
Lisa Pascal 2 .0 . Languages

windlMllcorcl • A!COAD

~AT
SystemTask;
TEldle(hTE);
temp :. GetNextEvent(everyEvent,myEvent);
CASE myEvent.what OF

mouseOown:
EEGIN

port: orafPOrt;
wil'lCllMl.ind: IHT!G!R;
visiDII: IIOOLLIIN;
nil i tiel: IIOOLLIIN;
~IIQ: IIOOLLIIN;
5PII'I"IIQ: IIOOLLIIN;
I tl'IlCA!JI : I9'fWlCIII;
contf9l: I9'fWlCIII;
I4*tIRIJl: I9'fWlCIII;
windOloOefPrDo: HIndle;
Clatlltlndll:

code :. FindWindow(myEvent.where,whichWindow);
CASE code OF

029-0)91-A

Pascal
Reference Manual

for the Lisa 1M

Licensing R8(JJiremenu for Software Devel~n

Apple has a low-cost licensing program, which permits developers of software
for the Lisa to incorporate Apple-developed libraries and object code files
into their products. Both in-house and external distribution require a license.
Before distributing any products that incorporate Apple software, please
contact Software Licensing at the address below for both licensing and
technical information.

01983 by PiJple Computer, Inc.
20525 MarianI Avenue
CUpertino, California 95014
(408) 996-1010

Apple, Lisa, and the Apple logo are trademarks of Apple Computer, Inc.
Simultaneously published in the USA and Canada

Reorder .AWle Product #f\600101 (Complete Pascal package)
#A6LOlll (Manuals only)

CUstooler Satisf~tioo

If you discover physical defects in the manuals distributed ",ith a Lisa product
or in the media on which a software product is distributed, ~ple will replace
the documentation or media at no charge to you during the 90-day period
after you purchased the product.

Procl.ct Revisions

Unless you have purchased the product update service available through your
authorized Lisa dealer, Apple cannot guarantee that you will receive notice of
a revision to the software described in this manual, even if you have returned
a registration card received with the product. You should check periodically
",ith your authorized Lisa dealer.

Limitatloo on Wanmties and Liability

All implied warranties concerning this manual and media, including implied
warranties of merchantability and fitness for a particular purpose, are limited
in duration to ninety (90) days from the date of original retan purchase of this
product

Even though Apple has tested the software described in this manual and
reviewed its contents, neither Apple nor its software suppliers make any
warranty or representation, either express or implied, with respect to this
manual or to the software described in this manual, their quality, performance,
merchantability, or fitness for any particular purpose. fl.s a result, this
software and manual are sold "as is," and you the purchaser are assuming the
entire risk as to their quality and performance.

In no event will Apple or its software suppliers be liable for direct, indirect,
special, incidental, or consequential damages resul ting from any defect in the
software or manual, even if they have been advised of the pOSSibility of such
damages. In particular, they shall have no liability for any programs or data
stored in or used with Apple products, including the costs of recovering or
reproducing these programs or data

The warranty and remedIes set forth above are exclusIve and In l1eu of all
others" oral or written, express or implied. No Apple dealer" agent or
employee is authorized to make any modification" extension or addition to this
warranty.

Some states do not a11o", the exclusion or limitation of implied warranties or
liability for incidental or consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives you specific legal rights,
and you may also have other rights that vary from state to state.

111

license em CqJyri~t
Thh manual and the software (computer programs) described in it are copy­
righted by Apple or by Apple"s software stWlien, with all rights reserved, and
they are covered by the lisa Software License Agreement signed by each Lisa
owner. Under the copyright laws and the License Agreement, this manual or
the programs may not be copied, in whole or in part, without the written
consent of Apple, except in the normal use of the software or to make a
backup copy. This exception does not allow copies to be made for others,
whether or not sold, but all of the material purchased (with all backup copies)
may be wId, given, or loaned to other persons if they agree to be bound by
the provisions of the License Agreement Copying includes translating into
another language or format.

You may use the software on any computer owned by you, but extra copies
cannot be made for this purpose. For some products, a multiuse license may
be purchased to allow the software to be used on more than one computer
owned by the purchaser, including a shared-diSk system. (contact your
authorized Lisa dealer for more information on multiuse licenses.)

1v

Contents

Chapter 1
To<ens and Cmstants

1.1 Character Set and Special Symbols .. 1-1
1.2 Identifiers ... 1-2
1.3 Directives ... 1-2
1.ll I\Iurnbers .. 1-2
1.5 LatJels ... 1-4
1.6 Quoted String Constants•... . 1-ll
1.7 Constant [)eclarations ... 1-5
1.8 Con"vnents and Compiler Cornrnancts•...........•................•..... 1-5

Chapter 2
Blocks, Locality, cnt ~

2.1 Definition of a Block ... 2-1
2.2 Rules of Scope ... " 2-3

Olapter 3
Data Types

3.1 Simple-Types (and Ordinal-Types) ...•.•........ 3-2
3.2 Stroctured-Types ... 3-7
3.3 POinter-Types .. 3-13
3.4 Identical and Corf1Jatible Types•................................•............ 3-13
3.5 The Type-OeclaratiOt1-Part .. 3-16

Chapter 4
variables

4.1 Variable-Declarations ..•.......•...... 4-1
4.2 Variable-References ..•.•.•.......... 4-1
4.3 QJallflers .. 4-2

ChapterS
E>cpressims

5.1 ~rators •.....•...•..................•...•.•.•.............•.•...•........•.••........•...•...... 5-4
5.2 F~tion-Calls•...•.•.•.....................•.....•........•.......•.... 5-10
5.3 Set-Constructors ...•.... 5-11

v

PascBi Reference Mant.IBl

~ter6
Statements

Contents

6.1 Simple Statements .. 6-1
6.2 Structured-Staternertts .. 6-4

Chapter 7
ProceWres cn1 Ft.n::tims

7.1' Procedure-Declarations .. 7-1
7.2 Function-Declarations .. 7-4
7.3 Parameters .. 7-5

~ter8
Prognms

8.1 Syntax .. 8-1
8.2 Program-Parameters ... 8-1
8.3 Segmentation ... 8-1

~9
Ulits

9.1 Regular-LJnits .. 9-1
9.2 Intrinsic-lJnits ... 9-4
9.3 LJnits that Use other LJnits•.................................... 9-4

Chapter 10
~

10.1 Introduction to 110 ...••.•.•...••..•••...•••••.•••.•••••••.•.•••••••.••••.•..••••.•••••••••••• 10-1
10.2 Record-Oriented lID ..•..•.•.••••....••••.••••..••••••••••••••••.••••••••••••••••••••••••••• 10-8
10.3 Text-Oriented 1/0•...........•.•.•.•......•.•.....•...•........• 10-9
10.4 Llntyped File 1/0 10-18

~ter 11
Standard ProceWres and FWlCtions

11.1 Exit and Halt Procedures .. 11-1
11.2 Dynamic Allocation Procedures .. 11-1
11.3 Transfer Functions .. 11-4
11.4 Arithmetic Functions .. 11-5
11.5 Ordinal Functions .. 11-8
11.6 String Procedures and Functions .. 11-9
11.7 Byte-Oriented Procedures and Functions ... 11-11
11.8 Packed Array of Char Procedures and Functions 11-12

vi

Pascal Reference Hanual

~ter 12
The COOllller

contents

12.1 compiler Cornrnands ... 12-1
12.2 Conditional COITIpilatlon .. 12-3
12.3 q:>Umlzation of If-Statements .. 12-5
12.4 q:>t1mizatlon of While-Statements and Repeat-Statements 12-7
12.5 Efficiency of Case-Statements ... 12-7

~xes

A ComparIson to Apple II and Apple III Pascal e e e .. A-1
B i'<nown .Allomalies in the Compiler ... B-1
C Syntax of the Language ... C-1
D Floating-PoInt Arithmetic ... D-1
E QulCkDraw e ... E-1
F Hardware Interface .. F-1
G LIsa Character set .. G-1
H Error tv1essages .. H-1
I Pascal WorkShOp FlIes .. 1-1

Tables

5-1 PrecedenCe of ~ratlons•.........•...•........................•..... 5-1
5-2 Binary Arithmetic ~ratlons .. 5-4
5-3 unary Arttnmetlc qJeratlons (Signs) ... 5-4
5-4 Boolean QJeratlons .. 5-6
5-5 set ~rations .. 5-6
5-6 Relational q:>erations .. 5-7
5-7 Pointer Clleratlon .. 5-8

10-1 combinations of File Variable Types with External File
Species and CategorIes .. 10-3

0-1 Resul ts of Add! tion and SUbtraction on Inflni ties .•.... e. e •••••••••••••••••••••••• D-2
0-2 Results of Multiplication and Division on Infinities D-3

vii

Syntax Diagrams

A,B
actual-pararreter•..•............... 5-10
actual-pararneter-list .. 5-10
array-type .. 3-8
assignment-statement .. , ... 6-1
base-type•..•............... 3-13
blOCk•.. 2-1

C
case ... 6-6
case-statement ... 6-5
canpound-staternent .. 6-4
conditional-statement .. 6-4
constant ... 1-5
constant-deClaration .. 1-5
constant-declaration-part .. 2-2
control-variable .. 6-8

O,E,F
digit-sequence .. 1-2
entIfllerated-type ... 3-6
expression ... 5-3
factor ... 5-1
field-declaration ... 3-10
fIeld-desIgnator ..•................ 4-4
field-list ... 3-9
file-buffer-synlbol•..•................ 4-4
file-type•... 3-12
final-value•.•..•.•.............. 6-8
fIxed-part•..•.........•...... 3-9
fOI-statement•... 6-8
foll1l8l-pararneter-list•................•...........................•................ 7-6
ftJ'lCtion-body•..•.........•....•.............................•................ 7-4
function-call•... 5-10
ftJ"lCUon-declaratlon•..•................ 7-4
function-heading•..............................•.............•................ 7-4

viii

Cmtents

G, H, I
goto-stat.erTlent ... 6-3
hex-digit-sequence .. 1-2
ldentl fier .. 1-2
identl fier -list .. 3-6
if-statement ... 6-5
ifTlJ)len-.entatlon-part .. 9-2
Index .. 4-2
index-type .. 3-8
ini lial-value .. 6-8
Interface-part ... 9-2

L, M, 0
label ... 2-1,6-1
label-declaration-part ... 2-1
fTlefT'Iber -group .•.••••••••.•.•.•••.•••.•..•••••.•.•••.•.•••..••.•.•.•••.•.•.•.•••••••••...••••..•..... 5-11
ordinal-type .. 3-2
otherwise-clause ... 6-6

p
pararneter-declaratiOf'l ... 7-6
pointer-Object -syrTlbol .. 4-4
pointer-type ... 3-13
procecllre-and-fll'lCtion-declaratlon-part ... 2-2
procedtJre-body ... 7-1
procedure-declaration .. 7-1
procedlJre-heading ... 7-1
procedtJre-staternerlt .. 6-2
program .. 8-1
program-headlng ... 8-1
program-parameters .. 8-1

Q,R
qualifier ... 4-2
quoted-character-constant ... 1-4
quoted-string-constant ... ;. 1-4
real-type .. 3-2
record-type .. 3-9
regtJlar-tIlit .. 9-1
repeat -staternerlt ... 6-7
repetitive-statement .. 6-6
result-type ... 7-4

lx

Pascal Reference M8nu81 Contents

S
scale-factor .. 1-3
set -corlStructor ... 5-11
set-type ... 3-11
sign .. 1-3
signed-l1tJIl't)er " ... 1-3
silTlple-expression .. 5-3
sirTlple-statetTlent ... 6-1
sirTlple-type " .. 3-2
size-attribute .. 3-5
staterTleflt ... 6-1
statement-part .. 2-2
string-character .. 1-4
string-type ... 3-5
structured-statement ... 6-4
structured-type ... 3-7
subrange-type ... 3-7

T
tag-field-type ... 3-10
term ... 5-2
type ... 3-1
type-declaration .. 3-1
type-declaration-part .. 2-2

U
uni t -heading ... 9-1
unsigned-constant .. 5-2
unsigned-integer .. 1-3
unsigned-ruTt»er ... 1-3
unsigned-real .. 1-3
uses-clause ... 8-1

V, W
variable-declaratIon ..•................. 4-1
variable-declaration-part ... 2-2
variable-identifier ... 4-1
variable-reference ... 4-1
variant ... 3-10
variant-part .. 3-10
While-statement .. 6-7
with-statefTlef1t ... 6-10

x

Preface

This manual is intended for Pascal programmers. It describes an Implemen­
tation of Pascal for the Usa computer. The compUer and code generator
translate Pascal source text to MC68000 Object code.
The language Is reasonably compatible with P\pple II and P\pple III Pascal. See
~pendlx A for a discussion of the differences between these forms of Pascal.
In addition to prOViding nearly all the features of standard Pascal, as described
in the Pascal User Manual and Report (Jensen and Wirth), this Pascal provides
a variety of extensions. These are summarized in Appendix A They include
32-bit integers, an otheIWlse clause in case statements, procedural and
functional parameters with type-checked parameter llsts, and tne • operator
for obtaining a pointer to an Object. The real aritnmetic conforms to many
aspects of the proposed IEEE standard for Single-precision arithmetic.

qJeratlrg Envirorment
The complIer wlll operate In any standard Usa hardware configuration; this
manual assumes the Workshop software environment

Related Doct.ments
Pascal USer Manual and Repor, Jensen and Wirth, Springer-verlag 1975.

Wolf<sllop User's Guide for tile Lisa, Apple Computer, Inc. 1983.
other Lisa documentation.

DeflnlUons
For tne purposes of tnls manual the following definitions are used:

• Error: Either a run-time error or a compHer error.
• SCOpe: The bOdy of text for whIch the declaratIon of an IdentifIer or

label Is valid.
• Ul7defined: The value of a variable or function when the variable dOes not

necessarily have a meaningful value of its type assigned to it
• unspecified: A value or action or effect that, althOUgh possibly

well-deflnecl., Is not speclflea and may not be the same In all cases or for
all versions or configurations of the system. My programming construct
that leads to an unspecified result or effect Is not supported.

~tat1on cn:J Syntax Dlagrcms

029-0393-A

All numbers in this manual are in decimal notation, except wtlere hexadecimal
notation Is specifically indicated.
Throughout this manual, bOld-face type is used to distinguish Pascal text from
Engl1sh text. For example, SQI(n dlv 16) represents a fragment of a Pascal
program. Sometimes the same word appears both in plain text and in

xiii

Pascal Reference Hanual Preface

nola-face; for example, "The deClaration of a Pascal proceaure begIns wIth
the word procedlre."
Italics are used when technical terms are intrOdUced.
Pascal syntax Is speclfIea by Olagrams. For example, the followIng dIagram
gives the syntax for an identifier:

jdenufjer

Start at the left and follow the arrows through the diagram. Numerous paths
are pOSSible. Every path that oegins at the left and encls at the arrow-head on
the right is valid, and represents a valld way to construct an identifier. The
boxes traversed by a path thrOUgh the dIagram represent the elements that can
be used to construct an identifier. Thus the diagram embOdies the following
rules:

• M identifier must begin with a letter, since the first arrow goes directly to
a box containing the name "letter."

• M IdentifIer mIght consIst of nothIng bUt a sIngle letter, sInce there Is a
path from thIs box to the arrow-head on the right, wIthout goIng through
any more bOxes.

• The InItial letter may be followed by another letter, a digit or an
U7derscore, since there are branches of the path that lead to these boxes.

• The InitIal letter may be followed by any number Of letters, dIgits, or
underscores, sInce there Is a loop In the path.

A word contained In a rectangular bOx may be a name for an atomIc element
llke "letter" or "dIgit," or It may be a name for some other syntactic
construction that Is specIfIed by another dIagram. The name in a rectangular
bOx Is to be replaced by an actual instance of the atom or construction that It
represents, e.g ... ~' for "digit" or .. cotIlter" for "variable-reference".
Pascal Sj'1TtJOIS, SUCh as reserved woras, operators, and punctuatIon, are
bOld-face and are enclosed In circles or ovals, as in the fOllowing dIagram for
the construction of a Compound-statement:

compound-statement

--C begin) (.I~s_ta_te_m ___ e_n_t--, __) .@
~O· .

xiv

Pascal Reference /'1antJaJ Preface

Text in a circle or oval represents itself, and Is to be written as shown (except
mat capitalization of letters is not signiflcant~ In the diagram abOve, the
semicolon and the words begin and em are symbOls. The word "statement"
refers to a construction that has its own syntax diagram.
A compouno-statement consists Of the reserved wora Degln, fOllowed oy any
number of statements separated by semicolons, followed by the reserved word
ern (As wIll oe seen in Chapter 6, a statement may be null; mus begin em Is
a valld compound-statemenL)

xv

NOTES

029-00SO-A

Chapter 1
Tokens and Constants

L1 c:tlaraIcter Set a1d Spe(:ial S}'lltMlls .. 1-1

L2 Ic:Ier1tifiers ...•.•...........•.•....•......••.....•..••.•.•....••.........•.•....•................. 1-2

1..3 [)Irectives _ .•.. _ .•...........•.......•.•...•.•.... _•.•...................... 1-2

L4 ~n •...•.•...........•.•...•..•...............•..•....•...•....•..•...•.•........••••......•. 1-2

L5 LatJels •••••••..•••••••••.•••.•.•.•.•••••.•.••••••.•.•.•.•.•.•.•••.••••.••.•••.•••••.•.•••.••••.•..• 1-4

1.6 G).Iot..e(j st.rirlg Qlr1star1ts •• 1-4

1.6.1 Quoted Character Constants ... 1-4

1.7 Corlstar1t ()e(:laratic:JlS ...•.•..................•.................•.......•.................... 1-5

La c:ortI1'lerlts arld C!or'f1l1ler ()J I iI1l8I.:Is ... 1-5

Tokens and Constants

Tokens are the smallest meaningful uni ts of text in a Pascal program;
structurally, they correspond to the words in an Engllsh sentence. The tokens
of Pascal are classified into special symlJol~ identifiefS, numlJefS, label~ and
quoted stJing constants

The text of a Pascal program consists of tokens and sepa.ratofs.: a separator is
either a blank or a comment. Two adjacent tokens must be separated by one
or more separators, If both tokens are identifiers, numbers, or reserved words.
No separators can be embedded wi thIn tokens, except in quoted string
constants.

1.1 CtlClrooter Set end Special Syrrmls
The character set used by Pascal on the Usa is 8-bi t extended ASCII, with
characters represented by numeric codes in the range from 0 to 255.

Letters, digits, hex-digIts, and blanks are subsets of the character set:
• The letters are those of the English alphabet, A through Z and a through z.
" The digits are the Arabic numerals 0 through 9; the flex-digits are the

Arabic numerals 0 through 9, the letters A through F, and the letters a
through f.

• The blanks are the space character (ASCI1 32), the horizontal tab character
(ASCII 9), and the CR character (ASCII 13~

Special symbols and reseIVed words are tokens having one or more fixed
meanings. The following single characters are special symbols:

+ _ * / = < > [] • , () : ; A iii {} $

The following character pairs are specIal symbols:
<> <= >= := •• (* *)

The following are the .rese.rved words:

and end label
array file methOds*
~n for ~
case ftrlction nil
canst gato not
creatial* if Of
dlv I~lementation or
downto in otherwise
do interface peDed
else intrinsiC* pIOCeWre

1-1

program
record
repeat
set
strirg
Slt)class*
then
to
type
lIlit

l.I1til
uses
var
While
with

Pascal Reference Manual Tokens & Constants

The reserved words marked wIth asterIsks are reserved for future use.
Corresponding upper and lower case letters are equivalent in reserved words.
())ly the first 8 Characters of a reserved WOrd are signIflcant

1.2 ldentl fiers
Identifiers serve to denote constants, types, variables, procedures, functions,
units and programs, and fields In records. Identifiers can oe of any length, out
only the first 8 characters are signIficant. corresponding upper and lower case
letters are equivalent in identifiers.

identi t1eJ"

Tne first 8 cnaracters of an IOentlf1er must not matcn the fIrst 8 Char­
acters of a reserved word.

ExanpJeS of fl1efJtJf1eIS:

X RolE ~ Sl.J1

1.3 Directives
DIrectives are worOs that nave special meanIngs In particUlar contexts. Tney
are not reserved and can be used as identifiers in other contexts. For
example, the \Vord fOrward is Interpreted as a directive If It occurs
immediately after a procedure-heading or function-heading, but in any other
posItion It Is Interpreteo as an identifier.

1.4 f\k.Imers
The usual decimal notation Is useo for numbers that are constants of the data
types integer, laYJint, and real (see Section 3.1.1)' Also, a nexaOeclmal integer
constant uses the $ character as a prefix (1-4 digits for integer, 5-8 digits for
lID"Jint).

diqit-@HiCt! :~ ()

/Jex-diqit-seq.lel1Ce
(:' heX-digit!) •

1-2

Pascal Reference Manual Tokens & Constants

unsigned-real

digit -sequence digit-sequence ~-------..,.-""

""----------~~ scale-factor

scale-factor ~ _I digit-sequence

~~

unsi rneti-number
~.:.......~-~.;.;...;;....;----~ unsigned-integer

unsigned-real I---~----.

siqned-numlJer ., unsigned-number I •
~

The letter E or e preceding the scale 1n an unsigned-real means "times ten to
the power of".

Examples of numbers:

1 +100 -0.1 SE-3 87.35e+8 SA050

Note that SE-3 means SX10-3, and 87.35e+8 means 87.35x108.

1-3

Pascal Reference Manual TOkens & Constants

1.5 Looels
A label is a digit-sequence in the range from 0 through 9999.

1.6 Quoted Strit'YJ Consta1ts
A quoted-strIng-constant Is a sequence of zero or more characters, all on one
line of the program source text and enclosed by apostrophes. Currently, the
maximum number of characters Is 255. A quoted-strIng-constant with nothing
between the apostrophes denotes the null string.
If the quoted-string-constant is to contain an apostrophe, this apostrophe must
be written twIce.

quoted-stIing-ccnst8f]t

~~------~~~.(}+
~ string-character P

st.rlng-clJa.racte.r

Examples of' quoted-stIing-constants:

'Pascal • 'THIS IS A STRING'

'A' t a ' ,
'Don' • t IiKlrry!'

All string values have a lengtn attribute (see Section 3.1.1.6~ In the case of a
string constant value the length is fixed; it Is equal to the actual number of
characters in the string value.

1.6.1 Quoted Character constants
Syntactically, a quoted-character-constant is simply a quoted-strIng-constant
whose length is exactly 1.

quotec1-ClJa.racte.r-constant • (}+I string-character ~(}+

A quoted-character-constant is compatible wIth any char-type or strIng-type;
that Is, it can be used either as a character value or as a string value.

1-4

Pascal Refemnce Manual Tokens & Constants

1.7 COOSta'lt DeclaraUons
A constant-declaration defines an identifier to denote a constant, within the
block that contains the declaration. The scope of a constant-identifier (see
Chapter 2) does not include its own declaration.

constant-declaration .1 IdentifIer ~ constant ~

q.o,---,-n.tS'...;..ta='f7..;..;;t_~_~ ____ -,-~ constant-identifier

A constant-identifier is an identifier that has already been declared to
denote a constant.

A constant-identifier fOllowing a sIgn must denote a value of type integer,
long!nt, or real.

1.8 cooments <nj complIer Corn.a IllS
The constructs:

{ any text not containIng right -brace }
(* any text not containing star-right-paren .)

are called comment.':

A compiler command is a comment that contains a $ character immedIately
after the { or (. that begins the comment. The $ character is followed by the
mnemonic of the compiler command (see Chapter 12~
Apart from the effects of complIer commands, the SUbstitutlon of a blanK for a
comment does not alter the meanIng of a program.
A comment cannot be nested within another comment formed with the same
Kind of delimiters. However, a comment formed with { ... } delimiters can be
nested within a comment formed with (•...•) delimiters, and vice versa.

1-5

NOTES

Chapter 2
Blocks, Locality, and Scope

2.1 CJefinitioo of a BlocS< ... 2-1

2.2 Rules of Scc:4Je •...•••.••...•••..•••...•••..•.........••••.•.••..••..•.••••.••••••.••..•••...•.•. 2-3

2.2.1 Scope of a Declaration ... 2-3
2.2.2 Redeclaration in an Enclosed Block , 2-3
2.2.3 Position of Declaration within Its BlOCk .. 2-3
2.2.4 Redeclaration within a Block .. 2-3
2.2.5 Identifiers of Standard (])jects .. 2-4

Blocks, Locality, and Scope

2.1 Deflnltloo of a BlOCk
A block consists of declarations and a statement-part. Every block Is part of
a procedure-declaration .. a function-declaration .. a program .. or a unit. All
identifiers and labels that are declared in a particular block are local to that
block.

bll1l.-:k
=~---....... label-declaration-part

constant -declaration-part

type-declaration-part

variable-declaration-part

procedure-and-function-declaration-part

statement-part 1--------------+

The lalJel-cteclaratJon-part declares all labels that marl< statements in the
corresponding statement-parl Each label must mark exactly one statement in
the statement -part.

lalJel-decl81aIJm-pa/l

.~ ~t-~--.t.QJ--____ •

l8lJel ., digIt-sequence I ~

2-1

Pascal Reference Manual Blocks, Localj~ <.1 Scope

The constant-declaratJon-part contains all constant-declarations local to the
blocK.

constanl-declaraam-parl

--§) (.. ~r-I -co-n-st-a-nt---de-c-la-r-atl-' o-n--'I)

The type-declaralion-part contains all type-declarations local to the block.

t;pe-declBIBt.im-parl

~ (~~-deClaratiOn f-y-* ..
The varjalJle-declaralion-part contains all variable-declarations local to the
blocK.

vOfjable-declarali17n-part

(.1 variable-declaration I) .. -

The procedure-and-flInclion-declaralion-part contains all procedure and
function declarations local to the blocK.

pn:x::edJ.re-!TId-f'lI1Ctim-declaratim-part

procedure-declaration

function-declaration

The statement-part specifles the algorIthmIc actions to be executed upon an
actl vatlon of the block.

stotement-part .1 compound-statement I •

2-2

Pascal Refel"ffll-"'e Manual BlOCkS; Locality, & SCOpe

NOTE

At run time, all variables declared within a particular block have
unspecifled values each tlme the statement-part Of the block Is entered.

2.2 Rules of ~
This Chapter discusses the scope Of Objects wit/lin tlJeprogram or lInit in wlliell
t/leyare defined See Chapter 9 for the scope of objects defined in the
interface-part of a unit and referenced In a host program or unit.

2.2.1 ~ of a Declaratioo
The appearance of an identifier or label in a declaration defines the identifier
or label. All corresponding occurrences of the identifier or label must be
wi thin the scope of this declaration.

This scope is the block that contains the declaration, and all blocks enclosed
by that block except as explained in Section 2.2.2 below.

22..2 Redeclaratioo in an Enclosed BlOCk
Suppose that outer is a block, and imer is another block that Is enclosed
within outer. If an identifier declared in block outer has a further declaration
in block imer, then block imer and all blocKs enclosed by imer are excluded
from the scope of the deClaration in block outer. (See Appendix B for some
odd cases.)

2.2.3 Position of Declaration within Its BlOCk
The declaration of an identifier or label must precede all corresponding
occurrences of that identifier or label in the program text--i.e., identifiers and
labels cannot be used until after they are declared.

There is one exception to this rule: The base-type of a pointer-type (see
Section 3.3) can be an identifier that has not yet been declared. In this case,
the identifier must be declared somewhere in the same type-declaration-part
in which the pointer-type occurs. (See Appendix B for some odd cases.)

2.2.4 Redeclaratlon within a BlOCk
An identifier or label cannot be declared more than once in the outer level of
a particular blOCK, except for record field identifiers.

A record field identifier (see Sections 3.2.2, 4.3, and 4.3.2) Is declared within a,
record-type. It is meaningful only in combination with a reference to a
variable of that record-type. Therefore a field identifier can be declared
again within the same blOCK, as long as it is not declared again at the same
level within the same record-type. Also, an identifier that has been declared
to denote a constant, a type, or a variable can be declared again as a record
field identifier in the same blocK.

2-3

Pascal Reference Manual Block,t Localj~ & SCOpe

2.2.5 Identifiers of St.a1da.rd (J)jects
Pascal on the Lisa provides a set Of standard (predeclared) constants, types,
procedures, and functions. The identifiers of these objects benave as if they
were declared in an outermost block enclosing the entire program; thus their
scope includes tne entire program.

2-4

NOTES

029-0l95-A

Chapter 3
Data Types

3.1 Sinllle-Types(and()rdir)al-Types) .. 3-2

3.1.1 Standard Simple-Types and String-Types 3-3
3.1.1.1 The Integer Type ... 3-3
3.1.1.2 The Longint Type .. 3-3
3.1.1.3 The Real Type .. 3-4
3.1.1.4 The Boolean Type ..•.•.•..................•.•..........•................... 3-4
3.1.1.5 The Char Type .. 3-4
3.1.1.6 String-Types•... 3-5

3.1.2 Enurnerated-Types ... 3-6
3.1.3 Subrange-Types ... 3-7

3.2 St.I't.I:tlJre(Types•..•••.•....••••• __ .. 3-7

3.2.1 Array-Types•.......•...•.....•.•... 3-8
3.2.2 Record-Types•... 3-9
3.2.3 Set-Types•...........•... 3-11
3.2.4 File-Types•..•...... 3-12

3..3 Pointer-Types•..........•....•....•.•....••.......•.....•....•..•.•.......•.•....•...... 3-13

3.4 lc:B1tical and ~le Types•...•...............................•.•......•...... 3-13

3.4.1 Type Identity ... 3-14
3.4.2 Compatibility of Types .. 3-15
3.4.3 Assignment-Compatibility ... 3-15

35 T'he T.YJ)e-l)eclaratim-Part•.•.............••......•.....•.•••.....•.•....•...... 3-16

Data Types

A type is used in declaring variables; it determines the set of values which
those variables can assume, and the operations that can be performed upon
them. A type-declaration associates an identifier with a type.

lype-declamlim "I identifier

.... t .o;;...;;;..._~~ simple-type t---"'"

pOinter - type .-------..

The occurrence of an identifier on the left-hand side of a type-declaration
declares It as a type-IdentifIer for the bloCK In whICh the type-declaration
occurs. The scope of a type-identifier does not include its own declaration,
except for poInter-types (see Sections 2.2.3 and 3.3~

To help clarify the syntax description with some semantic hints, the following
terms are used to distinguish Identifiers according to what they denote.
Syntactically, all of them mean simply an Identifier:

slmple-type-identlfler
structured-type-identifier
pointer - t ype-identi fier
ordinal-t ype-l denU fier
real-type-identifier
strlng-t ype-Identl fler

In other words, a simple-type-identifier is any Identifier that is declared to
denote a s1mple type, a structured-type-identifler is any identifier that is
declared to denote a structured type, and so forth. A slmple-type-idenUfier
can be the predeclared identifIer of a standard type such as Integer, bOolecrl,
etc.

3-1

Pascal Reference Mantlal

3.1 SiJl1l1e-Types (em OIdlnal-Types)
All the simple-types define ordered sets of values.

real-type .1 real-type-identifier t----~ ••

suorange-type

enumerated-type t------...... I

The standard real-type-identlfier is real

String-types are discussed in Section 3.1.1.6 below.

Data Types

Iln:1lnaJ-types are a subset of the Simple-types, with the fOllowing special
characteristics:

• Within a given ordinal-type, the possit:>le values are an ordered set and each
possible value Is associated with an omfnalfly, which Is an Integer value.
The first value of the ordinal-type has ordinallty 0, the next has ordlnallty
1, etc. Each possible value except the first has a predecessor based on
this ordering, and each posslt:>le value except the last has a sllCCsssor based
on this ordering.

• The standard function old (see Section 11.5.1) can be applied to any value
of ordinal-type, and returns the ordlnallty of the value.

• The standard function pled (see Section 11.5.4) can be applied to any value
of ordinal-type, and returns the predecessor of the value. (For the first
value in the ordinal-type, the result Is unspecifIed.)

• The standard function succ (see Section 11.5.3) can be applied to any value
of ordinal-type, and returns the successor of the value. (For the flrst value
In the ordinal-type, the result is unspecified.)

3-2

Pascal Reference Mant.Jal Daff! rypes

All simple-types except real and the string-types are ordinal-types. The
standard ordinal-t ype-Identl flers are:

Integer
longlnt
Char
boolea1

Note that in addition to these standard types, the enumerated-types and
subrange-types are ordInal-types.

3.1.1 stcmard Sl"1l1e-Types crld St.rlng-Types
A standard type is denoted by a predefined type-identifier. The Simple-types
Integer, longlnt, real, char, and boolecwl are standard. The string-types are
user-defined simple-types.

3.1.1.1 The Integer Type
The values are a subset of the whole numbers. (As constants, these values can
be denoted as specified in Section 1.4.) The predefined integer constant maxint
is defined to be 32767. Maxint defines the range of the type integer as the
set of values:

-maxint-1, -maxlnt, ... -1, 0, 1, ... maxint-l, maxint

These are 16-bit, 2's-complement Integers.

3.1.1.2 1he LorYJint Type
The values are a subset of the whole numbers. (As constants, these values can
be denoted as speCified in Section 1.4.) The range is the set of values from
-(231_1) to 231_1, 1.e., -2147483648 to 2147483647.

These are 32-blt integers.

Arithmetic on Integer and lorYJlnt operands is done In bOth 16-bit and 32-bit
precision. M expression with mixed operand sizes is evaluated in a manner
similar to the F£RTRAN single/double precision floating-point arithmetic rules:

• All "integer" constants In the range of type integer are considered to be of
type integer. All "integer" constants in the range of type longlnt, but not
in the range of type integer, are considered to be of type longint.

• When both operands of an operator (or the single operand of a unary
operator) are of type Integer, 16-bit operations are always performed and
the result is of type integer (truncated to 16 bits if necessary~

• When one or both operands are of type longlnt, all operands are first
converted to type l0r9nt, 32-bit operations are performed, and the result Is
of type longlnt. However, if this value is assigned to a variable of type
integer, it Is truncated (see next rule~

3-3

Pascal Reference HanlJaJ Data Types

• The expression on the right of an assignment statement is evaluated
independently of the size of' the vari8lJle on the lef't If necessary, the
resul t of the expression is truncated or extended to match the size of the
variable on the left

The ord4 function (see Section 11.3.3) can be used to convert an integer value
to a longlnt value.

II'-PLErvENT A T1(]\1 ~

There is a performance penalty for the use of longlnt values. The
penalty is essentially a factor of 2 for operations other than divIsion
and multipl1cation; for division and multlpl1cation, the penalty Is much
\tIorse than a factor of 2.

3.1.13 The Real Type
For details of IEEE standard floating-point arithmetic, see Appendix D. The
possIble real values are

• Finite values (a sUbset of the mathematical real numbers~ ~ constants,
these values can be denoted as specifIed in Section 1.4.
The largest absolute numeric real value is approximately 3.402823466E38 in
Pascal notation.
The smallest absolute numeric non-zero real value is approximately
1.401298464E -45 in Pascal notation.
The real zero value has a sign, like other numbers. However, the sIgn of a
zero value Is disregarded except In division of a finite number by zero and
in textual output.

• Infinite values, +00 and -co. These arise either as the result of an operation
that overflo\tls the maximum absolute finite value, or as the result of
dividing a finite value by zero. Appendix 0 gives the rules for arithmetic
operations using these values.

• NaNs (the word "NaN" stands for "Not a Number"~ These are values of
type real that convey diagnostic information. For example, the result of
multiplyIng 00 by 0 Is a NaN.

3.1.1.4 The Boolem Type
The values are truth values denOted by the predefined constant identifiers false
and true. These values are ordered so that false is "less than" true. The
function-call Of((false) returns 0, and orc(true) returns 1 (see Section 11.s.1~

3.1.15 The am Type
The values are extended 8-bit ASCII, represented by numeric cOdes In the
range 0 .. 255. The ordering of the ctlar values is defined by the ordering of
these numeric codes. The function-call on(c), where c is a Char value, returns
the numeric code of c (see Section 11.s.1~

3-4

Pascal ReFerence Mantlal Data Types

3.Ll.6 String-Types
A string value is a sequence of characters that has a dynamic lengtIJ attri­
bute. The length Is the actual number of characters in the sequence at any
time during program execution.

A string type has a static size attribute. The size Is the maximum limit on
the length of any value of this type. The current value of the length attribute
Is returned by the standard function length (see Section 11.6); the size attribute
of a string type is determined when the string type Is defined.

sfjjng-(ype

size-attribute

S.='.iZ4='e::.-,---=a.:..;ttf.=1.=w=te::-..-~~~1 unsIgned-integer ~I ---.~

where the size attribute is an unsigned-integer.

IfVPLEt-£NT A TICN NJTE

In the current implementatIon, the size-attribute must be in the range
from 1 to 255.

The ordering relationship between any two string values Is determined by
lexical comparison based on the ordering relationship between character values
in corresponding positions in the two strings. (When the two strings are of
unequal lengths, each character in the longer string that does not correspond to
a character in the shorter one compares "higher"; thus the string 'attribute' Is
ordered higher than 'at'.)

Do not confuse the size with the length.

3-5

Pascal Reference Manual Data Types

The size attribute of a string constant Is equal to the length of the
string constant value" namely the number of characters actually In the
string.

Although string-types are Simple-types by definition, they have some
characteristics of structured-types. As explained in Section 4.3.1,
ind~vldual characters in a string can be accessed as if they were
components of an array. Also, all string-types are Impllcltly pacKed
types and all restrictions on pacKed types apply to strings (see Sections
7.3.2, 5.1.6.1, and 11.7).

Do not maKe any assumptions about the internal storage format of strings, as
this format may not be the same in all implementations.

q:>erators appllcable to strings are specified In Section S.l.5. Standard
procedUres and functions for manipulating strings are described in Section 11.6.

3.12 Erunerated-Types
M enumerated-type defines an ordered set of values by listing the identifiers
that denote these values. The orderIng Of these values Is determined by the
sequence in which the identifiers are listed.

emmeratecl-tJll)e .~ identifier-list ~

jclentH1er-jjst

~
The occurrence of an identifier within the identlfler-l1st of an
enumerated-type declares it as a constant for the block in which the
enumerated-type Is declared. The type of thIs constant Is the enumerated-type
being declared.

Examples of entmerated-types:

color = (roo,yel1ow,green,blue)
suit = (c100, diClOOfld, heart, spade)
nmi ta1status = (married, divorCed, wioo.ed, sIngle)

Given these declarations, yellow is a constant of type COIOf, dlaTDld is a
constant of type suit, and so forth.

When the ord function (see Section 11.5.1) is appl1ed to a value of an
enumerated-type, it returns an integer representing the ordering of the value

3-6

Pascal Reference Manual Dgta TYpes

wIth respect to the other values of the enumerated-type. For example, gIven
the declarations above, or«red) returns 0, O~llOW) returns 1, and on(blue)
returns 3.

3.1.3 Slalrange-Types
A subrange-type provides for range-checking of values within some
ordinal-type. The syntax for a sUbrange-type is

subIanqe-type ., constant ~ constant ~

Both constants must be of ordinal-type. Both constants must either be of the
same ordinal-type, or one must be of type Integer and the other of type
laYJInt. If both are of the same ordinal-type, this type is called the host-type
If one Is of type Integer and the other of type laYJint, the host-type Is lorYJint.
Note that no range-CheCking Is done if the host-type is longint.

Examples of stllJrange-types:

1. .100
-10 10
red .. green

A variable of subrange-type possesses all the properties of variables of the
host type, wlth the restrIction that Its run-time value must oe In the speCified
closed interval.

It-fl..Et-'ENT ATUN r-.l)TE

Range-checking Is enabled and disabled oy the compHer commandS SR+
and SR- (see Chapter 12). The default Is $R+ (range-checking enabled).

3.2 Stn.l}tured-Types
A structured-type is characterized by its structuring method and by the type(s)
of Its components. If the component type Is Itself structured, tne reSUlting
structured-type eXhibits more than one level of structuring. There Is no
speCified limit on tne number of levelS to WhiCh data-types can oe structured.

structured-type-identifier

3-7

Pascal Reference Manual Data Types

The use of the word ~oo In the declaration of a structured-type indicates
to the compHer that data storage Should be economized, even if this causes an
access to a component of a variable of this type to be less efficient
The word packed only affects the representation of one level of the
structured-type in Which it occurs. If a component is itself structured, the
component's representation is packed only if the word packed also occurs In
the declaration of its type.
For restrictlons on the use of components of packed variables, see Sections
7.3.2, 5.1.6.1, and 11.7.

The implementation of packing Is complex, and details of the allocation of
storage to components of a paCked variable are unspecified

IrvPLErvENT ATI(N NJTE

In the current implementation, the word packed has no effect on types
other than array and record.

3.2.1 Array-Types
AA array-type consists of a fixed number of components that are all of one
type, called the component-type. The number of elements Is determined by
one or more indeX-types, one for each dimension of the array. There is no
specified limit on the number of dimensions. In each dimension, the array can
be indexed by every poSSible value of the corresponding index-type, so the
number of elements is the prOduct of the cardinalities of all the index-types.

Busy-type

~lndeX-type~
-----(0---

jndex-(ype .1 ordinal-type ~

The type following the word Of Is the component-type of the array.
JrvPLEIVENT A TI(N NJ1E

In the current implementation, the Index-type Should not be lorYJint or a
suorange of lorglnt, and arrays shOUld not contain more than 32767 oytes.

3-8

Examples of' array-types:

array[1 .. 100] of real
array[bOOlecrt] Of color

oata TYPes

If the component-type of an array-type is also an array-type, the result can be
regarded as a single multi-dimensional array. The declaration of such an array
Is equivalent to the declaration of a multi-dimensional array, as illustrated by
the following examples:

array[bOOlea1] Of array[l. .10] Of array[size] of real

Is equIvalent to:

array[bOOlecrt, 1 .. 10, size] Of real

L1kewise,
packed array[1. .10] of packed array[1. .8] of bOOlecJ1

is equivalent to:

packed array[1. .10, 1. .8] Of boolean

"Equivalent" means that the compiler does the same thing with the two
constructions.
A component of an array can be accessed by referencing the array and
applying one or more Indexes (see Section 4.3.1~

3.2.2 Record-Types
A record-type consists of a fixed number of components called fields, possibly
of different types. For each component, the record-type declaration specIfies
the type of the field and an identifier that denotes it .

.record-type

fleld-list

~(reroro) l. ~ .~
~ fIeld-list r-'

I ~r--I f-ixe-d--p-art--',) ~ (

l _________ ::or __ ;..-J. : variant-part ~ ~

fixed-part (.1.-1 _fi_el_d_-de_c_la_ra_ti_o o_n-..ll)

-----~(Z)"4~----

3-9

Pascal Reference Hanual Data 7)tpes

..;.:f/j='e..=tJl1:.....~=='l8E8=-==u=m:..:.---t.~1 identifier-list ~

The flxed-part Of a record-type specif1es a Ust of "fixed" fields, giving an
identifier and a type for each field. Each of these fields contains data that is
always accessed in the same way (see Section 4.3.2~
Example of a record-type:

record
year: integer;
IOOI'lth : 1 .. 12;
day: 1. .31

En:S

A variant-part allocates memory space with more than one list Of fieldS, thUs
permlttlng the data in this space to be accessed In more than one way. Each
list of fields Is called a variant. The variants "overlay" each other In memory,
and all fields of all variants are accessible at all times.

variant-part

~~ k)J.ltIIJ-field-type~
identifier : ;

V8liant

(__ .I=c=on-s-tan:_t~~_ : (\::j field-list ~ -<l)-
Ot ..

tag-field-type .1 ordinal-lype-identi fier 1--+

In the current implementation, the type long1nt should not be used as a
tag-type as it wUl not work correctly.

3-10

Pascal Reference Manual Data Types

Each variant is introduced by one or more constants. All the constants must
be distinct and must be of an ordinal-type that is compatible with the
tag-type (see Section 3.4~

The variant-part allows for an optional identifier, called the tag-fielt1
identifier. If a tag-field identifier is present, it is automatically declared as
the identifier of an additional fixed field of the record, called the tag-field

The value of the tag-field may be used by the program to indicate which
variant should be used at a given time. If there is no tag-field, then the
program must select a variant on some other criterion.

Examples of rec0111-types wit17 variants:

record
name, firstName: string[80];
age: 0 .. 99;
case married: boolem of

end

true: (spousesNale: string[80]);
false: ()

record
x,y: real;
area: real;
case s: ~ of

triCl1Qle: (side: real; inclination, CI1Qlel, CIlgle2:
CI1Qle);

rectangle: (sidel, side2 : real; ske., CI1Qle3: angle);
circle: (dianeter: real);

end

The constants that introduce a variant are not used for referring to
fields of the variant; however, they can be used as optional arguments
of the new procedure (see Section 11.2~ Variant fields are accessed in
exactly the same way as fIxed fields (see Section 4.3.2~

3.2.3 set-Types
A set-type defines a range of values. that is the powerset of some ordInal-type,
called the base-type In other words, each pOSSible value of a set-type is some
subset of the pOSSible values of the base-type.

set-trpe .~ ordinal-type ~

3-11

Pascal Reference Manual Data Types

If'1>L.EIVENT A TIeN NOTE

In the present Implementation the base-type must not be lorglnl The
base-type must not have more than 4088 possible values. If the base­
type Is a subrange of Integer, it must be wIthin the limits 0 .. 4087.

~erators applicable to sets are specified in Section 5.1.4. Section 5.3 shows
how set values are denoted in Pascal.

Sets with less than 32 possible values in the base-type can be held in a
register and offer the best performance. For sets larger than this, there is a
performance penalty that is essentially a linear function of the size of the
base-type.

The empty set (see Section 5.1.4) Is a possible value of every set-type.

32.4 File-Types
A file-type is a structured-type consisting of a sequence of components that
are all of one type, the component-type. The component-type may be any
type.

The component data Is not in program-addressable memory but Is accessed via
a peripheral device. The number of components (i.e. the length of the file) is
not fixed by the file-type declaration.

file-type
~~.

Of type

The type file (without the "Of type" construct) represents a so-called "untyped
file" type for use with the blockread and blockwrite functions (see Section
10.4~

Although the symbol file can be used as if it were a type-identifier, it
cannot be redeclared since it is a reserved word.

The standard f11e- type text denotes a fUe of text organized into l1nes. The
file may be stored on a file-structured device, or it may be a stream of
characters from a cl7amcteI device such as the Lisa keyboard. Files of type
text are supported by the specialized liD procedures discussed in Section 10.3.

In Pascal on the Lisa, the type text is distinct from the type fUe Of Char
(unliKe standard Pascal). The type fUe of CI1ar Is a fUe whose records are of

3-12

Pascal Reference tv/anual Data TYpes

type dlar, containing char values that are not interpreted or converted In any
way· during I/O operations.

In a stored file of type text or file of -128 .. 127, the component values are
packed into bytes on the storage medium. However, this does not apply to the
type fUe of Char; the component values of this type are stored in 16-bit words.

In Pascal on the Usa, files can be passed to procedures and functions as
variable parameters, as explained in Section 7.3.2.

Sections 4.3.3, 10.2" 10.3, and 10.4 discuss methods of' accessing file components
and data.

3.3 Polnter-Types
A pOinter-type defines an unbounded set of values that point to variables of a
spec I fled type called the 1J8se-t.J1)e

Pointer values are created by the standard procedure new (see Section 11.2.1),
by the (I operator (see Section 5.1.6)', and by the standard procedure pointer
(see Section 11.3.4~

base-type ~ type-identifier ~

NlTE

The base-type may be an identifier that has not yet been declared. In
this case, it must be declared somewhere in the same block as the
pointer-type.

The special symbol nil represents a standard pointer-valued constant that is a
pOSSible value of every pointer type. Conceptually" nil is a pointer that does
not point to anything.

Section 4.3.4 discusses the syntax for referencing the Object pointed to by a
pointer variable.

3.4 Identical crld Conllatible Types
As explained below, this Pascal has stronger typing than standard Pascal. In
Pascal.on the Lisa two types mayor may not be jdent.ica~ and identity is
required in some contexts but not in others.

3-13

Pascal Reference Mantlal Data Types

Even if not identical, two types may still be compatible, and this is sufficient
in contexts where identity is not required--except for assignment, where
assignment-compatibility is required.

3.4.1 Type Identity
Identical types are required only in the fOllowing contexts:

• Variable parameters (see Section 7 .3.2~

• Result types of functional parameters (see Section 7.3.4~

• Value and variable parameters within parameter-lists Of procedural or
functional parameters (see Section 7 .3.5~

• O'le-dimensional packed arrays Of Char being compared via a relational
operator (see Section 5.1.5~

Two types, U and t2, are identical if either of the followlng is true:

• The same type identifier Is used to declare bOth tl and t2, as in
foo = "integer;
t1 = foo;
t2 = foo;

• U is declared to be equivalent to t2 as In

t1 = t2;

Note that the declarations

t1 = t2;
t3 = t1;

do not make t3 and t2 identical, even though they make U identical to t2 and
t3 identical to U!

Also note that the declarations

t4 = integer;
t5 = integer;

dO make t4 and t5 identical, since both are defined by the same type
identifier. In general, the declarations

t6 = t7;
t8 = t7;

do make t6 and t8 identical if t7 is a type-identifIer.

However, the declarations

t9 = " integer;
t10 = "integer;

do not make t9 and t1D identical since "integer is not a type identifier but a
user-defined type consisting of the speclal symbol " and a type identifIer.

3-14

Pascal Reference Manual Data TYPes

Finally, note that two variatHes declared in the same declaration, as in
vari, var2: Ainteger;

are of identical type. However, if the declarations are separate then the
definitions above apply.
The declarations

vari: A integer;
var2: A integer;
var3 : integer;
var4: integer;

make var3 and var4 Identical In type, but not varl and var2.

3.4.2 ~t1blllty of Types
Compatibility Is required in the majority of contexts where two or more
entities are used together, e.g. in expressIons. specific instances where type
compatibl11ty is required are noted elsewhere in this manual.
Two types are a:mpatlble if any of the fallowing are true:

• They are identical.
• O1e is a subrange Of the other.
• Both are subranges of the same type.
• Both are string-types (the lengths and sizes may dlffer~
• Both are set-types, and their base-types are compatible.

3.4.3 Asslgment~t1blllty
Assignment-compatib1llty is required whenever a value is assigned to
somethIng, either explicitly (as in an assignment-statement) or implicitly (as in
passing value parameters).
The value of an expression expval of type exptyp is assignment-compatible
with a variable, parameter, or function-identifier Of type vtyp if any of the
following is true.

• vtyp and exptyp are identical and neither Is a file-type, or a structured­
type with a file component.

• vtYP Is real and exptyp is Integer or long1nt (expvalis coerced to type
real~

• vtyp and exptyp are compatible ordinal-types, and expval Is wltnln the
range of possible values Of vtyp.

• vtyp and exptyp are compatible set-types, and all the members of expval
are within the range of possible values of the base-type of vtyp.

• vtyp and exptyp are sUing types, and the current length of expvalls equal
to or less than the sIze-attribute of vtyp.

3-15

Pascal Reference Manual Data 7ypeS

• vtyp is a stril'YJ type or a Char type and expval Is a quoted-character­
constant.

• vtyp Is a packed arra}{l..n] Of Char and expval Is a string constant
containing exactly n characters.

If the index-type of the packed array of char Is not l .. n, but the array
does have exactly n elements, no error will occur. However, the results
are unspeCified.

Whenever assignment-compatibility Is required and none of the above Is true,
either a compiler error or a run-time error occurs.

3.5 The Type-Declaration-Part
My program, procedure, or function that declares types contains a type­
declaration-part, as shown in Chapter 2.

Example of a type-declaration-part:

type COlI'lt = integer;
rn"Ige = integer;
color = (reo, yello_, green, blue);
sex = (male, female);
year = 1900 .. 1999;
shape = (triangle, rectangle, circle);
card = array [1. .80] of char;
str = str1ng[80];
polar = record r: real; theta: a'lgle end;
person = .. person>etails;
personDetails = record

f'KJIe, firstNanE: str;
age: integer;
married: bOOlean;
father, Child, siblil'YJ: person;
case s: sex of

male: (enlisted, bearded: bOOlem);
female: (pregmt: bOOlean)

em;
people = file of personOetails;
intfile = file of integer;

In the above example COlIlt, ra-YJe, and integer denote identical types. The
type year is compatible with, but not identical to, the types ICI1Q€, COU'lt, and
integer.

3-16

NOTES

029-0'96-A

Chapter 4
Variables

4..1 variable-[)e(:laIatiOflS••..••.••.•••••.....•..••....•••.......••.••.••••...........•••• 4-1

4..2 VsriatJle-RefeiellCeS ... 4-1

4..3 c;)Jalifiers .•.•.......•...........•....••.•.•..•...............••.•.•.•..............•............. 4-2

l1.3.1 Arrays, Strings, and Indexes ll-2
4.3.2 Records and Field-Designators ... 4-4
4.3.3 File-Buffers .. 4-4
4.3.4 Pointers and Their Cbjects .. 4-4

Variables

4.1 Variable-Declarations
A variable-declaration consists of a list of identifiers denoting new variables,
followed by their type.

varldJle-oeclaratJm.1 identifier-list t-+O-+f type ro---+

The occurrence of an identifier within the identifier-list of a variable­
declaration declares it as a variable-identifier for the block in which the
declaration occurs. The variable can then be referenced throughout the
remaining lexical extent of that block, except as specIfied in Section 2.2.2.

Examples of varieole-declarauons:

X, y, z: real;
i, j : integer;
k: 0 .. 9;
p, q, r: booleal;
operator: (plUS, minus, times);
a: array[O .. 63] Of real;
c: color;
f: file of Char;
rue1, hJe2: set of color;
p1, p2: person;
m,m1,nfl: array[l..10,1..10] of real;
coord: polar;
pool~: array[l. .4] Of tape;

42 Variable-References
A variable-reference denotes the value of a variable of simple-type or
pOinter-type, or the collection of values represented by a variable of
structured-type.

variaole-reference

--.J varlable-ldentlfier~ I-----:-------~--.. Y qualifier r.-J
variable-jdenufjer -.1 identifier ~

4-1

Pascal Reference Manual Variables

Syntax for the various kinds of quallfiers Is given below.

4.3 QUalifiers
As sho\Vn above" a variable-reference is a variable-identifier followed by zero
or more qualifien Each qualifier modifies the meaning of the variable­
reference.

'ii/,ier

An array identifier with no qualifier is a reference to the entire array:

><Results
If the array identifier is followed by an index, this denotes a specific
component of the array:

xResults[current+1]
If the array component is a record, the index may be followed by a field­
designator; in this case the variable-reference denotes a speCific field wi thin a
specific array component.

xResults[ourrent+1].11nk
If the field is a pointer, the field-designator may be followed by the pointer­
Object-symbol, to denote the Object pointed to by the pointer:

XResults[current+l].llnk~

If the object of the pointer is an array" another index can be added to denote
a component of this array (and so forth):

xResults[ourrent+l].11nk A [1]
4.3.1 Arrays, Strtngs, cn:1 Indexes

A specIfIc component of an array variable is denoted by a variable-reference
that refers to the array variable, followed by an index that specifies the
component.

A specIfIc character within a string variable is denoted by a variable-reference
that refers to the string variable, followed by an index that specifies the
character pos1 lion.

index .CD)-----4.~1 expressim I) .CD-+
(O~---"

4-2

Pascal Reference Manual

E)(amples Of indexed arrays:

m[l .. j]
a[l+j]

Variables

Each expression in the index selects a component in the corresponding
dimension of the array. The number of expressions must not exceed the
number of index-types in the array declaration~ and the type of each
expression must be assignment-compatible wIth the corresponding index-type.
In indexing a multi-dimensional array, you can use either multiple indexes or
multiple expressions within an index. The two forms are completely equivalent.
For example,

m[iHj]

is equivalent to

m[i, j]

For array variables, each index expreSSion must be assfgnment-compalible with
the corresponding index-type specified in the declaration of the array-type.
A string value can be indexed by only one index expression, whose value must
be in the range 1.. n , where n is the current length of the string value. The
effect is to access one character of the string value.

WARNING

When a string value is manipulated by assIgning values to individual
character positions, the dynamic length of the string Is not maintained.
For example, suppose that stIval is declared as follows:

strval: str1ng[lO];
The memory space allocated for strva! includes space for 10 char values
and a number that will represent the current length of the string--Le.,
the number of char values currently in the string. Initially, all of this
space contains unspecified values. The assignment

strval[l]:=IF"
mayor may not work, depending on what the unspecified length happens
to be. If this assignment works, it stores the char value r' in character
position 1 .. but the length of strval remains unspeCified. In other words ..
the value of stlVal[l] is now r', but the value of strval is unspecified.
Therefore, the effect of a statement such as writelr(strval) Is
unspeCified.
Therefore .. this kind of strIng manipulation is not recommended. Instead ..
use the standard prOCedures described in Section 11.6. These procedures
properly maintain the lengths of the string values they mOdify.

4-3

Pascal Refe.l-ence Mantlal VaIlables

4.3.2 RecOrds CJ1d Field-oesl~tors
A specific field of a record variable Is denoted by a variable-reference that
refers to the record variable, followed by a field-designator that specifies the
field.

fJeld-desJqnator --0--1 identifier ~

Examples of fjeld-designator.>:
p2A .pregmt
COOrt1. theta

4.3.3 flle-Buffers
Although a file variable may have any number of components, only one
component is accessible at any time. The position of the current component in
the fUe is called the curmnt file posItion See Sections 10.2 and 10.3 for
standard procedures that move the current file position. Program access to the
current component is via a special variable associated wIth the fUe, called a
file-buffer.

The file-buffer Is implicitly declared when the fUe variable is declared. If f
is a file variable with components of type T, the associated file-buffer is a
variable of type T.

The file-buffer associated with a file variable is denoted by a variable­
reference that refers to the file variable, followed by a qualifier called the
file-buffer-symbol.

file-lJuffer-sjII1'i:IoJ·O •

Thus the file-buffer of fUe F is referenced by F".

Sections 10.2 and 10.3 describe standard procedures that are used to move the
current file position within the file and to transfer data between the f11e­
buffer and the current fHe component.

4.3.4 Pointers CJ1d Their (])jects
The value of a pointer variable is either nil, or a value that identifies some
other variable, called the OIJject of the pointer.

The Object poInted to by a poInter variable Is denoted by a variable-reference
that refers to the pointer variable, fOllowed by a qualifIer called the polnter­
object-symbOl.

pointer-Ob/ect-SymOOl --0 ..

4-4

Pascal Ref'ellJflCe Hant.l81 V8IiaIJles

Pointer values are created by the standard procedure new (see Section
11.2.1), by the • operator (see Section 5.1.6), and by the standard
procedure pointer (see Section 11.3.4~

The constant nll (see Section 3.3) does not point to a variable. If you access
memory via a nll pointer reference, the results are unspecified; there may not
be any error indication.
Examples of'reFerences to Objects of pointers:

pI: ..
pI .sibling

4-5

NOTES

029-0397-A

Chapter 5
Expressions

5.1 ~mton ..•........................•... 5-4

5.1.1 Binary ~rators: Order of Evaluation of q>erands 5-4
5.1.2 Ari thrnetic ~rators ... 5-4
5.1.3 Boolean ~rators ... 5-6
5.1.4 Set ~rators ... 5-6

5.1.4.1 Result Type in Set !:perations ... 5-7
5.1.5 Relational ~rators ... 5-7

5.1.5.1 Comparing I'Jurnbers ... 5-7
5.1.5.2 Comparing Booleans ... 5-8
5.1.5.3 Comparing Strings ... 5-8
5.1.5.4 Comparing Sets ... 5-8
5.1.5.5 Testing Set tv1ernbership .. 5-8
5.1.5.6 Comparing Packed Arrays of Char 5-8

5.1.6 ... q>erator .. 5-8
5.1.6.1 "qJeratorwith a Variable .. 5-9
5.1.6.2 .. QJerator with a Value Parameter•.. 5-9
5.1.6.3 o-qJerator with a Variable Parameter 5-9
5.1.6.4 '-!:perator with a Procedure or FLR1Ction ...•.....•..••.•••.•....••• 5-9

5.2 FLI1Cti(Jl-caIls•••..••.•.•.••.•••....••••••.•.••••.•••.••••.••.••.••••.••••••.•.•••.•.•.•• 5-10

5.3 Set-cot1st.I1Jcton•..................•.......................•.•...........•....... 5-11

Expressions

Expressions consist of operators and operandS, l.e. variables, constants, set­
constructors, and function calls. Table 5-1 shows tI'le operator precedence:

QJemtors
., not

*, /, div,
rood, cni

+, -, or
., <>, <, >,

<=, >=, in

Table 5-1
Pfe(aB ICe of qJerators

PJlJCt!dence C8le!fWies

highest unary operators

second "rrul tipl ying" operators

third "adding" operators & signs

lowest relational operators

The following rules specify the way in which operands are bound to operators:

• When an operand is written between two operators of different precedence,
1 t Is bound to tI'le operator with the higher precedence.

• When an operand is written between two operators of the same precedence,
it is bound to the operator on the left.

Note that the order in which operations are performed is not specified.

These rules are impllcit in the syntax for expressions, which are built up from
factors, terms, and simple-expressions.

The syntax for a factor allows the unary operators " and not to be applied to
a value:

factor
...:..==.::..----~ __ ------,.~ variable-reference t----_

5-1

Pascal ReFerence Manual Expressjons

A flInction-cell activates a function .. and denotes the value returned oy tne
function (see Section 5.2)' A set-conslJllCtordenotes a value of a set-type (see
Section 5.3~ AA unsigned-constant has the followIng syntax:

unsi ~ed-const8nt
~=-=--=-=:;.;...:.;;..=:....:...:..-----~ unsigned-number t----_

Examples of factol'S:

x
iiX
15
(x+y+z)
sin(xl2)
['A' .. 'F', 'a' .. 'f']
rotp

{variable-reference}
{pointer to a varicmle}
{unsigned-constant}
{StJJ-express100 }
{ft.rlCtloo-c811}
{set-cmstructor}
{negatioo of a booleal}

The syntax for a lenn allows the "multiplying" operators to be applied to
factors:

tem1

Examples of teons:

X*Y
1/(1-1)
P cnj q
(x <= y) and (y < z)

5-2

Pascal Reference Manual Expressions

The syntax for a sinple-expression allows the "adding" operators and signs to
be appUed to terms:

Examples of simple-expressions:

x+y
-x
ruel + tlJe2
l*j + 1

The syntax for an expression allows the relational operators to be applied to
simple-expressions:

expression

sImple-expressIon ~--------------,.--.

Examples of expressions.·

x = 1.5
P <= q
p = q and r
(1 < j) = (j < k)
c in ruel

}--~-el sImple-expression

5-3

Pascal Reference Manual Expressions

5.1 qJerators
5.1.1 Binary Qlerators: order of Evaluation of qJeIa'lds

The order of evaluation of the operands of a binary operator is unspecIfied.
5.1.2 Arittmetlc qJeraton

The types of operands and results for arithmetic binary and unary operat1ons
are shown in Tables 5-2 and 5-3 respectively.

Table 5-2
Binary Aliuvnetlc qleratlons

tperator t:peralim t:perand Types Type of'Result

+ addItion
................................. "

Integer, real, or Integer, real, or - slbtraction
.................................. .. Imgint longint .. mul tiplication

I divIsion Integer, real, or
lotlQint

real

dlv division \tilth integer or longtnt integer or laYJint
integer resul t

rood modulo integer or longint integer

Note: The symbOls +, -, and * are also used as set operators (see
Section 5.1.4~

Table 5-3
U1ary Artttmetlc qJeratlons (SlglS)

qJerato.r cperatJon t:perand TYpes Type of Result

+ identity
•••••••••••••••• H ••••••••••••••• ••••••••••••••••••••••••••••••••••• u •••••••••••••••••

integer, real, or same as operand
- slgn-negat1on lorYJlnt

My operand \tIhose type is Slbr, where Slbr is a subrange of some ordInal-type
Ordtyp, is treated as if it were of type 0Idtyp. Consequently an expression
that consists of a single operand of type Sttlr is itself of type ordtyp.

5-4

Pascal Reference Manual Expressions

If both the operandS of the adcJ1Uon, subtracUon, or multlpl1caUon operators
are of type integer or longlnt, the result is of type integer or longlnt as
described in Section 3.1.1.2; otherwise, the result is of type real.

f\IJTE

See Appendix 0 for more information on all arithmetic operations with
operands or results of type real.

The result of the identity or sign-negation operator is of the same type as the
operand.
The value of 1 dlv j is the mathematical quotient of I/j, rounded toward zero
to an Integer or 10000nt value. M error occurs if .)-0.

The value of 1 mod J is equal to the value of
1 - (1 d1v j)*j

The sign of the result Of mod Is always the same as the sign of 1. M error
occurs 1 f j-: O.

The predefined constant maxlnt Is of type Integer. Its value is 32767. This
value satisfies the following conditions:

• All whole numbers in the closed interval from -maxlnt-l to +maxlnt are
representable In the type Integer.

• My unary operation performed on a whole number in this interval will be
correctly performed according to the mathematical rules for whole-number
ari thmetic.

• My binary integer operation on two whOle numbers in this same interval
will be correctly performed according to the mathematical ;rules for
whole-number arithmetic, provided that the result is also In this interval.
If the mathematical result Is not in this interval, then the actual result Is
the low-order 16 bits of the mathematical result.

