 <next ARP <7

(PC) +1 - PC
(status register STO) —» dma

10 9 8 7 6 5 4 3 2 1 0
ofo |

15 14 13 12 1

Data Memory Address I

0 I 1 l See Section 4.1 I

Status register STO is stored in data memory.

In the direct addressing mode, status register STO is always stored in page
0 regardless of the value of the DP register. The processor automatically
forces the page to be 0, and the specific location within that page is defined
in the instruction. Note that the DP register is not physically modified. This
allows storage of the DP register in the data memory on interrupts, etc., in
the direct addressing mode without having to change the DP. In the indi-

. rect addressing mode, the data memory address is obtained from the auxil-

iary register selected. (See the LST instruction for more information.)

The SST instruction can be used to store status register STO after interrupts
and subroutine calls. The STO contains the status bits: OV (overflow flag)
bit, OVM (overflow mode) bit, INTM (interrupt mode) bit, ARP (auxiliary
register pointer) bit, and DP (data memory page pointer) bit. The status
bits are stored in the data memory word as follows:

15 14 13- 12 11 10 9 8 7 6 5 4 3 2 10

| ARP | ov fovMm] 1 [iNTm | DP

Note that SST * may be used to store status register STO anywhere in data
memory, while SST in the direct addressing mode is forced to page 0.

1

Description
Words
Cycles
'20
'C25
20
‘C25

4-162

Cycle Timings for a Single Instruction
P1/DI P1/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 3+d+p - -
1 1+d 1+p 2+d+p 1 1+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 3n+nd+p - -
n n+nd n+p 1+n+nd+p n n+nd




Store Status Register STO SST

Example SST  DAT96 ;(DP = don't care)
or
SST * ;If current auxiliary register

;contains 96.

Before Instruction After Instruction
Status Status

R%gister 0A408h Reéaister 0A408h
TO TO
Data Data
Memory OAh Memory 0A408h
96 96

4-163



SST1

Store Status Register ST1

Syntax

Direct: [<label>] SST1 <dma>

Indirect: [<label>] SST1 {ind}[,<next ARP>]

Operands

Execution

Encoding

Direct:| 0 1 1 1 1 0

Indirectt{ 0 1 1 1 1 0 0

0 <dma < 127
0 < next ARP £ 7

(PC) +1 » PC
(status register ST1) — dma

10 9 8 7 6 5 4 3 2 1 0
0 ‘1[0 | Data Memory Address l

1] ]

Status register ST1 is stored in data memory. In the direct addressing mode,
status register ST1 is always stored in page O regardless of the value of the
DP register. The processor automatically forces the page to be 0, and the
specific location within that page is defined in the instruction. Note that
the DP register is not physically modified. This allows the storage of the
DP in the data memory on interrupts, etc., in the direct addressing mode
without having to change the DP. In the indirect addressing mode, the data
memory address is obtained from the auxiliary register selected. (See the
LST1 instruction for more information.)

15 14 13 12 1

See Section 4.1 I

SST1 is used to store status bits after interrupts and subroutine calls. ST1
contains the status bits: ARB (auxiliary register pointer buffer), CNF (RAM
configuration control) bit, TC (test/control) bit, SXM (sign-extension
mode) bit, XF (external flag) bit, FO (serial port format) bit, TXM (transmit
mode) bit, and the PM (product register shift mode) bit. ST1 on the
TMS320C25 also contains the status bits: C (carry) bit, HM (hold mode)
bit, and FSM (frame synchronization mode) bit. The bits loaded into status
register ST1 from the data memory word are as follows:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1.0
| ARB  |cNF] TC Jsxm| cf [ 1 1 [umt [ Fsmi{xF|Fo]TXxm]| pm |
tOn the TMS32020, bits 5, 6, and 9 are one’s.

Note that SST1 * may be used to store status register ST1 anywhere in data
memory, while SST1 in the direct addressing mode is forced to page O.

