LisaPascal 2.0 Languages
Fm NS0l Tupe Style Print

Find Same %S : INTRFC/TOOLINTF.TEXT

Find & Paste RAll WindowRecord = n!g:tt)
windowkind:
eparate IdentiFiers e

All Occurrences l:;q=
StIUCRGN:
ases Need Not Agree "

vindowDe fProo:
Cases Must Agree datanencle:

EXAMPLE /EDIT.TEXT

REPEAT
SystemTask;
TEIdle(hTE);
temp := GetNextEvent(everyEvent, mEvent);
CASE myEvent .what OF

mouseDown :
BEGIN
code := FindWindow(myEvent .where, whichiWindow);
CASE code OF i

inMenuBar: DoCommand(MenuSelect (myEvent .where));

Pascal
Reference Manual
for the Lisa™

029-0391-A

Licensing Requirements for Software Developers

Apple has a low-cost licensing program, which permits developers of software
for the Lisa to incorporate Apple-developed libraries and object code files
into their products. Both in-house and external distribution require a license.
Before distributing any products that incorporate Apple software, please
contact Software Licensing at the address below for both licensing and
technical information.

1983 by Apple Computer, Inc.
- 20525 Marianl Avenue

Cupertino, California 95014
{408) 996-1010

Apple, Lisa, and the Apple logo are trademarks of Apple Computer, Inc.
Simultaneously published in the USA and Canada.

Reorder Apple Product #A600101 (Complete Pascal package)
#A6LD0111 (Manuals only)

Customer Satisfaction

If you discover physical defects in the manuals distributed with a Lisa product
or in the media on which a software product is distributed, Apple will replace
the documentation or media at no charge to you during the 90-day period
after you purchased the product.

Product Revisions

Unless you have purchased the product update service available through your
authorized Lisa dealer, Apple cannot guarantee that you will receive notice of
a revision to the software described in this manual, even if you have returned

a registration card received with the product. You should check periodically
with your authorized Lisa dealer.

Limitation on warranties and Liability

All implied warranties conceming this manual and media, including implied
warranties of merchantability and fitness for a particular purpose, are limited
in duration to ninety {(90) days from the date of original retall purchase of this
product.

Even though Apple has tested the software described in this manual and
reviewed its contents, neither Apple nor its software suppliers make any
warranty or representation, either express or implied, with respect to this
manual or to the software described in this manual, their quality, performance,
merchantability, or fitness for any particular purpose. As a result, this
software and manual are sold “as is,” and you the purchaser are assuming the
entire risk as to their quality and performance.

In no event will Apple or its software suppliers be liable for direct, indirect,
special, incidental, or consequential damages resulting from any defect in the
software or manual, even if they have been advised of the possibility of such
damages. In particular, they shall have no liability for any programs or data
stored in or used with Apple products, including the costs of recovering or
reproducing these programs or data.

~ The warranty and remedies set forth above are exclusive and in lieu of all
others, oral or written, express or implied. No Apple dealer, agent or
employee is authorized to make any modification, extension or addition to this
warranty.

Some states do not allow the exclusion or limitation of implied warranties or
liability for incidental or consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives you specific legal rights,
and you may also have other rights that vary from state to state.

111

License and Copyright

This manual and the software (computer programs) described in it are copy-
righted by Apple or by Apple’s software suppliers, with all rights reserved, and
they are covered by the Lisa Software License Agreement signed by each Lisa
owner. Under the copyright laws and the License Agreement, this manual or
the programs may not be copied, in whole or in part, without the written
consent of Apple, except in the normal use of the software or to make a
backup copy. This exception does not allow copies to be made for others,
whether or not sold, but all of the material purchased (with all backup copies)
may be sold, given, or loaned to other persons if they agree to be bound by
the provisions of the License Agreement. Copying includes translating into
another language or format.

You may use the software on any computer owned by you, but extra copies
cannot be made for this purpose. For some products, a multiuse license may
be purchased to allow the software to be used on more than one computer
owned by the purchaser, including a shared-disk system. (Contact your
authorized Lisa dealer for more information on multiuse licenses.)

iv

029-0392-A

Contents

Chapter 1

Tokens and Constants
1.1 Character Set and SPECial SYMBOIS ...c..eeiiiimiiciiiiiiinii e 1-1
OV (s = 11 a1 (= o U 1-2
13 DITECLIVES ..ottt et st e e s se e e e ses e e s e 1-2
LA NUMDEIS ... et e st e e s s s s s e e s s e eae 1-2
D T T« 1-4
16 Quoted StringCoNStantsooooiiiiii e 1-4
1.7 Constant DeCIarations.......cccccoiiiiiiciiiiiiienitcsecen e ceeran e ne e ee e manenn 1-5
18 Comments and Compiler Commands.........coooeririeiiieninnisieeseeeeieieee e e 1-5

Chapter 2

Blocks, Locality, and Scope
2.1 Definitionof @BIOCK ...ccoooveeeieiiienireeiiircettccne st e s 2-1
2.2 RUIBSOf SCOPE .oueruiiiieetiniitie ittt sresetie sttt st e seee e e s s seessaans sasees 2-3

Chapter 3

Data Types
3.1 Simple~Types(and Ordinal-TYPES). ... cceceoeeteeeranrceteerceeasarsaaceesaaeesasenonnes 3-2
32 SIUCIUTEO-TYPES ...ttt erer s s e s e ne st en e 3-7
3.3 POINEI-TYPES ...t cccoce e reer e oot e e e e e e s e e e e s em e n eaan 3-13
3.4 Identical and Compatible TYPES.....cccviivieiiiiiiriiiiiiicinses s sesse s 3-13
35 The Type-Declaration-Part..........ccoviiiiiniiininiimecnrecnncerneaeaesneesene 3-16

Chapter 4

Variables
4.1 Variable-Declarations ...t e 4-1
42 Variable-REfEIBNCES.........covvvrrerieienmniennnnrasesssssnsanesnssssssasassesre sanons 4-1
B3 QUBHIFIBIS ..ot ete e e se e e nn e e ee ot e ae e e e e e e een 8-2

Chapter 5

Expressions
5.1 OPBILOTS...ueuueerreerenrenntntnstnntersiaietstasansessssssssnsssnssresnassanssnnessasnsnnnsene S-4
5.2 FUNCHON-CAlLScneiriiiiiiiiiiermteent ettt s etssesensasssssesssssnsesens 5-10

5.3 S OIS IUCEOES e ee e eieaneeeiicectancesecesnecesaseseesssnasatessesnenessssasassansnnans 5~-11

Pascal Referernce Marual contents

Chapter 6

Statements
6.1 SIMPIE SLALEMBNLS «..coioiiiiiiiiiiiiir ettt ettt ttre e tr et e eten et e cn e e e s aenen 6-1
SN (7 03101 (='s BAN 2102 01 £] 5 ST 6-4

Chapter 7

Procedures and Functions
7.1 Procedure—DeClarationsccccveceieeceicereaccerensesresessesensssansensnnssnsnsans 7-1
7.2 Function-Declarationsceoiiiiiimiiieeiieiece e ceereeeereenen e enesnnnenns 7-4
7.3 PaArEIMBLETS ..o ciieeeieceeieeceeteeeeeeeaennasaeenaensnssnesaneansnnnsnnenesnnasnnnnenn 7-5

Chapter 8

Programs
270 B3 | % QRN 8-1
8.2 Program-Parameters. ccciiiiimmureeiarete e reot e s eese et e en s e aaans 8-1
8.3 SegMENtEtIONcei e e e e 8-1

Chapter 9

Units
9.1 ReQUIBIUNILS ...t teeree it cersste s s s es st e s s s s saas 9-1
LIV (51891071 (o3 W 1) 4 2 SRR 9-4
8.3 Unitsthat USE Other UNILSouiiiiiiiieiciiiieiiiecicicieceieresanessasnsannseseannns S-4

Chapter 10

Input/Dutput
PUAR (514 ¢oTo:0 034 (o 0 B (o B 1/ TN OO 10~-1
10.2 ReCOTd-0riente I/D ... e et eeeeeeeeeeeeemtesenc e esasnncasesnsnsnsanannes 10-8
103 Text-Oriented I/0... ... et eeecmee e e e mrea s e e e ennns 10-9
108 UntypedFIIBI/D. ... it ccecenceceetnac e an e seec e e e maneasannnsn 10-18

Chapter 11

Standard Procedures and Functions
11,1 EXit and HAlt PIOCBOUIES .. can et ieeeeee et eeeeeamaeee e esesnsanannsnsasesnsnsnnen 11-1
11.2 DynamicC AlIOCAtION PTOCEOUTEScceeeeenireniieneinccseessssancsssassannssenannne 11-1
113 Transfer FUNCHIONS ...cu et ectee et eencecene s enen e e e s e snssenenaens 11-4
11.4 ANthMetiCFUNCLIONS ... i eeieiceeeiere et e e eresene e anneeneesasnsannnnans 11-5
11.5 Ordinal FUNCHIONS ..o.. et ceeceeeeeeeeeeaeese s eeneasseensseenssnnsnsennsssnnns 11-8
11.6 String Procedures and FUNCLIONS ..o iieeeiiieercreeneeeecnmeeeameeraaennennes 11-9
11.7 Byte-Oriented Procedures and FUnCIONS .. .ccoonueiiicaaiciiaicnncecaeeannns 11-11
11.8 Packed Array of Char Procedures and Functions...........cceeeieeennnacennas 11-12

vi

Pascal Reference Manual contents

Chapter 12
The Compller
12.1 COMPLIEr COMMEBNGS ..cuvuieerererremrerrressersrsssnnssssasssssssasssssnessssnssssansass 12-1
12.2 Conditional Compllation......ccccvieiiimmeriniiinin e s aseenes 12-3
12.3 Optimization of If-StatemMENLS ...cociciiiiiiinitrisetr e raanaa 12-5
12.4 Optimization of While-Statements and Repeat-Statementsc.coeeveeeee 12-7
12.5 Efficlency of Case—Statements ..ccviiirccrecetinneiensssenssesseanssseneseennens 12-7
Appendixes
A Comparison to Agple Il and Apple T PAsCalccvvvvevemeeriineniiniisinienndenins A-1
B Known Anomalies inthe Compller.......cooiviiiiiciiiiinninn e B-1
C SYntax of the LanQUEEEuuresrierssasssssesesmmmeerranmesassasresssssesssessrenaserenses C-1
D Floating-Point ArIthMetiC....cciiiriiiiiiinnciininirncrrnn s s D-1
B QUICKDYBW . ceuuiiiririeneiseernresssisissierssssssssrsensssssssentssssssesesnassssrsersasssneens E-1
F Hardware INLEITACE ...c..ccueieiiiiriasianteatiastesreetsssisisaesesssssseasasssassnssasssanes F-1
G LISBChAraCler SEL......civiiiiiererissirirrrmensrsairernrsssisiersssiressernssssersesssssssees G-1
H EITOY MESSAgES .1ivueierniianieirecinnsssasirnsistssstonssssisesstosssssasssassesssranssansasnse H-1
[Pascal WOTKSNOP FIIESciciiiieiiiiiiiniintisnessiirraniininissess seesessansenssersransssses I-1
Index
Tables
5-1 Precedence of Operationsccuvuiicvvnntisisinnisionnennneesssnesnsssnnnnennes 5-1
5-2 Binary Arithmetic Operations.......ccceciceiieceeisnininrensisisnninnsssssinrescsenns S-4
5-3 Unary Arithmetic Operations (SIgNs) «.o.cicvvireereimemmmecrcnnicciisnssisisnneenneee 5-4
S5-84 BOOIEaN OPEIALIONS ...cccviieicenreicrrencenntcrtttenesneeisunsstsnrsensesnestassrancasnes 5-6
5-5 SetOperatlonsccccereecciiecrisieraniioreceinieresasesssessssssssasesssasssssesessennnses 5-6
5-6 Relational OPerationscciicisensennnenssiinioressssisrnnmssssessensssssesnaees 5-7
b0 A 50} 1417=) 8 473 ¢ o 5-8
10-1 Combinations of Fiie variable Types with Extermnal File
SpeCIes and CategorIBs ...ecerrreneccrrrnereerereecasresntnsesarnsecersnsssanssssennsses 10-3
D-1 Results of Addition and Subtractionon Infinitiesceeeeieercecirnnneenonnees D-2
D-2 Results of Multiplication and Division on Infinitiescceeeeeeeent veessererane D-3

vii

Syntax Diagrams

A B
BCLUBL-PAIAMBLEY ...oveeeiiceietiireiecirieietectceetesttrsesreatn s sesseaseesnensssersssnnnes 5-10
actual-parameter-Hstccccovviiiiiiiceirciiiicc sttt eer e aa s 5-10
BITAY-LYPR ..c.eeeiiieieeniiieeiiceeeereeriereenreene e erren e nrannsersaassaa e s e anasannanens 3-8
aSSIgNMENT-SAEMENTooeeriiiicece ettt recerae s ene e cn e ss s eesesaee 6-1
412 8 oSO 3-13
4] (oo OO 2-1
C
1022 N 6-6
CasE-SLAtEMENTcooviiieiiiiiiiiececcrireie ettt eee e s 6-5
COMPOUNG=STALEMENEceniiiiiiie ittt tecree s eeeceis e e s csne s ssssssanes 6-4
CoNAItIoNal~STAtEMENTeeeeiireeee e eicre s e 6-4
CONSEANE «.eeiieieccieciricctiicneireeee st resrosnasrerttesesessessasssesssssasrens sossoesssssssnnse 1-5
CONSLANt-0ECIAratIONoooee e ceircicerte e esea i seae s sen s e na s s enas 1-5
constant-declaration=—pPartc.ooucieiiiimmiiiiiiiimiiicrenireecreeonecrnaeennienaes 2-2
(00 014 £0) BLTC) 4 F:)L 6-8
D EF
OIQIt=SBQUENCEoieeiee e ee e s crn e s e e se s see s ssssaseessmnnnens 1-2
ENUMBTALEOLYPE ..oeeeeereeeeieeeeecicieereecostccesieceeestesessesacasssessessssassessssnses 3-6
12208 £33 [0 D N 5-3
L (011) SO OSSPSR YU 5-1
FIElg-declarationc..ccee et ccst e e et eeese e e e e neetseranaes 3-10
FIElA-0ESIGNALOLcciiirieieitiiiiici ettt sersssseesesensrssaaesssssssosesssssananssons 4-4
FIBLEIESE ... e eooeeeeeeereee e eeee e eerccatn e cenoaocnae s s e ce s e acana s sneman s s eaeaenanee 3-9
FIle-DUFFEr=SYMBOLccovrereenireicreceeertrererecerereer e cenr e e e e vennee 4-4
L1328 ¢ TSRO 3-12
11 TR OIS 6-8
LE b i=Ta a7 ¢ RS 3-9
FOI-SEAEMENL ...ttt cesntrecetccresrsreeescreeresrsesesseseesnsessansnnnnnns 6-8
formal-parameter—1iStttt s e ee s 7-6
FUNCUION-DOY ...ccoeeririieirieiiictniiirceieetseirirssseessrinsnsssscesesressesnsessesensnenes 7-4
FUNCHION=CALL ...ttt e cmtcteerss o cc e e sesensm s sesnssem s seaseeensnns 5-10
FUNCLION-0ECIATALONeeeeeeeiiiicmieirtncccccccescessssecerneeaensees s e anseneannnes 7-4
fUNCHION-NBAOINGcovrererreriirrecrieieireeeemeie e seecsseseesensesssn s ssanansssnns 7-4

viii

Pascal Reference Mawgl Contents

GHI
QOLO-SLALEMIBNLceeeioie e e eee e e ee e mreac e ceomm e eeeenemaneeeeas 6-3
NeX-0igit-SEQUBNCEcceeue i ettt ce e cnem e eser e neneene 1-2
JOBNUFIET ...t ce e eceee v s e e vs st s se s e cneens 1-2
1o = 1AL T=) o AU OSSO SUPOR U PPRPPRPPROt 3-6
IF-STBLEIMBNL ...ttt ceecsente st eeeeeeees 6-5
implementation—pPart ...t 9-2
100 <> SRR OUPUU 4-2
FUas <5 ol A, o U U SR 3-8
INUBI-VAIUB....coooeeeeeece ettt cstsst st e st s e 6-8
INEBIFBCE-PAIL ...t et cre e e e e ee e s ts s ssss s et s e s s e sanaes 9-2
LMO
L o) OO 2-1,6-1
1abel-declaration—partc.ceuuiieemmiiiieeiereneeeeaieerrarnsreamsesaneeeena e aaanaas 2-1
MEMDET=GIOUD ...ocevmeeriermreeeieaoieaoeoerineaasiisssssisssscasasssstesnsessssssssssssssssnsssns
ordinal-type......... .
otherwise-clause
P
PArameter—0eClarationccceceerriemmrieerireemicenieiesieseeserrisseerennaneeeens 7-6
POINET-0BJECL-SYMIDOL.....cecnreeeeeeeececeeeecreeeccaeeocaneemrcaeeoseconnnaasocaeansacnnnaes 4-4
POINLBI=LYPC .ceeeeeeeiiiiicensarinreeisenrinetceeteaseseenssesesssesesnseiosssssssansesssens 3-13
procedure-and-function-declaration-part ... 2-2
PrOCEAUIE=D0GY ...c.coueermrmrereiciiiriicricricrcecrteeeerrrseeseseseente e sessesereesaeeaeennenes 7-1
Procegure—declaration..........cccceccervereemeeenieiriemeeeeerisimmeenremrsnereerenseeenians 7-1
PrOCEAUIE-NEAING ..c.eoemneiereeaineeneeiiristssieitiseienantctanrsesnrmsasnssasesnssasasess 7-1
procedure-statement... ...6-2
Program.........ceeee.... .8-1
Program-headingccceceeeeueemeeeeriereererimeereeemmeroneesrimensesmrnseserssessensrvesessones 8-1
PrOGIaM-PABIAMEBLETS ..cevevmirieemnmmcunneestsmmmsncesrimumensarorsmmmssossstsssseosssssmssmsennns 8-1
QR
0 D) L 4-2
quUOtEd-CharaCter-ConStantccccoiiiiiiiiiiiiniretctinreenssrnsesranssersansesessnnes 1-4
quoted-string-constant :
4=] ¢
TECOTU-LYPL ocervreerreerierereeemransennmressssnssusesessasssssssantneesesarass sesessensssassanssnsnen
regular-unit . -
Tepeat-sStatement............coouimnrrrieirccrerrrreress e teere e se e e saneaees
repetitive-statement
TESUIL-LYPR .oeeeeeiiiaiiiaieectentsesnnnennssessssenseesssssesssosassseansmssnssnsssssnsssseesaasaes

ix

Pascal Reference Marwal Contents

S
r= [<01 £) GO RY 1-3
SBL-COMBITUCTOT ...ttt iict e eeeeettan s s revamse s s s e s taas s essaas s s esmrasnses 5-11
EL= 8 oSS SRR 3-11
£ 10, OO 1-3
SEQNEO-TIHTIDET ..ot ceeitii ittt tanentesss st tn e ea s e e s s ans s ssesasss sssessnsasassnnees 1-3
R g e [R=0% o) (=204 o3 TSN 5-3
R e L E 1 1 | OO 6-1
s TLn o3 (o 0 o= 2 R 3-2
k3 V.-R= 1R 4 ¢ (¢ 1 1= TR RPN 3-5
L= L= 00 oL U 6-1
L= 1= 0170 72) o AN 2-2
SEIING-ChATBCTETciiiiiiiiiicci ettt st st eaa s e e e e s e sne e e 1-4
EoL g 1 o 3 o 3-5
BLA T 1T} (=00 it k= 11=2 1 | A RN 6-4
STTUCTUTEO-LYPE ...t tr e se s es e ceae e mae e st s s ameaas e snsas 3-7
LT e 1 00 o R o S ORUURTON 3-7

T
LE=To o 5 2 T e Y« OO 3-10
1£=1111 T OO U S PO 5-2
L5 2T 3-1
L7620 =03 £=1 =18 0. o U O 3-1
type-deClaration=—pPartccceiiiiimiciimiirieie ettt e e e e e r e s naes 2-2

U
¥ 41 1y =72 To) Ly (o [OOSR RV UR ORI 9-1
UNSIGNEO-CONSEANE ..ot cireei ettt ts et eec s ean e samnns e sas sesenenessansesses 5-2
UNSIGNEOA-TNIEORT ...ttt es e s e s e s e em e 1-3
UNSIGNEOTINTIDET ..iiiiiiiiiiirtiiaisisieconessssssiessasssasrsssssnsssssasassnsenrsssssassases 1-3
0 4300 4= g (-7) OSSR UURR RN 1-3
USBS—ClBUSE «...oeeerriiiiienieiti ittt seeee ettt ee s sees s s sr s s e ss s n e ses sensmnn s esnansnsns 8-1

V, W

VariabIe—0eCIAIAtIONciceeeiiiicccteirecicrccecracenesteeeearanerassansenstasannsassnsssans 4-1
variable-geclaration—partcccociiiriririicniiniencnteirestresrare e s eseanans 2-2

2z gt o) (S To = 101 1= G OO UUU TR PRR PR 4-1
V2 g1 o) (Sag (=1 -1 (- 1 o - USSP RPN 4-1
(V221 g1 | AU PRSPPSO 3-10
221 41T L o) 4 AN 3-10
WHILE-SEALBIMENL ... cieeeeiececeereeeeneereneseesaeeenssassesnnnrasnennseanssnnns 6-7
WHN-SLAEMEBNL ...oeeeeeeiiieeieaeeeeireceeaecneeresesnnsnesssamasasasenmemasesneraeasesnsesnans 6-10

Preface

This manual is intended for Pascal programmers. It describes an implemen-
tation of Pascal for the Lisa computer. The compiler and code generator
translate Pascal source text to MC68000 object code.

The language is reasonably compatible with Apple II and Apple IIl Pascal. See
Appendix A for a discussion of the differences between these forms of Pascal.

In adaition to providing nearly all the features of standard Pascal, as described
in the Pascal User Marual and Report (Jensen and Wirth), this Pascal provides
a varlety of extensions. These are summarized in Appendix A. They Include
32-bit integers, an otherwise clause in case statements, procedural and
functional parameters with type-checked parameter lists, and the @ operator
for obtaining a pointer to an object. The real arithmetic conforms to many
aspects of the proposed IEEE standard for single-precision arithmetic.

Operating Environment

The compller will operate in any standard Lisa hardware configuration; this
manual assumes the Workshop software environment.

Related Documents

Pascal User Manual and Report Jensen and wirth, Springer-Verlag 1975.
Workshop User’s Gulde for the Lisg Apple Computer, Inc. 1983,
Other Lisa documentation.

Definitions

For the purposes of this manual the following definitions are used:
* Error: Either a run-time error or a compiler error.

* Scaoe: The body of text for which the declaratlon of an identifier or
label is valid.

e Unoefined: The value of a varlable or function when the variable does not
necessarily have a meaningful value of its type assigned to it.

* Unspeciffed: A value or action or effect that, although possibly
well-defined, 1s not specified and may not be the same in all cases or for
all versions or configurations of the system. Any programming construct
that leads to an unspecified result or effect is not supported.

Notation and Syntax Diagrams

029-0393-A

All numbers in this manual are in decimal notation, except where hexadecimal
notation Is specifically indicated.

Throughout this manual, bold-face type is used to distinguish Pascal text from
English text. For example, sqrn div 16) represents a fragment of a Pascal
program. Sometimes the same word appears both in plain text and in

xii1

Pascal Reference Mamal Preface

pold-face; for example, "The declaration of a Pascal procedure begins with
the word procegdure.”

ltalics are used when technical terms are introduced.

Pascal syntax Is specified by dlagrams. For example, the following diagram
gives the syntax for an identifier:

iaentifier @

>

e

Start at the left and follow the arrows through the diagram. Numerous paths
are possible. Every path that begins at the left and ends at the arrow-head on
the right is valld, and represents a valid way to construct an identifier. The
boxes traversed by a path through the diagram represent the elements that can
be used to construct an identifler. Thus the diagram embodies the following
rules:

s An {dentifler must begin with a /etter since the first arrow goes directly to
a box containing the name “letter."

* An fdentifier might consist of nothing but a single letter, since there Is a
path from this box to the arrow-head on the right, without going through
any more boxes.

* The Initial letter may be followed by another letter, a a/g/{ or an
werscorg since there are branches of the path that lead 1o these boxes.

* The Initial letter may be followed by any number of letters, oigits, or
underscores, since there Is a loop In the path.

A word contalned in a rectangular box may be a name for an atomic element
like "letter” or “digit,” or it may be a name for some other syntactic
construction that is specified by another diagram. The name in a rectangular

" box Is to be replaced by an actual Instance of the atom or construction that it
represents, e.g. “3" for “digit” or “counter” for “variable-reference”.

Pascal symbols such as reserved words, operators, and punctuation, are
bold-face and are enclosed In circles or ovals, as in the following diagram for
the construction of a compound-statement:

compouna-statement
statement | (end)
(e

xiv

Pascal Reference Marnal Preface

Text in a circle or oval represents itself, and is to be written as shown (except
that capitalization of letters is not significant). In the dlagram above, the
semicolon and the words begin and end are symbols. The word “statement”
refers to a construction that has its own syntax dlagram.

A compound-statement consists of the reserved word begin, followed by any
number of statements separated by semicolons, followed by the reserved word
end. (As will be seen in Chapter 6, a statcment may be null; thus begin end is
a valld compound-statement.)

NQOTES

029-0050-A

ELEGRE

1.7

o

Chapter 1
Tokens and Constants

Character Set and Special Syrmbols
Identifiers
Directives reemecneetnannes

Numbers
Labels

Quoted String Constants
1.6.1 QuOted Character Constants.cccouviiciiiieeiieraee e caceenncnnannnas
Constant Declarations

Comments and Compiler Commands

Tokens and Constants

Tokens are the smallest meaningful units of text in a Pascal program;
structurally, they correspond to the words in an English sentence. The tokens
of Pascal are classified into specia/ symbols, igentifiers, numbers, labels and
quoted string constants

The text of a Pascal program consists of tokens and sépasalors-a separator is
either a t/ank or a comment Two adjacent tokens must be separated by one
or more separators, if both tokens are identifiers, numbers, or reserved words.

No separators can be embedded within tokens, except in quoted string
constants.

1.1 Character Set and Special Symbols
The character set used by Pascal on the Lisa is 8-bit extended ASCII, with
Characters represented by numeric codes in the range from 0 to 255.

Letters, digits, hex-digits, and blanks are subsets of the character set:
* The Jetters are those of the English alphabet, A through Z and a through z.

« The olg/ts are the Arabic numerals D through 9; the fsex-adlgits are the
Arabic numerals 0 through 9, the letters A through F, and the letters a
through f.

* The blanks are the space character (ASCII 32), the horizontal tab character
(ASCII 9), and the CR character (ASCII 13).

Special symbols and reserved words are tokens having one or more fixed
meanings. The following single characters are special symbols:

+ - % /= <> [1 .., () :: ‘a{}s
The following character pairs are special symbols:

<© <= >= =, (® %)

The following are the reserved words:
and end label program until
array file methods* record uses
begin for mod repeat var
case function nil set while
const goto not string with
creation* if of subclass*
div implementation or then
downto in otherwise to
do interface packed type
else intrinsic* procegure unit

Pascal Reference Mariial Tokens & Constants

The reserved words marked with asterisks are reserved for future use.
Corresponding upper and lower case letters are equivalent in reserved words.
Only the first 8 characters of a reserved word are significant.

1.2 Identiflers
Identifiers serve 10 denote constants, types, variables, procedures, functions,
units and programs, and flelds In records. Identifiers can be of any length, but
only the first 8 characters are significant. Corresponding upper and lower case
letters are equivalent in identifiers.

lfaentirler @

underscore

NOTE

Tne first 8 characters of an identifler must not match the flrst 8 char-
acters of a reserved word.

Examples of loentirlers:
X Rome ged SuM get_byte
1.3 Directives

Directives are words that have speclal meanings In particular contexts. They
are not reserved and can be used as identifiers in other contexts. For
example, the word forward is interpreted as a directive if it ocours
immediately after a procedure-heading or function-heading, but in any other
position it is Interpreted as an identifler.

14 Numbers
The usual decimal notation is used for numbers that are constants of the data
types integer, longint, and real (see Section 3.1.1). Also, a hexadecimal integer
constar;‘t uses the $ character as a prefix (1-4 digits for integer, 5-8 digits for
longint

afgit-sequerce

op

hex-adigit-sequence hex-digit

Pascal Rerference Manual Tokens & Constarnts

unsigneg-integer o

¥ digit-sequence } —»
L»@—»l nex—aigxt-sequemg}——f
O

unsignea-real

digit-sequence ' digit-sequence | \ —»>
—5{ scale-factor}J

scale-ractor .@ >{ digit-sequence }—-——'
Lot

unsignea-rmoer f{ unsigned-integer
unsigned-real
signeg-number.

Df unsigned-number]———-’

The letter E or e preceding the scale in an unsigned-real means "times ten to
the power of".

Examples of numbers:
1 +100 -0.1 SE-3 87.35e+8 $AOSD
Note that SE-3 means 5x107>, and 87.35e+8 means 87.35x108.

Pascal Refererice Manua! Tokens & Constants

15 Labels
A label is a digit-sequence in the range from 0 through 9999.

1.6 Quoted String Constants
A quoted-string-constant is a sequence of zero or more characters, all on one
line of the program source text and enclosed by apostrophes. Currently, the
maximum number of characters is 255. A quoted-string-constant with nothing
between the apostrophes denotes the null string.

If the quoted-string-constant is to contain an apostrophe, this apostrophe must
be written twice.

quoted-string-constant

+O C——[string-character }4-)

string-character ooy e ¢ @ arCR

Examples oFf quoted-string-constants:
‘Pascal’ 'THIS IS A STRING' ‘Don’ 't worry!'

IAQ l;l [N NI [}

All string values have a Jengtnr attribute (see Section 3.1.1.6). In the case of a
string constant value the length is fixed; it is equal to the actual number of
characters in the string value.

1.6.1 Quoted Character Constants
Syntactically, a quoted-character-constant is simply a quoted-string-constant
whose length is exactly 1.

quotea-character-constant ’@_’I string-character }——’@’"

A quoted-character-constant is compatible with any char-type or string-type;
that s, it can be used either as a character value or as a string value.

Pascal Reference Marnal Tokerns & Constarnts

1.7 Constant Declarations
A constant-declaration defines an identifier to denote a constant, within the
block that contains the declaration. The scope of a constant-identifier (see
Chapter 2) does not include its own declaration.

canstant-geclaration) ()

constant b[constant-ldentifier
signed-number
>

quoted-string

quoted-char }

NOTE

A constant-identifier is an identifier that has already been declared to
denote a constant.

A constant-identifier following a sign must denote a value of type integer,
longint, or real.

1.8 Comments and Compiler Commands
The constructs:

{ any text not contalning right-brace }
(» any text not containing star-right-paren %)

are called comments
A compiler command is @ comment that contains a $ character immediately

after the { or (* that begins the comment. The $ character is followed by the

mnemonic of the compiler command (see Chapter 12).

Apart from the effects of compller commanas, the substitution of a blank for a

comment does not alter the meaning of a program.

A comment cannot be nested within another comment formed with the same
kind of delimiters. However, a comment formed with {..} delimiters can be
nested within a comment formed with (*..%) delimiters, and vice versa.

NOTES

Chapter 2
Blocks, Locality, and Scope

2.1 Definitionof aBlock 2-1
22 Rulesof Scope 2-3
2.2.1 Scopeof aDecClaration.........ccccciiiiiieiriiceriin et naereeae e seneenas 2-3
2.2.2 Redeclarationin anEnclosed BIOCKcoveeniiiciieiececaeeeeeeeannes 2-3
2.2.3 Position of Declaration within ItsBIOCKcoeeveeimevmiincieeeeeeeeeeans 2-3
2.2.8 Redeclarationwithin@BIoCKcoceemmninimiiiieeeeeecee e eneeereneas 2-3
2.25 Identifiers of StaNAArd ODJECEScou iiiaeiceianeerecerereasaaee e acrannaanas 2-4

Blocks, Locality, and Scope

2.1 Definition of a Block
A Olock consists of declarations and a statement-part. Every block is part of
a procedure-geclaration, a function-declaration, a program, or a unit. Al
identifiers and labels that are declared in a particular block are /oca/ to that
block.

M—-\-—ﬂ label-declaration-part }—3
—
\-b{ constant-declaration-part J—)

[bilype—declaratim-part J—D
(

\O{ variable-declaration-part |—j

g
i procedure-and-function-declaration-part }—>

-
\-bLstatement-partJ] >

The Javel-aeclaration-part declares all labels that mark statements in the
corresponding statement-part. Each label must mark exactly one statement in
the statement-part.

label-ageclaration-part

(i) — e }~—+()—>

El—’{ digit-sequence ——»

Pascal Reference Manual Blocks, Locality, & Scope

The constant-declaration-part contains all constant-declarations local to the
block.

constat -ageclaration-part

constant-declaration }—j——b

The Upe-declaration-part contains all type-declarations local to the block.

Lype-deciaration-part

> type-declaration }——j——»

The variable-geciaration-part contains all variable-declarations local to the
block.

varigble-declaration-part
‘_’@T‘ varlable-declaration I—)—b

The proceaure-and-runction-declaration-part contains all procedure and
function declarations local to the block.

procedure-and-Anction-aeclaration-part
procedure-declaration

function-declaration

The statement-part specifies the algorithmic actions to be executed upon an
activation of the block.

Statement part | compound-statement |——

Pascal Reference Mamnal Blocks, Locallty, & Scope

NAOTE

At run time, all variables declared within a particular block have
unspeclfied values each time the statement-part of the block s entered.

22 Rules of Scope
This chapter discusses the scope of objects w/thin the.program or wilt in which
ey are aefined See Chapter 9 for the scope of objects defined in the
Interface-part of a unit and referenced In a host program or unit.

22.1 Scope of a Declaration
The appearance of an identifier or label in a declaration defines the identifier
or label. All corresponding occurrences of the identifier or label must be
within the scgoe of this declaration.

This scope is the black that contains the declaration, and all blocks enclosed
by that block except as explained in Section 2.2.2 below.

2.2.2 Redeclaration in an Enclosed Block
Suppose that outer is a block, and inner is another block that is enclosed
within outer. If an identifier declared in block outer has & further declaration
in block inner, then block inner and all blocks enclosed by inner are excluded
from the scope of the declaration in block outer. (See Appendix B for some
odd cases.)

2.2.3 Position of Declaration within Its Block
The declaration of an identifier or label must precede all corresponding
occurrences of that identifier or label in the program text--i.e., identifiers and
labels cannot be used until after they are declared.

There is one exception to this rule: The base-type of a pointer-type (see
Section 3.3) can be an identifier that has not yet been declared. In this case,
the identifier must be declared somewhere in the same type-declaration-part
in which the pointer-type occurs. (See Appendix B for some odd cases.)

2.2.4 Regeclaration within a Block
An identifier or label cannot be declared more than once in the outer level of
a particular block, except for record fleld identifiers.

A record field identifier (see Sections 3.2.2, 4.3, and 4.3.2) s declared within a
record-type. It is meaningful only in combination with a reference to a
variable of that record-type. Therefore a fleld identifier can be declared
again within the same block, as long as it is not declared again at the same
level within the same record-type. Also, an identifier that has been declared
to denote a constant, a type, or a variable can be declared again as a record
field identifier in the same block.

Pascal Reference Manal Blocks, Locality, & Scope

225 ldentifiers of Standard Objects
Pascal on the Lisa provides a set of standard (predeclared) constants, types,
procedures, and functions. The identifiers of these objects behave as if they

were declared in an outermost block enclosing the entire program; thus their
scope includes the entire program.

NOTES

029-0395-A

31

32

33
34

35

Chapter 3

Data Types
Simple-Types (and Ordinal-Types) 3-2
3.1.1 Standard Simple-Types and SLring-TYPeS ... vvirrmnciiininnninnennnens 3-3
3.1.1.1 ThReINtEOer TYPE ...ttt recr s s seecesa s s senaeans 3-3
3.1.1.2 The Longint TYPE ..o iiiiicctiiccctincree st see e srnaeanee 3-3
3.1.1.3 The ReaI TYPE c..cioeiiimiirincettmeconmnener et enneee s sennenans 3-4
3.1.1.4 The BoOoIEaN TYPEceuniieiiiimeniieeiesene e ene e s e e 3-4
3.1.1.5 The Char Type 4
3.1.1.6 String-Types 5
3.1.2 EnUMErated-TYPEScoeeimmnimiiisirseeiesinniieassennnens 6
3.1.3 SUDIBNGE-TYPES -..erereeeeeineniariaceerieeeseenestaeteteeenseseananansnsnssasereenes 7
Structured-Types
3.2.1 AITBY=TYPES ccceeeiiiieiiitrinninreseeeesiietieeeressassenae e e e e sassasasa s senraneeees
3.2.2 Record-Types....
3.2.3 SBL-TYPES e iiceeniiireeniarearenencarnnaemann e e annnsnteen s e an e nnn e manenes
. R o E o Y J O
Pointer-Types 3-13
Identical and Compatible Types 3-13
3.8.1 TypeIdeNtitY ..coooeiiiiiiiei et 3-14
3.4.2 Compatibility Of TYPES ...ccouvniiiiccciiiiiinie ettt nraaaes 3-15
3.4.3 Assignment-Compatibility.........cccoommmimiiiiiiniiiiiiee 3-15
The Type-Declaration-Part 3-16

Data Types

A Ype Is used in declaring variables; it determines the set of values which
those variables can assume, and the operations that can be performed upon
them. A Ype-declaration associates an identifier with a type.

type-ceciaration © S

simple-type

structured-type

The occurrence of an identifier on the left-hand side of a type-declaration

declares it as a type-ldentifier for the block in which the type-declaration

occurs. The scope of a type-identifier does not include its own declaration,
except for pointer-types (see Sections 2.2.3 and 3.3).

To help clarify the syntax description with some semantic hints, the following
terms are used to distinguish identifiers according to what they denote.
Syntactically, all of them mean simply an identifier:

simple-type-identifier
structured-type-identifier
pointer-type-identifier
ordinal-type-identifier
real-type-identifier
string~-type-identifier

In other words, a simple-type-identifier is any identifier that is declared to
denote a simple type, a structured-type-identifier is any identifier that is
declared to denote a structured type, and so forth. A simple-type-identifier
can be the predeclared identifier of a standard type such as integer, boolean,
ete.

Pascal Reference Manual Data Types

3.1 Simple-Types (and Ordinal-Types)
All the simple-types define ordered sets of values.

ordinal-type

string-type

simple-type

&af_‘_llﬁé_.{ real-type-identifier }—‘——*

D[subrange-type
enumerated-type
ordinal-type-ldentifier

The standard real-type-identifier is real.
String-types are discussed in Section 3.1.1.6 below.

Grainal-types are a supset of the simple-types, with the following special
characteristics:

¢ within a given ordinal-type, the possible values are an ordered set and each
possible value is assoclated with an oralnal/ty, which is an integer value.
The first value of the ordinal-type has ordinality 0, the next has ordinality
1, etc. Each possible value except the first has a pregecessor based on
this ordering, and each possible value except the last has a sweeessor based
on this ordering.

* The standard function ord (see Section 11.5.1) can be applied to any value
of ordinal-type, and returns the ordinality of the value.

* The standard function pred (see Section 11.5.4) can be applied to any value
of ordinal-type, and returns the predecessor of the value. (For the first
value in the ordinal-type, the result is unspecified.)

* The standard function succ (see Section 11.5.3) can be applied to any value
of ordinal-type, and returns the successor of the value. (For the first value
In the ordinal-type, the result is unspecified.)

ordinal -typoe

3-2

rascal Rerference Marnual Data Types

All simple-types except real and the string-types are ordinal-types. The
standard ordinal-type-identifiers are:

integer
longint
char
boolean

Note that in addition to these standard types, the enumerated-types and
subrange-types are ordinal-types.

3.1.1 Standard Simple-Types and String-Types
A standard type is denoted by a predefined type-identifier. The simple-types
integer, longint, real, char, and boolean are standard. The string-types are
wser-aefinea simple-types.

3.1.1.1 The Integer Type
The values are a subset of the whole numbers. (As constants, these values can
be denoted as specified in Section 1.4) The predefined integer constant maxint
is de;ined to be 32767. Maxint defines the range of the type integer as the
set of values:

-maxint-1, -maxint, ... -1, 0, 1, ... maxint-1, maxint
These are 16-bit, 2's-complement integers.

3.1.1.2 The Longint Type
The values are a subset of the whole numbers. (As constants, these values can

be denoted as specified in Section 1.4.) The range is the set of values from
~231-1) to 231-1, ie., 21047483648 to 2147483647.
These are 32-bit integers.

Arithmetic on integer and longint operands is done in both 16-bit and 32-bit
precision. An expression with mixed operand sizes is evaluated in a manner
similar to the FORTRAN single/double precision floating-point arithmetic rules:

* All "integer” constants in the range of type integer are considered to be of
type integer. All "integer” constants in the range of type longint, but not
in the range of type integer, are considered to be of type longint.

* When both operands of an operator (or the single operand of a unary
operator) are of type integer, 16-bit operations are always performed and
the result is of type integer (truncated to 16 bits if necessary)

* When one or both operands are of type longint, all operands are first
converted to type longint, 32-bit operations are performed, and the result is
of type longint. However, if this value is assigned to a variable of type
integer, it is truncated (see next rule).

3-3

Pascal Reference Marual Data Types

* The expression on the right of an assignment statement is evaluated
independently of the size of the varlable on the left. 1f necessary, the
result of the expression is truncated or extended to match the size of the
variable on the left.

The ordd function (see Section 11.3.3) can be used to convert an integer value
to a longint vaiue.

IMPLEMENTATION NOTE

There is a performance penalty for the use of longint values. The
penalty Is essentially a factor of 2 for operations other than division
and multiplication; for division and multiplication, the penalty is much
worse than a factor of 2.

3.1.13 The Real Type
For details of IEEE standard floating-point arithmetic, see Appendix D. The
possible real values are

* Finite values (a subset of the mathematical real numbers). As constants,
these values can be denoted as specified in Section 1.4.

The largest absolute numeric real value is approximately 3.402823466E38 in
Pascal notation.

The smallest absolute numeric non-zero real value is approximately
1.401298464E-45 in Pascal notation.

The real zero value has a sign, like other numbers. However, the sign of a
zero value is disregarded except in division of a finite number by zero and
in textual output.

* Infinite values, +» and -«. These arise either as the resuit of an operation
that overflows the maximum absolute finite value, or as the result of
dividing a finite value by zero. Appendix D gives the rules for arithmetic
operations using these vaiues.

* NaNs (the word “NaN" stands for “Not a Number"). These are values of
type real that convey diagnostic information. For example, the result of
multiplying « by D is a NaN.

3114 The Boolean Type
The values are truth values denoted by the predefined constant identifiers false
and true. These values are ordered so that false is “less than” true. The
function-call ord(false) returns 0, and ord(true) returns 1 (see Section 11.5.1).

3.1.15 The Char Type
The values are extended 8-bit ASCII, represented by numeric codes In the
range 0..255. The ordering of the char values is defined by the ordering of
these numeric codes. The function-call ord(c) where ¢ Is a char value, returns
the numeric code of ¢ (see Section 11.5.1).

3-4

Pascal Rererence Marnigl Data Types

3.1.16 String-Types
A string value Is a sequence of characters that has a dynamic /ergt/ attri-

bute. The length is the actual number of characters in the sequence at any
time during program execution.

A string type has a static size attribute. The size is the maximum limit on
the length of any value of this type. The current value of the length attribute
is returned by the standard function length (see Section 11.6); the size attribute
of a string type is determined when the string type is defined.

string-type

(string (D[size-atzonts }-»(D

string-type-identifier }—

Size-altiivie »| unsigned-integer |——

where the size attribute is an unsigned-integer.
IMPLEMENTATION NOTE

In the current implementation, the size-attribute must be in the range
from 1 to 25S.

The ordering relationship between any two string values is determined by
lexical comparison based on the ordering relationship between character values
in corresponding positions in the two strings. (When the two strings are of
unequal lengths, each character in the longer string that does not correspond to
a character in the shorter one compares “higher”; thus the string ‘attribute’ is
ordered higher than ‘at’)

Do not confuse the size with the length.

3-5

Pascal Reference Manal Dala Types

NOTES

The size attribute of a string constant is equal to the length of the
string constant value, namely the number of characters actually in the
string.

Although string-types are simple-types by definition, they have some
characteristics of structured-types. As explained in Section 4.3.1,
individual characters in a string can be accessed as if they were
components of an array. Also, all string-types are implicitly packed
types and all restrictions on packed types apply to strings (see Sections
7.3.2,5.16.1, and 11.7). '

Do not make any assumptions about the internal storage format of strings, as
this format may not be the same In all implementations.

Operators applicable to strings are specified in Section 5.1.5. Standard
procedures and functions for manipulating strings are described in Section 11.6.

3.1.2 Enumerated-Types
An enumerated-type defines an ordered set of values by listing the identifiers
that denote these values. The ordering of these values is determined by the
sequence in which the identifiers are listed.

enumerated-type (1) ol igentitier-list |—())

joentifier-list C' _1 centifler >

,

The occurrence of an identifier within the identifier-list of an
enumerated-type declares it as a constant for the block in which the
enumerated-type Is declared. The type of this constant is the enumerated-type
being declared.

Examples of enumeratea-types:

color = (red, yellow, green, blue)
suit = (club, diamond, heart, spade)
maritalStatus = (married, divorced, widowed, single)

Given these declarations, yellow is a constant of type color, diamond Is a
constant of type sult, and so forth.

when the ord function (see Section 11.5.1) Is applied to a value of an
enumerated-type, it retums an integer representing the ordering of the value

Pascal Reference Marua! Data Types

with respect to the other values of the enumerated-type. For example, given
the declarations above, ord(red) retums 0, ord(yellow) returmns 1, and ordblue)
returns 3,

3.1.3 Subrange-Types
A subrange-type provides for range-checking of values within some
ordinal-type. The syntax for a subrange-type is

subrange-type Q

Both constants must be of ordinal-type. Both constants must either be of the
same ordinal-type, or one must be of type integer and the other of type
longint. If both are of the same ordinal-type, this type is called the fost-type
If one Is of type integer and the other of type longint, the host-type is longint.
Note that no range-checking is done if the host-type is longint.

Examples of subrange-types:
1..100
-10..+10
red. .green
A variable of subrange-type possesses all the properties of variables of the

host type, with the restriction that its run-time value must be in the specifled
closed interval.

IMPLEMENTATION NOTE

Range-checking Is enabled ana dlsabled by the compller commands $R+
and $R- (see Chapter 12). The default Is $R+ (range-checking enabled).

3.2 Structured-Types
A structured-type Is characterized by its structuring method and by the type(s)
of its components. If the component type is itself structured, the resulting
structured-type exhibits more than one level of structuring. There is no
specified Himit on the number of levels to which data-types can be structured.

struetured-tye »{ array-type |

structured-type-identifier J'

.

Pascal Rererence Manual Data Types

The use of the word packed in the declaration of a structured-type indicates
to the compller that data storage should be economized, even if this causes an
access to a component of a varlable of this type to be less efficient.

The word packed only affects the representation of one level of the
structured-type in which it occurs. If a component is itself structured, the
component’s representation is packed only if the word packed also occurs in
the declaration of its type.

For restrictions on the use of components of packed variables, see Sections
7.3.2,5.16.1, and 11.7.

The implementation of packing is complex, and detalls of the allocation of
storage to components of a packed variable are wrspecifled

IMPLEMENTATION NOTE

In the current implementation, the word packed has no effect on types
other than array and record.

3.2.1 Armrray-Types
An array-type consists of a fixed number of components that are all of one
type, called the component-tyoe The number of elements Is determined by
one or more Jnaex-types one for each dimension of the array. There is no
specified limit on the number of dimensions. In each dimension, the array can
be indexed by every possible value of the corresponding index-type, so the
number of elements Is the product of the cardinalities of all the index-types.

array-type

EDHN0 D>+

Index-type ordinal-type

The type following the word of is the component-type of the array.
IMPLEMENTATION NOTE

In the current implementation, the index-type should not be longint or a
subrange of longint, and arrays should not contaln more than 32767 bytes.

Pascal Reference Manual Lata Types

Examples of array-types:

array{1..100] of real
array[boolean] of color

If the component-type of an array-type is also an array-type, the result can be
regarded as a single multi-dimensional array. The declaration of such an array

is equivalent to the declaration of a multi-dimensional array, as illustrated by
the following examples:

array[boolean] of array[1..10] of array[size] of real
is equivalent to:

array[boolean, 1..10, size] of real
Likewise,

packed array{1..10] of packed array[1..8] of boolean
is equivalent to: .

packed array[1..10,1..8] of boolean

“Equivalent” means that the compiler does the same thing with the two
constructions,

A component of an array can be accessed by referencing the array and
applying one or more indexes (see Section 4.3.1).

3.22 Record-Types

A record-type consists of a fixed number of components called &/ possibly
of different types. For each component, the record-type declaration specifies
the type of the fleld and an identifier that denotes it.

Jecord-type N C)mm

rela-iist

fixed-part >
(:)%{ variant-part \P@—[
g part (b{ field-declarationj—j————‘

Pascal Rerference Marnual , Data 7ypes

felg-declaration identifier-list °

The fixed-part of a record-type specifies a list of "“fixed" fields, glving an
identifier and a type for each fleld. Each of these fields contalns data that is
always accessed in the same way (see Sectlon 4.3.2).

Example of & recoro-type:

record
year: integer;
month: 1..12;
day: 1..31
end

A variant-part allocates memory space with more than one list of flelds, thus
permitting the data in this space to be accessed in more than one way. Each
list of flelds is called a var/ant The variants "overlay" each other in memory,
and all fields of all variants are accessible at all times.

varlant-part

= tag- e type oo+ v
ceniter () O

variant

—le s O+® (D>
O

tag 1l Upe o ordinal-type-icentifier |—

IMPLEMENTATION NOTE

In the current implementation, the type longint should not be used as a
tag-type as it will not work correctly.

3-10

Pascal Reference Manal Data Fypes

Each variant is introduced by one or more constants. All the constants must
be distinct and must be of an ordinal-type that is compatitle with the
tag-type (see Section 3.4).

The variant-part allows for an optional ldentifier, called the tag-rfelqd
laentifler If a tag-field identifier is present, it Is automatically declared as
the igentifier of an additional fixed fleld of the record, called the fag-Aeid

The value of the tag-field may be used by the program to indicate which
variant should be used at a given time. If there is no tag-field, then the
program must select a variant on some other criterion.

Examples of recora-types with varlants:

record
name, firstName: string[80];
age: 0..99;
case married: boolean of
true: (spousesName: string{80]):
false: ()
end

record
X, y: real;
area: real;
case s: of
triangle: (side:)real; inclination, anglel, angle2:
le),
rectangle: (sidel, side2 : real; skew, angle3: angle);
circle: (diameter: real);
end

NOTE

The constants that introduce a variant are not used for referring to
fields of the variant; however, they can be used as optional arguments
of the new procedure (see Section 11.2). Variant fields are accessed in
exactly the same way as fixed flelds (see Section 4.3.2).

3.23 Set-Types
A set-type defines a range of values that is the powerset of some ordinal-type,
called the vase-type In other words, each possible value of a set-type Is some
subset of the possible values of the base-type.

3-11

Pascal Reference Mara! Oatg Types

IMPL EMENTATION NOTE

In the present implementation the base-type must not be longint. The
base-type must not have more than 4088 possible values. If the base-
type is a subrange of integer, it must be within the limits 0..4087.

Operators applicable to sets are specified in Section 5.1.4. Section 5.3 shows
how set values are denoted in Pascal.

Sets with less than 32 possible values in the base-type can be held in a
register and offer the best performance. For sets larger than this, there is a
performance penalty that is essentially a linear function of the size of the
base-type.

The empty set (see Section 5.1.4) Is a possible value of every set-type.

324 File-Types
A file-type is a structured-type consisting of a sequence of components that
are all of one type, the comporent-type The component-type may be any
type.
The component data is not in program-addressable memory but is accessed via

a peripheral device. The number of components (i.e. the length of the file) is
not fixed by the file-type declaration.

e-tpe o eqie) >
(of)] type

The type file (without the "of type” construct) represents a so~called "untyped
file” type for use with the blockread and blockwrite functions (see Section
10.4),

NOTE

Although the symbol file can be used as if it were a type-identifier, it
cannot be redeclared since it is a reserved word.

The standard file-type text denotes a file of text organized into lines. The
file may be stored on a file-structured device, or it may be a stream of
characters from a character device such as the Lisa keyboard. Files of type
text are supported by the specialized 1/0 procedures discussed in Section 10.3.

In Pascal on the Lisa, the type text is distinct from the type file of char
(unlike standard Pascal). The type flle of char is a file whose records are of

3-12

Pascal Reference Manual Data Types

type char, containing char values that are not interpreted or converted in any
way during 1/0 operations.

In a stored file of type text or file of -128..127, the component values are
packed into bytes on the storage medium. However, this does not apply to the
type file of char; the component values of this type are stored in 16-bit words.

In Pascal on the Lisa, files can be passed to procegures and functions as
variable parameters, as explained in Section 7.3.2.

Sections 4.3.3, 10.2, 10.3, and 10.4 discuss methods of accessing file components
and data.

3.3 Pointer-Types
A pointer-type defines an unbounded set of values that point to variables of a
specified type called the s8se-{pe

Pointer values are created by the standard procedure new (see Section 11.2.1),
by the @ operator (see Section 5.1.6), and by the standard procedure pointer
(see Section 11.3.4).

pointer-type base-typ o
\‘t pointer-type-identifier

!ﬁ%ﬂ type-identifier |—

NOTE

The base-type may be an identifier that has not yet been declared. In
this case, it must be declared somewhere in the same block as the
pointer-type.

The special symbol nil represents a standard pointer-valued constant that is a
possible value of every pointer type. Conceptually, nil is a pointer that does
not point to anything.

Section 4.3.4 discusses the syntax for referencing the object pointed to by a
pointer variable.

3.4 ldentical and Compatible Types
As explained below, this Pascal has stronger typing than standard Pascal. In
Pascal on the Lisa, two types may or may not be Joentical and identity is
required in some contexts but not in others.

3-13

Pascal Reference Marnsal Data Types

Even if not identical, two types may still be compatit/e and this is sufficient
in contexts where identity is not required——except for assignment, where
assignment-compatibility is required.

341 Type ldentity
Identical types are required on/y in the following contexts:

* Variable parameters (see Section 7.3.2).
* Result types of functional parameters (see Section 7.3.4).

* Value and variable parameters within parameter-lists of procedural or
functional parameters (see Section 7.3.5).

* One-dimensional packed arrays of char being compared via a relational
operator (see Section 5.1.5).

Two types, t1 and t2, are Jogntical if either of the following is true:
* The same e Joentifler s used to declare both t1 and t2, as In
foo = "integer;

t1 = foo;
t2 = foo;
* t1 is declared to be equivalent to t2 as in
tl = t2;
Note that the declarations
t1 = t2;
t3 = t1;

do not make t3 and t2 identical, even though they make t1 identical to t2 and
t3 identical to t1!

Also note that the declarations

t4 = integer;
t5 = integer;

do make 4 and t5 identical, since both are defined by the same type
identifier. In general, the declarations

t6 = t7;
8 =t7;

do make t6 and t8 identical if t7 is a type-identifier.
However, the declarations
t9 = "integer:
t10 = "integer;
do not make t9 and t10 identical since "integer is not a type identifier but a
user-defined type consisting of the special symbol ~ and a type identifier.

non

3-14

Pascal Reference Marnual Data Types

Finally, note that two variables declared in the same declaration, as in
varl, var2: " integer;

are of identical type. However, if the declarations are separate then the
gefinitions above apply.

The declarations

vari: integer,
var2: ~integer;
var3: integer;
var4: integer;

make var3 and vard identical in type, but not vart and varz.

342 Compatibility of Types
Compatibility is required in the majority of contexts where two or more

entities are used together, e.g. in expressions. Specific instances where type
compatibility is required are noted elsewhere in this manual.

Two types are compatible If any of the following are true:
* They are identical.
* One is a subrange of the other.
* Both are subranges of the same type.
* Both are string-types (the lengths and sizes may differ).
* Both are set-types, and their base-types are compatible.

343 Asslgment—Cormaunmty
Assignment-compatibility Is required whenever a value is assigned to
something, either explicitly (as in an assignment-statement) or implicitly (as in
passing value parameters).

The value of an expression expval of type exptyp is assignment-compatible
with a variable, parameter, or function-identifier of type vtyp if any of the
following is true.

* vtyp and exptyp are identical and neither is a flle-type, or a structured-
type with a file component.

= vtyp is real and exptyp is integer or longint (expval is coerced to type
real).

* vtyp and exptyp are compatible ordinal-types, and expval is within the
range of possible values of vtyp.

* viyp and exptyp are compatible set-types, and all the members of expval
are within the range of possible values of the base-type of vtyp.

* vtyp and exptyp are string types, and the current length of expval is equal
to or less than the size-attribute of vtyp.

3-15

Pascal Reference Manual Data Types

* vtyp is a string type or a char type and expval is a quoted-character-
constant.

* vtyp is a packed array{1..,7] of char and expval is a string constant
contalning exactly » characters.

If the index-type of the packed array of char is not 1..2, but the array
does have exactly .7 elements, no error will occur. However, the results
are unspecified.

whenever assignment-compatibility is required and none of the above is true,
elther a compiler error or a run-time error occurs.

35 The Type-Declaration-Part
Any program, procedure, or function that declares types contains a type-
declaration-part, as shown in Chapter 2.

Example of a type-oeclaration-part:

type count = integer:
range = integer;
color = (red, yellcw, green, blue);
sex = (male, female);
year = 1900..1999;
shape = (triangle, rectangle, circle);
card = array[l..80] of char;
str = string[80];
polar = record r: real; theta: angle end;
person = personDetails;
personDetails = record
name, firstName: str;
age: integer;
married: boolean;

father, child, sibling: person;

case s: sex of
male: (enlisted, bearded: booclean):
female: (pregnant: boolean)

people = file of personDetails;
intfile = file of integer:

In the above example count, range, and integer denote identical types. The
type year is compatible with, but not identical to, the types range, count, and
integer.

3-16

NOTES

029-0396-A

Chapter 4
Variables

41 Variable-Declarations..... a-1
42 Variable-References - ...4-1
43 Qualifiers eteeeesssaseseeesssssseetesnsnteatssrsnnbsatrasaaasreneannnerataas 4-2
4.3.1 Arrays, Strings, and INOEXESoiciiiiiiarieiicac e te e canaane a4-2
4.3.2 Records and Field-Designatorsccccccciiiiniainnneacrenneccacnaeenas 4-4
8.3.3 FIE-BUFTETS ..oeeeeeniiiiiciiincie ittt st et cereee s e ceeecnsasesanes 4-4
4.3.4 Pointersand THEIr ODJECLScooiivreieii e a-4

Variables

4.1 Vvariable-Declarations
A variable-declaration consists of a list of identifiers denoting new variables,
followed by their type.

variable-geclaralion o ervifier-list (O ype |»(5)

The occurrence of an identifier within the identifier-list of a variable-
declaration declares it as a variable-identifier for the block in which the
declaration occurs. The variable can then be referenced throughout the
remaining lexical extent of that block, except as specified in Section 2.2.2.

Examples of varigble-aeciarations:

X,Yy,2: real;

i, j: integer;

k: 0..9;

p.q r: boolean;

operator: (plus, minus, times);

a: array(0..63] of real;

c: color;

f: file of char;

huel, hue2: set of color;

p1,p2: person;

m mi, m2: array[1..10,1..10] of real;

coord: polar;

pooltape: array[1..4] of tape;

4.2 Variable-References

A variable-reference denotes the value of a variable of simple-type or
pointer-type, or the collection of values represented by a variable of
structured-type.

variable-reference

———»| variable-identifier | >

varisble-identifier

Pascal Reference Manual variables

Syntax for the various kinds of qualifiers is given below.

43 Qualiflers

As shown above, a variable-reference is a variable-identifier followed by zero
or more qualifiers Each qualifier modifies the meaning of the variable-
reference.

qualirier @

fleld-designator

file-buffer-symbol

pointer-object-symbol

An array identifier with no gualifier is a reference to the entire array:
XResults

If the array identifier is followed by an index, this denotes a specific
component of the array:

xResults[current+1]

If the array component is a record, the index may be followed by a field-
designator; in this case the variable-reference denotes a specific field within a
specific array component.

xResults[current+1].11ink

If the field Is a pointer, the field-designator may be followed by the pointer-
object-symbol, to denote the object pointed to by the pointer:

xResults{current+1].1ink "

If the object of the pointer is an array, ancther index can be added to denote
a component of this array (and so forth)

xResults{current+1].11nk " [1]

43.1 Arrays, Strings, and Indexes
A specific component of an array variable is denoted by a variable-reference

that refers to the array variable, followed by an index that specifies the
component.

A specific character within a string variable is denoted by a varlable-reference
that refers to the string variable, followed by an index that specifies the
character position. '

=y

4-2

Pascal Reference Marnal variables

Examples of Indexed arrays:

m[1i, J]
a[1+)]

Each expression in the index selects a component in the corresponding
dimension of the array. The number of expressions must not exceed the
number of index-types in the array declaration, and the type of each
expression must be assignment-compatible with the corresponding index-type.

In indexing a multi-dimensional array, you can use either muitiple indexes or
multiple expressions within an index. The two forms are completely equivalent.
For example,

m{1](J]

Is equivalent to

m[i, j]

For array variables, each index expression must be assigrment-compatible with
the corresponding index-type specified in the declaration of the array-type.

