WORKSHOP USER'S GUIDE
for the Lisa™

Beta Draft
April 1983

i8.

CoOrMTERNT S

INTRODUCTION

The Workehop provides tocle for program development., It provides
facilities for editing, lanquage processing, and debugging, aswell as
commands for managing files and configuring the system. The system
also includes many other utilities.

THE FILE MANAGER
The File Manager allows you tomanage andmanipulate files and volumes.

THE SYSTEM MANAGER
The System Manager allows you to set default and configuration
parameters for the Lisa, and manage processes.

THE EDITOR
The Editor allows you to create and modify text filec, These text files
are used as input to the Compiler and the Assembler.

THE PASCAL COMPILER

The Compiler translates Pascal source code into cohject code.
Translation requires two steps: first the compiler translates Pascal
into I-code; then the code Generator translates the I-code intoobject
code.

THE ASSEMBLER
The Ascsembler translates assembly language programs intco object code.

THE LINKER
The Linker combines object code files intoexecutable programs.

THE DEBUGGER
The Debugger allows you to examine memory, set breakpoints, and perform
other run-time debugging functions.

USING EXEC FILES
Exec files allow you to execute a series of commands and programs
automatically.

THEUTILITIES
Utility programs are provided for debugging, configuring the system,
andmanipulating files.

AaRPFRPENMD I CE=
A. ERROR MESSAGES

Workshop - User’s Guide for the Lisa ’ Introduction

Chapteri
INTRODUCTION

1.1 The workshop TR 8 62330 ST ASI IS UIITRSSEEN SERESSEE N ENROENSOEPROINEERERRUS 1-1
The Workshop provides the functions necessary to develop and run programs
on the Lisa. The Workshop can be booted from either a diskette or a Profile.

1.2 Starting the Workshop «ceescecssncancscecsnarecasssesssnnseransssose 1-1
The Workishop is started by booting the Lisa from a disk containing the
Workshop software. You can use the Environments window to select ocne of
several available environments.

1.3 The Workshop User Interface ...csveecescsstancesceassasnssnasseses 1=3
The Workshop user interface consists of three command lines: the Workshop
command line, the File Manager; and the System Manager.

1.4 File System Organization and Naming ...cceceessscescsscanscsensess i-4
Files are stored on disk volumes and are accessed by specifying the volume
name and the file name.

1.5 Using Utility Programs cceeesessssscessscasssarsansssscasansnssnssss 1=7
Utility programs provide additional functions for the Workshop. A utility
program is started by choosing the RUN command from the Workshop
command line.

1.6 How do 1Write and Run a Pascal Program? ..cciessesressasssnnssnsses 1-8
A Pascal program is written with the Editor. The source file must be
compiled and linked before it can be run.

1.7 How do Iwrite and Run an Assembly Language Program?ccc.. 1-8
An assembly language program is written with the Editor. It must be
assembled and linked with a Pascal main program before itcan be run.

1.& How do 1Use the BASIC Interpreter? ...iicssescrsecesassarssssassses i-8
A BASIC program can be written using either the Editor or the BASIC
interpreter to create the source file. The BASIC interpreter will run the
program.

1.9 How do Iwrite a COBOL Program? ..ceecsssscecsssscssensascasacsas 1=8
A COBOL program is written with the Editor. After writing the program,
enter. the COBOL language system to compile and run the program. The
COBOL system isinvoked by pressing C in response to the Workshop command
prompt.

1.10 The Operating System ...vievecesrascerscscnssssssarscsssacssvases 1=8
The Workshop runs under the Operating System for the Lisa computer. You
can access operating system routines through the SYSCALL interface. More
information about this interface can be found in the Operating System
Reference Manual for the Lisa.

alpha draft 1-1 27 January 1983

Workshop User’s Guide for the Lisa . Introduction

alpha draft i-2 . 27 January 1783

Workshop User’s Guidé for the Lisa ' Introduction

INTRODUCT I O

1.1 The Workshop Manager.
The Workshop allows you to develop and run programs on the Lisa. Itprovides
tools necessary to write, debug, and run programs in Pascal, BASIC, and
COBOL. This manual explains how to use the Workshop and all of its toals.

Access to all Workshop functions is provided by command lines. The main
command line, WORKSHOP allows you to edit programs, run utilities or user
programs, and use the various languages available on the system. It also
provides access to two subsystems; the File Manager, and the System
Manager.

The File Manager allows vou to copy, delete, rename, and list disk files. It
includes a backup function, and functions for manipulating volumes. These
functions -are listed in the FILE- MGR command line, which is similar to the
main command line. (See Chapter 2.)

The System Manager provides for system configuration and defaults and
process managment. Its commands are listed in the SYS-MGR command line.
(See Chapter 3.

All command lines are displayed at the top of the Lisa screen. If there are
more commands than will fit on one line, a "%" is at the end of the line.
Pressing "7" will display the remaining commands. To access any command,
press the first character - of the command name. To redisplay the first
command line, press RETURN.

Most commands will ask for additional information. Type in the information
using the Lisa Keyboard. Some questions have a default value, displayed in
square brackets ([defaultl). To accept the default value, press RETURN. I+
vou don‘t want the default value, type in the value vou want.

The Lisa system can display one of two screens, called the main screen and
the alternate screen. The Workshop system normally displays on the main
screen. The alternate screen is used by the system debugger. You can
change to the other screen display by pressing the right hand OPTION and
ENTER Keys. The System Manager contzins the Console command, which can
be used to specify where the Workshop should display.

The Workshop can be used to write programs in Pascal, COBOL, and BASIC.
To use these languages, refer to the appropriate language manuals. In
addition to this manual, you will need:

For Pascal Programming:
8 Pascal Reference Manual for the Lisa

s MC43000 16 Bit Microprocessor User’s Manual (for assembly language
programming)

Operating System Reference Manual for the Lisa (for information on
system calls)

alpha draft 1-3 27 January 1933

Workshop User’s Guide for the Lisa Introduction

For BASIC Programming:
e BASIC User’s Guide for the Lisa
For COBOL Programming:
s COBOL User’s Guide for the Lisa
8 COBOL Reference Manual for the Lisa

If you have only a BASIC or COBOL system, you will not have all the software
described in this manual. The portions of this manual that will be most useful
to BASIC and COBOL - programmers are:

@ The Introduction, which describes how to use the Workshop.
s The File Manager, which describes files and how to manipulate them.

¢ The System Manager, which describes setting up the system
configuration parameters.

¢ The Editor, which describes how to create and modify text files that are
used as source files.

You may also use some of the utilities if they are included in your software.

1.2 Starting the Workshop
The Workshop can be booted from a diskette or a Profile. It will most
commonly be used with a Profile.

To start the system, boot from a disk that contains the Workshop software.
If your disk contains only. the Workshop environment, the Workshop command
line will appear at the top of the screen. If you have more than one
environment (for example, the Workshop and the desktop) vou can use the
Environments window to start up the environment vou want, and switch
between them.

The Environments Window allows you to select the environment you want to
start. You can also set a default environment that will be started
automatically when vou boot the system. To access the environments window
while booting the system, press any Key while the Lisa is starting up. The
environments window will be displayed.

The Environments window isshown in Figure i-i. Itdisplays five buttons:
Power Off Turn off the Lisa

Restart Reboot or reset the Lisa

Start Start the selected environment

Set Default Set the default -to the selected environment

No Default The Environments window will always be displayed on
startup.

To select an environment, move the pointer to the checkbox of that
environment and click the mouse button. Then move the pointer to the start
button and click. The selected environment will start. .

To access the Environments window from the Workshop, and select another

alpha draft i-4 27 January 1983

Workshop User’s Guide for the Lisa ' ' Introduction

environment, use the Quit command from the Workshop command line, or
press the on-off button. To access the Environments window from the
Desktop, press the on-off button while holding down the {apple) Key.

ag:mm A B B S S B B B B o A R ST R e R e
%0

Environuents

E] Office Systen Set Default
Bl Vorkshop

0O os

Figure 1-i. The Envircnments Window

1.3 The Workshop User Interface.

When the workshop environment is selected, the system will come up with the
Workshop command line at the top of the screen. This command line lists all
the actions you can currently request of the system. The Workshop line
displaved contains only some of the commands available. The rest of the
commands can be displayed by pressing "7", the last symbol on the line. The
original command line can be redisplayed by pressing RETURM. A command is
executed by pressing the first letter of the command name.

There are two other subsystems that have separate command lines; the

alpha draft 1-5 7 January 1983

Workshop User’s Guide for the Lisa Introduction

File-Manager, and the System-Manager. Their command lines can be
accessed from the Workshop command line, and are used the same way.

You can terminate the operation of most commands by pressing (apple)
period. You can turn off the Lisa by pressing the on—off button at any time.
The system will shut down in an orderly manner. A diskette can be inserted at
any time. It will automatically be mounted and accessible. Diskettes are
ejected by pressing the diskette button.

The main, or Workshop, command line is as follows:
WORKSHOP: FILE-MGR, SYSTEM-MGR, Edit, Run, Pascal, Basic, Cobol, Quit, ?
The additiomal portion, displayed by pressing "?", is:
Assemble, Debug, Link, MakeBackaround, Generate
All the main command line commands are described below.

FILE-MGR (F)

This command puts you into the File Manager subsystem, which is used to
manipulate the files and volumes on the system. For more information on the
file manager, see Chapter 2 in this manual.

SYSTEM-MGR (9

This command puts you into the System Manager subsystem. This subsystem
provides various configuration and utility functions. See Chapter 3 in this
manual for more information.

Edit (E)

The Edit command puts you into the text editor, which isused to create and
modify text files, The Editor is used to create source files for BASIC,
COBOL, and Pascal. Itisalso used for assembly language programming and to
create exec files. The Editor isdescribed in Chapter 4 in this manual.

Run (R) :

The Run command causes a compiled and linked program to execute. This
command isused for user-written Pascal programs, utility programs, and any
other software that runs under the Workshop. The Run command asks you for
the file to run. This file must be an executable object file or anexec file. (An
exec file name must be preceded by a "{" . If you do not give it a complete
pathname, the Run command will search through up to three default volumes
for the file. These defaults can be cet by the File-Manager’s Prefix
command. See the Prefi: command in Chapter 2 for more information.

The Run command will also accept an "exec file" as input. An exec file isa
scenaric of commands for the Workshop system to carry out. An exec file

name must be preceded by a "{" to be processed correctly. For more
information on exec files, see Chapter 9 in this manual.
Pascal (P)

This command starts the Pascal compiler. The compiler asks for the input
file, which must be a text file; the listing file; and the output file, which will
contain the object file. The Pascal compiler is described in Chapter 5.
Further information on the Pascal language can be found in the Pascal

27 January 1983

o

alpha draft i-

Workshop User’s Guide for the Lisa : Introduction

Reference Manual for the Lisa.

The compilation is done in two steps. The first step, donme by the Pascal
command, produces an intermediate code file. After this, you must use the
Generate command, (press G) to generate an object file {from the
intermediate code file.

' Basic (B)
This command puts vou into the BASIC interpreter. More information on
BASIC programming can be found in the BASIC User’s Guide for the Lisa.

Cobol (©)

This command puts you into the COBOL language system. More information
on COBOL programming can be found in the COBOL User’s Guide for the Lisa
and the COBOL Reference Manual for the Lisa.

Quit @
The Quit command ends the Workshop environment. You can access the
Environments window to start another environment.

Assemble (A)

The Assemble command starts the assembler. Further information on the
assembler can be found in this manual in Chapter 4. Additional information on
the assembly language can be found in the MC 68069 Microprocessor User’s
Manual .

Debug (D}

The Debug command causes your program to run with a breakpoint inserted at
the first instruction in the program, so you can use the debugger on the
program. More information on the Debuager can be found in Chapter & of this
manual.

Link (L)

The Link command executes the Linker. The Linker is used io prepare
compiled Pascal programs and assembled routines for execution, and to link
together separately compiled pieces of a program. The Linker isdescribed in
Chapter 7.

MakeBackground (M)

The MakeBackground command allows you to start up a background process,
then continue using the Workshop for other functions. Itisassumed that the
backgrond process will not try to display on the console.

Generate (@)

The Generate command converts intermediate code files produced by the
Pascal compiler into object code. It isused with the Pascal compiler and is
described in Chapter 3.

1.4 File system organization and naming
Files are stored on volumes, that are mounted on devices. A volume has a
name and adirectory of files that it contains. A file is specified by giving the
name of the volume and the name of the file: .

-volumename-filename

alpha draft 1-7 27 Janvary 1983

Workshop User’s Guide for the Lisa Introduction

The Workshop maintains a working directory; you cam access files im it
without specifying a volume name. The working directory can be.changed by
using the File Manager’s Prefix command. Files on the working directory can
be specified by just the file name, with no leading "-":

filename

Further information on the file system can be found in Chapter 2 of this
manual and in the Operating System Reference Manual for the Lisa.

1.5 Utility Programs.
There are various utility programs provided with the Workshop. These are
used for functions not as commonly used as the commands. -

The utilities are described in Chapter {0.

You must Run utilities, Select the Run command from the main command line
by pressing R when the main command line is displayed. The system will ask
you for the name of the file to run. Type in the name of the utility you want to
run.

1.6 How do I Write and Run a Pascal Program?
To write and run a Pascal program, proceed as follows:

1. Use the Editor to create a text file with the Pascal source program. See
Chapter 4 in this manual for more information on editing the file. See
the Pascal Reference Manual for the Llsa for information on the
language.

2. Compile the program wusing the Pascal command (press P while the
Workshop command line is displayed) from the main command line. The
output from the compiler isan intermediate file,

3. The output from the Pascal command is an I-code file. Use the Generate
command to convert the I-code file into an object file. To use the
Generator, press G when the Workshop command line is displayed. See
Chapter 5 for more information on compiling Pascal programs.

4, Link the program using the Link command. In order to be executable,
the program must be linked with the Pascal support routines contained
in IOSPASLIB. For other applications you may also use other libraries
and units, or assembly language routines. More information on the
Linker can be found in Chapter 7.

S. The linker produces an executable object file. Press R to run the
program,

Information on makKing system calls from Pascal can be found in the Operating
System Reference Manual for the Lisa.

1.7 How do I Write and Run an Assembly Language Program?
Assembly language programs must be called as procedures of functions from a
Pascal main program. To write an assembly language routine, proceed as
follows: i

{. Use the Editor to create an assembly language source program. See

alpha draft 1-8 27 January 1983

Workshop User’s Guide for the Lisa ; Introduction

Chapter 6 of this manual for information on assembly language.
Chapter 4 describes the Editor.

2. Press A to execute the Assembler. The Assembler accepts the text file
vou created and produces an object file.

3. Declare the routines you wrote in assembly language as EXTERNAL in
the main Pascal program that calls them.

4, Use the Pascal and Generate commands to create an object file from the
Pascal program. See Section 1{.5 for more information.

5. Use the Link command to link the Pascal object file, the assembly object
file, IOSPASLIB, and any other needed units or libraries.

6. Use the Run command to run the resulting object file.

1.8 How do I use the BASIC Interpreter?
To use the BASIC interpreter, proceed as follows:

{. Use the Basic command by pressing B when the main command line is
displayed. You will enter the BASIC interpreter.

2. Enter the BASIC language statements and commands necesary to write
and execute your program. The BASIC interpreter can execute
statements immediatly or save them to run later. You can return to the
main command line by using the BASIC command BYE.

You may also use the Editor to prepare or modify the BASIC scurce program,
then use the BASIC interpreter to run it. See Chapter 4 in this manual for
more information on the Editor.

See the BASIC User’s Guide for the Lisa for more information on the
language.

{8 How do I Write a COBOL Program?
To write a COBOL program, proceed as follows:

1. Create a text file containing the source program by using the Editor.
See Chapter 4in this manual for more information an the editor.

2. Press C to enter the COBOL language system. More information on
COBOL programming can be found in the COBOL User’s Guide for the
Lisa and the COBOL Reference Manual for the Lisa.

1.1¢ The Operating System.
The Workshop runs under the Operating System of the Lisa computer. You
can use some operating system routines from a Pascal program to perform
special system functions for you. These system calls are defined in the
intrinsic unit SYSCALL. More information on the syscall interface and
routines can be found in the Lisa Operating System documentation.

alpha draft 1-9 27 January 1983

Workshop User’s Guide for the Lisa The File Manager

ChapterZ

THE FILEMANAGER

2.1 The File Manager [AR N EREENNENENEENSNEENENNEEENENNENNEENEENENEENRERMNHNERERSE}ENHSHS] 2-1
The File Manager allows vou to manipulate files, volumes, and devices.

2.2 Using the File Managel‘ 88 8 0SS e8P S S E R U TESIENSYS IS IR RNSSNOSOCENENOSESSE 2-1
Press F at the workshop command line to display the File Manager commands.
The first letter -of each File Manager command makes it work.

2.3 The File Manager Commands S22 0 2PV SEISCELES TSRO ISNESSERNBSTEARSNERTIS 2-1
This section lists and defines all File Manager aperations.

2.4 Disk Storage Organization and File Naming ..eccieererccsscsnrcsanss 2=6
Each disk can contain a volume which has a directory of files. File extensions
{.,TEXT, .0OBJ, etc.) are added to some files with special uses.

2.5 Using Wild Card Characters ...cecececececsscnscscessccscasasansnscss 277
Wild card characters allow you to name groups of files by giving filename
patterns to be be matched. The wild card characters are =,%,?.

2.6 How doICopY 2 File? veeeeesoncnnssssncracenensrsoscsassassscesesns 2-8
To copy a file, use the File Manager Copy command. Ifvyou want the old file
deleted after the copy is successful, use the Transfer command. You can
copy multiple files by using wild cards.

2.7 HWdolDelete aFile? S8 88383088 2c8 3¢S BRI AIINIEELEESESEIANTRTISTSIS 2“9
To delete a file, use the File Manager Delete command. You can delete more
than one file by using wild cards.

2.8 How do 1Create and Use a VOIUME? tecerenssesscnassscsasssacsarsnsas 2=
Use the Initialize command to create a volume. The volume must be mounted
before you can use it.

2.9 How do IChange the Name of a File or Volume? ..iivsvecrnncrnsncess 2-18
To change the name of a file or volume, use the Rename command.

2.10 How doIlistExisting FiIES? ¢ RN S B BES NSRS ERSAPBES I RESESE SIS 2-19
To list all the files on a volume, use the List command or the Names command.
You can use wild cards to list subsets of the files on the volume.

Alpha draft) 2-1 27 January 1783

Workshop User’s Guide for the Lisa The File Manager

Alpha draft 2-2 27 January 1983

Worshop User’s Guide for the Lisa The File Manager

THE FILEMAaNAaGER

2.4 The File Manager .

The File Manager is a subsystem of the Workshop that provides file and
device manipulation facilities. It handles most of the tasks of transferring
information from one place to another. Using the file mamager, you can do
such things as maKe copies of files, list directories, rename or delete files,
find out what volumes are on line, initialize new diske or diskettes, print
files, and so on. See the Operating System Reference Manual for the Lisa for
more information on the file system and supported devices.

A file specifier can be an OS5 pathname (representing a file on a disk or
diskette), an OS volume name (for example, -MYDISK), the name of a physical
device (for example -R5232A), or the name of a logical device (for exampel
-PRINTER). File specifiers may contain wildcards ({see section 2.3) allowing
them to specify a collection of files.

2.2 Using the File Manager
To use the File Manager, press F in response to the Workshop command
prompt. The File Manager begins executing, and displays the File Manager
prompt line,

The File Manager prompt line is:
FILE-MGR: Backups Copy, Delete, List, Prefix, Rename, Transfer, Quit, ?

To display the additional commands, press "?". The line of additional
commands is:

Equal, FileAttributes, Initialize, Mount, Names, Online, Scavenge, Unmount
To redisplay the original command line, press RETURN.

To execute any command, press the first character of that command when the
File Manager command line is displayed. Most commands will ask for file
names, or other input parameters. If there isa default value for a parameter,
it is displayed in square brackets ([default]), To accept the default, just
press RETURN. Ifyou do not want the default, type in the response you want.

2.3 The File Manager Commands
The File Manager commands are listed in the File Manager prompt line. They
are: Backupy Copy, Delete, List, Prefix, Rename, Transfer, Quit, Equal,
FileAttributes, Initialize, Mount, Names, Online, Scavenge, and Unmount.

Some of these operations can be performed either on a single file, or on a list
of files specified by wild card characters.

Each of these operations is described below. Information on wild card
characters can be found in section 2.5 below.

2.3.4 Backup (B

Alpha draft 2-3 27 January 1983

Workshop User’s Guide for the Lisa The File Manager

This command executes a simple backup utility, similar to Copy. It asks for
source and destination file specifiers, which will most likely contain wild
cards, f{cee Section 2.5) and compares the source files to the destination
files. Whenever the contents of the two files are not equal, the file is copied.
If a source file is missing from the destination, it iscopied.

2.3.2 Copy (©
The Copy command copies files. It asks for a source file specifier and a
destination file specifier. You may use wild cards if you want o copy more
than one file. The source file(s) are not changed by this command.

The default is not to verify copy operations. You can change this default
with the Validate command in the System Manager. If you change the default,
the source file will be compared to the destination file after the copy
operation to insure that they are the same. The Validate command is
described in Chapter 3.

You can copy files to the -PRINTER or the -CONSOLE logical devices. Text
files (ending in ".text") will be displayed as a text file. All other files will be
sent byte by byte.

2.3.3 Delete (D
The Delete command isused to delete a file or a number of files specified by a
wild card expression. Itasks vou to specify the files to be deleted.

2.34 List L .
The List command lists information about the files matching the given file
specification. If all vyou need is the names of the files, use the Names
command described below.

® If the file specifier iz a file name (for example -MYDISK-example.text)
that file is listed.

e If the files cpecifier is a volume name (for example -MYDISK),
information about all files on the volume is listed.

o If the +file specifier includes a wildcard character (for example,
-MYDISK-=.text) information about all matching files islisted.

The list command displays the following information:

Filename The name of the file.
Size The logical file length in bytes.
Psize The physical length of the file in blocks.
Last-Mod-Date Date and time the file was last changed.
Creation-Date Date and time the file was created.
Attr File attributes, a combination of the following:
Cc File was closed by the OS
L File islocked {cannot be deleted)
0 File was left open when the system crashed
P File is Protected
S File has been Scavenged.

Aipha draft 2-4 27 January 1983

Workshop User’s Guide for the Lisa

An example of the list display is shown in figure 2-i.

Contents of volume -PARAPORT-=

The File Manager

Filename Size Psize Last-Mod-Date Creation-Date Attr
ALERT 13824 27 01/31/83-11:17 01,84,/83-18:53
any2 1624 2 981/19,83-19:56 01,12/83-14:55
ASSEMBLER.OEJ 51712 181 82/84,83-16:43 02,84/83-15:43
BYTEDIFF.0BJ 2560 S 02/04,83-16:43 02/02/83-17:10
CHANGESEG.0BJ 2848 4 B2/84,83-16:43 02,02/83-16:52
claslib.obj 1536 3 084/25,83-15:15 01,25/83-15:15
CODE.0OBJ 60928 119 02/04,83-16:44 02/84/83-15:24
CODESIZE.0BJ 8704 17 02/94/83-16144 ©2/02/83-16:57
D.LIST 232 1 §1/08/83-02:06 01,88/83-82:86
dblib.obj 76288 149 04,31,83-11:17 04,85,83-15:04 CO
Figure 2-1. The List Display

2.3.5 Prefix (P

This command allows you to set up default volume names to search when you
specify a file name without a volume name. You can set a sequence of up to
three volume names that will be searched in order when vyou try to run a
program until the file is found. The first prefix is the name of the working
directory., It will be searched anytime you specify & filemame without a
volume name. Boot defaults for prefixes can be set using this command. The
second and third prefixes will be searched when you try to Run a program
without specifying the volume itison.

This command asKs vou for the three prefixes. If you want to accept the
default; (if any), press RETURN. If you want to set a prefix, type in the
volume name. If you want to have no prefix, press CLEAR as the prefix for
that level.

