OPERATING SYSTEM
REFERENCE MANUAL

for the LISA"

CONTENTS

Chapter 1

INTRODUCTION
1.1 The Main Functions......... creessassenrassanenranas cereteseesirttirtteanesrarsanassens .1-3
1.2 Using the 0S FUNCUoNS ...cceeeracsnee Creresteeterestaenetraetrarantrans creeeene e 1-3
1.3 The Flle SysteM...ccciveeceeccrnennnnnnns reeeseraenans crresserenssesaristereseans v 170
1.4 Process Management...ccceeeeecensrasssnncseanss Ceetressrentseeneennannes cerannrrnans .1-6
15 Memory Management ...ccveeseeneenes resseseesneeseertsrnttrestrnattarrstanssesarnasras 1-7
1.6 Exceptions and Events eeetsirseraesennsaarsrnnene ceereeene R, o
1.7 Interprocess Communication......... cresenessesresanernnras resetesrnisnnsansraesnans 1-8
1.8 Using the 0S Interface....... ererenne PR b -
1.9 Running Programs Under the 0S ...cccccvrireirencsnsnnisinsissssissssiasssessasens 1-8
1.10 writing Programs That Use the CS.......... creesraneraes creeresetrenerassennssres .1-8

Chapter 2

THE FILE SYSTEM
2.1 FI18 NaMES .veiiiieittitatetterettenssesitstestecsetntessessssssessssasssssssssassssansssns 2-3
2.2 The WOrking DITECIOTY ..ccersereiniirnncieninreiiininictenisseienninenesassssanee 2-4
2.3 DBVICES ..ueueeirureeteaterecetnteetiotueranstienesactassasascssssstsssstrasssesstassnssossessas 2-5
24 STOYage DEVICES vicviciitninmericrssinitsstestsresnnnsisssessssessnnessrnnsersisansennes &3
25 The VOIUME Catalif ..ecccvreeresvensenesseneeessrsasanesnans veerrevansaens cevereranes 2-6
2.6 =17 0 S tesreseesersatesseserancenans 2-6
2.7 Loglcal and Pnysical 3010 T 0 o - 2-6
2.8 File ACCESS.ieeesersess cevenrareseens vereereers resresatansares Cesresssrassstataeserairaans w2-7
2" T 4 | =R 2-8
2.10 Flle System CallS ...cccresrnsrsecrancensransee creccnuenne creseseneenenns cresrenasrnssanend 29

Chapter 3

PROCESSES
3.1 Process Structureceeeeee Crresesrenenceranens crresserenee S oo
3.2 Process Hierarchy Cresrsssestsretestassssreransanns Cerreresresranrene P o
3.3 Process Creatlon ...ccieceeccresneennans Ceretreeresrniranetnerenacs ST 2.
3.4 Process CONtrol.....e... Cetteeesrrearerer st et rareesrnsteanasenae vrrnsrennns crennenn 35
3.5 Process Scheduling ...ccceeeuvenne cresres Crerrernresencrrnranns . o
3.6 Process Termination .ccceverseenmeienesinenssenssnsnisnnnen Crrrereenernes T 4
3.7 A Process Handling Example ...ceee. . ol 4

3.8 Process system Calls SENSAEANNERANINESS SN ETIRIESITERNENIGRNNOEERENES0UERISRUREERIENS ll|l|3—g

Data Segments evaeesvecsressssnanes Cereserssreresernestrnsransnenssrnanres crerrene 4-3
The Logical Data Segment NUMDEY 1viererinresrenianensenns Creersceeersreerannnes 4-3
Shared Data Segmentsceeeees cresenensranrens verenrres ceererans cresrrenee craarres 4-4
Private Data SEgMENTS .iuiveccernritnerreestoesitnseraesssesstassesaserasssansesnssannns 4-4
Code Segments.....cccereeeenes ceenssrnsseassinneransene Cresreseesereerrsararsestnnrnsranes 4-4
E1TVZ< 070 Lo OO 4-5
Memory Management SYSLEM CAllS veveesrerscesesesnessesssssassesssssenesareness =5

EXCEPTIONS AND EVENTS

5.1 EXCEPLIONS vevereeiirrerirunsiunisrecsiesiitsteestnestsasssessanssstessssssrassssanssnsssans 5-3
5.2 System Defined EXCEPLIONS ...cceeeriverrreiinerccancenncnes terresteestreseransenasea 5-4
5.3 Exception HaNAlerS.....cceeeeecencennnnns isesresnenssentsnnsastentaessnssnnstansasrsanssnn 5-4
5.4 EVENLS ..civvriareinerasetnerecniininnacsenees 4ussnasasssansunersasasnrsassanansusssssarenasens 5-7
5.5 Event Channelscceereenees tsressennsens crerecasieiatsenes crerenes crevessesarene . 4
5.6 The SYStem CIOCK .iicresscrssessisarsssiressiresessarasssseraessssssasssrocassasasnes w5-12
5.7 Exception Management System Calls ...ccvierurerressirmnsiernsnssnsenisnens ene 512
5.8 Event Management System Calls ..cicvveieicrssrensrennsancennans S 5-18
5.9 Clock System Calls ..cecrersresnsssssssesnnssens cereesrssnraerenesrenns creeresrenenees 528
Chapter 6 '
CONFIGURATION
6.1 Conflguration System Callscccceercencrennnee Ceteetteetresrreranteastasansrariens 6-3

Appendix A
OPERATING SYSTEM INTERFACE

Appendix B
SYSTEM RESERVED EXCEPTION NAMES

Appendix C
SYSTEM RESERVED EVENT TYPES

Appendix D
OPERATING SYSTEM ERROR MESSAGES

Appenalx E
FS_INFO FIELDS

INDEX

2-1
2-2
2-3

2-5

TABLES

Device Control Functions Required Before Using a Device............. 2-27
Device_Control OQutput Functional Gmtm 2-28
DCCOUE MNBUIMIONICS «eveveverersesssssersersssanesasessasasanses tesenstanssnansannsasne 2-30
Device INfOIMAtioN....cceeeeciietmeceininsencareannesesesnnmsersssenssressssnsnsssnnnnes 2-32

FIGURES

DiSK HAIO ETTOT COUEScuvememeemsesereeeessssasasnssesesssssssesesssssssssaras 2-34
The Reslationship of COMPACT and TRUNCATE ..ccueeeevecnsmensnessases 2-38
PIOCESS AGGIESS SPACE LAYOUL c.v.vreemcererersereessesensasssnsassssesesersresasees 3-4
PTOCESS TIBO ..uerecreceenrencencnnnseccersissessancasssersnmssessnasassssasenssssstorasssanse 35

PREFACE

The Contents of this Manual
This manual gescribes the Operating System service calls that are avalbable to
Pascal and assembler programs. It is written for experienced Pascal
programmers, and does not explaln elementary terms and programming
techniques. We assume that you have read the L/sa Owners Guldeand Workshao
Liser’s Gulge ror the L/sg ang are fariliar with your Lisa system.

Chapter 1 is a general Introduction to the Operating System.

Chapter 2 describes the File System and the avallable file system calls. This
includes a gescription of the Interprocess communication facllity, pipes, angd the
Operating System calls that allow processes to use pipes.

Chapter 3 describes the calls available to control processes, and also describes
the structure of processes. .

Chapter 4 describes how processes can control thelr use of available memory.

Chapter 5 describes the use of events and exceptions to control process
synchronization. It also describes the use of the system clock.

Chapter 6 describes the calls you can use to find out Information about the
configuration of the system.

Appendix A contalns the source text of SYSCALL, the unit that contalns the
type, procedure, and function definitions discussed in this manual.

Appenalx B contalns a list of system-defined exception names.
Appenadix C contains a list of system-defined event names.

Appendix D contains a 1ist of error codes that may be produced by the calls
documented In this manual.

Type and Syntax Conventions
Bold face type is used in this manual to distinguish programming keywords and
constructs from English text. For example, FLUSH is the name of a system call.
System call names are also capitalized in this manual, although Pascal does not
distinguish between lower and upper case characters. /fa//csare used to indicate
new terms that are to be explained.

tperating System Rererence Manual ot the LIss

b b et b b b b b e
VI R SV I SV

Chapter 1
INTRODUCTION

The Maln Functions 1-3
Using the 0S Functions W e s 1-3
The FLlle SystemM .. ov i e et ettt e i ee e 1-4
ProCess Management vt ine st 1-6
MeMOTY MaNAgEMENT . .t ittt ittt st e e 1-7
Exceptions and Events i i it i 1-7
Interprocess Communication, 1-8
Using the OS INterfaceoivvivn i ennnn s 1-8
Running Programs Under the G5 1-8

1-8

1-1

ntroouction

erating System Referernce Manal 1ok the LIsa MLroauetion

perating System Reference Manual for the Lisa Introguction

INTRODUCTION

The Operating System (0S) provides an environment in which multiple processes
can coexist, with the ability to communicate and share data. It provides a file
system for I/0 and Information storage, and handles exceptions (software
interrupts)and memory management,

1.1 The Main Functions
The 0S has four main functional areas: the Flle System, Process Management,
Memory Management, and event and exception handling.

The Flle System provides input and output. The Flle System accesses devices,
volumes, and flles. Each object, whether a printer, disk flle, or any other type of
object, Is referenced by a pathname. Every 1/0 operation is performed as an
uninterpreted byte stream. Using the Flle System, all 1/0 is device independent.
The Flle System also provides device specific control operations.

A process {s an executing program and its associated data. Several processes can
execute concurrently by multiplexing the processor between them. These
processes can be broken Into segments which are automatically swapped into
memory as needed.

Memory managment routines handle data segments. A data segment is a file that
can be placed in memory and accessed directly.

Exceptions and events are process communication constructs provided by the 0S.
An event is a message sent from one process to another, or from a process to
itself, that is dellvered to the recelving process only when the process asks for
that event. An exception is a special type of event that forces itself on the
receiving process. There Is a set of system deflned exceptions (errors), and
programs can define their own. System errors such as division by zero are
examples of system deflned exceptions. You canuse the system calls provided to
define any exceptions you want.

All four of these areas are described further later in this chapter.

1.2 Using the 0S Functions
Both oullt in language features and explicit 0S system calls can access 0S
routines to perform desired functions. For example, the Pascal writeln
procedure is a pbullt in feature of the language. The code to execute a writeln is
supplied In IOSPASLIB, the pascal run time support routines Hbrary. This code s
added to the program when the program {s linked. The code provided calls OS Flle
System routines to perform the desired output.

1-3

Qoerating System Reference Manual far the Lisa Introoctlon

You can also call 0S routines explioltly This Is usually done when the language
does not provide the operation you want. 0§ routines allow Pascal programs, for
example, to create new processes, which could not otherwise be done, since
Pascal does not have any bullt in process handling functions.

All calls to the OS are syncnronous which means they do not return until the
operation is complete. Each call returns an error code to indicate if anything
went wrong during the operation. Any non zero value indicates an error or
warning. Negatlve error codes lndlcate warnings.

1.3 The Flie System
The Flle System performs all I/O as uninterpreted byte streams. These byte
streams can go to files on disk or to other devices, such as a printer or an
alternative console. In all cases, the device or file has a File System name.
Except for device control functions the File System treats devices and files in
the same way.

The Flle System allows sharing of all types of objects.

The File System provides for namimg objects (devices, file ,etc.). Anameinthe
Flle System is called a pat/namea A complete pathname nonslsts of a directory
name and a file name. The file name is meaningful only for storage devices
(devices that store byte streams forilater use, such as disks).

Each process has a working directory associated with it. This allows you to
reference objects with an Incomplete pathname. To access an object in the
working directory, just glve its flle name. To access an object in a alfferent
directory, glve its complete pathname.

Before a device can be accessed, 1t must be mounted. Devices can be mounted
using the Preference tool, or by using the MOUNT call (see Chapter 2 of this
manual). If the device Is a storage device, the mount operation makes a volsme
name avallable. A volume name Is/a logical name for a disk, and is saved on the
disk 1tself. The mount operation logically connects the volume to the system, so
that the flles on the volume may be accessed. The volume name can replace a
device name in a pathname used to access an object on the disk. The volume
name allows you to access a flle wit,h the same pathname no matter where the
drive Is actually connected.

If a device is specifled in the configuration llst (created by the Preference tool)
and it is physically connected to theLisa, then the device can be accessed. There
are some operations that canbe performed on unmounted (unconfigured) devices.
Two examples are DEVICE_ CCNTR(L calls (see Chapter 2 of this manual) and
scavanging. Logically mounting a volume on a device makes flle access to the
volume possible. For storage devices, a volume is an actual magnetic medium
that can contaln recorded files. For non-storage devices, volumes and flles are

1-4

Qoerating System Rererence Manual for the Lisa ntroauetion

concepts used to maintaln a uniform interface. Files on non-storage devices
(such as printers) do not store data, but acts as "ports" for performing 1/0 to the
devices.

The basic operations provided by the File Systemn are as follows:

mount and unmount - make a volume accessible/inaccessible
open and close - make an object accessible/inaccessible
read and write - transfer information to and from an

obJject
device control functions - control device specific
functions
Some operations apply only to storage devices:
allocate and deallocate - specify size of an object

manipulate catalog - controls naming of objects and
creation and destruction of objects
manlpulate attributes - look at or change the
characteristics of the object

In adaition to the data in an object, the object {tself has certain characteristics.
These are called Its atlZbwtes They Include such information as the length and
creation date of a flle. Calls are available to access the attributes of any File
System object. In additlon to the system defined attributes, objects on a storage
device can have a /avel The label s avallaple for programs to store information
that they can Interpret.

Non-storage devices (such as printers) are accessed with a limited set of
operations. They must be mounted and opened before they can be accessed.
Sequential read and/or write operations are available as appropriate for the
device. Device control functions are avallable to perform any device specific
functions needed. The flle name portion of the complete pathname for a
non-storage device is not used by the File System, although you do have to
provide one when you open the device.

For storage devices, the same sequential read and write operations are valid as
for non-storage devices. Storage devices also must be mounted, and particular
files opened, before the files can be used. They have appropriate device control
functions available.

when writing to a aisk file, space for the flle is allocated as needed. Space for a
file does not need to be contiguous, and In some cases this automatic allocation
can result In a fragmented flle, which may slow flle access. To insure rapid
access, you can pre-allocate space for the flle. Pre-allocating the flle also
ensures that the process wm not run out of space on the aisk.

Four types of objects can be stored on storage devices. These are flles, pipes,
data segments, and event channels. Flles, already alscussed, are simply array*«* of
stored data. Pipes are objects provided for {nter-process communication, Data

1-5

‘Qoerating System Reference Manual for the Lisa Introauction

segments are special cases of files that are loaded into memory along with
program code. Event channels are, plpes with a specialized structure imposed by
the system.

1.4 Process Management
A pracess is an executing program and its associated data. Several processes can
exist at one time, and they appear to run simultaneously because the CPU is
multiplexed among them. The scheduler decides what process should use the
CPU at any one time. It uses a generally non-preemptive scheduling algorithm.
This means that a process will not 1ose the CPU unless {t blocks.

Aprocess can lose the CPU when one of the following happens:

o The process calls an Operating System procedure
or function

0 The process references one of its code segments
that is not currently in memory

If neither of these oceur, the process will not 1ose the CPU.

Every process is started by anothex process. The newly started process s called
the son process The process that started it Is called Its rfawer process The
resulting structure s a tree of processes (See Figure 3-2).

when any process terminates, all its son processes (and their descendants) are
also terminated.

when the GS Is booteq. It starts a shell process. The shell process then starts any
other processes desired by the user..

Every newly created process has the same system-standard attributes and
capabilities. These can be changed by using system calls.

Any processes can suspend, activéte, or kill any other process for which the
global ID is known, as long as the other process does not protect 1tself.

The memory accesses of an executing process are restricted to its own memory
address space. Processes can communicate with other processes by using shared
files, plpes, event channels, or snared data segments.

A process can be in one of three states ready, running, or blocked. A resqy
process is waiting for the scheduler to select it to run. A zwwingprocess is
currently using the CPU to execute its code. A blockeoprocess is waiting for
some event, such as the completion of an I/0 operation. It will not be scheduled
untll the event ocours, at which point it becomes ready. A temminated process
has finished executing.

Each process has a priority from 1 to 255, The higher the number, the higher the
priority of the process. Priorities 226 to 255 are reserved for system processes.

Qoerating System Reference Manual for the Lisa - Introauction

The scheduler always runs the ready process with the highest priority. Aprocess
can change its own priority, or the priority of any other process, while it is
executing.

15 Memory Management -

Memory managment Is concerned with what is in physical memory at any one
time. Each process can use up to 128 segments. Each segment can containup to
128 Kbytes. These segments are of two types: code segments and data segments.
The total amount of memory used by any One process can exceed the avallable
RAM of the Lisa. The Operating System will swap cocle segments in and out of
memory as they are needed. To ald the Operating System in swapping data
segments, calls are provided to glve programs the ability to define which data
segments must be in memory while a particular part of the program is executing.

You have control of how your program is divided up. For executable code
segments, you use the segmentation commands of the Pascal compiler to break
the program in pleces.

In addition to residing In memory, data segments can be stored permanantly on
disk. They can be accessed with calls simflar to File System calls. This aliows
you to use a data segment as a direct access file -- a flle that is accessed as part
of your memory space.

Calls are provided for making, kiiling, opening, and closing data segments. You
can also change the size of a data segment and set its access mode to read only or
read write. In addition, you can make a permanent disk copy of the contents of a
data segment at any time. Other calls give you ability to force the contents of
the data segment to be swapped into main memory, so they can be accessed by
YOour process.

1.6 Exceptions and Events

An exception is an unexpected condition in the execution of a process (an
interrupt). Anevent is a message from another process.

An exception can be generated by either the system or an executing program.
System exceptions are generated by various sorts of errors such as divide by zero,
illegal Instruction, or illegal address. System exception handlers are supplied
that terminate the process. You can write your own exception handlers for any
of these exceptions if you want to try to recover from the error.

User exceptions can be declared, and exception handlers written to process
them. Your program can then signal this new exception.

Events are messages sent from one process to another. They are sent through
event channels.

Qperating System Reference Marual ror the Lisa Introauetion

A process that wants to receive a message from an event channel executes a call
to walt for an event on that onannel This will glve it the next message, If one
exists, or block the process until a message arrives.

If a process wants to Know when an evem arrives, but does not want to wait for it,
It can use a call event channel. Tni$ is set up by associating a user exception with
the event channel when it Is opened. The Operating System will then invoke the
corresponding user exception handler whenever a message arrives in the event
channel. i

1.7 Interprocess Communication
There are four methods for Interpracess communication. These are: shared files,
pipes, event channels, and shared data segments.

Shared flles are used for high volume transfers of information. It Is necessary to
coordinate the processes somehow to prevent them from overwriting each
other's information.

Pipes are used for communication netween processes with an uninterpreted byte
stream. The pipe mechanism provlaes for the needed synchronization because a
process will block if {t is trying to read from an empty pipe or write to a full one.
A read from a pipe consumes the information, so it {s no longer available. Only
one process can read from a given pipe.

Event channels are similar to pides, except they transmit short, structured
messages instead of unlnterpreted bytes

A shared data segment can be used to transmit a large amount of data rapidly.
Having a shared data segment means that this data segment Is in the memory
address space of all the processes that want to use it. All the processes can then
directly read and write information in the data segment. It is necessary to

provide some sort of synchronization to keep one process from overwriting
another's information.

1.8 Using the OS Interface

The interface to all the system oalls ls provided in the unit SYSCALL. Thisunit

can be used to provide access to the|calls. See the works/iqo User's Gulde for the
L /sg for more Information on using SYSOALL

1.9 Running Programs Under the OS |
Programs can be written and run by qsing the workshop.

1.10 writing Programs That Use the 0S
You can write a program that calls 0S routines to perform needed functions. This
program USES the unit SYSCALL, then calls the routines needed.

1-8

Goerating Sstem Rersrence Manudl ror the LIsa

MNMNMNNNMNRMAN N
OO0 SN B NN

The Flle Svstem

Chapter 2
THE FILE SYSTEM
Flle NamMes ..t e e et 2-3
The Working Directory .vvvvn i et en e 2-4
DEVICES . e 2-5
STOrade DeviCES . i i e e 2-5
The VOIume Catalof .. vvvvr v ee e e 2-6
LaBLS it i e e 2-6
Logical and Physical End Of File 2-6
Flle ACCESS ittt i it e ettt 2-7
PIpeS . e 2-8
File System Calls .. .viiin it irnnenenneeenns 2-9
MAKE FILE ottt ettt et et et 2-10
MAKE PIPE © Wt vttt e ettt e e 2-10
KILL OBIECT v ittt ettt e e e et e e e e 2-1
UNKILL FILE v vttt ettt et et et et eneineanns 2-13
RENAME _ENTRY ... i e e e e i 2-14
LOOKUP L i i i e e i e e e 2-15
INFO i e e e 2-18
5 o 0 | 2-19
OPEN L e e e e 2-20
CLOSE _OBIECT vt it it ittt it v e e 2-21
READ DATA ettt et e e 2-2
WRITE DATA it i it e et e s e et ine s ns 2-22
READ _LABEL . .v vt ii it i it e ettt e 2-25
N T 2-25
DEVICE _CONTROL . o v vttt et et e e e e e e ee e as 2-26
ALLOCATE v i it i i i i et e e, 2-36
COMPACT i e e, 2-37
L1 L0 2-38
R o 2-39
Bl B I 2-40
SET_WORKING DIR . ovviieiee e e et e 2-41
GET _WORKING DIR ... i ittt ittt it iiee e ienannns 2-41
RESET CATALOG . . .ot it it e e e e e e e e e 2-42
GET NEXT ENTRY ottt it i i e it e e e e 2-42
i 2-43
1 2-43

erating System Rerarence NMamal ror the Lisa The Flle System

2-2

perating System Rererence Mandal ror the LIsg The Flle System

THE FILE SYSTEM

The Flle System provides device independent 1/0, storage with access protection,
and uniform file naming conventions.

Device independence means that all 1/0 is performed In the same way, whether
the ultimate destination (or source) Is disk storage, another program, a grinter, or
anything alse. Inall cases, I/0 {s performed to or from /Z/8s although those flles
are often also devices, data seqgrents, of programs.

Every flle Is an uninterpreted stream of eight-blt bytes.

A file that is stored on a block structured device, such as a disk, is listed in a
catalog(also called a orrectory and has a name. For each such file the catalog
contains an entry describing the file's attributes, including the length of the file,
its position on the disk, ang the last backup copy date. Arpitrary
application-defined information can be stored in an area called the A/e /abel
Each flle has two associated measures of length, the 'Lagical £ arF Flle (LEDF)
and the Physical End of File (PEGF) The LEOF is a pointer to the last byte that
has meaningful data. The PECF is a count of the number of blocks allocated tao
the file. The pointer to the next byte to be read or written Is called the /7@
marker

Since 1/0 Is device Indepencent, application programs do not have 1G take
account, of the physical characteristics of a device, when the [/01s to or from a
alsk, or any other block structured device, programs can rnake 1/0 requests In
whole-plock Increments, which improves pragram performance.

All thput and output Is synchronous tn that the 1/0 requested is performec nefare
the call returns. The actual I/0, however, is asynchronaus, in that processes may
block when performing /0. (See Sectlon 3.5, Process Schedullng, for mare
information on blocking.)

To reduce the Impact of an error, the flle system maintains distributed,
recundant information about the flles on starage devices. Duplicate coples of
critical information are stored in different forrns and in different places on the
media. All the files are able to identify and describe themselves, and there are
usually several ways to recover 1ost information. The scavenger utility is able to
reconstruct damaged catalogs from the information stored with each flle.

2.1 File Names
All the files known to the Operating Systern at a particular time are organized
into catalogs. Each disk volume has a catalog that lists all the files on the disk.

perating System Rererence Manual m} e Lisa The Flle System

Any object catalogued in the flle system can be named by specifying the volume
on which the flle resldes and the; flle narme. The names are separated by the

character "-". Because the top catalog In the system has no name, all complete
pathnames begin with "-"
For examnple,

-LISA-FORMAT. TEXT nameé a flle on a volume named LISA.

The flle name can contain up to 32/characters. If a longer name s specified, the
name s truncated to 32 characters. Accesses to sequential devices use an
arbitrary dummy filename that is {gnored but must be present in the pathname.
For example, the serlal port pathname

-RS232B
is insufficient, but
-RS232B-XYZ

Is accepted, even though the -XYZ pomon is ignored. Certain device names are
© predefined:

RS222A Serial Port e

RS232B Serial Port B

PARAPORT Parallel Port

SLOTXCHANY Serialports, wherexisl, 2, or3andyislor2
MAINCONSOLE writelnand readlndevice

ALTCONSOLE writelnand reaglndevice

UPPER Upper Disketite arive (Drive 1)

LOWER Lower DISKette drive (Drive 2)

BITBKT Blt bucket: data is thrown away when dlrected here

See Chapter 6, Configuration for m@re information on device names.