• My relational operation on two whole numbers in this same interval will be
correctly performed according to the mathematical rules for whOle-number
arithmetic.

s-s

Pascal Reference Manual Expressions

5.1.3 Boolea1 qlerators
The types of operands and results for Boolean operations are srown In Table
5-4.

cperatoI qJeratJOI7
or dlsjLr'lction

a'ld conjtrotion

Table 5-4
Booleal qleratloos

qJeranc1 rypes

boolea'l
..

oot negation

rype Of Result

boolea'l

Whether a Boolean expression is completely or partially evaluated if its value
can be determined by partial evaluation is unspecified. For example, consider
the expression

true or bOOlTst(x)

where bOOlTst is a function that returns a bOOlecll value. This expression will
always have the value true, regardless of the result of booITst(x~ The language
definition does not specify whether the bOOlTst function is called when this
expression Is evaluated. This could be important if boolTst has side-effects.

5.1.4 set qlerators
The types of operands and results for set operations are shown In Table 5-5.

QJerator cperatlon
+ union

dlfference

• intersection

Tcmle 5-5
set ~rations

t:perand TYpes

compatible
set-types

5-6

TYpe of Result

(see 5.1.4.1)

Pascal Ref'efence Manual Expfessions

5.1.4.1 Result Type in set qleratlms
The following rules govern the type of the result of a set operation where one
(or bOth) of the operands is a set of stJlr, where ordtyp represents any
ordinal-type and stJlr represents a subrange of orat.yp:

• If ordtyp is not the type integer, then the type of the result is set of
on:1typ.

• If orat.yp is the type integer, then the type of the result Is set Of 0..4087 In
the current implementation (0 .. 32767 in a future il'nplementation~ This rule
results from the llmitations on set -types (see Section 3.2.3~

5.1.5 Relational qJerators
The types of operands and results for relational operations are shown in Table
5-6, and discussed further below.

Table 5-6
Relatimai qJeratlms

qJerator t:peratJon

<> not equal

< less

Q:Jerand TYpes
compatible set -,
simple-, or
pointer-types
(& see below)

> greater compatible
.............. ~: ····"lessiequai····················· (!"f:~~io;)

............... ;: ·····greateileqtJaf···· .. · ..

............... ~~ ~Y.Q~~.~ .. .Qf...
>- superset of

in member of

5.1.5.1 COf11la11ng Nt.rmers

compat1ble
set-types
left operand:

..... ~Y.. .. Q!Q~.~~:.~~ .. !.
ri{17t operand:
set of T

TYpe of Result

When the operands of <, >, >-, or <- are numeric, they need not be of
compatible type if one operand is real and the other is Integer or longlnt

~

See Appendix 0 for more informat1on on relational operations wIth
operands of type real.

5-7

Pascal Ref"erence M8IJlIal Expressjons

5.15.2 Gorfllal1ng Boolecn
If p and q are boolecl1 operandS, then p-q denotes their equivalence and p<-q
denotes the implication of q by P (because false<true~ Slmllarly, p<>q denotes
logical "exclusive-oT."

5.1.5.3 Gorfllal1ng StlirYJS
When the relational operators ... , <> , < , > , <- , and > are used to compare
strings (see Section 3.1.1.6), they denote lexicographic ordering according to the
ordering of the ASCII character set. Note that any two strtng values can be
compared since all string values are compatible.

5.1.5.4 Gorfllal1ng sets
If u and v are set operands, then u<-v denotes the inclusion of u in v, and
tJ>=v denotes the inclusion of v in u.

5.155 Testing set MefTtlership
The in operator yields the value true if the value of the ordinal-type operand
is a member of the set-type operand; otherwise it yieldS the value false.

5.1.5.6 ~ Packed Arrays of am
In addition to the operand types shown in the table, the - and <> operators can
also be used to compare a pcD<ed arra){LN] of char with a string constant
containing exactly N characters, or to compare two one-dimensional paCked
arrays of char of jdentical type.

5.1.6 ~r.ator
A pOinter to a variable can be computed with the operator. The operand
and result types are shown in Table 5-7.

Q:Jerator Q:JeraUon

pointer • formation

TcmJe 5-7
Pointer ~8tion

t:perand

variable, parameter,
procedure, or
function

TYPe of Result

same as nil

• is a unary operator taking a single variable, parameter, procedure, or
function as its operand and computing the value of its pointer. The type of
the value Is equivalent to the type of nil, and consequently can be assigned to
any pointer variable.

5-8

Pascal Reference Manual Expressions

5.1.6.1 ~rator With a Variable
For an ord1nary var1able (not a parameter), the use of • Is straightforward. For
example, If we have the declarations

type t.achar = packed array[O .. 1] of char;
v.ar int: integer;

t.ocharptr: .. tWOChar;

then the statement
t.ocharptr := ~1nt

causes t\\lOCharptr to point to int NOW tWOChaIptr" Is a reinterpretation Of
the bit value of Int as though it were a packed array(D..l] of char.

The operand of • cannot be a component of a paCked variable.
5.1.62 "~rator With a Value Parcmeter

When • 1s applied to a formal value parameter, the result is a pOinter to the
stack locatlon containing the actual value. Suppose that foo is a formal value
parameter in a procedure and fcoptr Is a pointer variable. I f the procedure
executes the statement

fcoptr : = ilfoo

then fooptr" is a reference to the value offoo. Note that if the actual­
parameter is a variable~reference, fOq)tr" is not a reference to the variable
itself; It is a reference to the value taken from the variable and stored on the
stack.

5.1.6.3 ~rator With a variable Parcmeter
When (I is appUed to a formal variable parameter, the result is a pointer to
the actual-parameter (the pOinter is tak.en from the stack~ Suppose that ftm
is a formal variable parameter of a procedure, fie is a variable passed to the
procedure as the actual-parameter for ftm, and ft.a'T1ltr Is a pointer variable.
If the procedure executes the statement

flllptr : = iiflll1

then ftn1ltr is a pointer to fie. ft.I11ltr" is a reference to fie itself.
5.1.6.4 ~rator With a ProceWre or F~tlon

It is pOSSible to apply. to a procedure or a functlon, yielding a pOinter to the
entry-point Note that Pascal provides no mechanism for using such a pointer.
Currently the only use for a procedure pOinter is to pass it to an assembly­
language routine, which can then JSR to that address.
If the procedure pointed to Is In the local segment, • returns the current
address of the procedure's entry point If the procedure is in some other
segment, however, • returns the address of the jump table entry for the
procedure.

5-9

Psscal Reference M8I7t/al Exp/ess/ons

In logical memory mapping (see WOrkslJop User~ Guide for tI1e Lisa), the
procedure pointer is always valid.
In physical memory mapping, code swapping may change a local-segment
procedure address without warnIng, and the procedure pointer can become
invalid. If the procedure is not in the local segment, the jump-table entry
address \#111 remain valId despite swapping because the jump table Is not
moved.

5.2 FlIlCtim-caIls
A function-call specifies the activation of the function denoted by the
function-identifier. If the corresponding function-declaration contains a list of
formal-parameters, then the function-call must contain a corresponding list of
actual-parameters. Each actual-parameter is substituted for the correspondIng
formal-parameter. The correspondence is establlshed by the positions of the
parameters In the lists of actual and formal parameters respectively. The
number of actual-parameters must be equal to the number of formal
parameters.
The order of evaluation and bIncJIng of the actual-parameters is unspecifIed.

{{"lotJon-call

--t{iunction-identifier

actual-parameter

~ actual-parameter-list ~ ..

expression

procedUre identifier

function-identifier

A function-identifier is any identifier that has been declared to denote a
fUnction.

5-10

Pascal Reference Manual

Examples of' ftnCtion-caJls:

sun(a, 63)
gcd(147,k)
sin(x+y)
eof(f)
Ord(fA)

5.3 set-COnstructors

Expressions

A set-constructor denotes a value of a set-type, and Is formed by writing
expresslons wi thin [brackets l Each expression denotes a value of the set

set-constIuctor .© .CD--*
~ memrer-gr~ F?

-------40 ... ------

~I expressIon I \+():i P-
.. expression

The notation [] denotes the empty set, whlch belongs to every set-type. My
member-group x..y denotes as set members the range of all values of the base­
type In the closed interval x to y.
If x is greater than y, then x..y denotes no members and [x..y] denotes the
empty set

All values designated in member-groups in a particular set-constructor must be
of the same ordinal-type. ThIs ordinal-type Is the base-type of the resulting
set. If an integer value designated as a set member is outside the limits given
In Sect10n 3.2.3 (0 .. 4087 In the current Implementation), the results are
unspeci fied.

Examples of' set-constJucto.rs:

[red, c, green]
[1, 5, 10 .. k IIIld 12, 23]
[' A' •• '2', 'a' .. 'z', cnr(xcode)]

5-11

NOTES

029-0:J98-A

Chapter 6
Statements

6.1 SifT1:tle staternerlts .. 6-1

6.1.1 Assignment-Statements .. 6-1
6.1.2 Procedure-Statements .. 6-2
6.1.3 Goto-Statements .. 6-3

6.2 St.rlIct.tJre(f-St.at.eT1erlt.l .. '." •••.•••.•.•.•••.•••.•••••••.••••••.•••••.••••••••••••••••••••• __ 6-4

6.2.1 Compound-Statements .. '" 6-4
6.2.2 Conditional-Statements .. 6-4

6.2.2.1 If-Statements '" .. 6-5
6.2.2.2 Case-Statements ... 6-5

6.2.3 Repetitive-Statements .. 6-6
6.2.3.1 Repeat-Statements ... 6-7
6.2.3.2 While-Statements ... 6-7
6.2.3.3 For-Statements ... 6-8

6.2.4 With-Statements .. '" ... 6-10

Statements

Statements denote algorithmic actions, and are executable. They can be
prefixed by labels; a labeled statement can be referenced by a gota-statement.

simple-statement i----.,.-

label I ---t.~ digit-sequence

A digit-sequence used as a label must be in the range 0 .. 9999, and must first
be declared as descrIbed In Section 2.1.

6.1 SifrlJle Statements
A simple-statement is a statement that does not contain any other statement.

s.imple-statement aSSignment-statement

goto-statement t-----------I ..

6.1.1 AssI~t-statements
The syntax for an ass1gnment-statement Is as follows:

as.. .. :lgI7I7Jt?1J/-slaletJJt?IJ/

variable-reference

function-Identi fier expressIon

The aSSignment-statement can be used In two ways:

• To replace the current value of a variable by a new value specIfied as an
expressIon

• To specify an expression whose value is to be returned by a function.

6-1

Pascal Reference M8I7l/al Statements

The expression must be assignment-compatible with the type of the variable or
the result-type of the function.

If the selection of the variable involves indexing an array or taking the
object of a pointer, it is not specified whether these actions precede or
follow the evaluation of the expression.

Examples of assignment-statements:

x := y+z;
p := (1<=1) and (1<100);
1 := sqr(k) - (1*j);
ruel := [blue, succ(c)];

6.1.2 PIoceWre-Statements
A procedure-statement serves to execute the procedure denoted by the
procedure-identi fier.

pn.7C[YIlIJP-statErnenl

procedure-identi fier

actual-parameter -list

(A procedure-identifier is simply an identifier that has been used to declare a
procedure.)

If the procedure has formal-parameters (see Section 7.3), the procedure­
statement must contain a list of actual-parameters that are bound to the
correspondIng formal-parameters. The number of actual-parameters must be
equal to the number of formal parameters. The correspondence is establ1shed
by the post tions of the parameters in the llsts Of actual and formal parameters
respect! vel y.

The rules for an actual-parameter IV> depend on the correspondIng formal­
parameter FP:

• If FP is a value parameter, /lP must be an expression. The type of the
value of IV> must be assIgnment-compatible with the type- Of FP.

• If FP is a variable parameter, PP must be a variable-reference. The type
of /lP must be identical to the type of FP.

• If FP is a procedural parameter, IV> must be a procedure-identifier. The
type of each formal-parameter of PP must be identical to the type of the
corresponding formal-parameter of FP.

6-2

PascaJ Reference Manual Statements

• If FP Is a functional parameter, As> must be a function-identifIer. The type
of each formal-parameter of As> must be Identical to the type of the
corresponding formal-parameter of FP, and the result-type of As> must be
identical to the result-type of FP.

f'lJTE

The order of evaluation and binding of the actual parameters Is
unspeci fied.

Examples of procedl!re-statements:

pr1nthead1ng;
trCWlspose(a, n, m);
blsect(fct, -1.0, +1.0, x);

6.1.3 Gato-Statements
A goto-statement causes a jump to another statement in the program, namely
the statement prefixed by the label that is referenced In the goto-statemenL

qot.lJ-st.at.enJt:?lJI .~ label ~

~TE

The constants that introduce cases within a case-statement (see Section
6.2.2.2) are not labels, and cannot be referenced in goto-statements.

The following restrictions apply to goto-statements:

• The effect of a jump into a structured statement from outside of the
structured statement is unspecified.

• The effect of a jump between the then part and the else part of an If­
statement is unspecIfied.

• The effect of a jump between two different cases within a case-statement
is unspecified.

6-3

Pascal Reference Mal7ll8l Statements

6.2 Structured-statements
Structured-statements are constructs composed of other statements that must
be executed either conditionally (conditional-statements), repeatedly
(repetitive-statements), or in sequence (compound-statement or with-statement~

stIuctureci-statement
"'::;";:;:"==':;"~~=~~-.......-.....-t compound-statement

wI tn-statement

62.1 COOlJOt.Ild-statements
The compound-statement specifies that its component statements are to be
executed in the same sequence as they are written.

compound-statement

~ (~,--I s_ta_te_me_nt-...) ~~
-. ---10..---

Example of compOtlnci-st8tement-

begin
z := x;
X := y;
y := Z

end

An important use of the compound-statement Is to group more than one
statement into a single statement, in contexts where Pascal syntax only allows
one statement The symbols tJeg1n and erx2 act as "statement brackets."
Examples of this will be seen In Section 6.2.3.2.

6.22 CondItional-statements
A conditional-statement selects for execution a Single one (or none) of its
component statements.

c(]llt.lltional-statetl'N:?flt 1 f-statement

6-4

Pascal RefenJnce Hant.Jai Statements

6.2.2.1 If-~~ts
The syntax for if-statements is as follows:

if-statement

The expression must yield a result of type boolecn If the expressIon yields
the value true, the statement following the then is executed.

If the expression yields false and the else part is present, the statement
following the else is executed; If the else part is not present, nothIng is
executed.

The syntactic ambiguity arIsIng from the construct:

if el then
if e2 then s1

else 52
is resolved by interpreting the construct as being equivalent to:

if e1 then begin
if e2 then 51

else 52
em

Examples of if-statements:

if x < 1.5 then z := x+y else z := 1.5;
if pl <> nil then pl := pl

A

.father;
6.2.2.2 C8se-Statements

The case-statement contains an expression (the selecto}J and a Ust of
statements. Each statement must be prefixed with one or more constants
(called c8se-constant~, or wIth the reserved word otherwIse. All the case­
constants must be distinct and must be of an ordinal-type that is compatible
with the type of the selector.

C8Se-statenmt

otnerwlse-clause

6-5

Pascal RefeIence Manual Statements

(~I C~I-~----.0-+I statement

_o_tJJe._._~_'l_:~_. -_C.--,:IBl.;.;;..JSe~. --... a-.c otherwise H statement 11-----..

The case-statement specifies execution Of the statement prefixed by a case­
constant equal to the current value of the selector. If no such case-constant
exists and an otherwise part is present, the statement following the word
otherwise Is executed; If no otherwise part Is present, nothing Is executed.

Examples of case-statements:

case operator of
plUS: x:= x+y;
mioos: x: = x-y;
times: X:= X*Y

end

case 1 Of
1: x := sin(x);
2: x := cos(x);
3,4,5: x:= exp(x);
otherwise x := In(x)

end

IM>L..ErvENTATICN ~

In the current implementation, the case-statement wm not work
correctly if any case-constant is of type longlnt or the value of the
selector Is of type longlnl

6.2.3 Repetitive-Statements
Repetitive-statements specify that certain statements are to be executed
repeatedly.

re, tJtJve-statement repeat-statement

while-statement

for-statement

6-6

Pascal ReFe.rence MarlU8J Statements

6.2.3.1 Repeat-staterrelts
A repeat-statement contains an expression which controls the repeated
execution of a sequence of statements contained within the repeat-statement

I~at-st~t~t

---+C repeat >r sta~ expressIon ~

me expression must yield a result Of type OOOlecn Tne statements Oetween
the symbols repeat and lIltll are repeatedly executed until the expression
yields the value true on completlon Of the sequence of statements. The
sequence of statements is executed at least once, because the expression Is
evaluated afleI execution of the sequence.
Exanples of Iepeat-statements:

repeat
k := 1 rod j;
1 := j;
j := k

..... til j = 0

repeat
procesS(fA);
get(f)

..... til eof(f)

62.3.2 While-statements
A while-statement contains an expression which controls the repeated
execution of one statement (possibly a compound-statement) contained within
the whUe-statement

while-statement
~ expression ~ statement ~

The expression must yield a result of type boolEBl. It Is evaluated beFore the
contained statement Is executed. The contained statement Is repeatedly
executed as long as the expression yields the value tIue. If the expressIon
yields false at the beginning, the statement is not executed.

6-7

Pascal Reference Manual

The while-statement:

.tIile b do body

is equivalent to:

1 f b then repeat
body

t.I1til rot b

Examples of Wflile-statements:

.tIile a[i] <> x do i := 1+1

.tIile 1>0 do begin
if odd(1) then Z := Z*X;
i := i div 2;
x := sqr(x)

end

.tIile rot eof(f) do begin
process (f ..);
get(f)

end

6.2.3.3 For-Statements

Statements

The for-statement causes one contained statement (possibly a compound­
statement) to be repeated} y executed while a progression of values is assigned
to a variable called the control-variable.

for-stElefnelll

control-variable initial-value

t-------:l~ final-value

COlJf[(}/-v8JialJle .1 varlable-identi fier ~

initial-value I L-..
• expression r------

~fh='(J.='8l;;....-...:...va.='ii='tIe~~.~1 expression ~

6-8

Pascal Reference Manual Statements

The control-variable must be a variable-identifier (without any qualifier). It
must be local to the innermost blocK containing the for-statement, and must
not be a variable parameter of that block. The control-variable must be of
ordinal-type, and the initial and final values must be of a type compatible with
this type.

The first value assigned to the control-variable is the inItial-value.

If the for-statement is constructed with the reserved word to, each successive
value of the control-variable is the successor (see Section 3.1) of the previous
value, using the inherent ordering of values according to the type of the
control-variable. When each value is assigned to the control-variable, it is
compared to the final-value; if it Is less than or equal to the final value, the
contained statement is then executed.

If the for-statement is constructed with the reserved word oownto, each
successive value of the control-varIable Is the predecessor (see Section 3.1) of
the previous value. When each value is aSSigned to the control-variable, it is
compared to the fInal-value; If It Is greater than or equal to the final value,
the contained statement is then executed.

If the value of the control-variable Is altered by execution of the repeated
statement, the effect Is unspeclfied. After a for-statement is executed, the
value of the control-variable is unspeCified, unless the for-statement was
exited by a goto. Apart from these restrictions, the for-statement:

for v := e1 to e2 do bOdy

is equivalent to:

begin
~1 :'" e1;
teRp2 := e2;
i f ~1 <= tenp2 then begin

v := tenp1;
bOdy;
.tlile v <> tenp2 do begin

v : '" succ(v);
bOdy

end
em

end

6-9

Pascal Refemnce Hanual

and the for-statement:

for v : = e1 oownto e2 00 body

1s equivalent to:

begln
teq>l := e1;
teq>2 := e2;
1 f teq)1 >= tenp2 then begln

v := tenp1;
body;
... 11e v <> ~ 00 begln

v : = pred(v);
body

end
erx:t

end

Statements

where tefl1l1 and tefl1l2 are auxiliary variables of the host type of the variable
v that do not occur elsewhere 1n the program.
Examples of for-statements:

for i := 2 to 63 do if a[l] > max then max := ali]
for i := 1 to n do for j := 1 to n do

begin
x := 0;
for k := 1 to n do x := X + ml[l,k]-m2[k,j];
m[l, j] := X

end

for c := red to blue do q(c)

6.2.4 WIth-statements
The syntax for a with-statement Is

wjth-statement

(A record-variable-reference is simply a reference to some record variable.)
The occurrence of a record-variable-reference in a with-statement affects the
way the compHer processes variable-references within the statement following
the word do. Fields of the record-variable can be referenced by their field­
identifiers, without explicit reference to the record-variable.

6-10

Pascal Reference Manual

Example of wflll-statement:

wi th date do if ItD1th = 12 then begin
nmth := 1;
year := year + 1

end
el se IIDlth : = IOOI1th + 1

This is equivalent to:

if date.ltD1th = 12 then begin
date .ltD1th : = 1;
date. year : = date. year + 1

end
else date.lIDlth := date.lID1th + 1

Statements

Within a wIth-statement, each variable-reference is checked to see if it can
be interpreted as a field of the record. Suppose that we have the following
declarations:

type recTyp = record
foo: integer;
bar: real

end;

var baz: recTyp;
foo : integer;

The identifier foo can refer both to a field of the record variable baz and to a
variable of type Integer. Now consider the statement

with baz do begin

foo : = 36; {Which foo is this?}

end

The foo in this with-statement Is a reference to the field baZ.foo, not the
variable foo.

The statement:

with vII V21 .•• vn do s

Is equivalent to the following "nested" with-statements:

with vI do
with V2 do

with vn do s

6-11

Pascal Refe.l1Jnce Manual Statements

If vn in the above statements is a field of both vi and v2, it is interpreted to
mean V2.vn, not v1.vn. The list of record-variable-references in the wlth­
statement is checked from right to left

If the selection of a variable in the record-variable-list lnvolves the lndexlng
of an array or the de-referenclng of a poInter, these actions are executed
before the component statement is executed.

WARNII'D

If a variable in the record-variable-list is a polnter-reference, the value
of the pointer must not be altered wi thIn the with-statement. If the
value of the pointer is altered, the results are unspecifIed.

Example of lII7S8fe wit/J-statement using pointer-reference:
wi th ppp" do begin

new(ppp); {Don't do this ... }

PPP:=XXX; { ••• or this}

end

6-12

NOTES

029-0}99-A

Chapter 7
Procedures and FlIlCtions

7.1 ProcetlJre-()eclaratiOlS .. 7-1

7.2 Ft.I"I:ti(]l'l-()e(;laratl(J'1S ... , 7-4

7.3 Paranleten .. 7-5

7.3.1 Value PararTleters .. 7-7
7.3.2 Variable Parameters .. 7-7
7.3.3 Procedural Parameters .. 7-7
7.3.4 fl..l1Ctional Parameters .. 7-9
7.3.5 PararTleter List Compatibility ... 7-9

Procedures and Functions

7.1 ProceOJre-Oeclarations
A procedure-declaration associates an identifier with part of a program so that
it can be activated by a procedure-statement.

pmcedure-declaratjon

----.f procedure-heading ~ procedure-body ~

The procedure-headIng specIfIes ttle IdentifIer for the procedure, and the
formal parameters (if any~

plVCet"Xo-e-IJeBt1ing

-+C procerure H identifier I " ;r.
'+I formal-parameter-list t-'

The syntax for a formal-parameter-list is given in Section 7.3.

A procedure Is activated by a procedure-statement (see Section 6.1.2), which
gives the procedUre's identifier and any actual-parameters required by the
procedure. The statements to be executed upon activation of the procedure
are specified by the statement-part of the procedure's block. If the
procedure's identifier is used in a procedure-statement within the procedure's
block, the procedure is executed recursively.

7-1

Pascal Rererence Hanual Procedll.res & Ftll?CtJons

Exarple or a p.rocedlJ.re-declaIatJon:

procewre readInteger (var f: text; var x: integer);
var value, digi tValue : integer;
begin

lIhile (f A = ' .) CI1d not eof(f) 00 get(f);
value := 0;
lIhile (fA in ['0' .. '9']) em not eof(f) dO begin

digitValue := ord(fA) - ord('O');
value := 10*\181ue + digitValue;
get(f)

end;
x := value

end;

A procedure-declaration that has forward instead of a block is called a
rorwBId declaralion Some'Where after the forward declaration (and in the
same blOCk), the procedure is actually defined by a tteflnjng declarat.i~-a
procedure-declaration that uses the same procedure-identifier, omits the
formal-parameter-l1st, and includes a block. The forward declaration and the
defining declaration must be local to the same block, but need not be
contiguous; that is, other procedures or functions can be declared between
them and can call the procedure that has been declared forward. This permits
mutual recursion.

The forward declaration and the defIning declaration constitute a complete
declaration of the procedure. The procedure Is considered to be declared at
the place of the forward declaration.

Example Or rorwani declamlion:

procewre walter(m, n: integer); {forward declaratioo}
forward;

pl'OCeWre clara(x, y: real);
begin

walter(4, 5); {a< becaUse walter is for.ard declared}

end;

procec1Jre .al ter; {defining declaration}
begin

clara(8.3, 2.4);

end;

A procedure-declaration that has external instead of a block defines the Pascal
interface to a separately assembled or compiled routine (a PROC In the case
of assembly language~ The external code must be linked 'With the compiled

7-2

Pascal Refe.rence Mant./81 ProcedH'es & Funclions

Pascal host program before execution; see the Wol1<s/Jop Usef's Gt/jde fOf t/Je
Ljsa for details.

Example of an extemal procedufe-c1eclarcJlion:

procewre makescreen(iooex: integer);
external;

This means that makescreen is an external procedure that will be linked to the
host program before execution.

JM>l...EJVENT A TI(]\J f\IJTE

It is the programmer's responsiblUty to ensure that the external
procedure is compatible with the external declaration in the Pascal
program; the current linker does no CheCkIng.

This Pascal (unlike Apple II and Apple III Pascal) does not allow a
variable parameter of an external procedure or function to be declared
without a type. To obtain a simllar effect, use a formal-parameter of
pOinter-type, as in the followIng example:

type bi~ = ~ed array[O .. 32767] of Char;
bi~tr = "big:mc;

procewre Wlatever (bytearray: bi~tr);
external;

The actual-parameter can be any pointer value obtained via the .­
operator (see Section 5.1.6~ For example, if emu Is a pcD<ed array of
bOolea1, it can be passed to whatever by wr! ting

Wlatever(iilOOts)

This description of external procedures also applies to external functions.

7-3

Pascal Reference f\1antJaJ ProcetXJres & FUJCtlms

72 FlIlCtim-Declaratioos
A function-declaration serves to define a part of the program that computes
and returns a value of simple-type or painter-type.

flIncaon-declaraaon

---1 function-heading ~ function-body ~

function-bod

The function-heading specIfies the identifier for the function, the formal
parameters (if any), and the type of the function result .

funcaon-lJeadin,

formal-parameter-list

result-{ if? oralnal-type-laentlfler

real- t ype-identi fier ~-.... I

pointer-type-identifier

The syntax for a formal-parameter-llst is given In Section 7.3.

A function Is activated by the evaluation of a function-call (see Section 5.2),
which gives the function's identifier and any actual-parameters required by the
function. The function-call appears as an operand in an expression. The
expressIon is evaluated by executing the function, and replacing the function­
call with the value returned by the function.

The statements to be executed upon activation of the function are specified by
the statement-part of the function's block. This block should normally contain
at least one aSSignment-statement (see Section 6.1.1) that assigns a value to
the function-identifier. The result of the function is the last value assigned.
If no such assIgnment-statement exists, or if It exists but Is not executed, the
value returned by the function Is unspeCified.

7-4

Pascal Reference Mal7lls1 Procedllres & FlII1Ctions

If the function's identifier is used in a function-call within the function's
blocK, the function is executed recursively.
Exanples of flnclion-declamtk:ns:

function max(a: vector; n: integer): real;
var x: real; i: integer;
begin

x := a[l];
for i := 2 to n do if x < a[i] then x := a[i]
max := X

end;

flrlCtion pollller(x: real; y: integer): real; { y >= O}
var w, z: real; i : integer;
begin

w : = x; Z : = 1; i : = y;
While i > 0 do beg1n

{z*(w**1) = x ** y }
if Odd(i) then z := z·w;
1 := 1 dlv 2;
" := sqr(w)

eRj;

{z = X**y }
power := Z

end;

A function can be declared forward in the same· manner as a procedure (see
Section 7.1 above~ This permits mutual recursion.
A function-declaration that has external Instead of a block defines the Pascal
interface to a separately complled or assembled external routine (a FlJ'C in
the case of assembly language~ See the explanation in Section 7.1 above.

7.3 Para'neten
A formal-parameter-llst may be part of a procedure-declaratlon or
function-declaration, or it may be part of the declaration of a procedural or
functional parameter.
If it is part of a procedure-declaration or function-declaration, it declares the
formal parameters of the procedure or function. Each parameter so declared
is local to the procedure or function being declared, and can be referenced by
its identifier in the block associated with the procedure or function.
If it is part of the declaration of a procedural or functional parameter, it
declares the formal parameters of the procedural or functional parameter. In

7-5

Pascal Ref'erence f'o18ntI81 ProcedtIres & FlIlCtJons

this c"ase there is no associated block and the identifiers of parameters in the
formal-parameter-l1st are not significant (see Sections 7.3.3 and 7.3.4 below~

f'onnaJ-pBftn1eter-jist
~-----------------~

t-7""-...~" parameter-declaration J----,.-.~--t ..

..e::::.::..:::::..:..:.::;,r=-==:...:.:.:::..:::;.;.~ iC1enti fier-list type-identifier

There are four kinds of parameters: value parameters, variable parameters,
procedural parameters, and lilnctional paramete.n They are distinguished as
follows:

• A parameter-group preceded by var is a llst of variable parameters.

• A parameter-group without a preceding var is a list of value parameters.

• A procedure-heading or function-heading denotes a procedural or functional
parameter; see Sections 7.3.3 and 7.3.4 below.

~

The types of formal-parameters are denoted by type-identifiers. In
other words, only a simple identifier can be used to denote a type in a
formal-parameter-llst To use a type such as arra}{O_255] of char as
the type of a parameter, you must declare a type-identifier for this
type:

type Charray = array[o .. 255] of Char;

The identifier chaJTay can then be used in a formal-parameter-l1st to
denote the type.

7-6

Pascal ReFerence HanlIal P.rocet1lJ.res & FlI7Ctions

The word flle (for an "untype(f' file) Is not allowed as a type-Identifier
In a parameter-declaration, since it is a reserved word. To use a
parameter of this type, declare some other identifier for the type file
--for example,

type phyle = file;

The identifier phyle can then be used in a formal~parameter-l1st to
denote the type file.

7.3.1 Value Parameters
For a value-parameter, the corresponding actual-parameter In a procedUre­
statement or function-call (see Sections 5.2 and 6.1.2) must be an expression,
and its value must not be of fUe-type or of any structured-type that contains
a file-type. The formal value-parameter denotes a variable local to the
procedure or function. The current value of the expression is assigned to the
formal value-parameter upon activation of the procedure or function. The
actual-parameter must be assignment-compatible with the type of the formal
value-parameter.

7.3.2 Variable Parameters
For a variable-parameter, the corresponding actual-parameter In a procedure­
statement or function-call (see Sections 5.2 and 6.1.2) must be a variable­
reference. The formal varlable-parameter denotes this actual variable during
the entire activation of the procedure or function.

Within the procedure or function, any reference to the formal variable­
parameter is a reference to the actual-parameter itself. The type of the
actual-parameter must be Identical to that of the formal variable-parameter.

l'IJTE

If the reference to an actual variable-parameter involves indexing an
array or finding the object of a pointer, these actions are executed
before the activation of the procedure or function.

Components of variables of any packed structured type (including string-types)
cannot be used as actual variable parameters.

7.3.3 ProceWral Paraneters
When the formal-parameter Is a procedure-heading, the corresponding actual­
parameter in a procedure-statement or function-call (see Sections 5.2 and 6.1.2)
must be a procedure-identifier. The identifier in the formal procedure-heading
represents the actual procedure during execution of the procedure or function
receiving the procedural parameter.

7-7

Pascal Ref'erence Hanusl

Example of' procec!ural pa.rametel$:

progran passProc;
var i : integer;

ProcedUres & Fl/I?CtJons

procewre a(procecllre x) {x is a formal procewral parCllEter.}
begin

.rite(' About to call x ');
x {call the proceOJre passed as parcmeter}

end;

procewre b;
begin

write('In procedure be)
end;

function c(procedure x): integer;
begin

x; {call the procewre passed as pararooter}
c:=2

end;

begin
a(b); {call a, passirYJ b as paralEter}
i:= c(b) {call c, passing b as parameter}

end.

If the actual procedure and the formal procedure have formal-parameter-lists,
the formal-parameter-lists must be compatible (see section 7.3.5~ However,
only the identifier of the actual procedure is written as an actual parameter;
any formal-parameter-list is omitted.
EXl1IT¥Jle of' procedlJ.ra1 p8rametel$ with thejr own f'onnal-pa.rameter-Jjsts:

progran test;
procewre XAsPar(y: integer);

begin
wrlteln('y=', y)

end;

proce<lJre callProc(proceclJre XAgain(z: integer»;
begin

XAgain(l)
end;

begin {body of program}
calIProc(>CAsPar)

end.

If the procedural parameter, upon activation, accesses any non-local entity (by
varIable-reference, procedUre-statement, function-call, or label), the entity

7-8

Pascal Reference Manual Procedures & Functions

accessed must be one that was accessible to the procedure when the procedure
was passed as an actual parameter.

To see what this means, consider a procedure pp which is known to another
procedure, firstPasser. Suppose that the following sequence takes place:

1. firs1:Passer is executing.

2. flrst.Passer calls a procedure named flrstRecelver, passIng pp as an
actual parameter.

3. flrstReceiver calls seanReceiver, again passing pp as an actual
parameter.

4. secorl(Receiver calls pp (first execution of pp~

5. seconcReceiver calls thinReceiver, again passing pp as an actual
parameter.

6. thir<Receiver calls firstPasser (indirect recursion), and passes pp to
flrstPasser as an actual parameter.

7. first.Passer (executing recursively) calls pp (second execution of pp~

Thus the procedure pp is called first from seconcReceiver, and then from the
second (recursive) execution of flrst?asser.

Suppose that pp accesses an entity named xxx, which is not local to pp; and
suppose that each of the other procedures has a local entity named xxx.
Each time pp is called, which xxx does it access? The answer is that in eacIJ
case, pp accesses the xxx that Is local to the Ilrs! execution of flrstPasser-­
that is, the xxx that was accessible when pp was originally passed as an actual
parameter.

7.3.4 FlI1Ctional Parameters
When the formal parameter is a function-heading, the actual-parameter must
be a function-identifier. The identifier in the formal function-heading
represents the actual function during the execution of the procedure or
function receiving the functional parameter.

Functional parameters are exactly llke procedural parameters, wIth the
additional rule that corresponding formal and actual functions must have
Identical result-types.

7.35 Parcmeter List COO'llatibillty
Parameter Ust compatibility is required of the parameter lists of corresponding
formal and actual procedural or functional parameters.

7-9

Pascal Reference Hantlal ProcedtIms & Functions

Two formal-parameter-llsts are compatible if they contain the same number of
parameters and 1 f the parameters In corresponding posl tions match. Two
parameters match if one of the following is true:

• They are both value parameters of identical type.

• They are both variable parameters of identical type.

• They are both procedUral parameters with compatible parameter lists.

• They are both functional parameters with compatible parameter lists and
Identical result-types.

7-10

NOTES

029-0.400-A

Chapter 8
Programs

8.1 Syrltax .. 8-1

8.2 ~mn-ParcI11eters •••.••••••••••.•.•••.•.••..•••••.••••••••..•.•••••••••••••••.•••••••••••• 8-1

8.3 SegTler1tation ... 8-1

Programs

8.1 Syntax
A Pascal program has the form of a procedure declaration except for its
heading and an optional l/ses-clause

j.Yl.'!llC¥J}

-I program-heading ~ \, lAf .[biOCk}-
'-1 uses-clause ~

pfogr .. m-!Jeat.1iIl!l

--.(pmgnm).1r-~d-e-ntl-fl-er""""l \ I. r.-... r ..
~ program-parameters ~

proqrarn-paliYI7etel"s ~lldent1fler-l1st ~

...::.lJ.:..::.~=..:'BS~-..:::C::..::'/a.:.=:'lJ..::..:'Se::....-.. ___ ~~ identifier-list ~

The occurrence of an identifier immediately after the word prognm declares it
as the program's Identifier.

The uses-clause identifies all units required by the program, including units
that it uses directly and other units that are used by those units.

82 Prognm--ParcmeteIS
Currently, any program-parameters are purely decorative and are totally
Ignored by the compHer.

8..3 8egnentatlon
The code of a program's main body is always placed in a run-time segment
whose name is a string of blanks (the "blank segmenf'~ My other block can
be placed in a different segment by using the $S compHer command (see
Chapter 12 and Appendix A). If no $S command is used In the program, all
code Is placed in the blank segment. Code from a program can be placed in
the same segment with code from a regular-unIt, bUt it cannot be mixed with
code from an intrinsic-unIt (see Chapter 9~

8-1

NOTES

029-0401-A

Chapter 9
Units

9.1 R~ar-lklits•....•.........•.•......••...............................•......... 9-1

9.1.1 Writing Regular-l.Jnits ... 9-1
9.1.2 Using Regular-LJnits ... 9-3

9.2 Intrirlsic-l.klits _._._ ... _•...•••••.•.••••.•.••.•.•..•..••••.•...••••..•••••••.•••.•••..•.•.• 9-4

9.3 llits tIlat lJse lXIler lklits•..................................... 9-4

Units

A unit is a separately compiled, non-executable object fUe tnat can be linked
witn otner object files to produce complete programs. There are two kinds of
units, called regular-unIts and intrinsic-units. In tne current implementation of
tne WO!ksrop, you can use intrinsic-units tnat are provided, but you cannot
wri te new ones.
Eacn unit used by a program (or anotner unit) must be compiled, and its Object
file must be accessible to tne compHer, before tne nost program (or un1t) can
be compiled.

9.1 Regular-Lttlts
Regular-units can be used as a means Of modularizing large programs, or of
making code available for incorporation in various programs, witnout making
tne source available.
When a program or unit (called tne /lost) uses a regular-unit, tne linker inserts
a copy of tne complled code from tne regular-unit Into the nost's Object fUe.
By default, tne code copied from tne regular-unit Is placed in tne blank
segment (see Cnapter 8~ Tne code of tne entire unit, or of blocks witnln tne
unit, can be placed in one or more different segments by using tne $S compiler
command (see Cnapter 12~

9.1.1 WrlUng REgllar-Ullts
Tne syntax for a regular-unit is:

re. ular-llnit
-=-:;.;==-==--~~ unit-heading

interface-part implementation-part

....:;.;t..n.;,.;,:if,;..:...t-..;..;IJe.;.;..;WiJ=pq..:.:L-_-.~~ identif1er

9-1

Pascal Re~e.rence /'1anual

inte.l"face- . t

uses-clause

constant -declaratIon-part

type-declaration-part

variable-declaration-part

procedure-and-functlon-declaratIon-part

ifrlllementation

constant -declaration-part

t ype-declaraUon-part

variable-declaration-part

procedure-and-function-declaration-part

TIle Interface-part deClares constants, types, variables, procedures, and
functions that are "pUbUc," i.e. available to the host.

Lhits

The host can access these entities just as if they had been declared in the
host. ProcedUres and functions declared in the lnterface-part are abbreviated
to nothing but the procedure or function name, parameter specifications, and
function resul t - type.

Since the interface-part may contain a uses-clause, a unit can use
another unit (see Section 9.3~

9-2

Pascal Reference t-1l¥7lJa.I U?lts

The implementation-part, which follows the last declaration in the interface­
part, begins by declaring any constants, types, variables, procedures, or
functions that are .. private 1.e. not available to the host.

The public procedures and functions are re-declared in the implementation­
part. The parameters and function result types are omitted from these
declarations, since they were declared in the interface-part, and the procedure
and function blocKs ... omitted in the interface-part, are included in the
implementation-part.

In effect, the procedure and function declarations in the interface are liKe
forward declarations, although the forward directive Is not used. Therefore ...
these procedures and functions can be defined and referenced in any sequence
in the implementation.

There is no "initialization" section In Pascal units on the Usa (unliKe
Apple II and Apple III Pascal~ If a unit requires initialization of its
data, it should define a pUbliC procedure that performs the initialization ...
and the host should call this procedure.

Also note that global labels cannot be declared in a unit.

A short example of a unit Is:

lIli t Sinple;
INlERFlU: {ptJllic objects declared}

canst FlrstValue=1;
proceOJre AdtOle(var Incr: integer);
function Add1(Incr:integer):1nteger;

ItA..Et£NTATIOO
procewre Ad€D1e; {rote lack of paralEters ... }

begin
Incr:=Incr+l

end;
functIon Add1;

begin
Addl:=Incr+l

end
800.

9.1.2 USing R~lar-ullts

{ ... em lack of function result type}

The syntax for a uses-clause is given in Section 8.1. Note that in a host
program, the uses-clause (If any) must immediately follow the program­
heading. In a host unit, the uses-clause (if any) immediately follows the
symbol interface. O'lly one uses-clause may appear in any host program or
unit; it declares all unIts used by the host program or unIt.

See Section 9.3 for the case where a host uses a unit that uses another unit.

9-3

Pascal Rere.rence Manual Lhits

It is necessary to specify the file to be searched for regular units. The $U
compiler command speCifies this file. See Chapter 12 for more details.

Assume that the example unit SlrTllle (see above) Is compiled to an object file
named APPL:SIMPLEJEJ. The foUo\tling is a short program that uses SI~le.
It also uses another unIt named other, \tIhich is in fBe APPL:OTHER.OOJ.

program GallSimple;
uses {$U APPl: SItfllE. OOJ}

Siqlle,
{file to search for units}
{use unit Simple}

{$U APPl:OTlER.OOJ}
Other;

{file to search for units}
{use unit Other}

var i:integer;
begin

i:=firstValue; {FirstValue is from Simple}
write("i+l is ",Addl(i»; {Addl is defined in Simple}
write(xyz(i» {xyz is defined in Other}

end.

92 Intrinsic-Ullts
The only intrinsic-units you can use are the ones provided \tIith the WorkShop
soft\tlare.

Intrinsic-units provide a mechanism for Pascal programs to share common code,
\tIith only one copy of the code In the system. The cOde is kept on disk, and
\tIhen loaded into memory it can be executed by any program that declares the
intrinsic-unit (via a uses-clause, the same as for regular-units~

By default, the system loOks up all intrinsic-units in the system intrinsics
library flle, INTRINSIC.LIB. All intrinsic-units are referenced In this library,
so the $U fllename complIer command is not needed \tilth intrinsic-units.

9.3 Ullts that use Other Ullts
As explained above, the uses-clause in the host must name all units that are
used by the host. Here "used" means that the host directly references
something in the interface of the unit. Consider the follo\tling diagram:

unitA

interface

V
uses lJ'litc;

unite
Host Program implementation -----.. interface uses tIlltA, unitS;

~ unitB
implementation

interface

implementation

9-4

Pascal Refel'elJce Manual unJts

The host program directly references the interfaces of lritA and LIlltB; the
uses-clause names both of these units. The implementation-part of lIlltA also
references the interface of lIlltC, but it is not necessary to name LIlltC in the
host-program's uses-clause.

In some cases, the uses-clause must also name a unit that is not directly
referenced by the host. The following diagram is exactly like the previous one
except that this time the interface of lI1ltA references tne interface of lI1ltC,
and tIlitC must be named in the host-program's uses-clause. Note that lI1ltC
must be named before tIlitA.

unitA

interface

V
uses lIlitC;

~ unite

Host Program implementation
interface

uses l.IlltC, l.IlitA.

~ lIlltB; unitS
implementation

interface

implementation

In a case like this, the aocumentation for lI1ltA should state that lIlltC must
be named in the uses-clause before tIlitA.

9-5

NOTES

029-0402-A

Chapter 10
Input/Output

10.1 Int.ItxlJctioo to IJ()•..............................•.......................•......•. 10-1

10.1.1 Device Types ... 10-2
10.1.2 External File Species ... 10-2
10.1.3 The Reset Procedure ... 10-3
10.1.4 The Rewrite Procedure .. 10-5
10.1.5 The Close Procedure .. 10-6
10.1.6 The Ioresult Function ... 10-7
10.1.7 The EofFunction .. 10-7

10.2 Rec::xJfd-CJrier1t.ecj IJ() •• 10-8

10.2.1 The Get Procedure .. 10-8
10.2.2 The Put Procedure ... 10-8
10.2.3 The Seek Procedure ... 10-9

10.3 Text-()rimted I/()•.•... 10-9

10.3.1 The Read Procedure .. 10-11
10.3.1.1 Read with a Char Variable 10-12
10.3.1.2 Read with an Integer or Longint Variable 10-12
10.3.1.3 Read with a Real Variable .. 10-12
10.3.1.4 Read with a String Variable 10-13
10.3.1.5 Read with a Packed Array of Char Variable 10-13

10.3.2 The Readln Procedure.. 10-14
10.3.3 The Write Procedure .. 10-14

10.3.3.1 OJtput-Specs ... 10-15
10.3.3.2 Write with a Char Value ... 10-15
10.3.3.3 Write with an Integer or Longint Value 10-15
10.3.3.4 Write with a Real Value.. 10-16
10.3.3.5 Write with a String Value ... 10-16
10.3.3.6 wrtte with a Packed Array Of Char value 10-17
10.3.3.7 Write with a Boolean Value•.... 10-17

10.3.4 The Writeln Procedure•.. 10-17
10.3.5 The Eoln Fl.I1Ction 10-17
10.3.6 The Page Procedure•.. 10-18
10.3.7 Keyboard Testing and Screen CUrsor Control 10-18

10.3.7.1 The Keypress FLA1Ction .. 10-18
10.3.7.2 The Gotoxy Procedure ... 10-18

Pascal Reference Manual /nptlt/altput

10.4 LkltYJ)ed File 110 ••••••.••• 10-18

10.11.1 The Blockread FLI1Ction ... 10-19
10.4.2 The Blockwrite Function 10-20

Input/Output

This Chapter describes the standard C'bull t -in") 110 procedures and functions of
Pascal on the Usa.

Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared in a "block" surrounding the program, no
confllct arises from a declaration that redefines the same identifier withIn the
program.

Standard procedures and functions cannot be used as actual procedural
and functional parameters.

ThIs Chapter and Chapter 11 use a modified BNF notation, Instead of syntax
diagrams, to indicate me syntax of actual-parameter-lists for standard
procedUres and functions.

Example:

P8J"8fTJeter List· new(p [, tl, ... tn])

This represents the syntax of the actual-parameter-l1st of the standard
procedUre new, as follows:

• p, tl, and tn stand for actual-parameters. Notes on the types and
interpretations of the parameters accompany the syntax description.

• The notation U, ... tn means that any number of actual-parameters can
appear here, separated by commas.

• Square brackets [] indicate parts of the syntax that can be omitted.

Thus the syntax shown here means that the p parameter is required. Any
number of t parameters may appear, with separating commas, or there may be
no t parameters.

10.1 Intnxilctlon to I/O
This section covers the 110 concepts and procedures that apply to all file types.
This includes the types text (see Section 10.3) and "untyped" fUes (see Section
10.4~

To use a Pascal file variable (any variable whose type is a fUe-type), it must
be associated with an external fUe.The external fUe may be a named
collection of information stored on a peripheral device, or (for certain f11e­
types) it may be the peripheral devIce Itself.

The aSSOCiation of a file variable wIth an external file is made by cpening the
fUe. An existing fUe Is opened via the reset procedure" and a new file Is
created and opened via the rewrite procedure.

10-1

Pascal Ref'e.rence /'1antIal

Pascal on the Usa does not provIde automatic 110 checkIng. To check
the resul t of any particular 110 operation .. use the loresult function
described in Section 10.1.6.

10.1.1 Device Types
For purposes of Pascal 110 .. there are two types of peripheral devices:

• A flle-stJVetl/red device Is one that stores fUes of data .. such as a diskette.

• A cnaracteI device is one whose input and output are streams of individual
bytes, such as the Usa screen and keyboard or a printer.

10.1.2 External FUe Species
There are three "species" of external fIles that can be used in Pascal 110
operations:

• A datafiJe is any fUe that Is stored on a file-structured device and was
not originally created in association with a file variable of type text

• A textflle Is a file that is stored on a file-structured device and was
originally created in association with a file variable of type text Textfiles
are stored in a specialized format (see Section 10.3~

• A cl78racteI devlee can be treated as a fUe.

Table 10-1 summarizes the effects of all possible combinations of different fUe
variable types and external file specIes. The "ordinary cases" in the table
reflect the basic Intent of the various file-types. Other combinations, such as
blOCk-oriented access to a textfile via a variable of type flle, are legal but
may requIre cautious programmIng.

10-2

Pascal Reference fvIa"K.Ial Irptlt/atlptlt

Table 10-1
ec:xmlnati(JlS of File varlcmle Types with External FUe Species

m C8t.fqlrles

var f: file of
var f: text; var f: file; some Type;

ordinary' case. (Textflle format ordinary' case.

datafUe After reset, aSsumed!) After BlocK access.
fA _ 1st record reset*, f" is
file. unspecified.

(Textflle format ordinary' case. (Textflle format
not assumed!) TextfUe format not assumed!)
After reset*, assumecI. After Block access.

textfile f A = 1st record reset, fA is
of fUe (as unspecl fled.
declared).

After reset, ordinary' case. Block access,
fA = 1st char. After reset, if allowed by

Character from device f" Is unspecI- devIce.
device (system walts for fied (no wait

It!~ 110 error If for input char~
fUe record type
not byte-sized.

* In theSe cases, the JOIllSUlt ttnctlm will mtum a "wamlng"
(i.e., a negative 11UTIber) immediately after the mset operation.

10.1.3 The Reset Procec1Ire
qJens an existing fUe.

Parameter List: reset(f, title)
1. f Is a variable-reference that refers to a variable of fUe-type. The fUe

must not be open.

2. title is an expression with a string value. The string should be a valid
pathname for a fUe on a fUe-structured device, or a pathname for a
character device.

10-3

Pascal Rererence Hanual

Both parameters are required (unllke Apple II and Apple III Pascal,
where the second parameter Is opt1onal~

Reset(f, title) finds an existing external flle with the pathname title, and
associates f with this external file. (If there is no existing external flIe with
the pathname title, an 110 error occurs; see Section 10.1.6.)

If title is the pathname of a character device, then

• EOf(f) becomes false.

• If f is of type text, the value of f" is unspecified. The next reoo or readln
on f will walt until a character is available for input, and begin reading
with that character.

• If f Is of type fUe and the device Is one that allows block access, there Is
no fUe buffer variable f" and the "current fne position" Is set to the first
block (blOCk 0) of the fUe. If the device dOes not allow block access, an
110 error occurs (see Section 10.1.6).

• If f is not of type text or rue, its component-type must be a "byte-size"
type such as the type -128..127. Note that char is not a byte-size type! If
the component-type of f is not byte-size, an liD error occurs (see Section
10.1.6).

If no 110 error occurs, the system walts until a character Is available from
the device and then assigns the character's 8-bit code to f".

If title Is the pathname for an existing file on a file-structured device, then

• EOf(f) becomes false If the external file Is not empty. If the external fUe
is empty, eof(f) becomes true.

• If f is not of type text or file, reset sets the "current file position" to the
first record In the external file, and assigns the value of this record to the
file buffer variable f". If the external file Is a textfUe, the loresult
function will return a negative number as a warning (see Section 10.1.6~

• If f is of type text, the value of f" Is unspecified. If the file Is a textfile,
the next reoo or reae:nn on f will begin at the first character of f. If the
fUe Is a dataflle, it will be treated as if it were a textfUe (see Section
10.3) and the loresult function will return a negative number as a warning
(see Section 10.1.6).

• If f Is of type fUe, there is no fUe buffer variable f" and the "current file
position" is set to the first block (block 0) of the file.

10-4

Pascal Reference Mantia} /nput/altput

lD.L4 The Rewrite ProceOJre
Creates and opens a new flIe.

Pan:meter List: re.rite(f, title)
1. f is a variable-reference that refers to a variable of fUe-type.

2. title is an expression with a string value. The string shOUld be a valld
pathname for a fUe on a fUe-structured device, or a pathname for a
character deVice.

If f is already open, an I/O error occurs (see Section 10.1.6~

If title Is the pathname of a character devlce, then

• Eof(t) becomes false.

• Rewrtte(f, title) simply associates f with the device and opens f.

• The status of the device Is not affected.

• The value of f" becomes unspecified.

If title is the pathname for a new file on a file-structured device, then

• Eof(t) becomes true.

• Rewrtte(f, title) creates a new external fUe with the pathname title, and
associates f with the external fUe. This is the only way to create a new
external file.

• The species of the new external fUe Is set according to the type of f-­
"textfUe" for type text, or "dataflle" for any other type.

• The value of f" becomes unspecified.

• If f is not of type fUe, the "current fUe pOSition" is set to just before the
first record or character position of the new external fUe.

• If f is of type fUe, the "current fUe position" Is set to block 0 (the first
block in the file~

• If f is subsequently closed with any option other than lock or clU'lCh (see
Section 10.1.5), the new external fUe is discarded at that time. Closing f
with lock or cRllCh is the only way to make the new external fUe
permanent.

• If title is the pathname of an existing external file, the existing file will be
discarded only When f is subsequently closed with the lock or cItXlCh option
(see Section 10.1.5~

Unspecified effects are caused If the current fUe posItion of a fUe f is altered
WhUe the fUe-bUffer f" is an actual variable parameter, or an element of the
record-variable-reference list of a wIth-statement, or bOth.

10-S

Pascal Reremnce Manual

10..15 The Close ProceaJre
Closes a file.

Parameter L1st- close(f [, ~tloo])

1. f Is a variable-reference that refers to a variable of file-type.

/nput/tlltput

2. optloo (may be omitted) is an identifier from the list gIven below. If
omitted, the effect Is the same as using the identifier normal.

Close(f, optloo) closes f, if f is open. The association between f and its
external fUe Is broken and the fUe system marks the external file "Closed". If
f is not open, the close procedure has no effect

The optloo parameter controls the disposition of the external fUe, if It is not a
character device. If It Is a character device, f Is closed and the status of the
device is unchanged.

The identifiers that can be used as actual-parameters for optlm are as follows:

• ooImal -- If f was opened using rewrite, It is deleted from the directory.
If f was opened with reset, it remains in the dIrectory. thIs is the default
option, In the case where the optlon parameter Is omitted.

• lock -- If the external fUe was opened with rewrite, It Is made permanent
In the dIrectory.

If f was opened with rewrite and a tltle that matches an existing fUe, the
old fUe Is deleted (unless the safety switch is "on"~ If the old file has the
safety switch "on," it remains In the directory and the new fUe is deleted.

If f was opened with reset a normal close is done.

• purge -- The external fUe is deleted from the dIrectory (unless the safety
swi tch is "on"). In the specIal case of a fHe that already exists and Is
opened with rewrite, the orIgInal flIe remains In the dIrectory, unchanged.

• cIU'dl -- This Is like lock except that It locks the end-of-fHe to the point
of last access; i.e., everything after the last record or character accessed Is
thrown away.

All closes regardless of the optlm will cause the fUe system to mark the
external fUe "closed" and w1ll make the value of fA unspeCified.

If a program terminates with a file open (i.e., if close is omitted), the system
automatically closes the file wIth the oormal option.

f'IJTE

If you open an existing fUe with reset and mOdify the file with any
write operation, the contents are immediately changed no matter what
close option you specify.

10-6

Pascal ReFellJlJCe f'vIanUal

10.1.6 TIle Ioresult FlIlCtion
Pascal on the Lisa does not provide automatic 110 checking. To check the
result of any particular 110 operation, you must use the loresult function.

Result type: Integer

Parameter List· no parameters

Ioresult returns an Integer value which reflects the status of the last com­
pleted 110 operation. The codes are given in the WOJ1<SI7op User's Guide For tI7e
Lisa. Note that the code 0 indicates successful complet1on, positive codes
Indicate errors, and negative cOdes are "warnings" (see Table 10-1~

Note that the cOdes returned by loresult are not the same as the codes used in
Apple II and Apple III Pascal.

NJTES

The read, readln, write, and wrlteln procedures described in Section 10.3
may actually perform multiple I/O operations on eacn call. After one of
these procedures has executed, ioresult wm return a code for the status
of the last of the multiple operations.

Also, beware of the following common error in diagnostic code:

read(foo);
.riteln('ioresult=', loresult)

The Intention is to write out the status of the read operation, but
Instead the status written out \tim be that of the wrIte operation on the
string 'Ioresult-'.

10.1.7 TIle EOf FlIlCtioo
Detects the end of a flIe.

ResuJ t Jype: boolecn

Parameter List: eof [(f)]

1. f is a variable-reference tnat refers to a variable of fUe-type.
If the parameter-llst Is omltteC1, the function Is applied to the standard file
~ (see Section 10.3~

After a get or put operation, eof(t) returns true if the current file position is
beyond the last external file record, or the external fUe contains no records;
otherwise, eof{t) returns false. SpecIfically, thIs means tne fOllowIng:

• After a get, eof(f) returns true if the get attempted to read beyond the last
flIe record (or the fUe Is empty~

• After a ~t, eot(t) returns true If the record wrItten by the put is now the
last fUe record.

10-7

Pascal Reference Manual Input/altput

If f is' a character device, eof{t) w111 always return false..
See Section 10.3 for the behavior of eof(f) after a read or readln operation.

I\IJTE

Whenever eof(t) is true, the value of the fUe buffer variable f" Is un­
specified.

102 Recoro-ortented I/O
This section covers the get, pJt, and seek procedUres, which perform record­
oriented I/O; that is, they consider a fUe to be a sequence Of variables of the
type specified in the fUe-type. These procedures are not allowed with fUes of
type file.
The effects of get and put are unspecified with fIles of type text, and seek has
no effect with fUes of type text. The text type is supported by specialized
procedUres described in Section 10.3.

102.1 The Get ProceWre
Reads the next record In a fUe.
Parameter List· get (f)

1. f is a variable-reference that refers to a variable of fUe-type. The fUe
must be open.

If eof(t) is false, get(t) advances the current fUe position to the next file
record, and assigns the value of this record to f . If no next component
exists, then eof(t) becomes true, and the value of fA becomes unspecified.
If eof(f) Is true when get(t) is called, then eof(f) remains true, and the value of
f A becomes unspeci fled.
If the external fUe Is a character device, eof(t) Is always false and there Is no
"current file position." In this case, get(f) waits untll a value Is ready for Input
and then assigns the value to f".

102.2 The Put PIOCeWre
Wri tes the current record in a f11e.
Parameter List· J1It(f)

1. f is a variable-reference that refers to a variable of fUe-type. The fUe
must be open.

If eof(t) is false, ~t) advances the current fUe position to the next file
record and then writes the value of f" to f at the new fUe position. If the
new file pqsi tion is beyond the end of the file, eof(f) becomes true, and the
value of f" becomes unspecified.
If eof(t) Is true, ~t) appends the value of fA to the end of f and eof(f)
remains true.

10-8

Pascal Refe.rence /VIaniJa1 /nptlt.laJtput

If the external file is a character device, eof(t) is always false, there Is no
"current file position," and the value of f" is sent to the device.

~

If put is called immediately after a fHe is opened wIth reset the put
will write the second record of the fHe (since the reset sets the
current post tion to the first record and put advances the posi lion before
writ1ng~ To get around this and write the first record, use the seek
procedure (see Section 10.2.3~

1(12.3 The seek ProceaJre
Allows access to an arbitrary record in a file.
Parameter L1st: seeI«f, n)

1. f is a variable-reference that refers to a variable of flle-type. The fUe
must be open.

2. n is an expression with an integer value that specIfies a record number in
the file. Note that records In fUes are numbered from O.

If the fHe is a character device or Is of type text, seek does nothing.
otherwise, seek{f, n) affects the action of the next get or ~t from the fUe,
forcIng it to access fIle record n instead of the "next" record. seek(t, n) dOes
not affect the file-buffer f".

A get or put tnlISt be executed between seek calls. The result of two con­
secutive seeks with no Intervening get or put Is unspecIfIed. Immediately after
a seel«f, n), eof(t) w1ll return false; a following get or put wIll cause eof to
return the appropriate value.

The record number speCified In a seek call is not checked for validity.
If the number Is not the number of a record in the file and the program
tries to get the specIfIed record, the value of the fHe-buffer becomes
unspecified and eof becomes true.

10.3 Text-ortented I/O
This section descrIbes input and output using fUe variables of the standard type
text Note that In Pascal on the Usa, the type text is distinct from fUe of
char (see Section 3.2.4~
When a text file is opened, the external fUe Is interpreted In a special way. It
is considered to represent a sequence of characters, usually formatted into
lines by CR characters (ASCII 13~

The Usa keyboard and the Workshop screen appear to a Pascal program to be
built-in fUes of type text named ifl)Ut and outpJt respectively. These fUes

10-9

Pascal Reference Mantlsl /nput/altptlt

need not be declared and need not be opened with reset or rewrite, since they
are always open.

When a program Is taking input from IfllUt, typed characters are echoed on the
WorkShop screen. In addition to the IfllUt file, the Usa keyboard is also
represented as the character device -KEYBOARD. To get keyboard input
without echoing on the screen, you can open a flIe variable of type text with
-KEYBD.ARO as the external fUe pathname.

other interact! ve devices can also be represented in Pascal programs as fUes of
type text.

When a text fUe is created on a file-structured device, the external fUe is a
textfile. It contains information other than the actual sequence of characters
represented, as follows:

• The stored flIe is a sequence of 1024-byte pages
• Each page contaIns some number of corrplete l1nes of text and Is padded

with null characters (ASCII 0) after the last Hne.

• Two 512-byte header blOCks are also present at the beginning of the file.

• A sequence of spaces in the text may be compressed Into a two-byte code,
namely a l2E CIlafaCter(ASCII 16) followed by a byte containing 32 plus
the number of spaces represented.

All of this special formatting is invisible to a Pascal program if the file is
accessed via a file variable of type text (but visible via a file variable of any
other flIe-type).

Certain things that can be done with a record-structured fHe are impossible
with a file variable of type text:

• The seek procedure does nothing with a fUe variable of type text.

• The effects of get and put are unspecified with a fUe variable of type text.

• The contents of the flIe buffer variable are unspecIfied with a file variable
of type text.

• A file variable of type text that Is opened with reset cannot be uSed for
output, and one opened with rewrite cannot be used for input. Results are
unspecified if either of these operations is attempted.

In place of these capabilities, text-oriented 110 provides the following:

• Automatic conversIon of each input CR character into a space.

• The eoln function to detect when the end of an input line has been
reached.

• The read procedure, which can read Char values, string values, paa<ed array
of char values, and numeric values (from textual representations).

10-10

Pascal Reference M8f7l/al /nput/a.Jtpl./t

• The write procedure, which can write char values, string values, pcd<ed
array of char values, numeric values, and boolean values (as textual
representations ~

• Line-oriented readIng and writing via the readln and wrlteln procedures.
• The page procedure, which outputs a form-feed character to the external

file.
• Automatic conversion of input DLE -codes to the sequences of spaces that

they represent. Note that output sequences of spaces are not converted to
OLE-cOdes.

• Automatic skipping of header blocks and null characters during input.

• Automatic generation of textfl1e header blocks, and automatic padding of
textfile pages with null characters on output.

10.3.1 TIle Read ProceWre
Reads one or more values from a text file Into one or more program variables.
Parameter List: read([f,] v1 [, V2, ... vn])

The syntax of the parameter-list of reoo allows an indefinite number of
actual-parameters. Consecutive actual-parameters are separated by commas,
just as in a normal parameter-list

1. f (may be omItted) is a variable-reference that refers to a variable of
type text The fHe must be open. If f is omitted, the procedure reads
from the standard text fUe IflX.It., whIch represents the Usa keybOard.

2. vI ... vn are input variables Each is a variable parameter, used as a
destination for data read from the file. Each Input variable must be a
variable-reference that refers to a variable of one of the following types:

• Char, Integer, or lcnJlnt (or a sUbrange of one of these)

• real
• a string-type or a packed arJay of char type.

These are the types of data that can be read (as textual representations)
from a fHe. At least one input variable must be present.

Real(f,v1_,v n) Is equivalent to:

begin
read(f, vI);

read(f, vn)
end

10-11

Pascal Reference M8f1lI81 /nput/altput

Read can also be used to read from a fBe fll that Is not a text flIe. In
thIs case ~fll..x) is equIvalent to:

beg1n
x := f1l A;
get(f1l)

em

10.3.1.1 Read with a Char variable
If f is of type text and v is of type char, the following things are true
immediately after ~f,v~

• Eof(t) will return true If the read attempted to read beyond the last
character in the external flIe.

• Eolr(t) will return true, and the value of v will be a space, if the Character
read was the CR character. Eolr(t) will also return true if eof(t) is true.

10.3.1.2 Read with CIl Integer or LClYJlnt vartmle
If f 1s of type text and v is of type Integer, subrange of Integer, or Imglnt,
then reac.(f,v) Implles the readIng from f of a sequence of characters that form
a Signed whole number accordIng to the syntax of Section 1.4 (except that
hexadecimal notation Is not al1owed~ If the value read Is asslgnment­
compatible wIth the type of v, It Is assIgned to v; otherwise an error occurs.

