
Lisa Pascal 2 .0 War Users Guide

windo\lAlcord • RECCA)

REPEAT
SystemTask;
TEldle(hTE);
temp : s GetNextEvent(everyEvent, myEvent);
CASE myEvent .whet OF

mouseOown:
EEGIN

port : GrafPOrt;
willClllo&ind: IHTEGfR;
yisiDle: DOOWIN;
ni Ii tea: D001lItH;
~Iag: D001!N4;
iparlilllljJ : D001!N4;
5t1'UCA1Jl : ~Ie;
contRgI: ~II;
~t~: ~l';
windOloOefProc : HIndle;

code :- FindWindow (myEvent . wher~whichWindow)i
CASE code OF

Workshop User's Guide

for the Lisa

Licensing Requirements for SOftware Developers

Apple has a low-cost licensing program, which permits developers of software
for the Lisa to incorpOrate Apple-developed libraries and object code files
into their products. Both in-house and external distribution require a license.
Before distributing any prOdUCts· that incorporate Apple software, please
contact Software Licensing at the address below for both licensing and
technical information.

<91983 by Apple Computer, Inc.
20525 Mariani Avenue
CUpertino, California 95014
(408) 996-1010

Apple, Usa, and the Apple logo are trademarks of Apple Computer, Inc.

Simultaneously publiShed in the USA and Canada

customersatlSfactlon

If you discover physical defects in the manuals distributed with a Lisa product
or in the media on which a software prodUCt is distributed, Apple will replace
the documentation or media at no charge to you during the 90-day period
after you purchased the product.

PrtX1JctRevlslons

Unless you have purchased the product update service available through your
authorized Usa dealer, Apple cannot guarantee that you wlll receive notice of
a revision to the software described in this manual, even if you have returned
a registration card received with the prOduct. You should check periodically
with your authorized Lisa dealer.

Umltatlon on W8lTcI'ltles cnj Liability

All Implled warrantles concerning this manual and media, inClUding Implied
warranties of merchantability and fitness for a particular purpose, are limited
in duration to ninety (90) days from the date of original retail purchase of this
product

Even though Apple has tested the software descrIbed In thIs manual and
reviewed its contents, neither Apple nor Its software suppllers maKe any
warranty or representation, eIther express or implled, wIth respect to thIs
manual or to the software described in this manual, their quality, performance,
merchantabllIty, or fItness for any particular purpose. As a reSUlt, this
software and manual are sold "as is:" and you the purchaser are assuming the
entire risk as to theIr qualIty and performance.

In no event will Apple or its software suppliers be liable for direct, indirect,
special, incidental, or consequential damages resulting from any defect in the
software or manual, even if tDey have been advised of the possibility of such
damages. In partiCUlar, they shall have no liabllity for any programs or data
stored in or used with Apple products, including the costs of recovering or
reprodUcing these programs· or data.

The warranty and remedIes set forth above are exclusive and In lIeu of all
others, oral or written, express or implled. No Apple dealer, agent or
employee Is authorized to make any modI flcatlon, extension or addition to this
warranty.

Some states do not allow the exclusion or limitation of implied warranties or
liability for incidental or consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives you specific legal rights,
and you may also have other rights that vary from state to state.

iii

License and COpyrl~t

This manual and the software (computer programs) described in it are copy­
righted by Apple or by Apple's software suppliers, with all rights reserved, and
they are covered by· the Lisa Software license Agreement signed by each Lisa
owner. under the copyright laws and the License Agreement, this manual or
the programs may not be copied, in whole or in part, without the written
consent of Apple, except in the normal use of the software or to make a
backup copy. This exception does not allow copies to be made for others,
whether or not sold, but all of the material purchased (with all backup copies)
may be sold, given, or loaned to other persons if they agree to be bound by
the provisions of the License Agreement. Copying includes translating into
another language or format.

You may use the software on any computer owned by you, bUt extra copies
cannot be made for this purpose. For some products, a multiuse llcense may
be purchased to allow the software to be used on more than one computer
owned by the purchaser, InclUdIng a shared-disk system. (Contact your
authorized Lisa dealer for more information on multiuse licenses.)

iv

13S2-A

Chapter 1
IntroclJCUm

Contents

The WorkshOp provides tools for program development. It provides facilities
for edl tlng, language processing, and debugging, as well as commands for
managing files and configuring the system. The system also includes many
other utilities.

~ter2
The FUe Manager

The FHe Manager enables you to manage and manipulate fHes and volumes.

Olapter3
The system Manager

The System Manager enables you to set default and configuration parameters
for the Lisa, and manage processes.

Olapter4
The Editor

The Editor enables you to create and modify text files. These text files are
used as Input to the compUer and the Assembler.

Olapter5
The Pascal compner

The compHer translates Pascal source COde into Object code. Translation
requires two steps: first the compiler translates Pascal into I -code; then the
code Generator translates the I-code into Object cOde.

Olapter 6
The Assembler

The Assembler translates assembly language programs Into object COde.

Olapter 7
The Linker

The Llnl<er cOfl't)lnes Object code flIes Into executable programs.

Chapter 8
The Debugger

The DebUgger enables you to examIne memory, set breakpoInts, and perform
other run-time debugging functions.

v

O'q)ter9
Exec FOes

Exec fIles enable you to execute aserles of commandS ancJ programs
automatically.

Chapter 10
TIle TICrlSfer Progrcm

The Transfer Program enables you to transfer files between the Usa and a
remote computer. It can also let you use the Lisa as a terminal for a
remote computer.

Olapter 11
TIle Utilities

Utility programs are provided for debUgging, configuring the system, and
manipulating fHes.

~xes

A Enor Messages
This section contains a list of error messages for the system, the Linker,
and the Assembler.

B The Lisa Olaracter set
This section defines the complete Usa character set.

C SCreen COntrol Olaracten
This section lists character sequences that can· be used for controlling the
screen display.

o CorTmon Problems
This section contains some common problems and suggestions for handling
them.

IndeX

vi

Preface

This manual Is intended for experienced Pascal, BASIC, or COOCl.
programmers. It describes the Workshop system, which is the environment in
which these languages are used. We assume you have read the Lisa OWner's
Gtlide and are familiar with your Lisa system.

Related Doaments
F or Pascal programming:

• Pascal Reference Mantlal for tl7e Lisa

• MC68000 16 Bit Microprocessor User's Mantlal

II tperatlng ~ystem Reference /'1antIal fOJ" tIJe Ljsa

F or BASIC programm1ng:
II BASIC-PlllS user's Gl/lde for tI7e Lisa

F or creeL programming:
II CCBa. User's Gtlide for tl7e Lisa

II Ca3a Reference Mamal for tl7e Lisa

Type ald Syntax conventions
Boldface type Is used In th1s manual to dIstinguish program text from Engllsh
text.
Italics are used when technical terms are introduced.
Syntax dIagrams are used to descrIbe flle specIfiers and the syntax of exec
fUes. For example, the following diagram describes a wild-card-spec:

wlld-card-spec

vii

Start at the left and follow the arrows through the diagram. Several paths
are possible. Every path that begins at the left and ends at the arrowhead on
the right is valid, and represents a valid way to construct a file specifier.
The boxes traversed by a path through the diagram represent the elements
that can be used to construct a wild-card-spec. Thus the diagram embodies
the following rules:

• A wUd-card-spec can begin with a string (string-I) or the string can be
omitted.

• A wild-card-spec must contain one of , "? .. , or "~'.
• The , "7', or "$" can be followed by a string (string-2) or the strlng can

be omitted.

The name contained in a rectangular box is the name for some other
syntactic construction that is specified by another diagram. The name in a
rectangular box is to be replaced by an actual instance of the construction
that it represents.
Symbols such as reserved words, operators, and punctuation, are enclosed in
circles or ovals. Text in a circle or oval represents Itself, and is to be
written as shown (except that capitalization is not required~

viii

()54t-A

Chapter 1
Introduction

1.1 The WOl1<stlop •.......•.•..........................•.....................•. 0 ••• 0 •••••••••••••••• 1-1
The WorkshOp provideS the functions necessary to develop and run
programs on the Lisa The WorkshOp can be bOOted from either a
disKette or a Profile.

1.2 StartlIlg ttle WoIkShO(l 0 •••••••••••••• 00 •• 0 •••• 0 ••••••••••••••••••••••••••••••••• 0 ••••• 0 ••••• 1-2
The Workshop is started by booting the Lisa from a disk containing the
WorkshOp software. You can use the Environments windOw to select
one of several available environments.

1.3 The WOIksllop COli mar Id Line ... 1-3
The WorkshOp command line gives you access to the main system
functions and Subsystems. All the WorkshOp commandS are described in
this section.

1.4 Flle System OrganIzation ald NcJnIng .. 1-6
Files are stored on disK volumes and are accessed by specifying the
volume name and the file name.

15 1lle WOIkst'loJ) LJser InterfClCe •••.•••••• 1-6
This section gives information on the user interface conventions used in
the WorkShOp system.

1.6 utlHty ProgIarTlS .. 1-9
utUity programs prOVide additional functions for the Workshop. A
utility program is started by choosing the RLN command from the
Workshop command Une.

1.7 How Do I Install the Pascal Lag.aage System? 1-9
this section provides instructions for installing the Pascal Language
System onto your Profile.

1.8 How Do I write ald RtrI a Pascal Program? 1-11
A Pascal program Is written with the Editor. The source file must be
compUed and linked before it can be run.

1.9 How 00 I write CI'ld Rwl Sl Assembly Lag.aage Program? ••••••••••••••• 1-11
M assembly language program Is wrItten with the EdItor. It must be
assembled and linked with a Pascal main program before it can be run.

1.10 How Do I Install the BASIC La1QU8Qe System? 1-12
This section provides instructions for installing the BASIC Language
System onto your Profile.

1.11 How Do I use the BASIC Interpreter? ... 1-13
A BASIC program can be written using either the Editor or the BASIC
Interpreter to create the source file. The BASIC Interpreter will run
the program.

1.12 How 00 I Install the can.. La1QU8Qe System?••.••.•.••...•..•••..•••••. 1-13
This section provides Instructions for Install1ng the CeBCL Language
System onto your ProFile.

1.13 How Do I write a am.. ProgJallI? ... 1-15
A CCBCl.. program Is written with the Editor. After writing the
program, enter the Ccaa.. language system to complle and run the
program. The CCBCL system Is Invoked by pressing C In response to the
Workshop command prompt

1.14 lJsirlg the Printer ••••.••..•..•.•.....•.•...•.•••••.•..•••••••.....•..••...•.•••..•••..•..•.• 1-15
This section provides Instructions on how to configure your Lisa for a
printer. Information is also provided on how to specify a default
printer when you have more than one printer connected to your Usa

1.15 T'he ~ratirlg System•.•.•....•.•...•.......•..•....•.•...•..•••..•..•...•...•...••• 1-16
The WOrkshop runs under the ~erating System for the Lisa computer.
You can access ~ratlng System routines through the SYSCALL
interface. More information about this interface can be found in the
cperatlng System Reference Manual for the LIsa

Introduction

1.1 1he WOIksl'ql
The WorkshOp allows you to develop and run programs on the Lisa It
provides tools necessary to write, debug, and run programs in Pascal, BASIC,
£V'ld CC61.. This manual explains how to use the WOrkShop and all of its
tools.
ClY17I778I7fi lines provide access to all Workshop functions. The main command
line, W£RKSHCP, allows you to edit programs, run utilities or user programs,
and use the languages available on the system. It also provides access to two
subsystems: the File Manager and the System Manager.
The File Manager allows you to copy, delete, rename, and list disk files. It
includes a backup function, and functions for manipulating volumes. These
functions are listed in the FILE-MGR command line. (see Chapter 2.)

The System Manager provides for system configuration and defaults and
process managment. Its commands are listed in the SYS-MGR command line.
(see Chapter 3.)

The LIsa system can dIsplay one of two screens, called the main screen and
the Bltemate screen. The WorkshOp system normally displays on the main
screen. The alternate screen is used by the system Debugger. You can
change to the other screen display b~ pressing the right hand [CPTICJ'.J] key and
hOldIng it down whUe you press the [ENTER] key. The System Manager
contains the Console command, which can be used to specify where the
Workshop should display.
You can currently use the Workshop to write programs in Pascal, CCBa..., and
BASIC. To use these languages, refer to the appropriate language manuals. In
addition to this manual, you will need:

For Pascal Programming:
• P8SC81 Refe/l!f1Ce Manual for the Lisa

• f\1C68000 16 Bit Microprocessor User's M8I7U8l (If you want to use
assembly language or the Debugger)

• tperating System Reference M8I7U8l for the Lisa (for information on
system calls)

For BASIC Progranming:
• BASIC-Plus User's Guide for tile Lisa

1-1

Wo.rkslJop user's Gulde IntrcdKJUm

For CCBCL ProgrammIng:
• ct:Bll. User's Guide for the Lisa

• ClEJlL RefiJrence /'1CYJu8J for the Lisa

If you have only a BASIC or COOa.. system, you wIll not have all the software
descrIbed in thIs manual. SpecIfically, you will not have the Debugger and
can dIsregard the sections that pertain to it. The portions of this manual that
will be most useful to BASIC and crect. programmers are:

• The Introductlon, which deScribes how to use the WOrkshop.
• The File Manager, which describes files and how to manipulate them.

• The System Manager, which describes setting up the system configuration
parameters.

• The Editor, which describes how to create and modify text fUes, which are
used as source files.

You may also use some of the utIl1tIes If they are inclUded In your software.
1.2 starting the WOrkstql

The Workshop can be booted from a diskette or a Profile". It will most
commonly be used with a Profile, because hard disks have more space and are
faster. See the LisalNner's Guide for instructions on booting the system.
To start the system, boot from a dISk that contains the WorkShop software. If
your disk contains only the WorkShop environment, the WorkShop command
11ne will appear at the top of the .screen. If you have more than one
environment (for example, the WorkshOp and the Office System) you can use
the Environments wIndOW to start up the environment you want, and swItch
between environments.
The Environments window allows you to select the environment you want to
start. You can also set a default environment that will be started
automatically when you boot the system. To access the Environments windOw
while bOoting the system, press any key while the Usa is starting up. The
Environments window will be displayed.
The EnvIronments wIndOw Is ShOwn In Figure 1-1. It dIsplays fIve bUttons:
Power Off Tum off the Usa
Restart Reboot or reset the Usa
Start start the selected environment
set Default Set the default to the selected environment
~ Defadt Display the Environments windOw on startup.

1-2

WOrk"SIqJ user's GuIde IntJ"OdlICtim

TO select an environment, move the pointer to the checKbox of that
environment and cllcK the mouse button. Then move the pointer to the start
button and clicK. The selected environment wlll starl
To access the Environments window from the WOrkshop, for example, to select
another environment, use the Quit command from the WOrkshOp command 11ne.

Environ1ftent!

(Restart (Power ON

• WorkShop

o ONice S~stn

Fi~e 1-1
The Envirormetits WindoW

1.3 The Workstql con., aar Kj Line

(Set Default)

No DefaUlt)

Start

When you select the Workshop environment, the Workshop command line
appears at the top of the screen. This command line lists all the primary
WorkShop commands and gives access to several subsystems with additional
commands. The WorKshop line displayed contains only some of the commands
available. You can see the rest of the commands by pressing "?", the last
symbol on the line. To return to the original command line, press [RETURN}
Pressing the first letter of a command initiates the command.
Most commands will asK for additional information. Type in the information
using the Lisa keyboard. Some questions have a default Value, displayed In
square brackets ([default]). To accept the default value, press [RETURN} If
you don't want the default value, type In the value you want.
Two other SUbsystems have separate command lines: the File Manager and the
System Manager. Their command lines can be accessed from the Workshop
command line, and are used the same way.

1-3

IntrodUction

The main, or Workshop, command Une Is as follows:
WCRKSHP: Fn..E -MGR, SYSTEM-I"13R, Edit, Rt.rl, Pascal, Basic, CObOl, QuIt, ?

TIle addItional portIon, dIsplayed by pressIng .. " Is:
Ammlle, Debug, Generate, MakeBookgrot.nd, LInk, TransferProgra'n

All the main command line commands are described as follows:
FlLE-MGR (J=)
This command puts you into the File Manager subsystem, which Is used to
manipulate the files and volumes on the system. For more information on the
fUe manager, see Chapter 2 in this manual.
SYSTEM-t13R (S)
This cornrnand puts you Into the System Manager SUbsystem. This subsystem
provides various configuration and utIllty functions. See Chapter 3 In this
manual for more Information.
Edit (E)
The Edit command puts you into the text edItor, which is used to create and
modify text files. The Editor is used to create source files for BASIC, C(]3(1,
and Pascal. It is also used for assembly language programming and to create
exec fUes. The Editor is described in Chapter 4 in this manual.
Rt.rl (R)
The Run corrmand causes a complled and llnked program to execute. ThIs
command Is used for user-written Pascal programs, utillty programs, and any
other software that runs under the WOrkShOp. The Run conmand asks you for
the fHe to run. This file must be an executable object fHe or an exec fHe.
When you give the Run command a fHe name wltn no -fBJ extension, it wIll
first search for that fHe name. If it is not found, It wIll search for
fllename.ObJ. If you cJo not specIfy a volume name, the Run command wIll
search through up to three default volumes for the fIle. (see section 2.4.1 for
an explanation of volume ncme.) TheSe defaults can be set by the FHe
Manager's Prefix command. see Chapter 2 for more Information on the PrefIx
cofTlma'ld.
The Run command wUI also accept an lIexec file" as input. AA exec fUe is a
scenario of commands. for the WOrkshop system to carry out. An exec fUe
name must be preceded by a .. <II or "execf' to be processed correctly. For
more information on exec fUes, see Chapter 9 in this manual.
Pascal (P)
This command starts the Pascal compiler. The compiler. asks for the input
f11e, whIch must be a text f11e; the l1stlng f11e; and the output fUe, whIch will
contain the object code. The Pascal compUer is described in Chapter 5.
Further information on the Pascal language can be fOt.lrlC2 in the Pascal
Reference MantlsI for t!Je Lisa.

1-4

WOl'kshop User's Guide Introduction

CompllatIon Is In two steps. The first step, done by the Pascal command,
prodUces an Intermediate code flle. After this, you must use the Ganerate
command, (press G) to generate an object file from the Intermediate code f11e.
Basic (8)
This command puts you into the BASIC Interpreter. More information on
BASIC programmlng can be found in the BASIC-Pllls User's GuIde For tIJe
Lisa.

COOol(C)
This command puts you into the COBOL language system. More information
on COBOL programming can be found In the CCJBa.. User's Guide for tIJe Lisa
and the CCJBa.. ReFemnce M8ntt8J For the Lise.

Qult(Q)
The Quit command ends the Workshop environment You can use it to access
the Environments window to start another environment or to tum off your
Usa.
The following prompt line appears after you confirm that you want to leave
the Shell:

WorkShop_shell, Another_shell, RebOOt, Power_off
Type the first letter of what you want to do, for example, type A to access
the Environments windOw.
Assermle (A)
The Assemble command starts the assembler. Further information on the
assembler can be found in this manual in Chapter 6. Additional information on
the assembly language can be found in the /VIC68000 16 Bit Microprocessor
User's Manual

Debug (0)
The DebUg coomand causes your program to run with a breakpoint Inserted at
the first Instruction In the program, so you can use the debugger on the
program. More Information on the Debugger can be found In Chapter 8 of
this marua1.

Generate (G)
The Generate command converts intermediate code fUes produced by the
Pascal compiler into object code. It is used with the Pascal COmpiler and is
described in Chapter S.

MakeBackgIOt.nj (M)
The MakeBaCkground coomand allows you to start up a baCkground process ..
then continue using the Workshop for other functions. It is assumed that the
background process will not try to display on the console or require keyboard
input.

l-S

WOIksI1t:p User's Guide IntnJticlim

Llnk(L)
The Link command executes the Linker. The Linker Is used to prepare
compiled Pascal programs and assembled routines for execution, and to link
together separately complled pleces of a program. The Linker Is described In
Chapter 7. .

TI81SfeIPIogtd II (T)
The Transfer Program allows your Lisa to communicate with a remote
computer. It can be used as a terminal, or to transfer files between the Lisa
and the remote computer. The Transfer Program is described in Chapter 10.

1.4 File System Organization and ~
Files are stored on volumes, that are mounted on devices. A volume has a
name and a directory of files that it contains. A file is specified by giving
the name of the volume and the name of the file:

-volumename-filename
The WOrkshop maintains a working directory; you can access files in it
without specifying a volume name. The working directory can be changed by
using the File Manager's Prefix command. Files on the working directory can
be specified by just the file name, with no leading "-":

filenane
Further information on the file system can be found in Chapter 2 of thb
manual and in the t:peratlng System Reference M8I7lI81 for the Lisa.

15 The WoIkshop User Interface
This section describes conventions· and standards used in the Workshop system.
These ways of requesting input from the user are standard throughOUt the
system to make it easier to use.

1.5.1 FUe NBne Pr'oo1lts
Many of the Workshop prompts are for file names. In the Lisa ~rating
System, you have few restrictions on what characters you can put in file
names. However, you should be aware that the following restrictions· exist in
the Workshop:
1. You can· embed blanks, but leading and trailing blanks and tabs will be

removed when the . Workshop processes your fUe prompt input.

2. cases are preserved as you specify them.
A pall1name has three parts: a device name, a file name, and an extension
The following conventions apply to a path name:

device (or volume) name is up to 32 characters long, excludIng • - e.

file name is composed of alphabetic or numeric
characters; spaces are permitted.

1-6

WOd<sl1op USer's Guide

extension

In!JrJt1uction

is composed of alphabetic or numeric
characters; spaces are permitted. All
extension is optional. If present, it is the
final '.' and any characters that follow
(there must be at least one) in the
pathname.

The combined length of the file name, plus extension, cannot exceed 32
characters.

Prompts often Include default values. You do not have to enter parts of fUe
names already supplied by defaults.

If a prompt includes a default extension which you don't want (except if the
file ncrne consists of only a logical device name), put a period at the end of
the file name. The period will be removed and no extension wIll be added.

The followIng sections explaIn the standard responses allowed to prompts.

1.5..1.1 The a..EAA Key
The [CLEM] key on the Lisa keybOard is an escape key. You can use it in
response to a fUe name prompt to abort out of the command or program. No
[RETURN] is required after pressing the key.

15.1.2 PnJT1)ts with SlrYJIe Defallt values
When a default value for part of a fUe name exists, It Is shoWn enclosed In
brackets In the prompt message; for example, [.text] IndIcates that there Is a
default fUe name extension value, and that that value is .text. If a default
value Is present, you need specIfy only the fUe name part not supplied by the
default

Extensions will not be added to file specifications consisting of device names
only. Therefore, if you want to specify only a device when there is an
extension default (for example, when prompted for a listing fUe with a default
extension . TEXT and you want -printer), simply use -printer.

To use the default value for an entire file name, respond with [RETURNl If
you do not want any fUe to be used, even if a default value exists, respond
with a backslash "'''.

lS.1.3 ~ with Alternate Default values
Alternate defaults are lndicated by a slash. For example:

[-console]t1. text]

means you have a choice of either the console or a ".text" file. To chOose the
console, simply press [RETURNl To choose a text f11e, respond with a file
name.

15.1.4 PnJT1)ts with separate Oefallt values
Each of the parts of a file name might have a separate default value, such as
[-paraport] [-IntrinsIc] [.llb~ If each of the defaults Is 1ndependent:

1-7

Wod<slJop User's Guide Introduction

• a response with no device specification gives you the default device.

• a response with no file name gives you the default file name.

• a response with no extension gives you the default extension.

Sometimes the defaults depend upon each other. For instance, the prompt
[-paraport-intrinsic] [.lib] indicates dependency, because the first two
components are enclosed in the same set of brackets. When defaults are
dependent, if you choose one or the other of them, you will get both. Be sure
to look at what has been included in the brackets to see whether the defaults
are independent or not

15.15 PI'tlfTllts with No Default Values
If you find that no default value is given in the file name prompt, use
[RETURN] or a backslash to specify no file. Sometimes a file is required for
the system to perform its function. If this is the case, and you specify no
file, the program terminates.

15.1.6 EndirYJ a List of PIllf11lU
Some Workshop tools prompt for lists of files, as does the Linker. To indicate
that you are finished responding to a prompt for a list of· files, use [RETURN].

LS.L7 The? Response
If you need help, or a list of program options, respond to a file name prompt
by pressing the ? key followed by [RETURN]. Then proceed according to the
information that appears on your screen.

1.5.2 How to Terminate CI1 q:Jeratim
You can terminate the operation of most commands and programs by pressing
ti-period, although termination might not be immediate if the program being
run does not recognize c-period.

"I)lE

Note that most Workshop tools cheCk for c-period from the keyboard
even when running under exec files. This means that you can abort
Workshop tools in exec files.

Unless user programs are written to recognize the c-period key combination
as an abort mechanism, pressing those keys will not terminate the program
being run. (See PASLIBCALL, Section 5.4, for information on the function
PAbortFlag, which tells whether or not those keys have been pressed.) If this
is the case, you can either:

• wait for the user program to terminate so that c-period can be recognized
by something else, or

• press the NMI key,' which forces the system into the Debugger. The NMI
key is the "-" key on the numeric keyboard.

See Section 8.2 for instructions on how to stop a user program early.

1-8

Wo.rksllop User's Guide Intnx:lllction

LS3 How to Halt a Screen Display
If you want to temporarily stop the screen display, press the • key and type
S, which stops the program from running by blocking its current output
operation. When you want to restart the screen display, agaIn press .-S.

LS.4 Inserting and Ejecting Diskettes
You can usually insert a diskette at any time. It will be mounted and
accessible after you press any key, except the ., [CAPS LOCK], [(FTICN], or
[SHIFT] key, on the keyboard. You can usually eject a diskette by pressing
the diskette button and then hitting any key on the keyboard. (When you are
in the Editor, the Preferences tool, or TransferProgram, you do not need to hit
a key after pressing the diskette button)

Mounting and unmountlng diskettes is handled by the Pascal run-time system
In the WOrkshop. Therefore, the act of inserting a diskette or pressIng the
eject bUtton is not recognized Lfltil Pascal 110 is performed, thUS the necessity
of hitting a key. If the program you are running dOeS not use Pascal 110, you
must first return to the Workshop conrnand line. Then enter the File Manager
and Molrlt or lJnmOl.rlt your diskette.

L6 utility ProgICI us
The WOrkshop provides various utllity programs, which support functions used
less often than the fLflCtiom you Obtain through primary commands. The
utilities are described in Chapter 10.

You must Run utllltles. Choose the Run command from the maIn command
Une by pressing· R when the maln convnancJ Une Is displayed. The system will
ask you for the name of the fUe to run. Type in the name of the utlllty you
want to run.

L7 How 00 I Install the Pascal Lc:I1Ql.I8Q9 system?
Because the Lisa Office System is a standard product, you I71lISt install it
before you Install any optional language systems.
To Install the Pascal language system, start with your ProFlle on and your
Usa off.
1. Insert the "Pascal 1" Language System diskette into your Lisa's upper or

lower disk drive.
2. Press the on-off bUtton.
3. Hold down the • key and type either 1, If you put the diskette in drive 1

(the upper drive), or 2, if you used drive 2 (the lower drive~
4. Wait. It will take abOUt 3 minutes for the Lisa to load In· the ~ratlng

System and the WorkshOp Shell from the diskette.

1-9

Workshop User's Gujde Introduction

If you want to stop the loading process at any time after the system
has booted, hold down the. key while you type a period. The system
will stop copying files and you will enter the Workshop environment.

5. When the system is finished booting, you will see some information about
the clstarttext exec file and about initializing ProFiles. Them the system
will ask you a serIes of questions. Be sure to type [RETURN] to terminate
your responses.

• The system will ask if you want to go ahead with the process. (Type Y
for yes.)

• The system wllI asK you where the target ProFile is attached. It must
be attached to the built-in parallel connector (PARAPCRT), or the
upper or lower connector of the parallel Interface card In expansion
slot 2 (SLOT2CHAN2 and SLOT2CHAN1, respectively~

• The system wm then ask you to insert the second Workshop disKette,
"Pascal 2".

• The system will then ask if your ProFile needs to be initialized. 00
not initialize your ProFile if there Is already an Office System on it!

• If you don't initialize your ProFile, the system will ask you if you have
enough space on the target ProFile. "Enough space" for a whole
Workshop means about 1500 blocks. If you already have another
Workshop Language System on the ProFile, then "enough space" means
about 700 blocks. (The language systems share about 800 blockS.)

• If you do initialize your ProFile, you will be asked if there is now a
Lisa OS volume on it. Answer Y if the ProFUe has ever been used with
a Lisa. '.

You will now see a lot of text flash by on your screen--don't worry, this is
supposed to happen. The commands you generated by answering the questions
are now actually being executed.

If you get any error messages, stop the process by typing .-perlod, turn off
your Lisa, and start over. If you get the same error again, write it down, and
call the Apple@) Support Hotline to find out what to do.

When all the flIes on the "Pascal 2" diskette have been copied, the system
will eject the diskette and ask you to insert the "Pascal 3" diskette, then
continue to copy files.

1-10

/nt.n:xiK::tion

When the system is finished copying files, the WoI1<shopcommand line will
appear. '

L8 I-bw Do I Write am RLrl a Pascal Prognm?
To write and run a Pascal program, proceed as follows:

1. use the Editor to create a text fUe wIth the Pascal source program. See
Chapter 4 in this rnat'UH for more information on editing the file. see the
Pascal Ref'e17!1l1Ce fvI8ntIaJ far the Lisa for information on the language.

2. Compile the program with the Pascal command (press P while the
WoI1<~hop corrmand line is displayed~ The output from the compiler is an
intermediate file.

3. The output from the Pascal command is an I-code file. Use the Generate
command to convert the I-code file into an object fUe. To use the
Generator, press G when the Workshop command line is displayed. See
Chapter 5 for more information on compUlng Pascal programs.

4. Link the program with the Link command. In order to be executable, the
program must be linked with the Pascal support routines contained in
IOSPASLIBJ13J. If you are using any REAL variables, you must link your
program to IOSFPUB.CBJ. For other applications you can also use other
libraries and units, or assembly language routines. More information on
the Linker can be found in Chapter 7.

5. The linker prodUCes an executable Object file. Press R to run the program.

Information on maklng system calls from Pascal can be found in the tperating
System Ref'eIE!f1Ce I'1lncIBJ fOr the Lisa

1.9 How Do I WIlte CI1d RtJ'l an AsserOOly La1fJJ8Qe Prognm?
Assembly 1a1fJJ8Qe programs must be called as procedures or functions from a
Pascal main program. To write an assembly language routine, proceed as
follows:

1. Use the Editor to create an assembly language source program. See
Chapter 6 of this manual for information on assembly language. Chapter 4
describes the Editor.

2. Press A to execute the Assembler. The Assembler accepts the text fUe
you created and produces an object file.

3. Declare the routines you wrote in ~embl y language as EXTERNAL in the
main Pascal program that calls them.

4. Use the Pascal and Generate commands to create an object file from the
Pascal program. see Section 1.8 for more information.

1-11

WOd<sI1Op User's Guide intnxfucti07

S. Use the Link corrmand to link the Pascal object file, the assembly object
fUe, IOSPASlIBJEJ, and any other needed units or l1braries.

6. Use the RLI'l command to run the resulting object file.

1.10 How 00 I Install the BASIC Language System?
Because the Lisa Office System Is a standard product, you must Install it
before you install any optional language systems.
To install the BASIC language system, start with your ProFile on and your
Lisa off.

1. Insert the "BASIC 1" Language System diskette into your Lisa's upper or
lower disk drive.

2. Press the on-off button.

3. Hold down the " key and type either 1, if you put the diskette in drive 1
(the upper drive), or 2, If you used drive 2 (the lower drive~

4. Wait. It will take about 3 minutes for the Usa to load in the qlerating
System and the Workshop shell from the diskette.

i'IJTE

If you· want to stop the loading process at any time after the system
has booted, hold down the " key while you type a period. The system
will stop copying fUes and you wUl enter the Workshop environment.

5. When the system is fInIshed booting, you will see some Information about
the cis tart. text exec file and about initializing Profiles. Then the system
wUI ask you a series of questions. Be sure to type [RETURN] to terminate
your responses.

• The system will ask if you want to go ahead with the process. (Type Y
for Yes.)

• The system will then ask you where the target ProFUe is attached. It
must be attached to the bullt-in parallel connector (PARAPCRT), or the
upper or lower connector of the parallel interface card in expansion
slot 2 (SLOT2CHAN2 and SLDT2CHA1\11, respect1vely~

• The system will then ask you to insert the second Workshop diskette,
"BASIC 2".

• The system will then ask if your ProFile needs to be initialized. Do
not initialize your ProFile if there is already an Office System on it!

1-12

WOrks/Jq:J User's Guide Intn:Jt:U::tim

• If you don't initialize your ProFile, the system will ask you if you have
enough space on the target ProFile. "Enough space" for a whOle
Workshop means about 1500 blocks. If you already have another
Workshop Language System on the ProFile, then "enOUgh space" means
about 700 blocks. (The language systems share about 800 blockS.)

• If you do initialize your Profile, you will be asked if there is now a
Lisa OS volume on it. Answer Y if the ProFile has ever been used with
a Usa.

You will now see a lot of text flash by on your screen--cJon't worry, this is
supposed to happen. The commands you generated by answering the questions
are now actually beIng executed.
If you get any error messages, stop the process by typing .-period, tum off
your Lisa, and start over. If you get the same error again, write it down, and
call the Apple SUpport Hotline to find out what to do.

When all the fUes have been copied, the Workshop command line will appear.
1.11 .-ow Do I use the BASIC Interpreter?

To use the BASIC Interpreter, proceed as follows:
1. Use the Basic command by pressing B when the main command line is

displayed. You will enter the BASIC Interpreter.
2. Enter the BASIC language statements and commands necesary to write and

execute your program. The B~IC Interpreter can execute statements
immediately or save them to run later. You can return to the main
corrmand line by using the BASIC command BYE.

You may also use the EdItor to prepare or modify the BASIC source program,
then use the BASIC Interpreter to run it. see Chapter 4 in this manual for
more information on the EdItor.
see the BASJC-Plus User's Guide for t/Je Lisa for more information on the
language.

1.12 How Do I Install the am... Lag.mge System?
Because the Lisa Office System is a standard product, you must install it
before you install any optional language systems.
To install the CCB£l.. language system, start with your ProFile on and your
Lisa off.
1. Insert the "CffiCl. 1"' Language System diskette into your Lisa's upper or

lower dIsk drive.
2. Press the on-off bUtton.
3. Hold down the • key and type either 1, if you put the diskette in drive 1

(the upper drive), or 2, If you used drive 2 (the lower drive~

1-13

WOlksl7op User's Guide

4. Wei t It will take about 3 minutes for the Lisa to load in the ~rating
System and the Workshop shell from the diskette.

NJTE

If you want to stop the loading process at any time after the system
has booted, hold down the " key while you type a perIod. The system
will stop copying files, display "Exec processing aborted", and you will
enter the Workshop environment.

5. When the system is finished booting, you will see some information about
the cis tart text exec file and about initializing Profiles. Then the system
will ask you a series of questions. Be sure to type [RETURN] to terminate
your responses.

• The system will ask if you want to go ahead with the process. (Type Y
for Yes.)

• The system w11l ask you where the target Profile is attached. It must
be attached to the built-in paranel connector (PAAAPIRT), or the
upper or lower connector of the parallel interface card in expansion
slot 2 (SLOT2CHAN2 and SLOT2CHAl'J1, respectively~

• The system will then ask you to insert the second Workshop dIskette,
"cooa... 1".

• The system will then ask if your ProFile needs to be initialized. Do
not initialize your Profile if there is already an Office System on it!

• If you don"t initialize your ProFile, the system will ask you if you have
enough space on the target ProFile. "Enough space" for a whole
Workshop means about 1500 blocks. If you already have another
Workshop Language System on the Profile, then "enough space" means
about 700 blocks. (The language systems share about 800 blockS.)

• If you do initialize your ProFile, you will be asked if there is now a
Lisa OS volume on it Answer Y if the Profile has ever been used with
a Lisa

You wlll now see a lot of text flash by on your screen--don"t worry, thIs is
supposed to happen. The commands you generated by answering the questions
are now actually beIng executed.

If you get any error messages, stop the process by typing .-period, turn off
your Lisa, and start over. If you get the same error again, write it down, and
call the Apple Support Hotline to find out what to do.

When all the files have been copied, the Workshop command line will appear.

1-14

Workshop User's Guide /ntrothCtion

1.13 How Do I Write a ca:n.. Prognm?
To write a CCBCL program, proceed as follows:
1. Create a text file containing the source program by using the Editor. see

Chapter 4 in this manual for more information on the Editor.
2. Press C to enter the CCBCL language system. More information on CCBO­

programming can be found in the ClBlL User's Guide For the Lisa and the
ClBlL Ref'emnce fvIlI1tJaJ Far the Lisa.

Use the Quit coomand to exit back to the main command line.

1.14 Using the Printer
To use a prInter with the Wor1<shOp system, you must set up the printer
correcti y, and configure your system for the printer. If you have more than
one printer you wIll want to set up one of them as the default printer. These
operations are explained below.
setting l4l the Printer
The procedUre for setting up a printer varies with the type of printer. See
the instruction manual that came with your printer for directions on how to
set it up correctly.
If your printer is an Apple Imagewriter, the default standards which have been
factory preset shOuld be satisfactory for normal use. However, if you want to
modify the performance of the lmagewriter, you can get the technical
specifications from the ~Je lmagewriter User's Manual, Part l' Ref'emnce.

confi~ Yoor Lisa for a Printer
Follow these steps to configure your Lisa for a printer:
1. From the Wor1<shOp command Une, press S to enter the System Manager

SUbsystem.
2. Then press P for Preferences. The Preferences tool is used to set up the

configuration of the Lisa system and the Wor1<shop.
3. Click on Device Cor11ections to display what devices are comected to the

Lisa
4. Select the port to which your printer is connected. When you select the

port, all deVices that can be connected to that port are displayed.
5. Select printer, and addItional confIguration options are dIsplayed.
6. When you are fInished configuring your printer, select Quit from the Tools

merlJ.

7. Then exit from the System Ma'lager back to the Wor1<shop command line
by pressing Q for Quit

1-15

WoJ1<sIJop User's Guide IntJrJdl.lction

My changes made with the Preferences tool are made immediately to
Parameter Memory, but changes in device connections do not take effect untIl
the next time the Lisa is booted. Therefore, if you want to continue working,
it is necessary to reboot your Usa now. For additional information on the
Preferences Tool, refer to Section 3.3.

To reboot, perform the following steps:

1. Press Q for Quit

2. Select Y in answer to "Are you SURE you want to LEAVE the shell?"

3. Press R for Reboot.

When the system has finished rebooting, the changes you made will be in
effect.

setting a Default with M.dtlple Printers
If you have multiple printers connected to your Usa, you can specify which
one is to be the default printer. This means that you can establish which
printer will be designated by -printer.

First configure all of the devices you want connected to the Lisa (see the
previous section and Section 3.3 for instructions on configuring devices..)
After you have rebOOted, return to the System Manager command line. Select
o for DefaultPrinter, and enter the device name of the default printer. If you
do not want to cnange the device name, beCaUse you want the default to
remain as it is, press [RETURN] to exit back. to the System Manager command
line.

Rebooting is not required for the default printer setting to take effecL
However, If output redirect to the printer is in effect... you wlll have to dO the
output redirection again.

Details on the DefaultPrinter option are available in Section 3.2.

1.15 The ~raung System
The Workshop runs under the ~rating System of the Usa computer. You can
use some ~rating System routines from a Pascal program to perform specIal
system functions for you. These system calls are defined in the intrinsic ooit
SYSCALL. The dependencIes of the Lisa workshop environment are shown in
Figure 1-2 on the following page.

More information on the SYSCALL interface and routines can be found in the
Usa ~rating System doclmentation.

1-16

Workshop User's Guide Introduction

QuickDraw

Bit-Map Graphics

FIt Pt Library

Full IEEE Numerics

Pascal Run-Time Library

I/O

Lisa Operating System

Memory Mgmt File System Process Mgmt

Figure 1-2
Lisa ~rI<shop Envi.ronnent

1-17

29-0'~-A

Chapter 2
The File Manager

2.1 llle File ~r .. 2-1
The Flle Manager allows you to manipulate files, volumes, and deVices.

2.2 lJSlng tile File ~r ••.•••.•••.•.•.•••••.•.•••..••••.••••••.•.•••••••.•••••.•.•••••••.•. 2-1
Press F at the Workshop command line to display the File ~r
commands. The first letter of each F1le Manager command invokes
that command.

2.3 llle File ~r COlma Mis .. 2-1
This section Usts and defines all FHe Manager operations.

2.4 llle WoIkstlDJl View of Flies •••••••.••••••.•..••.•••••••...•••••..•.•••••••...•••••.•.•••• 2-8
Each disk can contain a volume which has a directory of files. File
extensions (. TEXT, .CBJ, and so fOrth) are added to some flles wlth
special uses.

2.5 lJsirlg Wild cam Olaracters •••••••••••••••••••••••••••••••••••••••.••••.••••••••••••••• 2-11
WUd card characters allow you to name groups of flIes by giving
filename patterns to be matched. The wild card characters are -, $, 1.

2.6 I-tow [)() I List Exlstlrlg FUes? ... 2-13
To llst all the flles on a volume, use the Ust corrmand or the Nemes
command. You can use wild cards to list subsets of the files on the
volume.

2.7 t-tow ()() I COlly a File? •.•••••••••••.••••••••••••.•.••••••••••••••••••••••••••••••••••••• 2-13
To copy a f11e, use the File ~r COlly command. Similar to the
Copy command, the Backl4l command Is also used to copy fUes. If you
want the old file deleted after the copy operation is successful, use the
Transfer comnand. You can copy multiple fUes by using wild cardS.

2.8 t-iOW ()() I [)elete a FUe? •••.•••.••••••••••••••.•••.•••••••••••.•••••••••••••••••••••••.• 2-14
To delete a file, use the Flle Manager Delete command. You can
delete more than one fHe by using wHd cards.

2.9 t-iOW [)o I Create and lJSe a VOlt.rne? ••••••••.••.••••••••.•••••.•.•••.•••.•••••••.• 2-15
Use the initialize command to create a volume. The volume must be
mounted before you can use it.

2.10 HoW Do I Cta1ge the Nane Of a File or VOltme? •..••.••••.••..•••.•...•..• 2-15
To change the name of a fHe or volume, l:ISe the Rename command.

The File Manager

2.1 The FOe IVIaI ager
The File Manager is a Slbsystem of the Workshop. It provides file 8'ld device
manipulation facilities, S'ld handles most of the tasks of tra1Sferrtng
information from one place to another. Using the File Manager, you can do
such things as make copies of files, list directories, rename or delete files,
find out what volumes are on line, initialize new disks or diskettes, print files,
ar'KJ so on. see the qJemUng System Reference I'1anuBJ for the Lisa for more
information on the File System Sld ~rted devices.

2.2 lJsirwd the FDe MEI.I
To use the File Manager, press F in response to the Workshop commaald
prompt. The File Manager begins executing, B1d displays t.heFlle Mel I8Qer
prompt line:

FD...E-KR 13acI<l4l, Cqly, Delete, UIt.r Prefix, Rename, Transfer, QuIt, ?

Pressing .. ", displays the additional conmand line:

BJJal, FDeAtt.rlbJtes, Jnltlallze, McU1t., NIme$, 1l1llne, SC8verYJe, U'IJl(ult

To redisplay the original conmand line, press [RETlRN).

To execute 81y conmand, press the first Character of that conmand rare
Whlle the File Manager conmand line is displayed. Most conmands ask for
file nemes, or other input parameters. If there is a default value for a
paraneter, it is displayed In square brackets ([default] ~ To accept the
default,).1st press [RETLRN). If you do not want the default, type in the
value you ~t
To manipulate files with the File Manager you need to address the file with a
file specifier. A file specifier cal be an OS pattTlame (representing a file on
a disk or dlskette), a'l OS volt.rne rsne (for example, -MYOISK), the nane of a
physical device (for e~le -RS232A), or the rare of a logical device (for
exarTllle -printer~ File specifiers can contain wildcards enabling them to
specify a collection of files. See Secttoo 2.5 for more information on
wildcards. See Section 2.4 for more information on file specifiers.

2.3 The FDe MallBQ8r Colmalds
The Flle Manager COlt. nandS are llsted in the FHe Manager prompt line. They
are: Back"", COpy, Delete, Ust, Prefi~ Rename, Tnmfer, QJlt, Equal,
AleAttrlbutes, InItialIze, ~t, teres, D1l1ne, SC8verYJe, nj lJ'lmoU'lt.

Each of these operations is described below. Information 00 wild card
characters CCI'l be found In Section 2.5.

2-1

WoJ'ksI1tp User's Guide 7l1e File I'1a?8ger

2.3.1 Backt.4l (8)
The Backup command executes a sImple backup util1ty, simIlar to Copy. It
asks for source B'ld destination flIe specIfiers, which will most likely contain
wlld cards (see section 2.5~ It then compares the source flIes to the
destination flIes. Whenever the contents of the two fUes are not equal, the
source fIle Is copied. If a source file is missing from the destination, It Is
copIed. Thus it copIes only diFfe.n:nt flIes from the source to the destination.

f\IJTE

The destination fUe Is temporarily named WorkShop. temp, ald the
source file is automatically copied. If the copy is successful, the
destination fUe Is renamed with Its original name, and the fUes are
compared~ If the fUes are different, the first fUe is deleted. Ordering
the process this way prevents deletion of the destination file before
verification that the source fUe is good.

Because the file name Workshop.tert1l is internally involved in the
Backl.4J command, do not assign that name to your files.

23.2 COpy (e)
The Copy command copies files. It asks for a source file specifier a1d a
destination file specifier. You can use wUd cards if you want to copy more
than one file. The source fUe(s) are not changed by this COITIfTl8IId.