Upper and lower case are not sigmficant in pathnames: 'TESTVOL' is the same
object as 'TestVol'. Any ASCII character is legal In a pathname, Including the
non-printing characters and blank spaces. (However, use of ASCII 13, a
RETURN, in a pathname {s strongly di scouraged.)

2.2 The working Directory

It Is sometimes inconvenient to speoify a complete pathname, especlally when
working with a group of files in the same volume. To alleviate this problem, the
operating system maintains the name of a working directory for each process.
when a pathname is specified without a leading “~", the name refers to an object
In the working directory. For example if the working directory is -LISA the
name FORMAT.TEXT refers to the same file as -LISA-FORMAT.TEXT. The
default working directory name is the name of the boot volume directory.

You can find out what the working directory is with GET_WORKING_DIR. You
can change to a new working alrectory with SET_WORKING_DIR.

2-4

perating System Rererence Manual ror the LIsa The File System

2.3 Devices
Device names follow the same conventions as other file names. Attributes like
baud rate are controlled by using the DEVICE_CONTROL call with the
appropriate pathname.

Each device has a 'permanently assigned priority. From highest to lowest the
priorities are:

Powver on/off button

Serial Port A (RS232R)

Serial Port B (RS23ZB, the leftmost port)
I/0 Slot 1

I/0 Slot 2

I/0 Slot 3

Keyboard, mouse, battery powered clock
10 ms system timer

CRT vertical retrace interrupt
Parallel Port

Diskette 1 (UPPER)

Diskette 2 (LOWER)

viceo screen

The device drlver assoclated with a device contalns information about the
device's physical characteristics such as sactor size and interleave factors for
adisks.

2.4 Storage Devices
On storage devices, such as disk arives, the Flle System reads or writes flle gatain
terms of pages. A page is the same size as a block. Any access to data in a file
ultimately translates Into one or more page accesses. wWhen a program requests
an amount of data that does not fit evenly into some number of pages, the File

System reads the next highest number of whole pages. Similarly, data is actually
written to a file only in whole page increments.

A file does not need to occupy contiguous pages. The File System keeps track of
the locations of all the pages that make up a flle.

Each page on a storage device is self-identifying, and the page descriptor is
stored with the page contents to reduce the gestructive impact of an1/0error.

2-5

erating System Rererence Manual ror the Lisa The File S}&tem

The elght components of the page descriptor are:

version number

volume igentifier

Flle identifier

AmouNnt of gdata on the page
Page name

Page positioninthe file
Forward 1ink

Backward 11ink

Each volume has a Mealum Descriptor Data Flle (MOOF) which descrines the
various attributes of the medium such as its:size, page length, block layout, and
the size of the boot area. The MDDF is created when the volume 1s initialized.

The File System alsc maintains a record of which pages on the medium are
currently allocated, and a catalog of all the flles on the volume. Each file
contains a set of flle hints, which describe and point to the actual file data.

25 The Volume Catalog
On a storage device, the volume catalog provides access to the files. The catalog
is itself a file that maps user names into the internal file identifiers used by the
Operating System. Each catalog entry contains a variety of Information about
each file including:

name

type

internal flle number and adoress

size

gate and time created, 1astvm01fiea and 1ast accessed
file identifier

safety switch

The safety switch 1s used to avold éccldental deletions. while the safety switch

is on, the flle cannot be deleted. The other flelds are described uncer the
LOOUP flle system call.

The catalog can be located anywnerie on the medadium.

2.6 Labels
An application can stare its own lnformatlon apout a flle In an area called the
rle lavel The label allows an application to keep the flle data separate from
Information maintalned about the file. Labels can be used for any cbject in the

file system. The maximum label size Is 128 bytes. 1/0 to labels is handled
separately from flle datal/0.

2.7 Logical and Physical End of File
A flle contalns some number of bytes of gata recorded In some numboer of
physical pages. Additional pages might be allocated to the file, which do not

2-6

Mrerating System Reference Manual ror the LIsa Tre Flle System

contaln any file data. There are, therefore, two measures of the end of the file
called the logical and physical end of file. The Logical End of File (LECF) is a
pointer to the last stored byte that has meaning to the application. The Physical
End of File (PEOF) is a count of the number of pages allocated to the file.

In addition, each open file has a pointer associated with it, called the /7/emarker;
that points to the next byte in the file to be read or written. when the file is
opened, the file marker points to the first byte (byte number 0). The file marker
can be positioned implicitly or explicitly using the read and write calls. For
example, when a program writes to a file opened with Append access, the flle
marker is automatically positioned to the end of the file before new data is
written. The file marker cannot be positioned past LECF, except by a write
operation that appends data to a flle.

when a file is created, an entry for it {s made in the catalog specified in its
pathname, but no space s atlocated for the flle {tself. whenthe flle Is opened by
a process, space can be allocated explicitly by the process, or automatically by
the Operating System. If a write operatlon causes the file marker to be
positioned past the LECF marker, LECF, and PECF, if necessary, are
automatically extended. The new space is contiguous if passible.

2.8 Flle Access

The Flle System provides a device independent byte stream interface., As far as
an applications program Is concerned, a specified nurmber of bytes s transferred
elther relative to the flle marker or at a specified byte location in the file, The
physical attributes of the device or flle are not important to the application,
except that devices that do not support positioning can only perform sequential
operations, and programs can Improve performance somewhat by taking
advantage of a device's physical characteristics.

Programs can request any amount of gata from a flle. The actual 170, however, s
performed in whole-page increments, when devices are block structured.
Therefore, programs can optimize 1/0 with such devices by setting the flle
marker on a page boundary and making I/0 requests in whole-page increments.

A file can be open for access simultaneously by more than one process. All
requests to write to the file are completed before any other access to the file is
permitted. When one process writes to a file the effect of that write operation s
immediately available to all other processes reading the file. The other
processes may, however, have accessed the file in an earlier state. Data already
obtained by a program are not changed. The programmer must insure that
processes maintain a consistent view of a shared file.

when you open a flle, you specify the kind of access allowed on the flle. when the
file is opened, the Operating System allocates a flle marker for the calling
process and a run-time lgentification nurnber called the /@mus/m The process
must use the refnum In subsequent calls to refer to the flle. Each operation using
the refnum affects only the flle marker assaciated with that refnum.

2=7

perating System Rerference Manual ror the Lisa The File System

Processes can share the same file marker. In this access mode (global _ refnum)
each process uses the same refnum for the file. When a process opens a file in
global access mode, the refnum 1t gets Dack can be passed to any other process,
and used by any process. Nate that any number of processes can open a file with
global_ refnum, but each time the OPEN call Is used a different refnum [s
produced. Each of those refnums can be passed to other processes, and each
process using a particular refum shares the same flle marker wlrh other
processes with the same refum. Processes using different refnums, however,
always have different flle markers whether or not those refurns were obtalned
with global_refnum.

A file can also be opened in private mode, which specifles that no other OPEN
calls are to be allowed for that flle, A flle can be opened with global_refnum and
private, which opens the file for global access, but allows no other process to
open that flle. By using this call, processes can control which other processes
have access to a file. The opening process passes the global refnum to any other
process that is to have access, and the system prevents other processes from
opening the file.

Programmers should be aware that processes using global access may not be able
to make any assumptions about the ;looation of the file marker from one access to
the next.

29 Pipes
Because the Operating System supports multiple processes, a mechanism s
provided for Interprocess communication. This mechanism Is called a ppa
Pipes are very similar to the otheriobjects In the file system -- they are named
according to the same rules, and they can have labels.

As with a file, a pipe is a byte stream with a pipe, however, information is
queued in a first-in-first-out manner. Also, a pipe can have anly ane reacer at a
time, and once catais read froma pipe it is removed from the pipe.

A pipe can only be accessed in sequential mode. Although only one process can
read data from a pipe, any number of processes can write data Into it. Because
the data read from the pipe Is consurned, the flle marker Is always at zero. If the
pipe Is empty and no processes have it open for writing, EOF (End Of File) is
returned to the reading process. If any process does have it apen for writing, the

reading process 1s suspended untll enough data to satisfy the call arrives In the
pipe, or until all writers close the pipe,

when a plpe Is Ccreateq, 1ts size 1s 0 bytes. Unlike with orglnary flles, the
Inttlalizing prograrm must allocate space to the plpe before trylng to write data
Into 1t. TO avold deadlocks between the reading process and the writers, the
Cperating System does not allow a process to read or write an amount of data
greater than half the physical slze of the plpe. For this reason, you should
allocate to the pipe twice as much space as the largest amount of data in any
planned read ar write operarion,

2-8

perating Svstem Rererence Manual for the LIsa 7he Flle Sistem

A plpe is actually a clrcular buffer with a read polnter and a write pointer, All
writers access the pipe through the same write polnter. Whenever either polnter
reaches the ‘end’ of the plpe, 1t wraps back around 1o the first byte, If the read
pointer catches up with the write polnter, the reading process blocks untll data
are written or until all the writers close the pipe. Similarly, if the write polnter
catches up with the read pointer, a writing process blocks until the pipe reader
frees up some space or until the reader closes the pipe. Because pipes have this
structure, there are certain restrictions on some operations when dealing with a
pipe. These restrictions are dlscussed with the relevant flle systern calls,

Processes can never make read or write requests bigger than half the size of the
pipe because that the Operating System always fully satlsfies each read or write
request before returning to the program. In other words, if a process asks for 100
bytes of data from a pipe, the Operating System waits until there are 100 bytes of
data in the pipe, and then campletes the call. Similarly, if a process tries to write
100 bytes of data into a pipe, the Operating Systern waits until there is room for
the full 100 bytes before writing anything into the pipe. If processes were
allowed to make write or read requests for greater than half of a particular pipe,
it would be possible for a reader and a writer to deadlock, with nelther having
room In the pipe to satisfy its requests.

2.10 Flle Systemn Calls
This section describes all the Operating System calls that pertaln to the flle
system. A summary of all the Operating System calls can be found In Appendlx A.
The following speclal types are used In the file system calls:

Pathname = STRING[Max_Pathname]; (* Max_Pathname = 255 *)
E_Name = STRING[Max_Ename]: (*Max_EName = 32 =)

Accesses = (DRead, DWrite, Append, Private, Global refnum);
MSet = SET OF Accesses;

IoMode = (Absolute, Relative, Sequential);

The fs_Info record and its assoclated types are described under the LOOKUP call.
The Dctype record is described under the DEVICE_CONTROL call.

2-9

(erating System Reference Manual for the Lisa The File System

MAKE_FILE (Var Ecode:Integer;
var Path:Pathname;
Label size:Integer)

MAKE_PIPE (Var Ecoge:Integer; |
Var Path:Pathname;
Label slze:Integer)

Ecode: Error ingication
Path: Name of new object
Label_size: Numoer of bytes for the object's label

MAKE_FILE and MAKE_PIPE create the specified type of object with the glven
name. If the pathname does not specify a directory name {more specifically, if
the pathanme does not begin with a dash), the working directory s used.
Label_size specifies the initial size in bytes of the label that the application
wants to malntaln for the abject. It must be less than or equal to 128 bytes. The
label can grow to contain up to 128 bytes no matter what its initlal slze. Any
error ingication Is returned in Ecode.

The example below checks to see whether the specified file exists befaore
opening it.

CONSTFllefxists =890;
VAR FileRefNum, ErrorCode:INTEGER;
FlleName:PathName;
Happy : BOOLEAN;
Response:CHAR;
BEGIN
Happy : =FALSE;
WHILE NOT Happy DO
BEGIN
REPEAT - (*getafilename *)
WRITE('Flle name: *);
READLN(FileName);
UNTIL LENGTH(F1leName)>0;
MAKE_FILE(ErrorCode, FileName, 0); (*no 1abel for this flle=)
IF (Errorcoae<>0) THEN (*does f1le alreagy ex1st? *)
IF (ErrorCode=F1leExists) THEN (* yes x)
BEGIN % .
WRITE(FlleName, ' already exists. Overwrite? ');
READLN(Response);
Happy:=(Response IN ['y','Y']): (»go ahead and
: overwritex)
END

- 2-10

Gerating System Rererence Maral ror the LIsa The Flle System

ELSE URITELN('Error ‘,ErrorCode, ' while creating file.')
ELSE Happy:=TRUE;

OPEN'(ErrorCode, Fl1leName, F1lefefNum, [Durite]),
END;

Z2-11

(perating System Reference Marnual ror the Lisa The File System

KILL_OBJECT (Var Ecode:Integer;
var Path:Pathname)

Ecode: Error 1ndicator
Path: Name of object to be deleted

KILL_0BJECT deletes the object given In Path from the file system. Objects with
the safely switch on cannot be geleted. If a flle or plpe Is open at the time of the
KILL_OBJECT call, its actual deletion is postponed until it has been closed by all
processes that have it open. During this period no new processes are allowed to
open it. The object to be deleted need not be open at the time of the
KILL_OBJECT call. A KILL_0BJECT call can be reversed by UNKILL_FILE, as
long as the object Is a file and Is still open.

The following program fragment deletes flles until carriage retum is typed:

CONST FileNotFound=894;
VAR FileName:PathName;
ErrorCode :INTEGER;
BEGIN
REPEAT
WRITE('File to delete: ');
READLN(F1lenName); _
IF (FileName<>'") THEN
BEGIN
KILL OBJECT(ErrorCmJe FileName);
IF (ErrorCode<>0) THEN
IF (ErrorCode= FlleNotFound) THEN
URITELN(FlleNaFe not found.*
ELSE WRITELN(® Error ,ErrorCode, ' while deleting file.')
ELSE WRITELN(FileName, k deleted.');
END
UNTIL (FileName="");
END;

2-12

erating System Rererence NManual ror the L1sa he Flle System

UNKILL_FILE (var Ecode:Integer;
Refnum:Integer;
var New_name:e_name)

Ecode: Error indicator
Refnim: Refnum of the kllled and open flle
New_name:New name for the flle belng restored

UNKILL_FILE reverses the effect of KILL_0BJECT, as long &s the killed object
Is a flle that s still open. A new catalog entry Is created for the flle with the
name given In New_name. New_name is not a full pathnarne: the resurrected file
remains in the same directory.

2-13

perating System Reference Manual ror the LIsa The Flle System

RENAME_ENTRY (Var Ecode:Integer:
var Path:Pathname;
var Newname:E_Name)

Ecode: Error inaicator
Path: ObJject's old name
Neuname: Object's new nhame

RENAME_ENTRY changes the name of an object in the file system. Newname
can not be a full pathname. The name of the object is changed, but the object
remains in the same directory. The following program fragment changes the file
name of FORMATTER.LIST to NEWFORMAT, TEXT.

VAR O1GName :PathName;
NewName:E_Name;
ErrorCode:INTEGER

BEGIN ' :

OldName:='-LISA-FORMATTER.LIST';
NeuwName : ="' NEWFORMAT. TEXT';
RENAME_ENTRY (Errorcode, O1cName, NewName);

END; ' :

The flle's new full pathnarne is '~LISA-NEWFORMAT.TEXT'

volume names can be renamed by specifylng anly the volume name In Path. Here
Is a sample program fragment which changes a volumne name. Naote that the
leading dash (-), given in Glaname, s not given In Newname.

VAR 01adName :PathName;
NewName :E_Name;
ErrorCode: INTEGER
BEGIN
Oldname:="'-thomas";
Newname:='stearns’;
RENAME_ENTRY(Errorcode, 0ldname, Newname);
END;

2-14

perating System Rererence Mamual for the Lisa

LOOKUP (Var Ecode:Integer;
var Path:Pathname;
Var Attributes:Fs_Info)

Ecode: Error indicator
Path: Object to lookup

Attributes: Information returned about path

The Flle System

LOOKUP returns infarmation about an abject In the file system. For devices and
mounted volumes, call LOOKUP with a pathname that narnes the device ar

volume without a file name component:

DevName:="-UPPER'; (»Diskette drive 1 =)

LOOKUP(ErrorCode, devname, InfoRec):;

If the device is currently mounted and is block structured, the record fields of
Attributes contaln meaningful values; otherwise, some values are undefined.

The fs_info record Is defined as follows. The meanings of the information fields

are given in Appendix E.

fs_1info = RECORD
name: e_name;
devnhum: INTEGER;
CASE OType:info_type OF
device_t, volume_t:
(iochannel: INTEGER
gevty: gevtype;
slot_no: INTEGER;
fs_size: LONGINT;
vol_size: LONGINT;
blockstructureq,
mounted: BOOLEAN;
opencount: LONGINT,
privatedev,
remote,
lockeddev: BOOLEAN;
mount_pending,

unmount_pending: BOOLEAN;

volnhame,

password: e_name;
fsversion,

voliag,

volnum: INTEGER;

2-15

perating System Rererence Maral ror the LIsa The File System

blockslize,

gatasize,

clustersize,

fllecount: INTEGER; (*Number of flles on vol*)

" freecount: LONGINT; (*Number of free blocks *)

DTVC, | (= Date Volume Created *)

DTVB, ~ (» Date Volume last Backed up *)
DTVS:LONGINT; (* Date Volume last scavanged *)
Machine_id,

overmount _stamp,

master_copy_1d: LONGINT;

privilegeq,

write protected: BOOLEAN;

master,

copy, '

scavenge flag BOOLEAN).

object_t: (

END;
Uld = INTEGER;

size: LONGINT; (»actual no of bytes written=)
psize: LONGINT; (*physical size in bytes»)
1psize: INTEGER; (*Loglcal page size in bytes®)
ftype: flletype;

etype: entrytype;

DTC, ! (» Date Created =)

DTA, i (* Date 1ast Accessed =)
o™, : (> Date last Mounted =)
D1B: LONGINT; (»Date 1ast Backed up *)

refnum: INTEGER;

fmark : LONGINT; (* flle marker *)
acmode: mset; (* access mode *)
nreaders, (* Number of readers *)
nuriters, = (* Number of writers =)
nusers: INTEGER (* Numper of users *)

fuid: uig; (» unique identifier =)
eof, : (* EOF encountered?)
safety_on, (* safety switch setting =)

Kswitch: BOOLEAN; (* has flle been kllleqa? x)
private, (* File opened for private access? *)
locked, (= Is file locked? =)

protected:BOOLEAN); (* File copy protected? »)

Info_Type = (device_t, volume_t, abject_t);
Devtype = (uiskdev pascalbd, seqdev, bitokt, non_io);

Z2-16

Lperating System Rererence Manual for the Lisa The Fiie System

Filetype = (undefined, MDDFFile, rootcat, freelist,
badblocks, sysdata, spool, exec, usercat,
plpe, bootfile, swapgata, swapcode, ramap,
userfile, killedobject);

Entrytype = (emptyentry, catentry, linkentry, flleentry,

pipeentry, ecentry, killedentry);

The ECF field of the fs_info record is set after an atternpt to read maore bytes
than are avallable from the flle marker to the logical end of the file, or after an
attempt to write when no disk space s avallable. If the flle rnarker ls at the
twentieth byte of a twenty-flve byte file, for example, you can read up t0 S
bytes without setting EOF, but if you try to read 6 bytes, the file system glves you
only S bytes of data, and ECOF isset.

The followling program reports how many bytes of data a glven flle has:

VAR InfoRec:Fs_Info;(*infor;va‘tion returned by LOOKUP and
INFO*
FileName:PathName;
ErrorCode: INTEGER;
BEGIN _
WRITE('File: ');
READLN(FileName);
LOOKUP(ErrorCode, FileName, InfoRec);
IF (ErrorCode<>0) THEN
WRITELN(‘Cannot lookup ', FlleName)
ELSE .
WRITELN(FileName, ' has ', InfoRec.Size, ' bytes of data.');
END;

2-17

perating System Reference Manal ror the LIsa The Flie Svstem

INFO (Var Ecode:Integer;
Refnum:Integer;
Var RefInfo:Fs_Info)

Ecode: Error indicator
Refnum: Reference|number of object in file system
Refinfo: Information returned about refnum's object

INFO serves a function similar to that of LOOKUP, but is applicable only to
objects in the flle system which are open. The definition of the Fs_Info record s
glven under LOOKUP and in Appendix A.

Lperating System Reference Manual for the Lisa The File System

SET_FILE_INFO (Var Ecode:Integer;
Refnum:Integer;
Fsi:Fs_Info)

Ecode: gError indicator
Refnum: Reference number of oblect 1in flle system
Fsi: New Information about the object

SET_FILE_INFO changes the status information associated with the glven abject.
This call works in exactly the opposite way that LOOKUP and INFO work, in that,
the status information s given by your program to SET_FILE_INFO. The fsi
argument, is the same type of information record as that returned by LODKIUP and
INFO. The object must be open at the time this call Is made.

The following fields of the information report may be changed:
0 file_scavanged
0 flle_closedby_0S
0 flle_left_open
0 user_type
0 user_subtype

2-19

erating System Rererence Maual rob the LIsa The Flle System

OPEN (Var Ecode:Integer:;

var Path:Pathname;

vVar Refnum:Integer:;
Manip:MSet)
Ecode: Error indicator
Path: Name of object to be opened
Refnum: Reference numper for object
Manip: Set of access types

The OPEN call opens an object so tr%mat it can be read or written to. When you call
OPEN, you specify the set of accesses that will be allowed on that file or
sequential device. The available access types are:

o Dread -- Allous you to read any of the file

o Dwrite -- Allows you to urite anywnere in the flle (replaces
existing data) .

0 Append -- Allows you to add on to the end of the file
0 Private -- Prevents other processes from opening the file

0 Global_refnum -- Creates a Zrefnum that can be passed to other
procesces ‘

Note that you can give any numoer of these modes sirnultaneously. If you glive
dwrite and append in the same OPEN call, dwrite access will be used. See Section
2.8 for more Information on global_refnum and private access rmoaes.

If the object opened already exists :and the process calls WRITE_DATA without
having specified append access, the object can be overwritten. The Operating
System does not create a temporaty file and walt for the CLOSE_OBJECT call
before deciding what to do with the old file.

An object can be opened Dy two separate procassas (0r mare than ance by a single
process) simultaneously. Ifthe processes write to the file without using a glebal
refnum, they must coordinate their file accesses 5o as to avoid overwriting each
other's data.

Pipes cannot be opened for dwrite acoess. You must use append if you want to
write into the pipe.

2-20

perating System Rerference Manual for the Lisa The File System

CLOSE_OBJECT (Var Ecode:Integer;
Refnum:Integer)

Ecode: Error indicator
Refnum: Reference number of object to be closed.

If refnum Is not global, CLOSE_OBJECT terminates any use of Refnum for 1/0
operations. A FLUSH operation is perforrmed automatically and the flle Is saved
in its current state. If Refnum is a global refnum, and other processes have the
flle open, Refnum remains valld for these processes, and other processes can still
access the file using Refnum.,

The following program fragment opens a flle, reads 512 bytes from it, then closes
the file.

TYPE Byte=-128..127;

VAR FlleName:PathName;

ErrorCode, Fl11leRefNum:Integer;
ActualBytes:LongInt;
Buffer:ARRAY[0..511] OF Byte;

BEGIN
OPEN(ErrorCode, FileName, FileRefNum, [DRead]);
IF (Exrorcode>0) THEN

WRITELN('Cannot open ',FlleName)
ELSE
BEGIN
READ_DATA(Errorcode,
FileRefNum,
ORD4(@Buffer),
512,
ActualBytes,
Siquential,
0);
IF (ActualBytes<512) THEN
WRITE('Only read °,ActualBytes,' bytes from
',FileName);
CLOSE_OBJECT(ErrorCode, F1leRefNum);
END;
END;

(perating System Reference Manval for the Lisa The File Systemn

READ_DATA (Var Ecode:Integer;
Refnum:Integer;
Data_Addr:LongInt;
count:LongInt;:

Var Actual:LongInt;

Mode:IoMode;
Offset:LongInt);
WRITE_DATA (Var Ecode:Integer;
Refnum: Integer;
Data_Addr:Longint;
Count :LongInt;
var Actual:LongInt;
Mode:IoMoge;
Offset:LongInt);
Ecode: Error indicator
Refnum: Reference number of object for I/0
Data_Addr: Address of data (source or destination)
count: Numper of bytes of gata to be transferred
Actual: Actual number of bytes transferred
Moge: I/0 moge _
Offset: Offset (absolute or relative modes)

READ_DATA reads information from the device, pipe, or file specified by
Refnum, and WRITE_DATA writes information to it. Data_Addr is the address
for the destination or source of Count bytes of data. The actual number of bytes
transferred Is returned in Actual.

Mcde can be apsolute, relative, or sequential. In absolute mode, offset specifies
an absolute byte of the file. In relq%ive mode, it specifies a byte relative to the
file marker. In sequential mode, the offset is ignored (it is assumed to be zero)
and transfers occur relative to the flle marker. Sequential rode (which Is a
special case of relative mode) is the only allowed access mode for reading or
writing data in pipes or sequential (hon-disk) devices. Nan-sequential modes are
valid anly on devices that support positioning. The first byte is numbered 0.

