
WORKSHOP USER'S GUIDE
for the Lisa -

Beta Dmft
ApriJ 1983

CO TENTS

1. INTRODUCTION
The WorKshop proll i des tool s for program delJe 1 opmen t. It proll ides
fac iIi ties for ed it i ng, 1 anguage process i ng, and debugg i og, as we 11 as
commands for managing files and configuring the system. The system
al so i ncl udes many other ut iIi ties.

2. THE Fl LE MANAGER
The FileManager allowsyou tomanage andmanipulate files and volumes.

3. THE SYSTEM MANAGER
The System Manager allows you to set default and configuration
parameters for the Lisa, and manage processes.

4. THE EDITOR
The Editor allows you to create andmodif>' text files. These text file,:.
are used as input to the Comp i leI' and the Assembl er.

5. THE PASCAL Cct1PI LER
The Compiler translates Pascal source code into object code.
Translation requires two steps: first the compiler translates Pascal
into I-code; then the code Generator translates the I-code into obj«Ct
code •.

6 • THE ASSEMBLER
The Assembl er trans 1 a tes assembl y J anguage programs into obj ect code.

7. THE LINKER
The Linker combines object code fi les into executable programs.

8. THE DEBUGGER
The Debugger allows you to examine memory, set breaKpoints, and perform
other run-time debugging functions.

9. USlNG EXEC FILES
e:xec files allow you to execute a series of commands and programs
automatically.

10. THE UTI LITI ES
Util ity programs are provided for debugging, configuring the system,
and man i pul at i ng files.

APPENDICES

A. ERROR MESSAGES

WorKshop· User's Guide for the Lisa

Cha.pter 1

INTRODUCTION

Introdudion

1.1 The Workshop •••••••••••••••••••••••••••••.••••••••••••••••••••••• 1-1
The WorKshop provides the functions necessary to develop and run programs
on the Lisa. The WorKshop can be booted from either a disKette or a. Profile.

1.2 Starting the Work$hop •. • • • • • • . . . • • . . .• 1-1
The WorKshop is started by booting the Lisa from a disK· containing the
WorKshop software. You can use the e:nvironments window to select one of
several available environments.

1.3 The WorKshop User Interface •• 1-3
The WorKshop user interface consists of three command lines: the WorKshop
command line, the File Manager, and the System Manager.

1.4 File System Organization and Naming •••••••••••••••••••••••••••••• 1-4
Files are stored on disk volumes and are accessed by specifying the volume
name and the file name.

1.5 Using Utility Programs • • • • • • • • • • • • • • • •• •• 1-7
Utility programs provide additional functions for the WorKshop. A· utility
program is started by choosing the RUN command from the WorKshop
command line.

1.6 How do I Write and Run a Pascal Program? 1-8
A Pascal program is written with the e:ditor. The source file must be
compiled and linKed before it can be run.

1.7 How do I write and Run an Assembly language Program? 1-8
An assembly language program is written with the e:ditor. It must be
assembled and linked with a Pascal main program before it can be run.

1.8 How do I Use the BASIC Interpreter? •• 1-8
A BASIC program can be written using either the Editor or the BASIC
interpreter to create the source file. The BASIC interpreter will run the
program.

1.9 How do I write a COBOL Program? 1-8
A COBOL program is written with the e:ditor. After writing the program,
enter. the COBOL language system to compile and run the program. The
COBOL system is invoKed by pressing C in response to the WorKshop command
prompt.

1.1 e The Operating Syst8'm • . . • • . • 1-8
The WorKshop runs under the Operating System for the lisa computer. You
can access operating system routines through the SYSCAll interface. More
information about this interface can be found in the Operating System
Reference Manual for the Lisa.

alpha draft 1-1 27 January 1983

WorKshop User's Guide for the lisa Introduction

a I pha draft 1-2 27 January 1983

WorKshop User's Guide for ~he Lisa Introduction

INTRODUCTION

1.1 The WorKshop Manager.
The Workshop allows you to develop and run programs on the Lisa. It provides
tools necessary to write, debug, and run programs in Pascal, BASIC, and
COBOL. This manual explains how to use ~he WorKshop and all of its tools.

Access to all WorKshop functions is provided by command lines. The main
command line, WORKSHOP allows you to edit programs, run utilities or user
programs, and use the various languages available on the system. It also
provides access ~o two SUbsystems; the File Manager, and the System
Manager.

The File Manager allows you to copy, delete, rename, and list disK files. It
includes a bacKup function, and functions for manipulating volumes. These
functions . are listed in the FILE- MGR command line, which is similar to the
main command line. (See Chapter 2.>

The System Manager provides for system configuration and defaults and
process managment. Its commands are listed in the SYS-MGR command line.
(See Chapter 3.)

All command lines are displayed at the top of the Lisa screen. If there are
more commands than will fit on one line, a U?" is at the end of the line.
Pressing U?U will display the remaining commands. To access any command,
press the first character· of the command name. To redisplay the first
command line, press RE:TURN.

Most commands will asK for additional information. Type in the information
using the Lisa keyboard. Some questions have a default value, displayed in
square bracKets «(defaultJ). To accept the default value, press RE:TURN. If
you don't want the default value, type in the value you want.

The Lisa system can display one of two screens, called the main screen and
the alternate screen. The WorKshop system normally displays on the main
screen. The alternate screen is used by the system debugger. You can
change to the other screen display by pressing the right hand OPTION and
E:NTER Keys. The System Manager contains the Console command, which can
be used to spet:ify where the WorKshop should display.

The WorKshop can be used to write programs in Pascal, COBOL, and BASIC.
To use these languages, refer to the appropriate language manuals. In
addition to this manual, you will need:

For Pascal Programming:

• Pascal Reference Manual for the Lisa

• MC68000 16 Bii: Microprocessor User's Manual (for assembly language
programming)

• Operating System Reference Manual for the Lisa (for information on
system calls)

aJpha draft 1-3 27 January 1983

WorKshop User's Guide for the Lisa

For BASIC Programming:

• BASIC User's Guide for the Lisa

For COBOL Programming:

• COBOL User's Guide for the Lisa.

• COBOL Reference Manual for the Lisa

Introduction

If you have only a BASIC or COBOL system, you will not have all the software
described in this manual. The portions of this manual that will be most useful
to BASIC and COBOL programmers are:

• The Introduction, which describes how to use the1NorKshop;

• The File Manager, which describes files and how to manipUlate them.

• The System Manager, which describes setting up the system
configuration parameters.

• The E:ditor, which describes how to create and modify text files that are
used as source files.

You may also use some of the utilities if they are included in your software.

1.2 Starting the Workshop
The WorKshop can be booted from a disKette or a Profile.
commonly be used with a. Profile.

It will most

To start the system, boot from a disK that contains the WorKshop software.
If your disK contains only· the WorKshop environment, the WorKshop command
line will appear at the top of the screen. If you have more than one
environment (for example, the Workshop and the desKtop) you can use the
E:nvironments window to start up the environment you want, and switch
between them.

The E:nvironments Window allows you to seled the environment you wan1: to
s1:art. You can also set a default environment that will be started
automatically when you boot the system. To access the environments window
while booting the system, press any Key while 1:he Lisa is starting up. The
environments window will be displayed.

The E:nvironments window is shown in Figure 1-1. It displays five buttons:

Power Off Turn off the Lisa
Restart Reboot or reset the Lisa
Start Start the selected environment
Set Default Set the default· to the selected environmen1:
No Default The E:nvironments window will always be displayed on

startup.

To select an environment, move the pointer to the checKbox of that
environment and click the mouse button. Then move the pointer to the sta.rt
button and clicK. The selected environment will start. .

To access the Environments window from the WorKshop, and select another

alpha draft 1-4 27 ,January 1983

Workshop User's C;",ide for the Lisa Introduction

environment, use the Quit command from the WorKshop command line, or
press the on-off button. To access the Environments window from the
DesKtop, press the on-off button while holding down the (apple) Key.

(Restart

o au ice System

• Workshop

o as

Environments

(Power Off

(Set Dehult)

Start J

Figure i -1. The Environments Window

1.3 The Workshop User Inter-face.
When the worKshop environment· is selec1ed, the system will come up with the
WorKshop command line at the top of the screen. This command line lists all
the actions you can currently request of the system. The WorKshop line
displayed contains only some of the commands available. The rest of the
commands can be displayed by pressing "?" I the last symbol on the line. The
original command line can be redisplayed by pressing RETURN. A command is
executed by pressing the first letter of the command name.

There are two other subsystems that have separate command lines; the

a. J pha. draft 1-5 27 ,Tanuary 1983

WorKshop Userls Guide for the Lisa Introduction

File-Manager, and the System-Manager. Their command lines can be
accessed from the WorKshop command line, and are used the same way.

You can terminate the operation of most commands by pressing (apple)
period. You can turn off the Lisa by pressing the on-off button at any time.
The system will shut down in a.n orderly ma.nner. A disKette can be inserted at
any time. It will automatically be mounted and accessible. DisKettes are
ejected by pressing the disKette button.

The main, or WorKshop, command line is as follows:

WORKSHOP: Fl LE-MGR, SYSTEM-MGR, Ed it, Run, Pasc a 1 , Bas i c, Cobol, Qu it, ?

The additional portion, displayed by pressing "?", is:

Assemble, Debug, Link, MakeBackground, Generah

All the main command line commands are described below.

FILE-MGR (F)
This command puts you into the File Manager subsystem, which is used to
manipUlate the files and volumes on the system. For more information on the
file manager, see Chapter 2 in this manual.

SYSTEM-MGR (S)

This command puts you into the System Manager subsystem. This subsystem
provides various configuration and utility functions. See Chapter 3 in this
manual for more information.

Edit (E)

The Edit command puts you into the text editor, which is used to create and
modify text files. The e:ditor is used to create source files for BASIC,
COBOL, and Pascal. It is also used for assembly language programming and to
create exec files. The e:ditor is described in Chapter 4 in this manua.l.

Run (R)
The Run command causes a compiled and linKed program to e>:ecute. This
command is used for user-written Pascal programs, utility programs, and any
other software that runs under the WorKshop. The Run command asKs you for
the file to run. This file must be an executable object file or an exec file. (An
exec file name must be preceded by a "<" .) If you do not give it a complete
pathname, the Run command will search through up to three default volumes
for the file. These defaults can be set by the File-Managerls Prefix
command. See the Prefi>: command in Chapter 2 for more information.

The Run command will also accept an "exec file" as input. An exec file is a
scenario of commands for the WorKshop system to carry out. An exec file
name must be preceded by a "<" to be processed correctly. For mor-e
information on e:<ec files, see Chapter 9 in this manual.

Pascal (P)

This command starts the Pascal compiler. The compiler asKs for the input
file, which must be a text file; the listing file; and the .output file, which will
contain the object file. The Pascal compiler is described in Chapter 5.
Further information on the Pascal language can be found in the Pascal

aJpha draft 1-6 27 January 1983

WorKshop User's Guide for the Lisa Introduction

Reference Manual for the Lisa.

The compilation is done in two steps. The first step, done by the Pascal
command, produces an intermediate code file. After this, you must use the
Generate command, (press G) to generate an object file from the
intermediate code file.

Basic (S)

This command puts you into the BASIC interpreter. More information on
BASIC programming can be found in the BASIC User's Guide for the Lisa.

Cobol (e)

This command puts you into the COBOL language system. More information
on COBOL programming can be found in the COBOL User's Guide for the Lisa
and the COBOL Reference Manual for the Lisa.

Quit (Q)

The Quit command ends the Workshop environment.
Environments window to start another environment.

Assemble (A)

You can access the

The Assemble command starts the assembler. Further information on the
assembler can be found in this manual in Chapter 6. Additional information on
the assembly language can be found in the MC 68000 Microprocessor User's
Manual.

Debug (D)

The Debug command causes your program to run with a breaKpoint inserted at
the first instruction in the program, so you can use the debugger on the
program. More information on the Debugger can be found in Chapter e of this
manual.

Link (l)

The Link command executes the linKer. The LinKer is used to prepare
compiled Pascal programs and assembled routines for execution, and to linK
together separately compiled pieces of a program. The linKer is described in
Chapter 7.

Mal<eBad<ground (M)
The MaKeBacKground command allows you to start up a bacKground process,
then continue using the WorKshop for other functions. It is assumed that the
bacKgrond process will not try to display on the console.

Generate eG>
The Generate command converts intermediate code files produced by the
Pascal compiler into object code. It is used with the Pascal compiler and is
described in Chapter 5.

1.4 File system organization and naming
Files are stored on volumes, that are mounted on devices. A volume has a
name and a directory of files tha.t it contains. A file is specified by giving the
name of the volume and the name of the file:

-volumename-filename

aJpha draft 1-7 27 January 1983

WorKshop User's Guide for the Lisa Introduction

The WorKshop maintains a worKing directory; you can access files in it
without specifying a volume name. The worKing directory can be. changed by·
using the File Manager's Prefix command. Files on the worKing directory can
be specified by just the file name. with no leading "_":

filename

Further information on the file system can be found in Chapter 2 of this
manual and in the Operating System Reference Manual for the Lisa .•

1.5 Utility Progra.ms.
There are various utility programs provided with the WorKshop. These are
used for functions not as commonly used as the commands.

The utilities are described in Chapter 1e.
You must Run utilities. Select the Run command from the main command line
by preSSing R when the main command line is displayed. The system will ask
you for the name of the file to run. Type in the name of the utility you want to
run.

1.6 How do I Write and Run a Pascal Program?
To write and run a Pascal program, proceed as follows:

1. Use the Editor to create a text file with the Pascal source program. See
Chapter 4 in this manual for more information on editing the file. See
the Pascal Reference Manual for the LIsa for information on the
language.

2. Compile the program using the Pascal command (press P while the
Workshop command line is displayed) from the main command line. The
output from the compiler is an intermediate file.

3. The output from the Pascal command is an I-code file. Use the Generate
command to convert the I-code file into an object file. To use the
Generator, press G when the WorKshop command line is displayed. See
Chapter 5 for more information on compiling Pascal programs.

4. linK the program using the linK command. In order to be executable,
the program must be linl<ed with the Pascal support routines contained
in IOSPASLIB. For other applications you may also use other libraries
and units, or assembly language routines. More information on the
linKer can be found in Chapter 7.

5. The linker produces an executable object file. Press R to run the
program.

Information on maKing system calls from Pascal can be found in the Operating
System Reference Manual for the Lisa.

1.7 How do I Write and Run an Assembly language Program?
Assembly language programs must be called as proceduMls of functions from a
Pascal main program. To write an assembly language routine, proceed as
follows: .

1. Use the Edi.tor to create an assembly language source program. See

alpha draft 1-8 27 January 1983

WorKshop User's Guide for the Lisa Introduction

Chapter 6 of this manual for information on assembly language.
Chapter 4 describes the Editor.

2. Press A to execute the Assembler. The Assembler accepts the text file
you created and produces "an object file.

3. Declare the routines you wrote in assembly language as EXTERNAL in
the main Pascal program that calls them.

4. Use the Pascal and Generate commands to create an object file from the
Pascal program. See Section 1.6 for more information.

5. Use the LinK command to linK the Pascal object file, the assembly object
file, IOSPASLIB, and any other needed units or libraries.

6. Use the Run command to run the resulting object file.

1.S How do I use the BASIC IntRl'Fftter?
To use the BASIC interpreter, proceed as follows:

1. Use the Easic command by pressing E when the main command line is
displayed. You will enter the EASIC interpreter.

2. Enter the EASIC language statements and commands necesary to write
and execute your program. The BASIC interpreter can execute
statements immediatly or save them to run later. You can return to the
main command line by using the BASIC command EYE.

You may also use the Editor to prepare or modify the EASIC source program,
then use the BASIC interpreter to run it. See Chapter 4 in this manual for
more information on the Editor.

See the BASIC User's Guide for the Lisa for more information on the
language.

1.9 How do I Write a COBOL Program?
To write a COBOL program, proceed as follows:

1. Create a text file containing the source. program by using the Editor.
See Chapter 4 in this manual for more information on the editor.

2. Press C to enter the COBOL language system. More information on
COBOL programming can be found in the COBOL User's Guide for the
Lisa and the COBOL Reference Manual for the Lisa.

1.19 The Operating System.
The WorKshop runs under the Operating System of the Lisa computer. You
can use some operating system routines from a Pascal program to perform
special system functions for you. These system calls are defined in the
intrinsic unit SYSCALL More information on the syscall interface and
routines can be found in the Lisa Operating System documentation.

alpha draft 1-9 27 January 1983

WorKshop User's Guide for the Lisa The File Manager

Chapter2

THE FILEMANAGER
2.1 The File Manager ••••••.•.•...••.....•••.•..••••.•••..•.•.••.••.••• 2-1
The File Manager allows you to manipulate files, volumes, and devices.

2.2 Using the File Manager•.••••.•.....••.•.•..•.••..•...•.•••..•. 2-1
Press F at the worKshop command line to display the File Manager commands.
The first letter ·of each File Manager command maKes it worK.

2.3 The File Manager Commands 2-1
This section lists and defines all File Manager operations.

2.4 DisK Storage Organization and File Naming ••••••••••••••••••••••••• 2-6
Each disK can contain a volume which has a directory of files. File extensions
(.TEXT, .OBJ, etc.) are added to some files with special uses.

2.5 Using Wild Card Characters ••••••••••••••••••••••••••••••••••••••• 2-7
Wild card characters allow you to na.me groups of files by giving filename
patterns to be be matched. The wild card characters are =, $ t ?

2.6 How do I Copy a Fill? •.•••••• I.' •••••••••••••••••••••••••••••••••• •• 2-8
To copy a file, use the File Manager Copy command. If you want the old file
deleted after the copy is successful, use the Transfer command. You can
copy multiple files by using wild cards.

2.7 How do I De-lete a File?•......•.•.•••...•.....•..• 2-9
To delete a file, use the File Manager Delete command. You can delete more
than one file by using wild cards.

2.8 How do I Create and Use a Volume? ••••••••••••••••••••••••••••••••• 2-9
Use the Initialize command to crea.te a volume. The volume must be mounted
before you can use it.

2.9 How do I Change the Name of a File or Volume? 2-10
To change the name of a file or volume, use the Rena.me command.

2.10 How do I list Existing Files? 2-10
To list all the files on a volume, use the List command or the Names command.
You can use wild cards to list subsets of the files on the volume.

Alpha draft 2-1 27 January 1983

WqrKshop User's Guide for the Lisa The File Manager

Alpha draft 2-2 27 January 1983

WorKshop User's Guide for the Lisa The File Manager

THE Fl:LEMANAGER

2.1 The File Manager
The File Manager is a subsystem o-f the WorKshop that provides HIe and
device manipulation facilities. It handles most of the tasKs of transferring
information from one place to another. Using the file manager, you can do
such things as maKe copies of files, list directories, rename or delete files,
find out what volumes are on line, initialize new disKs or disKettes, print
files, and so on. See the Operating System Reference Manual for the Lisa for
more information on the -file system and supported devices.

A file specifier can be an OS pathname (representing a file on a disK or
disKette), an OS volume name (for example, -MYDISKh the name of a physical
device (for example -RS232A)' or the name of a logical device (for exampel
-PRINTER). File specifiers may contain wildcards (see section 2.5) allowing
them to specify a collection of files. '

2.2 Using the File Manager
To use the File Manager, press F in response to the WorKshop command
prompt. The File Ma.nager begins executing, and displays the File Manager
prompt line.

The File Manager prompt line is:

FILE-MGR: Backup, Copy, Delete, List, Pre-fix, Rename, Transfer, Quit, ?

To display the additional commands, press "?". The line of additional
commands is:

Equal, File Attributes, Initialize, Mount, Names, Online, Scavenge, Unmount

To redisplay the original command line, press RETURN.

To execute any command, press the first character o-f that command when the
File Manager command line is displayed. Most commands will asK for file
names, or other input parameters. H there is a default value for a parameter,
it is displayed in square bracKets «(default). To accept the default, just
press RETURN. H you do not want the default, type in the response you want.

2.3 The File Manager Commands
The File Manager commands are listed in the File Manager prompt line. They
are: Backup, Copy, Delete, List, Prefix, Rename, Transfer, Quit, Equalt
FileAttributes, Initialize, M aunt, Names, Online, Scavenge, and Unmount.

Some of these operations can be performed eHher on a single file, or on a list
of files specified by wild card charac1:ers.

Each of these operations is described below. Information on wild card
characters can be found in section 2.5 below.

2.3.1 Backup (B)

Alpha draft 2-3 27 January 1983

WorKshop User's Guide for the Lisa

This command executes a simple bacKup utility; similar to Copy. It asKs for
source and destination file specifiers, which will most liKely contain wild
cards, (see Section 2.5) and compares the source files to the destination
files. Whenever the contents of the two files are not equal, the file is copied.
If a source file is misSing from the destination, it is copied.

2.3.2 Copy (C)
The Copy command copies files. It asKs for a source file specifier and a
destination file specifier. You may use wildcards if you want to copy more
than one file. The source file(s) a.re not changed by this command.

The default is not to verify copy· operations. You can change this default
with the Validate command in the System Manager. If you change i:hedefault,
the source file will be compared to the destination file after the copy
operation to insure thai: they are the same. The Validate command is
described in Chapter 3.

You can copy files to the -PRINTER or the -CONSOLe: logical devices. Text
files (ending in ".text") will be displayed a.s a. text file. All other files will be
sent byte by byte •

2.3.3 Delete CD)
The Delete command is used to delete a file or a number of files specified by a
wild card expression. It 0.51<5 you to specify the files to be deleted.

2.3.4 List (l)

The List command lists information about the files matching the given file
specification. If all you need is the names of the files, use the Names
command described below.

• If the file specifier is a file name (for example -MYDISK-example.text)
that file is listed.

• If the files specifier is a volume name (for example -MYDISI{),
information about all files on the volume is listed.

• If the file specifier includes a wildcard character (for example,
-MYDISK-=.text) information about all matching files is listed.

The list command

Filename

Alpha draft

Size
Psize
Last-Mod-Date
Creation-Date
Attr

displays the following information:

The name of the file~
The logical file length in bytes.
The physical length of the file in blocKs.
Date and time the file was last changed.
Date and time the file was created.
File attributes, a combination of the following:

C File was closed by the OS
L File is locKed (cannot be deleted)
o File was left open when the system crashed
P File is Protected
S File has been Scavenged •.

2-4 27 January 1983

WorKshop User IS Guide for the Lisa The File Manager

An example of the list display is shown in figure 2-1.

Contents of volullle -PARAPORT-= .
Filename Size Psize Last-Mod-Date Creation-Date Attr

ALERT
am~2
ASSEMBLER.OBJ
B'HEDIFF.OBJ
CHANGESEG.OBJ
c hs lib. obj
CODE.OBJ
CODES I 2E. OBJ
D.LIST
dblib.obj

2.3.5 Prefix (P)

13824
1824

51712
2568
2848
1536

6a928
8784

292
76288

27 81/31/83-11:17 81/a4/83-18:59
2 al/19/83-19:S6 81/12/83-14:SS

181 82/84/83-16:43 82/84/83-15:43
S 82/84/83-16:43 82/82/83-17:18
4 82/84/83-16:43 82/82/83-16:52
3 81/25/83-15:15 81/2S/83-1S:15

119 82/84/83-16:44 82/84/83-15:24
17 82104183-16:44 82/82/83-16:57
1 81/a8/83-82:a6 81/88/83-82:86

149 81/31/83-11:17 81/8S/83-15:84 CO

Figure 2-1. The List Display

This command allows you to se"!: up default volume names to search when you
specify a file name without a volume name. You can set a sequence of up to
three volume names that will be searched in order when you try to run a
program until the file is found. The first prefix is the name of the worKing
directory. It will be searched anytime you specify a filename without a
volume name. Boot defaults for prefixes can be set using this command. The
second and third prefixes will be searched when you try to Run a program
without specifying the volume it is on.

This command asKs you for the three prefixes. If you want to accept the
default, (if any), press RETURN. If you want to set a prefix, type in the
volume name. If you want to have no prefix, press CLEAR as the prefix for
that level.

2.3.6 Rename (R)
The Rename command allows you to change the name of a file. It asKs for the
filename to change and the name to change it to. You can also use the Rename
command to change the name of a volume. The Rename command can change
the name of a number of files by using wild cards. See Sections 2.5 and 2.9 for
more information.

2.3.7 Transfer (T)
The Transfer command asks for an input file specification and a destination
file specifica.tion. It copies the input filets) to the destination and then, if
the copy was successful, deletes the input file(s). If you Transfer to the
-console or the -printer, the input file will not be deleted.

2.3.8 Quit (Q)

This command exits. from the File Manager subsystem to the WorKshop
command line.

2.3.9 Equal (E)

The Equal command compares the contents of two files to determine whether
they are exactly the same. Ii asks for the names of the files to compare, then
compares them byte by byte and tells you if they are eq~l or unequal.

2.3.10 File Attributes (F)

Alpha draft 2-5 27 January 1983

WorKshop User's Guide for the Lisa The File Manager

This command is used to set file attributes. You can set the safety attribute,
which maKes the file so you cannot accidentally delete it. In order to delete a
file with the sasfety attribute set, use the FileAttributes command to unset
the attribute on the file. You can also maKe a file into a protected master.

Use the FileAttributes command by pressing F in response to the File
Manager command prompt. It displays a command line:

FileAttributes: ClearAttributes, Safety, Protect, Quit.

These commands are accessed by pressing the first. character of the
command. They . per-form the following functions:

ClearAttributes (e)

The clear attributes command clears the C, 0, and S attributes on the
specified volume. These attrubutes are set by the system, and have the
following meanings:

C File was closed by the Operating System
o File was left open when the system crashed.
S File has been scavenged.

The clear attributes command should be used before scavenging a volume so
that you can tell if any files were changed. See the Scavenge command in
Section 2.3.15 below for more information.