Rename (R)
The Rename command allows you to change the name of a file. It asks for the
filename to change and the name to change it to. You can also use the Rename
command to change the name of a volume. The Rename command can change
the name of a number of files by using wild cards. See Sections 2.5 and 2.9 for
more information.

2.3.7 Transfer (T)
The Transfer command asks for an input file specification and a destination
file specification. It copies the input file{s) to the destination and then, if
the copy was successful, deletes the input file{s). If you Transfer to the
~console or the -printer, the input file will not be deleted.

2.3.8 Quit @
This command
command line.

2.3.9 Equal &)
The Equal command compares the contents of two files to determine whether
they are exactly the same. It asks for the names of the files to compare, then
compares them byte by byte and tells you if they are equal or urmequal.

2.3.18 FileAttributes (F)

234

exits. from the File Manager subsystem to the Workshop

27 January 1983

ro
]
w

Alpha draft

Workshop User’s Guide for the Lisa , The File Manager

This command is used to set file attributes. You can set the safety attribute,

which makes the file so you cannot accidentally delete it. Inorder to delete a
file with the sasfety attribute set, use the FileAttributes command to unset
the attribute on the file. You can also make a file into a protected master.

Use the FileAttributes command by pressing F in response to the File
Manager command prompt. Itdisplays a command line:

FileAttributes: ClearAttributes, Safety, Protect, Quit.

These commands are accessed by pressing the fxrs‘t charac‘cer of the
command. They perform the following functions:

ClearAttributes (O
The clear attributes command clears the C, 0, and S attributes on the
specified volume. These attrubutes are set by the system, and have the
following meanings:

c File was closed by the Operating System
0 File was left open when the system crashed.
S File has been scavenged.

The clear attributes command should be used before scavenging a volume so
that you can tell if any files were changed. See the Scavenge command in
Section 2.3.15 below for more information.

Safety (9

The Safety command allows you to set or remove the safety attribute om any
file. When the safety attribute isset, the file cannot be deleted. To delete a
file with safety on, use this command to remove the attribute, then delete
the file.

Protect (P)

The Protect command isused to make a file into a protected master. This isa
form of copy protection for object files. Once a file is made into a protected
master, this protection cannot be removed. A protected master has the
following characteristics:

8 Itcan be run on any Lisa machine
@ Itcan be copied on any one Lisa machine.
e Copies made will run only on the m;chine that made the copies.

® After the file is copied the first time, further copies of the master
can be made only on the same machine.

Aipha draft 2-6 27 January 1983

Workshop User’s Guide for the Lisa " The File Manager

NOTE

Once a file is made into & protected master, there is no way to
unprotect it. Be sure you understand the characteristics of a
protected master before you create one.

This protection scheme is for executable object files. Note that
protecting a file does not prevent you from deleting it.

Quit Q)
The gquit command exits you from the file attributes subsystem to the File
Manager.

2.3.41 Initialize)

The Initialize command is used to set up an OS device. It is used to format
and initialize the file system on a diskette or ProFile. It asks vou for the
device name to initialize, the number of blocks to initialize, the volume name,
and password. If you want the entire device to be initialized, enter RETURN
(accepting the default) for the number of blocks. If the device isa diskette,
it is formatted (ProFiles are factory formatted). DBoot +tracks are
automatically written to any device that is initialized. An initialized device
is automatically mounted.

The initialize command will warn you if you attempt to initialize a disk that
already contains a volume. A volume isinitialized to allow a certain maximum
number of files. You can maKe this number larger or smaller (if you Know you
will have a large number of small files, for example) when initializing it.

2.3.12 Mount (M)
This command is used to make an OS device accessible. It requests a device
name. Itshould be used whenever you connect a new device, such as a Profile.
The Unmount command, described below, is used to remove a device. All
configured devices are mounted at boot time. The configuration can be
changed with the Preferences tool, which isdescribed in Section 3.3

2.3.13 Names (N)
The names commandis a faster version of the List command. Itgives you a list
of file names only. It asks for a file specifier, and displays the names of all
files matching the given file specifier,

2.3.14 Online (O)
The Online command produces a list of all the devices that are currently
mounted and available. It tells you the devices mounted, the names of the
volumes contained on them, the number of files on each volume, the size of
the volume, and the amount of free space on it. The online display gives the
following information:

VolumeName The name of the volume.

VolSize The number of blocks on the volume.
OpenCount The number of files apen. -
FreeCount * The number of blocks =till available,

Alpha draft 2-7 27 January 1983

Workshop User’s Guide for the Lisa The File Manager

FileCount The number of files stored on the volume.
VolAt - The attributes of the volume:

B the boot volume.

P the prefix volume.

M volume iscurrently mounted.

The Online display is shown in Figure 2-2.

FILE-MGR: Backup, Cory, Delete, List, Prefix, Rename, Transfer, Quit, 7B

Volumes on line ’)
YolumeNane YolSize OpenCount FreeCount FileCount YolAtr

dirksad 9728 27 1119 238 MBP
SLOT2CHAH2 8]] g M
RS232A 9] 8 8 M
RS232B 8 8] 8 M
MAINCONSOLE 2 1] 8 M
AL TCONSOLE :] 8 9 8 M

Figure 2-2. The Online Display

2.3.15 Scavenge (9)
This command runs the OS Scavenger which restores damaged files. Files can
be damaged any time the system terminates abnormally. The Scavenger
searches through a disk and restores its directories, files, and allocation
tables to a consistent state. '

A disk must be unmounted before it can be scavenged. Use the unmount
command to unmount the disk, scavenge it, then mount it again to continue
using it. The boot volume camnot be unmounted; therefore it camnot be
scavenged. If the ProFile is normally vyour boot volume and you need to
scavenge it, it is necessary to boot from a diskette and run the Scavenger
from it.

1f a file is changed inany way by the Scavenger, the file attributes will be set
to Sy for scavenged. This attribute is displaved by the List command. The
changes made to the file may or may not affect the data in the file, depending
on what state the file was in when it was scavenged. Check any file with the
Scavenged attribute before relying on its contents. After the file has been
checked, the Scavenged attribute can be removed with the FileAttributes

command.

Alpha draft 2-9 27 January 1783

Workshop User’s Guide for the Lisa , The File Manager

NOTE

The file system can get into an inconsistent state because the
directories and allocation tables are kept in memory and only written
out to disk periodically. If there isan abnormal termination, such asa
power failure, the changes to the state of the file system since these
tables were written to disk will be lost. Information can also be lost if
you disconnect a ProFile from the Lisa without first unmounting it. I
the disk is used after such an event, more data can be lost if the
system allocates the same blocks to more than one file.

The Scavenger will always return the disk to a consistent state, but it
is possible to lose data when the system crashed. This damage can
become even worse if the disk isused while in an inconsistent state.

All Scavenged files should be checked before you depend on their
contents.

2.3.46 Unmount ()
This - command makKes a device inaccessible. It asks for a device name. Always
unmount a device before disconnecting it.

2.4 Disk Storage Organization and Naming
Each disk contains a volume. The volume name is the name of the disk.
Volumes are created with the Initialize command, which sets up the diskK and
puts an empty directory on it. As files are entered on the disk, their names
are entered in the directory. A complete path name consists of a volume name
followed by the file name in the following format:

-volname-filename

A working directory is maintained by the Workshop allowing you to access
files on it without using the volume name. This working directory defaults to
the boot device. The working directory can be changed by the Prefix
command. The working directory is the first prefix specified in the Prefix
command. Files on the working directory are specified by just the file name,
with no leading "-":

filename

A volume must be mounted before it can be accessed. Volumes are mounted
with the Mount command in the File Manager. To mount a volume, you specify
the device on which it resides. Device names that can be used for disks are as

follows:
-UPPER The upper diskette. Drive 1.
-LOWER The lower diskette. Drive 2.
-PARAPORT ProFile attached to the parallel port.
-SLOT2CHAN2 ProFile attached to the N-port card in slot 2, channel 2,

etc.

There are also two serial devices, -RS232A and -RS232B . These provide

Alpha draft 2-9 27 January 1983

Workshop User’s Guide for the Lisa The File Manager

access to external RS232 devices.

There are three logical devices that can be used for input and output. These
devices are:

~-CONSOLE Used for output to the screen and input from the
keyboard. The actual device which is used as the
console can be changed by the Console command in the
System Manager. See Section 3.2.

-PRINTER Used to output to the printer. The physical port that
the. printer is connected to is set by the Preferences
tool, described in Section 3.3.3.

-KEYBOARD Used as a non-echoing input device from the Keyboard.
This is the kevboard on the console device.

Certain types of files in the system have standard file extensions. These
extensions makKe it easier to Keep track of the different types of files. These
file extesions are:

TEXT This indicates a text file in the format created by the Editor.

.0BJ This indicates an object code file. Object files are created
by the code generater, the Assembler, and the Linker. Object
files created by the Linker are executable.

o This indicates an intermediate (I-CODE)file produced by the
Pascal compiler. The Generate command will convert an
intermediate file into an object code file.

.LIB This indicates a library file.

SHELL This indicates a shell file that can be started by the
environments window.

2.5 Using Wild Card Characters
Wild card characters allow you to specify a set of files to operate on. The
command is performed on all files whose pathname matches the set specified.
Wild card characters are "=", "?", and "$". These characters are used as
follows:

string{=string2

The "=" character stands for any sequence of characters that can be ignored.
The surrounding strings (string! and string2) must be matched exactly,
ignoring case. Either or both strings can be null. Here are some examples of

using the "=" wild card character asa source file name:
ds=.text all files beginning with ds and ending .in .text.
=.0bj all files ending with .obj.
= all files.

When "=" is used in a destination file name, it isreplaced with the characters
that were matched by a wild card in the source file. -This allows you to do
operations like change the name of a list of files as they are copied. Here are

Alpha draft 2-19 27 January 1983

Workshop User’s Guide for the Lisa The File Manager

examples of using "=" as a destination file name:

ds=.text to bu/ds=.text Change all files starting with ds and
ending with .text so they are prefixed
with bu/

=,0bj to ®/=.0bj Put »/ in front of the file name.
stringi 7string2

The "7" character is the same as the "=", except that the system asks you to
confirm each file name before performing the operation. The "7' wild card
can be used only as a source string.

When vou use a "?" in a source specifier, you are presented with alist of files
that match it. You can move backwards and forwards through the list by
using the up and down arrows on the numeric Keypad. Press "Y" beside every
file that you want to be processed. When you have selected all the files you
want, press RETURN. The operation will then be performed on the files you
selected.

stringi$string2

The "$" character isused only as a destination file name. Itisreplaced by the
entire source f{le name. For example, if you have the source files matching
ds=.text:

dsfmgr.text
dssmgr.text

If the destination expression isbk$, the output files will be:

bkdsfmgr.text
bkdssmar.text

Contrast this with the output expression bk=, which results in:

bkfmgr.text
bksmgr.text

2.6 How do I Copy a File?
You can either Copy a file and leave the original file intact, or vou can
Transfer the file, which will copy the file, then delete the original file. To
copy a file, proceed as follows: ’

i. If you are not in the File Manager subsystem, enter it by typing F in
response to the Workshop command prompt.

2. Press C to start the Copy command. ({(Press T, for transfer, if you want
the original file to be deleted after the copy operation.)

3. Enter the pathname of the file you want copied. Press RETURN.
4, Enter the pathname you want the file to be copied to. Press RETURN.
The file will be copied or transferred as you specified.

If you want to copy a number of files with similar names, or all the files on a

Alpha draft 2-11 27 January 1983

Workshop User’s Guide for the Lisa The File Manager

volume, you can use wild card characters. See section 2.5 for more
information on using wild cards. Wild cards can also be used to rename all the
copies of the selected files.

You can use a shorthand method of entering the file names by entering both
the source and destination file names, separated by a comma (p inresponse to
the request for the source file.

See Figure 2-3 for examples of copy and transfer operations.

Copy fromwhat existing file{s)? myprog
Copy towhat new file? -backup-%

{This copies the file myprog on the working directory to the volume
-backup with the same name, myprog.

Copy fromwhatexisting file(s)? ds=

Copy towhat new file? ~backKup-%
{This copies all files beginning with ds on the working directory to the
volume backup with the same file name.)

Transtfer fromwhat existing file(s)? -~osback-osg=

Transfer towhat new file? —oswork-$

(This copies all files beginhing with osg on the volume -osback to the
volume =-oswork using the same file name. When the files have been
copied successfully, the original files are deleted.)

Transfer fromwhat existing file(s)? ~osback-osg=,-oswori{=3%

(This is the shorthand version of the above transfer operatior.)

Copy from what existing file(s)? ds=,-backup-backds=
{This copies all files beginning with ds in the working directory to the
volume -backup with back inserted as the beginning of each file name.)
Figure 2-3. Copy and Transfer operations
2.7 How do I Delete a File?
To delete a file, proceed ac follows:

1. 1 you are not in the File Manager subsystem, enter it by typing F in
response to the Workshop command prompt.

2. Select the Delete command by pressing D.
3. Enter the pathname of the file you want to delete.

4, The system asks vou to confirm that you want to delete the file. Reply
Y to delete the file or N to Keep it.

1f you want to delete more than one file, you can use wild cards. See the

Alpha draft 2-12 27 January 1983

Workshop User’s Guide for the Lisa The File Manager

section "Using Wild Card Characters" in this chapter for more information.

2.2 How do I Create and Use a Volume?
A volume can be created on either adiskette or a ProFile disk. Each disK can

contain one volume. Creating - a volume on a disk gives it a name and sets up a
directory for files.

1. If you are not in the File Manager subsystem, enter it by typing F in
response to the Workshop command prompt.

2. Press 11p invoke the Initialize commarnd. This command asKs for:

® The device name (upper or lower for adiskette, slot2chanZ for a ProFile,
etc.)

¢ The number of pages to initialize. The default is to initialize the whole
device.

8 The volume name.
e The volume password {optional).

® The maximum number of files on the device. The default is a good value

unless you are using a large number of very small files or a few very large
files.

The volume isinitialized, with an empty directory. (If the device is a diskette
it is first formatted.) The system will warn you if you are initializing a
device that has an existing volume on it, and give you a chance to change vour
mind before destroying the existing volume.

Atter initialization, the device is automatically mounted so it can be used.

2.9 How do I Change the Name of a File or Volume?
The Rename command allows you to change the name of any file.

i, If you are not in the File Manager subsystem, enter it by typing Fin
response to the Workshop command prompt.

2. Execute the Rename command by pressing R.

3. Enter the pathname of the file or volume you want to rename.
4, Enter the new name,

The name of the file or volume is changed.

You can use the Remame command to change the name of a group of files by
using wild card expressions.

2.1 How do I List Existing Files?
You can use either the List command, or the Names command to list existing

files. The Names command executes much faster than the List command, but
it gives vou only the file names.

f. If you are not in the File Manager subsystem, enter it by typing F in
response to the Workshop command prompt.

2. Execute the List command by pressing L, or the Names command by

Alpha draft 2-13 27 January 1983

Workshop User’s Guide for the Lisa The File Manager

pressing N.

3. If you want to list an entire volume, enter the pathname of the volume or
device. If you want to list only a certain set of files, enter a wild card
expression or pathname describing the files to be listed.

The listing produced by the list command isexplained in Secticn 2.3.4.

For more information on wild card characters, see Section 2.5 in this
chapter.

Alpha draft 2-14 27 January 1983

Workshop User’s Guide for the Lisa . The System Mamager

Chapter3
THE SYSTEMMANAGER

3I1Thesystem”anager 4 ¢ 2 8 ®& ¢ 5 % & ¥ ® ¥ % ¥ ® T ¥ ¥ °P § % ® B ¥ G B BT S§ ® 3z B 3-2
The System Manager allows you to set certain system defaults and set up the

Lisa configuration; including external device comnections and the startup
device,

3.2 The System Manager Functions «ieesesrscscvsnsscsassscensscnsssass 3=2
The System Manager is activated by pressing S in response to the Workshop
command line. It allows vyou to set system defaults and access the
Preferences tool that allows you to set the configuration of the system.

3!3 The Pl‘e‘ef‘enﬁﬁs TOOI [N N N N RN NN NN NN NN ENENEYNER] 3-3

The Preferences- tool allows vou to set up system details and to specify what
external devices are connected.

3.4 ProcessManagement . . sttt sseserssasaseccnsensssss 3-6
The process management subsystem allows you tomake selected processes
resident, display the status of all currently existing processes, and
remove processes,

Alpha draft 3~ 3 February 1933

Workshop User’s Guide for the Lisa The System Manager

Alpha draft 3-

~n

3 February {993

Workshop User’s Guide for the Lisa : The System Manager

THE SYSTEM MahkaGER

3.4 The System Manager.
The System Manager allows you to set system defaults and configuration. It

allows vou to:

® Set the Lisa system characteristics such as screen contrast, speaker
volume, and time lags for repeating Kevys. '

® Set the configuration of external devices such as disks and printers.
@ Set the default start up device.

@ Set processes to be resident or nmon resident, to allow you to performance
tune your Workshop system.

® Set what device isto be the console.
Redirect output from the console to a file or external device.

@ Monitor all currently existing processes, and remove processes.

3.2 The System Manager Functions.
By pressing S in the main comand line, you can enter the System Manager
subsystem. The System Manager command line works the same as the main
Workshop command line. Pressing "7" shows you the additional line of
commands.

The System Manager command line is:

SYSTEM-MGR: ManageProcess, QutputRedirect, Preferences, Time, Quit, ?
Press "7" to see the additional commands:

Console, FilesPrivate, Validate

Each System Manager command isdescribed below.

ManageProcess (M)

This command puts vou into a process management subsystem, which allows
vou to select which processes should be resident for performance reasons. It
also allows vyou to display the status of all currently existing processes, and
remove processes. This subsystem isdescribed insection 3.4 below.

OutputRedirect (O)

The QutputRedirect command allows you to send a copy of all output that is
displaved on the console to another device (such as the -printer) or to a file
on & disk, The command asks you for the pathname to send the copy to. Im
order to return to displaving only on the console, use the command again and
redirect the output to the -conscle device (the default).

Preferences (PF)
The Preferences tool is used to set up the configuration of the Lisa system
and the Workshop. Itisdescribed insection 3.3 below.

Time (T)

Alpha draft 3-3 3 February 1983

Workshop User’s Guide for the Lisa The System Manager

The Time command allows \)ou to set the date and time. The date and time will
be maintained automatically by the Lisa system.

Quit Q)
The Quit command exits from the System Marager back to the main Workshop
command line.

Console (C) ‘ , -

This command allows vou to change where the Workshop console isdisplayed.
It may be displayed on the main screen’ (the default) or on the alternate:
screen {where LisaBug displays), or on anexternal terminal connected to the
R5232A or Bport.

FilesPrivate (F)

The FilesPrivate command selects whether or not the private system files
should be displayed by the List command. The default is to not display the
private files. Private files are any files with a name beginning with "{".
These file names are used by the system for files you should not normally need
access to.

Validate (V)

The validate command is used to set up defaults for verifying operations.
Currently the only default of this type tells if the system will verify file
copies or not. The system verifies a copy by comparing the original file with
the copy to be sure they are the same. The boot default is to never verify.
You should have no reason to verify unless you something is wrong with your
disk.

3.3 The Preferences Tool
The Preferences tool is started by pressing P in response to the System
Manager command line. After you are finished with it, you can exit back to
the System Manager by selecting Quit from the Tools menu.

The Preferences tool allows vou to set up your Workshop system the way vou
want it. [t contains four sections:

s Convenience settings that allow you to set up the screen contrast, the
speaker volume, and repeat delays.

® Device connections that tell the Lisa system what external devices are
connected.

@& Startup that tells the Lisa what device to use as a startup device.
® Workshop defaults that set up things the Workshop needs to Know.

These default settings are stored in parameter memory, a small area of
memory that is preserved as long as the Lisa is plugged into a working outlet
and for up to 19 hours when the Lisa is unplugged. If your Lisa is without
power for longer than this, the preference settings will be restored from
information on the startup disk.

Any changes made with the Preferences tool change Parameter Memory
immediately, but some of them, such as device connections and startup

Alpha draft 3-4 3 February 1983

Workshop User’s Guide for the Lisa ' The System Manager

options have no effect until the system isbooted again.

The preferences tool displays a window containing a number of buttons and
checkboxes. You set the values you want by using the mouse to move the
pointer to the desired options and clicking.

These four areas are described briefly below. More information on the first
three areas can be found in the Lisa Owners Guide GSection D. Select the
area you want to view or change by moving the pointer with the mouse to the
checkbox in front of the section name and clicking.

3.3.4 Convenience Settings.
The Convenience Settings portion of the Preferences tool allows you to
customize the input and output characteristics of the Lisa. These
characteristics are divided into three sections: Screen Contrast, Speaker
Volume, and Rates. The Convenience Settings display is shown in Figure 3-1.

L
g lll| Preferences ||l

BConvenience Settings [Startup ODevice Connections Owarkshop

Mset All Convenience Settings to Lisa Defaults

Screen Contrast o
Normal Level SN
dark OO OOO0OOOODOMOOUDOODOD bright g Rty
Minutes Until Screen Dims ’ cantrast, adjust’
01-2 M2-4 Os-10 O10-20 O15-30 O30-60 - brightness. br
Oim Level * back ?f the’
- until the ed
“dorkOOOMOOO00000000D00 bright [,foi are
Speaker Volume ,ishar :

Silent (Flash menu bar) 0 Soft @ O O D 0 Loud
Repeating Keys

Delay
short 00O MO O Long

Rate
Fost #0000 O Slow

Mouse Double Click Delay
short O O B 0O Long

Figure 3-1. Convenience Settings.

Screen Contrast .
The contrast portion contains three sections. The first allows vou to select
the normal screen contrast level. Check in a contrast box until the contrast

Alpha draft 3-5 3 February 1983

Workshop User’s Guide for the Lisa The Svystem Manager

level is comfortable. Checking a box immediately changes the contrast.

The Lisa screen automatically dims if no activity is taking place on the
screen to protect the screen from damage. The delay time before this
dimming takes place isset with the Fade Delay section.

The third section allows you to set the dim contrast level. Checking abox in
the Dim Level section makes the screen dim to that level until you move the
mouse. '

Spealker Volume
The speaker volume cection allows you to set how loud the Lisa‘s audible
alerts will be. Checking a box causes two beeps at the level you selected.

Rates

There are three rates that can be set, two for the Keyboard and one for the
mouse. The first is the inmitial Keyboard repeat delay. This is the length of
time a Key must be depressed before it begins repeating. The second is the
subsequent repeat delay. This is how quickly a Key repeats after it has
started repeating. The third rate is the mouse double click delay. This sets
the maximum amount of time between two clicks that will be considered a
double click. These three values should be set for your most comfortable use.

3.3.2 Start Up.
The Start Up display allows you to specify the boot device, and the type of

memory test to be performed on startup. The Start Up display is shown in
Figure 3-2,

OcConvenience Settings MBStartup ODevice Connections Owoarkshop

Start Up From:
Opiskette in Drive 1 (Upper)
ODiskette in Drive 2 (Lower)
ODisk Attached to Lower Connector of Expansion Slot 2
MDisk Attached to Parallel Connector

Memeory Test
EBrief
OThorough ‘
Figure 3-2. The Start Up Display.

The Start Up display lets you select the Lisa system boot device. You are
given a list of all possible boot devices. Select the one vou want.

The Start Up display also allows you to select a'lcmg or short memory test.
The brief test takes about 3@ seconds, the long test takes about a minute,

Changes made to the Start Up display are put into Parameter Memory
immediately, but have no effect until the system is booted again.

3.3.3 Device Connections.
The Device Connections display allows vou to specify what devices are
connected +to the Lisa. When it is selected, it displays all ports that

Alpha draft 3-8 3 February 1783

Warkshop User’s Guide for the Lisa The System Manager

currently exist, along with the devices that are currently connected. To add,
delete, or change the device connected to a port, select the port. All devices
that may be connected +to that port are displayed; you may also choose to have
no device connected. When vou select the device to connect, any additional
configuration options for that type of device are displayed.