In reading the sequence of characters, precedIng blanks and CRs are skipped.
Reading ceases as soon as a character is reached that, together wIth the
characters already read, does not form part Of a signed whole number.

M error occurs If a sIgned whOle number Is not found after SkIppIng any
preceding blanks and CRs.

If f Is of type text, the following things are true immediately after reac(f,v~

• EOf{f) will return true If the last character In the numeric string was the
last character In the external fUe.

• Eolr(f) will return true if the last character in the numeric string was the
last character on the line (not counting the CR Character~ Eolr(f) will also
return true if eof(f) is tIue.

1D.3.L3 Read with a Real vartable
If f Is of type text and v is of type real, then r-ea«f,V) implies the reading
from f of a sequence of characters that represents a real value. The real
value is assigned to the variable v.

In reading the sequence of characters, precedIng blanks and CRs are skIpped.
Reading ceases as soon as a character Is reached that, together with the

10-12

Pascal Reference Mantia}

characters already read, does not form a valid representatlon. A "valid
representation" is either of the following:

• A fln1 te real, integer, or longlnt value represented according to the
signed-number syntax of Section 1.4 (except that heXadecimal notation Is
not allowed~ M integer or longtnt value Is converted to type real.

• M infinite value or Nan represented as described in Appendix D.

AA error occurs if a valld representation Is not found after skipping any
preceding blanks and CRs.

Immediately after ~f,v) where v is a real variable, the status of eof(t) and
eolr(t) are the same as for an Integer variable (see Section 10.3.1.2 above~

103.1.4 Read with a string variable
If f is of type text and v is of string-type, then ~f,v) lmplies the reading
from f of a sequence of characters up to blIt not including the next CR or
the end of the f11e. The reSUlting Character-string is asslgned to v. AA error
occurs if the number of characters read exceeds the size attribUte of v.

"lITE

Read with a string variable does not skip to the next line after reading,
and the CR 1s left waiting in the input buffer. For this reason, you
cannot use successive read calls to read a sequence of strings, as they
will never get past the first CR -- after the first read, each subsequent
read will see the CR and wIll read a zero-length string.

Instead, use readln to read string values (see Section 10.3.2~ Recdn
SkIps to the begiming of the next line after reading.

The fOllowing things are true immediately after rea«f,v}

• Eof(t) wlll return true if the 11ne read was the last line in the f11e.

• Eolr(t) will always return true.

1D.3.L5 Read with a Packed Array of Char variable
If f Is of type text and v is a packed anay of dlar, then rea(f,v) implies the
reading from f of a sequence of characters. Characters are read into
successive character positions in v until all positions have been filled, or until
a CR or the end of the file is encountered. If a CR or the end-of-fUe is
encountered, it Is not read into v; the remaining positions in v are filled with
spaces.

10-13

Pascal Refen:nce Hanual

10.3.2 The Readln ProceWre
The read1n procedure is an extension Of read. Essentially it does the same
thing as rea:t and then Skips to the next line In the input file.

Parameter List· The syntax of the parameter Hst of readln is the same as that
of rea:2, except as follows:

• A reooIn call with no input variables is allowed. Example:

readln(sourcefl1e)

• The parameter-list can be omitted altogether.

If the first parameter does not specify a fUe, or if the parameter-list is
oml tted, the procedure reads from the standard fUe ifllUt, which represents the
Usa keyboard.

ReooIr(f), with no input-variables, causes a Skip to the oeglmlng of the next
Hne (If there is one, else to the end-Of-flle~

Recdn can mJy be used on a text fUe. Except for this restriction,
readlr(f,vl,._,vn) Is equivalent to:

begin
read(f, vi, ... , vn);
reooln(f)

end

The following things are true immediately after readlr(f ,v), regardless of the
type of v:

• Eof(f) will return true if the line read was the last line in the external file.

• Eolr(f) will always return false.

103.3 The write ProceWre
Wri tes one or more values to a text fUe.

Pan.meter List: wr1te([f,] pi [, p2, ... pn])

The syntax of the parameter l1st of write allows an indefinite number of
actual-parameters.

1. f (may be omitted) is a variable-reference that refers to a varIable of
type text The fUe must be open. If f is omItted, the procedure writes to
the standard file output, which represents the WorkshOP screen.

2. pi ... pn are output-specs. Each output-spec includes an outpu(
expressiart whOse value Is to be written to the fUe. As explaIned below,
an ·output-spec may also contain specifications of field-width and number
of decimal places. Each output expression must have a result of type
Integer, lc:rgint, real, booleal, Char, a string-type, or a packed array Of
char type. These are the types of data that can be written (as textual
representations) to a file. At least one output-spec must be present.

10-14

Pascal Reference Manual

Write(f~l_~n) Is equivalent to:
begin

wrlte(f,pl);

wrlte(f,pn)
end

Immediately after wrtte(f), both eof(t) and eolr(f) wm return true.

f\IJTE

Input/aJtput

wrIte can also be used to write onto a fHe m that is not a text fUe.
In this case wrtte(fll)C) is equivalent to:

begin
fll" := X;
JXJt(fU)

end

103.3.1 OltpUt-Specs
Each output -spec has the form

rutExpr [: MlnWldth [: DecPlaces]]

where OJtExpr is an output expression. MlnWldth and DecPlaces are
expressions with Integer or lorYJlnt values.
MlnWltfth specIfies the mlnlmtm field wIdth, wIth a default value that
depends on the type of the value of rutExpr (see below~ Mlnwtdth snould be
greater than zero; otherwise, the results are unspecified. Exactly MlnWldth
Characters are written (usIng leadIng spaces If necessary1 except when OJtExpr
has a numeric value that requires more than MlnWldth characters; in this
case, enough characters are written to represent the value of rutExpr.
DecPlaces specIfies the number of decimal places in a fixed-poInt repre­
sentation of a real value. It can be specIfIed only if OJtExpr has a real value,
and if MlnWldth Is also specified. If DecPlaces Is not specIfied, a floatlng­
point representation is written.

10..3.3.2 wrtte with a Char V81ue
If OJtExpr has a ctlar value, the character Is written on the file f. The default
value for MlnWltfth is one.

10..3.3.3 WrIte with an Integer or Loogint value
If rutExpr has an Integer or la'YJlnt value, its decimal representation is wrItten
on the fUe f. The default value for MinWltfth is 8. The representation consists
of the digits representing the value, prefixed by a minus sIgn If the value Is
negative, and any leading spaces that may be required to satisfy MlnWldth. If
the representation requires more than MlnWldth characters, MlnWldth is
ignored.

10-15

Pascal RefeaJI7Ce H817t18/

1033.4 write with a Real value
If OJtExpr has a real value, the default value for MlnWldth Is 12.

If OJtExpr has an infinite value, it Is output as a string of at least two "."
characters or at least two "_" characters. If rutExpr Is a NaN, It is output as
the character string "NaN", possibly followed by a strIng of Characters enclosed
by sIngle-quotes. see section 10.3.3.5 for detaIls on strIng output

If GJtExpr has a zero value, it Is represented as "0" or If-O·'.

If OJtExpr has a finite value, its decimal representation Is written on the fHe
f. This representation Is the nearest poSSible decimal representation, dependIng
on MlnWldth and DecPlaces. If the unrounded value is exactly halfway
between two possible representations, the representation WhOse least signifIcant
digit is even Is written out.

If DecPlaces Is not specIfied, a floating-point representation is written as
follows:

• If MinWldth Is less than 6, then its value is set to 6 (intemally~ Th1s is the
minimum usable wIdth for writing a floating-point representation.

• If the sign of the value of rutExpr 1s negative, a minus sIgn Is written;
otherwise .. a space is written.

• If MlnWldth ~ 8, the significant digIts are written with one digIt to the left
of the decimal pOint and (MlnWldth - 7) digits to the right of the decimal
poInt.

• If MinWiath < 8, the most sign1ficant dIgIt Is written and the decimal point
is omitted.

• The exponent Is written as the letter "E", an explicit ,,+ .. or "_" sign, and
two digits.

If DecPlaces Is specified, a flxed-point representation Is written as follows:

It Enough leadIng spaces are written to satisfy MlnWldth.

• If the value is negative, the minus sign It_" is written; if It Is not negative,
a space is written.

• If OecPlaces > 0, the significant digits are written with the integer part of
the value to the left of the decimal point The next DecPlaces dIgits are
written to the right of the decimal point

• If DecPlaces ~ 0, only the integer part of the value is written and no
decimal point Is written.

10.3.35 write with a String value
If the value of rutExpr Is of string type wIth length L, the default value for
MlnWldth is L If MlnWldth>-L, the value is written on the file f preceQe(l by
(MInWIdth-L) spaces. If MlnWldth<L, the first MlnWldth characters of the
string are written.

10-16

Pascal Refe!el1Ce /'1817()8l

103.3.6 Wrtte with a Packed Array of Char value
If E is of type packed array of Char, the effect is the same as writing a string
whOse length Is the number of elements in the array.

10.3.3.7 WItte with a Boolean value
If the value of rutExpr is of type boolea1, the strIng II TRUE" (wIth a leading
space) or the string "FALSE" is written on the fUe f. The default value of
MlnWldth Is 5. If MlnWldth>5, leadIng spaces are added; If MlnWldUl<5, the
fIrst MlnWldth characters of the string are written. This is equivalent to:

wrlte(f,' TRl£' :MlnWldUl)
or

write{ f, 'FALSE' :MlnWldUl)

10.3.4 1he Wrlteln ProceWre
The wrtteln procedure is an extensIon of write. Essentially it does the same
thing as write, and then writes a CR character to the output fUe (ending the
Une~

Pemrneter List- The syntax of the parameter list of writeln Is the same as
that of write, except as follows:

• A wrlteln call with no output-specs Is allowed. Example:

wrlteln (outputf 1 Ie)

• The parameter-list can be omitted altogether.
If ttle first parameter does not spec1fy a f11e, or if the parameter-list is
oml tted, the procedure wrItes to the standard fUe outpJt, Which represents the
WOrkShop screen.
Writelr(f) writes a CR character to the fUe f.
Writeln can only be used on a text file. Except for this restriction,
wrltelr(fp1_pn) is equivalent to:

begin
write(f,p1, ... ,pn);
writeIn(f)

end

Immediately after wrlteIr(f), bOth eof(f) and eolr(f) will return true.

1035 llle Eoln FU'lCtion
Result TYpe: bOOleal

Parameter List· eoln[(f)]

1. f is a variable-reference that refers to a variable of type text The fne
must be open.

The actual-parameter-l1st can be omitted entirely. In this case, the function is
applled to the standard fUe qx.rt. (the Usa keybOard~

10-17

Pascal RefemJCe Manuel Jr:ptIMUtput

EOlrif) returns true "if the end of a line has been reached in f." The meaning
of thIs depends on whether the external fUe is a character device, on which liD
procedure was executed last, and on what type of variable was used to receive
an input value. For details, see Sections 10.3.1 through 10.3.4.
The end of the fIle is consiclered to be the end of a 11ne; therefore eoIr(t) wlll
return true whenever 001(1) Is true.

10.3.6 Tre Page ProcedUre
Parameter List: page (f)

1. f is a variable-reference that refers to a variable of type text The file
must be open.

The actual-parameter f cannot be omitted. Page(f) outputs a form-feed
character to the fHe f. This will cause a Skip to the top of a new page when
f Is printed.
Note that page(output) sends a form-feed to the Workshop screen, but In
general this will not clear the screen. For methods of clearing the screen, see
the WoJ1<sIlop User's GJj(je for the Lisa.

103.7 Keyboard Testing CWld. SCreen cursor Co1trol
103.7.1 llle Keypress FlIlCtion

Tests the Usa keyboard to see if it has a character awaiting input
Parameter List- no pararooters.
Result Type: boOlecn

Keypress returns true if a character has been typed on the Lisa keyboard but
has not yet been read, or false otherwise. This Is done by testing the
typeahead queue; if the queue Is empty, keypress is false, otherwise It Is true.

10..3.7.2 lhe Gotoxy ProcedUre
Moves the WorkshOp screen cursor to a specified location on the screen.
Parameter List- gotoxy(x., y)

1. x is an expressIon with an Integer value. If x < 0, the value 0 will be
used; If x > 79, the value 79 w111 be used.

2. y Is an expression with an Integer value. If y < 0, the value 0 wlll be
used; if y > 31, the value 31 w111 be used.

Gotoxy(x, y) moves the cursor to the point (x,y) on the screen. Note that the
point (0,0) Is the upper left comer of the screen.

10.4 Ultyped Flle 110
untyped fHe 110 operates on an "untyped flle," i.e., a variable of type fUe (no
component type~ An untyped file is treateC1 as a sequence of 512~byte Olocks;
the bytes are not type-cheCked but considered as raw data This can be useful
for applications where the data need not be interpreted at all dUring I/O
operations.

10-18

Pascal Reference Mantlal Inpt/t/aJtptlt

The blocks in an untyped fUe are considered to be numbered sequentially
starting with o. The system Keeps tracK of the current block 11tITIlJer.; this is
block 0 immediately after the fUe is opened. Each time a block is read, the
current blocK number is incremented. By default, each 110 operation begins at
the current block number; however, an arbitrary block number can be specified.

AA untyped file has no file-buffer, and It cannot be used with get ... JX.rt. ... or any
of the text-oriented I/O procedures. It can only be used wIth reset., rewrite,
close ... eof ... and the blockread and blockwrite functions described below.

To use untyped file I/O ... an untyped file Is opened with reset or rewrite, and
the blockIeOO and blOCkwrlte functions are used for input and output

10.4.1 The BIOCkread fll'lCtion
Reads one or more 512-byte blocks of data from an untyped flIe to a program
variable, and returns the number of blocks read.

Result Type: Integer

Parameter LIst- blOCkread(f, datcD.lf, COUlt [, blocl<rUn])

1. f is a variable-reference that refers to a variable of type fUe. The fUe
must be open.

2. dataWf is a variable-reference that refers to the variable into Which the
blocks of data wlll be read. The size and type of this variable are not
checked; if it Is not large enough to hold the data, other program data
may be overwritten and the results are unpredIctable.

3. COUlt is an expreSSion with an Integer value. It specifies the maximum
number of blocks to be transferred. BlockIeOO will read as many blocks
as it can, up to this limit.

4. blockrun (may be omitted) is an expression with an Integer value. It
specifies the starting bloCk number tor the transfer. If it Is omitted, the
transfer begins with the current block. Thus the transfers are sequential
if the blocl<ruTt)er parameter is never used; If a blocl<ruT1ler parameter
is used, it provides random access to blocks.

BIOCkrea((fl databuf, COUll, biOCkrun) reads blocks from f into databuf ... starting
at block blockrUn. COUlt is the maximum number of blocks read; if the
end-ot-file Is encountered before COU1t blocks are read, the transfer ends at
that point The value returned Is the number of blocks actually read.

If the last block in the fUe was read, the current block number is unspecified
and eof(f) is true.. Otherwise, eof(f) is false and the current block number is
advanced to the block after the last block that was read.

10-19

Pascal Reference M8I?U8l

In.4.2 The BIOd<wr1te Ft.rlCtlon
Writes one or more 512-byte blocks of data from a program variable to an
untyped file, and returns the number of blocks written.
ReSUlt 7}'pe: Integer
Parameter List: blOCkwr1te(f, datcD.tf, ault [, blockrUn])

1. f is a variable-reference that refers to a variable of type file. The fUe
must be open.

2. databuf is a variable-reference that refers to the variable from which the
blocks of data will be written. The size and type of this variable are not
checked.

3. OOI1t is an expression with an Integer value. It specifies the maximum
number of blocks to be transferred. BIOCkwrlte wlll write as many blocks
as it can, up to this limit

It blockn.rn (may be omitted) Is an expression with an Integer value. It
specifies the starting block number for the transfer. If it is omitted, the
transfer begins with the current block. Thus the transfers are sequential
if the blockrumer parameter is never used; if a blockrumer parameter
is used, It provides random access to blocks.

BIOCkwrlte(f, databuf, COtIlt, blockn.rn) writes blocks into f from databUf,
starting at block blOCkrun Qult Is the maximum number of blocks written;
if disk space runs out before COU'lt blOCks are written, the transfer ends at
that poInt. The value returned is the number of blocks actually written.
If dIsk space ran out, the current block number is unspecified. Otherwise, the
current block number Is advanced to the block after the last block that was
written.

Unlike Apple 11 and Apple III Pascal, this Pascal does not allow
blockwrlte to write a block at a position beyond the first position after
the current end of the f11e. In other words, you cannot create a block
file with gaps In it.

10-20

NOTES

029-04I03-A

Chapter 11
Standard Procedures and

Functions

11.1 Exit at1d J-falt ProceclJres•...•... 11-1

11.1.1 The Exit Procedure .. 11-1
11.1.2 The Halt ProcedtJre ... 11-1

112 DyraTIic Allocatim ProceclJres .. 11-1

11.2.1 The f'Jew ProcedtJre ... 11-2
11.2.2 The HeapResult Function ... 11-3
11.2.3 The Mark ProcedUre .. 11-3
11.2.4 The Release Procedure .. 11-3
11.2.S.The Menlavail Function ..•.•....... 11-3

11.3 TICIlSfer FlJ1CtiorlS .. 11-4

11.3.1 The Trunc Function ... 11-4
11.3.2 The Round Function .. _ 11-4
11.3.3 The Ord4 F lI1Ction•...........•.............. 11-4
11.3.4 The Pointer Function ... 11-5

11.4 Arit.t1rnetic ft.l1CtiCllS •••••••.•••••.•.•••••••••••••••••••••.••••••.••••••.••.•.••••••••••••• 11-5

11.4.1 The ()jd Function .. 11-5
11.4.2 The f\bsFunction .. 11-5
11.4.3 The Sqr Function ... 11-6
11.4.4 The Sin F ~tion•...•.......................•........•.........•.•........ 11-6
11.4.5 The Cos Function ...•........ 11-6
11.4.6 The Exp Function " .. 11-6
11.4.7 The LnFunction .. 11-7
11.4.8 The Sqrt Function ... 11-7
11.4.9 The Arctan Function................................... 11-7
11.4.10 The Pwroften Function .. 11-7

11.5 ()rdirlal Ft.IlCtiOl1S .. 11-8

11.5.1 The Ord Function ... 11-8
11.5.2 The Chr Fl.IlCtion•.....................................•............... 11-8
11.5.3 The SUcc function ... 11-8
11.5.4 The Pred Function.......•.........•.•...•.. 11-9

Pascal Reference Hanl/8J Standard Procedures & Functions

11.6 St.rirlg ProcedlJres arld F..-lCtiOl'lS .. 11-9

11.6.1 The Length Function•..........................•................... 11-9
11.6.2 The Pos Function .. 11-9
11.6.3 The ConcatFunction ... 11-10
11.6.4 The Copy Function .. 11-10
11.6.5 The Delete Procedure .. 11-10
11.6.6 The Insert Procedure 11-10

11.7 Byte-Oriented ProcedlJres arld FUlCtions••..............•...•.•.•.....•.•... 11-11

11. 7.1 The Moveleft Procedure... 11-11
11.7.2 The Moveright Procedure•......................... 11-12
11.7.3 TheSizeofFunction .. 11-12

11.8 Packed Array of Char ProcedlJres CRt FUlCtions •......•.•.......•.............•• 11-12

11.8.1 ThescaneqFunction•............................... 11-12
11.8.2 The ScanneFunction ... 11-13
11.8.3 The Fillchar Procedure 11-13

Standard Procedures and
Functions

This chapter describes all the standard C'bull t -In") procedures and functions in
Pascal on the Lisa, except for the 110 procedures and functions described in
Chapter 10.

Standard procedures and functions are predeclared. Since all predeclared
entities act as if they were declared In a block surrounding the program, no
conflict arises from a declaration that redefines the same identifier within the
program.

Standard procedures and functions cannot be used as actual procedural
and functional parameters.

This chapter uses a modified BNF notation, instead of syntax diagrams, to
indicate the syntax of actual-parameter-Usts for standard procedures and
functions. The notation is explained at the begInnIng Of Chapter 10.

11.1 Exit cnj Halt Procewres
11.1.1 TIle Exit ProceWre

Exits immediately from a speclf1ed procedure or function, or from the main
program.

Parameter List: exi t(id)

1. Id Is the Identifier of a procedure or function, or of the main program. If
id is an identifier defined in the program, it must be in the scope of the
exit call. Note that this is more restricted than UCSD Pascal.

Exlt(ld) causes an immediate exit from Id. Essentially, it causes a jump to the
end of id.

The halt procedure (see below) can be used to exit the main program
from a lI11t without Knowing the main program's identifier.

11.12 The Halt ProceWre
Exits immediately from the main program.

Parameter List- no parameters

Halt causes an immediate exit from the main program.

11.2 Oyncm1c Allocatim Procedures
These procedures are used to manage the /Jeep, a memory area that Is
unallocated when the program starts running. The procedure new is used for

11-1

Pascal RefeIel7Ce H8nt1al StandaJr1 P.rocec/ures & Functions

all allocation of heap space by the program. The mark and release procedures
are used together to deallocate heap space, and the heapresult function Is used
to return the status of the last preced1ng dynamic allocation operation ..

112.1 The New ProceaJre
Allocates a new dynamic variable and sets a pointer variable to point to it.

Parameter List- new(p [, tL ... tn])

1. p is a variable-reference that refers to a variable of any poInter-type.
This is a variable parameter.

2. tt, ... tn are constants, used only when allocating a variable of
record-type with variants (see below~

New(p) allocates a new variable of the base-type of p, and makes p point to it.
The variable can be referenced as p". Successive calls to new allocate
contiguous areas.

If the heap does not contain enough free space to allocate the new variable, p
is set to nil and a subsequent call to the heapresult function will return a
non-zero result

If the base-type of p is a record-type with variants, new(p) allocates enough
space to allow for the largest variant. The form

new(p, tt, ... tn)

allocates a variable with space for the variants specified by the tag values U,
... tn (instead of enough space for the largest variants~ The tag values must
be constants. They must be listed contiguously and in the order ,of their
declaration. The tag values are not assIgned to the tag-fIelds by this
procedure.

Trailing tag values can be omitted. The space allocated allows for the largest
variants for all tag-values that are not specIfied.

WARNJI\G

When a record variable is dynamically allocated with expUcit tag values
as shown above, you should not make assignments to any fields of
variants that are not selected by the tag values. Also, you shoUld not
assign an entire record to this record. If you dO either of these things,
other data can be overwritten without any error being detected at
compile time.

11-2

Pascal Reference /VIantJa/ Standan1 Prot::ed.IJes & FlI7Ctions

112.2 The ~result flllCtlon
Returns the status of the most recent dynamic allocation operation.

Result Type: integer

Parameter L1st: no parameters

Heapresult returns an Integer code that reflects the status of the most recent
call on new, mark, release, or memavail. The codes are given in the WoJ1<sl1op
User's G1.11~· note that the code for a successful operation is O.

11.2.3 1l1e Mark ProceWre
sets a pOinter to a heap area.

Parameter L1st- mark(p)

1. P is a variable-reference that refers to a variable of any pOinter-type.
This is a variable parameter.

Mar1«p) causes the pointer p to point to the lowest free area in the heap. The
next call to new will allocate space beginning at the bottom of this area, and
then p will be a poInter to this space. The pointer p Is also placed on a
stack-like list for subsequent use with the release procedure (see below~

11.2.4 The Release ProceWre
Oeallocates all variables in a marked heap area

Parameter List· release(p)
1. p is a variable-reference that refers to a pointer variable. It must be a

polnter that was prevIously set with the mark procedUre. The pointer p
must be on the list created by the mark procedure; otherwise an error
occurs.

Release(p) removes pointers from the list, back to and including the pointer p.
The heap areas poInted to by these pointers are deallocated. In other words,
release(p) deallocates . all areas allocated since the the pOinter p was passed to
the mark procedUre.

11.25 1l1e Memavall FlIlCtioo
Returns the maximum possible amount of available memory.
ReSlllt 7)Ipe: longlnt

Parameter L1st- no parameters

Memavall returns the maximum number of words (not byteS) of heap and stack
space that could ever be available to the program, allowing for possIble
automatic expansIon of the program's data segment. Note that the result of
memavail can change over time even if the program does not allocate any
heap space, because of activities by the operating system or other processes in
the system.

11-3

Pascal Reference ManuaJ St8l7dani Procedures & Functions

113 Trcmfer Ft.IlCtloos
The procedures pack and tql8Ck, described by Jensen and Wirth, are not
supported.

11.3.1 The TIU'lC Ft.IlCtion
Converts a real value to a longint value.

Result 7jtpe: lOOJint

Parameter List: tlUlC(X)

1. x is an expression with a value of type real.

Trt.n:(x) returns a looglnt result that is the value of x rounded to the largest
whole number that is between 0 and x (lnclusive~

11.3.2 The ROtI1d Ft.IlCtion
Converts a real value to a longlnt value.

Result Type: lorglnt

P8ll1ITleter List: rtUld(x)

1. x Is an expression with a value of type real.

Ra.n(x) returns a lorYJint result that is the value of x rounded to the nearest
Whole number. If x Is exactly halfway between two whole numbers, the result
is the whole number with the greatest absolute magnitude.

11.3.3 The CJrd4 Ft.IlCtion
Converts an ordinal-type or pOinter-type value to type longlnl

Result Type: looglnt

Parameter List· ord4(x)

1. x is an expression with a value of ordinal-type or pointer-type.

OrdlI(x) returns the value of X, converted to type longlnl If x Is of type
lorglnt, the resul t is the same as x.
If x is of pointer-type, the result is the correspondIng physical address, of type
lorginl

If x Is of type Integer, the result Is the same numerical value represented by X,
but of type longlnt. This Is useful In arithmetic expressions. For example,
consider the expression

abc*Xyz

where both abc and xyz are of type integer. By the rules given in section
3.1.1.2, the result of this multlpl1catlon Is of type Integer (16 bits~ If the
mathematical product of abc and xyz cannot be represented In 16 b~ts, the
result is the low-order 16 bits. To avoid this, the expression can be written as

Ord4(abc)-xyz

11-4

Pascal RefeJ7!!l7Ce Mantlal Standard ProcedUres & FlIfICtions

ThIs expressIon causes 32-bit arithmetic to be used, and the result Is a 32-bit
longlnt value.

If x is of an ordinal-type other than integer or looglnt, the numerical value of
the result Is the ordinal number determined by mapping the values of the type
onto consecutive non-negative integers starting at zero.

11.3.4 The Pointer FlIlCtim
Converts an Integer or longlnt value to pointer-type.

Result TYpe: pointer

Parameter LisL- polnter(x)

1. x is an expressIon with a value of type Integer or longlnl

PolnteI(x) returns a pointer value that corresponds to the physical address x.
This pointer is of the same type as nil and is assignment-compatible with any
painter-type.

11.4 AriUTnetlc FlIlCtlms
In general, any real result returned by an arithmetic function Is an approx­
imation. There are two exceptions to th1s: the result of the abS function Is
exact, and the result of the pwroften function is exact ",hen the parameter n
Is in the range 0 ~ n ~ 10.

11.4.1 The (k1d FlIlCtim
Tests Whether a whole-number value is odd.

Result l}pe: booleCll

Parameter LisL· odd(x)

1. x Is an express10n with a value of type integer or longlnl

o:x(x) returns true If x is odd; otherwise It yields false.

11.4.2 The flbs FlIlCtlm
Returns the absolute value of a numeric value.

Result TyPe: same as parameter

Parameter LisL- abs(x)

1. x Is an expressIon with a value of type real, Integer, or lorYJlnl

Abs(x) returns the absolute value of x.

11-5

Pascal ReFerence tv/In,/al

11.4.3 The Sqr FlI'lCtloo
Returns the square of a numeric value.

ReSUlt Type: depends on parameter (see belOw)

Parameter List: sqr(x)

Stand8Jr1 proceaues & Functions

1. X is an expression with a value of type real, Integer, or longlnt.

SqI(x) returns the square of x. If x is of type real, the result Is real; If x is of
type Ionglnt, the result is looglnt; and if x is of type integer, the result may be
ei ther integer or longlnt.

If x is of type real and floating-poInt overflow occurs, the result Is +00.

11.4.4 The Sin Ft.rlCtloo
Returns the sIne of a numeric value.

Result Type: real

Parameter List: sin(x)

1. x Is an expression with a value of type real, Integer, or longlnt. This
value is assumed to represent an angle in radians.

Sir(x) returns the sine of x. If x Is infinite, a diagnostic NaN is produced and
the invalid operation signal is set (see Appendix D~

11.4.5 The COS FlI'lCtloo
Returns the cosine of a numeric value.

Result Type: real

Parameter List· cos(x)

1. x is an expression with a value of type real, Integer, or longlnt. This
value is assumed to represent an angle in radians.

COs(x) returns the cosine of x. If x is infinite, a diagnostic NaN is prodUced
and the invalid operation sIgnal ·ls set (see Appendix D~

11.4.6 The Exp Ft.rlCtioo
Returns the exponential of a numeric value.

ReSUlt 7)1'e: real

Parameter List: exp(x)

1. x Is an expression with a value of type real, Integer, or ltnjlnt. All
pOSSible values are val1d.

ExJ(x) returns the value of e x, where e is the base of the natural logarithms.
If floating-point overflow occurs, the result is +ClO.

11-6

Pasc81 Reference Manual Standard ProcedlI.res & FlII7Ctlons

11.4.7 The In FlIlCtioo
Returns the natural logarithm of a numeric value.
RestJlt JYpe: real

Parameter LisL- In(x)

1. x Is an expression with a value of type real, Integer .. or longlnt All
non-negative values are valid; negat1ve values are invalid.

If x is non-negative, lr(x) returns the natural logarithm (loge) of x.
If x Is negative .. a diagnostic NaN Is prodUced and the Invalid q>eration signal
Is set (see Appendix D~

11.4.8 The Sqrt FlIlCtlm
Returns the square root of a numeric value.
RestJlt 7ype: real

Parameter LisL- sqrt(x)
1. x Is an expression with a value of type real, Integer, or longlnt All

non-negative values are valid; negative values are invalid.
If x Is non-negative, sqrt(x) returns the positive square root of x.
If x Is negative .. a dlagnost1c NaN is prodUced and the Invalid q>eratlon signal
is set (see Appendix D~

11.4.9 The Arctal FlIlCtion
Returns the arctangent of a numeric value.
Result JYpe: real

Parameter LisL' arcta1(x)

1. x is an expression with a value of type real, integer, or laYJlnt All
numeric values are valid, including :too.

Arcta(x) returns the principal value, in radians .. of the arctangent of x.
11.4.10 The Pwroften FlIlCtion

Returns a specified power of 10.

ReSlJlt 7ype: real

P8lQlTJeter List: pwroften(n)
1. n is an expreSSion with a value of type integer.

If -45 ~ n ~ 38, then pwrofter(n) returns 1 On. The result is mathematically
exact for 0 ~ n ~ 10. If n ~ -46, the result is 0; if n ~ 39, the result is +00.

11-7

Pascal Refenmce H817t18l Standani Procedums & Fl/flCt/ons

115 ordinal FlIlCtioos
11.5.1 The Old Ft.I'lCtion

Returns the ordinal number of an ordinal-type or pOinter-type value.

Result Type: Integer or lOOJlnt

Panmeter L1st- ord(X)

1. x is an expression with a value of ordinal-type or pointer-type.

If x is of type integer or looglnt, the result is the same as x.
If x Is of pointer-type, the result Is the corresponding physical address, of type
lmglnt

If x Is Of another ordinal-type .. the result Is the ordinal number determined by
mapping the values of the type onto consecutive non-negative whole numbers
starting at zero.

For a parameter of type Char, the result Is the correspondIng ASCII cOde. For
a parameter of type boolean,

ord(false) returns 0
ord(true) returns 1

11.5.2 TIE O1r FlIlCtioo
Returns the Char value corresponding to a whole-number value.

Result Type: char (but see below)

Parameter L1st- Chr(x)

1. x is an expression with an integer or longlnt value.

Du(x) returns the char value whose ordinal number (I.e., its ASCII COde) is x., if
x Is in the range 0_255. If x is not in the range 0..255, the value returned Is
not within the range Of the type Char, and any attempt to assIgn It to a
variable of type char w111 cause an error.

F or any char value ch, the followlng is true:

Chr(ord(ch» = ch

11.5.3 Tl1e SUCc Ft.I'lCtion
Returns the successor of a value of ordinal-type.

ReSUlt TYPe: same as parameter (but see below)

Parameter L1st- succ(x)

1. x Is an expression with a value of ordinal-type.

sucqx) returns the successor of x., if such a value exists according to the
inherent ordering of values in the type of x.

11-8

Pascal Refe.rence fvfantI8l Standard Procet:i.Ues & Fl.I1CtilYlS

If X is the last value in the type of X, it has no successor. In this case the
value returned is not within the range of the type of ~ and any attempt to
assign it to a variable of this type will cause unspecified results.

115.4 The PIed FlrCtlon
Returns the predecessor of a value of ordinal-type.

Result TYpe: same as parameter (but see below)
Parameter List- pred(x)

1. X is an expression with a value of ordinal-type.

~x) returns the predecessor of X, If such a value exists according to the
inherent ordering of values In the type of x.
If x is the first value In the type of ~ it has no predecessor. In this case the
value returned is not within the range of the type of ~ and any attempt to
assIgn it to a variable of thIs type will cause unspecified results.

11.6 StrifYJ ProceWres cnJ Ft.n::tloos
The strlrYJ procedures and functions dO not accept packed array of char
parameters, and they do not accept indexed strlfYJ parameters.

11.6.1 The Length FlrCtioo
Returns the current length of a value of string-type.

Result Type: Integer
Parameter List· lengt.t(str)

1. str Is an expressIon wIth a value of string-type.

Lengtt(str) returns the current length of str.

1L6.2 The Pes Fl.retloo
Searches a string for the first occurrence of a specIf1ed SUbstring.

Result Type: Integer

Parameter List- pos(swstr, str)
1. Slbstr is an expression with a value of string-type.
2. str is an expression wIth a value of string-type.

Pos(stJlstr, str) searches for stJlstr wi thin str, and returns an Integer value that
Is the index of the first character of stJlstr wi thin str.

If stJlstr is not found, pos(StJlStr, str) returns zero.

11-9

P8SC8l ReFerence fVI8nU8J Sla7d8rd prtKJiJdges & FII1CUl¥IS

11.6.3 1he Coroat Ft.rot1on
Takes a sequence of strings and concatenates them.

Result 7)'pe: string-type
P8J"8IT1eter List: ~t(strl [, str2, ... strn])

• Each parameter Is an expressIon with a value Of string-type. My practical
number of parameters may be passed.

COreat(strl, _, str n) concatenates all the parameters in the order in whiCh
they are written, and returns tne concatenated string. Note that the number
of characters in the result cannot exceed 255.

11.6.4 1he Cq)y FtrlCtlon
Returns a SUbstring of specified length, taken from a specified posltlon within
a string.
Result Type: string-type
Parameter List: ~y(source, index, COU1t)

1. srurce is an expression with a value of string-type.
2. Index is an expression with an Integer value.
3. COlIlt Is an expression wIth an Integer value.

Cq.ly(soorce, lroex, COU1t) returns a string containing COU1t characters from
source, begimlng at SOUICE(Indexl

11.65 The Delete ProceciIre
Deletes a SUbstring of specified length from a specified position within the
value of a string variable.
Parameter List· delete (dest, index, ca.nt)

1. dest is a variable-reference that refers to a variable of string-type. This
is a variable parameter.

2. Index Is an expression with an Integer value.
3. ca.nt is an expressIon with an Integer value.

Delete(dest, Index, COU'lt) removes COt.rlt Characters from the value of dest,
beginning at dest{lndexl

11.6.6 The Insert Procec1lre
Inserts a substring into the value of a string variable, at a specified position.
PaJCJI71eter List: insert(source, dest, index)

1. srurce Is an expressIon with a valU~ of string-type.
2. dest is a variable-reference that refers to a variable of string-type. ThIs

Is a variable parameter.
3. lroex Is an expreSSion with an Integer value.

11-10

Pascal Reference Mantlal Standard Procedures & FlIf]ctions

Jnsert(source, deSt., Index) inserts srurce into dest The first character of
source becomes deSt[lroexl

11.7 Byte-Ortented ProceWres a1d Ft.retloos
These features allow a program to treat a program variable as a sequence of
bytes, without regard to data types.

mrE
The slzeof function (described in Section 11.7.3, below) can be used to
determine the number of bytes in a variable.

These procedures do no type-CheCKing on their source or dest actual­
parameters. However, since these are variable parameters they cannot be
indexed If they are packed or if they are of strIng-type. If an unpacked
"byte array" is desired, then a variable of the type

array [IO .. hi] of -128 •. 127
should be used for soorce or dest. The elements in an array of thIs type are
stored in contiguous bytes, and, since It Is unpacked, an array of this type can
be used with an index as an actual-parameter for these routines.

~NTAn(N f'UTE

Currently, an array with elements of the type D..255 or the type char
has Its elements stored in words, not bytes.

11.7.1 TIle MoVeleft ProceWIe
CopIes a specified number of contiguous bytes from a source range to a
destination range (startIng at the lowest address~

Parameter Ljst: noveleft(srurce, dest, ault)

1. source is a variable-reference that refers to a variable of any type
except a file-type or a structured-type that contains a fUe-type. This is
a variable parameter. The first byte allocated to source (lowest address
within source) is the first byte of the source range.

2. deSt Is a variable-reference that refers to a variable of any type except
a file-type or a structured-type that contains a fHe-type. This is a
variable parameter. The first byte allocated to dest (lowest address
within dest) is the first byte of the destination range.

3. COUlt is an expressIon with an integer value. The source range and the
destination range are each cotIlt bytes long.

Moveleft(source, dest, COUlt) copies COUlt bytes from the source range to the
destination range.

11-11

Pascal Ref'e.rence Manual Standard Procedllres & FlIIlCtions

MlVeleft starts from the "left" end of the source range (lowest adC1ress~ It
proceeds to the "right" (higher addresses), copying bytes Into the destination
range, starting at the lowest address of the destination range.

The COLflt parameter Is not range-checked.

11.7.2 The Moveri~t ProcedUre
Moveri~t is exactly like moveleft (see above), except that It starts from the
"right" end of the source range (hIghest address~ It proceeds to the "left"
(lower addresses), copying bytes into the destination range, starting at the
highest address of the destination range.

The reason for havIng both rmveleft and mover1~t Is that the source and
destination ranges may overlap. If they overlap, the order In whIch bytes are
moved is critical: each byte must be moved before it gets overwrItten by
another byte.

11.7.3 The Sizeof Ftn::tioo
Returns the number of bytes occupied by a specified variable, or by any
variable of a specIfied type.

Result TYPe: Integer

Parameter List, sizeof(id)

1. Id Is either a variable-Identifier or a type-Identifier, It must not refer to
a fUe-type or a structured-type that contains a file-type, or to a
variable of such a type.

Slzeof(ld) returns the number of bytes occupied by Id, If Id Is a variable­
identifier; if Id is a type-identifier, it returns the number of bytes occupied by
any variable of type Id.

11.8 Packed Array Of Char ProceWres CI1d FUlCtions

I'CTE

These routines operate only on packed arrays Of Char. The packed
arrays Of Char cannot be SUbscripted; the operations always begin at the
first character in a packed array of char.

11.8.1 111e Sca1eq FlIlCtioo
Searches a packed array Of char for the first occurrence of a specified
character.

Result Type: Integer

Paratneter List- scmeq(limit, Ch, pace)

1. Umit is an expression with a value of type integer or longlnt It Is
truncated to 16 bits, and is not range-cheCked.

2. Ch Is an expression with a value of type char.

11-12

Pascal Reference /V1arx.181 StandaJrl Procet:iffes & FlIJCtions

3. paoc is an expression with a value of type packed array of Char. This Is
a varIable parameter.

SCCnqllmlt, ch, pace) scans paoc, lookIng for the first occurrence of Ch. The
scan beg1ns with the first character in pace. If the character Is not found
within limit characters from the beginning of pace, the value returned Is equal
to limit otherwIse, the value returned is the number of characters scanned
before ell was found.

11.8.2 1he sccrne FtneUoo
This function is exactly like scaneq, except that It searches for a character
that does not match the ch parameter.

11.8.3 1he Fillchar ProceWre
Fills a specIfied number of characters In a pcO<ed array Of Char wIth a
speCified Character.
Parameter Ljst- fillchar(paoc, COUlt, ch)

1. paoo is an expressIon with a value of type pcO<ed array of Char. This is
a variable parameter.

2. COlIlt Is an expression with a value Of type Integer or looglnt It is
truncated to 16 bits, and is not range-cheCked.

3. ch Is an expressIon with a value of type Char.

FlllchaI(paoc, ca.nt, ch) writes the value of ch into COUlt contiguous bytes of
memory, starting at the first byte of paoc.
Since the cot.rlt parameter is not range-checked, it is possIble to write Into
memory outsIde of paoc, with unspecified results.

11-13

NOTES

029-0404-A

Chapter 12
The Compiler

12.1 Gor"Illller COI'Tlrnarlc2s ... 12-1

12.2 COnditional c::::orTlJllatioo•.•.•.•.•..••.••••....•••....•.•..•..••.•.•..••..•.....• 12-3

12.2.1 Complle-TIme VarIables and tne $[)ECL Command 12-3
12.2.2 The $SETC Command•..........................•.•........................ 12-4
12.2.3 Complle-TIme ExpressIons ... 12-4
12.2.4 The $IFC ... $ELSEC ... and $ENDC Commands 12-4

12.3 ~timlzation of If-staterTlents .. 12-5

12.4 ~tlmlzation Of While-Statements cn:J Repeat-Statements 12-7

12.5 E fflclency of case-statenlents ... 12-7

The Compiler

The Pascal compiler translates Pascal source text to an intermediate code, and
the code generator translates the intermediate code to MC68000 object code.
Instructions for operating the compHer and code generator are given in the
WOrkshop l.JSer's GlidJ for the Lisa

12.1 COfT1)ller ca rna Ids
A compHer command is a text construction, embedded in source text, that
controls compHer operation. Every compHer command Is wrItten wIthIn
comment deUmiters, { ... } or (* ... *~ Every compUer command begins with the $
Character, whiCh must be the first character InsIde the comment del1mlters.
In this manual, compiler commands are snown in upper case to help distinguish
them from Pascal program text; however, upper and lower case are inter­
Changeable In compHer commands just as they are in Pascal program text.
The following compiler commands are avallable:
INPUT FILE ClNlRa.

$1 fl1et1ClE Start taKing source code from fIle fllerane. When the end
of this fUe is reaChed, revert to the previous source fl1e.
If the filename begIns wIth + or -, tnere must be a space
oetween $1 and the fllename (the space is not necessary
Otherwlse~

SO filerae Search the file f11encme for any units subsequently
speci fied in the uses-clause. Does not apply to intrlnslc­
units.

COVTRa. {F ctrJE GENERATIOV

$C+ or $C- Tum code generation on (+) or off (-~ this Is done on a
procedUre-by-procedUre basis. These commands ShOUld be
written between procedures; results are unspecIfied if they
are written Inside procedUres. The default is $C+.

SOV+ or SOV- Tum integer overflow checKing on (+) or off (-~ OVerflow
ChecKing is done after all Integer add, subtract, 16-o1t
multiply, divide, negate, abs, and 16-olt square operations,
and after 32 to 16 bit conversIons. The default Is $fN-.

SR+ or SR- Tum range Checking on (+) or off (-). At present, range
checking is done In assignment statements and array
indexes and for string value parameters. No range
ChecKIng Is done for type l~t. The default Is SR+.

12-1

Pascal Reference Mantlal TIJe ComplJer

ss se(J81Ie Start puttIng coae modUles Into segment segane. The
defaul t segment name Is a string of blanks to designate the
Mblank segment," In whIch the maIn program and all built-In
support code are always linked. All other code can be
placeCl Into any segment

$X + or $X - Tum automatic run- time stack expansIon on (+) or off (-~
The default Is $X +.

NJTE

CompHer directives that affect code generation take effect when the
end of the Pascal statement 1n which they are embedded is reached. If
the same directive is specified more than once in a statement, the last
setting is uSed. A triCky case of this is:

beg1n
j := foo;
{SR-}
1 := 1*2
{SR+}

end

Since the second assignment does not end with a semicolon" and
actually ends when the em is encountered, range checking will not be
turned off for that statement.

$0+ or $()- Tum the generation of procedUre names In Object code on
(+) or off (-~ These commandS shOUld be written between
procedures; results are unspecified If they are written
inside prOCedUres. The default is $0+.

Cl1\OITlllVAL ClJ'vPILATllN

$(ECL. l1st
SELSEC

tfl'llC

lIFe
$SETC

(see section 12.2 below~
(see Section 12.2 beIOW~
(~ sectlon 12.2 IJelOW~

(see section 12.2 belOW).

(see section 12.2 belOw~

12-2

Pascal Reference Manual Tfle Compiler

LISTING ClNTRlZ

Sf filename Start maKing a listing of complIer errors as they are
encountered. Analogous to $L flIerane (see below~ The
default is no error listing.

$I.. filerae Start l1stIng the compllatIon on flIe filename. If a listing
Is beIng made already, that fBe Is closed and saved prIor to
opening the new f11e. The default is no l1stlng. If the
fIlename begIns wIth + or -, there must be a space between
$L and the filename (the space is not necessary otherwlse~

SL... or Sl - The first ... or - fOllowing the SL turns the source llstlng on
(+) or off (-) withOut Changing the l1st f11e. You must
specify the listing fUe before using SL +. The default is
$L ... , but no listing Is produced If no listlng fUe has been
specified.

122 cmnUonal ~l1at1oo
Conditional compilation is controlled by the $IFC .. SELSEC .. and $ENJC
commands, which are used to bracket sections of source text. Whether a
particular bracketed section of a program is compiled depends on the boolem
value of a compIle-time expression, wnich can contain compile-time varialJles

12.2.1 COOlllle-Time variables and the $[Eo... COO'fnCI1d
Compile-time variables are completely independent of program variables; even
if a compUe-time variable and a program variable have the same identifier,
they can never be confused by the compUer.
A complle-tlme varIable Is declared when 1t appears In the identIfier-llst of a
~a.. command.
Example of compile-time variable declaration:

{nl1. lIBVERSIlW, PROOVERSI~}

This declares LIBVERSI(N and PROOVERSICN as compile-time variables.
Notice that no types are specified.
Note the followIng points abOUt complle-time varIables:

• CampUe-time variables have no types .. althoUgh their values do. The only
possible types are Integer and boolecn

• All complle-tlme varIables Should be declared before the end of the
variable-deClaration-part of the main program. In other words a SOfa..
command that declares a new complle-tlme variable must precede the
main program's procedure and function declarations (if any). The new
complle-tlme variable Is then known throughout the remainder of the
compilation.

• At any point in the program" a compile-time variable can have a new
value asslgned to it by a $SETC command.

12-3

Pascal Reference fv!aI7lIal me Compiler

12.2.2 The $SETC comuand
The $SETC command has the form

{SSETC 10 := EXPR}
01'

{SSETC 10 = EXPR}
where ID Is the identifier of a compl1e-tlme variable and EXPR Is a compUe­
time- express1on. EXPR Is evaluated Immediately. The value of EXPR Is
aSSigned to ID.
Example Of assignment to compile-time variable:

{$SETe lIBVERSI~ := 5}

This assigns the value 5 to the complle-time variatlle LIBVERSICN.

12.2.3 compUe-Time Express100s
CompIle-time expressions appear In the $SETC command and In the SIFC
command. A complle-time expreSSion is evaluated by the complIer as soon as
1 t Is encountered In the text

The only operandS alloweo In a complle-time expression are:

• complle-tlme variables
• Constants of the types Integer and boolecn (These are also the only

possible types for results of compile-time expressions.)

All Pascal operators are allowed except as follows:
• The In operator Is not allowed.

• The fit operator Is not allowed.
• The I operator Is automatically replaced by dlv.

12.2.4 The SIFC, $ELSEC, ens ~ COIrwlSKiS
The ElSEC and SErce commands take no arguments. The SIFC command has
the form

{SIfC EXPR}

where EXPR Is a compIle-Ume expression wIth a boolecn value.
These three commands form constructions similar to the Pascal if-statement,
except that the $Ef'.[)C command is always needed at the end of the $IFC
construction. $ELSEC Is optional.

12-4

Pascal Reference Mamal

EXlJITJPle of condltlmally ctYTplled COde:

{$IFC PlDiVERSIlW >= LIBVERSI~}
k := kva11(data+indat);

{SELSEC}
k := kva12(data+cplrnat ft);

{$8«}
wrlteln(k)

The Compiler

I f the value of PROOVERSICN Is greater than or equal to the value of
lIBVERSI{J\I" then the statement k:-kvall(data+lndat) Is compiled" and the
statement k:-kval2(data+eplndat") is sKIpped.

But if the value of PRCX3VERSICN is less than the value of LIBVERSICN, then
the first statement is skipped and the second statement is compiled.

In either case" the wrltelr(k) statement Is complIed because the condl tiona!
construction ends with the ~ command.

$IFC constructions can be nested within each other to 10 levels. Every $IFC
must have a matching SENJC.

When the compHer is skipping, all commands In the skipped text are ignored
except the following:

SElSEC
$EtI)C
$IFC (so that SEI\I:C's can be matched properly)

All program text is ignored during skipping. If a listing is produced" each
source Une that is Skipped Is marked with the letter S as its "lex level."

12.3 (lltlmlzatlon of If-Statements
When the compiler finds an if-statement controlled by a boolean constant, it
may be unnecessary to compile the then part or the else part. For example,
gi ven the declarations

canst al.ays = true;
never = false;

then the statement

1f never then statement
w111 not be compUed at all. In the statement

if never then statement!
else statement2

"statementl" Is not compUed; only "statement2t1 Is compiled.

12-5

Pascal Reference Manual rile CompjJer

SimIlarly .. In the statement
if always then statement!

else staterrent2

only ··statementr· Is complled.
The interaction between this optimization and conditional compilation can be
seen from the following program:

progran Foo;

{$SETC FLAG : = FAlSE}

oonst pi = 3.1415926;
size = 512;

{$IFC FLAG}
detlJg = false; {a boolea-. C(JlstCllt, if FlAG=true}

{$ENlC}

var i, j, k, 1, Ill, n: integer;
{$IFC t«lT FLAG}

detlJg: tJooleal; {a tJooleal variwle, if FLAG=false}
{~NlC}

{$IFC t«lT FLAG}
procewre .tlatllllde;

'~teractive procewre to set global boolecvl variable,
end;

{$EN)C}

begin {main}
{$IFC t«lT FLAG}

1hatnIlde;
{SENlC}

if detlJg tnen begin
staterrentl

end

end.

else begin
staterrent2

end

detlJg}

The way this is compiled depends on the compile-time variable FLAG. If
FLAG Is false .. then detlJg is a boolea-. variable and the Whatmode procedure
is compiled and called at the beginning of the main program. The if debug

12-6

Pascal Reference Manual The Compiler

statement Is controlled by a boolea1 variable and all of It is compiled, in the
usual manner.

But if the value of FLAG is changed to true, then debug is a constant with
the value false, and Whatmode is neither compiled nor called. The if debug
statement is controlled by a constant, so only its else part, "statement2", is
compUed.

12.4 q>tlmlzatlon of While-statements cnj Repeat-Statements
A while-statement or repeat -statement controlled by a bOolea1 constant does
not generate any conditional branches.

12.5 Efficiency of case-statements
A sparse or small case-statement will generate smaller and faster code than
the corresponding sequence of if-statements.

12-7

NOTES

029-0405-A

Appendixes

A ~SOO to ~le II CIld ~le In Pascal A-1

8 t<rllWrl ~les In ttle COfT1l11er .. 8-1

C Syrltax of U1e LarlgtI8Qe ... C-1

o Float1~Polnt Arlttrnetlc ...•....•••.......•.•.•.••....•.•.•.•.•...•.....•.•..•..•......•.. 0-1

E QJlckOraw •••.• ••.•.••••••••••••••••••.• E-1

F ~ Interface ... F-1

G Lisa Olarcicter set .. G-l

H EI10T t-1esSages n ... n H-1

I Pascal WOIkSl1Op FlIes .. 1-1

Appendix A
Comparison to Apple II and Apple III

Pascal

This appendix contains lists of the major differences between the Pascal
language on the Lisa and the Pascal implemented on the Apple 11 and Apple 111.
Please note that these lists are not eXhaUstive.

A.l Extensions
TM following features have been added on the Usa:

• (j qlerator--retums the pointer to its operand (see section S.1.6~

• Heapresult ... pointer ... and ord4 functions (see Sections 11.2.2 ... 11.3.3 ... and
11.3.4~

• Keypress function bUilt into the language ... with same effect as the keypress
function In the ~lestuff unit of ,Apple II and Apple III Pascal (see Section
10.3.7.1~

• Hexadecimal constcrlts (see Section 1.4~

• ott1eNise-clause In case-statement (same as Apple III Pascal; see Section
6.2.2.2~

• Global goto-statement (see Section 6.1.3~

• A fUe of char type that is distinct from the text type (see sections 3.2.4
and 10.3~

• Numerous compiler commands (see section 12.1~

• ProcedUral and functional parameters (see Sections 7.3.3 and 7.3.4~

• Stronger type-CheCKing (see Sections 3.4 and 7.3.s~

• QuiCl<Oraw graphics and hardWare interface ... including mouse control (see
Appendixes E and F~

A.2 DeleUms
The following features are not inclUded on the Usa:

• TurtlegraJt1lcs ... ~lestuff ... and other standard units of Apple 11 and Apple
III Pascal.

• Interactive type (not needed ... as the I/O procedUres will dO the right thing
wIth a file of type text If It Is openec1 on a Character deVlce~

• Keyboard fl1e--same effect can be obtained by opening a flle of type text
on the device -KEYBOARD (see section 10.3~

A-I

Pascal Reference Mantlal Gompadson to ,Apple // & II/ Pascal

• Unit (Clevlce-orlented) 110 proceClUres, such as UNITBUSY.
• Recognitlon of the ETX Character (control-C) to mean "ena of fUe" In Input

from a Character device.
• "Long Integer" Clata type, wIth length attrlbute In declaration. Replaced by

the looglnt type (see Section 3.1.1.2~

• "Inltlallzatlon" code in a unit (see Chapter 9~

• The ab1l1ty to create new Intrinsic-units ana InstaJ1 them In the system
(see Chapter 9~

• Reset procecture withOut an external fUe title, for use on a fUe that Is
already open (see section 10.1.1~ To Obtain the same effect, close the fUe
and reopen it.

• Treesearch.
• Bytestrean, wordStrecm (data types in Apple III Pascal~

• Exlt(prognm)--The exlt(ldentlfter) form works, and the IClentifler can be the
program-iClentlf1er. Halt can also be useCl for orClerly exit from a program
(see Sectlonl1.1~

• Extended comparisons (see Sectlon S.1.5~

• 5ca1 function. ReplaceCl by scaneq ana SCCIYle {see Sectlon 11.8~

- Str ftrlCtion.
• Bit-wise boolean operations
• 8egIEl It keyword for procedures and functions. use the SS command

Instead (see section 12.1~
• The following complIer cornrncrlds (see section 12.1):

- $1+ ancI $1- (no automatic I/O checking; program must use loresult
function)

- $G ($G+ Is the assumptlon on the Lisa)

• aN ana $R (for resident code segments)
-F
-$Q

• $8+ and $8++ for swapping

• $U+ and su- (for User Program)
-$V

In general, do not assume that a compUer cornrncrld used in Apple II or
Apple III Pascal is valid on the Usa Furthermore, do not assume that an

A-2

Pascal Reference Manual Comparison to ,.o;;ple II & III Pascal

Apple 11 or Apple III Pascal compHer command Is "harmless·· on the Usa, as
it may be implemented with a different meaning.

A3 Other Dlffem ICeS
The fOllowing features of Pascal on the Lisa are different from the
corresponding features of Apple II and Apple III Pascal:

• Size of all strings must be expllCltly declared (see Section 3.1.1.6~

• fYtld and dlv--Pascal on the Usa truncates toward 0 (see Section S.1.2~

• ~le II and ~le III Pascal ignore underscores; Pascal on the Usa dOes
not They are legal characters In Identifiers (see Section 1.2~

• A goto-statement cannot refer to a case-constant in Pascal on the Usa
(see Section 6.1.3).

• A program must begin with the word progran In Pascal on the Lisa (see
Chapter 8~

• Tl't.rn Is different (see section 11.3.1).

• WlltE(b) Where b Is a bOOlea1 wll1 write either · TRUE· or ·FALSE· In Pascal
on the Lisa (see section 10.3.3).

• Whether a file Is a textfile does not depend on Whether its name ends with
".TEXT" when it Is created. Instead, any external fUe opened with a tUe
variable of type text is treated as a textfile, while a fUe opened with a
tUe variable Of type file Of char is not; it is treated as a "datafUe," i.e. a
straight fUe of records Which are of type char (see Sections 3.2.4 and 10.2).

• Get, put, ana the contents of the fUe buffer variable are not supported on
fUes of type text use only the text-oriented 110 procedUres with textflles.

• Eoln and eat functions on flIes of type text work as they do on lr1terc:rtlve
fUes in Apple II end Apple III Pascal.

• Pascal on the Lisa does not let you pass an element of a packed variable as
a variable parameter (see sections 7.3.2, 11.7, and 11.8)'

• Limits on sets are different (see section 3.2.3).

• The control variable of a fOf-statement must be a local variable (see
section 6.2.3.~

• In a write Of wrlteln call, the default field lengths for Integer and teal
values are 8 and 12 respectively (see section 10.3.3).

A-3

Appendix B
Known Anomalies in the Compiler

This appendix describes the known anomalies in the current implementation of
the COIllliler.

8.1 Scope of Declared Cmstalts
Consider the following program:

program c~1;
C(J1st ten=10;

proceOJre p;
C(J1st ten=ten; {naS SIO.LD BE AN £RIm}
begin

writeln(ten)
em;

begin
P em.

The constant declaration in procedure p should cause a compiler error, because
It is illegal to use an identifier within its own declaration (except for pointer
identifiers~ However, the error is not detected by the COI11liler. The effect is
that the value of the global constant ten is used in defining the local constant
ten, and the wrtteln statement writes "lIT.

A more serious anomaly of the same kind is illustrated by the following
program:

program cscqle2;
const red=1; violet=2;
proceWre q;

type arrayT~=array[red .• violet] of integer;
color=(violet,blue,green,yella.,onllQB,red);

vax- arrayVar:arrayType; c:color;
begin

arrayVar[1] : =1;
c:=red;
writeln(ord(c»

end;

begin
q

em.

B-1

Pascal Reference Manual ConpJ1er Anomalies

Within the procet1Jre q.. the global constants red and violet are used to define
an array index type; the effect of ana}{red..vlolet] is equivalent to arra}{L2}
In the declaration of the type COIOf, the constants red and violet are locally
redefined; they are no longer equal to 1 and 2 respectively--instead they are
comtants of type color with ordlnaUtles 5 and 0 respectively. The writeln
statement writes "'5".

The use of red in the declaratim of the type color should cause a compiler
error but does not.

Consider the statement

arrayVar[1]: =1;
If this statement is replaced by

arrayvar[red]:=1;
a ~iler error will result, as red is now an illegal index value for anayVar
--even though arrayVsr Is of type arrayType and arrayType is defined by
ana){red...vloletJ

To avoid this kind of situation, avoid redefinition of constant-identifiers in
erurnerated scalar types.

B.2 Scqle of Base-Types for Pointen
Consider the following program:

p.rognIII p~1;

type s=O •• 7;

proceWre ~ecurrent;
type sptr= s;

s=record
ch:char;
bool :boolem

En:.I;
var rurrent :s;

ptrs:sptr;
begin

new(~trs);
ptrs A : =current

En:.I;

begin
Ekecurrent

En:.I.

Here \tie have a global type s, which is a Slbrange of integer; we also have a
local type s, which is a record-type. Within the procedure makecurrent, the
type sptr is defined as a pointer to a variable of type So The intention is that
this should refer to the local type $, defined on the next line of the program;
lI"IfortLl'lately, however, the CtJrIl)Uer ~ not yet know about the local type s

8-2

Pascal Reference M8I7U81 Compiler Anomalies

CJ1d uses the global type s. Ttus ptrs becomes a pointer to a variable of type
0..7 Instead of a pointer to a record. Consequently the statement

ptrs : = current

causes a compller error since ptrs" m current are of Incompatible types.
To avoid this kind of situatial, re-declare the type s locally before declaring
the pointer-type sptr based (J'1 So Alternately, avoid re-declaration of
Identifiers that are used as base-types for pointer-types.

B-3

Appendix C
Syntax of the Language

C.l TokerlS 8Ild ~tarlts •••••••••.••• C-l

c.2 Blocks •.•.•.•.•.•..•..•.•..•...•.•...••..•...•.•.•••...•.....••.....•..•.•....•.•..••.••........•. C-4

C3 [)ata Types .•••..••.••..••••.•.•.•.••.••...•...•.••..•.•..•.••.•••...•.•.••••.•.•.....•.•.•.••.. C-5

C.4 Variatlles •••••.•••••.••••••••••.•.•.•••.•••••••••••••.••••••••.•.••••.•.••••••••••••••••••••.•••• C-9

G.S EXJlressiOllS ••.•••••••••••••• C-I0

G.6 St.aternerrt.s ..•••.••••....•.•.•.•.•.•.•••.•.•••.•.••.••••••••.•••••••.•••.••.•••••.•.•••••••.•• C-12

C.7 PJoce(lJres and Ft.rlCtiOlS .•.•.•.......... .•........•...•........• C-1S

C.8 PrtJgJailas .. ____ __ ••• __ C-16

C.9 Ulio•.. 0-17

Syntax of the Language

This appendix collects tne syntax diagrams fWld In the maln sections of this
manual. see tne Preface for an intJ'O(lJCtion to syntax diagrans.