The default is not to verify copy operations. You can change this default
with the Validate command in the System Manager. If you change the
default, the source file is COfT1Jared to the destination file after the copy
operation to ensure that they are the same. The Validate command is
described in Chapter 3.
Text fIles are handled specially when· copied to the -printer or -console
logical devices. Leading bl8li<s in a line of text might have been replaced by
a (DLE)X)UI1t) pair to save dISk space. ~ such patterns are detected, they are
replaced by (COlI'lt) bIns In the copy of the file sent to the printer or
console. All other flIes are sent byte by byte unchanged.

2.3.3 Delete (0)
The Delete comnand is used to delete a file or a number of files specified by
a wild card expression It asks you to specify the files to be deleted.

2.3.4 list (L)
The List command llsts information about the files matchIng the given fUe
specification. If all you need is the nM'leS of the files, use the Names
command described in Section 2.3.13.

2-2

Wod<sI1cp User's Guide TIle File M8n8ger

• If the fUe specifier is a fUe name (for example -MYDISK-example.text)
information from only that fUe Is listed.

• If the fUe specifier is a volume name (for example -MYDISK), information
about all fUes on the volume Is listed.

• If the fUe specIfIer Includes a wlldcard character (for example ..
-MYDISK--.text) information about all matching fUes is'listed..

The list command displays the following information:

Fllencme The name of the fUe.

SIze The logical fUe length in bytes.
Pslze The physical file length in blocks (512 bytes~
Last-Mod-Oate oate and time the fUe was last changed.
creaUon-Date Date and time the file was created.
Attr File attribUtes, a combination of the fOllowing:

C FUe was closed by the ~rating System.
L File Is locked. It cannot be deleted until the file

safety switch Is turned off. (see FlleAttrlbUtes
command later In this section.)

o File was left open when the system crashed.
P File Is protected.
S File has been scavenged.

AA example of the l1st dIsplay Is shown In FIgure 2-1.

Contents o~ lJolume -paraport-=
Filename Size Psize last-Mod-Oate Creation-Date AUI'

---- ----- ------------- -------------
SYSTEM.OEBUG2 14848 29 03103183-15:46 06/10/82-21 :57
SYSTEM. I UD I RECTORY 7168 14 07/18/83-09:31 02123183-10:33
SYSTEM.LlD 9216 18 06102182-00: 24 02123183-to: 24
SYSTEM.LOG 2992 6 07/18183-16:56 06/08/83-17:49 0
SYSTEM.OS 188928 369 05104183-10 :08 05/04183-10: 08 CO
SYSTEM. SHELL 8704 17 06102182-00: 26 03129/83-15:14 CO
XEJECTEM.OBJ 512 1 06102182-00: 27 03129/83-15:22

Figure 2-1
TIle Un Display

2.3.5 PrefIx (P)
The Prefix command enables you to set up default volume names to search
when you specify a fUe name without a volume name. You can set up to three
voll.lTle names that wUI be searched in order, when you try to run a program,
until the fUe Is found. The first prefix Is the name of the working directory.

2-3

Wod<sI1op User's Guide The File M8I78ger

It will be searched anytime you specify a flIe name withoUt a volume name.
The second and third prefIxes are searched When you try to Run a program
wIthoUt specifyIng the volume It Is on.

NJTE

The second and third prefixes affect the running of programs directly
from the Workshop shell. They are not searched for progranmatlc fUe
operations, such as opening files, or for other FHe Manager operations.

The last option of the PrefIx command asks if you want to Initialize the
Prefix set at boot time. Answer Y If you want What you have entered to be
established as defaults when you boot.

ThIs command asks you for the three prefixes. If you want to accept the
default, If any, press [RETURNl If you want to set a prefix, type In the
volume name that you want If you want to have no prefix, press [CLEAR] as
the prefix for that level.

2.3.6 Rersne (R)
The Rename command enables you to change the name of a file. It asks for
the file name to change and the name to change it to. You can also use the
Rename command to change the name of a volume. The Rename command
can change the name of a number of files specified by wUd cards. See
sections 2.5 and 2.10 for more information on using wild cards and renaming
files.

2.3.7 TnrlSfer (T)
The Transfer command asks for an Input fUe specifier and a destination fUe
specifier. It copies the Input flle(s) to the destination and then, If the copy
was successful, deletes the Input fUe(s~ However, If you Transfer to the
-console or the -printer, the input flle(s) will not be deleted.

2.3.8 c.ut (Q)
The Quit command exits from the File Manager subsystem back to the
Workshop command Une.

2.3.9 ECJ.I8l (E)
The Equal command compares the contents of two files to determine If they
are exactly the same. It asks for the names of the fUes to compare, then
compares them byte by byte and tells you if they are equal or lIleqUal.

2.3.10 FlleAttr1bJtes (F)
This command Is used to set and clear fUe attributes. You can set the safety
attribUte, which prevents you from accidentally deleting a file. You can also
make a file into a protected master (see belOw~

To use the FUeAttributes command press F in response to the File Manager
command prompt It displays the command Une:

FlleAttrlbutes: ClearAttributes, safety, Protect, QuIt.

2-4

Wod<stqJ USer's Guide The File Manager

TheSe commandS are accessed Dy pressIng the fIrst Character of the COfTITlCI'lC.l
They perform the followIng fU'lCtions:

ClearAttritx.ltes (C)
The ClearAttriDutes command clears the C,O, and S attribUtes on the
specified voltrne, fUe, or set of files with wildcards. These attriDutes are set
by the system, and have the following meanings:

C File was closed by the ~rating System.
o FUe was left open When the system crashed.
S File has been scavenged.

see the SCavenge command in section 2.3.15 for more information.
safety (S)
The Safety command allows you to set or remove the safety attriDute (L) on
any fUe. When the safety attribUte Is set, the fUe Is called "Locked" and
cannot be deleted. To delete a file with safety on, use the Safety cornma"ld
to remove the attribUte, then delete the fUe.

Protect (P)
The Protect command is used to make an executable object file into a
protected master. This Is a form of copy protection for programs. O'lce a
fUe is made Into a protected master, this protection cannot be removed. A
protected master has the followIng characteristics:

• It can be run on any Lisa machine

• It can be copied on any Usa machine.

• COpIes made wlll run only on the Usa that made the n1'St copy of the
fUe.

O'lce a file Is made Into a protected master, there Is no way to
unprotect It Be sure you understand the characteristics of a protected
master before you create one.
This protection scheme Is for executable object files. Note that
protecting a fUe does not prevent you from deleting it.

QJlt (Q)
The QuIt command exits from the FlleAttrlbUtes sUbsystem to the FHe
Manager.

2.3.11 In1tlallze (I)
The Inltlallze command is used to format and Initialize the File System on a
diskette or Profile. It asks you for the device name to initialize, the number
of blocks to initiaUze, and the volume name. If you want the entire device to
be initialized, press [RETURN] for the number of blocks (accepting the

2-5

WorkstJop User's Guide 717e File Manager

default~ If the device is a diskette, it Is formatted (ProFlles are factory
formatted~ Boot tracks are automatically written to any device that is
initiallzed. M initialized device is automatically mounted.

The initIallze command warns you If you attempt to InItialize a diSk that
alreaoy contains a volume, beCause the contents will be erased. A volume Is
init1aUzed to allow a certaIn maximum number of fUes. You can make this
number larger or smaller (1f you Know you will have a large number of small
fUes, for example) When InitialIzIng It.

2.3.12 Molnt ~
The Mount command Is used to make an OS devIce accessIble. It requests a
device name. It Should ·be· used Whenever you connect a new devIce, such as a
ProfIle. The Unmount Command, descrIbed In section 2.3.16, Is used to
remove a devIce. All configured devices are mounted at boot time. The
configuration can be changed wi tn the Preferences tool, Which Is described In
section 3.3.

2.3.13 Nemes (N)
The Names command is a faster version of the List command. It gives you a
list of file ncmes only. It asks for a file specifier, and displays the names of
all fUes matching the given fUe specifier.

2.3.14 Dlline (0)
The O111ne command produces a llst of all the devices that are currenuy
mounted and available, with the following informaticn

OevlceName The name of the device.
VOlt.rlleNEme The name of the voll.lTte.
VOlSize The I"Ullber of blocks on the vollMTle.
FreeBlks The number of blocks still available.
FOes The rumer of· fUes stored on the volume.
~ The runber of fUes open on the vOlt.me.
Attr The attribUtes of· the volllTle:

B The Boot vOltme.
P The Prefix voll.llle (prefiX 1~
M Volume is currenuy fllOI..I'lted.

The O1Une display Is ShOWn In Figure 2-2.

2-6

1l1e File Mcn8ger

FILE-MGR: Backup, COpy, Delete, List, Prefix, Renau, Transfer, Quit, ?I

VoluTl'les on line
DeviceNne VoluuNau VolSize FreeBlks Fi les Open Attr
---------- ---------- --------
PARAPORT Fred's Workshop 9698 754 178 16 MBP
SLOT2CHAN2 8 8 8 8 M
RS232A e e e e H
RS232B e e e e M
MAINCONSOLE e e e 1 M
ALTCONSOLE e e e e M

FI(JJl'e 2-2
The D"lline Display

2.3.15 ~(S)
The scavenge command runs the OS scavenger, WhiCh restores damaged files.
FUes can be damaged any time the Qleratlng system terminates aDnOrmally.
The Scavenger searches through a disK and restores Its dIrectories, flies, a1d
allocation tables to a consistent state.

To scavenge a disk, use the Scavenge command and specIfy the device name.
After the scavenge Is complete, use the Mount conmand to mount It again,
and continue using It. The boot volume cannot be unmounted; therefore It
cannot be scavenged. If the ProFIle Is normally your boot volt.me and you
need to scavenge It, it Is necessary to boot from a dIskette or another ProFlle
and run the Scavenger from It.
If a file is changed In any way by the SCavenger, the fHe attributes are set to
S, for scavenged. This attribute Is displayed by the list command. The
changes made to the fHe might or might not affect the data in the file,
dependIng on What state the file was In When It was scavenged. Examine any
fHe that has the scavenged attribute before relying on its contents. After the
fHe has been Checked, you can remove the scavenged attribute with the
FileAttrtbute ccmnand.

2-7

WOJ'ks/1qJ User's· Guide The File fvl8nSger

A disk's File System can get into CI1 inconsistent state if the q>erating
System terminates abnormally, because the directories and allocation
tables are kept in memory and only written out to disk periodically. If
there is an abnormal termination, such as a power failure, the changes
to the state of the File System since these tables were written to disk
might be lost. Information can also be lost if you disconnect a Profile
from the Lisa without first t.nTlOlI1Ung it. If the disk is used after
such an event, more data can be lost if the system allocates the same
blocks to more than one file.
The scavenger always returns the disk to a consistent state, bUt it Is
possible to lose data When the system crashes. This damage can
beCome even worse if the disk Is used Whlle In an Inconsistent state.
All scaVenged fUes shOUld be checked before you depend on their
contents. .

2.3.16 UlmoUlt (U)
This command makes a .deVlce inaccessible (takes It off l1ne~ It asks for a
device name. For diskettes, use a volume name to urmot.rtt, or a device name
to unt'TlOlI'lt and eject, the diskette. Always t.n'llOUOt a deVice before
disconnecting it from a running machine.

2A The WOIkst'q) View of FUes
Workshop users are provided with a view of flIes and deVices that Is actually
a compos1te. of what is prOvided by the Lisa ~ratlng System, the Pascal
run-time system, and the File Manager itself. Each contributes aspecif1c set
of facilities:

• The Lisa q>eratlng System provideS support for a varIety of Input and output
devices, IncluC.t1ng bOth bIOCk-st.ru:JtuJ'ed deVJces (disks and diskettes) and
setpI!I1tJaJ lt1fI/ces {RS232 ports, consoles~

• The Pascal lUl-tlme system provides support for··several logical-deVices
(console, printer, keyboard) Which are not provided by the OS.

• The FHe Manager provideS wlld-card facilities Which enable many File
Manager commands to be applled to a whOle set of files, rather than just
one at a time.

2.4..1 OS VOb.mes on Disk
Every block-structured device is organized as a single vOltmewlth a flat
directory structure. VOlumes can be Initially created on a disk by using the
FHe Manager's Initialize commaIld. The Initialize comma Id:

1. Fonnats the diSk (If necessary~

2. Records its assigned volume name of up to 32 characters.

2-8

WOrksl1opUser's GuIde TIle File Manager

3. Creates its Initial, empty directory (also called a cataJog~

4. Mounts the inl tlal i zed disk.

When an object is created on a disk, its file name of up to 32 characters Is
entered In the dlSk's directory. FHe names must be t.rllque within a volume so
that every Object can be clearly Identified.

2.4.2 File SpecIfiers
Within the Workshop, file specifiers are used to identify the volume, device,
file, or set of fUes an operation applles to. The diagrcms that follow shoW
the makeup of a file specifier and its components.

flle-speclfler
fUe-nane

physlcal-deVlce

loglcal-deVlce

physlcal-deVlce ...
lPPER

LOWER

PAAAPmT

RS232B

2-9

WOrkshop· User's Guide The File I'-18nager

A physical deVice name refers to a specific hardware deVice or port, Whether
or not there Is actually anythIng comected or I'TlOlM'lted there.. When a device
is blOCk-structured and mounted, its physiCal device name can be used in a
fHe specifier instead of the disk or diskette's volume name. SlncesequenUal
devices are not mass storage devices, they never haVe volume names. The
only way to speCify them Is to use their physical device names followed by
dt.I'nmy file names; for example, "-RS232A-X". Logical devices are also not
mass storage deVices and do not haVe volurne names. They can be referred to
by their logical device names only.

2.4.3 lte WoddrJJ Directory fRJ the Preftx
sometimes, specifying the same volume name or physical device name again
and again is inconvenient. With the FUe Mal tager's Prefix cornrncnd you can
establish a particular volume· as the OS's working directory. otherwise, the
default working directory is the volune the system was bOOted from. If a file
specifier omits the volume or physical device name, the file or set Of flies Is
assumed to be in the working directory. For example, if the working directory
Is -MYDISK, the fUe specifier PR00RAM1.CBJ refen to the same file as
-MYDISK-PROORAM1.CBJ.

-l.FPER The upper dISkette; drIve 1.
-LOWER The lower dISkette; drive 2.
-PARAPmT ProFIle· attacl'let1 to the parallel comector.
-SLOl"nO-W-rl ProFlle attached to the Parallel Interface card In slot m,

Channel n (Where m Is a slot between 1-3, crld n Is
Channel 1 or 2~

2-10

7l1e File /YJan8ger

To avoio OO1fusim within the system, do not assign a device name to a
voll.rne.

There are also two serial devices, -RS232A and -RS232B. These previae
access to external RS232 devices.
There are three logical devices that can be used for Input and output. These
devices are:

-aNSG..E USed for output to the screen and input from the keyboard.
The actual device that is used as the console can be
changed by the console command in the system Manager.
see section 3.2 for information on the Console command.

-PRINTER used to output to the printer. The physical connector that
the printer is connected to is set by the Preferences tool,
described In Section 3.3.3. If you have more than one
printer, the one that wlll be used is specified by the
Defaultprinter command deScribed in section 3.2.

-KEYBOARD Used as a nonecholng input device from the keyboard. This
is the keyboard on the console devIce.

certain types of files in the system have standard file extensions. These
extenSions make it easier to keep track of the different types of files. These
f11e extensions are:

. TEXT This Indicates a text fUe in the format created by the Editor .
. OOJ This indicates an object cOde fUe. (l)ject fUes are created by

the code Generater, the Assembler, and the Linker. (l)ject files
created by the Linker are executable .

.1 This indicates an intermediate (I-COde) fUe prOdUced by the
Pascal ComplIer. The Generate command converts an
intermedIate fUe into an object COde fUe .

. LIB This indicates a library directory.
25 USing Wild card Chara}ters

Wllo card Characters allow you to specify a set of fUes to operate on. The
command is performed on all flIes whose pathname matches the set specif1ed.
WHd caro Characters are ".", "7', and ""'. O'lly one wild card character can
appear in a file specifier. These Characters are used as follows:
stI1ngl-strlng2

The "." character stands for any sequence of zero or more characters that
can be ignored in the search. The surrounding strings (string1 and string2)
must be matChed exactly, ignoring case. Either or both strings can be null.

2-11

Wod<sI1op User's Guide The File H8n8ger

Here are some examples of usIng the "." wlId card Character as a source fUe
name:

ds-.text
·.ooj

All flIes begiming with ds and ending in .text.
All flIes ending with .OOj.
All fUes.

When "." Is used In a destination fUe name, It Is replaced wIth the characters
that were matched by a wlId card in the source file. This enables you to do
operations lIke Change the name of a llst of fUes as they are copied. Here
are examples of usIng H_ to as a destination fUe name:

Cis-.text to OO/ds-.text Change all files starting WIth ds and ~lng
with .text so they begin with bu/.

qd.- to quickdraw.- Change all flIes starting wIth qd to begin wIth
quIckcJraw •

S~l?str1ng2

The Itr character Is the same as the ".", except that the system asks you to
confirm each fUe name before performlng the operatlon. The "1" wU(l car~
can be used only ·in a source string.
When you use a "?"' in a source specifier, you are presented with a llst of files
that match it. You can move backwardS and fONards through the Ust by
using the up and down arrows on the numeric keypad. Press Y beside every
fUe that you want to be processed. When you have selected all the f11es YD'-'
want, press [RETURN]. The operation will then be performed on the f11es y~
selected after confirmation.
When using the List conmand, you cannot use the "?" wildcard in response to
the prompt for a volt.me name.
strtngl$st.IlrYJ2

The """ character can stand for part of a destination fUe name only. It is
replaced by the entlre source fUe name. For example, if you haVe the source
fUes matching dS-.text:

dsfmgr. text
dssmgr.text

If the destination expression is bk$, the output flIes will be:

bkdsfmgr.text
bkdssmgr.text

contrast this with the output expression bk-.text, whiCh results in:
bkfmgr.text
bksmgr.text

2-12

WOrksllop User's Guide The File Manager

HInt: You can adopt conventions for naming files that pretend there is a
hierarchIcal file system: for example,

SourcelF1.text
Source/F2.text
SourcelXYZ.text

2.6 ~ Do I List Existing FUes?
You can use either the List command or the Names command to list existing
files. The Names command executes much faster than the List command .. but
it gives you only the file names.

1. If you are not in the File Manager sUbsystem, enter it by typing F in
response to the Workshop command prompt.

2. Execute the List command by pressing L, or the Names command by
pressing N.

3. If you want to list an entire. VOlume, enter the. pa1tlname of the volume or
device. If you want to list only a certain s.et of· files, enter a wild card
expression or pathname describing the files to be listed. . (The '~?" wildcard
cannot be used in response to the List command prompt for a volume
name.) If you want a listing of the default volume, press [RETURNl

The listing produced by the List command is explained in Section 2.3.4.

You can send a copy of the directory to a file by following the specification
with a comma and then the name of the file to send the directory to. For
example,

-paraport -bk/-,foo.text

sends the directory to foo.text.

For more information on wild card characters, see Section 2.? in this chapter.

2.7 How 00 I CqJy a File?
You can COpy a file and leave the original file intact, or you can Transfer a
file, Which copies the file, then deletes the original file. To copy a file:

1. If you are not In the FHe Manager sUbsystem, enter It by typing F in
response to the WOrkShop' command prompt.

2. Press C to start the Copy command. (Press T, for Transfer, if: you want
the orIginal file to be deleted after the copy operation.) .

3. Enter the pathname of the file you want copied. Press [RETURN~

4. Enter the pathname you want the file to be copied to. Press. [REliJRNl'

The fUe Is copIed or transferred as you specifIed.

2-13

Warksl10p User's Guide The . File Manager

If you want to copy a number of files with similar names, or all the files on a
volume, you can use wild card characters. See Section 2.5 for more
information on using wild cards. Wild cards can also be used to rename all
the copies of the selected files.
The following are examples of copy and transfer operations:

Copy from what existing fi1e(s)? myprog
Copy to what new file? -backup-$

(This copies the file myprog on the working directory to the volume
-backup with the same name, myprog.)

Copy from what existing fi1e(s)? ds=
Copy to what new file? -backup-$

(This copies all files beginning wi th tlds" on the working directory to
the volume backup with the same file name.)

Transfer from what existing fi1e(s)? -osback-osg=
Transfer to what new file? -oswork-$

(This copies all files beginning with "osg" on the volume -osback to the
volume -oswork using the same file name. When the files have been
copied successfully, the original files are deleted.)

You can use a shorthand method of entering the file names by entering both
the source and destination file names, separated by a comma ~) in response to
the request for the source file.

Transfer from what existing fi1e(s)? -osback-osg=,-osworK-$
(This is the shorthand version of the' above transfer operation.)

Copy from what existing file(s)? dS-,-backup-backds-
(This coples all files beginnlng with lids" in the working dIrectory to the
volume. -baCkup with back inserted as the begimlng of each file name.)

The Backup command is another way to copy files. It is selective, in that
only different files will be copied. You use the same procedure to backup a
file as to copy a file. See Section 2.3.1 for more information on the Backup
command.

2.8 How Do I Delete a File?
To delete a fHe:
1. If you are not in the File Manager SUbsystem, enter it by typing F in

response to the Workshop command prompt
2. Invoke the Delete command by pressing D.

2-14

Workshop User's Guide The FiJe I'18n8ger

3. Enter the pathname of the fUe you want to delete.
4. The system asks you to confirm that you want to delete the file. Reply Y

to delete the fUe or N to keep it
If you want to delete more than one file, you can use wild cardS. see section
2.5 for more information on using wildcards.

2.9 I-W Do I create cnj use a Voltme?
A volume can be created on either a diskette or a ProFlle disk. Each disk
can contain one volume. creating a volume on a disk gives the disk a ncme
and sets up a directory for fUes.
1. If you are not in the FHe Manager subsystem, enter It by typing F in

response to the workshop corrmand prompt
2. Press I to invoke the Initialize command. This command asks for:

a The device name (upper or lower for a diskette, slot2chan2 or paraport
for a Profile, and so forth)

b. The number of pages to initialize; the default is to initialize the whOle
device.

c. The volume name.
d. The maximum ruTlber of files on the device; the default is a good

value unless you are using a large number of very small files or a few
very large files.

The volume Is initialized, with an empty directory. (If the device is a
diskette, It Is fIrst formatted.) The system warns you If you are inlt1al1z1ng a
device that has an existing volume on It, and gives you a chance to change
your mInd before destroyIng the existing volume.
After initialization, the device is automatically mounted so It can be used.

2.10 How Do I ChI1ge the Nane of a File or Volt.me?
The Rename command allows you to Change the name of any fUe or volume.
1. If you are not In the File Manager subsystem, enter it by typing F in

response to the WorkShOp command prompt
2. Execute the Rename command by pressing R

3. Enter the pathname of the fUe or volume you want to rename.

4. Enter the new name. (The same device name Is assumed for a file.)
The name of the fHe or volume is changed.

You can use the Rename command to change the nerne of a group of fUes by
using wild card expreSSions.

2-15

Chapter 3
The System Manager

3.1 TIle s,YStern t-1arlager ... 3-1
The System Manager allows you to set certain system defaults and set
up the Lisa configuration, inclUding external deVice COI'Ylections and the
startup deVice.

32 TIle S,YStern t-1arlager FLIlCtiOtlS ••• 3-1
The System Manager is activated by pressing S in response to the
WOrkshop command Une. Its funCtions are accessed from a command
line similar to the WOrkshop command Une.

3.3 TIle PrefererlCeS Tool ... 3-3
The Preferences tool allows you to set up the system configuration and
to specify what external devices are connected.

3.4 ~ I"1aI ~ l81t ... ,. 3-9
The process management SUbsystem allows you to make selected
processes resident, display the status of all currently existing proceSS~$,
and remove processes.

The System Manager

3.1 The system McIlager
The System Manager allows you to set system defaults and ~pecify the system
configuration. Using it, you can:

• Set the Lisa system characteristics such as screen contrast, speaker
volume, and time lags for repeating keys.

• Set the configuration of external devices such as disks and printers.

• Set the default startup device.

• Set processes to be resident or nonresident, for performance tuning your
Workshop system.

• Set which device is to be the console.

• "Redirect output from the console to a file or external device.

• Monitor all currently existing processes, and remove processes.

3.2 The System McIlager FUlCtions
By pressing S in the main comand line, you can enter the System Manager
subsystem.

The System Manager command line is:

SYSTEM-M3R: fvIanageProcess, OJtputRedirect, Preferences, Time, Quit, ?

The System Manager command line works the same as the main Workshop
command line. Pressing "?" shows you the additional line of commands:

Console, FilesPrivate, V8lidate,DefaultPrlnter

Each System Manager command is described below.

Ma1ageProcess 0'1)
This command puts you into a process management SUbsystem, which allows
you to select which processes should be resident for performance reasons. A
resident process will not be removed from memory when it terminates,. so it
will not have to be reloaded when it is run again. It also allows you to
display the status of all currently existing processes, and remove processes.
The process managment SUbsystem is described in Section 3.4.

OJtputRedirect (0)
This command allows you to send a copy of all output that is displayed on the
console to another device, such as the -printer, or to a file on a disk. The
command asks you for the pathname to send the copy to. In order to return
to displaying only on the console, use the command again and redirect the
output to the -console device (which is the default~

3-1

WOJ1<sI1op User's GuIde The System Manager

Preferences (P)
This command starts, the Preferences tool whiCh allows you to set up the
configuration of the Usa system and the WOrkshop. The Preferences tool Is
described In section 3.3.
TIme (1)
This command allows you to set the hardware clock/calendar's date and time.
See the LIsa OWners Guide for more, information on the system clock and
calendar. The date and time values are used for the creation and
modification dates on your files, so they shoUld be kept correct.
QuIt (Q)
This command exits from the System Manager and returns to the main
WOrkshop command Une.

console ee)
Thiscommanclallows you to Change where the Workshop console is displayed.
It may be displayed on the main screen, which is the default, on the alternate
screen, where the Debugger displays, or on an external terminal connected to
the RS232A or RS232B connector. When the main or alternate screen is used
for the console, output can be stopped and restarted by pressing .-S. If an
external terminal Is, used with X01IXOff processing enabled, then control-S
stops output and control-Q'restarts it.
The console can be moved to the alternate screen when you run a graphIcs
program to prevent output from wrltelns from appearIng on the gr~lcs
screen (the maln screen~ You can dIsplay eIther the alternate or the maIn
screen by pressIng CPTI(J\J-ENTER. When the console ,Is moved to the
alternate screen, both the console output (wrltelns) and the Debugger output
will be mIxed together on the same screen.
FUesPrIvate 0=)
This command enables or disables the'selection of private system flIes. The
Usa Office system uses file namesbegiming with the, 'T' character for its
tools and documents, and the WOrkshop user shOuld rarely be concerned with
such fUes. These files are called "private". When selection of private files is
disabled (the default), the Workshop File Manager's wild card mechanism will
exclude them from its selections unless the file specifier explicitly inclUdes
the lea<nng "r".
There are just a few private files whiCh are used by the WOrkShop (for
example, {Tll}menus.text~ You must enable the selection of private flIes If
you want a single file specifier to refer to the entire set of WorkShop system
fl~ ,

3-2

WOl'ksIJop User's Guide The System Manager

Yalidate M
This command Is used to set up how much verifying you want the Workshop to
do for you. There are two values you can set with this command. The first
Is whether or not to verify fHe copies. The system verifIes a copy by
comparing the original fIle with the copy to be sure they are the same. The
default is to never verify. You should have no reason to verify unless you
suspect something is wrong with your diSk. The second vall,.le you can set is
whether or not your selections for File Manager commands are verIfied.
Selections are verified by listing the file names and asking you to confirm the
operation.

OefaultPrlnter (0)
This conmand is used when you have more than one printer connected to your
Lisa It tells the system which one will be the -printer logical device. It
first gives you a list of all the physical devices that have been configured by
the Preferences tool as printers, then asks you for the device name of the
printer you wish to refer to as -printer.

33 The. Preferen::es Tool
Start the Preferences tool by pressing P in response to the System Manager
command line. It displays a window with four checkboxes and a tools menu.
The Preferences display is shown in Figure 3-1.

Tools

r:J !IIIII Preferences III!II
OConvenience Settings o Startup OOevice Connections OWorkshop

Fi!JB'e 3-1
The Preferences Window

After you have finished with the Preferences tool, you can exit back to the
System Manager by selecting Quit from the Tools menu.

The Preferences tool allows you to set up your Workshop system the way you
want it. It contains four sections:

• Convenience Settings that allow you to regulate screen contrast, the
speaker VOlume, and repeat delays.

• Device Connections that tell the Lisa system what external devices are
connected.

3-3

WoIkshop User's Guide The System M8IJ8{}er

• Startup, which tells the Lisa what device to use as a startup device.

• Workshop. which sets up defaults for the Workshop.

These default settings are stored in parameter memory, a small area of
memory that is preserved as long as the Lisa is plugged into a working outlet
and for up to 10 hours when the Lisa is unplugged. If your Lisa is without
power· for longer than this, and the parameter memory is lost, the preference
settings will be restored from information on the startup disk.

My changes made with the ·Preferences tool change parameter memory
immediately, but some of them, such as device connections and startup
options, have no effect until the system is booted again.

The Preferences tool displays a window containing. a number of buttons and
checkboxes. You set the values you want by using the mouse to move the
pointer to the. desired options and clicking.

Four areas of preferences are described briefly below. More information on
the first three areas can be found in the Lisa OWners Guide, Section 0,
Desktop Manager Reference Guide. Select the area you want to view or
change by moving the pointer with the mouse to the checkbox in front of the
section name and clicking.

3.3.1 Convenience Settings
The Convenience settings portion of the Preferences tool allows you to
customize the input and output characteristics of the Lisa These
characteristics are divided into three sections: Screen Contrast, Speaker
Volume, and Rates. The Convenience Settings display is shown in Figure 3-2.

3-4

Workshop User's Gujde The System Manager

Tools

1/111 Preferences 11111'

IConvenience Settings o startup DDevlce Connections OWorkshop

o Set All Convenience Settings to lisa Defaults

Screen [ontrost
Normol Le~1

dark 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 bright

Minutes Until Screen Dims
01-2 12-4 05-10 010-20 015-30 030-60

Dim Le~1
dark 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 bright

Speaker Volume
Silent (Flash menu bar) 0 Soft 1 0 0 0 0 loud

Repeating Kegs
Delog

Short 0 • 0 0 0 0 Long

Rote
fast • 0 0 0 0 0 Slow

Mouse Double [lick Delag
Short o. 0 0 Long

fi{JJre 3-2
Convenience Settings

SCreen Cootrast
The contrast portion contains three sections. The first allows you to select
the normal screen contrast level. Check in a contrast box until the contrast
level is comfortable. CheCKing a box immediately Changes the contrast

The Lisa screen automatically dims if no activity is taking place on the
screen to protect the screen from damage. The delay time before this
dimming takes place is set with the Minutes Until Screen Dims section.

3-5

Wo.rksllt:p User's Guide The System I'1Bn8ger

The third section allows you to set the dim contrast level. Checking a box in
the Dim Level section makes the screen dim to that level until you move the
mouse.

Speaker Volune
The speaker volume section allows you to set how loud the Lisa's audible
alerts will be. Checking a box demonstrates the volume by causing two beeps
at the level you selected.

Rates
There are three rates that can be set, two for the keyboard and one for the
mouse. The fiIst is the initial keyboard repeat delay. This is the length of
time a key must be depressed before it begins repeating. The second is the
sUbsequent repeat delay. This is how quickly a key repeats after it has
started repeating. The third rate is the mouse double click delay. This sets
the maximum amount of time between two clicks that will be considered a
double click. These three values should be set for your most comfortable use.

33.2 ~
The startup display allows you to specify the boot device and the type of
memory test to be performed on startup. The Startup display is shown in
Figure 3-3.

The Startup display lets you select the Lisa system boot device. You are
given a list of all possible boot devices. Select the one you wanl

The startup display also allows you to select a long or short memory tesl
The brief test takes about 20 seconds, the long test takes about 40 seconds.

Changes made to the Startup display are put into parameter memory
immediately, but have no effect until the system is booted again.

3-6

WOlkshop User's Guide The System Manager

~;IIII Preferences I! 1'1
DConvenience Settings • Startup 'OOevice Connections OWorkshap

start Up f.-om:
o Diskette in Drive 1 (Upper)
DDiskette In Drive 2 (lower)
• Disk Attached to Parallel Connector

Memory Test
• Brief
DThorough

fitJJre 3-3
The S~ Display

3.3.3 Device Con1ectioos
The Device Connections display allows you to speci fy what external devices
are attached to the Lisa When you choose Device Connections, the Lisa
displays a table Showing all the connectors available, and the device (if any)
that is attached to it.

To tell the Lisa that you are attaching, removing, or changing an external
device, check the box for the connector you are using. The Lisa will display
a list of all devices that can be attached to that connector. Check the
correct device. If you are removing a device, check No Device.
For some devices, such as printers, another set of specifications appears.
Check the appropriate boxes for the device you are attaching.

3-7

WOIkstJop User's Guide Tile System Manager

My changes made to the device connections are made immediately to
parameter memory, but they do not take effect untIl the Usa Is rebOOted.
For the two serial ports, see the PortConfig utility in Section 11.10. A
typical device connections display Is shown in Figure 3-4.

ToolS

'11111 Preferences 11111:

OConvenience Settings o startup IDevlce Connections OWorksholJ

[onnecton Devices Currently Connected
o Expansion 2 lower ProFile
o Expansion 2 upper Dot Matrix Printer
o Parallel ProFile
• Serial A Nothing Connected
o Serial B Nothing Connected

Device You Intend to Conned

3.3.4 Workstq.l

INo Device ODaisy Wheel Printer ODot Matrix Printer
~emote Computer

Fi{JJIe 3-4
A DeVice Q:n1ectloos Display

! :

I:
: "

.. ;

.:

The Workshop display, shown in Figure 3-5, allows you to set parameters of
the WOrkshop system. These parameters will not go into effect until you
reboot the system. Then they are stored in parameter memory and wlll stay in
effect until you change them.
Note that changes to the memory Size affect all other systems (for example,
the Office System) and will prevent large programs from running.
With mouse sealing, equivalent X and Y movements of the mouse cause
diagonal cursor movement on the rectangular Lisa screen. Without scaling,
the cursor would move at a true 45-degree angle on the screen when X and Y
movements of the mouse are the same.

3-8

Workshop User's Guide me System Manager

Tools

IIIII Preferences III:

Memory to use(Guuming 1 megabyte mochine)
I full megabyte D three quarter megabyte Dholf megabyte

Enable Mouse Scaling?
Ino Dyes

Ft~ 3-5
The Workshop Display

3.3.5 llle Tools Meru
The tools menu provides you with two functions: Set all of PM to defaults,
and Quit Set all of PM to defaults resets parameter memory to the standard
Usa defaults. Quit exlts from the Preferences tool, and puts a copy of the
current settings of parameter memory on the disk.

3.4 Process MaI.agement
The process management sUbsystem is started by pressing M in response to the
System Manager command line. This sUbsystem displays the following
command line:

Manage Process: Ad€Resident, [)eleteResident, KillProcess, ProcessStatus, Quit?

3-9

WoJ1<sl7op User's Guide The System Manager

This subsystem is used to control which processes will be resident. After a
resident process runs to completion, it is suspended and retained in memory, if
poSSible, rather than terminated and removed from memory. This allows it to
restart faster, because the process does not have to be recreated. For
example, if you are often using the Pascal Compiler and the Editor, you can
Improve the performance of your Workshop system for these applications by
making the Compiler and the Editor resident. This will allow much more
rapid shifting between the two.

See the tpemting System Reference Manual for t!Je Lisa for more
information on processes

Adc:Res1dent CA)
The AddResident command adds a process to the list of processes that are
resident. You supply the fBe name of the Object file that you want to be
made resident the next time it is executed.

DeleteResldent (D)
The DeleteResident command removes a process from the list of resident
processes, but does not kill the process if it is currently running.

KlIIProcess (K)
The KillProcess command terminates a currently existing process, including a
background process, but does not remove it from the Ust of resIdent processes.

ProcessStatus (P)
The ProcessStatus command gives you information about all currently existing
processes. It provides the following information:

Path1ame The name of the processes object file.
Process_ID The unique Ident1fIer assIgned to the process.
state The current state of the process: Active, Suspended, or

Waiting.
Resident Tells you if this is a resident process.

Quit
The Quit command exits from the process management SUbsystem back to the
System Manager command line.

3-10

Chapter 4
The Editor

III llle Editor .•.••••..••....•.•.••...•..•..•...........•..•....•........••....•.•.........•...•..... 4-1
The EdItor is used to create and modify text fUes.

4.2 lJslrg the Editor ..•...•................. 4-2
Start editing by pressing E in response to the command prompt. The
EdItor creates a new file or edits an exIsting one. Q)erations are
provided in five menus: File, Edit, Search, Type Style, and Print.

4.3 selectirg Text ...•..................... 4-4
The mouse Is used to select text and to move the insertion point.

4..4 SCrolling cnj Movlrg the Display•..................... 4-5
The display can be scrolled by using the scroll bar on the right side of
the window. The window can be moved by cliCking In the title bar.
The size of the window can be changed by using the size control box.

4..5 llle File Fl.I1Ctions .•••...•.•....•••.....•.•.••................•.•.••.••.•.•...•••.•..••.•..••• 4-6
The fUe functions are used for retrieving and saving text fIles. You
can also save or revert to a previous version and exit the Editor.

4.6 llle Edit Fl.I1Ctions •.•...•.•..•••....•.••.......•......•••.........•....••...••.•..•.•...•••.. 4-8
The three basic edit functions are cut., paste, and copy_ The Edtt menu
also gives you functions to adjust text to the left and right, and to set
tabs.

4.7 TIle search Fl.I1CtiOl1S .•...•......•...................•...•.•.......•.•....•....•..•...•.....• 4-9
Search gives you functions to find text strings in the file, and
optionally replace them.

4.8 TIle Type Style Functions•.....•...•.•.......•.•.•......•.•......•......•.• 4-11
The Type Style menu enables you to change the font that the file is
displayed and printed in.

4.9 TIle PrInt Functions .•••.•.•.•.•...•.•....•..•....•....•..••.•.••....••..•...••....•.•.•..•• 4-12
The Print menu enables you to print the file, and to specify the format
it shoUld be printed in.

The Editor

4..1 The Editor
The Editor is used to create and modify text files. These fUes can be used
for many purposes including input to the language processors and as exec files.

If the file you are editing is too big to fit on the screen, a portion of the file
is displayed. This "window" into the file can be moved to display any part of
the file you want. M example of the Editor display is shown in Figure 4-1.

File Edit Search Type Style Print

Ll 0111:11

2
file
Seve & Put Away
Seve 8 Copy in ...
Seve & Conti nUl!
Revert to Previous Version

Open ...
Duplicate ...
Tear Ofr Ststionery ...

Exit Editor

3
Edit
Undo Lest Chenge

CutlX
Copy/1:
Peste/V

Shirt Lertl1..
Shift Right~

Fi~e 4-1
The Editor Display

The basic editing operations are inserting characters, cutting a portion of the
text, and pasting text into a new location. Text that is cut goes into a special
window called the Clipboard. Text on the Clipboard can be pasted into any
place in the file or into another file.

All editing action takes place at the insertion point. The insertion point is
marked oy a bUnking vertical Une where the next character will be placed.
My characters typed or pasted from the Clipboard are inserted at this pOint.
This Is true even if the insertion point Is not currently displayed In the
window. The window is automatically scrolled to show the insertion point ..

4-1

Workshop User's Guide The Editor

The Editor is met11O.IY based. This means that there is a physical limit
on the size of the file that can be edited. If a file is too big to edit,
it should be split into more than one file of manageable size. The
FileOiv and FileJoin utilities can be used for this. They are described
in Chapter 11.

The mouse is used to scroll the text in the window, move the insertion pOint,
select text to be cut or copied, point to menus, and select items on menus.

4.2 Using the Edltor
Start the Editor by pressing E in response to the Workshop command prompt.
The Editor prompts you for a text file name. If you want to edit an existing
file, enter its name. If you want to create a new file, choose Tear Off
Stationery from the File menu. The Editor prompts you for the stationery
name. Press [RETURN] for the default, which is blank paper, or enter a name.
For more information on stationery, see Section 4.2.3.

The file that you are working on is called the active document You can have
several documents open and accessible at anyone time, but only the active
document can be edited. The active window is indicated by a darkened title
bar and scroll bars, and is always on top of all the windows.

To leave the Editor, select Exit from the file menu, and you will return to the
Workshop command line.

4.2.1 Editing qlerations
The basic editing operations are cut, paste, and copy. To cut or copy text,
you must first select the text to be cut Of copied. ::>elect text by moving the
mouse while holding down the button. See Section 4.3 for complete
information on selecting text Text that is selected and then cut is removed
from the active document and placed in a special window called the
Clipboard. Text that is copied is placed on the Clipboard and also left in
place in the active document.

The contents of the Clipboard can be pasted at any point in the active
document by placing the insertion point where you want the text inserted and
choosing Paste from the Edit menu.

4.2.2 The MenJs
qJerations are provided in five menus: File, Edit, Search, Type Style, and
Print. The File menu is used to access documents and stationery, to put away
files, and to exit the Editor. The Edit menu contains the editing operations.
search provides for finding strings in the active document. The Type Style
menu selects the font for document display. The Print menu controls printing.
Each of these menus is described in more detail in the sections that follow.

4-2

Workshop User's Guide Ttle Editor

You select an operation from a menu by moving the arrow pointer to the
menu name on the menu bar and holding down the button. The menu is
displayed. Choose the menu i tern by moving the mouse down until the I tern
you want appears in reverse video. Releasing the mouse button starts the
operation.

il2.3 Creating and UsirIJ Stationery
Stationery for a special purpose, such as a letterhead, can be created with the
Editor. Stationery is just a regular text file containing the desired texL To
use any stationery other than the default blank paper, choose Tear Off
Stationery from the File menu, and type the name of the document containing
the stationery when it asks you for the stationery name.

To create stationery, make a document containing the text you want on the
stationery. Save this document on the disk. To use this stationery, choose
Tear Off Stationery from the Edit menu, and give it the fHe name of the
stationery you created.

4.2.4 Editing M.i1tiple Files
More than one document can be open at one time, but only one document is
the active documenL To read in a document when you already have an active
document, choose ~en from the File menu. It asks you for the document
name. The new document is read into a window on the screen and becomes
the active document. To make another document that is already open the
active document, use the mouse to move the pOinter into a portion of that
document and click the mouse button. If you have several documents open,
you might have to move some out of the way.

ThIs capability of working with more than one document at a time can be
used to copy text from one document to another by using the following
sequence of operations:

• ~en the document containing the text you want to copy.

• Select the text you want to copy and choose Copy from the Edit menu.
This places a copy of the text onto the Clipboard. You can use Cut if you
want the text to be removed from its original file.

• qJen the document you want the text to be copied to. It becomes the
active document.

• Place the insertion point at the place you want the text to be inserted, or
select the text you want to replace.

• Choose Paste, which copies the text from the Clipboard to the active
document.

Further information on each of these operations can be found in the sections
that follow.

4-3

Worksllop User's Guide The Editor

4.3 Selecting Text
The basic editing functions are cut, copy, and paste. Before you can cut or
copy text, you must select the text to be cut or copied. Before you paste, you
place the insertion point where you want the text to be placed. You select
text and place the insertion point by using the mouse to move the pointer on
the screen.

Within an active document, the pOinter will have one of three shapes:

Text pointer in a document

Arrow pOinter for menus and scroll bars

Hourglass when an operation will take over 20 seconds

Use the mouse to move the pointer on the screen. The shape of the pointer
changes when you move in and out of the document window.

Within the window, the text pointer is used to move the insertion point and to
select text.

In selecting text, you can select characters, words, or lines. You can also
select any number of characters, words, or lines. Selected text is displayed in
reverse video.

43.1 lVIoving the Insertim Point
The insertion pOint is indicated by a blinking vertical line where the next
character will be inserted. All insertion, whether from typing or pasting,
takes place at this point in the file, even if it is not visible in the window.

To move the insertion point, move the pOinter to where you want it to be and
click. Note that the insertion point moves when you select text.

43.2 Selecting Olaracters
To select Characters, move the text pointer to the beginning of the characters
you want to select, press and hold the mouse button while movIng to the last
character you want to select

M alternate way of selecting characters, which is especially useful when
selecting a large block of text, is as follows. Move the pointer to the
begiming of the text you want to select and click the mouse button. Then
move the pointer to the end of the text you want selected and shift click.
Shift click means to hold down the shift key on the keyboard and click the
mouse button. You can use the scrOlling controls to display the end of the
text you want selected if it is too big to fit in the window.

4.3.3 Selecting Words cn:t Lines
To select a word, move the poInter into the word and click the mouse button
twice. To select a line, move the pointer into the line and click the mouse
button three times.

4-4

Workshop User's Guide The Editor

To select multiple words or lines, click the mouse button the required number
of times, and hold. Move the pOinter to the last word or line you want
selected and release. If you double-click, and hold down the mouse button
while you move the insertion point to the left or right, the selection expands
or contracts by words. If you triple-click, and move the insertion point up or
down, the selection expands or contracts by lines.

An alternate method, especially useful when you want to select more text
than will fit in one display window, is as follows. Click the required number
of times to select the first word or line. Scroll the window if necessary to
display the last item you want selected. Move the pOinter to the last item
you want selected, shift click, and the entire block of text becomes selected.

4..3.4 AdjJsting the .Am:ult of Text Selected
To change the amount of text selected, move the pointer to the position that
you want the selection to extend to and shift click. This can be used to
either expand or contract the selection.

4..4 ScrollirYJ 8ld tvDving the Display
When a document is longer than will fit into the display window, only part of
the document is displayed at one time. You can change what part is
displayed by "scrolling" through the display. The vertical bar on the right side
of the active window is the scroll bar. Nt example of a text window' showing
the scroll bar is in Figure 4-l.