Any changes made 1to the device conmnections are made immediately +to
Parameter Memory, but they do not take effect until the next time the Lisa is
booted. A typical device connections display is shown in Figure 3-3.

' TDO'S ...
O Il Preferences ||| .
DOconvenience Settings OStartup MDevice Connections OWorkshop

Connectors Devices Currently Connected

0 Expansion 2 lower ProFile
0 Expansion 2 upper Dot Matrix Printer
O Parallel ProFile
B Serial A Nothing Connected
-0 Serial B Nothing Connected

Device You Intend to Connect
BENo Device [Daisy Wheel Printer (Dot Matrix Printer
MRemote Computer

Figure 3-3. A Device Connections Display.

3.3.4 Workshop
The Workshop display allows you to set parameters of the Workshop system.
The Workshop display is shown in Figure 3-4.

Tools

O

UOConvenience Settings [OStartup ODevice Connections MWarkshop

Memory to use(assuming 1 megubyte machine)
HMrull megabyte Othree quarter megabyte Ohalf megabyte

Enable Mouse Scaling?
Hno Oyes

Figure 3-4. The Workshop Display.

3.3.3 The Tools Menu
The tools menu provides vou with functions to access Parameter Memory.
There are three functions provided: Set PM to defaults; Quit; and Print PM.
Set PM to defaults sets parameter memory to the standard Lisa defaults.
Quit exits you from the Preferences tool, and puts a copy of the current
settings of parameter memory on the disk. Print PM displays all the values in
parameter memory on the console.

Aipha draft 3-7 3 February 1983

Workshop User’s Guide for the Lisa The System Manager

3.4 Process Management

The Process Management subsystem iz started by pressingM in response
to the System Manager command line. This subsystem displays the
tollowing command line:

ManageProcess: AddResident, DeleteResident, KillProcess, ProcessStatus, Quit ?

This subsystem is used to control which processes will be resident.
Making a process resident mexns that aftter it has run tocompletion, it
will be suspended and retained in memory rather than terminated and
removed from memory. This allows it torestart faster, because it does
not have to be reloaded from disk. For example, if you are often using
the Pascal compiler and the Editor, you can improve the performance of
vour Workshop system for these applications by making the compiler and
the Editor recident. Thiswill allowmuch more rapid shifting between
the two.

See the Operating System Reference Manual for the Lisa for more
information on processes

AddResident (A)

The AddRecident command adds a process to the list of procesces that are
resident., You supply the file name of the object file that you want to
be made recident the next time it is executed.

DeleteResident (D)
The DeleteResident removes & process from the list of resident
procecsses,

KillProcess (K
This command terminates a currently existingprocess,

ProcessStatus (P}
The ProcecssStatus command gives you information zbout x11 currently
existing processes. Itprovides the following information:

Pathname The name of the object file in the process,

ProcessID The unique identifier assigned to the process.

State The current state of the process: Active,
Suspended, or Waiting.

Resident Tells you if this is aresident process.

Quit
Exit from the processmanagement csubsystem back to the System Manager
command line.

Alpha draft 3-8 3 February 1983

Workshop User’s Guide for the Lisa The Editor

Chapter4d
THE EDITOR

4.1 The Edifor S8 &S50 283 ST RIINTCEOTT S TR CISE ISR RIS SESO RSN TREPRNOGEESSEETER IS 4-2
The Editor isused to create and modify text files.

4,2 Using the Editor «cvevercesrsecsacsessncrarsncessscaessasnssnsacsses 4-2
Start editing by pressing E in response to the command prompt. The Editor
will create a new file or edit an existing one. Operations are provided in five
menus: File, Edit, Search, Type Style, and Print. The mouse isused to select
menu items. '

4!3 selecting TEXt I B B RN EEENENENEENENNENNENERNNERNENENENEBNENENENNNENNNENIENINENE-RHNERE] 4-4
The mouse isused to select text and to move the insertion point.

4.4 Scrolling and Moving the Display ceciveescccrcesrsosccnssssassancesss 4-5
The display can be scrolled by using the scroll bar on the right side of the
window. The window can be moved by clicking in the title bar. The size of the
window can be changed by using the size control box.

4’5 The File chtions 2 880830 8080802 ET SN S8 ETSE3sAsNSSRSTESERIRESTSE TSRS SRBSTS 4-5
The File functions are used for retrieving and saving text files. You can also
save or revert to a previous version and exit the Editor.

4.6 The Edit Functions [EE RN ENENENNERNNNNENEERMNENERIENNNENMNENRENENEHNRIMNEIERIIMSEHSNNIESN;NH}N] 4-6
The three basic Edit functions are cut, paste, and copy. The Edit menu also
gives vou functions to adjust left and right, and to set tabs.

4'7 The Sea"h Functions € 8 92838332 8390823 F TN IS EESTN TN S SN AIRSTIRBRERESEOS 4-8
Search gives vou functions to find text strings in the file, and coptionally
replace them.

4.8 The Type Style Functions LA BE B BN BN BN BN BN B BN BN B B BN BN B BX BF B BN BN BN BE BN BN IR BN BN BN BN BE BN BN BN BN BN BN I BN BN ¥) 4-9
The Type Style menu allows you to change the font that the file is displayed
and printed in.

4'9 The Pr‘int Functions 8% 2 383 8838830833883 83333883 20sRat0 sSSP RSEEBESSTORTS 4"!0
The Print menu allows you tc print the file, and to specify the format it
should be printed in.

Alpha draft 4-1 27 January 1983

Workshop User’s Guide for the Lisa The Editor

Alpha draft 4-2 27 January 1983

Workshop User‘s Guide for the Lisa ' . The Editor

THE EDITOR

4.4 The Editor
The Editor is used to create and modify text files. These files may be used
for many purposes including input to the language processors and as exec

files.

1f the file you are editing is too big to fit on the screen, a portion of the file is
displayed. This "window" into the file can be moved to display any part of the
file you want. An example of the Editor display window is shown in Figure

4"'1-

The basic editing operations are inserting characters, cutting a portion of
the text, and pasting text into a new location. Items that are cut go into a
special window called The Clipboard. Text on the Clipboard can be pasted
into any place in the file, or into another file.

All editing action takes place at the insertion point. The insertion point is
marked by a blinking vertical line where the next character will be placed.
Any characters typed, or pasted from the Clipboard will be inserted at this
point. This is true even if the insertion point isnot currently displayed in the
window. The window will automatically be scrolled to show the insertion
point,

NOTE

The editor is memory based. This means that there isa practical limit
on the size of the file that can be edited. If a file is too big to edit, it
should be split intc more than one file of manageable size. The Filediv
and Filejoin utilities can be used for this. They are described in
Chapter 10.

The mouse is used to scroll the text in the window, move the insertion point,
and select text to be cut or copied. Other cperations, provided in five menus,
are selected using the mouse.

" File. Edit Search Type Style Print
A I T P R S RO 3 O e NI RS

BRSSO R

Alpha draft

THE RAVEN

Once upon a midnight dreary, while I pondered, weak and weary,
Over many a quaint and curious volume of forgotten lore,

While I nodded, nearly napping, suddenly there came & tapping,
As of some one gently rapping, rapping at my chamber door.
"'Tis some visitor,” I muttered, "rapping at my chamber door,
“Only this, and nothing more.” .

4-3 27 January 1983

Workshop User’s Guide for the Lisa ‘ The Editor

Figure 4-1. The Editor Display Window

4.2 Using the Editor
Start the Editor by pressing E in response to the Workshop command prompt.
The Editor will prompt vyou for a document name. If you want to edit an
existing file, enter its name. If you want to create a new file, select Tear
Off Stationery from the filing menu. The Editor will prompt you for the
stationery name. Press RETURN for the default, which is blanK paper. For
more information on stationery, see below.

The file that you are working on is called the active document. You may have
several documents open and accessible at any one time, but only the active
document may be edited. The active window isindicated by a2 darkened title-
bar.

4,2, Editing Operations

The basic editing operations are Cut, Paste, and Copy. To cut or copy text,
you must first select the text to be cut or copied. Select text by moving the
mouse while holding down the button. See section 4.3 below for complete
information on selecting text. Text that is selected and cut isremoved from
the active document and placed in a special window called The Clipboard.
Text that is copied is placed on The Clipboard and also left in place in the
active document. 3

The contents of The Clipboard may be inserted at any point in the active
document by moving the insertion point to where you want the text inserted
and selecting Paste from the edit menu.

4.2,2 The Menus
Operations are provided in five menus: File, Edit, Search, Type Style, and
Print. The File menu is used to access things outside the Editor; such as
documents and stationery. The Edit menu contains the editing operations.
Search provides for finding strings in the active document. The Type Style
menu selects the font for document display. The Print menu controls
printing. Each of these menus isdescribed in more detail below.

You select an operation from a menu by moving the arrow pointer to the menu
name on the menu bar and holding down the button. The menu is displayed.
Select the menu item by moving the mouse up or down until the right item
appears inreverse video. Releasing the button starts the operation.

4,2.3 Creating and Using Stationery
Stationery for a special purpose (such as a letterhead) can be created with
the Editor. Stationery is just & regqular document containing the desired
text. To use any stationery other than the default blank paper, select Tear
O+f Stationery from the File menu, and type the name of the document
containing the stationery when it asks you for the stationery name.

To create stationery, make a document containing the standard text vou
want on the stationery. Save this document on the disk. To use this
stationery, select Tear Off Stationery from the Edit.menu, and give it the
file name of the stationery you created.

Alpha draft 4-4 27 January 1983

Workshop User‘s Guide for the Lisa The Editor

4,2.4 Editing Multiple Files

More than one file may be open at cne time, but only one document is the
active document. To read in a document when you already have an active
document, select Open from the File menu. It.will ask you for the document
name. The new document will be read in to a window on the screen and will
become the active document. To make another document the active
document, use the mouse to move the pointer into a portion of that document
and click.

This capability may be used to copy text from one file to another by using the
following sequence of operations:

® Open the document containing the text you want to copy.

» Select the text vyou want to copy and select Copy from the Edit menu.
This places a copy of the text onto the Clipboard. You can use Cut if vou
want the text to be removed from its original file.

s Open the document vou want the text to be copied to. It becomes the
active document.

® Move the insertion point to the place vou want the text to be inserted.

s Select Paste, which will copy the text from the Clipboard to the active
document.

Further information on each of these cperations may be found below.

4.3 Selecting Text
The basic editing functions are Cut, Copy, and Paste. Before vou can Cut or
Copy text, vou must select the text to be cut or copied. Before vou Paste,
move the insertion point to where vou want the text to be placed. You select
text and move the insertion point by using the mouse to move the pointer on
the screen,

When there isanactive document, the pointer will have cne of two shapes:
Text pointer in a document
Arrow pointer for menus and scroll bars

Use the mouse to move the pointer on the screen. The shape of the pointer
will change when you move inand out of the document display window.

Within the display window; the text pointer is used to move the insertion
point and to select text.

In selecting text, you may select characters, words, or lines. You may also
select any number of characters, words, or lines. Selected text is displayed
inreverse video. .

4,34 How do I Move the Insertion Point?
The insertion point is indicated by a blinking vertical line where the next
character will be inserted. All insertion, whether from typing or pasting,
takes place at this point in the file, even if it i not visible in the window.

To move the insertion point, move the text pointer to where vou want it to be

Alpha draft 4-5 27 January 1983

Workshop User‘s Guide for the Lisa The Editor

and click, Note that the insertion point is also moved when you select text.

43,2 How do I Select Characters?
To select characters, move the text pointer to the beginning of the
characters you want selected, press and hold the button while moving to the
last character you want selected.

An alternate way of selecting characters, which is especially useful when
selecting a large block of text, is as follows. Move the pointer to the
beginning of the text you want selected and click. Then move the pointer to
the end of the text you want selected and shift click (hold down the shift key
on the Kevboard and click the mouse button). You may use the scrolling
controls to display the end of the text you want selected if it istoo big to it
in the window. '

4.3.3 How do I Select Words and Lines?
To select a word, move the text pointer into the word and click twice. To
select a line, move the pointer into the line and click three times.

To select multiple words or lines, click the required number of times, and
hold. Move the pointer to the last word or line vou want selected and release.

An alternate method, especially useful when vou want to select more text
than will it in one display window, is as follows. Click the reguired number of
times to select the first word or line. Scroll the window if necessary to
display the last item you want selected. Move the pointer to the last item you
want selected, shift clicky and the entire block of text will be selected.

4.3.4 How do I Adjust the Amount of Text Selected?
To change the amount of text selected, move the pointer to the position that
vou want the selection to extend to and shift click. This can be used to either
expand or contract the selection.

4.4 Scrolling and Moving the Display
When a document islonger than will fit into the display window, only part of
the document is displayed at one time. You can change what part is displayed
by "scrolling” through the display. The vertical bar on the right side cof the
active window is the scroll bar. An example of a text- window showing the
scroll bar isin Figure 4-1.

The display window can be changed in size and moved on the screen. This
allows you to have multiple files displayed on the screen. These operations
are done using the title bar and size control box.

4.4.1 Scrolling the Display
There are three ways of moving the display window through the document.
The first is by using the elevator. The elevator is the white rectangle in the
scroll bar. Its position in the “"elevator shaft" (the grey portion of the bar)
indicates the relative position of the currently displayd text window in the
document. If the elevator isnear the top, vou are near the beginning of the
document. Ifitisnear the middle, the text displayed on the screen isnear the
migdle of the document, and soon. To change the positicon of the text window,
vou can use the mouse to move the arrow pointer into the elevator; click and

Alpha draft 4-4 27 January 1983

bWorkshop User’s Guide for the Lisa . The Editor

hold tﬁe button down while vou move the elevator to the positicn in the
document vyou want to display. When vyou release the button, the display will
be updated to the new position. '

The second way of moving the window makes use of the view buttons. The
view buttons are the boxes at each end of the elevator shaft. If vou move the
arrow pointer to a view button and click, the display will move one text
window toward the beginning or end of the document, depending on which
button vou clicked.

The third way of moving the window uses the scroll arrows, which are just
above and below the view buttons. If you move the arrow pointer to the
bottom scroll arrow and click, the display window will move one line toward
the end of the document. If you hold the button down, the window will
continue to move a line at a time until vou release it. The upper scroll arrow
works the same way, except it moves the window towards the beginning of the
document.

4.4.2 Moving the Display
You can move the display window on the screen and change its size. This lets
vou display multiple files on the screen. You can maKe any visible window be
the active window by moving the pointer into it and clicking.

To move a window,; move the peinter to the title bar, press the mouse button
and hold it while you move the window. When you release the button, the
window will be redisplayed at the new location.

To change the size or shape of the active window, move the pointer to the
size control box, press the button, and move the pointer until the window is
the right size and shape. Release the button and the recized window will be
displayed. The size control box is the box in the lower right hand corner of
the window. Only the active window can be resized.

4.5 The File Functions
The file menu provides functions for communicating with the outside world.
Functions are provided for reading in and writing out documents,; and for
exiting the Editor. The Filing menu is shown in Figure 4-2. Each function is
explained below.

filingmeny

Figure 4-2, The Filing Menu

Alpha draft 4-7 » 27 January 1983

Workshop User’s Guide for the Lisa The Editor

Save & Put Away
This writes out the active document and closes it.

Save a Copy in ...
This writes out a copy of the active document to another file name. You are
prompted for the name of the file to write to.

Save & Continue ‘ s , ‘ ,
This saves all changes made so far by writing ocut the document to disk
without closing the document.

Revert to Previous Version ‘
This returns the document to the way it was before you started editing ity or
when you last saved it. This isdone by reading in the file from the disk.

Open ..

This tells the Editor to get a new document. Itprompts you for the document
name, then reads it in and makKes it the active document. The Editor will
supply the .TEXT extension on the file name.

Duplicate ...
This allows you to read in a copy of an existing document to edit intoc a new
file. Itisread in with the default name "untitled"

Tear Off Stationery ... :
This gets a new piece of stationery and makes it the active document. See.
section 4.2.3 above for more information. The stationery isgiven the default
name “untitied".

Exit Editor
This first asks you if vyou want to put away any modified documents. If vou
answer ves, they are written out to disk. Then it exits the Editor.

4.6 The Edit Functions
The Edit menu provides the editing functions and tab setting. It is shown in
Figure 4-3.

The three basic edit functions are Cut, Paste, and Copv. These make use of
the special window called The Clipboard. The Clipboard can hold one piece of
text. Text is put intc The Clipboard by selecting it in the active document,

and either cutting it or copying it. Text is copied from the Clipboard and
inserted at the insertion point with the paste operation.

| Edit 8

taao Lost Change

Cut &X

Copy $C}
Paste €V
Shift Left %L
Shift Right €R

Set Tabs ...

Select All of Document %A

Alpha draft 4-3 : 27 January 1983

Workshop User’s Guide for the Lisa The Editor

Figure 4-3. The Edit Menu

For example, to move ablock of text from one place in a document to another,
follow these steps:

i. Select the block of text to be moved.

2. Select Cut from the Edit menu. The text is removed from the active
document and placed on the Clipboard.

3. Move the insertion point to where you want the text to be.

4, Select Paste from the Edit menu. The text on The Clipboard isinserted
at the insertion point.

The edit menu also allows vyou to adjust cselected text left or right by
inserting or deleting spaces. It also allows vyou to set tabs.

Some edit functions may also be done by holding down ({(apple) and pressing
another kev. The Kkey that corresponds to each function is shown in the edit
menu. See figure 4-3,

Undo Last Change

This command puts the document back to the way it was before the previous
operation if possible. The system will tell you if the last operation cannot be
undaone.

Cut

Cut places a copy of the currently selected text into The Clipboard and
removes the text from the active document. You may also Cut by pressing
{apple) X,

Copy

Copy places a copy of the currently selected text onto The Clipboard, but
does not remove it from the active document. You can also Copy by pressing
{apple) C.

Paste
Paste inserts a copy of the text on The Clipboard at the insertion point in the
active document. You can also Paste by pressing (apple) V.

Shift Left

Shift Left moves selected text left by deleting a single space from the left of
each line. It will not delete any characters other than spaces. It is most
often used to adjust the left margin of a block of text. You can shift left by
pressing (apple) L.

Shift Right

Shift Right is similar to Shift Left, except that it moves the selected text to
the right by inserting spaces at the beginning of each line. This can also be
done by pressing (apple) R.

Set Tabs ...
Set Tabs allows vou to set the spacing of the tab stops.

Select All of Document

&lpha draft 4-9 27 January 1783

Workshop User’s Guide tor the Lisa The Editor

This command cselecte the entire document. You can select the entire
document by pressing (apple) A.

4,7 The Search Functions.
The Search menu gives you the ability to search for a text string in the active
document. The basic operation is Find, which locates the next occurrence of
the string and selects it. Find & Paste All will replace each occurrence of the
string with the contents of The Clipboard. Several options are provided to
specify how the match is to be found. The Search menu is shown in Figure 4-4,

Search [

Find ... WF
Find Same %S
Find & Paste Al

vSeparate ldentifiers
All Occurrences

vCases Need Not Agree
Cases Must Rgree

Figure 4-4, The Search Menu
All searches start at the insertion point, and go to the end of the file.
There are three search operations in the Search menu, as follows:

Find ...

Find prompts you for the string to search for, then finds the next occurrence
of the string. If a match is found, it will be selected and Jisplayved. The Find
command can also be executed by pressing {(apple) F.

Find Same
Find Same repeats a previously specified Find, and selects the next
occurence of the string. You mavy do a Find Same by pressing (apple) S.

Find & Paste All

This finds all occurrences of the specified string from the current insertion
point to the end of the file, and replaces each of them with the contents of
the Clipboard. '

The other four items in the search menu tell how 3 match is to be found.
There are two areas to describe: searching for tokens or characters, and
whether or not case must be matched. The options currently ineffect have z
check mark in front of them. To change the option, use the mouse to select
the one vou want.

The first set of options tells whether to search for tokens or to search
literally: ;

Alpha draft 4-19 27 January 1983

Workshop User’s Guide for the Lisa - The Editor

Separate Identifiers

When Separate Identifiers is selected, the search operation will lock for a
“token" or word to match the search string. Only the first 2 characters are
significant in a this type of search.

All Occurrences
When All Occurrences iscselected, the search operation will match anv string
containing the same characters, even if it isonly part of a word.

The next options indicate if case issignificant in finding a match:

Cases Need Mot Agree
Wher this item is selected, any string with the same characters will be a
match, regardless of whether they are inupper or lower case.

Cases Must Agree
When this item is selected, the string must exactly match the search string,
including case; to be selected.

4.8 The Type Style Functions
The Type Style menu allows you to change the display font. The Type Style
menu is shown in Figure 4-5. A check appears in front of the font that the file
is currently displayed in. You may change the font by selecting another fomt
from the menu.

The font selected will affect how many characters mav be displaved on a line,
and whether or not the display is proportionally spaced. When a file is
printed, it will be printed in the same type stvyle it isdisplaved in.

Tuype Style- _

20 Pitch Gethic
15 Pitch Gothic
V12 Pitch Maodern
12 Pitch Elite
10 Pitch Modern
10 Pitch Courier
PS Modern

PS Executive

Figure 4-5. The Type Style Menu

4.9 The Print Functions
The Print menu provides functions for printing a document. You can print zll
or part of a document, choose what form of footers are to be printed; specify
if Pascal Keywords are to be emphasized, and tell what type of printer is

#lpha draft 4-11 27 January 1983

Workshop User’s Guide for the Lisa The Editor

being used. The Print menu is shown in Figure 4-6.

Print All of Document
Print Selection

VFull Footers
Page Numbers Only

vPlain Keywords
Differentiated Keywords

vDot Matrix Printer
Buaisy wWheel Printey
PaperTiger Printer

Figure 4-4. The Print Menu
The Print functions are as follows:

Print All of Document
This command prints the entire document.

Print Selection
This command prints only the currently selected portion of the document.

Both of the print commands will wait if the printer isnot ready.

The remaining options in the Print menu chose how the print is to be
performed. They are organized into 3 sets of 2 options. The currently
selected option in each set is indicated by a check mark, You can select any
combination of options vou want.

The first options control what type of footers will be printed at the bottom
of the page.

Full Footers
When Full Footers is selected, Each page printed will have a footer
consisting of the file name, the page number, and the date.

Page Number Only
Selecting Page Number Only results in only a page number on the bottom of
egach printed page.

The next options are used for printing Pascal programs.

Plain Keywords '
Selecting Plain Keywords makes Pascal Keywords print with normal text.

Differentiated Keywords
Selecting Emphasized Keywords makes the printed output emphasize all
Pascal Keywords by underlining them.

The next options select the type of printer to print on. Select the type of

Alpha draft 4-12 » 27 January 1983

Workshop User’s Guide for the Lisa The Editor
printer vou have attached +to your Lisa:

Dot Matrix Printer
Daisy Wheel Printer

Alpha draft 4-13 27 January 1983

Workshop User’s Guide for the Lisa . Pascal Campiler

ChapterS
THE PASCALCOMPILER

5.4 The Pascal Compiler .eveessscrsncssansensnaressssnsscsvsassaanssaes 9-2
The Pascal compiler translates Pascal source statements into object code.
This translation is done in two steps. The source statements are first
translated into intermediate code {I-code), then the I-code is translated into
object code.

5.2 Using the Pascal COmPiler .ccseccessensnscssssrsnsesscssnsssnssessce 3-2
The compiler expects a text file containing a Pascal program as input. The
compiler is executed by pressing P inresponse to the command prompt. The
code generator, which translates I-code into object code, is executed by
pressing G.

503 The Pascal Compiler Commands 2 3% 8 382803808 AT2est 3008 RERSEBSBTSES 5-3
The compiler commands desired are entered into the Pascal source file. They
provide for symbolic debugging information and conditional compilation.

5.4 Further In*ormation IR R A E YA ENESEEEEEEEESEEREREERERENERESERIEJIENNEEE;NHN] 5-3
More information on using the Pascal language can be found in the Pascal
Reference Manual for the Lisa.

