
A/UX® Programmer's Reference
Sections 3(M-Z), 4, and 5

030-0785

• APPLE COMPUTER, INC.

© 1990, Apple Computer, Inc., and
UniSoft Corporation. All rights
reserved.

Portions of this document have been
previously copyrighted by AT&T
Information Systems and the Regents
of the University of California, and are
reproduced with permission. Under
the copyright laws, this manual may
not be copied, in whole or part,
without the written consent of Apple
or UniSoft. The same proprietary and
copyright notices must be affixed to
any permitted copies as were affIXed to
the original. Under the law, copying
includes translating into another
language or format.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the "keyboard" Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

Apple Computer, Inc.
20525 Mariani Ave.
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo, A/UX,
ImageWriter, LaserWriter, and
Macintosh are registered trademarks of
Apple Computer, Inc.

B-NET is a registered trademark of
UniSoft Corporation.

DEC is a trademark of Digital
Equipment Corporation.

Diablo and Ethernet are registered
trademarks of Xerox Corporation.

Hewlett-Packard 2631 is a trademark of
Hewlett -Packard.

030-0785

MacPaint is a registered trademark of
Claris Corporation.

POSTSCRIPT is a registered trademark,
and TRANSCRIPT is a trademark, of
Adobe Systems, Incorporated.

UNIX is a registered trademark of
AT&T Information Systems.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, Apple
will replace the media or manual at
no charge to you provided you return
the item to be replaced with proof of
purchase to Apple or an authorized
Apple dealer during the 90-day period
after you purchased the software. In
addition, Apple will replace damaged
software media and manuals for as
long as the software product is
included in Apple's Media Exchange
Program. While not an upgrade or
update method, this program offers
additional protection for up to two
years or more from the date of your
original purchase. See your
authorized Apple dealer for program
coverage and details. In some
countries the replacement period
may be different, check with your
authorized Apple dealer.

AIL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABIIJTY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM TIlE DATE OF TIlE
ORIGINAL RETAn. PURCHASE OF
THIS PRODUCf.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECf TO THIS MANUAL,
ITS QUALl1Y, ACCURACY,
MERCHANTABWTY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
"AS IS," AND YOU, TIlE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUAUIY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
UABLE FOR DIRECf, INDIRECf,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECf OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF AIL OTHERS, ORAL
OR WRlTI'EN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

030-0785

Contents

Preface

Introduction

Section 3

Section 4

Section 5

Revision C

A/UX Programmer's Reference

Subroutines (M-Z)

File Formats

Miscellaneous Facilities

- v-

Preface

Conventions Used in This Manual
NUX® manuals follow certain conventions regarding presentation of
information. Words or terms that require special emphasis appear in
specific fonts within the text of the manual. The following sections
explain the conventions used in this manual.

Significant fonts
Words that you see on the screen or that you must type exactly as
shown appear in Courier font. For example, when you begin an
A!UX work session, you see the following on the screen:

login:

The text shows login: in Courier typeface to indicate that it
appears on the screen. If the next step in the manual is

Enter start

start appears in Courier to indicate that you must type in the
word. Words that you must replace with a value appropriate to a
particular set of circumstances appear in italics. Using the example just
described, if the next step in the manual is

login: username

you type in your name--La u r a, for example- so the screen shows:

login: Laura

Key presses
Certain keys are identified with names on the keyboard. These modifier
and character keys perform functions, often in combination with other
keys. In the manuals, the names of these keys appear in the format of
an Initial Capital letter followed by SMALL CAPITAL letters.

The list that follows provides the most common keynames.

RETURN
OPTION

DELETE
CAPS LOCK

For example, if you enter

RevisionC

- vii -

SIllFT
CONTROL

EsCAPE

Applee

instead of

Apple

you would position the cursor to the right of the word and press the
DELETE key once to erase the additional e.

For cases in which you use two or more keys together to perform a
specific function, the keynames are shown connected with hyphens.
For example, if you see

Press CONTROL-C

you must press CONTROL and c simultaneously (CONTROL-C normally
cancels the execution of the current command).

Terminology
In A!UX manuals, a certain term can represent a specific set of actions.
For example, the word Enter indicates that you type in an entry and
press the RETURN key. If you were to see

Enter the following command: whoami

you would type whoami and press the RETURN key. The system
would then respond by identifying your login name.

Here is a list of common terms and their corresponding actions.

Term
Enter

Press

Type

Click

Action
Type in the entry and press the RETURN key

Press a single letter or key without pressing the
RETURN key

Type in the letter or letters without pressing the
RETURN key

Press and then immediately release the mouse button

- viii -
RevisionC

Term

Select

Drag

Choose

Action

Position the pointer on an item and click the mouse
button

Position the pointer on an icon, press and hold down
the mouse button while moving the mouse. Release
the mouse button when you reach the desired
position.

Activate a command title in the menu bar. While
holding down the mouse button, drag the pointer to a
command name in the menu and then release the
mouse button. An example is to drag the File menu
down until the command name Open appears
highlighted and then release the mouse button.

Syntax notation
A/UX commands follow a specific order of entry. A typical A/UX
command has this form:

command (flag-option] [argument] ...

The elements of a command have the following meanings.

Element

command

flag-option

argument

RevisionC

Description

Is the command name.

Is one or more optional arguments that modify the
command. Most flag-options have the form

[-opt..]
where opt is a letter representing an option.
Commands can take one or more options.

Is a modification or specification of the command;
usually a filename or symbols representing one or
more filenames.

- ix -

Element Description

brackets ([]) Surround an optional item-that is, an item that you
do not need to include for the command to execute.

ellipses (...) Follow an argument that may be repeated any
number of times.

For example, the command to list the contents of a directory (Is) is
followed below by its possible flag options and the optional argument
names.

Is [-R] [-a] [-d] [-C] [-x] [-m] [-1] [-L]

[-n] [-0] [-g] [-r] [-t] [-u] [-c] [-p] [-F]

[-b] [-q] [-i] [-s] [names]

You can enter

Is -a /users

to list all entries of the directory /users, where

1 s Represents the command name
-a Indicates that all entries of the directory be listed
/users Names which directory is to be listed

Command reference ,notation
Reference material is organized by section numbers. The standard
A/UX cross-reference notation is

cmd(sect)

where cmd is the name of the command, file, or other facility; sect is
the section number where the entry resides.

D Commands followed by section numbers (1M), (7), or (8) are listed
in AIUX System Administrator's Reference.

D Commands followed by section numbers (1), (1C), (lG), (1N), and
(6) are listed in AIUX Command Reference.

D Commands followed by section numbers (2), (3), (4), and (5) are
listed in AIUX Programmer's Reference.

- x-
RevisionC

For example,

cat(l)

refers to the command cat, which is described in Section 1 of AIUX
Command Reference. References can also be called up on the screen.
The man command or the apropos command displays pages from
the reference manuals directly on the screen. For example, enter the
command

man cat

In this example, the manual page for the cat command including its
description, syntax, options, and other pertinent infonnation appears on
the screen. To exit, continue pressing the space bar until you see a
command prompt, or press Q at any time to return immediately to your
command prompt. The manuals often refer to infonnation discussed in
another guide in the suite. The fonnat for this type of cross reference is
"Chapter Title," Name of Guide. For a complete description of NUX
guides, see Road Map to AIUX Docwnentation. This guide contains
descriptions of each NUX guide, the part numbers, and the ordering
information for all the guides in the NUX documentation suite.

- xi -
Revision C

Introduction

to the A1UX Reference Manuals

1. How to use the reference manuals

A/UX Command Reference, AlUX Programmer's Reference, and A/UX
System Administrator's Reference are reference manuals for all the pro­
grams, utilities, and standard file formats included with your NUX®
system.

The reference manuals constitute a compact encyclopedia of NUX
information. They are not intended to be tutorials or learning guides.
If you are new to NUX or are unfamiliar with a specific functional
area (such as the shells or the text formatting programs), you should
first read A/UX Essentials and the other NUX user guides. After you
have worked with NUX, the reference manuals help you understand
new features or refresh your memory about command features you
already know.

2. Information contained in the reference manuals

NUX reference manuals are divided into three volumes:

• The two-part A/UX Command Reference contains information
for the general user. It describes commands you type at the
NUX prompt that list your files, compile programs, format text,
change your shell, and so on. It also includes programs used in
scripts and command language procedures. The commands in
this manual generally reside in the directories /bin,
/usr/bin and /usr/ucb.

• The two-part A/UX Programmer's Reference contains informa­
tion for the programmer. It describes utilities for programming,
such as system calls, file formats of subroutines, and miscellane­
ous programming facilities.

• A/UX System Administrator's Reference contains information for
the system administrator. It describes commands you type at the
A/UX prompt to control your machine, such as accounting

Introduction
Revision C

1

commands, backing up your system, and charting your system's
activity. These commands generally reside in the directories
fete, /usr/ete,and /usr/lib.

These areas can overlap. For example, if you are the only person using
your machine, then you are both the general user and the system
administrator.

To help direct you to the correct manual, you may refer to A/UX Refer­
ence Summary and Index, which is a separate volume. This manual
summarizes information contained in the other NUX reference manu­
als. The three parts of this manual are a classification of commands by
function, a listing of command synopses, and an index.

3. How the reference manuals are organized
All manual pages are grouped by section. The sections are grouped by
general function and are numbered according to standard conventions
as follows:

1 User commands

1M System maintenance commands

2 System calls

3 Subroutines

4 File formats

5 Miscellaneous facilities

6 Games

7 Drivers and interfaces for devices

8 NUX Startup shell commands

Manual pages are collated alphabetically by the primary name associ­
ated with each. For the individual sections, a table of contents is pro­
vided to show the sequence of manual pages. A notable exception to
the alphabetical sequence of manual pages is the first entry at the start
of each section. As a representative example, intro. 1 appears at
the start of Section 1. These intro. section-number manual pages
are brought to the front of each section because they introduce the

2 AlUX Programmer's Reference
RevisionC

other man pages in the same section, rather than describe a command
or similar provision of A/UX.

Each of the reference manuals includes at least one complete section of
man pages. For example, the AlUX Command Reference contains sec­
tions I and 6. However, since Section I (User Commands) is so large,
this manual is divided into two volumes, the first containing Section I
commands that begin with letters A through L, and the second contain­
ing Section 6 commands and Section I commands that begin with
letters M through Z. The sections included in each volume are as fol­
lows.

A/UX Command Reference contains sections I and 6. Note that both of
these sections describe commands and programs available to the gen­
eral user .

• Section I-User Commands
The commands in Section I may also belong to a special
category. Where applicable, these categories are indicated by the
letter designation that follows the section number. For example,
the N in ypeat(lN) indicates networking as described follow­
ing.

IC Communications commands, such as eu and
tip.

IG Graphics commands, such as graph and
tplot.

IN Networking commands, such as those which help
support various networking subsystems, including
the Network File System (NFS), Remote Process
Control (RPC), and Internet subsystem .

• Section 6---User Commands
This section contains all the games, such as cribbage and
worms.

Introduction
Revision C

3

AlUX Programmer's Reference contains sections 2 through 5.

4

• Section 2-System Calls
This section describes the services provided by the NUX system
kernel, including the C language interface. It includes two spe­
cial categories. Where applicable, these categories are indicated
by the letter designation that follows the section number. For
example, the N in connect(2N) indicates networking as
described following.

2N Networking system calls

2P POSIX system calls

• Section 3-Subroutines
This section describes the available subroutines. The binary ver­
sions are in the system libraries in the / lib and /usr / lib
directories. The section includes six special categories. Where
applicable, these categories are indicated by the letter designa­
tion that follows the section number. For example, the N in
mount(3N) indicates networking as described following.

3C C and assembler library routines

3F Fortran library routines

3M Mathematical library routines

3N Networking routines

2P POSIX routines

3S Standard I/O library routines

3X Miscellaneous routines

• Section 4-File Formats
This section describes the structure of some files, but does not
include files that are used by only one command (such as the
assembler's intermediate files). The C language struct
declarations corresponding to these formats are in the
/usr/include and /usr/include/sys directories.
There is one special category in this section. Where applicable,
these categories are indicated by the letter designation that fol­
lows the section number. For example, the N in

NUX Programmer's Reference
RevisionC

protocols(4N) indicates networking as described following.

4N Networking fonnats

• Section 5-Miscellaneous facilities
This section contains various character sets, macro packages, and
other miscellaneous formats. There are two special categories in
this section. Where applicable, these categories are indicated by
the letter designation that follows the section number. For exam­
ple, the P in tcp(1P) indicates a protocol as described follow­
ing. by the letter designation in parenthesis at the top of the
page:

SF Protocol families

SP Protocol descriptions

AIUX System Administrator's Reference contains sections 1M, 7 and 8.

• Section IM-System Maintenance Commands
This section contains system maintenance programs such as
fsck and mkfs.

• Section 7-Drivers and Interfaces for Devices
This section discusses the drivers and interfaces through which
devices are normally accessed. While access to one or more disk
devices is fairly transparent when you are working with files, the
provision of device files permits you more explicit modes with
which to access particular disks or disk partitions, as well as
other types of devices such as tape drives and modems. For
example, a tape device may be accessed in automatic-rewind
mode through one or more of the device file names in the
/ dev / rmt directory (see tc(7». The FILES sections of these
manual pages identify all the device files supplied with the sys­
tem as well as those that are automatically generated by certain
A/UX configuration utilities. The names of the man pages gen­
erally refer to device names or device driver names, rather than
the names of the device files themselves.

• Section 8-A/UX Startup Shell Commands
This section describes the commands that are available from
within the A/UX Startup Shell, including detailed descriptions of

Introduction 5
Revision C

those that contribute to the boot process and those that help with
the maintenance of file systems.

4. How a manual entry is organized
The name for a manual page entry nonnally appears twice, once in
each upper corner of a page. Like dictionary guide words, these names
appear at the top of every physical page. Mter each name is the sec­
tion number and, if applicable, a category letter enclosed in
parenthesis, such as (1) or (2N).

Some entries describe several routines or commands. For example,
chown and chgrp share a page with the name chown(l) at the
upper comers. If you tum to the page chgrp(1), you find a reference
to chown(1). (These cross-reference pages are only included in AIUX
Command Reference and AlUX System Administrator's Reference.)

All of the entries have a common format, and may include any of the
following parts:

NAME
is the name or names and a brief description.

SYNOPSIS
describes the syntax for using the command or routine.

DESCRIPTION
discusses what the program does.

FLAG OPTIONS
discusses the flag options.

EXAMPLES
gives an example or examples of usage.

RETURN VALUE
describes the value returned by a function.

ERRORS
describes the possible error conditions.

FILES
lists the filenames that are used by the program.

6 NUX Programmer's Reference
RevisionC

SEE ALSO
provides pointers to related infonnation.

DIAGNOSTICS
discusses the diagnostic messages that may be produced. Self­
explanatory messages are not listed.

WARNINGS
points out potential pitfalls.

BUGS
gives known bugs and sometimes deficiencies. Occasionally, it
describes the suggested fix.

5. Locating information in the reference manuals
The directory for the reference manuals, AlUX Reference Summary and
Index, can help you locate information through its index and sum­
maries. The tables of contents within each of the reference manuals
can be used also.

5.1 Table of contents

Each reference manual contains an overall table of contents and indivi­
dual section contents. The general table of contents lists the overall
contents of each volume. The more detailed section contents lists the
manual pages contained in each section and a brief description of their
function. For the most part, entries appear in alphabetic order within
each section.

5.2 Commands by function

This summary classifies the NUX user and administration commands
by the general, or most important function they perform. The complete
descriptions of these commands are found in A/UX Command Refer­
ence and AlUX System Administrator's Reference. Each is mentioned
just once in this listing.

The summary gives you a broader view of the commands that are avail­
able and the context in which they are most often used.

Introduction
Revision C

7

5.3 Command synopses
This section is a compact collection of syntax descriptions for all the
commands in A/UX Command Reference and AJUX System
Administrator's Reference. It may help you find the syntax of com­
mands more quickly when the syntax is all you need.

5.4 Index

The index lists key terms associated with A/UX subroutines and com­
mands. These key tenns allow you to locate an entry when you don't
know the command or subroutine name.

The key tenns were constructed by examining the meaning and usage
of the A/UX manual pages. It is designed to be more discriminating
and easier to use than the traditional pennuted index, which lists nearly
all words found in the manual page NAME sections.

Most manual pages are indexed under more than one entry; for exam­
ple, lorder{l) is included under "archive files," "sorting," and
"cross-references." This way you are more likely to find the reference
you are looking for on the first try.

5.5 Online documentation

Besides the paper documentation in the reference manuals, A/UX pro­
vides several ways to search and read the contents of each reference
from your A!UX system.

To see a manual page displayed on your screen, enter the man(1)
command followed by the name of the entry you want to see. For
example,

man passwd

To see the description phrase from the NAME section of any manual
page, enter the whatis command followed by the name of the entry
you want to see. For example,

whatis apropos

8 NUX Programmer's Reference
RevisionC

To see a list of all manual pages whose descriptions contain a given
keyword or string, enter the apropos command followed by the
word or string. For example,

apropos remove

These online documentation commands are described more fully in the
manual pages man(1), whatis(1), and apropos(1) in A/UX Com­
mand Reference.

Introduction
Revision C

9

Table of Contents

Section 3: Subroutines (M-Z)

mallinfo(3X) ... see malloc(3X)
malloc(3C) .. main memory allocator
malloc(3X) ... fast main memory allocator
mallopt(3X) ... see malloc(3X)
matherr(3M) ... error-handling function
max(3F) .. Fortran maximum-value functions
maxO(3F) ... see max(3F)
maxl(3F) ... see max(3F)
mclock(3F) ... return Fortran time accounting
memccpy(3C) ... see memory(3C)
memchr(3C) ... see memory(3C)
memcmp(3C) ... see memory(3C)
memcpy(3C) ... see memory(3C)
memory(3C) ... memory operations
memset(3C) ... see memory(3C)
min(3F) ... Fortran minimum-value functions
minO(3F) ... see min(3F)
minl(3F) ... see min(3F)
mk f if 0(3 P) .. make a FIFO special file
mktemp(3C) ... make a unique filename
mktime(3) ... see ctime(3)
mod(3F) Fortran remaindering intrinsic functions
modf(3C) .. see frexp(3C)
moni tor(3C) .. prepare execution profile
mount(3) .. mount a file system
mount(3N) keep track of remotely mounted file systems
mrand48(3C) ... see drand4 8(3C)
nbp(3N) AppleTalk Name Binding Protocol (NBP) interface.
nbp_confirrr(3N) ... see nbp(3N)
nbp _lookuP(3N) ... see nbp(3N)
nbp_make_entity(3N) .. see nbp(3N)
nbp_parse_entity(3N) .. see nbp(3N)
nbp_register(3N) ... see nbp(3N)
nbp _ remove(3N) ... see nbp(3N)
nextkey(3X) .. see dbm(3X)
nint(3F) ... see round(3F)
nlist(3C) ... get entries from name list

Section 3

not(3F) ... see bool(3F)
nrand48(3C) ... see drand48(3C)
ntohl(3N) ... see byteorder(3N)
ntohs(3N) ... see byteorder(3N)
numbptabent(3) ... see getptabent(3)
opendir(3) .. see directory(3)
opendir(3P) .. see directory(3P)
or(3F) .. see bool(3F)
pap(3N) AppleTalk Printer Access Protocol (PAP) interface
paps _ close(3N) ... see pap(3N)
paps_get_next_job(3N) .. see pap(3N)
paps_open(3N) ... see pap(3N)
paps_stat us(3N) ... see pap(3N)
pap_close(3N) ... see pap(3N)
pap _ open(3N) .. see pap(3N)
pap_read(3N) .. see pap(3N)
pap_read_ignore(3N) .. see pap(3N)
pap _ status(3N) ... see pap(3N)
pap _ wri te(3N) ... see pap(3N)
pathconf(3P) get configurable pathname variables
pclose(3S) ... see popen(3S)
perror(3C) ... system error messages
plot(3X) ... graphics interface subroutines
popen(3S) .. initiate pipe to/from a process
pow(3M) .. see exp(3M)
printf(3S) format and output string and numeric data
putc(3S) ... put character or word on a stream
putchar(3S) ... see putc(3S)
putenv(3C) change or add value to environment
putpwent(3C) .. write password file entry
put s(3S) .. put a string on a stream
pututline(3C) ... see getut(3C)
putw(3S) ... see putc(3S)
qsort(3C) ... quicker sort
rand(3C) ... simple random-number generator
rand(3F) Fortran uniform random-number generator
rcmd(3N) routines for returning a stream to a remote command
readdir(3) .. see directory(3)
readdir(3P) .. see directory(3P)
real(3F) ... see ftype(3F)
realloc(3C) ... see malloc(3C)
realloc(3X) ... see malloc(3X)
reqcmp(3X) compile and execute a regular expression

ii Subroutines (M-Z)

regex(3X) .. see regcmp(3X)
remque(3N) ... see insque(3N)
resol ver(3N) .. resolver routines
res_init(3N) ... see resolver(3N)
res_mkquery(3N) .. see resolver(3N)
res_send(3N) ... see resolver(3N)
rewind(3S) ... see fseek(3S)
rewinddir(3) .. see directory(3)
rewinddir(3P) ... see directory(3P)
rexec(3N) return stream to a remote command
rnusers(3N) return information about users on remote machines
round(3F) ... Fortran nearest integer functions
rpc(3N) library routines for remote procedure calls
rresvport(3N) ... see rcmd(3N)
rshift(3F) ... see bool(3F)
rtmp(3N) identify AppleTalk node and bridge addresses
rtmp_netinfo(3N) ... see rtmp(3N)
ruserok(3N) .. see rcmd(3N)
rusers(3N) ... see rnusers(3N)
rwall(3N) write to specified remote machines
scandir(3) ... scan a directory
scanf(3S) .. convert formatted input
seed48(3C) ... see drand48(3C)
seekdir(3) .. see directory(3)
seekdir(3P) .. see directory(3P)
set42sig(3) ... set 4.2 BSD signal interface
setbuf(3S) ... assign buffering to a stream
setgid(3) ... see setuid(3)
setgrent(3C) .. see getgrent(3C)
setjmp(3C) .. non-local goto
setmntent(3) .. see getmntent(3)
setnetent(3N) .. see getnetent(3N)
setnetgrent(3N) see getnetgrent(3N)
setposix(3P) set POSIX compatibility flags
setprotoent(3N) see getprotoent(3N)
setptabent(3) ... see getptabent(3)
setpwent(3C) .. see getpwent(3C)
setrpcent(3N) .. see getrpcent(3N)
setservent(3N) .. see getservent(3N)
setuid(3) ... , set user and group IDs
setutent(3C) ... see getut(3C)
setvbuf(3S) .. see setbuf(3S)
sgetl(3X) .. see sputl(3X)

Section 3 iii

sigaction(3P) examine or change signal action
sigaddset(3P) ... see sigsetops(3P)
sigdelset(3P) ... see sigsetops(3P)
sigfillset(3P) ... see sigsetops(3P)
siginitset(3P) ... see sigsetops(3P)
sigismember(3P) ... see sigsetops(3P)
siglongjmp(3P) ... see sigsetjmp(3P)
sign(3F) Fortran transfer-of-sign intrinsic function
signal(3) specify what to do upon receipt of a signal
signal(3F) specify Fortran action on receipt of a system signal
s igprocma sk(3P) examine and change blocked signals
sigsetjmp(3P) ... non-local jumps
sigsetops(3P) .. manipulate signal sets
sigsuspend(3P) .. wait for a signal
s in(3F) .. Fortran sine intrinsic function
sin(3M) see trig(3M)
s inh(3F) Fortran hyperbolic sine intrinsic function
sinh(3M) .. hyperbolic functions
sleep(3C) ... suspend execution for interval
slots(3X) .. ROM library functions
sngl(3F) ... see ftype(3F)
spray(3N) scatter data in order to check the network
sprintf(3S) .. see printf(3S)
sputl(3X) access long integer data in a machine independent fashion
sqrt(3F) Fortran square root intrinsic function
sqrt(3M) ... see exp(3M)
s rand(3C) .. see rand(3C)
s rand(3F) ... see rand(3F)
srand48(3C) ... see drand48(3C)
sscanf(3S) '" .. see scanf(3S)
s signal(3C) ... software signals
store(3X) ~ .. see dbm(3X)
strcat(3C) ... see string(3C)
strchr(3C) ... see string(3C)
strcmp(3C) ... see string(3C)
strcpy(3C) ... see string(3C)
strcspn(3C) ... see string(3C)
string(3C) .. string operations
strlen(3C) ... see string(3C)
strncat(3C) ... see string(3C)
strncmp(3C) ... see string(3C)
strncpy(3C) ... see string(3C)
strpbrk(3C) ... see string(3C)

iv Subroutines (M-Z)

strrchr(3C) ... see string(3C)
strspn(3C) ... see string(3C)
strtod(3C) '" convert string to double-precision number
strtok(3C) '" .. see string(3C)
strtol(3C) ... convert string to integer
swab(3C) .. swap bytes
sysconf(3P) get configurable system variables
system(3F) issue a shell command from Fortran
system(3S) ... issue a shell command
sys_errlist(3C) .. see perror(3C)
sys_nerr(3C) ... see perror(3C)
tan(3F) .. Fortran tangent intrinsic function
tan(3M) ... see trig(3M)
tanh(3F) .. , Fortran hyperbolic tangent intrinsic function
tanh(3M) ... see sinh(3M)
tcdrain(3P) ... line control functions
tcflow(3P) .. see tcdrain(3P)
tcflush(3P) .. see tcdrain(3P)
tcgetattr(3P) get and set the terminal state
tcgetpgrp(3P) get distinguished process group ID
tcsencibreak(3P) ... see tcdrain(3P)
tcsetattr(3P) ... see tcgetattr(3P)
tcsetpgrp(3P) set distinguished process group ID
tdelete(3C) ... see tsearch(3C)
telldir(3) .. see directory(3)
telldir(3P) .. see directory(3P)
tempnan(3S) .. see tmpnam(3S)
termcap(3X) terminal independent operation routines
tfind(3C) ... see tsearch(3C)
tgetent(3X) ... see termcap(3X)
tgetflag(3X) ... see termcap(3X)
tgetnun(3X) ... see termcap(3X)
tgetstr(3X) ... see termcap(3X)
tgoto(3X) ... see termcap(3X)
tmpfile(3S) ... create a temporary file
tmpnam(3S) create a name for a temporary file
toascii(3C) ... see conv(3C)
tolower(3C) ... see conv(3C)
toupper(3C) ... see conv(3C)
tputs(3X) ... see termcap(3X)
trig(3M) ., .. trigonometric functions
tsearch(3C) ... manage binary search trees
ttyname(3C) .. find name of a terminal