C.1 TOkens em COOStalts (see ~ter 1)

Jette]" ~I @ thJVt¢ ®, 0 tI1JlXIJ:11 01 ~

l1ex-dlqlt ~ •

~@tIIm¢ ®~
identifier

dlgtt-!'!9!!"'J!?E!. :~ ()

hex-diqit-serpence
(:' heX-digiti) •

C-l

Pascal Reference /t-'1lnJaJ Synt.a..%'·

unsigned-integer

~~I ~ ~ heX-d1g1t-sequenc~

tnSig1tJl1--maJ

-+ld!9!t-Sequence~dI9IHequencel \ or •
I ~ ___ '-'_ '--------• .,1 scale-factort-'

scaJe--ractor ~ ~ _I digit-sequence I
~ SIgn

IJ/lSigned-ntmlJer ~ unslgled-integer ~
~ unsIgned-real I~-...:....--..... """

siqned-numlJer .(unsigned-number I •
~ slgl ~

tpJt.ed-stdng-cmsla1t

-0 ~ C~ string-character

C-2

P8SCaJ Reference /'1cn18l

..:!.s~t.rh~'n!:t.~~-c.::::..'fJ.~'8rac:....::.:::..::te.~r __ l~~·~Ia?Y dW exapt 0 arCR I f
l'---_ ---..()--t{)

'1.kJted-c/Jar8l..":teJ"-ClYlst.ant • ()--+I string-character ~()--+

constant-declaralion .Ildentlfler ~ constant ~

constant constant -ldenti fler

C-3

Pascal Referetn? fvIaVaJ syntax

C2 BlOO<s (see ~ter 2)

lJJOCk"
~~~-... label-declaration-part 

constant-declaration-part 

type-declaration-part 

variable-declaration-part 

procedure-and-ft.l1Ction-declaration-part 

statement-part t------------____ 

lalJel-declaration-part 

.~ ~t------~Ot------~ 

18lJel .1 cUglt-sequence I ~ 

cmsllTlt-d!!ClamtJOO-pBrt 

~ (. ·Ir-"cons--tan-t--dec-lar-a-ti-on--'I ) 

type-declaE8tion-pert 

~ (.1 type-declaration I ) 
• • 

C-4 



variable-declaration-part 

( 4"1 variable-deClaration I ) 

pmcedllre-and-flJnction-declaration-parl 

----:--~.. procedure-declaration ~--~-. 

function-declaration 

slBtement-pmt ., compound-statement I • 

C.3 oata Types (see ~ter 3) 

type-deClaraUm .1 identifier ~ type ~ 

-..t~_""""t"'""--'" Simple-type t--_ 

pointer-type I---~" 

rem-trpe ., real-type-identlfier I • 

c-s 

syntax 



Syntax 

....::::orct.:..=!.rjnaJ=--...=.t~_~-.. subrange-type 

enumerated-type 

st.lfrg-O'P'f:? 

r\-~-trl-ng-)---+(D--+I slze-attrlbute f-+G) J 
'--.f string-type-identif1er 11--------

...::sJ.='ze.::;..--=8:.:..:ttI.:::...:iA;=;.'IJU::.::t;.;:;..e_~"1 unsigned-integer I ~ --~ .. ~ 

enumerated-tyPe .~ identifier-list ~ 

IdentiFier-list 

subranqe-tyPe "I constant ~ constant 1-+ 

C-6 



Pascal Reference fvll!.n.laJ syntax 

structured-type-identifier 

array-type 

index-type ... 1 ordinal-type ~ 

record-1M ... ( record) ... §-+ 
~ field-list ~ 

field-list 

\~Ir--fi-xe-d-pa-r--'t I ~; 
l ~ variant-part ~ \.0-1 

f/XlJd-J]8lt ( .1 field-declaration I ) 
-. ----i(j). .. ---. 

~~;.;;;~=~O;;...~==tara.;;;;..;;;;..;;t14='IYl~_"'''1 identifier-list ~ type ~ 

C-7 



Pascal Reference Manual S)II7tax 

variant-part 

-€)~ K)f.ltag-field-typl~ 
identifier : ; 

/.ly-Held-lyPe .. I ordinal-t ype-identl fier J-. 

varilTJt 

C,-_·-'_=con-s-tan~,-t-_~_ : (. \:j field-list ~ .cv-o .. 
set-trpe .@-+0-+I ordInal-type J---+ 

pointer-type "'0+1 base-type I ... 
\:j polnter-type-ldentlfler ~ 

baSe-type ~ type-Identifier t----+ 

C-8 



Pascal Reference I'1antIal Syntax 

C.4 varlables (see Chapter 4) 

variable-dec/arauon.1 identifier-list ~ 

v8riBble-reference 

----.J variable-Identifier 

~ qualifier P .. 

variable-jdenUfier ., identifier ~ 

rifier 

lndex .. CDI--(.,..--...... I elCpression I ) .CD-
"--------to ... ---

field-deSiqnator .a---.f identifier J---+ 

flle-lJufFer-syntJo! .. O .. 

pointer-otJject-SymlJOl·O • 

C-9 



Pascal Reference Manual 

C.5 Expresslms (see ~ter 5) 

lInsi 'ed-constant 

...:.,,f';.::.8C::...;t='Q;;....'T __ -r-_oor--___ ,..._ ... variable-reference 1--__ _ 

tenn 

C-10 

syntax 



Pascal Reference Manual 

expmssion 

simple-expression "'""-,------------------,--1 ... 
)---.,--....... sImple-expressIon 

hne/ion-call 

-----i function-identifier \, ;r. 
'+f actual-parameter-list ,---

8C1.{I8l-pararneteI-lISI 'CDc I I ~ 
p (.: actual-parameter ) .~ 

actuaJ- '8J"8/TIeter 

----10-----
expression 

procedure-identifier 

function-icJenti fier 

set-constructor "'CD .~ 

~ __ m_em--(ber-.. gr_oup_F?_ 

o 

C-ll 

syntax 



Pascal Reference /VIanuaJ Syntax 

., express1cn I \+G:H ~ 
_ express10n 

C.6 Staterrents (see ~ter 6) 

statement 

~ 
/~ 

simple-statement t-I -7~-
. stnJctured-sta~t ~ 

label ~I digit-sequence I ~ 

s1 'ie-st8tement 

gato-statement t------.;-__. 

asslgYJ1t:?I1t-stalen1t:?l1t tI variable-reference p 
function-Identifier.~ expressIon ~ 

p.tl.'1CeQUe-statement 

-+I procedure-identifier I " or • 
'+t actual-parameter-llst r-' 

goto-statement ~~ label ~ 

C-12 



Pascal Reference /'1anual Syntax 

...:s~tm~'Ct.~u~rm:::.::'(j:.....-=..:st.='8.:.:te.:.:..:me.~'f1-,-t _~~ compound-statement 

wIth-statement ~---"--r 

compot.Kld-statement 

---t{ begin ) C"I statement I ) .. ~ 
-~ -----.O~-

if-statement 

case-statement 

otherwise-clause 

case ( "I ~~~--Y ... a--.t statement ~I - ..... 

-=D;.:tI1e.:=..~:.:..:'.I.=~;;;..-cJ...;;..;...~_ISe __ -,... ... o---< Otherwise)-.{ statement t-I --.. ~ 

C-13 



PascaJ Refereme /t1cnJaJ 

~tJtJve-statement 

repeat-statement 

WhUe-statement 

for-statement 

--C repeat >c sta~ expression ~ 

WIlile-statement 

~ expression ~ statement l-+ 

ror-statement 
control-variable ini tial-value 

I---~"" final-value 

conlJoJ-variabJe -.1 variable-identifier J-. 

initial-value .1 . -: expresslOn 

final-value -.( expression J-. 

with-statement 
~-r-e-co-r-d--va-ri-ab-Ie---re-f-er-e-nc-e-"~ statement j--. 

--------~G)M.~-------

C-14 

Syntax 



Pasc8l ReFerence I'1inIaJ 

C.l ProceclJres cn1 Ftmtloos (see ~ter 7) 

pn7Cl:?lvre-dJClaJ;9til."Y1 

---+I procedure-heading ~ procedure-body ~ 

pn7Cl:?ltve-IJeBl.1itJg 

-+(proceOJre H identifier I \, ;r. 
'+I formal-parameter-l1st t-' 

flInclion-declaralion 

---+I functlon-neading ~ function-body ~ 

function-bOdy 

result-type 

formal-parameter-list 

result-t ordlnal-type-ldentifler 

real-type-identifier t---...... I 

pointer-type-identifler 

C-15 

syntax 



f'onnal-parametef-list 
--------------~ 

~ ____ _et parameter-09Claratlon t--______ -at 

procedure-heading 

function-heading ~--

~~~[:g~~l!!!--..t Identifier-list 

C.8 ProgicmS (see ~ter 8)

p.rognm

type-identifier

--I program-heading f-.O \, Lr.f ~[iiiOCk}-+
'-1 uses-clause ~

pJlgram-heacllng

-.(progrmn).l'-ld-e-nU-fl-er--'h ~ I :;:...r ~
'-<JJ+I program-parameters ~

p.llJtlB!!,-parameters .(ldentlfler-l1st r--+

uses-clause .~ identifier-list r--+

C-16

syntax

Pascal Reference Manual syntax

C.9 UllU (see ~ter 9)

..:...:::.:~'lJ.::.:rJa.='I_-=lII7.~if.:...t _---.. unit-heading

Interface-part Implementation-part

interface-

uses-clause

constant -declaration-part

t ype-declaratlon-part

varIable-declaration-part

procedUre-aneJ-function-deClaraUon-part

lnlllementatlm

constant -declaration-part

type-declaration-part

variable-declaration-part

procedUre-and-funcUon-deClaratlon-part

C-17

Appendix D
Floating-Point Arittmetic

0.1 IntroclJction •.•...••••.••..•••••.•.•••••...•••••.••••.••.•••••...••...••.......•....•.••••....•. 0-1

D.2 ROtIldlrlg of Real Results .. 0-1

0.3 ~y Of AI1tt1Tletlc ~raUorlS ... 0-2

OA OIerflow CI1d Dlvlstm by zero: Inftnlte values 0-2

05 IrlValld qleratiorlS: ~ vallES ... D-3

0.6 I~r c:orwerslon tlVerflow .. 0-4

0.7 Text-<lr1efltm II{) c:ot1VerslorlS •••••••••••••.•••••••••••••••••.••••••••••••••••.•••..•.••• 0-4

0.8 FF\..JB InterfClCe ••• D-4

0.9 Blbllograp1ly..... ••••••• .••••••• •••••••••.••• •••••.••• •••••••••••••.•••.••••••••.•.•••••••••• 0-20

Floating-Point Arithmetic

nl Int.rm.l:tion
Floating-point arithmetic in Pascal on the Lisa (all aritimetic involving real
values) conforms to roost of the single-precision aspects of the IEEE's Proposed
St8f7d8rd for Binary Floating-Point Arith77etic (Draft 10.0 of IEEE Task P754~

IEEE Standard arl thmetic provIdes better accuracy than many other floating­
poInt implementations. It also reduces the problems of overflOW, lI'lderflow,
llmited precision, and InvalId operations by providing useful ways of dealing
with them.

The FPLIB library LIlit (in the file IOSFPLIB) contains the rrutines that perform
floating-point arittmetic (including all the tr~tal functions and the
sqrt fll1Ction). FPLIB must be lirKed into any program that uses floating-point
arithmetic; however, it is not necessary to explicitly refer to FPLIB in a uses
clause 1I1less the program calls the specialized Sl4JJX)rt procedures and
functions declared in the interface of FPLIB.

This manual assumes that you do not explicitly use the FPLIB lIlit, and that
therefore only the default options of IEEE arithmetic are appl1cable.

As a general rule, you can write Lisa Pascal programs that use floating-point
arithmetic without worrying about the differences between IEEE StCl'ldard
arithmetic and other floating-point implementations.

The following points apply if your program writes out floating-point rt.Illbers as
textual representations (via write or wrlteln}

• Anything in the output that looks like a runber wUI be correct (a1d
possibly more accurate fJa1 l.I1der other il'flJlementations~

• If your output contains a strIng of two or more pluses or mlrvses, thIs
indicates a value of 00, resulting from division by zero or some other
operation that caused a floating-point overflow.

• If your output contains the strIng "NaN" (meS'lIng Not a I\l.mber), this
indicates the result of some invalid operation that would probably have
caused a program halt or a wrong output lI'lder other implementations.
Note that any real value in text output that does not include the string
'"NaN"' is guaranteed not to have been affected by any invalid operation.

0.2 ROU'lding of Real Results
When a real result rrust be rOlllded, It Is always rOl.J'lded to the nearest
representable real value. If the lJ'UOt.I'lded result is e~tly halfway between
two representable real values, it Is rOlllded to the value that has a zero in the
least siglificant digit of its binary fraction (the "even" v8lue~

0-1

FJoatity-Point AJitJmetic

D.3 /V;QJf8Cy of Arlttmetlc qJerations
The arithmetic operations +, -, *, /, ro,nj, tn.n:, and sqrt are accurate to
within half a tIlit in the last bit. Remainders are computed without rounding
error.

0.4 OIerflow S1d Divisioo by Zem lnftnlte values
The result of floating-point overflow is either 110 or -co. These are values of
type real that can be used in further calculations and follow the mathematical
conventions: for example, a finite number divided by co yields zero.

Dividing a finite non-zero value by zero also yields 110 or -110 (in floating-point
arithmetic~

Infinite values have textual representations that can be read by read or readln
or 'HTitten out by write or writeln

Tables 0-1 and 0-2 below show the results of arithmetic operations on
infinities. Note that any operation involving a NaN as an operand produces a
NaN as the result

Table 0-1
Results Of MAUm CI1d Slttractlm m 1nf1nlUes

Left
qJera?d -co finite +co

-co -co -co Naf\I
finite + -110 finitet +co

+co NaN +co +co

-co NaN -co -co

finite - +110 finitet -lID

+co +co +co N~

t Result Is an infinity if the operation overflows.

0-2

Pascal Refemnce tvlanual Floating-Point Arithmetic

Table 0-2
Results of MJIUpllcaUoo 8'ld Olv1sioo ()fl Inftn1Ues

Left
±O Q:Jer8l7d

:to :to
flnlte M ±O

!GO ~

:to NaI\I
finite / ±co

:teo :tGO

Right
qJennJ

finite

to
flnitef

!oo

!o
finite'

tOO

, Result Is an Infinity If the operation overflows.

±co

NaN
±CIO
!GO

:to
±O

NaN

1\tJte: Sign of result is determined by the usual mathematical rules.

05 Invalid cperatioos: NaN Values
An invalid operation (such as dividing zero by zero) does not cause a halt
Instead it returns a special diagnostic value, and execution CO'1tinues. The
result of an invalid operation is called a NBN which stands for "Not a
~."

A NaI'J resulting from an invalid operation Is a propagating /VaIV This means
that if the NaN is used as an operand in another operation, the result of the
operation will be the same NaN. NaNs can be written out via WIlte or WJ1teJn
and read via read or leadln; the textual representation is "NaN" (optionally
followed by a quoted string).
The following operations are invalid and return a NaN value:

• CG-cr:a or cr:a+(-cr:a)

• 0 .. !GO

• 0/0

• The sin, cos, In, and sqrt functions, when the arguments are inappropriate.
(see the flJ1Ction descriptions In sections 11.4.4, 11.4.5, 11.4.7, and 11.4.8,
respectively.)

0-3

Pascal Reference fvfantJal Floating-poInt ArIthmetic

D.6 Integer cmverslm Blelf)ow
Integer conversion overflow can occur In tJ\n} or IOl.nS (see Chapter 11) If the
actual-parameter exceedS the botrlds of tile predeClared type Integer. The
result returned is lI'lspeclfled.

0.7 Text-{l1ented 110 cmvenloos
The rea2, Ieadln, write, and wrlteln procedUres require the conversion of
numbers from decimal to binary on input and from binary to decimal on output.
The error In these conversions Is less than 1 lIllt Of the result's least
slgnlfloant digit. (In the past, base conversions have rarely been dOne
accurately In a way that permits simple error bounds to be put on the reSUlts.)
Real values appear as character strings In two different contexts: as source
COde processed by the compHer (real constants), and In text files written anu
read by Pasoal programs. The signed-number syntax of Chapter 1 appUes In
bOth cases. However, the compiler does not accept Infinities and NaNs.

For read and write, +GO Is represented by a string Of at least two plus signs,
and -co by a string of at least two minus signs. NaNs are represented by the
Characters "'NaN", with an optional leading sign, and an optional tralUng quoted
string of Characters; CIl example is

-NaN'12:34 '

The Character string Is sometimes used to provide diagnostic data.

D.8 FPLIB Interface

The IEEE numerlcs are a proposed standard, and this Implementation
may be redesIgned for future releases.

0-4

Pascal Reference Manual Floating-Point Arittmetic

UNIT fplib ; INTRINSIC; { Use this header for intrinsic
library. }

{ FPlIB floating point library version AS3, 29 MarCh 1983 }

{ COpyright 1983, Apple computer Inc. }

:= true } { True to compile for OS, false for
Monitor. }

{$setc fp_testversion := false }
{Ssetc fp_compilerSUbset := false }

{ True if special test library. }
{ True to compile special SUbset

library for Pascal compiler,
false to compile full library. }

INTERFACE

{---}
CONST

{ CONSTANTS to parameterize floating point types }

maxfpstring = 80; { Declared length of floating point string type. }
maXfpreg ... 1 ; { Floating point registers are nuntlered 0 .. maxfpreg }

{ CONSTANTS for random number generation }

randloodulus = 2147483647 ; { Prime IOOdUlus for rClldom nunt>er generator. }

{ CONSTANTS for NaN Error COdes }

nansqrt
nanadd
nanint
nandiv
nantrap
nantmrd
n8nproj
nannul
nanrem
nanascout
nanprOfOOte
nanresult
nanascbin
nanascnan
nanascin
naninteger

= 1; { Invalid Square Root such as sqrt(-1). }
= 2; { Invalid Addition sUCh as +INF - +INF. }
• 3; { Invalid COnversion to Integer. }

4; { Invalid division SUCh as 0/0. }
... 5; { Trapping NaN encountered. }
= 6; { ordered ~re of unordered quant1 t1es. }
- 7; { Invalid use of Infinity in Projective Mode. }
= 8; { Invalid Multiply such as 0 * INF. }
• 9; { Invalid Remainder or NodUlo sUCh as x REM O. }
= 10; { Invalid binary to ascii conversion paraneter. }
... 11; { Attenpt to pronote single denOrm to dOUble. }
= 12; { Att~t to convert nonnormal to single or dOUble. }
... 17 ; { Attenpt to convert invalid ASCII string. }
= 18; { Attenpt to convert NaN'lnvalid string'. }
• 19; { Attenpt to convert unrepresentable ASCII string. }
= 20; { Attenpt to convert NaN valued integer to floating} <:)

0-5

Pascal Reference Ha/7(J8J FJoating-Polnt Arlttmetic

nanzero = 21 ; { Attempt to create a NaN w1th zero slgn1ficand. }
nantrig = 33 ; { Invalid argument to trig routine. }
nanlnvtrlg = 34 ; { Invalid argument to inverse trig routine. }
nanexp = 3S ; { Invalid argument to bAx for oonstant b. }
nan log = 36 ; { Invalid argument to log routine. }
nanpower = 37 ; { Invalid argument to xAi or xAy routine. }
nanfinan = 38; { Inva11d argument to financial function. }
naninit • 255 ; { uninitialiZed storage. }

{---}
TYPE

{ TYPES that are subranges }

fp_regincJex =
nibble =
fp_bodindeX =
fP_6bit =

O •• maxfpreg ;
O •• 15 ;

{ Index in floating point register array. }
{ Hex "digit". }

O •• 27 ;
O •• 63 ;

byt = O •• 2SS ;
bite = -128 .. +127 ;

{ Index in bodstring type. }
{ For six 01t fields. }
{ trlsigned byte. }
{ Signed byte. }

{ TYPES that are packed arrays }

fourb1te =
eightbite =
tenb1te =

packed array [0 .. 3] Of bite ;
packed array [0 .. 7] of bite;
packed array [0 .. 9] of Oi te ;

{ TYPES that represent numDers, lnf1nit1es, and NaNS }

fp_b1te =
fp_int64 =
fp_doUble =
fp_extended =

b1te ;
eightbite ;
elghtbite ;
tenbite ;

{ 64 bit integer with -2A63 as NaN. }
{ IEEE doUble prec1slon floatlng polnt. }
{ IEEE doUble extended floating point. }

fp_register • packed record { Floating point register. }
s1gn : bl te ; { 0 for posl tl ve, -128 for negative}
tag: bite; { l=normal, 2=zero, 4=inf, 8=NaN, 16=nonnormal }
e~t : integer ;
fraction: eightbite; { actually signifiOand }
end ;

fPJlCdstr1ng = packed array [fp_bcdinaex] of nlbble; { packed bed string }
fp_string = string[maxfpstring] ; { String parameter. }

0-6

Pascal Reference ManuaJ Floating-Point Aritl1lT1etfc

fp_type = (tfp_olte, tfp_lnteger, tfp_longlnt, tfp_lnt64,
tfp_real, tfp_dOUble, tfp_extended, tfp_reglster,
tfp_DCdstrlng, tfp_strlng); { Names for number types }

{ TYPES that point }

pfp_o1te = ~ fp_o1te ;
pfp_integer = ~ integer ;
pfp_longlnt = ~ longint ;
pfp_int64 • ~ fp_int64 ;
pfp_real = ~ real ;
pfp_doUble = ~ fp_dOUble ;
pfp _extended = ~ fp_extended ;
pfp_register = ~ fp_register ;
pfp_OCdstring = ~ fPJ)oostrlng ;
pfp_string = ~ fp_string ;
fp-pointer = ~ integer; { Free pointer to any type. }
fp-procaddress= fp.J>Ointer; { Actually ~ procedUre with no arguments. }

{ TYPES that provide non-numeric types for floating point use }

xcpn = (invop, overfl, underfl, divO, inxact, cvtovfl, fp_xcpn6, fp_xcpn7);
{ Float1ng point exceptions:

invop .. 1nxact are the IEEE· exceptions
ctvOvfl is for float1ng to integer conversion overflow
fp_xcpn6 and 7 are for future expansion }

excepset = set of xcpn; { For handling all exceptions at once. }

roundtype = (rnear, rzero, rpos, rneg, rout) ; { Rounding rooaes. }

fp_cc = (equal, lesser, greater, unora) ; { Results of comparisons. }

fp_kindtype = (zero, nonnormal, norml, inf, NaN) ; { Floating operands. }

fp_format =
(fp_llsa fp_free .. fp_lround .. fP_i.. fp_f .. fp_el, fp_e2, fp_e3,
fp_e4, fp_e) ;
{ OUtput formats for binary to ascii routines. }

{ TYPES that provide IEEE arithmetic modes }

rRDde = rnear.. rneg ;
closure = (proj, affine) ;
denOrm = (warning, normalizing) ;
extprec = (xprec, spree, dprec) ;

0-7

{ IEEE rounding modes. }
{ IEEE infinity modes. }
{ IEEE denormalized modes. }
{ IEEE rounding precision modes. }

Pascal Reference ManlJal Floating-Point Arit/1met/c

{ TYPES that define floating polnt trapplng }

fp_traprecord = record { of lnformation for composite floatlng polnt trap }
header : lnteger ;

{ <0 for atomic floatlng polnt operatlon from F-llne op cOde
=0 for composlte floating point operation
>0 for atomlc Pascal Real arlthmetic operation }

es : excepset ; { Exceptions that occurred in this operation. }
procnaroo: pfp_strlng; { procnarre" contains naroo of proceaure }
optypel, optypez, resulttype : fP_type; { Operand and Result types}
op1, opz, result : fpJ)Ointer; { Operand and Result polnters }
end ;

pfp _ traprecord '" A fp _ traprecord ;

{ TVPES that define the FLOATING POINT CONTROL BlOCK, FPCB_ }

fp_statustype '" packed record { Non-numeric floating point status }
conoit1on : bite; { contains 1nvalid COde and fp_cc }
excep: bi te; { StiCky exception-occurred bi ts for each xcpn }
tlOOde: b1 te; { SCratCh }
texcep : bite; { last -operation exception-occurred bits }
mode: blte; { Bit for each IEEE mode }
trap: bi te; { Trap-enabled bits for each xcpn. }
1nstad : pfp _ traprecord; { fp _ traprecord or last F -11ne op code }
enct ;

v

fp_b1ocktype = record {Floating point status and numeric registers }
status : fp_statustype; .
f : fp_regarray; { FPCB_.BlOCK.F[i] is "FPi" in conments. }
end ;

fpcb_type = pacKed record { Floatlng point control blOCK. }
case boOlean of
fa1 se : ({ current deflnl tlon }

ptrapvector : array [xcpn] of fp-procaddress ;
{ Pascal language floating point trap vector. }

blOCk : fp_blOck.type ;
) ;

true: ({ Obsolete definition for cOOllatibility }
trapvector : array [0 .. 7] of ... longint ;
condition : bite;
excep : blte ;
tlOOde : bite;
texcep : bite;

0-8

Pascal Reference Manual

rode : lli te ;
trap : oite ;
Instad : longint
f : fp_regarray ;

Floating-Point Arftl1metic

unused : array [xcpn] of fp J)rOCaddress ;
) ;

end ;

p_fPCll_type = ,. fpcb_type ;

{S1fC not fp_testversion }
{ TV PES for compatillility ~Ith previous releases }

1nt16 = pacKed array [0 .. 1] of lli te; int32 = fourbi te; int64 = fp _int64 ;
sIngle .. fourbite ; double = fp_doUble ; extended = fp_extended ;
fpreg1ster = fp_register ; fpstrlng = fp_str1ng ; condlt1oncOde = fp_cc ;
fp6bit = fp_6bit ; fpregarray = fp_regarray ; fpkindtype = fp_Kindtype ;
fpcbtype = fpcb_type ; pfpcbtype = p_fpcO_type ;
{$endc }

{---}
VAA { FLOATING POINT ~TRa. BLOCK }

FPCB_ : fpcb_ type ;

{Sifc not fp_compilersubset }

{--}
{ MICROSEGt1ENT fpmsub } { Internal aSsenDly language procedUres only. }

{--}
{ MICROSEGMENT f32SUb }

function f32_minus (x: real) : tloolean ; {Sign(x)}
function f32_integral (x : real) : ooolean ; {Is x 1ntegral? }
function f32_fraction (x : real) : real; { Fraction part(x) }
funct10n f32_11ogD (x: real) : integer ; {Exponent(x)}
function f32_scale (x : real ; i : integer) : real; { x * 2"i }
function f32_Kind (x : real) : fPJ<indtype ;

{ Returns Zero, Norml, Inf or NaN; NonNormal classifies as Norml }

{$endc }
function f32_fpcO: p_fpcb_tYP8; { Returns iiFPCB_ }
{SifO not fp_oompllersubset }

0-9

Pascal Reference I'1antIal Floating-Point ArJtf1metic

{--}
{ MICROSEGHENT ux80SUb }

{ EXTENDED PRECISION ARITHMETIC }

{ PROCEDURES for monadic zero address arithmetic }

procedUre. fpneg; {FPO: = -FPO. }
procedure fpabs; {FPO:= abS(FPO). }
procedure fplnt; {FPO:= integral part of FPO }
procedUre fpsqrt; { FPO : z: sqrt(FPO) }

{ PROCEDURES for dyadic zero address arithmetic }

procedUre fpadd; {FPO : = FPO + FP1 }
prOCedUre fpSUb; { FPO : = FPO - FPl }
procedure fpmul ; { FPO := FPO * FP1 }
prOCedure fpdi v; { FPO : = FPO / FPl }
prOCedure fprem; { FPO : = FPO rem FP1 }
funct10n fpcom: fp_cc; { Returns result of FPO conpare FPl. }

{ PROCEDURES for two address arithmet1c }

funct10n fp1nts (X : real) : real ;
function fpsqrts(x : real) : real ;
prOCedUre fpnegd (var x, z : fp_OOutlle);
procedUre fpabsd (var X, z : fp _dOUble);
procedure fpintd (var X, z : fp_dOUble);
procedUre fpsqrtd(var X, z : fp_dOUble);
procedUre fpnegx (var X, z : fp_extended) ;
procedUre fpabsx (var X, z : fp _extended) ;
procedUre fp1ntx (var X, z : fp_extended) ;
procedUre fpsqrtx(var X, z : fp_extended) ;

{ integral part of x }
{ sqrt(x) }
{ z := -x }
{ z := abs(x) }
{ z : = 1ntegral part Of x }
{ z := sqrt(x) }
{ z := -x }
{ z := abs(x) }
{ z := 1ntegral part of x }
{ z := sqrt(x) }

{ PROCEDURES for three address arithmetic }

function fpaddS (X, Y : real) : real; { z := X + Y }
funct10n fpSUbS (X, Y : real): real; { z := X - Y }
function fpnuls (X, Y : real): real; { z :. X * Y }
funct10n fpd1vs (X, Y : real): real; { Z := X / Y }
function fprems (X, y : real): real; {z : = x rem y }
function fpcoms (X, Y : real): fp_cc ;

procedure fpaoctO (var x, y" Z : fp_dOUble); { Z := X + Y }
procedure fpsubd (var X, y, Z : fp_dOUble); { Z : = X - Y }
procedUre fpmuld (var X, y, Z : fp_dOUble); { z := X * Y }

0-10

Pascal Reference MantJal Floating-Point Aritl1metic

procedUre fpd1vd (var x., y, Z : fp_doUble); { Z : = X / Y }
procedUre fprema (var x., y, Z : fp_double); { Z := X rem y }
funct10n fpCOfOC1 (var x., y : fp_dOUble) fp_CC;

procedUre fpaddx (var x., y,
procedUre fpsUbx (var x., y,
procedUre fpnulx (var x., y,
procedUre fpd1 vx (var x., y,
procedUre fpremx (var x., y,
function fpcomx (var x., y

Z : fp_extenaed
z : fp_extended
Z : fp_extended
Z : fp_extended
Z : fp _extended

: fp_extencled

{ PROCEDURES for type conversion }

{ PROCEDURES for FPO : = X }

procedUre WfOOvefp (x : integer) ;
prOCedUre lmovefp (x : long1nt) ;
procedure sfOOvefp (X : real) ;
procedure dfOOvefp (var x : fp_dOUOle);
procedUre XIOOvefp (var x : fp _extended) ;

{ PROCEDURES for FPl := X }

procedUre wmovefpl (x : integer) ;
procedUre lroovefpl (x : longlnt) ;
procedUre sroovefpl (x : real) ;
procedUre drOOvefpl (var x : fp_dOUOle);
procedure XIOOvefpl (var x : fp_extended) ;

{ PROCEDURES for Z :m FPO }

function fpmovew : integer ;
function fpmovel : longlnt ;
function fplOOves : real ;
procedure fprooved (var Z : fp_dOUtlle) ;
procedUre fJllOOvex (var Z : fp _extended) ;

{ PROCEDURES for Z :- X }

) ; { Z := X T Y }
) ; { Z := X - Y }
) ; { Z := x * y }
) ; { Z := X / Y }
) ; { Z := x rem y }
) : fp_cc ;

function xmovew
function dmovew
function XIOOvel
function dIoovel
function XIOOves
function drOOves
procedUre WIOOved
procedUre lmoved

(var x : fp _extended) integer;
(var x : fp_doUble) integer;
(var x : fp _extended) longlnt;
(var x : fp_doUble): longint ;
(var x : fp_extended) : real ;
(var x : fp_dOUble): real ;
(x : integer; var z : fp_doUble) ;
(X : longlnt ; var z : fp_double) ;

0-11

Pascal Reference /VIantIa1 Floating-Point Arithmetic

proceaure.smoved
procedure xmoved
prOCedure wmovex
procedUre lroovex
procedure smovex
procedUre dIoovex

(X : real ; var z : fp_OOUble) ;
(var x : fp_extended ; var z : fp_dOUble) ;
(X : integer; var z : fp _extended) ;
(X : longint; var Z : fp _extended) ;
(x : real ; var z : fp_extended) ;
(var x : fp_dOUble; var Z : fp_extended) ;

procedure cmovefp (var b : fp_bodstring) ;
procedUre 164neg (var X, z : fp_int64) ; { z : = -x }
function x80_integral(var x : fp_extended) : boolean ;
prOCedUre x80 _break (var x, intx, fracx : fp _extended ;

var izero, fzero : boolean) ;
{$endC }
function X80_fpcb: p_fpcb_type; { Returns ilFPCB_ }

{--}
{ MICROSEGMENT ufpm }

{ PROCEDURES for binary to ascii conversion }

procedUre fp_zero_ascii
(sign : ooolean ; before, after : integer; format: fp_format ;
var s : fp_string ; var error : boolean) ;

procedUre fp_lnf _asci 1 (s1gn: bOolean; wldth : integer ;
var s : fp_string ; var error : bOOlean) ;

{ PROCEMES for exceptions}

function getxcpn (e : xcpn) : bOolean ;
prOCedure setxcpn (e : xcpn ; b : bOOlean) ;
procedure getexcepset (var es : excepset) ;
procedUre setexcepset (es : excepset) ;
procedure gettexcepset (var es : excepset) ;
prOCedure settexcepset (es : excepset) ;
prOCedure clrexcepset ;

{ PROCEDURES for trap-enabled bits in FPCB_.BLOOCSTATUS. TRAP }

prOCedUre gettrapset (var es : excepset) ;
prOCedure clrtrapset; { Dlsables all traps. }

{ PROCEDURES for floating point trapping }

procedUre fp-PQstoperation (r : fp_traprecord) ;
{ Imitates effect of atomic floating point operation by using r.es
as the set Of exceptions generated by a composite operation }

0-12

Pascal Reference MantJaJ

procedUre CheCKtrap (r : fp_traprecord) ;
{SifC not fp_compilersubset }

Floating-PoInt Arlumetlc

{--}
{ HICROSEGMENT ux80 }

{ PROCEDURES that tell abOUt FPO }

function fpminus : boOlean ; { FPO has sign bit on? }
funct10n fpl<1nd : fp_k1natype ; { Returns type of argurent 1n FPO. }

{ PROCEDURES that tell abOut extended X }

funct10n fpm1nusx (var x : fp_extended) : OOOlean; { s1gn 01 t? }
funct10n fpKindx (var x : fp_extencJed) : fp_kindtype ; { kind? }

procedUre copysign (var x" y" Z : fp_extended) ;
{ z gets y w1th s1gn of x. }

procedUre infinity (var z : fp_extended) ; { Z := +INF. }
procedUre errornan (error: byt ; var z : fp _extended) ;

{ creates a NaN in z with error code set" other fields
zero, and s1gnals Invop xcpn. }

procedUre createna1 (trap : OOOlean ; extension : fp_6bit ;
error" inaex : byt ; var Z : fp_extended) ;
{ Creates a NaN in z with 23 significant bits defined. }

procedUre checknan (var x" z : fp_extended) ;
{ z := X but if x 1s a trapping NaN" the trapping bit of z is
turned off and the Invalid flag is set. }

procedUre NaNJ)8l'ts (var x : fp_extended ;
var trap: bOOlean; var extensIon : fP_601t ;
var error, index" index2 : Oyt ; var lowpart : fp -procaddress) ;
{ Splits up x into its ~t parts. lowpart gets the four
least significant bytes. }

procecJUre ctoosenan (var x, y" 2 : fp_exten<led) ;
{ x or y nust be a NaN. z is set to WhicheVer has the greater
Error field. z is non trapping. If either x or y 1s trappI~
the Invalid flag is set. }

{ PROCEDURES that act on I'U1tlers but dO not use arithmetic}

procedUre fpswap; { Exchange FPO C:V'ld FPl }

procedure blockprelUde (var fpb : fp_Olocktype) ;
prOCedUre OloCKpostlUde (var fpb : fp_olOCktype ; var trapcoming : bOOlean);

{------------------------~---}

D-13

Pascal Reference MantIal Floating-PoInt Arltlmetic

{ HICROSEGMENT ux80elem }

{ PROCEDURES that tell about extended X }

function 110gb (var x : fp _extended) : integer; { exponent of x }

{ PROCEDURES tnat prOdUce extended Z }

procedure fpscalex { z := X * 2~i }
(var x : fp_extencled ; 1 : integer; var z : fp_extencled) ;

procedure scalb { z := X * 2~y for integral y }
(var X, y, Z : fp_extencJed) ;

{ elementary function PROCEDURES that require initelem }

prOCedUre exp2 (var X, z : fp_extended) ; { z : = 2"x }
procedUre expe (var X, Z : fp_extended) ; { z : = e~x }
procedUre exp21 (var X, Z : fp_extended) ; { z : = 2"x -1}

prOCedure log2 (var X, Z : fp_extenoed) ; { z : = log(x)/log(2) }
procedUre loge (var X, Z : fp_exten<led) ; (. Z := log(X)/log(e) }
procedure log10 (var X, Z : fp_extended) ; { Z := loge x)/log(10) }
procedure log12 (var X, z : fp_extended) ; { z :. log2(1 +x) }

procedUre xtoy (var X, y, Z : fp_extended) ; { z := X') }

procedure ~ (var r, p, Z : fp_extencted) ; { z :- (l+r)"p }
procedure annuity (var r, p, Z : fp_extended) ; { z := (1 - (l+r)"-p)/r }

procedure postdyaaic(nane : fp_strlng ; var X, y, Z : fp_extencted) ;
procedure xpwry (var x : fp_extended ; y : integer; var Z : fp_extended);
procedUre xexpy (var X, y, Z : fp_extencled) ;

{ HICROSEGMENT ux80trlg }

procedUre p1value (var z : fp_extenaed) ; { z : = pi }
procedure sinx (var X, Z : fp _extended) ; { Z : = sine x) }
prOCedUre cosx (var x, z : fp_ extended) ;
procedUre tanx (var X, z : fp _extended) ;
procedUre a.s1n (var X, Z : fp_extencled) ; { z : = arcs1n(x) }
procedure acos (var X, z : fp _extended) ;
prOCedUre atan (var X, Z : fp _extended) ;
{tende}

{--}

0-14

Pascal Reference Manual Floating-Point ArIttmetic

{ MlCROSEGMENT Uf32 }

functIon f32..,pwrten(n :lnteger): real; { Does pwrten(n). }
function f32_exp (x: real) : real ;
function f32_ln (x: real) : real ;
function f32_sin (x: real) : real ;
funct10n f32_cOS (x: real) : real ;
function f32_ata"l (x : real) : real ;
proceoure f32_trap; { FloatIng PoInt Trapp1ng for Pascal Real Arlthfletlc }

{--}
{ MlCROSEGMENT f321n }

{ sImple PROCEDURES to convert asc11 to bInary }

funct10n p_f32 (var s : fp_string) : real ;
function f32_r_r (var f : text) : real; { Does read(f,real) }

{ general PROCEDURES to convert asc1i to binary }

prOCedure reatCf32 (var lnfile : text; var Readchars : fp_string ;
var Z : real ; var Error : bOOlean) ; { Z, ReadChars get input }

procedUre asciireal
(Fileio : bOOlean ; var lnf1le : text ;
var S :fp_string ; First, Last : integer; var Next : integer;
var Z : real ; var Error : bOOlean) ;

{--}
{ MICROSEGNENT f320Ut }

{sinple PROCEDlRS to convert binary to ascii }

prOCedUre f32_w_e (var f : text ; X : real ; width : integer) ;
{ Does write(f,x:width) }

procedUre f32_w_f (var f : text ; x : real ; width, after : integer) ;
{ Does wr1te(f,x:wldtn:after) }

{$ifC not fp_compilerSUbset }

{ general PROCEDURES to convert binary to ascii }

procedUre f32_nan_ascii (x: real; width: integer;
var s : fp_string ; var error : boolean) ;

procedUre f32_f _ascii (x : real; beforepoint : boolean; after : integer;
var s : fp_strlng ; var error: boolean) ;

0-15

Pasca/ Reference ~ Floating-Point Arlumetic

procedUre f32_e_asc11 (x: real; before, after, ew : integer;
var s : fp_string ; var error: boolean) ;

{--}
{ NICROSEGHENT XSOin }

{ general PROCEDURES to convert ascii to binary }

procedUre poovefp (var S : fp_strlng; First, Last : integer;
var Next : integer ; var Error : boolean) ; { FPO : = S }

proceoure asc1iroovex (File10 : bOOlean; var Infile : text ;
var S : fp_string ; First, Last : integer; var Next : integer;
var x : fp _extended ; var Error : boolean) ;

{--}
{ MICROSEGMENT XSOOUt }

{ general PROCEDURES to convert b1nary to asc1i }

procedUre x8o_nan_asc11 (var x : fp_extencJea ; width : integer;
var s : fp_string ; var error: boolean) ;

prOCedure x80_i_ascil (var x : fp_extended ;
var s : .fp_string ; var error: boolean) ;

procedUre x8o_ir_asc11 (var x : fp_extended ;
var s : fp_string ; var error : boolean) ;

prOCedure x80_f _asci 1 (var x : fp_extended ; beforepoint : bOOlean ;
after : integer ;
var s : fp_string ; var error : boolean) ;

procedUre x80_e_ascii (var x : fp_extended ; before, after, ew : integer;
var s : fp_string ; var error : boolean) ;

prOCedUre xso_free_ascii (var x : fp_extended ;
width, maxsig : integer; format : fp_format ;
var s : fp string; var error : booleCl1) ;

procedUre XSO _asci1 (var x : fp _extended ;
Width, Before, After : integer ; Format : fp_Format ;
var S : fp_string ; var Error: boolean) ;

procedure x_eform (var x : fp_extended ; n : integer;
var sigma : integer ; var s : fp _string ; var e : integer) ;

procedUre x_iform (var x ! fp_extended ;
var sigma : integer ; var s : fp _string ; var e : integer) ;

{--}

0-16

Pascal Reference HInJ81 Floating-PoInt ArltlJmetic

{ MICROSEGMENT fpllb2 }

{ PROCEDLRES that act on nuntlers bUt dO not use arl thfOOtic }

procedure movefp (var x : fp_reg1ster) ; { FPO := x }
procedUre movefpl(var x : fp_reglster) ; { FP1 :a x }
procedure fpmove (var z : fp_reg1ster) ; { z := FPO }
procedUre fp1move(var z : fp_register) ; { z := FPl }

{ PROCEDURES for 64 bit integers }

procedUre i64abs (var X, z : fp_int64
procedure i64mfp (var x : fp_1nt64
procedUre i64mfpl (var x : fp_int64
procedure fpmove164 (var z : fp_int64)

) ; { z :,.. abs(x) }
) ;
) ;
~

{ PROCEDURES that prodUCe extended Z }

procedUre 10gb (var x, z : fp_extended) ; { z : = exponent(x). }
procedUre nextafter (var x, y~ Z : fp_extended) ;

{ z gets the next rumer from x 1n the d1rect1on y~
observing current rounding precision mode. }

{ elementary function PROCEDURES that require inite1em }

procedUre evalue(var Z: fp_extended) ; { z :. e }
procedure xto1 { z := x~i }

(var x : fp_extencled; i : integer; var z : fp_extended) ;
prOCedure expel (var x, z : fp_extended) ; { z : = expe(x)-l }
procedUre log1e (var X, z : fp_extended) ; { z : = loge(1+x) }
prOCedUre s1nhx (var x, z : fp_extended) ; { z : = slnh(x) }
procedUre coshx (var X, z : fp_extended) ; { z : = COSh(X) }
proceaure tanhx (var x, z : fp_extended) ; { z : = tam(x) }
procedure abs2x (var X, y, Z : fp_extended) ; { z : = abs(x+iy) }
proceaure atan2x(var x, y~ Z : fp_extended) ; { z : = atan(Xly) }

{ simple PROCEDURES to convert ascii to binary }

procedUre proved (var s : fp_string; var x : fp_dOUble);
procedure plOOvex (var s : fp_strlng ; var x : fp_extended) ;

{ Simple PROCEDURES to convert binary X to ascii S in fp_lisa format }
{ COIments indicate log1cal length of S. }

procedUre dIOOvep (var x : fp_doUble ; var s : fp_strlng) ; { 24}
procedUre XIOOVep (var x : fp _extended ; var s : fp _string) ; { 27}

0-17

Pascal Reference I'1antIaI Floating-Point Arlttmetlc

{ PROCEDI.flES for use by Basic and other language processors}

function next random (lastranoom : longint) : longint ;
(* Returns randOm longint with 1 <- nextrandOm <. randmodUlus *)

prOCedUre XBo_maxform (var X : fp_extenaea ;
var sigma: integer; var s : fp_string ; var e : integer) ;

proceoure x8o_eform (var x : fp_extendeO ;
var sigma : integer ; var s : fp _string ; var e : integer) ;

{ PROCEDURES for exceptions }

proceaure excepnane (e : xcpn; var name : fp_string) ;
{ Returns exception nane: after excepnane(1nvop, name),

nane = • Invop I }

{Sendc }

{ PROCEDURES to get and set IEEE arithmetic mooes }

funct10n getrouno : rmode ;
procedUre setrouncl (x : mole) ;
{Sife not fp_compilerSUbset }
function getclos : closure ;
procedUre setclos (x : closure) ;
function getdnOrm: denOrm ;
procedUre setClnorm (x : denOrm) ;
function getprec : extprec ;
procedUre setprec (x : extprec) ;

{ PROCEDURES for trap-enableCl b1ts in FPCB_.BlOCl<.STATUS. TRAP }

funct10n gethal t (e : xcpn) : b90lean ;
prOCedUre sethal t (e : xcpn; b : bOOlean) ;
procedUre settrapset (es : excepset) ;

{ PROCE~ES for Pascal trap handlers in FPCB_oPTRAPVECTOR }

function gettrap (e : xcpn) : fp"procadCJress; { FPCB_.ptrapvector[e] }
procedUre settrap (e : xcpn ; f : fpJ)rocaddress) ;

{ FPCB_optrapvector[e] := f }

{$enCJC }

{--}

0-18

Pascal Reference /'1antJal Floating-Point ArltlJmetic

{ MICROSEGHENT uinitfp }

{ FLOATING POINT INITIAlIZATION }

procedure initfp ; {Initialize the floating point control blocK FPCB_. }
{Sifc not fp_compilersuoset }
proceaure initfptrap; {Initial1ze maximal floating po1nt trapp1ng. }
procedUre initelem ; { Initialize FPCB_ and elenentary functions. }

{---}
{ PROCEDURES that are noops, used to load segments }

procedure ldfpnlldes; { in segrent fptOOdes }
procedUre ldf32 ; { in segment ldf32 }
procedUre ldX80 ; { in segrrent ><80 }
procedure ldx8oelem; { in segnmt xSoelem }

{--}
{$endc }

0-19

Pascal Reference Ma1ual Floating-Point Ar/tllmetlc

0.9 Blbll~y
The followIng articles contain detailed Information and discussion of the
proposed IEEE floatIng-point stanoard. (ArtiCles are lIsteo In order of
importance.)

• "A Proposed Sta1dard for Binary Floating-Point Arithmetic", IEEE
Ct¥TptIter, VOl. 14, No.3, March 1981.

• Coonen, J.: "M Implementation Guide to a PropoSed Stcn:tard for
Floating-PoInt Arltnmetlc, IEEE Ct¥TptIteJ; VOl. 13, No.1, January 198D.

• ACM SIGNLM NeWSletter, special issue devoted to the propoSed IEEE
floating-point standard, ~tober 1979.

0-20

Appendix E
QuickDraw

E.1 ~ This ~x•...•.•.....•.....••..................................... E-1

E.2 ~ G)JickDraw •••.•••••••••••••••••••.•••••• E-2

E.2.1 How To Use QuickOraw ... E -3
E.2.2 QuickDraw Data Types ... E-4

E.3 The tvlathematlcal Fonmtim of QuickDraw .. E-4

E.3.1 The Coordinate Plane ... E-4
E.3.2 Points .. E-5
E.3.3 Rectangles .. ~ E-6
E.3.4 Regions. E - 7

EA GrafJIllc Entities•..................•.•...•.•...........•.•.....•.......•....•.•....... E-9

E.4.1 The Bit Image ..•... E-9
E.4.2 The Bitmap 0 •• E -11
E.4.3 Patterns .. E-13
E.4.4 Cursors ... E -13

E5 1he Orawlllg ErNiJtJr'1f1lel1t: GrafI>ort •.•.•.•.•.•••.•••.•.•••.•••.•.• ~ E-15

E.5.1 Pen Characteristics ... E -18
E.S.2 Text Characteristics ... E-20

E.6 0:xJIt:firlates in GrafPorts .. E-22

E.7 C3erleIal Dlscussim of Orawirlg ... E-24

E.7.1 Transfer Modes ... E-26
E.7.2 Drawif19 in Color ... E-28

E.8 Plctl.lIeS ar1d PoIY!JOl1S •••••••••••••• ~ ... E-28

E.8.1 Pictures•......................................•....... E-29
E.8.2 Polygons .. E - 30

E.9 (;ItJlckDraw Rootines .. E-31

E.9.1 GrafPort Routines .. E -32
E.9.2 Cursor-Handling Routines•.•....•.......................•....... E-36
E.9.3 Pen and Line-Drawing Routines .. E - 37
E.9.4 Text -OrawirlQ Routines ... E -40
E.9.S Drawing in COlor ..

o
............................ E -43

Pascal Reference Manll8l QuickDraw

E.9.6 Calculations with Rectangles ... E-43
E.9.7 Graphic ~erations on Rectangles .. E-46
E.9.8 Graphic QJerations on OVals .. E-47
E. 9. 9 Graphic QJerations on Rounded-Corner Rectangles E -47
E.9.10 Graphic QJerations on Arcs and Wedges E-49
E.9.11 Calculations with Regions .. E -51
E.9.12 Graphic Qlerations on Regions .. E-55
E.9.13 Bit Transfer QJerations .. E -56
E.9.14 Pictures ... E-58
E.9.15 Calculations with Polygons ... E -59
E.9.16 Graphic QJerations on Polygons ... E-61
E.9.17 Calculations with Points .. E-62
E.9.18 Miscellaneous Utilities .. E-64

E.l0 OJstoInizirlg QJjckOraw ~ratiOt1S ... E-67

E.l1 ~QuickOrawfromAssermlyl~ ... E-71

E.l1.1 Constants .. E-71
E.11.2 Data Types .. E-71
E.11.3 Global Variables ... E -73
E.11.4 Procedures and Functions ... E -73

E.12 Graf3(): 1hree-Dirnerlsiorl8l GraJltlIcs •••.•....••...••.••••.••••••••.••••....••......• E-75

E.12.1How Graf3D is Related to QuickDraw•......................... E-75
E.12.2 Features of Graf3D ... E -75
E.12.3 Graf3D Data Types .. E -76
E.12.4 Graf30 Procedures and Functions .. E -77

E.13 ~ckOraw Interface .•... E-80

E.13.1 Graf30 Interface .. E -89

E.14.1 QDSarnple ... E -91
E.14.2 Boxes .. E-101

E.15 ~ ... E-106

E.16 Glossary .•..•.....•..................•.•.........•.......•.•...•.•.•.........•...•......•...•• E-l08

QuickDraw

E.l AbOUt 1llls ~X
This appendix describes QuickDraw, a set of graphics procedUres, functions,
and data types that allows a Pascal or assembly-language programmer of Usa
to perform highly complex graphic operations very easily and very quickly. It
covers the graphic concepts behind QulckDraw, as well as the technical
details of the data types, procedUres, and functions you will use in your
programs.
We assume that you are familiar with the LIsa WorkShop Manager, Lisa Pascal,
and the Usa qleratlng System's memory management This graptllcs package
is for programmers, not end users. AlthoUgh QuickDraw.may be used from
either Pascal or aSSembly language, all examples are given In their Pascal
form, to be clear, concise, and more intuitive; section E.ll describeS the
details of the asSembly-language Interface to QulckDraw.
The appendix begins with an Introouction to QulckDraw and what you can do
with It (section E.2~ It then steps back a l1ttle and lOOks at the mathemat­
ical concepts that form the foundation for QulckDraw: coordinate planes,
points, and rectangles (section E.3~ O1Ce you understand these concepts, read
on to section E.4, which describeS the graphiC entitles based on them--hOw
the mathematical world of planes and rectangles is translated into the
physical pttenomena of light and ShadOw.
Then comes some discussion of how to use several graphics ports (section E.6),
a sunmary of the basiC drawing process (section E.7~ and a discussion of two
more parts of QuickDraw, pictures and polygons (section E.8~
Next, in Section E. 9, there's a detailed description of all QuickDraw proce­
rures and fu1cUons, their parameters, calling protocol, effects, side effects,
and so OI1--all the tectTlical information you'll need each time you write a
program for the Lisa
Following these descriptions are sections that wUl not be of interest to all
readers. Special Information Is given In section E.lO for programmers whO
want to customize QuiCl<.Draw operations by overriding the standard drawing
procedUres, in section E.l1 for thOSe wno will be using QuICkDraw from
asserroly language, and In section E.l2 for thOse Interested In creating
three-CJ1menslonaJ graphics using the Graf3D unit
Finally, there are llstlngs of the QulCkOraw Interface (Section E.l3), two
sample programs (section E.14), and the QOSt~ lI1lt (E.l5); and a glossary
that explains terms that may be t.I1famUlar to you (section E.l6~

E-l

Pascal Reference MantIa} Qulcl<Dl1Jw

E2 AbOUt QulCkDraw
QulckDraw allows you to organize the Lisa screen into a number of IndividUal
areas. Within each area you can draw many things, as Ulustrated In Figure
E-l.

Text

Bold
/18/ic
Underline
~OHrilI) --

RoundRects

You can draw:

Lines Rectangles Ovals

0000

Wedges

• " .1'.1' .I' , ,
.1'.1' .I' , ,

Polygons

Figure E-l
~es Of Qulckoraw·s Abll1tles

Regions

• Text Characters in a number of proportionally-spaced fonts, wtth variations
that include bOldfacing, italicizing, underlining, and outlining.

• straight Hnes of any length and wIdth.
• A varIety of shapes, either soUd or hollow, InclUding: rectangles, wIth or

without rounded comers; full cIrcles and ovals or wedge-Shaped sections;
and polygons.

• My other arDltrary snape or COllection Of snapes, again either saUd or
hollow.

• A picture consisting of any combination of the above Items, wIth just a
stngle procedUre call.

In addition, QulCkDraw has· some other abl1ltles that you won't find In many
other graphics packages. These ab11ltles take care of most of the "house-

E-2

Pascal Reference Manual QulckDraw

keeplng"--the trIvIal but tIme-consumIng and bothersome overhead that's
necessary to keep things in order.

• The ao1l1ty to define many distinct POIts on the screen, each with its own
complete drawIng environment--its own coordInate system, draw1ng
location, character set, location on the screen, and so on. You can easll y
switch from one such port to another.

• Full and complete cJ/pplng to arbitrary areas, so that drawing will occur
only where you want It's lIke a super-duper colorIng book that won't let
you color outside the Hnes. You dOn't have to worry aoout accidentally
drawing over somethIng else on the screen, or drawIng off the screen and
destroyIng memory.

• Off-screen drawing. Anything you can draw on the screen, you can draw
into an off-screen buffer, so you can prepare an image for an output
device withoUt disturbing the screen, or you can prepare a pIcture and
move It onto the screen very quiCkly.

And QulckDraw lives up to its name! It's very fast. The speed and
responsiveness of the Usa user interface are dUe primarlly to the speed of the
QulckDraw package. You can do good-quality anImation, fast interactive
graphIcs, and complex yet speedy text dIsplays usIng the full features of
QulckDraw. This means you dOn't have to bypass the general-purpose
QulckDraw routines by writing a lot of specIal routines to Improve Speed.

E.2.1 How To use QuiCkDraW
QulckDraw can be used from either Pascal or MC68000 machine language. It
has no user interface of its own.
If you're using Pascal, you must write a Pascal program that inclUdes the
proper QuickDraw calls, complle It agaInst the fUes OO/QUlckDraW.£BJ and
eJ)/QIJSlwort-lBJ, link. It with the fUes listed in QO/(.J)StUff.TEXT, and
execute the llnked Object file.
I f you're using machine language, your program shOuld inclUde the proper
QulckDraw calls, and .If'«:1.UJE the fUe QOIGRAFTYPEs.. TEXT. Assemble the
program, link it with tne fUes listed in eJ)/(.J)StUff.TEXT, and execute the
linked object fUe.
A programming mOdel, ~le, Is Included wltn the WOrkshOp SOftware In
the fUe QD/~le.lEXT (I1Sted in Section E.14.1); it shOws the structure of
a properly organIzed QulckDraw program. What's best for begInners Is to read
through the text, and, using the superstructure of the program as a "shell",
modi fy It to suit your own purposes. ())Ce you get the hang Of wrl tlng
programs insl(le the presuppUed Shell, you can work on changing the shell
Itself.
Note that all fUes related to QulckDraw are prefixed by "~f'.
QulCkDraw inclUdes only the graphIcs and utility procedUres and functions
you'll need to create graphiCS on the screen. Procedures for dealing wIth the

E-3

Pascal Reference Manual QulckD.raw

mouse, cursors, KeybOard, and screen settIngs, as well as those allow1ng you to
generate sounds and read and set clOCkS crtd dates, are described In Appendix
F, HardWare Interface.

Ell c;;)JlckDraW Data Types
QuickDraw defines three general data types, QOByte, Q[Ptr, and Q[l-icnjle:

type lPJyte = -128 •. 127
~r = "c;xlByte
WiCmle = "QPtr

Other data types are described throughoUt this appendix In the sections In
which they're relevant. For a summary of all QuiCl<Draw data types, see
Section E.13.2.

E.3 1he MaUlematical Fot.rldatioo of QuiokDIaw
To create grapnlcs that are roth precise and pretty requires not super-ctlarged
features but a firm mathematical fOUndation for the features you have. If the
mathematics that underlle a graphics pacKage are Imprecise or fuZZY, tne
graphlcs will be, too. QuickDraw defines some clear mathematical constructs
that are widely used In Its procedures, functions, and data types: the cooJr1/­
nate plane, the point. the rectangle, and the region

E.3.1 1lle Coordinate PICWle
All information about location, placement, or. movement that you give to
QuickDraw is in terms of coordinates on a plane. The coordinate plane is a
two-dimensional grid, as illustrated in Figure E -2.

-32768
t

- 32768 ~-++-+++-+-f00t0.4-+++++-+-i -+ 32767

"-
32767

FI~ E-2
TIle COOrdinate PICl'le

E-4

Pascal Reference Manual QIIickDraw

There are two distinctive features of me QulcKDraw coordinate plane:
• All gr1d coord1nates are lntegers.
• All grid Unes are 1nfinitely thin.

These concepts are Important! First, they mean that the QuicKDraw plane is
finite, not infin1te (althoUgh it's very large~ Horizontal coordinates range
from -32768 to .32767, and vertical coordinates have the same rCllQe.
8eCond, tney mean tnat all elements represented on the coordinate plane are
mathematically pure. Mathematical calculations using integer arithmetic will
produce intuitively correct results. If you Keep In mInd that grId Unes are
infinitely thin, yOU'll never have "endpoint paranoia"--the confusion that
results from not Knowing Whether that last dot Is Included In the Hne.

E3.2 Points
01 the coordinate plane are 4,294,967,296 unique points. Each point is at the
intersection of a horizontal grid 11ne and a vertical grid 11ne. As the grid Hnes
are infinitely thin, a point Is Infinitely small. Of course there are more points
on this grid than there are dOts on the Lisa screen: When using QuICKOra\tJ you
associate small parts of the grid \tJith areas on the screen, so that you aren't
bound into an arbitrary, Umlted coordinate system.
The coordinate origin (0,0) Is In the middle of the grid. Horizontal coordinates
increase as you move from left to right, and vertIcal coordInates increase as
you move from top to bOttom. This is the \tJay both a TV screen and a page
of Engllsh text are scanned: from the top left to the oottom ngtlt.
You can store the coordinates of a point in a Pascal variable \tJOose type Is
defined by QulckDra\tJ. The type Point Is a record of two Integers, and has
the fo11o\tJing structure:

type VHSelect = (V, H);
PoInt = record case Integer of

0:

1:

end;

(V:
h:

(Vh:

Integer;
integer);

array [VHSelect] of integer)

The variant part allows you to access the vertical and hOrizontal components
of a point either individUally or as an array_ For example, If the variable
gcxxPt were declared to be of type Point, the following would all refer to the
coordinate parts of the polnt:

gcxxPt. v gocxFt.h
gocxFt.Vh[V] goodPt.Vh(H]

E-S

Pascal Reference Manual QuICkDraw

E.3.3 Rect.cPJIes
My two points can define the top left and bOttom right corners of a
rectangle. ~ these points are Infinitely small .. the borders Of the rectangle
are Infinitely thin (see Figure E - 3~

Left

Right

Figure E-3
A RectcDJle

Rectangles are used to define active areas on the screen, to assign coordinate
systems to graphic entitles, and to specify the locations and sizes for various
drawing commands. QulckDraw also allows you to perform many
mathematical calculations on rectangleS--Changlng their sizes, Shifting them
around, and so on.

NJTE

Remember that rectangles, Uke points .. are mathematical concepts that
have no direct representation on the screen. The association oetween
these conceptual elements and their physical representations Is made by
a bitmap, deSCrlDed below.

E-6

Pascal Reference fvIarX.I81 c;ttfCkDraw

rne data type for rectangles Is Reet and consIsts of four Integers or two
poInts:

type Root = record case integer of

0: (tqJ : integer;
left: integer;
bottom: integer;
ri~t: integer);

1: (tqX.eft: Point;
botRi~: Point)

en:J;

Again, the record variant allows you to access a variable of type Reet either
as four bOundary coordinates or as two dIagonally opposIng comer poInts.
combIned with the recorcJ variant for poInts, all of the fOllowIng references to
the rectangle named bRect are legal:
~

tJRect • tq:1.eft

~.tqJ
bRect.topLeft.v
tJRect. tq:1.eft. Vh[V]

~.bottaR
bRect.botRight.v
bRect.botRight.Vh[V]

tJRect . botRight

tJRect . left
bRaCt. topLeft .h
tJRect.tq:1.eft.Vh[H]

{type Root}

{type Point}

{type integer}
{type integer}
{type integer}

tJRect . right {type integer}
bRect.botRi~t.h {type integer}
tft!Ct . botRight . Vh[H] {type integer}

WARNI1'13

If the bottom coordinate of a rectangle is equal to or less than the top,
or the right coordinate Is equal to or less than the left, the rectangle
Is an enpty rectangle (l.e., one that contains no bits~

E.3.4 Regions
unlike most graphIcs paCkages that can manipulate only sImple geometriC
structures (usually rectilinear, at that), QuiCkOraw can gather an arbitrary set
of spatially coherent points into a structure called a region, and perform
complex yet rapid manipulations and calculations on such structures. This
remarkable feature not only will make your standard programs simpler and
faster, but wlll let you perform operations that would otherwise be nearly
impossible; it is fundamental to the Lisa user interface.

E-7

Pascal Reference Hanual QulckDraw

You- define a region by drawing I1nes, Shapes such as rectangles and ovals, or
even other regIons. The outline of a region should be one or more closed
loops. A region can be concave or convex., can consist of one area or many
disjoint areas, and can even have "holes" in the middle. In Figure E-4, the
region on the left has a hOle In the middle, and the regIon on the right
consists of two disjoint areas.

r

Ii

Fl~ E-4
Regions

Because a region can be any albi trary area or set of areas on the coordinate
plane, It takes a variable amount of information to store the outlIne Of a
region. The data structure for a regIon, therefore, Is a variable-length entity
wIth two fixed fIelds at the begInnIng, followed by a varIable-length data
field:

type Regim = record
rglS1ze: integer;
1 \llfftJx: Rect;
{optional region definition data}

end;

The rglSlze fIeld contains the sIze, In bytes, Of the regIon variable. The
fg1BBox field is a rectangle which completely encloses the region.

The sImplest region Is a rectangle. In this case, the fg1BBoX field defines the
entire region, and there is no optional region data For rectangular regions (or
empty regions), the IglSIze field contains 10 (two bytes for J9lSlze, ~,us
ei~t for fg1BBox).

The region definition data for nonrectangular regions is stored in a compact
way which allows for hi~ly efficient access by Quicl<Oraw procedures.

E-8

Pascal Reference Manual Qu!ckDraw

As regions are of variable size, they are store<l dynamically on the heap, and
the q>eratlng system's memory management moves tnem around as their sizes
change. Being dynamic, a region can be accessed only through a pointer; but
when a region Is moved, all poInters referring to It must be updated. F or thIs
reason, all regIons are accessed thrOUgh /Ja'X1les, which point to one master
poInter WhiCh In tum poInts to the region.

type RgPtr = ARegioo;
~le = "'RgPtr;

When the memory management relocates a region's data in memory, it updates
only the R~ master pointer to that region. The references througn the
master pointer can find the region's new home ... bUt any references pointing
dIrectly to the region's prevIous posItion In memory would now point at dead
bits. To access individUal fields of a region ... use the region handle and double
Indirection:

~"''''.l1JlSlze
myRgl'" '" .rg830x
myRg'l"' rg830x. ~

myRg'l'" .rg830x

{size of reg100 ~ tlCnfle is myR~
(rectalgle erolosirJJ the scme regloo)
{mln1rTun vertical coordinate of all points
In the reglm}
{semantically lreorrect; will not COOlllle If
myRgl Is a ~e}

Regions are created by a QulckDraw function which allocates space for the
region ... creates a master pointer, and returns a region handle. When you're
dOne with a regIon ... you dispose of It with another QulckDraw routine WhiCh
frees up the space used by the region. (}1ly these calls allocate or deallocate
regions; do not use the Pascal prOCedUre new to create a new region!
You specify the outline of a region with procedUres that draw lines and
Shapes, as described in Section E.9, QulckDraw Routines. All example Is given
In the discussion of CIOSeRgn In Section E.9.11, Calculations with RegIons.
Many calculations can be performed on regions. A region can be "expanded"
or "shrunk" ana, given any two regIons ... QulCkDraw can fInd their union,
intersection ... difference ... and exclusive-CR; it can also determine whether a
gIven poInt or rectangle intersects a gIven regIon ... and so 00. There Is of
course a set Of graptllc operatlons on regions to draw them on the screen.

E.4 GrcP1lc EntlUes
Coordinate planes, points, rectangles, and regions are all good mathematical
models, bUt they aren't really graphiC elements--they cJon't have a C1lrect
physical appearance. some grapnlc entities that do nave a direct graphiC
interpretation are the bit image, bitmcp, pattem and cursor. TIlls section
describes the data structure of these graphic entities and hOw they relate to
the mathematical constructs described above.

E.4.1 Tne Bit Image
A bit image Is a collection of bits in memory Which have a rectUlnear
representation. Take a collection of words In memory and lay them end to

E-9

Pascal Refemnce Manual QuICkDl'8W

end -so that bIt 15 Of the lowest-nut'Tlbered word Is on the left and bIt 0 of
the highest-numbered word is on the far right. Then take this array of bits
and divIde 1 t, on word bOUndarles, Into a number Of equal-sIze rows. Stack
these rows vertIoally so that the fIrst row Is on the top and the last ro\\l Is on
tne bOttom. me result Is a matrix llke the one StlOwn In FIgure E-5--rows
and columns of bits, with each ro\\l oontaining the same runber of bytes. The
runber of bytes In each row of the bIt Image Is called the row wldtIJ Of that
Image.

Byte

FI~ E-5
A Bit Image

Row width
is 8 bytes

Last
Byte

A bit image can be stored In any static or dynamic variable, and can be of
any length that Is a multiple of the row wIdth.

The Usa screen itself is one large vIsible bIt image. There are 32,760 bytes of
memory tnat are displayeo as a matrIx Of 262,080 pixelS on the screen, each
bit corresponding to one pixel. If a blt"s value Is 0, Its pixel Is white; If the
bIt's value Is 1, tne pIxel Is black.

The screen Is 364 pixels tall and 720 pixels wide, and the row width of its bit
Image is 90 bytes. Each pixel on the screen is one and a half times taller
than it is wide, meaning a rectangle 30 pixels wide by 20 tall lOOks square,
and a 30 by 20 oval lOOks circular. ll)ere are 90 pixels per Inch horizontally,
and 60 per Inch vertically.

E-10

Pascal Reference Manual Ql.IlckDraw

Since eacn pixel on tne screen represents one ott In a ott Image,
Wherever thts appendix says "ott", you can subst1tute "pixel" If the bit
Image Is the Usa screen. UKewise, this appendix often refers to pixels
on the screen where the discussion appl1es equally to bits In an
off-screen bIt Image.

