{i’ TEXAs

{,} INSTRUMENTS
Digital Control Applications
with the TMS320 Family

Selected
Application Notes

joog

Ajjwey 0ZeSWL 3yl yium
suoneaiddy jos3uo) jeybiq ULICEIELE

1991 1991 Digital Signal Processing Products

Digital Control Applications
with the TMS320 Family

Edited by
Irfan Abhmed
Digital Signal Processing—Semiconductor Group
Texas Instruments Incorporated

*p

EXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (T1) reserves the right to make changes to or to discontinue any
semiconductor product or service identified in this publication without notice. Tl ad-
vises its customers to obtain the latest version of the relevant information to verify,
before placing orders, that the information being relied upon is current.

Tl warrants performance of its semiconductor products to current specifications in
accordance with Tl's standard warranty. Testing and other quality control tech-
niques are utilized to the extent Tl deems necessary to support this warranty. Un-
less mandated by government requirements, specific testing of all parameters of
each device is not necessarily performed.

TI assumes no liability for Tl applications assistance, customer product design,
software performance, or infringement of patents or services described herein. Nor
does Tlwarrantorrepresentthatlicense, either express orimplied, is granted under
any patent right, copyright, mask work right, or ather intellectual property right of
Tlcovering or relating to any combination, machine, or process in which such semi-
conductor products or services might be or are used.

Texas Instruments products are notintended for use in life-support appliances, de-
vices, or systems. Use of a Tl product in such applications without the written con-
sent of the appropriate Ti officer is prohibited.

TRADEMARKS

Apollo is a trademark of Apollo Computer, Inc.

" Apple and Macintosh are trademarks of Apple Computer Corp.
CROSSTALK is a trademark of Microstuf, Inc.

DEC, VAX, and VMS are trademarks of Digital Equipment Corp.
IBM, 0S/2, PC, PC-DOS, PC/XT, and PS/2 are trademarks of 1BM Corp.
Intel is a trademark of Intel Corporation

MS-DOS and MS OS/2 are registered trademarks of Microsoft Corp.
NEC is a trademark of NEC Corp.

Power—14 and Power-Source are trademarks of Teknic, Inc.

Sun is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T Bell Laboratories, Inc.
VMEbus is a trademark of Motorola, Inc.

XDS is a trademark of Texas Instruments, Inc.

Copyright © 1991, Texas Instruments Incorporated

CONTENTS

PrefaCe . ..o i

PART I Introduction To Digital Controllers

DSP-Based Control Systemscouteieteuninneseneneeeeereeneeannnnnsnnnnns
L0005 13 (o) BN 2 1 o s T
Analog Control SYStEMS . . .ottt vvtt i iiiiiiiiiiit i i i s
Digital Control SYSIEMS . . .t v v vt vttt e eee it ine e anaes e eeannneeennenseennns
Analog Versus Digital Controllersottt
Processor Requirements for Digital Controllerscciiiiiiiiiiiiiiiinnnnennn
ATChItECHUIE . .ottt ittt it ittt ettt ittt
Performance . ..ot e e i e e it e s
Peripheral Integrationuui ittt it it it i e
DSP ArChItECIUIES . . o . ottt ittt te e ittt ettt te ettt
TMS320 Digital Signal Processorsouuuiitiiinieiinteiinieeineeeennnneenns
TMS320 Fixed-Point DSPS ... vvvuttiiiiiii it eiiiiiiieiiieanennans
TMS320 Floating-Point DSPst
TMS320C14 — An Optimal SoIutionuuiuinniiii it
SUMIMATY ottt et ettt taenanaaaseeneeeannnnnnnnnnennnnnns
Referencest e e

Digital Signal Processors Simplifying High-Performance Control
(Irfan Ahmed and Steven Lindquist; reprinted from Machine Design, Sept. 10, 1987)

Taking Control with DSPs i i
(Irfan Ahmed and Tom Bucella; reprinted from Machine Design, Oct. 12, 1989)

Using Digital Signal Processors for Controlooiiiiiiiiiiiiiiinnne...
(Herbert Hanselmann; reprinted from /JECON '86, 1986)

PART II Design of Digital Controllers

Designing Control Systemsiiioiiitiiiii ittt
DiSCIEte SYSIEIMS & o v ittt et ittt ittt ettt et et i

b/ B 1T o) ¢ o o T PP
Discretization Methods for Analog Systemsc.cceuiiiiiiiiniiinneennnnn..

Step Invariant Methodttt i iiieieniaieaaaaaanans

Ramp Invariant Methodttt it it it ie e

Matched POle-Zer0oouviiuiiteiiee e ee e eaaereaneseananeanenanenennnns
Backward Differencecouiieeiit ittt it i i

Bilinear Transformationoieiuierennnrenneeeenneeennnaneneennnn

Other Methods .. ou ittt it ettt e eiaeene e eeaeannann

iii

Behavior of Poles in z-Domainoviitiiiniiiuieerninenntntseternonsaononn 39

Plant Modelling . ..o v v et e ttet et ittt ittt e it i e e 40
Digital Controller Design s 43
Control AIgOrithmsttt i i i ittt 44
Compensation Techniquesottt i ittt 44
32 1 44
Deadbeat ...ttt e e e e e 44
State SPace Model . ..o vttt i i e e e 44
ObServer Model . ..o vttt e e e e 44
Optimal Controlttt ittt ittt et it i 44
Kalman Filtero i i e ittt 44
Adaptive Control .. .vvitii ittt it e e i it e aes 44
Performance Specificationsttt 45
Step ReSPONSE . oottt e e e e 45
FrequenCy REeSPONSettt ittt it it iie i 47
Additional Criteria for Performance Specificationcoioit, 48
PID Controlleroviiiiiiiiiiinininiiinnensieeerenennninnnnnns N 48
Controller Designottt e 49
Implementation Considerations ovvit ittt ittt i i i, 52
Deadbeat Controllerovvvvi ittt ittt 53
Controller Design ...ttt e it 53
Implementation Considerationsoovvviiiintiiin it 54
State SPace MOdelottt e e e s 56
State Controller Designcuvuit ittt i i i i e 56
Implementation Considerationsvureetneriernereerneerenneeennnnnnnoes 58
Observer Modelvvunit it i e i e e 58
Observer Model and Estimator Designsc..ooviuiiiiiinniiiiiinininnennn, 59
Transfer FunctionForm oo 60
State Controller and Estimator with ReferenceInput cooviiunt. 63
Implementation Considerationscoiiti ittt 63
Optimal Control and Estimationcouuuiiiiiiiiiiiiiiininnnnneeen 64
Linear Quadratic Regulatorottt ittt ittt 64
Kalman Filter . . oo ovinii i it it e 65
Implementation Considerationsvvuuuuniiiin ettt teerrinriinneeans 70
SUIMIMAIY oottt ettt ettt ettt ettt et teeeeeeeeneoennnnnnens 70
REfOIOINCES . o v vttt ittt ittt ittt ittt iiee s ettt 70
AppendiX 1 ... e e e e e 7
APPENdIX 2 ottt e e e e e e e e e e 74
APPENdiX 3 o e e i e e e e 76
AppendiX 4 ... e e et e e e e 79
Matrix Oriented Computation UsingMatlabt 83
(Jeffrey C. Kantor)
Modeling and Analysis of a 2-Degree-of-Freedom Robot Arm 93

(Integrated Systems Inc.; reprinted from Application Note brochure)

Simnon - A Simulation Language for Nonlinear Systems 103

(Tomas Schonthal)

PART III Implementation of Digital Controllers

Implementing Digital Controllers i iiiiiiiiiiiiiiiieinnannnn 11
Fixed-Point Versus Floating-Point i i i 111
Binary Arithmetict i i i i e 112
Finite Word-Length Effectsttt ittt iiieiaennnn 113

Coefficient QUantizationoiiiiiiiniiiiie it ererinneerinseressnnss 114
Signal QuUantizationiiiii i i e i i e 114
A/D and D/A Quantization Effects ...ttt it iieinnenennn 114
Truncation and Round-Off Effectsc.oi i, 114
Overflow Effects i i i i it i 114

R 1o 1 V- PP 115
CONLIOIIET STIUCIUTES . . o v v vt ot e et e eeee et eee e neeeennseanaaeneenaneenennnans 116
Transfer Function Forms i i it 117
State SPace FOTM v ettt ettt ittt et ettt 119
Computational Delay e e 120
Sampling Rate Selectioniiiiiii i i i i i i 121
Antialiasing Filters oot i i e e e e 122
Controller Design ToOISttt it ittt 122
Algorithm Development i i i i i ittt 122
Software Developmentttt i e it 122
High-Level Languagesoovunnn ittt eiiietetnniieeennneeenennns 123
Assembly Languageoittn i e 123
Signal ProcessingLanguages it 123
Code Generation SOftwareoitiiiiiiiiintniiiiiiiiianeeeennnes 124
Device SIMUIALOLSottt et e 124
Hardware Designttt i i e e e 124
SUMMATY & oLttt ettt ettt et et tte ettt e e e eeeeaeeeeetneaeenennnns 125
ReEferenCes . ..ot e e e s 125
APPENAIiX 1 oot e e it e s 126
Hardware/Software-Environment for DSP-Based Multivariable Control 141

(H. Hanselmann, H. Henrichfreise, H. Hostmann, and A. Schwarte; reprinted from
Proceedings of 12th IMACS Conference)

Implementation of Digital Controllers—ASurvey oo, 145
(H. Hanselmann; reprinted from Automatica, Vol. 23, No. 1, 1987)

The Programming Language DSPL i ittt 171
(Albert Schwarte and Herbert Hanselmann; reprinted from PCIM, June 25 — 28, 1990)

Application of Kalman Filtering in Motion Control Using TMS320C25 185
(Dr. S. Meshkat)

Implementation of a PID ControlleronaDSPt 205

(Karl Astrém and Hermann Steingrimsson)

DSP Implementation of a Disk Driver Controller e 239
(Hermann Steingrimsson and Karl Astrém)

PART IV Applications of Digital Controllers with the TMS320

Digital Control Applications with the TMS320cciiitiiiiiiieninneeenns 257
Computer Peripheralsooiuuniiiiiiiiiiiiiiii ittt 257
DiSK DIIVES . o v vttt ittt ittt i tee et e e e 257
) T B ¢ e 257
POWET EIECIIONICS & o vt vttt ittt iite ettt euneesannseeonnnessonnnasaansons 257
AC SEIVO DIIVES vttt tteetttesteee et eeeenonanannneeeseeeeeessseeoeennnnnss 257
UPSs and POWer COnVEITEIS .. .uvuueteteeeeuunseeeneeeonneseeennneeaeanennns 257
Robotics and Motion COntrolvueeeteneretnnerrnuneeenunoeeeenneennnns 258
AUOINIO IV . o ittt ittt e ettt ettt e e e, 258
ACHIVE SUSPENSION .ttt ittt ttee et eteeeteeuneeeenneeenaeeoaeanaeeeonnsnnns 258
Anti-SKid BraKingttt e e e 258
Engine Controlottt ittt ittt iieeiae e 258

Computer Peripherals

DSP Helps Keep Disk Driveson Trackcotiiiiiiinii it 259
(James Corliss and Richard Neubert; reprinted from Computer Design, June 15, 1988)
LQG - Control of a Highly Resonant Disk Drive Head Positioning Actuator 265

(Herbert Hanselmann and Andreas Engelke; reprinted from /EEE Transactions on
Industrial Electronics, Vol. 35, No. 1, Feb. 1988)

High Bandwidth Control of the Head Positioning Mechanism in a Winchester Disc Drive ... 271
(Herbert Hanselmann and Wolfgang Moritz; reprinted from JECON 1986, 1986)

Fast Access Control of the Head Positioning Using a Digital Signal Processor 277
(S. Hasegawa, Y. Mizoshita, T. Ueno, and K. Takaishi; reprinted from SPIE Proceedings,
Vol. 1248, 1990)

Motion Control and Robotics

Implementation of a MRAC for a Two Axis Direct Drive Robot Manipulator Using a
Digital Signal Processor i 287
(G. Anwar, R. Horowitz, and M. Tomizuka; reprinted from Proceedings of American
Control Conference, June 1988)

Implementatidn of a Self-Tuning Controller Using Digital Signal Processor Chips 291
(K.H. Gurubasavaraj; reprinted from IEEE Control Systems Magazine, June 1989) .
Motion Controller Employs DSP Technologycciiiiiiiiiiaana... 297

(Robert van der Kruk and John Scannell; reprinted from PCIM, Sept. 1988)

Power Electronics
Using DSPs in AC Induction Motor Drivesttt 303
(Dr. S. Meshkat and Mr. I. Ahmed; reprinted from Control Engineering, Feb. 1988)

Microprocessor-Controlled AC-Servo Drives with Synchronous or Induction Motors:
Which is Preferable? i i e e 307
(R. Lessmeier, W. Schumacher, and W. Leonhard; reprinted from IEEE Transactions on
Industry Applications, Vol. IA-22, No. 5, Sept./Oct. 1986)

vi

A Microcomputer-Based Control and Simulation of an Advanced IPM Synchronous Machine
Drive System for Electric Vehicle Propulsion
(Bimal K. Bose and Paul M. Szczesny; reprinted from /JEEE Transacrmns on Industrial
Electronics, Vol. 35, No. 4, Nov. 1988)

DSP-Based Adaptive Control of a BrushlessMotorcooviiiiiiieiaann,
(Nobuyuki Matsui and Hironori Ohashi; reprinted from Conference Record of the 1988
IEEE Industry Applications Society)

High Precision Torque Control of Reluctance Motorsccoiiiiain,
(Nobuyuki Matsui, Norihiko Akao, and Tomoo Wakino; reprinted from Conference Record
of the 1989 IEEE Industry Applications Society)

High Resolution Position Control Under 1 Sec. of an Induction Motor with Full Digitized
Methodsot e it et e e i
(Isao Takahashi and Makoto Iwata; reprinted from Conference Record of the 1989 IEEE
Industry Applications Society)

A TMS32010 Based Near Optimized Pulse Width Modulated Waveform Generator
(R.J. Chance and J.A. Taufiq; reprinted from Third International Conference on Power
Electronics and Variable Speed Drives, Conference Publication Number 291, July 1988)

Design and Implementation of an Extended Kalman Filter for the State Estimation of a
Permanent Magnet Synchronous Motor i,
(Rached Dhaouadi, Ned Mohan, and Lars Norum,; reprinted from Proceedings of Power
Electronic Specialists Conference, June 1990)

Automotive

Trends of Digital Signal Processing in Automotiveot
(Kun-Shan Lin; reprinted from Proceedings of Convergence 88, Oct. 1988)

Application of the Digital Signal Processor to an Automotive Control System
(D. Williams and S. Oxley)

Dual-Processor Controller with Vehicle Suspension Applications
(Kamal N. Majeed; reprinted from IEEE Transactions on Vehicular Technology, Vol. 39,
No. 3, Aug. 1990)

An Advanced Racing Ignition System i il
(T. Mears and S. Oxley; reprinted from /MechE, 1989)

Active Reduction of Low-Frequency Tire Impact Noise Using Digital Feedback Control
(Mark H. Costin and Donald R. Elzinga; reprinted from IEEE Control Systems Magazine,
Aug. 1989)

Specialized Applications

Implementation of a Tracking Kalman Filter on a Digital Signal Processor
(Jimfron Tan and Nicholas Kyriakopoulos; reprinted from /EEE Transactions on
Industrial Electronics, Vol. 35, No. 1, Feb. 1988)

A Stand-Alone Digital Protective Relay for Power Transformers
(Ivi Hermanto, Y.V.V.S. Murty, and M.A. Rahman; reprinted from /EEE Transactions on
Power Delivery, Vol. 6, No. 1, Jan. 1991)

315

341

349

355

375

383

395

399

vii

A Real-Time Digital Simulation of Synchronous Machines: Stability Considerations and
Implementationoiint ittt ettt

(Jonathan Pratt and Sheldon Gruber; reprinted from IEEE Transactions on Industrial
Electronics, Vol. IE-34, No. 4, Nov. 1987)

Real-Time Dynamic Control of an Industrial Manipulator Using a Neural-Network-Based
Learning Controller ittt e
(W. Thomas Miller, III, Robert P. Hewes, Filson H. Glanz, and L. Gordon Kraft, III;
reprinted from /EEE Transactions on Robotics and Automation, Vol. 6, No. 1, Feb. 1990)

BIBLIOGRAPHY

TMS320 Bibliography
AUtOMOLIVE .. vvvt it iineriiinnnnereanneann P
[@e3 1T o O PN

viii

Preface

Using digital methods for controlling motors, robotic arms, or disk drives is not new. But technical ad-
vances in digital signal processing and high-performance digital signal processors (DSPs) such as the
TMS320 family are rapidly moving digital control from the laboratory to the market place. Personal
computers, automated manufacturing equipment, automobiles, military weapons, toys, and games are
examples of products that are enhanced by the application of digital control technology.

This book introduces the reader to the concepts of signal processing and DSPs as they apply to digital
control theory. It also presents a collection of published articles that review selected applications within
the broad spectrum of digital control. The book is divided into four parts and a bibliography:

PART I Introduction to Digital Controllers

PARTII Design of Digital Controllers

PART III Implementation of Digital Controllers

PARTIV Applications of Digital Controllers with the TMS320
BIBLIOGRAPHY

Each part is introduced by the editor so that readers can gain insight into its purpose. The bibliography
is furnished for those who wish to seek additional studies in the areas of automotive, control, and indus-
trial applications.

Opportunities to design digital control systems have grown enormously over the past few years. This
book is being published to aid practicing control engineers in becoming familiar and comfortable with
digital control theory. It can also be a valuable tool for teaching at the undergraduate and graduate lev-
els. The book brings together the latest concepts and applications in digital control theory to meet the
needs of both new and experienced designers.

The editor, authors, and I hope that you enjoy this application book and gain valuable information to
assist you in designing new digital control systems as well as modifying current systems.

Gene A. Frantz

Applications Manager

Digital Signal Processing
Texas Instruments Incorporated

PART 1
Introduction to Digital Controllers

DSP-Based Control SYStemsuuunnntiiteetiiiiiiieiiiiiiiieeeaeiianns 3

Digital Signal Processors Simplifying High-Performance Control 13
(Irfan Ahmed and Steven Lindquist)

Taking Control with DSPs e e 19
(Irfan Ahmed and Tom Bucella)

Using Digital Signal Processorsfor Controlo i, 27
(Herbert Hanselmann)

DSP-Based Control Systems

Digital signal processors (DSPs) are making digital control more practical. The special architecture and
high performance of DSPs make it possible to implement a wide variety of digital control algorithms pre-
viously reserved for research work and simulation studies in laboratories. This general introduction dis-
cusses these aspects and uses of DSPs in digital control systems. It is followed by papers that discuss the
suitability of DSPs for implementing digital controllers.

Control Systems

A control system commands or regulates a process in order to achieve a desired output from the process.
As shown in Figure 1, asimple control system consists of three main components: sensors, actuators, and
acontroller. Sensors measure the behavior of the system or the process and provide feedback to the control-
ler. Some of the sensors used in control systems are resolvers, shaft encoders, and current sensors. Actuators
supply the driving and corrective forces to achieve a desired output. Typical actuators are AC/DC motors
and valves.

The controller generates actuator commands in response to the commands received from the operator and
to the feedback provided by the sensors. The controller consists of computation elements that process these
signals to achieve a desired response from the entire system. The function of the controller is to ensure that
the actuator responds to the commands as quickly as possible and at the same time to ensure that the system
remains stable under all operating conditions. Typically, a controller will modify the frequency response
of the system. The computational elements of the controller are implemented with either analog or digital
components.

Figure 1. Control System

Controller Actuator
W Motor

Reference Load

Command

Output

|
|
I
—_

Encoder

Analog Control Systems: Control systems have traditionally been implemented with analog compo-
nentslike operational amplifiers, resistors, and capacitors. Figure 2 shows a simple analog controller. These
elements are used to implement filter-like structures that modify the frequency response of the system. Al-

though more powerful analog processing elements like multipliers are available, they are generally not used
because of their high cost. In spite of the simpler processing elements, analog controllers can be used to
implement high-performance systems.

Most analog systems use single-purpose characteristics of an error signal like P (proportional), I (integral),
D (derivative), or a combination of these characteristics. This limits most analog systems to designs based
on classical control theory.)

Figure 2. Analog Controller

Cq

s St
c W R4AAA Re
Ry 1 Rs \AAJ MA
°'"—1IW‘—|(——‘ - AAA Rs
+,

vy '\ AMA
vy
4 — €
l_l/ N out

Digital Control Systems: With the high performance and increasing reliability of microprocessors, dig-
ital controllers are taking over many applications from analog controllers. In the digital control system
shown in Figure 3, a DSP (TMS320C14) processes the feedback/error signal [y(n)] in relation to the input/
reference signal [r(n)]. A digital-to-analog converter (D/A) changes the digital output of the processor into
an analog signal to drive the power amplifier (PA) and actuator. The D/A is typically represented by a ZOH
(zero order hold). Similarly, on the input side, an analog-to-digital converter (A/D) interfaces the sensor’s
signal to the DSP. In addition, memory is required to store the commands necessary for the operation of
the system; the TMS320C14 uses its on-chip memory for that purpose.

Figure 3. Digital Control System

I Clock |
) DSP
Host = (msazocia) [/A Actuator |—{ Sensor |—| Load
y(n

Jl A/D ll

{

Analog Versus Digital Controllers: Several tradeoffs have to be made in selecting a controller. Ana-
log controllers continuously process a signal and can be used for very high bandwidth systems. They also
give very high resolution of a measured signal and thus provide precise control. Analog controllers have

been around for a long time, are well understood, and are easy to design. They can be implemented with
relatively inexpensive components.

On the negative side, analog controllers suffer from component aging and temperature drift. Even a perfect-
ly designed controller will exhibit undesired characteristics after a while. Analog controllers are hard-wired
solutions, making modifications or upgrades in the design difficult. Analog controllers are also hmltcd to
simpler algorithms from classical control theory, like PID and compensation techniques.

Most processes are analog in nature. Digital systems can only attempt to approximate them. The accuracy
of this approximation determines the performance of the digital system. Digital controllers sample the sig-
nal at discrete time intervals. This limits the bandwidth that can be handled by the controller. The accuracy
of the signal and coefficients that can be represented is limited by the resolution or the word length of the
processor. Digital contrallers require additional components like A/Ds and D/As, although newer proces-
sors include these components on the same chip. Digital controllers are relatively new, and their behavior
is not thoroughly understood. Thus, designing high-performance digital controllers can be challenging.

However, digital controllers have some major advantages. They are not affected by component aging or
temperature drift, and they provide stable performance. Designing in the z-domain helps to control their
behavior more precisely. Digital controllers can be used to implement more sophisticated techniques from
modern control theory, such as state controllers, optimal control, and adaptive control. They can also handle
nonlinear systems. Digital controllers are programmable and make it easy to upgrade and maintain design
investment. They can be time-shared to implement additional functions like notch filters and system control
to reduce system cost. If digital controllers are designed properly, their advantages greatly outweigh their
disadvantages. Table 1 compares analog and digital controllers.

Table 1. Analog Versus Digital Controllers

- Analog Controlier Digital Controller

Advantages High bandwidth Programmable solution
High resolution Insensitive to environment
Ease of design Shows precise behavior

Implements advanced algorithms
Capable of additional functions

Disadvantages Component aging Creates numerical problems
Temperature drift Must use high-performance processor
Hard-wired design Difficult to design
Good only for simpler design

Processor Requirements for Digital Controllers

The choice of processor is critical in determining the performance and behavior of the digital controller.
The poor performance of a digital system can generally be traced to selection of the wrong type of processor.
Available choices are microcontrollers, general-purpose microprocessors, and DSPs. In addition, reduced
instruction set computer (RISC) processors and bit-slice processors can be used, although their usage is not
practical in most cases because of high cost. The following factors must be considered when selecting a
processor:

® Architecture

® Performance

® Peripheral Integration

Architecture: . Processor architecture is probably the most important factor. A control system is a de-
manding, realtime signal processing system. Control theory essentially deals with proper techniques for
processing control signals. Processing signals in realtime raises numerical issues that must be resolved
correctly, to ensure that performance from a digital controller is acceptable. Some of the problems resulting
from inadequate processor architectures are quantization noise, truncation noise, limit cycles, and over-
flow-handling.

Quantization noise results from representing a signal in discrete or quantized magnitude levels. The signals
and gain coefficients must be represented accurately without any loss of resolution for the smallest and
largest magnitudes. A processor should support a large word length and scaling shifters to provide the
resolution and dynamic range needed. This allows the signals and coefficients to be scaled to the full resolu-
tion of the processor. In some cases, floating-point support may be necessary if gain coefficients and signals
are time-varying variables and have large dynamic ranges.

Truncation noise results from the processing of signals in realtime. Either a higher resolution or larger word
length is needed for interim results. For example, the result of a 16 X 16 multiplication is 32 bits. If only
a 16-bit storage capacity is available to the 32-bit resultant, the loss of the lower 16 bits is known as trunca-
tion error. A processor should be able to support a larger intermediate word length for interim results.

Limit cycles usually result from quantization and truncation errors. Insufficient resolution of the output
causes the output to oscillate around the actual value without being able to reach it. Minimization of quanti-
zation and truncation errors reduces limit cycles.

Realtime processing requires a large number of mathematical operations. Sometimes the results will exceed
the range handled by registers. When registers overflow, they may make a positive number turn negative.
A processor should be able to handle this overflow situation without significant change in the value of the
result.

Performance: Performance is another important criterion in selecting a processor for a digital controller.
Sampling the signal at discrete time intervals requires certain performance requirements from the proces-
sor. The sampling rate should be at least 10 to 20 times the system bandwidth. The processor must finish
processing the signal before the arrival of the next sample, or information will be lost. The processing re-
quirement is also dependent upon the controller structure and the algorithm.

Another aspect of performance is the computational delay. The processor should finish processing the sig-
nal as soon as possible. Too much delay in calculation will add phase delay and will affect the phase margin
and stability of the system. The processor should have fast instruction cycle time. It should also have a very
fast multiplying time because multiplication is the basic element in discrete representation of all signal pro-
cessing control algorithms.

Peripheral Integration: The final consideration is the amount of peripheral integration on the system.
Peripheral integration is important from a system cost, ease of design/interface, and board space point of
view. Typical peripherals are on-chip timers for sample rate selection, D/A or PWM (pulse-width modula-
tion) circuitries to drive the actuators, either an A/D converter or an interface to optical encoders, or other
sensors. In addition, bit I/O pins are required to look at system flags and other conditions.

Digital controllers have not been widely used, because most processors lack appropriate architectures for
signal processing. Microcontrollers have beendesigned primarily toreplace hard-wired logic, tohandle data
acquisition, and to implement logical decisions. On the other hand, microprocessors have been designed
primarily to act as computing elements in computer systems. Thus, both types of architecture have failed
to meet the requirements of signal processing; nevertheless, they have been used for it. Only DSP architec-
tures can solve the fundamental problems encountered in control and other signal processing applications.

DSP Architectures

The TMS320 DSP architecture has been optimized for signal processing systems. Figure 4 shows the
typical architecture of a basic DSP. Some of the key elements are multiple buses, 16-bit architecture, 32-bit
registers, and hard-wired implementation of various functions. It minimizes numerical problems in signal
processing and meets the bandwidth requirements of high-performance systems using sophisticated

techniques. The features and benefits of TMS320 architecture are shown in Table 2.

Figure 4. DSP Architecture

X2/CLKIN
cLkout X1
A l S Program Bus
WE —«—]
DEN —e 16 12LSB
MEN<«—| &
= MUX
BlO—+»— £ 12 16
MCMP-»—] & 4 12 1€
o L_l
g PC(12) Instruction D15-Do
12 g _ Program "
< »| | ROM/EPROM
A11-A0/ B v 3| (4K Words)
} 3 4x12
q Program Bus 16
D) Data Bus
$ 16 17 i 16
ARO (16) -
<
ARP |- a6 [DP || Shifter T(16) s
Itipli 4
8 Multiplier e
vy
MUX
8 {32
Address
Data RAM
(144/256
Words)
Data
Legend: 7
ACC = Accumulator
ARP = Auxiliary Register Pointer
ARO = Auxiliary Register 0
AR1 = Auxiliary Register 1 16
DP = Data Page Pointer
PC = Program Counter
P = PRegister 16
T = TRegister €
S Data Bus

Table 2. TMS320 Architectural Features

Feature Benefit

Single-cycle instructions Execute advanced control algorithms in realtime
Pipelined architecture Controls high-bandwidth systems

Harvard architecture Simultaneously accesses data and instructions
Hardware multiplier Minimizes computational delays

Hardware shifters Have larger dynamic range

16-bit word length Minimizes quantization errors

32-bit registers Minimizes truncation errors

Hardware stack Supports fast interrupt processing

Saturation mode Prevents wrap-around of accumulator

To minimize numerical problems, the fixed-point TMS320 architecture has a 16-bit word length with 32-bit
accumulator and other registers. The TMS320 DSPs include hardware shifters, which allow scaling, pre-
vent overflows, and keep the required precision. These shifters allow shifting to take place simultaneously
with other operations and without additional execution time.

Also, the instruction set has been optimized for signal processing. The DMOV instruction implements the
z! operator. The MACD instruction implements four operations simultaneously: multiplies two values,
moves data, accumulates previous result, and loads T register. To handle overflow during arithmetic opera-
tions, an overflow mode is included. This allows the accumulator to saturate at most positive or least nega-
tive values (similar to analog circuits), instead of rolling over and varying between positive and negative
values.

Several features of DSP architecture provide the performance necessary to implement digital controllers.
All functions are performed internally in hard-wired logic so that it takes a single cycle to execute most
functions. Processors not optimized for signal processing usually perform functions in microcode and
require numerous cycles to do so. The TMS320 devices employ an internal multiple-bus architecture that
allows simuitaneous fetching of instructions and data operands.

The TMS320 DSPs contain a hardware multiplier that performs a 16 x 16 multiplication in a single cycle.
This minimizes the computation delay time and allows very fast sampling rates to be implemented for
high bandwidth systems. An on-chip hardware stack reduces interrupt response time and minimizes stack
pointer manipulations. Table 3 compares the architectural features of a DSP and a microprocessor/micro-
controller (WP/LC).

Table 3. DSP Versus Microprocessor/Microcontroller

_ DSP Microprocessor/Microcontroller

Advantages Signal processing architecture On-chip peripherals
High performance Supervisory functions
Advanced control techniques Familiar architecture
Additional functions
Disadvantages Limited peripherals Low performance
Computation delay

Numerical problems

Table 4. Feature Comparison

FEATURE 320C14 320C25 80C196 68000 68020 UNIT
Instruction cycle time 160 100 333 400 120 ns
Frequency 25 40 12 10 24 MHz
Multiply (16 x 16) — 32 » 0.16 0.1 2.2 7.0 1.0 ns
PID loop 2.2 1.3 27.0 25.0 4.8 us
Matrix multiply (3 x 3) (3 x 1) 4.3 2.7 24.3 65.2 9.5 us

Many on-chip DSP features enhance system integration; peripherals include RAM, ROM/EPROM, serial
ports, timers, PWM, encoder interface, and parallel I/O. Table 4 compares performance characteristics of

the TMS320C14, TMS320C25, and several uCs and pPs.

TMS320 Digital Signal Processors

The TMS320 family consists of five generations of fixed-point devices and floating-point devices (see
Figure 5), offering different performance ranges. Members of each generation are object code and, in some

cases, pin compatible.

moZr»=30MIMT

TMS320C10
TMS320C10-14/-25
TMS320C14
TMS320E14
TMS320C15
TMS320E15
TMS320C16

TMS320C17
TMS320E17

D Fixed-Point Generation

TMS320C50
TMS320C51

TMS32020

TMS320C25
TMS320E25
TMS320C26

GENERATION

Floating-Point Generation

Figure 5. TMS320 Family Roadmap

10

TMS320 Fixed-Point DSPs: There are three generations of TMS320 fixed-point DSPs: TMS320C1x,
TMS320C2x, and TMS320C5x. All fixed-point DSPs have a 16-bit architecture with 32-bit ALU and accu-
mulator. They are based upon a Harvard architecture with separate buses for program and data, allowing
instructions and operands to be fetched simultaneously. They also feature a 16 x 16 = 32 hardware multiplier
for single-cycle multiply operations, and a hardware stack for fast context-save operations. An overflow
saturation mode prevents wrap-around. All instructions (except branches) are executed in a single cycle.
Performance ranges from 5 MIPS (million of instructions per second) to 28.5 MIPS.

The TMS320C1x generation is based on the first DSP, the TMS32010, introduced in 1982. It includes
144/256 words of on-chip RAM and 4K words of address space. Instruction cycle time is 160 ns. Members

- of this generation include the TMS320C10, TMS320C14 and its EPROM version TMS320E14,

TMS320C15/E15, and TMS320C17/ E17. All these devices have expanded memory of 256 words of on-
chip RAM and 4K words of on-chip ROM/EPROM. The TMS320C14/E 14 has been optimized for digital
control applications. An additional member, TMS320C16, has an expanded memory address space of 64K
words. Low-power versions are also available for 3-V systems.

The TMS320C2x generation is based on the TMS320C25, featuring 544 words of on-chip RAM and 4K
words of on-chip ROM. Total address space is expanded to 64K words for both data and program. The in-
struction set has been considerably enhanced over the TMS320C1x instruction set, reducing the instruction
cycle time to 100/80 ns. Other members include the TMS320E25 (an EPROM version of TMS320C25),
TMS32020, and TMS320C26.

The TMS320C5x generation includes the TMS320C50 with 10K words of on-chip RAM and 2K words
of on-chip ROM and the TMS320C51 with 2K words of on-chip RAM and 8K words of on-chip ROM.
With an instruction set even more enhanced than the TMS320C2x instruction set, a TMS320C5x device
is designed to execute an instruction in 35 ns. New features include a separate PLU, shadow registers for
fast context save, JTAG serial scan emulation, and software wait states.

TMS320 Floating-Point DSPs: There are two generations of TMS320 floating-point DSPs:
TMS320C3x and TMS320C4x (the first DSP designed for parallel processing). All floating-point devices
have a 32-bit architecture with 40-bit extended precision registers and are based on a Von Neuman archi-
tecture. Multiple buses have been added for even faster throughput than the traditional Harvard architec-
ture (program and data memory in separate spaces). Features include a hardware floating-point multiplier
and a floating-point ALU.

The TMS320C3x generation is based on the TMS320C30, featuring 2K x 32 words of on-chip RAM, 4K
X 32 words of on-chip ROM, and a 64-word instruction cache. Other features include a separate DMA, two
serial ports, two timers, two external 32-bit data buses, and a 16 M-word address space. Instruction cycle
time is 60 ns, and the device is capable of performing up to 33 MFLOPS (million floating-point operations
per second). Another member of the TMS320C3x generation is the TMS320C31. :

The TMS320C4x generation includes the TMS320C40, a parallel digital signal processer. It includes six
communication ports, a self-programmable/six-channel DMA coprocessor, a developing/debugging anal-
ysis module, two independent 32-bit memory interfaces, a 16G-byte addressing space, and two timers. Oth-
er features include two 4K-byte RAM blocks, one 16K-byte ROM block, and a 512-byte instruction cache.
This generation is designed to execute an instruction in 40 ns, perform up to 275 MOPS (million operations
per second), and provide a 320-Mbyte/sec throughput.

TMS320C14 - An Optimal Solution

The TMS320C14 is the first device that provides an optimal solution for implementing digital controllers
on a single chip. Its TMS320C15 CPU meets the architectural and processing requirements for controllers,
and it incorporates all the I/O peripherals needed in controllers and typically found in 16-bit microcontrol-

Figure 6. TMS320C14/E14 Key Features

Memory A
Data RAM Program ROM/EPROM

Compare L. GMP5/CAP3
PWM <— CAP1

2 Auxiliary Registers
uxfary Fieg! — CAPO

4-Level H/W Stack Baud-Rate Generator

1A/,

Status Register - TXD
Serial Port RXD
Bit l<—> 10P0

160-ns instruction cycle
100% object code compatible with TMS320C15 N

4 16-bit timers

- 2 general-purpose timers
- 1 watchdog timer

~ 1 baud-rate generator

16 individual bit-selectable 1/0 pins

Serial port - UART

Event manager with 6-channel PWM D/A capability
CMOS technology

68-pin PLCC and CLCC packages

_ 256 x 16 Bits 4K x 16 Bits

\\\\\\\\\ CPU NN N Peripherals
16-Bit 16-Bit T-Reg \ Watchdog _[—> WDT

Barrel Shifter \ Timer1/Counter1 TCKL1

32-Bit ALU 16 x 16-Bit \ Timer2/Counter1, TCKL2

- Multiplier \ —> CMPO

32-Bit ACC . \ Event 2 (c:mg;

it Shift 32-Bit P-R N\ Manager: < Gyipg

0-, 1-, 4-Bit Shifter -Bit P-Reg \ capure [2 SUES b

7

lers. These peripherals include 16 pins of bit I/O, four timers, six channels of PWM, four capture inputs
for optical encoder interface, a serial port with UART mode, and 15 interrupts. Figure 6 shows the key fea-
tures of the TMS320C14.

The TMS320C14 can address 4K words of on-chip ROM or EPROM or off-chip memory, and 256 words
of on-chip RAM. It has an on-chip hardware multiplier that performs a 16 x 16 = 32 multiplication in 160
ns. The TMS320C14 has a 32-bit ALU and 32-bit accumulator. It contains two hardware shifters and a
four-deep on-chip hardware stack. Two auxiliary registers provide indirect and autoincrement addressing
modes. The TMS320C14 has a general-purpose and DSP-specific instruction set and is 100% object code
compatible with the TMS320C15 and other members of the TMS320C1x generation. The TMS320C14 has
16 pins of bit I/O that can be individually selected as inputs or outputs. In addition, each bit can be individu-
ally controlled without affecting the others. The 16-bit I/O port has the capability to detect and match
patterns on the input pins and generate an interrupt when a specific pattern is detected.

11

12

The TMS320C14 contains four 16-bit timers. Two of the timers can be used as event counters with internal
or external clocks. A third timer can be used as a watchdog timer and can also give a pulse output to drive
external circuitry to indicate a time-out. The fourth timer can be used as a baud-rate generator for the serial
port. Each timer is associated with a 16-bit period register and can also generate a separate maskable inter-
rupt to the CPU.

The TMS320C14 has an event manager that consists of a compare subsystem and a capture subsystem. The
compare subsystem has six compare registers that are constantly comparing their outputs with one of the
timers. Associated with each compare register is an action register that controls all of the six output pins
and two interrupt pins. The action registers determine an action that takes place on output pins in case of
amatch between the timer and a compare register. The compare subsystem can also be configured to gen-
erate six chanriels of high-precision PWM using a high-speed timer mode. In this mode, the compare sub-
system can generate a PWM output that can be varied from 8 bits of resolution at 100 kHz to 14 bits of
resolution at 1.6 kHz. ‘

The event manager also contains four capture inputs that capture the value of a timer in a four-deep FIFO
when a certain transition is detected on a capture input pin. Each capture input can detect pulses as narrow
as 160 ns and can also generate a maskable interrupt to the CPU.

The TMS320C14 serial port is capable of full-duplex asynchronous operation with a transmission/recep-
tion rate of up to 400K bps. The serial port has a separate dedicated timer for generation of baud rates. The
serial port also supports two industry standard protocols for interprocessor communication.

Finally, the TMS320C14 has a total of 15 internal/external interrupts, which can be individually masked.
All the interrupts trigger a master interrupt that is controlled by the INTM bit in the status register.

Summary

The TMS320 family of DSPs solves many of the fundamental problems of signal processing in digital servo
control systems. With their processing power, it is now possible to implement advanced concepts from
modern control theory in cost-effective control systems. DSPs provide the precision and bandwidth of ana-
log systems and at the same time provide the reliability of digital systems. Newer DSPs like the
TMS320C14 provide a single-chip solution for the majority of servo control applications.

References

Texas Instruments, TMS320C1x User’s Guide, 1989.

Texas Instruments, TMS320C14/E14 User’s Guide, 1988.

Texas Instruments, TMS320C2x User’s Guide, 1990.

Texas Instruments, TMS320C3x User’s Guide, 1990.

Texas Instruments, TMS320C4x User’s Guide, 1991.

Texas Instruments, TMS320CS5x User’s Guide, 1990.

Texas Instruments, Digitual Signal Processing Applications with the TMS320 Family, 1986.

Texas Instruments, Digital Signal Processing Applications with the TMS320 Family, Vol. 2, 1990.
Texas Instruments, Digital Signal Processing Applications with the TMS320 Family, Vol. 3, 1990.

WRNAUNE WD =

APPLIED TECHNOLOGY

DIGITAL SIGNAL
PROCESSORS

Simplifying
high-performanc

Modern control
algorithms often
demand real-time .
speed that ordinary
microcontrollers
cannot provide.
Digital signal
processors are
optimized to handle
such tasks.

IRFAN AHMED
STEVEN LINDQUIST
Texas Instruments Inc.
Houston, TX

lectronic control systems of

few years ago were frequently

designed around a general-
purpose microprocessor or micro-
controller. But though con-
ventional micros are versatile, they
sometimes fall short when applied
to high-speed tasks in telecommu-
nications and computers, and in
electromechanical tasks such as au-
tomotive engine control.

The problem is that advanced
control algorithms, as used in digi-
tal filtering and discrete Fourier
transforms, demand numerous
multiplications and additions.
When done in software on an ordi-

iction
ddress *Q;—' Ins(r':: I
4

Data e 7

i
Controller

Address

ROM

Multiplier

Data RAM Data/prog.
ata RAM

Many digital signal processors are built with a Harvard architecture, where
data and instructions occupy separate memories and travel over separate
buses to speed program execution. The two buses are evident in this
simplified block diagram of a TMS320C25, a second generation CMOS
processor. Other features of note on the 68-pin chip include eight auxiliary
registers and a hardware multiplier specially designed to handle complex
arithmetic.

Reprinted, with permission, from Machine Desigr, Sept. 10, 1987. 13

Analog block diagram

Output
+ e(t) Analog u(t)

- controller

Input

device (plant)

nary processor, these operations
can consume too much time to pro-
vide high-speed control.

Controlled

Most new classes of control algo-
rithms, along with other algorithms

¥y

Loop delay y(®)

such as state modeling, state esti-
mation, Kalman filtering, and opti-
mal control can be implemented

(s7)

with analog circuitry. In practice,

Digital block diagram

however, it is difficult to design
analog hardware that offers the pre-
cise and often nonlinear behavior
required in such approaches. In ad-

Qutput

Digital ufn) D/a u(t)

controller converter

Input

dition, it is often expensive to build
in the needed stability and temper-
ature range.

The modification of a control al-

Controiled
device (plant)

gorithm implemented in hardware
can also be complicated. Changes

vy may sometimes be made simply by

Loopdelay | y(n) A/d ¥

substituting a simple component,

converter

"

" s but can also involve redesigning
part of the control system.

When reduced to a block diagram, traditional analog control

systems resemble the digital counterpart. But analog controller qualities
are determined by circuit elements, while those of digital counterparts

are programmed in a few lines of code.

\

An approach to solving the speed
requirements associated with mod-
ern control algorithms is to use a
special kind of processor chip. Digi-
tal signal processors (DSPs) are
constructed to speedily perform the

DBEAT

"Some advantages of a DSP become clear when imple-

‘ mentmg functions that are difficult or impossible to réalize
in analog controllers. A deadbeat controller serves as an
example.

In principle, analog controllers require an infinite time to
settle to a reference input signal. In practice, they usually
approach the reference quickly enough for most purposes.
But when extremely fast settling is needed, digital deadbeat

- controllers may be preferred.

elements for the feedback loop. Control theory says that this

Program ’

X0,PA0 READ INPUT SAMPLE

+ plox(n—

qlay(n—1)

MACHINE DESIGN/SEPTEMBER 10, 1987

A DEADBEAT CONTROLLER

. control algorithm must be calculated re,
As a review, deadbeat controllers are those that settle toa
steady state in as few samples as possible. If n is the order of -
‘the controller, deadbeat controllers reach steady state in
n +1samples. They are constructed by selecting the proper

Ifthe apphcatwn transfer funetion is

behavnor is obtained by cancellmgaﬂ ofthe

and replacing them by poles at the z»plane
Obviously, because controller p

one relattonshnp thh those of theeon rolled dev

Such controllers can be 1mplemen1:ed 1 ;
instructions. The resulting program executes My :
thus, is suitable for adaptive ‘control

Deadbeat controllers should voideii I
plant poles lie outside or cl
z-plane, Ip such apphcatlons,

*The basnc deadbeat control algorithm lsgive

=pa+p.z’+p¢ +,
Gas Gtz Fam T

boct byz ™ byz =24
ao +azz ’+azz”+

K Gplant

kinds of arithmetic operations
associated with digital filtering and
processing. Most DSPs are built
with what is called a Harvard ar-
chitecture. This configuration is
unlike conventional computer ar-
chitectures in that it employs sepa-

rate data and instruction memories
that are accessed by separate buses.
The benefit of this arrangement is
increased speed because in-
structions and data can move in
parallel instead of sequentially.

In addition, these ICs generally

carry high-speed hardware multi-
pliers and fast on-chip memories
that eliminate delays associated
with shuttling information on and
off chip to peripheral devices. This
promotes fast program execution.
For example, a DSP can fetch an

A PID loop provides a simple example of how DSPs can be
applied to common control problems. A basic analog PID
(proportional-integral-differential) control algorithm is
frequently defined by

ult) = Kye(t) +K;fe(t)dt + Koy de/dt

where e = some input voltage that varies over time. U =
output voltage and K,, K;, and K, are constants. This
equation indicates that output voltage is proportional to the
sum of an input error voltage, the time integral of the error
voltage, and the time rate of change of the error voltage.

For the sake of review, PID control functions as follows.
The integral term is added to the basic proportional term to
reduce the steady-state error to zero. It makes possible a
nonzero control output even when the error signal (control-
ler input) is zero. In this manner, it serves to anticipate
increasing error and apply a correction faster than would
normally be the case.

the feedback loop. It allows the system to provide more
correction for a faster rate of change of error. The propor-
tional K constants are usually chosen using standard s-
plane techniques such as root-locus diagrams, Routh-Hur-
witz criterion, Bode plots, and state variable techniques.

A typical approach to implementing a digital control
algorithm is to. write the analog transfer function in the
usual way using Laplace transforms, and then convert the
equation into a sampled data version through use of z trans-
forms. Next, the digital transfer function is converted to a
difference equation in the time domain. A program is then
written for a DSP that implements this time domain differ-
ence equation.

The two most widely used analog/digital transformation
methods are the matched pole-zero (also called matched
z-transform) and the bilinear transformation. Though the
former method is simpler, it is somewhat heuristic and does
not always produce a suitable controller. The bilinear trans-
formation is more complex but mimics analog functions
more closely. This is because it uses the trapezoidal rule
instead of rectangular areas to solve the differential equa-
tion specifying the transfer characteristic.

The bilinear transformation converts expressions in Lap-
lace transforms into corresponding equations in 2 using the
identity

_2=—1)
TTEFD

where T'= sample period.

Under the bilinear transformation, parallel or cascaded
control elements retain their respective structures. Overall
frequency response is treated less faithfully, however. Low
frequencies map accurately, but high frequencles do not.

For that reason, a frequency prewarping scheme is usually
employed with this technique. Here a single critical fre-
‘quency is matched in'the analog and digital domains by
replacing each s in the analog transfer function with (w,/

APPLYING DSPs IN SIMPLE CONTROL

The derivative term is added to improve the stability of

wp)s, where w, is the frequency (in rad/s) to be matched in
the digital transfer functions and

w, = (2/T) tan («,T'/2)

To summarize, the design of any digital control function
usually begins with the specification of a few critical fre-
quencies (ws) and magnitude requirements (K's). These are
prewarped into a set of analog specifications by plugging
each w into the prewarping formula. The resulting fre-
quencies are then used in deriving the Laplace transform
version of the transfer function. This function ins is derived
in the usual way, and then is converted to a digital transfer
function in z, generally by means of the bilinear trans-
formation. Finally, an inverse z transformation applied to
this expression yields a difference equation that is expressed
in terms of sample times. This equation can then be coded
intoa DSP.

The procedure can be readily applied to the equations

Program

PID IN E0PAO
0

MPYK

ACC=y(n—2)+K2
ACC=y(h—2

y(n—1) + K0se(n) + Ki.e(n—1)
YN, PAL

defining a PID loop. The exact sequence of operations is too
lengthy to be given here, but the resulting difference equa-
tionis

u(n)=u@m—2)+Ke(n)+ Kie(n—1) + Kse(n —2)

Ki =K, + 2K4/T + K;T/2
=K,T—4K,/T
Ky =2K4/T — K, + K.T/2

Here e (n)is the nth input sample of the controller, the nth
sample of the error voltage; u (n) is the nth output sample of
the controller, u (n -1) is the n -1 sample, and so forth.

Because this equation represents quantities in terms of
sample number rather than as functions of time, it can be
easlly implemented in software for a DSP. The accom-
panying 13-instruction program for the 32010 processor
executes the above PID difference equation in about 2.6 us
when the processor runs at 20 MHz. In contrast, a similar
program running on a general purpose processor such as a
10-MHz 68000 would consume 25.4 us, or 26.1 us on a
12-MHz 8096 processor.

MACHINE DESIGN/SEPTEMBER 10, 1987

Klse(n—1)+ K2re(n—2)

15

16

1 only the'numerator or zeros.
Mtputdthafiltausobminod%"'

MACHINE DESIGN/SEPTEMBER 10, 1987

x(n) o

Equivalent transfer function model

Al poles

° o yin)

H(z, All zeros

~

x(n) @

x(n)

®

x(n) O

Equivalent block diagram

—a,

—a,

—ay

]

g i
i B0

bo

oo ® @ y(n)

b,

®

b
®

bu

®

Form li realization

bo
O, ONRL,
p(n-1) !
®b
Delay 2
p(n-2)
®
b,
LI WA
®
p(n-N)

Shorthand form Il diagram

bo
o o o y(n)

z" by

b,

instruction while loading two num-
bers into its multiplier. An ordinary
processor such as a 68000 might
chew up as many as 80 clock cycles
to multiply two numbers and add
the result to an existing sum. A DSP
chip such as TI’s TMS320C25 can
do the same operation in a single
clock cycle covering about 100 ns.

DSPs take the form of single-chip
ICs, specialized board-level com-
puters, and bit-slice chips opti-
mized for signal processing oper-
ations. Of these, single-chip ver-
sions are the most widely used be-
cause their low cost makes digital
signal processing practical in a va-
riety of applications, ranging from
consumer electronics to automotive
engine control.

Simple approach

DSP architecture arises from the
calculation sequence used to syn-
thesize digital filters and discrete
Fourier transforms. These two
functions form the basis for much of
the digital signal processing now
used in industry. The calculation
sequence, in general terms, is one of
a linear constant coefficient differ-
ence equation:

N
y(r)=—-2 ay(r—k)

M
+3, bX(—k)
k=0

This equation basically says that
any output y can be expressed as a
weighted sum of the input x at the
present time n, past inputs x(n - k)
for some number of past samples &,
and past outputs y(n - k). Terms a,
and b, are the weighting factors. A
computer optimized to quickly
synthesize this equation must be
able to store an input, multiply it by
a weighting factor, and sum it with
previous inputs.

DSP architecture provides these
functions by incorporating a large
degree of parallelism, carrying out
multiple operations per machine
cycle. The ability to perform paral-
lel fetches from two registers and
store the contents in two memory
locations is an example. In addition,
the memory on chip is extremely
fast and constructed in ways de-
signed to facilitate data transfers.
For example, the Harvard architec-
ture on the TMS320 DSP family

Trapezoidal rule

Rectangular
approximation

—»lT'<—

The bilinear transformation maps analog transfer functions into the
digital domain through the representation of error signals as a series of
trapezoids. The simpler matched pole-zero transformation is less
precise because it employs a more crude rectangular approximation.

—|T|=—

Compared to first generation DSPs such as the EPROM-version 320E15,
second generation devices sport higher speed and more on-chip features.
The cmos 320C25, for example, provides a 100 ns cycle time and 544

bytes of on-chip RAM.

contains provisions for transferring
information between data and in-
struction memories.

Because DSPs typically do not
need to store large programs or
blocks of data, they usually lack the
extensive memory-management
circuitry found in general-purpose
microprocessors. Nevertheless,
DSPs have become very powerful.
The first such chips had only
limited instruction sets and mem-
ory, and were limited to fixed-point
(integer) calculations.

In contrast, DSP chips today are
second and third-generation de-
vices that eliminate such problems.
They typically use clock rates of 20
MHz, and 40 MHz clocks are not
unheard of. Newer DSPs also pro-
vide on-board functions such as

serial ports, analog/digital and dig-
ital/analog converters, EPROM,
bit I/O timers, and similar func-
tions that enhance capability.

The cost of single-chip DSPs is
on the order of a few dollars, com-
parable to that of conventional mi-
croprocessors used in control ap-
plications. Recently developed
DSPs tend to provide sophisticated
functions that enable them to op-
erate with video and radar-fre-
quency signals. Examples of such
functions can be found in the
TMS320C30, a third-generation
chip. The device provides floating-
point math capability, facilities for
handling off-chip memory as well as
on-chip RAM and ROM, a more
extensive instruction set, and clock
cycle times of about 60 ns. []

MACHINE DESIGN/SEPTEMBER 10, 1987

17

Taking

Control

New DSP micro-

controllers offer many

improvements over
current analog and

digital control systems.

TOM BUCELLA
Teknic Inc.
Rochester, NY

IRFAN AHMED
Texas Instruments
Houston, TX

In many control systems, digital
signal processors (DSPs) are rele-
gated to computational chores that
bog down conventional processors.
But their limited role is expected to
increase because new DSPs can
manage 1/0 tasks as well.

These revolutionary ICs are basi-
cally microcontrollers with on-chip
digital signal-processing hardware.
They make possible single-chip
control for real-time multiaxis sys-
tems. In addition, software and
hardware support tools simplify
their use in motion applications.

Analog to digital

Digital signal processors have en-
abled control systems to advance
from analog to full-digital imple-
mentations. Microprocessor-based
systems are only a halfway point.
They are an improvement over
analog controllers, but lack pro-
cessing speed to totally displace

older technology. DsPs, on the
other hand, have powerful arith-
metic logic units (ALUs) capable of
high-speed processing.

Early solid-state controls consis-
ted of hard-wired analog networks
built around operational ampli-
fiers. Analog controls offer two dis-
tinct advantages over digital sys-
tems. First, they provide higher
speed control by processing input

data in real time. They also have.

higher resolution over wider band-
widths because of infinite sampling
rates. However, they have several
drawbacks.

Analog component values vary
with age and temperature, necessi-
tating periodic adjustments to
maintain consistent operation. For
example, high-gain amplifier pa-
rameters such as offset and gain
can drift by as much as 20% in their
lifetime. Such fluctuations can
cause major changes in the fre-

Reprinted, with permission, from Machine Design, Oct. 12, 1989,

quency response of band-pass and
band-reject filters.

Other weaknesses stem from the
construction of analog hardware.
Reliability can be a problem be-
cause analog systems typically
have high part counts. Also, com-
ponent lot tolerances frequently
complicate design and may intro-
duce error. And field upgrades are
nearly impossible, often requiring
redesign and repackaging of the
hard-wired circuits.

In contrast, microprocessor-
based motion systems offer many
improvements over their analog
counterparts. Drift is eliminated
because most functions are per-
formed digitally. Upgrading or
modifying a digital system usually
involves rewriting the software:
hardware does not need to be re-
placed. And single-chip solutions
for simple applications are possible
with microcontrollers that have on-

MACHINE DESIGN/OCTOBER 12, 1989

19

chip hardware for 1/0 operations.

Even the best microcontrollers,
however, have limitations. In many
applications, they are too slow.
Processor time is largely spent
managing system 1/0, leaving little
time for data manipulation. Also,
microcontroller ALUs are not suited
for high-speed processing. Only
simple control algorithms can be
supported. Real-time, adaptive, or
multiaxis control is inefficient and
often impossible because com-
putations overload the processor.

Most processor-based systems
employ lookup tables to avoid cal-
culations. But interpolation and
round-off errors reduce precision.
Also, lookup tables can consume
vast memory space, often limiting
algorithms only one variable.

To reduce table size, data word
lengths are sometimes shortened.
But this approach may introduce
limit cycling. Cycling occurs when
output commands have fewer sig-
nificant digits than the required
operating point. For example, a set
point of 7.42 cannot be achieved
with two-digit word. In that case,
the output would cycle.con-
tinuously between 7.5 and 7.4.

There are several reasons why
standard microcontrollers are slow
and inefficient in complex applica-
tions. One is that they have only a
single bus for both program com-
mands and data. Another reason is
that a conventional ALU multiplies
numbers by repetitive addition.
These hardware limitations slow
the processor and ultimately re-
duce sampling rates.

DsP microcontrollers, on the
other hand, are geared for high-
speed control applications. A dual-
bus (Harvard) architecture allows
simultaneous processing of pro-
gram instructions and data. The

20 MACHINE DESIGN/OCTOBER 12, 1989

\

ALU features hardware multipliers
that handle multiply/accumulate
operations in a single instruction
cycle. This is particularly im-
portant for motion-control appli-
cations because control algorithms
are dominated by multiply and ac-
cumulate instructions.

While general-purpose pro-
cessors take from 5 to 20 us to mul-
tiply two 16-bit numbers, DSPs
need only 60 to 150 ns, about 100
times faster. Such speed im-
provements make possible sam-
pling rates of over 20 kHz. They
also allow controllers to extract
more information from feedback
data during the time between sam-
pling periods. For instance, DSPs
can provide speed control by calcu-

lating velocity from encoder posi-
tion data. Microprocessor-based
systems, on the other hand, are too
slow to estimate velocity and typi-
cally use tachometers for feedback.

Other hardware enhancements
include barrel registers. Barrel reg-
isters allow DSPs to scale numbers
in a single instruction cycle. Scaling
pushes all insignificant zeros to the
right side of the number field by
shifting the data string to the left.
These maneuvers increase pre-
cision by making room for less sig-
nificant bits during calculations.
They also minimize truncation er-
rors. Conventional processors scale
numbers in software, shifting them
one bit at a time. A one-bit word in
a 16-bit field may eat up 15 clock

A basic DSP controller consists of an
analog-to-digital (a/d) converter or
quantizer on the front end to sample
analog input signals. A high-speed pro-
cessor operates on the data according to
a control algorithm in memory. The
processor provides digital outputs that
may be tapped directly or converted to
an analog format through a digital-to-
analog (d/a) converter.

Dsp systems depend on a/d convert-
ers to obtain accurate measurements of
analog signals. A/d converters sample
continuous-data (analog) signals by
capturing small slices at periodic inter-
vals. The sampled signal is recon-
structed and the DSP sees asuccession of
amplitude-modulated, zero-width
pulses whose envelope eonforms to the
analog signal.

Accuracy of digitized mformatxon isa
function of the number. of data points

THE BASICS OF CONVERSION

pling rate that provides distortion-free
data is determined by Nyquist sam-
pling theory. For an analog s:gnal whose
h:ghest frequency component is f., the
minimum sampling rate is 2f.. Typi-
cally, a sampling frequency of 6 to 10f. is
used. ‘

If sampling frequency is too low, the
DSP sees a so-called alias signal at a
frequency substantially different from
f.. Once aliasing occurs, it is impossible
to recover the original signal: Filtering
g; :l?y other technique cannot bring it

Asimple method to prevent aliasingis -
to increase the sampling rate. Using a_

filter that limits the analog signal’s

bandwidth is another. But aliasing can-
not be totally prevented because of the
filter’s nonideal qualities and high-fre-
quency noise componenhz in: tha analog

_signal,
sampled per second. ‘The higher this ..
'number,thebeﬁzertheresolut!onoﬁhe)
reconstructed a;gnal Mnumnm sam

Another coxwern with' the a/d im;mt/
stageis apertnre time, the langth of time
thesamplmg pulsetakes tpgﬁk ql

cycles.

Improvements also result from
reduced instruction sets oriented
toward signal processing. For ex-:
ample, a single DSP command
called MACD multiplies two num-
bers, adds the product to an accu-
mulator, and shifts the data to an
adjacent register. This sequence of
operations synthesizes a digital fil-
ter pole or zero. Commands such as
MACD simplify software develop-
ment by reducing the number of
code lines.

Dsps, furthermore, allow con-
trollers to provide functions impos-
sible with analog or microprocessor
systems. For instance, they can
produce sharp-cutoff notch filters
that eliminate narrow-band me-

dynam| modal alganrhms reﬂ?ace current amplnfiers.

chanical resonances. In motion sys-
tems, mechanical vibrations may
occur from about 1 to 100 Hz, with
some as high as 10 kHz. Notch fil-

ters remove energy that would oth-
erwise excite resonant modes and
possibly make the system unstable.

In addition to control functions,

the analog input. Its maximum value
depends on required accuracy and
analog signal slew rate. Signals with
high slew rates need shorter aperture
times to maintain accuracy.

After sampling, the quantizer (a/d
converter) changes the data to a digital
format. Rounding signal magnitude up
or down to the nearest threshold level
introduces quantization error. Thres-
hold levels are discrete values that digi-
tal strings can assume. Quantization er-
ror is the difference between the actual

" analog signal and the nearest threshold
value. Maximum quantization error for
alinear ramp signal, for instance, is one-
half the separation between adjacent
threshold levels.

As threshold levels move closer to-
gether, resolution increases and the dis-
crepancy between the analog input and
the quantized output decreases. Quan-
‘tization error; can only be reduced by

"increasing the number of discrete con-

‘or threshiold levels.

Dompommt in DSP sys—

Amplitude

A digitally
reconstructed
signalis a
succession of
amplitude-
modulated,
zero-width
pulses whose
envelope
conforms to the

Successive
sampling
instants

original analog signal. Analog-to-digital converters record signal amplitude
at periodic intervals between which all control algorithm computations must

be completed.

One type of converter employs elec-
tronic switches that turn on a voltage or
current in response to the input. An-
other form converts digital values into
variable duty-cycle pulses. Such pulse-
width-modulation (PWM) converters
can directly drive electromechanical
loads through switching amplifiers.

An important d/a converter property
is its linearity. Linearity measures the
converter’s ability to produce the same
analog output, change for equivalent
digital input changes. Thus, a digital
transition from 1 to 10 and another

from 41 to 50 should cause relatively the
same effects on the output. For in-
stance, both transitions should raise the
output 18 mV.

Accuracy, a static comparison of in-
put and output values, is also important
in d/a conversion. Another concern, so-
called a “glitch”, is an undesired ex-
cursion of the output voltage when a
change at the input is registered. Glit-
ches can occur while the input goes from
one value (switch configuration) to an-
other. It is caused by the indeterminate
nature of switches between states.

MACHINE DESIGN/OCTOBER 12, 1989

21

DSPs also offer other services to the
system such as diagnostic moni-
toring. Diagnostic monitoring is
achieved with FFT (Fast Fourier
Transform) or spectrum analysis.
By observing the frequency spec-
trum of mechanical vibrations, fail-
ure modes can be predicted and
corrected in early stages.

Perhaps the most powerful DSP
capability is adaptive control. The
technique is possible because DSPs
have the speed to concurrently
monitor the system and control it.

A dynamic-control algorithm °

adapts itself in real time to vari-
ations in system behavior. For in-
stance, FFT data can be used to
tune notch filters to track and elim-
inate vibrational modes as they
vary with system speed, weight,
balance, or other parameter.

DSPs in motion

Digital signal processors were
originally designed for audio/video
applications such as speech coding
and image recognition. But new ap-
plications in motion control de-
mand hardware and software fea-
tures not included on most com-
mercially available DSPs.

A new breed of DSP microcon-
trollers, led by the TMS320C14,
combines both signal-processing

MACHINE DESIGN/OCTOBER 12, 1989

Disadvantages

Aging and temperature L k
variations ’
Hard-wired system -
complicates upgrade and
RS modifications
*~Real-time processing Large component count
Infinite sampling rate Limited to single-variable
T -) control
Micro- Insensitive to aging and temperature Speed limited by single-bus
processor variations architecture
. ‘Software control makes modificationsand Lookup tables reduce
upgrade easy precision and speed
Single-chip solution is possible Repetitive-addition
multiplies reduce speed
Limited multiaxis coordination Low sampling rates reduce
’ . : precision
Digitial Insensitive to aging and temperature Requires expert knowledge of
signal variations system
processor Dual-bus (Harvard) architecture boosts Currently high costs (will
speed . decline)
Software control simplifies modifications No compiler for TMS320C14
and upgrade .
High sampling rates imp

Single-chip solution is possibl

Handles multiaxis systems

Implements complex algorithms such as

adaptive control

Provides special filtering impossible with

other techniques

and system-management functions
on a single 1C. The signal-pro-
cessing section samples inputs and
runs control algorithms, while the

system manager handles interrupts
and schedules tasks, 1/0, and other
events that require interpretation.
For a particular application,
minimum processing speed is de-
termined by the required sampling
rate. Sampling rate depends on the
bandwidth of the system under
control. According to Nyquist’s
theory, an analog signal must be

sampled at more than twice the fre-
quency of its highest frequency
component. In practice, however,
controllers typically sample at
rates six to ten times above the
highest frequency.

All processing must be com-
pleted between sampling periods. A
controller with a sampling rate of
10 kHz, for instance, has 100 us to
sample the input and calculate the
output. In many cases, multiply
and accumulate procedures ac-
count for the majority of calcu-
lations. Some algorithms may call
up to 50 multiplies per sample.
Thus, high-speed multiply and ac-
cumulate hardware is necessary for
DSP controllers.

Such hardware is available in the
320C14. In one instruction cycle, it
multiplies two 16-bit numbers and
stores the result in a 32-bit accu-
mulator. Instruction cycle time for
the 25-MHz processor is only 160

ns, for a throughput of 6.4 Mips .

(million instructions per second).

It is important that the product
of two 16-bit numbers be stored in
a 32-bit accumulator. But not all
16-bit processors have 32-bit accu-
mulators. If only a 16-bit register is
available, 16 bits are lost with each
multiply. Truncation of this sort
reduces precision and may show up
as random fluctuations or noise in
the system variables. Attempts to
control noise often degrade system
operation.

Processing capability is also a
function of internal data format.
For instance, floating-point pro-
cessors are suited for applications
with wide dynamic range because
their data registers contain large
exponential fields. This type of
data representation frees designers
from concerns over signal mag-
nitude. The drawback with float-
ing-point processors, however, is
their high price.

Fixed-point processors, on the
other hand, cost much less. They
also provide greater accuracy be-
cause their data registers contain
larger mantissa fields. The trade-
off is a lower dynamic range. Dy-
namic range can be expanded by
doing floating-point calculations in
software. But this approach re-
duces speed. For example, the
320C14 executes 16-bit floating-
point multiplies in 6.5 us.

Overflow protection is another

DSP BUILDING BLOCKS

The building blocks of analog control systems are operational amplifiers, while
in digital signal-processing (DSP) systems they are multipliers. Multipliers are
key hardware for executing digital filters and Fast Fourier Transforms (FFTs)
in software. Originally, multiplier 1Cs were available only in individual pack-
ages. Now, they are integrated into most DSPs chips.

Digital filters are capable of higher speeds and sharper cutoffs than analog
filters. In addition, they provide better stability with less drift. They also re-
quire no adjustments and can have nearly an unlimited signal-to-noise ratio
(SNR). The SNR of a digital filter is proportional to its analog-to-digital (a/d)
resolution.

Digital filters are usually based on a linear constant-coefficient difference
equation such as

N M
y(n) ———'E a;y(n~k)+k2 bex(n—k))

where, x (n) = filter input sequence, y (n) = filter output sequence, a; = output
coefficients, and b, = input coefficient.
When the input coefficients are all zero, equation 1 reduces to

M
¥(n) =2 bix(n—k) ()]

This is called a finite impulse response (FIR) filter of length M +1. Such a fil-
ter consists of a tapped delay line with a series of M digitally summed multi-
plies. It has rio feedback, making it unconditionally stable.

Another digital filter type, the infinite impulse response (IIR) filter, is de-
fined when at least one a; term is nonzero. An IR filter has both feedforward
and feedback terms like some op-amp-based analog filters. It is simpler than
the FIR in terms of hardware and software. But it is also potentially unstable
and susceptible to offsets and nonlinear response.

Multipliers and accumulators also play an important role in implementing
FFTs. The FFT is a hardware-efficient version of the Fourier transform. It de-
composes a time function into its frequency components, providing frequency
analysis of the signal.

DsP system analysis is simplified by techniques such as the z transform. The
z transform does for sampled-data systems what the Laplace transform does
for continuous-data systems: it describes system output for a specified transfer
function and input. Like the Laplace transform, the z transform permits alge-
braic techniques instead of differential equations.

MACHINE DESIGN/OCTOBER 12, 1989

23

2%

thanr'esoluﬁqn. i

concern. Control algorithms, with
many successive multiply and ad-
dition operations, can easily over-
flow registers. In an overflow, data
registers on many processors recy-
cle from their most positive to their
most negative number. But po-
larity changes at the output of a
motor controller, for instance, can
reverse motor direction. Accu-
mulation registers on the 320C14,
on the other hand, latch at the
most negative or most positive
value. This feature eliminates the
need to protect against polarity
(motor) reversal.

To function as system manager,
DSPs must have on-chip 1/0 and
other peripherals. For starters, the
320C14 has 16 bit-selectable digital
1/0 lines that can be configured in
any combination of inputs and out-
puts. The 1/0 lines can be used, for
example, to scan keyboards or
drive external devices. A special in-
put feature sets an interrupt flag
when inputs collectively match a
stored number. This facilitates
counting or timing applications.

The 1C also features an. event
manager that controls capture
(input) and compare (output) sub-
systems. The capture section is
equipped with hardware optimized
for timing applications. For in-
stance, encoder feedback pulses
can be timed with up to 160-ns res-
olution to provide accurate posi-
tion and speed data.

The compare subsystem is basi-
cally the chip’s output. Its hard-
ware is optimized for driving mo-
tion systems. One operating mode,
for instance, allows it to function as
a 6-channel PWM controller with up
to 40-ns resolution. Six compare
(cMP) registers work in harmony
with two internal timers. When a
match is detected between the cMP

MACHINE DESIGN/OCTOBER 12, 1989

register and its specified timer, the
event manager changes the state of
the cMP output pin. Two internal
interrupts are also generated.

Other on-chip peripherals in-

clude an array of 16-bit timers.

Two timer/counters are intended “’~gs

for clocking external events and

serving the event manager. An- . Overflow

other, the watchdog timer, pre-
vents internal software hang-ups.
When the watchdog times out, a

maskable interrupt is set and a -

pulse is generated on an output pin.
The pulse may reset external hard-
ware or the processor.

Development systems

Although DSP control systems of- -
fer numerous benefits, designing
them can be difficult. For the most
part, familiar analog design tools
such as breadboards and scopes of -

fer little help. And because com-
pilers are not yet available for the
320C14, code must be written in as-
sembly language. Limited stack
space with room for only 4-level
calling poses another challenge. A
call is a branch statement that
jumps to a subroutine. Because few
subroutines may be called, sections
of code must often be repeated

throughout programs.

Despite these obstacles, makers
of development systems for the
320C14 have found ways to sim-
plify the design process. For one,
their products compensate hard-
ware shortcomings by supple-
menting memory space. Secondly,
they allow engineers to prototype
DSP control systems on PC plat-

forms, using methods similar to
those for microprocessors or micro-
ontrollers. Teknic Inc., for exam-
ple, makes a development board
called the Power-14.

Power-14 is designed for motion
control applications. On-board
switching servoamplifiers deliver a
total of 750 W for driving various
types of motors, linear actuators,
and proportional valves. At the in-
put, eight channels of 12-bit anal-

og-to-digital conversion accept ta-.

chometer, potentiometer, and
other sensor signals. The 20-us con-
verter provides extremely high
(0.02%) resolution. In many appli-
cations, 0.4% resolution from 8-bit
conversion is sufficient.

The Power-14 board adapts to a
wide range of motion-control appli-
cations because its 1/0 sections can
be configured by the user. Config-
uring is done in software. On-board
configuration logic interfaces the
1/0 hardware with the 320C14’s
event manager (CAP and CMP lines).
CMP lines connect to ser-
voamplifiers, while encoder inputs
are fed to CAP lines.

Four input modes accommodate
a variety of feedback schemes. In-
put logic, in addition to routing sig-
nals, converts quadrature encoder
feedback into count-up and count-
down pulses. It also includes edge-
detection circuits for index signals.
The extra hardware reduces soft-
ware overhead and improves sys-
tem speed.

Likewise, . there are four output
modes. Output logic controls driv-
ers independently or in pairs
through nonoverlap hardware. The
board can be adapted for brush or
brushless d¢ motors, single or
three-phase ac drives, stepper mo-
tors, variable reluctance motors,
and other ac or dc loads.

Output hardware consists of six
power transistors. Each has a no-
load current-sensing device. Cur-
rent feedback signals (12 bit) warn
of overcurrent conditions and pro-
vide information such as torque or
force to control algorithms. In dc
brush motors, for instance, torque
is directly proportional to the
amount of current into the wind-
ings. But torque calculations for dc
brushless motors require an addi-
tional term equal to the angle be-
tween the windings and the rotor.

High-speed MOs transistors form

'

three half-bridge (totem-pole) am-
plifiers. Switching speed is deter-
mined by the number of bits in the
output command. Up to 16 bits of
digital-to-analog resolution are
possible. A larger number of bits
gives higher resolution, but slower
amplifier switching rates. For ex-
ample, 10 bits of resolution, suffi-
cient for most systems, are avail-
able at a 25-kHz switching rate.
Adding only one bit halves switch-
ing frequency to about 12 kHz.
Another Power-14 feature is a

40-pin connector that makes the
320C14’s digital 1/0 directly avail-
able. Configuration logic and on-
board peripherals are bypassed.
This allows designers to develop
custom nonmotion applications.
Off-board connections, for in-
stance, can be made to CODECs and
external clock sources. CODECs
code and decode signals for pulse-
code-modulation (PCM) transmis-
sions. On-board connections can be
made to capture, compare, and dig-
ital 1/0 lines.

DSPs AT WORK

An example servo/indexer system configuration demonstrates the Power-14
evaluation board. The system employs a brush-type dc motor, two-phase opti-
cal encoder, dc supply with regulated 5-V and +12-V signals, and servomotor
power supply. A PC running a terminal emulator program provides system con-
trol from the keyboard. A potentiometer is used for manual position control.
Also required is a 3201X assembler/linker.

The software package provides full control over the system, allowing users to
vary PID coefficients and observe the effect on system operation. The potenti-

- ometer can be used to adjust servo position. Encoder feedback position may be

displayed to reveal steady-state error.

Users may also generate custom code. Developers begin by writing program
modules in 320C14 assembly language on the monitor/debugger. Programs
may be tested with various emulator and simulator software. To be applied to
the live system, the code must be assembled and linked into a TI TAG file. A
communications program such as Crosstalk or Procom downloads the code to
the board. The monitor provides utilities to run and debug the program.

Development of 320C14 applications can be accelerated with Teknic’s Pow-
er-Source software package. The modular library of calls and routines makes
code writing faster and easier. It can be used, for instance, as the basis of a cus-
tom DSP control design. The PID loop can be taken out and replaced with the
user’s algorithm. Supporting commands that initialize and run the chip may
not need to be modified.

DSP design
example

Quadrature

A TMS320C14 indexing servosystem can be configured with the
Power-14 board and controlled by the demonstration software. Encoder
phase signals are fed through up/ down counters (input mode 2), while a
PWM drive (output mode 2) powers the. motor. ’

MACHINE DESIGN/OCTOBER 12, 1989

25

26

A small on-board prototyping
area provides a place to fabricate
special signal-conditioning circuits.
For instance, encoder inputs may
be fed through decoder/prescalers
to reduce software overhead. Sen-
sor signals may be amplified, fil-
tered, or isolated. Qutputs may
likewise be modified with digital-
to-analog or frequency-to-voltage
converters.

Other hardware on the Power-14
includes a TMS320E14 processor
and 8k words of on-board down-
loadable program memory. The
320E14 is the EPROM version of the
320C14. Suppression circuits are
added to reduce conducted electro-
magnetic interference (EMI) from
the amplifiers. An RS-232 serial
port is also available. The port al-
lows the board to communicate
with the development platform.

Users can generate code, test
software, and control motion sys-
tems from the host’s monitor/de-
bugger screen. Typically, the host
is a PC running a terminal emulator
program. A command-driven mon-
itor interface provides access to all
debugging facilities. Code is en-
tered on screen, assembled, and
downloaded through the RS-232
port for execution. A demonstra-
tion program based on a simple PID
algorithm allows users to experi-
ment with DSP control systems.

The demonstration/test program
is supplied on a 5%-in. floppy disk.
It is specifically written for a DSP

MACHINE DESIGN/OCTOBER 12, 1989

control system consisting of a dc
motor and an optical encoder.
From the monitor, users adjust
PWM rates and duty cycles, dump
current analog-to-digital converter
values, display and set 1/0 ports
and memory contents, and vary PID
coefficients.

Users may also develop their own
code. The monitor/debugger allows
them to download code, set break-
points, and display and modify
memory register contents. Break-
points allow users to see exactly
what is going on (register contents)

at specific points in the program. If
software is causing a problem or
hanging up during a certain task, a
breakpoint can be used to a obtain
a snapshot of the register states at
the point of interest.

Breakpoints also allow users to
develop code in stages. One part is
written and tested, while the re-
mainder of the program is art-
ificially simulated with values
plugged into registers. External
hardware provides one breakpoint,
while multiple software break-
points are possible. []

USING DIGITAL SIGNAL PROCESSORS FOR CONTROL

Herbert Hanselmann

University of Paderborn, Department of Automatic Control in Mechanical Engineering
4970 Paderborn, Federal Republic of Germany

ABSTRACT
Digital single-chip signal processors solve speed
problems arising with the implementation of measure-
ment and control algorithms. After a discussion of pro-
cessing power and applications an outline is given of an
advanced CAE support system for the implementation
of complex control and related systems.

1. INTRODUCTION

Digital single-chip signal processors (DSP) are very
attractive means for the implementation of measure-
ment and control algorithms, mainly because of their
computing speed, which is more than an order of mag-
nitude higher than with fast modern 16/32 bit mi-
cropr 'S Or micr trollers. using fixed point ar-
ithmetic (Hanselmann, 1986a, 1986b, 1987).

A list of present devices that seem to be useful for
control implementation and are available to the public
is given in Tab. I.

DSP make implementation of nontrivial controllers
with high pling rate feasible at r able cost; the
TMS 32010 in particular has already been used in many
control applications, as described for example by
Slivinski and Borninski (1985), Kanade and Schmitz
(1985), Hanselmann (1986b).

In the following some speed benchmarks are
presented, then some applications are discussed. fol-
lowed by a brief discussion of DSP limitations and how
they will develop with future DSP. The last sections are
on Computer Aided Control Engineering (CACE) for the
implementation of fast and complex control systems,
particularly on DSP.