Section 3 v

ttyslot(3C) find the slot in the utmp file of the current user
twalk(3C) ... see tsearch(3C)
tzset(3) ... see ctirne(3)
tzsetwall(3) ... see ctirne(3)
ul1\Ount(3) ... unmount a file system
ungetc(3S) push character back into input stream
utmpname(3C) ... see get ut(3C)
varargs(3X) ... handle variable argument list
vfprintf(3S) .. see vprintf(3S)
vprintf(3S) format and output data from a variable-length argument list
vsprintf(3S) .. see vprintf(3S)
xdr(3N) library routines for external data representation
xor(3F) ... see bool(3F)
yO(3M) ... see bessel(3M)
yl(3M) ... see bessel(3M)
yn(3M) ... see bessel(3M)
ypclnt(3N) ... yellow pages client interface
yperr_string(3N) .. see ypclnt(3N)
yppas swd{3N) update user password in yellow pages
ypprot _ err(3N) ... see ypclnt(3N)
yp_all(3N) ... see ypclnt(3N)
yp _ bind(3N) ... see ypclnt(3N)
yp_first(3N) ... see ypclnt(3N)
yp_get_default_dornain(3N) see ypclnt(3N)
yp_rnaster(3N) ... see ypclnt(3N)
yp _rna tch(3N) ... see ypclnt(3N)
yp _ next(3N) ... see ypclnt(3N)
yp_order(3N) ... see ypclnt(3N)
yp _ unbind(3N) ... see ypclnt(3N)
zabs(3F) ... see abs(3F)
zip(3N) AppleTalk Zone Information Protocol (ZIP) interface
zip_getlocalzones(3N) .. see zip(3N)
zip _getmyzone(3N) ... see zip(3N)
zip_getzonelist(3N) .. see zip(3N)
_ tolower(3C) ... see conv(3C)
_ toupper(3C) ... see conv(3C)

vi Subroutines (M-Z)

malloe(3C) malloe(3C)

NAME
malloe, free, realloe, ealloe, efree -- mam
memory allocator

SYNOPSIS
ehar *malloe (size)
unsigned size;

void free (ptr)
ehar *ptr;

ehar *realloe(pw,du)
ehar *ptr;
unsigned size;

ehar *ealloe (nelem, elsize)
unsigned nelem, elsize;

void efree (ptr, nelem, elsize)
ehar *ptr;
unsigned nelem, elsize;

DESCRIPTION
malloe and free provide a simple general-purpose memory al­
location package. malloe returns a pointer to a block of at least
size bytes suitably aligned for any use.

The argument to free is a pointer to a block previously allocated
by malloe; after free is performed, this space is made avail­
able for further allocation, but its contents are left undisturbed.

Undefined results occur if the space assigned by malloe is over­
run or if some random number is handed to free.

malloe allocates the first contiguous reach of free space of
sufficient size found in a circular search from the last block allo­
cated or freed; it coalesces adjacent free blocks as it searches. It
calls sbrk (see brk(2» to get more memory from the system
when there is no suitable space already free.

realloe changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The
contents are unchanged up to the lesser of the new and old sizes.
H no free block of size bytes is available m the storage arena,
realloe asks malloe to enlarge the arena by size bytes and
then moves the data to the new space.

February, 1990
RevisionC

1

malloe(3C) malloe(3C)

realloe also works if ptr points to a block freed since the last
call of malloe, realloe, or ealloe; thus sequences of free,
malloe, and realloe can exploit the search strategy of mal­
loe to do storage compaction.

ealloe allocates space for an array of nelem elements of size el­
size. The space is initialized to zeros.

The arguments to efree are the pointer to a block previously al­
located by ealloc plus the parameters to ealloe.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of
object

RETURN VALUE
malloe, realloe, and ealloe return a NULL pointer if there
is no available memory or if the arena is deteected to have been
corrupted by storing outside the bounds of a block. When this
happens the block pointed to by ptr may be destroyed.

NOTES
Search time increases when many objects have been allocated;
that is, if a program allocates space but never frees it, each succes­
sive allocation takes longer.

SEE ALSO
brk(2), malloe(3X).

2 February, 1990
RevisionC

malloe(3X) malloe(3X)

NAME
malloe, free, realloe, ealloe, mallopt,
mallinfo - fast main memory allocator

SYNOPSIS
iinelude <malloe.h>

ehar *malloe (size)
unsigned size;

void free (ptr)
ehar *ptr;

ehar * realloe (ptr, size)
ehar *ptr;
unsigned size;

ehar *ealloe (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int cmd, value;

struet mallinfo mallinfo(max)
int max;

DESCRIPTION
malloe and free provide a simple general-purpose memory al­
location package, which runs considerably faster than the
malloe(3C) package. It is found in the library "malloe", and
is loaded if the option "-lmalloe" is used with ee(l) or ld(l).

malloe returns a pointer to a block of at least size bytes suitably
aligned for any use.

The argument to free is a pointer to a block previously allocated
by malloe; after free is performed this space is made available
for further allocation, and its contents have been destroyed (but
see mallopt below for a way to change this behavior).

Undefined results will occur if the space assigned by malloe is
overrun or if some random number is handed to free.

realloe changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The
contents will be unchanged up to the lesser of the new and old
sizes.

February, 1990
RevisionC

1

malloc(3X) malloc(3X)

2

calloc allocates space for an array of nelem elements of size el­
size. The space is initialized to zeros.

mallopt provides for control over the allocation algorithm. The
available values for cmd are:

M MXFAST Set maxfast to value. The algorithm allocates
all blocks below the size of maxfast in large
groups and then doles them out very quickly. The
default value for max f a s t is O.

M NLBLKS Set numlblks to value. The above mentioned
"large groups" each contain numlblks blocks.
numlblks must be greater than O. The default
value for numlblks is 100.

M GRAIN Set grain to value. The sizes of all blocks
smaller than max fa stare considered to be
rounded up to the nearest multiple of grain.
grain must be greater than O. The default value
of grain is the smallest number of bytes which
will allow alignment of any data type. Value will
be rounded up to a multiple of the default when
grain is set.

M KEEP Preserve data in a freed block until the next mal­
loc, realloc, or calloc. This option is pro­
vided only for compatibility with the old version
ofmalloc and is not recommended.

These values are defined in the <malloc. h> header file.

mallopt may be called repeatedly, but may not be called after
the first small block is allocated.

mallinfo provides instrumentation describing space usage. It
returns the structure:

struct mallinfo
int arena;
int ordblks;
int smblks;
int hblkhd;
int hblks;
int usmblks;
int fsmblks;
int uordblks;
int fordblks;

/* total space in arena */

/* number of ordinary blocks */
/*

/*
/*
/*

/*

/*

/*

number of small blocks */

space in holding block headers */

number of holding blocks */

space in small blocks in use */

space in free small blocks */

space in ordinary blocks in use */

space in free ordinary blocks */

February, 1990
RevisionC

malloe(3X) malloe(3X)

int keepcost; /* space penalty if keep option */
/* is used */

This structure is defined in the <malloe. h> header file.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of
object

RETURN VALUE
malloe, realloe and ealloe return a NULL pointer if there
is not enough available memory. When realloe returns NULL,
the block pointed to by ptr is left intact. If mall opt is called
after any allocation or if cmd or value are invalid, non-zero is re­
turned. Otherwise, it returns zero.

SEE ALSO
brk(2), malloe(3C).

WARNINGS
This package usually uses more data space than malloe(3C).
The code size is also bigger than malloe(3C).
Note that unlike malloc(3C), this package does not preserve the
contents of a block when it is freed, unless the M KEEP option of
malloptisused. -
Undocumented features of malloe(3C) have not been duplicat­
ed.

February,1990
RevisionC

3

matherr{3M) matherr{3M)

NAME
matherr - error-handling function

SYNOPSIS
finclude <math.h>

int matherr (x)

struct exception *x;

DESCRIPTION

1

matherr is invoked by functions in the Math Library when er­
rors are detected. Users may define their own procedures for han­
dling errors, by including a function named matherr in their
programs. matherr must be of the form described above. When
an error occurs, a pointer to the exception structure x will be
passed to the user-supplied matherr function. This structure,
which is defined in the <math. h> header file, is as follows:
struct exception {

int type:

}:

char *name:
double argl;
double arg2;
double retval:

The element type is an integer describing the type of error that has
occurred, from the following list of constants (defined in the
header file):

DOMAIN
SING
OVERFLOW
UNDERFLOW
TLOSS
PLOSS

argument domain error
argument singularity
overflow range error
underflow range error
total loss of significance
partial loss of significance

The element name points to a string containing the name of the
function that incurred the error. The variables argJ and arg2 are
the arguments with which the function was invoked. retval is set
to the default value that will be returned by the function unless the
user's matherr sets it to a different value.

If the user's matherr function returns nonzero, no error message
will be printed, and errno will not be set

Ifmatherr is not supplied by the user, the default error-handling
procedures, described with the math functions involved, will be
invoked upon error. These procedures are also summarized in the

February, 1990
Revision C

matherr(3M) rnatherr(3M)

table below. In every case, errno is set to EDOM or ERANGE and
the program continues.

EXAMPLES
iinclude <math.h>

int
matherr(x)
register struct exception *x;
{

switch (x->type) {
case DOMAIN:

1* change sqrt to return sqrt(-arg1), not 0 *1
if (!strcmp(x->name, "sqrt"» {

x->retval = sqrt(-x->arg1);
return (0); 1* print message and set errno *1

case SING:
1* all other domain or sing errors,

print message and abort *1
fprintf(stderr, "domain error in %s\n", x->name);
abort ();

case PLOSS:
1* print detailed error message *1
fprintf(stderr, "loss of significance in %s(%g)

x->name, x->arg1, x->retval);
return (1); 1* take no other action *1

return (0); 1* all other errors,

February, 1990
Revision C

execute default procedure *1

2

%g\n",

matherr(3M) matherr(3M)

DEFAULT ERROR HANDLING PROCEDURES
Types of Errors

type DOMAIN SINO OVERFLOW UNDERFLOW n.oss PLOSS

errno EDOM FDOM ERANOB HRANOB ERANGE ERANGE

BESSEL: - - - - M,O •
yO, yl, yn (arg S 0) M,-H - - - - -
EXP: - - H 0 - -
LOG,LOGlO:

(arg < 0) M,-H - - - - -
(arg = 0) - M,-H - - - -

POW: - - ±II 0 - -
neg •• nonint M,O - - - - -
0** nonpos

SQRT: M,O - - - - -
GAMMA: - M,H H - - -
HYPOT: - - H - - -
SINH: - - ±II - - -
COSH: - - H - - -
SIN, COS, TAN: - - - - M,O *
ASIN, ACOS, ATAN2 M,O - - - - -

ABBREVIATIONS
* As much as possible of the value is returned.
M Message is printed (EOOM error).
H HUGE is returned.

-H -HUGE is returned.
±H HUGE or -HUGE is returned.
o 0 is returned

3 February, 1990
Revision C

max(3F) max (3F)

NAME
max, maxO, amaxO, maxl, amaxl, dmaxl - Fortran
maximum-value functions

SYNOPSIS
integer i, j, k, I
real a, b, c, d
double precision dPl, dp2, dP3
l=max (i, j, k)
c=max (a, b)
d=max (a, b, c)
k=maxO (i, j)
a=amaxO (i, j, k)
i=maxl (a, b)
d=amaxl (a, b, c)
dP3=dmaxl (dpl, dP2)

DESCRIPTION
The maximum-value functions return the largest of their argu­
ments; there may be any number of arguments. max is the generic
form which can be used for all data types and takes its return type
from that of its arguments. All arguments must be of the same
type. max 0 returns the integer form of the maximum value of its
integer arguments; amax 0, the real form of its integer arguments;
maxl, the integer form of its real arguments; amaxl, the real
form of its real arguments; and dmaxl, the double-precision form
of its double-precision arguments.

SEE ALSO
min(3F).

February,1990
RevisionC

1

mclock(3F) mclock(3F)

NAME
mclock - return Fortran time accounting

SYNOPSIS
integer i

i=mclock ()

DESCRIPTION
mclock returns time accounting information about the current
process and its child processes. The value returned is the sum of
the current process's user time and the user and system times of
all child processes.

SEE ALSO
times(2), clock(3C), system(3F).

1 February, 1990
RevisionC

memory (3C) memory(3C)

NAME
memccpy, memchr, memcmp, memcpy, memset -
memory operations

SYNOPSIS
*include <memory.h>

char *memccpy (sl, s2, c, n)
char *sl, *s2 i
int c, ni

char *memchr (s, c, n)

char *Si
int c, n;

int memcmp (sl, s2, n)

char *sl, *s2 i
int ni

char *memcpy (sl, s2, n)

char *sl, *S2i
int ni

char *memset (s, c, n)

char *Si
int c, ni

DESCRIPTION
These functions operate efficiently on memory areas (arrays of
characters bounded by a count, not terminated by a null charac­
ter). They do not check for the overflow of any receiving memory
area.

memccpy copies characters from memory area s2 into sl, stop­
ping after the first occurrence of character c has been copied or
after n characters have been copied, whichever comes first It re­
turns either a pointer to the character after the copy of c in sl or a
NULL pointer if c was not found in the first n characters of s2.

memchr returns either a pointer to the first occurrence of charac­
ter c in the first n characters of memory area s or a NULL pointer
if c does not occur.

memcmp compares its arguments, looking at the first n characters
only. It returns an integer less than, equal to, or greater than 0,
depending on whether sl is lexicographically less than, equal to,
or greater than s2.

February, 1990
Revision C

1

memory (3C) memory(3C)

memcpy copies n characters from memory area s2 to sl. It re­
turns sl.

memset sets the first n characters in memory area s to the value
of character c. It returns s .

NOTES
For user convenience, all these functions are declared in the op­
tional <memory. h> header file.

BUGS

2

memcmp uses native character comparison.

Because character movement is perfonned differently in different
implementations, overlapping moves may yield unexpected
results.

February, 1990
RevisionC

min(3F) min(3F)

NAME
min, minO, aminO, minI, aminI, drninI - Fortran
minimum -value functions

SYNOPSIS
integer i, j, k, I
real a, b, c, d
double precision dPJ, dp2, ap3

l=min (i, j, k)
c=min (a, b)
d=min (a, b, c)
k=minO (i, j)
a=aminO (i, j, k)
i=minI (a, b)
d=aminI (a, b, c)
ap3=drninI (dpJ, dp2)

DESCRIPTION
The minimum-value functions return the minimum of their argu­
ments. There may be any number of arguments. min is the gen­
eric form which can be used for all data types. It takes its return
type from that of its arguments, which must all be of the same
type. minO returns the integer form of the minimum value of its
integer arguments; aminO, the real form of its integer arguments;
minI, the integer form of its real arguments; aminI, the real
form of its real arguments; and dminI, the double-precision form
of its double-precision arguments.

SEE ALSO
max(3F).

February, 1990
Revision C

1

mkfifo(3P) mkfifo(3P)

NAME
mkf if 0 - make a FIFO special file

SYNOPSIS
finclude <sys/types.h>
finclude <sys/stat.h>

int mkfifo (path, mode)
char *path;
mode _ t mode;

DESCRIPTION
mk f if 0 creates a new FIFO special file named by the path name
pointed to by path. The mode of the new FIFO is initialized from
mode. The file permission bits of mode are modified by the file
creation mask of the process. If bits in mode other than file per­
missions are set, the permissions on the FIFO will be undefined.

For the POSIX environment, the following constants for mode are
defined in <sys/ stat. h> :

S IRUSR read permission, owner

S IWUSER

S IXUSR

S IRGRP

S IWGRP

S IXGRP

S IROTH

writer permission, owner

execute/search permission, owner

read permission, group

writer permission, group

execute/search permission, group

read permission, others

S IWOTH writer permission, others

S _ IXOTH execute/search permission, others

The owner ID of the FIFO is set to the effective user ID of the
process. The group ID of the FIFO is set to the effective group ID
of the process.

On successful completion, mkfifo marks for update the
st atime, st ctime, and st mtime fields for the file. The
s t - c time and -s t mt ime fieldS of the directory that contains
thenew entry are also marked for update.

RETURN VALUE

1

On successful completion, mkfifo returns a value of O. Other­
wise, a value of -1 is returned, no FIFO is created, and errno is
set to indicate the error.

February, 1990
Revision C

mkfifo(3P) mkfifo(3P)

ERRORS
mk f if 0 will fail and the new FIFO will not be created if one or
more of the following are true:

[ENAMETOOLONG] A component of a pathname exceeded
NAME MAX characters, or an entire path­
name exceeded PATH MAX.

[ELOOP]

[ENOTDIR]

[ENOENT]

[EROFS]

[EEXIST]

[EFAULT]

SEE ALSO
mknod(2), umask(2).

February, 1990
RevisionC

Too many symbolic links were encoun­
tered in translating a pathname.

A component of the path prefix is not a
directory.

A component of the path prefix does not
exist.

The directory in which the FIFO is to be
created is located on a read-only file sys­
tem.

The named FIFO exists.

path points outside the allocated address
space of the process.

2

mktemp(3C) mktemp(3C)

NAME
mktemp - make a unique filename

SYNOPSIS
char *mktemp (template)
cha r * template;

DESCRIPTION
The function mktemp alters the contents of the string referenced
by * template so that it becomes a unique filename. The string at
* template should be initialized to a filenamed with six trailing x
characters; mktemp replaces the xs with a letter and the current
process 10. The letter is selected so that the resulting name is not
a duplicate an existing file.

RETURN VALUE
mktemp returns the address of the unique (altered) filename. If a
unique name cannot be created, template will point to a null
(empty) string.

SEE ALSO
getpid(2), tmpfile(3S), tmpnam(3S).

BUGS
It is possible to run out of letters.

1 February, 1990
Revision C

mod(3F) mod(3F)

NAME
mod, amod, dmod - Fortran remaindering intrinsic functions

SYNOPSIS
integer i, j, k
real rl, r2, r3
double precision apl, dP2, ap3

k=mod (i, j)

r3=amod (rl, r2)
r3=mod (rl, r2)

ap3=dmod (dpl, ap2)
ap3=mod (dpl, dp2)

DESCRIPTION
mod returns the integer remainder of its first argument divided by
its second argument. amod and dmod return. respectively. the
real and double-precision whole number remainder of the integer
division of their two arguments. The generic version mod returns
the data type of its arguments.

February. 1990
Revision C

1

moni tor(3C) moni tor(3C)

NAME
moni tor - prepare execution profile

SYNOPSIS
#include <mon.h>

vo i d moni tor (lowpc, highpc, buffer, bufsize, nfunc)
in t (* lowpc) (), (* hig hpc) () ;
WORD *buffer;
in t bufsize, nfunc;

DESCRIPTION

1

An executable program created by cc -p automatically includes
calls for moni tor with default parameters; moni tor needn't be
called explicitly except to gain fine control over profiling.

monitor is an interface to profil(2). lowpc and highpc are
the addresses of two functions; buffer is the address of a (user sup­
plied) array of bufsize elements of type WORD (defined in the
<mon. h> header file). monitor arranges to record a histogram
in the buffer. This histogram shows periodically sampled values
of the program counter and counts of calls of certain functions.
The lowest address sampled is that of lowpc; the highest address is
just below highpc. lowpc may not equal 0 for this use of moni­
tor. nfunc is the maximum number of call counts that can be
kept; only calls of functions compiled with the profiling option -p
of cc(I) are recorded. (The C Library and Math Library supplied
when cc -p is used also have call counts recorded.) For the
results to be significant, especially where there are small, heavily
used routines, it is suggested that the buffer be no more than a few
times smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use:

extern etext;
monitor ((int (*) ()) 2, etext, buf, bufsize, nfunc);

etext lies just above all the program text; see end(3C).

To stop execution monitoring and write the results on the file
mon. out, use

monitor ((int (*) (» 0, 0, 0, 0, 0);

prof(I) can then be used to examine the results.

February, 1990
Revision C

moni tor(3C)

FILES
mon.out
/lib/libp/libc.a
/lib/libp/libm.a

SEE ALSO
cc(1), prof(1), profil(2), end(3C).

February, 1990
Revision C

moni tor(3C)

2

mount(3) mount(3)

NAME
moun t - mount a file system

SYNOPSIS
int mount (spec, dir, rwflag)
char * spec , *dir;
int rwflag;

DESCRIPTION
mount requests that a removable file system contained on the
block special file identified by spec be mounted on the directory
identified by dir. spec and dir are pointers to path names.

Upon successful completion, references to the file dir will refer to
the root directory on the mounted file system.

The low-order bit of rwflag is used to control write permission on
the mounted file system; if 1, writing is forbidden, otherwise writ­
ing is permitted according to individual file accessibility. Physi­
cally write-protected and magnetic tape file systems must be
mounted read-only or errors will occur when access times are up­
dated, whether or not any explicit write is attempted.

mount may be invoked only by the superuser.

ERRORS

1

moun t will fail if one or more of the following are true:

[EPERM] The effective user ID is not superuser.

[ENOENT] Any of the named files does not exist.

[ENOTDIR]

[ENOTBLK]

[ENXIO]

[ENOTDIR]

[EFAULT]

[EBUSY]

[EPERM]

A component of a path prefix is not a
directory.

spec is not a block special device.

The device associated with spec does not
exist.

dir is not a directory.

spec or dir points outside the allocated
address space of the process.

dir is currently mounted on, is someone's
current working directory, or is otherwise
busy.

A pathname contains a character with the
high-order bit set.

February, 1990
RevisionC

mount(3)

[ENAMETOOLONG]

[ELOOP]

[EBUSY]

[EBUSY]

RETURN VALUE

mount (3)

A component of a patbname exceeded
NAME MAX characters, or an entire path­
name exceeded PATH MAX.

Too many symbolic links were encoun­
tered in translating a pathname.

The device associated with spec is
currently mounted.

There are no more mount table entries.

Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
fsmount(2), unmount(2), umount(3), fstab(4).

February, 1990
RevisionC

2

mount (3N) mount (3N)

NAME
moun t - keep track of remotely mounted file systems

SYNOPSIS
finclude <rpcsvc/mount.h>

DESCRIPTION
RPCINFO

Program number: MOUNTPROG

xdr routines:

xdr exportbody (xlirs, ex)
XDR *xlirs;
struct exports *u;

xdr exports (xlirs, ex);
XDR *xlirs;
struct exports **u;

xdr fhandle (xlirs, fh) ;
XDR *xlirs;
fhandle t *fp;

xdr fhstat~s (xlirs, fhs);
XDR *xlirs;
struct fhstatus *fhs;

xdr groups (xlirs, gr);
XDR *xlirs;
struct groups *gr;

xdr mountbody (xlirs, ml)
XDR *xlirs;
struct mountlist *ml;

xdr mountlist (xlirs, ml);
XDR *xlirs;
struct mountlist **ml;

xdryath (xlirs, path);
XDR *xlirs;
char **path;

Proes:

MOUNTPROC MNT
Argumem of xdryath; returns fhstatus. Requires
UNIX authentication.

MOUNTPROC DUMP
No arguments; returns structure mountlist.

1 February, 1990
Revision C

mount (3N) mount(3N)

MOUNTPROC UMNT
Argument of xdryath; no results. Requires UNIX au­
thentication.