Alpha Draft 5-1 29 Januvary 1983

Workshop User’s Guide for the Lisa : Pascal Compiler

Alpha Draft 5-2 29 January 1983

Workshop User’s Guide for the Lisa Pascal Compiler

THE FPAaSCal COMPILER

5.4 The Pascal Compiler
The compiler translates Pascal source statements into object code. This
translation is done in two steps. The first step (parsing) converts the
program inte semantically equivalent tree structures called I-code. The
second step translates the resulting I-code into machine language.

A complete definition of Lisa Pascal is found in the Pascal Reference Manual
for the Lisa.

The Pascal run-time support routines are in the library IOSPASLIB. After
generating the object code, it is necessary to link the program with
10SPASLIB before vyou can run it., For information on how to link the
program, see chapter 7 inthis manual.

5.2 Using the Pascal Compiler
The compiler expects a text file containing a Pascal source program as input.
You can create this text file using the Editor.

When you have prepared a source program, use the Compiler to translate it
into object code. Start the compiler by pressing P in response to the
workshop command prompt. The compiler first asks for the

Input file [.textl -

Type the name of the file that contains the source program. You do not rneed
to add the .TEXT extension. The compiler then asks you for the

List file -

Type the name of the file that you want the listing to go to, or press RETURN
if you don‘t want a listing. You can display the listing on the console by using
the -console pathname. The compiler next asks you where to store the I-code
form of the program:

I-code file [{input name>1(.I] -

If you want the I-code to be.stored in a file with the same name as the source
file, but with a .I extension instead of the .TEXT, just press RETURN. Ifyou
want another name, type the name and press return.

After the last input, the compiler translates the program into I-code and
stores it in the I-code file. If there were any errors, they will be displayed oi
the console.

5.2.1 Using the Code Generator
To translate the I-code into object code, press G in response to the shell
command prompt. The code generator first asks you for the

Input file [.1] -

Type the name of the I-code file. You do not need to add the .l extension. The
generator then asks you for the

Alpha Draft 5-3 29 January 1983

Workshop User’s Guide for the Lisa Pascal Compiler

Output File [{input name>){.0BJ] -

To accept the default name, press RETURN. If you want adifferent name for
the output file, type the name and press RETURN. The .,O0BJ extension will be
added to the name for you. ‘

The output file from the code generator is object code, but it is not
executable because it does not contain the Pascal run-time support routines.
The run-time support routines are contained in IOSPASLIB. These routines
must be added to the object file by using the Linker. See chapter 7 in this
manual for more information on the Linker.

3.2.2 . Compiling with a Different Intrinsic Library

The Compiler and the code Generator both access INTRINSIC.LIB, the library
of intrinsic units. It contains information about the intrinsic units used by
the program. 1 you want the program to be compiled with a different
intrinsic library, you can enter "7?" to the request for an input file in both the
Compiler and the Generator. They will ask you for the mame of the intrinsic
library vou want to use. After entering the mame of the intrinsic library, the
compilation proceeds in the usual way.

5.3 The Pascal Compiler Commands
Compiler commands allow control of code generatiomy, input file comtrol,
listing control, and conditional compilation. The commands all start with a $,
and are placed as comments in the source program where you want the
command to take effect. A complete list of the compiler commands is found
in the Pascal Reference Manual for the Lisa.

54 Further Information
For further information on the Pascal language, refer to the Pascal
Reference Manual for the Lisa. A Pascal program can call assembly language
routines. More information on assembly Language is in chapter é of this
manual.

The Debugger, described in Chapter &, can be used for run time debugging of
Pascal programs. More information on the run time environment of a Pascal
program is found in Chapter é.

The Operating System provides a number of routines that can be called from a
Pascal program to perform various system functions. These routines are in
the SYSCALL unit, which is described in the Operating System Reference
Manual for the Lisa.

Alpha Draft 5-4 29 January 1983

Workshop Reference Manual faor the Lisa The Assembler

Chapterdsd

THE ASSEMBLER

b’li ThelAlssembler [EEEREEE R EE RN ENE RSN EENEERNEE R EREEEIENEY EREEEERNEERENENREERNSE] 6—2
The assemblertranslatesé3000 assembly language intomachine language.

5.2 Using the ASSEMDIEr siieasienciensssnsssnerossssassensssnsssnsssassanss 6=4

The assembler is startedby pressingA inresponseto thecommand prompt.
It accepts a text file as input, and produces a machine language ((OBJ)file
as output.

6.3 The Assembler OPCOOES taesessssasssassssscssncssssesassssassascsnssnas O—0
The assembler opcodes are the standard 85000 opcodes, with a few
alternateforms for some instructicons.

8.4 AssSEmblerSYNtax .eetsesscssiosscensssssssansssasssasssnsssnsssnnsnaccsn 3=7
An assembler statement consistsof an opticnal label, the opcode, and one
ortwo operands. The ocperandscan contain expressions.

6.5 Assembler DirectiVES cisssssessssntnsssscasssscscssssscssssssassassssee 6=7
The assembler directives provide for procedure and function definition,
macros, label and constant declaration,listingcontrol, storage allocation,
and conditional assembly. '

5:6 COmmUniCatiDﬁ withPaSCBl lllllll.llllllll!llll!lllll'll!tllll‘lllllé—i1

Alpha draft 6-1 7 January 1983

Workshop Refererce Manual for the Lisa The Assembler

3

Alpha draft 6- 7 January 1983

Workshop Reference Manual for the Lisa ’ The Assembler

THE ASSEMBLER

4.4 The Assembler
The assembler is a program thattranslatesassemblylanguage source code
into object code. The assembler accepts a text file containing the source
code asinput,and produces anocbject file as ocutput.

The object file produced must be linked witha Pascal main program before
itcan be executed.

Assembly language routines are used to implement low level or time
critical functions. Thischapter describeshow to use the assembler,and the
syntax of assembly lamguage programs. Information on the machine
instructions available on the 85000 processor is found in the Motorola
manual.

4.2 Using the Assembler
To assemble « program, press A from the Workshop command lime. Then
specify the input file {(the file that contains your source program) and two
output files: the object file (the file that contains the machine-language
code produced by the assembler)and an optionallistingfile.

The input file must be a text file containing assembly language source
statements. You can makKe this file with the =ditor. The output file
produced is an cbject file (LOBJ)that must be linked with a Pascal main
program tobe run.

é4.2.1 Assembler Options
When vou startthe assembler, the cption settingsare displayed. You may
change the optionsby responding to the input file prompt with "?". There
are two assembler options:

P PrettyListing.
g Printinformation about available space.

Each optionmay be setto+or-:

+ On
- O+

When Pretty Listingis on, the forward jump addressesare filledinwiththe
correct values.

Attersettingany opticns desired,pressreturn,and the assembler asksyou
far the name of the input file.The assembler then asks you for the name of
thelisting, and the output files. ’

6.2.2 The Input File
The input file is a text file conmtainimg assembler language source
statements. A filecreated using the Editorwillbe in textfile format.

When the assembler asKs you for the name of the input file, type " 7" ifvou
want to change assembler options at this time; otherwise type the
pathname of your source file.

Alpha draft 6-3 7 January 1733

Workshop Reference Manual for the Lisa The Assembler

4£,2.3 The Object File
The object file produced by the assembler contains a machine language
versionot your source program. The name of anobject file endswith .OBJ.
An object file is not executable; it must be linked with a Pascal program
thatcallsit. See Section 6.6 for furtherinformation.

The output file will be an cbject file which must ke linked with a Pascal
main program beforeitcan be executed.

&.2.4 The Listing File
The listing file produced by the assembler contains a list of source
statementsand theirmachine-language equivalent. IfPrettyListingisoff,
all addresses for forward referencing bramches will be displayed as
asterisks("####), [fPretty Listingison, the actual value will be filledin.

Source statement errorsare flagged in the listing. Refer to the Appendix
fora listofassembler errormessages.

Arexample of an assemblerlistingfile isshowrin Figureé-1.
assemblerlisting

TAIL MC --====-- | :

PAGE - S ASMSTR FILE: EX/ASM/STR. TEXT

0000 .proc AsmStr

0000y 20SF move. 1 a7)+, a0 ; return address

0002} 225F move. 1 a7 ;0,31 ; address of string passed from Pascal pgm
0004; 2F0A move. 1 a2, -(a7) ; save scratch reg a2

00064

0006f 45FA 0016 lea size, a2

000A; 4280 clr. 1 do

000C; 1012 move. b (a2),do ; get size of string

00OE])

000E] 12DA move. b (a2)+, (al)+ ; copy size of string (first byte of string)
00101 5340 copy subqg #1,d0 ; done copying string?

0012} 6500 0006 blo done ; yes, return to pascal

0016; 12DA move. b (a2)+, (al)+ ; copy one char of the string
0018) 60F6 bra copy

0014

001A; 245F done move. l a7)+, a2 ; restore scratch reg

001C; 4EDO jmp gaog ; return to pascal

001E) ‘

001E 26 size .byte 38

001F} 74 68 63 73 20 73 74 myStr .ascii 'this string is from the LISA assembler’
0026| 72 69 6E 67 20 69 73

002D} 20 66 72 6F 6D 20 74

0034) 68 65 20 4C 49 53 41

0038] 20 61 73 73 65 6D 62

0042; 6C 65 72 :

0045 00 .align 2 ; just to be sure next instruction is on word
0046) ; boundary (even address)
0048

0046} ;. end

0046

Figure 6-1. Assembler Listing

Alpha draft

o
|
£

7 January 1982

Workshop Reference Manual for the Lisa The Assembler

Ifyou specify a device name such as-PRINTER or ~-CONSOLEfor the listing
file, the listingwill be printedon thatdevice. Ifyouspecify adisK file,the
listingwill be created asa textfile;you may thenprintitby usingthe Copy
command inthe File Manager command lire.

4.3 Assembler Opcodes
The 85000 opcodes are described in the Motorcla MC85000 Microprocessor
User‘s Manual. The assembler has two variant mnemonics for branches
(EHS for BECC and BLOfor BCS). The variantrmames are more indicative of
how the instructionis being used afterunsigned comparisons. The default
radix isdecimal,

The size of an operation (byte, word, or long) is specified by appending
either.B;.W, or.L tothe instruction. The defaultoperationsize isword. To
cause a short forward branch, append a .5 to the instruction. The default
branch size isLong.

6.3.1 Optimization
It should be noted that the Assembler accepts generic instructions and
assembles the correct form. The instruction ADD, for example, is
assembled into ADD, ADDA, ADDQ, or ADDI, depending on the context.

ADD D3,A5
becomes ADD& D3,85.

MOVE;CMP, and SUB arehandled in a similar manner.

6.4 Assembler Syntax
This section describes the form in which the assembler expects an
assembly language program. We describe the sfructure of an assembly
language program insection 6.4.1, We thendescribe the form cfconstants,
identifiers,labels,;expressions,andhow to specify addressingmodes.

6.4.1 Structure of an Assembly language Program

An assembly language program contains one or more procedures or
functions. The structure of an assembly language source file lookes like
Figure 6-2. Firstit contains an (optionall section of non code generating
operations. This is usually where any constants or macros are defined.
Nextitconains one armore procedures ((,PROC) or functions (FUNC). These
each contain a sequence of code generating operationsand directives. A
procedure or function is ended when the assembler encounters the next
.FROC or .FUNC. A .END directive is the last statement in the program.
Any textbevond the .ENDisigrored.

Alpha draft &=3 7 January 1783

Workshop Reference Manual for the Lisa The Assembler

rion code generatingoperations

PROC {(or.FUNQ)
code generatingoperationsand any directivesneeded

PROC

etc.
END

Figure 6-2. Structure of an Assembly Language Program

The noncode generatingdirectivesare:

EQU MACRO JIF .LIST MACROLIST
.ENDHM .ELSE NOLIST JNOMACROLIST

.REF ENDC PAGE PATCHLIST

JDEF TITLE NOPATCHLIST

6.4.2 Constants

Constantsin the Assemblercan be eithernumeric orstringoconstants.
4.4.2.1 Numeric Constants

NMumeric constarmts in the assembler cam be expressed in decimal,

hexadecimal, octal, orbinary. The defaultradix isdecimal . The other three
bacsesare expressedas follows:

Hexadecimal
Hex numbers can be expressedin two ways:
1. Preceed the number witha"$". Examples of thisare:

$FF13
$127

2. Follow the number with an "H". Using this form, the number must
startwith a digit(0-9). Examples:

OFF{3H
195H

Octal
Octalnumbers are followedby thecharacter "O". Note thatthisisthe letter
Oynot thecharacter zero (0). Examples:

770
1040

Alpha draft 6-6 7 January 1933

Workshop Reference Manual for the Lisa The Assembler

Binary
Binarynumbers are followedby the character "B".Examples:

1011B
111000B

4.4.2.2 5tring Constants .
Etringconstantsare delimited by matching pairsof singleor double quotes.
Examples of stringconstantsare:

"thisis a stringconstant®
‘usingsingle quotesasdelimitersletsyouinclude “double” quotes’

6.4.3 Ildentifiers
Only the firsteight characters of identifiernames are meaningful to the
assembler. The first character must be alphabetic; the rest must de
alphanumeric, period,underbar,or percent sign.

Examples of identifiersare:

LOCF
EXIT_PRC
NUM

&8.4.4 Labels and Local Labels
Labelsbeginincolumn one. They can be followed by a colon, if you like.

Local labels can be used to avoid using up the storage space reqguired by
regular labels. The local label stacK can handle 21 labels at a time, Itis
cleared every time a regular label is encountered. Local labels in this
assembler startwith the character @. A local labelis an 9 followed by &
stringofdecimal digits{0-9). Examples of local labelsare:

2123
2
279

6.4.5 Expressionsand operators
All guantities are 32 bits in size unless constrained by the instruction.
Expresesionsare evaluated from left to rightwith no operatorprecedence.

Alpha draft

o-
i
~d

7 January 1783

Workshop Reference Manual for the Lisa The Assembler

Argle bracKets can be used tocontrol expressionevaluation. The following
operatorsare available:

+ unary orbinary addition

- unary minus or subtraction

onescomplement (unaryoperator)
exclusive or

¥ multiplication
/ division(DIV}
Y MOD

I logical OR

& logical AND
= equal (usedonly by IF)
£ notequal (usedonly by JIF)

There is no operator precedence in expressions. For example, in the
expression 2 + 9 ¥ 4, the addition is performed first. To makKe the
multiplication be performed first,the expressioncan be rewritten with
brackets to show precedence: 2 + <% # 4, or the operands can be reordered
as:9#4+2,

6.4.6 Addressing Modes '
The following is a summary of the addressingmode syntax for the 62000.
Refer to the Motorola 63000 manual for information on the addressing
modes supported by the &2000. Table 4-1 gives a summary of the
addressingmades including theirsyntax.

Table 6-1. Summary of Addressing Modes

Mode Register Syntax Meaning ExtraWords
0 0..7 Di Data direct 0
1 0..7 Al Addressdirect 0
2 0..7 (A1) Indirect 0
3 0..7 (AD+ Fostincrement 0
4 0.7 —-{A1) Predecrement 0
3 0.7 e{Al) Indexed i
& 0..7 e{Ai,R1) Offsetindexed i
7 0 e Absoluteshortaddress |
7 i e Absolutelong address 2
7 2 g PC Relative 1
7 3 e{Ri) PC Relative indexed i
7 4 He Immediate for2

Notes:

1) The indexed and PC relative indexed mcdes are determined by the
opcode.

2) The absolute addressand FC relative addressmodes are determined by
the type of the label (absoluteorrelative). ’

Alpha draft 6-8 7 January 1783

Workshap Reference Manual for the Lisa The Assembler

3) The sbsolute shortand long addressmodes are determined by the size of
the operand. Long mode isusedonly forlong constants.

4) The number of extra words for immediate mode is determined by the
opcode size modifier WWor.L). |

6.4.7 Miscellaneous Syntax
Comments
A cemicolon begims a comment in an assembly language program. All
tharacters on a line after a semicolon are ignorad. Thisisan example of
comments:

H This is a comment on & line by itzeld
CLR.L DO ' icomment after a s

Current Program Location
The current program location is indicated in assembly language by the
symbol "#", Examples ofitsuse are:

JHP = ;3 Loop infinitly

JMP #-4 y Jump back 4 brtes
Move Multiple (MOVEM)
To specify which registersare affected by Move Multiple (MOVEM),specity
ranges of registerswith "-",and specify separate registerswith “/". For

example, to push registersD0 through DZ, D4, and A0 through A4 onto the
topof the stack:

MOVEM.L DO-D2/D4/A0-A4,-(A87)

5.3 Assembler Directives.
The Assemblerdirectives{pseudo-opsiara:

tatement

FROC {identifier>[;Exprl beginprocedure withExprargs
JFUNC “identifiers>[,Exprl beginfunctionwith Exprargs

DEF “identifier-listx makKe identifiersexternallyavailable
.REF <identifier-list: declare externalidentifiers

SEG ‘““name’’ put following code insegment ‘name’
.END) end otentire assembly

ASBCII ‘character—string’’ place ASCII stringincode

BYTE “value—-listr allocate a byteincode foreach value
BLOCK <length:[,valuel allocate lengthbytesaofvalue

JWORD <value-lists allocate a2 word foreach valus

.LONG “value-list> allocate a long word foreach value
ALIGN <Bxprr allignrextcode on multiple of Expr
.ORG <value’ : place nextbyte at<value’

.RORG <valuer same as.0ORG

HEQU <value’ setlabelequal to<value>

Alpha draft 5-9 7 January 1983

Workshop Reference Manual for the Lisa

MACRO <identifier:
ENDM

The Assembler

begin macro defirmition
end macro definition

JF Lexprs beginconditional assembly
ELSE optionalalternateto.Fblock
LENDC end conditional assembly
LIST turnonassembly listing
JNOLIST turnoffassembly listirng
LPAGE issuea page feed inlisting
.TITLE = “<titles’ titlecf each pxge inlisting
MACROLIST turnon macro expansionlisting
NOMACROLIST turnoff expansionlisting
LPATCHLIST turnon patchlist
JNOPATCHLIST turnoff patchlist

JNCLUDE < filemame>

6.5.2 Space Allocation Directives.
The space allocation directives are .ASCII, .BYTE, .WORD, .LONG, and
.BLOCK. ‘

WASCII ‘string’

converts ‘string’into the equivalent ASCII byte constantsand places the
bytesin the code stream. The stringdelimiters must be matching singleor
double quates. To inserta single quote intothe code use double gquotes as
delimiters. Similarly fordouble guotes:

ASCIT "AB‘CD
ASCIT “AB"CDY
BYTE <values>

allocates a byte of space in the code stream for each of the values given.
Each value mustbe between-123 and 253.

BLOCK <lengthx[{,valuel
allocates <length’ bytes, each filled with the value given. If no value is
given,ablocK of zerosisallocated.

WORD <{values>
allocates a word of space in the code stream for each of the values listed.
The valuesmust be between-32765% and 65539,

insert¢ filename’* intoassembly

; string containing & single quote
y string containing a double quote

#lpha draft 6-10 7 January 1782

Workshop Reference Manual for the Lisa The Assembler

Forexample,
TEMP .LWORD 0,85535,-2,17
createsthe assembled output:

0000
FFFF
FFFE
0011

LONG <values>
allocates twowordesof space foreach value inthe list. Forexample,

STUFF .LONG 0,485535,-2,17
creates the output: .

goonooooo
COO0GFFFF
FFFFFFFE
oogooott

<label> .EGQU <value’
assigns<value: to <label., <value* can be an expressioncontaining other
labels.

LORG {valuer
puts the next byte of code at <value’ relative to the beginning of the

assembly file. Bytes of zero are inserted from the current location to
<valuel,

.RORG

is similar to .ORG. Itindicates that the code isrelocatable. Because the
loader does not support absolute loading, .ORG and .RORG accomplish the
zame function. All addressingmust be PC relative.

RORG (without the leading period)is the same as .RORG. Similarly, END =
END,EQU=.EQU,PAGE = .PAGE, LIST=.LIST,NOL=.NOLIST.

5.53.3 Macro Directives.

A macro consistsof a macro name, optional arguments, and & macro body.
When the assembler encounters the macro name, it substitutesthe macro
hody for the macro nmame in the assembly text. Wherever %noccurs in the
macra body (where n is a single decimal digiti, the text of the n—th
parameter is substituted. Ifparameters areomitted, a null stringisusedin
the macro expansion. A macro can invoke other macros up to five levels
deep. Im the assembly listing, the listing of the expanded macro code is
controlled by the options MACROLIST and .NOMACROLIST. Theseoptions
aredescribed in Section é.3.3.

Alpha draft 6-14 7 danuary 1983

Workshop Ref‘ere‘h’cé Manual for the Liéa ’ The Assembler

MACRO {identifiery

ENDM

defines the macro named +<identifierr. The following is an example
of a macro:

JMACRO Help.

MOVE. #1,D0

&D0 Doz

. ENDM

1f'Help’is called inanassembly with the parameters’Alpha’and ‘Eeta’ythe :
listingcreated would be:

Help Alpha,Bets
MOVE Alpha,DO
ADD DO,Beta

6.5.4 Conditional Assembly Directives.
The conditional assembly directives .IF, .ELSE,and .ENDC are used to
include or exclude sections of code atassembly time based on the value of
some expression.

JF <eupression>

identifiesthe beginning of a conditional block. <expressionrisconsidered
to be false if it evaluates to zero. Any non-zero value is considered true.
The expressicncan also involve a testfor equality (using < or =), Strings
and arithmetic expressionscan be compared. If<{expressioniis false,the
Assembler ignorescode untila .ELSE or .ENDC isfound. The code between
the optional .ELSE and .ENDC is assembled if <expression? is false.
Otherwiseitisignored.Conditionals can be nested. The macros HEAD and
TAIL givenin section 4.6.1 provide examples of the use of conditionals. The
gemeral form is:

IF {expr?

) jassembled i+ {expr? is true
[.ELSE] joptional

. jassembled if {expr? is false
.ENDC

6.9.5 External Reference Directives.
Separate routires can share data structures and subroutiresby lirkage
between assembly routinesusing .DEF and .REF. These directives cause
the Assembler to generate link information that allows separately
assemblad assembly routines to be linked together. .DEF and .REF
associate labels between assembly routines,; not between assembly
routinesand Pascal.The only way tocommunicate databetweenPascal and

Alpha dratt 6-12 B 7 January 1983

" Workshop Reference Manual for the Lisa

assembly routiresis by using the stack. Thisis done by passing them as
parameters in the procedure or function call. Information on parameter
pasesingbetween Pascal and assembly language is found in secticn 8.4,

LDEF <{identifier-list>

identifies labels defined in the current routire as available to other
asseambly routines through matching .REFs. The .PROC and .FUNC
directives also generate code similar tothatgererated by a JDEF with the
same name, o assembly routines can call external .PROCs and .FUNCs
with.REFs,

.PROC Simple,!
.DEF #lpha, Beta

BHE . Beta

Alpha MOVE
TS
Beta MOVE
RTS
END
This example defines two labels, Alpha and Eeta,which ancther assembly
routinecan access with .REF.

{REF <identifier-list>

identifies the labels in <identifier-listrused in the current routire as
available from some other assembly routines which defined these
iderntifiersusingthe .DEF directive.

.PROC Simple
.REF Alpha

JSR Alpha

LEND _
usesthe label 'Alpha’ declarjed inthe .DEF example.

When a .REF is encountered, the assembler generates a short absolute
addressingmode for the instruction (the opcode followedby a word of 0's)
and a shortexternal reference with an addresspointer to the word of 0's
tollowing the opcode. If the referenced label and the reference are in the
same segment module, the Linker changes the addressingmode from short
absolute to single-word PC relative. If,however, the referenced procedurs
isin & differentsegment, the Linker converts the reference to an indexed
addressingmode {(off AS) and the word of zerosisconverted into the proper

Alpha draft 6—-13 7 January 1983

The Assembler

Workshop Reference Maruzl for the Lisa The Assembler

entry offsetin the jump table. Ifthereferenced procedure isinanintrinsic
urit tand therefore in a differentsegment), the IUJSR, IULEA, [UJMF, and
IUPEA instructionsare used (seepage ##). The LinKer blindly assumes that
the word immediately before the word of zeros is an opcode in which the
low orderé bitsare the effective address. Thus,a .REF label cannot be used
with any arbitraryinstruction. The .REF labels are intended for JER, JHMP,
PEA,and LEA instructions.