1

Description
Words
Cycles
'20
‘C25
20
'C25

4-164

Cycle Timings for a Single Instruction
P1/DI Pl/DE PE/DI PE/DE PR/DI PR/DE
1 2+d 1+p 3+d+p - -
1 1+d 1+p 2+d+p 1 1+d
Cycle Timings for a Repeat Execution
2n+nd n+p 3n+nd+p - -
n+nd n+p 1+n+nd+p n n+nd




Store Status Register ST1 SST1

Example SST1  DAT97 ;(DP = don't care)
or
SST1 * ;If current auxiliary register

;contains 97.

Before Instruction ' After Instruction
Status Status
Resgister OA7EOh Resg|l_ster OA7EOh
T1 1

Data Data
Memory 0Bh Memory OA7EOh
97 97

4-165



4-166

SSXM Set Sign-Extension Mode
Syntax [<label>] SSXM
Operands None
" Execution (PC) +1 > PC

1 - SXM status bit in status register ST1

Affects SXM.
Encoding 1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[t 1+ 0o o 1 1 1 0 0 0 0 0 0 1 1 1]
Description The SSXM instruction sets the SXM status bit to logic 1, which enables

sign-extension on shifted data memory values for the following arithmetic

instructions: ADD, ADDT, ADLK, LAC, LACT, LALK, SBLK, SUB, and

SUBT.

SSXM also affects the definition of the SFR instruction. SXM may also be

loaded by the LST1 and RSXM instructions.
Words 1
Cycles

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 1 1 1+p 1+p - ) -
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
'20 n n n+p n+p - -
'C25 n n+p n+p n n

Example SSXM ;SXM is set, enabling sign extension on

;subsequent instructions.



Set Test/Control Flag (TMS320C25) STC

Syntax [<label>] STC
Operands None
Execution (PC) +1 - PC
1 = TC test/control flag in status register ST1
Affects TC.
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
f1+ 1+ o o 1 1 1 0 0 0 1t 1 0 0 1 1]
Description  The TC (test/control) flag in status register ST1 is set to logic one. TC may
also be loaded by the LST1 and RTC instructions.
Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
‘C25 n n I n+p ] n+p J n l n
Example STC ;TC (test/control) flag is set to logic one.

4-167



STXM

Set Serial Port Transmit Mode

[<label>] STXM
None

(PC) +1 - PC
1 - TXM status bit in status register ST1

Affects TXM.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[+ 1 0 o 1 11 0o o o 1 0o 0o 0 o 1]

The STXM instruction sets the TXM status bit to logic 1, which configures
the serial port transmit section to a mode where the FSX pin behaves as an
output. A pulse is produced on the FSX pin each time the DXR register is
loaded internally. The transmission is initiated by the negative edge of this
pulse. TXM may also be loaded by the LST1 and RTXM instructions. If the
FSM status bit is a logic zero and serial port operation has already started,
the FSX pin will be driven low if TXM = 1.

1

Syntax
Operands
Execution
Encoding
Description
Words
Cycles
20
'C25
'20
‘C25
Example

4-168

Cycle Timings for a Single Instruction
Pi/DI PI/DE PE/DI PE/DE PR/DI PR/DE
1 1 1+p 1+p - -
1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
n n+p n+p - -
n n+p n+p n n
STXM ;TXM is set, configuring FSX as an output.




Subtract from Accumulator with Shift SuUB

Syntax
Direct: [<label>] SUB <dma>[,<shift>]
Indirect: [<label>] SUB ({ind}[,<shift>[,<next ARP>]]

Operands 0 <dma < 127
0 < next ARP < 7
0 < shift < 15 (defaults to 0)

Execution (PC) +1 - PC
(ACC) - T(dma) x 2shift] . Acc

If SXM =
Then (d'na) is sign- extended
If SXM = 0:

Then (dma) is not sign-extended.