If a process attempts to write data past the physical end of flle on a disk flle, the
Operating System autornatically allocates enough acdltional space 1o contaln the
data. This new space, may not be contiguous with the previous blacks, vou can
use the ALLOCTATE call 1o Insure that any newly allocated plocks are located
next to each other, although that will not insure that they are located near the
rest of the flle.

Qoerating System Rererence Marmual ror he L1ss The Flle Svsiem

READ _DATA from a plpe that does not cortaln enough data to satisfy count
suspends the calllng process until the data arrives in the pipe If any other process
has that plpe open for writing. If there are no wrlters, the end of flle indication
(error 848) is returned by Ecode. Because pipes are clrcular, WRITE_DATA to a
plpe with Insufficient roorn suspends the calling process (the wrlter)until enough
space s avallable (until the reader has consumed enough data), if there is a
reader. If no process has the plpe open for reading and there s rict endugh space
in the plpe, the end of flle Indication (848) is returned in Ecade.

NOTE

READ DATA from the MAINCONSCLE or ALTCONSOLE devices must
specify count=1.

The following program copies a file. Note that you must supply the correct
location for Syscall in the second line of the program.

PROGRAM CopyFlile;
USES (*Syscall.Obj*) SysCall;
TYPE By te=-128..127;
VAR 01dFile, NewFile:PathName;
01dRefNum, NewRefNum: INTEGER;
BytesRead, BytesWritten:LONGINT;
ErrorCode :INTEGER;
Response:CHAR;
Buffer:ARRAY [0..511] OF Byte;
BEGIN
WRITE(‘File to copy: ');
READLN(O1dF1le);
OPEN(ErrorCode, 010F1le, 01dRefNum, [DRead]);
IF (ErrorCode>0) THEN
BEGIN :
WRITELN('Error ',ErrorCode, ' while opening ',0lcFile);
EXIT(CopyFile);
ND .

WRITE('New flle name: ');

READLN(NewFile);

MAKE_FILE(ErrorCode, NewFile, 0);
OPEN(ErrorCode, NewFile, NewRefNum, [DUrite]);

Qerating System Rererence Manual ron the Lisa The Flle System

REPEAT j

READ_DATA(Errorcoce}

O1dRefNum,
ORD4(@BUFfeEr),

' 512, BytesRead, Sequential, 0);
IF (ErrorCode=0) AND (BytesRead>0) THEN
WRITE_DATA (ErrorcCode,

NewRerNum,

ORD4(@Buffer),

BytesRead, Byteswritten, Sequential, 0);
UNTIL (BytesRead=0) OR (BytesWritten=0) OR
(ErrorCode>0); ;
IF (ErrorCode>0) THEN,

WRITELN('File copy encountered error °,ErrorCode);
CLOSE_OBJECT(ErrorCode, NewRefNum);
CLOSE_OBJECT(ErrorCode, 01dRefNum);

END. '

2-24

Lperating System Reference NManual for e Lis The File Systen

READ_LABEL (Var Ecode:Integer;
var Path:Pathname;
Data_Addr:Longint;
Count:LongInt;
var Actual:LongInt)

WRITE_LABEL (Var Ecode:Integer;
var Path:Pathname;
Data_Addr:Longint;
count:LongInt;
Var Actual:LongInt)

Ecode: Error indicator

Path: Name of oblect contalning the label
Data_ador: Source or destination of I/0

Count: Number of bytes to transfer

Actual: Actual number of bytes transferred

These calls read or write the label of an object in the flle system. 1/0 always
starts at the teginning of the label. Count Is the nurnber of Dytes the process
wants transferred to or from Data_addr, and Actual 1s the actual number of bytes
transferred. Anerror Is returned If you attempt to read maore than the maximum
Iabel size. A label can never be longer than 128 bytes, S0 you can never read or
write more than that.

2-25

(perating System Reference Manual for the Lisa The File System

DEVICE_CONTROL (Var Ecode:Integer;
var Path:pPathname;
Var CParm:dctype)

Ecode: Error indicator
Path: Device to be controlled
CParm: A record of information for the device driver

DEVICE_CONTROL is used tc send device-specific information to a device
ariver, or to ootaln device-specific Informatlon from a device driver.

Regardless of whether you are setting device control parameters or requesting
information, you always use a record of type dctype. The structure of dctype is:

Dctype = RECORD
dcVersion: INTEGER;
gcCode: INTEGER;
dcData: ARRAY[O..Q] OF LONGINT
END; ;

deversion: always 2 for the functions discussed in this
document

dcCode: control code for device ariver

dcbata: specific control or dataparameters

DEVICE_CONTROL functions that set attributes for a device driver are covered
first, '

CONTROLLING DEVICES
Before you use a device, you should use DEVICE _CONTROL in order to set the
device driver so that it properly handles the device. Once you begin using the
device, you are free to call BEVICE: CONTROL as necessary.

Following are two tables. The first, Table 2-1, shows which “groups” of device
control functions must be set before using each type of device. The second table
shows which type of characteristics are contalined in the groups. For example,
you must set Group A for RS-232 Input. If you look In Table 2-2, you see that
Group A Indicates the type of parity used with the device. Note that, each group
requires a separate call to DEVICE_CONTROL, and that you can only set cne
characteristic from each group. If you set maore than ane from the same group for
aparticular device, the last one set will apply.

2-26

perating System Rererence Manual ror the LIsa

Table 2-1
DEVICE_CONTROL FUNCTIONS REQUIRED
BEFORE USING A DEVICE

Serial RS-232 for input RS232A or R3232B A,C,0,E,F,G
Serial RS-232 for output RS232A or RS232B A,EB,C,G H, I
or printer

Profile SLOTXCHANY (uhere J
X and y are rumbers)
Or PARAPORT

Parallel printer . SLOIXCHANY (uwhere I
X and y are numoers)
or PARAPORT

Console screen and MAINCONSOLE or I

keyboard ALTCONSOLE
Diskette drive UPPER or LOWER J

Here is a sample program which shows how a device control parameter is set.
This program sets the parity attribute for the RS232B port to "no parity”, Note
that the parity attribute only requires that you set cparm.dccode and
cparm.dcdata{0). Other parameters require that you also set cparm.dcdata{1] and
cparm.dcdatalz] They are set Inasimilar manner.

VAR
cparm: dctype;
errnum: integer;
path: pathname;

BEGIN
path:="-RS232B°;
cparm.deversion:=2; (* always set this value *)
cparm.dccode: = 1;
cparm.dcdataf[0]:= ©;
DEVICE_CONTROL (errnum, path, cparm);
END;

2-27

The Flle System

erating System Rererence Manual ror the Lisa. The File System

Table 2-2 shows how 10 set cparm.dccode, cparm.dedata[0], cparm.dcdata1], and
cparm.dcdataf2] for the varlous available attributes. Note that any values In
cparm.dcdata past cparm.dcdata[2] are ignored when you are setting attributes
documented here.,

Table 2-2
DEVICE_CONTROL OUTPUT FUNCTIONAL GROUPS
FUNCTION gocode dedate{0] dedata{l] .dcdata2]

Group A--Parity:

NO parity 1 0 -- --
0dd parity, no 1 1 -- --
1nput parity
checking
0dd parity, 1 2 -- --
input parity
errors = 00 -
Even parity, no 1 3 -- --
input parity
checking
Even parity, 1 4 -- --
input parity
errors = $80
Group B--0utput Handshake:
None 11 -- -- -
DTR handshake 2 -- - --
XON/XOFF handshake 3 i == -- --
delay after Cr, LF 4 ms delay -- --

Group C--Baud rate:

Group D--Input waiting:
walt for full 1line &
return whatever rec'd 6

[anlion]
|
1
|
I

2-28

perating System Rererence Manual rar the LIsa

Group E--Input handshake:

no handshake 7 a -=
9 -1 -1
DTR handshake 7 -- --
XON/XOFF handshake 8 - --
Group F--Input type-ahead buffer:
flush only 9 -1 -2
flush & re-size 9 bytes -2
flush, re-size, 9 bytes low
and set threshold
Group G--Disconnect Detection:
none 10 - 0

BREAK detected
means disconnect

10 -- non-zero

Group H--Timeout on output (handshake interval):

no timeout © 12 g --
timeout enabled 12 seconds -

Group I--Automatic linefeed insertion:

gdisable 17 0 -
enabled 17 1

The Flle System

Group J--Disk errors (set to 1 to enaole, to O to disable):

enable sparing 21 sparing rewrite

reread

Group K--Break command (never required -- avallable only on

serial RS-232 devices)

send break 13 millisecond 0
duration

send break 13 millisecond 1

while lowering duration

DTR

2-29

(perating System Rererence Mamal ror the Lisa The File System

Using Group C, you can set baud to any standard rate. However, 3600, 7200,
and 19200 baud are available only on the RS2228 port.

'Low' and "Hi' under Group F set the low and high threshold in the type ahead
input buffer. when ‘hi' or more bytés are in the input buffer XGFF issentor
DTR is dropped. Then when ‘Low' o fewer bytes are in the type ahead buffer,
XON is sent or DTR s re-asserted. The size of the type ahead buffer (bytes)
can be any value between 0 and 64 bytes inclusive,

In Group J, aisk sparing, when enabled, orders the device driver to re-locate
blocks of data from areas of the disk that are found to be bad.

Disk rewrite, when enabled, orders the Operating System to rewrlte data that
it had trouble reading, but finally managed to read. Thiscondition isreferred
toasa sort error

Disk reread, when enabled, orders ,t.he Operating System to read data after
they are written, to make certain that they were written correctly.

when sending a break command, shown in Group K, any device control from
Group A removes the break condition, even if the allotted time has not yet
elapsed. Also, sending a break will disrupt transmission of any other
character still being sent. If you want to make certain that enough time has
elapsed for the last character to be transmitted, call WRITE_DATA with a

single null character (equal to 0) ju'sT prior to cal’lng DEVICE_CONTROL to
send the break,

Table 2-3 glves a 1ist of mneumomc constants that you can use In place of
explicit numbers when setting dccode These mneurnonics are provided solely
for convenience,

Tanle 2-3
Dccode Mneumonics

Dccoge - Mpeumonic

gvParity
dvOutDTR
dvOutXON
dvQutDelay
dvBaud
dvInWait
dvInDTR
dvINXON
dvTypeahd

10 dvDiscon

11 dvOUtNoHS

12 no mneumonic
13 no mneumonic
15 dvErrStat

WO NOUTEWN -

2-30

Qoerating System Rererence Manual ror the Lisa

16 avGetEvent
17 gvAutoLF

20 gvDiskstat
21 dvDiskSpare

OBTAINING DEVICE CONTROL INFORMATION

When you use DEVICE_CONTROL. to find cut information atcut the current
state of a particular device, you simply give the pathname for the particular
device,along with a function code for the type of information you need, and
the record of type dctype that you supply is returned filled with inforrmation,

There are three types of Inforrnation Yequests you can make, Note that each
type only applies to some of the avallable devices. The reguest types and the
returned Inforration are described in Table 2-4.

Here 1s a program fragment that gets Informatlon about the upper diskette
drive,

VAR
cparm: dctype;
errnum: 1integer;
path: pathname;
BEGIN
path:='-UPPER";
cparm.deversion:=2; (* alvays set this value *)
cparm.dccode := 20;
DEVICE_CONTROL (errnum, path, cparm);
WRITELN (dcdata[0],dcdata[1],dcdata[2], dcdata[3],
N acdatal 4], acoata[S], dedata[6])
D,

i
N
| S

he File System

erating System Reference Manual ror the Lisa The File Svstem

Table 2-4
Device 'Information
DCCODE DEVICES DCDATA (returned)
15 profiles | [0] contains disk error status on

last hardware error (Table 2-5)

[1} contains error retry count
since last system boot

16 console screen [0] contains numbers 0 - 10,
and keyboard which indicate events:

no event

upper diskette inserted

dpper diskette button

lower diskette inserted

lower diskette button

mouse button down

mouse plugged in

power button

mouse button up
10 = mouse unplugged

[1] contains the current state
of certain keys, indicated
by set bits (if the bit is
1, the key 1s pressed) (oits
are numbered from the right)

caps lack key

shift key

option key

command key

mouse button

= auto repeat

[2] contains X and Y coordinates
of mouse, X in left 2
bytes,Y in right 2 bytes

[3] contains timer value, in
milliseconds

OONABEUNKFO
L U £ S 1 AN ¥ AN T 1|

o ononon

M WHNHOQ

2-32

persting System Rererence Mamwal rar the LIs3 The Flle System

20 profile or [0] contains:
giskette drive 0 = no dlsk present
1 = disk present (but not
accessed yet)
The following indicate that
a disk 1s present, and it
has been accessed at least

once,
2 = bad block track appears
unformatted

3 = disk formatted by some
program other than the
Operating System
4 = 0S formatted disk
[1] contains:
0 = no putton press pending
1 = button press pendlng,
disk not yet ejected
[2] contains number of blocks
(0-16) (meaningful only
when dcdata[0] = 4 and for
diskette)
[Z] contains:
0 = both coples of the bad-
block directory OK
1 = one copy 1s corrupt
(meaningful only when
dedata[0] = 4)
[4] contains:
0 = sparing disabled
1 = sparing enabled
[5] contains:
0 = rewrite disabled
1 = rewrite enabled
(6] contains:
0 = rereacd dlsabled
1 = reread enabled

o5

1}

Table 2-5 shows the breakdown of the error coce In response to a dccode=15
information request. This code s given in cparm.dcdatz ol

The cede 1s a long Integer, and therefore contalns four bytes. Each olt in
every byte but byte 0 has meaning. The bytzs are shown in Table 2-5 broken

Qoerating System Reference Manual for the Lisa The File System

Lmn%obuswﬁhwanvammywsmmmmedﬂmnmenqncmxnmgﬂmno
as shown in Figure 2-1. Inall cases, !:he meaning attributed to the bit is true if
thebitis set(equals 1).

Byte 3

Byte

N W

N O

()]
"

& U

QO P A

Flgure 2-1
Disk Hard Efror Codes

Table 2-5
Disk Harq Error Codes

Profile received <> S5 to its last response

Write or write/verify aborted because more than 532
bytes of data were sent or because profile could not
read 1ts spare table

Hosts data 15 no longer in RAM because profile updated
1ts spare table

SEEK ERROR -- unable in 3 tries to read 3 consecutive
headers on a track

CRC error (only set during actual read or verify of
write/verify, not uhi le trying to read headers after
seeking)

TIMEOUT ERROR (could not find header in 9 revolutions)
-- not set while trying to read headers after seeking
Not used

Operation unsuccessful

SEEK ERROR -- unable in 1 try to read 3 consecutive
headers on a track |

spared sector table overflow (more Than 32 sectors
spared)

Not used '

Bad block tapble overflow (more than 100 bad blocks in
tatle)

Profile unable to read its status sector

Sparing cccurred

SeeK TO wreng track ncourred

Not used

2-34

perating System Rererence Manual ror the Lisa The File System

Byte 1
7 = Proflle has been reset
& = Invalid block number
5 = Not used
4 = Not used
3 = Not used
2 = Not used
1 = Not used
0 = Not used
Byte O

This byte contains the number of errors encountered when
rereading a block after any read error.

(perating System Rererence Manual ror the Lisa The File System

ALLOCATE (Var Ecode:Integer;
Refnum:Integer; .
Contiguous:Boolean;
Count:Longint;

var Actual:Integer)

Ecode: Error indicator

Refnum: Reference numper of object to be allocated
space

Contiguous: True=allocate contiguously

Count: Numper of blocks to be allocated

Actual: Numper of blocks actually allocated

LUse ALLOCATE 10 Increase the space allocated to an object. If possible,
ALLLOCATE adds the requested number of blocks to the space available to the
object referenced by Refnum. The actual number of blocks allocated is
returned In actual. If contiguous is tiue, the new space Is allocated in a single,
unfragmented space on the disk, This space {s not necessarily adjacent to any
existing file blocks. '

ALLOCATE appllies only to objects on block structured devices. An attempt
to allocate more space to a pipe s successful only If the pipe's read pointer is
less than or equal to its write pointer. If the write pointer has wrapped
around, but the read polnter has not, an allocation would cause the reader to
relad invalid and uninitialized data, so the File System returns an error 1186 in
this case.

2-36

perating System Rererence Manual rfor the LIsg The File Systemn

COMPACT (Var Ecode:Integer;
Refnum:Integer)

Ecode: Error indicator
Refnum: Reference number of object to be compacted

COMPACT deallocates any blocks after the block that contains the logical
enc of flle for the flle referenced by refnum. (See Figure 2-1.) COMPACT
applies only to objects on block structured devices. As is the case with
AL OCATE, compaction of a pipe is legal only if the read pointer is less than
or equal to the write pointer. If the write pointer has wrapped around, but the
read pointer has not, compaction could destroy data in the pipe. The File
System returns an error 1188 in this case.

2-37

perating System Rerersnce Mangal ror the LIsa The File System

TRUNCATE (Var Ecode:Integer;
Refnum:Integer)

Ecode: Error indicator
Refnum: Reference number of object to be truncated

TRUNCATE sets the logical end of file indicator to the current positicn of the
flle marker. Any data beyond theifile marker are lost. TRUNCATE applies
only to block structured devices. Trunoation of a pipe can destroy data that
have been written but not yet read. As the diagram shows, TRUNCATE does
not, change PECF, only LEOF. COMPACT, on the other hand, changes both.

e TRUNCATE — COMPACT —

D?w
LEOF new
and PECF
PEOF

DA

File Marker o%d old
LEOF PEOF

re 2-2
The Relationship g{; COMPACT and TRUNCATE

In trus figure the boxes represent blocxs of data. Note that LECF canpoint to
any byte in the file, but PEGF can only polnt to a block boundary. Therefore,
TRUNCATE can reset LEOF to any byte in the flle, but COMPACT can only
reset PECF to a block boundary.

perating System Rererence Manual ror the Lisa The File Systemn

FLUSH (Var Ecode:Integer;
Refnum:Integer)

Ecode: Error indicator
Refrium: Reference number of destination of I/0

FLUSH forces all buffered Information destined for the object {dentified by
refnum to be written aut to that ot ject.

A side effect of flush Is that all FS buffers and data structures are flushed (as
well as the control inforrmation for the referenced file), If Refrumis -1, only
the global file system is flushed. Thisisamethod by which anapplication can
insure that the file system in consistent.

qoerating System Rererence Manal ror the Lisa. The File System

SET_SAFETY (Var Ecode:Integer;
var Path:Pathname;
On_off :Boolean)

Ecode: Error indicator

Path: Name of obJect contalning safety switch

Cn_Off: Set saftey switch (On=true), or clear it
(0ff=false)

Each object in the file systemhas a "safety switch” to help prevent accidental
deletion. If the safety switch {s on, the object cannot be deleted.
SET_SAFETY turns the switch on or off for the cbject identified by path.
Processes that are sharing an object should cooperate with each other when
setting or clearing the safety switch.

oerating System Rererence Manual for the Lisa The Flle Svsiem

SET_WORKING_DIR (Var Ecode:Integer;
var Path:Pathname)

GET_WORKING_DIR (Var Ecode:Integer;
Var Path:Pathname)

Ecode: Error indicator
Path: Working directory name

The Cperating System uses the name of the working directory to resolve
partially specified pathnames into complete pathnames.
GET_WORKING_DIR returns the current working directory name in Path.
SET_WORKING_DIR sets the working directory name.

The following program fragment reports the current name of the working
dlrectory and allows you to set it to scmething else:

VAR WorkingDir:PathName;
ErrorCode : INTEGER;
BEGIN
GET_WORKING_DIR(ErrorCode, WorkingDir);
IF (ErrorCode<>0) THEN
WRITELN(*Cannot get the current working airectory!*)
ELSE WRITELN('The current working directory is:

‘', WorkingDir);
WRITE(‘New working directory name: ');
READLN(WorkingDir).
SET_WORKING_DIR(ErrorCode, WorkingDir);

END;

2-41

Brating System Rererence NManual ror the L1sa The Flle Svstem

RESET_CATALOG (Var Ecode:INTEGER;
var Path:Pathname)

GET_NEXT_ENTRY (var Ecooce:INTEGER;
var Preflx,
Entry:E_Name)

Ecoge: Error indicator

Path: Working directory name

Prefix: Beginning of flle names returned
gEntry: Names from c¢atalog

RESET_CATALOG and GET _NEXT_| ENTRY give a process access to catalogs.
RESET_CATALOG sets the catalog file marker' to the beginning of the
catalog specified by Path. Path should be a root volume name.
GET_NEXT_ENTRY then performs sequential reads through the cataleg file
specified in the RESET_CATALOG call and returns file system object names.
An end of flle error code (848) is returmned when GET_NEXT_ENTRY reaches
the end of the catalog. If prefix is non-null, only those entries in the catalog
that, beglin with that prefix are returned. If prefix Is ‘AB’, for example, only
file names that begln with 'AB' are returned. The preflx and catalog marker
are local to the calling process, so several processes can simultaneously read
a catalog without affecting each other.

2-uz

perating System Rererence Mamual ror the LIsa The File System

MOUNT (var Ecode:Integer;
var VName:E_Name;
Var Password:E_Name
var Devname:E_Name)

UNMOUNT (Var Ecode:Integer;
Var Vname:E_name)

Ecoce: Error indicator

yname: volume name

Password: Password for device (currently ignored)
Devname: Device name

MOUNT and UNMOUNT handle access 10 sequential devices or block
structured devices. For block structured devices, MOUNT logically attaches
that volume's catalog to the flle system. The name of the volume mounted is
returned In the parameter Vname.

UNMOUNT detaches the specified volume from the flie system. No object on
that volume can be opened after UNMOUNT has beer called. The volume

cannot be unmounted untll all the objects on the volume have been closed by
all processes using them.

Devname {s the name of the device on wiich a volume is belng mounted.
Devname should be glven without a leaaing tash (<)

Vname s the name of the volume that was successfully mounted, and 1s
returned.

2-43

(perating System Rererence Mamal ror the Lisa
Chapter 3
PROCESSES
3.1 Process Structure e 3-4
3.2 Process HierarChyceeevnonnnnnnnnennns 3-4
3.2 Process Creation i e et 3-5
3.4 Process Control D e et e 3-5
3.5 Process Scheduling et ittt e 3-6
3.6 Process Termination it 3-6
3.7 A Process Handling Examplevniniicrenninin.. 3-7
3.8 Process SYSteM CallSvu e enennonenneens 3-9
MAKE_PROCESS\ et e et et e 3-10
TERMINATE PROCESS bt v s asosasasasosnsananns 3-11
INFO_PROCESS . oo vvvnn. .. e e et 3-13
KILL PROCESS........... ettt e 3-15
SUSPEND_PROCESS e e e 3-16
ACTIVATE_PROCESS e st e 3-17
SETPRIORITY _PROCESS ... iiii it i s e aeansnnenns 3-18
YIELD CPU ..o i o nns T 3-19
i N 3-20

3-1

Frocesses

Querating System Rererence Masmual ror the Lisa Frocesses

3-2

querating System Reference Manal for the LIsa Processes

PROCESSES

A pracess 1s the entity In the Lisa system that performs work. when you ask the
Operating System to run a program, the 0S creates a specific instance of the
program and {ts associated data. That instance is a process.

The Lisa can have a number of prooesses at any one time, and they will appear to
be running simultaneously. Although processes can share code and data, each
process has its own stack. |

Actually, only one prooess can use the CPU at atime. which process isactive at
a particular time is determined by the screm/er The scheduler allows each
process to run until some condition that would slow execution occurs (an 1/0
request, for example). At that time, the running process is saved in its current
state, and the scheduler checks the pool of ready-to-run processes. when the
original process later resumes execution, it picks up where it left off.

The process scheduling state has three possibilities. The process is zzrvung if (U
Is actually engaging the attention of the CPU. If it Is ready to execute, but {s
belng held back by the scheduler, the process Is /eagy A process can also be
blocked In the blocked state, the process {s ignored by the scheduler. It cannot
continue its execution until something causes its state to be changed to ready.
Processes commonly become blocked while awalting completion of 1/0, although
there are a number of other likely causes.

3-3

Cperating System Rererence Mamual ror the LIse Frocesses

3.1 Process Structure
A Process can use up to 16 data segments and 106 code segrments.

The layout of the process address space for user processes is shown inFigure 3-1.

Seg#
0 | Unavallable
rm——————
1 User Code Segments
106

107 LDSN 1

(data segments)

122 | LDSN 16

Flgure 3-1
PROCESS ADDRESS SPACE LAYOUT

Each process nas an associated priority, an integer hetween 1 and 255. The
process scheduler usually executes the nighest priority ready process. The higher
priorities (226 to 255) are reserved for Operating System.

3.2 Process Hlerarchy
when the system Is first started, several system processes exist. At the base of
the process hlerarchy is the root process which handles varlcus internal
Operating System functions. It has at least three sons, the memaory manager
process. the timer process., and the shell process.

3-4

Qperating System Reference Mamal for Uze Lisa Processes

The memory manager process handles code and data segment swapping.