MOUNTPROC UMNTALL
No arguments; no results. Requires UNIX authentication.
Unmounts all remote mounts of sender.

MOUNTPROC EXPORT
MOUNTPROC EXPORTALL

No arguments; returns structure expo rt s.

Versions: MOUNTVERS ORI G

Structures:

struct mountlist { /* what is mounted */
char *ml_name;
char *mlyath;
struct mountlist *ml_nxt;

} ;
struct fhstatus {

int fhs_status;
fhandle_t fhs_fh;

} ;
/*

* List of exported directories
* An export entry with ex groups NULL
* indicates an entry which is exported
* to the world.
*/

struct exports {

} ;

dev_t ex_dev; /* dev of directory */
char *ex_name; /* name of directory */
struct groups *ex groups;
/* groups allowed-to mount this entry */
struct exports *ex_next;

struct groups {
char *g_name;
struct groups *g_next;

} ;

SEE ALSO
mount(lM), mountd(lM), showmount(lM). NFS Protocol
Spec, Section 3, in AIUX Network Applications Programming.

February, 1990
Revision C

2

nbp(3N) nbp(3N)

NAME
nbp-parse_entity, nbp_make_entity,
nbp confirm, nbp lookup, nbp register,
nbp = remove - AppleTalk Name Binding Protocol (NBP)
interface.

SYNOPSIS
#include <at/appletalk.h>
#include <at/nbp.h>
cc fflags] files -lat [libraries]

int nbp-parse_entity(entiry, su);
at_entity_t *entiry;
char *su;

int nbp_make_entity (entiry, object, rype, zone);
at_entity_t *entiry;
char *object, *rype, *zone;

int nbp_confirm(entiry, dest, reuy);
at_entity_t *entiry;
at_inet_t *dest;
at_retry_t *retry;

int nbp lookup (entiry, buf, max, reuy) ;
at entity t *entiry;
at=nbptuple_t *buf;
int max;
at_retry_t *retry;

int nbp register (entiry, fd, reuy) ;
at entity t *entiry;
int fd; -
at_retry_t *retry;

int nbp_remove(entiry,fd);
at entity t *entiry;
int fd; -

DESCRIYfION

1

The NBP interface provides applications with access to the NBP
operations. The routines use these structures (defined in
<at/appletalk. h»:

typedef struct at_inet {
at net net;
at node node;

February, 1990
RevisionC

nbp(3N) nbp(3N)

at socket socket;
} at_inet=t;

typedef struct at_retry {
short interval;
short retries;
u char backoff;

} at_retry_t;

The AppleTalk NBP operations also use these structures (defined
in <at/nbp.h»:

typedef struct at_nvestr {
char len;
char str[NBP_NVE_STR SIZE];

} at_nvestr_t;

typedef struct at_entity
at_nvestr_t object;
at_nvestr_t type;
at nvestr t zone; - -

at_entity_t;

typedef struct at_nbptuple {
at inet_t enu_addr;
u char
at_entity_t

at_nbptuple_t;

enu_enum;
enu_entitYi

The at inet t structure specifies the AppleTalk internet ad­
dress of aDDP SOcket endpoint

The at retry t structure specifies the retry interval and max­
imum count for a transaction. The members of this structure are

interval The interval in seconds before NBP retries a request.

retries The maximum number of retries for this NBP request

backoff Not used by NBP.

The at nvestr t structure specifies an NBP entity string. The
members of this suUcture are:

len The length of the string in bytes.

February, 1990
Revision C

2

nbp(3N) nbp(3N)

3

str The character data for this string.

The at_entity_t structure describes an entity name, which
consists of three NBP entity strings: object, type, and zone.

All NBP routines work with the a t en tit Y t structure. Two
utility routines, nbpyarse_entity, and
nbp_make_entity, are provided to aid in creating
at_entity_t structures from C strings.

The nbpyarse_entity structure constructs an NBP entity
name from a NULL-terminated C string of the form object,
object:type, or object:type@zone. The entity name is placed in the
at _ enti ty _ t structure entity. This routine returns 0 on success.

The nbp make entity structure constructs an NBP entity
name from object: type, and zone strings. The strings are NULL­
terminated C strings. The entity name is placed into the
at_entity_t structure entity. Use the object, type, and zone
character strings to construct the entity name. This routine returns
o on success.

The nbp confirm structure sends a confirmation request to the
specified node to see if an entity name is still registered at the
specified AppleTalk internet address.

entity

dest

retry

A pointer to the at en tit Y t structure containing
the entity name. No-wildcards-are allowed in the enti­
ty name strings, but an asterisk (*) for zone is accept­
able.

The AppleTalk internet address to confirm. If the
name is still registered on the node but at a different
socket number, the socket number in dest is updated.

A pointer to the structure that specifies the NBP re­
quest retry interval in seconds and the maximum retry
count. If retry is NULL, the system uses the default
values: a I-second interval and eight retries.

On success, nbp confirm returns 1. It returns 0 when the
name is not confiriDed, and -Ion error.

The nbp_lookup structure returns a list of registered name­
address pairs via an NBP lookup. The parameters are

entity A pointer to the at entity t structure containing
the entity name to belooked up.

February, 1990
Revision C

nbp(3N)

buf

max

retry

nbp(3N)

An array of at nbptuple t to receive entity tu-
ples. - -

The maximum number of entity tuples to accept If
max or more distinct tuples are received before the
lookup retry is exceeded, the lookup terminates.

The pointer to the structure that specifies the NBP re­
quest retry interval in seconds and the maximum retry
count If retry is NUlL, the system uses the default
values: a one-second interval and eight retries.

On success, nbp _lookup returns the number of entity tuples ac­
tually received.

The nbp_register structure adds the specified name-socket
pair to the list of registered names on this node. The parameters
are

entity

fd

retry

A pointer to the at en tit Y t structure containing
the entity name to be registered. The zone field of en­
tity is always ignored. No wildcards are allowed in
the entity strings.

An AppleTaik file descriptor to be registered with the
given name.

A pointer to the structure that specifies the NBP re­
quest retry interval in seconds and the maximum retry
count If retry is NULL, the system uses the default
values: a I-second interval and eight retries.

The nbp _remove structure removes the specified entity name
from the list of registered names on this node. The parameters are

entity A pointer to the at en tit Y t structure containing
the entity name to Ii" removed:-The zone field of enti­
ty is always ignored. No wildcards are allowed in the
entity strings.

fd The AppleTaik file descriptor that is registered with
the given name.

WARNINGS
Strings in entity names and entity tuples are not NULL terminated.

All characters in NVE names are significant, including trailing
blanks.

February, 1990
RevisionC

4

nbp(3N) nbp(3N)

See Inside AppleTalk for a description ofNVE names.
DIAGNOSTICS

All routines return -Ion error with a detailed error code in errno:

[EINVAL] The entity name is invalid

[ETlMEDOUT] The request exceeded maximum retry count.

SEE ALSO
ddp (3n) , Inside AppleTalk.

5 February, 1990
RevisionC

nlist(3C)

NAME
nlist - get entries from name list

SYNOPSIS
finclude <a.out.h>

int nlist (filename, ni)
char *filename;
struct nlist *nl;

DESCRIPTION

nlist(3C)

nl i s t examines the name list in the executable file whose name
is pointed to by filename; it selectively extracts a list of values and
puts them in the array of nlist structures pointed to by nl. The
name list nl consists of an array of structures containing names of
variables, types, and values. The list is tenninated with a null
name; Le., a null string is in the name position of the structure.
Each variable name is looked up in the name list of the file. If the
name is found, the type and value of the name are inserted in the
next two fields. The type filed will be set to 0 unless the file was
compiled with the -g option. If the name is not found, both en­
tries are set to O. See a. out(4) for a discussion of the symbol
table structure.

This function is useful for examining the system name list kept in
the file / unix. In this way programs can obtain system addresses
that are up to date.

RETURN VALUE
nlist returns -1 upon error; otherwise it returns O.

All value entries are set to 0 if the file cannot be read or if it does
not contain a valid name list

SEE ALSO
a.out(4).

February, 1990
RevisionC

1

pap(3N) pap(3N)

NAME
paps_open, paps_get_next_job, paps_status,
paps_close, pap_open, pap_read,
pap read ignore, pap status, pap write,
pap-close - AppleTaIk Printer Access Protocol (PAP)
interface

SYNOPSIS

1

iinclude <at/appletalk.h>
iinclude <at/pap.h>
iinclude <at/nbp.h>
cc fflags] files -lat [libraries]

int paps_open ()

int paps get next job (jd)
int fd; - - -

int paps status (jd, status)
int fd; -
cha r * status ;

int paps close (jd)
int fd; -

int pap open (tuple)
at_nbptuple_t * tuple;

int pap read (jd, data, len)
int fd, len;
char * data;

int pap read ignore (jd)
int fd; - -

char *pap status (tuple)
at_nbptuple_t *tuple;

int pap write (jd, data, len, eof, flush)
int fd, len;
int eof, flush;
char * data;

int pap close (jd)
int fd; -

February, 1990
Revision C

pap(3N) pap(3N)

DESCRIPTION
The PAP interface provides applications with access to the Ap­
pleTalk Printer Access Protocol operations. The interface routines
can be divided into two sets: One set provides services for a PAP
client, the other for a PAP server. The routines for the PAP server
are

paps_open
pap_read
paps_get_next_job
paps_status
paps_close

The routines for the PAP client are:

pap_open
pap_read
pap_read_ignore
pap status
pap=write
pap_close

The paps_open routine opens a PAP server AppleTalk file
descriptor for a PAP server. The caller may then use
nbp register (see nbp(3N» to register a network-visible en­
tity (NVE) on the socket and paps s tat u s to post a status
string on it The paps open routine returns an AppleTalk file
descriptor on success, -Ion failure.

The paps get next job routine is called by a server when it
is ready to respond to a-new PAP client. It returns a PAP server
AppleTalk file descriptor that is set up for PAP reading from the
client that has been waiting the longest. The parameter is

fd A PAP server AppleTalk file descriptor from a previ-
0us paps_open.

Upon successful completion a PAP server AppleTalk file descrip­
tor is returned.

The paps status routine changes the status string associat­
ed with an open PAP server AppleTalk file descriptor. This is the
string returned to a PAP client from a pap_status call. The
parameters are

February, 1990
Revision C

2

pap(3N) pap(3N)

3

fd

status

An open PAP server AppleTalk file descriptor re­
turned from a paps_open call.

A pointer to a null-terminated character string con­
taining the s tat us string being posted. Strings
longer than 255 characters are truncated.

Upon successful completion a value of 0 is returned.

The paps close routine closes an open PAP server file descrip­
tor. The parameter is

fd The file descriptor to be closed.

It returns 0 upon successful completion.

The pap open routine opens a PAP client file descriptor to a
server. Itattempts to connect to the server whose name and ad­
dress are contained in the tuple parameter. The command
nbp lookup (see nbp(3N» may be used to obtain a valid name
and address for the desired PAP server.

Upon successful completion, this routine returns a PAP client file
descriptor connected to the server requested.

The pap read routine reads data from a server PAP file descrip­
tor opened by a paps _open, followed by a
paps_get_next_job call. The parameters are

fd A PAP server file descriptor.

data A pointer to the buffer containing the data to be re­
turned. The maximum data length specified by the
length parameter is 512 bytes.

length The maximum length to be read

Upon successful completion, the number of bytes read is returned.
A value of 0 is returned when an end-of-file is reached.

The pap read ignore routine issues a PAP read request and
ignores any retuffied data. This is used to allow LaserWriters to
function when they want to return status messages. The parameter
is

fd A PAP client file descriptor returned by an earlier
pap_open.

The pap status routine locates a PAP server and returns a
pointer to Its status string. The parameter is

February, 1990
RevisionC

pap(3N)

tuple

pap(3N)

A pointer to a tuple structure containing the name and
address of a PAP server entity. The routine
nbp _lookup (See nbp(3N) may be used to get a
valid tuple.

Upon successful completion, a pointer to the string containing the
PAP server's status is returned. If the printer's status cannot be
recovered, NULL is returned.

The pap _ wri te routine sends the data passed to it to the other
end of a PAP server session. The parameters are

fd A PAP client AppleTalk file descriptor.

data A pointer to the data being written.

len The length of the data being written; this must not
exceed 512 bytes.

eof A Boolean flag indicating whethere EOF indication is to
be sent to the other end of the PAP session (after the
data has been sent) to indicate that no more data will be
sent Setting eof to true also implies flush.

flush A Boolean flag indicating whether data for all waiting
PAP writes is to be sent to the remote end. Because
PAP runs on top of ATP, PAP writes are queued until
either a complete A TP response is available (about 4
KB) or an end-of-message is sent This call sends an
A TP end-of-message, which causes all waiting PAP
writes to be sent to the other end. This should be done if
a higher level protocol (for example, a handshake with a
LaserWriter) needs to do a wri te followed by a read.

Upon successful completion, a value of 0 is returned.

The pap close routine closes an open PAP client file descrip­
tor. The parameter is

fd The file descriptor to be closed.

It returns 0 upon successful completion. If the file descriptor is no
longer open, it returns -1.

ERRORS
All routines except pap status return -1 on error with a de­
tailed error code in errno:

[EINVAL]

February, 1990
RevisionC

An invalid argument was passed.

4

pap(3N) pap(3N)

[ENE TDOWN] The network interface is down.

[ESHUTDOWN] The PAP file descriptor has already been
closed.

[ETlMEDOUT] The connection is timed out.

See open(2), close(2), ioctl(2), read(2), and wri te(2) for
additional error codes; see also errors returned by the underlying
NBP, A TP, and DDP modules.

SEE ALSO

5

atp(3N), ddp(3N), nbp(3N), rtmp(3N) , Inside App/eTa/k.

February, 1990
Revision C

pathconf(3P) pathconf(3P)

NAME
pathconf, fpathconf - get configurable pathname
variables

SYNOPSIS
finclude <unistd.h>

long pathconf (path, name)
char *path;
int name;

long fpathconf (fildes, name)
int fildes, name;

DESCRIPTION
pathconf and fpathconf provide a method for an application
to determine the current value of a configurable limit or option
that is associated with a file or directory.

For fpathconf, path points to a pathname of a file or directory.
For fpathconf, fildes is an open file descriptor. name is the
variable to be queried relative to the file or directory. The follow­
ing variables can be queried:

PC LINK MAX - - -
PC MAX CANON - - -
PC MAX INPUT - - -
PC NAME MAX - - -
PC PATH MAX - - -
PC PIPE BUF - - -
PC CHOWN RESTRICTED
PC CHOWN SUP GRP - - --
PC DIR DOTS - - -
PC GROUP PARENT
PC LINK DIR - - -
PC NO TRUNC - - -
PC UTIME OWNER
PC VDISABLE

RETURN VALUE
If the named variable is not defined on the system, or if name is
not a valid variable name, or if the variable cannot be associated
with the specified file or directory, or if the process does not have
permission to query the file specified by path, or if path does not
exist, pathconf returns-1.

February, 1990
Revision C

1

pathconf(3P) pa thconf (3P)

If the named variable is not defined on the system, or if name is
not a valid variable name, or if the variable cannot be associated
with the specified file or directory, fpathconf returns-I.

If none of the above are true, pa thconf and fpa thconf return
the current value associated with the variable for the file or direc­
tory.

ERRORS
pathconf and fpathconf will fail if one or more of the fol­
lowing are true:

[ENOTDIR] A component of the path prefix is not a
directory.

[ENAMETOOLONG] A component of a pathname exceeded
NAME MAX characters, or an entire path­
name exceeded PATH MAX.

[ELOOP] Too many symbolic links were encoun­
tered in translating a pathname.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a com­
ponent of the path prefix.

[EFAULT] path points to an invalid address.

[EINVAL] The value of the name is invalid, or the
variable name is not associated with the
specified file.

fpathconf will also fail if the following condition occurs:

[EBADF] The open file descriptor,jildes, is not valid.

SEE ALSO
sysconf(3P).

2 February, 1990
RevisionC

perror(3C) perror(3C)

NAME
perror, errno, sys_errlist, sys_nerr -- sysrem
error messages

SYNOPSIS
void perror (s)
char *Si

extern int errnOi

extern char *sys_errlist[]i

extern int sys_nerri

DESCRIPTION
perror produces a message on the standard error output,
describing the last error encounrered during a call to a sysrem or
library function. The argument string s is printed first, then a
colon and a blank, then the message and a newline. To be of most
use, the argument string should include the name of the program
that incurred the error. The error number is taken from the exrer­
nal variable errno, which is set when errors occur but not
cleared when nonerroneous calls are made.

To simplify variant formatting of messages, the array of message
strings sys_errlist is provided; errno can be used as an in­
dex in this table to get the message string without the newline.
sys _ nerr is the largest message number provided for in the
table; it should be checked because new error codes may be added
to the system before they are added to the table.

SEE ALSO
intro(2).

February, 1990
RevisionC

1

plot(3X) plot(3X)

NAME
plot - graphics interface subroutines

SYNOPSIS
int openpl ()

int erase ()

int label (s)

char *s;

int line(xl, yl, x2, y2)
int xl, yl, x2, y2;

int circle (x, y, r)
int x, y, r;

int arc(x, y, xO, yO, xl, yl)
int x, y, xO, yO, xl, yl;

int move (x, y)
int x, y;
int cont (x, y)
int x, y;

int point (x, y)

int x, y;

int linemod (s)

char *s;

int space (xO, yO, xl, yl)
int xO, yO, xl, yl;

int closepl ()

DESCRIPTION

1

These subroutines generate graphic output in a relatively device­
independent manner. space must be used before any of these
functions to declare the amount of space necessary; see plot(4).
openpl must be used before any of the others to open the device
for writing. closepl flushes the output.

ci rcle draws a circle of radius r with center at the point (x,y).

a rc draws an arc of a circle with center at the point (x,y) between
the points (xO,yO) and (xl,yl).

String arguments to label and linemod are terminated by nulls
and do not contain newlines.

February, 1990
RevisionC

plot(3X) plot(3X)

See plot(4) for a description of the effect of the remaining func­
tions.

The library files listed below provide several variations of these
routines.

FILES
/usr/lib/libplot.a

/usr/lib/lib300.a
/usr/lib/lib300s.a
/usr/lib/lib4S0.a
/usr/lib/lib4014.a

WARNINGS

produces output for tplot(lG)
filters
forDASI300
for DASI 300s
forDASI450
for Tektronix 4014

To compile a program containing these functions in file. c, use

cc file.c -lplot

To execute it, use

a.out I tplo

The above routines use <stdio. h>. Therefore, the size of pro­
grams not otherwise using standard I/O is increased more than
might be expected.

SEE ALSO
tplot(IG), plot(4).

February,1990
RevisionC

2

popen(3S) popen(3S)

NAME
popen, pelose - initiate pipe to/from a process

SYNOPSIS
#inelude <stdio.h>

FILE *popen (command, type)
ehar *commami, *type;

int pelose(sueam)
FILE *stream;

DESCRIPTION
The arguments to popen are pointers to null-terminated strings;
one string contains a shell command line and the other contains an
I/O mode. The mode may be either "r" for reading or "w" for
writing. popen creates a pipe between the calling program and
the command to be executed. The value returned is a stream
pointer. If the I/O mode is w, one can write to the standard input
of the command by writing to the file stream; if the I/O mode is r,
one can read from the standard output of the command, by reading
from the file stream.

A stream opened by popen should be closed by pelose, which
waits for the associated process to terminate and returns the exit
status of the command.

Because open files are shared, a type "r" command may be used
as an input filter and a type' 'w" as an output filter.

RETURN VALUE
popen returns a NULL pointer if files or processes cannot be
created.

pelose returns -1 if stream is not associated with a command
opened by popen.

SEE ALSO
pipe(2), wai t(2), felose(3S), fopen(3S), system(3S).

BUGS

1

If the original processes and processes opened by popen con­
currently read or write a common file, neither should use buffered
I/O, because the buffering gets all mixed up. Problems with an
output filter may be forestalled by careful buffer flushing, for ex­
ample, by using fflush (see felose(3S».

February, 1990
Revision C

popen(3S) popen(3S)

If an illegal type is passed, popen will fork and exec the com­
mand line passed to it before it discovers that the type was illegal.
This will result in a NULL pointer being returned and a broken
pipe (with the command executing in the background).

February, 1990
Revision C

2

printf(3S) printf(3S)

NAME
printf, fprintf, sprintf - fonnat and output string and
numeric data

SYNOPSIS
#include <stdio.h>

int printf (format[, arg] ...)
char *format;

int fprintf (stream, format[, arg] ...)
FILE *stream;
char *format;

int sprintf (s, format[, arg] ...)
char *s, format;

DESCRIPTION

1

printf places output on the standard output stream stdout.
fprintf places output on the named output stream. sprintf
places output, followed by the null character (\ 0) in consecutive
bytes starting at *s; it is the user's responsibility to ensure that
enough storage is available.

Each of these functions converts, formats, and prints its args
under control of the format. The format is a character string that
contains two types of objects: plain characters, which are simply
copied to the output stream, and conversion specifications, each of
which results in fetching zero or more args. The results are
undefined if there are insufficient args for the format. If the for­
mat is exhausted while args remain, the excess args are simply ig­
nored.

Each conversion specification is introduced by the character %.
After the %, the following appear in sequence:

Zero or more flags, which modify the meaning of the conver­
sion specification.

An optional decimal digit string specifying a minimum field
width. If the converted value has fewer characters than the
field width, it will be padded to the field width on the left (de­
fault) or right (if the left-adjustment flag - has been given);
see below for flag specification. If the field width for an s
conversion is preceded by a 0, the string is right adjusted
with zero padding on the left.

February, 1990
RevisionC

printf(3S) printf(3S)

A precision that gives the minimum number of digits to ap­
pear for the d, 0, U, x, or X conversions, the number of digits
to appear after the decimal point for the e and f conversions,
the maximum number of significant digits for the g conver­
sion, or the maximum number of characters to be printed
from a string in the s conversion. The format of the preci­
sion is a period (.) followed by a decimal digit string; a null
digit string is treated as zero.

An optional 1 (ell) specifying that a following d, 0, u, x, or
X conversion character applies to a long integer arg. An 1
before any other conversion character is ignored.

A character that indicates the type of conversion to be ap­
plied.

A field width or precision may be indicated by an asterisk (*) in­
stead of a digit string. In this case, an integer arg supplies the
field width or precision. The arg that is actually converted is not
fetched until the conversion letter is seen; therefore, the args
specifying field width or precision must appear before the arg (if
any) to be converted.

The flag characters and their meanings are:

The result of the conversion will be left-justified
within the field.

+ The result of a signed conversion will always begin
with a sign (+ or -).

blank If the first character of a signed conversion is not a
sign, a blank will be prefixed to the result This im­
plies that if the blank and + flags both appear, the
blank flag will be ignored.

February,l990
Revision C

This flag specifies that the value is to be converted to
an "alternate fonn." For c, d, s, and U conversions,
the flag has no effect. For 0 conversion, it increases
the precision to force the first digit of the result to be
a zero. For x (X) conversion, a non-zero result will
have Ox (Ox) prefixed to it. For e, E, f, g, and G
conversions, the result will always contain a decimal
point, even if no digits follow the point (normally, a
decimal point appears in the result of these conver­
sions only if a digit follows it). For g and G conver-

2

printf(3S) printf(3S)

3

sions, trailing zeroes will not be removed from the
result (which they normally are).

The conversion characters and their meanings are:

d,o,u,x,x The integer arg is converted to signed decimal, un­
signed octal, decimal, or hexadecimal notation (x and
x). respectively; the letters abcde f are used for x
conversion and the letters ABCDEF for x conversion.
The precision specifies the minimum number of digits
to appear; if the value being converted can be
represented in fewer digits, it will be expanded with
leading zeroes. (For compatibility with older ver­
sions, padding with leading zeroes may alternatively
be specified by prefixing a zero to the field width.)
This does not imply an octal value for the field width.
The default precision is 1. The result of converting a
zero value with a precision of zero is a null string.

f The float or double arg is converted to decimal nota­
tion in the style [-]ddd . ddd, where the number of di­
gits after the decimal point is equal to the precision
specification. If the precision is missing, 6 digits are
output; if the precision is explicitly O. no decimal
point appears.

e,E

g,G

c

The float or double arg is converted in the style [­
]d. ddde±dd, where there is one digit before the de­
cimal point and the number of digits after it is equal
to the precision; when the precision is missing, 6 di­
gits are produced; if the precision is zero, no decimal
point appears. The E format code produces a number
with E instead of e introducing the exponent The ex­
ponent always contains at least two digits.

The float or double arg is printed in style f or e (or in
style E in the case of a G format code), with the preci­
sion specifying the number of significant digits. The
style used depends on the value converted: style e is
used only if the exponent resulting from the conver­
sion is less than -4 or greater than the precision.
Trailing zeroes are removed from the result; a de­
cimal point appears only if it is followed by a digit

The character arg is printed.