Safety (S)

The Safety command allows you to set or remove the safety attribute· on any
file. When the safety attribute is set, the file cannot be deleted. To delete a
file with safety on, use this command to remove the attribute, then delete
the file.

Protect (P)
The Protect command is used to maKe a file into a protected master. This is a
form of copy protection for object files. Once a file is made into a protected
master, this protection cannot be removed. A protected master has the
following characteristics:

• It can be run on any Lisa machine

• It can be copied on anyone Lisa machine •

Alpha draft

• Copies made will run only on the machine that made the copies •

• After the file is copied the first timet further copies of the master
can be made only on the same machine.

2-6 27 January 1983

,WorKshop User's Guide for the Lisa The File Manager

NOTE

Once a file is made into a protected master, there is no way to
unprotect it. Be sure you understand the characteristics of a
protected master before you create one.

This protection scheme is for executable object files. Note that
protecting a file does not prevent you from deleting it.

Quit (Q)

The quit command exits you from the file attributes subsystem to the File
Manager.

2.3.11 Initialize m
The Initialize command is used to set up an OS device. It is used to format
and initialize the file system on a disKette or ProFile. It asKs you for the
device name to initialize, the number of blocKs to initialize, the volume name,
and password. If you want the entire device to be inii:ialized, enter RETURN
(accepting the default) for the number of blocKs. If the device is a disKette,
it is formatted (ProFiles are factory formatted). Boot tracKs are
automatically written to any device that is initialized. An initialized device
is automatically mounted.

The initialize command will warn you if you attempt to initialize a disK that
already contains a volume. A volume is inii:ialized to allow a certain maximum
number of files. You can maKe this number larger or smaller (if you know you
will have a large number of small files, for example) when initializing it.

2.3.12 Mount (M)
This command is used to maKe an OS device accessible. It requests a device
name. It should be used whenever you connect a new device, such as a Profile.
The Unmount command, described below, is used to remove a device. All
configured devices are mounted at boot time. The configuration can be
changed with the Preferences tool, which is described in Section 3.3

2.3.13 Names (N)
The names commandis a faster version of the List command. It gives you a list
of file names only. It asKs for a file specifier, and displays the names of all
files matching the given file specifier.

2.3.14 Online (0)
The Online command produces a list of all the devices that are currently
mounted and available. It tells you the devices mounted, the names of the
volumes contained on them, the number of files on each volume, the size of
the volume, and the amount of free space on it. The online display gives the
following information:

Alpha draft

Volume Name
VolSize
OpenCount
FreeCount

The name of the volume.
The number of blocKs on the volume.
The number of files open.
The number of blocKs still available.

2-7 27 January 1983

WorKshop User's Guide for the Lisa

FileCount
VolA't .

The number of files stored on the volume.
The attributes of the volume:

B the boot volume.
P the prefix volume.
M volume is currently mounted.

The Online display is shown in Figure 2-2.

The File' Manager

FILE-MGR: Backup, Copy, Delete, List, Prefix, .Rename, Transfer, Quit,?

Volumes on line
VolumeMame VolSize OpenCount FreeCount Fi leCount lJolAtr
---------- --------- --------- ---------
dirksa4 9729 27 1119 238 HBP
SLOT2CHAN2 e 9 9 e H
RS232A 9 9 e e H
RS232B 9 e 9 e H
HAINCOMSOLE 9 1 e 9 H
ALTCONSOLE e e e e M

Figure 2-2. The Online Display

203.15 Scavenge (S)
This command runs the OS Scavenger which restores damaged files. Files can
be damaged any time the system terminates abnormally. The Scavenger
searches through a disk and restores its directories, files, and allocation
tables to a consistent state.

A disk must be unmounted before it can be scavenged. Use the unmount
command to unmount the disK, scavenge it, then mount it again to continue
using it. The boot volume cannot be unmounted; therefore it cannot be
scavenged. If the ProFile is normally your boot volume and you need to
scavenge it, it is necessary to boot from a disKette and run the Scavenger
from it.

If a file is changed in any way by the Scavenger! the file attributes will be set
to S, for scavenged. This a-ttribute is displayed by the List command. The
changes made to the file mayor may not affect the data in the file, depending
on what state the file was in when it was scavenged. Ched< any file with the
Scavenged attribute before relying on its contents. After the file has been
checKed, the Scavenged attribute can be removed with the FileAttributes
command.

Alpha draft 2-8 27 January 1983

WorKshop User IS Guide for the Lisa The File Manager

NOTE

The file system can get into an inconsistent state because the
directories and allocation tables are Kept in memory and only written
out to disK periodically. If there is an abnormal termination, such as a
power failure, the changes to the state of the file system since these
tables were written to disK will be lost. Information can also be lost if
you disconnect a ProFile from the Lisa without first un mounting it. If
the diSK is used after such an event, more data can be lost if the
system allocates the same blocKs to more than one file.

The Scavenger will always return the diSK to a consistent state, but it
is possible to lose data when the system crashed. This damage can
become even worse if the diSK is used while in an inconsistent state.

All Scavenged files should be checKed before you depend on their
contents.

2.3.16 Unmount (U)

This command maKes a device inaccessible. It asKs for a device name. Always
unmount a device before disconnecting it.

2.4 DisK Storage Organization and Naming
Each disK contains a volume. The volume name is the name of the disK.
Volumes are created with the Initialize command, which sets up the disK and
puts an empty directory on it. As files are entered on the disK, their names
are entered in the directory. A complete path name consists of a volume name
followed by the file name in the following format:

-volname-filename

A worKing directory is maintained by the WorKshop allowing you to access
files on it without using the volume name. This worKing directory defaults to
the boot device. The worKing directory can be changed by the Prefix
command. The worKing directory is the first prefix specified in the Prefix
command. Files on the worKing directory are specified by just the file name,
with no leading "_":

filename

A volume must be mounted before it can be accessed. Volumes a.re mounted
with the Mount command in the File Manager. To mount a volume, you specify
the device on which it resides. Device names that can be used for disKs are as
follows:

-UPPER
-LOWER
-PARAPORT
-SLOT2CHAN2

The upper disKette. Drive 1.
The lower disKette. Drive 2.
ProFile attached to the parallel port.
ProFile attached to the N-port card in slot 2, channel 2,
etc.

There are also two serial devices, -RS232A and -RS232B. These provide

AI pha draft 2-9 27 January 1983

WorKshop User's Guide for the Lisa The File Manager

access to external RS232 devices.

There are three logical devices that can be used for input and output. These
devices are:

-CONSOLE

-PRINTER

-KEYBOARD

Used for output to the screen and input from the
Keyboard. The actual device which is used as the
console can be changed by the Console command in the
System Manager. See Section 3.2.

Used to· output to the printer. The physical port that
the. printer is connected to is set by the Preferences
tool, described in Section 3.3.3.

Used as a non-echoing input device from the Keyboard.
This is the Keyboard on the console device.

Certain types of files in the system have standard file extensions. These
extensions maKe it easier to Keep tracK of the different types of files. These
file extesions are:

.TE!:XT This indicates a text file in the format created by the Editor •

• OBJ This indicates an object code file. Object files are created
by the code generater, the Assembler, and the linKer. Object
files created by the linKer are executable •

• 1 This indicates an intermediate (l-CODEHile produced by the
Pascal compiler. The Generate command will convert an
intermediate file into an object code file •

• LIB This indicates a Jibrary file •

• SHELL This indicates a shell file that can be started by the
environments window.

2.5 USing Wild Card Characters
Wild card characters allow you to specify a set of files to operate on. The
command is performed on all files whose pathname matches the set specified.
Wild card characters are" =", ,,?/I, and "$/1. These characters are used as
follows:

string 1 =string2

The "=" character stands for any sequence of characters that can be ignored.
The surrounding strings (string 1 and string2) must be matched exactly,
ignoring case. Either or both strings can be null. Here are some examples of
using the "=" wild card character as a source file name:

ds=.text
=.obj
=

all files beginning with ds and ending in • text~
all files ending with .obj.
all files.

When "=" is used in a destination file name, it is replaced with the characters
that were matched by a wild card in the source file. -This allows you to do
operations liKe change the name of a list of files as they are copied. Here are

Al pha draft 2-10 27 January 1983

WorKshop User's Guide for 1:he' Lisa The File Manager

examples of using n=" as a destina1:ion file name:

ds=.text 1:0 bu/ds=.1:ext Change all files s1:ar1:ing with ds and
ending with .text so they are prefi:<ed
wi1:h bul

=.obj to x/=.obj Put xl in front of the file name.

string! 1s1ring2

The n?" character is the same as the "=", except that the system asks you 1:0
confirm each file name before performing the operation. The n?" wild card
can be used only as a source string.

When you use a "?" in a sourc~ specHier, you are presented wi1:h a list of files
that match it. You can move bacl<wards and forwards through the list by
using the up and down arrows on the numeric Keypad. Press "V" beside every
file that you want to be processed. When you have selected all the files you
want, press RETURN. The operation will 1:hen be performed on the files you
selected.

string! $string2

The "$" characier is used only as a des1:ina1:ion file name. It is replaced by the
en1:ire source ftle name. For example, if you have the source files matching
ds=.text:

dsfmgr.1:ext
dssmgr. tex t

If the destination expression is bkS, the output files will be:

bKdsfmgr.text
bKdssmgr.text

Contrast this wi1:h the output expression bK=, which results in:

bkfmgr.text
bKsmgr. text

2.6 How do I Copy a File?
You can either Copy a file and leave the original file intact, or you can
Transfer the file, which will copy the file, then delete the original file. To
copy a file, proceed as follows: -

1. If you are not in the File Manager subsystem, enter it by typing F in
response to the WorKshop command prompt.

2. Press C to start the Copy command. (Press T, for transfer, if you want
the original file to be deleted after the copy operation.)

3. Enter the pathname of the file you want copied. Press RETURN.

4. Enter the pathname you want1:he file to be copied to. Press RETURN.

The file will be copied or transferred as you specified. _

If you want to copy a number of files with similar names, or all the files on a

Alpha draft 2-11 27 January 1983

WorKshop Userls Guide for the Lisa

volume, you can use wild card characters. See section 2.5 for more
information on using wild cards. Wild ~ards can also be used to rename all the
copies of the selected files.

You can use a shorthand method of entering the file names by entering both
the source and destination file names, separated by a comma (,) in response to
the request for the source file.

See Figure 2-3 for examples of copy and transfer operatlons.

COpy from wha t ex ist i ng f i 1 e(s)? myprog
COPy to wha t new f i 1 e? -bacl<up-$

(This copies the file myprog on the. worl<ing directory to the volume
-bacl<up with the same name, myprogJ

COpy from what existing fi le<s>? ds=
COpy to wha t new f i 1 e? -bacl<up-$

(This copies all files beginning with ds on the worl<ing directory to the
volume bacKup with the same file name.)

Tr ansfer from wha t ex i s t i ng f i 1 e (s)? -osbacl<-osg=
Transfer to ',<,Iha t new f i 1 e? -osworK-$

(This copies all files beginning with osg on the volume -osbacl'(to the
volume -osworl< using the same file name. When the files have been
copied successfully, the original files are deleted.)

Transfer fromwhat existing fi le(s)? -osbacl<...;osg=,-osworK ... ·$

(This is the shorthand version of the above transfer operation.)

Copy from what existing file(s)? ds=,-bacKup-bacKds=

(This copies all files beginning with ds in the worl<ing directory to the
volume -bacKup with bacK inserted as the beginning of each file name.)

Figure 2-3. Copy and Transfer operations

2.7 How do I Delete a File?
To delete a file, proceed as follows:

1. If you are not in the File Manager SUbsystem, enter it by typing F in
response to the WorKshop command prompt.

2. Select the Delete command by pressing D.

3. Enter the pathname of the file you want to delete.

4. The system asKs you to confirm that you want to delete the file. Reply
Y to delete the file or N to Keep it.

If you want to delete more than one file, you can use wild cards. See the

Alpha draft 2-12 27 January 1983

WorKshop User's Guide for the Lisa The liile Manager

section "Using Wild Card Characters" in this chapter for more information.

2.8 How do I Create and Use a Volume?
A volume can be created on either a disl<ette or a ProFile disl<. Each disK can
contain one volume. Creating· a volume on a disK gives it a name and sets up a
directory for files.

1. If you are not in the liile Manager SUbsystem, enter it by typing Ii in
response to the Worl<shop command prompt.

2. Press I to invoKe the Initialize command. This command asKs for:

• The device name (upper or lower for a disKette, slot2chan2 for a ProFile,
etc.)

• The number of pages to initialize. The default is to initialize the whole
device.

• The volume name.

• The volume password (optional>.

• The maximum number of files on the device. The default is a good value
unless you are using a large number of very small files or a few very large
files.

The volume is initialized, with an empty directory. (If the device is a disl<ette
it is first formatted.) The system will warn you if you are initializing a
device that ha.s an e>:istin9 volume on it, and give you a. chance to change your
mind before destroying the existing volume.

After initialization, the device is automatically mounted so it can be used.

2.9 How do I Change thlt Name of a File or Volume?
The Rename command allows you to change the name of any file.

i. If you are not in the File Manager subsystem, enter it by typing F in
response to the Worl<shop command prompt.

2. Execute the Rename command by pressing R.

3. Enter the pathname o~ the file or volume you want to rename.

4. Enter the new name.

The name of the file or volume is changed.

You can use the Rename command to change the name of a group of files by
using wild card expressions.

2.1t How do I List Existing Files?
You can use either the List command, or the Names command to list existing
files. The Names command executes much faster than the List command,but
it gives you only the file names.

1. If you are not in the liile Manager SUbsystem, enter it by typing F in
response to the Worl<shop command prompt.

2. Execute the List command by pressing L, or the Names command by

Alpha draft 2-13 27 January 1983

Workshop User's Guide for the Lisa The F He Manager

pressing N.

3. If you want to list an entire volume, enter the pathname of the volume or
device. If you want to list only a certain set of files, enter a wild card
expression or pathname describing the files to be listed.

The listing produced by the list command is explained in Section 2.3.4.

For more information on wild card chara.cters, see Section 2.5 in this
chapter.

Alpha draft 2-14 27 January 1983

WorKshop User's Guide for the Lisa The System Manager

ChapterS

THE SVSTEMMANAGER

3.1 The System Manager •••••••••••••••••••••••••••••••• 3-2
The System Manager allows you to set certain system defaults and set up the
Lisa configuration, including external device connections and the startup
device.

3.2 The System Manager Functions •••••••••••••••••••••••••••••••••••• 3-2
The System Manager is activated by pressing S in response to the WorKshop
command line. It allows you to set system defaults and access the
Preferences tool that allows you to set the configuration of i:he sysi:em.

3.3 The Preferences Tool • •. . .• 3-3
The Preferences· tool allows you to sei: up system details and to specify what
exi:ernal devices are conneci:ed.

3.4 ProcessManagement •••••••••••••••••••••••••••••••• 3-6
The process management subsystem allows you tomake selected processes
resident, display the status of all currently existing processes, and
remove processes.

Alpha draft 3-1 3 February 1983

WorKshop User's Guide ·for the Lisa. The System Manager

Alpha draft 3-2 3 February 1983

WorKshop User's Guide for 1he Lisa The Sys1em Manager

THE SYSTEM MANAGER

3.1 The System Man~ger.
The System Manager allows you 10 se1 system defaul1:s and configura,1ion. 11:
allows you to:

• Set 1he Lisa system characteristics such as screen contrast, speaK!?r
volume, and 1ime lags for repeating Keys.

• Set the configuration of ex1ernal d!?vic!?s such as disKs and prin1ers. .

• Set the default start up device.

• Set processes to be resident or non resident, 10 allow you to performance
tune your WorKshop system.

• Set what device is to be the console.

• Redirect output from the console to a file or external device.

• Monitor all currently existing processes, and remove processes.

3.2 The System Manager Fundions.
By pressing S in the main comand line, you can enter the System Manager
subsystem. The System Manager command line worKs the same as the main
WorKshop command line. Pressing ,.?,. shows you the additional line oT
commands.

The System Manager command line is:

SYSTEM-MGR: ManageProcess, OutputRedirect, PreTerences, Time, Quit, ?

Press "?" to see 1he additional commands:

Console, FilesPrivatet Validate

Each System Manager command is described below.

ManageProcess (M)
This command puts you into a process management subsystem, which allows
you to select which processes should be resident for performance reasons. It
also allows you to display 1he sta1us of all currently exis1ing processes, and
remove processes. This subsystem is described in section 3.4 below.

OutputRedired (0)

The OutputRedirect command allows you to send a copy of all output 1hat is
displayed on the console to another device (such as 1he -printer) or to a. file
on a disK. The command asKs you for 1he pa1hname to send the copy 10. In
order to return to displaying only on the console, use the command again and
redirect the ou1put to the -console device (the default).

Preferences (P)
The Preferences tool is used to set up 1he configuration of the Lisa system
and 1he WorKshop. It is described in section 3.3 below. .

Time (Tl

Alpha draft 3-3 3 February 1983

WorKshop User's Guide for the Lisa The System Manager

The Time command allows you to set the date and time. The date and time will
be maintained automatically by the Lisa system.

Quit (Q)

The Quit command exits from the System Manager baCK to the main WorKshop
command line.

Console (C)
This command allows you to change"where,.the .,WorKshop console is displayed.
It may be displayed on the main screen' (the default> or on the alternate'
screen (where LisaBug 'displays), or on an external terminal connected to the
RS232A or B port.

FilesPrivate (F)
The FilesPrivate command selects whether or not the private system files
should be displayed by the List command. The default is to not display the
private files. Private files are any files with a name beginning with "{".
These file names are used by the system for files you should not normally need
a.ccess to.

Validate (V)

The validate command is used ~o set up defaults for verifying operations.
Currently the only default of this type tells if the system will verify file
copies or not. The system verifies a copy by comparing the original file with
the copy to be sure they are the same. The boot default is to never verify.
You should have no reason to verify unless you something is wrong with your
disK.

S.3 The Preferences Tool
The Preferences tool is started by pressing P in resporlse to the System
Manager command line. After you are finished with it, you can exit bacK to
the System Manager by selecting Quit from the Tools menu.

The Preferences tool allows you to set up your WorKshop system the way you
want it. It contains four sections:

• Convenience settings ~hat allow you to set up the screen contrast, the
speaKer volume, and repeat delays.

• Device connections that tell the Lisa system what external devices are
connected.

• Startup that tells the Lisa what device to use as a. startup device.

• WorKshop defaults that set up things the WorKshop needs to Know.

These default settings are stored in parameter memory, a small area of
memory that is preserved as long as the Lisa is plugged into a worKing outlet
and for up to 10 hours when the Lisa is unplugged. If your Lisa is without
power for longer than this, the preference settings will be restored from
information on the startup disK.

Any changes made with the Preferences tool change. Parameter Memory
immediately, but some of them, such as device connections and startup

Alpha draft 3-4 3 F~bl'uary 1983

WorKshop User's Guide for the Lisa The System Manager

options have no effect until the system is booted again.

The preferences tool displays a window containing a number of buttons and
checKboxes. You set the values you want by using the mouse to move the
pointer to the desired options and clicKing.

These four areas are described briefly below. More information on the firs1:
three areas can be found in the Lisa Owners Guide Section D. Select the
area you want 1:0 view or change by moving the pointer with the mouse to the
checKbox in front of the section name and clicl<ing.

3.3.1 Convenience Settings.
The Convenience Settings portion of the Preferences tool allows you to
customize the input and output characteristics of the Lisa. These
characteristics are divided into three sections: Screen Contrast, SpeaKer
Volume, and Rates. The Convenience Settings display is shown in Figure 3-1.

Tools

IConvenience Settings o Startup OOevice Connections OWorkshop

0'Set All Convenience Settings to lisa Oefaults

Screen Contrast
Normal level

dark 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 br i ght

Minutes Until Screen Dims
01-2 12-4 05-10 010-20 015-30 030-60

Dim Level
. dark 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 br i ght

Speaker Volume ..
Silent (Flash menu bar) 0 Soft 1 0 0 0 0 loud

Repeating Keys
Delay

Short 0 0 0 1 0 0 long

Rote
Fast • 0 0 0 0 0 Slow

House Double CI iek Delay
Short 0 0 1 0 long

Figure 3-1. Convenience Settings.

Screen Contrast
The contrast portion con1:ains three sections. The first allows you to select
the normal screen contrast level. ChecK in a contrast box until the contrast

Alpha draft 3-5 3 F€'bruar)' 1983

WorKshop User's Guide for the Lisa The System Manager

!evel is comfortable. Checlting a box immediately changes the contrast.

The Lisa screen automatically dims if no activity is talting place on the
screen to protect the screen from damage. The delay time before this
dimming taKes place is set with the Fade Delay section.

The third section allows you to set the dim contrast level. Checlting a box in
the Dim Level section maKes the screen dim to that level until you move the
mouse.

Speaker Volume
The speaKer volume section allows you to set how loud the Lisa's audible
alerts will be. ChecKing a box causes two beeps at the level you selected •.

Rates
There are three rates that can be set, two for the Keyboard and one for the
mouse. The first is the initial Keyboard repeat delay. This is the length of
time a Key must be depressed before it begins repeating. The second is the
subsequent repeat delay. This is how quicKly a Key repeats after it has
started repeating. The third rate is the mouse double clicK delay. This sets
the maximum amount of time between two clicKs that will be considered a
double clicK. These three values should be set for your most comfortable use.

3.3.2 Start Up.
The Start Up display allows you to specify the boot device, and the type of
memory test to be performed on startup. The Start Up display is shown in
Figure 3-2.

, Tools
~--------------

OConvenience Settings .Startup OOevice Connections OWorkshop

Start Up From:
ODiskette in Orive 1 (Upper)
ODiskette in Orive 2 (lower)
Omsk Attached to lower Connector of Expansion Slot 2
.Disk Attached to Parallel Connector

Memory Test
.Brief
OThorough

Figure 3-2. The Start Up Display.

The Start Up display lets you select the Lisa system boot device. You are
given a list of all possible boot devices. Select the one you want.

The Start Up display also allows you to select a long or short memory test.
The brief test taKes about 30 secondst the long test taKes about ·a minute.

Changes made to the Start Up display are put into Parameter Memory
immediately, but have no effect until the system is booted again.

3.3.3 Device Connections.
The Device Connections
connected to the Lisa.

Alpha draft

display allows you to specify what devices are
When it is selectEid, it displays all ports that

3-6 3 February 1983

WorKshop User's Guide for the Lisa The System Manager

currently exist, along with the devices that are currently connected. To add,
delete, or change the device connected to a port, select the port. All devices
that may be connected to that port are displayed; you may also choose to ha.ve
no device connected. When you select the device to connect, a.ny additional
conHguration options for that type of device are displayed.

Any cha.nges made to the device connections a.re made immediately to
Parameter Memory, but they do not taKe effect until the next time the Lisa is
booted. A typical device connections display is shown in Figure 3-3.

Tools

Connectors
o Expansion 2 lower
o Expansion 2 upper
o Parallel
I Serial A

·0 Serial B

OStortup IDevice Connections OWorkshop

Devices Currently Connected
ProFile
Dot Matrix Printer
ProFile
Nothing Connected
Nothing Connected

Device You Intend to [onnect
INa Device oDaisy Wheel Printer oOot Matrix Printer
B'Remote Computer

Figur. 3-3. A Device Connedions Display.

3.3.4 WorKshop
The WorKshop display allows you to set parameters of the WorKshop system.
The WorKshop display is shown in Figure 3-4.

Tools ., .. __ ._ __
~II Preferehces IIIII!

!g oConvenience Settings oStortup OOevice Conl.lections IWorkshop

~. Memory to use(assuming 1 megabyte machine)
%t Ifull megabyte 0 three quarter megabyte 0 half megabyte
:f.::l

If Enuble House Scoling?
\;, Ino Dyes
.g

Figure 3-4. The WorI<shop Display.

3.3.5 The Tools Menu
The tools menu provides you with functions to access Parameter Memory.
There are three functions provided: Set PM to defaults; QUiti and Print PM.
Set PM to defaults sets parameter memory to the standard Lisa defaults.
Quit exits you from the Preferences tool, and puts a copy of the current
settings of parameter memory on the disK. Print PM displays all the values in
parameter memory on the console.

Alpha draft 3-7 3 February 1983

WorKshop User's Guide for the Lisa The System Manager

3.4 Process Management

The Pr·ocess Management subsystem is started by pressingt1 in r·eos.pons.e
to the System Manager command 1 ine. This subsystem displays the
following command line:

ManageProcess: AddResident, DeleteResident, KillProcess, ProcessStatus, Quit?

This subsystem is used to control which proc~sses will be resident.
t1aK i ng a pr·oceoss resident means that after· it ha,=. run to compl et i on, it
will be suspended and retained in memory rather than terminated and
removed from memory. Th i s allows it to r·estar·t fashr, because it does
not have to be reloaded from disK. For example, if ;tOU are ofteri using
thE' Pascal compi leI' and the Edi tor, you can improvE' the perfor·manceo of
your Workshop system for these appl ications by making the compi ler and
the Editor· resident. Thiswill a11owmuchmore rapid s.hiftiogbetween
the two.

See the OpE'ra t i og Sys.tem Reference t1anua 1 for· the Lisa for more
i nforma t i on on processes

AddRes i den t (A)
The AddResident command adds a proces,=. to the 1 ist of pr·oces.ses that are
resident. You supply the file name of the object file that you l.JJant to
be made resident thE' next time it is executed.

De 1e t e Re side n t (D)
The DeletE'Resident removes a pr-ocess fr·om the list of resident
processes.

Ki 11 Process (K)
Th i s command teor·m i na tes a curren t 1 y ex i st i ng process.