The display window can be changed in size and moved on the screen. This
enables you to have multiple documents displayed on the screen. These
operations are done using the title bar and size control box as explained in
Section 4.4.2.

4.4.1 SCrollll'YJ the Display
There are three ways of moving the display window through the document.
The first is by using the elevator. The elevator is the white rectangle in the
scroll bar. Its position in the grey portion of the scroll bar indicates the
relative position of the currently displayed text window in the document. If
the elevator is near the top, you are near the beginning of the document. If
it is near the middle, the text displayed in the window is near the middle of
the document, and so on. To change the position of the text window, you can
move the pointer into the elevator, click and hold the mouse button down
while you move the elevator to the position in the document you want to
display. When you release the button, the display will show the new position.

The second way of moving the window makes use of the view buttons. The
view buttons are the boxes at each end of the scroll bar. If you move the
poInter to a view button and cllCk, the display moves one windowful toward
the beginning or enp of the document, depending on which button you clicked.

4-5

WoIkslJt:p User's Guide TIJe Editor

The third way of moving the window uses the scroll arrows, which are just
above and below the view buttons. If you move the arrow pointer to the
bottom scroll arrow and click, the display window will move one line toward
the end of the document If you hold the button down, the window will
continue to move a line at a time until you release it The upper scroll arrow
works the same way, except it moves the window towards the beginning of the
document

4..4.2 t1lving the Wirmw
You can move the window on the screen and change its size. This lets you
display multiple documents on the screen. You can make any visible window
be the active window by moving the pointer into it and clicking.

To move a window, move the pointer to the tiUe bar, press the mouse button
and hold it while you move the window. When you release the button, the
window is redisplayed at the new location.

To change the size or shape of the active window, move the pOinter to the
size control box, press the button, and move the pOinter until the window is
the right size and shape. Release the button and the resized window will be
displayed. The size control box is the box in the lower right hand corner of
the window. O1ly the active window can be resized.

4.5 The File F~tions
The file menu provides functions for reading in and writing out documents,
updating documents, copying documents, and exiting the Editor. The File
menu is shown in Figure 4-2. Each function is explained below.

Save & Put Away
This writes out the active docUment and closes it

Save a Copy in ...
This writes out a copy of the active document to another document name.
You are prompted for the name of ~he document to write to.

Save & Contiooe
This saves all changes made so far by writing out the document to disk,
without closing the document.

Revert to Previous Version
This returns the document to the way it was before you started editing it, or
when you last saved i l This is done by reading in the document from the
disk.

4-6

WOrksl7op User's Guide

qJen---

-i--
Save & Put Away
Save a Copy in •••
Save & Continue
Revert to Previous Version

Open ...
Duplicate ...
Tear Off Stationery "'

Exit Editor

Figure 4-2
The File Meru

The Editor

This tells the Editor to get a new document. It prompts you for the document
name, then reads it in and makes it the active documenl The Editor supplies
the .TEXT extension on the file name. If the file name that you want does
not end in .TEXT, you must end the file name with a period. See Section 1.5,
The Workshop User Interface.

~licate ...
This enables you to read in a copy of an existing document to edit 1nto a new
document. It is read in with the default name "untitled"

Tear Off stationery ...
This gets a new piece of stationery and makes it the active document. See
Section 4.2.3 for more information on stationery. The stationery is given the
default name "untitled".

Exit Editor
This fIrst asks you if you want to put away any modified dOCuments. If you
answer yes, they are written out to disk. Then it exits the Editor. If you
make the Editor resident, you can exit and restart the Editor withOUt losing
any information between invocations. Section 3.4, Process Management, gives
instructions on hOw to make the Editor resident.

4-7

Workshop User's Guide The Editor

4.6 The Edit FlIlCtlons
The Edit menu provides editing functions and tab setting. It is shown in Figure
4-3.

The three basic edit functions are cut, paste, and copy. These make use of
the special window called the Clipboard. The Clipboard can hold one piece of
text. Text is put into the Clipboard by selecting. it in the active document,
and either cutting it or copying it. Text is copied from the Clipboard and
inserted at the insertion point with the paste operation.

Cut:
r.(,~Pl~

Paste

ShiH: Left:
Shift Bl~~ht

Set Tabs I II

Se I ect A II of Document .A
Figure 4-3

The Edit Menu

For example, to move text from one place in a document to another:
1. Select the text to be moved.

2. Choose Cut from the Edit menu. The text is removed from the active
document and placed on the Clipboard.

3. Place the insertion point where you want the text to be.

It Choose Paste from the Edit menu. The text on the Clipboard is inserted
at the insertion point.

The Edit menu also enables you to adjust selected text left or right by
inserting or deleting spaces, and to set tabs.

4-8

WorkstJop User's Guide T/7e Editor

Some edit functions can also be done by holding down the • key and pressing
another key. The key that corresponds to each function is shown in the Edit
menu, as you can see in Figure 4-3.

Uldo Last ChcI1ge
This command puts the document back to the way it was before the previous
operation, if possible. You will receive a warning message if the last
operation cannot be undone.

cut
Cut places a copy of the currently selected text onto the Clipboard and
removes the text from the active document. You can also Cut by pressing the
X key while holding down the • key.

Copy
Copy places a copy of the currently selected text onto the Clipboard, but
does not remove it from the active document. You can also Copy by pressing
the C key While holding down the • key.

Paste
Paste inserts a copy of the text on the Clipboard at the insertion point in the
active documenL If a section of text is selected, Paste replaces iL You can
also Paste by pressing the V key while holding down the • key.

Shift Left
Shift Left moves selected text left by deleting a single space from the left of
each line. It does not delete any characters other than spaces. It is most
often used to adjust the left margin of a block of text. You can shift left by
pressing the L key while holding down the " key.

Shift Ri~t
Shift Right is similar to ShIft Left, except that it moves the selected text to
the rlght by inserting spaces at the beginning of each line. This can also be
done by pressing the R key while holdIng down the • key.

set Ta:Js ...
Set Tabs enables you to set the spacing of the tab stops.

Select All of Doctment
This command selects the entire document. You can also select the entire
document by pressing the A key while holding down the. key.

4..7 The search FlJ'lCtions
The Search menu gives you the ability to search for a text string in the
active document. The basic operation is Find, which locates the next
occurrence of the string and selects it. Find & Paste All replaces each
occurrence of the string with the contents of the Clipboard. Several options
are provided to specify how the match is to be found. The Search menu is
shown in Figure 4-4.

4-9

Workshop User's Gujde

1-----_
Find II. tiF
Find Same tis
Find & Paste All

";Separate Identifiers
All Occurrences

";Cases Need Not Agree
Cases Must Agree

Fi~ 4-4
The search Meru

The EdHor

All searches start at the insertion pot nt, and go to the end of the document.

There are three search operations in the Search menu, as follows:
Find ...
FInd prompts you for the strIng to searCh for, then fInds the next occurrence
of the string. If a match is found, it is selected. If not, the system tells you.
The Find command can also be executed by pressIng the F key whlle holding
down the " key.
Find sane
Find Same repeats a previously specified Find, and selects the next occurence
of the string. You can do a Find Same by pressing the S key while holding
down the " key.
Find & Paste All
Find & Paste All finds all occurrences of the specified string from the current
insertion point to the end of the file, and replaces each of them with the
contents of the Clipboard.

The other four items in the Search menu tell how a match is to be found.
There are two areas to describe: searching for tokens or characters, and if
case· must be matched. The options currently in effect have a check mark in
front of them. To change the option, you choose anew one.

The first set of options tells whether to search for tokens or to search
literally:

4-10

Workshop User's Guide TI7e Editor

Separate Identifiers
When Separate Identifiers is chosen, the search operation looks for a "token"
or word to match the search string. A token is a word bounded by spaces.

All lknJrrences
When All Occurrences is chosen, the search operation matches any string
containing the same characters, even if it is only part of a word.

The next options indicate if case is signl ficant in finding a match:

cases Need Not Agree
When Cases Need Not Agree is chosen, any string with the same characters is
a match, regardless of whether they are in uppercase or lowercase.

cases MJst Agree
When Cases Must Agree is chosen, the string with the same characters, and
matching case, is selected.

4.8 The Type style fll1CtiCJ'lS
The Type Style menu enables you to change the display font. The Type Style
menu is shown in Figure 4-5. A check appears in front of the font in which
the document is currently displayed. You can change the font by selecting
another font from the menu.

The font selected affects how many characters can be displayed on a line, and
whether or not the display is proportionally spaced. When a document is
printed, it is printed In the same type style it is displayed in, if that type
style is available on your printer.

Type Style'
20 Pitch Go hic
15 Pitch Gothic
12 Pitch Modern
12 Pitch Elite
10 Pitch Modern
10 Pitch Courier
PS Modern
PS Executive

Figure 4-5
The Type Style rv1eru

4-11

Worksht:p User's Guide TI1e Editor

4.9 The Print FlIlCtions
The Print menu provides functions for printing a document You can print all
or part of a document, choose what form of footers are to be printed, specify
if Pascal keywords are to be emphasized, and tell what type of printer Is
being used. The Print menu is shown in Figure 4-6.

The Print functions are as follows:

Print All of Doct.ment
The Print All of Document command prints the entire documenl

Print Selection
The Print Selection command prints only· the currently selected portion of the
document.

Both of the print commands wait if the printer is not ready.

The remaining options in the Print menu involve how the prInt is to be
performed. They are organized into three sets of two options. The currently
selected option in each set is indicated by a check mark. You can choose any
combination of options you want

II of Document

ull Footers

lain Keywords
Differentiated Keywords

Daisy Wheel Printer

Fi~e 4-6
The Print MenJ

The first options control what type of footers are printed at the bottom of
the page.

4-12

Workshop User's Guide TtJe Editor

Full Footers
When Full Footers Is chosen, each page printed has a footer consisting of the
dOcument name, the page number, and the date. If the document is less than
one page long, no footer wll1 be printed.

Page Nt.mEr Dlly
Choosing Page Number O1ly results in only a page number on the bottom of
each printed page. If the document is less than one page long, no page
number will be printed.

The next options are used for printing Pascal programs.

Plain Keywords
Choosing Plain Keywords causes Pascal keywords to print as normal text.

Differentlated Keywords
Choosing Differentiated Keywords causes Pascal keywords to print with
underlining. In addition, the read procedure, write procedure, and other
standard Pascal procedures and functions are underlined.

You choose the type of printer to print on with the next options. Select the
type of printer you have attached to your Lisa: Dot Matrix Printer or Daisy
Wheel Printer.

4-13

Chapter 5
The Pascal Compiler

5.1 1lle Pascal COIl1>iler .. 5-1
The Pascal CompHer translates Pascal source statements Into object
cOde. This translation is In two steps. The source statements are first
translated Into Intermediate code (I-cOde), then the I-code Is translated
into object COde.

5.2 lJsil1Q the Pascal COIl1>iler .. 5-1
The CompHer expects as input a text flIe containing a Pascal program.
The Compiler translates source code into intermediate code (I-code),
then the code generator translates I-cOde Into object cOde.

5.3 TIle Pascal COrTllller Qxma adS .. 5-2
You enter Compiler commands into the Pascal source file. They
provide for symbolic debugging information and conditional compilation.

5.4 TIle Pascal RtI'l-TItTle Environment .. 5-3
This section explains how to use the PASLIBCALL unit, which provides
some special system functions to Pascal programs. It also explains how
the Pascal heap operates.

The Pascal Compiler

5.1 TIle Pascal Cof'llliler
The Compiler translates Pascal source statements into object code. This
translation is done in two steps. The first step, parsing, converts the program
into semantically equivalent tree structures called I-code. The second step
translates the resulting I -code into machine language.

A complete definition of Lisa Pascal is found in the PBSClIl RefeIl!1l7Ce I'1antIe1
for the LIsa. A Pascal program can call assembly language routines. More
information on assembly language is in Chapter 6 of this manual.

The cperating System provides a number of routines that can be called from a
Pascal program to perform various system functions. These routines are in the
SYSCALL unit, which is described in the tperating System Refenmce Manual
for the Lisa.

The Pascal run-time support routines are in the library IOSP ASLlB.CBJ. The
support routines for floating point operations are in IOSFPLIB.CBJ. After
generating the Object code, it is necessary to link the program with
IOSPASLIB.CBJ before you can run it. If you are using real numbers, you must
also link with IOSFPLlB.CBJ. For information on how to link the program, see
Chapter 7 in this manual.

5.2 Usif'WJ the Pascal Cof'llliler
The Compiler expects a text file containing a Pascal source program as input
You can create this text file using the Editor.

When you have prepared a source program, use the Compiler to translate it
into object code. Start the Compiler by pressing P in response to the
Workshop corrmand prompt. The Compiler first asks:

Input file[.TEXT]
Type the name of the file that contains the source program. You do not need
to add the . TEXT extension. The Compiler then asks:

List file[.TEXT]
Type the name of the file that you want the listing to go to, or press
[RETURN] if you don't want a listing. You can display the listing on the
console by using the -console pathname. The Compiler next asks you where
to store the I-code form of the program:

I-code file[<input name>][.I]

5-1

Wofkshop User's Guide Pascal Compiler

If you want the I-code to be stored in a file with the same name as the
source file, but with a .I extension instead of the .TEXT, just press [RETURN].
If you want another name, type the name and press [RETURN).

After the last input, the Compiler translates the program into I-code and
stores it in the I-code file. If there were any errors, they are displayed in
the listing file, or on the console if there is no listing file. When a message
is displayed on the console, you are given a choice of aborting the compile by
pressing [CLEAR], or continuing the compilation to look for more errors by
pressing the space bar. A few errors give additional information after you
press the space bar. Errors can also be placed in a separate error file by
using the $I: Compiler command.

5.2.1 Using the Code Generator
To translate the I-code into object code, press G in response to the Workshop
command prompt. The code generator first asks:

Input file (.IJ -

Type the name of the I-code file. You do not need to add the .I extension.
The generator then asks:

OUtput File [<input name>][.OBJ] -

To accept the default name, press [RETURN). If you want a different name
for the output file, type the name and press [RETURN). The .OOJ extension
will be added to the name for you.

The output file from the code generator Is object Code, but it is not
executable because it does not contain the Pascal run-time support routines.
The run-time support routines are contained in IOSPASLIB.OOJ, and
IOSFPLIBJJ:3J for floating point operations. These routines must be added to
the object file by using the Linker. See Chapter 7 in this manual for more
information on the Linker.

5.3 The Pascal Conlliler en rmar ads
Compiler commands allow control of code generation, input file control, listing
control, and conditional compilation. Tt-Ie commands all start with a $, and
are placed as comments in the source program where you want the command
to take effect. All the Compiler commands are listed in Table 5-1. A
complete explanation of the Compiler commands is found in the Pascal
Reference Manl/al for tile Lisa.

5-2

Workshop User's Guide

$1 filename

$U filename

$C+ or $C-

$R+ or $R­

$S segname

$X+ or $X-

$0+ or $0-

$E filename

$L filename

$L+ or $L­

$OECL list

$SETC

$IFC

$ELSEC

Pascal ComplIer

Table 5-1
Pascal CorllJiler Conmands

Mealing

Include contents of filename in this compilation.

Search filename for units used.

Turn code generation on (+) or off (-) for a procedure.
Default $C+.

Turn range checking on (+) or off (-). Default $R

Start putting code modules into segment segname.

Turn automatic stack expansion on (+) or off (-).
Oefaul t $X +.

Turn procedure name generation for Debugger on (+)
or off (-). Default $0+.

List Compiler errors in filename.

Produce Compiler listing in filename.

Turn source listing on (+) or off (-). Default $l. +.

Declare compile time variables.

AsSign a value to a compile time variable.

Begin conditional compilation section.

Begin ELSE clause of conditional compilation.
$ELSEC is optional.

$ENDC End of conditional compilation section.

S.4 The Pascal RlIl-Time Envirorment
The Pascal run-time environment provides a unit PASLIBCALL which allows
you to use some special system functions. It also provides special heap
manipulation functions.

5.4..1 The PASLIBCALL Ulit
The unit PASLIBCALL provides you with some additional system functions. In
order to access the PASLIBCALL routines, you must use the units SYSCALL
and PASLIBCALL:

USES
{$U syscall} SYSCALL,
{SO paslibcall} PASlIBCALL;

This gives you access to the routines listed below. These routines are
contained in IOSPASLIBJEJ, so programs using them require no additional
inputs to the Linker.

5-3

WoIksllop User's Guide Pascal Compiler

flllCtion PAbortflag : boolean

This function tells whether or not the .-period key combination has been
pressed. It enables programs to exit out of long operations. The flag is
cleared when PAbortFlag is called. If you want your program to stop
when you press .c-period, you must use this function in the program to
detect that the key combination has been pressed. For example:

{This program frarJlBlt hangs in CI1 infinite loop lIIti! .c-period
is pressed}

aborted : =false

Repeat {Wa1t for .-per1od. Voo mil1lt .ant to do other things
here}

aborted : =PAbortFlag;

lIItil abOrted.
procedJre Screenctr (contrft.n : integer);

This procedure provides standard screen control functions, and enables
programs to perform screen control without having to to use escape
sequences. Escape sequences are explained in Appendix C. The parameter
specifies the screen control function. It is defined in the constants as
follows, in the PASLlBCALL unit:

Function

clear screen
clear to the end of screen
clear to end of line
move cursor to home position
cursor left one posi tion
cursor right one posi tion
cursor up one line position
cursor down one line position

Screen control example:

Constant
Value

DecTrnal Hex

CclearScreen 1
CclearEScreen 2
CclearELine 3
CgoHome 11
CleftArrow 12
CrightArrow 13
CupArrow 14
CdownArrow 15

1
2
3
B
C
o
E
F

{ThiS progri:D fr8fJlBlt clears the screen, B1d positions the
cursor on the third line}

Screerctr (Cgotbne);
Screerctr (CclearScreen);
Screerctr (Cdo....w-ro.);
Screel"Ctr (CdoWlArrow);

5-4

WOrkslJop User's Guide Pascal Compiler

procecilre GetGPrefix (var prefix : patt'rlale);

This procedure provides your program with the first level prefix setting in
the File-Mgr in the Workshop.

proceWre GetPrDevice (var PrOevice : e _ rane);

This procedure returns the corresponding default printer, device narne so
that you can perform additional deVice control functions using
DEVICE _ CCl'JTR£L. (The tpereting System Refemnce MantI8l for tile Lisa
explains the device control call.) The default printer device name is the
one corresponding to the logical device a-printera. Note that the device
name returned contains a leading a_a.

procecilre PlINIn£AP (var emun, refrun: integer;
size, delta: laYJint
Idsn: integer;
swapable:bOOlean);

where:

em.m is the error number returned if the procedure has any
problems making a data segment having a mem _size of
size bytes. Appendix A contains an explanation of the error
codes for the Workshop.

size is the number of bytes in the heap.

refrUn is the refnum of the heap.

delta Is ~ amount you want the data segment to increase when
the current space is used up. If you use a large heap, use a
large number for delta.

Idsn is the logical data segment number used for the heap. The
default is 5. For more information see the tpereting System
Reference Manual for tI1e Lisa

swapable is the boolean that determines if the system can swap the
heap data segment out to disk if it needs to.

This procedure can be used when you have speCial needs; for example,
when you want to specify your own ldsn or heap size. When you use
PLINITHEAP, you must call it. before calling other heap routines. For
more information on the heap, see Section 5.5.

5.4..2 TIle Pascal ~
The Pascal heap is one contiguous piece of memory, a data segment, which
works automatically without any initialization call. See Chapter 11 of the
Pascal Reference MBnlIBl for tI7e Lisa for information on the normal heap
functions.

5-5

Workshop User's Guide Pascal Compiler

When a Pascal program starts execution, no heap space is allocated (no data
segment made~ fl1 the first call to one of the heap routines or on the first
PLINITHEAP call, the heap is created with either a default size of 16k bytes
or the size specified in the PLINITHEAP call.

PLINITHEAP makes the heap as a private data segment so that the qJerating
System removes it when the process calling PLINITHEAP terminates. Note
that when the heap is initialized, size and delta are put on 512 byte block
boundaries. Therefore, if you use the PLINITHEAP call and specify values for
size and delta that do not fall on block boundaries, the procedure increases
the values to the next block boundary.

If the heap runs out of space while it is being used, the size of the heap is
increased by the default of 16k or the delta specified in PLINITHEAP. The
default Idsn used is 5. If you want a different Idsn for the heap data
segment, call PLINITHEAP. Remember that the size of a data segment is
limited by the Idsn you use. For Idsn 16, you can get only 128k (actually 96k
safely), for Idsn 15 you can get only 256k, for Idsn 14 you can get only 384k,
and so forth. See the Q:Jerating system Reremnce H8I7lI81 ror the Lisa for
more information on Idsn's and data segments.

If swapable is true, the heap is made with disc_size equal to size so the data
segment is not memory resident. This uses up diSC_Size bytes on the startup
disc.. The default for swapable is false. When swapable is false, the
procedure creates a data segment that has a disc_size of 0 (zero), which
makes it memory resident.

The built-in Pascal heap routines are NEW, MEMAVAIL, MARK, RELEASE, and
f-EAPRESUL T.

• If you call NEW and not enough space is available, the size of the heap is
increased by either the default of 16k or the delta size specified in
PLINITHEAP.

• MEMAVAIL provides the maximum number of words you could ever expect
to get, taking into account the Idsn you used as well as the amount of free
space the ~rating System currently has available. If another process is
using memory concurrently, its use of memory also affects MEMAVAIL.
MEMAVAIL does not show the amount of memory left in the heap's data
segment alone, since the heap"s data segment can grow and shrink over
time.

• MARK sets a pointer to the lowest free area on the heap. It is used with
RELEASE to deallocate variables from the heap.

• RELEASE deallocate! variables from a marked area of the heap. If you
release the heap to a point within the original size of the heap data
segment, the heap data segment is reduced to its original size. More
information on MARK and RELEASE can be found in the Pascal Reference
Hanual ror the Lisa.

5-6

Workshop User's Gl.ljde Pascal Compjler

• HEAPRESUL T returns a 0 if the last heap operation was successful,
otherwise it contains the ~erating System error number indicating what
failed. A list of the ~erating System errors is in Appendix A.

5-7

~-A

Chapter 6
The Assembler

6..1 1lle Assermler .. 6-1
The Assembler translates 68000 assembly language Into macnlne
language.

6..2 LJs1rlg ttle Assen1ller ...••..•..•.....•..•..•.•.•.••.•.•.•...•.•.••.•............•...•.•....••. 6-1
me AssemOler accepts a text file as Input and proouces a macnlne
language (.CBJ) file as output.

6.3 Assermler ~ .. 6-3
Tne Assembler opcOdes are tne standard 68000 opcodes, wltn a few
al temate forms for some instructions.

6.4 AsserrItller Syrltax .•......•.•••...•...•.•...•.•.•.•.•••.••.....•.•••••••.•....••••...•...•.•.•. 6-5
M Assembler statement. consIsts of an optlonal laDel, tne opcoae, and
one or two operands. The operands can contain expressions.

6.5 Assermler Directives ...•..••.•...•••...•.•...•.•.•..•.•••.....•...•.•.•...•.•.•.•.•.•.•.•.•. 6-9
TIle AssemOler dIrectives provIde for procedure and function definition,
macros, label and constant declaration, Usting control, storage
allocation, and condIt1onal assembly.

6.6 t::on'ITUllcatlon w1tn Pascal ... 6-16
Assembly language routines can be either procedUres or functions called
from a Pascal program. Parameters are passed on tne Pascal stack.

6.7 Assembly LargJage ExarJ1)les .. 6-21
Tnis section provides example assembly language routines 1llustrating
parameter passing ana otner functions.

The Assembler

6.1 The Asset1t>ler
The Assembler is a program that translates assembly language source
statements into object code. The Assembler accepts a text file containing the
source statements as input, and produces an object file as output. The object
file produced must be linked with a pascal main program before it can be
executed. .

Assembly language routines are used to implement low level or time critical
functions. This chapter describes how to use the Assembler, and the syntax of
assembly language programs. Information on the machine instructions
available on the 68000 processor can be found in the Motorola MC68000
Reference Manual.

6.2 Using the Assembler
To assemble a program, press A from the Workshop command line. Then
specify the input file (the file that contains your source program) and two
output files: an. optional listing file and the Object file (the file that will
contain the object code produced by the Assembler~

The input file must be a text file containing assembly language source
statements. You can create this file with the Editor. The output file produced
is an Object file (.Cl3J) that must be linked with a Pascal main program to be
run.

Any errors in the program will be indicated by messages on the console or in
the listing file. A complete list of Assembler error messages is found in
Appendix A of this manual.

6.2.1 Assembler Options
When you start the Assembler, the option settings are displayed. You can
enter the options selection mode by responding to the input file prompt with
"?". There are two Assembler options:

P Pretty listing.
S Print information about available space.

Each option may be set to + or -:

+ 01.
Off

When pretty listing is on, the forward referenced labels or offsets are filled in
wi th the correct values in the listing.

After setting options, press [RETURN1 .and the Assembler asks you for the
name of the input file. The Assembler then asks you for the name of the
listing, and the object files.

6-1

Wod<slJop User's Guide The Assembler

6.2.2 The Input File
The input file is a text file containing· Assembler language source statements.
A fUe created using the Editor will be in text file format.

When the Assembler asks you for the name of the input file, type "?,' if you
want to change Assembler options at this time; otherwise type the pathname
of your source file. File naming is explained in Chapter 2.

6.2.3 The Object File
The object file produced by the Assembler contains a machine code version of
your source program. The name of an object file ends with 1BJ. A raw
assembly object file is not executable; it must be linked with a Pascal
program that calls it See Section 6.6 for further information.

The output file will be an object file which must be linked with a Pascal main
program before it can be executed. T,he object file goes to . the same volume
as the input text file was on. unless another. volume is speci fied.

6.2.4 The listing File
The listing file produced by the Assembler contains a list of source statements
and their machine-language equivalent. If pretty listing is off, all addresses
for forward referenced labels will be presented in the listing file as asterisks
(*). If pretty listing is on, the actual values will be filled in.

Source statement errors are flagged in the listing. Refer to the Appendix for
a list of Assembler error messages.

M example of an Assembler listing file is shown in Figure 6-1. Figure 6-2
shows the same file ·listed wi th the pretty list option.

6-2

0000 I 0000 0001
0000 0000 0020
0000
0000 3031: 0020
0004 4240
0006 5240
0008 6700 ••••
000:: 6Or8

OOOC 41fA
0012 60"
0014
0014
0014

1 0014 4E71
0012·. 02
)()161 4E75
;)0181
)oW 0008
)018119 30 13
0018 00

one .equ 1
lebe12 . equ $20

move
elr

'labe12, dO
dO

12 ~;1~'''' /a "
11 lea det!l, eO

brs.$ done

; show listing petehlng
; address filled in
; for beckwerd brenching

; some more code .. ,

nap

done rts

The Assemble)·

dets .byte 25, $30, 19 ; odd nLlllber of bytes
.!!lign 2 ; make sure next instruction

; is on even

Fig.are 6-1
Asserrbler Listing

If you specify a device name such as -printer or -console for the listing file,
the listing will be printed on that device. If you specify a disk file, the
listing will be created as a text file; you may then print it by using the Copy
command in the File Manager command line.

NOTE

If you want pretty listing, the listing output must be sent to a file, not
to a device. Pretty listing is done by making an additional pass
through the listing file to patch in the forward references. There must
be enough disk space for two listing files for this operation to succeed.

6-3

WorkstJt:p User's Guide The AssembJer

~I
.proc ex IrIlpl e

0000 1 0000 0001
one .equ 1

!XXX) 0000 0020 labe12 .equ $20

:g 303C 0020 Inove IIlebel2, cl)

_1"<0 clr Ii:)

0006 5240 1i2 add lIone, Ii:)

0006 6700 0004 beq 11 i shC1fl listing patching
OOOC 60Fe bra 12 i address fUled in

i for backward branching
00(£1
00(£
00(£ 41FA 0006 lil lea data, fi{)

0012 6002 bu.s done
0014
0014 i SOOle more code ...
0014
0014 4E71 nop
0016 4E7~ done rts
0016
0016 19 30 13 data . byte 25, $30, 19 i odd number of bytes
00lBI 00 .align 2 i make sure next instruction

i is on even

Figure 6-2
Pretty Listing

6.3 Assembler QlCOdeS
The 68000 opcodes are described in the Motorola MC68000 Microprocessor
User's Manual. The .. Assembler has two variant mnemonics for branches that
are more indicative of how the instruction is being used after unsigned
comparisons. These variants are BHS (Branch on High or Same) for BCC, and
BLO (Branch on Low) for BCS. The default radix is decimal.

The size of an operation (byte, word, or long) is speci fied by appending either
.B, .W, or .L to the instruction. The default operation size is Word. To cause
a short forward branch (an 8-bit displacement rather than a word
displacement), append a .S to the instruction. The default branch size is Word.

Note that the T AS (test and set) instruction is not implemented on the Lisa
hardware. Using this instruction may cause timing problems.

Note that the Assembler accepts generic instructions and assembles the
correct form. The instruction ADD, for example, is assembled into ADD,
ADDA, ADOQ, or ADO!, depending on the context.

ADO 03, AS
becomes AOOA 03, AS.

MOVE, CMP, and SUB are handled in a similar manner.

6-4

Worksllop User's Guide The Assembler

6.4 ~ler Syntax
This section descritles the form in which the Assembler expects an assembly
language program. The structure of an assembly language program is shown in
Section 6.4.1. Rules for forming constants, identifiers, labels, expressions,' and
addressing modes are provided in the following sections.

6.4..1 structure of ~ Asserrtlly LBlQU898 Progran
M assembly language program contains one or more procedures or functions.
The structure of an assembly language source file is shown in Figure 6-3. The
source file contains an (optional) section of operations that doesn't gener~te
code. Constants or macros are usually defined here. Next it conains one or
more procedures (.PROC) or functions (.FUNC~ These each contain a sequence
of directives and code generating operations. A procedure or function ends
when the Assembler encounters the next .PROC or .FUNC. The .END directive
is the last statement that is processed by the Assembler. My text beyond the
.END is ignored.

non code genemting t:pemtilKlS

PROC (or.FlJ-.lC)
ctJtk! [P1f!J'lJtJrq cpemtJms and my dimctJves neetkit1

FROC

FLNC
etc.

Fi~ 6-3
structure of an Assembly LBlQU898 Prognm

The directives that don't generate code are:

.EQU .MACRO .IF .LIST

.REF

.DEF

6.4.2 COnstants

.ENDM .ELSE .NOLIST
.ENDC .PAGE

.TITLE

.MACROLIST

.NOMACROLIST

.PATCHLIST

.NCPATCHLIST

COnstants In the Assembler can be either numeric or strlng constants.

6.ll2..1 f\kmeric COmtmts
Numeric constants in the Assembler can be expressed in decimal, hexadecimal,
octal, or binary. The default radix is decimal. Numeric constants are
expressed as follows:

6-S

Workshop User's Guide The Assembler

Decimal
Decimal numbers are formed with the decimal digits (0-9~ Examples:

10
13
137

Hexadecimal
Hex numbers can be expressed in two ways:

1. Preceed the number with a "$". Examples:

$FF13
$127

2. Follow the number with an "H". Using this form, the number must start
with a digit (0-9~ Examples:

OFF13H
195H

fXtal
(Xtal numbers are followed by the character "a'. Note that this is the letter
0, not the number zero (O~ Examples:

770
1040

Binary
Sinary numbers are followed by the character "S". Examples:

lOllS
1110008

6..4.2.2 string Constants
String constants are delimited by matching pairs of single or double quotes.
Examples of string constants are:

"this is a string constant"
'using single quotes as delimiters lets you include "double" quotes'

6.4.3 ldenti fiers
011y the first eight characters of identifier names are meaningful to the
Assembler. The first character must be alphabetic; the rest can be
alphanumeric, period, underbar, or percent sign.

Examples of identifiers are:

UXP
EXIT PRe
NUM-
num64%

6-6

Worksl1op User's Guide TI1e Assembler

6.4.4 Labels cnJ Local Labels
Labels begin in column one. They can be followed by an optional colon.

Local labels can be used to avoid using up the storage space required by
regUlar labels. The local label stack can handle 50 labels at a time. It is
cleared every time a regular label is encountered. A local label is an -
followed by a string of decimal digits (0-9~ Examples of local labels are:

Ctl123
@l2

~79

6.4.5 E~ressions a1d ~rators
All quantities are 32 bits long unless constrained by the instruction.
Expressions are evaluated from left to right with no operator precedence
Angle brackets can be used to control expression evaluation. The operators
are:

+

*
I
\
I
&

<>

positive sign or binary addition
unary minus or subtraction
ones complement (unary operator)
exclusive or
mul tiplication
division (OIV)
MCD
logical (R
logical AND
equal (used only with .IF)
not equal (used only with .IF)

There is no operator precedence in expressions. For example, in the
expression 2 + 9 '" 4, the addition is performed first. To perform the
multiplication first, rewrite the expression with angle brackets to show
precedence: 2 + <9 * 4>; or reorder the operands: 9 * 4 + 2.

6.4.6 Addressing Modes
Refer to the Motorola 68000 manual for detailed information on the
addressing modes supported by the 68000 microprocessor. Table 6-1 gives a
summary of the addressing modes including their syntax.

6-7

WOJkstqJ USer's Guide The AsseniJler

Table 6-1
Slrrmary of Addressing Mx1es

Mode Register Syntax Mea1ing Extra Words

0 0 .. 7 Di Data direct 0
1 0 . .7 Ai Address direct 0
2 0 .. 7 (Ai) Indirect 0
3 0 .. 7 (Ai). Postincrement 0
lJ. 0 .. 7 -(Ai) Predecrement 0
5 0 .. 7 ~Ai) Indexed 1
6 0 .. 7 Ai.,Ri) Offset indexed 1
7 0 e ~solute short address 1
7 1 e Absolute long address 2
7 2 e PC Relative 1
7 3 e(Ri) PC Relative indexed 1
7 lJ. 1te Immediate lor 2

Notes:

The indexed and PC relative indexed modes are determined by the opcode.

The absolute address and PC relative address modes are determined by the
type of the label (absolute or relative~

The absolute short and long address modes are determined by the size of the
operand. Long mode is used only for long constants.

The number of extra words for immediate mode is determined by the opcode
size modifier (.W or .L~

All programs that run under the Lisa OS must be relocatable.
Addresses should not be absolute.

6.4.7 Miscellaneous Syntax
CmTnents
A comment in an assembly language program begins with a semicolon. The
Assembler ignores all characters after a semicolon in a line. Examples are:

; This is a COIIIIEt1t on a line by itself
ll..R.L DO ; COIIIIBlt after a statenent

6-8

Workshop User's Guide TI7e Assembler

CUrrent Prognm Location
The current program location is indicated in assembly language by the symbol
"*". Examples of its use are:

.l'P*

.Jtl *-4

Move t1Jltiple (MlVEM)

; Loop infinitely
; ~ back 4 bytes

To specify which registers are affected by Move Multiple (MOVEM), specify
ranges of registers with "-" and specify separate registers with "t'. For
example, to push registers DO through 02, Oil, and AO through All onto the top
of the stack:

tlJVEt1.l DO-D2ID4/AO-A4, -(A7)

6.5 Assermler DIrectives
Assembler directives tell the Assembler to do various functions besides
generating executable code. These functions include defining symbols and
constants, defining macros, doing conditional assembly, and controlling listing
options.

The Assembler directives (pseudo-ops) are shown in Table 6-2.

Table 6-2
TIle Assembler Directives

Directive q:era1ds Meaning
.PROC <identi fier> begin procedure
.FUNC <identi fier> begin function
.0EF <idenU fler -list> make idenU fiers externally avallable
.REF <identi fier -list> declare external identifiers
.SEG '<name>' put code of next .PROC in segment 'name'
.ENo end of entire assembly

. ASCII '<char-string> ' place ASCII string in code

.BYTE <value-list> allocate a byte in code for each value

.BLOCK <length>[,value] allocate length bytes of value

.WCRo <value-list> allocate a word for each value

.LCl'-JG <value-list> allocate a long word for each value

.ALIGN <Expr> a111gn next code on multiple of Expr

.CRG <value> place next byte at <value> relative to
beginning of assembly

.RCRG <value> same as .ffiG

.EQU <value> set label equal to <value>

.MACRO <identifier> begin macro defini tion

.ENoM end macro (lefini Uon

6-9

WoIkshop User:S Guide

Directive qJenn:1s
.IF <expr>
.ELSE
.ENDC

.LIST

.NCl.IST

.PAGE

.TITLE '<title>'

.MACRa..IST

.NCMACRa..IST

.PATCHLIST

.NCPATCHLIST

.INCLUDE <filename>

Table 6-2 (contirued)
The ~ler Directives

Mealing
begin conditional assembly
optional al temate to .IF block
end conditional assembly

turn on aS5embi y listing
turn off assembly listing

The AssembJer

issue a page feed in listing
title. of each page in listing
turn on macro expansion listing
turn off macro expansion listing
turn on patchlist
tum off patchlist

include contents of <filename> in assemb! y

65.1 ~ Allocation Directives
The space allocation directives are .ASCII, .BYTE, .WCRD, .L(]\JG, and .BLOCK

.ASCII "string"
Converts 'string' into the equivalent ASCII byte constants and places the bytes
in the code stream. The string delimiters must be matching single or double
quotes. To insert a single quote into the code use double quotes as delimiters.
Similarly for double quotes:

. ASCII ·don't· ; string containing single quote

. ASCII 'a "glitch"' ; string containing double (JJOte

.BYTE <values>
Allocates a byte of space in the code stream for each of the values given.
Each value must be between -128 and 255 .

. BUD< <length>[..value]
Allocates <length> bytes, each filled with the value given. If no value is
given, a block of· zeroes is allocated .

• WCRO <values>
Allocates. a word of space in the code stream for each of the values listed.
The values must be between -32768 and 65535.

6-10

Workshop User's Guide

For example,

TEt'P.1IOOO 0,65535, -2, 17

creates the assembled output:

0000
FFfF
FFFE
0011

.L(NG <values>

The Assembler

Allocates two words of space for each value in the list. For example,

Sn.Ff .U~ 0,65535, -2, 17

creates the output:

00000000
OOOOFFFF
FFFFFFFE
00000011

<label> .EQU <value>
Assigns <value> to <label>. <value> can be an expression containing other
labels .
• I:RG <value> .
Puts the next byte of code at <value> relative to the beginning of the
assembly file. Bytes of zero are inserted from the current location to
<value>.

RCRG
is similar· to .CRG. It indicates that the code is relocatable. Because the
loader does not support absolute loading, .CRG and .RCRG accomplish the
same function. All addressing must be PC relative.

6.5.2 Macro Directives
A macro consists of a macro name, optional arguments, and a macro body.
When the Assembler encounters the macro name, it .substitutes the macro body
for the macro name in the assembly text. Wherever "%n" occurs in the macro
body (where n is a single decimal digit), the text of the n-th parameter is
substituted. If parameters are omitted; a null string is used in the macro
expansion A macro can invoke .other. macros up to five levels deep. In the
assembly listing, the listing of the expanded macro code is controlled by the
options .MACRI1.IST and .NCMACRI1.IST. These options are described in
Section 6.5.5.

6-11

WorksfJop User's Guide The Assembler

.MACRO <identifier>

.Ef01

defines the macro named <identifier>. The following is an example of a
macro:

• MACRO
tIlVE
ADD
.EtD1

Help
%1,00
00,%2

If "Help" is called in an assembly with the parameters "Alpha" and "Beta", the
listing created would be:

Help Alpha, Beta
, tl)VE Alpha, DO
, ADD DO, Beta

6.5.3 Conditional Assermly Directives
The conditional assembly directives .IF, .ELSE, and .ENOC are used to include
or exclude sections of code at assembly time based on the value of the
conditional expression~

.IF <expressiCJ1>
Identi fies the beginning of a block of source statements that is assembled only
under certain conditions. If <expression> is false, the Assembler ignores all
statements until a .ELSE or .ENDC is found. The statements between the
optional .ELSE and .ENOC are assembled if <expression> is eva luted to be
false at the time of assembly. Otherwise they are ignored.

<expression> is considered to be false if it evaluates to zero. My non-zero
value is considered true. The expression can also involve a test for equality
(using <> or a). Strings and arithmetic expressions can be compared.
Conditionals can be nested. The macros HEAD and TAIL given in Section
6.6.1 provide examples of the use of conditionals. The general form is:

.IF <expr>

[.ELSE]

.ENlC

;assentlled if <expr> is true

; optional
; assen'bled if <expr> is false

6-12

Wo.rkshop User's Guide The AssembJer

6.5.4 External Reference Directives
Separate routines can share data structures and subroutines by linkage
between assembly routines using .DEF and .REF. These directives generate
link information that allows separately assembled routines to be linked
together .
. DEF and .REF directives associate labels between assembly routines, not
between assembly routines and Pascal.The only way to communicate data
between Pascal and assembly routines is by using the staCk. This is done by
passing the data as parameters in the procedure or function call. Information
on parameter passing between Pascal and assembly language routines is found
in Section 6.6 .

.rEF <identifier-list>
Identifies labels defined in the current routine as available to other assembly
routines through matching .REFs. The .PRCC and .FUNC directives also
generate code similar to that generated by a .DEF with the same name, so
assembly routines can call external .PRCCs and .FUNCs with .REFs .

. PROC Simple, 1
_ OfF Alpha, Beta

· BNE Beta

Alpha tf)VE

RTS
Beta tOlE

RTS
.00

This example defines two labels, Alpha and Beta, which another assembly
routine can access with .REF .

. REF <identifier-list>
Identifies .the labels in <identifier-list> used in the current routine as
available from some other assembly routines, which defined these identifiers
using the .DEF directive.

· PROC Simple
.REF Alpha

JSR Alpha

·
• EN)

This example uses the label "Alpha" declared in the .OEF example.

6-13

Workshop User's GlIide The Assembler

When a .REF is encountered, the Assembler generates a short absolute
addressing mode for the instruction (the opcode followed by a word of O's) and
a short external reference with an address pOinter to the word of O's following
the opcode. -If the referenced label and the reference are in the same
segment module, the Linker changes the addressing mode from short absolute
to single-word PC relative. If, however, the referenced procedure is in a
di fferent segment, the Linker converts the reference to an indexed addressing
mode (off AS), and the wbrd of zeros is converted into the proper. entry offset
in the jump table. If the referenced procedUre is in an intrinsic unit (and
therefore in a different segment), the IUJSR, IULEA, IUJMP, and IUPEA
instructions are used. The Linker blindly assumes that the word immediately
before the word of zeros is an opcode in which the low order·6 bits are the
effective address. Thus, a .REF label cannot be used with any arbitrary
instruction. The .REF labels a/'8 intended for .JSR, .JMp;, PEA,. and LEA
instructions.

.SEG
Default segment name is .. " (8 blanks~ .SEG "segment name" puts the
code in segment called "segment name". The .SEG directive takes effect
when the next .PROC or .FUNC is reached. Thus it is not possible to split one
procedure into two segments. This is an example of how the .SEG directive
works:

.SEG 'namel'
.PROC A

{code in PROC Al

.SEG "name2'

{code still in .PROC Al {thiS code will still be in segnent 'name11

PROC B {code of .PROC B will be in segnent 'name21

6.55 Listing Control Directives
The directives that control the Assembler's listing file output are .LIST,
.NCl.IST, .PAGE, .TITLE, .MACRCl.IST, .N()v1ACRCl.IST, .PATCHLlST, and
.NCPATCHLIST. If you do not specify a name for the listing file in response
to the Assembler's prompt, the listing directives are ignored.

The default for the Assembler is for .LIST, .MACRCl.IST, and .PATCHLIST to
be in effect when the Assembler starts. .TITLE defaults to blank .

.LIST and .f\lLIST
Can be used to select portions of the source to be listed. The listing goes to
the specified output file when .LIST is encountered. .NO...IST turns off the
listing. .LIST and .NCl.IST can occur any number of times during an assembly.

6-14

Workshop Usef's Guide The AssembJef

.PIV3E
Causes the next line of the listing file to be printed on the next page .

• TITLE '<title>'
Specifies a title for the listing page. <title> can contain up to 80 characters,
and can be enclosed in either single or double quotes. For example:

. TITLE "Interpreter"
places the word, "Interpreter", at the head of each page of the listing .

. PATCH...IST
Patches the forward referenced labels in the listing. It must be on if you
want pretty listing. See Section 6.2.4 for more information on pretty listing .

. N£PATa-t...IST
Turns off patching of forward references .

. MACRG..IST
Turns on listing of the expanded code from a macro .

..NCMACRG..IST
Turns off listing of macro expansion. See Figure 6-4 for examples of macro
listing.

~I
0000
0000
0000
0000
0000

51
~I
~I
~I

51,440
0002
00021 524C
0004
00041 0443 OOff
0008

2 par!rlleters in IIC:
%1 - the !rIlount to add to

register that is passed as %2
%2 - reg1 ster newne

. macro IIC
add #'d, %2
.enan

paremeters passed to C£C:
%1 - ernount to subtract

from register %2
%2 - reg1 ster nerne

. macro C£C
sub #%1, %2
.enan

.proc Hacrocxewnplc
IIC 2, dO

Fro #2 dO
IIC 1, a4 '

Fro #1 a4
C£C $(f, d3

SLB #$(f, d3
.end

Fi~e 6-4
Macro Listing

6-15

Workshop User's Guide

6.5.6 File Directive
.INCLLDE <filename>

TIle Assembler

Causes the contents of <filename> to be assembled at the pOint of the
JNCLUDE. You need not specify the .TEXT suffix. M included file cannot
itself contain an .INCLUDE statement.