A string value can be indexed by only one index expression, whose value must
be in the range 1../7, where /7 is the current length of the string value. The
effect is to access one character of the string value.

WARNING

when a string value is manipulated by assigning values to individual
character positions, the dynamic length of the string is not maintained.
For example, suppose that strval Is declared as follows:

strval: stringf10];

The memory space allocated for strval includes space for 10 char values
and a number that will represent the current length of the string--i.e.,
the number of char vaiues currently in the string. Initially, all of this
space contains unspecified values. The assignment

strval[1]:="F"

may or may not work, depending on what the unspecified length happens
to be. If this assignment works, it stores the char value F' in character
position 1, but the length of strval remains unspecified. In other words,
the value of strvalf1} is now F', but the value of strval is unspecified.
Therefore, the effect of a statement such as writeln(strval) is
unspecified.

Therefore, this kind of string manipulation is not recommended. Instead,
use the standard procedures described in Section 11.6. These procedures
properly maintain the lengths of the string values they modify.

rascal Reference Manual Variables

432 Records and Field-Designators
A specific field of a record variable is denoted by a varlable-reference that

refers to the record variable, followed by a field-designator that specifies the
field.

flela-aesiqnator o identifier

Examples of fiela-aesignators:

p2 .pregnant
coord. theta
433 Flle-Buffers
Although a file variable may have any number of components, only ohe
component is accessible at any time. The position of the current component in
the file is called the current fle position See Sections 10.2 and 10.3 for
standard procedures that move the current file position. Program access to the

current component is via a special variable associated with the file, called a
flle-bufrer

The file-buffer is implicitly declared when the file variable is declared. If F

is a file variable with components of type T, the associated file-buffer is a
variable of type T.

The file-buffer associated with a file variable is denoted by a variable-

reference that refers to the file variable, followed by a qualifier called the
file-buffer-symbol.

fle-buffer-symbol > O» >

Thus the file-buffer of file F is referenced by F .

Sections 10.2 and 10.3 describe standard procedures that are used to move the
current file position within the file and to transfer data between the flle-
buffer and the current file component.

434 Pointers and Their Objects
The value of a pointer variable is either nil, or a value that identifies some
other variable, called the abfect of the pointer

The object pointed to by a pointer variable Is denoted by a variable-reference
that refers to the pointer variable, followed by a qualifier called the pointer-
object-symbol.

pointer-gbject-symbol ,@

Fascal Rerference Manial varlables

NOTE

Pointer values are created by the standard procedure new (see Section
11.2.1), by the @ operator (see Section 5.1.6), and by the standard
procedure pointer (see Section 11.3.4).

The constant nil (see Section 3.3) does not point to a varfable. If you access
memory via a nil pointer reference, the results are unspecified; there may not
be any error indication.

Examples of references to ohjects of pointers:

p1_ A
p1 .sibling

4-5

NOTES

029-0397-A

Chapter 5

Expressions

5.1 Operators 54
5.1.1 Binary Operators: Order of Evaluation of Operands..........ccccovveeenenen S-4

5.1.2 Arithmetic Operators. .. .ccociciiiiie et erecrcem et e e snee e s e s enaens 5-4

5.1.3 BOOIEAN OPEIALOTS ..ccouuiiiaiiiiiaiiierictiite it et e nne st aneesanenssenasssnans 5-6

20 N BRCTAE 22 16) ¢ SO 5-6
5.1.4.1 Result Type inSet Operations.......ccooveveiiiiiiinccinninienene. 5-7

5.1.5 Relational Operatorsccocciiiiiiiiiiriccenc e eteeem s e senaane S-7
5.1.5.1 ComparingNUIMDETScc.iiimmiiimniierrenireneceseeee s ennaeeaee 5-7

5.1.5.2 ComparingBooleans.ccccooiiiiinrcicniinirine e ccnreneaee 5-8

5.1.5.3 Comparing Stringsc..ccccociriiiiiimniiia sttt ceeansetasesnses 5-8

5.1.5.8 ComparingSets ...t e 5-8

5.1.5.5 Testing Set MembEIShiP........cueeeiiiiiin e ceeernaeneaes 5-8

S.1.5.6 ComparingPacked Arrays of Charccceceeeiemenieiernnnsenens 5-8

5.1.6 B-0PBTALOTovieeeciiinirtaniriencenesteassestrassresasseresssssransesarssnnes 5-8
S.1.6.1 @-OperatorwithaVvariableccoomirmininiiiniiiinnniennnns 5-9

5.1.6.2 @-Operator with a Value Parameter..........ccccooreiinieninnnnnanns 5-9

5.1.6.3 @-Operator witha Variable Parameter.......c.ccceeeveeiennnnnnne. 5-9

5.1.6.4 @-Operator withaProcedure of Functioncoevveenennnee. 5-9

52 Function-Calls 5-10
5.3 Set-Constructors . 5-11

Expressions

Expressions consist of operators and operands, i.e. variables, constants, set-
constructors, and function calls. Table 5-1 shows the operator precedence:

Table 5-1
Precedence of Operators
(perators Precedence | Categories
@, not highest unary operators
»_/, div, - -
-1, AV, second multipl Tators
mod, and Plying” ope
+, -, 0r third “adding” operators & signs
=4, lowest relational operators
<=, >=_in

The following rules specify the way in which operands are bound to operators:

* when an operand Is written between two operators of different precedence,
it Is bound to the operator with the higher precedence.

* when an operand is written between two operators of the same precedence,
it Is bound to the operator on the left.

Note that the order in which operations are performed is not specified.

These rules are implicit in the syntax for expressions, which are built up from
factors, terms, and simple-expressions.

The syntax for a /gctorallows the unary operators @ and not to be applied to
a value:

factor

A ~ > bl variable-reference l——ﬂ

N—s! unsigned-constant |
\—] set-constructor |
© ;
L.

L Lt U

Pascal Rererence Marial Expressions

A function-call activates a function, and denotes the value retumed by the
function (see Section 5.2). A set-constructor denotes a value of a set-type (see
Section 5.3). An wrsignea-constant has the following syntax:

>{ unsigned-number
quoted-string-constant
constant-identifier
nil .

wnsignea-constant

Examples of factors:

X {variable-reference}

ax {pointer to a variable}

15 {unsigned-constant}

(x+y+2) {sub-expression}

sin(x/2) {function—call}

[*A*..°F*,"a".."f"] {set-constructor}

not p {regation of a boolean}
The syntax for a ¢ezm allows the "multiplying” operators to be applied to
factors:
e factor

. @‘ y
\. O v
\. @ y

Examples of tenms:

O
div

xry

1/7(1-1)

pand g

(x <= y) and (y < 2)

5-2

Pascal Reference Manual Expressions

The syntax for a simple-expression allows the "adding” operators and signs to
be applied to terms:

simple-expression

oY

Examples of simple-expressions:

X+y

-X

huel + hue2

iInj « 1
The syntax for an expression allows the relational operators to be applied to
simple-expressions:

expression

——bl simple-expression } S >
simple-expression |-—/

20003

Examples of expressions:

SR
g&.a- £
=i g.

r
(J <K

OATT X
o’

i
W

Pascal Reference Marnual

5.1 Operators

5.1.1 Binary Operators: Order of Evaluation of Operands
The order of evaluation of the operands of a binary operator is unspecified.

5.1.2 Arithmetic Operators

The types of operands and results for arithmetic binary and unary operations

are shown in Tables 5-2 and 5-3 respectively.

Expressions

Table 5-2
Binary Arithmetlc Operations
perator | (Operation Qperard Types Type of Result
+ addition
""""""" integer, real, or integer, real, or
- subtraction
o longint longint
» multiplication
/ dtvision Integer, real, or real
longint
div division with integer or longint | integer or longint
integer result tege
mod modulo integer or longint integer

Section 5.1.4).

Note: The symbols +, —, and * are also used as set operators (see

Table 5-3
Unary Arithmetic Operations (Signs)
Qoerator| Qoeration Qperand Types Tvpe of Result
+ identity
integer, real, or same as operand
- sign-negation longint

Any operand whose type is subr, where subr is a subrange of some ordinal-type

ordtyp, is treated as if it were of type ordtyp. Consequently an expression
that consists of a single operand of type subr is itself of type ordtyp.

5-4

Pascal Reference Marual Expressions

If both the operands of the addition, subtraction, or multiplication operators
are of type integer or longint, the result Is of type integer or longint as
described in Section 3.1.1.2; otherwise, the result is of type real.

NOTE

See Appendix D for more information on all arithmetic operations with
operands or results of type real.

The result of the identity or sign-negation operator is of the same type as the
operand.

The value of | div j is the mathematical quotient of 1/} rounded toward zero
to an integer or longint value. An error ocours if }=0.

The value of 1 mod j is equal to the value of
1 - (1 div)3

The sign of the result of mod is always the same as the sign of 1. An error
occurs if j=0.

The predefined constant maxint is of type integer. Its value is 32767. This
value satisfies the following conditions:

* All whole numbers in the closed interval from -maxint-1 to +maxint are
representable in the type integer.

* Any unary operation performed on a whole number in this interval will be
correctly performed according to the mathematical rules for whole-number
arithmetic.

* Any binary integer operation on two whole numbers in this same Interval
will be correctly performed according to the mathematical rules for
whole-number arithmetic, provided that the result is also in this interval.
If the mathematical result is not in this interval, then the actual result is
the low-order 16 bits of the mathematical result.

* Any relational operation on two whole numbers in this same interval will be
correctly performed according to the mathematical rules for whole-number
arithmetic.

5-5

Pascal Reference Marial Expressions

5.3 Boolean Operators
The types of operands and results for Boolean operations are shown in Table

5-4.
Table 5-4
Boolean Qperations
Qoeratary qperation Qperana Types e or Result
or disjunction
and conjunction boolean boolean
not negation

whether a Boolean expression is completely or partially evaluated if its value
can be determined by partial evaluation is unspecified. For example, consider
the expression

true or boolTst(x)

where boolTst is a function that returns a boolean value. This expression will
always have the value true, regardless of the result of boolTst{x) The language
definition does not specify whether the boolTst function is called when this
expression is evaluated. This could be important if boolTst has side-effects.

5.1.4 Set Operators
The types of operands and results for set operations are shown in Table 5-5.

Table 5-5
Set Operations
Qperator| qQperation operand Types Type of Result
+ union
compatible
- difference set-types (see 5.1.4.1)
» intersection

Pascal Reference Manal Expressions

5.1.4.1 Result Type in Set Operations
The following rules govern the type of the result of a set operation where one
{or both) of the operands is a set of subr, where ordtyp represents any
ordinal-type and subr represents a subrange of ordtyp:

¢ If ordtyp is not the type integer, then the type of the result Is set of
oratyp.

* If ordtyp is the type integer, then the type of the result is set of 0.4087 in
the current implementation (0..32767 in a future implementation). This rule
results from the limitations on set-types (see Section 3.2.3).

5.1.5 Relational Operators
The types of operands and results for relational operations are shown in Table
5-6, and discussed further below.

Table 5-6
Relational Operations

Qperator | (peration Querana Types e of Result
- equal compatible set-,
simple-, or
< not equal pointer-types
(& see below)
< less ‘
> greater con’patiblé
simple-types '
<= less/equal (& see below) boolean
> greater/equal
<= subset of compatibie
>= superset of set-types
lert gperanda:
in member of any ordinal-type T
rignt gperanc:
setof T

5.1.5.1 Comparing Numbers
when the operands of <, >, >=, Oor <= are numeric, they need not be of

compatible type /F one operand is real and the other is integer or longint.
NOTE

See Appendix D for more information on relational operations with
operands of type real.

Pascal Reference Manugl Expressions

5.1.5.2 Comparing Booleans
If p and q are boolean operands, then p~q denotes their equivalence and p<-q

denotes the implication of q by p (because false<true). Similarly, p<>q denotes
logical “exclusive-or."

5.1.53 strings

when the relational operators =, <>, <, >, <=, and > are used to compare
strings (see Section 3.1.1.6), they denote lexicographic ordering according to the
ordering of the ASCII character set. Note that any two string values can be
compared since all string values are compatible.

5.1.5.4 Comparing Sets ,
If u and v are set operands, then u<=v denotes the inclusion of u in v, and
w>=v denotes the inclusion of v in w

5155 Testing Set Membership
The in operator ylelds the value true if the value of the ordinal-type operand
is @ member of the set-type operand; otherwise it yields the value false.

5.1.5.6 Comparing Packed Arrays of Char v
In acadition to the operand types shown in the table, the = and <> operators can
also be used to compare a packed array{1.N] of char with a string conséant
containing exactly N characters, or to compare two one-dimensional packed
arrays of char of Jaentical type.

5.1.6 @-Operator
A pointer to a variable can be computed with the @-operator. The operand
and result types are shown in Table 5-7.

Table 5-7
Pointer Operation
Qperator | Qperation Qperand Type of Result
i variable, parameter,
nter ,
® ?g:n:um procedure, or same as nil
function

@ is a unary operator taking a single variable, parameter, procedure, or
function as its operand and computing the value of its pointer. The type of
the value is equivalent to the type of nil, and consequently can be assigned to
any pointer varlable.

Pascal Rererernce Manual Expressions

5.1.6.1 @-Operator With a Variable
For an ordinary variable (not a parameter) the use of @ is straightforward. For
example, if we have the declarations

type twochar = packed array[0..1] of char;
var int: integer;
twocharptr: ~twochar;

then the statement

twocharptr := aint

causes twocharptr to point to int. Now twocharptr ™ is a reinterpretation of
the bit value of int as though it were a packed array{0.1] of char.

The operand of @ cannot be a component of a packed variable.

5.16.2 @-0Operator With a Value Parameter-
when @ is applied to a formal value parameter, the result is a pointer to the
stack location containing the actual value. Suppose that foo is a formal value
parameter in a procedure and fooptr is a pointer variable. If the procedure
executes the statement

fooptr := @foo

then fooptr is a reference to the value of foo. Note that if the actual-
parameter is a variable-reference, fooptr”~ is not a reference to the variable
itself; it is a reference to the value taken from the variable and stored on the
stack.

5.1.6.3 @-Operator With a Variable Parameter
when @ is applied to a formal variable parameter, the result is a pointer to
the actual-parameter (the pointer Is taken from the stack). Suppose that fum
is a formal variable parameter of a procedure, fle is a variable passed to the
procedure as the actual-parameter for fum, and fumptr is a pointer variable.

If the procedure executes the statement
fumptr := afum
then fumptr is a pointer to fie. fumptr” is a reference to fie itself.
5.1.6.4 @-Operator wWith a Procedure or Function
It is possible to apply ® to a procedure or a function, yielding a pointer to the
entry-point. Note that Pascal provides no mechanism for using such a pointer.

Currently the only use for a procedure polnter is to pass it to an assembly-
language routine, which can then JSR to that address.

If the procedure pointed to is in the local segment, @ retumns the current
address of the procedure’s entry point. If the procedure is in some other
segment, however, @ returns the address of the jump table entry for the
procedure.

5-9

Pascal Reference Manual Expressions

In logical memory mapping (see Wommao User’s Guioe for e Lisa), the
procedure pointer is always valid.

In physical memory mapping, code swapping may change a local-segment
procedure address without warning, and the procedure pointer can become
invalid. If the procedure is not in the local segment, the jump-table entry
address will remain valid despite swapping because the jump table is not
moved.

5.2 Function-Calls
A function-call specifies the activation of the function dencted by the
function-identifier. If the corresponding function-declaration contains a list of
formal-parameters, then the function-call must contain a corresponding list of
actual-parameters. Each actual-parameter is substituted for the corresponding
formal-parameter. The correspondence is established by the positions of the
parameters in the lists of actual and formal parameters respectively. The
number of actual-parameters must be equal to the number of formal
parameters.

The order of evaluation and binding of the actual-parameters is unspecified.

Rmetlon-call

——b[function-identifier | I >
\b[actual-parameter-list]»/

aclusl-parameter-list ,@ — o actal-parameter | ,@ .

expression

variable-reference

actual-parameter

procedure-identifier
function-identifier

A function-identifier is any identifier that has been declared to denote a
function.

5-10

Pascal Rerference Manual Expressions

Examples of function-calls:

sum(a, 63)
gcd(147,K)
sin(x+y)
eof(f)
ord(f)

5.3 Set-Constructors
A set-constructor denotes a value of a set-type, and is formed by writing
expressions within [brackets] Each expression denotes a value of the set.

set-constuctor .@ ’Q}_’
M
(e

k4

o

The notation [] denotes the empty set, which belongs to every set-type. Any
member-group x..y denotes as set members the range of all values of the base-
type in the closed interval x to y.

If x Is greater than y, then x.y denotes no members and [x.y] denotes the
empty set.

All values designated in member-groups in a particular set-constructor must be
of the same ordinal-type. This ordinal-type Is the base-type of the resulting
set. If an integer value designated as a set member is outside the limits given
in Section 3.2.3 (0..4087 in the current implementation), the results are
unspecified.

Examples of set-constnietors:

[red, c, green]
{1, 5, 10..k mod 12, 23]
[‘A*..'Z°, *a'..'z", chr(xcode)]

5-11

NOTES

Chapter 6

Statements

6.1 Simple Statements . . eueemaesseeseecessassesssesesmceeesnan 6-1
6.1.1 Assignment-Statementso 6-1
6.1.2 Procedure-Statements ... oo e 6-2
B.1.3 GOLO-StalEMEBNESottt ettt et s e eeanea s eannn 6-3

6.2 Structured-Statements . . eeemareeeeeeeceeseraseemeanonsnnn 64
6.2.1 Compound-Statementso ea e 6-4
6.2.2 Conditional-Statementsooo i e 6-4
6.2.2.1 H=StalBMENTS cooeeie e eeere e eeeree e srn e nnneenen 6-5

6.2.2.2 Case-Statements. ... oo e 6-5

6.2.3 Repetitive-Statements. oottt e e e 6-6
6.2.3.1 Repeat-Statementsccooviir it 6-7

6.2.3.2 WhIle-Statementsccociiiiiiieeiiccrecereeeeerreeaseeeeneennees 6-7

6.2.3.3 FOr-Statements.oeieeeeie e ceceemreean e e e ennes 6-8

6.2.8 With-Statementsc.oomnioiieeie et eeaee e s e e nenans 6-10

029-0398-A

Statements

Statements denote algorithmic actlons, and are executable. They can be
prefixed by labels; a labeled statement can be referenced by a gotoc-statement.

statement

»>
b simple-statement

structured-statement

jib—ej—b{ digit-sequence J—————&

A digit-sequence used as a label must be In the range 0..9999, and must first
be declared as described in Section 2.1.

6.1 Simple Statements
A simple-statement is a statement that does not contain any other statement.

simple-statemerit

»{ assignment-statement

procedure-statement

goto—statemegt_} >

6.1.1 Assignment-Statements
The syntax for an assignment-statement is as follows:

asslgrment -statement
variable-reference
function-identifier Q

The assignment-statement can be used in two ways:

* To replace the current value of a variable by a new value specified as an
expression

* To specify an expression whose value is to be returned by a function.

Pascal Reference Manusl Statements

The expression must be assignment-compatible with the type of the variable or
the result-type of the function.

NOTE

If the selection of the variable involves indexing an array or taking the
object of a pointer, it is not specified whether these actions precede or
follow the evaluation of the expression.

Examples of assignment-statements:

X = y#z;

p := (1<=1) and (i<100);
1 := sgr(k) - (i*j).
huel := [blue, succ(c)];

6.1.2 Procedure-Statements
A procedure-statement serves to execute the procedure denoted by the

procedure-identifier.
procedure-statement

-——b(procedure-identifier % <

>
actual-parameter-list]—/

(A procedure-identifier is simply an identifier that has been used to declare a
procedure.)

If the procedure has formal-parameters (see Section 7.3), the procedure-
statement must contain a list of actual-parameters that are bound to the
corresponding formal-parameters. The number of actual-parameters must be
equal to the number of formal parameters. The correspondence is established
by the positions of the parameters in the lists of actual and formal parameters
respectively.

The rules for an actual-parameter AP depend on the corresponding formal-
parameter FP:

* If FP is a value parameter, AP must be an expression. The type of the
value of AP must be assignment-compatible with the type of FP.

e If FP is a variable parameter, AP must be a variable-reference. The type
of AP must be identical to the type of FP.

e If FP is a procedural parameter, AP must be a procedure-identifier. The
type of each formal-parameter of AP must be identical to the type of the
corresponding formal-parameter of FP.

6-2

Pascal Rererence Marmal Statemernts

« If FP is a functional parameter, AP must be a function-identifier. The type
of each formal-parameter of AP must be identical to the type of the
corresponding formal-parameter of FP, and the resuit-type of AP must be
identical to the result-type of FP.

NOTE

The order of evaluation and binding of the actual parameters is
unspecified.

Examples of proceaure-stalermerts:

printheading;
transpose(a, n, m);
bisect(fct, -1.0,+1.0,x);

6.1.3 Goto-Statements
A goto-statement causes a jump to another statement in the program, namely
the statement prefixed by the label that is referenced in the goto-statement.

QLGN oot)| 1abel |

NOTE

The constants that Introduce cases within a case-statement (see Section
6.2.2.2) are not labels, and cannot be referenced in goto-statements.

The following restrictions apply to goto-statements:

* The effect of a jump into a structured statement from outside of the
structured statement is unspecified.

* The effect of a jJump between the then part and the else part of an if-
statement is unspecified.

* The effect of a jump between two different cases within a case-statement
is unspecified.

6-3

Pascal Rererence Manual Statements

6.2 Structured-Statements
Structured-statements are constructs composed of other statements that must
be executed either conditionally (conditional-statements), repeatedly
(repetitive-statements), or in sequence (compound-statement or with-statement).

structuread-statement

bl compound-statement

conditional-statement

repetitive-statement

with-statement | >

6.2.1 Compound-Statements
The compound-statement specifies that its component statements are to be
executed in the same sequence as they are written.

compouna-statement

o) -+{ e |y
O

Example of compouna-statement:

g
Honon 5‘
NS X

B xn

An important use of the compound-statement is to group more than one
statement into a single statement, in contexts where Pascal syntax only allows
one statement. The symbols begin and end act as “statement brackets.”
Examples of this will be seen in Section 6.2.3.2.

6.2.2 Conditional-Statements
A conditional-statement selects for execution a single one (or none) of its
component statements.

cooltionsl-statement if-statement

case-statement

Pascal Reference Marnual Statements

6.2.2.1 If-Statements
The syntax for if-statements is as follows:

if-statement a
expression
:N then)—b{ statement } >

else statement

The expression must yield a result of type boolean. If the expression yields
the value true, the statement following the then is executed.

If the expression yields false and the else part is present, the statement
following the else s executed; If the else part Is not present, nothing is
executed.

The syntactic ambiguity arising from the construct:

if e1 then
if e2 then si1
else s2

is resolved by interpreting the construct as being equivalent to:

if el then begin
if e2 then s1
else s2

end

Examples of if-statements:

if x < 1.5 then z := x+y else z := 1.5;
if p1 <> nil then p1 := p1 .father;

6.222 Case-Statements
The case-statement contains an expression (the se/ecta) and a list of
statements. Each statement must be prefixed with one or more constants
(called case-constarnts, or with the reserved word otherwise. All the case-
constants must be distinct and must be of an ordinal-type that is compatible
with the type of the selector.

cose-statoment_ (0N, expressxonj—@)
case »(end)-»
\—{ otherwise-clause }j \@/

6-5

Pascal Rerference Marial! Statemnerts

atherwise-clause »@—»(omerwise)—bl statement f——*

The case-statement specifies execution of the statement prefixed by a case-
constant equal to the current value of the selector. If no such case-constant
exists and an otherwise part is present, the statement following the word
otherwise is executed; if no otherwise part is present, nothing Is executed.

£Examples of case-statements:
case operator of
plus: X := x+y;
minus: X := x-y;
times: x := xmy

end

case 1 of
1: x := sin(x);
2: X := cos(x);
3,4,5: X = ep(x);
otherwise x := 1n(x)

end

IMPLEMENTATION NOTE

In the current implementation, the case-statement will not work
correctly if any case-constant is of type longint or the value of the
selector is of type longint.

6.2.3 Repetitive-Statements

Repetitive-statements specify that certain statements are to be executed
repeatedly.

repetitive-statement

—| repeat-statement

while-statement

for-statement, } >

6-6

Pascal Reference Mernual Statemernts

6.2.3.1 Repeat-Statements
A repeat-statement contains an expression which controls the repeated
execution of a sequence of statements contained within the repeat-statement.

rEpeat-statement

—b(repeat)-(ol statement }—j—oCmmH expression |—

The expression must yleld a result of type boolean. The statements between
the symbols repeat and until are repeatedly executed until the expression
ylelds the value tyue on completion of the sequence of statements. The
sequence of statements is executed at least once, because the expression is
evaluated arter execution of the sequence.

Examples of repeat-statements:

H nou

K
i:

1mod)

N
K

J:
until j =
repeat

process(f ");

get(f
until eof(f)

6.23.2 while-Statements
A while-statement contalns an expression which controls the repeated
execution of one statement (possibly a compound-statement) contained within
the while-statement.

while-statement

(i) —{ erpression (@)

The expression must yield a result of type boolean. It Is evaluated sefore the
contained statement is executed. The contained statement is repeatedly
executed as long as the expression yields the value true. If the expression
yields false at the beginning, the statement is not executed.

Pascal Reference Manial

The while-statement:
while b do body
is equivalent to:

if b then repeat
body
until not b

Exampoles of while-statements:
while afi] <> x do 1 := 1+1

while 1>0 do begin

if odd(i) then z := z=x;
=1 div 2;
= sqr(x)

i
X
end
while not eof(f) do begin
process(f);
get(f)
end

6.2.3.3 For-Statements

Statemernts

The for-statement causes one contained statement (possibly a compound-
statement) to be repeatedly executed while a progression of values is assigned

to a variable called the control-variable

ror-statement

ontrol—variable

(

@) (©)-+{samen

CONIOIVIHVE _ofjariaple-identifier |—

initigl-value
final-value

6-8

Pascal Refereynce Manual Statements

The control-variable must be a variable-identifier (without any qualifier). It
must be local to the innermost block contalning the for-statement, and must
not be a variable parameter of that block. The control-variable must be of
or?inal—type, and the initial and final values must be of a type compatible with
this type.

The first value assigned to the control-variable is the initial-value.

If the for-statement is constructed with the reserved word to, each successive
value of the contrel-variable Is the successor (see Section 3.1) of the previous
value, using the inherent ordering of values according to the type of the
control-variable. when each value is assigned to the control-variable, it is
compared to the final-value; if it is less than or equal to the final value, the
contained statement is then executed.

If the for-statement is constructed with the reserved word downto, each
successive value of the control-varlable is the predecessor (see Section 3.1) of
the previous value. When each value is assigned to the control-variable, it Is
compared to the final-value; If it Is greater than or equal o the final value,
the contalned statement is then executed.

If the value of the control-variable is altered by execution of the repeated
statement, the effect is unspecified. After a for-statement is executed, the
value of the control-variable is unspecified, unless the for-statement was
exited by a goto. Apart from these restrictions, the for-statement:

for v := el to e2 do body
is equivalent to:

begin
templ := el;
temp2 := e2;
if templ <= temp2 then begin
v := templ;
body;
while v <> temp2 do begin
v := succ(v);
body
end
end
end

Pascal Reference Mana! Statements

and the for-statement:
for v := el downto e2 do body
Is equivalent to:

begin
templ :-
temp2 e2-
if tenpl >= temp2 then begin
= templ;
bOdY;
vhile v <> temp2 do begin
v := pred(v);
body
end
end
end

where templ and temp2 are auxiliary variables of the host type of the variable
v that do not occur elsewhere in the program.

Examples of for-statements:
for i := 2 to 63 do if a[i] > max then max := a[i]

for i :=1tondo for j :=1tondo
begin
X := 0
for k := 1 tondo x := x + mfi k]*m[k, j);
m[i, j] :=
end

for ¢ := red to blue do g{c)

6.2.4 Wwith-Statements
The syntax for a with-statement is

wilth-statermnent

—O(with record-variable-reference @

(A record-variable-reference is simply a reference to some record variable.)
The occurrence of a record-variable-reference in a with-statement affects the
way the compiler processes variable-references within the statement following
the word do. Flelds of the record-variable can be referenced by their fleld-
identifiers, without explicit reference to the record-variable.

6~10

Pascal Reference Manual Statements

EX&/HO]E or wilth-statement:
with date do if month = 12 then begin
month := 1;
year := year + 1
end

else month := month + 1
This is equivalent to:

if date.month = 12 then begin
date.month := 1;
date.year := date.year + 1

end

else date.month := date.month + 1

within a with-statement, each variable-reference is checked to see if it can
be interpreted as a field of the record. Suppose that we have the following
declarations:

type recTyp = record
foo: integer;
bar: real
end;
var baz: recTyp;
foo: integer;

The identifier foo can refer both to a field of the record variable baz and to a
variable of type integer. Now consider the statement

with baz do begin
00 := 36; {which foo is this?}

end

The foo in this with-statement is a reference to the field baz.foo, not the
variable foo.

The statement:
withvi,v2, ... wndos
is equivalent to the following "nested" with-statements:

with vi do
with v2 do

ceve

withvn do s

6-11

Pascal Rerference Marnugl Statements

If vn in the above statements is a field of both vl and v2, it is interpreted to
mean v2vn, not vivn. The list of record-variable-references in the with-
statement is checked from right to left.

If the selection of a variable in the record-variable-list involves the indexing
of an array or the de-referencing of a pointer, these actions are executed
before the component statement is executed.

WARNING

If a variable in the record-variable-list Is a pointer-reference, the value
of the pointer must not be altered within the with-statement. If the
value of the pointer is altered, the results are unspecified.

Example of unsafe with-statement using pointer-reference:
with ppp” do begin
r-mél'v(ppp); {Don't do this ...}

pp;3:=>oo<; {... or this}

end

6-12

NOTES

Chapter 7
Procedures and Functions

7.1 Procedure-Declarations 7-1
72 FunCtion-Declarationsce.eeceeereeceieeimeemecieeeesieceessesersasensesmnsanvennen 7-4
7.3 Parameters reteteeeeessmsesesessesesavansesnsaseseeeteensnanesaasaaanaesnnensrrane 7-5
7.3.1 ValueParamMmeLeIscoiiieiiiiecieieeeeeieeeeeieeeanseennraennsaeennensnens 7-7
7.3.2 Variable ParaimeterS. o e ceeeeeeeceteeecnn e eaaen s eaeanananans 7-7
7.3.3 Procedural Parametersccoceeeeeeeneeceeeierenenenenenesrensnceeesenses 7-7
7.3.48 Functional ParamBters ..o e ieeeeciceccenerieeenaemnerancenennasnnsnnnas 7-9
7.3.5 Parameter List Compatibility ... 7-9

029-0399-A

Procedures and Functions

7.1 Procedure-Declarations
A procedure-declaration associates an identifier with part of a program so that
it can be activated by a procedure-statement.

proceaure-oeciaration

——0{ procedure-heading }0@-»{ procedure-body }-b@——b

procegure-taoady

\ 4

The procedure-heading specifies the identifler for the procedure, and the
formal parameters (if any).

plroceue-heaing

-——b(pmcedure)—b{ identifier } \.[

formal-parameter-list [—/

The syntax for a formal-parameter-list is given in Section 7.3

A procedure is activated by a procedure-statement (see Section 6.1.2), which
gives the procedure’s identifier and any actual-parameters required by the
procedure. The statements to be executed upon activation of the procedure
are specified by the statement-part of the procedure’s block. If the
procedure's identifier is used in a procedure-statement within the procedure’s
block, the procedure is executed recursively.

7-1

Pascal Reference Marnial Procedures & Functions

Example or a procedure-declaration:

procedure readlnteger (var f: text; var x: integer);
var value,digitvalue: integer;
begin
while (f° = * ') and not eof(f) do get(f);
value := 0;
wvhile (f" in ['0°..'9']) and not eof(f) do begin
digitvalue := ord(f") - ord(‘0*);
value := 10*value + digitvalue;
get(f)
end;
X := value
end;

A procedure-declaration that has forward instead of a block is called a
forward geclaration Somewhere after the forward declaration (and in the
same block), the procedure is actually defined by a defining declaration--a
procedure-declaration that uses the same procedure-identifier, omits the
formal-parameter-list, and includes a block. The forward declaration and the
defining declaration must be local to the same block, but need not be
contiguous; that is, other procedures or functions can be declared between
them and can call the procedure that has been declared forward. This permits
mutual recursion.

The forward declaration and the defining declaration constitute a complete
declaration of the procedure. The procedure is considered to be declared at
the place of the forward declaration.

Example of forwerd declaration:

procedure walter(m, n: integer); {forward declaration}
forward;

procedure clara(x, y: real);
begin

;véiter(l&, 5); {0K because walter is forward declared}

end;
procedure walter; {defining declaration}
begin

clara(8.3, 2.4);

end;

A procedure-declaration that has extemnal instead of a block defines the Pascal
interface to a separately assembled or compiled routine (a .PROC in the case
of assembly language). The external code must be linked with the compiled

Pascal Reference Marial Proceaures & Functions

Pascal host program before execution; see the Workstigp Users Guice for the
Lisa for details.

Example of an extemal procedure-geclaration:

procedure makescreen(index: integer);
external;

This means that makescreen is an external procedure that will be linked to the
host program before execution.

IMPLEMENTATION NOTE

It is the programmer's responsibility to ensure that the external
procedure is compatible with the extemal declaration in the Pascal
program; the current linker does no checking.

NOTE

This Pascal (unlike Apple 11 and Apple III Pascal) does not allow a
variable parameter of an external procedure or function to be declared
without a type. To obtain a similar effect, use a formal-parameter of
pointer-type, as in the following example:

type bigpaoc = packed array[0..32767] of char;
bigpaocptr = bigpaoc;

procedure whatever (bytearray: bigpaocptr);
external;

The actual-parameter can be any pointer value obtained via the @
operator (see Section 5.1.6). For example, if dots is a packed array of
boolean, it can be passed to whatever by writing

whatever(adots)

This description of external procedures also applies to external functions.

7-3

rascal Rererence Man/al Proceoures & Functions

7.2 Function-Declarations
A function-declaration serves to define a part of the program that computes
and returns a value of simple-type or pointer-type.

Ruinction-aeciaration

[nctiomheaiing }+(2) ®

runction-boay

extemal)

4

The function-heading specifies the identifier for the function, the formal
parameters (if any), and the type of the function result. '

Anclion-heading_y, g pction)-#] identifier }—)
(e result-type
_L;omax-parameter-list J—f

result-type

~—=! orainal-type-identifler

real-type-identifier

pointer-type-identifier

The syntax for a formal-parameter-list is given in Section 7.3.

A function is activated by the evaluation of a function-call (see Section 5.2),
which gives the function's identifier and any actual-parameters required by the
function. The function-call appears as an operand In an expression. The
expression is evaluated by executing the function, and replacing the function-
call with the value returned by the function,

The statements to be executed upon activation of the function are specified by
the statement-part of the function's block. This block should normally contain
at least one assignment-statement (see Section 6.1.1) that assigns a value to
the function-identifier. The result of the function is the last value assigned.
If no such assignment-statement exists, or if it exists but Is not executed, the
value returned by the function is unspecified.

Pascal Reference Manual Proceaures & Functions

If the function’s identifier is used in a function-call within the function's
block, the function is executed recursively.

Examples of function-declarations:

function max(a: vector; n: integer): real
var x: real; i: integer;

begin
:= a1];
fori =2 tondo if x < afi]) then x := a[i]
max := X
end;

function power(x: real; y: integer): real; { y >= 0}
var w,z: real; i: integer;
begin
Wi=x Z:=11:=y;
wvhile 1 > 0 do begin
{zr(wmel) = x *= y }
if odd(i) then z := z*w;

1 := 1 div 2;
:= sqr(w)
ern.
{z=xy}
power := z

A function can be declared forward in the same manner as @ procedure (see
Section 7.1 above). This permits mutual recursion.

A function—-declaration that has external Instead of a block defines the Pascal
interface to a separately complled or assembled external routine (@ .FUNC in
the case of assembly language). See the explanation in Section 7.1 above.

7.3 Parameters

A formal-parameter-1ist may be part of a procedure-declaration or
function-declaration, or it may be part of the declaration of a procedural or
functional parameter.

If it is part of a procedure-declaration or function-declaration, it declares the
formal parameters of the procedure or function. Each parameter so declared
is local to the procedure or function being declared, and can be referenced by
its identifier in the block associated with the procedure or function.

If it is part of the declaration of a procedural or functional parameter, it
declares the formal parameters of the procedural or functional parameter. In

7-5

Pascal Reference Maruisl Proceoures & Functlons
this case there is no associated block and the identifiers of parameters in the
formal-parameter-list are not significant (see Sections 7.3.3 and 7.3.4 below).

rommal-parameter-list

b@ b{ parameter—-declaration
procedure-heading

function-heading

O

LI VI o (gentifier-list |-{: -#] type-icentifier |-+

There are four kKinds of parameters: value parameters variable parameters
procequral parameters and functional parameters They are distinguished as
follows:

* A parameter-group preceded by var is a list of variable parameters.
* A parameter-group without a preceding var is a list of value parameters.

* A procedure-heading or function-heading denotes a procedural or functional
parameter; see Sections 7.3.3 and 7.3.4 below.

NOTE

The types of formal-parameters are denoted by type-identifiers. In
other words, only a simple identifier can be used to denote a type in a
formal-parameter-list. To use a type such as array{0..255] of char as
the type of a parameter, you must declare a type-identifier for this
type:

type charray = array(0..255] of char;

The identifier charray can then be used in a formal-parameter-list to
denote the type.

7-6

Pascal Reference Marnual Proceadures & Functions

NOTE

The word file (for an “untyped" file) is not allowed as a type-identifier
in a parameter-declaration, since it is a reserved word. To use a
parameter of this type, declare some other identifier for the type file
—for example,

type phyle = file;

The identifier phyle can then be used in a formal-parameter-iist to
denote the type flle.

7.3.1 Vvalue Parameters
For a value-parameter, the corresponding actual-parameter in a procedure-
statement or function-call (see Sections 5.2 and 6.1.2) must be an expression,
and its value must not be of file-type or of any structured-type that contains
a file-type. The formal value-parameter denotes a variable local to the
procedure or function. The current value of the expression is assigned to the
formal value-parameter upon activation of the procedure or function. The
actual-parameter must be assignment-compatible with the type of the formal
value-parameter.

7.3.2 Variable Parameters
For a variable-parameter, the corresponding actual-parameter in a procedure-
statement or function-call (see Sections 5.2 and 6.1.2) must be a variable-
reference. The formal variable-parameter denotes this actual variable during
the entire activation of the procedure or function.

within the procedure or function, any reference to the formal variable-
parameter is a reference to the actual-parameter itself. The type of the
actual-parameter must be Jfoentica/ to that of the formal variable-parameter.

NOTE

If the reference to an actual variable-parameter involves indexing an
array or finding the object of a polnter, these actions are executed
before the activation of the procedure or function.

Components of variables of any packed structured type (including string-types)
cannot be used as actual variable parameters.

7.33 Procedural Parameters
when the formal-parameter is a procedure-heading, the corresponding actuai-
parameter in a procedure-statement or function-call (see Sections 5.2 and 6.1.2)
must be a procedure-identifier. The identifier in the formal procedure-heading
represents the actual procedure during execution of the procedure or function
receiving the procedural parameter.

Pascal Rerferernce Mamugl! Procenres & Functions

Example of proceoural parameters:

program passProc;
var i: integer;

procedure a(procedure x) {x is a formal procedural parameter.}
in

write('About to call x *);
x {call the procedure passed as parameter}
end;
procedure b;
begin
write('In procedure b')

function c(procedure x): integer;

begin
x; {call the procedure passed as parameter}
c:=2

end;
begin

a(b); {call a, passing b as parameter}
i:= c(b) {call c, passing b as parameter}

If the actual procedure and the formal procedure have formal-parameter-lists,
the formal-parameter-lists must be compatible (see Section 7.3.5). However,

only the identifier of the actual procedure is written as an actual parameter;
any formal-parameter-list is omitted.

Example of proceaural parameters with their own formal-parameter-lists:
program test;
procedure xAsPar(y: integer);
in

beg
writeln(‘y="', y)
end;

procedure callProc(procegure xAgain(z: integer));

in
xAgain(1)
end;

begin {body of program}
callProc(xAsPar)
end.

If the procedural parameter, upon activation, accesses any non-local entity (by
variable-reference, procedure-statement, function-call, or label), the entity

Pascal Reference Maal Procegures & Functions

accessed must be one that was accessible to the procedure when the procedure
was passed as an actual parameter.

To see what this means, consider a procedure pp which is known to another
procedure, firstPasser. Suppose that the following sequence takes place:

1. firstPasser is executing.

2. firstPasser calls a procedure named firstReceiver, passing pp as an
actual parameter.

3. firstReceiver calls secondReceiver, again passing pp as an actual
parameter.

4. secondReceiver calls pp (first execution of pp).

S. secondReceiver calls thirdRecelver, again passing pp as an actual
parameter.

6. thirdReceiver calls firstPasser (indirect recursion), and passes pp to
firstPasser as an actual parameter.

7. firstPasser (executing recursively) calls pp (second execution of pp).

Thus the procedure pp is called first from secondReceiver, and then from the
second (recursive) execution of firstPasser.

Suppose that pp accesses an entity named xxx, which is not local to pp; and
suppose that each of the other procedures has a local entity named xXxx.

Each time pp is called, which xxx does it access? The answer is that in eac?
case, pp accesses the »xx that is local to the Ars¢ execution of firstPasser--

that is, the xxx that was accessible when pp was originally passed as an actual
parameter.

7.3.4 Functional Parameters
when the formal parameter is a function-heading, the actual-parameter must
be a function-identifier. The identifier in the formal function-heading
represents the actual function during the execution of the procedure or
function receiving the functional parameter.

Functional parameters are exactly like procedural parameters, with the
additional rule that corresponding formal and actual functions must have
loentical result-types.

735 Parameter List Compatibility
Parameter list compatibility is required of the parameter lists of corresponding
formal and actual procedural or functional parameters.

Pascal Rererence Marigl Procegures & Functions

Two formal-parameter-lists are compatisie if they contain the same number of
parameters and if the parameters in corresponding positions match. Two
parameters match if one of the following is true:

* They are both value parameters of Joentical type.
* They are both variable parameters of Jfaentical type.
* They are both procedural parameters with compatible parameter lists.

¢ They are both functional parameters with compatible parameter lists and
loentical result-types.

7-10

NOTES

029-0400-A

Chapter 8

Programs
81 Syntax.... 8-1
82 Program-Parameters...... 8-1
8.3 Segmentation eemeemeeecmeseeeseeessssesmeesemmnsseaeas 8-1

——

Programs

8.1 Syntax
A Pascal program has the form of a procedure declaration except for its
heading and an optional wses-clause

Yoz

—b{ program-heading ;
@

LIOQrIM-Ne3ly

—»(program)-»| identifier | Y >
\@b{program—parameters }-OQ}J

LIOUEN PAINCLESS [y jorvifler-1ist
uses-clause uses identifier-list

The occurrence of an identifier immediately after the word program declares it
as the program's identifler.

The uses-clause identifies all units required by the program, including units
that it uses directly and other units that are used by those units.

82 Program-Parameters
Currently, any program-parameters are purely decorative and are totally
ignored by the compller.

8.3 Segmentation
The code of a program's main body is always placed in a run-time segment
whose name is a string of blanks (the "blank segment”). Any other block can
be placed In a different segment by using the $S compller command (see
Chapter 12 and Appendix A). If no $S command is used in the program, all
code is placed in the blank segment. Code from a program can be placed in
the same segment with code from a regular-unit, but it cannot be mixed with
code from an intrinsic-unit (see Chapter 9).

8-1

NOTES

029-0401-4

92
93

Regular-Units

9.1.1 writingRegular-Units..........coeiriivinininiiiianiannnnns
9.1.2 UsingRegular-Unitsccooureiiiimniiiniiiiinnnnnnnnee.

Intrinsic-Units

Units that Use Other Units

Units

A unit is a separately compiled, non-executable object file that can be linked
with other object files to produce complete programs. There are two kinds of
units, called regqu/ar-wnlts and intrinsic-units In the current implementation of
the workshop, you can use intrinsic-units that are provided, but you cannot
write new ones.

Each unit used by a program (or another unit) must be compiled, and its object
file must be accessible to the compiler, before the host program (or unit) can
be compiled.

9.1 Regular-Units
Regular-units can be used as a means of moduiarizing large programs, or of
making code avallable for incorporation in various programs, without making
the source available.

when a program or unit (called the /ost) uses a regular-unit, the linker inserts
a copy of the compiled code from the reqular-unit into the host's object file.

By default, the code copled from the regular-unit is placed in the blank
segment (see Chapter 8). The code of the entire unit, or of blocks within the
unit, can be placed in one or more different segments by using the $S compiler
command (see Chapter 12).

9.1.1 Wwriting Regular-uUnits
The syntax for a regular-unit is:

requiar-unit unit-heading ;)
(0{ interface-part_|#{ imptementation-part |+ ena Jo()—

wlt-headlng o gy)-of loentifier ——»

Pascal Rererence Marn/al Linits

Interrace-part > (mmn&e) \

P
{ constant-declaration-part |—>

P
e type-declaration-part J-—)

P

s varlable-declaration-part }»7

-
\»fprocedure-and-funcuon—declaration—part }—L—»

Im,O/E/ﬂE’/’)[E[JOﬂj?&I‘t’(inplementation})
-

\b‘ constant-declaration-part }—)

f

\b{ type—declaration-part_}-v

-

! variable-declaration-part I——)

’
\#{ procedure-and-function-declaration-part |——+

The Interface-part declares constants, types, variables, procedures, and
functions that are "public,” i.e. available to the host.

The host can access these entities just as if they had been declared in the
host. Procedures and functions declared in the interface-part are abbreviated

to nothing but the procedure or function name, parameter specifications, and
function result-type.

NOTE

Since the interface-part may contain a uses-clause, a unit can use
another unit (see Section 9.3).

Pascal Rererence Marxial Lnfts

The implementation-part, which follows the last declaration in the interface-
part, begins by declaring any constants, types, variables, procedures, or
functions that are “private,” i.e. not available to the host.

The public procedures and functions are re-declared in the implementation—
part. The parameters and function result types are omitted from these
declarations, since they were declared in the interface-part, and the procedure
and function blocks, omitted in the interface-part, are included in the
implementation-part.

In effect, the procedure and function declarations in the interface are like
forward declarations, although the forward directive is not used. Therefore,
these procedures and functions can be defined and referenced in any sequence
in the implementation.

NOTES

There is no “Initialization™ section in Pascal units on the Lisa (unlike
Apple II and Apple III Pascal). If a unit requires initialization of its
data, it should define a public procedure that performs the initialization,
and the host should call this procedure.

Also note that global labels cannot be declared in a unit.

A short example of a unit |s:

unit Simple;
INTERFACE {public objects declared}
const Firstvalue=1;
procedure AddOne(var Incr:integer);
function Addi(Incr:integer):integer;
IMPLEMENTATION
procedure AddOne; {note lack of parameters...}
begin
Incr:=Incr+i
end;
function Addi; {...and lack of function result type}
begin
Addl:=Incr+1
end
end.

9.1.2 Using Regular-Units
The syntax for a uses-clause is glven in Section 8.1. Note that in a host
program, the uses-clause (if any) must immediately follow the program-
heading. In a host unit, the uses-clause (if any) immediately follows the
symbol interface. Only one uses-Clause may appear in any host program or
unit; it declares all units used by the host program or unit.

See Section 9.3 for the case where a host uses a unit that uses another unit.

Pascal Reference Marnal Lnits

It is necessary to specify the file to be searched for regular units. The $U
compiler command specifies this file. See Chapter 12 for more details.

Assume that the example unit Simple (see above) is compiled to an object file
named APPL:SIMPLE.OBJ. The following is a short program that uses Simple.
It also uses another unit named Other, which is in file APPL:0THER.0BJ.

program CallSimple;
uses {$U APPL:SIMPLE.0BJ} {file to search for units}

Simple, {use unit Simple}
{$U APPL:0THER.0BJ} {file to search for units}
Other; {use unit Other}
var i:integer;
begin
i:=Firstvalue; {Firstvalue is from Simple}
write('i+1 is ’,Add1(i)); {Addl is defined in Simple}

write(xyz(i)) {xyz is defined in Other}

9.2 Intrinsic-Units
The only intrinsic-units you can use are the ones provided with the workshop
software.

Intrinsic-units provide a mechanism for Pascal programs to share common code,
with only one copy of the code In the system. The code is kept on disk, and
when loaded into memory it can be executed by any program that declares the
intrinsic-unit (via a uses-clause, the same as for regular-units).

By default, the system looks up all intrinsic-units in the system intrinsics
library file, INTRINSIC.LIB. All intrinsic-units are referenced in this library,
so the $U fllename compiler command is not needed with intrinsic-units.

93 Units that Use Other Units
As explained above, the uses-clause in the host must name all units that are
used by the host. Here “used” means that the host directly references
something in the interface of the unit. Consider the following diagram:

unitA
interface

uses unitC; -
- - unitcC
Host Program implementation f—.___|

unitA, units; interface

unitB -]
implementation

interface

implementation

9-4

Pascal Reference Meantial nlts

The host program directly references the interfaces of unitA and unitB; the
uses-clause names both of these units. The implementation-part of unitA also
references the interface of unitC, but it is not necessary to name unitC in the
host-program’s uses-clause.

In some cases, the uses-clause must also name a unit that is not directly
referenced by the host. The following diagram is exactly like the previous one
except that this time the /nterrace of unitA references the interface of unitC,
and unitC must be named in the host-program'’s uses-clause. Note that unitC
must be named tefore unitA

unitA
interface

uses unitC; -
\ unitc
Host Program implementation

interface
uses unitC, unita,
unitB; unitB

implementation

interface

implementation

In a case like this, the documentation for unitA should state that unitC must
be named in the uses-clause before unitA

NOTES

029-0402-A

101

102

103

Chapter 10

Input/Output
Introduction to I/0......cveeeiiiimniiinncieenee 10-1
10.1.1 DBVICE TYPES ..ouieiniiiniiiiiiinitce ittt cna st n s a e en e sas e nan s anns 10-2
10.1.2 External File SPeCIescccoviiiiiiiiii ittt 10-2
10.1.3 The RESELPTOCEOUTEcccuuiiuiiiiniiiincrtrcnrce st nne s eenteesennnessans 10-3
10.1.4 The Rewrite PIOCEOUIEo iac e et e cra e e eeae 10-S
10.1.5 The CIOSEPTOCEOUTE.o iiaremnrianreneneeanremannsemsaearermnneannsean 10-6
10.1.6 The loresult FUNCLION. ... ittt e s e naaan 10-7
10.1.7 The Eof FUNCHION .ottt ettt r e eeeaaea e 10-7
Record-Oriented /0occcooeeiaamnaaae.. ..-10-8
10.2.1 TheGetPIOCEAUIEo e ce i ece i eere e e e e e e naeraaaaan 10-8
10.2.2 The PUL PTOCEAUIE.ciaaniiaeiiiicaotaeetemnaneeern e ssenseaseansnsannas 10-8
10.2.3 The SEeK PTOCBOUIEccoiiiiiiarecetivnneaaneeeeeeennsenaesenansnseseeens 10-9
Text-Oriented I/0.......ccooinnencaaaaaaannnnee . .-10-9
10.3.1 The Re8OPTOCEOUIE «....c.ciii it renaeteece s caeneamnenananas 10-11
10.3.1.1 ReadwithaChar Variableccccccooiiiiniiiiiaiaannnnn 10-12
10.3.1.2 Read with an Integer or Longint Variable.................... 10-12
10.3.1.3 ReadwithaReal Variable........cccooveiiiniiiiiiiiniiniiannnt 10-12
10.3.1.4 ReadwithaStringVariable..............cococooiiiiiiiiiannnan. 10-13
10.3.1.5 Read with a Packed Array of Char Variable................. 10-13
10.3.2 The Readln PIOCEAUTE.. ... u i iiaeiiinitae e ciraan e e e cannaeaneas 10-14
10.3.3 The WIite PTOCEOUTE. i ciaiicerire e e e e e e ee e e eaann 10-14
10.3.3.1 OULPUL=SPEECScieeiciccciicitccee e s e eceeeen 10-15
10.3.3.2 WritewithaChar Valuecccooiimiiicaanninncaaanannas 10-15
10.3.3.3 write withan Integer or Longint Valueccccoeeeeeee. 10-15
10.3.3.4 writewithaReal Valuecocoioiianiiaiacranccccnnnanns 10-16
10.3.3.5 Write withaString Valueccveiveciiiiiiiniiniininnnnnnenen 10-16
10.3.3.6 Write withaPacked Array of Char Valuecc.eceueuees 10-17
10.3.3.7 writewithaBoolean Valueccccccceeeveecrnenncrennnnns 10-17
10.3.84 The WIItEINPTOCEOUTEcooeiiiaiiiiiiiiicecicrenaaeeaneaannnanaanans 10-17
10.35 TheEolnFuNCtIon ...ttt e e e e e e 10-17
10.3.6 ThePagePTOCBOUTE........ccviiiiiiicetictinteeenaee e e ecern e e e emmanaes 10-18
10.3.7 Keyboard Testing and Screen Cursor Controlccccccceeenee. 10-18
10.3.7.1 TheKeypress Functioncocoioiiinironnnnnraaanan 10-18
10.3.7.2 The Gotoxy ProCedurecccoocciicivucneeemnreeannaans 10-18

Pascal Reference Marusg! Input/Output
104 UntypedFHIE I/D.....uuenneeeeeieecceeece e . 1018
10.4.1 TheBlockread FUNCLIONcoooiiiiniiiiii e 10-19

10.4.2 The Blockwrite Function

Input/Output

This chapter describes the standard ("bullt-in") 1/0 procedures and functlons of
Pascal on the Lisa.

Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared in a “block” surrounding the program, no
conflict arises from a declaration that redefines the same identifier within the
program.

NOTE

Standard procedures and functions cannot be used as actual procedural
and functional parameters.

This chapter and Chapter 11 use a modified BNF notation, Instead of syntax
diagrams, to indicate the syntax of actual-parameter-lists for standard
procedures and functions.

Example:
Parsmeter List: new(p [, t1, ... tn])

This represents the syntax of the actual-parameter-list of the standard
procedure new, as follows:

*p, t1, and ts7 stand for actual-parameters. Notes on the types and
interpretations of the parameters accompany the syntax description.

* The notation t1, ... t”7 means that any number of actual-parameters can
appear here, separated by commas.

* Square brackets [] indicate parts of the syntax that can be omitted.

Thus the syntax shown here means that the p parameter is required. Any
number of t parameters may appear, with separating commas, or there may be
no t parameters.

10.1 Introduction to 1/0
This section covers the 1/0 concepts and procedures that apply to all file types.
This includes the types text (see Section 10.3) and “untyped"” flles (see Section
10.4).

To use a Pascal flle variable (any variable whose type is a file-type), it must
be associated with an external flle. The external file may be a named
collection of information stored on a peripheral device, or (for certain file-
types) it may be the peripheral device itself.

The association of a file variable with an external file is made by goening the
flle. An existing flle is opened via the reset procedure, and a new file is
created and opened via the rewrite procedure.

10-1

Pascal Reference Marnsal Inoutuiput

NOTE

Pascal on the Lisa does not provide automatic 1/0 checking. To check
the result of any particular 1/0 operation, use the loresult function
described in Section 10.1.6.

10.1.1 Device Types
For purposes of Pascal 1/0, there are two types of peripheral devices:

e A flle-structurea device is one that stores flles of data, such as a diskette.

* A character device is one whose input and output are streams of individual
bytes, such as the Lisa screen and keyboard or a printer.

10.1.2 Extemal File Species
There are three "species” of external files that can be used in Pascal 1/0
operations:

* A datafile is any flle that is stored on a file-structured device and was
not originally created in association with a file variable of type text.

s A textfile is a flle that is stored on a file-structured device and was
originally created in association with a file variable of type text. Textfiles
are stored in a specialized format (see Section 10.3).

* A cnaracter device can be treated as a file.

Table 10-1 summarizes the effects of all possible combinations of different file
variable types and external flle species. The “ordinary cases” in the table
reflect the basic intent of the various file-types. Other combinations, such as
block-oriented access to a textfile via a variable of type file, are legal but
may require cautious programming.

10-2

Pascal Refererxce Marxal!

Inout/Output

Table 10-1
Combinations of File Variable Types with Extemal Flle Species
and Categories
var f: file of .
someType; var f: text; var f: file;
Ordinary case. (Textfile format | Ordinary case.
gatafile | After reset, assumed!) After | Block access.
f~ = ist record |resets, f s
file. unspecified.
(Textfile format | Ordinary case. (Textflle format
not assumned!) Textfile format | not assumed!)
N After reset», assumed. After | Block access.
textfile | e- _ 15t record | reset, £ is
of flle (as unspecifiea.
declared).
After reset, Ordinary case. Block access,
f = 1st char. After reset, if allowed by
character | from device £~ is unspeci- device.
device | (system walts for | fied (no wait
it)) 1/0 error If for input char).
file record type
not byte-sized.
» In these cases, the laresult frunction will retun & “waming”
(e, & negative numnber) immediately after the reset gperation

10.1.3 The Reset Procedure
Opens an existing file.

Parameter List: reset(f, title)

1. f Is a variable-reference that refers to a variable of file-type. The file
must not be open.

2. title is an expression with a string value. The string should be a valid
pathname for a file on a file-structured device, or a pathname for a
character device.

10-3

Pascal Rererence Maral : Input/Quiput

NOTE

Both parameters are required (unilke Apple Il and Apple Il Pascal,
where the second parameter Is optionat).

Reset(f, title) finds an existing external file with the pathname title, and
associates f with this external file. (If there is no existing external file with
the pathname title, an 1/0 error occurs; see Section 10.1.6.

If title is the pathname of a character device, then
* Eof{f) becomes false.

* If f is of type text, the value of f~ is unspecified. The next read or readin
on f will walt until a character is available for input, and begin reading
with that character.

* If f is of type flle and the device is one that allows block access, there is
no file buffer variable f~ and the “current file position" is set to the first
block (block 0) of the file. If the device does not allow block access, an
170 error occurs (see Section 10.1.6).

o If f is not of type text or file, its component-type must be a "byte-size”
type such as the type -128.127. Note that char is not a byte-size type! If
the camponent%ype of f is not byte-size, an 1/0 error occurs (see Section
10.1.6

If no 1/0 error occurs, the system waits until a character is available from
the device and then assigns the character's 8-bit code to f".

If title is the pathname for an existing file on a file-structured device, then

* Eof{f) becomes false if the external file is not empty. If the external file
is empty, eof(f) becomes true.

= If f is not of type text or flle, reset sets the "current file position” to the
first record in the external file, and assigns the value of this record to the
file buffer variable f~. If the external flle is a textfile, the loresult
function will return a negatlve number as a warning (see Section 10.1.6).

* If f is of type text, the value of £~ is unspecified. If the file is a textfile,
the next read or readin on f will begin at the first character of f. If the
file is a datafile, it will be treated as if it were a textfile (see Section
10.3) and the loresult function will return a negative number as a warning
(see Section 10.1.6).

* If f is of type file, there is no file buffer variable f~ and the “current file
position"” is set to the first block (block 0) of the file.

10-4

Pascal Reference Manual Input/Qutput

10.1.4 The Rewrlte Procegdure
Creates and opens a new file.

Parameter List: rewrite(f, title)
1. f is a variable-reference that refers to a variable of file-type.

2, tue is an expression with a string value. The string should be a valld
pathname for a file on a flle-structured device, or a pathname for a
character device.

If f Is already open, an 1/0 error occurs (see Section 10.1.6).
If Htle is the pathname of a character device, then
* Eof(f) becomes false.
* Rewrite(f, title) simply associates f with the device and opens f.
* The status of the device is not affected.
* The value of f~ becomes unspecified.
If title is the pathname for a new file on a file-structured device, then
* Eof(f) becomes true.

* Rewrite(f, title) creates a new external file with the pathname title, and
associates f with the external file. This is the only way to create a new
external file,

* The species of the new external file Is set according to the type of f——
“textfile" for type text, or “datafile” for any other type.

* The value of f~ becomes unspecified.

* If f Is not of type flle, the “current file position” is set to just before the
first record or character position of the new external file.

= If f is of type flle, the “current file position” is set to block O (the first
block in the file)

s If f is subsequently closed with any option other than lock or crunch (see
Section 10.1.5), the new extemal file is discarded at that time. Closing f
with lock or crunch is the only way to make the new external file
permanent.

= If title is the pathname of an existing external file, the existing file will be
discarded only when f is subsequently closed with the lock or crunch option
(see Section 10.1.5).

Unspecified effects are caused If the current file position of a file f is altered
while the flle-buffer f Is an actual variable parameter, or an element of the
record-variable-reference list of a with-statement, or both.

10-5

Pascal Reference Marnus! Inputoutput

1015 The Close Procedure
Closes a file.

Parameter List: close(f [, option])
1. f is a variable-reference that refers to a variable of file-type.

2. option (may be omitted) is an identifier from the list given below. If
omitted, the effect is the same as using the identifier normal.

Close(f, option) closes f, if f Is open. The association between f and its
external flle is broken and the flle system marks the external file “closed”. If
f is not open, the close procedure has no effect.

The option parameter controls the disposition of the external file, if it is not a
character device. If it is a character device, f is closed and the status of the
device is unchanged.

The identifiers that can be used as actual-parameters for option are as follows:

* normal — If f was opened using rewrite, it is deleted from the directory.
If £ was opened with reset, it remains in the directory. This is the default
option, in the case where the option parameter Is omitted.