SEG

defaultsegment name is" " (2 blanks). .SEG "seamentname” putsthe
code insegment called "segment name”. ‘

6.5.6 Listing Control Directives.
The directives that control the Assembler’s listing file output are .LIST,
.NOLIST,.PAGE, .TITLE,.MACROLIST, .NOMACROLIST, .PATCHLIST, and
NOPATCHLIST. Ifvou do notspecify a name for the listingfileinresponse
tothe Assembler’sprompt:

‘Listingfile (<cr for nore) -
the listingdirectivesare ignored.

The defaultforthe assembleris for.LIST,.MACROLIST, and .FATCHLIST tc
be ineffect when the assembler starts..TITLEdefaultstoblank.

.LISTand .NOLIST

can be used toselect portions of the source tobe listed. The listinggoesto
the specified output file when .LISTis encountered. .NOLISTturnsoff the
listing. .LIST and .NOLIST cam occur any number of times during an
assembly.

PAGE
insertsa page feedinto the listingfile.

.TITLE Ctitle>’ ‘
specifies a title for the listing page. <title: can contain up to 20
characters,and can be enclosed in eithersingle or double quotes.

.TITLE “Interpreter”
places the word, Interpreter,atthe head of each page of the listing.

.PATCHLIST
patches the forward referenced labels in the listing. It must be om ifyou
want prettylisting.

WNOPATCHLIST
turnsoff patching of forwardreferences.

MACROLIST
turmson listingof the expanded code from a macro.

Aipha draft 6-14 January 1983

Workstiop Reference Manual for the Lisa The Assembler

NOMACROLIST
turnes off listingof macro expansion. See Figure 6-3 for examples of the
macro listingoptions.

0024 B tail 4,'12345878° — -
~0024] 4ESE UNLK A8
0026} JIF 4 =0
.ELSE
.IF 4 =4
MOVE.L ~ (SP)+, (SP)
RTS
.ELSE
. ENDC
. ENDC
.ASCII '12345678"

0026)

0026§)

0026| 2ESF

0028f 4E7S

0024}

0024

0024}

002A; 31 32 33 34 35 36 37
0031 38

0032] 4E71 nop

0034

0034 .nomacrolist

00344 head

0038

0038y

0038 . include ex/asm/str

BRBBRERREER

Figure 6-3. Macro Listing Options

8.3.7 File Directives.
The pseudo-op

JINCLUDE <filename’

causes the contents of <filename* to be assembled at the point of the
NCLUDE. «<filename’ neesd not specify the .TEXT suffix.An included file
cannot itselfcontain a JMNCLUDE statement.

(=3
o

Communication with Pascal.

Pascal programs can call zssembly language procedures. The Pascal
program declares the assembly language procedure or function to be
EXTERNAL. Ifthe assembly routine doesnotreturna value,use .FROC. If
.FUNC is used, space for the returned value is inserted on the stack just
before the function parameters, if any. The amount of space inserted
depends on the type of the function. A LongIntor Real functionresulttakes
two words, a Booleanresulttakes one word with the resultin the high order
byte, and other types take one word. In the following exampla, we link a
bit-twiddlingassembly language routineintoa Pascal program. The Pascal
hostfileis:

PROGR&M BITTEST;

MR 1,J: INTEGER;

FUNCTION Iandf i, j : INTEGER » : INTEGER;

EXTERMAL ; (% egxternal = Assembly language #)
BEGIM

i 1= 253;

J =33

WRITELN (1 ,d," &MND= ",Tand {I, J¥)4
EMD.

Alpha draft ‘ §-13 7 January 1583

Workshiop Reference Manual for the Lisa The Assembler

The dssembler file is:

LFUMC IAMD 2 y two arguments
MOVE.L (A7)+,AD ; return address
MOVE.W (A7)+,D0 HER
MOVE.W (A7)+,D1 HE!
AND LW b1,D0 i 1 AMD J

MOVEJW DO, (A7) y put function result on stack
JHMF 1Ty '

.END

In the exampls given above we have made little attempt toc make the
assembly language procedure mimic the structureota procedure generated
by the Pascal Compiler. A complete descripticnof thisstructurerequires
some preliminary discourse.

6.5.{ The Run Time Stack

Automatic stack expansion code makes procedure entries x little
complicated. To ensurethatthe stack segment islarge enough before the
procedure is entered, the compiler emits code to ‘touch’ the lowest point
that will be needed by the procedure. If we ‘touch’ an illegal location
(cutside the current stack bounds), the MMU hardware signalsa buserror
that causes the 65000 to generate a hardware exception and passcontrolfo
arn exception handler. Thiscode, providedby the cperatingsystem, mustbe
able torestorethe stateof the world at the time of the exception, and then
allocate emough extra memory tothe stack thattheoriginalinstructioncan
be re-executed without problem. Tobe able toback up, the instructionthat
caused the exception must not change theregisters,soa TST.Winstruction
withindirect addressingisused.

Inthe normal case, the procedure’sLINK instructionshouldbe preceded by
a TST.W e(A?) which attempts to reach the stacK location that canm
accomocdate the staticand dynamic stacK requirementsof the procedure. I
the static and dynamic stack requirements of your assembly language
procedure are lessthan236 bytees,youcan assume thatthe compiler’s fudge
factor will protect the assembly language procedure, so the TST.W can be
omitted. Ifthe requirementsare greaterthan 32K bytes,e(A?) may notbe
sufficient because only 16 bits of addressabilityare available (the 63000
does call a 16-bit processor). Inm thiscase, the compiler currently emits
code something like:

MOVE.L A7,Ad
SUB.L #S5ize,AD ifsize=dynamic + static needed
TET W (A0

If the compiler opticn D+ is in effect (the default),the firsteight bytesof
the data area following the final RTS or JMP (AQ) contain the procedure
mame., LisaBuggets theprocedure name from thisblock, making debugging
much more pleasant. The following example is provided to show how an
assembly lamguage programmer can provide LizaBug with all the
information itneeds toperform fully symbolic low leveldebugging.

#lpha dratt 6-16 7 January 1983

Workshop Reference Manual for the Lisa , The Assembler

i
i ASSEMBLY LANGUAGE EXAMPLE

DEBUGF .EQU 1 j true =» allow debugging with
proc names

HEAD -- This MACRO can be used to signal the
beginning of an assembly language procedurs. HEAD
should be used when you do not want to build 2 stack
frame based on Ad, but do want debugging information.

. e N nan eE e

Mo arguments

MACRO HEAD

IF DEBUGF
LINK A&, #O ; fancy MWOP used by debugger
.ENDC
.ENDM

TAlL -- This MACRO can be used as a generalized exit
sequence. There are two cases. First, if vou build
a stack frame, TAIL can be used to undo the stack
frame, delete the parameters (if any) and return.
Second, if vou do not want to build a stack frame
based on Aé, this MACRD can be used to signal the
end of an assembly lanaquage procedure. In either
case if DEBUGF is true, the Procedure_name

is dropped by the MACRO as an S-character name.

Two arguments:
1) Number of bytes of parameters toc delete
2} Procedure_Mame as string exactly 8 characters

B mE e E e CHE e R cme WME me AN cae

[T

MACRO TAIL

UNLK Adé
JIF Al =10
RTS ;+ 0 brtes of paramsters
.ELSE
IF “1 =4
MOVE.L (a872+,{Aa7) ; 4 brtes of parameters
RTS :
.ELSE

MOVE.L (A7)+,A0 y put return addr into Al
&DD W #4147 ; remove params from stack
JMP (/0D y return to caller
LENDC
LENDC

[
!
[y
~\

Alpha draft 7 January 1962

Workshop Refererce Manual for the Lisa The Assembler

JIF DEBUGF
WASCIT X2
.ENDC
EMDM

following example demonstrates the use of the
L macro for the purpose of debugoing. The example
assumesz thEt you want to build & stack frame baszed

on A4.. In a. real assembly language procedure the
zeroes below would be replaced by the local size and
parameter size.

- —
w I
[TI I

wh e EE aem Cmn caw

.PROC SIMPLE,C

LINK 86,10 ; zero brtes of locals
MNOP y body of procedure
TAIL 0, SIMFLE ; zero bytes of parameters

END
These macros are sufficient for the programmer writing small assembly
language routinestobe called from Pascal.

Upon entry to the assembly routine,the stack is as shownin Figure -4,

Callers Stack Frame Hign 24

Callers Oynamic Link —

Function Resuit

Procedure Arguments

Static Link
Retum Adaress
8 Oynamic Link -
Local Frame
Oynamic Reguirements
A7) - . Low Memory

Figure 6-4. The Pascal Run Time Stack

The function result is present only if the Pascal declaration is for a
tunction. Itiseitherone or two words. Ifthe resultfitsin a singlebyte (a
boolean, for example), the most significanthalf (the lower addressedhalf)
getstheresultvalue,

Parameters are presentonly if parameters are passed from Fascal. They
are pushed on the stack in the order of declaration: All reference
parameters are reprecented as 32 bit addresses. Value parameters less

o

Alpha draft a-1 7 January 1783

Workshop Referemce Manual for the Lisa

than {8 bitsinsize alwaysoccupy a fullword, All non-setvalue parameters
larger than 4 bytes are passed by referemce. It is the procedure’s
responsibilitytocopy them. Alllargesetvalue parameters are pushed onto
the stacK by thecalling routine.

The static link is present only if the external procedure’s level of
declarationisnot global. ThelinKis a 4 byte pointer to the enclosing static
Scope.

It is the responsibilityof the assembly language procedure to deallocate
the returnaddress,the static lirk {ifany), and the parameters (if any). The
&P must point to the function resultor to the previous top of the stack upon
return.RegistersD4 through D7 and A3 through A7 must be preserved.tis
recommended thatyoualsopreserveD3 and AZ.

6.6.2 Register Conventions
The following are the registerconventionsusedin the Lisasystem. Itisthe
responsibilityofthe programmer topreservetheseregisters.

DO-D2/A”0-A1y Scratchregisters {(can be clobbered?

D3,A2: Scratch registers, but should be preserved
04-D¥/A3,A4: Uszed for code optimization

AT Fointer touser globals {must be preserved>
Ad: Pointer tobase of stack ¢must be preserved?
SP: Top of stack

RegistersD3 and AZ may be usedatsome time inthe futureby the compiler
for code optimization, so the assembly language programmer should
preservethem also.

6.6.3 Assembly Language Examples
The following examples show how touse certain featuresof the assembly
language.

The first example illustrates the use of .REF and .DEF. These two
directives allow an assembly language routine to reference another
assembly routire.

The Pascal hostfileis:

program WasteTime;
procedure Wait {(time : integer);

external;
begin
writeln (“Going to waste some time’J);
wait (35071
writeln (“Finished wasting time’)

end.

Alpha draft 5-19 7 January 1983

The Assembler

Workshop Reference Manual for the Lisa

The assembly language fileis:

proc wait

ref cycle H
3
i

.ref more_time ;

move, | LAyl au H

move . (a7)+,d0 ;
H

Jsr cvcle

Jsr mare_time H

Jmp {ald ;

+ the subroutine used by
; following code.

The Assembler

need to use a piece of code
whose entry point is crcie
defined outside procedures wait
another outside procedure
return address in &l

need to wait this many cycles-
& parameter for cycle '

waste more time
return
ic defined

wait in the

this proc could do other things

besides the cycle routine

;proc
.def

def_cycle

H
i code can Qo here
i

nop H
crvcle H

sub #1,d0

bne crvcle

rts

; more code can go here

;proc more_time H

clr df ;
a1 add #2,d0

bne a1

rts

.end

The following program illustrates how to pass a

cvcle H

cvcle visible to other procs

example of a line of code
beginning of the cycle routine
parameter in do

is

waste more time
use d0 as timer

Pascal string to an

assembly language program, modify the string,and returnit. Pascal strings
have theirlergthstoredas the firgtbytein the string.

.prac AsmStr

move .| (/734 ,A0
move .l (A7)r+,41
move.l AZ,-(A7)

Alpha draft

6=-20

ireturn address saved in A0
jaddress of string from FPascal
jsave scratch register

Az

7 January 1783

Workshop Reference Marual for the Lisa

done

size
mrStr

Alpha draft

lea
clr.d
move.b

move.b
subg
blo
maove .k
bra

move .l
Jmp

Jovte
fRECH

size,A2
Do
(52,00

(A21+,0A10+
#1,D0

done
(B2 +, (a4

copy

(A7) 4,42
{AD)

38

“this string

The Assembler

jget size of string

jcopy size of string
jydone copring string?
jves, return to Pascal
jone char of string

irestore scratch register
jreturn to Pascal

is from the LI5S assembler”

14

7 January 1983

Workshop User’s Guide for the Lisa The LinKer

Chapter?
THE LINKER

7.1 The Linker €8 8838 38888 23T P IS0 NS E 3382033 CsESSNSESISSeCROCtEERESS DS 7-2
The Linker is a program that combines object files to create an executable
file.

7'2 UsingtheLjnkeP 2 €6 8 803390382288 2RT 2088802208889 3508288088088 2RSsSEEESERS 7-3
The Linker is started by pressing "L" in response to the Workshop command
prompt. Inputs to the Linker are object files, command files, or options.

7!3 The Linker Op{inns [EENENNEEERNENNENEEENEEEENEEERNENEERRENNENNERENRHMNHIER-RJEH:SHEH:HS) 7—3
The Linker options comtrol how a linKk is performed. A list of the current
option settings isdisplayed when you enter a"?" to the input file prompt.

7.4 How do ILink a Main Program? ..cceececensenacccsssssncncesssnsscns =4
A main program is linked by giving the Linker the object file from a Pascal
program, along with all assembly language routines, compiled units, and
libraries that the program uses.

7.5 Regular and Intrinsic Units .isveecssscscacesscssscssssscsaessnnines 7-3
Regular and intrinsic units are both are Pascal units, separately compiled. A
regular unit is linked with a main program, and becomes part of the
executable file. An intrinsic unit is shared among all programs that use it,
both on disk and in memory.

7.6 The LinkeP usting 2828388388863 2335308308883 8T8 88880 BCERRSESESSOSEEY TSN 7-6
The Linker listing provides a summary of the linking process and resources
used. Optionally vou can request lists of all symbols used.

7.7 Resolving External Names ...ceeeesecssccasesscscsccsnescasanscnnes 1=7
External names are symbolic references to separatly compiled modules. The
Linker maps them to real addresses.

7.8 Module Imlusion 8898 8 823888 8882880858858 RE30883230833883088RRRGESsESsSsS 7-7
The Linker only includes modules that are actually referenced. '

7.9 SEQmentatim n-n..onl----t-n..-ao-n--.c-onnu.-cuo-n-n----x.n-;t-ou 7—7
Segmenting a program allows portions of it to be swapped out of memory when
they are not being used. Segmentation is controled by a combination of
compiler commands and LinKer options.

7!10 Error Messages ll!.ll‘l.ltlllllllll:'lllllliitlll.Ill.l.llll.l!'ll 7-8
There are three types of error messages: warnings, errors, and fatal errors.
They are listed in Appendix A.

Alpha draft 7-1 29 January 1983

Workshop User’s Guide for the Lisa The Linker

(3¢]

Alpha draft 7- 29 January 1983

“Workshop User’s Guide for the Lisa

THE LLINKER

7.1 The Linker.

744

Alpha draft 7-3 . 2% January 1983

The Linker combines object files. Iis input consists of commands and object
files. Its output consists of object files, link-map information, and error
messages. The output of the Pascal compiler must be linked with IOSPASLIB
before it can be executed. Other object files, including intrinsic unit
libraries, and object files produced by the Assembler, can also be linked into
the output abject file.

What the Linker does is as follows. When a program iscompiled into an abject
file, it contains the following sorts of things:

Object code, similar tc machine language, that expresses the algorithm of
the program.

Symbolic (named) addresses of all code whose location was unknown to the
compiler. These include externally compiled routines f{units and intrinsic
units) and the Pascal library support routines (PASLIE).

e Other information to be used by the Linker.

The purpose of the Linker is to commect up all the necessary things (linking
them together), and output an object file that can be executed.

The Linker does this by going through the main program, and, each time it
finds a symbolic address, it looks up that address in all the units and libraries
it was given as input, and converts the symbolic address into a real address
that will be correct when the program isloaded to be executed.

14 the Linker can’t find something that is addressed symbolically, this is an
error. An error message will be printed, indicating the missing module. This
process of finding the real addresses that correspond 1o the symbolic
addresses iscalled resolving the external references.

The Linker expects to find the file INTRINSIC.LIB even if you are not using
any intrinsic units. INTRINSIC.LIB is a directory of libraries and intrinsic
units, and includes information for the use of the Linker. INTRINSIC.LIB
defines all the intrinsic units supplied with the Workshop system.

Creating an Executable File.
To create an executable file, the Linker must have the following inputs:

® the object file from a main Pascal program.

® object files for all external procedures referenced by the main program.
These may be as Pascal units, assembly language routines, or intrinsic
units defined in INTRINSIC.LIB.

s All units used by the units the main program uses.
IOSPASLIB to provide the standard Pascal procedures and functions.

The Linker combines these files and creates an executable object file. Ifitis

The Linker

Workshop User’s Guide for the Lisa ~The LinKer

unable to link these filés correctly to create a legitimate oﬁtput file, the
Linker will display an error message. If there is am error, the object file
produced isnot executable.

When linking 2 main program, all references to extermal objects must be
resolved. Partial links are not allowed.

While it is linking the program, the Linker does a "dead code analysis" and
does not include any routines that are not referenced. Unnecessary routines
are eliminated from the main program, and from the units and libraries given
as inputs to the link. : o '

7.2 Using the Linker.

The Linker is started by pressing "L" inresponse to the Workshop command
prompt. The Linker prompts vyou for the input files, the listing file and the
output file. Options may be entered as a2 response to the input file prompt.
After all file names and options are entered, the link begins. This means that
the set of options in effect are the same throughout the link. It is not
possible to change options part way through the link. When entering an input
file name, it is not necessary to enter the .OBJ extension, the Linker will
provide that for all inputs.

The Linker will accept option commands and input file names from a command
file. A command file is a text file containing the file names and options, one
per line. If there is a blank line in the file, the Linker +treats this as the
RETURN that signals the end of the input files. You use a command file by
typing "<" followed by the name of the text file the commands are in. Create
the text file by using the Editor.

The default listing file is the -CONSOLE. You may send the listing to a text
file by entering its name in response to the listing file prompt.

After entering the ocuput file name, the link begins. If no errors occur during
the link and all external references are resolved, the output file is
executable. A message is printed at the end of the linK to tell you if the
output is executable.

7.3 The Linker Options.
Linker options can be entered at any time in response to the prompt for an
input file name. The order in which options are entered is unimportant,
because they have no effect until the linkK begins. The last value entered for
an option is the value used when the link is performed.

Options are represented by a single character. A "+ in front of the
character makKes that option take effect. A "-" sets the Linker so that option
will not happen. In addition to being set on or off, some options have
"“additional parameters. Numeric parameters can be in either decimal or
hexadecimal. Hexadecimal numbers are indicated with a leading "$". The
current setting of all options can be displayed by entering a "?" in response
to the request for an input file.

The Linker options are as follows:

Alpha draft 7-4 2% January 1983

‘Workshop User’s Guide for the Lisa

+A
+D

+H num

-H num
+]1

+L

Alphabetical listing of symbols. The default is-A.
Debug information. The default is-D.

+H sets the maximum amount of heap space the Operatihg
System can give a program before terminating it. Here, as in
the other options, ‘num’ can be either decimal or hexadecimal.

-H sets the minimum amount of heap space needed by 2 program.

Copy interface information into intrinsic library files. The
default is-I.

Location ordered listing of symbols. The default is -L. The
location is the segment name plus offset.

+M fromName toName

+M maps all occurrences of the segment ‘fromName’ to the
segment ‘toName’. This allows vyou to map several small
segments into a single larger segment. You can thereby
postpone the segmentation decision until link time by using
many segment names in the source code.

NOTE

Because options have an effect only when the linK begins, it is not
possible to map a segment name to several different names using this

option.

+P

+5 num

+T num

+W

?

Production linK, The default is -P. +P produces a ‘production’
.0BJ file. A production object file does not contain
information used by the debugger and the LinKer, and intrinsic
unit files do not contain a jump table. The production object
file can be executed, but cannot be handled by the Linker or the
debugger.

+8 gets the starting dynamic stacksize to ‘num’. The default is
19009,

+T sets the maximum allowed location of the top of the stack to
‘num’. The default is 128K.

+ W tells the Linker to get intrinsic unit information from a file
other than INTRINSIC.LIB.

Prints the options available and their current values.

7.4 How do I Link a Main Program? :
A main program consists of a Pascal program linked with 2all routines
necessary for it to run. A main program is the only type of executable object
file produced by the Linker. To link a main program you must have the

following:

D A compiled pascal PROGRAM object file.

Alpha draft

7-3 29 January 1983

The Linker

Workehop User’s Guide for the Lisa : : The LinKer

e Object files for all the units the program uses. This includes files for
regular units and assembly language routines. Any intrinsic units used
must be defined in INTRINSIC.LIB.

s I0OSPASLIB,
When you have all the above files, proceed as follows:

i. Execute the LinKer by pressing "L" when the Workshop command prompt
is displayed. The Linker will display 2 header and askK you for an input
file.

2. Enter any desired options. See section 7.3 in this chapter for more
information. Press RETURN after each option entered.

3. Enter the file names for all the object files, pressing RETURN after
each one. The file names can be entered in any order. Do not enter the
0OBJ extension, the Lirker automatically appends it.

4. Press RETURN to indicate the end of the input files.

3. The Linker prompts you for a listing file. Enter the file name desired,
or press RETURN to accept the default of displaying the listing on the
-CONSOLE.

6. The Linker prompts you for the output file. Enter the name of the
executable file you want produced. Do not enter the .OBJ extension,
that will be supplied automatically.

The linking process begins when you press RETURN after entering the output
file name. If the link is successful, the message "Cutput is executable" will
be displayed. If the linK isnot successful, error messages will be displayed.

7.5 Regular and Intrinsic Units.
The two types of units are regular units and intrinsic units. Both of them are
separatly compiled code modules that may be used by a main program or
another unit,

The syntax of a Pascal unit is explained in the Pascal Reference Manual for
the Lisa.

A regular unit is combined with a main program by the Linker and included in
the resulting object file. An intrinsic unit, on the other hand, is stored
separately on the disk, and loaded at run time. Thus only one copy of an
intrinsic unit is kept on the disk, no mater how many main programs use
routines in it. Inaddition to being shared on the disk, an intrinsic unit iszlso
shared in memory.

NOTE
In the current implementation, there is no provision for creating

intrinsic units. Only intrinsic units supplied by Apple can be used.

7.5.4 How do I use a Regular Unit?

Alpha draft 7-6 29 January 1983

Workshop User’s Guide for the Lisa The Linker

A reqular unit is a separately compiled segment of code. It is written in
Pascal, compiled, and code generated. GSee the Pascal Reference Manual for
the Lisa for information on how to write a unit. See Chapter 35 in this manual
for information on compiling the unit.

After you have created a unit, the routines in it may be accessed from any
other program or regular unit you write. The LinKer isused to combine a main
program with all units it uses. The result is an executable object file
containing all the needed routines.

To use regular units with a main program, follow the procedure insection 7.4.
As input, you must give the Linker:

® The object file of the main program.

e The object files of all units used by the main program.
s The object files of all units used by other units.

® I0OSPASLIB.

The Linker will combine all these object files into an executable object file.
It will also do a "dead code analysis" to eliminate any routines that are not
used, thus preventing the object file from becoming any larger than is
necessary.

When regular units are used by more than one main program, a separate copy
of each routine used is stored ineach executable object file. This "waste" of
disk space and memory can be prevented by using intrinsic units instead.