6.6 Connulicatimwith Pascal
Assembly language routines must be called from a Pascal program. In order
to call an assembly language routine, the Pascal program declares the
assembly language procedure or function to be EXTERNAL. If the assembly
routine does not return a value, declare the assembly routine as a
PROCEDURE in the Pascal program. If a function result is to be returned
from the assembly routine, declare it as a FUNCTICN in Pascal and space for
the returned value is allocated (by the Pascal Compiler) on the stack just
before the function parameters, if any. The amount of space allocated
depends on the type of the function. A Longint or Real function result takes
two words, a Boolean result takes one word with the result in the high order
byte, and other types take one word. A Boolean result of 0 indicates false,
any non zero value indicates true.

f\IJlE

Assembl y language programs are in read only memory segments. Thus
they have no data space to write into. My data space needed must be
allocated by the Pascal Compiler. A pointer to the space is then
passed to the assembly language routine. "Writes" to the data space
are done by pOinter references using modes like (Ax), i(Ax), etc. For
examples of this technique see Section 6.7.5

In the following example, an assembly language routine is linked to a Pascal
program. The assembly language routine accepts two integers and returns the
logical AND of them. The Pascal host file is:

PROGRAM BITIEST;
VAR I,J: INTEGER;
FUNCTIlW Iand(i, j INTEGER): INTEGER;

EXTERNAL; (* external = Assentll y language *)

BEGIN
i := 255;
j := 33;
~ITELN (I, J,' AN> = ., Icnj (I, J»;

ENl.

6-16

Workshop' User's Guide

The Assembler file is:

.FtJ£
t'llVE.L
I1lVE .•
I1lVE .•
AND ••
tDJE.W
.l"P
• EM)

IAN)
(A7)+,AO
(A7)+,00
(A7)+,01
01,00
~O, (A7)
(AO)

; return address
; J
; I
, I AND J

The Assembler

; put flflCtion result on stack

In the example given above little attempt has been made to make the
assembl y language procedure mimic the structure of a procedure generated by
the Pascal Compiler. A complete description of this structure requires some
preliminary discourse.

6.6.1 The Rl.fl-Time stack
Automatic stack expansion code makes procedure entries a little complicated.
To ensure that the stack segment is large enough before the procedure is
entered, the Compiler emits code to 'touch' the lowest point that will be
needed. by the procedure. If we 'touch' an illegal location (outside the current
stack bounds), the memory management hardware signals a bus error that
causes the 68000 to generate a hardware exception and pass control to an
exception handler. See the Lisa Hardware Manual for more information on
the memory management hardware. This code, provided by the Operating
System, must be able to restore the state of the world at the time of the
exception, and then allocate enough extra memory to the stack that the
original instruction can be reexecuted without problem. To be able to back
up, the instruction that caused the exception must not change the registers, so
a TST.W instruction with indirect addressing is used.

In the normal case, the procedure's LINK instruction should be preceded by a
TST.W e(A7), which attempts to reach the stack location that can accomodate
the static and dynamic stack requirements of the procedure. If the static and
dynamic stack requirements of your assembly language procedure are less than
256 bytes, you can assume that the Compiler's fudge factor will protect the
assembly language procedure, so the TST.W can be omitted. If the
requirements are greater than 32K bytes, e(A7) may not be sufficient because
only 16 bits of addressability are available. In this case, the Compiler
current! y emits code that in some cases looks like:

I"IlVE.L A7,AO
SU3.l lSize, AO ; 'size=dyncnic + static needed
1ST.. (AO)

If the Compiler option D+ is in effect (the default), the first eight bytes of
the memory area following the final RTS or JMP (AO) contain the procedure
name, in upper case (produced by the Pascal Compiler~ The Debugger gets
the procedure name from this block, allowing you to use procedure names in

6-17

WorkslJop User's Gl/jde The Assem/1Jer

the Debugger. The following example shows how an . assembly language
programmer can provide the Debugger with information it needs to perform
symbolic low level debugging. Note that all procedure names must be in
upper case to be compatible with the Debugger.

,
; ASSEJ'H. V LANGUAGE E)WIJLE

· ,
;
· ,
;

· ,

· ,
· ,
;
· ,
· ,
;
;
· ,
· ,
· ,
· ,
· ,
· ,
· ,
;
· ,

OEBOOF • EQU 1 ; true => allow debugging with
; proc nares

I-EAD -- This MACRO em be used to signal the
begiming of an assentll y language proceclJre. I-EAD
shruld be used \then you do not Blt to wild a sUEk
frame based on A6, rut do .mt debugging information.

No argtJlBlts

• MACRO I-EAO
.If DEBlJlf

LINK Ni,'O ; fMCy t«P used by Oel:JJgger
.ENOC

.Et01

TAIL -- This HACRO can be used as a generalized exit
5eCJ.BlCe. There are tw cases. first, if you ruild
a stack frame, TAIL can be used to lIldo the stack
frc:llE, delete the parc:llEters (if any) CI1d return.
second, if you do not walt to build a stack frame
based on A6, this t1ACRO can be used to si~l the
end of an assenbl y language procedure. In either
case if DEBOOf is true, the Procecia'e naRE
is dropped by the MACRO as an 8-charaCter nane.

Two argt.IfBlts:
1) NuJtJer of bytes of paI1IIEters to delete
2) Procerure _ NanE as string exactly 8 characters,

RUst be ~r case.

.tWRl TAIL
lH..K A6
.IF %1 = 0

RTS ; 0 bytes of parc:llEters
. ELSE

.IF %1 = 4
tIlVE.L (A7)+, (A7) ; 4. bytes of paralBters
RTS

6-18

Worksflop User's Guide The Assembler

; . ,
;
,
; . ,

. ELSE
tDlE.L
ADO. I
.:tP

.ENDC
.ENJC
.If OEEUlF

. ASCII ~
.ENJC

.ENl1

(A7)+,AO
ftl,A7
(AO)

; put return addr into AO
; renDVe paICIIIS from stack
; return to caller

The follo.ing exawple denJJnstrates the use of the
TAIL macro for the purpose of debugging. The e~le
assunes that you II8lt to build a stack fraJE based
on A6. In a real assentll y language procewre the
zeroes belo. 1IfOU1d be replaced by the local size and
paralEter size .

.PROC
LIN<
MF
TAIL
• EN)

SIt'Pl.E
M,IO

0, ·SItfllE •

; zero bytes of locals
; body of procewre
; zero bytes of parameters

These two macros, HEAD and TAIL, can be used to make it easier to debug
assembl y language routines called from Pascal programs.

Upon entry to the assembly routine, the stack is as shown in Figure 6-5.

6-19

WOIksllop. User's Guide The Assembler

Gallen Stack Frane
'---_.-

...
callen OynMlic Link --+ ...

Fl.I1Ctl.oo Result (If a f\.nctioo)
. _.

Pnx:ea.ae Anpnents (If any)

static Link (If any) -
Return At1t1Iess

OynMlic Link (old ~) ~

Local Fnme
-

Dyranic Stack Area

Figure 6-S
1he Pascal Rl.n-TIme stack

The finction result is present only if the Pascal declaration is for a function.
It is either one or two words. If the result fits in a single byte (a boolean,
for example), the most significant half (the lower-addressed half) gets the
result value.

Procedure arguments are present only if parameters are passed from Pascal.
They are· pushed on the stack in the order of declaration. All reference
parameters (parameters declared as VAA's in the Pascal Procedure or Function
declaration) are represented as 32-bit addresses. Value parameters less than
16 bits long always occupy a full word. A boolean parameter passed by value
occupies a word with the value in the most significant byte (the
lower-addressed byte} All non-set value parameters larger than 4 bytes are
passed by reference.

The static link is present only if the external procedure's level of declaration
is not global. The link is a 4-byte pointer to the enclosing static scope.

It is the responsibility of the assembly language procedure to deallocate the
return address, the static link (if any), and the parameters (if any} The SP
(stack pointer) must point to the function result or to the previous top of
stack upon retum Registers D4 through 07 and A3 through A7 must be
preserved. We recommend that you also preserve 03 and A2.

6.6.2 Register Conventions
The following are the register conventions used in the Lisa system. It is your
responsIbility to preserve these registers.

6-20

WoIkshop user's Guide The AssetWler

DO-02/AO-Al: Scratch registers (can be clobbered)
D3,A2:
D4-07/A3,A4:
A5:
A6:
SP:

Scratch registers, but should be preserved
Used for code optimization (must be preserved)
Pointer to user globals (must be preserved)
Pointer to base of stack (must be preserved)
Top of stack

Registers 03 and N2. may be used at some time in the future by the Compiler
for code optimization, so you should preserve them also.

6.6.3 Panmeter Passing Between Pascal £I1d Assembly LB'lglJ8fJe
Parameters are passed between Pascal and assembly languagp. routines in the
following ways:

by value:
boolean a word on the stack with the boolean value in the

most significant byte of the word (lower, or even
address~

integer a word
longint two words
data structure by address (4 bytes~ It is the responsibility of the

assembl y language routine to interpret the data
structure correctly.

by reference (VAA parameters~
all types by address (4 bytes on the stack)

6.7 Assentll Y LB'lglJ8fJe ExarTll1es
6.7.1 Using .REF and .DEF Directives

The first example illustrates the use of .REF and .OEF. These two directives
allow an assembly language routine to reference other assembly routines.

The Pascal host file is:

program WasteTime;
procewre lait (time integer);

external;
begin

writeln ('Going to waste sate tinE');
wait (50);
writeln ('Finished wasting tinE');

en:L

The assembly language file is:

.proc wit

. ref cycle

. ref oore tire
fOOVe.l (a7)+,aO

; need to use a piece of code
; Wlose entry point is cycle
; defined outside procewre .a1 t
; another outside procedure
; return address in aO

6-21

WoJ"ks!7op User's GI.Iide

I1D\Ie.W (a7)+, dO

jsr cycle
jsr mre tiE
j~ (aO)-

The Assembler

; need to walt thls DIllY cycles
; a paraneter for cycle

; waste IIDre time
; return

; the stmoutine used by wait is defined in the
; following code. this proc could do other things
; besides the cycle rrutine
.proc def_cycle
.def cycle ; cycle visible to other procs
,
; code can go here
,
f'q)

cycle

stb
me
rts
,

'1, dO
cycle

; exawple Of a line of COde
; beg1ming of the cycle rrutine
; paraooter is in dO

; IIIlre code can go here
,
.proc
clr

-1 add
me
rts

.em

IIl)re time
dO -
12, dO
ill

6.7.2 string Parcmeters

; waste IIIlre time
; use dO as tillEr

The following program illustrates hOw to pass a Pascal string to an assembly
language program, mOdify the string, and return it Pascal strings have their
length stored as the first byte in the string.

I\IJTE

Assembly language routines are in read only segments and dO not have
trtelr own data (read/write) area All read/wr1te data should be
deClared in Pascal and passed to the assembly routines using pointers.

6-22

Workshop (.)ser's Guide

The Pascal source file is:

progran pasStr;

type strType = string[80];
var str : strType;

ch : char;

procewre Asn6tr (var str : strType);
external;

begin
str : = 'initial string in Pascal min progran';
writeln (str);
Asn6tr (str);
writeln (str);
writeln;
write ('press any key to contin.Je');
read (ch); .

end.

The assembly language file is:

.proc AsmStr
; return addl-ess saved in AO

The Assembler

move. 1 (A7)+,AO
move. I (A7)+,Al
move. I A2,-(A7)

; address of string from Pascal
; save scratch register A2

lea
cIr.1
DDve.b

move.b
copy Slilq

blo
ODVe.b
bra

done DDVe.1
jnp

size .byte
myStr

.aIi~

size,A2
00
(A2),OO

(A2)+, (Al)+
'1,00
done
(A2)+, (Al)+
copy

(A7)+;A2
(1'0).

38
. ascii
2

6.7.3 Writing a FlIlCtim

; get size of string

;copy size of string
;done copying string?
; yes, return to Pascal
;, one char of string

;restore scratch register
; return to Pascal

'this string is from the lisa Assembler'
; get on a word botr1dary

The following example shows how to wri te a function in assembly language.
This function returns a boolean value.

6-23

Worksl1op User's Guide

The Pascal program is:

program booleanFU'lCtion;
var int: integer;

ch : char;

flllCtion swapBytes (var int : integer) :boole(l'l;
external;

{ if a parameter is passed by reference
(8 var parameter) its addesss is passed
to the assentJly routine on the stack }

begin
int := 256;
writeln ("the initial value of tnt = ", int:1);
repeat

if s"8pBytes(int) then
writeln ("int = ", int:l)

else writeln ("int = 0, fll'lCtion value is false·);
int := int - 1;

until (int < 0);
write ('press B1y key to contirue l

);

read (ch);
end.

The assembl ylanguage function is:

. fU'lC swapBytes
move. I (A7)+,AO
move. I (A7)+,Al
lII)Ve (Al); DO
ror '8,00
move 00, (Al)

iii

; pop return address
; get address of .oro to swap

;', get the ruDer
; swap the bytes
; put it back

The Assembler

bne
elr
bra

(A7) ;. rutJer = 0 so return false (0)

iil move
ii2 jql

• end

ii2

WFFF,(A7)
(AO)

; return result true (non zero)
; return to callirlJ program

6-24

WOJ"ks!7op User's Guide The Assembler

6.7.4 calUng Pascal 110 Routines
The following example illustrates how to call Pascal routines from assembly
language to do liD. Note the use of macros for calling the Pascal routines.
progran AsmIO;

type strType = string[80];

var str:strType;
fl, f2: text;
ch: char;

pl'OCe(lJre main;
external;

{TIE Fl1.Lmflt«2 FlJ£TI(H) ARE CAlLED fR(J1 Tt£ ASSEttLy LNOJAGE
PROORAt1 HAIN TO PERfCR1 I/O}

ft.l1Ction f_rewrite (f_run: integer; f_l'laIE: strType):integer;
begin

case f run of
1: rewrite (fl, f nane);
2: rewrite. (f2, (~nanE);

end;
f rewrite: = ioresul t;

end;
flrlCtion f reset (f run: integer; f _t1CIIe: strType): integer;
begin - -

case f run of
1: reset (f1, f_naE);
2: reset (f2,f name);

~; .-
f reset : = ioresul t;
~;

procetlJre writeLine (f_run: integer; wr S: strType);
begin

case f. run of
0: write (s); {file id = 0 means write tQ ~console}
1: write (f1, s);
2: write (f2, s);

~;
end;

procetlJre writeLF (f_run: integer; wr S: strType);
begin

6-25

WOI1<sI7op User's Gujde

case f run· of
O:.riteln (s);
1: .riteln (f1,s);
2: "liteln (f2, s);

end;
end;

pI'OCe(1are f _close (f_run: integer; lock_file: lxlolean);
begin

case f run of
1: if lock file then

close-(f1,lock)
else

close(f1);
2: if lock_file then close(f2,lock)

else close(f2);
end;

end;

{nE HAIN PROOIW1 CALLS TI£ ASSEtIl. V LANGUAGE HAIN}

The Assem/:JJer

begin .
"liteln ("test program - using assembly maln routine to do 1/0');
writeln;
lIBin;
"lite ('press any key to contirue");
read (ifllUt, ch);

end.

The assembly language file is:
.proc main

;==~========~=======================~===~

; EXTERNAL REFEREta:S AN> ~TANTS
;==

. ref "litelf

. ref .riteLine
· ref f rewi te
• ref f-reset
• ref (: close

first file .equ
printerld .equ

1
2

; id , of file one
; id , of file ~-pr1nter"

; return address to the Pascal maln routine 1s left 00 the stack

6-26

WOJkshqJ user's Guide

;======================================
; twalS TO CALl PASCAl.. FlI£TI~
;======================================

81

.lIIBCro open_write_file ; '1 --- file ,
,
clr

%2 --- file name
-(a7)

lOVe .. "1, -(a7)
lea %2,aO
lOVe. I aO, -(a7)
jsr f rewrite
rove (87)+,aO
ble ~1

error ~

.erdn

.lIIBCro open_reed_file
; '1. --- fIle ,
,
clr

~ --- file name
-(a7)

rove
lea
mve.l
jsr
rove
ble
error
.erDn

ftl, -(a7)
~,aO
aO, -(a7)
f reset
(87)+,80
ill
%2

.macro write file
; '1 --- file ,

; reserve space for ftnltion
; result front f rewrite
; file id , as first param
; sea:nj paran is fIle naIIe

; pop IDresul t

; IDresuit > 0 -> error
; (nested macro call)

; ·reserve space for ft.llCtlm
; result of f _reset

; pop IDresuI t

; IDresuit > 0 -> error

; write a line (with no linefeed)

; . ~ --- label of string to be written
lINe ft1, -(a7)
lea ~,a1

,rove.l al, -(a7)
jsr writeline
.encD

; puSh strirQ 8IXttess ooto stack
; write it out

.lIIBCro writeln_file ; write a line of text with
; 11nefeed ; '1 --- file ,

; ~ --- label of string to be written

6-27

rove
lea
rove. I
jsr
.erdn

"1, -(a7)
%2,al
al, -(a7)
tn"iteLF

.macro close file
; %1 --- fife •

The AssenrJJer

; puSh string ~ss onto stack
; tn"ite it out

; %2 --- close status COde
; 0 - $(JOff nol'El close
; $0100 - Sffff lOCk
rove '%1, -(a7)
move ~,-(a7)
jsr f_clo58
.erdn

.~ro error
; %1 --- file name
write_fIle O,erIStr

tfrlteLn file 0,%1
rts -
.erdn

; wri te error message
; to -console
; (file id , 0)
; output file ~ also
; ""it

; •• :_===-=============-======-========
; tlAIN ASSEtIl.. Y UVGJAGE PROORAt1
;===~=============~===~===============

open_write_file ,first file, filel ; open IO/record. text
open_wrIte_fIle printerl~ printer

writel.n_flle

writE!ln_flle

4ftitE!ln_flle

close fIle
Close~)ile

0, openstr ; wrIte the qleflstr
; to -console (file' 0)

fIrst_file, strIng ; .r1 te strlrYJ to
; first file

prlnterld, str1 ; 4ft 1 te str1 to printer

first flle,$Oloo ; lOCk first fIle
printerld,O .; do not lock the printer

open_reed_file 1,fl1el
close_fIle 1, Stfff

; . no error Should occur
; preserve flle1

opet'l_reacCflle . 2;, errFlle

6-28

; no errFlle arotrld, Should
; cause error.

WorkSl1qJ User's Guide

rts

'; =:as===_=_=====
; at4STNffS
; ===============

file1

printer

strirYJ

strl
myStr

~str

errStr

errFlle

• byte
wascil
.aligl

• byte
. ascII
.aligl

• byte
. ascIi
.ali~

. byte

. ascii

.all~

• byte
. ascii
.ali~

• byte
. ascii
.ali~

• byte
. ascII
.all~

.eR1

TIle Assembler

; biD< to Pascal min
;progr811

14
'IO/record. text '
2

8
'-printer'
2

38
'this string is from the lisa Assentller'
2 ; make sure on even. meoory

34
'another string from lisa Assembler'
2

26
'opened file IO/record.text'
2

22
'error in opening file'
2

6
'rQ=lle'
2

6-29

WOJ'kshtp . User's Guide

6.75 Using Pascal Data Areas
Assembly language routines are in read only segments and do not have a data
area. Any data area that must be written into must be declared in the Pascal
program and referenced in the assembly language program by pointers. The
following two examples illustrate the correct and incorrect ways of doing this.
The correct example illustrates how to do a READLN from an assembly
language program.

The first example illustrates the "obvious" and incormct way of doing a
REAOLN from an a88embl y language program. The Pascal program is as
follows:

progrBl'l AStVenD;

{ BAD EXNR..E: Note that this exanple does rIlt .ark, becaJse
it tries to write into a IllellDry space reserved by the
Assenoler. Data spooe lUst be set '4l in the Pascal program
and referented by a pointer variable. lhe· following exanple
illustrates the correct way of doing this. }

type
PasStr = string(255];

var
ch: char;

proceclJre w_write(S: PasStr);
begin

write(s);
erKt;

procewre w_writeln;
begin

writeln;
end;

procewre w_readln(var s: PasStr);
{ read a line frm -a:HD...E cnj put it into

(wri te to) string s }
begin

readln(s);
erKt-,

proceclJre E1n; external;

begin {AStIlem}
lIBin; { call to assenbly lmlQU8Qe routine }
write("lhat"s all folks, type space to contirue');

6-30

Workshop User~ Guide

repeat read(Ch); LIlt11 ch = • ';
end. {AStI)en)}

This is the corresponding incorrect assembly language program:

,

. proc min

. ref ,,_write, "_writeln, "_readln

.lIIaCro

lea
rove. I
jsr
.encD

. macro

%1, ao
ao, -(a7)
,,_write

; (s: passtr)
; %1 = string label

; 00 parameters

jsr ,,_write In
.enQn

. macro

lea

fII)\Ie.l
jsr
• erda

; (var s: passtr)
; %1 = string label

- ===================================
~ Put the address of the strirg into
; .,ich a line is to be read at the
; stack and call Pascal routire to
; read the string.
; ===================================
%1, aO ; This space has been

aD, -(a7)
"_readln

; reserved for the string;,

=============================== ,
; t1AIN ASSEtIl. Y lAtGJAGE PR(DW1

; ===============================
a write stringl
a-writeln
a:=write hello

6-31

; This "ill .ite a string
; and a ne"line.

Worksllop User's Guide TI7e Assembler

; ==============:==========
a_readln strtngspace ; NlTE: this .-ill fail

; .-i th a bus error
; becaJse stringspace is
; in program space (read
; ooly), not in read/.ri te
; II1BIIDry space.
; =========================

a .-riteln stringspace
rts

hello . byte 13
. ascii 'Type a line: ,

.aligl 2

StringSpace . block 256 ; save SOlIe space for a
; .readln. This blOCk of . IlERl)ry is in progran ,
; space, therefor it is
; read ooly.

.aligl 2

Stringl . byte 39
. ascii 'lllis string is from the lisa Assentller. •
.aligl 2

• end

This is. the cormet way of doing a READLN from an assembly language
program. Note that the string "s", declared in the PaSCal program, is used in
the w_readln function and passed to the assembly language program by
pOinter.
progran AStIlenIl;

{ G(XJ) EXAtRE: This e~le does a readln by using a pointer
variable as a paraneter. This allo.-s the string to be
reserved by the Pascal ~iler. }

type
PasStr = string[2551;
8yteP = APasStr;

var
s: PasStr; {this string is allocated in read/_rite

IlERl)ry by the Pascal COqliler }

6-32

Wo.rksht:p User's Guide

ch:, char;

procewre w_Wl'ite(S: PasStr);
begin

write(s);
end;

procewre W _wri teln;
begin

writeln;
end;

The Assembler

ftJ'lCtion "_readln: 8yteP;
{ TIlis ft.n::tion reads a line into the strirYJ s (space

allocated by the Pascal Conpiler in readlwri te IEllDry
seJ1Blt) and returns address of s to asseably routine }

beg1n
readln{s);
w_reMln := pointer (~s);

end· .,

procewre min; external;

begin {AStI)env}
main; { call to assemly IBlglJ8Qe rootlne }
wr1te{'That·'s all folks, type space to continue');
repeat read(ch); lIltil ch = ' ';

end. {AStI)env}

This is the correct assembly language program:
.proc min

.ref ,,_write, "_writeln, • ..,.readln

. macro a_write ; (s: passtr)
; '1 = string label

lea '1, aO
rove.I aO, -(a7)
jsr ,,_write
. erda

.1II3CrO a_writeln ; no paraneters

jsr w_writeln
.erDn

6-33

woikshop Users Guide

hello

string1
.8scii
.ali~

; flJ1Ction ,cremIn: ByteP;
; ======~=========~=======~=======~====~=~
; This flJ1Ction expects· the Pascalrwtine
; __ readln to return the pointer to the
; string in WhiCh a line has been read
; =============~==============;===========

elr.l -(a7)
jsr __ readln
. enD

~_rite stringl
a writeln
a - _rite', hello
aJeadln

jsr __ write

a writeln
rts

. byte 13

; this will _rite a string
; cnJ a newline

; ·leaves the adaress of
; string read at top of
; stad<
; takes top of stack as
; paraneter

. ascii

.. aligl
'Type a line: '
2

.byte 39
'This string is from the lisa Assenbler.'
2

.em

6-34

Chapter 7
The Linker

7.1 Tte linker .. 7-1
The LInker is a program that combines object fUes to create an
executable file.

7.2. lJslreg the llnl<er •...•.•..............•.......•.........................•...............••.•... 7-2
The Linker combines Object flies to prodUce executable programs.
Inputs to the Linker are object fUes, command files, or options.

7.3 Tte Linker ~tlons••.•......•.•.•..•...•..............•.•.••.•...•...........•••. 7-2
The Linker options control hOW a llnk is performed. A l1st of the
current option settings Is displayed when you enter a "?" to the options
prompt.

7.4 t-ioW [)o I Link a IVIa1n Program? ... 7-4
A main program is linked by giving the Linker the object file from a
Pascal program, along with all assembly language routines, compUed
LI'lits, and libraries that the program uses.

7 5 R~lar CIld intrinsic Ullts ... 7-4
Regular and IntrInsic units are both Pascal units, separately complled.
A .TegtlJar unit is linked with a main program and becomes part of the
executable f11e. An intrinsic unit Is shared among all programs that
use it, both on disk and in memory.

7.6 Tte linker listirlg ..•......•..•...........••....•....•..•....•.....••••....•.••.........•.•... 7-5
The Linker Ustlng provides a summary of the linking process· and
resources used. C\ltionally, you can request lists of all symbols used.

7.7 Resolvlrlg ExtelTl8l I'BTles .. 7-6
ExtemaJ names are symbolic references to separately compiled modUles.
The linker maps them to actual addresses.

7 .8 ~le Irlcluslon .. 7..-6
The Linker only inclUdes modules that are actually referenced.

7.9 ~tatlon .. 7-7
S8gmentJnga program allows portions of it to be swapped out of
memory when not In use. segmentation Is controlled by a combination
of compiler corrmancls, Linker options, and the ChangeSeg utility.

The Linker

7.1 llle LInker
The Linker combines object files. Its lnput consists of commands and object
files. Its output consists of object files, link-map information, and error
messages. The output of the Pascal compiler must be Hoked with
IOSPASLIB.CBJ before it can be executed. Other object files, including
Intrinsic unit llbraries, and object files produced by the Assembler, can also be
llnked into the output object file.

When a program is compiled into an object file, it contains the following sorts
of things: "

• ClJject code, in the form of relocatable machine language, that expresses
the algorithm of the program~

, • Symbolic (named) references to all 'locations that were not known at
compile time. These include externally compiled routines (units and
intrinsic units) and the Pascal library support routines (IOSPASLIB.ceJ~

• other information to be used by the Linker.

The purpose of the Linker is to resolve all the symbolic references (link
references to definitions), and output an object file that can be executed. The
Linker also sorts the code modules into named segments. These segments are
swapped into memory at run time by the ~rating System.

The Linker does its work In two phaSes. In the first phase, it reads all the
input flies, and finds all symbolic references and their, corresponding
definitions. Errors such, as duplicate and missing references are detected
dUring phase one. In the second phase, the Linker copies code from the Input
files into the output files in executable formal

If the Linker can't find something that is addressed symbolically, this is an
error. Nt error message will be printed, indicating the missing mock.de. This
process of finding the real addresses that correspond to the symbolic addresses
is ,called msoJvlng the ex/emaJ mfemnce~

The Linker expects to find the file INTRINSIC.LIB. INTRINSIC.LIB is a
directory of libraries and intrinsic units, and includes information for the use
of' the Linker. INTRINSIC.LIB defines all the intrinsic units supplied with the
Workshop system.

To create an executable file, the Linker must haVe the following if1lUts:

• The object file from a main Pascal program.

• IOSPASLIB.OOJ to provide the standard Pascal procedUres and flllCtions.

7-1

WorkshOp User's Guide TtJe Linker

• IOSFPUBJEJ, If you are usIng any floating point varIables.

• (l) ject files for any other external proCedures referenced by the main
program. These can be Pascal units, assembly language routines, or
Intrinsic unIts defined In INTRINSIC.LIB.

The Linker combines these files and creates an executable object file. If it is
unable to link these files correctly to create a legitimate output flIe, the
Linker displays an error message. If there is an error, the object file. is not
prOdUced.

When linking a main program, all references .to. external objects must be
resolved. Partial ·links are not supported.

Whlle it Is llnklng a maIn program, the LInker does a dead COde analysIs and
does not InclUde any routines that are not referenced. umecessary routines
are eUminated from the main program, and from the regular unIts given as
Inputs to the link.

7.2 Using the llr1<er
The Linker Is started by pressing l in response to the Workshop command
prompt The Linker prompts you for the input files, the listing fUe, and the
output file. ~tions can be entered after entering "?" in response to the input
file prompt After all file names and options are entered, the link begins.
Hence the set of options in effect is the same throughoUt the link. It is not
possible to change options part way through the link. When entering an input
file. name, ·it·1s not necessary to enter the· JBJ· extension; the Linker will
provide that as needed for input fUes.

The Linker will accept option commands and Input fIle names from a
command fUe. A command fUe is. a text fHe containing the fUe. names and
options, one per Une. If a . blank Une exists In the file, the LInker treats thIs
as the [RETURN] that s1gnals the end of the input flIes. You use a command
fBeby typing "<" followed by the name of the text fIle the commands are in.
It Is not necessary to enter the .TEXT extension; the LInker will provide that
as needed for all input command flIes. Create the text flIe by using the
Editor.

The default llstlng is -console. YOUCa1send the listing to a text fUeby
entering Its name in response to the listing file prompt·. When sending the
listing to a text file, you do not need to provide the . TEXT extension, since
the Linker provides it.

After entering the ouput file name, the link begins. If no errors occur during
the Unk ahd all external references are resolve<t the output fUe Is executable.
A message is printed at the end of the link to tell you if the output is
executable.

7.3 The Linker qlt10ns
To enter the Linker options mode, type "? [RETURN]' in response to the
prompt for an input flie. To leave options· mode and return to entering input
files, press [RETURN] in response to the options prompt. The order in Which

7-2

Workshop User's Gl/jde The Lk1ker

options are entered is unimportant, because they have no effect until the link
begins. The last value entered for an option is the value used when the link
Is performed.

~tions are represented by a Single character. A "+" in front of the character
makes that option take effect. A" -" sets the Linker so that option will not
happen. In addition to being set on or off, some options have additional
parameters. Numeric parameters can be in either decimal·or hexadecimal.
Hexadecimal numbers are indicated with a leading "$". The current setting
of all options can be displayed by entering a "?" in response to the request
for an input file or an option.

The Linker options are as follows:

+A Alphabetical listing of symbols. The default is -A

+0 Debug information. The default is -D.

-H num -H sets the initial disk space allocated to the program's stack.
The default is to automatically include space for the program
variables and the value specified in the +S option.

+L Location ordered listing of symbols. The default is -l. The
location is the segment name plus offset.

+M fromName toName
+M maps all occurrences of the segment fromName to the
segment toName. This allows you to map several small segments
into a Single larger segment. You can thereby postpone
segmentation decisions until link time by using many segment
names in the source code.

~

Because options have an effect only when the link begins, it is not
possible to map a segment name to several different names using this
option. Also, you cannot use this option to map segments to or from
the blank segment,

+S num +S sets the starting dynamic stacksize to 'num'. The default is
10000.

+ T num + T sets the maximum allowed location of the top of the stack to
'nurn'. The default is 128K.

+ W + W tells the Linker to get intrinsic unit information from a file
other than INTRINSIC.LIB.

? Prints the options available and their current values.

7-3

WoJ1<shop User's Guide TIle Linker

7.4 How Do I lin< a MaIn Program?
A main program consists of a Pascal program l1nked with all routines
necessary for it to run. A main program is the only type of executable object
fUe prOduced by the Linker. To llnk a maln program you must haVe the
following:

• A compiled Pascal PROORAI'1 Object file.

• (]) ject files for any other unIts the program uses. thIs InclUdes fUes for
regular units and assembly language routines. Any intrinsic units used
must be defined in INTRINSIC.LIB.

• IOSPASLIB.CBJ, and IOSFPLIB.OOJ (if any real variables are used~

When you have all the above fUes, proceed as follows:

1. Execute the Linker by pressing "L" when the WorkShop command prompt Is
displayed. The Linker displays a header and asks you for an input fUe.

2. Enter any desired options. To enter the options mode, press "? [RETURN]'
in response to the request for an input file. See section 7.3 In thIs
chapter. for information on Linker options. Press [RETURN] after each
option entered. When you have entered all the options, press [RETURN] to
begin entering input fIle names.

3. Enter the file names for all the object fUes, pressing [RETURN) after each
one. The file names can be entered in any order. You do not need to
enter the .CBJ extension; the Linker will automatically append it.

4. Press [RETURN] to Indicate the end of the input files.

5. The LInker prompts you for a listing file. Enter the fUe name desired, or
press [RETURN] to accept the default of dIsplaying the listing on the
-console.

6. The Linker prompts you for tne' output file. Enter the name of the
executable fHe you want prOduced. You do not need to enter the .CBJ
extension; it is supplied automatically.

The linking process begins when you press [RETURN] after entering the output
fUe name. If the link is successful, the message IIOJtput is executable" wUl be
displayed. If the link is not successful, error messages are displayed.

7 5 R~ar CJld intrinsic Ullts
The two types of units are regular units and intrinsic units. Each is a
separately complled code module that may be used by a maIn program or
another unit The syntax of a Pascal unit is explained in the Pascal
Reference Manual for tlJe Lisa.

A regular unit Is combined with a main program by the Linker and included In
the resulting object file. M intrinsic unit, on the other hand, is stored
separately on the disk, and loaded at run time. Thus, only one copy of an
intrinsic unit is kept on the disk, no matter how many main programs use it.

7-4

W'orksfJop User's Glide The Lid<er

In addition to being shared on the disk, an intrinsic unit is also shared In
memory.

The current implementation has no provision for users to create new
intrinsic units. All intrinsic units are supplied by Apple computer.

75.1 How Do I Lin< with a Regular Ulit?
A regular unit is a separately compiled segment of code. It is written in
Pascal, and compiled like a regular program. See the Pascal Reference
Manual for tIJe Lisa for information on hoW to write a unit. See Chapter 5
in this manual for information on compiling the unit.

After you have created a unit, the routines in it can be accessed from any
other program or regular unit you write. The Linker combines a main program
with all units it uses. The result is an executable object file containing all
the needed routines.
To use regular units with a main program, follow the procedure in Section 7.4.
~ input, you must give the Linker:

• The object file of the main program.

• The object files of all units used by the main program.

• IOSP ASUB.CBJ, and lOSFPLIB'(13J (if any floating point variables are used~

The Linker combines all these Db ject files into an executable Db ject flle. It
also does a dead code analysis to eliminate any routines that are not used, to
reduce the size of the Db ject file.

7.6 The Lin<er Lis~
A listing is produced each time a program is linked. This listing can be sent
to a file, or displayed on the console (the cJefault~ The +A option gives you
an alphabetical list of the symbols (procedure names) used in the link. The +L
option gives you a list of the names in order of their location. The listing is
produced in stages, as follows:

1. The input files are read, and a summary of the resources used is printed.

2. The linking process begins. Information about the size of each segment is
printed.

Errors are reported as they are found, and you are told whether or not the
output is executable.

If you requested optional listings, they are also printed. Nt example of a
Linker listing with no options requetted is shown in Figure 7-1. Linker
listings· are mainly used for debugging at the machine code leveL See
Chapter 8 for more information on the Debugger.

7-5

Worksflop User's Gujde The Lklker

Beginning ... or\! - 262~88
After static allocation, lIIuor\l - 196815
Input fll. [,OBJ] ? TRANSVOL
Input f II. [. OBJ J ? I OSPASLI B
Input fll. LOBJJ ?
Listing file [CONSOLEIJ/L TEXTJ -
Output flit [. OBJJ - TRANSF"ERJLS
RucH ng f IItITRANSVOL. OBJ
Rudlng flit! IOSPASLlB.OBJ
Rud 2 flits, uX' 199

~ ngnnh, IIX· 129
16 .odult., IIX' 1459
32 tntrlll, .ax' 2999
39 ref. lish, IIX' e9ge
12~ rehrenctl, IIX • 16999

linking Haln Progrn.
Actlv.: ~ of 16 rnd.
Visible: 1 of 32 rtad.
Global datil tge967C
Conon datil $999999
linking ngunt W: 9 I flit un BIg I 1 slul 2999

Beginning .. lOr\l - 194487
Ending .. lOrv - 194932
9 Errors dthcttd.

The output 11 txec utab Ie.
Elapnd U •• I 298 and 39~/1999 ncond ••
That's all Folks!!! •••

Figure 7-1
A Linker ListirYJ

7.7 Resolving External NBnes
An external name is a symbolic entry point into an object module. All such
names are visible at all times--there is no notion of the nesting level of an
external name. External names can be either global or local. A local name
begins with a $ followed by 1 to 7 digits. Local names are generated by the
Pascal compiler. A global name is any name that is not a local name.

The scope of a global name is the entire program being linked. unsatisfied
references to global names are not. allowed. 011y one definition of a given
global name can occur in a given link. The one exception to this is that the
Linker accepts duplicate names where one instance is in a main program or
regular unit, and the other is in an intrinsic library file. In this case, a
warning is issued, and the entry in the main program or regular unit is used.

The scope of the local name is limited to the file in which it resides. All
references to a given local name must occur within the same input file.
When a link is done, global names are passed through to the output file
unmodified, but local names are renamed so that no conflicts occur between
local names defined in different files.

7.8 Module Inclusioo
When linking an intrinsic unit, all cope modules in the unit are included.
When linking a main program with regular units, the Linker does a dead code
analysis and does not include any modules that are not called.

7-6

Workshop User's Guide The Linker

7.9 Segnentatlon
Segmenting a program makes it possible for portions of the program that are
not being used to be SWapped out to disk, thus making better use of memory.
The way a program is segmented affects its performance.
Segmentation is controlled by three things:

• The $S COmpUer command and the .SEG Assembler option, whICh assIgn
segment names to source code modules.

• The +M Linker option, which enables you to remap compiler segment
names into new segment names.

• The ChangeSeg utility, which enables changing the segment names prior to
linking. See Chapter 10 for information on ChangeSeg.

7-7

O:560-A

Chapter 8
The Debugger

8.1 llle· t:letMJgger ••• ~ ••••.•••••••••.•••••••••••••.•••••••••• 8-1
The DebUgger allows you to examIne and modIfy memory, set
breakpoints, assemble and disassemble instructions, and provides other
functions for run-time debugging.

8.2 IrladVertent Entry Into the t:letMJgger .. 8-1
If you have a bug in your program or a system. malfunction, you may
inadvertently enter the OebUgger. This section tells you hOw to deal
with this.

8.3 lJSirlg the t:letMJgger .. · ••• 8-6
Enter the DebUgger by pressIng 0 In response to the command prompt,
or by pressing thel\MI key. The Debugger prompt (» indicates that it
Is ready to accept commanCfs.

8.4 11le t:letMJgger c::orrna ads .. 8-10
Commands are available for assembly and disassembly of 1nstlVCtions,
displaying memory and registers, setting breakpoInts and traces, memory
management, and base conversions.

85 ~y of t:letMJgger CClrnrnaI m .. 8-20

The Debugger

8.1 The Deb Agger
The Debugger allO'ds you to examine and modify memory, set breakpoints,
assemble and disassemble Instructions, and perform other functions for
run-time debugging.

Procedure names are available to the Debugger for program units compiled
with the D option on. The Debugger uses the symbolic names wherever
appropriate.

The Debugger"s symbol table contains the user symbol table and the
distributed procedure names. The user symbol table contains symbols the user
defines while using the Debugger and the predefined symbols for regIsters.
Section 6.6 in this manual contains more information about the run-time
environment of programs.

When you enter the Debugger, the Debugger screen is made visible by the
Debugger. You can display the main screen by pressing [CPTICN] and [ENTER]
to see the state of the program before the Debugger was entered. Redisplay
tne Debugger screen (by pressing [CPTICNHENTER] again) to continue with
debugging.

8.2 Inadvertent Entry into the OebIJgger
Accidental entry into the Debugger can be caused by a bug in the program
you are running or by some malfunction in the system. A message from the
Debugger wUl suggest the type of problem. The messages and the actions you
can take for program bugs are described in Section 8.2.1 belO'd. System
malfunctions are described in Section 8.2.2.

8.2.1 Progran Bugs
You can enter the Debugger while your program is executing for any of the
following reasons. More information on these coodi tions can be found in the
MC68000 16 Bit Microprocessor User's Menu8J.

• A value range error

• AA illegal string index

• A bus error or address error

• Nt illegal instruction or a privilege violation

• Integer division by zero

• Spurious interrupt or unexpected exception

• OVerflow when TRAPV is executed

• Line 1111 Emulator

8-1

Workshop User's Guide The Debugger

• System malfunction

• Intentionally, by pressing the NMI key. This is the way to terminate an
infinite loop (when tJ-period doesn't stop your program~ Do not use NMI
when running system programs.

Usually the system will tell you the most appropriate action to take, for
example, "type g to continue". Follow these instructions unless you have a
special reason for doing something different.

Programming errors are described in Section 8.2.1.1 below. Stopping an
infinite loop is described in Section 8.2.1.2 below.

8.2.1.1 Progrtm errors
If you have an error in your program it will drop into the Debugger and
display one of the following messages:

If a range check error occurs in application code, the message displayed is:

or:

VALUE RANGE ERROR1n process gid <gggg>
value to check = <vvvv> lower bound = <nnnn> upper bound = <uuuu>
return pc = <pppppp> caller a6 = <cccccc>
Going to Lisabug, type g to continue.

ILLEGAL STRING INDEX in process of gid <gggg>
value to check = <vvvv> lower bound = <nnnn> upper bound = <uuuu>
return pc = <pppppp> caller a6 = <cccccc>
GOing to Lisabug, typeg to continue.

where:

<gggg>

<vvvv>
<nnnn>
<uuuu>
<pppppp>

<cccccc>

is the global process 10 of the process that incurred the
exception.
is the value that is outside the range.
is the lower bound of the range.
is the upper bound of the range.
is the address of the statement after the call to the range
check routine in Pasllb.
is the address of the link field at the time of the call to
Paslib.

OUring execution applications can field hardware exceptions. Refer to the
1'1C&8000 16 Bit Microprocessor User's Man1l81 for definitions of these
hardware exceptions. If such an exception occurs, the system dbplays one of
the following messages:

8-2

Worksl1q:J User's Guide The Debugger

Bus error or address error exception:
EXCEPTION in process of gid <gggg>
Process is about to be terminated.
access address = <aaaaaaaa> = 11I1IJ1t <rmm> (segnent name), offset
<0000>
inst reg = <rrrr> sr = <ssss> pc = <pppppp>
saved registers at <xxxxxxxx>
Going to LisabUg, type 9 to continue

My other hardware exceptlon:
EXCEPTION in process of gid <gggg>
Process is aboUt to be terminated.
sr' = <ssss> pc = <pppppp>
saved registers at <xxxxxxxx>
Going to Lisabug, type 9 to continue

where:
EXCEPTION is one of:

BUS ERROR
ADDRESS ERROR
ILLEGAL INSTRUCTION
PRIVILEGE VIOLATION
SPURIOUS INTERRUPT
UNEXPECTED EXCEPTION
ZERO DIVIDE
CHI< RANGE ERROR
OVERFLOW
LINE 1111 EMULATOR

<gggg> is the global IO of the process that incurred the exception.
<aaaaaaaa> is the address that caused the bus or address error
<rrmn> Is the segment number represented by <aaaaaaaa> and
<0000> Is the offset within that segment
<rrrr> is the value of the instruction register at the time of the

exception
<ssss> is the value of the status register at the time of the

exceptlon
<pppppp> Is the value of the, program counter at the time of the

exception
<xxxxxxxx> is the address of the saved register information

All numbers displayed are decimal; the segment name is displayed only If the
segment number makes sense to the qJeratlng System.
If the excepUon is dlvlde by zero, overflow, or CH< out of bOUnds, the
process is not terminated and the line to that effect is not shOwn. If the
process has declared an exception handler for this exception, control passes to

8-3

Workshop User's Guide The Debugger

the handler after you type g to LisaBug, and the process then continues
execution. If no handler has been declared, the system default handler
terminates the process. If the exception is a bus error and the segment name
is 'staCk seg', a stack overflow has probably occurred. To find your bug you
can do a SC(stack craWl) and IL (immediate disassemble) to find where you
are in the program. The instruction register tells you the exact instruction
being executed. The PC might be 2 to 10 bytes ahead.
You can declare an exception handler in your program to handle divide by
zero, overflow, or CHK out of bounds exceptions. Then your process will not
be terminated by the system if this type of exception occurs. You can also
declare an exception handler for the "SYS _ TERMINATE" exception in your
program. This exception handler will then get executed if your process has a
fatal error as described above. This allows you to clean up your program,
close your files, etc. (in this exception handler) before your program is
terminated. See the tpemting System Reference I'18ntIaJ for the Lisa for
how to declare an exception handler.

8.2.1.2 Terminating al Infinite Loop
NJTE

The following procedure should be used on user programs only. To
terminate a systems program use .-period.

1 f your program is in an infinite loop, or appears to be doing nothing, you can
enter the Debugger by pressIng the NMI key (the - key on the numeric
keypad). This will put you into the Debugger and show the trace display,
Which looks something like:

Level 7 Interrupt
aaaaaaaa bbbb <instr>
PC=xxxxxxxx SR=xxxxxxxx US=xxxxxxxx SS=xxxxxxxx OO=d PROC=yyy
DO=xxxxxxxx 01 =xxxxxxxx 02=xxxxxxxx 03=xxxxxxxx
D4=xxxxxxxx DS=xxxxxxxx 06=xxxxxxxx 07 =xxxxxxxx
AO=xxxxxxxx A1 =xxxxxxxx A2=xxxxxxxx A3=xxxxxxxx
A4=xxxxxxxx AS=xxxxxxxx A6=xxxxxxxx A7 =XXXXXXXX
>

where:
aaaaaaaa is the current address
bbbb is the contents of the current address
<instr> is the current instruction disassembled
xxxxxxxx is the contents of the specified register
d is the current domain (0 - 3)
yyy is the· process 10 of the interrupted process

This information is used in debugging your program. If your program is in an
infinite loop, proceed as follows:

8-4

Wo.rkstJep User's Guide The O!Jbt.Jgger

1. Check the domain (OO-d~ If the domain is zero, you are currently
executing in system code. You must be executing user COde before you
can work on your program (domain 1 - 3~ See Section 8.2.1.3 "User Break"
below for a procedu~e to get you into user cOde.