Affects OV; affected by OVM and SXM.
Affects C (TMS320C25).

Encoding 16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Direct: {0 0 0 1| Shift | o] Data Memory Address |
Indirect:] 0 0 0 1| Shift [ 1] See Section 4.1 |

Description  The contents of the addressed data memory location are left-shifted and
subtracted from the accumulator. During shifting, low-order bits are zero-
filled. High-order bits are sign-extended if SXM is high and zero-filled if
SXM is low. The result is stored in the accumulator.

Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
‘20 1 2+d 1+p 2+d+p - -
‘C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
20 n 2n+nd n+p 2n+nd+p - -
'C25 n 1+n+nd n+p 1+n+nd+p n 1+n+nd
Example SUB DAT80 ;(DP = 8)
or
SUB * ;If current auxiliary register contains 1104.
Before Instruction After Instruction

Data Data
Acc acc
C C

. 4-169



Subtract from Accumulator ’ :
SUBB with Borrow (TMS320C25) SUBB

Syntax
Direct: [<label>] SUBB <dma>
Indirect: [<labei>] SUBB {ind}[,<next ARP>]

Operands 0 < dma < 127
0 <nextARP < 7

Execution (PC) +1 = PC
(ACC) - (dma) - (C) = ACC

Affects C and OQV; affected by OVM.

Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Directt| 0 1 0 0 1 1 1 1]0 |  DataMemory Address |
Indirecttf 0 1 0o o 1 1 1 1]1| See Section 4.1 |

Description The contents of the addressed data memory location and the value of the
carry bit are subtracted from the accumulator. The carry bit is then affected
in the normal manner (see Section 3.5.2).

Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
'C25 n | 1+n+nd I n+p |1+n+nd+p| n | 1+n+nd
Example SUBB  DATS ; (DP = 8)
or .
SUBB * ;If current auxiliary register

;contains 1029.

Before Instruction After Instruction
Data Data
1029
ACC @ Acc [o] [ OFFFFFFFFh
C C

In the above example, C is originally zeroed, presumably from the result of
a previous subtract instruction that performed a borrow. The effective op-
eration performed was 6 - 6 - (0) = -1, generating another borrow (and
resetting carry again) in the process.

The SUBB instruction can be used in performing multiple-precision arith-
metic.

4-170



Conditional Subtract SUBC

Syntax
Direct:
Indirect:

Operands

Execution

Encoding

[<label>] SUBC <dma>
[<label>] SUBC {ind}[,<next ARP>]

0 <dma < 127
0 < nextARP < 7

(PC) +1 - PC
(ACC) - [(dma) x 25] - ALU output
If ALU output > O:

Then (ALU output) x 2 + 1 = ACC;
Else (ACC) x 2 - ACC.

Affects OV.
Affects C (TMS320C25).
Not affected by OVM (no saturation); is affected by SXM.

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Directt{0 1 0 0 o0 1 1 1]o0 ] Data Memory Address |

Indirec:| 0 1 0 o o 1 1 1[1] See Section 4.1 |

Description

Words

The SUBC instruction performs conditional subtraction, which may be used
for division. The 16-bit dividend is placed in the low accumulator, and the
high accumulator is zeroed. The divisor is in data memory. SUBC is exe-
cuted 16 times for 16-bit division. After completion of the last SUBC, the
quotient of the division is in the lower-order 16-bit field of the accumulator,
and the remainder is in the high-order 16 bits if the accumulator. SUBC
provides the normally expected results for division when both the divisor
and dividend are positive. The divisor is affected by the SXM bit. If SXM=1,
then the divisor must have a 0 value in the MSB. If SXM=0, then any 16-bit
divisor value will produce the expected results. The dividend, which is in
the accumulator, must initially be positive (i.e. bit 31 must be 0) and must
remain positive following the accumulator shift which occurs during the
SUBC operation.