7.6 The Linker Listing.
A listing is produced each time 2 program islinked. This listing can be sent to
a file, or displaved on the console (the default). The +A option will give you
an alphabetical list of the symbols (procedure names) used in the link, The +L
option gives vou a list of the names in order of their location. The listing is
produced instages, as follows:

i. The input files are read, and a summary of the resources used is printed.

2. The linking process begins. Information about the size of each segment
is printed.

3. Errors are reported, and you are told if the output isexecutable or not.

If you requested optional listings, they will also be printed. An example of a
Linker listing with no options reguested isshown in Figure 7-1.

linkerlisting

Alpha draft 7-7 29 January 1983

Workshop User’s Guide for the Lisa The Linker

Figure 7-1. A Linker Listing.

7.7 Resolving External Names.
An external name is a symbolic entry point into an object module. All such
names are visible ‘at all times--there is no notion of the nesting level of an
external name. Exterral names can be either global or local. A local name
begins with a § followed by { to 7 digits. No other characters are allowed. A
global name is any name which isnot a local name.

The scope of a global name is the entire program being linked. Unsatisfied
references to global mames are allowed. Only one definition of a given global
name may occur in a given link. (The one exception to this is that the Linker
will accept duplicate names where one instance is in a main program or
regular unit, and the other is in an intrinsic library file. In this case, a
warning isissued, and the entry in the main program or regular unit is used.)

The scope of the local mame is limited to the file in which it resides. When a
lirkK is done, global names are passed through to the output file unmodified,
but local names are remamed so that no conflicts occur between local names
defined in different files. All references to a given local name must occur
within the same input file.

7.8 Module Inclusion.
There are two different cases of what modules the Linker includes in the
output file. When linking an intrinsic unit, all code modules in the unit are
included. When linking a main program with regular units, the Linker does a
dead code analysis and does not include any modules that are not used.

7.9 Segmentation.
Segmenting a program makes it possible for portions of the program that are
not being used to be swapped out to disk, thus making better use of memory.
The way a program is segmented will have important effects on its
performance.

Segmentation iscontrolled by two things:

e The $S Compiler command, that assigns segment names to source code
modules.

& The +M LirKer option, that allows vou to remap compiler segment names
into new segment names.

The usual strateqy for segmenting & program is to use the $S compiler
command to divide the code into many small segments, then toc map these
segments into a few larger physical segments with the +M Linker option.
This will allow you to change the segmentation of the program by just
relinking it. The segmentation can then easily be adjusted to produce the

Alpha draft 7-8 29 January 1983

Workshop User’s Guide for the Lisa The Linker

best swapping characteristics.

Assembly language routines are by default placed in the blank segment. You
can use the .SEG directive to specify another segment, or change the
segment with the ChangeSeg utility. GSee the Chapters é and 19 for more
information.

7.1¢ Error Messages.
The Lirker produces three different types of error messages, depending on
the severity of the error it encountered.

The first, and least severe type of message, is called a warning. A warning
message is given when the Linker detects a condition that is potentially
dangerous, but not definitly an error. A warning message always begins with:

#£# Warning

If the warning message occurs while entering a command or file name, vou
may simply reenter the command correctly, and the Linker will proceed as
though nothing had happened.

The second type of message is called an error. An error means that the
Linker has discovered a condition that makes it impossible to complete the
linKk successfully. The linK process is continued, so that any further errors
can be discovered. An error message begins:

#%#% Error

A fatal error is a condition that makes it impossible for the Linker to
continue the link. The linK is terminated immediatly, and a message is
displayed beginning:

*#+ Fatal Error

A complete list of all Linker messages isgiven in Appendix A.

Alpha draft 7-9 29 January 1983

Workshop User’s Guide for the Lisa ‘ The Debugger

Chapters
THE DEBUGGER

8.1 The DebUQQGEr .«e.cccececcecarsnoncncsssnsananssassssssncassosasccnnsas 32
The Debugger allows you to examine and modify memory, set breakpoints,
assemble and disassemble instructions, and other functions for run-time
debugaing.

§.2 Using the Debugger ..ccecesescsnsesasesescascassasacsnssssanncsases 3=2
Enter the debugger by pressing D in response to the command prompt, or by
pressing the NMI key. The debugger prompt (*) indicates that it isready to
accept commands.

8.3 The Debugger COMMANOS .veesecasasasrssassossssssascaserssnscssnse 8-3
Commands are available for assembly and disassembly of instructions,

displaying memory and registers, setting breakpoints and traces, memory

management, and base conversions.

304 Summal“/ OfDEbUQQET‘ COmmandS Ssrgeassessssse1sssassBaRIREIENS 8-10

Alpha draft g-1 27 January 1983

Workshop User’s Guide for the Lisa ' The Debugger

Alpha draft 8-2 27 January 1983

Workshop User’s Guide for the Lisa The Debugger

THE DEBUGGER

8.1 The Debugger. .
The Debugger allows you to examine and modify memory, set breaKpoints,
. assemble and disassemble instructions, and perform other functions for
run-time debugging.

Procedure names are available to the debugger for program units compiled
with the D option on. The debugger uses the symbolic names wherever
appropriate.

The debugger’s symbol table combines the user symbol table and the
distributed procedure names. The user symbol table contains symbols the
user defines while using the debugger and the predefined symbols for
registers. Each entry contains twelve bytes. The first eight bytes are the
symbol name, and the last four bytes are the symbol’s value. Section 4.4 in
this manual contains more information about the run-time environment of
programs.

8.2 Using the Debugger.
Type D to the command prompt to invoke the debugger. It asks:

Debug what OS5 file?

Enter the name of the object file you want 1o debug. It will be Run with a
breakpoint at the first instruction that will drop vou intoc the debugger
immediately. The debugger command prompt is ‘»’. The default radix 1is
hexadecimal.

Another way of getting into the debugger is by pressing the NMI (non
masKable interrupt) Kkey which is the "-" Key in the top row of the numeric
Kevpad.

When you get the command prompt, the debugger isready to accept commands
that allow you to:

® Display and set memory locations
8 Set and display registers
e Assemble and disassemble instructions
Set breakpoints, patchpoints, and traces
& Manipulate the memory management hardware
® Set up timing buckets for execution timing
s Perform utility functions including:
symbol and base conversion
s move the debugger window

8.2.1 Examples of Using the Debugger.
This section gives examples of how to use the debugger. An explanation of all

Alpha draft g-3 27 January 1983

Workehiop User’s Guide for the Lisa The Debugger

debugger commands is given below in Section 8.3. A summary of all debugger
commands isgiven in Section &.4.

If you type a file name to the prompt from the Debug command, the debugger
starte up with the program counter &t the start of the program. To see one
instruction disassembled (say at 32F968), type

>1D 32F 98

ID stands for Immediate Disassemble. Each subsequent ID command, if given
without any address, disassembles the next instruction found. In addition to
printing the value of each byte, the debugger prints the ASCII equivalent of
that value, if a printable one exists. If none exists, it prints a period..

To disassemble 20 consecutive addresses, type
>IL

IL {Immediate Disassemble Lines) can also be followed by an address.
Subsegquent IL commands disassemble successive blocks of 22 consecutive
locations in memory.

1f the object file being examined was compiled with the D+ compiler option,
the procedure names are available in the debugger and can be used in any
xpressions. For example,

*IL Foo 3
disassembles the first 5 lines of procedure ‘Foo’,
>BR Foo+49
sets a break point 4@ bytes into procedure ‘Foo’.
You can also use labels in immediate assemblies:
sy Ken 6090
*A Ken NOP
assembles a NOP instruction at the address ‘Ken’, which in this case is 6090.
>A 6009
»Rich: JMP %109
> <RETURN>

enters the immediate assembler at 69000, defines the label ‘Rich’y and
assembles a JMP instruction.

8.3 The Debugger Commands.
This section gives the definition of each debugger command. The commands
are grouped together according to function.

8.3.4 Definitions.

Constant A constant inthe default base.
$Constant A hex constant.
&Constant - A decimal constant.

Alpha draft 3-4 27 January 1983

Workshop User’s Guide for the Lisa . The Debugger

‘ASCII String’ An ASCII string.

Name A symbol in the symbol table.

Expr An expression. Expressions can contain names, regnames,
stringsy and constants. Legal operators are + - # /,
Expressions are evaluated left to right. # and / take
precedence over + and -. (and) can be used to indicate
indirection. < and > can be used to nest expressions. In
those cases where an odd value is probably a mistake, the
debugger warns vyou that you are trying to use an odd
address. If you decide to go ahead, it subtracts one from
the address given. If the compiler option D+ is used,
procedure names are legal in expressions.

Exprlist A list of expressions separated by blanks.

Register The name for any of the £&509@ registers, as follows:
D@..D7 are the. data registers, A8..A7 are the address
registers, the program counter PC, the status registers
SR, US, or 8S. Note that A7 isGP (the stack pointer).

RegName RD9..RD7, RA8..RA7, PC, US, or 5S. A predefined symbal
in the symbol table with a value set by the debugger. The
value isequal to the value of the register in question. The
debugger automatically wupdates the values of these
symbols. The ‘R’ is appended to distinguish the register
names from hexadecimal numbers.

8.3.2 Display and set memory locations.
The following commands are used to display and set memory locations.

SM expri exprlist

Set memory with exprlist starting at expri. SM assumes that each element of
exprlist is 32 bits long. To load different length gquantities, use SB or SW
described below. If the expression given islonger than 32 bits, SM takes just
the upper 32, For example, if we ask the debugger to:

SM {909 '‘ABCDE’
it deposits the ASCII equivalent of ‘ABCD’ starting at 1000.

SB expri exprlist
Set memory inbytes with exprlist starting at expri

S5W expri exprlist
Set memory in words with exprlist starting at expri

SL expri exprlist
Set memory inlong words with exprlist starting at expri. For example,

SL 109 {
is equivalent to
SM 100 dede 0901

DM expr .
Display memory. Display {6 bytes of memory starting at expr. DM RA3+19,
for example, displays the contents of memory from 1@ bytes bevond the

Alpha draft a-5 27 January 1983

Workshop User’s Guide for the Lisa ' The Debugger

address pointed to by A3. DM (116) displays the contents of the memory
iocation addressed by the contents of location 118,

DM expri expr2
Display memory. If expri < expr2, then display memory from expri to exprZ.
Otherwise, display memory for expr2 bytes starting at expri.

DB expr
Display memory as bytes.

DW expr
Display memory as words.

DL expr
Display memory as long words.

FB starting_addr count data
Find Byte. Find the byte or bytes ‘data’ in memory between ‘starting_addr’
and ’‘starting_Addr/+‘count’.

FM starting_addr count data
Find Memaory.

FW starting_addr count data
Find Word.

FL starting_addr count data
Find Long word.

§.3.3 Set and display registers.
TD
Display the Trace Display at the current PC. An example of the trace display
is shown in Figure &-1. It shows the instruction executing at the time the
program was interrupted, the current value of all the registers, and the
current domain and process.

tracedisplay
~ # P S |

Figure 8-{. The Trace Display.

register

Display the current value of the register. D9, for example, is a command to
the debugger to display the current value in the register D@. RD9, on the
other hand, iz a name automatically placed in the symbol table to give you a
handle on the contents of D@ in an expression. Thus, to display the current

Alpha draft

o
|
o~

27 January 1983

Workshop User’s Guide for the Lisa - The Debugger

value in the DO data register, type the command D@. To display the
instruction pointed to by the A@ address register, type the command ID RA®
(Immediate dissassemble at the address RA®, which is predefined to be the
contents of the A@ register)

register expr
Set the register to expr. For example, to setregister D3 to zero, type D3 4.

8.3.4 Assemble and disassemble instructions.
These commands are used to display code inassembly language format, and to
enter code in the form of assembly language statements.

A expr statement

Assemble one or more assembly language statements (instructions) starting
at expr. You can continue assembling instructions into consecutive
locations, pressing RETURN - after each statement. Type just RETURN to
exit the immediate assembler. Note that the immediate assembler cannot
assemble any intrinsic unit instructions, but they will be correctly
disassembled. Code segments may be write-protected, which will prevent
vou from assembling instructions into them. This can be overridden with the
WP @ command to disable write protection.

A expr

1f you use the form A expr, the debugger prompts vou for the statement to be
assembled.

1D

Disassemble one line at the next address

1D expr
Disassemble one line at expr

IL
Disassemble 29 lines at the next address

IL expr
Disassemble 29 lines starting at expr

IL expri expr2
Disassemble expr2 lines starting at expri

IX statement
Immediate execution of a single instruction. The users PC is not changed by
this operation. :

8.3.5 Set breakpoints and traces.
- These commands are used to trace program execution.

BR

Display the breakpoints currently set. You can set up to {6 breakpoints with
the debugger. Break points are displayed both as addresses and as symbols.
An asterisk marks the point of the breakpoint in the disassembly.

BR exprlist -
Set each breakpoint in exprlist. Symbols are legal, of course, so we can:

Alpha draft 23-7 27 January 1983

Workshop User’s Guide for the Lisa The Debugger

BR Ralph+4
if Ralph is a known symbol.
Expressions can be of the form:
pp:aaaaa

where pp is the process number, and aaaza is the address in that process
where vou want the breakpoint set. If the process number is @, the breakpoint

is set in system code in domain 9. If no process isgiven, the current process is
assumed. The current process is shown in the TD display described above.

Breakpoints® cannot be set on intrinsic unit instructions.

CcL
Clear all breakpoints

CL exprlist
Clear each breakpoint inexprlist

G
Start running at the current PC

G expr
Starting runmning at expr

T
Trace one instruction at the current PC

T expr
Trace one instruction at expr

SC expr
Stack Crawl. Display the user call chain. Expr sets the depth of the display.
It can be omitted.

RB
Reboot. This command should not be used while you are in the Workshop. The
Lisa isreset.

procedure name

This calls a user procedure or function. It is the users responsibility to save
and restore registers and push any necessary parameters. If you want
execution to stop upon return, vou must set a breakpoint on the current PC,
For example:

BR PC ; set break point on PC.
IX MOVEM.L De@-A6,~(A7) ; save registers,

; push params if needed.
FOO ; call procedure FQO,
IX MOVEM.L (A7)+,Do-Aé ; restore registers.
CL PC ; remove break point.

A function can be called in a similar manner. Remember to allocate space for
the function result before pushing any parameters. Use either CLR.W -(A7)
ro CLR.L -(AD.

Alpha draft

]
[}
'

27 January 1782

Workshop User’s Guide for the Lisa | The Debugger

A procedure that may need to be called is OSQUIT. Itexits from the 0S. We
reccomended that vou avoid this whenever possible.

8.3.6 Manipulate the Memory Management Hardware.
These commands change the memory management hardware of the Lisa. More
informaticn on the memory managment hardware can be found in the Lisa
hardware manual. CHECK NAME.

LP expr
Convert logical address to physical address.

DO expr

Set the SEG1/SEGZ bits. These bits determine the hardware domain number.
If the Status Register shows that vou are in supervisor state, then the
effective domain is zero, and the domain number returned by the debugger is
the domain that would be active if the SR were changed to user state.

WP dori :
Diable (@) or Enable (1) Write Protection. The default is{.

MM start [end_or_count]

MM with one or two arguments displays information about the MMU
registers. The second argument defaults to 1. If the starting address is
greater than the second argument, the second argument is & count of the
number of MMU registers to be displayed. If the starting address isless than
the second argument, the second argument is the last register displayed.

MM 70
displays
Segment{76] Originf0@9] Limit[0@] ControllC1]

These values are the Segment Origin, Limit, and Control bits stored by the
hardware for each MMU register. As can be seen from a careful perusal of
the hardware documentation, a Control value of C means the segment in
question is unused (invalid). If the Control value isvalid {7, for example), the
debugger also displays the Physical Start and Stop addresses of the segment.

MM &i00 &

displays the MMU register information for the & registers starting at
register 64 (decimal 199).

MM num org lim cntrl Cend_pr_count]
The MM command followed by four arguments sets the MMU information for
segment ‘num’‘. The Origin, Limit, and control bits can be changed.

MM 70 100 ff7

sets the Origin of segment 79 to 199 and the comtrol bits to 7 (a regular
segment). The segment limit of -1 makes the segment 512 bytes long.

8.3.7 Timing Functions. .
The debugger allows vou to create up to 19 timing bucKets for measuring
execution times. Using the microsecond timer in Drivers, time is

Alpha draft 2-9 27 January 1983

Workshop User’s Guide for the Lisa The Debugger

accumulated in each bucket and saved along with a count of the number of
times the bucket was entered.

Typically, this would be done as follows:

1. Enter the debugger for a given process and create one or more timing
buckets with the TB command.

2. Set abreak point to stop execution at some point.

3. Ga.
4, When the breaKpoint is reached, print the timing summary with the PT
command.

5. Use the End Timing (ET) command to remove all timing buckets.
The timing commands are as follows:

BT expr

Begin timing. Expr specifies the process number. If the BT command isnot
given, the current process is assumed. A process number of 9 can be used to
indicate domain 9.

TB addri addr2
A timing bucket iscreated from addri to addr2.

PT
Print timing summary. There are five columns printed:

i. Bucket number

2. Total time in this bucket.

3. Number of times this bucket was entered.
4, Starting address for this bucket.

5. Ending address for this bucket.

ET
End timing. This command prints the timing summary and removes all the
timing buckets.

KB expr
Kill Bucket. This can be used to remove a single bucket. Euxpr is the number
of the bucket to remove.

RT
Reset timers. This resets the timing and count tables while leaving the
bucket definitions intact.

Note that all addresses are in the same process. The process number is
defined by either the BT command or the first TB, PT; KB, or RT command. If
the process number is mot given in the BT command the current process is
assumed.

8.3.8 Utility functions.
including:

o symbol and base conversion

Alpha draft a-19 27 January 1983

~

Workshop User’s Guide for the Lisa The Debugger

o moving the debugger window
o Setting the NMI key

8.3.8.4 Symbols and Base Conversion
sY
Display the values of all symbols

SY name
Display the value of the symbol name

SY name expr
Assign expr to the symbol name

CV exprlist
Display the value of each expression in hex and decimal.

SH
Set the default radix to hex

SD
Set the default radix to decimal

8.3.8.2 Moving the Debugger Window:
P expr
Set port number to expr. Valid port numbers are:

9 Lisa kevyboard- and screen (defauld)
i UART Port A (farthest from Power Suppiy)
2. UART Port B

1f you move the port to a UART, you must have a modem eliminator connected
to that port.

RS
Display the patch Return address Stack

8.3.8.3 Setting the NMI key: .
NM
Displays the key code for the NMI Kev.

NM expr .
Sets the NMI Key to be Key code expr. A value of zero disables the NMI key.

For example:
*NM 24

Sets the NMI Key to be hex 21, which is the "-" key in the top row of the
numeric Kevpad.

8.4 Summary of the Debugger Commands.

procedure name Call the procedure.
register Display the current value of the register.
register expr Set the register to expr

A expr statement

Alpha draft a-1t 27 January 1983

Workshop User‘s Guide for the Lisa

A expr

BR

BR exprlist
BT expr

CL

CL exprlist
CV exprlist

DB expr

DL expr

DM expri expr2

DO expr

DR

DW expr

ET

FB starting_addr count data
FL starting_addr count data
FM starting_addr count data
FW starting_addr count data
G

G expr

ID

1D expr

L

IL expr

IL expri expr2

IX statement

KB expr

LP expr

MM expri expr2

MM num org lim ctrl

MR

NM

NM expr

P expr

PT

RB

RS

RT

SB expri exprlist

SC expr

5D

SH

SL expri exprlist

Alpha draft

The Debugger

Assemble statement {nstruction) at
BHPr.

Display the breakpoints currently set.

Set each breakpoint in exprlist.

Begin timing process expr

Clear all breakpoints

Clear each breakpoint in exprlist

Display the value of each expression in hex
and decimal.

Display memory as bytes.

Display memory as long words.

Display memory.

Set the SEG1/5EG2 bits.

Display index aor ranges of dump RAM.

Display memory as words.

End Timing - print summary
buckets

Find Byte.

Find Long

Find Memory

Find Word , . v
Start running at the current PC
Starting running at expr
Disassemble one line at the next address
Disassemble one line at expr

Disassemble 29 lines at the next address
Disassemble 29 lines starting at expr
Disassemble exprd lines starting at exprd
Immediate execution of one instruction

Kill Bucket expr

Convert logical address to physical address.
Display MMU information

Set MMU information

Set a value level #5 interrupt on a word
change.

Displays the keycode of the NMI Key

Sets NMI keycode to expr

Set port number to expr.

Print timing summary

Reboot.

Display the patch Return address Stack

Reset timers

Set memory in bytes with exprlist starting at
expri

Stack Crawl.

Set the default radix to decimal

Set the default radix to-hex

Set memory in long words with exprlist
starting at expri.

one

and remove

27 January 1983

Workshop User’s Guide for the Lisa The Debugger

SM expri exprlist Set memory with exprlist starting at expri.

SW expri euprilist Set memory . in words with exprlist starting at
exprd

Y Display the values of all symbols

SY name Display the value of the symbol name

SY name expr Assign expr to the symbol name

T Trace one instruction at the current PC

T expr Trace one instruction at expr

TB addri addr2 Create Timing Bucket from addri to addr2

TD Display the Trace Display at the current PC

WP @ori Diable (@) or Enable (i) Write Protection.

Alpha draft 2-13 27 January 1983

Workshop Reference Manual for the Lisa Using Exec Files

Chapter?
USINGEXECFILES

2l EXECFileS sestesssensesnssansransssnsssnsnsnsessnssassannessassnassnnansss 7-3
Exec filesare scenariosofcommands tobe automatically performed by the
Workshop system. They can use parameters,and conditional execution.

9.2 ExecFileStatements cvecesasesscscnsssnsssncsonssanssansssascannsansssn 73
Exec file statements are of two types:normal lines,thatcontain Workshop
commands,; and exec command lines,that tell how toprocessthe exec file.
Exec command lines include lines to:setparameter values,perform input
and output,and to control conditional execution.

?BS Using E;{ec Files l"llllll.lll.!llllll.lllllll.ll...ll.lll.lll...lll.l.lq—io
#xec files are invoKked using the Workshop Run command. ThisinvoKkation
line can setthe values ofparameters,aswell asselectexec options.

9.4 Example EXeC FileSiaetesssesassesnsssansssssansansssansnssnsnsasnnnaesd—14
Thissectioncontains examples ofexec files.

9.5 Exec FileProgramming TiPS ceceseessesecassiacessanssanssnansnassasass 7183
Thissectioncontains tipson how towrite exec files.

9!6 EXEC FilEEFPDPS-.--.---.------..-.-..-.-un---.u-.-..-.---..-..;-.-.-9"'13

Alpha draft 9-1 ' 7 February 1923

Workshop Reference Manual for the Lisa Using Exec Files

filpha draft -z 7 February 1983

Workshop Referemce Manual for the Lisa . Using Exec Files

Usinmng Exec Files

7.1 Exec Files
Exec files are scenarios of commands to the workshop system. They are
contained ina text file,created with the Editor,and are executed with the
Run command. They consistof the actual characters you would type tothe
Workshop to perform the function you want,interspersedwithspecialexec
file commande. that allow you to use parameters and conditiorns to vary
some portionsofthe scenario.

Inits simplestform, an exec file contains the characters youwould pressto
perform the desiredoperation. Forexample, to compile a Pascal program,
the exec filewould contain:

Pmyprog

The P invoKes the Pascal compiler, myprog is the name of the source file.
This could be followed by further lines to Generate, LinK, and Run the
program.