February, 1990
RevisionC

printf(3S) printf(3S)

s The arg is taken to be a string (character pointer) and
characters from the string are printed until a null char­
acter (\ 0) is encountered or the number of characters
indicated by the precision specification is reached. If
the precision is missing, it is taken to be infinite, so all
characters up to the first null character are printed. A
NULL value for arg yields undefined results.

% Print a %; no argument is converted.

In no case does a noo-existent or small field width cause trunca­
tion of a field; if the result of a conversion is wider than the field
width, the field is simply expanded to contain the conversion
result Characters generated by printf and fprintf are print­
ed as if putc(3S) had been called.

RETURN VALUE
Each function returns the number of characters transmitted (not
including the \ 0 in the case of sprintf), or a negative value if
an output error was encountered.

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02",
where wkday and mnth are pointers to null-terminated strings:
printf("%s, %s %d, %.2d:%.2d", wkday, mnlh, day, hr, min);

To print pi to 5 decimal places:

printf("pi=%.5f", 4*atan(1.0»;

SEE ALSO
ecvt(3C), intro(3), putc(3S), scanf(3S).

February, 1990
Revision C

4

putc(3S) putc(3S)

NAME
putc, putchar, fputc, putw - put character or word on a
stream

SYNOPSIS
iinclude <stdio.h>

int putc (c, stream)
int c;
FILE *stream;

int putchar (c)

int c;

int fputc (c, stream)
int c;
FILE *stream;

int putw (w, stream)
int W;
FILE *stream;

DESCRIPTION

1

The putc macro writes the character c onto the output stream at
the position where the file pointer, if defined, is pointing. The
putchar macro is defined as putc (c, stdout) .

fputc behaves like putc, but is a function rather than a macro.
fputc runs more slowly than putc, but it takes less space per
invocation and its name can be passed as an argument to a func­
tion.

putw writes the word (32-bit integer on the Macintosh IT) w to the
output stream at the position at which the file pointer, if defined, is
pointing. putw neither assumes nor causes special alignment in
the file.

Output streams, with the exception of the standard error stream
stderr, are by default buffered if the output refers to a file and
line-buffered if the output refers to a terminal. The standard error
output stream stderr is by default unbuffered, but use of
freopen (see fopen(3S» causes it to become buffered or line­
buffered. When an output stream is unbuffered information, it is
queued for writing on the destination file or terminal as soon as
written; when it is buffered, many characters are saved up and
written as a block; when it is line-buffered, each line of output is
queued for writing on the destination terminal as soon as the line
is completed (Le., as soon as a newline character is written or ter-

February, 1990
RevisionC

putc(3S) putc(3S)

minal input is requested). setbuf(3S) may be used to change
the stream's buffering strategy.

RETURN VALUE
On success, these functions each return the value they have writ­
ten. On failure, they return the constant EOP. This occurs if the
file stream is not open for writing or if the output file cannot be
grown. Because EOF is a valid integer, ferror(3S) should be
used to detect putw errors.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S),
getc(3S), printf(3S), puts(3S), setbuf(3S).

BUGS
Because it is implemented as a macro, putc treats incorrectly a
stream argument with side effects. In particular, putc (c,
*f++) ; doesn't work sensibly. fputc should be used instead.
Because of possible differences in word length and byte ordering,
files written using put w are machine-dependent and may not be
read using getw on a different processor.

February, 1990
Revision C

2

putenv(3C) putenv(3C)

NAME
putenv - change or add value to environment

SYNOPSIS
int putenv (string)
char * string ;

DESCRIPTION
string points to a string of the form "name=value tt

• putenv
makes the value of the environment variable name equal to value
by altering an existing variable or creating a new one. In either
case, the string pointed to by string becomes part of the environ­
ment, so altering the string will change the environment The
space used by string is no longer used once a new string-defining
name is passed to putenv.

RETURN VALUE
putenv returns nonzero if it was unable to obtain enough space
via rna 11 0 c for an expanded environment, otherwise zero.

SEE ALSO
exec(2), getenv(3C), rnalloc(3C), environ(5).

WARNINGS

1

putenv manipulates the environment pointed to by environ,
and can be used in conjunction with getenv. However, envp
(the third argument to main) is not changed.
This routine uses rnalloc(3C) to enlarge the environment
After putenv is called, environmental variables are not in alpha­
beticalorder.
A potential error is to call putenv with an automatic variable as
the argument, then exit the calling function while string is still part
of the environment.

February, 1990
RevisionC

putpwent(3C)

NAME
putpwent - write password file entry

SYNOPSIS
#include <pwd.h>

int putpwent(p, fl
struct passwd *p;
FILE */;

DESCRIPTION

putpwent(3C)

putpwent is the inverse of getpwent(3C). Given a pointer to
a passwd structure created by getpwent (or getpwuid or
getpwnam), putpwuid writes a line on the stream / which
matches the format of / etc/passwd.

The <pwd. h> header file is described in getpwent(3C).

RETURN VALUE
putpwent returns nonzero if an error was detected during its
operation; otherwise it returns zero.

SEE ALSO
getpwent(3C).

WARNINGS
The above routine uses <stdio. h>. Therefore, the size of pro­
grams not otherwise using standard I/O is increased more than
might be expected.

February, 1990
Revision C

1

puts(3S) puts(3S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
finclude <stdio.h>

int puts (s)

char *s;

int fputs (s, stream)
char *s;
FILE *stream;

DESCRIPTION
puts writes the null-terminated string referenced by s, followed
by a newline character, to the standard output stream stdout.

fputs writes the null-terminated string pointed to by s to the
named output stream.

Neither function writes the terminating null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), printf(3S),
putc(3S).

RETURN VALUE
On success, both routines return the number of characters written.

Both functions return EOF on error. This occurs if the routines try
to write on a file that has not been opened for writing.

NOTES

1

puts appends a newline character while fputs does not

February, 1990
Revision C

qsort(3C) qsort(3C)

NAME
qs 0 rt - quicker sort

SYNOPSIS
void qsort (base, nel, width, compar)
char *base;
unsigned nel, width;
int (*compar) () ;

DESCRIPTION
qsort is an implementation of the quicker-sort algorithm. It
sorts a table of data in place.

base points to the element at the base of the table. nel is the
number of elements in the table. width is the width of an element
in bytes. compar is the name of the comparison function, which is
called with two arguments that point to the elements being com­
pared. The function must return an integer less than, equal to, or
greater than zero according as the first argument is to be con­
sidered less than, equal to, or greater than the second.

NOTES
The pointer to the base of the table should be of type pointer-to­
element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbi­
trary data may be contained in the elements in addition to the
values being compared. The order in the output of the two items
which compare as equal is unpredictable.

EXAMPLES
struct entry

} :

main ()
{

char *name:
int flags:

struct entry hp[100];
int entcmp () :
int i, count:

for (i = 0: i < (count = 100): i++) {
1* fill the structure with the name

and flags *1

qsort((char *) hp, count, sizeof (hp[O]), entcmp):

February,1990
Revision C

1

qsort(3C) qsort(3C)

entcmp(ep,ep2)
struct entry *ep, *ep2;
{

return (strcmp(ep->name, ep2->name»;

will sort a set of names with associated flags in ASCII order.

SEE ALSO

2

sort(1), bsearch(3C), lsearch(3C), string(3C).

February, 1990
RevisionC

rand(3C)

NAME
rand, s rand - simple random-number generator

SYNOPSIS
int randO

void s rand (seed)
unsigned seed;

DESCRIPTION

rand(3C)

rand uses a multiplicative congruential random-number genera­
tor with period 2 power of 32 that returns successive pseudo­
random numbers in the range from 0 to 32767.

srand can be called at any time to reset the random-number gen­
erator to a random starting point The generator is initially seeded
with a value of 1.

NOTES
The spectral properties of rand leave a great deal to be desired.
drand48(3C) provides a much better, though more elaborate,
random-number generator.

SEE ALSO
drand48(3C).

February, 1990
RevisionC

1

rand(3F) rand(3F)

NAME
irand, srand, rand - Fortran unifonn random-number
generator

SYNOPSIS
call srand (iseed)

i=irand()

x=rand ()

DESCRIPTION
irand generates successive pseudo-random numbers in the range
from 0 to 2**15-1. rand generates pseudo-random numbers dis­
tributed in (0, 1.0). srand uses its integer argument to reinitial­
ize the seed for successive invocations of irand and rand.

SEE ALSO
rand(3C).

1 February, 1990
Revision C

rcmd(3N) rcmd(3N)

NAME
rcmd, rresvport, ruserok - routines for returning a
stream to a remote command

SYNOPSIS
int rcmd (ahost, inport, locuser, remuser, cmd, fd2p)
char **ahosti
u short inporti
ella r * locuser, * remuser, * cmd i
int *fd2Pi

int rresvport (port)
int *porti

int ruserok (rhost, superuser, user, user)
char *rhosti
in t superuser i
char *ruser, *luser;

DESCRIPTION
rcmd is a routine used by the superuser to execute a command on
a remote machine using an authentication scheme based on
reserved port numbers. rresvport is a routine which returns a
descriptor to a socket with an address in the privileged port space.
ruserok is a routine used by servers to authenticate clients re­
questing service with rcmd. All three functions are present in the
same file and are used by the remshd(1M) server, as well as oth­
ers.

rcmd looks up the host * ahost, returning -1 if the host does not
exist Otherwise * ahost is set to the standard name of the host and
a connection is established to a server residing at the well-known
Internet port in port.

If the call succeeds, a socket of type SOCK STREAM is returned
to the caller, and given to the remote command as stdin and
stdout. If fd2p is nonzero, then an auxiliary channel to a con­
trol process will be set up, and a descriptor for it will be placed in
*fd2p. The control process will return the stderr (descriptor 2
of the remote(IM) command) on this channel and will accept
bytes on this channel as NUX signal numbers to be forwarded to
the process group of the command. Iffd2p is 0, then the stderr
(descriptor 2 of the remote(1M) command) will be made the
same as stdout; no provision will be made for sending arbitrary
signals to the remote process, although you may be able to get its
attention by using out-of-band data.

February, 1990 1
RevisionC

rcmd(3N} rcmd(3N}

The protocol is described in detail in remshd(lM}.

The rresvport routine is used to obtain a socket with a
privileged address bound to it. This socket is suitable for use by
rcmd and several other routines. Privileged addresses consist of a
port in the range 0 to 1023. Only the superuser is allowed to bind
an address of this sort to a socket

ruserok takes a remote host's name, two user names, and a flag
indicating if the local user's name is the superuser. It then checks
the files / etc/hosts. equi v and, possibly, . rhosts in the
current working directory (normally the local user's home directo­
ry) to see if the request for service is allowed. A 0 is returned if
the machine name is listed in the hosts. equiv file or the host
and remote user name are found in the . rhosts file; otherwise
ruserok returns -1. If the superuser flag is 1, the checking of
the host. equi v file is bypassed.

SEE ALSO
remsh(lN), rlogin(lN), remshd(lM), rexecd(lM),
rlogind(lM), rexec(3N).

BUGS

2

There is no way to specify options to the socket call which
rcmdmakes.

February, 1990
RevisionC

regcmp(3X) regcmp(3X)

NAME
regcmp, regex - compile and execute a regular expression

SYNOPSIS
char *regcmp (stringl [, string2, ...], (char *) 0))
char *stringl, *string2, ... i

char *regex (re, subject [, retO, ...])
char *re, *subject, *retO, ... i

extern char *wcl;

DESCRIPTION
regcmp compiles a regular expression and returns a pointer to
the compiled form. malloc(3C) is used to create space for the
vector. It is the user's responsibility to free unneeded space that
has been allocated by malloc. A NULL return from regcmp
indicates an incorrect argument. regcmp(l) has been written to
generally preclude the need for this routine at execution time.

regex executes a compiled pattern against the subject string.
Additional arguments are passed to receive values back. regex
returns NULL on failure or a pointer to the next unmatched char­
acter on success. A global character pointer 10c1 points to
where the match began. regcmp and regex were mostly bor­
rowed from the editor, ed(I); however, the syntax and semantics
have been changed slightly. The following are the valid symbols
and their associated meanings.

[] * . '" These symbols retain their current meaning.

$ This symbol matches the end of the string; \ n
matches the newline.

Within brackets the minus means "through." For
example, [a-z] is equivalent to [abcd. . . xy z] .
The - can appear as itself only if used as the last or
first character. For example, the character class ex­
pression [] -] matches the characters] and -.

+ A regular expression followed by + means "one or
more times." For example, [0-9] + is equivalent to
[0-9] [0-9] *.

{m} {m,} {m,u} Integer values enclosed in {} indicate the
number of times the preceding regular expression is
to be applied. The minimum number is m and the
maximum number is u, which must be less than 256.

February, 1990
Revision C

1

regcmp(3X) regcmp(3X)

If only m is present (e.g., {m}), it indicates the ex­
act number of times the regular expression is to be
applied. {m, } is analogous to {m,infinity}.
The plus (+) and star (*) operations are equivalent to
{ 1 , } and {O,}, respectively.

(.•.) $n
The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+l)th ar­
gument following the subject argument. At present,
at most 10 enclosed regular expressions are allowed.
regex makes its assignments unconditionally.

(...) Parentheses are used for grouping. An operator (e.g.,
*, +, {}) can work on a single character or a regu­
lar expression enclosed in parentheses. For example,
(a*(cb+)*)$O.

By necessity, all the above defined symbols are special. They
must, therefore, be escaped to be used as themselves.

EXAMPLES
Example 1:

2

char *cursor, *newcursor, *ptr;

newcursor = regex «ptT = regcmp (" A \n", 0», cursor);
free (ptT) ;

This example will match a leading newline in the subject string
pointed at by cursor.

Example 2:

char retO [9] ;
char *newCurSOT, *name;

name = regcmp(" ([A-Za-z] [A-za-zO-9_] {0,7})$0", 0);
newcursor = regex(name, "123Testing321", retO);

This example will match through the string "Testing3" and
will return the address of the character after the last matched char­
acter (cursor+ll). The string "Testing3" will be copied to the
character array retO.

February, 1990
RevisionC

regcmp(3X)

Example 3:

'include "file.i"
char *string, *newcursor;

newcursor - regex (name, string);

regcmp(3X)

This example applies a precompiled regular expression in
file. i (see regcmp{l» against string.

This routine is kept in / lib/libPW. a.

SEE ALSO
ed(I), regcmp{l), malloc(3C).

BUGS
The user program may run out of memory if regcmp is called
iteratively without freeing the vectors no longer required. The fol­
lowing user-supplied replacement for malloc(3C) reuses the
same vector, saving time and space:
/* user's program */

char *
malloc (n)
unsigned n;
{

static char rebuf[512];
return (n <= sizeof rebuf) ? rebuf NULL;

February, 1990
RevisionC

3

resolver(3N) resol ver(3N)

NAME
res mkquery, res send, res init, dn_comp,
dn _expand - resolver routines -

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

res mkquery (op, dname, class, type, data, datalen,
- newrr, buf, bujlen)

int op;
char *dname;
int class, type;
char *data;
int datalen;
struct rree *newrr;
char *bu/;
int bujlen;

res_send (msg, msglen, answer, anslen)
char *msg;
int msgleni
char * answer i
int ansleni

res_init ()

dn comp (exp dn, eomp dn, length, dnptrs, lastdnptr)
char *exp dn, *eomp (in;
int length; -
char **dnptrs, **lastdnptri

dn expand(msg, eomorig, eomp dn, exp dn, length)
char *msg, *eomorig, *eomp dn, exp dn;
int length; --

DESCRIPTION

1

These routines are used for making, sending, and interpreting
packets to Internet domain name servers. Global information that
is used by the resolver routines is kept in the variable res.
Most of the values have reasonable defaults and can be ignored.
Options stored in res. options are defined in resol v. hand
are as follows. options are a simple bit mask.

February, 1990
Revision C

resol ver(3N) resol ver(3N)

RES INIT
True if the initial name server address and default domain
name are initialized (for example, res ini t has been
called).

RES DEBUG
Print debugging messages.

RES AAONLY
Accept authoritative answers only. res send will continue
until it finds an authoritative answer-or finds an error.
Currently this is not implemented.

RES USEVC
Use TCP connections for queries instead of UDP.

RES STAYOPEN
Used with RES USEVC to keep the TCP connection open
between queries.-This is useful only in programs that regu­
larly do many queries. UDP should be the normal mode
used.

RES IGNTC
Unused currently (ignore truncation errors-don't retry with
TCP).

RES RECURSE
Set the recursion desired bit in queries. This is the default.
(res send does not do iterative queries and expects the
nameserver to handle recursion.)

RES DEFNAMES
Append the default domain name to single label queries. This
is the default.

res init

reads the initialization file to get the default domain name and the
Internet address of the initial hosts running the name server. If
this line does not exist, the host running the resolver is tried.
res mkquery makes a standard query message and places it in
buf. ~e s _ mkque ry will return the size of the query or -1 if the
query is larger than buflen. op is usually QUERY but can be any
of the query types defined in nameser. h. dname is the domain
name. If dname consists of a single label and the
RES DEFNAMES flag is enabled (the default), dname will be ap­
pended with the current domain name. The current domain name
is defined in a system file and can be overridden by the environ-

February, 1990
Revision C

2

resol ver(3N) resol ver(3N)

ment variable LOCALDOMAIN. newrr is currently unused but is
intended for making update messages.

res _send sends a query to name servers and returns an answer.
It will call res ini t if RES INIT is not set, send the query to
the local name server, and handle timeouts and retries. The length
of the message is returned or -1 if there were errors.

dn expand expands the compressed domain name comp dn to
a full domain name. Expanded names are converted to up~rcase.
msg is a pointer to the beginning of the message, exp _ dn is a
pointer to a buffer of size length for the result. The size of
compressed name is returned or -1 if there was an error.

dn _ comp compresses the domain name exp _ dn and stores it in
comp dn. The size of the compressed name is returned or -1 if
there were errors. length is the size of the array pointed to by
comp _ dn. dnptrs is a list of pointers to previously compressed
names in the current message. The first pointer points to to the be­
ginning of the message and the list ends with NULL. lastdnptr is
a pointer to the end of the array pointed to dnptrs. A side effect is
to update the list of pointers for labels inserted into the message
by dn comp as the name is compressed. If dnptr is NULL, we
don't try to compress names. If lastdnptr is NULL, we don't up­
date the list.

FILES
/etc/resolv.conf

SEE ALSO
named(1M), resolver(4).

3 February, 1990
Revision C

rexec(3N) rexec(3N)

NAME
rexec - return stream to a remote command

SYNOPSIS
int rexec (ahost, inport, user, passwd, cmd, fd2p) ;
char **ahost;
u short inport;
char *user, *passwd, *cmd;
int *Jd2p;

DESCRIPTION
rexec looks up the host referenced by * ahost using
gethostbyname(3N), returning -1 if the host does not exist.
Otherwise * ahost is set to the standard name of the host If a
username and password are both specified, then these are used to
authenticate to the foreign host; otherwise the environment and
then the user's . net rc file in his home directory are searched for
appropriate information. If all this fails, the user is prompted for
the information.

The port in port specifies which well-known DARPA Internet port
to use for the connection; it will normally be the value returned
from the call

getservbyname ("exec", "tcp")

(see getservent(3N». The protocol for connection is
described in detail in rexecd(IM).

If the call succeeds, a socket of type SOCK STREAM is returned
to the caller, and given to the remote command as stdin and
stdout. IfJd2p is nonzero, then a auxiliary channel to a control
process will be setup and a descriptor for it will be placed in
*Jd2p. The control process will return diagnostic output from the
command (unit 2) on this channel, and will also accept bytes on
this channel as being NUX signal numbers, to be forwarded to the
process group of the command. If Jd2p is 0, then the stderr
(unit 2 of the remote command) will be made the same as the
stdout and no provision is made for sending arbitrary signals to
the remote process, although you may be able to get its attention
by using out-of-band data.

SEE ALSO
rcmd(3N), rexecd(lM).

February,1990
Revision C

1

rexec(3N) rexec(3N)

BUGS
There is no way to specify options to the socket call which
rexec makes.

2 February, 1990
RevisionC

rnusers(3N) rnusers (3N)

NAME
rnusers, rusers - return information about users on remote
machines

SYNOPSIS
finclude <rpcsvc/rusers.h>

rnusers (host)
char * host;

rusers (host, up)

char * host;
struct utmpidlearr *up;

DESCRIPTION
rnusers returns the number of users logged on to host (or -1 if
it cannot determine that number). rusers fills the structure
utmpidlearr with data about host, and returns 0 if successful.
The relevant structures are

struct utmparr /* RUSERSVERS_ORIG */
struct utmp **uta_arr;
int uta cnt

} ;

struct utmpidle

} i

struct utmp ui utmp;
unsigned ui_idle;

struct utmpidlearr { /* RUSERSVERS_IDLE */
struct utmpidle **uia_arr;
int uia cnt

};

RPCINFO
Program number: RUSERSPROG

xdr routines:

int xdr utmp (xdrs, up)
XDR *xdrs;
struct utmp * up;

int xdr utmpidle (mrs, ui) i
XDR *xdrsi
struct utmpidle *ui;

int xdr utmpptr (xdrs, up) i
XDR *xdrs;
struct utmp **UPi

February, 1990
RevisionC

1

rnusers(3N) rnusers (3N)

int ~dr utmpidleptr(~s, ~);
XDR *xdrs;
struct utmpidle **~;

int xdr utmparr (xdrs, up);
XDR *xdrs;
struct utmparr *~;

int xdr utmpidlearr(xdrs, ~);
XDR *xdrs;
struct utmpidlearr *~;

Proes:
RUSERSPROC NUM

No arguments; returns number of users as an unsigned
long.

RUSERSPROC NAMES
No arguments; returns utmparr or utmpidlearr,
depending on version number.

RUSERSPROC ALLNAMES
No arguments; returns utmparr or utmpidlearr,
depending on version number. Returns listing even for u tmp
entries satisfying nonuser () in utmp. h.

Versions:
RUSERSVERS_ORIG,RUSERSVERS_IDLE

SEE ALSO
rusers(1), rusersd(1M).

2 February, 1990
RevisionC

round(3F) round(3F)

NAME
anint, dnint, nint, idnint - Fortran nearest integer
functions

SYNOPSIS
integer i
real rl, r2
double precision ~l, dp2

r2=anint (rl)
i=nint (rl)

dp2=anint (dpl)
dp2=dnint (dpl)

i=nint (dpl)
i=idnint (dpJ)

DESCRIPTION
anint returns the nearest whole real number to its real argument
(Le., int (a+O. 5) if a ~ 0, int (a-O. 5) otherwise).
dnint does the same for its double-precision argument nint
returns the nearest integer to its real argument idnint is the
double-precision version. anint is the generic foon of anint
and dnint, performing the same operation and returning the data
type of its argument nint is also the generic form of idnint.

February, 1990
RevisionC

1

rpc(3N) rpc(3N)

NAME
rpc -library routines for remote procedure calls

DESCRIPTION
These routines allow C programs to make procedure calls on other
machines across the network. First, the client calls a procedure to
send a data packet to the server. Upon receipt of the packet, the
server calls a dispatch routine to perform the requested service,
and then sends back a reply. Finally, the procedure call returns to
the client

FUNCTIONS

1

auth_destroy ()

authnone_create()

authunix_create()

destroy authentication in­
formation handle

return RPC authentication
handle with no checking

return RPC authentication
handle with NUX permis-
sions

authunix_create_default () return default A/UX au­
thentication handle

caIIrpc ()

cInt_broadcast()

cInt_destroy ()

cInt_freeres ()

cInt_geterr ()

cInt-pcreateerror()

call remote procedure,
given
[jJrognum,versnum,procnum]

broadcast remote procedure
call everywhere

call remote procedure asso­
ciated with client handle

destroy client's RPC handle

free data allocated by
RPCIXDR system when
decoding results

copy error information
from client handle to error
structure

print message to stderr
about why client handle
creation failed

February, 1990
Revision C

rpc(3N)

clntyerrno ()

clntyerror ()

clnt_sperrno ()

clnt_sperror ()

clntraw_create ()

clnttcp_create ()

clntudp_create()

get_myaddress ()

pmap _getmaps ()

pmap_getport ()

pmap_rmtcall ()

registerrpc ()

rpc_createerr

February, 1990
RevisionC

rpc(3N)

print message to stderr
corresponing to condition
given

print message to stderr
about why RPC call failed

print message to a string
corresponding to condition
given

print message to a string

create toy RPC client for
simulation

create RPC client using
TCP transport

create RPC client using
UDP transport

get the machine's IP ad­
dress

return list of RPC
program-to-port mappings

return port number on
which waits supporting ser­
vice

instructs portmapper to
make an RPC call

establish mapping between
[prognum,versnum,procnum]
and port

destroy mapping between
[prognum, versnum,procnum]
and port

register procedure with
RPC service package

global variable indicating
reason why client creation
failed

2

rpc(3N)

svc fds

svc_freeargs ()

svc _getargs ()

svc_getcaller ()

svc _get req ()

svc_register ()

svc_run ()

svc_sendreply()

svc_unregister ()

svcerr _decode ()

svcerr_noproc ()

svcerr _ noprog ()

svcerr-progvers()

3

rpc(3N)

destroy RPC service tran­
sport handle

global variable with RPC
service file descriptor mask

free data allocated by
RPC/XDR system when
decoding arguments

decodes the arguments of
an RPC request

get the network address of
the caller of a procedure

returns when all associated
sockets have been serviced

associates prognum and
versnum with service
dispatch procedure

wait for RPC requests to
arrive and call appropriate
service

send back results of a re­
mote procedure call

remove mapping of
[prognum,versnum] to
dispatch routines

called when refusing ser­
vice because of authentica­
tion error

called when service cannot
decode its parameters

called when service hasn't
implemented the desired
procedure

called when program is not
registered with RPC pack­
age

called when version is not
registered with RPC pack-

February, 1990
RevisionC

rpc(3N)

svcerr_systemerr()

svcerr_weakauth()

svcraw_create()

svctcp_create ()

svcudp_create ()

xdr_authunix-parms()

xdr_callhdr ()

xdr_callmsg ()

xdr_replymsg ()

xprt_register ()

February, 1990
RevisionC

rpc(3N)

age

called when service detects
system error

called when refusing ser­
vice because of insufficient
authentication

creates a toy RPC service
transport for testing

creates an RPC service
based on TCP transport

creates an RPC service
based on UDP transport

generates RPC-style replies
without using RPC package

generates A/UX credentials
without using RPC package

generates RPC-style
headers without using RPC
package

generates RPC-style mes­
sages without using RPC
package

describes RPC messages,
externally

describes parameters for
portmap procedures, exter­
nally

describes a list of port map­
pings, externally

generates RPC-style rejec­
tions without using RPC
package

generates RPC-style replies
without using RPC package

registers RPC service tran­
sport with RPC package

4

rpc(3N)

xprt_unregister()

SEE ALSO

rpc(3N)

unregisters RPC service
transport from RPC pack­
age

AIUX Network Applications Programming.