ProcessStatus (P)
The Pr·oce,=.sstatus command gives you information about all currently
existing processes. It provides the following information:

Qu it

Pa thoame The name of the obj ec t f i lei n the process.
Process! D The un i que i den t if i er ass i gned to the process.
State The current state of the process: Active,

Suspended, or Wa it i n9.
Resident Tellsyou if this isaresident process.

Ex it frc.m the processmanagement subsystem bacK to th£' Syst£'m Manager
command 1 ine.

Alpha draft 3-8 3 F~bl'uar·y 1983

WorKshop Userls Guide . for the Lisa

4.1 The Editor

Chapter4

THE EDITOR

The Editor is used to create and modify text files.

The Editor

4-2

4.2 Using the Editor•.........•....•... 4-2
Start editing by pressing E in response to the command prompt. The Editor
will create a new file or edit an existing one. Operations are provided in five
menus: Filet Editt Searcht Type Stylet and Print. The mouse is used to select
menu items.

4.3 Selecting Text • • . .. •• • . .. 4-4
The mouse is used to select text and to move the insertion point.

4.4 Scrolling and Moving the Display ••••••••••••••••••••••••••••••••••• 4-5
The display can be scrolled by using the scroll bar on the right side of the
window. The window can be moved by clicKing in the title bar. The size O'f the
window can be changed by using the size control box.

4.5 The File FuI'lctions' •....•••..••.........•••••.•.•......•..••.•••••• 4-5
The File functions are used for retrieving and saving text files. You can also
save or revert to a. previous version and exit the Editor.

4.6 The Edit 'unctions••••.•..•...••..•.•..•................••••. 4-6
The three basic E:dit functions are cutt paste, and copy. The E:dit menu also
gives you functions to adjust left and rightt a.nd to set tabs.

4.7 Thl' Search Functions•...............•.......... II • • • • • • • • • • •• 4-8
Search gives you functions to find text strings in the filet and optionally
replace them.

4.8 The Type Style Functions •• • • • • • • • • • • • •• •• 4-9
The Type Style menu allows you to change the font that the file is displayed
and printed in.

4.9 The Print Functions ...•.....•............•..•.............•...... 4-1.
The Print menu allows you to print the filet and to specify the format it
should be printed in.

Alpha df'aH 4-1 27 Januaf'Y 1983

Workshop User.'s Guide for the Lisa The Editor

Alpha draft 4-2 27 January 1983

WorKshop User's Guide for the Lisa The Editor

THE EDITOR

4.1 The Editor
The Editor is used to create and modify text files. These files may be used
for many purposes including input to the language processors and as exec
files.

H the file you are editing is too big to fit on the screen, a portion of the file is
displayed. This "window" into the file can be moved to display any part of the
file you want. An example of the Editor display window is shown in Figure
4-1.

The basic editing operations are inserting characters, cutting a portion of
the text, and pasting text into a new location. Items that are cut go into a
special window called The Clipboard. Text on the Clipboard can be pasted
into any place in the file, or into another file.

All editing action taKes place at the insertion point. The insertion point is
marKed by a blinKing vertical line where the next character will be placed.
Any charaders typed, or pasted from the Clipboard will be inserted a.t this
point. This is true even if the insertion point is not currently displayed in the
window. The window will automatically be scrolled to show the insertion
point.

NOTE

The editor is memory based. This means that there is a practical limit
on the size of the file that can be edited. If a file is too big to edit, it
should be split into more than one file of manageable size. The Filediv
and F'ilejoin utilities can be used for this. They are described in
Chapter 10.

The mouse is used to scroll the text in the window, move the insertion point,
and select text to be cut or copied. Other operations, provided in five menus,
are seleded using the mouse.