2. Make sure you are in your own process, instead of another process that
may be running in the background. If the current address does not show
the name of one of your procedures, type SC (stack crawl~ The procedure
names displayed should be from your program.

3. If you are In a tight loop you can step the PC beyond it by using other
Debugger commands. In order to do this you must be familiar with 68000
assembly language and the DebUgger commands. Most often you will just
want to stop your program. This is explained below.

4. First make sure the domain is not zero. Type"PC 0" and press [RETURN).
This YJill cause an exception when you restart your program.

S. Type "G" and press [RETURN). Your program will restart, cause an
exception, and inmecUatl y drop back into the Debugger with an exception
message that includes the instructions "Type g to continue".

6. Type "G" and press [RETURN). Your program will be terminated.
8.2.1.3 user Break

The user break facility stops proceSSing in user process code" Use this
procedure if the trace display indicates that the domain is zero. (Either
OCJv1AlN-O or ()(Jv1AlN - n OVERRIDDEN TO 0.) The UBR command will set a
breakpoint at the next instruction to be executed in the user process. To stop
your program in user process code, proceed as follows:
1. Type "U8R" and press [RETURN).
2. The system will continue executing until it returns to user process code,

then it wlll drop back into the Debugger. You can now proceed to work
on your code.

8-5

Workshop User's Guide

There are two cases when UBR will not set a breakpoint. The first is
if the system is interrupted while a system process is running {PROCESS
= 0, 1, or 2~ The second is if the system is interrupted whUe the
scheduler is running and it has not chosen a process to run. If UBR
does not seem to be working, check for this as follows:
Type "10 PC-4" and press [RETURN~ If the STCP instruction is
displayed, you are in the scheduler. You must press "Gil and return to
start the system running again and press NMI again.
If your program Is doing a READ or READLN, the system will display
the ST£P instruction. The only way to continue execution is to press
"G" and enter something from the keyboard to satisfy the react

8.22 System MaIfu1ctlons
If there is a system malfunction, the system will enter the Debugger with a
message indicating a system error or an EXCEPTICN display with the domain
zero. The message will include instructions telling you what command to
type. Ususally it will tell you to type OSQUIT. It may be necessary to type
this command several times.
If you are having problems with system malfunctions, call your support hotline
for more information. It will be useful to have copies of the messages that
were displayed. If you have a printer comected to the lower or upper port,
use PL or PU to generate a bug report.

8.3 Using the Debugger
Type 0 to the command prompt to invoke the Debugger. It asks:

Debug what OS file?

Enter the name of the object file you want to debug. It is run with a
breakpoint set at the first instruction and drops you into the DebUgger
inmediately. The Debugger command prompt is >. The default radix is
hexadecimal.
Another way of getting into the Debugger is by pressing the NMl key, which
is the "_" key in the top row of the numeric keypad.

When you get the command prompt, the Debugger Is ready to accept
commands that allow you to:

• Display and set memory locations
• Set and display registers
• Assemble and disassemble instructions
• Set breakpoints, patchpoints, and traces

8-6

Workshop User's Guide Tile Debugger

• Manipulate the memory management hardware

• Set up timing buckets for execution timing

• Perform utility functions including:

• Symbol and jase conversion

• Move the Debugger windOw

• Print Debugger information

8.3.1 EXBfT1l1es of Using the DebJQgeI
This section gives examples of hOw to use the Debugger. Nt explanation of
all Debugger commands is in section 8.4~ A summary of all Debugger
commands is in Section 8.5.

If you type a f11e name to the prompt from the Debug command, the
Debugger starts up with the program counter at the start of the program. To
see one i~structiQn disassembled at 32F96, type:

>I032F96

10 stands for Immediate Disassemble. Each subsequent 10 command, if given
without any address, disassembles the next instruction found. In addition to
printing the value of each byte, the Debugger prints the ASCII equivalent of
that value, if a printable one exists. If none exists, it prints a period.

To disassemble 20 consecutive addresses, type

>IL

IL, Immedlate Disassemble Lines can also be followed by an address.
SUbsequent IL commands disassemble successive blocks of 20 consecutive
locations in memory.

If the object file being examined was compiled with the 0+ Compiler option,
the procecture names are available in the Debugger and can be used in any
expressions. F or example,

>IL Foo 5

disassembles the first 5 lines of procedure "Foo".

>BR Foo+40

sets a breakpoint 40 bytes into procedure "F 00".

8-7

Wod<sI7op User's Guide

You can also use labels in immediate assemblies:

>sy Ken 6000

>A Ken N(p

The Debugger

assembles a NCP instruction at the address "Ken", which in this case is 6000.

>A 6000

>Rich: JMP $100

> [RETURN]

enters the immediate assembler at 6000, defines the label 'Rich', and
assembles a JMP instruction.

8.3.2 A Pascal EXCITllIe: Rmge Errors
The Debugger can be used for run-tirre debugging of Pascal programs. Its
displays and commands reference Pascal procedure names to make it easier to
debug programs. If your program has a fatal run-time error, it will drop into
the Debugger and give you a trace display. The trace display will include the
name of the procedure that was executing.

Ole common reason for dropping into the Debugger is if you get a range error.
Range errors can be caused by array indexes, string value parameters, and
assignments to variables of a subrange type. If you get a range error, you
will drop into the Debugger with the RANGE ERRCR exception message.

To help find the error in your program, give the Debugger an IL PC-20
command. This wUl give you a display of the previous 20 lines of assembly
code. You should see an instruction of the form:

CHK #<lim>, <data reg>

where <11m> is an integer, and <data reg> is a data register (DO - D7~ Lim is
the allowable value. The contents of the data register is the actual value
that was out of range. The contents of all the registers can be displayed with
the TO (trace display) command.

Figure 8-1 shows a Pascal program that produces a check range error. Figure
8-2 shoWs the resulting Debugger display, with an explanation of what the
display means.

8-8

WOJ1<sI1op USer's Guide

program checK;
var ch:char;

procedure localproc;
var

i : integer;
a:array[O •• 10] of 1 •• 7;

begin
i := 9;
a[3) := i;

end;

begin
~riteln(/press space to run ••• ');
read(ch)j
localproc;

end.

Figure 8-1
Pascal Program that Proc.lJces a Check Ra1ge Error

CHK RANGE ERROR in process Ot gid 25
sr = 8 r-c = 2359338

(]) saved registers at 13369278
Going to Lisabug, type 9 to continue.

Level 7 Interrur-t ;'~
LOCALPRO+aS1A 1D48 FFF5 PC MOVE.B De,$FFF5(A6)
PC=Se24ee22 SR=eeeee O~US=88F7FBEC SS=eeCBFEE8 00=1 p~=eee19
n9=ee1eeee9 D1=eeee ees D2=eeeeeece D3=eee264A7
D4=eeeeeeei D5=4EF98e84 D6=12CC4EF9 D7=ee84eeee
Ae=eeF8126E A1=eeCCA22A A2=ee24e86e A3=eeCCA22A
A3~~A A5=eSF7FC44 A6=SSF7FBFA A7=SeF7FBEC

'3' ~ i 1 pc -2e.)
~ 024eee2' eeA4 ee24 eeee 4AGF EFF2 4E56 FFF2 3D7C ... $ •• Jo .. NV .. =1

LOCALPRO+eeee 4A6F EFF2 LOCALPRO TST.I~ $EFF2(A7) ~
LOCALPRO+eSe4 4E56 FFF2 LINK A6,~$FFF2
LOCALPRO+eeee 3D7C eee9 FFFE MOVE.W tueee9, tFFFE(A6) S
LOCALPRO+eeeE 3e2E FFFE MOVE. ~I $FFFE(A6)~8
LOCALPRO+8812 3288 MOVE.W De,D1 ~
LOCALPRO+8814 5341 SUBQ.~J tU1~@
LOCALPRO+ee16 43BC eaeG CHK rffi~ D1
LOCALPRO+881A 1D48 FFF5 PC ~MOVE.B T,$FFFS(A6) ,
LOCALPRO+se1E 4E5E ~, UNLK A6
LOCALPRO+S82S 4E75 RTS
> pI Figure 8-2

Check RaYJe OeD IgQef Display

8-9

Workshop USer's Guide The Debugger

Notes:

1. Debugger display produced by check range error.

2. Actual value In 01. This is the value that was cheCked and found out of
range.

3. Disassembly command typed in to display the assembly language display of
the program causing the error.

4. Look for the CHK instruction near the PC.

5. Note that the prevIous identifier is LOCAL PRO, therefore the error
occurred near the beglmlng of LOCALPRO.

6. Value in register 01 was supposed to be In range 0 .. 6.

7. Pascal lower limit (1t$1) was subtracted from 01. Therefore the range in
the Pascal type was 1 . .7.

More Information on the run time environment of a Pascal program Is found In
Chapter 6.

8.4 The DetxJgger COI.ITB m
This section gives the definition of each Debugger command.
are grouped together according to function.

The commands

8..4..1 DefInlUons
Constant
$Constant
&Constant
'ASCII String"
Name
Expr

ExprUst
Register

RegName

A constant in the default base.
A hex constant.
A decimal constant.
M ASCII string.
A symbol In the symbol table.
M expression. Expressions can contain names, regnames,
strings, and constants. Legal operators are + - * I.
Expressions are evaluated left to right. * and / take
precedence over + and -. (and) can be used to indicate
indirection. < and > can be used to nest expressIons. In those
cases where an odd value is probably a mistake, the
Debugger warns you that you are trying to· use an Odd
address. If you decide to go ahead, it subtracts one from the
address given~ If the Compiler option 0+ was used"
procedure names are legal in expressions.
A list of expressIons separated by blanks.
Th-a name for any of the 68000 registers, as follows: 00 .. 07
are the data regIsters, AD .• A7 are the. address registers, the
program counter PC, the status registers SR, US, or SSe Note
that A7. Is SP (the stack pointer~
ROO .. R07, RAO .. RA7, PC, US, or SSe A predefined symbol In
the symbol table with a value set by the Debugger. The
value is equal to the value of the register in question. The
Debugger automatically updates the values of these symbols.

8-10

Works!1op User's GuIde

The 'R' is appended to dIstinguish the regIster names from
hexadecimal numbers.

8.4.2 Display CI1d set Memory Locations
The following commands· display and set memory locations.
SM exprl exprllst
Set memory wIth exprUst starting at exprl. SM assumes that each element of
exprlist is 32 bits long. To load different length quantities, use sa or SW
described below. If the expression given is longer than 32 bits, SM takes just
the upper 32. For example" if we ask the Debugger to~

SM 1000 'ABeDE'
it deposits the ASCII equivalent of "ABCD" starting at 1000.
SB exprl exprllst
Set memory in bytes with exprlist starting at expr1.
sw expr! exprllst ,
Set memory in words with exprlist starting at expr1. Expr1 must be an even
address, or the address will be rounded down to the nearest even address.
SL exprl exprllst
Set memory in long words with exprlist starting at exprl. Exprl must be an
even address or it will be rounded down to the nearest even address. For
example,

SL 100 1
is equivalent to

~ 100 0000 0001
OM expr
Display memory. Display 16 bytes of memory starting at expr. OM RA3+10,
for example" displays the contents of memory from 10 bytes beyond the
address pointed to by A3. OM (110) displays the contents of the memory
location addressed by the contents of location 110. Expr must be an even
address or it will be rounded down to the nearest even address.
0'-1 exprl expr2
Display memory. If expr1 < expr2, then display memory from exprl to expr2.
otherwIse, display memory for expr2 bytes starting. at exprl.
00 expr
Display memory as bytes. Expr can be any byte address.
DW·e><pr
Display memory as words. Expr must be an even address or it will be rounded
dOwn to the nearest even address~
D... expr
Display memory as long words. Expr must be an even address or It will be
rounded dOwn to the nearest even address.

8-11

WOd<sf1op User's Guide

8.4..3 Finding Patterns in Memory
FB exprl expr2 exprHst
Find Byte. Find the byte or bytes 'exprlist' in the address range specified. If
expr 1 < expr2 then search the range from exprl to expr2. Otherwise search
for eXpr2 bytes starting at exprl.

FM exprl expr2 exprlist
Find Memory.

FW exprl expr2 exprlist
Find Word.

FL expr1 expr2 exprlist
Find Long word.

8.4.4 set CI1d Display Registen
TO
Display the Trace Display at the current PC. M example of the trace dIsplay
is shown In Figure 8-3. It shows the instruction executing at the time the
program was interrupted, the current value of all the registers, and the
current domain and process.

I
Level 7 Interrupt
LOCALPRO+001A 1040 FFF5 MOVE,B D0,$FFF5(A6)
PC=0B24BS22 SR=BBBB 0 US=99F7FBEC SS=99CBFEE9 DO=1 p#=e9919
Oe=913CeS99 Di=eee9geee D2=990geeC9 D3=09199752
D4=eeeeeeei D5=5365675e D6=78487A20 D7=0eeeBeee
Ae=BeF8126E A1=00CCB614 A2=00240060 A3=00CCB614
A4=geCC75FC A5=geF7FC44 A6=e9F7FBFA A7=99F7FBEC

register

Figure 8-3
The Trace Display

Display the current value of the register. DO, for example, Is a command to
the Debugger to display the current value in the register DO. ROO, on the
other hand, Is a name automatically placed in the· symbOl table to give you a
handle on the contents of DO in an expression. Thus, to display the current
value In the DO data register, type the command DO. To display the
instruction pointed to by the AD address register, type the command 10 RAO
(immedIate dissassemble at the address RAO, whIch Is predefIned to be the
contents of the AD register.)

8-12

Workshop User's Guide

register expr
Set the register to expr. For example; to set regIster 03 to zero, type 03 O.

8.45 Assemble cn:t Disassermle lnstn.K:tions
These corrrnands are used to display code in assembly language format, and to
enter code In the form of aS8embi y language statements.

A expr statement
Assemble one or more assembly language statements (instruCtions) starting at
expr. You can continue assembling instructions into consecutive locations,
pressIng [RETURN) after each statement Press just [RETURN] to exit the
immediate assembler. Note that· the immediate assembler cannot assemble
any. intrinsic unit InstructionS, bUt they are correctly disassembled. COde
segments "can be write protected, which prevents you from assembling
instructions into them. This can be overridden with the WP 0 command to
disable write protection.

A expr
If you use the form A expr, the Debugger prompts you for the statement to be
assembled.
10
Disassemble one line at the next address.

ID expr
Disassemble one line at expr.

IL
Disassemble 20 lines at the next address.

IL expr
Disassemble 20 lines startlng at expr.

IL exprl expr2
Disassemble exprz Unes starting at exprl.

IX statement
Immediate execution of a single· instruction. The· user's PC is not chaI gad by
this operation.

8.4.6 Set Breakpoints and Traces
These cornrnands are used to trace program execution.

BR
Display the breakpoints currently set You can set up to 16 breakpoints with
the Debugger. Breakpoints are displayed both as addresses and as symbols. M
asterisk marks the point of the breakpoint in the disassembly.

8-13

BR exprllst
Set each breakpoint In exprllst. Symools are legal, of course .. so you can:

BR Ralph+4

if Ralph is a Known symbol.

Expressions can be of the form:

'pp:aaaaa
where pp is the process 10" and aaaaa is the address In that process where

. you want the breakpoint set. If the process 10 is 0 .. the breakpoint Is set in
system ~ in domain O. If no process Is given .. the current process is
assumed .. The current proce~s is shown in the TO display described above.

BreakpoInts cannot be set on intrinsic· unIt instructions.
CL
Clear all breakpoints.

C1. exprllst
Clear each breakpoint in exprUst.

G
Start running at the current PC.

G expr
Starttng runnIng at expr.

T
Trace one instruction at the current PC.

T expr
Trace one instruction at expr.

SCexpr
StacK Crawl. Display the user call chain. Expr sets the depth .of the display .

. It can be omitted.. The. Stack. Crawl display is shown in Figure 8-/t More
Information on the Pascal stack can be found in Section 6.6.

>$C
At LOCALPRO+881A
Stack frame at BBF7FBFA called from CHECK+8838
Stack frame at 00F7FC44
> Figure 8-4

The Stack CIawI Display

8-14

Workshop U~"'er's Guide The Debugger

procerure ncme
This calls a user procedure or function. It is your responsibility to save and
restore registers and push any necessary parameters. If you want execution to
stop upon ret.urn~ you must set a breakpoint on the current PC. For example:

BR PC ; set breakpoint on PC.
IX MDVEM.L DO·-A6,-·-(A7) ; save registers.

FO]
IX MOVf.M.L (A7)+))0-1\6
CL PC

; push params if needed.
; call procedure FOCl.
; restore registers.
; remove break pOinL

A function can be called in a similar manner. Remember to allocate space
for the function result before pUShing any parameters. Use either CLR.W
-(A7) or CLR.L -(Al).

(l)QlJll
A procedure that might need to be called is OSQUIT. It exits from the OS.
We recommend that you avoid tilis whenever possible.

U3R
UBR is a procedure that sets a breakpoint in the user code· so that you will
drop into the Debugger as soon as you reenter user code. UBR. is explained in
Section 8.2.1.3.

8.4..7 Malipulate the Memory Mallagement Hardware
These commands ctlange the memory management hardware of the Lisa More
information on the memory managment hardware can be found in the Lisa
Ha.rdware Manual.

LP expI
Convert logical address to physical address.

00 expr
Set the SEG1/SEG2 bits. These bits determine the hardware domain number.
If the Status Register shows that you are in supervisor state, then the
effective domain is zeTO~ and ttle domain number returned by the Debugger is
the domain that would be active if ttle SR were changed to user state. Note
that if you ctlange domain~ you should restore the original domain before you
type g.

WP 0 or 1
Disable (0) or Enable (1) Write Protection. The default is l.

tvM start [ero_or_ault)
MM with one or two arguments displays information about the MMU registers.
The second argument defaults to 1. If the starting address is greater than the
second argument, the second argument is a count of the number of MMU
registers to be displayed. If the starting address is less than the second
argument, the second argument is the last register displayed.

8-15

Wod<sI1op User's Guide

MV170

displays

Segment[70] Origir(OOO] Limit[OO] Control[C]

The Debugger

These values are the Segment Origin, Limit, and Control bits stored by the
hardware for each MMU . register. As can be seen from a careful perusal of
the hardware documentation, a Control value of C means·· the segment in
question is unused (invalid). If the Control value is valid (7, for example), the
Debugger also displays the Physical Start and Stop addresses of the segment.

MM &l00 8

displays the MMU register information for the 8 registers starting at register
64 (decimal 100).

t+I run org 11m mtrl [enccor_CCU1t)
The MM command followed by four arguments sets the MMU information for
segment "num". The OrIgin, limit, and control bIts can be Changed.

Mv1 70 100 ff 7

sets the Origin of segment 70 to 100 and the control bits to 7 (a regular
segment). The segment limit of -1 makes the segment 512 bytes long.

U8 TirnlrY:J FU1CtiOOS
The Debugger allows you to create up to 10 timing buckets for measuring
execution times. Using the microsecond timer in Drivers, time is accumulated
in each bucket and saved along with a count of the number of Umes the
bucket was entered.

Typically, this would be done as follows:

1. Enter the Debugger and enter the process number that you want to time
using the BT command.

2. Create one or more timing bUckets wi th the TB command.
3. Set a breakpoint to stop execution at some point

4. Go.

5. When the breakpoint is reached, print the timing summary -with the PT
CommaICt.

6. Use the End TimIng (El) conmand to remove all timing buckets.

The timing commands are as follows:

BT ecpr
Begin timing. Expr specifies the process number. If the expr is not given, the
current _ process is assumed. A process number of 0 can be used to indicate
dOmain O.

8-16

WOrkshop User's Guk1e

TB addrl cOn2
A timing bucket is created from addr1 to addr2.

PT
Print timing summary. There are five columns printed:

ET

1. Bucket number
2. Total time In this bucket
3. Number of times this bucket was entered.
4. Starting address for this bucket.
S. Ending address for this bucket.

The Debugger

End timing. This command prInts the timIng summary and removes all the
timing bUckets.

KB expr
Kill Bucket. This can be used to remove a single bucket Expr is the number
of the bucket to remove.

RT
Reset timers. This resets the timing and count tables while leaving the
bucket definitions intact

Note that all addresses are in the same process. The process number is
defined by either the 8T command or the first T8, PT, KB, or RT command.
If the process nUmber is not given in the BT command, the current process is
assumed.

8.4..9 utility ft.rctions
The utility functions include:

• Symbol and base conversion

• Moving the Debugger window

• Setting the NMI key

• Printing Debugger displays

• Dumping memory to a diskette
8.4..9.1 Syntxlls cn:1 Base Cooversion

SY
Display the values of all symbols.

SY rane
Display the value of the symbol name.

SY rare expr
Assign expr to the symbol name.

8-17

Wor!<sIJop User's Guk1e

CVexprlist
Display the value of each expressIon in hex and decimal.

SH
Set the default radix to hex.

SO
Set the default radix to decima1.

8.4..9.2. Moving the Debugger Window
CS
The CS command clears the Debugger screen.

P expr
Set port number to expr. Valid port numbers are:

o Lisa keyboard and screen (default)
1 Serial A
2 Serial B

The Debugger

I f you move the port to a serial port you must have a modem eliminator
connected to that port.

RS
Display the patch Return address Stack

8.4..9.3 Setting the NvIl Key
I\M
Displays the key code fOT the NMI key.

~expr
Sets the NMI key to be key code expr. A value of zero disables the NMI key.

~

This affects the entire system. If the NMI key is disabled, you cannot
use it to stop an infinite loop, or a system hang.

F or example:

>NM $21

Sets the NMI key to be hex 21, which is the "_" key in the top row of the
numeric keypad. This is the default NMI key.

8.4..9.4 Printing from the Debugger
The following commands allow you to print information from the Debugger on
the dot matrix printer.

PR expr
The PR command enables or dIsables prInting to the two-port card. When
printing is enabled, all Debugger output to the screen is printed.

8-18

Worksl7cp User's Gtdde

expr = 1
expr - 2
expr = 0

enable printing upper port
enable printing lower port
disable printing

I'IJTE

The Debugger only supports printing to a printer connected to the
lower or upper port. The sertal printer Is not supported. If the prInter
is not connected the Debugger will hang when you try to print with the
PL, PU, or PS command.

PS expr
The PS command prlnts the entire primary or alternate screen. Printing must
be enabled (the PR command) before PS is used. Expr tells which screen to
print:

FF

expr - 1
expr = 0

print primary screen
print al temate screen

The FF corrmand sends a form feed to the printer if printing is enabled.

PL and PU
The PL and PU commands print a bug report on the lower and upper ports
respectivly. The bug report consists of the following:

Dump of the primary screen
Dump of the al temate screen
Description of the exception
Trace Display
stack Crawl
Disassemble of 20 lines from PC-$2a
Display words from RA6-$20 for $80 bytes

8.4..9.5 Dumping Memory to Diskette
The following commands allow you to create a copy of the contents of
memory on a diskette.

M.. and MJ
The ML and MU commands dUmp a copy of memory to the lower and upper
diskette respectivly. This information can be used to reconstruct the
conditions at the time of a crash, for example. These commands work as
follows:

• If there Is a disk in the drive, it is ejected.

• You are prompted to insert a disk.

• The disk is formatted and all necessary information is copied to it. This
process takes about 3 112 mlrutes.

8-19

Wod<sIJop User's Guide

8..5 Sl.mmary of the OebJgQer CornTa ads
procedure name Call the procedure.
register Display the current value of the register.
register expr Set the register to expr.
A expr statement Assemble statement at expr.
A expr Assemble one statement (instruction) at expr.
BR Display the breakpOints currently set.
BR exprlist Set each breakpoint in exprlisl
BT expr Begin timing process expr
CL' Clear all breakpoints
CL exprlist Clear each breakpoint in exprlist
CV exprlist Display the value of each expression in hex and

DB expr
DL expr
OM exprl expr2
DO expr
DR
DWexpr
ET
FB exprl expr2 exprlist
FF
FL exprl expr2 exprlist
FM exprl expr2 exprlist
FW exprl expr2 exprUst
G
G expr
ID
ID expr
IL
IL expr
IL exprl expr2
IX statement
KB expr
LP expr
ML
MM exprl expr2
HVI num org lim ctrl
MR
MU
I\IV1
"""" expr
OSQUIT
P expr
PL
PR expr

decimal.
Display memory as bytes.
Display memory as long words.
Display memory.
Set the SEG1/SEG2 bits.
Display index or ranges of dump RAM.
Display memory as words.
End Timing; print summary and remove buckets
Find Byte.
Send form feed to printer
Find Long word
Find Memory
Find Word
Start running at the current PC
Starting running at expr
Disassemble one line at the next address
Disassemble one line at expr
Disassemble 20 lines at the next address
Disassemble 20 lines starting at expr
Disassemble expr2 lines starting at expri
Immediate execution of one instruction
Kill Bucket expr
Convert logical address to physical address.
Dump memory to lower diskette
Display MMU Information
Set Mr-1U information
Set a value level #S interrupt on a word change.
Dump memory to upper diskette
Displays the keycode of the NMI key
Sets NMI keycode to expr
Exits from the operating system *
Set port number to expr.
Print bug report on lower port
Enable printing. O-disable, I-upper port, 2-1ower
port.

8-20

Worksl1cp User's Guide

PS expr
PT
PU
RB
RS
RT
SB exprl exprllst
SC expr
SO
SH
SL exprl exprllst

SM exprl exprllst
sw exprl exprlist
SY
SY name
SY name expr
T
T expr
TB addrl addr2
TO
l.ER
WP 0 or 1

Print screen. O-aletmate, l=primary
Print timing summary
Print bug report on upper port
Reboot
Display the patch Return address Stack
Reset timers
set memory in bytes with exprUst starting at exprl
Stack Crawl.
Set the default radix to deCimal
Set the default radix to hex
Set memory in long words with exprUst starUng at
expr1.
Set memory with exprllst starting at expr1.
set memory in words with exprllst starting at expr1
Display the values of all symbOls
Display the value of the symbol na1le
Assign expr to the symbol name
Trace one instruction at the current PC
Trace one instruction at expr
Create Timing Bucket from addrl to addr2
Display the Trace Display at the current PC
User break-
Disable (0) or Enable (1) Write Protection.

* These are procedure calls to ~erating System procedures. They are
explalned in Section 8.2.

8-21

'O}61-A

Chapter 9
Exec Files

9.1 Exec Files•..........................•................................. 9-1
Exec ftIes are scenarios of commands to be automatically performed by
the Workshop system.

9.2 Exec File Staten1erlts•..•..... 9-2
Exec fHe statements are of two types: normal lines, that contaIn
Workshop commands, and exec command lines, that tell how to process
the exec f11e. Exec command Hnes Include lines to set parameter
values, perform input and output, and control conditional execution.

9.3 Exec Files ..••...........•............. 9-14
Exec flles are Invoked using the Workshop Run command. This
invocation line can set the values of parameters, as well as select exec
options.

9.4 ExaJTl)le Exec Files .. 9-18
This section contains examples of exec files.

9.5 Exec File PrograTmirlg Tips ... 9-22
This section contains tips on writing exec flles.

9.6 Exec File Errors .. 9-23
This section explains the format In which errors are reported, and lists
the errors.

Using Exec Files

9.1 Exec F1les
Exec files are scenarios of commands to the Workshop system. They are
contained in text fUes, created with the Editor, and are executed wIth the
Run command. Exec files consist of characters you type to the Workshop to
perform the functions you want, and special exec file commands, which enable
you to use parameters and conditions to vary portions of the scenario.

In its simplest form, an exec file contains the characters you press to perform
a desired operation. All example of an exec file to compile a Pascal program
is:

SEXEC
Pmyprog

SEtIlEXEC

{ You need to enter tw blCl1k lines here }
{ to IUl the COOp11er }

where P is the command to invoke the Pascal Compiler, and myprog is the
name of the source file. Further lines to Generate, Link, and Run the
program might follow.

Two separate activities occur while running an exec file: processing and
running. First, during process time, the exec processor creates a teInpOr81Y
file, which consists of a stream of Workshop commands. This temporary file is
then sent to the Workshop ... which executes the command stream at /lin time.
A simple diagram of this procedure follows:

exec file (s) Workshop
tempf!le /

~.~:.:.:~':': ·Illl:':~ .
::::::: -~ · ... ·.'"x .. :.:.·: .. : ~ ~ .. ': ...
'T'

exec processor

process time . run time

With special exec file commands, you can use parameters and conditionally
perform the Workshop commands. An example of an exec file for a simple
Pascal program is shown in Figure 9-1.

9-1

Workshop User's GlIjde Exec FjJes

$EXEC { -makeprog- -- This exec file coopiles, generates, and
lin<s a Pascal program. }

P%o
{ no listing file}
{ default I-code file}
~o
{default object file}
l%O

IOSPASlIB,
{ end of 11nker 11llUt }
{ no list file }
'Of output file rae }

$BI)EXEC

figure 9-1
E>aJl)le Exec file

You have several options available to you when running the exec file
processor. The Step Mode option; which enables you to selectively skip
command lines going to the temp file ... could be used in the above example to
choose whether to do only the compile ... generate, or link. Section 9.3.1
contains additional information on the exec file options.

92 Exec File Statements
Exec fHe statements are Une orIented. Two types of exec file lines exist:
e.1(8C COfl7ll18l'll11il1tJs and 1101nK1i Nne.}: Normal lines contain WorkShOp
Commands. Exec command Hnes handle the other features of exec files ... SUCh
as parameters and .Gondi tional statements.

You can use up to 10 parameters in an exec file, numbered %0 through %9.

parameter

You can pass parameters when you invoke an exec file ·and use them during
the execution of the exec flle. For example, if you wanted to pass a
parameter In the Example Exec File shown in Figure 9-1, you would Run:

<makeprog (myprog)
The value "myprog" would then be assIgned at each reference to %0.

When a parameter appears in a normal . line, it is replaced by the string value
of that parameter. These parameters can be used both as inputs to the exec
fUe and as temporary variables wi thin it.

9-2

WOrkshop User's Guide Exec Files

Exec command lines start with a $ (dollar slgn~ They control the operation of
the rest of the exec file. Exec command lines are free format, as· long as the
order of their elements is preserved. You can have any number of spaces
before or after any element of a command lIne. These can go on to more
than one line. The processor will look on the next line if it does not have a
complete command at the end of a line.
Normal lines contain commands for the WorkshOp system. These lines are sent
to the workshOp as they appear, with the following exceptions:
1. LeadIng and traUlng blanks are removed from these lInes unless the "B"
optlon is in effect. See section 9.3.1 for more on the "B" optlon.
2. Comments are removed.
3. Parameters are expanded.
4. The tilde C) literalizing character is proceSSed.
Comments are delimited by brackets { }, and can appear in either a normal or
an exec command llne. These can cross llne boundaries. They can be used to
comment out carriage returns in normal lines.
The is used as a literalizing character in normal lines, meaning it passes
the character following it through without processing. With a tUde you can
pass the character $, %, or { to the WorkShop system without having it be
interpreted as part of an exec command, a parameter, or a comment. To
represent a tilde, use a double tilde C -~
Note that whHe the exec fHe processor Is not case sensItive, It does preserve
the case of parameters and strings supplied by the user.
A description of each exec command follows.

9.2.1 Beglming CI1d EndIng Exec FlIes
Generall y, exec files must begin wi th an EXEC line and must end with an
EI'IJEXEC .11ne. The exceptions to this basic rule, for those who embed exec
files in their program sources, are: (1) one line of text can preceed the EXEC
line if the I (Ignore) invocation option Is used, and (2) any amount of text can
follow the EI'DEXEC line, but it is ignored.

9.2.2 Setting Parcmeter values
You can set parameter values in an exec file by using the SET and CEF Al..l... T
commands. The REQlJEST command prompts the user for the value of a
parameter.

9-3

Wolksllop User's Guide Exec Files

9.2.2.1 The SET 8'ld ClEF AU... T COrnrncrlds
The SET and ClEF AlLT . commands provide. ways to Change the value of a
parameter inside of an exec file. The forms of these commands are:

set statement

-($ SETH parameter ~tring expreSSion~

and

default statement

$ DEFAULT parameter

string expression

"String expression" Is described in Section 9.2.5.

The SET command changes the value of the specified parameter to the value
of the given string expression. The DEF AlL T command Is similar to the
SET command, except that the assignment takes place only if the value of the
specified parameter is the null string when the OEFAlL T command is
encountered. Thus, you can use this command to supply default values to
parameters that have been left unspecified or empty in the exec invocation
Une.

These commands also allow you to use unused parameters as variables wlthln
the exeo f11e.

9.2.2.2 The REQLEST ca III a Id
The RFQLEST command provides a way to prompt for values from the
console. The form of this command is:

request statement

-C $ REQUEST}--i parameter

/'

~string expressionf-.

9-4

WorkShop User's Guide Exec Files

The REQUEST command prInts the gIven strIng expressIon to the console, and
reads a Hne, which it assigns to the specified parameter, from the console.
Thus, "str exp(' prompts the user for the value.

9.2.3 lrp.rt. CI'ld ClJtpUt
You can request input to an exec file with the REACl..N and RE.AOCH
commands. You can output values by using the WRITE and WRITELN
commandS.

92.3.1 The REAI:l..N em READCH COOV'naIIds
The REAlJLN and REAOCH commands enable exec files to read in text from
the console, and to assIgn It to a parameter variable. You can use these
commands to:

• obtain parameter values
• obtaln values to control conditional selection
• pause until the user indicates to continue

The forms of these commands are:

readln statement

~EADLN)-i parameter ~

and

readch statement

-($ READCH::)-1 parameter ~

The REAI1.N command reads a Hne from the console and assIgns It to the
specified parameter. The REAOCH command reads a single character from
the console. If you press [RETURN], READCH will Interpret It as a space.

9.2.3.2 llle WRITE aoo WRITELN COI.I. am
The WRITE and WRllELN commands enable exec files to write text to the
console screen. You can use this text for informatory messages or prompts.
The forms of these commands are:

9-5

WO/'ks/1Op Llser:r GlIil1e £%'eCFiles

wri te statement

and

writeln statement

string expression

These commands take an arbitrary number of string expressions~ separated by
commas, as arguments. The strings are written to the current console line.
The WRITELN command adds a final carriage return.

92.4 concJitionaI statements - the IF statement
Condi tiona} statements enable you to perform commands depending on
cond1tIons existing at process time (,#hen the temporary fUe Is created~ The
condition is stated in the form of a boolean expression, and can include
buUt,..ln boolean. functions.
The IF, ELSE IF .. ELSE, and EJ\()IF commands enable conditional selection in
exec files. The forms of these commands are:

lfstatement

$ ENDIF

elseif part else part

9-6

WoJ1<sl7op User's Guide Exec Files

if part

-{ $ IF HtJOOlean expres~)

C{- THEN H stUff •

elseif part

E L S ElF M boo 1 e a n 'e xp res s i on~

c---------------------)
THEN M stuff I •

else part

-($ ELSE)---[i~

where "boolean expression" is described in Section 9.2.4.1" and "stuff" is
composed of arbItrary normal and command lines, other than commands that
would be a part of the current IF construct. The IF statement is multiline ...
meaning tnat the components IF" ELSEIF,ELSE, EI\OIF~ and "stuff' each need
to be on separate lines.

The IF construct is evaluated in the usual way. First ... the boolean expreSSion
on the IF command itself is evaluated. If it is true ... tne"stuff" between the
IF and the next ELSEIF (if any)" or ELSE (if any), or Ef'VIF is selected;
otherwise ... it is not selected. The remaining parts of the IF construct, up to
the ENJIF command" are parsed ... but are not selected once one of the boolean
expressions is true and its· corresponding "stuff" is selected. Selecting "stUff"
means that any normal lines are processed by the WorkShOp, and any command
lines are processed. Conversely, if "stuff" is not selected .. any normal lines
and command lines are not executed. However" the command lines are parsed
for correctness~

If the boolean expreSSion on the IF construct is not true, the ELSEIF or ELSE
command that follows is processed. If an ELSEIF command is next, its
boolean expression is evaluated. If true, its corresponding "stuff" is selected
and the remainder of the IF construct is not selected. Processing the IF

9-7

£'I(l1C FIles

construct contInues untll one of the boolean expressions on an IF or ELSEIF
command is true, or until the E~IF Is reached. If no boolean expression Is
true before the ELSE (If any) Is reached, the "stuff" corresponding to the ELSE
command is selected.
IF constructs can be nested within each other to an arbitrary level.

92.4.1 Boolec;rl Expressloos -- CQrr1m1son and Logical Qleraton
Boolean expressIons enable you to test string values and check properties of
fUes. The syntax for boolean expressIons Is:

boolean expression

boolean term

boolean term

--~~boolean factor~--~--~------------~~

boolean expression

boolean factor

--~ boolean function ----... ---~-~

string expression

string expression

9-8

WOJ1(Sflop User's Gujde Exec Fjles

The oastc element of a Ooolean expressIon, a "0001 factor", Is eIther a boolean
function (see Section 9.2.4.2) or a string comparison, testing string expressions
for equalIty or Inequallty (see Section 9.2.4.3~ The Oasic elements can be
combined with the logical operators ANJ, CR, and I"CT, with parentheses for
grouping. Tnese operators function In tne usual way.

92.4.2 Boolean FlIlCtions -- EXISTS cn1 I'EWER
Several functions returning boolean results are provided for use with the
condl tional contructs.

boolean function

string expression

string expression

The EXISTS function enaOles you to determine whether or not a fIle, volume,
or device exists. If you specify a device, the function will return a value of
TRUE if the device has a volume mounted on it. The string expreSSion
arguments to these functions should specify names of fUes. Typically these
string expressions will be expanded string constants" discussed in Section
9.2.4.3, such as "%1.obj".

The I'EWER functIon enables you to determIne If one fUe Is newer than
another file; that is, whether or not Its last-modified date Is more recent than
the last-modified date of another file. A value of TRUE Is returned If the
first file is newer than the Second. OUring processing, an error will occur if
one of the flIes does not exist.

9.2.4..3 StrIng Expressions
A string expression can specify a string in a variety of ways, as noted In the
following:

9-9

WOlksnop UseE S GlIjde El(BC FjJes

string expression

• f\ paral17Bter ha~ the form "all.

• A so!!}g cons/ant has the standard form of text delimited by single quot.es
'" with an embectded quote specified by t.he (jouble quote rule, as in 'Tr,at"s
alL folKS!',

• NI expanded std!7{/ t.X.)IJstant is similar to a string constant, except. that
double quotes" are used as delimiters, and parameter referenGe~: are
expanded within the string.

• A std!~q fllnctjof} is an exec file processor function that returns a strinq
value. A detailed description Of string functions is provided in ttle
following section.

• An exec fll!7Ctk1l7 call is an invocation Of an exec file that. teturm: a
string value, as described in Section 9.25.3.

9.2.4.4 string Functions-.. ·· C(J\ICA T and lPPERCASE
The string functions CXNCAT and LPPERCASE can be applied to other st.ring
expressions to produce new string values.
The C(J\ICAT function enables you to comoine several string expressions to
produce a Single string result. The CCf\1CAT function takes a list of $tring
expressions, separated by commas~ as arguments.
The lJPPERCN3E function converts any lowercase letters in its argument to
upper case.

9,"10

WOl1<shqJ user's Guide

The form of these functions is:

string function

string expression

string expression

An example of the use of the UPPERCASE function Is

$ SET %0 TO lPPERCASE (%0)

Exec Files

which sets parameter 0 to an uppercase version of its previous value.

9.25 Nesting Exec Files
Exec files can be nested in two ways. Ole is to use the SLeMIT command to
call another exec file in the same way that you would call a procedure.
Alternately, you can call exec files as functions (returning string values to a
string expression), as explained in Section 9.2.5.3.

9.25.1 The SLeMIT COO'mcrld
The Sl.J3MIT command enables you to nest exec files; that is, you can call
one exec fHe within another exec file. The form of the Sl..BMJT command is:

submit statement

.-.(~~~.~~~_! r)--L e ~~ c --~~!!l~~~~~-~}"

where "exec command" is an exec command of the same form as would
follow the exec/ or < at the Workshop command level. This exec corrmand
can include parameters and exec options in the usual fashion (see Section 9.3~

The SLBMIT coomand processes the specified exec file, putting any generated
exec output text into the current exec temporary file. ThUs, whlle a single
exec file can have several nested subexec files, only one temporary output
fHe Is generated. This file contains the output generated by all of the input
files. Exec files can be nested to an arbitrary level.

9-11

WOd<SI70P User's Gujde Exec FjJes

Wi thin the text of the exec command, references to %n parameters are
expanded, and the Ii teralizing character tilde C) is processed. Be aware that
thIs Is the only processIng ttlat takes place wUtlin ttle exec command.
Everything up to the first left parenthesis, or the end of the line if no
parameter Ust Is present, is taken to be the exec file name. If a left
parenthesis exists, the parameter list is taken to be everything between this
parenthesis and ttle next right parenthesis. The exec command cannot be split
across lines.

Note that only the I (Ignore first line) and B (Blanks Significant) options are
valid on a SU3MIT command. The R (Rerun), S (Step mode), and T (Temporary
file saved) options are applicable only from the main exec invocation line.

92.5.2 The RETLRN Cc:mnand
The RETURN command allows exec files to return string values to other
(calling) exec files. Thus the RElURN command can transform an exec fIle
into a funcaof}. The form of the RETLRN command is:

return statement

$ RETURN

string expression

Executing a RETLRN command terminates the current exec file, and returns
to the calling exec file with the specified string value. (Section 5.2.5.3
describes how exec functions are called.) You can use a RETLRN command
without a string expression to exit from exec files which are not used as
functions.

())e way you can use exec functions Is to determIne If a program file,
Including any corresponding include files, has been modified since its last
compllatlon. ThIs function can· then be used to condl tionall y submIt compiles.
If written generally enough, such a function could be used by many exec flIes.

Exec functions can produce side effects; that is, they can contain normal lines
that get placed in the temporary file. While the intentional use of such side
effects is unlikely, inadvertent instances can occur and are potentially
hazardous to your exec fUes. AA unexpected blanK llneln the middle of an
exec flIe can often throw it out of sync.

92.5.3 Exec Ft.rlCtlon calls
Exec function calls return string values, and are thus one of the basic
elements of string expressIons. They can also appear in boolean expressions,
supplying arguments for string comparisons. A typical use of an exec function
Is to return a boolean value by returning etttler the string T or F. The form
of an exec function call is:

9-12

Works!1op User's Guide Exec Files

exec function call

filename

parameter list

parameter list

Where < is the character that signals a function invocation, in the same· way
that this character identifies exec files for the Workshop's Run command.
The "file name" and optional "parameter list" are the same as described in the
SLeMlT command section, Section 9.2.5.1.

Due to the liberal conventions concerning what characters, including blanks,
can appear in file names, the exec file processor must make some assumptions
about how to identify the exec function fUe name and the argument list.
The followIng rule Is used: If the exec function Invocation has an argument
list, the file name is assumed to be everything between the "<" and the "r
beginning the argument list; otherwise, the f1le name is assumed to be
everything between the "<" and the end of the 11ne. This means that if the
function call Is not the last thing on the command 11ne, you must supply an
empty argument list to an exec function with no arguments.

Processing the text of a function call Is the same as with a SLBMIT
command; that is, the only processing that takes place is the expansion of %n
parameters and recognition of the literalizing character This means that
the text of a function call cannot contain an embedded function call. Note·
also that a function call cannot be spUt across lines.

9-13

Worksl7Op User's Guide Exec Files

9.3 USing Exec Files
You invoke the exec file processor in response to the WorkshOp Run commana
prompt. M invocation line for the exec file processor has the form:

exec lnvocatlon llne

exec comman"d}--+

exec command

filename

parameter list~--------------79-

The "exec fIle" Is the name of the exec fUe you want to run. AA extensIon Of
".TEXT" Is assumea if no extension is specifIed. However, you can override
the mechanism that suppl1es the ". TEXT' extension by endIng your exec fHe
name with a period; for example, using "foo." causes the exec file processor to
search for the flIe "foo" rather than "foO.text".
The optional "parameter list" is enclosed in parentheses. The parameter list
can be empty or It. can include up to ten parameters separated by commas.
For example, an exec file to run compiles, which takes volume and source file
parameters, might be invoked with "complle(foo,-WOI1<Y'. You can omIt
parameters, leaving them as null paramaters, by specifying them with the null
string, as In "complle(foo,)". The volume that was present In the previous
example has been omitted. Alternately, parameters can be left unspecified
altogether, as in "complle(fOO)". In this case, they also get null values. O'le
reason to omit parameters Is that the. exec file might have been set up to
supply default values, as described In Section 9.2.2.1.
The exec options that follow the closing right parenthesls of the parameter
list consist of single-letter commands, which change tne behavior of the exec
fUe processor; for example, you use the letter S to Indicate that you want to
step through the exec fUe as it is being processed, conditionally selecting
which commands are to be sent to the WorkShOp. The exec options are
discussed in detail in Exec Invocation ~tions, Section 9.3.1.

9-14

WOIkslJcp User's Gtdde Exec Files

The exec file processor's output is a temporary file with a " .. text" extension.
The temporary fBe is the processed versIon of your exec commands; that Is,
all exec command lines have been processed and removed, leaving only the
resul tlng WOrkshop commands. This temporary fUe Is passed to the Workshop
when the processing is completed. The Workshop then runs the temporary
exec file, and automatically deletes it when finished.

I'IlTE

To terminate the processing of the exec file while the exec file
processor is running, you press "-period.