2. SPEED BENCHMARKS

Even older DSP deliver impressive speed in meas-
urement and control applications as shown by the fol-
lowing benchmark data for the Texas Instruments TMS
32010: infinite-impulse response filter biquad section
2.2 us, finite-impulse response filter 0.4 us per tap,
complex 64 point FFT 06 ms, 1024 points 43 ms
(Burrus and Parks, 1985), table-lookup with linear in-

© 1986 IEEE. Reprinted, with permission, from JECON '86, 1986.

terpolation 8 us, generation of maximum sequence
PRBS noise out of a 32 bit register 5.4 us per clock,
sine function generation 6.6 us per point (Mehrgardt,
1984), 9th order controller at 31 kHz sampling rate, in-
cluding overflow management code, 15th order mul-
tivariable controller with 13 inputs and 3 outputs, with
some nonlinearities, at 10 kHz sampling rate.

Some future DSP from Tab. 1 even promise to be
significantly faster. The Motorola 56000 for instance
will be about 4 times faster with IIR or FIR filters due to
shorter cycle time, and almost 10 times faster in the
1024 point FFT application where the TMS 32010 is
slowed down due to RAM limitations.

For the 9th order controller mentioned above a
speed comparison has been made against 16/32 bit mi-
croprocessors. This single input single output controll-
er arose in an industrial application with a very fast
electromechanical positioning system (Hanselmann,
1986b; Hanselmann and Moritz, 1986). Since with gen-
eral microprocessors the multiply operation mainly
determines the execution time, an upper bound for the
achievable sampling rate can be given based only on
the total number of multiplications. This upper bound

signal processors type available

NEC 4PD 7720 U 1982
Texas Instr. | TMS 32010 U 1683
Fujitsu MB 8764 U 1984
STC DSP 128 U 1985
Texas Instr. | TMS 32020 u 1985
Texas Instr. | TMS 320C25 u

Nat. Semi. LM 32900 uc

Analog Dev. ADSP 2100 uc

Phillips PCB 5011 U

Thomson TS 68930 U

Motorola DSP 56000 U

Nat. Semi. LM 628 A

NEC #PD 77220 u

NEC uPD 77230 U F
U universal

C processor core (external memory)

A algorithm-specific

F floating-point arithmetic
Tab. 1 present and future DSP

IECON’86

27

is given in the rightmost column of Tab. Il. The controll-
er had 33 nonzero and non-one coefficients, i.e. 33 16 x
16 bit multiply operations had to be performed per
sampling interval. Since there are also additions and
data transfer operations to be performed the sampling
frequency actually achievable would be somewhat
lower. A comparison of the estimate with actual exper-
imental results was carried out on a filter (from Phillips
and Nagle, 1984), and on the controller which Table Il is
based on. The target was a 68000 system running at 10
MHz, programmed in assembly language. Actual sam-
pling rates turned out to be about 507% of the upper
bound estimate in the filter case, where subroutines
and loops were used, and about 70% in the controller
case with fast subroutine- and loop-less code.

microprocessor clock Is
8086 8 MHz | <2kHz
28000 5 MHz | <2kHz
68000 10 MHz | <4 kHz
32016 10 MHz | <5 kHz

TMS32010 signal processor | 31 kHz

Tab. 2 achievable sampling frequencies

The same controller was also implemented on a
TMS 32010 signal processor and ran at 31 kHz sampling
frequency, with overflow management code included
for the control variable output computation. Thus the
signal processor is an order of magnitude faster. The
main reason for this is that with the microprocessors
the fixed-point multiplications are too time-consuming,
a typical execution time being 6 us for a 10 MHz 32016
processor (operands in memory). Due to_ hardware
multipliers and eflicient routing of operands and
results through various buses the execution times of
add / subtract as well as multiply operations of DSP
are in the range of 100 ns to 300 ns. Multiplication is no
longer the most time-consuming operation.

3. APPLICATIONS

Typical control applications of DSP are found in
the field of controlling fast mechanical devices, using
fast servohydraulic or electromechanical actuators.
This is because the required control bandwidth can well
be from 100 Hz up to several kHz, and sampling fre-
quencies considerably higher than this are necessary.

Furthermore it is precisely with the control of
mechanical devices that detailed models can and
should be obtained, with many degrees of freedom and
high system order. So the controllers frequently are of
higher order too, particularly when standard tech-
niques such as LQG control (i.e. state variable control
with Kalman-filtering) are applied.

But even with more classical control structures
the control algorithms frequently have to go beyond
simple PID-type control. A good example is the plat-
form control system described by Slivinski and Bornin-

28

ski (1985), where a bulk of structural notch filters
pushes the total controller order up to 19. Structural
notch filters are used to cope with resonances in the
mechanical structure by making them approximately
“invisible” in the control loop. In the magnetic disc
drive head positioning application described by Hansel-
mann (1986b) and Hanselmann and Moritz (1986) this
approach has also been used (one of the controllers
studied was that mentioned in section 2 and Tab II).
The computational power required is particularly high
there because of very high control bandwidth.

We use an experimental lab system with the TMS
32010 for implementation of such controllers. It is also
used by some R&D departments in industry. This sys-
tem accommodates up to 15 inputs and outputs each
(analog or digital) and is equipped with a Z80 single
board computer for host-target communication (RS
232), sampling-rate programming, TMS program down-
load, and program storage in nonvolatile RAM. Along
with appropriate CACE software (see section 5) this ex-
perimental system forms a very powerful tool for con-
trol system realization and evaluation.

Examples of applications apart from the magnetic
disc drive are the active or semiactive suspension of
vehicles and multiaxis robot control.

Vehicle suspension using a fully active hydraulic
actuator instead of the passive spring / damper system
has been realized for a.single wheel test bed using the
Intel 2920 DSP (Luckel and Kasper, 1984; Kasper, 1985),
and will be realized for a Volkswagen Golf car in the fu-
ture using the TMS system. A semiactive suspension
(single wheel in the first stage) is under study in an in-
dustrial company using our TMS system. A 4 wheel
suspension is expected to require caqntrollers of order
10 ... 20, with more than 10 inputs from sensors, and 4
outputs to the actuators. Controllers are to a large ex-
tent linear, but there are some nonlinear compensa-
tions of nonlinear plant behaviour to perform. The
sampling frequencies will range from some hundred Hz
up to about 5 kHz, the higher sampling frequencies be-
ing required for the fast hydraulic subsystems.

The objective of the robot control application is
damping and stiffening of an elastic robot by control
(Moritz et al., 1985; Moritz and Henrichfreise, 1986). A
three axis robot with electric servomotors, Harmonic
Drive gearboxes, and light al arms hasr tly
been successfully controlled by a multivariable con-
troller using the TMS system. Oscillations visible by the
naked eye when conventional cascade control was used
were completely damped in all relevant degrees of free-
dom with the multivariable controller. Without the
feedforward inputs there were 4 inputs from strain
gage sensors, 3 inputs from angle encoders, 3 inputs
from tachogenerators, 3 angle reference inputs to the
controller, and 3 outputs to the motors. The order of
this multivariable controller was only 6 in this first
development stage, and the sampling frequency of 23
kHz was higher than required. In the next stage the
controller will be augmented by friction observers and
compensators, and the workload for the DSP will in-
crease.

4. LIMITATIONS
The computing speed of DSP is impressive, but
there are also several limitations.

Compared to microcontrollers such as the Intel
8096 or the NEC 78312 a DSP system usually requires
far more hardware surrounding the processor chip.
These microcontrollers include sophisticated i/o func-
tion blocks, right up to AD-converters, decoders for in-
cremental angle sensors, and serial communication cir-
cuitry, whereas current DSP are only computing
machines (with the exception of so-called algorithm-
specific DSP such as the one listed in Tab. I, which is
however very special purpose). DSP often also require
very fast static RAM for program and data storage.

Another drawback with some DSP is their limited
addressing capability, which is most severe with data
RAM. The NEC 7720 and TMS 32010 have 128 and 144
16 bit words of on-chip data RAM, without the possibili-
ty of extending data RAM externally at full speed.

If the application requires service of interrupts
from various sources, the next problem with DSP is en-
countered. Of the ‘on-the-market’ DSP from Tab. I,
only the TMS 32020 allows for more than one interrupt
source (i.e. 3 external plus some internal ones),
whereas the MB 8764 and the DSP 128 have no inter-
rupt mechanism at all. One reason for this may be that
some hardware precautions are necessary when pipe-
lined instruction execution is interrupted.

A common restriction with all present DSP is that
they are only fast with fixed-point arithmetic, see for
instance Blasco (1983) for the TMS 32010 and Crowell
(1985) for the TMS 32020. Because standard operand
wordlength is 16 bit, and accumulation (think of scalar
product computations) is in most cases performed with
extended precision (up to 35 bit) at no extra cost, the
accuracy and dynamic range will usually be sufficient
for control purposes, provided the control algorithm
has been prepared appropriately (see section 5). The

desire to have floating-point arithmetic is often caused
by lack of know-how and tools for precisely this
preparation of a controller for fixed-point implementa-
tion.

A last drawback to be mentioned is due to lack of
programming support. With the exception of the TMS
32010 (see section 6) only assembly language program-
ming is supported commercially. For runtime
efliciency most users also tend towards assembly level
programming. However, because of ‘exotic’ architec-
tures and instruction sets compared to general mi-
croprocessors, programming easily gets tedious and
error-prone. This applies particularly to those DSP
which have a 'microcode-like’ instruction set, such as
the NEC 7720, the MB 8764 and some of the announced
DSP.

Additionally, memory restrictions may require
tailored coding for every version of a controller, and
eflficient code constructs may be dependent on the ac-
tual numerical values of operands, leading to frequent
reprogramming when a controller is in its development
stage where numerical values are not yet fixed. For an
example see the TMS 32010 code of Fig. 1. It checks
the result of a downscaled scalar product computation
(Hanselmann, 1986b, 1987)

r=cTx (1)

(where all coeflicients in ¢, have been downscaled from
the original coeflicient vector by a common factor 2" to
fit them into the fractional number range) whether the
rescaled true result is overflowing, in which case sa-
turation is performed. Version a) is valid for all rea-
sonable v, whereas the much faster version b) is only
valid for two values of v because of restrictions of the
processor. And for some other values of v there is even
another optimal version (not shown) in between. Fig. 1
also shows another problem of DSP: quite complicated

NUE EQU ... ; scale-factor ;positive value NUE EQU ... ; scale-factor
ALLL EQU 11112211111111118 PDS: LAC HI, NUE+2 MAX EQu 327670
ALL1MSB® EQU @111111111111111B SACH 2.8 MIN EQU -327680
MAX EQU 327670 ZALS Z .
HIN EQU -327880 BZ NOOF .
. ;saturate sdownscaled result in accumulator
. ZAL SACH RESULT, NUE+1

sdounscaled result in accumulator SACL RESULT 1 BLZ NEG

SACH HI,@ ; save acc 8 ENDOF } spositive value

SACL LO ino overflou SUB MAX, 15-NUE

BGEZ POS NOOF: LAC LO,15 BLEZ ENODOF
inegative value SACH LD, ;saturate

LAC HI, NUE+2 2ALS LD LAC MAX, 15-NUE

SACH Z,8 AND ALL1MSBO® ! SACH RESULT, NUE+l

ZALS 2 SACL LB | B ENDOF

XOR ALL1 LAC HI, NUE+L 1 ;negative value

82 NOOF SACL HI ! NEG: SUB MIN, 15-NUE

ssaturate ZALH HI i BGEZ ENDOF

ZALS NIN ADO LD, NUE+2 H ;saturate

SACL RESULTY SACH RESULT 1 LAC MIN, 15-NUE

B ENOOF ﬂ ENDOF :] SACH RESULT, NUE+l

: ENDOF :

a)

b) (v = 0or3only)

Fig. 1 overflow-handling code (TMS 32010)

29

run-time and memory consuming code constructs may
be required to do rather simple things, quite unlike the
computing of scalar products which DSP ere designed
for. :

Some of the problems discussed will disappear with
some future DSP, which will not only be faster, but also
allow for more program and data memory, incorporate
more hardware for miscellaneous tasks (timers, com-
munication ports), and have more flexible instruction
sets. The dynamic range of fixed-point arithmetic will
also be extended (although rarely really needed in con-
trol applications), by longer accumulators and in some
cases (Motorola 56600 and NEC 77220) by a larger basic
operand wordlength of 24 bit. Floating-point arithmet-
ic DSP are also appearing. There is already one
(proprietary) DSP at Bell Labs performing full 32 bit
floating-point arithmetic at 150 ns per operation, and
one DSP for the public (by NEC) has been announced
(see Tab. I). It can also be expected that more pro-
gramming tools such as general or special purpose
language compilers will emerge.

5. CACE-TOOLS

Efficient use of DSP for control implementation re-
quires some CACE-tools to assist in the preparation of
the controller before programming it, and also it is
desirable to circumvent processor specific assembly
level programming.

In the pre-programming phase there are decisions
to be made and checks to be performed which are
mainly related to discretization, quantization, and tim-
ing. All this is not specific to DSP used in control, but
would also apply to application of general microproces-
sors or microcontrollers. Only the peculiarities and
problems of fixed-point arithmetic become irrelevant
when floating-point arithmetic can be used with mi-
croprocessors or microcontrollers.

The CACE-tools we developed and still use
comprise software-modules which perform, or at least
assist, in performing the following tasks:

- discretization of continuous designs via a selection of
methods,
- choice of realization structures for multivariable sys-
tems with respect to finite wordlength restrictions,
- scaling for fixed point (fractional) arithmetic, scale
factors supplied by user from for example simulation,
or found automatically,
- checking for differences in frequency or for example
step response due to discretization and due to fixed
point coeflicient representation,
- checking for eflects of AD- or DA- signal quantization,
arithmetic, overflow, and nonsimultaneous sampling by
nonlinear control system simulation,
- automatic code generation (formerly for Intel 2920,
now for TMS 32010) from & description of a linear con-
troller in stale-space, plus optional nonlinear exten-
sions.

In the early stages of design only a few assump-
tions such as on the future AD-converter resolution

IECON’86
30

and a rough estimate of sampling rate may be involved
In later stages discretization and timing effects are
taken into account first, then an accurate abstract
model of the target DSP program , already involving
finite wordlength eflects, comes into play. It depends
on the user's experience and on the controller whether
the CACE-tools for implementation have to be used to
the full. It is not uncommon for only discretization,
selection of a standard realization structure, and au-
tomatic scaling to have to be performed. A more de-
tailed discussion of these steps to be taken in the pre-
programming phase can be found in Hanselmann
(1987).

The last step, i.e. programming, is performed fully
automatically for the linear part of a controller by an
automatic code generator (Fig. 2) for the TMS 32010
(Loges, 1985). The controller is assumed to have been
translated into a single state space difference equation
of the form

Xpay = A X, + Buy +1,(x,.u,.y,.k),
Yo =Cxg+Duy +1,(x.up.k) @

Code for the nonlinear parts is not generated but
linked to the generated code. The code generator pro-
vides overflow management code, so-called scalar pro-
duct scaling, and extended precision arithmetic on
demand, and copes with the data RAM limitations of the
TMS 32010 by gradually moving to memory saving code
if necessary in a run-time optimal way. The code gen-
erator concept has also been used by workers in the
general signal processing (filtering etc.) field, for refer-
ences see Hanselmann (1987).

numerical data
(matrices A, B, C, D)

l coded functions
setup data from library
~—— code generator - ———

l

optimal assembly code

Fig. 2 automatic code generator

Experience shows that, using the abovementioned
tools, in routine cases a control design can be brought
to experimental evaluation in less than an hour, and
virtually no knowledge of the target DSP is necessary
for the control engineer who is only interested in get-
ting his control system working. Our previous work
has, however, been restricted to a certain class of con-
trollers (single state-space description, single-rate,
nonlinear terms supported but not integrated in the
CACE-software data structure). More complex controll-
ers now demand a more advanced concept.

6. FUTURE CACE-CONCEPT

The main restrictions of our previous CACE-tools
have been: (i) assumption of the controller in the
form of (2), (ii) separation of information belonging
together logically, (iii) task dependency. (iv) target
processor dependency in code generation tools.

We are going to remove these restrictions now by
developing tools based on models of complex controll-
ers and by layering the code generation procedure.

The goal is to close the gap between sophisticated
control system design and realization of a designed
controller by means of mostly automatic tools working
on a model of the controller. This model may be for an
analog version of the controller initially, and will subse-
quently be transformed step by step into a full digital
controller model via the stages of sampling rate selec-
tion, discretization, structure selection, scaling etc..

Designing a modeling concept on which such im-
plementation tools can be based is a nontrivial task for
complex controllers. The usual collection of a few
discrete state-space models or z-transfer-functions is
far from sufficient to make up a model.

It should for instance be possible to represent
complex controllers constructed from submodels in a
hierarchical way. In the vehicle suspension application
mentioned in section 3 there are controllers for the in-
dividual wheel hydraulics on a medium hierarchical lev-
el, the subsystems encapsulated in these controllers
are on the lowest level, and on the highest hierarchical
level is the total 4 wheel controller (including pitch and
roll control etc.).

The same example also shows the need to account
for multi-rate systems because of high sampling rates
for servohydraulic control, and lower rates for car
body attitude control.

It is also important to accommodate timing infor-
mation, i.e. information about when input signals are
sampled, when output signals are available and what
the sequence of execution of subsystem algorithms is.

Information regarding data formats and arithmet-
ic in the target processor should also be representable
in a form sufficiently abstract to be processor indepen-
dent, but close enough to the hardware and architec-
ture of target processors for running a control system
simulation for instance to yield ‘real-world’ results.

In order to manage all this information it is advis-
able to follow the lines of modern software engineering.

The approach we are investigating is to define a model
language which works in the user’s technical terms as
much as possible, and represents the information in a
readable, consistent, and logical way. A modei descrip-
tion given in this language is then to be used
throughout the design and implementation process, up
to simulation and final code generation. The conven-
tional data structures such as collections of matrices
are only a part of a model, possibly a small one. Even
there, several distinctions must be made and types of
controller submodels such as standard state space
models, FIR-filters, FSVD-type state space models (Han-
selmann, 1987) should be introduced.

design
high level abstract
_ controller model
q (hierarchical,
nonlinear)
3
7]
- selection of sampling rates 8
- discretization :
- realization structures £
- decisions on arithmetic E
- scaling 8
- checks for discretization, @
quantization, delays, 5
asynchroneous sampling, ... o
- simulation 8
high level abstract
digital controller
T model (hierarchical, -
multi-rate, nonlinear) 5 o
C wn
4+ B g
¢ c
translator Tl
o
c £
v E
lower level target s E
> hardware independent x
description (DSPL) -‘Z E"
£ a
1
DSPL compiler DSPL compiler 2=
for target for target \ 8 Z:
pr 1 pr 2 =S
v E
5 E
z 2
T8
assembly language -

Fig. 3 future code generation

The final stage of code generation will now also be
based on the controller model. Because of the possible
complexity of such models, and in order to get more
target pr ind dency, code generation will be
performed in at least two stages (Fig. 3). with an inter-
mediate control task representation in a specific medi-
um level language (DSPL, digital system programming
language) program which will be derived from the
abstract controller model by means of a translator. We
have designed a first version of DSPL (Hanselmann and
Schwarte, 1987), and we expect to have a preliminary
DSPL comipiler for the TMS 32010 by the end of 1986.

31

We prefer to have a language which is tailored to
signal processing and control tasks rather than using
general purpose programming languages such as C or
Pascal. Compilers for these two languages emerged re-
cently for the TMS 32010 processor (Marrin, 1885). Our
goal is to create an .instrument which generates code
as efficient (bul more efliciently) as that which a hu-
man programmer would for the tasks we deal with, and
to keep the target hardware and processor dependent
parts as small as possible. This will be achieved by con-
centrating such dependencies into the compiler for the
rather basic DSPL language, which can be modified for
new pr s (even custom-designed ones) with rea-
sonable effort.

2. CONCLUSIONS

As shown by benchmarks and applications, digital
signal processors are attractive for control implemen-
tation due to their computing speed. Compared to
some other types of processors there are some limita-
tions however, which will partly be removed with the
new signal procesors expected in the near future. It
has been stressed that eflicient use of DSP for control
implementation requires some CACE-tools to assist in
the preparation of the controller before programming
it, and in programming itself.

BEFERENCES

Blasco, R. W. (1983). Floating-Point Digital Signal Pro-
cessing Using a Fixed-Point Processor. Presented at
Southcon; also in Signal Processing Products and
Technology, Texas Instruments.

Burrus, C. S. and T. W. Parks (1985). DFT/FFT and Con-
volution Algorithms, Wiley & Sons.

Crowell, C. D. (1985). Floating-Point Arithmetic with the
TMS 32020. Texas Instruments Application Report.

Hanselmann, H. (1986a). Einsatz Digitaler Ein-Chip-
Signalprozessoren in der Mess- und Regelungstech-
nik. Bulletin Schweizer Elektrotechnischer Verein, 11,
632.

Hanselmann. “H. (1986b). Digitale Ein-Chip-
Signalprozessoren in der Mess- und Regelungstech-
nik. 5. Wiss. Konferenz “Anlag ung”,
Leipzig. GDR.

Hanselmann, H. (1987). Implementation of digital con-
trollers. Automatica, survey paper, accepted for pub-
lication.

Hanselmann, H. and A. Schwarte (1987). Generation of
fast target processor code from high level controller
descriptions. To be published.)

Hanselmann, H. and W. Loges (1984). Implementation of
very fast state-space controllers using digital signal
processors. Proc. 9th [FAC World Congress, Pergamon
Press, New York.

32

Hanselmann, H. and W. Moritz (1986). High bandwidth
Control of the head positioning mechanism in a Win-
chester disc drive. Proc. JECON'86, Milwaukee, Wiscon-
sin.

Kanade, T. and D. Schmitz (1985). Develop t of CMU
Direct-Drive Arm ll. Proc. 1985 American Control
Conference, Boston, 703.

Kasper, R. (1985). Entwicklung und Erprobung eines in-
strumentellen Verfahrens zum Entwurf von
Mehrgréssenregelungen. Doctoral dissertation,
University of Paderborn. appeared in series VDI
Fortschrittsberichte, series 8, vol. 80, VDI Verlag.
Disseldorf.

Loges, W. (1983). Schneller digitaler Regler mit Sig-
nalprozessor. Rektronik, 19, 51.

Loges, W. (1985). Realisierung schneller digitaler Regler
hoher Ordnung mit Signalprozessoren. Doctoral
dissertation, University of Paderborn, appeared in
series VDI Fortschrittsberichte, series 8, vol. 88, VDI
Verlag. Dusseldorf.

Luckel, J. and R. Kasper (1984). Mehrgrassenregelung,
Entwurf und Realisierung moderner
Mehrgrd lung am Beispiel eines hydrau-
lischen Fahneugpmlstands Maschinenbau, 3, 13 and
4,27

Marrin, K. E. (1885). VLSI and software move DSP tech-
niques into mainstream Computer Design, Sept. 15,
69.

Mehrgardt, S (1984). 32-Bit-Prozessor erzeugt analoge
Signale. Elektronik, 7, 77.

Moritz, W., H. Henrichfreise and H. Siemensmeyer
(1985). A contribution to Lhe control of elastic robots.
Proc. IFAC Symp. Robot Control, Barcelona.

Moritz, W., and H. Henrichfreise (1986). Regelung eines
elastischen Knickarm-Roboters. Proc. Workshop
"Steuerung und Regelung von R:bnnm" o] VDI/VDE-
Gesellschaft Mess- und Regelung hnik, Lang
Germany.

Phillips. C. L. and H. T. Nagle (1984). Digital Control
Systems Analysis and Design. Prentice-Hall,
Englewood-Cliffs.

Slivinski, Ch. and J. Borninski (1985). Control System
Compensation and Implementation with the
TMS32010. Texas struments Application Report.

PART II
Design of Digital Controllers

R
Designing Control Systemsiiiiiiiiii it iiiniriiiiiiiiiitiiiiiianeaaan 35
Matrix Oriented Computation UsingMatlabciiiiiiiiiiiiiiinienenans 83
(Jeffrey C. Kantor)
Modeling and Analysis of a 2-Degree-of-Freedom Robot Arm veen. 93

(Integrated Systems Inc.)

Simnon — A Simulation Language for Nonlinear Systems 103
(Tomas Schoénthal)

Designing Control Systems

The design of a control system involves two major steps: (1) the process or plant must be put into a
mathematical form so that its behavior can be analyzed and evaluated (i.e., a plant model must be derived),
and (2) an appropriate controller must be designed so that the plant gives the desired response under the
influence of the control system. Designing a controller requires selecting an appropriate structure and
specifying performance requirements from the control systems. This introduction gives a brief overview
of discrete systems, tells how to model a plant and convert it into a discrete mathematical form, and
describes how to design different types of controllers. Most of the following information can be found in
those textbooks appearing within the Reference section. The articles that follow this introductory material
describe several of the commercially-available CAD packages that may be used for designing and simulat-
ing either the controller or the entire control system.

Discrete Systems

A system must be represented in its discrete form in order to be implemented on a DSP or a microprocessor.
Discrete representation involves two elements. First, the signal is represented by its samples at discrete time
intervals. These time intervals depend upon the sampling rate of the system. Second, the magnitude of the
signal and its samples is also represented by discrete magnitude. The resolution of this magnitude depends
upon the word length of the processing element. Here, only the sampling rate affects our treatment of this
subject. However, in Part III’s introduction, where we are concerned about the actual implementation, the
effects of magnitude representation on a processor will greatly influence our treatment of that subject.

z-Transforms: Inthe continuous time domain, the system is represented with differential equations, and
the analysis is carried out with Laplace transforms. Similarly, in the discrete time domain, a system is rep-
resented with difference equations, and the analysis is carried out with z-transforms. The z-transform of
a signal is a representation of that signal as a sequence of samples as shown in Figure 1. Mathematically,
it is given as a power series in z-1 with coefficients equal to the value of that signal or

X(z) = Z(x(1)) = Xo + X127V + X2 2 + . . . + Xpz7")

Z represents the z-transform; z-1 represents the delay of n samples, where n represents the position (0,
1,2, - ,e0) of time; xg, X1, Xy, * * + , and X, represent the magnitude of signal x(t) at that time.

Figure 1. z-Transform

] /f ' [
VAR ~ T
S T —— T
T
“—> e :
Xo X1 Xe X X, Time

35

36

The z-transform represents the sampling process in adigital control systems. It converts a continuous signal
to a discrete signal. The continuous signal can be recovered from the discrete signal as shown in Figure 2
by using aZOH (zero order hold). The fact that both signals are equivalent allows us to do all our processing

in the discrete time domain. Once the processing is complete, the signal can be converted back to continuous
form.

Figure 2. A Continuous Signal Recovered from the Discrete Signal

ﬂk

~

Amplitude

One important consideration must be taken into account before the sampling is allowed to take place.
According to Shannon’s theorem, a signal must be sampled at a rate that is twice the highest frequency
component of the signal. If this rule is not observed, the original signal cannot be recovered. Figure 3 shows
asine wave signal x(t) that is superimposed with a higher frequency sine wave. The higher frequency signal
is giving the exact same samples as the signal x(t) and causing distortion. This effect is known as aliasing.
To prevent this, low-pass filters known as antialiasing filters are used to filter out high-frequency compo-
nents. Only the frequency of interest passes through. However, antialiasing filters should be used carefully
in control systems because they introduce phase delay and affect the phase margins of the system.

Figure 3. A Sine Wave Signal

A ff’\\“"“\ 'A‘\ /A\ I'/\\
N T -\ I\ I\
J VT AR I\
H R A R O T Y R v
g e L o I
£ d I f \ a7y (e
\ v\ N N W X
\ \ | W AR W AR
\ v\ U A N

A general representation of any system in the z-domain can, by use of a transfer function, be given by the
following equation where H(z) denotes the response of the system.

~1 -2 -
H(z)=|:Y(Z):|=|:bo + bz +byz +...+bnzj| .

X(2) 1 +az' +az? + ... +az"

X(z) represents the z-transform of the input signal, Y(z) represents the z-transform of the output signal.
a,--- azand by - - - by, are coefficients that determine the response of the system. If both the denominator
and numerator are factorized, the denominator represents the poles of the system and the numerator rep-
resents the zeros of the system. The output of the system is obtained by restating equation (2) as

Y@ =-(aiz1+az2+ ...+ az®[Y(@)] + (by+bz-1+bz2 + . . . + bz)[X(2)]

Since z1 represents the delay of one sample time, the above equation can be restated in the time domain
as a difference equation given by:

ym=—(a)lyin- D] - (@)ym-2)]+ . . . +blxm)] +by[x(n -]+ . . . 3)
where y(n — 1), y(n — 2), x(n), and x(n — 1) represent samples of y(t) and x(t) at time intervals of n,n—1,
n-2,etc.

Equation (3) is the standard form of representing systems in the discrete time domain, just as differential
equations are the standard form of representing systems in the continuous time domain. Equation (3) also
represents the standard form of implementation on a DSP.

In classical control, the analysis is frequently carried out with Laplace transforms. It is possible to convert
directly from the s-domain to the z-domain. The relationship between s-domain and z-domain is given by
the following equation:

z=¢esT
where T is the sampling period. However, in practice, several approximations are used to convert from one
plane to another since an exact transformation is not possible. Table 1 shows the z-transform of some of

the functions. Using these relationships, it is possible to carry out the analysis in the s-domain and transfer
the results to the z-domain, or vice versa.

Table 1. z-Transform

FUNCTION LAPLACE TRANSFORM z-TRANSFORM
1 z
v s @1
t 1 Tz
s? (z—-1)2
1 z
e s+a (z-e™T)

Discretization Methods for Analog Systems: Different techniques can be used to convert continu-
ous systems into discrete systems. However, a continuous system can only be approximated and can never
be exactly equivalent. The conversion from the s-domain to the z-domain usually causes some distortion
in the response and must be considered.

Step Invariant Method: This technique also known as ZOH (zero order hold) produces a discrete system
whose step response is the same as the original continuous system at the sampling instants. It assumes that

37

38

the system is preceded by a ZOH (D/A converter) and followed by a sampler (A/D converter) so that both
input and output of the resulting system are digital. Both the ZOH and sampler are included in the conver-
sion scheme. The conversion is given by the following equation:

Hz)=(1-z")Z [L“ HS—)] @)

where Z represents the z-transform, and L1 represents the inverse Laplace transform.

This transformation is usually what is required to convert a continuous plant to a discrete form; however,
it gives unsatisfactory response with controllers and should be avoided when transforming continuous con-
trollers. The ZOH introduces phase lag and distorts the frequency response of the controller. The Laplace
transform can be split up by using partial fractions and z-transform tables.

Ramp Invariant Method: 1In this method, the step input described above is replaced by a ramp input,
also called a first-order hold method. The ramp invariant conversion is given by the following equation:

1-z71)? H(s
H() = I:'(_ET)_:I z [L“ —;(—)])
where T is the sampling period.

The ramp invariant usually gives good results and may be used when converting continuous controllers.

Matched Pole-Zero: In this technique, the poles of the s-domain are directly mapped into the z-domain-
accordingto the relationship z =€Ts, where T is the sampling period. To equal the number of poles and zeros,
additional zeros are added at z=—1. The gain of the two systems is matched at a critical frequency by choos-
ing an arbitrary gain constant. This method does not take into consideration any aliasing effects.

Backward Difference: This technique replaces the derivative of a function by the difference between
present and previous samples and is given by

dy _ _ym-ym-1)

dt T
where T is the sampling period.
The transformation can also be done by using the following mapping:

1-z7!

T

This transformation maps the left half of the s-plane to a circle inside the unit circle of the z-plane. Hence,
stable analog controllers also result in stable digital equivalents. In fact, some unstable analog systems give
stable digital equivalents. The jo axis in the s-plane does not map to the unit circle in the z-plane, thus de-

grading the frequency response. Using a higher sampling frequency gives a better approximation. Figure 4
shows the mapping from the s-plane to the z-plane for a backward difference approximation.

S =

Figure 4. Mapping from s-Plane to z-Plane for Backward Difference Transformation
Backward Rectangle ' s-Plane z-Plane

Amplitude

v

DN
MEEIN

ime

Bilinear Transformation: This technique, also called the Tustin transformation or the trapezoidal ap-
proximation, uses the relationship

B '

to transform an s-domain function into the z-domain. The left half of the s-plane band limited by the
sampling frequency, f;, is mapped into the unit circle in the z-plane. Thus, it is important to select as a high
a sampling frequency as possible so that all poles are included. Although the frequency response of the
continuous systems is replicated in the z-domain, it warps the frequency response at the critical frequencies
of the system. To overcome the problem for systems like notch filters, the critical frequencies of the original
s-domain are prewarped so that they end up in the z-domain system where they belong. The critical
frequency , is prewarped to another frequency by the transformation,

(5]

where T is the sampling period.

This is the most commonly used method and always generates stable poles in the z-domain if the original
s-plane poles are stable. Figure 5 shows the mapping from the s-plane to the z-domain for the bilinear trans-
formation.

Figure 5. Bilinear Mapping from s-Plane to z-Plane for Bilinear Transformation

Trapezoidal Approximation s-Plane z-Plane
(_(
<
% e L /
3 /_/_, Co
= i N : i :
% P : [//1
< L |
e

Other Methods: These are some other methods for transformation:
® Forward difference rectangular
® Matched pole-zero mapping
® Impulse invariant

They are less commonly used than the ones given previously and are not discussed here. However, different
transformations result in different behavior and may be suitable for some structures.

Behavior of Poles in z-Domain: Conversiontechniques change an existing analog design into adigital
design. To ensure successful implementation of the control system design, some knowledge of the behavior
of the poles in the z-domain is essential. As it is obvious from the mapping schemes above, the left half of
the s-plane maps into the unit circle on the z-plane. This is the region of stability in the z-plane. Any poles
(real or imaginary) located outside the unit circle are unstable and have an unbounded response. Poles
located inside the unit circle give a stable response. Poles that lie on the unit circle provide oscillatory
behavior. This corresponds to the jo axis on the s-plane. As poles move toward the origin, their response
decays at a faster rate. Zeroes may be located anywhere in the z-plane; however, as they move from the
origin towards z = 1, they increase the overshoot of the system. If zeroes are located outside the unit circle,
such a system is called a nonminimum phase system. Figure 6 shows the different pole locations and their

39

corresponding responses both inside and outside of the unit circle. One thing should be remembered; that
unlike the s-plane, the mapping in z-plane is not unique. It is dependent upon the sampling frequency used
for the discretization technique. A different sampling frequency gives a different mapping in the z-plane.

Figure 6. Response with Different Pole Locations in the z-Domain

Plant Modelling

The first part of designing any control system is to convert the plant into its mathematical form or to identify
its parameters. The following example describes the derivation of a mathematical model for a plant.

A DC servo motor is used to represent the plant, and a model is developed for the motor. The motor is an
analog device, and the given electrical and mechanical characteristics describe its behavior in the continu-
ous time form. This model must be transferred into a discrete form or into the z-domain for use with a digital
controller. The zero order hold method (ZOH) is used to transform the model into a discrete form.

In general, the electrical characteristics of a DC motor are given by

di
— {=
L t+R|--V emf ‘ (@)

where

L =inductance of motor
R =resistance

V =applied voltage

i =current
di .
T = instantaneous current

emf = back emf =K. g
where K, = emf constant
@ = velocity

The mechanical characteristics are given by
J.0+BO+KO =T -1, 0

where

J. =motor interia

6 = displacement

6 = %0;_ = velocity

a6 .
= Y = acceleration
K = stiffness constant
B = damping constant
J. =load inertia
TL =1load torque = Kii
K, = torque constant
i =current

Figure 7 shows an equivalent electrical and mechanical model of the DC servo motor.

Figure 7. A Representation of a DC Servo Motor Model

(€))

41

42

The motor is a Pittman model 9412G316. It has the following parameters:

R =6.40hm »

Jim =1.54x10 6 kg-m2

K; =0.0207 N-m/A

K. =0.0206 volt/(rad/s) B

The electrical time constant is given by X and the mechanical time constant is given by T In practice,
L B)

R J

Electrical steady-state conditions are reached quickly. Assuming steady-state current is reached, equation
(7) is reduced to

Ri=V-emf=V-K#

Combining (8) and the above equation results in

Un+108 +BO +K6 =K, 1"—RK-£

Assuming both J,, +Jp =J = system inertia and K = 0 = stiffness constant, the system equation becomes

1 K K.\, 1(K

- D elg -)y
6 + 7 (B + R) T (R))
The Laplace transform of (9) is

(s? +as)[0(s)] = b[U(s)]

where

If

U(s) = V(s)
then

0&2 b

V() sG+a) (10)

Equation (10) is the final form of the transfer function of the motor in continuous form. This must be con-
verted into a discrete form. The zero order hold (ZOH) transformation is used.

Zero order hold states that

6@ =(1-2") z[E-'-s‘?@] an

Then,
G(s) _ b b

s s[s(s+a)] s¥s+a)

Expanding as partial fractions, the above can be expressed as

Ges) _ Al A2 A3

s s s? s+a

Solving for A1, A2, and A3 gives
(2, &, &
G(s) a? a a?

s s s? s+a

When multiplying by (1 — z -1) and using tables to derive the z-transform,

= {%[(e“— 1) + aT]z“] + {%[(1 -e) - (aTe™")]z'z}

11 +e™ Mz + ez

where T = sampling period.

Substituting values for a, b, and T of

a=1.116
b = 53.906
T =0.001

the transfer function of the motor becomes

0(2) 02694z + 0269322
G2 =22 _ 104 K
@ =36 1-1.999z" + 0.999 :

where K is a gain constant.

By introducing a numerator gain factor, the above equation can be rewritten

-1 -2
G.@) = 0(z) - 0.2694z -0_-1 0.2693z K.
V(s) 1-1.999z"" + 0.999

where K, is a numerator gain factor.

Digital Controller Design

(12)

13)

The next step in designing a digital control system is to design the controller. Before designing the control-
ler, an appropriate structure for the controller must be selected. This will be influenced by the performance
requirements of the system and the processing capability of the processor. The controller may be designed
in the continuous domain or s-domain and then converted into discrete form by using one of the previously
described discretization methods. Alternatively, the entire design may be carried out in the discrete domain
or z-domain. It is assumed here that the design is carried out in the discrete domain. Here, an overview of
different types of control algorithms is given and designing/implementing considerations for selected con-

trollers are discussed.

Control Algorithms: The first step in designing the controller is to select an appropriate algorithm or
controller structure. The processing burden imposed upon the controller is directly dependent upon the
complexity and type of controller structure.

Compensation Techniques: Compensation techniques are one of the most commonly used control tech-
niques. In this technique, the controller adds poles and zeros to get a desired system response. If the low-
frequency response is modified, the controlleris known as alag compensator; if the high-frequency response
is modified, it is known as a lead compensator. For a continuous control system, the controller is designed
in the s-domain by implementing some of the well-known methods such as root locus, Bode plots, and
Nyquist plots. The analog or s-domain design is then transferred into a discrete form or z-domain via trans-
formation technique. Alternatively, the compensator can be designed directly in the z-domain by using
z-domain frequency response methods or the z-domain root locus method. Compensation techniques allow
for somewhat accurate modification to system behavior.

PID: The P (proportional), I (integral), and D (derivative) is a very commonly used analog control tech-
nique. In a PID controller, terms proportional to the error term, its integral, and its derivative are summed
to achieve the controller output. A PID controller may be designed in the s-domain and then transferred into
the z-domain by using one of the transformation methods. Alternatively, the PID algorithm is converted
into a discrete form, and the design is carried out entirely in the z-domain. PID is probably the most com-
monly used algorithm. PID controllers are very robust, although the design of coefficients is somewhat
arbitrary.

Deadbeat: A deadbeat algorithm is used when a quick settling time is required. Deadbeat design is carried
out entirely in the z-domain. A deadbeat controller replaces the poles of the system with poles at the origin
of z-domain.

State Space Model: 1In a state space model, a complete representation of the system is made in matrix
form. This is accomplished by identifying and developing the relationship between the different states or
variables of the plant. An appropriate feedback gain can be chosen to place the poles of the system at any
desired location in the z-domain. State controllers are used to control multiple variables or states. These
controllers are not implemented directly, because it may not be possible to measure allstates. They are usu-
ally used in conjunction with observers. State space controllers allow precise control of system behavior.

Observer Model: Often incontrol systems, some of the states of the system are not available for measure-
ment. An observer model or an estimator can be used to estimate the unknown states from the measurement
of some of the known states. The estimated states along with an appropriate feedback gain can be used to
complete the control loop and place the poles at any desired location. Observers are typically used in con-
junction with state controllers when access to all state variables is not available.

Optimal Control: Optimal control synthesis is used when a specific performance or cost criterion (time
and energy) must be minimized. Using the given criterion or function, an appropriate control law is derived,
which is then implemented with a compensator (LQR — Linear Quadratic Regulator) or controller.

Kalman Filter: An observer model is used in a system where an exact measurement of some states is
available. However, in stochastic systems, the presence of noise or uncertainty makes it impossible to make
an exact measurement. A Kalman filter is an observer model in a noisy or stochastic system.

Adaptive Control: Adaptive control is used in systems in which there is insufficient information about
the plant parameters, making it impossible to derive a plant model. It is also used in systems where plant
parameters or plant models change over time, making the controller unstable. An adaptive controller tracks
realtime changes in the plant by redesigning the controller to give optimum control system.

The next step in designing the controller is to specify the performance requirements of the system.

Performance Specifications: Performance requirements of the system dictate selection and design
goals of an appropriate controller structure. The specifications canbe given interms of the step (or transient)
response, the frequency response, or another criteria.

Step Response: For the step or transient response as shown in Figure 8, the controller requirements are
given in terms of the following specifications:

® Steady-state accuracy

® Risetime

® Overshoot

® Settling time
The steady-state error is defined as the deviation at steady-state of the actual system response from the de-
sired system response. For a discrete system (i.e., an integrator), the steady-state error becomes 0 if GH(z)
has at least one pole at z = 1, where G(2) is the plant transfer function, and H(z) is the controller transfer
function. For a ramp input, the steady-state error becomes 0 if GH(z) has double pole at z = 1. For a unit
acceleration input, the steady-state error becomes 0 if GH(z) has a triple pole at z = 1.

Figure 8. Performance Specification for the Step or Transient Response

Steady-State Error 1

\4

ts

The rise time, overshoot, and settling time can be specified in terms of the damping ratio ¢ and the natural

frequency ®p. To carry out the design in the digital domain, these performance requirements must be
mapped to pole locations in the z-plane.

~The rise time is specified as when the output reaches 90% of its final value.
T

20,Y1-8

This can be simplified to yield

1.8
w, = —
t

t=

45

The settling time is specified as when the output settles and remains within the desired range of its final
output. This is specified as an absolute percentage of the final value usually 2%. It is given by:

46
tw,

This implies that

4.6
w, = —
C t

The overshoot is defined as the maximum deviation in percentage of the systems response from the desired
value and is given by:

&n
Mp = IOOexp —"‘/-————
1-8

A constant damping ratio, zeta, in the s-plane for 0 < { < 1, is mapped as a logarithmic spiral in the z-plane.
If the poles are specified as having a' damping ratio of not less than {;, then the poles must lie within the
region bounded by the logarithmic spiral corresponding to { = {;. For a desirable second-order system, the
damping rate must be between 0.4 and 0.8. Small values of §, such as < 0.4, yield excessive overshoot
and large values, such as { > 0.8, make the response sluggish.

A constant natural frequency y, in the s-plane maps as a straight line emanating from the origin. Figure 9
shows the loci of constant £ and line of constant @, in the unit circle in the z-plane.

Figure 9. Root Locus of Constants { and o,

Im| axis
——— ‘”
3 wn === £=0
] 5T By %‘_ | o
n oL
0T TN
0.2
4x 0.3
Gi A 1r
=04 5T
/ 0
om /4 06}
10T| NA 0.7
0.
! {
4 .
wn== - =z
Tl ¢=1d | 90T
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 08 = 1.0

NOTE: T = sampling period

46

Frequency Response: If the performance specifications are specified in terms of the frequency response,
they are given in terms of phase margin, gain margin, and cross-over frequency ®. as shown in Figure 10
— essentially specifying the bandwidth of the closed-loop system.

The cross-over frequency . is defined as the frequency where the phase angle, ZGH(;w), of an open-loop
system equals —180 °.

The gain margin is defined as the magnitude, |[GH(,®)|. (in decibels) that lies both below 0 db and at the
cross-over frequency.

The phase margin is defined as the phase, ZGH(i), (in degrees) that lies both above —180 © and at the zero
gain frequency.

To directly use frequency response methods, the z-plane is mapped into the w-plane by using the inverse
bilinear transformation given by

2(1—2)
wW=—
t\l+z

The w-plane mathematics is similar to the s-plane mathematics. The controller is transformed to the
w-plane, and most of the classical techniques like Bode analysis can be carried out in the w-plane. Once
the compensator is designed in the w-plane, it can be transformed back into the z-plane.

Figure 10. Frequency Response Curves

Magnitude (db)
20
\ /— Zero Gain Frequency
Gain Margin
0 [o
|
|
|
| |
| |
| |
| |
Phase (deg) : :
| | o
| rd
[[®
| |
|
|

L phase Margin

47

48

Additional Criteria for Performance Specification: Some of the other performance requirements can
be specified as:

e Disturbance rejection
e Control effort
® Sensitivity to parameter changes

One of the primary goals of a control system is to reject disturbances while maintaining stability under a
wide variety of operating conditions. In fact, without disturbances, there would be no need for closed-
loop control systems. The feedback gains in a control loop act to minimize disturbances. For example, if
a disturbance is constant, then integral action will cause the steady-state error to be zero. However, if the
disturbance is of a different nature, then additional steps may have to be taken. It is important to take into
account the source of the disturbance and make the preceding gain large. If the disturbance is outside the
control loop and affects the measurement or reference input, then a feedforward path can minimize the
disturbance. If the disturbance is inside the loop and affects the plant itself. then the loop gain must be
made large.

Sensitivity to parameter changes can be an important consideration, especially if the plant has slow-varying
parameters due to drift. Minimizing these effects is similar to handling disturbances. However, some
controller structures like deadbeat controllers that perform pole-zero cancellations are more sensitive to
parameter variations and should be avoided. If parameter variation is an extremely critical consideration,
then adaptive control should be used.

Sometimes it is necessary to minimize either the control effort or other parameter(s) in the system. Optimal
control techniques can be used to determine a control law and do pole placement. They are discussed in sub-
section Optimal Control and Estimation. In general, a system with either minimum response or a high
bandwidth requires higher control efforts.

PID Controller: This topic describes the design and implementation of a PID controller. Figure 11
shows a block diagram of a control system using the PID controller. PID is a commonly used technique in
classical control. In designing controllers, it is often found that just minimizing a term proportional to the
error is not sufficient. The inclusion of the integral of the error term will reduce the steady-state error to

Figure 11. Block Diagram of a Control System Using PID Controller

Controller

Kpe(t)

t
Une e(t) Ki I edt L | DA | Plant » Uy

de
T

A/D

zero because it represents the accumulated error. To further improve stability and plant dynamics, a differ-
ential of the error term is introduced. This term represents the error rate. A PID controller that includes all
three terms can give very good results. It can be used in its discrete form with digital control systems. If
both low-frequency and high-frequency responses are modified, this controller can be viewed as a special
lead-lag compensator.

i

Controller Design: The trapezoidal approximation is used for conversion of PID into discrete form.
Usually, the trapezoidal approximation is used for the integral term, and the backward difference is used
for the differential term. However, when the design is carried out in the z-domain, the approximation tech-
niques are not important. The design is carried out as a compensator with a pole at z=1 to ensure integral
behavior. Hence, the following design is done directly in the z-domain using pole placement techniques.

The analog PID algorithm is given by:
u(t) = Ke(t) + K, j edt+ 1@% \ a4)

where

K,, K;, and K, = PID constants
u(t) = output of controller

e(t) = error signal

In a trapezoidal approximation, also called Tustin transformation, the area of the integral Jedt is given by
the summation of small trapezoids, see Figure 12.

The integral Jedt can also be solved by taking the Laplace transform of equation (14) and substituting for
the s. The Laplace transform of (14) gives

UGs) = (K,,+ sK, +—I:—) [E(s)]

Figure 12. Trapezoidal Approximation

Amplitude

v

L—T—Pi . ‘ Time

49

50

Using the Tustin approximation or substituting for s where

= (3)()

After substitution and solving where z-1 represents a delay of one sample time,

u(n) = u(n-2) +K,[e(m) —e(n-2)] + (—2%’-) [em)—2e(m-1) +e(n-2)] + (Eél) [em) + 2e(n - 1) +e(n—-2)]
Combining elements, the above equation can be restated as

u(n) = u(n-2) + K [e(n)] + KyJe(n -)] + Kyfe(n - 2)] (15)

where

K3=_‘Kp+

u(n) = nth sample of output of controller

-u(n-2) = (n-2)"d sample of output.

This is the final form of the PID controller. At this point, the controller coefficients must be determined.
The PID controller can be designed by determining K, K;, and Ky, solving K, K;, and K3, and substituting
into equation (15). Alternatively, the design can be carried out in the z-domain: and, constants K, K;, and
K; can be directly determined.

The gain constants K, K», and K; are designed by selecting the poles for the system transfer function (i.e.,
controller + plant). The dominant poles are selected by choosing a desired characteristic equation. The rest
of the poles can be selected by placing them near the origin. These polar locations are chosen to ensure sys-
tem stability and a desired system response. Note that pole locations can also be chosen by using both the
step response performance criteria and the root locus from the z-plane’s unit circle in Figure 9. However,
some fine-tuning may be necessary to achieve an optimum response from the system. As the poles move
toward the unit circle, the system response speed decreases while the overshoot increases, and the system
may become unstable if the poles are selected just inside or outside of the unit circle's boundary. For exam-
ple, Figure 13, Figure 14, and Figure 15 show step-response curves of a PID controller being influenced
by the system’s poles. The transfer function for the controller can be stated as

Kl + Kzz_‘ + I(_';Z—2

Gu(z) =
@) 3 (16)
The transfer function of the plant is given by
0.2694z + 0.2693
G (z) =
2= 19992 + 0999
The overall system transfer function is expressed as
G,(2)]|G.(z
6, = LG@I[G@] an

1 + [6,»][G.@)]

Position In Radians

Figure 13. Position Step Response of a PID Controller

14 Position Step Response
N s SCCEEE R R P
[}
5 1+ - L N L P T A R —
ﬁ 1 1 1 [} 1])))
Lo - - R S R e S B R T 7
£ , . . . , Pole Locations
Sosf- /- - -t - -t oot e 7 2090 -
2 . ' ' ' ' z; = 0.91
Q04 -f - -+ - - s - -4 oo w o o4 s -4 - 752005 -
' ' ' ' ' ' ' z4 =095
0.2 — D T S S T Kp= 104 -7
o L] 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Time in #Samples
Figure 14. Position Step Response of a PID Controller
) Position Step Response
25 T T T T T T T T
' i ' ' ' ' Pole Locations
- L T N B T SR Zy = 0.20 -
2 ') ' ' ' ' z; =024
.) z3 = 030
1- — I- - = l- - - l- - - I- - - I- - - 1 - = - z4 = 0'22 =T
5 1 . 1 1] 1 1 Km = 104
1H- ; A A A A A ; .
1 L} L} 1 1 1 1] 1
0-5 - I- - - l- - - l- - - I- - - I- - - L} - - - - -I - - -I - - T
0 1 1 1 1 1 1 1 |
0 10 20 30 40 50 80 90 100
Time in #Samples
Figure 15. Position Step Response of a PID Controller
Position Step Response
1.2 T T T T T T T T
L} 1 L}] L} 1
1 ST T [} [l v ' "
[]
5 1 1 L} L} 1 1
T 0.8 ST T T T TVTOT Ty T T T T T
L]
m . L} ' L} L L
£ 06 Sttt ° T -, - PoleLocations - —
§ 2y = 0.96
%04 SRR - - 2, =0.95 -
S ' ‘ ' 'z =020
0.2 PR D o 0 24=0-15 P
. . . v Km = 104
0 1 1 1 1 1 1
C 40 50 60 70 80 90 100
Time In #Samples

51

52

The denominator of the system transfer function provides us the poles of the overall system. The stability
and robustness of the system depend upon the location of these poles in the z-domain. Assuming pole loca-
tions of 0.96, 0.95, 0.20, and 0.15, a desired characteristic equation is obtained. To solve for values of K|,
K,, and K;, the coefficients of powers of z for the denominator of the system transfer function are compared
with the desired polynomial. Appendix 1 shows the design carried out by using PC-Matlab. The zero order
hold represents the function of the D/A converter; the sampler represents the function of the A/D converter.
The closed-loop system pole locations are input to the program, and the coefficients K, K», and Ky are cal-
culated to ensure desired pole locations. One of the pole locations is chosen at z=1 to ensure integral action.
Solving for K,, K, and K; gives

K, = 14795

K, = -2.845

K; = 13636

Our final algorithm comes out to:

u(n) = u(n-2) + 1.4795[e(n)] —2.8405[e(n— D] + 1.3636[e(n-2)] (18)

Implementation Considerations: The PID design above has used the traditional or textbook definition.

'In practice, a number of refinements are made to the standard form to give it better behavior in some cases.

Although designing directly in the z-domain avoids some of the problems, several concerns are discussed
here.

One of the major problems faced in implementation of PID controllers is integral windup. A large change
in the error signal can cause the integral to build up a large gain and make the actuator saturate. This essen-
tially means that the control loop is running open. Even after the error goes to zero, the controller continues
to integrate because of the integral action; consequently, the integral term could become very large. The
error signal must change sign long before the controller normalizes; otherwise, the integral windup could
cause large transients.

Several options can minimize the effect of integral windup. One possibility is to build an extra feedback
loop around the actuator and control the error between the controller output and the actuator output. Another
possibility is to stop the integral action when the output saturates. This can be done very easily in the proces-
sor by detecting output saturation (using saturation mode in TMS320) and using another set of coefficients
that do not include integral action. Also, it is good practice to limit the contribution of the integral term be-
tween 10 % and 20 % of the control effort.

Another concern is the behavior of the derivative term. A large number of controllers are implemented as
PI controllers to avoid derivative action. Differentiation enhances noise, and derivative term can contribute
to high-frequency measurement noise. It is necessary to limit the derivative gain at high frequency by plac-
ing a pole in the derivative term given by
1

SK,

1+

where N is in the range of 3 — 10.

The derivative term also will amplify the noise for any sudden changes in the set point. This is known as
the derivative kick. For this reason, the set point is sometimes fed only to the integral term.

One of the disadvantages of carrying out the design in the discrete domain is that the PID gains are not ex-
plicit, and no direct control over integral, derivative, and proportional gains is available. However, pole

placement design techniques give more control over the frequency response and treat the controller as a
standard compensator. Integral action is ensured by placing a pole at z=1. Actually. the PID controller is
aspecial case of 1 phase lag-lead compensator. The PD control action affects the high-frequency region by
increasing the phase-lead angle. It improves system stability and thus increases the speed of response. The
PI control action affects the low-frequency portion by increasing the low-frequency gain and reducing the
steady-state error.

Deadbeat Controller: One of the desired characteristics in a control system design is a quick settling
time. In an analog controller, the system output theoretically uses an infinite time to settle exactly to the
reference input signal. A deadbeat controller is used when a quick or finite settling time is required. A dead-
beat controller will reach a steady-state in n+1 samples where n is the order of the controller. Essentially,
adeadbeat controller cancels all the poles of the system and replaces them with poles at the origin. Another
advantage of deadbeat controllers is that they require few calculations. Therefore, they can be used in sys-
tems where synthesis must be repeated frequently (e.g., adaptive control systems).

Controller Design: The transfer function of a deadbeat controller is given by

_ PPz +pzt .+ pZ”
QG+ Q' + @z + ...+ gz

(19)
The order n of the controller transfer function is the same as the order of the plant transfer function, or n=2.
The deadbeat controller will reach final state in n+1 or three sample time intervals.

To design the deadbeat controller, its coefficients py - - - p,, and gy * - - g, must be found from the parameters
of the motor.)

The general form of a plant (i.e., motor) is given by

by + bz +bz? + ...+ bz™"
g+ az! +azi+. .. +az"

Gy(2) =

If R(z) is the reference input, the coefficients p, and q, are
3

r
po—zbi_bo+b,+bz+...

P1=2aipo

P2 = 2:po

Pn = @ppo
and

qo =r—bypo
q1 =-bipo
q>=-bspy
Gn =-bnPo

53

54

The transfer function of the DC servo motor is
0.2694z7! + 0.2693z2
1 - 1.999z" + 0.999z72

Since the plant transfer function is a second-order system, the deadbeat controller is also a second-order
system (n = 2).

Gy(2) =

From the plant transfer function,
ag =1, a, = -1.999, a; = 0.999
be = 0, b= 0.2694, b, = 0.2693

The numerator and denominator of Ggy,(z) is divided by r. Thus, r disappears from the calculations of coeffi-
cients.

Solving for the coefficients yields

Po =0.1566

= by + b; + b,
p1 =2a;py=-0.3129
p2=a2p0=0.1564

bopo =1

Q=1-
qi =-bpp=-04218
q> =-'b2p() =-0.4216

The controller becomes
0.1566 — 0.3129z7' + 0.1564z2
Ca® =5 m18, — 0421627 20)
or, in time domain, it can be represented as
u(n) = 0.1566[u(n-1)] + 0.4216[u(n-2)] + 0.1566[e(n)] — 0.3129[e(n—1)] + 0.1564[e(n-2)] 21)

Appendix 2 shows a PC-Matlab program that designs and simulates a deadbeat controller. Figure 16,
Figure 17, and Figure 18 show the response of a deadbeat controller with different values of sampling rates
and DC gain.

Implementation Considerations: Deadbeatcontrollers compensate for the poles of the system and place
all the poles of the closed-loop system at the origin or z=0; therefore, they should not be applied to unstable
systems with poles outside the unit circle or with poles in the vicinity of the unit circle in the z-plane. Simi-
larly, zeroes outside the unit circle should not be cancelled with unstable poles. Thus, deadbeat controllers
should be used only with stable plants or processes to prevent instability. Since deadbeat controllers do
pole-zero cancellation, they are also sensitive to parameter variations. Deadbeat controllers can also be
viewed as a special case of pole placement where all the poles are placed at the origin.

The only design parameter in deadbeat controllers is the sampling period; therefore, it is important to care-
fully choose the sampling period when using deadbeat control. Selection of the sampling period influences
the magnitude of the control signal; the magnitude of the control signal increases with a decreasing sam-
pling period. This can lead to a large amount of gain and then to actuator saturation. This is one of the main
reasons why deadbeat controllers are not commonly used.

Figure 16. Position Step Response of a Deadbeat Controller

1 Position Step Response
0_9 = bl - - el B - - hl - - - r - - b B - - = = - - -
go_s— T R E S S e B s
§0'7_ 1= = = =} = - = 9 = = = = = & =j}= = = =} = - = -
:0-5" 1= = = - - = = 4 = = == - = == = = == ==
,Eo_s— e e e el = = = 4 e e e e = e e je = e ey = o= e
50‘4— - l= = = el = = e 4 = = e e = e e]e = e e = = -—J
no03 - L L I T e B L
30.2_ e = = 21l = = = 4 =« = =+ = = =1- T = 5msec
0.1 e e e T Km = 104 -
o 1 1 1 1 1 1
0 5 10 15 20 25 30 35
Time Jn #Samples

Figure 17. Position Step Response of a Deadbeat Controller
Position Step Response

035 T T . T T T
.§ 0.3 ~ bl B - l - Rl - Rl B - T - == - hal B = - - - = = -
'80.25 r—- I L L T I I N L I R R R R S
Eoz— Sl e A L B S St I Tt I A B
=o.15 == -1 = = 4 = = 1= = =1 = = % = =)= = = = = F = =)= = —
(-]
201] - - 4 - - s s e e e e e - T = 3msec —
§0-05 o I T R L T T T T [P Km = 104 —
0o 90 20 30 40 50 80 70 80 90 100
) Time In #Samples

Position Step Response of a Deadbeat Controller
Position Step Response

1 T T L
0.9 S R D R T e —1
20-8 - - 1= - - 4 - = = F = - =;§= = = =} = - = —
%0_7 R . L S T A B |
&o.e - = e = = e 4 @ = = = = = = = =)= = =
io.s F L T RN Y SRR
50.4 T T LRI
'§°.3 B L B T R T T BT
202 -t st s s s m s s =2 T = 5msec
0.1 - - ele - -4 - - ok - - —ie Ky = 105 -]
0 1 Il 1 1 1
0 10 15 20 25 30 35
Time In #Samples

Deadbeat controllers are designed to optimize rise and settling time. They trade overshoot for rise time, so
they may exhibit large overshoot. Overshoot can be reduced by increasing the settling time. Besides increas-
ing the sampling period, there are two ways to reduce the overshoot. The first method is to design an
extended order deadbeat controller that can specify either u(0) or the initial control action. Since u(0) has
the largest magnitude, this controls the overshoot. An alternate method is to divide the r(t) or the desired
final state into two or three sublevels and to reach final steady-state in [2(n+1)] or [3(n+1)] sample times

55

instead of (n+1) sample times. This essentially has the same effect as increasing the sample time. However,
the final overshoot can be more precisely controlled depending upon how r(t) is subdivided.

State Space Model: State space formulation is one of the fundamental concepts of modern control
theory. Most modern control systems are designed using a state space model approach. A state space model
allows the representation of a complete system, whether single variable or multiple input/output. The state
controller is able to simultaneously control all of the specified states or variables of that system. This type
of controller lends itself naturally to solutions with computers and can be used to handle certain types of
nonlinear and time-varying systems.

Inastate space model, the system is described by a number of first order equations. An analog or continuous
data system is represented by a set of first-order differential equations, called state equations. For a digital
or discrete data system, the state equations are first-order difference equations. These are then combined
into vector-matrix equations. The use of vectors and matrices greatly simplifies the mathematical descrip-
tion of the system.

State Controller Design: Inastate controller, feedback gains are provided to all of the states or variables
(i.e., position, velocity, torque) that are included in the state space model. These feedback gains can be either
constant or time-varying. Pole placement techniques are used to place all the poles of the closed-loop sys-
tems at the selected locations and to calculate the feedback gains, thus obtaining the desired response. This
analysis assumes that all the states are being measured and are known. In practice, this is unrealistic. Hence,
the analysis is carried out in two phases. In the first phase, it is assumed that all the states are available and
that an appropriate controller will be designed; the second phase shows the use of estimators. The estimator
is used to reconstruct all the states of the system from measurement of some of the states. For the analysis
below, it does not matter whether the states are being measured with sensors or are being reconstructed with
estimators.

In general, the state space description of system is given by these equations:

x(n+1) = A[x(n)] + B [u(n)] (22)
y() = C[x(n)] + D[u(n)]

The actual controller is given by the following equation: -
u(m = - {K[xm]} (23)

where x(n+1), x(n), A, B, C, D, and K are matrices described as follows.

x(n), x(n+1) — state vectors describe the system states
A — state transition matrix describes plant behavior
B — input matrix describes affects of inputs
C — output matrix describes which states are measured

D — direct link matrix describes feedforward gains

K — feedback matrix describes feedback gains

u — control vector describes control inputs

y — output vector describes measurements of plant output

‘The state space model for a DC motor can be derived from the electrical and mechanical characteristics of
the motor. The mechanical characteristics are given by

J6 +DO +KO =T.-J0

The electrical characteristics are given by

Lﬂ+Ri=V—emf
dt

Simplifying and combining above two equations yields

6 = bu — af (24)

()5

~
[
(=]

Assuming that the states are described as

x; = 6 forposition

X, = % = @ forvelocity

X = 0

The state space model can be defined as

X = X (25
X2 = 6 = bu — ax, (26)

Combining (25) and (26) in a matrix form, the model for a continuous data system can now be defined as

Xy 0 1 Xq 0

(]
+

u(n)

X, 0 -a X2 b (27)
Equation (27) is a set of first-order differential equations and describes the system in a continuous data form.
A conversion to a set of difference equations is necessary for use in adiscrete data system. Thediscrete form
is given by equation (28). The derivation of this is fairly involved and not presented here. However, if the
values of a and b are substituted in equation above, the discrete equivalent can be found by using PC—
Matlab. The general form of the discrete state space model is given by:

xi(n+1) 1 %(1-::-“) Xi(m T—l(l —c™T)
b a
= + ; U(n)
Xo(n+1) 0 e-aT Xa(n) I —enT (28)
where

T = sampling interval
x1(n) = position at time interval n
X2(n) = velocity at time interval n+1

57

58

- Using the PC-Matlab function given below and substituting values fora, b, and T, we can obtain the discrete

equivalent.

Using c,d(aa,bb) = A,B,C,D and the given values for its parameters, we find the discrete equivalent of the
model as:

xi(+1) 1 0041 xi(0) 0,039
- + 879 u(n)
xa(n+1) 0 0219 x2(n) 0.78 (29)

The design problem is to find elements of feedback gain matrix K(k,, ks, - -) so that the closed-loop system
has the desired response.

After substituting (23) for u(n), equation (22) can be restated as

x(n+1) = A[x(n)] - B{K[x(n)]}

or

x(n+1) = (A -BK)[x(m)] (30)
Equation (30) describes the closed-loop state model. The behavior of the closed loop is determined by solv-
ing of the characteristic equation given by

jzZI-A+BKl=0

Solving this gives an equation with unknowns k, and k, (elements of K). k, and k, can be solved by compar-
ing coefficients with the polynomial with desired pole locations (in other words, if pole locations for the
actual controller are chosen as 0.90 and 0.95, the characteristic polynomial is given by z2— 1.85z + 0.855).
k; and k, will be found again by using PC-Matlab. The function PLACE, given pole locations r, will solve
for k, and k,. Using the following command,

K =PLACE(A,B,r)

we obtain the following values

k, =0.089

k. =0.001

The state controller is then implemented as

u(n) =—0.089[x,(n)] — 0.001[x(n)] (€3))
Implementation Considerations: See Implementation Considerations for the observer model on
page 63.

Observer Model: The concept of being observable is another fundamental idea of modern control
theory. An observer model is an estimate of all the states of a plant derived from measurements of some
ofthe outputs (for instance, states such as velocity or current can be derived from measurement of displace-
ment). Essentially, it reconstructs the state by simulating in realtime the behavior of the system and then

" compares the results to the measurements. In some cases, design of this type may be necessary if one of

the states that is needed for the controller is not measurable. In other cases, use of an observer can reduce
the number of sensors required or allow lower-cost sensors to be used. Figure 19 shows the block diagram
of a state controller and an estimator.

Figure 19. State Controller/Estimator

x(ref) - X u(n) - Xne) > x(n) o
Controller Y
x(n) A
Plant
y
B ~ z1 (o] 445
A
L
Estimator

Observer Model and Estimator Designs: The observer model is described by
X(n + 1) = A[X(m)] + B[u(n)] + L{y(n) - Ck(n)]

where
A
y(n)— C’f(n) = estimation error
X(n) = estimated states
C = [l 0] for position measurement
L = observer gain matrix

Equation (32) can be rearranged in the form of
X(n+ 1) = (A= LO)[X(m)] + Blu(m)] + L{y(n)]
Substituting for u(n), the equation can be restated as
x(n+ 1) = (A-BK -LC)[x(n)] + L[y(n)]

32)

(33)

According to the principle of separation, the controller dynamics can be separated from the observer
dynamics, and both can then be designed independently. The controller dynamics are determined by the

characteristic equation given by

|z - A - BKI

The estimator dynamics are given by this characteristic equation:
lzI-A-LCl

59

The estimator design is developed like the controller design in the previous paragraphs; that is, gains are
designed for the estimator matrix L (i.e., |;,). |, and |, are found by selecting the poles of the observer
to be slightly faster than the system to allow quicker convergence. If the poles are placed at z=0, the ob-
server is then referred to as a deadbeat observer.

Solving the equation |zI — A — LCl provides an equation in term of unknowns |, and |,. Selecting desired
pole locations gives a characteristic polynomial. The poles of the controller are given by

z4,2,=0.9,095 .

Using slightly faster poles for the observer and placing them at

z), 2, = 0.4, 0.5 gives the characteristic polynomial as

22-0.9z-0.20

I, and |, were found by using the PLACE function of PC—Matlab given pole location |, L = PLACE(A’,c’,1),
l,=0.79

,=295

Appendix 3 shows the complete listing of the PC-Matlab program. The observer model is

x1(n+1) 1.07 0.041 x1(n) 2.8 0.79
= + u(n) + y(n) G4

Xp(n+1) -0.09 0.219 X2(n) 68.5 2.95

Figure 20 (a and b), Figure 21 (a and b), Figure 22 (a and b), and Figure 23 (a and b), show the response
of a state controller and an estimator for various pole locations.

Transfer Function Form: The observer and the state controller can be implemented by using equation
(34), or the mathematics can be further simplified by combining some of the matrices and obtaining an
equivalent transfer function. This is possible only for a SISO (single-input/single-output).

The control law given by (31) is assumed, and the state controller designed earlier will be used. The control-
ler is given by

u(n) = -K[X(n)] (35)
Taking the z-transform of equation (33)

z[X(2)] = (A-BK-LO)[X(2)] + L[Y(Z)]

or

X(z) = (zI-A + BK + LC)'L[y(2)] (36)

Taking the z-transform of equation (35) and substituting (36), the controller/observer transfer function can
be stated as

U(z)

_— = - ~1 '
Yo K@z -A + BK + LC)'L 37

Figure 20. Step Response and Control Effort of the State Controller/Estimator

1
0.9
0.8
0.7

506

% 05

[-]

204
0.3
0.2
0.1

100
50

Control u
o

&
o

a) Step Response
1

160

T 1 1 1 L
I
%
- g- - -~ =t = = = Y = - ' e Actual Position —
- (R . . . v _ . _'. == Estimated Position
' ' ' ' 1 Pole Locations
ST T T T Zy = 0.95]
‘e - e e e e e e e ey 2, = 0.90 4
2 ! 1])])]
20 40 60 80 100 120 140 160
Time In #Samples
b) Control Effort
\ T T T T T T
1 1 1 1 1 1 1
20 40 60 80 100 120 140
Time In #Samples

Figure 21. Step Response and Control Effort of the State Controller/Estimator

0.9
0.8
0.7
0.6

c

S05

Soa
0.3
0.2
0.1

0

Control u
b -
& o Gt o o

a) Step Response
T T

T T T T T
L = o - - L -t - - - [N - - - . - - 1 - - . - 4
L R L T vy s o
T T T T T T T T T T L Adwal Bsitin
et ot g =t- - -+ - - -i1- == Estimated Position —
L ool 7 [S Pole Locations
VP ' ' ' ' z; = 0.95
~ x - T S Tt z; = 098 1
]] !] 1 !
0 20 40 60 80 100 120 140 160
Time In #Samples
b) Control Effort
T T T T T T T
1= = = r = = =;= - = T = = =;;- = -1
-l = = = F = = == = = 4 = = == = -
| 1 1 [1 1 1
0 20 60 80 100 120 140 160
Time In #Samples

61

62

Step Response and Control Effort of the State Controller/Estimator

Figure 22.
a) Step Response
1 2, 1 i LN L LM T Ll
0‘9- - - - rl e - - -t - - - o4 - - - ta - - -l - —
0.8— - - _l - _I I_ - - _I_ - - _l - - - I- - - ‘l‘ -
+ 1 L L 1 1] 1
0.7 |- ST T 3 P T
0.6 [~ =t - 5 [T e S =
L
ﬁo_s— - =1 - - I= = = =)= = = 4 = = = j= = = =] = -
S04y - -v- - -2 '“ - - -'- - - & — Actual Position -
034 - o _ N ‘. _ _ _‘_ _ _ ' =- Estimated Position _|
- ' ! ! ' ' Pole Locations
024~ - -, - - 3 T T Ty T T T zy = 075 I
0.1 - - -, - . - e = ey e = =g z; = 0.70 -
0 1 1 1] 1 1 I
0 20 40 80 100 120 140 160
Time In #Samples
b) Control Effort
L] Ll T T T 1
- - = = = el e = e 4 = = = e = = =] o= —
1 1 1 1 1 1
40 60 0 100 120 140 160
Time In #Samples

Figure 23. Step Response and Control Effort of the State Controller/Estimator
a) Step Response
T T

1.4 T

'
i
]
'
'

§ o - - - - - - - 4 - - - la - - -l - —
'ﬁ t 1 1 L} Ll 1
a) L e e e B -
, , , , , = Actual Position
04 - - -, - - - - - - -, - - - - - =~ Estimated Position
Pole Locations
o2H - - -'"- - - AT z1=23 =0.8%£/0.3
o 1 1 1 1 1 1 1]
0 20 40 60 80 100 120 140 160
Time In #Samples
b) Control Effort
4000 T T T T T T T
3 1 1) 1 1] 1
S2000% - - - - - Tt T T T T s s s s s s -
= 1) ' ') 1
§ o m\" -I 1 1 1]] 1)
_2000 1 1 1 1 1 1
0 20 40 100 120 140

80
Time In #Samples

160

Substituting values of A, B, L, C, and K and solving (37), we obtain
_ U@ _ 0008z + 1.38827

G(z) = =
@ Yz 1-0.95z" + 0.12z2 (38
where
1 0.041
A =
0 0219
2.81
B =
68.56
c=[1 o]
K = E0.089 0.00]:I
Transferring (38) in the time domain,
u(n) = 0.95[u(n-1)] - 0.12[u(n-2)] + 0.008[y(n-1)] + 1.388[y(n-2)] (39)

Equation (39) is the final form of the state controller plus observer model in a transfer function form. How-
ever, this form is not commonly used because it loses insight into the estimator dynamics.

State Controller and Estimator with Reference Input: The controller design in the previous topic was
done assuming no reference inputs or commands. Instead, the problem deals with driving all the states to
zero. This is known as a regulator application. However, there are cases when the state controller may be
required to follow a reference command r(n). Such a system is known as a servo system.

The general description of a state controller and estimator with reference input can be stated as

X(n + 1) = (A - BK = LC)[X(n)] + L[y(n)] + M[r(n)] (40)
and the controller can be described as

u(n) = - K[X(n)] + N[r(n)]

N is a scale factor and acts like a DC gain between input and output. M is given by BN.

If a reference signal is not available, but instead the error between the reference and output signal
e(n) = y(n) — r(n) is available, then the same structure given by equation (40) can be applied. However, in
this case, we let N=0 and M= —L; y(n) is replaced by y(n) — r(n). The state model can be described as

X(n+ 1) = (A-BK -LCO)[X(n)] + L[y(n) — r(n)] 41
u(n) = -K[x(n)]

Appendix 3 lists the PC-Matlab program that also simulates a state controller and an estimator with refer-
ence input.

Implementation Considerations: State controllers and estimators are generic structures, which can be
used to meet a variety of requirements. They allow full control of closed-loop dynamics and the use of CAD
tools. Pole placement can be done by using either optimal methods or classical methods. Realtime pole
placement techniques can be used for adaptive control. State controllers are good analytical tools for

63

designing controllers, but one must be sure that the design can be implemented. For example, if poles are
placed at z=0, the problem becomes the same as a deadbeat controller. Care must also be exercised when
selecting the states. Although it may be possible to represent the states mathematically, the states may not
be controllable or observable. State controllers may also result in a higher-order system, which implies a
more sophisticated processing requirement from the controller. The observer’s pole locations need to be
considered as well. Those pole locations that lie closer to the origin allow the observer to achieve a faster
response while, at the same time, increasing its susceptibility to noise. Those that lie farther from the origin
improve the observer’s noise characteristics while slowing its dynamics.

Optimal Centrol and Estimation: The previous topics described the design techniques that use pole
placement. It was assumed that pole locations were known. This can usually work well for single-input/
single-output or low-order systems; but, for high-order systems, pole placement becomes difficult. Espe-
cially where multi-input or multi-output systems are concerned, choosing pole locations can be difficult,
and an exact solution may not occur. This topic describes an alternative method to selecting feedback gains
that will provide an optimal solution. The first part explains how to choose optimal gains for a feedback
controller known as LQR (linear quadratic regulator); the second part describes how to design an optimal
observer known as Kalman filter; the final part considers implementation. Appendix 4 lists the PC—Matlab
program that simulates both the linear quadratic regulator and the Kalman filter.

Linear Quadratic Regulator: The feedback gain for a LQR controller is chosen by minimizing a cost
function or a performance index. This is typically a quadratic function given by

= [X"@)Qm)x@) + u"mRnu(n) “2)

where u(n) is control vector, x(n) is state vector, and matrices Q and R are weighting matrices that have
to be designed. Matrix Q is symmetric and positive semi-definite, and R is symmetric and positive definite
(amatrix is positive definite if all its eigenvalues are real and positive, and a matrix is positive semi-definite
if all its eigenvalues are either real and positive or zero). The first term in the cost function minimizes the
states and drives the states to zero as rapidly as possible. The second term minimizes the control effort. Al-
ternative cost functions can also be chosen.

The cost function for a second-order system can be written as

qn - d2 X] m T2 up
J=1[x1 x] + [u w]

Q1 d2 X2 [) uz
=qu(x)? + (qi2 + Q)XiXx2 + qu(x2)2 + m(u)? + (M2 + m)us + rmu,)?
If it is necessary to minimize x, and x,, then only x,2 and x,2 need to be minimized. Or, q;, and g, can be
set to 0. Similarly, ry, and >, can be set to 0.

The control law is given by
u =-Kx
where

K is the optimal gain.

K is given by

K =[R + B'PB['B'PA 43)
where

P is given by

P(n+1) = ATPA + Q - A"PB(B'PB + R]B'B"PA (44)

Equation (43) is known as the algebraic Riccati equation. For steady-state, the above matrices can be as-
sumed to be constant and the optimal gain K can be chosen off-line. The gain for the example is again
calculated using facilities of PC—Matlab and is given by the following function

K=dlqr(A,B,Q,R)

The following values were selected for Q and R.
B 1 0

Q=[o o000

L.

R =1
This puts a higher cost on minimizing x,. The following value is obtained for the feedback gain K.

K = | 4569 14.3:]

Figure 24 (a and b), Figure 25 (a and b), Figure 26 (a and b), and Figure 27 (a and b) show the response of
the system with various values of Q and R. In practice, there is no method for determining exact values for
matrices Q and R. A trial and error method is used to select these matrices. A common technique is to test
the step response of the system with various values of Q and R. This technique allows explicit control of
different variables. Even in cases where a loss function is not known, this gives better results than pole
placement techniques.

Kalman Filter: The state estimation techniques discussed earlier assumed that accurate measurements
are available. In some cases, this is not true. A Kalman filter allows estimation despite noise in the measure-
ments. This topic discusses the Kalman filter with constant gains, which is called a stationary Kalman filter.
The gains are calculated off-line. The structure of the filter is the same as the observer that was discussed
earlier, except that a different procedure is used to calculate the observer gain matrix L. It is also possible
to implement a Kalman filter with time-varying gains; in which, case the structure becomes similar to an
adaptive control or system identification problem.

The plant can now be described with an equation given as

X(n + 1) = A[X(n)] + Blu(n)] + w(n) 45)
where

X, u, A, and B are as described earlier. w(n) is process noise or a disturbance acting upon the plant.

The output is given by

y(n) = C[xX(n)] +v(n) (46)
where V

y,X,and C are as described earlier. v(n) is noise resulting from the sensor and/or acting upon the measure-
ment. The inputs w(n) and v(n) are assumed to be unrelated and to have Gaussian distributions.