E.4.2 The Bitmap
When you COfY'Il)lne the physical entity Of a bit Image w1tn the conceptual
entltles of the coordinate plane and rectangle, you get a bItmap. A bItmap
nas tllree parts: a pointer to a bit Image, the row width (In oytes) Of that
Image, cn:J a bOUndary rectangle WhIch gives the Oltmap bOth Its dimensions
and a coordinate system. Notlce that a Oltmap dOes not actually InclUde the
bl ts themselves: it points to them.

There can be several bitmaps polntlng to the same bit image, each imposing a
different coordinate system on It. Tnls important feature is explained more
fully in Section E.6, COOrdinates In GrafPorts.
As shown tn Figure E -6, the Clata structure of a bitmap Is as follows:

type Bitt1ap = record

rowB tes

baseAtk2r: QlPtr;
rmlBytes: integer;
tJotnjs: Root

end;

Base~
Address

~-- Row width -----+

Fl~ E-6
A81~

E-l1

Pascal Reference Manual QuICkDraw

The baseAddr field Is a poInter to the begImlng of tne bit Image In memory,
and the rowBytes field is the number of bytes In each row of the Image. Both
of these ShOUld always be even: a bitmap shOUld always begIn on a word
boUndary and contain an Integral number of words In each row.

The boln2S f1eld is a bOUndary rectangle that both encloses the active area of
the bit image and imposes a coordinate system on it The relationshIp
between the boundary rectangle and the bit 1mage in a bitmap Is sImple yet
very important. First, a few general rules:

• Bits In a bit image fall between points on the coordinate plane.

• A rectangle divides a bit image into two sets Of b1ts: those b1ts ins1de the
rectangle and thOse outside the rectangle.

• A rectangle that Is H points wide and V points tall encloses exactly
(H-I) * (V-I) b1ts.

The top left comer of the boundary rectangle is aligned around the first bit in
the bit Image. The width of the rectangle determInes how many bIts of one
ro~ are logically owned by the bitmap; the relationship

8 * ~.ro.aytes >"" ~.bOt.njs.r1~t-lI8p.bol.rldS.left

must always be true. The height of the rectangle determines how many rows
of the Image are logically owned by the bitmap. To ensure that the number
of bits In the logical bitmap is not larger than the number of bits in the bit
Image, the bit image must be at least as big as

(IIQ). bWlds .bottalHlElp. bol.rlds. top)-map. ro.Bytes

Normally, the bOUndary rectangle completely encloses the bit image: the width
of the bOUndary rectangle is equal to the number of bits In one row of the
image, and the height of the rectangle Is equal to the number of rows In the
image. If the. rectangle Is smaller than the dimensions of the image, the least
significant bits In each row, as. well as the last rows In the image, are not
affected by any operations on the bitmap.

The bitmap also imposes a coordlnate system on the Image. Because bits fall
between coordinate points, the coordinate system assigns Integer values to tne
Unes that border and separate bits, not to the bit positions themselves. For
example .. If a bitmap Is assigned the bOUndary rectangle wIth corners (10 .. -8)
ana (34,8), the oottom right bit In the image will be between hOrizontal
coord1nates 33 and 34, ana between vertical coordinates 7 and 8 (see F1gure
E-7~

E-12

Pascal Reference MaI7(Ja}

(10, -8)

(10,8)

E.4.3 Patterns

FI~e E-7
COOrdinates ~ BI~

(34, -8)

•
(34,8)

A pattern is a 64-bit image, organized as an 8-by-8-bit rectangle, which Is
used to define a repeating desIgn (SUCtl as strIpes) or tone (SUCh as gray~
Patterns can be used to draw lines and shapes or to fill areas on the screen.
When a pattern is drawn, It is aligned such that adjacent areas of the same
pattern In the same graphiCS port will blend with each other Into a contin­
uous, coordinated pattern. QulckDraw provides the predefined patterns WIlIte,
black, gray, ItGray, and Cl<Gray. My other 64-bit variable or constant can be
used as a pattern, too. The data type definItion for a pattern is as follows:

type Pattem = ~ed array [0 .. 7] Of O .. 255;
The row width of a pattern Is 1 byte.

E.4.4 ClJnors
A cursor Is a small Image that appears on the screen and Is controlled by the
mouse. (It appears only on the screen, and never in an off-screen bit image.)
A cursor is defined as a Z56-bit image, a 16-by-16-bit rectangle. The row
width of a cursor Is 2 bytes. FIgure E -8 illustrates four cunen.

E-13

Pascal RefeJ'el1Ce fvIaIVal

o

0-1' .1
8
I

8
I

+t+++t+++H 8-.... tIM .-8
FI~ E-8

CUrsors

C;;V1CkDraw

16
I

-9

A cursor has three fields: a 16-word data field that contains the Image itself,
a 16-\tJord masK field that contains information abOUt the screen appearance
of each bit of the cursor, and a IJotspot point that aUgns the cursor with the
position of the mouse.

type QJrsor = record
data: array [0 .. 15) Of integer;
msk: array [0 .. 15] of integer;
r.ltspot: POlnt

end;

The data for the cursor must begin on a word bOUndary.
The cursor appears on the screen as a 16-by-16-blt rectangle. me appear­
ance of each bit of the rectangle is determined by the corresponding bits In
the <lata ana maSK and, If the maSk b1t 1s 0, by the p1xel "lllder" the cursor
(the one already on the screenJn the same position as this bit of the cursor~

Data Mask Resulting pixel on screen
-0- --1- White

1 1 Black
o 0 same as pixel under cursor
1 0 Inverse of pixel under cursor

Notice that If all maSk bits are 0, the cursor Is completely transparent, In
that the Image under the cursor can still be viewed: pixels Under the white
part Of the cursor appear uncnangea, 'lihUe UrlOer the black part Of the cursor,
black pixels ShOw through as White.
The hOtspot aligns a point In the Image (not a bit, a point!) with the mouse
position. Imagine the rectangle with comers (0,0) and (16,16) framing the
image, as In each of the examples In Figure E -8; the hOtspot Is defined in this
coordinate system. A hOtSpot of (0,0) Is at the top left of the Image. For the
arrow In Figure E-8 to point to the mouse position, (0,0) would be its hOtspot.
A hotspot of (8~) Is In the exact center of the image; the center of the plUS

E-14

PascaJ Reference fv1aI?(JaJ

(10, -8)

(10,8)

E.4.3 Patterns

Fl~e E-7
COOrdinates 5ld Bl~

(34, -8)

•
(34,8)

QujckDraw

A pattern is a 64-bit image, organized as an 8-by-8-bit rectangle, which is
used to define a repeating design (SUCtl as stripes) or tone (SUCh as gray~
Patterns can be used to draw lines and shapes or to fill areas on the screen.
When a pattern Is drawn, it Is aligned sUCh that adjacent areas Of the same
pattern in the same graphiCS port will blend with each other Into a contin­
uous, coordinated pattern. QulckDraw provides the predefined patterns WhIte,
bleo<, gray, ItGray, and cJ(Gray. My other 64-0it variable or constant can be
used as a pattern, too. The data type definition for a pattern is as follows:

type Pattern = ~ed array [0 •. 7] Of O •• 255;

The row wIdth of a pattern Is 1 byte.
E.4.4 cursors

A cursor Is a small Image that appears on the screen ana Is controlled by tne
mouse. (It appears only on the screen, and never in an off-screen bit image.)
A cunor h defined as a 256-bit image, a 16-by-16-bit rectangle. The row
width Of a cursor is 2 bytes. Figure E-8 Illustrates four cursors.

E-13

Pascal ReFerence JvfantIaJ

o
0-1' BmHHlHll

8
I

Flp-e E-8
CUrsors

8
I

-

r;;vJOkDraw

16
I

9

A cursor has three fields: a 16-word data field that contains the Image itself,
a 16-word maSk field that contains information abOUt the screen appearance
of each bIt of the cursor, and a hotspot point that aUgns the cursor with the
position of the mouse.

type OJrsor = record
data: array [0 .. 15] Of integer;
maSk: array [0 .• 15] of integer;
ootspot: POint

eRl;

The data for the cursor must begin on a word bOUndary.
Tne cursor appears on the screen as a 16-tly-16-blt rectangle. me appear­
ance of each bit of tne rectangle is determined by the corresponding bits In
the data and maSk and, If the maSk bit Is 0, by the pixel "under'" the cursor
(the one already on the screen.,in the same position as this bit of the cursor}

Data MaSk ReSulting pixel on screen
-0- --1- White

1 1 Black
o 0 same as pixel under cursor
1 0 Inverse of pixel under cursor

Notice that If all maSk bits are 0, the cursor Is completely transparent, In
that the image under the cursor can stUl be viewed: pixels under the white
part Of the cursor appear uncha1ged, wnUe under the black part Of the cursor,
tllack pixels Show through as White.
The hOtspot aUgns a point In the Image (not a bit, a point!) with the mouse
poslt1on. Imagine the rectangle with comers (0,0) and (16,16) framIng the
image, as In each Of the examples In Figure E-8; the hOtspot is defined In this
coordinate system. A hOtspot of (0,0) Is at the top left of the Image. For the
arrow In Figure E-8 to point to the mouse position, (0,0) would be Its hOtspot.
A hotspot of (8.8) Is In the exact center of the Image; the center of the plus

E-14

Pascal Reference Manual QufCkDraw

sign or oval In Figure E-8 would coincide wIth the mouse posItion If (8,8) were
the hOtspot for that cursor. SimUarly" the hOtspot for the pointing hand would
oe (16,,9~
Whenever you move the mouse" the low-level Interrupt-driven mouse routines
move the cursor's hotspot to be al1gned with the new mouse position.
QulC1<Draw suppl1es a predeflned arrow cursor" an arrow polnUng north­
northwesl
Refer to ,AppendIx F" Hardware Interface" for more information on the mouse
and cursor control.

E.S llle D~ Envirorment: GrafPort
A grafPort Is a complete drawing environment that defines hOw and Where
graphiC operations will have their effect. It contains all the information
aoout one Instance Of graptllc output that Is kept separate from all other
instances. You can have many grafPorts open at once" and each one will have
Its own coordinate system" drawing pattern" baCkground pattern" pen size and
location" character font and style" and bitmap In Which drawing takes place.
You can Instantly switCh from one port to another. GrafPorts are the
structures on which a program bUilds windOWS" whlen are fundamental to the
Usa"s "overlapping windOWS" user Interface.
A grafPort Is a dynamic data structure, defined as follows:

type GrafPtr "GrafPort;
GrafPort = record

device:
portBits:
portRect:
vi~:
Cli~:
bkPat:
fillPat:
~oc:
pnSize:
prtble:
pr1'at:
P'l'Iis:
txFont:
txFace:
txtlOde:
tXS1ze:
spExtra:
fgColor:
bkColor:
colrBit:
patStretch :
p1CS8ve:

E-15

integer;
Bl~;
Rect;
Rg"Ifcn1le;
~le;
Pattern;
Pattern;
Point;
Point;
integer;
Pattern;
integer;
1nteger;
Style;
integer;
1nteger;
longint;
long1nt;
longint;
1nteger;
1nteger;
Wb'ldle;

Pascal Reference Manual Ql/fCkDIaW

l'CJlS8Ve: 'llHCn11e;
polySave: 'llHCn11e;
grafPrOOs: ~sPtr

em;
All QuICkDraw operations refer to grafPorts via grafPtrs. You create a
grafPort with the Pascal procedure new and use the resultlng pointer In calls
to QuiCkDraw. You cOUld~ of course~ declare a static variable of type
GrafPort, and Obtain a pointer to that static structure (with the • operator),
but as most grafPorts will be usee oynamlcally~ their data structures ShOUld be
dynamic also.

You can access all fields and SUbfields of a grafPort normally~ but you
snould not store new values dIrectly Into them. QulcKDraw nas
procedUres for altering all fields of a grafPort, and using these
procedUres ensures mat Changing a grafPort prOduces no unusual side
effects.

TIle deVIce field of a grafPort Is the number of the logical output devIce that
the grafPort will be using. QulcKDraw uses this Informat1on~ since there are
pnyslcal differences In the same logical font for different output deVices. The
default device number is 0, for the Usa screen.
The portBlts field Is the bItmap that poInts to the bIt Image to be used by the
grafPort. All orawing that is oone in this grafPort will take place In thIs bit
Image. The default bItmap uses the entire Usa screen as its bit image, with
rowBytes of 90 and a tlOUndary rectangle of (O,o,720,364~ The bitmap may be
changed to IndIcate a different structure In memory: all graphics procedUres
work In exactly the same way regardless of whether their effects are visible
on the screen. A program can~ for example, prepare an image to be printed
on a printer withoUt ever displaying the Image on the screen, or develop a
picture in an off-screen bitmap before transferrIng it to the screen. By
altering the coordinates of the portBlts..bOtlm rectangle~ you can cnange the
coordinate system of the grafPort; with a QulcKDraw prOCedUre call, you can
set an arbitrary coordinate system for eacn grafPort, even If the different
grafPorts all use the same bit image (e.g.~ the fUll screen~

The portRect fleld Is a rectangle that defInes a subset of the bItmap for use
by the grafPort. Its coordinates are in the system defined by the
portBlts..tnn2s rectangle. All drawing dOne by the appllcatlon occurs Inside
this rectangle. The portRect usually defines the "writable" interior area Of a
wlndow~ oocument~ or other ooject on the screen. The default portRect Is the
enUre screen.
The vlsR~ field indlcates the region that Is actually visible on the screen. It
Is reserved for use by future software, and shOUld be treated as read-only.

E-16

Pascal Reference Manual QulckDraw

The default vlsR{Jlls set to the portRecl

The c~gl Is an arbitrary regIon that tne app11caUon can use to 11mi t
drawing to any region withIn the portRect If .. for example .. you want to draw
a half circle on the screen .. you can set the Cl~gl to half tne square that
would enclose the whOle circle .. and go ahead and draw the Whole circle. O1ly
the half within the cllpRgl wlll actually be drawn in the grafPort. The
default cllpRgn is set arbitrarIly large .. and you have full control over its
setting. Notice that unllke the vlsRgl .. the cllpRgl affects the Image even if
it is not displayed on the screen.
Figure E-9 lllustrates a typical oItmap (as defined Oy plrtBlts) .. plrtRect.,
vlsR~ and cl1JR~

Fl~e E-9
GratPort Regloos

The bkPat and ftllPat fields of a. grafPort contain patterns used by certain
QJICkDraw routines. Bl<Pat Is trle "oackgrounc'" pattern that Is used wnen an
area is eraSed or When bits are scrolled out of it When asked to fill an area
with a specIfied pattern, QUlcKDraw stores the given pattern In the ftllPat
field and then calls a low-level drawIng routine Which gets the pattern from
that field. The various graphic operations are discussed In detall later In the
descriptions of individual QulckDraw routines.
Of the next ten fields, the first five determIne characteristics of the graphIcs
pen, descrIbed in Section E.5.1, and the last five determine character1stics of
any text that may be drawn, descr1bed In Section E.5.2.
me fgCoIOI .. bkCOlor, and COlrBlt fieldS contaIn values related to drawing In
color, a capabUlty that will be avallable in the future when Apple supports

E-17

Pascal ReFerence fvla'XJal t;UICkDraw

color output deVices for the Usa. FgColor Is the grafPort's foregrOUnd color
and l*COlor Is its backgrOUnd color. COIlBlt tells the color Imaging software
WhiCh plane of the color picture to draw into. For more Information, see
Section E.7.2, Drawing in COlor.
The patStretch field is used dUring output to a printer to· expand patterns if
necessary. The application stlOUld not cnange its value.
The plCS8Ve, IglSaVe, and polySave fields refleot the state of pioture, region,
and polygon definItion .. respectively. To defIne a regi~ for example, you
"open" It, call routines that draw It, and then "close" it If no region is open,
IglSaVe contains nl1; otherwise, It contains a handle to Information related to
the region definition. The appllcatlon should not be concerned abOUt exactly
what information the handle leads to; you may, hOwever, save the current
value of rgnsave, set the field to nil to cJisable the region definition, am later
restore It to the saved value to resume the region definition. TIle plc5ave
and polySave fields work slmllarly for pictures and polygons.
Finally, the grafProcs field may point to a special data structure that the
application stores into If it wants to customize QuICkDraw drawing prOcedUres
or use QulckDraw In other adVanced, highly specialized ways. (For more
information, see section E.l0, CUStomizing Qulckoraw~ratlons.) If
grafProcs Is nil, QulckDraw responds in the standard ways described In this
appendix.

ES.l Pen CharaCteristics
me ,"-00, JIlSlze, ~, 1JPa~ and P'lVls fields of a grafPort deal with the
graphics pen. Each grafPort haS one and only one graphiCS pen, Which Is used
for drawIng lInes, Shapes, and text. ~ Illustrated In Figure E-l0, the pen haS
four Characteristics: a locatJOfl, a size a draWing ~ and a drawing pattem

E-18

Pasca.I Reference /I1antI8J t;tIiCkDraw

FI{JJre E-I0
A Grapnlcs Pen

The pen location (pLoc) Is a poInt In the coordinate system of the grafPort,
and is wtlere QuiCl<Draw will begin drawing the next I1ne, Shape, or character.
It can be anYWhere on the coordinate plane: there are no restrictions on the
movement or placement of the pen. Remember that the pen location is a
pOint on the coordinate plane, not a pIxel In a bit Image!
The pen Is rectangular in Shape, and tlas a user-definable width and height
(plSlze~ The default size Is a I-by-l-blt rectangle; the width and height can
range from (0,0) to (32767 ;32767~ If either the pen widU'l or U1e pen neight Is
less than 1, the pen wIll not draw on the screen.

• The pen appears as a rectangle wIth its top left corner at the pen
location; it hangS beloVJ and to the right of the pen location.

The ~ ana JlPat fieldS Of a grafPort aetermlne now the bIts unCler me
pen are affected when l1nes or snapes are drawn. The prPat Is a pattern that
Is usea as tne "InK" In tne pen. Tnls pattern, l1Ke all otner patterns arawn In
the grafPort, is always aUgned with the port's coordinate system: the top left
corner Of the pattern Is al1gnea wIth the top left comer Of the portRect, so
that adjacent areas of the same pattern wIll blend Into a continuous,
cOQnllnated pattern. Five patterns are predefined (white, blacK, and three
shades of gray); you can also create your own pattern and use It as the prPal
(A utll1ty prOcedUre, called StuffHex, allows you to fill patterns easUy.)

E-19

Pascal Reference Manual Qu/CkDraw

The Jl1VIOde fIeld determInes how the pen pattern Is to affect wnat's alreaay
on the bitmap when Unes or Shapes are drawn. When the pen draws"
QuicKDraw first determines wf1at bits of the bItmap wIll be affected ana findS
their corresponding bits in the pattern. It then does a bit -by-bl t evaluation
based on the pen mode, which specl fIes one of eight OOOlean operatIons to
perform. The resulting bit Is placed into its proper place in the bItmap. The
pen modes are described In Section E.?!' Transfer Modes.
~ ~V1$ fIeld determines the pen's vIsIbility, that Is, wtletner It draws on the
screen. For more information" see the descriptions of HidePen and ShowPen
In Section E.9.3" Pen and line-DrawIng Routines.

E.5.2 Text Characteristics
The txFoot, txFoc:e, D<t-1Ode, txsIze, and SJfxtra fIelds Of a grafPort determIne
how text will be drawn--the font, style" and size of characters and how they
wIll be placed on the bitmap.
QuickDraw can draw characters as quicKly and easUy as it draws Unes and
shapes" and in many prepared fonts. F1gure E-ll shows two QulcKDraw
characters and some terms you Should become famBiar with.

-r--,...-__._--- escent line

ascent

-+-~--~++'~- base line

descent
~ ___ -L-__ descent line

Fl~ E-l1
QuiCI<Draw Characters

QuicKDraw can display characters in any size .. as well as boldfaced .. itallcized ..
outlIned" or shadowed, all wlthOut Changing fonts. It can also underl1ne the
characters .. or draw them closer together or farther apart.
rne txFoot fleld Is a font number tnat IdentIfIes tne cnaracter font to be used
in the grafPort. The font number 0 represents the system font .. and is the
default estabUsneo by q>enPort. The unit ~n (l1stea In section E.15)
inclUC1es definitions Of othe:r avaHaole font numbers.
A character font is defined as a collection of bIt Images: these images make
up the individUal characters of the font. The cf1aracters can be of unequal
widths .. and they're not restricted to their "cells": the lO'Wer curl Of a

. lowercase j, for example, can stretch back under the previous character
(typographers call this kemlng~ A font can consist Of up to 256 distinct
Characters, yet. not all characters neea be defineC1 in a single font. EaCh font

E-20

Pascal Reference Manual QuickDraw

contains a mlsslng .~JIflrKJl to be drawn In case of a request to draw a
character that Is missing from the font
The txFooe field controls the appearance of the font with values from the set
defined by the style data type:

type stylelteRt = (bOld" 1 talle, t.merllne, outline, stmow,
coodense, extero);

Style set of styleltelt
You can apply these either alone or 1n combination (see Figure E-12~ Most
comt>lnaUons usually loOk good only for large fonts.

Normal Characters
Bold Characters
/181ft) t'Y7t7/~]L;ft:-Y:";

Underlined Characters XY1.
~O~1r6
110...., IIMrIIIttln
Condensed Characters
Extended Characters
Bold laic C/JanJcIers
H @vfJItmItl ~

... and in other fonts, too!

Fl~e E-12
cnaracter styles

If you spec1fy bOl(1, each character Is repeatedly drawn one bIt to the r1gnt an
appropriate number of Umes for extra thiCknesS.

Itallc adds an ltallc slant to the characters. Character bits aoove tne base
11ne are Skewed rIght; bIts below the baSe line are sKewed left

Ulderllne draws a 11ne below the base line of the Characters. If part of a
Character oescencls below tne base Hne (as "y" In Figure E-12), me Underline Is
not drawn through the pixel on either side of the descending part.
You may specify either OUUlne or shadoW. rutllne makes a hollow, outlined
Character rather than a sol1d one. With stlada../, not only is the Character
hOllow and outlined, bUt the outline is thicKened below and to the right of the
character to achieve the effect of a shadow. If you specify bOld along with
out1lne or stlado'.t, the hOllow part of the character is widened.

E-21

Pascal Reference Manual QuickDraw

CMdeI.se and exteM affect ttJe t'tOrlzontal distance between all Characters,
InclUding spaces. calder.se decreases the distance between characters and
extEnl Increases 1t, by an amount which QuicKDraw determines Is appropriate.
The txMOOe field controls the way characters are placed on a bit image. It
functions mUCh l1Ke a Jl"f"UE: when a character Is drawn, QuiCkDraw
determines whIch bIts of the bIt Image w1l1 be affected, dOes a blt-by-blt
comparison based on the mOde, and stores the reSUlting olts Into the bit
Image. These modes are descrIbed in Section E.7.1, Transfer Modes. O'lly
three of them--$lCOl, $lcXor, and srcBlc--stlould be used for drawing text.

The txSlze field specifies the type size for the font, In points (where "point"
here is a typographical term meaning approximately InZ inch~ MY size may
be specifIed. If QulcKDraw does not have the font In a specIfied sIze, It wUI
scale a size it dOes have as necessary to prOduce the size desired. A value of
o In this field directs QuicKDraw to choose ttJe size from among thOse it has
for the font; it wUl choose whichever size Is closest to the system font size.

Finally, the SJfxtra field Is useful when a Une of characters Is to be drawn
justified sUCh that it is aUgned with both a left and a right margin (sometimes
called "full just1fication"~ S(:fxtra is the number of pixels by which each
space Character shOuld be widened to fill out the Une.

E.6 COOIdlnates In GrafPorts
Each grafPort has Its own local coordInate system. All fieldS In the grafPort
are expressed In these coordinates, and all calculations and actions performed
In QulcKDraw use ttJe local coordInate system Of the currently selected port.
Two things are Important to remember:

• Each grafPort maps a portion of the coordinate plane into a slmllarly­
sized portion of a bIt Image.

• The portBits..bOlnlS rectangle defines the local coordinates for a grafPort.
The top left comer of portBlts.bOlRJS is always al1gned around the first bit in
the oIt Image; the coorolnates of that corner "anchOr" a point on the grId to
that bit in the oit image. This forms a common reference point for mUltiple
grafPorts using the same oit Image (SUCh as the screen~ Given a
portBlts.bot.Ilds rectangle for each port, you know that their top left comers
coincide.
The Interrelationship between the portBlt.s..bClt.1m and portRect rectangles is
very important. As the portBlt.s..bClt.1m rectangle establishes a coordinate
system for tne port, the portRect rectangle indicates the section of the
coordinate plane (and thUs the bit image) that will be used for drawing. The
portRect usually falls inside the portBlt.s..bClt.1m rectangle, out It's not required
to cJo so.
When a new grafPort Is created, Its bl!map Is set to poInt to the entire Usa
screen, and bOth the portBlt.s..bClt.1m and the portRect rectangles are set to

E-22

Pascal Reference I'-taval QulckDraw

720-by-364-blt rectangles~ VJltn tne point (O~O) at tne top left corner of tne
screen.

You oan redef1ne tne looal ooordinates of the top left oorner of the grafPort's
portRect~ using the Setortg1n procedUre. Tnis Changes the local coordinate
system Of the grafPort~ reoalculating the ooordinates of all pOints in the
grafPort to be relative to the neVJ corner coordinates. For example~ consider
these procedure calls:

setf'Ort{ gaEPort);
setorlgln(40~80);

The call to SetPort sets the ourrent grafPort to gcmePoJt; the oall to
Setor1gin cnanges the local coordinates of the top left corner of that port's
portRect to (40~O) (see Figure E-13~

Before SetOrigin After 5etOrigin(40,80)

Fl~e E-13
OBlglng Local COOrdinates

This recalculates the coordinate components of the following elements:

gcIII8POrt" . portal ts .lXln2s gaEPort" . portReCt

gaEPort" _vl~

These elements are alVJays Kept "in sync"~ so that all calculations, compari­
sons, or operatlons that seem rIght, worK right.

Notice that when the local coordinates of a grafPort are offset, the vlsR!Jl of
that port is offset also, bUt the cl4R!Jlis not. A gOOd way to think of it is
that if a doCument is oeing shOwn inside a grafPort, the document "stiCks" to
the coordinate system, and the port's structure "sticks" to the screen.
SUppose, for example ... that the vlsR~ and cllpFql in Flgure E-13 before

E-23

Pascal RefellJl1Ce /'1anUal QuICkDraw

setOrIgln are the same as the portRect, and a document Is being shown. After
the setorlgln call, the top left comer of the c~glls stUI (95,120)., but thIs
locatIon has moved aown and to the right, <rid the location of the pen within
the document has sImUatl y moved. The locations of portBlt.s.bOt.lldS, portRect.,
and vlsRgl dId not Change; theIr coordinates were Offset. AS always, tne top
left comer of portBits.txulds remains alIgned around the first bit In the bIt
Image (the first pIxel on the screen~
If you are moving, comparing, or otherwise deal1ng with mathematical Items in
different grafPorts (for example, finding the intersection of two regions In two
different grafPorts), you must adjust to a common coordinate system before
you perform the operation. A QuickDraw procedUre, LocalToGlobal, lets you
convert a point's local coordinates to a glaba.l system where the top left
corner of the bit image is (0,0); by converting the various local coordinates to
global coordinates, you can compare and mix them with confidence. For more
information, see the description of this procedUre in section E.9.17,
Calculations with Points.

E.7 General. DIscussion of DrawlfYJ
Drawing occurs:

• Always inside a grafPort, In the bit Image and coordinate system defined
by the grafPort's bitmap.

• Always within the IntersectIon of the grafPort"s portBlts.tn.rm and
portRect, ancs Clipped to its vlsRg'l and cllpRg'l.

• Always at the grafPort's pen location.
• Usually with the grafPort's pen sIze, pattern, and mocJe.

With QulckDraw procecsures, you can draw Unes, Shapes, and text. Shapes
include rectangles, ovals, rounded-comer rectangles, wedge-shaped secUons· of
ovals, regions, and polygons.
Lines are CSefined by two points: the current pen location and a destination
location. When drawing a Une, QulCkDraw moves the top left comer of tne
pen along the mathematical trajectory from the current location to the
destination. me pen hangS O8low and to the right of the trajectory (see
FIgure E-14~

E-24

Pascal Reference Manual

I -II
--

I

Fl~e E-14
DraWlrYJ Lines

NJTE

QuiCkDraw

No matnematical element (SUCh as the pen location) 1s ever affected by
clippIng; clippIng only determInes ~t appears where In the bIt Image.
If you draw a Une to a location outside your grafPort" the pen location
w1l1 move there, bUt only the portIon of the Hne that Is InsIde the port
w111 actually be drawn. ThIs Is true for all drawing procedUres.

Rectangles, ovals, and rounoed-corner rectangles are defined by two comer
points. The shapes always appear inside the mathemat1cal rectangle defined
by the two poInts. A reglon is defined In a more complex manner, but alSO
appears only within the rectangle enclosing it. Remember, these enclOSing
rectangles have InfInItely thIn borders and are not vIsIble on the screen.
p.s lllustrated in Figure E-1S, shapes may be drawn either solid (filled In with
a pattern) or flamed (outlined and hOllow~

E-2S

Pascal Reference Manual QIIICkDraw

pen height

I~~h I
FI!J.Ire E-15

SOlid snapes am Frcmed snapes
In the case of framed snapes, the outUne appears completely wlttlln the
enclosing rectangle--wIth one exceptlon--ana the vertlcal ana horizontal
thiCkness of the outline Is <letermlned by the pen size. The exception Is
polygons, as Olscussed In section E.8.2, pOlygons.
The pen pattern Is used to fill in the bits that are affected by the drawing
operation. The pen moae aefines how tnose bits are to be affected by
directing QuickDraw to apply one of eight bOOlean operations to the bits in
the shape and the corresponding pixelS on the screen.
Text drawIng aces not use the pnSlze, prPat, or ~, bUt It aces use the
JIl-oc. Each Character is placed to the right of the current pen location, with
Ule left ana Of Its base line at tne pen's location. me pen Is movea to the
right to the location wtlere It win draw ttle next character. No wrap or
carriage return Is performed automatically.
The method QuickDraw uses in placing text Is controlled by a mode slmllar to
the pen rTlOOe. Tnis is explaIned in Section E.7.l, Transfer Modes. CUpping of
text is performed in exactly the same manner as all other cUpping in
QuICkDraw.

E.7.l Tnnfer I"1lOeS
When Unes or ShapeS are drawn, the ~ field of the grafPort determines
hOw the drawing Is to appear In the port's btt Image; slmUarly, the txr-tlOe
field determines how text is to appear. There is also a QuickDraw procedUre
that transfers a bit Image from one bitmap to anotner, and this procedUre has
a mode parameter that determines the appearance Of the result. In all these
cases, the mode, called a transfer mode, speCifies one of eight bOOlean
operations: for each bit in the item to be drawn, QulckDraw finds the

E-26

Pascal Reference Mcnual QuickDraw

correSponding bit In the destination bIt Image ... performs the bOOlean operation
on the paIr of bits ... and stores the resulting bit into the bit image.
There are two types of transfer mode:

• pattem tJa?sfer mot1es... for drawing Hnes or Shapes wIth a pattern.
• SOlJJ"Ce trdnSfer flntes, for drawing text or transferring any bit Image

between two bitmaps.
For each type of mode .. there are four basIc operatlons--Cq)y,OI .. Xor .. and
Ble. The ~y operation simply replaces the pIxels In the destination with
the pIxels In the pattern or source .. "paInting" over the aestinatIon wIthout
regard for what Is already there. The or, Xor ... and Blc operations leave the
destination pixels under the whIte part of the pattern or source unchanged ..
and differ In how they affect the pixels under the black part: or replaces
thOSe pixelS with blaCK pixelS, thus "overlaying" the destination wIth the blaCK
part Of the pattern or source; Xor Inverts the pixels under the blacK part; and
Ble erases them to wnl teo
Each of the basic operations has a variant in which every pixel In the pattern
or source Is inverted before the operation Is performed ... giving eight
operations in all. Each mode Is defined by name as a constant in QulcKDraw
(see Figure E-16~

pattern or source destination

II Psint" "Overlav" "Invert" HEra~e"

11111111
patCopy patOr
sreCopy sreOr

patXor
sreXor

patBic
srcBic

11111111
notPatCopy notPatOr notPatXor notPatBic
notSrcCopy notSreOr notSreXor notSrcBic

Fl~ E-16
Tnrlsfer ModeS

E-27

Pascal ReFerence Manual

pattern
transfer
mode
patCopy
patOr
patxor
patBlC

nolPa~y
notpaUk
not.Patxor
notpatBlc

E. 7.2 DI'<l'«1ng In COlor

SOUrce
transfer
mode

srCCOpy
srcor
srcXor
srcBic
notsrCCOpy
notsrCOl
notsrcXor
not.srcBlc

QIJ!ckDmw

Action on each pixel In destInatIon:
If black pIxel In If WhIte pixel In
pattern or source pattern or source
Force black Force White
Force black Leave alone
Invert Leave alone
Force white Leave alone
Force whIte Force blacK
Leave alone Force blacK
Leave alone Invert
Leave alone Force White

Currently you can only looK at QulcKDraw output on a blacK-anCI-white screen
or printer. Eventually, hOwever, Apple will support color output devices. If
you want to set up your applIcatIon now to prOduce color output In the future,
you can do so by using QulC1<Draw procedures to set the foreground color and
tne backgrOUnd color. EIght standard COlOrs may be specifiea wIth the
fOllowIng predefined constants: blackCOlor, WhlteColor, redColor, greencolol,
bltJeColor, cyarColor, magentacolor, and yellOWCOlor. InItIally, the foreground
color Is blackCOlor and the background color Is WhlteColor. If you specIfy a
color other than WhlteColor, It wll1 appear as black on a black-and-White
output deVice.
To apply the table above (in Section E.7.1) to drawIng In color, make the
following translation: where the table shows "Force blaCk", read "Force
foreground color", and Where It shows "Force White", read "Force background
color". When you eventually receive the color output device, yOU'll find out
the effect of Inverting a color on 1 L

NJTE

QulCkDraw can support output devices that have up to 32 Olts of color
information per pixel. A color picture may be thOUght of, then, as
having up to 32 planes. At anyone time, QulckDraw draws Into only
one of these planes. A QuiCkDraw routine called by the color-imaging
software specifies WhICh plane.

E.8 Pictures ald Polygons
QulCKDraw lets you save a sequence of drawIng commancJs ana "play them
back" later with a sIngle proceaure call. There are two such meChanisms: one
for drawing any picture to scale In a destination rectangle that you specify,
and another for drawing polygons In all the ways you can draw other shapes In
QulcKDraw.

E-28

Pascal Reference Manual QufckDraw

E.8.1 Pictures
A picture In QulckDraw Is a transcript of calls to routines which draw
somethIng--anythIng--on a bItmap. PIctures make It easy for one program to
draw something defined in another program" with great flexibility and withOUt
knowing the detaUs about what's being drawn.
For each picture you define" you specify a rectangle that surrounds the
picture; this rectangle is called the picture frame When you later call the
prOCedUre that draws the saved picture" you supply a destination rectangle,
and QulckDraw scales the picture so that its frame is completely aligned with
the destination rectangle. ThUS" the picture may be expanded or shrunk to fit
its destination rectangle. For example" if the picture is a circle inside a
square picture frame" and the dest1nation rectangle is not square, me picture
is drawn as an oVal.
SInce a pIcture may 1nciUde any sequence of drawing commands, its data
structure Is a variable-length entity. It consists of two fixed fields followed
by a variable-length data field:

type Picture = record
plCSize: integer;
pi,*"rane: Rect;
{picture definition data}

erxj;

The plCSlze field contains the size" in bytes" of the picture variable. The
picFnme field is the picture frame which surrounds the picture and gIves a
frame of reference for scaling When the picture is drawn. The rest of the
structure contaIns a compact representation of the drawing commands that
define the picture.
All pictures are accessed through handles, which point to one master pointer
Which in turn points to the picture.

type PicPtr = "Picture;
PlcHandle = APlcPtr;

To define a picture, you call a QuiCkDra'W function that returns a picture
handle and then call the routines that draw the picture. There is a procedUre
to call when you've finished defining the picture" and another for 'When you're
done with the picture altogether.
QulcKDraw also allows you to 1ntersperse picture corrvrJents wIth the
definition of a picture. Tnese comments, whIch dO not affect the picture's
appearance, may be used to provide acJdl tIonal Infonnatlon about tile picture
When it's playea l:>aCk. This Is especIally valUable When pictures are
transmlttecS from one appllcatlon to another. There are two standard types of

E-29

Pascal Reference /V1antIal QlI1CkDr8w

comment WhIch .. like parentheses, serve to group drawIng commands together
(SUCh as all the commands that draw a particular part of a plcture~

cmst plClParen = 0;
plcRParen = 1;

The application defining the pIcture can use these standard comments as well
as comments of Its own aeslgn.
To InclUde a comment In the definition of a picture, the application calls a
QulckDraw procedure that specifies the comment with three parameters: the
comment kind .. which identifies the type of comment; a handle to additional
data if desired; and the size of the additional data, if any. When playIng back
a picture .. QulckDraw passes any comments In the picture's definItion to a
low-level procedure accessed indirectly through the grafPrOCs field of the
grafPort (see Section E.ID .. Customizing QuickDraw ~rations, for more
informaUon~ To process comments .. the application must include a procedure
to do the processing and store a pointer to it in the data structure pointed to
by the grafProcs f1eld.

to.lH£

The standard low-level proCedUre for processIng plcture comments
simply Ignores all comments.

E.8.2 Polygms
Polygons are similar to pictures In that you define them by a sequence of
calls to QulckDraw routines. They are also slmllar to other shapes that
QuICkDraw knows aoout .. since there is a set of procedures for performing
graphIc operations and calculatlons on them.
A polygon Is simply any sequence of connected lines (see Figure E-17~ You
define a polygon by moving to .,the starting pOint Of the polygon and drawing
lines from there to the next point, from that point to the next, and so on.

FI~ E-17
Polygons

E-30

Pascal Reference HantJal QulckDraw

The data structure for a polygon Is a varI80le-IengtrJ entIty. It consIsts of
two fIxed fields followed by a variable-length array:

type Polygm = record
polySize: integer;
polyBBox: Rect;
polyPolnts: array [0 .. 0] of Point

end;

The polySlze field contains the size, In bytes, of the polygon variable. The
polyBBox field Is a rectangle WhiCh just encloses the entire polygon. The
polyPolnts array expandS as necessary to contain the points of the pOlygon-­
the starting point followed by each successive point to which a l1ne is drawn.
liKe pictures and regIons, polygons are accessed through handles.

type PolyPtr = "Polygm;
PolyHclldle = "PolyPtr;

To define a polygon, you call a QuicK Draw function that returns a polygon
handle and then form the polygon by callIng procedures that draw Unes. You
call a prOCedUre When you've finiShed defining the polygon, and another when
you're ClOne wIth the polygon altogether.
Just as for other shapes that QuiCK Draw Knows about, there Is a set of
graphIc operations on polygons to draw them on the screen. QulcKDraw draws
a polygon by movIng to the starting poInt and then drawing l1nes to the
remaining points In succession, Just as when the routines were called to def1ne
the polygon. In this sense It "plays bacK" those routine calls. ~ a result,
pOlygons are not treated exactly the same as other QulcKDraw ShapeS. For
example, the prOCedUre that fr~s a polygon draws outsIde the actual
bOUndary of the polygon, because QuiCK Draw Une-drawing routines draw below
and to the right of the pen location. The procedUres that fIll a polygon with
a pattern, hOwever, stay wIthin the bOUndary Of the pOlygon; they also add an
addi tional line between the ending point and the starting point if thOSe points
are not the same, to complete the Shape.
There is also a dIfference In the way QulcKDraw scales a polygon and a
simllarly-shaped region If It's beIng drawn as part of a picture: when
stretched, a slanted line Is drawn more smoothly If It's part of a polygon
rather than a reglon. You may find it helpful to Keep In mind the conceptual
difference between polygons and regIons: a polygon Is treated more as a
continuous snape, a region more as a set of bits.

E.9 QuICkDraw Rwtlnes
This section describes all the procedUres and functions In QufcKDraw~ their
parameters, and theIr operation. They are presented In their Pascal form; for
information on using them from assembly language, see Section E.11, using
QuICkDraw from Assembly Language. Note that the actual proceaure and
function declarations are given here~ rather than the BNF notation or syntax
diagrams used elsewhere In this manual.

E-31

Pascal Reference l'1antIal QuICkDraw

E.9.1 GrafPOrt RooUnes

ProcEWre In1 tGraf (globalPtr: (XPtr);

InitGraf initializes QulCkOraw. It is called by the ~rt unit's QOlnlt
routine; you need not call it again. It InitiaIlzes the QulckOraw glooal
variables l1stea below.

Variable
thePOrt
... ite
black
gray
ItGray
d<Gray
arrow
screenBits
nnlSeed

~
GrafPtr
Pattern
Pattern
Pattern
Pattern
Pattern
DJrsor
Bl~
long1nt

Initial setting
nil
all-white pattern
all-black pattern
SO% gray pattern
25% gray pattern
75% gray pattern
pointing arrow cursor
Usa screen, (0,0,720,364)
1

The gJobaIPtt parameter tells QulCkOraw Where to store Its glObal variaDles,
beglming wIth thePOrt. From PasCal programs, thIs parameter should always
be set to WlePOrt; assembly-language programmers may choose any location,
as long as it can accommodate the number Of byteS specified by GRPFSIZE In
GRAFTYPES. TEXT (see Section E.II, usIng QulckOraw from AsSembly
Language~

TO Initialize the cursor, call InltCursor (described In section E.9.2,
CurSOr-Handllng Routines~

ProoeWre OperPort (~: GrafPtr);

(l)enPort allocates space for the gIven grafPort's VlsRgl ana CllpR~
Init1aIlzes the fIelds Of the grafPort as Indicated below, and makes the
gratport the current port (see setport, below~ You must call qlenPort before
using any grafPort; first create a grafPtr with new, then use that grafPtr in
tne Q:>enPort call.

E-32

Pascal Reference Manual

Field
deVice
portB1ts
portRect
v1sRg1
ClipRgl

bkPat
fl11Pat
prLoc
JflS1ze
prttJde
JrIlat
pnVis
tXfmt
tXfooe
txmde
tXSize
SJfxtra
fpIOr
bkCOlor
colrBit
patstretm
pio8aYe
rglSaVe
polySave
grafProos

:rmg
Integer
Bl~
Root
~le
~le

Pattern
Pattern
Point
Point
integer
Pattern
integer
integer
style
1nteger
integer
l(DJint
longint
1(DJ1nt
integer
1nteger
WHandle
QlfCnjle
QlfCnjle
fD'rOOsPtr

Inl tIal setting
o (Usa screen)
screerBlts (see InltGraf)
screerBlts.bOln1s (0)),720;364)

QuickDraw

handle to the rectangular regIon (0,0,720,,364)
handle to the rectangular regIon
(-30000, - 30000, 30000, 30000)
White
bl~
(0,0)
(L1)
patCopy
bl~
o (visible)
o (system font)
normal
sIdlr
o (QuickDraw decides)
o
bl~COlor
wntteColor
o
o
nil
nil
nil
nil

Pl'OceOn'e InitJlort (m»: GrafPtr);
GIven a pointer to a grafPort that has been opened w1th qlenPort, In1tPort
relnltla11zes the fIelds of tne grafPort and makes it the current port (if It's
not already~

InltPort does everything ~ort dOeS except allocate space for the
vlsRal and Cl~gl.

Pl'OceOn'e ClosePort (~: GrafPtr);
ClosePort deallocates the space occupied by the gIven grafPort's vlsRgl and
cllpR{Jl. When you are completely through w1th a grafPort, call this
procedure.

E-33

Pascal Refemnce Mantlal

If you dO not call ClosePort before dIsposIng of the grafPort, the
memory used by the vlsRgl and cll~gl will be unrecoverable.

QuICkDraw

After call1ng ClosePort, be sure not to use any copIes of the VlsRgl or
cl1~gl handles that you may have made.

ProceWre setPort (~: GrafPtr);

SetPort sets the grafPort IndIcated by ~ to be the current port. The glObal
poInter thePort always points to the current port. All QulcKDraw drawing
rout1nes affect the bitmap thePort" .portBlts and use the local coordInate
system of thePort". Note that q>enPort and InitPort do a Setport to the
given port.

WARNJN3

Never do a Setport to a port that has not been opened with q>enPort.

Each port possesses its own pen and text characterIstics which remaIn
unChanged When the port Is not selected as the current port.

ProceWre Getport (var ~: GrafPtr);

GetPort returns a pointer to the current grafPort. If you have a program that
draws into more than one grafPort, It's extremely useful to have each
procedure save the current grafPort (with Getport), set its own grafPort, do
drawIng or calculations, and then restore the previous grafPort (wIth setport~
The poInter to the current grafPort Is also avallable through the global
pointer thePort, bUt you may prefer to use Getport for better reactab111ty of
your program text. For example, a procedure could do a GetJ>ort(savePort)
before setting its own grafPort and a setport{savePort) afterwards to restore
the prevIous port.

ProceWre GrafDeVice (deVice: integer);
GrafOevice sets thePOrt" .deVlce to the given number, Which Identifies the
logical output device for this grafPort. QulcKDraw uses this Information. The
InItial devIce number is 0, Which represents the Usa screen.

ProceWre 8etflortBits (tin: BitMap);

SetPortBits sets thePOrt" .portBits to any previously defIned bitmap. This
allows you to perform all normal drawIng and calculations on a bUffer other
than the Lisa screen--for example, a 64D-by-8 output bUffer for a dot matrIx
printer, or a small off-screen Image for later "stamping" onto the screen.

E-34

Pascal Reference I'1anual QulckDraw

Remember to prepare all fieldS Of the bItmap before you call setportBi ts.

procewre PortSize (width, hei~t: integer);

PortSlze changes the sIze of the current grafPort's portRecl ThIs dOes not
affect tile screen: it merely changes the size of the "active area" of the
grafPort.
The top left comer of the portRect remains at its same location; the width
and height of the portRect are set to the given width and height. In other
words, PortSize moves the bOttom right comer of the portRect to a position
relative to the top left comer.

PortSize does not Change the ClIJRgl or the VlSRgl" nor does It affect the
local coordinate system of the grafPort: it Changes only the portRect's width
and heIght Remember that all drawing occurs only In the Intersectlon of trle
portBltsJnlldS and the portRect" cUpped to the vlsR~ and the cUpRgl.

ProcedIre ttNePortTo (leftGlobal, tq)Global: integer);

fV1OvePortTo changes the posltlon of the current grafPort's portRect. ThIs does
not affect tIJe screen; It merely Changes the locatlon at wnlch SUbsequent
drawing Inside the port will appear.
The leftGlooal and ~looal parameters set the distance between the top left
corner of the portBlts.bOt.rldS and the top left comer of the new portRect.
For example,

t1oVePOrtTo(360,l82);

will move the top left corner of the portRect to the center of the screen (if
port.Blts is the Usa screen) regardless of the local coordinate system.
LlKe PortSIze, MovePortTo doeS not Change the cl~(Jl or the VlsRgl .. nor
does it affect the local coordinate system Of the grafPort

ProcedIre setorigin (h, V: integer);

SetOrIg1n Changes the local coordInate system of the current grafPort This
t»es not affect tile S£,YHefl,-lt does, however, affect where subsequent drawIng
and calculation will appear 1n the grafPort setOrIgln updates the coordinates
Of the portBlt.s..tnrm, the portRect, and tne vlsRg'l. All SUbsequent drawIng
and calculation routines wll1 use the new coordinate system.
The n and v parameters set the coordinates of the top left comer of the
portRect. All other coordinates are calculated from this point All relative
distances among any elements in the port will remain the same; only their
absolute local coordinates wlll change.

E-35

Pascal ReFerence I'1anuaI t;ttICkDraw

Setorlgln ooes not update the coordinates of the cllpR~ or the pen;
these Items stick to the coorct1nate system (unI1ke the port's structure,
Which stiCks to the screen~

SetDrlgln Is useful for adjUst1ng the coordinate system after a scr01l1ng
operation. (See ScrollRect In section E.9.13, Bit Transfer ~ratlons.)

ProcedIre setclip (11Jl: RcJ1'tCn21e);

SetCl1p changes the cUpping region of the current grafPort to a region
equivalent to the given region. Note that this does not Change the region
handle, but affects the cUpping region itself. Since setCl1p makes a copy of
the given region.. any SUbsequent Changes you make to that region will not
affect the clipping region of the port
You can set the cUppIng regIon to any arbitrary region, to aId you in drawIng
inside the grafPort The Initial clipRgn Is an arbltrarlly large rectangle.

ProceWre Getcllp (1Vl: RcJ1'tCn21e);

GetClIp changes the given region to a region equivalent to the clipping regIon
of the current grafPort. ThIs Is the reverse of woot SetCl1p does. Like
SetCl1p, It dOes not Change the region handle.

ProcedIre Cll~t (r: Rect);

Cl1pRect Changes the cUpping regIon of the current grafPort to a rectangle
equIvalent to gIven rectangle. Note that this dOes not change the region
handle, bUt affects the region Itself.

ProceWre BackPat (pat: Pattern);

BaCkPat sets the baCkground pattern of the current grafPort to tne given
pattern. The background pattern Is used In ScrollRect and In all QulckDraw
routines that perform an "erase" operation.

E.9.2 CUI'sor-Hcnnlng Rrutlnes
AddItional Information on cursor handling can be found In Appendix F,
Hardware Interface.
PI'OOeWIe Inltcursor;

Ini tcursor sets the current cursor to the predefined arrow cursor, an arrow
pointing north-northwest, and sets the cursor level to 0" making the cursor
visible. The cursor leveL which Is InItialized to 0 when the system Is booted,
keeps track of the number of Umes the cursor has been hidden to compensate
for nested calls to HldeCursor and ShowCursor (below~

E-36

Pascal Reference I'1antIaI Ql./lCkDraw

Before you call InltCursor, the cursor is undeflnea (or, if set by a previous
process, it's whatever that process set it to~

ProceclJre 5etrursor (crsr: cursor);
SetCUrsor sets the current cursor to the 16-by-16-bit image in crsr. If the
cursor Is hidden, It remains hidden and will attain the new appearance when
It's uncovered; If tne cursor Is alreaay visible, it Changes to tne new
appearance Immecliately.
The cursor image is initiaUzed by InitCursor to a north-northwest arrow,
visible on the screen. There is no way to retrieve the current cursor Image.

ProceclJre HideQ.aSOf;

HioeCursor removes the cursor from the screen, restoring the bits under It ..
and decrements the cursor level (Which InitCursor initlalizecl to o~ Every call
to HideCursor should be balanced by a subsequent call to snowCursor.

ProceclJre StlO.ruI'sof;

ShowCursor increments the cursor level, Which may have been decremented by
HideCursor, and displays the cursor on the screen if the level becomes O. A
call to ShowCursor should balance each previous call to HideCursor. The
level Is not incremented beyond 0, so extra calls to snowCursor oon't hUrt.
If the cursor has been changed (with setcursor) While hidden, ShOwCursor
presents the new cursor.
The cursor is initialized by InitCursor to a north-northwest arrow, not hidden.

ProceclJre (l)scureD.asor;

CIlscurecursor hides the cursor until the next time the mouse is moved. UnUke
HideCursor, It has no effect on the cursor level and must not be balanced by
a call to ShoWCUrsor.

E.9.3 Pen ald Llne-Orawlng RoutInes
The pen and line-drawing routines all depend on the coordinate system of the
current grafPort. Remember that each grafPort has Its own pen; if you draw
In one grafPort, Change to another, and return to the first, the pen wllI have
remained In the same location.

ProceclJre HidePen;

HldePen decrements the current grafPort's plVls field, whiCh Is initialized to
o by ~nPort; \tItlenever pnVls Is negative, the pen ooes not draw on the
screen. PnVls keeps tracK of the number of times the pen has been hidden to
compensate for nested calls to HldePen and ShowPen (beIOW~ HlaePen Is

E-37

Pascal Reference tv1antJal QuICkDraw

called by (l>enRgn, QlenPicture, and QlenPOly so that you can defIne regions,
pIctures, and polygons wIthout drawIng on the screen.

ProceWre Sh:MiIPen;

ShowPen Increments the current grafPort's pnVls field, which may have been
decremented by HldePen; If JIlVls becomes 0, QulckDraw resumes drawIng on
the screen. Extra calls to ShowPen wll1 increment pnVls beyOnd 0, SO every
call to ShOWPen should be oaIanced by a SUbsequent call to HldePen.
ShowPen Is called by CloseRgn, ClosePlcture, and ClosePoly.

ProceWre GetPen (var pt: Point);

Getpen returns the current pen location, In the local coordinates of the
current grafPort

ProceWre GetfenState (var p-mate: PenState);

GetpenState saves the pen locat1on, sIze, pattern, and mooe In a storage
variable, to be restored later with setpenState (DeIOW~ This is useful When
call1ng shOrt sUOroutlnes that operate In the current port bUt must Change me
graphiCS pen: each sUCh prOCedure can save the pen's state When it's called, dO
whatever it needs to 00, and restore the previous pen state Immediately
before returning.
The PenState data type is not useful for anything except saving the pen's
state.

ProceWre setfenState (p-mate: PenState);

SetpenState sets the pen location, size, pattern, and mOde In the current
grafPort to the values stored In pnState. ThIs Is usually called at the end of
a proceaure that has altered the pen parameters and wants to restore them to
theIr state at the begiming of the proCedure. (see Get.PenState, above.)

ProceWre PenSize (width, nei~t: integer);

PeOSize sets the dimensIons of the graphics pen in the current grafPort. All
SUbSequent calls to Line, LineTo, and the proceaures that draw framed shapes
In the current grafPort will use the new pen dimensIons.
The pen dimensions can be accessed In tne variable thePort" .p1SIze, which Is
of type Point If either of the pen dimensions is set to a negative value, the
pen assumes the dimensions (0,0) and no drawing Is performed. F or a
discussion of how the pen draws, see Section E.7, General Discussion of
Drawing.

E-38

Pascal Reference Manual Ql.IfckDJaw

ProceWre Per1bJe (nooe: integer);

PenMode sets the transfer mode through WhiCh the pe1>at is transferred onto
the bitmap wtlen Unes or ShapeS are drawn. The mode may be anyone of the
pattern transfer mOdes:

pa~y patxor notPa~y notPatXor
patOr pat81c no'tPatOr ootPatBlc

If the mode is one of the source transfer mOdeS (or negative), no drawing Is
performed. The current pen mode can be obtained in the variable
thePort .. ~ The initial pen mode is pa~y, in whicn the pen pattern
is copied directly to the bitmap.

ProceclJre PerPat (pat: Pattern);

PenPat sets the pattern that is used by the pen in the current grafPort. The
standard patterns wnlte, black, gray, ItGray, and (l(Gray are predefined; the
inlt1al pen pattern Is black. The current pen pattern can be Obtained In the
variable thePort" .pn:>at., and this value can be assigned (bUt not compared!) to
any other variable of type Pattem

ProceWre Perft>1'1El;

PenNormal resets the Initial state of the pen in the current grafPort, as
follows:

Field
JIlSlze
prft)de
prPat

setting
(1,1)
patCq>y
black

The pen location Is not changed.

ProceclJre ttlVeTo (h, V: integer);

MoveTo moves the pen to location ~v) in the local coordinates Of the current
grafPort. No drawing is performed.

ProceclJre MoVe (ell, dV: integer);

Move moves the pen a distance of '" hOrizontally and dV vertically from its
current location; It calls MlVeT«h+dl,v+dV}, Where ~v) is the current location.
The positive directions are to the right and dOwn. No drawing is performed.

E-39

Pascal Reference Manual Ql.JickDraw

ProceWre lineTo en, V: integer);

L1neTo draws a Une from the current pen location to tne location spec1fled (1n
local coordinates) by h and v. The new pen location Is (tt.v) after tne Une Is
drawn. See Section E.7, General Discussion of Drawing.
If a region or polygon Is open and being formed, Its outl1ne Is InfinItely thin
and Is not affected by tne JIlSIze, ~" or prPal (See QlenRgn and
qJenPOly.)

ProceWre Line «(Jl,dV: integer);

LIne draws a Une to tne location that Is a distance of (Jl norlzontally and dV
vertically from the current pen locatIon; It calls UneT«h11ll,v+UV), wttere (h,v)
Is the current location. The posItive direct10ns are to the right and down.
Ttle pen location becomes the coordInates Of the end of the Hne after tne Hne
Is drawn. See Section E. 7" General Discussion Of Drawing.
If a regIon or polygon Is open and beIng formed, Its outllne is infInitely thin
and Is not affected by tne JI'lS1ze" ~, or pnPal (see ~gn and
qJenPoly.)

E.9.4 Text-DraWlng RootInes
EaCh grafPort tlas its own text characterIst1cs, and all these procedures deal
wlttl those of the current port.

ProceWre TextFoot (foot: integer);

TextFont sets tne current grafPort's font (thePort" .txFCIlt) to the given font
number. The initial font number Is 0, which represents tne system font. For
other font numbers, refer to tne ~rt unit .. l1sted In Section E.1S.

ProceWre Textf~ (f~: Style);

TextFace sets the current grafPort's character style (thePOrt" .txFace~ The
Style data type allows you to specIfy a set of one or more of the following
predefined constants: bold Itallc .. t.Ilderllne" ouUlne .. ShadOW .. COOltse, and
exteR1 For example:

TextF~([bold);
TextFace([bold, italic]);
Textf~(tnePort". txFooe .. (txJld]);
TextFace(thePortA.txFace- bold]);
Textfooe([]);

E-40

{bold}
{bold and italic}
{1hateVer it laS plus bOld}
{Mlatever it was bUt not bold}
{OOl1IIll}

Pascal Reference Manual QuickDraw

Prooedlre Texttklde (nooe: integer);

TextMode sets the current grafPort's transfer mode for drawing text
(thePort" .t.xMOde~ The mode shOUld be SI'COr ... srcXor ... or srcBlc. The Initial
transfer mode for drawing text is srdl".

Procedtre TextSlze (size: Integer);
TextSlze sets the current grafPort's type size (thePort" .bcS1ze) to the given
number Of points. My size may be specified ... bUt the result wUl loOk best If
QuICkDraw has the font In that size (otherwise it will scale a size It does
have~ The next best result will occur If the given size Is an even mUltiple of
a size available for the font. If 0 Is specified ... QuicKDraw wUI chOOse one Of
the available sizes--Whictlever Is closest to the system font size. The initial
txSlze setting is 0.

Prooedlre ~xtra (extra: integer);
SpaceExtra sets the current grafPort's spExtra fIeld ... whIch specIfies the
number Of pixels by which to widen each space In a I1ne of text. This Is
useful when text Is beIng fully justified (that Is ... al1gned wIth bOth a left and a
right margln~ Consider ... for example ... a llne that contains three spaces; if
there would normally be six pixels between the end of the l1ne and the right
margin, you would call SpcEeExt.rc(2) to print the 11ne with full justification.
The Inl Ual spExtra setting Is O.

SpaceExtra w1ll also take a negative argument, but be careful not to
narrow spaces so muCh that the text Is unreadable.

ProceclJre ora.ctm (Ch: Char);

DrawChar places the given character to the right of the pen location ... with
the left end of its base line at the pen's location ... and advances the pen
accordingly. If the character Is not In the font ... the font's missing symbOl is
drawn.

Procedtre Drawstring (s: str255);

DraWString performs consecutive calls to DrawChar for each character In the
supp11ed string; the string Is placed beglmlng at the current pen location and
extending right. No formatting (carriage returns, line feeds, etc.) is performed
by QulcKDraw. The pen location ends up to the right of the last character In
the string.

E-41

Pascal Reference Manual

P1"OOOt1Ire Ora.Text (textflJf: (lPU'; f1rstByte,byteC(Ult: 1nteger);

DrawText draws text from an arbitrary structure In memory specified by
textBuf, starting flmByte bytes into the structure and continuing for
byteCnrltbyteS. The string of text Is placed beginning at the current pen
location and extending right. No formatting (carriage returns .. Hne feeds, etc.)
is perfOrmed by QuickDraw. The pen location ends up to the right of the last
character in the string.

Ftn}tion am'iath (Ch: Char) : integer;

CharWldth returns the value that wUl be added to the pen hOrizontal
coordinate if the specified Ctlaracter is drawn. CharWidth inclUdes the effects
of the styUstic variations set with TextFace; if you Change these after
determining the character width bUt before actually drawing the Character ..
the predetermined width may not be correct. If the character is a space ..
CharWidth also inclUdes the effect of SpaceExtra

FlIlCt10n StrlrrJ'1ath (s: Str255) : 1nteger;
StringWidth returns the width of the given text string, whiCh It calculates by
adding the widths of all the characters In the string (see CharWldth .. above~
This value will be added to the pen horizontal coordinate If the specified
string Is drawn.

FtnJtion Text'iath (textaJf: QlPtr; firstayte, byteCtult: integer) :
1nteger;

TextWldth returns the width of the text stored In the arbitrary structure in
memory speCified by textBuf .. starting ftrstByte bytes into the structure and
continuing for byteColl\t byteS. It calculates the width by adding the widths
of all the characters in the text. (See CharWldth, above.)

P1"OOOt1Ire GetFontInfo (var info: FontInfO);

GetFontInfo returns the following information abOut the current grafPort's
character font, taking into consideration the style and size In Which the
characters wlll be drawn: the ascent, descent, maximum character width (the
greatest distance the pen w111 move when a Character Is drawn)., and leading
(the vertical distance between the descent Hne and the ascent llne below It),
all In pixels. The FontInfo data structure is defined as:

type FontInfo = record
ascent: 1nteger;
descent: integer;
.1C11aX: 1nteger;
leadiIYJ: integer

em;

E-42

Pascal Reference Manual Qu!ckDraw

E. 95 Drawing In COlor
These routines w111 enable applications to do color drawing in the future when
Apple supports color output devices for the Usa. All nonwhite colors wlll
appear as black on black-and-white output devices.

ProcedUre ForeDolor (color: long1nt);
F oreColor sets the foreground color for all drawing in the current grafPort
(thePort A .fgColor) to the given color. The following standard colors are
predefined: blackCOlor ... WhiteColoT ... re<£olor ... greenColor ... blueGolor ... cyatColor ...
magentaCoIOT ... and yellowcolor. The inItial foreground color is blackCOlor.

Procerure Bad<COlor (color: laJJ1nt);
BackColor sets the background color for all drawing In the current grafPort
(t.hePort .. .bkCOlor) to the given color. Eight standard colors are predefined
(see Forecolor, above~ The InitIal background color Is WhlteColor.

Procerure COlorB1t (lhicrBit: integer);

ColorBlt Is called oy prInting software for a color prlnteL or other colOr­
imaging software ... to set the current grafPort's colrBlt field to Whicteit; this
tells QulckDraw which plane of the color picture to draw Into. QuickDraw
wlll draw into the plane corresponding to bit numoer wttlctelt Since
QulckDraw can support output devices that nave up to 32 bits of color
information per pixel, the possible range of values for Whlctelt Is 0 through

. 31. The InItial value Of the colJBlt fIeld Is o.
E.9.6 caJculatioos with Recta1gles

Calculation routines are independent of the current coordinate system; a
calculation will operate the same regardless of which grafPort Is active.

NJTE

Remember that if the parameters to one of the calculation routines
were defIned in different grafPorts ... you must first adjust them to be in
the same coordinate system. If you do not adjust them ... the result
returned oy the routine may be different from wnat you see on tne
screen. To adjust to a common coordinate system, see LocalToGIObal
and GlobalToLocal in Section E.9.17 ... Calculations wIth Points.

Procerure setRect (var r: Rect; left, top,r1~t,tnttom: integer);
SetRect assigns the four boundary coordinates to the rectangle. The result is
a rectangle wIth coordinates (left..top,rt~t)JOttom~
This procedure is suppUed as a utility to help you shorten your program text.
I f you want a more readable text at the expense of length, you can assign

E-43

Pascal Reference /VIanUaJ QulekDraw

Integers (or poInts) dIrectly into the rectangle's fields. There Is no sIgnIfIcant
code size or execution speed advantage to either method; one's just easier to
wrIte, and the other's easIer to read.

Pr~ OffsetRect (var r: Rect; (fl, t1V: integer);

OffsetRect moves the rectangle by addIng ell to each horIzontal coordInate
and dV to each vertical coordlnate~ If ctl and dv are positive, the movement
Is to the rIght and down; If eIther Is negative, the correspondIng movement Is
in the opposite direction. The rectangle retains its Shape and size; it's merely
moved on the coordInate plane. This does not affect the screen unless you
subsequently call a routine to draw within the rectangle.

ProceclJre InsetRect (var r: Rect; CIl, dV: integer);

InsetRect shrinks or expandS the rectangle. The left and right sides are
moved In by the amount spec! fled by (J'f; the top and bottom are moved
toward the center by the amount specified by eN. If CIl or dV is negative, the
approprIate paIr of sIdes Is moved outward Instead of Inward. The effect Is to
al ter the sIze by 2*(J'f horIzontally and 2*dV vertically, wIth the rectangle
remaInIng centered In the same place on the coordInate plane.
If the resulting width or height becomes less than 1, the rectangle is set to
the empty rectangle (o,o,o,o~

Fooction 8ectRect (srcRectA, srcRectB: Rect; var dstRect: Rect) :
bOOlecn;

SectRect calculates the rectangle that is the intersection of the two input
rectangles, and returns true if they indeed intersect or false if they do not.
Rectangles that "tOUCh" at a line or a point are not considered intersecting,
because their intersection rectangle (really, in this case, an intersection line
or point) does not enclose any bits on the bitmap.
If the rectangles do not intersect, the destination rectangle is set to (O,o,O,o~
SectRect works correctly even If one of the source rectangles Is also the
destination.