9.3.1 Exec Invocation qJtions
Several options are available when running the exec file processor. You can
specify these options when invoking the exec file processor or on Sl..J3MIT
commands. The options are specified by single letter commands following the
exec parameter list. A null parameter list should be used if you want to use
options without parameters, as in "<foc()s". The options are as follows:

B indicates that the exec file processor should not trim blanks on output
lines. Normally the exec file processor trims off leading and trailing
blanks on the lines that it outputs to the temporary file. Trimming
enables you to indent normal lines (lines that are not exec command lines)
without worrying about generating spurious blanks. In other words, the
exec file processor assumes that leading and trailing blanks are
insignificant. While this assumption is true for Workshop commands, it
might not be true for some other programs you can run with exec files.
Using this option tells the exec file processor not to trim such blanks.
The option applies to only the exec file being run or SlEMITted, and not
to any nested exec files.

indicates that the first line of the exec file is to be ignored by the exec
file· processor. This option is intended for those who embed exec files in
their program sources. When using this option, you should begin the first
line of the source with a "(*", and follow the end of the exec file with a "*r, thus commenting it out of the program source~ Note that you should
use "(*" and "*'" instead of 'r and 'T', since the latter are comment
delimiters in exec files.

T indicates that the temporary file, which is created (Le., the expanded form'
of the exec file), should not be automatically deleted after it is run. This
option enables you to to rerun an exec file created with the step option
(see below) without going through the stepping prompts a second time by
running a previously created expanded exec file. The R exec option,
described next, is used to run old temporary exec files. Note that the T
option is not allowed on SlEMIT commands.

9-15

Wod<sflop USer's Guide Exec Files

R indicates that the an exec temporary file, saved with the T option, should
be rerun, bypassing the normal processing by which the temporary was
created. For example, "foo" might be an exec file that generates a
complicated system using a large number of nested exec fUes that take a
significant amount of time for the processor to digest. If you know you
are going to run "foo" repeatedly, you might want to generate the
temporary file only once but run It several times. The first time you
would Invoke the exec fHe processor with "<fo«)t" to IndIcate that the
temporary file should not be automatically deleted after it is run.
SUbsequently, you would invoke the exec fHe processor with "<fO«)l'" to
rerun the old temporary file. Note that the R option overrides any others
that mIght be specIfied; sInce, If you are rerurning an old exec temporary
f11e, all the processing has been performed and the other options make no
sense. using the R option Is not allowed on SLeMlT commands.

S indicates that the exec file should be processed in "Step Mode", which
allows selective skipping of output Unes and SLeMlTs.

9.3.1.1 USing the step FlIlCtlm
If you use the step option, the following prompts appear when you invoke the
exec fUe· processor:

Step Mode:
-- in response to "Include ?" answer:

Y, N, A (Abort), K (Keep rest), or I (Ignore rest~
-- in response to "Submit ?" answer:

Y, N, S (Step), A (Abort), K (Keep rest), or I (Ignore rest~
More details? (Y or N) [NO]

If you repond with Y (yes) to the "More details ?" prorrpt, you get
additional information as to what each of stepping responses means.
When you invoke an exec flIe with the step option, you are prompted when a
line has been generated and is about to go into the temporary flle. The line
is displayed followed by "<- Include ?".

• A response of Y InclUdes the Une In the expanded exec fUe.

• A response of N omits the displayed Une.

• A response of A aborts out of the exec file processor, and no exec file is
run.

• A response of K keeps (includes) all the remaining lines of the exec file,
leaving step mode.

• A response of I Ignores the remainder of the exec· file. No more llnes are
inclUded.

9-16

Worksl1op User's Guide Exec Files

When a Sl.BMIT command is encountered in stepping, the SLeMlT line is
displayed followed by "<= SUbmit ?".

• A response of Y performs the SlBMIT unconditionally; that is, without
stepping through it.

• A response of N Ignores the Sl&1lT.

• A response of S steps through the SlI3MIT file.

• A response of A aborts out of the exec file processor, and no exec file is
run.

• A response of K keeps the rest of the exec file, leaving step mOde.

• A response of I ignores the remainder of the exec file.

I'IlTE
A reponse of ? to a "Submit ?" or "Include ?" prompt elicits an
explanation of the accepted responses.

Some examples of how to use the exec file processor's stepping facility follow.

Stepping can be used to resume execution of an exec file that did not run to
termination. For example, if your "compile" exec file includes both a compile
and a generate step, and if you want to resume with the generate step, you
invoke the exec file with ··compile(foo,-work)s". Then, in response to the
"Include?" prompt for lines corresponding to the compile step, you hit N to
skip the lines. Upon reaching the first line of the generate step you respond
wi th K to keep the rest of the file. Thus the generate step of the exec
process would be performed.

The stepping mechanism can be used to run only selected parts of an exec
file. Say, for instance, that you have a modular set of exec files, which
generates a whole system of programs, such as the Workshop, and that one
exec file called "make/all" can generate the whole system by Sl..BMITting
exec files for each of the component programs. The exec files for each
component program (development system tool) make use of other exec files to
perform such standard activities as compiling (and generating) a Pascal unit or
program, performing an assembly, installing a library, or manipulating files
with the Workshop's filer. If you perform a system build and find yourself
constantly having to regenerate parts of the system, the ability to step by
SU3MlTs proves very useful. You can regenerate arbitrary parts of the
system by ruming "<make/allOs" (our master exec file invoked with the
stepping option), and selectively submitting the subexec files for only those
things that you want to rebuild, while stepping over the others.

9-17

Workshop User's Guide Exec Files

Stepping· in conjuction with the T option, for saving the temporary file created
by the exec file processor, can be useful when you are going to be
regenerating a single component of a program or system a number of times in
succession; for example, when you are fiXing a bug in an element of a system
build and you expect that several iterations will be needed to correct the
problem. To continue the previous example, suppose that while building the
development system, you have a problem with the "fileio" unit of the
"objiolib" library. Suppose also that an exec file called "make/objiolib"
generates and installs the library ... submi tting compiles and assemblies for all
of its units, linking everything together, and finally performing the
installation. By invoking the exec file processor with "make/objiolibQst", you
can go into step mode and submit only those things related to the compilation
of the "fBeio" unit ... the link, and the installation of the library in the intrinsic
library. Then, after each successive refinement of ··fHeio you can run the
saved temporary file by running "<make/objiolit()r" without having to go
through the stepping process. The alternatives to this procedUre are: to
create another exec file to generate only the selected parts, to run (and rerun)
the exec file for the whole library, or to run each subprocess independently
(which requires more of your attention).

9.4 EXBfTllle Exec Files
9.4..1 All Exec File to Do a Pascal Cm1lile

This exec file does a Pascal compile and generate. Note how comments are
used to make the single character Workshop commands more intelligible.

$EXEC { "COIIJ)" -"- perform a Pascal ~ile
'0 -- the nanE of the lIli t· to conpile }

P{Pascal COIIJ)ile}%O{source}
{no list file}
{default i-code file}

G{generate code}'O
{default obj file}

$ENlEXEC

9.4.2 All Exec File to Do an Assembly
This exec file performs an assembly, and allows for· an optional output file
'name which can be different from ··the source name.

$EXEC { "assentJ" -:- perform an aSsellDly
.%0 -- the narE of the lIlit to assentlle }
%1 -- (optional) al temete raIE of (R) ~ }

$OEFAlLT '1 TO 'O{ use srurce ncIIE if no output nanE is given}
A {assemble}%O {source}

{no list file}
%l{obj file}

$ENlEXEC

9-18

WoIksl7op User's Gujde Exec FjJes

9.4.3 A ~re Flexible Exec Flle to Do Pascal COITplles
ThIs exec file performs compiles, allowIng for an output file wIth a dIfferent
name than the sauce.

$EXEC { "coql111
-- perfom a Pascal ootpl1e

%0 -- the nane of the l.Ilit to conpile
%1 -- (optional) alternate name for OBJ file }

$OEF AlL T %1 TO %0 { if no alternate OOJ name use sane name as
source}

P{Pascal compile}%O{source}
{no list file}
{default i-code file}

G{generate code}%O
%l{OBJ file}

$ENJEXEC

9.4.4 A "smart" B<ec FUe to [Xl Pascal OXT1liles
This compile exec file only performs the compile if either the Object file does
not exist or the source file is newer than the object file; that is, the source
has changed since it was last compiled. It uses the comp1 exec file shown in
Section 9.4.3 above.

$EXEC { IOcomp21O -- perform a Pascal coopile (only if really
requiroo)

%0 -- the name of the t.rlit to conpile
%1 -- (optional) alternate name for OBJ file }

$OEFALl..T %9 ro %1 { set %9 to name of output OOJ file}
$OEFALl.. T %9 ro %0
SIF EXISTS (1O%9.objlO) Tl£N

$IF NEIER ("%0. text 10, 1O%9.ObJIO)
ll£N {recoRf) if source newer than object}

$SUBMIT comp1(%0,%1)
SENlIF

$ELSE {(JJJ file ooes not exlst, so generate it }
$SlD1IT conp1(%0, %1)

$fNJIF
SEtf)f)(EC

9.4.5 Exec FUe OlaInlng
This example, "maKe/Prog", uses the smart compile exec file r'comp2'~)
defined in the last example to demonstrate how to Chain exec fUe execution.
Assume you want to generate a particular program composed of three units
(unitl, unit2).Inlt3), and that you have written "l1nKlProg", a smart exec fUe
which performs a linK only when one of the object files for one of the units is
newer than the linKed program flle. Your generation exec fUe uses tnese
smart exec files to perform the minimal required amount of work. Thus it
can be used to ensure that you have the latest version Of the program without
performing a full regeneration.

9-19

Workshop User's Guide

$EXEC {"make/Prog- -- smart version, only reconpiles
~ links Wlen it has to}

SSUBMIT comp2(unitl)
SSUBMIT comp2(unit2)
$SUBMIT CDq)2(unit3)

Exec Files

R<linklProg { Run link exec file after coopiles have
; rll1 so that it gets the correct file

dates. This is one exaqlle of when you
should note the difference between
process time and run time.}

$Et«)fXEC

Note that in the last line of the above exec file you have scheduled an exec
file to be run at a later time, as opposed to SU3MITting it now, so that the
file dates for the link step are accessed after the compiles .have had a chance
to run. The differences between running and submitting and exec files are
demonstrated in the following scenario. When an exec file is submitted, it is
processed immediately by the exec file processor. Its output goes to a
temporary file, Which is then passed back to the Workshop. The Workshop
runs the commands in the temporary file until it comes to the command to
Run another exec file. At this point it discards the remainder of the
temporary file, and runs the exec file processor with' the new exec command.
This exec file invocation results in another temporary file of commands, which
Is then run by the Workshop. This means that some exec processing has been
scheduled to follow some exec running, rather than all of the processing
taking -place first.

9.4.6 A Recursive Exec File to Do Pascal Compiles
This compile exec file performs up to 10 compiles. It takes an argument list
wi th the names of the units to be compiled.

$EXEC {"rcoop" -- perform alyt'Uft)er (14l to 10) Pascal coqJiles.
It calls "oomp" on its first argument and then calls
itself recursively with its arguments shifted left }

$IF '0 <> • I 1lEN
$SlB1.IT conp(%O) {"coql" the first one }
${ -rcomp" the rest, less first}
$SlB1IT rconp(%1,%2, %3, %4, %5, %6, %7, %8, %9)

$fNJlf
$EtI)E)(EC

9.4.7 A BASIC Exarfllle
This exec file demonstrates, by generating the BASIC Interpreter, some of the
constructs in the exec file processor's meta language. The. comments in the
body of the example should _ be sufficient to describe what is taking place.
The essential idea is that BASIC is made of three components and that you
might want to generate only one or two of them at a time.

9-20

WorksfJop User~ Guide Exec Files

$EXEC { ·makelbasic· -- generate the BASIC Interpreter.
1here are three paraneters -- if a parllleter is a ·V·
(yes) the corresponding part of the system should be
generated:

(0) the b-code interpreter
(1) the run-time system
(2) the COIIIft8I K1 interpreter

If no paraneters are specified, the exec file p~ts to
see .tlat parts of the system should be generated. }

SlRITELN I Starting generation of the BASIC system'
$If %0 = I I AN) %1 = I I AN) %2 = I I n£N

S {no parens StWlied -- pronpt for info}
SlRITE I do you want to assentlle the b-code interpreter? ",

"(yor [nD"
SREAI)()t %0
SMUTELN {this .riteln puts us on a new line for the next

pronpt }
SWUTE "do you wmt to conpile the 1'lIl-time system? I ,

"(yor[n])"
SREAOO-I %1
MRITElN
$lRITE 'do you want to conpile the COIIIftBIK1 interpreter?',

'(y or [n))'
SREAI)()t l2
SWRITELN

SEN1If
$
$IF lJlPERCASE(%O) = "V' n£N {assentlle the b-code interpreter}

$SlB1IT assentl (int. main)
SfN)If
$
$IF UPPERCASE(%l) = ·v· THEN {compile the run-time unit }

$SUBMIT comp(b.rtunit)
$ENlIF
$
$IF UPPERCASE(%2) = ·v· m UPPERCASE(%l) = ·v· ll£N

I{ compile the COIIIft8I K1 interpreter }
${ compile also if the run-time unit has changed }
$StB1IT comp(b . basic)

$ENlIF

9-21

WorkslJop User's GlIide

$
${ link it, all together }

L{lin<}b.bSsic
b.rtlllit
int.RBin
h.intl
iosfplib
iospaslib
basic{executable output}

SEta:XEC

9.4.8 M Exec File FLIlCtioo

Exec Fiies

This exec file is ,a function which prompts the user for the location of a
ProFile, and returns a string with the name of the device to which the ProFile
is attached .. Note that the function calls itself recursively until a valid
device name is specified.

$EXEC { IOGetProfLoclO
-- get locatioo of ProFile by asking user}

$REQl£ST ~ 11m
"Where is the ProFile attached (paraport/slot2Chan1/slot2chan2)"
$SET '9 TO tJlPERCASE ('9)
$If (~ <> "PARAPmT") AN) ('9 <> • SLOT2CHANl •)

AN) (~ <> ." SLOT2CHAN2') n£N
$MUTELN "lhat is not a valid deVice t1CIIE. Let"" s try again. ·
$RETmN <GetJlrofLoc {recursive fLllCtioo call}

$ELSE
$RETmN ~

$EtI)IF
$EN)f)(fC·

9.5 Exec FUe Prognmning Tips
The following paints might be useful to remember when creating exec files.

1. Use modlllar exec files. Think' of exec files as procedures that are
called by the SlEMIT command. The more modular your exec files are,
the easier it is to use the stepping facility on them

2. Create standard exec files for common functions; for example, use one
exec file to perform all your compilations. Therefore, if changes become
necessary, you have only one place to change.

3. Use opUonaJ parameters to support features of your exec files that you
do not always use. The parameter mechanism enables' you to ignore
optional parameters if you do not need the functions they support.

9-22

Exec Files

4. Wri te your exec files to prtJfT1Jt for infonnatim not supplied in the
parameters. Thus you do not need to remember the meanIng of a large
number of parameters.

9.6 Exec File Errors
The exec file processor can recognize a number of errors during its invocation
and execution. The format in which errors are reported is:

where

ERRrn in <err loc>
<curr line>
<err marker>
<err msg>

<err loc> is either 'invocation line' or 'line #<n> of file "<file>".

<curr line> is the text of the current exec line where the error was
detected.

<err marker> is a line with a question mark indicating where the exec
file processor was in <curr line> when the error was
detected.

<err msg> is one of the messages listed below.

110 errors are followed by an additional line with the text of the OS error
raised during the 110 operation. The errors detected are listed below.

9.6.1 I/O Errors
Unable to open input file "<file>".
Unable to open telq)orary file "<file>".
Unable to access file "<file>".
Unable to rerun file "<file>".

9.6.2 other Errors
File does not begin with "$EXEC".
End of Exec file before "$ENDEXEC".
$EXEC command other than at start.
No Exec file specified.
More than 10 parameters.
No closing ")" found.
Line buffer overflow (>255 chars).
Invalid Exec option: <option char>.
Invalid Exec option on SUBMIT: <option char>.
End of Exec file in comment.
Invalid percent: not "%n" form.
Garbage at end of command.
No argument to SUBMIT.
ELSE, ELSEIF, or ENDIF not in IF.
ELSEIF after ELSE.
File contains unfinished IF.

9-23

WoIksl7opUser's Guide

and

Nothing following "<tilde>".
Out of ,memory. Processing aborted.
Bad tef11) file name generated: "<file>".
No value returned from file called as function.
RETURN with value in file not called as function.

Invalid cormtand. <token> expected.
~here <token> might be:

String value
""nil parameter
Terminating string delimiter
":" or "<>"
"<>"
Boolean value
Conma (list delimiter)
"("

'M)"

Valid command keyword
Conmand

9-24

Exec FiJes

)437-A

Chapter 10
The Transfer Program

10.1 IntJ:'()ductioo .•••.•.•••.•..•..•...•••.•.•.•..•.•••.•.••....•.•.•..••.••..•.•••.•.•...•.•.•••••.• 10-1
The Transfer program is a communications pacKage that allows you to
transfer text between your Lisa and a remote computer.

10.2 I-lardware CCJrrlections arld Conflguratioo •••••••••.•••••••••••••••••••••••.••••••. 10-1
To use the transfer program you need a modem comected to one of
the serial ports. Use the Preferences tool from the System Manager to
configure the Usa to use the mOdem.

103 setting Trmsfer Progrcm Char~teI1stlC$•.........•............ 10-1
Use the menus to set the baUd rate, parity, handshake, and full or half
duplex so that the transfer program wIll be compatible wIth the remote
computer.

10.4 LJsiflg Ute TrarlSfer PIllgIan .. 10-5
The transfer program can be used to transfer a fHe from a remote
computer to the Lisa, or from the Lisa to the remote computer. It can
also allow you to use the Usa as a termInal connected to the remote
computer.

WOl1<sl7op User's Guide TIle TJCJflsf'er Program

The Transfer Program

10.1 Int.rcxlJctlon
The transfer prog:am is a data communications package that allows you to
transfer text fUes from your Lisa to another computer. You can also receive
text from the remote computer and store it in a text fUe, which can then be
read by the Editor.
To use the transfer program~ you must either:

• Get the necessary modem and attach it to the Serial A or Serial B
connector on the back of your Usa. Then tell the Preferences tool in the
System Manager the you are attaching to a Remote Computer.

• Or, get the necessary modem eliminator cable and attach it to the Serial A
or Serial B connector on your Usa Then attach the other end to a serial
port on another computer, and tell the Preferences tool that you are
attaching to a Remote Computer.

When you have completed either action, set the Transfer Program
characteristics to match the requirements of the remote computer.

These operations are explained In Sections 10.2 and 10.3 below. Section 10.4
explains how to use the Transfer Program to send and receive data

102 Hardware Gcnlectlons CI1d CCl'lf1{JJ1'atlm
In order for the Usa to communicate to a remote computer the Lisa can be
connected to a modem or a mOdem eliminator cable through either the Serial
A or the Serial B connector on the back of the Lisa.

In addition to connecting the hardware, you must configure the software To
do this, use the Preferences tool from the System Manager command 11ne.
Access the Device Connections display, and set either Serial A or Serial B to
Remote Computer. More information on the Preferences tool can be found In
Section 3.3.

You must also set the active Transfer Program to access the correct
connector. Do this by selecting either Serial A or Serial B from the
Connector menu. The default Is SerIal A.

103 setting Transfer Progrcm Characteristics
In order to communicate wIth, a remote computer, the Transfer Program must
be set up so that it transmits and receives data in the same way as the host.
These settings are made by using the Baud Rate" Parity, Handshake, Duplex,
and Control menus. These settings are explained below.

10-1

WoJ1<sl1op user's Guide TI7e Transfer Program

BaI.Il Rate
The baud rate is the speed at which data passes to and from the remote
computer. The baUd rate must be set to agree with the remote computer and
modem you are using. The baud rate menu is shOwn in Figure 10-1. The
default Is 1200 baUd. see the note in Section 11.10, PortGonflg, for the vaUd
baud rate settings for each Serial porl

Partty

110
134.5
150
200
300
600

';1200
1800
2000
2400
3600
4800
9600
19200

FltJR 10-1
1l1e Bat.I2 Rate Meru

Pari ty refers to the process of Checking that data was not damaged in
transmission. Parity shoUld be set to agree with the hOst computer. Parity
can be even, odd, or turned off (none~ Select the option deSired from the
Parity menu. The default Is none. The parity menu Is ShOwn In Figure 10-2.

10-2

WoIkshop User's Guide

J-Bldshake

Even
Odd

Fl{J.lTe 10-2
The Parity MenJ

The Transfer Program

The handshaKe menu, shown in Figure 10-3, selects either an X01IXOff
protocol, or no handshaKe. The XChIXOff protocol allows the remote computer
and the Transfer Program to tell each other whether they are ready to
receive more information. Using this protocol, the Lisa can stop transmission
from the host by sending XOff, and start it again by sending Xtl1. The host
can start and stop transmission from the Transfer Program by sending Xtl1
and XOff to the Lisa. The Xtl1 character is a control-Q, XOff is control-So
The default is for handshaking to be turned on.

Figure 10-3
The J-Bldshake Meru

I:qJlex
This menu allows you to select Full or Half duplex. Full duplex sends all
characters typed from the Lisa keyboard to the remote computer, but does not
display them on the Lisa screen. All characters sent from the host are
displayed on the screen. Using full duplex, you will only see what you type if
the remote computer sends bacK the characters you type. Most hosts you· are
likely to use with a Lisa do send bacK the characters they receive to be
displayed.

Half duplex displays the characters typed on the Keyboard, bacause it does not
expect the host to send them back. The default is full duplex. The duplex
menu is shown in Figure 10-4.

10-3

Workshop User's Guide

Control

Fi~ 10-4
The Cll4Jlex rvtenu

The Transfer Program

The control menu allows you to set two delay times, if needed. The first is a
delay between each character sent, the second is the delay between each line.
Both are in milliseconds. Delays are used to simulate typing speeds when
transmitting to a remote computer that can not keep up with full speed
transmission. The default is for no delay. The control menu is shown in
Figure 10-5.

-~----,

Record to '"
~ " " " "

Record All Text
../Record Fi Itered Text

Play Back from .. ,

Character Delay ".

Line Delay "'

Exit

Fi~e 10-5
lhe Control Meru

10-4

Workshop User's Gujde The Transfer Progmm

10.4 Using the Trcnfer Prognm
Start the Transfer Program by pressing T in response to the Workshop
command line. The Transfer Program will display a window on the screen
with menus at the top. You must configure the Transfer Program to match
the remote computer you wish to communicate with. Information on
configuring it can be found in Section 10.3 earlier in this chapter.

After the Transfer Program comes up, it is ready to act as a terminal
emulator. Evrything you type on the keyboard will be transmitted through the
modem to the remote computer.

The Transfer Program can also be used to transfer files back and forth
between the Lisa and the remote computer. The functions for doing this are
in the Control menu. The control menu is shown in Figure 10-6.

To transfer a file from the Lisa to the remote computer, select "Play Back
From ... " from the control menu. It will ask you for the file name to play
back. It expects a .TEXT file. The contents of that file will be transmitted
to the remote computer.

To transfer a file from the remote computer to the Lisa, select "Record to
from the control menu. It will ask you for the name of the file to record to.
After you have set up the remote computer to transmit the file you want (by
typing commands at the keyboard) select "Record All Text" from the control
menu. When you tell the remote computer to transmit the file, it will be
recorded in the file you <specified. This command will record the file exactly
as transmitted, including all control characters. If you don't want the control
characters, select "Record Filtered Text". This option changes carriage
returns to newlines and replaces tabs by the appropriate number of spaces.
All other control characters are thrown away. The filtering option affects
only the disk file, not what is displayed on the screen. The default is "Record
Filtered Text".

To transmit control characters from the keyboard, hold down the " key and
press the character. Other special purpose characters can be transmitted as
shown in Table 10-1. qJtion keys are treated as no-ops.

10-5

Worksl7op User's Guide The Transfer Program

Table 10-1
Transmitting Special Char~ten from the Keyboard

Key/JOBn1 T.I1Jf1SIT1its

Apple backspace del

clear esc

ENTER (alpha keyboard) break

ENTER (numeric keypad) return

arrow keys their symbols

Apple Q XOl

Apple S XOff

10-6

Chapter 11
The Utilities

11.1 Byte[)lff •.•................•..•................•.•.•.................................•••......... 11-1
ByteOlff compares two flIes, byte by byte, and shOws where they are
different.

11.2 0BlgeSeg .••.......•..... 11-2
Ct1angeSeg allows you to Change the segment names In the models In
an unlinked object file.

11.3 ~ ... 11-3
CodeSize gives you a summary of the contents of an object file

11.4 otff .. 11-6
Olff compares two text files and shows their differences.

11.S ~j ••.••••••••••••••••• 11-8
Dump£l>j displays the contents of an Object fIle.

11.6 ~tctl •• 11-9
OUmpPatch displays and edits the contents of any fUe.

11.7 FilelJiv arld FileJoln•..... w ... 11-11
FlleOlv divides large fUes Into smaller ones. FBeJoin rejoins the
resulting small files back into the original large file.

11.8 FiJ'ld .. 11-12
Find searches a text file for a pattern, such as identification.

11.9 GXRef •.......•....•....................•...•........ 11-13
GXRef provides a glObal cross reference Of subroutines and modules.

11.10 PortConfig 11-14
PortCOnfig enables you to configure the RS232 ports.

11.11 ~ ..•.................•......•.....•........ 11-16
segMap produces a segment map for one or more object files.

11.12 SXRef ..•.••..........•........•.....•.........•.............•...................••.•.... 11-17
SXRef prodUCes a cross reference of source flIes.

11.13 UXRef•.. ..•.•. 11-18
UXRef prodUCes a cross reference of USES statements in programs
and units.

11.1 ByteOlff
Synopsis

The Utilities

ByteDlff compares the contents of two fUes and reports which bytes (words)
are di fferent.

Dialog
Source file?
Target file?
Descrtptlon
ByteOiff compares the source file to the target file and reports on their
dlfferences. This utility is useful for finding the first differences between
files or for finding a small number of differences.

The program prompts for an input fUe and an output f11e. The two f11es can
be in any format: .text, .001 .1, and $0 forth.

The output is of the form:

Where:

Bytes $xxxxxx differ aaaa bbbb

xxxxxx is the byte address in hex
aaaa is the word (two bytes) from the source fUe
bbbb is the word from the target file

After 20 Unes of output the user can either terminate by pressing [CLEAR] or
continue by pressing the space bar.

see Also
Diff, E(qual command of the FUe Manager

i'btes
ByteOlff compares any binary files, bUt once it fInds a difference between the
two flIes, it dOes not try to resynchronize. ThIs utUity dOes blocK-at-a-time
liD. The program stops at the first end-of-file and has no termination
message. ByteDiff Is nonstandard user interface.

11-1

WOd<sI1op User's Guide

11.2 CtBlgeSeg
Synopsis

The Utilities

Changeseg Changes the segment name In the modUles In an unl1nked Object
flIe.

DIalog
Flle to Change:
Map all Names (YIN)

Descrlptlon
The first prompt asks for the unlinked object file you want to change.
You are next asked if you want to map all names. If you want to change
segment names In all modules, respond Y. If you want to be prompted for the
new segment name for each modUle, type N. A response of [RETURN] accepts
the default name.

I'btes
Changes are made In place (the fUe Itself Is changed).

11-2

WorkSl1Op User's Guide

11.3 COdeSlze
synopsis

The Utilities

Determ1nes the code s1ze and code segmentatlon for a un1 t, a progrcm, or a
library.
Dlalog
Input fHe [.£EJ] -
Resident file [. TEXT} -
ClItput file [-CCNSCLE}f.TEXT] -

The resident file is the file that contains the segemnt names that are
consIdered resIdent. The names In the fUe must be the same case as in the
code file itself. The resident information is used in the summary reports to
automatically sum the resident and swapping cOde.

At any time when specifying the file names, the run-time options can be
turned on or off. The run-time options are:

+% turns the mappIng of calls to system extemals on or off. System
externals are procedUres whose names begin with a "%". USing this
option, the system wlll count the number of procedures that call a
particular system external. This option is used to determine which
system routines are being uSed, for example, if WRITELNs are left
in the code.

+E turns the mapping of calls to l107Systern extemals on or off.
Nonsystem externals are procedUres in a segment other than the
calling procedUre. Using this option, the system will count the
number of procedUres that call a particular nonsystem external.
This option is used to determine which routines are being used, for
example, which library routine the code is using.

+M tells CocJeSize that a particular segment is mapped onto another
segment. This information generates the segment mapping summary
and the segment summary. This option is used when smaller
segments are mapped Into larger segements, and the sizes of the
smaller and resulting larger segements are needed.

+S turns the main report on and off. Sometimes the summary report is
all that is needed. USe this option to print only the summary
report.

Descrlptlm
CodeSize generates two types of reports depending on the type of input file(s):
maIn report and summary report. The Input fUe can be an execution fUe, a
library, or an object file. For each file, the report format will be:

11-3

Workshop User's Guide me Utilities

Type of File

Execution file
Main Report
segment information

Slmnary Report
segment summary
main summary

Library fUe unit information
segment information

uni t summary
segment summary
main summary

Cbject fUe unit information external summary(+E or +%)
prOCedUre information un! t summary

segment mapping summary(+M)
segment summary
main summary

The contents of the report section are:
segment information

segment type
segment name
segment size

unit Information
unit name
unit global sIze
unit type

ProcedUre information
pro~re name

associated segnlBnt
procedUre size
interface information

external references

External stmTlary
external procedure name
4t of occurrences

unit summary
unit name
unit size
unit type
unit global size

intrinsiC, nonintrinsic, main program
first eight charcters of the segment's name
size of the segment in decimal or hex

first eight characters of the unit name
hoW much glObal space the unl t uses
intrinsic, shared intrinsic, regular

first eight characters of the procedUre's
name
first eight characters of its segment's name
size of the procedure in decimal or hex
is the procedure in the interface of the
l,It1it?
list of all the external calls the prOCedUre
makes. This is triggered by the +E or +%
options

name of the procedUre
how many different procedUres called the
procedure. This is triggered by the +E or
+% options.

first eight characters of the unit's name
size of the unit In decimal or hex
intrinsic or not
how much global space the unit uses

11-4

WOrkshop user's Guide

segment mappIng stmTlary
original segment name
new segment name
segment size

segment sl.lTlfTlaI'y
segment type

segment name
segment size

Main SI..IT1m8Yy
total code sIze
total resIdent cOde

total swappIng code

total data globals
total maIn prog globals

total glObals

total Jump table

T/Je Utl/ltles

name Of the original segment
name the segment Is being mapped tnto
size of the segment being mapped. This is
triggered by the +M option.

swapping or resident. Resident segment Is
specified to COdeSize by' the "resident fUe".
first eight characters Of the segment's name
size of the segment in decimal or hex

stmmatIon of the COde size
summation of the cOde that is considered
resIdent all the time. ResIdent code Is
specified to COdeSize by "resident fUe".
summation of the COde that Is considered
swapplng all the time. Swapping COde is
specif1ed to COCJeSIze by "resIdent file."
summation of the global space for data
summation of the glObal space In the maln
program
sum of maln progrcm glODals plUS data
glObals
sIze of the jump table

11-5

WoJ1<shop User's Guide

11.4 D1ff
Synopsis

The UtilIties

Diff Is a program for comparing. TEXT flIes, in the WorkshOp. Diff Is
desIgned to be used with Pascal or Assembler source flIes.

Dialog
(Type '?' to change or display options.)

New file name [.TEXT] -
Old file name [.TEXT] -
Listing file [.TEXT] «CR> = -CONSOLE)-
Descriptioo
Diff first prompts you for two Input fHe names: the "new" flle, and the "old"
file. Diff appends ".TEXT" to these fUe names, if it Is not present. Diff then
prompts you for a fHename for the Ilstlng flle. Press [RETURN] to send the
lIsting to the console.

Diff does not know about INCLUDE files. However, Diff does enable the
processing of several paIrs of files to be sent to the same listing file. Thus,
when Diff is finished with one pair of files, it prompts you for another pair of
input files. To terminate olff, simply press [RETURN] in response to the
prompt for a new fUe name.

The output prOdUced by Diff consIsts of blocks of "changed"' llnes. Each bloCk
of changes is surrounded by a few lines of "context" to aid In finding the lines
In a hard-COPY l1stlng of the flIes.

There are three kinds of change blOCks:

INSERTI(J\J a block of Unes in the "new" file whIch does not appear
In the "old" fHe.

DELETICN

REPLACEMENT

a block of Unes in the "old" fUe whIch dOes not appear in
the "new" f11e.-

a block of llnes In the "new" fHe WhIch replaces a
correspondIng block of different lines In the old fUe.

Large blocks of ChangeS are prInted In summary fashion: a few lines at the
beginning of the changes and a few lInes at the end of the changes, wIth an
Indication of hOw many lines were skipped.

Diff has three options:

C change the number of context lines displayed.

M the number of lines required to constitute a match.

o the number of lines displayed at the oegiming of a long blOCk
of differences.

11-6

Workshop User's Guide The Utilities

To set one of these numbers, type the option name and [RETURN1 followed by
the new number to the prompt for the first input f11e name. M entry of 0
[RETURN] 100, for example, causes Oiff to print out up to 100 llnes of a
block of differences before using an ellipsis. The maximum number of context
lines you can get Is 8. You can get a dIsplay of the current option settings
by pressing "?" in response to the first fUe prompt.

Oiff is not sensitive to upperllower case differences. All input is shifted to a
uniform case before comparison is done. This is in conformance with the

. language processors, Which ignore case differences.

Diff Is not sensItive to blanks. All blanks are SkIpped dUrIng comparIson.
This is a potential source of undetected changes, since some blanks are
sIgnIfIcant (In string constants, for Instance~ However, Diff Is InsensItive to
trivial changeS, SUCh as indentation adjustments, or Insertion and deletion of
spaces arOUf1(j operators.

Olff does not accept a matching context whiCh is too small. The current
threshold for accepting a match is 3 consecutive matches. The M option
allows you to Change this number. This has two effects:

1. Areas of the source where almost every other line has been changed will
be reported as a sIngle Change block, rather than beIng broken Into several
small change blocks.

2. Areas of the source which are entirely different are not broken into
different change blocks because of trivial similarities (SUCh as blank Unes,
lines with only begin or end, and so forth)

Diff makes a second pass through the Input flIes, to report the Changes
detected, and to verify that matching haSh codes actually represent matchIng
l1nes. MY spurIous match found during verI flcatlon Is reported as a
"JACKPOT". The prObablllty of a JACKPOT Is very low, since two different
l1nes must hash to the same cooe at a location In each fUe WhIch extends the
longest common subsequence, and In a matchIng context which Is large enough
to exceed the threShold for acceptance.

see Also
ByteDlff

I'btes
Oiff can handle files with up to 2000 lines.

11-7

WoIksl1op User's Guide

115~J
Synopsis

7'I1e Utilities

Dump(l)J Is a· disassemoler . for 68000 code. ThisopUon provIdeS a symool1c
and formatted l1sUng of the contents of object fUes. It can disassemble
eIther an enUre file, or specIfic modUles withIn the fUe.
Dlalog
Input file? [.OBJ]
Output file? [-CONSOlE]

Dump A(ll, S(ome, or P(articular modUles [S]?
Dump file positions [N]?
DUIlll selected object code [N]?
Description
Dump(l)J first asks for the Input file WhIch shOUld be an unllnked Object file.
The output (l1sUng) fUe defaults to -CO\lSCl..E. You are asked Whether YPV
want to dUmp All, some, or ParUcular modUles.

If you respond S, OumpCl)j asks lOU for confirmation before dUmping each
modUle. A response of [ClEM gets you back to the top level. If you
respond P, Dump(l)j asks you for the partiCUlar mocIule(s) you want dUmped.

The file position is a number of the form [0,000] where the fIrst digit is the
block number (deCImal) withIn the fUe and the second number Is the byte
runber (heXadeCimal) within the block at which the modUle starts. This
Information can be used In conjunction with the OUmpPatch program.
If you want the selected object code to be dUmped, respond Y to the final
prompt. The default for this prompt Is N.

see Also
OUmpPatch

~
Dump(l)j displays only the low order 24 bits of longint fields, which are
interpreted as addresses. This is consistent with the hardware, but causes
some bytes of the fUe not to be displayed.

11-8

Wo.rkstJop User's GI.Iide

11.6 DlITlJPatch
Synopsis
Dump and/or patch a fHe

Olalog
DumpPatch - Hexadecimal Dump and Patch

File: - OJtput: [-CCNSCLE] [. TEXT] -

Tfle Utilities

If you want to select the default of [-C()\JSCLE1 press [RETURN] and select
the block number you want to start with; for example" 2.

If you type a file name" the following prompt appears:

Would you lIke to access (Input f11e name) interactively? (Y or N)

If you respond Y" you will be prompted for the block number you want to
start with. If you respond N" you will be prompted for starting and ending
block numbers. The default values are 0 for the starting block number and
ECF for the ending block number.

Descrlptlon
DumpPatch provides a textual representation of the contents of any file and
the ability to change its contents in elther the ASCII character or
hexadecimal form. The file dUmp is block oriented with the hexadecimal
representation on the left and the corresponding ASCII representation on the
right. If a byte cannot be converted to a printable character" a dot is
substituted. The patCh facility uses the arrow keys to move around within the
displayed blOCk and change the value of any byte.

When DumpPatch is Run" you will be asked for the full name of the input file.
No extensions are appended. Pressing [RETURN] will exit OumpPatch. If the
input file can be found, you will be asked Where you want to direct the
output. The default for the output file is [-printerJ. If you type an output
file name" a .TEXT extension will be added if necessary. If you type a device
name; for example" -printer" no extension wUl be appended.

If an output file name or a valId device name was entered, you will be asked
If you would llke to access the input flIe Interactively. If you answer No, you
will get a quick dUmp of the input file and will be prompted for the starting
block to dUmp. The default [RETURN] for the last block to be dumped is the
last block of the input file. If you specify a block that is beyond the
end-of-fUe, you will be given the block number of the last block In the file.
Pressing [CLEAR] enables you to exit with no dUmping.

O'1ce a file has been completely dumped" DumpPatch asks you for the next
input file. Press [RETURN] to exit the program.

11-9

Workshop USer's Guide The Utilities

If you access the Input flIe Interactively, you wUI be asked for the block to
dUmp. The output will be dUmped to the screen with the option of dUmpIng It
to the output flIe When you are ready to leave that block. Press the space
bar to 1001< at the next halfblOCk. Press [CLEAR] to go into patch mode.
Press [RETURN] to quit the present blOCk.

When you are in patch mode, the cursor will be found in the upper left comer
at word 0 of the block. The arrow keys are used to move the cursor around
in the current blOCk and to previous or successive blocks. Press [T AS] to
toggle between the hexadecimal and the ASCII portions of the display. A
change made on one side of the display is automati cal I y updated on the other
side as well. Until you get ready to move out of the current block you may
undo any changes by pressing [CLEARl When leaving a block in which you
made changes, you will be asked if you want to write the changed block back
to the input fUe. This Is your last chance to undo any unwanted changes! If
you specified output to something other than the console, you will also be
asked if you want to dump the current block to the output file when you try
to leave that block. To exit patch mode press [RETURN).

see Also
Durnp(l)j

11-10

WorkshOp USer's Guide

11.7 FUeDlv CI'ld Flle..bln
Synopsis

Tile Utilities

FlleDlv can be used to break a large fUe Into several smaller pIeces. FlleJoln
can then be used to rejoin these pIeces into one fUe. These functions are
most useful When savIng and restoring very large flIes, or When you Wcrlt to
break a large text fUe into smaller ones to be viewed in the Editor.
Dialog
Is this a .TEXT file? (Y or N)

Infile name : [.text)
OJtfUe name : [.text]
You might want to keep portions of a file on more than one disk. To give
you an opportt.l1ity to dO that, FUeDiv contains the following additional
prompts:
Another disk? (Y or N)
Have you inserted the next disk? (Y or N)
Descrlptlon
Do not include the suffix in the file name. If, for example, you want to
divide TEMP. TEXT, gIve TEMP as the input file, and TEMP (or Whatever) as
the output fUe. FUeDiv wUl create a group of fUes named TEIVIP.1.TEXT,
TEMP. 2. TEXT, and so on, untll TEMP.TEXT is completely divided up.
To rejoin the pieces of the f11e, Run FUeJoln. The dialog is the same as for
FileOlv.

11-11

WoJ1<sIlopUser's Guide

11.8 FIOO
Synopsis
FIno searches a ,text fHe for 'a ,pattern.
DIalog .
type ",?" tc display .or change options .
Enter'input fUe name [. TEXT] (name of the fUe to be searched)
Enter output file name [-C(J\5CLEM.TEXT] (default Is the ccnsole)
Enter pattern: (pattern to be matched)
Description

Ttle Utilities

Find searches text fUes for lines whIch match a strIng pattern. Lines found
, are prInted to the console. ~ f.ollowing options are recognIzed:

. +C Matches are case sensItive
+S Matches are space sensltlve.
+0 Print dots as lines which do not match are scanned.
+L ~ lines are reported, print out the relative Une numbers.
+ T Report the files that are being seamed.

TypIng? In response to any of the Input prompts wlll dIsplay a descrIpUon of
the options avallableand read In the opUons. You can leave FInd by typing
[RETURN] or [CLEAR] In ,response to tne Input Dr pattern prompts.
More than one fUe can be input at a time. Find supports the same wlldcard
scheme as the WOrkshop File Manager. So sUbmitting "-paraport-ch-" will
dIrect FInd to search all of the text fUes beginning wIth "chlt on the paraport
dIrectory. FInd can also search predefIned l1sts of fUes; suppose the fUe
"foabar.text" contained:

.. hooha. text
grOk.text
bruhaha text"

Then submitting "<foobar.text" will direct Find to search, sequentially,
"hooha.text", "grot<.text", and then "bruhahatext". If you type "fCabar.text"
(without the leading "<') then Find will search "foobar.text", not the files listed
therein, for the pattern.

~tes
FInd tnncates output Unes to 256 characters.

11-12

workshop USer's Guide

11.9 GXRef
Synopsis
Global Cross Reference.

DIalog
Input file [.OBJ) ?
Listing file [CONSOLE:]/[.TEXT] -
DescIiption

Tile Utilities

GXRef lists all the modUles WhICh call a given procedUre, and all the modUles
whiCh that procedUre calls. It provIdes a glObal cross reference of SUbroutines
and rnc:x1Jles.
GXRef accepts any number of object file as Input. When you haVe entered all
the object files, press [RETLRN] in response to the input file ~t.

11;..13

WorkstJop User's Guide

11.10 PortCmflg
Synopsis

Tile Utilities

PortConflg enables you to configure the RS232 ports.
Dlalog
First you must supply information on how to configure the port.
Which RS232 port dO you want to configure ? (A or B)
What parity setting ?

0) No parIty . .
1) n1d partty; no input partty checking
2) o:td parity; input parity errors II! 00
3) Even parity; no input parity checking
4) Even parity;. input parity errors ... $80

Enter selection (0 - 4) [0]

What output handshake protOCOl ?
0) None
1) OTR handshake
2) XCNlXCFF handshake
3) Delay after CRJ-F

Enter selection (0 - 3) [0]

What baUd rate? [9600]

Receive and buffer Input how ?
0) Buffer Input until full request Is satisfIed
1) Return whatever is received

Enter selection (0 - 1) [1]

What Input handShake protocol ?
0) NOne
1) DTR handShake
2) XCNIXCFF handshake

Enter selection (0 - 2) [0]

Adjust type-ahead buffer hOw ?
0) FlUSh only
1) Flush and re-slze
2) Flush, re-slze, and set thresholds

Enter selection (0 - 2) [0]

What form of disconnect detection ?
0) None
1) BREAK detected means disconnect

Enter selection (0 - 1) [0]

Timeout on output after how many seconds (0 ... no timeout)? [0]

11-14

Wod<shOp User's Guide The Utilities

~tomatic linefeed insertion ?
0) Disabled
1) Enabled

Enter selection (0 - 1) [0]
We are now ready to configure the port. Shall we proceed? (Y or N)

PortConfig contains a series of questions. After you answer one,· you wUI be
prompted for an answer to the next one. The default values for each question
are shoWn in brackets.

Desc11ptlm
With the PortConfig utility ... you can configure the RS232 ports, and establish
such things as the parity setting, handShake protocol, baud rate, disconnect
detection, and so forth. If you are using Pascal and want additional
information on port configuration, see Section 2.10.12 in qJerating System
Reference Manual for tile Lisa.

For Serial A and Serial B ports, the baud rate can be set to 50, 75,
110, IS0, 200, 300, 600, 1200, 1800, 2000, or 2400. Serial A can also be
set to 4800 or 9600.

For output only, Serial B can also be set to 3600, 4800, 7200, 9600, or
19200.

11-15

11.11 ~
Syt'q)Sls
SegMap prodUCes a segment map of one or more Object files.
Dialog
FUes to Map ? [.CEJ]
Listing File ? [-CIl\JSa..E]

DescrlpUon

711e Utilities

5egI'-1ap accepts either an Object file name or a command file name, whiCh
enables you to inclUde predefined lists of fUes.
A command file must be prececJed with a "<It. SegMap adds the .TEXT suffix
to the command file name.
For example, If the fHe "Apple.text" contaIns:

"COde"
"pascal"
"basic"

SUbmitting "<~le" direct$ SegMap to accept, sequentially, "Code.Obt,
··pascal.Obj", and 'basIc.DbY'.
The map information inclUdes the Object fHe name, the name of the unit in
the fUe, the names of the segments used In that unit (if any), and the new
segment names.

11-16

Worksl1Op USer's Guide

11.12 SXRef
Synopsis
Pascal cross reference utility

Dialog
Source File? [.TEXT]
OJtput fUe for Listing ? [-CrossRef] [. TEXT]
Do you want a numbered listing of the source ? (Y or N)

The Utilities

Flag the declarations and assignments of each indentlf1er ?'(Y or N)
. Declaration Character? [*]
~signment Character? [-]
Text file of words to O'nit ? [SXRef.O'nit] [. TEXT]

DescripUon
SXRef gives a numbered listing of the source fUes and an alphabetical listing
of Identifiers found. For each identifier, all references to the Identifier are
listed in the order In which the references were encountered. Procedure and
Function names along with all references to them wUl be found at the end of
the cross reference listing.