= lock -- If the external flle was opened with rewrite, it is made permanent
in the directory.

If f was opened with rewrite and a title that matches an existing file, the
old file Is deleted (unless the safety switch is “on"). If the old file has the
safety switch "on,” it remalns in the directory and the new file is deleted.

If f was opened with reset, a normal close is done.

* purge -- The extemal file Is deleted from the directory (unless the safety
switch s "on")} In the speclal case of a file that already exists and is
opened with rewrlte, the original file remalns in the directory, unchanged.

» crunch —- This s like lock except that it locks the end-of-file to the point
of last access; l.e., everything after the last record or character accessed is
thrown away.

All closes regardless of the option will cause the flle system to mark the
external file "closed" and will make the value of f unspecified.

If a program terminates with a file open (i.e., if close is omitted), the system
automatically closes the file with the normal option.

NOTE

If you open an existing file with reset and modify the file with any
write operation, the contents are immediately changed no matter what
close option you specify.

10-6

Pascal Rererence Marial Inputautput

10.1.6 The Ioresult Function
Pascal on the Lisa does not provide automatic 1/0 checking. To check the
result of any particular 1/0 operation, you must use the ioresult function.

Resuit type: integer
Parsmeter List: no parameters

Ioresult returns an integer value which reflects the status of the last com-
pleted 1/0 operation. The codes are given in the workshgp Users Gulioe for the
L/sa Note that the code 0 indicates successful completion, positive codes
indicate errors, and negative codes are “warnings” (see Table 10-1).

Note that the codes returned by loresult are not the same as the codes used in
Apple 11 and Apple 1l Pascal.

NOTES

The read, readin, write, and writeln procedures described in Section 10.3
may actually perform multiple 1/0 operations on each call. After one of
these procedures has executed, loresult will return a code for the status
of the Jast of the multiple operations.

Also, beware of the following common error in dlagnostic code:

read(foo);

writeln('ioresult=", ioresult)
The intention is to write out the status of the read operation, but
instead the status written out will be that of the write operation on the
string ‘loresult=",

10.1.7 The Eof Function
Detects the end of a flle.

Resuit Type: boolean
Parameter LIst: eof [(f)]
1. f is a variable-reference that refers to a variable of file-type.

If the parameter-list is omitted, the function is applied to the standard file
input (see Section 10.3).

After a get or put operation, eof(f) retumns true if the current file position is
beyond the last external file record, or the external file contains no records;
otherwise, eof(f) returns false. Specifically, this means the following:

* After a get, eof(f) returns true if the get attempted to read beyond the last
file record (or the file is empty).

* After a put, eof(f) returns true if the record written by the put is now the
last flle record.

10-7

Pascal Reference Manual Input/autpunt

If £ is'a character device, eof{f) will always return false.
See Section 10.3 for the behavior of eof{f) after a read or readln operation.
NOTE

whenever eof(f) is true, the value of the file buffer varlable £~ is un-
specified.

102 Record-Oriented 1/0
This section covers the get, put, and seek procedures, which perform record-
oriented 1/0; that is, they consider a file to be a sequence of variables of the

type specified In the file-type. These procedures are not allowed with files of
type file.

The effects of get and put are unspecified with files of type text, and seek has
no effect with files of type text The text type Is supported by specialized
procedures described in Section 10.3.

10.2.1 The Get Procedure
Reads the next record in a file.

Parameter List: get(f)

1. f Is a variable-reference that refers to a variable of file-type. The flle
must be open.

If eof{f) is false, get(f) advances the current file position to the next file
record, and assigns the value of this record to f . If no next component
exists, then eof{f) becomes true, and the value of f~ becomes unspecified.

If eof(f) Is true when get(f) Is called, then eof(f) remains true, and the value of
f"~ pecomes unspecified.

If the external file is a character device, eof(f) is always false and there is no
“current flle position." In this case, get(f) waits until a value is ready for input
and then assigns the value to f~.

10.2.2 The Put Procedure
writes the current record in a file,

Parameter List: put(f)

1. f Is a variable-reference that refers to 3 variable of flle-type. The file
must be open.

If eof(f) is false, put(f) advances the current file position to the next file
record and then writes the value of £~ to f at the new file position. If the
new flle position is beyond the end of the file, eof(f) becomes true, and the
value of f becomes unspecified.

If eof(f) is true, put(f) appends the value of f~ to the end of f and eof(f)
remains true.

10-8

Pascal Reference Manal Inout/Qutput

If the external file is a character device, eof(f) is always false, there is no
“current file position,” and the value of f Is sent to the device.

NOTE

If put is called immediately after a file Is opened with reset, the put
will write the secomo record of the file (since the reset sets the
current position to the first record and put advances the position before
writing). To get around this and write the first record, use the seek
procedure (see Section 10.2.3).

10.2.3 The Seek Procedure
Allows access to an arbitrary record in a file.

Parameter LIst: seek(f, n)

1. f is a variable-reference that refers to a variable of file-type. The flle
must be open.

2. n is an expression with an integer value that specifies a record number in
the file. Note that records in files are numbered from O.

If the flle is a character device or is of type text, seek does nothing.
Otherwise, seek(f, n) affects the action of the next get or put from the file,
forcing it to access file record n instead of the “next” record. Seek(f, n) does
not affect the flle-buffer f".

A get or put /st be executed between seek calls. The result of two con-
secutive seeks with no intervening get or put is unspecified. Immediately after
a seek(f, n), eof(f) will return false; a following get or put will cause eof to
return the appropriate value.

NOTE

The record number specified In a seek call is not checked for validity.
If the number is not the number of a record in the file and the program
tries to get the specified record, the value of the flle-buffer becomes
unspecified and eof becomes true.

10.3 Text-Oriented 1/0
This section describes input and output using file variables of the standard type
text. Note that in Pascal on the Lisa, the type text is distinct from file of
char (see Section 3.2.4).

when a text file is opened, the external file is interpreted in a special way. It
is considered to represent a sequence of characters, usually formatted into
Jires by CR characters (ASCII 13).

The Lisa keyboard and the Workshop screen appear to a Pascal program to be
bullt-in files of type text named input and output respectively. These flles

10-9

Pascal Reference Marnal Inpututput

need not be declared and need not be opened with reset or rewrite, since they
are always open.

when a program is taking input from input, typed characters are echoed on the
workshop screen. In addition to the input file, the Lisa keyboard s also
represented as the character device -KEYBOARD. To get keyboard input
without echoing on the screen, you can open a file variable of type text with
-KEYBOARD as the external flle pathname.

Other interactive devices can also be represented in Pascal programs as files of
type text.

when a text file is created on a file-structured device, the external file is a
textfile. It contains information other than the actual sequence of characters
represented, as follows:

* The stored file is a sequence of 1024-byte pages

* Each page contalns some number of complete lines of text and is padded
with null characters (ASCII 0) after the last line.

* Two S512-byte /feader blocks are also present at the beginning of the file.

* A sequence of spaces In the text /may be compressed Into a two-byte code,
namely a L £ character(ASCII 16) followed by a byte contalning 32 plus
the number of spaces represented.

All of this special formatting is Invisible to a Pascal program if the file is
accessed via a file variable of type text (but visible via a file variable of any
other file-type).

Certain things that can be done with a record-structured file are impossible
with a file variable of type text:

* The seek procedure does nothing with a flle variable of type text
* The effects of get and put are unspecified with a flle variable of type text

* The contents of the file buffer variable are unspecified with a file variable
of type text.

= A file variable of type text that is opened with reset cannot be used for
output, and one opened with rewrite cannot be used for input. Results are
unspecified if efther of these operations is attempted.

In place of these capabilities, text-oriented 1/0 provides the following:
* Automatic conversion of each input CR character into a space.

* The eoln function to detect when the end of an input line has been
reached.

* The read procedure, which can read char values, string values, packed array
of char values, and numeric values (from textual representations).

10-10

Pascal Reference Marual Input/utput

* The write procedure, which can write char values, string values, packed
array of char values, numeric values, and boolean values (as textual
representations).

* Line-oriented reading and writing via the readln and writeln procedures.

= The page procedure, which outputs a form-feed character to the extemal
file.

* Automatic conversion of input DLE-codes to the sequences of spaces that
they represent. Note that output sequences of spaces are not converted to
DLE-codes.

= Automatic skipping of header blocks and null characters during input.

* Automatic generation of textfile header blocks, and automatic padding of
textfile pages with null characters on output.

10.3.1 The Read Procedure
Reads one or more values from a text file into one or more program variables.

Parameter LIst: Tead([f,] vi [, v2, ... vn])

The syntax of the parameter-list of read allows an indefinite number of
actual-parameters. Consecutive actual-parameters are separated by commas,
just as In a normal parameter-list.

1. f(may be omitted) is a variable-reference that refers to a variable of
type text. The file must be open. If f is omitted, the procedure reads
from the standard text flle input, which represents the Lisa keyboard.

2. vl .. vn are Jnput variables Each is a variable parameter, used as a
destination for data read from the file. Each input variable must be a
variable-reference that refers to a variable of one of the following types:

» char, integer, or longint (or a subrange of one of these)
* real
* a string-type or a packed array of char type.

These are the types of data that can be read (as textual representations)
from a file. At least one input variable must be present.

Read(f,v1...v77) is equivalent to:

begin
read(f,v1);

iééa(f,vn)

10-11

Pascal Reference Marual Input/Qutput

NOTE

Read can also be used to read from a file 1l that is not a text file. In
this case read(fil,x) is equivalent to:

begin .
x = fil ;
get(fil)

end

10.3.1.1 Read with a Char Variable
If fis of type text and v is of type char, the following things are true
immediately after read(f v}

* Eof(f) will return true if the read attempted to read beyond the last
character in the external file.

* Eoln(f) will return true, and the value of v will be a space, if the character
read was the CR character. Eoln(f) will also retum true if eof{f) is true.

10.3.1.2 Read with an Integer or Longint Variable
If f is of type text and v is of type integer, subrange of integer, or longint,
then read(f,v) implies the reading from f of a sequence of characters that form
a signed whole number according to the syntax of Section 1.4 (except that
hexadecimal notation is not allowed). If the value read is assignment-
compatible with the type of v, it Is assigned to v; otherwise an error occurs.

In reading the sequence of characters, preceding blanks and CRs are skipped.
Reading ceases as soon as a character Is reached that, together with the
characters already read, does not form part of a signed whole number.

An error occurs if a signed whole number Is not found after skipping any
preceding blanks and CRs.

If f is of type text, the following things are true immediately after read(f,v}

* Eof(f) will return true if the last character in the numeric string was the
last character in the external file.

= Eoln(f) will retum true if the last character in the numeric string was the
last character on the line (not counting the CR character). Eoln(f) will also
return true if eof{(f) is true.

10.3.1.3 Read with a Real Variable
If £ is of type text and v is of type real, then read(f,v) implies the reading
from f of a sequence of characters that represents a real value. The real
value is assigned to the variable v.

In reading the sequence of characters, preceding blanks and CRs are skipped.
Reading ceases as soon as a character Is reached that, together with the

10-12

Pascal Reference Manual Inout/Qutput

characters already read, does not form a valid representation. A "valid
representation” is either of the following:

* A finite real, integer, or longint value represented according to the
signed-number syntax of Sectlon 1.4 (except that hexadecimal notation is
not aliowed). An Integer or longint value is converted to type real

* An infinite value or Nan represented as described in Appendix D.

An error occurs if a valld representation is not found after skipping any
preceding blanks and CRs.

Immediately after read(f,v) where v is a real variable, the status of eof(f) and
eoln(f) are the same as for an integer variable (see Section 10.3.1.2 above).

10.3.1.4 Read with a String variable
If fis of type text and v is of string-type, then read(f,v) implies the reading
from f of a sequence of characters up to &t not including the next CR or
the end of the file. The resulting character-string is assigned to v. An error
occurs if the number of characters read exceeds the size attribute of .

NOTE

Read with a string variable does not skip to the next line after reading,
and the CR |s left waiting in the input buffer. For this reason, you
cannot use successive read calls to read a sequence of strings, as they
will never get past the first CR -- after the first read, each subsequent
read will see the CR and will read a zero-length string.

Instead, use readln to read string values (see Section 10.3.2). Readln
skips to the beginning of the next line after reading.

The following things are true immediately after read(f v}
* Eof(f) will return true if the line read was the last line in the flle.
* Eoin(f) will always retumn true.

103.1.5 Read with a Packed Array of Char Varlable
If f is of type text and v is a packed array of char, then read(f,v) implies the
reading from f of a sequence of characters. Characters are read into
successive character positions in v until all positions have been filled, or until
a CR or the end of the file is encountered. If a CR or the end-of-file is
encountered, it {s not read into v; the remaining positions in v are filled with
spaces.

10-13

Pascal Reference Marial Inoutanout

10.3.2 The Readln Procedure
The readin procedure is an extension of read. Essentially it does the same
thing as read, and then skips to the next line in the input file.

Parameter List: The syntax of the parameter list of readin is the same as that
~ of read, except as follows:

* A readin call with no input variables is allowed. £xample:
readln(sourcefile)
* The parameter-list can be omitted altogether.

If the first parameter does not specify a file, or if the parameter-list is
omitted, the procedure reads from the standard file input, which represents the
Lisa keyboard.

ReadIn(f), with no input-variables, causes a skip to the beginning of the next
line (if there is one, else to the end-of-file).

Readin can or2/ybe used on a text file. Except for this restriction,
readin(f v1...v.7) is equivalent to:

begin
read(f,vi, ...,vn)
readln(f)

end

The following things are true immediately after readln(fv) regardless of the
type of v:

* Eof(f) will retumn true if the line read was the last line in the external file.
* Eoin(f) will always return faise.

103.3 The write Procedure
writes one or more values to a text file.

Parameter List: write({f,1 p1 [, p2, ... pn))

The syntax of the parameter list of write allows an indefinite number of
actual-parameters.

1. f(may be omitted) is a variable-reference that refers to a variable of
type text. The file must be open. If f is omitted, the procedure writes to
the standard file output, which represents the workshop screen.

2. pl .. pnare auvlput-specs Each output-spec includes an owiout
expression, whose value is to be written to the file. As explained below,
an output-spec may also contain specifications of field-width and number
of decimal places. Each output expression must have a result of type
integer, longint, real, boolean, char, a string-type, or a packed array of
char type. These are the types of data that can be written (as textual
representations) to a file. At least one output-spec must be present.

10-14

Pascal Reference Manual InputQutput

write(f p1...p77) is equivalent to:
begin
write(f,pl);

;I.'ite(f, pn)
end

Immediately after write(f), both eof(f) and eoln(f) will return true.
NOTE

write can also be used to write onto a file fll that is not a text file.
In this case write(fil X) is equivalent to:

begin
fl :=x
put(fil)
end

1033.1 Output-Specs
Each output-spec has the form

OuteExpr [: Minwidth [: DecPlaces]]

where OUtEXpr is an output expression. Minwidth and DecPlaces are
expressions with integer or longint values.

Minwidth specifies the m/n/mum field width, with a default value that
depends on the type of the value of OUtEXPr (see below). Minwidth should be
greater than zero; otherwise, the results are unspecified. Exactly Minwidth
characters are written (using leading spaces if necessary), except when OUtEXpr
has a suwneric value that requires more than Minwidth characters; In this
case, enough characters are written to represent the value of OUtEXpL.

DecPlaces specifies the number of decimal places in a fixed-point repre-
sentation of a real value. It can be specified only if OUtExpr has a real value,
and if Minwidth is also specified. If DecPlaces is not specified, a floating-
point representation is written.

10.33.2 write with a Char Value
If OutExpr has a char value, the character is written on the file f. The default
value for Minwidth is one.

10.333 write with an Integer or Longint Value
If OUtEXpr has an integer or longint value, its decimal representation is written
on the file f. The default value for Minwidth is 8. The representation consists
of the digits representing the value, prefixed by a minus sign if the value is
negative, and any leading spaces that may be required to satisfy Minwldth. If
§he representation requires more than Minwldth characters, Minwidth is
gnored.

10-15

Pascal Reference Manual Input/auipunt

10334 Wwrite with a Real Value
If QutExpr has a real value, the default value for Minwidth is 12,

If QutEXpr has an Inflnite value, it Is output as a string of at least two "+"
characters or at least two “-" characters. If QUExpr s a NaN, it is output as
the character string “NaN", possibly followed by a string of characters enclosed
by single-quotes. See Section 10.3.3.5 for details on string output.

If QUtEXpr has a zero value, it is represented as "0" or “-0".

If GutExpr has a flnite value, {ts decimal representation is written on the file
f. This representation is the nearest possible decimal representation, depending
on Minwidth and DecPlaces. If the unrounded value IS exactly halfway
between two possible representations, the representation whose least significant
digit is even Is written out.

If DecPlaces Is not specified, a Floating-point representation is written as
follows:

° If Minwidth is less than 6, then its value Is set to 6 {intemally). This is the
minimum usable width for writing a floating-point representation.

= If the sign of the value of QUEXpr Is negative, a minus sign is written;
otherwise, a space is written.

s If Minwidth > 8, the significant digits are written with one digit to the left
of the decimal point and (Minwlidth - 7) digits to the right of the decimal

point.

 If Minwidth < 8, the most significant digit is written and the decimal point
is omitted.

* The exponent is written as the letter "E", an explicit "+* or "-" sign, and
two digits.

If DecPlaces Is specified, a Axeg-point representation is written as follows:
» Enough leading spaces are written to satisfy Minwidth.

e If the value Is negative, the minus sign “-" iIs written; if it is not negative,
a space is written.

= If DecPlaces > 0, the significant digits are written with the integer part of
the value to the left of the decimal point. The next DecPlaces digits are
written to the right of the decimal point.

* If DecPlaces < 0, only the integer part of the value is written and no
decimal point is written.

10.3.35 write with a String Vaiue
If the value of OUtExpr is of string type with length L, the default value for
Minwidth is L. If Minwidth>=L, the value Is written on the file f preceded by
(Minwidth-L) spaces. If Minwldth<L, the first Minwidth characters of the
string are written.

10-16

Pascal Reference Manual InputQuiput

10336 Write with a Packed Array of Char Value
If E is of type packed array of char, the effect is the same as writing a string
whose length is the number of elements in the array.

10.3.3.7 Wwrite with a Boolean value
If the value of DUtEXpr is of type boolean, the string * TRUE" (with a leading
space) or the string “FALSE" {s written on the file f. The default value of
Minwidth is 5. If Minwidth»5, leading spaces are added; if Minwidth<S, the
first Minwidth characters of the string are written. This is equivalent to:

write(f, ' TRUE':Minwidth)
or
write(f, 'FALSE* :Minwidth)

10.3.4 The Wwriteln Procedure
The writeln procedure is an extension of write. Essentially it does the same
thing as write, and then writes a CR character to the output file (ending the
line).

Parameter List: The syntax of the parameter list of writeln is the same as
that of write, except as follows:

* A writeln call with no output-specs is allowed. Exampie:
writeln(outputfile)
* The parameter-list can be omitted altogether.

If the first parameter does not specify a file, or if the parameter-list is
omitted, the procedure writes to the standard file output, which represents the
workshop screen.

writeln(f) writes a CR character to the file f.

Writeln can an/ybe used on a text flle. Except for this restriction,
writeln{f p1..p#7) is equivalent to:

begin
write(f,pl,pn)
writeln(f)

end

Immediately after writeln(f), both eof(f) and eoln(f) will retum true.

10.35 The Eoln Function
Result Type: boolean

Parameter List: eoln{(f)]

1. f is a variable-reference that refers to a varlable of type text. The flle
must be open.

The actual-parameter-list can be omitted entirely. In this case, the function is
applied to the standard flle input (the Lisa keyboard)

10-17

Pascal Reference Manual ot autput

Eoln(f) returns true "if the end of a line has been reached in £.* The meaning
of this depends on whether the external file is a character device, on which 1/0
procedure was executed last, and on what type of variable was used to receive
an input value. For detalls, see Sections 10.3.1 through 10.3.4.

The end of the file is considered to be the end of a line; therefore eoln(f) will
retum true whenever eof(f) Is true.

1036 The Page Procedure
Parameter List: page(f)

1. f is a variable-reference that refers to a variable of type text. The file
must be open.

The actual-parameter f cannot be omitted. Page(f) outputs a form-feed
character to the file f. This will cause a skip to the top of a new page when
f is printed.

Note that page(output) sends a form-feed to the workshop screen, but in
general this will not clear the screen. For methods of clearing the screen, see
the Wworkshop Users Guioe for the Lisa .

10.3.7 Keyboard Testing and Screen Cursor Control
103.7.1 The Keypress Function
Tests the Lisa keyboard to see if it has a character awaiting input.

Parameter L/st: no parameters.
Resuit Type: boolean.

Keypress returns true if a character has been typed on the Lisa keyboard but
has not yet been read, or false otherwise. This is done by testing the
typeshead queue; if the queue Is empty, keypress is false, otherwise it is true.

10.3.7.2 The Gotoxy Procedure
Moves the Workshop screen cursor to a specified location on the screen.

Parameter List: gotoxy(x, y)

1. x is an expression with an integer value. If x < 0, the value 0 will be
used; If X > 79, the value 79 will be used.

2. y is an expression with an integer value. If y < 0, the value 0 will be
used; if y > 31, the value 31 will be used.

Gotoxy(x. y) moves the cursor to the point (xy) on the screen. Note that the
point (0,0) is the upper left comer of the screen.

104 Untyped File 1/0
Untyped file 1/0 operates on an “untyped file," i.e., a variable of type flle (no
component type)l An untyped file is treated as a sequence of 512-byte blocks:
the bytes are not type-checked but considered as raw data. This can be useful
for applications where the data need not be Interpreted at all during 1/0
operations.

10-18

Pascal Reference Manual Input/Qutput

The blocks in an untyped file are considered to be numbered sequentially
starting with 0. The system keeps track of the cwrrent block number: this is
block 0 iImmediately after the file is opened. Each time a block is read, the
current block number is incremented. By default, each 1/0 operation begins at
the current block number; however, an arbitrary block number can be specified.

An untyped file has no file-buffer, and it cannot be used with get, put, or any
of the text-oriented 1/0 procedures. It can only be used with reset, rewrite,
close, eof, and the blockread and blockwrite functions described below.

To use untyped file 1/0, an untyped flle is opened with reset or rewrite, and
the blockread and blockwrite functions are used for input and output.

10.4.1 The Blockread Function

Reads one or more 512-byte blocks of data from an untyped file to a program
varlable, and returns the number of blocks read.

Result Type: integer
Parameter L/st: blockread(f, databuf, count [, blocknum])

1. f is a variable-reference that refers to a variable of type file. The file
must be open.

2. databuf is a varlable-reference that refers to the variable into which the
blocks of data will be read. The size and type of this varlable are not
checked; if it is not large enocugh to hold the data, other program data
may be overwritten and the resuits are unpredictabie,

3. count s an expression with an integer value. It specifies the maximum
number of blocks to be transferred. Blockread will read as many blocks
as it can, up to this limit.

4. blocknum (may be omitted) is an expression with an integer value. It
specifies the starting block number for the transfer. If it is omitted, the
transfer begins with the current block. Thus the transfers are sequential
if the blocknumber parameter is never used; if a blocknumber parameter
is used, it provides random access to blocks.

Blockread(f, databuf, count, blocknum) reads blocks from f into databuf, starting
at block blocknum. Count is the maximum number of blocks read; if the
end-of-file Is encountered before count blocks are read, the transfer ends at
that point. The value returned is the number of blocks actually read.

If the last block in the file was read, the current block number Is unspecified
and eof(f) is true. Otherwise, eof(f) is false and the current block number is
advanced to the block after the last block that was read.

10-19

Pascal Refererice Marsl Inout/Qutput

10.4.2 The Blockwrite Function
writes one or more 512-byte blocks of data from a program variable to an
untyped file, and returns the number of blocks written,

Result Type: integer
Parameter List: blockwrite(f, databuf, count [, blocknum])

1. f Is a variable-reference that refers to a variable of type file. The flle
must be open.

2. databuf is a varlable-reference that refers to the varlable from which the
blocks of data will be written. The size and type of this variable are not
checked.

3. count is an expression with an integer value. It specifies the maximum
number of blocks to be transferred. Blockwrite will write as many blocks
as it can, up to this limit.

4. blocknum (may be omitted) is an expression with an integer value. It
specifies the starting block number for the transfer. If it is omitted, the
transfer begins with the current block. Thus the transfers are sequential
if the blocknumber parameter is never used; if a blocknumber parameter
is used, it provides random access to blocks.

‘Blockwrite(f, databuf, count, blocknum) writes blocks into f from databuf,
starting at block blocknum. Count is the maximum number of blocks written;
if disk space runs out before count blocks are written, the transfer ends at
that point. The value returned is the number of blocks actually written.

If disk space ran out, the current block number is unspecified. Otherwise, the
current block number Is advanced to the block after the last block that was
written. :

NOTE

Unlike Apple 11 and Apple I Pascal, this Pascal does not allow
blockwrite to write a block at a position beyond the first position after
the current end of the file. In other words, you cannot create a block
file with gaps in it.

10-20

NOTES

029-0403-A

Chapter 11
Standard Procedures and

Functions
11.1 Exit and Halt Procedures . 11-1
11.1.1 TheEX it PYOCEOUTE....c.oneeieeeeeeeeeeceneeneeeneasraeceesneeeennnmenneaenanns 11-1
1112 TheHBILPTOCEBOUTE e eeeeeeeesaeetnceeceeecnnensanennnns 11-1
112 Dynamic Allocation Procedures 11-1
1121 TheNEWPIOCEOUTEonieneeeieeaenecereanrenrranesanaansensensmnsasansannas 11-2
11.2.2 The HeapResult FUNCLION ...t aeeeans 11-3
11.2.3 TheMBIK PTOCEOUTIE ...ccceueenieeereeenareaasecaeeseressessasesnsacansasasensann 11-3
1124 The Release PTOCEOUIEccceciieaccnceercrecensenscernseasenssasecnnsanassans 11-3
11.25 TheMemavail FUNCLION.cceviccrccriecrernrrecneccraseecssaescacsenasans 11-3
113 Transfer Functions......c..ceceeeeenevnce.. 11-a
1131 The TrUNCFUNCRION oo..oe et eeee e ercreneere e e e ennacananannn 11-4
11.3.2 The Round FUNCLION ..o e seae ceenaas 11-4
11.3.3 The OrdA FuncCtionot 11-4
11.3.4 ThePoirter FUNCHON ...ttt ae s 11-5
11.4 Arithmetic Functions 11-5
11.8.1 The OO0 FUNCLION «..ceueiniaiierieeeeeieriieeeeeesresnecesensasesnsasesensenns 11-5
1142 The ADSFUNCHION ... cieenceectecece e cetnsenseenasnsenmaannrans 11-5
1143 TheSQrFUNCHION. ... ncerrenecranene e eemaensean s ae s aneanneeas 11-6
1148 The SiNFUNCLION co. e e eeeceecceeceecieereereseaeeseannenessncesasanns 11-6
1145 The CoSFUNCLIONcccvnirnieceeceiieiienceeeenerenneneeseeaessessnnmneannen 11-6
1146 The EXPRUNCHION .coe i cree e cecrecneneeeen s ansemnnennasans 11-6
11.4.7 The LR FUNCHION.. ..o ceceecete e eee e s e e ssae s nnannnns 11-7
11.4.8 The SQrt FUNCLION ..cc.iiiicecireiieciectenseeeentatnscensassantessasseasasssons 11-7
11.49 The ArctanFunction...... . 11-7
11.4.10 The Pwroften Function 11-7
115 Ordinal Functions 11-8
1151 The DI FUNC IO .ot ie et certeceneeeeretaeseecnnsencesnsaasnsannsane 11-8
1152 The ChrFUNCHION ..o eeceererereecereenasnsesaneaennnanes 11-8
1153 The SUCCFUNCHION......au e eaeieeec e et eneceie e erecencnseseseneensanen 11-8
1154 ThePred FUNCHIONo ieieeeceecceeceeece e ceereenenees .11-9

Pascal Reference Manusl Standsrd Procedures & Functions

116 String Procedures and Functions 11-9
11.6.1 The LenGth FUNCHION.......cucrveeerenneraansesarseeesenseasenesssasanasssensens
11.6.2 ThePOSFUNCLION ..ottt e e et et s e st cna s e aeaees
11.6.3 The Concat Function

11.6.4 The Copy Function
116.5 The Delete Procedure
1166 The INSEIt PTOCEOUTE ...ooemrneeiecceloniiinie ettt ecee et e nsanees

11.7 Byte-Oriented Procedures and Functions 11-11
11.7.1 The Moveleft PTOCEOUTE.........ccccieiiiimaietnrcnennctreasereneneerannes 11-11
11.7.2 The MOVeright PTOCBOUTEcoouiiiiiiamicrienneesireerenaessaseasnsnans 11-12
11.7.3 The Sizeof FUNCLIONccocvvimimiiiiriiniinreinit st rennaaes 11-12

11.8 Packed Array of Char Procedures and Functions ‘ 11-12
11.8.1 TheScaneqFunClionccocieiiiiiimicimiiriciecen e cetenee e 11-12
11.8.2 TheScanne FUuNCHION ..ottt e 11-13

11.8.3 TheFillchar PIOCEOUTEccicieeeiemnnentcciieeninreneanananesasenssanens 11-13

Standard Procedures and
Functions

This chapter describes all the standard (“built-in"} procedures and functions in
Pascal on the Lisa, except for the 1/0 procedures and functions described in
Chapter 10.

Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared in a block surrounding the program, no
conflict arises from a declaration that redefines the same identifier within the
program.

NOTE

Standard procedures and functions cannot be used as actual procedural
and functional parameters.

This chapter uses a modified BNF notation, instead of syntax diagrams, to
indicate the syntax of actual-parameter-lists for standard procedures and
functions. The notation is explained at the beginning of Chapter 10.

11.1 Exit and Halt Procedures
11.1.1 The Exit Procegure
Exits immediately from a specified procedure or function, or from the main
program.

Parameter List: exit(id)

1. id is the identifier of a procedure or function, or of the main program. If
id is an identifier defined in the program, it must be in the scope of the
exit call. Note that this is more restricted than UCSD Pascal.

Exit(ld) causes an immediate exit from id. Essentially, it causes a jump to the
end of id.

NOTE

The halt procedure (see below) can be used to exit the main program
from a unit without knowing the main program's identifier.

11.1.2 The Halt Procedure
Exits immediately from the main program.

Parameter List: no parameters
Halt causes an immediate exit from the main program.

11.2 Dynamic Allocation Procedures
These procedures are used to manage the /¥ a memory area that is
unallocated when the program starts running. The procedure new is used for

11-1

Pascal Reference Mere! Starndard Proceaures & Functions

all allocation of heap space by the program. The mark and release procedures
are used together to deallocate heap space, and the heapresult function is used
to return the status of the last preceding dynamic allocation operation..

1121 The New Procedure
Allocates a new dynamic variable and sets a pointer variable to point to it.

Parameter List: new(p [, t1, ... tn])

1. p Is a variable-reference that refers to a variable of any pointer-type.
This is a variable parameter.

2. 1, .. tnare constants, used only when allocating a variable of
record-type with variants (see below).

New(p) allocates a new variable of the base-type of p, and makes p point to it.
The varlable can be referenced as p . Successive calls to new allocate
contiguous areas.

If the heap does not contain enough free space to allocate the new variable, p
is set to nil and a subsequent call to the heapresult function will return a
non-zero resuit.

If the base-type of p is a record-type with variants, new(p) allocates enough
space to allow for the largest variant. The form

new(p, t1, ...tn)

allocates a variable with space for the variants specified by the tag values t1,
.. tn (instead of enough space for the largest variants). The tag values must
be constants. They must be listed contiguously and in the order of their
declaration. The tag values are not assigned to the tag-fields by this
procedure.

Tralling tag values can be omitted. The space allocated allows for the largest
variants for all tag-values that are not specified.

WARNING

when a record varlable is dynamically allocated with explicit tag values
as shown above, you should not make assignments to any fields of
variants that are not selected by the tag values. Also, you should not
assign an entire record to this record. If you do either of these things,
other data can be overwritten without any error being detected at
compile time.

11-2

Pascal Reference Marnal Standard Proceaures & Functions

1122 The Heapresult Function
Returns the status of the most recent dynamic allocation operation.

Result Type: integer
FPargmeter LIst: no parameters

Heapresult returns an integer code that reflects the status of the most recent
call on new, mark, release, or memavall. The codes are given in the worksigo
User’s Guice; note that the code for a successful operation is 0.

1123 The Mark Procedure
Sets a pointer to a heap area.

Parameter List: mark(p)

1. p Is a varlable-reference that refers to a variable of any pointer-type.
This is a variable parameter.

Mark(p) causes the pointer p to point to the lowest free area in the heap. The
next call to new will allocate space beginning at the bottom of this ares, and
then p will be a pointer to this space. The pointer p is also placed on a
stack-like list for subsequent use with the release procedure (see below).

11.24 The Release Procedure
Deallocates all variables in a marked heap area.

Parameter List: release(p)

1. p is a variable-reference that refers to a pointer variable. It must be a
pointer that was previously set with the mark procedure. The pointer p
must be on the list created by the mark procedure; otherwise an error
occurs.

Release(p) removes. pointers from the list, back to and including the pointer p.
The heap areas pointed to by these pointers are deallocated. In other words,

release(p) deallocates all areas allocated since the the pointer p was passed to
the mark procedure.

1125 The Memavall Function
Returns the maximum possible amount of available memory.

Resuit Type: longint
Parameter L/st: no parameters

Memavall returns the maximum number of words (not bytes) of heap and stack
space that could ever be avallable to the program, allowing for possible
automatic expansion of the program's data segment. Note that the result of
memavall can change over time even if the program does not allocate any
heap space, because of activities by the operating system or other processes in
the system.

11-3

Pascal Reference Marial Stanagrg FProceaures & Functions

113 Transfer Functions
The procedures pack and unpack, described by Jensen and Wirth, are not

supported.

1131 The Trunc Function
Converts a real value to a longint value.

Result Type: longint
Parameter List: trunc(x)
1. x is an expression with a value of type real.

Trunc(X) retumns a longint result that is the value of x rounded to the largest
whole number that is between 0 and X (inclusive)

11.3.2 The Round Function
Converts a real value to a longint value.

Result Type: longint
Parameter List: round(X)
1. x Is an expression with a value of type real.

Round(x) returns a longint result that is the value of x rounded to the nearest
whole number. If x is exactly halfway between two whole numbers, the result
is the whole number with the greatest absolute magnitude.

1133 The Ordd Function
Converts an ordinal-type or pointer-type value to type longint
Result Type: longint
Parameter List: orda(x)
1. x is an expression with a value of ordinal-type or pointer-type.

Orod(x) returns the value of x, converted to type longint If x is of type
longint, the result is the same as x

If x Is of pointer-type, the result is the corresponding physical address, of type
longint.
If x is of type integer, the result is the same numerical value represented by X,
but of type longint. This is useful in arithmetic expressions. For example,
consider the expression

abcwxyz

where both abc and xyz are of type integer. By the rules given in Section
3.1.1.2, the result of this multiplication is of type Integer (16 bits). 1f the
mathematical product of abc and xyz cannot be represented in 16 bits, the
result is the low-order 16 bits. To avoid this, the expression can be written as

ordA(abc)*xyz

11-4

Pascal Reference Marwal Stanasrg Proceaures & Functions

This expresston causes 32-bit arithmetic to be used, and the result is a 32-bit
longint value.

If x is of an ordinal-type other than integer or longint, the numerical value of
the result is the ordinal number determined by mapping the values of the type
onto consecutive non-negative integers starting at zero.

11.3.4 The Pointer Function
Converts an integer or longint value to pointer-type.

Result Type: pointer
Parameter List: pointer(x)
1. x Is an expression with a value of type integer or longint.

Pointer(x) retums a pointer value that corresponds to the physical address x
This pointer is of the same type as nil and is assignment-compatible with any
pointer-type.

114 Arithmetic Functions
In general, any reat result returned by an arithmetic function is an approx-
imation. There are two exceptions to this: the result of the abs function Is
exact, and the result of the pwroften function is exact when the parameter n
is in the range 0 < n < 10.

114.1 The Odd Function
Tests whether a whole-number value is odd.

Result Type: boolean
Parameter List: odd(x)

1. x Is an expression with a value of type Integer or longint.
0od(x) returns true if x Is odd; otherwise it ylelds false.

1142 The Abs Function
Returns the absolute value of a numeric value.

Result Type: same as parameter
Parameter LIst: abs(x))

1. x is an expression with a value of type real, integer, or longint
Abs(x) retums the absolute value of x.

11-5

rascal Reference Marnig! Standard Proceoures & Functions

1143 The Sgr Function
Returns the square of a numeric value.

Resuit Type: depends on parameter (see below)
Parameter List: sqr(x) ;
1. x Is an expression with a value of type real, integer, or longint.

Sqr(x) returns the square of x. If x is of type real, the result is real; if x is of
type longint, the result is longint; and if x is of type integer, the resuit may be
either integer or longint.

If x is of type real and floating-point overflow occurs, the result is +w,

11.44 The Sin Function
Retumns the sine of a numeric value.

Result Type: real
Parameter List: sin(x)

1. x is an expression with a value of type real, integer, or longint. This
value is assumed to represent an angle in radians.

Sin(x) returns the sine of x. If x Is infinite, a di stic NaN is produced and
the invalid operation signal is set (see Appendix D

1145 The Cos Function
Returns the cosine of a numeric value.

Result Type: real
Pararneter List: cos(X)

1. x is an expression with a value of type real, integer, or longint. This
value is assumed to represent an angle in radians.

Cos(x) returns the cosine of x If x is infinite, a dlagnostic NaN is produced
and the invalid operation signal is set (see Appendix D).

1146 The Exp Function
Returns the exponential of a numeric value.

Result Type: real
Parameter LIst: exp(x)

1. x is an expression with a value of type real, integer, or longint. All
possible values are valld.

Exp(x) returns the value of ¢ where e is the base of the natural logarithms.
If floating-point overflow occurs, the result is +e..

11-6

Pascal Reference Manual Stanoard Procegures & Functions

11.4.7 The Ln Function
Returns the natural logarithm of a numeric value.

Result Type: real

Parameter LIst: 1n(x)

1. x Is an expression with a value of type real, integer, or longint. All
non-negative values are valld; negative values are invalid.

If x is non-negative, In(x) retums the natural logarithm (loge) of x

If x is negative, a dlagnostic NaN is produced and the Invaiid Operation signal
is set (see Appendix D).

11.8.8 The Sqrt Function
Retums the square root of a numeric value.

Result Type: real
Parameter List: sqrt(x)

1. x is an expression with a value of type real, integer, or longint. All
non-negative values are valid; negative values are invalid.

If x is non—-negative, sqri{x) returns the positive square root of x

If x is negatlve, a diagnostic NaN is produced and the Invalid Operation signal
is set (see Appendix D)

1149 The Arctan Function
Returns the arctangent of a numeric value.

Result Type: real

Parameter List: arctan(x)

1. x is an expression with a value of type real, integer, or longint. All
numeric values are valid, including +e.

Arctan(x) returns the principal value, in radians, of the arctangent of x.

11.4.10 The Pwroften Function
Retums a specified power of 10.

Result Type: real
Parameter LIst: pwroften(n)
1. nis an expression with a value of type integer.

If -45 < n =< 38, then pwroften(n) returns 10™. The result is mathematically
exact for 0 < n < 10. If n < -46, the result is 0; if n > 39, the result is +oo,

11-7

Pascal Rerference Maral Standara Proceoures & Furctions

115 Ordinal Functions
1151 The Ord Function
Returns the ordinal number of an ordinal-type or pointer-type value.

Result Type: integer or longint
Parameter List: ord(x)

1. x is an expression with a value of ordinal-type or pointer-type.
If x is of type integer or longint, the result is the same as X

If x is of pointer-type, the result is the corresponding physical address, of type
longint. '
If x is of another ordinal-type, the resuit is the ordinal number determined by

mapping the values of the type onto consecutive non-negative whole numbers
starting at zero.

For a parameter of type char, the result is the corresponding ASCII code. For
a parameter of type boolean,

ord(false) returns 0
ord(true) retumns 1

1152 The Chr Function
Returns the char value corresponding to a whole-number value.

Result Type: char (but see below)
Pararmeter LIst: chr(x)
1. X is an expression with an integer or longint value.

Cnr(x) returns the char value whose ordinal number (i.e., its ASCII code) is x, if
X Is in the range 0.255. If x Is not In the range 0.255, the value retumed is
not within the range of the type char, and any attempt to assign it to a
variable of type char will cause an error.

For any char value ch, the following is true:
chr(ord(ch)) = ch

1153 The Succ Function
Returns the successor of a value of ordinal-type.

Result Type: same as parameter (but see below)
Parameter LIst: succ(X)
1. x Is an expression with a value of ordinal-type.

Succx) returns the successor of X, if such a value exists according to the
inherent ordering of values in the type of x

11-8

Pascal Reference Marval! Standard Procedures & Functions

If x is the last value in the type of X, it has no successor. In this case the
value returned is not within the range of the type of x, and any attempt to
assign it to a variable of this type will cause unspecified results.

1154 The Pred Function
Returns the predecessor of a value of ordinal-type.

Result Type: same as parameter (but see below)
Parameter List: pred(x)
1. x iIs an expression with a value of ordinal-type.

Pred(x) returns the predecessor of X, if such a value exists according to the
inherent ordering of values in the type of x

If x is the first value in the type of x, it has no predecessor. In this case the
value returned is not within the range of the type of x, and any attempt to
assign it to a variable of this type will cause unspecified results.

116 String Procedures and Functions
The string procedures and functions do not accept packed array of char
parameters, and they do not accept indexed string parameters.

11.6.1 The Length Function
Returns the current length of a value of string-type.

Result Type: integer
Parameter List: length(str)

1. str is an expression with a value of string-type.
Length(str) returns the current length of str.

1162 The Pos Function
Searches a string for the first occurrence of a specified substring.

Resuit Type: integer

Parameter List: pos(substr, str)
1. substr is an expression with a value of string-type.
2. str Is an expression with a value of string-type.

Pos(substr, str) searches for substr within str, and returns an integer value that
is the index of the first character of substr within str.

If substr is not found, pos(substr, str) returns zero.

11-9

rascal Reference Maral Stanaard Proceaures & Functions

1163 The Concat Function
Takes a sequence of strings and concatenates them.

Resuit Type: string-type
Parameter List: concat(strl [, str2, ... strn])

¢ Each parameter is an expression with a value of string-type. Any practical
number of parameters may be passed.

Concat(strl, ..., str»2) concatenates all the parameters in the order in which
they are written, and returns the concatenated string. Note that the number
of characters In the result cannot exceed 255.

1164 The Copy Function

Retu;'ns a substring of specified length, taken from a specified position within
a string.

Result Type: string-type

Parameter List: copy(source, index, count)
1. source is an expression with a value of string-type.
2. Index Is an expression with an Integer value.
3. count is an expression with an integer value.

Copy(source, index, count) returns a string containing count characters from
source, beginning at source{index]
1165 The Delete Procedure

Deletes a substring of specified length from a specified position within the
value of a string variable.

Parameter List: delete(dest, index, count)

1. dest is a variable-reference that refers to a variable of string-type. This
is a variable parameter.

2. index is an expression with an integer value.
3. count is an expression with an integer value.

Delete(dest, index, count) removes count characters from the value of dest,
beginning at dest[index}

116.6 The Insert Procedure
Inserts a substring into the value of a string variable, at a specified position.

Parameter List: insert(source, dest, index)
1. source is an expression with a value of string-type.

2. dest is a variable-reference that refers to a variable of string-type. This
is a variable parameter.

3. index is an expression with an integer value.

11-10

Pascal Reference Merual Standard Proceaures & Functions

Insert(source, dest, index) inserts source into dest. The first character of
source becomes dest{index}

11.7 Byte-Oriented Procedures and Functions
These features allow a program to treat a program variable as a sequence of
bytes, without regard to data types.

NOTE

The sizeof function (described in Section 11.7.3, below) can be used to
determine the number of bytes in a variable.

These procedures do no type-checking on their source or dest actual-
parameters. However, since these are variable parameters they camwot ve
Incexed If they are packed or if they are of string-type. If an unpacked
“byte array” is desired, then a variable of the type

array [lo..hi] of -128..127

should be used for source or dest The elements in an array of this type are
stored in contiguous bytes, and, since it Is unpacked, an array of this type can
be used with an index as an actual-parameter for these routines.

IMPLEMENTATION NOTE

Currently, an array with elements of the type 0.255 or the type char
has its elements stored In words, not bytes.

11.7.1 The Moveleft Procedure
Coples a specified number of contiguous bytes from a sawce range o a
oestination range (starting at the lowest address).

Parameter List: moveleft(source, dest, count)

1. source is a variable-reference that refers to a variable of any type
except a flle-type or a structured-type that contains a file-type. This is
a varlable parameter. The first byte allocated to source (lowest address
within source) is the first byte of the source range.

2. dest is a variable-reference that refers to a variable of any type except
a file-type or a structured-type that contains a file-type. This is a
variable parameter. The first byte allocated to dest (lowest address
within dest) is the first byte of the destination range.

3. count is an expression with an integer value. The source range and the
destination range are each count bytes long.

Moveleft(source, dest, count) copies count bytes from the source range to the
destination range.

11-11

Pascal Rererernce Marnial Stanaarg Proceoures & Functions

Moveleft starts from the “left” end of the source range (lowest address) It
proceeds to the “right” (higher addresses), copying bytes into the destination
range, starting at the lowest address of the destination range.

The count parameter iIs not range-checked.

11.7.2 The Moveright Procedure
Moveright is exactly like moveleft (see above), except that it starts from the
“right” end of the source range (highest address). It proceeds to the “left”
(lower addresses), copying bytes into the destination range, starting at the
highest address of the destination range.

The reason for having both moveleft and moveright is that the source and
destination ranges may overlap. If they overlap, the order in which bytes are
moved is critical: each byte must be moved before it gets overwritten by
another byte.

11.7.3 The Sizeof Function
Returns the number of bytes occupied by a specified variable, or by any
variable of a specified type.

Result Type: integer
Parameter List: sizeof(id)

1. 1d is either a variable-identifier or a type-identifier. It must not refer to
a file-type or a structured-type that contains a file-type, or to a
variable of such a type.

Sizeof(id) returns the number of bytes occupied by id, if id is a variable-
identifier; if id is a type-identifier, it returns the number of bytes occupied by
any variable of type id.

11.8 Packed Array of Char Procedures and Functions
NOTE

These routines operate only on packed arrays of char. The packed
arrays of char cannot be subscripted; the operations always begin at the
first character In a packed array of char.

11.8.1 The Scaneq Function
Searches a packed array of char for the first occurrence of a specified
character.

Result Type: Integer
Parameter List: scaneq(1imit, ch, paoc)

1. lmit is an expression with a value of type integer or longint. It is
truncated to 16 bits, and is not range-checked.

2. ch is an expression with a value of type char.

11-12

Pascal Rererence Marxal Standard Proceoures & Functions

3. paoc is an expression with a value of type packed array of char. This is
a variable parameter.

Scaneqlimit, ch, paoc) scans paoc, looking for the first occurrence of ch. The
scan begins with the first character in paoc. If the character is not found
within limit characters from the beginning of paoc, the value returned is equal
to limit Otherwise, the value returmned Is the number of characters scanned
before ch was found.

11.8.2 The Scanne Function
This function is exactly like scaneq except that it searches for a character
that does no¢ match the ch parameter.

11.8.3 The Filichar Procedure
Fills a specified number of characters In a packed array of char with a
specified character.

Parameter List: fillchar(paoc, count, ch)

1. paoc is an expression with a value of type packed array of char. This Is
a variable parameter.

2. count is an expression with a value of type integer or longint. It is
truncated to 16 bits, and is not range-checked.

3. ch is an expression with a value of type char.

Fillchar(paoc, count, ch) writes the value of ch into count contiguous bytes of
memory, starting at the first byte of paoc.

Since the count parameter is not range-checked, it is possible to write into
memory outside of paoc, with unspecified results.

11-13

NOTES

029-0404-A

Chapter 12
The Compiler

12.1 COMPIET COMIMANGS ..couiirnmameictmetcaneseacssesiscsescnsrorasasessnesssenssnsssnansens 12-1
12.2 Conditional Compllation.........cccciiiieciiiimrimicniin ettt aeene 12-3
12.2.1 Compile-Time Variables and the $DECL Command............c.ceuvues 12-3
12.2.2 The $SETC COMMBNG ...cveeereeeerersimmsiimmesansmsssrressesssssmanssoscaes 12-4
12.2.3 Complle-TIme EXPIesSIONS ..ccccvvvriemmciirinieniereienecriesincns, 12-4
12.2.4 The $IFC,$ELSEC, and $ENDC COMMANGS ..c.veucrenrerrnesearnnaaennans 12-4
12.3 Optimization Of IfF-SLAtEMENLESc.cccceecccureereccencesieaonnaseserenmncasaasannnas 12-5
12.4 Optimization of while-Statements and Repeat-Statementsc...cceee.. 12-7
12.5 Efflclency of Case—Statements ...cccceccverviemnrcnrareesserncncsenaseenirenssransess 12-7

The Compiler

The Pascal compiler translates Pascal source text to an intermediate code, and
the code generator translates the intermediate code to MC68000 object code.
Instructions for operating the compller and code generator are given in the
workshap Lisers Guice for the LIsa

12.1 Compiler Commands
A compiler command is a text construction, embedded in source text, that
controls compiler operation. Every compiler command Is written within
comment delimiters, {..} or (*..%) Every compiler command begins with the $
character, which must be the first character inside the comment delimiters.

In this manual, compiler commands are shown in upper case to help distinguish
them from Pascal program text; however, upper and lower case are inter-
changeable In compiler commands just as they are In Pascal program text.

The following compller commands are avallable:
INPUT FILE CONTRAL

$I fllename Start taking source code from flle fllename. When the end
of this file Is reached, revert to the previous source file.
If the fllename begins with + or -, there must be a space
between $1 and the filename (the space is not necessary
otherwise).

$U fllename Search the file filename for any units subsequently
specified in the uses-clause. Does not apply to intrinsic-

units.
CONTRAL OF CODE GEMNERATIQN
$C+ or $C- Tum code generation on (+) or off (-). This Is done on a

procedure-by-procedure basis. These commands should be
written between procedures; results are unspecified if they
are written Inside procedures. The default Is $C-.

$0V+ or $OV- Tumn Integer overflow checking on (+) or off (-). Overflow
checking 1s done after all Integer add, subtract, 16-bit
multiply, divide, negate, abs, and 16-bit square operations,
and after 32 to 16 bit conversions. The default Is $OV-.

$R+ or $R- Turm range checking on (+) or off (-). At present, range
checking Is done in assignment statements and array
indexes and for string value parameters. No range
checking is done for type longint. The default Is $R-.

12-1

Pascal Reference Manal The Compller

$S segname Start putting code modules Into segment segname. The
default segment name is a string of blanks to designate the
“blank segment,” In which the maln program and all bulit-in
support code are always linked. All other code can be
placed into any segment.

$X+ or $X- Tum automatic run-time stack expansion on (+) or off (-}
The default Is $X+.

NOTE

Compiler directives that affect code generation take effect when the
end of the Pascal statement in which they are embedded Is reached. If
the same directlve is specified more than once in a statement, the last
setting is used. A tricky case of this is:

begin
J := foo;
{$r-}
1 :=1=2
{$R+}
end

Since the second assignment does not end with a semicolon, and
actually ends when the end is encountered, range checking will not be
turned off for that statement.

LEBUGGING

$0+ or $0- Tum the generation of procedure names In object code on
(+) or off (-). These commands should be written between
procedures; results are unspecified if they are written
inside procedures. The default is $D-+.

CONODITIANAL CaMPILATIGN
$OECL 11ist (see Section 12.2 below).

$ELSEC (see Section 12.2 below).
S$ENDC (see Section 12.2 below).
$IFC (see Section 12.2 below).
$SETC (see Section 12.2 below).

12-2

Pascal Rererence Manual The Compiler
LISTING CONTRA
$E filename Start making a listing of compller errors as they are

$ filename

$L+or $L-

encountered. Analogous to $L filename (see below). The
default is no error listing.

Start listing the compllation on file filename. If a listing
is being made already, that file is closed and saved prior to
opening the new file. The default Is no listing. If the
fllename begins with + or -, there must be a space between
$L and the filename (the space Is not necessary otherwise).

The first + or - following the $L turns the source listing on
(+) or off (-) without changing the list file. You must
specify the listing file before using $L+. The default is
$L+, but no listing Is produced if no listing file has been
specified.

12.2 Conditional Compilation
Conditional compilation is controlied by the $IFC, $ELSEC, and $ENDC
commands, which are used to bracket sections of source text. whether a
particular bracketed section of a program is compiled depends on the boolean
value of a comolie-time expression which can contain compli/e-time variables

122.1 Compile-Time Variables and the $OECL Command
Compile-time variables are comptletely independent of program variables; even
if a complle-time variable and a program variable have the same identifier,
they can never be confused by the compiler.

A complle-time variable is declared when it appears in the identifler-list of a

$DECL command.

Example of compile-time variavle declaration:
{$DECL LIBVERSION, PROGVERSION}

This declares LIBVERSION and PROGVERSION as compile-time varlables.
Notice that no types are specified.

Note the following

points about complle-time varlables:

¢ Compile-time variables have no types, although their values do. The only
possible types are integer and boolean

* All compile-time varlables should be declared before the end of the
variable-declaration-part of the maln program. In other words a $ODECL
command that declares a new compile-time variable must precede the
main program's procedure and function declarations (if any). The new
complle-time variable is then known throughout the remainder of the

compilation.

* At any point in the program, a compile-time variable can have a new
value assigned to it by a $SETC command.

12-3

Pascal Rererence Marual The Complier

12.2.2 The $SETC Command
The $SETC command has the form

{$SETC ID := EXPR}
or
{$SETC ID = EXPR}

where ID is the identifier of a compile-time variable and EXPR is a compile-

time expression. EXPR is evaluated Immedlately. The value of EXPR is
assigned to ID.

Example or asslgnment to compile-time variable:
{$SETC LIBVERSION := 5}
This assigns the value 5 to the compile-time varlable LIBVERSION

1223 Compile-Time Expressions
Comptile-time expressions appear In the $SETC command and In the $IFC

command. A compile-time expression Is evaluated by the compller as soon as
it is encountered in the text.

The only operands allowed In a complle-time expression are:
* Complle-time variables

* Constants of the types integer and boolean. (These are also the only
possible types for results of complle-time expressions.)

All Pascal operators are allowed except as follows:
* The in operator is not allowed.
* The @ operator Is not allowed.
* The / operator is automatically replaced by div.

1224 The $IFC, $£L.SEC, and $ENDC Commands

The $ELSEC and $ENDC commands take no arguments. The $IFC command has
the form

{SIFC EXPR}

where EXPR 1Is a compile-time expression with a boolean value.

These three commands farm constructions similar to the Pascal if-statement,
except that the $ENDC command is always needed at the end of the $IFC
construction. $ELSEC is optional.

12-4

Pascal Reference Maral . The Compller

Example of conditionally complled code:

{$IFC PROGVERSION >= LIBVERSION}
Kk := kvali(data+indat);
{$ELSEC))
Kk := kvalz(data+cpindat ");
$ENDC

writeln(k)

If the value of PROGVERSION Is greater than or equal to the value of
LIBVERSION, then the statement k:~kvall(data+indat) is compiled, and the
statement k:=kval(data+cpindat) is skipped.

But if the value of PROGVERSION {s less than the value of LIBVERSION, then
the first statement is skipped and the second statement is compiled.

In elther case, the writelnk) statement is compiled because the conditional
construction ends with the $ENDC command.

$IFC constructions can be nested within each other to 10 levels. Every $IFC
must have a matching $ENDC.

when the compiler is skipping, all commands in the skipped text are ignored
except the following:

$ELSEC
$ENDC
$IFC (so that $ENDC's can be matched properly)

All program text is ignored during skipping. If a listing is produced, each
source line that is skipped is marked with the letter S as its “lex level.”

123 Optimization of If-Statements
when the compiler finds an if-statement controlled by a boolean constant, it
may be unnecessary to compile the then part or the else part. For example,
given the declarations

const always = true;
never = false;

then the statement
1f never then statement
will not be complled at all. In the statement

if never then statementi
else statement2

“statement1” is not compiled; only “statement2” is compiled.

12-5

Pascal Reference Marusl The Compiler

Similarly, In the statement

if always then statementl
else statement2

only “statement1” Is complled.

The interaction between this optimization and conditional compilation can be
seen from the following program:

program Foo;
{$SETC FLAG := FALSE}
const pi = 3.1415926;

size = 512;
{$IFC FLAG}

debug = false; - {a boolean constant, if FLAG=true}
{¢$eNDC}

var 1, J,k, 1L, m n: integer;
{SIFC NOT FLAG}

debug: boolean; {a boolean variable, if FLAG=false}
{$ENDC}

{$IFC NOT FLAG}
procedure whatmode;

in
rl??.*mteractive procedure to set global boolean variable, debug}
end;
{$ENDC}

begin {main}
{$IFC NOT FLAG}
whatmode;

{senoc}

2]

1f debug then begin
statementl
end
else begin
statement2
end

end.

The way this is compiled depends on the compile-time variable FLAG. If
FLAG is false, then debug is a boolean variable and the whatmode procedure
is compiled and called at the beginning of the main program. The if debug

12-6

Pascal Reference Manual The Compiler

statement Is controlled by a boolean variable and all of it is compiled, in the
usual manner.

But if the value of FLAG is changed to true, then debug is a constant with
the value false, and whatmode is neither compiled nor called. The if debug

statement is controlled by a constant, so only its else part, "statement2”, is
compiled.

124 Optimization of while-Statements and Repeat-Staterments

A while-statement or repeat-statement controlled by a boolean constant does
not generate any conditional branches.

125 Efficiency of Case-Statements

A sparse or small case-statement will generate smaller and faster code than
the corresponding sequence of if-statements.

12-7

NOTES

029-0405-A

-~ I Qg mMmQogQOoo>»

Appendixes

Comparison to Apple 11 and Apple HI Pascalcceceeeveeenneenns A1
Known Anomalies In the Compller........ciiiniiiicnniiieiiinnemnneceennenas B-1
SYNaXx Of the LANQUAGEceceseersseessarersmsessasesssssrsesssssersssansasessnsens c-1
F10ating—Point ATINMEUCcccceeerererreecmercrressereraraenansesnnsasasaessnanes D-1
QUICKDTAW....ccuciemnienastieniennsnmnciosneesesemssssasssnsssnssrenstnsseserasenensasasnsenasean E-1
Hardware INLEIFACEc.cceccucicrucceretancentesiocssnssrasmscrnsasanssanccensasnasassase F-1
LisA Charatter Selcccccccccececmemeeesermoanesceaaeneensneeeotammmnensasranassseannnnnnn G-1
EXTOT MESSA0ESccerereraneenseesassersnseerassessssessasasssasaeessnsesasesasssssasanssen H-1
Pascal WOTKSNOP FHIBScciierreeeiecencicinennetttersentenaeenarssoreassenseessnnsanssennnes I-1

Appendix A
Comparison to Apple II and Apple III
Pascal

This appendix contains lists of the major differences between the Pascal
language on the Lisa and the Pascal implemented on the Apple 11 and Apple Il
Please note that these lists are not exhaustive.

Al Extensions
Tne following features have been added on the Lisa:

* ® Operator--retumns the pointer to its operand (see Section 5.1.6).

* Heapresult, pointer, and orda functions (see Sections 11.2.2, 11.3.3, and
11.3.4)

* Keypress function bullt into the language, with same effect as the keypress
funct.ior)l. in the applestuff unit of Apple 11 and Apple Il Pascal (see Section
10.3.7.1

* Hexadecimal constants (see Section 1.4).

. Omen;ise-clause in case-statement (same as Apple 11 Pascal; see Section
6.2.2.2

= Global goto-statement (see Section 6.1.3).

* A file o;'. char type that is distinct from the text type (see Sections 3.2.4
and 10.3

* Numerous compiler commands (see Section 12.1).
* Procecural and functional parameters (see Sections 7.3.3 and 7.3.4).
* Stronger type-checking (see Sections 3.4 and 7.3.5).

* QuickDraw graphics and hardware interface, including mouse control (see
Appendixes E and F).
A.2 Deletions
The following features are not Included on the Lisa:

* Turtlegraphics, applestuff, and other standard units of Apple 1l and Apple
111 Pascal.

= Interactive type (not needed, as the 1/0 procedures will do the right thing
with a file of type text if it Is opened on a character device).

* Keyboard file--same effect can be obtained by opening a flle of type text
on the device -KEYBOARD (see Section 10.3).

Pascal Reference Manual Comparison to Agple If & Il Pascal

* Unit (device-oriented) 1/0 procedures, such as UNITBUSY.

* Recognition of the ETX character (control-C) to mean “end of file" in input
- from a character device.

* "Long Integer” data type, with length attribute in declaration. Replaced by
the longint type (see Section 3.1.1.2).

* “Initialization” code in a unit (see Chapter 9)

* The abllity to create new Intrinsic-units and install them in the system
(see Chapter 9).

* Reset procedure without an external flle title, for use on a file that is
already open (see Section 10.1.1) To obtain the same effect, close the flle

and reopen it.
* Treesearch.
* Bytestream, wordstream (data types in Apple 11l Pascal).

s Exdt(program)-—The exit{identifier) form works, and the identifier can be the
program-identifier. Halt can also be used for orderly exit from a program
(see Sectlonii.1)

* Extended comparisons (see Section 5.1.5).