File. Edit Seorrh Type Style Print
~~~~~~=., 

El IIIIII RAVEN. TEXT '"II! 
o 

THE RAVEN [I 

Alpha draft 4-3 27 January 1983 



WorKshop User's Guide for the Lisa The Editor 

Figure 4-1. The Editor Displa.y Window 

4.2 Using the Editor 
Start the Editor by pressing E in response to the WorKshop comma.nd prompt. 
The Editor will prompt you for a document name. If you want to edit an 
existing file, enter its name. If you want to create a new file, select Tear 
Off Stationery from the filing menu. The Editor· will prompt you for the 
stationery name. Press RETURN for the default, which is blanK paper. For 
more information on stationery, see below. 

The file that you are worKing on is called the active document. You may have 
several documents open and accessible at anyone time, but only the active 
document may be edited. The active window is indicaied by a darKenedtiUe~ 
bar. 

4.2.1 Editing Operations 
The basic editing operations are Cut, Paste, and Copy. To cut or copy text, 
you must first select the text to be cut or copied. Select text by moving the 
mouse while holding down the button. See section 4.3 below for complete 
information on selecting text. Text that is selected and cut is removed from 
the aciive document and placed in a special window called The Clipboard. 
Te>:tthat is copied is placed on The Clipboard and also left in place in the 
active document. .. 

The contents of The Clipboard may be inserted at any point in the active 
document by moving the insertion point to where you want the text inserted 
and selecting Paste from the edit menu. 

4.2.2 The Menus 
Operations are provided in five menus: File, Edit, Search, Type Style,and 
Print. The File menu is used to access things outside the e:ditor, such as 
documents and stationery. The Edit menu contains the editing operations. 
Search provides for finding strings in the active document. The Type Style 
menu selects the font for document display. The Print menu controls 
printing. e:ach of these menus is described in more detail below. 

You select an operation from a menu by moving the arrow pointer to the menu 
name on the menu bar and holding down the button. The menu is displayed. 
Seled the menu item by moving the mouse up Dr down until the right item 
appears in reverse video. Releasing the button starts the operation. 

4.2.3 Creating and Using Stationery 
Stationery for a special purpose (such as a letterhead) can be created with 
the e:ditor. Stationery is just a regular document containing the desired 
text. To use any stationery other than the default blanK paper, select Tear 
Off Stationery from the File menu, and type the name of the document 
containing the stationery when it asKs you for the stationery name. 

To create stationery, maKe a document containing the standard text you 
want on the stationery. Save this document on the disK. To use this 
stationery, selec1: Tear Off Stationel'Y from the Edit .menUt and give it the 
file name of the stationery you created. 

Alpha draft 4-4 27 .tal'lual'Y 1983 



WorKshop User's Guide for the Lisa The Editor 

4.2.4 Editing Multiple Files 
More than one file may be open at one time, but only one document is the 
active document. To read in a document when you already have an active 
document, select Open from the File menu. Itwill asK you for the document 
name. The new document will be read in to a window on the screen and will 
become the active document. To maKe another document the active 
document, . use the mouse to move the pointer into a portion of that document 
and clicK. 

This capability may be used to copy text from one file to another by using the 
following sequence of operations: 

• Open the document containing the text you want to copy. 

• Select the text you want to copy and select Copy from the Edit menu. 
This places a copy of the text onto the Clipboard. You can use Cut if you 
want the text to be removed from its original file. 

• Open the document you want the ted to be copied to. It becomes the 
active document. 

• Move the insertion point to the place you want the text to be inserted. 

• Select Paste, which will copy the text from the Clipboard to the active 
document. 

Further information on each of these operations may be found below. 

4.3 Selecting Text 
The basic editing functions are Cut, Copy, and Paste. Before you can Cut or 
Copy text, you must select the text to be cut or copied. Before you Paste, 
move the insertion point to where you want the text to be placed. You select 
text and move the insertion point by using the mouse to move the pointer on 
the screen. 

When there is an active document, the pointer will have one of two shapes: 

Text pointer in a document 

Arrow pointer for menus and scroll bars 

Use the mouse to move the pointer on the screen. The shape of the pointer 
will change when you move in and out of the document display window. 

Within the display window, the text pointer is used to move the insertion 
point and to select text. 

In selecting text, you may select characters, ' .... ords, or lines. You may also 
select any number of characters, words, or lines. Selected text is displayed 
inreverse video. 

4.3.1 How do I Move the Insertion Point? 
The insertion point is indicated by a blinKing vertical line where the ne>:t 
character will be inserted. All insertion, whether from typing or pasting, 
taKes place a:t this point in the file, even if it is not visible in the window. 

To move the insertion point, move the text pointer to where you want it to be 

Al pha draft 4-5 27 January 1983 



WorKshop User:'s Guide for the Lisa The Editor 

and clicK. Note that the insertion point is also moved when you select text. 

4.3.2 How do I Select Characters? 
To select characters, move the text pointer to the beginning of the 
characters you want selected, press and hold the button while moving to the 
last character you want selected. 

An alternate way of selecting characters, which is especially useful when 
selecting a. large blocK of text, is as follows. Move the pointer to the 
beginning of the text you want selected· and clicK. Then move the pointer to 
the end of the text you want selected and shift clicK (hold down the shift Key 
on the Keyboard and clicl< the mouse button). You may use the scrolling 
controls to display the. end of the, text you want selected if it is too big to fit 
in the window. . . 

4.3.3 How do I Select Words and Lines? 
To select a word, move the te>:t painter into the word and clicK twice. To 
select a line, move the pointer into the line and clicl< three times. 

To select multiple words or lines, clicK the required number of times, and 
hold. Move the pointer to the last word or line you want selected and release. 

An alternate method, especially useful when you want to select more text 
than will fit in one display window, is as follows. ClicK the required number of 
times to select the first word or line. Scroll the wir.dow if necessary to 
display the last item you want selected. Move the pointer to the last item you 
want selected, shiH clicK, and the entire blocK of text will be selected. 

4.3.4 How do I Adjust the Amount of Text Selected? 
To change the amount of text selected, move the pointer to the position ~hat 
you want the selection to extend to and shift clicl<. This can be used to either 
expand or contract the selection. 

4.4 Scrolling and Moving the Display 
When a document is longer than will fit into the display window, only part of 
the document is displayed at one time. You can change what part is displayed 
by "scrolling" through the display. The vertical bar on the right side of the 
active window is the scroll bar. An example of a text· window showing the 
scroll bar is in Figure 4-1. 

The display window can be changed in size and moved on the screen. This 
allows you to have multiple files displayed on the screen. These operations 
are done using the title bar and size control box. 

4.4.1 Scrolling the Display 
There are three ways of moving the display window through the document. 
The first is by using the elevator. The elevator is the white rectangle in the 
scroll bar. Its position in the "elevator shaft" (the grey portion of the bar) 
indicates the relative position of the currently displaydtext window in the 
document. If the elevator is near the top, you are near the beginning of the 
document. If it is near the middle, the text displayed on the screen is near the 
middle Ot the document, and so on. To change the position of the text window, 
you can use the mouse to move the arrow pointer into the elevator, clicK and 

AI pha draft 4-6 27 Jar.uary 1983 



WorKshop User's Guide for the Lisa The Editor 

hold the button down while you move the eleva.tor to the position in the 
document you want to display. When you release the button, the display will 
be updated to the new position. 

The second way of moving the window maKes use of the view buttons. The 
view buttons are the boxes at each end of the elevator shaft. If you move the 
arrow pointer to a view button and clicK, the display will move one text 
window toward the beginning or end of the document, depending on which 
button you clicKed. 

The third way of moving the window uses the scroll arrows, which are just 
above and below the view buttons. I f you move the arrow pointer to the 
bottom scroll arrow and clicK, the display window will move' one line toward 
the end of the document. I f you hold the button down, the window will 
continue to move a line at a. time until you release it. The upper scroll arrow 
worKs the same way, except it moves the window towards the beginning of the 
document. 

4.4.2 Moving the Display 
You can move the display window on the screen and change its size. This lets 
you display multiple files on the screen. You can maKe any visible window be 
the active window by moving the pointer into it and clicKing. 

To move a window, move the pointer to the title bar, press the mouse button 
and hold it while you move the window. When you release the button, the 
window will be redisplayed at the new location. 

To change the size or shape of the active windowt move the pointer to the 
size control boxt press the button, and move the pointer until the window is 
the right sin and shape. Release the button and the resized window will be 
displayed. The size control box is the box in the lower right hand corner of 
the window. Only the active window can be resized. 

4.5 The File Functions 
The file menu provides functions for communicating with the outside world. 
Functions are provided for reading in and writing out documents, and for 
exiting the Editor. The Filing menu is shown in Figure 4-2. Each function is 
explained below. 

fi J iogmenu 

Figure 4-2. The Filing Menu 

Alpha draft 4-7 27 January 1983 



Workshop User's Guide for the Lisa The Editor 

Save & Put Away 
This writes out the active document and closes it. 

Save a Copy in ... 
This writes out a copy of the active document to another file name. You are 
prompted for the name of the file to write to. 

Sa ve & Continue 
This saves all changes made so far by writing out the document to disi<~ 
without closing the document •. 

Revert to Previous Version 
This returns the document to the way it was before you started editing ii~ or 
when you lasi .saved it. This is done by reading in the file from the disK. 

Open ... 
This tells the Editor to get a new document. 11: prompis you for the document 
name~ then reads it in and mai<es it the active document. The Editor will 
supply the .TEXT extension on the file name. 

Duplicate ••• 
This allows you to read in a copy of an existing document to edit into a new 
file. It is rea.d in with the default name "untitled" 

Tear Off Stationery ... 
This gets a new piece of stationery and maKes it the active document. See. 
section 4.2.3 above for more information. The stationery is given the default 
name "untitled". 

Exit Editor 
This first a.sks you jf you want to put away any modified documents. If you 
answer yes~ they are written out to disK. Then it exits the Editor. 

4.6 The Edit Functions 
The Edit menu provides the editing functions and tab setting. It is shown in 
Figure 4-3. 

The three basic edit functions are Cut, Paste~ and Copy. These mai<e use of 
the special window called The Clipboard. The Clipboard can hold one piece of 
text. Text is put into The Clipboard by selecting it in the active document, 
and either cutting it or copying it. Text is copied from the Clipboard and 
inserted a.t the insertion point with the paste operation. 

AI pha draft 

!.lnuo Last: Cl"li.lll!,jl: 

(ut 
(opy 
Pllste 

Shift leFt 
Shift Right 

Set Tllbs ... 

Select All of Document wA 

4-8 27 .January 1983 



WorKshop User's Guide for the lisa The Editor 

Figure 4-3. The Edit Menu 

For e>:amplet to move a blocl< of te>:t from one place in a document to anothert 
follow these steps: 

1. Select the blocl< of text to be moved. 

2. Select Cut from the Edit menu. The te>:t is removed from the active 
document and placed on the Clipboard. 

3. Move the insertion point to where you want the ted to be. 

4. Select Paste from the Edit menu. The te>:t on The Clipboard is inserted 
a t the insertion point. 

The edit menu also allows you to adjust selected te>:t left 01' right by 
inserting or deleting spaces. It also allows you to set tabs. 

Some edit functions may also be done by holding down (apple) and pressing 
another Key. The Key that corresponds to each function is shown in the edit 
menu. See figure 4-3. 

Undo Last Change 
This command puts the document bacK to the '/Jay it was before the previous 
operation if possible. The system will tell you if the last operation cannot be 
undone. 

Cut 
Cut places a copy of the currently selected text into The Clipboard a.nd 
removes the text from the active document. You may also Cut by pressing 
(apple) X. 

Copy 
Copy places a copy of the currently selected text onto Tn€' Clipboard, but 
does not remove it from the active document. You can also Copy by pressing 
(apple) C. 

Paste 
Paste inserts a. copy of the text on The Clipboard at the insertion point in the 
active document. You can also Paste by pressing (apple) V. 

Shift Left 
Shift Left moves selected text left by deleting a single space from the left of 
each line. It will not delete any characters other than spaces. It is most 
often used to adjust the left margin of a blocK of text. You can shift left by 
pressing (apple) L 

Shift Right 
Shift Right is similar to Shift Left, e}(cept that it moves the selected text to 
the right by inserting spaces at the beginning of each line. This can also be 
done by pressing (apple) R. 

Set Tabs ... 
Set Tabs allows you to set the spacing of the tab stops. 

Select All of Document 

Al pha draft 4-9 27 ,lanuary 1983 



l..Jorl<shop User's Guide for the Lisa 

This command selects the entire document. 
document by pressing (apple) A. 

4.7 The Search Functions. 

The Editor 

You can select the entire 

The Sea.rch menu gives you the ability to search for a te>:t string in the active 
document. The basic operation is Find. 'Nhich locates the newt occurrence of 
the string and selects it. Find & Paste All will replace each occurrence of the 
string with the contents of The Clipboard. Several options are provided to 
specify how tt-Ie match isto be found. The Search menu is shown in Figure 4-4. 

Find... ~~-~F : 
Find Some tiS : 
Find & Paste All 

v'Separate Identifiers 
All Occurrences 

v'Cases Need Not Agree 
Cases Must Agree 

Figure 4-4. The Search Menu 

All searches start at the insertion point, and go to the end of the file. 

There are three search operations in the Search menu, as follows: 

Find ... 
Find prompts you for the string to search for, then finds the ne>:t occurrence 
of the string. If a match is found, it will be selected al""d wisplayed. The Find 
command can also be executed by pressing (apple) F. 

Find Same 
Find Same repeats a previously specified Find, and selects the next 
occurence of the string. You may do a Find Same by pressing (apple) S. 

Find 8. Paste All 
This finds all occurrences of the specified string from the current insertion 
point to the end of the file, and replaces eacb of them with the contents of 
the Clipboard. 

The other four items in the search menu tell how a match is to be found. 
There are t'NO areas to describe: searching for tol<ens or characters, and 
'",hether or not case must be matched. The options currently in effect have a 
checl< marl< in front of them. To change the option, use the mouse to select 
the one you want. 

The first set of options tells whether to search for tOKens or to search 
literally: 

Alpha draft 4-10 27 January 1983 



WorKshop User's Guide for the lisa The Editor 

Separate Identifiers 
When Separate Identifiers is selected, the search operation will looK for a 
"toKen" or word to match the search string. Only the first :3 characters are 
Significant in a this type of search. 

All Occurrences 
When All Occurrences is selected. the search operation will match any string 
containing the same characters, even if it is only part of a word. 

The next options indicate if case is significant in finding a match: 

Cases Need Not Agree 
yJhen this item is selected, any string with the same characters will be a 
match, regardless of whether they are in upper or lower case. 

Cases Must Agree 
When this item is selected, the string must exactly match the search string, 
including case, to be selected. 

4.8 The Type Style Functions 
The Type Style menu allows you to change the display font. The Type Style 
menu is shown in Figure 4-5. A checK appears in front of the font that the file 
is currently displayed in. You may change the font by selecting another forft 
from the menu. 

The font selected will affect how many characters may be displayed on a line, 
and whether or not the display is proportionally spaced. When a file is 
printed, it 'Nill be printed in the same type style it is displayed in. 

4.9 The Print Functions 

15 Pitch Gothic 
';12 Pitch Modern 

12 Pitch EI ite 
10 Pitch Modern 
10 Pitch (ourier 
PS Modern 
PS Executive 

Figure 4-5. The Type Style Menu 

The Print menu provides functions for printing a document. You can print all 
or part of a document, choose what form of footers are to be printed, specify 
if Pascal Keywords are to be emphasized, and tell what type of printer is 

AJ pha draft 4-11 27 January 1983 



WdrKshop User's Guide for the Lisa 

being used. The Print menu is shown in Figure 4-6. 

Print All of Document 
Print Selection 

...IFu11 Footers 
Page Numbers Only 

...IPlain Keywords 

Differentiated Keywords 

...lOot Mattix Printer 
Dnis\j Wheel Printer 
PaperTiger Printer 

Figure 4-6. The Print Menu 

The Print functions are as follows: 

Print All of Document 
This command prints the entire document. 

Print Selection 
This command prints only the currently selected portion of the document. 

Eoth of the print commands will wait if the printer is not ready. 

The E:ditor 

The remaining options in the Print menu chose how the print is to be 
performed. They are organized into 3 sets of 2 options. The currently 
selected option in each set is indicated by a checK marK. You can select any 
combination of options you want. 

The first options control what type of footers will be printed at the bottom 
of the page. 

Full Footers 
When Full Footers is selected, E:ach page printed will have a footer 
conSisting of the file name, the page number, and the date. 

Page Number Only 
Selecting Page Number Only results in only a page number on the bottom of 
each printed page. 

The next options are used for printing Pascal programs. 

Plain Keywords 
Selecting Plain Keywords maKes Pasca.l Keywords print with norma.l text. 

Differentiated Keywords < 
Selecting E:mphasized Keywords maKes the printed output emphasize all 
Pascal Keywords by underlining them. 

The next options select the type of printer to print ~n. Select the type of 

Alpha draft 4-12 27 January 1983 



Worl<shop User's Guide for the Lisa 

printer you have attached to your lisa: 

Dot Matrix Printer 

Daisy Wheel Printer 

AI pha draft 4-13 

The Editor 

27 January 1983 



Worl<shop User's Guide for the lisa Pascal Compiler 

Cha.pterS 

THE PASCALCOMPILER 

5.1 The Pascal Compiler ...•.•••..• ~ ....•...•..................•..... .. 5-2 
The Pascal compiler translates Pascal source statements into object code. 
This translation is done in two steps. The source statements are first 
translated into intermediate code (l-code)t then the I-code is translated into 
object code. 

5.2 Using th. Pascal Compiler • • • • • • • • • • • • •• • • • • • • • • • • • • • • • • • • • • • •• • • •• 5-2 
The compiler expects a text file containing a Pascal program as input. The 
compiler is executed by pressing P in response to the command prompt. The 
code generatort which translates I-code into object codet is executed by 
pressing G. 

5.3 The Pascal Compiler Commands •••••••••••••••••••••••••••••••••••• 5-3 
The compiler commands desired are entered into the Pascal source file. They 
provide for symbolic debugging information and conditional compilation. 

5.4 Further Information ................................................ 5-3 
More information on using the Pascal language can be found in the Pascal 
Reference Manual for the Lisa. 

Alpha Draft 5-1 29 January 1983 



WorKshop User's Guide for "the Lisa Pascal Compiler' 

Alpha Draft 5-2 29 January ! 983 



WorKshop User's Guide for the lisa Pascal Compiler 

5.1 

THE PASCAL COMPILER 

The Pascal Compiler 
The compiler translates Pascal source statements into object code. 
translation is done in two steps. The first step <parsing) converts 
program into semantically equivalent tree structures called I-code. 
second step translates the resulting I-code into machine language. 

This 
the 

The 

A complete definition of lisa Pascal is found in the Pascal Reference Manual 
for the lisa. 

The Pascal run-time support routines are in the library IOSPASlIB. After 
generating the object code, it is necessary to linK the program with 
IOSPASlIB before you can run it. For information on how to linK the 
program, see chapter 7 in this manual. 

5.2 Using the Pascal Compiler 
The compiler expects a text file containing a Pascal source program as input. 
You can create this text file using the Editor. 

When you have prepared a source program, use the Compiler to translate it 
into object code. Start the compiler by preSSing P in response to the 
worKshop command prompt. The compiler first asKs for the 

Input file [.textl -

Type the name of the file that contains the source program. You do not need 
to add the .TEXT extension. The compiler then asKs you for the 

List file -

Type the name of the file that you want the listing to go to, or press RETURN 
if you don't want a listing. You can display the listing on the console by using 
the -console pathname. The compiler next asKs you where to store the I-code 
form of the program: 

I-code file [(input name)][ .• lJ -

If you want the I-code to be. stored in a file with the same name as the source 
file, but with a .1 extension instead of the .TEXT, just press RETURN. If you 
want another name, type the name and press return. 

After the last input, the compiler translates the program into I-code and 
stores it in the I-code file. If there were any errors, they will be displayed 011 

the console. 

S.2.i Using the Code Generator 
To translate the I -code into object code,· press G in response to the shell 
command prompt. The code generator first asKs you for the 

Input file [.Il -

Type the name of the I-code file. You do not need to add the .1 extension. The 
generator then asKs you for the 

Alpha. Dra.H 5-3 29 January 1983 



WorKshop User IS Guide for the Lisa Pascal Compiler 

Output File [(input name}][.OBJ] -

To accept the default name, press RETURN. If you want a different name for 
the output file, type the name and press RETURN. The .OBJ extension will be 
added to the name for you. . 

The output file from the code generator is object code, but it is not 
executable because it does not contain the Pascal run-time support routines. 
The run-time support routines are contained in IOSPASLIB. These routines 
must be added to the object file by using the linKer. See chapter 7 in this 
manual for more information on the linKer. 

5.2.2 Compiling with a Different. Intrinsic Library 
The Compiler and the code Generator both access INTRINSIC.LIB, the library 
of intrinsic units. It contains information about the intrinsic units used by 
the program. If you want the program to be compiled with a different 
intrinsic library, you can enter "?II to the request for an input file in both the 
Compiler and the Generator. They will asK you for the name of the intrinsic 
library you want to use. After entering the name of the intrinsic library, the 
compilation proceeds in the usual way. 

5.3 The Pascal Compiler Commands 
Compiler commands allow control of code generation, input file control, 
listing control, and conditional compilation. The commands all start with a $, 
and are placed as comments in the source program where you want the 
command to taKe effect. A complete list of the compiler commands is found 
in the Pascal Reference Manual for the Lisa. 

5.4 Further Information 
For further information on the Pascal language, refer to the Pascal 
Reference Manual for the Lisa. A Pascal program can call assembly language 
routines. More information on assembly Language is in chapter 6 of this 
manual. 

The Debugger, described in Chapter 8, can be used for run time debugging of 
Pascal programs. More information on the run time environment of a Pascal 
program is found in Chapter 6. 

The Operating System provides a number of routines that can be called from a 
Pascal program to perform various system functions. These routines are in 
the SYSCALL unit, which is described in the Operating System Reference 
Manual for the Lisa. 

Alpha Draft 5-4 29 January 1983 



\,..)or\.(shop Reference HamJal for the Lisa The Assembler 

Chapi:er- 6 

THE: ASSe: M ELe: R 

6.1 The /l.5sembler ...........................•......•.............. a •••••••• 6-2 
The assemblertranslates68000 assembly language into machine language. 

6.2 Using the Asse mbler ................................................... 6-4 
The assembler is startedby pressing A in response to the command prompt. 
It accepts a te>;t file as input, and produces:. a machine language (.OBJ)file 
as output. 

6.3 The Assembler Opcodes ...•••..•.••••••••.•...••••.•••.•••••.•••••••••• 6-5 
The assembler opcodes are the standard 6:::000 opcodes, with a few 
0.1 ter·na te fc.rms for some instructions. 

6.4 Assembler Syntax ••••••••••• ~ •••••••••••••••••••••••••••••••••••••••••• 6-7 
An assembler statement consists of an optic.nallabel, the opcode, and one 
ortwo operands. The operandscan contain e>:pressions. 

6.5 Assembler Directives .................................................. 6-9 
The assembler directives provide for procedure and function definition, 
macros, label and constant declara tion tlisting control, storage allocation, 
and conditional assembly. 

6.6 COITHTIUnication wilh Pasca.l ....•...............•..................... 6-11 

AI pha draft 6-1 7 January 1983 



Wor!<shop Referer,ce ManuaJ for the Lis~ The Assembler 

Al pha draft 6-2 7 January 1983 



WorKshop Refer'erlce Hanual for the Lisa The Assembler 

THB: ASSa:: M BLB: R 

6.1 The Assembler 
The assembler is a program that translatesassemblylanguage source code 
into object code. The assembler accepts a text file containing the source 
code, as input, and produces an object file as output. 

The object file produced must be linKed with a Pascal main program before 
itcan be e>:ecuted. 

Assembly language routines are used to implemerlt low level or time 
critical functions. Thischapter describeshow to use the assembler/and the 
syntax of asse mbly larlguage progr·ams. Irlforma tion on the machine 
instructions available on the 6:::000 processor is found in the Mptorola 
manual. 

0.2 Using the Assembler 
To assemble a program, pressA from the INorKshop comma.nd line. Then 
specify the input file (the file that contains your source program) and two 
output files: the object file (the file that contains the machine-language 
code produced by the assembler)and an optionallistingfile. 

The input file must be a te:d file containing assembly language source 
statements. You can maKe this file with the editor. The output file 
produced is an object file (.OBJ),that must be linKed with a Pascal main 
program tobe run. 

0.2.1 Assembler Options 
When you start the assembler, the option settingsare displayed. You may 
change the options by responding to the input file prompt with U?/I. There 
are two assembler options: 

P Pretty Listing. 
S Print information about available space. 

Each option may be sette + or-: 

+ On 
Off 

When Pr·etty Listing is on, the forward jump addressesare filled in with the 
correct values. 

After setting any options desired,pressreturn,and the assembler asKs you 
for the name of the input file. The assembler then asKs you forthe name of 
thelisting, and the output files. 

6.2.2 The Input File 
The input file is a text file contairling assembler language source 
statements. A file created using the Editorwillbe in te>:tfile format. 

When the assembler asK·; you for the name of the input file, type "?" if you 
want to change assembler options at this time; otherv.Jise type the 
pathname of your source file. 

Al pha draft 6-3 7 January 1983 



Wori-<shop Reference Hanual for the Lisa The Assembler 

6.2.3 Th. Object File 
The object .file produced by the assembler contains a maCillne lanquaqe 
'versionof your sour'ce program. The name of an object file ends with .OBJ. 
An c.bJect file is not executable; it must be linked with a Pasca.l progra.m 
thatcalls it. See Section 6.6 forfurtherinformation. 

The output file will be an c,bject file which must be linl<ed with a Pascal 
main program before itcan be e:-:ecuted. 

6.2.4 The Listing File 
The listing file prc,duced by the assembler contains a list of source 
statements and their machine-language equivalent. I f Pretty Listing is off, 
all addresses fClr for'Nard referencing branche:. will be di:.played as 
asterisi-<s(II****>. If Pretty Listing is ont the actual value will be filled in. 

Source :.tatement error'sare flagged irl the listing. Refer to the Appendi:·: 
for a listof assembler errormessages. 

Arl e>:ample clf an assembler'listingfile isshown in Figure6-1. 
assemblerl isting 

TAIL Me --------1 
PAGE - 5 ASMSTR FILE: EX/ASM/STR. TEXT 

.proc AsmStr 
205F move. 1 return address 

00001 
00001 
00021 
00041 
00061 
00061 
OOOAI 
OOOCI 
OOOEI 
OOOEI 
00101 
00121 
00161 
00181 
OOlAI 
OOlAI 
OOlCI 
001EI 
OOlEI 
001FI 
00261 
00201 
00341 
00381 
00421 
00451 
00461 
00461 
00461 
00461 

225F move. 1 
fa7l+' aO 

a7 +~al address of string passed from Pasca I pgm 
2FOA 

45FA 0016 
4280 
1012 

120A 
5340 
6500 0006 
120A 
60F6 

245F 
4EOO 

26 
74 68 69 73 20 73 74 
72 69 6E 67 20 69 73 
20 66 72 6F 60 20 74 