If the 16-bit dividend contains less than 16 significant bits, the dividend
may be placed in the accumulator left-shifted by the number of leading
non-significant zeroes. The number of executions of SUBC is reduced from
16 by that number. One leading zero is always significant.

Note that SUBC affects OV but is not affected by OVM, and therefore the
accumulator does not saturate upon positive or negative overflows when
executing this instruction.

1

4-171



SUBC Conditional Subtract
Cycles
Cycle Timings for a Single Instruction
PI1/DI Pi/DE PE/DI PE/DE PR/DI PR/DE
'20 1 2+d 1+p 2+d+p - -
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
20 2n+nd n+p 2n+nd+p - -
'C25 1+n+nd n+p 1+n+nd+p n 1+n+nd
Example RPTK 15
SUBC DAT2 ; (DP 4)
or )
RPTK 15
SUBC * ;If current auxiliary register contains 514.
Before Instruction After Instruction
Data Data
Memory Memory
514 514
ACo |

4-172

o [X]

C



Subtract from High Accumulator

SUBH

Syntax

Operands

Execution

Encoding

Direct:lo 1 0O 0 o0 1 0

Indirect:| 0 1 0 0- 0 1 0

Description

Words

Cycles

‘C25

20
'C25

Example

Direct: [<label>] SUBH <dma>
Indirect:

[<label>] SUBH {ind}[,<next ARP>]

0 < dma < 127
0 < next ARP < 7

(PC) +1 - PC
(ACC) - [(dma) x 216] » ACC

Affects OV, affected by OVM.
Affects C (TMS320C25).

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Data Memory Address l

oo ]

o1 | See Section 4.1 |

The contents of the addressed data memory location are subtracted from the
upper 16 bits of the accumulator. The 16 low-order bits of the accumulator
are unaffected. The result is stored in the accumulator. The carry bit C on
the TMS320C25 is reset if the result of the subtraction generates a borrow;
otherwise, C is unaffected.

The SUBH instruction can be used for performing 32-bit arithmetic.
1

Cycle Timings for a Single Instruction
P1/DI PI/DE PE/D1 PE/DE PR/DI PR/DE
1 2+d 1+p 2+d+p - -
1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
n 2n+nd n+p 2n+nd+p - -
n 1+n+nd n+p 1+n+nd+p n 1+n+nd
SUBH DAT33 ;(DP = 6)
or
SUBH * ;If current auxiliary register contains 801.

After Instruction

ACC E] 60013h
C

Before Instruction

C

Data
Memory

Data
Memory

4-173



Subtract from Accumulator

SUBK Short Immediate (TMS320C25) SUBK
Syntax [<label>] SUBK <constant>
Operands 0 < constant < 255
Execution (PC) +1 - PC

(ACC) - 8-bit positive constant - ACC

Affects C and OV: affected by OVM.

Not affected by SXM. i
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[r+ 1 0 o 1 1 o 1] 8-Bit Constant |
Description The 8-bit immediate value is subtracted, right-justified, from the accu-

mulator with the result replacing the accumulator contents. The immediate

value is treated as an 8-bit positive number, regardless of the value of SXM.
Words 1
Cycles

Cycle Timings for a Single Instruction
PI/DI - PI/DE PE/DI PE/DE PR/DI PR/DE
'C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
'C25 not repeatable