* Scan function. Replaced by scaneq and scanne (see Section 11.8).
* Str function. A

* Bit-wise boolean operations

* Segment keyword for procedures and functions. Use the $S command
instead (see Section 12.1)

* The following compiler commands (see Section 12.1)

* $1+ and $1- (no automatic 1/0 checking; program must use loresult
function)

* $G ($G+ {5 the assumption on the Lisa)
* $N and $R (for resident code segments)
LR 4

* $Q

* $S+ and $S++ for swapping

* $U+ and $U- (for User Program)

* 8V

In general, do not assume that a compller command used in Apple II or
Apple Il Pascal is valid on the Lisa. Furthermore, do not assume that an

Pascal Reference Manual Cormnparison to Agple II & IIT Pascal

Apple 11 or Apple 111 Pascal compller command is "harmless™ on the Lisa, as
it may be implemented with a different meaning.

A3 0Other Differences
The following features of Pascal on the Lisa are different from the
corresponding features of Apple 11 and Apple III Pascal:

* Size of all strings must be explicitly declared (see Section 3.1.1.6)
¢ Mod and div--Pascal on the Lisa truncates toward 0 (see Section 5.1.2).

* Apple 11 and Apple Il Pascal ignore underscores; Pascal on the Lisa does
not. They are legal characters in identifiers (see Section 1.2).

* A goto-statement cannot refer to a case-constant in Pascal on the Lisa
(see Section 6.1.3).

* A program must begin with the word program in Pascal on the Lisa (see
Chapter 8).

* Trunc s different (see Section 11.3.1)

* Write(b) where b Is a boolean will write elther * TRUE' or 'FALSE® In Pascal
on the Lisa (see Section 10.3.3).

* whether a file iIs a textfile does not depend on whether its name ends with
“TEXT" when it is created. Instead, any external file opened with a file
variable of type text Is treated as a textfile, while a file opened with a
flle variable of type flle of char is not; it Is treated as a “datafile,” le. a
stralght flle of records which are of type char (see Sections 3.2.4 and 10.2).

* Get, put, and the contents of the flle buffer variable are not supported on
files of type text. Use only the text-oriented 1/0 procedures with textfiles.

* Eoln and eof functions on flles of type text work as they do on interactive
flles in Apple 11 and Apple 1II Pascal.

* Pascal on the Lisa does not let you pass an element of a packed variable as
a variable parameter (see Sections 7.3.2, 11.7, and 11.8).

 Limits on sets are different (see Section 3.2.3).

* The control variable of a for-statement must be a local variable (see
Section 6.2.3.3).

* In a write or writeln call, the default fleld lengths for integer and real
values are 8 and 12 respectively (see Section 10.3.3).

Appendix B
Known Anomalies in the Compiler

This appendix describes the known anomalies in the current implementation of
the compiler.

B.1 Scope of Declared Constants
Consider the following program:

program cscopel;
const ten=10;

P
const ten=ten; {THIS SHOULD BE AN ERROR}
begin
writeln(ten)
end;
begin
p
end.

The constant declaration in procedure p should cause a compiler error, because
it is illegal to use an identifier within its own declaration (except for pointer
identifiers). However, the error is not detected by the compiler. The effect is
that the value of the global constant ten is used in defining the local constant
ten, and the writeln statement writes “10".

A more serious anomaly of the same kind is illustrated by the following
program:

program cscope2;
const red=1; violet=2;

procedure q;
type arrayType=array{red. .violet] of integer;
color-= 101et blue, green, yellow, orange, red);
var arrayvar:arrayType; C:Color;
begin
arrayVar(1]:=1;
c:=red;
writeln(ord(c))

begin
q
end.

B-1

Pascal Refererce Marnugl Compiler Anornalies

within the procedure q, the global constants red and violet are used to define
an array index type; the effect of arrayfred.violet] is equivalent to array{1.2}
In the declaration of the type color, the constants red and violet are locally
redefined; they are no longer equal to 1 and 2 respectively--instead they are
constants of type color with ordinalities 5 and 0 respectively. The writein
statement writes “5",

The use of red in the declaration of the type color should cause a compiler
error but does not.

Consider the statement

arrayvarf1]:=1;
If this statement is replaced by
arrayvar[red]:=1;

a compiler error will result, as red is now an illegal index value for
--even though arrayVvar is of type arrayType and arrayType is defined by
array{red_violet]

To avoid this kind of situation, avoid redefinition of constant-identifiers in
enumerated scalar types.

B.2 Scope of Base-Types for Pointers
Consider the following program:

program pscopel;
type s=0..7;

procedure makecurrent;
type sptr= s;
s=record
ch:char;
bool :boolean
end;
var current:s;
ptrs:sptr;
begin
new(ptrs);
ptrs :=current
end;
begin
makecurrent
end.

Here we have a global type s, which is a subrange of integer; we also have a
local type s, which is a record-type. Within the procedure makecurrent, the
type sptr is defined as a pointer to a variable of type s. The intention is that
this should refer to the local type s, defined on the next line of the program;
unfortunately, however, the compiler does not yet know about the local type s

B-2

Pascal Reference Msanusl Cormpiler Anomélies

and uses the global type s. Thus ptrs becomes a pointer to a variable of type
0..7 instead of a pointer to a record. Consequently the statement

ptrs” := current
causes a compiler error since ptrs” and current are of incompatible types.

To avoid this kind of situation, re-declare the type s locally before declaring
the pointer-type sptr based on 5. Altemnately, avoid re-declaration of
identifiers that are used as base-types for pointer-types.

Appendix C

Syntax of the Language
C.1 Tokens and Constants c-1
C2 Blocks c-4
C3 DataTypes c-5
CA Variables c-9
CS Expressions C-10
C6 Statements C-12
C.7 Procedures and Functions crreereeeeeeseeeeeesneasasaenensraan C-15
C.8 Programs C-16

C.9 Units C-17

Syntax of the Language

This appendix coliects the syntax diagrams found in the main sections of this
manual, See the Preface for an introduction to syntax diagrams.

C.1 Tokens and Constants (see Chapter 1)

Jetterl @1/7!2109" ®’ @WW@

LN (o) tron (9)——»

MT:@ j.
®) o (F)

ldentifier @

underscore
e

hex-digit-sequence hex-digit

j

Pascal Reference Manudl Smtax

wnsigned-integer

b{ digit-sequence } »>
L‘@-ﬂ nex—diglt-sequence}———f
ST

wsigned-real

aigit-sequence ' digit-sequence \ >
O{ scale—factor}-/

soale-ractor

~ b@ a8 m ﬁi’[digit-sequence }——-'

unsignea-number D{ unsigned-integer]-\
‘-bl unsigned-real lr >
slqned-number DI unsigned-number }————b
sign
quoted-string-constant

string-character

Pascal Rererence Maral Smtax

Rt S O

Quoted-character-constant >®—>[string-character I—*Q—’

string-character

constant-aeciaration ° constant O

constant

bl constant-ldentifier

signed-number

quoted-string

quoted-char

Pascal Rererence Maal Smtax
C.2 Blocks (see Chapter 2)
ﬂM;TD[label—declaration—parth
-
\5{ constant-declaration-part }—)
-
KF{ type-declaration-part]—j

variable-declaration-part Jj

-£\

g
| procedure-and-function-declaration-part }—)

i\

sta'.emem-parhl >

label-oeclaration-part

1abel lavel o(r——
(D

12087y ngit-sequence |—»

constant-geclaration-part

canstant-declaration !—T——b

Upe-declsration-part

type-declaration I'—)—V

——

Pascal Reference Manual

variable-oeclaration-part

———b@—-@ variable-declaration l—j——b

proceaure-and-ruiction-aeclaration-part
procedure-declaration
function-declaration

statement part__y[" compouna-statement, |——+

C.3 Data Types (see Chapter 3)

type-ceclaration o)

structured-type

pointer-type

simple-type

Le8/-0pe o] real-type-identitier |————

c-5

Pascal Reference Manial

orainal-tywe | subrange-type
enumerated-type
ordinal-type-identifier
sting-type

(string)—([)—] size-attribute |

D

string-type-identifier 1,

Size-attrivute ,{ unsignea-integerj—"—"

enumerated-type icentifier-list ()

Jaentifler-list (

ere-te e

C-6

Pascal Reference Maxal Symiax

Stnicled-tye »‘ array-type }
.‘

record-type

structured-type-identifier 'r

array-type

D0 D-+(e)-+[ore]

Ioex-Lpe o[ordinal-type

LECOTUPE_(roara)

flela-list

fixed-part >
Lo/
fAxeg-part (»{ field-declaration |—T——’

Held-geclaration identifier-list °

Pascal Reference Maral Hriax

varlant-part
(o) tag-field-type [(of) .'
® ©

Log -0 4P€ o[orginal-type-icentifier |—»

variarnt

oot }~—+(D>(("
TEE OOy

wmertme (7

pointer-type-identifier

L8%2-L10E oI \ype-identifier |—

c-8

Pascal Reference Maal Syntax

C.4 variables (see Chapter R)

variaple-aeclaration 'l identifier-list e a

varigble-reference
———! variable-identifler | —>

J

variable-identifier
identifier

qualifier

index

fleld-designator
file-buffer-symbol
pointer-object-symbol

b+ D[z > (D>
On

Aela-aesignator 0

identifier

fle-buffer-symbol .O

pointer-abject-symbol ’@

C-9

Pascal Reference Maval Syntax

C.5 Expressions (see Chapter 5)

unsigrea-canstant

>[unsigned-number

quoted-string-constant

canstant-identifier

nil >

ractor

~ > b{ variable-reference l—————\

—=»] unsigned-constant |
— set-constructor |
D)

ter
»
De
{ div)&
{(mod)e

V.

f (([

L . N W

:

Sinple-expression m

C-10

Pascal Reference Mamal Syntax

expression
—»| simple-expression | >
\>®-—-—,——>| simple-expression]——]
(-
(<)
~(>-)-1
()
“»(in)~
nmeilon-call
1

—-——bl function-identifier |

—0
actual-parameter-list }—7

actual-parameter-l/st .@ of actual-parameter | |@ .

actual-paramelter

ry

expression

variable-reference
procedure-identifier
function-identifier

set-consuuctor ’® ,(:) >

member-group

(e

C-i1

Pascal Reference Maal Sntax

Mmember-Qrouo *l expression } >
S

C.6 Statements (see Chapter 6)

statement

>
E strple-statement

structured-statement

ﬁ%[digit-sequence }———0

Simple-statement

D{ assignment-statement
procedure-statement

goto-statement | >

assignment -statement

variable-reference
function-identifier (=)

procedure-statement

——OI procedure-identifier]I >
\»Factuax-parameter-nst]—j

M@_mﬁ_’(me 1abel '_.

C-12

Pascal Referernce Markial

structurea-statement

—b‘ compound-statement
conditional-statement

repetitive-statement

with-statement } —>

compound-statement

coritional-statement

if-statement
1—-0{ case-statement
Irttement i

C(men)—bl statement | >

else statement.

C20-SIHMN._ ("5)] expression
C@)
\-Lotnerwise—clause [/ \@/

cme o orstant | ~—()->{ Satement |

otherwise-clause

otherwise statement |—=-

C-13

Syntax

Pascal Reference Marual Symtax

repetitive-statement

#| repeat-statement

while-statement

for-statement | >

repeat-statement

———»(repeat)tbi statement l-j—-o(mtjl)——bfexpression >

wihile-statement

———-b(whileH expression @

ror-statemernt

contro-variaie |+(2)

C »(10) final-value |-#{(do }-#{ statement

NIl VBITR0IE o[ariaple-identifier |—

i-save
1nal-value

with-statement

a(mm}c‘ record-var

1able—referencsﬂ7-
O

C-14

Pascal Rererence Marxsl Smiax

C.7 Procedures and Functions (see Chapter 7)

proceaure-oeclaration

——-b[procedure-heading l—b@-bﬁxocedure-body }-»@—b

proceaire-baty
.l external l
procecurs-Hescing

—b(pmwdure)—bi identifier }*{

>
formal-parameter-list I-/

runction-oeclaration

s rvior esaig

function-bogy m
e Comaray\
Arction-feading {Mu:hm)—b{ identifier }-j

list }-j

\-! formal-parameter-

resuit-type ®{ ordinal-type-icentifier

real-type-identifier

pointer-type-identifier

C-15

Pascal Reference Manual Symtax

formal-parameter-Jist

parameter-declaration
procedure-heading
mnction—heading

grameler-oeclaration type-identifier
'"' = "~

C.8 Programs (see Chapler 8)

program
— program—headingj—’@
program-Nealng

—»(pmgran ldenuflerj >
| \@..{ program-parameters h@J

LrogrampAINELErS oI genvifier-list

LhoesCIae (" uses)—] identifier-list |—#

C-16

Pascal Reference Manual Syntax

C.9 Units (see Chapter 9)

et :)
qmterface—part H implementation-part }-b(end}»@—v

wnlt-neading »(unit }-»{ identifier |——»

Interfscepart o oo N

(
! constant-declaration-part l-j

2
\-®{ type-declaration-part 1—3

-
> variable-declaration-part]—)

Cb{ procedure-and-function-declaration-part]——L—b

inwlementatiaﬂ—part’(

mplementatim>) ~
[bl constant-declaration-part }—)
-

-»{ type-declaration-part |—>

-

\b[variable-declaration-part J—j

P
“®| procedure-and-function-declaration-part |——=-

C-17

D1

SREER

D.7
D8
D9

Appendix D
Floating-Point Arithmetic

Introduction. . . ettesestescasearesatsarnnsnerenanasnsarannans D-1
Rounding of Real RESULLScccccmeeeeisranns ..D1
Accuracy of Arithmetic Operations . D-2
Overflow and Division by Zero: Infinite Valuesc...cveevieee. D2
Invalid Operations: NaN values D-3
Integer ConNVersion OVEITIOWccceueeeeciiiernmnsesnrnenteressmsasnsssesnanssnssannans D-4
Text-Oriented I/0 CONVETSIONSccccciieecrereeccerenssanmorssnsesasensssrvsassanses D-a
FPLIB Interface....... . .04
Bibliography D-20

Floating-Point Arithmetic

B.1 Introduction
Floating-point arithmetic in Pascal on the Lisa (all arithmetic involving real
values) conforms to most of the single-precision aspects of the 1IEEE's Prgposed
Standard for Binary Floating-Point Arithmetic (Draft 10.0 of IEEE Task P754).

IEEE Standard arithmetic provides better accuracy than many other floating-
point implementations. It also reduces the problems of overflow, underflow,

limited precision, and Invalid operations by providing useful ways of dealing

with them.

The FPLIB library unit (in the file I0SFPLIB) contains the routines that perform
floating-point arithmetic (including all the transcendental functions and the
sgrt function). FPLIB must be linked into any program that uses floating-point
arithmetic; however, it is not necessary to explicitly refer to FPLIB in a uses
clause unless the program calls the specialized support procedures and
functions declared in the interface of FPLIB.

This manual assumes that you do not explicitly use the FPLIB unit, and that
therefore only the default options of IEEE arithmetic are applicable.

As a general rule, you can write Lisa Pascal programs that use floating-point
arithmetic without worrying about the differences between IEEE Standard
arithmetic and other floating-point implementations.

The following points apply if your program writes out floating-point numbers as
textual representations (via write or writeln)

* Anything in the output that looks like a number will be correct (and
possibly more accurate than under other implementations).

¢ If your output contains a string of two or more pluses or minuses, this
indicates a value of =, resulting from division by zero or some other
operation that caused a floating-point overflow.

* If your output contains the string "NaN" (meaning Not a Number), this
indicates the result of some invalid operation that would probably have
caused a program halt or a wrong output under other impiementations.
Note that any real value in text output that does not include the string
"NalN” is guaranteed not to have been affected by any invalid operation.

D2 Rounding of Real Results ‘
when a real result must be rounded, it is always rounded to the nearest
representable real value. If the unrounded result is exactly halfway between
two representable real values, it is rounded to the value that has a zero in the
least significant digit of its binary fraction (the “even” value)

Pascal Reference Manugl Flosting-Point Arithmetic

D.3 Accuracy of Arithmetic Operations
The arithmetic operations +, —, *, /, round, trunc, and sqrt are accurate to
within half a unit in the last bit. Remainders are computed without rounding
error.

D4 Overflow and Division by Zero: Infinite Values
The result of floating-point overflow is either « or -, These are values of
type real that can be used in further calculations and follow the mathematical
conwentions: for example, a finite number divided by « yields zero.

Dividing a finite non-zero value by zero also yields « or - (in floating-point
arithmetic).

Infinite values have textual representations that can be read by read or readin
or written out by write or writeln

Tables D-1 and D-2 below show the results of arithmetic operations on
infinities. Note that any operation involving a NaN as an operand produces a
NaN as the result

Table D-1
Results of Addition and Subtraction on Infinities
Rigt

Lert Qoerary?
(perand —~o0 finite +00

~c0 -co -0 NaN
finite + -0 finitet +00

*00 NalN +c0 *00

- NalN - -
finite - +00 finitet ~o

+0 + +00 NaN

Result is an Infinity if the operation overflows.

D-2

Pascal Reference Mornsal Floating-Point Arithmetic

Table D-2
Results of Multiplication and Division on Infinities

Right
perard
[lﬁeig?d +0 finite 400
+0 +0 :0 NaN
finite »* 0 finitet 00
200 NalN 100 »00
+0 NaN *0 +0
finite / 10 finitet +0
200 *00 to0 NaN
¥ Result is an infinity if the operation overflows.
Note: Sign of result is determined by the usual mathematical rules.

D5 Irwalid Operations: NaN Values
An invalid operation (such as dividing zero by zero) does not cause a halt.
Instead it returns a special diagnostic value, and execution continues. The
result of an invalid operation is called a AN which stands for "Not a
Number.”

A NaN resulting from an invalid operation is a prgoggating NN This means
that if the NaN is used as an operand in another operation, the result of the
operation will be the same NaN. NaNs can be written out via write or writeln
and read via read or readln; the textual representation is “NaN" (optionally
followed by a quoted string).

The following operations are invalid and return a NaN value:
* co-on OF eou(-a)
L 3 0 » +00
* 0/0
® soo/s00

* The sin, cos, In, and sqrt functions, when the arguments are inappropriate.
(See the function descriptions in Sections 11.4.4, 11.4.5, 11.4.7, and 11.4.8,
respectively.)

0-3

Pascal Reference Mamal Flosting-Point Arltivmetic

D.6 Integer Conversion Overflow
Integer conversion overflow can occur in trunc or round (see Chapter 11) if the
actual-parameter exceeds the bounds of the predeclared type integer. The
result returned is unspecified.

0.7 Text-Oriented 1/0 Conversions
The read, readin, write, and writeln procedures require the conversion of
numbers from decimal to binary on input and from binary to decimal on output.
The error in these conversions is less than 1 unit of the resuit's least
significant digit. (In the past, base conversions have rarely been done
accurately in a way that permits simple error bounds to be put on the resuits.)

Real values appear as character strings In two different contexts: as source
code processed by the compiler (real constants), and in text files written and
read by Pascal programs. The signed-number syntax of Chapter 1 applies in
both cases. However, the Compiler does not accept infinities and NaNs.

For read and write, +w IS represented by a string of at least two plus signs,
and -« by a string of at least two minus signs. NaNs are represented by the
characters "NaN", with an optional leading sign, and an optional tralling quoted
string of characters; an example is

-NaN12:34
The character string is sometimes used to provide dlagnostic data.
D.8 FPLIB Interface
IMPLEMENTATION NOTE

The IEEE numerlcs are a proposed standard, and this implementation
may be redesigned for future releases.

D-4

Pascal Reference Maral

UNIT fplib ; INTRINSIC ;

Floating-Point Arithmetic

{ Use this header for intrinsic
library. }

{ FPLIB floating point library version A53, 29 March 1983 }
{ Copyright 1983, Apple Computer Inc. }

{$setc fp_foros

{¢$setc fp_testversion

{$setc fp_compilersubset :

INTERFACE

true } { True to compile for 0S, false for
Monitor. }

false } { True if special test library. }

false } { True to compile special subset
library for Pascal compiler,
false to compile full library. }

Hon

{
CONST

___________ - }

{ CONSTANTS to parameterize floating point types }

maxfpstring = 80 ; { Declared length of floating point string type. }
{ Floating point registers are numbered O..maxfpreg }

maxfpreg = 1 ;

{ CONSTANTS for random number generation }

randmodulus = 2147483647 ; { Prime modulus for random number generator. }

{ CONSTANTS for NaN Error Codes }

nansqrt
nanadd
nanint
nandiv
nantrap
nanunord
nanproj
nanmul
nanrem
nanascout
nanpromote
nanresult
nanascbin
nanascnan
nanascin

naninteger

LI D R TN AN D IR TN B RN RN RN NN AN)

12 ;
17 ;
18 ;
19 ;
20 ;

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

1 ; { Invalid Square Root such as sqrt(-1). %

Invalld Adgition such as +INF - +INF.

Invalid Conversion to Integer. }

Invalid aivision such as 0/0. }

Trapping NaN encountered.

Ordered compare of unordered quantities. }
Invalid use of Infinity in Projective Mode. }

> { Invalid Multiply such as 0 = INF. }

Invalid Remainder or Modulo such as X REM 0. }
Invalid binary to ascii conversion parameter. }
Attempt to promote single denorm to double. }
Attempt to convert nonnormal to single or double. }
Attempt to convert invalid ASCII string. }

Attempt to convert NaN'invalid string’'. }

Attempt to convert unrepresentable ASCII string. }
Attempt to convert NaN valued integer to floating } ©

D-5

Pascal Rerference Mamal Floating-Point Arftiimetic

nanzero = 21 ; { Attempt to create a NaN with zero significand. }
nantrig = 33 ; { Invalid argument to trig routire. 1}

naninvtrig = 34 ; { Invalid argument to inverse trig routine. }
nanexp = 35 ; { Invalid argument to b"x for constant b. }
nanlog = 36 ; { Invalid argument to log routine. 1}

nanpower = 37 ; { Invalid argument to x"1 or x"y routine. }
nanfinan = 38 ; { Invalid argument to financial function. }
naninit a 255 ; { Uninitlalized storage. }
(oo }
TYPE

{ TYPES that are subranges }

fp_regindex = O..maxfpreg ; { Index in floating point register array. }
nibble = 0..15 ; { Hex “digit". }

fp_bedindex = 0..27 ; { Index in bcdstring type. }

fp_ébit = 0..63 ; { For six bit fields. }

byt = 0..255 ; { Unsigned byte. }

bite = -128..+127 ; { Signed byte. }

{ TYPES that are packed arrays }

fourbite = packed array [0..3] of bite ;
eightbite = packed array [0..7] of bite ;
tenbite = packed array [0..9] of bite ;

{ TYPES that represent numbers, infinitlies, and NaNs }

fp_bite = bite ; :

fp_intés = eightbite ; { 64 bit integer with -2°63 as NaN. }
fp_double = eightobite ; { IEEE double precision floating point. }
fp_extended = tenbite ; { IEEE double extended floating point. }

fp_register = packed record { Floating point register.
sign : bite ; { 0 for positive, -128 for negative }
tag : bite ; { 1=normal, 2=zero, 4=inf, 8=NaN, 16=nonnormal }
exponent : integer ;
fraction : eightbite ; { actually significand }
end ;

fp_bcdstring = packed array [fp_bcdindex] of nibble ; { packed bcd string }
fp_string = string[{maxfpstring] ; { String parameter. }

D-6

Pascal Reference Mamal Floating-Point Arfthmetic

fp_type = (tfp_bite, tfp_integer, tfp_longint, tfp_intés4,
tfp_real, tfp_double, tfp_extended, tfp_register,
tfp_bcdstring, tfp_string) ; { Names for number types }

{ TYPES that point }

pfp_bite = ~ fp_bite ;
pfp_integer = “ integer ;
pfp_longint = ~ longint
pfp_intés = ® fp_inte4 ;
pfp_real = "~ real ;
pfp_double = * fp_double ;
pfp_extended = ~ fp_extended
pfp_register = “~ fp_register ;
pfp_bcdastring = ~ fp_bedstring
pfp_string = ® fp_string ;
fp_pointer = * integer ; { Free pointer to any type. }

fp_procaddress= fp_pointer ; { Actually " procedure with no arguments. }
{ TYPES that provide non-numeric types for floating point use }
xcpn = (invop, overfl, underfl, divo, inxact, cvtovfl, fp_xcpné, fp_xcpn7);
{ Floating point exceptions:
invop..inxact are the IEEE exceptions
ctvovfl is for floating to integer conversion overflow
fp_xcpné and 7 are for future expansion }
excepset = set of xcpn ; { For handling all exceptions at once. }
roundtype = (rnear, rzero, rpos, rneg, rout) ; { Rounding modes. }
fp_cc = (equal, lesser, greater, unord) ; { Results of comparisons. }
fp_kindtype = (zero, nonnormal, norml, inf, NaN) ; { Floating operands. }
fp_format =
(fp_lisa. fp_free, fp_iround, fp_i. fp_f. fp_el. fp_e2, fp_e3.
fp_e4, fpe)
{ Output formats for binary to ascii routines. }
{ TYPES that provide IEEE arithmetic modes }
rmode = rnear .. rneg ; { IEEE rounding modes. }
closure = (pro), affine) ; 1EEE infinity modes. }

{
denorm = (warning, normalizing) { IEEE denormalized modes. }
extprec = (xprec, sprec, dprec) ; { IEEE rounding precision modes. }

0-7

Pascal Reference Marvigl Floating-Point Arithmet/c

{ TYPES that define floating point trapping }

fp_traprecord = record { of information for composite floating point trap }
header : integer ;
{ <0 for atomic floating point operation from F-1ine op code

=0 for composite floating point operation

>0 for atomic Pascal Real arithmetic operation }
es : excepset ; { Exceptions that occurred in this operation. }
procname : pfp_string ; { procname” contains name of procedure }
optypel, optype2, resulttype : fp_type ; { Operand and Result types }
opl, op2, result : fp_pointer : { Operand and Result pointers }
eru .

pfp_traprecord = * fp_traprecord ;
{ TYPES that define the FLOATING POINT CONTROL BLOCK, FPCB_ }

fp_statustype = packed record { Non-numeric floating point status }
condition : bite ; { Contalns invalid code and fp_cc }
excep : bite ; { Sticky exception-occurred bits for each xcpn }
tmode : bite ; { Scratch }
texcep : bite ; { Last-operation exception-occurred bits }
mode : bite ; { Bit for each IEEE mode }
trap : Dbite ; { Trap-enabled bits for each xcpn. }
instad : pfp_traprecord ; { fp_traprecord or last F-line op code }
end ;

fp_regarray = array [fp_regindex] of fp_register .

fp_blocktype = ;‘ecord { Floating point status and numeric registers }
status : fp_statustype ;
f: fp_regarray : { FPCB_.BLOCK.F[1i] is "FP1" in comments. }
end ;

fpcb_type = packed record { Floating point control block. }
case boolean of
false : ({ current gefinition }
ptrapvector : array [xcpn} of fp_procaddress
{ Pascal language floating point trap vector. }
block : fp_blocktype ;

)

true : ({ obsolete definition for compatibility }
trapvector : array [0..7] of ° longint ;
condition : bite ;

excep : bite ;
tmode : bite ;
texcep : bite .

D-8

Pascal Reference Menugl Floating-Point Arithmetlc

mode : bite ;

trap : bite ;

instad : longint ;

f : fp_regarray ;

unused : array [xcpn] of fp_procaddress :

.

end ;

p_fpcb_type = ~ fpcb_type ;

{$ifc not fp_testversion }

{ TYPES for compatibility with previous releases }
intie = packed array [0..1] of bite ; int32 = fourbite ; inté4 = fp_inte4 ;
single = fourbite ; double = fp_double ; extended = fp_extended ;
fpregister = fp_register ; fpstring = fp_string . conditioncode = fp_ccC
fpeblit = fp_ébit ; fpregarray = fp_regarray ; fpkindtype = fp_kindtype ;
f{’ge{?flngp? = fpcb_type ; pfpcbtype = p_fpcb_type ;

VAR { FLOATING POINT CONTROL BLOCK }
FPCB_ : fpcb_type ;
{¢ifc not fp_compilersubset }

{ommes - }
{ MICROSEGMENT fpmsub } { Internal assembly language procedures only. }
{rmmmm }
{ MICROSEGMENT f32sub }

function f32_minus { x : real) : boolean ; { Sign(x) }

function f32_integral (x : real) : boolean » { Is x integral? }
function €32 _fraction (x : real) : real ; { Fraction part(x) }
function f32_ilogb (x : real) : integer ; { Exponent(x) }
function £32_scale (x:real ; 1 : integer) : real ; { x * 2°1 }
function 32 _Kind (x : real) : fp_kinotype :

{ Returns Zero, Norml, Inf or NaN; NonNormal classifies as Norml }
{s¢endc }

function f32_fpcb : p_fpcb_type ; { Returns aFPCB_ }
{sifc not fp_compilersubset }

D-9

Pascal Reference Manual Floating-Point Arlthyetic

{ }
{ MICROSEGHENT ux80sub }
{ EXTENDED PRECISION ARITHMETIC }

{ PROCEDURES for monadic zero address arithmetic }

procedure. fpneg ; { FPO := -FPO.

procegure fpabs ; { FPO := abs(FPO). }

procedure fpint ; { FPO := integral part of FPO }
procedure fpsqrt ; { FPO := sqrt(FPQ) }

{ PROCEDURES for dyadic zero address arithmetic }

procedure fpadd ; { FPO := FPO + FP1 }
procegure fpsub ; { FPQ := FPQ - FP1 }
procedure fpmul ; { FPO := FPO * FP1 }
procegure fpdiv ; { FPO := FPQ / FP1 }
procedure fprem ; { FPO := FPO rem FP1 }

function fpcom : fp_cc ; { Returns result of FPO compare FP1. }
{ PROCEDURES for two address arithmetic }

function fpints (X : real) : real ; { integral part of x }
function fpsqrts(x : real) : real ; { sqre(x) }

procedure fpnegd (var X, z : fp double) ; {zZ := -X }

procedure fpabsd (var x, z : fp_double) ; { z := abs(x) }

procedure fpintd (var X, z : fp_double) ; { z := integral part of x }
procedure fpsqrtd(var X, z : fp_couble) ,; { z := sqrt(x) }
procedure fpnegx (var X, z : fp_extended) ; { z := -X }

procedure fpabsx (var X, 2 : fp_extended) ; { z := abs(x) }

procedure fpintx (var x, z : fp_extended) ; { z := integral part of x }
procequre fpsqrtx(var x, z : fp_extended) ; { z := sgrt(x) }

{ PROCEDURES for three address arithmetic }

function fpadds (X y :real) :real ; {z:=Xx+y}
function fpsubs (X y :real) :real; {2:=x-Yy}
function fpmuls (X, y :real) :real ; {Z :=x*y}
function fpdivs (X y :real) :real; {2 :=X/Yy}
function fprems (X y :real) :real; {z:=xremy }
function fpcoms (X y : real) : fp_¢

procedure fpaddd (var X, y, 2z : fpdouble) {zZ :=x+y}
procedure fpsubd (var X, y, z : fp double) {Z:=x-y}
procedure fpmuld (var X, y, 2z : fp_double) ; {2 :=x*y}

O-10

Pascal Reference Marnd! Floating-Point Arithmetic

procedure fpalvd (var X, y, z : fpdouble) {Z2:=Xx/Yy}
procedure fpremd (var X, ¥, 2 : fp double) ; {z :=xremy }
function fpcomd (var X, ¥ : fp_double) : fp_ceC
procedure fpaddx (var X, y, z : fpextended) {Zz2:=x+y }
procedure fpsubx (var X, ¥, 2 : fpextenoed) ; {2 :=x -y}
procedure fpmulx (var X, y, 2z : fpextenged) {Z2 :=Xx*y}
procedure fpdivx (var x, ¥, 2 : fpextended); {z :=x/y}
procedure fpremx (var X, ¥y, z : fpextended) {Z :=xremy }
function fpcomx (var x, y : fp_extended) : fp_cc ;
{ PROCEDURES for type conversion }
{ PROCEDURES for FPO := X }
procedure wmovefp (X : integer)
procedure lmovefp (x : longint)
procedure smovefp (X : real)
procedure dmovefp (var x : fp_double) ;
procedure xmovefp (var x : fp_extended) ;
{ PROCEDURES for FP1 := X }
procedure wmovefpl (X : integer)
procedure lmovefpl (x : longint)
procedure smovefpl (X : real)
procedure dmovefpl (var x : fp_couble)
procedure xmovefpl (var x : fp_extended) ;
{ PROCEDURES for Z := FPO }
function fpmovew : integer ;
function fpmovel : longint ;
function fpmoves : real ;
procedure fpmoved (var z : fp_oouble)
procecure fpmovex (var z : fp_extended) ;
{ PROCEDURES for Z := X }
function xmovew (var x : fp_extended) : integer ;
function dmovew (var x : fp_double) : integer :
function xmovel (var x : fp_extended) : longint ;
function dmovel (var x : fp_double) : longint ;
function xmoves (var x : fp_extended) : real ;
function omoves (var x : fp_double) : real 2
procedure wmoved (x : integer ; var z : fp_double) ;
procedure 1moved (x : longint ; var 2 : fp_double) :

D-11

Pascal Reference Marnial Floating-Point Arithmetic

procedure. smoved (X :real var z : fp_double) :
procedure xmoved (var x : fp_extended ; var z : fp_double) ;
procedure wmovex (X : integer > wvar z : fp_extended)
procedure lmovex (X : longint ; wvar z : fp_extended) ;
procedure smovex (X : real : var z : fp_extended) .
procedure dmovex (var x : fp_double ; var z : fp_extended) ;

procedure cmovefp (var b : fp_bcdstring)

procedure 164neg (var X, 2 : fp_inté4 Yo {z2:=-x}

function x80_integral(var x : fp_extended) : boolean ;

procedure x80 break (var x, intx, fracx : fp_extended ;
var izero, fzero : boolean) ;

{sendc }

function x80 fpcb : p_fpcb_type ; { Returns aFPCB_ }

{ MICROSEGMENT ufpm }
{ PROCEDURES for binary to ascii conversion }

procedure fp_zero_ascil
(sign : boolean ; before, after : integer ; format : fp_format
var s : fp_string ; var error : boolean) ;

procegure fp_inf_ascii (sign : boolean ; width : integer ;
var s : fp_string ; var error : boolean) ;

{ PROCEDURES for exceptions }

function getxcpn (e : xcpn) : boolean ;
procedure setxcpn (e : xcpn ; b : boolean)
procedure getexcepset (var es : excepset) ;
procedure setexcepset (es : excepset) :
procedure gettexcepset (var es : excepset) ;
procedure settexcepset (es : excepset) ;
procedure clrexcepset ;

{ PROCEDURES for trap-enabled bits in FPCB_.BLOCK.STATUS.TRAP }

procedure gettrapset (var es : excepset)
procedure clrtrapset ; { Disables all traps. }

{ PROCEDURES for floating point trapping }
procedure fp_postoperation (r : fp_traprecord) ;

{ Imitates effect of atomic floating point operation by using r.es
as the set of exceptions generated by a composite operation }

0-12

Pascal Reference Marval Floating-Point Arfthmetic

procedure checktrap (r : fp_traprecord)
{¢ifc not fp_compilersubset }

{ MICROSEGHMENT ux80 }
{ PROCEDURES that tell about FPO }

function fpminus : boolean ; { FPO has sign bit on? }
function fpkind : fp_kindtype ; { Returns type of argument in FPO. }

{ PROCEDURES that tell about extended X }

function fpminusx (var x : fp_extended) : boolean ; { sign bit? }
function fpkindx (var x : fp_extended) : fp_kindtype ; { kind? }

procedure copysign (var X, y, 2 : fp_extended) ;
{ z gets y with sign of x. }
procedure infinity (var z : fp_extended) ; { z2 := +INF. }

procedure errornan (error : byt ; var z : fp_extended) .
{ Creates a NaN in z with error code set, other flelds
Zero, and signals Invop xcpn. }
procedure createnan (trap : boolean ; extension : fp 6bit ;
error, index : byt ; var z : fp extended)
{ Creates a NaN in z with 23 significant bits defined. 1}
procedure checknan (var X, z : fp_extended) ;
{ z:=xbut if x 1s a trapping NaN, the trapping bit of z is
turned off and the Invalid flag is set. }
procedure NaN_parts (var x : fp_extended ;
var trap : boolean ; var extension : fp_ebit
var error, index, index2 : byt ; var lowpart : fp_procaddress)
{ Splits up x into its component parts. lowpart gets the four
least significant bytes. }
procedure choosenan (var X, y, z : fp_extended) ;
{xorymst beaNaN. 2 Is set to whichever has the greater
Error field. 2z is non trapping. If either x or y is trapping.
the Invalid flag is set. }

{ PROCEDURES that act on numbers but do not use arithmetic }
procedure fpswap ; { Exchange FPQ and FP1 }

procedure blockprelude (var fpb : fp_blocktype) ;
procedure blockpostlude (var fpb : fp_blocktype ; var trapcoming : boolean);

{ , }

D-13

Pascal Rererence Manual Floating-Point Arlthwmetlc

{ MICROSEGHENT ux80elem }
{ PROCEDURES that tell about extended X }

function ilogb (var x : fp_extended) : integer ; { exponent of X }
{ PROCEDURES that produce extended Z }

procedure fpscalex {z:=x+2"1}
(var x : fp_extended ; 1 : integer ; var z : fp_extended) ;
procedure scalb {z :=x=2" for integral y }

(var x, y, z : fp_extended) ;
{ elementary function PROCEDURES that require initelem }

procedure exp2 (var x, z : fp_extended) ; {z :=2°x }

procedure expe (var x, z : fp_extended) ; { z := e*x

procedure exp2l (var x, z : fpextended) ; {z :=2°%x -1}
procedure 1log2 (var X, z : fp_extended) ; { 2z := log(x)/1log(2) }
procedure loge (var x, z : fp_extended) ; { z := log(x)/log(e) }
procedure 1o0gi0 (var x, 2z : fp_extended) ; { z := log(X)/10g(10) }
procedure logi2 (var x, z : fp_extended) ; { z := log2(1+x) }

procedure xtoy (var X, y, 2 : fp_extended) ; { z := Xy }

procedure compound (var ¥, p, 2 : fp_extended) ; { z := (1+1)'p
procedure annuity (varr, p, 2 fp extenged) ; { z := (1 - (1+1)"-p)/1 }

procedure postdyadic(name : fp_string ; var X, y,z : fp_extended) .
procedure xpwry (var x : fp_extended ; y : integer ; var z : fp_extended);
procedure xexpy (var x, y, z : fp_extended) ;

{ MICROSEGMENT ux80trig }

procedure plvalue (var z : fp_extended) : { 2z := p1 }

procedure sinx (var x, z : fp_extended) ; { 2 := sin(x) }

procedure cosx { var X, z : fp_extended) :

procedure tanx (var X, 2 : fp_extended) ;

procedure asin (var X, z : fp_extended) ; { z := arcsin(x) }
procedure acos (var x, z : fp_extended) ;

procedure atan (var x, z : fp_extended) ;

{sendc}

{ }

D-14

Pascal Rererence Manal Floating-Point Arfthmetlc

{ MICROSEGMENT uf32 }

function f32_puwrten(n :integer): real ; { Does pwrten(n). }

function f32 exp (X : real) : real ;

function f32_1n (X : real) : real ;

function f32_sin (x : real) : real ;

function f32 cos (X : real) : real ;

function f32_atan (x : real) : real ;

procedure f32_trap ; { Floating Point Trapping for Pascal Real Arithmetic }

(o e }
{ MICROSEGMENT f32in }

{ simple PROCEDURES to convert ascil to binary }

function p_f32 (var s : fp_string) : real ;
function £32_r r (var f : text) : real ; { Does read(f,real) }

{ general PROCEDURES to convert ascii to binary }

procedure read_f32 (var Infile : text ; var Readchars : fp_string ;
var Z : real ; var Error : boolean) ; { Z, Readchars get input }
procedure asciireal
(Filelo : boolean ; var Infile : text ;
var S :fp_string ; First, Last : integer ; var Next : integer ;
var Z : real ; var Error : boolean) :

{remmmnenneen o }
{ MICROSEGMENT f32out }

{ simple PROCEDURES to convert binary to ascii }

procedure f32_w e { var f : text ; x : real ; width : integer) ;
{ Does write(f, x:wldth) }
procedure f32_w f (var f : text ; x : real ; width, after : integer) ;
{ Does write(f,x:width:after) }
{sifc not fp_compilersubset }

{ general PROCEDURES to convert binary to ascii }
procedure f32_nan_ascii (x : real ; width : integer ;
var s : fp_string ; var error : boolean) :

procedure f32_f_ascii (x : real ; beforepoint : boolean ; after : integer;
var s : fp_string ; var error : boolean) :

D-15

Pascal Reference Manial Floating-Point Arfthmetlc

procedure f32_e_ascii (x : real ; before, after, ew : integer ;
var s : fp_string ; var error : boolean) ;

{ MICROSEGMENT x80in }
{ general PROCEDURES to convert ascil to binary }

procedure pmovefp (var S : fp_string ; First, Last : integer ;
var Next : integer ; var Error : boolean) ; { FPO := S }

procedure asciimovex (Fileio : boolean : var Infile : text :
var S : fp_string ; First, Last : integer ; var Next : integer :
var x : fp_extended ; var Error : boolean) :

{ MICROSEGMENT x80cut }
{ general PROCEDURES to convert binary to ascii }

procedure x80_nan_ascil (var x : fp_extended ; width : integer ;
var s : fp_string ; var error : boolean) ;
procedure x80_1_ascii (var x : fp_extended
var s : fp_string ; var error : boolean) ;
procedure x80_ir_ascil (var x : fp_extended :
var s : fp_string ; var error : boolean) ;
procedure x80_f_ascil (var x : fp_extended ; beforepoint : boolean
after : integer ;
var s : fp_string ; var error : boolean) ;
procedure x80_e_ascii (var x : fp_extended ; before, after, ew : integer
var s : fp_string ; var error : boolean) ;
procedure x80_free_ascii (var x : fp_extended ;
width, maxsig : integer ; format : fp_format
var s : fp_string ; var error : boolean) ;
procedure x80_ascil (var x : fp_extended ;
width, Before, After : integer ; Format : fp_Format ;
var S : fp_string ; var Error : boolean) ;

procedure x_eform (var x : fp_extended ; n : integer ;

var sigma : integer ; var s : fp_string ; var e : integer) ;
procedure x_iform (var x : fp_extended ;

var sigma : integer ; var s : fp_string ; var e : integer) ;

{rememmmeem e e e }

D-16

Pascal Reference Manual Floating-Point Arlthmetic

{ MICROSEGMENT fplipz }
{ PROCEDURES that act on numbers but do not use arithmetic }

procedure movefp (var X : fp_register) ; { FPO := x }
procedure movefpi{ var x : fp_register) ; { FP1 := x }
procedure fpmove (var z : fp_register) ; { z := FPO }
procedure fpimove(var z : fp_register) ; { z := FP1 }

{ PROCEDURES for 64 bit integers }

procedure i64abs (var x, z : fp_inte4) {2z :=abs(x) }
procedure i64mfp (var x : fp_inté4)
procedure i64amfpl (var x : fp_intes)
procedure fpmovei64 (var z : fp_intes)

{ PROCEDURES that produce extended Z }

procedure logb (var X, 2 : fp_extended) ; { z := exponent(x). }
procedure nextafter (var X, y, z : fp_extended) ;
{ 2 gets the next number from x in the direction y,
observing current rounding precision mode. }

{ elementary function PROCEDURES that require initelem }
procedure evalue(var 2z : fp extended) ; { z := e }

procedure xtoi {z:=x1 }
(var x : fp_extended ; 1 : integer ; var z : fp_extended) ;

T
procedure expei (var X, z : fp extenged) ;> { Z := expe(x)—l }
procedure logie (var x, 2 : fp_extended) ; { z := loge(i+x) }
procedure sinhx (var x, 2 : fp_extended) ; { z := sinh(x) }
procedure coshx { var x, z : fp_extended) ; { z := cosh(x) }
procedure tanhx (var x, 2 : fp extended) ; { 2 := tann(x) }
procedure abs2x (var x, y, z : fp_extenced) ; { z := abs(x+iy) }

procegure atan2x(var x, y, 2 : fp_extended) ; { z := atan(x/y) }
{ simple PROCEDURES to convert ascii to binary }

procedure pmoved (var s : fp_string ; var X : fp_double) ;
procedure pmovex (var s : fp_string ; var x : fp_extended) ;

{ simple PROCEDURES to convert binary X to ascii S in fp_lisa format }
{ Comments indicate logical length of S. }

procedure dmovep (var x : fp_double ; wvar s : fp_string) ; { 24}
procedure xmovep (var x : fp_extended ; var s : fp_string) ; { 27 }

D-17

Pascal Reference Manual Floating-Point Arithmetic

{ PROCEDURES for use by Basic and other language processors }

function nextrandom (lastrandom : longint) : longint ;

(» Returns random longint with 1 <= nextrandom <= randmodulus *)
procedure x80_maxform (var x : fp_extended

var sigma : integer ; var s : fp_string ; var e : integer) ;
procedure x80_eform (var x : fp_extended ;

var sigma : integer ; var s : fp_string ; var e : integer) ;

{ PROCEDURES for exceptions }

procedure excepname (e : xcpn ; var name : fp_string) ;
{ Returns exception name: after excepname(invop, name),
name = 'Invop' }
{sendc }

{ PROCEDURES to get and set IEEE arithmetic modes }

function getround : rmode ;
procedure setround (x : rmode) ;
{¢ifc not fp_compilersubset }
function getclos : closure ;
procedure setclos (x : closure) .
function getdnorm : denorm ;
procedure setdnorm (X : denorm)
function getprec : extprec ;
procedure setprec (X : extprec) ;

{ PROCEDURES for trap-enabled bits in FPCB_.BLOCK.STATUS.TRAP }
function gethalt (e : xcpn) : boolean ;
procedure sethalt (e : xcpn ; b : boolean) ;
procegure settrapset (es : excepset) ;

{ PROCEDURES for Pascal trap handlers in FPCB_.PTRAPVECTOR }
function gettrap (e : xcpn) : fp_procaddress : { FPCB_.ptrapvector[e] }
procedure settrap (e : xcpn ; f : fp_procaddress) ;

{ FPCB_.ptrapvector{e] := f }

{sendc }

{ }

D-18

Pascal Reference Manual Floating-Point Arithmetic

{ MICROSEGMENT uinitfp }
{ FLOATING POINT INITIALIZATION }

procedure initfp ; { Initialize the floating point control block FPCB_. }
{¢ifc not fp_compllersubset }

procegure initfptrap ; { Initialize maximal floating point trapping. }
procedure initelem ; { Initialize FPCB_ and elementary functions. }

{ PROCEDURES that are noops, used to load segments }

procedure ldfpmodes ; { in segment fpmodes }
procedure 1df32 ; { in segment 10f32 }
procedure 10x80 ; { in segment x80 }
procegure ldxgdelem ; { in segment x80elem }

Sagremmm e }
{sende }

0-19

Pascal Reference Marnia! Floaling-FPoint Arlthmetlc

D.9 Bibliography
The following articles contain detailed information and discussion of the

proposed IEEE floating-point standard. (Articles are listed in order of
importance.)

* "A Proposed Standard for Binary Floating-Point Arithmetic”, /££F
Camouter; Vol. 14, No. 3, March 1981,

» Coonen, J.: “An Implementation Guide to a Proposed Standard for
Floating-Point Arithmetic, /EEE Computer Vol. 13, No. 1, January 1980.

* ACM SIGNUM Newsletter, special issue devoted to the proposed IEEE
floating-point standard, October 1979.

D-20

E1l

ES

Eb
E7

E8

£9

Appendix E

QuickDraw

About This Appendix E-1
About QuickDraw E-2
E.21 How TOUSE QUICKDIAW ..cccuuuiiimmnneiitimteenrenecreamcceenerarenensaenennes E-3
£22 QUICKDIaw Data TYPESceerieeimnniiniineiirensttntatracnscnanomansmnseannces E-4
The Mathematical Foundation of QuickDraw E-a
E3.1 TheCoordinatePIanecccccceiiiiiiiiiiecierearanccconnnnaeccassronnsanes E-4
E.3.2 POINLS ettt rt e rerre s e e s s s s e ve e na s ra e s e eana ses E-S
E3.3 Rectangles ..E-6
B3l REGIONS...cciiiiriririiniiietrnntcertettirerneresrerscr s e sss s ssss e mansessesseses E-7
Graphic Entities ~ E-9
E41 TheBItIMAGe ...ccceemerrcicriicttien ettt eaneansesasesasnne .. E-G
E4.2 TheBitmap -

El3 Patterns ..ot teccecrteeeceee e se s e e e s ace e s e sonaaes

BB CUISOTS ...oceeeceoaeencereroctanesresemanesaesssnnnssssammmmenamnssessanmsennsesennnnn

The Drawing Environment: GrafPort : E-15
ES1 PenCharacteristiCs.....cccoieeeriacerierecceireormmcioemencteneeoctennresnacass E-18
ES5.2 TextCharaCteristicscciiiiireiirniiniirocrrnsnrcetantisncensesennees E-20
Coordinates in GrafPorts E-22
General Discussion of Drawing E-23
E7.1 Transfer MOOES ...cuceuniceeniieiriaeeeieceermneetoncratcsareesssassonnasansaanses E-26
=) £ 1§ L0 e R E-28
Plctures and Polygons E-28
E.B.1 PICLUIEScceicirrireraiaentsenvesnnnsassoasoseresarasansasmasaneemsennnnsenns E-29
E.B.2 POIYgONS.ccciiiineeennteieterrieteienaeieiiasenssssssssssiasssssesesssssssrassannsen E-30
QuickDraw Routines E-31
E9.1 GrafPort Routines.......... seeeeteeotenreatesnaa e e e aaeat et e aneenteatenrann E-32
E.9.2 Cursor-HandlingROUINEScccoieirriierinrrrencnernreeaeionenenseeasaees E-36
£.93 PenandLine-DrawingROULINEScccovviveiminiiimieicrnennennncncnns £-37
EQ.4 Text-OrawingRoutinescoeeereeennne. eeereeesesecnsnrenaaserasnane E-40

E95 DrawinginColor.....icimeicevinneeeninnenes evaseseseseeraeraratnnasnans E-43

Pascal Reference Manusl QuickDraw

E.96 Calculations withRectanglescccceeeieiririioneeenrcrrenraaereraennn E-43
E.9.7 Graphic Operations OnRectangles.........cccvviiiaiimmcceceennmnnccaaerens E-46
£.9.8 Graphic Operations ONOVAIScccieemriieienieeeimenieeeeennnneeeeeeeas E-47
£.39 Graphic Operations on Rounded-Corner Rectangles.................... E-47
£.9.10 Graphic Operations on Arcs and Weagesc...cceccueeeeennnncnnnnnnns E-49
E.9.11 Calculations withRegIONScccoviiimiiiiiiiiiirirccearrereceeeeaans
E.9.12 Graphic Operations onREgIONScccvvueiricuremmnrinneceeannneenrennes
E.9.13 Bit Transfer Operationscccccciiciimeeieoeracereccarnnnserannscenannnne
(R /R g (o217 £ U eeereennnnnnanae
£.9.15 Calculations withPolygons.......c.cccceieiecricieeceasececenannns
E.S.16 Graphic Operations onPolygons
£.9.17 Calculations withPoIntsc..cccuniiimieciiiiiicirecieneceeneneerrennes
E.9.18 Miscellaneous ULIHLIEScco.iiiiiiriinieianiccaee e ceceeeeecnneasaeneaas
E.10 Customizing QuickDraw Operations
E.11 Using QuickDraw from Assembly Language E-71
E. 111 Constants oo ieeiieiiieeienirraccenreeceerr e eneeraensransacasemrnssensaran
E.11.2 DAta TYPES ..coeeeeeeeeememeceeeeracneenaacmeeaaanannasecannsaaneens
£.11.3 Global Variablesccccieeemiirmmenerenennraeeoceenceraneees
E.11.4 Procedures and Functions
E.12 Graf3D: Three-Dimensional Graphics E-75
E.12.1 How Graf3DisRelated to QUICKDIaW ...c.ceveiinieacimnrenioccicnrenenees E-75
E.12.2 Features Of GIaf3Dccccciieimcrrmionceenneennecrrcnerenensssennennes E-75
E.12.3 Graf3DData TYPES...ccueerenerenemrrssceesseerecensnsssesssesrscsrmssmmsnsssasees E-76
E.12.4 Graf3D Procedures and FUNCLIONSc..ceeceemioiiennirianncecnnsreenenns E-77
E.13 QuickDraw Interface E-80
E.13.1 Graf3D INEIfACE «.c.c..veieeeeenmnearrecacnerrannneecrecnnnceaconennnareeeeanes E-89
E.13 QuickDraw Sample Programsccceeeennnen- E-91
E.18.1 QDSBMPLE .c.oniiiieieiieerticeeneceroceteerean e eractese e e e e en e st s aennns E-91
E.18.2 BOXES ...couviennrrnnnrecnsenaonnes eeseteesenstesattnserasasantansansetastransieanan E-101
E.15 QDSupport E-106

£.16 Glossary . E-108

QuickDraw

E.1 About This Appendix
This appendix describes QuickDraw, a set of graphics procedures, functions,
and data types that allows a Pascal or assembly-language programmer of Lisa
to perform highly complex graphic operations very easlly and very quickly. It
covers the graphic concepts behind QuickDraw, as well as the technical
detalls of the data types, procedures, and functions you will use in your
programs.

we assume that you are famillar with the Lisa Workshop Manager, Lisa Pascal,
and the Lisa Operating System's memory management. This graphics package
is for programmers, not end users. Although QuickDraw may be used from
either Pascal or assembly language, all examples are given In thelr Pascal
form, to be clear, concise, and more intuitive; Section E.11 describes the
detalls of the assembly-language interface to QuickDraw.

The appendix begins with an introduction to QuickDraw and what you can do
with it (Section E.2). It then steps back a little and looks at the mathemat-
ical concepts that form the foundation for QuickDraw: coordinate planes,
points, and rectangles (Section E.3). Once you understand these concepts, read
on to Section E.4, which describes the graphic entitles based on them--how
the mathematical world of planes and rectangles is transiated into the

physical phenomena of light and shadow.

Then comes some discussion of how to use several graphics ports (Section E.6),
a summary of the basic drawing process (Section E.7), and a discussion of two
more parts of QuickDraw, pictures and polygons (Section E.8)

Next, in Section £.9, there's a detailed description of all QuickDraw proce-
dures and functlons, thelr parameters, calling protocol, effects, side effects,
and so on—-all the technical information you'll need each time you write a
program for the Lisa.

Following these descriptions are sections that will not be of interest to all
readers. Speclal information is given in Section E.1D for programmers who
want to customize QuickDraw operations by overriding the standard drawing
procedures, In Section E.11 for those who will be using QuickDraw from
assembly language, and in Section E.12 for those interested in creating
three-dimensional graphics using the Graf3D unit,

Finally, there are listings of the QuickDraw Interface (Section E.13), two

sample programs (Section £.14), and the QDSupport unit (E.15); and a glossary
" that explains terms that may be unfamiliar to you (Section E.16).

Pascal Reference Marnual QuickDraw

E.2 About QuickDraw
QuickDraw allows you to organize the Lisa screen into a number of individual
areas. Wwithin each area you can draw many things, as illustrated in Figure
E-1.

Text Rectangles Ovals
Bold .
e OO0
Underline
mﬁm l:/:l
e Bl e
RoundRects Polygons Regions

TP
7 |WPED

Figure E-1
Samples of QuickDraw's Abllitles
You can draw: '

* Text characters In a number of proportionally-spaced fonts, with variations
that include boldfacing, ltalicizing, underlining, and outlining.

* Stralght lines of any length and width.

* A variety of shapes, either solid or hollow, including: rectangles, with or
without rounded corners; full circles and ovals or wedge-shaped sections;
and polygons.

* Any other arbitrary shape or collection of shapes, again either solid or
hollow.

* A plcture consisting of any combination of the above items, with just a
single procedure call.

In addition, QuickDraw has some other abilities that you won't find in many
other graphics packages. These abilities take care of most of the “house-

E-2

Pascal Reference Marwial GICKDraw

keeping™--the trivial but time-consuming and bothersome overhead that's
necessary to keep things in order.

* The ability to define many distinct porés on the screen, each with its own
complete drawing environment--its own coordinate system, drawing
location, character set, location on the screen, and so on. You can easily
switch from one such port to another.

* Full and complete o/jpolng to arbitrary areas, so that drawing will occur
only where you want. It's like a super-duper coloring book that won't let
you color outside the lines. You don't have to worry about accidentally
drawing over something else on the screen, or drawing off the screen and
destroying memory.

* Off-screen drawing. Anything you can draw on the screen, you can draw
into an off-screen buffer, so you can prepare an image for an output
device without disturbing the screen, or you can prepare a picture and
move it onto the screen very quickly.

And QuickDraw lives up to its name! It's very fast. The speed and
responsiveness of the Lisa user interface are due primarlly to the speed of the
QuickDraw package. You can do good-quality animation, fast interactive
graphics, and complex yet speedy text displays using the full features of
QuickDraw. This means you don't have to bypass the general-purpose
QuickDraw routines by writing a iot of special routines to improve speed.

E.2.1 How To Use QuickDraw
QuickDraw can be used from either Pascal or MCe8000 machine language. It
has no user Interface of its own.

If you're using Pascal, you must write a Pascal program that includes the
proper QuickDraw calls, compile it against the files QD/QuickDraw.0BJ and
QD/QDSupport.0BJ, link it with the flles listed in QD/QDSWIFf.TEXT, and
execute the linked object flle.

If you're using machine language, your program should include the proper
QuickDraw calls, and .INCLUDE the file QD/GRAFTYPES.TEXT. Assemble the
program, link it with the files listed in QD/QDStuff . TEXT, and execute the
linked object file.

A programming model, QDSample, Is Included with the workshop software In
the file QD/QDSample. TEXT (listed in Section E.14.1); it shows the structure of
a properly organized QuickDraw program. Wwhat's best for beglnners is to read
through the text, and, using the superstructure of the program as a "shell”,
modify it to sult your own purposes. Once you get the hang of writing
programs inside the presupplied shell, you can work on changing the shell
tself.

Note that all files related to QuickDraw are prefixed by "QO/".

QuickDraw includes only the graphics and utility procedures and functions
you'll need to create graphics on the screen. Procedures for dealing with the

E-3

Pascal Reference Marnal QuitkOraw

mouse, cursors, keyboard, and screen settings, as well as those allowing you to
generate sounds and read and set clocks and dates, are described in Appendix
F, Hardware Interface.

E.22 QuickDraw Data Types
QuickDraw defines three general data types, QDByte, QDPtr, and QDHandle:

type QDByte = -128..127
QoPtr = “QDByte
QDHandle = ~“QDPtr

Other data types are described throughout this appendix in the sections in
which they're relevant. For a summary of all QuickDraw data types, see
Section E.13.2.

E.3 The Mathematical Foundation of QuickDraw
To create graphics that are both precise and pretty requires not super-charged
features but a firm mathematical foundation for the features you have. If the
mathematics that underlie a graphics package are imprecise or fuzzy, the
graphics will be, too. QuickDraw defines some clear mathematical constructs
that are widely used In its procedures, functions, and data types: the cooral~
nate plane the poini, the rectangle and the region

E.3.1 The Coordinate Plane
All information about location, placement, or movement that you give to
QuickDraw is in terms of coordinates on a plane. The coordinate plane is a
two-dimensional grid, as illustrated in Figure E-2.

-32768
T

-32768 ¢ - 32767

+
32767

Figure E-2
The Coordinate Plane

E-4

Pascal Reference Maral QUickDraw

There are two distinctive features of the QuickDraw coordinate plane:
* All grid coordinates are integers.
* All grid lines are infinfitely thin.

These concepts are important! First, they mean that the QuickDraw plane is
finite, not infinite (although It's very large). Horizontal coordinates range
from -32768 w0 +32767, and vertical coordinates have the same range.

Second, they mean that all elements represented on the coordinate plane are
mathematically pure. Mathematical calculations using integer arithmetic will
produce intuitively correct results. If you keep in mind that grid lines are
infinitely thin, you'll never have “endpoint paranoia”--the confusion that
results from not knowing whether that last dot Is Included in the line.

E3.2 Points
On the coordinate plane are 4,294,967,296 unique points. Each point is at the
intersection of a horizontal grid line and a vertical grid line. As the grid lines
are infinitely thin, a point Is infinitely small. Of course there are more points
on this grid than there are dots on the Lisa screen: when using QuickDraw you
associate small parts of the grid with areas on the screen, so that you aren't
bound into an arbitrary, limited coordinate system.

The coordinate origin (0,0) Is in the middle of the grid. Horizontal coordinates
increase as you move from left to right, and vertical coordinates increase as
you move from top to bottom. This is the way both a TV screen and a page
of English text are scanned: from the top left to the bottom right.

You can store the coordinates of a point in a Pascal variable whose type is
defined by QuickDraw. The type Point is a record of two integers, and has
the following structure:

type VHselect = (V,H);
Point = record case integer of

0: (v: 1nteger;
h: integer);

1: (vh: array [VHSelect] of integer)

The varlant part allows you to access the vertical and horizontal components
of a point elther indglvidually or as an array. For example, if the variable

were declared to be of type Point, the following would all refer to the
coordinate parts of the point:

googPt .V goodPt.h
goodPt . vh[V] goocPt .Vh[H]

Pascal Rerferernce Marual QuIckOraw

E.3.3 Rectangles
Any two points can define the top left and bottom right corners of a
rectangle. As these points are Infinitely small, the borders of the rectangle
are infinitely thin (see Figure £-3).