Special exec filecommards allow you touse parameters and conditionally
perform the Workshop commands. This would allow you tosetup an exec
file to compile, Generate, and opticrally LinK any Fascal program. Such an
exec fileisshownin Figure9-1

$EXEC
3 {This exec file compiles and Generates a Pascal program. 2
% { If the second parameter isL (or 1) the program is LinkKed:
$#IF %0= """ THEN <{noparamster entered’
$WRITE “Compilewhat file?’
SREADLM U
$ENDIF
P
{nolisting filel
{ default I-code file }

{default object filel
$IF UPPERCASE¥1) = "L’ THEN
L¥0
105PASLIB
{endof linker input 3’
{nolistfile
A0{ cutput file name 2
SENDIF
$ENDEXEC

Figure 9-1. Example Exec File

2.2 Exec File Statements
Exec file statements are contained on one line., There are two typesofexec
file lines, exec command lines,; and normal lines. Normal lines contain

Aipha draft -3 7 February 1753

Workshop Reference Manual for the Lisa 4 Using Exec Filaes

commands to be processed by the Workshop system. Exec command lines
handle the other featuresof exec files,such asparametersand conditional
statements. '

You may use up to 10 parameters in an exec file,numbered as %0 through
%9. These receive theirvalues from the invocation of the exec file,or they
are assigned values during the exec file execution. When a parameter
appears in a normal line, it is replaced by the string value of that
parameter. These parameters can be used both as inputs to the exec file
and as temporary variableswithinit.

Exec command lines startwith a $; they control the operationof therestof
the exec file. Exec command linesare free format, aslong as the order of
thier elements is preserved. Any number of blanks can occur before any
element of acommand line. ‘

Mormal command limescontain commands for the Workshop system. These
linesare sentto the Workshop exactly as they appear. Any extrablanks will
be sent to the Workshop and will be treatedexactly asif you had typedin
thoseblanks.

Comments are delimited by curly braces ({and). They can appearineither
a normal or an exec command line. Comments are completely removed
from rormal lines.

The tilde (™) isused asa literalizingcharacter innormal lines. Itpassesthe
following character through without processingit. This allows you to pass
$, %,and { to the Workshop system withouthaving them be interpretedasan
axec command, aparameter,oracomment. Tildecan be passedas™™

The followingisa descriptionof each exec command lime type.

9.2.1 Beginning and Ending Exec Files
The general form of exec filesis they must begin with a "$EXEC" line and
must end with a "$ENDEXEC" line. The exceptions to this basic rule (for
those miscreants who embed theirexec filesin theirprogram scurcesiare:
(1) ore line of textmay preceed the "$EXEC" line if the"I"invocation option
isused,and (&) any amount of text may follow the "$ENDEXEC" line,butit
" willbe ignored.

9.2.2 Setting Parameter Values
You can setparameter valuesimanexec fileby usingthe SETarnd DEFAULT
operations. The REQUEST operation prompts the user for the value of a
parameter.

SETand DEFAULT
The SET and DEFAULT commands provide a way of changing the value ofa
parameter inside of an exec file. The form of thesecommands is:

$ EET <%n> TO <strexprs
and
$ DEFAULT <%n: TO <strexpri

Alpha draft 9-4 7 February 1982

Workshiop Referermce Manual for the Lisa Using Exec Files

where <%nrisa parameter reference and <strexpr:isa stringexpressionas
describedin the followingsection.

The =ffect of the SET command is to change the value of the specified
parameter to the value of the given string expression. The etfect of the
DEFAULT command is similar to that of the SET command, howsver, the
assignment only takes place if the value of the specified parameter is the
rnull string when the DEFAULT command is encountered. Thus, this
command can be used to supply default values toc parameters that have
beenleftuncspecifiedor empty intheexec invocationline.

REGUEST
The REGQUEST command provides a way to prompt for values from the
console. Itsform is:

¢ REQUEST <%n> WITH <strexpr>

The REGUEST command will print the given string expression to the
console and will read a line from the consocle which it will assign to the
spacified parameter. Thus the <str expr’ is the prompt that you will
requestwith.

2.2.3 Input and Output :

Input to an exec file isrequestedby the READLN of READCH command.
The WRITE and WRITELN commands allow you tooutputvalues.

READLN and READCH

The FEEADLN and READCH commands allowexec filestoreadintextfrom
the console and to assignit to a parameter variable. This mechanism may
be used toobtain parameter values, tocbtain values to control conditional
selection, to pauss until the user indicates io continue, or for any other
purpose. The form of thesecommands is:

$ READLN <%n»
ard
$ READCH <%n:

READLN willread a line from the conscle and will assignittothe specified
parameter. READCH will read a single character from the conscle (if
<return:is typedthatcharacter will be a blank).

WRITE and WRITELN

The WRITE and WRITELN commands allow exec files tc write text to the
console screen. This text may be used forinformatory messages,prompts,
or for any other purpose. The form of thesecommands is:

$ WRITE [<strexprr [, <strexpr: I%]
and
$ WRITELN [<{strexpr> [, <strexpr> J% 1]

Alpha draft -3 7 February 1963

Workshop Referemce Marnual for the Lisa Using Exec Files

That iss these commands take am arbitrary number of stringexpressions,
separatedby commas, asarguments. The stringsare writtento the current
console line,and in the case of WRITELN a finalcarriage returniswritten.

9.2.4 Conditional statements
Conditional statementsallow you to perform certaincommandes depending
on the conditions at the time the exec fileisrun. These conditions can be
based on the value of parameters and on the filesavailable toprocess. The
condition is stated in the form of a boclean expression,and can include
builtinboolean functions todetermine the condition of files.

The IFStatement
The IF,ELSEIF,ELSE and ENDIF commands allow conditional selectionin
exec files. The syntax of thesecommands isasfollows:

$ IF <boolexpr: THEN
{stuffs
[$ ELSEIF <boolexpr> THEN
{stuffs J#
[$ ELSE
{stuffr]
$ ENDIF

where “bool expr> is a boolean expression as described in the following
cection and <stuff: is made up of arbitrary normal and command lines
{other thancommands thatwould be a partof thecurrent IFconstruct). The
"[...J#"'constructabaveindicates thatzero or more ELSEIFcommands may
appear between the IF and the ENDIF commard, while the “[...J"indicates.
thatzero orone ELSE command may appear justbefore the ENDIF.

The 1F construct is evaluated in the usual way. First, the boolean
expression on the IF command itselfis evaluated; if it is true then the
“etuffrbetweenthe IFand thenextELSEIF(ifany}or ELSE (ifany)or ENDIF
is selected; otherwise it is not selected. All remaining parts of the IF
construct up to the ENDIF will be parsedbut will not be selected once ore
of the “bool exprisis true and itscorresponding < stuff:is selected. To say
that <stuff:is selected means thatany normal lines willgererate textand
thatany command lineswill be processed. Conversely, to say that<stuff:
is not selected means thatany normal lines will not generate textand that
command lines will be parsed (for correctness) but not executed. If the
{bool expr: on the IF is not true ther the following ELSEIF or ELSE will be
processed. Ifan ELSEIFis next,its <bool expr> will be evaluated, and, if
true, its following “stuff: will be selected and the remainder of the IF
construct will not be selected. Processing of the IF construct continues
until one of the “bool expr:sonan IForELSEIFistrue oruntilthe ENDIF is
reached. Ifno <bool expr> is true before the ELSE (if any} is reached, 11s
Letuffirwillbe selected.

IFconstructs may be nestedwithineach othertoan arbitr;arylevel.

Alpha draft : ?=5 7 February 1783

Warkshop Reterence Manual for the Lisa Using Exec Files

BooleanExpressions-—-comparison ard logical operators
Booleansexpressions{<bool expri+s)enable vou to testof stringvalues and
checK properties of files. The grammar for boolean expressionsis as

follows:
“hbool expr: = <boclterms [<binarylogic op <bocl expr> I%
<binary logic op = AND
| OR
bool term: = <hool factor?

| (“boolexpr®)
| NOT (<boolexpr:)

<bool factor: Lstrexpr: <strops <strexprr

| “bool function:>

Lstrops s o=

.The basic element of a boolean expression{a <bool factor:) is either a
boolean function (see the next section) or a stringcomparison, testing for
2quality or inequality. These basic elements may oe combined using the
logical operatorsAND, OR and NOT,withparenthesesused forgrouping. All
theseoperatorsfunctionin the usual way.

BooleanFunctions-- EXISTS and NEWER
Several functions returning boolean resultsare provided for use with the
conditional contructs.

The EXISTS {function allows you to determine whether a file or volume
exists. The function has the following form:

EXISTS (<strexprs)

where <strexpr is a string expressionwhose value is the name of a file.
Typically this <str expr: will be an expanded string constant {discussed
abovel),such as"%1.obj".

The NEWER function allows you to determine whether ore file is newer
than another file, that is; whether its last-modified date is more recent
than the last-modified date of anther file. The function has the following
syntax:

NEWER ¢ <strexprii,istrexpris)

where the <strexpr>sspecify filenames. TRUE will be returnedif the first
file is newer than the second. A preprocessorrun-time errorwill occur if
one of the filesdoesnot exist.

Alpha draft -7 ' . 7 February 1733

Workshop Reference Manual for the Lisa . Using Exec Files

9.2.5 GString Expressions
A strimgexpressicn{sstrexpr) may specify a stringby a number of means,
asnotedin the followinggrammar.

LEtrexprr = Iparameter reference’
| <strconstant:
| “expanded streonstants
I <strfunction®
| “exec functioncall

A parameter reference has the usual"%n"form. A stringconstant has the
standard form of textdelimited by single quotes ('}, with a guote inside the
string specified by the double quote rule, as in ‘That’/sall, folks¥. An
expanded stringconstantis similar to a stringconstant,except thatdouble
quotes (") are used as delimiters and parameter references are expanded
within the string. A stringfunctionisa preprocessorfunction which returns
a sitring value (these are described in the following section. An exec
function call is aninvocation of an exec filewhich returnsa stringvalue tas
describedin a followingsection, "Exec Function Calls").

String Functions-- CONCAT and UPPERCASE
The string functions CONCAT and UPPERCASE may be applied to cther
stringexpressionstoproduce new stringvalues.

The CONCAT function allows severalstringexpressionsto be combined to
produce a result which is a single string. The CONCAT function has the
form:

_ CONCAT (<{strexpr> [, <strexprr 1%)
Thatis,CONCAT takesa listofstringexpressions,separatedby commas.

The UPPERCASE function converis any lower case lettersin its argument
toupper case. Ithas the following form:

UPPERCASE (<strexpri)
Anexample of theuse of thisfunctionis
$ SET%0TOUPPERCASE (%0)

which will setparameter 0 to anuppercase versionofitspreviousvalue.

2.2.6 Nesting exec Files
Exec filescan be nested by calling another exec file by using the SUBMIT
command. The called file can be a function,; which means that it will
RETURN a value toa parameter in the calling exec file.

SUBMIT

The SUEMIT command allows nesting of exec files, that is, it allows
another exec file to be called from within an exec file. The form of the
SEUBMIT command is:

$§ SUBMIT <exec command>

Alpha draft g-% 7 February 1783

Workshop Reference Manual for the Lisa Using Exec Files

where “exec commands isanexec command of thesame form as vou would

have following the "sxec/" or "<" at the WorkShop shell command level.
This exec command may include parameters and exec optionsin the usual
fashion.

The effect of the SUBMIT command is to process the specified exec file,
putting any generated exec output text into the current exec temporary
file. Thus,while a single exec file may have severalnzstedsub-exec files,
only a single temporary output file is generated which includes the ocutput
gererated by all of the input files. Exec filesmay be nestedtoan arbitrary
level.

Within the text of the <exec command*, referencesto"%n"parameters will
be expanded and theliteralizingcharacter ("“"“Jwillbe processed. Be aware
that this is the only processing that takes place withimar exec command.
Evervthingup to the first"{" or the and of the line {(ifno parameter listis
present) will be taken to be the exec file name. If there is a "(" the
parameter listwill be taken tobe everything between this" (" and the next
"Y', An <exec command?® may notbe splitacrosslines.

Note thatonly the "I" (Ignore firstline) and "B" (BlanKs significant)options
are valid on a SUEMIT command, while the "R" (ReRun), 5" (Stepmode) and
'T" (Temporary file saved) optionsare only applicable from the main exec
invocation line.

$RETURN -- Exec Functions

The RETURM command allows exec files toreturnsiring values to cther
{calling) exec files. Thusthe RETURN command can turnanexec fileintoa
function. The form of the RETURN command is:

$ RETURN [<strexpr:]

Executing a RETURN command will terminate the current exec file and
return to the calling sxec file with the specified stringvalue. The method
by which exec functions are called isdescribed in the following section.

Exec functions can be used to do such things as determining whether a
program file (and itscorresponding include files,if any) have been modified
since their lastcompilation, and may thusbe used to conditionally submit
compiles. If written generally enough, such a function could be used by
many exec files.

Exsc functions can produce side effects,thatis,they may contain normal
lines which will get placed in the temporary file. While the intentionaluse
of such sideeffectsisunlikely, inadvertentinstances may occur and willbe
potentially hazardous to your exec files. (Anunexpected blanK line in the
middle of an exec filecam oftenthrowitoutof sync.

Exec FunctionCalls

Exec function calls returnstring values, and are thus are ore of the basic
elements of string expressions. They may also appear in boolean
expressions,supplyingarguments for stringcomparizons.. (A typical use of

Alpha draft 9-9 7 February 1983

Workshiop Referemce Marwal for the Lisa Using Exec Files

an exec function would be tcreturna boolean value by returningeitherthe
string’T’or ‘F’.) The form of anexec functioncall is:

< «{filename> L[{<arglists)]

where "{" ig the character thatsignalsa functioninvocation (justin the way
that thischaracter identifiesexec filesfor the WorkBhop’s Run command).
The <file mame: and optional <arg list> are the same as in the SUBMIT
command.

Due to our liberal conventions concerning what characters (ncluding
blanks) may appear in file names, the preprocessor must makKe some
assumptions about how to identify the exec function file name and the
argument list. Recognizing the file name is more of a.problem in the case
of exec functions tham it for the SUBMIT command, since exec function
calls may appear inside of arbitrary string expressions, while an exec
invocation appears by itselfin « SUBMIT command. The simple rule the
preprocessaruses is: it the exec function invocation has an argument list,
the file name iz assumed to be evervthing between the "{" and the "{"
beginming the argument list; otherwise, the file name is assumed to be
everything between the "<" and the end of the line, which means thatyou
will have to supply an empty argument list to an exec funtion with no
arguments if the functioncall is not the lastthing on thecommand lire.

The processing of the textof a functioncall isthe same asthatofa SUBMIT
command, that is,the only processing that will take place is expansion of
"%n" parameters and recognition of the literalizing character (*~"). This
means, for instance, that the text of a furction call may not contain am
embedded function call. Note also that a function call may notbe split
acroselines,

2.3 Using Exec Files
Aninvocation line for the preprocessorhas the following form:

“exec command: <exec filer [{<parameter lists) [<exec options’ 1]

The <exec command> can be either"EXEC/" or"<". The {exec filer is the
name of the exec file you wishtorun. A".TEXT" extensionwillbe assumed
if ore is not specified; however, vou may override the mechanism which
supplissthe ".TEXT" extensionby ending your {exec file’ name with a dot;
g.9.using "foo." will cause the preprocessortolook for the file "foo"rather
than"foo.text".

The optional {parameter list:is enclosed in parentheses. The parameter
list may be empty or it may include up to ten parameters delimited by
commas. For example, we may have an exec file to run compiles which
takes volume and source file parameters, which we might invoke with
"compile(foo,~-work-)". Parameters may be omitted (leaving them as null
paramters) by specifying them with the null string,as in "compile{foo)”,
which omits the volume <from our previous example. Alternately,
parameters may be left unspecified altogether; as in "compile{fool’, in

Alpha draft 7-10 7 February 17683

Workshop Reference Manual for the Lisa ‘ Using Exec Files

which case they alsogetnull values., Onereasonforleaving cffparameters
is that the exec file may have been setup to supply default values, as is
described below.

The <exec options* which follow the closing ")" of the parameter list
consist of single letter commands which will modify the behavior of the
preprocessor; for example, "8 is used to indicate that vou wanmt to step
through the exec file asitisbeing processed,conditionally selecting which
commands will be sent to the WorkShop shell. The exec cptions are
discussedindetailin the"ExecInvocation Options'sectionbelow.

The preprocessor’soutput is & temporary file with a "..TEXT" extension.
The temporary fileis the processed versionof yourexec commands, thatis,
all preprocessor-oriented commands will have been processed and
removed, leaving only the WorkShop-related commands. This temporary
file is passed to the WorkShop shell executive when the preprocessoris
done. The WorkShop shellwill then run the temporary exec file and delete
itautomatically wher completed. '

Note that the preprocessoris not case-sensitive,but itdoes preserve the
case of parameters and strings suppliedby the user.

Exec InvocationQOptions

A rumber of options are available when running the preprocessor. These
options may be specified when invoking the preprocessor or on SUBMIT
commands. The optionsare specified by singlelettercommands following
‘the exec parameter list. (A null parameter listshouldbe usedifyou want to
use ocptionswithoutparametere,asin'<foo(is".) The opticnsars as follows:

"B" indicates that the preprocessorshould not trim blanks on outputlines.
Normally the preprocessorwill trim off leading arnd trailingblarKs on
the linesthatitoutputsto the temparary file. Thisallows you toindent
normal lines {lines which are not exsc command lines) without
worrying about generating spurious blanks. Thus the preprocessor
assumes thatleading and trailingblarks are insignificant{which isthe
case for WorkShop commands, but which may not be true for some
perverseprograms you may runviaexec files). Thisoptionwill tellthe
preprocessor not to trim such blanks. The option applies only to the
exec filebeing runor SUBMITted, and not to any nestedexec files.

"I" indicates that the firstline of the exec file is to be ignored by the
preprocessor. This option is intended for deviants who like toc embed
theirexec filesin their program sources,in which case the firstline of
the source should be a "(#"and a "#)" should follow the end of the exec
file,thuscommenting itout of the program source. (Note that"(#"and
"#)" should be used in preference to "{"and "}"since the latterare used

~ascomment charactersin the preprocessord

"T" indicates that the temporary file which iscreated (i.e.,the expanded
form of the exec file) should not be removed afteritisrun. Onereason
to use this option is to maKe it possible to rerun an exec filecreated
with the step option {see below) without going through the stiepping

Alpha draft g-11 : 7 February 1783

Workshop Reference Manual for the Lisa Using Exec Files

prompts a second time by running a previcusly created expanded exec
file. The "R" exec option(described below)isused torun old tempaorary
exec files. Note that the "T" option is rnot allowed on SUBMIT
commands.

"R" indicates that the a exec temporary file which hasbeen saved with the
"T" option should be rerun,bypassing the normal processing by which
the temporary was created. For example, "foo' may be am exec fils
which generates a complicated system via a large number of nested
exec fileewhich take & sigrificantamourt of time for the preprocessor
to digest. If we Know we are going to run "foo" repeatedly,we may
want to gernerate the temporary file only once butrunitseveraliimes.
The first time we would invoKe the preprocessor with "<foo0t" to
indicate that the temporary file should not be automatically deleted
after it is run. Subsequently,we would invoke the preprocessor with
"< fooOr'to rerun the old temporary file. Nots that the "R" option will
override any others that may be specified; and it is not allowed on
SUBMIT commands.

“S" indicates that the exec file should be processedin "Step Mode" which
allows selective skipping of outputlinesand SUBMITs. [fthisoptionis
used, the following messags will appear when vyou invoke the
preprocessor:

Step Mode:

== in response to "Include " answer: Y, N, A (Abort), K (Keep rest),or I (Ignore Rest).

~=~ in response to "Submit " answer: Y, N, § (Step); A (Abort), K (Keep Resth or i
{Ignore Rest). .

More details * [Nol

I+ vou repond with "Y" {ves) to the "More details 7" prompt you will
get further information onwhat each of stepping responses means.

When vou invoke an exec file with the step option you will be prompted
when a line has been generated and is about to go into the temporary file.
The line will be displayed followed by "<=Include 7", A responseof"Y" will
include the line in the expanded exec file. A responsecf "N" willcause the
displayed line to be omitted. A response of "A" will abortout of the exec
file preprocessor and no exec file will be run. A responseof "K" will Keep
(include) all the remaining lires of the exec file,leaving stepmode, while a
responseotf "I"willignore the remainder of the exec file.

When & SUBMIT command is encountered when stepping,the SUEBMIT line
will be displayed followed by "<= Submit 7". A responsecf"Y" will perform
the SUEMIT uncenditicnsally, that is, without stepping through it. A
responseot " N" will ignore the SUBMIT. A responseof"8" will stepthrough
the SUEMIT file. A response of "A" will abort out of the exec file
preprocessorand no exec file will be run. A responseof "K" will Keep the
rest of the exec file,leaving stepmode, while a responseof "I" will ignore
theremainder of the exec file.

Alpha draft g-12 7 February 1983

Workshop Reference Manual for the Lisa Using Exec Files

Mote thatareponsect"?" toa "Submit *" or"Include *" prompt will elicit an
explanationof the accepted responses.

Following are some examples of how to use the preprocessor’sstepping
facility.

Stepping may be used toresume execution of amexec filewhich did notrun
to termination. Forexample, if our example "compile" exec file includes
both & compile and a generate step and if we wish to resume with the
generate step we could invoke the preprocessor with
"compile (fooy-wark-)s". Then, in response to the "Include?" prompts for
lines corresponding to the compile stepwe would hit"N" to skip the lines.
Upon reaching the firstline of the generate stepwe would respondwith “K"
to keep the restof the file,and the generate stepof the exec processwould
be performed.

The stepping mechanism may be used torunonly selected partsofanexec
file. Say, for instance, that we have a modular set of exec files which
generate a whole system of programs, such as the WorkShop development
system, and that one exec file called "make/all" can generate the whole
system by SUEBMITting exec files foreach of the component programs. The

xec files for each component program (development system tocl) make
use of other exec files to perform such standard activities as compiling
{and generating) a Pascal unit or program, performing an assembly,
installing a library, or manipulating files with the WorkShop's filer. Ifwe
are performing a system build and find ourselves constantly having to
regenerate parts of the system due to bugs, late deliveriesor whatever,
then the ability to step by SUBMITs proves to be very useful. Arbitrary
parts of the system can be regenerated by running "<make/all(s" (.e.,our
master exec file invoKed with the stepping option) and selectively
submitting the sub-exec filesforonly those thingswhich we wish torebuild
while steppingover the others,

Stepping in conjuction with the "T" option (for saving the temporary file
created by the preprocessor) can be useful when we are going to be
regeneratinga single comporent of a program orsystem a number of times
in succession, such as when we are fixing a bug in an element of a system
build and we expect thatseveral iterationswill be needed to correct the
problem. To continue our previousexample, suppose thatwe are having a
problem with the "FileIO"unit of the "ObkJIQOLib"librarywhile building the
development system, and that an exec file called "makKe/ObjIOLib"
generates ard installsthe library,submitting compiles and assemblies for
all of its units, linking everything together, and finally performing the
installation. By invoking the preprocessorwith "make/Q0bjI0OLib{ist"wecan
go into step mode and submit only those thingsrelated to the compilation
of the "FilelQ"unit, the link, and the installation of the library in the
Intrinsic Library. Then, aftereach successive refinement of "FilelIO",we
could rum the saved temporary file by running "< make/ObJIOLibGrtwithout
having to go thru the stepping process. Curalternativesto thisprocedure

Alpha draft 9-13 7 February 1783

Warkshop Reference Manual for the Lisa Using Exec Filaes

are creating anmocther exec file to generate only the selected parts,or
running (and rerunning’ the exec file for the whole library,or running each
sub-processindependently (which requiresmore of yourattention.

Note that typing Apple—-period while the preprocessoris running will abort
the processingof the exec file.

7.4 Example Exec Files
Example { -- anexec filetodoa Pascal compile
This exec file does a Pascal compile and generate. Note how comments

have been used to make the single-character WorkShop commands more
intelligible.

. $EXEC { "comp® --performa Fascxl compile
40 -- the name of the unit tocompile 2
P{Pascal compile¥4{0{sourcel
{nolistfiles
{default i-code filel
G{generate codeX0
{default obj file}
$EMDEXEC

Example 2 -- anexec filetodoanassembly

Thisexec file performs an assembly, and allows for an optional output file
rname which may be differentfrom the source mame.