68 65 20 4C 49 53 41 
20 61 73 73 65 60 62 
6C 65 72 
00 

Al pha draft 

move. 1 a2, - (a7) save scratch reg a2 

lea size~a2 
clr. I dO 
move.b (a2 ), dO get size of string 

move~b (a2)+,(a1)+ COP!;! size of string (first b!;!te 
COP!;! subq #l,dO done cop!;!ing string? 

blo done yes, return to pasca 1 
move.b (a2)+,(a1)+ COP!;! one char of the string 
bra COP!;! 

done move. 1 f:~ l+' a2 
restore scratch reg 

jmp return to pascal 

size "b!;!te 38 
m!;!Str . asc i i 'this string is from the LISA assembler" 

. align 

j. end 

2 just to be sure next instruction 
boundar!;! (even address) 

Figure 6-1. Assembler Listing 

of str ing ) 

is on UJord 

6-4 7 January 1983 



WorKshop Refererlce Manual for the Lisa The Assembler 

If you specify a device name such as -PRINTER or -CONSOLEforthe listing 
file, the listing will be printed on that device. If you specify a.disK file, the 
listing will be created as a textfileiYou may thenprintitby usingthe Copy 
command in the File Hanager commarld line. 

6.3 Assembler Opcodes 
The 6:::000 opcodes are described in the Motorola MC68000 Microprocessor 
User's Hanual. The assembler has two variant mnemonics for branches 
(BHS for BCC arid BLOforBCS). The variantm.me!:. are more indicative of 
how the instruction is being used afterl.Jnsigned comparisons. The default 
radi:{ isdecimal. 

The size of an operation (byte, 'Nord, or long) is !:.pecified by appending 
either .B, .W, or.L tothe instruction. The default operation size isword. To 
cause a short for ...... ard branch, append a .S to the instruction. The default 
branch size is Long. 

6.3.1 Optimization 
It should be noted that the Assembler accepts generic instructions and 
assembles the correct form. The instruction ADD, for e:<ample, is 
assembled ir.toADD, ADDA, ADDG., orADDI, depending on theconte>:t. 

ADD D3,A5 
becomes ADDA D3,AS. 

MOVE ,eMP, and SUB are handled in a similar manner. 

6.4 Assembler Syrrtax 
This section describes the form in which the assembler e:<pects an 
assembly language program. We describe the structure of an assembly 
larlguage program in sectior. 6.4.1. 1de then describe the form of constants, 
identifiers,labels,expressions,andhow to specify addressing modes. 

6.4.1 Structure of an Assembly language Program 
An assembly language program contains one or more procedures or 
functions. The structure of an assembly language source file looKes liKe 
Figure 6-2. Firstit contains an (optional> section of non code generating 
operations. This is usually where any constants or macros are defined. 
Ne:d itconains one or more procedures (.PROG) or functions(.FUNC). These 
each contain a sequence of code generating opera.tionsand directives. A 
procedure or function is ended when the a.ssembler encounters the ne}:t 
.PROC or .FUNe. A .END directive is the last statement in the program. 
Any te>:tbeyond the .8: ND is ignored. 

Al pha draft 7 January 1983 



WorKshop Reference Manual for the Lisa The Assembler 

non code gener'a ting opera tions 

.PROC (or .FUND 
code gener'a ting opera tionsand any directive:, needed 

.PROC 

etc • 

. END 

Figure 6-2. Structure of an Assembly Language Program 

The non code generatingdirectivesare: 

.EG.U 

.RE:F 

.DEF 

6.4.2 Constants 

.MACRO 
.E: NDl1 

.IF 

.E:LSE: 

.E:NDC 

.LIST 

.NOLIST 

.PAGE: 

.TITLE: 

.MACROLIST 
.NOMACROLIST 
.PATCHLIST 
.NOPATCHLIST 

Constants in the A:.sembler ca.n be either'rlumeric clr string constants. 

6.4.2.1 Numeric Constants 
Numeric constar,ts in the assembler can be e>:pressed in decimal, 
hexadecimal, octal, or·binary. Th~ defaultradi;( isdecimal. The otherthree 
base:·are e:-:pr·e:.sedas follolNs: 

He>:adecimal 
He>: numbers can be e>:pressedin two ways: 

1. Preceed the number with a "$". E:>:amples of thisare: 

$FF13 
$127 

2. Fallow the number with an "H". UsinCl this farm, the number must 
startwith a digit (0-9). E:xamples: 

OFF13H 
195H 

Octa.l 
Octal numbers are followed by the cha.racter "0". Note tha.t this i·:; the letter 
O,not the chara.cter zero (0). E:>:amples: 

Al pna draft 

770 
1040 

7 January 1983 



WorKshop Reference Hanual for the Lisa The Assembler 

Einary 
Einarynumbers are followed by the character" B". E>:amples: 

1011E 
111000E 

6.4.2.2 String Constants 
String constants are delimited by matching pairsof single or dc.uble quotes. 
E >: am pIe s of string cons tants are: 

"thisis a str'ingconstant" 
'using single quotesas delimiters lets you include "double" quotes' 

6.4.3 IdentHiers 
Only the first eight characters of identifier names are mea.ningful to the 
assembler. The first character must be alphabetic; the rest must be 
alphanumeric, period,underbar,or percent sign. 

8::-:a.mples of identifiersare: 

LOOP 
EXIT_PRC 
NUM 

• 
6.4.4 Labels and Local Labels 

Labelsbegin in column one. They can be followed by a colon, if you liKe. 

Local labels can be used to avoid using up the storage space required by 
regular labels. The local label stacK can handle 21 labels at a time. ltis 
cleared every time a regular label is encountered. Local labels in this 
assembler start with the character ';iI. A local label is an '@ followed by a 
string of decimal digits(O-9). E>:amples oflocallabelsare: 

'@123 
'@2 
'@79 

6.4.5 8:xpressionsand opera:tors 
All quantities are 32 bits in size unless constr·a.ined by the instruction. 
8::<pressionsare evaluated from left to right with no operator precedence • 

Al pha draft 6-7 7 January 1983 



Warl<shap Reference tla.nual for the Lisa The Assembler 

Angle brad(ets can be used tocontr'ol e:.;pr·e~.~.ioneva.luation. The following 
operatorsare a.vailable: 

+ unary or binary addi tion 
unary minus or subtraction 
ones comple ment (una.ry oper·a. tor') 
e:{clusive or 

* multiplication 
/ division(DIVl 
\ HOD 
I logical OR 
a,. logical AND 
= equal (used only by .IF) 
<::> not equal (used only by .IF) 

There is no operator precedence in e>:pressions. For e:<ample, in the 
e:·:pression 2 + 9 * 4, the addition is performed first. To mai<e the 
multiplication be performed first, the e:':pression can be rewritten with 
brac\(ets to show precedence: 2 + <9 * 4>, or' the operand:. can be r·eorder·ed 
as: 9 * 4 + 2. 

6.4.6 Addressing Modes 
The following i~. a ~·umrrta.ry of the addr'essing mode synta:< for the 6:3000. 
Refer to the Motorola 6:::000 manual for information on the addressing 
modes supported by the 6:::000. Table 6-1 gives a summa.ry of the 
addressingmades including theirsynta.:<. 

Table 6-1. Summary of Addressing Hodes 

Made Register Synta>: Meaning ExtraWords 

0 0 .. 7 Di Data direct 0 
1 0 •• 7 Ai Addressdirect 0 
2 0 •• 7 U-.i) Indirect 0 
3 0 •• 7 (Ai)+ Postincre ment 0 
4 0 •• 7 -(Ail Predecre ment 0 
5 0 •• 7 e(Ail Inde>:ed 1 
6 0 •• 7 e(Ai,Ril Offsetinde>:ed 1 
7 0 e Absolute shortaddress 1 
7 1 e Absolute long address 2 
7 .., e PC Relative 1 '" 
7 3 e(Ri) PC Relative inde:<ed 1 
7 4 *Fe Immediate 101' 2 

Notes: 

1) The inde:<ed and PC relative inde:·:ed mCldes are determined by the 
opcode. 

2) The absolute address and PC relative address modes ar'e determined by 
the type oHhe la.bel (a.bsoluteor relative). . 

Alpha draft 6-:;: 7 .January 1983 



WorKshop Reference Manual for the Lisa The Assembler 

3) The absol"ute short and long address modes are determined by the size of 
the operand. Long mode is used only for long constants. 

4) The number of extra words for immediate mode is determined by the 
opcode size modifier (.1.,.1 or .U. 

6.4.7 Miscellaneous Syntax 
Comments 
A semicolon begins a comment in an assembly language pr·ogram. All 
characters on a line after a semicolon are ignored. Thisis an e:{ample of 
comments: 

; This is a comment on aline by itself 
CLR.L DO ;comment after a statement 

Current Program Location 
The current program location is indicated in assembly language by the 
symbol "*". Examples of its use are: 

Jt1P * 
JMP *-4 

Move Multiple (MOVEM) 

Loop i nf i nit h' 
Jump back 4 bytes 

To specify which registersare affected by Move Hultiple U40VE M)tspecify 
ranges of registers with "_" t and specify separate registerswith II /". For 
e>:ample, to push registersDO through D2, D4, and AO through A4 onto the 
top of the stacK: 

t10VEM. L DO-D2/D4/AO-A4! -(An 

6.5 Assembler Direc1:ives. 
The Assembler directives (pseudo-ops}are: 

Al pha draft 

.PROC 

.FUNC 

.DEF 

.REF 

.SEG 
,8:ND 

.ASCII 

.BYTE 

.BLOCK 
,WORD 
.LONG 
.ALIGN 

.ORG 

.RORG 

,8:G.U 

< identi fier > C ,E:{ pr J 
<identifier}C ,E>:pr J 
<identifier-list> 
(identifier-list> 
'(name>' 

'< ch ar acte r-s tring > ' 
< value-list> 
<length>c,value J 
< value-list> 
<value-list> 
<8::<pr> 

<value> 
<value> 

<value> 

begin procedure with 8::<prargs 
begin function with E>:prargs 
maKe identifierse:<ternallyavailable 
declare edernaliderltifiers 
put following code in segment 'name' 
end of entire asse mbly 

place ASCII string in code 
alloca te a byte in code for each value 
allocate length bytesof value 
a110ca te a word for each value 
a.llocate a. long word for each value 
allignrle>:t code on multiple of 8:>:pr 

place next byte at < value> 
same as .ORG 

setlabelequalto<value> 

6-9 7 ,January 1983 



WorKshop Reference M'anua] for theUs'a The Assembler 

.MACRO <identifier> 

.ENDM 

.IF <expr> 

.ELSE 

.ENDC 

.LIST 

.NOLIST 

.PAGE 

.TITLE '<title}' 

.MACROLIST 

.NOMACROLIST 

.PATCHLIST 

.NOPATCHLIST 

.INCLUDe: <filename> 

6.5.2 Space Allocation Directives. 

begin macro definition 
end macro de fini tion 

begin conditional assembly 
optional 0.1 terna te to .1 F block 
end conditional assembly 

turn on assembly listing 
turn off assembly listir,g 
issuea page feed in listing 
tftleof each page in listing 
turnon macro e>:pansionlisting 
turnoff expansion listing 
turnon patc:hlist 
turnoff patchlist 

insert< filename> into assembly 

The space allocatio,n directives are .ASCII, .BYTEl:, .WORD, .LONG, and 
.BLOCK • 

• ASCII 'string' 
converts 'string'ir.to the equivalent ASCII byte constants and places the 
bytesin the code stream. The string delimiters must be matching singleor 
double quotes. To insert a single quote intothe code use double quotes as 
delimiters. Similarly for double quotes: 

.ASCI I 

.ASCI I 

.EYTE <values> 

"AB/CD" 
'AB"CD' 

; string containing a single quote 
; string containing a double-quote 

allocates a byte of space in the code stream for each of the values giver,. 
e:ach value must be between -128 and 255 • 

• ELOCK < lerlgth> (,value J 
allocates <length> bytes, each filled with the value given. If no value is 
given, a blocl< of zeros is allocated • 

• WORD <values> 
allocates a word of space in the code stream for each of the values listed. 
The values must be between -32768 and 65535. 

Alpha draft 6-10 7 January 1983 



WorKshop Reference Manual for the Lisa 

TEMP .WORD 0,65535,-2,17 

creates the assembled output: 

0000 
FFFF 
FFFE 
0011 

.LONG <values> 

The Assembler 

allocates two wordsof space foreach value in the list. Fore:<ample, 

STUFF .LONG 0,65535,-2,17 

creates the output: . 

00000000 
OOOOFFFF 
FFFFFFFE 
00000011 

<label> .EG.U <value> 
assigrls(value> to <label>. <value> can be an expressioncontaining other 
labels • 

• ORG <value> 
puts the next byte of code at <value> relative to the beginning of the 
assembly file. Bytes of zero are inserted from the current location to 
<value> . 

• RORG 
is similar to .ORG. It indicates that the code is relocatable. Because the 
loader does not support absolute loading, .ORG and .RORG accomplish the 
same function. All addressing must be PC relative. 

RORG (without the leading period) is the same a.s .RORG. Similarly, END = 
.E:ND,EQU = .E:QU, PAGE = .PAGE:, LIST = .LIST,NOL= .NOLIST. 

6.5.3 Macro Directives. 
A macro consists of a macro name, optional arguments, and a macro body. 
When the assembler encounters the macro name, it substitutesthe macro 
body for- the macro name in the assembly text. Wherever %noccurs in the 
macro body (where n is a single decimal digit), the te:d of the n-th 
parameter is substi tuted. I f parameters are omitted, a null string is used in 
the macro e:<pansion. A macro can invoKe other macros up to five levels 
deep. In the assembly listing, the listing of the expanded macro code is 
controlled by the options.MACROLIST and .NOMACROLIST. Theseoptions 
are described in Section 6.5.5. 

Al pha draft 6-11 7 January 1983 



WorKshop Reference Hanu~l for the Lisa: The Assembler 

.t1ACRO <identifier} 

.END!"1 

defines the macro named <iderltifier). The following .is an e:<ample 
of a macro: 

.t1ACRO 
t'101,)E, 
ADD 
• ENDt1 

Help. 
;'~1 ,DO 
DO ,~;2 

If 'Helpf is called in an assembly withthe parameter':. 'Alpha'. and ISeta/,the . 
listingcreated would be: 

Help Alpha,Beta 
~ MOVE Alpha,DO 
~ ADD DO , Be t a 

6.5.4 Conditional Assembly Directives. 
The conditional assembly directives .IF, .E:LSE:, and .E:NDC ar·e used to 
include or e>:c1ude sections of code at assembly time based on the value of 
some e>:pression • 

• IF <expression)-
identifies the beginning of a conditional blocK. <e>:pression>isconsidered 
to be false if it evaluates to zero. Any non-zero value is considered true. 
The e>:pressioncan also involve a testfor equality (using <> or =). Strings 
and arithmetic e>:pressionscan be compared. If {e:<pression)is false,the 
As.semble!' ignor·escode until a .ELSE or .ENDC isfound. The code between 
the optional .ELSE and .ENDe is assembled if {e:<pression) is false. 
Otherwise it is ignored. Conditionals can be rles.ted. The macros HE,A.D and 
T AIL given in section 6.6.1 provide e>:amples of the use of conditionals. The 
general form is: 

.IF {expr} 
jassembled if (expr) is true 

[ .ELSE) jOp tiona I 
;assembled if (e>:pr} is false 

.ENDC 

6.5.5 8:xternal Reference Directives. 
Separate routines. can shar'e data structures and subroutirlesby linl<age 
between assembly' routines using .D8:F and .R8:F. These directives cause 
the Assembler to generate linK information that allows separ'ately 
assembled assembly routines to be linKed together. .DEF and .R8:F 
associate labels between assembly routines, not between assembly 
routines and Pascal.The only way' to communicate data between Pascal and 

Alpha draft 6-12 7 January 1983 



- WorKshop Reference Manual for the Lisa The Assembler 

assembly routines is by usirlg the stacK. This is done by passing them as 
parameters in the procedure or function call. Information on parameter 
passing between Pascal and asse mbly language is found in section 6.6 • 

• DEF <identifier-list> 
identifies labels defined in the current routine as available to other 
assembly routines through matching .REFs. The .PROC and .FUNC 
directives also generate code similar to that gem?rated by a .DEF with the 
same namet so assembly routines can call e>:ternal .PROCs and .FUNCs 
with .RE Fs. 

.PROC 

.DEF 

BNE 

Alpha t10~)E 

RTS 
Beta HOVE 

RTS 
.END 

Simple,! 
Alpha, Beta 

- Beta 

This e:{ample defines two labelst Alpha a.nd Eeta.twhich another assembly 
routine can access with .RE: I' . 

• REF <identifier-list} 
identifies the labels in <identifier--list> used in the cur-rent routirle as 
available from some other assembly routines which defined these 
id e rlti fie rsusing th e .DE F directi ve • 

• PROC Simp 1 e 
.REF Al pha 

JSR Alpha 

.END 
uses the label' Alpha' dedar-ed in the .DE: F e:<ample. 

When a .RE F is encountered t the assembler generates a short absolute 
addressing mode for the instruction (the opcode followed by a word of O"s) 
and a short e>:ternal reference with an address pointer to the word of OIS 

following the opcode. If the referenced label and the reference are in the 
same segment modulet the linKer changes the addressing mode from short 
absolute to single-word PC relative. I fthowevert the referenced procedure 
is in a different segment, the linKer converts the reference to an inde>: ed 
addressing mode (off AS) and the word of zeros iscorlVerted ir,to the proper 

Alpha draft 6-13 7 January 1983 



WorKshop Reference Manual for the Lisa: The A:.:.embler 

entry offsetin the jump ·table;, If the referenced procedure is in an intrinsic 
unit (and therefore in a. differentsegmenU, the IUJSR, IULEA, IU.JMP, and 
IUPEA instructions are used (seepage ##). The linKer blindly assumes that 
the word immediately before the word of zeros is an opcode in which the 
low order6 bitsare the effective address. Thusta .RE F label cannot be used 
with any ar·bitraryinstruction. The .REF labels are intended for JSR t J14P, 
PE At and LE A instructions • 

• SEG 

default segmerlt name is" " (E: blanKs). ,SE!:,G"sel~.ment name" puts the 
code in segment called "segment name". 

6.5~6 Listing Control Directives. 
The directives that control the Assembler's listing file output are .LIST, 
.NOLISTt.PAGE, .TITLE,.MACROLIST, .NOMACROLIST, .PATCHLIST, and 
.NOPATCHLIST. If you do ilot specify a name for the listing file iii response 
tothe Assembler'sprornpt: 

. Listing file «cr> for nOile)­

the listing directives are ignored. 

The defaultforthe assemblerisfor.LIST,.MACROLIST, and .PATCHLIST to 
be in effect when the assembler starts .. TITLEdefaultsto blanK • 

• LIST and .NOLIST 
can be used to select portions of the source to be listed. The lis1:inggoes to 
the specified output file when .LISTis encountered •• NOLISTturnsoff the 
listing. .LIST and .NOLIST can occur any numberclf times during an 
assembly . 

• PAGE 
iilsertsa page feed into the listiilgfile • 

• TITLE '{title)' 
specifies a title for the listing page. <title> can' contain up to :30 
characters, and can be enclosed in either single or double quotes • 

. TITLE 'Interpreter' 

places the word, Interpretertatthe head of each page oUhe listing • 

• PATCHLIST 
patches the forward referenced labels iii the listiilg. It must be on if you 
want prettylisting • 

• NOPATCHLIST 
tumsoff pa tching of forward references • 

• MACROLIST 
turnsonlistingofthe e:<panded code from a macro. 

Al pha draft 6-14 7 January 1983 



WorKshop Reference Manual for the Lisa The Assembler 

.NOMACROLIST 
turns off listing of macro e>:pansion. See Figure 6-3 for e>:amples of the 
macro listing options. 

00241 eai 1 4,'12345679' 
"00241 4E5E # UNLK A6 

00261 # • I I" 4 = 0 
00261 # . ELSE 
00261 # .II" 4 = 4 
00261 2E91" # MOVE.L (SP )+, (SP) 
00281 4E75 # RTS 
002AI # • ELSE 
002AI # .ENDC 
002AI # .ENDC 
002AI 31 32 33 34 35 36 37 # • ASCII '12345678' 
00311 38 # 

00321 4E71 nap 
00341 
00341 . namacro 1 ist 
00341 head 
00381 
00381 
00381 . include ex/asm/str 

Figure 6-3. Ma.cro Listing Options 

6.S.7 File Directives. 
The pseudo-op 

.INCLUDE < filename} 
causes the contents of <filename> to be assembled a.t the point of the 
.INCLUDE. < filename> need not specify the. TEXT suHi>: .An included file 
cannot itselfcontain a .INCLUDE statement. 

6.6 Communication with Pascal. 
Pascal programs can call as':sembly language procedures. The Pascal 
program declares the assembly language procedure or function to be 
EXTERNAL. IHhe assembly routine does not return a value,use .PROe. If 
.FUNC is used, space for the returned value is inserted on the stacK just 
befor'e the functiorl parameters, if any. The amount of space inserted 
depends on the type of the function. A LongIntor Real function resulttaKes 
two wor'ds,a Boolean result taKes one word with the result in the high order 
byte, and other types taKe one word. In the following e>:ample, we linK a 
bit-twiddling assembly language routine into a Pascal program. The Pascal 
hostfile is: 

PROGRAt'l BITTEST; 
~)AR I ,J: INTEGER; 
FUNCTION I and( i , j : INTEGER) : INTEGER; 

EXTERNAL; <* external =Assembly language *) 

BEGIN 
i := 255; 
j := 33; 
I,.JRITELN (1 ,J,' AND = .' ,land (I, J»); 

END. 

AI pha draft 6-15 7 January 1983 



WorKshop Reference Manual for tne Lisa. The Assembler 

The Assembler file is: 

• FlINC 
MOI,)E .L 
t101,)E .W 
t10'v'E .W 
AND.I,~ 

~10'JE .I,oJ 
Jt1P 
.END 

IAND,2 
(A7) + ,AD 
(A7)+ , DO 
(A7)+,Dl 
D1 , DO 
DO, (A7) 
(AD) 

tr.'iO ar gurne n t s 
return address 
J 
I 
I AND J 
put function result on stacK 

In the e>:ample given above we have made little attempt to maKe the 
assembly language procedure mimic the structure of a procedure generated 
by the Pascal Compiler. A complete description of this structure requires 
some preliminary discourse. 

6.6.1 The Run Time StacK 
Automatic stacK exparlsion code maKes procedure entries a little 
complicated. To ensure that the stacK segment is large enough before the 
procedure is entered, the compiler emits code to 'touch' the lowest point 
that will be needed by the procedure. If we 'touch' an illegal location 
(outside the current stacK bounds), the M MU hardware signals a bus error 
that causes the 68000 to generate a hardware e:<ception and passcontrol to . 
arl e>:ception handler. Thiscode, provided by the operatirlgsystem, must be 
able to restore the stateof the world at the time ofthe e:<ceptiont and then 
allocate erloughe>:tra memory to the stacK that the originalins.tructioncan 
be re-e:<ecuted without problem. To be able to bacK IJp, the instruction that 
caused the exception must not change the registers,soa TST.W instruction 
with indirect addressingisused. 

In the normal case, the procedure's LINK instruction should be preceded by 
a TST.W e(A7) which attempts to reach the stacK location that can 
accomodate the static and dynamic stacK requirementsofthe procedure. If 
the static and dynamic stacK requirements of your assembly language 
procedure ar·e less than 256 bytes,you can assume that the compiler's fudge 
factor will prated the assembly language procedure, so the TST.W can be 
omitted. If the requirements are greater than 32K bytes,e(A7) may not be 
sufficient because only 16 bits of addressabilityare available (the 68000 
does call a 16-bit processor). In this caset the compiler currently emits 
code something liKe: 

MO'JE. L A7,AO 
SlIB.L *,Size,AO j#size=dynamic + static needed 
TST .I,oJ (AD) 

If the compiler option D+ is in effect <the default),the firsteight bytes of 
the data area following the final RTS or JMP (AO) contain the procedure 
name. LisaBug gets the procedure name from thisblocK, maKing debugging 
much more pleasant. The following e>:ample is provided to show how an 
assembly language progr·ammer can provide Lisa Bug with all the 
information itneeds to perform fully symbolic low level debugging. 

Al pha draft 6-16 7 January 1983 



WorKshop Reference Manual for the Lisa. The Assembler 

ASSEt1BL Y LANGUAGE EXAMPLE 

DEBUGF .EQU 
proc names 

true =) all OIN debugg i ng 1,1/ i th 

Al pha draft 

HEAD -- This t1ACRO can be used to signal the 
beg inn i ng of an assembly 1 anguage procedure '. HEAD 
should be used when you do not want to build a stack 
frame based on A6, but do want debugging information. 

No arguments 

.t1ACRO HEAD 
• IF DEBUGF 

LINK A6,#O fancy NOP used by debugger 
.ENDC 

.ENDM 

TAl L -- Th is t1ACRO can be used as a genera I i zed ex i t 
sequence. There are hllo cases. First I if you bu i I d 
a stack frame, TAIL can be used to undo the stacK 
frame, delete the parameters (if any) and return. 
Seco~d! if 'IOU do not want to build a stacK frame 
based on A6, this MACRO can be used to signal the 
end of an assembly language procedure. In either 
case if DEBUGF is true, the Procedure_name 
is dropped br the t1ACRO as an 8-charac ter name. 

TINa arguments: 
1) Number of bytes of parameters to delete 
2) Procedure_Name as string exactly 8 characters 

.t1ACRO TAl L 
UNLK A6 
.IF Xl = 0 

RTS 
.ELSE 

• IF Xl 
t10VE. L 
RTS 

.ELSE 
t10VE .L 
ADD.W 
JMP 

.ENDC 
.ENDC 

= 4 
(A7)+,(A7) 

(A7)+,AO 
#;~1 ,A7 
(AO) 

6-17 

o bytes of parameters 

4 b;des of parame ters 

put return addr into AO 
remove params from stack 
return to caller 

7 January 1983 



Workshop Reference' MamJal for the Lisa The Assembler 

. IF DEBUGF 
.ASCI I ~~2 

.ENDC 
.ENDM 

The following example demonstrates the use of the 
TAIL macro for the purpose of debugging. The example 
assumes th~t you want to build a st~ck frame based 
on A6. In a real assembly language procedure the 
zeroes be 101,<) I.AJOU 1 d be rep 1 aced by the 1 oca 1 ~. i ze and, 
parameter size. 

.PROC 
LINK 
NOP 
TAll 
. END 

SIt1PlE ,0 
A6,#0 

o , ~ SIt1PlE .' 

zero bytes of locals 
body of procedure 
zero bytes of parameters 

These macros ar'e sufficient for the programmer writing small assembly 
language routinesto be called from Pascal. 

Upon entry to the assembly routine,the stacK is as shown in Figure6-4. 

caners StaCk Frane 
.. -------... 

caners Dynamic Un< ~ ... 
Funct1Cn Result 

i>rDCeCkae ArgI.ments 

statiC Link 

Return AdCITesS 

DynamiC Unk I..;.. 

Local Frane 

Dyrmrtc Requirements 

(A7) --+ L 

Figure 6-4. The Pascal Run Time StacK 

The function result is present only if the Pascal declaration is for a. 
function. Itiseitherone or two words. If the resultfitsin a single byte (a 
boolean, for example), the most significant half (the lower addressedhalf) 
getstheresultvalue. 

Parameters are present only if parameters are passed from Pascal. They 
are pushed on the stacK in the order of declaration; All reference 
parameters are repreE.ented as 32 bit addresses .. Value pa.ra.meters less 

Al pha draft 6-18 7 January 1983 



WorKshop Reference Manual for the Lisa The Assembler 

than 16 bitsin size alwaysl:JCcupy a fullword.All non-set value para.meters 
larger· than 4 bytes are pa.ssed by reference. It is the pr·ocedure's 
responsibilityto copy them. All large setvalue para.meters are pushed onto 
the stacK by the calling routine. 

The static linK is present only if the external procedure's level of 
decla.ration is n.ot global. The linK is a 4 byte pointer to the enclosing static 
scope. 

It is the responsibility of the assembly la.nguage procedure to deallocate 
the return addresst the static linK (if any) I and the parameters (if any). The 
SP must point to the function result or to the previous top of the stacK upon 
return.RegistersD4 through D7 and A3 through A7 must be preserved.ltis 
recommended thatyoualsopreserveD3 andA2. 

6.6.2 Register Conventions 
The following are the registerconverltionsused in the Lisasystem. 1tisthe 
responsibilityofthe programmer to preserve these registers. 

DO-D2lAO-Al : 
D3,A2: 
D4-D7/A3 ,A4: 

Scratch registers (can be clobbered) 
Scratch registers, but should be preserved 

. Used for code optimization 
AS: 
A6: 
SP: 

Pointer to user globals (must be preserved) 
Pointer to base of stack (must be preser'.)ed) 
Top of stack 

RegistersD3 and A2 may be used at some time in the future by the compiler· 
for code optimizationt so the assembly language programmer should 
preserve them also. 

6.6.3 Assembly Language E:xamples 
The following e:·:amples show how to use certain featuresof the assembly 
langua.ge. 

The first exa.mple illustrates the use of .REF and .DE:F. These two 
directives allow an assembly language routine to reference another 
asse mbly routirle. 

The Pascal hostfile is: 

program WasteTime; 
procedure Wait (time 

ex terna 1 i 
begi n 

integer); 

writeln ('Going to waste some time'); 
l;.Ja it (50); 
writeln ('Finished wasting time'); 

end. 

Alpha draft 6-19 7 January 1983 



Workshop Reference Manual for the Lisa The Assembler 

The assembly language file is: 

c :/C I e 

• proc IAia it 
.ref cycle 

.ref more~time 
move.l (.=o7):,au 

move.w (a7)+,dO 

jsr c;/cle 
jsr mor-e_time 
jmp (aO) 

need to use a piece of code 
whose entry point is cycle 
defined outside procedure wait 
another outside procedure 
return address in aO 
need to wait this many cycles 
a parameter for c:/cle 

waste more time 
return 

the subroutine used by wait is defined in the 
follolAiing code. this proc could do other things 

; besides the cycle routine 
.proc def_cycle 
.def cycle ; cycle visible to other procs 

code can go here 

nap 

sub #l,dO 
bne cycle 
rts 

more code can go here 

.proc 
elr 
add 
bne 
rts 

• end 

more_t ime 
dO 
#2,dO 
OJl 

example of aline of code 
beginning of the cycle routine 
parameter is in dO 

I,<laste more time 
use dO as timer 

The following program illustrates how to pass a Pascal string to an 
assembly language program, modify the string ,and returnit. Pascal strings 
have their lerlgth stored as the firstbyte in the string. 

Alpha draft 

.proe 
move. I 
move.l 
move. 1 

AsmStr 
(A7)+ ,AO 
(A7)+ ,Ai 
A2,-(A7) 

;return address saved in AO 
;address of string from Pascal 
;save scratch register A2 

6-20 7 January 1983 



Worl<shop Referer,ce Manual for the Lisa The Assembler 

lea size,A2 
c 1 1'.1 DO 
move.b (A2) ,DO ; ge t size of string 

move.b (A2)+, (A1)+ jCopy size of string 
coPY subq #1,00 jdone COPy i og string? 

blo done iyes, return to Pasea 1 
mOlJe.b (A2)+, (Al) + jone char of string 
bra coPY 

done move .1 (A7)+ ,A2 jrestore sera tch register 
jmp (AO) jreturn to Pasea 1 

size .byte 38 
myStr .asc i i / th is string is from the LISA a.ssembl er' 

Alpha dra.ft 6-21 7 January19B3 



WorKshop User's Guide for the Lisa The linKer 

Cha.pter? 

THE LI N l<E R 

7.1 The LinKer ........................................................ 7-2 
The linKer is a program that .combines object files to create an executable 
file. 

7.2 Using the linl<er •••....•.....•..••.••....••..•...............•....• 7-3 
The linKer is started by pressing ilL" in response to the WorKshop command 
prompt. Inputs to the LinKer are object files, command files, or options. 

7.3 The linKer Opiions •••.••••••••••.••.••.••.•••••.•••••..••••.••.•.• 7-3 
The LinKer options control how a linK is performed. A list of the current 
option settings is displayed when you enter a "?" to the input file prompt. 

7.4 How do I LinK a Main Program? ••••••••••••••••••••••••••••••••••••• 7-4 
A main program is linKed by giving the linKer the object file from a Pascal 
program, along' with all assembly language routines, compiled units, and 
libraries that the program uses. 

7.5 Regula.r and Intrinsic Units •••••• • • • • • •• • • • • •• • • • • • • • • • • • • • • • • • • • •• 7-5 
Regular and intrinsic units are both are Pascal units, separately compiled. A 
regular unit is linKed with a main program, and becomes part of the 
executable file. An intrinsic unit is shared among all programs that use it, 
both on disK and in memory. 

7.6 The Linker Us ting ......•..•.. '.1 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• 7-6 
The LinKer listing provides a summary of the linl<ing process and resources 
used. Optionally you can request lists of all symbols used. 

7.7 Resolving &:xtemal Names ••••••••••••••••••••••••••••••••••••••••• 7-7 
External names are symbolic references to separatly compiled modules. The 
linKer maps them to real addresses. 

7.8 Module Inclusion . • . . . . . . . . . . . . . . . . . . . .. . . • . . . . • . . . . . .. . . . . . . . . . . •. 7-7 
The linKer only includes modules that are actually referenced. 

7.9 Segmentation •••.••• 1 I I •••••••• I ••• I I 11 •• 1 •• 1 ••••••••••••••••••• I. 7-7 
Segmenting a program allows portions of it to be swapped out of memory when 
they are not being used. Segmentation is controled by a combination of 
compiler commands and linKer options. 

7.18 Error Messages ••• I' I •• 1 •••• 1 •••••• ~ •. I •• I ••••••••••••••••••••••••• 7-8 