65

Figure 24. Step Response and Control Effort of the LQR

a) Step Response

1.2 — :

1 - s - s

§0.8-—- I R R R T IEE SR RTINS Q- 10 ol
-§°.s L D72 T L R L L I 0.001 |
004 - '~ R T S P B R=0

02 - A - 4 - - s s = s e e = -

1 1 1 1
09 20 40 60 80 100 120 140 160 180 200
Time In #Samples

b) Control Effort
T T T

=t r = -t - =y - - 8 - = rF - =“3°- - = - -
- s F = SO - =y = = 9 - - F = == - = - ==
L L D R T S S T B Sy
I T B e I T
- = k= == - =l = - A4 = -k = == = el - -

N Py |

5020 40 60 80 100 120 140 160 180 200
Time In #Samples

Figure 25. Step Response and Control Effort of the LQR

a) Step Response
T T

09— - -+~ U S e e A Y Rl By
N Y A T T L
07 - f~- = == = r = == = =4 =- = = - = r - =)= = == - —
go.s’— - D S S L B B S S S e L B

%0.5—--I---I-—O'--I--‘I---Q--F--l---l--

-
04 f-r- - s s e e e e e e e 10 o]
0.3— -1 - - -l - - + - - - - -1 - - - - - - -

0.2—- - - - - - - + - - - - -t - - - - - b - 0

‘0.1——- -1 - - -t - - + - - - - -1 - - - - - - -

o] 1 i 1 | — 1 1 1
0 20 40 60 80 100 120 140 160 180 200
Time In #Samples

b) Control Effort

] 1] 1 1
60 80 100 120 140 160 180 200
Time In #Samples

Figure 26. Step Response and Control Effort of the LQR
a) Step Response

20 40 60 80 100 120 140 160 180 200
Time In #¥Samples

Control u
-h
IR

b) Control Effort

1 1 T
80 100 120 140 160 180 200
Time In #¥Samples

Figure 27. Step Response and Control Effort of the LQR
a) Step Response

T 1T T 17T

T T T T T T U

e ey = @ 3 efa e o0 4 0 4 p e 2aje o @ = e = e ey = =

= e = e g e a e = sl e e e e ege e e e = = = Ay e =

= ci= S - e e el e e e e e = 4 - 0.1 ol
R IR ---°=[o 0.0001]—
T T T " T R=000001 |

1 1 1 i
20 40 60 80 100 120 140 160 180 200
Time In #Samples

b) Control Effort

e

e T TR

P N &

| | | 1
80 100 120 140 160 180 200
Time In #Samples

67

68

The Kalman filter requires minimizing the mean square estimation error. This is given by

1= [eme'm)] (47)
where

e(n) is the estimation error given by

e(n) = x(n) + %(n)

In general, the design equation for a steady-state Kalman filter is expressed as

@+ 1) =g+ 1) + L{[y@m+ 1)] - C[x(n + D]}

£(n + 1) = A[X(m)] + Blu(n)]

This is also referred to as a current estimator because the latest measurement y(n+1) is used for the estima-
tion error. When the latest measurement y(n+1) is made, X(n + 1) will then be precomputed and updated.
The estimator gain L, is the Kalman gain. It minimizes the mean square estimation error and is represented
by

L, = PC'(R, + CPC")"

where

P =R, + APA” - APC'(R, + CPC"J'CPA"

Matrices R,, and R, are known as covariance matrices and must be designed. They are usually selected as
diagonal matrices because there is no information on cross-correlation of the noise elements. The rms value

of the sensor noise can be directly used in the measurement covariance matrix R,. The values given forR,,
and R, are chosen by using the facilities of PC-Matlab and the function dlge.

The Kalman gain L, is obtained by
L, =dlqe(A,G,B,R,R,)

where
_ . 03162
L, =le [0.00003]
and
.0001 0
= = 0.
N FE]

Figure 28 shows a block diagram of the Kalman Filter.

Figure 28. Kalman Filter
w(n) v(n)

Xren) Controller Plant y

Estimator

Figure 29 (a, b, and ¢) shows the response of a Kalman filter due to sensor noise and disturbance effects.

Figure 29. Response of the Kalman Filter

a) Step Response — Measured Position
4 T T T T T T T T T

1
T

)

1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
Time In #Samples

b) Step Response — Estimated/Actual Position
T T T T T T T

Position
o ¢
[+,]

I
1
1
1
f
h
1
'
1]
'
1
1]
'
'
1]
'
1]
1)
1
'
'
1
1]
'
1
'
1
|

04 - - - Tt T s s T s s s s s s s s s s s s
02__ A T N s R [EUR D B __ﬁ
] 1) 1 1 t L} l l 1
0 1 !] 1 L 1 1 1]
0 20 40 60 80 100 120 140 160 180 200
Time In #Samples

c) Control Effort with Disturbance

(7] P [3]
o o o

Control u
N
[~}

] ! ! I 1 1
0 20 40 60 80 100 120 140 160 180 200
Time In #Samples

69

70

Implementation Considerations: Implementation considerations for LQR controllers and Kalman fil-
ters are not essentially different from those for state controllers and estimators. Their structures are the
same, only the design approach is different. Still, the following should be taken into account.

When designing an LQR controller, some weight should be placed on the R matrix as control signals could
become excessively large. Note that the LQR approach to controlling does not necessarily guarantee that
the optimum solution will be found. Still, the Q and R matrices do allow the designer to trade-off between
control effort and speed of the response while, at the same time, guaranteeing a stable system.

When designing a Kalman filter, R, can usually be chosen realistically since some information on sensor
characteristics and accuracy is available from the manufacturer. R,, is more difficult to chose. If it is chosen
to be zero due to lack of information, the Kalman filter’s gain is zero; the estimator runs open-loop. As a
result, no adjustment is made to the estimated states. This causes the model to slowly drift. Again, as in the
case of Q and R for the LQR controller, the designer can trade-off between reliability of measurements and
plant model. As R,, increases, more reliance is placed upon the measurements, while less reliance is placed
upon the plant model. As R, increases, more reliance is placed upon the plant model, and less reliance is
placed upon the measurements.

Summary

This paper has given a basic overview of digital control theory without going into too much mathematical
detail. The use of CAD tools like PC-Matlab, Matrix—X, and Simnon is strongly recommended in order
to eliminate some of the drudgery in the math calculations and to provide simulation of a system under de-
sign. :

The choice of the appropriate controller structure will depend largely upon the user’s background and
application. Classical control techniques have been practiced for a long time, and people have acquired an
intuitive feel of the behavior of those designs. Modern control theory now gives more capabilities to these
systems; but, at the same time, most of the theoretical/implementation information is still fairly new and
unfamiliar.

However, it should be emphasized that the behavior of any system in actual practice largely depends upon
the implementation and not upon the elegance of its design. Elegant theories are attractive: but a simple de-
sign, when properly implemented, can yield a more superior performance, higher reliability, and better
manufacturability than a sophisticated design that is poorly implemented.

In general, it is advised that modern control theory be used. With their powerful simulation capabilities,
today’s new CAD design tool can eliminate much of the user’s fear and uncertainty, along with the laborious
mathematical calculations. Atthe same time, powerful processors like DSPs are able to implement complex
designs in practical and cost-effective systems.

References

1. Astrom, K., and Wittenmark, B., Computer Controlled Systems, Prentice~Hall, 1984,

2. Pnhillips, C., and Nagel, H., Digital Control Systems, Prentice-Hall, 1984.

3. Isermann, R., Digital Control Systems, Springer—Verlag, 1981.

4. Franklin, G., Powell, D., and Workman, M., Digital Control of Dynamic Systems, Addison—-Wesley,

1990.

Jacquot, R., Digital Control Systems, Marcel Dekker, 1981.

Katz, P, Digital Control Using Microprocessors, Prentice~Hall, 1981.
Lewis, F, Optimal Control, John Wiley, 1986.

Lewis, F., Optimal Estimation, John Wiley, 1986.

Astrém, K., and Hagglund, T., Automatic Tuning of PID Controllers, Instrument Society of America,
1988.

0 RN

Appendix 1

% This program will do simulation of a PID controller using
% trapezoidal approximation and a pole placement technique
z If the plant transfer function is G(z) = A/B

: and controller function is given by H(z) = C/D

: then the closed loop response is given by

: G(z)H(z) AC

+ 1+ G(am(z) AC 4 BD

%

ggg=1

ghile ggg==1 % run simulation continously

% This section will implement simulation of a dc servo motor
% the motor used in the example is a Pittman motor, model 9412
%

Kt=0.0207; % Torque constant

Ke=Kt; %

j=0.00006; % Armature inertia + assumed load inertia
R=6.4; % Resistance

input ('input sampling period in milliseconds')

T=ans/1000; % get sampling period

a=(Kt"2) / (R*7) % a, and b will give transfer function in s-domain
b=Kt/ (j*R)

pause

ab=b/ (a"2) ; % Calculate values to transfer into z-domain
c=exp (~a*T) ;

dl=a*T;

d=(c-1+d1) ;

e=(l-c-(c*dl));

input ('input numerator gain ")

Kg=ans; % get numerator gain

bl=ab*d*Kg; % numerator terms

b2=ab*e*Kg;

al=-(l+c); % denominator terms

a2=c;

num=[0 bl b2] % numerator of transfer function in z-domain
den=[1 al a2] % denominator of transfer function in z-domain

[A,B,C,D]=tf2ss (num, den)
%

% This section will design a PID controller using pole placement
"% techniques. Desired pole locations have to be input. The PID
% is converted into discrete form using trapezoidal approximation

%

% Enter desired pole locations in the next step
'Enter the location of your poles'
input ('Input location of pole 1: ")
pl=ans;
input ('Input location of pole 2: ")
p2=ans;
input ('Input location of pole 3: ")
p3=ans;
input ('Input location of pole 4: ')
pé4=ans;
p=[pl p2 p3 p4];
% The desired characteristic polynomial is found as
Q(1:5)=poly (p)
% The coefficients of different powers are given by
q2=Q(:,2);
q3=0Q(:,3);
q4=Q(:,4) ¢
q5=Q(:,5);
% The system polynomial is given by

(Klz**2 + K2*z + K3) (bl*z + b2) + (z

Equating coefficients of different powers we get

four linear equations. The next few steps will solve for

poles of the controller.

72

[bl 0 0 -1
b2 bl 0 l-al
0 b2 bl al-a2
0 0 b2 a2 1;

[g2+1-al © 0 -1
g3+al-a2 bl 0 l-al
gd+a2 b2 bl al-a2
g5 0 b2 a2 1;

[b1 g2+1l-al 0 -1
b2 g3+al-a2 0 l-al
0 g4+a2 bl al-a2
0 g5 b2 a2 J1;

[bl 0 g2+1l-al -1
b2 bl gq3+al-a2 1-al
0 b2 g4+a2 al-a2
0 0 g5 a2 1;

[bl 0 0 q2+1-al
b2 bl 0 g3+al-a2
0 b2 bl gé4+a2
0 0 b2 as 1;

1) (z - 1) (z¥*2 - al*z +a2)

%
%
% K1, K2, K3 and r, where r is an arbitrary location of one of the
%
D

d=det (D) ;

dl=det (D1) ;
d2=det (D2) ;
d3=det (D3) ;
d4=det (D4) ;

Kl=dl/d

K2=d2/d

K3=d3/d

r=d4/d

% This section will implement closed loop simulation of
% PID controller and the DC motor

%

numl=[K1l K2 K3]; % numerator of PID controller
Rl=[1,rx}; % poles of the PID controller
denl=poly (R1l) ; % calculate denominator

compnum=numl ;

compden=denl;

procnum=num;

procden=den;

num5=conv (numl, num) ; % Multiply numerators

den5=conv(denl,den); % Multiply denominators

input ('specify the time in secs over which you want to see the step: ')
t=ans;

n=t/T; % Calculate number of samples to see simulation
input ('input a loop gain: ') % Enter any additional loop gain

g=ans;

u=ones(n,1); % Number of samples to see simulation

closnum=g*num5 % numerator of closed loop system transfer function
closden=g*num5+den5 % denominator of closed loop system trnasfer function
y=dlsim(closnum, closden, u) ; % do discrete simulation

plot (y)

title('Position Step Response')
xlabel ('Time in # of samples')
ylabel ('Position in radian')
grid '

pause

end

73

Appendix 2

% This file will do simulation of a closed loop deadbeat controller
z If the plant transfer function is G(z) = A/B

: and controller function is given by H(z) = C/D

: then the closed loop response is given by

z G(z)H(z) AC

¢+ 1% G(ma(ac+ED

399=1

ghile ggg== % Keep doing

% The next section will implement simulation of a dc servo motor
% the motor used in the example is a Pittman motor, model 9412
%

Kt=0.0207; % Torque constant-

Ke=Kt ; %

j=0.00008¢# ;.. - - % Armature inertia + assumed load inertia
R=6.4; % Resistance

input ('ipput sampling period in milliseconds')

T=ans/1000; % get sampling period

a= (Kt~2) / (R*3) % a, and b will give transfer function in s-domain
b=Kt/ (j*R) .

pause

ab=b/ (a®2):s % Calculate values to transfer into z-domain
c=exp (-a*T) ;

dl=a*T;

d=(c-1+d1) ;

e=(l-c-(c*dl));
input ('input numerator gain ")

Kg=ans; % get numerator gain

bl=ab*d*Kg; % numerator terms

b2=ab*e*Kg;

al=-(l+c); % denominator terms

az2=c;

nun=[0 bl b2] % numerator of transfer function in z-domain
den=[1 al a2] % denominator of transfer function in z-domain

[A,B,C,D]=tf2ss (num, den)

% This section will implement design of a deadbeat controller

% The form of the controller is given by the following equation
%

% -1 -2 -3 -n

% p0 + pl*z + p2*z + p3*z At

% G (2) = mmmm o

% db -1 -2 -3 -n

% g0 + gl*z + gl*z + g3*z ... qn*z

% .

74

% If the plant transfer function is given by

%

% -1 -2 -3 -n

% b0 + bl*z + b2*z + b3*%zbn*z

§ G (B) m mmmm o
% P -1 -2 -3 -n

% a0 + al*z + a2*z + a3*zan*z

%

% then the following procedure can be used to design a
% deadbeat controller

p0 = 1/(1 + bl + b2)

pl = al*p0

p2 = a2*p0

q0 =1

gl = -bl*p0

g2 = -b2*p0

%

% This section will implement closed loop simulation of the
% deadbeat controller and the DC motor

%

numl=[{p0 pl p2]; % Numerator of the controller

denl=[q0 gl gq2]; % denominator of controller

compnum=numl ;

compden=denl;

procnum=num;

procden=den;

numS=conv (numl, num) ; % multiply both numerators

den5=conv (denl, den) ; % multiply both denominators

input ('specify the time in secs over which you want to see the step: ')
t=ans;

n=t/T; % Calculate number of samples to see simulation
input ('input a loop gain: ')

g=ans;

u=ones (n,1l);

closnum=g*numb5; % Enter additional closed loop gain
closden=g*num5+den5; % Calculate denominator of closed loop system
y=dlsim(closnum,closden,u); % Do closed loop simulation

plot (y)

title('Position Step Response')
xlabel ('Time in # of samples')
ylabel ('Position in radian')
grid

pause

end

75

Appendix 3

% This file will do simulation of a closed looped system with

% a DC servo motor and a state controller/estimator. The estimator
% will make a full estimate of states from position measurement>

% The state controller is given by the following equations

%

% x(n+l) = A*x(n) + B*u(n) + L[y(n) - C*x(n)] --- State estimation
% y = C*x(n) ---—--- estimation of measured variable

$ u = -K*x(n) =-—-==-—=- control law

%

% States of the system will be position and velocity

%

aaa=1

while aaa== % Do simulation continously - to exit do CTRL C

%

% The first section will build model of dc motor
% The motor used in this example is a Pittman motor, model 9412
%

clear;
Kt=0.207; % Torque constant
Ke=Kt ; % Back emf constant
3=0.0006; % Armature inertia + assumed load intertia
R=6.4; % resistance
a=(Kt~2)/(R*j) % a, and b will give transfer function in s-domain
b=Kt/ (j*R)
pause
num=[0 1 b] % define numerator and denominator of transfer function
den=[1 a 0]
pause
F=[0 1 % state representation of motor in continous time
0 -a]l
G=[0
bl % convert state model to discrete form
input ('Input sampling period in milliseconds ')
T=ans/1000; % get sampling period
[A,B]=c2d(F,G,T)
C=[1 0] % Assume position measurement
%
% The next section will implement design of the state controller
% and observer using pole placement techniques. Pole locations will
% have to be input for the controller. The estimator poles will be
% chosen to faster than the controller.
%
' Enter 0 if you will have complex poles'
input (' and 1 if you will have real poles: ")
X=ans;
if X==
input ('input real part of pole location: Y

rlreal=ans;

input ('input imaginary part of pole locaticn: "y
rlimag=ans;

i=sqrt (-1);

r=[rlreal+i*rlimag; rlreal-i*rlimag];

end

76

if X==

input ('input location of pole 1: ")

rl=ans;

input ('input location of pole 2: ")

r2=ans;

r=[rl; r2];

end

K=place (A,B, r) % do pole placement for controller

1=x/2 % choose observer poles to 1/2 distance from origin
ll=place(A',C',1l) % do pole placement for observer

L=11"

%

% The next section will do simulation of the closed loop system
%

D=[0] % direct link matrix is 0
input ('input reference signal in radians: ')
re=ans;

N=[1;0] % position command will be input
xr=N*re % reference state

input ('specify time in sec over which you want to see step: ')
t=ans;

n=t/T; % calculate number of samples
x=[0;0] % actual states - initial values
xe=[0;0] % estimated states - initial values
u= 0 % control action - initial value

%

% This section will do simulation of the motor
%

for i=l:n,

x = A*x + B*u; % simulation of actual plant
y(i)= C*x;

% This section will do simualtion of the controller and estimator
%

u = -K*xe + K*xr; % implement control law

yu(i) = u;

xe = A*xe + B*u + L*(y(i)-C*xe); % do state estimation
ye (i) = C*xe; % estimated postion

end

clg

plot (y) % plot actual postion

hold on

plot (ye, '+g') % plot estimated position

ylabel ('Postion')

xlabel ('Time in # of samples')

title('Step response of State Controller/Estimator')

text (0.60,0.40, '---- actual postion', 'sc')

text (0.60,0.30, '**** estimated postion', 'sc')

grid

pause

hold off

clg .

subplot (211) ,plot (y),title('Step response - Actual Position'),
subplot (212) ,plot (ye) ,title('Step response - Estimated Position'),

71

78

pause

plot (yu) ,title ('Control effort'),
grid

ylabel ('u')

xlabel ('Time in # of samples')
end

Appendix 4

% This program will do simulation of Linear Quadratic Regulator (LQR)
% and a stationary Kalman Filter.

% The controller and estimator are given by the following equations:
% x(n+l) = A*x(n) + B*u(n) + Lp[y(n) - C*x(n)] --- State equation

% y = C*x(n) --- estimation of measured variable

% u = - K*x(n) --- control law

% K is optimal gains and Lp is kalman gains

%

aaa=1

while aaa==1 % run simulation simultaneously - to exit use CTRL C

%

% This section will build model of a dc servo motor
% The motor used in the example is a Pittman motor, model 9412
%

clear;

Kt=0.207; % Torque constant

Ke=Kt ; % back e.m.f. constant

j=0.0006; % rotor inertia + assumed load inertia
Res=6.4; % resistance

a=(Kt"~2) / (Res*7)

b=Kt/ (j*Res)

F=[0,1;0,-a] % state representation in continous time
G=[0;Db]

input ('Input sampling period in milliseconds ")
T=ans/1000; % get sampling period

[A,B]=c2d(F,G,T) % convert state model to discrete time
C=[1 0] % Assume position measurement

The next section will design the LQ Regulator and the
Kalman filter. The cost functions will be input to

to calculate the optimal gains and noise characteristics
will be input to calculate Kalman gains

O I I I I o

input ('enter cost function matrix Q:')

Q=ans;

input ('enter cost function R:')

R = ans;

input ('enter measurement noise covariance Rv:')
Rv=ans;

input ('enter disturbance matrix g:')

g=ans;

input ('enter disturbance covariancce matrix Rw:')
Rw=ans;

K=dlqgr (A,B,Q/T,R*T) % calculate optimal gains
Lp=dlge (A, g,C,Rw*T,Rv/T) % calculate Kalman gains
pause

%

% The next section will do simulation of the closed loop
% system
%

D=[0] % no direct link input

input ('input reference signal in radians: ')

re=ans;

N=[1;0] % position command will be assumed

xr=N*re % reference state

input ('specify time in sec over which you want to see step: ')
t=ans;

n=t/T; % calculate number of samples to do simulation
x=[0;0]; % actual states - initial values

xe=[0;0]; % estimated states initial value

yv= rand('normal'); % characteristics for injected sensor noise
yv=rand(n,1);

uv=rand('normal'); % characteristic for disturbance noise
uv=rand(n, 1) ;

u=0; % control signal - initial wvalue

%

% Next section will do simulation of the motor

%

for i=l1l:n,

x = A*x + B*u; % simulation of actual plant
y(i)= C*x + yv(i,1); % measured position

% Next section will simulate regulator and kalman filter
%

u = -K*x + K*xr + uv(i,1l); % control action with disturbance
yu(i) = u;

xe = A*xe + B*u + Lp*(y(i)-C*xe); % state estimator

ye (i) = C*xe; % estimated position

end

clg

plot(y,'x"); % plot actual position
hold on

plot(ye,'.g") % plot estimated position
title ('Measured position vs Estimated postion')

grid

text (0.60,0.24, '---- measured postion', 'sc')
text(0.60,0.18,"'.... estimated postion', 'sc')

xlabel ('Time in # of samples')

ylabel ('position')

pause

hold off

clg

plot (y) ,title('Step response - Measured Position'),
grid

xlabel ('Time in # of samples')

ylabel ('position')

pause

clg

plot (ye) ,title('Step response - Estimated Position'),
grid

xlabel ('Time in # of samples')

ylabel ('position')

pause

clg

plot (yu) ,title('Control effort with disturbance'),
xlabel ('Time in # of samples')

ylabel ('Control u')

grid

end

81

82

Matrix Oriented Computation Using Matlab

Jeffrey C. Kantor
Department of Chemical Engineering
University of Notre Dame
Notre Dame, IN 46556

Phone: (219) 239 5797
Email: jeff@ndcheg.cheg.nd.edu
Fax: (219) 239 8007

Matlab is a tool for interactive numerical computa-
tion. It contains as built-in functions essentially all of
the numerical linear algebra algorithms in LINPACK
and EISPACK. Coupled with a programmable inter-
preter and good scientific graphics capability, Matlab
can be used for algorithm development in many areas
of engineering and science.

To demonstrate some of its functionality, I've in-
cluded in this article several examples where Matlab
has proven useful in my own teaching and research ac-
tivities. These examples are not comprehensive since
they neither fully exploit all of the features of Matlab
or do they show all of our applications. The exam-
ples were chosen only because they seemed to be rela-
tively straightforward and self-contained illustrations
of how Matlab can be used.

1 Some Background

Matlab was originally conceived by Cleve Moler just
over a decade ago while he was teaching numeri-
cal methods at the University of New Mexico. He
found it frustrating to simultaneously teach numer-
ical methods and the programming tricks it takes
to implement them. The effort required to write
numerically sophisticated FORTRAN code can sim-
ply overwhelm a student and not leave much time
left over for doing applications. So to address the
problem, Cleve Moler wrote a simple interpreter in
portable FORTRAN for a high-level matrix oriented
language. The interpreter was based on one given
by N. Wirth for a model language called PL/0 [12].
Naturally, the numerical algorithms were based on
the recently completed Linpack and Eispack projects
to which Cleve Moler had made substantial contri-
butions. This primitive Matlab interpreter was ev-
idently quite successful and ported to a number of
machines during the late 1970’s and early 1980’s, un-
dergoing minor revisions in the process.

Several companies subsequently adopted Matlab as

Reprinted, with permission from author.

a platform for developing and delivering commercial
control synthesis and analysis software. Systems Con-
trol Technology produced a package called Control-C,
and at about the same time, Matrix-X was developed
by Integrated Systems, Inc. Both companies found
many shortcomings in the original Matlab interpreter
including workspace constraints, lack of function def-
initions, and overall performance. The Matlab inter-
preter was largely rewritten at each of these compa-
nies to support their products.

A few of the professional stafl from these compa-
nies joined together to form a new company called the
MathWorks, Inc. There they produced an entirely
new version of Matlab written in C for portability
and efficiency. The interpreter was greatly enhanced
to include an ability for the user to program Matlab
functions. They also developed an integrated facility
for producing a basic set of publication quality scien-
tific graphs. The MathWorks currently markets this
version of Matlab for a variety of hardware platforms,
the details are given at the end of this article.

Beyond the basic interpreter, there are several
‘toolboxes’ intended for specific application areas. A
‘toolbox’ is typically a collection of functions and
scripts that implement specialized numerical algo-
rithms. These generally are not finished applications
in the sense of a well-developed user interface with
a lot menus and the like, but are rather integrated
collections of algorithms that you either can use di-
rectly or build into your own scripts. It is sort of
like using a FORTRAN subroutine library, but with
the advantage of being able to directly execute the
routines in the interactive Matlab environment. The
MathWorks distributes a Signal Processing Toolbox
with Matlab, and markets several others including
a Control Design Toolbox, Robust Control Toolbox,
System Identification Toolbox, a Chemometrics Tool-
box. There are also toolboxes commercially available

-from third parties, in addition to a number that Uni-

versity researchers may have put together for their

83

own purposes.

Now for the confusing part. There is a ‘public do-
main’ IBM PC version of Matlab. In addition, several
universities sell very low cost versions of Matlab avail-
able for the Macintosh and IBM PC. These are based
on Moler’s original FORTRAN code, sometimes with
enhanced graphics and macro writing facilities.! A
person should be careful with these since they are
not of the same calibre as the MathWorks and sim-
ply don’t include the tools necessary for doing real
work. Nor will the toolboxes cited above work with
these versions. A corollary of this advice is to not let
an exposure to these other versions color your view
of Matlab.

2 What is Matlab?

In some ways, the Matlab interpreter vaguely resem-
bles a cross between BASIC and APL in the sense
that it is programmable and endowed with a rich set
of operators for matrix manipulations. The key dis-
tinction is that Matlab incorporates well-developed
and reliable algorithms for numerical linear algebra.
‘Moreover, the built-in graphics capability is often en-
tirely sufficient for presenting tesults in final pub-
lished form. (The graphics in this article, for exam-
ple, were pasted in directly from Matlab).

Let me give an example of how these capabilities
can be used for day-to-day ‘scratchpad’ kind of cal-
culations that pop up. A few days ago a colleague of
mine walked into my office with an idea for process-
ing video images to enhance the edges of discs that
appear in the picture. He acquires these images in
his experinients on concentrated suspensions of non-
colloidal particles. He started off by saying (roughly)
“Suppose you have a noisy image of a disc ” at which
point I stopped him, turned on my computer, and
typed the following commands in Matlab

x = -1:.1:1; % X mesh

y = -1:.1:1; % Y mesh
[xx,yy] = meshdom(x,y); % 2D mesh
z=sqrt(xx. 2+yy.“2)<0.5; % make disk
rand(’normal’); % white noise
z = z + 0.06*%rand(z); % add to disk
mesh(z); % 3D plot

xlabel(’Noisy Disk’); % add title

which produced the image shown in Figure 1.
This code segment demonstrates several of the key

features of Matlab. First of all, the variables x, y, z
incidently, the original FORTRAN code was never de-

clared to be public d Thus its hip status is a
bit confused.

Noisy Disk

Figure 1: Noisy image of a disk.

represent vectors and matrices. Matrices are an ele-
mentary data type within Matlab. Because matrices
can be manipulated directly as single objects, much
of tedium of writing loops to do element by element
calculations is removed, along with the need for a lot
of extraneous indexing. In the sixth line, for example,
a matrix is constructed with the same dimensions as
z consisting of normally distributed random numbers
(rand(z)), multiplied by 0.05, and the result added
to z. The third line demonstrates how Matlab func-
tions can return multiple results, which in this case
are two matrices xx and yy.

Duly impressed, my collcague went on at the black-
board to describe a simple algorithm requiring that
the image be processed by a pair of 2D convolutions.
Since this might be done more than once to differ-
ent data sets, it seemed sensible to encapsulate the
algorithm as a Matlab function.

function [y] = sobel(z)

% SOBEL
% Do edge detection on a 2D array

[121;000; -1 -2 -1];
conv2(z,s); % 2D convolution
conv2(z,s’); % 2D convolution
sqrt(h.”2 + v."2);

< < >a
" ouwou

n

A function is prepared as a separate text file that is
subsequently read by the Matlab interpreter when its
name is encountered in a command line. A user writ-
ten function behaves in the same way as any built-in
function. In this example, a function named sobel is
defined which takes a single input argument z, then
utilizes a built-in Matlab function conv2 to construct

Edge Filtered Disk

Figure 2: The result of filtering the noisy disk shown
in Figure 1 to enhance the disk edges.

two 2D convolutions with a matrix, s, and its trans-
pose, 8’. The function output, y, is found by taking
the harmonic mean of the two convolutions.

The edge detection function was used in the follow-
ing commands

zf = sobel(z);
mesh(z1);
xlabel(’Edge Filtered Disk’);

to produced the edge enhanced picture shown in Fig-
ure 2.

In general, functions can have multiple-input and
multiple-output arguments. Just as in FORTRAN,
any variables used in writing a function are treated
as local and will not be confused with other variables
of the same name used in other functions or the comn-
mand environment.

So during the course of a half-hour conversation,
my colleague was able to (watch me) construct and
test an edge detection algorithm. It is this ability
to quickly prototype and test algorithms using a rich
base of numerical tools that makes Matlab a valuable
computational tool.

3 Using Matlab in the Class-
room

I have used Matlab in teaching a graduate course on
Process Control (Fall, 1987), the linear algebra por-
‘tion of a course covering Mathematical Methods for
first-year graduate students (Fall 1988 and Fall 1989),
and for a Junior-level course on Computer Methods
for Chemical Engineers (Spring, 1989). Matleb seems

to provide an appropriate software base for each of
these courses.

In the case of teaching Advanced Process Control,
the main goal in using Matlab was to provide the
student with experience in doing time-series analy-
sis, model identification, control design, and simu-
lation. There are competing software packages that
could also be used for these purposes, among them
Program-CC, but none seemed to offer any significant
advantage over Matlab for linear analysis. Besides,
my teaching assistant had already had some expe-
rience with Matlab, and it was already installed on
several Sun workstations in the Department. Over-
all, the teaching experience was a very good one. By
the end of course the students demonstrated a real fa-
cility with Matlab, the Control Design Toolbox, and
the System Identification Toolbox. Later in'the arti-
cle there is an example that came from a homework
problem assigned in the course.

For the undergraduate Computer Methods course,
there were additional considerations that came up
when considering a choice of software tools. Among
them was the choice between using Matlab or a pack-
age of FORTRAN subroutines such as given in Press,
et al. [11]. On the one hand, FORTRAN remains as
the principle programming language for numerically
intensive engineering applications, therefore a facility
with FORTRAN is highly desirable. Moreover, our
students all take a required Freshman Engincering
course that teaches the elements of FORTRAN.

On the other hand, it is significantly faster to write
and test small codes using the high-level Matlab in-
terpreter. The students also indicated a strong pref-
erence for microcomputer based software tools which
could be used on various workstation clusters about
campus rather than be tied to a single ininicomputer
located in the Engineering College.

On balance, I felt that a more productive environ-
ment would allow the course to survey more topics
with more emphasis on applications, so I chose to
use Matlab. 1 have been plcased to note how stu-
dents have transfered their new computational skills
to other courses. They continue to use Matlab to do
routine laboratory calculations, data fitting, and for
computations in their Senior Design courses.

Recent textbooks have appeared which incorporate
various amounts of Matlab into the text and exercises.
The third edition of the classic linear algebra text by
Noble {10] contains is number of Matlab exercises and
examples. Another linear algebra textbook by Hill is
basically centered on Matlab, with chapters regarding
programming technique [7]. Tt is so complete that it
could serve as a low-cost Matlab manual for students.
The Handbook for Matriz Computations is useful to

.85

86

anyone doing numerical linear algebra, and includes
a survey of relevant Fortran, BLAS, Linpack, as well
as Matlab [4].

Lennert Ljung’s book on system identification [9] is
closely coupled to the System Identification Toolbox.
The toolbox, in fact, was written by Ljung, and the
text provides excellent technical documentation.

The following two sections present two examples of
incorporating Matlab into classroom activities.

4 Classroom Example: Linear
Programming

Three years ago our Department introduced a new
required course for our undergraduate majors enti-
tled Computer Methods for Chemical Engineers. This
course is normally taken by Spring semester Juniors
after having completed the normal Mathematics se-
quence, and before commencing the two-semester Se-
nior design sequence. The course covers elements of
numerical methods with application to problems in

chemical engineering.

Linear programming is discussed in some detail in
the course because it is- one of those skills that an
engineer can transfer to a wide variety of problem
areas. A key teaching goal is for the student to be able
to recognize a problem as a linear program, and then
to formulate the requisite objective and constraints.

I prefer to use the Active Set method as outlined by
Fletcher [5] to teach the principles behind linear pro-
gramming. It seems to leave the student with a more
intuitive understanding of the role of constraints and
their sensitivities than does the usual presentation of
the Simplex method. If the students can understand
the relatively simple strategy to solving a linear pro-
gram, it is then much easier to motivate and teach
the numerical tricks it takes to implement an efficient
algorithm.

The linear programming problem is formulated as
minimizing the linear objective

minz=c'z
r

where z is a n vector, subject to m linear constraints
a;xr 2 b,' i= 1,2,...,"1

where n < m. If positivity constraints are present,
then these are explicitly included in the constraint
list. It is easy to show that if the feasible region is
bounded, then optimum will always be found at a ver-
tex defined by the intersection of n active constraints.

The basic algorithm is, firstly, to find any active
set of n constraints forming a feasible vertex, then

to move systematically from one vertex to another so
as to reduce the value of the objective function at
each step. Each step of the algorithm is defined by
just two rules. The first rule identifies a constraint
to throw out of the active constraint set in order to
decrease the objective. The second rule determines
which constraint to add to the active set to establish
a new feasible vertex.

Let A be the set of active constraints that deter-
mine a feasible vertex. The vertex is given by solving
a set linear equations to give

z=A3'b4

where A4 and by are constructed from the coefficients
of the active constraints. Now suppose the right hand
side of each active constraint is altered by a small pos-
itive amount ¢;. Positive values of the ¢;’s correspond
to feasible perturbations, while negative values would
cause constraint violations. As a result of a feasi-
ble perturbation, the vertex then shifts from z to =z,
where
zo=Az'ba + Axle

Substituting z, into the objective function yields
z= CTAZI’M + cTAzlc

The second term shows the change in the objective
function due to independent perturbations in the ac-
tive constraint set. Thus the elements of the row
vector

r=cTAR!

play the role of ‘sensitivity coefficients’ revealing how
the objective function responds to feasible perturba-
tions in the active constraint set. If any element of
A is negative, then the objective function can be re-
duced by removing that constraint from the active
set. Just as in the Simplex method, we choose to re-
move the constraint corresponding to the most nega-
tive element of A.

Let A, be the most negative element of A. Then the
effect of removing the p'* active constraint is given
by

Te =2+ €pSp
where s, is the p™* column of A;'. How large can

€, be before some other constraint becomes active?
This can be computed explicitly as

. b,' - a;T
€p = mn ———
€A a;Sp
ais,<0

The search is done over all constraints not in the ac-
tive set (i € A), but only for those constraints in

which the right hand side becomes smaller as ¢, in-
creases (a;sp < 0).

The constraint which realizes the minimum ¢, is
exactly the one to be added to the active constraint
set. Ilaving done that, the procedure repeats itself
until no further improvement in the objective is pos-
sible, i.e., until all of the sensitivity coefficients are
non-negative.

This basic algorithm cleanly translates to the fol-
lowing Matlab function. The function 1p takes four
arguments specifying the coefficients on the left and
right hand sides of the constraints, coefficients of the
objective function, and an initial feasible constraint
set. The function returns the optimal value of the ob-
jective function, the optimal solution for the decision
variables, the value of the sensitivity coeflicients, and
the final active constraint set.

function[z,x,lamb,activ]l=1p(a,b,c,feas)
% Initialization

[m,n] = size(a);
activ = feas(:);

% Compute Initial Vertex

ainv = inv(a(activ,:));
x = ainveb(activ,:);
lamb = c*ainv;

while any(lamb < 0),

% Find which constraint to drop, p
(tmp,p] = min(lamb);
sp = ainv(:,p);

% Find which constraint to add, gq

alpha = Inf;
q=0;
for i=1:m,
if “any(i==activ),
den = a(i,:)*sp;
if den < O,
tmp = (b(i)-a(i,:)*x)/den;
if tmp < alpha,
alpha = tmp;
q = i;
end |
end
end
end
% Recompute x, lamb, and z

activ(p) = q;

ainv = inv(a(activ,:));
x = ainv#b(activ,:);
lamb = c*ainv;

end
z = c*x; Y Compute objective function

This example uses geveral of the Matlab control
structures to simplify the coding process. The con-
struction

vhile any(lamb < 0),
[...]

end

controls the main iteration over vertices of the feasible
region. The iteration continues as long as any element
of the vector lamb is less than zero. Nested within
this loop is an iteration

for i=1:m,
[...]

end

which specifies a conventional indexed iteration loop
where i successively takes values between 1 and m.
Within this loop are several nested conditional state-
ments such as

if ~any(i==activ),
[...]

end

In this case, the conditional code is executed if ‘not
any’ of the elements of the vector activ are equal to
i. The practice of indenting nested control structures
graphically reveals program flow and is strongly urged
on the students.

This function is a zeroth order cut at a practical al-
gorithm for linear programming, it will work for small
problems but will be inefficient and error prone when
applied to larger problems. As exercises, the students
are asked to correct several of the glaring deficien-
cies. Foremost is to avoid the repeated inversions
of the active constraint matrix with a more efficient
procedure using rank-one updates (i.e., the Sherman-
Morrison formula). Having done this, the algorithm
is then identical to the usual revised simplex method
as discussed in most textbooks. Other exercises in al-
gorithm development could include writing a code to
identify an initial feasible constraint set, or to modify
the algorithm to handle equality constraints.

87

5 Classroom Example: Pro-

cess Control

The next example illustrates the use of several tool-
boxes to do model identification and a simple control
design. Students taking a graduate course in Ad-
vanced Process Control during Fall, 1987, were as-
signed a homework project in which they were to an-
alyze input-output data for a small gas furnace. They
were to first obtain a transfer function model, then
use the model to design a PID, minimum variance,
and optimal LQG controllers. The three controllers
were to be evaluated by simulation. The students
were given one week to complete the assignment.
The gas furnace data was adapted from Appendix
B of Box and Jenkins [2] consisted of 300 pairs of
input-output measurements {u(k), y(k)} obtained
at 9 second intervals. The manipulated input is gas
flowrate, and the measured output is the percentage
of CO; in the stack gas. These data were given to
the students as a Matlab file called GasFurnaceData.
- The file can be read and plotted using the following
commands to produce the following plots shown in
Figure 3.

% Read data record

GasFurnaceData;
udata = u;
ydata = y;

% Plot input-output data

subplot(211); % Specifies upper plot
plot(udata);

title(’Gas Flow (Input)’);
ylabel(’CFM’);

subplot(212); Y% Specifies lower plot
plot(ydata);

title(’C02 Composition (Output)’);
ylabel(’% C02');

xlabel(’Time’);

The first task for the students was to identify a
discrete-time transfer function model for the gas fur-
nace. A non-parametric spectral analysis provides a
starting point for estimating model order. This is
done with the following commands:

y = detrend(ydata);
u = detrend(udata);

z = [y ul;
g0 = spa(z); % System_ID toolbox
bodeplot(g0); % System_ID toolbox

88

0.8 Gas Flow (Input)
g 06 «/\MJW\IJ\/\/\/\W‘W
Q
0.4 . .
0 100 200 300

80 CO2 Composition (Output)

o
8 e
- WWW
40 _ -
0 100 200 300
Time

Figure 3: Input-Output data for a gas furnace. The
data is adapted from Appendix B of Box and Jenkins.

The function detrend (from the Signal Processing
Toolbox) is used to remove means and linear trends
from the input and output data series. Then spa
(also from the System Identification Toolbox) is ap-
plied to construct a transfer function estimate that is
stored as g0. The transfer function is displayed using
bodeplot to give the result shown in Figure 4.

There are a number of possible models that could
be used to describe this data. Of these, an ARMAX
model in the form

B(q)
Alg)

u(t —ng)+ -i—g—;-e(t)

y(t) =
or, explicitly, as
big™ -+ b g7
T+aig T+ +an,q"

ag 4 tea g ®
T+ay g+ +da,qg "

y(t) = u(t —n) +

does an adequate job (¢~! is the backward shift op-
erator). The following commands use functions in
the System Identification Toolbox to fit an ARMAX
model for the case ny = ny-= n. = 2, np = 1. The fit-
ted transfer function is then evaluated and Bode plot
is displayed to compare the fitted transfer function to
the previous non-parametric estimate.

th = armax(z,[2 2 2 1]1);

102, AMPLITUDE PLOT
10t PP R o L
102 101 100 101
frequency
0 PHASE PLOT
Q
_g -200
102 10-1 100 101

frequency

Figure 4: A nonparametric estimate of the transfer
function between the input and output of the gas fur-
nance based on the data in Figure 3. The results are
computed using the System Identification Toolbox.

g = trf(th);
bodeplot([g g0l);

The resulting Bode plots shown in Figure 5 demon-
strate a reasonable fit of the data using a second or-
der model. ‘Goodness of fit’ can also be explored by
computing an estimated autocorrelation function for
the residuals, and an estimated cross correlation be-
tween the input. This is done with the command
e = resid(z,th) to produce the results shown in
Figure 6.

These plots indicate that there is little significant
correlation left in the residuals so there is no statis-
tical justification for employing higher order models.
(Attempting to fit a first-order model to this data pro-
vides an example where statistically significant corre-

lations do remain in the residuals.) The fitted model

coefficients are displayed as follows:

present(th)
This matrix was created by the command
ARMAX on 2/28 1989 at 10:47

Loss fcn: 0.09217
Akaike‘s FPE: 0.09593
Sampling interval 1

102 AMPLITUDE PLOT

101 '(

100 TSI " P RN
102 101 100 101
frequency
0 PHASE PLOT
g
k] -200
-400 s s iaain
102 101 100 101

frequency

Figure 5: Comparison between the nonparametric es-
timate of the gas furnace transfer function, and the
transfer function by fitting a second order ARMAX
model. A good fit is obtained except at relatively
high frequencies where noise is expected to be the
dominant contribution.

The polynomial coefficients and their
standard deviations are

B =
0 -6.3133 16.9243
0o 1.9007 2.3403

A=
1.0000 -1.3899 0.5299
0 0.0516 0.0460

C =
1.0000 0.1386 0.1307
0 0.0856 0.0669

At this point in the exercise, the student has de-
veloped a transfer function model for the gas furnace
that can be used for designing simple control systems.
Omitting the details, an optimal LQG controller can
be designed to minimize the loss function

Jig = E[y*(k) + pu’ (k)]
by the computational method outlined in Chapter 12

89

1 Correlation function of residuals

0.5]
O~~~
-0.5
10 20 30
lag

0Qross correlation: Input 1 and Residuals

-0.1
-40

lag

Figure 6: The auto- and cross-correlation functions
of the residuals obtained after fitting a parametric
model provides a simple test of model fit. In this
case, a second-order ARMAX model appears to ade-
quately account for all of the essential correlations in
the gas furnace data. The horizontal lines mark the
95% confidence intervals for the null hypothesis.

of Astrom and Wittenmark [1]. The necessary calcu-
lations are encapsulated in the function dlqg given
below. This function makes use of others defined
in the Control Systems Toolbox. These are dlqr,
which computes a solution to the algebraic discrete
time Ricalli equation, and ss2tf, which converts a
state-space model representation to a transfer func-
tion description.

function [s,r]=dlqg(th,rho)

%DLQG

% [r,s] = DLQG(theta,rho) computes
% the LQ optimal controller to

% minimize the objective function

% 2 2
% Ely (k) + rho*u (k)]

% The resulting controller is given

% in transfer function form

%

% s(q)

% u(k) = - ——- y(k)
% R(q)

oy

%

% The plant model is given by theta
% in the standard form of the System
% Identification Toolbox.

% Ref:Chapter 12, Astrom & Wittenmark
% J.C. Kantor, 3 December 1987

{a,b,c,d,f)=polyform(th);
a=conv(a,f);

na = length(a)-1;
nb = length(b)-1;
nc = length(c)-1;

n = max([na,nb,ncl);

A = [zeros(n,1),[eye(n-1);..
. zeros(1,n-1)11;
A(1:na,1) = -a(2:na+1)’;

B = zeros(n,1);

B(1:nb,1) = b(2:nb+1)’;

K = zeros(n,1);

K(i:nc,1) = c(2:nc+1)’;

= K + A(:,1);

C = [1,zeros(1,n-1)];

-
[]

real(dlqr(A,B,C’*C,rho));

[s,r] = ss2tf(A-K+C-B+L,K,L,[0],1);

Letting p = 10~% gives an approximation to min-
imum variance control. The resulting controller is
given by u(t) = —G(q)y(t) where

G =50 _ 0.0762¢~! — 0.0512¢~2
¢~ R(g) ~ 1+1.1555¢-! + 1.6364¢~2

Finally, the student can compute the simulated re-
sponse of the closed-loop gas furnace control system.
The closed-loop transfer function between the output
and exogenous disturbances e(t) is given by

_ C(q)R(q)
Y0 = TG + B@S@ "

The following sequence of commands computes the
products of polynomials using the Matlab convolution
operator conv, does a simulation of the closed-loop
plant models, and displays the results.

% Compute control and closed-loop
% transfer fuctions

[s,r] = dlqg(th,0.00001);
[a,b,c]l=polyform(th);

p = conv(a,r) + conv(b,s);
qy = conv(c,r);

qu = conv(c,s);

% Construct a white noise input

rand(’normal’);
w = 0.1*rand(200,1);

% Output simulation

subplot(211);
plot(dlsim(qy,p,%w));
title(’Output’);
ylabel(’C02°);

% Control simulation

subplot(212);
plot(dlsim(qu,p,%));
title(’Control Action’);
ylabel(’Gas Flow’);

The simulated performance of the closed-loop reg-
ulator results in a 20.5% reduction in the variance
of the CO; stack gas composition compared to the
case of no control. The results are shown in Figure
7. Many additional aspects of the problem can be
readily treated using simple Matlab procedures.

6 Summary Remarks (Why
Matlab Can’t be Used for
Everything?)

In spite of its many useful features, Matlab is not
an appropriate tool for all applications. While it is
difficult to draw precise boundaries, there are some
general guidelines.

o Matlab is useful when your problems are ‘vector-
izable’

Matlab exhibits excellent floating point, perfor-
mance when using its matrix oriented primitive
operations. However, because it is an interpreted
(not compiled) language, it suffers some perfor-
mance degradation on scalar and non-numeric
operations. Some algorithms, such as for inte-
grating ordinary differential equations, can be
quite slow in Matlab for this reason.

1 Qutput
o
8 0
-1 . . .
0 50 100 150 200
0.05 Conlro! Action '
2
2 0 sl e
8
-0.05 . .
0 50 100 150 200

Figure 7: Response of the gas furnace with LQ con-
trolin place.

o Matlab is useful for prototyping algorithms.

Matlab is a high-level language with a large num-
ber of primitives so that even complex algorithms
can be written in a minimal number of lines. The
interpreter provides a convenient mechanism for
debugging numerical algorithms. For example,
simply by deleting the semicolon at the end of
a line, the intermediate results of any compu-
tation are printed. There are also facilities for
introducing keyboard interrupts and monitoring
intermediate values.

Matlab is useful when you need results fast.

In addition to the points given above, the avail-
able toolboxes and graphics facilities are of-
ten sufficient for solving problems from start to
finish, including the production of publication
graphics.

Matlab does not replace either FORTRAN or
specialized application software.

Matlab is not a replacement for a FORTRAN
compiler and a good package of scientific subrou-
tines. It not suited to truly large scale compu-
tation, nor can it be used effectively in a batch
mode. Linear programming provides an exam-
ple of the tradeofls. Straightforward Matlab LP
codes might be useful for problems with, say, up
to a few hundred constraints. This is no match

91

92

for commercial that can handle many thousands
of constraints.

Matlab is not ued effective for non-numerical al-
gorithms.

Matlab treats essentially all information as ma-
trices of real or complex floating point numbers.
The simple facilities for handling textual data in
Matlab are inadequate for anything beyond ma-
nipulating titles and labels. It would be a mis-
take to use Matlab to do data base programming,
for example, or for writing compilers.

7 Where to Obtain Matlab

Academic institutions can purchase Matlab directly
from the MathWorks, Inc. Their address is

The MathWorks, Inc.

21 Eliot Street

South Natick, MA 01760
Phone: (508) 653-1415

Fax: (508) 653-2997

E-mail: tung@mathworks.com

The MathWorks has special licensing provisions for
classroom and educational use. For commercial uses,
Matlab is also distributed by

MGA, Inc.

73 Junction Square Dr.
Concord, MA 01742
Phone: (508) 369-5115

Versions of Matlab ate available for IBM PC, AT, and

80386 platforms, including Weitek support. Also for -

the Apple Macintosh (with and without support for
the 68881), Sun and Apollo workstations, DEC Vax,
Gould, and Ardent machines. The Ardent version has
facilities for 3D solids rendering.

References

[1] Astrom, Karl J., and Bjorn Wittenmark (1984).
Computer Controlled Systems. Prentice-Hall,
Englewood Cliffs, NJ.

{2] Box, George E. P., and Gwilym M. Jenkins
(1976). Time Series Analysis: Forecasting and
Control. Rev. Edition. Holden-Day, San Fran-
cisco.

‘ [3] Chapra, Steven C., and Raymond P. Canale

(1988). Numerical Methods for Engineers, Sec-
ond Edition. McGraw-Hill, New York.

[4] Coleman, Thomas F., and Charles Van Loan
(1988). Handbook for Matriz Computations.
SIAM, Philadelphia.

[5] Fletcher, R. (1987). Practical Methods of Opti-
mization, Second Edition. John Wiley & Sons,
New York.

[6] Forsythe, George E., Michael A. Malcolm, and
Cleve B. Moler (1977). Computer Methods for
Mathematical Computations. Prentice-Hall, En-
glewood Cliffs, NJ.

[7] Hill, David R. (1988). Ezperiments in Compu-
tational Matriz Algebra. Random House, New -
York.

[8] Kahaner, David, Cleve Moler, and Stephen
Nash (1989). Numerical Methods and Software.
Prentice-Hall, Englewood Cliffs, NJ.

[9] Ljung, Lennart (1987). System Identification:
Theory for the User. Prentice-Hall, Englewood
Cliffs, NJ.

[10] Noble, Ben, and James W. Daniel (1988). Ap-
plied Linear Algebra, Third Edition. Prentice-
Hall, Englewood Cliffs, NJ.

[11] Press, William H., Brian P. Flannery, Saul A.
Teukolsky, and William T. Vetterling (1986).
Numerical Recipes - The Art of Scientific Com-
puting. Cambridge University Press, Cambridge.

[12] Wirth, Nicklaus (1976). Algorithms + Dala
Structures = Programs. Prentice-Hall, Engle-

wood Cliffs, NJ.

1
]

S

I PRODUCT FAMILY
" = ® ® = = ®E ®E =®

Application Note

Modeling and Analysis of a
2-Degree-of-Freedom Robot Arm

This application note describes the modeling and analysis of a
two-linkage robot arm using MATRIX,® and SystemBuild™.
The nonlinear equations of motion of the system are presented,
followed by the SystemBuild block diagram description of those
equations. The SystemBuild model is linearized and an optimal
regulator is designed based on the linearized model. The re-
sponse of the closed-loop system is found through simulation
and the results are plotted.

Modeling

Consider the two-linkage robot arm shown in Figure 1. Both
links are assumed to be perfectly rigid and are connected by a
frictionless pin joint. The system thus has two degrees of
freedom, 6, and 6,. There are two control inputs to the system,
the motor torques 7, and 7, at the rotating joints. For a
particular set of arm masses, lengths, and inertias, the nonlinear
equations of motion for the system are:

) & =%[‘n ~ 12+ 001 616, 5in 26
@) 6=—2_1¢sin26,

001 2
where 7 is given by:

(3) 1=0.07 + 0.06 cos? 6, + 0.05 sin 26,

These nonlinear dynamic equations can be represented in
SystemBuild, the interactive block diagram modeling facility of
MATRIXx, using combinations of algebraic and dynamic blocks.
Block diagrams constructed in SystemBuild are hierarchical.
Each node in the hierarchy is represented by a SuperBlock,
which can contain up to 99 other blocks, including other
SuperBlocks.

Figure 2 illustrates how the dynamics of the two-linkage robot
arm can be modeled in SystemBuild. The ROBOT super-block
shown in Figure 2 contains two algebraic general expression
blocks, four Nth order integrator blocks, two trigonometric
function blocks, and one gain block. Figure 3 gives the neces-
sary details required to define each block.

General expression blocks are defined by passing text strings in
the block form. The following text string was used in defining

Figure 1: Two-Degree-of-Freedom (2-DOF) Robot Arm

the block with an ID of [32] and having inertia as an output (see
Figures 2 and 3).

Y =0.07 + 0.06 * U2 * U2+ 0.05 *U1 * U1

This block calculates inertia as defined in Equation (3). The
strings used to calculate § and 6, in the algebraic expression
block with an ID of [12] are:

Y1=(U1-U2+0.01 * U3 * U4 *US)/yg
Y2 =020001 - 12 * U3 * U3 * US;

Note: Y1 is the calculation of 61, and Y2 is the calculation of
6,as defined in Equations (1) and (2).

Once all of the blocks have been defined as illustrated in
Figure 2, the system can be analyzed through the ANALYZE
option of SystemBuild. When this option is selected under the
BUILD menu, SystemBuild creates and internal simulation
model by assembling all of the SuperBlocks in the hierarchy. A
reference map is then created which displays the structure of
the super-block hierarchy:

Super-Block Reference Map:
ROBOT
All super-blocks identified
System Built with 0 error(s) and O warning(s) .
Use SIM(‘IALG’) to set the integration algorithm

The ANALYZE option in SystemBuild returns the user to the

MATRIXx command level where he can simulate the system,
linearize it, or issue any MATRIXx command.

integrated

systems inc.

Reprinted, with permission, from Application Note brochure. 93

1 1
s l D s

1-eTy2= 02/0.01 - 1/

i1
| JHETA 1 DOUBLE DOT
Yi= (U1 - U2 + 0.01+U34U4+US) /U§
'TA 2 DOUBLE DOT
]
1 1
2 — —

T

Y= 0.07 + 0,06*U2*U2 + 0.05*U1*U1

e l SIN(w)
Je2
| 05 TETA 2 o

Figure 2: Robot Arm Dynamics

Linearization and Controller Design

In MATRIXx the continuous state space model is described by
asystem matrix, § and the number of states, NS. The § matrix is
defined as the concatenation of the four matrices, (4, B, C, and
D) used in describing a linear system as given by the following
relation between the system output, y and the inputs, u.

x.=Ax + Bu
y=Cx +Du
where x{0) =x

and
{5 2]
CD
Once back at the MATRIXx command level (the <> prompt),

the system built in SystemBuild can be linearized with the LIN
command:

<>[SL,NSL}=LIN(.1)
where the argument of the LIN command is the size of the

perturbation to be applied to all system states and inputs when
the partials are computed numerically. MATRIXx returns the

94

system state space matrix, SL, and the number of states, NSL,
which represent the linearized system:

NSL =

4.

SL =
0.0000 0.0000 0.0000 0.0000 7.6923 -7.6923
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 100.0000
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
1.0000 0.0000 0.0000 0.0000 0.0060 0.0000
0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

The system has four states (6, 61, 62and 6,), two inputs (the
motor torques) and four outputs (which are the states).

Once the ROBOT SuperBlock has been linearized, one can de-
sign a linear regulator controller. The REGULATOR com-
mand computes the optimal constant gain, state-feedback ma-
trices for continuous-time systems under the-assumption of full
state feedback.

Inputs into the REGULATOR command include the 4 and B
(plant and input) components of the system matrix, S and the
design weighting matrices, R_, R, and R, where R, is op-
tional. The design weighting matrices provide weights on the
states, x, and controls, u, as defined by the following quadratic
cost function:

COST = I (XRxex + w'Rwit + xRt + WR 'nx)dt

[

Note: Ruu must be positive definite and Rxx must be positive
semi-definite.

The A and B parts of the system matrix, SL, can be extracted
with the SPLIT command:

<> [A,B]=SPLIT (SL, NSL)

B =
7.6923 -7.6923
0..0000 0.0000
0.0000 100.0000
0.0000 0.0000

0. 0. O 0.
1. 0. O. 0.
6. 0. 0. O
0. 0. 1. O.

Diagonal state (RXX) and control (RUU) weighting matrices
are defined for the purpose of designing an optimal regulator.

<> RXX=DIAG([10 100 1 100])‘

0. 0. O
<> RUU=DIAG([20 100])
RUU =

20. 0.
0. 100.

ALGEBRAIC EQUATIONS (ALG)
TYPE: GENERAL EXPRESSION
INPUTS: 6

1=12= U2/0.01 - 1/2+U3+U3+05

OUTPOTS: 2 —_— — |ERie
ALGEBRAIC EQUATIONS: s I =
Yle - -;
¥2 - - ; DYNAMIC SYSTEMS (YN
TYPE: Nth ORDER
' INTEGRATOR
HETA 1 DOUBLE DOT ———
0UTPUTS: 1
| Y1 (©1 - 02 + 001403404V} /06 STATES: 1

ORDER OF INTEGRATION: 1
INITIAL CONDITIONS: O

1
o — HETA 2 17y
‘TRIG FUNCTIONS (TRG)
T aTE ALGEBRAIC EQUATIONS (ALG)
ouTRUTS: 2 ::::T:“:" BLOCK
OUTPUTS: 1
SIN a7nera 2 [T GAIN: 2
SIN THET) SIN()
g
te2
INERTIA] Y- 0.07 + 0.06402402 + 0,05+U14UL
ALGEBRAIC EQUATIONS (ALG) 05 THETA 21 cosu)
‘TYPE: GENERAL EXPRESSION
INPUTS: 2 ‘TRIG FUNCTIONS (TRG)
OUTPUTS: 1 TYPE: COSINE (u)
ALGEBRAIC EQUATIONS : INPUTS: 1
R OUTPUTS: 1

Figure 3: Block Form Details (ROB SuperBlock)

95

The optimal regulator is designed with the REGULATOR
command:

<>[EV, KR] =REGULATOR (A, B, RXX, RUU)

MATRIXx returns the closed-loop eigenvalues (of the linear-
ized system) and the optimal regulator state feedback gains, KR.

KR -

1.0365 2.2261
-0.0298 -0.0944

0.0683 0.2112
0.1727 0.9955

EV =
-8.7233 + 4.8199i
-8.7233 - 4.81991i
-4.0127 + 1.1024i
-4.0127 - 1.1024i

The closed-loop system can now be completed in SystemBuild
as the SuperBlock SYSTEM, which is illustrated in Figure 4.
This SuperBlock includes the SuperBlock ROBOT (the open-
loop plant), the gain block, MINUS KR, and two summing
junctions. Rectangular gain matrices are defined in
SystemBuild as state space systems with zero states. Thus the
gain block, MINUS KR is defined as a state space system with
zero states, four inputs, and two outputs, and with the gain

matrix —KR passed from the MATRIXx stack (note: input as
[-KR]). The SuperBlock SYSTEM has six external inputs, the
first four being the reference states being the last two are refer-
ence (disturbance) torques. "SYSTEM also has four external
outputs which are the actual states. The summing junction in
the top left of Figure 4 computes the difference between the
reference states and the actual states. This error vector goes to
the gain block, which computes the control torques. These
control torques are differenced from the reference torques in
the summing junction which is just below the MINUS KR
block in Figure 4. The outputs of this summing junction are the
actual torques which are inputs to the differential equations in
the ROBOT SuperBlock. Figure 5 gives the details necessary to
fill out each of the block forms in the SYSTEM SuperBlock.

Closed-Loop Simulation

The closed-loop system can be analyzed through the
ANALYZE option of SystemBuild. Selecting SYSTEM for
analysis results in:

Super-Block Reference Map :
SYSTEM
ROBOT
All super-blocks identified
System Built with 0 error(s) and 0 warning(s).
Use SIM(‘IALG’) to set the integration algorithm

THETA OT REF

(=
e

MINUS KR

[CIROUE | REF .
| CONTROL TORQUE 1 020 5 per e TORQUE 1
’;omnot. TORQUE 2]1 2 E l ORQUE. 2

e —

. ROBOT
CTFHHETA 1DO z3
o1
(—DETR SUPER l
ETA 2 DO} <: BLOCK B l
a—DEn | : T
Continuous

Figure 4: Closed-Loop System

96

13 THETA 1 DOT ERROR

ERIRETR
2 [Juema 1 ERROR

b
i

THETA gui
-py %
Lk Th 2 KES

[JHETA 2 ERROR

ALGEBRAIC BLOCK (ALG) DYNAMIC SYSTEMS (DYN) ALGEBRAIC BLOCK (ALG)

TYPE: SUM OF VECTORS TYPE: STATE-SPACE SYSTEM TYPE: SUM OF VECTORS
INPUTS: 8 INPUTS: 4 INPUTS: 4

OUTPUTS: 4 OUTPUTS: 2 OUTPUTS: 2

#INPUT VECTORS: 2 STATES: 0 #INPUT VECTORS: 2

STATE-SPACE MATRIX: ~KR
MINUS KR

COWMBUE L REF
_iormzon TORQUE 1 e 5 7ORQUE 1
ucmnot. TORQUE 2 Il:;é- ROUE 2

—T

ROBOT
1
SUPER |
BLOCK l
2 SUPER BLOCK (SUP)
NAME: ROB
INPUTS: 2
OUTPUTS: 4

Figure 5: Block Form Details (SYSTEM SuperBlock)

After receiving the above message you will be at the MATRIXx
command level. The time vector used for simulation is defined
as starting at 0 and going to 10 seconds in steps of 0.1 seconds.

< T=[0:0.1:10]*;

The reference states call for step rotations of both joints at
consistent angular velocities (0.5 and 0.375 radians/seconds)
from O to 2 seconds, after which the final angles (0.1 and 0.075
radians) are to be held. The reference states are then defined as:

<> THE1DOT=[0.05*ONES (21, 1) ; O*ONES (80, 1)] ;
<> THE1=[0.05*T(1:21) ;0.10*ONES(80,1)],

<> THE2DOT=[0.0375*ONES (21, 1) ; 0*ONES(80,1)];
<> THE2=[0.0375*T (1:21) ; 0.075*ONES (80,1)] ;

<> USTATE=[THE1DOT THE1 THE2DOT THE2] ;

The reference states can be plotted by typing the following
command (see Figure 6):

<> PLOT (T, USTATE, ‘STRIP REPORT XLAB/TIME (sec)/...
YLAB/THETAL1 DOT|THETAl | THETA2 DOT|THETA2|(/...
TITLE/REFERENCE INPUT VS TIME/')

The reference (disturbance) torques are defined as:

<> TAU1=0*ONES (T) ;
<> TAU2=0*ONES (T) ;

<> UTORQ=[TAUl TAU2];

The reference states and torques can be combined to define the
system input matrix:

<> USYS=[USTATE UTORQ];

The closed-loop response is then simulated with the SIM com-
mand as follows:

<> Y=SIM(T, USYS)

Figure 7 illustrates the system response to the system inputs.
This plot can be generated by typing the following:

<> PLOT (T, USTATE, ‘STRIP REPORT XLAB/TIME (sec)/...

YLAB/THETAl DOT|THETAL | THETA2 DOT|THETA2|/...
TITL/SYSTEM RESPONSE VS TIME/')

97

We can compare the commanded and the actual trajectory by
plotting both the input and the response on the same plot (see
Figure 8).

<> PLOT(T, [USYS Y], ‘STRIP2 REPORT XLAB/TIME(sec)/...
YLAB/THETA1 DOT|THETA1|THETA2 DOT|THETA2|/...
TITL/REFERENCE INPUT & SYSTEM RESPONSE VS TIME/’)

The response of the system over a larger (more nonlinear) state
trajectory can be computed with:

<> Y2=SIM(T, 2*USYS) ;

The results are shown in Figures 9 through 11. Note the
responses are similar to those obtained with the smaller
trajectory.

Alternate Methods

We have described an approach to modeling and analyzing a
two-linkage robot arm using the ISI Product Family. Many
different modeling approaches could also be taken. Using

algebraic loops, the joint angular accelerations could be written
in terms of themselves, i.e.:

91=f(91 ?z. 6, 65, 61, 6, T, 1'2)
br=1(8y, 8 6, 6 61, 6, 71, 72)

This approach could be useful if the equations are hard to
separate. FORTRAN blocks could also be used to define the
dynamic equations. This would allow one to include existing
FORTRAN simulation code into SystemBuild where the dy-
namics could be analyzed and controllers designed. One could
use a symbolic manipulation program to generate the dynamic
equations and the FORTRAN code to simulate them.

The controller design presented is a very simple continuous-
time linear one. In practice, robot controllers tend to be
nonlinear and multi-rate digital. Designing nonlinear multi-
rate controllers is very easy with SystemBuild, as there are a
wide variety of nonlinear blocks available. Sampling rates are
defined at the SuperBlock level. Different sampling rates can
be used for different SuperBlocks, without restricting the rates
to being multiples of each other. Adaptive controllers could
also be designed.

.06
I
D oef i
< r ‘!
Loz !
g r !
ok . M 1 A L n L . .
2
- 09 v
< E -~
g o8 [-
I r
03
F',v
° ;
04—
- E 1
S 03 F i
~ 025 !
02 i
gk i
£ o1 E .‘
oF :
.08 -
E -
o 06 - Pl
< & s
£ o4f -
I £ i
Foo2f
%
o & N N 4 N N N N . .
) 1 2 3 4 5 6 7 8 [10
TIME (sec)
REFERENCE INPUT VS, TIME

Figure 6

98

10
10

]] o 1 b
4 4 © 3 1®
E ~] I~
- w0 w - ©
E:
z
¢ |~
4 O~ w v b B! 1 1°
=
“s
28
&
g |~
1 A o 33 p L 4
3
@
. & L] . Im
: \
N
SN N
A1 s
PUPSEL g ezzZIIIo-]] Al we=T] N o~
i
i
i /
i . -
i]
{
. .
N A
H i N AL \,
S Htasdedend Lot e N Mot L L it Mo
-3 < N o o~ o w n < o~ o L] 9 <
°g § ©° § 38°8 883°3 ¢ 8§83 8-

° .
100 Z V13HL Z viaHL 0P | VI3HL b VI3HL 1P Z VI3HL Z Vi3HL

e8

TIME (sec)
REFERENCE INPUT & SYSTEM RESPONSE VS TIME

Fi

bl

ey

& 8 3

0P | VI3HL

oy v -

} Vi3HL

1P T VI3HL

© ¥ o ow
@ o e =

10

TIME (sec)
TWO + REFERENCE INPUT VS TIME

re 9

igu

Fi

10

0P | VI3HL

L

b VI3HL

0P T VI3HL

T VI13HL

TIME (sec)
SYSTEM RESPONSE TO TWO « REFERENCE INPUT

ve 10

igu

Fi

100

e

3

e

THETA 1 dot
TITITYRRYT

THETA 1
T
N
K3

R,

o
®o

=3
o
g
s
l/'
i
H
i
!
1
'
!

THETA 2 dot
o
G

o
TR

‘l
(5

o

o
&
o [rrrTprTrTTrTITTRT
T
\
,

THETA 2

(=3

1 2 3 4 5 6 7 8 9 10
TIME (sec)
TWO « REFERENCE INPUT & SYSTEM RESPONSE VS TIME

Figure 11

i ted
%’ﬁgﬁs inc.

. Corporate Headquarters:

. Integrated Systems Inc.

2500 Mission College Blvd.

! Santa Clara, CA 95054-1233 !
Tel: (408) 980-1500 i

European Office:

MAT s arenistored rademark and S - :
is a trademark of I aSy Tnc. 7 Integrated Systeras Inc Limited

b 274 Cambridge Science Park !
ANO0390 » 3/90 Milton Road, Cambridge CB4 4WE
England
Tel: 0223 420999

101

102

Simnon — A Simulation Language for

Nonlinear Systems

Tomas Schénthal

Department of Automatic Control
Lund Institute of Technology
S-221 00 Lund, Sweden

Abstract. This paper presents Simnon, an inter-
active simulation environment for nonlinear sys-
tems, developed by the Department of Automatic
Control, Lund Institute of Technology, Lund Swe-
den. The following topics are covered: System de-
scriptions, interactive facilities, examples, appli-
cation areas and technical features.

1. Introduction

Simnon is a modular high level language for
describing dynamical systems with continuous
and/or discrete time. Equally important, it is an
interactive command language, a “software labo-
ratory”, designed to organize and carry out simu-
lation runs, vary circumstances (i.e. parameters,
initial values or the models themselves) and dis-
play results graphically or numerically. A macro
facilitity permits developers to pack models and
command sequences into “turn-key” applications.
The first version of Simnon appeared as the re-
sult of a master thesis in 1972. At that time dig-
ital simulation meant expensive batch runs on
main frames, or writing your own dedicated For-
tran programs, since there hardly existed any

interactive systems with reasonably flexible in-
put formats for the type of computers that a
small research group could afford. Simnon soon
became a standard tool at Automatic Control,
Lund. In the years to follow Simnon went through
several stages of development. Today Simnon is
used worldwide by many universities for research
and education in several disciplines and is equally
popular in industry. Thanks to the MS-DOS ver-
sion, Simnon is rapidly finding new users in both
large and small organizations.

2. System Descriptions

The key concept is the system, which corre-
sponds to a mathematical model of the real-
ity being studied. In Simnon a system is a
sequence of statements in a special modeling
language. There are continuous systems (dif-
ferential equations) and discrete systems (dif-
ference equations). A third type of system,
connecting system, is used to form compound
systems from continuous and discrete systems.

103

inputs u states x outputs y

Continuous system:

z = f(z,u,t)
y=g(z,u,t)

Discrete system:

z(ter1) = f(2(te), u(te), t)
y(te) = g(=(te), u(te), te)

i1 = h(z(te), u(te), tx)

As we shall see later, describing a process (con-
tinuous system) controlled by a digital regulator
(discrete system) is very natural in Simnon, but
Simnon as such has no “built-in control theory”.
The approach is “open architecture”, deferring all
that is specific to a particular discipline to the
user written models.

The statements of the system description lan-
guage are: declarations (type of system, type of
variable), assignments of variables, initial val-
ues and parameters. Variable assignment: vari-
able = [IF condition THEN expression ELSE]
expression. Expressions are formed by the com-
mon arithmetic operators and elementary func-
tions. Random numbers, time delays, interpola-
tion and the ability to drive a simulation by an
external data file are also provided. Please refer to
‘Technical Features, Compiler’ for more details.

3. Interactive Facilities

Once a system has been written according to the
rules of the system description language, the user
can, with the aid of the command language, begin
to experiment with it. First of all, the system has
to be translated by Simnon’s compiler. Then vari-
ables are selected for plotting, and a simulation
over a selected time interval is started.

Simulation, in general, is very much a trial-and-
error process. If the results differ from those ex-
pected, it is easy, with Simnon, to change a pa-

* rameter, an initial value, or even an equation and

104

repeat the simulation. In the meantime Simnon
can accurmulate raw material for a report. All this
can be accomplished conveniently with only a few

of Simnon’s 43 commands. In addition to this, op-
erating system commands may be executed from
within Simnon.

The interaction mode is command driven, i.e.
commands can be entered in arbitrary order, like
when you communicate with conventional oper-
ating systems such as MS-DOS, Unix or VMS. In
‘Technical Features, Macros’ it is indicated how
the user may influence this situation.

4. Examples

4.1 Chaos

In 1963 Lorenz derived a set of ordinary differ-
ential equations to approximate the behavior of
atmospheric air currents:

&= a(y—=z)
y=br—y—zz
z=zy—cz

These equations can be represented by the follow-
ing Simnon system:

continuous system Lorenzeq

state x y z States
der dx dy dz Derivatives
dx=a*(y-x) Computations
dy=b*x-y-x*z

=x*y-c*z
a: 10 Parameters
b: 28
c: 2.667
x: -8 Initial values
y: -8
z: 24
end

To solve the equations we type:

syst Lorenzeq
store x y z
error le-6

Translate the system
Store the solution

simu 0 20 Simulate
ashow z(y) Plot zvs y
text ’Simulare Necesse Est!’
Add a title
hcopy Print the diagram

Demand higher accuracy

which produces:

Sinulare Necesse Kstt 1.5 Gutput and set-point
1 /\ /\
S
0.5
e T T T v pJ
L 10 28 3 4]
9.1 Control signal
0.8
e
-0.05 ,
-6.1 |
) 2) L)

Now we can activate the anti-windup by setting
the low and high values of the control. We then
specify overplotting and repeat the simulation:

par ulow: -.1

par uhigh: .1

plot ylprocl:1 1 uclip:2 1

simu

1.5 Output and set-point

4.2 Control
1
A simple example of a nonlinear control is one
that respects the saturation limits of its regulator: os
Regulator Process
e .
. N N v 10 20 B @
— XA 4= f - — 0.1 Control signal
(X
e
This model is represented in Simnon as a continu-
ous process called proc, a discrete regulator called -e.83
pireg and a connecting system called regsys. o
The discrete PI regulator has logic to limit satu- ’ 1) A 0)
ration, or windup, on its integrator.
To simulate the model without anti-windup (de- This gives far better performance. If we instead
fault), type: wish to try an adaptive regulator in this environ-

ment, we could replace the module pireg with
a “plug compatible” (i.e. having the same inputs
and outputs) module adaptreg, and repeat the

syst proc pireg regsys
yar p pireg regey above commands, except, of course, that the pa-

store yr y[proc]

simu O 40 rameter tunings would look different.

split 2 1

ashow y yr

text ’Output and set-point’ 5. Application Areas

ashow uclip

text ’Control signal’ Simnon is used for education and research in

105

106

such diverse disciplines as automatic control, bi-
ology, chemical engineering, economics, electrical
engineering, mathematics, mechanical engineer-
ing, etc. Typical problems include engine control,
food processing, power systems, process control,
robotics and ship steering.

6. Technical Features

6.1 Compiler

Before a model can be simulated, it has to
be translated by Simnon’s integrated compiler.
The compiler not only checks for syntax errors,
but also ensures that all quantities appearing to
the right of an assignment have defined values.
Thanks to the equation sorter, equations may be
entered in arbitrary order; and algebraic loops
will be detected. One kind of optimization is
made: Time-invariant expressions are only eval-
uated once.

Numerical errors (e.g. zero divide) during simu-
lation will be pinpointed in their source context.
Since the models are compiled into machine code,
the simulations will run as fast as Fortran pro-
grams. In contrast to conventional programming
techniques, the turnaround times are neglible, al-
lowing the users to modify their models “on the
fly”.

The MS-DOS version has dynamic memory allo-
cation, which permits very large models.

6.2 Data Formats

Simnon is file oriented: System descriptions and
macros are normal text files that can be prepared
by any text editor. Time series are stored as bi-
nary files. These can be exported to printable
ASCII (a time series then forms a column) and
re-imported.

There exists a one-way path from PC-Matlab
(The MathWorks, Inc, Sherborn, Mass.) to Sim-
non at the system description level: Included with
Simnon is a preprocessor written as a Matlab
function that takes as arguments a matrix set
comprising a linear, time-invariant system and
produces a complete Simnon system description.
The command hcopy dumps the graphics part of
the screen to a plotting device or to a file for
further processing.

6.3 Documentation

Simnon comes with an English 180 page computer
set tutorial and reference manual with many ex-
amples. The on-line help utility has over 100 en-
tries.

6.4 Macros

Simnon usually takes commands from the key-
board, but a sequence of commands can be de-
fined as a macro (for historical reasons the term
‘macro’ is used; perhaps a more adequate term
is ‘command procedure’). A macro can then be
invoked by typing its name and any associated
arguments. In this way the user may add extra
commands to the Simnon vocabulary. There is
provision for jumps and input/output just like
in a programming language. Macros can be used
to change Simnon’s interaction mode from com-
mand driven to question and answer sequences,
which may be utilised for demonstrations. Macros
enable one person to develop and test a simula-
tion model and someone else to use it. Macros
have the feel of genuine Simnon commands, or
they could act as “programs within the program”.
Typically, such a macro could present the user
with a list of alternatives, then prompt the user
for a choice (input wave form, PID-control or
adaptive, etc.), or a numerical value.

6.5 System Requirements, MS-DOS ver-

sion

¢ IBM PC, XT, AT, PS/2, 80386-based or com-
patible personal computer

e 8087, 80287 or 80387 maths coprocessor

e MS-DOS/PC-DOS version 2.00 (or later) or
085/2 with Compatibility Box

¢ 256 kB of RAM or more

e 3.5 or 5.25 inch diskette drive

o Hard disk (strongly recommended)

e One of these graphics systems (highest res-
olution used): CGA, EGA (enhanced or
mono display), Ericsson PC, Hercules, Olivetti
M24/AT&T, Toshiba PC or VGA/MCGA

e Recommended hard-copy devices:

— Epson MX-80, IBM 5152 or compatible
— HP LaserJet family
— PostScript printers (e.g. Apple LaserWriter)

6.6 Prices, MS-DOS version

(July 1988, version 2.11) North American cus-
tomers pay in US $. All other customers pay in
Swedish currency (SEK). Swedish customers will
be charged value added tax.

One copy of Simnon costs US $ 695 (SEK 5000).
Quantity discounts:

3-4 copies 10 %
5-9 copies 15 %
10- copies 20 %

For universities and schools the following prices
apply:

1 copy US$ 345 (SEK 2500)
5 copies US $ 1250 (SEK 9000)
10 copies ~ US $ 1750 (SEK 12500)
20 copies US $ 2500 (SEK 18000)

Universities and schools may buy the Classroom
Kit for US $ 500 (SEK 3500), provided that they
(have) order(ed) at least one copy of regular Sim-
non. This reduced problem-size version of Sim-
non, which is intended for education only, comes
with a license for 10 PCs.

7. References

For all of these works Simnon has been used ex-
tensively:

Astrom, K. J., Bell, R. D. (1987): Dynamic Mod-
els for Boiler-Turbine-Alternator Units: Data
Logs and Parameter Estimation for a 160 MW
Unit, CODEN LUTFD2/TFRT 3192, Depart-
ment of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

Simmon is a product of SSPA Systems,
PO Box 24001, S-400 22 Goteborg, Sweden.
Fax: +46 31 63 96 24, Phone: +46 31 63 95 00.

In North America, Simnon is provided exclusively by
Engineering Software Concepts, Inc.,

PO Box 66, Palo Alto, California 94301.

Fax: 415 325 0531, Phone: 800 325 1789

(in California 415 325 4321).