Lett
I
]
Top ¥

Bottom

1
Right

Figure E-3

A Rectangle
Rectangles are used to define active areas on the screen, to assign coordinate
systems to graphic entities, and to specify the locations and sizes for various
drawing commands. QuickDraw also allows you to perform many
mathematical calculations on rectangles--changing their sizes, shifting them
around, and so on.

NOTE

Remember that rectangles, like points, are mathematical concepts that
have no direct representation on the screen. The association between
these conceptual elements and thelr physical representations is made by
a bitmap, described below.

E-6

Pascal Rererence Maa! QulckOraw

The data type for rectangles Is Rect, and consists of four Integers or two
polnts:

type Rect = record case integer of

0: (top: integer;
left: integer;
bottom: integer;
right: integer);

1: (toplLeft: Point;
botRight: Point)

end;
Agaln, the record variant allows you to access a varlable of type Rect either
as four boundary coordinates or as two diagonally opposing corner points.

Combined with the record variant for points, all of the following references to
the rectangle named bRect are legal:

bRect {type Rect}

bRect . topLeft bRect .botRight {type Point}

bRect.top bRect.left {type integer{
bRect .toplLeft.v bRect.topteft.h {type integer
bRect.topLeft.vh[V] DRect.topleft.vh[H] {type integer}
bRect . bot tom bRect.rignt itype integer}
bRect .botRight .v bRect .botRight.h type integer)

bRect.botRight.vh[V] bRect.botRight.vh[H] {type integer}
WARNING

If the bottom coordinate of a rectangle is equal to or less than the top,
or the right coordinate is equal to or less than the left, the rectangle
is an empty rectangle (l.e., one that contains no bits)

E3.4 Regions ,
Unlike most graphics packages that can manipulate only simple geometric
structures (usually rectilinear, at that), QuickDraw can gather an arbitrary set
of spatially coherent points into a structure called a region, and perform
complex yet rapid manipulations and calculations on such structures. This
remarkable feature not only will make your standard programs simpler and
faster, but will let you perform operations that would otherwise be nearly
impossible; it is fundamental to the Lisa user interface.

Pascal Reference Marnia! QuickOraw

You define a region by drawing lines, shapes such as rectangles and ovals, or
even other regions. The outline of a region should be one or more closed
loops. A reglon can be concave or convex, can consist of one area or many
disjoint areas, and can even have “holes” in the middle. In Figure E-4, the
region on the left has a hole in the middle, and the region on the right
consists of two disjoint areas.

TITIT
T

I Ie:
IIxT T

I
1T
.
IT
T
o]
jsesnss
|nen
TITIIIN
T ITITT
IS ANIEASEDES!
jesssasenuEE:
ISRSASRERNSES]

Figure E-3
Reglons
Because a region can be any arbitrary area or set of areas on the coordinate
plane, it takes a variable amount of information to store the outline of a
region. The data structure for a region, therefore, is a variable-length entity
with two fixed flelds at the beginning, followed by a variable-length data

field:
type Region = record
rmsize mteger,
Rect;
{optional region definition data}
end;

The rgnSize fleld contalns the size, in bytes, of the region varlable. The
rgnBBox field is a rectangle which completely encloses the region.

The simplest region is a rectangle. In this case, the rgnBBox field defines the
entire region, and there is no opticnal region data. For rectangular regions (or
empty regions), the rgnSize field contains 10 (two bytes for rgnSize, rjus
eight for rgnBBox).

The region definition data for nonrectangular regions is stored in a compact
way which allows for highly efficient access by QuickDraw procedures.

Pascal Referernce Marnial QuUIckDraw

As reglons are of variable size, they are stored dynamically on the heap, and
the Operating System's memory management moves them around as thelr sizes
change. Being dynamic, a region can be accessed only through a pointer; but
when a reglon Is moved, all pointers referring to it must be updated. For this
reason, all reglons are accessed through /sand/es which point to one master
pointer which In turn points to the region.

type RgnPtr “Reglion;
RognHandle = “RgnPtr;
when the memory management relocates a region's data in memory, it updates
only the RgnPtr master pointer to that region. The references through the
master pointer can find the region's new home, but any references pointing
directly to the region’s previous position in memory would now point at dead
bits. To access individual fields of a region, use the region handle and double

incirection:
wmyRgn"".rgnSize {size of reglon whose handle is myRgn}
myRgn"* . rgnBBoX rectangle enclosing the same region}
myRgn" " .rgnBBoX. top minimum vertical coordinate of all points
in the reglon}
myRgn " . rgnBBoX {semantically incorrect; will not compile if
myRgn Is a rgnHandle}

Reglons are created by a QuickDraw function which allocates space for the
region, creates a master polnter, and returns a region handle. when you're
done with a region, you dispose Of it with another QuickDraw routine which
frees up the space used by the region. Only these calls allocate or deallocate
regions; do nor use the Pascal procedure new to create a new region!

You specify the outline of a region with procedures that draw lines and
shapes, as described in Section E.3, QuickDraw Routines. An example is given
in the discussion of CloseRgn in Sectlon E.9.11, Calculations with Reglons.

Many calculations can be performed on regions. A region can be “expanded”
or "shrunk™ and, given any two regions, QuickDraw can find thelr union,
intersection, difference, and exclusive-OR; it can also determine whether a
given point or rectangle intersects a given region, and so on. There Is of
course a set of graphic operations on regions to draw them on the screen.

E.4 Graphic Entities
Coordinate planes, points, rectangles, and regions are all good mathematical
models, but they aren't really graphic elements--they don't have a direct
physical appearance. Some graphic entitles that do have a direct graphic
interpretation are the o/t /mage Oftmag pattem and cursor This section
describes the data structure of these graphic entities and how they relate to
the mathematical constructs described above.

Ed.l The Bit Image
A bit image is a collection of bits in memory which have a rectilinear
representation. Take a collection of words In memory and lay them end to

E-9

Pascal Reference Marial QuickOraw

end so that bit 15 of the lowest-numbered word Is on the left and bit 0 of
the highest-numbered word Is on the far right. Then take this array of bits
and divide 1t, on word boundaries, into a number of equal-size rows. Stack
these rows vertically so that the first row iIs on the top and the last row is on
the bottom. The result Is a matrix like the one shown In Figure E-S--rows
and columns of bits, with each row containing the same number of bytes. The
number of bytes In each row of the bit Image is called the sow w/oth of that
image.

First
Byte E i
i Row width
is 8 bytes
Y H Last
Byte
Figure E-5
A Bit Image

A bit image can be stored in any static or dynamic variable, and can be of
any length that is a multiple of the row width.

The Lisa screen itself is one large visible bit image. There are 32,760 bytes of
memory that are aisplayed as a matrix of 262,080 g/ve/s on the screen, each
bit corresponding to one pixel. If a bit's value Is 0, its pixel is white; if the
bit's value Is 1, the pixel is black.

The screen is 364 pixels tall and 720 pixels wide, and the row width of its bit
image is 90 bytes. Each pixel on the screen is one and a half times taller
than 1t is wide, meaning a rectangle 30 pixels wide by 20 tall looks square,
and a 30 by 20 oval looks circular. There are 90 pixels per inch horizontaily,
and 60 per inch vertically.

E-10

Pascal Reference Manual QuickDraw

NOTE

Since each pixel on the screen represents one bit in a bit image,
wherever this appendix says “bit", you can substitute “pixel” if the bit
image is the Lisa screen. Likewise, this appendix often refers to pixels
on the screen where the discussion applies equally to bits in an
off-screen bit image.

E.4.2 The Bitmap
when you combine the physical entity of a bit image with the conceptual
entities of the coordinate plane and rectangle, you get a bitmap. A bitmap
has three parts: a polnter to a bit image, the row width (In bytes) of that
image, and a boundary rectangle which gives the bitmap both its dimensions
and a coordinate system. Notice that a bitmap does not actually include the
bits themselves: it points to them.

There can be several bitmaps pointing to the same bit image, each imposing a
different coordinate system on it. This important feature Is explained more
fully in Section E.6, Coordinates in GrafPorts,

As shown in Figure E-6, the data structure of a bitmap is as follows:

type Bittap = record
baseAddr: QODPtr;

rowBytes: integer;
bounds: Rect
end;
Base o it
Address i
baseAddr]
rowBytes HH
ounas i
i : i
¢——— Row width ——
Figure E-6
A Bitmap

E-11

Pascal Rererence Manial QUickOraw

The baseAddr field Is a pointer to the beginning of the bit image In memory,
and the rowBytes field is the number of bytes in each row of the Image. Both
of these should always be even: a bitmap should always begin on a word
boundary and contaln an integral number of words in each row.

The bounds field Is a boundary rectangle that both encloses the active area of
the bit image and Imposes a coordinate system on it. The relationship
between the boundary rectangle and the bit image in a bitmap is simple yet

~ very Important. First, a few general rules:

* Bits In a bit image fall between points on the coordinate plane.

* A rectangle divides a bit image into two sets of bits: those bits inside the
rectangle and those outside the rectangle.

* A rectangle that is H points wide and V points tall encloses exactly
(H-1) * (v-1) bits.
The top left comer of the boundary rectangle is allgned around the first bit in

the bit Image. The width of the rectangle determines how many bits of one
row are logically owned by the bitmap; the relatlonship

8 * map.rowBytes >= map.bounds.right-map.bounds.left

must always be true. The height of the rectangle determines how many rows
of the Image are logically owned by the bitmap. To ensure that the number
of bits In the logical bitmap is not larger than the number of bits in the bit
image, the bit image must be at least as blg as

{map .bounds .bot tom-map . bounds . top) *map . rowBytes

Normally, the boundary rectangle completely encloses the bit image: the width
of the boundary rectangle is equal to the number of bits In one row of the
image, and the height of the rectangle is equal to the number of rows in the
image. If the rectangle is smaller than the dimensions of the image, the least
significant bits in each row, as well as the last rows in the image, are not
affected by any operations on the bitmap.

The bitmap also imposes a coordinate system on the Image. Because bits fall
between coordinate points, the coordinate system assigns integer values to the
lines that border and separate bits, not to the bit positions themselves. For
example, If a bitmap iIs assigned the boundary rectangle with corners (10.-8)
and (34,8), the bottom rignt bit in the image will be between horizontal
coo;dinates 33 and 34, and between vertical coordinates 7 and 8 (see Figure
E-7

E-12

Pascal Rerference Markial QuickOraw

(16,-8) (34,-8)

(10,8) (34,8)

Figure E-7
Coordinates and Bitmaps

E.43 Pattemns
A pattern {s a 64-bit image, organized as an 8-by-8-bit rectangie, which is
used to define a repeating design (such as stripes) or tone (such as gray).
Patterns can be used to draw lines and shapes or to flll areas on the screen.

when a pattern is drawn, it is aligned such that adjacent areas of the same
pattern in the same graphics port will blend with each other into a contin-
uous, coordinated pattern. QuickDraw provides the predefined patterns white,
black, gray, ItGray, and dkGray. Any other 64-bit varlable or constant can be
used as a pattern, too. The data type definition for a pattern is as follows:

type Pattern = packed array [0..7] of 0..255;
The row width of a pattern Is 1 byte.

E.4.4 Cursors
A cursor Is a small Image that appears on the screen and Is controlled by the
mouse. (It appears only on the screen, and never in an off-screen bit image.)

A cursor {5 defined as a 256-bit image, a 16-by-16-bit rectangle. The row
width of a cursor is 2 bytes. Figure E-8 illustrates four cursors.

E-13

Pascal Reference Manual QuickDraw

)
—o
—00

>

n ¢
-
v s o

Figure E-8
Cursors
A cursor has three fields: a 16-word data field that contains the image itself,
a 16-word mask field that contains information about the screen appearance

of each bit of the cursor, and a /tspor point that aligns the cursor with the
position of the mouse.

type Cursor = record
data: array [0..15] of integer;
mask: array [0..15] of integer;
hotspot: Point
end;

The data for the cursor must begin on a word boundary.

The cursor appears on the screen as a 16-by-16-bit rectangle. The appear—
ance of each bit of the rectangle Is determined by the corresponding bits in
the data and mask and, If the mask bit is 0, by the pixel “under” the cursor
(the one already on the screen.in the same position as this bit of the cursork

Data Mask Resulting pixel on screen

0 1 white

1 1 Black

] 1] Same as pixel under cursor
1 0 Inverse of pixel under cursor

Notice that if all mask bits are 0, the cursor Is completely transparent, In
that the image under the cursor can still be viewed: pixels under the white
part of the cursor appear unchanged, while unger the black part of the cursor,
black pixels show through as white.

The hotspot aligns a point in the image (not a bit, a point)) with the mouse
position. Imagine the rectangle with corners (0,0) and (16,16) framing the
image, as in each of the examples in Figure E-8; the hotspot Is defined in this
coordinate system. A hotspot of (0,0) is at the top left of the image. For the
arrow in Figure E-8 to point to the mouse position, (0,0) would be its hotspot.
A hotspot of (8,8) is In the exact center of the image; the center of the plus

E-14

Pascal Reference Manual QuickOraw

{10,-8) (34,-8)

(10,8) (34,8)

Figure E-7
Coordinates and Bitmaps

E.&3 Pattems
A pattern s a e64-bit image, organized as an 8-by-8-bit rectangie, which is
used to define a repeating design (such as stripes) or tone (such as gray).
Patterns can be used to draw lines and shapes or to flll areas on the screen.

when a pattern is drawn, it is aligned such that adjacent areas of the same
pattem in the same graphics port will blend with each other into a contin-
uous, coordinated pattern. QuickDraw provides the predefined patterns white,
black, gray, 1tGray, and dkGray. Any other 64-bit variable or constant can be
used as a pattern, too. The data type definition for a pattern is as follows:

type Pattern = packed array [0..7] of 0..255;
The row width of a pattern fs 1 byte.

E.4.4 Cursors
A cursor Is a small Image that appears on the screen and Is controlied by the
mouse. (It appears only on the screen, and never in an off-screen bit image.)

A cursor s defined as a 256-bit image, a 16-by-16-bit rectangle. The row
width of a cursor is 2 bytes. Figure E-8 Illustrates four cursors.

E-13

Pascal Reference Manual QuickDraw

o
—c0
~— Q0

o

TI
 om o 3
Tt
-
X

T

Figure E-8
Cursors

A cursor has three fields: a 16-word data field that contains the image itself,
a 16-word mask field that contains information about the screen appearance
of each bit of the cursor, and a /otspot point that aligns the cursor with the
position of the mouse.

type Cursor = record

data: array [0..15]) of integer;

mask: array [0..15] of integer;

hotspot: Point

end;

The data for the cursor must begin on a word boundary.
The cursor appears on the screen as a8 16-by-16-bit rectangle. The appear-
ance of each bit of the rectangle Is determined by the corresponding bits in

the data and mask and, If the mask bit is 0, by the pixel “under” the cursor
(the one already on the screen.in the same position as this bit of the cursor}

Data Mask Resulting pixel on screen
0 1 white
1 1 Black
i} D Same as pixel under cursor
1 0 Inverse of pixel under cursor

Notice that if all mask bits are 0, the cursor is completely transparent, in
that the image under the cursor can still be viewed: pixels under the white
part of the cursor appear unchanged, while under the black part of the cursor,
black pixels show through as white.

The hotspot aligns a point in the image (not a bit, a point!) with the mouse
position. Imagine the rectangle with comers (0,0) and (16,16) framing the
image, as in each of the examples In Figure E-8; the hotspot Is defined in this
coordinate system. A hotspot of (0,0) Is at the top left of the image. For the
arrow in Figure E-8 to point to the mouse position, (0,0) would be its hotspot.
A hotspot of (8,8) is in the exact center of the image; the center of the plus

E-14

Pascal Reference Marwial QuickOraw

sign or oval in Flgure E-8 would coincide with the mouse position if (8,8) were
the hotspot for that cursor. Similarly, the hotspot for the pointing hand would
be (16,9).

whenever you move the mouse, the low-level interrupt-driven mouse routines
move the cursor's hotspot to be aligned with the new mouse position.

QuickDraw supplles a predefined arrow cursor, an arrow pointing north-
northwest.

Refer to Appendix F, Hardware Interface, for more information on the mouse
and cursor control.

E.S The Drawing Environment: GrafPort
A grafPort 1s a complete drawing environment that defines how and where
graphic operations will have their effect. It contains all the information
about one instance of graphic output that iIs kept separate from all other
Instances. You can have many grafPorts open at once, and each one will have
its own coordinate system, drawing pattem, background pattem, pen size and
location, character font and style, and bitmap in which drawing takes place.
You can instantly switch from one port to ancther. GrafPorts are the
structures on which a program bullds windows, which are fundamental to the
Lisas "overlapping windows" user interface.

A grafPort is a dynamic data structure, defined as follows:

type GrafPtr = “GrafPort;
GrafPort = record
device: integer;

portBits: BitHap;
portRect: Rect;
visRgn: RgnHandle;
clipRon: RgnHandle;

bkPat: Pattern;
fillpPat: Pattermny
pnLoc: Point;

pnSize: Point;

pnitode : integer;
poPat: Pattern;
pnvis: integer;
txFont: integer;
txFace: Style;

txitode: integer;

txSize: integer;
spExtra: longint;
fgColor: longint;
bkColor: longint;
colrBit: integer;
patStretch: integer;
picsave: QDHandle;

E-15

Pascal Rerference Marwal QuickDraw

ronsSave: QDHandle;

polySave: QOHandle;

grafProcs: QDProcsPtr

end;

All QuickDraw operations refer to grafPorts via grafPtrs. You create a
grafPort with the Pascal procedure new and use the resuiting pointer In calls
to QuickDraw. You could, of course, declare a static variable of type
GrafPort, and obtain a pointer to that static structure (with the @ operator),
but as most grafPorts will be used dynamically, their data structures should be
dynamic also.

NOTE

You can access all fields and subfields of a grafPort normally, but you
should not store new values directly into them. QuickDraw has
procedures for aitering all fields of a grafPort, and using these
procedures ensures that changing a grafPort produces no unusual side
effects. '

The device field of a grafPort is the number of the logical output device that
the grafPort will be using. QuickDraw uses this information, since there are
physical differences in the same logical font for different output devices. The
default device number is 0, for the Lisa screen.

The portBits fleld is the bitmap that points to the bit image to be used by the
grafPort. All drawing that is done in this grafPort will take piace in this bit
image. The default bitmap uses the entire Lisa screen as its bit image, with
rowBytes of 90 and a boundary rectangle of (0,0,720,364). The bitmap may be
changed to indicate a different structure in memory: all graphics procedures
work In exactly the same way regardless of whether their effects are visible
on the screen. A program can, for example, prepare an image to be printed
on a printer without ever displaying the image on the screen, or develop a
picture In an off-screen bitmap before transferring it to the screen. By
altering the coordinates of the portBits.bounds rectanglie, you can change the
coordinate system of the grafPort; with a QuickDraw procedure call, you can
set an arbitrary coordinate system for each grafPort, even if the different
grafPorts all use the same bit image (e.g., the full screen).

The portRect fleld Is a rectangle that deflnes a subset of the bitmap for use
by the grafPort. Its coordinates are in the system defined by the
portBits.bounds rectangle. All drawing done by the application occurs inside -
this rectangle. The portRect usually defines the "writable” interior area of a
wir&dow, document, or other object on the screen. The default portRect is the
entire screen.

The visRgn field indicates the reglon that is actually visible on the screen. It
Is reserved for use by future software, and should be treated as read-only.

E-16

Pascal Reference Manual QuickDraw

The default viSRgn Is set to the portRect.

The clipRgn Is an arbitrary region that the application can use o limit
drawing to any region within the portRect. If, for example, you want to draw
a half clrcle on the screen, you can set the clipRgn to half the square that
would enclose the whole clrcle, and go ahead and draw the whole circle. Only
the half within the clipRgn will actually be drawn In the grafPort. The
default clipRgn is set arbitrarily large, and you have full control over its
setting. Notice that unllke the visRgn, the clipRgn affects the image even if
it is not displayed on the screen.

Flgure E-9 illustrates a typical bitmap (as defined by portBits), portRect,
visRon, and clipRgn.

Grafbornt POTtBi LS

Figure £-9
GrafPort Reglons

The bkPat and fillPat fields of a grafPort contain patterns used by certain
QuickDraw routines. BkPat Is the “background” pattemn that is used when an
area Is erased or when bits are scrolied out of it. When asked to fill an area
with a speclifled pattemn, QuickDraw stores the glven pattern in the fillPat
fleld and then calls a low-level drawing routine which gets the pattermn from
that fleld. The varlous graphic operations are discussed In detan later in the
descriptions of individual QuickDraw routines.

Of the next ten flelds, the flrst five determine characteristics of the graphics
pen, described in Section E.5.1, and the last five determine characteristics of
any text that may be drawn, described in Section E.5.2,

The fgColor, bkColor, and colrBit fields contain values related to drawing in
color, a capability that will be available in the future when Apple supports

E-17

Pascal Rerference Mawa! QuickOraw

color output devices for the Lisa. FgColor Is the grafPort's foreground color
and bkColor is its background color. ColrBit tells the color imaging software
which plane of the color picture to draw into. For more information, see
Sectlon E.7.2, Drawing in Color.

The patStretch fleld is used during output to a printer to expand patterns if
necessary. The application should not change its value.

The picSave, rgnSave, and polySave flelds reflect the state of picture, region,
and polygon definition, respectively. To define a region, for example, you
“open” it, call routines that draw it, and then “close" it. If no region is open,
rgnSave contains nil; otherwise, it contains a handie to information related to
the region definition. The application should not be concerned about exactly
what Information the handle leads to; you may, however, save the current
value of rgnSave, set the fleld to nil to disable the reglon definition, and later
restore it to the saved value to resume the region definition. The picSave
and polySave fields work similarly for pictures and polygons.

Finally, the grafProcs fileld may point o a speclal data structure that the
application stores into if it wants to customize QuickDraw drawing procedures
or use QuickDraw in other advanced, highly speclalized ways. (For more
information, see Section E.10, Customizing QuickDraw QOperations.) If
grafProcs is nil, QuickDraw responds in the standard ways described in this
appendix. :

ES.1 Pen Characteristics
The pnLoc, pnSize, pnMode, pnPat, and pnvis flelds of a grafPort deal with the
graphics pen. Each grafPort has one and only one graphics pen, which is used
for drawing lines, shapes, and text. As lllustrated In Figure E-10, the pen has
four characteristics: a Jocatlon, a size a drawing mook and a drawing pattem

E-18

Pascal Reference Marxsal _ QuickOraw

}\\ Height

ek

Pattern

Width
| Location

[

Figure E-10
A Graphics Pen

The pen location (pnloc) is a point in the coordinate system of the grafPort,
and Is where QuickDraw will begin drawing the next line, shape, or character.
It can be anywhere on the coordinate plane: there are no restrictions on the
movement or placement of the pen. Remember that the pen location is a
point on the coordinate plane, not a pixel in a bit image!

The pen Is rectangular in shape, and has a user-definable width and height
(pnSize). The default size is a 1-by-1-bit rectangle; the width and helght can
range from (0,0) to (32767,32767). If either the pen width or the pen height is
less than 1, the pen will not draw on the screen.

* The pen appears as a rectangle with its top left comer at the pen
location; it hangs below and to the right of the pen location.

The pnMode and pnPat flelds of a grafPort determine how the bits under the
pen are affected when lines or shapes are drawn. The pnPat is a pattern that
is used as the “Ink” In the pen. Tnls pattern, like all other patterns drawn In
the grafPort, is always allgned with the port's coordinate system: the top left
corner of the pattern is alignea with the top left cormner of the portRect, so
that adjacent areas of the same pattern will blend into a continuous,
coordinated pattern. Flve patterns are predefined (white, black, and three
shades of gray); you can also create your own pattern and use it as the pnPat.
(A utllity procedure, called StuffiHex, allows you to flil patterns easily.)

E-19

Pascal Reference Manual QuickOraw

The pnMode fleld determines how the pen pattemn Is to affect what's already
on the bitmap when lines or shapes are drawn. Wwhen the pen draws,
QuickDraw first determines what bits of the bitmap will be affected and finds
their corresponding bits In the pattern. It then does a bit-by-bit evaluation
based on the pen mode, which specifies one of elght boolean operations to
perform. The resulting bit is placed Into its proper place in the bitmap. The
pen modes are described in Section E.7.1, Transfer Modes.

The pnVis field determines the pen's visibllity, that Is, whether It draws on the
screen. For more information, see the descriptions of HidePen and ShowPen
in Section E.9.3, Pen and Line-Drawing Routines.

ES5.2 Text Characteristics
The tdont, txFace, txdMode, txSize, and spExtra flelds of a grafPort determine
how text will be drawn--the font, style, and size of characters and how they
will be placed on the bitmap.

QuickDraw can draw characters as quickly and easily as it draws llnes and
shapes, and in many prepared fonts. Figure E-11 shows two QuickDraw
characters and some terms you should become famliliar with.

ascent line

ascent O
+ | base line

character
descent width

Flgure E-11
QuickDraw Characters

QuickDraw can display characters in any size, as well as boldfaced, italicized,
outlined, or shadowed, all without changing fonts. It can also underline the
characters, or draw them closer together or farther apart.

The tFFON fleld is a font number that ldentifles the character font to be used
in the grafPort. The font number D represents the system font, and is the
default established by CpenPort. The unit QDSupport (listed In Section E.15)
includes definitions of other avallable font numbers.

A character font is defined as a collection of bit images: these images make
up the indlvidual characters of the font. The characters can be of unequal
widths, and they're not restricted to their “cells": the lower curl of a
-lowercase |, for example, can stretch back under the previous character
{typographers call this xeming). A font can consist of up to 256 distinct
characters, yet not all characters need be defined in a single font. Each font

descent line

E-20

Pascal Reference Manual QuickOraw

contains a m/ssing symool o be drawn In case of a request to draw a
character that Is missing from the font.

The tFace field controls the appearance of the font with values from the set
defined by the Style data type:

type StyleItem = (bold, italic, underline, outline, shadow,
condense, extend);

Style = set of StyleItem;

You can apply these either alone or in combination (see Figure E-12). Most
combinations usually 100k good only for large fonts.

Normal Characters

Bold Characters

A CRgefers
Underlined Characters xyz
Outlinee Cherestsrs
Bhedewsd Oherest
Condensed Characters
Extended Characters

... and in other fonts, ool

Figure E-12
Character Styles

If you specify bold, each character Is repeatedly drawn one bit to the right an
appropriate number of times for extra thickness.

Italic aads an itallc slant to the characters. Character bits above the base
line are skewed right; bits below the base line are skewed left.

Underline draws a line below the base line of the characters. If part of a
character gescends below the base line (as "y" in Flgure E-12), the underline is
not drawn through the pixel on either side of the descending part.

You may specify either outline or shadow. Outline makes a hollow, outlined
character rather than a solld one. Wwith shadow, not only is the character
hollow and outlined, but the outline is thickened below and to the right of the
character to achieve the effect of a shadow. If you specify bold along with
outline or shadow, the hollow part of the character is widened.

E-21

Pascal Reference Mamal QuickOraw

Condense and extend affect the horizontal distance between all characters,
including spaces. Condense decreases the distance between characters and
extend increases it, by an amount which QuickDraw determines is appropriate.

The txMode fleld controls the way characters are placed on a bit image. It
functions much like a pnMode: when a character is drawn, QuickDraw
determines which bits of the bit image will be affected, does a bit-by-bit
comparison based on the mode, and stores the resulting bits into the bit
image. These modes are described in Section E.7.1, Transfer Modes. Only
three of them--srcOr, srcXor, and srcBic--should be used for drawing text.

The txSlze field specifies the type size for the font, In points (where “point™
here is a typographical term meaning approximately 1/72 inch). Any size may
be specified. If QuickDraw does not have the font In a specified size, it will
scale a size it does have as necessary to produce the size desired. A value of
0 in this fleld directs QuickDraw to choose the size from among those it has
for the font; it will choose whichever size is closest to the system font size.

Finally, the spExtra field is useful when a line of characters is to be drawn
Justified such that it is allgned with both a left and a right margin (sometimes
called "full justification”). SpExtra Is the number of pixels by which each
space character should be widened to fill out the line,

E.6 Coordinates in GrafPorts
Each grafPort has its own Joca/ coordinate system. All flelds in the grafPort
are expressed in these coordinates, and all calculations and actions performed
in QuickDraw use the local coordinate system of the currently selected port.

Two things are important to remember:

s Each grafPort maps a portion of the coordinate plane into a similarly-
sized portion of a bit Image.

* The portBits.bounds rectangle defines the local coordinates for a grafPort.

The top left comer of portBits.bounds is always aligned around the first bit in
the bit image; the coordinates of that corner “anchor” a point on the grid to
that bit in the bit image. This forms a common reference point for multiple
grafPorts using the same bit image (such as the screen). Glven a
pO{tB:ts.bomds rectangle for each port, you know that thelr top left corners
coincide.

The interrelationship between the portBits.bounds and portRect rectangies is
very important. As the portBits.bounds rectangle establishes a coordinate
system for the port, the portRect rectangle indicates the section of the
coordinate plane (and thus the bit image) that will be used for drawing. The
portRect usually falls inside the portBits.bounds rectangle, but it's not required
to do so.

when a new grafPort Is created, its bitmap is set to point to the entire Lisa
screen, and both the portBitsbounds and the portRect rectangles are set to

E-22

Pascal Reference Marnal QickDraw

720-by-364-bit rectangles, with the point (0,0) at the top left corner of the
screen.

You can redefine the local coordinates of the top left corner of the grafPort's
portRect, using the SetOrigin procecure. This changes the local coordinate
system of the grafPort, recalculating the coordinates of all points in the
grafPort to be relative to the new corner coordinates. For example, consider
these procedure calls:

SetPort(gamePort);
SetOrigin(40, 80);

The call to SetPort sets the current grafPort to gamePort; the call to
SetOrigin changes the local coordinates of the top left corner of that port's
portRect to (40,80) (see Figure E-13).

0 & 300 12 -55 40 245 457
| I I
0— powen vy 40— g

120 P

275~ : 735 —

342 — : 302 —
visRgn (95,120)(300,275) visRgn (40,80)(245,235)

cliphgn (95,120300,275) clipRan (95,120%300,275)

Betore SetOrigin After SetOrigin{40,80)

Figure E-13
Changing Local Coordinates

This recalculates the coordinate components of the following elements:
gamePort " .portBits.bounds gamePort”. portRect
gamePort” .viskgn

These elements are always kept "In sync”, so that all calculations, compari-
sons, or operations that seem right, work rignht.

Notice that when the local coordinates of a grafPort are offset, the visRgn of
that port is offset also, but the clipRgn is not. A good way to think of it is
that if a document is being shown inside a grafPort, the document “sticks” to
the coordinate system, and the port’s structure “sticks" to the screen.

Suppose, for example, that the visRgn and clipRgn in Figure E-13 before

£-23

Pascal Rerererce Maal QuickOraw

SetOrigin are the same as the portRect, and a document is being shown. After
the SetOrigin call, the top left comer of the clipRgn s still (95,120), but this
location has moved down and to the right, and the location of the pen within
the document has similarly moved. The locations of portBits.bounds, portRect,
ana visRgn did not change; their coordinates were offset. As always, the top
left comer of portBitsbounds remains aligned around the first bit in the bit
image (the first pixel on the screen).

If you are moving, comparing, or otherwise dealing with mathematical items in
different grafPorts (for example, finding the intersection of two regions in two
different grafPorts), you must adjust to a common coordinate system before
you perform the operation. A QuickDraw procedure, LocalToGlobal, lets you
convert a point's local coordinates to a g/iava/ system where the top left
corner of the bit image is (0,0); by converting the various local coordinates to
global coordinates, you can compare and mix them with confldence. For more
information, see the description of this procedure in Section E£.9.17,
Calculations with Points.

E.7 General Discussion of Drawing
Drawing ocours:

* Always inside a grafPort, in the bit image and coordinate system defined
by the grafPort's bitmap.

* Always within the intersection of the grafPort's portBits.bounds and
portRect, and clipped to its visRgn and clipRgn.

* Always at the grafPort's pen location.

* Usually with the grafPort's pen size, pattem, and mode.

with QuickDraw procedures, you can draw lines, shapes, and text. Shapes
include rectangles, ovals, rounded-comer rectangles, wedge-shaped sections.of
ovals, regions, and polygons.

Lines are defined by two points: the current pen location and a destination
location. wnhen drawing a llne, QuickDraw moves the top left comer of the
pen along the mathematlcal trajectory from the current location to the
destination. The pen hangs below and to the right of the trajectory (see
Figure E-14).

E-24

Pascal Reference Mamual QUICKkDraw

Figure E-14
Drawing Lines

NOTE

No mathematical element (such as the pen location) Is ever affected by
clipping; clipping only determines what appears where in the bit image.
If you draw a line to a location outside your grafPort, the pen location
will move there, but only the portion of the line that Is Inside the port
will actually be drawn. This is true for all drawing procedures.

Rectangles, ovals, and rounded-comer rectangles are defined by two corner
points. The shapes always appear Inside the mathematical rectangle defined
by the two points. A region Is defined In a more complex manner, but also
appears only within the rectangle enclosing it. Remember, these enclosing
rectangles have infinitely thin borders and are not visible on the screen.

As lllustrated in Figure E-15, shapes may be drawn either so/fg (filled In with
a pattem) or 2ameg {outlined and hollow).

E-25

Pascal Reference Manual QUickDraw

éaf-:u-,
EE@EEE%E@

pen height

pen
width

Figure E-15
Solld Shapes and Framed Shapes

In the case of framed shapes, the outline appears completely within the
enclosing rectangle--with one exception--and the vertical and horizontal
thickness of the outline Is determined by the pen size. The exception is
polygons, as oiscussed in Section E.8.2, Polygons.

The pen pattemn Is used to flll in the bits that are affected by the drawing
operation. The pen mode defines how those bits are to be affected by
directing QuickDraw to apply one of eight boolean operations to the bits in
the shape and the corresponding pixels on the screen.

Text drawing does not use the pnSize, pnPat, or pnMode, but It does use the
pnioc. Each character is placed to the right of the current pen location, with
the left eng of its base line at the pen's location. The pen is moved to the
right to the location where it will draw the next character. No wrap or
carriage return is performed automatically.

The method QuickDraw uses in placing text is controlled by a mode similar to
the pen mode. This is explained in Section E.7.1, Transfer Modes. Clipping of
text Is performed in exactly the same manner as all other clipping in
QuickDraw.

E.7.1 Transfer Modes
when lines or shapes are drawn, the pnMode field of the grafPort determines
how the drawing is to appear in the port's bit Image; simliarly, the tdMode
field determines how text is to appear. There is also a QuickDraw procedure
that transfers a bit image from one bitmap to another, and this proceadure has
a mode parameter that determines the appearance of the result. In all these
cases, the mode, called a &ansrer moae specifies one of elght boolean
operations: for each bit in the item to be drawn, QuickDraw finds the

E£-26

Pascal Reference Mans! QUickODraw

corresponding bit In the destination bit Image, performs the boolean operation
on the palr of bits, and stores the resuiting bit into the bit image.

There are two types of transfer mode:
o Pattem transter moaes for drawing lines or shapes with a pattem.

o Source transfer modes for drawing text or transferring any bit Image
between two bitmaps.

For each type of mode, there are four basic operations--Copy. Or, Xor, and
Bic. The Copy operation simply replaces the pixels In the destination with
the pixels in the pattem or source, “painting” over the destination without
regard for what is already there. The Or, Xor, and Bic operations leave the
destination pixels under the white part of the pattern or source unchanged,
and differ In how they affect the pixels under the black part: Or replaces
those pixels with black pixels, thus "overlaying” the destination with the black
part of the pattern or source; Xor inverts the pixels under the black part; and
Bic erases them 0 white.

Each of the basic operations has a varlant in which every pixel in the pattem
or source Is inverted before the operation s performed, giving eight
operations in all. Each mode is defined by name as a constant in QuickDraw

(see Figure E-16)

pattern or source destination

"Paint® "Overlay" ‘"Invert" "Ersse"

patCopy paiOr patXor patBic
srcCopy srcOr srcXor stcBic

BB E

notPatCopy notPstOr notPatXor rotPatBic
notSrcCopy notSrcOr notSreXor notSreBic

Figure E-16
Transfer Modes

E-27

Pascal Rererence Mamal QuickOraw
pattemn Source Action on each pixel in destination:
transfer transfer If black pixel in If white pixel in
mode mogde pattem or source pattem or source
patCopy srcCopy Force black Force white
patr srcor Force black Leave alone
patXor srexXor Invert Leave alone
patBic s1cBic Force white Leave alone
notPatCopy notSrcCopy Force white Force black
notPatr notSrcOr Leave aione Force black
notPatXor notSrcXor Leave alone Invert
notPatBic notSrcBic Leave alone Force white

E.7.2 Drawing in Color
Currently you can only 1ook at QuickDraw output on a black-and-white screen
or printer. Eventually, however, Apple will support color output devices. If
you want to set up your application now to produce color output in the future,
you can do so by using QuickDraw procedures to set the foreground color and
the background color. Eight standard colors may be specified with the
following predefined constants: blackColor, whiteColor, redColor, greenColor,
blueColor, cyanColor, magentaColor, and yellowColor. Initlally, the foreground
color is blackColor and the background color is whiteColor. If you specify a
color other than whiteColor, 1t will appear as black on a black-and-white
output device.

To apply the table above (in Section E.7.1) to drawing in color, make the
following translation: where the table shows “Force black”, read “Force
foreground color”, and where it shows "Force white”, read “Force background
color*. when you eventually recelve the cotor output device, you'll find out
the effect of inverting a color on it.

NOTE

QuickDraw can support output devices that have up to 32 bits of color
information per pixel. A color picture may be thought of, then, as
having up to 32 planes. At any one time, QuickDraw draws into only
one of these planes. A QuickDraw routine called by the color-imaging
software specifies which plane.

E.8 Pictures and Polygons
QuickDraw lets you save a sequence of drawing commands and “play them
back” later with a single procedure call. There are two such mechanisms: one
for drawing any picture to scale In a destination rectangle that you specify,
and another for drawing polygons in all the ways you can draw other shapes in
QuickDraw.

E-28

Pascal Reference Manual QuickDraw

E.8.1 Plctures
A pleture in QuickDraw Is a transcript of calls to routines which draw
something--anything--on a bitmap. Plctures make it easy for one program to
draw something defined in another program, with great flexibility and without
knowing the detalls about what's being drawn.

For each picture you define, you specify a rectangle that surrounds the
picture; this rectangle Is called the p/ciure frame When you later call the
procedure that draws the saved picture, you supply a destination rectangle,
and QuickDraw scales the plcture so that its frame is completely aligned with
the destination rectangle. Thus, the picture may be expanded or shrunk to fit
its destination rectangle. For example, if the picture is a clrcle inside a
square picture frame, and the destination rectangle Is not square, the picture
is drawn as an oval.

Since a picture may include any sequence of drawing commands, 1ts data
structure is a variable-length entity. It consists of two fixed flelds followed
by a variable-length data fiela:

type Picture = record
picSize: 1integer;
picFrame: Rect;
{picture definition data}
end;

The plcSize field contains the size, in bytes, of the picture variable. The

picFrame fleld is the picture frame which surrounds the picture and glves a
frame of reference for scaling when the picture is drawn. The rest of the

structure contains a compact representation of the drawing commands that

define the picture.

All pictures are accessed through handles, which point to one master pointer
which in turn points to the picture.

type PlcPtr “Picture;
PicHandle = "PlcPtr;

To define a picture, you call a QuickDraw function that returns a picture
handle and then call the routines that draw the picture. There is a procedure
to call when you've finished defining the picture, and another for when you're
done with the picture altogether.

QuickDraw also allows you 1o intersperse plcuuwre comments with the
definition of a picture. These comments, which do not affect the plcture's
appearance, may be used to provide additional information about the picture
when {t's played back. This is especially valuable when pictures are
transmitted from one application to another. There are two standard types of

E-29

Pascal Rererence Maral QACkDraw

comment which, like parentheses, serve to group drawing commands together
(such as all the commands that draw a particular part of a plcture)

const piciParen = 0;
picRParen = 1;

The application defining the picture can use these standaro comments as well
as comments of its own design.

To Include a comment in the definition of a picture, the application calls a
QuickDraw procedure that specifies the comment with three parameters: the
comment kind, which identifles the type of comment; a handle to adaitional
data if desired; and the size of the additional data, if any. When playing back
a picture, QuickDraw passes any comments in the picture's definition to a
low-level procedure accessed indirectly through the grafProcs field of the
grafPort (see Section E.10, Customizing QuickDraw Operations, for more
information). To process comments, the application must include a procedure
to do the processing and store a pointer to it in the data structure pointed to

by the grafProcs fleld.

"ou

NOTE

The standard low-level procegure for processing picture comments
simply ignores all comments.

E.8.2 Polygons
Polygons are similar to pictures in that you define them by a sequence of
calls t0 QuickDraw routines. They are also similar to other shapes that
QuickDraw knows about, since there is a set of procedures for performing
graphic operations and calculations on them,

A polygon s simply any sequence of connected lines (see Figure E-17). You
define a polygon by moving to the starting point of the polygon and drawing
lines from there to the next polnt, from that point to the next, and so on.

-

Figure E-17
Polygons

E-30

Pascal Rererence Marnial QulckDraw

The data structure for a polygon Is a variable-length entity. It consists of
two fixed flelds followed by a variable-length array:

type Polygon = record
polySize: 1nteger;
polyBBox: Rect;
polyPoints: array [0..0] of Point
end;

The polySize fleld contains the size, in bytes, of the polygon variable. The
polyBBox field iIs a rectangle which just encloses the entire polygon. The
polyPoints array expands as necessary to contain the points of the polygon--
the starting point followed by each successive point to which a line is drawn.

Like pictures and regions, polygons are accessed through handles.

type PolyPtr = “Polygon;
PolyHandle = “PolyPtr;

To define a polygon, you call a QuickDraw function that returns a polygon
handle and then form the polygon by calling procedures that draw lines. You
call a procedure when you've finished defining the polygon, and another when
you're done with the polygon altogether.

Just as for other shapes that QuickDraw knows about, there is a set of
graphic operattons on polygons to draw them on the screen. QuickDraw draws
a polygon by moving to the starting point and then drawing lines to the
remaining points In succession, just as when the routines were called to define
the polygon. In this sense it “plays back" those routine calls. As a result,
polygons are not treated exactly the same as other QuickDraw shapes. For
example, the procedure that frames a polygon draws outside the actual
boundary of the polygon, because QuickDraw line-drawing routines draw below
and to the right of the pen location. The procedures that fill a polygon with
a pattern, however, stay within the boundary of the polygon; they also add an
adaitional line between the ending point and the starting point if those points
are not the same, o complete the shape.

There is also a difference In the way QuickDraw scales a polygon and a
stmilarly-shaped reglon if it's being drawn as part of a picture: when
stretched, a slanted line is drawn more smoothly if it's part of a polygon
rather than a reglon. You may find it helpful to keep in mind the conceptual
difference between polygons and reglons: a polygon is treated more as a
continuous shape, a region more as a set of bits.

E9 QuickDraw Routines .
This sectlon describes all the procedures and functions in QuickDraw, their
parameters, and their operation. They are presented In thelr Pascal form; for
information on using them from assembly language, see Section E.11, Using
QuickDraw from Assembly Language. Note that the actual procedure and
function declarations are given here, rather than the BNF notation or syntax
diagrams used elsewhere in this manual.

E-31

Pascal Rererence Manal QuickDraw

E9.1 GrafPort Routines
Procedure InitGraf (globalPtr: QOPtr);

InftGraf inftializes QuickDraw. It is called by the QDSupport unit's QDInit
routine; you need not call it again. It initializes the QuickDraw global
variables listed below.

variable Type Initlal setting

thePort GrafPtr nil

white Pattern all-white pattern

black Pattern all-black pattern

gray Pattern 50% gray pattern

1tGray Pattern 25% gray pattem

okGray Pattern 75% gray pattem

arrow gursor pointing arrow cursor
screenBits BitMap Lisa screen, (0,0,720,364)
ranaSeed longint 1 ,

The globalPtr parameter tells QuickDraw where to store its global variables,
beginning with thePort. From Pascal programs, this parameter should always
be set to @thePort; assembly-language programmers may choose any location,
as long as it can accommodate the number of bytes specified by GRAFSIZE in
GRAFTYPES.TEXT (see Section E.11, Using QuickDraw from Assembly
Language).

NOTE

To initialize the cursor, call InitCursor (described in Section E.9.2,
Cursor-Handling Routines).

Procedure OpenPort (gp: GrafPtr);

OpenPort allocates space for the glven grafPort's visRgn and clipRgn,
Initializes the flelds of the grafPort as indicated below, and makes the
grafPort the current port (see SetPort, below). You must call OpenPort before
using any grafPort; first create a grafPtr with new, then use that grafPtr in
the OpenPort call.

E-32

Pascal Rererence Maral

Fleld
device
portBits
portRect
visRgn
clipRon

bkPat
fillPat

QuickOraw

Type Initial setting

integer 0 (Lisa screen)

BitHap screenBits (see InitGraf)

Rect screenBits.bounds (0,0,720,364)

RonHandle handle to the rectangular region (0,0,720,364)

RgnHandle handle to the rectangular region
(-30000, -30000, 30000, 30000)

Pattern white

Pattern black

Point (0.0)

Point (1.1)

integer patCopy

Pattern black

integer 0 (visible)

integer 0 (system font)

Style normal

integer srcOr

integer 0 (QuickDraw decides)

longint 0

longint blackColor

longint whiteColor

integer 0

integer 0

QDHandle nil

QOHandle nil

QDHandle nil

Q@OProcsPtr nil

Procedure InitPort (gp: GrafPtr);

Glven a polnter to a grafPort that has been opened with OpenPort, InitPort
reinitializes the fields of the grafPort and makes it the current port (If it's

not aiready).

NOTE

InitPort does everything OpenPort does except allocate space for the
visRgn and clipRgn.

Procedure ClosePort (gp: GrafPtr);

ClosePort deallocates the space occupied by the given grafPort's visRgn and
clipRon. When you are completely through with a grafPort, call this

procedure.

E-33

Pascal Rererence Marna! QuickOraw

WARNINGS

If you do not call ClosePort before disposing of the graffort, the
memory used by the visRgn and clipRgn will be unrecoverable.

After calling ClosePort, be sure not 1o use any coples of the visRon or
clipRgn handles that you may have made.

Procedure SetPort (gp: GrafPtr);

SetPort sets the grafPort indicated by gp to be the current port. The global
pointer thePort always points to the current port. All QuickDraw drawing
routines affect the bitmap thePort " .portBits and use the local coordinate
s;lrst,em of thePort~. Note that OpenPort and InitPort do a SetPort to the
given port.

WARNING
Never do a SetPort to a port that has not been opened with OpenPort.

Each port possesses its own pen and text characteristics which remain
unchanged when the port is not selected as the current port.

Procedure GetPort (var gp: GrafPtr);

GetPort returns a pointer to the current grafPort. If you have a program that
draws Into more than one grafPort, it's extremely useful to have each
procedure save the current grafPort (with GetPort), set its own grafPort, do
drawing or calculations, and then restore the previous grafPort (with SetPort).
The pointer to the current grafPort is also avallable through the global
pointer thePort, but you may prefer to use GetPort for better readabllity of
your program text. For example, a procedure could do a GetPort{savePort)
before setting its own grafPort and a SetPort{savePort) afterwards to restore
the previous port.

Procedure GrafDevice (device: integer);

GrafDevice sets thePort ~.device to the given number, which identifies the
logical output device for this grafPort. QuickDraw uses this Information. The
initial device number is 0, which represents the Lisa screen.

Procedure SetPortBits (bm: BitMap);

SetPortBits sets thePort ™ portBits to any previously defined bitmap. This
allows you to perform all normal drawing and calculations on a buffer other
than the Lisa screen--for example, a 640-by-8 output buffer for a dot matrix
printer, or a small off-screen image for later “stamping” onto the screen.

E-34

Pascal Referernce Maral QuickDraw

Remember to prepare all fields of the bitmap before you call SetPortBits.

Procedure PortSize (width, heignht: integer);

PortSize changes the size of the current grafPort's portRect. 772/s goes not
arrect the screeny it merely changes the size of the “active area" of the
grafPort.

The top left corner of the portRect remains at its same location; the width
and height of the portRect are set to the given width and height. In other
words, PortSize moves the bottom right comer of the portRect to a position
relative to the top left comner.

PortSize does not change the clipRgn or the VISRgn, nor does it affect the
local coordinate system of the grafPort: it changes only the portRect's width
and height. Remember that all drawing occurs only In the intersection of the
portBits.bounds and the portRect, clipped to the visRgn and the clipRon.

Procedure MovePortTo (leftGlobal, topGlobal: integer);

MovePortTo changes the position of the current grafPort’s portRect. 77/s oves
not arfect the screeny 1t merely changes the location at which subsequent
drawing Inside the port will appear.

The leftGlobal and topGlobal parameters set the distance between the top left
corner of the portBits.bounds and the top left corner of the new portRect.
For example,

HovePortTo(360, 182);

will move the top left comer of the portRect to the center of the screen (if
portBits is the Lisa screen) regardless of the local coordinate system.

Like PortSize, MovePortTo does not change the clipRgn or the visRgn, nor
does it affect the local coordinate system of the grafPort.

Procedure SetOrigin (h,v: integer);

SetOrigin changes the local coordinate system of the current grafPort. 77/s
aoes not arrect e screen: it does, however, affect where subseguent drawing
and calculation will appear in the grafPort. SetOrigin updates the coordinates
of the portBits.bounds, the portRect, and the visRgn. All subsequent drawing
and calculation routines will use the new coordinate system.

The h and v parameters set the coordinates of the top left corner of the
portRect. All other coordinates are calculated from this point. All relative
distances among any elements in the port will remain the same; only their
absolute local coordinates will change.

E-35

Pascal Rererence Manal QuUickDraw

NOTE

SetOrigin does not update the coordinates of the clipRgn or the pen;
these items stick to the coordinate system (unlike the port's structure,
which sticks to the screen).

SetOrigin Is useful for adjusting the coordinate system after a scrolling
operation. (See ScrollRect in Section E.9.13, Bit Transfer Operations.)

Procedure SetClip (rgn: RgnHandle);

SetClip changes the clipping region of the current grafPort to a region
equivalent to the given region. Note that this does not change the region
handle, but affects the clipping reglon itself. Since SetClip makes a copy of
the given region, any subsequent changes you make to that region will not
affect the clipping region of the port,

You can set the clipping region to any arbitrary region, to aid you In drawing
Inside the grafPort. The initial clipRgn is an arbitrarily large rectangle.

Procedure GetClip (rgn: RgnHandle):

GetClip changes the given region to a region equivalent to the clipping region
of the current grafPort. This is the reverse of what SetClip does. Like
SetClip, it does not change the region handle.

Procequre ClipRect (r: Rect):

ClipRect changes the clipping reglon of the current grafPort to a rectangle
equlvalent to glven rectangle. Note that this does not change the region
handle, but affects the region itself.

Procegure BackPat (pat: Pattern);

BackPat sets the background pattem of the current grafPort to the glven
pattermn. The background pattem Is used in ScroliRect and in all QuickDraw
routines that perform an “erase” operation.

E.9.2 Cursor-Handling Routines

Additional information on cursor handling can be found in Appendix F,
Hardware Interface.

Proceadure InitCursor;

InftCursor sets the current cursor to the predefined arrow Cursor, an arrow
pointing north-northwest, and sets the cwsor Jevel to 0, making the cursor
visible. The cursor level. which is initialized to 0 when the system is booted,
keeps track of the number of times the cursor has been hidden to compensate
for nested calls to HideCursor and ShowCursor (below).

Pascal Rererence Mansal . QlckOraw

Before you call InitCursor, the cursor is undefined (or, if set by a previous
process, it's whatever that process set it to).

Procedure SetCursor (crsr: Cursor);

SetCursor sets the current cursor to the 16-by-16-bit image in crsr. If the
cursor 1s hidden, it remains hidden and will attain the new appearance when
it's uncovered; if the cursor is already visible, it changes to the new
appearance immediately.

The cursor image is initialized by InitCursor to a north-northwest arrow,
visible on the screen. There is no way to retrieve the current cursor image.

Procedure HideCursor;

HigeCursor removes the cursor from the screen, restoring the bits under it,
and decrements the cursor level (which InitCursor initialized to 0). Every call
to HideCursor should be balanced by a subsequent call to ShowCursor.

Procedure ShowCursor;

ShowCursor increments the cursor level, which may have been decremented by
HigeCursor, and displays the cursor on the screen if the level becomes 0. A
call to ShowCursor should balance each previous call to HideCursor. The
level is not incremented beyond 0, so extra calls to ShowCursor don't hurt.

If the cursor has been changed (with SetCursor) while hidden, ShowCursor
presents the new cursor.

The cursor is Initialized by InitCursor to a north-northwest arrow, not hidden.

Procedure ObscureCursor;

ObscureCursor hides the cursor until the next time the mouse is moved. Unlike
HideCursor, it has no effect on the cursor level and must not be balanced by
a call to ShowCursor.

E9.3 Pen and Line-Drawing Routines
The pen and line-drawing routines all depend on the coordinate system of the
current grafPort. Remember that each grafPort has its own pen; if you draw
in one grafPort, change to another, and return to the first, the pen will have
remained in the same location.

Procedure HidePen;

HidePen decrements the current grafPort’s pnvis field, which is initialized to
0 by OpenPort; whenever pnvis is negative, the pen does not draw on the
screen. PnVis keeps track of the number of times the pen has been hidden to
compensate for nested calls to HidePen and ShowPen (below). HidePen is

E-37

Pascal Reference Marnial QUIckDraw

called by OpenRgn, OpenPicture, and OpenPoly so that you can define regions,
pictures, and polygons without drawing on the screen.

Procedure ShowPen;

ShowPen increments the current grafPort's pnvis field, which may have been
decremented by HidePen; if pnvls becomes 0, QuickDraw resumes drawing on
the screen. Extra calls to ShowPen will increment pnvis beyond 0, so every
call to ShowPen should be balanced by a subsequent call to HidePen.
ShowPen is called by CloseRgn, ClosePicture, and ClosePoly.

Procedure GetPen (var pt: Point);

GetPen returns the current pen location, In the local coordinates of the
current grafPort.

Procequre GetPenState (var pnState: PenState);

GetPenState saves the pen location, size, pattern, and mode In a storage
variable, to be restored later with SetPenState (below). This is useful when
calling short subroutines that operate in the current port but must change the
graphics pen: each such procedure can save the pen's state when it's called, do
whatever it needs to do, and restore the previous pen state immediately
before returning.

The PenState data type Is not useful for anything except saving the pen's
state.

Procequre SetPenState (pnState: PenState):

SetPenState sets the pen locatlon, size, pattern, and mode in the current
grafPort to the values stored in pnState. This is usually called at the end of
a procedure that has altered the pen parameters and wants to restore them to
their state at the beginning of the procedure. (See GetPenState, above.)

Procedure PenSize (width height: integer):

PenSize sets the dimensions of the graphics pen in the current grafPort. All
subsequent calls to Line, LineTo, and the procedures that draw framed shapes
in the current grafPort will use the new pen dimensions.

The pen dimensions can be accessed in the variable thePort~.pnSize, which Is
of type Point. If either of the pen dimensions is set to a negative value, the
pen assumes the dimensions (0,0) and no drawing is performed. For a
discussion of how the pen draws, see Section E.7, General Discussion of
Drawing.

E-38

Pascal Reference Manual QuickDraw

Procegure Penttode (mode: integer);

PenMode sets the transfer mode through which the pnPat is transferred onto
the bitmap when lines or shapes are drawn. The mode may be any one of the
pattern transfer modes:

patCopy patXor notPatCopy notPatXor
patlor patsic notPator notPatBic

If the mode Is one of the source transfer modes (or negative), no drawing is
performed. The current pen mode can be obtalned in the variable

thePort “.pnMode. The initial pen mode is patCopy, in which the pen pattem
is copled directly to the bitmap.

Procedure PenPat (pat: Pattern);

PenPat sets the pattern that Is used by the pen in the current grafPort. The
standard patterns white, black, gray, 1tGray, and dkGray are predefined; the
initial pen pattern is black. The current pen pattern can be obtained in the
variable thePort” pnPat, and this value can be assigned (put not compared!) to
any other variable of type Pattem

Procedure PenNormal;
PenNormal resets the initial state of the pen In the current grafPort, as

follows:
Fleld Setting
pnsize (1.1)
pniode patCopy
pnPat black

The pen location is not changed.

Procedure HoveTo (h, v: integer).

MoveTo moves the pen to location (hv) in the local coordinates of the current
grafPort. No drawing is performed.

Procedure Move (dh, dv: integer);

Move moves the pen a distance of dh horizontally and dv vertically from its
current location; it calls MoveTofh+dhv+av), where (hv) is the current location.
The positive directions are to the right and down. No drawing is performed.

E-39

Pascal Reference Manual QuickDraw

Procedure LineTo (h,v: integer);

LineTo draws a line from the current pen iocation to the location specified (in
local coordinates) by h and v. The new pen location is (hv) after the line is
drawn. See Section E.7, General Discussion of Drawing. -

If a reglon or polygon is open and being formed, its outline is infinitely thin
and is no; affected by the pnSize, pnMode, or pnPat. (See OpenRgn and
OpenPoly.

Procedure Line (dh,av: linteger),-

Line draws a line to the location that is a distance of dh horizontally and av
vertically from the current pen location; it calls LineTo(h+dh,v+av) where (hv)
is the current location. The positive directions are to the right and down.
The pen location becomes the coordinates of the end of the line after the line
is drawn. See Section E.7, General Discussion of Drawing.

If a region or polygon is open and being formeq, its outline is infinitely thin
and is not affected by the pnSize, pnMode, or pnPat. (See OpenRgn and
OpenPoly.)

E9.4 Text-Drawing Routines

Each grafPort has its own text characteristics, and all these procedures deal
with those of the current port.

Procedure TextFont (font: integer);

TextFont sets the current grafPort's font (thePort " .txFont) to the given font
number. The initial font number Is 0, which represents the system font. For
other font numbers, refer to the QDSupport unit, listed in Section E.15.

Procedure TextFace (face: Style);

TextFace sets the current grafPort's character style (thePort ".tdace). The
Style data type allows you to specify a set of one or more of the following
predefined constants: bold, italic, underline, outline, shadow, condense, and
extend. For example:

TextFace([bold]),; %nom}

TextFace([bold, 1talic]); bold and italic}
TextFace(thePort”.txFace+[bold]); {whatever it was plus bold}
TextFace(thePort”.txFace-[bold]); {whatever it was but not bold}
TextFace([]). {normal}

E-40

Pascal Reference Maral QuickOraw

Proceaure TextMode (mode: integer).

TextMode sets the current grafPort's transfer mode for drawing text
(thePort ".txMoge). The mode should be srcOr, srcXor, or sreBic. The initial
transfer mode for drawing text is srcOr.

Procedure TextSize (size: integer);

TextSize sets the current grafPort's type size (thePort " .txSize) to the given
number of points. Any size may be specified, but the result will look best If
QuickDraw has the font in that size (otherwise it will scale a size it does
have). The next best result will occur if the given size Is an even multiple of
a size avallable for the font. If O is specified, QuickDraw will choose one of
the avallable sizes--whichever Is closest to the system font size. The Initial
txSize setting is 0.

Procedure SpaceExtra (extra: integer):

SpaceExtra sets the current grafPort's spExtra fleld, which specifies the
number of pixels by which to widen each space In a line of text. This is
useful when text is belng fully justified (that is, aligned with both a left and a
right margin). Consider, for example, a line that contains three spaces; if
there would normally be six pixels between the end of the line and the right
margin, you would call SpaceExtra(2) to print the line with full justification.
The Initial spExtra setting Is 0.

NOTE

SpaceExtra will also take a negative argument, but be careful not to
narrow spaces so much that the text is unreadable.

Procedure DrawChar (ch: char);

DrawChar places the given character to the right of the pen location, with
the left end of its base line at the pen's location, and advances the pen
accordingly. If the character is not In the font, the font's missing symbol Is
drawn.

Proceaure DrawString (s: StrzsS);

Drawstring performs consecutive calls to DrawChar for each character in the

supplied string; the string iIs placed beginning at the current pen location and

extending right. No formatting (carriage retums, line feeds, etc.) is performed
by QuinckDraw. The pen location ends up to the right of the last character in
the string.

E-41

Pascal Rererence Manual ' QulckDraw

Procedure DrawText (textBuf: QOPtr; firstByte, byteCount: integer);

DrawText draws text from an arbitrary structure in memory specified by
textBuf, starting firstByte bytes into the structure and continuing for
byteCount bytes. The string of text Is placed beginning at the current pen
location and extending right. No formatting (carriage returns, line feeds, etc.)
Is performed by QuickDraw. The pen location ends up to the rignht of the last
character in the string.

Function Charwidth (ch: char) : integer;

Charwidth retums the value that will be added to the pen horizontal
coordinate if the specified character Is drawn. Charwidth includes the effects
of the stylistic varlations set with TextFace; if you change these after
determining the character width but before actually drawing the character,
the predetermined width may not be correct. If the character is a space,
Charwidth aiso includes the effect of SpaceExtra.

Function Stringwidth (s: StrzsS) : integer:

Stringwlidth returns the width of the given text string, which It calculates by
adaing the widths of all the characters in the string (see Charwidth, above).
This value will be added to the pen horizontal coordinate if the specified
string Is drawn.

Function Textwiath (textBuf: QDPtr; firstByte,byteCount: integer) :
integer:;

Textwidth retums the width of the text stored in the arbitrary structure in
memory specified by textBuf, starting firstByte bytes into the structure and
continuing for byteCount bytes. It calculates the width by adding the widths
of all the characters in the text. (See Charwlidth, above.)