Example SUBK 12h

4-174

Before Instruction ~ After Instruction

e [ N | —N
C 7 C



Subtract from Low Accumulator

SUBS with Sign-Extension Suppressed SUBS
Syntax
Direct: [<label>] SUBS <dma>
Indirect: [<label>] SUBS {ind}[,<next ARP>]
Operands 0 < dma < 127
0 <nextARP < 7
Execution (PC) +1 - PC
(ACC) - (dma) = ACC
Affects OV; affected by OVM.
Affects C (TMS320C25).
Not affected by SXM.
Encoding 16 14 13 12 11 10 9 7 6 5 4 2 1 0
Direct:l 0 0 0 0 1 | 0 I Data Memory Address ]
Indirect: | 0 0 o0 o 1|1 | See Section 4.1 |
Description  The contents of the addressed data memory location are subtracted from the
accumulator with sign-extension suppressed. The data is treated as a 16-
bit unsigned number, regardless of SXM. The accumulator behaves as a
signed number. SUBS produces the same result as a SUB instruction with
SXM = 0 and a shift count of 0.
Words 1
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE - PE/DI PE/DE PR/DI PR/DE
20 2+d 1+p 2+d+p - -
'C25 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
'20 2n+nd n+p 2n+nd+p - -
‘'C25 1+n+nd n+p 1+n+nd+p n 1+n+nd
Example SUBS ; (DP 16)
or
SUBS ;If current auxiliary register contains 2050.

Before Instruction

OF003h

Before Instruction

C

Data
Memory
2050

After Instruction

0F003h

After Instruction

C

4-175



Subtract from Accumulator

SUBT _ with Shift Specified by T Register SUBT

Syntax
Direct:
Indirect:

[<label>] SUBT. <dma>
[<label>] SUBT {ind}[,<next ARP>]

0 < dma < 127
0 < next ARP <7

(PC) +1 - PC .
(ACC) - [(dma) x 2T register(3-0) - (ACC)
If SXM = 1:
Then (dma) is sign-extended.
If SXM = 0:
Then (dma) is not sign-extended.

Affects OV; affected by SXM and OVM.
Affects C (TMS320C25).

Operands

Execution

Encoding 15 14 13 12 11 10 9
Directt|0 1 0 0 0 1 1

8 7 6 5 4 3 2 1 O
0 I 0 1 Data Memory Address j

o1 |

Indirect| 0 1 0 0 0 1 1 See Section 4.1 |

Description  The data memory value is left-shifted and subtracted from the accumulator.
The left-shift is defined by the four LSBs of the T register, resulting in shift
options from O to 15 bits. The result replaces the accumulator contents.
gjtgn-extension on the data memory value is controlled by the SXM status

it.

Words 1

Cycles

Cycle Timings for a Single Instruction
Pi/DI PI/DE PE/DI -PE/DE PR/DI PR/DE
'20 1 2+d 1+p 2+d+p - -
'C25 1 2+d 1+p 2+d+p 1 2+d
Cycle Timings for a Repeat Execution
20 n 2n+nd n+p 2n+nd+p - -
'C25 n 1+n+nd n+p 1+n+nd+p n 1+n+nd

4-176




Subtract from Accumulator

SUBT with Shift Specified by T Register SUBT
Example SUBT DAT127 ;(DP = 4)
or
SUBT * ;If current auxiliary register contains 639.
Before Instruction After Instruction
Data ‘ Data
639 639
T OFF98h T OFF98h
ACC OFDAbHK ACC OF7A5h
C C

4-177



SXF Set External Flag
Syntax [<label>] SXF
Operands None
Execution (PC) +1 -» PC
1 — external flag (XF) pin and status bit
Affects XF.
Encoding 15 14 13 12 11 10 9 7 6 b5 4 1 0
(1 1 0o o0 1 1 0 0 0 0 0 1|
Description The XF pin and the XF status bit in status register ST1 are set to logic 1.
XF may also be loaded by the LST1 and RXF instructions.
Words 1 '
Cycles
Cycle Timings for a Single Instruction
P1/DI PI/DE PE/DI PE/DE PR/DI PR/DE
'20 1 1 1+p 1+p - -
‘C25 1 1 1+p 1+p 1 1
Cycle Timings for a Repeat Execution
20 n n+p n+p - -
'C25 n n+p n+p n n
Example SXF ;The XF pin and status bit are set to logic 1.