ProceWre ll1ionRect (srcRectA, srcRectB: Rect; var dstRect: Rect);

UnionRect calculates the smallest rectangle which encloses both input
rectangles. It works correctly even If one of the source rectangles Is also the
destination.

E-44

Pascal Reference Manual QuickDraw

FlI'lCtiO'l ptI~t (pt: Polnt; r: Rect) : boolean;

PtInRect determines whether the pixel oelow and to the right of the given
coordinate point is enclosed In the specified rectangle ... and returns true if so
or false if not.

Procewre pt2Rect (ptA, pta: Polnt; var dstRect: Rect);

Pt2Rect returns the smallest rectangle which encloses the two input points.

Procewre ptToAngle (r: Rect; pt: Point; var (pJle: integer);

PtToAngle calculates an integer angle between a line from the center of the
rectangle to the given point and a Hne from the center of the rectangle
pointing straight up (12 o'clock high~ The angle is in degrees from 0 to 359,
measured clockwise from 12 o'clOCk ... with 900 at 3 o'cloCk, 1800 at 6 o'cloCk,
and 2700 at 9 o·clock. Other angles are measured relative to the rectangle: If
the line to the given point goes through the top right corner of the rectangle,
the angle returned Is 45 degrees, even If the rectangle Is not square; If it goes
through the bottom right corner ... the angle Is 135 degrees ... and so on (see
Figure E-18~

angle=45

-------------- t ~
~------~--------~

~-
v·

Figure E-18
ptTo.Allgle

The angle returned might be used as input to one of the procedures that
manIpUlate arcs and wedges, as described In section E.9.l0, GraphIc qJeratlons
on Arcs and Wedges.

Ftn::tioo BpilRect (rectA, rects: Rect) : boolem;

EqualRect compares the two rectangles and returns true If they are equal or
false if not. The two rectangles must have identical boundary coordinates to
be considered equal.

E-45

Pascal Reference Manual QuickDraw

Ft.rlCtion EnptyRect (r: Rect) : boolea-.;

EmptyRect returns true if the given rectangle Is an empty rectangle or false
if not A rectangle is considered empty if the bottom coordinate is equal to
or less than the top or the right coordinate is equal to or less than the left.

E.9.1 GraJtUc ~ratlons on Rectangles
These proCedures perform graphic operations on rectangles. See also
ScrollRect in Section E.9.13, Bit Transfer cperattons.

ProceciJre FmaeRect (r: Rect);

FrameRect draws an outline just inside the specified rectangle, using the
current grafPort's pen pattern, moae, and size. The outline Is as wIde as the
pen width and as tall as the pen height. It Is drawn with the pnPat, according
to the pattern transfer mooe speCified by pnMode. The pen location is not
changed by this procedure.

If a region is open and being formed, the outside outline of the new rectangle
is mathematically added to the region's bOUndary.

Procedn'e PalntRect(r: Rect);

PaintRect paints the speCified rectangle with the current grafPort's pen
pattern and mode. The rectangle on the bitmap is filled with the ,n>8t,
according to the pattern transfer mode speCified by pnMlde. The pen location
is not changed by this procedUre.

ProceOJre EraseRect (r: Rect);

EraseRect paints the specified rectangle with the current grafPort's back­
ground pattern bkPat (in patcopy mOde). The grafPort's pnPat and pnMode are
ignored; the pen location is not changed.

ProceOJre InvertRect (r: Root);

InvertRect inverts the pixelS enclosed by the specified rectangle: every White
pixel becomes black and every black pixel becomes white. The grafPort's
pnPat, pnMode, and bkPat are all ignored; the pen location is not changed.

ProceOJre FillRect (r: Root; pat: Pattern);

FillRect fills the specified rectangle with the given pattern (in patCopy mode).
The grafPort's pnPat, pnMode, and bkPat are all ignored; the pen location Is
not changed.

E-46

Pascal Reference Manual QuickDraw

E.9.8 Gr~c qleraUons 00 OVals
OVals are drawn inside rectangles that you specify. If the rectangle you
specl fy Is square, QulckDraw draws a cIrcle.

ProceWre FrCllEOVal (r: Rect);

FrameOVal draws an outline just Inside the oval that flts InsIde the specIfIed
rectangle ... using the current grafPort's pen pattern, mode ... and size. The
outlIne Is as wIde as the pen wIdth and as tall as the, pen heIght It Is drawn
with the Jri>at ... according to the pattern transfer mode specIfied by prtvtxte.
The pen location Is not changed by this procedure.
If a regIon Is open and beIng formed, the outsIde outlIne of the new oval is
mathematically added to the region's boundary.

ProceWre PaintOYal (r: Rect);

PaintOVal paInts an oval just inside the specifIed rectangle with the current
grafPort's pen pattern and mode. The oval on the bitmap is filled with the
Jri>at ... according to the pattern transfer mode specified by prtvtxte. The pen
location is not Changed by this procedure.

ProcedIre ErasefJVal (r: Rect);

Eraseoval paints an oval just inside the specified rectangle with the current
grafPort's background pattern bkPat (1n patCqJy mOde~ The grafPort's JD>at
and pnMode are ignored; the pen location is not changed.

Procerure Invertoval (r: Rect);

Invertoval inverts the pIxels enclosed by an oval just insIde the spec1 fled
rectangle: every white pixel becomes black and every black pixel becomes
Whl teo The grafPort's prPat ... prt-1Ode, and bkPat are all Ignored; the pen
location is not Changed.

ProceWre FillOV8l (r: Root; pat: Pattern);

FlllOVal f111s an oval just insIde the specified rectangle with the given pattern
(In patCopy mOde~ The grafPort's prPat, prt-1Ode, and tj(Pat are all Ignored;
the pen location Is not changed.

E.9.9 ~c qleraUons 00 ROlIlded-Comer Recta1gles

Procewre FralERotn:Rect (r: Rect; oval'ldth,ovalHei~t: integer);

FrameRoundRect draws an outline just inside the specified rounded-corner
rectangle, usIng the current grafPorl's pen pattern, mode, and size. DvalWidth
and ovalHel~t specify the diameters of curvature for the comers (see Figure
E -19~ The outline is as wIde as the pen wIdth and as tall as the pen heIght.

E-47

Pascal Reference Manual QuickDraw

It Is drawn wIth the JD>at, accordIng to the pattern transfer mode specIfied
by~. The pen location is not changed by this procedUre.

ovalWidth

Fl~re E-19
ROU'lCJed-COmer Rectalgle

If a region is open and beIng formed, the outside outline of the new rounded­
corner rectangle Is mathematically added to the region's boundary.

Procerure Palnt~t (r: Rect; ovalilath, ovalHel(flt: integer);

PaintRoundRect paints the specified rounded-corner rectangle with the
current grafPort's pen pattern and mode. O\IalWldth and ovalHe1f1lt specify
the diameters of curvature for the corners. The rounded-corner rectangle on
the bitmap Is filled with the pnPat, according to the pattern transfer mode
specIfied by~. The pen location is not changed by this procedUre.

Procerure EraseRa.nR!ct (r: Rect; ovallltttn,ovalHel(1lt: lnteger);

EraseRoundRect paints the specified rounded-comer rectangle with the
current grafPort's baCkground pattern bkPat (In patCopy mOde~ OV8lWldth and
ovalHel(1lt specIfy the diameters of curvature for the corners. The grafPort's
p1>at and prt-'kX.Ie are Ignored; the pen location Is not changed.

ProceWre InvertRoU'XR3Ct (r: Reet; ovallidtn, ovalHei(1lt: integer);

InvertRoundRect Inverts the pixels enclosed by the specifIed rounded-corner
rectangle: every white pixel becomes black and every black pixel becomes
white. CNalWldth and ovalHel~t specify the diameters of curvature for the
comers. The grafPort's pnPat, ~, and bkPat are all Ignored; the pen
location is not Changed.

"E-48

Pascal Reference Manual QU/CkDraw

Procewre Fill~t (r: Root; OVallidth,ovalHei{1lt: integer; pat:
Pattern);

FlllRoundRect fIlls the speCified rounded-corner rectangle with the given
pattern (in patcopy mOCle). OIalWidth and ovalHeI~t specIfy the diameters of
curvature for the corners. The grafPort's pn>at, ~, and l*Pat are all
ignored; the pen location is not changed.

E.9.10 Graphic qleratl(JlS on Arcs CJ'ld Wedges
These procedures perform graphIc operations on arcs and wedge-shaped
sections of ovals. See also PtToAngle in Section E.9.6, Calculations with
Rectangles.

ProceWre FICIEArc (r: Rect; startAngle, arcArYJle: integer);

FrameArc draws an arc of the oval that fits inSide the specIfied rectangle,
using the current grafPort's pen pattern, mode, and size. St.artArgle indIcates
where the arc oeglns and Is treated mOd 360. ArCArgle defines the extent of
the arc. The angles are gIven In posItive or negative degrees; a posItive angle
goes ClOCKwIse, whlle a negative angle goes countercloCKwise. Zero degrees Is
at 12 o'clocK high, 90° (or -270°) Is at 3 o'cloCk, 180° (or -180°) is at 6
O'ClOCK, and 2700 (or -90°) Is at 9 o'clocK, Other angles are measured relative
to the enclosIng rectangle: a line from the center of the rectangle through Its
top right corner is at 45 degrees, even If the rectangle Is not square; a line
through the bottom rIght comer Is at 135 degrees, and so on (see Figure E-20).

startAngle = 0

16l'cAng I e = 45
:

stertAngle=O star1Angle=o I L .. 5···1
arcAngl~ =-451 1arcAngie = 45 I-r ____ --I.

1",<1 I [!J
FrameArc

frameArc

s1artAngie = 0

larcAngle = 45

"r Paint.A.rc

Figure E-20
~ratlons on Arcs CI1d WedgeS

E-49

Pascal Reference Manual QulckDraw

Tne arc Is as wIde as the pen wIdth and as tall as the pen heIght It Is drawn
wIth the prPat, accordIng to the pattern transfer mode specIfied oy prMode.
TIle pen location Is not Changed by thIs procedUre.

WARNlN3

FrameArc dIffers from other QuicKDraw procedures that frame Shapes
in that the arc is not mathematically added to the boundary of a
regIon that Is open and beIng formed.

ProceWre PaintArc (r: Root; startAngle,arcAngle: integer);

PaintArc paints a wedge of the oval just inside the specified rectangle with
the current grafPort's pen pattern and mode. startAngle and arcAngIe define
the arc of the wedge as In FrameArc. The wedge on the bitmap Is filled with
the ~t, accordIng to the pattern transfer mOde specIfIed by prMode. The
pen location is not changed by tnis procedUre.

ProceWre EraseArc (r: Root; startAngle, arcAngle: integer);

EraseArc paints a wedge of the oval just insIde the speCified rectangle with
the current grafPort's bacKgrOUnd pattern t*Pat (1n patcq)y mOde~
startAngle and arcAngIe define the arc Of the wedge as in FrameArc. The
grafPort's prf>at and prMode are Ignored; the pen location is not changed.

ProceWre InvertArc (r: Rect; startAngle, arcAngle: integer);

InvertArc Inverts the pixelS enclosed by a wedge of the oval just Inside the
specIfIed rectangle: every white pixel oecomes blacK and every blacK pixel
becomes 'w'hi teo startAngle and arcAngIe defIne the arc of the wedge as In
FrameArc. The grafPort's prPal, prMode, and bkPat are all Ignored; the pen
location Is not changed.

Procedure FillArc (r: Rect; startAngle,arcArJJle: integer; pat:
Pattern);

FUlArc fills a wedge of the oval just inside the specified rectangle with the
given pattern (1n patCopy mOde~ startAngle and arcAngIe define the arc of
the wedge as In FrameArc. The grafPort's pnPat, prMode, and bkPat are all
ignored; the pen location Is not changed.

E-50

Pascal Reference Manual QufCkDraw

E.9.11 caIculatlcrlS wIth Regions
I'DTE

Remember that if the parameters to one of the calculation routines
were defined In dIfferent grafPorts, you must first adjust them to Oe In
the same coordinate system. If you dO not adjust them, the result
returned Oy the routine may oe different from what you see on the
screen. To adjust to a common coordinate system, see LocalToGlobal
and GlobalToLocal In SectIon E.9.17, CalculatIons wIth PoInts.

FlflCtl00 Ne~ : RcJ1fCnjle;

NewRgn allocates space for a new, dynamic, variable-size region, initializes it
to the empty region (0,0,0,0), and returns a handle to the new region. 011y
this function creates new regIons; all other procedures just alter the size and
shape of regions you create. QJenPort calls NewRgn to allocate space for the
port's vlsRgl and cllpRgl.

WARNIN3S

Except when using visR~ or cl1pR~, you must call NewRgn before
specifying a region's handle In any drawing or calculation procedure.
Never refer to a regIon without using its handle.

Procecl.Ire DlsposeRgl (rgl: RcJ1fCnjle);

DisposeRgn deallocates space for the region whose handle Is supplled, and
returns the memory used by the region to the free memory pOOl. use thIs
only after you are completely through with a temporary region.

WAANING

Never use a region once you have deallocated It, or you wIll risk being
hung by c.tangl1ng po1nters!

ProceclJre COpyRgl (srcRgl, dS~: ~le);

CopyRgn copIes the mathematical structure of srcRgl into dStRgl; that is, it
maKes a duplicate copy of SrcRgl. ())ce thIs Is done, srcR~ may Oe altered
(or even c.tlsposed of) without affecting dstR~ COpyRgn t:kJes not create the
destJnatJon region:. you must use NewRgn to create the dStRgl before you
call CopyRgn.

E-S1

Pascal Reference Manual Qu/ckD18W

ProceWre setEnptyRgl (rgl: Rg1fcnlle);

SetEmptyRgn destroys the prevIous structure Of the gIven region, then sets the
new structure to the empty region (O,o,o,o~

ProceWre 8etRectRg'l (1Vt: Rg1fcnlle; left ... top ... ri~t ... bottom: integer);

SetRectRgn destroys the previous structure of the gIven region, then sets the
new structure to the rectangle specIfied by left, top, r1~t, and bOttom.
If the specified rectangle Is empty (I.e., len>-r1~t or top>-bottom), the region
Is set to the empty regIon (o,o,oJ]).

procewre RectJql (rgl: ~le; r: Rect);

RectRgn destroys the previous structure of the gIven region, then sets the new
structure to the rectangle specified by r. This Is operationally synonymous
with 5etRectRgn, except the Input rectangle Is defined by a rectangle rattler
than by four boundary coordinates.

ProceWre ~;

q>enRgn tells QuickDraw to allocate temporary space and start saving llnes
and framed Shapes for later processIng as a regIon definition. Whlle a regIon
Is open, all calls to Line, LineTo, and the procedUres that draw framed shapes
(except arcs) affect the outllne of the regIon. O1ly the Une endpoints and
shape boundaries affect the regIon definition; tne pen mode, pattern, and size
do not affect It. In fact, ~enRgn calls HldePen, so no drawIng occurs on the
screen while the regIon is open (unless you called ShowPen just after q>enRgn,
or you called ShowPen prevIously without balancIng It by a call to HldePen~
Since the pen hangs below and to the right of the pen location, drawing lines
wlttl even the smallest pen 'vim Change bIts that 11e outsIde the regIon you
define.
The outline of a region is mathematically defined and infinitely thin, and
separates the bitmap into two groups of bits: those within the region and
those outside It. A regIon should consist of one or more closed loops. Each
framed Shape itself constitutes a loop. My lines drawn with Line or LineTo
should connect with each other or with a framed shape. Even though the
on-screen presentation of a region is cUpped ... the definition of a region is not;
you can define a regIon anywhere on the coordinate plane with complete
disregard for the location of various grafPort entities on that plane.
When a region is open, the current grafPort's qJlSaVe field contains a handle
to Information relateCl to the region definItion. If you want to temporarily
disable the collection of Unes and Shapes, you can save the current value of

E-S2

Pascal Reference Manual QuiCkDraw

thIs fleld, set the fIeld to niL and later restore the saved value to resume the
regIon deflnl tlon.

Do not call qJenRgn while another region Is already open. All open
regions but the most recent will behave strangely.

Procedlre CloseRgl (dst~: ~le);

CloseRgn stops the collection of llnes and framed shapes, organIzes them into
a regIon defInlt1on, and saves the resultIng regIon Into the regIon IndIcated by
dStR~ You should perform one and only one CloseRgn for every QJenRgn.
closeRgn calls ShowPen, balancIng the HldePen call made by QJenRgn.
Here's an example of how to create and open a region, define a barbell Shape,
close the regIon, and draw it:

barbell := Ne~; {make a ne. regIoo}
~; {begin collecting stUff}

setRect(tempRect, 20, 20,30, 50); {form tne left .eIght}
FrameDval(tempRect);
setRect(tempRect,30,30,80,40); {form tne bar}
FrameRect(tempRect);
setRect(~t, 80, 20, 90, 50); {form the rIght .elglt}
FrameQval(tempRect);

CloseRgl(barbell);
Fill~(barbell,black);
0lsposeRgl(barbell) ;

{.e"re dale; save in namell}
{drs. 1 t on the screen}
{.e dm I t nero yru mynDre. .. }

Procewre Offse~ (IV': ~ldle; (J1,cJv: integer);
OffsetRgn moves the region on the coordinate plane, a distance of (Jl
horizontally and dV vertically. This does not affect the screen unless you
subsequently call a routine to draw the region. If (J) and dV are positive, the
movement is to the right and down; if either is negative, the corresponding
movement Is In the opposite direction. The region retains Its size and Shape.

I\IJTE

OffsetRgn is an especially efficient operation, because most of the data
defining a region Is stored relative to Ig"83ox and so isn"t actually
changed by OffsetRgn.

E-53

Pascal Refemnce I'-1anlI8l QuiCl<Dr8w

Procerure InsetfQl (l1Jl: ~le; (J},dV: integer);

InsetRgn shrinks or expands the region. All points on the region boundary are
moved InwardS a distance of dV vertically and (J) horizontally; If (J) or dV is
negative, the points are moved outwards In that direction. InsetRgn leaves
the region "centered" at the same position, out moves the outline In (for
posIt1ve values of <Il and dV) or out (for negative values of <Il and dV~
InsetRgn of a rectangular region works just like InsetRecL

ProceclJre 8ectRgl (srcRglA, sr~, dstRgl: ~le);

SectRgn calculates the intersection Of two regions and places the intersection
In a third region. TIlls does l)()t create tM destination l-egJon: you must use
NewRgn to create dstRgl before you call SectRgn. The dstRgl can be one of
the source regions, If desired.
If the regions dO not intersect, or one of the regions is empty, the destination
is set to the empty region (O,o,o,O~

ProceclJre lkllafl91 (srcRglA,s~,dS~: ~le);

UnlonRgn calculates the unIon of two regIons and places the unIon in a tnird
region. TIlls does not create the destination .region: you must use NewRgn to
create mtRal before you call unIonRgn. The mtRal can be one Of the
source regions, if desired.
If both regions are empty, the destination Is set to the empty region (O,O,o,O~

ProcEnJre 01ffRgl (SrcRglA,s~,dstRgl: ~le);

DlffRgn subtracts srcR~ from srcR~ and places the difference in a third
region. Tnis does not create tne destination region: you must use NewRgn to
create dStR~ before you call DlffRgn. The <J$tR~ can be one of the source
regions, if desired.
If the first source region is empty, the destination is set to the empty region
(O,O,O,O~

ProceclJre Xo~ (srcRglA,s~,dS~: ~I(jle);

XOrRgn calculates the dIfference between the unIon and the IntersectIon of
two regions and places the result In a third regIon. This dOes not create the
desUnatlon region: you must use NewRgn to create dstRal before you call
XorRgn. The dStRgl can be one of the source regions, if desired.
If the regIons are coincident, the destination Is set to the empty region
(o,o,o,o~

E-S4

Pascal Reference Manual Qu}ckDraw

FlIlCtion ptlrflcj1 (pt: Point; l1Jl: ~le) : OOOlE9l;

PtInRgn checks whether the pixel below and to the right of the given
coordinate point is within the specified region~ and returns true if so or false
If not

FlIlCtion Rectlr1ql (r: Rect; r~: ~le) : bOOlem;

RectInRgn checks whether the given rectangle Intersects the specl fled region~
and returns true if the intersection encloses at least one bit or false if not.

FlrICtion ECJJ81~ (r~ rglB: ~le) : llOOlea1;

EqualRgn compares the two regions and returns true if they are equal or false
if not. The two regions must have identical slzes~ shapes~ and locations to be
considered equal. My two empty regions are always equal.

FlrICtion EnptyRgl (IV': ~le) : llOOlea1;

EmptyRgn returns true if the region is an empty region or false if not. Some
of the circumstances In which an empty region can be created are: a NewRgn
call; a CopyRgn of an empty region; a SetRectRgn or RectRgn with an empty
rectangle as an argument; CloseRgn without a previous q>enRgn or with no
drawing after an cpenRgn; OffsetRgn of an empty region; InsetRgn with an
empty region or too large an Inset; SectRgn of nonintersecting regions;
LJnlonRgn of two empty regions; and DiffRgn or xorRgn of two identical or
nonintersecting regions.

E.9.12 GraphiC (l)eratlons on Regions
These routines all depend on the coordInate system of the current grafPort. If
a region is drawn In a dIfferent grafPort than the one In which it was defined~
1 t may not appear In the proper pOsItion Inside the porl

ProceWre f~ (IV': ~le);

FrameRgn draws a hollow outl1ne Just InsIde the specIfied reglon~ using the
current grafPort's pen pattern~ mode~ and size. The outline Is as wide as the
pen wIdth and as tall as the pen height; under no cIrcumstances \tIlll the
frame go outside the region boundary. The pen location Is not changed by
this procedure.
If a region Is open and being formed~ the outside outline of the region being
framed is mathematically added to that region'S boundary.

ProceWre Pa1n~ (1V': Rg8rIdle);

PalntRgn paints the speCified region with the current grafPort's pen pattern
and pen mode. The region on the bitmap Is filled with the prPat~ according

E-55

Pascal Reference Hanual QuickDraw

to the pattern transfer mode specifIed oy prMlde. The pen location Is not
Changed by thIs procedUre.

ProcedIre EraseRgl (l1Jl: ~le);

EraseRgn paints the speCified region with the current grafPort's background
pattern ~t (In patcopy mOde~ The grafPort's prPat and prMlde are
ignored; the pen location Is not changed.

ProceaJre InvertRgl (1Vl: ~le);

InvertRgn inverts the pixels enclosed by the specified region: every white
pIxel Oecomes OlacK and every OlacK pIxel becomes whl teo The grafPort's
prPat, prMlde, and bkPat are all ignored; the pen location is not changed.

ProceaJre Fl1~ (rg'l: ~le; pat: Pattern);

F1l1Rgn f11ls the specified region with the given pattern (In patCopy mOde~
The grafPort"s JrPat, prMlde, and bkPat are all Ignored; the pen 10cat1on Is
not changed.

E.9.13 Bit Trcmfer qJeraUms

ProceaJre SCrollRect (r: Rect; (Jl,ctv: integer; lCldateRg1: ~le);

ScrollRect shifts \,scrolls") those bits inside the intersection of the speCified
rectangle, vlsRg'l, cll~g'l, portRect, and portBlts.bot.nlS. The bits are shifted
a distance of ell horizontally and dV vertically. The positive directions are to
the right and down. No other bits are affected. Bits that are shifted out of
the scroll area are lost; they are neither placed outside the area nor saved.
The grafPort's Oackground pattern bkPat fills the space created by the scroll.
In aOOit1on, ~teRg'lls Changed to tne area filled with bkPat (see Figure
E-21~

E-S6

Pascal Reference Manual QuickDraw

Bef oreScroliRect After 5croliRect(dstRect,-1 0,5 ...)

st

QuiCkDraw.V

dstRec:t updeteAgn

Fl~Jre E-21
scrolllng

Figure E-21 ShOWS tnat the pen location after a ScrollRect is In a different
position relative to what was scrolled in the rectangle. The entire scrolled
item has been moved to different coordinates. To restore it to its coordinates
before the ScrollRect, you can use the Setorlgin procedure. For example,
suppose the astRect nere Is the portRect Of the grafPort ana Its top left
corner is at (95,120~ setOrtg1r(105,115) w1ll offset the coordinate system to
compensate for the scroll. Since the cllpRgl and pen location are not Offset,
they move down and to the left

ProceaJre COpyB1 ts (srcB1 ts, dstB1 ts: 81 tl1ap; srcRect, dstRect: Reot;
1Illde: integer; maSkRgn: R~icnne);

CopyBlts tranSfers a bit image between any two bitmaps and clIps tne result
to the area specified by the masI<R~ parameter. The transfer may be
performed in any of the eight source transfer modes. The result is always
Clipped to the maskRg'l and the bOundary rectangle of the destination bitmap;
If tne destinat10n bitmap Is me current grafPort"s portBits, It Is also cUpped
to the intersection of the grafPort·s ollpRgn and visRgn. If you do not want
to cUp to a maskRgl, just pass nil for the rnasl<.R~ parameter.
The dstRect and maskR~ coordinates are in terms of the dstBit.s..ln.nj$
coordinate system, and the srcRect coordinates are In terms of the
srcB1t.s..ln.nj$ coordinates.
The bits enclosed by the source rectangle are transferred Into the destination
rectangle according to the rules Of the cnosen moae.

E-S7

Pascal Reference Manual

The source transfer modes are as follows:
srccopy
srQlr

srcXor
~lc

notSrcCopy
notsralr

notSrcXor
notsrcBlc

C)tJjckDraw

The source rectangle Is completely al1gned with the destination rectangle; If
the rectangles are of different sizes, the oit image is expanded or shrunk as
necessary to fIt the destination rectangle. For example, If the bit Image Is a
circle in a square source rectangle, and the destination rectangle Is not
square, the bit Image appears as an oval In the destination (see Figure E-22~

meskAgn
~

E.9.14 Pictures

Source Bitmap

Source Bitmap

Source
Transfer

Mode

Source
Transfer

Mode

Destination Bitmap

Destination Bitmap

Fl{JJle E-22
~aUoo Of COpyBlts

fU'lCtl00 ~lcture (plCflClE: Root) : PlcHcl'l(ue;

meskRgn
=nil

~enPlcture returns a handle to a new picture which has the given rectangle
as its picture frame, ana tells QuiCkDraw to start saving as the picture
defini~ion all calls to drawing routines and all picture comments (if any).

q>enPicture calls HidePen, so no drawing occurs on the screen 'lihUe the
picture is open (unless you call 5nowPen just after qrenPicture, or you called
ShowPen previously withOUt balanCing It by a call to HidePen~

When a picture is open, the current grafPort's plcsave field contains a handle
to information related to the picture definition. If you want to temporarlly

E-S8

Pascal Reference Manual QlJickDraw

disable the collection of routine calls and picture comments" you can save the
current value of this field, set the field to n11, and later restore the saved
value to resume the picture defini tlon.

WAANlf\G

Do not call cpenPicture While another picture Is already open.

ProceWre ClosePicture;

ClosePicture tells QulckDraw to stop saving routine calls and picture
comments as tne definItion of the currently open pIcture. You Should perform
one and only one ClosePlcture for every ~enPicture. ClosePicture calls
snow Pen, balancIng the Hldepen call made by ~enplcture.

ProceWre PiCCOlloont (kind,dataSize: integer; dataicnJle: t;Otcnjle);

PlcComment Inserts the specl fled comment Into tne deflnl tIon of the currently
open picture. Klro identifies the type of comment DataHCl'ldle is a handle
to addItional data If desIred, and dataSlze Is the sIze Of that data In bytes. If
there is no additional data for the comment, dat.a-Ude should be nil and
dataSlze snould be O. Tne appl1cation that processes the comment must
lnclude a procedUre to do the processIng and store a po1nter to the procedure
In the data structure pointeo to by the grafPrOCS fleld of the grafPort (see
Section E.l0, customizing QuiCk Draw ~erations~

ProceWre DrcwPicture (myPicture: PicHcn21e; dstRect: Rect);

DrawPicture draws the given picture to scale in ClStRect, expanding or
snrtnKlng 1t as necessary to allgn the bOrders of the pIcture frame wIth
dStRect. DrawPicture passes any picture comments to the procedure accessed
1ndirectly througn the grafProCS field of the grafPort (see PicComment above~

ProceOJre KI11Plcture (lII}'Plcture: Pldfcnjle);

KlllPlcture deallocates space for the picture whOse nandle Is suppllect.. and
returns the memory used by the picture to the free memory poOl. Use tnis
only when you are completely througn wltn a pIcture.

E..9.1S calculations with Polygons

FU'lCtioo ~ly : PolyHc:nSle;

Q:>enPoly returns a handle to a new polygon and tells QulcKDraw to start
saving the polygon definition as specified by calls to llne-dra'-IJing routines.
wnlle a polygon is open, all calls to Line and LineTo affect the outline of the
polygon. O"lly tne line endpoints affect the pOlygon definition; the pen mOde,
pattern, and slze dO not affect it. In fact, CPenPoly calls HldePen, so no

E-59

Pascal Reference Manual QuickDraw

drawing occurs on tne screen whUe the polygon Is open (unless you call
ShowPen just after q>enpoly, or you called ShowPen previously without
balancing It by a call to HldePen~
A polygon should consist of a sequence of comected l1nes. Even though the
on-screen presentation of a polygon Is CUpped, the definition of a polygon Is
not; you can define a pOlygon anywhere on the coordinate plane with complete
disregard for the location Of various grafPort entitles on that plane.
Wt1en a pOlygon Is open, the current grafPort"s polySave fIeld contaIns a
handle to Information related to the polygon definition. If you want to
temporarlly alsable the polygon defInItion, you can save the current value of
thIs field, set the field to nll, and later restore the saved value to resume the
pol ygon defini tion.

WARNIN3

Do not call ~enPOly whlle another polygon is already open.

ProceciIre ClosePoly;

ClosePoly tells QuickDraw to stop saving the definition of the currently open
polygon and computes the polyBBox rectangle. You shOUld perform one and
only one ClosePoly for every ~nPoly. ClosePoly calls ShowPen, balancing
the HldePen call made by q>enPoly.
Here's an example of hOw to open a polygon, define It as a triangle, close It,
and draw it:

tr1Poly := ~lY; {save hCI'ldle CIld beg1n collecting stuff}
t1oVeTO(300,100); { RDVe to f1rst point CIld }
l1neTo(400,200); { form }
lineTo(200,200); { the }
lineTo(300, 100); {tr1ClYJle }

ClosePoly; { stop collecting stuff }
F1lll'Oly(tr1Poly,gray); { draw 1t on the screen }
KillPoly(triPoly); { .e're all done }

ProceWre KillPoly (poly: PolyHcn11e);

KlllPoly deallocates space for the polygon whose handle Is suppUed, and
returns the memory used by the pOlygon to the free memory pOOl. Use thIs
only after you are completely through with a polygon.

ProceWre OffsetPoly (poly: PolyHcn1le; <Il,dV: integer);

Offsetpoly moves the specIfied polygon on the coordinate plane, a distance of
.... horizontally and dv vertically. ThIs does not affect tne screen unless you

E-60

Pascal Reference Manual Qu/ckDraw

sUt)sequently call a routine to araw the pOlygon. If (J1 and dV are posItlve,
the movement Is to the right and down; if either is negative, the correspond­
Ing movement Is In the opposlte dIrection. The pOlygon retaIns Its Shape and
size.

OffsetPoly is an especially efficient operation, oecause the data
aefining a polygon is storea relative to pOlyS tart and so isn't actually
changed by OffsetPol y.

E.9.16 Graphic ~rat1ons on Polygons
Procewre FranePoly (poly: PolyHandle);

Framepoly plays back the line-drawing routine calls that define the given
polygon, usIng the current grafPort's pen pattern, moae, and size. The pen
will hang below ana to the right Of each poInt on the boundary of the
polygon; thus, the pOlygon drawn wIll extend beyond the rIght and bottom
edges of POlY" .. .polyBBox by the pen width and pen heIght, respectively. All
other graphic operations occur strictly within the boundary of the polygon, as
for other Shapes. You can see this difference in Figure E-23, where each of
the polygons Is shown wIth its polyBBox.

FremePoly PeintPoly

Figure E-23
DraWIng Polygons

If a polygon is open and being formed, Framepoly affects the outUne of the
pOlygon just as if the line-drawing routines themselves had been called. If a
region is open and being formed, the outside outline of the polygon being
framed is mathematically added to the region's bOUndary.

E-61

Pascal Reference Manual QujckDmw

ProcOOure PalntPoly (poly: PolyHcnlle);

PaintPoly paints the specified polygon with tne current grafPort's pen pattern
and pen mode. The polygon on the bitmap Is filled with the p-j>at, according
to the pattern transfer mode specified by ~ The pen location Is not
Changed by this procedure.

Prooewre ErasePoly (poly: PolyHErtdle);

ErasePoly paints the specified polygon with the current grafPort's background
pattern bkPat (in patcopy mOde~ The ~t and prlI'1lde are ignored; the pen
location Is not changed.

Prccedure InvertPoly (poly: PolyHandle);

Invertpoly inverts the pixels enclosed by tne speCified pOlygon: every white
pixel becomes black and every black pixel becomes White. The grafPort's
p-1>at, prlI'1lde, and bkPat are all Ignored; the pen location Is not changed.

Prccedure FillPoly (poly: PolyHcnlle; pat: Pattern);

FUIPoly fills the specified polygon with the given pattern (In pa~y mOde~
The grafPort's pnPat, prlI'1lde, and bkPat are all ignored; tne pen location is
not changed.

E.9.17 caIculaUons with Points

ProcOOure Ac:t'Ft (srcPt: Point; var dStJ>t: Point);

AddPt adds the coordinates Of sroPt to the coordinates of dst.Pt, and returns
the resul t In dslPt.

ProcOOure SttPt (slePt: Point; var dstPt: Point);

SubPt subtracts the coordinates of srcPt from the coordinates of dslPt, and
returns the result In dSt.Pt.

ProcOOure setJ>t (var pt: Point; h, v: integer);

SetPt assigns two integer coordinates to a variable of type Point

Ft.retlon EqualPt (ptA,ptB: Point) : boolE9l;

EqualPt compares the two points and returns true if they are equal or false if
not

E-62

Pascal Reference Manual QuJckDraw

ProceWre LocalT(Global (var pt: Po1nt);

LocalToGlObal converts the given point from the current grafPort's local
coordinate system Into a global coordinate system with the origin (0))) at the
top left comer of the port's bIt Image (SUCh as the screen~ This glObal point
can then be compared to other global points, or be Changed Into the local
coordinates Of another grafPort.
Since a rectangle is cJefinecJ by two points, you can convert a rectangle into
glooal coordinates oy performIng two LocalToGloOal calls. You can also
convert a rectangle, region, or pOlygon into global coordinates by calling
OffsetRect, OffsetRgn" or Offsetpoly. For examples, see GloOalToLocal below.

ProceWre Glmal Ta...ocal (var pt: Po1nt);

GlobalToLocal takes a poInt expressed in gloOal coordInates (wIth the top left
corner Of the bitmap as coordinate (0,0») and converts it into the local
coordInates Of the current grafPort. me glooal point can oe obtaIned wIth
the LocalToGlobal call (see abOve~ For example, suppose a game draws a
"baU" within a rectangle named ballRect, OOflned In the grafPort named
gcmePort (as illustrated below in Figure E -24~ If you want to draw that ball
In the grafPort named selectport, you can calculate the ball's select.Port
coorcJinates like this:

setport(QCIIEPOrt); { start in or1g1n port }
selectBall := ballRect; { make a copy to be ADVed }
LocalToGlooal(selectBall. ~eft); {put bOth comers into }
Local ToGlobal(selectBall. bOtRi~t); { glooal coordinates }

setPort(selectPort); { s.itcn to destination port}
Glmal Ta...ocal(select8all. t~eft); { put both comers into }
GlobaITa...ocal{select8all.bOtRi~t); { these local coordinates }
FilIDval(selectBall,ballCOlor); { no. you haVe the ball! }

E-63

Pascal Reference Manual QufCkDraw

20 50 90 15 45 85
40 -' ,

, -30-;...,' ,.,.....-:--=-:--:-:-~:-'I

localT oGlobal 61obaiTolocai

Figure E-24
converting between COOrdinate Systems

You can see from Figure E-24 that LocalToGlObal and GlobalToLocal simply
offset the coordinates Of the rectangle by the coordinates of the top left
corner of the local grafPort's bOUndary rectangle. You could also dO this with
OffsetRect. In fact, the way to convert regIons and polygons from one
coordinate system to another Is. with OffsetRgn or· Offsetpoly rather than
LOcalToGlobal ana GlooalToLocal. For example, If myR~ were a region
enclosed by a rectangle having the same coordinates as ballRect In gcmePort,
you could convert the region to glObal coordInates wIth

OffsetR{J(myR~ -20, -40);

and then convert it to the coordinates of the selectPort grafPort with
OffsetRg(myR~, 15, -30);

E.9.18 MlscellClleOUS UUllUes

FlR!tlon Rcnbn : integer;

Random returns an integer, uniformly dIstribUted pseUdo-randOm, In the range
from -32768 througn 32767. The value returned depends on the glObal
variable nn:tSeed, which InltGraf Inltiallzes to 1; you can start the sequence
over agaIn from Where 1t oegan oy resetting rcnJSeeO to 1.

E-64

Pascal Reference Mantlal QtlfckDraw

FtrlCtion Getpi>cel (h., V: integer) : OOOlea1;
GetPixel looks at the pixel associated with the given coordinate point and
returns true If it Is black or false if it Is white. The selected pIxel is
immediately below and to the right of the point whose coordinates are gIven
in h and v, In the local coordinates of the current grafPort. There Is no
guarantee that the specified pixel actually belongs to the port, however; it
may have been drawn by a port overlapping the current one. TOft see if the
point indeed belongs to the current port, call PtInRg(pt,thePort .visRgl~

Procerure stuff Hex (thirg>tr: t,IlPtr; 5: str255);

Stuff Hex pOkes oits (expressed as a string of hexadecimal digits) into any data
structure. This is a good way to create cursors, patterns, or bit images to be
"stamped" onto the screen with CopyBits. For example,

StuffHex(astripes, '0102040810204080")
places a striped pattern into the pattern variable stripes.

WARNIN3

There Is no range CheckIng on the sIze Of the destination variable. It's
easy to overrun the variable and destroy something if you don't know
What you're doing.

Procedlre SC81ePt (var pt: PoInt; srcRect,dstRect: Rect);

A wIdth and height are passed In pt; the horizontal component of pt is the
width, and the vertical component of pt is the height. ScalePt scales these
measurements as follows and returns the result in pt: it mUltlpI1es the given
width by the ratio of dstRect's width to srcRect's wIdth, and mulUpl1es the
gIven heIght by the ratio of dstRect's height to srcRect's height. In FIgure
E-25, where dstRect's width Is twIce srcRect's width and its height is three
times srcRect's heIght, the pen width is scaled from 3 to 6 and the pen height
is scaled from 2 to 6.

E-65

Pascal Reference Manual

o 1618
O-~I~~~~--~~I~I~~~~

2-

5calePt scales pen size (3}2) to (6}6)
MapF't maps point (3,2) to (18,7)

Figure E-25
scaIePt a1d ~

ProcedIre t1apPt (var pt: Point; srcRect, dstRect: Root);

QufckDraw

Given a point within srcRect, MapPt maps it to a simllarly located point
within dstRect (that Is, to where It would fall If It were part of a drawing
being expanOed or shrunK to fit dStRect). The result is returned in pt. A
corner point of SICRect would be mapped to the corresponding corner point of
dStRect, and the center of srcRect to the center of dStRect. In Figure E-2S
above, the point (32) in srcRect Is mapped to (18,7) In dstRecl FI'(JTRect ana
dstRect may overlap., and pt need not actually be wltnln sroRect

E-66

Pascal Reference Manual QulCkDraw

Rememoer, if you are goIng to draw InsIde the rectangle In dStRect,
you will probably also want to scale the pen size accordingly with
ScalePt.

Procewre ~t (var r: Root; srcRect, dstRect: Rect);

Given a rectangle within srcRect, MapRect maps it to a simllarly located
rectangle within dStRect by calling MapPt to map the top left and bottom
right corners of the rectangle. The result is returned In r.

Procewre f'1apRgl (r~: ~le; srcRect, dstRect: Rect);

Given a region within sreRect, MapRgn maps it to a simllarly located region
wI thin dStRect by call1ng MapPt to map all the poInts in the regIon.

Procewre ~ly (poly: PolyHcn11e; srcRect, dstRect: Rect);

G1ven a polygon wIthin srcRect, MapPOly maps It to a slmllarly located
polygon within dStRect by calling MapPt to map all the points that define the
pOlygon.

E.10 CUStoollzirYJ QuickDraw qleraUons
For each shape that QuickDraw knows how to draw, there are procedures that
perform these basic grapnlc operations on the Shape: frame, paint, erase,
invert, and fill. Those procedures in turn call a low-level drawing routine for
the Shape. For example, the FrameOVal, PalntOVal, EraseOVal, InvertOVal, and
FillOVal procedures ail call a low-level routine that draws the oval. For each
type of Object QulckDraw can draw, inClUding text and lines, there is a
pointer to such a routine. By Changing these pointers, you can install your
own routines, and either completely override the standard ones or call them
after your routines have modified parameters as necessary.
Other low-level routInes that you can Install In thIs way are:

• The procedure that aoes bit transfer ana Is callea by CopyBlts.
• The function that measures the wlath of text and is called by CharWidth,

Stringwidth, and Textwldth.
• The proceaure that processes picture comments ana Is callea by

DrawPicture. The stanaard such procedure ignores picture comments.
• The procedure that saves drawIng commands as the defInitIon of a pIcture,

ana the one that retrieves them. This enables the application to araw on
remote aevices, print to the diSk, get pIcture input from the disk, and
support large pIctures.

E-67

Pascal Reference Manual

The grafProcs flela of a grafPort aetermines WhICh low-level routines are
called; If it contains nil, the stanOarO routines are calleO, so that all
operations In that grafPort are aone In the standard ways aescrlbea In thIs
appendix. You can set the grafProcs field to poInt to a record of poInters to
routines. The data type Of grafProcs Is QYrocsPtr:

type QFrocsPtr = "QFrocs;
QOProcs = record

textProc:
lineProc:
rec'tProc:
rRectProc:
ovalProc:
arcProc:
polyProc:
l1JProC:
bitsProc:
cammtProo:

tXl1easProc :
getpicProc :
putPicProc :

end;

~r;
c;.uptr;
~r;
c;.uptr;
~r;
c;.uptr;
~r;
c;.uptr;
~r;
c;.uptr;

QJPtr;
(XPtr;
QJPtr.

Procewre setSt(l'rocs (var procs: QFrocs);

{text drawing}
{line drawing}
{rectalgle drawing}
{rot.I'ltfleCt drawing}
{oval drawing}
{arc/eJge drawing}
{polygon drawing}
{regioo drawing}
{bit transfer}
{picture comrent
processing}
{text width IlEasurenBlt}
{picture retrieval}
{picture saving}

SetStOProcs Is provioed to assist you In setting up a QOProcs record. It sets
all the fields of the given Q[PIOCS to poInt to the standard . low-level
routines. You can then Change the ones you wish to point to your own
routines. For example, if your procedure that processes picture comments Is
named M}'COfmlents, you will store fiiJt.1}'COfmlents in the corrrnentproc field
of the QDPIOCS record.
The routInes you Install must of course have the same callIng sequences as
the standard routines, whIch are described below. The standard drawing
routines tell whIch graphIc operation to perform from a parameter Of type
GrafVerb.

type GrafVerb = (frane, paint, erase, invert, fill);

When the gratVem Is flll, the pattern to use when fHUng Is passed In the
fillPat field of the grafPort.

ProceclJre stdText (byteColrlt: integer; textBuf: QOPtr; IUler,denom:
Point);

StaText Is the standard low-level routIne for drawIng text It draws text from
the arbitrary structure in memory specified by textBuf, starting from the first
byte and continuIng for bytecolllt bytes. "-kmer and denOOl specIfy the

E-68

Pas{:aJ Relel"tJIWe f-1anllaJ

scal1n~ if any: runer.v over denOOl.v gIves the vert1cal scal1n~ and runer.h
over deron.h gives the horizontal scaling.

ProceWre SU1.ine (nelJlPt: Point);

StdUne is the standard lo\V-level routine for drawing a line. It draws a line
from the current pen location to the location specIfIed (In local coordinates)
by newPt.

ProceWre ~t (verb: GrafVerb; r: Rect);

StdRect is the standard low-level routine for drawing a rectangle. It draws
the gIven rectangle accordIng to me specIfIed gratVeIb.

ProceWre sttflReCt (verb: GrafVerb; r: Root; ovalwittth, ovaltiei~t :
integer);

StdRRect is the standard low-level routine for dra\Ving a rounded-corner
rectangle. It draws the gIven rounded-corner rectangle accordlng to the
specified grafVerb. DvalWidth and ovalHei~t specify the diameters of
curvature for the comers.

ProceWre st(J)val (verb: GrafVerb; r: Rect);

StdOVal Is the standard low-level routlne for draw1ng an oval. It draws an
oval inside the given rectangle according to the spec1fied gratVeIb.

ProcedUre StdArc (verb: GrafVerb; r: Rect; startArYJle,arcArgle:
integer);

StdArc Is the standard low-level routine for drawing an arc or a wedge. It
draws an arc or wedge of the oval that fits inside the given rectangle. The
grafVeItl specifIes tne graphIc operatIon; If it's the frame operation, an arc Is
d!awn; otherwise, a wedge Is drawn.

ProceWre st<I>oly (verb: GrafVerb; poly: PolyHcnjle);

StdPoly is the standard low-level routine for drawing a polygon. It draws the
given pOlygon according to the specified grafVeIb.

ProceWre ~ (verb: GrafVerb; !VI: Rg"tiandle);

StdRgn Is the standard low-level routlne for drawIng a regIon. It draws the
given regIon according to the specified gratveIb.

E-69

Pascal Reference fvIa?UaJ QuICkDmw

procewre SUlJ1ts (var srcB1ts: B1tMap; var srcRect,dstRect: Rect;
1OOde: integer; RlaSkJql: Rgjftldle);

StdBlts Is the standard low-level routine for doln.9 b1t transfer. It transfers a
btt image between the gIven bItmap and thePort .portBla, just as if CopyBlts
were called wIth the same parameters and with a destination bitmap equal to
thePort .. .portBla.

Procedlre sun.oont (k1M,da~1ze: 1nteger; datafclldle: aJHandle);

StdComment is the standard low-level routine for processing a picture
comment. Kind identifies the type of comment. Data-tcnlle is a handle to
additional data, and dataStze is the size of that data in bytes. If there is no
additional data for the command, data-tcnlle will be nil and dataSlze will be
O. StdComment simply ignores the comment.

Ft.rnt100 stdTxt1eas (byteCotrlt: integer; text8Jf: (;.1)Ptr; var rulEr,
denOm: Point; var info: FontInfo) : integer;

StdTxMeas Is the standard low-level routine for measuring text width. It
returns the w1dth of the text stored In the arbitrary structure In memory
specified by textBuf, starting with the first byte and continu1ng for byteCoU1t
bytes. I\lmer and denom specify the scaling as in the StdText procedure; note
that StdTxMeas may change them.

ProoeWre stcI1etpic (dataPtr: QDPtr; byteCotrlt: integer);

StdGetPic is the standard low-level routine for retrieving information from
the defin1 tIon of a picture. It retrieves the next byteCoU1t bytes from the
definition of the currently open picture and stores them in the data structure
pointed to by dataPtr.

Prooewre stcRitPlc (datenr: ii)Ptr; byteColl1t: integer);

StdPutPlc is the standard low-level routine for saving information as the
definition of a picture. It saves as the definition of the currently open
picture the drawing commancls stored in the data structure pointed to by
dat.cPtr, starting wi lh the first byte and continuing for the next byteCc:u1t
bytes.

E-70

Pascal Referel7ce Manual QufCkDraw

E.ll USIng QulCI<Draw from Assembly LCVlgUage
All QuicKDraw routines can be called from assembly-language programs as
well as from Pascal. When you write an assembly-language program to use
these routines .. though .. you must emulate Pascal's parameter passing and
variable transfer protocolS.
This section discusses how to use the QuicKDraw constants .. global variables,
data types, procedures .. and functions from assembly language.
The prImary ald to assembly language programmers Is a fUe named
QO/GRAFTYPES.TEXT. If you use .Il'CLlLE to include this fHe when you
assemble your program, all the QuickDraw constants, offsets to locations of
global variables, and offsets into the fields of structured types wlll be
avallable In symbollc form.

E.ll.l COnsta'lts
QulcKDraw constants are stored in the QO/GRAfTYPE8. TEXT f11e .. and you
can use the constant values symbol1cally. For example, if you've loaded the
effective address of the thePort" .tXf"tlde field into address register P\2., you
can set that field to the sreXor mode with this statement:

HOVE." ISRCXm, (A2)

To refer to the number of bytes occupied by the QuickDraw glObal variables,
you can use the constant GRAFSIZE. When you call the InitGraf procedure,
you must pass a pointer to an area at least that large.

E.112 oata Types
Pascal's strong typing ability lets you write Pascal programs without really
considering the size Of a variaOle. But in assembly language, you must Keep
tracK of the size of every variable. The sizes of the standard Pascal data
types are as follows:

~
integer
longlnt
boole~
Char
real

Size
Word (2 bytes)
Long (4 bytes)
Word (2 bytes)
Word (2 bytes)
Long (4 bytes)

Integers and longlnts are In two's complement form; booleans have theIr
boolean value 1n b1t 8 of the word (the low-order bit of the byte at the same
locatlon); chars are stored In the hIgh-order byte of tne word; and reals are In
the KCS standard format.

E-71

Pascal Reference Manual QuiCkDraw

The QuicKDraw sImple data types lIsted below are constructed out of these
fundamental types.

~
Q[Pt.r
Qa-tcnne
Word
Str255
Pattern
61ts16

Size
Long (4 bytes)
Long (4 bytes)
Long (4 byteS)
Page (256 bytes)
8 bytes
32 bytes

Other data types are constructed as records of varIables of the above types.
The size of such a type is the sum of the sizes of all the fields in the record;
the fields appear In the varIable wIth the f1rst field in the lowest address.
For example, consider the data type BitMap, which Is defined as follows:

type Bit~ = record
baseMdr: ~r;
ro.aytes: integer;
tnn2s: Rect

"end;

ThIs data type would be arranged In memory as seven words: a long for the
baseAddr, a word for the llNBytes, and four words for the top, left, right, and
bottom parts Of the bOt.rlds rectangle. To assIst you In referring to the fields
inside a variable that has a structure like this, the QDIGRAFTYPES.TEXT file
defInes constants that you can use as offsets Into the fIeldS of a structured
variable. For example, to move a bitmap's rowBytes value into 03, you would
execute the followIng Instruction:

HOVE.. t1V8ITtW>+ROEVTES,03
Displacements are given in the QOIGRAFTYPEs. TEXT fUe for all fields of all
data types defIned by QulckDraw.
To do double indirection, you perform an LEA indirectly to obtain the
effective address from the handle. For example, to get at the top coordinate
of a region's enclosing rectangle:

HOVE.L t1VHANOLE,Ai
tlNE.l (AI), Al
HOVE.. RGNBBOX+TOP(Al),03

E-72

; Load handle into Ai
; Use handle to get pointer
; load value using pointer

Pascal Reference Manual QU/CkDraw

WAANIN3

For regIons (and all otner varlatHe-length structures wIth nandles)~ you
must not move the pointer into a register once and just continue to use
that poInter; you must dO the double Indlrectlon each time. Every
QulcKOraw call you maKe can possibly trIgger a heap compaction that
renders all pointers to movable heap Items (lIKe regIons) Invalld. The
handles will remain val1d~ but pointers you've obtained through handles
can be rendered Inval1d at any subrout1ne call or trap In your program.

E.ll.3 Global vartat>les
RegIster A5 always poInts to the section of memory Where global varIables
are stored. The OO/GRAFTYPES.TEXT fHe defines a constant GRAFGLOO
that points to the begInning of the QuicKDraw variables In thIs space, and
other constants that poInt to the indivIdual variables. To access one of the
varlables~ put GRAFGL(J3 In an address regIster, sum the constants, and Index
off of that regIster. For example, if you want to know the horIzontal
coordInate of the pen locatlon for the current grafPort, whiCh the global
variable thePOrt points to, you can give the following instructions:

MDVE.l GRAFGlOB(A5),AO ; Point to QuickDraw globals
tOIE.l Tt£PmT(AO), Al ; Get current grafPort
tINE.. PN...OC "'H (Al), DO ; Get thePort A • prLOC • h

E.l1.4 Procewres cn1 Ft.retlom
To call a QuickDraw procedure or funct1on~ you must pUSh all parameters to it
on the stack, then JSR to the function or procedure. When you link your
program with QuickDraw~ these JSRs are adjusted to refer to Qu1ckOraw's
jump table, so that a JSR into the taOle redirects you to the actual location
of the procedure or function.
The only difficult part about calling QulckDraw procedures and functions is
staCKIng the parameters. You must follow some strIct rules:

• Save all registers you wiSh to preserve before you begin pUShing
parameters. My QuickOra'N procedure or function can destroy the
contents of the registers AO, Al~ OO~ 01, and 02, but the others are never
altered.

• PUSh the parameters In the order that they appear In the Pascal procedural
interface.

• for booleans, puSh a byte; for integers and characters, puSh a word; for
pointers, handles, long integers, and reals, pUSh a long.

• For any structured variable longer than 4 bytes, push a pointer to the
varIable.

E-73

Pascal Reference Manual C)lIlckDraw

• For all var parameters, regarOless of sIze, puSh a poInter to tne varIable.
• When calling a function, fint push a null entry equal to the size of the

function result, then push all other parameters. The result will be left on
the stack after the function returns to you.

ThIs makes for a lengthy interface, but it also guarantees that you can mock
up a Pascal versIon Of your program, and later translate It Into assembly COde
that WOrks the same. For example, the Pascal statement

bl~ss := GetPixel(50,lIDUsePos.v);

'Nould be wrItten In assembly language Uke tnls:
ClR.I -(SP) ; save space for bOOlean result
MOVE. I 150, -(SP) ; PuSh cmsta1t 50 (deciIlBI)
tOIE.I toJSEPOS+V, -(SP) ; PuSh the value of IOOUsePoS.V
JSR GEWlXEl ; Gall routine
tOlE. I (SP)+,BLACKt£SS ; Fetcn result from stack

This is a simple example, pushing and pulling word-long constants. Normally,
you'll be pUShing more poInters, usIng the PEA (PUSh Effective Address)
instruction:

F1lIRotl'lC.fleCt(~t, 1, thePOrt'" .fXlS1ze. v, Ihite);

PEA
tIlVE.I
tIlVE.l
tIlVE.l
tIlVE.I
PEA
JSR

t1YRECT ; PuSh po1nter to ~t
'1, -(SP) ; PuSh constalt I
GRAFG..£B(A5), AO ; Point to f;.lIiCkOraw glObals
nEPmT(AO), Al ; Get current grafPort
PNSlZE+V(Al) .. -(SP); PuSh value of thePort A .pnS1ze.v
IHITE(AO) ; PuSh pointer to global variable .nite
FIlllUKlRECT ; Gall the st!lrout1ne

To call the TextFace procedure, PUSh a word In which each of seven bits
represents a stylistic variation: set bit 0 for bold, bIt 1 for H.alle .. bit 2 for
U1derUne, bit 3 for rutllne, bIt 4 for ShadO\rI" bit 5 for coudeuse .. and bit 6 for
extern

E-74

Pascal RefeJ-ence Manual QuickDraw

E.12 Graf3D: lluee-Dlmensl(Jla} GraJtllcs
Graf3D helps you map three-dimensional images onto the two-dimensional
space used by QuicKDraw. If this is your first exposure to three-dImensional
graphics, you will find Graf3D's standard procedures and functions a great help
in producing visually exciting graphs, Charts, and drawIngs. If you are famlliar
with Applegraphics for the Apple IL you wlll feel right at home with Graf3D's
use Of real variables and world coordinates.
With three-dimensional graphics you can present Objects in true perspective,
which will evoKe for users their everyday environmenL Graf3D helps you
represent complex business information pictorially; for example, a manager can
see important relationships among sales, profits, and advertising dollars in a
three-dimensional graph.
You may be interested in a more theoretical discussion of three-dimensional
graphiCS, includIng an explanatIon of some of the basIc concepts of Graf3D,
such as the viewing pyramid. A good, illustrated discussion appears in the
section on three-dImensional computer graphIcs In Pr!17c/ples of Interactive
Computer GrapIJiCS by William M. Newman and RObert F. Sproull (New York:
MCGraw-HUl, 1973~

E.12.1 How Graf3D Is Related to QuicI<Draw
Graf3D Is a Pascal unit that makes the QuickDraw calls necessary to produce
three-dimensional graphiCS. It provIdes you with an easy-to-use real number
interface to QuicKDraw's integer coordinates. You could, of course, write
your O\Nn QuickOraw calls to perform the same fUnctions Graf30 provides for
you, but that would be a little liKe going to the trouble of writing your own
compiler.

E.12.2 Features of Graf3D
• A cameJa-eye view. ThIs allows you to set the point Of view from whIch

the observer sees the Object independently from the coordinates of the
Object Itself. The camera is set up wIth the VieWPort, LooKAt, and
viewMgle procedures. You can set the focal length of the camera as if
you had a choice of telepnoto, wide angle, or normal lenses.

• TIlJ-ee-{lln'Jt?flsiL:nal ,:'llppl/Jf;l l.a a {jzle J.~Y1-an7k1. The apex of the pyramid 1s
at the point of the camera eye, and the base of the pyramid is equivalent
to the viewPort. When you use the Cl1p30 function, only Objects forwarCl
of the camera eye and within the pyramid are displayed on the screen.

• TWO-dimensional point and llne capability using mal coordinates. Graf3D
provides commanCls corresponding to the QuickDra'w' commands but using
real coordInates Instead of integers. W1th real coord1nates you have a
larger dynamic range for graphics calculations; with integer coordinates
you get faster drawing time. For reals, tne range 1s

1.4 x 10-45 to 3.4 x 1038

E-75

Pascal Reference Manual QlIiCl<Draw

• TW'o-dlfl7elb1onal OJ" 11l1-ee-l1Jfl"Jt?lJSfonallvtatfOn. You can rotate an object
along any or all axes simultaneously, using the Pitch, Yaw, and Roll
procedures.

• Translation and scalfng of objects in one or mOle? axes simultaneO(jSly.
Translation means movement anywhere In three-dimensional space. Scaling
means shrinking or expanding.

E.12.3 Graf3D Data Types
Graf3D declares and uses the following data types:
Polnt3D: A Polnt3D contaIns three real number coordInates: x, y, and z.

Graf30 uses x, y, and z for real number coordinates to distinguish
between the h and v Integer screen coordInates in QuicKOraw.

Point20: A Point2D is just like a Point3D but contains only x and y
coordinates.

XfMatrlx: The XfMatrlx Is a 4x4 matrIx Of real values, used to hold a
transformation equation. Each transforming routine alters this
matrix so that It contaIns the concatenated effects of all
transformations applied.

Port3OPtr: A Port3DPtr is a pointer to a Port30.

Port3D: A Port3D contaIns all the state varIables needed to map real
number coordinates into integer screen coordinates. They are as
follows:
GPort: a pointer to the grafPort associated with this Port30.
viewRect: the viewing rectangle within the grafPort; the base of the

viewIng pyramid.
xLeft, yTop, xRight, yBottom: world coordinates corresponding to

the vlewRecl
pen: three-dImensIonal pen location.
penPrime: the pen location transformed by the xFonn matrix.
eye: three-dimensional viewpoint location established by View-Angle.
hSize, VSlze: half-width and half-height of the viewRect in screen

coordinates.
hCenter .. vcenter: center of the viewRect in screen coordinates.
XCotal, yCotan: viewing cotangents set up by ViewAngle, used by

Cl1p3D.
ldent: a boolean that allows the transformation to be Skipped when

when ><Form is an Identity matrIx.
xForm: a 4x4 matrix that holds the net result of all transformations.

E-76

Pascal Reference Manual QU/CkDl"BW

E.12.4 Graf30 Procewres and FlIlCtions
The following procedures and functions are provided In Graf3D.
Procewre qlen3OPort(port: Port3lPtr);

~en3DPort ini tial1zes all the fields of a Port30 to their defaults, and makes
that Port30 the current one. Gport Is set to the currently open grafPort.
The defaults established are:

thePort30: =port;
portA.GPort:=thePort;
Vle~rt(thePortA.portRect);
WITH thePort A . portRect 00 LookAt(left ... top ... ri~t, bottom);
VlewAngle(O);
Identity;
MoveT030(O, 0, 0);

PrCJCeOJre setPort30(port: Port3OPtr);

SetPort3D maKes port the current Port3D and calls Setport for that Port3D's
associated grafPort. SetPort3D allows an application to use more than one
Port30 and swItCh between them.

ProcedUre GetPort30(var port: Port3I:Ptr);
Getport3D returns a poInter to the current Port30. ThIs procedure Is useful
when you are using several Port3DS and want to save and restore the current
one.

Procewre ttlVeT02O(x" y: real); ProceWre HoveTo30(X, y, Z: real);
ProceOOre tklVe2O(c1x" dy: real); ProceOOre tnve30(c1x" dy, dZ: real);

These procedures move the pen In two or three dImensIons wIthout drawIng
lines. The real number coordinates are transformed by the xForm matrix and
projected onto flat screen coordInates; then Graf3D calls QulcKDraw's MoveTo
procedure wI th the resul t.

ProcedUre LineT02O(x, y: real); ProoedUre LineTo30(x, y, Z: real);
Procerure Llne20{W<..dy: real); Procerure Llne30{OX,dy,(lZ: real);

These procedures draw two- and three-dimensional lines from the current pen
location. UneTo2D and Line2D stay on the same z-plane. The real number
coordinates are first transformed by the xForm matrix, then clipped to the
viewing pyramid, then projected onto the flat screen coordinates and drawn by
calling QuickDraw's UneTo procedure.

E-77

Pascal Rererence Manual QuickDraw

Fl.IlCtion Clip30(src1., src2: Point30; var dst1., dst2: Point): boolean;

Clip 3D clips a three-dimensional line segment to the viewing pyramid and
returns the clipped line projected onto screen coordinates. Cl1p3D returns
true if any part of the Hne Is visible. If no part of the l1ne is within the
viewing pyramid, Clip3D returns false.

ProcedUre setf>t30(var pt30: Point30; x,y,z: real);
Setpt3D assIgns three real numbers to a Polnt30.

Procewre setflt2O(var pt20: Polnt20; x,y: real);

SetPt2D assigns two real numbers to a Polnt2D.

E.12.lll setting ~ the C<mera (VIewPort, LookAt, cn:2 Vlew,Qngle)
Procedures ViewPort, LookAt and ViewAngle position the image in the
grafPort, aim the camera, and choose the lens focal length in order to map
three-dimensional coordinates onto the flat screen space. These procedures
may be called In any order.

ProcedUre ViewPort(r: Rect);
ViewPort specifies Where to put the image in the grafPort. The ViewPort
rectangle Is in integer QulckDraw coordInates, and tells Where to map the
LookAt coordinates.

Pr()OO(ljre LookAt(left, top, ri!ttt, bottom: real);

LookAt specifies the real number x and y coordinates corresponding to the
viewRecl

procedUre ViewAngle(angle: real);
ViewMgle controls the amount "of perspective by specifying the horizontal
angle (in degrees) subtended by the viewing pyramid. Typical viewing angles
are 0° (no perspective), 10° (telephoto lens)., 25° (normal perspective of the
human eye), and 800 (wide angle lens~

E.13.1l2 The TransfOrmation Matrix
The transformation matrix allows you to impose a coordinate transformation
between the coordinates you plot and the viewing coordinates. Each of the
transformation procedures concatenates a cumulative transformation onto the
xFonn matrix. SUbsequent lines drawn are first transformed by the xFOIm
matrix, then projected onto the screen as specified by ViewPort, LookAt, and
VieWAngle.

Pl'OCeOJre Identity;
Identity resets the transformation matrix to an identity matrix.

E-78

Pascal Reference Manual QulckDraw

ProceclJre SC8le(xFootor .. yFootor .. Zfootor: real);

Scale modifies the transformation matrix so as to shrink or expand by xFootor ..
yFactor, and zFactor. For example, SGale(2.02.02.0) wlll make everything
come out twice as big when you draw.

ProceOJre TICI1s late (me, dy, dZ: real);

Translate modifies the transformation matrix so as to displace by dX,dy,dz.

ProceclJre Pi tch(XArYJle: real);

Pitch modifies the transformation matrix so as to rotate xAngle degrees
around the x axis. A positive angle rotates clockwise when lOOking at the
origin from positive x.