Identifiers follow current Usa Pascal conventions: the first eight characters,
without regard to case senslstlvity. Case Insensitivity is achieved by shifting
identifiers to lower case, within the Cross Reference section.

INCLUDE flIes are automatically processed. User Interfaces are not
processed. Comments and strIngs are recognized and skipped. There Is no
condl tIonal compllatlon processing or ellmlnatlon of code controlled by
boolean constants.

SXRef wm accept multiple source files. This can be used to get a cross
reference of a set of MaIn Programs together with the units which the
programs use. References are given by file number and Une number within
the fUe. A directory of fUes read is printed at the end of the source listing,
and before the cross reference section.

SXRef attempts to read a fHe for a list of wordS to omit from the cross
reference. The default name Is SXRef.omittext, bUt other names can be
given. If the fHe cannot be opened, executlon proceeds normally withOut
omitting any identifiers.

SXRef will optionally flag where all identifiers are declared and aSSigned
values. The default flag characters are: [*] for declaration and [-] for
assIgnment

If SXRef runs Short of storage, an error message Is gIven and the· program
aborts.

see Also
GXRef, UXRef

11-17

WoJ1<sI7op User's Guide The Utilities

11.13 UXRef
Synopsis
Show unIt dependencIes of one or more Pascal source programs
Dialog
Type "?" to see current options
Source File ? [. TEXT]
OJtput file for Listing? [-Cross Ref] [.TEXT]
Text File of unit names with unexpected pathnames ? [UXRef.UMap] [.TEXT]
Description
UXRef gIves an alphabetlcalllsUng Of. programs and unIts. Each program or
lI'llt listed inclUdes two parts: 1) alphabet1cally l1sts all programs and units
that USE that program or unIt, and 2) alphabetically l1sts all unIts that ARE
USED BY that program or unil
UXRef recognizes conditional compllation and wm determine the truth value
of any {$Ifc ... } expressIon. Compile-time variables can be of both boolean
and integer types and a {$setc ... } can change a variable to a new type.
Warnings will be sent to the console if a syntactical or semantic error is
found in an {$I fc ... } expression.
Warnings about units that can't be found are sent to the console. Even thOUgh
a unit cannot be found it will still show up on the Cross Reference listing.
qJtlons may be turned on or off during fUe name prompt stage Of UXRef.
Four options are included:

+C You will be asked to manually clarify a compile-time expression
or varIable that cannot be evaluated correctly. Enter '1' for
true and 'F' for false. If this option is off, the entire expression
w1ll be treated as false.

+F As each fUe is opened, a message will be printed on the
-console specifying the file name and the unit name being read.

+1 "InclUde Flles" will be treated as units and wlll Show up on the
Cross Reference l1sUng. 0"11 y those "InclUde flles" that are
fOlJ'ld between thebegiming Of the program/unIt and the encJ Of
the uses secUon wIll be l1stecJ.

+W All· warnings wIll be wrItten at the beglming Of the Cross
Reference llstIng as well as on the console.

By enterIng ? dUring the fUe name prompt stage a Short descrIption of each
option will appear along with their current values. The default values of the
options are: -C, +F, -I, and -W.
UXRef prOVides a facility to map a unit to an unexpected pathname. For
example, the unit "Fro" mIght not be complIed yet (e.g., "Foo.CBJ" cJoes not
exist) ancJ the source Is named "UNIT !Fro. TExr·. UXRef wIll attempt to read
a file for a list of logically connectecJ units and pathnames ana If
Fro, -UPPER-UNIT !Fro. TEXT Is an entry In that fUe then "UNIT !Fro. TEXT"

11-18

WoJ1<sI1Op User's Guide The Utilities

wlll be located and searched on the UPPER dIskette when the unIt FOO Is
referenced. The unit name and the pathname must be separated by a comma
with no extra spaces between. In addItion this same faclllty can be used to
shut off unnecessary warnings that occur When an inaccessable unit is
referenced. Normally warnIngs will be prInted When a unit cannot be found,
bUt If the unit name followed by a comma appears on UXRef.()nit. TEXT (or
some other name provIded by the user) the warnIngs for that unIt wIll be
bypassed. Example entries are:

FOO,-UPPER-UNIT IFOO.TEXT
SYSCALL

see Also
GXRef, SXRef

11-19

Appendix A
Error Messages

A.l Assembler Errors•.•............•............................•.............•.............. A-l
A.2 Linker Errors•.........•...........•................................... A-3
A.3 Messages Generated by (l)jICl.ib•...........•................................. A-6
A.4 Qleratlng System Errors•... A-7

Error Messages

A1 Assermler Errors
The following errors can be produced by the Assembler.
1 undefined label
2 ~rand out of range
3 Must have procedure name
4 Number of parameters expected
5 Extra garbage on line
6 Input line over 80 characters
7 Not enough .IFs
8 Illegal use of .REF label
9 Identifier previously declared

10 Improper format
11 .EQU expected
12 Must .EQU before use if not to a label
13 Macro identifier expected
14 Word addressed machine
15 Backward .CRG currently not allowed
16 Identifier expected
17 Constant expected
18 Invalid structure
19 Extra special symbol
20 Branch too far
21 Variable not PC relative
22 Unexpected .ENOM
23 Not enough macro parameters
24 q>erand not absolute
25 Illegal use of special symbols
26 Ill-formed expression
27 Not enough operands
28 Too many undefined lables in this expression
29 COnstant overflow
30 Illegal decimal constant
31 Illegal octal constant
32 Illegal binary constant
33 Invalld key word
34 Macro stack overflow - 5 nested limit
35 InclUde files cannot be nested
36 unexpected end of input
37 This Is a bad place for an .INCLUDE file
38 (1) Y labels and comments may occupy col 1
39 Expected local label
40 Local label stack overflow

A-I

WOrks/1Op User's Guide

41 String constant must be on one line
42 StrIng constant exceeds 80 Characters
43 Illegal use of macro parameter
44 Illegal use of .DEF label
45 Expected key word
46 StrIng expected
47 NeSted macro definItions Illegal
48 '.' or '<>' expected
49 Cannot .EQU to undefIned labels
50 Not even a register
51 Not a Data Register
52 Not an Address Register
53 Register expected
54 RIght paren expected
55 RIght paren or comma expected
56 unrecognizable operand
57 CW location counter
58 comma expected
59 01e operand must be a oata Register
60 DnJ)n or -(An),-(An) expected
61 No longs allowed
62 First operand must be immedIate
63 First operand roost be on or #E
64 (An+).(An+) expected
65 Second operand must be an AA
66 Second operand must be a On
67 "<data>,on expected
68 First operand must be a On
69 AA,#<dlsplacement> expected
70 An Is not allowed with byte
71 O'lly alterable addressing I'T'IOdes allowed
72 O'lly data alterable addr modes allowed
73 AA Is not allowed
74 USP, SR, and CCR not allowed
75 Cannot move from CCR
76 DX;:.(Ay) or «Ay)"Dx expected
77 O'lly memory alterable acJcJr modes allowed
78 O1ly control addressing modes allowed
79 MJst branch baCkwards to label
80 Patch out of code bUffer bOUndaries
81 COde bUffer overflow
82 Segment name must be In a string
83 cannot .DEF macro
84 MACRO defined already
85 Illegal use of MACRO
86 ERRCR While WRITING SYMBCl.. TABLE FILE
87 Not enough EN:Cs

A-2

Error /'1essages

WOrkshop User's Guide

88 MUst have an <EA> (effective address)
89 LJnimplemented Motorola directive
90 ~rand size must be a word
91 No undefined or forward label in .BLOOK
92 O1ly byte-size displacement value allowed

A.2 LlI1<er ErroIS

Error Messages

Linker errors are eIther Warnings, Errors, or Fatal Errors. All LInker errors
are listed below, along with a brief description of their probable cause. The
LInker can also produCe errors from (l)JI(Lib. These errors are llsted In
section A3.

A.2.1Wamlngs
A warning message is an indication of a potential error. However, the link is
allowed to continue normally and may prodUce a vaUd output fUe. Warnings
cannot be ignored! You must make sure that the conditions incl1cated by the
warning are What was intended. When in doUbt, attempt to remedy the
conditions which caused the warning message to occur.
I'b startlrY:J Locatim

The file containing the main Pascal program has probably been omitted.
D4lUcate entry deflnItlms:

M entry name has been found in a library fHe which Is the same as a
name in the main program. References to the name are Interpreted as
referring to the main program entry. (NOTE: this can be an error if a unit
in the link was trying to reference the library entry.)

Qrlfllct with IntrinsiC lillt rene:
A regular unit in the link has the same name as a library Intrinsic Unit.

Also CIl IU segnent:
A segement In the link has the same name as as a library segment.

A.2.2 Errors
A error message is an Indication of a condition WhIch prevents the production
of a valid output file. The link Is allowed to continue, In order to detect any
oUler erroTS. HoWever, the output file WUI not be produced.

MJltlple start locatlons.
More than one main program file has been provided as input to the Linker.

~llcate deflnltlon of Ullt NrJne
[)(u)ly defined Global Data area:

Two units of the same name haVe been provIded as Input to the LInker.
D.f»l1cate entry def1n1tlms.

Two entries of the same name have been found In the Linker Input files.

A-3

Enor f\1essages

Uldeflned entry:
The entry name has been referenced, bUt not defIned. EI thar an Input fHe
has been omItted or a spelling error was made In a procedure name.

lh:Jefined COde ModUle:
The module name has been referenced, but not defined. Either an input
file has been omitted or a spelling error was made in a procedure name.

l..hiefIned data area:
The unit name has been referenced, bUt not defined. Either an input file
has been omitted or a spelllng error was made in a unit name.

segnent rane not fOt.lld In IntrlnslcJlb:
A name Which occurs In an intrinsic library flIe does not appear in the
directory f11e. PrObably Indicates an "architecture" consistency error; that
Is, the library fUe was not linked against the same directory as the current
directory.

Bad blOCk In Library file.
The llbrary flIe beIng read dOes, not have valld contents.

RelooaUoo BlOCk.
00111101 Deflnltlm B100l<.

The IULinker does not support these Object blocks. Either the object file
is very old, or an error haS occured in the object fUe format.

Bad bl~ start Of file:
Bad blOCk type

The Object file dOeS not have valld contents. Most llkely a disk error has
caused to Object fUe to be cJamaged. You Should regenerate the object
fHe or Obtain a copy from a backup dIsk.

Bad MQ(l.de type:
This indicates an internal Linker error, or perhaps an undetected memory
error.

IU COde with maln prognm.
The Input contaIns ooth unlinked Intrinsic lJ1its and an unUnked main
program. Link the intrinsic units Into a library flle. Then link the maln
program, usIng the IntrinsiC library as Input

t1lre UWl 32K of globals
The globals required by the maln program and regular units exceedS the
current limitation Of 32K You will need to recompile the program or the
units, moving some large variables to the heap.

COde SIZe too big:
The code in the segment being linked exceeds the current limitation of
32K. You will need to resegment the program either usIng the +M Linker
option, or by recompiling with different $S COfll)Uer options.

A-Ii

WorkshOp user's Guide Error fvlesssges

segs 1-16 are Reserved:
The directory Indicates that a segment name haS been assoclateCI with one
of the segments reserved for physical addresses.

A.2.3 Fatal Errors
A fatal error indicates a concUtlon which prevents the link from contlruing.
Un<er error -

Indicates an error in internal Linker logiC, perhaps causeCI by an
undetected disk or memory error.

InCOOSlstent IntrlnslcJIb.
Probably indicates an I/O error, such as bad media, which has corrupted the
CIlrectory fUe, or the specification of a bad directory.

can"t re-open lrFUe: xxxxxxx
M I/O error has occured which prevents the opening of file 'xxxxxxx' for
phaSe 2 processing. Examine the fUe using the File Manager, or
regenerate the file. Then attempt to do the link again.

Too l1'a1y COde segnents.
The program has too many small segments. The current limitation is for
segments numbered 17 through 105. RedUce the number of segments by
combining small segments with the +M option in the Lird<er.

Regular U1lt daring intrinsic LlrK
intrinsic U1lt daring RE9Jlar UrK
MaJ.rI>rog as part of Intrinsic Library LiI1<:

The Linker has detected an unlinked regular unit or maln program mixed
with unlinked intrinsic l.I1its.

Re(JJlar Ullt In Intrinsic seg File:
The Linker has detected an unlinked regular LI'lit in an intrinsic library
fUe.

I\k)t MaIn or Intrtnslc Lin<:
The Linker has not seen a valid input fUe to deCide what type of link Is
desired.

I\k) starting location, Ilnldng MaIn progrcm
The fUe containing the Pascal main program has been omitted from the
input list, or Is damaged.

Ole or rmre IU segs not in lntrInslc.Llb:
M intrinsic segment name does not appear in the directory fUe. Probably
indicates an architecture consistency error; that is, the library file was not
linked against the same directory as the current directory.

Bad Ullt BlOCk «(ld lBJ f11e?~
Either this Is a very old Object fHe, not supported by this linKer, or a disK
error has occured.

A-S

WoJ1<shop User's Guide Error Messages

A3 Messages Generated by CbjUl..lb
The IULinKer uses a number of units from the (l)jUl...ib intrinsIc library file.
These units are also used by the Compiler, Code Generator, and object file
utility programs. These unIts detect some error condItions and Issue messages.

A.3.1wamlngs
No COde Block fol.nj In if1JUf. LIB file..

For the o.S. Loader, there should be a Code Block in the directory file.
Perhaps this is an old directory file, or a directory for another operating
system.

Errors detected: No 0Jtput LIB file written.
When the error count Is nonzero, the dIrectory file is not rewritten.

A.3.2 Errors
BOO Peek
Bad Peek2:

Indicates an internal error in the CbjlCLib library, perhaps caused by a disk
or memory error. Check your hardware then retry the link.

110 error, (&l"t write last buffer.
Either the volume dOes not have enough space for the fUe or a hardware
error has occurred.

~Error:
All error has occurred In the managing of storage elements. Usually this
error is due to insufficient initial space (Allocation error) or dUe to
eXhaustion of available space (Memory Full~ The cause of the error is
indicated on the next output line.

AttefTllt to delete vertex with arcs.
AIlJ,ment to qlpOSlteVertex Is not ~ ~Int:

These are errors reported by the GraphS unl L If they occur whlIe the
Linker is executing, there has been an internal logIc error, perhaps caused
by an undetected I/O or memory error.

A.33 Fatal Errors
110 error.

All 110 error has occurred within Filelo. Usually this is the result of a
volume being almost full or a hardware failure. The previous message line
indicates whether the error occurred during reading or writing and at what
poSition within the fUe the error occurred.

No Yersloncontrol BlOCk.
No Ulit Table.
No segnent Table.
t-b File NBnes Table:

IndIcates a bad format for the dIrectory f11e. The Indicated blocK Is
missing from the directory, but is required.

A-6

Error /'1essages

ErroIS ClJrlng Installation:
IndIcates errors dUrIng the Installation of an ooject fIle l1brary.

seUbjlnvar: V8IS1ze Is rot divisible by variant size:
IndIcates an internal logiC error in CbJ10. Either Initialization was not
called, or Cb jlO glooals have been clobbered.

File Buffer less than 2 blOCks:
IndIcates an Internal logIc error In FlleID. pemaps inItialization was not
Called.

AttefT1lt to delete item rot on list:
This Is an error reported by the Lisats unit. If it occurs while the Linker
is executing, there haS been an internal logic error, perhaps caused by an
undetected I/O or memory error.

A.4 ~ratlng System Erron
-6081 End of exec fHe input
-6004 Attempt to reset text file with typed-file type
-6003 Attempt to reset nontext fl1e wIth text type
-1885 Profile not present dUring driver initialization
-1882 ProFlle not present dUring driver initialization
-1176 Data in the object have been altered by Scavenger
-1175 Flle or volume was scavenged
-1174 File was left open or volume was left mounted, and system crashed
-1173 Flle was last closed by the OS
-1146 O'lly a portion of the space requested was allocated
-1063 Attempt to mount boot volume from another Usa or not most recent

boot volume
-1060 Attempt to mount a foreIgn boot dIsk fOllowIng a temporary unmount
-1059 The bad blOCk dIrectory of the diskette is almost full or difficult to

read
-696 Printer out of paper dUring initialization
-660 Cable disconnected dUring ProFlle initialization
-626 Scavenger indIcated data are queStionable, bUt may be 0<
-622 Parameter memory and the disk copy were both invalld
-621 Parameter memory was invalid but the disk. copy was valld
-620 Parameter memory was valid bUt the dIsk copy was invalid
-413 Event Channel was scavenged
-412 Event channel was left open and system crashed
-321 Data segment open when the system crashed. Data possibly invalid.
- 320 Could not determIne sIze of data segment
-150 Process was created, but a library used by program has been scavenged

and altered .
-149 Process was created, bUt the specified program file has been scavenged

and altered
-125 Sepcified process Is already terminating
-120 SpecifIed process Is already active

A-7

WOIkSllop User's Guide

-115 specIfIed process Is already suspended
100 Specified process does not exist
101 Specified process Is a system process
110 Invalid priority specIfied (must be 1 .. 225)
130 COUld not open program fUe
131 File system error while trying to read program file
132 InvalId program fUe (Incorrect format)
133 Could not get a stack segment for new process
134 COuld not get a syslocal segment for new process
135 COUld not get sysglobal space for new process
136 Could not set up communication channel for new process
138 Error accessIng program file whUe loading
141 Error accessIng a lIbrary file While lOadIng program
142 cannot run protected file on this machine

Error Messages

143 Program uses an Intrinsic unit not found In the IntrinSiC LIbrary
144 Program uses an intrinsIc unit whOse nameltype does not agree with

the Intrinsic LIbrary
145 Program uses a shared segment not found in the Intrinsic Library
146 Program uses a shared segment whose name dOes not agree with the

Intrinsic Library
147 No space In syslocal for program fHe descriptor dUrtng process creation
148 No space In the shared IU data segment for the program's Shared IU

glObaIS
190 No space In syslocal for program file description during List_LibFlles

operation
191 Could not open program fUe
192 Error trying to read program fUe
193 Cannot read protected program file
194 InvalId program file (Incorrect format)
195 Program uses a shared segment not found In the Intrinsic Library
196 Program uses a shared segment WhOse name dOes not agree with the

Intrinsic Library
198 DisK 110 error trying to read the Intrinsic unit directory
199 SpecIfIed llbrary fUe number dOes not exist in the Intrinsic LIbrary
201 No suCh exception name declared
202 No space left in the system data area for Declare _ Excep _ Hdl or

Slgnal_Excep
203 Null name specified as exception name
302 InvalId LDSN
303 No data segment bound to the LPSN
304 Data segment already bound to the LDSN
306 Data segment too large
307 Input data segment path name Is Invalid
308 Data segment already exists
309 Insufficient dIsK space for data segment
310 M invalid size has been specified
311 InsuffiCient system resources

A-8

WoIksf1qJ USer's Guide

312 unexpected FHe System error
313 Data segment not found
314 Invalid address passed to Info_Address
315 Insufficient memory for operation
317 DiSk error Whlle trying to swap In data segment
401 Invalid event channel ncrne passed to Make_Event_Chn

Error /'1essages

402 No space left In system glObal data area for (llen_Event_Chn
403 No space left in system local data area for qlen_Event_Chn
404 Non-blOCk-structured deVlce specified in pathname
405 catalog is full in Make_Event_Chn or ~_Event_Ctn
406 No such event Channel exists In Kill Event em
410 Attempt to open a local event char'lOOl to send
411 Attempt to open event channel to receive wnen event channel haS a

receiver
413 unexpected Flle System error in ~_Event_Chn
416 Ccf'rot get et'lOlq't diSk space for event Channel in Qlen_Event_Chn
417 unexpeCted File System error in Close _Event_em
420 Attempt to wait on a channel that the call1ng process did not open
421 Walt_Event_Chn returns empty because sender process could not

complete
422 Attempt to call Walt_Event_Chn on an empty event-call channel
423 Cannot find corresponding event channel after being blOCl<.ed
424 Amount of data returned 'lihUe readlng from event channel not of

expected size
425 Event channel empty after being unblOCked, Walt_Event_Chn
426 Bad request pointer error returned in Walt_Evant_Chn
427 walt_Ust haS Illegal length specIfied
428 Receiver lrt>locKed becaUse last sender closed
429 unexpected FUe System error in Wait_Event_CtYl
430 Attempt to send to a channel WhIch the calling process does not haVe

open
431 Amount of data transferred while writing to event Channel not of

expected sIze
432 Sender unblocked because receiver closed in Send Event Cm
433 Unexpected File System error In SencCEvent_ Chn - -
440 Unexpected File System error In Make_Event_Chn
441 Event channel already exists In Make_Event_Chn
445 Unexpected File System error in Kill_Event_Chn
450 unexpected FUe System error in Flush_Event_ Chn
530 Size of stack expansion request exceeds limit specified for program
531 cannot perform expUclt stack expansion dUe to lack of memory
532 Insufficient disk space for expUcit stack expansion
600 Attempt to perform 110 operation on non 110 request
602 No more alarms available during driver Initialization
605 can to nonconflgured device driver
606 Cannot find sector on floppy diskette (disk unformatted)
608 Illegal length or disk address for transfer

A-9

WOl1<s/1Op User's Guide Error fo1essages

609 Call to nonconflgured deVIce driver
610 No more room In sysglObaI for 1/0 request
613 unpermItted dIrect access to spare track with sparing enabled on

floppy drIve
614 No dIsk present In drive
615 wrong call version to floppy drive
616 unpermitted floppy drIve function
617 CheCksum error on floppy dISkette
618 Cannot format, or wri te protected, or error unclamplng floppy dISkette
619 No more room In sysglobal for 1/0 request
623 Illegal devIce control parameters to floppy drIve
625 scavenger IndIcated data are bad
630 The time passed to Delay_Time, Convert_TIme, or Send_Event_Ct'ln nas

Invalld year
631 Illegal timeout request parameter
632 No memory avalIable to inltiallze clock
634 Illegal timed event Id of -1
635 Process got unblOCked prematurely dUe to process termInation
636 TImer request dId not complete successfully
638 Time passed to Delay_Time or 8end_Event_Chn more than 23 days from

current time
639 Illegal date passed to Set_Time, or illegal date from system clock In

Get Time
640 RS-232 driver called with wrong version number
641 RS-232 read or wr1te Initiated wlth Illegal parameter
642 Unimplemented or unsupported RS-232 driver function
646 No memory avallabJe to InItialize RS-232
647 unexpected RS-232 timer Interrupt
648 unpermItted RS-232 Inlt1al1zatlon, or dIsconnect detected
649 Illegal device control parameters to RS-232
652 N-port driver not Inltlal1zeo prior to Profile
653 No room in sysglobal to InItialize Profile
654 Hard error status returnee from drive
655 Wrong call version to ProFUe
656 Unpermitted ProFIle function
657 Illegal device control parameter to Profile
658 Premature end of fUe When reading from driver
659 Corrupt File System header chain found In driver
660 Cable disconnected
662 Parity error WhUe sending command or writing data to Profile
663 Checksum error or CRC error or parity error In data read
666 Timeout
670 Bad command response from drIve
671 Illegal length specified (must - 1 on Input)
672 unImplemented console driver function
673 No memory available to InlUal1ze console
674 console driver called wIth wrong versIon number

A-tO

Wo.lkSl1t:p user's GuIde

675 Illegal device control
680 Wrong call version to serial driver
682 unpermitted serial driver function
683 No room in sysglobal to initialize serial driver
685 Eject not allowed this device
686 No room in sysglobal to initiaUze n-port card driver
687 unpermitted n-port card driver function
688 Wrong call version to n-port card driver
690 Wrong call version to parallel printer
691 Illegal parallel printer parameters
692 N-port card not Initialized prior to parallel printer
693 No room in sysglobal to initialize parallel printer
694 Unimplemented parallel printer function
695 Illegal device control parameters (parallel printer)
696 Printer out of paper
698 Printer offline
699 No response from printer

Error /'4ess8ges

700 Mismatch between loader version number and qlerating System version
number

701 OS eXhausted its internal space during startup
702 Cannot make system process
703 Cannot kill pseudo-outer process
704 Cannot create driver
706 Cannot Initialize floppy disk driver
707 Cannot Initialize the Flle System volume
708 Hard disk mount table unreadable
709 cannot map screen data
710 Too many slot-based devices
724 The bOot tracks dO not know the right File System version
725 Either damaged File System or damaged contents
726 Boot device read failed
727 The OS will not fit into the available memory
728 SYSTEM.CS Is mIssing
729 SYSTEM.C(J\JfIG is corrupt
730 SYSTEM.CS is corrupt
731 SYSTEM. DEBUG or SYSTEMDEBUG2 is corrupt
732 SYSTEM.LLD Is corrupt
733 Loader range error
734 Wrong driver is found. For instance, storing a dIskette loader on a

ProFUe
735 SYSTEM.LLD Is missIng
736 SYSTEM.I..JI'.P ACK Is missIng
737 unpack of SYSTEM-OS wIth SYSTEM.L.Jf\PACK failed
801 UResult <> 0 on I/O using the Monitor
802 Asynchronous I/O request not completed succeSSfUlly
803 Bad combination of mode parameters
806 Page specified Is out Of range

A-ll

WOd<SIIOp user~ GuIde

809 Invalid arguments (page, address, offset, or count)
810 The requested page could not be read In
816 NOt enougtl sysglobal space for FHe System bUffers
819 Bad device number
820 No space In sysglObal for asynchronous request JIst
821 Already initiali2ed 110 for this devIce
822 Bad device number
825 Error in parameter values (Allocate)
826 NO more room to allocate pages on deVIce
828 Error In parameter values (Deallocate)
829 Partial deallocation only (ran Into unallocated regIon)
835 InvalId s-flle number
837 unallocated s-flle or 110 error
838 Map overflow: s-flle too large
839 Attempt to compact fne past PECF
841 Unallocated s-fUe or 110 error
843 RequeSted exact fit, bUt one could not be provided
847 Requested transfer count is <- 0
848 End of fUe encOtX'ttered
849 InvalId page or offset value in parameter llst
852 Bad unit number
854 No free slots in s-llst directory (too many s-fUes)
855 No available dIsk space for fUe hints
856 Device not mounted
857 Empty, lOCked, or Invalid s-fUe
861 Relative page Is beyond PE(F (bad parameter value)
864 No sysglObal space for volume bitmap
866 Wrong FS version or not a valid Usa FS volume
867 Bad unit number
868 Bad unit number
869 UnIt already mounted (mount)lno unit mounted
870 No sysglobal space for DCB or I'-ODF
871 Parameter not a valld s-flle 10
872 No sysglobal space for s-file control blOCk
873 Specified fUe is already open for private access
874 Device not mounted
875 Invalid s-fUe 10 or s-fUe control blOCk
879 Attempt to postion past LE(F
881 Attempt to read empty fUe
882 No space on volume for new data page of fUe
883 Attempt to read past LE(F
884 Not first auto-allocation, bUt file was empty
885 Could not update fUeslze hints after a write
886 No syslOCal space for 110 request Ust

Error I'1ess8ges

887 catalog pointer ctoes not Inc1lcate a catalog (bad parameter)
888 Entry not found in catalog
890 Entry by that name already exists

A-12

WoJ1<sI7op User's Guide

891 Catalog Is full or Is damaged
892 Illegal name for an entry
894 Entry not fauna, or catalog Is damaged
895 Invalld entry name
896 safety swItch Is on--cannot k1l1 entry
897 Invalid bootdev value
899 Attempt to allocate a pIpe
900 Invalld page count or FCB pointer argument
901 Could not satisfy allocation request -
921 Pathname Inval1d or no SUCh device
922 InvalId label size
926 Pathname Invalid or no SUCh deVice
927 Inval1d label size
941 Pathname invalId or no SUCh device
944 (l) ject is not a fHe
945 FlIe Is not in the killed state
946 Patnname Inval1d or no such devIce
947 Not enough space In syslocal for File System refdb
948 Entry not found In specified catalog
949 Private access not allowed If flIe already open shared

Error Messages

950 PIpe already In use, requested access not possIble or dwrlte not allowed
951 File Is already opened In private mode
952 Bad refnum
954 Bad refnum
955 Read access not allowed to specifIed object
956 Attempt to position FMARK past LECF not allowed
957 Negative request count Is 1llegal
958 Nonsequential access Is not allowed
959 System resources eXhaUSted
960 Error wrl ting to pipe whUe an unsatisfied read was pending
961 Bad refnum
962 No WRITE or APPEND access allowed
963 Attempt to position FMARK too far past LECF
964 Append access not allOWed in absolute mode
965 ~ access not allowed in relative mode
966 Internal inconsIstency of FMARK and LECF (wamirg)
967 Nonsequential access is not allowed
968 Bad refnum
971 Pathname Inval1d or no such deVice
972 Entry not found in specified catalog
974 Bad refnum
977 Bad refnum
978 Page count Is nonposlt1ve
979 Not a block-structured device
981 Bad refnum
982 No space has been allocated for specified file
983 Not a blocK-structured device

A-13

WOrkshop USer's GuIde

985 Bad refnum
986 . No space has been allocated for specified fHe
987 Not a block-structured deVice
988 Bad refnum
989 caller Is not a reader of the pipe
990 Not a block-structured deVice
994 Invalid refnum
995 Not a block-structured deVice
999 Asynchronous read was unblocked before it was satisfied

1021 Pathname invalid or no such entry
1022 No such entry found
1023 Invalid newname, check for ,_, in string
1024 New name already exists in catalog
1031 Pathname invalid or no such entry
1032 Invalid transfer count
1033 No such entry found
1041 Pathname invalid or no such entry
1042 Invalld transfer count
1043 No such entry found
1051 No device or volume by that name
1052 A volume is already mounted on device

Eoor /VIessages

1053 Attempt to IT\Ol.I'lt temporarily unmounted boot volume just unmounted
from this Lisa

1054 The bad block directory of the diskette Is invalid
1061 No device or volume by that name
1062 No volume is mounted on deVice
1071 Not a valid or mounted volume for wOrking directory
1091 Pathname invalid or no such entry
1092 No such entry fOll1d
1101 Invalid device name
1121 Invalid deVice, not mounted~ or catalog Is damaged
1128 Invalid pathname, device, or'volume not mounted
1130 File Is protected; cannot open dUe to protection violation
1131 No device or volume by that name
1132 No volume is mounted on that deVIce
1133 No more open files in the file llst of that deVice
1134 Cannot find space In sysglObal for open file llst
1135 cannot find the open fUe entry to mOdify
1136 Boot volt.me not motJ'lted
1137 Boot volume already unmounted
1138 Caller cannot haVe higher priority than system processes When calUng

ubd
1141 Boot volume was not unmounted when calling rbd
1142 some other vol'-lTle stUI mounted on the boot device When calling rod
1143 No sysglObal space for MDDF to dO rbd
1144 Attempt to remount volume whiCh Is not the temporarily umlOlI"Ited

boot volume

A-14

Wod<shop User's Guide

1145 No sysglObal space for bit map to dO rbd
1158 Track-by-track copy bUffer is too small
1159 Shutdown requested whlle boot volume was lI"ltllOUOted
1160 Destination device too small for track-by-track copy
1161 Invalid final shUtdOwn mOde
1162 Power Is already off
1163 Illegal command
1164 Device is not a diskette device
1165 No volume Is molJ"lted on the device
1166 A valId volume Is already rTICUlted on the devIce
1167 Not a block-structured deVlce
1168 Device name Is Inval1d

Error fv1essages

1169 Could not access aevlce before initIallzatIon using default device
parameters

1170 Could not mount volume after InitIallzatIon
1171 • -' Is not allowed In a volume name
1172 No space avallable to initIal1ze a bitmap for the volume
1176 Cannot read from a pIpe more t.t'la1 half of Its allocated physical size
1177 Cannot cancel a read request for a pIpe
1178 Process waiting for pIpe data got unblocked because last pipe writer

cloSed It .
1180 Cannot write to a pipe more than half of its allocated physical size
1181 No system space left for request blOCk for pIpe
1182 Writer process to a pipe got unblocked before the request was satisfied
1183 Cannot cancel a wrIte request for a pIpe
1184 Process waiting for pipe space got unblocked because the reader closed

the pipe
1186 Cannot allocate space to a pipe while it has data wrapped around
1188 Cannot compact a pIpe while It has data wrapped around
1190 Attempt to access a page that is not allocated to the pipe
1191 Bad parameter
1193 Premature end of file encountered
1196 SomethIng Is still open on devlce--cannot unmount
1197 Volume is not formatted or cannot be read
1198 Negative request count is illegal
1199 Function or procedUre is not yet implemented
1200 Illegal volume parameter
1201 Blank file parameter
1202 Error writing destination fHe
1203 Invalid UCSD directory
1204 FUe not found
1210 Boot track program not executable
1211 Boot tracK program too bIg
1212 Error reading boot track program
1213 Error wrIting bOOt track program
1214 Boot tracK program fUe not found
1215 Cannot wrlte boot tracKs on that device

A-1S

WOrksl7Op USer's Guide

1216 Could not create/close Internal bUffer
1217 Boot track program has too many code segments
1218 Could not find confIguration Information entry
1219 COUld not get enough WOrking space
1220 Premature ElF In bOot track program
1221 Position out of range
1222 No device at that position

Error Messages

1225 Scavenger has detected an internal Inconsistency symptomatic of a
software bug

1226 Invalid device name
1227 DevIce is not block structured
1228 Illegal attempt to scavenge the boot volume
1229 Cannot read consIstently from the volume
1230 Cannot write consistently to the volume
1231 Cannot allocate space (Heap segment)
1232 Cannot allocate space (Map segment)
1233 Cannot allocate space (SFOB segment)
1237 Error rebuilding the volume root directory
1240 Illegal attempt to scavenge a non-OS-formatted volume
1296 Bad string argument has been passed
1297 Entry name for the Object Is Invalid (on the volume)
1298 S-list entry for the object Is invalld (on the VOlume)
1807 No dIsk In floppy drive
1820 write-protect error on floppy drive
1822 unable to clamp floppy drive
1824 Floppy drive write error
1882 Bad response from ProFlle
1885 Profile timeout error
1998 Inval1d parameter address
1999 Bad refnum
6001 Attempt to access unopened flle
6002 Attempt to reopen a fHe which is not closed using an open FIB (file

info block)
6003 qleratlon incompatible with access mode with which fUe was opened
6004 Printer offllne
60DS FUe record type Incompatible with character device (must be byte

sIzed)
6006 Bad integer (read)
6010 qleratlon Incompatible wIth fHe type or access mode
6081 Premature end of exec file
6082 Invalid exec (temporary) file name
6083 Attempt to set prefix with null name
6090 Attempt to move console with exec or output fHe open
6101 Bad real (read)
6151 Attempt to relnltallze heap already In use
6152 Bad argument to f\.EW (negative size)
6153 Insufficient memory for NEW request

A-16

Error /'4essages

6154 Attempt to RELEASE outside of heap
qlerating System Error COdes

The error codes listed below are generated only when a nonrecoverable error
occurs while in qlerating System code.

10050 Request block is not chained to a PCB (Unblk_Req)
10051 Bld_Req is called with interrupts off
10100 An error was returned from SetUp_Directory or a Data Segment routine

(Setup_IUlnfo)
10102 Error> 0 trying to create shell (Root)
10103 Sem_Count > 1 (Init_Sem)
10104 Could not open event channel for shell (Root)
10197 Automatic stack expansion fault occurred in system code (Check_Stack)
10198 Need_Mem set for current process while scheduling is disabled

(SimpleScheduler)
10199 Attempt to block for reason other than lID while scheduling is disabled

(SimpleScheduler)
10201 Hardware exception occurred while in system code
10202 No space left from Sigl_Excep call in Hard_Excep
10203 No space left from Sigl_Excep call in Nmi_Excep
10205 Error from Wait_Event_Chn called in Excep_Prolog
10207 No system data space in Excep_Setup
10208 No space left from Sigl_Excep call in range error
10212 Error in Term_Def_Hdl from Enable_Excep
10213 Error in Force_ Term_Excep, no space in En~Ex_Data
10401 Error from Close_Event_Chn in Ec_Cleanup
10582 Unable to get space in Freeze_Seg
10590 Fatal memory parity error
10593 Unable to move memory manager. segment during startup
10594 Unable to swap in a segment during startup
10595 Unable to get space in Extend_MMlist
10596 Trying to alter size of segment that is not data or stack (Alt_DS_Size)
10597 Trying to allocate space to an allocated segment (AllOC_Mem)
10598 Attempting to allocate a non free memory region (Take_Free)
10600 Error attempting to make timer pipe
10601 Error from Kil1_(])ject of an existing timer pipe
10602 Error from second Make_Pipe to make timer pipe
10603 Error from qlen to open timer pipe
10604 No syslocal space for head of timer list
10605 Error during allocate space for timer pipe, or interrupt from

nonconfigured device
10609 Interrupt from nonconfigured device
10610 Error from info about timer pipe
10611 Spurious interrupt from floppy drive #2
10612 Spurious interrupt from floppy drive -ttl, or no syslocal space for timer

list element
10613 Error from Read_Data of timer pipe

A-17

Wo.rksl7op User's Guide Errol" Messages

10614 Actual returned from Read_Data is not the same as requested from
timer pipe

10615 Error from open of the receiver's event channel
10616 Error from Write Event to the receIver's event channel
10617 Error from Close=Event_Chn on the receiver's pipe
10619 No sysglobal space for timer request block
10624 Attempt to shut down floppy disk controller while drive is still busy
10637 Not enough memory to Inltiallze system timeout drives
10675 Spurious timeout on console driver
10699 Spurious timeout on parallel prInter driver
10700 Mismatch between loader version number and ~erating System version

number
10701 OS exhausted its internal space during startup
10702 Camot make system process
10703 Cannot kill pseudo-outer process
10704 Cannot create driver
10706 Cannot initialize floppy disk driver
10707 Cannot initial1ze the File system volume
10708 Hard disk mount table unreadable
10709 Cannot map screen data
10710 Too many slot-based devices
10724 The boot tracks do not know the rIght FHe System version
10725 Either damaged FUe System or damaged contents
10726 Boot device read falled
10727 The OS will not fit into the available memory
10728 SYSTEM.OS is missing
10729 SYSTEM.CCNFIG is corrupt
10730 SYSTEM.OS is corrupt
10731 SYSTEM.DEBUG or SYSTEM.DEBUG2 is corrupt
10732 SYSTEM.LLD is corrupt
10733 Loader range error
10734 Wrong driver Is found. For Instance, storing a diskette loader on a

ProFile
10735 SYSTEM.LLD Is mIssIng
10736 SYSTEM.UNPACK is miss1ng
10737 unpaCk of SYSTEM.OS wlth SYSTEM.UNPACK faBed
11176 Found a pend1ng wrIte request for a pIpe whUe In Close_())ject when It

is called by the last writer of the pIpe
11177 Found a pending read request for a pipe WhUe In CloseJbject when It

Is called by the (only possible) reader of the pipe
11178 Found a pending read request for a pipe whUe in Read_Data from the

pIpe
11180 Found a pending wrIte request for a pipe while in WrIte_Data to the

pIpe
118xx Error xx from diskette RCJv1 (See OS errors 18xx)
11901 Call to Getspace or Relspace wIth a bad parameter, or free pool is bad

A-18

0

0 ...
1 ...
2 me

3 me

4 mr

5 -
6 lICIt

7 lEI..

8 IS

9 Hf

1

u

IC1

DCZ

DCJ

DC4 -
IYII

Ell

eM

HI

2

•
I •
II

Appendix B
Workshop Character Set

34567 8 9 ABC D E F

......................................
) 9 I Y i y A () @ 'If ••• f~rr rt~f IJf

A iF - It : J Z j z a 0 .. f '-' lItt~fffflf
B VI DC + ; K [k { i 0 ' I ~I1I ~tIf I~II ~~~It~
c ff n , < L \ 1 I A u Q 1~mI~ ~IfI tIt~ ~fI~~~
o at • - = M] m } ~ u - Q I~~~~~I I~I~~~~ ~~II~~~ II~~~~
E so .. •) Nne Q If. II! II~f I~tl III~ I~I~~~
F II us I ? 0_ 0 In e U 0 8 ~t@t~ ~1Il tIlt tIJ

The flnt 32 characten ald CE. are ruprlntlng cootrol codes..

The sta:ted area Is reserved for future use.

B-1

Appendix C
Screen Control Characters

To perform standard screen control functions in Pascal, use the ScreenCtr
procedure of PASlIBCALL as detaIled In section 5.4. For an alternative
method of screen control, you can use WRITE or WRl1ELN's with the
corresponding cnaracter string from Table C-1.

In BASIC, you shOUld use PRINT with the a-R$ function and the argument
that correspondS to the desired action. For example:

10 print ChrS(27); ChrS(42); chrS(10); Ohr$(10)
20 em
nil

should erase the screen, and position the cursor on the third line.

Desired function
poSition to home

one position left
one position right

position up one line
position down one line
erase to end of Une
erase to end of screen
erase screen

Toole C-l
SCreen control O1aracter Strings

single-character string
ASCII
ChareX Decimal

IE 30
BS 8 8
FF C 12
VT B 11
LF A 10

C-l

2-character string
ASCII
Char i-EX Decimal

ESC-T 1B-54 27-84
ESC-Y IB-59 27-89
ESC-* IB-2A 27-42

Appendix D
Common Problems

0.1 What to Do When You Find Yourself in the Debugger 0-1
0.2 How to Stop Your Program•..•...•......•.....•....•.•..............•..... 0-2
0.3 What to Do When a Diskette Won't Eject ... 0-2
0.4 What to 00 When You Get a Range Error .••...••.....••.......•......•.......... 0-2
0.5 What to Do When the System Does Not Respond•.•.•....••......••...••.•. 0-2
0.6 What to 00 with a Runaway Exec FUe••.•.•.•••.......•..•..... 0-3

Common Problems

This section presents the most common problems that programmers seem to
have with the Workshop with suggestions for handling them.

0.1 What to Do When You Find Yourself In the Debugger
You can tell you have entered the DebUgger when you suddenly end up with
cryptic looking numbers and symbols on your screen. You are actually viewing
the alternate screen, and the numbers and symbOls are a disassembly of the
code Where you haVe stopped and the values of the machine registers. To
return to the normal screen to see where you were before you entered the
DebUgger, hOld down the [CPTICN] key and press the [ENTER] key. Additional
information on the alternate screen is avallable in Section 3.2.
Often the Debugger display will include suggestions for what to do next, such
as "Press g to continue". Figure 0-1 is an example of what appears on the
screen when you enter the Debugger.

Level 7 Interrupt
LOCALPRO+881A 1048 FFFS PC MOVE.B 00,$FFFS(A6)
PC=00240022 SR=0000 0 US=00F7FBEC SS=00CBFEE0 00=1 PM=00019
00=00100009 01=00000008 02=000000C0 03=000264A7
04=00ee00e1 OS=4EFgee84 06=12CC4EF9 07=0084ee00
A0=80F8126E A1=eeCCA22A A2=00240068 A3=88CCA22A
A4=00CCA22A AS=00F7FC44 A6=00F7FBFA A7=00F7FBEC
)

Figure 0-1
DetuJger SCreen Display

You can enter the Debugger In a number of ways, most commonly by havIng
an error 1n your program, pressing the NMI (nonmaskable interrupt) key, or
having a memory parity error. The NMI key Is the "-" key on the numeric
keypad.
More information on handling the Debugger is given in Chapter 8. Section 8.2
will help you handle accidental entry into the DebUgger. Section 8.3.2
contains information abOout Pascal run-time errors, particularly range errors.

0-1

WorkshOp User's Guide Common ProlJJems

02 HoW to Stop Your Progrcm
If YOUi' program has been ruming for longer than you think it needs to, it
might be in an infinite loop. Before you stop the program, you shoUld:

• Check the alternate screen. Maybe your program is waiting for lnput.
• Try ei-perlOd to see If it responds.

If neither of these actions works, press the NMI key, which stops your program
in the Debugger. See Section 8.2 for information about what you can do from
the Debugger.

0.3 What to 00 When a Diskette Won't Eject
The eject request bUttons are only recognized after the Workshop system does
a Pascal 110 operation. Thus when you press an eject bUtton, nothing will
happen untll you press a key, or 110 happens for some other reason. (When
you are in the Editor, the Preferences tool, or TransferProgram, you do not
need to hit a key after pressing the diskette bUtton.)
In general, if a diskette will not eject, it means that the fUe system still has
some fUe open on it. Use the OlUne command to check the open count,
which will tell you if any fUes are still open. Then use the Ust command
from the File Manager to Ust the contents of the diskette. If some fUes are
open, there is prObably a resident process that has a file open or a data
segment open that has been mapped to the diSk. Use the ManageProcess
SUbSystem in the System Manager to kill the process. This wll! close the fUes
and the disk will eject.
Further Information on the Ust command can be found In Sections 2.3 and 2.6.
The ManageProcess subsystem Is deScribed In Section 3.4.

0.4 What to 00 When Yoo Get a RCPJB Error
A range error drops you into the DebUgger. Instructions for handling range
errors are In section 8.3.2.

05 What to Do When the System Does Not Respond
some of the reasons your WorkShop mIght not respond are:
1. You might be running a program wIth an Infinite loop.
2. You might have stopped console output by pressing ei-S.
3. You might haVe the alternate screen Showing.
4. You might have altered the NMI character.
Press the NMI key (the "-"key on the numeric keypad) to drop into the
Debugger. See Section 8.2 for further instructions.
If pressing the NMI key dOes not work, power off your Usa and rebOOt the
system.

0-2

wod<sI1op USer's Guide Common Problems

0.6 What to Do wiUl a RU18W8Y Exec File
If you think that your exec file has gone wlld, how dO you stop it?

When the exec fUe processor has finished processing your exec file (s), It has
created a temporary file with the stream of characters that are to perform
the actions in the exec fUe. The Workshop then sets the run-time
environment so that standard input comes from the temporary file, and begins
executing the commands In the temporary file. While they are executing, the
Workshop Ignores the keyboard, although the characters you type will be
remembered.
You can terminate standard Workshop programs by pressing c-periOd, althoUgh
termination might not be immediate If the program being run dOes not
recognize C-period.