Procedure GetFontInfo (var info: FontInfo);

GetFontInfo returns the following information about the current grafPort's
character font, taking into consideration the style and size in which the
characters will be drawn; the ascent, descent, maximum character width (the
greatest distance the pen will move when a character Is drawn), and leadin
(the vertical distance between the descent line and the ascent line below 13,
all in pixels. The Fontinfo data structure is defined as:

type FontInfo = record
ascent: 1integer:
descent: integer;
widMax: 1nteger;
leading: integer
end;

E-42

Pascal Reference Manuadl QuickDraw

E.9.5 Drawing In Color
These routines will enable applications to do color drawing in the future when
Apple supports color output devices for the Lisa. All nonwhite colors will
appear as black on black-and-white output devices.

Procedure ForeColor (color: longint):

ForeColor sets the foreground color for all drawing in the current grafPort
(thePort " .fgColor) to the given color. The following standard colors are
predefined: blackColor, whiteColor, redColor, greenColor, blueColor, cyanColor,
magentaColor, and yellowColor. The initial foreground color is blackColor.

Procedure BackColor (color: longint);

BackColor sets the background color for all drawing In the current grafPort
(thePort “.bkColor) to the given color. Elght standard colors are predefined
(see ForeColor, above). The Initial background color is whiteColor.

Procedure ColorBit (whichBit: integer);

ColorBit 1Is called by printing software for a color printer, or other color-

imaging software, 10 set the current grafPort's colrBit fleld to whichBit; this

tells QuickDraw which plane of the color picture to draw into. QuickDraw

will draw into the plane corresponding to bit number whichBit. Since

QuickDraw can support output devices that have up to 32 bits of color

information per pixel, the possibie range of values for whichBit is 0 through
. 31. The initial value of the colrBit field is 0.

£.9.6 Calculations with Rectangles
Calculation routines are independent of the current coordinate system; a
calculation will operate the same regardless of which grafPort is active.

NOTE

Remember that if the parameters to one of the calculation routines
were defined in different grafPorts, you must first adjust them to be in
the same coordinate system. If you do not adjust them, the result
returned by the routine may be different from what you see on the
screen. To adjust to a common coordinate system, see LocalToGlobal
and GlobalTolocal in Section E.9.17, Calculations with Points.

Procedure SetRect (var r: Rect; left, top, right bottom: integer);

SetRect assigns the four boundary coordinates to the rectangle. The result is
a rectangle with coordinates (left top, right.bottom).

This procedure is supplied as a utility to help you shorten your program text.
If you want a more readable text at the expense of length, you can assign

E-43

Pascal Reference Manual QuUickOraw

integers (or points) dlrectly into the rectangle's fields. There is no significant
code size or execution speed advantage to elther method; one's just easier to
wrlte, and the other's easler to read.

Procedure OffsetRect (var r: Rect; oh,ov: integer);

OffsetRect moves the rectangle by adding dh to each horlzontal coordinate
and av to each vertical coordinate. If dh and dv are positive, the movement
is to the rignht and down; If either Is negative, the corresponding movement is
in the opposite direction. The rectangle retains its shape and size; it's merely
moved on the coordinate plane. This does not affect the screen unless you
subseguently call a routine to draw within the rectangle.

Procedure InsetRect (var r: Rect; dh,dv: integer);

InsetRect shrinks or expands the rectangle. The left and right sides are
moved in by the amount specified by dh; the top and bottom are moved
toward the center by the amount specified by dv. If dh or dv Is negative, the
appropriate palr of sides is moved outward instead of Inward. The effect Is to
alter the size by 2»dh horizontally and 2*dv vertically, with the rectangle
remaining centered in the same place on the coordinate plane.

If the resulting width or helght becomes less than 1, the rectangle is set to
the empty rectangle (0,0,0,0).

Function SectRect (srcRectA, srcRectB: Rect; var dstRect: Rect) :
boolean;

SectRect calculates the rectangle that is the intersection of the two input
rectangles, and returns true if they indeed intersect or false if they do not.
Rectangles that "touch" at a line or a point are not considered intersecting,
because thelr intersection rectangle (really, in this case, an Intersection line
or point) does not enclose any bits on the bitmap.

If the rectangles do not intersect, the destination rectangle is set to (0,0,0,0).
Secthecit works correctly even if one of the source rectangles Is also the
destination.

Procedure UnionRect (srcRectA, stcRectB: Rect; var dstRect: Rect);

UnionRect calculates the smallest rectangle which encloses both input
rect?nglles. It works correctly even if one of the source rectangies Is aiso the
destination.

Fascal Reference Manual QulckDraw

Function PtInRect (pt: Point; r: Rect) : boolean;

PtinRect determines whether the pixel below and to the right of the glven
coordinate point is enclosed in the specified rectangle, and retums true if so
or false if not.

Procedure PLZRect (ptA,ptB: Polnt; var dstRect: Rect):
Pt2Rect returns the smallest rectangle which encloses the two input points.

Procedure PtToAngle (r: Rect; pt: Point; var angle: integer);

PtToAngle calculates an integer angle between a line from the center of the
rectangle to the given point and a line from the center of the rectangle
pointing straignt up (12 o'clock high). The angle is in degrees from O to 359,
measured clockwise from 12 o'clock, with 90° at 3 o'clock, 180° at 6 o'clock,
and 270° at 9 o'clock. Other angles are measured relative to the rectangle: If
the line to the given point goes through the top right corner of the rectangle,
the angle returned is 45 degrees, even if the rectangle is not square; if it goes
through the bottom right corner, the angle is 135 degrees, and so on (see

Figure E-18).
sngle =45
V sngle=45

Figure E-18
PtToAngle
The angle returned might be used as input to one of the procedures that

manipulate arcs and weages, as described In Sectlon E.9.10, Graphic Operatlons
on Arcs and wedges.

Function EqualRect (rectA, rectB: Rect) : boolean;

EqualRect compares the two rectangles and returns true if they are equal or
false if not. The two rectangles must have identical boundary coordinates to
be considered equal.

E-45

Pascal Reference Manual QuickDraw

Function EmptyRect (r: Rect) : boolean;

EmptyRect returns true if the given rectangle is an empty rectangle or false
if not. A rectangle is considered empty if the bottom coordinate is equal to
or less than the top or the right coordinate is equal to or less than the left.

E.9.7 Graphic Operations on Rectangles
These procedures perform graphic operations on rectangles. See also
ScrollRect in Section E.9.13, Bit Transfer Operations.

Procedure FrameRect (r: Rect);

FrameRect draws an outline just inside the specified rectangle, using the
current grafPort's pen pattern, mode, and size. The outllne is as wide as the
pen width and as tall as the pen height. It is drawn with the pnPat, according
to the pattern transfer mode specified by pnMode. The pen location is not
changed by this procedure.

If a region is open and being formed, the outside outline of the new rectangle
is mathematically added to the region's boundary.

Procedure PaintRect (r: Rect);

PaintRect paints the specified rectangle with the current grafPort's pen
pattern and mode. The rectangle on the bitmap is filled with the pnPat,
according to the pattern transfer mode specified by pniMode. The pen location
is not changed by this procedure.

Procedure EraseRect (r: Rect);

EraseRect paints the specified rectangle with the current grafPort’s back-
ground pattern bkPat (in patCopy mode). The grafPort’s pnPat and pnMode are
ignored; the pen location is not changed.

Procedure InvertRect (r: Rect);

InvertRect inverts the pixels enclosed by the specified rectangle: every white
pixel becomes black and every black pixel becomes white. The grafPort's
pnPat, pnMode, and bkPat are all ignored; the pen location is not changed.

Procedure FillRect (r: Rect; pat: Pattern);

FillRect fills the specified rectangle with the given pattern (in patCopy mode).
The grafPort’s pnPat, pniMode, and bikPat are all ignored; the pen location is
not changed.

Pascal Reference Manial QuickDraw

E.9.8 Graphic Operations on Ovals
Ovals are drawn Inside rectangles that you specify. If the rectangle you
specify Is square, QuickDraw draws a clrcle.

Procedure FrameOval (r: Rect);

FrameOval draws an outllne Just Inside the oval that fits Inside the specified
rectangle, using the current grafPort's pen pattern, mode, and size. The
outline 1s as wide as the pen width and as tall as the pen helght. It Is drawn
with the pnPat, according to the pattern transfer mode specified by pniMode.
The pen location Is not changed by this procedure.

If a region iIs open and being formed, the outside outllne of the new oval is
mathematically added to the region’s boundary.

Procedure PaintOval (r: Rect);

PaintOval paints an oval just inside the specified rectangle with the current
grafPort's pen pattern and mode. The oval on the bitmap is fllled with the
pnPat, according to the pattern transfer mode specified by pnMode. The pen
location is not changed by this procedure.

Procedure EraseQval (r: Rect).

EraseOval paints an oval just inside the specified rectangle with the current
grafPort's background pattern bkPat (in patCopy mode). The grafPort's pnPat
and pnMode are ignored; the pen location is not changed.

Procedure InvertOval (r: Rect);

InvertOval inverts the pixels enclosed by an oval just Inside the specified
rectangle: every white pixel becomes black and every black pixel becomes
white. The grafPort's pnPat, pnMode, and bikPat are all ignored; the pen
location is not changed.

Procedure FillOval (r: Rect; pat: Pattern);

Fill0val fills an oval just inside the specified rectangle with the given pattern
{in patCopy mode). The grafPort’s pnPat, pniMode, and bkPat are all ignoreg;
the pen location is not changed.

E.9.9 Graphic Operations on Rounded-Comer Rectangles
Procedure FrameRoundRect (r: Rect; ovalWidth, ovalHeight: integer);

FrameRoundRect draws an outline just inside the specified rounded-corner
rectangle, using the current grafPort’s pen pattern, mode, and size. OvalWidth
and ovalHeight specify the dlameters of curvature for the comers (see Figure
E-19) The outline is as wide as the pen width and as tall as the pen height.

E-47

Pascal Rererence Manual QuickDraw

It Is drawn with the pnPat, according to the pattem transfer mode specified
by pnMode. The pen location is not changed by this procedure.

ovalWidth ovalHeight

— O
(O (&

Figure E-19
Rounded-Cormer Rectangle

If a region Is open and being formed, the outside outline of the new rounded-
corner rectangle is mathematically added to the region's boundary.

Procegure PaintRoundRect (r: Rect; ovalWidth,ovalHelgnt: integer):

PaintRoundRect paints the specified rounded-corner rectangle with the
current grafPort’s pen pattern and mode. Ovalwidth and ovalHeight specify
the diameters of curvature for the corners. The rounded-corner rectangle on
the bitmap Is fllled with the pnPat, according to the pattern transfer mode
specified by pnMode. The pen location is not changed by this procedure.

Procedure EraseRoundRect (r: Rect; ovalwidth,ovalHeignt: integer);

EraseRoundRect paints the specified rounded-corner rectangle with the
current grafPort’s background pattern bkPat (in patCopy mode). Ovalwidth and
ovalHeight specify the diameters of curvature for the corners. The grafPort's
poPat and pnMode are ignored; the pen location is not changed.

Procedure InvertRoundRect (r: Rect; ovalWidth,ovalHelight: integer);

InvertRoundRect inverts the pixels enclosed by the specified rounded-corner
rectangle: every white pixel becomes black and every black pixel becomes
white. Ovalwidth and ovalHelght specify the diameters of curvature for the
corers. The grafPort's pnPat, pnMode, and bkPat are all ignored; the pen
location is not changed.

Pascal Reference Manual QuickDraw

Procedure FillRoundRect (r: Rect; ovalWidth,ovalHeight: integer; pat:
Pattern);

FillRoundRect fills the specified rounded-corner rectangle with the given
pattern (In patCopy mode). Ovalwidth and ovalHelght specify the diameters of
curvature for the corners. The grafPort's pnPat, pnitode, and bkPat are all
lgnored; the pen location is not changed.

E.S.10 Graphic Operations on Arcs and wWedges
These procedures perform graphic operations on arcs and wedge-shaped
sections of ovals. See also PtToAngle in Section E.9.6, Calculations with
Rectangles.

Procegure FrameArc (r: Rect; startAngle,arcAngle: integer);

FrameArc draws an arc of the oval that fits Inside the specified rectangie,
using the current grafPort’s pen pattern, mode, and size. StartAngle indicates
where the arc begins and is treated mod 360, ArcAngle deflnes the extent of
the arc. The angles are given in positive or negative degrees; a positive angle
goes clockwise, while a negative angle goes counterclockwise. Zero degrees is
at 12 o'clock high, 90° (or -270°) Is at 3 o‘clock, 180° (or -180°) is at 6
o'clock, and 270° (or -90°) Is at 9 o'clock. Other angles are measured relative
to the enclosing rectangle: a line from the center of the rectangle through its
top right comer is at 45 degrees, even if the rectangle is not square; a line
through the bottom right comer Is at 135 degrees, and so on (see Figure E-20).

startAngle=0

arcAngle = 45
stertAngle=0 startAngle=0 >

-

arcAngI¢=-45§ %arcAngle:ats
T -\ : FrameArc

startAngle=0
r arcAngle = 45

FrameArc
Lr

PairtArc

Figure £E-20
Operations on Arcs and wedges

E-49

Pascal Rerference Manual QuickOraw

The arc is as wide as the pen width and as tall as the pen height. It Is drawn
with the pnPat, according to the pattern transfer mode specified by pnMode.
The pen location is not changed by this procedure.

WARNING

FrameArc differs from other QuickDraw procedures that frame shapes
in that the arc is not mathematically added to the boundary of a
region that is open and being formead.

Procedure PaintArc (r: Rect; startAngle, arcAngle: integer);

PaintArc paints a wedge of the oval just inside the specified rectangle with
the current grafPort's pen pattern and mode. StartAngle and arcAngle gdefine
the arc of the wedge as in FrameArc. The wedge on the bitmap is filled with
the pnPat, according to the pattern transfer mode specified by pnMode. The
pen location is not changed by this procedure.

Procedure EraseArc (r: Rect; startAngle,arcAngle: integer);

EraseArc paints a wedge of the oval just inside the specified rectangle with
the current grafPort's background pattern bkPat (in patCopy mode).

e and arcAngle define the arc of the wedge as in FrameArc. The
grafPort’s pnPat and pnMode are ignored; the pen location is not changed.

Procedure InvertArc (r: Rect; startAngle, arcAngle: integer);

InvertArc inverts the pixels enclosed by a wedge of the oval just inside the
specified rectangle: every white pixel becomes black and every black pixel
becomes white. StartAngle and arcAngle define the arc of the wedge as in
FrameArc. The grafPort's pnPat, pnMode, and bkPat are all ignored; the pen
location is not changeo.

Procedure FillArc (r: Rect; startAngle,arcAngle: integer; pat:
Pattern);
FillArc fills a wedge of the oval just inside the specified rectangie with the

glven pattern (in patCopy mode). StartAngle and arcAngle define the arc of
the wedge as in FrameArc. The grafPort’s pnPat, pnMode, and bkPat are all
ignored; the pen location is not changed.

E-S0

Pascal Rererence Manual QUickDraw

E.9.11 Calculations with Reglons
NOTE

Remember that if the parameters to one of the calculation routines
were defined In different grafPorts, you must first adjust them to be in
the same coordinate system. If you do not adjust them, the result
returned by the routine may be different from what you see on the
screen. To adjust to a common coordinate system, see Local ToGlobal
and GlobalToLocal In Section E.9.17, Calculations with Polnts.

Function NewRgn : RgnHandle;

NewRgn allocates space for a new, dynamic, varlable-size region, initlalizes it
to the empty region (0,0,0,0), and returns a handle to the new region. Only
this function creates new reglions; all other procedures just alter the size and
shape of regions you create. OpenPort calls NewRgn to allocate space for the
port's visRgn and clipRgn.

WARNINGS

Except when using visRgn or clipRrgn, you must call NewRgn before
specifying a region’s handle in any drawing or calculation procedure.

Never refer to a region without using its handle.

Procedure DisposeRgn (rgn: RgnHandle);
DisposeRgn deallocates space for the region whose handle is supplied, and

returns the memory used by the region to the free memory pool. Use this
only after you are completely through with a temporary region.

WARNING

Never use a region once you have deallocated it, or you will risk being
hung by dangling pointers!

Procedure CopyRgn (srcRgn, dstRgn: RgnHandle);

CopyRgn coples the mathematical structure of srcRgn into dstRgn; that is, it
makes a duplicate copy of srcRgn. Once this Is done, srcRgn may be altered
(or even disposed of) without affecting dstRgn. CaoyRgn does not create the
aestination region:- you must use NewRgn to create the dstRgn before you

call CopyRgn.

E-S1

Pascal Reference Manuasl QuickOraw

Procedure SetEmptyRgn (rgn: RgnHandle):

SetEmptyRgn destroys the previous structure of the gliven region, then sets the
new structure to the empty reglon (0,0,0,0).

Procedure SetRectRgn (rgn: RgnHandle; left, top, right bottom: integer):

SetRectRgn destroys the previous structure of the given region, then sets the
new structure to the rectangle specified by left, top, right, and bottom.

If the specified rectangle is empty (i.e., left>=right or top>-bottom), the region
Is set to the empty region (0,0,0,0).

Procedure RectRgn (rgn: RgnHandle; r: Rect);

RectRgn destroys the previous structure of the glven region, then sets the new
structure to the rectangle specified by r. This is operationally synonymous
with SetRectRgn, except the input rectangle is defined by a rectangle rather
than by four boundary coordinates.

Procedure OpenRgn;

OpenRgn tells QuickDraw to allocate temporary space and start saving lines
and framed shapes for later processing as a reglon definition. whnile a region
is open, all calls to Line, LineTo, and the procedures that draw framed shapes
(except arcs) affect the outline of the region. Only the line endpoints and
shape boundaries affect the region definition; the pen mode, pattern, and size
do not affect it. In fact, OpenRgn calls HidePen, so no drawing occurs on the
screen while the region is open (unless you called ShowPen just after OpenRgn,
or you called ShowPen previously without balancing it by a call to HidePen).
Since the pen hangs below and to the right of the pen location, drawing lines
wlt? even the smallest pen will change bits that lie outside the region you
define.

The outline of a region is mathematically defined and infinitely thin, and
separates the bitmap into two groups of bits: those within the region and
those outside it. A region should consist of one or more closed loops. Each
framed shape itself constitutes a loop. Any lines drawn with Line or LineTo
should connect with each other or with a framed shape. Even though the
on-screen presentation of a region is clipped, the definition of a region is not;
you can define a region anywhere on the coordinate plane with complete
disregard for the location of various grafPort entities on that plane.

when a region Is open, the current grafPort’s rgnSave fleld contains a handle
to information related to the region definition. If you want to temporarily
disable the collection of lines and shapes, you can save the current value of

E-52

Pascal Reference Manua! QuickOraw

this fleld, set the field to nil, and later restore the saved value to resume the
region definition.

WARNING

Do not call OpenRgn while another region is already open. All open
regions but the most recent will behave strangely.

Procedure CloseRgn (dstRgn: RgnHandle);

CloseRgn stops the collection of lines and framed shapes, organizes them into
a reglon definition, and saves the resulting region into the reglon indicated by
astRgn. You should perform one and only one CloseRgn for every OpenRgn.
CloseRgn calls ShowPen, balancing the HidePen call made by OpenRgn.

Here's an example of how to create and open a reglon, define a barbell shape,
close the region, and draw it:

barbell := NewRgn; {make a new region}
{begin collecting stuff}
SetRect(teupRect 20,20, 30,50); {form the left weight}

FrameOval(tempRect);
SetRect (tempRect, 30, 30, 80, 40); {form the bar}
FrameRect(tempRect);
SetRect(tempRect, 80, 20, 90,50); {form the right weight}
FrameOval(tempRect);
CloseRgn(barbell): {we're done; save in barbell}
F111Rgn(barbell, black); {draw it on the screen}
DisposeRgn(barbell); {we don't need you anymore..}

Procedure OffsetRgn (rgn: RgnHandle; dh,dv: integer);

OffsetRgn moves the region on the coordinate plane, a distance of dn
horizontally and dv vertically. This does not affect the screen uniess you
subsequently call a routine to draw the region. If dh and dv are positive, the
movement is to the right and down; if elther is negative, the corresponding
movemnent 1s in the opposite direction. The region retains its size and shape.

NOTE

OffsetRgn s an especially efficient operation, because most of the data
defining a region is stored relative to rgnBBox and so isn't actually
changed by OffsetRgn.

E-53

Pascal Reference Markial GQuickOraw

Procedure InsetRgn (rgn: RgnHandle; dnh,dv: integer);

InsetRgn shrinks or expands the region. All points on the region boundary are
moved inwards a distance of dv vertically and dh horizontally; if dh or dv is
negative, the points are moved outwards in that direction. InsetRgn leaves
the region “centered” at the same position, but moves the outline in (for
positive values of dh and av) or out (for negative values of dh and av).
InsetRgn of a rectangular region works just like InsetRect.

Procedure SectRgn (STcRgnNA, SrcRgnB, dstRgn: RgnHandle);
SectRgn calculates the intersection of two regions and places the intersection
In a thixd reglon. 774s ooes not create e destination reglon: you must use

NewRgn to create dstRgn before you call SectRgn. The dstRgn can be one of
the source regions, if desired.

If the reglons do not intersect, or one of the regions is empty, the destination
is set to the empty region (0,0,0,0).

Procegure UnionRgn (STcRgnA, sTcRgnB, dstRgn: RgnHandle);

UnionRgn calculates the union of two regions and places the union in a third
reglon. 7hfs aves not create the destination reglon: you must use NewRgn to
create dstRgn before you call UnionRgn. The dstRgn can be one of the
source regions, if desired.

If both regions are empty, the destination is set to the empty region (0,0,0,0).

Procedure DiffRgn (SrcRgnA, sTcRgnB, dstRgn: RgnHandle);
DiffRgn subtracts srcRgnB from SICRgNA and places the difference in a third
reglon. 77s aoes not create the aestination regior: you must use NewRgn to

create OstRgn before you call DiffRgn. The dstRgn can be one of the source
regions, if desired.

éf the first source region is empty, the destination is set to the empty region
0,0,0,0).

Procedure XorRgn (SrcRgnA, sroRgnB, dstRgn: RgnHandle);

XorRgn calculates the difference between the unlon and the intersection of
two regions and places the result in a third region. 72/ dves not create the
aestination reglon: you must use NewRgn to create dstRgn before you call
XorRgn. The dstRgn can be one of the source regions, if desired.

If the regions are coincident, the destination is set to the empty region
(0,0,0,0).

E-54

Pascal Reference Manual QuilckDraw

Function PtInRgn (pt: Point; rgn: RgnHandle) : boolean;

PtInRgn checks whether the pixel below and to the right of the glven
coordinate point is within the specified region, and returns true if so or false
if not.

Function RectInRgn (r: Rect; rgn: RgnHandle) : boolean;

RectInRgn checks whether the glven rectangle intersects the specified region,
and returns true if the intersection encloses at least one bit or false if not.

Function EqualRgn (rgnA, rgnB: rgnHandle) : boolean;

EqualRgn compares the two regions and returns true if they are equal or false
if not. The two reglons must have ldentical sizes, shapes, and locations to be
considered equal. Any two empty regions are always egual.

Function EmptyRgn (rgn: RgnHandle) : boolean;

EmptyRgn returns true if the region is an empty region or fatse if not. Some
of the clrcumstances in which an empty region can be created are: 3 NewRgn
call; a CopyRgn of an empty region; a SetRectRgn or RectRgn with an empty
rectangle as an argument; CloseRgn without a previous OpenRgn or with no
drawing after an OpenRgn; OffsetRgn of an empty region; InsetRgn with an
empty region or too large an inset; SectRgn of nonintersecting regions;
UnionRgn of two empty reglons; and DiffRgn or XorRgn of two ldentical or
nonintersecting regions.

E.9.12 Graphic Operations on Regions
These routines all depend on the coordinate system of the current grafPort. If
a region is drawn in a different grafPort than the one in which it was defineq,
it may not appear In the proper position inside the port.

Procedure FrameRgn (rgn: RgnHandle);

FrameRgn draws a hollow outline just inside the specified region, using the
current grafPort's pen pattern, mode, and size. The outline is as wide as the
pen width and as tall as the pen height. under no circumstances will the
frame go outside the region boundary. The pen location is not changed by
this procedure.

If a region is open and belng formed, the outside outline of the region being
framed is mathematically added to that region's boundary.

Procedure PaintRgn (rgn: RgnHandle);

PaintRgn paints the specified region with the current grafPort's pen pattern
and pen mode. The region on the bitmap is filled with the pnPat, according

E-55

Pascal Referernce Manual QuUickDraw

to the pattern transfer mode specified by pniMode. The pen location is not
changed by this procedure.

Procedure EraseRgn (rgn: RgnHandle);
EraseRgn paints the specified region with the current grafPort's background

pattern bkPat (In patCopy mode). The grafPort's pnPat and pnMode are
Ignored; the pen location is not changed.

Procedure InvertRgn (rgn: RgnHandle);
InvertRgn inverts the pixels enclosed by the specified region: every white

pixel becomes black and every black pixel becomes white. The grafPort’s
pnPat, pnMode, and bkPat are all ignored; the pen location is not changed.

Procedure FillRgn (rgn: RgnHandle; pat: Pattern);

FillIRgn fills the specified region with the given pattern (in patCopy mode).
The grafPort’s pnPat, pnMode, and bkPat are all ignored; the pen location is
not changed.

E.9.13 Bit Transfer Operations
Procegure ScrollRect (r: Rect; dh,av: integer: updateRgn: qumle),

ScrollRect shifts (“scroils”) those bits inside the intersection of the specified
rectangle, visRgn, clipRgn, portRect, and portBits.bounds. The bits are shifted
a distance of dh horizontally and av vertically. The positive directions are to
the right and down. No other bits are affected. Bits that are shifted out of
the scroll area are lost; they are neither placed outside the area nor saved.
The grafPort's background pattern bkPat fills the space created by the scroll.
In ad)dltion updateRgn is changed to the area filled with bkPat (see Figure
E-21

E-56

Pascal Reference Manual QuickDraw

BeforeScroliRect After ScroliRect(dstRect,-10,5...)

b priLoc~

QuickDraw
K A
(_..—
dstfiect updsteRgn 1o
Figure £-21
Scrolling

Figure E-21 shows that the pen location after a ScrollRect Is in a alfferent
position relative to what was scrolled in the rectangle. The entire scrolled
item has been moved to different coordinates. To restore it to its coordinates
before the ScrollRect, you can use the SetOrigin procedure. For example,
suppose the dstRect here 1s the portRect of the grafPort and its top left
corner is at (95,120). SetOrigin(105,115) will offset the coordinate system to
compensate for the scroll. Since the clipRgn and pen location are not offset,
they move down and to the left.

Procedure CopyBits (srcBits,dstBits: BitMap: srcRect, dstRect: Rect;
mode: integer; maskRgn: RgnHandle);
CopyBlts transfers a bit image between any two bltmaps and clips the result
to the area specified by the maskRgn parameter. The transfer may be
performed In any of the eight source transfer modes. The result is always
clipped to the maskRgn and the boundary rectangle of the destination bitmap;
if the destination bitmap Is the current grafPort’s portBits, it Is also clipped
to the intersaction of the grafPort's clipRgn and visRgn. If you do not want
1o clip to a maskRgn, just pass nil for the maskRgn parareter.

The dstRect and maskRgn coordinates are in terms of the dstBits.bounds
coordinate system, and the srcRect coordinates are in terms of the
srcBits.bounds coordinates.

The bits enclosed by the source rectangie are transferred into the destination
rectangle according to the rules of the chosen mode.

E-57

Pascal Rererence Manual QuickDraw

The source transfer modes are as follows:

srcCopy srcXor notSrcCopy notSrexor
srcOr srcBic notSrcOr notSrcBic

The source rectangle is completely aligned with the destination rectangle; if
the rectangles are of different sizes, the bit image is expanded or shrunk as
necessary to fit the destination rectangle. For example, If the bit image Is a
circle in a square source rectangle, and the destination rectangle is not
square, the bit Image appears as an oval In the destination (see Figure E-22).

it 3333 8 maskﬁgn
Source
338 Transfer i iieesit
Source Bitmep ~ M0d€ i
Destination Bitmap
maskRgn
=nil
Source
Transter
Source Bitmap Mode Hiivii
Destinstion Bitmap
Figure E-22
Operation of CopyBits

£.9.18 Pictures
Function OpenPicture (plcFrame: Rect) : PicHandle;

OpenPicture returns a handle to a new picture which has the given rectangle
as its picture frame, and tells QuickDraw to start saving as the picture
definition all calls to drawing routines and all picture comments (if any).

OpenPicture calls HidePen, so no drawing occurs on the screen while the
picture is open (unless you call ShowPen Just after OpenPlcture, or you called
ShowPen previously without balancing it by a call to HidePen).

when a picture is open, the current grafPort’s picSave field contains a handle
to information related to the picture definition. If you want to temporarily

E-58

Pascal Reference Manual QuickOraw

disable the collection of routine calls and picture comments, you can save the
current value of this field, set the fleld to nil, and later restore the saved
value to resume the picture definition.

WARNING

Do not call OpenPicture while another picture is already open.

Procedure ClosePicture;

ClosePicture tells QuickDraw to stop saving routine calls and picture
comments as the definition of the currently open picture. You should perform
one and only one ClosePicture for every OpenPicture. ClosePicture calls
ShowPen, balancing the HidePen call made by OpenPicture.

Procedure PicComment (kind,dataSize: integer; dataHandle: QDHandle);

PicComment inserts the specified comment Into the definition of the currently
open picture. Kind identifies the type of comment. DataHandle is a handle
to additional data If deslired, and dataSize is the size of that data In bytes. If
there is no additional data for the comment, dataHandle should be nil and
gatasize should be 0. The application that processes the comment must
include a procedure to do the processing and store a pointer to the procedure
In the data structure pointed to by the grafProcs fleld of the grafPort (see
Section E.10, Customizing QuickDraw Operations).

Procedure DrawPicture (myPicture: PicHandle; dstRect: Rect);

DrawPicture draws the gliven plcture to scale in dstRect, expanding or
shrinking 1t as necessary to allgn the borders of the picture frame with
dstRect. DrawPicture passes any picture comments to the procedure accessed
indirectly through the grafProcs field of the grafPort (see PicComment above).

Procedure KillPicture (myPicture: PicHandle);

KillPicture deallocates space for the picture whose handle 1s supplied, and
returmns the memory used by the picture to the free memory pool. Use this
only when you are completely through with a picture,

E9.15 Calculations with Polygons
function OpenPoly : PolyHandle;

OpenPoly returns a handle 10 a new polygon and tells QuickDraw to start
saving the polygon definition as specified by calls to line-drawing routines.
while a polygon is open, all calls to Line and LineTo affect the outline of the
polygon. Only the line endpoints affect the polygon definition; the pen mode,
pattern, and size do not affect it. In fact, OpenPoly calls HidePen, so no

E-59

Pascal Rerference Marnual QuickDraw

drawing occurs on the screen while the polygon Is open (unless you cail
ShowPen just after OpenPoly, or you called ShowPen previously without
balancing it by a call to HidePen)

A polygon should consist of a sequence of connected lines. Even though the
on-screen presentation of a polygon is clipped, the definition of a polygon is
not; you can define a polygon anywhere on the coordinate plane with complete
disregard for the location of various grafPort entities on that plane.

wnhen a polygon Is open, the current grafPort's polySave fleld contains a
handle to information related to the polygon definition. If you want to
temporarily disable the polygon deflnition, you can save the current value of
this field, set the field to nil, and later restore the saved value to resume the
polygon definition.

WARNING

Do not call OpenPoly while another polygon is already open.

Procedure ClosePoly;

ClosePoly tells QuickDraw to stop saving the definition of the currently open
polygon and computes the polyBBox rectangle. You should perform one and
only one ClosePoly for every OpenPoly. ClosePoly calls ShowPen, balancing
the HidePen call made by OpenPoly.

Here's an example of how to open a polygon, define it as a triangle, close it,
and draw it

triPoly := OpenPoly; {save handle and begin collecting stuff}

toveTo(300, 100); { move to first point and }
LineTo(400, 200); { form }
LineTo(200, 200); { the }
LineTo(300, 100); { triangle }
ClosePoly; { stop collecting stuff }
FillPoly(triPoly,gray); { draw it on the screen }
Killpoly(triPoly); { we're all done }

Procedure KillPoly (poly: PolyHandle);

KiliPoly deallocates space for the polygon whose handle is supplied, and
retumns the memory used by the polygon to the free memory pool. Use this
only after you are completely through with a polygon.

Procedure OffsetPoly (poly: PolyHandle; dh,dv: integer);

OffsetPoly moves the specified polygon on the coordinate plane, a distance of
oh horizontally and av vertically. This does not affect the screen unless you

E-60

Fascal Reference Manual QuickDraw

subsequently call a routine to draw the polygon. If dh and dv are positive,
the movement is to the right and down; if either is negative, the correspond-

lrl’ng movement is in the opposite direction. The polygon retains its shape and
size.

NOTE

OffsetPoly is an especially efficient operation, because the data
defining a polygon is stored relative to polyStart and so isn't actually
changed by OffsetPoly.

E.9.16 Graphic Operations on Polygons
Procedure FramePoly (poly: PolyHandle);

FramePoly plays back the line-drawing routine calls that define the given
polygon, using the current grafPort’s pen pattern, mode, and size. The pen
will hang below and to the right of each point on the boundary of the
polygon; thus, the polygon drawn will extend beyond the right and bottom
edges of poly~ ~.polyBBox by the pen width and pen height, respectively. All
other graphic operations occur strictly within the boundary of the polygon, as
for other shapes. You can see this difference in Figure E-23, where each of
the polygons is shown with its polyBBox.

FramePoly PaintPoly

Figure E-23
Drawing Polygons
If a polygon is open and being formed, FramePoly affects the outline of the
polygon just as if the line-drawing routines themselves had been called. If a

region is open and being formed, the outside outline of the polygon being
framed is mathematically added to the reglon's boundary.

E-61

Pascal Reference Manual QuickDraw

Procegure PaintPoly (poly: PolyHandle);

PaintPoly paints the specified polygon with the current grafPort's pen pattern
and pen mode. The polygon on the bitmap is filled with the prPat, according
to the pattern transfer mode specified by pnMode. The pen location is not
changed by this procedure.

Procedure ErasePoly (poly: PolyHandle);

ErasePoly palnts the specified polygon with the current grafPort's background

pattern bkPat (in patCopy mode). The pnPat and pnMode are ignored; the pen
location is not changed.

Procedure InvertPoly (poly: PolyHandle);

InvertPoly inverts the pixels enclosed by the specified polygon: every white
pixel becomes black and every black pixel becomes white. The grafPort's
pnPat, pnMode, and bkPat are all ignored; the pen location is not changed.

Procedure FillPoly (poly: PolyHandle; pat: Pattern);

FillPoly fills the specified polygon with the given pattern (in patCopy mode).
The grafPort’s pnPat, pniMode, and bikPat are all ignored; the pen location is
not changed.

£.9.17 Calculations with Points
Procedure AddPt (srcPt: Point; var dstPt: Point);

AddPt adds the coordinates of srcPt to the coordinates of dstPt, and retums
the result in dstPt

Procedure SubPt (sroPt: Point; var dstPt: Point);

SubPt subtracts the coordinates of srcPt from the coordinates of dstPt, and
returns the result in dstPt.

Procedure SetPt (var pt: Point; h,v: integer);
SetPt assigns two integer coordinates to a variable of type Point.

Function EqualPt (ptA,ptB: Point) : boolean;

EqualPt compares the two points and returns true if they are equal or false if
not.

E-62

Pascal Rerference Manua! QUIckDraw

Procedure LocalToGIobal (var pt: Point);

LocalToGlobal converts the glven point from the current grafPort’s local
coordinate system into a global coordinate system with the origin (0,0) at the
top left cormer of the port's bit image (such as the screen). This global point
can then be compared to other global points, or be changed into the local
coordinates of another grafPort.

Since a rectangle is defined by two points, you can convert a rectangle into
global coordinates by performing two LocaiToGlobal calls. You can also
convert a rectangle, region, or polygon into global coordinates by calling
OffsetRect, OffsetRgn, or OffsetPoly. For examples, see GlobalToLocal below.

Procedure GlobalToLocal (var pt: Point);

GlobalToLocal takes a point expressed in global coordinates (with the top left
corner of the bitmap as coordinate (0,0)) and converts it into the local
coordinates of the current grafPort. The global point can be obtalned with
the LocalToGlobal call (see above) For example, suppose a game draws a
"pall" within a rectangle named ballRect, defined In the grafPort named
gamePort (as illustrated below in Figure E-24). If you want to draw that ball
In the grafPort named selectPort, you can calculate the ball's selectPort
coordinates like this:

SetPort(gamePort); { start in origin port }
selectBall := ballRect; { make a copy to be moved }
LocalToGlobal(selectBall.topleft); { put both corners into }
LocalToGlobal(selectBall.botRight); { global coordinates }

SetPort(selectPort); { switch to destination port}
GlobalTolLocal(selectBall.topLeft); { put both corners into }
GlobalToLocal(selectBall.botRight); { these local coordinates }
Fil10val(selectBall, ballColor); { now you have the ball! }

E-63

Pascal Reference Marual QUIckDraw

20 50 90 15 45 85
40)) -30-!))
70- G-
. 0 3 70

R | 1} _l I '

120- ~ 50
T 2 / «tl
gemePort / i e \ selectPort
LocalToGlobal T+ GlobalToLocal
80_
Figure E-24

Converting between Coordinate Systems

You can see from Figure E-24 that LocalToGlobal and GlobalToLocal simply
offset the coordinates of the rectangle by the coordinates of the top left
corner of the local grafPort's boundary rectangle. You could also do this with
OffsetRect. In fact, the way to convert reglons and polygons from one
coordinate system to another Is. with OffsetRgn or OffsetPoly rather than
LocalToGlobal ang GlobalTolocal. For example, If myRgn were a region
enclosed by a rectangle having the same coordinates as ballRect in gamePort,
you could convert the region to glabal coordinates with

offsetRgn{myRgn, -20, -40);
and then convert it to the coordinates of the selectPort grafPort with
OffsetRgn(myRgn, 15, -30);
E.9.18 Miscellaneous Utllitles
Function Random : integer;

Random returns an integer, uniformiy distributed pseudo-random, in the range
from -32768 through 32767. The value returned depends on the global
varlable randSeed, which InitGraf initlalizes to 1; you can start the sequence
over again from wnere it began by resetting randSeed to 1.

Pascal Reference Manual QuickDraw

Function GetPixel (h,v: integer) : boolean;

GetPixel 10oks at the pixel assoclated with the given coorainate point and
returns true if it is black or false if It Is white. The selected pixel is
immediately below and to the rignht of the point whose coordinates are given
in h and v, in the local coordinates of the current grafPort. There is no
guarantee that the specified pixel actually belongs to the port, however; it
may have been drawn by a port overlapping the current one. To see if the
point indeed belongs to the current port, call PtInRgn{pt,thePort ~.visRgn).

Procedure StuffHex (thingPtr: QDPtr; s: Str2s5);

StuffHex pokes bits (expressed as a string of hexadecimal digits) into any data
structure. This is a good way to create cursors, patterns, or bit images to be
“stamped" onto the screen with CopyBits. For example,

StuffHex(astripes, *0102040810204080")
places a striped pattern into the pattern variable stripes.
WARNING

There Is no range checking on the size of the destination variable. It's
easy to overrun the variable and destroy something if you don't know
what you're doing.

Procedure ScalePt (var pt: Point: srcRect, dstRect: Rect);

A width and height are passed in pt; the horizontal component of pt s the
width, and the vertical component of pt is the height. ScalePt scales these
measurements as follows and retumns the result in pt: 1t multiplles the given
width by the ratio of dstRect's wicth to srcRect's width, and multiplies the
given height by the ratio of dstRect's height to srcRect’s helght. In Figure
E-25, where astRect's width s twice srcRect's width and its height is three
times srcRect's height, the pen width s scaled from 3 to 6 and the pen height
Is scaled from 2 to 6.

E-65

Pascal Rererence Manual QuickDraw

0 3 1618
! 11

| U R S O N N

ScalePt scales pen size {(3,2) to (6,6)
MapFt maps point (3,2) to (18,7)

Figure E-25
ScalePt and MapPt

Procedure MapPt (var pt: Point; srcRect, dstRect: Rect);

Given a point within srcRect, MapPt maps it to a similarly located point
within dstRect (that is, to where it would fall if it were part of a drawing
being expanded or shrunk to fit dstRect). The result is returned in pt. A
corner point of srcRect would be mapped to the corresponding comer point of
dstRect, and the center of srcRect to the center of dstRect. In Figure E-25
above, the point (3,2) In srcRect is mapped to (18,7) in dstRect. FromRect and
dstRect may overlap, and pt need not actually be within sroRect.,

Pascal Rerference Marnal QuickDraw

WARNING

Remember, if you are going to draw Inside the rectangle in dstRect,
you will probably also want to scale the pen size accordingly with
ScalePt.

Procedure MapRect (var r: Rect; srcRect, dstRect: Rect);

Glven a rectangle within stcRect, MapRect maps it to a similarly located
rectangle within astRect by calling MapPt to map the top left and bottom
right corners of the rectangle. The result is returned in r.

Procedure MapRgn (rgn: RgnHandle; srcRect,dstRect: Rect);

Glven a region within srcRect, MapRgn maps it to a similarly located region
within dstRect by calling MapPt to map all the polnts in the region.

Procedure MapPoly (poly: PolyHandle; srcRect,dstRect: Rect);

Glven a polygon within srcRect, MapPoly maps It to a similarly located
polygon within dstRect by calling MapPt to map all the points that define the

polygon,

E.10 Customizing QuickDraw Operations
For each shape that QuickDraw knows how to draw, there are procedures that
perform these basic graphic operations on the shape: frame, paint, erase,
invert, and fill. Those procedures in turn call a low-level drawing routine for
the shape. For example, the FrameOval, PalntOval, EraseOval, InvertOval, and
Filloval procedures all call a low-level routine that draws the oval. For each
type of object QuickDraw can draw, including text and lines, there is a
pointer to such a routine. By changing these pointers, you can install your
own routines, and either completely override the standard ones or call them
after your routines have modified parameters as necessary.

Other low-level routines that you can install In this way are:
* The procedure that does bit transfer and is called by CopyBits.

* The function that measures the width of text and is called by Charwidth,
Stringwidth, ang Textwidth.

* The procedure that processes plcture comments and is called by
DrawPicture. The standard such procedure ignores picture comments.

* The procedure that saves drawing commands as the definition of a picture,
and the one that retrieves them. This enables the application to draw on
remote devices, print to the disk, get picture input from the disk, and
support large pictures.

E-67

Pascal Refererice Manual QuickDraw

The grafProcs fleld of a grafPort determines which low-level routines are
called; if it contains nil, the standard routines are called, so that all
operations In that grafPort are done in the standard ways described in this
appendix. You can set the grafProcs fleld to point to a record of pointers to
routines. The data type of grafProcs is QDProcsPir:

type QDProcsPtr = “QDProcs;

QDProcs = record
textProc: QOPtr; {text drawing}
1ineProc: Qetr; {1line drawing}
rectProc: QoPtr; {rectangle drawing}
TRectProc: QOPtr; {roundRect drawing}
ovalProc: QoPtr; {oval drawing}
arcProc: QOPtr; {arc/wedge drawing}
polyProc: QoPtr; {polygon drawing}
rgnPTOC: Qetr; {region drawing}
bitsProc: Qetr; {bit transfer}
commentProc: QOPtr; {picture comment

processing}

txtieasProc: QOPtr; {text width measurement}
getPicProc: QOPtr; {picture retrieval}
putPicProc: QDPtr {picture saving}

end;

Procedure SetStaProcs (var procs: QDProcs):

SetStdProcs Is provided to assist you in setting up a QDProcs record. It sets
all the flelds of the given QDProcs to point to the standard low-level
routines. You can then change the ones you wish to point to your own
routines. For example, if your procedure that processes picture comments is
named MyComments, you will store @MyComments in the commentProc field
of the QDPTOCS record.

The routines you install must of course have the same calling sequences as
the standard routines, which are described below. The standard drawing

routines tell which graphic operation to perform from a parameter of type
Grafverb.

type Grafverb = (frame, palnt, erase, invert, fill);

when the grafverb Is flll, the pattern to use when filling Is passed in the
fillPat field of the grafPort.

Procedure StdText (bytecx;unt: integer; textBuf: QDPtr; numer,denom:
Point);

StdText Is the standard low-level routine for drawing text. It draws text from
the arbitrary structure in memory specified by texiBuf, starting from the first
byte and continuing for byteCount bytes. Numer and denom specify the

E-68

Pascal Rererence Ml QuickCiraw

scaling, if any: numer.v over denom.v glves the vertical scaling, and numer.h
over denom.h gives the horizontal scaling.

Procedure StdLine (newPt: Point);

StdLine is the standard low-level routine for drawing a line. It draws a line
from the current pen location to the location specified (in local coordinates)
by newPt.

Procequre StoRect (verb: GrafVerb; r: Rect);

StdRect is the standard low-level routine for drawing a rectangle. It draws
the given rectangle according to the specified grafvern.

Procedure StoRRect (verb: GrafVerb; r: Rect; ovalwidth, ovaldHelght:
integer);

StoRRect s the standard low-ievel routine for drawing a rounded-corner

rectangle. It draws the given rounded-corner rectangle according to the

specified grafverb. Ovalwidth and ovalHeight specify the diameters of

curvature for the comers.

Procedure StdOval (vert: GrafVerb; r: Rect);

StdOval is the standard low-level routine for drawing an oval. It draws an
oval inside the glven rectangle according to the specified grafverb.

Procedure StdArc (verb: GrafVerb; r: Rect; startAngle,arcAngle:
integer);

StdArc Is the standard low-level routine for drawing an arc or a wedge. It
draws an arc or wedge of the oval that fits inside the given rectangle. The
grafvert specifies the graphic operation; if 1t's the frame operation, an arc is
drawn; otherwise, a wedge is drawn.

Procedure StdPoly (verb: GrafVerb; poly: PolyHandle);

StdPoly is the standard low-level routine for drawing a polygon. It draws the
given polygon according to the specified grafverb.

Procedure StdRgn (verb: Grafvert; rgn: RgnHandle);

StdRgn is the standard low-level routine for drawing a region. It draws the
given region according to the specified grafverb.

E-69

Pascal Referernce Marnial QlckOraw

Procedure StaBits (var srcBits: BitMap; var srcRect, dstRect: Rect:
mode: integer; maskRgn: RgnHandle);

StaBits is the standard low-level routine for doing bit transfer. It transfers a

bit Image between the given bitmap and thePort .portBits, just as if CopyBits

were called with the same parameters and with a destination bitmap equal to
thePort ~ portBits.

Procedure Stacomment (kind, dataSize: integer: dataHandle: QDHandle);

StdComment is the standard low-level routine for processing a picture
comment. Kind identifies the type of comment. DataHandle is a handle to
additional data, and dataSlze is the size of that data in bytes. If there is no
additional data for the command, dataHandle will be nil and datasize will be
0. StaComment simply ignores the comment.

Function StdTxteas (byteCount: integer; textBuf: QDPLr; var numer,
denom: Polnt; var info: FontInfo) : integer;

StdTxMeas is the standard low-level routine for measuring text width., It
returns the width of the text stored in the arbitrary structure in memory
specified by textBuf, starting with the first byte and continuing for byteCount
bytes. Numer and denom specify the scaling as In the StdText procedure; note
that StdTxMeas may change them.

Procedure StaGetPic (dataPtr: QOPtr; byteCount: integer);

StaGetPic is the standard low-level routine for retrieving information from
the definition of a picture. It retrieves the next byteCount bytes from the
definition of the currently open picture and stores them in the data structure
pointed to by dataPtr.

Procedure StdPutPic (cataPir: QDPLr; byteCount: integer);

StdPutPic Is the standard low-level routine for saving information as the
definition of a picture. It saves as the definition of the currently open
picture the drawing commands stored in the data structure pointed to by
dataPtr, starting with the first byte and continuing for the next byteCount
bytes.

- E-70

Pascal Reference Manual QuUickDraw

E.11 Using QuickDraw from Assembly Language
All QuickDraw routines can be called from assembly-language programs as
well as from Pascal. when you write an assembly-language program to use
these routines, though, you must emulate Pascal's parameter passing and
variable transfer protocols.

This sectlon discusses how to use the QuickDraw constants, global variables,
data types, procedures, and functions from assembly language.

The primary ald to assemply language programmers is a flle named
QD/GRAFTYPES.TEXT. If you use .INCLUDE to include this file when you
assemple your program, all the QuickDraw constants, offsets to locations of
global variables, and offsets into the flelds of structured types will be
avallable In symbolic form.

E.11.1 Constants
QuickDraw constants are stored in the QD/GRAFTYPES.TEXT file, and you
can use the constant values symbolically. For example, if you've loaded the
effective address of the thePort .txMode fleld into address register A2, you
can set that field to the sreXor mode with this statement:

HOVE.¥ #SRCXOR, (A2)

To refer to the number of bytes occupied by the QuickDraw global variables,
you can use the constant GRAFSIZE. when you call the InitGraf procedure,
you must pass a pointer to an area at least that large.

E.11.2 Data Types
Pascal's strong typing ability lets you write Pascal programs without really
considering the size of a variable. But In assembly language, you must Keep
track of the size of every variable. The sizes of the standard Pascal data
types are as follows:

Type size

integer word (2 bytes)
longint Long {4 bytes)
boolean word (2 bytes)
char word (2 bytes)
real Long (4 bytes)

Integers and longints are in two's complement form; booleans have thelr
boolean value In bit 8 of the word (the low-order bit of the byte at the same
location); chars are stored in the high-order byte of the word; and reals are In
the KCS standard format.

£-71

Pascal Reference Manual QulckOraw

The QuickDraw simple data types listed below are constructed out of these
fundamental types.

Type Size

QDPU Long (4 bytes)
QDHandle Long (4 bytes)
word Long (4 bytes)
su2ss Page (256 bytes)
Pattem 8 bytes

Bits16 32 bytes

Other data types are constructed as records of variables of the above types.
The size of such a type is the sum of the sizes of all the fields in the record;
the fields appear In the variable with the first fleld In the lowest address.
For example, consider the data type BitMap, which is defined as follows:

type BitHap = record

baseAddr: QOPtr;

rowBytes: integer;

bounds: Rect

end;

This data type would be arranged in memory as seven words: a long for the
baseAddr, a word for the rowBytes, and four words for the top, left, right, and
bottom parts of the bounds rectangle. To assist you in referring to the fields
inside a variable that has a structure like this, the QD/GRAFTYPES.TEXT file
defines constants that you can use as offsets into the fields of a structured
variable. For example, to move a bitmap's rowBytes value into D3, you would
execute the following instruction:

HOVE.¥ HYBITMAP+ROWBYTES, D3

Displacements are given in the QD/GRAFTYPES.TEXT flle for all fields of all
data types defined by QuickDraw.

To do double indirection, you perform an LEA indirectly to obtain the
effective address from the handle. For example, to get at the top coordinate
of a region’s enclosing rectangle:

HOVE.L MYHANDLE, A1 Load handle into Al
MOVE.L (A1),A1 Use handle to get pointer
MOVE.¥W RGNBBOX+TOP{Al1),D3 ; Load value using pointer

Ve N,

E-72

Pascal Rererence Mamnal QuickDraw

WARNING

For reglons (and all other variable-length structures with handles), you
must not move the pointer Into a register once and just continue to use
that pointer; you must do the double Indirection each time. Every
QuickDraw call you make can possibly trigger a heap compaction that
renders all pointers to movable heap items (like regions) Invalid. The
handles will remain valid, but pointers you've obtained through handles
can be rendered invalid at any subroutine call or trap in your program.

E.11.3 Gilobal Vvariables
Register A5 always points to the section of memory where global variables
are stored. The QD/GRAFTYPES.TEXT file defines a constant GRAFGL0B
that points to the beginning of the QuickDraw variaples in this space, and
other constants that point to the individual variables. To access one of the
varlables, put GRAFGLOB In an address register, sum the constants, and index
off of that register. For example, If you want to know the horizontal
coordinate of the pen location for the current grafPort, which the global
variable thePort points to, you can give the following instructions:

HOVE.L GRAFGLOB(AS), AO ; Point to QuickDraw globals
MOVE.L THEPORT(AO), A1 ; Get current grafPort
HOVE.¥ PNLOC+H(A1), D0 ; Get thePort”.pnioc.h

E.11.4 Procedures and Functions
To call a QuickDraw procedure or function, you must push all parameters to it
on the stack, then JSR to the function or procedure. when you link your
program with QuickDraw, these JSRs are adjusted to refer to QuickDraw's
jump table, so that a JSR into the table redirects you 10 the actual location
of the procedure or function.

The only difficult part about calling QuickDraw procedures and functions is
stacking the parameters. You must follow some strict rules:

* Save all registers you wish to preserve defore you begin pushing
parameters. Any QuickDraw procedure or function can destroy the
contents of the registers AD, A1, DO, D1, and D2, but the others are never
altered.

* Push the parameters In the order that they appear in the Pascal procedural
interface.

* For booleans, push a byte; for integers and characters, push a word; for
pointers, handles, long integers, and reals, push a iong.

* For any structured variable longer than 4 bytes, push a pointer to the
variable.

€-73

Pascal Reference Marual QuickODraw

* For all var parameters, regaraless of size, push a polnter to the variable.

¢ wWhen calling a functlon, 77yt push a null entry equal to the size of the
function result, #en push all other parameters. The result will be left on
the stack after the function returns to you.

This makes for a lengthy interface, but it also guarantees that you can mock
up a Pascal version of your program, and later translate it into assembly code
that works the same. For example, the Pascal statement

blackness := GetPixel(50, mousePos.v);
would be written In assembly language like this:

CLR.¥ -(SP) ; Save space for boolean result
HOVE.¥ #50, -(SP) ; Push constant 50 (decimal)
HOVE.W MOUSEPOS+V, -(SP) 2 Push the value of mousePos.v
JSR GETPIXEL 2 Call routine

MOVE.¥ (SP)+, BLACKNESS 2 Fetch result from stack

This is a simple example, pushing and pulling word-long constants. Normally,
you'll be pushing more polnters, using the PEA (Push Effective Address)
instruction:

Fil1RounoRect(myRect, 1, thePort”.pnSize.v, white);

PEA MYRECT > Push pointer to myRect

MOVE.W #1,-(SP) ; Push constant 1

MOVE.L GRAFGLOB(AS),A0 > Point to QuickDraw globals
MOVE.L THEPORT(AU), Al ; Get current grafPort

MOVE.¥ PNSIZE+V(A1). -(SP) ; Push value of thePort”.pnSize.v
PEA WHITE(AO) > Push pointer to global variable white
JSR FILLROUNDRECT 2 Call the subroutine

To call the TextFace procedure, push a word in which each of seven bits
represents a stylistic variation: set bit 0 for bold, bit 1 for italic, bit 2 for
underline, bit 3 for outline, bit 4 for shadow, bit 5 for condense, and bit 6 for
extend.

E-74

Pascal Rererence Marnual QuUickDraw

E.12 Graf3D: Three-Dimensional Graphics
Graf3D helps you map three-dimensional images onto the two-dimensional
space used by QuickDraw. If this is your flrst exposure to three-dimensional
graphics, you will find Graf3D’s standard procedures and functions a great help
in proaucing visuaily exciting graphs, charts, and drawings. If you are familiar
with Applegraphics for the Apple 11, you will feel right at home with Graf3D's
use of real variables and world coordinates.

with three-dimensional graphics you can present objects In true perspective,
which will evoke for users their everyday environment. Graf3D helps you
represent complex business Information plctorlaily; for example, a manager can
see important relationships among sales, profits, and advertising dollars In a
three-dimensional graph.

You may be interested in a more theoretical discussion of three-dimensional
graphics, including an explanation of some of the basic concepts of Graf3Db,
such as the viewing pyramid. A good, illustrated discussion appears in the
section on three-dimensional computer graphics in Arinciples of Interactive
Computer Graphics by Willlam M. Newman and Robert F. Sproull (New York:
MCGraw-Hill, 1973).

E.12.1 How Graf3D Is Related to QuickDraw
Graf3D s a Pascal unit that makes the QuickDraw calls necessary to proauce
three-dimensional graphics. It provides you with an easy-to-use real number
interface to QuickDraw's integer coordinates. You could, of course, write
your own QuickDraw calls to perform the same functions Graf3D provides for
you, but that would be a little like going to the trouble of writing your own
compiler.

E.12.2 Features of Graf3D
* A camera-eye view. This allows you to set the point of view from which
the observer sees the object independently from the coordinates of the
object 1tself. The camera is set up with the ViewPort, LookAt, and
ViewAngie procedures. You can set the focal length of the camera as if
you had a choice of telephoto, wide angle, or normal lenses.

* Thiee-aimensional clipoing to a e pyramlo. The apex of the pyramid is
at the point of the camera eye, and the base of the pyramid is equivalent
to the ViewPort. when you use the Clip3D function, only objects forward
of the camera eye and within the pyramid are displayed on the screen.

s Twoa-aimensional point and line cgqpablifty using real coorainates. Graf3D
provides commands corresponding to the QuickDraw commands but using
real coordinates instead of integers. With real coordinates you have a
larger dynamic range for graphics calculations; with integer coordinates
you get faster drawing time. For reals, the range is

14 x 107% to 34 x 10°8

E-75

Pascal Rererence Manual QUickDraw

s Two-dimensional or three-aimensional Jotal/on. You can rotate an object
along any or all axes simultaneously, using the Pitch, Yaw, and Roll
proceadures.

* Transiation ana scallng of otijfects in one or more axes Simultaneousiy.
Translation means movement anywhere in three-dimensional space. Scaling
means shrinking or expanding.

E.12.3 Graf3D Data Types
Graf3D declares and uses the following data types:

Point3D: A Point3D contalns three real number coordinates: x, y, and z.
Graf3D uses X, y, and z for real number coordinates to distinguish
between the h and v Integer screen coordinates in QuickDraw.

Point2: A Polnt2D Is just like a Point3D but contains only x and y
coordinates.

XfMatrix: The XfMatrix is a 4x4 matrix of real values, used toc hold a
transformation egquation. Each transforming routine alters this
matrix so that it contains the concatenated effects of all
transformations apptied.

Port3DPtr: A Port3DPtr is a pointer to a Port3D.

Port3D: A Port3D contains all the state variables needed to map real
number coordinates into integer screen coordinates. They are as
follows:

GPort: a pointer to the grafPort associated with this Port3D.

viewRect: the viewing rectangle within the grafPort; the base of the
viewing pyramid.

xieft, yTop, xRight, yBottom: world coordinates corresponaing to
the viewRect.

pen: three-dimensional pen location.
penPrime: the pen location transformed by the xForm matrix.
eye: three-dimensional viewpoint location established by ViewAngle.

hSize, vsize: half-width and half-height of the viewRect in screen
coordinates.

hCenter, vCenter: center of the viewRect in screen coordinates.

xCotan, yCotan: viewing cotangents set up by VviewAngle, used by
Clip3D.

ident: a boolean that allows the transformation to be skipped when
when xForm is an identity matrix.

xForm: a 4x4 matrix that holds the net result of all transformations.

E-76

Pascal Reference Manual QUickOraw

E.12.4 Graf3D Procegures and Functions
The following procedures and functions are provided in Graf3D.

Procedure Open3DPort(port: Port3DPtr);

Open3DPort initializes all the fields of a Port3D to thelr defaults, and makes
that Port3D the current one. Gport is set to the currently open grafPort.
The defaults established are:

thePort3D:=port;

port” _GPort:=thePort;

ViewPort(thePort”.portRect);

WITH thePort”.portRect DO LookAt(left, top,right bottom);
ViewAngle(0);

Identity;

toveTo3D(0, 0, 0);

Procedure SetPort3D(port: Port3DPtr);

SetPort3D makes port the current Port3D and calls SetPort for that Port3D's
assoclated grafPort. SetPort3D allows an application to use more than one
Port3D and switch between them.

Procedure GetPort3D(var port: Port3DPtr):

GetPort3D returns a pointer to the current Port3D. This procedure is useful
when you are using several Port3Ds and want 1o save and restore the current
one.

Procedure MoveTo2D(x,y: real); Procedure MoveTo3D(x,y,z: real);
Procedure HoveZD(dx, dy: real); Procedure Hove3D(dx, dy,dz: real);

These procedures move the pen In two or three dimensions without drawing
lines. The real number coordinates are transformed by the xForm matrix and
projected onto flat screen coordinates; then Graf3D calls QuickDraw's MoveTo
procedure with the result.

Procedure LineTo2D(x, y: real); Procedure LineTo3D(x, y,z: real);
Procedure {ine2D(dx dy: real): Procedure Line3D(dx. dy,dz: real):

These procedures draw two- and three-dimensional llnes from the current pen
location. LineToZD and LinezD stay on the same z-plane. The real number
coordinates are first transformed by the xForm matrix, then clipped to the
viewing pyramid, then projected onto the flat screen coordinates and drawn by
calling QuickDraw's LineTo procedure.

E-77

Pascal Rerference Marual QUICkDraw

Function Clip3D(srcl,src2: Point3D; var dstl, dst2: Point): boolean;

Clip3D clips a three-dimensional line segment to the viewing pyramid and
returns the clipped line projected onto screen coordinates. Clip3D returns
true if any part of the line is visible. If no part of the line is within the
viewing pyramid, Clip3D returns false.

Procedure SetPt3D(var pt3D: Point3D; X y,z: real);
SetPt3D assigns three real numbers to a Point3D.