4-178




Table Read TBLR

Syntax
Direct: [<label>] TBLR <dma>
Indirect: [<label>] TBLR {ind}[,<next ARP>]

Operands 0 <dma < 127
0 < next ARP <7

Execution TMS32020:

(PC) + 1 » TOS
(ACC(15-0)) —» PC

If (repeat counter) # O:
Then (pma) - dma,
Modify AR(ARP) and ARP as specified,
(PC) +1 - PC,
(repeat counter) - 1 = repeat counter.

Else (pma) - dma
Modify AR(ARP) and ARP as specified.
(TOS) = PC

TMS320C25:

(PC) +1 - PC
(PFC) - MCS
(ACC(15-0)) » PFC

If (repeat counter) # O:

Then (pma, addressed by PFC) - dma,
Modify AR(ARP) and ARP as specified,
(PFC) + 1 - PFC,

(repeat counter) - 1 = repeat counter.

Else (pma, addressed by PFC) - dma
Modify AR(ARP) and ARP as specified.

(MCS) - PFC
Encoding 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Direct: | o 1 0o 1 1 0O 0 o0 | 0 l Data Memory Address |
Indirec:{ 0 1 0o 1 1 0 o o1 | See Section 4.1 |

Description  The TBLR instruction transfers a word from a location in program memory
to a data memory location specified by the instruction. The program mem-
ory address is defined by the low-order 16 bits of the accumulator. For this
operation, a read from program memory is performed, followed by a write
to data memory. When in the repeat mode, TBLR effectively becomes a
single-cycle instruction, and the program counter that contains the ACCL
is incremented once each cycle.

On the TMS32020, the contents of the lowest stack location are lost when
using the TBLR instruction.

If the MP/MC pin on the TMS320C25 is low at the time of execution of this
instruction and the program memory address used is less than 4096, an
on-chip ROM location will be read.

4-179



TBLR | Table Read

Words 1

Cycles

Cycle Timings for a Single Instruction
p/pl | pypE | PE/DI | PE/DE | PR/DI | PR/DE
‘20 | Table in internal program memory:

3+d 3+p 3+d+p - -
Table in external program memory:
3+p 4+d+p 3+2p 4+d+2p - -
‘C25 | Table in on-chip RAM:
2 2+d 3+p 3+d+p 3 3+d
Table in on-chip ROM:
3 3+d 4+p 4+d+p 4 4+d
Table in external memory:
3+p 3+d+p 4+2p 4+d+2p 4+p 4+d+p

Cycle Timings for a Repeat Execution

‘20 | Table in internal program memory:
2+n 2+n+nd 2+n+p 2+n+nd+p - -

Table in external program memory:
2+n+np 2+2n+nd 2+n+np 2+2n+nd+np’ - -

+np +p +p
‘C25 | Table in on-chip RAM:
1+n 1+n+nd 2+n+p 2+n+nd+p 2+n 2+n+nd
Table in on-chip ROM:
2+n 2+n+nd 3+n+p 3+n+nd+p 3+n 3+n+nd

Table in external memory:
2+n+np 1+2n+nd+np 3+n+np 2+2n+nd+np 3+n-+np 2+2n+nd

+p +p +np
Example TBLR DAT6 ;(DP = 4)
orxr
TBLR * ;If current auxiliary register contains 518.
Before Instruction After Instruction
ACC 23h ACC 23h
Program : Program
Memory 306h Memory 306h
23 23
Data . Data
Memory 75h Memory : 306h
518 518

4-180



Table Write TBLW

Syntax

Direct: [<label>] TBLW <dma>
Indirect: [<label>] TBLW {ind}[,<next ARP>]

Operands 0 < dma < 127
0 < nextARP < 7
Execution TMS32020:
(PC) +1 - TO0S
(ACC(15-0)) » PC
If (repeat counter) # O:
Then (dma) - pma,
Modify AR(ARP) and ARP as specified,
(PC) +1 - PC,
(repeat counter) - 1 = repeat counter.
Else (dma) - pma
Modify AR(ARP) and ARP as specified.
(TOS) -» 