Simnon is a USA registered trademark of the
Department of Automatic Control, Lund, Sweden,

who invented Simnon, created a larger user community for it,
and developed it into a commercial product, but no longer
supports it.

Olsson, G., Holmberg, U. and Wikstrom, A.
(1985): A Model Library for Dynamic Simu-
lation of Activated Sludge Systems. Reprinted
from Instrumentation and Control of Water
and Wastewater Treatment and Transport Sys-
tems, Pergamon Press, Oxford and New York.

Astrém, K. J. and Wittenmark, B. (1984): Com-
puter Controlled Systems — Theory and Design,
Prentice Hall Inc, Englewood Cliffs, NJ.

Astrom, K. J. and Wittenmark, B. (1988): Adap-
tive Control, Addison-Wesley, Reading, Mass.

Elmqvist, H., Astrom, K. J. and Schdnthal, T.
(1986): Simnon - User’s guide for MS-DOS
Computers, Department of Automatic Con-
trol, Lund Institute of Technology, Lund, Swe-
den.

Mattsson, S. E. (1984): Modelling and Control
of Large Horizontal Axis Wind Power Plants,
Ph.D. dissertation,

CODEN: LUTFD2/TFRT-1026, Department
of Automatic Control, Lund Institute of Tech-
nology, Lund, Sweden.

107

108

PART III
Implementation of Digital Controllers

Implementing Digital Controllers i it iiiiiiiiiieneenns m

Hardware/Software-Environment for DSP-Based Multivariable Control 141
(H. Hanselmann, H. Henrichfreise, H. Hostmann, and A. Schwarte)

Implementation of Digital Controllers~A Surveycoiiiiiiiiiiiiiannn. 145
(H. Hanselmann)

The Programming Language DSPLttt 171
(Albert Schwarte and Herbert Hanselmann)

Application of Kalman Filtering in Motion Control Using TMS320C25 185
(Dr. S. Meshkat)

Implementation of a PID ControlleronaDSPo, 205
(Karl Astrém and Hermann Steingrimsson)

DSP Implementation of a Disk Driver Controller 239
(Hermann Steingrimsson and Karl Astrém)

Implementing Digital Controllers

A lot of work has been done recently in the area of modern control theory, and many quite elegant theories
have resulted. However, implementation has lagged substantially behind theory and idealized mathemati-
cal design. The outcome is that modern control theory is still limited somewhat to research labs, and most
of the servo control applications in the industry utilize classical control techniques. This introduction dis-
cusses some of the issues in implementing digital controllers. It should be emphasized that there are no easy
solutions — digital controllers still lag in the body of knowledge that is available for implementation. The
introduction and the articles in this part may not provide canned solutions; however, they do highlight many
pitfalls and problems of implementation and provide suggestions to minimize them.

The major issues in implementing digital controllers are the effects of finite word length, optimal controller
structures, computational delays, and software development for microprocessors/DSPs. The most impor-
tant issue in implementation is the effects of fixed-point arithmetic and finite word length. Some problems
can be minimized by using floating-point processors; however, this may not always be possible. Before
going into the effects of finite word length, section Fixed-Point Versus Floating-Point will review fixed-
point and floating-point arithmetic formats.

Fixed-Point Versus Floating-Point

Floating-point processors have a very large dynamic range. In floating-point, a number is represented with
amantissa and an exponent. The mantissa represents the fraction, and the exponent represents the number
of digits to the left of the decimal point. For example, assuming that a four-digit storage is available, 3740
can be written as 0.374 x 104, In floating-point, this can be represented as 4.374; where, exponent =4 and
mantissa = 374.

The largest floating-point number represented by four digits is 9.999 or 0.999 x 109 = 999000000. The
largest fixed-point number represented by four digits is 9999.

Floating-point numbers thus allow a much larger dynamic range than fixed-point numbers. However, float-
ing-point does not necessarily eliminate all finite word-length effects. Storage length is still limited, but
with a larger dynamic range. There is also some loss of resolution. The number of significant digits in a
mantissa determines the accuracy of the numerical value. However, the mantissa does not use all the storage
capacity as some of the storage is taken up by the exponent. In practice, to minimize this loss of resolution,
floating-point formats use 24 bits or greater to represent the mantissa. The TMS320 floating-point genera-
tions, TMS320C3x and TMS320C4x, have 32-bit architectures. Three floating-point formats are available:
short format with a 12-bit mantissa and a 4-bit exponent, standard-precision format with a 24-bit mantissa
and an 8-bit exponent, and extended-precision format with a 32-bit mantissa and an 8-bit exponent.

Floating-point processors are generally more expensive than fixed-point processors, and the cost may not
be justified in some applications. Floating-point may be needed in applications where either gain coeffi-
cients are time varying or signals and gain coefficients have a large dynamic range. Other cases where
floating-point can be justified is where development cost is more significant than component cost, and very
low quantities are required. Floating-point processors usually allow code to be developed in high-level
languages and reduce the need to fully identify the system’s dynamic range.

Fixed-point processors generally are less expensive because less hardware is required on chip. In addition,

they have smaller word length (typically 16 bits), and system cost is lower. However, more effort is required

111

112

to develop appropriate scaling factors to eliminate the effects of truncation or overflow during the interme-
diate and final states. Even in applications requiring use of floating-point for dynamic range requirements,
it may be possible to use to use fixed-point processors. If gain coefficients have a large dynamic range but
are constant, their dynamic range can usually be reduced by structure optimization techniques. If gain coef-
ficients are time-varying and require adaptive control, a hybrid scheme can be used. Calculations for system
identification typically have a slower update rate and can be performed with pseudo-floating-point format.
The controller calculations, on the other hand, have a much faster rate and can be implemented in fixed-
point arithmetic. Fixed-point processors can thus be used in most applications. The next section, Binary
Arithmetic, will deal with fixed-point numbers only.

Binary Arithmetic

In binary format, a number can be represented in signed magnitude, where the left-most bit represents the
sign and the remaining bits represent the magnitude:

+52 (decimal) = 34 (hex) is represented as 0011 0100 (binary)

—52 (decimal) =-34 (hex) is represented as 1011 0100 (binary)

Twos complement is an alternate form of representation used in most processors, including the TMS320.
The representation of a positive number is the same in twos complement and in signed magnitude:

+52 (decimal) = 34 (hex) is represented as 0011 0100 (binary)

However, the representation of a negative number is different; as its name implies, the magnitude of anega-
tive number is given in twos complement.

—52 (decimal) =-34 (hex) is représemed by taking its twos complement, 1100 1100 (binary); i.e.,

Convert +52;¢ 0011 0100
Invert all bits to get ones complement 1100 1011
Add one to get twos complement + . 1
Twos complement is 1100 1100
Therefore, —52 (decimal) = —34 (hex) is represented as 1100 1100
Adding 52 and (-52) gives 0011 0100
+ 11001100
0000 0000

as expected. The main advantage of twos complement is that only one adder is required to handle both posi-
tive and negative numbers. An addition will always give the correct result for both addition and subtraction.
Also, if the final result is known to be within the processor’s number range, an intermediate overflow can
be ignored as the correct final result will still be produced. The largest positive number that can be repre-
sented with 8 bits is 7F (hex) or 127 (decimal), and the largest negative number represented with 8 bits is
80 (hex) or —128 (decimal).

The fixed-point binary representation does not have any binary point and does not represent fractions. How-
ever, it is sometimes advantageous to use an implied binary point to represent fractions. In signal process-
ing, it is common to represent a number in fractions. For example, if 0.99 is the highest number that can
be represented, the result of multiplying any two numbers will always be less than one — an overflow will
never occur.

The location of the implied binary point affects neither the arithmetic unit nor the multiplier. It affects only
the accuracy of the result and location from which that value will be read. For fractional arithmetic, the re-
sultis read from the upper 16 bits. For integer arithmetic, the result is read from the lower 16 bits (assuming
no overflow). Fractional arithmetic loses accuracy but protects from overflows, while integer arithmetic

provides an exact result but offers no protection from overflow. In fractional arithmetic, an addition or a
subtraction could produce an overflow, but a multiplication never causes one; generally, a single carry bit
is sufficient to handle the overflow.

For TMS320 processors, numbers are typically represented in the Q15 format; where, the number following
the letter Q represents the quantity of fractional bits. This implies that, in Q15, each number is represented
by 1 sign bit, 15 fractional bits, and no integer bits. Likewise, a number in the Q13 format has 1 sign bit,
13 fractional bits, and 2 integer bits. The following shows both Q formats of eight decimal fractions and
one integer:

decimal Q15 Q13

+0.5 0.100 0000 0000 0000 000.1 0000 0000 0000
+0.25 0.010 0000 0000 0000 000.0 1000 0000 0000
+0.125 0.001 0000 0000 0000 000.0 0100 0000 0000
+0.875 0.111 0000 0000 0000 000.1 1100 0000 0000
0.5 1.100 0000 0000 0000 100.1 0000 0000 0000
-0.25 1.110 0000 0000 0000 100.1 1000 0000 0000
-0.125 1.111 0000 0000 0000 100.1 1100 0000 0000
—0.875 1.001 0000 0000 0000 100.0 0010 0000 0000
-1.000 1.000 0000 0000 0000 100.0 0000 0000 0000

When two Q15 numbers are multiplied, the result is Q30 format and is also a fraction. The result has 30
fractional bits, 2 sign bits, and no integer bit.

-0.5 1.100 0000 0000 0000
x 0.5 x 0.100000000000000
—0.25 11.11 0000 0000 0000 0000 0000 0000 0000

To store the result as a Q15 number, a left shift of one is performed to eliminate the extra sign bit, and the
left-most significant 16 bits are stored. The result is stored as 1.110 0000 0000 0000.

Multiplication never gives an overflow in Q15 format, but successive additions may. If the final result is
Known to be within range, overflow in partial results will give correct results for the final sum. However,
the saturation mode on the TMS320 must be turned off. For example,

+0.875 1.100 0000 0000 0000 (Q15 format)

+ 2050 + 0.100 0000 0000 0000
+1.375 1.011 0000 0000 0000

+ =0.500 + 1,100 0000 0000 0000 (add twos complement to obtain result)
+0.875 0.111 0000 0000 0000

Finite Word-Length Effects

Finite word-length effects are probably the most critical issue in implementing controllers. Most digital
controllers use fixed-point processors. In a fixed-point processor, only a finite amount of storage length —
for example, 4, 8, or 16 bits — is available to represent the signal and coefficients. Signals and coefficients
must be scaled to fit in the dynamic range and word length of the processor. This limited storage capacity
is referred to as the finite word-length issue. Finite word-length effects show up as noise in the system and
may cause limit cycles or instability. But, it should be noted that finite word-length effects are somewhat
forgiving in first- and second-order controllers. Finite word-length affects the controller in two ways:
coefficient quantization and signal quantization.

113

114

Coefficient Quantization: Finite word length affects the representation of coefficients. The coeffi-
cients may need to be truncated or rounded to fit in that word length. If truncation or round-off is necessary,
the process is called coefficient quantization. Coefficient quantization alters the transfer function of the
system and changes the pole-zero locations and the gain of the system. Coefficient quantization is depen-
dent upon the sampling rate as well as the word length. As the sampling rate gets higher, the poles tend to
move toward and cluster around z=1, making the system very susceptible to coefficient quantization. Coef-
ficient quantization can be minimized by using proper structures. Some of these structures make the system
less susceptible to errors resulting from the effects of truncation/round-off. This is discussed in section
Controller Structures.

Signal Quantization: Finite word length can also cause signal quantization. This can be divided into
three different categories.

A/D and D/A Quantization Effects: One type of signal quantization occurs upon the conversion and
representation of a continuous signal into discrete magnitude by an A/D or a D/A converter. The A/D and
D/A word lengths are usually limited to 8—12 bits. A/D and D/A conversion also affects the controller by
contributing to computational delay. This is discussed in section Computational Delay .

Most commercial A/D and D/A converters are available in the range of 8 to 16 bits with heavy premium
on higher resolutions. An 8-bit A/D converter gives an accuracy of 1 in 256 or error of 0.4%, while a 10-bit
A/D converter gives a resolution of a 1 in 1024 or an error of 0.1%. Unlike errors caused by the other
quantization processes, errors in the processor’s word length due to A/D and D/A effects are not recursively
fed back into the control system. In most cases, signal conversion requires a smaller word length than the
processor word length. Sensor accuracy must also be taken into account. If the sensor has a 5-mV noise in
a 5-V system, then there is no point in having an A/D with greater than 10-bit resolution. Once the A/D is
selected, the D/A is chosen to have the same or slightly higher resolution. Selection of A/Ds and D/As are
usually not a major problem when implementing the controller. Too often, errors from numerical calcula-
tions (truncation or round-off) are mistaken as low resolution in the input/output signal.

If the controller is used in the servo mode and forced to follow a reference signal, the reference signal must
then be represented correctly. If it is represented with a higher precision than the A/D’s resolution, the error
will never go to zero, causing a limit cycle.

Truncation and Round-Off Effects: The second kind of signal quantization appears when results of
signal processing are truncated or rounded. As intermediate calculations are carried out, they need higher
precision. For example, a 16 X 16 multiply requires a 32-bit register to store the result. If only 16 bits are
available, the lower 16 bits are thrown aways; this is known as truncation error. If the LSB is rounded before
throwing away the lower 16 bits, this is known as round-off error. Since both of these errors are fed back
recursively, they will accumulate as successive calculations are performed.

Truncation and round-off introduce bias and noise into the system, which may produce limit cycles because
of nonlinearities. If q denotes the quantization step, | denotes the mean of noise density, and O denotes the
variance of noise density, then

u=q2 and O = q2/12 for truncating

u=0 and O = q2/12 for rounding

These effects can be minimized by the proper selection of structures. For example, a fourth-order system
becomes less sensitive to truncation and round-off errors if it is broken into lower-order parallel structures.
Overflow Effects: A third effect of signal quantization is overflow conditions. Successive calculations

(i.e., addition) can cause registers to overflow even when fractional arithmetic is used. This, in return, will
force the contents of associated registers to wrap around and change magnitude from most positive to most

'

negative numbers. This is equivalent to changing the direction of the control. To prevent this, a check for
overflows must be continuously made during the intermediate and final stages. When twos complement
arithmetic is used, intermediate overflows can sometimes be ignored if the final result is known to be within
bounds. In the TMS320 architecture, a saturation mode is provided to prevent the contents of registers from
wrapping around and changing sign when an overflow occurs. Overflow effects can be minimized by the
proper selection of scaling factors and by leaving extra guard bits.

Scaling

Selection of a proper scaling factor is critical in minimizing the effects of finite word length. The scale factor
should support the full dynamic range of signals and coefficients. A large scale factor may cause an over-
flow condition. Although overflow protection is built into the TMS320 architecture, it is advisable to mini-
mize the possibility of overflows. To solve that problem, sometimes it may be necessary to choose a smaller
(12-13 bits) scale factor. The small scale factor could, on the other hand, increase quantization noise.

Usually, there is little choice in handling the dynamic range of signals. If the dynamic range is too big, it
may dictate selection of a floating-point instead of a fixed-point processor. Simulations are required to de-
termine the dynamic range. In some cases, it may be possible to switch modes and change scale factors.

For proper scaling, a two-step approach is required. The first step requires optimization of the structure.
Once the structure has been transformed into a suitable one for implementation, scaling can be carried out.
If transfer functions are used, direct structures should be avoided and broken into smaller cascaded struc-
tures. If necessary, different scale factors can be chosen for each substructure. The scale factor is found by
first calculating the worst-case response, H(z), of a system under maximum input signal conditions. Differ-
ent techniques, 1, 1;, and 1, (described later in this section) may be used to find H(z). Next, H(z) must be
scaled down in value to prevent an overflow during the intermediate and final stages. If fractional represen-
tation of a Q15 format is assumed, the scaled response, H’(z), must be less than unity. The scale factor, S,,
is finally found by satisfying the following relationship:

H(= 5@
where
Bé(—? <1

For state space structures, diagonal scaling can be used. Again, before scaling, the first step requires the
transformation process. Techniques like Schur transformation or Modal transformation can be used to
optimize structures. These transformation techniques not only reduce the dynamic range of coefficients,
but also reduce the number of nonzero elements in the structure. This minimizes the calculations that the
processor must carry out.

The nextsstepis to find the appropriate scale factors. The scaling factor must take into account the translation
of proper input/output variables (i.e., voltage range of the A/D.and D/A converters). In addition, it must
prevent overflow or saturation during the intermediate states. Extensive simulations are usually necessary
to ascertain the maximum and minimum values of states to provide the necessary scale factors. The scaling
procedure can be broken into two different operations: input/output scaling and state vector scaling.

Input/output scaling transforms the internal fractional representation of numbers to external physical vari-
ables. Internal numbers within the range of +0.9999 to—1.0000 may have to be changed into external values
of tvolts for the A/D and D/A converter. For example, given a system

Xne1 = AXp+ Bu,

Yn = Cxp+Du,

115

116

Then B, C, and D matrices must be scaled by the following relationship
B, = B[(Sy)"]

C; = [(Sy)—]]C

D, = [(sy)"l]D[(Sn)_l]

where (Sy)~1 and (S,)-! are diagonal matrices.

For a system with an input/output physical range of £10 V and a processor number range of £1.0000, we
have

B; = 10B
C, = 0.1C
D,=D

For state vector scaling each, state variable must be scaled to keep it within the number range of the proces-
sor. Each state vector is divided by the following diagonal scale factor matrix.

x5 = [(So-1]x

The system can now be represented as
Xsne1 = AgXen+ Bsu,

Ya = CgXgn+ Du,

where

A = [(S)1]AS,
B, = [(Sy!]B
C, = CS,

There are three different ways to calculate the scale factor matrices.

The first way to choose S is to simulate the closed loop under worst-case conditions and to check for
overflow at each node or summation. The worst case is defined as when the largest absolute value of a state
variable is selected for the calculation. This is know as 1, scaling.

Given
S,s = max]|abs(x,,)]

then

S, = diag §1—

X,i

The second approach is to statistically analyze for the probability of overflow at each node instead of doing
actual simulations. This is known as 1, scaling. !

The third approach is to perform an analysis with certain bounded conditions of input signals. This is known
as 1; scaling. 1; scaling can be applied only to stable systems.

Controller Structures

Selection of the proper control structure for digital controllers is a very critical issue, and its importance
cannot be overemphasized. It is often the most overlooked aspect of implementation. Digital controllers
can be described in terms of different, but equivalent structures. These structures have the same infinite

word-length behavior but different finite word-length behavior. The difference in finite word-length behav-
iorresults from the fact that some structures have coefficients that are less sensitive to coefficient truncation
or that lie within a smaller numerical range, thus making it easier to scale. They may also produce lower-
order equations.

Transfer Function Forms: Several different structures can represent systems when transfer functions
are used. The simplest form is the direct structure shown in Figure 1.

Usually, in this structure, the coefficients have a wide range, depending upon the pole-zero locations. This
makes the structure very susceptible to coefficient quantization, round-off error, and overflow. The struc-
ture can be represented in a transfer function form as

by + bz + bz + bz + bz?
1+ az! + a7z2 + az2 + az*

H(z) =

Figure 1. Direct Structure

©n by f_'l_\ @ Yn

2-1

E"" 2 P Yn
z-1

6_)&2—“ Yn-2
21

Dt
z-1

8 Yn-a

Another alternate structure is the cascaded structure as shown in Figure 2.

This can be represented in a transfer function given by

(by + bz + bz ?) (byg + byz! + byz?)

H(z) =
@ (1 +apz? + apz?) (1 + ayz' + anz?)

The cascaded structure is somewhat less susceptible to round-off error and overflow than the direct struc-
ture. One advantage of this method is that poles and zeroes close to each other can be matched together.
This will reduce the range of coefficients for each substructure. Different scale factors can then be chosen
for them. A transfer function should be broken into first- or second-order cascaded functions to derive the
greatest advantage from this structure.

117

Figure 2. Cascaded Structure

en bio D & yi(n) b2o @ & Yn
z1 z z-1] z-1
ey t—2 212 yi(n-1) b & 2 4y
z- z1 z-1 z-1
bz a2 b, a
en-2 ¥1(n-2) Yn-2

A parallel structure can also be chosen to represent a system. This is shown in Figure 3.

It is least susceptible to round-off errors and overflow problems. A parallel structure can be obtained by
partial fraction expansion or division. This can be represented as

(blo + an-l) (bz() + bz)Z-l) (bu) + b,,z“) (bw + b4|2—‘)

HO =) T rmz) T rma) (1 anz)

For example, if the transfer function is given by
Zy — az; + bz
Z; - 1.9979 + 0.9979
the poles of the systems are at z; = 0.9988 and z; = 0.9991 .

H(z)

If this system is represented with coefficient round-off, it becomes

2z — az; + bz,
H@ = 7, 1998 +0998

The new pole locations are now z; = 0.9980 and z, = 1.0000.

If this system had been represented as a cascade of two first-order substructures, the new structure after
round-off would be

(z—2y)(z-a)
(z-0.998)(z - 0.999)

Thus, the cascaded structure shows less sensitivity to coefficient round-off.

H(z) =

Figure 3. Parallel Structure

€n bio ~ o yi(n) o) Yn
— v & 1 \V
b4 an
en-1 — yi(n-1)
b2 P y2(n))
& N &
z-1 b a z-1
21 21
en-1 yz(n-1)
b’& N\ /E\ _ y3(n) Cb
2z bs N z-1
1 | ag l
ent — ys(n-1)
LT @D ya(n)
z-1 b, a z
41 1
€n— Ya(n—-1)

118

State Space Form: If the state space form is used, the controller can again be represented in different,
but equivalent state space structures that can give better finite word-length behavior. Structure transforma-
tion techniques should also be employed to create structures that will have less numerical sensitivity.
Structural forms like Modal or Schur can reduce the number of nonzero elements in the structure.

The Modal form of a matrix is a diagonal matrix with all its eigenvalues as the diagonal elements. If the
eigenvalues are complex, then the diagonal elements are a 2-by-2 matrix. The Modal form requires that all
eigenvalues be linearly independent. This is referred to as the diagonal canonical form. The Modal form
is represented as follows:

The Schur representation of a matrix is the upper-right triangular portion of the matrix with its eigenvalues
on the diagonal. If the eigenvalues are complex, then they are 2-by-2 blocks on the diagonal. The Schur
representation is given as follows:

ry X X x x
O0rpx xx
00r3 xx
000ry x
0000Ts

The following example shows the effects of structure transformation; complete implementation examples
along with the TMS320C14 code are given in Appendix 1. The state controller and estimator that were de-
veloped in PART II’s introduction are used here. The structure is transformed with the Schur method and
Impex® software. The A matrix now represents

A-BK-LC

from the original matrices in order to satisfy the input requirements for the Impex® software. The original
system is given by the following set of coefficients. The software uses extended-precision/floating-point
format to represent the original that system. After structure optimization and scaling, the numbers are con-
verted into 16-bit/fixed-point format for implementation and code generation. For illustrational purposes,
the system will also be represented in 32-bit/fixed-point format to show the loss of resolution due to lack
of structure optimization.

_ Representation in 64-Bit Floating-Point Representation in 32-Bit Fixed-Point
Matrix A a(1,1) —6.66408081842000E-02 —00.066408
a(2,1) ~2.83492351899385E+02 —28.349235
a(1,2) 9.26115172000000E-04 00.000926
a(2,2) 8.52505649404000E-01 00.852505
Matrix B b(1) 2.68531510600000E-05 00.000026
b(2) 5.36066065964500E-02 . 00.053606
Matrix C c(1) 1.00000000000000E+00 } = —=—=—=——

119

120

After the Schur transformation, the matrices are obtained as follows:

Representation in 64-Bit Floating-Point Representation in 32-Bit Fixed-Point

Matrix A a(1,1) ~6.66408081 842000E—02v -00.06640808
a(2,1) ‘ -5.53695999803486E-01 ~00.55369559

a(1,2) 4.74170968064000E-01 00.47417096

a(2,2) 8.52505649404000E-01 00.85250564

Matrix B b(1) 1.37488133427200E-02 . 00.01374881
b(2) 5.36066065964500E-02 00.05360660

Matrix C c(1) 1.953125000000006E-03. @ | = 0—===——=a

Note that the Schur transformation has tremendously reduced the dynamic range of the coefficients, thus,
making it easier to scale them. Matrix C is not treated since it can be scaled independently.
Computational Delay

Computational delay is a critical disadvantage to using digital controllers. It has prevented widespread use
of microprocessors and microcomputers in digital controllers because the amount of computational delay
that is produced by these processing elements is unacceptable. With the high-performance of DSPs compu-
tational delay becomes more manageable. Computational delay shows up as phase delay within the system
and affects the phase margins of that system. The negative phase-shift contribution can be calculated as
follows:

phase delay = (computational delay)(bandwidth frequency)(360)

For a system with a 1-kHz bandwidth, a 100-ps computational delay will produce a negative phase shift
of 36 degrees.

Even when using DSPs, it is advisable to minimize the effect of computational delay. This may be done by
adopting appropriate structures or signal flows. For example, a compensator is represented by the following
difference equation:

u(m) = K;[u(n-2)] + Kjlu(n-1)] + Ks[y(n-2)] + Kaly(n-1)] +Ks[y(n)]
Only the last element, Ks[y(n)], is dependent upon the latest measurement. The remaining elements can
be precomputed and stored into memory. As soon as the measurement is made, the last element can be calcu-
lated and the control output u(n) sent to the actuator.
Similarly, a state estimator is expressed as
X(n+1) = A[X(n)] + Bu(®)] + L[y — CX(n)]
y = C[%(n)] \
u = —K[%m)]
These can be split up as follows:
f+1) = Ax(n) + Blu(n)]
¥ = C[x(n+1)]
As soon as the measurement y is made, the control can be calculated by the following:
i@+1) = xp+1) + Ly -)
u = —K[&(n+1)]

This structure is usually referred to as a current estimator.

Another aspect of computational delay is the contribution by the A/D and D/A converters; the A/D usually
being the main factor. The A/D has some minimum conversion time, while the D/A requires settling time.
The conversion delay of the A/D creates a negative phase shift and affects the phase margin and stability
of the system. The ZOH hold action of the D/A converter produces a delay of one sample time. This délay
is comprehended into the design when the plant is discretized. The A/D conversion and the D/A settling
times, on the other hand, must be taken into account during the implementation.

Typical A/D converters available in the market today range in conversion time from 50 ns for video applica-
tions to 50 ps for data acquisition. There is often a trade-off between conversion time and resolution. Those
A/Ds with fast conversion times usually have lower resolution. For most control systems, A/D converters
are chosen with conversion time of 15 ys or less. However, the selection depends upon the bandwidth and
phase margin of that system. The phase delay is given by

phase delay = (computational delay)(bandwidth frequency)(360 °)

Forasystem with a 1-kHz bandwidth and an A/D converter with a 10-is conversion time, the A/D converter
will contribute a negative phase shift of 3.6 degrees.

Sampling Rate Selection

Another important consideration is the selection of sampling rate. In signal processing, the sampling rate
should be at least twice the bandwidth or twice the highest frequency component in the system. If lower
sampling rates are selected, noise from the high-frequency components may be introduced into the system
and would be indistinguishable from the signal. Antialiasing filters are installed before the controller so that
high-frequency components can be attenuated. In control systems, the sampling rate is commonly chosen
to be ten to twenty times the system’s bandwidth. However, this refers to the closed-loop bandwidth for the
controller. If the system has structural resonances so that notch filters are needed to cancel them, a sampling
rate of two times the bandwidth or higher is sufficient for the filters.

Theoretically, a digital system should be equivalent to an analog system if the sampling rate is very high.
However, in practice, when the sampling frequency becomes too high, the poles will cluster around z=1,
making the system more susceptible to coefficient quantization. Modifying the structure may be necessary
to minimize this effect.

Another factor that needs to be taken into account is stability. When a stability analysis is done by mapping
polelocations or eigenvalues on the z-unit circle, it is true only for that sampling frequency. As the sampling
frequency is changed, it creates a new mapping of eigenvalues on the unit circle.

Table 1 shows the pole locations for various sampling frequencies of a lead-notch controller, which is trans-
formed into the z domain using the bilinear transformation. The lead-notch controller is given by

(s + 0.35) || (s> + 0.06s + 1.2)
(s + 8) (s + 277

Ge(s) =

In addition to the controller’s sampling rate, the sensor’s bandwidth needs to be considered. Sensors like
encoders give digital outputs. At high sampling rates and low speeds, their outputs may be heavily quan-
tized, causing large variations from sample to sample. Taking amoving average of the last few samples may
be necessary to eliminate those variations. This essentially implements a low-pass filter for the input signal.

121

‘122

Table 1. Location of Poles for a Lead-Notch Controller

Sampling Frequency (kHz) Pole 1 Pole 2 Pole 3

0.1 0.7621145 0.7621145 0.9230769

0.5 0.9474196 + j2.316677E-08 0.9841269

1 0.9733596 + j1.411779E-08 0.9920318

5 0.9946145 | 0.9946145 0.9984012

10 0.9973036 + j2.567057E-08 0.9992003

50 0.9994601] 0.9994601 0.9998400

100 0.9997300 + ;2.106205E-08 0.9999200

Antialiasing Filters

In a digital signal processing system, a minimum sampling rate must be implemented to allow reconstruc-
tion of the information in the digital domain. According to the Nyquist criteria, the sampling frequency must
be at least twice the highest frequency component in the signal. If a lower sampling frequency is used or
if high-frequency noise is present, some of the information will be lost. This is known as aliasing. If un-
wanted high-frequency comporients are present, they must be removed through circuits known as antialias-
ing filters.

In control systems, antialiasing filters must be used carefully; they can cause phase delay, which also adds
to the computational delay of the controller. A negative phase shift affects the phase margin of that system.
Due to the oversampling intervals (10 — 20 times the frequency) in control systems, it is usually possible
to avoid the usage of antialiasing filters. If antialiasing filters are used, they should be first-order filters with
minimum phase delay. The negative phase-shift contribution of the filter should be taken into account along
with the computational delay and A/D conversion delay.

Controller Design Tools

Analog controller implementation requires only hardware design. A digital controller implementation not
only requires a hardware design, but also extensive software design. The hardware design of a digital con-
troller is somewhat easier to accomplish, and standard forms of processor interface can be chosen indepen-
dently of the type of controller structure selected. The burden of software design can be eased by the wide
selection of CASE (Computer Aided Software Engineering) and code-generating tools that are available
today. These tools tremendously increase the productivity of the control designer.

Algorithm Development

In control systems, extensive simulation of control algorithms is necessary before the design can be carried
out. Simulations may also be necessary under worst-case conditions so that appropriate scaling factors can
be obtained. Numerous software packages are available that allow not only simulation capability but also
design capability. As mentioned earlier, some of the more popular packages are PC-Matlab, Matrix-X, and
Simnon. The Impex® software package also has extensive simulation capabilities. It supports simulation
with A/D and D/A converters and the effects of the converters’ resolution and conversion delay. It can also
comprehend computational delays and different levels of quantization on all or some of the states.

Software Development

Software development is another major concern in implementing digital controllers. The programmable
approach to controllers allows easy upgrade and maintenance. It protects development investment but, at

the same, requires more initial development effort. Still, programming with DSPs requires slightly different
techniques than programming with ordinary processors.

Typically, in control systems, processors are used for supervisory functions, and analog circuits are used
for signal processing functions. When DSPs are used, they may be required to implement not only the signal
processing functions but also the supervisory functions. With ordinary processors, there is usually a large
reliance on lookup tables for math and other functions. With DSPs, it is more common to calculate the actual
math functions or the algorithms. Functions like sine and cosine may be easily calculated using the expan-
sion series. Due to the high speed of DSPs, it is very common to eliminate as much of the external hardware
as possible and, instead, use on-chip processing for those functions. For example, low-cost sensors could
be used; or, some of the sensors can be eliminated entirely, and on-chip processing can compensate for their
removal.

DSPs have been designed for realtime signal processing and have very fast interrupt response. On earlier
processors, the facilities for concurrently running multiple tasks were limited due to their smaller-sized
hardware stacks, although larger software stacks were possible. This reduced the number of nested inter-
rupts or subroutines that the processors could handle. Therefore, it is normally advisable to use macros and
the straight-line code instead of repeated subroutine calls.

DSPs do not have a single-cycle divide instruction, so division should be avoided. If necessary, the first
choice is a multiplication by an inverse procedure. Division can also be performed by repetitive executions
of the SUBC instruction. Or, a limited division can be performed by right-shift operations.

Four different approaches to software development can be taken: high-level languages, assembly language,
signal processing languages, and code generation software.

High-Level Languages: Using ahigh-level language (HLL) like C, Pascal, or FORTRAN can substan-
tially cut development effort. Such languages are familiar to everybody and easy to program. Typically,
high-level languages are used for initialization and nonrealtime code. They are not optimized with respect
to signal processing functions and to particular processor architectures. Code compiled on a processor is
always larger than handwritten assembly code and may be 2 to 4 times the size of assembly code; this is
a high penalty trade-off for time-critical signal processing applications. In cases where a high-level lan-
guage is necessary, it is beneficial to have a thorough knowledge of processor architecture to make the most
efficient use of the special signal processing features.

Due to the general trend towards more usage of HLL in industry, new TMS320 architectures are also being
optimized for HLL. Floating-point generations (TMS320C3x and TMS320C4x) of the TMS320 family
have architectures especially designed for greater support of high-level language code and produce highly
efficient assembly code. On the other hand, the fixed-point generations may require assembly coding for
their time-critical routines.

Assembly Language: Assembly language produces the most efficient coding. When using a high-level
language, it may be necessary to use assembly language for the more time-critical operations. Assembly
language programming requires an intimate knowledge of the processor architecture. At the same time, the
nature of performance requirements for some signal processing systems requires maximum code efficien-
cy, leaving very little choice in the usage of assembly language. To give assembly language some resem-
blance of high-level language, macro libraries are often developed for more frequently used functions.

Signal Processing Languages: Signal processing languages can provide a middle ground betweet.
high-level language coding and assembly language coding. They can ease the development of standard
high-level languages. At the same time, they offer code efficiency that is comparable to that of assembly

123

124

language because they are designed for specific signal processing applications. Digital signal processing
language (DSPL) from dSPACE is one example. One disadvantage is that there is no standard for these lan-
guages, and none of the languages is widely known.

Code Generation Software: Code generation packages that will automatically generate assembly code

for particular processors are becoming available. For example, the Impex® software package from

dSPACE will generate TMS320 assembly code from a mathematical description of the controller. The
DFDP (Digital Filter Design Package) from ASPI will generate assembly code for TMS320 processors
from a description of a filter. These packages are becoming increasingly popular because they allow the
control designer to focus on design issues instead of developing assembly language software.

Device Simulators

Another useful tool in designing software is the device simulator. Simulators for the TMS320 family run
on common platforms like PC and VAX, which provide full simulation of the instruction set along with in-
struction timing. Such simulation of the controller software can fully check the effects of math operations
on internal registers and memory without the need for off-chip hardware. In some cases, software simula-
tors have features that are not available on hardware development tools. These include full access to and
tracing of internal processor memory and registers and sometimes even internal pipeline operations. Also
available are full breakpoint capabilities for the inspection of the processor’s state at the required/desired
instances.

Hardware Design

A wide variety of tools is available for designing the hardware for a controller. These include target systems
and EVMs that plug into a PC or are stand-alone. The in-circuit emulators can be used for complete system
debugging. The XDS/22 emulators from TI support complete in-circuit emulation along with extensive
breakpoint and tracing capabilities. Also available are device behavioral models that can simulate the
timing and bus behavior of a complete target system without additional hardware. Logic Automation
provides behavioral models for most members of the TMS320 family that run on popular workstations.
Manufacturers like HP and Tektronix produce logic analyzers that can be used for extensive tracing. These
logic analyzers can debug code by disassembling captured data.

Figure 4 shows the typical block diagram of a digital controller. A digital controller normally requires a
processor, a memory interface to the processor, and A/D and D/A converter interfaces. Figure 5 shows a
typical interface of a TMS320 DSP with memory and A/D and D/A devices. Further information is avail-
able in the appropriate TMS320 user’s guides.

Figure 4. Digital Controller

o(r)
Processor H D/A |—>D—-.|ActuatorH Sensor H Load I

e(n) Power

ll " AD LI-

Figure 5. Controller Interface

Power
=
Host
Processor Serial I/F —3

Encoder I/F ‘——-— Encoder

Summary

Implementation of digital controllers is a relatively new area as the limited availability of information
suggests. Most of the previous commercial implementations in industry were either first- or second-order
systems. Typically, these are low-bandwidth systems like process control and do not take full advantage
of the capabilities that modern control theory has to offer. Limitations of earlier processors had prevented
widespread use of digital controllers in many segments of industry. DSPs are the first class of processors
that have the right combination of architecture, performance, and cost to make it possible for implementing
these advance concepts in practical everyday systems. This combination now allows people to implement
advanced controllers in a wide variety of products and services and to solve the major problems in imple-
mentation of digital controllers. PART IV’s introduction as well as articles describe many of these products
and applications.

Digital controller implementation, however, is fundamentally different from analog controller implemen-
tation. Since natural analog processes are approximated, a fair amount of work must be done in preparing
a controller design for implementation. This introduction highlighted some of the major problems that are
usually encountered when implementing digital controllers. Undoubtedly, there are countless other prob-
lems that are unique to each application. However, minimizing these problems that are discussed here will
provide a solid foundation for control system implementation. The use of CASE tools like Matrix-X, Im-
pex, and DFDP is again recommended because they not only automate design and implementation pro-
cesses but also represent years of experience by experts.

References
1. Maroney, P., Issues in the Implementation of Digital Feedback Compensators, The MIT Press, 1983.

125

APPENDIX 1

This shows an example of a design and implementation using CASE Tools. The
controller was designed in the previous section using PC-Matlab. The pole
locations were- chosen to be 2z=0.90 and 2z=0.95. The following design
parameters were obtained.

1.00000000000000 0.00099444139773

A =
0 0.98890343243454
0.00002685315106
B =
0.05360660659645
c= 11 0]
D= [0]
K = [93;27208561511948 2.54443979371671]
0.01063903432437
L = 100
2.78492351899385
~0.00066408081842 0.00000926115172
A - BK - LC = 100

-2.83492351899385 0.00852504649404

The Impex software will be used for code generation that is suitable for
implementation on the TMS320El14. The next sections of Appendix 1 show the
different outputs of the software.

la. This shows the original system derived from PC-Matlab and the input to
the Impex software. The matrices A, B, K, and L have to be combined as
shown above and will be referred to as the "a" matrix in the system. The
remaining matrices will remain the same.

1b. This shows the effect of schur transformation in the system. The
dynamic range of the coefficients has been significantly reduced.

lc. This shows the system after 'scaling and schur transformation. The C
matrix is not scaled as this can be done via input output scaling or even
with an external amplifier.

1d. This shows the realized system and the DSPL (Digital Signal Processing
Language) code for the state controller/estimator.

le. This shows the assembly language code for this controller on the
TMS320E14 DSP. The code also shows the macros that will be used in the
expansion. The code interface to a DS1101 (a TMS320El4 board developed by
dSPACE) . Initialization and peripheral addresses can be changed for other
systems.

126

Appendix la

- This is the original system obtained from PC-Matlab
- Dynamic _matrix a represents A - BK - LC in the design.

ba31c block is
state controller/estimator

system_info_text is
example for a second order state controller/estimator
with one input and one output.

end system_info text;

sampling_period := 0.001;

system inputs is
name => pos_err, unit => V,

lower bound => ~1.00000000000000E+01, upper bound =>

1.00000000000000E+01;
end system inputs;

system outputs is
name => plant_con, unit => Vv,

lower bound => -1. 00000000000000E+01 upper_bound =>

1.00000000000000E+01;
end system_outputs;

system equations ssd is
system representation := PHYSICAL;
system states is
name => state x1;
name => state x2;
end system states;

dynamic matrix is

a(1, 1) := -6.66408081842000E-02;
a(2, 1) := -2.83492351899385E+02;
a(1, 2) := 9.26115172000000E-04;
a(2, 2) := 8.52505649404000E-01;

end dynamic matrix;

column_input_matrix pos_err is
b(1) := 2.68531510600000E-05;
b(2) := 5.36066065964500E-02;
end column_input_matrix;

row_output_matrix plant_con is

c¢(1) := 1.00000000000000E+00;
end row_output_ matrix;

direct_link pos_err to plant con is
d := 0.00000000000000E+00;
end direct_link;
end system equations;

end basic_block;

127

Appendix 1b

- This shows the controller after performing schur
~ transformation on it.

basic_block is
state controller/estimator

system_info_text is
example for a second order state controller/estimator
with one input and one output.

end system_infq_text;

samplin eriod := 1.00000000000000E-03;
P g _p

system_inputs is
name => pos_err, unit => V,
lower bound => -1.00000000000000E+01, upper_ bound =
1.00000000000000E+01;
end system inputs;

system outputs is
name => plant_con, unit => V,
lower bound => -1. 00000000000000E+01, upper_bound =
1.00000000000000E+01;
end system outputs;

system equations ssd is
system_representation := SCHUR;

system_states is
name => state_ x1_schur;
name => state x2 schur;
end system states;

dynamic matrix is
a(1, 1) := -6.66408081842000E-02;
a(2, 1) := -5.53695999803486E-01;

a(1, 2) := 4.74170968064000E-01;
a(2, 2) := 8. 52505649404000E 01;
end dynamic matrix

column_input_matrix pos_err is
b(1) := T.37488133427200E-02;
b(2) := 5.36066065964500E-02;
end column input matrix;

row_output_matrix plant_con is
c(1) := 1.95312500000000E-03;
end row_output matrix;

end system_ equations;

end basic block;

128

Appendix 1lc

~ This shows the controller after performing schur transformation and
scaling on it

basic_block is
state controller/estimator

system_info_text is
example for a second order state controller/estimator
with one input and one output.

end system_info_text;

sampling period := 1.00000000000000E-03;

system_inputs is
name => pos_erxr_scaled,
lower bound => -1. 00000000000000E+00, upper_bound =>
1.00000000000000E+00;
end system inputs;

system outputs is
name => plant_con_scaled,
lower bound => =1.00000000000000E+00, upper bound =>
1.00000000000000E+00; -
end system outputs;

system_equations ssd is
system representation := SCHUR;
system states is
name => state x1 schur.scaled;
name => state : " x2 schur _scaled;
end system_states,

dynamic matrix is
a(1, 1) := -6.66408081842000E-02;

a(2, 1) := -3.05727555099513E-01;

a(1, 2) := 8.58759911760409E-01;

a(2, 2) := 8.52505649404000E-01;
m

end dynamlc atrix;

column input_matrix pos_err_ scaled is
b(1) := Z.04659364615941E-01;
b(2) := 4.40603476246127E-01;

end column_input_ matrix;

row_output_matrix plant_con_scaled is
c(1) := 1.31209002384973E-04;
end row_output_matrlx,

end system equations;

end basic block;

129

Appendix 1d

- This shows the realized system and the DSPL code to implement it.

system realization linear system is
2nd order state controller/estimator
type fractional is
fix' (bits => 16,
fraction => 15,
representation => twoscomplement),

scptype statel is
fix' (acculength => 32,
round => on,
scale => on,
saturation => on);

scptype outl is
fix' (acculength => 32,
round => on,
scale => common,
saturation => on);

al : scalable constant vector (2) of fractional
:= (-6.665039062500E-002 ,
8.587646484375E-001) ;

a2 : scalable constant vector (2) of fractional
:= (-3.057250976563E-001 ,
8.525085449219E-001) ;
bl : scalable constant vector (1) of fractional
:= (2.046508789063E-001);
b2 : scalable constant vector (1) of fractional
:= (4.406127929688E-001);
cl : scalable constant vector (2) of fractional
:= (1.220703125000E-004 ,
0.000000000000E+000) ;
xk : vector (2) of fractional;
xkl : vector (2) of fractional;
u : vector (1) of fractional;
input is u;

y vector (1) of fractional;
output is y;

begin
every 1.000000000000E-003 do
update (xkl, xk);
input (u);
output (y);
accumulate scalpro (statel, 1.000000000000E+000)
xkl(l) := al * xk + bl * u;
end accumulate ;
accumulate scalpro (statel, 1.000000000000E+000)
xk1(2) := a2 * xk + b2 * u;
end accumulate ;
accumulate scalpro (outl, 1.000000000000E+000)
y(1l) := cl * xkl;
end accumulate ;
end every ;
end linear system;

130

Appendix le

TMS320C14 assembly code for the controller/estimator

~e

.title "linear system”
.list ; enable listing

~

.global RESET ; user program entry

~

~

.

code for DSPL's initialization

~

standard version

version for DS1101 TMS 320Cl4 / El4 processor board

Ne e e e e N Ne N

N Ne e N Ne N

WARNING : no interrupt besides TIMINT1 must be used !!!

~e N

~

revision 2.01 / 09-Nov-1989

~.

(C) 1989 ASPACE GmbH

Se e Ne N

e N N

~

init $macro callno,blkno

TIMINT1 bit? .set 16

bsr? .set 7
ddr? .set 1
if? .set 4
im? .set 5
fclr? .set 6
adc0? .set 8
adcl? .set 9
strb? .set 0AH
comreg? .set OEH

initialize RESET vector and INT vector

~e Ne N

.asect "RESET", 0

b RESET ; vector to user program entry
b ISR ; vector to interrupt dispatcher
;
.asect "DSPL" ; return to DSPL compiler's code section

define. initial processor state

~e Ne e

dint ; disable interrupts
rovm ; disable hardware overflow mode

~.

; initialize constant because INIT is called before DSPL code
; transfers data to on-chip RAM
;

lack 1
sacl one

131

initialize

~e N N

zac
sacl
out
out
sub
sacl
out
out

dummy read

~e Yo N

lack
tblr
lack
tblr

; dummy read

lack
tblr

e Ne o~

lack
sacl
lack
tblw

b

interrupt

4 Ne Ne e

SR in
lack
and
bz
sacl
out
call

no TIMINT1?

- eint

ret

exit?

.endm

~e

132

interrupt system

*

*, bsr?
*, ddr?
one

*

*, im?
*, fclr?

Y
7
;

.
4
;

select BANKO
configure parallel port as input

mask off all interrupts
clear all interrupt flags

12 bit ADCs to enable ADC operation

adc0?
*

adcl?
*

communications port to reset rxfull flag

comreg?
*

30H
*

strb?
*

exit?

service routine

*, if?
TIMINT1 bit?
*

no TIMINT1?
*,-0

*, fclr?
timintl

’

clear incremental encoder counter registers

initialization complete

read interrupt flag register

Ne e Ne Yo N N

~

160
10.4
41.9

standard version

code for DSPL's EVERY-statement (begin)

version for TMS 320C14 / El14 on-chip timer 1

formal parameter TIME passes requested sampling period in

ns <= sampling period <= 10.4 ms, resolution 160 ns

ms < sampling period <=
ms < sampling period <=

revision 2.01 / 09-Nov-1989

(C) 1989 dSPACE GmbH

41.9 ms, resolution 640 ns
65.5 ms, resolution 2.56 s

s

Ne Ne Ne Ne Ne e e Ne o Ne Ne Ye N

evbeg

time?
bsr?
bank0?
im?
fclr?
bank2?
tcon?
tprl?
tlint?

;
2

.
r

Smacro callno,blkno,time

.gset :time:
.set 7
.set 0
.get 5
.set 6
.set 2
.set 4
.set 1

0

.set 010H

on-chip timer setup TMR1

lack bank2?
sacl *, 0
out *, bsr?

$if time? < 03333H

lack O006H
Selse

$if time? < 0CCCCH
lack 002H
Selse

lack 004H
Sendif

Sendif

sacl *, 0

out *, tcon?
1t one
mpyk tpr?
pac

tblr . *

out *, tprl?

lack bank0?

~

~

~e

~

~

select BANK2

prescale 0

prescale 4

prescale 16

update TCON

load timer period value
set TPR1l

Ne Ne Ve Ne e N

Ne Ne Ne Ne we

Ne Ve Yo N N

~e N

~

133

tpr?
tpr?

tpr?

imval?

timintl

sacl
out

1t
mpyk
pac
tblr
out

lack
sacl
out

eint
b

*'0

*, bsr?

one
imval?

*, im?

tlint?

select BANKO

~

set IM register

~e

*, fclr? ; clear TMR1 interrupt flag bit

$

; enable interrupts
; wait for interrupt

$if time? < 03333H ; if period < 13.107 ms
.word time?

Selse

* 5

$if time? < 0CCCCH ; if period < 52.428 ms

.word
Selse

time?

* 5/ 4

.word time? * 10 / 32

$endif
Sendif

.word

.endm

~tlint

?

~e e N

~e S

Ne Ne e Yo Ne e N N

code for DSPL's

standard version

EVERY~-statement (end)

version for TMS 320C14 / El14 on-chip timer 1
revision 2.01 / 09-Nov-1989

(C) 1989 dSPACE GmbH

evend $macro callno,blkno,time

134

ret

.endm

~

~e

Ne e e Ve Yo e Ne N

~

~

~

~

N e N

Se N N

~

~

NN N

code for DSPL's INPUT-statement
standard version

version for DS1101 on-board 12 bit ADCs
revision 2.01 / 09-Nov-1989

(C) 1989 ASPACE GmbH

inl2 $macro callno,blkno,data,channel

iop? .set 0

lack 1 << (:channel:-8) ; setup busy test mask
wait? in *, iop? : get busy bit

and * ; test busy bit

bnz wait? ; wait until adc ready

lack :channel: ; read adc data

tblr :data:

.endm

~

~e e e N

Ne Ne Ne Ne S e v

code for DSPL's START macro
version for DS1101 on-board 12 Bit ADCs
revision 2.01 / 31-0Oct-1989

(C) 1989 dSPACE GmbH

start $macro callno,blkno

strb .set OAH
lack O003H ; strobe for ADCO .. 1
sacl *
lack strb
tbhlw * ; start both ADCs
.endm

~

~e

~e

Ne N Ne Ne Ne N,

~e

~e N

~e Se Yo Yo v

Ne Ne Ne e e N

135

code for DSPL's OUTPUT-statement

~e Ve Ne Ve e N

version for DS1101 on-board 14 bit DACs

revision 2.01 / 31-0Oct~-1989

~

~

(C) 1989 dSPACE GmbH

~ e

~

outl4 $macro callno,blkno,data,channel

lack :channel: ; write data to DAC
tblw :data:
.endm

~

.asect "DSPL", 00GlOh ; program memory base address

; status register save location (data page 1)
_st .set 000ffh
; predefined constants

_cl .set 00000h ; predefined constant
.word 1
_c2 .set 00001h ; predefined constant
.word 32767
_c3 .set 00002h ; predefined constant
.word -32768
c4 .set 00003h) ; predefined constant
- .word -1
; declarations for UPDATE variables
vl .set 00004h ; xk1(1)
.word O
v2 .set 00005h ; xk(1)
- .word 0
_v3 .set 00006h ; xk1l(2)
.word 0
vi .set 00007h ; xk(2)
- .word 0
; declarations for variable vectors
_v5 .set 00008h ;7 u(l)
.word 0
6 .set 00009h ¢ y(1)
- .word 0
; declarations for coefficients
c5 .set 0000ah ; al(2)
- .word 28140
cé .set 0000bh ; bl(l)
- .word 6706
_c7 .set 0000ch ; a2(1)
.word -10018
c8 .set 0000dh ; a2(2)
- .word 27935
c9 .set 0000eh ; b2(1)

.word 14438
; declarations for external procedures

one .set 0000fh ; constant for procedure init

136

~. ~e

Ne Ve Ne Ne o Vo e “e e

zero .set 00010h ; constant for procedure inl2
.word 0O
v .set 00011lh ; parameter for procedure inl2

v8 .set 00012h

~e Ne Ne

.word 1

.word O

~e

.word 0

start of program

RESET

; perform data RAM initializati

~e N Ne No v N ~

~

~e

~

~ N N

EYIE TR VRN

.
’

lark arl, 000e7h
larp arl

ldpk 000h

init 0,1

select data page

n
lark arl, 19
lark ar0O, 00000h
lack 00010h

e e Ne O Ne e N

11

lark arl, 000e7h
larp arl

line 42
evbeg 0,1,1000

larp ar0 ; select destination pointer
tblr *+, arl ; transfer word, select counter
add _cl ; increment source pointer
banz 11 ; repeat until transfer complete
;
;

~e

-—--- 16 cycles

line 43
ldpk 000h ; select data page
dmov _yl ; xk1l (1) --> xk(1)
dmov _v3 ; xk1(2) --> xk(2)

---- 3 cycles

line 44
start 0,1 ; initialize input
inl2 0,1,_v5,00008h ; input u(l)

---- 56 cycles

line 45

outl4d 0,1,_y6,00008h ; output y (1)

-—-= 4 cycles

line 46
zac
1t _v2 s xk (1)
mpyk -2184 ; al(l)
lta v4 ; xk(2)
mpy _c5 ; al(2)
lta _v5 ;s u(l)
mpy _c6 ; bl(l)
apac
add cl, 14 ; perform rounding

overflow test and rescaling 0 bit

parameter for procedure outl4

initialize software stack pointer
make stack accessible

call external procedure init
initialize counter

initialize destination pointer
initialize source pointer

initialize software stack pointer
make stack accessible

begin block statement

137

sach *, 1
blz 12
sub _¢c2, 15
blez _13
lac c2, 0
b 14
_12 -
sub _¢3, 15
bgez _13
lac c3, 0
b T14
13 -
- lac *x, 0
14
sacl v1, 0
; —==-— 19 cycles
14
; line 49
zac
1t v2
mpy c7
lta “v4
mpy _c8
lta v5
mpy _c9
apac
add _cl1, 14
sach *, 1
blz _15
sub c2, 15
blez _16
lac c2, 0
b T17
_15 -
sub _¢c3, 15
bgez 16
lac _e3, 0
b 17
16 -
lac *, 0
_17
sacl v3, 0
r
;s ———— 19 cycles
r
; line 52
zac
1t vl
mpyk 4
apac
add _cl, 14
sach *, 1
blz 18
sub _c2, 15
blez 19
lac c2, 0
b —110

138

Ne Ne Ve Ve Ne N

~

Ne Ne e

~

~e Ve N N

~e N

save result

branch if result negative
positive limit

branch if no positive overflow
use positive saturation

update result

negative limit

branch if no negative overflow
use negative saturation

update result

reload result

xkl (1)

xk (1)
a2(l)
xk (2)
a2 (2)
u(l)
b2 (1)

perform rounding

overflow test and rescaling 0 bit

Ne v e N

~

~e

~e Ne Ne

~e

~

;
i

;

save result

branch if result negative
positive limit

branch if no positive overflow
use positive saturation

update result

negative limit

branch if no negative overflow
use negative saturation

update result

reload result

xkl(2)

xk1l(1)
cl(l)

perform rounding

overflow test and rescaling 0 bit

Ne Ne Ne Ne

~. Ne

save result

branch if result negative
positive limit

branch if no positive overflow
use positive saturation

update result

Ne e e

~e e N

18

19

110

line

sub c3, 15

bgez :}9
lac _c3, 0
b _110

lac *, 0
sacl _v6, 0
15 cycles

55
evend 0,1,1000

2 cycles

b $
.end

Se e Ne N

~

~

negative limit

branch if no negative overflow
use negative saturation

update result

reload result

vy (1)

end block statement

wait for interrupt

139

140

HARDWARE / SOFTWARE-ENVIRONMENT FOR DSP-BASED MULTIVARIABLE CONTROL

H. Hansclmann, H. Hearichfreise, H. Hostmann and A. Schwarte

dSPACE digital signal p

ing GmbH

An der Schb A

ing and 1 engi
icht 2, D-4790 Paderb

, Fed. Rep. Germany

Abstract
Single-chip Digital Signal Processars (DSP) are ‘powexful candidates
for the implementation of multivariable We pp

Applicati
ln this section we report bricfly on some multivariable control
using DSP. Unless otherwise stated these arc applicati-

report bricfly on several applications of DSP in the control of
mechanical systems. The of these applications was to a large
extent due to a set of software and hardware 100ls for controller
implementation. Building upon our experiences of these applications
we denvc and for a novel development
) for DSP in multivariable

" fenfi

control.

Current DSP

The reason for considering DSP for control is their computing
speed. In most other respects DSP are inferior to other kinds of
processors '+ The speed of DSP comes mainly from the intcgrated
hardware multiplicr and accumulator, and from the multiple bus
architecture. The latter is necessary in order to keep the fast
arithmetic units busy, ic. to allow the operand and result data
transfers 10 kecp up with the usually single-cycle arithmetic opera-
tions.

A detailed description of DSP architectures is not given here.
Some comparisons of SP chip archi can be found in
34, A few benchmark results related to control arc mentioned in '» and
some more are reported below in the applications section.

The spectrum of DSP has grown rather broad now. It is divided

ons we were invalved in during our work at the Depariment of
Automatic Control in Mechanical Engineering at the University of
Paderbom.

Modem high performance disc drives use fast voice coil
actuators for the positioning of magnetic heads onto desired tracks
and for keeping them on track against vmous disturbances by
closed-loop l. Head p ises two tasks:
(A) Positioning on a mrget track (lmybe across many tracks), and
(B) track followmg during rcad and write opennons Modem control
I speced and accuracy

for both tasks. ¥ -

For task (A) state estimator techniques help to solve the problem
of cstn'naung the state of the fast moving actuator from the track
error, which is the only measurement variable usually available. For

task (B) llers can be d d whlch high control/
bandwidth and good dxsmrbance 3] despite the p
nature of the mechanical plant.

Using a simple low order modcl (double lmegrator) for the
actuator an -based was on an Intel

8096 microcontroller by IBM 2. Owing to the medium performance
embedded servo technique, the crossover frequency (around 300 Hz)
and lhe samplmg rate (around 4 kHz) were not very high and the

with respect to processor
comp speed

into two blocks: one with fixed point and one with fl g point
arithmetic hardware.

The low end is represented by low cost devices such as the
Texas Instruments TMS32010 with 16 bit fixed point arithmetic (32

The computing power of a TMS32010 DSP was utilized in the
track following control studies reported in 4. A 9th order controller

bit in the accumulator) and rather limited data memory address range
(144 words on-chip), which needs 400 ns for a multiply-and-accu-
mulate operation (mac). In the medium range are devices which also
support 16 bit fixed point arithmetic but are about twice as fast, have
increased addressing space, and have increased functionality (such as
on-chip serial interfaces). One example is the TMS320C25. High
end fixed point arithmetic chips are the AT&T DSP16 with its spced
(75 ns per mac), and the Motorola DSP56000 with its extended
wordlength (24 bit operands and 56 bit in the accumulator). For high
volume industrial use versions with on-chip program EPROM
(TMS320E15) or even EEPROM (General Iastruments
DSP320EE12) are particularly interesting.

A few floating gomt DSP have become available recently, most
notably the NEC77230 and the AT&T DSP32. Both chips offer 32
bit arithmetic with 150 ns (NEC, pipelined) to 250 ns (AT&T) for a
mac. So there is only a small time penalty for floating point
arithmetic if these chips are used. Even faster will be the chips which
are scheduled to be sampled in 1988/1989 such as the AT&T
DSP32C (up to 80 ns per mac) and the Texas Instruments
TMS32030 (60 ns per mac).

These chips will usc 0.75 pm and 1 pm technology. The same
technology will enable fixed point chips to be faster, but what is
often more important for industrial use, the chip arca saved by
sticking to fixed point hardware can be used to increase the chip’s
functionality by integrating more timers, ports, interrupt control etc..
Microcontrollers like the Intel 8096 but with DSP core may be
created that way. Using more conventional technology will on the
other hand lower chip cost and thus open up high- volume ppli

based on notch ﬁller hniq; (to p for structural
cffects) was designed and impl d, running at about
30 kHz ling rate ¢ A fi Hz was

achieved. The crossover frequency was hmnod mostly by model
uncertainty, but the high sampling rate was not a luxury because of
strong resonances in the plant even at 10 kHz. This controller was
for an 8 inch drive with dedicated servo and a rotary voice coil
actuator. A disturbance observer with disturbance feedforward was
added to the 9th order controller for i d disturbance

A different Il wuh llent disturb ji based
on lq (lincar quadrati ller design for the same drive
was also implemented and ran a(34 kHz sampling rate *.

Tailoring posmomng controllers to modelled disturbance dy-
incorp ori the usable
frequency rang,e of the mechanical construction (smaller dnves and
better construction) will further i power d d
So disc drives are an interesting ficld for DSP application.

Active or semiactive vehicle suspension

Active vehicle suspension means total replacement of the
conventional spring and shock
cylinders driven by servovalves are used instcad. The syslem relies
fully on control *,

The abovementioned group at the University of Paderborn has
been working on this subject for years under contract with several
groups of Daimler Benz AG. Multivariabl h are
applied. Multivariable com:ollcrs with more than 10 sensor inputs, 4
actuator several di and orders above 20 are

ons. Fixed point DSP will have a place in industrial ap for

years 10 come.

Reprinted, with permission, from Proceedings of 121 IMACS C onference.

These llers are mostly lincar wuh some udded
1 d nonlincaritics for the of

Y

141

flow phenomena. Fast dynamics of the hydraulic systems require
sampling rates above 1 kHz. Afier single axis test-bed studies some
years ago (already using DSP) an experimental off-road truck is
currently bcinfeeqmppod to run tests in the field. A study for another
type of vehicle is underway. TMS32010 systems were used until
recently, and have now been replaced by TMS32020 systems now.

In preparation for the off-road truck test the cylinder construc-
tion was tested at the university lab in a ware-in-the-loop
simulation. The real cylinder, which is to replace the spring/absorber
asscmbly, was used. The road and the vehicle body were simulated

ed simple operations on the larger position sensor words. To keep the
high resolution (luge word) information out of the llncar cona'%ller
p a has been develop

At the time of wnung lhc connollcrs for some of the 6 drives
have been d flesigned ﬂ lesmcnted boen lati One of the
axis controllers trolley) has so tested experimentall
It worked as predicted. v

q

in a TMS32010, together with the susp controller and the i

ller for a 3 vlind ing the correct dynamic load Development System Requirements
such as the suspension cylmda ‘would ﬁnd in the real vchlclc 'l'he In this scction we specify what a dcvclopmcnt system oriented
total system could have rua at 7 kHz samp h Dsp should For the of the

g Tate,
than necessary.

A fully active system has also been designed and implemented
for a race car at Lows Co., UK, also using a TMS320 processor. 17
sensors arc involved.

Semiactive vehicle ion means repl of the con-
veational shock absorber by an ndjuslable m ln contrast to existing
slowly and / or di the
mechanism has servovalve chnrmcnsucs in order to come close to
an active system in performance. Such a system is under develop-
ment in an industrial company which is advised by the abovemen-
tioned university. Again a TMS32020 system is used, which
replaced a TMS32010 system recengly.

Elastic Robot

With conventional control, the clastic movements in the drives
and the flexibility of the arms of lightweight robots result in large
vibrations of the hand, Bamcularly during and after high acceleration
intervals. A multi ! has becn designed and imple-
mented for 8 three-joint articulated mbot dnvcn by clccmcal
servo-drives **. This controller d the ly
completely without a speed penalty.

Each motor was cquipped with a position encoder and a
tacho-generator and the two arms carried two strain-gages each for
curvature measurements in both deflection directions. The total
number of scnsors was thus 10. The reference trajectory was fed into
the controller as 3 position, 3 velocity and 3 acceleration feedfor-
ward signals. The controller thus had 19 inputs and 3 outputs to the
motors. The order of the controller was only 6 due to the special
design technique and duc to the facl that many sensors were been
used (many static gains). The ¢ 11 ! on a
TMS32010 and the sampling mc used was 10 kHz. The sampling
ratc could howcvcr have been more than twice that, so there was

spare puting power for additional tasks to be
performed by the processor.
Hydraulic Robot
For tasks requiring mcdlum speed bu(very hl h acceleration
(such as water jet g)a 5 d dom (6 drives) gantry

robot is under construction at an mdusmnl company. Hydraulic
drives have been chosen because of their good torque-to-weight
ratio. The construction is novel in many respects and makes use of
very lightweight materials.

Two particular challenging requirements for control design and
implementation have been: (a) to maintain tough trajectory control
under maximum acceleration (i.c. max. error 0.2 mm at 30 m/s?), (b)
1o use no other sensors than the position encoders of each hy:
tor (absolute minimum).

Requirement (a) nccessitated nonlincar compcnsxnon to cope
with the strong inearities of hydraulic flow through the servo-
valve. Requirement (b) was met (in the axis designs completed at the
time of writing) by tclymg on Knlman-Flhcrs for esnmaung the plant
stae. This was igh position d
are uscd The uolley position for example spans 2m and the

is about 8 pm.

The trolley controller consists of a 6th order lincar Kalman-Fii-
ter Plus state-feedback, a connected lincar 4th order subsystem for

i lincarity, which some
simple op and a sq pesformed via table-lookup.

All dsive control of the whole robot is performed by two
‘TMS$32020 boards, the sal sefhng rates being around S kHz. 16 bu
fixed point arithmetic is used with the on of a few

142

previous scction (thesc are not the only oncs) we uscd several tools
which have been developed over years to facilitate and in some cases
even automate the implementation of nontrivial controllers on DSP.
Recent relevant papers arc 422, A ncw generation of DSP control
development tools is now in the making at dSSPACE GmbH, building
upon past experience.

General Considerations

‘The main line is to support controller implementation as well as
is usually expected for controller des:gn and simulation, and to do
this in accessible to the Often not much
consideration is given to implementation durulg design, mostly
because dcsugn _specialists are rmly mplemcnmnon specialists as
well and work is y split b | theory / design
people on one side and proccssor / elocuomcs / progmmlmng peoplc
on the other side. It proved highly benefi
be able to study impl n issues th ' during dcslgn,
produce DSP programs (via automatic code generators), and to carry
out experiments without delegating responsibility at any stage of this
process. The value of direct feedgaclz beiween design, implementa-
tion, and experiment cannot be overestimated.

A second aspect concemns the choice of a target hardware
system. For preliminary studies of implementation issues and to
check feasability of the coatrol system there should be no forced
dependence on specific processors, their software, or specific target
hardware. Most of all, it should not be necessary to build hardware
before knowing what hardware is actually needed and sufficieat.
Thus it should be possible to study implementation based on flexible
models of the target processor hard- and software.

When experimental evaluation is about to begin, it should still
not be necessary to build special hardware in every case. A set of
ready-to-use hard (boards fitting into a PC-AT

for i) is preferable wh ible. Only after
expenmcnml validation of the design should lmlonng of hardware
for low cost etc. be made. We frequently observed in industry that
carly decisions on target hardwarc were made and then much
engineering resources were waswd ln squeezing code (c g. to meet
spe) with y limita-
tions although the controller dcsngn was not yet settled. l(is much
better 10 have a quick validation of the ller design, with the
lowest implementation effort possible, and then 10 investigate
possibilities of downsizing (memory, processor version etc.) the

target hardware afterwards. This may ly lead to
chips with DSP cores.

Hardware

Our approach is to provide a set of boards all
compatible with the same set of peripheral ds (ADC, DAC,

decoders) so that, if desired, one may start with a floating point DSP
implementation (which is the simplest), then move to a fast fixed
point DSP with a large memory of the same family, then move to a
lowest-cost device with more restrictions. All these steps would be
carried out with the same rcady lo-use peripheral boards The last
step may be to move to if the standard boards do
fiot meet space or economy requircments.

 We choosc (o host the hardwm on PC-AT and com;p:gbl%s

y
makmg usc of mdusmal AT computers, an "AT-host can even be
useful for final products such as robot control systems.

The AT-bus is of course not used for DSP-1/O. We provide up to
32 bit wide data uansfcr This is useful for the next gencration of
DSP and for i he wide data words delivered

by high resolution position sensors (absolute encoders or incremental
rs with counters) used in robot control.

Processor boards: Different lpplncmon ficlds require different

lypu of rocessors . If the focus is on the experimental validation of

concept, then high performance floating point DSP will

m{ be the ﬁrst chou:e the focus is on producing prototypes

for final products, quitc diffcrent DSP may be used. In a high-vol-

ume disk drive application, for instance, the goal will be to find the

lowest-cost device which is just sufficient. So there should be a

number of processor boards which, as far as possible, are similar

from the host-side, and which fit a single set of peripherals. Our

choice is the Texas Instruments TMS family, which covers all types
of DSP of interest.

Fast host-to-DSP communication is provided by means of true
dual-port-RAM. On the host side DMA can be used. The DSP docs
not nced to be halted during host access. This feature is not

y for the develop of stand-alone DSP applications, but
is uscful for applications such as robot control with trajectory data
delivered by the host.

DSP usually have very limited interrupt control facilities. In
order to allow peripherals to request service or flag their state (c.g.
ADC-ready), some hardware is necessary to allow the DSP program
to find out the interrupt source and its priority quickly.

Peripherals: Depending on the application fields the requiremen-
ts are rather different. What is needed is a broad range of boards such
as the one available on the general data acquisition market. However,
our control ficld requirements differ in some respects. For example,
in to data acquisition tasks, we somctimes need
random access to input as well ‘as output channels, and we cannot
tolerate significant dclays
access is desired for i b ling rates on
channels of the same board may be required to “be different
(mulu-mc control), and even comrollcr state-driven (i d of

Rand.

cripheral board. The width of the counter should not be below 24

ts. Reset by detection of a reference pulse must be possible, cither

by hardware or by the action of the DSP or host after it has begn
given notice of the reference pulse transition.

In our expericnces it would be very useful for cxperiments on
the real plant to have means of monitoring (graphic display) the
sensor and control signals from the host through the same ADC or
digital channels as the DSP, It is alrcady of great help to be able to
do this before the DSP is started, but monitoring sensor and control
signals while the DSP is running is even better,

C ly a sct of scp is used for
such monitoring, but this is inferior to our approach for various
reasons: (a) the bit patterns scen by the DSP are not recovered
precisely, (b) LSB- |ppmg of ADCs cunnot be obscrved (©)
possible offscts of ADC:
are different, (¢) dlgml sensors signals (from cnoodcls/dcoodcrs) are
usually not d by

These deficiencies can to some extent bc remedied by passing
the words received by the DSP to additi ing
However, this not only requi dditional output ch Is but also
makes necessary additions to the DSP program, which have nothing
to do with the control task. With simpler DSP such as the TMS3201x
family in parti , any sof ion of lhls kind may make
large sof h y, for i on-chip data
memory may be only sufficient as long as no extensions are made. It
is much better if the DSP program can remain undisturbed.

Software Tools

The tasks to perform when a multivariable controller such as
those of the applications discussed above is to be implemented can
be divided into two nmn blocks: (A) the preparation of a designed
controller for the ities of target hardware, (B)
Only some brief oonsndemuons can be given here. A

time-scheduled) access to ch may be y. Output of
control signals to the actuator occurs preferably as soon as these
signals are computed in order to minimize the delay introduced into
the comrol loop. Thcse arguments rule out FIFO-based (tran-

like) and external constant-frequency

sient-

sampling control.
For analog sensor signals 12 bit ADCs will, in our experience, in
virtally all cases be sufficient for control, as well as 12 bit DACs

for analog output. If the final product has to have lower resolution
converters for economy reasons, it is casy to round off to any desired
number of bus by very small plcccs of code in experiments. Higher

ly n position control, but in this case
digital are uscd (encoders). It would nevertheless
be finc to have up to 16 blt converters available.

Successive approximation ADCs usually should have a sam-
ple/hold-circuit (SHC) at the analog side, but in control applications
1t is sometimes beneficial with respect to loop delay not to use the
SHC: If cxpenmcms prove that the SHC can indeed be omitted this
may in additi final p cost id ly (good alll)cel

detailed discussion of these issues is given in 1, which presents a
basis for a comrollcr implementation oriented software system.

s luis parucularly ‘with fixed point DSP that (A) is

not trivial. B ited i in range and resolution, it is
very important to sclcct pprop ion str s 10 decide
if and where extended p ion arithmetic (costly) is y, and

to scale state variables and intermediate results. It is crucial to have
good methods (in tool form) for the tasks mentioned. The desire to
have 32 bit floating point arithmetic is frequently .due to lack of
methods and tools for doing the same with lﬁy bit fixed point
arithmetic. Note that in all our applications the latter was entirely
sufficient. Many of the tasks can be automated or almost automated
for linear control sy so that tler imp becomes
easy.

The situati h with cc with many nonlinear
operations, where sclection of the computational structure and
scaling cannot be supported so strongly by methods and algorithms
as ll'l thc linear case. But note that the hydnuhc mbo(as well as the

had

lers. The

fast SHCs are not cheap). Bypnssmg the SHC should theref
possible under host control.

It may sometimes be necessary to place anti-aliasing filters
(AAF) in front of ADCs. In all of the applications we have cvcr
carried out, there was only one single occasion when we d

nonlinearities had becn isolated from the larger lmca.r parts and
linear methods were applicable for preparation of the linear con-
troller subsystems.

With 32 bit floating point DSP scaling is no longer a problem.

AAF, and this was a very simple one (first order). In contrast xo
many data acquisition tasks, we are reluctant to put sharp filters into
the control loop because of their strong adverse effect on loop
frequency response phase 3. We consider it best to keep AAFs out of
the ADC boards, and to providc optional extra boards, with pro-
grammable active filters. The most flexible architecture allows for
the filters to be programmed and bypassed both under DSP and host
control. Note that it is Yy to make AAF frequency
response models available to the eonmoncr design software, because
ﬁller dynamics must usually be taken into account in the design.

Digital sensor signals provided by absolute position encoders
(multi-turn) must be accommodated (robotics). They are often wider
than 16 bits and frequently supply data via special fast serial
interfaces. Conversion from Gray to binary code might be done in
software, but a hardware decoding facility for optional usc should be
available on the pcnphcnl board.

1 1 p)
¢

signals should be decoded on a

an issuc but is less critical. A direct form

llel form realizati for which may be
selccled at first may still fail. For example. we encountered a casc
where 32 bit floating point cocfficients were not sufficient to
represent a 3rd order controller subsystem, but 16 bit fixed point
sufficed when a parallel form was used, and we encountered just the
opposite too (floating point parallel form failed and fixed point direct
form was good for a 3rd order subsystem).

As descnbcd in ¥ there are three main lssucs nssoclated wnlh
of a d
for lmplemcmauon. (a) the represcmauon of dlgnal comrollcr
models, (b) model management, and (c) the tools acting upon the
models.
The of digital ! dels should be such
that every pnccc of i ion about the ller is

This means for eumple that, in contrast to some theory oriented,
CACSD packages, a digital ler is much more than a collection

143

of z-transfer matrices or state variable matrix coefficients. Things
like sampling delays (skewed m?hng) ADC range and resolution,
and descriptions of the type anthmetic performed must be

integrated into a model.
In 3 hierarchical multi-rate " dels are g
Our applications so far have been single-rate. But if multi-raie
had been d, in one casc a lem with a slow

controller subsystem could have been dealt with that way instcad of
letting it run at the single (hnﬂ:) rate and using extended precision
(slow subsystems run at too gh ratc arc hkcly to posc ptecmon
problems). Regarding hi
a connection of subsystems on one level should be the mmunum
supported (one level listing sub and i and the
level of individual subsystems descriptions).

representation is compiled in ASM code. A gencrator / compilei
:"o‘cllowmg ;hls lppfoachmu under dhcv;‘ehmd t (almost completed) at

time of writing. u 1l u'nuwy
mullsmdesmbcdm‘l"m'l‘;??y angus uprcl
(not restricted t0) fixed pouu DSP and has flexible meclumsms for
taking peripheral 1/O ini

For the latest flommg point DSP the ing task is casier
with respect to arithmetics, and for some it is also easier duc to more
regular archi and i sets. HLL piler writers may

ﬁnd it easier to produce good code then. However, ﬂoaung point
anthmeuc does not as such mean casy ASM programming. Pipelin-
g effects and difficult instruction sets (NEC 77230) may sull makc
ASM programming awkward. A good would p
be to have an intermediate langunge which is closc t0 a gencral

A model management facnhly (database) is also
g as a s«amng ‘gomx 'l‘hen dnnng
di

atroll maybc ‘Eachofdwmmaybetmnsfonnedmto
several realization structures for trade-off studies, and cach of these
may be scaled scveral times under different assumptions. Then for
some of these different arithmetic type and wordlength specifications
may be investigated. It is clear that “management by filenames® is
not sufficient here. Adding to all this, we consider it necessary that a
tool creating one controller model derivate from another (c.g. scaled
from unscaled) records all information which allows the tool's
function to be retrieved completely later on. Such records must be
logically connected to the generated model. Such requirements can
only be met by some kind of specialized database.

The preparation tools should as an nbsolulc mmlmum comprise
the following tasks for lincar :
1) discretization, (2) structure sclection, and A3) scaling (for fixed
point DSP). Some tools to analyse the effects of discretization,
sampling and computational delays, cocfficient quantization, and
signal quantization are also very helpful. Appropriate methods have
been discussed in 2+

And last, but not least, a simulation facility is desirable. We had
very positive results with a qrehmmary tool which was able to
simulate nonlinear plants with linear or digital
delays, ADCs and DACs, and processor arithmetic. Given complete
digital controller models as outlined above and in ¥, all necessary
information can be derived from the model by the simulation tool. It
is not necessary to have code or even know the target processor for
simulation. The arithmetic can be specified. So such a simulation can
be said to work with an “abstract processor model”.

For our applications to date this has mostly been sufficient,
because we could rely on crror-frec target processor code produced
by our code Once the ab model worked,
(he final real code worked 100. When hand-coded parts are mixed
into generated code the situation is different. It would be a great
cnhancement if abstract model simulation were complemented by
code simulation. Common code simulators unfortunately are not
designed to be operated wuhln a closed-loop control system simula-

tion. We think it v 1o produce a
which allows both dels as well as p -pfus-code
models.

: For a long time assembly language (ASM)
programming was the only choice for DSP ASM programmmg |s
generally undesmblc for qulck 1
the g ion. Some DSP have atchltcclurcs

and instruction scts which are less easy to use than those of general
microprocessors, and, morc impontant, there are scvere restrictions
with some DSP * This makes ASM programming panticularly
ive for our High level language compilers have
emcrged, but they have difficulties in dealing with restrictions and it
is likely that they produce far less optimal code than an experienced
ASM programmer. This is backed by benchmark results given in .

Aﬁet years of good experience with task-specific automatic
enerators we coasider it best to automatically gencrate DSP

rom a controller model as far as possible but to provide for

lmking with parts which cannot be produced automatically and are
hand , or which are not critical and are produced by a HLL
compiler. A code emtmunpcrfwnmmmwhwhm

v:mully out of reach for a general and its compiler ¥
Such a code gencrator may Eoceefm steps: first an intermedi-
ate language representation is derived from the model. and then this

144

HLL (as | HLLs for DSP already are) but to have
additional language constructs which enable the compiler to produce
beuter code by optimizations under a global viewpoint and by making
usc of the very special instruction comstructs found in ASM
instruction sets of DSP.

References

(1) H. Hansclmann, "Using Digital Signal Processors for Control"
presented at IEEE Industrial Electronics Conf. IECON'86,
Milwaukee, Wisconsin, Sept. 29 - Oct. 3, 1986.