Procedure SetPt2D(var pt2D: Point2D; X, y: real).
SetPt20 assigns two real numbers to a Pointz2D.

E.124.1 Setting Up the Camera (ViewPort, LookAt, and ViewAngle)
Procedures ViewPort, LookAt and ViewAngle position the image in the
grafPort, alm the camera, and choose the lens focal length in order to map
three-dimensional coordinates onto the flat screen space. These procedures
may be called in any order.

Procedure ViewPort(r: Rect);

viewPort specifies where to put the image in the grafPort. The ViewPort
rectangle Is in integer QuickDraw coordinates, and tells where to map the
LookAt coordinates.

Procedure LookAt(left, top, right, bottom: real);

LOOKAL specifies the real number x and y coordinates corresponding to the
viewRect.

Procedure ViewAngle(angle: real);

ViewAngle controls the amount -of perspective by specifying the horizontal
angle (in degrees) subtended by the viewing pyramid. Typical viewing angles
are 0° (no perspective), 10° (telephoto lens), 25° (normal perspective of the
human eye), and 80° (wide angle lens).

E.13.4.2 The Transformation Matrix
The transformation matrix allows you to impose a coordinate transformation
between the coordinates you plot and the viewing coordinates. Each of the
transformation procedures concatenates a cumulative transformation onto the
xForm matrix. Subsequent lines drawn are first transformed by the xrom
matrix, then projected onto the screen as specified by viewPort, LookAt, and
ViewAngle.

Procedure Identity;
Igentity resets the transformation matrix to an identity matrix.

E-78

Pascal Rererence Manual QuickDraw

Procedure Scale(xFactor, yFactor, zFactor: real);

Scale modifies the transformation matrix so as to shrink or expand by xFactor,
yFactor, and zFactor. For example, Scale(2.0,2.0,2.0) will make everything
come out twice as big when you draw.

Procegure Translate(dx, dy,dz: real);

Translate modifies the transformation matrix so as to displace by dxdy.dz.

Procedure Pitch(xAngle: real);

Pitch modifies the transformation matrix so as to rotate xAngle degrees
around the x axis. A positive angle rotates clackwise when looking at the
origin from positive x.

Procedure Yaw(yAngle: real);

Yaw modifies the transformation matrix so as to rotate yAngle degrees around
the y axis. A positive angle rotates clockwise when looking at the origin
from positive y.

Procedure Roll(zAngle: real):

Roll modifies the transformation matrix so as to rotate zAngle degrees around
the z axis. A positive angle rotates clockwise when looking at the origin
from positive z.

Procedgure Skew(zAngle: real);

Skew modifies the transformation matrix so as to skew zAngle degrees
around the z axis. Skew only changes the x coordinate; the result is much
like the slant QuickDraw gives to italic characters. (Skew(15.0) makes a
reasonable italic.) A positive angle rotates clockwise when looking at the
origin from positive 2.

Procequre TransForm(src: Point3D; var dst: Point3D);

Transform applies the xForm matrix to src and returns the result as ast. If
the transformation matrix is identity, dst will be the same as src.

E-79

Pascal Reference Manual QuickDraw

€.13 QuickDraw Interface
UNIT QuickDraw;

{ Copyright 1983 Apple Computer Inc. }

INTERFACE
CONST srcCopy = 0; { the 16 transfer modes }
srcor =1; -
srcxor =2
sreBic =3
notSrcCopy = 4;
notSrcor =5
notSrcxor = 6;
notSrcBic =7
patCopy = 8;
pator =9
patXor = 10;
patBic = 11;
notPatCopy = 12;
notPator = 13;
notPatXor = 14,
notPatBic = 15;

{ QuickDraw color separation constants }

normalgit = 0; { normal screen mapping }
inverseBit = 1; { inverse screen mepping }
reaBit = 4 { RGB additive mapping }
greenBit =3

blueBit = 2; ’

cyanBit = 8; { cHvBk subtractive mapping }
magentaBit = 7; -
yellowBit = 6;

blackBit =5,

blackColor = 33; { colors expressed in these mappings }
whiteColor = 30;

redColor = 205;

greenColor = 341;

blueColor = 409;

cyanColor = 273;

magentaColor = 137;

yellowColor = 69;

picLParen = 0; { standard picture comments }
picRParen =1

E-80

Pascal Rerference Marxial QuUickDraw

TYPE QDByte = -128..127;
QOPLY = “QDByte; { blind pointer }
QDHandle = ~QDPtr: { blind handle }
Stra2ss = String{2zs5);
Pattern = PACKED ARRAY[O0..7] OF 0..255;
Bitsie = ARRAY[O..15) OF INTEGER;
VHSelect = (v.h);
Grafverb = (frame,paint,erase, invert, fill);
StyleItem = (bold, italic, underline, outline, shadow, condense,
extend);
Style = SET OF StyleItem;
FontInfo = RECORD

ascent: INTEGER;
descent: INTEGER;
widMax: INTEGER;
leading: INTEGER;
END;

Point = RECORD CASE INTEGER OF

0: (v: INTEGER;
h: INTEGER);

1: (vh: ARRAY[VHSelect] OF INTEGER);
END;

Rect = RECORD CASE INTEGER OF

0: (top: INTEGER;
left: INTEGER;
bottom: INTEGER;
rignt: INTEGER);

1: (topLeft: Point;

botRight: Point);
END;

E-81

Pascal Rererence Marwal QuUIckDraw

BitMap = RECORD
baseAddr: QDPtLr;
rowBytes: INTEGER;
bounds: Rect;
END;

Cursor = RECORD

data: Bitsie;

mask: Bitsie;

hotSpot: Point;
END;

PenState = RECORD

pnLoc: Point;
pnsize: Point;
pniode: INTEGER;
pnPat: Pattern;
END;
PolyHandle = “PolyPtr;
PolyPtr = “Polygon;
Polygon = RECORD
polySize: INTEGER;
polyBBox: Rect.
polyPoints: ARRAY[O..0] OF Point;
END;
RgnHandle = “RgnPtr;
RgnPtr = “Region;
Region = RECORD
rgnSize: INTEGER; { rgnSize = 10 for rectangular }
TgnBBOX: Rect;
{ plus more data if not rectangular }
PicHandle = "PicPtr;
picPtr = “Picture;
Picture = RECORD

picSize: INTEGER;
picFrame: Rect;
{ plus byte codes for picture content }

’

E-82

Pascal Rerference Mamual QuickDraw

QDProcsPtr = "QDProcs:

QDProcs = RECORD
textProc: QOPtr;
lineProc: QDPtr;
rectProc: QDPtr;
TRectProc: QDPtr;
ovalProc: QDPLY;
arcProc: QOPtr;
polyProc: QOPLY;
YgNProc: QOPtx;
bitsProc: QDPtr;
commentProc: QOPtr;
txteasProc: QDPLr;
getPicProc: QOPtr;
putPicProc: QOPtr;

END;
GrafPtr = “GrafPort;
GrafPort = RECORD
device: INTEGER;

portBits: BitMap;
portRect: Rect;
visRgn: RgnHandle;
CclipRgn: RgnHandle;

bkPat: Pattern;
fil1lPat: pattern;
pnLoc: Point;
pnsize: Point;
pntiode : INTEGER;
pnPat: Patterrn;
pnvis: INTEGER;
txFont: INTEGER;
txFace: Style;
txfode: INTEGER:
txSize: INTEGER;

spExtra: LongInt;
fgColor: LongInt;
bkColor: LonglInt;
colrBit: INTEGER;
patStretch: INTEGER;
picSave: QOHandle;
rgnsave: QDHandle;

£-83

Pascal Rerererice Marnial CRUICKOraw

polySave: QDHandle;
grafProcs: QDProgsPtr;
END;

VAR thePort: GrafPtr;

vhite: Pattern;
black: Pattern;
gray: Pattern;
1tGray: Pattern;
akGray: Pattern;
arrow: cursor;

screenBits: BitMap;
randSeed: LongInt;

{ GrafPort Routines }

PROCEDURE InitGraf (globalPtr: QDPtr);
PROCEDURE OpenPort (port: GrafPtr);
PROCEDURE InitPort (port: GrafPtr);
PROCEDURE ClosePort (port: GrafPtr).
PROCEDURE SetPort (port: GrafPtr):
PROCEDURE GetPort (VAR port: GrafPtr);
PROCEDURE GrafDevice (device: INTEGER);
PROCEDURE SetPortBits(bm: BitMap): '
PROCEDURE PortSize (width, height: INTEGER),
PROCEDURE MovePortTo (leftGlobal, topGlobal: INTEGER):
PROCEDURE SetOrigin (h,v: INTEGER);
PROCEDURE SetClip (rogn: RonHandle):
PROCEDURE GetClip (rgn: RgnHandle);
PROCEDURE ClipRect (r: Rect);

PROCEDURE BackPat (pat: Pattern);

{ Cursor Routines }

PROCEDURE InitCursor;

PROCEDURE SetCursor(crsr: 0ursor)
PROCEDURE HideCursor:

PROCEDURE ShowCursor;

PROCEDURE ObscureCursor;

E-84

Pascal Reference Manual QuickDraw

{ Line Routines }

PROCEDURE HidePen;

PROCEDURE ShowPen;

PROCEDURE GetPen (VAR pt: Point);
PROCEDURE GetPenState(VAR pnState: PenState);
PROCEDURE SetPenState(pnState: PenState);
PROCEDURE PenSize (width, height: INTEGER);
PROCEDURE Pentiode (mode: INTEGER).
PROCEDURE PenPat (pat: Pattern);
PROCEDURE PenNormal:

PROCEDURE MoveTo (h,v: INTEGER);

PROCEDURE Move (oh, dv: INTEGER);
PROCEDURE LineTo (n,v: INTEGER);
PROCEDURE Line (oh, gv: INTEGER);

{ Text Routines }

PROCEDURE TextFont (font: INTEGER);

PROCEDURE TextFace (face: Style);

PROCEDURE TextHode (mode: INTEGER);

PROCEDURE TextSize (size: INTEGER).

PROCEDURE SpaceExtra (extra: LongInt);

PROCEDURE DrawChar (ch: char);

PROCEDURE DrawString (s: Str2ss);

PROCEDURE DrawText (textBuf: QOPtr; firstByte, byteCount: INTEGER);

FUNCTION Charwidth (ch: CHAR): INTEGER;

FUNCTION Stringwidth (s: Str255): INTEGER;

FUNCTION Textwidth (textBuf: QDPtr; firstByte,byteCount: INTEGER):
INTEGER;

PROCEDURE GetFontInfo (VAR info: FontInfo);

{ Point Calculations }

PROCEDURE AddPt (src: Point; VAR dst: Point);

PROCEDURE SubPt (src: Point; VAR dst: Point);

PROCEDURE SetPt (VAR pt: Point; h,v: INTEGER);

FUNCTION EqualPt gptl, pt2: Point): BOOLEAN;

PROCEDURE ScalePt VAR pt: Point; fromRect, toRect: Rect);
PROCEDURE MapPt (VAR pt: Point; fromRect, toRect: Rect);

PROCEDURE LocalToGlobal (VAR pt: Point);
PROCEDURE GlobalTolLocal (VAR pt: Point);

E-85

Pascal Reference Manual QuickDraw

{ Rectangle Calculations }

PROCEDURE SetRect (VAR r: Rect; left, top, right, bottom: INTEGER).
FUNCTION EqualRect (rectl, rect2: Rect): BOOLEAN;

FUNCTION EmptyRect (r: Rect): BOOLEAN;

PROCEDURE OffsetRect (VAR r: Rect; dh,dv: INTEGER);

PROCEDURE MapRect (VAR r: Rect; fromRect, toRect: Rect);
PROCEDURE InsetRect (VAR r: Rect; dh,dv: INTEGER);

FUNCTION SectRect (srcl, src2: Rect; VAR dstRect: Rect): BOOLEAN;
PROCEDURE UnionRect (srcl, src2: Rect; VAR dstRect: Rect);
FUNCTION PtInRect (pt: Point; r: Rect): BOOLEAN;

PROCEDURE Pt2Rect (pt1,pt2: Point; VAR dstRect: Rect);

{ Graphical Operations on Rectangles }

PROCEDURE FrameRect (r: Rect);
PROCEDURE PaintRect (r: Rect);
PROCEDURE EraseRect (r: Rect);
PROCEDURE InvertRect (r: Rect);
PROCEDURE FillRect (r: Rect; pat: Pattern):

{ RoundRect Routines }

PROCEDURE FrameRoundRect (r: Rect; ovWd,ovHt: INTEGER);

PROCEDURE PaintRoundRect (r: Rect:; ovWd, ovHt: INTEGER).

PROCEDURE EraseRoundRect (T: Rect; ovWd, ovHt: INTEGER);

PROCEDURE InvertRouncRect (r: Rect; ovWd, ovHt: INTEGER).

PROCEDURE FillRoundRect (r: Rect; ovWd, ovHt: INTEGER; pat: Pattern);

{ Oval Routines }

PROCEDURE FrameQval (r: Rect);
PROCEDURE PaintOval (r: Rect);
PROCEDURE EraseOval (r: Rect):
PROCEDURE InvertOval (r: Rect);
PROCEDURE Fill0val (r: Rect. pat: Pattern).

- { Arc Routines }

PROCEDURE FrameArc (r: Rect; startAngle, arcAngle: INTEGER);
PROCEDURE PaintArc (r: Rect; startAngle, arcAngle: INTEGER);
PROCEDURE EraseArc (r: Rect; startAngle, arcAngle: INTEGER);
PROCEDURE InvertArc (r: Rect; startAngle,arcAngle: INTEGER);

Pascal Rererence Manial QuUickDraw

PROCEDURE FillArc (r: Rect; startAngle, arcAngle: INTEGER; pat:
Pattern);
PROCEDURE PtToAngle (r: Rect; pt: Point; VAR angle: INTEGER);

{ Polygon Routines }

FUNCTION OpenPoly: PolyHandle;

PROCEDURE ClosePoly;

PROCEDURE KillPoly (poly: PolyHandle);

PROCEDURE OffsetPoly (poly: PolyHandle; dh,dv: INTEGER);
PROCEDURE MapPoly (poly: PolyHandle; fromRect, toRect: Rect);
PROCEDURE FramePoly (poly: PolyHandle);

PROCEDURE PaintPoly (poly: PolyHandle);

PROCEDURE ErasePoly (poly: PolyHandle);

PROCEDURE InvertPoly (poly: PolyHandle);

PROCEDURE FillPoly (poly: PolyHandle; pat: Pattern);

{ Region Calculations }

FUNCTION NewRgn: RgnHandle;

PROCEDURE DisposeRgn(rgn: RgnHandle);

PROCEDURE CopyRgn (srcRgn, dstRgn: RgnHandle);

PROCEDURE SetEmptyRgn(rgn: RgnHandle);

PROCEDURE SetRectRgn(rgn: RgnHandle; left, top, right, bottom: INTEGER);
PROCEDURE RectRgn (rgn: RgnHandle; r: Rect);

PROCEDURE OpenRan;

PROCEDURE CloseRgn (dstRgn: RgnHandle);

PROCEDURE OffsetRgn (rgn: RgnHandle; dh,dv: INTEGER);
PROCEDURE MapRgn (rgn: RgnHandle; fromRect, toRect: Rect);
PROCEDURE InsetRgn (rgn: RgnHandle; dh,dv: INTEGER);
PROCEDURE SectRgn (SrcRgnA, srcRonB, dstRgn: RgnHandle).
PROCEDURE UnionRgn (SrcRgnA, SrcRgnB, dstRgn: RgnHandle);
PROCEDURE DiffRgn (SrcRonA, SrcRgnB, dstRgn: RgnHandle);
PROCEDURE XorRgn (STCRQNA, STcRgnB, dstR?w: RgnHandle);
FUNCTION EqualRgn (rgnA, rgnB: RgnHandle): BOOLEAN;

FUNCTION EmptyRgn (rgn: le): BOOLEAN;

FUNCTION PtInRgn = (pt: Point; rgn: RgnHandle): BOOLEAN;
FUNCTION RectInRgn (r: Rect; rgn: RgnHandle): BOOLEAN;

7~~~

{ Graphical Operatimé on Regions }
PROCEDURE FrameRgn (rgn: RgnHandle);

PROCEDURE PaintRgn (rgn: RgnHandle);
PROCEDURE EraseRgn (rgn: RgnHandle);

£-87

Pascal Reference Manual QuickOraw

PROCEDURE InvertRgn (rgn: RgnHandle);
PROCEDURE F1llRgn (rgn: RonHandle; pat: Pattern);

{ Graphical Operations on BitMaps }

PROCEDURE ScrollRect(dstRect: Rect; oh,dv: INTEGER; updateRgn:
rgnHandle);
PROCEDURE CopyBits (srcBits,dstBits: BltMap;
STcRect, dstRect: Rect;
mode: INTEGER;
maskRgn: RgnHandle);

{ Picture Routines }

FUNCTION OpenPicture(picFrame: Rect): PicHandle;

PROCEDURE ClosePicture;

PROCEDURE DrawPicture(myPicture: PicHandle; dstRect: Rect);
PROCEDURE PicComment(kingd, dataSize: INTEGER; dataHandle Q0Handle),
PROCEDURE Killpicture(myPicture: PicHandle);

{ The Bottleneck Interface: }

PROCEDURE SetStdProcs({VAR procs: QDProcs);

PROCEDURE StdText (count: INTEGER; textAddr: QDPtr; numer, denom:
Point);

PROCEDURE StdLine (newPt: Point);

PROCEDURE StdRect (verb: Grafverb; r: Rect);

PROCEDURE StdRRect (verD: GrafVerb; r: Rect; owvWd, ovHt: INTEGER);
PROCEDURE StdOval (verb: Grafverb; r: Rect); ‘
PROCEDURE StdArc (verb: Grafverb; r: Rect; startAngle,arcAngle:

INTEGER);
PROCEDURE StdPoly (verb: Grafverb; poly: PolyHandle);
PROCEDURE StciRgn (verb: Grafverb; rgn: RgnHandle);
PROCEDURE StaBits (VAR srcBits: BitMap; VAR srcRect, dstRect: Rect;
mode: INTEGER; maskRgn: RgnHandle):
PROCEDURE StdComment (kind, dataSize: INTEGER; dataHandle: QDHandle);
FUNCTION' StdTxMeas (count: INTEGER: textAddr: QOPLr:
VAR numer, denom: Point;
VAR info: FontInfo): INTEGER;
PROCEDURE StdGetPic (dataPtr: QDPtr; byteCount: INTEGER);
PROCEDURE StoPutPic (dataPtr: QDPtr; byteCount: INTEGER);

Pascal Reference Marval QulckOraw

{ Misc Utility Routines }

FUNCTION GetPixel (h,v: INTEGER): BOOLEAN:
FUNCTION Random: INTEGER;

PROCEDURE StuffHex (thingptr: QOPLr; s:5tr2ss).
PROCEDURE ForeColor (color: LongInt);

PROCEDURE BackColor (color: LongInt);
PROCEDURE Colorgit (wnhichBit: INTEGER);

E.13.1 Graf3D Interface
{$S Graf }
UNIT Graf3D;
{ three-dimensional graphics routines layered on top of QuickDraw }
INTERFACE '
USES {$U QD/QuickDraw.08J } QuickDraw;
, CONST radConst=57.29578;
TYPE Point3D=RECORD

x: REAL
y: REAL;
2: REAL.
END;
Point2D=RECORD
X: REAL;
y: REAL;
END; ‘
XfMatrix = ARRAY([O..3,0..3] OF REAL;
Port30Ptr = “Port3D;
Port3p = RECORD
GPort: GrafPtr;
viewRect: Rect;
xLeft, yTop, xRight, yBottom: REAL;
pen, penPrime, eye: Point30;
nhSize, vSize: " REAL;
hCenter, vCenter: REAL,
xCotan, yCotan; REAL;
ident: BOOLEAN;
xForm: : ¥fMatrix;
END;

E-89

Pascal Reference Marva! A GRickDraw

VAR thePort3D: Port3optr;

PROCEDURE Open3DPort ~ (port: Port3pPtr);
PROCEDURE SetPort3d (port: POrt3oPtr):
PROCEDURE GetPort3d (VAR port: Port3oPtr);

PROCEDURE MoveTo2D(X, y: REAL); PROCEDURE MoveTo3D(X,y,2z: REAL);
PROCEDURE L1ineTo2D(X, y: REAL); PROCEDURE LineTo3D(X,y.2Z: REAL);
PROCEDURE Move2D(dx,dy: REAL); PROCEDURE Hove3D(dx,dy,dz: REAL);
PROCEDURE Line2D(dx, dy: REAL); PROCEDURE Line3D(ax,dy, dz: REAL);

PROCEDURE ViewPort (r: Rect);

PROCEDURE LookAt. (left,top, right, bottom: REAL);
PROCEDURE ViewaAngle = (angle: REAL):

PROCEDURE Identity;

PROCEDURE Scale (xFactor, yFactor, zFactor: REAL);

PROCEDURE Translate (dx,dy,dz: REAL);

PROCEDURE Pitch (xAngle: REAL);

PROCEDURE Yaw (yAngle: REAL); -

PROCEDURE Roll (zAngle: REAL).

PROCEDURE Skew (zAngle: REAL);

PROCEDURE TransForm (src: Point3D; VAR dst: Point3D);

FUNCTION C1ip3D (src1, src2: Point3D; VAR dstl,dst2: POINT):
BOOLEAN;

PROCEDURE SetPt3D (VAR pt3D: Point3D; x,y,2: REAL);
PROCEDURE SetPt2D (VAR pt20: Point2D; X, y: REAL);

€-90

Pascal Rererence Marial

E.14 QuickDraw Sample

QuickDraw

Programs
This section provides listings of two sample programs that are included with

the Workshop software.

E141 QDSample

The program QDSample (in the flle QD/QDSample. TEXT) demonstrates
different things that QuickDraw can do. Its output is shown In Figure E-26.

Look what you can draw with QuickDraw

Rectangles

Bit images

98 s

Regions

Ovals

Figure E-26
QDsample

The file QDM/QDSample. TEXT 1s an exec file that can be used to rebulld
this sample program. Disregard any warning messages from the linker about

name conflicts.

E-91

Pascal Rererence Manual QuickDraw

PROGRAM QOSample;
{ sample program illlustrating the use of QuickDraw. }

USES {$U QD/QuickDraw.08J } QuickDraw,
' {$u Q0/QDSupport.0BJ } QOSupport;

TYPE IconData = ARRAY[0..95] OF INTEGER;

VAR heapBuf: ARRAY[0..10000] OF INTEGER;
myPort: . GrafPort;
icons: ARRAY[0..5] OF IconData;

FUNCTION HeapFull(hz: QDPtr; bytesNeeded: INTEGER): INTEGER;

{ this function will be called if the heapZone runs out of space }
BEGIN

WRITELN('The heap is full. The program must now terminate! ');
Halt;

END;

PROCEDURE InitIcons; : o
{ Manually stuff some icons. Normally we would read them from a file }
BEGIN

{Lisa }
StuffHex(2icons[0,

], * 600000000000000000000000000000000000001FFFFFFFFC"),
StuffHex(aicons(0,

0

12}, ' 0060000000060180000000080600000000130FFFFFFFFFA3");
StuffHex(aicons({0, 24], * 18000000004311FFFFF00023120000080F 2312000008F 923" ;;
StuffHex(aicons[0, 36], ' 120000080F 23120000080023120000080023120000080F 23");
StuffHex(@icons[0, 48], ' 12000008F 923120000080F 2312000008002311FFFFF00023* ;;
StuffHex(aicons[0, 60], * 08000000004307FFFFFFFFA30100000000260FFFFFFFFE2C"),
StuffHex(@icons[0, 72}, * 18000000013832AAAAABAIF 0655555515380C2AARA82A580 ")
StuffHex(3icons[0, 84}, ' 800000000980F FFFFFFFF300800000001600F FFFFFFFFCO0"),

N,

{ Printer }
StuffHex(aicons[1,

, ' 0000000000000006000000000000000000000000000000000° ;;
StuffHex(aicons(1,

0
12}, ' 00000000000000007FFFFF00000080000280000111514440°);
StuffHex(@icons(1, 24}, * 0002000008400004454510400004000017C00004A5151000");
StuffHex(@icons| 1, 36], * 0004000010000004A54510000004000017FEOCF4A5151003");
StuffHex(@icons|1, 48], ' 0184000013870327F FFFF 10F 06400000021BOCFFFFFFFC37");
StuffHex(@icons(1, 60], ' 180000000068300000000007 7F FFFFFFFFABCO0000000356");
StuffHex(@icons|1, 72], ' 8000000001AC87F 000000158841000CCC18087F 000CCC160");
84

StuffHex(@icons{1, 84], ' 8000000001C0C000000003807FFFFFFFFFO007800001E000"°);

Pascal Reference Mais! QuickDraw

{ Trash Can }

StuffHex(aicons{2, 0], ‘000001FCO00000000ED600000000300300000000C0918000"),
StuffHex(a@icons{2, 12], ' 00013849800000026C4980000004C0930000000861260000"),
StuffHex(a@icons[2, 24], ' 0010064FE0000031199830000020£6301800002418E00800"),
StuffHex(a2icons(2, 36), ' 0033E3801C0000180E002C00000FF801CC0O000047FFEQCO0")
StuffHex(aicons{z, 48], * 000500004C000005259A4C000005250A4C00000525FA4C00");
StuffHex(@icons[2, 60], * 000524024C00000524924C00600524924C0090E524924C7C");
StuffHex(@icons[2, 72], * 932524924C82A44524924D01C88524924CF 10C4524924C09");
StuffHex(@icons{2, 84], '0784249258E70003049233100000EQ000E40800001FFFC3FO").
{ tray }

StuffHex(®@icons{3, 0}, ‘0000000000000000000000000000000006000000000000000");
StuffHex(a@icons{3, 12], * 6000000000000000000000000000000000000007FFFFFFFO");
StuffHex(®icons(3, 24}, ‘ 600E00000018001A00000038003600000078006A00000008"),
StuffHex(aicons(3, 36, ' 00D7FFFFFFB801AC0000035803580000068807FCOO0FFDS8”),
StuffHex(@icons(3, 48], ' 040600180AB80403FFF 00DS8040000000AB8040000000DS8"),
StuffHex(@icons{3, 60], ' 040000000AB807FFFFFFFD5806AC00000AB30S55800000D058 ")
StuffHex(3icons(3, 72], ' 06B000000ABS07F COOOFFD70040600180AE00403FFFOODCO"),
StuffHex(2icons[3, 84], ' 040000000880040000000F 00040000000E0007FFFFFFFCO0°),

{ File Cabinet

—

StuffHex(@icons[4, 0]}, '0607FFFFFC00000800000C00001000001C00002000003400°);
StuffHex(@icons[4, 12}, *004000006C0000FFFFFFD40000800000ACO000BFFFFED4A00"),
StuffHex(@icons| 4, 24}, ' 00A00002ACO000A07F 02040000A04102AC0000A07F 02D400");
StuffHex(@icons[4, 36], ' 00A00002ACC000A08082D40000A0FF82ACC000A000020400°)
StuffHex(@icons{4, 48}, ' 0BADOOD2ACO000BF FFFED40000800000ACO000BFFFFED400");
StuffHex(@icons(4, 60), * 00A00002ACC000A07F 02D40000A04102ARC0000A07F 02D400°)
StuffHex(@icons(4, 72}, * 00ADC002ACO000A08082D40000A0F F82ACO000A000020800°);
StuffHex(a@icons(4, 84}, ' 00AG0002B00000BFFFFEEQC0000800000CO0000FFFFFF8000°)
{ drawer } .

StuffHex(®icons[S, 0], '00°);
StuffHex(@icons(5, 12}, *00°);
StuffHex(@icons(5, 24}, ' 6000 ");
StuffHex(@icons(S, 36), ' 001FFFFFFO");
StuffHex(@icons(5, 48}, ' 0000380000300000680000700000D80000D0003FFFFFF1B0"),
StuffHex(a@icons{S. 60). '00200000135000200000168000201FE01D50002010201A80°)
StuffHex(@icons[S, 72}, ' 00201FE01560002000001AC0002000001580002020101800°),
StuffHex(@icons(5, 84), ' 00203FF 01600002000001C00002000001800003FFFFFF000°),
END;

E-93

Pascal Reference Mamal QuickOraw

PROCEDURE DrawIcon(whichIcon, h,v: INTEGER);
VAR srcBits: BitMap;
srcRect, dstRect: Rect:

BEGIN

srcBits.baseAddr :=@icons{whichIcon);

srcBits.rowBytes: =6;

SetRect(srcBits.bounds, 0, 0, 48, 32).

srcRect :=srcBits.bounds;

dstRect :=srcRect;

OffsetRect(dstRect, h, v);

CopyBits(srcBits, thePort~.portBits, srcRect, dstRect, srcOr, Nil);
END;

PROCEDURE DrawStuff;

VAR 1: INTEGER;
tempRect: Rect;
myPoly: PolyHandle;
myRgn: RgnHandle;
myPattern: Pattern;

BEGIN
StuffHex(amyPattern, '8040200002040800°);

tempRect := thePort”.portRect;
ClipRect(tempRect);
EraseRoundRect (tempRect, 30, 20);
FrameRoundrect (tempRect, 30, 20);

{ draw two horizontal 1lines across the top }
MoveTo(0,18);

LineTo(719, 18);

MoveTo(0, 20);

LineTo(719, 20);

{ draw divider lines }
MoveTo(0, 134);
LineTo(719, 134);
MoveTo(0, 248);
LineTo(719, 248).
HoveTo(240, 21);
LineTo(240, 363).
MoveTo(480,21);
LineTo(480, 363);

Pascal Reference Msnual QuickDraw

{ draw title }

TextFont(0);

HoveTo(210, 14);

DrawString(‘'Look what you can draw with QuickDraw');

{-----=--- draw text samples --------- }
MoveTo(80, 34); DrawString('Text');

TextFace([bold]);
MoveTo(70,55); DrawString('Bold’);

TextFace([italic]);
MoveTo(70, 70); OrawString('Itaelic');

TextFace([underline]});
MoveTo(70, 85),; DrawString('Underline’);

TextFace([outline]);
MoveTo(70, 100); OrawString('Outline');

TextFace([shedow]);
HoveTo(70, 115); DrawString(’Shadow’);

TextFace([1); { restore to normal }

{ - draw line samples --------- }
MoveTo(330,34); DrawString(‘Lines’);
MoveTo(280,25); Line(160, 40);

PenSize(3,2).;
MoveTo(280,35); Line(160, 40);

PenSize(6, 4);
toveTo(280, 46); Line(160, 40);

PenSize(12,8);

PenPat(gray);
MoveTo(280,61); Line(160, 40);

E-95

Pascal Reference Msnual QuickDraw

PenSize(15, 10);
PenPat(myPattern);

toveTo(280, 80); Line(160, 40);
PenNormal; :

{ ~——=-—~- draw rectangle samples S }
MoveTo(560, 34); DrawString(’Rectangles');

SetRect (tempRect, 510, 40, 570, 70),
FrameRect(tempRect);

OffsetRect(tempRect, 25, 15);
PenSize(3, 2);
EraseRect(tempRect);
FrameRect(tempRect),

Of fsetRect(tempRect, 25, 15);
PaintRect(tempRect);

OffsetRect(tempRect, 25, 15).
PenNormal;
FillRect(tempRect, gray).
FraneRect(tenpRect?;

OffsetRect(tempRect, 25, 15); |
FillRect(tempRect, myPattern);
FrameRect(tempRect);

{ - draw roundRect samples --------- }
MoveTo(70, 148); DrawString(‘RoundRects');

SetRect(tempRect. 30, 150, 90, 180).
FrameRoundReot(tempReot, 30,20); -

OffsetRect(tempRect, 25, 15);
Pensize(3,2):
EraseRoundRect(tempRect, 30, 20);
FrameRoundRect (tempRect, 30, 20).

OffsetRect(tempRect, 25, 15);
PaintRoundRect(tempRect, 30, 20);

Pascal Reference Marual QuickDraw

OffsetRect(tempRect, 25, 15);
PenNormal;

FillRoundRect(tempRect, 30, 20, gray);
FrameRoundRect (tempRect, 30, 20?:

Of f setRect(tempRect, 25, 15);
FillRoundRect(tempRect, 30, 20, myPattern);
FrameRoundRect (tempRect, 30, 20);

{ - draw bit image samples --------- }
MoveTo(320, 148); OrawString(°'Bit Images');

Drawlcon(0, 266, 156);
Drawlcon(1, 336, 156);
DrawIcon(2, 406, 156);
DrawIcon(3, 266, 196);
DrawIcon(4, 336, 196);
Drawlcon(5, 406, 196);

{ - drav Yedge samples --------- }
HoveTo(570, 148); DrawString(‘Wedges’);

SetRect(tempRect, 520, 153, 655, 243);
FillArc(tempRect, 135, 65, dkGray);
FillArc(tempRect, 200, 130, myPattern);
FillArc(tempRect, 330, 75, gray);
FrameArc(tempRect, 135, 270);

Of fsetRect(tempRect, 20, 0);
PaintArc(tempRect, 45, 90);

{ e draw polygon samples --------- }

HoveTo(80,262); DrawString(’Polygons’);
myPoly : =OpenPoly; .
HoveTo(30, 290);
LineTo(30, 280);
LineTo(50, 265);
LineTo(90, 265);
LineTo(80, 280);
LineTo(95, 290);
LineTo(30,290); -
ClosePoly; { end of definition }

E-97

Pascal Reference Manusl

FramePoly(myPoly);

OffsetPoly(myPoly, 25, 15);

PenSize(3,2);
ErasePoly(myPoly);
FramePoly(myPoly);

OffsetPoly(myPoly, 25, 15);

PaintPoly(myPoly);

OffsetPoly(myPoly, 25, 15);

PenNormal;

FillPoly(myPoly, ?ray);

FramePoly(myPoly);

OffsetPoly(myPoly, 25, 15);
FillPoly(myPoly, myPattern);

FramePoly(myPoly).
KillPoly(myPoly);

{ ----=-- demonstrate region clipping

HoveTo(320,262); DrawString(’'Regions');

myRgn: =NewRgn;
OpenRgn;
ShowPen;

SetRect(tempRect, 260, 270, 460, 350);
frameRoundRect (tempRect, 24, 16);

HoveTo(275, 335);
LineTo(325, 285);
LineTo(375. 335):
LineTo(275, 335);

SetRect(tempRect, 365, 277, 445, 325);

{ define triangular hole }

FrameQval(tempRect);

HidePen;
CloseRgn(myRgn);

SetClip(myRgn);

{ end of definition }

{ oval hole }

QuickDraw

Pascal Reference Manual QuickDraw

FOR 1:=0 70 6 DO { draw stuff inside the clip region }
BEGIN
MoveTo(260, 280+12%1);
OrawString('Arbitrary Clipping Regions');

’,

ClipRect(thePort” .portRect);
DisposeRgn(myRgn);

{ - draw oval samples --------- }
MoveTo(580, 262); DrawString(‘Ovals’);

SetRect(tempRect, 510, 264,570, 294);
FrameOval(tempRect);

Of fsetRect(tempRect, 25, 15);
PenSize(3,2);
EraseOval(tempRect);
FrameOval(tempRect);

OffsetRect(tempRect, 25, 15).
PaintOval(tempRect);

of fsetRect(tempRect, 25, 15);
PenNormal;
FillOval(tempRect, gray);
FrameQval(tempRect),

offsetRect(tempRect, 25, 15).
FillOval(tempRect, myPattern);
FrameQval(tempRect),

END; { DrawStuff }

E-9%

Pascal Reference Manual QuickDraw

BEGIN { main program }
{ Initialization - Generic to all applications using QuickDraw }
QDInit(aheapBuf, 3heapBuf{10000], 3HeapFull); { Must do this once at

beginning }
OpenPort(amyPort);
PaintRect(thePort”.portRect); { Paint grey background }

InitIcons;
DrawStuff,
Tone(2000, 500); { Beep tone of (1/2000)*10°6 == 500 cycles/sec for
500 milliseconds }
ReadLn; { wait until RETURN entered before terminating program }
END.

E-100

Pascal Reference Manual QuickDraw

E.142 Boxes
The program Boxes (in the file QD/Boxes.TEXT) uses the Graf3D routines to
draw random three-dimensional boxes on a grid, as shown in Figure E-27.

Figure E-27
Boxes

The file QD/M/Boxes.TEXT is an exec file that can be used to rebuild this
sample program. Disregard any waming messages from the linker about name
conflicts.

E-101

Pascal Reference Manual ickDraw

PROGRAM Boxes;

{ Sanple program illustrating use of the Graf3D unit by drawing random
3D boxes on a grid. }

USES
~ {$U Q0/QuickDraw.0B) } QuickDraw,
{$U Q0/Graf30.08) } Graf3D,
{$U QD/QDSupport.0BJ } QDSupport,

CONST boxCount = 15

TYPE Box3D=RECORD
ptl: Point3D;
pt2: Point3D;
dist: REAL;
. END;

VAR v
heapBuf : ARRAY[0..8192] OF INTEGER; {16k bytes}
GPortl: GrafPort, ‘
GPort2: Port3d;
myPort: GrafPtr;
myPort3D: Port3DPtr;
boxArray: ARRAY[O..boxCount] OF Box3D;
nBoxes: INTEGER;
i: : INTEGER;

FUNCTION HeapError(hz: QOPtr; bytesNeeded: INTEGER): INTEGER;

{ this procedure gets called when the heap zone is full }

BEGIN .
WRITELN('The heap is full. The program must now terminate! ');
HN. - X

END; ‘

FUNCTION Distanoe(pti, pt2: POINT3D): REAL;
VAR dx,dy,dz: REAL.
BEGIN

dx:=pt2.X - pt1.X;

dy:=pt2.Y - ptli.¥Y;

dz:=pt2.Z - pti.Z;

Distance:=SQRT(dx*dx + dy*dy + dz«dz);
END;

£-102

Pascal Reference Msnual QuickDraw

PROCEDURE MakeBox;

VAR myBox: Box3D;
i, i.hv: INTEGER;
P1,p2: Point3D;
myRect : Rect;
testRect: Rect.

BEGIN

p1.x:=Random mod 70-15;

pl.y:=Random mod 70 -10;

p1.2:=0.0;

p2.x:=pl.x + 10 + ABS(Random) MCD 30;
p2.y:=pl.y + 10 + ABS(Random) MOD 45;
p2.z:=pl.z + 10 + ABS(Random) MOD 35;

{ reject box if it intersects one already in list }
SetRect(myRect, ROUND(p1.X), ROUND(p1.y), ROUND(p2.x), ROUND(p2.y)),
FOR i:=0 TO nBoxes-1 DO
BEGIN
WITH boxArray[i] DO
SetRect(testRect, ROUND(pt1.x), ROUND(pt1.y),
ROUND(pt2.x), ROUND(pt2.y));
IF SectRect(myRect, testRect, testRect) THEN EXIT(MakeBox);

.

myBox.pt1:=pl;
myBox. pt2:=p2;

{ calc midpoint of box and its distance from the eye }
pl.x:=(pl.x + p2.x)/2.0;

pl.y:=(pl.y + p2.y)/2.0;

p1.z:=(p1.z + p2.2)/2.0;

Transform(pl, p2);

myBox.dist:=Distance(p2, myPort3D".eye); { distance to eye }

i:=0; ’
boxArray[nBoxes].dist:=myBox.dist; { sentinel }
WHILE myBox.dist > boxArray[i].dist DO i:=i+1; {insert in order of dist}
FOR j:=nBoxes DOWNTO i+1 DO boxArray{j]:=boxArray[j-1};
boxArray[i]:=myBox;
nBoxes : =nBoxes+1;

END;

E-103

- Pascal Reference Manual QuickDraw

PROCEDURE DrawBox(ptl, pt2: Point3D);
{ draws a 3D box with shaded faces. }
{ only shades correctly in one direction }

VAR tempRgn: RgnHandle;

BEGIN
tempRgn: =Newkgn;

OpenRgn;
HoveTo3D(ptl.x, pti.y,ptl.z); { front face, y=yl }
LineTo3D(ptl.x, pti.y,pt2.2);
LineTo3D(pt2.x ptl.y,pt2.2);
LineTo3D(pt2.x, ptl.y,pti.2);
LineTo3D(pti.x, ptl.y,ptl1.2);
CloseRgn(t ;

empRon),
FillRgn(tempRgn, white);

an, '
MoveTo3D(ptl.x, ptl.y,pt2.2); { top face, z=z2 }
LineTo3D(ptl.x, pt2.y, pt2.2);
LineTo3D(pt2.x, pt2.y,pt2.2);
LineTo30(pt2.x, ptl.y, pt2.2);
LineTo3D(ptl.x, pti.y,pt2.2);
CloseRgn(tempRon).
FillRgn(tempRgn, gray);

OpenRgn; .
HoveTo3D(pt2.x, pti.y,pt1.z); { right face, x=)2 }
LineTo3D(pt2.x, ptl.y, pt2.2);
LineTo3D(pt2.x, pt2.y, pt2.2);
LineTo3D(pt2.x, pt2.y, pt1.2);
LineTo3D(pt2.x, ptl.y,pti.2);
CloseRgn(tempRgn);
Fil11Rgn(tempRgn, black);

PenPat(white);

MoveTo3D(pt2.x,pt2.y,pt2.z); { outline right }
LineTo3D(pt2.x, pt2.y.ptl1.2);

LineTo30(pt2.x, ptl.y, pt1.2z);

PenNormal;

DisposeRgn(tempRgn);
END;

E-104

Pascal Reference Marnugl QuickDraw

BEGIN { main program }
{ Initialization - Generic to all applications using QuickDraw }
QDInit(aheapBuf, - aheapBuf(8192), aheapError); { Must do this once at

beginning)

myPort := aGPortl;
menPort(myPort) ;
myPort3D := 3GPort2;
Openmport(myportm),

ViewPort(myPort".portRect); { put the image in this rect }
LookAt(-100, 75, 100, -75); { aim the camera into 3D space }
ViewAngle(30); { choose lens focal length }
Identity; Rol1(20); Pitch(70); { roll and pitch the plane }

PenPat(white);
BackPat(black);
EraseRect(myPort” .portRect);

FOR i:=-10 70 10 DO
BEGIN
MoveTo3D(i*10, -100, 0);
LineTo30(i%*10, +100, 0);
END;

FOR i:=-10 TO 10 DO
BEGIN
MoveTo3D(~100, 1#10, 0);
LineTo30(+100, i%*10, 0);
END;

nBoxes:=0;

REPEAT MakeBox; UNTIL nBoxes=boxCount,

FOR i:=nBoxes-1 DOWNTO O DO
DrawBox(boxArray(i].pt1, boxArray[x] pt2);

Tone(2000, 500); {Beep tone of (1/2000)*10°6 == 500 cycles/sec for
500 milliseconds }
Readln; { Wait until RETURN entered before terminating program }

END.

E-105

Pascal Rerference Marnia! QulckDraw

E.15 QOSupport
_The QDSupport unit (in the file QD/QDSuppPort. TEXT) provides the
initialization that you need to use QuickDraw In the QDInit procedure, as wetl
as procedures for simplified access to mouse tracking, the mouse button, and
sound generation, and useful definitions of font numbers. For more detailed
information on mouse-handling routines and sound, refer to Appendix F,
Hardware Interface.

UNIT QDSupport;
INTERFACE

USES
{$U QD/uUn1tStd.08J
{$u QD/UNnitHz.0BJ
{$U QD/Hardware.08J
{$uU QD/Fontmgr.0BJ
{$U QD/QuickDraw.08J

UnitsSta,
UnitHz,
Hardware,
Fontmgr,
QuickDraw;

Nt Syt Semgeet Syt St

4; {proportional}

S; {proportional}

6; {proportional}
FP1STile 7; {Monospaced - 8 lines/inch & 15 chars/inch}
FP12Tile 8; {tonospaced - 6 lines/inch & 12 chars/inch}

FTile12 =
FP10Tile = 9; {Monospaced - 6 lines/inch & 10 chars/inch}

FTile18
FTile24

FCent12 10; {proportional}

FCent18 11; {proportional}

FCent24 12; {proportional}

FP12Cent 13; {Monospaced - 6 lines/inch & 12 chars/inch}
FPi0Cent 14; {Honospaced - 6 lines/inch & 10 chars/inch}
FP20Tile 19; {Monospaced}

E-106

Pascal Reference Manual QuickDraw

PROCEDURE QDInit(startPtr, limitPtr: QDPtr; ErrorProc: QoPtr);
{ Q0Init: Initializes QuickDraw unit by setting up its heap

zone, global vars, cursor, and the Font Manager it
calls on. }

PROCEDURE GetMouse(VAR pt: Point);
{ GetMouse: Returns the current mouse location in the local
coordinates of the current graffort. }

FUNCTION HMouseButton: BOOLEAN;

{ MouseButton: Returns TRUE if the mouse button is currently held
down, otherwise FALSE. }

PROCEDURE Tone(wavelength, duration: LongInt);

{ Tone: Produces a square wave tone of the specified
wavelength (microseconds) for the specified duration
(milliseconds). }

E~107

Pascal Reference Marnal QuickDraw

E16

bit image: A collection of bits in memory that have a rectilinear represen-
tation. The Lisa screen is a visible bit image.

bitmap: A pointer to a bit image, the row width of that image, and its
boundary rectangle.

boundary rectangle: A rectangle defined as part of a bitmap, which encloses
the active area of the bit image and imposes a coordinate system on it. Its
top left comer is always aligned around the first bit in the bit image.

camera eye: A concept in three-dimensional graphics: the point of view and
the viewing angle in which an object appears, independent of the object's
coordinates.

character style: A set of stylistic variations, such as bold, italic, and
underline. The empty set indicates normal text (no stylistic variations).

clipping Limiting drawing to within the bounds of a particular area.
clipping regiort Same as clipRgn.
clipRge The region to which an application limits drawing in a grafPort.

coordinate plane: A two-dimensional grid. In QuickDraw, the grid coordinates
are integers ranging from -32768 to +32767, and all grid lines are infinitely
thin.

cursor: A 16-by-16-bit image that appears on the screen and is controlled by
the mouse.

cursor Jevel: A value, initialized to 0 when the system is booted, that keeps
track of the number of times the cursor has been hidden.

empty: Containing no bits, as a shape defined by only one point.
font: The complete set of characters of one typeface, such as Century.
frame: To draw a shape by drawing an outline of it

global coordinate system: The coordinate system based on the top left comer
of the bit image being at (0,0).

Graf3D: A three-dimensional graphics unit that calls QuickDraw routines.

grafPort: A complete drawing environment, including such elements as a
bitmap, a subset of it in which to draw, a character font, pattemns for drawing
and erasing, and other pen characteristics.

grafPtr: A pointer to a grafPort.

handle: A pointer to one master pointer to a dynamic, relocatable data
structure (such as a region).

hotspot: The point in a cursor that is aligned with the mouse position.
kem To stretch part of a character back under the previous character.

E-108

Pascal Reference Mearval QuickOraw

local coordinate system: The coordinate system local to a grafPort, imposed
by the boundary rectangle defined in its bitmap.

missing symbol: A character to be drawn in case of a request to draw a
character that is missing from a particular font.

pattemt An 8-by-8-bit i , used to define a repeating design (such as
stripes) or tone (such as gray

pattem transfer mode: One of eight transfer modes for drawing lines or
shapes with a pattem. '

picture: A saved sequence of QuickDraw drawing commands (and, optionally,
picture comments) that you can play back later with a single procedure call;
also, the image resulting from these commands.

picture comments: Data stored in the definition of a picture which does not
affect the picture’s appearance but may be used to provide additional
information about the picture when it's played back.

picture frame: A rectangle, defined as part of a picture, which surrounds the
picture and gives a frame of reference for scaling when the picture is drawn.

pixel: The visual representation of a bit on the screen (white if the bit is 0,
black if it's 1).

paint: The intersection of a horizontal grid line and a vertical grid line on
the coordinate plane, defined by a horizontal and a vertical coordinate.

polygort A sequence of connected lines, defined by QuickDraw line-drawing
commands.

port: GrafPort or Port3D.

Port3D: A data structure in Graf3D that maps three-dimensional coordinates
into a two-dimensional QuickDraw grafPort.

Port3DPtr: A pointer to a Port3D.

portBits: The bitmap of a grafPort.
portBitsbounds: The boundary rectangle of a grafPort’s bitmap.

portRect: A rectangle, defined as part of a grafPort, which encloses a subset
of the bitmap for use by the grafPort.

region: An arbitrary area or set of areas on the coordinate plane. The
outline of a region should be one or more closed loops.

row width: The number of bytes in each row of a bit image.
scale: To shrink or expand by a specified factor.
solia: Filled in with any pattemn.

source transfer mode: One of eight transfer modes for drawing text or
transferring any bit image between two bitmaps.

E-109

Pascal Refererce Marnual QuickDiraw

style: See character style.
thePort: A global variable that points to the current grafPort.
thePort3D: A global variable that points to the current Port3D.

tramsfer mode: A specification of which boolean operation QuickDraw should
perform when drawing or when transferring a bit image from one bitmap to
another.

transiate: To move in three-dimensional space by a specified amount.
transformation matrixx Same as xForm matrix.

viewing The portion of three-dimensional space that a camera eye
can see. The pyramid's apex is the point of the camera eye; its base is the
viewRect in a Port3D.

visRgn The region of a grafPort which is actually visible on the screen.

xForm matrix A 4x4 matrix that holds an equation to transform points
plotted in three-dimensional coordinates into two-dimensional screen
coordinates.

E-110

Appendix F

Hardware Interface
F.1 TheMouse F-1
F.11 MOUSELOCALION ..cooeiiiraiiinticnrissee ettt F-1
F.1.2 Mouse Update FTEQUENCYccoieeeemeiiiieemmneninsscsennntissasnsssasesens F-1
F.13 MOUSESCAlING .cooeeereeeeeeeeeteee et tene e eee et e eeae s F-1
F.14 MOUSE OHOMBLET ...c..ccuuiimmiiiiinartanietasienesenriesansesersassnsessnsssnssns F-2
F2 TheCursor F-2
F.2.1 CursorMouse Trackingccocviereienniinocinieniteceeeiecnacenee F-3
F.22 TheBUSY CUISDTcuccciirmcenrrennecoannsannssscmnsnsanssansmsnsssmnsssennassen F-3
F.3 TheDisplay Screen F-a
F.3.1 SCTEENCONEIASE.....ooceineeeenracareireraeteaterasannreasessnsnssensesemresansens F-a
F.32 Automatic SCIEENnFadingcccccvirireeemeiirininiitnemceenecreeeseeennes F-4
F.A The Speaker F-5
F.5 TheKeyboard F-5
FS5.1 Keyboard ldentification........ccoooviiiiiiiniininiicieeennecens F-7
F.5.2 KeyboardState.... . ..o iirereeiieeenecntessenreresssenarensarsnseannesens F-8
FS5.3 KeyboaIdEVENLS........ccoiaeemmaciecaraneanteeaoreastocaraamesssesensnasens F-8
F5.8 DeadKeyDIaCHitiCalsccoovvmeeiieiiiirimiciniinnnnnnsnesnenansscacsns F-10
FS55 Repeats teeeseesesereeeseeesasaantusnsnnnsaarannansssnrsrsetatestrrarannansnns F-11
F.6 TheMicrosecond Timer F-11
F.7 TheMillisecond Timer F-12
F.8 Dateand Time F-12
F.9 Time Stamp F-12
F.10 Interface of the Hardware Unit F-13

Hardware Interface

The hardware interface software provides an interface for accessing and
controlling several parts of the Lisa hardware. The hardware/software
capabilities addressed include the mouse, the cursor, the display, the contrast
control, the speaker, both undecoded and decoded keyboard access, the micro-
second and millisecond timers and the hardware clock/calendar.

This appendix contains Pascal procedure and function declarations interleaved
with text describing them. Pascal type declarations and a summary of the
function and procedure declarations can be found in Section F.10, Interface of
the Hardware Unit.

Programs using this unit should be compiled against the file QD/Hardware.0BJ)
and linked to the file QD/HWINtL.0B).

F.1 The Mouse
F.1.1 Mouse Location

Procedure Mouselocation (var x Pixels; var y: Pixels);

The /mouse s a pointing device used to indicate screen locations.
Mousel_ocation returns the location of the mouse. The X-coordinate can range
from O to 719, and the Y-coordinate from 0 to 363. The initial mouse
location is 0,0.

F.12 Mouse Update Frequency
Procedure MouseUpdates (delay: MilliSeconds):

Software knowledge of the mouse location is updated periodically, rather than
continuously. The frequency of these updates can be set by calling

The time between updates can range from 0 milliseconds
(continuous updating) to 28 milliseconds, in intervals of &4 milliseconds. The
initial setting is 16 milliseconds.

F.13 Mouse Scaling
Procedure MouseScaling (scale-Boolean)
Procedure MouseThresh (threshold: Pixels):

The relationship between physical mouse movements and logical mouse move-
ments is not necessarily a fixed linear mapping. Three alternatives are
available: 1) unscaled, 2) scaled for fine movement and 3) scaled for coarse
movement. Initially mouse movements are unscaled.

when mouse movement is wsca/eq a horizontal mouse movement of x units

yields a change in the mouse X-coordinate of x pixels. Similiarly, a vertical
movement of y units yields a change is the mouse Y-coordinate of y pixels.

These rules apply independent of the speed of the mouse movement.

Pascal Referernce Marual Harcware Interface

when mouse movement Is sca/eq horizontal movements are magnified by 3/2
relative to vertical movements. This is to compensate for the 2/3 aspect
ratio of pixels on the screen. When scaling is in effect, a distinction is made
between /Ane (small) movements and coarse (large) movements. Fine move-
ments are slightly reduced, while coarse movements are magnified. For scaled
fine movements, a horizontal mouse movement of x units yields a change in
the X-coordinate of x pixels, but a vertical movement of y units yields a

of (2/3)*y pixels. For scaled coarse movements, a horizontal movement
a x units yields a change of (3/2)*x pixels, while a vertical movements of y
units yields a change of y pixels.

The distinction between fine movements and coarse movements is determined
by the sum of the x and y movements each time the mouse location is
updated. If this sum is at or below the trestoiq the movement is considered
to be a fine movement. Values of the threshold range from 0 (which yields all
coarse movements) to 256 (which yields all fine movements). Given the
default mouse updating frequency, a threshold of about 8 (threshold's initial
setting) gives a comfortable transition between fine and coarse movements.

MouseScaling enables and disables mouse scaling. MouseThresh sets the
threshold between fine and coarse movements.

F.1.4 Mouse Odometer ;
Function MouseQdometer: ManyPixels;

In order to properly specify, design and test mice, it's important to estimate
how far a mouse moves during its lifetime. MouseOdometer returns the sum
of the X and Y movements of the mouse since boot time. The value returned
is in (unscaled) pixels. There are 180 pixels per inch of mouse movement.

F2 The Cursor
Procedure Cursorimage (hotX: Pixels; hotY: Pixels; height: CursorHeight; data:
CursorPtr; mask: CursorPtr);
The cwsor is a small image that is displayed on the screen. Its shape is
specified by two bitmaps, called a#ts and mask These bitmaps are 16 bits

wide and from 0 to 32 bits high. The rule used to combine the bits already
on the screen with the data and mask is

screen <- (screen and (not mask)) xor data.
The effect is that white areas of the screen are replaced with the cursor
data. Black areas of the screen are replaced with (not mask) xor data. If the

data and mask bitmaps are identical, the effect is to or the data onto the
screen.

The cursor has both a8 Jacation and a hotspot The location is @ position on
- the screen, with X~-coordinates of 0 to 719 and Y-coordinates of 0 to 363.

The hotspot is a position within the cursor bitmaps, with X- and Y-coordi-

nates ranging from 0 to 16. The cursor is displayed on the screen with its

F-2

Pascal Reference Manusl! Haroware Interfsce

hotspot at its location. If the cursor's location is near an edge of the screen,
the cursor image may be partially or completely off the screen.

Most cursor operations can be performed by calling the SetCursor, HideCursor,
ShowCursar, and (bscureCursor procedures defined by QuickDraw (see Section
£.9.2, Cursor-Handling Routines). Additional capabilities are provided by the
Hardware Interface routines described below.

The Cursorlmage procedure is used to specify the data bitmap, mask bitmap,
height and hotspot of the cursor. Initially the cursor data and mask bitmaps
contain all zeros, which yields a blank (invisible) cursor. The initial hotspot is
0.0.

F2.1 Cursor™Mouse Tracking
Procedure CursorTracking (track: Boolean);
Procedure Cursoriocation (x Pixels; y: Pixels);

CursorTracking enables and disables cursor &acking of the mouse. when
tracking is enabled, the cursor location is changed to the mouse location each
time the mouse moves. Setting the cursor location by calling Cursort ocation
will have no effect; the cursor sticks with the mouse.

when tracking is disabled, the mouse location and cursor location are indepen-
dent. Calling CursorLocation will move the cursor; moving the mouse will not.

when tracking is first enabled (i.e., on each transition from disabled to
enabled) the mouse location is modified to equal the cursor location. There-
fore, enabling tracking does not move the cursor; it does modify the mouse
location. Initially tracking is enabled.

F.22 The Busy Cursor

Procedure Busylmage (hotX: Pixels; hotY: Pixels; height: CursorHeight; data:
CursorPtr; mask: CursorPtr);

Procedure BusyDelay (delay: Milliseconds);

Applications may desire to display a tusy cwrsor (e.g., an hourglass) when an
operation in progress requires more than a few seconds to complete. The
Busylmage procedure is used to specify the data bitmap, mask bitmap, height
and hotspot of the busy cursor.

A call to BusyDelay specifies that the normal cursor should currently be
displayed, and that display of the busy cursor should be delayed for the
specified number of milliseconds. Subsequent calls to BusyDelay override
previous calls, postponing display of the busy cursor. If no calls to BusyDelay
occur for the specified number of milliseconds, the busy cursor will be
displayed until the next call to BusyDelay.

Initially the busy cursor data and mask bitmaps contain all zeros, which yields
a blank (invisible) cursor. The initial hotspot is 0,0. The initial busy delay is

Pascal Rererence Mearal Haroware Interface

infinite, that is, the busy cursor will not be displayed until BusyDelay is
called.

F.3 The Display Screen
Procedure ScreenSize {var x Pixels; var y: Pixels)

The display screen is a 4/t magoed display, that is, each pixel on the screen
is controlled by a bit in main memory. The display has 720 pixels horizontally
and 364 lines vertically, and therefore requires 32,760 bytes of main memory.
The screen size may be determined by calling ScreenSize.

Function FrameCounter: Frames;

The screen is redisplayed about 60 times per second. A 7rame counter is
incremented between screen updates, at the vertical retrace interrupt. The
frame counter is an unsigned 32-bit integer which is reset to 0 each time the
machine is booted. FrameCounter retums this value. An application can
synchronize with the vertical retraces by watching for changes in the value of
this counter. The frame counter should /of be used as a timer; use the
millisecond and mircosecond timers instead.

F.3.1 Screen Contrast
Function Contrast: ScreenContrast;
Procedure SetContrast (contrast: ScreenContrast)
The display’s contrast level is under program control. Contrast values range
from 0 to 255 ($FF), with 0 as maximum contrast and 255 as minimum.
Contrast returns the contrast setting; SetContrast sets the screen contrast.

The low order two bits of the contrast value are ignored. The initial contrast
value is 128 ($80).

Procedure RampContrast (contrast: ScreenContrast);

A sudden change in the contrast level can be jarring to the user.
RampContrast gradually changes the contrast to the new setting over a period
of about a second. RampContrast retumns immediately, then ramps the
contrast using interrupt driven processing.

F.32 Automatic Screen Fading
Function DimContrast: ScreenContrast;
Procedure SetDimContrast (contrast: ScreenContrast)

The screen contrast level is automatically dimmed if no user activity is noted
over a specified period (usually several minutes). This is done in order to
preserve the screen phospher. DimContrast returns the contrast value to which
the screen is dimmed; SetDimContrast sets this value. The initial dim
contrast setting is 176 ($80).

Psascal Rerference Maru&l! Haroware Interrace

Function FadeDelay: MilliSeconds;
Procedure SetFadeDelay (delay: MilliSeconds);

The delay between the last user activity and dimming of the screen is under
software control. FadeDelay retums the fade delay; SetFadeDelay sets it
The actual delay will range from the specified delay to twice the specified
delay. The initial delay period is five minutes.

when the screen is dim, user interaction will cause the screen contrast to
retum to its normal bright level (determined by the Contrast and SetContrast
routines defined above) Moving the mouse or pressing a key on the keyboard
(e.g., SHIFT) is enough to trigger the screen brightening. Calling
Cursorl_ocation or SetFadeDelay also indicates user activity.

F.A The Speaker
Function Volume: SpeakerVolume;
Procedure SetVolume (volume: SpeakerVolume);
Procedure Noise (wavel_ength: MicroSeconds);
Procedure Silence;
Procedure Beep (wavel_ength: MicraSeconds; duration: MilliSeconds);

The routines in this section provide square wave output from the Lisa speaker.
The speaker volume can be set to values in the range 0 (soft) to 7 (loud).
Volume reads the volume setting; SetVolume sets it. The initial volume
setting is 4.

Noise produces a square wave of approximately the specified wavelength.
Silence shuts off the square wave. The minimum wavelength is about 8
microseconds, which corresponds to a frequency of 125,000 cycles per second,
well above the audible range. The maximumn wavelength is 8,191 micro-
seconds, which corresponds to about 122 cycles per second.

Noise and Silence are called in pairs to start and stop square wave output. In
contrast, Beep starts square wave output which will automatically stop after
the specified period of time. The effects of Noise, Silence and Beep are
overridden by subsequent calls.