5 February, 1990
RevisionC

rtmp(3N) rtmp(3N)

NAME
rtmp netinfo - identify AppleTalk. node and bridge
addresses

SYNOPSIS
tinclude <at/appletalk.h>
cc rflags]files -lat [libraries]

int rtmp_netinfo (fd, addr, bridge)
int Id;
at_inet_t *addr, *bridge;

DESCRIPTION
This routine allows the caller to determine
uses the structure at inet t
<at/appletalk.h>:

typedef struct at inet
at net
at node
at socket

} at_inet_t;

- -

net;
node;
socket;

node addresses. It
defined in

The at inet t structure specifies AppleTalk socket internet
address.-The parameters are

Id An AppleTalk socket descriptor. If this parameter is
-I, it is ignored; otherwise, upon return, the socket
field in addr contains the socket number correspond­
ing told.

addr

bridge

February, 1990
RevisionC

Pointer to an at inet t structure. If this pointer is
non-NULL, the - AppleTalk network and node ad­
dresses are returned in the structure to which it points.
If Id is not -I, the socket field of this structure is
filled, otherwise it is zero. This parameter is ignored
if it is NULL.

Pointer to an at inet t structure. If this pointer is
non-NULL, the AppleT3Ik network and addresses of
a bridge known to DDP are returned in the structure
to which it points. This parameter is ignored if it is
NULL. The socket field is meaningless and always
contains zero on return.

1

rtmp(3N) rtmp(3N)

Either addr or bridge must be non-NULL. rtmp netinfo re-
turns an error if both are NUlL. -

The function returns zero if successful; otherwise, -1 is returned
with a detailed error code in errno.

DIAGNOSTICS
rtmp_netinfo returns -1 on error with a detailed error code in
errno:

[EINVAL] Both addr and bridge are NULL

See also the errors returned by the underlying DDP module.

SEE ALSO

2

ddp(3N),/nside AppleTalk; "AppleTalk Programming Guide,"
in A/UX Network Applications Programming.

February, 1990
RevisionC

rwall(3N) rwall(3N)

NAMB
rwall- write to specified remote machines

SYNOPSIS
iinclude <rpcsvc/rwall.h>

rwall (host, msg) i
char * host, *msgi

DBSCRIPTION
rwa 11 causes host to print the string msg to all its users. It re­
turns 0 if successful.

RPC INFO
Program number: WALLPROG

Procs:

WALLPROC WALL
Takes string as argument (wrapstring); returns no arguments.
Executes wall on remote host with string.

Versions: RSTATVERS ORIG

SEE ALSO
rwall(lM), shutdown(8), rwalld(1M).

February, 1990
RevisionC

1

scandir(3) scandir(3)

NAME
scandi r - scan a directory

SYNOPSIS
iinclude <sys/types.h>
iinclude <sys/dir.h>

scandir (dirname, namelist, select, compar)
char *dirname;
struct direct * (*namelist[]) ;
int (*select) () ;
int (*compar) () ;

alphasort(dl, d2)
struct direct **dl, **d2;

DESCRIPTION
scandir reads the directory dirname and builds an array of
pointers to directory entries using malloc(3). It returns the
number of entries in the array and a pointer to the array through
name list.

The select parameter is a pointer to a user supplied subroutine
which is called by scandir to select which entries are to be in­
cluded in the array. The select routine is passed a pointer to a
directory entry and should return a non-zero value if the directory
entry is to be included in the array. If select is null, then all the
directory entries will be included.

The com par parameter is a pointer to a user supplied subroutine
which is passed to qsort(3) to sort the completed array. If this
pointer is null, the array is not sorted. alphasort is a routine
which can be used for the compar parameter to sort the array al­
phabetically.

The memory allocated for the array can be deallocated with free
(see malloc(3» by freeing each pointer in the array and the ar­
ray itself.

RETURN VALUE
Returns -1 if the directory cannot be opened for reading or if can­
not allocate enough memory to hold all the data structures.

SEE ALSO

I

directory(3), malloc(3C), malloc(3X), qsort(3C),
dir(4).

February, 1990
RevisionC

scanf(3S) scanf(3S)

NAME
scanf, fscanf, sscanf - convert fonnatted input

SYNOPSIS
*include <stdio.h>

int scanf (format [, pointer] ...
cha r *format;

int fscanf (stream, format [, pointer] ...
FILE *stream;
char *format;

int sscanf (s, format [, pointer] ...
char *s, *format;

DESCRIPTION
scanf reads from the standard input stream stdin. fscanf
reads from the named input stream. sscanf reads from the char­
acter string at * s. Each function reads characters, interprets them
according to format, and stores the results in the location specified
by the pointer arguments. Each function expects as arguments: a
control string format (described below) and a set of pointer argu­
ments indicating where the converted input should be stored.

The control string usually contains conversion specifications,
which are used to direct interpretation of input sequences. The
control string may contain:

1. White-space characters (blanks and tabs) which, except in two
cases described below, cause input to be read up to the next
nonwhite-space character.

2. An ordinary character (not %), which must match the next
character of the input stream.

3. Conversion specifications, consisting of the character %, an op­
tional assignment suppression character *, an optional numeri­
cal maximum field width, an optional letter 1 or h indicating
the size of the receiving variable, and a conversion code.

A conversion specification directs the conversion of the next input
field; the result is placed in the variable pointed to by the
corresponding argument, unless assignment suppression has been
indicated by *. The suppression of assignment provides a way of
describing an input field which is to be skipped. An input field is
defined as a string of nonwhite-space characters; it extends to the
next inappropriate character or until the field width, if specified, is
exhausted. For all descriptors except " [" and "c", white space

February, 1990
Revision C

1

scanf(3S) scanf(3S)

2

leading an input field is ignored.

The conversion code indicates the interpretation of the input field;
the corresponding pointer argument must usually be of a restricted
type. For a suppressed field, no pointer argument should be given.
The following conversion codes are legal:

% A single % is expected in the input at this point; no assign­
ment is done.

d A decimal integer is expected; the corresponding argument
should be an integer pointer.

u An unsigned decimal integer is expected; the correspond­
ing argument should be an unsigned integer pointer.

o An octal integer is expected; the corresponding argument
should be an integer pointer.

x A hexadecimal integer is expected; the corresponding argu­
ment should be an integer pointer.

e,f,g A floating point number is expected; the next field is con­
verted accordingly and stored through the corresponding
argument, which should be a pointer to a float. The input
format for floating point numbers is an optionally signed
string of digits, possibly containing a decimal point, fol­
lowed by an optional exponent field consisting of an E or
an e, followed by an optional +, -, or space followed by an
integer.

s A character string is expected; the corresponding argument
should be a character pointer to an array of characters large
enough to accept the string and a terminating \ 0, which
will be added automatically. The input field is terminated
by a White-space character.

c A character is expected; the corresponding argument
should be a character pointer. The normal skip over white
space is suppressed in this case; to read the next nonspace
character, use %1s. If a field width is given, the
corresponding argument should refer to a character array;
the indicated number of characters is read.

String data and the normal skip over leading white space is
suppressed. The left bracket is followed by a set of charac­
ters (the scanset) and a right bracket; the input field is the
maximal sequence of input characters consisting entirely of

February, 1990
Revision C

scanf(3S) scanf(3S)

characters in the scanset. The caret, ("), when it appears as
the first character in the scanset, serves as a complement
operator and redefines the scanset as the set of all charac­
ters not contained in the remainder of the scanset string.
There are some conventions used in the construction of the
scanset. A range of characters may be represented by the
construct first-last; thus, [01234567 8 9] may be ex­
pressed [0 - 9]. Using this convention, first must be lexi­
cally less than or equal to last, or else the dash will stand
for itself. The dash will also stand for itself whenever it is
the first or the last character in the scanset. To include the
right square bracket as an element of the scanset, it must
appear as the first character (possibly preceded by a
circumflex) of the scanset; otherwise it will be interpreted
syntactically as the closing bracket. The corresponding ar­
gument must point to a character array large enough to hold
the data field and the terminating \ 0, which will be added
automatically. At least one character must match for this
conversion to be considered successful.

The conversion characters d, u, 0, and x may be preceded by 1 or
h to indicate that a pointer to long or short, rather than int, is
in the argument list. Similarly, the conversion characters e, f,
and g may be preceded by 1 to indicate that a pointer to double,
rather than float, is in the argument list.

The 1 or h modifier is ignored for other conversion characters.
scanf conversion terminates at EOF, at the end of the control
string, or when an input character conflicts with the control string.
In the latter case, the offending character is left unread in the input
stream.

scanf returns the number of successfully matched and assigned
input items; this number can be zero when an early conflict
between an input character and the control string occurs. If the in­
put ends before the first conflict or conversion, EOF is returned.

EXAMPLES
The call:

int i; n; float x; char name[50];
n = scanf ("%d%f%s", &i, &x, name);

with the input line

25 54.32E-1 thompson

February, 1990
Revision C

3

scanf(3S) scanf(3S)

will assign the value 3 to n, the value 25 to i, and the value
5 . 432 to x; name will contain thomps on \ O.

The call

int i; float X; char name[50];
(void) scanf ("%2d%f%*d %[0-9]", &i, &x,
name) ;

with input

56789 0123 56a72

will assign 56 to i, 789. 0 to x, skip 0123, and place the string
56\0 in name. The next call to getchar (see getc(3S)) will
return a.

RETURN VALUE
These functions return EOF on end of input and a short count for
missing or illegal data items.

NOTES
Trailing white space is left unread unless matched in the control
string.

BUGS
The success of literal matches and suppressed assignments is not
directly determinable.

SEE ALSO

4

getc(3S), printf(3S), strtod(3C), strtol(3C).

February, 1990
RevisionC

set42sig(3) set42sig(3)

NAME
set42sig - set 4.2 BSD signal interface

SYNOPSIS
int set42sig ()

DESCRIPTION
set42sig changes the signal interface to one closely resembling
BSD 4.2 systems. This call is similar to the setcompat system
call. Unlike setcompat(2), set42sig arranges for the current
compatibility flags to be logically OR' ed with the new flags.
set42sig is functionally equivalent to the following C code
fragment:

finclude <compat.h>

return (setcompat (getcompat () I COMPAT_BSDSIGNALS I
COMPAT_BSDTTY I COMPAT_BSDSYSCALLS»;

For the process calling it, it enables reliable signal delivery, the
job control tty signals, and restarting of system calls when an in­
terrupt is received.

IT the COMPAT_SVID flag is set before calling set42sig, both
BSD 4.2 and System V modes are set and 4.2 BSD mode will
have precedence. COMPAT SVID can be set in two ways, by cal­
ling setcompat(2) and by compiling the program with the -zs
flag option (see cc(l).

All aspects of 4.2 signals are inherited across fork system calls.
4.2 job control group membership is inherited across exec sys­
tem calls. When exec is invoked, the inherited 4.2 signals are
lost and the signal-handling mechanism returns to System V style.
See setcompat(2) for more information.

ERRORS
[EINVAL]

SEE ALSO

The process has already arranged to catch
signals. Normally set42sig is called pri­
or to any other signal activity.

cc(l), setcompat(2), sigvec(2), signal(3), ter­
mio(7).

February, 1990
RevisionC

1

setbuf(3S) setbuf(3S)

NAME
setbuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf (stream, buj)
FILE *stream;
char *buf;

int setvbuf (stream, buf, type, size)
FILE *stream;
char *buf;
int type, size;

DESCRIPTION

1

setbuf may be used after a stream has been opened but before it
is read or written. It causes the array pointed to by buf to be used
instead of an automatically allocated buffer. If buf is the NULL
pointer input/output will be completely unbuffered.

A constant BUFSIZ, defined in the <stdio. h> header file, tells
how big an array is needed:

char buf[BUFSIZ];

setvbuf may be used after a stream has been opened but before
it is read or written. type determines how stream will be buffered.
Legal values for type (defined in stdio. h) are:

IOFBF causes input/output to be fully buffered.

IOLBF causes output to be line buffered; the buffer will be
flushed when a newline is written, the buffer is full,
or input is requested.

IONBF causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be used
for buffering, instead of an automatically allocated buffer. size
specifies the size of the buffer to be used. The constant BUF S I Z
in <stdio . h> is suggested as a good buffer size. If input/output
is unbuffered, buf and size are ignored.

By default, output to a terminal is line buffered and all other
input/output is fully buffered.

February, 1990
RevisionC

setbuf(3S) setbuf(3S)

RETURN VALUE
If an illegal value for type or size is provided, setvbuf returns a
nonzero value. Otherwise, the value returned will be zero.

SEE ALSO
fopen(3S), getc(3S), intro(3), malloc(3C), putc(3S).

NOTES
A common source of error is allocating buffer space as an "au­
tomatic" variable in a code block, and then failing to close the
stream in the same block.

setbuf allows assignment of a new I/O buffer after the stream
has been read (written), and if unflushed data remains in the origi­
nal buffer. This could lead to a loss of data error.

February, 1990
Revision C

2

setjrnp(3C) setjrnp(3C)

NAME
set jrnp, longjrnp - non-local goto

SYNOPSIS
finclude <setjrnp.h>

int setjrnp (env)
jrnp _ buf env;

void longjrnp (env, val)
jrnp buf env;
int -val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts
encountered in a low-level subroutine of a program.

set jrnp saves its stack environment in env for later use by
longjrnp. The environment type jrnp buf is defined in the
<set jrnp. h> header file. -

RETURN VALUE
When set jrnp has been called by the calling process, returns O.

longjrnp restores the environment saved by the last call of
set jrnp with the corresponding env argument. After longjrnp
is completed, program execution continues as if the corresponding
call of set jrnp (which must not itself have returned in the inter­
im) had just returned the value val. longjrnp cannot cause
set jrnp to return the value O. If longjrnp is invoked with a
second argument of 0, set jrnp will return 1. All accessible data
have values as of the time longjrnp was called.

SEE ALSO
signal(3).

WARNINGS

1

longjrnp fails if it is called when env was never primed by a call
to set jrnp or when the last such call is in a function which has
since returned.

February, 1990
RevisionC

setposix(3P} setposix(3P}

NAME
setposix - set POSIX compatibility flags

SYNOPSIS
int setposix ()

DESCRIPflON
setposix is equivalent to the following code fragment:

finclude <compat.h>
setcompat(COMPAT_POSIX)i

COMPAT_POSIX is equivalent to all of the following:

COMPAT BSDGROUPS
COMPAT BSDCHOWN
COMPAT BSDSIGNALS
COMPAT BSDTTY
COMPAT SYSCALLS
COMPAT POSIXPATHTRUNC
COMPAT EXEC

Any non-POSIX compatibility flags that were set prior to the call
to setposix are reset

RETURN VALUE
Upon successful completion, setposix returns the previous
compatibility mask. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
setposix will return the following error code:

[EINVAL] setposix results in a change in the state of
the COMPAT BSDSIGNALS bit and a signal is
currently pending, caught, or held.

SEE ALSO
setcompat(2}.

February, 1990
RevisionC

1

setuid(3) setuid(3)

NAME
setuid, setgid - set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;

int setgid (gid)
int gid;

DESCRIPrION
setuid (setgid) is used to set the real user (group) ID and ef­
fective user (group) ID of the calling process.

If the effective user ID of the calling process is superuser, the real
user (group) ID and effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not superuser, but
its real user (group) ID is equal to uid (gill), the effective user
(group) ID is set to uid (gill).

If the effective user ID of the calling process is not superuser, but
the saved set-user (group) ID from exec(2) is equal to uid (gid),
the effective user (group) ID is set to uid(gid).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of -1 is returned and errno is set to indicate the error.

ERRORS
setuid (setgid) will fail if one of the following is true:

[EPERM] the real user (group) ID of the calling process is
not equal to uid (gid) and its effective user ID is
not superuser.

[EINVAL] The uid (gid) is out of range.

SEE ALSO

1

getuid(2), intro(2), setregid(2), setreuid(2).

February, 1990
RevisionC

sigaction(3P) sigaction(3P)

NAME
sigaction - examine or change signal action

SYNOPSIS
tinclude <signal.h>

int sigaction (sig, act, oact)
int sig;
struct sigaction *act, *oact;

DESCRIPTION
The system defines a set of signals that may be delivered to a pro­
cess. Signal delivery resembles the occurrence of a hardware in­
terrupt: the signal is blocked from further occurrence, the current
process context is saved, and a new one is built. A process may
specify a handler to which a signal is delivered, or specify that a
signal is to be blocked or ignored. A process may also specify
that a default action is to be taken by the system when a signal oc­
curs. Normally, signal handlers execute on the current stack of
the process. This may be changed, on a per-handler basis, so that
signals are taken on a special "signal stack."

All signals have the same priority. Signal routines execute with
the signal that caused their invocation but other signals may yet
occur. A global "signal mask" defines the set of signals currently
blocked from delivery to a process. The signal mask for a process
is initialized from that of its parent (normally 0). It may be
changed with a sigprocmask(3P) call, or when a signal is
delivered to the process.

When a signal condition arises for a process, the signal is added to
a set of signals pending for the process. If the signal is not
currently blocked by the process then it is delivered to the process.
When a signal is delivered, the current state of the process is
saved, a new signal mask is calculated (as described below), and
the signal handler is invoked. The call to the handler is arranged
so that if the signal handling routine returns normally, the process
resumes execution in the context from before the signal's delivery.
If the process wishes to resume in a different context, then it must
arrange to restore the previous context itself (see
sigset jmp(3P).

sigaction allows the calling process to examine or specify the
action to be taken on delivery of a signal. sig specifies the signal

February, 1990
RevisionC

1

sigaction(3P) sigaction(3P)

2

number.

The sigaction structure is defined in <signal. h>:

struct sigaction {

} ;

void (*sa handler) ();
sigset_t sa_mask;
int sa_flags;

If act is not NULL, it points to a structure specifying the action to
be taken when the signal is delivered. If oact is not NULL, the ac­
tion previously associated with the signal is stored in the location
pointed to by oact. If act is NULL, signal handling is unchanged.
When act is NULL, sigaction can be used to inquire about the
current handling of a given signal.

The sa_flags field of act can be used to modify the delivery of
a specific signal. If sig is SIGCHLD and the SA_NOCLDSTOP
flag is not set in sa flags, a SIGCHLD signal is generated for
the calling process if any of its child processes stop. If sig is
SIGCHLD and the SA_NOCLDSTOP flag is set in sa_flags, a
SIGCHLD signal is not generated for stopped child processes. If
the SA_ONSTACK bit is set in sa flags, the system delivers
the signal to the process on a sigDai stack specified by sig­
stack(2). If the SA_INTERRUPT bit is set in sa flags, sys­
tem calls interrupted by a signal are not restarted. -

When a signal is caught by a signal-catching function, a new sig­
nal mask is calculated and installed for the duration of the signal­
catching function or until sigprocmaskO or sigsuspendO is
called. This mask is formed by taking the union of the current sig­
nal mask and the set associated with the action for the signal being
delivered, such as sa mask, and then including the signal being
delivered. If and when the user's signal handler returns normally,
the original signal mask is restored.

Once an action is installed for a specific signal, it remains installed
until another action is explicitly requested by another call to
sigaction or until one of the exec functions is called.

SIGKILL and SIGSTOP cannot be caught or ignored. The set of
signals specified by sa mask is not allowed to block these sig­
nals. This is silently enfurced.

February, 1990
RevisionC

sigaction(3P) sigaction(3P)

If sigaction fails, no new signal handler is installed.

A/UX POSIX defines the following signals:

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3* qmt
S I GILL 4* illegal instruction
SI GABRT 6* aborted
S I GFPE 8* floating -point exception
SIGKILL 9 kill (cannot be caught, blocked, or ignored)
S I GSEGV 11 * segmentation violation
SIGPIPE 13 write on a pipe with no one to read it
S I GALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGUSRl 16 user defined signal 1
SIGUSR2 17 user defined signal 2
SIGCLD 18. child status has changed
SIGTSTP 20t stop signal generated from keyboard
SIGTTIN 21 t backgrmU1d read attempted from control terminal
SIGTTOU 22t backgrmU1d write attempted to control terminal
SIGSTOP 23t stop (cannot be caught, blocked, or ignored)
SIGXCPU 24 cpu time limit exceeded
S I GXF S Z 25 file size limit exceeded
SIGCONT 2ge continue after stop (cannot be blocked)

The following signals are also defined:

S I GTRAP 5* trace ttap
SIGIOT 6* abort
SIGEMT 7* EMT instruction
SIGBUS 10* bus error
SIGSYS 12* bad argument to system call
SIGPWR 19 power-fail restart
SIGVTALRM 26 virtual time alarm (see setitimer(2»
SIGPROF 27 profiling timer alann (see setitimer(2»)
SIGWINCH 28e window size change
S I GURG 30e urgent condition present on socket
SIGIO 31. I/O possible on a descriptor (see fcntl(2)

The starred signals (*) in the list above cause a core image if not
caught or ignored.

The default action for a signal may be reinstated by setting
sv handler to SIG DFL; this default is termination (with a
core image for starred SIgnalS) except for signals marked with. or

February, 1990
RevisionC

3

sigaction(3P) sigaction(3P)

t. Signals marked with -are discarded if the action is SIG DFL;
signals marked with t cause the process to stop. If sv harKIler
is SIG_IGN, the signal is subsequently ignored, and pending in­
stances of the signal are discarded.

If a caught signal occurs during certain system calls, the call is
normally restarted. The affected system calls are read(2) or
wri te(2) on a slow device such as a terminal, but not a file. This
behavior may be inhibited by setting the SA_INTERRUPT bit in
sa_flags.

Mter a fork(2), the child inherits all signals, the signal mask,
and the signal stack.

execve(2) resets all caught signals to default action and resets all
signals to be caught on the user stack. Ignored signals remain ig­
nored; the signal mask remains the same.

RETURN VALUE
On successful completion, a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occur, sigaction returns -1
and sets errno to the corresponding value:

[EINVAL] The value of sig is not a valid signal
number, or an attempt was made to sup­
ply an action for a signal that cannot be
caught or ignored.

[EFAULT] act or oaet is an invalid address. Or both
are invalid addresses.

SEE ALSO

4

exec(2), kill(2), sigsetops(3P), sigprocmask(2P),
sigsuspend(3P), sigvec(2).

February, 1990
RevisionC

sign(3F) sign(3F)

NAME
sign, isign, dsign - Fortran transfer-of-sign intrinsic
function

SYNOPSIS
integer i, j, k
realr1, r2, r3
double precision ~J, ~2, ~3

k=isign (i, j)
k=sign (i, j)

r3=sign (r1, r2)

~3=dsign (dpJ, ~2)
~3=sign (dpJ, ~2)

DESCRIPTION
isign returns the magnitude of its first argument with the sign of
its second argument sign and ds i gn are its real and double­
precision counterparts, respectively. The generic version is sign,
which devolves to the appropriate type depending on its argu­
ments.