The shell process is a user process wmbn {s automatically started when the 0S is
initialized. It typically is acommand interpreter, but it canbe any program. The
0S simply 1o0Ks for the program called SYSTEM.SHELL, and executes it.

The timer process handles timing functions such as timed event channels.

Root Pfocess

Shell Other
_Process
Memory Manager Timer
Process Useir Process

Process

Other User Processes

Figure 3-2
Process Tree

Any other system process (the Network Control Process, for example) is a son of
the root process. '

3.3 Process Creation
when a process Is createq, It Is placed in the ready state, with a priority equal to
that of the process which created it. All the processes created by a given process
can be thought of as existing In a subtree. Many of the process management calls
can affect the entire subtree of a process as well as the process itself,

3.4 Process Control ‘
Three system calls are provided for explicit control of a process. These calls
allow a process 1o kill, suspend (plock), or actlvate any other user process In the
system, as long as the process identifier {s known. Process handling calls are not
allowed on Operating System processes. |

3+5

perating Svstem Rererence Manual rar the LIsa Frocesses

3.5 Process Scheduling
Process schedullng is based on the priority estabiished for the process and on
reguests for Operating System services.

The scheduler generally executes the hignest priority ready process. Once a
process Is executing, it loses the CPU only under certain circurnstances. In
practice, the CPU is lost when there is sormne specific request for the process tc
walt (for an event, for example), when there is an /0 request, or when there isa
reference to a code segment that is not in memory. A process that makes any
Operating System call may lose the CPU. The process will get the CPU back
when the Operating System is finished except under the following conditions:

0 The running process requests input or output. The scheduler will
start the next highest-priority process running while the flI‘St
process walts for the I/0 tocomplete.

o The running process lowers itspriority below that of another ready
process or sets another process's priority to be nigner than its
oun,

0 The running process explicitly yields the CPU to another process.
0 The running process activates ahigher priority process.

0 The running process suspends itself.

0 A higher priortity process becomes ready.

0 The running process needs code to be swapped into memory.

0 The running process executes an event walt call.

0 The running process calls DELAY_TIME.

Because the Operating System cannot seize the CPU from an executing process
except in the cases noted above, background processes should be liberally
sprinkled with YIELD_CPU calls.

when the scheduler is invoked, it saves the state of the current process and
selects the next process to run by examining the pool of ready processes. If the
new process requires that code or data be loaded into memory, the memory
manager process is launched. If the memory manager is already working on a
process, the scheduler selects the highest priority process in the ready queue that
does not need anything swapped.

3.6 Process Termination
A process terminates normally when it calls TERMINATE_PROCESS, when i,
reaches an 'END.' statement, when some process calls KILL_PROCESS an it,
when its father process terminates, or when it runs into an apnorrnal cmnmno'x
when a process bhegins to terminare, a SYS_TERMINATE exception congition is
signatled to the terminating process and all of the processes it has created. Any

3-6

Qerating System Rerference Marnual for the Lisa Fracesses

process can create an exception handler with the DECLARE_EXCEP_HDL cali
(described in Chapter 5 of this manual), so the process can catch the terminate
exception and clean up before terminating. The SYS_TERMINATE exception
handler will only be executed oncg. Thus, If an error occurs while the handler 1s
executing, the process terminates Immeaiately.

Termination Involves the following% steps:

1. Signal the SYS_TERMINATE éxoeption on the terminating
rocess.

2. Execute the user's exception handler (if any).
3. Instruct all sons Of the current process to terminate.

4, Close all open files, daté segments, pipes, and event
channels left open by the USer Process.

5. Send the SYS_SON_TERM event to the father of the terminating
process if a local event channel exists.

6. Wait for all the sons to finish termination.

3.7 A Process Handling Example
The following programs illustrate the use of many of the process rmanagement
calls described in this chapter. The program FATHER Creates a son process, and
lets it run for awhile. It then glves you a chance 10 activate, suspend, kill, or get,
information about the son.

PROGRAM Father;
USES (*$U Source:SysCall.Obj*) SysCall;
VAR ErrorCode:INTEGER; (*error returns from system calls =)

proc_1d:LONGINT; (» process global identifier =)
progname :Pathname; (* program file to execute *)
null:NameString; (* program entry point *)
Info_Rec:ProcInfoRec; (= information about process =)
1:INTEGER;
Answer :CHAR;
BEGIN
SaggName "SON.0BJ'; (* this program is defined oelou *)

MAKE_PROCESS(ErrorCode, Proc_Id, ProgName, Null, 0);
IF (ErrorCocef>0) THEN.
WRITELN(‘Error °,ErrorCode, ' during process menagement.'):
FOR 1:=1 T0 15 DO ; (= 1dle for awhile =)
BEGIN i
WRITELN('Father exeputes for a moment.');
NDYIELD BPU(ErrorCode,FﬁLSE) (* let son run =)
E

WRITE('K(ill S(uspend A(ctlvate I(nfo');

3-7

perating System Rererence Mamal ror e LISs Frocesses

READLN(ANswer):
CASE Answer OF
*K', 'k’ : KILL_PROCESS(ErrorCode, Proc_Iq):;
'S','s': SUSPEND_PROCESS(ErrorCode, Proc_Id, TRUE
(* suspend family *));
"A',"a’: ACTIVATE_PROCESS(ErrorCode, Proc_Id, TRUE
(* activate family =)):
"I, "1": BEGIN
INFO_PROCESS(ErrorCode, Proc_Id, Info_Rec);
WRITELN('Son’'s name 1s ', Info_Rec.ProgPathName).
END;
END;
IF (ErrorCode<>0) THEN
WRITELN("Error ',ErrorCode, * during process
management. '),
END.)

The program SO is:

PROGRAN Son;
USES (*3U Source:SysCall.Obj») SysCall;
VAR Errorcode:INTEGER;
null:NameString;
BEGIN
WHILE TRUE DO.
BEGIN
WRITELN('Son executes for a moment.');
YIELD CPU(ErrorCode, FALSE); (*1let father process run+)
END;
END.

(erating System Rererence Manual Ffor the Lisa : Fracesses

3.8 Process System Calls
This section describes all the Operating System calls that pertain to
process control. A summary of all the Operating Systemcalls can be found
in Appendix A. The following speolal types are used in process control
calls:

Pathname = STRING[ZSS]
Namestring = STRING[201:
P_s_eventblock = “s_eventblock;
S_eventblock = T_event_text;
T event_text = array [0 .slze _etext] of longint;
ProcinfoRec = record
progpatnname pathname;

global_id : longint;
father_id : longint;
priority : 1..255;

state : (pactive, psuspended, pwaiting):
data_in : boolean
end; :

perating Spstem Rererence Mamidl ror the LIsa FIOCEsses

MAKE_PROCESS (Var ErrNum:Integer:
var Proc_1ia:LongInt;
Var ProgFile:Pathname;
Var EntryName:NameString: (*NameString = STRING[20]*)
Evnt_chn_refnum:Integer)

ErrNum: Error indicator

Proc_1id: Process identifier (globally unigue)
ProgFile: Process flle name

EntryName: Program entry point

Evnt_chn_refnum: Communication channel between calling
process and created process

A process is created when another process calls MAKE_PROCESS. The new
process executes the program identified by the pathname, progfile. if progfile is
a null character string, the program name of the calllng process is used. A
globally unique identifier for the created process is returned in proc_id.

Evnt_chn_refnum Is a local event channel supplied by the calling process (event
channels are discussed In Chapter S of this manual). The Cperating System uses
the event channel ldentified by evnt_chn_refnum to send the calling process
events regarding the created process (for example, SYS_SON_TERM). If
evnt_chn_refnum is zero, the calling procass is not Informed when such events
are producen.

Entryname, if non-null, specifles the program entry polnt where execution is to
pegin. Because alternate entry points have not yet been defined, this parameter
Is currently unused.

Any error encountered during process creation is reported in ErrNum.,

qoerating System Reference Manual for the Lisa Processes

TERMINATE_PROCESS(Var ErrNum:Idteger;
Event_ptr:P_s_eventblk)

ErrNum: Error indicator
Event_ptr: Information sent to process's creator

The life of a process can be ended by TERMINATE_PROCESS. This call causes a
SYS_TERMINATE exception to be signalled on the calling praocess and on all of
the processes it has created. The process can declare {ts own SYS_TERMINATE
exception handler to handle whatever cleanup it needs to do before it is actually
terminated by the system. wWhen the terminate exception handler is entered, the
exception information block cont,ains a longint that describes the cause of the
process termination:

Excep _Data[0] =0 Process called TERMINATE_PROCESS

' 1 Process executed the 'END.' statement
2 Process called KILL_PROCESS on itself
3

Some other process called KILL_PROCESS on
the terminating process

Father process 1s terminating

5 Process made an invalid system call (that
. 1Is, an unknown call)

6 Process made a system call with an
invalid: errnun parameter adoress

7 Process aborted gue to an error while
trying to swap in a code or data segment

8 Process' exceeded its maximum specified
stack size

9 Process aborted due to possible lock up
of the system by a data space exceeding
physical memory size

10 Process aported due to a parity error

There are an additional twenty-stx errors that can be signaled. The entire list s
shown on the first page of Appendlx A.

If the terminating process was created with a communication channel, a
SYS_SON_TERM event {s sent tg the terminating process's father., The
terminating process can. specify the text of the SYS_SOM_TERM with the
Event_plr parameter. Note that the first (0'th) longint of the event text is
reserved Dy the system. wWhen the event is sent 1o the fathey, the 0S places the

B

3-11

QoBrating Svstem Rererence Manual ror the LIsa Frocesses

termination cause of the son process in the first longint. This is the same
termination cause that was supplied to the terminating process itself in the
SYS_TERMINATE excepticn Information block. Any user-supplied data in th
first longint of the event text Is overwrlitten.

If a process specifies an event to be sent in the TERMINATE_PROCESS call, put
the process was Created without a local event channel, no event {s sent ta the
father. :

If a process terminates by a means other than callling TERMINATE_PROCESS, or
it specifies a nil Event_ptr in the TERMINATE_PROCESS call, and the process
was created with a local event channel, an event is sent to the father that
contains the termination cause in the first longint and zeros in the remaining
gvent text.

P_s_eventblkisa pointer'to ans_eventblk. S_eventblk is defined as:

CONST size etext = 9; (* event text size - 40 bytes *)
TYPE t_event_text = ARRAY [0..slize_etext] OF LongInt:
s_eventblk t_event_text;

If a process calls TERMINATE_PROCESS twice, the Cperating Systern forces it to
terminate even if it has disabled the terminate exception.

Qoerating System Referance Manual 1ror the Lisa Fracesses

INFO_PROCESS (Var ErrNum:Integer;
Proc_Id:LongInt;
var Proc_Info: ProcInfoRec)

ErrNum; Error inalcator

Proc_Id: Global identifler of process

Proc_Info: Information about the process identified by
Proc_id

A process can call INFO_PROCESS to get a varlety of information about any
process known to the Operating System Use the function MY_ID to get the
Proc_{d of the calling process.

ProcinfoRec is deflned as:

TYPE ProcInfoRec = RECORD
ProgPathname :Pathname;
Global_id :Longint;
Priority :1..255;

State : (PActive, PSuspended, PWaiting);
Data_in :Boolean
END;

Data_In indicates whether the data%space of the process Is currently In memory.
The following procedure gets mforn’jxation about a process and displays some of {t:

PROCEDURE Display_Info(Proc_Id:LONGINT);
VAR ErrorCode:INTEGER;
Info_Rec:ProcInfoRec;
BEGIN
INFO_PROCESS(ErrorCode, Proc_Id, Info_Rec);
IF (ErrorCode 100) THEN
WRITELN('Attempt tg display info about nonexistent

process. ‘)
ELSE
BEGIN
WITH Info_Rec DO
BEGIN | ‘
WRITELN(' program name: ',ProgPathName);
WRITELN(® global id: ',Global_1d).
WRITELN(' priority: ',priority);
WRITE(' state: ')

3-13

persting System Reference Manual ror the LIsa FIocesses

CASE State OF
PActive: WRITELN("active’);
PSuspended: WRITELN('suspended');
PUaiting: WRITELN('walting®)

END

END
END
END:

3-14

Qoerating System Reference Manual for the L1sa

KILL_PROCESS (Var ErrNum:Integer;
Proc_Id:LongInt)

ErrNum: Error indicator
Proc_Id: Process to be killed

KILL_PROCESS kills the process referred to by proc_{d and all of the processes
in {ts subtree. The actual termination of the process coes not occur until the
process is in one of the following states:

0 Executing in user mode.
0 Stopped due to a SUSPEND_PROCESS call.

o Stopped due to a DELAY_TIME call.

0 Stopped due to a WALT_EVENT_CHN or SEND_EVENT CHN call, or
READ_DATA or URITE_DATA to & pipe.

3-15

Querating System Rererence Manual for the LIsa Frocesses

SUSPEND_PROCESS (var ErrNum:Integer;
Proc_id:LongInt;
Susp_Famlly:Boolean)

ETTNLM: Error indicators
Proc_Id: Process to be suspended
Susp_Family: If true, suspend the entire process subtres

SUSPEND_PROCESS allows a process to suspend (block) any process in the
systern. The actual suspension does not occur until the process referyed to by
proc_id is in one of the following states:

0 Executing 1in user mode .
0 Stopped due to a DELAY_TIME call
0 Stopped due to a WAIT_EVENT CHN call

Neitner expiration of the cdelay time nor receipt of the awalited event causes a
suspended process to resume execution. SUSPEND_PROCESS is the only direct
way to block a process. Processes, however, can becorne dblocked during 1/0, and
Dy the timer (see DELAY_TIME), and for many OLher reasons.

If susp_family Is true, the Operating System suspends bath the process referred to
by proc_id and all of its descendents. If susp_family Is faise, only the process
identified by proc_id is suspended.

Qoerating System Rererence Manual ror the LIsa Fracesses

ACTIVATE_PROCESS(var ErrNum:Integer;
Proc_Id:LongInt;
Act_Family:Boolean)

ExrrNum: Error indicator

Proc_Id: Process Lo be activated
Act_Family: If true,, activate the entire process
suptree '

To awaken a suspended process, call ACTIVATE_PROCESS. A process can
activate any other process in the system. Note that ACTIVATE_PROCESS can
only awaken a suspended process. If the process is blocked for some other reason,
ACTIVATE_PROCESS cannot unblock it. If act_family {s true,
ACTIVATE_PROCESS als¢ activates all the descendents of the process referred
to by proc_ia.

3-17

Gperating System Rererence Manal ror the Lisa Frocesses

SETPRIORITY_PROCESS(Var ErrNum:Integer;
Proc_Id:LongInt;
New_Priority:Integer)

ErrNum; Error inglcator
Proc_id: Global 1d of process
New_Priority: Process's new priority number

SETPRIORITY_PROCESS changes the schedullng pricrity of the process

t0 by proc_ld to new_priority. The higher the pricrity vaiue (wmc
between 1 and 225), the more likely the process Is to be aliowed to &
(Cperating System processes execute with priorities between 226 and 255,)

eferr

[T

J.lr

Xe0 LTF'

A) m
D O

3-18

“
1

2

quersting System Rererence Manual ror the L1sa Froces

e
eX)

YIELD_CPU(Var ErrNum:Integer;
To_Any :Boolean)

ErrNum: Error indication
To_Any: Yield to any process, or only higher or equal
priority

If To_Any s false, YIELD_CPU causes the calling process to glve the CRU Lo any
other ready-to-execute process with an equal or higher oriority. If To_Any is
true, YIELD_CPU causes the calling process to yleld the CPU 1o any other ready
process. If no such process exists, the calling process simply continues execution.
Successive yields by processes of the same priority result in a “round-robin”
scheduling of the processes. Background processes should use YIELD_CPU often
t0 allow Other processes to execute when they need to.

Lperating System Rererence Manual ror the Lis3 Frocesses

MY_ID:Longint

MY _ID is a functicn that returns the unigue global identifier (a longint)
gc

calling process. A process can use MY _ID 1o perform procass handling
itself.

For example:
SetPriority_Process{Errnum, My_Id, 100)
sets the priority of the calling process to 100,

of the
alls on

(perating System Reference Manual for the Lisa

Chapter 4
MEMORY MANAGEMENT

PP EEPEE
N U NN

Data SeOgMENTS o vt vt et e
The Logical Data Segment | Numoer
Shared Data Segments . .. u. i i i nnnne.s
Private Data Segments .. v vn v in e e
COtE SEOMENES s vt ittt sttt e et aiaaaaas
BT o 1 T
Memory Management System: Calls
MAKE _DATASEG . vt i i i i i i i as
KILL_DATASE(; ettt e
OPEN_DATASEG e
CLOSE_DATASEG e e e
FLUSH DATASEG R
SIZE DATASEG & vv vt iei et ieianen e,
INFO_DATASEG
INFOLDSN v vvnievnnnnn e
INFO ADDRESS ... viiiiven e e e e
MEM INFO vt ittt ettt e et ettt
SETACCESS DATASEG .ot v it et vie v atnnn e
BIND DATASEG &ttt vv e i eeieenencnanennn.

Memory Management

Qperating System Rererence Manual for the [Isa Memory Management

4-2

Qerating System Reference Manual for the Lisa Memory Management

MEMORY MANAGEMENT

Every process has a set. of code and data segments which must be in physical
memory when those code segments and data segments are used. The translation
of the logical address used by the process to the physical address used by the
memory controller to access physical memory is handled by the memory
management unit (MMU),

4.1 [Data Segments
Each process has a data segment that the Qaerating Systemn automatically

allocates to it for use as a stack. The stack segment’s intemal structures are
managed directly by the hardware and the Operating System.

A process can acquire additional data segments for uses such as heaps and
inter-process communication. These additional data segments can be o/7vatg(or
local) data segments or s»ared data segments. Private data segments can be
accessed only by the creating process. when the process terminates, any private
data segments still in existence are destroyed. Shared data segments can be
accessed by any process that opens those segments. A shared data segment is
permanent until explicitly killed by a process.

The Operating System requires that data segments be in physical memory before
the data are referenced. The scheduler automatically loads all of the data
segments which the program says it needs. It is the responsibility of the
programmer to insure that the program declares all its needs by associating itself
with the needed data segments before they are needed. .

This process of association Is called
ing A program can bind a data segment
to {tself In several ways. When a program creates a data segment by using the
MAKE_DATASEG call, the segment Is automatically opened and bound to the
program. If a program needs to open a segment that was already created by
another program, the OPEN_DATASEG call is used. That call binds the segment
to the calling process, as well as opening the segment for the process. Since
there may be times when a process needs to use more data segments than can be
bound at one time, the UNBIND_DATASEG call is provided, which leaves the
data segment open, but unbinds it. The program can then use BIND_DATASEG to
bind another data segment to the program.

The Operating System views all data segments except the stack as linear arrays
of bytes. Therefore, allocation, access, and interpretation of structures withina
data segment are the responsibility of the program.

4.2 The Logical Data Segment Number
The address space of a process allows up to 16 data segments bound 10 @ process
at any instant, in addition to the stack. Each bound data segment s associated
with a specific region of the address space with a Logical Data Segment Number

OQperating System Rererence Manual ror the Lisa Memory Management

(LDSN). (See Figure 3-1.) While a data segment is bound to the process it is said
“to be amember of the working set of the process.

The process assoclates a data segmennt with a specific LDSN In the
MAKE_DATASEG or OPEN_DATASEG call.

The LDSN, which has a valid range of 1 to 16, is local to the calling process. The
process uses the LDSN to keep track of where a given data segment can be found.
More than one data segment can be associated with the same LDSN, but only one
such segment can be bound to an LDSN at any instant and thus be a member of the
working set of the process.

4.3 Shared Data Segments

Cooperating processes can share data segments. Shared segments cannot be
larger than 128 Kbytes In length. As with local data segments, the segment
creator assigns the segment a file system pathname. All processes that want to
share that data segment then use the same pathname. If the shared data segment
contains address pointers to data within the segment, the cooperating processes
must also use the same LDSN with the segment. This insures that all loglcal data
addresses referencing locations within the data segment are consistent for the
processes sharing the segment.

4.4 Private Data Segments

Data segments can also be private to aprocess. In this case, the maximum size of
the segment can be greater than 128 Kbytes. The actual maximum size depends
on the amount of physical memory in the machine and the number of adjacent
LDSN's available to map the segment. The process gives the desired segment
size and the base LDSN to use to map the segmant. The Memory Manager then
uses ascending adjacent LDSN's to map successive 128 Kbyte chunks of the

segment. The process must insure that enough consecutive LLDSN's are avallable
to map the entire segment.

Suppose a process has a data segment already bound to LOSN 2. If the program
tries to bind a 256 Kbyte data segment, to LDSN 1, the Operating System retums
an error because the 256 Kbyte segment needs two consecutive free LDSN's.
Instead, the program shouid bind the segment to LDOSN 3 and the system
automatically also uses LDSN 4.

45 Code Segments
Division of a program into multiple code segments (swapping units) is dictated by
the programmer through commands to the compiler and linker. The MMU
registers canmap up to 106 code segments.

Querating System Reference Manual for z‘ﬂegl.js'a Memory Management

4.6 Swapping
when a process executes, the following segments must be in physical memory:

0 The current code segment

0 All the data segments in the process working set (the stack and all
bound data segments)

The Operating System insures that this minimum set of segments s in physical
memory before the process is allowed to execute. If the program calls a
procedure in a segment not in memory, a segment swap-in request is initiated. In
the simplest case, this request only requires the system to allocate a block of
physical memory and to read in the segment from the disk. In a worse case, the
request may require that other segments be swapped out first to free up
sufficient memory. A clock algorithmn is used to determine which segments to
swap out or replace. This process is invisible to the program.

4.7 Memory Management Calls
This section describes all the Operating System calls that pertain to memory
management. A summary of all the Operating System calls can be found in
Appendix A. The following special typesiare used in memory management calls:

Pathname = STRING[255];

Tdstype = (ds_shared, ds_private);

DsinfoRec = Record
mem_size:longint;
disc_size:longint;
numb_open: integer;
LDSN:integer;
boundF :boolean;
presentf :boglean;
creatorf :boolean;
rvaccess:boolean;
segptr:longint;
volname:e_name;

end; .
E_name = string [32];

Qoerating System Rererence Marnual rfor the L/sa Mermory Management

MAKE_DATASEG (Var ErrNum:Integer;
var Segname:Pathname;
ttem_Size, Disk_Size:LongInt;
Var RefNum:Integer;
var SegPtr:LongInt;
Ldsn:Integer
Dstype:Tdstype)

ErrNum: Error indicator
Segname: Pathname of data segment
Mem_Size: Bytes of memory to be allocated to data

segment

Disk_Size: Bytes on disk to be allocated for swapping
segment

RefNum: Identifier for data segment

SegPtr Address of data segment

Lasn: Logical data segment number

Dstype: Type of dataseg (shared or private)

MAKE_DATASEG creates the data segment identified by the pathname,

segname, and opens it for immediate read-write access. Segname {s a file system
pathname. -

The parameter Mem_size determines how many bytes of main memory the
segment is allocated. The actual allocation takes place in terms of 512 byte
pages. If the data segment is private (Dstype is ds_private), Mem_size can be
greater than 128 Kbytes, but you must insure that enough consecutive LDSN's are
free to map the entire segment.

Disk_slze determines the number of bytes of swapping space to be allocated to
the segment on disk. If Disk_size is less than Mem_size, the segment cannot be
swapped out of main memory. In this case the segment is memory resident until
it is killed or untll its size in memory becomes less than or equal toits disk_size
(see SIZE_DATASEG). The application programmer should be aware of the
serious performance implications of forcing a segment to be memory resident.
Because the segment cannot be swapped out, a new process may not be able to
get all of its working set into memory. To avoid thrashing, each application
should insure that all of its data segments are swappable before it relinquishes
the attention of the processor.

The calling process associates a Logical Data Segment Number (LDSN) with the
data segment. If this LDSN is bound to another data segment at the time of the
call, the call returns an error.

Refnum Is returned by the system to be used in any further references to the data
segment. The Operating System also returns segptr, an address pointer to be used

4-6

Qoerating System Reference Merwal for the Lisa Memory Management

to reference the contents of the segment. Segptr points to the base of the data
segment.

Any error conditions are returned in ErrtNum.

when a data segment Is made, it lmmediately becomes a member of the working
set of the calling process. You can use UNBIND_DATASEG to free the LDSN.

Qoerating System Reference Manual for the LIsa Memory Management

KILL_DATASEG (var ErrNum:Integer;
Var Segname:Pathname)

ErrNum: Error indicator
Segname: Name of data segment to be deleted

when a process Is finished with a shared data segment, it can issue a
KILL_DATASEG call for that segment. (KILL_DATASEG cannot be used on a
private data segment.) If any process, including the calling process, still has the
data segment open, the actual deallocation of the segment is delayed until all
processes have closed it (see CLOSE_DATASEG). During the interim period,
however, after a KILL_DATASEG call has been issued but before the segment is
actually deallocated, no other process can open that segment.