ProceclJre Yaw(yArYJle: real);

Yaw moalf1es tne transformatlon matrix so as to rotate yAngle degrees around
the y ax1s. A posItive angle rotates clockwise when lookIng at the orIgIn
from positive y.

ProcedUre Roll(zAngle: real);

Roll modifies the transformation matrix so as to rotate zAngle degrees around
the z axis. A positive angle rotates clOCKwise when looking at the origin
from positive z.

ProcedUre SkeW(ZAngle: real);

Skew modifies the transformation matrix so as to skew zAngle degrees
around the z axIs. SKew only Changes the x coordInate; the result Is muCh
like the slant QuicKDraw gives to italic Characters. (Skew(lS.0) maKes a
reasonable ItaI1c.) A positive angle rotates clOCKwise when lOOKing at the
or1gin from posit1ve z.

ProcedUre TlCVlsform(src: Point3D; var dst: Point3D);

Transform appUes the xFOl11l matrix to SIC and returns the result as dst. If
the transformation matrix is identity, dst will be the same as SIC.

E-79

Pascal Reference f\1anUa1

E.13 QulCkDraW Inte~

UNIT QuiCkOralJl;

{ COpyright 1983 Apple conputer Inc. }

INTERFACE

CONST sreCOpy
sreOr
sreXor
srcBie
notsrCCOpy
notSrcDr
notSreXor
notSrcBie
patCOpy
patGr
patxor
patBic
notpatCOpy
notPatOr
notPatXor
notPatBic

= 0; {the 16 transfer modes }
= 1;
= 2;
= 3;
= 4;
= 5;
= 6;
= 7;
= 8;
= 9;
= 10;
= 11;
= 12;
= 13;
= 14;
= 15;

{ Qu1CkOraw color separat10n constants }

normalBit = 0;
inverseBl t = 1;
redB1t = 4;
greenBlt = 3;
blueB1t = 2;
eyanBlt = 8;
magentaB1 t = 7;
yelloUBlt = 6;
blackBlt = 5;

{ normal screen mapp1ng }
{ inverse screen mapping }
{ RGB add 1 ti ve mapp1ng }

{ CMVBk subtractive mapping }

C)tIiCkDmw

blackCOlor = ";
WhlteColor = 30;
redColor = 205;
greencolor = 341;

{ colors expressed in these mappings }

bluetolor = 409;
eyancolor = 273;
magentacolor = 137;
yelloWCOlor = 69;

plcLParen = 0;
p1cRParen = 1;

{ standard picture comments }

E-80

Pascal Reference Manual

-128 .. 127;
"QOByte;

= "QDPtr;
= String[2SS J;

{ blind pointer }
{ blind handle }

= PACKED ARRAY[O .. 7] OF 0 .. 255;
ARRAV[O .. 15] OF INTEGER;
(v, h);
(frame,paint,erase,invert,f111);

QulckDrak/

TYPE QOByte
QOPtr
(JI)Handle
Str2SS
Pattern
8its16
VHSelect =
GrafVerb
Styleltem = (bOld, Italic, unoerline, outline, Shadow, condense,

extend);
Style = SET OF StyleIt~

FontInfo = RECORD
ascent: INTEGER;
descent: INTEGER;
widt1ax: INTEGER;
leading: INTEGER;

END;

Point = RECORD CASE INTEGER OF

0: (v: INTEGER;
h: INTEGER);

1: (Vh: ARRAV[VHSelectJ OF INTEGER);

EN>;

Rect = RECORD CASE INTEGER Of

0: (top:
left:
bOttom:
right:

INTEGER;
INTEGER;
INTEGER;
INTEGER);

1: (topLeft: Point;
botRight: Point);

END;

E-81

Pascal RefellJl7Ce HantlaJ

61 tMap = RECORD
baseAddr: QOPtr;
rowBytes: INTEGER;
bOunds: Rect;

END;

Cursor = RECCR)
data: B1 tS16;
mask: Bi ts16;
hOtSpot: POint;

END;

penstate = RECORD
pnLoc:
pnS1ze:
pnt1ode:
pnPat:

END;

Point;
Po1nt;
INTEGER;
pattern;

PolyHandle = "PolyPtr;
PolyPtr = APolygon;
Polygon = RECORD

polySize: INTEGER;
polyBBox: Rect;
polyPoints: ARRAV[O .. O] OF Point;

END;

RgrlH(n:Jle = AR~tr;
RgnPtr = "Region;
Reg10n REcmD

C),JiCkDraw

rgnslze: INTEGER; { rgnSlze = 10 for rectangular }
rgnBBox: Rect;
{ plus more data if not rectangular }

END;

PlcHandle = ~PlcPtr;
PicPtr = APicture;
PIcture = RECORD

plcSlze: INTEGER;
plcFrame: Rect;
{ plus byte cOdes for picture content }

END;

E-82

Pascal RefeJ1Jl7Ce Manual

QOProcsPtr = "QDProcs;
QOProcs = RECORO

textProc: QOPtr;
llneProc: QOPtr;
rectProc: QDPtr;
rRectProc: QOPtr;
ovalProc: QDPtr;
arePtoe: QOPtr;
polyPrOC: QOPtr;
rgnProc: QOPtr;
bltsProc: QOPtr;
COfMentProc: QOPtr;
txMeasProc: QOPtr;
getPlcProc: QOPtr;
putP1cproe: QOPtr;

END;

GrafPtr = ~GrafPort;
GrafPort = RECORD

deV1ce:
portBlts:
portRect:
vlsRgn:
c11pRgn:
bkPat:
f111Pat:
pnLoc:
pnS1ze:
pnt1Ode:
pnPat:
pnVls:
txFont:
txFace:
txt1Ode:
tXSize:
spExtra:
fgColor:
bkColor:
colrBit:
patStretch:
plosave:
rgnsave:

INTEGER;
BitMap;
Rect;
RgnHandle;
RgnHandle;
Pattern;
Pattern;
Point;
PoInt;
INTEGER;
Pattern;
INTEGER;
INTEGER;
Style;
INTEGER;
INTEGER;
LongInt;
LongInt;
LongInt;
INTEGER;
INTEGER;
QOHandle;
QDHarl(jle;

E-83

QulckDraw

Pascal Reference ManuaJ QuICkDJaw

polysave: QOHandle;
grafProcs: QOProcsPtr;

END;

VAR thePort: GrafPtr;
White: Pattern;
black: Pattern;
gray: Pattern;
1 tGray : Pattern;
dkGray: Pattern;
arrow : Cursor;
screenBits: BitMap;
ranc1Seed: longInt;

{ GrafPort Routines }

PROCEDURE InitGraf (glObalPtr: QDPtr);
PROCEDURE OpenPort (port: GrafPtr);
PROCE~ InitPort (port: GrafPtr);
PROCEDURE ClosePort (port: GrafPtr);
PROCEDURE SetPort (port: GrafPtr);
PROCEDURE GetPort (VAR port: GrafPtr);
PROCEDURE GrafDevice (device: INTEGER);
PROCEDURE setPortB1ts(bm: B1tMap);
PROCEDURE PortS1ze (width, hei{1lt: INTEGER);
PROCEDURE MovePortTo (leftGlobal, topGIObal: INTEGER);
PROCEOlJ£ setOrigin (h, V: INTEGER);
PROCEDURE setC11p (rgl: RglHandle);
PROCEOlR: GetClip (rgl: RglHandle);
PROCEDURE Cl1pRect (r: Rect);
PROCEOURE BackPat (pat: Pattern);

{ CUrsor Routines }

PROCEDURE InltCUrsor;
PROCEotft setcursor(crsr: CUrsor);
PROCEOURE H1deCursor;
PROCEOlIE ShoWCUrsor;
PROCEDURE ObscureCUrsor;

E-84

Pascal Reference 1'1anIJ81

{ Line Routines }

PROCEDURE HidePen;
PROCEDURE ShOwPen;
PROCEDURE GetPen (VAR pt: point);
PROCEDURE Getpen8tate(VAR pnState: PenState);
PROCEDURE setpen8tate(pnState: Pen5tate);
PROCEDURE PenSize (width, height: INTEGER);
PROCE[)lft Pent10de (fOOde: INTEGER);
PROCEDURE PenPat (pat: Pattern);
PROCEDURE PenNormal;
PROCEDURE t1OVeTo
PROCEDURE MOVe
PROCEDURE LineTo
PROCEDURE Line

(h, V: INTEGER);
(dh, dV: INTEGER);
(h, V: INTEGER);
(dh,dV: INTEGER);

(font: INTEGER);
(face: Style);
(node: INTEGER);
(size: INTEGER);
(extra: LongInt);
(00: char);
(s: Str25S);

QuICkDraw

{ Text Routines }

PROCEDURE TextFOnt
PROCEDURE TextFace
PROCEDURE TextMOde
PROCEDURE TextS1ze
PROCEOlH: SpaceExtra
PROCEDURE Dra.char
PROCEDURE DrawStr1ng
PROCEDURE DrawText
FUNCTION Char'1dth
FUNCTION Str1ngw1dth
FUNCTION TextW1dth

(textBuf: QOPtr; f1rstByte,bytecount: INTEGER);
(Ch: CHAR): INTEGER;
(s: Str25S): INTEGER;
(textBuf: QDPtr; f1rstByte,bytecount: INTEGER):

INTEGER;
PROCEDURE GetFontInfo (VAR info: FontInfO);

{ Point calculations }

PROCEDURE AddPt (src: Point; VAR dst: Point);
PROCEDURE SUbPt (src: Point; VM dst: Point);
PROCEDlR: 5etPt (VAR pt: Point; h, v: INTEGER);
FUNCTION EqualPt (ptl, pt2: Point): BOOLEAN;
PROCEDURE SCalePt (VAR pt: Point; fr~t, toRect: Reet);
PROCEDlRE t1apPt (VAR pt: Point; fronAect, toRect: Reet);
PROCEDtR: LocalToGlobal (VAR pt: Point);
PROCEOlR GlobalToLocal (VAR pt: Point);

E-85

Pascal Reference Manual QulCkDmw

{ Rectangle calculations }

PROCEDURE setRect (VAR r: Rect; left" top" rIght" bOttom: INTEGER);
FI.H!TION EqualRect (rect1" rect2: Rect): BOO..EAN;
FUNCTION Eq>tyRect (r: Rect): BCXl.EAN;
PROCEDt..R: OffsetRect (VAR r: Rect; dh,dV: INTEGER);
PROCEDURE MapRect (VAR r: Rect; frOllfiect"toRect: Rect);
PROCEME InsetRect (VAR r: Rect; dh" dV: INTEGER);
FUNCTION SectRect (srC1" src2: Rect; VAR OstRect: Rect): BOa..EAN;
PROCE~ ltlionRect (srel" sr02: Rect; VAR dstRect: Rect);
FUNCTION PtInRect (pt: PoInt; r: Rect): BOOLEAN;
PROCEDURE Pt2Rect (ptl" pt2: Point; VAR dstRect: Rect);

{ Graph1cal OperatIons on Rectangles }

PROCEDURE FrameRect (r: Rect);
PROCEDURE PaintRect (r: Rect);
PROCEDURE EraseRect (r: Rect);
PROCEDURE InvertRect (r: Rect);
PROCEDURE F1llRect (r: Rect; pat: Pattern);

{ RoundRect Routines }

PROCEDURE FrameRoundRect (r: Rect; ovWd,ovHt: INTEGER);
PROCEDURE PalntRoundReCt (r: Rect; ovlt1,ovHt: INTEGER);
PROCEDURE EraseRolrldRect (r: Rect; ovlJlO, oVHt: INTEGER);
PROCEDURE InvertR~ect (r: Rect; ovlcJ,ovHt: INTEGER);
PROCEDURE FillRW'ldReCt (r: Rect; ovWd,oVHt: INTEGER; pat: Pattern);

{ oval Routines }

PROCEDURE FraJJeOVal (r: Rect);
PROCEOURE Paintoval (r: Root);
PROCEDURE Eraseoval (r: Rect);
PROCE~ InvertOVal (r: -Root);
PROCEDURE FlllOVal (r: Rect; pat: Pattern);

{ Arc Routines }

PROCEDURE FrameArc (r: Rect; startAngle,arcAngle: INTEGER);
PROCEDURE PaintArc (r: Rect; startAngle, arcAngle: INTEGER);
PROCEDURE EraseArc (r: Rect; startAngle, arcAngle: INTEGER);
PROCEDURE InvertArc (r: Rect; startAngle" arcAngle: INTEGER);

E-86

Pascal Reference MantJaJ QjICkDrsw

PROCEDURE FillAre (r: Rect; startAngle,areAngle: INTEGER; pat:
Pattern);

PROCEDURE PtToAngle (r: Rect; pt: Point; VAR angle: INTEGER);

{ Polygon Routines }

FUNCTION OpenPoly:
PROCEDURE ClosePoly;
PROCEDURE KillPoly
PROCEDURE Offsetpoly
PROCEDURE MapPoly
PROCEDURE FrcoePoly
PROCEDURE PaintPoly
PROCEOtR: ErasePoly
PROCEDURE Invert?oly
PROCEDURE FillPoly

Po lyHand Ie;

(poly: PolyHandle);
(poly: polyHandle; dh,dv: INTEGER);
(poly: PolyHandle; fronfleCt, toRect: Rect);
(poly: PolyHandle);
(poly: PolyHandle);
(poly: PolyHandle);
(poly: PolyHandle);
(poly: PolyHandle; pat: Pattern);

{ Region calculatioos }

FUNCTION Ne~: ~le;
PROCEOURE Oi sposeRgn(rgn: RcpB'ldle);
PROCEOURE COpyRgn (srcRgn, dstRgn: ~Rgn""'IHaIr.:wvtldle);
PROCEOtR: 5etElItltyRgn(rgn: RgnHandle);
PROCEOURE setRectRgn(rgn: RglIHaI .cUe; left, top, right, bottom: INTEGER);
PROCEOlR: RectRgn (rgn: RgnHandle; r: Rect);
PROCEDURE 0penRgn;
PROCE[)lR CloseRgn (dStRgn: ~le);
PROCEDURE OffsetRgl (rgn: ~le; dh,dV: INTEGER);
PROCEQlR MapRgn (rgn: ~le; fronflect, toRect: Rect);
PROCEOURE InsetRgl (rgn: ~le; tI"I,dV: INTEGER);
PROCEOURE 5ectRgn (srcRgnA, srcRgnB, dstRgn: ~le);
PROCEDURE U1ionRgl (srcRgnA, SrcRgnB,dstRgn: ~le);
PROCEDURE OiffRgn (sI'cRgnA, srcRgnB,dstRgn: ~le);
PROCEDURE XorRgn (srcRgnA, srcRgnB, dStRgl: RgllHalldle);
FUNCTION EqualRgn (rgnA, rgnB: RcpB'ldle): BOOLEAN;
FUNCTION E~tyRgn (rgn: ~le): BOOLEAN;
FUNCTION PtInRgn. (pt: Point; rgn: RcpB'ldle): BOOLEAN;
FUNCTION RectInRgn (r: Rect; rgn: ~ldle): BOOLEAN;

{ Graphical Operations on Regions }

PROCEDURE FrameRgn (rgn: RgnHandle);
PROCEDURE PaintRgn (rgn: ~le);
PROCEDURE EraseRgn (rgn: RgnHandle);

E-87

Pascal Reference Mantlal QulekDraw

PROCtDURE InvertRgn (rgn: RgnHandle);
PROCEDURE FillRgn (rgn: RgnHandle; pat: Pattern);

{ Graphical Operat1ons on B1tMaps }

PROCEDURE ScrollRect(dstRect: Rect; dn,dv: INTEGER; updateRgn:
rgnHandle);

PROCEDURE COpyBits (srcBits, dstBits: BitMap;
srcRect,dstRect: Rect;
mode: INTEGER;
maSkRgn: RgnHandle);

{ Picture Routines }

FUNCTION OpenPlcture(plcFrane: Rect): PlcHandle;
PROCEDURE ClosePlcture;
PROCEDURE DrawPlcture(myPlcture: PlcHandle; dstRect: Rect);
PROCEDURE PICCOO1nent(l<lnd, dataSlze: INTEGER; dataHandle: QOHandle);
PROCEDURE Kl11Plcture(myPlcture: PlcHandle);

{ The Bottleneck Interface: }

PROCEDURE setStdProcS(VAR procs: QOProcs);
PROCEDURE StdText (count: INTEGER; textAdclr: QOPtr; I'lUIIEr, denOm:

PROCEDURE Stdl1ne
PROCEDURE StdRect
PROCEDlft StdRRect
PROCEDURE StdOVal
PROCEDURE StdArc

Point);
(ne~: Po1nt);
(verb: GrafVerb; r: Rect);
(verb: GrafVerb; r: ReGt; ovid., ovHt: INTEGER);
(verb: GrafVerb; r: Rect);
(verb: GrafVerb; r: Raet; startAngle, arcAngle :

INTEGER);
PROCEDURE StdPoly (verb: GrafVerb; poly: PolyHandle);
PROCEDURE StdRgn (verb: GrafVerb; rgn: RgnHandle);
PROCEDURE StcJBits (VAR srcBlts: BitMap; VAR srcRect,dstRect: Rect;

1OOde: INTEGER; maSkRgn: RgnHandle);
PROCEDURE StdConment (kind"datasize: INTEGER; dataliandle: QDHandle);
FUNCTltt4 StdTXMeas (count: INTEGER; textAddr: QDPtr;

VAR numer,denom: Point;
VAR 1nfo: FontInfo): INTEGER;

PROCEDURE StdGetpic (dataPtr: QOPtr; byteccu-.t: INTEGER);
PROCEDURE SttPutPlc (dataPtr: QOPtr; bytecount: INTEGER);

E-88

Pascal Reference f\1a?U81

{ M1se Utility Routines }

FUNCTHX" Getpixel (tt, v: INTEGER): BOOLEAN;
FUNCn~ RcrldOm: INTEGER;
PROCEDmE Stuff Hex (tn1ngptr: I;K)Ptr; s:Str255);
PROCEDURE Forecolor (color: LongInt);
PROCEDlR: Bacl<.COlOr (COlor: Longlnt);
PROCEDLRE COlorBlt (.nlChBlt: INTEGER);

E.13.1 Graf3D Jnterface

{SS Graf }

UNIT Graf30;

Qulcl<OJ'8W

{ three-dimensional graphics routines layered on top of QuickDraw }

INTERfPa.

USES {$U QO/f).IickOraw. (BJ} QulckOra,,:

CONST radConst=S7.~78;

TYPE Polnt3D=RECORO
X: REAL;
y: REAL;
z: REAL;

ENO;

Polnt20-RECORO
X: REAl..;
y: REAL;

END;

Xftlatr1x = ARRAV[O •• 3, O •• 3] OF REAl;
Port3OPtr - "'Port3D;
Port3D = REC(R)

GPort: Grafptr;
vlewRect: Rect;
><left, yTop, xR1ght, yBottom: REAl;
pen, penPrine, eye: Po1nt30;
ttSize,vS1ze: REAl;
hCenter,vcenter: REAL;
xCotan, yCotan: REAL;
1oent: BOO..EAN:
xF orm:)(fHatr1x:

END;

£ ... 89

Pascal Reference /'1anu8J

VAR thePort30: Port3DPtr;

PROCEDURE ~3OPort (port: Port3OPtr);
PROCEDURE 5etPort30 (port: POrt3OPtr);
PROCEOtR: GetPort30 (VAR port: Port3OPtr);

QuickDraw

PROCEDURE HoveT02O(x,y: REAL); PROCEDURE ttoveT030(x,y,z: REAL);
PROCEI:llH l1neT02O(x,y: REAl); PROCEOtR: l1neTo30(x,y,Z: REAl);
PROCEOlH: Hove20(dX,dy: REAl); PROOEOtR: Hove30(dX,dy,dZ: REAL);
PROCEDURE l1ne20(dx, dy: REAl); PROCEDlft l1ne30(dX, dy, dz: REAl);

PROCEDlH: V1ewPort (r: Rect);
PROCEDURE lOOkAt.. ,(left, top, right, bottom: REAl);
PRaDlH V1ewAngle - (Cflgle:·· REAl); .
PROCEOlH: Identity;
PROCEDlft: scale
PROCEOtR: Translate
PROCEI:llH PitCh
PROCEOt.RE Yaw
PROCE£.llR: Roll
PROCEOlH Skew
PROCEI:llH Transform
FlI4CTION Clip30

PROCEOt.R: setpt30
PROCE[)lft 5etpt2()

(xFactor, yfactor, ZFactor: REAl);
(dX, dy" dZ: REAl);
(XAngle: REAl);
(yAngle: REAL);
(ZAngle: REAl);
(ZAngle: REAL);
(src: Polnt30; VAR dst: Po1nt30);
(srcl, src2: Point3p; VAR dstl, dst2: POINT):

BOO..EAN;

(VAR pt30: Point30; x,y,z: REAl);
(VAR pt2D: Point20:- x,y: REAL);

E-90

Pascal Reference Manual QliCkOraw

E.14 QulCI<DraW 5aJ1)le Prograns
This section provideS listings of two sample programs that are inclUded with
the WOrkshOp software.

E.l4-l QDScI11l1e
The program ~le (1n the fUe QD/QOSaItlple.1EXl) demOnstrates
different thlrgs tnat QulCkOrS'N can dO. Its output Is ShOwn In Figure E-26.

Text

Bold
Italic
Underline _1m
~

RoundRects

Polygons

look what you can draw with QUickOraw

Rectangles

Bit Images Wedges

E11!!1 .. t
~m~

Fl!J.1f8 E-26
QDScI11l1e

The fHe ~le. TEXT Is an exec fHe tnat can be used to rebUlld
this sample program. Disregard any warning messages from the linker abOUt
name conflIcts.

E-91

Pascal Reference I'1a7tIal

PROORAt1 ~le;

{ Sample program illlustrating the use of QuickOraw. }

USES {$U OO/l;)JiCkDraw.CBJ} l;)JiCkDraw,
{$U QO/fl)SUpport. OOJ} fl)SUpport;

TVPE lconData = ARRAV [0 •• 95] OF INTEGER;

VAR heapBUf:
myPort:
icons:

ARRAV [0 .. 10000] Of INTEGER;
GrafPort;
ARRAV[0 .. 5] Of IconData;

FlKTI~ HeapFull(hZ: QOPtr; bytesNeeded: INTEGER): INTEGER;

QulCkDraw

{ this function will be called if the heapZone runs out of space }
BEGIN

WRlTElN('The heap is full. The program rust now terminate! ');
Halt;

END;

PROOEOlR: Ini tlcons;
{ I1ar'Ually stuff some icons. Normally we 1JIOU1d read them from a file }
BEGIN

{ Lisa }
StuffHex(-icons[O, OJ, 'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOlffffffffC');
StUffHex(-icons[O,12), '0060000000060180000000OB060000000013OFFFFFFFFFA3');
StuffHex(aicons[0,24], '18000000004311fFFff0002312000008Of231200000Bf923');
StuffHex(aicons[O,36], '120000OBOF23120000OB002312000008002312000008OF23');
StuffHex(-icons[O,48], '1200000Bf9231200000B0F2312000008002311FFFFf00023');
StuffHex(aicons[0,60], '08000000004307FfFFffFFA3010000000026OFFffFfFFE2C');
stuffHex(alcons[o,72], i18000000013832AAAAA8A9F0655555515380C2AAAA82A580');
StUffHex(alcons[0,84), '80000000098OFfffFFfFF30080000000160OFFFfFFfFFCOO');

{ Printer }
StuffHex(aicons[l, 0), '00');
StUffHex(-icons[1,12), '00000000000000007FFFFF00000080000280000111514440');
StuffHex(aicons[l,24], '0002000008400004454510400004000017COOO04A5151000');
StUffHex(-icons[l,36), '0004000010000004A54510000004000017FEOOf4A5151003');
stuffHex(aicons[l,48), '0184000013870327FffFFIOf06400000021BOCfFFFFFFC37');
StUffHex(-icons[1,60], '1800000000683000000000077FFFFFFFFFABC00000000356');
StUffHex(aicons[1,72), '8000000001AC87fOOOOOOl5884100OCCCIB087FOOODCC160');
StUffHex(aicons[l,84], '8000000001COC000000003807FFFFFFFFF0007800001EOOO');

E-92

Pascal Reference I'1anI.IaI ~IC1<Draw

{ Trash Can }
StuffHex(wlcons[2, 0], '00000lFCOOOOOOOOOE060000000030030000000OC0918000');
StuffHex(ilcons[2,12], '00013849800000026C4980000004C0930000000861260000');
StuffHex(wicons[2,24], '0010064fE0000031199830000020E6301800002418EOOBOO'};
StuffHex(ilcons[2,36], '0033E3801C0000180E002COOOOOFF801CC0000047FFEOCOO');
StuffHex(iiconS[2,48], '000500004C0000OS259A4COOOOOS250A4C00000525fA4C00'};
StuffHex(mlcons[2,60], '000524024C00000524924C00600524924C0090E524924C7C');
StUffHex(iicons[2,72], '932524924C82A44524924001C88524924CFIOC4524924C09');
StuffHex(ilcons[2,84], '0784249258E70003049233100000EOOOE40800001FFFC3FO');

{ tray }
StuffHex(wicons[3, 0], '00');
StuffHex(ilcons[3,12], '0000000000000000000000000000000000000007FFFFFFFO');
StuffHex(wicons[3,24], '000E00000018001A00000038003600000078006A00000OO8');
StuffHex(ilcons[3,36), 'OOO7FFFFFFB801AC000003580358000006B807FCOOOFFD58');
StuffHex(-iconS[3,48}, '040600180AB80403fFFOODS8040000000AB8040000000D58');
StuffHex(iiconS[3,60], '040000000AB807FFFFFFFD5806ACOOOOOAB8055800000D58');
StuffHex(wiconS[3,72], '06B000000AB807FCOOOFFD70040600180AE00403FFFOOOCO');
StUffHex(iiconS[3,84], '040000000B80040000000f00040000000E0007FFFFFFFCOO');

{ F1le Cabinet }
StUffHex(wlconS[4, 0], '0007FFFFFC0000080000OCOOOOIOOOOOIC00002000003400');
StuffHeX(iiconS[4,12], '004000006COOOOFFFFfFD4000OBOOOOOACOOOOBFFFFED400');
StuffHex(-lconS[4,24), '00A00002ACOOOOA07F02040000A04102ACOOOOA07F02D400');
StuffHex(ilcons[4,36], '00A00002ACOOOOA08082040000AOFF82ACOOOOA000020400');
StUffHex(-lconS[4,48], 'OOA00002ACOOOOBFFFFE040000800000ACOOOOBFFFFED400');
StuffHex(iicons[4,60), '00A00002ACOOOOA07F02040000A04102ACOOOOA07F02D400');
StuffHex(-lcons[4,72], '00A00002ACOOOOA08082040000AOFF82ACOOOOA00002D800');
StuffHex(ilconS[4,84], '00A00002B0000OBFFFfEE0000080000OCOOOOOFffFFF8000");

{ drawer }
StUffHex(-lcons[S, 0], '00');
StuffHex(ilcons[S,12), '00');
StuffHex(-lcons[S,24], '00');
StUffHeX(illcons[5,36), 'OOlfFFFFFO');
StuffHex(-lcons[S,48], '000038000030000068000070000008000ODOOO3FFFFFFIBO');
StuffHex(illcons[5~60], '0020000013500020000016B000201FEOID50002010201ABO"):
StuffHex(-lcons[S,72], '00201FEOlS60002000001AC0002000001580002020101BOO');
StUffHex(illcons[5,84), '00203FF01600002000001C00002000001800003FFfFFfOOO');

END;

E-93

Pascal Reference Manual

PROCEDlft Drawl con (Wh 1 ChI 00'\ h ... v: INTEGER);
VM sreBi ts: Bl tMap;

srcRect ... astRect: Rect;
BEGIN
srcBits.oaseAddr:=·1cons[~iChIcon);
sroB1ts.rowBytes:-6;
5etRect(sroB1ts.bOl.rlOs ... 0 ... 0 ... 48 ... 32);
srcRect:~srcBlts.bOUnds;
astRect:=srcRect;
OffsetRect(dstRect ... tl... v);

QulekDraw

COpyBl ts(sroBl ts ... ttlePOrt" .portBl ts ... srcRect ... dstReet ... sreer ... Nll);
EN);

PROCEDlR: DrawstUff;

VAR 1: INTEGER;
teqlRect: Rect;
myPoly: PolyHandle;
myRgn: RgnHandle;
myPattern: Pattern;

BEGIN
stUffHex(iimyPattern, • 8040200002040800');

t~t :. ttlePort "'.portReot;
CllpRect(tempRect);
EraseRot.mRect(tenpRect, 30~ 20);
Fr~t(tempRect ... 30~ 20);

{ draw two horizontal llnes across tne top }
t1oveTO(O~ 18);
LineTo(719 ... 18);
ttoveTo(O ... 20);
LlneTo(719 ... 20);

{ draw dlv1der llnes }
t1oveTO(O,I34);
LlneTo(719 ... 134);
ttoveTO{O ... 248);
L1neTo(719 ... 248);
ttoveTo(240,21);
LineTo(240 ... 363);
ttoveTo(480,21);
llneTo(480 ... 363);

E-94

Pascal Reference Mantlal

{ draw title }
TextF ant (0);
MoveTo(210,14);
DrawString('LOOk what you can draw with Qu10k0raw');

{--------- draw text ~les --------- }

HoveTo(80,34); DraWString(I Text I);

TextFace«(bold]);
MoveTo(70,55); DraWStr1ng('Bold');

TextFace([ita11c]);
HoveTo(70,70); DrsWString(' Italic');

TextFace([under11ne]);
ttoveTo(70,85); DraWString('lklderline');

TextFace([outline);
HoveTo(70,100); DraWString('Outline');

TextFace([shadow]);
HoveTo(70,115); DraWStr1ng('Shadow');

TextFace([]); {restore to normal}

{ --------- draw line samples --------- }

MoveTo(330,34); Drawstring('lines');

HoveTo(280 .. 25); line(160 .. 40);

PenSize(3 .. 2);
t1oveTo(280 .. 35); Line(160,40);

PenSize(6,4);
MoveTo(280 .. 46); L1ne(160,40);

PenSlze(12 .. 8);
PenPat(gray);
t1oveTo(280,61); llne(160,40);

E-95

QujckDmw

Pascal. RefeJ7!!f7Ce 1'18ntI81

PenSize(15,10);
PenPat(~Pattern);
HoveTo(280,80); L1ne(160,40);
PenNormal;

{ --------- draw rectangle samples --------- }

HoveTo(560,34); OrawString('Rectangles');

SetRect(~ect, 510,40,570,70);
FrameRect(tempRect);

OffsetRect(tempRect,2S,15);
PenSize(3,2);
EraseRect(tempRect);
FrameRect(~ect);

OffsetRect(tempRect,2S,15);
PaintRect(tempRect);

OffsetRect(tempRect,2S,15);
PenNormal;
FillRect(tempRect,gray);
FrameRect(tempRect);

Off setRect (tempRect, 25, 15);
FillRect(tempRect,~ttern);
FrameRect(tempRect);

{ --------- draw roundRect samples --------- }

HoveTo(70,148); OraWStrlng('RoundRects');

SetRect(tempRect ... 30,150,90 ... 180);
FramaRoundAcot{tompRcot,JO,20);

OffsetRect(tempRect,25, 15);
PenS1ze(3,2);
EraseRoundRect(~ect, 30,20);
FrameRoundRect(telJl)Rect, 30,20);

OffsetRect(tempRect,25,1S);
PaintRounclect(~ect, 30,20);

E-96

t:).dckDmw

Pssc81 Reference fv18nu8l

OffsetRect(tenpRect,25,15);
PenNormal;
F111Rot.rldRect(tenpect, 30, 20, gray);
FrameRoundRect(teJll)Rect, 30, 20);

OffsetRect(t~t,2S, 15);
FillRoundRect(tempRect,30,20,myPattern);
FrameRW1dRect(teqJRect, 30, 20);

{ --------- draw bit image samples --------- }

HoveTo(320,148); DraWStrIng('Bit Images');

Drawlcon(O,266,I56);
Drawleon(I,336,I56);
Drawlcon(2,406, 156);
Drawlcon(3,266,I96);
Drawlcon(4, 336, 196);
Drawl con (5, 406, 196);

{ --------- draw wedge samples --------- }

HoveTo(570,148); DrawStrIng('wedges');

setRect(teqlRect,520, 153,655,243);
FillArc(tenpRect, 135,65, ckGray);
FillArc(teqlRect,200, 130, myPattern);
FillArc(teqJRect, 330,75, gray);
FrameArc(teqlRect,135,270);
OffsetRect(tempRect, 20, 0);
PaintArc(teqJRect, 45, 90);

{ --------- draw polygon samples --------- }

ttoveTo(80,262); DraWString('Polygons');
myPoly: =OpenPoly;

HoveTo(30,290);
LineTo(30,280);
LineTo(SO, 265);
LineTo(90,265);
LineTo(80,280);
LineTo(95,290);
LineTo(30,290); .

CIosePoly; { end of definition }

E-97

QuickDraw

Pascal Reference Jv/8ntJ8l

FramePoly(~ly);

OffsetPoly(myPoly,2S,15);
PenSize(3,2);
ErasePoly(myPoly);
FramePoly(~ly);

OffsetPoly(myPoly,25,15);
Paintpoly(myPoly);

Offsetpoly(myPoly,2S,15);
PenNormal;
FillPoly(~PolY,9ray);
FramePoly(myPoly);

OffsetPoly(myPoly,2S,15);
FillPoly(mypoly,~Pattern);
FraJOOPoly(myPoly);

KillPoly(myPoly);

{ --------- demonstrate region clipping --------- }

HoveTo(320,262); OraWString(IRegions l
);

myRgn: =NewRgn;
OpenRgn;

ShowPen;

SetRect(tetrpRect, 260, 27'0, 460,350);
FrameRoundRect(teqlRect,24,16);

HoveTo(275, 335); {define triangular hole }
lineTo(325, 285);
lineTo(375 .. 335);
LineTo(275, 335);

SetRect(tenpRect, 365, 277,445, 325); {oval hole}
FrameOval(tempRect);

HidePen;
CloseRgn(~gn);

SetClip(myRgn);

{ end of definition }

E-98

QujckDraw

Pascal Reference f'18ntJaJ

FOR i: =0 TO 6 00 {draw stuff inside the clip region }
BEGIN

Hove To (260, 280+12*1);
DrawString('Arbitrary Clipping Regions');

END;

C11pRect(thePort A .portRect);
OisposeRgn(~Rgn);

{ --------- draw oval samples --------- }

HoveTo(580,262); OrawString('Ovals');

SetRect(t~ect, 510, 264, 570, 294);
FrameOval(tempRect);

Off setRect (teq:>Rect, 25, 15);
PenSize(3,2);
EraseOval(teq:>Rect);
FrameOval (t~ect);

OffsetRect(tempRect,25,15);
PaintOval(tempRect);

OffsetRect(teqJRect,2S, 15);
PenNormal;
FillOval(tempRect,gray);
FrameDval(tempRect);

OffsetRect(tempRect,2S,IS);
FillDval(tempRect,myPattern);
FrameOval(tempRect);

END; {OrawStuff}

E-99

t:;VickDraw

QuickDraw

BEGIN {main progrCID} .
{ Initialization - Generic to all applications using QuickOraw }
QOlnit(ilheapBuf, ilheapBuf[lOOOO], ~ull); { Must do this once at

OpenPort(amyPort);
PaintRect(thePortA.portRect);

InitIcons;
Dr~ ... Stuff;

begiming }

{ Paint grey background }

Tone(2000, SOO); { Beep tone of (1/2000)*10A 6 == SOO cycles/sec for
SOO milliseconds }

Readln; {wait t.rltil RETURN entered before terminating program }
END.

E-100

Pasc81 Refe.rence M8I7l181 QuickDraw

E.142 Boxes
The program· Boxes (in the file QOIBoxes.. TEXT) uses the Graf30 routines to
draw random three-dimensional boxes on a grId, as shown in Figure E-27.

Fi~ E-27
Boxes

The file QOIMIBoxes. TEXT is an exec file that can be used to rebuild this
sample program. Disregard any waming messages from the linker about name
conflicts.

E-10l

VAR
heapBuf:
SPortl:
GPort2:
myPort:
myPort30:
boxArray:
nBoxes:
1:

ARRAV'lO •• 8192) (f" INTEGER;
GrafPort;
Port3d;
Grafptr;
Port3OPtr;
ARRAV[O •• bOxCot.rltl (F Box30;
INTEGER;
INTEGER;

{16k bytes}

FUNCTION HeapError(hz: QOPtr; bytesNeeded: INTEGER): INTEGER;
{ this procedure gets called ~ the heap zone 1s full }
BEGIN '

QuickDraw

WRITElN('The heap 1s full. The program RUst now terminate' ');
HALT;

END;

FUNOTION Distenoe{ptl, pt2: POINTJD): REN..;
VAR dx" cJy, cJz: REAL;
BEGIN

cJx:=pt2.X - ptl.X;
dy:apt2.V - ptl.V;
cJZ:=pt2.Z - ptl.Z;
01stance:=SQRT(~ + dy*dy + dz-dZ);

END;

E-l02

P8SC8l Reference MantJeJ

PROCEDtR: HakeBoX;

VAR myBox:
i, j, h, v:
pl,p2:
myRect:
testRect:

BEGIN

Box30;
INTEGER;
Polnt3D;
Rect;
Rect;

p1.x:=Random mod 70-15;
pl.y: =Random fOOd 70 -10;
p1.z: .. 0.0;
p2.x:=p1.x + 10 + ABS(Random) MOO 30;
p2.y:=p1.y + 10 + ABS(Random) HOD 45;
p2.z:=p1.z + 10 + ABS(Random) MOO 35;

QuickDmw

{ reject box if it intersects one already in list }
SetRect(myRect,ROUND(pl.x),ROUNO(p1.y),ROUND(p2.x),ROUNO(p2.y»;
FOR i: =0 TO nBoxes-1 00

BEGIN
11TH boxArray [i] 00

SetRect(testRect,ROUND(ptl.x),ROUND(ptl.y),
ROUND(pt2.x),ROUND(pt2.y»;

IF SectRect(myRect, testRect, testRect) n£N EXIT(t1akeBox);
END;

myBox.ptl: =pl;
myBox. pt2: ·p2;

{ calc midpoint of box and its distance from the eye }
p1.x:=(pl.x + p2.x)/2.0;
pl.y:=(pl.y + p2.y)/2.0;
p1.z:=(pl.z + p2.z)/2.0;
Transform(pl,p2);
myBox.dist:=Oistance(p2,myPort30- . eye); {distance to eye }

i:=O;
boxArray(nBoxes).dist:~X.dist; { sentinel}
WHILE myBox.dist > boxArray[i1.d1st 00 1:=1+1; {insert 1n order of dist}
FOR j: -nBoxes OO~TO i + 1 00 boxArray(j] : -boxArray(j-1];
boxArray[i 1 : =myBoX;
nBoxes: =nBoxes+ 1;

END;

E-I03

Pascal Reference f'o18nuaI

PROCEDURE DrawBox(ptl, pt2: Polnt30);
{ draws a 30 box with Shaded faces. }
{ only shades correctly in one dIrection }
VAR teqlRg1: RgnHandle;

BEGIN
tenpRgn: =Ne~;
OpenRgn;

t1oveTo30(pt1.x, pt1.y, pt1.z); { front face, y=yl }
LineTo30(pt1.x, ptl.y, pt2.z);
L1neTo30(pt2.x, ptl.y, pt2.z);
LineTo30(pt2. X, ptl.y, ptl.z);
L1neTo30(ptl.x, ptl.y, pt1.z):;

CloseRgn{tempRgn);
Fl11Rgn(tempRgn,white);

OpenRgn;
HoveTo30(pt1.x,pt1.y,pt2.z); { top face, z-Z2 }
LineTo30(ptl.x, pt2.y, pt2.z);
LineTo30(pt2. X, pt2 .y, pt2.z);
LineTo30(pt2.x, ptl.y, pt2.z);
LineTo30(pt1.x, ptl.y, pt2.z);

CloseRgn(tempRgn);
FillRgn(tempRgn,gray);

OpenRgn;
tfoveTo30(pt2.x,pt1.y,pt1.z); { right face, x=x2 }

LineTo30(pt2. X, pt1. y, pt2 .z);
LineTo30(pt2.x, pt2.y, pt2.z);
LineTo30(pt2.x, pt2.y, ptl.z);
L1neTo30(pt2. x, ptl. y, ptl.z);

CloseRgn(tempRgn);
FillRgn(tempRgn, black);

PenPat(.,1 te);
tIoveTo30(pt2.~pt2.y,pt2.z); {outline rl~t }
llneTo30(pt2.x, pt2 .y, ptl.z);
LineTo30(pt2.x, ptl.y, pt1.z);
PenNormal;

0IsposeRgn(tenpql);
END;

E-I04

QuickDmw

PsscaJ Reference /VIanuaJ QujckDmw

BEGIN {main program }
{ Initialization - Generic to all applications using QuickDraw }
QOInit(iiIheapBuf, iJheapBuf[8192], iiheapError); { Must do this once at

myPort := aGPort1;
OpenPort (myPort);
myPort3D := aGPort2;
Open3OPort(myPort30);

begiming)

ViewPort(myPort'" .portRect); { put the image in this reet }
LookAt(-100, 75, 100,-7S); { aim the camera into 30 space }
ViewAngle(30); { choose lens focal length }
Identity; Roll(20); Pitch(70); {roll and pitch the plane }

Per9at(.-hi te);
BackPat(black);
EraseRect(~rt"'.portRect);

fOR i:=-10 TO 10 00
BEGIN

MoveTo30(i*10, -100, 0);
LineTo30(i*10, +100, 0);

END;

fOR i:=-10 TO 10 00
BEGIN

t1oveTo30(-100, i*10, 0);
LineTo30(+100, i*10, 0);

END;

nBoxes:=O;
REPEAT t1akeBoX; UNTIL nBoxeS=boxColrlt;
fOR i:=nBoxes-l OOINTO 0 00
Dr~x(boxArray[i].ptl,boxArray[i].pt2);

Tone (2000, SOO); {Beep tone of (1/2000)*10"'6 == SOO cycles/sec for
SOO mdlliseconds }

ReadLn; {"'ait LIltil RE~ entered before terminating program }

END.

E-I05

Pascal RefeIenCe Manual Q,/ICkDraw

E.15 ~
. The ~rt unit (In the file QD/QOSl4lport. TEXl) provides the
Initialization that you need to use QuICkDraw In the QDlnlt prOCedUre, as wen
as procedures for simplified access to mouse tracking, the mouse bUtton, and
souna generation, and useful definitions of font numbers. For more detailed
information on mouse-handling routines and sound" refer to ~lx F"
HanfWare Interface.

UNIT QOSupport;

INTERfACE

USES
{$U (Xl/ttli tStd. 08J } U'li tStd,
{$U QOlUni tHz • OBJ } U'li tHz,
{$U QO/Hardware. OOJ } Hardware"
{$U QO/Fontngr .OBJ } Fontngr"
{$U W/QuiCkOraw. OBJ} ~iCkora,,;

CONST
{---------- Font Numbers ----------}

FTile12 = 4; {proportional}
FTile18 = 5; {proportional}
FTile24 = 6; {proportional}
FP1STile = 7; {Monospaced - 8 lines/inch 8c 15 chars/inch}
FP12Tile = 8; {ttonospaced - 6 lines/inch 8c 12 Chars/inch}
FP10Tile = 9; {HonOspaced - 6 lines/inch 8c 10 cnars/inch}
FGent12 = 10; {proportional}
FGent18 = 11; {proportional}
FCent24 = 12; {proportional}
FP12Gent = 13; {Monospaced - 6 lines/inch 8c 12 cnarslinch}
FP1DCent = 14; {Monospaced - 6 lines/inch 8c 10 charS/inch}
FP20Tile = 19; {Monospaced}

E-I06

Pascsl Reference HsnusJ . QuickDraw

PROCEDURE QOInlt(startPtr, I1mitptr: QOPtr; ErrorProc: QOPtr);
{ QDInit: Initializes QuickOraw unit by setting up its heap

zone, global vars, cursor, and the Font Manager it
calls on. }

PROCE~ GetHouse(VAR pt: Point);
{ GetHouse: Returns the current noose location in the local

coordinates of the current grafPort. }

FUNCTI~ HouseButton: 800..EAN;
{HouseButton: Returns TRl£ if the noose button is currently held

down, other"i se FALSE. }

PROCEDURE Tone(wavelength, Mation: LongInt);
{ Tone: ProduCes a square wave tone of the specified

wavelength (microseconds) for the specified duration
(milliseconds). }

E-107

Pascal Reference I'18nuaJ QuickDmw

E.16 Glossary
bit Image: A collection of bits 'in memory that have a rectilinear represen­
tation. The lisa screen is· a visible bit image.

bl~ A poInter to a bit image, the row width of that image, and its
boundary rectangle.

boln:Jary recta'lgJe: A rectangle defined as part of a bitmap, which encloses
the active area of the bit image and Imposes a coordinate system on it Its
top left comer is always alIgned around the first bit in the bit image.
canera eye: A concept in three-dimensional graphics: the point Of view and
the viewing angle in which an object appears, indepelldent of the object's
coordinates.

character style: A set of stylistic variations, such as bold, italic, and
underline. The empty set indicates normal text (no stylistic variations~

clipplr¥:J Limiting drawing to withIn the bol.Ilds of a particular area
clippirfJ region: Same as clipR~

cliJAgt The region to which an application limits drawing in a grafPort.

coordinate pl8'llt A two-dimensional grid. In QuickDraw, the grid coordinates
are integers ranging from -32768 to +32767, and all grid lines are infinItely
thin

runor. A 16-by-16-blt image that appears on the screen and is controlled by
the mouse.
cursor level: A value, Initialized to 0 when the system is booted, that keeps
track of the ntmber of Umes the cursor has been hIdden.

erflJly: COntaining no bits, as a shape defined by only one point
foot: The complete set of cryaracters of one typeface, such as Century.
fnme: To draw a shape by drawing an ouUine of it
global coordinate system: The coordinate system based on the top left comer
of the bit image being at (O..o~

Graf3O: A three-dimensional graphics unit that calls QuickOraw routines.

gmfPort: A complete drawing environment, including such elements as a
bitmap, a subset of it in which to draw, a character font, patterns for drawing
and erasing, ~ other pen characteristics.

grafPtr. A pointer to a grafPort.

handle: A pointer to one master pointer to a dynamIc, relocatable data
structure (such as 8 region~

hotspot: The point in a cursor that is aligned with the mouse position.

kem To stretch part of a character back lIlder the previous character.

E-l08

P8SC8l Refemnce fvIavaJ

local coordinate system: The coordinate system local to a grafPort, imposed
by the bculdary rectangle defined in its bitmap.

missing syrrtJol: A character to be drawn in case of a request to draw a
character that is miSSing from a particular fonl
pattem An 8-by-8-bit image, used to define a repeating design (such as
stripes) or tone (sUCh as gray~

pattern tl'alsfer mode: 01e of eight transfer modes for drawing lines or
s~ ~th a pattenn. .

picture: A saved sequence of QuickDraw drawing commarlds (and, optiooally,
picture comments) that you can play back later with a single procedure call;
also, the image resulting from these commands.
picture conments: Data stored in the definition of a picture which dOes not
affect the picture's appearance but may be used to provide additional
information about the picture when it's played back.

picture fnme: A rectangle, defined as part of a picture, which surrounds the
picture and gives a frame of reference for scaling when the picture is drawn.
pbel: The visual representation of a bit 00 the screen (white if the bit is 0,
black if it's 1).

point: The intersection of a horizontal grid line and a vertical grid line on
the coordinate plane, defIned by a horizontal and a vertical coordinate.

polygEl't A sequence of connected lines, defined by Quick Draw line-drawing
commands.
port: GrafPort or Port30.

Port3O: A data structure in Graf3D that maps three-dimensional coordinates
into a two-dimensional QuickOraw grafPort.

Port3lPt.r. A pointer to a Port30.

portBits: The bitmap of a grafPorl
portBlts..tn.n:.ts: The bot.Ildary rectangle of a grafPOrt's bItmap.
portRect: A rectangle, defined as part of a grafPort, which encloses a subset
of the bitmap for ~ by the gratPort.
regtm: fVl arbitrary area or set of areas on the COOrdinate plane. The
outline of a region should be one or more closed loops.
row width: The runber of bytes in each row of a bit Image.

scale: To shrink or expand by a specified factor.
soUd: Filled In with any pattem

source transfer mode: O'le of eight transfer modes for drawing text or
transferring any bit image between two bItmaps.

E-I09

style: See character style.

thePort: A global variable that points to the current grafPort.

thePort3O: A global variable that points to the current Port3D.

t.rar1Sfer mode: A specification of which boole81 operation QuickDraw should
perform when drawing or when transferring a bit image from one bitmap to
another.
tnnlate: To move in three-dimensional space by a specified amDlIll

t.ra1sfonnatioo mat.rlx! Same as xForm matrix.

~ pyramid: The portion of three-dimensional space that a camera eye
can see. The pyramides apex is the point of the camera eye; Its base is the
vie"IRect in a Port30.

vbRgt The region of a grafPort which is actually visible on the screen.

xForm matl1x: A 4x4 matrix that holds an equation to tra'lSform points
plotted in three-dimensional coordinates into two-dimensional screen
coordinates.

E-ll0

Appendix F
Hardware Interface

F.1 llle I'bJse .•.....•.•.•.•.••.•.•••.•.........••.•..••.•.••.•.• _ ••..•..••••••.•.•.•.•••.•.....•.• F-l

F.1.1
F.1.2
F.1.3
F.1.4

t'-1ouse Location ... F-1
fVtouse lJpdate F reqtBlCy •••••••.•.••.••..•.•••••••.•.•••••••••••...••••••.••.••• F-1
~e Scalirg •.. F-l
fvtouse O:tlnleter •.••••••.•..•.....•••••....•..•..•••...•.•...•.•.•••.•...••.••..••.. F - 2

F.2 The QJrmr •••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••••••••.••••••••••••••••• F-2

F.2.1
F.2.2

CUrsor JtvIouse Tracking... F -3
The Busy CtJrsor .•...•...•......................................•.•.................. F - 3

F.3 1lle OiSillay &:reerl .••..•.•..••.•.••.•...•.....•...••...•.....••.•....••.•••.•.••......••..... F-4

F.3.1
F.3.2

Screen Cootrast •............. F-4
AJt.ornatic SCreen FadirlQ ..•...•... F-4

F.4 1l1espeaker ••.••••••••••••••••• F-5

F.5 1lle I<e,yboard ••••••••••••••••••••••••••••••••••••• •••••• •••••••••••.••••• ••••• ••••••• •••••• •••• F-S

F.S.1
F.5.2
F.5.3
F.S.4
F.S.S

Keyboard Identification .. F-7
Keyboard State.........•...... F-8
Keyboard E veI'lts•............ ..•............. F-8
[)ead Key Diacri ticals ... F -1 0
Repeats ... F-11

F.6 1lle ~CItJSeCQIId TImer .. F -11

F.7 1lle~lnsetXll'ldTirner •••••••.•• _ ••••••••••••••••••••••.••••••••••••••••••••••••••.••••••• F-12

F.8 [)ate S1d 1lrTIe •• F-12

F .9 Tinle stal1l•......................•..............•................... F-12
F.ID lIlterfa:eoftt1e~Ulit ••• F-13

Hardware Interface

The hardware interface software provides an interface for accessing and
controlling several parts of the lisa hardware. The hardware/software
capabilities addressed in:lude the rrouse, the cuner, the display, the contrast
control, the speaker, both lJ !decoded and decoded keyboard access, the micro­
second and millisecond timers and the hardware clocklcalerKtar.

This appendix contains Pascal procedure and function declarations interleaved
with text describing them. Pascal type declarations and a stmm8ry of the
function and procedure declarations C<Il be fOll1d in Section F .10, Interface of
the Hardware Unit.

Programs using this LIlit stoold be call111ed against the file QOlHardware'(BJ
and linked to the file QDIHWlntl.CBJ.

F.l The Mouse
F.l.l Mouse Location

PrtJceWre M:Jusel.ocatim (var x: Pixels; var y: Pixels);

The mouse Is a poInting devIce used to IndIcate screen locations.
Mrusel...ocatlm returns the location of the mouse. The X -coordinate can rMge
from 0 to 719, and the V-coordinate from 0 to 363. The Initial mouse
location is 0,0. .

F .1.2 . MJuse 4Jd8te Frequen:y

PrtJceWre MJaeC ~tes (delay; MUllSectms);

Software krowledge of the mouse location is l4Jdated periodically, rather tha1
continuously. The frequency of these updates can be set by calling
MOl_ ~ The time between ~tes can Jar'9! from 0 milliseconds
(contiruJUS updating) to 28 miUiseCOllds, in intervals of 4 milliserolds. The
initial settil'VJ is 16 millisecor ads..

F.1.3 MJUSe 8callrv:l
ProceWre MJllSeSt:altrJ:I (scale:800lem);

PrtJceWre JwbJseThresh (thresmld: PIxels);

The relationship between physical mouse movements and logical mouse move­
ments is not necessarily a fixed linear mapping. Three alternatives are
available: 1) LIlSCaled, 2) scaled for fine movement and 3) scaled for coarse
movemenl Initially mouse movements are tmCaled.

When mouse movement is lI1SCBled a horizontal mouse movement of x lIlits
yields a ctalge in the mouse X-coordinate of x pixels. Similiarly, a vertical
movement of y lIlits yields a ctalge is the mouse Y -coordinate of y pixels.
These rules apply indepelldent of the speed of the mouse movement.

F-l

Pascal Refemnce H8nuBl

When roouse movement Is SC8let:t horizontal movements are maglifled by 312
relative to vertical movements. This is to compensate for the 213 aspect
ratio of pIxels on the screen. When scaUng Is In effect, a distinction is made
between fine (small) movements CIld coane (large) movements. Fine move­
ments are sUgltly reduced, while coarse movements are magnIfied. For scaled
fine movements, 8 horizontal mouse movement of x lI'llts yields 8 change in
the X-coordlnate of x pixels, rut a vertical movement of y lIlits yields a
change of (213}*y pixelS. For scaled coarse movements, a horizontal movement
a x tIlits yields a change of (312}*x pixels, whlle a vertical movements of y
lI'llts yields 8 change of Y pixels.
The distinction between fine movements and coarse movements is determined
by the sun of the x and y movements each time the mouse location is
updated. If this st.m is at or below the thresflolct the movement is coosidered
to be a fine movemenl Values of the threshold range from 0 (which yields all
coarse movements) to 2S6 (which yields all fine movements~ Given the
default mouse l4Jdating f~y, a threshold of about 8 (threshold's initial
setting) gives a comfort.ciJle transitim between fine and coarse movements.
f'bJSeScalIng enables and disables roouse scaling. MouseThresh sets the
threshold between fIne and coarse movements.

F.1.4 M:ue D:bneter

Ftn::tlm ~r: M5lyPlxels;

In order to properly "specify, desiCJ1 and test mice, U's important to estimate
how far a mouse moves wring its lifetime. MJuseObneter returns the SlITl
of the X and Y movements of the mouse since I:xlot time. The value returned
is in (UlSCaled) pixels. There are 180 pixels per il1ch of mouse movemenl

F.2 The 0Jn0r

ProcedJre OJnorlmage (tIltx: Pbcels; hotY: Pixels; heigtt: CUrsoIHeig.t; data:
CUnorPtr; nmk: CUnorPtr);

The cur.ror Is a small image that is displayed on the screen. Its shape is
specified by two bitmaps, called data and mask These bItmaps are 16 bits
wide CIld from 0 to 32 bits hlgl. The rule used to corrbine the bIts already
on the screen with the data and mask Is

screen <- (screen and (rot mask» xor data

The effect is that White areas of the screen are replaced with the cursor
data. Black areas of the screen are replaced with (not mask) xor data. If the
data ~ mask bitmaps are identical, the effect is to or the data onto the
screen.
The cursor has both a location Sld a hotspot. The locatim is a position on
the screen, with X-coordinates of 0 to 719 and V-coordinates of 0 to 363.
The hotspot is a position within the cursor bitmaps, with X- am Y-coordi­
nates ranging from 0 to 16. The cursor is displayed on the screen with its

F-2

Pasc81 Reference Manuel Hardkl8Ie lnteJface

hotspot at Its location. If the cursor's location Is near an edge of the screen,
the cursor image may be partially or completely off the screen.

f'1ost cursor operations can be performed by calling the SetCursor, HideCursor,
ShlwOJrsor, and (I)scure().n"so procedures defined by QuickDraw (see Section
E.9.2, CUrsor-Ha1dling Rootines~ Additional capabilities are provIded by the
Hardware Interface routines described below.

The CUrsorImage procedure is used to specify the data bitmap, mask bitmap,
height and hotspot of the cursor. InItially the cursor data and mask bitmaps
contain all zeros, which yields a bIen< (invisible) cursor. The initial hotspot is
OJ].

F.2.1 CUrsorll'1x.ae Tm::kirv:J

Procerure CUrsorTrackinJ (track: Boolean);

Procerure cunort...ocatim (x: Pixels; y: Pixels);

OJrsorTmd<l"J enables and dIsables cursor /.r8cking of the mouse. When
tracking is enabled, the cursor location is changed to the mouse location each
time the mouse moves. setting the cursor location by call1ng CUnorlocation
will have no effect; the cursor sticks with the mouse.

When trackIng is disabled, the mouse location CJld cursor location are indepen­
dent. Calling CUrsorLocatim will move the cursor; moving the mouse will not.

When trackIng is first enabled (I.e., on each transition from disabled to
enabled) the mouse location is modi fled to equal the cursor location. There­
fore, enabllng tracking does not move the cursor; it does modify the mouse
location. Initially trackIng Is enabled.

F.2.2 The Busy CUrsor

Procerure Busylmage (rotx: Pixels; mtY: Pixels; reig,t: CUrsoIHeig-tt; data:
CUrsorPtr; mask: QJnorPtr);

procewre BusyDelay (delay: Mllliseca 0$);

Applications may desire to display a busy ClUSOI (e.g., an hourglass) when an
operation In progress requires more than a few seconds to complete. The
Busylmage procedure is used to specify the data bitmap, mask bitmap, height
and hotspot of the busy cursor.
A call to BusyOelay specifies that the normal cunor should currently be
displayed, and that display of the busy cursor should be delayed for the
specified runber of milliseconds. SUbsequent calls to BusyOelay override
previous calls, postponing display of the busy cursor. If no calls to BusyDelay
occur for the specified runber of milliseconds, the busy cunor will be
displayed until the next call to BusyDelay.

Initially the busy cursor data and mask bitmaps contain all zeros, which yields
a blCYlk (invisible) cursor. The Initial hotspot is 0,0. The initial busy delay is

F-3

P8SC8I ReIeIl!/l1Ce fvI!:Inu8J

infinite, that is, the busy cursor will not be displayed until Bus)<lelay is
called.

F.3 The Display Screen

ProcecUe ScreenSlze (var x: Pbels; var y: Pixels);

The display screen is a bit mepped display; that is, each pixel on the screen
is controlled by a bit in main memory. The display has 720 pixels horizontally
and 364 lines vertically, and therefore requires 32,760 bytes of main memory.
The screen size may be determined by calling ScreenSize..

Flft;tioo FnmeCc:ulter: Fnmes;

The screen is redisplayed about 60 times per second. A h8me cot/I1tsr is
incremented between screen updates, at the vertical retrace interrupl The
frame counter is an lJ1si1}led 32-bit integer which is reset to 0 each time the
machine is booted. FnmeCc:ulter retums this value. An application can
synchrcnize with the vertical retraces by watching for cha ges in the value of
this COlIlter. The frame counter should not be used as a timer; use the
millisecond and mircosecolld timers instead.

F .3.1 Screen Cootrast
Flft;tioo Cmtrast: ScreaContrast;

ProcecUe Setcontrast (oonUmt: ScreerContJast~

The display's contrast level is l.I1der progrcm control. Contrast values range
from 0 to 255 ($FF), with 0 as maxim.m contrast and 2SS as mininun.
Cmtrast returns the contrast setting; Set.Cmt.rast sets the screen contrast.
The low order two bits of the contrast value are iCJ1Ored. The initial contrast
value is 128 ($SO}

ProcecUe R~tmst (cmtmst: ScreerContJast);

A SUdden change in the contrast level can be jarring to the user.
~trast gradually changes the contrast to the new setting over a period
of abaJt a secorid. ~ returns immediately, then ~ the
contrast using interrupt driven processing.

F.3.2 ~tic Screen F~

FU'CUoo DlmCmtrast: ScreaCmtrast;

ProcecUe setolmCmtrast (cmtrast: ScreerCootrast);

The screen contrast level is automatically dimmed if no user activity is noted
over a specified period (usually several minutes} This is done in order to
preserve the screen phospher. DlrrCmtrast returns the contrast value to which
the screen is dimned; SetDinColtrast sets this value. The initial dim
contrast setUng is 176 ($BO~

F-4

Pascal Reference Manual I-Iardw8re Interface

Ftn:tim FadeOelay: MllllSean1s;

Procec:lJre SetFadeOelay (delay: MlllISecmds);

The delay between the last user activity and dimming of the screen is LIlder
software control. FadeOelay returns the fade delay; SetFadeDelay sets it.
The actual delay will range from the specIfied delay to twice the specIfied
delay. The initial delay period Is five mInutes.

When the screen is dim, user interaction will cause the screen contrast to
return to its nonnal brig,t level (determined by the Cootrast arK1 SetCmtrast
routines defined above~ f'1oving the moose or pressirg a key on the keyboard
(e.g., SHIFT) is erlOlJI1l to trigger the screen bri~tening. Calling
CUnmLocation or SetFadeOelay also indicates user activity.

F.4 The Spe8<er
Ft.n:tim Voltme: ~lune;

ProceOJre SetVolt.me (volt.me: ~IVolt.me);

Procec:lJre ~:se (waveLengttt MlCIOSeco'Ds);

ProcedIre Slleree;

Procec:lJre Beep (wavel..engttt MlcroSeconds; clJration: MllllSean1s);

The routines in this section provide square WfWe output from the Lisa speaker.
The speaker volt.me C31 be set to values in the TCV1Qe 0 (soft) to 7 (loud).
Voltme reads the volt.me setting; SetVOltme sets it. The initial volt.me
setting is 4.

~se produces a square wave of apprOximately the specified wavelergth.
Silence sMs off the square wave. The minirrun wavelength is about 8
microseconds, which correspoods to a frequency of 125,000 cycles per second,
well above the audible rSlge. The maxinun wavelergth is 8,191 micro­
seconds, which correspoc Ids to about 122 cycles per second.

Noise and Sileree are called in pairs to start and stop square wave output. In
contrast, Beep starts square wave output which will automatically stop after
the specified period of time. The effects of Noise, Sllence Sld Beep are
overridden by subSequent calls.

F.5 The Keyboard
The routines in this section provide an interface to the keyboard, the keypad,
the mouse button and plug, the diskette buttons and insertion switches, and
the power switch. Two interfaces are provided, a poll able keyboard state and
a queue of keyboard events.

Three physical keyboard layouts are defined, the "Old US Layout" (with 73
keys on the main keyboard and runeric keypad), the "Final US Layout" (76
keys) and the "European Layout" (77 keys~ Each key has been assigned a
ke~ which lfliquely identifies the key. Keycode values range from 0 to

F-S

Pssc81 Reference I'18ntI8I I-IaJr:Iwem interface

127. Table F-l defines the keycodes for the "Final US layout", usIng the
legends from the US Keyboard. The "Old US L8yout" has three less keys; I\,
AlJtl8 Enter, ~ Rlglt qltIon are not on the old keyboard. The "European
layout" has one additional key, ><, wIth a keycode of $43.

Two keys on the "Old US Layout" generate keycodes dIfferent from the
corresporxti~ keys on the "Final ~,L8yout". To aid in compatibility,
software Changes the keycode for from $7C to $68, CI1d the keycode for
Rlg,t ~Uon from $68 to $LIE.

TCI)le F-l
KeyCOdes for ""Final US L8yrut-

HIGH. 000 001
1 Lf 0

0000
o

0001
1

0010
2

0011
3

0100
4

0101
5

0110
6

0111
7

1000
8

1001
9

1010
A

1011
B

1100
C

1101
o

1110
E

............
DISK 1 :::::::::::::::::::::::

INSERTED :::::::::::::::::::::::

............
PARALLEL ,:::::::::::::::::::::::
P~T '::::::::::::::::::?:

nOOSE
BUTT(Jf

nOOSE
PLUG

PWER
BUTT(Jf

............
-
............
:.:.:.:.:.:.:.:.:.:.:.:
............

010
2

CLEAR

7

8

9

I
[!J

4

5

6

,
(fJ

2

3

011
3

............
. :.:.:-:.:-:.:-:.:-:-:.:
-:.:-:-:.:-:.:.:-:.:.:-:
............

............

100
4

+

=

\

:::::::::::: p
)}}}}) BACKSPACE
............
::::::::::::::::::::::: AlPHA
::::::::::::::::::::::: ENTER

............

............
.:.:-:.:-:.:.:.:-:.:-:.:
:.:-:.:.:.:.:.:.:.:.:.:
............