There are three types of error messages: warnings, errors, and fatal errors. 
They are listed in Appendix A. 

Alpha draft 7-1 29 January 1983 



Worl<shop User's Guide for 'the Lisa The Linl<er 

Alpha draft 7-2 29 January 1983 



WorKshop User's Guide for the Lisa The linKer 

THE LINKER 

7.1 The LinKer. 
The linKer combines object files. Its input consists of commands and object 
files. I1:s output consists of object files, linK-map informatio"n, and error 
messages. The output of the Pascal compiler must be linKed with IOSPASLIB 
before it can be executed. Other object files, including intrinsic unit 
libraries, and object files produced by the Assembler, can also be linKed into 
the output object file. 

What the LinKer does is as follows. When a program is compiled into an object 
file, it contains the following sorts of things: 

• Object code, similar to machine language, that expresses the algorithm of 
the program. 

• Symbolic (named) addresses of all code whose location was unKnown to the 
compiler. These include externally compiled routines (units and intrinsic 
units) and the Pascal library support routines (PASLIB). 

• Other information to be used by the Linker. 

The purpose of the LinKer is to connect up all the necessary things (!inl<ing 
them together), and output an object file that can be executed. 

The LinKer does this by going through the main program, and, each time it 
finds a symbolic address, it looKs up that address in all the units and libraries 
it was given as input, and converts the symbolic address into a real address 
that will be correct when the program is loaded to be executed. 

If the LinKer can't find something that is addressed symbolically, this is an 
error. An error message will be printed, indicating the missing module. This 
process of finding the real addresses that correspond to the symbolic 
addresses is called resolving the external references. 

The linKer expects to find the file INTRINSIC.LIB even if you are not using 
any intrinsic units. INTRINSIC.LIB is a directory of libraries and intrinsic 
units, and includes information for the use of the linKer. INTRINSIC.LIB 
defines all the intrinsic units supplied with the WorKshop system. 

7.1.1 Creating an Executable File. 
To create an executable file, the linKer must have the following inputs: 

• the object file from a main Pascal program. 

• object files for all external procedures referenced by the main program. 
These may be as Pascal units, assembly language routines, or intrinsiC 
units defined in INTRINSIC.LIB. 

• All units used by the units the main program uses. 

• IOSPASLIB to provide the standard Pascal procedures and functions. 

The Linker combines these files and creates an executable object file. If it is 

Alpha draft 7-3 29 January 1983 



WorKshop User's Guide for the lisa The linKer 

unable to linK these files correctly to create a legitimate output file, the 
LinKer will display an error message. If there is an error, the object file 
produced is not executable. 

When linking a main program, all references to external objects must be 
resolved. Partial linKs are not allowed. 

While it is linking the program, the linKer does a "dead codeanalysis" and 
does not include any routines that are not referenced. Unnecessary routines 
are eliminated from the main prog~am, and from the units and libraries given 
as inputs to the linK. 

7.2 Using the LinKer. 
The LinKer is s"tarted by pressing "L" in response to the WorKshop command 
prompt. The LinKer promp"ts you for the input files, the listing file and the 
output file. Options may be entered as a response to the input file promp"t. 
After all file names and options are entered, the linK begins. This means that 
the set of options in effect are the same throughout the linK. l"t is not 
possible to change options part way through the linK. When entering an input 
file name, it is not necessary to enter the .OEJ extension, the linKer will 
provide that for all inputs. 

The linKer will accept option commands and input file names from a command 
file. A command file is a te>:t file containing the file names and options, one 
per line. If there is a blanK line in the file, the LinKer treats this as the 
RETURN that Signals the end of the input files. You use a command file by 
typing "(" followed by the name of the text file the commands are in. Create 
the text file by using the Editor. 

The default listing file is the -CONSOLE. You may send the listing to a te>:t 
file by entering its name in response to the listing file prompt. 

After entering the ouput file name, the linK begins. If no errors occur during 
the linK and all external references are resolved, the output file is 
executable. A message is printed at the end of the linK to tell you if the 
output is executable. 

7.3 The linl<er Options. 
LinKer options can be entered at any time in response to the prompt for an 
input file name. The order in which options are entered is unimportant, 
because they have no effect until the linK begins. The last value entered for 
an option is the value used when the linK is performed. 

Options are represented by a single character. A U+" in front of the 
character maKes that option taKe effect. A "_" sets the linKer so that option 
will not happen. In addition to being set on or off, some options have 

. additional parameters. Numeric parameters can be in either decimal or 
hexadecimal. Hexadecimal numbers are indicated with a leading "$". The 
current setting of all options can be displayed by entering a "?" in response 
to the request for an input file. 

The linKer options are as follows: 

Alpha draft 7-4 29 January 1983 



· WorKshop User's Guide for the Lisa The linKer 

+A 

+D 

+H num 

-Hnum 

+1 

+L 

Alphabetical listing of symbols. The default is -A. 

Debug inforr:nation. The default is -D. 

+H sets the maximum amount of heap space the Operating 
System can give a program before terminating it. Here, as in 
the other options, 'num' can be either decimal or hexadecimal. 

-H sets the minimum amount of heap space needed by a program. 

Copy interface information into intrinsic library files. The 
default is -I. 

Location ordered listing of symbols. The default is -L. The 
location is the segment name plus offset. 

+M from Name toName 
+M maps all occurrences of the segment 'from Name' to the 
segment 'toName'. This allows you to map several small 
segments into a single larger segment. You can thereby 
postpone the segmentation decision until linK time by using 
many segment names in the source code. 

NOTE: 

Because options have an effect only when the linK begins, it is not 
possible to map a segment name to several different names using this 
option. 

+P 

+S num 

+T num 

+W 

? 

Production linK. The default is -Po +P produces a 'production' 
.OBJ file. A production object file does not contain 
information used by the debugger and the linKer, and intrinsic 
unit files do not contain a jump table. The production object 
file can be executed, but cannot be handled by the LinKer or the 
debugger. 

+5 sets the starting dynamic stacKsi:ze to 'num'. The default is 
10000. 

+T sets the maximum allowed location of the top of the stacK to 
'num'. The default is 128K. 

+ W tells the linKer to get intrinsic unit information from a file 
other than INTRINSIC.LIB. 

Prints the options available and their current values. 

7.4 How do I LinK a Main Program? 
A main program consists of a Pascal program linKed with all routines 
necessary for it to run. A main program is the only type of executable object 
file produced by the linKer. To linK a main program you must have the 
following: 

o A compiled pascal PROGRAM object file. 

Alpha draft 7-5 29 January 1983 



WorKshop User's Guide for the Lisa The LinJ.<er 

• Object files for all the units the program uses. This includes files for 
regular units and assembly language routines. Any intrinsic units used 
must be defined in INTRINSIC.LIB • 

• IOSPASLIB. 

When you have all the above files, proceeq as follows: 

1. Execute the Linker by pressing "L" when the WorKshop command prompt 
is displayed. The Linker will display a header and asK you for an input 
file. 

2. Enter any desired options. See section 7.3 in this chapter for more 
information. Press RETURN' after each option entered. 

3. Enter the file names for' all the object files, pressing RETURN after 
each one. The file names can be entered in any order. Do not enter the 
.OBJ extension, the linKer automatically appends it. 

4. Press RETURN to indicate the end of the input files. 

5. ihe LinKer prompts you for a listing file. Enter the file name desired, 
or press RETURN to accept the default of displaying the listing on the 
-CONSOLE. 

6. The LinKer prompts you for the output file. Enter the name of the 
executable file you want produced. Do not enter the .OBJ extension, 
that will be supplied automatically. 

The linKing process begins when you press RETURN after entering the output 
file name. If the linK is successful, the message "Output is executable" will 
be displayed. If the linK is not successful, error messages will be displayed. 

7.5 Regular and Intrinsic Units. 
The two types of units are regular units and intrinsic units. Both of them are 
separatly compiled code modules that may be used by a main program or 
another unit. 

The syntax of a Pascal unit is explained in the Pascal Reference Manual for 
the Lisa. 

A regular unit is combined with a main program by the Linker and included in 
the resulting object file. An intrinsic unit, on the other hand, is stored 
separately on the disk, and loaded at run time.. Thus only one copy of an 
intrinsic unit is Kept on the disk, no mater how many main progra.ms use 
routines in it. In addition to being shared on the disK, an intrinsic unit is also 
shared in memory. 

NOTE 

In the current implementation, there is no provlslon for creating 
intrinsic units. Only intrinsic units supplied by Apple can be used. 

7.5.1 How do I use a Regular Unit? 

Al pha draft 7-6 29 January 1983 



WorKshop User's Guide for the Lisa The linKer 

A regular unit is a separately compiled segment of code. Ii is written in 
Pascalt compiled t and code generated. See the Pascal Reference Manual for 
the Lisa for information on how to write a unit. See Chapter 5 in this manual 
for information on compiling the unit. 

After you have created a unitt the routines in it may be accessed from any 
other program or regular unit you write. The linKer is used to combine a main 
program with all units it uses. The result is an executable object file 
containing all the needed routines. 

To use regular units with a main programt follow the procedure in section 7.4. 
As inputt you must give the linKer: 

• The object file of the main program. 

• The object files of all units used by the ma.in program. 

• The object files of all units used by other units. 

• IOSPASLIB. 

The linKer will combine all these object files into an executable object file. 
It will also do a "dead code analysis" to eliminate any routines that are not 
used t thus preventing the object file from becoming any larger than is 
necessary. 

When regular units are used by more than one main programt a separate copy 
of each routine used is stored in each executable object file. This "waste" of 
disK space and memory can be prevented by using intrinsic units instead. 

7.6 The linKer Listing. 
A listing is produced each time a program is linKed. This listing can be sent to 
a file. or displayed on the console (the default). The +A option will give you 
an alphabetical list of the symbols (procedure names) used in the linK. The +l 
option gives you a list of the names in order of their location. The listing is 
produced in stages. as follows: 

1. The input files are readt and a summary of the resources used is printed. 

2. The linKing process begins. Information about the size of each segment 
is printed. 

3. Errors are reported, and you are told if the output is executable or not. 

If you requested optional listings, they will also be printed. An example of a 
LinKer listing with no options requested is shown in Figure 7-1. 

linkl!rlisting 

Alpha draft 7-7 29 January 1983 



WorKshop User's Guide for the Lisa The linKer 

Figure', 7~ 1." A Linl<er Listing. 

7.7 Resolving External Names. 
An ex1:ernal name is a symbolic entry poin1: in1:o an object module. All such 
names are visibl,eat all times-'"'"there is no no1:ion of the nesting level of an 
external name. Exterrlal names can be either global or local. A local name 
begins with a $ followed by 1 to 7 digits. No other characters are allowed. A 
global name is any name which is not a local name. 

The scope of a global name is the entire program being linKed. Unsatisfied 
references to global names are allowed. Only one definition of a given global 
name may occur in a given linK. (The one exception to this is that the LinKer 
will accept duplicate names where one instance is in a main program or 
regular unit, and the other is in an intrinsic library file. In this case, a 
warning is issued, and the entry in the main program or regular unit is used.> 

The scope of the local name is limited to the file in which it resides~ When a 
linK is done, global names are passed through to the output file unmodified, 
but local names are renamed so that no conflicts occur between local names 
defined in different files. All references to a given local name must occur 
within the same input file. 

7.S Module Inclusion. 
There are two di Herent cases of what modules the linKer includes in the 
output file. When linKing an intrinsic unit, all code modules in the unit are 
included. When linKing a main program with regular units, the linKer does a 
dead code analYSis and does not include any modules that are not used. 

7.9 Segmentation. 
Segmenting a program maKes i1: possible for portions of the program that are 
not being used to be swapped out to disK, thus maKing better use of memory. 
The way a program is segmented will have important effects on its 
performance. 

Segmen1:ation is controlled by two things: 

• The $6 Compiler command, that assigns segment names to source code 
modules. 

Ii The +M linKer option, that allows you to remap compiler segment names 
into new segment names. 

The usual stra1:egy for segmenting a program is to use. the $8 compiler 
command to divide 1:he code into many small segments, then to map these 
segments into a few larger physical segments with ttle +M Lini<er option. 
This will allow you to change the segmentation of the program by ~st 
relinKing it. The segmentation can then easily be adjusted to produce the 

Alpha draft 7-9 29 January 1983 



WorKshop . User's Guide for the Lisa The linKer 

best swapping characteristics. 

Assembly language routines are by default placed in the blanK se·gment. You 
can use the .SEG directive to specify another segment, or change the 
segment with the ChangeSeg utility. See the Chapters 6 and 10 for more 
information. 

7.10 Error Messages. 
The linKer produces three different types of error messages, depending on 
the severity of the error it encountered. 

The first, and least severe type of message, is called a warning. A warning 
message is given when the linKer detects a condition that is potentially 
dangerous, but not definitly an error. A warning message always begins with: 

*** Warning 

I f the warning message occurs while entering a command or file name, you 
may simply reenter the command correctly, and the linKer will proceed as 
though nothing had happened. 

The second type of message is called an error. An error means that the 
linKer has discovered a condition that maKes it impossible to complete the 
linK successfully. The linK process is continued, so that any further errors 
can be discovered. An error message begins: 

*** Error 

A fatal error is a condition that maKes it impossible for the linKer to 
continue the linK. The linK is terminated immediatly, and a message is 
displayed beginning: 

*** Fatal Error 

A complete list of all linKer messages is given in Appendix A. 

AI pha draft 7-9 29 January 1983 



WorKshop User's Guide for the Lisa The Debugger 

Chapter8 

THE DEEUGGER 

8.1 The Debugger ••.•.•.•.•••••••••••••••••••••••••••••••••••••••••••• 8-2 
The Debugger allows you to examine and modify memory, set breaKpoints, 
assemble and disassemble instructions, and other functions for run-time 
debugging. 

8.2 Using the Debugger ..... . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-2 
E:nter the debugger by pressing D in response to the command prompt, or by 
pressing the NMI Key. The debugger prompt 0) indicates that it is ready to 
accept commands. 

8.3 The Debugger Commands ••• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• S-S 
Commands are available for assembly and disassembly of instructions, 
displaying memory and registers, setting breaKpoints and traces, memory 
management, and base conversions. 

8.4 Summary of Debugger Commands •••••••••••••••••••••••••••••••••• 8-10 

.. 

Al pha draft 8-1 27 January 1983 



WorKshop User's Guide for the Lisa The Debugger 

AI pha draft 8-2 27 January 19B3 



WorKshop User's Guide for the Lisa The Debugger 

THE DEBUGGER 

8.1 The Debugger. 
The Debugger allows you to examine and modify memory, set breal<points, 

. assemble and disassemble instructions, and perform other functions for 
r·un-time debugging. 

Procedure names are available to the debugger for program units compiled 
with the D option on. The debugger uses the symbolic names wherever 
appropriate. 

The debugger's symbol table combines the user symbol table and the 
distributed procedure names. The user symbol table contains symbols the 
user defines while using the debugger and the predefined symbols for 
registers. Each entry contains twelve bytes. The first eight bytes are the 
symbol name, and the last four bytes are the symbol's value. Section 6.4 in 
this manual contains more information about the run-time environment of 
programs. 

8.2 Using the Debugger. 
Type D to the command prompt to invoKe the debugger. It asKs: 

Debug what OS file? 

Enter the name of the object file you want to debug. It will be Run with a 
breaKpoint at the first instruction that will drop you into the debugger 
immediately. The debugger command prompt is '>'. The default radix is 
hexadecimal. 

Another way of getting into the debugger is by pressing the NMI (non 
masKable interrupt) Key which is the "_" Key in the top row of the numeric 
Keypad. 

When you get the command prompt, the debugger is ready to accept commands 
that allow you to: 

• Display and set memory locations 

• Set and display registers 

• Assemble and disassemble instructions 

• Set breal<points, patch points, and traces 

• Manipulate the memory management hardware 

• Set up timing bucKets for ex ecution timing 

• Perform utility functions including: 

• symbol and base conversion 

• move the debugger window 

8.2.1 Examples of Using the Debugger. 
This section gives examples of how to use the debugger. An explanation of all 

AI pha draft 8-3 27 January 1983 



WorKshop User~s Guide for the Lisa The Debugger 

debugger commands is given below in Section B.3. A summary of all debugger 
commands is given in Section B.4. 

I f you type a file name to the prompt from the Debug command, the debugger 
star1:s up wi1:h the program counter at the start of the program. To see one' 
instruction disassembled (say at 32F96), type 

>ID 32F96 

ID stands for Immediate, Disassemble. Each subsequent ID command, if given 
without any address, disassembles the next instruction found. In addition to 
printing the value of each byte, the debugger prints the ASCII equivalent of 
that value, if a printable one exists. If none exists, it prints a period •... 

To disassemble 20 consecutive addresses, type 

>IL 

IL <Immediate Disassemble Lines) can also be followed by an address. 
Subsequent IL commands disassemble successive bloc\(s of 20 consecutive 
locations in memory. 

If the object file being examined was compiled wi1:h the D+ compiler option, 
the procedure names are available in the debugger and can be used in any 
expressions. For example, 

}IL Foo 5 

disassembles the first 5 lirres of procedure 'F 00'. 

)BR Foo+40 

sets a breaK point 40 bytes into procedure 'Foo'. 

You can also use labels in immediate assemblies: 

>sy Ken 6000 

)A Ken NOP 

assembles a MOP instruction at the address 'Ken', which in this case is 6000. 

>A 6000 

>Rich: JMP $100 

> <RETURN> 

enters the immediate assembler at 6000, defines the label 'Rich', and 
assembles a JMP instruction. 

S.3 The Debugger Commands. 
This section gives the definition of each debugger command. The commands 
are grouped together according to function. 

S.3.1 I>efirdtions. 
Constant 
SConstant 
&Constant 

Alpha draft 

A constant in the default base. 
A hex constant. 
A decimal constant. 

8-4 27 January 1983 

( 



WorKshop User's Guide for the Lisa The Debugger 

'ASCII String' An ASCII string. 
Name A symbol in the symbol table. 
e:xpr An expression. Expressions can contain names, regnames, 

strings, and constants. Legal operators are + - * /. 
Expressions are evaluated left to right. * and / taKe 
precedence over + and -. (and ) can be used to indicate 
indirection. < and > can be used to nest expressions. In 
those cases where an odd value is probably a mistaKe, the 
debugger warns you that you are trying to use an odd 
address. If you decide to go ahead, it subtracts one from 
the address given. If the compiler option D+ is used, 
procedure names are legal in expressions. 

Exprlist A list of expressions separa.ted by blanKs. 
Register The name for any of the 68000 registers, a.s follows: 

D0 •• D7 are the. data registers, A0 •• A7 are the address 
registers, the program counter PC, the status registers 
SRI US, or 5S. Note that A7 is SP (the stacK pointer). 

RegName RD0 •• RD7, RA0 .. RA7, PC, US, or SS. A predefined symbol 
in the symbol table with a value set by the debugger. The 
value is equal to the value of the register in question. The 
debugger automatically updates the values of these 
symbols. The 'R' is appended to distinguish the register 
names from hexadecimal numbers. 

8.3.2 Display and set memory locations. 
The following commands a.re used to display a.nd set memory locations. 

SM exprl exprlist 
Set memory with exprlist starting at exprl. SM assumes that each element of 
e:<prlist is 32 bits long. To load different length quantities, use SB or SW 
described below. If the expression given ls10nger than 32 bits, SM taKes just 
the upper 32. For example, if we asK 1:he debugger to: 

SM 1000 'ABCDE I 

it deposits 1:he ASCII equivalen1: of 'ABCD' starting at 1000. 

SB expr1 exprlist 
Set memory in bytes with exprlist starting at exprl 

SW exprl exprlist 
Set memory in words with exprlist star1:ing at expr1 

Sl expr1 exprlist 
Set memory in long words with exprlist s1:arting a.t expr1. For example, 

Sl 100 1 

is equivalent 1:0 

SM 100 0000 0001 

DM expr 
Display memory. Display 16 bytes of memory s1:arting at expr. DM RA3+10, 
for example, displays the contents of memory from 10 bytes beyond the 

Alpha draft 8-5 27 January 1983 



WorKshop User's Guide for the Lisa The Debugger 

address pointed to by A3. DM (110) displays the contents of the memory 
location addressed by the contents of location 110. 

DM expr1 expr2 
Display memory. If expr! < expr2, then display memory from expr1 to expr2. 
Otherwise, display memory for expr2 bytes starting at exprl. 

DB expr 
Display memory as bytes. 

DWexpr 
Display memory as words. 

DL expr·· 
Display memory as long words. 

JiB starting_addr count data 
Jiind Byte. Find the byte or bytes 'data' in memory between 'starting_addr' 
and 'starting_Addr'+'count'. 

JiM starting_addr count data 
Jiind Memory. 

JiW starting_addr count data 
Find Word. 

JiL starting_addr count data 
Jiind Long word. 

S.3.3 Set and display registers. 
TD 
Display the Trace Display at the current PC. An example of the trace display 
is shown in Figure 8-1. It shows the instruction executing at the time the 
program was interrupted, the current value of all the registers, and the 
current domain and process. 

tracedisplay 

-- --

Jiigure S-1. The Trace Display. 

register 
Display the current value of the register. 00, for example, is a command to 
the debugger to displa.y the current value in the register D0. RD0, on the 
other hand, is a name automatically placed in the symbol table to give you a 
handle on the contents of De in an expression. Thus, to display the current 

Al pha draft 8-6 27 Jariuar)' 1983 



Workshop User's Guide for the Lisa The Debugger 

value in the D0 data register, type the command D0. To display the 
instruction pointed to by the A0 address register, type the command ID RA0 
<Immediate dissassemble at the address RA0, which is predefined to be the 
contents of the A0 register) 

register expr 
Set the register to expr. For example, to set register- D3 to zero, type D3 0. 

8.3.4 Assemble and disassemble instructions. 
These commands are used to display code in assembly language format, and to 
enter code in the form of assembly language statements. 

A expr statement 
Assemble one or more assembly language statements (instructions) starting 
at e>:pr. You can continue assembling instructions into consecutive 
locations, pressing Re:TURN· after each statement. Type just Re:TURN to 
e>:it the immediate assembler. Note that the immediate assembler cannot 
assemble any intrinsic unit instructions, but they will be correctly 
disassembled. Code segments may be write-protected, which will prevent 
you from assembling instructions into them. This can be overridden with the 
WP 0 command to disable write protection. 

A expr 
If you use the form A expr, the debugger prompts you for the statement to be 
assembled. 
ID 
Disassemble one line at the ne){t address 

ID expr 
Disassemble one line at expr 

IL 
Disassemble 20 lines at the next address 

IL expr 
Disassemble 20 lines starting at expr 

IL expd expr2 
Disassemble expr2 lines starting at expr1 

IX statement 
Immediate execution of a single instruction. The users PC is not changed by 
this operation. 

8.3.5 Set breaKpoints and traces • 
. These commands are used to trace program execution. 

BR 
Display the breaKpoints currently set. You can set up to 16 breaKpoints with 
the debugger. Break points are displayed both as addresses and as symbols. 
An asterisK marKs the point of the breaKpoint in the disassembly. 

SR exprlist 
Set each breaKpoint in exprlist. Symbols are legal, of course, so we can: 

Alpha draft B-7 27 January 1983 



Worl<shop User's Guide for the Lisa 

SR Ralph+4 

if Ralph is a Known symbol. 

Expressions can be of the form: 

pp:aaaaa 

The Debugger 

where pp is the process number, and aaaaa is the address in that process 
where you want the breal<point set. If the process number is 0, the breaKpoint 
is set in system code in domain 0. If no process is given, the current process is 
assumed. The current process is shown in the TD display described above. 

Sreal<points' cannot be set on intrinsic unit instructions. 

CL 
Clear all breal<points 

CL exprlist 
Clear each breal<point in exprlist 

G 
Start running at the current PC 

G expr 
Starting running at expr 

T 
Trace: one insiruction at the current PC 

Texpr 
Trace one instruction at expr 

SC expr 
StacK Crawl. Display the user cal1 chain. e:xpr sets the depth of the display. 
It can be omitted. 

RS 
Reboot. This command should not be used while you are in the WorKshop. The 
Lisa is reset. 

procedure name 
This calls a user procedure or function. It is the users responsibility to save 
and restore registers and push any necessary parameters. I f you want 
execution to stop upon return, you must set a breaKpoint on the current PC. 
For example: 

SR PC 
IX MOva:M.L D0-A6,-(A7) 

i set breaK point on PC. 
i save registers. 
; push params if needed. 

FOO i call procedure FOO. 
IX MOVe:M.L (A7)+,D0-A6 i restore registers. 
Ct PC j remove breaK point. 

A function can be called in a similar manner. Remember to allocate space for 
the function result before pushing any parameters. Use either CtR.W -(A7) 
1'0 CLR.L -(A7). 

Alpha draft :::-8 27 January 1983 



l,..}orKshop User's Guide for the Lisa The Debugger 

A procedure that may need to be called is OSQUIT. It exits from the OS. We 
reccomended' that you avoid this whenever possible. 

8.3.6 Manipulate the Memory Management Hardware. 
These commands change the memory management hardware of the Lisa. More 
information on the memory managment hardware can be found in the Lisa 
hardware manual. CHECK NAME. 

L? expr 
Convert logical address to physical address. 

DO expr 
Set the SgGi/SgG2 bits. These bits determine the hardware domain number. 
If the Status Register shows that you are in supervisor state, then the 
effective domain is zero, and the domain number returned by the debugger is 
the domain that would be active if the SR were changed to user state. 

\oJp 00r 1 
Diable (e) or e:nable (1) l,..}rite Protection. The default is i. 

M M start [end_or _cDuntJ 
11M with one or two arguments displays information about the MMU 
registers. The second argument defaults to 1. If the starting address is 
greater than the second argument, the second argument is a count of the 
number of 11MU registers to be displayed. If the starting address is less than 
the second argument, the second argument is the last register displayed. 

MM 70 

displays 

SegmentE70J Origin[000J LimitC00J ControHCJ 

These values are the Segment Origin, Limit, and Control bits stored by the 
hardware for each M Mll register. As can be seen from a careful perusal of 
the hardware documentation, a Control value of C means the segment in 
question is unused (invalid). If the Control value is valid (7, for e>:ample), the 
debugger also displays the Physical Start and Stop addresses of the segment. 

MM &100 8 

displays the M MU register information for the ::: registers starting at 
register 64 (decimal 100). 

M M num org lim cntrl [end_or _countJ 
The MM command followed by four arguments sets the MMU information for 
segment 'num'. The Origin, Limit, and control bits can be changed. 

MM 70 100 ff 7 

sets the Origin of segment 70 to 100 and the control bits to 7 (a r·egular 
segment). The segment limit of -1 maKes the segment 512 bytes long. 

S.3.7 Timing Functions. 
The debugger allows you to create up to 10 timing bucKets for measuring 
e>:ecution times. Using the microsecond timer in Drivers, time is 

AI pha draft 8-9 27 January 1983 



WorKshop User's Guide for the Lisa The Debugger 

accumulated in each bucil;et and saved along with a count of the number of 
times the bucil;et was entered. 

Typically, this would be done as follows: 

1. Enter the debugger for a given process and create one or more timing 
bucKets with the TB command. 

2. Set a: breaK point to stop execution at some pOint~ 

3. Go. 

4. When the breajl;point is reached, print the timing summary with the PT 
command. 