KILL_DATASEG does not affect the membership of the data segment in the
working set of the process. The refnum and segptr values are valid until a
CLOSE_DATASEG call is Issued.

One important note: Normally, when a data segment s closed, the contents are
written to disk as a file with the pathname associated with the data segment. If,
however, the program calls KILL_DATASEG on the data segment before closing
the data segment, the contents of the data segment are not, written to disk, and
will be lost when the segment is closed.

Qperating System Rererence Manual rfor the' L isa Memory Management

OPEN_DATASEG (Var Errum:Integer;
Var Segname:Pathname;
var RefNum:Integer;
var SegPtr:LongInt;

Ldsn:Integer)

ErrNum: Error indicator

Segname: Name of data segment to be opened
RefhNum: Identifier for data segment

SegPtr Pointer to contents of data segment
Ldsn: Logical data segment number

A process can open an existing shared data segment with OPEN_DATASEG. The
calling process must supply the name of the data segment (segname) and the
logical data segment number to be associated with it. The logical data segment
number given must not have a data segment currently bound to it. The segment's
name is determined by the process which creates the data segment; it cannot be
null. ‘-

The Operating System returns both refnfum, an identifier for the calling process
to use In future references to the data segment, and segptr, an address pointer
used to reference the contents of the segment.

when a data segment is opened, it immegiately becomes a member of the
working set of the calling process. The access mode of the newly opened segment,
is Readonly. You can use SETACCESS_DATASEG to change the access rights to
Readwrite. You canuse IUNBIND_DATASEG to free the LDSN.

You cannot use OPEN on a private daia segment, since calling CLOSE on a
private data segment deletes {t.

Qoerating System Reference Manual for the LIsa Memory Management

CLOSE_DATASEG (Var Errtum:Integer;
Refnum:Integer)

ErrNum: Error indicator
Refnum: Data segment identifier

CLOSE_DATASEG terminates any use of refnum for data segment operations. If
the data segment is bound to aLogical Data Segment Number, CLOSE_DATASEG
frees that LDSN. The data segment Is removed from the working set of the
calling process. Refnum is made invalid. Any references to the data segment
using the original segptr will have unpregictable results.

If Refnum refers to a private data segment, CLOSE_DATASEG also kills the data
segment, deallocating the memory and disk space used for the data segment. If
refnum refers to a shared data segment, the contents of the data segment are
written to disk as If FLUSH_DATASEG had been called. (If KILL_DATASEG is
called before CLOSE_DATASEG, the contents of the data segment are thrown
away when the last process closes the data segment.)

The following procedure sets up a heap for LisaGraf using the memory
management calls:

PROCEDURE InitDataSegForLisaGraf (var ErrorCode:integer);
CONST HeapSize=16384; (= 16 KBytes for graphics heap =)

DiskS1ze=16384;

VAR HeapBuf :LONGINT; (* pointer to heap for LisaGraf =)
GrafHeap :PathName; (»* data segment path name =)
Heap_Refnum:INTEGER; (* refrum for heap data seg *)

BEGIN

GrafHeap:="qgrafheap";
OPEN_DATASEG(ErrorCode, Grafteap, Heap_Refnum, HeapBuf, 1);
IF (ErrorCoge<>0) THEN

BEGIN
WRITELN("Unable to open', Grafheap, ‘Error is °,
ErrorCode)
END
ELSE

InitHeap(POINTER(HeapBuf), POINTER(HeapBuf +HeapSize),
N @HeapError);

4-10

Qperating System Reference Manual for the L isa Memory Management

FLUSH_DATASEG (Var Errhum; |
* Refnum:Integer)

ErrNum: Error indicator .
Refnum: Data segment 1dentifier

FLUSH_DATASEG writes the contents of the data segment identified by refnum
to the disk. (Note that CLOSE_DATASEG automatically flushes the data
segment before closing it, unless KILL_DATASEG was called first.) Thiscall has
no effect upon the memory residence or binding of the data segment.

4-11

Qperating System Reference Manual for the Lisa Mermory Management

SIZE_DATASEG (Var ErrNum:Integer;
Refnum:Integer;
DeltaltemSize:LongInt;

vVar NewtemSize:LongInt.
DeltaDiskSize:LongInt;
var NewDiskSize:LongInt)

ErrNum: Error indicator

Refnum: Data segment identifier

DeltaMemSize: Amount in bytes of change in memory
allocation

NewMemSize: New actual size of segment in memory

DeltaDiskSize: Amount in bytes of change in disk
allocation

NewDiskSize: New actual disk (swapping) allocation

SIZE_DATASEG changes the memory and/or disk space allocations of the data
segment referred to by refNum. Both deltaMemSize and deltaDiskSize can be
elther positive, negative, or zero. The changes Lo the data segment take place at
the high end of the segment and do not destroy the contents of the segment,
unless data are lost in shrinking the segment. Because the actual allocation is
dgone In terms of pages (512 byte blocks), the newMemSize and newDiskSize
retumed by SIZE_DATASEG may be larger than the oldsize plus deltaSize of the
respective areas.

If the newDiskSize is less than the newMemsSize, the segment cannot be swapped
out of memory. The application programmer should be aware of the serious
performance implications of forcing a segment to be memory resident. Because
the segment cannot be swapped out, a new process may not be able to get all of
its working set Into memory. To avold thrashing, each application should insure

that all of its data segments are swappable before it retinquishes the attention of
the processor.

If the necessary adjacent LDSN's are avallable, SIZE_DATASEG can increase the
size of a private data segment beyond 128 Kbytes.

4-12

Qperating System Rererence Manal ror mé Llsg Memory Management

INFO_DATASEG (var Exrium:Integer;
Refnum:Integer;
var DsInfo:DsInfoRec)

ErrNum: Error indicator
Refnum: Identifier of data segment
DsInfo: Attributes of data segment

INFO_DATASEG returns information about a data segment to the calling
process. The structure of the dsinforec record is:

RECORD !
Mem_Size:LongInt i* Bytes of memory allocated to data segment *;;
Disc_Size:LongInt (»*Bytes of disk space allocated to segment *®),
NumbOpen:Integer (* Current number of processes with segment open *g;
Ldsn:Integer = | DSN for segment binding *);
Boundf :Boolean = True 1f segment 1s bound to LDSN of calling proc *);
PresentF:Boolean (* True if segment is present in memory ®);
Creatorf :Boolean ?* True if the calling process is the creator *;
of the segment ®);
RuAccess:Boolean (* True 1f the calling process has Write access »)
(*to segment ”)

END;

4-13

Qperating System Reference Marnal for the LIsa Memory Management

INFO_LDSN (Var ErrNum:Integer;
Ldsn:Integer;
var RefNum:Integer)

ErrNum: Error indicator
Ldsn: Logical data segment number
RefNum: Data segment ldentifier

INFO_LDSN returns the refnum of the data segment currently bound to Ldsn. You
can then use INFO_DATASEG to get information about that gata segment. If the
LLDSN specified is not currently bound to a data segment, the refnum returned is
-1.

4-14

Qoerating System Reference Manual for the Lisa Memory Management

INFO_ADDRESS (Var ErrNum:Integer;
Address:Longint;
Var RefNum:Integer)

ErrNum: Error indicator

Address: The address about which the program needs
information :

RefNum: Data segment identifier

This call returns the refnum of the currently bound data segment that contains
the aadress given.

If no data segment 1s currently bound to the calling process that contains
the address given, anerror indication is returned in ErrNum.

4-15

Qperating System Reference Manual for the Lisa Memory Management

MEM_INFO (Var ErrNum:Integer;
var Swapspace;
Dataspace;
Cur_codesize;
Max_codesize:Longint)

ErrNum: Error indicator

Suapspace: Amount, in bytes, of swappable system memory
available to the calling process

Dataspace: Amount, in bytes, of System memory that the
calling process needs for 1ts bound data
areas, including the process stack and the
shared intrinsic data segment

Cur_codesize: Size, inbytes, of the calling segment

Max_codesize: Size, inbytes, of the largest code segment
within the address space of the calling
process

This call retrieves information about the memory resources used by the calling
process.

4-16

Qperating System Reference Marual for the Lisa Memory Management

SETACCESS_DATASEG (Var ErrNum:Integer;
Refnum: Integer;
Readonly:Boolean)

ErrNum: Error indicator
Refnum: Data segment ldentifier
Readonly: Access mode

A process can control the kinds of access it is allowed to exercise on a data
segment with the SETACCESS_DATASEG call. Refnum is the identifier for the
data segment. If readonly is true, an attempt by the process to write to the data

segment results in an address error exception condition. To get readwrite access,
set readonly to false.

4-17

Qperating System Rerference Manual for the Lisa Memory Management

BIND_DATASEG(Var Errhum:Integer:
RefNum:Integer)

UNBIND_DATASEG(Var ErrNum:Integer;
RefNum:Integer)

ErrNum: Error indicator
RefNum: Data segment identifier

BIND_DATASEG binds the data segment referred to by refnum to its associated
logical data segment number(s). UNBIND_DATASEG unbinds the data segment
from its LDSN(s). BIND_DATASEG causes the data segment to become a member
of the current working set. At the time of the BIND_DATASEG call, the
necessary LDSN() must not be bound to a different data segment.
UNBIND_DATASEG frees the associated LDSMNsS). A reference to the contents
of an unbound segment gives unpredictable results. OPEN_DATASEG and
MAKE_DATASEG define which LDSN(s) is associated with a given data segment.

4-18

erating System Rererence Mandal ron the LIs3 Excaptions and Events

Chapter b
EXCEPTIONS AND EVENTS
S.1 EXCEptions ... i e e e e 5-3
5.2 System Defined Exceptlons 5-4
5.3 Exception Handlers e e e 5-4
5.4 EvENLS ... e st e e 5-7
5.5 Event Channels......... et ae s e e e 5-7
5.6 The System CloCK .. vi it e st s i 5-17
5.7 Exception Management Sybtem Calls ..., 5-12
DECLARE_EXCEP HDL ... vt ittt ii i ennnes e e 5-13
DISABLE_EXCLP 5-14
ENARBLE _EXCEP e s e a e s e e 5-15
INFO_EXCEP e e e e 5-1i%
SIGNAL _EXCEP e s s et 5-17
FLUSH EXCEP e ettt e e 5-18
5.8 Event Management System Calls 5-18
A S L O 5-20
VILL_EUENT_CHN 5-21
OPEN_EVENT CHN v . e e s e e e 5-22
CLOSE _EVENT CHN & v it ieis e ci e enrnennennnns 5-23
INFO EVENT CHN it it i st s et s e s e an s anas 5-2Z4
WAIT EVENT CHN e e e e 5-25
I N 0 5-27
SEND_EVENT CHN vt W e aeasecaa e 5-28
5.9 Clock System Calls s e 5-28
DELAY_TIME ...t iiiin e, e aa et aea e 5-30
B 1 5-31
SET LOCHL CTIME DIFF it i it ansenen s 5-32
CONVERT TIME e r e e e e 5-33

5-1

Qerating System Referernce Mamial for the Lisa Exceptions and Events

Qperating System Rererence Manual for Me Llsa Exveptions ana Events

EXCEPTIONS AND EVENTS

Processes have several ways to keep informed about the state of the system.
Normal process-to-process communication and synchronization employs pipes,
shared data segments, or events. Abnormal conditions, including those your
program may define, emplay exceptions (interrupts). Exceptions are signals.
which the process can respond to in a variety of ways under your control.

5.1 Exceptions
Normal execution of a process can be {nterrupted by an exceptional condltion
(such as division by zero or reference to an invalld address). Some error
conditions are trapped by the hardware and some by the system software. The
process itself can define and signal exceptions of your choice.

when an exception occurs, the system first checks the state of the exception.
The three exception states are:

0 Enabled
0 Queued
o Ignored

If the exception is enabled, and defined by the system, the system looks for a user
defined handler for that exception. If none is found, the system invokes the
default exception handler which usuauy aborts the process that generated the
exception,

If the exception is enabiedand it was created by the program, the system invokes
the associated exception handler. (You create new exceptions by declaring and
enabling handlers for the exception.)

If the state of the exception is quereq the exception is placed on a queue. when
that exception is subseguently enabled, this queue is examined, and the
appropriate exception handler is invoked. Processes can flush the exception
queue.

If the state of the exception is fgnama the system still detects the occurrence of
the exception, but the exception is neither honored nor queued. Note that
ignoring a system defined exception will have uncertain effects. Although you
can cause the system to ignore even the SYS_TERMINATE exception, that
capability is provided so that your program can clean up before terminating. You
cannot set your program to ignore fatal errors.

Qperating System Reference Manual ror the Lisa Exceptions ana Events

Invocation of the exception handler causes the scheduler 10 run, so it is possible
for another process to run between the signalling of the exception and the
execution of the exception handler.

5.2 System Defined Exceptions
Certaln exceptions are predefined by the Operating System. These include:

o Divisionby zero (SYS_ZERO_DIV). Default handler aborts process.

0 Value out of bounds (that is, range check error) or illegal string
index (SYS_VALUE_00B). Default handler aborts process.

0 Arithmetic overflow (SYS_OVERFLOW). Default handler aborts
process.

0 Process termination (SYS_TERMINATE). This exception is signalled
when a process terminates, or when there 1s a bus error, address
error, illegal instruction, privilege violation, or 1111 emulator
error. The default handler does nothing. This exception 1is
different from the other system defined exceptions in that the
program always terminates as soon as the exception occurs. In the
case of other (non-fatal) errors, the program is allowed to
-continue until the exception is enabled.

Except where otherwise noted, these exceptions are fatal if they occur within
Operating System code. The hardware exceptions for parity error, spurious
interrupt, and power failure are also fatal.

5.3 Exception Handlers

A user-defined exception handler can be declared for a specific exception. This
exception handler is coded as a procedure, but must follow certain conventions.
Each handler must have two input parareters: Environment_Ptr and
Exception_Ptr. The Operating System ensures that these pointers are valld when
the handler is entered. Environment_Ptr points to an area in the stack containing
the interrupted environment: register contents, condition flags, and program
state. The handler can access this environment and can modify everything
except the program counter, register A7, anc the supervisor state bit in the
status register. The Exception_Ptr points to an area in the stack containing
information about the specific exception,

Each exception handler must be defined at the global level of the process, must
retum, and cannot have any EXIT or global GOTO statements. Because the
Operating System disables the exception before calling the exception handler,
the handler should re-enable the exception before it retums.

If an exception handler for a glven exception already exists when another
nandler is declared for that exception, the old handler becomes disassociated
from the exception.

S-4

Qrerating System Reference Marual for the Lisg Exceptlons ana Events

An exception can occur during the exequuon of an exception handler. The state
of the exception determines whether it is honored placed on a queue, or ignored.
If the second exception has the same name as the exception that is currently
belng handled and its state is enabled, a nested call to the exception handler
occurs. (The system always disables the exception before calling the exception
handler, however. Therefore, nested handler calling will only occur if you
explicitly enable the exception.) '

There Is an “exception occurred” flag for every declared exception; it is set
whenever the corresponding exception occurs. This flag can be examined and
reset. Once the flag is set, it remains set until FLUSH_EXECRP is called.

The following program fragment gives an example of exception handling.

PROCEDURE Handler(Env_Ptr:p_t env' . blk;
Data_Ptr:p_ex data)
VAR ErrNum:INTEGER;
BEGIN
%* Env_Ptrpointstoa record containing the programcounter =)
»and all registers. Data_Ptr points to anarray of 12 longints *)
2* that contain the event header and text if this handler is ®)
» gssoclated with an event-call channel (see below) »)

ENABLE_EXCEP(errnum, excep_name);

l::N);
BEGIN (*Malnprogram»)

Excep_name:="End0fDoc";
DECLARE_EXCEP Iﬂ_(lemuw, excep _| nam eHmdler),

éIGNPL_EX(EP(enwn, excep_name, excep_data);

Qrerating System Rerference Manual ror the Lisa

Exveptions anda Events

At the time the exception handler is invoked, the stack is as shown in Figure 5-1.

low address

high address

Link

Program Counter

Data_Ptr

Environment_Ptr

Terminate Flag

Exception Kind
Function Code (fc)
Access Address (aa)

. Instruction Register

Status Register
Program Counter

Program Counter
Status Register
D0-07 and A0-A7

Link

Program Counter

Figure 5-1

Exception Data Block
(Sys_Terminate Exception)

Exception Environment Block

Stack at Exception Handler Invocation

The Exception Data Block given here reflects the state of the stack upon a
SYS_TERMINATE exceptlon. The term_ex_data record (described in Appendlx
A) gives the various forms the data block can take. The Excep_kind field (the
first, or Oth, longint) gives the cause of the exception. The status register and
program counter values in the data block reflect the true (current) state of these

Qoerating Systermn Reference Manal for e Lisa Exceplions and Events

values. The same data in the Environment block reflects the state of these
values at the time the exception was signalled not the values at the time the
exception actually occurs.

For SYS_ZEROC_DIV, SYS_VALUE CDB and SYS_OVERFLOW exceptions, the
hard_ex_data record described in Appendix A glves the various forms that the
data block can take.

In the case of a bus Or address error, the PC (program counter)can be 2 to 10 bytes
beyond the current instruction. The PC and A7 cannot be modified by the
exception handler.

when a disabled exception is re-enabled, a queued exception may be signalled.
In this case, the exception environment reflects the state of the system at the

time the exception was re-enabled, not the time at which the exception
occurred.

S.4 Events

An event is a piece of information sent by one process to another, generally to
help cooperating processes synchronize their activities. An event s sent through
a kind of pipe called an event channel. The event is a fixed size data block
consisting of a header and some text. The header contains control information;
the identifier of the sending process and the type of the event. The header is
written by the system, not the sender, and is readable by the receiving process.
The event text is written by the sender; its meaning is defined by the sending and
receiving processes.

There are several predefined system event types. The predefined type "user” is
assigned to all events not sent by the Operating System.

55 Event Channels _
Event channels can be viewed as higher-level pipes. One important difference is
that event channels require fixed size data blocks, whereas pipes can handle an
arpitrary byte stream.

An event channel can be defined globally or locally. A global event channel hasa
globally defined pathnarne catalogued in the file systemn, and can be used by any
process. A local event channel, however, has no name and is known only by the
Operating System and the process that opened it. Local event channels can only
be opened by user processes as receivers. A local channel can be opened by the
father process to receive system generated events pertaining to its son.

There are two types of global and local event channels: event-wait and
event-call. If the receiving process is not ready to recelve the event, an
event-wait type of event channel queues an event sent to it. Anevent-call type
of event channel, however, forces its event on the process, In effect treating the
event as an exception. In that case, an exception name must be given when the
event-call event channel Is opened, and an exception handler for that exception
must be declared. If the process reading the event-call channel is suspended at

57

perating System Rererence Mersal ror the LIsa Exveptions anad Events

the time the event is sent, the event is delivered when the process becomes
active.

when an event channel {s created, the Operating System preallocates enough
space to the channel for typical Interprocess communication. If
SEND_EVENT_CHN {s called when the channel does not have enough space for
the event, the calling process is blocked until erough space is freed up.

If WAIT_EVENT_CHN is called when the channel is empty, the calling process is
blocked until an'event arrives.

The following code fragments use event-wait channels to handle process
synchronization. Operating System calls used in these program fragments are
docurnented later in this chapter.

PROCESS A:

cm name := event channel_1°;

exception:= *;

recelver := TRlE-

OPEN_EVENT_CHN (errint, chn_name, refnumi, exception, receiver);
chn_name := 'event_channel_2';

receiver := FALSE;

OPEN_EVENT_CHN (errint, chn_name, refnumz, exception, receiver);
waitlist.length := 1;

vaitlist.refrum{0] := refrumi;

REPEAT

eventl ptr*.[0] := agreed_upon_value;

interval.sec := 0; (* send event immediately =)

interval.msec := 0;

SEND_EVENT_CHN (errint, refnur, eventl_ptr,
interval, clktime);

WALT_EVENT_CHN (errint, vaitlist, refnum_signalling,
eventz_ptr);

(prooessing performed here %)

UNTIL AllDone;'

Qoerating System Reference Manual rfor the Lisa Exveptions ana Evernts
- PROCESS B:

crnna'\e-— eventchamelz

exception:=
receiver := TRU- ;

chn_name :

receiver := FALSE;

OPEN_EVENT_CHN (errint, chn_name, refnumil, exception, receiver);
vaitlist.length := 1;

vaitlist. refrun{[o] := refnuml;

REPEAT

event2_ptr~.[0] := agreed_upon_value;

interval.sec := 0; (» send event m'lediately ®)
interval.msec := 0;
WAIT_EVENT_CHN (errint, waitlist, refrum_signalling,

eventl ptr);
(» processfng performed here *)

SEND_EVENT_'C&N (errint, refnume, event2_ptr,
interval, clktime).
UNTIL AllDone;

The order of execution of the two processes is the same regardless of the process
priorities. Process switch always occurs at the WAIT_EVENT_CHN call.

In the following example using event-call channels, process switch may occur at

different places in the programs. Process A calls YIELD_CPU, which gives the
CPU to Process B only if Process B is ready to run.

Qerating Systerm Rerference Manual rfor the Lisa Exceptions ana Events

PROCESS A

PROCEDURE Handler(Env_ptr:p_env_blk;
Data_ptr:p_ex_data).

BEGIN ‘
event2_ptr~.[0] := agreed_upon_value;

(> processing performed here =)

interval.sec : 0; (= send event immediately =)
interval.msec := 0;
SEND_EVENT_CHN (errint, refnum2, event2_ptr, interval,
clktime);
to_any := true;
YIELD CPU (errint to_any).
END;

BEGIN (» Main program+)

DECLARE EXCEP_HOL (errint, excep_nare_1, entry point);
chn_name := ‘event_channel_1°;

exception:= excep_name 1;

receiver := TRUE;

OPEN_EVENT_CHN (errint, chn_name, refnuml, exception, receiver);

] II

chn_| name := ‘event _channel_2";
recelver := FALSE;
exception:= **;

OPEN_EVENT_(CHN (errint, chn_name, refnum2, exception, receiver);
SEND_EVENT_CHN (errint, refnume, event2_ptr, interval, clktime);
to_any := true; :

YIELD_CPU (errint, to_any);

5-10

Qrerating .System Rerference Manual for the LIsa EXCEQLIons ana Events

PROCESS 8

PROCEDURE HamI]er(Env _ptr: p env blk;
Data_ptr:p_ex _data);

BEGIN
event2_ptr®.[0] := agreed upon_value;

(= processfmg performed here »)

interval.sec := 0; (= se‘m event immediately =)

interval.msec := 0;

SEND_EVENT_CHN (errint, refrml eventz _ptr, interval,
clktime);

to my = tI‘LB;
YIELD_CPU (errint, to_any);
END;

BEGIN (* Main program *)

DECLARE_EXCEP_HDL (errint, excep_name_1, entry _point)
chn_name := 'event_channel_1°;

exception:= excep_name_1;
recelver := FALSE;
exception:= °°;

OPEN_EVENT _| CHN (errint,chn name refnunl, exception, receiver),
chn_name := ‘event_channel 2

receiver := TRUE;

OPEN_EVENT_CHN (errint,chn nane refnurz, exception, receiver);

S-11

Qperating System Reference Marual for the Lisa Exceptions ana Events

5.6 The System Clock
A process can read the system clock time, convert to local time, or delay its own
continuation until a given time. The year, month, day, hour, minute, second, and
millisecond are avallable from the clock. The system clock s set up through the
workshop shell (see the Workshop Lser’s Guice for the L1s3.

5.7 Exception Management System Calls
This section describes all the Operating Systern calls that pertain to exception
management. A summary of all the Operating System calls can be found in
Appendix A. The following special types are used in exception management
calls:

T_ex_name = STRING[IS];
Longadr = “longint;
T_ex _data = nrray [0..11] of longint;
T ex_sts = Record
ex_occurred_f:boolean;
~ex_state:t_ex_state;
num_excep: integer;
hdl_adr:longadr;
end;
T_ex_state = (enabled, queued, lgnored);

5-12

Qoerating System Rererence Menual for the Lisa Exveptions ana Events

DECLARE_EXCEP_HDL (Var ErrNum:Integer;
var Excep_name:t_ex_name;
Entry _point:Longﬂdr)

Errhum: Error indicator
Excep_name: Name of .exception
Entry _point: Address of exception handler

DECLARE_EXCEP_HDL sets the Operating System so that the occurrence of the
exception Yeferred to by excep_name causes the execution of the exception
-handler at entry_point.

Excep_name is a character string name witn up to 16 characters that is locally
defined in the process and known only to the process and the Operating System. If
entry-point is @NIL, and excep_name specifies a system_exception, the system
default exception handler for that exception is used, if it is a system-defined
exception. Any previously declared exception handler is disassociated by this
call. The exception itself is automatically enabled.

If some excep_name exceptions are queued up at the time of the
DECLARE_EXCEP_HDL call, the exception is automatically enabled and the
queued exceptions are handled by the newly declared handler.