(2) H. Hanselmann, “Implementation of Digital Controllers - A
Survey”, Automatica, Vol. 23, pp. 7 - 32, January 1987.
(3) J. Titus, EDN, pp. 163 - 176, Oct. 16, 1986.

(4) R.Gluth, “Inte nalprozessorea”, Elektronik, Vol. 18,
pp. 112- 125, g‘pt.s g

(&) }640 C. Slnch “Digital Servo Algorithm for Disk Actuator
ntrol” in Proc, on Applicd Motion
CAMCB7, Minneapolis, Mmucsoul. June 16 - 18, 1987.

(6) H.Hansclmann and W. Moritz, “High Bandwndlh Control of
the Head Positioning Mechani a Wi Disk Drive",
IEEE Conirol Systems

in
Magazine, pp. 15 - 19, Oct. 1987.
(7) H.Hansel and A. Engelke, "LQG-Control of a Highly
Resonant Disk Drive Head Positioning Actuator”, JEEE I[ms_
Q%%%m on Industrial Electronics. scheduled for February issue, /

(8) J.Liickel, R. Kasperandl(Jiiker, "A Pmcucal Concept for the
Active Susp of Road Vebhicles" in Preprints of
World Congress, Mumch Vol.3 pp. 178 -183, 1987.

(9) H. Henrichfreise, W. Moritz and H. Sicmensmeyer, "Control of
a Light, Elastic Manipulation Device” in Proc, on
Motion CAMC87, Minneapolis, Minnesota,
pp. 57 -66, June 16 - 18, 1987.
(10) H Henrichfreise, “The Control of an elastic Manipulation

Device Using DSP", will be presented at American Control
Conf. ACC, Atlanta, Georgia, lune 15-17, 1988.

(11) H. H; | , "Low Resol i olegh
Resolution Position Control®,]fmnmngm
Control, scheduled for Angus(issuc, 1988,

(12) H. Hanselmann, "A Concept for Mos(ly Automatic Implement-
ation of Control Algorithms", p at IEEE C
Aided Control System Design, Arhngton. Virginia, sept 24 -

26, 1986.
(13) H. Hansel and A. Sch “G of Fast Target
Processor Code From High Level Controller Descrij tions", in

%ntmmmmm Munich, Vol. 4, pp. 90

Automatica, Vol. 23, No. 1, pp. 7- 32, 1987
Printed in Great Britain.

0005-1098/87 $3.00+0.00
Perumon Journals Ltd.
© 1987 ional of ic Control

Survey Paper

Implementation of Digital Controllers—A Survey*

H. HANSELMANN{

Key Words—Digital control; microprocessor control.

Abstract—Stimulated by microprocessor technology there is
increasing interest in the issues of digital control implementation.
This paper reviews these issues, from algorithms through current
hardware up to the various problems arising with non-ideal
behaviour of digital controllers.

1. Introduction

For many years, theorists in the control engineering field have
claimed that due to advances in microelectronics, their new
algorithms could easily be implemented. Talking to the people
who have to perform the implementation actually quite often
reveals that nothing is that easy.

This applies even in the simplest cases of linear control, if the
implementation is to be carried out under difficult conditions,
e.g. without the possibility of rcsomng to mini s pro-

appropriately, even when fast floating-point hardware abounds.
The above list of problem sources already indicates that in
this paper the scope of the term “implementation” will not be
restricted to the more theoretical questions but will also include
the selection and evaluation of current possible hardware.
Some consequences for software tools for computer-assisted
ion within a Cc -Alded Control Engineering

(CACE) envi are also d d. On the other hand the
type of control to be implemented will be restricted to a certain
class, i.e. the focus is on implementation of mostly linear, time-
invariant control. This is felt to be justified because even with
this restricted class there are many problems to discuss and such
controllers form the kernel of many control tasks. This is also
the case when algorithms such as adaptation mechanisms, gain

grammed in a high-level language using hlgh-premslon floating-
point arithmetic, with plenty of speed. There are still compara-
tively few publications dealing with the problems of controller
implementation in difficult conditions, and most of these are
either from the sixties, or quite recent, stimulated by the
increasing availability of microprocessors.

The situation has always been different in the related field of
general digital signal processing, particularly digital filtering.
The problems plaguing the implementer when he has to use
fixed-point arithmetic with small wordlength were attacked by
theorists persistently and systematically from the early days of
digital filtering onwards. Much can be learned from this field
for controller implementation, although modifications and
additional research have been or are still necessary. This has
been pointed out particularly in the work of Moroney, Willsky
and Houpt (Willsky, 1979; Moroney et al., 1980, 1981; Moroney,
1983).

The main problems with digital controller implementation as
considered in this paper arise from: (a) quantization of signals
and coefficients, particularly in the case of fixed-point arithmetic;
(b) serial computation in a processor; (c) lack of computing speed
in critical applications; and (d) lack of programming support in
cases where high-level language programming is not adequate.

Because microprocessor technology is advancing rapidly, it
could be argued that most of these problems are going to lose
importance anyway, but there will always be implementation
tasks either with demands exceeding the current capabilities of
common microprocessor hardware, or with constraints that
involve expending more engineering effort to get a more efficient
product tailored to the application. Thus for instance fixed-
point arithmetic may be attractive and sufficient if dealt with

*Received 6 September 1985; Revised 17 June 1986. The
original version of this paper was presented at the 9th IFAC
World Congress on A Bridge Between Control Science and
Technology which was held in Budapest, Hungary during July
1984. The published proceedings of this IFAC Meeting may be
ordered from Pergamon Books Limited, Headington Hill Hall,
Oxford, OX3 0BW England. This paper was recommended for
publication in revised form by Associate Editor B. Wittenmark
under the direction of Editor K. J. Astrom.

+ University of Paderborn, Department of Automatic Control
in Mechanical Engineering, Pohlweg 55, D-4790 Paderborn,
FRG.

hedules and the like surround this kernel in more complicated
control systems.

The organization of this paper has been chosen to reflect a
quite common situation for control engineers:

—these are some control algorithms I want to realize,

—and that is promising hardware,

—but what are the issues in between? What steps must be taken
in order to make use of the hardware?

Therefore, after the discussion of control algorithms and the
issue of discretizing continuous controllers in Section 2 a review
of current hardware is given in Section 3. Various classes of
digital processors are reviewed, particularly with respect to
speed and architecture. Whereas general microprocessors might
allow for comfortable floating-point arithmetic, there are quite
often restrictions dictating the use of short wordlength fixed-
point arithmetic. There might be speed reasons for this, or the
chosen hardware might even not allow for anything else. This
entails many consequences, hence some basics on arithmetic
are discussed in Section 4, including some “exotic” types of
arithmetic.

Chronol lly, once the d. or discretized controller is
known, the first step of the implementation procedure is to
choose a structure for the controller, suitable for implementation
with the available arithmetic. With fixed-point arithmetic at
least, it is in most cases crucial to transform a discrete controller
description into another description which is input—output
equivalent, but exhibits better behaviour, for instance with
respect to limited wordlength coefficient sensitivity. This issue
is discussed in Section 5. Determination of “good” structures
has long been a main issue in the digital filter field, and work
still continues on this. Transformation into a well-behaved
structure may also be necessary with floating-point arithmetic
in critical cases. Such cases have indeed been encountered in
practice.

In the case of fixed-point arithmetic the next step must be
scaling (Section 6). Fixed-point numbers have a much more
limited dynamic range than floating-point numbers with com-
parable wordlength. In order to avoid overflow but at the same
time minimize quantization effects, the variables of the controller
must be scaled. Scaling also influences the coefficients of the
controller which have to fit into the coefficient number range
available.

Finally, the target processor program can be written. This
should be quite an easy task if a high-level language can be

‘'used and if the control algorithms are straightforward, but

Reprinted, with permission, from Automatica, Vol. 23, No. 1, 1987.

145

146

Survey Paper

reference

measurement
prefilter

Ny 1 — T

actuator
observer

observer/estimator

observer/estimato
plus feedback

plus feedback rJ

possibly unstable
(a) (b)

FIG. 2. Implementation with actuator saturation.

2.1.1. Observer/estimator and state feedback. The observed (or
i d) state vector X is computed via

feedback
Fic. 1. Example of a structured control system.

programming can be more challenging under less convenient
circumstances. Some relevant points are discussed in Section 7.

It is always advisable to carry out analysis and simulation in
parallel to the steps of the implementation procedure, checking
for the effects of discretization, skewed sampling, finite word-
length arithmetic-effects and the like. Although appropriate
analysis tools apart from simulation are valuable, the final word
at least should come from a full-blown simulation of the whole
control system. This task is not as trivial as it might seem, and
deserves some discussion in Section 8.

2. Control algorithms

Before discussion of implementation issues it is useful to have
a look at some of the algorithms which are possibly to be
implemented and at some implications of these algorithms with
respect to implementation.

It is common practice to design linear control systems and
to apply them to the usually non-linear plants. Thus linear
controllers are the main focus. However, linear controllers are
sometimes augmented by specific non-linearities, such as non-
linear friction-cc ing terms, non-li c d or
reference generating models and the like. This should be taken
into account at least when it comes to software, both for aiding
in the implementation process and for target processor program
development.

A complex control system is usually composed of subsystems.
For an example see Fig. 1. Such a subsystem structure may be
imposed by the design process, but there are usually also
technical reasons for the structuring. It is often appropriate to
preserve this structure in the controller implementation,
although it may be easy to merge everything together into a
single system description with the set of inputs comprising all
measurements from the plant as well as external inputs, and
with the variables acting on the plant as outputs. Such a
global controller description may facilitate handling of the
implementation tasks, because CACE software then only has to
deal with simple single-system descriptions. This, however, is
usually the only advantage of using a global description. In
terms of maintenance, modifiability and self-documentation it
is certainly better to keep the subsystem structure throughout,
up to and including the final target processor program. Variables
with physical meaning sometimes need to be preserved and may
be lost in the global description, at least after transformations,
which occur in the implementation process, have been perfor-
med. A description which reflects the modular structure of
the system is also adequate if the controller is composed of
subsystems running at different sampling frequencies, i.e. it is a
multi-rate system, and if there are non-linear subsystems a
structured description is almost mandatory anyway.

2.1. Some basic types of discrete control algorithms. In this
subsection a discussion of basic control algorithm types is given
with regard to the typical individual subsystem types.

Rirr = % + Ty, + Ky, — HJ (0]

(Franklin and Powell, 1980; Astrom and Wittenmark, 1984),
where u, is the vector of control inputs to the plant and y, may
contain plant measurement variables as well as reference inputs
or measured external disturbances, in the case of reference and
disturbance modelling. The observed state vector is then used
mn

Upu = — L%, @

where Lis a constant state feedback matrix, possibly including
columns for feedforward of observed reference or disturbance
model states. In (1) there could additionally be input terms
separate from the control input term in the case of additional
measurable external plant input signals. The term in brackets
could be augmented by —Du,,, when the discrete plant state
space description contains it as a direct feedthrough term. This
occurs for instance when dealing with computational delay of
the control processor using the approach given by Kwakernaak
and Sivan (1972). The state observer/estimator may also come
in another version, slightly different from (1):

Rivr = PRy + Tupy + K[ypyer — HOR,]. 3)

This version is called “current” estimator by Franklin and
Powell (1980). Astrom and Wittenmark (1984) distinguish the
predictor version given by (1) from the filter version given by
(3). The presence of y, 4+, has implications with respect to non-
zero computation time (see Subsection 2.2).

Because u,, which is computed via (2) also appears on the
right-hand sides of (1) and (3) it is sometimes argued that (2)
could just as easily be included in (1) or (3), yielding for instance

Riees = (® = TL)% + K[yppsr — HOZ] @

in the case of (3), along with (2) for computing the control input
to the plant. This could however be dangerous when u,, as input
to the plant saturates (Astrom and Wittenmark, 1984). The
versions (1) and (3) still work (Fig. 2a) but in the case of (4) the
control system is broken up due to saturation into the plant
and a system whose eigenvalues are those of ® — I'L—KH®,
which are not even guaranteed to be stable (Fig. 2b). The control
system may never again regain stable operation after saturation
has occurred. Astonishingly, this simple fact has frequently been
ignored in the literature. Note that this problem ties in with the
loop transfer recovery issue of continuous control (Doyle and
Stein, 1981) as well as with antiwindup compensation (Astrém
and Wittenmark, 1984). From the author’s own experience
designs are not unlikely to end up with an unstable system (4).
In such cases at least, the control inputs to the plant should
also be explicit inputs to the controller. If saturation occurs
only at the DA-converter, an internal feedback of u, under
saturation in the control processor to the right-hand side of (1)
or (3) may suffice, otherwise the inputs to the plant should be
measured. Note that even when (4) is stable, the dynamics may
be very unsatisfactory. If a continuous controller is designed
and afterwards discretized, the discrete controller with feedback

Survey Paper

as in Fig. 2b may be unstable if actuator saturation occurs, even
if the continuous controller remains stable.

In (1) and (3) there is an explicit computation of the observa-
tion/estimation error (the bracketed terms). The term depending
on %, could however be omitted if ® — KH in (1) or ® — KH®
in (3) are used for @ instead. The controller (1), (2) can then be
reduced to a standard state space form

fer = (@ — KH)%, + (T, K)[;] ©)

Pk,

= — L%,

which is equivalent to (1), (2) with infinite arithmetic precision.
With short wordlength arithmetic there may however be cases
where the representation of (® — KH) and K in the processor
causes observation/estimation errors.

The reduction of (3) and (2) to standard state-space form is
prevented by the presence of y,,., in (3). An input/output
equivalent standard state-space form could be found (see below)
but £ would not be preserved.

2.1.2. Standard state-space systems. If the controller design
method does not yield a specific algorithmic structure such as
(1) and (2), but just a discrete dynamic system with some inputs
and some outputs, or in cases where the structure is not required
to be preserved, the standard state-space description may be
adequate: .

X1 = Axy + Buy ©)
Yo = Cx; + Duy.

Such a system may also appear as a subsystem in a complex
controller. Its input thus does not necessarily coincide with the
plant measurement, reference and measured disturbance vectors
as in (1), and its output is not necessarily the control input
vector to the plant. The usual convention of u being the input
and y being the output of this system has therefore been adopted,
and will be used in similar cases below. It is important to include
the direct feedthrough terms in (6) because controllers frequently
have such a term (think of simple P, PI, PD, PID type
controllers).

If (6) describes an unstable controller/compensator with u,
which does not contain the actuator control variables (as
opposed to (5)), the same problems in the case of actuator
saturation arise as discussed above. The closed-loop system of
course should be stable but breaking of the loop because of
actuator saturation is likely to have disastrous consequences (due
to possibly only “conditional stability” in Bode’s terminology).
Astrém and Wittenmark (1984) suggest a neat way of circum-
venting such problems by implementing the system (instead of

©)

Y41 = (4 — MC)x, + (B — MD)u, + My,,)
Y = Cx; + Dy,

which is equivalent to (6) as long as everything is linear. The
point is that (7) is a feedback system because y, appears as
Vi1 in the computation of x,. Assume now y to be the control
input to the plant, and u to be the plant output. If y, now
saturates, not only the controller/plant loop is broken, but
also the loop in (7) (see again Fig. 2 with (7) replacing the
observer/estimator/feedback system there). Thus one is left with
a system the dynamics of which are determined by 4 — MC
instead of 4, and A — MC may have more desirable eigenvalues
because M can be chosen freely.

2.1.3. State space system with “current” term. Frequently the
system description contains a “current” term, which means that
x; depends not only on u,_, but also on the currently sampled
w, or

Xy 1 = AX, + Byt iy + Bouy ®)
Ve = Cx; + Dy,

‘This occurs if certain methods are used to discretize an analog
controller. But the simple PID controller given by

Up k= 0€
g =ty + Pey)
upy = Yup-s + Oe, — e—1)

Wy = Upy + U + Upy

also yields a description of the form (8), if the integral part u,
and the differential part u, ared chosen as state variables. If it
is not necessary to preserve the state variables, (8) can be
translated into (6) using the substitution (Hanselmann, 1984)

X = X — By (10)
resulting in

Xp+1 = Ax; + (AB; + Bo)u, (11)
Y = Cx; + (CB, + D).

2.1.4. Transfer functions. Controllers or controller subsystems
are often given in transfer function form if they are SISO, MISO
or SIMO systems. In the case of MIMO systems the transfer
matrix description is not directly appropriate for implementation
purposes because of the underlying minimal realization problem.
For this reason and because state-space models are more easily
amenable to numerical treatment, basing CACE tools on state
space descriptions might be preferred, with some important
extensions as given in Subsection 5.4.

In the SISO case it is quite natural to derive an implementable
difference equation directly from the z-transfer function in
polynomial form:

_bot+bizT + bz

— =06 =—""—""""—"—"—""— 12
U(z) e T+aiz '+ +az" a2

could be implemented as
Vi= —@1Yi-1 = QYo + oty + 0+ bt (13)

This is only the simplest equation, requiring more storage
elements than necessary. There are various other structures also
involving the polynomial coefficients of (12) more or less directly
(see for example Phillips and Nagle, 1984). The problem is that
such an implementation is very likely to fail with finite precision
arithmetic even in low order cases, so transfer functions are
usually realized in different, more appropriate forms (see Section
5).
)If an observer/feedback controller is given in transfer function
form in the case of a SISO plant, it has at least two inputs and
one output. The two minimal inputs are the control input to
the plant as measured and the plant’s output variable. Additional
inputs for the command or reference signals and measured
disturbances may be present. So such a controller is always
MISO. It may be tempting to eliminate the input of the plant’s
actuating variable into the controller which computed that
variable. The problem associated with actuator saturation
discussed above in the state-space context then also arises. If,
originally, the controller is a compensator without this actuating
variable feedback, and it is unstable or exhibits unsatisfactory
dynamics, it is also possible to remedy this in transfer function
form (Astrom and Wittenmark, 1984), corresponding to the
modification shown in (7).

2.1.5. Finite impulse response filters. Finite impulse response
(FIR) filters are known from digital filter theory (Oppenheim
and Schafer, 1975). They are commonly realized as non-recursive

147

148

Survey Paper

systems, i.e. the difference equation has only input terms on the
right-hand side

Y= z bty -y, (14)
i=0

but note that recursive realization is also possible, an example
being the common recursive realization of a moving average
filter. In a control system context, FIR filters may appear as
subsystems for filtering purposes. They may also be used directly
as controllers in certain settings (Fromme and Haverland, 1983;
Widrow and Walach, 1983).

2.1.6. Non-linearities. All the controllers or subsystems discussed
above only require simple scalar product operations involving
coefficient vectors (matrix rows) and data (signal) vectors.
This computation of sums of products, which requires only
multiplications and additions, is the type of operation predomi-
nant in general digital signal processing, for instance in digital
filtering or correlation computations. Thus processor architec-
tures suited to the strong market of general digital signal
processing are usually also well suited to controller implemen-
tation (see Section 3).

Practical control systems, however, frequently need extensions
of the simple lmear time-invariant systems discussed. Examples
are: p of state-dependent non-viscous friction in

hanical (Hcm hfreise, 1985; Walrath, 1984), non-
linear command or reference generators (Broussard et al., 1985),
compensations of kinematic non-linearities in robot control, or
adaptive mechanisms (Astrém, 1983). Computations introducirg
operations such as decision making, divisions, table lookup,
interpolation, polynomial evaluation, and computation of non-
linear functions may give rise to problems with processors which
are intended for linear digital filtering.

2.2. Implications of computational delay. In the difference
equations discussed above the subscript k of input or output
variables expresses time instants where sampling or output
occurs respectively. Thus u, in (6) means u(kT) and y, means
MkT). Sampling and output must therefore be performed exactly
simultaneously. Note that the state vector may have a meaning
with respect to time instants too as in the case of (1) or (3),
where % is the observed plant state but this depends on the
design method which yielded 'the controller. It is in any case
irrelevant at what time instant the state vector is computed, as
long as it is computed before it has to be used for the
computation of the output.

If there is no direct feedthmugh from input to output and
there is no current term in the state update equation (as in (l),

(a)
3 te
l————rn——-!
(k-1)T kT t
ouL[iuL of
control signal up
latest instant for
measuring plant output yp
(b)
te
~—~ _prediction of state
/ \
. (k=1)T kT t

1 Toutpu\ of up

measurement of yp

FiG. 3. Computational delay.

With observers/estimators there are more elegant possibilities
which compensate for the delay. In the approach given by
Kwakernaak and Sivan (1972), the time grid is fixed to the time
when output of the control signal u,, to the plant occurs, i.e.
u, , means u,(kT)(Fig. 3a). With the requirement of simultaneous
sampling and output the latest usable to comp
u,(kT) would be y,(k — 1)T). If skewed (non-simultaneous)
sampling were used, the latest measurement could however
preferably be y,(k — 1)T + 8), where 6 = T--t,, and ¢, means
the computational delay. Thus an observer/estimator design
based on a plant description with output y (kT + 9) instead of
yy(kT) would comp for the putational delay.

In the approach given by Meisinger and Lange (1976), the
time grid is fixed to the sampling of y,(kT) but the computation
of u,, is based on a predicted plant state X(kT + t) (Fig. 3b).
The prediction is easily incorporated into the observer/estimator
equations with no additional computational overhead. Similar
ideas are used by Mita (1985). Meisinger and Lange’s approach
appears different from that of Kwakernaak and Sivan, and no
reference to the latter is given. In fact, the equations describing
the estimator can be shown to be equivalent. The difference is
that Meisinger and Lange express the estimator gain matrix in
terms of the “no delay” gain matrix assumed to be computed
first.

The observation that direct feedthrough terms, or current
terms which map into direct feedthrough, cannot be
d exactly with finite speed processors, has led to the

(2), (5) and (6) if D = 0) then the output can be readily comp
before the mpu! is sampled and sampling and output can be
simultaneous in reality. Otherwise, there is inevitable delay

exclusion of such systems in the whole work of Moroney et al.
(1980, 1981, 1983) and Moroney (1983). However it seems
ble not to exclude such sy as models, firstly for

because—take (6) for instance— Dy, at least has to be cc
and added to Cx,, which might already have been computed
because x, does not depend on u,. If Cx, is precomputed, delay
is minimized. The control processor program can easily be
organized that way (Franklin and Powell, 1980; Hanselmann,
1982; Astrém and Wittenmark, 1984). Similar arguments apply
to the observer/estimator described by (3) with (2), where,
in order to compute u,,, y,, must be available and the
computational effort is at least the addition of Ky, to the
precomputable part of %,, and finally the computation of u,,,
= —L%,.

If the mxmmnzed delay is not negligible, it should be taken
into account in the controller design. How this is done depends
on the design method. With classical Bode diagram design for
instance the delay introduces additional negative phase which
could be assigned to the plant for this purpose. With direct
discrete design the delay may also be assigned to the plant and
design is then based on a discrete description for the plant with
input delay. This description is computed either in the z-domain
using modified z-transforms (Franklin and Powell, 1980; Astrém
and Wittenmark, 1984; Phillips and Nagle, 1984), or in state
space (Franklin and Powell, 1980; Astrdm and Wittenmark,
1984; Wittenmark, 1985). In all these cases the delay shows up
in the design of the controller.

cases where delay can indeed be neglected, secondly for cases
where delay is assigned to the plant during design, and finally
because such systems may be series-connected to others which
do not have direct feedthrough, so that the input and output
operations of the series connection visible from outside may
well occur at the correct time instants.

2.3. Discretization of continuous controllers.

2.3.1. Motivation. Although the common design methods are
available in discrete form, it is quite common to carry out
continuous design first, so that discretization can be assigned
to the implementation task. Discretization of continuous designs
is sometimes ruled out as being inefficient with respect to
necessary sampling rates, giving up some possibilities present
only in discrete design (such as deadbeat behaviour), and being
simply imprecise because discretized control never behaves like
the continuous design. Experience shows however that it is far
from uncommon for none of these arguments to be of significant
relevance in practice, and there may be several reasons why the
indirect way via continuous design may be the better choice.
One possible reason is that in order to exploit the exactness
of discrete design there must be early decisions on sampling

Survey Paper

discretization methods

isolated closed loop

state matching
transform (s»z)
substitution expansion

simulation transition matrix

frequency response
matching

invariance

Fi1G. 4. Discretization methods.

frequency, and possible skew (no Hus sam-
pling of all inputs) or computational delay must be known in
advance. But all this depends on what shows up to be computed,
what the numerical data are, and which processor and which
data format will be used. If inadequate estimates have been used
initially, the control system has to be redesigned.

2.3.2. Methods. There are so many methods available for trans-
lating a linear time-invariant controller into a discrete “equiva-
lent” system (which in fact can never be completely equivalent),
that this topic could be the subject of a survey in itself. In
the following, not much more than a classification and a
bibliography are given, plus a short discussion of two methods.

The discretization methods available can be classified as
indicated in Fig. 4. There are two main groups. The first
comprises methods which do not take into account the fact that
the controller will be connected to the plant and will operate
in closed loop. At most there are a few assumptions about the
input signals. In the second group, discretization is carried out
considering the closed-loop use of the controller.

Among the contributions to the second group are those
published by Kuo (1980), Kuo et al., (1973), Yackel et al., (1974),
Singh et al., (1974) and Miller (1985). They consider the redesign
of continuous system state feedback and reference feedforward
matrices for the discrete case with the objective of matching the
state or parts of the state of the discrete control system to those
of the continuous system in closed-loop operation.

Also cc d with state feedback and reference feedforward
matrix redesign is another approach given by Kuo et al., (1973)
and Kuo and Peterson (1973) (also in Kuo, 1980) based on a
Taylor expansion of those matrices about T = 0. These methods
have been reviewed and further discussed by Kleinman and Rao
(1977), who also give a so-called average gain method with the
objective of approximating control signals instead of states.
Closed-loop redesign is also the objective with the methods
proposed by Rattan and Yeh (1978), Rattan (1981, 1982, 1984)
and Shieh ez al., (1982), which are based on frequency response
curve fitting.

The group of methods for “isolated” discretization, where
only the system to be discretized is considered without taking
its later connection to the other systems into account, is the
largest. The most widely described methods within this group
assume that the s-transfer function G(s) of the continuous system
is given. With the most prominent method, the so-calied bilinear
transform, (see for instance Oppenheim and Willsky, 1983) the
recipe is: substitute s by 2(z — 1)/T(z + 1). A z-transfer function
G,(2) is thus achieved. This transformation is also known as
Tustin’s method and relates to discrete integration, ie. to
simulation. It has the nice property of never generating unstable
z-poles as long as the s-poles are stable. Another property is
that the frequency response of G(s) is exactly replicated in the
frequency response of the discrete system (more precisely
G (e™"), ie. without hold device) but unfortunately with a
warped frequency axis. The response of the continuous system
shrinks to the range 0 ... w,/2, where w, is the angular sampling
frequency.

The bilinear transform is widely in use, and tests on numerical
examples (Katz, 1981; Hanselmann, 1984) indicate that this is
not a bad choice. It is also quite simple to formulate this method
in state space for multivariable systems. Given the continuous
system

Xx=Ax+ Bu (15)
y=Cx+ Du

the discrete system is of the form of (8) (Haberland and Rao,
1973; Hanselmann, 1984), with

T|! T
A= [1 - A(ﬂ [l + Aq} (16)

T]'T
B, = Bo'—'[l_ AcE:I _Z-Bm

where I means identity matrix. Note that 4 is a first-order Padé
approximation for the transition matrix exp (4.7).

The formulation in state space directly translates into a simple
computer program. The calculations based on the transfer
functions can however also be mechanized (Ahmed and Natar-
jan, 1983; Bose, 1983; Pei, 1985). Bilinear transformation is not
the only method from the transform or substitution class. More
can be found for instance in Katz (1981) and Franklin and
Powell (1980) along with some comparisons by examples, and
in Rosko (1972) and Smith (1977). A “small T" rootand frequency
response error (continuous/discrete) analysis for the bilinear
transformation is given by Howe (1982).

Since. determination of a discrete system equivalent to a
continuous one is related to simulation, methods from that field
may also be of interest here. In fact, the bilinear transformation
already corresponds to a simulation of an equivalent continuous
state space system via implicit trapezoidal integration. Hansel-
mann (1984) also derived discrete systems from Heun’s simul-
ation method and one of the Runge-Kutta type and compared
them to other methods. Experience showed no general advantage
over for instance bilinear transformation and over the ramp-
invariance method described below. One method which seems
very interesting and also has some connection with simulation
has recently been published by Forsythe (1983, 1985). It is given
for SISO systems and is based on expressing the samples of the
input and output variables via Taylor series expansion of the
continuous functions. Results are shown which are clearly
superior to those of the bilinear transform in a large frequency
range, although at the expense of increased gain in the high
frequency region. This could be dangerous in a closed-loop
control system.

The last class of methods is based on assumptions on test
input signals applied both to the continuous system and to the
discrete one to be determined. The objective is to achieve
agreement of both outputs at sampling instants. Assumption of
a step input leads to a step-invariant and to a ramp input to a
ramp-invariant discretization, occasionally called “zero order”
and “first order hold equivalence” methods, respectively. The
step-invariant discretization is just what has to be performed in
order to describe a continuous plant driven by a zero-order
hold (ZOH). A table of step-invariant transfer functions can be
found in Neuman and Baradello (1979). The ramp-invariant
discretization is also easy to achieve, either via transfer function
calculation, i.e.

o e
Go) = %((72)) _e=1 Tz“ Z{G(S)Slz}‘ an

or in state space. The assumption of a ramp input between

149

150

Survey Paper

sampling instants leads to the state-space equation solution
(continuous system (15) d)

T
Xy 1 = €xp(AT)x, + f exp[A(T - 1))
o

Y, — U
B;["k+ HlT 3

= Ax, + Hu, + Hfuy oy —w)/T
= Ax, + Bty + Boty.

t:l dr (18)

The transition matrix and the input matrices H and H, can
be computed simultaneously via a single transition matrix
calculation (Hanselmann, 1984), but also by other means. The
power series expression of exp(4.T), for instance, which is
sometimes used as a basis for computation of 4 and H, also
leads to algorithms for computing H. Schittke and Dettinger
(1975) used this (unfortunately there is an error in the series
given in their equation (15)). The approach given by Kallstrom
(1973) for computation of 4 and H based on one single series
calculation can also be extended*. The series to be summed is

= io (ATY/G + 2 9)

then
A=1+ AT+ T?A%y (20)
=(TI+AT%)B, 21)
H, = T%B,. @

Definition and derivation of the ramp-invariance method in
state space has already been found in a paper by Haberland
and Rao (1973). The expressions given there for B; and B, can
be derived from (20)—(22). A small T study concerning scalar
transfer function zeros generated via impulse-, step-, or ramp-
invariance has been carried out by Bondarko (1984), whose
step-invariance results relate to those of Astrém et al., (1984).

The author’s experiences with the ramp-invariance method
are very good, particularly in critical cases where there are
continuous system eigenfrequencies near wy2. The step-
invariant results, however, showed bad frequency responses
compared to those of the continuous systems in practically
every application, Sampling frequency could have been lowered
by a factor of five using ramp invariance instead of step
invariance with a high-order controller for a hydraulic system
(Hanselmann, 1984). So the unsatisfactory experiences with
discretized continuous designs, compared to discrete designs,
which are sometimes reported may well be due to inappropriate
discretization.

2.3.3. Influence of zero-order hold. A general problem with
discretized controllers is that the ZOH at the outputs introduces
considerable phase lag. Thus discretized controller frequency
responses are likely either to show more negative phase com-
pared to the continuous controller, or to show increased gain
in the higher frequency region, which stems from the attempt
to lift phase. Stability and damping problems could occur. In
applications carried out by the author, sampling frequency had
to be from a factor of 3 to 10 higher than crossover frequency,
in order to preserve reasonably the behaviour of the continuous
system. From aliasing and roughness of control signal consider-
ations, which often also dictate sampling frequencies in that
range, such a ratio does not seem to be excessive.

With some of the discretization methods the phase lag of the
ZOH can be taken into account directly. This applies naturally
to the closed-loop discretization method class. The “isolated

*Thanks to Prof. K.-J. Astrém who brought this to my
attention.

discretization” method of Forsythe (1985) is also able to do
this, and furthermore to compensate somewhat for possible
computational delay. The price of delay compensation however
is again an increased high frequency gain. The same applies to
what might be called “post-filters”, which are digital filters
connected between the controller difference equation output
and the ZOH. Such filters have been described by Yekutiel
(1980) and Beliczynski and Kozinski (1984). They lift phase but
must be handled with care unless a rapid gain rolloff beyond
the crossover frequency is guaranteed.

3. Implementation hardware

The author is well aware of the fact that any discussion of
hardware is doomed to be obsolete within a very short time. So
this survey gives only a snapshot of current implementation
hardware, but there are some points which might be relevant
for a few years.

3.1. Spectrum of current hardware. The range of possible
hardware for implementation of algorithms as discussed in
Section 2 is very broad. A rough overview is given in Table 1.

3.1.1. Special machines for rapid experi . At the upper end
in terms of cost as well as computational power there are
high-speed computers speclﬁca]ly designed for real time data

ition and p The AD10 from Applied Dynam-
ics Intematlonal Ann Arbor Michigan, is capable of 30 million
arithmetic operations ™! and 10 kHz data acquisition on 32 A/D
channels simultaneously (Powers, 1985; Kerckhoffs et al. 1985),
but costs are in the US$200,000 range. Advanced versions
recently available are also capable of floating-point computation
(Fadden, 1984), but at even greater cost. Such systems are
attractive for experimental work in the early stages of a control
system design and implementation project, in order to obtain
feedback from real experiments as early as possible, and as easily
as possible, with the convenience of floating-point arithmetic,
flexible programming, and plenty of speed. Common minicom-
puters backed up with array processors may also be used with
similar power but also at high cost (Jacklin et al. 1985). Without
array processors, the speed of minicomputers is usually rather
modest. A less costly system which is marketed specifically for
experimental linear control system evaluation is the PC 1000
from Systolic Systems Inc., San Jose, California, starting at US
$25,000. It is rated at 200ns multiply as well as addition
time with 32-bit floating-point numbers, and 2kHz maximum
sampling rate. Controllers of type (6) with up to 32 states and
16 inputs and outputs can be accommodated under the control
of a personal host computer with download facility.

3.1.2. Fast floating-point chips. Roughly the same compu-
tation speed as described above will be possible with systems
based on so-called word-slice chip sets from Advanced Micro
Devices (Flaherty, 1985; Quong and Perlman, 1984) and Analog
Devices (Windsor, 1985; Taetow, 1984). They evolved from
the more traditional bit-slice concepts and now comprize all
necessary building blocks to develop microprogrammed high-
speed signal processing systems with just a few chips, among
which are special purpose arithmetic chips, i.e. separate chips
solely for accumulating or multiplying floating-point numbers.

Floating-point computation in the same speed range as with
word-slice devices is possible using arithmetic chips from Weitek
Corporation. Separate 32-bit floating-point adder and multiplier
chips along with 32-word register file devices form a powerful
numerical processor. Control of the devices must be derived
from microcode memory and control logic. About 2 MFLOPs
(mega floating-point operations per second) can be achieved in
low latency flowthrough mode, which means that the result of
a single arithmetic operation is available as soon as possible. If
pipelining can be used 10 MFLOPs are achievable, but results
are then not i diately usable in sub operations.

Another two-chip set for floating-point arithmetic is available
from TRW (Eldon and Winter, 1983), which is, however,
restricted to a 16-bit mantissa 6-bit exponent format. Note that
division is not as directly performed as accumulation (addition
and subtraction) or multiplication with these chips, nor is it
with the above-mentioned word-slice devices. Division must be

Survey Paper

TABLE 1. IMPLEMENTATION HARDWARE

Experimental use in the laboratory Dedicated Dedicated
High cost Medium cost Low cost low volume high volume
AD-10 minicomp. and word-slice
High array processors :
speed Systolic Systems floating-point VLS signal processors
PC1000 chips
Medium minicomputer microprocessor with custom
speed P numerical coprocessors VLSI

Microcontrollers

performed using table-lookup methods to yield rough estimates
which are then improved via additional operations, or it is
performed totally iteratively. This means that division and any
other function computation involving division is performed
much more slowly than the elementary scalar product operation
acc: = acc + coefficients variable. Within the Weitek register
file there is an integrated lookup table for computing 1/x and
X.

3.1.3. Microprocessors. Easy implementation and testing of
controllers at much lower cost and effort is of course possible
using standard personal computers or microcomputer board
level systems, equipped with process interfaces, and speeded up
by numerical coprocessors, such as the Intel 80286/80287 or the
National Semiconductor NS 32016/32081 combinations. Such
systems are easy to program in high-level languages and deliver
medium speed (see Subsection 3.3), sufficient for implementing
even complex process control in many cases, but frequently not
fast enough for control of fast systems such as mechanical ones.
Attaching fast hardware multipliers to general microprocessors
may also seem to be an alternative. They are available in
abundance from many companies, up to (24 x 24)-bit fixed-
point format at 200 ns multiply speed or (16 x 16)-bit in 35ns.
But data transfer from and to such a chip via a microprocessor
is much too slow, so the multiplier would be idle most of the
time. Avoiding this would necessitate not only using a hardware
multiplier, but surrounding it with a lot of hardware to achieve
more independent operation on local data memory, under local
sequencing control.

3.1.4. Microcontrollers. The term microcontroller is used com-
monly for single-chip microprocessors which are designed to be
used as dedicated processors. But control is meant here in a
much broader sense than considered in this paper, including
sequencing control, pulse-width or pulse-frequency modulation
control, and so on. Microcontrollers stand somewhere between
traditional single-chip microcomputers and general purpose
microprocessors. Three powerful 16-bit devices shall be named
here, the Motorola MK 68200, the Nippon Electric NEC uPD
78312, and the Intel 8096. Typically, the arithmetic computation
speed is not much higher than with general 16/32-bit micropro-
cessors for fixed-point arithmetic. But there are features like on-
chip AD-converters or timers and modulators which make such
processors attractive for developing products. It is interesting
to note that the 8096 evolved from a chip originally designed
according to requirements specifications made by Ford Motor
Company for control applications in an automobile (Powers,
1985; Breitzman, 1985; Simmers and Arnett, 1985).

3.1.5. Signal processors. Very attractive computation speed is
achieved with a number of VLSI signal processors at micropro-
cessor level cost (Hanselmann and Loges, 1983, 1984; Hansel-
mann 1986). Present devices of that kind that seem to be useful
for control impl ion and are available to the public are
the Nippon Electric NEC 7720 (Nishitani et al. 1981), the Texas
Instruments TMS 32010 (McDonough et al. 1982), the Fujitsu
MB 8784 (Gambe et al. 1983), the STC DSP 128 (Pickvance,
1985), and the Texas Instruments TMS 32020 (Magar et al.,
1985; Essig et al., 1986). Some descriptions can also be found in
Quarmby (1984), Marrin (1985), and of some recently announced
processors in Marrin (1986).

The signal processors mentioned are off-the-shelf products.
The class of only mask-programmable signal processors has
been excluded. They are not of course useful for the average
control implementation task. There is great activity in the
development of signal processors. Several companies have
announced such devices.

For medium to high volume applications, custom chips may
be the choice. Custom design is advancing in supplying quite
complex building blocks such as mulitipliers, arithmetic units
and memory (Cole, 1985). Furthermore, there is considerable
effort towards fully automated chip design (Cappello, 1984).
Pope et al. (1984) and Rabaey et al. (1985) for instance describe
a silicon compiler which starts with some high-level descriptions
of what the signal processor chip is expected to perform. The
software then chooses optimal parameters of a parameterized
architecture and finally outputs a complete chip layout. Combin-
ing building blocks into a freely designed architecture is another
approach (Glesner et al., 1986). :

VLSI signal processors make implementation of non-trivial
controllers at high sampling rate feasible at reasonable cost,
and particularly the TMS 32010 has already been used in many
control applications, as described for example by Slivinski and
Borninski (1985), Kanade and Schmitz (1985), Hanselmann
(1986). The power of signal processors is due to their architecture,
not to exotic silicon process technology. It may therefore be
interesting to have some general discussion of architectural
features in the next subsection.

3.2. Architectural issues. When a chip or chip set is to be
selected for controller implementation, there are many criteria
which might be relevant. Their priority depends mostly on the
type of application intended. Building a tool for flexible lab
cxperimentation sets priorities other than looking for a medium
volume dedicated industrial instrumentation system.

3.2.1. General considerations. How general purpose 16/32-bit
microprocessors, a typical microcontroller, and the current
VLSI signal processors meet some of the relevant criteria is
shown in Table 2 (for a survey of microprocessors see Gupta
and Toong, 1983, 1984). The 8096 has been chosen as representa-
tive of a trend in microcontrollers. Note the amount of input/out-
put support right up to multi-channel on-chip AD-conversion.
Microcontrollers are particularly well suited to industrial appli-
cations, where control of the type discussed in Section 2
is frequently only one task among many others, including
sequencing, complex timing, interrupt processing and communi-
cation. Computing speed is however not as high as with signal
processors. Apart from the special input/output features, the
architecture of the 8096 is much like that of traditional general
microprocessors, with the exception of an increased number of
on-chip registers forming a so-called register file. There are 232
bytes free to the user to be referenced as byte, word or double
word registers. This is an important feature, because such an
on-chip register file can be accessed more quickly than external
memory. It is large enough to carry out large portions of the
task locally and also helps speed up context switching during
processing interrupts.

When so many functions as a microcontroller has are inte-
grated on a single chip, something must be sacrificed in
comparison with general purpose 16/32-bit microprocessors.
One of the features of the latter, missing in a microcontroller,

151

152

Survey Paper

TABLE 2. PROCESSOR COMPARISON

Microcontroller Signal
Microprocesors 8096 Processors
Floating point slow, slow impossible or
medium with slow
coprocessor
(~5-15ps
mult. or add)
Speed 16 x 16 5-12pus 7 us 0.1-0.3 us
fixed-point mult.
ALU wordsize 16-32 16 16-35
Program address >1MB 64kB 1.5-128kB
_ space
Data address space same same . 128-588 x 16 for
onchip R AM (external
extension possible
with newest proc.)
On-chip AD/DA — 4-8 AD channels, —
10bit
Special I/O — pulse width mod., -
timer, counter,
watchdog, ports
On-chip ROM. — 8kB all but one
Memory speed medium medium 25-150ns
required
Interrupts flexible via 7 sources internal, 0-3
interrupt 1 external
controllers
Multiprocessor ext. logic - newest proc.
capability
Program language best some asm only in most
support cases; high level
language support
for one processor
Chip count high low medium to high

is the large address space, which is in fact not necessary for
control implementation. A small address space saves much room
on the chip, because the address space is reflected in all registers
and logic related to effective address computation, as well as in
the bus interface. Provisions for memory management can also
be dispensed with.

Other savings stem from reduced instruction decoding circu-
itry due to a simpler instruction set, excluding advanced high-
level language-like instructions as for instance incorporated in
the VAX-like instruction set of the NS 32016 general micropro-
cessor. The reduction in instruction decoding and processing
logic due to a simpler instruction set is also a general line of
development with advanced supermicroprocessors for general
purposes. These processors are said to be of the RISC type
(RISC means reduced instruction set computer) (Wallich, 1985).
They are characterized by an instruction set which includes only
the most used instructions and by executing one instruction
every machine cycle. Operations are performed on operands in
large register files, not on memory, which is accessed only by
load and store operations. Among the digital VLSI signal
processors there are also some which are RISC-like, particularly
the TMS 32010 and the DSP 128 signal processors.

3.2.2. Specifics of signal processors. Whereas the 8096 microcon-
troller discussed above appears, from outside the chip, to be
of the traditional “von Neumann” computer type, internally
instructions go their own way separately from the data. It is a
well-known bottleneck of traditional processors (von Neumann
type) that instructions and data travel on the same bus.
This architecture must be abandoned if data transfer between
registers, data memory, and arithmetic units is to be fast for
maximum throughput. One step away is the so-called ‘Harvard’

architecture. In this architecture the instruction bus is separated
from the data bus so that instruction fetch and data transfer do
not interfere with each other. Some signal processors exhibit
even more data paths. For illustration, a sketch of the core
architecture of a hypothetical but typical signal processor is
given in Fig. 5, showing the data manipulation part (instruction
bus and control unit are separate). There are two 16-bit data
buses, each connected to a block of data memory and to the
hardware multiplier inputs. Factors can thus be routéd to the
multiplier without bus conflicts. The arithmetic/logic unit (ALU)
gets operands either from the accumulator, from memory, or
from the multiplier, converted to 32-bit where necessary. Typical
components are the shifters, particularly the barrel shifter. It
allows the shifting of an operand by multiple bits within a single
data transport operation.

Besides the multiple bus and data path structure, the most
significant difference between signal processors and general
microprocessors or microcontrollers is the integrated parallel
hardware multiplier. This multiplier produces a (16 x 16)-bit
product in every machine cycle (see discussion of speed in
Subsection 3.3), which is afterwards directly fed through the
ALU into the accumulator in the next cycle in order to perform
the basic operation

acc: = acc + coeff variable.

With a hardware multiplier the multiplications no longer
dominate execution times as usual. They are as fast as additions
or logic operations. It is however important not only to have a
hardware muitiplier, but also to have a powerful data path
structure. Otherwise the precious arithmetic units cannot be
kept busy all the time. Note that these components consume

Survey Paper

data-RAM
A

data-RAM
B

multiplier

product register

31

{1t

MUX MUX
(multiplexer)

data converter

barrel-shifter

1 MUX I

Fi1G. 5. Typical signal processor core.

large parts of the chip area (see photographs in Cushman, 1982).
With the TMS 32010 for instance, a scalar product computation
a = cx proceeds as follows:

LTA x(i)
MPY (i)
LTAx(i + 1)
MPY c(i + 1)

where the LTA instruction loads one operand in one of the
multiplier’s input registers, but at the same time performs
accumulation of the previously computed product. The MPY
instruction loads the second operand into the second multiplier
input register and in the same cycle the multiplication is
performed, the result of which is accumulated during the next
LTA. The operands travel to the multiplier over a single data
bus, so loading takes two cycles. With processors having split
memory (as in Fig. 5) the coefficients (of c” in the example) and
variables representing signals (x in the example) could be stored
separately and loaded simultaneously, so single-cycle operation
is possible. This can frequently be found in signal processor
architectures.

The integrated hardware multiplier, along with an appropriate
data path structure connecting the arithmetic units (ALU,
multiplier, shifters) and memory are the keys to the high speed
of VLSI signal processors. There are however quite a number
of miscellaneous features which also contribute to speed, mostly
by devoting hardware to tasks traditionally performed by
software. The VLSI signal processors are currently acknowl-
edged as being attractive candidates for control implementation,
not only in the sense of Section 2. They are also well-suited to
performing arithmetic subtasks as a slave to a general

microprocessor host within a control system (Schumacher and
Leonhard, 1983; Rojek and Wetzel, 1984; Leonhard, 1986). They
cannot however directly compete with microcontrollers in terms
of functionality.

3.2.3. Arithmetic and data formats. A last important point of
discussion is the arithmetic data format supported by the
different processors. This point can be as crucial as speed. In
many cases floating-point arithmetic is desired, be it because
the dynamic range required is indeed large, or because the
implementer does not want to deal with the problems of fixed-
point arithmetic. With general microprocessors as well as
microcontrollers, floating-point arithmetic in a common format
(IEEE standard 754, 32-bit) is easy to achieve through subroutine
libraries or floating-point coprocessors, providing considerable
speed.

With present VLSI signal processors, however, floating-point
arithmetic is not easily achievable. There has been an effort to
perform floating-point arithmetic on a TMS 32010 (Blasco, 1983)
and on the TMS 32020 (Crowell, 1985), but speed results are
rather disappointing compared to general microprocessor/co-
processor combinations. No effort to implement floating-point
arithmetic on the other fixed-point signal processors has been
reported. There is one VLSI signal processor, the Hitachi
HD 61810 (Hagiwara et al., 1983), which is specifically designed
for a particular kind of floating-point arithmetic, but it is only
available with mask programmed ROM, and floating-point
accuracy is limited by a (12 x 12)-bit multiplier. There are
some known developments of signal processors with full 32-bit
floating-point hardware on the chip (from Bell Labs, Nippon
Electric and Texas Instruments), but the first is not available to
the public, the second has just been announced, and the third
still seems to be in the design stage. Thus with present VLSI
signal processors one must deal with fixed-point arithmetic and
all the associated problems.

Within this group of fixed-point processors there are still
differences in the useful data formats, which stem from architec-
ture design decisions. The main differences are in the processing
of products from the multiplier, and in the format of the
accumulator. With the exception of MB8764 all processors
provide at least 32 bits for accumulation of (16 x 16)-bit
products, so that full precision is preserved until storage of a
final scalar product result (see Section 4). At this point rounding
or truncation is usually performed to obtain the most significant
16 bits of the result, although more precision is possible with
most processors, at the cost of more complicated code and
slower execution.

3.2.4. New architectures. In addition to the more conventional
architectures just discussed, there are other developments which
are already having an impact on signal processing and also
beginning to have one on control. The transputer concept
(Taylor, 1984), systolic architectures (Kung, 1984; Jover and
Kailath, 1986), and data flow processor concepts (Chong, 1984;
Hartimo et al., 1986) should be mentioned here.

3.3. Speed. Although there are usually many aspects of
processor selection other than speed, it is nevertheless often the
most pressing factor in controller implementation. This is
typical of the field of controlling mechanical devices via fast
electromechanical or servohydraulic actuators. Eigenfrequencies
from 100 Hz up to 10kHz are not uncommon, and higher order
controllers are often necessary to cope with structural resonance
effects (see for example Slivinski and Borninski, 1985; Kanade
and Schmitz, 1985; Hanselmann, 1986).

A speed comparison for general microprocessors for the task
of digital filter implementation, which is many respects similar
to controller implementation, has been given by Nagle and
Nelson (1981), also published in Phillips and Nagle (1984) (note
that some of the programs originally published have been
corrected in the latter publication). Speed comparisons on
instruction and routine level using general data processing
benchmarks have been published by Gupta and Toong (1983)
and Toong and Gupta (1982).

153

154

Survey Paper

TABLE 3. SAMPLING FREQUENCIES WITH AN EXAMPLE
CONTROLLER USING FIXED-POINT ARITHMETIC

Microprocessor Clock (MHz) f.(kHz)
8086 8 <2
23000 5 <2
63000 10 <4
32016 10 <5
TMS 32010 signal processor 31

If floating-point arithmetic is required the current signal
processors can be excluded from the comparison. Their fixed-
point speed is about the same as the floating-point speed of the
fast word-slice and floating-point chips from Section 3.1.2. The
fastest chip set (using the AMD 29325) achieves computation
of a length n scalar product in about n * 200 ns, with full 32-bit
IEEE standard data format. This should be compared with
the often “thought to be fast” microprocessor/coprocessor
combinations such as the Intel 80286/80287 or the faster
National Semiconductor 32016/32081. The latter require about
n*20us for the same thing (at 10 MHz clock, slave processor
protocol execution included, from by the author).

Roughly the same speed as with microprocessor/coprocessor
combinations can be achieved with the microprocessors alone
if floating-point arithmetic is dispensed with. Compared to adds
and subtracts or miscellaneous operations, the fixed-point
multiplications are the most time-consuming ones. A typlcal
execution time is 6 us for a 10 MHz 32016 p (

were made years ago by Tabak and Lipovsky (1980) and recently
by Jaswa et al. (1985). Proposals for processors using non-
standard arithmetic such as that given by Lang (1984) or
Tan and McInnis (1982) should also be mentioned here; the
arithmetic issue will however be discussed in Section 4.

3.5. Interfacing to the plant. It is not the intention to go into
the details of analog and digital interfacing techniques here, but
there are some points which seem to be worth making.

A typical analog-to-digital interface consists of an analog
prefilter for each channel, a multiplexer if an analog-to-digital
converter (ADC) is to be shared among several inputs, a sample-
hold circuit, and the ADC. The purpose of prefilters is to avoid
aliasing due to spectral components of the input signal above
/2, where f, is the sampling frequency. Clearly such filters have
to be chosen carefully in control applications, because generally
the sharper the cutoff in the magnitude frequency response, the
lower the phase introduced into the loop. For instance even a
simple second order low pass (damping 1/\/ 2) designed to give
a mere 20 dB attenuation at f;/2 still introduces about 25 degrees
negative phase at 0.05f,, where the crossover frequency might
be. Most often it will be necessary to include prefilter dynamics
in the control design (Astrém and Wittenmark, 1984).

Measurement noise effects under variation of prefilter band-
width and sampling rate have been studied by Peled and Powell
(1978). The results are also given in Franklin and Powell (1980).
It'is shown that good noise attenuation at quite low sampling
rates can be achieved with prefilter bandwidth only about twice
the control bandwidth, provided that appropriate digital lead

P

in memory).

With VLSI signal processors the execution times of add/sub-
tract as well as multiply operations are in the range 100300 ns.
Multiplication is no longer the most time-consuming operation.
R ber that in the le of a scalar product computation

is introduced to counteract the prefilter lag.

The purpose of a sample-hold (SH) circuit in front of an ADC
is to provide a constant input signal to the normal successive
approximation ADC during conversion (Davies, 1985; Jaeger,
1982) SH circuits in front of the mult)plexer are necessary if

with the TMS 32010 in Subsection 3.2 only two instructions
provide computation of a product (16 x 16 bit) and its accumu-
lation (32 bit). This takes just 400 ns.

In Table 3 a comparison is made between some microproces-
sors and a signal processor (Hanselmann and Loges, 1984;
Hanselmann, 1986). The comparison is based on the implemen-
tation of a 9th order controller with only one input and one
output. This controller arose in an industrial application with
a very fast electromechanical positioning system. Since with
general microprocessors the multiply operation mainly deter-
mines the exccution time, an upper bound for the achievable
sampling rate can be given based only on the total number of
multiplications. This upper bound is given in the rightmost
column. The controller had 33 non-zero and non-one
coefficients, i.e. 33 (16 x 16)-bit multiply operations had to be
performed per sampling interval. Since there are also additions
and data transfer operations to be performed the sampling
frequency actually ievable would be so lower. A
comparison of the estimate with actual experimental results was
carried out on a filter (from Phillips and Nagle, 1984), and on
the controller on which Table 3 is based. The target was a 68000
system running at 10 MHz, prc d in
Actual sampling rates turned out to be about 50% of the upper
bound estimate in the filter case, where subroutines and loops
were used, and about 70% in the controller case with fast
subroutine- and loop-less code.

The same controller was also implemented on a TMS 32010
signal processor and ran at 31kHz sampling frequency. Thus
the signal processor is an order of magnitude faster. Roughly
the same applies to the other signal processors mentioned, and
this compares quite well with the 17 kHz achieved in what seems
to be a similar situation using an AD10 machine (Howe, 1982).

3.4. Processors with special architecture related to control. The
average control engineer still only has access to off-the-shelf
processors such as general purpose microprocessors or signal
processors. Custom processor design, however, is already begin-
ning to play a part. In the general digital signal processing field
there is much going on in that direction (Cappello, 1984). Since
there are many relationships between general signal processing
and control these efforts also have an impact on this field.
Proposals for processor architectures directly related to control

ling of several channels is desired, sharing
only a single ADC. It is always taken for granted that a
successive approximation ADC must be preceded by a SH.
Otherwise changes of the input signal during conversion may
be reflected in the binary conversion result. This is considered
to be erroneous since the value at the definite sampling time,
ie. at start-of-conversion time, is expected to be converted. To
prevent such a change of the input signal, its amplitude and/or
frequency must be very low or a SH must be inserted (Jaeger,
1982; Shoreys, 1982). In the control application it may however
sometimes be reasonable to omit the SH, because in that case
changes in the input signal occurring during conversion influence
the conversion result so that it can be nearer to the input signal
value at the end of the conversion than in the SH case. Thus
reduced effective conversion delay can be expected. Experiments
by the author showed delay reduction of a factor of up to 4.
This factor is even higher if the acquisition time of the SH is
significant. The effective delay reduction is however dependent
on signal amplitude and spectrum, so some dynamic non-
linearity is introduced.

At the analog outputs of a controller there are commonly
digital-to-analog convertors (DAC). Standard components are
fast enough for conversion time to be neglected. But spectrum
shaping may be of interest to smooth the staircase output
signal or correspondingly to remove the extra high frequency
components introduced by the zero-order hold device. Analog
reconstruction or low pass filters for that purpose are often used
in general digital signal processing or signal generation. With
control systems such output filters are introduced more reluc-
tantly, because of effects on system dynamics similar to those
of prefilters. Reducing actuator wear as well as preventing
excitation of high frequency structural modes in mechanical
systems might however require output filtering.

The last point to be discussed is the sequencing of inputs
and outputs In the usual “near-theory” case there will be

ling and simul ous output, possibly with
delay between the two, but non-simultaneous sampling may
be dictated by processor hardware, or may be deliberately
introduced to include the latest measurements in the compu-
tation. For example, numerical processing of channel 1 input
may take considerable time before channel 2 is involved. It
might then be r ble to delay pling of the latter. The
same applies if ADCs with quite different speeds are used.

Survey Paper

Non-simultaneous output may also occur for similar reasons.
Although such cases do not fit well to common control design
software, they do exist, and should be considered, at least in
simulation.

4. Arithmetics and their implications

Basically, there are several choices of arithmetic which could
be used to implement a controller. The most well known are
floating- and fixed-point binary arithmetic and they are the
ones supported by standard processors. Fixed-point arithmetic
is mainly used because of the high speed which can be achieved
with relatively simple arithmetic units. In speed, space, or cost-
critical applications fixed-point arithmetic will most likely be
chosen. In the following some main issues concerning fixed-
point arithmetic will be reviewed. Floating-point arithmetic
will be discussed only briefly as well as some other possible
candidates. Unfortunately, the chapters on arithmetic found in
most texts on digital filters or digital control are quite rudimen-
tary. There are, however, some texts on computer arithmetic
covering the material needed to understand the principles and
problems of the mechanics of binary (and other types of)
arithmetic, such as Flores (1963), Hwang (1979), Waser and
Flynn (1982). Classical original papers on arithmetic as reprinted
in Swartzlander (1980) are also quite instructive.

4.1. Fixed-point arithmetic

4.1.1. Basics. The usual fixed-point data formats in digital signal
processing make use of two’s complement representation. Here,
the decimal value of a number is

-2
r= 2*"[-17,_12“‘ + Y bjzf], b;e0,1, 23
i=0

where the bj, j = 0,...,] — 2 represent the binary digits, i.e. bits,
b, carries the sign information, ! is the total wordlength, and
B determines the location of the binary point. Two special cases
are B =0, which means r is an integer, and B =/ — 1, which
means r is a fractional number. With floating-point number
representation B could be different for each number whereas
with fixed-point numbers B is fixed throughout.

The reason why the representation (23) is called two’s comp-
lement becomes obvious in the important case of fractions,
where B =1 — 1 and thus

-2
r=—b_,+ Y b2, 4
=0

If r < 0 but the binary representation bit pattern of || is known,
then the binary representation bit pattern of the positive two’s
complement number 2 — |r| yields the b; in (24) exactly, because
2 —|r| —2 = —|r| = r and subtracting 2 has the same effect as
changing the weight of the b,_, bit from +1 to —1, as is done
in (24). No bit is altered from the bit pattern representing 2 —|r],
only the interpretation as decimal value is affected by changing
the weight of b, _,. A 4-bit fractional two’s complement represen-
tation for example is

0.875 0.111

0.125 0.001

0 0.000

—0.125 1.111

—1 1000
and for instance the bit pattern for —0.125 is that of the binary
representation of 2 — 0.125 = 1.875. The example also illustrates

that the number range is unsymmetrical, i.e.

—10<r<10-270" (25)

in the fraction case. An implication of this is that the product

—1.0% —1.0 = +1.0 (all decimal) can never be represented. In
fact, processors usually yield the wrong result — 1.0 in this case.
In consideration of the dynamic range of data in connection
with scaling (Section 6) the upper limit is simply approximated
by 1.0 to simplify discussion.

The main advantage of two's complement representation
compared to other candidates lies in the simplicity of hardware
for adding or subtracting (Shaw, 1950). No distinctions need to
be made as to what the signs and magnitudes of operands are
and a single adder unit plus a simple complementer circuit is
sufficient to perform addition and subtraction.

Another advantage is that a sequence of two’s complement
additions or subtractions, as encountered in the scalar product
computation, always produces the correct result as long as this
is in the number range. Intermediate overflows of partial sums
thus do not matter and can be ignored. This nice property
however is only useful if the result is indeed known to be in the
number range. Where it is not, it is even impossible to detect
this and to supply a maximum or minimum value. Sometimes
arithmetic units have an extended accumulator to accomodate
overflowing bits up to the moment where the result is going to
be stored away. Then a check can be made on whether the
result is valid or should be replaced by max or min values.

Although multiplication of two’s complement numbers may
seem complicated at first due to the negative weight of b,_, it
can be carried out quite easily, for instance by performing
appropriate sign extensions on negative number representations,
or using Booth’s algorithm or modifications of it (Booth, 1951;
MacSorley, 1961; Rubinfield, 1975; Cappellini). These algorithms
work for any combination of signs of the factors and at the
same time speed is gained as compared to the simple “shift and
add” technique. They are incorporated for instance within the
hardware multipliers of signal processors.

The basic idea behind such algorithms is based on the
observation that a string of ones in a binary number could be
replaced by only two non-zero digits, if negative weights (denoted
by bar) are allowed, for example

0111011110 = 0111100070 = 1000700070. (26)

Thus if the leftmost binary pattern represents a factor in a
multiplication, the right-hand side of (26) shows that the product
can be computed with one addition.and two subtractions, along
with appropriate shifts. This compares to seven additions with
shifts necessary originally. See for instance Peled and Liu (1976)
for a short but instructive discussion. Translation of a binary
number into this so-called canonical signed digit code (CSD)
can easily be mechanized in an iterative process.
Multiplication based on CSD code has also found a number
of applications in signal processors, which execute the shifts
and adds or subs under program control, saving a hardware
multiplier. A well-known chip of this kind was the now outdated
Intel 2920 signal processor, (Hanselmann, 1982) but it is not the
only one. In the design of chip area-effective custom signal-
processing devices this kind of multiplication aroused (for
instance Schmidt, 1978) and still arouses interest (Gaszi and
Giilliioglu, 1983; Steinlechner et al., 1983; Pope ez al., 1984).
The product of two I-bit numbers is a (2I-1)-bit number. This
is because there is a sign bit in each factor, but the product
needs only one. It is important to understand that a multiplier
device is not usually concerned with the binary point location.
1t can multiply integers as well as fractions because the interpret-
ation of the bit pattern of a number representation only takes
place when the (2I-1)-bit product is stored away, see Fig. 6 for
a 16-bit example. Here a 32-bit product register or accumulator
is assumed, and the product bit pattern is right justified. So if
the factor bit patterns were meant to represent integers, the
result (assuming it should be 16 bits long) would be found in
the lower (right) half of the register. If the factors were however
meant to represent fractional numbers the result would be found
in bits 15 through 30. Note that with some processors the output
of the multiplier is aligned differently by hardware: to be specific,
a fraction result could be left justified so that the store operation
does not overlap into the lower half of the 2/-bit accumulator.
Note also that rounding could be performed before storing the
truncated 16-bit result away by adding, prior to storing, a 1

155

156

Survey Paper

msb Isb
15 0 15 0
I]« L]
factor 1 factor 2
“
s
83
.l
E:E’ 31 16 15 0
v T
s {m [)
LY E———
e It
[res se
a0 result in case e Lcaers.

of integers
of fractions
(truncated)

Fi16. 6. Fixed-point arithmetic product.

into the most significant of the bits which will be discarded, i.e.
into bit 14 in Fig. 6 in the fractional case.

The reason for preferring fractions in digital signal processing
or control is that products, or accumulated products with scalar
product computation, can easily be cut down to the size of the
factors for storage and further processing by dropping the least
significant -1 bits. Fractional fixed-point arithmetic thus trades
precision for number growth. Integer arithmetic on the other
hand would not allow for this. It is always exact but at the price
of excessive risk of overflow. Overflow of course can also happen
with fractional arithmetic in add or subtract operations, but not
with multiplication. Sometimes implementors of digital filters
or controllers claim to use “integer arithmetic”. A closer look
however shows that indeed processor instructions for integer
arithmetic are used, but there is “scaling”, “shifting” and the
like. In fact, fraction arithmetic or something close to it is
actually performed.

4.1.2. Overflow. Because of the limited number range with usual
wordlength, say 16 bits, care must be taken that data, for
instance controller states, and coefficients fit well into this range.
Numbers should not exceed the range, but at the same time
should not be so small that the quantization has undesirable
effects. Controller scaling and realization structure selection are
the major means to achieve this. These are considered in Sections
5 and 6.

In the case of scalar product computation, which is the
basic operation with the controller equations, the partial sum
overflows can be ignored with two’s complement arithmetic, as
mentioned above, provided the final result is guaranteed to be
in range, but there may be quantities to be computed during
evaluation of the controller equations which cannot be guaran-
teed never to overflow, so there may be results not guaranteed
to be in range. This is very likely the case for controller outputs,
i.e. actuating signals, but may also apply to state variables.

Two's complement arithmetic then suffers from “wrap-
around”. For instance adding binary 0.010 (0.25 decimal) and
0.110(0.75 decimal) yields binary 1.000, which would erroneously
be interpreted as —1 decimal in two’s complement fractional
arithmetic, whereas the saturated binary value 0.111 (4-bit
arithmetic assumed) would be preferable. This means that the
desired saturation (Fig. 7) must be provided by code (Loges,
1985).

Signal processors sometimes incorporate optional saturation
hardware intended for such cases, but the problem is that
intermediate resuits, i.e. partial sums, are better not saturated
because this would destroy an otherwise possibly non-overflow-
ing result. The decision about whether the final result is in
overflow and with which sign can only be made if there are
enough spare bits in the accumulator to the left of the leftmost
bit of the result to be stored away (Fig. 6). Perhaps the processor’s
accumulator provides a few bits for this purpose, but they may
be too few for long scalar products, or the processor provides
none at all. Overflow processing then requires computation of
a downscaled scalar product which does not overflow, and a
rescaling operation preceded by overflow checking, ie. first
a':=c'Tx is computed instead of a:= ¢Tx, with ¢'7 = 27T,
p = 1. Then the content of the accumulator (@) is either left

overflowed overflowed
number number
value value
1
/\-1 ! ! /'_

+
number H number
value value

-1 without -1 without
overflow overflow
(t

(@) %)
wrap around of overflowing saturation overflow

two's complement number

Fi1G. 7. Arithmetic overflow (with fractional numbers).

shifted p positions under saturation, if the processor provides
for this at enough speed, or the result is read out of the
accumulator displaced by p bits, see Fig. 8 for an example. Both
operations are equivalent to multiplying a' by 27, correcting for
the downscaling of ¢T.

4.1.3. Signal quantization. As discussed above, products are of
almost double length and thus must usually be cut down to the
size of the factors. If the processor’s accumulator is double length,
which is quite often the case, the products are accumulated in
full length and the truncate or round operation is performed
only with the final result. In any case truncation or rounding
introduces a quantization error into the computations. Note
that additions and subtractions are exact as long as there are
no overflow problems.

Discussion of the influence of the quantization error was
always an issue in the digital filter field, and can be found in
most textbooks (for instance Oppenheim and Schafer, 1975),
but there were also early papers in the control field (Bertram,
1958; Slaughter, 1964; Johnson, 1965, 1966; Knowles and
Edwards, 1965a, 1965b, 1966; Lack, 1966; Curry, 1967), and the
issue is now also to some extent dealt with in digital control
textbooks, particularly in Katz (1981), Franklin and Powell
(1980), and Jacquot (1981). Quantization (of variables or signals;
for coefficients see Section 5) introduces three effects: bias, noise,
and limit cycles. Bias is introduced with truncation, because in
two’s complement trunc (x) < x for x positive as well as negative.
It is better to use rounding, which is quite easily achieved, as
mentioned above. -

4.1.3.1. Noise model. The noise model of quantization is
widely used and replaces the quantizer by a purely linear gain
block followed by an injection of an additive white noise
sequence, uncorrelated with the input. Two’s complement arith-
metic with truncation or rounding is assumed here, otherwise
there could be correlation (Claasen et al., 1975). If the quantiz-
ation step is described by g, which is equal to 2™ according to
(23), then the noise statistics are taken as follows:

variance o* =q*/12
mean p=—q/2 for truncation
p=0 for rounding. 27)
result if not
downscaled and
overflow-free
——t——
31 27 1610 0
2
[[1T1]
-

result if downscaled;
bit 27..31 must be
equal, otherwise
saturate

Fi1G. 8. Scalar product scaling example (fractional numbers,
p = 3, TMS 32010 processor).

Survey Paper

The expressions for ¢ and u follow from the assumption of
uniform quantization error distribution in the g interval. As has
been shown by Widrow (1956, 1961), Katzenelson (1962), Sripad
and Snyder (1977), and Boite (1983), this assumption is valid
under some conditions, particularly if the amplitudes of the
signal to be quantized are not too low. A Gaussian signal, for
instance, with variance a few times greater than /12 already
renders the model very near to what has been evaluated
analytically and experimentally.

This classical noise model is, however, based on the assump-
tion of a continuous amplitude input to the quantizer. This is
the situation of AD-converter quantization, but within the
digital computations the quantizer input is not continuous. In
fact, with the rounding of product of a coefficient and a variable
(state variable for instance) which is already quantized, the
model predicts noise variance less accurately (Halyo and McAl-
pine, 1971; Sjoding, 1973; Eckhardt, 1975; Boite, 1983). Then
there are pecularities leading to coefficient-dependent noise
variance, and additionally correlation of crror and signal may
become significant even with larger signal amplitudes (Barnes
et al., 1985).

The noise model of quantization can easily be exploited to
compute the total noise contribution to every variable of interest
within a control system using standard covariance computation
techniques for linear systems (Franklin and Powell, 1°70;
Moroney et al., 1983). Transfer function-based variance con*u-
tation is also possible, for instance via the simplified methods
given by Patney and Dutta Roy (1980) and Mitra et al. (1974).

4.1.3.2. Limit cycles. Of course, the noise model of quantiz-
ation is only an approximation. If signal variations are small
compared to g, such as near the steady state of a control system,
the non-linear nature of quantization shows up. The result may
be limit cycles. Limit cycles observed in practical control systems
are often due to the quantization of AD- and DA-conversion,
but may as easily be caused by arithmetic. Since there are many
quantizers at the same time, analysis of limit cycles in a closed
loop control system is difficult. Much has been published on
limit cycles in digital filters operated open loop, but the results
are of little significance in a closed loop control system. This
has been clearly pointed out by Moroney (1983), who gives a
comprehensive discussion of the approaches in the digital filter
field and their relevance to control.

Some discussion of limit cycle existence for SISO systems and
some techniques for bounding their amplitudes (whether they
exist or not) are also given by Ahmed and Belanger (1984b).
The basic idea of such bounding techniques is to exploit the
boundedness of the quantization crrors and to check which
signal amplitudes can be generated from those error sources.
Absolute (Long and Trick, 1983) as well as rms (Sandberg and
Kaiser, 1972) bounds, partly exploiting the periodicity of a limit
cycle, have been derived for filters, and have been used for
control by Ahmed and Belanger (1984b). They also demonstrate
that for low external input (reference or disturbance) signal
amplitudes limit cycles may be dominant in the output, but for
increasing amplitudes the noise model of quantization comes
into play and limit cycles may be quenched off, resulting in less
output noise than for low input signal amplitudes.

The value of the available techniques for limit cycle bounding
for higher order multivariable control systems seems however
to be limited. Since they have to be carried out numerically for
given parameters, it is probably more attractive to check the
effects directly via simulation in practice, taking into account
realistic input signals. Note that even slight measurement noise
may already quench off limit cycles in the critical “steady state”
situation. This is the same effect which sometimes leads to the
deliberate introduction of dither signals in non-linear systems.
On the same lines is the technique of random rounding known
from digital filters (Callahan, 1976; Biittner, 1977).

4.1.3.3. Double precision arithmetic and error feedback. In Fig.
6 it has been assumed that accumulation in scalar products is
carried out with the full length partial products. Quantization
occurs only when the result is stored away and (assuming
fractionals) the least significant bits are discarded. To compen-
sate somewhat for the discarded residues thus produced they
could be stored too, and included in some simplc way in

the next sample computation. This technique, called “error
feedback™, plays some part in the digital filter field (a recent
paper is by Vaidyanathan, 1985), and has also recently been
proposed for Kalman filter implementation by Williamson
(1985). Such techniques are however not far away from perfor-
ming double precision arithmetic (on signals, not coefficients),
as has been pointed out by Mullis and Roberts (1982).

A special technique for performing almost double precision
scalar product computation in an efficient way has been
described by Loges (1985) for a signal processor. Even if both
coefficients and signals are desired to have extended precision
this technique leads only to a four-fold increase in processing
time. This is quite good because doing anything other than
performing the arithmetic the processor is designed for (16-bit
in this case) is difficult and normally costs a lot of instructions.

4.2. Floating-point arithmetic. If standard wordlength floati-
ng-point arithmetic can be used, there is usually no reason to
worry about accuracy and dynamic range, provided that the
numerical values of data are in a reasonable range and compu-
tation of small differences of large numbers is taken care of. The
usual single precision format (standard IEEE 754) consists of
the mantissa’s sign bit, an 8-bit biased exponent e, and 23
mantissa bits for the fraction f. The decimal value is given by

(=17-[27 7] (1 +). (28)

The dynamic range spans 2~ 12° x~ 10738 upto 2+128 x~ 3- 1038,
and the accuracy according to 272* as value of the least
significant bit in f corresponds to about seven decimal places.

If much shorter wordlength floating-point formats were used
it might however be necessary to introduce scaling to keep data
in the dynamic range, as discussed in Section 6, and quantization
effects might become significant. Note that a fundamental
difference from fixed-point quantization is that there the error
is an absolute one, ie. the noise model may assume noise
injection to be independent of the signals, but with floating-
point arithmetic the error is a relative one, dependent on the
signal amplitude.

Studies of quantization errors for floating-point arithmetic
operations and the resulting signal to noise ratio decrease effects
in digital filters go back to the end of the sixties (Sandberg,
1967, Weinstein and Oppenheim, 1969; Liu and Kaneko, 1969;
Kaneko and Liu, 1973; Fettweis, 1974). There are also studies
concerning digital control. Rink and Chong (1979a) derived an
upper bound for the variances of the plant state in a state
feedback plus observer regulator control system in a stochastic
setting. The bound can be quite loose, however. More accurate
analysis is possible by computing covariances directly (Rink
and Chong, 1979b). Van Wingerden and de Koning (1984)
studied the increase of the cost function due to roundoff noise
from mantissa rounding when an LQG state feedback is
implemented using floating-point arithmetic. Some examples
indicate good agreement between roundoff analysis and simul-
ation. Emphasis is placed on derivation of approximate
expressions for means and variances of errors in floating-
point addition and multiplication by improved modelling of
quantization. Phillips (1980) proposed a simulation scheme for
evaluating the variance of the error between a control system
output in the infinite and finite wordlength cases under the
assumption of a deterministic input (reference or disturbance).
This approach is however not far away from dispensing with
analysis and checking for wordlength directly with simulation.
Generally, the value of existing roundoff analysis for practical
purposes seems limited. Results can perhaps more easily and
more significantly be found by simulation, which is also more
easily adaptable to complicated situations, for example if differ-
ent wordlengths are to be used at different points in a controller:

4.3. Non-standard arithmetic. Apart from the common fixed-
and floating-point binary data formats and arithmetic, there are
at least two other candidates, logarithmic and residue arithmetic.

157

158

Survey Paper

Logarithmic number representation might seem to be particu-
larly well suited to control. Let the value to be represented be
v, and fractional number range be assumed, i.e. |v| < 1, then ¢
in

v =0+ Av=sign(v)- D®,0<D <1 (29)

could be stored as a conventional binary number in the
processor, representing v' which is the quantized version of v,
with Av as quantization error. Practical values of D would be
close to 1. The interesting property of this representation is that
the quantized values are unevenly spaced. With fixed-point
numbers, spacing is equal and quantization error is absolute.
With logarithmic number representation closest spacing is
achieved in the low magnitude range. If control system trajecto-
ries for large state transitions are not required to be very close
to the infinite precision ones, the higher quantization errors
resulting from large signal magnitudes may be tolerable. If in
steady state operation the signals (controller states, outputs,
partial sums) are of low magnitude, the increased resolution in
that range may be beneficial, leading to lower quantization
noise or less limit cycle amplitude. Interfaces to the plant should
however also be logarithmic. This is non-standard but possible
for AD- as well as DA-conversion, for instance via switched
attenuator networks. The arithmetic computations inside a
logarithmic number processor are obviously simple in the case
of multiplication. Addition and subtraction require logarithm
computation but this can be replaced by table lookup (Kings-
bury and Rayner, 1971; Swartzlander and Alexopoulos, 1975;
Etzel, 1983; Frey and Taylor, 1985).

The use of logarithmic number representation for digital
filtering has been proposed by Hall et al. (1970) and Kingsbury
and Rayner (1971), preceded by yet earlier proposals motivated
by construction of calculators, and has been discussed in several
papers since then. The digital control application has already
been mentioned in Lee and Edgar (1977) and Edgar and Lee
(1979). They proposed a number system with an integer and a
fractional part. The representation corresponding to (29) has
recently been proposed as a basis for a special-purpose control
processor by Lang (1984).

For control there seem to be two main problems. The first is
that the controller coefficients are not likely to be of low
magnitude, thus they are quantized relatively coarsely and
possibly this is detrimental to the control system’s behaviour.
The second is that with practical control systems pure logarith-
mic signal representation will frequently be simply inadequate.
Imagine, for instance, a position control system involving high
resolution shaft encoders, where the position values are required
to be represented with equal absolute accuracy over the entire
range. The assumption that near steady-state operation leads
to near-zero signals will often be unjustified, for instance
when measurement signals are to be processed or preprocessed
separately from reference signals, instead of taking differences
first.

The last number system to be mentioned here is the residue
number system (Waser and Flynn, 1982). It was proposed long
ago for arithmetic unit construction and digital filtering. It also
showed up in control-related publications (Tan and Mclnnis,
1982; Pei and Ho, 1984). The main advantage is that very fast
computation is possible because operations are on digits instead
of whole numbers. There are no carries, possibly propagating
through all digits, thus slowing down the hardware. A high
degree of parallelism is possible in principle. It may well be that
residue arithmetic will gain ground in special purpose processor
designs.

S. Structures

5.1. Basic issues. Frequently, a state space description of a
controller or controller subsystem is derived in a manner
motivated by design theory. An example is the observer/state
feedback controller (1), (2), where the state has a physical
meaning (assuming that the plant state had one) and correspond-
ing matrices are involved. If it is not necessary to preserve the
state meaning, but achieving the desired closed-loop control is
the only objective, then any system with equivalent i/o behaviour
from input to output will do the job. There may be i/o equivalent

&l

FiG. 9. A direct structure.

systems which are preferable to the original one in the following
respects:

number of storage elements;
number of non-zero non-one coefficients;
computational delay;
multi-input/output capability;
+ state space description possible or not;
coefficient range;
coefficient sensitivity;
round/truncate noise.