February, 1990 1
RevisionC

signal(3) signal(3)

NAME
signal - specify what to do upon receipt of a signal

SYNOPSIS
finclude <signal.h>

int (* signal (sig, June)) ()
int sig;
void (*fune) () ;

DESCRIPTION

1

signal allows the calling process to choose one of three ways in
which it is possible to handle the receipt of a specific signal. sig
specifies the signal andJune specifies the choice.

sig can be assigned anyone of the following except S I GKI LL:

SIGHUP 1
SIGINT 2
SIGQUIT 3*
SIGILL 4*
SIGTRAP 5*
SIGIOT 6*
SIGEMT 7*
SIGFPE 8*
SIGKILL 9
SIGBUS 10*
SIGSEGV 11*
SIGSYS 12*
SIGPIPE 13
SIGALRM 14
SIGTERM 15
SIGUSRl 16
SIGUSR2 17
SIGCLD IS.
SIGPWR 19
SIGTSTP 20t
SIGTTIN 21t
SIGTTOU 22t
SIGSTOP 23t
SIGXCPU 24
SIGXFSZ 25
SIGVTALRM 26
SIGPROF 27
SIGWINCH 28.

hangup
interrupt
quit
illegal instruction
trace trap
lOT instruction
EMT instruction
floating point exception
kill (cannot be caught, blocked. or ignored)
bus error
segmentation violation
bad argument to system call
write on a pipe with no one to read it
alarm clock
software termination signal
user defined signal 1
user defined signal 2
child status has changed
power-fail restart
stop signal generated from keyboard
background read attempted from control terminal
background write attempted to control terminal
stop (cannot be caught, blocked, or ignored)
cpu time limit exceeded
file size limit exceeded
virtual time alarm (see seti timer(2»
profiling timer alarm (see setitimer(2»
window size change

February, 1990
Revision C

signal(3} signal(3}

SIGCONT 2ge continue after stop (cannot be blocked)
SIGURG 30e urgent condition present on socket
SIGIO 31. I/O is possible on a descriptor (see fcntl(2»

The starred signals in the above list cause a core image if not
caught or ignored (see below).

Signals marked with. are discarded if the action is SIG DFLi
signals marked with t cause the process to stop if the process is
part of 4.2 job control.

Junc is assigned one of three values: SIG DFL, SIG IGN, or a
Junction-address. The actions prescribed by these values are as
follows:

S I G _ D FL - terminate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is to be
terminated with the following consequences:

February, 1990
RevisionC

All of the receiving process's open file descriptors will
be closed.

If the parent process of the receiving process is execut­
ing a wai t, it will be notified of the termination of the
receiving process and the terminating signal's number
will be made available to the parent process; see
wait(2).

If the parent process of the receiving process is not exe­
cuting a w ai t, the receiving process will be
transformed into a zombie process (see exi t(2) for
definition of zombie process).

The parent process ID of each of the receiving
process's existing child processes and zombie processes
will be set to 1. This means the initialization process
(see intro(2» inherits each of these processes.

Each attached shared memory segment is detached and
the value of shIn nattach in the data structure asso­
ciated with its shared memory identifier is decremented
by 1.

For each semaphore for which the receiving process
has set a semadj value (see semop(2», that semadj
value is added to the semval of the specified sema­
phore.

2

signal(3) signal(3)

3

If the process has a process, text, or data lock, an un­
lock is performed (see plock(2».

An accounting record will be written on the accounting
file if the system's accounting routine is enabled; see
acct(2).

If the receiving process's process 10, tty group 10, and
process group 10 are equal, the signal S I GHUP will be
sent to all of the processes that have a process group 10
equal to the process group ID of the receiving process.

A "core image" will be made in the current working
directory of the receiving process if sig is one for which
an asterisk appears in the above list and the following
conditions are met:

The effective user ID and the real user ID of the
receiving process are equal.

An ordinary file named core exists and is writ­
able or can be created. If the file must be created,
it will have the following properties:

a mode of 0666 modified by the file creation
mask (see umask(2»

a file owner 10 that is the same as the effec­
tive user 10 of the receiving process

a file group 10 that is the same as the effec­
tive group 10 of the receiving process

S I G I GN - ignore signal
-The signal sig is to be ignored.

Note: The signal SIGKILL cannot be ignored.

function-address - catch signal
Upon receipt of the signal sig, the receiving process is to ex­
ecute the signal-catching function pointed to by June. The
signal number sig will be passed as the only argument to the
signal-catching function. Additional arguments are passed to
the signal-catching function for hardware-generated signals.
Before entering the signal-catching function, the value of
June for the caught signal will be set to SIG_DFL unless the
signal is SIGILL, SIGTRAP, or SIGPWR.

February, 1990
RevisionC

signal(3) signal(3)

Upon return from the signal-catching function, the receiving
process will resume execution at the point it was interrupted.

When a signal that is to be caught occurs during a read, a
wri te, an open, or an ioctl system call on a slow dev­
ice (like a terminal; but not a file), during a pause system
call, or during a wait system call that does not return im­
mediately due to the existence of a previously stopped or
zombie process, the signal-catching function will be execut­
ed and then the interrupted system call may return a -1 to the
calling process with errno set to EINTR. This behavior is
the default for 5.2 systems and it may be modified by the
setcompat(2) system call.

Note: The signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pend­
ing S I GKI LL signal.

RETURN VALUE
Upon successful completion, signal returns the previous value
of june for the specified signal sig. Otherwise, a value of -1 is re­
turned and errno is set to indicate the error.

ERRORS
signal will fail if:

[EINVAL] sig is an illegal signal number, including SIG­
KILL.

WARNINGS
Two other signals that behave differently than the signals
described above exist in this release of the system; they are:

SIGCLD 18 death of a child (reset when caught)
SIGPWR 19 power fail (not reset when caught)

There is no guarantee that, in future releases of the UNIX system,
these signals will continue to behave as described below; they are
included only for compatibility with other versions of the UNIX
system. Their use in new programs is strongly discouraged.

For these signals , june is assigned one of three values: SIG DFL,
SIG_IGN, or ajunetion-address. The actions prescribed by these
values of are as follows:

February, 1990
RevisionC

4

signal(3) signal(3)

S I G DFL - ignore signal
-The signal is to be ignored.

S I G I GN - ignore signal
-The signal is to be ignored. Also, if sig is SIGCLD, the cal­
ling process's child processes will not create zombie
processes when they tenninate; see exi t(2).

function-address - catch signal
If the signal is S I GPWR, the action to be taken is the same as
that described above for Junc equal to function-address. The
same is true if the signal is S I GCLD except, that while the
process is executing the signal-catching function, any re­
ceived SIGCLD signals will be queued and the signal­
catching function will be continually reentered until the
queue is empty.

The SIGCLD affects two other system calls (wait(2), and
exi t(2» in the following ways:

wait Ifthefunc value of SIGCLD is set to SIG IGN and
a wai t is executed, the wai t will block until all of
the calling process's child processes tenninate; it
will then return a value of -1 with errno set to
ECHILD.

exi t If in the exiting process's parent process the fUnc
value of S I GCLD is set to S I G I GN, the exiting
process will not create a zombie process.

When processing a pipeline, the shell makes the last process in the
pipeline the parent of the proceeding processes. A process that
may be piped into in this manner (and thus become the parent of
other processes) should take care not to set SIGCLD to be caught

SEE ALSO
kill(1), kill(2), pause(2), ptrace(2), setcompat(2),
sigvec(2), wait(2), set42sig(3), setjmp(3C).

BUGS

5

If a repeated signal arrives before the last one can be reset, there is
no chance to catch it. However, see the setcompat flag
COMPAT BSDSIGNALS.

The type specification of the routine and its func argument are
problematical.

February, 1990
RevisionC

signal(3) signal(3)

The symbols sighnd and sigtrap are globally defined sym­
bols used by signal and are reserved words.

February, 1990
Revision C

6

signal(3F) signal (3F)

NAME
signal - specify Fortran action on receipt of a system signal

SYNOPSIS
integer i
external integer intfnc

call signal (i, int/nc)
DESCRIPTION

signal allows a process to specify a function to be invoked
upon receipt of a specific signal. The first argument specifies a
fault or exception; the second argument specifies the function to
be invoked.

SEE ALSO
kill(2), signal(3).

1 February, 1990
Revision C

sigprocmask(3P) sigprocmask(3P)

NAME
sigprocmask - examine and change blocked signals

SYNOPSIS
iinclude <signal.h>

int sigprocmask (how, set, oset)
int how;
sigset_t *set, oset;

DESCRIPTION
sigprocmask allows the calling process to examine or change
its signal mask. If the value of set is not NULL, it points to a set
of signals to be used to change the currently blocked set

The value of how indicates the manner in which the set is
changed. The permitted values for how are:

SIG BLOCK

SIG UNBLOCK

SIG SETMASK

The resulting set will be the union of the
current set and the signal set pointed to
by set.

The resulting set will be the intersection
of the current set and the complement of
the signal set pointed to by set.

The resulting set will be the signal set
pointed to by set.

If oset is not NULL, the previous mask is stored at the location
pointed to by set. If the value of set is NULL, the value of how is
ignored and the process's signal mask is unchanged. When set is
NULL, sigprocmask can be used to enquire about currently
blocked signals.

If there are any pending unblocked signals after the call to sig­
procmask, at least one of those signals will be delivered before
sigprocmask returns.

SIGKILL and SIGSTOP cannot be caught or ignored. SIGCONT
cannot be ignored. It is not possible to block these signals. This is
silently enforced.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, -1 is re-

February, 1990
RevisionC

1

sigprocmask(3P) sigprocmask(3P)

turned and errno is set to indicate the error.

ERRORS
If the following condition occurs, sigprocmask will return -1
and set e rrno to the corresponding value.

[EINVAL] The value of how is invalid

SEE ALSO

2

sigaction(3P), sigpending(3P), sigsetops(3P),
sigsuspend(3P).

February, 1990
RevisionC

sigset jmp(3P) sigset jmp(3P)

NAME
sigset jmp, siglongjmp -non-local jumps

SYNOPSIS
finclude <setjmp.h>

int sigsetjmp (env, savemask)
sigjmp buf env;
int savemask;

void siglongjmp (env, val)
sigjmp buf env;
int vat;

DESCRIPTION
These functions are useful for dealing with errors and interrupts
encountered in a low-level subroutine of a program.

sigset jmp saves its stack environment in env for later use by
siglongjmp. If the value of savemask is not zero, sig­
set jmp also saves the process's current signal mask as part of
the calling environment. The environment type sigjmp buf is
defined in the <set jmp. h> header file. -

siglongjmp restores the environment saved by the last call of
sigsetjmp with the corresponding envargument. If env was
initialized by a call to sigset jmp with a non-zero value for
savemask, siglongjrnp also restores the saved signal mask.

RETURN VALUE
When sigset jmp has been invoked by the calling process, zero
is returned.

Mter siglongjmp is completed, program execution continues
as if the corresponding call of sigset jmp (which must not itself
have returned in the interim) had just returned the value val.
siglongjmp cannot cause sigset jmp to return the value
zero. If val is zero, sigset jmp returns 1. All accessible data
have values as of the time siglongjmp was called.

WARNINGS
siglongjmp fails if env was never initialized by a call to sig­
set jmp or when the last such call is in a function which has
since returned.

February, 1990
RevisionC

1

sigset jmp(3P) sigset jmp(3P)

SEE ALSO
sigaction(3P), sigprocmask(3P), sigsuspend(3P).

2 February, 1990
Revision C

sigsetops (3P) s igset ops (3P)

NAME
sigaddset, sigdelset, sigismember, sigfillset,
sigini tset - manipulate signal sets

SYNOPSIS
tinclude <signal.h>

int sigaddset (set, signo)
sigset t *seti
int signoi

int sigdelset (set, signo)
sigset t *seti
int signoi

int sigismember (set, signo)
sigset_t *seti
int Signoi

int sigfillset (set)
sigset_t *seti

int sigemptyset (set)
sigset_t *seti

DESCRIPTION
These routines manipulate sets of signals. They operate on data
objects addressable by the application, not on any set of signals
known to the system. The signal set modified by these rountines
may be used as a parameter to sigagction(3P),
sigprocmask(3P), sigpending(3P), or
sigsispend(3P). sigaddset adds the signal
specified by pointed to by set.

sigdelset deletes the signal specified by signo from the set
pointed to by set.

POSIX defines the following signals:

SIGABRT
SIGALRM
SIGFPE
SIGHUP
SIGILL
SIGINT
SIGKILL

February, 1990
Revision C

SIGPIPE
SIGQUIT
SIGSEGV
SIGTERM
SIGUSRl
SIGUSR2

SIGCLD
SIGCONT
SIGSTOP
SIGTSTP
SIGTTIN
SIGTTOU

1

sigsetops(3P) sigsetops(3P)

sigfillset initializes the signal set pointed to by set so that all
POSIX-defined signals are included.

sigemptyset initializes the signal set pointed to by set so that
all the POSIX-defined signals are excluded. Applications must
call sigemptyset for each object of type sigset_t before
any other use of the object

sigismember tests whether the signal specified by signo is a
member of the set pointed to by set.

RETURN VALUE
On successful completion, sigismember returns 1 if the
specified signal is a member of the specified set and returns 0 if it
is not On successful completion, each of the other functions re­
turns O. For all the functions listed, if an error is detected.
sigaddset, sigdelset, and sigismember returns -1 and
set errno to indicate the error.

ERRORS
If any of the following conditions occur, the function returns -1
and sets errno to the corresponding value:

[EINVAL] The value of signo is not a valid signal
number.

[EFAULT] set is an invalid address.

SEE ALSO

2

sigaction(3P), sigpending(3P). sigprocmask(2P).
sigsuspend(3P).

February, 1990
RevisionC

sigsuspend(3P) sigsuspend(3P)

NAME
sigsuspend - wait for a signal

SYNOPSIS
tinclude <signal.h>

int sigsuspend(~g~k)
sigset_t *sigmask;

DESCRIPTION
sigsuspend replaces the process's signal mask with the set of
signals pointed to by sigmask and then suspends the process un­
til delivery of a signal whose action is either to execute a signal­
catching function or to terminate the process.

If the action is to terminate the process, sigsuspend will not re­
turn. If the action is to execute a signal-catching function, sig­
suspend will return after the signal-catching function returns,
with the signal mask restored to the set that existed prior to the
sigsuspendcall.

SIGKILL and SIGSTOP cannot be caught or ignored. SIGCONT
cannot be ignored. It is not possible to block these signals. This is
silently enforced.

RETURN VALUE
Since sigsuspend suspends process execution indefinitely,
there is no successful completion return value. If sigsuspend
returns, it will return -1 and errno will be set to indicate the er­
ror.

ERRORS
If the following condition occurs, sigsuspend will return -1
and set errno to the corresponding value.

[EINTR] A signal is caught by the calling process
and control is returned from the signal­
catching function.

SEE ALSO
pause(2), sigaction(3P), sigpending(3P).
sigprocmask(2P), sigsetops(3P).

February, 1990
RevisionC

1

sin(3F) sin(3F)

NAME
sin, dsin, csin - Fortran sine intrinsic function

SYNOPSIS
real r1, r2
double precision dp1, dp2
complex ex1, ex2

r2=sin (r1)

dp2=dsin (dp1)
dp2=sin (dp1)

ex2=csin (ex1)
ex2=sin (ex1)

DESCRIPTION
sin returns the real sine of its real argument. dsin returns the
double-precision sine of its double-precision argument. csin re­
turns the complex sine of its complex argument. The generic sin
function becomes dsin or csin as required by argument type.

SEE ALSO
trig(3M).

1 February, 1990
RevisionC

sinh(3F) sinh(3F)

NAME
sinh, dsinh - Fortran hyperbolic sine intrinsic function

SYNOPSIS
real rl, r2
double precision dPl, dp2

r2=sinh (rl)

dP2=dsinh (dpl)
dP2=sinh (dpl)

DESCRIPTION
sinh returns the real hyperbolic sine of its real argument.
dsinh returns the double-precision hyperbolic sine of its
double-precision argument. The generic form sinh may be used
to return a double-precision value given a double-precision argu­
ment.

SEE ALSO
sinh(3M).

February, 1990
Revision C

1

sinh(3M) sinh(3M)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
iinclude <math.h>

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION
sinh, cosh, and tanh return, respectively, the hyperbolic sine,
cosine, and tangent of their argument.

RETURN VALUE
sinh and cosh return HUGE (and sinh may return -HUGE for
negative x) when the correct value would overflow and set errno
tOERANGE.

These error-handling procedures may be changed with the func­
tion matherr(3M).

SEE ALSO
matherr(3M).

1 February, 1990
RevisionC

sleep(3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION

sleep(3C)

sleep suspends the current process from execution for the
number of seconds specified by the argument The actual suspen­
sion time may be less than that requested for two reasons: (1)
scheduled wakeups occur at fixed I-second intervals, (on the
second. according to an internal clock) and (2) any caught signal
will terminate sleep following execution of the signal catching
routine. The suspension time may be longer than requested by an
arbitrary amount, due to the scheduling of other activity in the sys­
tem. The value returned by sleep is the "unslept" amount (the
requested time minus the time actually slept) in case the caller had
an alarm set to go off earlier than the end of the requested sleep
time or in case there is premature arousal due to another caught
signal.

The routine is implemented by setting an alarm signal and pausing
until it (or some other signal) occurs. The previous state of the
alarm signal is saved and restored. The calling program may have
set up an alarm signal before calling sleep. If the sleep time
exceeds the time before the alann signal, the process sleeps only
until the alarm signal would have occurred and the caller's alarm
catch routine is executed just before the sleep routine returns. If
the sleep time is less than the time before the calling program's
alarm, the prior alarm time is reset to go off at the same time it
would have without the intervening sleep.

SEE ALSO
alarrn(2), pause(2), signal(3).

February,I990
RevisionC

1

slots(3X) slots(3X)

NAME
slots -ROM library functions

SYNOPSIS
cc ffiags] files -lslots [libraries]

DESCRIPTION
The routines in the slots library provide access to board slot ROM
from either user or kernel processes. Calls to library routines do
not require knowledge of either the board ROM configuration or
the ROM addressing requirements.

USER FUNCI10NS

1

slot PRAM ini t (slot, data)
Read the PRAM init structure for slot into the buffer pointed
to by data.

slot board flags (slot)
RCad and return the board flags for slot.

slot board id (slot)
Read and return the board ID number for slot.

slot board name (slot, data, size)
RCad up to size bytes of the board name string for slot into
the buffer pointed to by data.

slot board type (slot, data)
Read and return the unsigned 64 bit or 8 byte board type for
slot into the buffer pointed to by data.

slot ether addr (slot, data)
For slot read 6 bytes of ethemet address into the buffer point­
ed to by data.

slotyrimary_init (slot, data)
For slot read the primary init structure into the buffer pointed
to by data.

slotyart_num (slot, data, size)
For slot get size bytes of the part number string into the
buffer pointed to by data.

slot rev level (slot, data, size)
For slot get size bytes of the revision level of the ROM into
the buffer pointed to by data.

slot serial number (slot, data, size)
For slot getsize bytes of serial number string into the buffer

February, 1990
RevisionC

slots(3X) slots(3X)

pointed to by data.

slot vendor id (slot, data, size)
For slot read size bytes of vendor ID string into the buffer
pointed to by data.

UTILITY FUNCTIONS
slot board vendor info (kind, slot, data, size)

For slot get size by"is of the vendor infonnation string of
type kind into the buffer pointed to by data.

slot byte (address)
Return the byte located at address.

slot_data (slot, kind, request, data, size)
For slotlot, read size BITS of data for resource of type kind
from the resource list item of type request and put it into the
location pointed to by data.

slot directory (slot, data, size)
For slot read the resource directory into the buffer of size en­
tries pointed to by data.

slot long (address, data)
Return 32 bits of data from address offset by data.

slot resource (address, kind, request, data, size)
For ROM starting at base address read size bytes of the re­
quest resource item from the kind resource into the buffer
pointed to by data.

slot resource list (address, kind, data, size)
For ROM stifling at base address read size entries of
resource list of kind into the buffer pointed to by data.

slot_structure (address, from, data, size)
From ROM starting at address plus the offset in parameter
from read size bytes of data into the buffer pointed to by data.

slot word (address)
Return 16 bits of data located at address.

LOW LEVEL FUNCTIONS
slot seg violation()

This routine is passed to slot catch to handle bus errors.

slot catch (kind, routine)
Setup routine to handle interrupts of type kind.

February, 1990
Revision C

2

slots(3X) slots(3X)

slot ignore (kind)
Retwn the system to default handling of interrupts of type
kind.

slot address (slot)
Retwns a computed ROM base address for slot.

slot bytelane (address, bytelane)
Retwn the ROM bytelane byte into bytelane for ROM start­
ing at address.

slot_calcyointer (cu"ent, offset)
Retwn a ROM pointer offset bytes from current.

slot rom data (address, width, data)
Stuung with address fill the buffer pointed to by data with
width bytes of data.

slot_check_crc (top, /hP, bytelane)
Check the CRC for the ROM with base address top using the
format header information pointed to by fhp and the byte lane
information in bytelane.

slot_header (address, format_hdrp)
Read the ROM format header into the buffer pointed to by
format_hdrp for the ROM starting at base address address.

SEE ALSO
Building AJUX Device Drivers

NOTE

3

The slots library is only accessible to processes with superuser
privileges due to the required phys call to access board ROM.

February, 1990
RevisionC

spray(3N)

NAME
spray - scatter data in order to check the network

SYNOPSIS
#include <rpcsvc/spray.h>

DESCRIPTION
RPCINFO

~o~runnwmber: SPRAYPROG

xdr routines:
xdr sprayarr (xdrs, arr);

>CDR *:xdrs;
struct sprayarr *arr;

xdr spraycumul (xdrs, cumul);
>CDR *xdrs;
struct spraycumul *cumul;

~ocs:

SPRAYPROC SPRAY

spray(3N)

Takes no arguments; returns no value. Increments a counter
in server daemon. The server does not return this call, so the
caller should have a timeout of O.

SPRAYPROC GET
Takes no arguments; returns structure spraycumul with
value of counter and clock.

SPRAYPROC CLEAR
Takes no arguments and returns no value. Zeros out counter
and clock.

Versions:
SPRAYVERS ORIG

Structures:
struct spraycumul

unsigned counter;
struct timeval clock;

} ;
struct sprayarr

int *data,
int lnth

} ;

February, 1990
Revision C

1

spray(3N)

SEE ALSO
spray(IM), sprayd(lM).

2

spray(3N)

February, 1990
RevisionC

sputl(3X) sputl(3X)

NAME
sputl, sgetl - access long integer data in a machine
independent fashion

SYNOPSIS
void sputl (value, buffer)
long value;
char * buffer;

long sgetl (buffer)
char *buffer;

DESCRIPTION
sputl takes the 4 bytes of the long integer value and places them
in memory, starting at the address pointed to by buffer. The order­
ing of the bytes is the same across all machines.

sgetl retrieves the 4 bytes in memory, starting at the address
pointed to by buffer, and returns the long integer value in the byte
ordering of the host machine.

Use of sputl and sgetl provide a machine independent way of
storing long numeric data in a file in binary form without conver­
sion to characters.

A program that uses these functions must be loaded with the ob­
ject file access routine library libld. a.

SEE ALSO
ar(4).

February, 1990
RevisionC

1

sqrt(3F) sqrt(3F)

NAME
sqrt, dsqrt, csqrt - Fortran square root intrinsic function

SYNOPSIS
real r1, r2
double precision ap1, ap2
complex ex1, ex2

r2=sqrt (rl)

dp2=dsqrt (dpl)
dp2=sqrt (dpl)

ex2=csqrt (cxl)
ex2=sqrt (cxl)

DESCRIPTION
sqrt returns the real square root of its real argument. dsqrt re­
turns the double-precision square root of its double-precision ar­
gument c sqrt returns the complex square root of its complex
argument. sqrt, the generic form, will become dsqrt or
csqrt as required by its argument type.

SEE ALSO
exp(3M).

1 February, 1990
Revision C

ssignal(3C)

NAME
ssignal, gsignal- software signals

SYNOPSIS
tinclude <signal.h>

int (*ssignal (sig, action» ()
int sig, (*action) () ;

int gsignal (sig)
int sigi

DESCRIPTION

ssignal(3C)

ssignal and gsignal implement a software facility similar to
signal(3). This facility is used by the Standard C Library to en­
able users to indicate the disposition of error conditions; it is also
made available to users for their own purposes.

Software signals made available to users are associated with in­
tegers in the inclusive range 1 through 15. A call to ssignal as­
sociates a procedure, action, with the software signal, sig; the
software signal, sig, is raised by a call to gsignal. Raising a
software signal causes the action established for that signal to be
taken.

The first argument to ssignal is a number identifying the type
of signal for which an action is to be established. The second ar­
gument defines the action; it is either the name of a user-defined
action function or one of the manifest constants SIG DFL (de­
fault) or SIG IGN (ignore). ssignal returns the action previ­
ously established for that signal type; if no action has been esta­
blished or the signal number (sig) is illegal, ssignal returns
SIG DFL.

gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that
action is reset to SIG DFL and the action function is en­
tered with argument stg. gsignal returns the value re­
turned to it by the action function.

If the action for sig is SIG IGN, gsignal returns the
value 1 and takes no other action.