~

('.Jate that most WorkShOp tools check forti-perlod from the keybOard
even When runnlng under exec files. This means that you can abort
Workshop tools In exec files.

LJnless user programs are written to recognize the c-perlod key comblnation
as an abort mechanism, preSSing thOse keys wUl not terminate the exec file If
a user program is being run. (see PASLIBCALL, Section 5.4, for information
on the function PAbOrtFlag, which tells whether or not those keys have been
pressed.) If this is the case, you can either:

• walt for the user program to terminate so that .-perlod can be
recognized by something else, or

• press the NMI key, which forces the system into the DebUgger.
If the user program dOes recognize .-perlod, pressing It wUI terminate the
program but not the exec f11e. To terminate the exec file, walt until the
WorkShOp prompt appears and press .-perlod again.
see section 8.2 for instructions on how to stop a user program early.

0-3

----------A----------
active document 4.2
AddResident conmand 3.4
address error exception 8.2.1.1
addressing modes 6.4.5
All OCCurrences 4.7
alternate screen 1.1
j-period key 1.5.2, 5.4.1 .-s key 1.5.3
ASCII Assembler directive 6.5.1
Assemble command 1.3
Assemble instruction in DebUgger

8.4.5
Asseflt>1er 6

addressing modes 6.4.5
assemble from exec file 9.4.1
Assembler directives 6.5
calling Pascal I/O 6.7.4
comments 1n program 6.4.7
conditional assembly directives

6.5.3
constants 6.4.2
current program location 6.4.7
error messages A.I
express10ns 6.4.5
external reference directives

6.5.4
function, how to write 6.7.3
generic instructions 6.3
labels and local labels 6.4.4
listing file 6.2.4
macro directives 6.5.1
object file 6.2.3
opcodes 6.3
operators 6.4.5
options 6.2.1
Pascal data areas 6.7.5
program structure 6.4.1
pseUdo-ops 6.5
space allocation directives

6.5.1
asterisk 6.4.7

'0367-A

Index

Index-1

----------B----------
Backup conmand 2.3.1, 2.7
BASIC

installing 1.10
Interpreter 1.11

Basic command 1.3
Baud Rate menu 10.3
.BlOCK Assembler directive 6.5.1
bloCk-structured device 2.4.1
Boolean expression, in exec file

9.2.4.1
Boolean function, in exec file

9.2.4.2
boot device 3.3.2
booting 1.2
breakpoint, DebUgger 8.2.1.3,

8.4.6
bus error 8.2.1.1
.BYTE Assembler directive 6.5.1
ByteDiff utility 11.2

----------c----------
Cases Nust Agree 4.7
Cases Need Not Agree 4.7
chaining exec files 9.4.5
ChangeSeg utility 11.2
Changing a volume or file name

2.10
character set, Lisa B
CLEAR key 1.5.1.1
Clipboard 4.1, 4.6
CObOl conmana 1.3
COdeSlze utility 11.3
command file, Linker 7.2
conrnand line

File Manager 2.2, 2.3
System Manager 3.2
IJJorkshop 1.1, 1.3

commands, Debugger 8.5
corments in Assemler program

6.4.7
comments in exec file 9.3.1

IIIO.l'ksl7op User IS Cui de

communications. See Transfer
program.

comparing binary files 11.1
comparing .TEXT files 11.4
Compller~ Pascal 5
Compiler commands~ Pascal 5.3
ODNCAT function in exec file

9.2.4.4
conditional assembly directives

6.5.3
configuring an RS232 port 11.10
connectors 3.3.3
Console command 3.2
constants, Assembler 6.4.2
Control menu 10.3
Convenience Settings 3.3.1
Copy 4.6
Copy command 2.3.2, 2.7
copying

files 2.7
text 4.2.4

cross-reference, Pascal 11.12,
11.13

cross-reference utility 11.9
current program location~

Assembler 6.4.7
CUt 4.6

----------0----------
data communications. See Transfer

program.
date~ file 9.2.4.2
dead code analysis 7.1.1, 7.8
Debug command 1.3
Debugger 8

Assemble instruction 8.4.5
breakpoint 8.2.1.3, 8.4.6
commands 8.3-8.5
Disassemble instruction 8.4.5
display memory 8.4.2
display registers 8.4.4
execution time, measuring 8.4.8
memory dump to diskette 8.4.9.5
memory management hardware~

changing 8.4.7
NHI key, setting 8.4.9.3

Index-2

Index

printing 8.4.9.4
problem diagnosis 0.1
and run time stack 6.6.1
search memory 8.4.3
symbols and base conversion

8.4.9.1
trace commands 8.4.6
UBR command 8.2.1.3
windOW, moving 8.4.9.2

.DEF Assembler directive 6.5.4
DEFAULT exec file command 9.2.2.1
DefaultPrinter command 3.2
Delete command 2.3.3~ 2.8
DeleteResident command 3.4
deleting a file 2.8
Device Connections option 3.3.3
DEVICE_CONTROL system call 5.4.1
Differentiated Keywords 4.9
Diff utility 11.4
directives, Assembler 6.5
directory~ working 1.4
Disassemble instruction, Debugger

8.4.5
disassembler utility 11.5
diskette

mounting and unmounting
1.5.4

nonejecting 0.3
volume 2.4.1

domain 8.2.1.2
dUmping a file 11.6
DumpObj utility 11.5
DumpPatch utility 11.6
Duplex menu 10.3
Duplicate... 4.5

----------E----------
Edit

Cut 4.6
Paste 4.6

Edit command 1.3
Edit menu 4.2.2, 4.6
Editor 4

copying text 4.2.4
Edit menu 4.2.2, 4.6
File menu 4.2.2, 4.5

I/Iorkshop User's Guide

menus 4.2.2
multiple files 4.2.4
operations 4.2.1
Print menu 4.9
Search menu 4.2.2, 4.7
Type Style menu 4.2.2, 4.8

.ELSE Assembler directive 6.5.3
ELSE exec file command 9.2.4
ELSEIF exec file command 9.2.4
.ENDC Assembler directive 6.5.3
ENOIF exec file command 9.2.4
.ENDH Assembler directive 6.5.2
Environments window. 1.2
Equal command 2.3.9
error messages A

Assembler A.l
Linker A.2
ObjIOLib A.3
Operating System A.4

errors, program. See program bugs.
errors 1n exec file 9.6
escape key 1.5.1.1
exception handler 8.2.1.1
exec file 9

as function 9.4.8
assembly 9.4.1
Boolean expression 9.2.4.1
Boolean function 9.2.4.2
chaining 9.4.5
conmand lines 9.2
comments 9.2, 9.3.1
CONCAT string function 9.2.4.4
conditional statements 9.2.4
DEFAULT command 9.2.2.1
ELSE command 9.2.4
ELSEIF command 9.2.4
ENOIF command 9.2.4
errors 9.6
EXISTS function 9.2.4.2
function calls 9.2.5.3
IF command 9.2.4
nesting 9.2.5
NEWER function 9.2.4.2
options 9.3
parameter list 9.3
parameters 9.2

Index-3

Index

Pascal compile 9.4.1, 9.4.3,
9.4.4, 9.4.6

processor 9.3
programming tips 9.5
READCH command 9.2.3.1
READLN COmmand 9.2.3.1
recursive function 9.4.6
REQUEST command 9.2.2.2

_ RETURN conmand 9.2.5.2
SET command 9.2.2.1
statements 9.2
stopping execution 0.6
string expressions 9.2.4.3
string functions 9.2.4.4
SUBMIT command 9.2.5.1, 9.3.1.1
temporary file 9.1, 9.3.1.1
UPPERCASE string function

9.2.4.4
WRITE command 9.2.3.2
WRITELN command 9.2.3.2

execution time, measuring 8.4.8
EXISTS exec file function 9.2.4.2
Exit Editor 4.5
expreSSions, Assembler 6.4.5
extension to file name 2.4.3
external procedures and functions,

6.6
external reference directives,

Assembler 6.5.4
external references, resolving

7.1, 7.7

----------F----------
file

copying 2.7
deleting 2.8
dump utility 11.6
exec temporary 9.1
FileDiv utility 11.7
listing 2.6
patch utility 11.6
search utility 11.8

FileAttributes command 2.3.10
file date 9.2.4.2
FileDiv utility 11.7
FileJoin utility 11.7

IIorksl1op User's Guide

File Manager 2
File Manager commands

Backup 2.3.1, 2.7
ClearAttributes 2.3.10
COpy, 2.3.2 2.7
Delete, 2.3.3 2.8
Equal 2.3.9
FlleAttributes 2.3.10
Initialize, 2.3.11, 2.4.1 2.9
List 2.3.4, 2.6
Mount 2.3.12
Names 2.3.13, 2.6
Online 2.3.14
Prefix 2.3.5
Protect 2.3.10
Quit 2.3.8
Rename 2.10, 2.3.6
Safety 2.3.10
Scavenge 2.3.15
Transfer 2.3.7
Unrount 2.3.16

File menu 4.2.2
FILE-HGR command 1.3
file name 1.4, 4.5

Changing 2.10
prompts 1.5.1, 1.5.1.2-1.5.1.6
standard extension 2.4.3

file specifier 2.2, 2.4.2, 2.S
FilesPrivate command 3.2
Find... 4.7
Find & Paste All 4.7
Find Same 4.7
Find utility 11.8
font 4.8
full dUplex. See Duplex nenu.
Full Footers 4.9
function, how to write in

Assent)ler 6.7.3
function as exec file 9.4.8
function calls in exec file

9.2.5.3
function result 6.6.1

------·----G----------
Generate command 1.3

Index-4

IndeX

generic instructions, Assembler
6.3

GetGPrefix procedure, Pascal 5.4.1
GetPrDevice procedure, Pascal

5.4.1
global cross-reference utility

11.9
glObal name 7.7
GXRef utility 11.9

----------H----------
hal f duplex. See Duplex nenu.
Handshake nenu 10.3
hardware exception 8.2.1.1
HEAD macro 6.6.1
heap, Pascal 5.4.2
HEAPRESULT, Pascal heap routine

5.4.2
help 1.5.1. 7

----------1----------
I-code 5.1, 5.2, 5.2.1
.IF Assembler directive 6.5.3
IF exec file command 9.2.4
.1 file extension 2.4.3
.INCLUDE Assembler directive 6.5.5
infinite loop 8.2.1.2, 0.2
Initialize command 2.3.11, 2.4.1,

2.9
insertion point 4.1, 4.3.1
installing

BASIC 1.10
COBOl 1.12
Pascal 1.7

intrinsic units 7.5

----------K----------
Keyboard repeat delay 3.3.1
KillProcess commands 3.4

----------l----------
labels, Assembler 6.4.4
.LIB f1le extension 2.4.3

ItIorkslJop IJser 's Guide

Link command 1.3
Linker 7

error nessages A . 2
listing 7.6
options 7.3

Lisa character set B
.LIST Assembler directive 6.S.5
List corrmand 2.3.4, 2.6
listing file, Assentller 6.2.4
listing files 2.6
Literal search 4.7
local labels, Assembler 6.4.4
local name 7.7
.LONG Assembler directive 6.S.1
loop 8.2.1.2, 0.2

----------H----------
.MACRO Assembler directive 6.5.1
macro directives, Assembler 6.5.1
.MACROLIST Assembler directive

6.5.5
main coomand line. see Workshop

connands line.
main program, linking 7.4
main screen 1.1
t1aI<eBacKground coomand 1.3
ManageProcess conrnand 3.2
MARK, Pascal heap routine 5.4.2
MEMAVAIL, Pascal heap routine

5.4.2
mefOOry

display in Debugger 8.4.2
dumping to diskette

8.4.9.5
parameter memory 3.3, 3.3.5
test 3.3.2

melOOry management hardware,
Changing 8.4.7

modem 10.2, 10.3
Mount conmand 2.3.12
mounting a diskette 1.5.4
mouse 4.1
mouse doUble click delay 3.3.1
moving the display window 4.4.2

Index-5

Index

----------N----------
Names command 2.3.13, 2.6
nesting exec files 9.2.5
NEW, Pascal heap routine 5.4.2
NEWER exec file function 9.2.4.2
NHI key 8.3, 8.4.9.3
.NOlIST Assembler directive 6.5.5
.NOMACROlIST Assembler directive

6.5.5
nonmaskable interrupt key (NHI) 8.3,

8.4.9.3
.NOPATCHLIST Assembler directive

6.5.5

----------0----------
.OBJ file extension 2.4.3
object code, Pascal 5.1, 5.2.1, 7.1
OOject file, Assembler 6.2.3, 7.1
ObjIOLib errors A.3
Online COmmand 2.3.14
OPCOdeS, Assembler 6.3
Open... 4.5
Operating System error messages

A.4
operators, Assembler 6.4.5
options for file name prompts

1.5.1.7
options in exec file 9.3
.ORG Assembler directive 6.5.1
OUtputRedirect command 3.2

----------p----------
PAbortFlag function, Pascal 5.4.1
.PAGE Assembler directive 6.S.S
Page Nun1Jer only 4.9
parameter list in exec file 9.3
paraneter memory 3.3, 3.3.5
paraneter passing 6.6.3
Parity nenu 10.3
Pascal COl1l>iler 5
Pascal

cOl1l>ile from exec file 9.4.1,
9.4.3, 9.4.4, 9.4.6

COl1l>iler commands 5.3

1I/0.l'kSfJop User's Guide

cross-reference utility 11.12~
11.13

heap 5.4.2
HEAPRESULT 5.4.2
MARK 5.4.2
MEMAVAIL 5.4.2
NEW 5.4.2
object cOde 5.1~ 5.2.1
printing a program 4.9
RELEASE 5.4.2

Pascal command 1.3
PASLIBCALL unit~ Pascal 5.4.1
Paste 4.6
patching a file 11.6
.PATCHLIST Assembler directive

6.5.5
pathnaroo 1.5.1
Plain keywords 4.9
PLINITHEAP procedure, Pascal

5.4.1~ 5.4.2
portConfig utility 11.10
Preferences command 3.2~ 3.3

Convenience Settings 3.3.1
Device Connections 3.3.3
Rates 3.3.1
SCreen Contrast 3.3.1
Speaker Volume 3.3.1
Startup option 3.3.2
Tools menu 3.3.5
workshop option 3.3.4

prefix 2.4.3
Prefix command 2.3.5
pretty listing, Assemler option

6.2.1~ 6.2.4
print All of Document 4.9
printer 1.14
printing

from the Debugger 8.4.9.4
Pascal programs 4.9

Print menu 4.2.2~ 4.9
Print selection 4.9
problems 0
procedUre arguments 6.6.1
Process Management commands

AddResident 3.4
DeleteResident 3.4
KillProcess 3.4

IncJex-6

ProcessStatus 3.4
Quit 3.4

processor~ exec file 9.3
ProcessStatus command 3.4
program bugs B.2.1

Index

programming tips, for exec file
9.5

program structure, Assembler 6.4.1
protected master 2.3.10
pseudo-ops 6.5

----------Q----------
Quit command 1.3, 2.3.8, 3.2~ 3.4

----------R----------
range check error 8.2.1.1~ 8.3.2
Rates option 3.3.1
READCH exec file command 9.2.3.1
READLN exec file command 9.2.3.1
recursive function 9.4.6
.REF Assembler directive 6.5.4
register conventions 6.6.2, 8.4.1
registers, display 1n Debugger

8.4.4
regular units 7.5
RELEASE, Pascal heap routine 5.4.2
remote computer 10.1, 10.2
Rename command 2.10, 2.3.6
REQUEST exec file command 9.2.2.2
RETURN exec file command 9.2.5.2
Revert to Previous Version 4.5
.RORG Assembler directive 6.S.1
RS232 port, configuring 11.10
Run command 1.3
running

Assembly language program 1.B
Pascal program 1.B

run time stack 6.6.1

----------S----------
Save a Copy in... 4.s
Save a Continue 4.5
Save a Put Away 4.5
Scavenge command 2.3.15

IfIorksl7op User's Guide

SCreen Contrast option 3.3.1
screen control

characters C
functions 5.4.1
stopping the display 1.5.3

SCreenCtr procedure, Pascal 5.4.1
scrolling 4.4.1
search file for pattern 11.8
search menu 4.2.2, 4.7
.SEG Assembler directive 6.5.4
segMap utility 11.11
segmentation 11.3, 7.9
segment map utility 11.11
segment name

Assembler 6.5.4
changing 11.2

Select All of Document 4.6
selecting text 4.3
separate Identifiers 4.7
SET exec file command 9.2.2.1
set Tabs 4.6
setting Workshop parameters 3.3.4
Shift Left 4.6
Shift Right 4.6
space allocation directives,

Assembler 6.5.1
Speaker Volume option 3.3.1
stack 6.6.1
stack overflow B.2.1.1
Startup option 3.3.2
statement, in exec file 9.2
static link 6.6.1
stationery 4.2.3
stopping

screen display 1.5.3
operation 1.5.2

string expreSSions, in exec file
9.2.4.3

SUBMIT exec file command 9.2.5.1,
9.3.1.1

SXRef utility 11.12
symbolic references 7.1
system malfunctions 8.2.2
System Manager 3
System Manager conmands

Console 3.2
COnvenience Settings 3.3.1

Index-7

DefaultPrinter 3.2
FilesPrivate 3.2
ManageProcess 3.2
OutputRedirect 3.2
Preferences 3.2, 3.3
Quit 3.2
Time 3.2
Validate 3.2

SYSTEM-MGR COmmand 1.3

----------T----------
TAIL macro 6.6.1
TAS Assembler opcooe 6.3
Tear Off Stationery 4.5
temporary exec file 9.3.1.1
test and set instruction 6.3
text, selecting 4.3
.TEXT file extension 2.4.3
Time command 3.2

Index

.TITlE ASSembler directive 6.5.5
Token search 4.7
Tools menu 3.3.5
trace commands in Oeougger 8.4.6
Transfer COmmand 2.3.7
Transfer program 10
Transferprogram COmmand 1.3
Type Style menu 4.2.2, 4.8

----------u----------
UBR COnmand, oeougger 8.2.1.3
underlining 4.9
undo Last Change 4 .6
unmount command 2.3.16
unmounting a diskette 1.5.4
UPPERCASE function, in exec file

9.2.4.4
user break facility 8.2.1.3
utilities 11

ByteDiff 11.1
Changeseg 11.2
CodeSize 11.3
comparing binary files 11.1
comparing .TEXT files 11.4
Diff 11.4
disassembler 11.5

IIIorkshop User's SUi de

dump a file 11.6
DurnpObj 11.5
OUIJf>Patch· 11.6
FileDiv 11.7
FlleJoin 11.7
Find 11.8
GXRef 11.9
patch a file 11.6
PortConfig 11.10
search file for pattern 11.8
segMap 11.11
segmentation 11.3
segment mapp1ng 11.3
SXRef 11.12
UXRef 11.13

UXRef utility 11.13

----------V----------
Validate command 3.2
volune 2.4.1

Changing the name 2.10
creating 2.9

----------W----------
~lld card characters 2.5
windOw

Debugger 8.4.9.2
Environments 1.2

~lndOw, moving 4.4.2
.WORD Assembler directive 6.5.1
~orking directory 1.4, 2.4.3
WorkShop conmand 1 ine 1.1, 1. 3
WOrkshop conmands

Assemble 1.3
Basic 1.3
CObol 1.3
DebUg 1.3
Edit 1.3
FIlE-MGR 1.3
Generate 1.3
link 1.3
Hakebackground 1.3
Pascal 1.3
Quit 1.3
Run 1.3

Index-8

SVSTEM-MGR 1.3
TransferProgram 1.3

WOrkshop option 3.3.4

Index

WRITE exec file command 9.2.3.2
WRlTELN exec file command 9.2.3.2

--r;IS MANUAL was produced using
Lisa Write, LisaDraw-, and

LisaList.

AIL PRINTING was done with an
Apple Dot Matrix Printer.

the Li')(l'"
... we use it ourselves.

WOrkSflop User's Guide Hell-BscI< FOHn

Apple publlcaUons would llke to learn about readers and wtlat you think aboUt this
manual In order to make better manuals In the future. Please fill out this form, or
write all over It, and send It to us. We promise to read It
I-tOw are you using this manual?
[] learning to use the prodUct [) reference [) bOth reference and learning
[lo~r __ ___

Is It quiCk and easy to find the lnformaUon you need In this manual?
[] always [) often [] someUmes [) seldom [] never
comrnenu __ ___
wnat makes this rncnJal easy to use? _______________________ _

What makes this manual hard to use? ______________________ _

What dO you llke most aDOUtthe manual? ______________ _

WI'lat dO you llke least abOUt the mcnJal? __________________ _

Please comment on, for exarrple, accuracy, level of detail, runber and usefulness Of
eX8fll)les, length or brevity of explanation, style, use of graphics, usefulness of the
index, organization, suitability to your particular needs, readability.

(

What languages dO you use on your Lisa? (Check each)
[] Pascal [] BASIC [] ccea.. [] other ____________ _

How long have you been programming?
[] 0-1 years [] 1-3 [] 4-7 [lover 7 [] not a progrcmmer
What Is your job tlue? ________________________ _

HaVe you completed:
[] high schOol [] some college [) BA/BS [) MM-1S [) more
What magazines dO yru read? _____________________ _

Other comments (please attach more Sh,eets If necessary) _____________ _

I369-A

"""".".".""" ... ".,,,,,,,,,,,,,,,,,,, .. " .. """'.".""."'''''''' .. ' .. '''' ... ''''''.,'',, '''' .. , .. ''" '," , ... ,',','. Ftl.fJ .. ' , ... "'" , ,"" ,., " ... " , ... ' , .. , ,," "" """""

" .. " .. " " " ,." , .. " " ... " " , , rap , "' ; "., , , ... " ' , ... , , .. " .. .

.~ppIa computc!r
POS Puplicatlons Department
20525 Mariani' Avenue
Gupertlno~ Callfomla 95014

TAPE t:R STAPLE

[

Pascal for the Usa
Release 2.0 I'btes

What's In the Pascal Release ~tes?

These notes describe sltuatlons that were b~t to our attentlon after it
was too late to doclrnent them In the Pascal mcn.aals.

Insert the notes in the back of the mcn.aal, so that you C3l refer to them as
necessary. IrcltKted in these rotes are revIsed versIons of the WorksIJqJ
Users Guld! AppendIx B and the Pascal ReFemnce MatvaJ Appendix I to
replace the copIes bot.I'ld in your mcn.aals; take a rroment now to make the
Stbstl tutlons.

If you have a questlon or a problem that you eMit resolve using the mcn.aals
or these notes, call the Lisa TelepOOne ~rt Line, (800) 553-4000.

Jcn..ra/y 1984

Workshop
Chapter 1

WoIksrop
Chapter 1

Workshop
Chapter 1

To Install the P8sc8l language 8'ld Workshop software from
the set of micro diskettes. packaged In your l~ rncnJ8l
binder, refer to Installing the Office System Software in
AWerdx a set 41 Procedures, in the Lisa 0Wner~ Guide If
you pl~ to use the Office System, you mJSt first Install the
Office System 2..0 micro diskettes. You do not need to Install
the Office System software If you intend to do only 18lQtJ8ge
development work. Before yoo Insert the micro diskettes, make
sure you can see the red tabs from the front of the micro
diskettes. Start Insta1llrg with steps L ~ em 3 on page G31.
lhen follow thls ~

4> Tum the Lisa on by pressing the on-off button cree. After
a few secoc 08, you'l hear a cUd<; Immediately press the
spacebar.

5> The Lisa goes t.hroI..Igl a self-tesl When a meru of symbols
appears in the t4lJler left-ha1d comer of the screen, press
crld reId down the .AWle key while you type a 2 -- on the
maln keyboard, not on the runerlc keypad.

6> When the maln merlJ shown on page G32 appears, cUck the
mouse once on the Install box.

7> When the alert box with the message "The Lisa Is Installing
s~ software version 2.0- appears, click oanet Erase..
When the first micro diskette is Installed, It will eject.
COOtlrue Installatlon by followlng the owner's GuicJe
Instructions from step 6, inserting the remaining 18lQtJ8ge
diskettes In order.

After Sl£CeSSfully addlrg Pascal to a ProFIle contaln1ng the
Office System, if the system Is merely allowed to reboc;>t, the
defClJlt of the Envlm ments window will cause the WorkShop
shell to start t4). To cause the lnltiallzaUon to pause at the
Envln:nnents wl~ In order to excmlne or chalge the default.,
press the space barefter the machlne self-test, while the
tnJrglass lcoo Is ShoWing.

If yru have).1st printed lI'lyth1rg 00 a daisy wheel prtnter from
the Office System, and you return to the Workshop USing the
Envlm ments wlrdlw, prlntlrg to logical dev1ce --printer" will
be garbled t.Iltll the printer Is switched off Enj then on again

Javmyl984

Worksrop The print corTfTlaI'lis of the Editor always use the logIcal devIce
~ter 1 "-prlntet' set In the System tvmager. Omslng DaIsy Wheel

Printer or Dot rvlatrix Printer from the Print meru does not
cta"ge the system's confl~tlon, rut only oojJsts the Editor to
the Interoed device.

Workshop My prognm Interoed to nn as 8 b8ckglOll'ld process
Olapter 1 (r'1akeBackgI'W'lCProcess) rrust Inclllie frequent cn1).dclous

calls to the ~ratlng System procecue YIeld_CPU. Hence,
system utIlItles should never be nI1 In the backgrOll1d.. Also, 8
backgm.nd process should not have My Interaction with the
console, cn1 It ccnlOt pull events from the hardware event
queue.

Workshop OesIg18te user files with the pathname "SI-ELL." only If you
Chapter 2 walt them to ~ In the EnvlrOl rnents wlf'lCJow as a1

alternatlve shell.

Workshop You caTIOt directly rei ane 8 file to 8 rane that differs frem
Chapter 2 the original oo1y In the case of the ~ten, becaJSe the

internal representation of the ranes Is the ssne.. Instead,
rei are the flIe to a terrplrary ncme, CIld then cta"ge that
to the neme you wa'lt.

WOrksrop If you l.Il1lOtIlt the prefix wllme by ejecting· the diskette,
O'lapter 2 ~ the wltJ1le, or uslrwJ the UmllIlt cama K1,

the boot voll.fTle autcrnatlcally becanes the prefix voll.fTle.

Workshop Asst.me that 8 file FOO. TEXT has been damaged end no longer
Chapter 2 has the Internal representation of a textfile. If the user enters

the File Mal aager fIld tries to copy the file to -PRINTE~ the
system generates a bus error a1d enters the Detlt.IJger.

Worksrop The 0Jtput Redirect flrctlon of the System tvmager does rot
Olapter 3 correctly handle screen output that uses OOTOXY, for eXll"f1lle,

screen ootput done by the File Mal .ager When listing wildcard
matches. This results In redirected output to the printer being
overwritten on one line.

Wot1<shop Use "-printet' Instead of "-RS232-B" wten redirectlng output to
Olapter 3 the printer. .

Workstql
~ter3

Worksrop
Chapter 4

Workstop
Chapter 4

Wor1<shop
Chapter 4

If you chalge the rane of 8 susperlded file -- Sl.dl as the
Pascal cafllller - lrd atterlllt to mar.age the process from the
System t-1aI.ager, the new rane appears In the pattname, but
you rrust stUl use the oJdrlf!l're to kIll the process.

The Edltor charges the creation date of a text file to the
current date each time the file is rrodified.

If the lnitlallzatlon of the Edltor falls We to In of disk space
(error 309), am ~ on the disk Is then I1'8:ie free, the next
atterllJt to start the Editor wlll also fall {error 304~ You rrust
enter the Process Mal8Jer of the System Mal ager, KILL the
Editor prooess, and then retry.

The l~ processon, Editor, end other utilities of the
Wolksmp expect as Irp.rt. a sUn:iard .TEXT file. The internal
structure of a text file in a block-s~tured device Is
described In the Lisa Pascal Reference ~:

• Each page (two 512-byte blocks) contains some runber of
COJT1l1ete llnes of text cnj is padded with rull characten
(ASCII 0) after the last line as necessary to COI1lllete the
page.

• Two 512-byte ~r blocks are also present at the
begi~ of the fUe. These mayor may not contain
InformatIoo.

• A sequence of spaces (ASCII 32 decimal, $20 hexadecimal)
C8'l be ~ressed Into a 2-byte code ncmely, a OLE
character (ASCII 16 decimal, $10 hexadecimal), followed. by a
byte conta1n1ng the value 32 declmal plus the rumer of
spaces represented.

Worksrop TIle file name -PAPER. TEXT" is reserved for the default
Chapter 4 statIooery t.efrlJlate of the Editor ~ stwld not be used for

other ptJrJXlSeS.

.lInJaJy 1984

Workshop
Chapter 4

Workshop
Olapter"

Workstxlp
Chapter"

Worksrop
Olapter"

Worksrop
Chapters "

tnj 10

Release I'tJte

Atterll>Ung to enter or paste more thEwl about 1000 charooters
into one line causes a bus error. If you have a DetxJgger, type
<g> to recover 8ld exit the WoI1<shop shell before nn'llng the
Editor again, otherwise no merlJS appear aro you roost use Nv1I
8'ld OSQUIT. .

A trlple-cUck will not select the last line In a file lI'lless that
line ends with a carriage return

If you are workII'YJ on nmy flIes -- or a few large flIes -- a'ld
the Editor becomes sluggish, save a'ld put tNf1y the flIes. Then
eIther exit the Workshop shell a'ld rtIl the Workshop shell again,
or use the DeleteResident corTlrT8ld of the M:rlage Process
Slbsystem of the System M:rlager to terrp:lrarily delete the
Edi tor fran the list of resident processes.

When using the Tear Off Stationery corTlrT8ld, type In the
volune nsne If It differs fran your boot volune.

CUrsor residue m1{1lt be left on the screen in the Editor and the
Tnmfer prognm, especially after EI1 error message has
appeared.

Worksrop TIle names of mes created by the Editor a'ld TrBlSfer will be
Olapters" chalged to be all tWer case, regardless of how they are typed

a'ld10 In

Worksrop
Chapter 7

WoI1<shop
Chapter 7

WOI1<shop
Chapter 7

.Jsnutuy 1984

If rrult1ple errors occur during a lln<.. rue a1 to atterT1lt to llri<
regular lI'llts with intrinsic lIllts, the Linker will termInate after
reporting only the first error. .

When the Linker detects the error of ~llcate entry ranes -­
for e>aJT1lle after it red the ssne flle twice -- the error
message may be difficult to interpret because it Is formatted
Incorrectly.

If EI1 Intrinsic l.I'llt Is linked but not needed (i.e. no l.Il1ts in lts
library file are used), the Llri<er generates error 24: l.Ilexpected
block type In IU file.

Workshop For the Debugger, >PR 2 Is print to Sl.OT~, not
Chapter 8 SLOT2CHAN1. lJRler 8'ld lower are reversed In the marua1.

WOrkstql The exec fUe preprocessor does not have EI1 easy way to IfllUt
Chapter 9 slngle spaces, even tI'lotql these are req..dred to respell Id to

some Workshop messages. WhIle waltIng for a space lf1)Ut., the
rest of the exec file Is COI'lSl.I1led without effect. Either set ~
your exec rues so they don't ~re ~ i~, or ellmlnate
all spaces except the one you want 8'ld use the no-space option
In the preprocessor.

Workstql In an exec flle .. S'l att.eflllt to pass a llteral ,,- to a progrcm
Chapter 9 such as ca:lESJZE wIll not work.

WOrkshop Display of error message 647 while you are usIng the Tr81Sfer
Chapter 10 utility probably Indicates that after a tlmerut the progI81l has

failed to receIve the appropriate ta'Cshake from the hlst.

Workshop If you type any key ruring -Playback from what fUe- In the
Olapter 10 Tl1IlSfer program, the playback wlll abort

Workstql If you use the TfirlSfer prognm to make cmtact with a hlst
Chapter 10 corflXJler, Md you exit the ProgI81l without logging off

Worksrop
Olapter 10

explicitly, the corYleCtIoo will not be autanatIca1ly tenninated.
ThIs Is usually a convenience, txJt mlg'lt not meet user
expectations.

When the Workstop shell Is lnltiallzed, all serial ports are
conflgured by def8Jlt as If they were printers (e.g., 9600 baud,
DTR taldshake, automatic llnefeed insertion)., whether or not
they are listed as such by Preferences. If you ~tly use

. ~ then exit the Tl'a'lSfer p~ the printer conf1~tloo Is
restored autanatlcally for (}tIL Y those ports l1sted In
Preferences as printers; others wlll retain the properties set by
the Transfer program. The Editor will not reconfigure ports that
have been chaI ged by PortConflg.

.JlnJBry 1984

WorksOOp
Olapter 10

To terminate recording to a f1le opened by the Transfer progr~
dJring "Record to", open the Control meru ~ again select
"Record to". ThIs tennlnates recording 8'ld closes tre file.
I\k)te that"lIl11ke the Editor, Tl8lSfer does rot artanatlcally
Insert a carriage return at the end of the file. If you use this
recordlf'WJ to capture text Sldl as a soorce program" nj the
language processor (such as BASIC-Plus) expects to see a
carriage return at the end of the f11e, atterTlJtlng to flIl the raw
recorded text m1g,t cause the system to hang.

WOIksOOp The rT8l.J81 states that the default hal rlshake In the Tnmfer
Olapter 10 prognm Is X()v)(Off. The correct default Is None.

WorksOOp Because roost prograns do rot allow you to eject a dIsk In
Chapter 11 while they are n.mlng, pl9'l Mead In large trEmaCtlons, such

as mass tnrlsfers, to allow a pause for ct8"glng dIsks.

Workst'"q) The GXRef utility ~ts a maxlrrun of 4095 pJ"OCedJre nanes.
Olapter 11

Workshop You C8'YlOt exit the ~ utility by typing <CR> in
~ter 11 response to the first Pl'OOllt line, 1='11e to Cha"YJe'. You rrust

type <Cl.EAA><CR>.

Workshop ASCII characters in the range hex 20 thJ'OlJfj1 hex 7E are
~x B ~rted for screen display, for prlntl~ on a dot matrix

printer, Md for printing on 8 daisy wheel printer with the
following print Wheels:

• Gothic, 15 pitch
• Prestige Elite, 12 pitch
• Courier, 10 pitch
• Boldf~xecutlve, PS.

PrInting ASCll characters to a daisy Wheel prtnter Is rot
Sl4lPOrted for the three print wheels with tw'kldem type styles.

The character set In the Appendix shruld srow the full Usa
character sel All of the additional characters can be displayed
on the screen. Selected St.bsets cal be printed on cklt matrix
and daisy wheel printers.. A new page B-1 Is attached; take a
moment now to make the Slbstltutlcn

WOrkshOp
AppendIx C

Release Note

If you wIsh to to post Uon the cursor at coordInates (x.,y)
on the screen, use the two-character sequence <ESC>- (HEX
18-30, decImal 27-61) followed by the screen's y coordInate and
then the screen's x coordInate -- note the order of the supplIed
arguments. The range for the screen's y-axis Is from ASCII
decimal 32 «SP PCE > on the Keyboard), representing a screen
coordInate of 0, through ASCII decImal 63 (1 on the Keyboard),
representing a screen coord1nate of 31. The range for the
screen's x-axis is frem ASCII decImal 32 «SPACE> on the
Keyboard), representing a screen coordInate of 0, through ASCII
decimal 119 (w on the keyboard), representing a screen
coordInate of 87. If you supply coordInates outsIde these
ranges, a bUs error may result. Refer to the revIsed AppendIx
B, suppUed wIth these release notes, for a complete Chart of
character equIvalents.
For example" In BASIC" either of the two statements below
would place the cursor at position x-O, y-l.

PRINT CHR~27); "."; "!"; II H;
or

PRINT CHR~27); CHR~61); CHRS(33); CHRS(32);

Pascal Avoid labeling 8l ELSE clause. The following code results In 8
Olapter 2 bus error when It executes:

Pascal
Chapter 3

Pascal
Chapter 3

Pascal
Chapter 5

Pascal
Chapter 7

GOTO 1;
If TRl£ 1l£N
ELSE

1: .uTE(' G(XI)');

If TRl£ 1l£N
ELSE
lIRITE('GaD');

Results in bus error.

Cmpiles correctly.

Contlrul~ txJn1)l1at1on after mtlflcatlm of the use of lroorrect
syntax In a SET type declaration (La parentheses used Instead
of square brackets) is fatal.

The result of is division (of Integers) by zero Is -1.

If a varlable T Is defined as T:PACKED ARRAY[D..l00] OF
D..255, the statement 1{1) :- 255 Is rot accepted by the corJl)Uer.
Use TEJvP :- 255; 1{1] :- l"Et-P; as a workarolni The sane Is
true for all Slilnsges fran (L128 to D..255 mO for all cmstant
values from 128 to 255-

M asslgment Including the sane fu1ctlon call as al array
Index on the left 81d rf~t will caJSe fatal errors WrIng
compilation. Instead, assign the index to a tef"rlXlrary variable
before manlpulatlrg the array. ~ these eXClTllles:

A(OOD(X)] :-A[(R)(X)] + 1; causes cmp!JsUoo errors.

TEI'P: -tR>(X);
A[TEI'P]:-A(TEtF] + 1

Q(; tbes not C8tISe enrJJi

Javsrj 1984

Pascal
Olapter 9

Pascal
O'lapter9

If 8 USES statement lnclt.drg the $U COfllJller option Is
followed en the scme line by 8 callneut (or arKlther lXllt rane),
the tralUng corrma roost be separated followed by 8 blank;
otherwise, the code will be Incorrectly parsed. COr'rllare the
e>a1llles:

USES ($U foo.ooj) t.nIt1,{COIII.ent}
{$U bar.ooj} 1I'l1t2;

USES {$U foo.objJ 1I'l1t1, {cooment}
{$U bar.roll lXllt2;

If1COUl!!Ct

The 8XS'lllle lIl1t en page 9-3 cmtalns a typogl8P'l1cal error
that leads to 8 bus error. For proper syntax In Lisa Pascal,
a semicolon ourj'lt to appear after the second-to-last end.

Addl : =Incr+ 1
en:i;

end.

Pascal Values camot be read directly lnto a real array. Use a
Chapter 10 ter'r1JOrary variable for readl~ cn:t then assign to a1 array

element.

Pascal All If1lUl of --- to a real array Is fatal. Use 8l Intennedlate
Chapter 10 variable to rea:t values CI1d check for validity, and then assl~

array elements.

Pascal When a program uses REWRITE to create a file named
Chapter 10 ~oo.text,- the catalog shows the fllencme as "FOO.TEXr'; the

fllencme will be chaI gad to ~r case.

Pascal IOSPasllb will rot position the cursor past colt.m'l 80 when
O1apter 10 GOlOXY Is used, even ttn.9l the Lisa screen width Is 88.

Pascal Close flies between RESETs because rrultlple RESETs on the
Chapter 10 sane file variable result In 10RESLl.. T - 0 If there Is no

IntervenlrYJ Cl..0SE.

Pascal Avoid using exec files with progrcms that RESET II'PUT because
Chapter 10 RESETting the lWUT file to KEYBOAAD while executing a1

exec file pn:xllces 8 Bus Error.

JavaJy 198/1.

Pascal If you WRITE or WRlTELN a PACKED AARA Y CF CHAR, the
Chapter 10 corTl>l1er reports error runber 123 -- error In type of standard

proceclJre -- lJ'lless the lower Index Is defined as 1. To avoid
this error, asslgl the packed array to 8 string or WRITE the
lndlv1dJal elements separately_

Pascal cx::qMAXINT) generates a ra-ge-dleck error oorll'YJ corTlJllatlon.
Chapter 11

Pascal The CCPY fl.rlctlon will accept 8 negative runber for
~ter 11 CQI..;Nf, but the lqth of the deflnltlon string wU1 be set to

zero. TtlJS, avoid algorlttms that would atter'flJt to copy. with 8
negative ruroer.

Pascal Do not use an asterlsk 10 the l'Blle of an lrell.lie file If the $1
Chapter 12 const.ru::t Is enclosed 10 8 C*-*) style of CDr'Illller corrmet,l

Instead use the { __ I style of coornenl

Pascal The predefined Identifiers listed In the followlrYJ three-page
~x A table are built into the Pascal COO1lller for ~ machine, as

lrdcated. If you declare or define these ranes In your
program, ro cor'J1l11er error will result, but you will lose the
capacity of the correspcrdng bullt-In" or predef1ned., entlty.
The list does not lrell.lie Identifiers In special library t.nlts, such
as thJse for ~Ics..

.lav8!y 1984

PIedef1ne(J Identlf1ers In the Usa Pascal co IlDIler

IcEntlfter Type Usa ~le III ~le][

~ Generic ft.rlcUon Yes Yes Yes

BLOCKREKJ Integer ft.rlcUon Yes Yes Yes

BlOCKWRlTE Integer tt.ncUon Yes Yes Yes

BOOLEAN Type Yes Yes Yes

BYTESTREAM Type No Yes No

CHAR Type Yes Yes Yes

CI-R CharaCter flSlCtlon Yes Yes Yes

O-OSE Procerure Yes Yes Yes

~T String fU'lctlon Yes Yes Yes
copy StrIng flllCtlon Yes Yes Yes

DELETE ProcedUre Yes Yes Yes·

EOF BooleCf1 flrtctlon Yes Yes Yes

Ea...N Boolean ft.rlCtlon Yes Yes Yes

EXIT ProcedUre Different Yes Yes

EXP Real fU1Ctlon Yes Yes Yes

FALSE COOStant Yes Yes Yes

FILLCHAA Proce<lJre Different Yes Yes

GET Procerure Yes Yes Yes

GalOXY Proce<lJre Yes Yes Yes

HALT ProceclJre Yes Yes Yes

t-£APRESll.. T Integer ft.nctlon Yes No No

IDSEARCH ProcedUre No Yes Yes

Il'PUT File Yes Yes Yes

INSERT ProceDJre Yes Yes Yes

INTEGER Type Yes Yes Yes

INTERACTIVE Type Yes Yes Yes

Jauuy 1984

identifier Type Usa ~le III PAlle] [

IORESLLT Integer ftIlction Yes Yes Yes

KEYBOAAD File Oevlce Yes Yes

KEYPRESS Boolean flJ1Ction In Ilbrary Yes Yes

LENGTH Integer ft.rlctloo Yes Yes Yes

LN Real flJ"lCtIon Yes Yes Yes

LOO Real flllCtIon No Yes Yes

LONGINT Type Yes NJ No

MAAK procedUre Different Yes Yes

MAXINT Constant Yes Yes Yes

rvEMAVAIL Integer fl.llCtion Different Yes Yes

MOVELEFT Procedure Different Yes Yes

fv10VERIGHT ProcecJUre DIfferent Yes Yes

I\EW Proce<lJre Different Yes Yes

OBJECT Type function In Clascal NJ No

CDD Boolea1 fl.llCtion Yes Yes Yes

ORO Integer flJ'lCtioo Yes Yes Yes

0R04 Integer fl.llCtion Yes No No

OUTPUT File Yes Yes Yes

PAGE Procedure Yes Yes Yes

POINTER Pointer ftIlction Yes No No

POS Integer ft.IlCtioo Yes Yes Yes

PRED Integer fLrlction Yes Yes Yes

PUT Procedure Yes Yes Yes

PWRCFTEN Real ft.rlctlon Yes Yes Yes

READ Procea.are Yes Yes Yes

READLN ProcetlIre Yes Yes Yes

REAL Type Yes Yes Yes

RELEASE Procerure Different Yes Yes

RESET Procedure Different Yes Yes

REWRITE Procetllre Yes Yes Yes

identifier Type Usa pwle III ~e][
ROlN) Integer flllCtion Yes Yes Yes

SCAI'-I Integer ft.llCtion No Yes Yes

5CH'£Q Integer flI1Ction Yes No No

SC,ANt\E IntegerflrlCtIon Yes No No

SEEK ProcedUre Yes Yes Yes

SIZEOF Integer fl.rlCtion Yes Yes Yes

SQR Generic ft.rnUon Yes Yes Yes

SQRT Real ft.nCtlon Yes Yes Yes

STR String fl.l'lCtion No Yes Yes

STRIN3 Type fU'lction Length req Yes Yes

SUCC Integer fl.nCtion Yes Yes Yes

TEXT Type fUnCtion D1fferent Yes Yes

TREESEAAa-i Integer ft.nCtion ' No Yes Yes

TRLE constant Yes Yes Yes

lRLNC Integer fl.llCtion Yes Yes Yes

~ITBUSY Boolean ftrICtlon No Yes Yes

LNlTCLEAA ProceclJre No Yes Yes

~ITRE,oo Prooewre No Yes Yes

LNlTSTATUS ProcedUre NJ Yes NJ

~ITWAIT Procetllre No Yes Yes

LNITWRITE ProcecJure No Yes Yes

WORDSlREAM Type No Yes No

WRITE ProcecJure Yes Yes Yes

WRITELN Proce<lJre Yes Yes Yes

JlnJary 1984

Operating
System
Chapter 1

~ratIrg
System
Olapter 2

OperatIrg
System
Chapter 5

Operating
System
~D

Re]ease I'bte

If 8 Pascal prognm contains ~rat1ng System user-Interface
procedure calls, then the USES clause of the prognm nvst
specify the SYSCPLL l.Illt, contained In the syscaII.obJ file, as In
this exarlllle:

Program MYPROG;
USES (tt$U SYSCPLL.OOJ *) SYSCPLL;

When a Device_Control call specIfIes parity checkIng cnj when
bytes are being receIved from one of the serial ports, the serial
port driver ooes rot reset the parity bIt The appl1~t1on usIng
the serial port rrust reset the parity bIt.

In the e~le of the use of event-walt chcI'lnels, Process B,
the assI~ts to the receiver boolea1 are TRLE and then
FALSE. They should be FALSE and then TRlE.

Sysglobal Is the area of memory used to store data needed by
the Operating System

.lBtvBr)' 1984