If transfer functions are the starting point there may be
seemingly natural choices for obtaining programmable differ-
ence equations, such as (13) for (12), but other i/o equivalent
equations may be preferable. Traditionally, specific organiz-
ations of the difference equation computation are depicted in
block diagrams involving the z™! or delay element, as in Fig.
9, so that the structure becomes visible. The term “structure”
(or synonymous “form”) is also used generally, for instance when
one state-space description (6) is transformed into another by a
similarity transformation

A=T'AT
B=T"'B i (30)
C=CT

yielding new matrices with different zero/non-zero entry pat-
terns, or at least new numerical values.

Determination of “good” structures has always been a main
issue in digital filtering. It seems to be quite reasonable to adopt
for control purposes structures which proved to be useful in
this field. However, some aspects are usually not addressed in
digital filtering, namely computational delay, MIMO capability,
and the influence of the closed-loop operation. In the following
some basic structures are discussed without taking the closed
control loop into account; work on this is reviewed in the
penultimate subsection. All discussions are on system (6).

5.1.1. Direct structures. The simplest case to consider is realiz-
ation of a SISO transfer function G(z) from (12). In (13) a
corresponding structure is given in terms of its difference
equation. This structure belongs to the class of so-called direct
forms or structures because the polynomials appear directly as
coefficients in the difference equation or block diagram. As given
in (13), n + m delay or storage elements would be needed, but
this can be remedied. Various direct structures can be derived
and a few of these at least can be found in any textbook on
digital filtering or control, for instance in Phillips and Nagle
(1984), Oppenheim and Schafer (1975). In Fig. 9 one of the direct
structures is shown, assuming m = n for convenience. This
structure can easily be extended to the MISO case.

It is well known that direct structures suffer from various
drawbacks. First, the coefficients can easily be spread over a
large number range, causing problems with number represen-
tation and arithmetic. This is because, according to Vieta’s
theorem, sums, products, and sums of products of polynomial
roots form the coefficients, and roots can be anywhere from the
origin even to outside the unit circle in the z-plane with

Survey Paper

controllers. This is somewhat in contrast to digital filters, where
poles and zeros are usually positioned well off the origin. Second,
the sensitivity of roots or coefficient errors can be up to infinity.
Such errors are introduced by the quantizing of coefficients to
represent them in the processor. If iv denotes a root of

P2)=2"+ B2+ o G

and f; is perturbed by AB,, then 4, is shifted by A4, and A4, is
given (to first order, denoted by =) by

A, (32)

3 =4

j*

Ay = —

which clearly indicates high root sensitivity for clustered roots
(Kaiser, 1966; Oppenheim and Schafer, 1975).

The situation becomes particularly bad when unclustered
“slow eigenvalues” in the s-plane generate clusters near 1 in the
z-plane. There is some remedy to this case by means of “delay
replacement” (Agarwal and Burrus, 1975; Nishimura et al., 1981;
Orlandi and Martinelli, 1984; Goodwin, 1985; Middleton and
Goodwin, 1985). One version of this is to replace the z ™! blocks
by so-called 67" blocks. A 3! block realizes the z-transfer
function T/(z—1) and thus represents a discrete integrator.
Implementing a 6~ !-block requires the operation

=80 =0 +Th_, (33)

(« output variable, § input variable of the 6~ '-block), instead
of the z ™! shift operation. A z-transfer function then transforms
into a d-transfer function, which can be realized using any
suitable structure known for z-transfer functions, but now
involving 8~ '-blocks instead of z~ '-blocks. The advantage over
the z~'-block based realization is that the corresponding z-
poles can be orders of magnitude less sensitive to errors in J-
polynomial coefficients, just in the case of pole clusters near
z = | as introduced with relatively fast sampling.

The first order root sensitivity of (32) is not always of great
importance, but sensitivities of impulse response (Knowles
and Olcayto, 1968) and frequency response (Crochiere and
Oppenheim, 1975) are high as well with direct structures.
Another related drawback is potentially high gain sensitivity.
Assuming a stable transfer function G(z) with notation of (12)
for simplicity, the final value of the output after a unit step
input is

. finghl
M= =

Viheowo = (34)
1+ a;

1

A direct structure, directly involving the quantized versions of
b; and a;, is now likely to introduce inaccurate small differences
of large numbers in (34), because the coefficients are frequently
of large absolute value with alternating signs. Finally, direct
structures suffer from particularly high signal quantization noise,
which relates to high coefficient sensitivity (Feitweis, 1972, 1973;
Jackson, 1976). The conclusion drawn from all this is to
recommend direct structures only for low order systems or
subsections of higher order systems, and to use them with care.

5.1.2. Cascade structure. A more reliable SISO structure, which
is well accepted in digital filtering, is the cascade structure,
where G(z) is implemented in factorized form as a series
connection of low order blocks, usually of first or second order
(Oppenheim and Schafer, 1975), see Fig. 10 for an example. This
structure offers possibilities of optimal distribution of poles and
zeros among the blocks, and internal block structures can be
chosen optimally. However, there are drawbacks for control
application. First, the structure introduces increased comput-
ational delay in the common case of G(z) having direct
feedthrough, i.e. by # 0 in (12). This is because output appears
only after computation in every block is finished, unless direct
feedthrough is bypassed directly from input to output, which

-a)

_ block 1) _ block 2!

F1G. 10. Cascade structure example.

means departing from pure cascade structure. The second
drawback is that this structure is limited to the SISO case, so
that it may be valuable for SISO subsystems in a complex
structured controller, but not for a complete MIMO controller.

5.1.3. Parallel structure. A structure which is widely regarded
to be as.good a candidate as the cascade structure is the parallel
structure (Jackson, 1970b). It corresponds to implementing G(z)
in a partial fraction expansion form (Gold and Rader, 1969).
The partial fraction blocks are commonly chosen to be of first
and second order and can be implemented by suitable structures.
Special cases of the parallel form have received much attention
in digital filtering as being suboptimal in some respect to certain
optimal structures, as discussed below (Jackson et al., 1979;
Mullis and Roberts, 1976). An advantage of parallel structures
is that they can be used in MIMO cases.

5.1.4. Other structures. The above discussion does not cover all
types of structure. There are several additional structures of
practical importance known in digital filtering, such as wave
digital filters or ladder structures. For an overview and bibli-
ography see the recent paper of Fettweis (1984). However, such
structures have not yet appeared in control applications.

5.1.5. Relevance of non-state-space structures. That a structure
can be described by standard state-space models might be taken
for granted by control engineers who are used to thinking in
state-space terms, but there are many structures which cannot
be represented by a single standard state-space model (Willsky,
1979; Moroney, 1983). This is because a state-space structure
places restrictions on what nodes may be present. Take the
cascade structure of Fig. 10 for example, where signal v occurs
at a node not accounted for in a state-space model. If the
cascade structure is restructured to map into a state-space
structure, such as in Katz (1981), other coefficients are involved
and intermediate signals are no longer represented. This is
only irrelevant under infinite precision arithmetic. A useful
description solving this repr ion problem is di d in
the last subsection.

5.2. State-space structures. Given a state-space description (6)
(treatment of types other than (6) is obvious), an infinite number
of structures can be derived via similarity transformation (30).
The control engineer may be tempted to pick well-known
canonical forms first, such as a control canonical form. This and
related forms, however, involve transfer-function polynomial
coefficients more or less directly and thus suffer from the
problems discussed above. The only real advantage of such
structures is their minimum coefficient count. For lower order
systems or subsystems, they may be used in general without
problems, although the author has encountered practical appli-
cations where canonical forms of only third order caused
accuracy problems even with 32-bit floating-point arithmetic.

More promising for higher order controllers are the parallel
structures. A typical one has a block diagonal

- " 35
A Ay .

159

160

Survey Paper

with (2,2) submatrices 4; accommodating complex eigenvalues,
and B, € possibly non-zero everywhere. This or related structures
play an important role in digital filtering. It is a special case of
that devised by Mullis and Roberts (1976) with special Z,- as
suboptimal quantization noise structure. The latter leads to
dense A, requiring much computational effort, and has thus
been considered unattractive. Several authors took the block-
optimal structure as a starting point and then focussed on the
second order structures, i.e. on the A,- and the associated parts
of B and C (Jackson et al., 1979, Barnes, 1979, 1984; Mills et
al., 1981; Bomar, 1985). The second order substructure also
attracted authors because results on overflow stability and limit
cycles could be derived (Mills et al., 1978; Jackson, 1979).

Various structures can be chosen for the second order
subsystems which accomodate complex eigenvalues o + jw and
the selection may be guided by the sensitivity, quantization
noise, or limit cycling considerations discussed in the literature
quoted above. The coefficient number range and the number of
coefficients contributing to the computation time may also
influence the decision. If, for instance, the number of non-zero
non-unity coefficients is to be minimized, control canonical or
observer canonical forms may be of interest, e.g.

—o2 —@?
20] (36)

for a MISO controller. Another choice is

= [fw f,’] o7

with no special pattern in E‘-, C;. The resulting matrix 4 is well
known in control-related algebra as a real valued version of the
diagonal form. Stable controllers always have |o| < 1,Jw| <1, thus
Aj is well suited to fractional arithmetic. Transformation of any
state-space model of the controller into the real diagonal form
(35), (37) can easily be achieved using standard EISPACK
software, provided the eigenvectors of A are sufficiently linearly
independent in a numerical sense. A successful transformation
using CAD software does not however guarantee that the
resulting state-space model can be implemented with sufficient
accuracy with shorter wordlength arithmetic on the target
processor. Problems with large numbers in B and C can be
expected. They correspond to large residues in a partial fraction
expansion of the transfer functions, where contributions of terms
are likely to almost cancel, thus producing large errors. The
author encountered a case in a practical application where three
real eigenvalues spaced 5% from each other caused such
accuracy problems even with 24-bit mantissa floating-point
arithmetic.

The same problems may occur with any attempt to force a
model into any parallel structure in cases where there are
clustered eigenvalues requiring a series connection represen-
tation instead of a parallel one. The obvious way to treat such
cases is to introduce parallel blocks of higher order with
appropriate internal structure. Clustered eigenvalues could then
be accommodated within a Jordan block or a companion form
block. But this should not simply be done after the observation
of eigenvalue clusters without checking the residues, because
clusters with inherent parallel block structure also occur.
Additionally, it is with clustered eigenvalues that companion
forms suffer from high eigenvalue sensitivity. The problems just
mentioned have astonishingly not been an issue in digital
filtering. The Jordan form played some part in Barnes and Fam
(1977) but not with respect to the residue problems mentioned.

Particular types of state-space structures which have received
a lot of attention are the minimum roundoff-noise structures
proposed by Mullis and Roberts (1976) and Hwang (1977). They
minimize signal quantization noise arising from the state update
computation in (6) while retaining scaling of the state vector.
Scaling is performed in such a way that the overflow probability
is made equal for every state variable assuming a white noise
input signal. The reasoning behind the optimal minimum
roundoff realization is based on the derivation of a lower bound

on the variance of the output noise generated by roundoff in
the state vector computation. A lower bound exists because the
scaling constraint has to be met. Attaining the lower bound is
possible, and a corresponding transformation matrix T can be
constructed.

The optimal realizations suffer however from the fact that 4
generally has no specific structure. All coefficients can be
non-zero and non-unity. This has always been considered
unattractive. But with a digital signal processor as a target the
computation of long scalar products is not so time consuming
in relation to other operations such as overflow management.
If for example an optimal realization enabled single-word
arithmetic to be used, whereas a structure with sparse A
demanded multi-word arithmetic, the former might lead to
the faster solution. Considering optimal structures in control
applications thus seems worthwhile. Moroney (1983) adapted
the theory to closed-loop operation, but focussed on the block-
optimal case. From his numerical example, as well as from open-
loop filter examples by Jackson et al. (1979), there is some
indication that non-optimal parallel structures with second
order blocks perform quite closely to corresponding block-
optimal ones.

5.3. Closed-loop considerations. It is quite useful to have a
collection of “known-to-be-good™ structures and guidelines from
which to select under given conditions. In most cases such a
selection without closed-loop optimization will be sufficient.
Given a 16-bit target processor, for instance, it does not matter
much whether the minimum wordlength necessary to achieve
satisfactory closed-loop operation is 8- or 10-bit, because 16-bit
will be the increment. The situation changes, however, at the
boundary, and in cases where wordlength is not fixed, as in
custom VLSI processor design. Methods of structure selection
or optimization considering the closed-loop operation, which
optimize with respect to roundoff noise from signal quantization
as well as with respect to coefficient quantization effects, should
be useful in such cases. These issues have been studied by
Moroney (1983), Moroney et al. (1980, 1983), and Sasahara et
al. (1984). All assume a stochastic setting in an LQG context.

As mentioned above, Moroney et al. adapted the theory of
Mullis, Roberts and Hwang to the closed-loop SISO case
and additionally devised an iterative structure optimization
technique for minimizing roundoff noise, which could be aug-
mented to extend optimization to coefficient wordlength effects.
The objective is to minimize the increase of an LQG cost
function. The influence of coefficient wordlength is introduced
via a statistical wordlength technique. The idea of statistical
wordlength estimation'is already found in Knowles and Olcayto
(1968) and was later used by Avenhaus (1972) and Crochiere
(1975), who estimated filter frequency response errors by
assuming coefficient quantization errors to be independent
random variables, leading to a variance estimate on frequency
response. This is not as pessimistic as the equally possible worst-
case bound, which is based on the assumption that individual
coefficient errors are maximum in absolute value with signs
opposed to the corresponding sensitivity of the response to the
coefficiént. But Crochiere’s examples show that the statistical
estimate is likely to be still somewhat pessimistic.

The statistical wordlength concept has been applied by
Moroney (1983) to estimation of LQG cost function degradation.
Second order sensitivities are involved because first order
sensitivities are zero owing to LQG design. The structure
optimization technique of Moroney allows for constraints in
the structure, so the matrices of the controller description can
be kept sparse, if so wished. Furthermore, the class of structures
considered is wide, because everything is done for a generalized
state-space structure discussed in the next subsection.

Sasahara et al. (1984) also minimize cost function degradation
(for digital filters see also Kawamata and Higuchi, 1985). They
derive a transformation matrix Tfor a Kalman filter, plus state
feedback controller, which minimizes degradation due to signal
quantization noise. So far this is also an adaptation of the
Mullis, Roberts and Hwang theory to closed-loop control. From
statistical modelling of coefficient quantization errors they
then conclude that this approximately minimizes coefficient
quantization degradation too. This conclusion is in line with
results from digital filtering (Fettweis, 1973; Jackson, 1976;

Survey Paper

Jackson et al., 1979; Antoniou er al., 1983) also showing close
relationships between minimal noise and minimal sensitivity.
An example given by Sasahara et al. shows large improvements
in cost function degradation using the optimized structure
compared to a direct form, and improvement on an unfortu-
nately not specified canonical form is also considerable. Agree-
ment between analysis and simulation appears to be very good
for roundoff noise, but less so for coefficient quantization.

Since LQG cost function degradation is not always a suitable
objective in practical applications, other means of analysis and
optimization should also be developed. Quite effective tools
could probably be derived from closed-loop eigenvalue sensi-
tivity analysis. Closed loop frequency response sensitivity might
also be interesting, possibly exploiting non-approximate large-
change sensitivity expressions as discussed for digital filters by
Jain et al. (1985).

5.4. Serialism. As mentioned in Subsection 5.1.4, the cascade
structure of Fig. 10 cannot be described as a standard state-
space model. Obviously, variable v between the first order blocks
cannot be represented because it is neither a state nor an output
and these are the only variables, i.e. network nodes, available
in state-space formulation.

From another viewpoint, the example possesses serialism,
whereas in a state-space structure all state vector components
could be updated in parallel from the “old” state and the input
vector. In order to describe more general structures (the cascade
is only one example), it is necessary to account for precedence.

Crochiere and Oppenheim (1975) distinguish node precedence
from multiplier precedence. In the structure of Fig. 10 there are
two node precedence levels: first node signal v, must be com-
puted, then y,. There are also two multiplier precedence levels:
multiplications involving a,, by, b, a,, b, for instance could be
performed in parallel first, but multiplication with by has to
await computation of v,. However, the number of multiplier and
node precedence levels is not always the same. The motivation for
considering multiplier precedence lies in the dominance of
multiply execution time frequently encountered. The number of
multiplier precedence levels of a structure then determines the
minimum sampling period achievable assuming that as many
multiplies as possible are carried out in parallel using multiple
arithmetic units.

This issue may be of importance in special purpose processor
design, but precedence also has important implications in the
usual single processing unit case. One implication is that
minimum achievable computational delay in the case of direct
feedthrough is dependent on precedence, another is that struc-
tures with precedence might be preferable with respect to finite
wordlength effects. In this case it is necessary to have a
description of the structure representing the original coefficients
and the original node signals. Such a description has been
introduced to the control field by Moroney (1983) and Moroney
et al. (1980, 1981, 1983). It had previously been used with digital
filters by Chan (1978), and recently by Mullis and Roberts (1984)
in a VLSI filter chip design context, labelled factored state
variable description (FSVD). Using this description, the struc-
ture of Fig. 10 would be represented by

Xik+1 —a 0 Xik || X1k+1
Xu |=] O L0 [o || X2k
Uy bo 0 by Uy Yie
1 0 0 || X441
=0 —a 1 Xk (38)
0 b, by v,
or
Xk
r=v
[3 l[uk]
Xk+1
7,
[y] vare @9

Serialism is now expressed by the first computed intermediate

(a) time
D ———
sampling sampling
— ----
block 1 L
block 2
output
(b) time
—
sampling sampling sampling
+ H +
block 1 \ block 1 \ block 1
§ Dblock2 y block2
start pipeline
filled here output

Fic. 11. Pipelining with structure from Fig. 10: (a) unpipelined;
(b) pipelined.

result r,.

Each y; matrix necessary in a FSVD corresponds to one node
precedence level. The intermediate signals can be represented
and so can the coefficients. Note that revoking the factorization,
introducing @ = ¥,¥, immediately yields a standard state-
space description (by partitioning ® into 4, B, C, D appropri-
ately) but neither the intermediate signal nor all original
coefficients are then represented.

Thus FSVD could be useful for modelling general structures
within an implementation oriented CACE environment. Cascade
structure is only one example of such a more general (with
respect to standard state-space) structure, a delay-replacement
state-space structure based on (33) being another one.

In the work of Moroney et al. a slight modification has been
made. Owing to their restriction to LQG compensators without
direct feedthrough (see Subsection 2.2) they introduce the output
(SISO case) as a state and call the result “modified state-space
representation”. All their work, which has frequently been
quoted in this paper, is based on this representation.

Another issue linked with precedence is pipelining. In the
example in Fig. 10, imagine that there is double hardware, so
that multiplies and adds for the left-hand block 1 and the right-
hand block 2 can be executed simultaneously, ie. in parallcl
Then simply letting block 2 h wait for pletion of
block 1 computation so that one hardware unit is always ldle
would of course be unattractive. But if a delay (i.e. storage) is
inserted between the blocks for storing v,, the multiplier as well
as node precedence levels are reduced to one, and both hardware
units could always be busy, running at double sampling fre-
quency, see Fig. 11. This is pipelining. It allows an increased
throughput rate but introduces delay. In a control feedback
loop this delay must then be accounted for in design (Moroney,
1983; Moroney et al., 1981) but despite this delay the control
system performance can possibly be improved compared to the
lower sampling frequency non-pipelined case.

6. Scaling

At least when using fixed-point arithmetic it is usually
necessary to perform scaling on the controller to be implemented.
The primary objective is to fit data which are computed during
the course of a difference equation calculation into the limited
number range, so that overflows are avoided without provoking
excessive signal quantization effects. A second objective with
scaling is to alter coefficients in such a way that they fit into
the coefficient number range. This is not always achieved when

161

162

Survey Paper

scaling is only oriented towards data overflow avoidance and
scale-factors then have to be altered appropriately.

The following discussion is on a controller formulated as a
state-space system, but the concepts apply equally well in other
formulations, such as (13), for example. The scaling task may
be partitioned into three subtasks, which might be called

input and output scaling;
state vector scaling;
scalar product scaling.

They are dicussed below in this order, which also reflects the
chronological seq; within the impl tion process. Note
however that scaling cannot always be handled separately after
structure selection. Any kind of structure optimization or
evaluation with respect to finite precision arithmetic should
have a scaling procedure as an underlying process, because
scaling affects the numerical values of the coefficients.

6.1. Input and output scaling. During controller design the
plant’s outputs and control inputs are often conveniently
handled as physical variables without normalization, i.e. outputs
of a system may be in bar and ms~'. Once the range of values
occurring in closed-loop control system operation are known,
the transducer gains can be determined. The output of a
transducer, say —10V ...+10V, must be represented in the
processor according to the data format used in the controller
impl ation. Using fractional arithmetic, the bit pattern
output of the AD-converter representing —10V ...+ 10V may
be aligned to give —1 ...+1 in the processor, ie. the most
significant bit (msb) of the ADC output is also the msb of the
data word then used for the input to the difference equations.
In the case of digital input, for instance from a position encoder,
the alignment could also be done in this way, and for the outputs
of the controller it is just the same.

Let the physical variable range of a plant’s input, which has
been used in designing the controller, be given for example as
¥ in the range —20A ... +20A for an electromechanical
actuator. This variable is represented in the range —1 ... +1in
the processor (fractional arithmetic assumed). Possible inter-
mediate variable transformations, for instance into —10V ...
+10V via a DAC and then into the y, range via a power
amplifier, do not matter here. The gain between the value in the
processor and the physical value used in the controller derivation
must however be accounted for by scaling the controller
equations before supplying them to the further steps of the
implementation procedure. In the example the ith row of C and
D must be multiplied by 1/20 to obtain the correct numerical
values. As a whole, there must be input and output scaling to
change the B, C, and D matrices of (6) for example, to BS, *,
S, !C, and S;'DS;' respectively. The scaling matrices are
diagonal and their elements are given by

RP"

S, —‘;‘
o/
R

ui

s B
i »
R” (40)

where R” means the number range span in the processor (same
number range for inputs and outputs assumed), ie. 2 for
fractional arithmetic, and R”* means the physical variable range
span used in the design of the controller which led to the original
A, B, C, D matrices, ie. 40 A for R In the case of an
unsymmetrical physical variable range, for example 0 ... 40 A,
appropriate offset must be added, preferably at the transducer
or amplifier side.

In the above di it has been d that the range
of the physical variables, and accordingly the measurement
ranges of the transducers are known. This is usually the case. If
it is not, the techniques discussed below for determination of

maximum deflections of state variables could also be used
correspondingly to get that information.

6.2. State vector scaling. For a system (6), the state variables
are scaled via

Hoeaes = diag (si)x = spix @

thus the scaled system is given by
Xscatea s 1 = Sz *AS Xocatea + Sy 'Buy 42)
Ve = CS Xocarean + Dt (43)

leading to new matrices A, B,, and C.. The scale factors s, ; can
always be chosen so that X4 stays within the number range
given by the data format used. But in order to minimize data
quantization effects x,.,;.q Should not be permanently far off the
limits during operation of the closed-loop control system, i.e.
scaling should be such that the maximum absolute value of a
variable is just below the upper number range limit under worst-
case conditions.

‘What remains to be discussed is determination of the scale
factors. Basically, there are two approaches to determining the
s,,; analysis and simulation. The conceptually simplest is to
simulate the closed-loop control system under various con-
ditions, preferably under conditions which are anticipated to be
worst-case with respect to the values of x. The largest absolute
values of the components of x can be collected and scale factors
can easily be derived from the largest absolute values overall
per state variable. All this can be automated by appropriate
software. Although the effort in performing a number of simula-
tions might be considerable, the data collection mentioned can
often be a by-product of simulations carried out anyway in the
case of control design evaluation.

In the digital filtering field, state vector scaling has been dealt
with analytically since the early seventies and is represented in
most textbooks in this field. Some prominent papers have been
published by Jackson (1970a, 1970b), Hwang (1975a,b), Mullis
and Roberts (1976). Concepts developed there have been used
in control engineering by Moroney (1983), who gives an extensive
discussion and bibliography, by Moroney et al. (1980, 1983),
Sasahara et al. (1984), Scharf and Sigurdsson (1984), and Ahmed
and Belanger (1984a). In the digital filtering field, the digital
systems usually operate in open loop and are of the SISO type.
Analytic scaling is based there on certain assumptions about
the input signal to be expected. In the MISO or MIMO
controller case, such assumptions cannot be made as easily
because the plant measurement outputs, which are inputs to the
controller, are interdependent according to the plant dynamics
and structure. Furthermore, the closed-loop nature of controller
operation should be taken into account.

If scaling is allowed to be a bit pessimistic, experience shows
that quite often useful scale factors could have been found by
driving the digital open-loop controller alone with worst-case
input signals. For a SISO servo-control system, for example,
full-scale step reference inputs may be supposed to be worst-
case. Indeed, the largest deflections of the controller’s state
variables frequently occur right after the step, and where the
plant reacts slowly, the feedback case is not much different from
the open-loop case in terms of maximum deflection of the
controller state. So, simple calculation of controller state after
a step input in open loop yields reasonable scale factors in such
a case, called unit-step scaling with respect to filters in Phillips

Survey Paper

and Nagle (1984) and also used by Mitchell and Demoyer (1985).
Note however that such an approach only works with stable
controllers. An integral part in the controller would only be
allowed if it affected only one state variable, ie. if it were
decoupled in the controller. It could then be scaled separately,
based on what is expected to be specified as its maximum
contribution to the actuating variables.

Generally, scaling of controllers would be most safe and least
pessimistic when based on closed-loop considerations. As in the
open-loop case of digital filters, there must be some assumptions
about input signals, but now these are not necessarily input
signals to the controller. They may be inputs to the plant,
for example disturbances. The closed-loop system must be
sufficiently linear, because the analytic scaling approaches rely
on linear models.

After a linear discrete model of the closed-loop system has
been set up assumptlons about input signals are in order In
stochastic settings it is ble to worst:
tic input signals and then to compute the variances 62 of the
controller state variables by standard techniques. In the case of
zero-mean G signals, for i , the probability that
the amplitude exceeds 3.3 ¢ is only 0.001, thus a scale factor s, ;
in the range 30, ... 100, ; should be reasonable for fractional
arithmetic overflow limits —1 ... +1. The actual value selected
depends on the supposed quality of the Gaussian model of the
real signal.

The variance-oriented scaling approach has been used in
connection with control by Moroney et al. (1980), Moroney
(1983), Scharf and Sigurdsson (1984), Sasahara et al. (1984), and
Ahmed and Belanger (1984a). If there are constant (not step)
disturbances or reference inputs in addition to the stochastic
signals, the mean values X; of the controller state variables must
also be computed for worst-case situations and scale factors
must be selected so that |x;| + co,; < 1,¢=3... 10, in the case
of fractional arithmetic. Moroney (1983) and Moroney et al.
(1983) propose some remedy for the non-zero setpoint situation
in order to obtain zero-mean controller state variables, but it
seems to be rather limited from a practical viewpoint.

q

In this case the Euclidean norm of the impulse response sequence
as well as the input sequence is used, which in fact means that
an assumption on an energy bound on {v,} must be made from
a deterministic viewpoint. This type of scaling corresponds to
the stochastic overflow-probability scaling discussed above in a
stochastic setting, with {v,} a white noise sequence, in which
case the variance of x; is given by

[Y b e J] (46)

If the only assumption on {v,} were that any sample is
bounded by v,| < M, then g = oo and p = 1 should be taken.
Note that this is the limiting case but (45) is still valid (Epstein,
1970). Equation (45) then yields

&
Xl < M Z 1By 5l 47
j=0

It is obvious that this yields an absolutely worst-case, pessimistic
bound. Equality in (47) holds if v; in (44) is always at its limits
+M or — M with the sign corresponding to that of h;, ;. Note
that the impulse response sequence must form an absolutely
convergent series for (47) to be useful, but this is guaranteed for
a stable linear closed-loop system (Strejc, 1981). The opposite
case to that last discussed is ¢ = 1, p = oo, which leads to an
assumption on Z|v}. Only signals whose number sequence is
absolutely summable are allowed here.

The norm-based bounding techniques outlined above work
in the time domain. Similar techniques are available in the
frequency domain based on function space norms, in which case
frequency response and input signal spectrum assumptions are
involved (Hwang, 1975a, 1975b; Moroney, 1983; Ahmed and
Belanger, 1984a).

A strong point of bound-based scaling techniques is that

Deterministic input signals are probably most often
for in practice by simulating the closed-loop system for the
operating conditions expected in reality, as mentioned above.
Possibly a linear simulation is sufficient for collecting scale
factors. In digital filtering other means have been developed to
determine scale factors based on deterministic assumptions on
input signals. They can be adopted for closed-loop control as
discussed by Moroney (1983). The aim is to calculate upper
bounds for the controller state variables x; under some bound-
edness assumptions on the input signals. The basic idea of
bound-based scaling is illustrated by the following.

Given an input signal to the closed-loop system represented
by its samples v,, a controller’s state variable is given by

Xik = 20 By 050 44

where {h,} is the impulse reponse sequence of this transfer path.
The sum in (44) can now be bounded via the Holder inequality
(Epstein, 1970; Hwang, 1975a, 1975b), thus

e[& 1/q
h; jl”] I:ZIV/F] , (49
=0

where llJ + ‘11 = 1. Since the factors (...)!/” and (...)* are I, and

K
Ixiul < Z 1A g 05 §[
i=o0 j

I, norms of vectors, scaling based on such bounds is called I,
scaling (Hwang, 1975a, 1975b). The name of the norm used for
the impulse response sequence is used by convention.

With digital filtering, [, scaling plays an important role in
connection with optimal realization structures (see Section 5).

lutely worst-case (although perhaps conservative) scaling is
possible, whereas with sxmulat:on the safety of scaling depends
on how well the worst-case situations have been anticipated. It
was interesting to the author of this survey to check the degree
of conservatism in the simple control system example given by
Ahmed and Belanger (1984a). They used [, norm-based scaling
assuming the reference signal to be absolutely bounded by M.
It turned out that the [, worst-case scaling was not very
conservative at all. Compared with a reference step input of
value M over-scaling was only about 50%. Since the given data
wordlength of a processor may be sufficient to allow for worst-
case scaling, it is attractive to let an automatic scaling algorithm
perform this. The control engineer then needs only to supply
bounds on input signals. Experience with such [, scaling applied
to the controller alone (open loop) indicates that even this
simple automatic scaling method yields good results for stable
controllers or controller subsystems.

Note that in the discussion given above as well as in the
literature only single input signals have been considered, whereas
several signals might act on plant and controller simultaneously
in reality. With I, scaling this is accomodated for by computing

r «
Ixid < Z [Mv z lhi,j,vl:lﬂ (48)
i=0

where M, are the bounds on the individual input signals, and
{h, .} is the impulse response seq for an impulse at the
vth input.

6.3. Scalar product scaling. From the discussion in Section 4,
it is not sufficient to scale only the state vector in the case of
other than two’s complement arithmetic. Partial sum overflow
during scalar product evaluation also has to be avoided. With
two’s complement arithmetic the same is necessary if it cannot
be ensured that x,.,.4 is overflow free, and the saturation value
should be taken if overflow occurs. The scalar product scaling
as discussed in Section 4 can be used for this purpose, leading

163

164

Survey Paper

to computation of an intermediate downscaled state
%= S AXscatean + Sox' Botheo 49
Six = diag (s, Ssxi 2 1, (50)
which must be rescaled

Xocated k1 = SsxX (51)

to yield the new scaled state. This rescaling operation has to be
performed by the target processor, whereas downscaling in (49)
only modifies the coefficients of the matrices supplied before
target processor programming.

A similar situation arises with the output computation‘(43).
With practical control systems it is very likely that outputs of
the controlier will saturate in certain states of operation. This
is a very common case, for instance, with drives and positioning
mechanisms. In order to be able to determine correct output
saturation it is necessary to perform scalar product scaling here,
ie. first to compute a downscaled overflow-free version of the
output vector and then to rescale it using a saturation overflow
mechanism.

This downscaling procedure also conveniently scales down
the coefficients (matrix elements) of the output equation, which
are very often quite large. Values in the hundreds are not
uncommon here when fractional arithmetic is used, in which
case coefficients should not exceed the range —1... + 1 (at least
not much; small integer parts may still be realized using multiple
adds and subs). The reason for large coefficients here is that in
contrast to digital filters, controller transfer functions frequently
have gains far above unity. Since the state vector will be scaled
so that it fits into the number range, high gains consequently
show up in the output equation in the C, matrix. The direct

‘feedthrough matrix might also have large coefficients, particu-

larly with controllers of PD type where a step input immediately
produces a large output. The scalar product scaling technique
has been implemented to be carried out automatically in an
automatic code generator for a certain signal processor by Loges
(1984), Hanselmann and Loges (1984), Loges (1985).

7. Programming

In any case where computation speed is not crucial and a
common and well-supported general microprocessor is used as
target, programming of controllers as introduced in Section 2
should not cause problems. Common general high-level langu-
ages (HLL) can then be used, along with convenient floating-
point arithmetic. It is, however, necessary to account for real-
time operation.

7.1. Multi-tasking and languages. Where the controller is the
only task for a dedicated processor, timing is sometimes achieved
through simply polling a status signal (‘ADC ready” for example)
of a peripheral which is under timer control, leaving the
processor idle while waiting. If there is something more useful
for it to do instead of waiting, a foreground/background solution
would be better. In that case, the background job is interrupted
by a real-time clock whenever the controller has to be served.
This type of real-time operation is quite primitive, but may be
appropriate for simple systems and is widely used (for an
example see Clarke, 1982). It works with HLLs even if they were
not originally designed for real-time operation, provided the
machine code generated by the compiler is re-entrant. This
means that routines which are used in both foreground and
background (such as library routines) can be interrupted, re-
used, and resumed without errors due to altered local variables.

In a multi-rate system for example, composed of several
subsystems, the situation is a bit more complicated, since
modules executed at a slower rate have to be interrupted to
let high-rate modules be serviced. Foreground/background
operation then becomes clumsy. If additionally asynchronous
events occur, or if synchronization problems have to be solved,
a multi-tasking executive becomes more and more necessary.

There are ways of staying with HLLs, though, because some
languages have at least basic real-time operations support built
into them, such as Modula 2, some versions of Pascal, and
Forth environments, or real-time facilities are achievable

numerical data
(matrices)

optimal assembly code

coded functions
!

sctup data from hbrary

FiG. 12. Automatic code generation.

through widely available real-time operating system kernels,
available to interface with C or Pascal programs for example
(Evanczuk, 1983; Ready, 1984; Heider, 1982). Although real-
time executives (operating system kernels) are quite an effective
means of achieving multi-tasking, they usually require consider-
able processor execution time for task management. Switching
from one task to another may easily take around 100us and
more, even with a modern 16-bit processor. So, if appropriate,
more primitive means might be the choice.

A problem with HLLs is that they most often only support
integer and floating-point arithmetic. If the latter is too slow,
fractional arithmetic would be an alternative, but one might be
forced to program the equation evaluation parts in assembly
language. Emulation of fractional arithmetic through integer
computations is possible but with a loss of speed. It is interesting
to note that there are Forth language environments which
include not only multi-tasking (Pountain, 1985) but also frac-
tional arithmetic. This backs the claim of Forth advocates that
this environment is well suited to real-time control, at least for
small systems.

The lowest level of programming is of course the use of
assembly language. In most cases it is chosen for reasons of
speed. With a modern microprocessor the assembly code for
implementing a controller can be quite concise owing to powerful
instruction sets. For examples of coded digital filters see Phillips
and Nagle (1984), where subroutines and loops have been used.
Maximum speed is obtained if straight code without loops and
subroutines is used because then there is no associated overhead.
Straight code, however, contradicts' what is good programming
style. A satisfying solution to this could come from automatic
program generators. Such a generator would generate tailored
code once the type, dimensions and numerical values of a
controller from Section 2 were known (Fig. 12), and should be
fairly easy to write for a general microprocessor.

7.2. Code generation. The generator concept has repeatedly
been applied to signal processor programming for digital filtering
and related tasks (Schafer et al., 1984; Mintzer et al., 1983;
Skyttd et al, 1983; Herrmann and Smit, 1983), and also for
controller impk ation (H | 1982, H 1 and
Loges, 1983, 1984; Loges, 1984, 1985). An interesting project
aimed at automatic program generation for a microcontroller
(the 8096 from Section 3) has been described by Srodawa et al.
(1985). Since the starting point is a language description of the
computations to be performed, this tool is more a compiler than
a code generator. Compilers translating high level descriptions
into signal processor code are also emerging commercially, both
for special signal processing languages and for suitably modified
general HLLs, such as Pascal or C (Marrin, 1985).

An early control-related generator for the Intel 2920 signal
processor developed by Hanselmann (1982) was aimed at MIMO
controllers in the form of (6). Good experiences with this tool
later led to application of the code generator concept to the
TMS 32010. A brief description of this generator follows as an
example of what can be expected from implementation tools at
the programming end today. Details on internals can be found
in Loges (1985), and details on how to use it in Hanselmann
and Schwarte (1985).

The generator is aimed at implementation of MIMO control-
lers and accepts the four matrices of (6) as its input. Output is a
mnemonic assembly language program, which.can be assembled
and downloaded to the target. Because everything is automatic,
less attention needs to be paid to the readability and length of

Survey Paper

the program (as long as there is sufficient program RAM, which
is usually the case), and straight code without unnecessary loops
and without subroutines is generated to increase speed. The
generator also copes with data RAM limitations. If it detects
lack of RAM it automatically trades program space against
data space by utilizing an immediate multiply instruction of the
target processor so that coefficient space is saved in the data
RAM. This instruction only accommodates 13-bit numbers, but
even in cases where there are too many more-than-13-bit
coefficients the generator finds a way out (Loges, 1983, 1985).
Another important option is extended precision arithmetic.
The generator provides this on two levels: extended coefficient
precision, and extended coefficient and signal variable precnslon
With the special extended preci cc ion
realized by the generator the controller of Secnon 33 and Table
3 for example would run at 7 kHz with full precision (coefficients
and signal variables) instead of 31kHz with single precision.
The generator also automatically provides overflow manage-
ment code along with rescaling of scalar products (see Section
4). Finally, the generator has a facility to include function code
automatically. This is particularly useful for extending linear
controllers (for which the generator does coding) by non-linear
functions

destination : = f(destination, states, inputs, aux. variables),

where destintion can be a predefined variable such as a state or
output or a user-defined variable used in another function call.
A major type of function code performs table lookup with or
without interpolation, leading to very fast non-linear function
computation. At present, the generator concept is even being
applied to tailoring such function code. For instance there is a
program which generates square-root function code according
to the user’s specifications, such as argument range, table length
allowed, or precision desired.

Automatic code generation seems to be a viable means of
achieving application-specific code with about the same
efficiency as an expert programmer coding by hand would
attain. This is particularly valuable for target processors with
non-standard architectures and instruction sets, such as special
signal or custom design processors.

Code generation as just discussed is aimed at productlon of
optimal assembly code, but generation of HLL code should also
be mentioned. It helps in translating application oriented
descriptions of a controller, for example in the form of a block
diagram with transfer functions, into general programming
languages. A recent example is the RT .BUILD facility of the
MATRIX, CACE-Package (Shah et al., 1985), which generates
ADA language source code for controller implementation.

8. Simulation of digital control systems

In any realistic control design and implementation project,
digital simulation is an invaluable tool. This applies even more
to digital control. As mentioned earlier, simulation is useful in
the determination of scale factors. It can also reveal effects
due to quantization, overflows, spectrum aliasing, and non-
simultaneous sampling and output. Such effects are only partly
emanable to limited analysis. Very few publications addressing

with variable step-size integration.

(c) The discrete system introduces discontinuities due to stair-
case functions. Discontinuities force multi-step integration
into restart and since this occurs many times, such integration
methods may become inefficient. Fortunately, the time
instants at which discontinuities occur are known (as long
as there are no sources other than the staircase function
output), so if (b) is satisfied there is no need to perform the
discontinuity-finding operations (Hay, 1984, 1985) familiar
from problems where discontinuity occurrence is state depen-
dent.

(d) Integration of slow subsystems with larger step size (so-
called multi-rate simulation (Gear, 1984) may seem to
provide a solution to the small step size problem. It requires
interpolation in order to provide the samples for the control-
ler, and decimation at fast-to-slow system interfaces which
should prevent aliasing effects. Fidelity for instance with
respect to limit cycles due to quantization must be ques-
tioned. In fact this field seems to be largely unexplored.

The points given are partly addressed by some known
simulation packages (for a survey of simulation software see
Cellier, 1983), such as MATRIX, (Shah ez al., 1985); SIMNON
(Astrdm and Wittenmark, 1984). There are also commercial
packages to be mentioned such as ACSL by Mitchell and
Gauthier Inc. and CSSL-IV by Simulation Services. For (a) for
instance, there is a so-called DISCRETE section in ACSL which
combines with the DERIVATIVE section for the continuous
system, and (b) is satisfied t ling and output i
are placed in an event list supervized by the integration control
mechanism, which steers integration step boundaries to coincide
with any event. Point (b) can also be satisfied by choosmg
appropriate integration routines.

The points discussed so far have to do with the event nature
of sampling and output and apply to discrete control. They are
also partly considered by Stirling (1983) and Zimmerman (1983).
Digital control additionally requires simulating AD- and DA-
converters, quantizers in general, and possibly overflow behav-
iour, along with an interactive overflow detection mechanism.
Quantizers and limiters are usually available in the package
libraries, but not high-level constructs, although it seems possible
to build them up from primitives.

A special purpose package where the user no longer deals
with quantizers and limiters, but “talks” to the program in
higher-level terms such as ADC-wordlength, two’s complement
arithmetics, 32-bit accumulation, and the like (Hanselmann et
al., 1983) proved to be very useful. Simulation on the basis of
sufficiently detailed and realistic models abstracted from the
actual processor and its software should always be available. In
contrast to the processor simulators sometimes supplied by
processor vendors, mapping all registers, flags etc,, and instruc-
tions of a specific device, the use of abstract models yields
processor independency. It also allows experiments (with arith-
metic for example) which help determine what processor should
be used, regardless of availability of the processor or its
simulator. This will become particularly important for custom
control processor design.

9. Concl

the problems of digital simulation of digital control sy
have appeared up to now, although there are indeed several
problems, as discussed briefly below. They fall mainly into two
groups: efficient simulation/integration methods, and modelling.

If the plant is linear (rare case), a simulation based on
transition matrix techniques could be augmented by the model-
ling of delays (computational, sampling, and output) and quanti-
zers, including overflow simulation if y. The usual case,
however, will be with additional non-linearities in the continuous
part of the control system, so that general integration methods
for differential equations must be used. This results in certain
peculiarities:

(a) Integration is on the continuous system state only, but the
state derivatives depend on the discrete system’s outputs,
which are held constant between update time instants.

(b) For the sake of accuracy, the integration step boundaries
should be made coincident with the controller’s sampling
and output time instants. This may dictate a small step size

Controller implementation is a topic involving many disci-
plines at the same time, from processor technology and elec-
tronics through system theory aspects up to software engineer-
ing. Even in the rather restricted case of mostly linear control
there may be many problems when the idealizations of common
theory of algorithms and design methods no longer hold.

Some of the issues arising were already considered in the
old direct digital control days in the sixties. Stimulated by
microprocessor technology, these issues are once more arousing
interest. Some of the problems encountered still require further
work, and more experience should be gained to know which of
the methods prove to be practical.

Much could be gained by integration of all implementation
related tools into CACE software (and also hardware to some
extent) environments. All the steps necessary in the implemen-
tation process should be integrated into the CACE environment
and should be supported as much as possible by software tools
(Hanselmann and Loges, 1984; Hanselmann, 1986). Possibilities

165

166

Survey Paper

range from the minimum of having consistent controller data
structures throughout the process up to the coding stage, to the
maximum of fully ic structure selection, scaling, and
final code generation for the target processor, accommodating
complex controllers, composed of several subsystems, possibly
of the multi-rate type.

The advantages of extending CACE to control implemen-
tation are now well recognized by control engineers. This is
reflected in recent discussions of CACSD/CACE scopes given
by Spang (1985), Sutherland and Sonin (1985) and Powers
(1985). Designing such software is certainly not a trivial task
because of the many disciplines involved, the fast pace of
processor technology, and increasing control system complexity.

Acknowledgements— This work is much related to the work of
the control systems group at the author’s institution, which is
headed by Prof. J. Liickel. The author is indebted to his
coll for fruitful di ions, particularly to W. Loges and
A. Schwarte for help with hardware and software. Thanks also
to Prof. K.-J. Astrém for support and advice in preparation of
the paper, and to the anonymous reviewers for their constructive
remarks.

References

Agarwal, R. C. and C. S. Burrus (1975). New recursive digital
filter structures having very low sensitivity and roundoff noise.
IEEE Trans. Ccts. Syst., CAS-22, 921.

Ahmed, M. E. and P. R. Belanger (1984a). Scaling and roundoff
in fixed-point implementation of control algorithms. IEEE
Trans. Ind. Electron., 1E-31, 228.

Ahmed, M. E. and P. R. Belanger (1984b). Limit cycles in fixed-
point implementation of control algorithms. IEEE Trans. Ind.
Electron., IE-31, 235.

Ahmed, N. and T. Natarjan (1983). Discrete-time Signals and
Systems. Reston, Virginia.

Antoniou, A., C. Charalambous and Z. Motamedi (1983). Two
methods for the reduction of quantization effects in recursive
digital filters. IEEE Trans. Ccts. Syst., CAS-30, 160.

Astrom, K. J. (1983). Theory and applications of adaptive
control—a survey. Automatica, 19, 471.

Astrom, K. J., P. Hagander and J. Sternby (1984). Zeros of
sampled systems. Automatica, 20, 31.

Astrom, K. J. and B. Wittenmark (1984). Computer Controlled
Systems. Prentice-Hall, Englewood Cliffs, New Jersey.

Avenhaus, E. (1972). On the design of digital filters with
coefficients of limited word length. IEEE Trans. Audio Elec-
troacoust., AU-20, 206.

Barnes, C., B. N. Tran and S. H. Leung (1985). On the statistics
of fixed-point roundoff error. IEEE Trans. Acoust. Speech Sig.
Process., ASSP-33, 595.

Barnes, C. W. (1979). Roundoff noise and overflow in normal
digital filters. IEEE Trans. Ccts Syst., CAS-26, 154.

Barnes, C. W. (1984). On the design of optimal state-space
realizations of second-order digital filters. IEEE Trans. Ccts
Syst., CAS-31, 602.

Barnes, C. W. and A. T. Fam (1977). Minimum norm recursive
digital filters that are free of overflow limit cycles. I[EEE Trans.
Ccts Syst., CAS-24, 569.

Beliczynski, B. and W. Kozinski (1984). A reduced-delay sam-
pled-data hold. IEEE Trans. Aut. Control, AC-29, 179.

Bertram, J. E. (1958). The effect of quantization in sampled-
feedback systems. Trans. Am. Inst. Elec. Eng., 77-2, 177.

Blasco, R. W. (1983). Floating-point digital signal processing
using a fixed-point processor, presented at Southcon; also in
Signal Processing Products and Technology, Texas Instruments.

Boite, R. (1983). On the quantization of low-level signals: the
fixed-point case. Proc. Eur. Conf. Cct Theory and Design,
Stuttgart.

Bomar, B. W. (1985). New second-order state-space structures
for realizing low roundoff noise digital filters. IEEE Trans.
Acoust. Speech Sig. Process., ASSP-33, 106.

Bondarko, V. A. (1984). Discretization of continuous linear
dynamic systems. Analysis of the methods. Syst. Control Lett.,
5,97. .

Booth, A. D. (1951). A signed binary multiplication technique.
Q. J. Mech. Appl. Math., 4, 236. Also in Swartzlander, E. E.

(Ed.) (1980), Computer Arithmetic. Dowden, Hutchinson &
Ross, Stroudsburg, Pennsylvania.

Bose, N. K. (1983). Properties of the Qn-matrix in Bilinear
transformation. Proc. IEEE, 71, 1110.

Breitzman, R. C. (1985). Development of a custom micropro-
cessor for automotive control. IEEE Control Syst. Mag., 23
May.

Broussard, J. R, D. R. Downing and W. H. Bryant (1985).
Design and flight testing of a digital optimal control general
aviation autopilot. Automatica, 21, 23.

Biittner, M. (1977). Elimination of limit cycles in digital filters
with very low increase in the quantization noise. IEEE Trans.
Ccts Syst., CAS-24, 300. .

Callahan, A. C. (1976). Random rounding: some principles
and applications. Proc. IEEE Int. Conf. Acoust. Speech Sig.
Process., Philadelphia.

Cappellini, V., A. G. Constantinides and P. Emiliani (1978).
Digital Filters and their Applications. Academic Press, London.

Cappello, P. R. (Ed.) (1984)..VLSI Signal Processing. IEEE Press,
New York.

Cellier, F. E. (1983). Simulation software: today and tomorrow.
In Burger, J. and Y. Jarny (Eds), Simulation in Engineering
Sciences. Elsevier Science, Amsterdam.

Chan, D. S. K. (1978). Theory and implementation of multidimen-
sional discrete systems for signal processing. Ph.D. Dissertation,
Mass. Inst. Technology.

Chong, Y. M. (1984). Data flow chip optimizes image processing.
Computer Design, 15 Oct., 97.

Claasen, T. A. C. M., W. F. G. Mecklenbriduker and J. B. H.
Peck (1975). Quantization noise analysis for fixed point digital
filters using magnitude truncation for quantization. IEEE
Trans. Ccts Syst., CAS-22, 887.

Clarke, D. W. (1982). A simple control language for microproces-
sors and its applications. Proc. IFAC Congr. Theory Applic.
Dig. Control, New Delhi.

Cole, B. C. (1985). Signal processing: a big switch to digital.
Electronics, 26 Aug., 42.

Crochiere, R. E. (1975). A new statistical approach to the
coefficient wordlength problem for digital filters. I[EEE Trans.
Ccts Syst., CAS-22, 190.

Crochiere, R. E. and A. V. Oppenheim (1975). Analysis of digital
networks. Proc. IEEE, 63, 581.

Crowell, C. D. (1985). Floating-point arithmetic with the TMS
32020. Texas Instruments Application Report.

Curry, E. E. (1967). The analysis of round-off and truncation
errors in a hybrid control system. IEEE Trans. Aut. Control,
AC-12, 601.

Cushman, R. H. (1982). ICs and semiconductors. EDN, 16 July,
44.

Davies, E. (1985). Sample and hold—the key to fast A to D
conversion. Electronic Engng, Mar., 67.

Doyle, J. C. and G. Stein (1981). Multivariable feedback design:
concepts for classical/modern synthesis. IEEE Trans. Aut.
Control, AC-26, 4.

Eckhardt, B. (1975). On the roundoff error of a multiplier. Arch.
Elektrische Uebertragungstechnik, 29, 162.

Edgar, A. D. and S. C. Lee (1979). FOCUS microcomputer
number system. Comm. ACM, 22, 166.

Eldon, J. and G. E. Winter (1983). Floating-point chips carve
out FFT systems. Electron. Des., Aug,, 4.

Epstein, B. (1970). Linear Functional Analysis. Saunders, Phila-
delphia.

Essig, D., C. Erskine, E. Caudel and S. Magar (1986). A second-
generation digital signal processor. IEEE Trans. Ccts Syst.,
CAS-33, 196.

Etzel, M. H. (1983). Logarithmic addition for digital signal
processing applications. Proc. IEEE Int. Symp. Ccts Syst.,
New York.

Evanczuk, S. (1983). Real-time OS. Electronics, 24 Mar., 105.

Fadden, E. J. (1984). The System 10 Plus: a major advance in
scientific computing. Proc. Conf. Peripheral Array Processors,
Boston.

Fettweis, A. (1972). On the connection between multiplier word
length limitation and roundoff noise in digital filters. IEEE
Trans. Cct Theory, CT-19, 486.

Fettweis, A. (1973). Roundoff noise and attenuation sensitivity
in digital filters with fixed-point arithmetic. IEEE Trans. Cct

Survey Paper

Theory, CT-20, 174.

Fettweis, A. (1974). On properties of floating-point roundofl
noise. IEEE Trans. Acoust. Speech Sig. Process., ASSP-22,
149.

Fettweis, A. (1984). Digital circuits and systems. IEEE Trans.
Ccts Syst., CAS-31, 31.

Flaherty, T. J. (1985). Building blocks stack up to high perform-
ance. Comput. Des., Feb, 161.

Flores, 1. (1963). The Logic of Computer Arithmetic. Prentice-
Hall, Englewood Cliffs, New Jersey.

Forsythe, W. (1983). Algorithms for digital control. Trans. Inst.
Meas. Control, 5, 123.

Forsythe, W. (1985). A new method for the computation of
digital filter coefficients. Simulation, 44, 23; 44, 75.

Franklin, G. F. and J. D. Powell (1980). Digital Control of
Dynamic Systems. Addison-Wesley, Reading, Massachusetts.

Frey, M. L. and F. J. Taylor (1985). A table reduction technique
for logarithmically architected digital filters. IEEE Trans.
Acoust. Speech Sig. Process., ASSP-33, 718.

Fromme, G. and M. Haverland (1983). Selbsteinstellende Digi-
talregler im Zeitbereich. Regelungstechnik, 31, 338.

Gambe, H., T. Ikezawa, N. Kobayashi, S. Sumi, T. Tsuda and
S. Fujii (1983). A general purpose digital signal processor.
Proc. Eur. Conf. Cct Theory Des., Stuttgart. VDE-Verlag,
FR.G. .

Gazsi, L. and Giilliioglu (1983). Discrete optimization in CSD
code. Proc. IEEE MELECON, Athens.

Gear, C. W. (1984). The numerical solution of problems which
may have high frequency components. In Haug, E. J. (Ed.),
Computer Aided Analysis and Optimization of Mechanical
System Dynamics, Nato ASI Series, Vol. F9, Springer, Berlin.

Glesner, M., H. Joepen, J. Schuck and N. Wehn (1986). Silicon

" compilation from HDL and similar sources. In Hartenstein
(Ed.), Advances in CAD for VLSI, Vol. 7. North-Holland,
Amsterdam.

Gold, B. and C. M. Rader (1969). Digital Processing of Signals.
McGraw-Hill, New York.

Goodwin, G. C. (1985). Some observations on robust estimation
and control. Proc. 7th IFAC Symp. Ident. Syst. Param. Est.
York.

Gupta, A. and H. D. Toong (1983). Microprocessors—the first
twelve years. Proc. IEEE, 71, 1236.

Gupta, A. and H. D. Toong (1984). Microcomputers in industrial
control applications. IEEE Trans. Ind. Electron., IE-31, 2, 109.

Gupta, A. and H. D. Toong (1983). An architectural comparison
of 32-bit microprocessors. IEEE Micro, Feb., 9.

Haberland, B. L. and S. S. Rao (1973). Discrete-time models:
bilinear transform and ramp approximation cquivalence.
IEEE Trans. Audio Electroacoust., AU-21, 382.

Hagiwara, Y., Y. Kita, T. Miyamoto, Y. Toba, H. Hara and T.
Akazawa (1983). A single chip digital signal processor and its
application to real-time speech analysis. I[EEE Trans. Acoust.
Speech Sig. Process., ASSP-31, 339.

Hall, E. L., D. D. Lynch and S. J. Dwyer (1970). Generation of
products and quotients using approximate binary logarithms
for digital filtering applications. IEEE Trans. Comput., C-19,
97.

Halyo, N. and G. A. McAlpine (1971). A discrete model for
product quantization errors in digital filters. IEEE Trans.
Audio Electroacoust., AU-19, 255.

Hanselmann, H. (1982). Tischrechner programmiert Signalpro-
zessor als digitalen Mehrgrossenregler. Elektronik, 31, 21, 134.

Hanselmann, H. (1984). Diskretisierung kontinuierlicher Regler.
Regelungstechnik, 32, 326.

Hanselmann, H. (1986). Einsatz Digitaler Ein-Chip-Signalpro-
zessoren in der Mess- und Regelungstechnik. Bull. Schwei:

fast state-space controllers using digital signal processors.
Proc. 9th IFAC Wid Congr. Pergamon Press, New York.

Hartimo, I, K. Kronléf, O. Simula and J. Skyttd (1986). DFSP:
A data flow signal processor. IEEE Trans. Comput., C-35, 23.

Hay, J. L. (1984). ESL--advanced simulation language
implementation. Proc. 84 UKSC Conf., Bath. Butterworths,
London.

Hay, J. L. (1985). Applications of ESL. Proc. 11th IMACS Wld
Congr., Oslo.

Heider, G. (1982). Let operating systems aid in component
design. Comput. Des., Sept.

Henrichfreise, H. (1985). Fast elastic robots: control of an elastic
robot axis accounting for nonlinear drive properties. Proc.
11th IMACS Wld Congr., Oslo.

Herrmann, O. E. and J. Smit (1983). A user-friendly environment
to implement algorithms on single-chip digital signal pro-
cessors. Proc. EU-RASIP. Elsevier Science, Amsterdam.

Howe, R. M. (1982). Digital simulations of transfer functions.
Proc. Summer Simulat. Conf., La Jolla, California.

Hwang, K. (1979). Computer Arithmetic. Wiley, New York.

Hwang, S. Y. (1975a). Dynamic range constraint in state-space
digital filtering. IEEE Trans. Acoust. Speech Sig. Process.,
ASSP-23, 591.

Hwang, S. Y. (1975b). On monotonicity of L, and I, Norms.
IEEE Trans. Acoust. Speech Sig. Process., ASSP-23, 593.

Hwang, S. Y. (1977). Minimum uncorrelated unit noise in
state-space digital filtering. IEEE Trans. Acoust. Speech Sig.
Process., ASSP-25, 273.

Jacklin, S. A., J. A. Leyland and W. Warmbrodt (1985). High-
speed, automatic controller design considerations for integrat-
ing array processor, multi-microprocessor, and host computer
system architectures. Am Control Conf., Boston, 1223.

Jackson, L. B. (1970a). On the interaction of roundoff noise and
dynamic range in digital filters. Bell Syst. Tech. J., 49, 159.

Jackson, L. B. (1970b). Roundofi-noise analysis for fixed-point
digital filters realized in cascade or parallel form. I EEE Trans.
Audio Electroacoust., AU-18, 107.

Jackson, L. B. (1976). Roundoff noise bounds derived from
coeflicient sensitivities for digital filters. IEEE Trans. Ccts
Syst., CAS-23, 481.

Jackson, L. B. (1979). Limit Cycles in State-Space Structures for
Digital Filters. I[EEE Trans. Ccts Syst., CAS-26, 67.

Jackson, L. B, A. G. Lindgren and Y. Kim (1979). Optimal
Synthesis of Second-Order State-Space Structures for Digital
Filters. IEEE Trans. Ccts Syst., CAS-26, 149.

Jacquot, R. G. (1981). Modern Digital Control Systems. Marcel
Dekker, New York.

Jaeger, R. C. (1982). Analog data acquisition technology. IEEE
Micro. Aug., 46.)
Jain, R, J. Vandewalle and H. J. de Man (1985). Efficient and
accurate multiparameter analysis of linear digital filters using
a multivariable feedback representation. IEEE Trans. Ccts

Syst., CAS-32, 225.

Jaswa, V. C, C. E. Thomas and J. T. Pedicone (1985). CPAC—
concurrent processor architecture for control. IEEE Trans.
Comput., C-34, 163.

Johnson, G. W. (1965). Upper bound on dynamic quantization
error in digital control systems via the direct method of
Liapunov. IEEE Trans. Aut. Control, AC-10, 439.

Johnson, G. W.(1966). Author’s reply. I EEE Trans. Aut. Control,
AC-11, 333.

Jover, J. M. and T. Kailath (1986). A parallel architecture for
Kalman filter measurement update and parameter estimation.
Automatica, 22, 43.

Kaiser, J. F. (1966). Digital Filters, System Analysis by Digital

Elektrotechnischer Verein (to appear).

Hanselmann, H., R. Kasper and M. Lewe (1983). Simulation of
fast digital control systems. Proc. 1st Eur. Simulation Cong.,
Aachen, Informatik-Fachbericht 71. Springer, Berlin.

Hanselmann, H. and A. Schwarte (1985). Guide to the TMS
320 controller code generator, version 1.1. University of
Paderborn, Dept. Aut. Control in Mech. Eng.

Hanselmann, H. and W. Loges (1983). Realisierung schneller
digitaler Regler hoher Ordnung mit Signalprozessoren. Rege-
lungstechnik, 31, 330.

Hanselmann, H. and W. Loges (1984). Implementation of very

. Wiley, New York.

Kallstrom, C. (1973). Computing exp (A) and integral exp (As)ds.
Report 7309, Lund Inst. Technol., Div. Aut. Control.

Kanade, T. and D. Schmitz (1985). Development of CMU direct-
drive arm II. Proc. 1985 Am. Control Conf. Boston, p. 703.

Kaneko, T. and B. Liu (1973). On local roundoff errors in
floating-point arithmetic. JI| ACM, 20, 391.

Katz, P. (1981). Digital Control using Microprocessors. Prentice-
Hall, Englewood Cliffs, New Jersey.

Katzenelson, J. (1962). On errors introduced by combined
sampling and quantization. IRE Trans. Aut. Control, AC-72,
58.

167

168

Survcy Paper

Kawamata, M. and T. Higuchi (1985). A unified approach to
the optimal synthesis of fixed-point state-space digital filters.
IEEE Trans. Acoust. Speech Sig. Process., ASSP-33, 911.

Kerckhoffs, E. J. H., B. Dobbelaere and G. C. Vansteenkiste
(1985). Some nonconventional digital computers in simul-
ation. Proc. 11th IMACS Wld Congr., Oslo.

Kingsbury, N. G. and P. J. W. Rayner (1971). Digital filtering
using logarithmic arithmetic. Electron. Lett., 7, 56. Also in
Swartzlander (1980).

Kleinman, D. L. and P. K. Rao (1977). Continuous-discrete
gain transformation methods for linear feedback control.
Automatica, 13, 425.

Knowles, J. B. and E. M. Olcayto (1968). Coefficient accuracy
and digital filter response. IEEE Trans. Cct Theory, CT-15,
31.

Knowles, J. B. and R. Edwards (1965a). Effect of a finite-word-
length comp in a pled-data feedback system. Proc.
IEE, 112, 1197.

Knowles, J. B. and R. Edwards (1965b). Finite word-length
effects in multirate direct digital control systems. Proc. IEE,
112, 2376.

Knowles, J. B. and R. Edwards (1966). Computational error
effects in a direct digital control system. Automatica, 4, 7.
Kung, S. Y. (1984). On supercomputing ' ith systolic/wavefront

array processors. Proc. IEEE, 72, 867.

Kuo, B. C. (1980). Digital Control Systems. Holt, Rinehart and
Winston, Tokyo.

Kuo, B. C., G. Singh and R. Yackel (1973). Digital approximation
of continuous-data control systems by point-by-point state
comparison. Comput. Elect. Engng, 1, 155.

Kuo, B. C. and D. W. Peterson (1973). Optimal discretization

- of continuous-data control system. Automatica, 9, 125.

Kwakernaak, H. and R. Sivan (1972). Linear Optimal Control
systems. Wiley, New York.

Lack, G. N. T. (1966). Comments on “Upper bound on dynamic
quantization error in digital control systems via the direct
method of Liapunov”. IEEE Trans. Aut. Control, AC-11, 331.

Lang, J. H. (1984). On the design of a special-purpose digital
control processor. I[EEE Trans. Aut. Control, AC-29, 195.

Lee, 8. C. and A. D. Edgar (1977). The focus number system.
1EEE Trans. Comput., C-26, 1167.

Leonhard, W. (1986). Microcomputer control of high dynamic
performance ac-drives—a survey. Automatica, 22, 1.

Liu, B. and T. Kaneko (1969). Error analysis of digital filters
realized with floating-point arithmetic. Proc. IEEE, 57, 1735.

Loges, W. (1983). Regelsysteme hoéherer Ordnung mit dem
Signalprozessor TMS 320. Elektronik, 32, 25, 53.

Loges, W. (1984). Codegenerator erstellt Reglerprogramm fiir
den TMS 320. Elektronik, 33, 22, 154.

Loges, W. (1985). Realisierung schneller digitaler Regler hoher
Ordnung mit Signalprozessoren. Doctoral dissertation, Univer-
sity of Paderborn, Dept. Aut. Control in Mech. Eng,; also
VDI Verlag, Diisseldorf.

Long, J. L. and T. N. Trick (1973). An absolute bound on limit
cycles due to roundoff errors in digital filters. IEEE Trans.
Audio Electroacoust., AU-21, 27.

MacSorley, O. L. (1961). High-speed arithmetic in binary com-
puters. IRE Proc., 49, 67. Also in Swartzlander, E. E. (Ed.)
(1980), Computer Arithmetic. Dowden, Hutchinson & Ross,
Stroudsberg, Pennsylvania.

Magar, S., E. Caudel, D. Essig and C. Erskine (1985). Digital
signal processor borrows from uP to step up performance.
Electron Des., 21 Feb., 175.

Magar, S, S. J. Robertson and W. Gass (1985). Interface
arrangement suits digital processor to multiprocessing. Elec-
tron. Des., 7 March, 189.

Marrin, K. (1986). Six DSP processors tackle high-end signal-
processing applications. Comput. Des., 1 March, 21.

Marrin, K. E. (1985). VLSI and software move DSP techniques
into mainstream. Comput. Des., 15 Sept., 69.

McDonough, K., E. Caudel, S. Magar and A. Leigh (1982).
Microcomputer with 32-bit arithmetic does high-precision
number crunching. Electronics, Feb., 105.

Meisinger, R. and B. Lange (1976). Beriicksichtigung der Rech-
nertotzeit beim Entwurf eines diskreten Regelungs- und
Beobachtungssystems. Regelungstechnik, 24, 232.

Middleton, R. H. and G. C. Goodwin (1985). Improved finite

word length characteristics in digital control using delta
operators. Dept. Electr. Comp. Eng. Report, Univ. of Newcastle,
Australia.

Miller, D. F. (1985). Multivariable linear digital control via
tate-sp: output hing. Opt. Control Applic. Meth., 6,
13.

Mills, W. L., C. T. Mullis and R. A. Roberts (1978). Digital filter
realizations without overflow oscillations. Proc. IEEE Int.
Conf. Acoust. Speech Sig. Process., Tulsa, Oklahoma.

Mills, W. L., C. T. Mullis and R. A. Roberts (1981). Low roundoff
noise and normal realizations of fixed point IIR digital filters.
IEEE Trans. Acoust., Speech Sig. Process., ASSP-29, 893.

Mintzer, F., K. Davies, A. Peled and F. N. Ris (1983). The
real-time signal processor. IEEE Trans. Acoust. Speech Sig.
Process., ASSP-31, 83.

Mita, T. (1985). Optimal digital feedback control systems
counting computation time of control laws. IEEE Trans. Aut.
Control, AC-30, 542.

Mitchell, E. E. and R. Demoyer (1985). A versatile digital
controller algorithm incorporating a state observer and state
feedback. IEEE Trans. Ind. Electron., IE-32, 78.

Mitra, S. K., K. Hirano and H. Sakaguchi (1974). A simple
method of computing the input quantization and multipli-
cation roundoff errors in a digital filter. IEEE Trans. Acoust.
Speech Sig. Process., ASSP-22, 326.

Moroney, P. (1983). Issues in the Implementation of Digital
Feedback Compensators. MIT Press, Cambridge, Massachu-
setts.

Moroney, P., A. S. Willsky and P. K. Houpt (1980). The digital
implementation of control compensators: the coefficient word-
length issue. IEEE Trans. Aut. Control, AC-25, 621.

Moroney, P., A. S. Willsky and P. K. Houpt (1981). Architectural
issues in the implementation of digital compensators. Proc.
8th IFAC Wld Congr., Kyoto.

Moroney, P., A. S. Willsky and P. K. Houpt (1983). Roundoff
noise and scaling in the digital implementation of control
compensators. [EEE Trans. Acoust. Speech Sig. Process.,
ASSP-31, 1464.

Mullis, C. T. and R. A. Roberts (1976). Synthesis of minimum
roundoff noise fixed point digital filters. IEEE Trans. Ccts
Syst., CAS-23, 551.

Mullis, C. T. and R. A. Roberts (1982). An interpretation of
error spectrum shaping in digital filters. IEEE Trans. Acoust.
Speech Sig. Process., ASSP-30, 1013."

Mullis, C. T. and R. A. Roberts (1984). Digital processing
structures for VLSI implementation. In Cappello, P. R. (Ed.),
VLSI Signal Processing. IEEE Press, New York.

Nagle, H. T. and V. P. Nelson (1981). Digital filter implemen-
tation on 16-bit microcomputers. IEEE Micro, 23 Feb.

Neuman, C. P. and C. S. Baradello (1979). Digital transfer
functions for microcomputer control. IEEE Trans. Syst. Man
Cybern., SMC-9, 856.

Nishimura, S., K. Hirano and R. N. Pal (1981). A new class of
very low sensitivity and low roundoff noise recursive digital
filter structures. IEEE Trans. Ccts. Syst., CAS-28, 1152.

Nishitani, T., R. Maruta, Y. Kawakami and H. Goto (1981). A
single-chip digital signal processor for telecommunication
applications. IEEE JI Solid State Ccts, SC-16, 372.

Orlandi, G and G. Martinelli (1984). Low-sensitivity recursive
digital filters obtained via the delay replacement. IEEE Trans.
Ccts. Syst., CAS-31, 654.

Oppenheim, A. V. and A. S. Willsky (1983). Signals and Systems.
Prentice-Hall, Englewood Cliffs, New Jersey.

Oppenheim, A. V. and R. W. Schafer (1975). Digital Signal
Processing. Prentice-Hall, Englewood Cliffs, New Jersey.

Patney, R. K. and S. C. Dutta Roy (1980). A different look at
roundoff noise in digital filters. IEEE Trans. Ccts Syst., CAS-
27, 59.

Pei, S. C. (1985). Comments on “Properties of the Qn-matrix in
bilinear transformation”. Proc. IEEE, 73, 841.

Pei, S. C. and K. C. Ho (1984). Comments on “Adaptive digital
control implemented using residue number systems”. IEEE
Trans. Aut. Control, AC-29, 863.

Peled, A. and B. Liu (1976). Digital Signal Processing. Wiley,
New York.

Peled, U. and J. D. Powell (1978). The effect of prefilter design
on sample rate selection in digital flight control systems. Proc.

Survey Paper

AIAA Guid. Control Conf., Palo Alto, California.

Phillips, C. L. (1980). Using simulation to calculate floating-
point quantization errors. Simulation, June, 207.

Phillips, C. L. and H. T. Nagle (1984). Digital Control Systems
Analysis and Design. Prentice-Hall, Englewood-Cliffs, New
Jersey.

Pickvance, R. (1985). A single chip digital signal processor.
Electron. Engng, Feb., 53; March, 55; Apr., 87.

Pope, S., J. Rabaey and R. W. Brodersen (1984). Automated
design of signal processors using macrocells. In Cappello, P.
R. (Ed.), VLSI Signal Processing. IEEE Press, New York.

P in, D. (1985). Multitasking FORTH. Byte, March, 363.

Powers, W. F. (1985). Computer tools for modern control
systems design. I[EEE Control Syst. Mag., Feb., 14.

Quarmby, D. J. (1984). Signal Processor Chips. Granada, Lon-
don.

Quong, D. and R. Perlman (1984). Single-chip accelerators speed
floating-point and binary computations. Electron. Des., 15
Nov., 246.

Rabaey, J., S. Pope and R. W. Brodersen (1987). An integrated
automated layout generation system for DSP circuits. J.
Comput. Aided Des. (to appear).

Rattan, K. S. (1981). Digital redesign of existing multiloop
continuous control systems. Proc. Jt Aut. Control Conf.,
Charlottesville, Virginia.

Rattan, K. S. (1982). Digitalizing existing continuous-data con-
trol systems via “continous frequency matching”. Proc. IFAC
Symp. Theory Applic. Dig. Control, New Delhi.

Rattan, K. S. (1984). Digitalization of existing continuous control
systems. IEEE Trans. Aut. Control, AC-29, 282.

Rattan, K. S. and H. H. Yeh (1978). Discretizing continuous-
data control systems. Comput.-Aided Des., 10, 299.

Proc. IFAC Symp. Theory Applic. Dig. Control, New Delhi.

Shoreys, F. (1982). New approach to high-speed high-resolution
analogue-to-digital conversion. IEE Electron. Power, Feb.,
175.

Simmers, C. and D. Arnett (1985). Specialized I/O and high-
speed CPU yields efficient microcontroller for automotive
applications. IEEE Trans. Ind. Electron., 1E-32, 278.

Singh, G., B. C. Kuo and R. A. Yackel (1974). Digital approxi-
mation by point-by-point state matching with high-order
holds. Int. J. Control, 20, 81.

Sjoding, T. W. (1973). Noise variance for rounded two’s comp-
lement product quantization. IEEE Trans. Audio Electroac-
oust., AU-21, 378.

Skyttd, J., O. Hyvirinen, I. Hartimo and O. Simula (1983).
Experimental signal processing and development system.
Proc. Eur. Conf. Cct Theory Des., Stuttgart.

Slaughter, J. B. (1964). Quantization errors in digital control
systems. [EEE Trans. Aut. Control, AC-9, 70.

Slivinski, Ch. and J. Borninski (1985). Control system compen-
sation and implementation with the TMS32010. Texas Instru-
ments Application Report.

Smith, J. M. (1977). Mathematical Modelling and Digital Simul-
ation for Engineers and Scientists. Wiley, New York.

Spang, H. A. (1985). Experience and future needs in computer-
aided control design. IEEE Control Syst. Mag., Feb., 18.

Sripad, A. B. and D. L. Snyder (1977). A necessary and sufficient
condition for quantization errors to be uniform and white.
IEEE Trans. Acoust., Speech Sig. Process., ASSP-25, 442.

Srodawa, R. J.,, R. E. Gach and A. Glicker (1985). Preliminary
experience with the automatic generation of production-
quality code for the Ford/Intel 8061 microprocessor. IEEE
Trans. Ind. Electron., IE-32, 318.

Ready, J. F. (1984). Operating systems conform to application
needs. Mini-Micro Systems, Dec., 137.

Rink, R. E. and H. Y. Chong (1979a). Performance of state
regulator systems with floating-point computation. /EEE
Trans. Aut. Control, AC-24, 411.

Rink, R. E. and H. Y. Chong (1979b). Covariance equation for
a floating-point regulator system. IEEE Trans. Aut. Control,
AC-24, 980.

Rojek, P. and W. Wetzel (1984). Mehrgrossenregelung mit
Signalprozessoren. Elektronik, 33, 16; 109.

Rubinfield, L. P. (1975). A proof of the modified Booth’s
algorithm for multiplication. IEEE Trans. Comput., C-24,
1014.

Sandberg, I. W. (1967). Floating-point-roundoff accumulation
in digital-filter realizations. Bell Syst. Tech. J., 46, 1175.

Sandberg, I. W. and J. F. Kaiser (1972). A bound on limit cycles
in fixed-point implementations of digital filters. IEEE Trans.
Audio Electroacoust., AU-20, 110.

Sasahara, H., M. Kawamata and T. Higuchi (1984). Design of
microprocessor-based LQG control systems with minimum
quantization error. Proc. IECON 84, Tokyo.

Schafer, R., R. M. Mersereau and T. P. Barnwell (1984). Software
package brings filter design to PCs. Comput. Des., Nov., 119.

Scharf, L. L. and S. Sigurdsson (1984). Fixed point implemen-
tation of fast Kalman predictors. IEEE Trans. Aut. Control,
AC-29, 850.

Schittke, H. J. and R. Dettinger (1975). Simulation von linearen
zeitinvarianten Systemen bei stiickweise linearem Verlauf des
Steuervektors. Regelungstechnik, 23, 422; 24, 27.

Schmidt, L. A. (1978). Designing programmable digital filters
for LSI implementation. Hewlett-Packard J., 29, 13, 15.

Schumacher, W. and W. Leonhard (1983). Transistor-Fed AC-
servo drive with microprocessor control. Proc. Int. Power
Electron. Conf., Tokyo.

Shah, S. C, M. A. Floyd and L. L. Lehman (1985). MATRIX:
control design and model building CAE capability. In Jamsh-
idi, M. and C. J. Herget (Eds), Advances in Computer-Aided
Control Systems Engineering. North-Holland, Amsterdam.

Shaw, R. F. (1950). Arithmetic operations in a binary computer.
Rev. Sci. Instrum., 21, 687. Also in Swartzlander, E. E. (Ed.)
(1980), Computer Arithmetic. Dowden, Hutchinson & Ross,
Stroudsberg, Pennsylvania.

Shieh, L. S., Y. F. Chang and R. E. Yates (1982). Model
simplification and digital design of multivariable sampled-
data control sy via a domij dat: hing method.

Steinlect , S., E. Auer and E. Lueder (1983). A fast digital
signal processor without multipliers. Proc. Conf. Cct Theory
ECCTD, Stuttgart.

Stirling, R. (1983). Simulation of a digital aircraft flight control
system. Simulation, May, 171.

Strejc, V. (1981). State Space Theory of Discrete Linear Control.
Wiley, New York.

Sutherland, H. A. and K. L. Sonin (1985). Control engineers
workbench—a methodology for microcomputer implemen-
tation of controls. IEEE Control Syst. Mag., Feb., 22.

Swartzlander, E. E. (Ed.) (1980). Computer Arithmetic. Dowden,
Hutchinson & Ross, Stroudsburg, Pennsylvania.

Swartzlander, E. E. and A. G. Alexopoulos (1975). The sign/loga-
rithm number system. I EEE Trans. Comput., C-24, 1238. Also
in Swartzlander, E. E. (Ed) (1980), Computer Arithmetic.
Dowden, Hutchi & Ross, Str g, Pennsylvania.

Tabak, D. and G. J. Lipovski (1980). MOVE architecture in
digital controllers. IEEE Trans. Comput., C-29, 180.

Taetow, W. (1984). CMOS Bausteine fiir mikroprogrammierbare
Signalprozesoren. Elektronik, 33, 22, 136, 23, 138.

Tan, C. and B. C. Mclnnis (1982). Adaptive digital control
implemented using residue number systems. EEE Trans. Aut.
Control, AC-27, 449, 499.

Taylor, R. (1984). Signal processing with occam and the trans-
puter. IEE Proc., 131, 610.

Toong, H. D. and A. Gupta (1982). Evaluation kernels for
microprocessor performance analyses. Perform. Evaluat., 2, 1.

Vaidyanathan, P. P. (1985). On error-spectrum shaping in state-
space digital filters. IEEE Trans. Ccts Syst., CAS-32, 88.

Van Wingerden, A. J. M. and W. L. de Koning (1984). The
influence of finite word length on digital optimal control.
1EEE Trans. Aut. Control, AC-29, 385.

Wallich, P. (1985). Toward simpler, faster computers. IEEE
Spectrum, Aug., 38.

Walrath, C. D. (1984). Adaptive bearing friction compensation
based on recent knowledge of dynamic friction. Autmatica,
20, 717.

Waser, Sh. and M. J. Flynn (1982). Introduction to Arithmetic
for Digital Systems Designers. CBS College Publishing, New
York.

Weinstein, C. and A. V. Oppenheim (1969). A comparison of
roundoff noise in floating point and fixed point digital filter
realizations. Proc. IEEE, 57, 1181.

Widrow, B. (1956). A study of rough amplitude quantization by
means of Nyquist sampling theory. IRE Trans. Cct Theory,

169

170

Survey Paper

PGCT-3, 266.