5. Use the End Timing (E1) command to remove all timing bucKets. 

The timing commands are as follows: 

B1 expr 
Begin timing. bpI' specifies the process number. If the B1 command is not 
given,· the current process is assumed. A process number of 0 can be used to 
indicate domain 0. 

1B addr1 addr2 
A timing bucil;et is created from addr1 to addr2. 

PT 
Print timing summary. There are five columns. printed:. 

1. Bucket number 
2. Total time in this bucKet. 
3. Number of times this bucKet was entered. 
4. Starting address for this bucKet. 
5. Ending address for this bucKet. 

ET 
End timing. This command prints the timing summary and removes all the 
timing bucKets. 

KB expr 
Kill BucKet. This can be used to remove a single bucKet. Expr is the number 
of the bucket to remove. 

RT 
Reset timers. This resets the timing and count tables while leaving the 
bucKet definitions intact. 

Note that all addresses are in the same process. The process number is 
defined by either the BT command or the first TB, PT, KEf or RT command. If 
the process number is not given in the ST command the current process is 
assumed. 

S.3.S Utility functions. 
including: 

o symbol and base conversion 

Al pha draft 8-10 27 Janua,..y 1983 



WorKshop User's Guide for the Lisa 

o moving the debugger window 

o Setting the NMI Key 

8.3.S.1 Symbols and Base Conversion 
SY 
Display the values of all symbols 

5Y name 
Display the value of the symbol name 

5Y name expr 
Assign expr to the symbol name 

CV exprlist 
Display the value of each expression in hex and decimal. 

SH 
Set the default radix to hex 

5D 
Set the default radix to decimal 

8.3.8.2 Moving the Debugger Window: 
P expr 
Set port number to expr. Valid port numbers are: 

o Lisa Keyboard· and screen (default) 

1 UART Port A (farthest from Power Supply) 

2 UART Port B 

The Debugger 

If you move the port to a UART t you must have a modem eliminator connected 
to that port. 

RS 
Display the patch Return address Stac\( 

8.3.8.3 Setting the NMI key: . 
NM 
Displays the Key code for the NMI Key. 

NM expr 
Sets the NMI Key to be Key code expr. A value of zero disables the NMI Key. 

For example: 

>NM $21 

Sets the NMI Key to be he>: 21t which is the "_" Key in the top row of the 
numeric Keypad. 

8.4 Summary of the Debugger Commands. 
procedure name Call the procedure. 
register Display the current value of the register. 
register expr Set the register to expr· 
A expr statement 

Al pha draft 3-11 27 January 1983 



WorKshop User's Guide for the Lisa 

A expr 

BR 
BR exprlist 
BT expr 
CL 
CL exprlist 
CY exprlist 

DB expr 
DL expr 
DM expr1 expr2 
DO expr 
DR 
DWexpr 
ET 

, 
FB starting_addr count data 
FL starting_addr count data 
FM starting_addr count data 
FW starting_addr count data 
G 
G expr 
ID 
ID expr 
IL 
IL e>:pr 
IL expr1 expr2 
IX statement 
KB expr 
L? expr 
MM expr1 expr2 
MM num org lim ctrl 
MR 

NM 
NM expr 
P expr 
PT 
RB 
RS 
RT 
SB expr1 exprlist 

SC expr 
SD 
SH 
SL expri exprlist 

Alpha draft 

The Debugger 

Assemble one statement (instruction) at 
expr. 
Display the breaKpoints currently set. 
Set each breaKpoint in exprlist. 
Begin timing process expr 
Clear all breaKpoints 
Clear each breaKpoint in exprlist 
Display the value of each expression in hex 
and decimal. 
Display memory as bytes. 
Display memory as long words. 
Display memory. 
Set the SEG1/SEG2 bits. 
Display index or ranges of dump RAM. 
Display memory as words. 
End Timing - print summary and remove 
bucKets 
Find Byte. 
Find Long 
Find Memory 
Find Word 
Start running at the current PC 
Starting running at expr 
Disassemble one line at the .next address. 
Disassemble one line at expr 
Disassemble 20 lines at the next address 
Disassemble 20 lines starting at e>:pr 
Disassemble expr2 lines starting at expr1 
Immediate e>:ecution of one instruction 
Kill BucKet ex pI' 
Convert logical address to physical address. 
Display MMU information 
Set MMU information 
Set a value level #5 interrupt on a word 
change. 
Displays the Keycode of the NMI Key 
Sets NMI Keycode to expr 
Set port number to ex Pl'. 
Print timing summary 
Reboot. 
Display the patch Return address StacK 
Reset timers 
Set memory in bytes with exprlist starting at 
expri 
Stadt; Crawl. 
Set the default radix to decimal 
Set the default radix to ·hex 
Set memory in long words with expr1ist 
starting at expr1. 

8-12 27 January 1983 



WorKshop User IS Guide for the Lisa 

8M expr1 exprlist 
SWexpr1 exprlist 

8Y 
5Y name 
5Y name expr 
T 
T expr 
TB addr1 addr2 
TD 
WP00rl 

Alpha draft 

The Debugger 

Set memory with e>:prlist starting at expr1. 
Set memory. in words wfth exprlist starting at 
expr1 
Display the values of all symbols 
Display the value of the symbol name 
Assign expr to the symbol name 
Trace one instruction at the current PC 
Trace one instruction a.t expr 
Create Timing BucKet from addri to addr2 
Display the Trace Display at the current PC 
Diable (0) or e:nable (1) Write Protection. 

3-13 27 January 1983 



WorKs!1.op Reference Manual for the Lisa 

Chapter9 

USINGB:Xa:C FILE:S 

Using E:<ec Files 

9.1 8:}(ecfiiles .•...........•..••...••.••..•••.•....•..••...••.••........•..•. 9-3 
E>:ec filesare scenariosofcommands to be automa.tica.lly performed by the 
WorKshop system. They can use parameters, and conditional e>:ecution. 

9·,2 B:xec File Sta.tements ..•.......•.......•...•.......••.••...........•...• 9-3 
E}:ec file statements are of twa types: normal lines,tha.tcontain Worl<shop 
commands, and exec command lines, that tell how to process the exec file. 
8:>:ec command lines include lines to: set para.meter values, perform input 
and output, and to control conditional e}:ecution. 

9.3 Using Exec Files ........................................................ 9-10 
Exec files are inVOKed using the WorKshop Run command. ThisinvoKation 
lirle can set the values of parameters, as well as select ell, ec options. 

9.4 B:x ample Exec Files .•....•..•.....•..........•........................• 9-14 
This section contains e:<amples of e}:ec files. 

9.S E:(ec File Programming Tips .......................................... 9-18 
Thissectioncontains tipson how to'Nrite el{eC files. 

9.6 Exec FileErrors ••............•......................................... 9-18 

Al pha draft 9-1 7 February 1983 



WorKshop Refer'erlce Manual for the Lisa Using 8:>:ec Files 

.. 

AI pha draft 9-2 7 February 1983 



Worl<shop Reference Manual for the Lisa Using E>:ec Files 

Using S:~·::ec: Files 

9.1 Exec Files 
E>:ec files are scenarios of commands to the worKshop system. They are 
contained in a te:<t file~created with the B:ditor~and are el<ecuted with the 
Run command. They consist of the actual characters you would type to the 
WorKshop to perform the function you want,interspersedwithspecial e>:ec 
file commands that allow you to use parameters and conditions to vary 
some portions of the scenario. 

In its simplest form, an exec file contains the charader's you would pressto 
perform the desired operation. Fore:<ample~ to compile a Pascal program, 
the exec file would contain: 

Pmyprog 

The P invoKes the Pascal compiler, myprog is the name of the source file. 
This could be followed by further lines to Generate, linK, and Run the 
program. 

Special e:<ec file commarlds allow you to use parameters arid conditionally 
perform the Worl<shop commands. This would allow you to setup arl e>:ec 
file to compile, Generate, and optionilly linK any Pascal program. Such an 
el<ec file isshown in Figure9-1 

·$EXEC 
.$ { Th i s exec f i 1 e comp i I es and Genera tes a Pasca 1 program. ) 
$ { I f the second parame ter is L (or l) the program is L i nl<ed ) 
·$1 F /~O = "THEN {no parame ter en tered} 
$l~RITE 'Comp i 1 e what f i I e?1 
$READLN XO 

·$ENDIF 
PXO 
{no I isting file} 
{ de +au 1 t I -c ode f i Ie} 
GXO 
{defaul t object f i 1 e) 

$ I F UPPERCASE CI, 1) = I L' THEN 
LXO 
IOSPASLIB 
{ end of 1 i nl<er inpu t } 
{nolistfile} 
~{O{ output f i 1 e name) 

$ENDIF 
'$ENDEXEC 

Figure 9-1. Example Exec File 

9.2 Exec File Statements 
E>:ec file statements are contained on one line. There are two typesofe:-:ec 
file lines, e:<ec command lines, and normal lines. Normal lines contain 

Al pha draft 9-3 7 F€-bruary 1983 



WorKshop Referenc:e Ma.nual for the Lisa. 

commands to be processed by the WorKshop system. E>:ec command lines 
handle the other featuresof e:{ec filestsuch as parameters and conditional 
statements. 

you may use up to 10 parameters in an e:< ec file t numbered as %0 through 
%9. These receive their values from the invocation ofthe e>:ec file,orthey 
are aSSigned values during the exec file execution. When a parameter 
appears in a normal linet it is replaced by the string value of that 
parameter. These parameters can be used both as inputs to the exec file 
and astemporary variableswithinit. 

Exec command lines startwith a $; they control the operation of the restof 
the exec file. 8::·:ec command lines are free format, as long asthe order of 
thier' elements is preserved. Any number of blanKs can occur before any 
element of a command line. 

Normal command lines contain commands forthe WorKshop system. These 
lines are sentto the WorKshop exactly as they appear. Any e:dra blanKs will 
be sent to the WorKshop and will be treated exactly as if you had typed in 
those blani-<s. 

Comments are delimited by curly braces ({and ). They can appear in either 
a normal or an e>:ec command line. Comments are completely removed 
fr'om rlormallines. 

The tilde ro
,,) isused as a literalizing character in normal lines. Itpassesthe 

following character through without processing it. This allows you to pass 
$, %, and -{ to the WorKshop syste m wi thout having the m be interpreted as an 
exec command t a parameter, or a comment. Tilde can be passed ,3,s,,,w 

The followingisa de scription of each e:{ec command line type. 

9.2.1 Beginning and e:nding e:xec Files 
The gener'al form of exec fHesis they must begin with a "Se:XEC 1/ line and 
must end with a I/Se:NDEXEC" line. The e>:ceptions to this basic rule (for 
those miscreants who embed their e>:ec filesin their program sources)are: 
(1) one line ofte>:t may preceed the "$EXEC" line ifthe "I"invocation option 
is used, and (2) any amount of text may follow the "$ENDe:XEC" line/butit 
will be ignored. 

9.2.2 Setting Parameter Values 
You can setparametervaluesinane>:ec file by usingtheSETand DEFAULT 
operations. The REG.UEST operation prompts the user for the value of do 

parameter. 

SETand DEFAULT 
The SE T and DE F AUL T com mands provide a way of changing the value of a 
parameter inside of an e:<ec file. The form of thesecommands is: 

$ SB:T <%n> TO <strexpr> 

and 

$ DEFAULT <%n> TO <strexpr> 

Alpha draft 9-4 7 February 1983 



WorKshop Reference Manual for the Lisa Using E>:ec Files 

where <%n> is a parameter reference and <stre:<pr> is a str-inge:·:pressionas 
described in the followirlgsectiorl. 

The effect of the SE:T command is to change the value of the specified 
parameter to the value of the given string e:<pres.sion. The effect of the 
DEF AULT command is similar to that of the SET command, however, the 
assi.grlmerlt only taKes place if the value of the specified parameter is the 
null string when the DE FAULT command is encountered. Thus, this 
command can be used to supply default values to parameters that have 
been left unspecified or empty in the e:<ec invocation line. 

RE:QUEST 
The REG.UE:ST command provides a way to prompt for values from the 
console. Itsform is: 

$ REG.UEST <%n> WITH <strexpr> 

The REG.UE:ST command will print the given string e>:pression to the 
console and will read a line from the console which it will assign to the 
specified parameter. Thus the <str e>:pr> is the prompt that you will 
requestwith. 

9.2.3 Input and Output 
Input to an e:{ec file isrequestedby the RE:ADLN of READCH command. 
The WRITE: and WRITELN commands allow you to output values. 

READLN and RE:ADCH 
The READLN and RE:ADCH commarlds allowe>:ec filestoreadinte:dfrom 
the console and to assign it to a parameter variable. This mechanism may 
be used to obtain parameter values, to obtain values to control conditional 
selection, to pause until the user indicates to continue, or for any other 
purpose. The form of these commands is: 

$ READLN <%n> 

and 

$ RE:ADCH <%n> 

READLN will read aline from the console and will assignitto the specified 
parameter. READCH will read a single character from the console (if 
<return>is typed that character will be a bla.nK). 

WRITE and WRITELN 
The I..JRITE and WRITE:LN commands allow e:{ec files to write te>:t to the 
console screen. This te>:t may be used for informatory messagestprompts, 
orforany other purpose. The form of these commands is: 

$ l..JRITE C (stre>:pr> C , <stre:<pr} lIE- J 

and 

$ WRITE:LN C <stre>:pr} C , <strexpr> J* J 

Al pha draft 9-5 7 February 1983 



WorKshop Refer'ence Manual for the LisC\. Using E>:ec Files 

That is, these commands taKe an arbitrary number of str'ing e>:pressions, 
:.eparated by commas, as arguments. The stringsare writtento the curr'ent 
console line, and in the case of WFHTELN a final carriage returnis written. 

9.2.4 Conditiona.l sta.tements 
Conditional statements allow you to perform certain commands depending 
on the conditions at the time the e){ec file is r·un. These conditions can be 
ba.sed on the value of parameters and on the filesavailable to process. The 
condition is stated irt the for'm of a boolean e)·:pression,a.nd can inr:lude 
builtin boolean functions to determine the condition of files. 

The IFStatement 
The IF, ELSEIF ,ELSE a.nd ENDIF commands allow conditional selection in 
e>:ec files. The synta:< of these commands is as follows: 

$ IF <bool e>:pr} THE N 
< stuff> 

[$ ELSEIF (boole>:pr> THEN 
{stuff> J* 

[$ ELSE 
{stuff> J 

$ ENDIF 

where <bool e>:pr> is a boolean e>:pression as described in the following 
section and <stuff> is made up of arbitrary normal and command lines 
(other than commands that 'would be a partof the current IF construct). Trte 
II c. •• J*" constructabove indicates that zero or more ELSEIFcommands may 
appear between the IF and the ENDIF commartd, while the" [ .•• J"indicates· 
that zero Drone ELSE command may appear justbefore the ENDIF. 

The IF construct is evaluated in the usual way. Fir:.t, the boolean 
e>:pression on the IF command it':;elf is evaluated; if it is true then the 
< stuff>between the IF and the ne>:t ELSEIF(ifany) or ELSE (itany) or E NDIF 
is selected; otherwise it is not selected. All remaining parts of the IF 
construct up to the E NDIF will be parsed but will nc,t be selected once one 
of the (bool e>:pr>s is true and i tscorresponding < stuff>is ·:;elected. To say 
that < stuff>is selected means that any normal line:. will gerterate te:dand 
that any command lines will be processed. Conversely, to say that <stuff> 
is not selected means that any nor'mal lines will not generate te:d and that 
command lines will be parsed (for correctness) but not e:<ecuted. If the 
<bool e>:pr> on the IF is nc,t true thert the fc,llowirlg ELSEIFor ELSE will be 
processed. If an ELSEIFis ne>:t, its <bool e:·:pr) will be evaluated, and, if 
true, its following <·:;tuff> will t,e selected and the remainder of the IF 
construct will not be selected. Processing of the IF construct continues 
urttilone of the <bool e:·:pr>s art art IF c,r ELSEIFistrue or until the E NDIF is 
reached. If no(bool e:<pr'> is true before the ELSE (if any) is reached, its 
<stuff>willbe selected. 

IFconstructs may be nestedwithineach otherto an arbitraryleveL 

Al pha. draft 9-6 7 Februa.ry 1 '183 



WorKshop Reference Manual for the Lisa Using E:<ec Files 

BooleanExpressions--comparison arid logical operators 
Booleanse:<pressions«bool e>:pr>s) enable you to testof string values and 
checK properties of files. The grammar for boolean expressionsis as 
follows: 

< bool e>: pI'" > <bool ter·m> C(binarylogic op> (bool e>:pr) J* 

<binar},logic op> 

(bool term> 

<boolfactor> 

<strop> 

AND 
lOR 

<bool factor> 
I ( <bool e:<pr> ) 
I NOT ( <bool expr) ) 

<stre:<pr> <strop> <stre>:pr> 
I <boolfunction> 

= 
I <> 

. The basic element of a boolean e>:pression (a <bool fa.ctor» is either a. 
boolean function (see the ne>:t section) or a. string comparison, testing for 
equality or inequality. These basic elements may be combined using the 
logical opera tor-sAND, OR a.nd NOT ,wi th par'enthesesused forgroupirlg. All 
these opera torsfunction in the usual way. 

Boolean Functions-- EXISTS and N8:WER 
Several functions returning boolean results are provided for use with the 
conditionalcontructs. 

The EXISTS function a.llows you to determine whether a. file or volume 
e>:ists. The function has the following form: 

B:XISTS ( <stre>:pr) ) 

where <str e:<pr) is a. string ex pression whose value is the name of a file. 
Typically this <str e>:pr} will be an e:<panded string constant (discussed 
above),such as"% 1.obj". 

The NEWER function allows you to determine whether one file is newer 
than another file, that is, whether its last-modified date is more recent 
than the la.st-modified date of arlther file. The function has the following 
synta:<: 

NB:WB:R ( (stre:<pr D,{strexpr2» 

where the <: str expr>s specify file names. TRUE will be returned if the first 
file is newer than the second. A preprocessor run-time error will occur if 
one of the filesdoes not e>:ist. 

Al pha draft 9-7 7 February 1983 



Workshop Reference' Hanuat for the Lisa USing E:<ec F·nes 

9.2.5 String Expressions 
A str'irig expression« strexpr » may specify a string by a number of meanSf 
as noted in the following grammar. 

< stre>:pr) .. - <parameter reference> 
I <: strconstant> 
I {expanded strconsi:ant) 
I < si:rfunction> 
I {e>:ec function call> 

A parameter 'reference has i:he usual II %n" form. A string constant has the 
si:andar'd form of te>:i: delimited by sir,gle quotes (') ,with a quote inside the 
string specified by the double quote rule, as in 'That"sall, foll\s!'. An 
expanded string constant is similar to a stringconstant,e>:cept tha. t double 
quotes (") are used as delimiters and parameter references are expanded 
within the string. A stringfunci:ion is a preprocessorfunc1:ion which returns 
a string value (these are described in the following section). An e>:ec 
function call is an invocation of an e:<ec file which returnsa. string value (as 
described in a following section, "E :.: ec F unction Calls"). 

String Functions-- CONCAT and UPPERCASE 
The string functions CONCA T and UPPERCASE may' be applied to other 
stringe>:pressionsi:oproduce r,ew strir,gvalues. 

The CONCAT funci:ion allows severalstringe:<pressionsi:o be combined to 
produce a result which is a single string. The CONCAT function has the 
form: 

CONCAT ( <strexpr> (, < streHpr> J*) 

Thatis,CONCA T tal\es a listofstringe>:pressions,separatedby commas. 

The UPPERCASe: function conver·i:s ar,y lower case lettersir, its argument 
toupper case. Ithas the following form: 

UPPERCASE «stre>:pr» 

An e:<ample of the use of this function is 

$ SET%OTOUPPERCASe: (%0) 

which willsetparameter 0 to an uppercase version of itspreviousvalue. 

9.2.6 Nesting exec Files 
E>:ec files can be nested by ,:alling another e:<ec file by using the SUBt'lIT 
command. The called file can be a fundion, which means that it will 
RETURN a value to a parameter in the calling e:<ec file. 

SUBMIT 
The SUBHIi command allows nesting of e:<ec files, that is, it allows 
another e>:ec file to be called from within an eHec file. The form of the 
SUBMIT command is: 

$ SUBMIT {e:<ec command> 

Al pha draft 9 _':;' 
'-' 7 February 1983 



WorKshop Reference Manual for the Lisa Using Exec Files 

where {e:<ec command> isan e:<ec command of the same form as you would 
have following the "e>:ec!" or "<" at the t';orK5hop shell command level. 
This e:<ec command may include parameters and e:<ec options in the usual 
fashion. 

The effect of the SUBMIT command is to process the specified e:<ec file, 
putting any generated e>:ec output text into the current e:<ec temporary 
file. Thus,while a single exec flle may have sever~_!:-,a-s'tedsub-e:<ec files, 
only a single temporary output file is generated which includes the output 
gerlerated by all of the input files. E:<ec files may be nestedtoan arbitrary 
level. 

Within the text of the <exec command>, references to "%n"parameters will 
be expanded and the literalizing character ("-'~II)will be processed. Be aware 
that this is the only processing that taKes place within an exec command. 
Everything up to the first" (" or the end of the line (if no parameter listis 
present) will be taKen to be the ex ec file name. If there is a "(" the 
parameter list will be taKen to be everything between this II (" and the nex t 
")", An (e:<ec command} may notbe splitacrosslines. 

Note that only the "I" <Ignore first line) and "B" (BlanKs. significant) options 
are valid on a SUBMIT command, while the "R" <:ReRIJn), "5" (Step mode) and 
"T" (Temporary file saved) options are only applicable from the main e>:ec 
invocation line. 

$RETURN -- Exec Functions 
The RETUR N command allows exec files to return string values to other 
(calling) exec files. Thusthe RETURN command can turnan el<ec fileintoa 
function. The form of the RETURN command is: 

$ RETURN C-(stre:<pr) J 

Executing a RETURN command will terminate the current e>:ec file and 
return to the calling exec file with the specified string value. The method 
by which exec functions are called isdescribed in the following section. 

E>:ec functions can be used to do such things as determining whether a 
program file (and itscorresponding include files,if any) have been modified 
since their last compilation, and may thusbe used to conditionally submit 
compiles. If written generally enough, such a function could be used by 
many exec files. 

E:xec functions can produce side effects, that is, they may contain normal 
lines which will get placed in the temporary file. While the intentional use 
of such side effects is unliKe ly, inadvertentinstances rna y occur and will be 
potentially hazardous to your e>:ec files. (An une:<pected blanK line in the 
middle of an exec file can often throw itout of sync.) 

Exec FunctionCalls 
E:xec function calls return string values, and are thus ar-e orle of the basic 
elements of string expressions. They may also appear in boolean 
ex pressions,supplying arguments for string comparisons •. (A typical use of 

Al pha draft 9-9 7 February 1983 



WorKshop Re'fererlce Manual for the Lisa Using E}:ec Files 

an e:<ec function would be to returna boolean value by returningeitherthe 
string'TI or 'F',) The form of an exec function call is: 

< < file name> E ( -=: arg list) ) J 

where II (" is the char'acter that signals a function invoca tion (justin the way 
that this character identifiese>:ec files for the Worl<Shop's Run command). 
The <file rill-me) and optional (arg list> are the same as in the SUBMIT 
command. 

Due to our liberal conventions concerning what characters (including 
blanKs) may appear in file names, the preprocessor must maKe some 
assumptions a.bout how to identify the ex ec function file name and the 
argument list. Recognizing the file name. is more of a problem in the case 
elf e:<ec functions tharl it for the SUBMIT command, since exec function" 
calls may appear inside of arbitrary string e>:pressions, while an e>:ec 
invocation appears by itselfin a SUBMIT command, The simple rule the 
preprocessor uses is: if the e>:ec function invocation has an argument list, 
the file name is assumed to be everything between the "(" and the "(" 
beginning the argumen't list; otherwise, the file name is assumed to be 
everything between the "{" and the end of the line, which means that you 
will have to supply an empty argument list to an exec funtion with no 
arguments if the function call is not the las1:thirlg orl the com mand lirle. 

The proceSSing ofthe te>:tof a function call is the same as that ofa SUBMIT 
command, that is,the only processing that will taKe place is e>:pansion of 
"%n" parameters and recognition of the literalizing character ("'.~"). This 
means, for instance, that the text of a function call may not conta.in an 
embedded function call. Note also that a function call may not be split 
across lines, 

9.3 Using 8:xec Files 
An invoca tiorl line for th e pre proce ssorhas th e following form: 

(e>:ec command> <exec file> r «parameter list» E {e>:ec options> JJ 

The <exec command) can be either "EXEC/" or "<", The <exec file> is the 
name of the e:<ec file you wish to run. A ".T8:XT" e:densionwill be assumed 
if one is not specified; however, you may override the mechardsm which 
supplies the ".TEXT" e:densionby ending your <e:<ec file> name withadot; 
e.g" using II foo." will cause the preprocessor to 1001< for the file" foo" rather 
than"foo.tex1:". 

The optional <parameter list) is enclosed in par·en1:heses. The parameter 
list may be empty or it may include up to ten parameters delimited by 
commas. For example, we may have an e:<ec file to run compiles which 
taKes volume and source file parameters, which we might invoKe with 
"compile (foo,-worK-)", Parameters may be omitted (leaving them as null 
paramters) by specifying them with the null string, a.s in "compile(foo,)" t 
which omits the volume from our previous e:<ample. Alternately, 
pa.rameters may be left unspecified altogether, as in "compile(foo)" t in 

AI pha draft 9-10 7 February 1983 



WorKshop Reference Manual for the Lisa Using E::<ec Files 

.... Jhich case they also get null values. Onereasonforleaving off parameters 
is that the e:<ec file may have been set up to supply default values. as is 
described below. 

The <exec options> which follow the closing ")" of the parameter list 
consist of single letter commands which will modify the behavior of the 
preprocessorj for e>:ample. "S" is used to indiCate that you want to step 
through the e>:ec file asitisbeing processed. conditionally selecting which 
commands will be sent to the WorKShop shell. The e:-:ec options are 
discussed in detail in the "E::<ec Invocation Options"sectionbelow. 

The preprocessor's output is a te mporary file with a " .. TE XT" e:dension. 
The temporary file is the processed versionof your ex ec com mands, tha tis. 
all preprocessor--oriented commands will have been processed and 
removed. leaving only the WorKShop-related commands. This temporary 
file is passed to the WorKShop shell e>:ecutive when the preprocessor is 
done. The WorKShop shell will then run the temporary e>:ec file and delete 
it automatically when completed. -

Note that the preprocessor is nat case-sensitive,but it does preserve the­
case ofparameters and strings supplied by the user. 

E:<ec Invoca:tionOp1:ions 
A rlumber of options are available when running the preprocessor. These 
options may be specified when invoKing the preprocessor or on SUBMIT 
commands. The options are specified by single lettercommands following 
the eHec parameter list. (A null parameter listshouldbe used if you want to 
use c.ptionswithout parameters,as in U< fooOs" .)The optionsare as follows: 

"B" indicates that the preprocessor should not trim blanKs on output lines. 
Normally the preprocessor will trim off leading and trailing blanKs on 
the linesthatitoutputstothetemporary file. This allows you to indent 
normal lines (lines which are not e>:ec command lines) without 
worrying about generating spurious blanKs. Thus the preprocessor 
assumes that leading and trailing blarlKs are insignificant (which isthe 
case for WorKShop commands, but which may not be true for some 
perverse programs you may run via exec files). Thisoptionwill tell the 
preprocessor not to trim such blanKs. The option applies only to the 
exec file being run or SUBMITted, and not to any nestedexec files. 

"I" indicates that the first line of the exec file is to be ignored by the 
preprocessor. This option is intended for deviants who liKe to embed 
their e:< ec files in their program sources, in which case the firstline of 
the source should be a "(*" and a "*)" should follow the end of the e>:ec 
filet thus commenting it out of the program source. (Note that" (*" and 
"*)" should be used in preference to "("and "}"since the latter are used 

. as comment characters in the preprocessor.) 

liT" indicates that the temporary file which is created (i.e., the e:<panded 
form of the e:<ec file) should not be removed after it is run. Dnereason 
to use this option is to maKe it possible to rerun an e:-:ec file created 
with the step option (see below) without going through the stepping 

AI pha draft 9-11 7 February 1 $'83 



Worl<shop Reference M ariual for the Lisi. Using E:<eC File~ 

prompts a 5.econd time by running a previously created e:<panded e:<ec 
file. The "R" e:<ec option (described below) is used to run old temporary 
e>:ec files. Note that the liT" option is not allowed on SUBHIT 
commands. 

"R" indicates that the a exec temporary file which has been sa.ved with the 
"T" option should'be rerun~ bypassing the normal processing by which 
the temporary was created. For e:<ample, "foo" may be an e>:ec file 
which generates a complicated system via a large number of nested 
e>:ec fileswhich taKe a significantamount of time forthe preprocessor 
to digest. If we Know we are going to run" faa" repeatedly ~ we may 
warlt to gerlerate the temporary file only once but runitseveral times. 
The first time we would invol<e the preprocessor with "<fooOt" to 
irldicate that the temporary file should not be automatically deleted 
after it is run. Subsequently~we would invol<e the preprocessor with 
"{fooOr"to rerurlthe old temporary file. Note that the "R" option will 
override any others that may be specified~ and it is not allow'ed on 
SUBMIT commands. 

"S" indicates that the exec file should be processed in "Step Mode" which 
allows selective sKipping of output lines and SUBMITs. Ifthisoptionis 
used~ the following message will appear when you invoKe the 
preprocessor: 

Step Mode: 
-- in response to "Include?" answer: V, N~ A (Abort),I( (Keep r'est)~ or I <Ignore Rest). 
-- in response to "Submit ';''' answer: V t Nt S (Step), A (Abort), K (Keep Rest), or I 

<Ignore Rest). 
More details';' [No] 

I f you repond with "Y" (yes) to the "t1ore deta i 1 s ?" promp t you 1,oJ ill 
get further i nformat i on on l)Jhat each of stepp i n9 responses means. 

When you invoKe a.n e>:ec file with the step option you will be prompted 
when a line has been generated and is about to go into the temporary file. 
The line will be displayed followed by "{= Include?". A responseof II V" will 
incll.Jde the line in the e>:pa.nded exec file. A responseof II Nil will cause the 
displayed line to be omitted. A response of "A" will abort out of the e)<ec 
file preprocessor and no e:<ec file will be run. A response of "K" willl<eep 
(include) all the remaining lirles of the e>:ec file~leaving step mode, while a 
responseof "I" 'Nill ignore the remainder of the eHec file. 

When a SUBIHT command is encountered when stepping~the SUBMIT line 
will be displayed followed by "<= Submit ?". A response of "Y" will perform 