If the action for sig is SIG DFL, gsignal returns the
value 0 and takes no other action.

February, 1990
RevisionC

1

ssignal(3C) ssignal(3C)

If sig has an illegal value or 00 action was ever specified for
sig, gsignal returns the value 0 and takes no other action.

SEE ALSO
sigvec(2), signal(3).

NOTES

2

There are some additional signals with numbers outside the range
1 through 15 which are used by the Standard C Library to indicate
error conditions. Thus, some signal numbers outside the range 1
through 15 are legal, although their use may interfere with the
operation of the Standard C Library.

February, 1990
RevisionC

string(3C) string(3C)

NAME
strcat, strncat, strcmp, strncmp, strcpy,
strncpy, strlen, strchr, strrchr, strpbrk,
strspn, strcspn, strtok - string operations

SYNOPSIS
#include <string.h>

char *strcat(sl, s2)
char *sl, *s2 i

char * strncat (sl, s2, n)

char *sl, *s2 i
int ni

int strcmp (sl, s2)
char *sl, *s2 i

int strncmp(sl, s2, n)
char *sl, *s2;
int ni

char * strcpy (sl, s2)
char *sl, *s2 i

char * strncpy (sl, s2, n)

char *sl, *s2 i
int ni

int strlen (s)

char *Si

char *strchr (s, c)

char *Si
int Ci

char *strrchr (s, c)
char *Si
int Ci

char *strpbrk (sl, s2)
char *sl, *s2 i

int strspn (sl, s2)
char *sl, *s2 i

int strcspn (sl, s2)
char *sl, *s2 i

February, 1990
RevisionC

1

string(3C) string(3C)

char *strtok(rl,a)
char *sl, *s2;

DESCRIPTION

2

The arguments sl, s2, and s point to strings (arrays of characters
terminated by a null character). The functions strcat,
strncat, strcpy, and strncpy all alter sl. These functions
do not check for overflow of the array pointed to by sl.

strcat appends a copy of string s2 to the end of string sl.
strncat appends at most n characters. Each function returns a
pointer to the null-terminated result

s t rcmp performs a lexicographical comparison of its arguments
and returns an integer less than, equal to, or greater than 0, when
sl is less than, equal to, or greater than s2, respectively.
strncmp makes the same comparison but looks at a maximum of
n characters.

strcpy copies string s2 to string sl, stopping after the null char­
acter has been copied. strncpy copies exactly n characters,
truncating s2 or adding null characters to sl if necessary. The
result is not null-terminated if the length of s2 is n or more. Each
function returns sl.

strlen returns the number of characters in s, not including the
terminating null character.

strchr (strrchr) returns a pointer to the first (last) oc­
currence of character c in string s, or a NULL pointer if c does not
occur in the string. The null character terminating a string is con­
sidered to be part of the string.

strpbrk returns a pointer to the first occurrence in string sl of
any character from string s2, or a NULL pointer if no character
from s2 exists in sl.

strspn (strcspn) returns the length of the initial segment of
string sl which consists entirely of characters from (not from)
string s2.

strtok considers the string sl to consist of a sequence of zero or
more text tokens separated by spans of one or more characters
from the separator string s2. The first call (with pointer sl
specified) returns a pointer to the first character of the first token,
and writes a null character into sl immediately following the re­
turned token. The function keeps track of its position in the string
between separate calls, so that on subsequent calls (which must be

February, 1990
RevisionC

string(3C) string(3C)

made with a NULL pointer as the first argument) it works through
the string 81 immediately following that token. This can be con­
tinued until no tokens remain. The separator string 82 may be dif­
ferent from call to call. When no token remains in 81, a NULL
pointer is returned.

NOTES
For user convenience, some of these functions are declared in the
optional <string. h> header file.

BUGS
s t rcmp uses native character comparison. Thus the sign of the
value returned when one of the characters has its high-order bit set
is implementation-dependent

All string movement is performed character by character starting
at the left. Thus overlapping moves toward the left will work as
expected, but overlapping moves to the right may yield surprises.

February, 1990
Revision C

3

strtod(3C) strtod(3C)

NAME
strtod - convert string to double-precision number

SYNOPSIS
double strtod (str, ptr)
char *str, **ptr;

DESCRIPTION
strtod returns as a double-precision floating-point number, the
value represented by the character string pointed to by str. The
string is scanned up to the first unrecognized character.

strtod recognizes an optional string of "white-space" charac­
ters (as defined by isspace in ctype(3C)), then an optional
sign, then a string of digits optionally containing a decimal point,
then an optional e or E followed by an optional sign or space, fol­
lowed by an integer.

If the value of ptr is not (char * *) NULL, a pointer to the char­
acter terminating the scan is returned in the location pointed to by
ptr. If no number can be formed, *ptr is set to str, and zero is re­
turned.

SEE ALSO
bstring(3), atof(3C), ctype(3C), memcpy(3C),
scanf(3S), string(3C). strtol(3C).

DIAGNOSTICS

1

If the correct value would cause overflow, ±HUGE is returned (ac­
cording to the sign of the value), and errno is set to ERANGE.
If the correct value would cause underflow, zero is returned and
errno is set to ERANGE.

February, 1990
RevisionC

strtol(3C) strtol(3C)

NAME
strtol, atol, atoi - convert string to integer

SYNOPSIS
long strtol (str, plr, base)
char *str, **plr;
int base;

long atol (str)
char *str;

int atoi (str)
char *str;

DESCRIPTION
strtol returns as a long integer the value represented by the
character string pointed to by sIr. The string is scanned up to the
first character inconsistent with the base. Leading white-space
characters (blanks and tabs) are ignored.

If the value of plr is not (cha r * *) NULL, a pointer to the char­
acter terminating the scan is returned in the location pointed to by
plr. If no integer can be formed, zero is returned.

If base is positive (and not greater than 36), it is used as the base
for conversion. After an optional leading sign. leading zeros are
ignored; a leading Ox or Ox is ignored if base is 16.

If base is zero, the string itself determines the base. After an op­
tionalleading sign, a leading zero indicates octal conversion and a
leading Ox or OX indicates hexadecimal conversion; otherwise, de­
cimal conversion is used.

Truncation from long to int can take place upon assignment or
by an explicit cast.

atol (str) is equivalent to:

strtol (str, (char **) NULL, 10)

atoi (str) is equivalent to:

(int) strtol (SIr, (char **)NULL, 10)

SEE ALSO
ctype(3C), scanf(3S), strtod(3C).

February, 1990
Revision C

1

strtol(3C)

BUGS
Overflow conditions are ignored.

2

strtol(3C)

February, 1990
RevisionC

swab(3C)

NAME
swab - swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char *from, *to;
int nbytes;

DESCRIPTION

swab(3C)

swab copies nbytes bytes referenced by from to the array refer­
enced by to, exchanging adjacent even and odd bytes. It is useful
for carrying binary data between PDP-lIs and other machines.
nbytes should be even and non-negative. If nbytes is odd and po­
sitive, swab uses nbytes-I instead. If nbytes is negative, swab
does nothing.

February, 1990
Revision C

I

sysconf(3P) sysconf(3P)

NAME
sysconf - get configurable system variables

SYNOPSIS
#include <unistd.h>

long sysconf(na~)
int na~;

DESCRIPTION
sysconf allows an application to determine the current value of
a configurable system variable.

name represents the system variable to be queried. Allowable
values for name are:

SC ARG MAX - - -
SC CHILD MAX - - -
SC CLK TCK - - -
SC NGROUPS MAX - - -
SC OPEN MAX - - -
SC PASS MAX - - -
SC PID MAX - - -
SC UID MAX - - -
SC EXIT SIGHUP - - -
SC JOB CONTROL - - -
SC KILL PID NEGl - - - -
SC KILL SAVED - - -
SC PGID CLEAR - - -
SC SAVED IDS - - -
SC VERSION

RETURN VALUE
sysconf returns the current value of the specified variable. The
value returned will not be more restrictive than the value
described to the application when it was compiled with
<limits. h> or <unistd. h>. The value will not change dur­
ing the lifetime of the calling process.

ERRORS

1

If na~ is not defined on the system or name is invalid, sysconf
will return -1.

February, 1990
RevisionC

sysconf(3P)

SEE ALSO
pa thconf(3P).

February,1990
RevisionC

sysconf (3P)

2

system(3F) system(3F)

NAME
system - issue a shell command from Fortran

SYNOPSIS
character *N c

call system (c)

DESCRIPTION
system causes its character argument to be given to sh(l) as in­
put, as if the string had been typed at a terminal. The current pro­
cess waits until the shell has completed.

SEE ALSO
sh(l), exec(2), system(3S).

1 February, 1990
RevisionC

system(3S)

NAME
system - issue a shell command

SYNOPSIS
finclude <stdio.h>

int system (string)
char *string;

DESCRIPTION

system(3S)

system causes string to be given to sh(1) input, as if the string
had been typed as a command at a terminal. The current process
waits until the shell has completed and then returns the exit status
of the shell.

RETURN VALUE
system forks to create a child process that in turn performs
exec(2) on /bin/ sh in order to execute string. If fork or
exec fails, system returns a negative value and sets errno. If
fork and exec succeed, the exit status of the shell is returned.

FILES
/bin/sh

SEE ALSO
sh(1), exec(2).

February, 1990
Revision C

1

tan(3F) tan(3F)

NAME
tan, dtan - Fortran tangent intrinsic function

SYNOPSIS
real r1, r2
double precision ~1, dp2

r2=tan (r1)

~2=dtan (dp1)
~2=ftan (dpJ)

DESCRIPTION
tan returns the real tangent of its real argument. dtan returns
the double-precision tangent of its double-precision argument
The generic tan function becomes dtan as required with a
double-precision argument

SEE ALSO
trig(3M).

February, 1990
Revision C

1

tanh(3F) tanh(3F)

NAME
tanh, dtanh - Fortran hyperbolic tangent intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2=tanh (rl)

dp2=dtanh (dpl)
dp2=tanh (dpl)

DESCRIPTION
tanh returns the real hyperbolic tangent of its real argument
dtanh returns the double-precision hyperbolic tangent of its dou­
ble precision argument. The generic form tanh may be used to
return a double-precision value given a double-precision argu­
ment.

SEE ALSO
sinh(3M).

1 February, 1990
RevisionC

tedrain(3P) tedrain(3P)

NAME
tedrain, teflow, teflush, tesendbreak -- line
control functions

SYNOPSIS
finelude <termios.h>

int tedrain <fildes)
int fildes;

int teflow <fildes, action)
int fildes, action;

int teflush <fildes, queue_selector)
int fildes, queue_selector;

int tesendbreak <fildes, duration)
int fildes, duration;

DESCRIYfION
tedrain causes the process to wait until all output written to the
object indicated by fildes has been transmitted.

teflow will suspend transmission or reception of data on the ob­
ject indicated by fildes, depending on the value of action. If ac­
tion is TCOOFF, output will be suspended. If action is TCOON,
suspended output will be restarted. If action is TCI OF, input will
be suspended. If action is TCION, suspended input will be restart­
ed.

t c flu s h will discard data written to the object indicated by
fildes but not transmitted, or data received but not read, depending
on the value of queue selector. If queue selector is TCIFLUSH
data received, but notread, will be flushed. If queue _selector is
TCOFLUSH data written, but not transmitted, will be flushed. If
queue selector is TCIOFLUSH both data received, but not read,
and dita written, but not transmitted, will be flushed.

tcsendbreak will assert a break condition on the serial line as­
sociated with fildes depending on the value of duration. If dura­
tion is zero, the break condition will be asserted for 0.25 seconds.
If duration is not zero, no break will be sent

RETURN VALUE
Upon successful completion, zero is returned. Otherwise, -1 is
returned and errno is set to indicate the error.

February, 1990 1
RevisionC

tcdrain(3P} tcdrain(3P}

ERRORS
If any of the following conditions occur, -1 will be returned and
errno will be set to the corresponding value.

[EBADF] fildes is not a valid file descriptor.

[EINVAL]

[ENOTTY]

The device does not support the function
or if the function called was tcflush,
queue _selector is invalid

The file associated with fildes is not a ter­
minal.

In addition to those listed already, tcdrain will report the fol­
lowing error.

[EINTR] tcdrain was interrupted by a signal.

SEE ALSO
termios(7P}.

2 February, 1990
RevisionC

tcgetattr(3P) tcgetat tr(3P)

NAME
tcgetattr, tcsetattr - get and set the tenninal state

SYNOPSIS
tinclude <termios.h>

int tcgetattr <fildes, termios-p)
int fildes;
struct termio *rermio~;

int tcsetattr <fildes, optional-actions, termio-p)
int fildes, optional-actions;
struct termio *termio-p;

DESCRIPTION
tcgetattr retrieves the parameters associated with the device
indicated by fildes and stores them in the termios structure indi­
cated by termios-p.

tcsetattr sets the parameters associated with the terminal us­
ing the information in the termios structure pointed to by
termios-p. The action taken is dependent on the value of
optional-actions. If optional-actions is TCSANOW, the change oc­
curs immediately. If optional-actions is TCSADRAIN, the change
occurs after all output written to fildes has been transmitted.
TCSADRAIN should be used when changing parameters that af­
feet output. If optional-actions is TCSAFLUSH, the change occurs
after all output written to the object indicated by fildes has been
transmitted; all input that has been received but not read is dis­
carded before the change is made.

tcgettattr is allowed from a background process; however,
the terminal attributes may be changed later by a foreground pro­
cess.

RETURN VALUE
On successful completion, a value of 0 is returned. Otherwise,-1
is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occur, tcgetattr and
tcsetattr return -1 and set errno to the corresponding
value:

[EBADF]

[EINVAL]

February, 1990
Revision C

The file descriptor fildes is not valid.

The device does not support the function
called, or if the function called was

1

tcgetattr(3P)

[ENOTTY]

SEE ALSO

tcgetattr(3P)

tcsetattr, optional-actions is an in­
valid value.

The file associated with fildes is not a tef­
minal.

cfgetospeed(3P). termios(7P).

2 February. 1990
RevisionC

tcgetpgrp(3P) tcgetpgrp(3P)

NAME
tcgetpgrp - get distinguished process group ID

SYNOPSIS
#include <sys/types.h>

pid t tcgetpgrp (fildes)
in t -fildes;

DESCRIPTION
tcgetpgrp is part of the POSIX Job Control option.

tcgetpgrp returns the value of the process group ID of the
foreground process group associated with the tenninal.
tcgetpgrp may be called from a process that is a member of a
background process group; however, the infonnation may be sub­
sequently changed by a process that is a member of a foreground
process group.

RETURN VALUE
On successful completion, tcgetpgrp returns the process group
ID of the foreground process group associated with the tenninal.
Otherwise, -1 is returned and errna is set to indicate the error.

ERRORS
If any of the following conditions occur, tcgetpgrp will return
-1 and set e r rna to the corresponding value.

[EBADF] The file descriptor fildes is not valid.

[EINVAL]

[ENOTTY]

SEE ALSO

tcgetpgrp is not pennitted for the
device associated withfildes.

The calling process does not have a con­
trolling tenninal, or the file is not the
controlling tenninal.

setsid(2P), setpgid(2P), tcsetpgrp(3P).

February, 1990
RevisionC

1

t cset pgrp(3P) tcsetpgrp(3P)

NAME
t c set pgrp - set distinguished process group ID

SYNOPSIS
finclude <sys/types.h>

int tcsetpgrp (fildes, pgrp-id)
int fildesi
pid_t pgrp-id;

DESCRIPTION
tcsetpgrp is part of the POSIX Job Control Option.

If the process has a controlling terminal, tcsetpgrp sets the dis­
tinguished process group ID associated with the terminal to pgrp­
id. The file associated with fildes must be the controlling terminal
of the calling process, and the controlling terminal must be
currently associated with the session of the calling process. The
pgrp-id must match a process group ID of a process in the same
session as the calling process.

RETURN VALUE
On successful completion, tcsetpgrp returns O. Otherwise,-1
is returned and e r rno is set to indicate the error.

ERRORS
[EBADF]

[EINVAL]

[ENOTTY]

[EPERM]

SEE ALSO

The file descriptor fildes is not valid.

tcsetpgrp is not permitted for the
device associated with fildes, or the value
of pgrp-id is less than or equal to 0 or
exceeds PID MAX.

The calling process does .not have a con­
trolling terminal, or the file is not the
controlling terminal.

pgrp-id is greater than 0 and less than or
equal to PID_MAX, and there is no pro­
cess in the process group indicated by
pgrp-id that has the same controlling ter­
minal as the calling process.

setsid(2P), setpgid(2P), tcgetpgrp(3P).

1 February, 1990
RevisionC

termcap(3X) termcap(3X)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto,
t pu t s - terminal independent operation routines

SYNOPSIS
char PC;
char *BC;
char *UP;
short ospeed;

int tgetent (bp, name)
char *bp, *name;

int tgetnum(id)
char *id;

int tgetflag(id)
char *id;

char *tgetstr (id, area)
char *id, **area;

char *tgoto (em, desteol, destline)
char *em;
int desteol;
int destline;

int tputs (ep, affent, oute)
char *ep;
int affent;
int (*oute) () ;

DESCRIPTION
These functions extract and use capabilities from the terminal ca­
pability database termcap(4). Note that these are low-level rou­
tines.

tgetent extracts the entry for terminal name into the buffer at
bp. bp should be a character buffer of size 1024 and must be re­
tained through all subsequent calls to tgetnum, tgetflag, and
tgetstr. tgetent returns -1 if it cannot open the termcap
file, 0 if the terminal name given does not have an entry, and 1 if
successful. It looks in the environment for a TERMCAP variable.
If a variable is found whose value does not begin with a slash and
the terminal type name is the same as the environment string
TERM, the TERMCAP string is used instead of reading the
termcap file. If the value does begin with a slash, the string is
used as a pathname rather than / etc/termcap. This can speed

February,1990
Revision C

1

termeap(3X) termeap(3X)

up entry into programs that call tgetent. It can also help debug
new terminal descriptions or be used to make one for your termi­
nal if you can't write the file /ete/termeap.

tgetnum gets the numeric value of capability id, returning -1 if
is not given for the terminal. tgetflag returns 1 if the specified
capability is present in the tenninal's entry, 0 if it is not.
tgetstr gets the string value of capability id, placing it in the
buffer at area, advancing the area pointer. It decodes the abbrevi­
ations for this field described in termeap(4), except for cursor
addressing and padding information.

tgoto returns a cursor addressing string decoded from em to go
to column desteol in line destline. It uses the external variables
UP (from the up capability) and BC (if be is given rather than bs)
if necessary to avoid placing \ n, '" D, or '" @ in the returned string.
(Programs that call tgoto should be sure to tum off the XTABS
bitCs), since tgoto may now output a tab. Note that programs
using termeap should in geneml turn off XTABS anyway since
some terminals use CON1ROL-I for other functions, such as non­
destructive space.) If a % sequence is given which is not under­
stood, then tgoto returns "OOPS".

tputs decodes the leading padding information of the string ep;
affent gives the number of lines affected by the operation, or 1
if this is not applicable; oute is a routine that is called with each
character in tum. The external variable ospeed should contain
the output speed of the terminal as encoded by s tty (1) • The
external variable PC should contain a pad character to be used
(from the pc capability) if a null C"'@) is inappropriate.

FILES
/lib/libtermeap.a
/ete/termeap

SEE ALSO
ex(I), termeap(4).

2 February, 1990
RevisionC

tmpfile(3S) tmpfile(3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
*include <stdio.h>

FILE *tmpfile ()

DESCRIPTION
tmp f i 1 e creates a temporary file using a name generated by
tmpnam(3S), and returns a corresponding FILE pointer. The file
is automatically deleted when the process using it terminates. The
file is opened for update ("w+"). tmpfile calls fopen and so
returns any error code passed to it from f open.

RETURN VALUE
If the temporary file cannot be opened, an error message is printed
using pe r ro r(3C), and a NULL pointer is returned.

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C),
perror(3C), tmpnam(3S).

February, 1990
Revision C

1

tmpnam(3S) tmpnam(3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
tinclude <stdio.h>

char *tmpnam(s)
char *s;

char *tempnam(dir, pIx)
char *dir, *plx;

DESCRIPTION

1

These functions generate filenames that can safely be used for a
temporary file.

tmpnam always generates a filename using the pathname defined
as p tmpdir in the <stdio. h> header file. If s is NULL,
tmpnam leaves its result in an internal static area and returns a
pointer to that area. The next call to tmpnam will destroy the
contents of the area. If s is not NULL, it is assumed to be the ad­
dress of an array of at least I tmpnam bytes, where I tmpnam
is a constant defined in <stdio. h>; tmpnam places its result in
that array and returns s.

tempnam allows the user to control the choice of a directory.
The argument dir points to the pathname of the directory in which
the file is to be created. If dir is NULL or points to a string which
is not a pathname for an appropriate directory, the pathname
defined as p tmpdir in the <stdio. h> header file is used. If
that pathname is not accessible, / tmp will be used as a last resort.
This entire sequence can be upstaged by providing an environ­
ment variable TMPDIR in the user's environment, whose value is
a pathname for the desired temporary-file directory.

Many applications prefer that names of temporary files contain
favorite initial letter sequences. Use the pIx argument for this.
This argument may be NULL or point to a string of up to 5 char­
acters to be used as the first few characters of the name of the tem­
porary file.

tempnam uses malloc(3C) to get space for the constructed
filename and returns a pointer to this area. Thus, any pointer
value returned from tempnam may serve as an argument to free
(see malloc(3C». If tempnam cannot return the expected
result for any reason (Le., malloc failed or attempts to find an
appropriate directory were unsuccessful), a NULL pointer will be

February, 1990
RevisionC

tmpnam(3S) tmpnam(3S)

retmned.

NOTES
These functions generate a different filename each time they are
called.

Files created using these functions and either f open(3S) or
creat(2) are temporary only in the sense that they reside in a
directory intended for temporary use and their names are unique.
It is the user's responsibility to use unlink(2) to remove the file
when its use is ended.

SEE ALSO
creat(2), unlink(2), fopen(3S), malloc(3C),
mktemp(3C), tmpfile(3S).

BUGS
If called more than 17,576 times in a single process, tmpnam and
tempnam will start recycling previously used names.
Between the time a filename is created and the file is opened, it is
possible for some other process to create a file with the same
name. This can never happen if that other process is using
tmpnam, tempnam, or mktemp(3C) and the filenames are
chosen carefully to avoid duplication by other means.

February, 1990
RevisionC

2

trig(3M) trig(3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 -
trigonometric functions

SYNOPSIS
iinclude <math.h>

double sin (x)

double Xi

double cos (x)

double Xi

double tan (x)
double Xi

double asin (x)
double Xi

double acos (x)
double Xi

double atan(x)
double Xi

double atan2 (y, x)

double x, Yi

DESCRIPTION
sin, cos, and tan return, respectively, the sine, cosine, and
tangent of their argument, which is in radians.

asin returns the arcsine of x, in the range -1t/2 to x{l.

acos returns the arccosine of x, in the range 0 to 1t.

atan returns the arctangent of x, in the range -x/2 to x{l.

atan2 returns the arctangent of ylx, in the range -1t to 1t, using
the signs of both arguments to determine the quadrant of the return
value.

RETURN VALUE

1

sin, cos, and tan lose accuracy when their argument is far
from zero. For arguments sufficiently large, these functions return
o when there would otherwise be a complete loss of significance.
In this case a message indicating TLOSS error is printed on the
standard error output For less extreme arguments, a PLOSS error
is generated but no message is printed. In both cases, errno is
set to ERANGE.

February, 1990
RevisionC

trig(3M) trig(3M)

H the magnitude of the argument of asin or acos is greater than
one, or if both arguments of atan2 are zero, zero is returned and
errno is set to EDaM. In addition, a message indicating DOMAIN
error is printed on the standard error output.

These error-handling procedures may be changed with the func­
tion matherr(3M).

SEE ALSO
matherr(3M).

February, 1990
RevisionC

2

tsearch(3C) tsearch(3C)

NAME
tsearch, tfind, tdelete, twalk - manage binary
search trees

SYNOPSIS
iinclude <search.h>

char *tsearch (key, rootp, compar)
char *key;
char **rootp;
int (*compar) () ;

char *tfind (key, rootp, compar);
char *key;
char **rootp;
int (*compar) () ;

char *tdelete (key, rootp, compar);
char *key;
char **rootp;
int (*compar) () ;

void twalk (root, action)
char * root;
void (*action) () ;

DESCRIPTION

1

tsearch, tfind, tdelete, and twalk are routines for mani­
pulating binary search trees. They are generalized from Knuth
(6.2.2) Algorithms T and D. All comparisons are done with a
user-supplied routine. This routine is called with two arguments,
the pointers to the elements being compared. It returns an integer
less than, equal to, or greater than 0, according to whether the first
argument is to be considered less than, equal to or greater than the
second argument The comparison function need not compare
every byte, so arbitrary data may be contained in the elements in
addition to the values being compared.

tsearch is used to build and access the tree. key is a pointer to
a datum to be accessed or stored. If there is a datum in the tree
equal to *key (the value referenced by key), a pointer to this found
datum is returned Otherwise, * key is inserted, and a pointer to it
returned. Only pointers are copied, so the calling routine must
store the data. rootp points to a variable that points to the root of
the tree. A NULL value for the variable referenced by rootp
denotes an empty tree; in this case, the variable will be set to point

February, 1990
Revision C

tsearch(3C) tsearch(3C)

to the datum which will be at the root of the new tree.