You can call DECLARE_EXCEP_HDL withan exception handler address of ®NIL
to disassociate your handler from the exception. If there is no system handler
defined, and the program signals the exception, it will receive an error 201.

5-13

Qperating System Rererence Maral for the LIsg Exceptions anad Events

DISABLE EXCEP (Var ErrNum:Integer;
var Excep_name:t_ex_name;

Queue: Boolean)
ErrNum: Error indicator
Excep_name: Name of exception to be disabled
Queue: Exception queuing flag

A process can explicitly disable the trapping of an exception by calling
DISABLE_EXCEP. Excep_name is the name of the exception to be disabled. If
queue is true and an exception occurs, the exception is queued and is handled
when it is enabled again. If queue is false, the exception is ignored. when an
exception handler is entered, the state of the exception in question is
automatically set to queued.

If an exception handler is associated through OPEN_EVENT_CHN with an event
channel, and DISABLE_EXCEP is called for that exception, then:

o If queue is false, and if an event is sent to the event
channel by SEND_EVENT_CHN, the SEND_EVENT_CHN call succeeds,
but it is equivalent to not calling SEND_EVENT CHN at all.

0 If queue is true, and if an event is sent to the event
channel by SEND_EVENT_CHN, the SEND_EVENT_CHN call succeeds
and a call to WAIT_EVENT_CHN will receive the event, thus
dequeing the exception.

5-14

Qoerating Systerm Reference Manual for the Lisa Exveptions ana Events

ENABLE_EXCEP (Var ErrNum:Integer;
Var Excep-name:t_ex_hame)

ErrNum: Error indicator
Excep_name: Name of exception to be enabled

ENABLE_EXCEP causes an exception to be handled again. Since the Operating
System automatically disables an exception when its exception handler is
entered (see DISABLE_EXCEP), the exception handler should explicitly
re-enable the exception before it returns to the process.

5-15

Qoerating System Rerference Manual for the Lisa Exceptions and Events

INFO_EXCEP (Var ErrNum:Integer;
Var Excep_name:t_ex_nhame;
var Excep_status:t_ex_sts)

ErrNum: Error indicator
Excep_name: Name of exception
Excep_Status: Status of exception

INFO_EXCEP returns information about the exception specified by excep_name,
The parameter excep_status is a record containing information about the
exception. This record contains:

t_ex_sts = RECORD (* exception status =)
Ex_occurred_f:Boolean; (*exception occurred flag *)
Ex_state:t_ex_state; (* exception status »)

Num_excep:Integer; (*no. of exceptions queued »)
Hdl_adr:longadr; (=exception handler's address *)
END;

Once Ex_occurred_f has been set to true, only a call to FLUSH_EXCEP can set it
to false.

5-16

Qperating System Rerference Manual ror the Lisa Exveptions ana Everns

SIGNAL_EXCEP (Var Errhum:Integer;
Var Excep_name:t_ex_name;
Var Excep_data: t_ex_data)

ErrNum: Error indicator
Excep_name: Name of exception to be signalled
Excep_Data: Information for exception handler

A process can signal the occurrence of an exception by calling SIGNAL_EXCEP.
The exception handler associated with excep_name Is entered. It Is passed
excep_data, a data area containing information about the nature and cause of
the exception. The structure of this information areais:

array[0..size_exdata] of Longint

SIGNAL_EXCEP can be used for user-defined exceptions, and for testing
exception handlers defined to handle system-defined exceptions.

5-17

Qoerating System Reference Marwal for the Lisa Exceptions ang Events

FLUSH_EXCEP (Var Errtum:Integer;
var Excep name:t_ex_name)

ErrNum: Error indicator
Excep_name: Name of exception whose queue is flushed

FLUSH_EXCEP clears out the queue associated with the exception excep_name
and resets its "exception occurred” flag.

5.8 Event Management System Calls
This section describes all the Operating System calls that pertain to event
management. A summary of all the Operating System calls can be found in
Appendix A. The followlng special types are used in event management calls:

Pathname = STRING[255];

T_ex_name = STRING{16]

T_chn_sts = Record
chn_type:chn_kind;
num_events:integer;
open_recv:integer;
open_send: integer;
ec_name:pathname;

end;

chn_kind = (wait_ec, call_ec);

T_waitlist = Record
length:integer;
refnum:array [0..10] of integer;

end;

P_r_eventblk = “r_eventblk;

R_eventblk = Record
event_header:t_eheader;
event_text:t_event_text;

end;

T_eheader = Record
send_pid:longint;
event_type:longint;

end;
T_event_text = array [0..9] of longint;
P_s_eventblk = “s_eventblk;

msec:(), .999;
end;

5-18

Qperating System Reference Manual for the Lisa Exveptions and Events

Time_re¢c = Record
year:integer;
day:1..366;
hour:-23..23;
minute:-59..59;
second:0..59;

msec:0..999;

end; ‘

5-19

Qperating System Reference Manual for the Lisa Exceptions anad Events

MAKE_EVENT_CHN (Var ErrNum:Integer;
var Event_chn_name:Pathname)

ExrrNum: - Error indicator
Event_chn_name: Pathname of event channel

MAKE_EVENT_CHN creates an event channel with the name given in
event_chn_name. The name must be a file system pathname; it cannot be null.

5-20

Qoerating System Reference Mamal ror the Lisa Excepilons ana Events

KILL_EVENT_CHN (Var ErrtNum:Integer;
var Event_chn nane Pathname)

ErrNum: - Error indicator
Event_chn_name: Pathname of event channel

To delete an event channel, call KILL EVENT_CHN. The actual deletion is
delayed until all processes using the event channel have closed it. In the period
between the KILL_EVENT_CHN call and the channel's actual deletion, no
processes can open 1t. A channel can be deleted by any process that knows the
channel’s name.

5-21

Qoerating System Reference Manual for the Lisa Exceptions ana Events

OPEN_EVENT_CHN (var Errhum:Integer;
var Event_chn_name:Pathname;
var Refnum:Integer;
Excep_name:t_ex_name;

Recelver:Boolean)
ExrrNum: Error indicator
Event_chn_name: Pathname of event channel
RefNum: Identifier of event channel
Excep_name: Exception name, if any
Receiver: Access mode of calllng process

OPEN_EVENT_CHN opens an event channel and defines its attributes from the
process point of view. Refnum is returned by the Operating System to be used in
any further references to the channel.

Event_chn_name determines whether the event channel is locally or globally
defined. If it is a null string, the event channel is locally defined. If
event_chn_name is not null, it is the file system pathname aof the channel.

Excep_Name determines whether the channel Is an event-wait or event-call
channel. If it Is a null string, the channel is of event-wail type. Otherwise, the
channel is an event-call channel and excep_name is the name of the exception
that is signalled when an event arrives in the channel. The excep_name must be
declared before its use in the OPEN_EVENT_CHNcall

Receiver is a boolean value indicating whether the process is opening the
channel as a sender (receiver is false) or a receiver (recejver is true). A local
channel (one with a null pathname) can be opened only to receive events. Also,a
call-type channel can only be opened as a receiver.

5-22

Qperating System Reference Menual ror még Lisa Exceptions and Events

CLOSE_EVENT_CHN (Var ErrNum:Integer;
Refnum:Integer)

ErrNum: Error indicator
Refnum: Identifier of eVent channel to be closed

CLOSE_EVENT_CHN closes the event channel associated with refnum. Any
events queued in the channel remaln there. The channel cannot be accessed until
it is opened again.

If the channel has previously been killed with KILL_EVENT_CHN, you will not be
able to open it after it has been closed.

If the channel has not beenkilled, it can %be opened by OPEN_EVENT_CHNL

5-23

Qersting System Rererence Manual for the Lisa Exceptions and Events

INFO_EVENT_CHN (Var Errtum:Integer;
. Refnum:Integer;
var chn_Info:t_chn_sts)

ErrNum: Error indicator
Refnum: Identifier of event channel
Chn_Info: Status of event channel

INFO_EVENT_CHN gives a process information about an event channel. The
Operating Systemreturns a record, chn_info, with informationpertaining
to the channel associated with refnum.

The definition of the type of the chn_info record is:

t_chn_sts =
RECORD (* event channel status ®)
Chn_type:Chn_| kind (* wait_ec or call_ec ®)

Num_events:Integer; (* number of queued events *)
Open_recv:Integer; (* number of processes readmg

. channel
Open_send:integer; (* no. of processes sending to
this channel
Ec_name:pathname; (» event channel name *)
END; .

S5-24

Qrersting System Reference Marwal for the Lisa Exceptions and Events

VAIT_EVENT_CHN (Var Errtum:Integer;
var vait_List:t_ uaitlist
var RefNum:Integer;
Event_ptr:p_r_eventblk)

ErrNum: Error indicator

Wait_list: Record with array of event channel
refnums

Refnum: Igentifier of channel that had an event

Event_ptr: Pointer to event data

WAIT_EVENT_CHN puts the calling process in a waiting state pending the
arrival of an event in one of the specified channels. wWait_list is apointer to alist
of event channel identifiers. when an event arrives in any of these channels, the
process is made ready to execute. Refnum identifies which channel got the
event, and event_ptr points to the event itself.

A process can walt for any boolean combination of events. If it must wait for any
event from a set of channels (an OR conadition), it should call WAIT_EVENT_CHN
with walt_list containing the list of event channel identifiers. If, on the other
hand, it must wait for all the events from a set of channels (an AND condition),
then for each channel In the set, WAIT_EVENT_CHN should be called with a
wait_list containing just that channel identifier.

The structure of t_waitlist Is:
RECORD

Length:Integer;
Refnum:Array[0..slze_! uaitnst] of Integer:
END;

Event_ptr is a pointer toarecord containlng the event header and the event text.
Its definition is:

P_r _eventblk = “r_eventblk;

R_eventblk = Record
event_header :t_eheader;
event_text:t_event_text;

end;

T_eheader = Record _
send_pid:longint;
event_type:longint;

end;
T_event_text = array [0..9] of longint;

Send_pid is the process id of the sender.

S-25

Qperating System Rerference Manual for the L1sa Exceptions and Events

Currently, the possible event type values are:

1 = Event sent by user process
2 = Event sent by system '

When you receive the SYS_SON_TERM event, the first longint of the event text
contains the termination cause of the son process. The cause is same as that
given in the SYS_TERMINATE exception given to the son process. The rest of
the event text can be filled by the son process.

If you call WAIT_EVENT_CHN on an event-call channel that has queued events,
the event is treated Just likke an event in an event-walt channel. If
WAIT_EVENT_CHN is called on an event-call channel that does not have any
queued events, an error is returned,

5-26

Qperating System Reference Manual for the Lisg Exceptions ana Evernts
FLUSH_EVENT_CHN (Var Errhum:Integer;
, Refnum:Integer)

ErrNum: Error indicator
Refnum: Identifier of event channel to be flushed

FLUSH_EVENT_CHN clears out the specified event channel. All events queued
in the channel are removed. If this is called by a sender, it has no effect.

5-27

Qperating System Rerference Manual for the L1sa Exceptions ana Events

SEND_EVENT_CHN (Var ErrhNum:Integer;
Refnum:Integer;
Event_ptr:p s eventblk;
‘Interval:Timestmp_interval:
Clktime:Time_rec)

ErrNum: Error indicator
Refnum: Channel for event
Event_ptr: Pointer to event data
Interval: Timer for event
Clktime: time data for event

SEND_EVENT_CHN sends an event to the channel specified by refnum.
Event_ptr points to the event that is to be sent. The event data area contains
only the event text; the header is added by the system.

If the event is of the event-wait type, the event is queued. Otherwise the

Operating System signals the corresponding exception for the process receiving
the event.

If the channel is open by several senders, the receiver can sort the events by the
process identifler which the Operating System places in the event header.

Altemnatively, the senders can place predefined identifiers in the event text
which {dentify the sender.

The parameter Interval, indicates whether the event is a timed event.
Timestmp_interval is a record containing a second and a millisecond field. If
both fields are 0, the event is sent immediately. If the second given is less than 0,
the millisecond field is ignored and the time_rec record is used. If the time inthe
time_rec has already passed, the event is sent immediately. If the millisecond
fleld Is greater than 0, and the second fleld is greater than or equal to 0, the event
Is sent that number of seconds and milliseconds from the present.

A process can time out a request to another process by sending itself a timed
event and then walting for the arrival of either the timed event or an event
ingicating the request has been served. If the timed event is received first, the
request has timed out. A process can also time its own progress by periodically
sending itself a timed event through an event-call event channel.’

5.9 Clock System Calls

This sectlon describes all the Operating System calls that pertain to the clock. A
summary of all the Operating System calls can be found in Appenadix A.

5-28

Qrerating System Reference Manual for the Lisa

The following spectal types are used in clock calls:

Timestmp_interval = Record
: sec:1longint;
- msec:0..999;
end;

Time_rec¢ = Record
year:integer;
day:1..366;
hour:-23..23;

- minute:-59..59;
second:0..59;

- msec:0..999;

end;

Hour_range = -23..23

Hinute_range = -59..59;

5-29

Exceptions ana Events

Querating System Reference Manal for the Lisa Exceptions ana Events

DELAY_TIME (Var ErrNum:Integer;
Interval:T_interval;
Clktime:Time_rec)

ErrNum: Error indicator

Interval: Delay timer

Clktime: Time information _
DELAY_TIME stops execution of the calling process for the number of SECONDS
and milliseconds specified in the interval record. If this time perlod is zero,
DELAY_TIME has no effect. If the period is less than zero, execution of the
process is delayed until the time specified by Clktime.

5-30

Qperating System Rerference Manual for mé Lisa Exceptions anda Events

GET_TIME (Var ErrhNum:Integer;
var Sys_Time:Time_rec)

ErrNum: Error indicator
Sys_Time: Time information

GET_TIME retums the current system clock time in the record Sys_Time. The
msec field of Sys_Time always contains a 0 on retum.

5-31

Qperating System Reference Mamual ror the Lisa Exceptions and Events

SET_LOCAL_TIME_DIFF (var Errtum:Integer;
Hour :Hour_range;
Hinute:Hinute range)

ErrNum: Error indicator

Hour: Number of hours difference from the system
clock

Minute: Number of minutes difference from the system
clock

SET_LOCAL_TIME_DIFF informs the Operating System of the difference in

hours and minutes between the local time and the system clock. Hour and
Minute can be negative.

5-32

Qerating System Rerference Manual ror the Lisa Exceptions and Events

CONVERT_TIME (Var ErrNum:Integer;
Var Sys Time:Time_rec;
Var Local_Time:Time rec;
To_sys:Boolean)

ErrNum: Error indicator

Sys_Time: System clock time
Local_Time: Local time

To_sys: Direction of time conversion

CONVERT _TIME converts between local time and system clock time.

To_sys is a boolean value indicating which direction the conversion is to go. If it
Is true, the system takes the time data in local_time and puts the corresponding
system time In Sys_Time. Otherwise, it takes the time data in Sys_Time and puts
the corresponding local time in local_time. Both time data areas contain the
year, month, day, hour, minute, second, and millisecond.

5-33

perating System Rererence Manual ror the LIsa Contiguration

Chapter 6
CONFIGURATION
6.1 Conflguration System Callsvuuvrrnrnnnnn., 6-3
CARDS EQUIPPED ... ittt i i cn st s can s E-4
GET _CONFIG NAME . i i i e i e 6-%
BOBOOTYOL Lttt i it ittt it e e s 55

Querating Systerm Rerference Menual for me Lisg Conrfiguration

Qperating System Reference Manual for the Lisa Conriguration

CONFIGURATION

Every Lisa system is configured using the Preferences tool. Preferences places
the configuration state of the system in a special part of the system's memory
called parameter memork Although parameter memory is not contained on a
disk, it is supplied with battery power, so that the contents are kept even when
the system Is turned off. Note that the batterles are charged as long as Lisa is
plugged in, even if the unit is powered off. Also, the batteries will keep
parameter memory secured for several hours, even if line power is lost. In
addition, every time parameter memory is changed, a copy of the new data is
made on the boot disk. If the contents of parameter memory are lost, this aisk
copy is automatically restored to parameter memory.

Since the devices actually connected may differ from the configuration stored in
parameter memory, three calls are provided that allow programs to request some
information about the configuration of the system.

In addition, two calls are provided to directly read and write the contents of
parameter memory.

6.1 Conflguration System Calls
This section describes all the Operating System calls that pertain to
configuration. A summary of all the Operating System calls can be found in

Appendix A. Special data types used by configuration calls are defined along
with the calls.

Qperating System Reference Manual for the Lisa Configuration

CARDS_EQUIPPED (Var Errnum:Integer;
var In_slot:Slot_array)

Errnum: Error code ‘
In_slot: Identifies the types of cards configured

This call returns an array showing the types of cards which are in the various carad
slots.

The definition of Slot_array is:

slot_array =array [1..3] of card_types;
where: .

card_types = (no_card,
apple_card,
n_port_card,
net_cardg,
laser_card);

6-dU

Qerating System Rererence Manual rfor the LIsa conrguration

GET_CONFIG_NAME (Var Errnum:Integer;

Devpostn:Tports;
Var Devname:E_name)

Errnum: Error code
Devpostn: Aport identifier
Devname: The name of the device attached to the port

This call returns the name of the device configured at the port given in devpostn.
See OSBOOTVOL for the definition of tports. Type e_name is defined as:

E_name = STRING [32];

perating System Reference Manual for the Lisa Conflguration

0SBOOTVOL (Var Errnum:Integer) : Tports

Errnum: Error code
Tports: Identifies the port to which the boot volume 1s
attached

0SBOOTVOL is a function that returns the identifier for the port attached to the
boot volume. Note that this port might not be the port configured for the boot
volume, since it is possible for the user to override the default boot. Note also
that the port identifier is not the same as the device name. You can use
GET_CONFIG_NAME to find out the name of the device attached to the port.

Tports isa set that has this definition:

tports = (uppertwig, lovertwiq, parallel,
slotll, slotl2, slotl3, slotis,
slot2l, slot22, slot23, slot2a,
slot31, slot32, slot33, slot34,
seriala, serialb, main_console, alt_console,
t_mouse, t_speaker, t_extral, t_extraz,
t_extras);

6-6

Qoerating Systerm Reference Manugdl rfor the Lisa Qoerating System Interrace

Appendix A
OPERATING SYSTEM INTERFACE

UNIT syscall; (» system call definitions unit =)

INTRINSIC;

INTERFACE

CONST

max_ename = 32; (* maximum length of a flle system object name *)

max_pathname = 255; (* maximum length of a flle system pathname *)

max_label_size = 128; (* maximum size of a file label, 1n bytes *)

len_exname = 16; (» length of exception name *)
size_exdata = 11; (* 48 bytes, exceptlon data

block should have the same size as r_eventblk, received
event block

size _etext = 9; (» event text size - 40 bytes *)
size waitlist = 10; (* size of wait list - should be same as regptr_list =)
(»* exception kind definitions for 'SYS_TERMINATE' exception »)
call_term = 0; (» process called terminate_process *)
ended =1 (* process executed ‘end‘' statement *)
self_kllled = 2; (» process called kill_process on self)
killed =3 (= process was killed by another process ®)
fthr_term = 4; (» process's father is terminating *)
bad_syscall = 5; (» process made lnvalid sys call - subcode bad *)
bad_errnum = 6; (* process passed bad address fOr errnum parm *)
swap_error = 7; (* process aported due to code swap-1n error *)

m\

stk_overflow =
data_overflow
parity_err =

. (= process exceeded max size (+T nnn) of stack =)
9; (= process tried to exceed max data space size *)
(» process got a parity error wnile executing =)

=0
e

def_dlv_zero 11; (» default handler for div zero exception was called =)

def_value_oob = 12; (» " for value oob exception : *)
def_ovfy = 13; (= " for overflow exception *)
gef_nmi_key = 14; (= " for Nl Key exception *)
def_range = 15; (»" for 'SYS_VALUE_DOB' excep due to value range err =)
def_str_index = 16;(*" for 'SYS_VALUE_DOB' excep due to string index err *)
bus_error = 21; (* bus error occurred *)
addr_error = 22; (» address error occurred »)
111g_inst = 23; (* 1llegal instruction trap occurred *)

A-1

Querating System Rererence Marual ror the L1sa goerating Systerm Interrace

priv_violation = 24; (= privilege violation trap occurred *)

line_1010 = 26; (» 1ine 1010 erulator occurred *)
line_1111 = 27; (* line 1111 emulator occurred *)
unexpected_ex = 29; (* an unexpected exception occurred *)
div_zero = 31; (» exception kind definitions for harguware exception =)
value_oob = 32;

ovfw = 33,

nml_key = 34; :

value_range = 35; (* excep kind for value range and string index error #*)
str_index = 36; (* Note that these two cause 'SYS_VALUE_OOB' excep *)

(*DEVICE_CONTROL functions#*)
(*RS-232%)

dvParity = 1;

avOutDTR = 2; (*RS-232*)

avOULXON = 3; (#RS-232%)
dvoutDelay = 4; (#RS-232*)

dvBaud = S; (#RS-232») .
avinwalt = 6; (*RS-232, CONSOLE*)
avInDTR = 7; - (*RS-232%)
avInXON = 8; (*RS-232*)

avTypeahd = 9; (*RS-232%)

dvDiscon = 10; (*RS-232%)

avOUtNoHS = 11; (*RS-232*)

avErrStat = 15; (*PROFILE*)
dvGetEvent = 16; (#CONSOLE®)
avAutoLF = 17; (#RS-232, CONSOLE, PARALLEL PRINTER*) (*not yet)
dvDiskStat = 20; (*DISKETTE, PROFILE*)
dvDiskSpare = 21; (*DISKETTE, PROFILE®)
TYPE

pathname = string [max_pathname].
e_name = string [max ename];
namestring = string [20];
procinfoRec = record
progpathname : pathname;
global_id : longint;

father_1id : longint:

priority : 1..255; _

state : (pactive, psuspended, pwaiting);
data_in : boolean

end;

A-2

Qperating System Rererence /fanual ror the L1s3 querating System Interrace

Tdstype = (ds_shared, ds_private); (» types of data segrments =)

dsinfoRec = record
mem_size : longint:
disc_size: longint;
numb_open : 1nteger;
ldsn : integer;
boundF : boolean;
presentF : boolean;
creatorf : boolean;
rwaccess : boolean;
segptr : longint;
volname: e_name;

end;

t_ex_name = string [len_exname]; (* exception name *)
longadr = “longint;

t_ex_state = (enabled, queued, ignored); (»* exception state *)
p_ex_data = “t_ex_data;

t_ex_data = array [0..slze_exdata] of longint; (» exception data blk *)
t_ex_sts = record (* exception status =)
ex_occurred_f : boolean; (* exception occurred flag *)

ex_state : t_ex_state; (»*-exception state *)

num_excep : integer; (* number of exceptions q'ed #)

hdl_adr : longadr; (* handler address *)

end;

p_env_blk = "“env_blk:

env_blk = record (* environment block to pass to handler *)
pc : longint; (* program counter *)
sr : integer; (» status register *)
a0 : longint; (* data registers 0 - 7 *)
dl : longint;

d2 : longint:

a3 : longint;

d4 : longint;

a5 : longint;

a6 : longint.

a7 : longint; '

a0 : longint: (> address registers 0 - 7 =)

al : longint;

a2 : longint;
a3 : longint;
a4 : longint;

A-3

Qoerating System Rererence Manwal for the LI1sa Qoerating System Interrace

as : longint;

a6 : longint;
a7 : longint;
end;

p_term_ex_data = “term_ex_data;

term_ex_data = record (» terminate exception data block *)
case excep kind : longint of

call_term,

ended,

self_killeq,

killeq,

fthr_term,

bad_syscall,

bad_errnum,

swap_error,

stk_overflow,

data_overflow,

parity err : (), (* due to process termination *)

111g_1inst, |

priv_violation, (* due to illegal instructlon, privilege violation =)
1line_1010,

line_1111, (* due to line 1010, 1111 emulator *)
def_oiv_zero,

def_value_oob,

def_ovfu,
def_nmi_key (» terminate due to default handler for hardware
exception *)
: (sr : integer;
pc : longint): (» at the time of occurrence *)
def_range,
def_str_index (*terminate due todefault handler for ‘SYS_VALUE_00B' excep for
value range or string index error *)

: (value_check : integer:
upper_bound : integer;
lower_bound : integer:
return_pc : longint;
caller_a6 : longint).

bus_error, ,
addr_error (* due to bus error or address error)

: (fun_field : packed record (* one integer ”)
filler : 0..$7ff; (* 11 bits ®)

r_w_flag : boolean;
i_n_flag : boolean;