F.5 The Keyboard
The routines in this section provide an interface to the keyboard, the keypad,

the mouse button and plug, the diskette buttons and insertion switches, and
the power switch. Two interfaces are provided, a pollable keyboard state and

a queue of keyboard events.

Three physical keyboard layouts are defined, the “Old US Layout” (with 73
keys on the main keyboard and numeric keypad), the "Final US Layout™ (76
keys) and the “European Layout™ (77 keys). Each key has been assigned a
keycooe which uniquely identifies the key. Keycode values range from 0 to

F-5

Pascal Reference Merual Haraware interface

127. Table F~-1 defines the keycodes for the “Final US Layout”, using the
legends from the US Keyboard. The "0ld US Layout™ has three less keys; |\,
Alpha Enter, and Right Option are not on the old keyboard. The “European
Layout™ has one additional key, ><, with a keycode of $43.

Two keys on the “0ld US Layout” generate keycodes different from the
corresponding keys on the "Final US Layout™. To aid in compatibility,
software changes the keycode for from $7C to $68, and the keycode for
Right Option from $68 to $4E.

Table F-1

Keycodes for “Final US Layout™

“IchJ 0ao 0ot 010 011 100 101 110 111
0 1 2 3 4) 6 7
0000 §: 5 (
5 CLER | 9 E A
po01 | oIsk 1 .) . a
1 | INSERTED) 6 2
0010 § bIsK 1 * & #
| suTToN] v 7 3
DISK 2 » $
0031 1 INSERTED = ; 4
0100 | osk 2 % !
4 | BUTTON 7 5 1
PARALLEL
0101 | omta 8 R | @
0110 § nouse
6 | surTow 9 T S
0111 | nouse /!
5| e W v
1000 § Ppower ~
8 | sutrow 4 - i
1001
9 5 F Zz
1010
A 6 G X
1011 s
B v] H o
1100 LEFT
e v OPTION
1101 CAPS
D 2 C LOCK
11E10 3 8 SHIFT
1111 NUNERIC i
F E ENTER N .

Pascal Rerference Marnsd/! Haraware Interrace

F.5.1 Keyboard Identification
Function Keyboard: Keybdld;
Function Legends: Keybdid;
Proceaure Setl_egends (id: Keybdid)
Lisa software supports a host of different keyboards. Each keyboard has three
major attributes: manufacturer, physical /gyl and Jegends. The chart
below describes how these three attributes are combined to form a keyboard
ldenti- fication number. The keyboards self identify when the machine is
tumed on and when a new keyboard is attached. Keyboard retums me
identification number of the keyboard currently attached. L

Setl_egends provide a means of pretending to have different legends, wlmout
physically replacing the keyboard.

Keyboard identification numbers:

7 6 5 4 3 2 1 0
| Manufacturer | Layout | Legends |
Manufacturer:
00 -- APD (le., TKC)
01 --
10 -- Keytronics
Layout:
00 -- Old US (73 keys)
0L -

10 -- European (77 keys)
11 —- Final US (76 keys)

Layout/_egens:
$0F - OdUS
$26 -- Swiss-German (allocated for proposed software)
$27 -- Swiss-French (allocated for proposed software)
$29 -- Portuguese éanocateu for proposed softwareg
$29 -- Spanish-Latin American (allocated for proposed software
$2A -- Danish {allocated for proposed software)
$28 -- Swedish (hardware not yet avallable)
$2C -- Itallan (hardware not yet available)
$20 -- French
$2E -- German
$2F —- WK

F-7

Pascal Reference Manual Haraware Interface

$3C - APL (allocated for proposed software)
$3D -- French-Canadian (allocated for proposed software)
$3E -- US-Dvorak (allocated for proposed software)

$3F —- Final US
F52 Keyboard State
Function KeyIsDown (key: KeyCap} Boolean;
Procedure KeyMap (var keys: KeyCapSet)

Low level access to the keyboard is provided through a pollable keyboard
state. This state information is based on the physical keycodes defined above.
KeylsDown returns the position of a single specified key. KeyMap returns a
128-bit map, one bit for each key. A zero indlcates the key is up, a one
indicates down. For the mouse plug, a zero indicates unplugged, a one indl-
cates plugged in. Certain keys are not poliable; the corresponding bits will
always be zero. These keys are the diskette insertion switches and buttons,
parallel port, and power switch. (The parallel port and mouse plug keys are
unreliable across reboots on older hardware.)

F.5.3 Keyboard Events
The hardware interface provides a queue of keyboard events. The events in
the input queue are generally key down transitions. Each event contains the
following information:

keycode -- physical key

ascli -- ASCII interpretation of this key

state -- caps-lock, shift, option, &, mouse button and repeat
mouseX -- X-coordinate of the mouse when the key was pressed
mouseY -- Y-coordinate of the mouse when the key was pressed
time —-- value of the millisecond timer when the key was pressed

Keycode -- Keycodes are defined in Table F-1, above.

Ascii -- The ASCIHI interpretation of keys depends on the state of the caps-
lock, shift and option keys. Six interpretations are associated with each
different keyboard layout:

normal

caps-lock

shift or both shift and caps-lock
option

option with caps-lock
option with shift or both shift and caps-10ck v

Pascal Refererce Msmual

Hardware Interface

In most cases the ASCII value retumed is obvious. The table below lists the

cases that aren't so obvious.

$00 Disk 1 Inserted
$00 Disk 1 Button
$00 Disk 2 Inserted
$00 Disk 1 Button

Mouse Plug (in)

$01 (SOH
$03 (ETX

Mouse Plug (out)
Enter

$01 S(H% Mouse Button (up)

)
$09 Tab
$0D (CR Retum
$1B (ESC) Clear

$1C (FS) Left
$1D (GS Right
$1E (RS Up

$1F Down
$20 (SP Space

$00 m Power Button
$00 Mouse Button (down)

State -- A 16-bit word is used to return the state of several keys with each
event. Each bit represents one or more keys; a zero indicates that all of the
keys are up, a one indicates that at least one of the keys is down. An
additional bit indicates, if it is a one, that the event was generated by
repeating the previous event. The following bits of state are currently

assigned:
bit 0: caps-lock
bit 1: left or right shift
bit 2: left or right option
bit 3: & key
bit 4: mouse button
bit S: this event is a repeat

Certain keys never generate events. These keys are caps-lock, both shift

keys, option keys, and the & key. The mouse button

generates events on both

the down and up transitions. Down transitions have an ascli value of 0, up
transitions 1. The mouse plug also generates two different events. when the
mouse is plugged in an event with an ascli value of 0 is retumed, when it is

unplugged a value of 1 is returned.

Pascal Reference Manugl Haroware interfsce

Function KeybdPeek (repeats: Boolean; index: KeybdQIndex; var event:
KeyEvent) Boolean;

KeybdPeek is used to examine events in the keyboard gueue, without removing
them from the queue. The first input parameter indicates whether .repeats are
desired. The second parameter is the queue index. The first output para-
meter indicates whether the specified queue entry contains an event. To
examine an entire queue, first call KeybdPeek with a queue index of 1. If an
event is returned, call it again with a queue index of 2, etc.

Function KeybdEvent (repeats: Boolean; wait: Boolean; var event: KeyEvent)
Boolean;

KeybdEvent is used both to determine if a keyboard event is available, and to
return the event if one is available. The event is removed from the queue.
KeybdEvent returns a boolean result which is true if an event is returned.
The first parameter to KeybdEvent is used to indicate if the caller will

t repeated events on this call. The second parameter indicates if the
functions should wait for an event if one is not immediately available.

F5.4 Dead Key Diacriticals
Many languages employ diacritical marks on certain letters. Several of the
required diacritical mark-letter combinations appear on European keyboards,
but others do not. The combinations shown in the table below may be typed as
a two-key sequence, by first typing the dead key diacritical (which has no
immediate effect), and then typing the letter. Dead key diacriticals appear on
keyboard legends as the diacritical mark over a dotted square or hollow box.

circumflex ~ --& & i 6 0
grave accent _ -- & & i 6 u
tilde - & [I
acute accent ~ - 4 6E 6 a.
umnlaut - 8A & 1 86 U

A dead key diacritical followed by a letter which appears in the table above
yields the corresponding character. The event that is generated contains the
keycode, state, mouse location and time that correspond to the letter, but the
ASCII value of the letter-diacritical combination. A dead key diacritical
followed by a space yields just the diacritical mark. The event contains the
keycode, state, mouse location and time corresponding to the space, but the
ASCII value of the diacritical mark. Finally, a dead key diacritical followed
by any other character (i.e., not a space or defined letter) yields the diacrit-
ical mark followed by the other character.

diacritical, defined letter --> foreign character
diacritical, space --> diacritical
diacritical, other character -—> diacritical, other character

F-10

Pascal Referernce Marigl Haroware Interface

FS55 Repeats

F6

Most keys, if held down for an extended period of time, may generate
multiple events (repeats) The keys that are ot repeatable are caps-lock,
both shifts, both options, the & key, the diskette insertion switches and
diskette buttons, parallel port, the mouse button and plug, and the power
button. Several conditions must be satisfied before a repeat is generated.
These conditions are as follows:

1. KeybdPeek or KeybdEvent is called with repeatsDesired true.

The keyboard event queue is empty.
The key returned in the last event is still down.

No down transitions have occurred since the last event.
The key is repeatable.
. Enough time has elapsed.

Repeats generate events with the following attributes:
keycode -- original keycode

SME W

ascit -- original ASCII interpretation

state -- original position of the caps-lock, shift, etc.
mouseX -- revised X-coordinate of the mouse

mouseY -- revised Y-coordinate of the mouse

time -- revised value of the millisecond timer

Procedure RepeatRate (var initial: MilliSeconds; var subsequent: MilliSeconds);
Procedure SetRepeatRate (initial: MilliSeconds; subsequent: MilliSeconds);

The repeat rates can be read and set by calls to RepeatRate and
SetRepeatRate. The rates include an initial delay, which occurs prior to the
first repetition, and a subsequent delay, prior to additional repetitions. They
are both in units of milliseconds. The default repeat rates are 400
milliseconds initially and 100 milliseconds subsequently.

The Microsecond Timer
Function MicroTimer: Microseconds;

The MicroTimer function simulates a continuously ruwing 32-bit counter
which is incremented every microsecond. The timer is reset to 0 each time
the machine is booted. The timer changes sign about once every 35 minutes,
and rolls over about every 70 minutes.

The microsecond timer is designed for performance measurements. It has a
resolution of 2 microseconds. Calling MicroTimer from Pascal takes about 135
microseconds. Note that interrupt processing will have a major effect on
microsecond timings.

F-11

Pascal Reference Manual Haraware interface

F.7

F8

F.9

The Millisecond Timer
Function Timer: Milliseconds;

The Timer function simulates a continuously running 32-bit counter which is
incremented every millisecond. The timer is reset to 0 each time the
machine is booted. The timer changes sign about once every 25 days, and
rolls over about every 7 weeks.

The millisecond timer is designed for timing user interactions such as mouse
clicks and repeat keys. It can also be used for performance measurements,
assuming that millisecond resolution is sufficient.

Date and Time
Procedure DateTime (var date: DateArray)

Procedure SetDateTime (date: DateArray):

Procedure DateToTime (date: DateArray; var time: Seconds);

The current date and time are available as a set of 16-bit integers which
represent the year, day, hour, minute and second, by calling DateTime and
SetDateTime. The date and time are based on the hardware clock/calendar.
This restricts dates to the years 1980-1995. The clock/calendar continues to
operate during soft power off, and for brief periods on battery backup if the
machine is unplugged. If the clock/calendar hasn't been set since the last loss
of battery power, the date and time will be midnight prior to January 1, 1980.

_Setting the date and time also sets the time stamp described below.

DateToTime converts a date and time to a time stamp, defined in the next
section. '

Time Stamp

Function TimeStamp: Seconds;

Procedure SetTimeStamp (time: Seconds);

Procedure TimeToDate (time: Seconds; var date: DateArray)

The current date and time are also available as a 32-bit unsigned integer
which represents the number of seconds since the midnight prior to 1 January
1901, by calling TimeStamp and SetTimeStamp. The time stamp will roll over
once every 135 years. Beware--for dates beyond the mid 1960°s, the sign bit
is set. The time stamp is based on the hardware clock/calendar. This clock
continues to operate during soft power off, and for brief periods on battery
backup if the machine is unplugged. If the clock/calendar hasn't been set
since the last loss of battery power, the date and time will be midnight prior
to January 1, 1980. Setting the time stamp also sets the date and time
described above. Since the date and time is restricted to 1980-1995, the time
stamp is also restricted to this range. TimeToDate converts a time stamp to
the date and time format defined above.

F-12

Pascal Reference Marual

F.10 Interface of the Hardware Unit

Unit Hardware;

Interface

type

Pixels
HManyPixels
CursorHeight
Cursorftr
DateArray

Frames
Seconds
MilliSeconds
MicraSeconds
Speakervolume
ScreenContrast
KeybdQIndex
KeybdId
KeyCap
KeyCapSet
KeyEvent

{ Mouse }

[[LA I T IO IS T AN A | I

Integer;
LongInt;
Integer;
“Integer;
Record

year: Integer;
day: Integer;
bour: Integer;
minute: Integer;
second: Integer;
end.

LongInt;
LongInt;
LonglInt;
LongInt.
Integer;
Integer;
1..1000;
Integer;
0..127;
Set of KeyCap;
Packed Record

key: KeyCap;
ascii: Char;

state: Integer;
mouseX: Pixels;
mouseY: Pixels:
time: MilliSeconds;
end;

Haraware Interfsce

Procedure Mouselocation (var x: Pixels; var y: Pixels);

Procedure MouseUpdates (delay: MilliSeconds);

Procedure MouseScaling (scale: Boolean);
Procedure HouseThresh (threshold: Pixels);
Function HouseOdometer: HanyPixels;

F-13

Pascal Reference Mgl Haraware Interfsce

{ Cursur }

Procedure Cursortocation (x: Pixels; y: Pixels);

Procedure CursorTracking (track: Boolean);

Procedure Cursorimage (hotX: Pixels; hotY: Pixels; height:
CursorHeight; data: CursorPtr; mask: CursorPtr);

Procedure BusyImage (hotX: Pixels; hotY: Pixels; height:
CursorHeight; data: CursorPtr; mask: CursorPtr);
Procedure BusyDelay (delay: MilliSeconds);

{ Screen }

Function FrameCounter: Frames;
Procedure ScreenSize (var x: Pixels; var y: Pixels);

Function Contrast: ScreenContrast;

Procedure SetContrast (contrast: ScreenContrast);
Procedure RampContrast (contrast: ScreenContrast);
Function DimContrast: ScreenContrast;

Procedure SetDimContrast (contrast: ScreenContrast);

Function FadeDelay: MilliSeconds;
Procedure SetFadeDelay (delay: MilliSeconds).

{ Speaker }

function Volume: SpeakerVolume;

Procedure SetVolume (volume: SpeakerVolume);

Procedure Noise (wavelLength: MicroSeconds);

Procedure Silence;

Procedure Beep (waveLength: MicroSeconds; duration: MilliSeconds);

F-1a4

Pascal Reference Msnusl Hardware interface

{ Keyboard }

Function Keyboard: KeybdId:

function Legends: Keybdld;

Procedure SetLegends (id: KeybdId);

Function KeyIsDown (key: KeyCap): Boolean;

Procedure KeyMap (var keys: KeyCapSet);

Function KeybdPeek (repeats: Boolean; index: KeybdQindex; var
event: KeyEvent): Boolean;

Function KeybdEvent (repeats: Boolean; wait: Boolean; var event:
KeyEvent): Boolean;

Procedure RepeatRate (var initial: MilliSeconds; var subsequent:
HilliSeconds);

Procedure SetRepeatRate (initial: MilliSeconds; subsequent:
HilliSeconds);

{ Timers }

Function HicroTimer: MicroSeconds;

Function Timer: MilliSeconds;
{ Date and Time }

Procedure DateTime (var date: DateArray);

Procedure SetDateTime (date: DateArray);

Procedure DateToTime (date: DateArray; var time: Seconds);
{ Time Stamp }

Function TimeStamp: Seconds;

Procedure SetTimeStamp (time: Seconds);
Procedure TimeToDate (time: Seconds; var date: DateArray).

F-15

m O O o >

-n

Appendix G
Lisa Character Set

g6 1 2 3 4 S 6 7 8 9 A
NUL | DLE SPO@P\p""
1 l11AlQlalq
I 12 IB|R|{b|r
EIXDCS#BCSCS
EOTOC4$4DTdt
MIMi%l5|E|Ulelu
I &I6|F| VT |V
BEL | ETB { 7ngw
TI™IC|8|H|X|h|x
Ty lel1 Y iy
LF SUB | 3 JZ,]Z
VTcslicax+;K[k{
FF Fs,<L\l|
ORGS__=M]m}
il . 1IN Y In|”
Ylwl /1210 Jo ™l 4 1

The first 32 characters and DEL are nonprinting control codes.

The shaded area Is reserved for future use.

rhELRE

H7

H9

Appendix H
Error Messages

Lexical Errors

Syntactic Errors

Semantic Errors

Conditional Comgpilation

Compiler Specific Limitations

1/0 Errors

Clascal Errors

Code Generation Errors

Verification Erors

Appendix H
Error Messages

H.1 Lexical Errors

10
11
12
13
14
15
16
17
18

Too many digits

Digit expected after '.' in real

Integer overflow

Digit expected in exponent

End of line encountered in string constant
Illegal character in input

Premature end of file in source program

Extra characters encountered after end of program
End of file encountered in a comment

H2 Syntmtjc Errors

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
-43
44
45
46
47
48

Illegal symbol

Error in simple type
Error in declaration part
Error in parameter list
Error in constant
Error in type

Error in field 1ist
Error in factor

Error in variable
Identifier expected
Integer expected

'(* expected

)" expected

‘[' expected

1' expected

' expected

' expected

! expected

' expected

‘#* expected

':=" expected

‘program’ expected

‘of' expected

‘begin' expected

‘end* expected

‘then’ expected

'until’ expected

‘do' expected

‘to’ or 'downto’ expected

H-1

Pascal Refererice Marnal Error Messages

49
50
51
52
53
54
55

‘file' expected

'if' expected

. expected
‘implementation’ expected
*interface’ expected
‘intrinsic’' expected
*shared’ expected

H3 Semantic Errors

100
101
102
103
104
105
106
107
108
109
110
m
112
113
114
115

116
117
118
119
120
121
122
123
124
125
126

127
128
129
130
131
132
133
134
135
136

Identifier declared twice

Identifier not of the appropriate class

Identifier not declared

Sign not allowed

Number expected

Lower bound exceeds upper bound

Incompatible subrange types

Type of constant must be integer

Type must not be real

Tagfield must be scalar or subrange

Type incompatible with with tagfield type

Index type must not be real

Index type must be scalar or subr

Index type must not be integer or longint

Unsatisfied forward reference

Forward reference type identifier cannot appear in variable
declaration

Forward declaration - repetition of parameter list not allowed
Forward declared function - repetition of result type not allowed
Function result type must be scalar, subrange, or pointer
File value parameter not allowed

Hissing result type in function declaration

F-format for real only

Error in type of standard function parameter

Error in type of standard procedure parameter

Number of parameters does not agree with declaration
Illegal parameter substitution

Result type of parameteric function does not agree with
declaration

Expression is not of set type

Only tests on eguality allowed

Strict inclusion not allowed

File comparison not allowed

Illegal type of operand(s)

Type of operand must be boolean

Set element type must be scalar or subrange

Set element types not compatible

Type of variable is not array or string

Index type is not compatible with declaration

H-2

Pascal Reference Memusl Errar Messages

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
16l
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
190

Type of variable is not record

Type of variable must be file or pointer

Illegal type of loop control variable

Illegal type of expression

Assignment of files not allowed

Label type incompatible with seiecting expression
Subrange bounds must be scalar

Type conflict of operands

Assignment to standard function is not allowed
Assignment to formal function is not allowed

No such field in this record

Type error in read

Actual parameter must be a variable

Multidefined case label

Missing corresponding variant declaration

Real or string tagfields not allowed

Previous declaration was not forward

Substitution of standard procedure or function is not allowed
Multidefined label

Multideclared label

Undefined label

Undeclared label

Value parameter expected

Multidefined record variant

File not allowed here

Unknown compiler directive (not ‘external’ or 'forward')
variable cannot be packed field

Set of real is not allowed

Fields of packed records cannot be var parameters
Case selector expression must be scalar or subrange
String sizes must be equal

String too long

Value out of range

Address of standard procedure cannot be taken
Assignment to function result must be done inside function
Loop control variable must be local

Label value must be in 0..9999

HMust exit to an enclosing procedure

Procedure or function has already been declared once
Hissing procedure or function body

No such unit in this file

H-3

Pascal Reference Marxsal Error Messages

H4 Conditional Compilation

260
261
262
263
264
265
266
267

New compile-time variable must be declared at global level
Undefined compile-time variable

Error in compile-time expression

Conditional compilation options nested too deeply
Unmatched ELSEC

Unmatched ENDC

Error in SETC

Unterminated conditional compilation option

H5 Compiler Specific Limitations

300
301
302
303
304
305
306
307
308
309
310
350
351

Too many nested record scopes

Set limits out of range

String limits out of range

Too many nested procedures/functions
Too many nested include/uses files
Includes not allowed in interface section
Pack and unpack are not implemented
Too many units

Set constant out of range

Structure too large (> 32K)
Parameter list too large (>= 32K)
Procedure too large

File name in option tooc long

H6 1/0 Errors

400
401
402
403
404
405
406
407
408
409
410
420

Not enough room for code file
Error in rereading code file
Error in reopening text file
Unable to open uses file

Error in reading uses file
Error in opening include file
Eror in rereading previously read text block
Not enocugh room for I-code file
Error in writing code file
error in reading I-code file
Unable to open listing file

170 error on debug file

H.7 Clascal Errors

800
801
802
803
804
805
806
807
808

OF missi
Superclass identifier missing

‘Method NEW is not declared

Subclass declaration not allowed here
Method is not a procedure

Method is not implemented

Class is not implemented

Superclass identifier is not a class
Identifier is not a class

H-4

Pascal Reference Marval Error Messages

809
810
811
812
813
814
815

'NEW’ not allowed here

'NEW' was expected here

Illegal 'NEW® method

Illegal use of class identifier

Unsafe use of a handle in an assignment statement
Unsafe use of a handle in a WITH statement
Unsafe use of a handle as a var parameter

H8 Code Generation Errors
1000-1999 Internal code generation errors

2000
2001
2002

End of I-code file not found
Expression too complicated, code generator ran out of registers
Code generator tried to free a register that was already free

2003-2005 Error in generating address
2006-2010 Error in expressions

2011
2012

Too many globals
Too many locals

H9 Verification Errors

4000
4001
4002
4003
4100
4101

Bad verification block format

Source code version conflict

Compiler version conflict

Linker version conflict

Version in file less than minimum version supported by program
version in file greater than maximum version supported by program

H-5

Appendix I
Pascal Workshop Files

This appendix lists the flles on the Pascal 1.0 diskettes.
File Name Pascal Notes Description
Diskette

Assembler.obj Workshop program.

BYE.TEXT Wworkshop installation exec file.
ByteDiff.obj Utility program.
Changeseg.ob] utility program.

Cistart.text
CISTART1.TEXT

workshop installation exec file.
torkshop installation exec file.

INSERTDISK.TEXT
Intrinsic.1ib
I0SFplib.obj
I0SPaslib.obj
LDSPREFERENCES .0BJ

workshop installation exec file.
2,3 Library directory.
Library unit w/interface.
2,3 Library unit w/interface.
Workshop program.

2

1

3

2

1

1
Code.ob] 2 Workshop program.
Codesize.ob] 2 utility program.
Diff.ob) 3 utility program.
Oumpob }.ob) 2 Utility program.
DumpPatch.obj 3 Utility program.
EDIT.MENUS.TEXT 3 Editor support file.
Eaitor.obj 3 Workshop program.
Filediv.ob) 3 utility program.
Filejoin.obj 3 Utility program.
find.ob) 3 Utility program.
FHDATA 1 L2 Data segment.
font.heur 1 1,2,3 Data needed to support SYSIL1D.
FONT.HEUR 3 Second copy of same file.
font.1ib 1 1,2,3 Data needed to support SYSiLib.
GETPROFILELOC. TEXT 1 Workshop installation exec file,
GETYESNG. TEXT 1 Workshop installation exec file.
Gxref.obj 2 Utility program.

1

1

3

1

3

Note 1: These flles are identical to Office System Release 1.0 files.

Note 2: These files are identical to Office System Release 1.2 files. Office System
1.2 is functionally identical to Office System 1.0, but is released to ensure
compatibility with Pascal 1.0, BASIC-Plus 1.0, and COBOL 1.0

Note 3: These flles are the minimum necessary to run a user program In the
workshop environment. A user program may requlre other flles as well

Pascal Reference Manual Pascal worksihap Files

File Name Pascal Notes Description
Diskette

LDS_RES_PROCS.TEXT 3 Vorkshop data.
Linker.obj 2 Workshop program.
N68k .err 2 Assembler data.
N68K .opcodes 2 Assembler data.
Objiolib.obj 2 Library unit (no interface).
OSERRS .ERR 1 3 Workshop data.
PAPER . TEXT 3 Workshop data.
Pascal.obj 2 Workshop program.
PASERRS .ERR 2 Workshop data.

* PASLIBCALL .08J 2 Library unit w/interface.
Portconfig.obj 3 Utility program.
QD/BOXES.0BJ 2 Quickdraw sample program.
QD/BOXES . TEXT 2 Quickdraw sample program.
‘QD/FH68K .0BJ 2 QuickDraw unit (no interface).
QD/FONTMGR .0BJ 2 QuickDraw unit w/interface.
QD/GRAF30.083 2 QuickDraw unit w/interface.
QD/GRAFLIB.0BJ 2 QuickDraw unit (no interface).
QD/GRAFTYPES . TEXT 2 Quickdraw assembly interfaces.
QD/GRAFUTIL .083 2 QuickDraw unit w/interface.
QD/HARDWARE .0BJ 2 Hardware unit w/interface.
QD/HVINTL .08J 2 Hardware unit (no interface).
QD/M/BOXES. TEXT 2 Exec file.
QD/M/QDSAMPLE . TEXT 2 Exec file.
Q0/QDSAMPLE .0BJ 2 Quickdraw sample program.
QD/QDSAMPLE . TEXT 2 Quickdraw sample program.
QD/QDSTUFF . TEXT 2 Quickdraw unit filenames.
QD/QDSUPPORT .0BJ 2 QuickDraw unit w/interface.
QD/QUICKDRAY.0BJ 2 QuickDraw unit w/interface.
QD/STORAGE .0BJ 2 QuickDraw unit w/interface.
QD/UNIT68K.08J 2 QuickDraw unit (no interface).
QD/UNITHZ .0BJ 2 QuickDraw unit w/interface.
QD/UNITSTD.0BJ 2 QuickDraw unit w/interface.
resident_channel 1 1,2,3 System data.
Segmap.obj 2 Utility program.
Shiell . workStiop 1 3 workshop main .
Sulib.obj 1 3 Library unit w/interface.
Sxref.obj 3 Utility program.

Note 1: These files are identical to Office System Release 1.0 flles.
Note 2 These files are identical to Office System Release 1.2 files. Office System

1.2 is functionally identical to Office System 1.0, but is released to ensure
compatibility with Pascal 1.0, BASIC-Plus 1.0, and COBOL. 1.0.

Note 3: These files are the minimum necessary to run a user program in the

Workshop environment. A user program may require other files as well.

-2

Pascal Reference Manual Pascal Workshap Files

File Name Pascal Notes Description

Diskette
SXREF .OMIT.TEXT 3 Data.
Sysilib.obj 1 1,2,3 Library units (no interface).
SYS2L1B6.08J 3 1,2,3 Library units (no interface).
SYSCALL .0BJ 2 Library unit w/interface.
SYSTEM.BT_PROF 1 1,2,3 System support.
SYSTEM.BT_TWIG 1 1,23 System support.
SYSTEM.DEBUG 2 Workshop program.
SYSTEM .DEBUG2 2 Workshop program.
SYSTEM.IUDIRECTORY 1 1,2,3 System data.
SYSTEM.LLD 1 1,2,3 System program.
SYSTEM.LOG 1 1,2,3 System data.
SYSTEM.OS 1 2,3 System program.
System.Shell 1 1,2,3 System program.
SYSTEM.STACK1 1 1,2,3 System data.
SYSTEM.STACK2 1 1,23 System data.
SYSTEM.STACK3 1 1,2,3 System data.
SYSTEM.STACKA 1 1,2,3 System data.
SYSTEM.SYSLOC1 1 1,2,3 System data.
SYSTEM.SYSLOC2 1 1,2,3 System data.
SYSTEM.SYSLOC3 1 1,2,3 System data.
SYSTEM.SYSLOC4 1 1,2,3 System data.
SYSTEM.TIMER_PIPE 1 1,23 System data.
SYSTEM.UNPACK 1 1,2,3 System data.
term.menus. text 3 Data for transfer program.
transfer.obj 3 Workshop program.
Uxref.obj 3 Utility program.
UXREF .UMAP . TEXT 3 Data for UXREF program.
YMDATA 1 1,2 Data segment.
Xe jectem.obj 1 ¥orkshop installation program.
{T11}BUTTONS 3 2 Data.
{T11}MENUS . TEXT 3 2 Data.

Note 1: These files are identical to Office System Release 1.0 flles.

Note 2= These files are identical to Office System Release 1.2 files. Office System
1.2 is functionally identical to Office System 1.0, but is released to ensure
compatibility with Pascal 1.0, BASIC-Plus 1.0, and COBOL 1.0.

Note 3: These files are the minimum to run a user program in the

workshop environment. A user program may require other files as well.

I-3

NOTES

Index

Please note that the topic references in this Index are oy sect/onumber.

A
()

abs function 11.4.2
accuracy in real arithmetic D
actual-parameter 5.2, 7.1, 7.3
syntax 5.2
actual-parameter-list 5.2
syntax 5.2
actual-parameters in procedure call
6.1.2
AddPt procedure E.9.17
anomalies in Lisa Pascal B
Apple II Pascal A
Apple III Pascal A
applestuff unit A
arcs, graphic operations £.9.10
arctan function 11.4.9
arithmetic functions 11.4
arithmetic operators 5.1.2, D
array 3.2.1, 4.3.1
component 3.2.1, 4.3.1
reference 4.3.1
array-type 3.2.1
syntax 3.2.1
ascent line E.5.2
ASCII 3.1.1.5
assembly language, QuickOraw E.11
assignment-compatibility 3.4.3
assignment-statement 6.1.1
syntax 6.1.1

(24
BackColor procegure E.3.5
BackPat procedure E.9.1

029-0412-A

Index-1

base line E.S5.2
base-type 3.2.3, 3.3, 5.3
of pointer-type 3.3
syntax 3.3
scope anomaly B
of set-type 3.2.3, 5.3
Beep procedure F.4
bit image E.4.1
bit transfer operations E.9.13
BitMap data type E.4.2
bitmaps E.4.2
bitwise boolean operations A
blark character 1.1
blank segment 8.3, 9.1
block 2
syntax 2.1
block-structured I/0 3.2.4,
10.1.1-2, 10.4
blockread function 3.2.4, 10.4.1
blockwerite function 3.2.4, 10.4.2
boolean 3.1.1.4, 5.1.3, 5.1.5.2,
10.3.3.7, 12.3-12.4
comparisons 5.1.5.2
constants as control values 12.3,
12.4
operands, evaluation of 5.1.3
operators 5.1.3
data type 3.1.1.4
values in text-oriented output
10.3.3.7
boundry rectangle E.4.2
Boxes program E.14.2
buffer variable 10.1.3, 10.1.7

Pascal Reference Manual

built-in procedures & functions 10,

11
busy cursor F.2.2
BusyDelay procedure F.2.2
Busylmage procedure F.2.2
byte array 11.7

byte-oriented procedures & functions

11.7
byte-size flles 3.2.4
bytestream type A

camera eye £.12
case 6.2.2.2
syntax 6.2.2.2
case-constant in case statement
6.2.2.2
case-sensitivity 1.1, 1.2, 1.4
case-statement 6.2.2.2
efficiency 12.5
syntax 6.2.2.2
char 1.6.1, 3.1.1.5, 10.3.1.1,
18.3.3.2, 11.5 :
constant 1.6.1
type 3.1.1.5
values in text-oriented I1/0
10.3.1.1, 10.3.3.2
character 1.1, 3.2.4, 4.3.1
device 3.2.4, 10.1.1-2
files 3.2.4
font E.5.2
in string 4.3.1
set 1.1
character style E.5.2
Char®¥idth function E.9.4
chr function 11.5.2
Clip3D function E.12.4
ClipRect procedure E.9.1
clipRon E.S5

Index-2

Ingex

clock/calendar F.8, F.9
close procedure 10.1.5
ClosePicture procedure E.9.14
ClosePoly procedure E.9.15
ClosePort procedure E.9.1
CloseRgn procedure E.9.11
closing a file 10.1.5
code generation 12.1
color drawing E.7.2
routines E.9.5
ColorBit procedure £.9.5
comment 1.8
comparisons 5.1.5
compatibility of parameter lists
7.3.5
compatible types 3.4

compile-time expressions & variables

12.2.1-3
compiler 1.8, 12, A
commands 1.8, 12.1-2, A
component of array 3.2.1, 4.3.1
component of file 3.2.4, 4.3.3
component-type of array 3.2.1
component-type of file 3.2.4
compound-statement 6.2.1
syntax 6.2.1
concat function 11.6.3
conditional compilation 12.2
conditional-statement 6.2.2
syntax 6.2.2
constant 1.4-7
syntax 1.7
constant-declaration 1.7, 2.1, B
scope anomaly B
syntax 1.7
constant-declaration-part 2.1
syntax 2.1

constants, assembly language E.11.1

contrast control F.3.1
Contrast function F.3.1

Pascal Reference Maal

control-variable 6.2.3.3
syntax 6.2.3.3
coordinate plane E.3.1
coordinates, grafPort E£.3.1, €£.6
copy function 11.6.4
CopyBits procedure E.9.13
CopyRgn procedure E.9.11
cos function 11.4.5
CR character 1.1, 1.6, 10.3
in text-oriented I/0 10.3
crunch 10.1.5
current block number 10.4
current file position 4.3.3
cursor control 10.3.7, F.2
Cursor data type E.4.4
cursor-handling routines E.9.2
cursorHeight data type F.10
CursorImage procedure F.2
CursorLocation procedure F.2.1
CursorPtr data type F.10
cursors, QuickDraw E.4.4
CursorTracking procedure £.2.1
customizing QuickDraw operations
E.10

-- --=D
data bitmap F.2
data types 3
assembly language E.11.2
6raf3D £.12.3, €.13.5
QuickDraw E.2.2, E.13.2
datafile 10.1.2
date F.8, F.9
DateArray data type F.10
DateTime procedure F.8
DateToTime procedure F.8
dead key diacriticals F.S.4

debugging 12.1

Index-3

noex

defining declaration 7.1
delete procedure 11.6.5
descent line E.5.2
device 10.1.1-2
character 10.1.1, 10.1.2
file-structured 10.1.1, 10.1.2
types 10.1.1, 10.1.2
diacritical marks F.5.4
DiffRgn procedure E.9.11
digit 1.1
digit-sequence 1.4
syntax 1.4
DimContrast function F.3.2
dimensions of Lisa screen E. 4.1
directive 1.3
diskette insertion switches F.5
display screen F.3
DisposeRgn procedure E.S.11
div operator A
division by zero (real arithmetic)
3.1.1.3, D
DLE character 10.3
DrawChar procedure E.9.4
drawing E.7
color k.7.2
DrawPicture procedure E._9.14
DrawString procedure E.9.4
DrawText procedure E£.9.4
dynamic allocation procedures 11.2

- —-——f-
efficiency, case-statements 12.5
empty set 5.3
EmptyRect function €.9.6
EmptyRon function E.9.11
enumerated-type 3.1.2

syntax 3.1.2

Pascal Reference Markl

eof function 10.1.7
and various procedures 10.1.3-4,
10.1.7, 10.2.1-2, 10.2.4,
10.3.1-2, 10.4.1
eoln function 10.3.5
and read and readln procedures
16.3.1, 10.3.2
EqualPt function E.9.17
EqualRect function E.9.6
EqualRgn function E.9.11
EraseArc procedure £.9.10
EraseOval procedure E.9.8
ErasePoly procedure E.9.16
EraseRect procedure £.9.17
EraseRgn procedure E.9.12
EraseRoundRect procedure E.9.9
ETX character A
exit procedure 11.1.1, A
exp function 11.4.6
expression S
syntax S
extended comparisons A
external file 10.1
external function 7.2
external procedure 7.1-2

__________ F_-__..____-
factor 5
syntax 5
FadeDelay function F.3.2
field of record 3.2.2, 4.3.2, 6.2.4
field-declaration 3.2.2
syntax 3.2.2
field-designator 4.3.2
syntax 4.3.2
field-list 3.2.2
syntax 3.2.2

Index-4

Inoex

file 3.2.4, 4.3.3, 10
buffer 4.3.3
buffer and eof function 10.1.7
buffer and reset procedure 10.1.3
component 3.2.4, 4.3.3
identifier as parameter type 7.3
of char 3.2.4
position and reset procedure
10.1.3
record 10.2
reference 4.3.3
species 10.1.2
standard file-type identifier
3.2.4, 10.1, 10.4
types and reset procedure 10.1.3
variable 3.2.4, 4.3.3, 10
file-buffer-symbol 4.3.3
syntax 4.3.3
file-structured device 3.2.4,
10.1.1-2, 10.4
file-type 3.2.4
syntax 3.2.4
FillArc procedure E.9.10
fillchar procedure 11.8.3
FillOval procedure £.9.8
FillPoly procedure E.9.16
FillRect procedure £.9.7
FillRgn procedure E.9.12
FillRoundRect procedure E.S.9
final-value 6.2.3.3
syntax 6.2.3.3
finite real values 3.1.1.3
fixed-part 3.2.2
syntax 3.2.2
fixed-point output of real value
10.3.3.4
floating-point arithmetic O
floating-point output of real value
10.3.3.4, A

Pascal RKeference Mol

font numbers E£.15
fonts E.5.2
for-statement 6.2.3.3
syntax 6.2.3.3
ForeColor procedure E.9.5
foreign characters F.5.4
formal-parameter-list 7.3
syntax 7.3
formal-parameters and procedure call
6.1.2
forward declaration 7.1-2
frameArc procedure E.9.10
FrameCounter function F.3
FrameQval procedure E.9.8
FramePoly procedure £.9.16
frameRect procedure £.9.7
frameRgn procedure E.9.12
FrameRoundRect procedure E.9.9
Frames data type F.10
function 7.2-3
function-body 7.2
syntax 7.2
function-call S, 5.2, 7.2, 7.3
syntax: 5.2
function-declaration 7.2
syntax 7.2
function-heading 7.2
syntax 7.2
functional parameter 7.3.4
functions, assembly language E.11.4

__________ Gem—m—————

get procedure 10.2.1, 10.2.3
GetClip procedure E.9.1
GetFontInfo procedure €.9.4
GetPen procedure £.9.3
GetPenState procedure E.9.3
GetPixel function E.9.18
GetPort procedure E.S.1

Index-5

nex

GetPort3D procedure £.12.4
global coordinates E.6, £.9.17
global variables, assembly language
£.11.3
GlobalTolLocal procedure E.9.17
goto-statement 6.2, A
syntax 6.1.3
gotoxy procedure 10.3.7.2
Graf30 E.12
data types E.12.3, E.13.5
sample program £.14.2
GrafDevice procedure €.9.1
grafPort coordinates €.3.1, E.6
GrafPort data type E.S
grafPort routines E.9.1
grafPorts £.5
GrafPtr data type E.5
GrafvVerb data type E.10
graphics pen E.S.1

__________ H..--...._......_
halt procedure 11.1.2, A
handles E.3.4

picture E.8.1

polygon E.8.2

region E.3.4
hardware interface F
heap 11.2
heapresult function 11.2.2
hex-digit 1.1
hex-digit-sequence 1.4

syntax 1.4
hexadecimal constants 1.4
HideCursor procedure E.9.2
HidePen procedure E.9.3
host program or unit 9
host-type of subrange 3.1.3
hotspot E.4.4, F.2
hourglass cursor £.2.2

identical types 3.4
identifier 1.2
of program 8.1
syntax 1.2
identifier-list 3.1.2
syntax 3.1.2
Identity procedure E.12.4.2
1EEE Floating-Point Standard D
if-statement 6.2.2.1
optimization 12.3
syntax 6.2.2.1
implementation-part 9.1.1
syntax 9.1.1
in operator 5.1.5.5
index 4.3.1
in variable-reference 4.3.1
syntax 4.3.1
index-type 3.2.1
syntax 3.2.1
infinities 3.1.1.3, D
InitCursor procedure E.9.2
InitGraf procedure E.9.1
initial-value 6.2.3.3
syntax 6.2.3.3
initialization-part A
InitPort procedure €.9.1
input (standard file) 10.1.7, 10.3
input file control (in compilation)
12.1
input variables in read procedure
10.3.1
input/output 10
insert procedure 11.6.6

Index-6

Inoex

InsetRect procedure E.9.6
InsetRgn procedure £.9.11
integer 1.4, 3.1.1.1-2, 10.3.1.2,
10.3.3.3, 11.3-5, D
arithmetic 3.1.1.1, 3.1.1.2
constant 1.4
conversion overflow D
data type 3.1.1.1, 3.1.1.2
data type conversions 3.1,
3.1.15, 3.1.2, 115.1
values in text-oriented I/0
10.3.1.2, 10.3.3.3
interactive file-type A
interface-part 9.1.1
syntax 9.1.1
intrinsic-unit 9.2
INTRINSIC.LIB 9.2, 12.1
invalid operations in real arithmetic
D
InvertArc procedure E.9.10
InvertOval procedure €.9.8
InvertPoly procedure E.S.16
InvertRect procedure E.S.7
InvertRgn procedure E.9.12
InvertRoundRect procedure E.9.9
ioresult function 10.1.2, 10.1.6

__________ K........_-_..__..

key state F.5.3
KeyboEvent function F.5.3
KeybdId data type F.10
KeyboPeek function F.5.3
KeybdQIndex data type F.10

Pascal Reference Manual Inoex

keyboard 3.2.4, 10.1.1, 10.3, LineTo procedure E.9.3
10.3.7.1, F.5 LineTo2D procedure E.12.4
attributes F.5.1 LineTo3D procedure E.12.4
echoing on input 10.3 Linker 7.1
events F.5, F.5.3 listing control 12.1
identification F.5.1 In function 11.4.7
layouts F.S.1 local coordinates E.6, £.9.17
legends F.5.1 LocalToGlobal procedure E.9.17
physical 3.2.4, 10.1.1, 10.3, lock 10.1.5
10.3.7.1 long integer data type A
queue F.5.3 longint 1.4, 3.1.1.2, 10.3.1.2,
repeats F.5.5 10.3.3.3, 11.3-5, D
state F.5.2 arithmetic 3.1.1.2
testing 10.3.7.1 constant 1.4, 1.6, 1.7
Keyboard function F.5.1 11.3.4
KeyCap data type F.10 data type 3.1.1.2
KeyCapSet data type F.10 data type conversions 11.3.3,
keycodes F.5 values in text-oriented I/0
KeyEvent data type F.10 10.3.3.3
KeyIsDown function F.5.2 LookAt procedure E.12.4.1

KeyMap procedure F.5.2

keypress function 10.3.7.1 -

KillPicture procedure €.9.14 =00 —meeee—eed L b

KillPoly procedure E.9.15 ManyPixels data type F.10
HapPoly procegure E.9.18
MapPt procedure E.9.18

---------- L tapRect procedure £.9.18
label 1.5 2.1, 6 MapRgn procedure E.9.18

on statement 6 mark procedure 11.2.3, A

syntax 2.1, 6 mask bitmep F.2
label-declaration-part 2.1 maxint 3.1.1.1

syntax 2.1 memavail function 11.2.5
Legends function F.S.1 member-group 5.3
length attribute 3.1.1.6 syntax 5.3
length function 11.6.1 : memory allocation procedures 11.2
letter 1.1 microsecond timer F.6
Line procegure E.9.3 MicroSeconds data type F.10
line-drawing routinres €.9.3 MicroTimer function F.6
Line2D procedure E.12.4 millisecond timer F.7
Line3D procedure E.12.4 MilliSeconds data type F.10

Index-7

Pascal Reference Marval

missing symbol €.5.2
mod operator A
mouse F.1

button F.5

plug F.5
HouseLocation procedure F.1.1
MouseOdometer procedure F.1.4
HouseScaling procedure F.1.3
MouseThresh procedure f.1.3
MouseUpdates procedure F.1.2
Hove procecdure E.9.3
Move2D procedure E£.12.4
Move3D procedure E.12.4
moveleft procedure 11.7.1 -
MovePortTo procedure E.9.
moveright procedure 11.7.
HoveTo procedure E.9.3
HoveTo2D procedure €.12.4
HoveTo3D procedure E.12.4

1
2

NaNs 3.1.1.3, D ‘
new procedure 3.3, 11.2.1, A
NewRgn function E£.9.11

nil 3.3, 4.3.4, 11.2.1
Noise procedure F.4

normal 10.1.5

nuber 1.4

numerical comparisons 5.1.5.1

object file 9
object of pointer 4.3.4
ObscureCursor procedure E.9.2
odd function 11.4.1
OffsetPoly procedure E.9.15
OffsetRect procedure E.9.6
OffsetRgn procedure E.9.11

Index-8

Index

open3DPort procedure E.12.4
opening a file 10.1, 10.1.2-4
OpenPicture function E.9.14
OpenPoly function E.9.15
OpenPort procedure E.9.1
OpenRgn procedure E.9.11
operands S
compile-time 12.2.3
in expressions S
operators S
compile-time 12.2.3
in expressions S ,
optimization of if, repeat, and while
statements 12.3, 12.4
ord function 3.1, 3.1.1.5, 3.1.2,
11.5.1
ord4 function 3.1.1.2, 11.3.3
order of evaluation of operands
5.1.1
ordinal functions 11.5
ordinal-type 3.1 ,
and ord function 11.5.1
and ord4d function 11.3.3
and pred function 11.5.4
and succ function 11.5.3
syntax 3.1
ordinal-type-identifier 3
ordinality 3.1
otherwise-clause 6.2.2.2
syntax 6.2.2.2
output (standard file) 10.3
output expression in unte procedure
10.3.3
output file in write procedn‘e
10.3.3
output-specs in write procedure
10.3.3
ovals, graphic operations E.9.8
overflow (real arithmetic)
31.13, D

packed array of char 5.1.5.6,
10.3.1.5, 10.3.3.6, 11.8
comparisons 5.1.5.6
fillchar procedure 11.8.3
scanning functions 11.8.1, 11.8.2
text-oriented I/0 10.3.1.5,
10.3.3.6

packed data types 3.1.1.6, 3.2

page procedure 10.3.6

PaintArc procegure E.9.10

PaintOval procedure E.3.8

PaintPoly procedure E.9.16

PaintRect procedure E.9.7

PaintRgn procedure E£.9.12

PaintRoundRect procedure €.9.9

parameter 7.1, 7.3

parameter 1ist compatibility 7.3.5

parameter-declaration 7.3
syntax 7.3

parameters in procedure call 6.1.2

Pascal compiler 12

Pattern data type E.4.3

pattern transfer mode €.7.1

patterns £.4.3

pen E.S.1

pen routines E.9.3

Pentode procedure E.S.3

PerNormal procedure E.9.3

PenPat procedure E.9.3

PenSize procedure E.9.3

performance penalty for longint
values 3.1.1.2

PicComment procedure E£.9.14

PicHandle data type E£.8.1

PicPtr data type E.8.1

picture comments E.8.1

Picture data type E.8.1

picture frame E.8.1

picture routines E.9.14

Index-9

Inoex

pictures E.8.1
Pitch procedure E.12.4.2
pixel E.4.1
Pixels data type F.10
Point data type E.3.2
pointer 4.3.4, 11.2
pointer function 3.3, 11.3.4
pointer-object-symbol 4.3.4
syntax 4.3.4
pointer-reference 4.3.4
pointer-type 3.3
conversions 11.3.3, 11.3.4
syntax 3.3
pointer-type-identifier 3
points E.3.2
points, calculations E.9.17
Polygon data type E.8.2
polygons E.8.2
calculations E.9.15
graphic operations E.9.16
PolyHandle data type E.8.2
PolyPtr cata type E.8.2
portBits E.5
portRect E.S
PortSize procedure E.9.1
pos function 11.6.2
power switch F.5
precedence of operators 5
pred function 3.1, 11.5.4
predecessor 3.1
procedural parameter 7.3.3
procedure 7.1, 7.3
procedure-and-function-declaration-
part 2.1
syntax 2.1
procedure-body 7.1
syntax 7.1
procedure-declaration 7.1
syntax 7.1

Pascal Reference Manual

procedure-heading 7.1
syntax 7.1
procedure-statement 6.1.2, 7.1
syntax 6.1.2

procedures, assembly language E.11.4

program 8
identifier 8.1
segments 8.3
syntax 8.1
program-heading 8.1
syntax 8.1
program-parameters 8.1, 8.2
syntax 8.1
Pt2Rect procedure E.9.6
PtInRect function E.9.6
PtInRgn function E.9.11
PtToAngle procedure E.9.6
purge 10.1.5
put procedure 10.2.2-3
puroften function 11.4.10
pyramid E.12

0

- L4

QDProcs data type E.10
QOProcsPtr data type E.10
QDSample program E.2.1, E.14.1

QDSupport unit E.15
qualifier 4.3

syntax 4.3
QuickDraw €
QuickDraw data types E.2.2, E.13.2
QuickDraw glossary E.16

Index-10

Inoex

QuickDraw routines E.9
arcs £.9.10
bit transfer E€.9.13
color drawing E.9.5
cursor handling £.9.2
customizing E.10
grafPorts E£.9.1
line drawing €.9.3
miscellaneous utilities E.9.18
ovals £.9.8
pen E.9.3
pictures E.9.14
points E.9.17
polygons E.9.1S, £.9.16
rectangles E.9.6, £.9.7
regions E.9.11, E£.9.12
rounded-corner rectangles E.9.9
text drawing E£.9.4
vedges E.9.10
QuickDraw sample programs E.2.1,
E.14
QuickDraw summary E.13
QuickDraw, using from assembly
language E.11
gquoted-character-constant 1.6.1
syntax 1.6.1
gquoted-string-constant 1.6
syntax 1.6

0.

RampContrast procedure F.3.1
Random function E.9.18

Pascal Reference Maral

range-checking 3.1.3, 12.1
read procedure 10.3.1
readln procedure 10.3.2
real 1.4, 3.1.1.3, 10.3.1.3,
10.3.3.4, 11.3-4, D
arithmetic D
constant 1.4
data type 3.1.1.3, D
data type and round function 11.3.2
values 3.1.1.3
values and write procedure D
values in text-oriented 1/0
10.3.1.3, 10.3.3.4, D
real-type 3.1
syntax 3.1
real-type-identifier 3
record 3.2.2, 4.3.2
field 3.2.2, 4.3.2
number and seek procedure 10.2.4
of file 10.2
reference 4.3.2
reference in with statement 6.2.4
record-oriented 170 10.2
record-type 3.2.2
new procedure 11.2.1
syntax 3.2.2
rectangle calculation routines E.9.6
Rectangle data type E.3.3
rectangles E.3.3
graphic operations £.9.7
RectInRgn function E.9.11
RectRgn procedure E.9.11
recursion 7.1-2
redeclaration of idgentifier 2.2.2,
2.2.4
Region data type E.3.4
regions E.3.4
calculations E.9.11
graphic operations E.9.12
regular-unit 9.1
syntax 9.1.1

Index-11

Inoex

relational operators 5.1.5
release procedure 11.2.4, A
repeat-statement 6.2.3.1
optimization 12.4
syntax 6.2.3.1
repeating keys F.5.5
RepeatRate procedure F.5.5
repetitive-statement 6.2.3
syntax 6.2.3
reserved words 1.1
reset procedure 10.1, 10.1.5, A
result-type 7.2
syntax 7.2
rewrite procedure 10.1.4
RgnHandle data type E.3.4
RgnPtr data type E.3.4
Roll procedure €.12.4.2
rotation E.12
round function 11.3.2, D
rounded-corner rectangles £.9.9
rounding in real arithmetic D
row width E.4.1

__________ S_______-_...
Scale procedure E.12.4.2
scale-factor 1.4
syntax 1.4
ScalePt procedure E.9.18
scan function A
scaneg function 11.8.1
scanne function 11.8.2
scope 2.2
of standard objects 2.2.5
screen 10.3, 10.3.7.2, F.3
contrast F.3.1
cursor control 10.3.7.2, F.2
fading F.3.2
physical 10.3
ScreenContrast data type F.10

Pascal Rererernce NMarkal

ScreenSize procedure F.3
ScrollRect procedure E.9.13
Seconds data type F.10
SectRect function E.9.6
SectRgn procedure £.9.11
seek procedure 10.2.3
segment keyword A
segmentation 8.3

segments 8.3, 9.1, 9.2.1

selector in case statement 6.2.2.2

set 3.2.3, 5.1.4, 5.1.5.4, 5.3
comparisons 5.1.5.4
membership testing 5.1.5.5
operators 5.1.4
values 5.3

set-constructor 5, 5.3
syntax 5.3

set-type 3.2.3
syntax 3.2.3

SetClip procedure E.9.1

SetContrast procedure F.3.1

SetCursor procedure £.9.2

SetDateTime procedure F.8

SetDimContrast procedure F.3.2

SetEmptyRgn procedure E.9.11

SetFadeDelay procedure F.3.2

Setlegends procedure F.5.1

SetOrigin procedure E.9.1

SetPenState procedure E.9.3

SetPort procedure E.9.1

SetPort30 procedure €.12.4

SetPortBits procedure E.9.1

SetPt procedure E.S.17

SetPt2D procedure £.12.4

SetPt3D procedure E.12.4

SetRect procedure E.9.6

SetRectRgn procedure E.9.11

SetRepeatRate procedure F.5.5

SetStdProcs procedure £.10

SetTimeStamp procedure F.9

Index~12

Inoex

SetVolume procedure F.4
ShowCursor procedure E.9.2
ShowPen procedure £.9.3
sign 1.4
syntax 1.4
signed zero 3.1.1.3
signed-number 1.4
syntax 1.4
Silence procedure F.4
simple-expression 5
syntax 5
simple-statement 6.1
syntax 6.1
simple-type 3.1
syntax 3.1
simple-type-identifier 3
sin function 11.4.4
size-attribute 3.1.1.6
syntax 3.1.1.6
sizeof function 11.7.3
Skew procedure E.12.4.2
source transfer mode E.7.1
SpaceExtra procedure £.9.4
speaker F.4
SpeakerVolume data type F.10
special symbols 1.1
sgr function 11.4.3
sgrt function 11.4.8, D
stack space and memavail function
11.2.5
standard procedures and functions
for I/0 10
10, 11
standard simple-types 3.1
statement 6
syntax 6.1
statement-part 2.1
syntax 2.1
StdArc procedure E.10
StdBits procedure €£.10

Fascal Reference Marxsal

StdComment procedure E.10
StdGetPic procedure E.10
StdlLine procedure €.10
StdOval procedure E£.10
StdPoly procedure E.10
StdPutPic procedure E.10
StdRect procedure E.10
StdRgn procedure E.10
StdText procedure E.10
StdTxMeas function E.10
string 1.6, 3.1.1.6, 4.3.1, 5.1.5.3,
10.3.1.4, 10.3.3.5, 11.6, A
character 4.3.1
comparisons 5.1.5.3
concatenation 11.6.3
constant 1.6, 3.1.1.6
constant comparisons 5.1.5.3
length function 11.6.1
procedures and functions 11.6
reference 4.3.1
substring copying 11.6.4
substring deletion 11.6.5
substring insertion 11.6.6
substring search 11.6.2
values in text-oriented 1/0
10.3.1.4, 10.3.3.5
string-character 1.6
syntax 1.6
string-type 3.1.1.6
syntax 3.1.1.6
string-type-identifier 3
StringWidth function E.9.4
structured-statement 6.2
syntax 6.2
structured-type 3.2
syntax 3.2
structured-type-identifier 3
StuffHex procedure E.9.18
SubPt procedure E.9.17

Index-13

Index

subrange-type 3.1.3
syntax 3.1.3

succ function 3.1, 11.5.3

successor 3.1

syntax diagrams, complete collection
c

syntax diagrams, explanation Preface

system intrinsic library 9.2.2, 12.1

__________ Temm e
tag constants in new and dispose
procedures 11.2.1-2
tag-field 3.2.2
tag-field-type 3.2.2
syntax 3.2.2
term 5
syntax 5
testing set membership 5.1.5.5
text E.5.2
text type 3.2.4, 10.1.2, 10.3
text-drawing routines E.9.4
text-oriented I/0 10.3
TextFace procedure E.9.4
textfile 10.1.2, 10.3, A

textfile format 10.1.2, 10.3
TextFont procedure E.9.4
TextMode procedure E.9.4
TextSize procedure E.9.4

TextWidth function E.9.4

three-dimensional graphics. See
Graf30.

time F.8, F.9

time stamp F.9

Timer function (millisecond timer)
F.7

timers F.6, F.7

TimeStamp function F.9

TimeToDate procedure F.9

Pascal Reference Maral

transfer functions 11.3
transfer modes E£.7.1
Transform procedure E.12.4.2
transformation matrix E.12
Translate procedure £.12.4.2
treesearch procedure A
trunc function 11.3.1, A, D
turtlegraphics unit A
type 3
compatibility and identity 3.4
syntax 3
type-declaration 3
syntax 3
type-declaration-part 2.1, 3.5
syntax 2.1

.......... U-________-
UCSD Pascal A
unary arithmetic operators 5.1.2
underscore character A
UnionRect procedure E.9.6
UnionRgn procedure E.9.11
unit 9
intrinsic 9.2
regular 9.1
unit-heading 9.1.1
syntax 9.1.1
unsigned-constant S
syntax 5
unsigned-integer 1.4
syntax 1.4
unsigned-number 1.4
syntax 1.4
unsigned-real 1.4
syntax 1.4
untyped file 3.2.4, 10.1.1-2, 10.4
17/0 10.4
uses-clause 8.1, 9.1.1-2, 9.2, 9.3
syntax 8.1

Index-14

.......... Y-
value parameter 7.3.1
variable 4
variable parameter 7.3.2, A
variable-declaration 4.1
syntax 4.1
variable-declaration-part 2.1
syntax 2.1
variable-identifier 4.1
syntax 4.1
variable-reference 4.2
syntax 4.1
variant 3.2.2
records, new procedure 11.2.1
syntax 3.2.2
variant-part 3.2.2
syntax 3.2.2
vertical retrace F.3
VHSelect data type E.3.2
ViewAngle procedure E.12.4.1
viewing pyramid E.12
ViewPort procedure E£.1i2.4.1
visRgn E.S
Volume function F.4

¥, X2

wedges, graphic operations €.9.10
vhile-statement 6.2.3.2

optimization 12.4

syntax 6.2.3.2
vith-statement 6.2.4

syntax 6.2.4
wordstream type A
write procedure 10.3.3, A

with real values O
write-protection of file 10.1.5
writeln procedure 10.3.4, A
xForm matrix €£.12
XorRgn procedure £E.9.11

Pascal Reference NManudl

Yaw procegure E.12.4.2
zero, signed 3.1.1.3

$C compiler commands 12.1

$0 compiler commands 12.1

$0ECL compiler command 12.2.1

$£ compliler commang 12.1

$ELSEC compiler command 12.2.4

$ENOC compiler command 12.2.4

$1 compiler command 12.1

$IFC compiler command 12.2.4

$L compiler commands 12.1

$R compiler commands 3.1.3, 12.1

$S compiler command 8.3, 9.1, 9.2,
12.1

$SETC compiler command 12.2.1

$U compiler commands 9.1.2, 9.2.2,
12.1

$X compiler commands 12.1

0, signed 3.1.1.3

16-bit integer arithmetic 3.1.1.1-2,
11.3.3

32-bit integer arithmetic 3.1.1.2,
11.3.3

30 graphics. See Graf3D.

3 operator 3.3, 5.1.6

Index-15

Index

| HIS MANUAL was produced using
LisaWrite, LisaDraw, and
Lisal.ist.

LL PRINTING was done with an
~ Apple Dot Matrix Printer.

the Lisa™

. We use it ourselves.

Pascal Rererernce Manual Mall-Back Form

Apple publications would like to leamn about readers and what you think about this
manual in order to make better manuals in the future. Please fill out this form, or
write all over it, and send It to us. we promise to read it.

How are you using this manual?
[] tearmning to use the progduct [] reference [] both reference and learning

[] other

Is it quick and easy to find the Information you need In this manual?
[]always []often []sometimes []seldom [] never

Comments
what makes this manual easy to use?

what makes this manual hard to use?

what do you like most about the manual?

what do you like least about the manual?

Please comment on, for example, accuracy, level of detall, number and usefulness of
examples, length or brevity of explanation, style, use of graphics, usefulness of the
Index, organizatlon, suitability to your particular needs, readablility.

what languages do you use on your Lisa? (check each)
[1Pascal []BASIC []cCoBOL []other
How long have you been programming?

[10-1years []1-3 []4-7 []Jover 7 []not a programmer
what is your job title?
Have you completed:

[] nigh school {] some college [] BA/BS []MAMS [] more
what magazines do you read?

Other comments (please attach more sheets if necessary)

029-0406-A

a0

fapo
PLACE
STAP
HERE
i
'clpple computear
'POS Publications Department

20525 Mariani Avenue
Cupertino, Califomia 95014

TAPE R STRPLE