Widrow, B. (1961). Statistical analysis of amplitude-quantized
sampled-data systems. Trans. AIEE, 79, 555.

Widrow, B. and E. Walach (1983). Adaptive signal processing
for adaptive control. Proc. IFAC Workshop Adapt. Syst.
Control Sig. Process., San Francisco.

Williamson, D. (1985). Finite wordlength design of digital
Kalman filters for state estimation. IEEE Trans. Aut. Control,
AC-30, 930.

Willsky, A. S. (1979). Digital Signal Processing and Control and
Estimation Theory. MIT Press, Cambridge, Massachusetts.

Windsor, W. A. (1985). IEEE floating point chips implement
DSP architectures. Comput. Des., Jan., 165.

Wittenmark, B. (1985). Sampling of a system with a time delay.
I1EEE Trans. Aut. Control, AC-30, 507.

Yackel, R. A,, B. C. Kuo and G. Singh (1974). Digital redesign
‘of continuous systems by matching of states at multiple

ling periods. A4 ica, 10, 105.

Yekutiel, O. (1980). A reduced-delay sampled-data hold. IEEE
Trans. Auto. Control, AC-25, 847.

Zimmerman, B. G. (1983). MODEL S, a sampled-data simul-
ation language. Simulation, May, 183.

The Programming Language DSPL

a problem oriented approach for
digital signal processing using DSP

Albert Schwarte and Herbert Hanselmann

dSPACE digital signal processing and control engineering GmbH
Paderbom, West Germany

Abstract

Digital signal processors (DSP) are increasingly used in many application fields like motion
control systems and power conversion systems due to their impressive computational perfor-
mance. However, appropriate tools for programming such ‘devices are still lacking. Therefore
DSPs are mainly programmed using assembly language. The high level language DSPL
introduced here has been developed with the typical application fields in mind. Characteristic
elements of DSPs have also been regarded. This results in compilers capable of generating
extremely efficient code. Furthermore DSPL’s automatic scaling features simplify program-
ming of applications for DSP with fixed-point arithmetic.

Introduction

For a few years now digital signal processors
have been available as very powerful devices for
computational intensive applications possibly
demanding real-time performance. DSPs have
been developed primarily for signal processing
applications like filtering, speech analysis, data
communication and the like. Comparing the
mathematical algorithms used in these fields with
the algorithms used in modem multi-variable
control theory shows however, that both appli-
cation fields have to deal with many common
problems. Thus DSPs are increasingly used for
the implementation of complex control systems
and other industrial applications like. motion
control systems, power conversion systems and
hardware-in-the-loop simulation systems.

DSPs are a very special class of microprocessors.
They typically contain hardware optimized to
carry out multiplications and accumulations.
Most DSPs are able to perform a multiplication
within a single machine cycle and perform the
accumulations of products in parallel. This leads
to extremely high throughput for the computation
of scalar products, a central element of signal

Reprinted, with permission, from PCIM, June 25 — 28, 1990.

processing algorithms. Another feature that dis-
tinguishes DSPs from conventional microproces-
sors is the Harvard-architecture used by many
such devices. They usually have several separate
memory blocks connected to the CPU core with
multiple data and address busses. These data
paths can be used in parallel so that several
operands can be transferred at the same time.

Utilizing such specific DSP elements is nearly
impossible with conventional high level program-
ming languages like C or Pascal, because such
languages have no appropriate constructs which
allow a compiler writer to make use of these
elements. Another problem not addressed by
these languages is the lack of an appropriate data
type for DSPs using fixed-point arithmetic.
Fixed-point arithmetic is however still used by
most DSPs, and especially the low-cost ones
embedded in products manufactured in large
quantities.

Special features of DSPL

Nevertheless most of the few high level language
compilers available represent a more or less
comprehensive subset of the C programming

171

language. The Digital Signal Processing Lan-
guage (DSPL) introduced here follows a more
problem oriented approach. It has been developed
with the intention to be particularly useful for the
special application fields of digital signal pro-
cessing using DSPs for the implementation.
Especially for fixed-point DSPs DSPL provides
extensive support by defining an appropriate data
type and automatic scaling features.

DSPL data formats

Standard DSPs like the first and second genera-
tion TMS 320 series use a 16 bit fixed-point data
format. Using this format for the conventional
integer arithmetic leads to a quantization of 8 bit
for data and coefficients in order to avoid over-
flows when computing a product. Accumulation
of products as required for a scalar product
requires additional scaling, so that the worst case
sum of the partial products does not overflow the
integer value range. Using only 8 bits for the
representation of data and coefficients however
results in a very small number range with low
resolution. This is not acceptable for most indus-
trial applications. As the same problem arises for
conventional microprocessors system designers
have developed algorithms to perform float-
ing-point arithmetic with fixed-point processors.
With the aid of floating-point arithmetic an
arbitrary number range with arbitrary resolution
can be realized according to the number format
selected, but at the cost of largely increased
execution time. This is also possible for DSPs, of
course, but using such a floating-point software
package decreases the DSP’s performance so far
that conventional microprocessors combined with
hardware floating-point coprocessors seem more
attractive, at least for applications where the price
of the processors is not a primary issue.

DSPL follows a third way which can provide a
good compromise for most applications. It cou-
ples the speed of integer arithmetic with a
resolution of 16 bit for the above mentioned
processors. To achieve this DSPL provides the
fractional data format. Data are interpreted as
two’s complement numbers having the binary
point directly right to the sign bit (MSB) which

172

leads to a value range of -1.0 .. 0.99996.. .

[on[5% [oof 0] o]

Obviously the multiplication of fractional num-
bers can never overflow the fractional value
range and can be implemented easily as most
DSPs provide an accumulation register at least
twice as long as the data format used, e.g. 32 bit
for the TMS 320 series. The fractional format
allows to use all 16 bit for the representation of
data which results in a quantization good enough
for most applications. Only when accumulating
fractional numbers the result can overflow the
value range. On the one hand this can be avoided
by properly scaling data during preparation of the
implementation, and on the other hand by using
DSPL’s automatic scaling features for the com-
putation of scalar products. As the fractional data
format is just another interpretation of the binary
data fractional arithmetic except division can be
implemented on the machine instruction level
which results in the same execution speed as
integer arithmetic. Fractional numbers are the
main vehicle for carrying out computations in
DSPL. They are supported by the compilers not
only for the computation of scalar products but
also for any other basic arithmetic expression
including division.

Besides the fractional format a conventional
integer data type and boolecan data are also
supported. In addition to the basic operations
DSPL allows bitwise handling of integer vari-
ables with logical operators. This is especially
useful for manipulating hardware devices on the
bit level, particularly because variables can be
allocated at arbitrary physical addresses. Boolean
variables can be used in arbitrary expressions as
well. They are mainly useful for controlling
program flow in conjunction with if-statements.

Scalar product computation

Many digital signal processing algorithms consist
mainly of the computation of scalar products.
FIR filters and difference equations of controllers
or IIR filters provide good examples.

r=cdy+cdy+ ... +¢,d,

Implementing scalar products on processors with
fixed-point arithmetic is a cumbersome and error-
prone task due to the scaling requirements. DSPL
supports the implementation of scalar products
by providing the necessary constructs on the
language level including automatic scaling for
products of a coefficient vector and a variable
vector. Scalar product scaling guarantees that

- overflows can be detected and handled appro-
priately by saturation conditions simulated in
software

- coefficients outside the fractional value range
can be realized

- coefficient scaling can be performed automati-
cally by the compiler.

Scaling of all ¢; is performed completely at
compile time. Only the necessary rescaling oper-
ations for the final result (r) need to be done at
runtime. Rescaling is implemented by optimized
code constructs depending on the actual data.
Within scalar products even coefficients outside
the fractional number range can be realized with
special code constructs. If scalar product scaling
is performed automatically by the DSPL compil-
er a worst case scaling is performed. Maximum
scaling values can optionally be specified by the
user in case they are already known from simula-
tion or measurements, for example. Scalar prod-
uct scaling can also be completely disabled. The
code necessary for rescaling can automatically
include instructions to test for overflows of the
scalar product result. Saturation conditions can
then be simulated by software upon request. A
special form of the scalar product statement
allows the implementation of a FIR filter with a
single DSPL statement. In this case the update of
the variable vector is performed in parallel to the
computation of the filter taps.

High level language compilers usually rely on
library routines for the computations of scalar
products, which simply execute a loop for all
elements of the vectors involved to compute the

sum of the partial products. However, this kind of
computation is very inefficient, particularly for
control algorithms where often sparse coefficient
matrices have to be multiplied by variable vec-
tors. This leads to the problem of loading the
processor with unnecessary code for multiplying
zeroes. Using appropriate transformations the
number of non-zero coefficients can be mini-
mized. DSPL does never use library routines but
generates the appropriate code in-line depending
on the actual data. The code is extremcly efficient
because every information the compiler needs for
code generation is already known at compile
time. Not a single instruction is wasted to per-
form address computations or adjust loop coun-
ters at runtime. Immediate instructions can often
be used to realize small coefficients which leads
to very economical use of data memory, a very
scarce resource on some DSPs.

Block moves of data

Many DSPs contain special hardware provisions
or at least efficient machine instructions to per-
form moving a block of data in memory. Block
moves are required by many signal processing
algorithms to implement the 2 operation or to
move the data samples through a filter. Such
special elements can only be utilized by a com-
piler if an appropriate language construct is
defined. DSPL provides the update-statement for
this purpose. It allows to copy a data vector to a
sccond one. Because the size of the vectors is
already known during compile time code can be
generated code without containing time consum-
ing instructions for address computations.

Realization of sampling systems

Digital signal processing systems oftcn require
the algorithm to be carried out with a defined
sampling period. DSPL provides an appropriate
statement which allows the specification of the
required sampling period. The compiler generates
appropriate code to realize the sampling clock
based on macros adaptable to the target hard-
ware. Usually a timer capable of generating
interrupts will be used for this purpose. In case a
hardware system contains several timers with

173

interrupt capabilities even multi-rate systems can

easily be implemented.

each element.
DSPL language constructs '
The following tables provide a summary of the

Declaration Purpose]

TYPE declaration of fractional data representation details

fractional, integer, boolean scalar data types, fractional data can also be declared as
vectors, constants and variables possible

SCPTYPE type declaration used for defining details of scalar product
computations like automatic scaling and saturation handling

SCALABLE attribute of a fractional constant, allows the constant to be
scaled by the compiler

ALTERABLE attribute of a fractional constant, allows a scalable constant
to be included in scalar product computation, such a
constant may be altered during runtime as required by
adaptive systems

AT address clause, allows to specify the physical address where
the declared object shall be allocated

INPUT / OUTPUT instructs the compiler to associate the declared variable as
with a physical input or output channel

EXTERNAL allows the declaration of formal procedure headers, external
procedures must be implemented in assembly language

INTERRUPT instructs the compiler to associate this name with an
interrupt source

RENAME declares an alias name for a component of a fractional
vector

Table 1 : Declarations provided by DSPL

Statement Purpose

BEGIN start of executable program body

ON ident DO surrounds the interrupt service routine for an

. identifier declared as an interrupt source, any
END INTERRUPT number of interrupt-statements are possible

174

declarations and statements available in DSPL.
Short comments will describe the meaning of

EVERY time DO

END EVERY

surrounds the block of statements to be execut-
ed with regular time intervals, the time speci-
fied represents the sampling period of sampled
data systems

ACCUMULATE SCALPRO (ident)

END ACCUMULATE

a complete scalar product with an arbitrary
number of partial products is accumulated, the
identifier references a scalar product type dec-
laration

ACCUMULATE PRESCALPRO (ident)

END ACCUMULATE

same as before except that the accumulation
register is pre-loaded with a full accumula-
tor-length value

ACCUMULATE SCALPRO (ident) AND UP-
DATE ident

END ACCUMULATE

special form of scalar product accumulation,
allows efficient computation of FIR filter

INPUT a scalar or a vector of input variables is read
from an I/O channel
OUTPUT a scalar or vector of output variables is written
to an I/O channel
UPDATE copies a variable vector to a second one
assignment the assignment statement allows the computa-
tion of arbitrarily complex arithmetic expres-
sions.
ABS */+- operators defined for fractional operands
= /= L L=D>=>
ABS NOT * /MOD + - operators defined for integer operands
= /= < L=>=>
AND OR XOR
NOT AND OR XOR operators defined for boolean operands
IF condition THEN the if-statement allows to control program flow,
ELSIF condition THEN any number of ELSIF parts are allowed, the
ELSE ELSIF and ELSE parts are optional
END IF
LOOP the loop-statement in conjunction with the
. exit-statement allows the implementation of
EXIT any kind of program loops
END LOOP
FOR ident IN mﬁge LOOP the for-statement allows the implementation of
. loops with a determined number of repetitions,
END LOOP up-counting and down-counting loops are pos-

sible

175

procedure call allows the call of external procedures defined in
the declarative section, actual parameters must
be specified according to the formal procedure

header declaration

in-line assembler assembly language statements may be inserted
anywhere, access to DSPL variables by name is

supported

Table 2 : Statements provided by DSPL

Hardware independence

A DSPL program is nearly independent from the
target hardware system. Each DSPL compiler can
support arbitrary hardware environments sur-
rounding a particular target DSP. This great
flexibility is possible because every DSPL pro-
gram is augmented by an environment descrip-
tion. This description instructs the compiler
which address ranges it may use for program and
data allocation, for example. It also contains the
necessary connections between logical input and
output variables of the DSPL program and the

physical I/O channels. DSPL compilers are
open-ended with respect to all the language
constructs depending on hardware characteristics.
They use macros for the implementation of input
and output and for the realization of the sampling
clock for example. These macros can easily be
adapted to any target hardware system by the
user, which needs to be done only once.

The following table describes the information
contained in the environment description valid
for the DSPL compiler for TMS 320C25 DSPs.

Declaration

Purpose

PROCESSOR IS "TMS 320C25"

declares the target processor, used by the
compiler for consistency check

PROGRAM SPACE OFF CHIP IS ... declaration of memory section available for
program code allocation

DATA SPACEONCHIPIS ... declaration of memory sections available for

DATA SPACE OFF CHIP IS ... data allocation

STACK SPACEIS ... declaration of memory section available for
stack allocation

CYCLETIMEIS ... declaration of basic machine cycle, used for

the computation of execution time statistics

PROGRAM MEMORY WAIT STATES ...

number of wait states required by the target
hardware when accessing external program
memory, used for the computation of execu-
tion time statistics)

DATA MEMORY WAIT STATE IS ...

number of wait states required by the target
hardware when accessing external data
memory, used for the computation of execu-
tion time statistics

176

ident IS CHANNEL number USING macro

SEQUENTIAL
ident IS CHANNEL number USING macro

END INPUT

INTERRUPT ident IS VECTOR ... declares the connection between the DSPL
name of an interrupt source and an actual
hardware interrupt

INPUT SPECIFICATION IS declares the connection between the DSPL

name of an input variable and a physical
input channel, for each single input channel
an appropriate macro can be used, optionally
sequential inputs can be used in cases .the
target hardware prescribes

a particular sequence for reading input chan-
nels

OUTPUT SPECIFICATION IS

ident IS CHANNEL number USING macro
SEQUENTIAL

ident IS CHANNEL number USING macro

END OUTPUT

declares the connection between the DSPL
name of an output variable and a physical
output channel, for each single output channel
an appropriate macro can be used, optionally
sequential outputs can be used in cases the
target hardware prescribes a particular se-

quence for writing output channels
Table 3 : Elements of the environment description
Compiler output Depending on the program compiled the DSPL

A DSPL compiler generates completely docu-
mented assembly language source files which a
user might optionally try to optimize.. After
assembling the program it can be downloaded to
the target hardware and is ready for execution.
Complete statistical information is also generat-
ed. This includes a detailed cross-reference list-
ing showing allocation information for code and
data sections. More interesting however is that
the compiler also computes execution time statis-
tics as far as possible. The cross-reference listing
will contain information about the execution time
requirements of the block-statements and com-
pute the processor load based on the requested
sampling rates. The assembly language source
listing will contain information about the ma-
chine cycles used by the code generated for each
single DSPL statement. These statistics will even
regard such issues as the influence of wait-states
required by the target hardware for the access to
different memory sections. In case of program-
ming errors the compilers generate a source
listing with interspersed error messages giving
detailed information about the errors detected.

compilers compile from several hundred to sever-
al thousand lines of code per minute on typical
PCs.

Development system

Currently DSPL compilers for the TMS320C25
DSP and the TMS 310C1X DSP family are
available. Although they can be used stand-alone
as powerful development tools they can also be
used in conjunction with a complete development
system primarily designed for the realization of
control systems. This development system con-
sists of additional software and hardware compo-
nents using PC-AT class machines as host. The
IMPEX software supports all the necessary steps
for the preparation of linear multi-variable con-
trol systems prior to the implementation. Starting
from differential or difference equations IMPEX
supports discretization, scaling, structure trans-
formation, simulation of closed loop systems
including effects of DSP arithmetic and A/D and
D/A converters and the generation of the appro-
priate DSPL program. On the DSPL level any
non-linear extensions can be added to the pro-

177

gram. This can be supported by the NMAC tool
which can generate optimized table-lookup based
external DSPL procedures for the implementation
of arbitrary one-dimensional non-linear func-
tions. After assembling the assembly language
source file resulting from the DSPL compilation
the object code can be down-loaded to the target
hardware where it can be examined with a
powerful real-time TRACE module. This module
works on the system level rather than on the
machine instruction level and is capable of
displaying the time response of arbitrary vari-
ables. Sophisticated hardware systems built
around the TMS 320 family DSPs, including the
new TMS 320C30 floating-point DSP which is
programmed in C rather than DSPL, augmented
by powerful peripheral boards for analog and
digital I/O and incremental encoder interfaces
support the automatic implementation of standard
applications often within minutes by providing
completely software controlled board setups, for
example.

Examples and applications

A large number of applications have already
been realized using DSPL as the programming
language. Some examples are described below in
order to give an estimate about the computation-
al performance of DSPs and of the quality of the
code generated by the DSPL compilers. Impres-
sive sampling rates can be achieved even for
very complex applications.

The first example regards a 3rd order PD con-
troller with notch filter as described by the
following equations.

0333333 00 0.0 Y
x=| 00 0383240 0252007 x_, + 0473315| &,

0.0 -0518211 0383240 0.587474
¥ =(-16.723549 -13.152899 0.0) x, -6.098620 u,

Assuming that all state variables are properly
scaled for the fractional number range so that no
overflow test and saturation handling is required
for the states, and that overflow test and satura-
tion handling are included for the output by
using scalar product scaling, a TMS 320C25
DSP can execute the code generated by the

178

DSPL25 compiler within 7.3 ps. The same
program compiled with the DSPL1X compiler
can be executed within 104 ps by a TMS
320E14 DSP. This does not include time re-
quired for i/o and timer interrupt processing. The
corresponding DSPL program and excerpts from
the compiler generated assembly language
source are presented below. The statistical infor-
mation computed by the compiler is also pre-
sented. ‘

The second example represents a 9th order state
controller with Kalman filter having 2 inputs and
one output. The controller was designed for a
disk drive (computer peripheral). As this con-
troller includes an integrator the corresponding
state variable is computed with saturation using
scalar product scaling. Otherwise the same as-
sumptions apply as given above. A TMS 320C25
DSP can execute the necessary code within 19
ws. The execution time for a TMS 320E14 DSP
is 27.5 ps.

Other applications implemented with DSPL in-
clude the following (sampling rates are given for
a TMS 320C25).

Compliant articulated robot with electrical
drives: Linear vibration damping / tracking
controller with 10 sensors, 3 motors, 9 reference
inputs, running at 20 kHz.

High-acceleration gantry type robot with hy-
draulic drives: Vibration damping / tracking
controller of order 10 (including Kalman filter
and non-linear compensation for hydraulic ef-
fects) for each single axis, with 1 sensor (posi-
tion encoder), 1 motor and 3 reference inputs,
running at 10 kHz. Several axes can be served by
a single DSP.

Kalman-filter-based track following control (see
second example above).

Notch-filter-based controller of 11th order for
the same application runs at > 30kHz.

Vehicle control: Various active suspension con-
trollers of up to 40th order running with sam-
pling rates in the kHz range.

Hardware-in-the-loop simulation: Hydraulic
cylinder for active vehicle suspension under test
and actuating cylinder simulating the stress and
motion, both given in hardware. The DSP hard-
ware system does the rest, i.e. controls the
suspension and actuating cylinder, simulates
wheel and car body dynamics, and performs the
noise filtering for road surface simulation, all at
14 kHz.)

Anti-skid-braking (ABS) hardware-in-the-loop
simulation: Four-wheeled non-linear vehicle

model of 18th order (11 mechanical degrees of
freedom) running at 6 kHz on a TMS 320C25.
Used to test and optimize ABS in the lab.

Simplified proportional-differential control and
plant identification: Just to show a mixture of
DSPL constructs in an application program. The
sampling rate is > 20 kHz for a TMS 320C25.
The listings below show the DSPL progrdm, the
associated environment description, the statisti-
cal information and excerpts from the code
generated by the DSPL25 compiler.

system specification controller_gain_ident is

type fractional is
fix’ (bits => 16,
scptype statel is
fix’ (acculength => 32,
scptype del is
fix’ (acculength => 32,
scptype outl is
fix’ (acculength => 32,

round => on,

round => on,

round => on,

scale => on,

scale => off,

scale => common,

fraction => 15, representation => twoscomplement);

saturation => on);
saturation => off);

saturation => on);

al : scalable constant vector (1) of fractional := (0.333);

bl : scalable constant vector (2) of fractional := (0.330, -0.330);
cl : scalable constant vector (1) of fractional := (-14.141);

dl : scalable constant vector (2) of fractional := (7.699, -7.699);
xk : vector (1) of fractional;

xkl : vector (1) of fractional;

u : vector (2) of fractional;

input is u;

v : vector (1) of fractional;

output is y;

templ : rawaccumulator;

r_coeff : scalable constant vector (1) of fractional := (17.2405);

rk_del_ coeff
cnt : integer;
1k : fractional;

rk_del : vector(3) of fractional;
rk : fractional;

yfk : fractional;

ufk : vector(l) of fractional;
y£fkl fractional;

gain_old : fractional := 0.2;
gain : fractional;

ginc : fractional;

scalable constant vector (3) of fractional := (0, 0, 1);

al_flt
a2_flt
bl_flt
b2_flt
cl_flt
d1_fit

ETINT

scalable
scalable
scalable
scalable
scalable
scalable

constant
constant
constant
constant
constant
constant

vector
vector
vector
vector
vector
vector

(2)
(2)
(1)
(1)
(2)
(1)

of fractional := (0.950, 0.074);
of fractional := (-0.017, 0.950);
of fractional := (0.067);

of fractional := (-0.046);

of fractional := (-0.671, -1.049);
of fractional := (9.379E-04);

179

xk_fltl : vector (2) of fractional;
xkl_f1tl : vector (2) of fractional;
u_fltl : vector (1) of fractional;
y_fltl : vector (1) of fractional;
templ_fltl : rawaccumulator;
xk_£1t2 : vector (2) of fractional;
xkl_f£1t2 : vector (2) of fractional;
u_flt2 : vector (1) of fractiomal;
y_£f1t2 : vector (1) of fractional;
templ_f1t2 : rawaccumulator;
begin A
every 1.0E-04 do
-- controller
update (xkl, xk);
-- sample inputs
input (u);
accumulate prescalpro (outl)
y(l) := templ + dl * u;
end accumulate;
-- output to plant
output (y):;
accumulate scalpro (statel)
xk1l(1l) := al * xk + bl * u;
end accumulate;
accumulate scalpro (outl)
templ := cl * xkl;
end accumulate;
-- identification
u _fltl(1l) := y(1):
u flt2(1) := u(2);
-- low-rate identification
cnt := cnt + 1;
if cnt > 10 then
cnt := 0;
ufk(l) := y £f1tl(1l):;
yfkl := yfk;
yfk =y £1t2(1);
1k := yfk - yfkl;
accumulate scalpro (statel)
rk := r_coeff*ufk;
end accumulate;
rk_del(l) := rk;
-- FIR delay-line
accumulate scalpro (del) and update rk_del
rk := rk del_ coeff*rk _del;
end accumulate;
gain_old := gain;
ginc := (lk-rk*gain_old) *rk;
gain := gain_old + ginc + ginc;
end if;
~- high-rate lowpass filtering for gain identification
-- input filter
update (xkl_f£1ltl, xk_£1ltl);

180

accumulate prescalpro (outl)
y_£flt1(l) := templ_fltl + dl_flt * u_fltl;
end accumulate;
accumulate scalpro (statel)
xkl_f1t? (1) := al_flt * xk_fltl + bl_flt * u_fltl;
end accumulate;
accumulate scalpro (statel)
xkl _flt1(2) := a2_flt * xk_fltl + b2_flt * u_fltl;
end accumulate;
accumulate scalprc (outl)
templ_ fltl := cl_flt * xkl_fltl;
end accumulate;
-- output filter
update (xk1l_f1lt2, xk_f1lt2);
accumulate prescalpro (outl)
y_£f1lt2(1) := templ_ f£1t2 + dl_flt * u_. flt2;
end accumulate;
accumulate scalpro (statel)
xkl f1t2(1) := al_flt * xk_flt2 + bl_flt * u_flt2;
end accumulate;
accumulate scalpro (statel)
xkl_£1t2(2) := a2_flt * xk_flt2 + b2 _flt * u_flt2;
end accumulate;
accumulate scalpro (outl)
templ flt2 := cl_flt * xkl_flt2;
end accumulate;
end every;
end controller_ gain_ident;

Listing 1: DSPL example program

environment “DS1001" is
processor is "TMS 320C25";
program space off chip is from 20h to 3fffh;
data space on chip is from 200h to 3ffh;
data space off chip is from 400h to 3fffh;
stack space is from 60h to 7fh;
cycle time is 100;
program memory wait state is 0;
data memory wait state is 0;
input specification is
u(l) is channel Oee0Olh using ds2001 with start;
u(2) is channel 0eeO3h using ds2001 with start;
end input;
output specification is
y(1) is channel 0OefObh using ds2101;
end output;
end environment;

Listing 2: Environment description

181

DSPL - cross compiler, Vs 2.01, MS-DOS, target CPU : TMS 320C25
Copyright (C) 1988, 1989 by dSPACE GmbH

source file : pcim.dsp
environment file : pcim.env
assembler file : pcim.asm
xref file : pcim.xrf
error file : pcim.err

Compilation completed. No errors detected.
execution time requirements
task | cycles | rate (kHz) | time (us) | rgst (us) | use (%)

11 431 | 23.202 | 43.100 | 100.000 | 43.10

total processor load 43.10 %

498 words of code (off-chip).
45 words of data (on-chip).
32 words stack (on-chip) .

134 lines compiled.

2323 lines / minute.

Listing 3: Statistical information generated by DSPL2S compiler

; line 113
zac
1t _v6 ; xk_£1tl(1)
mpyk -564 ; a2_f1t (1)
lta _wv7 ; xk_£f1tl(2)
mpy _c8 . ; a2_f1t (2)
lta _v18 ;ou_fltl (1)
mpyk -1533 ; b2_flt(1)
apac
adlk 1, 14 - 0 ; perform rounding

; overflow test and rescaling 0 bit
sach *, 1 ; save result
sfl ; sign bit into carry flag
bc _120 ; branch if result < 0
bgez _121 ; branch if no positive overflow
lalk O07fffh, 0 ; use positive saturaticn
b _122 ; update result

_120
blz 121 ; branch if no negative overflow
lalk 08000h, 0 ; use negative saturation
b 122 ; update result

_121

’ lac *, 0 ; reload result

122
sacl _v5, 0 ;o xkl_£1t1(2)

; =-=-- 24 cycles

182

’

; line 116

zac
1t _v4 ; xk1l_f£1ltl (1)
mpyk -688 ; cl_f1lt (1)
lta _v5 ; xkl_£fltl1(2)
mpyk -1074 ; cl_£f1lt(2)
apac
sacl _v3l1l, 0 ; templ fltl
sach _v31 + 1, 0 ; raw format
; -=-- 8 cycles
; line 119
blkd 00207h, _v10 ; xkl_flt2(1) --> xk_f1lt2(1)
blkd 00208h, _vll ; xkl_£1t2(2) --> xk _£1t2(2)
; =--- 6 cycles

Listing 4:

Conclusions

General purpose programming languages seem
not very suitable for signal processing applicati-
ons because of the lack of appropriate language
constructs. Taking into account the special prob-
lems of digital signal processing and the special
features of DSPs when designing a programming
language, allows the implementation of compil-
ers capable of generating extremely compact and
efficient code. It also allows to provide the user
with powerful support in the area of scaling,
which is particularly important when working
with fixed-point processors.

Literature

H. Hanselmann, "Digital Signal Processors in
Motion Control", Proceedings International
Workshop on Microcomputer Control of Electric
Drives, Triest, Italy, July 3 - 4, 1989.

Excerpts from assembly language source code generated by DSPL25 compiler

H. Henrichfreise, "The Control of an elastic
Manipulation Device Using DSP", Proceedings
American Control Conference, Atlanta, Georgia,
Vol. 2, pp. 1029 - 1035, June 15 - 17, 1988.

H. Hanselmann and A. Engelke, "LQG-Control
of a Highly Resonant Disk Drive Head Position-
ing Actuator", IEEE Transactions on Industrial
Electronics, pp. 100 - 104, February 1988.

H. Hanselmann and W. Moritz, "High Band-
width Control of the Head Positioning Mecha-
nism in a Winchester Disk Drive", IEEE Control
Systems Magazine, pp. 15 - 19, October 1987.

H. Hanselmann and A. Schwarte, "Generation of
Fast Target Processor Code From High Level
Controller Descriptions”, Proceedings 10th
IFAC World Congress, Munich, 1987.

183

184

Application of Kalman Filtering in Motion Control Using TMS320C25

Dr. S. Meshkat
The Control Group

One common problem in many industrial drive/control applications is sensing-scnsing variables such as position,
velocity or current for the purpose of control. The task of sensing signals that truly represent system variable is
difficult either because of cost, imperfect sensors or environmentally induced random noise. The result is a control
loop with less than optimum performance. To perform a proper control one has to "estimate” all or some of the
missing system variables from a measurement that may be corrupted by noise (like a noisy encoder or current
sensor) from a system that is excited by a random external force such as torque disturbance. The output of an
optimum observer can be used in a feedback control system for the purpose of tracking or regulation.

But let’s first define an estimation process. Estimation is referred to the process of extracting information,
unavailable for measurement for any reason, from the available data. This data may contain measurement error
and may also be influenced by external random disturbance. You may imagine, for instance, in a radar antenna
positioning application where wind acts as a random torque disturbance, upon the motor shaft - a shaft whose
position measurement is corrupted by random noise. In this application the observer or estimator must estimate the
pure values for position and velocity. A Kalman filter is an optimum observer for these problems when state
excitation noise (i.e., torques disturbance) and observation noise (i.c., the encoder noise) are uncorrelated, in other
words encoder noise is totally unrelated to the torque disturbance.

To present the idea of designing a Kalman filter let’s start with the model of a dc motor (See Appendix A, "Model of
a dc Motor.")

o(s) Kp o
u(s) S(T s + 1)

Since the filter is implemented in a digital control environment we transfer this equations to the z domain.

(z+b) ' aT-1+¢2T
G(z) = —_— , =
%o (z-l)(z-c'aT) %0~ Km a
1-¢T . a1e-aT 1
b= ,a= €)
aT-1+¢dT Tm
In terms of state space representation:
8(n + 1) 6(n)
= A + Bu(n)
w(n +1) w (n) 3)
1 (a-¢3T)/a Kn(T-1/a +e72T)
A= B=
0 T Kpy(1-¢2T)

Reprinted, with permission from author. 185

6(n)
u(n) =-F
w (n)

This system may be excited by a random torque disturbance, W(n), furthermore position measurement may include
random noise V(n) (see figure 1.)
vin)

*

W(n-1) X(n) Z(n)

- H
X(n-1) ‘ A I

Figure 1: State space representation of a motion control
system with torque disturbance W and measurement
noise V

Optimum Observer .

The problem can be stated as follows: design an observer that uses the measurement, z(n), as well as the statistical
information about the measurement noise, V(n), and disturbance, W(n), to optimally estimate the actual position
and velocity.

The reconstruction of data must be based on a structure that penalizes the deviation of estimator’s output from the
actual system output to correct the estimation process.

f(n) = AX(n-1) + K [z(n) - HX(n-1)] @)

where X(n) is the estimated vector of position and
velocity and H is the output vector (e.g. for position

H=[10)
This is presented in figure 2.
*
Zn) X(n)

Y

Figure 2: State space representation of optimum observer

186

Therefore the design problem can be simplified to finding filter K. Designing K requires the statistical information
about the random disturbance and the measurement noise. This must be intuitively clear; simply because one could
not imagine that without this information any "proper” reconstruction would be possible. This statistical information
can be obtained from the knowledge of the torque disturbance intensity and the frequency range over which it is
active. For our disturbance intensity and the frequency range over which it is active. For our measurement noise,
we need to know the rms value of the noise and its frequency range. To be more precise, this information helps us
compute the "state variance matrix of reconstruction error” from which K can be extracted.

Let’s assume our motor is disturbed by external torque with an intensity of 12.5 N2m?2s over the frequency spectrum
of 0 - 30 Hz and the position measurcment is corrupted by noise with the rms valuc of 0.2 degrees which has a flat
spectral density over a 350 Hz range.

Figures 3 (a) and (b) show the actual position and velocity of our motor shaft when the motor is driven by the
torque disturbance only. That is, if we had perfect position and velocity sensors we could take measurements like
those illustrated in figures 3 a and b.

0. 02 Real Pegition vs. Time
P . H M : H
.:o. 01s ; ; : i
.01 ; : : ; :
[H : : H :
"%, aos SRS S — 2
a : ___4—-—-"’/ ;
d ° : : ; :
- ;
0. 008 56 100 %0 706 756 300

0.25 Real Vnog“g vy, Time)

v
¢ 02 : :
0. 15 ; S
. ks
LRSI SO SO A, Y b
R ot — Jossisssasnnd
I A 7 g ‘
. ; : ; ; ;
0. 08 56 100 150 200 250 300

Time Ln » of Sampiing Periods

Figure 3: (a) the actual motor shaft position (b) actual shaft velocity

However, the real measurement is totally distorted by a random noise making it appear as shown in figure 4. Figurc
4 shows a position measurement that looks absolutely hopeless. You must remember the noise, corrupting our
position measurement, is not a high frequency noise that may be filtered by a conventional low pass filter. This
noise spans a wide frequency range! The Kalman filter, however, can estimate the actual position (see figure 5)
form the measurement signal (see figurc 4). You may observe the perfect performance of this filter for velocity
estimation as well (see figure 6). Our assumption is that the mean values of random disturbance and measurement
noise are both zero.

187

0.6 f od Pos ve. TIWS
| :
: 0.4 ;
$ o2} -
Ao :
2 -0.2 Al
d -0.4}p L8 & : ¥ ! H
H H H ; i
0.6 50 100 130 200 790 300

Figure 4: The measured position corrupted by noise

0. 02 , Ertl m.m_g.u_n_u.gn____,__7
Po. 018

3 H H H H .
0.01 ; : : :
[: i : : :
"o. 005 : : : e
: P " s
§ o : : : : :

-0. 00§

56 100 130 L) 750 300
Time Ln w of Sampling Periods

Figure 5: Estimated position using the optimum observer

(-]
o
N
n o

Ld
-
[

0. 08
o - ¥
-0. 05 0 r

®\ne®m I~ ~ec
-]
-
3
4

i i i i |
S0 100 150 200 250 300
Time In u of Sampiing Perlods

Figure 6: Estimated velocity using the optimum observer

Optimum Control

The estimation process provides the feedback data uscful for the purpose of control. Using optimum control thcory
we may usc the output of an optimum observer in a statc feedback control configuration. The state fecdback
controller multiplies a designed control gain matrix, F, by the output of our estimator, x(n), in order to compute the
control signal, u(n). Like any control design, F must be designed such that it satisfies a certain performance criteria.
The performance criteria are dictated by the application. For example, in punch press application where achicving a
fast response time is of crucial importance we need a time optimal control design. In machine tool applications
where the instantaneous position/velocity error must be minimized, a linear quadratic controller may be an
optimum choice. Although the performance criteria will influence the design procedure for matrix F, the
implementation process in a state feedback control algorithm remains the same.

Combining Observer and Controller

Let’s now look at the combination of our optimum observer and state feedback controller using linear quadratic
critcria. Again, we start with the actual position and velocity valucs depicted in figurces 7(a) and 7(b). Figurc 8
shows the noisy measurement signal. The idea is to design an estimator combined with a regulator that usc the

188

measured position, estimate the variables and use them in a state feedback control for the purpose of position and
velocity regulation. Figures 9(a) and 9(b) show the contrast between what was available to the controller and the

regulated results. The impressive contrast shows the power of optimum control in motion control applications.

8] [.d on v a
, ; z : : '
0 6 b ; ¥ ¢ i s
' .= i i N
l : : A:-/'\:——/: :
n 2 : - - : H
R : : : :
$ o / : ' :
-2 %6 100 195 700 750 300
Real
v Ot ALVelasliy ve, Tiay
[] . H M
! ; :
L 008 b S\
n
R
R o haMAAL L W N X M
d
{ : H : : :
-0. 05 50 190 159 200 290 300

Time In ® of Sampling Perlods

Figure 7: (a) actual motor shaft position (b) actual shaft velocity

as® 3= ®ov

ﬁﬂg?gg_r_odiﬂors vs. ngg

8.l

56 100 130 200 300

Figure 8: Measured position signal corrupted by noise

189

1 e r (] o0op Pos (+) vs. Time

P
°
E]
1
n
R a
a
d : : : :

- b N i i i

10 50 100 150 200 250 300

0.1 Actyal & Crosed Loop Vel vs Time ‘

v : : H : H
[H N . M
! : : : :
, 0.08
n
R

)
: b
{ : : : : :
- ‘- L .

0. 085, 56 100 130 200 786 300

Time Ln w of Sampling Perlods

Figure 9: (a) measured position vs regulated position (b) measured vs regulated velocity

In a DSP environment an optimum observer combincd with a lincar quadratic rcgulator can be implecmented and
run at a sampling rate lcss than 30 microscconds. This can be done through cascading the various blocks of our
control algorithm. Control algorithms implcmented by DSPs allow systems with imperfect sensors to achicve and
impressive level of performance - performance that is not achievable with classical control techniques.

Design and Implementation of Kalman Filter

To design a Kalman filter you may follow the steps discussed in sections "Theoretical Background..." then you may
proceed with the selection of a simulation program. Three of the more popular control simulation programs that
run on an IBM PC are: Matlab, Control C and Matrix X.

We used Matlab for the design and simulation of the Kalman filter. The Matlab program starts with data entry for
your system matrices. You are also required to enter the statistical information about the plant disturbance and
measurement noise. The program will simulate and plot the actual position and velocity on your EGA screen. It
discretizes your system using the sampling period it was initially provided with. From this information, the discretc,
stationary Kalman gain is computed and used in an optimum state observer. The estimated position is plotted and
contrasted with the measurement signal. (Please see appendix B)

Hardware Setup

Once the design proves successful, you may rcadily convert your Kalman filter to a form that is implementablc on
TMS320C25 processor. For our implementation expcriment we use the sctup as appears in Figurc 1. We uscd the
IBM PC with a 80386 processor and 80387 co-processor to emulate the motor, in real time. The C program on the
PC was also responsible for the generation of the uncorrclated normally distributed random disturbance and
measurement noise. We used the IBM Data Communication Card to D/A and A/D our data. Through the
communication card and Tcxas Instruments AIB board we could conncct our cmulated system to a TMS320C25
processor board. Needless to say, the TMS320C25 processor board was responsible for the implementation of
Kalman filter and the initiation

of the two A/Ds and one D/A with a sampling period of 1 ms on the AIB board.

The filter we implemented embodies the generic form of equation 4 in the section entitled, "Application of Kalman
Filtering in Motion Control Using DSPs." The state equations which were finally implemented are:

xq(n+1) = x1(n) + a;x(n) +a2yp

xy(n+1) = bgu(n) + byxy(n) + bzyp

190

161

— ADC

IBM PC & Data
Communication
Board

KALMAN FILTER

TMS320C25
PROCESSOR BOARD

optimally,
observed
state

DAC

AIB BOARD

ADC2

where:

x, is the estimated position
xy is the estimated velocity
u, is the input signal, u, plus the disturbance uy
Yp is the measured signal corrupted by noise w,,

(Please see appendix B)

Theoretical Background for Designing Kalman Filter

Let’s present a continuous time system by the following state equations.

x(t) = a()x(t) + b(t)u(t) + wy(t)
¥(®) = c(O)x(V) + wy(t)

@
where w;(t) and wy(t) are the state excitation noise and the measurcment noise respectively.
The joint process of the two noisc signals (i.c. col[w; w,]) can be expressed, as white noisc, by the intensity matrix,
V(t):

E{ col[wy(t;) waltpliw; T(ty) wo ()]} =

@)
Vit (-t
When the two noise signals are uncorrelated vy = v; = 0
and the intensity matrix becomes:
vl(t) 0
v = 3
0 Vz(‘)
We can form the full order observer as:
8(t) = a(OX(®) + bEu() + KOO - <OXO] ‘ @

192

The reconstruction error can be defined as:

e(t) = x(t) - X(t) (&)
Further we define the mean square reconstruction error as:

E{eT (OW(Oe(0) ©
where W(t) is a positive-definite symmetric matrix.

The mean square reconstruction error value is a criterion to measure the observer’s reconstruction capability.
So, the design problem can be stated as: ign K h that the mean r nstruction crror is minimiz

It can be proven that the solution to the optimum observer problem can be obtained from:
- Ty -1
K(®) = Qe " ()vy (0 Q)
Where Q(t) is the solution of the matrix Riccati equation:

Q) = aHQ(+ QWA () + v(®) - QVCT OV OV
®

Therefore, the design process starts with obtaining all information regarding the proccss and the initial conditions
for the estimated states. In addition, you need to obtain the values for the disturbance covariance matrix, Vi and
the measurement covariance matrix, v,. This information helps you solve the matrix Riccati equations (8).
In the time-invariant case where all the matrices of equation 8 are constant, the steady-statc solution to the
observer’s Riccati equation (8) can be obtained from:

0=2aQ +Qal + vi- Qchz'lc Q)
Accordingly, “the steady-state optimum observer gain matrix" can be calculated as:

K= Qchz'1 (10

Notice that in the time invariant case, there is always a trade off between the observer’s speed and the immunity to
the observation noise. In terms of design practice, one may experiment with the two factors of observer speed and
noise immunity. To do this: keep v, constant, choose a positive-definite symmetric matrix for v, with a positive
scalar multiplier m.” Clearly, increasing m will increase the state reconstruction speed. The value for m may be
incrcased to a point that whilc the observer attains a fast speed, noise immunity is not compromiscd.

193

Example:

Let’s assume that our plant is a motor, disturbed by a zero mean white noise external torque, Ty, and our shalt
position measurement is corrupted by a zero mean white noise, M, uncorrelated to the disturbance noise. This
plant can be modeled as:

(s) Km
u(s) s(Typs+1)
where =[1/Ky] (KT is motor torque constant) and T, = RJ /K,-l-.2 (R is the armature resistanc and J is the

total inertial load.)

In terms of state equations:

x(t)= x(©+ u(t)+ Ty
0 Y7, Kp/RJ 1/3
The state disturbance noisc intensity, vy may be obtained from the variance of the torque disturbance and the
frequency range over which it is active.

torque disturbance variance
Vd =

2(active frequency range)
The same for the measurement noise intensity, ¥m

Measurement noise variance

2(active frequency range)

from this information v1 and v, can be obtained as follows:

0 vg/ P
and

25 m

The above information enables us to solve equation 9 for Q and plug in the result in equation 10. The solution
obtained for the optimum obscrver gain, K can be used in our reconstruction equation (i.c., equation 4).

194

APPENDIX A

Model For a DC Motor

The model equations are obtained using the physical relation between the variables in each functional block. We
use Laplace operator, s, to simplify the solution method; but remember that "s” is an appropriate operator only for
lincar systcms. The mathematical modcl of a dc motor will allow us to simulatc the systcm dynamic responsc on a
computer before an actual design.

Physical Model Biock Diagram
R L
[]
Va
L]

|

Figure 1 shows an electromechanical block diagram of a DC motor. This model describes the relationship between
the voltage applied across the armature winding ,u, and velocity, w.

Where armature’s resistance
armature’s inductance
motor inertia

viscous damping coefficient
Torque constant

back emf voltage constant

ARR@—C X
Wowonowowon

c

Using figure 1, the relationship between (s) and u(s) can be written as:
w(s) 1 K;
u(s) LI s2+ (R/L+B/N)s + RB + KK/LJ

Equation 1 describes a second order model for a DC motor. In MKS system, K, = K.

w(s) K, 1

u(s) LI 2+ (R/L + B/J)s + RB + K 2/LJ
In a practical motor the roots of the denominator, "poles” are in general real and negative. These roots are:
ApAgy = (-1/2)(R/L + B/fI) +/- J1/2 (R/L + B/J)2 -4(RB + K;)/LJ

For a step-wise input voltage to a motor, u(s) =1/s, output velocity is:

195

K 1 €Y
() = -_— —
s Ly (s +A(s +Ap)

The model presentcd by the above equation can be simplified to a first order model using thc following
assumptions. The first assumption is that the electrical time constant, T , in most conventional DC motors is much
shorter than the mechanical time constant, 7 . This will let us ignore the term s.L in equation 1.

w(s) K,
u(s) RJs + RB + K2

The second assumption is Kt2 >>RB

w(s) 1 1
u(s) K, 1+R)s
. Ktz

Where T = RJ/Kt2 is the mechanical time constant. So, for a stepwise input voltage applied to the armature
winding dlne shaft speed w(s) is given by:

1 1 1
(.O(S) = — N —_— —
5 K, A +7,5)
Extending this relation to the angular position, will result in:
8@ Km
— =
u(s) S(Tps + 1)

196

Appendix B

% Discrete Time, Stationary Kalman Filter
%

% In this segment of program you will enter the

% continuous time system matrices a,b and c.

% We assume d = 0.

%

%

subplot (211)

input(’input the continuous time system matrix a:)
a = ans;

input(’input the continuous time input vector b: °)
b=ans;/

input(input the continuous time output vector c: ’)
c=ans;

% At this point you will enter the sampling period, T.
% This value enables your program to discretize the

% entered system equations.

%

%

input(input the sampling period T: ’)

T = ans;

%

%

% At this point you will be asked to enter the
% statistical information about the disturbance
% noise and the measurement noise. For more
% information please refer to the document entitled
% "theoretical background."”

%

input(input the system disturbance vector g: ’)

g = ans;

input(input the disturbance covariance matrix q;)

q = ans;

input(’input the variance value for the disturbance vard: ’)
vard = ans;

input(’input the variance value for the measurement varm: °)
varms = ans;

r=varm/1000;

%

%

% In this part you will enter any known input signal from
% which the program will generate the total input.

%

%

input(’Enter the input v’)

u2 = ans;

[A,B] = c2d(a,b,T)

pause

u=rand(’normal’);

ul=rand(’normal’);

u=vard*rand(300,1);

u=u+u2;

197

ul = varm*rand(300,1);

%

%

% At this point program can simulate the

% actual position and velocity signals as well as the
% optimum discrete observer gains.
%

%

yp = dlsim(A,B,c,0,u);

yv = disim(A,B,[0 1],0,u);

ql = vard/1000;

q=ql'g

[L,M,P] = dlge(A,T*g,c,q*T,r/T)
pause

t = 1:1:300;

plot(t,yp)

title(Real Position vs. Time’)
grid

ylabel(’Pos in Rad’)

plot(t,yv)

title(Real Velocity vs. Time’)
grid

xlabel(’Time in # of Sampling Periods’)
ylabel(’Vel in Rad/s’)

pause

yp = yp+ul;

plot(t,yp)

titleMeasured Pos vs. Time’)
grid

ylabel(’Pos in Rad’)

x = [0;0};

%

%

% Using the Kalman gain, the program will structure a

% recursive equation for the optimum estimation process.
%

%

kgain = A-L*c;

fori = 1:1:300;
x = kgain*x+B*u(i,1) + L*yp(i,1);
pos(i,1) = x(1,1);
vel(i1) = x(21);

end

%

%

% At this point the program will plot the estimated
% position and velocity, and contrast them against
% measured ones.

%

plot(t,pos)

title(’Estimated Pos vs Time’)

grid

ylabel(’Pos in Rad’)

xlabel('Time in # of Sampling Periods’)

pause

plot(t,yp,’.’,t,pos)

198

title("Measured & Estimated Pos vs. Time’)
grid

ylabel(’Pos in Rad’)

plot(t,yv,’.’,t,vel)

titleCActual & Estimated Vel vs. Time’)
grid

ylabel(’Vel in Rad/s")

xlabel(’Time in # of Sampling Periods’)
meta mm

subplot

end

199

0012

0013
0014
0015
0016
0017
0018
0019

0020

200

Appendix C

Kalman Filtering using TMS320C25

0010

0011

0020

0020
0020

ltext

TEMP equ
YP .equ
VN .equ
XNL .equ
XNH .equ
UN equ
*

*

A2 .equ
Al .equ
B2 .equ
B1 .equ
Bo .equ

.asect "AORG00"

FF80 B
.data
.asect "AORGO01"
1387 RATE .word

00FA MODE word

Jtext
.asect "AORG02"
*
*
* Start main program
*
L
STRT: .equ
CE06 RSXM

Oh ;For temportary storage

I ;sBLOCK B0 FOR STATE
VARIABLES

2h ;DATA MEMORY

3h H

4h ;

Sh ;

6h ;THEY STORE THE
COEFFICIENTS

7h ;

8h ;

%h K

0Ah N

00h

STRT

10n

4999 ;sampling period 1 msec [= (SMHz
/(RATE+1)]

OFAh ;For AIB initization

20h

$
;TURN OFF THE SIGN

EXTENTION MODE

0052
0053 0021 C800 LDPK 0 ;
0054 0022 5589 LARP AR1 ;
0055
0056
0057 0023 Cl100 LARK ARLO sZERO THE DATA
MEMORY (0h TO 5h)
0058 0024 CA00 ZAC ;
0059 0025 CB07 RPTK 7 s
0060 0026 6040 SACL *+ 5
0061
0062
0063
0064 .
0065 * Initialize the coefficients
0066 *
0067
0068
0069
0070 0027 Doo1 LALK 712,0 ;STORING COEFFS IN DATA
MEM (A2 = .1737 Q12)
0028 02C8
0071 0029 6006 SACL A2,0 ;sAND XFER THEM TO
PROG MEM
0072
0073 0024 D001 LALK 80 ;(A1 = 0.002 STORED IN
QI12)
002B 0008
0074 002C 6007 SACL AlL0 N
0075
0076 002D D001 LALK 30 ;(B2 = 0.0007324 STORED
INQI2)
002E 0003
0077 002F 6008 SACL B2,0 H
0078
0079 0030 Doo1 LALK 4057,0 ;(B1 = 0.9905 STORED IN Q1I12)
0031 " OFD9
0080 0032 6009 SACL BI1,0 ;
0081
0082 0033 D001 LALK 4096,0 ;(BO = 16 STORED IN Q8)
0034 1000
0083 0035 6004 SACL Bo,0 ;
0084
0085
0086
0087 *
0088 * Initialize the AIB board
0089 *
0090
0091 0036 LOOP: .equ s
0092 0036 CAI10 LACK RATE ;AIB BOARD SET FOR 1 MS
SAMPLING RATE
0093 * SAND FOR 2 ANALOG TO
DIGITAL

CONVERTERS
0094 0037 5800 TBLR TEMP N

201

0097

0100

0101
0102
0103
0104
0105
0106
0107

0108

0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122

0123

0124
0125
0126
0127
0128

0129
0130
0131
0132

0133
0134
0135
0136
0137
0138
0139
0140
0141
0142

202

0038

0039
0034
003B

003C

003D

003E
003F
0040

E100

CAll

E000

CE08

FA80

0041
FF80
003D

WAIT:

our

LACK
TBLR
our

SPM

BIOZ

TEMP,1

MODE
TEMP
TEMPF,0

TAKE

;WRITE THE SAMPLING PERIOD
TO AIB
sBOARD PORT 1

JINITIALIZE THE AIB BOARD
sWRITE THE SAMPLING PERIOD
TO AIB

sBOARD PORT 0
sreset the P register output shift mode

;WAIT FOR THE A/D
INTERRUPT COMES

WAIT

3cCo1
3806

CE0A

LT
MPY

SPM

LTA

MPY
SPM
APAC

ADDS
ADDH

SACL
SACH

XNL
XNH

XNL,0
XNH,0

;TAKE SAMPLE OF FIRST ADC --
STORE IN YP

;TAKE SAMPLE OF SECOND
ADC -- STORE IN UN

;CLEAR ACCUMULATOR

;P REG. = A2*YP SHIFTED 4
PLACES LEFT

’

sMULT REG = A2*YP SHIFTED 4
PLACES LEFT

;RIGHT SHIFT 6 PLACES
JACC = AI*VN + A2*YP

;ADD XNH,XHL TO ACC

’

;SAVE THE NEW STATE VALUE

’

0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157

0158
0159
0160
0161
0162
0163
0164
0165

0166
0167

0050
0051

0052
0053

0054
0055

0056
0057

0058

0059

0054
00SB

CE0A

3D05

CEOB

3D01

CEI15

6802

E205

FF80
003D

MPY
SPM

LTA
MPY

SPM
LTA

MPY
APAC

SACH

our

END

UN
B0

gy«

UN,2

WAIT

;CLEAR ACCUMULATOR

;P=BI*VN

’

;JACC=BI*VN
;P=B0*UN

;ACC = BI*VN+B0*UN
;P=YP*B2

;ACC = B2*YP + BI*VN +
BO*UN(RESULT:t

;IS SHIFTED LEFT 4 PLACE TO
MAKE

;B0 Q12 AND THUS BO*UN Q18u

;STORE THE NEW VN

;CHECK TO SEE IF OPERATION
ENDED

;BACK FOR MORE SAMPLES

203

204

Implementation of a PID Controller on a DSP'

Karl Johan Astrém
Department of Automatic Control
Lund Institute of Technology
Lund, Sweden

1. Introduction

The PID controller is by far the most com-
monly used control algorithm. [Deshpande 1981]
Although it is of limited complexity it can be used
to solve a large number of industrial control prob-
lems. The textbook version of the PID controller
can be described by the equation

u(t) = K. (e(t)+— / e(s)ds + Ts (‘)>)

where u is the control variable and e is the control
error, defined as e = y,p, — y, where y,p is the set
point and y is the process output. The parameters
of the controller are: gain K, integral time T;, and
derivative time Ty.

The purpose of the integral action is to in-
crease the low-frequency gain and thus reduce
steady-state errors. Derivative action adds phase
lead, which improves stability and increases sys-
tem bandwidth.

Implementation of a PID controller using a
DSP will be discussed in this paper. A lot of expe-
rience has accumulated over many years of use of
the algorithm. This has led to significant modifica-
tion of the algorithm (1). These modifications will
be discussed in Section 2, where the discretization
issues are also dealt with. The result is a nonlinear
digital algorithm that is suitable for implementa-
tion on a general purpose digital computer.

The algorithm can be implemented in a
straightforward way in a DSP with floating point
hardware. Implementation using an ordinary DSP
does, however, require special considerations, be-
cause all calculations have to be made in integer
arithmetic. These issues are discussed in Section 3.

t Part of this work was done when the first author was
visiting professor and the second author a graduate student
at the University of Texas at Austin.

Reprinted with permission from author.

Hermann Steingrimsson
Graduate School of Business
University of Wisconsin
Madison, Wisconsin, USA

Some special problems related to quantization in
AD- and DA-converters are discussed in Section 4.
An overview of the DSP code for a PID controller is
described in Section 5. The complete code is given
in the Appendix. In Section 6 it is described how
the code can be tested. The tests given include both
linear and nonlinear behavior.

2. Modification and
Discretization

The algorithm (1) has several drawbacks. Signifi-
cant modifications of linear and nonlinear behavior
are necessary in order to obtain a practically use-
ful algorithm. See [Astrém and Hagglund 1988].
To obtain equations that can be implemented us-
ing computer control it is also necessary to replace
continuous time operations like derivation and in-
tegration by discrete time operations. See [Astrém
and Wittenmark 1990]. These modifications will be
described in this section.

Proportional Term

The proportional term Kce(t) is implemented sim-
ply by replacing the continuous time variables with
their sampled equivalences. One additional modifi-
cation set point weighting [Astrém and Higglund
1988] has been found useful. This means that the
proportional term only acts on a fraction b of the
command signal. The proportional term then be-
comes

P(tk) = Kc(by:p(tk) - y(tk)) (2)

where {t;} denotes the sampling instants. The
parameter b admits independent adjustment of set
point and load disturbance responses. It may also
be viewed as “zero-placement”.

205

Integral Term

When a controller operates over a wide range of op-
erating conditions, the control variable may reach
actuator limits. The feedback loop is then broken
and the system effectively runs open loop. When
this happens in a controller with integral action,
the error will continue to be integrated and the
integral term may become very large. The integra-
tor “winds up”. The error must then change sign
for a long period of time to “unwind” the integra-
tor and bring the system back to normal. Windup
can also cause problems when the controller is im-
plemented on a microprocessor having finite word
length. Since the processor can only store numbers
limited in magnitude, windup may cause overflow
oscillations in the control variable, unless satura-
tion arithmetic is used.

There are several ways to avoid windup. One
possibility is to introduce an extra feedback loop
by measuring the output from the actuator and
forming an error signal as the difference between
the controller output v, and the actuator output u.
If the output of the actuator is not available, the
signal may be computed by using a mathematical
model of the actuator. The error signal is fed
to the input of the integrator through the gain
1/T;, where the constant T; is called the tracking
time constant. The extra feedback will ensure that
the integral obtains a value so that the controller
output tracks the saturated output. Tracking is
accomplished with the time constant T;. Using
this method of avoiding windup the integral term
becomes

I(t) = %/e(s)d& + %/(u(s) —v(s))ds (3)

To obtain an algorithm that can be implemented
on a computer, the integral term I(t) is differenti-

ated dI(t) K 1
=== —
Tl A VR AU
where e,(t) = wu(t) — v(t). Approximating the
derivative by a forward difference gives

ﬁtiﬂ)xt_[_(tﬁ = %e(tk) + %e'(t")

where h is the sampling period. Finally, by rear-
ranging terms, we get the following equation to
compute the integral term

K.h
e

Htuss) = 1(0) + "2 () + reats) (4

206 -

Derivative Term

A pure derivative should not be implemented,
because the controller gain becomes very large at
high frequency. This leads to amplification of high-
frequency noise. The derivative term is therefore
approximated by

N 8Ty
TaR TE T)
Notice that the approximation is good for signals
whose frequency contents are significantly below
N/Ty. Also notice that the approximating transfer
function has a maximum gain of N. Parameter
N is therefore called maximum derivative gain. In
analog controllers N is given a fixed value, typically
in the range of 5-20.

It is also advantageous not to let the derivative
act on the set point signal. The set point is constant
for most of the time and its derivative is therefore
zero. A step change in the set point may, however,
cause an undesirable jump in the control variable
if the derivative acts on the set point. With these
modifications the derivative term can be written as

Ty dD d
D+#E=—KCT4‘—% (6)
There are several methods to approximate the
derivative. Common methods are the forward dif-
ference approximation, the backward difference
approximation, Tustin’s approximation and ramp
equivalence. See [Astrém and Wittenmark 1990].
These approximations all have the same form

D(tx) = aD(te-1) - b(y(te) = ¥(te-1)) (7)

and are stable only if |a| < 1. The forward differ-
ence approximation is stable if Ty > Nh/2. It thus
becomes unstable for small values of T;. Tustin’s
approximation has the disadvantages that a goes to
1 as T4 goes to zero. This gives a ringing response
for small T,;. The ramp equivalence approximation
gives exact outputs at the sampling instants if the
signal is continuous and piece wise linear between
the sampling instants, but it requires computations
of an exponential. The backward difference approx-
imation gives good results for all values of Ty, The
parameter a goes to zero as Ty goes to zero. Here
the backward difference approximation is chosen.

The following is obtained when Equation (6)
is approximated by a backward difference:

N h
= -K.Ty y(tk) _hy(tk—l)

D(t:) +

Rearranging terms, gives (7) with

Tq

_ K.TyN
=T+ Nh

and b=m

which is the formula that will be used to compute
the derivative term.

The PID Algorithm

Summarizing we find that a practical version of the
PID algorithm can be described by the following
equations:

P(t) = Ke(byp — y(tk))
D(ts) = aaD(ti—1) + ba(y(te-1) — y(te))
v(te) = P(t) + I(tx) + D(tx) ®)
u(t) = f(v(ts))
I(tes1) = I(te) + bi(vep — y(te))
+ b (u(tk) — v(t))

This algorithm has anti-windup reset, limitation of
derivative gain (') and set point weighting (b).

The function f describes the nonlinear charac-
teristic of the actuator. For a linear actuator with
saturation at Umin and Upyg, we have

Umaz if 'U(tk) > Umax
F(v(tr)) = { Umin if V() < Umin 9)

v(tx) otherwise

For actuators with other limitations the function f
should be modified. The parameters a4, b4, b; and
be are related to the primary parameters K., T;,
T4, T; and N at the PID controller as follows:

Y= T I NR
y,_ KNTy
4= T, + Nk (10)
b; = K.h/T: :
b= h/Tt

Since Equations (10) have to be updated only
when the controller parameters are changed, the
code should be organized so that parameters ag4,
bg, b; and b; are computed initially and when the
PID parameters are changed. This will reduce the
computational load during the execution of the
PID algorithm. The structure of the PID algorithm
given by Equation (8) is shown in Figure 1. Notice
that the algorithm is in parallel form.

The PI algorithm

In many cases the derivative action is not neces-
sary. The algorithm then reduces to

P(ti) = Kc(bysp — (k)
v(te) = P(te) + I(tk)
u(te) = F(v(te)) (11)
I(tipr) = T(tk) + b (3ap — (ta))
+ be(u(te) — v(tr))

which is a PI controller with anti-windup reset and
set point weighting (b).

The function f is the same as in Equation (9)
and the parameters b; and b; are related to the
parameters K., T; and T; as follows:

b = K.h/T:

which is the same as Equation (10). The reason for
considering this special case is that PI controllers
are in fact more common than controllers with
derivative action.

Y
Y sp P
) S, |
Y
—_— D
e =Ysp—)
I
Figure 1. Structure of the PID controller with
anti-windup.

207

Table 1. Number of arithmetic operations for PI
and PID control.

PI PID

M A M A
P 2 1 2 1
D 0 0 2 2
v 0 1 0 2
f X X X X
I 2 4 2 4
Tot 4 6 6 9

Operations Count

It is a common practice to estimate computation
times by a simple operation count. This can be
strongly misleading when using fixed point calcu-
lation, because much of the computation time may
be spent on overflow handling and scaling. Table 1
shows the minimum number of multiplications and
additions required for the PID and PI algorithms.
The PID algorithm requires 15 arithmetic opera-
tions, while the PI algorithm requires 10 opera-
tions.

3. Implementation Issues

Implementation of a PID-controller using a DSP
with fixed point will now be discussed. General
practice on implementing algorithms for DSP are
given in [Texas Instruments 1986], [Texas Instru-
ments 1989a), [Texas Instruments 1989b)], [Texas
Instruments 1990a] and [Texas Instruments 1990b).

To perform fix-point calculations it is neces-
sary to know orders of magnitude of all variables.
Simulations were performed to get this informa-
tion. In the simulations the process model

60 = Gy

was used. Figure 2 shows the step response of
the system with parameters K. = 0.6, Ty = 0.5,
T; =22, T, = 0.5, N = 8, and a sampling period
of 0.1 s. At the time ¢ = 0.3 s a load disturbance
of 0.3 V is introduced.

Two C-programs were written to test the ef-
fects of scaling and roundoff. One program imple-
ments the PID controller in double precision arith-
metics with no attempt to simulate the effect of
finite word length. The other program simulates

208

0.7
0.6
0.5
0.4
03 F
02|
0.1 / . I

Figure 2. Step response of the system.

the Texas Instruments DSP by using a 32-bit ac-
cumulator and a 16-bit word length. The effect of
using different resolution of the A/D- and D/A-
converters can also be simulated.

Selection of Sampling Period

There are several rules of thumb for choosing the
sampling period for digital controllers. For a PI-
controller the sampling period is related to the
integration time. A rule of thumb [Astrém and
Wittenmark 1990} is

h

o 0.1-0.3
A PID controller requires a much shorter sam-
pling period. The sampling period should be short
enough so that the pole s = — N /Ty, introduced to
limit the high frequency gain of the derivative, can
be approximated appropriately. This leads to the
following rule of thumb:

hN
T 02-0.6

See [Astrom and Wittenmark 1990].
Integral Offset

Roundoff may give an offset when the integral term
is implemented on a computer with a short word
length. This can be understood as follows. Consider
the equation for the integral term in Equation (8).
The correction term bce(t) = Kch/Ti-e(t) is usu-
ally small in comparison to I(t;) and may there-
fore be rounded off. With fractional arithmetic, the
largest magnitude of the correction term is K .h/T;.
To avoid roundoff, it is therefore necessary to have
a word length of at least

log(K:h/T;)

number of bits = — 1og(2)

More bits are of course required to obtain meaning-
ful values. For example, with h = 0.025, T; =10 s
and K, = 0.1 the number of bits required to obtain
less than 5% error in the integral requires a word
length of at least

_10g(0.0002:0.05) -
log2)

Longer sampling periods for computing the inte-
gral may be used to avoid the offset. This can be
done simply by adding the error over each sam-
pling period and updating the integral term in reg-
ular intervals. Another way to avoid offset due to
roundoff is to store the integral with higher preci-
sion. In most DSPs (like the TMS320xx) values can
be stored in double precision, with little overhead.

number of bits =

Scaling

The PID controller given by Equations (8) is
already in parallel form, with the modules of zero
and first order. Figure 1 illustrates the realization
of the controller. Because of the parallel form, the
P, I and D terms can be scaled and computed
separately and then unified to form v.

Coeflicient Scaling

Because of the wide number range of the param-
eters, some restrictions must be imposed on the
‘magnitude of coefficients. It follows from Equation
(10) that by is the largest parameter. A limit should
therefore be set on the gain K., and the high-
frequency derivative gain N. If K. and N are lim-
ited to 16, we have by < K.N = 256 and K, < 16.
These parameters must therefore be divided by 256
and 16 respectively before they are stored. To re-
store the magnitude of the signal, the derivative
term must be shifted left by 8 bits and the propor-
tional term shifted left by 4 bits.

The other parameters, aq, b; and b; are within
the number range, but because b; and b, may
become very small, it is advantageous to also set a
lower limit on h/T; and h/T;.

Signal Scaling and Saturation Arithmetic

It must be insured that overflow does not occur
when computing the states of the controller. With
the structure of the PID controller shown in Fig-
ure 1 the states are D(t;) and I(fz41). Care must
also be taken so that overflow does not occur when
the P, I and D terms are added to obtain v.

0.6
0.5
0.4r
0.3
0.2k
0.1

-0.1

—-0.2 L ! 1 1 1 1 L
0 5 10 15 20 25 30 35 40

Figure 3. The terms of the PID controller.

The proportional term will always be within
the number range, since the multiplication of a
fraction with a fraction gives a fraction. Overflow
can occur if K. is larger than 1 when the magnitude
of the signal is restored. It is therefore necessary
to use saturation arithmetic when computing the
proportional term.

One additional advantage of using the anti-
windup reset when computing the integral term
is that the integral is within the number range.
Saturation arithmetic is therefore not necessary.
Integration can result in overflow if anti-windup
is not used or if T; is chosen poorly. Saturation
arithmetic should therefore be used before the
integral is stored.

Since the derivative depends only on the pro-
cess output, it is difficult to use analytic scaling
methods effectively. It is easy to predict the worst
possible input, but for most processes that would
be too pessimistic. A good engineering approach is
therefore to simulate the closed loop system and
store the output of the derivative for a few repre-
sentative examples. The derivative should normally
not account for more than 20% of the control sig-
nal. Since by can take large values, saturation arith-
metic should be used before storing the derivative.
A number of simulations were made in order to
obtain typical orders of magnitude of the propor-
tional, integral and derivative term. It turns out,
that under normal operation conditions, the vari-
ables are within the number range. Since we are
allowing a gain larger than one, it is very likely
that an overflow will occur under some operation
condition, for example during start-up. Saturation
arithmetic is therefore used on both states and on
the control signal v. Figure 3 shows Simnon plots
of the P, I and D terms for step response and load
disturbances, for the process and the controller pre-
viously used.

209

Gain, Input and Qutput Scaling

To implement a high gain (K. > 1) one can
either include the gain in the digital algorithm
or move the gain “outside” of the DSP by using
a linear amplifier. The advantage of the latter
approach is that the control algorithm can be
scaled to eliminate the danger of overflow and
therefore avoiding the large overhead associated
with saturation arithmetic. This gives a shorter
code and a faster controller. But there is also a
disadvantage. Under normal steady-state operation
the error is small and any changes in the control
signal will be a relatively small part of the whole
dynamic range. A change in the control signal of
one quantization step will be amplified, resulting
in a large jump. It may also give rise to limit
cycles. When a high gain is incorporated in the
DSP code, saturation arithmetic must be used on
internal calculations.

4. Quantization Effects

Issues related to the interfacing of the DSP to the
plant will now be considered. The key questions
are related to quantization of A/D- and D/A-
converters .

Quantization of the Set-Point Value

When implementing the controller the set point
should be quantized in the same way as the
controller input. That is, the set-point value should
either be read through the same, or a similar, A/D-
converter as is used for the input signal (if A/D-
converter is being used) or quantized internally by
using the same resolution as of the A/D-converter.
If this is not done there may be an offset or a
limit cycle due to the quantization. Figure 4 shows
the result of a simulation, when a 6-bits A/D-
converter is used for the input signal but the set-
point value of 0.455 V is represented with a 16-
bit accuracy. The system goes into a limit cycle
with a period of 6.77 seconds and an amplitude
of 3.8 mV. The reason for this is that the set-
point value of 0.455 V can not be represented by
the 6-bits A/D-converter. In steady-state the error
between the process output and the set-point value
will be either 17.5 mV or -13.8 mV. This error
will be summed up by the integrator, resulting in
a limit cycle.

210

20 25 30 35 40

Figure 4. Limit cycles due to high resolution of
the set point.

Because the limit cycle is very close to a si-
nusoid it is reasonable to assume that the period
and the amplitude of the limit cycle can be pre-
dicted by using describing function analysis. Since
the system is in steady-state and the oscillation
corresponds to one quantization step of the A/D-
converter, we can assume a zero set-point value and
model the A/D-converter by a relay nonlinearity
centered around zero with the quantization limits
+0.00157 and —0.00157. The describing function for
this nonlinearity is

2¢ _ 0.0199

NA) ==

where a is the amplitude of the input signal and ¢/2
is half the quantization step. The calculations are
simplified if the digital PID-controller is approxi-
mated by a continuous-time PI-controller with the
transfer function

K
Gc(s) =K+E

where K = 0.6 and T' = 2.2. Possible limit cycle is
given by the equation

1+ Y(4)L(jw) = 0
Which is equivalent to

-1

L) = 30y

(13)

where L is the loop transfer function of the con-
troller and the process, in cascade, i.e.

K +TKs

Since the describing is real-valued, one simply has
to find the intersection of L(jw) with the negative
real axis. When jw is substituted for s in Equation
(14) we get, after separating the real and the
imaginary part

K (4(0) + iB())
T (4wt — 4w?)? + (w5 — 6wd + w)? (15)

L(jw) =

where A = T(w® — 6w? + w?) + 4w* — 4w? and
B = T(4w® — 4w®) — w® + 6w® — w). The problem
is therefore reduced to finding the frequency where
the imaginary part is zero, i.e.

7.80* — 28w -1=10 (16)

The equation has one positive real root w = 0.7616,
which corresponds to a limit-cycle period of 8.25 s.
This is longer than the period T = 6.77 s, obtained
in the simulation. The amplitude of the limit cycle
is then determined by solving Equation (13) for
w = 0.7616, which gives a = 5.6 mV. The value
a = 3.8 mV was obtained in the simulation.

A/D- and D/A-Conversion

If the controller is interfaced to the plant by A/D-
and D/A-converters the effect of the resolution
of the converters has to be determined. Figure 5
shows the result of one of several simulations where
the A/D-converter has a higher resolution than the
D/A-converter. A limit cycle was observed in those
simulations. Because of the higher resolution of
the A/D-converter, the controller produces control
signals which are not representable by the D/A-
converter. This results in an oscillation over one
quantization step of the D/A-converter. This phe-
nomenon can also be predicted by using describing
function analysis, where we assume a zero set-point

0.46 T T T T T

0.455 - 4

0.44 1 1 1 1 1

0.46 T T T T T

0.455 + .

0.45]

0.445 - -
1 1 1 i 1

0‘4420 25 30 35 40 45 50

s

Figure 6. Response with a 8-bit A/D and a 10-
bit D/A.

value and the D/A-converter is approximated by a
relay. The problem can be avoided by replacing the
function f given by Equation (9) by a function that
also models the roundoff in the D/A-converter.

Figure 6 shows a good result when an 8-
bit A/D-converter and a 10-bit D/A-converter is
used when a step input of 0.45 V is applied.
These observations indicate that using a D/A-
converter with a lower resolution than the A/D-
converter may give rise to a limit cycle. It should
be emphasized that there are of course many other
factors which may be responsible for limit cycles.
There are also many other factors that influence
the selection of the resolution of the A/D- and
D/A-converters, e.g. the required accuracy of the
system.

Simulations also showed that a very low res-
olution (down to 4-bits) of the converters did not
have much effect on the step response of the sys-
tem. The accuracy of the system is, of course, less
with low resolution converters. Figure 7 shows the
response of the same system when a load distur-
bance of 0.3 V is introduced at t = 20 s.

20 25 30 35 40 45 50

Figure 5. Response with a 10-bit A/D and a 8-
bit D/A.

Figure 7. Same as Figure 6 but with a load
disturbance.

211

5. The DSP-Code

To develop and test assembly code of the PID-
controller on the Texas Instruments Family of
DSPs the Texas Instruments Software Develop-
ment System (SWDS) was used. This system con-
sists of a PC-board with a TMS320C25 signal pro-
cessor. and PC development environment, which
has many features. It is possible to set break-points
and single-step through the program. One useful
feature is the possibility to specify an input file (or
files) to the DSP and to direct the output (or out-
puts) of the DSP to an output file. This feature
makes it easy to test an algorithm, since a prede-
fined input signal can be fed to the controller to
test its open loop response.

Programs for PI- and PID-controllers were
written for the signal processors TMS32010 and
TMS320C25. The complete codes are given in
Appendices A, B, C and D. The code for the PID-
controller is organized in the following way:

INITIALIZE
load constants from program memory
to data memory
clear variables
load y(n-1) and ysp
reset external devices (f.ex. analog board)
PID
wait for input y(n)
compute derivative (D)
round off, check for overflow and store D
compute proportional part (P)
add D, P and I
round off, check for overflow and store in v(n)
compute u(n) from saturation function
output u(n)
compute I
check for overflow and store I
in double precision

GOTO PID

The code for the Pl-controller is obtained by
deleting the computations of the D-term.

Initialization

After reset the program jumps into the initial-
ization routine. This part disables interrupts, sets
overflow mode and loads coefficients from program
memory (where they are stored permanently) into
data memory. Then the states of the controller are

212

cleared, the set point value (ysp) is read from PA3
and the process output (y(n — 1)) from PAO. By
filling up the y-vector before entering the PID loop
a jump due to the derivative is avoided. The pro-
gram then goes into an infinite loop, to compute
the control signal.

PID Calculations

The magnitude of the coefficient b3 of the deriva-
tive term is less than 256. To represent it in the
DSP it must be scaled by dividing by 256. This can
be done by shifts. Before the derivative is stored it
is therefore Shifted left by 9 bits (8 bits plus one
left shift to account for the extra sign bit which is
generated in the multiplication).

The largest proportional gain is 16. The pro-
portional term is therefore divided by 16. It was
advantageous also to divide the D and I terms by
16 and restore the signal after the control signal v
has been calculated. The same saturation, round-
ing and shifting can then be applied to both the
derivative term and the control signal. Since the
derivative must be divided by 16 before it is added
to the proportional part, it is advantageous to store
aq divided by 16. A little trick was used to calculate
the correct derivative. After agD(t,—1) has been
calculated and stored in the accumulator the term
ba(y(te—1) — y(tr)) is calculated, and the result is
stored in the P register. The value of the P register
is then added 16 times to the accumulator to form
the correct derivative divided by 16. By doing this
in overflow mode, overflow results in saturation of
the accumulator. This would not be the case if the
value in the accumulator were simply shifted left.
With the TMS320C25 adding is easily done using
the repeat instruction. After these calculations the
derivative is in the accumulator. The proportional
term is then added to the accumulator to obtain
(P+D)/16. In this way the proportional term does
not have to be stored separately.

, To obtain the output v, the integral computed
previously is divided by 16 by shifting the value
right 4 bits. It is then added to P+D in the accu-
mulator. The output then goes through the satura-
tion arithmetic. It is rounded and shifted before it
is stored as a 16-bit number. The saturation func-
tion f is called to form the final output w.

Since the control signal u depends on the inte-
gral from the previous sample, it can be converted
to analog form before the integral is updated. This
shortens the computational delay between the A/D

Table 2. Cycle count and maximum sampling
frequency for PI- and PID-controllers.

PI PID
DEVICE cy ‘les KHsz cycles KHs
TMS32010 94 53 145 34
TMS320C14 94 66 145 43
TMS320C25 89 112 141 70

and D/A-conversions. To avoid integral offset, the
integral is computed and stored in double preci-
sion. Saturation arithmetic is performed before it
is stored, although it is actually not necessary if
proper anti-windup is used.

With the chosen method of organizing the
calculations the P, D and I terms are added, to
form v, with a precision of 27 bits. The terms D
and v are then stored with a precision of 16 bits
and the integral is calculated and stored with a
precision of 31 bits.

Saturation Arithmetic. Before the derivative
or the control signal v is stored in memory as a 16-
bit value, it must by shifted left by 5 bits, because
the signal is divided by 16 in internal calculations
and an additional left shift must be performed to
account for the extra sign bit generated in the mul-
tiplication. The value is rounded and checked for
overflow before shifting it. If overflow is detected,
the value is replaced by the largest positive or neg-
ative number.

Set-Point Value. The set point is read via
interrupt. This interrupt is disabled when the
control value is computed, but is allowed for a short
period, before the next process output is read.

Computation Time

By using the timer on the TMS320C25 it was pos-
sible to count the cycles required for one execution
of the PID (or PI) loop. To find the number of
cycles required for one execution of the TMS32010
(TMS320C14) code, a simple cycle count was done.
In all instances it is assumed that the internal
memory of the DSPs are used.