$EXEC { "assemb" -- perform an assembly
A0 == the name of the unit to aszsemble 7
Al -={optionaly alternate name of OEJ output ¥
FDEFAULT X1 TO X0 { use scurce name i f no cutput name is given ¥
“lassemblelilisource’
‘nolistfilel
“1{obj file?
$ENDEXEC
Example 3 -- a more flexibleexec filetodoPascal compiles

This axec file performs compiles; it allows for an output file with a
differentname than the scuce and permits the use of an alternateintrinsic

library,
$EXEC { "compl" -- perform & Pascal compile
“0 -- the name of the unit tocompile
“l--doptionall alternate name for OBJ File

“2-—ioptional) alternate intrinsic libraryl
FDEFAULT X1 TOX0 ¢ if noalternate OBJ name use same name xS source ¥
FIF X2 {> 7Y THEN { use alternate intrinsiclibrary
Pi{Pascal compileX¥{option flagl
“2{alternate intrinsic 1ib2
A0{zource

$ELSE
P{Pascal compilel¥il{scurce’
FEMDIF
flpha draft 9-14 7 February 1783

Workshop Reference Manual for the Lisa , Using Exec Files

{nolist+ilel
{default i-code filel
G{generate code 0
X1{0BJ filel
$EMDEXEC

Example 4 -- yetanotherexec file todo Pascal compiles

Thiscompile exec file will only perform the compile ifeithertheobject file
does not existor the source fileisnewer thanthe cbject file (i.e.,the source
haschanged since itwaslastcompiled).

$EXEC { "comp2" -- perform a Pascal compile <only if reallyr

required)

A0 -- the name of theunit tocompile

#1 --f{optional) alternate name for OBJ file

“2--f<optional) alternate intrinsic library?
FDEFAULT X9 TO X1 { cet ¥? toname of output OBJ file 3
$DEFAULT X7 TO X0
%IF EXISTS ¢"¥%%?.0bj") THEM

$1F MEWER ("X0.text","%%.0bj"s THEN {recomp if source newer

than objects
FSUBMIT compl1440,¥1,3%2)
$ENDIF
$ELSE {0BJ file doesnot exist, sogenerate it}
$5UBMIT compl (40,441,420
$ENDIF
SEMDEXEC

Itisleftasan exercise as to how tochange the above 2xample totake into
account the fact thata unitmay have anarbitrarynumber ofinclude filesin
addition toits main source file,and thatthe unitwillhave tobe recompiled
ifone or more of thesechange.

Example 5 -- exec file"chaining”

This example ("make/Prcg") uses the "smart" compile exec file ("compZ™
defined in the last example to demonstrate how to "chain" exec file
execution. Assume we want to generate a particular program made up of
three units (unitl..unit3)and that we have written"link/Prog";a smartexec
file which performs a link crnly when orne of the object filesfor one of the
units is newer than the linked program file. Ourgenerationexec file will
use thesesmart exec filesto perform the minimal requiredamount of work,
thusit may be used to determine whether we have the latestversionofthe
program withoutfear cfwastingtime.

Alpha draft 9-15 7 February 1783

Workshop Reference Marnual for the Lisa Using Exec Files

$EXEC { "makesProg" -- smart version, oniyrecompiles & linkswhen

it has tol

$SUBMIT comp2{unitl)

#SUBMIT compZ{unit2

$SUBMIT comp2iunit3d)

R{1link/Prog trun link exec file after compiles hav
run so that it will get the correct
file dates ¥

g

SENDEXEC

Mcote thatin the lastline of the above exec file we have scheduled am exec
file tobe runata latertime , as opposed to SUBMITting it now;. so thatthe
tile dates for the link step will be accessed after the compiles have had a
chance torun. The differencesbetween running and submitting and exec
files are demonstrated in the following scenario. When an exec file is
submitted it is processed immediately by the preprocessor,with itsoutput
goirng to the temporary file, which is then passed back to the WorkSheop
shell. The then shell runs the commands in the temporary file until it
comes to the command torumarnctherexec file,at which pointitdiscards
the remainder of the temporary file and runsthe preprocessorwith the new
exec command. This exec file invocation in turn resulis in arother
temporary fileofcommands which is thenrunby the shell.

Example 6§ —— arecursiveexec filetodo Pascal compiles
Thiscompile exec filewill performup to 10 compiles. Ittakesam argument
listwith the mames of theunitstobe compiled .

$EXEC { "rcomp” -- perform any number fup to 107 Pascal compil
Itcalls "comp" on itsfirst argument and thencalls i
recursivelywith its arguments shiftedleft
FIF 40 <7 7 THEN
FSUBMIT comp (X0 { "comp" the first one ¥
$SUBMIT rcomp(¥1,%2,%3,44,%5,48,47,%8,%%) { "rcomp" the rest, less
first 3

s
<

es,
tseldf

$ENDIF
$ENDEXEC

Example 7 —— a Basicexample

This exec file demonstrates some of the constructs in the preprocessor’s
meta-language, by generating the BASIC interpreter.The comments inthe
body of the example should be sufficientto describe what is taking place.
The essentialidea is thatBasic is made out of three components, and that
we may want togererate only ore or more of them at a time.

$EXEC { "maKesbasic" -—agenerate the BASIC interpreter.
There are three parameters -— if a parameter isa"Y" (ryesg)

the corresponding part of the system should be generated:
{0) the b-cade interpreter
1) the run-time srstem
{23 the command interpreter

Alpha draft 9-16 7 February 1983

Workshop Referemce Manual for the Lisa Using Exec Files

I+ no parameters are specified, the exec filewill prompt to see
what parts of the system should be generated. 3
$WRITELM “Starting generation of the BASIC system”
FIFX0=""AND X1 =" AND¥Z2= """ THEM {no params supplied -- prompt
for infol ’
$WRITE ‘do you want to assemble the b-code interpreter? Oy or
[nls¢
$READCH JCQ
FHJRITELN { thiswriteln putsuson anew line for the next prompt 3
FWRITE "do vouwant tocompile the run-time system? ¢y or [nld”’
$#READCH 1
FWRITELM
$WRITE ‘do you want to compile the command interpreter? (v or
[nld”
$READCH %2
$WRITELN
$EMDIF
kS
%IF UPPERCASE(X0) = Y~ THEM {assemble the b-code interpreter
$SUBMIT assemb (int.maind
FEMDIF
3
$1F UPPERCASE(X1) =% THEM < compile the run-timeunit
$SUBMIT comp(b.rtunit’
$EMDIF
£
$IF UPPERCASE(XZ) =Y OR UPPERCASE{¥1) =Y THENM
${ compile the command interpreter
${compile also i+ the run—time unit has changed
$SUBMIT comp(b.basic)
$ENDIF
S
${1inkKitall together
L{linkK3}-pinote that "-p" gets around a 1inker bugl
b.basic
b.rtunit
int.main
hwintl
iosfplib
icspaslib

basic{executable outputl
SENDEXEC

Example & -— anexec filefunction
Thisexec fileisa function which will pr‘ompt the user for the location ofa
Praofile,returning 2 stringwith the name of the device to which the Profile

#lpha draft 9-17 7 February 1983

Workshop Referenmce Manual for the Lisa Using Exec .Files

iz attached. Note that the function calls itself recursively until a valid
device name isspecified.

3EXEC { "GetProfl.oc” -- get location of profile by askinguser 2
FREQUEST X? WITH
' ‘Where i= the profile attached ¥
{paraportsslot2chanls/slotZchani) 7
#SET ¥% 70 UPPERCASE %%) v
3IF A% (> “PARAFORT) aAWD X% {F “SLOTZ2CHAMI » aMD X% ()
“SLOT2CHANZ 3 THEM
FWRITELM “That is not avaliddevice name, Let’ s try again.’
$RETURN {Ge tProfloc {recursive call
$ELSE
HRETURN X9
FEMDIF
$ENDEXEC

9.5 Exec File Programming Tips

The following few points may be useful toc remember when creating exec
files:

Use modular exec files. It may helpful to think of exec filesasprocedures
which are called via the SUBMIT command. The more modular your exec
filesare,the easieritwill be touse the stepping facility on them.

Create standard exec files for common functions; for example, use one
gxec filetoperform allyour compilations. Orneadvantage of thisis thatyou
only have to edit one filewhen the interface to the toolchanges (asithasin
thecase of theassembler).

Use optional parameters tosupportfeatureswhich arenot always (oroften)
used (such as the ability to compile againstan alternateintrinsiclibraryin
vour compile exec file), The parameter mechanism is such that you can
remain oblivious to optional parameters if you don’t need the functions
they support.

Write your exec files to prompt forinformation which was not supplisdin
parameters. Thisway you don’t need to remember the meaning of a large
rnumber ofparameters.

?.6 Exec File Errars
The preprocessor can recogrize a number of errorsduring itsinvocation
and ex=cution. The foarmat inwhich most errorsare reportedis:
ERRCORin<errlock
Lcurr line
Lerrmarkers:
“errmsgr
where

Terrlocs iseither’‘invocaticnline’or ‘lime #<n> of file"< file ="’

Alpha draft , -1z 7 February 1783

Workshop Reference Manual for the Lisa Using Exec Files

scurr line > isthe currentexec line when the errorwas detected

<errmarker® is & line with a questionmark indicating where the
preprocessor was in <curr line when the errorwas
detected

Larrmsgr isone of the messageslistedbelow.

IO errors are followed by an additicnal line with the text of the OSerror
raisedduring the IOoperation. The errorsdetected are as follows:

I0Errors: :

"Unable tocopen input file "<{filer",
Unable toopen temporary file "{file2".
Unable toaccess file "{filer",

Unable torerun file "{filer".

Other Errors:
File does not beginwith "$EXEC".
End of Exec file before "$ENDEXEC",
$EXEC command cther than at start.
Mo Exec file specified.
More than 10 parameters,
Mo clasing ")" found.
Line buffer cvertlow (2255 chars).
InvalidExec option: {optioncharz,
InvalidExec option on SUBMIT: {aption char2.
End of Exec file in comment.
Invalidpercent: not "“n" form.
Garbage at end of command.
No argument to SUBMIT.
ELSE, ELSEIF or ENDIF not in IF,
ELSEIF after ELSE.
File contains unfinished IF,
Mothing follawing "{tilde’".
Out of memory. Processing aborted.
Bad temp file name generated: "<{file2",
Mowvalue returned fromfile called as function.
RETURM with value infile notcalled as function.
and
Invalid command., <{tokKen» expected.
where {tokKen> may be:
Stringvalue
"Yn" parameter
Terminating stringdelimiter
"=I| DT‘ Il(‘)l!
" .{}H
Boolean value
Comma t1ist delimiter)

wen
‘S

1"y

3 H

Alpha draft g9-19 7 February 1983

Waorkshop Reference Manual for the Lisa Using Exec Filas

Yalid command Keyword
Command

Alpha draft 9-20 7 February 1763

Workshop Reference Manual for the Lisa The Utilities

Chapter 10

THE UTILITIES

{04 Introduction ceieececsvsncsrsnsssasenscscasssassonccancssansansanssaal0=2
Utilities are Executed by the Run command from the Workshop. This
section explains the method for running a utility, and the common user
interface.

10.2 BYteDiff l.ll.ll'l.lll.llll.lIlill.ll.llll.lll.l.llllllll!llllll...lll10-3
ByteDiff compares two files, byte by byte, and shows where they are
different.

10.3 Changeseg lllllll..'.lll-.‘ll.'...l'll'.ll‘..l‘l..l..ll'...Ill.l.lll10-4
ChangeSeg allows you tochange the segment name of an object.

1014 Codesize lltll.l‘lll.lllllllllllll.lllllllllllll‘.lllllll.l.lllllllll10-5
CodeSize gives you a summary of the contents of an object file

10-5 Dif{ lllll..l'.!ll.il.llllll“ll.lll.llllllll.l.l..l!'lll!ll'll'l.l!10-6

Ditt compares two text files and shows their differences.

10.6 Dumpobj lll.lll!ll.ll..llllllI'l.lllllIOI.Illlll.llll.llll..'lllllll10_7
DumpOb,j displays the contents of an object file.

10.7 Dumppatch lll.lllllllllll'llll.l.Ill.l.l..ll.ll.l..".l..ll..'lllll10—7
DumpPatch displays and edits the contents of any file.

10-8 FileDiv and FileJOin l.ll-l.Illlll'lIllll..l.lIllllll.llll'lll.l'lllio-E=
FileDiv divides large files into smaller ones. FileJoin rejoins the resulting
small files bacK into the original large file.

10-9 Gf‘Ep tlnlI-.lill.ln-llcll.u...n-nuu---lnclzo-ll-.l-.lls-ll!nl-ncnlol10-9

Searches for Id’s.

iolio GXRef .lllllll.lllllllll.lllll.lllI'lllIlllllllll'l‘l'lll..l..ll!lll10-9
GxRef provides a global cross reference.

10.11 Packseg SS NS S8 8532808080888 83883C22828838028TssRRERR388383R3R088830s 10-10
PackSeg packs object code files.

10.12 SegMap 28822328 828¢5R220823E8808232803228C088838800388ss0BR0SERRICRATSRDS 10-11
SegMap produces a segment map for one or more object files.

10113 SXRE{ 3888833033823 3388308883388008081503838308888sSRRINBINIBBEIBRNES 10-12
SxRef produces a cross reference.

Alpha draft 10-1 7 February_1983

Workshop Reference Manual for the Lisa The Utili’ciie's

Alpha draft 10-2 7 February {983

Workshop Reference . Manual- for the Lisa The Utilities

THE UTILITIES

10.{ Introduction
how to run utilities

10.2 ByteDiff
BYTEDIFF compares any binary files,but once it finds a difference between
the two files, it does not always find where the differences end.

10.3 ChangeSeg
CHANGESEG changes the segment name in the modules in an object file.
The firstprompt asks for the object file you want to change:

File to change:
Changes are made in place (the file itself ischanged). You are next asked:
Map all Names (Y/N)

1f you want to change segment names in all modules, respond Y. If you want
to be prompted for the new segment name for each module, type N. A
response of <{cr> accepts the default name.

10.4 CodeSize

10.5 Diff.
DIFF is a program for comparing ".TEXT" files, in the LISA Pascal
development environment. DIFF is strongly oriented toward use with
Pascal or Assembler source files.

DIFF isnot sensitive to upper/lower case differences. All input isshifted to
a uniform case before comparison isdone. This isin conformance with the
language processors, which ignore case differences.

DIFF is not sensitive to blanks. All blanks are skipped during comparisocn.
This is a potential source of undetected changes, since some blanks are
significant (in string constants, for instance). However, DIFF isinsensitive
to "trivial" changes, such as indentation adjustments, or insertion and
deletion of spaces around operators.

DIFF does not accept a matching context which is'too small". The current
threshold for accepting & match is 3 consecutive matches. The M option
allows you to change thisnumber. This has two effects:

Areas of the source where almost "every other line" has been changed will
be reported as a single change block, rather than being broken into several
small change. blocks.

Areas of the source which are "entirely different" are not broken into
different change blocks because of trivial similarities (such as blanK lines,
lines with only "begin” or "end", etc.)

DIFF makes a second pass through the input files, to report the changes
detected, and to verify that matching hash codes actually represent
matching lines. Any spurious match found during verification isreported as

Alpha draft 10-3 7 February {983

Workshop Reference Manual for the Lisa A The Utilities

a "JACKPOT". The probability of a JACKPOT is very low, since two
different lines must hash to the same code at a location in each file which
extends the longest common subsequence, and in a matching context which
islarge enough to exceed the threshold for acceptance.

DIFF can handle files with up to 2000 lines.

DIFF firstprompts you for two input file names: the "new" file, and the "old"
file. DIFF appends ".TEXT" to these file names; if it is not present. DIFF
then prompts you for a filename for the listing file. Type carriage-return to
send the listing to the console.

DIFF does not (currently) Know about INCLUDE files. However, DIFF does
allow the processing of several pairs of files to be sent to the same listing
file. Thus, when DIFF is finished with one pair of files, it prompts you for
another pair of input files. To terminate DIFF, simply type carriage-return
in response to the prompt for an input file name,

The output produced by DIFF consists of blocks of "changed" lires. Each
block of changes is surrounded by a few lines of "context" to aid in finding
the lines in a hard-copy listing of the files.

There are three Kinds of change blocks:

INSERTION -- a block of lines in the "new" file which does not appear in the
"old" file.

DELETION -- a block of lines in the "old" file which does not appear in the
"new" file.

REPLACEMENT -- a block of lines in the "mew" file which replaces a
corresponding block of different lines in the old file,

Large blocks of changes are printed in summary fashion: a few lines at the
beginning of the changes and a few lines at the end of the changes; with an
indication of how many lines were skipped.

DIFF has three options which allow you to change the number of context
lines displayed (+C), the number of lines required to constitute a match (+M),
and the number of lines displayed at the beginning of a long block of
differences (+D). To set one of these numbers, type the option name
followed by the new number to the prompt for the firstinput file name. +D
100, for example, causes DIFF to print out up to 100 lines of a block of
differences before using an ellipsis. The maximum number of context lines
you can get is,

10.6 DumpOb,. .
DUMPOBJ is a disassembler for 82000 code. It can disassemble either an

entire file, or specific modules (procedures) within the file. DUMPOBJ
replaces DUMPMCODE.

DUMPOBJ first asks for the input file which should be an unlinked object
file. The output (listing) file defaults to CONSOLE:. You are asked whether
you want to dump

Alpha draft 10-4 7 February 1983

Workshop Reference Manual for the Lisa The Utilities

Alll, S{ome, or Plarticular modules.

If you respond S(ome, DUMPOBJ asks vou for confirmation before dumping
each module. A response of <ESC> gets you back to the top level. If you
respond Pfarticular, DUMPOBJ asks you for the particular module(s) you
want dumped.

The next guestion is: ‘Dump file positions [NJ1?'The file position isa number
of the form [0,000]where the firstdigit is the block number (decimal) within
the file and the second number isthe byte number (hexadecimall within the
block at which the module starts. This information can be used in
conjunction with the PATCH program. Finally, DUMPOBJ asks if you want
the object code disassembled.

10.7 DumpPatch
DumpPatch isacombination of DumpHex and Patch.

DumpHex provides a textual representation of the contents of any file. The
file dump isblock-oriented with the hexadecimal representation on the left
and the corresponding ASCII representation on the right. Ifabyte cannot be
converted toa printable character, a dot issubstituted.

When DumpHex isRun, it asks you for the name of the output file. A .TEXT
extension is added if necessary. To direct the output to the console, type
carriage return. After getting a valid output file name, DumpHex asks for
the input file to be dumped. No extensions are appended, so give the full
filename. Once a file has been completely dumped, DumpHex askKs you for
the next file to dump. Type carriage return toexit the program.

After opening the input file, DumpHex asks you which block to dump. The
default (carriage return) is block 0. If the output isgoing to a file, you are
asked which block isthe lastyou want dumped. The default here (carriage
return) is the lastblock in the file.

The format of the console output depends on the number of lines your screen
has. If fewer than 33 lines are available, the output isdisplayed only a half
block at a time. Between blocks or block halves you have the option to

Type <space’ tocontinue, {escape to exit.
Escape returns to the prompt for an input file.

Patch allows you to examine and change the contents of any file. The
display of the file‘s contents isexactly like that of DumpHex. With Patch,
however, you can use the cursor control Keys to move around in the block
and change the value of any byte using either the hexadecimal
representation on the left or the ASCII representation on the right.

After Running Patch you are asked for the full name of the file to patch.
Carriage return exits Patch. No extension isappended to the file name. You
are then asked for the number of the block you want to mess around with.
Carriage return here returns you to the file name prompt.

The block is displayed with the cursor in the upper left ;;nrner at word 0 of
the block. The arrow Keys can be used to move arcund in the block. Ifvou

Alpha draft 10-5 7 February 1983

Workshop Reference Manual for the Lisa The Utilities

move the cursor up from the top.line, you get the bottom line of the
preceding block. Similarly, if you move down from the bottom line, you
move into the top line of the next block.

When the cursor is on the hexadecimal side of the display, you can change
any byte by typing the new hexadecimal value. Any non-hex characters are
ignored. You can impress your friends by pointing out that the change is
reflected automatically in the ASCII portion of the display. When the
cursor is on the ASCIl side, type any character to replace the value of the
byte.

Until you move out of the block you can undo- any changes' by typing:
{escape’>. '

10.& FileDiv and FileJoin,
It is often nmecessary to distribute files that are too large to fit onto a single
floppy diskette. FILEDIV can be used to break a large file into several
diskette-sized pieces. FILEDIV can then be used to rejoin these pieces at
the file‘s destination. These two programs replace the TRANSFER program.

To divide alarge text or object file, Run FILEDIV.
Input file: {give the mame of the file to be divided>
Output file: <give the name tobe used for the ocutput files’

Do not include the suffix in the file mame. If, for example, you want to
divide TEMP.TEXT, give TEMP as the input file, and TEMP (or whatever) as
the output file. FILEDIV will create a group of files named TEMP.1.TEXT,
TEMP.2.TEXT, and soon, until TEMP,.TEXT iscompletely divided up. Ifyou
use the drive number (#9:, for example), rather than the volume name, the
new files can be written to multiple diskettes. When space on a diskette is
exhausted; FILEDIV asKks you to insert another diskette.

To rejoin the pieces of the file, Run FILEJOIN. Using the example given
above, we can rejopin TEMP.1.TEXT and f{friends into TEMP.TEXT by

responding:
Input file: TEMP <will read TEMP.{.TEXT, etc>
Output file: TEMP {will create TEMP.TEXT>

FILEDIV and FILEJOIN use regular directories, so a spurious sex change
cannot destroy your file. Files are verified in both directions.

10.9 Grep

10.10 GxRef.
GXREF lists all the modules which call a given procedure, and all the
modules which that procedure calls. Itprovides a global cross reference of
subroutines and modules.

10.41 Packseg

10.12 SegMap
SEGMAP produces a segment map of ome or more object files. The first
prompt:

Alpha draft ' 10-6 7 February 1983

WOr‘ksﬁop Reference Manual for the Lisa The Utilities

Files to Map 7

accepts either an object file name or a command file name. A command
‘file must be preceded with a (., SEGMAP adds the .TEXT suffix to the
command file name. The next prompt:

Listing File ?

directs the map information +to the file given. A response of #i: or
CONSQOLE:, for example, send the map information to the screen. The map
information includes the object file name, the name of the unit in the file,
the names of the segments used in that unit (if any), and the new segment
names.

10.43 SxRef

Alpha draft 10-7 7 February 1983

MANUAL was produced using
LisaWrite, LisaDraw, and
Lisal.ist.

PRINTING was done with an
Apple Dot-Matrix Printer.

& Lisa™

.. we use it ourselves.

ap

FROM:

ragp

/

@ APPLE COMPUTER INC.
POS Publications Department
20525 Mariani Avenue, MS 2-0
Cupertino, California 95014

TAPE aR STRPLE

PLACE
STP
HERE

Wworkshap User's Guide for the Lisa Mail Back

Apple publications would like to learn about readers and what you think about
this manual in order to make better manuals in the future. Please fill out this
form, orwriteall overit, andsendit tous. We promise to read it.

Is it quick and easy to find the information you need in this manusl?
[] always [] often [] sometimes [] seldom [] never

Comments

What made this manual easy to use?

What made this manual hard to use?

How are you using this manual? _
[] learning to use the product [] reference [] both reference and learning

[] other

Please comment on, for example, accuracy, level of detail, number and
usefulness of examples, length or brevity of explanation, style, use of
graphics, usefulness of the index, organization, suitability to your particular
needs, readability.

What do you like most about the manusal?

What do you like least about the manual?

In school have you completed?

[] high school [] some college [] BA/BS [] MA/MS [] more
Comments
What is your job title?
How long have you been programming?

[] O-1years [] 1-3 (] 4-7 [] over 7 [] not a programmer
Comments
What languages do you use on your Lisa? (check each)
[] Pascal [] BASIC [] COBOL [] other
Comments

What magazines do you read?

	00-00
	00-01
	00-02
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	05-01
	05-02
	05-03
	05-04
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	A-01
	B-01
	B-02