Operating System Rererence llemual ror the L1sa Querating System Interrsce

fun_code : 0..7; (* 3 bits =)
end;

access_adr : longint;
inst_register : integer;
sr_error : integer;

pc_error : longint);

enc;
p_hard_ex_data = “hard_ex_data;
hard_ex_data = record (*» hardware exception data block *)

case excep_kind : longint of
div_zero, value_oob, ovfu
¢ (sr : integer:

pc : longint);
value_range, str_index

: (value_check : integer;
upper_bound : integer:
lower_bound : integer;
return_pc : longint;
caller a6 : longint);
end;

accesses = (dread, dwrite, append, private, global_refnum);
mset = set of accesses;
lomode = (absolute, relative, sequential);

UID = record (*unique id*)

a,b: longint

end;

timestmp_interval = record (* time interval »)
sec : longint; ~ (* number of seconds *)
msec : 0..999; (* number of milliseconds withina second *)
end;

info_type = (device_t, volume_t, object_t);

devtype = (diskdev, pascalbd, seqoev, bitokt, non_io);

filetype = (undefined, MODFfile, rootcat, freelist, badblocks, sysdata,
spool, exec, usercat, pipe, bootflle, swapdata,
swapcode, ramap, userfile, killedobject):

entrytype= (emptyentry, catentry, linkentry, fileentry, pipeentry, eoentry,
killedentry);

A-5

Qoerating Systerm Rererence Namal ror the L1ss

fs_lnfo = record

name : e_name;

dir_path : pathname;

machine_id : longint;

fs_overhead : lnteger:
result_scavenge : integer;

case otype : info_type of

device_t, volume_t: (

lochannel : integer;

devt : devtype;

slot_no : integer:

fs_slze : longint;

vol_size : longint;
blockstructured, mounted : boolean;
opencount : longint; '
privatedev, remote, lockeddev : boolean;
mount_pending, unmount_pending : boolean;
volname, password : e_hame;
fsversion, volnum : integer;

volid : UID;

backup_volid : UID;

Qerating System Interrace

blocksize, datasize, clustersize, fllecount : integer;

label_size : integer:

freecount : longint;

DTVC, DTCC, DTvB, DTVS : longlnt: :
master_copy_1id, copy_thread : longlint;
overmount_stamp : UID:

boot_code : integer;

boot_environ : integer;

privileged, write_protected : boolean;

master, copy. copy_flag, scavenge_flag : boolean;

vol_left_mounted : boolean);

object_t : (

size : longint; ‘

psize : longint; (» physical file size in bytes »)
1psize : integer; (* logical page size inbytes for this file =)

ftype : filetype;

etype : entrytype;

OTC, DTA, DTM, DTB, DTS : longint;
refnum : integer:

fmark : longint;

acmode : mset;

nreaders, nwriters, nusers : integer;
fuid : UID; ‘

Qoerating System Reference Manual for the Lisa Querating System Interrace

user_type : integer;

user_subtype : integer;

system_type : integer;

eof, safety_on, kswitch : boolean;

private, locked, protected, master_file : boolean;
file_scavenged, file_closed_by_0S, file_left_open:boolean)
end;

dctype = record
deversion : integer;
dccocde : 1lnteger;

dcdata : array [0..9] of longint; (* user/ariver defined data =)
end;
t_waltlist = record (* vait 1list *)

length : 1integer; _
refnum : array [0..slze_waitlist] of integer:

end;

t_eheader = record (* event header *)
send_pid : longint; (» sender's process 1d *)
event_type : longint; (= type of event *)
ena; :

t_event_text = array [0..size etext] of longint;
p_r_eventblk = “r_eventblk;

r_eventblk = record

event_header : t_eheader;

event_text : T_event_text;

end;

p_s_eventblk = "“s_eventblk;
s_eventblk = t_event_text;

time_rec = record

year : integer;

day : 1..366; (* Jullan cate =)
hour : -23..23;

minute : -59..5%

second : 0..59;

msec : 0..999;

end;

chn_kind = (walt_ec, call_ec);
t_chn_sts = record (* channel status =)

A-7

Querating Syster Reference Mamual for the L1sa Qoerating System Interrace

chn_type : chn_king; (» channel type ®)
num_events : integer; (* number of events queued *)
open_recv : integer: (* number of opens for receiving =)
open_send : integer; (* number of opens for sending =)
ec_name : pathname; (* event channel name *)
ena;

hour_range = -23..23;
minute_range = -59..59;

{configuration stuff: }

tports = (uppertwig, lowertwig, parallel,

slotll, slotl2, slotl3, slotis,

slot21l, slot22, slot23, slotza,

slot31, slot32, slot33, slot34, v

seriala, serialb, main_console, alt_console,
t_mouse, t_speaker, t_extral, t_extraz, t_extra3);

card_types = (no_card, apple_card, n_port_card, net_card, laser_card);

]

slot_array = array [1..3] of card_types;

{ Lisa Office System parameter memory type }

pmByteunique = -128..127;
pMemRec = array[1. 62] of meyteUn1queForAl1TneDamnCryBanies

(* File System calls =)

procedure MAKE_FILE (var ecode:integer; \var path:pathname;
label_size: integer)

procedure MAKE_PIPE (var ecode:integer; var path:pathname;
label_size: 1nteger)

procedure MAKE_CATALOG (var ecode:integer; var path:pathname;
label_size:integer);

678

Queratling System Rererence MNarxkial ror the L1sa Querating System Interrace

procedure MAKE_LINK (var ecode:integer; var path, ref:pathname;
label_size:integer);

procedure KILL_OBJECT (var ecode:integer; var path:pathname);

procedure UNKILL_FILE (var écode:integer; refnum:integer; var
new_name:e_name).

procedure OPEN (var ecode:integer: var path:pathname: var refnum:integer:
manip:mset);

procedure CLOSE_0BJECT (var ecode:integer; refnum:integer):;

procedure READ_DATA (var ecode : integer;
refnum : integer;

data_addr : longint;

count : longint:

var actual : longint;

mode : iomode;

offset : longint);

procedure WRITE_DATA (var ecode : integer;
refnum : integer:

data_addr : longint;

count : longint:

var actual : longint;

mode : lomode;

offset : longint);

procedure FLUSH (var ecode:integer; refnum:integer);

procedure LOOKUP (var ecode : integer;
var path : pathname;
var attributes : fs_info);

procedure INFO (var ecode:integer; refnum:integer; var refinfo:fs_info);

procedure ALLOCATE (var ecode : integer;
refnum : integer:

contiguous : boolean;

count : longint;

var actual : longint);

A-9

Qoerating System Reference Manual for the LIsa Querating System Interrace

procedure TRUNCATE (var ecode : integer; refnum : integer).
procedure COMPACT (var ecode : integer: refnum : 1nteger).

procedure RENAME_ENTRY (var fcode 1nteger var path:pathname; var newname :
e_name);

procedure READ_LABEL (var ecode : integer;
var path : pathname;

data_addr : longint;

count : longint;

var actual : longint).

procedure WRITE_LABEL (var ecode : integer;
var path : pathname;

data_addr : longint;

count : longint;

var actual : longint);

procedure MOUNT (var ecocde:integer; var vname : e_name; var password :
e_name ;var devname : e_name);

procedure UNMOUNT (var ecode:integer: var vname : e_name):

procedure SET_WORKING_DIR (var ecode:ihteger; var path:pathname).
procedure GET_WORKING_DIR (vaf ecode:ihteger; var path:pathname).
procedure SET_SAFETY (var ecode:integerivar patnh:pathname; on_off :boolean).

procedure DEVICE_CONTROL (var eoode:lnieger: var path:pathname;
var cparm : dotype);

procedure RESET_CATALOG (var ecode : 1nteger, var path : pathname);
procedure GET_NEXT_ENTRY (var ecode : 1nteger, var prefix, entry : e_name);
procecure SET_FILE_INFO (var ecode : integer;

refnum : integer:
fsi : fs_info)

A-10

Querating System Rererence flanual ror the L1s5a GQoerating System Interrace

(» Process Management system calls *)
function My_ID : longint;

procedure Info_Process (var errnum : integer; proc_id : longint:
var proc_info : procinfoRec);

procedure Yield CPU (var errnum : integer; to_any : boolean);

procedure SetPriority Process (var errnum : integer; proc_id : longint;
new_priority : integer):

procedure Suspend Process (var errnum : integer; proc_id : longint;
susp_family : boolean);

procedure Activate Process (var errnum : integer; proc_id : longint;
act_family : boolean):

procedure K11l _Process (var errnum : integer; proc_id : longint);

procedure Terminate_Process (var errnum : integer; event_ptr :
p_s_eventblk);

procedure Make_Process (var errnum : integer; var proc_id : longint;

var progfile : pathname; var entryname : namestring:
evnt_chn_refnum : integer);

(> Memory Management system calls *)

procedure make_dataseg(var errnum: integer; var segname: pathname;
mem_size, disc_size: longint; var refnum: integer;

var segptr: longint; ldsn: integer: dstype: Tdstype):

procedure ki111_dataseg (var errnum : integer; var segname : patnname):
procedure open_gataseg (var errnum : integer; var segname : pathname;
var refnum : integer; var segptr : longint;

ldsn : integer):

procedure close_dataseg (var errnum : integer; refnum : integer);

A-11

Querating System Reference Manual ror the L1sa Queratling System Interrace

procedure size_dataseg (var errnum : integer; refnum : integer:
deltamemsize : longint; var newmemsize : longint;
deltadiscsize: longint; var newdiscsize: longint);

procedure info_dataseg (var errnum : iﬁteger; refnum : 1integer:
var dsinfo : dsinfoRec);

procedure setaccess_dataseg (var errnum : integer; refnum : integer;
reaconly : boolean);

procedure unbind_dataseg (var errnum : integer: refnum : integer):
procecure bind_cataseg(var errnum : integer: refnum : integer);

procedure info_ldsn (var errnum : 1nte§er; lasn: integer; var refnum:
integer); '

procedure flush_dataseg(var errnum: 1nteger; refnum: integer);

procedure mem_info(var errnum: 1nteger,
var swapspace, dataspace,
cur_codesize, max_codesize: longint);

procedure info_address(var errnum: 1nteger address: longint;
var refnum: integer);

(* Exception Management system calls *)

procedure declare_excep_hdl (var errnum : integer;
var excep_name : t_ex_name;

entry_point : longadr);

procedure disable_excep (var errnum : integer;
var excep_name : t_ex_name;
queue : boolean):;

procedure enable_excep (var errnum : integer;
var excep_name : t_ex_name); '

procedure signal_excep (var errnum : integer;

var excep_name : t_ex_name;
excep_data : t_ex_data);

A=12

Querating System Rererence Mamual ror the L1sa

procedure info_excep (var errnum : lnteger:
var excep_name : t_ex_name;
var excep_status : t_ex_sts);

procedure flush_excep (var errnum : integer:
var excep_name : t_ex_name);

(* Event Channel management system calls %)

procedure make_event_chn (var errnum : integer;
var event_chn_name : pathname);

procedure kill_event_chn (var errnum : integer;
var event_chn_name : pathname);

procedure open_event_chn (var errnum : integer;
var event_chn_name : pathname;

var refnum : integer;

var excep_name : t_ex_name;

receiver : boolean);

procedure close_event_chn (var errnum : integer;
refnum : integer);

procedure info_event_chn (var errnum : integer;
refnum : integer;
var chn_info : t_chn_sts);

procedure wait_event_chn (var errnum : integer;
var wait_list : t_waitlist:

var refnum : integer;

event_ptr : p_r_eventblk);

procedure flush_event_chn (var errnum : integer:
refnum : integer);

procedure send_event_chn (var errnum : integer;
refnum : integer;

event_ptr : p_s_eventblk;

interval : timestmp_interval;

clktime : time_rec);

A-13

Qoerating System Interrace

Qoerating System Rerference flanual ftu*tﬁe Lisa

(» Timer functions system calls *)

procedure delay_time (var errnum : integer;
interval : timestmp_ 1nterva1
clktime : time_rec):

procedure get_time (var errnum : integer:;
var gmt_time : time_rec);

procedure set_local_time_diff (var errnum : integer;

hour : hour_range:
minute : minute_range);

procedure convert_time (var errnum : integer;
var gmt_time : time_rec;

var local_time : time_rec;
to_gmt : boolean):

{configuration stuff}

function 0SBOOTVOL(var error : integer) : tports:

procedure GET_CONFIG_NAME(var error : integer:

devpostn : tports;
var gevname : e_name):;

procedure CARDS_EQUIPPED(var error : integer:
var in_slot : slot_array);

IMPLEMENTATION

procedure MAKE_FILE, external;
procedure MAKE_PIPE; external;
procedure MAKE_CATALOG; external;
proceaure NAKE_LINK; external;
procedure KILL_OBJECT; external;

A-=14

Qoerating System Interrace

Qoerating Systen Rererence Manual rfor the L1sa

procedure OPEN; external;
procedure CLOSE_OBJECT; external;
procedure READ_DATA: external:
procedure WRITE_DATA; external:
procedure FLUSH; external;
procedure LOOKUP; external,;
procedure INFO; external;
procedure ALLOCATE; external;'
procedure TRUNCATE: external.
procedure COMPACT; external;
procedure RENAME_ENTRY; external:
procedure READ_LABEL; external;
procedure WRITE_LABEL; external;
procedure MOUNT; external:
procedure UNMOUNT: external;
procedure SET_WORKING_DIR; external;
procedure GET_WORKING_DIR; external;
procedure SET_SAFETY; external:
procedure DEVICE_CONTROL; external;
procedure RESET_CATALOG; external;
procedure GET_NEXT_ENTRY; external.
procedure GET_DEV_NAME; external;

A-15

GQoerating System Interrace

Qoerating System Reference Mamual for the Lisa

function My_ID; external;

procedure
procedure
procedure
procedure
procedure
proceaure
procedure
procedure

procedure

procedure
procedure
procedure
procedure
procedure
procegure
procedure
procedure
procedure
procedure
procedure

procequre

Info_Process; external;
Yield_CPU; external;
SetPriority_Process; external;
Suspend_Process; external;
Activate_Process; external;
Ki1l_Process; external;
Terminate_Process; external;
Make_Process; external;

Sched_Class; external;

make_aataseg; external;
kill_dataseg; external;
open_dataseg; external;
close_dataseg; external;
size_dataseg; external;
info_dataseg; external;
setaccess_dataseq: external:
unbind_dataseg; external;
bind_dataseg: external:
info_ldsn; external:
flush_dataseg: external:

mem_info; external.

A-16

Qperating System Interrace

Queratlng System Rerference Manual ror the L1sa

procedure
procegure
procegure
procedure
procedure

procedure

procedure
procedure
procedure
procedure
procedure
procedure
procedure

procedure

procedure
procedure
procedure
procedure

procedure

declare_excep_hdl; external;
disable_excep: external:
enable_excep; external;
signal_excep: external:
info_excep; external;

flush_excep.; external;

make_event_chn; external;
kill_event_chn; external;
open_event_chn; external;
close_event_chn; external;
info_event_chn; external;
walt_event_chn; external;
flush_event_chn; external;

send_event_chn; external;

delay_time; external;
get_time; external;
set_local_time_0iff; external;
convert_time; external:

set_flle_info; external.

function ENABLEDBG; external;

function 0SBOOTVOL; external.

A-17

guerating System Interrace

Qperating Systerm Reference Mantial for the Lisa

procedure GET CONFIG_NAME; external;
function DISK_LIKELY; external;
procedure CARDS_EQUIPPED; exfernal;
procedure Read_PMem; external;
procedure Write_PMem; external;

end.

A-18

Querating System Interrace

Querating System Rererence Manual ror the LI1sa Exception Names

Appendix B
SYSTEM RESERVED EXCEPTION
NAMES

SYS_OVERFLOW overflow exception. Signalled if the TRAPV
instruction is executed, and the overflow condition
ison.

3YS_VALUE_00B value out of bound exception. Signalled If the CHKK

Instruction Is executed, and the value {s less than O
Or greater than upper bound.

5YS_ZERO_DIV dlvision by zero exception. Signalled {f the DIVS or
DIV Instruction {s executed, and the dlvisor is
Zero.

SYS_TERMINATE termination exception. Signalled when a process is

to be terminated.

B-1

(PBrItNG System Rererence Mamnual 1or the L15a Event Types

- Appendix C
SYSTEM RESERVED EVENT
| TYPES

SYS_SON_TERM "son terminate” event type. If a father process has
created a son process with a local event channel, this
event is sent to the father process when the son process
terminates.

Qoeratlng System Reference Hanual ror the L1sa Error flessages

-1885
-1882
-1176
-1175
-1174
-1173
-1146
-1063

-1060
-1059

-696
-660
~626
-622
-621
-620
-413
-412
=321
=320
-150

-149

-125
-120
-115
100
101
110
130
131
132
133
134
135

Appendix D
OPERATING SYSTEM ERROR
MESSAGES

Profile not present during driver initialization

Profile not present during driver initialization

Data in the ob ject has been altered by Scavenger

F1ile or volume was scavenged

File was left open or volume was left mounted, and systemcrashed

Flle was last closed by the 0S

Only a portion of the space requested was allocated

Attempt to mount boot volume from another L.isa or not most recent boot

volume

Attempt to mount a foreign boot disk following a temporary unmount

The bad block directory of the diskette is almost full or difficult

to read

Printer out of paper during initialization

Cable disconnected during Profile initialization

Scavenger indicated data is questionable, hut may be OK

Parameter memory and the disk copy were both invalid

Parameter memory was invalid but the disk copy was valld

Parameter memory was validbut the disk copy was invalld

Event channel was scavenged

Event channel vas left open and system crashed

Data segment open when the systemcrashed. Datapossibly invalid.

Could not determine size of data segment

Pliooess was created, but a 1ibrary used by program has been scavenged &

altered

grocess was created, but the specified program file has been scavenged
altered

Sepcifled process is already terminating

Specified process 1s already active

Specified process 1s already suspended

Specified process does not exist

Specified process is a systemprocess

Invaliapriority specified (must be1..225)

Could not open program file

Flle Systemerror while trying to read programflle

Invalid program file (incorrect format)

Could not get a stack segment for new process

Could not get a syslocal segment for new process

Could not get sysglobal space for new process

D-1

Querating System Rererence Mamal ror the L1sa Error Messages

136
138
141
142
143
144

145
146

147
148
190

191
192
193
194
195
196

198
199

201
202

203
302
303
304
306
307
308
309
310
311
312
313
314
315
317

Could not set up communication channel for new process

Error accessing program file while loading

Error accessing a library file while loading program

Can't run protected file on this machine .

Program uses an intrinsic unit not found in the Intrinsic Library
Program uses an intrinsic unit whose name/type does not agree with
the Intrinsic Library

Program uses a shared segment not found in the Intrinsic Library
Program uses a shared segment whose name does not agree with te
Intrinsic Library

NO sp?ce in syslocal for program file descriptor during process
creation

No space in the shared IU data segment for the program's shared IU
globals

No space in syslocal for program file description during
List_LibFiles operation

Could not open program file

Error trying to read program file

Can't read protected program file

Invalid program file (incorrect format)

Program uses a shared segment not found in the Intrinsic Library
Program uses a shared segment whose name does not agree with the
Intrinsic Library

Disk I/0 error trying to read the intrinsic unit oirectory
S?ecifieo library file number does not exist in the Intrinsic
Library

No such exception name declared

No space left in the system data area for declare_execp_hdl or
signal_excep

Null name specified as exception name

Invalid 1dsn

No data segment bound to the ldsn

Data segment already bound to the ldsn

Data segment too large

Input data segment path name is invalid

Data segment already exists

Insufficient disk space for data segment

An invalid size has been specified

Insufficient system resources

Unexpected file system error

Data segment not found

Invalid address passed to Info_Address

Operation may cause a data lockout |

Pisk error while trying to swap in data segment

D-2

Qperating System Reference Manual for the Lisa £rror lfessages

401 1Invalid event channel name passed to make_event_chn

402 No space left in system global data area for open_gvent_chn

403 No space left in system local data area for open_event_chn

404 Non-block structured device specified in pathname

405 Catalog is full in Make_Event_Chn or Open_Event_Chn

406 No such event channel exists 1n Kill_Event_Chn

410 Attempt to open a local event channel to send

411 Attempt to open event channel to receive when event channel has a
receiver

413 Unexpected flle system error in Open_Event_Chn

416 Cannot get enough disk space for event channel in Open_Event_Chn

417 Unexpected file system error in Close_Event_Chn

420 Attempt to walt on a channel that the calling process did not open

421 Walt_Event_Chn returns empty because sender process could not
complete

422 Attempt to call walt_event_chn on an empty event-call channel

423 Cannot find corresponding event channel after being blocked

424 Amount of data returned while reading from event channel not of
expected size

425 Event channel empty after being unblocked, Walt_Event_Chn

426 Bad request pointer error returned in Walt_Event_Chn

427 wWalt_L1ist has 1llegal length specified

428 Recelver unblocked because last sender closed

429 Unexpected flle systemerror inWait_Event_Chn

430 Attempt to send to a channel which the calling process does not
have open

431 Amount of data transferred while writing to event channel not of
expected size

432 Sender unblocked because recelver closed in Send_Event_Chn

433 Unexpected file system error in Send_Event_Chn

440 Unexpected file system error in Make_Event_Chn

441 Event channel already exists in Make_Event_Chn

445 Unexpected file system error in Kill_Event_Chn

450 Unexpected flile system error in Flush_Event_Chn

530 Size of stack expansion request exceeds limit specified for
program

531 ganét pgrform explicit stack expansion due to potential data space

ock ou

532 Insufficient disk space for explicit stack expansion

600 Attempt to perform I/0 operation on non I/0 reguest

602 No more alarms available during driver initialization

605 Call to non-configured device driver

606 Can't find sector on floppy diskette (disk unformatted)

608 Illegal length or disk address for transfer

609 Call to non-configured device driver

D-3

Querating System Reference fanual ror the L1sa Error Nessages

610
613

614
615
616
617
618

619
623
625
630

631
632
634
635
636
638

639

640
641
642
646
647
648
649
652
653
654
655
656
657
658
659
660
662
663
666
670
671
672

No more room in Sysglobal for I/0 request

Unpermitted direct access to spare track with sparing enabled
on floppy drive

No disk present in drive

wrong call version to floppy drive

Unpermitted floppy drive function

Checksum error on floppy diskette

Can't format, or write-protected, or error unclamping floppy

diskette

No more room in Sysglobal for I/0 request

Illegal device control parameters to floppy drive

Scavenger indicated data is bad

The time passed to delay_time, convert time, or send_event_chn

has invalid year

Illegal Timeout request parameter

No memory available to initialize clock

Illegal Timed event id of -1 ;

Process got unblocked prematurely due to process termination

Timer request did not complete successfully

Time passed to delay_time or send _event_chn more than 23 days

from current time

Illegal date passed to Set Time, or illegal date from system

clock in Get_Time

RS-232 driver called with wrong version number

RS-232 read or write initiated with illegal parameter
Unimplemented or unsupported RS-232 driver function

No memory available to initlalize RS-232

Unexpected RS-232 timer interrupt

Unpermitted RS-232 initialization, or disconnect detected
Illegal device control parameters to RS-232

N-port driver not initialized prior to Profile

No room in sysglobal to initialize Profile

Hard error status returned from drive

Wrong call version to Profile

Unpermitted Profile function !

Illegal device control parameter to profile

Premature end of file when reading from driver

Corrupt file system header chain found in driver

Cable disconnected

Parity error while sending command or writing data to Profile

Checksum error or CRC error or parity error in data read
Timeout

Bad command response from drive |

Illegal length specified (must = 1 on input)

Unimplemented console driver function

Qeratlng System Rererence fanual ror the L1sa Error /fessages

671
672
673
674
675
680
682
683
685
686
687
688
630
691
692
693
694
695
696
698
699
700

701
702
703
704
706
707
708
709
710
724
725
726
727
728
729
730
731
732
733
734

735

Illegal length specified (must = 1 on input)
Unimplemented console driver function

No memory available to initialize console

Console driver called with wrong version number
Illegal device control

Wrong call version to serial driver

Unpermitted serial driver function

No room in sysglobal to initlalize serial driver
EJect not allowed this device

No room in sysglobal to initiallze n-port card criver
Unpermitted n-port card driver function

wrong call version to n-port card driver

Wrong call version to parallel printer

Illegal parallel printer parameters

N-port card not initialized prior to parallel printer
No room in sysglobal to initialize parallel printer
Unimplemented parallel printer function

Illegal device control parameters (parallel printer)
Printer out of paper

Printer offline

No response from printer

Mismatch between loader verslon number and operating system
version number

0S exhausted its internal space auring startup
Cannot make system process

Cannot kill pseudo-outer process

Cannot create driver

Cannot initialize floppy disk driver

Cannot initlalize the file system volume

Hard disk mount table unreadable

Cannot map screen data

Too many slot-based devices

The boot tracks don't know the right file system version
Either damaged file system or damaged contents

Boot device read failed

The 0S will not fit into the available memory
SYSTEM.O0S is missing

SYSTEM.CONFIG 1s corrupt

SYSTEM.OS 1s corrupt

SYSTEM.DEBUG or SYSTEM.DEBUGZ2 is corrupt

SYSTEM.LLD 1is corrupt

Loader range error

wrong driver 1s found. For instance, storing a Twiggy loader
on a Profile

SYSTEM.LLD 1s missing

D-5

Qperating System Reference Manual for the L1sa Error Messages

736
737
801
802
803
806
809
810
816
819
820
821
822
825
826
828
829
835
837
838
839
841
843
847
848
849
852
854
855
856
857
8ol
864
866
867
868
869
870
871
872
873
874
875
879
881

SYSTEM.UNPACK 1is missing

Unpack of SYSTEM.0S with SYSTEM.UNPACK failed
IoResult <> 0 on I/0 using the Monitor
Asynchronous I/0 request not completed successfully
Bad combination of mode parameters

Page specified is out of range

Invalid arguments (page, address, offset, or count)
The requested page could not beiread in

Not enough sysglobal space for file system buffers
Bad device number

No space in sysglobal for asyncnronous request 1ist
Already initialized I/0 for tnis device

Bad device number

Error in parameter values (Allocate)

No more room to allocate pages on device

Error in parameter values (Deallocate)

Partial deallocation only (ran into unallocated region)
Invalid s-file number

Unallocated s-file or I/0 error

Map overflow: s-file too large

Attempt to compact file past PEOF

Unallocated s-file or I/0 error

Requested exact fit, but one couldn‘'t be provided
Requested transfer count is <= 0

End-of-file encountered

Invalid page or offset value in parameter 1ist

Bad unit number (FlushFsS)

No free slots in s-1ist directory (too many s-files)
No available disk space for file hints

Device not mounted

Empty, locked, or invalid s-file

Relative page is beyond PECF (bad parameter value)
No sysglobal space for volume bitmap

Wwrong FS version or not a valid Lisa FS volume

Bad unit number (Real_flount, Real_unmount)

Bad unit numoer (Def_fount, Def_Unmount)

Unit already mounted (mount)/no unit mounted (unmount)
No sysglobal space for DCB or MDDF (mount)
Parameter not a valld s-file ID !