F-6

RETURN

o

?
I

1

RIGHT
(PTI(lf

101
5

)
o
u

J

K

{
[

}
]

M

L

;

SPACE

<

>

110
6

E

6
&
I

*
8

%
5

R

T

y

F

G

H

v

c

B

N

111
7

A

ii)

2

3
$
4

1

Q

s

w

TAB

z

x

o
LEFT

(PTI(If

CAPS
LOCK

SHIFT

Pascal Reference fvIIT1U81

F 5.1 Keyboard IdenUflcaUm

FlrCtion KeybOaIO:: KeyIJdId;

FlflCtion LegerU: Keybdld;

ProceWre setLegeOOs (ld: Keybdld);

Hantware InleJ"Face

Usa software supports a host of d1fferent KeybOards. Each KeybOard has three
major attributes: manufacturer, physical layout" and legendS. The chart
below describeS hOw these three attrIbutes are combined to form a Keyboard
identi- fication number. The KeybOards self Identify when the machIne Is
turned on and when a new keyboard Is attached. Keyboard returns the
Identification number of the Keyboard currently attached. Legends and
setLegeOOs provIde a means Of pretending to have dIfferent legendS, wIthOUt
physIcally replacIng the keybOard.
Keyboard identl flcaUon numbers:

7 6 5 4.
I ~acturer LayOUt

McnJfaCturer:

00 ,APD (I.e., TKC)
01 --
10 -- Keytronlcs

Layout:

00 Old US (73 keys)
01
10 -- European (77 keys)
11 -- FInal US (76 keys)

LayootA.egerU:

$OF Old US

$26
$27
$29
$29
$2A -­
$26 -­
$2C -­
$2D -­
$2E
$2F --

Swiss-German
Swiss-French
Portuguese
SpaniSh-Latin American
Danish
Swedish
Italian
FrenCh
German
UK

F-7

3 2 1 o
LegendS

(allocated for proposed software)
(allocated for proposed software)
(allocated for proposed software)
(allocated for proposed software)
(allocated for proposed software)
(hardware not yet avallable)
(hardWare not yet available)

Pascal Reference Manual Hardware interface

$3C -- APL
$30 -- French-Canadian
$3E -- US-Dvorak

(allocated for propoSed software)
(allocated for proposed soft'Ware)
(allocated for proposed soft'Ware)

$3F -- Final US

F.52 Keyboard state
FtIlCUoo KeylsDown (key: Ke)Cap): Booleal;

~ Keyt-1ap (var keys: Keycapset);

Low level access to the keyboard Is provided througn a pollable keyboard
state. This state Information Is based on the pnyslCal keycoaes defined abOve.
KeylSl:Jown returns the poSition of a single specified key. Keytvlap returns a
128-blt map ... one bit for each Key. A zero Indicates the key Is UP ... a one
indicates dOwn. For the mouse plug" a zero indicates unplugged ... a one Indi­
cates plugged In. Certain Keys are not pollable; the corresponding bits wUl
al'Ways be zero. These Keys are the diSkette insertion switChes and buttons ...
parallel port ... and power swltCtl. (The parallel port and mouse plug keys are
unreUable across rebOots on older hardware.)

F.S.3 KeyboaId Events
The hardware interface provides a queue of keyboard events. The events in
the Input queue are generally key down transitions. Each event contains the
follOWing information:

keycode physical key
ascII ~II InterpretaUon of this key
state caps-locK ... Shift, option, mouse bUtton and repeat
mousex X-coordinate of the mouse when the Key was pressed
mouseY Y -coordinate of the mouse When the Key was pressed
Ume value of the mll11second tImer When the key was pressed

K.eycode -- KeyCOdeS are defined In Table F-l, abOve.
AscII -- The ASCII Interpretation of keys depends on the state of the caps­
lOCK ... shIft and opUon keys. SIx Interpretations are associated wIth each
dIfferent keyboard layout:

normal
caps-lOCk
Shift or both Shift and caps-lock
option
option with caps-lOCk
option with shift or bOth shift and caps-lOCk

F-8

Pascal Reference fvIanu8J

In most cases the ASCII value returned Is obvious.
cases that aren't so obvious.

5m~
$00 (N..L~

$01 so-t
$03 ETX
$08)

:~(~
$18 (ESC)

:~g ~(~~ $lE S
$lF
$20 SP

DIsk ~ lmerted
Disk 1 Button
Disk 2 Inserted
Disk 1 Button
Power Button
Mouse Button (down)
Mouse Plug (in)
f'-1ouse Button (l4»
Moose Plug (out)
Enter
BackSpace
Tab
Return
Clear

Left
RIght
Up
[)own

Space

Haniware Interface

The table below lIsts the

State -- A 16-bit word is used to return the state of several keys with each
event Each bit represents one or more keys; a zero indicates that all of the
keys are up, a one indicates that at least one of the keys is down. M
additional bit indicates, if it is a one, that the event was generated by
repeating the previous event. The following bits of state are currently
assigned:

bit 0: caps-lock
bit 1: left or right shift
bit 2: left or right option
bit 3: "key
bit 4: mouse button
bit 5: this event is a repeat

certaIn keys never generate events. These keys are caps-Iock,bOtn shift
keys, option keys, m the "key. The mouse button generates events on both
the down and ~ transitions. Down transItions have an ascII value of 0, ~
transitions 1. The mouse plug also generates two different events. When the
mouse Is plugged In an event wIth an asciI value of 0 Is returned, When It Is
unplugged a value of 1 is returned.

F-9

I-IBnfwan! InlerlBce

Ftretlon KeytxPeek (repeats: Boolean; Index: Keytxr;)lndeX; var event:
KeyEvent~ Boolean;

KeytxPeek Is used to excmlne events In the keyboard queue, without removing
them from the queue. The first lt1pJt parcmeter indicates whether .repeats are
desired. The second parameter Is the queue index. The first output para­
meter indicates whether the specified queue entry contains an event To
examine an enUre queue, first call KeytxPeek with a queue index of 1. If an
event is returned, call it again wIth a queue index of 2, etc.

FtreUon KeybEvent (repeats: Boolean; walt: Boolean; var event: KeyEvent.}
Boolean;

KeytxEvent is used both to determine if a keyboard event is available, and to
return the event if one is available. The event is removed from the queue.
KeytxEvent returns a boolean result which is true if an event is returned.
The fint parameter to KeytxEvent is used to indicate if the caller will
accept repeated events a1 this call. The second parameter indicates if the
fLllCtions should wait for an event if one is not immediately available.

F 5.4 Dead Key Diacriticals
Many languages erJ1)loy diacritical marks on certain letters. several of the
required diacritical mark-letter combinations appear on Europea1 keyboards,
but others do not. The combinations shown in the table below may be typed as
a tWO-key sequence, by first typing the dead key diacritical (which has no
immediate effect), CIld then typing. the letter. Dead key diacriticals appear on
keyboard legends as the diacritical mark over a dotted square or hollow box.

circumflex -- a e i 0 a
grave accent .. -- it e i 0 U
tilde - -- a iir\I 5
acute accent ., -- a ~ 6 tl
umlaut .. -- aA e i oH GO

A dead key diacritical followed by a letter which appears In the table above
yields the corresponding character. The event that is generated contains the
keycode, state, mouse location and time that correspond to the letter, but the
ASCII value of the letter-diacritical combination. A dead key diacritical
followed by a space yIelds just the diacrItical mark. The event contains the
keycode, state, mouse location end time corresponding to the space, but the
ASCII value of the dIacrItical mark. FInally, a dead key dlacrItlcal followed
by any other character (i.e., not a space or defined letter) yields the diacrit­
icalmark followed by the other character.

diacritical, defined letter --> foreign character
diacritical, space --> diacritical
diacritical, other character --> diacritical, other character

F-IO

Pascal Reference H8nt.J8l Han:iwaIe Interface

F55 Repeats
rvIost keys, if held down for ~ extended period of time, may generate
multiple events (repeats} The keys that are not repeatable are caps-lock,
both shifts, both options, the • key, the diskette insertion switches and
dIskette buttons, parallel port, the mouse button and plug, and the power
button. Several conditions must be satisfied before a repeat is generated.
These conditions are as follows:

1. KeytxPeek or Keytx£vent is called with repeatsOesired true.
2. The keyboard event queue is empty.
3. The key returned in the last event is still doWn.
4. No down transitions have occurred since the last evenL
S. The key is repeatable.
6. Enough time has elapsed.

Repeats generate events wIth the following attrllxJtes:

keycode original keycode
ascll original ASCII interpretation
state original position of the caps-lock, shift, etc.
rn:ueX revised X -coordinate of the mouse
rmuseY revised Y -coordinate of the mouse
time revised value of the millisecond timer

ProcedIre RepeatRate (var initial: MilliSeconds; var Sl.tJseqIBlt: MiIUSeconds);

PmceWre setRepeatRate (initial: Ml1l15eca1ds; Sloequent MllliSecoods);

The repeat rates can be read and set by cans to RepeatRate and
setRepeatRate. The Tates include an initial delay, which occurs prior to the
first repetition, and a subsequent delay, prIor to additional repetitions. They
are both in units of milliseconds. The default repeat rates are 400
milliseconds Initially and 100 mllllseconds subsequently.

F.6 The Microseca Id Timer

Ft.IlCtion MlcroT1mer: Mlcroseca 0$;

The MlcroTJmer fll1Ction sirrulates a contiruously Itn1lng 32-blt cot.r1ter
which is incremented every microsecond. The timer Is reset to 0 each time
the machine Is booted. The timer ctBlges slgl aboUt once every 35 mirutes,
and rolls over about every 70 minutes.

The microsecond timer is deslge:.S for performat"'Ce measurements. It has a
resolutlon of 2 microseconds. calling MlcroTImer from Pascal takes aboUt 135
microseconds. Note that interrupt processing will have 8 major effect on
microsecond timings.

F-l1

Pascal Relemnce I'18nu8l

F.7 1he MllJlsean:J Timer

Ftn:Um TImer: MllUsecOIm;

l-IBIr:IwaJ"8 Interface

The Timer ftrlCtion slrrulates a contiooously IU'Yllng 32-blt COtIlter Which is
l~remented every mUlIsecond. The timer Is reset to 0 each time the
machine Is booted. The timer changes sign about once every 25 days, and
rolls over about every 7 weeks.
The millisecond timer is designed for timing user interactions SUCh as mouse
clicks ~ repeat keys. It can also be used for performance measurements,
assuming that millisecond resolution is sufficient.

F.8 Date tm Time

PIoa:dJre Dat.eTlme (var date: DateArray);

PIoa:dJre SetDat.e11me (date: DateArray);

PIoa:dJre DateToTIme (date: DateAnay; var time: Seconds);

The current date and time are available as a set of 16-bit integers which
represent the year, day, hour, mirute CI'ld second, by calling oat.enme and
SetDateTIme. The date and time are based on the hardware clock/calendar.
ThIs restricts dates to the years 1980-1995. The clock/calendar contit'1JeS to
operate during soft power off" 81d for brief periods on battery backup if the
machine Is tJIlllugged. If the clock/calendar hasn"t been set since the last loss
of battery power, the date eJld time will be midnight prior to January 1, 1980 •

. Setting the date and time abo sets the time stanp described below.
DateToTime converts a date end time to a time stamp, defined in the next
section.

F.9 TIme Sbrq)

FWlCtion ~ Seconds;

PIoa:dJre Setl1meSta'rlJ (time: Seconds);

PIoa:dJre TuneTdJate (time: Seconds; var date: DateAnay);

The current date and time are also available as a 32-blt l.I1Signed integer
Which represents the· rurtJer of secor Ids since the midnight prior to 1 January
1901, by calling TiJneSta11J and Set11lneStar1ll. The time stafT1J will roll over
CI1Ce every 135 yean. Beware--for dates beyond the mid 1960's, the sign bit
is set. The time st8f1l) is based on the hardware clock/calendar. This clock
continues to operate Wring soft power off, and for brief periods on battery
backup if the machine is l.q)lugged. If the clock/calendar hasn't been set
since the last loss of battery power, the date and time will be midnight prior
to JanJary 1, 1980. Setting the time stamp also sets the date and time
described above. Since the date ~ time is restricted to 1980-1995, the time
stamp is also restricted to this range. TlmeTc1late converts a time stamp to
the date and time format defined above.

F-12

Pascal Reference HanlJal

F.10 Interface of the Hardware Ullt

Uni t Hardware;

Interface

type

Pixels
HanyPixels
CUr sorHeiglt
CursorPtr
DateArray

Frames
Seconds
Milliseconds
MicroSeconds
SpeakerVollllE
ScreenGontrast
KeybdQlndex
KeybdId
KeyCap
KeyCapSet
KeyEvent

{ Mouse }

= Integer;
= longInt;
= Integer;
= "Integer;
= Record

year : Integer;
day: Integer;
hour : Integer;
minute: Integer;
second: Integer;
end;

- LongInt;
= longlnt;
= Longlnt;
= longlnt;
- Integer;
= Integer;
= 1. .1000;
= Integer;
= o .. 127;
= Set of KeyGap;
= Packed Record

key: Keycap;
ascii: Char;
state: Integer;
fOOUseX: Pixels;
rouseV: Pixels;
time: MilliSeconds;
end;

Hardware Interface

Procedure HouseLocation (var x: Pixels; var y: Pixels);
Procedure HouseUpdates (delay: Milliseconds);
Procedure House5caling (scale: Boolean);
Procedure HouseThresh (threshold: Pixels);
Function HouseOdorteter: HanyPlxels;

F-13

PBSCBl RefeJ'e.'7Ce Hsnt!al

{ Cursor }

Pr~)edure Cursorlocation (x: Pixels; y: Pixels);
ProGedure CUrsorTracking (track: Boolean);

1-IsrdW8J'l! InteJ'fBCe

Protm.are QJrsorlmage (hotX: Pixels; hotY: Pixels; height:
eursorHeight; data: CUrsorPtr; mask: Cursorptr);

Proeedure Busylmage (hot)(: Pixels; hotY: Pixels; height:
eursorHeight; data: CUrsorPtr; mask: CursorPtr);

ProcedUre BusyOelay (delay: MilliSeconds);

{ SCre.:n }

function FraneCounter: Frames;
Procedure ScreenSize (var x: Pixels; var y: Pixels);

FlI1Ction Contrast: ScreenContrast;
ProcedUre SetOontrast (contrast: ScreenContrast);
Procedure ~trast (contrast: Screencontrast);
Function DlmDontrast: SCreenGontrast;
Procedure SetoinContrast (contrast: ScreenContrast);

FlflCtion FadeOelay: MilliSeconds;
Pr()(~e SetFadeOelay (delay: MilliSecondS);

{ Speaker }

Function Volume: SpeakerVolume;
Proc::edUre SetVolune (vol~: SpeakerVolune);
Procedure Noise (wavelength: MicroSeconds);
ProcedUre Si lence;
Proc;edure Beep (wavelength: MicroSeconds; duration: MilliSeconds);

F-14

Pascal Reference ManuaJ

{ Keyboard }

Function Keyboard: Keybdld;
Function Legends: Keybdld;
ProcedUre setlegends (id: KeybdI d);
Function KeyIsDown (key: KeyCap): Boolean;
ProcedUre KeyHap (var keys: KeyCapSet);

Hardware Interface

Function KeytxPeek (repeats: Boolean; index: KeybdQlndex; var
event: KeyEvent): Boolean;

Function KeybdEvent (repeats: Boolean; wait: Boolean; var event:
KeyEvent): Boolean;

Procedure RepeatRate (var initial: MilliSeconds; var subsequent:
MilliSeconds);

Procedure SetRepeatRate (initial: MilliSeconds; sub~t:
Hill iseconds);

{ Timers }

Function HicroTiner: HicroSeconds;
Function Timer: Milliseconds;

{ Date and Time }

ProceOJre DateTine (var date: DateArray);
Procedure setDateTime (date: DateArray);
Procedure DateToTime (date: DateArray; var tiRE: Seconds);

{ Tine SUJIp }

Function TimeSUJIp: seconds;
Procedure SetTineStaql (time: seconds);
Procedure TimeToOate (tine: seconds; var date: DateArray);

F-1S

Appendix G
Lisa Character Set

0 1 2 345 6 7 8 9 ABC 0 E F

0 NUL DLE

1 SOi DCl

2 STX 002

3 ETX DC3
Enter # 3 c s c

4 EOT 004 $ 4 D T d
5 ENQ tuIK E U e % 5
6

ACt(SVN & 6 F V f
7 BEL ETB t ~ G W g
SSS CAN (8 H X h

...
9 HT) 9 I Y i y (t{r H~tt })?~ Iftt ~ttt ~r}} ?ft? ~rrr
A LF

B VT

C FF

0 CR

E SO

F SI

SUB *

ESC
Clear +
FS
[jJ (

GS
~ - =
~)

~ / ?

The first 32 characters and DEL are nonprinting control codes..

TIle snaoeo area Is reserveo for future use.

G-l

Appendix H
Error Messages

f-ll lexical ElIOI1 •••.••...••••••••.••.•.•.•••••••••.•.•••••.••••....••.•••••••..••.....•••••.•...• H-l

t-l2 Syrrt.actic EllOI'S ••.•••.•..••••••••••••••.•••••••.•••••.• H-l

f-l3 Ser1B1tic Enors .•••.•....•......••.•.........•......•.....•....•..•.......................... H-2

J-f..4 Q:rlditiCl'l:ll ~natlm•..........•...............•..........•.• H-4

f-lS ~iler ~fic linlitatiOllS .. H-4

f-l6 IJ() EI10II .•..•••.•..•••••..••.•.•.•••.•...•.•.•..•.....•.•.....••.••...•.•.....•.•...•...••..•.• H-4

f-l7 Clascal Ermrs•....•............•..•...............•..•.......................... ~

f-l8 QJde (Beatlm Ermn•...........•........•........•...•........•.•.•....• H-5

1-t9 ~ficatlm ElJOn •••.•••••••••••••••••••••••••••••• f-f-S

Appendix H
Error Messages

I-ll Lexical EIron
10 Too many digits
11 Digit expected after '.' in real
12 Integer overflow
13 Digit expected in exponent
14 End of line encountered 1n string constant
15 Illegal character in input
16 Premature end of file in source program
17 Extra characters encou1tered after end of program
18 End of file encountered in a conment

t-l2 Syntactic Enors
20 Illegal Symbol
21 Error in simple type
22 Error in declaration part
23 Error in parameter list
24 Error in constant
25 Error in type
26 Error in field list
27 Error in factor
28 Error in variable
29 Identifier expected
30 Integer expected
31 ' (' expected
32 •)' expected
33 ' [. expected
34 •]. expected
35 ':' expected
36 • ;' expected
37 ' .' expected
38 ',' expected
39 '.' expected
40 ': =' expected
41 'program' expected
42 • of' expected
43 • begin' expected
44 'end' expected
45 • then' expected
46 'until' expected
47 '00' expected
48 ' to' or ' dOwnto' expected

H-l

49 'file' expected
50 ' if' expected
51 '.' expected
52 ' inplementation' expected
53 'interface' expected
54 ' intrinsic • expected
55 • Shared' expected

H.3 Semantic Enon
100 Identifier declared twice
101 Identifier not of the appropriate class
102 Identifier not declared
103 Sign not allowed
104 NlIrtJer expected
105 Lower tx:x.n::t exceeds upper txuld
106 Il'lCOIIpStible SltJrange types
107 Type of constant must be integer
108 Type rust not be real
109 Tagfield must be scalar or scilrange
110 Type incompatible with with tagfield type
111 Index type must not be real
112 Index type rust be scalar or SltJr81ge
113 Index type must not be integer or longint
114 unsatisfied forward reference

Error tvfessages

115 Forward reference type identifier cannot appear in variable
deClaration

116 Forward declaration - repetition of parameter list not allowed
117 Forward declared function - repetition of result type not allowed
118 F\I'lCtion result type nust be scalar, Stbrange, or pointer
119 File value parameter not allowed
120 Hissing result type in function declaration
121 F-format for real only
122 Error in type of standard function parameter
123 Error in type of standard procedure parameter
124 NulDer of parameters does not agree with declaration
125 Illegal paraneter SUbstl tution
126 Result type of parameteric f~tion does not agree with

declaration
127 Expression is not of set type
128 Only tests on equality allowed
129 Strict inclusion not allowed
130 File coql8rison not allowed
131 Illegal type of operalld(s)
132 Type of operand must be boolean
133 Set element type nust be scalar or subrange
134 Set element types not compatible
135 Type of variable is not array or string
136 Index type is not conpatible with declaration

H-2

Pascal Refemnce fvI8ntI81

137 Type of variable Is not record
138 Type of variable must be file or pointer
139 Illegal type of loop control variable
140 Illegal type of expression
141 Assignment of files not allo.ad
142 Label type incompatible with selecting expression
143 Slbrange bolIlds RUst be scalar
144 Type conflict of operlVlds
145 Assignment to standard function is not allo~
146 Assignment to formal function is not allowed
147 No SUCh field in this record
148 Type error in read
149 Actual paraneter RUst be a variable
150 Hultidefined case label
151 Hissing corresponding variant declaration
152 Real or string tagfields not allo.ed
153 Previous declaration .as not forward

Error Jvlessages

154 SUbstitution of standard procedure or function is not allo.ed
155 Hultidefined label
156 Hultideclared label
157 lkldefined label
158 lXldeclared label
159 Value parameter expected
160 Hultidefined record variant
161 FIle not allowed here
162 Unknown COI1lliler directive (not 'external' or 'forward')
163 Variable cannot be packed field
164 Set of real is rot allowed
165 Fields of packed records cannot be var paraaeters
166 Case selector expression rust be scalar or subrange
167 String sizes must be equal
168 String too long
169 Value out of range
170 Address of standard procedure camot be taken
171 Assignment to function result rust be done inside function
172 Loop control variable rust be local
173 label value rust be 1n 0 •. 9999
174 Must exit to an enclosing procedure
175 Procedure or function has already been declared once
176 Hissing procedure or function body
190 No such lJ'lit in this file

H-3

Pascal Reference 1-1Bnu81 Error I'1essages

H.4 COOdlUmal Cmllilatioo
260 New compile-time variable must be declared at global level
261 Undefined compile-time variable
262 Error in compile-time expression
263 COnditional COIJl)ilation options nested too deeply
264 I.Jrlnetched ElSEC
265 tJrlnatched ENOO
266 Error in SETe
267 unterminated conditional compilation option

H.5 Cmllller Speclfic Umitatims
300 Too many nested record scopes
301 Set limits out of range
302 String limits out of range
303 Too many nested procedures/flllCtions
304 Too many nested includeluses files
305 Includes not allo~ in interface section
306 Pack and t.I1pack are not inplene1ted
307 Too many units
308 set constcnt out of rCl'lge
309 Structure too large (> 321<)
310 Paraneter list too large (>= 321<)
350 Procedure too large
351 File nane in option too long

H.6 110 Errors
400 Not enough room for code file
401 Error in rereading code file
402 Error in reopening text file
403 unable to open uses file
404 Error in reading uses file
405 Error in opening include file
406 Eror in rereading previously read text block
407 Not enough room for I-code file
408 Error in writing code file
409 Error in reading I-code file
410 Unable to open listing file
420 1/0 error on debug file

H.7 Clascal Errors
800 OF missing
801 SUperclass identifier missing
802 . t1ethod t£W is not declared
803 SUbclass declaration not allowed here
804 I1ethod is not a procedure
80s t1ethod is not inplen<ed
806 Class is not inplemented
807 SUperclass identifier is not a class
808 Identifier is not a class

H-4

Pascal ReleJlJfJCe fvII¥uaJ

809 ' NEW' not allowed here
810 'NEW' was expected here
811 Illegal 'NE.' nethod
812 Illegal use of class identifier
813 Unsafe use of a handle in an assignment statement
814 Unsafe use of a handle in a WITH statement
815 unsafe use of a handle as a var parameter

H.8 Code GeneraUm Errors
1000-1999 Internal code generation errors
2000 End of I-COde file not found

Error ~ssages

2001 Expressioo too cmplicated, code generator ran out of registers
2002 Code generator tried to free a register that was already free
2003-2005 Error in generating address
2006-2010 Error in expressions
2011 Too many globals
2012 Too many locals

1-1.9 Verification Errors
4000 Bad verification block format
4001 Source code version conflict
4002 COmpiler version conflict
4003 linker version conflict
4100 Version 1n file less than minimum version supported by program
4101 Version in file greater than maximum version supported by program

H-S

(

Appendix I
Pascal Workshop Files

This appendix lists the files on the Pascal 1.0 diSkettes.

File Nane Pascal ~tes Descr1pt1oo
Diskette

Assent:>ler.obj 2 Worksnop program.
BYE. TEXT 1 WorkshOp installation exec file.
ByteDiff.Obj 3 Utility program.
changeseg.Obj 2 Ut il1 t y program.
Cistart.text 1 workshop installation exec file.
CISTARTI. TEXT 1 WOrkshop installation exec file.
Code.obj 2 Workshop program.
Codeslze.oOj 2 UtilIty program.
Oiff.Obj 3 Utility program.
OUfJl)Obj.Obj 2 Utility program.
OUfllJPatCh.Obj 3 Utility program.
EOIT.MENUS.TEXT 3 Editor support file.
EClitor.oOj 3 Worksnop program.
Filediv.obj 3 Utility program.
Filejoin.obj 3 Utility program.
find.obj 3 Utility program.
FNDATA 1 1,2 Data segaent.
font.heur 1 1, 2,3 Data needed to support SYS1LiO.
FONT .HEUR 3 Second copy of same file.
font. lib 1 1,2,3 Data needed to support SYS1LiO.
GETPROFILELOC.TEXT 1 Workshop installation exec file.
GETYESNO.TEXT 1 Workshop installation exec flle.
Gxref.obj 2 Utility program.
INSERTDISK.TEXT 1 WorkshOp installation exec file.
Intrinsic.liO 1 2,3 Library directory.
IOSFpllb.Obj 3 Library unIt w/lnterface.
IOSPaslib.obj 1 2,3 Library unit w/interface.
LDSPREFERENCES.OBJ 3 WorkshOp program.

f\Dte1: Tnese flIes are 1dentIcal· to OffIce system Release 1.0 fUes.
~te 2: These fUes are identical to Office System Release 1.2 fUes. Office System

1.2 is functionally identical to Office System 1.0, but is released to ensure
compatlb1Uty with Pascal 1.0, BASIC-Plus 1.0, and CCECl.. 1.0.

~te 3: These fUes are the minimum necessary to run a user program In the
WO!1<snop env1ronment A user program may requIre otner flIes as well.

1-1

PBSCBI ReFerence M8nuBJ Pascal WoIks/1qJ FlIes

File NcIE Pascal Notes Description
Diskette

lOS RES PROCS.TEXT 3 Iorkshop data.
linker.Obj 2 Workshop program.
N68k.err 2 Assentller data.
N68K .opcodes 2 Assentller data.
Objiolib.obj 2 library unit (no interface).
OSERRS.ERR 1 3 Workshop data.
PAPER. TEXT 3 Workshop data.
Pascal.obj 2 Workshop program.
PASERRS . ERR 2 Workshop data.
PASlIBCAll . OBJ 2 library unit w/interface.
Portconfig.obj 3 Utility program.
QO/BOXES.OBJ 2 Quickdralll sanple program.
QO/BOXES . TEXT 2 Quickdraw sample program.
QO/FH68K . OBJ 2 QuickDraw unit (no interface).
QO/FONTNGR • OOJ 2 QuickDraw unit ./interface.
QO/GRAF30. OBJ 2 QuickOraw unit ./interface.
QD/GRAFlIB.08J 2 QuickDraw unit (no interface).
QO/GRAFTVPES.TEXT 2 Quickdraw assembly interfaces.
QO/GRAFUTIl.OBJ 2 QuickDraw unit w/interface.
QO/HAROIIIARE . OBJ 2 Hardware unit III/interface.
QI)/HWINTl.OBJ 2 Hardwre unit (no interface).
QO/N/BOXES. TEXT 2 Exec file.
QO/H/QOSAHPlE.TEXT 2 Exec file.
QO/QOSAtflLE . OBJ 2 QuiCkdraw sample program.
QO/QOSAHPLE.TEXT 2 Quickdraw sample program.
QO/QOSTUFf . TEXT 2 Quickdraw unit filenames.
QO/QOSUPPORT . OBJ 2 QuickDraw unit w/interface.
QO/QUICKORAW.OBJ 2 QuickOraw unit III/interface.
QO/STORAGE • OBJ 2 QuickDraw unit III/interface.
QO/UNIT68K.OBJ 2 QuickOraw unit (no interface).
QO/~ITHZ. OBJ 2 QuickDraw U'lit III/interface.
QO/~ITSTO.OBJ 2 QuickOraw unit III/interface.
resident channel 1 1,2,3 System data.
segmap.oiij 2 Utility program.
Shell. WorkShop 1 , Wtttk~ min prtJgl'tIIt.
SUlib.obj 1 3 Library unit w/interface.
Sxref .obj 3 Utility program.

Note 1: These fUes are Identlcal to OffIce System Release 1.0 flies.

~te 2: These files are identical to Office System Release 1.2 files. Office System
1.2 is fll1Ctlonally identical to Office System 1.0, but is released to ensure
cOl"f1l8tibility with Pascal 1.0, BASIC-Plus 1.0, and CCBa.. 1.0.

Note 3: These files are the minlnun necessary to nn a user prognm in the
Workshop env1nnnent. A user program may require other files as well.

1-2

P8SC8l Reference Manual Pascal WorksI7qJ Files

FIle ~ Pascal Notes Description
DIskette

SXREF . Ot1IT. TEXT 3 Data.
Sys11ib.obj 1 1,2,3 library units (no interface).
SYS2lIB.OBJ 3 1,2,3 library units (no interface).
SYSCALl. OBJ 2 Library unit ~/interface.
SYSTEM. BT PR(F 1 1,2,3 System st.WJrt.
SYSTEM.BT-TWIG 1 1,2,3 System StW,lrt.
SYSTEM .DEBul 2 Workshop program.
SYSTEM. 0EBlJ32 2 Workshop program.
SYSTEM.IUOIRECTORY 1 1,2,3 System data.
SVSTEM.LlD 1 1,2,3 System program.
SVSTEM.lOG 1 1,2,3 System data.
SVSTEM.OS 1 2,3 System program.
System. Shell 1 1,2,3 System program.
SVSTEM.STACK1 1 1,2,3 System data.
SYSTEM.STACI<2 1 1,2,3 System data.
SYSTEM. STACI<3 1 1,2,3 System data.
SVSTEM.STACK4 1 1,2,3 System data.
SYSTEM .svsuxa 1 1,2,3 System data.
SVSTEM. SVSLOC2 1 1,2,3 System data.
SYSTEM . SVSlOC3 1 1,2,3 System data.
SYSTEM. SYSlOC4 1 1,2,3 System data.
SVSTEM.TIMER PIPE 1 1,2,3 System data.
SYSTEM. UNPACK 1 1,2,3 System data.
term . menus . text 3 Data for transfer program.
transfer.obj 3 Workshop program.
Uxref .obj 3 Utility program.
UXREF.Ut1AP.TEXT 3 Data for UXREF program .
.mATA 1 1,2 Data ~t.
Xejectem.obj 1 Workshop installation program.
{T11}BUTT(M 3 2 Data.
{T11}t£NJS.TEXT 3 2 Data.

Mlte1: These files are Identical to OffIce System Release 1.0 flIes.

~ 2: These files are identical to Office System Release 1.2 files. Office System
1.2 is ftJlctionally identical to Office System 1.0, but is released to ensure
COI'f1l8t1bility with Pascal 1.0, BASIC-Plus 1.0, and CCBCL 1.D.

Nota 3: These flIes are the mlnlrrun necessary to N1 a user program in the
WOrkShop envIrorment A user program may requIre other files as well.

1-3

NOTES

Index

Please note that the topic references in this Index are by sectlm rurDer.

----------A----------
abs flllCtion 11.4.2
adcuracy in real ari thRetic 0
actual-parameter 5.2, 7.1, 7.3

syntax S.2
actual-parameter-list S.2

syntax 5.2
actual-parameters in procec.kJre call

6.1.2
AddPt procedure E.9.17
anomalies in Lisa Pascal B
Apple II Pascal A
Apple III Pascal A
applestuff unit A
arcs, graphic operations E.9.10
arctan function 11.4.9
arithmetic functions 11.4
arithmetic operators S.1.2, 0
array 3.2.1, 4.3.1

con~ollent 3.2.1, 4.3.1
reference 4.3.1

array-type 3.2.1
syntax 3.2.1

ascent line E.5.2
ASCII 3.1.1.5
assembly language, QuickDraw E.ll
assignment-compatibility 3.4.3
assignment-statement 6.1.1

syntax 6.1.1

----------B----------
BackColor procedure E.9.S
BaokPat procedure E.9.1

029-0412-A
IncJex-1

base line E.S.2
base-type 3.2.3, 3.3, 5.3

of pointer-type 3.3
syntax 3.3
scope anomaly B
of set-type 3.2.3, 5.3

Beep procedure F.4
bit image E.4.1
bit transfer operations E.9.13
BitHap data type E.4.2
bitmaps E.4.2
bitwise boolean operations A
blank character 1.1
blank segment 8.3, 9.1
block 2

syntax 2.1
block-structured I/O 3.2.4,

10.1.1-2, 10.4
blockread function 3.2.4, 10.4.1
blockwrite f~tion 3.2.4, 10.4.2
boolean 3.1.1.4, 5.1.3, 5.1.5.2,

10.3.3.7, 12.3-12.4
comparisons 5.1.5.2
constants as control values 12.3,

12.4
operands, evaluation of 5.1.3
operators 5.1.3
data type 3.1.1.4
values in text-oriented output

10.3.3.7
boundry rectangle E.4.2
Boxes program E .14 .2
buffer variable 10.1.3, 10.1.7

Pascal Reference I'1lnI8J

built-in procedures a functions 10,
11

busy cursor F.2.2
BusyDelay procedure F.2.2
Busylmage procedure f.2.2
byte array 11.7
byte-oriented procedures a functions

11.7
byte-slze flIes 3.2.4
bytestream type A

----------C----------
camera eye E.12
case 6.2.2.2

syntax 6.2.2.2
case-constant in case statement

6.2.2.2
case-sensitivity 1.1, 1.2, 1.4
case-statement 6.2.2.2

efficiency 12.5
syntax 6.2.2.2

char 1.6.1, 3.1.1.5, 10.3.1.1,
10.3.3.2, 11.5

constant 1.6.1
type 3.1.1.5
values in text-oriented lID

10.3.1.1, 10.3.3.2
character 1.1, 3.2.4, 4.3.1

device 3.2.4, 10.1.1-2
files 3.2.4
font E.5.2
in string 4.3.1
set 1.1

charact&r style E.5.2
Charlidth fuoctionE.9.4
chr function 11.5.2
Clip3D function E.12.4
ClipRect procedure E.9.1
clipRgn E.5

Index-2

Index

clocklcalendar f.8, f.9
close procedure 10.1.5
ClosePicture procedure E.9.14
ClosePoly procedure E.9.15
ClosePort procedUre E.9.1
CloseRgn procedUre f.9.11
closing a file 10.1.5
code generation 12.1
color drawing E.7.2

routines E. 9.5
ColorBit procedUre E.9.S
cOllll1eflt 1.8
comparisons 5.1.5
compatibility of parameter lists

7.3.5
compatible types 3.4
conpile-time expressions 8c variables

12.2.1-3
compiler 1.8, 12, A

conmands 1. 8, 12.1-2, A
~t of array 3.2.1, 4.3.1
~t of file 3.2.4, 4.3.3
coq:lOIBlt-type of array 3.2.1
oon~ollent-type of file 3.2.4
compound-statement 6.2.1

syntax 6.2.1
concat function 11.6.3
conditional compilation 12.2
conditional-statement 6.2.2

syntax 6.2.2
constant 1.4-7

syntax 1.7
constant-declaration 1.7, 2.1, B

scope tI10IIIBl Y B
syntax 1.7

constant-declaration-part 2.1
syntax 2.1

constants, assembly language E.ll.1
contrast control F.3.1
COntrast function F.3.1

Pascal Refel-erJCe f--1arXJal

control-variable 6.2.3.3
syntax 6.2.3.3

coordinate plane E.3.1
coordinates, grafPort E.3.I, E.6
copy function 11.6.4
CopyBits procedure E.9.13
CopyRgn procedure E.9.I1
cos fll1Ction 11.4.5
OR character 1.1, 1.6, 10.3

in text-oriented I/O 10.3
clUlCh 10.1.5
current block nt.IItJer 10.4
current file position 4.3.3
cursor control 10.3.7, f.2
CUrsor data type E.4.4
cursor-handling routines E.9.2
CUrsorHeight data type f .10
Cursorlmage procedure f.2
CUrsorlocation procedure f.2.1
CUrsorPtr data type F .10
cursors, QuiCkDraw E.4.4
OUr sorT racking procedure f.2.1
customizing QuickOraw operations

E.10

----------0----------
data bitmap F.2
data types 3

assembly language E.ll.2
Graf30 E.12.3, E.13.5
QuickOraw E.2.2, E.13.2

datafl1e 10.1.2
date F. B, F. 9
DateArray data type f.l0
DateTime procedure F.B
DateToTime procedUre f.8
dead key diacriticals f.5.4
debugging 12.1

Index-3

defining declaration 7.1
delete procedure 11.6.5
descent line E. 5.2
device 10.1.1-2

Index

character 10.1.1, 10.1.2
file-structured 10.1.1, 10.1.2
types 10.1.1, 10.1.2

diacritical marks f.5.4
DiffRgn procedure E.9.I1
digit 1.1
digit-sequence 1.4

syntax 1.4
OimDontrast function F.3.2
dimensions of Lisa screen E.4.1
directive 1.3
diskette insertion switches F.5
display screen F.3
01sposeRgn procedUre E.9.11
div operator A
division by zero (real arithmetic)

3.1.1.3, 0
OLE character 10.3
DrawChar procedure E.9.4
drawing E.7

color ~.7.2

DraWPlcture procedUre E.9.14
DraWString procedure E.9.4
DrawText procedure E.9.4
dynamic allocation procedUres 11.2

----------E----------
efficiency, case-statements 12.5
enpty set 5.3
EqJtyRect fll1Ction E.9.6
EmptyRgn function E.9.11
enumerated-type 3.1.2

syntax 3.1. 2

Pascal RefeJ~ fv1a7Ual

eof function 10.1. 7
and various procedures 10.1.3-4,

10.1.7, 10.2.1-2, 10.2.4,
10.3.1-2, 10.4.1

eoln function 10.3.5
and read and readln procedures

10.3.1, 10.3.2
EqualPt function E.9.17
EqualRect function E.9.6
EqualRgn function E.9.11
EraseArc procedure E.9.10
EraseDval procedure E.9.8
ErasePoly procedure E.9.16
EraseRect procedure E.9.17
EraseRgn procedure E.9.12
EraseRoundRect procedure E.9.9
ET)(character A
exit procedure 11.1.1, A
exp function 11.4.6
expression 5

syntax 5
extended comparisons A
external file 10.1
external function 7.2
external procedure 7.1-2

----------f----------
factor 5

syntax 5
FadeDelay function F.3.2
field of record 3.2.2, 4.3.2, 6.2.4
field-declaration 3.2.2

syntax 3.2.2
field-deSignator 4.3.2

syntax 4.3.2
field-list 3.2.2

syntax 3.2.2

Index-4

file 3.2.4, 4.3.3, 10
buffer 4.3.3

Inde.x

buffer and eof function 10.1.7
buffer and reset procedure 10.1.3
component 3.2.4, 4.3.3
identifier as parameter type 7.3
of char 3.2.4
posi tion and reset procedure

10.1.3
record 10.2
reference 4.3.3
species 10.1.2
standard file-type identifier

3.2.4, 10.1, 10.4
types and reset procedure 10.1.3
variable 3.2.4, 4.3.3, 10

file-buffer-symbol 4.3.3
syntax 4.3.3

file-structured deviee 3.2.4,
10.1.1-2, 10.4

file-type 3.2.4
syntax 3.2.4

FillAre procedure E.9.10
fillehar procedure 11.8.3
FillOval procedure E.9.8
FlllPoly procedure E.9.16
FillRect procedure E.9.7
FillRgn procedure E.9.12
FillRoundRect procedure E.9.9
final-value 6.2.3.3

syntax 6.2.3.3
finite real values 3.1.1.3
fixed-part 3.2.2

syntax 3.2.2
fixed-point output of real value

10.3.3.4
floating-point arithmetic 0
floating-point output of real value

10.3.3.4, A

Pascal Refe.rent.-:e I'-lanlJal

font nuntJers E. 15
fonts E.5.2
for-statement 6.2.3.3

syntax 6.2.3.3
ForeColor procedure E.9.S
foreign characters F.5.4
formal-parameter-list 7.3

syntax 7.3
formal-paraneters and procedure call

6.1.2
forward declaration 7.1-2
FrameArc procedure E.9.10
FrameCounter function F.3
frameOval procedure E.9.8
framePoly procedUre E.9.16
FrameRect procedure E.9.7
FrameRgn procedure E.9.12
frameRoundRect procedure E.9.9
frarres data type f .10
function 7.2-3
function-body 7.2

syntax 7.2
function-call 5, 5.2, 7.2, 7.3

syntax: 5.2
function-declaration 7.2

syntax 7.2
function-heading 7.2

syntax 7.2
functional parameter 7.3.4
functions, assembly language E.11.4

----------G----------
get procedure 10.2.1, 10.2.3
GetClip procedure E.9.1
GetFontlnfo procedure E.9.4
GetPen procedure E.9.3
GetpenState procedure E.9.3
GetP1xel flllCt10n E. 9 .18
Getport procedure E.9.1

IncJex-5

GetPort3D procedure E.12.4
global coordinates E.6, E.9.17
global variables, aSSembly language

E.ll.3
GlobalToLocal procedUre E.9.17
goto-statement 6.2, A

syntax 6.1.3
gotoxy procedure 10.3.7.2
Graf30 E.12

data types E.12.3, E.13.5
sample program E.14.2

GrafOevice procedure E.9.1
grafPort coordinates E.3.1, E.6
GrafPort data type E.5
grafPort routines E.9.1
grafPorts E.5
GrafPtr data type E.5
GrafVerb data type E.10
graphics pen E.5.1

----------H----------
halt procedure 11.1.2, A
handles E.3.4

picture E.B.l
polygon E.8.2
region E.3.4

hardware interface f
heap 11.2
heapresult function 11.2.2
hex-d:!git 1.1
heX-digit-sequence 1.4

syntax 1.4
hexadecinal constants 1.4
HideCursor prOCedure E.9.2
HidePen procedure E.9.3
host program or unit 9
host-type of subrange 3.1.3
hotspot E.4.4, F.2
hourglass cursor F.2.2

Pascal Reference ft1I!nIal

----------1----------
identical types 3.4
identifier 1.2

of program 8.1
syntax 1.2

identifier-list 3.1.2
syntax 3.1.2

Identity procedure E.12.4.2
IEEE Floating-Point Standard 0
if-statement 6.2.2.1

optimization 12.3
syntax 6.2.2.1

implementation-part 9.1.1
syntax 9.1. 1

in operator 5.1.5.5
index 4.3.1

in variable-reference 4.3.1
syntax 4.3.1

index-type 3.2.1
syntax 3.2.1

infinities 3.1.1.3, 0
InitCUrsor procedure E.9.2
InitGraf procedUre E.9.1
initial-value 6.2.3.3

syntax 6.2.3.3
initialization-part A
InitPort procedure E.9.1
input (standard file) 10.1.7, 10.3
input file control (in compilation)

12.1
input variables in read procecl.tre

10.3.1
inputloutput 10
insert procedure 11.6.6

Index-6

Index

InsetRect procedure E.9.6
InsetRgn procedure E.9.11
integer 1.4,3.1.1.1-2,10.3.1.2,

10.3.3.3, 11.3-5, 0
arithmetic 3.1.1.1, 3.1.1.2
constant 1.4
conversion overflow 0
data type 3.1.1.1, 3.1.1.2
data type conversions 3.1,

3.1.1.5, 3.1.2, 11.5.1
values in text-oriented 110

10.3.1.2, 10.3.3.3
interactive file-type A
interface-part 9.1.1

syntax 9.1.1
intrinsic-unit 9.2
INTRINSIC.LIB 9.2, 12.1
invalid operations in real arithmetic

o
InvertArc procedure E.9.10
InvertOval procedure E.9.8
InvertPoly procedure E.9.16
InvertRect procedure E.9.7
InvertRgn procedure E.9.12
InvertRoundRect procedure E.9.9
ioresult function 10.1.2, 10.1.6

----------K----------
key state F.S.3
KeybdEvent function f.S.3
KeybdId data type F.I0
KeybdPeek functionF.S.3
KeybdQIndex data type F .10

Pascal Refererce I'1EnJaJ

keyboard 3.2.4, 10.1.1, 10.3,
10.3.7.1, F. 5

attributes F.S.l
echoing on input 10.3
events F.5, F.5.3
identification F.S.l
layouts F.S.l
legends F.5.1
physical 3.2.4, 10.1.1, 10.3,

10.3.7.1
queue F.S.3
repeats F.S.S
state F.S.2
testing 10.3.7.1

Keyboard function F.S.l
KeyCap data type F.ID
KeyCapSet data type F .10
keycodes F. 5
KeyEvent data type F .10
KeyIsDo-n function F.S.2
KeyMap procedUre f.S.2
keypress function 10.3.7.1
KlllPlcture procedure E.9.14
KillPoly procedure E.9.1S

----------l----------
label 1. 5, 2.1, 6

on statement 6
syntax 2.1, 6

label-declaration-part 2.1
syntax 2.1

legends function F.5.1
length attribute 3.1.1.6
length function 11.6.1
letter 1.1
line procedUre E.9.3
line-drawing routines E.9.3
line20 procedure E.12.4
line30 procedure E.12.4

Index-7

lineTo procedUre E.9.3
lineTo2D procedure E.12.4
lineTo30 procedure E.12.4
Liri<er 7.1
listing control 12.1
In function 11.4.7

lrK1ex

local coordinates E.6, E.9.17
localToGlObal procedure E.9.17
lOCk 10.1.5
long integer data type A
longint 1.4, 3.1.1.2, 10.3.1.2,

10.3.3.3, 11.3-5, 0
arithmetic 3.1.1.2
constant 1.4, 1.6, 1.7

11.3.4
data type 3.1.1.2
data type conversions 11.3.3,
values in text-oriented liD

10.3.3.3
lookAt procedure E.12.4.1

----------H----------
ManyPixels data type F.10
MapPoly procedure E.9.18
HapPt procedUre E.9.18
HapRect procedure E.9.1S
HapRgn procedure E.9.18
mark procedUre 11.2.3, A
mask bitmap F. 2
maxint 3 .1.1.1
memavail function 11.2.5
member-group 5.3

syntax 5.3
memory allocation procedures 11.2
microsecond timer F.6
MicroSeconds data type f .10
MicroTlmer function F.6
millisecond timer F.7
MilliSeconds data type F.I0

Pascal Reference fv1aVaJ

m1ss1ng symbOl f.S.2
IIDd operator A
IlDUse F.1

button F.S
plug F.5

HouseLocation procedure F.l.l
HouseOdometer procedJre F .1.4
HouseScal ing procedure F .1. 3
HouseThresh procedure f.1.3
l1ou~tes proceciJre f .1.2
Hove procedure E.9.3
Hove20 procedure E.12.4
Hove30 procedure E.12.4
moveleft procedure 11.7.1
MovePortTo procedure E.9.1
RDVeright procedure 11.7.2
MoveTo proceciJre E.9~3

HoveTo2D procedure E.12.4
HoveTo30 procedure E.12.4

----------N----------
NaNs 3.1.1.3, 0
new procedure 3.3, 11.2.1, A
NewRgn function f.9.11
nil 3.3, 4.3.4, 11.2.1
Noise procedure F.4
normal 10.1.5

numerical comparisons 5.1.5.1

----------0----------
object file 9
object of pointer 4.3.4
ObscureCursor procedure E .9.2
odd ftxlCt10n 11.4.1
OffsetPoly procedure E.9.15
OffsetRect procedure E.9.6
OffsetRgn procedure E.9.11

Index-8

Index

0pen3OPort procedure E.12.4
opening a flle 10.1, 10.1.2-4
OpenPlcture fll'lCtion E .9.14
OpenPoly function E.9.1S
OpenPort procedUre E.9.1
0penRgn procedure E .9.11
operands 5

compile-time 12.2.3
1n expressions 5

operators 5
compile-time 12.2.3
in expressions 5

optimization of if, repeat, and while
statements 12.3, 12.4

ord fll1Ction3 .1, 3.1.1. 5, 3.1. 2,
11.5.1

ord4 function 3.1.1.2, 11.3.3
order of evaluation of operands

5.1.1
ordinal ft.rlCtions 11.5
ordinal-type 3.1

and ord function 11.5.1
and ord4 function 11.3.3
and pred function 11.5.4
and succ function 11.5.3
syntax 3.1

ordinal-type-identifier 3
ordinality 3.1
otherwise-clause 6~2.2.2

syntax 6.2.2.2
output (standard file) 10.3
output expression in write procedure

10.3.3
output file in write procedure

10.3.3
output-specs in write procedure

10.3.3
ovals, graphic operations E.9.8
overflow (real arithmetic)

3.1.1.3, 0

PascaJ RefellJl'k)8 I'1CnJal

----------P----------
packed array of char 5.1.5.6,

10.3.1. 5, 10.3.3.6, 11.8
comparisons 5.1.5.6
fillchar procedure 11.8.3
scanning flllCtions 11.8.1, 11.8.2
text-oriented 110 10.3.1.5,

10.3.3.6
packed data types 3.1.1.6, 3.2
page procedure 10.3.6
PalntArc procedure f.9.10
PaintOVal procedure E.9.8
PaintPoly procedure E.9.16
PaintRect procedure E.9.7
PaintRgn procedure E.9.12
PaintRoundRect procedure E.9.9
parameter 7.1, 7.3
parameter list compatibility 7.3.5
parameter-declaration 7.3

syntax 7.3
parameters in procedure call 6.1.2
Pascal compiler 12
Pattern data type E.4.3
pattern transfer mode E.7.1
patterns E.4.3
pen E.5.1
pen routines E.9.3
PenHode procedure E.9.3
PenNOrmal procedure E.9.3
PenPat procedure E.9.3
Pen5ize procedure E.9.3
performance penalty for longint

values 3 .1.1. 2
PicComment procedure E.9.14
P1cHandle data type f.8.1
PicPtr data type E.8.1
picture comments E.8.1
Picture data type E.8.1
p1cture frame f.8.1
picture routines E.9.14

Index-9

pictures E.8.1
Pitch procedure E.12.4.2
pixel E.4.1
Pixels data type F.ID
Point data type E.3.2
pointer 4.3.4, 11.2

Jrx:Jex

pointer function 3.3, 11.3.4
pointer-Object-symbol 4.3.4

syntax 4.3.4
pointer-reference 4.3.4
pointer-type 3.3

conversions 11.3.3, 11.3.4
syntax 3.3

pointer-type-identifier 3
points E.3.2
points, calculations E.9.17
Polygon data type E.8.2
polygcns E.8.2

calculations E.9.15
graphic operations E.9.16

PolyHandle data type E.8.2
PolyPtr data type E.8.2
portSl ts E.5
portRect E .5
PortSize procedure E.9.1
pos function 11. 6.2
power switCh F.5
precedellCe of operators 5
pred function 3.1, 11.5.4
predecessor 3.1
procectlI'al paraneter 7 .3.3
procedure 7.1, 7.3
procedUre-and-function-declaration-

part 2.1
syntax 2.1

procedure-body 7.1
syntax 7.1

procedure-declaration 7.1
syntax 7.1

Pascal Refereme I'1inI8J

procedure-heading 7.1
syntax 7.1

procedure-statenent 6.1.2, 7.1
syntax 6.1.2

procedures, assembly language E.11.4
program 8

identifier 8.1
segnents 8.3
syntax 8.1

program-heading 8.1
syntax 8.1

program-paraneters 8.1, 8.2
syntax 8.1

Pt2Rect procedure E.9.6
ptlnRect fl.l1Ction f. 9.6
PtlnRgn function E.9.11
PtToAngle procedure E.9.6
purge 10.1.5
put procedure 10.2.2-3
pwroften function 11.4.10
pyramid E .12

----------Q----------
QOProcs data type f .10
QOProcsPtr data type E .10
QOSample program E.2.1, E.14.1
QOSupport unit E.1S
qualifier 4.3

syntax 4.3
QuickDraw f
QuickDraw data types E .2.2, E .13.2
QuickDraw glossary E.16

Index-10

QuickDraw routines E .9
arcs E.9.10
bit transfer E.9.13
color drawing E.9.S
cursor handling E.9.2
customdzing f.10
grafPorts E.9.1
line drawing E.9.3
miscellaneous utilities E.9.18
ovals E.9.8
pen E.9.3
pictures E.9.14
points E.9.17
polygons E.9.IS, E.9.I6
rectangles E.9.6, E.9.7
regions E.9.11, E.9.12
rOll1ded-corner rectangles E .909
text drawing E.9.4
.edges E.9.10

QuickOraw sample programs E.2.1,
E.14

QuickDraw summary EoI3
QuickDraw, using from assentlly

language Eol1
quoted-character-constant 1.6.1

syntax 1. 6 .1
quoted-str1ng-constant 1.6

syntax 1.6

----------R----------
RampContrast procedure F.3.1
Random function E.9.18

Pascal RefeJlJfJCe I'-fInJaJ

range-checking 3.1.3, 12.1
read procedure 10.3.1
readln procedure 10.3.2
real 1.4, 3.1.1.3, 10.3.1. 3,

10.3.3.4, 11.3-4, 0
arithnEtic 0
constant 1 .4
data type 3.1.1.3, 0
data type and rOl.l1d fl.l1Ction 11.3.2
values 3.1.1. 3
values and write procedure 0
values in text-oriented I/O

10.3.1.3, 10.3.3.4, 0
real-type 3.1

syntax 3.1
real-type-identlfier 3
record 3.2.2, 4.3.2

field 3.2.2, 4.3.2
nuntler and seek procedure 10.2.4
of file 10.2
reference 4.3.2
reference in with statement 6.2.4

record-oriented I/O 10.2
record-type 3.2.2

new procedure 11.2.1
syntax 3.2.2

rectangle calculation routines E.9.6
Rectangle data type E.3.3
rectangles E.3.3

graphic operations E.9.7
RectlnRgn function E.9.11
RectRgn procedure E.9.11
recursion 7.1-2
redeclaration of identifier 2.2.2,

2.2.4
Region data type E.3.4
regions E .3.4

calculations E.9.11
graphic operations E.9.12

regular-unit 9.1
syntax 9.1.1

Index-II

relational operators 5.1.5
release procedure 11.2.4, A
repeat-statement 6.2.3.1

optimization 12.4
syntax 6.2.3.1

repeating keys F.5.5
RepeatRate procedure F.S.S
repetitive-statement 6.2.3

syntax 6.2.3
reserved words 1.1

lncA?x

reset procedure 10.1, 10.1.5, A
result-type 7.2

syntax 7.2
rewrite procedure 10.1.4
RgnHandle data type E.3.4
RgnPtr data type E .3.4
Roll procedure E.12.4.2
rotation E.12
round function 11.3.2, 0
rounded-corner rectangles E.9.9
rounding in real arithnEtic 0
row width E.4.1

----------S----------
Scale procedure E.12.4.2
scale-factor 1.4

syntax 1.4
ScalePt procedure E.9.18
scan function A
scaneq function 11.8.1
scanne function 11.8.2
scope 2.2

of standard objects 2.2.5
screen 10.3, 10.3.7.2, F.3

contrast F.3.1
cursor control 10.3.7.2, F.2
fading F.3.2
physical 10.3

ScreenDontrast data type F.lO

Pascal ReFerence fvlantlaJ

SCreenSize procedure F.3
ScrollRect procedure E.9.13
Seconds data type F .10
SectRect function E.9.6
SectRgn procedure E.9.11
seek procedure 10.2.3
segment key~ord A
segmentation 8.3
segments 8.3, 9.1, 9.2.1
selector in case statement 6.2.2.2
set 3.2.3, 5.1.4, 5.1.5.4, 5.3

comparisons 5.1.5.4
membership testing 5.1.5.5
operators 5.1.4
values 5.3

set-constructor 5, 5.3
syntax 5.3

set-type 3.2.3
syntax 3.2.3

SetClip procedure E.9.1
SetContrast procedure F.3.1
SetCursor procedure E.9.2
SetOateTime procedure F.B
SetDimContrast procedure F.3.2
SetEmptyRgn procedure E.9.11
SetfadeOelay procedure F.3.2
Setlegends procedure F. 5.1
SetOrigin procedure E.9.1
SetPenState procedUre £.9.3
SetPort procedure E.9.1
SetPort30 procedure £.12.4
SetPortBits procedure E.9.1
setPt procedUre E.9.17
SetPt20 procedure E.12.4
SetPt3D procedure E.12.4
SetRect procedure E.9.6
setRectRgn procedure E.9.11
SetRepeatRate procedure F.5.S
SetStdProcs procedure E .10
SetTimeStamp procedure F.9

Index-12

SetVolume procedure F.4
ShowCursor procedure E.9.2
ShowPen procedure E.9.3
sign 1.4

syntax 1.4
signed zero 3.1.1.3
signed-number 1.4

syntax 1.4
Silence procedUre F.4
simple-expression 5

syntax 5
simple-statement 6.1

syntax 6.1
simple-type 3.1

syntax 3.1
simple-type-identifier 3
sin function 11.4.4
size-attribute 3.1.1.6

syntax 3.1.1. 6
sizeof function 11.7.3
Skew procedure E.12.4.2
source transfer mode E.7.1
SpaceExtra procedure E.9.4
speaker F.4

lnde)(

SpeaKervolume data type F.lO
special symbolS 1.1
sqr function 11.4.3
sqrt function 11.4.8, 0
stack space and memaval1 function

11.2.5
standard procedures and functions

for I/O 10
10, 11

standard Simple-types 3.1
statement 6

syntax 6.1
statement-part 2.1

syntax 2.1
StdArc procedure E.I0
StdBits procedure E.10

Pascal Refe.rexe "'''an{lal

StdCofrrfe1t procedure E . 10
StdGetPic procedure E.I0
Stdline procedure £.10
StdOval procedure E.1D
StdPoly procedure E.10
StdPutPic procedure E.10
StdRect procedure E.I0
StdRgn procedure E.10
stdText procedure E.10
StdTxHeas function E .10
string 1.6, 3.1.1.6, 4.3.1, 5.1.5.3,

10.3.1.4, 10.3.3.5, 11.6, A
character 4.3.1
comparisons 5.1.5.3
concatenation 11.6.3
constant 1.6, 3.1.1.6
constant comparisons 5.1.5.3
length function 11.6.1
procedures and fLflCtions 11.6
reference 4.3.1
Substring copying 11.6.4
substring deletion 11.6.5
substring insertion 11.6.6
substring search 11.6.2
values in text-oriented 110

10.3.1.4, 10.3.3.5
string-character 1.6

syntax 1.6
str1ng-type 3.1.1.6

syntax 3.1.1. 6
string-type-identifier 3
StringWidth function E.9.4
structured-statement 6.2

syntax 6.2
structured-type 3.2

syntax 3.2
structured-type-identlf1er 3
Stuff Hex procedure E.9.18
SUbPt procedure E.9.17

Index-13

subrange-type 3.1.3
syntax 3. 1. 3

succ function 3.1, 11.5.3
successor 3.1

/tllle.).'·

syntax diagrams, complete collection
C

syntax diagrams, explanation Preface
system intrinsic library 9.2.2, 12.1

----------T----------
tag constants in new and dispose

procedures 11.2.1-2
tag-field 3.2.2
tag-field-type 3.2.2

syntax 3.2.2
term 5

syntax 5
testing set membership 5.1.5.5
text E.S.2
text type 3.2.4, 10.1.2, 10.3
text-drawing routines E.9.4
text-oriented 110 10.3
TextFace procedure £.9.4
textfile 10.1.2, 10.3, A
textfile format 10.1.2, 10.3
TextFont procedure £.9.4
TextHode procedure £.9.4
TextSize procedure E.9.4
TextWidth function E.9.4
three-dimensional graphics. See

Graf3D.
tire F.B, F.9
tire st8fJl) F. 9
Timer function (millisecond timer)

F.7
tirers F.6, F.7
TimeStamp function f.9
TimeToOate procedure F.9

P8SC8I Refell!l1Ce HanJ8J

transfer functions 11.3
transfer modes E.7.1
Transform procedUre E.12.4.2
transformation matrix E.12
Translate procedure E.12.4.2
treesearch procedure A
trunc function 11.3.1, A, 0
turtlegraphics unit A
type 3

compatibility and identity 3.4
syntax 3

type-declaration 3
syntax 3

type-declaration-part 2.1, 3.5
syntax 2.1

----------u----------
UCSO Pascal A
unary arithmetic operators 5.1.2
underscore character A
UnionRect procedure E.9.6
UnionRgn procedure E.9.11
unit 9

intrinsic 9.2
regular 9.1

unit-heading 9.1.1
syntax 9.1.1

unSigned-constant 5
syntax 5

unsigned-integer 1.4
syntax 1.4

unSigned-number 1.4
syntax 1.4

unSigned-real 1.4
syntax 1.4

untyped file 3.2.4, 10.1.1-2, 10.4
I/O 10.4

uses-clause 8.1, 9.1.1-2, 9.2, 9.3
syntax 8.1

Index-14

----------V----------
value parameter 7.3.1
variable 4
variable parameter 7.3.2, A
variable-deClaration 4.1

Intle){

syntax 4.1
variable-declaratIon-part 2.1

syntax 2.1
variable-identifier 4.1

syntax 4.1
variable-reference 4.2

syntax 4.1
variant 3.2.2

records, new procea.are 11. 2.1
syntax 3.2.2

variant-part 3.2.2
syntax 3.2.2

vertical retrace F.3
VHSelect data type E.3.2
ViewAngle procedure E.12.4.1
viewing pyramid E.12
ViewPort procedure E.12.4.1
visRgn E.5
Volume function F.4

----------w,X,z----------
wedges, graphic operations E.9.10
while-statement 6.2.3.2

optimization 12.4
syntax 6.2.3.2

with-statement 6.2.4
syntax 6.2.4

wordstream type A
write procedure 10.3.3, A

with real values 0
write-protection of file 10.1.5
writeln proceOOre 10.3.4, A
xForm matrix E.12
XorRgn procedure E.9.11

Pascal Reference fvWXJaJ

Yaw procedUre E.12.4.2
zero, signed 3.1.1.3

----------CHARACTERS---------­
$C cOl'f1Jiler COI1IRBI1ds 12.1
$0 COI11liler COI1III8IlCIs 12.1
$OECL OOJl)iler conmancJ 12.2.1
$E compller command 12.1
SELSEC coopi ler COf'II'fBld 12 .2 . 4
SO()C coopiler conmand 12.2.4
SI OOJl)iler command 12.1
$IfC compiler command 12.2.4
$l cOI'f1Jiler conmands 12.1
$R coqliler conmands 3.1. 3, 12.1
SS c~iler COI1III8IIC1 8.3, 9.1, 9.2,

12.1
$SETe compi ler conmancJ 12.2.1
SU COR1liler conmands 9.1. 2, 9.2.2,

12.1
SX compiler conmancJs 12.1
0, signed 3.1.1.3
16-bit integer arithmetic 3.1.1.1-2,

11.3.3
32-blt integer arithmetic 3.1.1.2,

11.3.3
30 graphics. See Graf30 .
• operator 3.3, S.1.6

Index-IS

Index

Tms MANUAL was produced using
Lisa Write, LisaDraw, and

LisaList.

Au. PRINTING was done with an
Apple Dot Matrix Printer.

the Lisa~
... we use it ourselves.

Pascal Reference HantJaJ Hajj-Back Fonn

Apple puOllcatlons would like to learn aoout readers and What you think abOUt this
mcr.ual in order to make better mcnaals In the future. Please flll out this form, or
wrl te all over It, cnj send It to us. We promise to read It
How are you using this manual?
[] learning to use the prodUCt [] reference [] both reference and learning
[]o~r __ __

Is It q.,IlcK and easy to find the Information you need In this manual?
[] always [] often [] sometimes [] seldom [] never
~u __ ___
What makes this ma1Uai easy to use? ________________________ _

What makes this manual hard to use? __________________________ _

What 00 you lIke most aboUt the manual? _________________ _

What ClO you llke least abOUt the manual? ___________________ _

Please comment on, for example, accuracy, level of detail, runber and usefulness of
examples, length or brevIty of explanation, style, use of graphics, usefulness of the
index, organization, suitability to your particular needs, readablllty.

What languages do you use on your Usa? (cheCk each)
[] Pascal [] BASIC [] aBO... [] other ____________ _

How long have you been progranmlng?

[] 0-1 years [] 1-3 [] 4-7 [] over 7 [] not a programmer
What is your job title? ____________________________ _

Have you completed:

[] high school [] some college [] BAIBS [] MAIMS [] more
What magazInes cJo you reacJ? _____________________ _

Other CUi i. i lei Its (please attach more sheets If necessary) ___________ _

029-0406-A

... FQO··· .. .

.. FaO ·· · · · · ·

'-.apple! computc!r
POS PUblications Department
20525 Mariani Avenue

CUpertino, Cal1fomla 95014

TN£' lR STAPLE

PLACE
STAIP
HERE