the SUBMIT unconditiorlally~ that is~ without stepping thr'ough it. A 
response of "Nil will ignore the SUBHIT. A response of II S" will stepthrough 
the SUBMIT file. A response of "A" will abort out of the e:<ec file 
preprocessor and no e:< ec file will be run. A response of II K" 'Nill Keep the 
rest of the e>:ec file,leaving step mode, while a response of "I" will ignore 
the re mainder oHhe eHec file. 

Al pha draft 9-12 7 Februar:' 1983 



WorKshop Reference Manual for the Lisa Using 8:<ec. Files 

Note that a reponse of "?" to a "Submit ?" or "Include?" prompt will elicit an 
e>:planationof the accepted responses. 

Following are some e:<amples of how to use the preprocessor'ssteppirlg 
facility. 

Stepping may be used to resume execution of an ~xec file which did not run 
to termination. For e>:ample, if our e:<ample "compile" exec file includes 
both a compile and a generate step and if we wish to resume with the 
generate step we could invoKe the preprocessor with 
"compile(foo,-worK-}s". Then, in response to the "Include?" prompts for 
lines corresponding to the compile stepwe would hit "N" to sKip the lines. 
Upon reaching the first line of the generate step we would respond with "K" 
to Keep the restof the file ,and the generate stepof the e:<ec process would 
be performed. 

The stepping mechanism may be used to run only selected parts of an e>:ec 
file. Say, for instance, that we have a modular set of exec. files which 
generate a whole system of progr'ams, such as the WorKShop development 
system, and that one e>:ec file called "maKe/all" can generate the whole 
system by SUBMITtinge:<ec files for each ofthe component programs. The 
e:<ec files for each component program (development system tooD maKe 
use of other e:<ec files to perform such standard activities as compiling 
(and generating) a Pascal ur:lit or program, performing an assembly, 
installing a library, or manipulating files with the WorKShop's filer. If we 
are performing a system build and find ourselves constantly having to 
regenerate parts of the system due to bugs, late deliveries or whatever, 
then the ability to step by SUBMITs peoves to be very useful. Arbitrary 
parts of the system carl be regenerated by running "{maKela1l0s" (i.e.,our 
master e>:ec file invoKed with the stepping option) and selectively 
submitting the sub-exec filesforonly thosethingswhich we wish to rebuild 
while stepping over the others. 

Stepping in cort.iuction with the "T" option (for saving the temporary file 
created by the preprocessor) can be useful when we are going to be 
regenera ting a single component of a program or syste m a number of times 
in succession, such as when we are fi>:ing a bug in an element of a system 
build and we expect that several iterations will be needed to correct the 
problem. To continue our previouse>:ample, suppose that we are having a 
problem with the" FileIO"unit of the "ObjIOLib"librarywhile building the 
development system, and that an exec file called "maKe/ObjIOLib" 
generates and installsthe library,submitting compiles and assemblies for 
all of its units, linKing everything together, and finally performing the 
irlstallation. By invoKing the preprocessor with "maKe/ObjIOLibOst"wecan 
go into step mode and submit only those things related to the compilation 
of the "FileIO" unit, the linK, and the installation of the library in the 
Intrinsic Library. Then, after each successive refinement of "FileIO",we 
could rurl the saved temporary file by r'unning "(maKe/Ob,iIOLibOr"without 
having to go thru the stepping process. Ouralternativesto this procedure 

Alpha draft 9-13 7 February 1983 



Workshop P,eference Manual for the Lisa. Using S:xec' Files 

are crea.ting a.rlother e>:ec file to genera.te only the selected parts, or 
running (and rerunning) the e>:ec file for the whole library,or running each 
sub-processindependently (which requires more of your attention). 

Note that typing Apple-period while the preprocessor is running will abort 
the processing of the el<ec file. 

9.4 Example Exec Files 
E>:ample 1 -- an e>:ec file to do a Pascal compile 
This e:<ec file does a Pascal compile and generate. Note how comments 
have been us.ed to maKe the single-character WorKShop commands more 
intelligible. 

$E)(EC {"camp" -- perform a Pascal compi le 
;~O -- the name of the un i t to camp i 1 e ) 

P{Pascal compi le):1.0{source) 
(nalistfile) 
(default i-code file) 
G{genera te code )/:O 
(default obj file) 

'$ENDEXEC 

!h:ample 2 -- ane>:ec file to do an assembly 
Thisexec file performs an assembly, and allows for an optional output file 
rlame which may be differentfrom the source name. 

$EXEC { "assemb" -- perform an assembl"l 
~~O -- the name of the un i t to assembl e } 
~~1 -- (opt i anal) 011 ternate name af OBJ output) 

'$DEFAULT ~~1 TO %0 { use :·c.urce name if no au tpu t name is given} 
A{assemble)/:O{source} 
{nolistfile} 
;~1{obj f i 1 e} 

$ENDE)(EC 

E>:ample 3 -- a more flexiblee>:ec file·to do Pascal compiles 
This e>:ec file performs compiles; it allows for an output file with a 
differentname than the souce and permits the use c.f a.n alternate intrinsic 
library. 

Alpha draft 

$EXEC { "comp 1" -- perform a Pasca 1 comp i 1 e 
/:0 -- the name of the un it to comp i 1 e 
~~1 -- (opt i onal) al ternate name for 08 ... T f i 1 e 
%2--(optional) alternate intrinsic library} 

'$DEFAULT %1 TO ;~O { if no a i terna te 08.J name use same name as source} 
$IF/:2 {) '-' THEN {useal ternate intrinsic 1 ibrary} 

P{Pascal comp i 1 e}?{opt i on fl agJ 
;Q{al ternate intrinsic 1 ib) 
;~O{source} 

'$ELSE 
P{Pascal compile);~O{saurce} 

'$ENDIF 

9-14 7 February 1983 



WorKshop Reference Manual for the Lisa 

{nolistfile} 
{default i-code file) 
G{genera te code )%0 
;~1{OBJ fi Ie) 

$ENDEXEC 

e:>:ample 4 -- yet another exec file t~do Pascal compiles 

Using E:<ec Files 

Thiscompile exec file will only perform the compile ifeitherthe object file 
does not e:<istor the source file is newer than the object file (i.e.tthe source 
has changed since it was last compiled). 

$E)(EC { Icomp2" -- perform a Pascal compile (only if really 

required) 
%0 -- the name of the un it to comp i 1 e 
;~1 -- (op tiona 1) a 1 terna te name for OBJ f i 1 e 
;~2 -- (optional) OIl ternate intrinsic J ibrary} 

$DEFAUL T /~9 TO ;~1 { se t /~9 to name of ou tpu t OBJ f i 1 e } 
$DEFAUL T %9 TO ;~O 
$IF EXISTS (1I%9.obJ") THEN 

SIF NEWER (1%0.text l ,I%9.obj") THEN {recomp if source newer 

than object} 
"$SUBMIT compl G~O ,%1 ,;~2) 

SENDIF 
$ELSE {OBJ f i 1 e does not ex i st, so genera te it} 

SSUBt1IT comp 1 (%0 ,;~1 ,%2) 
"$ENDIF 

$ENDEXEC 

It is left as an e>:ercise as to how to change the above €n:ample to taKe into 
account the fact thata unit may have an arbitrar~tnumber of include filesirl 
addition to its main source file,and thai:the unii:willhave tobe recompiled 
Hone or more of these change. 

e:>:ample 5 -- exec file "chaining" 
This e:<ample ("maKe/Prog") uses the "smart" compile e:<ec file (licomp2") 
defined in the last example to demonstrate how to "chain" e)<ec file 
e}: ecution. Assume we want to generate a particular program made up of 
three units (unit1..unit3)and that we ha.ve written"linK/Prog" ta smart exec 
file which performs a. linK only when one of the object files for one of the 
units is newer than the linKed program file. Our generation e>:ec file will 
use these smart e:<ec filesto perform the minimal required amount of worK, 
thusit may be used to determine whether we have the latestversionofthe 
program without fear of wasting time. 

AI pha draft 9-15 7 February 1983 



Wor~<shop Reference 14anUal for the Lisa Using E:·:ec Files 

'$E:<EC {"make/Prog" -- smart version, on);1 recompi les&) inKsl,<)hen 
ithasto} 

'$SUBt1IT comp2(un i t1) 
'$SU8t1lT comp2( un i t2) 
$SUBt1IT comp2(un i t3) 
R{l ink/Prog 

'$ENDEXEC 

{ run 1 i nit. exec f i 1 e af tel' ,:c,mp i 1 es have 
run so that it will get the correct 
fi le dates} 

Nc,te that in the last line of the at,ove e){ec file we have scheduled an e:·:ec 
file to be run at a later time t as opposed to SUBMITting it nOWtSO thatthe 
file dates for' the linf< step will be accessed after the compiles have had a 
chance to run. The differences between running and submitting and e:·:ec 
files ar-e demorlstrated in the following scenario. trJhen an e:<ec file is 
submitted it is processed immediately by the prepraces':;ortwith itsoutput 
going to the temporary filet which is then passed bacK to the It}orf<Shop 
·:;hel1. The then shell runs the commands in the tempora.ry file until it 
carnes tc, the command to rur,another' e:·:ec file,atwhich point it discards 
the remainder of the temporary file and runsthe preprocessor-with the new 
e>:ec command. This e)·:ec file invocation in turn results in another 
temporary file of commands which is then run by the shell. 

Example 6 -- a recursive exec file to do Pascal compiles 
This compile e>: ec file will perform up to 10 compiles. It1:aKes arl argument 
listwith the na.mes of the units to be compiled. 

':f;EXEC { "rcomp" -- perform ani number (up to 10) Pa';cal comp i 1 es. 
I t calls "c omp" on its fir star gume n t an d the n calls i t se If 
recurs i Ile 1 ;/IIJ i th its argumen ts sh i f ted 1 ef t } 

'$1 F ;~O <> .'.' THEN 
'$SUBt1IT compC~O) { "comp" the first one} 
·$SUBt'1ITrcompC~1,/'2,~~3,;~4,;·~5,;~6,;Q,~~8,~~9) {"rccmp" the rest, less 

'$ENDI F 
$ENDEXEC 

first} 

8:xample 7 -- a Ba.sicexample 
This e:<ec file demonstrates some of the constructs in the preprocessor":; 
meta-Ianguaget by generating the BASIC interpreter. The comments in the 
body of the e>:ample should be sufficient to describe what is taf<ing place. 
The essentialidea is that Basic is made out of three componentSt and that 
we may want togenerate c,rlly one or mor'e e,fthem a.t a. time. 

Al pha draft 

'$EXEC { "maKe/bas i c" -- genera te the BASI C in terpre tel'. 
There are three parameters -- if a parameter is a "Y" (/es.) 
the corr'espond i 09 par t of the system shou 1 d be genera ted: 

(0) the b-code inter·pr·eter 
(1) the r'un-time s;istem 
(2) the command in t erpr'e ter' 

9-16 7 February 1983 



WorKshop Reference Manual for the Lisa Using E>:ec Files 

I f no parame ters are spec i f jed, the exec f i 1 e IJJ ill promp t to see 
wha t par t s of the sys tern shou 1 d be genera ted. } 

$IAlRITELl'1 'Start i ng generat i on of the BASIC system' 
"$1 F ;{O = /.' AND /:1 = U AND ;{2 = U THEN {no params supp 1 i ed -- promp t 

for info} " 
$WRITE 'do you want to assemble the b-code interpreter? (y or 

[n]) l 

"$READCH ;{O 
"$WRITELN {th i s ~ljr i te 1 n pu ts us on a nel,ll 1 i ne for the next promp t } 
$IAlR ITE 'do you ~<Jan t to camp i 1 e the run - time S;IS tern? (y or [n]) I 

"$READCH %1 
$I;JRITELN 

$l.o.lRITE 'do ;IOU l,Ilan t to camp i 1 e the command in terpre ter? (y or 
[n] ) .-

"$READCH ;{2 
$I,.JRITELN 

"$ENDIF 
$ 
"$IF UPPERCASE(Y,O) = /",(-' THEN {assemble the b-code interpreter} 

$SUBt1IT assemb ( in t .ma in) 
"$ENDIF 
$ 
$IF UPPERCASEe{1) = 'Y' THEN {compi le the run-time uni t } 

$SUBMIT comp (b. r tun it) 
"$ENDI F 
"$ 

"$IF UPPERCASE(Y,2) = "(' OR UPPERCASEG{l) = 'Yo' THEN 
"${ comp i 1 e the command in terpre ter } 
${ comp i 1 e also if the run-t ime un it has changed} 
"$SUBr1IT comp (b. bas i c) 

$ENDIF 
$ 
"${ 1 inK it all together} 
l{ 1 inK }-p {note tha t "_p II ge ts around ali nKer bug) 
b.basic 
b.rtunit 
in t .ma i n 
hwi ntl 
i osf p 1 i b 
iospasl ib 

basic{e:<ecutable output) 
"$ENDEXEC 

E>:ample e -- an e}:ec file function 
This e>: ec file is a function which will prompt the user for the location of a 
Profiletreturning a string with the name of the device to 'olhich the Profile 

Alpha draft 9-17 7 February 1983 



WorKshop liefer·ence Manual fo'r the Lisa Using E>:ec .Files 

is attached. Note that the function calls itself recursively until a valid 
device name isspecified. 

'$EXEC {"GetProfLoc" -- get location of profile byasKinguser} 
'$REQUEST %9 WITH 

'IJJhere is the profile attached? 
(parapor Us 1 ot2chanl/s 1 ot2chan2) .' 

'$SET ~~9 TO UPPERCASE (~~9) 
'$1 F C~9 <> .' PARAPORT") AND (/~$' <> I SLOT2CHAtH") AND (~~9 <> 

.' SLOT2CHAN2 ' ) THEN 
$WRITELN 'Tha ti s not a 1)0. 1 i d del} ice name. Le t·, I s try ago. in •.. ' 
$RETURN <Ge tProfLoc {recurs i l}e co. 11 ) 

'$ELSE 
$RETURN %9 

'$ENDI F 
'$ENDEXEC 

9.5 Exec File Programming Tips 
The following few points may be useful to remember' when cr'eating e:<ec 
files: 

Use modular e:<ec files. It may helpful-to thinK of exec filesasprocedures 
which are called via the SUBMIT command. The more modular your e>:ec 
files are , the easierit will be to use the stepping facility on them. 

Create si:andard e:<ec files for common functions; fore:<amplet use one 
e>:ec file to perform all your compila hons. One advantage of thisis that you 
only have to edit one file when the ~nterface tothe tool changes (asit hasin 
the ca.se of the asse mbler). ' " . 

Use. opi:ional parameters to supporHe a tureswhich are not 0.1 WOo ys (or often) 
used (such as the ability to compile against an 0.1 terna teintrinsiclibrary in 
your compile e>:ec file). The parameter mechanism is such that you ca.n 
remain oblivious to optional parameters if you don't need the functions 
they support. 

Write your exec files -to prompt for informa-tion which was not supplied in 
parameters. This way you don't need to remember the meaning of a large 
number of parameters. 

9.6 Exec File Errors 
The preprocessor ca.rl recogrlize a number of er·rors during its irlVocation 
and e>:ecution. The format in which most errorsare reported is: 

e:RROR in <err loc> 
<curr line> 
<err ma:rKer> 
<errmsg> 

where 

<err'loc> is either 'invocation line/or 'line #<n> of file "< file>'" 

Al pha draft 9-18 7 February 1983 



WorKshop Refer'erlce Manual for the Lisa Using E:xec Files 

<curr line> is the current e:<ec line when the errorwas detected 

<err marKer> is a line with a question marK indicating wher'e the 
preprocessor was in <curl' line> when the error was 
detected 

<errmsg> is one of the messages listedbelow. 

10 errors are followed by anadditiorlallirle with the ted of the OS errl~r 
raised during the IOoperation. The errorsdetected are as follows: 

10 Errors: 
Unable toopen input file "(file)". 
Unable toopen temporaryfile "(file)". 
Unable to access file "{file)". 
Unable torerun file "(file)". 

Other Errors: 
F i 1 e does not beg i n ~II i th "$EXEC" • 
End of Exec f i 1 e before "$ENDEXEC". 
$EXEC command other than at start. 
No Exec f i 1 e spec i f i ed. 
More than 10 parame ters. 
Noclosing")" found. 
Line buffer overf low ()255 chars) • 
lnval id Exec option: (option char). 
Inval id Exec option on SUBMIT: (option char>. 
End of Exec f i 1 e in comment. 
Inval id percent: not "~{n" form. 
Garbage at end of command. 
No argument to SUBt1IT. 
ELSE, ELSElFor ENDlFnot in IF. 
ELSEl F after ELSE. 
F i 1 e con ta ins un fin i sh e d IF. 
No t h i n 9 f 0 11 O~II i n g " < til de)" • 
Out of memory. Processing aborted. 
Bad temp file name generated: "(file)". 
No value returned from fi le called as function. 
RETURN 1/oJ i t h val u e i n f i 1 e not c a 11 e d as fun ct i on • 

and 
I nva 1 i d command. (toKen) expec ted. 

~<)here < toKen:> may be: 
String value 
"~~n" parameter 
Term ina tin g 5 t I' i n g de 1 i mit e r 

Alpha draft 

"=" or II <:>" 
"()" 

Boolean value 
Comma (1 ist del imi tel') 
II ( It 

!I) II 

9-19 7 February 1983 



WorKshop Reference H a.:nua1 for the liS-a. 

Alpha draft 

I,) a 1 i d command Keyword 
Command 

9-20 

Using E;.:ec Files 

7 February 19B3 



WorKshop Reference Manual for the Lisa The Utilities 

Chapter 10 

THE UTILITIES 

10.1 Introduction •.. . a- • •••••••••••••••••••••••••••••••••••••••••••••••••• 10-2 
Utilities are Executed by the Run command from the WorKshop. This 
section explains the method for running a utility, and the common user 
interface. 

10.2 Byt!Diff ...........•...........•..........•........................... 10-3 
ByteDiff compares two files, byte by byte, and shows where they are 
different. 

10.3 ChangeSeg .......••.•....•..•••.••.......•..•••..•....•..••......••. 10-4 
ChangeSe.g allows you to change the segment name of an object. 

10.4 Code Size •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 10-5 
CodeSize gives you a summary of the contents of an object file 

10.5 Diff ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••. 10-6 
Diff compares two text files and shows their differences. 

10.6 DumpObj ••••.••..••..•.•.•.••.•.••••••••.•••••••••••••••.••••••••••. 1 O~ 7 
DumpObj displays the contents of an object file. 

10.7 DumpPa tch ...•..•...•......•• I ••••••• I .............................. 10-7 
DumpPatch displays and edits the contents of any file. 

10.8 fiileDiv and FileJoin •...........•..•... 1 ••••••••••••••••••••••••••• 10-8 
FileDiv divides large files into smaller ones. FileJoin rejoins the resulting 
small files bacK into the original large file. 

10.9 Grep ••••..•••••••.•••••••••••.•••.••..••••••..••..•••.••..••..••..• 10-9 
Searches for Id's. 

10.10 GxRef ••••••••••••••••••••••••••••• I •••••••••••••••••••••••••••••••• 10-9 
GxRef provides a global cross reference. 

10.11 Pacl<Seg ......•..........•...•..................................... 10-10 
PacKSeg pacKs object code files. 

10.12 SegMlp ...•......................................................• 10-11 
SegMap produces a segment map for one or more object files. 

10.13 SxRef ............................................................ 10-12 
SxRef produces a cross reference. 

? 

Alpha draft 10-1 7 February 1983 



, " 

WorKshop Reference Manual for the Lisa The Utilities 

Alpha draft 10-2 7 February 1983 



Worl<shop Reference· Manual· for the Lisa The Utilities 

THE LIT I LITI ES 

10.1 Iniroduction 
how to run utilities 

10.2 ByteDHf 
BYTEDIFF compares any binary files, but once it finds a difference between 
the two files, it does not always find where the differences end. 

10.3 ChangeSeg 
CHANGES8G changes the segment name in the modules in an object file. 
The first prompt asl<s for the object file you want to change: 

File to change: 

Changes are made in place (the file itself is changed). You are next asl<ed: 

Map all Names (YIN) 

If you want to change segment names in all modules, respond Y. If you want 
to be prompted for the new segment name for each module, type N. A 
response of <cr> accepts the defa.ult name. 

10.4 Code Size 
10.5 DiH. 

DI F F is a program for comparing ". T8XT" files, in the LISA Pascal 
development environment. DIFF is strongly oriented toward use with 
Pascal or Assembler source files. 

DIFF is not sensitive to upperllower case differences. All input is shifted to 
a uniform case before comparison is done. This is in conformance with the 
language processors, which igno~e case differences. 

DIFF is not sensitive to blanKs. All blanKs are sKipped during comparison. 
This is a potential source of undetected changes, since some blanl<s are 
significant (in string constants, for instance). However, DIF F is insensitive 
to "trivial" changes, such as indentation adjustments, or insertion and 
deletion of spaces around operators. 

DIFF does not accept a matching context which is "too small". The current 
threshold for accepting a match is 3 consecutive matches. The M option 
allows you to change this number. This has two effects: 

Areas of the source where almost "every other line" has been changed will 
be reported as a single change blocK, rather than being broKen into several 
small change blocKs. 

Areas of the source which are "entirely different" are not broKen into 
different change blocKs because of trivial similarities (such as blanK lines, 
lines with only "begin" or "end", etc.) 

DIFF mal<es a second pass through the input files, to report the changes 
detected, and to verify that matching hash codes actually represent 
matching lines. Any spurious match found during verification is reported as 

AJ pha draft 10-3 7 February 19B3 



WorKshop Reference Manual for the Lisa The Utilities 

a "JACKPOT". The probability of a JAC1.'POT is very low, since two 
different lines must hash to the same code at a location in each file which 
extends the longest common subsequence, and in a matching context which 
islarge enough to exceed the threshold for acceptance. 

DIF'F' can handle files with up to 2000 lines. 

DIF'F' first prompts you for two input file names:. the "new" file, and the "old" 
file. DIF'F' appends ".TEXT" to these file names, if it is not present. DlF'F' 
then prompts you for a filename for the listing file. Type carriage-return to 
send the listing to the console. 

DIF'F' does not (currently) Know about INCLUDE files; However, . DIF'F' does 
allow the processing of several pairs of files to be sent to the same listing 
file. Thus, when DIF'F' is finished with one pair of files, it prompts you for 
another pair of input files. To terminate DIF'F', simply type carriag~-return 
in response to the prompt for an input file name. 

The output produced by DIF'F' consists of blocKs of "changed" lines. Each 
blocl< of changes is surrounded by a few lines of "conted" to aid in finding 
the lines in a hard-copy listing of the files. 

There are three Kinds of change blocKs: 

INS8:RTION -- a blocK of lines in the "new" file which does not appear in the 
"old" file. 

D8:L8:TION -- a blocK of lines in the "old" file which does not appear in the 
"new"file. 

R8:PLACEMENT -- a blocK of lines in the "new" file which. replaces a 
corresponding blocK of different lines in the old file. 

Large blocKs of changes are printed in summary fashion: a few lines at the 
beginning of the changes and a few lines at the end of the changes, with an 
indication of how many lines were sKipped. 

DIF'F' has three options which allow you to change the number of context 
lines displayed (+C), the number of lines required to constitute a match (+M), 
and the number of lines displayed at the beginning of a long blocl< of 
differences (+D). To set one of these numbers, type the option name 
followed by the new number to the prompt for the first input file name. +D 
100, for example, causes DIF'F' to print out up to 100 lines of a block of 
differences before using an ellipsis. The maximum number of context lines 
you can get is 8. 

10.6 DumpObj. 
DUMPOBJ is a disassembler for 68000 code. It can disassemble either an 
entire file, or specific modules (procedures) within the file. DUMPOBJ 
replaces DUMPMCODB:. 

DUMPOBJ first asl<s for the input file which should be an unlinKed obJec"t 
file. The output <listing) file defaults to CONSOLE:. You. are asKed whether 
you want to dump 

AI pha draft 10-'1 7 February 1983 



WorKshop Reference Manual for the. Lisa The Utilities 

Am, S(ome, or P(articular modules. 

If you respond S(ome, DUMPOBJ asKs you for confirmation before dumping 
each module. A response of <E:SC) gets you bacK to the top level. If you 
respond P (articular , DUMPOBJ asKs you for the particular module(s) you 
want dumped. 

The next question is: 'Dump file positions CNJ?'The file position isa number 
of the form CO,OOOJwhere the first digit is the blocK number (decimal) within 
the file and the second number is the byte number (hexadecimal) within the 
blocK at which the module starts. This information can be used in 
conjunction with the PATCH program. Finally, DUMPOBJ asKs if you want 
the object code disassembled. 

10.7 DumpPaich 
DumpPatch is a combination of DumpHex and Patch. 

DumpHex provides a textual representation of the contents of any file. The 
file dump is blocK-oriented with the hexadecimal representation on the left 
and the corresponding ASCII representation on the right. If a byte cannot be 
converted to a printable character, a dot is substituted. 

When DumpHex is Run, it asKs you for the name of the output file. A .TE:XT 
extension is added if necessary. To direct the output to the console, type 
carriage re1:urn. After getting a valid ou1:put file name, DumpHex asKs for 
the inpu1: file to be dumped. No ex1:ensions are appended, so give the full 
filename. Once a file has been comple1:ely dumped, DumpHex asl<s you for 
the next file to dump. Type carriage return to exit the program. 

After opening the input file, DumpHex asl<s you which blocl< to dump. The 
default (carriage return) is blocK 0. If the output is going 1:0 a file, you are 
asKed which. blocK is the last you want dumped. The defaul1: here (carriage 
re1:urn) is the last blocK in the file. 

The format of the console output depends on the number of lines your screen 
has. If fewer than 33 lines are available, the output is displayed only a half 
blocK at a time. Between blocl<s or blocK halves you have the option to 

Type <space) to continue, <escape) to exit. 

E:scape returns to the prompt for an inpu1: file. 

Pa1:ch allows you to examine and change the contents of any file. Tho 
display of the file's conten1:s is exac1:ly liKe that of DumpHex. With Patch, 
however, you can use the cursor control Keys 1:0 move around in the blocK 
and change the value of any byte using either the hexadecimal 
representation on the leH or the ASCII representa1:ion on the righ1:. 

After Running Pa1:ch you are asKed for the full name of the file to pa1:ch. 
Carriage return exits Pa1:ch. No extension is appended to the file name. You 
are then asKed for the number of the blocl< you want to mess around with. 
Carriage return here returns you to the file name prompt • . 
The blocK is displayed with the cursor in the upper left corner at word 0 of 
the blocK. The arrow Keys can be used to move around in the blocK. If you 

Alpha draft 10-5 7 February 1983 



WorKshop Reference Manual for the Lisa The Utilities 

move the cursor up from the top ,line, you get the bottom line of the 
preceding blocK. Similarly, if you move down from the bottom line, you 
move into the top line of the next blocK. 

When the cursor is on the hexadecimal side of the display, you can change 
any byte by typing the new hexadecimal value. Any non-hex characters are 
ignored. You can impress your friends by pointing out that the change is 
reflected automatically in the ASCII portion of the display. When the 
cursor is on the ASCIl side, type any character to replace the value of the 
byte. 

Until you move ., out ofth~ block you can undo any changes'. by typing t 

<escape). 

10.8 FileDiv a.nd FileJoin. 
It is often necessary to distribute files that a.re too large to fit onto a single 
floppy disKette. FILEDIV can be used to breaK a large file into several 
disKette-sized pieces. lilLEDIV can then be used to rejoin these pieces a.t 
the file/s destination. These two programs replace the TRANSFER program. 

To divide a large text or object file, Run FILEDIV. 

Input file: <give the name of the file to be divided> 

Output file: <give the name to be used for the output files> 

Do not include the suffix in the file name. If, for example, you want to 
divide TEMP.TEXT, give TEMP as the input file, and TEMP (or whatever) as 
the output file. FILEDIV will create a group of files named TEMP.i.TEXT, 
TEMP.2.TEXT, and so on, until TEMP.TEXT is completely divided up. If you 
use the drive number (#9:, for example), rather than the volume name, the 
new files can be written to multiple disKettes. When space on a disKette is 
exhausted, FILEDIV asKs you to insert another disKette. 

To rejoin the pieces of the file, Run FILE JOIN. Using the example given 
above, we can rejoin TEMP.i.TEXT and friends into TEMP.TEXT by 
responding: 

Input file: TEMP <will read TEMP.i.TEXT, etc) 

Output file: TEMP <will create TEMP.TEXT> 

FILEDIV and FILE JOIN use regular directories, so a. spurious sex change 
cannot destroy your file. Files are verified in both directions. 

10.9 Gl"ep 
10.10 <n!Ref. 

GXRE Ii lists all the modules which call a given procedure, a.nd a.ll the 
modules which tha.t procedure calls. It provides a global cross reference of 
subroutines and modules. 

10.11 Pad<seg 
10.12 SegHa.p 

SEGMAP produces a segment map of one or more object files. The first 
prompt: 

Alpha. draft 10-6 7 February 1983 



WorKshop Reference Manual for the Lisa The Utilities 

F'iles to Map ? 

a.ccepts either an object file name or a command file name. A command 
. file must be preceded with a <. SEGMAP adds the .TEXT suffix to the 
command file name. The next prompt: 

Listing F'ile "? 

directs the map information to the file given. A response of # 1: or 
CONSOLE:. for example. send the map information to the screen. The map 
information includes the object file name. the name of the unit in the file. 
the names of the segments used in that unit (if any). and the new segment 
names. 

10.13 SxRef 

Alpha draft 10-7 7 February 1983 



:::::~~~'I"'-' MANUAL was produced using 
Lisa Write, LisaDraw, and 

LisaList. 

I 

~Lisa1M 
... we use it ourselves. 



...... _ .. .-...... -.................................................................................................... _ ............................. - FaO ......................... .-........ .-.............................................................................................................. .. 

/ ... " -

,",,--/1 

\ 
'-_." 

~ 

~ f\PPl.E aMUTER lNC. 
POS Publlcations Department 
20525 Marlani Avenue, MS 2-0 
Cupertino, california 95014 

TIIPF tR STAPLE 

@JAC£ 
STIIIP 
HENE 



Worksnop User's Guide {'or tile Lisa Mail Back 

Apple publications would like to learn about readers and what you think about 
this manual in order to make better manuals in the future. Please fill out this 
form~ orwritealloverit7 andsendittous. We promise to read it. 

Is it quick and easy to find the information you need in this manual? 
[] always [] often [] sometimes [] seldom [1 never 
COnunents ________________________________________________________ _ 

What made this manual easy to use? ________________________________ _ 

What made this manual hard to use? _____________________________ _ 

How are you using this manual? 
[] learning to use the product [1 reference [1 both reference and learning 
[] other ____________________________________________________ ___ 

Please comment o~ for exam.ple, accuracy, level of detail, number and 
usefulness of exam.ples, length or brevity of explanatio~ style, use of 
graphics, usefulness of the index, organizatio~ suitability to your particular 
needs, readability. 

What do you like most about the manual? ________________________ _ 

What do you like least about the manual.? ________________ _ 

In school have you completed? 

[] high school [] some college [] BA/BS [] MAIMS [J more 

COnunents __________ ~-------------------------
What is your job title? ______________________ __ 

How long have you been prog:ramming? 

[] 0-1 years [] 1-3 [] 4-7 [] over 7 [J not a programmer 
COmments __________________________________________________ _ 

What languages do you use on your Lisa? (check each) 
[] Pascal. [] BASIC (] COBOL [] other _____________ _ 
COnunents __________________________________________________ _ 

What magazines do you read? ____________________________________ _ 


	00-00
	00-01
	00-02
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	A-01
	B-01
	B-02