No sysglobal space for s-file control block
Specified file 1s already open for private access
Device not mounted

Invalid s-file ID or s-file control block

Attempt to postion past LEOF

Attempt to read empty file

querating System Reference Mamual rfor the L1sa Error Messages

882
883
884
885
386
887
388
890
891
892
894
895
896
897
899
300
901
921
922
926
927
941
944
945
946
947
948
949
3950

951
952
954
955
956
957
958
959
960
961
962
963
964
965
966

No space on volume for new data page of file
Attempt to read past LEOF

Not first auto-allocation, but file was empty
Could not update filesize hints after a write

No syslocal space for I/0 request 1list

Catalog pointer does not indicate a catalog (bad parameter)
Entry not found in catalog

Entry by that name already exists

Catalog is full or is damaged

Illegal name for an entry

Entry not found, or catalog is damaged

Invalid entry name

Safety switch 1s on--cannot kill entry

Invalid bootdev value

Attempt to allocate a pipe

Invalid page count or FCB pointer argument

Could not satisfy allocation request

Pathname invalid or no such device (Make_File)
Invalig label size (Make_File)

Pathname invalid or no such device (Make_Pipe)
Invalid label size (Make_Pipe)

Pathname invalid or no such device (Kill_0bject)
Object is not a file (Unkill_File)

Flle is not in the killed state (Unkill_File)
Pathname invalid or no such device (Open)

Not enough space in syslocal for file system refdb
Entry not found in specified catalog (Open)
Private access not allowed if file already open shared
Pipe already in use, requested access not possible or durite not
allowed

File is already opened in private mode (Open)

Bad refrum (Close_Object)

Bad refnum (Read_data)

Read access not allowed to specified object
Attempt to position FMARK past LEOF not allowed
Negative request count is illegal (read_data)
Non-sequential access is not allowed (read_data)
System resources exhausted

Error writing to pipe while an unsatisfied read was pending
Bad refnum (write_data)

No WRITE or APPEND access allowed

Attempt to position FMARK too far past LEOF

Append access not allowed in absolute mode

Append access not allowed in relative mode
Internal inconsistency of FMARK and LEOF {warning)

D-7

Qoerating System Rerference Manual for the L1s3 £rror ffessages

967 Non-sequential access 1snot allowed (write_data)

968 Bad refnum (F1lush)

971 Pathname invalid or no such device (Lookup)

972 Entry not found 1n specified catalog

974 Bad refnum (Info)

977 Badrefnum (Allocate)

978 Page count 1s non-positive (Allocate)

979 Not ablock structured device (Allocate)

981 Bad refnum (Truncate)

982 No space has been allocated for specified file

983 Not ablock structured device (Truncate)

985 Bad refnum (Compact)

986 No space has been allocated for specified file

987 Not ablock structured device (Compact)

988 Bad refnum (Flush_Pipe)

989 Caller isnot areader of the pipe _

990 Not ablock structured device (Flush_Pipe)

994 Invalidrefnum (Set_File_Info)

995 Not ablock-structured device (Set_File_Info)

999 Asynchronous read was unblocked before it was satisfied

1021 Pathname invalid or no such entry (Rename_Entry)

1022 No such entry found (Rename_Entry)

1023 Invalidnewname, check for ‘-' in string (Rename_Entry)

1024 New name already exists in catalog (Rename_Entry)

1031 Pathname invalid or no such entry (Read_Label)

1032 Invalid transfer count (Read_Label)

1033 No such entry found (Read_Label)

1041 Pathname invalidor no such entry (Write_Label)

1042 Invalid transfer count {(Write_tabel)

1043 No such entry found (Write_Label)

1051 No device or volume by that name (Mount)

1052 A volume is already mounted on device

1053 mtemit to mount temporarily unmounted boot volume just unmounted from
thislLisa

1054 The bad block directory of the diskette 1s invalid

1061 No device or volume by that name (Unmount)

1062 No volume 1s mounted ondevice

1071 Not avalid or mounted volume for working directory

1091 Pathname 1nvalld or no such entry (Set_Safety)

1092 No such entry found (Set_Safety)

1101 Invalid device name (DEVICE_CONTROL)

1121 Invalid device, not mounted, or catalog is damaged (Reset_catalog)

1128 Invalid pathname, device, or volume not mounted (Get_dev_name)

1130 File is protected; cannot open due to protection violation

1131 No device or volume by that name ,

qoerating Syster Rerference Manusl ror the L1sa Error Messages

1132 No volume is mounted on that device

1133 No more open files in the file 1list of that device

1134 Cannot find space in sysglobal for open file 1ist

1135 Cannot find the open file entry to modify

1136 Boot volume not mounted

1137 Boot volume already unmounted

1138 Caller cannot have higher priority than system processes when
calling ubd

1141 Boot volume was not unmounted when calling rbd

1142 Some other volume still mounted on the boot device when calling rbd

1143 No sysglobal space for MDDF to do rbd

1144 Attempt to remount volume which is not the temporarily unmounted
boot volume

1145 No sysglobal space for bit map to do rbd

1158 Track-by-track copy buffer is too small

1159 Shutdoun requested while boot volume was unmounted

1160 Destination device too small for track-by-track copy

1161 Invalid final shutdown mode

1162 Power 1s already off

1163 Illegal coMmand

1164 Device 1is not a Twiggy device

1165 No volume 1s mounted on the device

1166 A valid volume 1s already mounted on the device

1167 The Device is not blockstructured

1168 Device name is invalid

1169 Could not default mount volume before initialization

1170 Could not mount volume after initialization

1171 '-' 1s not allowed in a volume name

1172 No space avallable to initialize a bitmap for the volume

1176 C&:zlnnot read from a pipe more than half of the allocated physical
size

1177 Cannot cancel a read request for a pipe

1178 Process waiting for pipe data got unblocked because last pipe writer
closed it

1180 Cannot write to a pipe more than half of the allocated physical size

1181 No system space left for request block for pipe

1182 uriter process to a pipe got unblocked before the request was
satisfied

1183 Cannot cancel a write request for a pipe

1184 Process waiting for pipe space got unblocked because the reader
closed the pipe

1186 Cannot allocate space to a pipe while it has data wrapped around

1188 Cannot compact a pipe while it has data wrapped around

1190 Attempt to access a page that 1s not allocated to the pipe

D-9

Qrerating System Rererence Manual for the Li1sa

1191
1193
1196
1197
1198
1199
1200
1201
1202
1203
1204
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1225

1226
1227
1228
1229
1230
1231
1232
1233
1237
1240
1296
1297
1298
1807
1820
1822
1824
1882
1885

Bad parameter (FileIOD)

Premature end of flle encountered (FllelO)
Something is still open on device--cannot unmount
Volume is not formatted or cannot be read

Negative request count 1s 1llegal

Function or procedure 1s not yet implemented

Illegal volume pararmeter

Blank file parameter

Error writing destination flle
Invalid UCSD directory

File not found

Boot track program not executable

Boot track program too big
Error reading boot track program
Error writing boot track program

Boot track program file not found

Can't write boot tracks on that device
Couldn't create/close internal buffer
Boot track program has too many code segments
Couldn't fing configuration information entry

Couldn’t get enough working space
Premature EOF in boot track program

Position out of range
No device at that position

Error Messages

Scavenger has detected an internal inconsistency symptomatic of a

software bug
Invalid device name
Device 1s not block structured

Illegal attempt to scavenge the boot volume
Cannot read consistently from the volume
Cannot write consistently to the volume

Cannot allocate space (Heap segment)
Cannot allocate space (Map segment)
Cannot allocate space (SFDB segment)

Error rebuilding the volume root girectory
Illegal attempt to Scavenge a non 0S formatted volume

Bad string argument has been passed

Entry name for the object is invalld (on the volume)
S-11st entry for the object 1s 1nvallad (on the volume)

No alsk in floppy drive

Write protect error on floppy drive

Unable to clarmp floppy drive
Floppy drive write error

Bad response from Profile
Profile timeout error

D-10

Qoerating System Reference Mamal ror the L1sa Error Messages

1998 1Invalid parameter address
1999 Bad refnum

OPERATING SYSTEM ERROR CODES

The error codes 1isted below are generated only when a non-recoverable error

occurs while inoperating systemcode. Theerrorsare listedby functional
modules of the 0S.

SYSTEM ERRORS FOR THE ASYNCHRONOUS CONTROL UNIT

10050 Request block is not chained toapcb (unblk_req)
10051 bld_req iscalled with interrupts off

SYSTEM ERRORS IN PROCESS MANAGEMENT

10701 No space during StartUp for system segment setup 1ist or global process 1ist head
(Init_GPList and AllocSys_Segs)

10100 An error was returned from SetUp Directory (Get_UnitDir_Entry and
Change_Directory)

10101 Couldn't findunit B1kIO or segment PasLib during Change_Directory

10102 Error>130 trying to create shell (Root)

10103 sem_count>1 (Init_Sem)

10104 Couldn't GetSpace in syslocal for an QbjDescriptor (InitObjFile)

10105 Couldn't GetSpace in IU shared data segment after 20 tries (Get_Shared_ptr)

10197 Automatic stack expansion fault occurred in systemcode (Check_Stack)

10198 Need mem set for current process while scheduling 1is disabled
(SimpleScheduler)

10199 Attempt to block for reson other than I/0 while scheduling isdisabled
(SimpleScheauler)

SYSTEMS ERRORS IN EXCEPTION MANAGEMENT

10200 No space left in systemdata area in Hard_excep
10201 Hardware exception occurred while 1n systemcode
10202 No space left from sigl_excep call in hard_excep
10203 No space left from sigl_excep call innmi_excep
10204 Error from info_event_chncalled inget_evt_num
10205 Error fromwalt_event_chncalled inexcep_prolog
10207 No systemdata space 1n excep_setup

10208 No space left fromsigl_excep call in rangeerror

D-11

Goerating System Reference Manual for the L1sa £rror Messages

10212 Error in term_def _hdl fromenable_excep
10213 Error in force_term_excep, no space ineng_ex_data

SYSTEM ERRORS IN EVENT CHANNEL MANAGEMENT

10401 Error fromclose_event_chn 1nec_cleanup
10402 Actual returned from write data for timer event is not correct

SYSTEM ERRORS IN MEMORY MANAGEMENT

10579 Unable to swap in 0S code segment

10580 Unagle to get space inBld_Seg

10581 Unable toget space inMM_Setup

10582 Unable to get space inFreeze_Seg

10590 Fatal parityerror

10593 Unable to move memory manager segment during startup

10594 Unable to swap ina segment during startup

10595 Unable to get space inExtend_MMlist

10596 Trying to alter size of segment that is not data or stack (Al1t_DS_Size)
10597 Trying toallocate space to anallocted segment (Alloc_Mem)
10598 Attempting toallocate anon-free memory region (Take_Free)

SYSTEM ERRORS IN DRIVER CODE -

10605 Interrupt fromnon-configured device

10609 Interrupt fromnon-configured device

10611 Spurilous interrupt from Twiggy drive #2

10612 Spurious interrupt from Twiggy drive #1 »»»Duplicate Sys error =sss
10633 Got timeout interrupt with no requests to timeout

10637 Nomore “"alarms” available for timeout request

10651 Spurious Profile interrupt

10695 Spurious Parallel printer interrupt

10695 Spurious Parallel printer alarm interrupt

SYSTEM ERRORS IN TIME MANAGEMENT

10600 Error frommake_pipe to make timer pipe

10601 Error fromkill_object of the existing timer pipe
10602 Error from second make_pipe to make timer pipe
10603 Error fromopen to open timer pipe

10604 No syslocal space for head of timer 1ist

D-12

querating System Rererence Manual ror the L1sa £rror flessages

10610 Error from info about timer pipe

10612 No syslocal space for timer 1ist element

10613 Error fromread_dataof timer pipe

10614 Actual returned from read_data is not the same as requested from timer pipe
10615 Error fromopen of the receiver's event channel

10616 Error fromuwrite_event to the receiver’s event channel

10617 Error fromclose_event_chnon the recelver's pipe

D-13

Qperating System Rererence Nanual for the Lisa

Appendix E
FS INFO FIELDS

FS INFO Flelos

DEVICE_T, VOLUME_T:

backup_volid

blocksize

* plockstructured

$ lockeddev

ID of the volume of which this volume Is a
copy.

Number of bytes in a block on this device.
Flag set If this device is block-structured.

boot_code Reserved.

boot_environ Reserved.

clustersize Reserved.

copy Reserved.

copy_flag Flag set if this volume is a copy.

copy_thread Count of copy operations involving this

' volume.

datasize Number of data bytes in a page on this
volume.

aevt Device type.

dir_path Pathname of the volume/device.

DTCC Date/time volume was created If 1t 1s a copy.

DTvB Date/time volume was last backed-up.

DTVC Date/time volume was created.

DTVS Date/time volume was 1ast scavenged.

filecount Count of files on this volume.

freecount Count of free pages on this volume.

fs_overhead Number of pages on this volume required to
store file system data structures.

fs_size Number of pages on this volume.

fsversion Version number of the flle system under which
this volume was initializeq.

» jochannel Number of the expansion card channel

through which this device Is accessed.

label_size Size In bytes of the user-defined labels

associated with objects on this volume.
Reserved. '

machine_ID Machine on which this volume was initialized.
master Reserved.
master_copy_ID Reserveq.

* mounted Flag set if a volume is mounted.

$ mount_penaing Reservea.

* name Name of this volume/device.

$ opencount Count of objects open on this volume/device.

E-1

Qoerating Systerm Reference NMarwal for the L1sa

overmount_stamp

password
$ privatedev
privileged

$ remote

result_scavenge
scavenge_flag

* slot_no

$ unmount_pending

volid

vol_left_mounted

volname
volnum
vol_size

write_protected

FS INFO Flelds

Reserved.

Password of this volume.

Reserved.

Reserved.

Reserved.

Reserved.

Flag set by the Scavenger if it has altered this
volume in some way.

Number of the expansion slot holding the card
through which this device s accessed.
Reserved.

Unigue identifier for this volume,

Flagset if this volume was mounted during

a system crash.

Volume name.

Volume number.

Total number of blocks in the flle system
volume and boot area on this device.

Reserved.

» defined for mounted or unmounted devices
$ defined for mounted devices only
(all other flelds are defined for mounted block-structured devices only)

OBJECT_T:

acmode
olr_path

DTA
DTB

DTC
DT™
. OTS

eof

etype

file_closed_by_GOS

file_left_open

flle_scavenged

Set of access modes assoclated with this
refnum.

Pathname of the directory containing this
object.

Date/time object was last accessed.
Date/time object was last backed-up.
Date/time object was created,

Date/time object was last modified.
Date/time object was last scavenged.

Flag set If eng-of-flle has been encountered
on this object (througn the glven refnum).
Directory entry type.

Flagset If this object was closed by

the operating system,

Flagset If this object was open duringa
system crash.

Flag set by the Scavenger if this object has
been altered in some way.

E-2

Qoerating System Reference Maual for the L1sa

frmark
fs_overhead

ftype

fuid
Kswitch
locked
lpsize
machine_ID
master_flle
name
nreaders

nwriters

nusers
private

protected
psize
refnum

result_scavenge
safety_on

size
system_type
user_type
user_subtype

FS INFO Flelos

Absolute byte at which the file mark polnts.
Number of pages used by the file system to
store control information about this object.
Object type.

Unigue identifier for this object.

Flagset when the object s killed.

Reserved.

Number of data bytes on a page.

Machine on which this object may be opened.
Flagset if this object is amaster.

Entry name of this object.

Numpber of processes with this object open for
reading. '

Number of processes with this object open for
writing.

Number of processes with this object open.
Flag set if this object is open for

privgte access.

Flagset if this object is protected.

Physical size of this object in bytes.
Reference number for this object (argument
t0 INFO).

Reserved,

Value of the safety switch for this object.
Number of data bytes in this object (LEOF).
Reserved.

User-defined type fleld for this object.
User-defined subtype fleld for this object.

E-3

- o e s o = —————
accessing devices: 1.3
ACTIVATE_PROCESS: 3.8
ALLOCATE: 2.186
ALTCONSOLE: 2.1
attribute: 1.3

__________ 8___--_-_-_
binding: 4.1

BIND_ _DATASEG: 4.7
BITEKT: 2.1

blocked process: 1.4, 3

__________ C__________

CARDS_EQUIPPED: 4.1

cataleg: 2, 2.1, 2.18

clock: 5.6

- system calls: 5.9

CLOSE_DATASEG: 4.7

CLOSE_EVENT_CHN: 5.8

CLOSE_OBJECT: 2.1@

code cegment: 4.5

communication between processes: 1.7
COMPACT: 2.18

configuration: 4

- system calls: 4.1

controlling a device: 2.189

- a process: 3.4

CONVERT_TIME: S.9

coprying & file: 2,148

creating a data segmeht (MAKE_DATASEG): 4,7
- & process (MAKE_PROCESS»>: 2.3, 3.8

- an event channel (MAKE_EVENT_CHN): 3.8
- an object (MAKE_FILE, MAKE_PIPE): 2.14

----- m-____D___-__--__
data cegment, local: 4.1
- private: 4.1, 3.4

- shared: 1.7, 4.1, 4.3
- swapping: 4,4

decode: 2.18

dcdata: 2.18

dctype: 2,18

dcversion: 2.10

DECLARE_EXCEP_HDL: 5.7
DELAY_TIME: &.9

device: 2.3

- names (predefined): 2.1
DEVICE_COMTROL: 2.18
directory: 2

DISABLE_EXCEP: 3.7

diek hard error codes: Z2.16

__________ E__-__-__-_

enabled exception: 3.1
EMABLE_EXCEP: 5.7

end of file, logical: 2, 2.7

- physical: 2, 2.7

error messages: D

event: 1.4, §, 5.4

- chanpnel: 1.7, 5.5

- types: C

event mangagement system calls: 5.8
exception: 1.6, S

- enabled: 5.1

- handlers: 5.3

ignored: 3.1

- names: B

- queued: 5.1

exception management system calls: 5.7

__________ F-_---_____
father process: 1.4
file: 2

- access: 2.8

Tabel: 2, 2.6
marker: 2, 2.7

- name: 2.1

private: 2.8
shared: 1.7, 2.8
file csystem: 1.2, 2
- calls: 2.19

FLUSH: 2.10
FLUSH_DATASEG: 4.7
FLUSH_EVENT_CHN: 5.8
FLUSH_EXCEP: 5.7
FS_INFD fields: E

__________ G_____..__--

b2

GET_CONFIG_NAME: 4.1
GET_NEXT_EMTRY: 2.18@
GET_TIME: 3.9
GET_WORKIMNG_DIR: 2.16
global access to files: 2.8

__________ H__________
hard error: 2.10
hierarchy of processes: 3.2

ignored exception: 3.1
INFO: 2.10
INFO_ADDRESS: 4.7
INFO_DATASEG: 4.7
INFO_EVENT_CHN: 5.8
INFO_EXCE: 5.7
INFO_LDSN: 4,7
INFO_PROCESS: 3.8
input & output: 2
interprocess communication: 1.7
170 2

- e o = K __________
KILL_DATASEG: 4.7
KILL_EVENT_CHN: 5.8
KILL_OBJECT: 2.18
KILL_PROCESS: 3.8

__________ L_-__~--___

label: 1.3

LDSM: 4.2

LECGF: 2, 2.7

local data segment: 4.1

local data cegment number: 4.2
logical end of file: 2, 2.7
LOOK_UPF: 2.18

LOWER: 2.1

MAINCONSOLE: 2.1
MAKE_DATASEG: 4.7
MAKE_EVENT_CHN: 5.8
MAKE_FILE: 2.18
MAKE_PIPE: 2.10

[T

MAKE_PROCESS: 3.8

MODDF: 2.4

medium descriptor data file: 2.4
memory management: 1,5, 4
- system calls: 4.7
MEM_INFO: 4.7

MU 4

MOUNT: 2.140

mounting & device: 1.3
MY_ID: 3.8

naming & device: 1.3
naming a file: 1.3

__________ 0..__-....-_.._
OPEN: 2.10
OPEN_DATASEG: 4.7
OPEM_EVENT_CHN: 5.8
0S interface: A
05_BOOT_VOL: 4.1

page: 2.4

- descriptor: 2.4
parameter memorys 4
PARAFPORT: 2.1

pathname: 1.3

PEQF: 2, 2.7

physical end of file: 2, 2.7
pipe: 1.7, 2.9

priority of devices: 2.3
private data segment: 4.1, 4.4
private file: 2.8
procecss: 1.4, 3

- blocked: 1.4, 3

- contreol: 3.4

- creation: 3.3

- father: 1.4

- hierarchy: 3.2

- ready: 1.4, 3

- rupning: 1.4, 3

- scheduling: 3.5

- son: 1.4, 3

- structure: 3.1

- terminated: 1.4, 3
process system calls: 3.8

queued exception: 5.1

___________ R___-------
ready process: 1.4, 3
READ_DATA: 2.18
READ_LABEL: 2.18
refnum: 2.8
RENAME_ENTRY: 2.18
RESET_CATALOG: 2.16
R82324: 2.1

RS232zB: 2.1

running process: 1.4, 3

___________ S_____-____
scheduler: 3

scheduling processes: 3.5
SEND_EVENT_CHN: 5.8
SETACCESS_DATASEG: 4.7
SETPRIORITY_PROCESS: 3.8
SET_FILE_INFQO: 2.18
SET_LOCAL_TIME_DIFF: 5.9
SET_SAFETY: 2,16
SET_WORKING_DIR: 2.18
shared data segment: 1.7, 4.1, 4.3
shared file: 1.7, 2.8
SI1GNAL_EXCEP: 5.7
SI1ZE_DATASEG: 4.7
SLOTxCHANy: 2.1

soft error: 2.180

son process: 1.4

storage device: 2.3
structure of processes: 3.1
SUSPEND_PROCESS: 3.8
swapping: 4.4

system calls, clock: 5.9

- contiguration: 6.1

- event management: 5.8

- exception management: 5.7
- memory management: 4.7

- process: 2.8

svstem clock: 5.4

sycstem defined exceptions: 5.2
SYS_OVERFLOW: B
SYS_SON_TERM: C
SYS_TERMINATE: B

rn

$75_UALUE_DOB: B
SYS_ZERO_DIV: B

___________ T ——

terminated proceccs: 1.4,

TERMINGTE _PROCESS: 3.8
TRUNCATE: Z.1@

__________ Umm e mmmm
UNBIND_DATASEG: 4.7
UMKILL_FILE: 2.1@
UNMOUNT: 2,18

UPPER: 2.1

__________ U__________
volume catalog: 2.9
valume name: 1.3

WAIT_EVENT_CHW: &.&
working directory: 2.2
WRITE_DART&: Z2.16
WRITE_LABEL: 2.180
YIELD_CPU: 3.8

]
- e

-
-

MANUAL was produced using
LisaWrite, LisaDraw, and
Lisal.ist.

L PRINTING was done with an
Apple Dot-Matrix Printer.

4 _ . ™
@ Lisa

~We use it ourselves.

	00-00
	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	B-01
	C-01
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	E-01
	E-02
	E-03
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	X-01