Table 2 shows the number of cycles for each
controller and the maximum sampling frequency
which can be used. From this table we see that the
calculation of the derivative consumes a large por-
tion of the total cycles, approximately 50%. The
reason for this is that the shifting and saturation
arithmetic on the derivative is complicated, be-
cause the coefficients of the controller are scaled

Table 3. Cycles count for different parts of the
PID-controller.

TMS32010 TMS320C25

OPERATION cycles cycles
Derivative 9 9
-" . srss 43 45
Proportional 7 7
Integral shifting 12 8
sIss on v 23 23
anti-windup 12 12
Integral 15 - 13
Integral s.a. 10 10
I/O and other 14 14
Total 145 141

srss = saturation, round, shift, store
s.a. = saturation arithmetic

differently. If the coefficients would all have the
same upper limit the same scaling constant could
be used and the shifting and saturation arithmetic
would be simpler and faster. Table 3 shows how
the cycles are divided between different functions of
the algorithm. Notice that the division is somewhat
arbitrary, because it is not obvious when one op-
eration begins and the other ends. The saturation
arithmetic-, rounding- and shifting-function used
on the derivative and the output v uses 19 cycles,
the saturation arithmetic on the integral uses 10
cycles and the anti-windup function uses 12 cycles.

Notice that the code must be modified if K,
and N are to be larger than 16. Also notice that
the code can be improved if the parameters of
the controller can be limited to smaller ranges.
For specific applications, where tighter bounds on
parameters and controller states are available, the
code can be shortened drastically by removing
saturation arithmetic and by simplifying scaling.

It is interesting to note that a crude time
estimate, based on the operation count in Table 1,
underestimates the computation time by an order
of magnitude.

6. Testing

To obtain high quality code it is necessary to
develop good testing procedures. The DSP code for
the PI and PID controllers were tested by simple
laboratory experiments to verify that the controller
worked as a proper PID controller. To ensure that
the code gives the correct numerical results, the
following procedure was introduced. Since a PID

213

0.2 T T T T T T T

-0.1
~0.2
-0.3
-0.4
-0.5
-0.6
—0.7 1 ' 1 I ! s '

Figure 8. Test of the proportional and integral
actions.

0.2 -

0.1F = =

Figure 9. Test of the derivative action.

controller is a dynamical system, its behavior can
be tested by computing its response to given input
data with known responses. The test can easily
be automated by storing the data in files. This
was easily done using the facilities in the Texas
Instrument Software Development System. This
section describes how the testing was done. The
parameters used were K = 0.6, Ty = 0.5, T; = 2.2,
T, = 0.5 and N = 8. Parameters aq, bg, b; and b;
were calculated by assuming a sampling period of
0.1s. .
To test proportional and integral action a
symmetrical square wave with a period of 40 s
and an amplitude of 0.1 V was used as an input
sequence. To get a simple case the parameters of
the derivative term were set to zero (which is really
not necessary, since the derivative dies out very
quickly). This sequence can therefore also be used
to test a PI controller. Figure 8 shows the input
and the resulting output. For a constant input the
output of the controller at the time ¢ should be

tK.
u(t) = T

With I(0) = 0 the output should be equal to
—0.6055 V after 20 seconds. The line y = —0.6055

e+ I(0) + Kce

214

|1
| o9
-0 o
y/
F Y

% T

0 5 10 15 20 25 30 35 40

Figure 10. Test of the saturation arithmetic.

0.3 T T T T T

02} i
0.1t (-

0
01 P / C-

—02} .

—0.3 ! ! 1 1
0 10 20 30 40 50 60

s

Figure 11. Test of the anti-windup.

is also drawn in Figure 8 indicating that the
proportional and the integral term work properly.

To test the derivative action two impulses,
lasting one sampling period, of magnitude -0.1 V
and +0.1 V where applied to the input at the time
t =1 sec. and t = 3 sec. Figure 9 shows the result.
The formula for the derivative term is

D(tx) = aaD(ti-1) + ba(y(te-1) — y(tk))

If an impulse of magnitude 0.1 V is applied to the
derivative we get the sequence: —0.2446, 0.1136,
0.0437, 0.0168, 0.0065,.... The first numbers of
this sequence are also plotted on the Figure 9,
showing that the derivative action works properly.
The small error in the beginning of the second
response is due to the integral of the first impulse.
This integral is canceled out by the second impulse
resulting in a final output equal to zero. To test the
saturation arithmetic the amplitude of the input
square wave was increased to 0.7 V. Figure 10
shows good results. When the output reaches
the limit it is saturated without causing overflow
oscillations. Finally, Figure 11 shows the result
when the anti-windup reset function is used to limit
the output to £0.3 V. All versions of the PI- and
PID-controller were tested by using these input

sequences. Once a correct set of output files have
been obtained one can test modified algorithms
simply by comparing the output files, either by
plotting the output or by using a file-compare
program.

Other testing procedures were also developed
using ideas similar to the ones described above.

7. Conclusions

This paper has given algorithms for high quality
PI and PID controllers with features like set-point
weighting, limitation of derivative gain and anti-
windup. It has also been demonstrated how the
code can be implemented on a DSP using fix-point
calculations. Such an implementation necessarily
requires some a priori knowledge of signal and pa-
rameter ranges. This means that the code given
here only works well in cases that fit the assump-
tions made.

We have attempted to describe our reasoning
in sufficient detail so that the code can be easily
adapted to other situations. Some test procedures
that we have found useful are also presented. The
performance estimates show that PI controller can
be executed at 53 kHz on a TMS32010 and at
112 kHz on a TMS320C25.

8. References

Astrém, K. J., and T. Hagglund (1988): Auto-
matic Tuning of PID Controllers, ISA, Research
Triangle Park, NC.

Astrdom, K. J., and B. Wittenmark (1990): Com-
puter Controlled Systems — Theory and Design,
Second edition, Prentice-Hall, Englewood Cliffs,
NJ.

Deshpande, P. B., and R. H. Ash (1981): Com-
puter Process Control, ISA, Research Triangle
Park, NC.

Texas Instruments (1986): Digital Signal Process-
ing Applications with the TMS320 Family — The-
ory, Algorithms, and Implementations, Digital
Signal Processing, Semiconductor Group.

Texas Instruments (1989a): TMS320Cix /
TMS320C2x — User’s Guide, Digital Signal Pro-
cessor Products.

Texas Instruments (1989b): TMS320 Family De-
velopment Support — Reference Guide, Digital
Signal Processor Products.

Texas Instruments (1990a): Digital Signal Process-
ing — Applications with the TMS320 Family,
Application book volume 3, Digital Signal Pro-
cessor Products.

Texas Instruments (1990b): TMS320C3x — User’s
Guide, Digital Signal Processor Products.

215

Appendix A: PI-Controller for TMS32010

; PI Controller for TMS32010 Version 1.0
; Author: Hermann Steingrimsson
; Date: 3-26-1990

.
’

3

; RESERVE SPACE IN DATA MEMORY FOR CONSTANTS AND VARIABLES

.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
DTend .bss

HTE1,1 ;Temporary storages
LTE1,1

HTE2,1

LTE2,1

IH,1 ;Integral high
IL,1 ;Integral low
KC,1 ;Coeff for P
KCB,1

BI,1 ;Coeff for I
BT,1

UMAX,1 ;Maximum output
UMIN,1 ;Minimum output
MODE, 1 ;Extra constant
CLOCK,1 ;Sampling rate
ONE, 1 ;One '
MAXNUM, 1 ;Maximum number
MINNUM, 1 ;Minimum number
MINUS,1 ; FFFF

;End of parameters in data memory

.bss
.bss
.bss
.bss
.bss
.bss

YN,1 ;y(n)

YNM1,1 ;y(n-1)

YsP,1 ;¥ set point

UN,1 ;Output

VN,1 ;Output before £

STAO,1 ;Space to store status register

;Begin program memory

.sect
B
B

"IRUPTS"
START ;Branch to start of program
ISR ;Interupt service routine

;Store parameters in program memory

.data
Ptable .set

.word

.word
Ptend .set
SCALE .set

216

$
1229,1229,894,6554,9830,-9830,1,1,1,32767,-32768
-1

$-1

15

PI Controller for TMS32010

;Initialize
.text

START DINT
NOP
SOVM

Version 1.0

;Disable interupts

;Set overflow mode

;Load coeff from prog. mem to data mem. use TBLR (not BLKP) for 1. generation

;devices

LARK
LARK
LACK
LOAD LARP
TBLR
SUB
BANZ

ARO,DTend
AR1,Ptend-Ptable
Ptend

ARO

*-,AR1

ONE

LOAD

;Initialize variables

LDPK
ZAC

SACL
SACL

IH

IH
IL

OUT MODE,PA4
OUT CLOCK,PAS

WAITL BIOZ
B
GET1 IN
WAIT2 BIOZ
B
GET2 IN
;Begin PI
WAIT BIOZ
B
GET IN
ZAC
;P-section
LT
MPY

GET1
WAIT1
YSP,PA3

GET2
WAIT2
YNM1,PAO

GET
WAIT
YN,PAO

YSP
KCB

;ARO points to end of data block
;Counter

;Beginning address in program memory
;Point to ARO =

;Move, decr. ARO and point to AR1
;Subtract one from accumulator

;AR1 not O then decr. AR1 and branch
;=> Coeff loaded into data memory

;Point to correct data page
;Clear variables

;Init analog board

;Load ysp

;Load y(n-1)

;Wait for input

;Clear accumulator

;y(n) * KCB

217

PI Controller for TMS32010 Version 1.0

LTA
MPY
SPAC

SACH
SACL

ZALH
ADDS
SACH
SACL
LAC
SACH
LAC
XOR
AND
ADD

ADDS
ADDH

LARK
LARP
CALL

CALL
ouT

;I-section

218

ZAC
LT
MPY

LTA
MPY
SPAC

LT
MPY

LTA
MPY
SPAC

ADDS
ADDH

N ;acc = y(n)*KCB - ysp*KC
KC

HTE1 ;Store P temporarily
LTE1

IH ;Shift integral right 4
IL

HTE2

LTE2

LTE2,12

LTE2

MINUS,12

MINUS

LTE2

HTE2,12 ;I in acc rigth shifted 4

LTE1 ;Add P to acc to form P + I
HTE1

ARO,VN ;Point ARO to VN
ARO
ROUGF4 ;Round off and overflow check

FUNCT ;Actuator saturation function
UN,PA1 ;0utput control signal

YSP
BI

BI

BT
BT

IL ;Add old I with double precision

Page 3

PI Controller for TMS32010 Version 1.0

SACH
. SACL

BLZ
SUB
BLEZ
LAC
SACH
SACL
B

INEG SUB
BGEZ
LAC
SACH
SACL

0UT4 NOP
NOP
NOP
NOP
NOP

0UT5 EINT
NOP
NOP
DINT
B

;Rounding and

ROUOF4 BLZ
ADD
SACH
SACL
SUB
BLEZ
ZALS
SACL
RET

RNEG ADD
SACH
SACL
SUB
BGEZ
ZALS
SACL
RET

IH
IL

INEG
MAXNUM,SCALE
0UT4
MAXNUM,SCALE
IH

IL

0UTS

MINNUM, SCALE
0UT4
MINNUM,SCALE
IH

IL

OUTS

WAIT

overflow function

RNEG
ONE,SCALE-5
HTE1

LTE1

MAXNUM, SCALE-4
RNO

MAXNUM

*

ONE,SCALE-5
HTE1

LTE1
MINNUM,SCALE-4
RNO

MINNUM

*

;Store integral

;0verflow check (10 instr. cycles)

;Subtract maximum pos. number
;If acc <= 0 then no overflow
;else store maximum number

;Subtract maximum neg number
;If acc >= 0 then no overflow
;else store minimum number

;Enable interupt

;Disable interupt
;Loop again

(11 cycles)

;Check if number negative
;Round
;Store value

;Subtract scaled max pos number
;If acc <= 0 then no overflow
;else store max num

;Round
;Store value

;Subtract scaled min neg number
;If acc >= 0 then no overflow
;else store min neg number

219

PI Controller for TMS32010 Version 1.0

RNO ZALH HTE1 ;Shift number left 4 before store
ADDS LTE1
SACH HTE1,4
SACL LTE1
ZALH LTE1
SACH LTE1,4
ZALH HTE1
ADDS LTE1
SACH *,16-SCALE
RET

;Saturation function (14 instr. cycles)

FUNCT ZALH VN ;Load VN
SUBH UMIN
BLZ LOWER1 ;Branch if v < umin
ZALH VN
SUBH UMAX
BLZ SAME ;Branch if v < umax
B HIGHER 3V >= umax

LOWER1 ZALH UMIN

SACH UN ;u = umin

NOP ;Always same time
NOP

NOP

NOP

NOP

NOP

RET

SAME ZALH
SACH
Nop
NOP
RET

gs

]
<

u

HIGHER ZALH UMAX
SACH UN H'
RET

é

;Interupt service routine. To read set point value

ISR SST STAO ;Save status
IN YSP,PA3 ;Load ysp
LST STAO ;Restore status
RET . ;Return
.enda

220

Appendix B: PI-Controller for TMS320C25

PI Controller for TMS320C25 Version 1.0
Author: Hermann Steingrimsson
Date: 3-26-1990

we we we we

; RESERVE SPACE IN DATA MEMORY FOR CONSTANTS AND VARIABLES
.bss HTE1,1 ;Temporary storages
.bss LTE1,1
.bes HTE2,1
.bss LTE2,1

.bss IH,1 ;Integral high
.bss IL,1 ;Integral low
.bss KC,1 ;Coeff for P
.bss KCB, 1
.bss BI,1 ;Coeff for I
.bss BT,1
.bss UMAX,1 ;Maximum output
.bss UMIN, 1" ;Minimum output
.bss MODE, 1 ;Extra constant
.bss CLOCK,1 ;Sampling rate
.bss ONE,1 ;One
.bss MAXNUM, 1 ;Maximum number
.bss MINNUM, 1 ;Minimum number
DTend .bss MINUS,1 ; FFFF

;End of parameters in data memory

.bss YN,1 ;y(n)

.bss YNM1,1 ;y(n-1)

.bss Ysp,1 ;y set point

.bss UN,1 ;Output

.bss VN,1 ;Output before f

.bss STAO,1 ;Space to store status register

.bss STA1,1
;Begin program memory

.sect "IRUPTS"
B START ;Branch to start of program
B ISR ;Interupt service routine

;Store parameters in program memory

.data

Ptable .set $
.word 1229,1229,894,6554,9830,-9830,1,1,1,32767,-32768
.word -1

Ptend .set $-1

SCALE .set 15

221

PI Controller for TMS320C25

;Initialize

START

.text

DINT
NOP
SOVM
SSXM
SPM

0

Version 1.0

;Disable interupts

;Set overflow mode
;Set sign-extension mode
;No shifting from P register

;Load coeff from prog. mem to data mem.

LOAD

LRLK
LARK
LALK
LARP
TBLR
SUBK
BANZ

ARO,DTend
AR1,Ptend-Ptable
Ptend

ARO

*-,AR1

1

LOAD

;Initialize variables

;WAIT1 BIOZ
H B
GET1 IN
;Begin PID
;WAIT BIOZ
H B
WAIT IN
;P-section
LT
MPY
LTP
MPY
SPAC

222

LDPK
ZAC

SACL
SACL

IH

IH
IL

OUT MODE,PA4
0UT CLOCK,PAS

GET1
WAIT1
YSP,PA3

GET
WAIT
YN,PAO

YSP
KCB

KC

;ARO points to end of data block
;Counter

;Beginning address in program memory
;Point to ARO

;Move, decr. ARO and point to AR1
;Subtract one from accumulator

;AR1 not O then decr. AR1 and branch
;=> Coeff loaded into data memory

;Point to correct data page
;Clear variables

;Init analog board

;Load ysp

;Wait for input

;Change WAIT to GET when ; are removed

;y(n) * KCB

;acc = y(n)*KCB - ysp*KC

PI Controller for TMS320C25 Version 1.0

SACH
SACL

ZALH
ADDS
SFR
SFR
SFR
SFR

ADDS
ADDH

LRLK
LARP
CALL

CALL
0uT

;I-section

LT
MPY

LTP
MPY

LTS
MPY

LTA
MPY
SPAC

ADDS
ADDH

SACH
SACL

BLZ
SUB
BLEZ
LAC
SACH
SACL

HTE1
LTE1

IH
IL

LTE1
HTE1

ARO,VN
ARO
ROUOF4

FUNCT
UN,PA1

YSP
BI

BI

BT

BT

IL
IH

IH
IL

INEG

MAXNUM, SCALE
0UT4
MAXNUM,SCALE
IH

IL

0UTS

;Store P

;Shift integral right 4
;because coeff of P where

;Add P to acc to form P +

;Point ARO to VN

divided by 16

I

;Round off and overflow check

;Actuator saturation funct
;0utput control signal

;Add old I with double pre

;Store integral

;0verflow check (10 instr.

ion

cision

cycles)

;Subtract maximum pos. number

;If acc <= 0 then no overf
;else store maximum number

low

223

PI Controller for TMS320C25

INEG SUB
BGEZ
LAC
SACH
SACL
B
0UT4 NOP
NOP
NOP
NOP
NOP
EINT
NOP
NOP
DINT
B

0UTS

MINNUM,SCALE
0UT4
MINNUM,SCALE
IH

IL

0UTS

WAIT

Version 1.0

;Subtract maximum neg number
;If acc >= 0 then no overflow
;else store minimum number

;Enable interupt

;Disable interupt
;Loop again

; Rounding, overflow and shifting function (13 cycles)

ROUOF4 BLZ
ADD
SACH
SACL
SUB
BLEZ
ZALS
SACL
NOP
RET
RNEG ADD
) SACH
SACL
SUB
BGEZ
ZALS
SACL
NOP
RET
RNO ZALH
ADDS
SACH
RET

;Saturation function (12 instr.

224

RNEG
ONE,SCALE-5
HTE1

LTE1
MAXNUM,SCALE-4
RNO

MAXNUM

*

ONE,SCALE-5
HTE1

LTE1
MINNUM,SCALE-4
RNO

MINNUM

*

HTE1
LTE1
*,5

;Check if number negative
;Round
;Store value -

;Subtract scaled max pos number

;If acc <= 0 then no overflow
;else store max num

;Round
;Store value

;Subtract scaled min neg number
;If acc >= 0 then no overflow
;else store min neg number

;Shift number left 4+1 before store

cycles)

PI Controller for TMS320C25 Version 1.0

FUNCT ZALH VN ;Load VN
SUBH UMIN
BLZ LOWER1 ;Branch if v < umin
ZALH VN
SUBH UMAX
BLZ SAME ;Branch if v < umax
ZALH UMAX ;V >= umax
SACH UN ;u = umax
RET

LOWER1 ZALH UMIN
SACH UN ;u = umin
NOP ;Alvays same time
NOP
NOP
NOP
RET

SAME ZALH VN
SACH UN ;u
RET

[]
<

;Interupt service routine. To read set point value

ISR SST STAO ;Save status
SST1 STA1
IN YSP,PA3 ;Load ysp
LST STAO ;Restore status
LST1 STA1
RET ;Return
.enda

225

Appendix C: PID-Controller for TMS32010

; PID Controller for TMS32010 Version 1.0

; Roundoff Corrected

; Hermann Steingrimsson
; Date: 3-26-1990

; ad and Kc must be divided by 16 before stored
; bd must be divided by 256 before storage

; RESERVE SPACE IN DATA MEMORY FOR CONSTANTS-AND VARIABLES

.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
.bss
DTend .bss

HTE1,1
LTE1,1
HTE2,1
LTE2,1
IH,1
IL,1
DH,1
KC,1
KCB,1
BI,1
BT,1
BD,1
AD,1
UMAX,1
UMIN, 1
MODE, 1
CLOCK,1
ONE, 1
MAXNUM, 1
MINNUM, 1
MINUS,1

;Temporary storages

;Integral high
;Integral low
;Derivative high
;Coeff for P

;Coeff for I
;Coeff for D

;Maximum output
;Minimum output
;Extra constant
;Sampling rate

;One

;Maximum number
;Minimum number
;FFFF

;End of parameters in data memory

.bss
.bss
.bss
.bss
.bss
.bss

N, 1
YNM1,1
YSP,1
UN,1
VN,1
STAO,1

;Begin program memory

.sect
B
B

"IRUPTS"
START
ISR

;y(n)

;y(n-1)

;¥ set point

;Output

;Output before f

;Space to store status register

;Branch to start of program
;Interupt service routine

;Store parameters in program memory

226

PID Controller for TMS32010 Version 1.0

.data
Ptable .set
.word
.word
Ptend .set
SCALE .set
;Initialize
.text
START DINT
NOP
SOVM

;Load coeff from prog. mem to data mem. use TBLR (not BLKP) for 1. generation

;devices

LARK
LARK
LACK
LOAD LARP
TBLR
SUB
BANZ

$
1229,1229,894,6554,236,788,9830,-9830,1,1,1,32767,-32768
-1

$-1

15

;Disable interupts

;Set overflow mode

ARO,DTend ;ARO points to end of data block
AR1,Ptend-Ptable ;Counter

Ptend ;Beginning address in program memory
ARO ;Point to ARO
*- AR1 ;Move, decr. ARO and point to AR1
ONE ;Subtract one from accumulator
LOAD ;AR1 not 0 then decr. AR1 and branch

;=> Coeff loaded into data memory

;Initialize variables

LDPK IH ;Point to correct data page
ZAC ;Clear variables

SACL 1IH

SACL IL

SACL DH

0UT MODE,PA4 ;Init analog board

0UT CLOCK,PAS

WAITL BIOZ
B

GET1 IN

WAIT2 BIOZ
B

GET2 IN

;Begin PID

WAIT BIOZ
B

GET1 ;Load ysp
WAIT1
YSP,PA3

GET2 ;Load y(n-1)
WAIT2
YNM1,PAO

GET ;Wait for input
WAIT

227

PID Controller for TMS32010 Version 1.0

GET

IN

;D-section

ZALH
SUBH
SACH
DMOV

LT
MPY
PAC

LT
MPY

APAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC
APAC

SACH
SACL
LARK
LARP
CALL
ZALH
ADDS

;P-section

228

LT
MPY

LTA
MPY

IN,PAO

YNM1

HTE1
N

DH

HTE1
BD

© O NG DN e

e we we we we we
[N
= O

;12

.
[I S)

HTE2
LTE2
ARO,DH
ARO
ROUOF4
HTE2
LTE2

YSP
KCB

KC

;Change WAIT to GET when ; are removed

;y(n-1) - y(n)

;Store difference
;Copy YN into YNM1

;ad*D (ad was divided by 16)

;difference * bd

;Since bd was divided by 256, bd*diff is
;added 16 times to the accumulator to
;form D divided by 16. By doing this the
;overflow mode will take care of overflow

;Store derivative
;Point to DH

;Check for overfl. shift and store
;Restore the derivative

;y(n) * KCB

;acc = y(n)*KCB - jsp*KC

PID Controller for TMS32010 Version 1.0
SPAC

SACH HTE1 ;Store P + D
SACL LTE1)

ZALH IH ;Shift integral right 4
ADDS IL

SACH HTE2

SACL LTE2

LAC LTE2,12

SACH LTE2

LAC MINUS,12

XOR MINUS

AND LTE2

ADD HTE2,12 ;I in acc right shifted 4

ADDS LTE1 ;Add P + I to acc to form P + I + D
ADDH HTE1

LARK ARO,VN ;Point ARO to VN
LARP ARO
CALL ROUOF4 ;Round off and overflow check

CALL FUNCT ;Actuator saturation function
0UT UN,PA1 ;Output control signal

;I-section

ZAC

LT YSP

MPY BI

LTA YN

MPY BI

SPAC

LT UN

MPY BT

LTA VN

MPY BT

SPAC

ADDS IL ;Add old I with double precision
ADDH IH

SACH 1IH ;Store integral
SACL IL

229

PID Controller for TMS32010 Version 1.0

BLZ
SUB
BLEZ
LAC
SACH
SACL
B
INEG SUB
BGEZ
LAC
SACH
SACL
B
0UT4 NOP
NOP
NOP
NOP
NOP
EINT
NOP
NOP
DINT
B

INEG
MAXNUM,SCALE
o0uT4
MAXNUM,SCALE
IH

IL

0UTS

MINNUM,SCALE
0UT4
MINNUM,SCALE
IH

IL

0UTS

WAIT

;0verflow check (10 instr. cycles)
;Subtract maximum pos. number

;If acc <= 0 then no overflow
;else store maximum number

';Subtract maximum neg number
;If acc >= 0 then no overflow
;else store minimum number

;Enable interupt

;Disable interupt
;Loop again

; Rounding, overflow and shifting function (19 cycles)

ROUOF4 BLZ
ADD
SACH
SACL
SUB
BLEZ
ZALS
SACL
NOP
NOP
NOP
NOP
NOP
NOP
NOP
RET
RNEG ADD
SACH
SACL
SUB

230

RNEG
ONE,SCALE-5
HTE1

LTE1
MAXNUM,SCALE-4
RNO

MAXNUM

*

ONE,SCALE-5
HTE1

LTE1
MINNUM,SCALE-4

;Check if number negative
;Round
;Store value

;Subtract scaled max pos number

;If acc <= 0 then no overflow
;else store max num

;Round
;Store value

;Subtract scaled min neg number

PID Controller for TMS32010 Version 1.0

BGEZ
ZALS
SACL
NOP
NOP
NOP
NOP
NOP
NOP
NOP
RET

RNO ZALH
ADDS
SACH
SACL
ZALH
SACH
ZALH
ADDS
SACH
RET

RNO ;If acc >= 0 then no overflow
MINNUM ;else store min neg number
*

HTE1 ;Shift number left 4 before store
LTE1

HTE1,4

LTE1

LTE1

LTE1,4

HTE1

LTE1

*,16-SCALE

;Saturation function (12 instr. cycles)

FUNCT ZALH
SUBH
BLZ
ZALH
SUBH
BLZ
ZALH
SACH
RET

LOWER1 ZALH
SACH
NOP
NOP
NOP
NOP
RET

SAME ZALH
SACH
RET

VN ;Load VN

UMIN

LOWER1 ;Branch if v < umin
VN

UMAX

SAME ;Branch if v < umax
UMAX ;V >= umax

UN ;U = umax

UMIN

UN ;u = umin

;Always same time

VN

;Interupt service routine. To read set point value

Page 6

231

PID Controller for TMS32010 Version 1.0

ISR SST STAO ;Save status
IN YSP,PA3 ;Load ysp
LST STAO ;Restore status
RET ~ ;Return
.end=z ‘

232

Appendix D: PID-Controller for TMS320C25

; PID Controller for TMS320C25
; Roundoff Corrected

; Author: Hermann Steingrimsson
; Date: 3-26-1990

; ad and Kc must be divided by 16 before stored
; bd must be divided by 256 before storage

; RESERVE SPACE IN DATA MEMORY FOR CONSTANTS AND VARIABLES
.bss HTE1,1 ; Temporary storages
.bss LTE1,1
.bss HTE2,1
.bss LTE2,1

.bss IH,1 ;Integral high
.bss IL,1 ;Integral low
.bss DH,1 ;Derivative high
DTbeg .bss KC,1 ;Coeff for P
.bss KCB,1
.bss BI,1 ;Coeff for I
.bss BT,1
.bss BD,1 ;Coeff for D
.bss AD,1
.bss UMAX,1 ;Maximum output
.bss UMIN,1 ;Minimum output
.bss MODE, 1 ;Extra constant
.bss CLOCK,1 ;Sampling rate
.bss ONE,1 ;One
.bss MAXNUM,1 ;Maximum number
.bss MINNUM,1 ;Minimum number
DTend .bss MINUS,1 ; FFFF
;End of parameters in data memory
.bss YN,1 ;y(m)
.bss YNM1,1 ;y(n-1)
.bss YSP,1 ;y set point
.bss UN,1 ;Output
.bss VN,1 ;O0utput before f
.bss STAO,1 ;Space to store status register

.bss STA1,1
;Begin program memory
.sect "IRUPTS"
B START ;Branch to start of program

B ISR ;Interupt service routine

;Store parameters in program memory

233

PID Controller for TMS320C25 Version 1.0 Page 2

.data

Ptable .set $
.word 1229,1229,894,6554,236,788,9830,-9830,1,1,1,32767,-32768
.word -1

Ptend .set $-1

SCALE .set 15

;Initialize
.text :
START DINT ;Disable interupts
NOP
SOVM ;Set overflow mode
SSXM ;Set sign-extension mode
SPM 0 ;No shifting from P register

;Load coeff from prog. mem to data mem. use BLKP

LRLK ARO,DTbeg ;ARO points to end of data block
LARP ARO .

RPTK Ptend-Ptable ;Set up counter

BLKP Ptable,*+ ;Move data

;=> Coeff loaded into data memory

;Initialize variables

LDPK 1IH ;Point to correct data page
ZAC ;Clear variables

SACL IH

SACL IL

SACL DH

0UT MODE,PA4 ;Init analog board

0UT CLOCK,PAS

WAIT1 BIOZ GET1 ;Load ysp
B WAIT1
GETL IN YSP,PA3

WAIT2 BIODZ GET2 ;Load y(n-1)
B WAIT2
GET2 IN YNM1,PAO

;Begin PID
WAIT BIOZ GET ;Wait for input
B WAIT
GET IN YN,PAO ;Change WAIT to GET when ; are removed

234

PID Controller for TMS320C25 Version 1.0

;D-section

ZALH
SUBH
SACH
DMOV

LT
MPY

LTP
MPY

RPTK
APAC

SACH
SACL
LRLK
LARP
CALL
ZALH
ADDS

;P-section

LT
MPY

LTA
MPY
SPAC

SACH
SACL

;P + D are now divided by 16 =>

;to P + D

ZALH
ADDS
SFR
SFR
SFR
SFR

YNM1

HTE1

DH

HTE1
BD

15

HTE2
LTE2
ARO,DH
ARO
ROUOF4
HTE2
LTE2

YSP
KCB

YN
KC

HTE1
LTE1

IH
IL

;y(n-1) - y(n)

;Store difference
;Copy YN into YNM1

;ad*D (ad was divided by 16)

;difference * bd, and store previous product

;Since bd was divided by 256, bd*diff is
;added 16 times to the accumulator to
;form D divided by 16. By doing this the
;overflow mode will take care of overflow
;Store derivative

;Point to DH

;Check for overfl. shift and store
;Restore the derivative

;y(n) * KCB

;acc = y(n)*KCB - ysp*KC

;Store P + D

shift integral right 4 bits before adding

;Shift integral right 4

235

PID Controller for TMS320C25 Version 1.0

ADDS
ADDH

LRLK
LARP
CALL

CALL
ouT

;I-section

INEG

0UT4

236

LT
MPY

LTP
MPY

LTS
MPY

LTA
MPY
SPAC

ADDS
ADDH

SACH
SACL

BLZ
SUB
BLEZ
LAC
SACH
SACL

SUB
BGEZ
LAC
SACH
SACL

NOP
NOP
NOP

LTE1
HTE1

ARO,VN
ARO
ROUOF4

FUNCT
UN,PAL

YSP
BI

BI

BT

BT

IL
IH

IH
IL

INEG

MAXNUM, SCALE
0UT4
MAXNUM,SCALE
IH

IL

0UTS

MINNUM,SCALE
0UT4
MINNUM,SCALE
IH

IL

0UT5

;Add P + I to acc to form P + I + D

;Point ARO to VN
;Round off and overflow check

;Actuator saturation function
;Output control signal

;Add old I with double precision

;Store integral

;0verflow check (10 instr. cycles)
;Subtract maximum pos. number

;If acc <= 0 then no overflow
;else store maximum number

;Subtract maximum neg number
;If acc >= 0 then no overflow
;else store minimum number

Page 4

PID Controller for TMS320C25

NOP
NoP

0UT5 EINT
NOP
NOP
DINT
B

WAIT

Version 1.0

;Enable interupt

;Disable interupt
;Loop again

; Rounding, overflow and shifting function (19 cycles)

ROUOF4 BLZ
ADD
SACH
SACL
SUB
BLEZ
ZALS
SACL
NOP
RET

RNEG ADD
SACH
SACL
SUB
BGEZ
ZALS
SACL
NOP

RNO ZALH
ADDS
SACH
RET

;Saturation function (12 instr.

FUNCT ZALH
SUBH
BLZ
ZALH
SUBH
BLZ
ZALH
SACH
RET

LOWER1 ZALH

RNEG
ONE,SCALE-5
HTE1

LTE1
MAXNUM,SCALE-4
RNO

MAXNUM

*

ONE,SCALE-5
HTE1

LTE1
MINNUM,SCALE-4
RNO

MINNUM

*

HTE1
LTE1
*,5

VN
UMIN
LOWER1
VN
UMAX
SAME
UMAX
UN

UMIN

;Check if number negative
;Round

;Store value

;Subtract scaled max pos number

;If acc <= 0 then no overflow
;else store max num

;Round
;Store value

;Subtract scaled min neg number

;If acc >= 0 then no overflow
;else store min neg number

;Shift number left 4 before store

;+1 shift because of sign

cycles)

;Load VN

;Branch if v < umin
;Branch if v < umax

3V >= umax
;u = umax

Page 5

237

PID Controller for TMS320C25 Version 1.0 Page 6

SACH UN ;u = umin

NOP ;Always same time
NoP

NoP

NOP

RET

SAME ZALH VN
SACH UN ;u
RET

n
<

;Interupt service routine. To read set point value

ISR SST STAO ;Save status
SST1 STA1
IN YSP,PA3 ;Load ysp
LST STAO ;Restore status
LST1 STA1
RET : ;Return
.enda

238

DSP Implementation of a Disk Drive Controller"

Hermann Steingrimsson
Graduate School of Business
University of Wisconsin
Madison, Wisconsin, USA

1. Introduction

The purpose of this paper is to study implementa-
tion of a controller based on state estimation and
feedback from estimated states on a digital signal
processor. Design of a control system for a disk
drive is chosen as an example. The controller is
implemented on a DSP that does not have float-
ing point hardware. The control problem is de-
scribed in Section 2, which also describes math-
ematical models of different complexity. Design of
a controller is discussed in Section 3. This section
contains a derivation of a continuous time con-
troller and a discrete time controller. The continu-
ous controller is used to choose design parameters
and to estimate orders of magnitude. The discrete
time controller is the algorithm implemented on
the DSP. The section on control design also con-
tains a discussion of design trade-offs. Implemen-
tation of the controller on a DSP is discussed in
Section 4. Scaling of parameters and states is a
major issue. An outline of the code is given. The
complete code is listed in the appendix. Testing of
the code is described in Section 5 and the paper
ends with conclusions and references.

2. Disk Drive Control

Modern disk drive use fast voice coil actuators to
position the magnetic heads on a track and to
keep them on track under closed loop control. The
task of the position control system is twofold: to
position the heads over a desired track and to keep
it there. The first task is a servo problem whereas
the second task is a regulation problem. This paper
treats the regulation problem.

t Part of this work was done when the first author was
visiting professor and the second author a graduate student
at the University of Texas at Austin.

Reprinted, with permission from author.

Karl Johan Astrém
Department of Automatic Control
Lund Institute of Technology
Lund, Sweden

Two methods are currently used for feedback
measurements. In a dedicated servo an entire sur-
face is used for position information, that could
have been used for data. In an embedded servo the
position information are embedded into the data
track at the beginning of each sector, instead of
using a separate surface. It is also possible to have
dual layers so that the servo information is on a
layer below the data layer.

The advantage of the dedicated servo is that
position information available continuously. With
a dedicated servo it is therefore possible to use a
controller with a high bandwidth. In an embedded
servo, position information is only obtained at a
sector boundary. This limits the track following
bandwidth and results in longer seek times, and
more sluggish track following. A dedicated servo
uses an extra surface for the position information.
Thermal differences between the position surface
and the data surfaces also give rise to errors.

Linear or rotary actuators with a permanent
magnet and a voice coil are used to move the head
across the tracks. The arm is ideally a rigid body
which can be modeled as a double integrator. The
large accelerations will, however, excite resonant
modes. This makes it difficult to achieve a high
bandwidth for positioning and track following.

Analog controllers have been used for servos.
They contain amplifiers, compensation networks,
notch filters, switches and passive components. The
parameters of the analog components change with
temperature and component aging can result in
deteriorated performance of the servo.

There are several advantages in using a digi-
tal servo. Components having drift and aging are
avoided, the number of components can be reduced
and servo performance can be increased. a digital
servo will, however, require high sampling rates.
This makes a microcontroller less suitable. The in-
expensive DSP’s offer computational power an or-

239

der of magnitude greater than the microcontrollers
and some, like the TMS320C14, do also have the
hardware for input-output similar to a micro con-
troller. Such components are ideally suited for im-
plementation of fast servos of the type used in disk
drives.

Position Detector

The head/track misalignment is the only informa-
tion available to the controller. Control thus has
to be based on error feedback. The position de-
tector generates a voltage which is proportional to
the misalignment of the head and track. The op-
erating range is 23uym and the output voltage is
in the range 0-5 V. After A/D-conversion one unit
in the processor corresponds to a track/head mis-
alignment of 11.5um . The useful track width is
approximately 4.3pm.

Control Signal

The D/A-converter generates a voltage in the range
+5 V. This voltage is amplified by an amplifier
which generates a current. The current passes
through the voice coil and generates a torque to
move the arm.

Physical Constants of the Drive

The drive system has the following parameters:
Pivot to head radius

R: 0.08 m
Power amplifier gain
Kpa: 05A/V

Torque constant of the actuator

K;: 0.09 Nm/A
Total moment of inertia

J: 50-107% Kgm?

Mathematical Model

A mathematical model describing the position of
the arm as a function of the current trough the
coil is a double integrator
d%p
J 9= K, I (1)
where ¢ is the angle of the arm. The transfer
function from voltage u to arm position y is

GP(‘) = U(a) = ';zf' (2)

where
Kp = KpoKiR/J ~ 72m/[s*V

The model given by Equation (1) neglects the fact
that the arm has compliance. If this is considered,
the plant transfer function becomes G,1 = G,G1,
where
2

= @
Gi= 82 + 20wy s + w? ()

or Gpz2 = Gp1G2 = GpG1G2, where

8% + 2(3wss + wl

Ga(s) = 8?2 4+ 2(1was + w3

4

Typical values of w and wy are 2 KHz and 3 KHz.
The model given by Equation (1) is a good ap-
proximation of low frequencies. Because of the res-
onances this model does, however, not describe the
system well at frequencies approaching one kHz.
For those frequencies it is necessary to use models
like (3) and (4) or even more complicated models.

Disturbances

The major disturbances acting on the system are
low frequency load disturbance and a periodic
tracking error. Load disturbances are due to the
torque from the wires connected to the arm. This
torque is almost constant at a given track, but it
changes with the track. It may also change with
temperature. The second disturbance is due to
the eccentricity of the disk which translates into
a periodical tracking error. Since the amplitude
of this error is small, the disturbance can be
approximated by a sinusoid with the rotational
frequency of the disk. By introducing the state z3,
the load disturbance can be added to equation (1),
giving

d?

-Jz-z‘e = Kpu + z3 (5)

d23

=S _0

dt

3. Controller Design

Control algorithms for the disk drive will be de-
rived in this section. A continuous time controller
for the simple rigid body model is first derived.

This derivation gives insight into the control prob-
lem and guide lines for choosing the design param-
eters. The controller is obtained using a straight-
forward pole-placement method. See [Astrém and
Wittenmark, 1990]. A discrete time algorithm is
then derived. This algorithm is the basis for the
DSP implementation.
A state-space model of (5) is

#(t) = Az(t) + Bu(t)

6
o(0) = C=(t) ©
where
010 0
A:[O 0 1],3:[1{,],,,:[1 0 o]
0 0O 0
and z1: position [m]

z3: velocity [m/s)
z3: torque [Nm]

K, gain [m/s’V]

u: control signal [V]

Continuous-Time Controller

1t is easily verified that the states z; and z, of the
model (6) are controllable. The disturbance state
z3 is naturally not controllable. All the states of
the system are observable. A controller based on
a state-feedback and an observer can therefore be
designed.

State Feedback. The controller will now be de-
rived in the straightforward manner. See [Astrém
and Wittenmark, 1990]. It is first assumed that all
states are measurable. The state feedback

u=-Lz = —1121 - 1222 - 1323 (7)
gives the closed-loop system
#(t) = (A - BL)z(t) (8)

The gains I; and I, are selected such that the
characteristic polynomial of the closed loop system
becomes

.y(.s2 + 2(wps + w: 9)
Notice that the zero at the origin is due to the un-
controllable disturbance mode. The characteristic
polynomial of (8) is

a(sz + Kplas + Kpll)

To obtain (9) the feedback gains l; and Iy should
thus be chosen as
L =wi/K,
1= wp/ K (10)
12 = Zprp/Kp

The gain I3 is chosen to give perfect disturbance
cancellation, i.e.

I3=1/K, (11)

The control law (7) can be interpreted as a feed-
back from the process states z; and z; and a feed-
forward from the disturbance state z3.

State Observer. A state observer is given by

&(t) = A&(t) + Bu(t) + K (y(t) - C&(t)) (12)

where £ is the estimate of the state vector z. The
reconstruction error £ = z — £ is given by

#(t) = (A — KC)&(t) (13)
The characteristic polynomial of this system is
63 + klaz + kas + k3

The observer gains k;, k3 and k3 are chosen so that
the observer has the characteristic polynomial

(14)

The following observer gains are then obtained

(5 + ao)(8% + 2(owos + w2)

k1 = 2{ow, + a,
k2 = “’3 + 2<owoao

(15)

— w2
k3 =wia,

Discrete-Time Controller

To derive a discrete time controller the system (6)
is sampled. This gives

z(k +1) = ®z(k) + Tu(k)

y(k) = Ca(k) (16)
where
1 h h%/2 K h?(2
<1>=[01 h],I‘: K,h]
00 1 0 (17)
c= [1 0 o]

241

and h is the sampling interval. The states z; and
z of the discrete time system (17) are controllable
but disturbance state z3 is of course uncontrollable.
All states are observable.

First consider the case when all states are
measured. With state feedback the closed loop
system has the characteristic polynomial

o

(z-1) (zz + (Ko 5+ Kphly — 2)2
B (18)

+1- Kphly + Ky o b

Notice that the pole z = 1 is due to the uncontrol-
lable disturbance mode. The desired closed loop
characteristic polynomial is obtained by sampling
(9). This gives

(z-1)(* + apz + apa)

where

ap = —2e~rvrhcog (wph 1- (3) (19)
ap2 = e—ZC,w,,h

Choosing the feedback gains Iy and I, so that (19)
and (18) are the same gives

! _Gptap+1l
VT UK R
L _@p1 —ap2+3
2T T T2KLh

(20)

State Observer. A state-observer of the form

&(k|k) = &(k|k — 1) + K (y(k) — §(k|k — 1))
2(k + 1|k) = ®&(k|k) + Tu(k)
9(k + 1|k) = C&(k + 1]k)
(21)
is chosen. The reconstruction error is then given by

s(k+1lk) = (I - KC)&(klk—1) (22)

This system has the characteristic polynomial
h2
24+ (k1 + bk + ks — 3) 2

2
+(3—2k1—hk2+’—;—k3)2+k1—1

242

Requiring that this polynomial be equal to
(z = a3)(2* + @012 + a02)
where a,; and a,p are given by equation (19) and
a0z = e"%P (23)
gives

k1 =1— aza03
kz — Qo1 — Go2 — @03 + Ao1803 + 30020'03 +3

oh (24)
ka - (251 + Qo2 — @03 — @p1A03 — Ao2003 + 1

h2

The Control Algorithm

Reorganizing the calculations to minimize the de-
lay between the A/D- and D/A-conversions gives
the following algorithm.

ALGORITHM 1

1. Read y(k)

2. Compute &(k|k) = &(k|k — 1) + Ke(t)
e(t) = y(k) — §(k|k - 1)
v(k) = —Li(klk)
u(k) = f(v(k))

3. Output u(k)

4. Update &(k+ 1]k) = ®&(k|k) + Tu(k)
9(k + 1|k) = C&(k + 1]k)

5. Wait

where the function f is a model of the actuator
nonlinearity. m]

Notice that the algorithm has been organized so
that the computational delay between the A/D and
D/A converters are minimized. Notice also that
Step 2 of this algorithm can be expressed as

&k + 1|k) = S8 (k|k — 1) + Toy(k)

v(k) = Cpé(k|k — 1) + Dpy(k) (25)

where

$,=%-®KC-TL+TLKC
I'n=%K -TLK
w=—-L+LKC

D, =-LK

Sampling Frequency and Anti-Aliasing
Filter

The following rule of thumb for the selection of
sampling frequency for a digital controller with a
zero-order hold, is given by [Astrém and Witten-
mark, 1990].

0.2 < wh < 0.6 (26)

where w, is the crossover frequency. With a sam-
pling frequency of 20 KHz the crossover frequency
can be at least 1 kHz. This was judged adequate
for the application.

A prefilter in the form of a second order Bessel
filter with the bandwidth 7500Hz was chosen to
avoid aliasing.

Design Parameters

The controller has the design parameters: wp, (p,
Wo, (o, ao and h that must be chosen. The choice of
sampling interval has already been discussed. Pa-
rameters (, and (,, which represent relative damp-
ing, can easily be chosen. Then there remain three
parameters wp, W, and a,. Requirements on desired
settling time and disturbance rejection have to be
matched against constraints due to model uncer-
tainty. Recall that the rigid body model used for
the design was not valid for frequencies approach-

ing 1 kHz. After some experimentation the follow-
ing design parameters were chosen for the nominal
case.

wp = 10007
(p=10.80
w, = 15007
¢, = 0.80
a, = 2007

Figure 1 shows a simulation of the response of
the system with the nominal design parameters.
In the simulation a step command at 11.5 pm is
first applied. After 3 ms a torque disturbance in
the form of a step of 0.013 Nm is applied.

The simulation was performed assuming that
the plant model is given by Equation (3), which
has a resonance of 2 kHz. The settling time is
about 1.5 ms and the resonant modes are not
much excited by the command signal. With the
rigid body process model given by Equation (2)
the system has an amplitude margin of 3.2 and
phase margin of 31°. The gain cross-over frequency
is 460 Hz and the phase cross-over is 1036 Hz. This
indicates that the design based on the rigid body
model has acceptable margins.

The effects of the neglected dynamics on the
margins can be estimated as follows. Assuming

Head position (m)
15x10-6 4 /\
10x1076 1
5x1078 4
0 T T T
Control signal (V)
]-
0<
-1 T T T
0 0.005 0.010 0.015
Time

Figure 1. Step response of the closed loop system.

243

0-6 T T 1 T 1 T 1 T

Figure 2. Nyquist curves for the loop transfer
functions with the rigid body dynamics, Equation
(2), and the dynamics with one resonant mode,
Equations (2) and (3).

that the system dynamics is described by the
model having one resonant mode, Equation (3).
The additional dynamics is then given by

2
wy

)= Tt a7

(27

where w; is the undamped natural frequency
(2 KHz) and (is the relative damping (0.1). The
magnitude M of the transfer function G; at w is

1

M= Ta=a s ooy

(28)

Introducing w = wy. = 1036 Hz this equation gives
M = 1.36. The gain margin is thus decreased to
1.77. The argument of the transfer function of w is

2(0)/@1

a = —arctan ————
1 - w?/w?

(29)

with wyc = 460 Hz, which gives 2.8°. Figure 2
shows the Nyquist curves with the nominal process
transfer function (2) and the transfer function with
one resonant mode (3). These curves show that the
essential effects of the resonant mode is to decrease
the amplitude margin.

An additional illustration of the sensitivity to
gain variations is illustrated in the simulation in
Figure 3, which shows the time response of the
closed loop systems, where the loop gain changes
with +£20%. Compare with the nominal case in
Figure 1.

Tracking Error

Misalignment errors is a common source of tracking
errors. Such disturbances can be approximated by
a sinusoidal. The sensitivity of the closed loop
system to such errors can be modeled by the pulse
transfer function.

1

Heaa2) = 1= 1036 00)

(30)
With the chosen controller we find that distur-
bances of 60 Hz are attenuated by a factor of 32.
This agrees well with the simulation results that
showed a reduction from 5 pm to 0.2 pm.

} Head position (m) -20%
15x10" 6 A‘fo"' .20-/.&

-6 4
10x10 +20%%
5x10~6 ~
0 T T T
0 0.005 0.010 0.015
Time

Figure 3. Responses of the closed loop system to a step command and
a step change in the torque when the process gain changes by +20%.

244

4. DSP Implementation

Implementation of the controller using a DSP
with fixed point cz'culations will now be dis-
cussed. The key issues are scaling of coefficients and
states. See [Roberts and Mullins, 1987], [Hansel-
mann, 1987], [Texas Instruments, 1986], [Texas
Instruments, 1988a], [Texas Instruments, 1988b],
[Texas Instruments, 1989a], [Texas Instruments,
1989b)], [Texas Instruments, 1990a] and [Texas In-
struments, 1990b].

The controller derived can be described by the

matrices:
1 5.107% 1.25-107°
=10 1 51078

0 0 1

[9.25-10-8 3.7-10"3 o)T

r
c [1 0 o]
(31)
[3.352017424019266 - 10~]
K =

I

1.100808656418762 - 103
5.695461161564441 - 10°

1.176909751519137-10% T
L= | 6.300506379182784 - 10*

1.351351351351351 - 10~2

The elements of these matrices have numbers that
are widely spread. To accommodate this on a DSP
with fix point arithmetic it is necessary to scale the
numbers appropriately.

I/0-Scaling

The range of the output signal in tracking mode
corresponds to £11.5um. The scaling will be cho-
sen so that this corresponds to 1 units in the DSP.
The input scaling factor s, is therefore

8y = 11.5pum

Since the dimensions of l;, I; and I3 are [v/m],
[sv/m] and [s?v/m] respectively, it is advantageous
to multiply L with s, rather than dividing C with
8y. The output must also be scaled since the D/A-
converter converts £1 into +5 V. The matrix L is
thus multiplied by the output scaling factor

2 — -1
su_m_0.2v

The vector T is in the same way as L. Hence

o)

and the scaled vectors I' and L become

(L r) N (5,,.9.,L

I = | 1.608695652173913-10%

0

(32)

4.021739130434783 - 102]

1.449116467212040- 10~*
3.108108108108108- 1078

2.706892428494014- 10~ \ T
L= (33)

Coeflicient Scaling

The coefficients of system (31), and (32) and (33)
can not be represented in the DSP. A similarity
transform & < T.% is used to scale the coefficients.
This gives

(srcki1)e
(r.ers* Tr cTt TK bl 9

The elements of the matrices &, K, I' and L are
proportional to powers of h. It is therefore natural
to use a scaling matrix of the form

T. = d.iag(c31 csy csa)

The following scaling matrix was obtained after
some trial and error

Tc=diag(m—lsrq % 4—015;) (35)

State-vector scaling

With the chosen scaling of all controller coefficients
have magnitudes less than one. It now remains
to scale the state-vector. Simulations showed that
overflow could occur when the head is positioned
at the edge of the track and the disk controller is
switched to track-following. The scale factors s;, s3
and s3 were chosen from a simulation of this case. It
was found that z; had to be scaled down and that
z2 could be scaled up. Scaling of z3 depends on
the maximum possible load disturbance. For a load
disturbance of 0.3 Nm it was not necessary to scale

245

z3. The following transformation was therefore
chosen to scale the state vector

T.¢=diag(1/2.8 1/0.3 1) (36)

The following controller matrices were obtained

after scaling:

1 ¢12 ¢1a

P = 0 1 ¢23
(0 0 1

4.079845420409798 - 102
T = | 9.742508490121855-10*
0

c= [9.857577226616642 - 10~1
3.401360544217687 - 1071)
6.666666666666667 - 10~
2.5-1072
2.668340115802361-10~1 } 7

L = | 2.392799926898983 - 10~*
7.080843606269305 - 10™*

0 0) (37

K =

where

$12 = 8.375348965918672 - 102
13 = 2.888874735967583 - 1072
¢23 = 6.898517895130376 - 10~

The system matrices are finally transformed to in-
tegers to fit the 16 bit fractional format of the DSP.
The transformation is done by multiplying the co-
efficients with 2!® and rounding each coefficient to
the nearest integer. The matrices then become

1337 \7F
r= 31924]

0

1 2744 9047
3= to 1 22605]

) 1 59)
c= [32301 0 0]

(11146
K= 21845]

819

L= [8744 7841 23203]T

246

The largest roundoff error 0.04% occurs in ¢;3. To
find how the poles of the controller are affected by
the coefficient rounding, the characteristic equa-
tion of the controller was calculated. The largest
pole deviation is 0.0013% from the design value.

5. The DSP Code

The control algorithm was implemented on the
TMS320C25 by using the Texas Instruments Soft-
ware Development System. The complete code is
listed in Appendix A. The organization of the code
is straightforward. It is composed of the following
steps:

1. Perform A/D conversion.

2. Compute the state estimate.

3. Compute the new control signal.

4. Saturate control signal.

5. Perform D/A conversion.

6. Update equations for state estimate.

Compare with Algorithm 1. Approximately 32% of
the computational power of the TMS320C25 used
when the controller was running.

It can be estimated how processor loading in-
creases with the order of the controller. Neglect-
ing saturation arithmetic and anti-windup calcula-
tions, the number of multiply/accumulate instruc-
tions are proportional to n? 4+ 5n where n is the or-
der of the controller. A 6th order controller would
therefore exhaust the computational power of the
C25. The saturation arithmetic routine must be

T
111

(b

5-1078

AEENNNEN

- 1 1 1 1 1 1 1
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
. s .

Figure 4. Impulse response of the controller (a)
and the error compared to an ideal implementation

().

called approximately 2n times. In our case, the sat-
uration arithmetic consumes almost 50% of the to-
tal execution time. Therefore, if saturation arith-
metic can be avoided by using more careful scaling,
one can estimate that a 10th order controller can
be implemented on the C25.

6. Testing

The open loop behavior of the controller was tested
using the development system. The impulse re-
sponse of the controller was generated and com-
pared to the ideal impulse response. Figure 4(a)
shows the responses of the controller to two im-
pulses of magnitude 0.9 and -0.9. Figure 4(b) shows
the error between the ideal and actual impulse re-
sponse of the controller. The small error small is
due to the roundoff in the controller. Notice that
the quantization step is approximately 3 - 1075,
The observer was tested separately. A con-
trol signal was generated and the corresponding
ideal response of the arm was calculated. The in-
put signal was piecewise constant with jumps at
t = 0, 0.001, 0.0018, and 0.0021. A load distur-
bance that was unknown to the observer was added
at time ¢ = 0.0025. All signals were scaled appro-
priately and fed to the observer whose response
was recorded. Figure 5 shows the velocity estimate
and its error. Figure 6 shows the position estimate
and its error. The error is very small before time

,
T T T T T
®

r £ "
—0.01 F /
—0.02 |- H = -
—0.03 | 1 // 4
i o]

_0.04 1 1 1 1 1

0 0001 0002 0003 0004 0.005

s

Figure 5. Actual and estimated velocity (a) and
estimation error (b).

(a) 1 T T T T T
08} L .

0.6 | "r kY -

o2t ‘\:
—oal -
—06}
1
T
__//:

—0.8 1 L ! 1

(b) T T T T

—0.005

T T T T T

4

5 e -
i

’Z\/ n

1 L 1 Il 1
0 0.001 0.002 0.003 0.004 0.005

s

Figure 6. Actual and estimated position (a) and
estimation error (b).

t = 0.0025, where the load disturbance was intro-
duced. The load disturbance does, however, intro-
duce significant errors both in velocity and position
estimates. This is natural, because the observer
does not have information about this load distur-
bance. The error will, however, decrease when the
observer improves its estimate of the disturbance
as is indicated in Figure 6.

Although open loop testing can never replace
actual closed loop testing of the whole system,
these results indicate that the controller works
properly.

Remarks on a Roundoff Algorithm

The first tests of the algorithm used a roundoff
scheme found in a programming example in [Texas
Instruments, 1986]. This resulted in a large esti-
mation error, see Figure 7. The problem was inves-
tigated, since the error was larger than estimates
based on analysis of roundoff errors. The reason for
this is an error in the roundoff algorithm. To re-
duce quantization errors the numbers are rounded
off, rather than truncated, before they are stored as
16-bit numbers. This roundoff is done in software.
To roundoff a positive number, a bit is added to the
MSB of the lower half of the 32-bit number before
it is stored away. At first sight it appears natural to
subtract the bit from the number to roundoff a neg-
ative number. This was done in the coding exam-
ple [Texas Instruments, 1986]. This is not correct

247

0.0008 T T T T T
0.0007 -] .
0.0006 |- :
0.0005 - J_r" . LL P
0.0004

0.0003 -

T
MLI«.LM"”H._L
1

0.0002

0.0001 | P 1
r‘ P
o kT g it L)
T
]

1 1 1
—0.0001 02 0003 0004 0.005

s

(=35

1
0 0.001 0.

Figure 7. Position error with an incorrect round-
off algorithm.

with the chosen number representation. The round-
off algorithm gives -2 when applied to the number
-1 because of the computational scheme used in
the DSP. If the upper half of the number is com-
plemented without considering the lower half, the
result will not be the same as if the whole number
is complemented. The correct code for the roundoff
is given in Appendix A.

7. Conclusions

This paper shows that it is straightforward to
implement a controller based on an observer and
feedback from the observed states using a DSP
with fix point calculations. Some effort is required
to obtain proper scaling. The coeflicient scaling
is quite straightforward and can be automated.
Scaling of the states is more difficult. It requires
that the ranges of the states are known. This can
be determined from simulation. Great care has to
be exercised to find the worst cases. The code for
the disk controller is much simpler than the code
for the PID-controller discussed in [Astrom and
Steingrimsson, 1991]. The reason is that the disk

248

controller is designed for a specific process while
the PID-controller is designed as a general purpose
controller. The coefficient ranges for the PID-
controller are therefore much wider. This requires
more complex scaling and saturation arithmetic,
which is a large part of the code [Astrém and
Steingrimsson, 1990].

8. References

Astrém, K. J. and H. Steingrimsson (1990): “Im-
plementation of a PID controller on a DSP,”
Texas Instruments.

Astrém, K. J., and B. Wittenmark (1990): Com-
puter Controlled Systems — Theory and Design,
Second edition, Prentice-Hall, Englewood Cliffs,
NJ.

Dote, Y. (1990): Servo Motor Control Using
Digital Signal Processor, Prentice Hall, Texas
Instruments.

Hanselmann, H. (1987): “Implementation of digi-
tal controllers — A survey,” Automatica, 23.
Roberts, R. A., and C. T. Mullins (1987): Digital
Signal Processing, Addison-Wesley Publ Co.
Texas Instruments (1986): Digital Signal Process-
ing Applications with the TMS320 Family — The-
ory, Algorithms, and Implementations, Digital

Signal Processing, Semiconductor Group.

Texas Instruments (1988a): First-Generation
TMS320 — User’s Guide, TI Digital Signal Pro-
cessing, Prentice Hall.

Texas Instruments (1988b): Second-Generation
TMS320 — User’s Guide, TI Digital Signal
Processing, Prentice Hall.

Texas Instruments (1989a): TMS320Cix /
TMS320C2x — User’s Guide, Digital Signal Pro-
cessor Products.

Texas Instruments (1989b): TMS320 Family De-
velopment Support — Reference Guide, Digital
Signal Processor Products.

Texas Instruments (1990a): Digital Signal Process-
ing - Applications with the TMS320 Family,
Application book volume 3, Digital Signal Pro-
cessor Products.

Texas Instruments (1990b): TMS320C3x — User’s
Guide, Digital Signal Processor Products.

Appendix A: Disk Controller for TMS320C25

Disk Controller for the TMS320C25
Based on a Rigid Body Model of the Arm
; Version 1.0

; Author: Hermann Steingrimsson

; Date: 3-31-1990

B

.
B
B

; RESERVE SPACE IN DATA MEMORY FOR CONSTANTS AND VARIABLES
DTbeg .bss A12,1 ;The matrix A (or Phi)
.bss A13,1

.bss A23,1

.bss B1,1 ;The vector B (or Gamma)

.bss B2,1

.bss C1,1 ;C1

.bss Ki,1 ;The vector K (in this case CK/2)
.bss K2,1

.bss K3,1

.bss L1,1 ;The vector L

.bss L2,1

.bss 13,1

.bss MAXNUM, 1 ;Maximum number

.bss MINNUM,1 ;Minimum number

.bss UMAX,1 ;Saturation limits

.bss UMIN,1

.bss ONE,1 ;ONE=1

.bss MODE,1

DTend .bss CLOCK,1 ;End of parameters in data memory
.bss XE1,1 ;State vector x(k+1|k)

.bss XE2,1
.bss XK1,1 ;Vector x(klk)
.bss XK2,1

.bss XK3,1

.bss YE,1 ;Estimate of ye

.bss Y,1 ;Input

.bss ERR,1

.bss V,1 ;Control signal before saturation

.bss U,1 ;Control signal after saturation U=SAT(V)

;Begin program memory

.sect "IRUPTS"
B START ;Branch to start of program

;Store parameters in program memory

.data
Ptable .set $
.word 2744,947,22608,1337,31924,32301,11146,21845,819,8744,7841,23203

249

Disk Controller for TMS320C25 Version 1.0 Page 2

.word 32767,-32768,32766,-32766,1,1,1
.word -1

Ptend .set $-1

SCALE .set 15

;Initialize

.text

START DINT ;Disable interupts

NoP

SOVM ;Set overflow mode

SSXM ;Set sign-extension mode

SPM 0 ;No shifting from P register

;Load coeff from prog. mem to data mem. use BLKP

LRLK ARO,DTbeg ;ARO points to begining of data block
LARP ARO

RPTK Ptend-Ptable ;Set up counter

BLKP Ptable,*+ ;Move data

;=> Coeff loaded into data memory

;Initialize variables

LDPK A12 ;Point to correct data page
ZAC ;Clear variables

SACL XE1

SACL XE2

SACL XK3

SACL YE

SACL U

OUT MODE,PA4 ;Init analog board
0UT CLOCK,PAS

LARP 0 ;Point to ARO

;Begin loop

;WAIT BIOZ GET ;Wait for input

; B WAIT
WAIT IN Y,PAO ;Change WAIT to GET when ; are removed

ZALH Y ;Form ERR = y(k) - ye(klk-1)
SUBH YE
SACH ERR

;Compute x(k|k) = x(k|k-1) + K*err

250

Disk Controller for TMS320C25 Version 1.0

LAC
LT
MPY
APAC
LRLK
CALL

LAC
LT
MPY
APAC
LRLK
CALL

LAC
LT
MPY

LRLK
CALL

XE1,SCALE ;Calculate x1(klk)
ERR
K1

ARO,XK1
ROUOF

XE2,SCALE ;Calculate x2(kl|k)
ERR
K2

ARO, XK2
ROUOF

XK3,SCALE ;Calculate x3(k|k) (Estimate xe3 not needed)

ERR

K3
APAC

ARO,XK3

ROUOF

;Calculate control signal u(k) = -Lx(klk)

ZAC
LT
MPY

LTS
MPY

LTS
MPY
SPAC

LRLK
CALL

XK1
L1

XK2
L2

XK3
L3

ARO,V
ROUOF

;Saturation function (12 instr. cycles)

ZALH
SUBH
BLZ
ZALH
SUBH
BLZ
ZALH
SACH
B

\')

UMIN

LOWER!1 ;Branch if v < umin
v

UMAX

SAME ;Branch if v < umax
UMAX ;v >= umax

U ;u = umax

FIN ;Begining of loop

Page 3

251

Disk Controller for TMS320C25 Version 1.0

LOWER1 ZALH UMIN

SACH

U ;u = umin

NOP ;Always same time

NOP
NOP
NOP
B

FIN

SAME ZALH V

SACH
NopP
NOP

FIN OUT

;Update the estimate xe(k+1]k) = Ax(klk) + Bu(k)
H ye(k+1]k) = Cxe(k+1lk)

LAC

LT
MPY

LTA
MPY

LTA
MPY
APAC

LRLK
CALL

LAC

LT
MPY

LTA
MPY
APAC

LRLK
CALL

;No need to update xe3 (xe3 = xk3)

LT
MPY

252

Usu=v

XK1,SCALE ;Calculate xel

XK2
A12

XK3
A13

U

B1
ARO,XE1
ROUQF

XK2,SCALE ;Calculate xe2

XK3
A23

U
B2

ARO,XE2
ROUOF

XE1 ;Calculate ye
Cc1

U,PA2 ;Output control signal

Page 4

Disk

PAC

LRLK
CALL

B

Controller for TMS320C25 Version 1.0

ARO,YE
ROUOF

WAIT ;Loop

; Rounding, overflow and shifting function (11 cycles)

ROUOF BLZ NEG ;Check if number negative

ALD
SACH
SUB
BLEZ
ZALS
SACL
RET

ONE,SCALE-1 ;Round

*,16-SCALE ;Store value

MAXNUM,SCALE ;Subtract scaled max pos number
NOOV ;If acc <= 0 then no overflow

MAXNUM ;else store max num

*

NEG ADD ONE,SCALE-1 ;Round

SACH
SUB
BGEZ
ZALS
SACL
RET

Noov
NOP
RET

*,16-SCALE ;Store value

MINNUM,SCALE ;Subtract scaled min neg number
NOOV ;If acc >= O then no overflow

MINNUM ;else store min neg number

*

NOP

.enda

Page 5

253

254

PART IV
Applications of Digital Controllers with the TMS320

Digital Control Applications withthe TMS320 ...ttt 257

Computer Peripherals

DSP Helps Keep Disk Driveson Trackttt ittt neinnnns 259
(James Corliss and Richard Neubert)

LQG - Control of a Highly Resonant Disk Drive Head Positioning Actuator 265
(Herbert Hanselmann and Andreas Engelke)

High Bandwidth Control of the Head Positioning Mechanism in a Winchester Disc Drive ... 271
(Herbert Hanselmann and Wolfgang Moritz)

Fast Access Control of the Head Positioning Using a Digital Signal Processor 2717
(S. Hasegawa, Y. Mizoshita, T. Ueno, and K. Takaishi)

Motion Control and Robotics

Implementation of a MRAC for a Two Axis Direct Drive Robot Manipulator
Using a Digital Signal Processorc.oiiiiiiiiiiiiiiiiiiiiinnnenns 287
(G. Anwar, R. Horowitz, and M. Tomizuka)

Implementation of a Self-Tuning Controller Usihg Digital Signal Processor Chips 291
(K.H. Gurubasavaraj)

Motion Controller Employs DSP Technology i, 297
(Robert van der Kruk and John Scannell)

Power Electronics

|
Using DSPs in AC Induction Motor Drivescoiiiiiiiiiiieniinnnnnnnnn. 303 }
(Dr. S. Méshkat and Mr. 1. Ahmed) |

Microprocessor-Controlled AC-Servo Drives with Synchronous or Induction Motors:
Which is Preferable? i it it 307
(R. Lessmeier, W. Schumacher, and W. Leonhard)

A Microcomputer-Based Control and Simulation of an Advanced IPM Synchronous |
Machine Drive System for Electric Vehicle Propulsion 315
(Bimal K. Bose and Paul M. Szczesny))

DSP-Based Adaptive Control of a Brushless Motorc.ocoiiiiieinennn... 329 ‘
(Nobuyuki Matsui and Hironori Ohashi) ;

High Precision Torque Control of Reluctance Motorsc.covviiina..n. 335
(Nobuyuki Matsui, Norihiko Akao, and Tomoo Wakino)

High Resolution Position Control Under 1 Sec. of an Induction Motor with
Full Digitized Methodso ittt ittt ieaanns 341
(Isao Takahashi and Makoto Iwata)

A TMS32010 Based Near Optimized Pulse Width Modulated Waveform Generator 349
(R.J. Chance and J.A. Taufiq)

Design and Implementation of an Extended Kalman Filter for the State Estimation
of a Permanent Magnet Synchronous Motorcooiiiiiiiiiiinn, 355
(Rached Dhaouadi, Ned Mohan, and Lars Norum)

Automotive

Trends of Digital Signal Processing in Automotive, 363
(Kun-Shan Lin)

Application of the Digital Signal Processor to an Automotive Control System 375
(D. Williams and S. Oxley)

Dual-Processor Controller with Vehicle Suspension Applications 383
(Kamal N. Majeed)

An Advanced Racing Ignition System o i 389
(T. Mears and S. Oxley)

Active Reduction of Low-Frequency Tire Impact Noise Using Digital Feedback Control 395

(Mark H. Costin and Donald R. Elzinga)

Specialized Applications

Implementation of a Tracking Kalman Filter on a Digital Signal Processor 399
(Jimfron Tan and Nicholas Kyriakopoulos)

A Stand-Alone Digital Protective Relay for Power Transformers 409
(Ivi Hermanto, Y.V.V.S. Murty, and M.A. Rahman)

A Real-Time Digital Simulation of Synchronous Machines: Stability Considerations and
Implementation i it 421
(Jonathan Pratt and Sheldon Gruber)

Real-Time Dynamic Control of an Industrial Manipulator Using a Neural-Network-Based
Learning Controllerc.iiiii ittt iiiineinnnanteenaanes 433
(W.Thomas Miller, ITI, Robert P. Hewes, Filson H. Glanz, and L. Gordon Kraft, III)

Digital Control Applications with the TMS320

More designers are using DSPs to solve problems that commonly occur in control applications. DSPs now
make practical some applications that were previously difficult to implement or were not cost-effective.
As the cost of DSPs decreases, these processors are rapidly replacing microcontrollers and analog compo-
nents in many control applications.

Some applications in which DSPs are already cost-effective are servo control for computer peripherals,
power control in uninterruptible power supply (UPS) and DC power supply systems, motion control for
numerical control (CNC) systems and robotics, suspension/engine/brake control for automotive systems,
and vector control for AC and other brushless motors. Other applications are missile guidance and “smart”
weapon control for military systems.

This introduction presents a few areas of DSP-controlled applications. Following it, papers discuss topics
pertaining to those and other areas. Most of these documented applications have evolved into very success-
ful commercial products.

Computer Peripherals

Many computer peripherals use DSPs for applications such as read/write head control in winchester disk
drives, tape control in tape drives, pen control in plotters, and optical beam positioning and focusing in opti-
cal disks.

Disk Drives: Disk drives were early to adopt DSPs. DSPs are used for servo control of the actuator driving
the read/write head. Disk drives employ a voice-activated coil motor with highbandwidth. Datais read from
the disk at a very high rate; sampling rates of up to 50 kHz are sometimes used. In addition to implementing
the compensator, DSPs can implement notch filters to attenuate undesirable frequencies that cause mechan-
ical resonances or vibrations.

Tape Drives: Intape drives, DSPs are used to control the tape mechanism. A tape drive has two servo loops:
one controls the tape speed, and the other controls the tension placed on the tape. Position feedback is ob-
tained from an optical encoder, and tension information is fed from a tension sensor. DSPs are also used
to filter undesirable frequencies that cause mechanical resonances.

Power Electronics

DSPscanbe used inmultiple applications in power electronics. These applications include AC servodrives,
inverter control, robotics, and motion control.

AC Servo Drives: In AC servo drives, DSPs are used for vector control of AC motors. AC drives are less
expensive and easier to maintain than DC drives. However, AC drives have complex control structures as
aresult of the cross-coupling of three-phase currents. Vectorrotation techniques are used to transform three-
phase axes into rotating two-phase “d — q” axes. This two-phase rotation technique greatly simplifies the
analysis, making it equivalent to analyzing field-wound DC motors.

UPSs and Power Converters: In uninterruptible power supplies (UPSs) and power converters, DSPs are
used for PWM generation along with power factor correction and harmonic elimination. Advanced mathe-

257

258

matical techniques can be used to control the firing angles of the inverter, creating low-harmonic PWM with
unity power factors.

Robotics and Motion Control: DSPs are used in large-scale applications in robotics and other axis control
applications. DSPs support high-precision control along with implementation of advanced techniques like
state estimators and adaptive control. A single controller can handle speed/position control as well as cur-
rent control. Time-varying loads can be handled with adaptive control techniques. Adaptive control tech-
niques can also be used to create universal controllers that can be used with different motors. In addition
to implementing controllers, DSPs implement notch filters to attenuate undesirable frequencies that causes
resonances or vibrations.

Automotive

DSPs can be used for many automotive applications such as active suspension, anti-skid braking, engine
and transmission control, and noise cancellation.

Active Suspension: Active suspension systems use hydraulic actuators. DSPs can take into consideration
body dynamics, such as pitch, heave, and roll, and then use this information to control four actuators inde-
pendently and dynamically for counteracting external forces and the car’s attitude changes.

Anti-Skid Braking: In anti-skid braking systems, DSPs can read the wheel speed from sensors, calculate
the skid distance, and control the pressure in the wheel’s brake cylinder. Traction-regulating systems can
be added to control the vehicle in adverse driving conditions, to prevent wheel(s) from locking or spinning,
and to increase general vehicular stability, steerability, and drivability.

Engine Control: In engine control applications, DSPs can be used with in-cylinder pressure sensors to per-
form engine pressure waveform analysis. This information can be applied to determine the best spark tim-
ing, most effective firing angles, and optimal air/fuel ratios. The closed-loop engine control scheme can
tolerate external turbulences, aging, and wearing, while maintaining optimum engine performance and fuel
efficiency.

DSP helps keep
disk drives on track

Using a sophisticated DSP chip to implement adaptive embedded
servo control avoids the head-positioning errors that can plague

high-density Winchester disk drives.

onventional design approaches are inadequate to

meet the demand for ever-higher track densi-
ties on Winchester disk drives. When densities ex-
ceed 1,200 tracks/in., drives relying on dedicated
servo feedback for positioning accuracy become
unpredictable parts of computer systems. Imple-
menting embedded servo control with adaptive po-
sitioning features, however, allows the design and
manufacture of adequately margined disk drives
that provide a solid platform for higher densities.

Since designers can’t predict exact performance,
a disk drive with adequate margin requires reserve
capability in all areas. Materials or components,
for example, may not be within specifications, and
environmental conditions may also exceed specifi-
cations or combine in unpredictable ways. For in-
stance, electrical noise may combine with tempera-
ture changes in a peculiar way that even an ex-
haustive testing schedule could miss. In addition,
materials and components change with time.

The search for ample safety margins led Vermont
Research to use the 32020 digital signal processing
(DSP) chip, from Texas Instruments (Dallas, TX),
to incorporate adaptive embedded servo control
into its Model 7030 hard disk drive. Digital signal
processing of feedback signals offers immense flex-
ibility for designers of many products, from disk
drives to numerically controlled machine tools to

James M. Corliss and Richard Neubert

Corliss is principal engineer and Neubert is a design
engineer at Vermont Research (North Springfield, VT).

aircraft control systems. Exploited to its fullest,
the power of DSP can be used to expand reliability
margins in numerous motion control applications.

The dedicated servo approach

The most common method of locating a track on a
Winchester disk drive has been the dedicated servo
approach. The designer reserves one surface in the
stack of platters where servo control information is
written. If the head on that surface is correctly lo-
cated, it’s assumed that all other heads on the car-
riage are also on their tracks.

Sometimes dedicated servo drives work well, but
higher track densities can make them hypersensitive
to temperature changes, especially when combined
with shock or vibration. The drives develop high
error rates and may not retrieve data at all if condi-
tions have changed since the recording. The prob-
lem is that positioning errors that may be man-
ageable at lower track densities can cause signifi-
cant positioning difficulty at higher track densities
because the errors represent a larger percentage of
the narrower tracks. If the heads aren’t properly
positioned, the analog signal-to-noise ratio plum-
mets on readback, causing skyrocketing error rates
and, sometimes, an unusable drive,

Embedded servo control provides feedback in
the form of bursts of prerecorded positioning infor-
mation embedded in data on the track that’s being
read. Adaptive positioning actively compensates
for both external disturbances such as shock and
vibration and internal changes such as the aging of
shock mounts and creep of materials. Of course,
the effectiveness of embedded servo control is

Reprinted with permission from the June 15, 1988 issue of COMPUTER DESIGN Magazine, copyright 1988, PennWell

Publishing Company, Advanced Technology Group.

259

The shock sensitivity of a drive

with embedded servo is a func-

tion of the amount of time be-
tween sampling. At a 10-kHz

sampling rate, a 2-G shock in-

duces only a 4-uin. off-track

error; at 1.2 kHz, it’s 256

pin.—enough to accidentally de-

stroy data on an adjacent track.

limited by the frequency at which positioning feed-
back is provided. If the sampling frequency is too
low, the track-following errors that accumulate be-
tween samples will be larger than the errors a dedi-
cated servo approach would have allowed. Inade-
quate feedback also makes positioning perfor-
mance suffer.

Adaptive embedded servo positioning, as im-
plemented in the Model 7030 disk drive, wasn’t
practical before the advent of sophisticated DSP
chips, which can analyze rapid-fire bursts of servo
information and make quick position corrections.
Implementing adaptive positioning without sacri-
ficing access time or user flexibility required a new
level of servo information analysis that relies heav-
ily on digital signal processing. Pre-DSP electronics
wouldn’t have been practical for the adaptive em-
bedded servo approach at a satisfactory sampling
rate. The cost and real estate requirements of dis-
crete logic would have been prohibitive.

That’s not to say that using an advanced DSP
chip like the TI 32020 for multiple signal processing
functions is completely straightforward. Since the
functions can’t be truly simultaneous, priorities
must be carefully established. Also, there are some
disadvantages to using adaptive embedded servo
control. One is a recording overhead of 15 percent
of a drive’s capacity, compared to 10 percent for
dedicated servo and 7 or 8 percent for embedded
servo with lower sampling rates. Fortunately,
though, this overhead cost is more than off§et by
-the ability to reliably use higher track densities.

260

Living within a budget

Like every physical device, a disk drive has toler-
ances. Absolute perfection in head positioning isn’t
required for reliable drive performance, but there’s
a set limit on how much deviation is acceptable for
each case. Disk drive designers commonly use a
‘“‘tracking error budget’’ when analyzing all possi-
ble sources of track-following deviations. If the
drive can’t achieve an acceptable bit error rate un-
less the heads are, say, within 60 uin. of perfect po-
sitioning, then 60 uin. is the tracking error budget.

Suppose, for example, that differential thermal
expansion may cause as much as 35 uin. of track-
following error, despite the servo system’s best
compensation efforts. If shock and vibration con-
tribute no more than 10 xin. and all other sources of
error combined will be no more than 10 pin., the
total possible error is 55 pin., and the 60-uin. error
budget won’t be exceeded.

As track widths diminish, however, error budget
shrinks disproportionately. At 1,200 tracks/in., for
example, a 60-uin. error budget is 10 percent of the
track width. At a 1,500-track/in. density, though,
with the accompanying decrease in absolute signal
strength from the head, the error budget may have
to shrink to 8 percent of the track width. In this
case, the error budget becomes a mere 38 pin.

A matter of degrees

Temperature changes caused by operating or en-
vironmental conditions are a common source of
trouble for reliable positioning. Differential ther-

mal expansion among the various materials in head
support arms, disks, carriages, spindles, bearings
and housings in the 5-in.-long chain of parts be-
tween the head and the disk is typically 5 pin./in./ °C.
At 1,200 tracks/in. on an 8-in. drive, that can
mean that a track written when a drive is cold can
shift half a track or more when the drive is warm.
A mere change of 2.5°C can consume an entire
60-pin. error budget.

Careful attention to air circulation in the drive
can minimize temperatu