Like tsearch, tfind will search for a datum in the tree, return­
ing a pointer to it if found However, if it is not found, tfind
will return a NULL pointer. The arguments for tfind are the
same as for tsearch.

tdelete deletes a node from a binary search tree. The argu­
ments are the same as for tsearch. The variable pointed to by
rootp will be changed if the deleted node was the root of the tree.
tdelete returns a pointer to the parent of the deleted node, or a
NULL pointer if the node is not found.

twalk traverses a binary search tree. root is the root of the tree
to be traversed. (Any node in a tree may be used as the root for a
walk below that node.) action is the name of a routine to be in­
voked at each node. This routine is, in turn, called with three ar­
guments. The first argument is the address of the node being visit­
ed. The second argument is a value from an enumeration data
type

typedef enum {preorder, postorder, endorder, leaf} VISIT;

(defined in the <search. h> header file), depending on whether
this is the first, second or third time that the node has been visited
(during a depth-first, left-to-right traversal of the tree), or whether
the node is a leaf. The third argument is the level of the node in
the tree, with the root being level zero.

The pointers to the key and the root of the tree should be of type
pointer-to-element, and cast to type pointer-to-character. Similar­
ly, although declared as type pointer-to-character, the value re­
turned should be cast into type pointer-to-element.

EXAMPLES
The following code reads in strings and stores structures contain­
ing a pointer to each string and a count of its length. It then walks
the tree, printing out the stored strings and their lengths in alpha­
betical order.

'include <search.h>

'include <stdio. h>

struct node {

} ;

char * string;

int length;

February, 1990
Revision C

I*pointers to these are

stored in the tree* I

2

tsearch(3C) tsearch(3C)

3

char string_space [10000]; I*space to store
strings*1

struct node nodes[500]; I*nodes to store*1

struct node *root = NULL; I*this points to the
root*1

maine)
{

/*

*1
int

char *strptr = string_space;

struct node *nodeptr = nodes;

void print_node (), twalk ();
int i = 0, node_compare ();

while (gets (strptr) ! = NULL && i++ < 500)

1* set node *1
nodeptr->string = strptr;

nodeptr->length = strlen (strptr) ;
1* put node into the tree * I
(void) tsearch ((char *) nodeptr, & root,

node_compare);

1* adjust pointers, so we

don't overwrite tree *1
strptr += nodeptr->length + 1;

nodeptr++;

twalk (root, print_node);

This routine compares two nodes, based on an
alphabetical ordering of the string field.

node_compare (node1, node2)

struct node *node1, *node2;

/*

*1
void

return strcmp(node1->string, node2->string);

This routine prints out a node, the

first time twalk encounters it.

February, 1990
RevisionC

tsearch(3C) tsearch(3C)

print_node (node, order, level)

struct node **node;

VISIT order;

int level;

if (order == preorder I I order == leaf)

(void)printf("string = %20s, length

(*node)->string, (*node)->length);

}

RETURN VALUE

%d\n",

A NULL pointer is returned by tsearch if there is not
enough space available to create a new node.

A NULL pointer is returned by tsearch, tfind and
tdelete if rootp is NULL on entry.

IT the datum is found, both tsearch and tfind return a
pointer to it. IT not, tfind returns NULL, and tsearch re­
turns a pointer to the inserted item.

SEE ALSO
bsea rch(3C), hsea rch(3C), 1 sea rch(3C).

WARNINGS
The root argument to twalk is one level of indirection less
than the rootp arguments to tsearch and tdelete.
There are two nomenclatures used to refer to the order in
which tree nodes are visited. tsearch uses preorder, postord­
er and endorder to respectively refer to vi sting a node before
any of its children, after its left child and before its right, and
after both its children. The alternate nomenclature uses preord­
er, inorder and postorder to refer to the same visits, which
could result in some confusion over the meaning of postorder.

BUGS
IT the calling function alters the pointer to the root, results are
unpredictable.

February, 1990
RevisionC

4

ttyname(3C) ttyname(3C)

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
char *ttyname (ftldes)
int fildes;

int isatty (ftldes)
int fildes;

DESCRIPTION
ttyname returns a pointer to a string contammg the null­
terminated pathname of the terminal device associated with file
descriptor fildes.

RETURN VALUE
t tyname returns a NULL pointer iffildes does not describe a ter­
minal device in directory / dev.

is at t y returns 1 if fildes is associated with a tenninal device;
otherwise, it returns O.

FILES
/dev/*

BUGS

1

The return value points to static data whose content is overwritten
by each call.

February, 1990
RevisionC

ttyslot(3C) ttyslot(3C)

NAME
ttyslot - find the slot in the utmp file of the current user

SYNOPSIS
int ttyslot ()

DESCRIPTION
ttyslot returns the index of the current user's entry in the
/ etc/utmp file. This is accomplished by scanning the file
/etc/inittab for the name of the terminal device associated
with the standard input, the standard output, or the error output (0,
1, or 2).

SEE ALSO
getut(3C), ttyname(3C).

FILES
/etc/inittab
/etc/utmp

RETURN VALUE
A value of 0 is returned if an error is encountered while searching
for the terminal name or if none of the above file descriptors is as­
sociated with a terminal device.

February, 1990
RevisionC

1

umount(3) umount(3)

NAME
umount - unmount a file system

SYNOPSIS
int umount (spec)
char *spec;

DESCRIPTION
umount requests that a previously mounted file system contained
on the block special device identified by spec be unmounted. spec
is a pointer to a path name. After unmounting the file system, the
directory upon which the file system was mounted reverts to its or­
dinary interpretation.

umount may be invoked only by the superuser.

ERRORS
umount will fail if one or more of the following are true:

[EPERM] The process's effective user ID is not su­
peruser.

[ENXIO]

[ENOTBLK]

[EINVAL]

[EBUSY]

[EFAULT]

spec does not exist.

spec is not a block special device.

spec is not mounted.

A file on spec is busy.

spec points to an illegal address.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

SEE ALSO
fsmount(2), unmount(2}, mount(3}.

1 February, 1990
RevisionC

ungetc(3S)

NAME
ungetc -push character back into input stream

SYNOPSIS
iinclude <stdio.h>

int ungetc(c, sueam)
char c;
FILE *sueam;

DESCRIPfION

ungetc(3S)

ungetc inserts the character c into the buffer associated with an
input stream. That character, c, will be returned by the next getc
call on that stream. ungetc returns c and leaves the file sueam
unchanged.

One character of pushback is guaranteed provided something has
been read from the stream and the stream is actually buffered. In
the case that sueam is stdin, one character may be pushed back
onto the buffer without a previous read statement.

If c equals EOF, ungetc does nothing to the buffer and returns
EOP.

f seek(3S) erases all memory of inserted characters.

RETURN VALUE
ungetc returns EOF if it can't insert the character.

SEE ALSO
f seek(3S), getc(3S), setbuf(3S).

February, 1990
RevisionC

1

varargs(3X) varargs (3X)

NAME
varargs - handle variable argument list

SYNOPSIS
finelude <varargs.h>

va alist

va del

void va_start(pv~)
va_list pv~;

type va arg (pvar, type)
va_list pv~;

void va_end(pv~)
va_list pv~;

DESCRIPTION
This set of macros allows portable procedures that accept variable
argument lists to be written. Routines that have variable argument
lists (such as printf(3S» but do not use varargs are inherent­
ly nonportable, as different machines use different argument­
passing conventions.

va_alist is used as the parameter list in a function header.

va del is a declaration for va ali st. No semicolon should
foliOw va del. -

va list is a type defined for the variable used to traverse the
list

va _ s tart is called to initialize pvar to the beginning of the list

va a rg will return the next argument in the list referenced by
pva;.. type is the type the argument is expected to be. Different
types can be mixed, but it is up to the routine to know what type of
argument is expected, as it cannot be determined at runtime.

va_end is used to clean up.

Multiple traversals, each bracketed by va_start ... va_end,
are possible.

EXAMPLES

1

This example is a possible implementation of exeel(2).

iinclude <varargs.h>
idefine MAXARGS 100

February, 1990
RevisionC

varargs(3X)

/*execl is called by
execl (file, argl, arg2, .•• , (char *) 0);

*/
execl(va_alist)
va dcl

va_list ap;
char *file:
char *args[MAXARGS]:
int argno = 0:

va_start(ap);
file = va_arg(ap, char *):

varargs(3X)

while «args[argno++] = va_arg(ap, char *» != (char *)0)

va_end (ap):
return execv(file, args):

}

SEE ALSO
exec(2), printf(3S).

BUGS
It is up to the calling routine to specify how many arguments there
are, since it is not always possible to determine this from the stack
frame. For example, execl is passed a zero pointer to signal the
end of the list printf can tell how many arguments are there
by the format
It is non-portable to specify a second argument of char, short,
or float to va_arg, since arguments seen by the called func­
tion are not char, short, or float. C converts char and
short arguments to int and converts float arguments to
double before passing them to a function.

February, 1990
Revision C

2

vprintf(3S) vprintf(3S)

NAME
vprintf, vfprintf, vsprintf - format and output data
from a variable-length argument list

SYNOPSIS
#include <stdio.h>
#include <varargs.h>

int vprintf (format, ap)
char *formati
va_list api

int vfprintf (stream, format, ap)
FILE *streami
char *formati
va_list api

int vsprintf (s, format, ap)
char *s, *formati
va_list api

DESCRIPTION
vprintf, vfprintf, and vsprintf are the same as
printf, fprintf, and sprintf respectively, except that in­
stead of being called with a variable number of arguments, they
are called with an argument list as defined by varargs(5).

EXAMPLES

1

The following demonstrates how vfprintf could be used to
write an error routine.
iinclude <stdio.h>
iinclude <varargs.h>

/*
* error should be called like

* error (function_name, format, argl, arg2 ...);
*/

/*VARARGSO*/
void
error(va alist)
/* Note that the function name and format arguments

* cannot be separately declared because of the
*/definition of varargs.

va dcl
{

va_list args;
char *fmt;

February, 1990
RevisionC

vprintf(3S) vprintf(3S)

va start (args) ;
/*-print out name of function causing error */
(void)fprintf(stderr, "ERROR in %s: It,

va arg(args, char *»;
fmt = va arg(args, char *);
/* print-out remainder of message */
(void) vfprintf (fmt, args);
va end (args);
(void) abort ();

SEE ALSO
varargs(5).

February, 1990
Revision C

2

xdr(3N) xdr(3N)

NAME
xdr -library routines for external data representation

DESCRIPTION
These routines allow C programmers to describe arbitrary data
structures in a machine-independent fashion. Data for remote pro­
cedure calls are transmitted using these routines.

FUNCfIONS

1

xdr_destroy ()

xdr_double ()

xdr _opaque ()

xdr_reference ()
xdr_setpos ()

translate arrays to/from external
representation
translate Booleans to/from exter­
nal representation
translate counted byte strings
to/from external representation
destroy XDR stream and free as­
sociated memory
translate double precision to/from
external representation
translate enumerations to/from
external representation
translate floating point to/from
external representation
return current position in XDR
stream
invoke the in-line routines associ­
ated with XDR stream
translate integers to/from external
representation
translate long integers to/from
external representation
translate fixed-size opaque data
to/from external representation
chase pointers within structures
change current position in XDR
stream
translate short integers to/from
external representation
translate null-terminated strings
to/from external representation
translate unsigned integers
to/from external representation

February, 1990
Revision C

xdr(3N)

xdr void()
xdr=wrapstring ()

xdrmem_create ()
xdrrec_create()

xdrrec_endofrecord()

xdrrec_skiprecord()

xdrstdio_create()

SEE ALSO

xdr(3N)

translate unsigned long integers
to/from external representation
translate unsigned short integers
to/from external representation
translate discriminated unions
to/from external representation
always return one (1)
package RPC routine Cor XDR
routine, or vice-versa
initialize an XDR stream
initialize an XDR stream with
record boundaries
mark XDR record stream with an
end-oC-record
mark XDR record stream with an
end-oC-file

skip remaining record in XDR
record stream
initialize an XDR stream as stan­
dard I/O FILE stream

AIUX Network Applications Programming.

February, 1990
RevisionC

2

ypclnt(3N) ypclnt(3N)

NAME
yp_bind, yp_unbind, yp_get_default_domain,
yp match, yp first, yp next, yp all, yp order,
yp -master, yperr string, ypprot err -=- yellow
pages client interface - -

SYNOPSIS

1

finclude <rpcsvc/ypclnt.h>

yp bind (indomain) ;
char *indomain;

void yp unbind (indomain)
char *indomain;

yp get default domain (outdomain) ;
char **outdomain;

yp_match (indomain, inmap, inkey, inkeylen, outval,
outvallen)
char *indomain;
char *inmap;
char *inkey;
in t inkeylen;
char **outval;
int *outvallen;

yp fir s t (indomain, inmap, outkey, outkeylen, outval,
outvallen)
char *indomain;
char *inmap;
char **outkey;
in t * outkeylen;
char * *outval;
in t * outvallen;

yp _next (indomain, inmap, inkey, inkeylen, outkey,
outkeylen, outval, outvallen) ;
char *indomain;
char *inmap;
char *inkey;
int inkeylen;
char **outkey;
in t * outkeylen;
char **outval;
int *outvallen;

February, 1990
RevisionC

ypclnt(3N)

yp_all (indomain, inmap, incallback) i
cha r * indomain;
char *inmapi
struct ypall_callback incallbacki

yp 0 rde r (indomain, inmap, outorder) i
char *indomaini
char *inmap;
in t * outorder ;

yp _rna s te r (indomain, inmap, outname) i
char *indomaini
char *inmap;
char **outnamei

char *yperr string (incode)
int incodei -

ypprot err (incode)
unsigned int incode;

DESCRIPTION

ypclnt(3N)

This package of functions provides an interface to the yellow
pages (YP) network . lookup service. The package can be loaded
from the standard library /lib/libc. a. Refer to ypfiles(4)
and ypserv(1M) for an overview of the yellow pages, including
the definitions of map and domain, and a description of the vari-
0us servers, databases, and commands that comprise the YP.

All input parameters names begin with "in". Output parameters
begin with "out". Output parameters of type "char **"
should be addresses of uninitialized character pointers. Memory
is allocated by the yP client package using rnalloc(3), and may
be freed if the user code has no continuing need for it. For each
outkey and outval, two extra bytes of memory are allocated at the
end that contain NEWLINE and NULL, respectively, but these
two bytes are not reflected in outkeylen or outvallen.

indomain and inmap strings must be non-null and null-terminated.
String parameters which are accompanied by a count parameter
may not be null, but may point to null strings, with the count
parameter indicating this. Counted strings need not be null­
terminated.

All functions in this package of type "int" return 0 if they
succeed, and a failure code (YPERR xnx) otherwise. Failure
codes are described under ERRORS belOw.

February, 1990
RevisionC

2

ypclnt(3N) ypclnt(3N)

3

The yP lookup calls require a map name and a domain name, at
minimum. It is assumed that the client process knows the name of
the map of interest. Client processes should fetch the node's de­
fault domain by calling yp get default domain (), and
use the returned outdomain as the tndomain pafameter to succes­
sive yP calls.

To use the yP services, the client process must be "bound" to a
yP server that serves the appropriate domain using yp _bind.
Binding need not be done explicitly by user code; this is done au­
tomatically whenever a yP lookup function is called. yp bind
can be called directly for processes that make use of a backup
strategy (e.g., a local file) in cases when yP services are not avail­
able.

Each binding allocates (uses up) one client process socket descrip­
tor; each bound domain costs one socket descriptor. However,
multiple requests to the same domain use that same descriptor.
yp unbind () is available at the client interface for processes
that explicitly manage their socket descriptors while accessing
multiple domains. The call to yp _unbind () make the domain
"unbound," and free all per-process and per-node resources used
to bind it.

If an RPC failure results upon use of a binding, that domain will
be unbound automatically. At that point, the ypclnt layer will
retry forever or until the operation succeeds, provided that yp­
bind is running, and either

the client process can't bind a server for the proper domain.
or

RPC requests to the server fail.

If an error is not RPC-related, or if ypbind is not running, or if a
bound ypserv process returns any answer (success or failure),
the ypclnt layer will return control to the user code, either with
an error code, or a success code and any results.

yp match returns the value associated with a passed key. This
key must be exact; no pattern matching is available.

yp _ fir s t returns the first key-value pair from the named map in
the named domain.

February, 1990
RevisionC

ypclnt(3N) ypclnt(3N)

yp _next () returns the next key-value pair in a named map.
The inkey parameter should be the outkey returned from an initial
call to yp_first () (to get the second key-value pair) or the one
returned from the nth call to yp next () (to get the nth + second
key-value pair). -

The concept of first (and, for that matter, of next) is particular to
the structure of the yP map being processing; there is no relation
in retrieval order to either the lexical order within any original
(non-YP) data base, or to any obvious numerical sorting order on
the keys, values, or key-value pairs. The only ordering guarantee
made is that if the yp first () function is called on a particular
map, and then the yp next () function is repeatedly called on
the same map at the same server until the call fails with a reason
of YPERR _ NOMORE, every entry in the data base will be seen ex­
actly once. Further, if the same sequence of operations is per­
formed on the same map at the same server, the entries will be
seen in the same order.

Under conditions of heavy server load or server failure, it is possi­
ble for the domain to become unbound, then bound once again
(perhaps to a different server) while a client is running. This can
cause a break in one of the enumeration rules; specific entries may
be seen twice by the client, or not at all. This approach protects
the client from error messages that would otherwise be returned in
the midst of the enumeration. The next paragraph describes a
better solution to enumerating all entries in a map.

yp_all provides a way to transfer an entire map from server to
client in a single request using TCP (rather than UDP as with oth­
er functions in this package). The entire transaction take place as
a single RPC request and response. You can use yp_all just
like any other yP procedure, identify the map in the nonnal
manner, and supply the name of a function which will be called to
process each key-value pair within the map. You return from the
call to yp_all only when the transaction is completed (success­
fully or unsuccessfully), or your "foreach" function decides
that it doesn't want to see any more key-value pairs.

The third parameter to yp _all is

struct ypall_callback *incallback
int (*foreach) ();
char *data;
} ;

February,1990
RevisionC

4

ypclnt(3N) ypclnt(3N)

5

The function foreach is called

foreach (instatus, inkey, inkeylen, inval, invallen, indata) i
int instatusi
char *inkeYi
int inkeyleni
char *invali
int invalleni
char *indatai

The instatus parameter will hold one of the return status values
defined in <rpcsvc/ypyrot. h>; either YP _TRUE or an error
code. (See ypprot err, below, for a function which converts a
yP protocol error code to a ypclnt layer error code.)

The key and value parameters are somewhat different than defined
in the synopsis section above. First, the memory pointed to by the
inkey and inval parameters is private to the yp_all function, and
is overwritten with the arrival of each new key-value pair. It is the
responsibility of the foreach function to do something useful
with the contents of that memory, but it does not own the memory
itself. Key and value objects presented to the foreach function
look exactly as they do in the server's map; if they were not
newline-terminated or null-terminated in the map, they won't be
here either.

The indata parameter is the contents of the incallback->data ele­
ment passed to yp all. The data element of the callback struc­
ture may be used to share state information between the
foreach function and the mainline code. Its use is optional, and
no part of the yP client package inspects its contents; cast it to
something useful, or ignore it as you see fit.

The foreach function is a Boolean. It should return zero to in­
dicate that it wants to be called again for further received key­
value pairs, or non-zero to stop the flow of key-value pairs. If
foreach returns a non-zero value, it is not called again; the
functional value of yp _all is then O.

yp _order returns the order number for a map.

yp master returns the machine name of the master YP server
fora map.

February, 1990
Revision C

ypclnt(3N) ypclnt(3N)

yperr_string returns a pointer to an error message string that
is null-terminated but contains no period or newline.

ypprot _err takes a yP protocol error code as input, and re­
turns a ypclnt layer error code, which may be used in turn as an
input to yperr_string.

ERRORS
All integer functions return 0 if the requested operation is success­
ful, or one of the following errors if the operation fails.
#define YPERR BADARGS 1 /* args to function are bad */
#define YPERR RPC 2 /* RPC failure - domain has

been unbound */
#define YPERR DOMAIN 3 /* can't bind to server on this

domain */
#define YPERR MAP 4 /* no such map in server's

domain */
#define YPERR KEY 5 /* no such key in map */
#define YPERR_YPERR 6 /* internal yp server or

client error */
#define YPERR_RESRC 7 /* resource allocation

failure */
#define YPERR NOMORE 8 /* no more records in map

database */
#define YPERR_PMAP 9 /* can't communicate with

portmapper */
#define YPERR YPBIND 10 /* can't communicate with

ypbind */
#define YPERR YPSERV 11 /* can't communicate with

ypserv */
#define YPERR NODOM 12 /* local domain name not set */

FILES
/usr/include/rpcsvc/ypclnt.h
/usr/include/rpcsvc/yp_prot.h

SEE ALSO
ypserv(1M), ypfiles(4).

February, 1990
Revision C

6

yppasswd(3N) yppasswd(3N)

NAME
yppasswd - update user password in yellow pages

SYNOPSIS
#include <rpcsvc/yppasswd.h>

yppasswd (oldpass, newpw)
char *oldpassi
struct passwd *newpwi

DESCRIPTION
If oldpass is indeed the old user password, this routine replaces
the password entry with newpw. It returns 0 if successful.

RPC INFO
Program number: YPPASSWDPROG

xdr routines:

xdr_ppasswd (xdrs, yp)
XDR *xdrs;
struct yppasswd *yp;

xdr yppasswd (xdrs, pw)
XDR *xdrs;
struct passwd *pWi

Procs:

YPPASSWDPROC UPDATE
Takes the stiiicture yppasswd as an argument; returns in­
teger. Same behavior as the yppasswd () wrapper. Uses
UNIX authentication.

Versions:
YPPASSWDVERS ORIG

Structures:

struct yppasswd
char *oldpass; 1* old (unencrypted) pw *1
struct passwd newpw; 1* new pw structure *1

} ;

SEE ALSO
yppasswd(l), yppasswdd(1M).

1 February, 1990
RevisionC

zip(3N) zip(3N)

NAME
zip getmyzone, zip getzonelist,
zip=getlocalzones - - AppleTalk Zone Information
Protocol (ZIP) interface

SYNOPSIS
iinclude <at/appletalk.h>
iinclude <at/zip.h>
cc [flags]files -lat [libraries]

int zip_getmyzone (zone) at_nvestr_t *zone;

int zip_getzonelist (start, zones) int start;
at_nvestr_t *zones[];

int zip_getlocalzones (start, zones) int start;
at_nvestr_t *zones [] ;

DESCRIPTION
The ZIP interface provides applications with access to the Ap­
pleTalk Zone Information Protocol operations.

The zip getmyzone routine obtains the zone name for the 10-
eal network. In the case of LocalTalk, this involves sending a ZIP
request to a local bridge to get the zone name of the default net­
work. In the case of EtherTalk, the request is completed on the
node itself. The parameters are

zone A pointer to the zone name. The zone string is defined
by the following structure (see <at/nbp. h»:

typedef struct at_nvestr {
u char len;
u char str[NBP_NVE_STR SIZE];

} at_nvestr t;

len The size of the string in bytes.

str The zone name.

This routine returns 0 upon success.

The zip get zonelist routine obtains a complete list of all
the zone names defined in the internet. This routine sends a ZIP
request to a bridge for the list of zone names in the internet. The
list is placed in the supplied buffer as concatenated
at_nvestr_t structures. The parameters are

February, 1990
RevisionC

1

zip(3N) zip(3N)

start

buf

The starting index for the get zone list request. The start
index is the value of the index at which to start including
zone names in the response. It is used to obtain a zone
list that may not fit into one A 1P response packet The
start index should initially be 1. While
zip_get zonelist returns a value greater than 0, the
caller must reissue zip getzonelist calls to get
more zone names from the bridge, specifying a start in­
dex of the previous start index plus the previous return
valueof zip_getzonelist.

A buffer to hold this list of zone names. Each zone
name is an at nvestr t structure. The size of this
buffer (in bytes) must be at least ATP _DATA _ SI ZE.

Upon successful completion, this routine returns the number of
zone names in the list

When all zones in the bridge's Zone Information Table have been
returned, this routine returns O.

The use and behavior of the zip getlocal zones routine are
the same as for zip_getzonelist, except that the former re­
turns the list of zones on the local EtherTalk cable rather than all
the zones on the internet. On LocalTalk,
zip _getlocal zones returns only the current zone name.

DIAGNOSTICS
All routines return -Ion error, with a detailed error code stored in
errno:

[EINVAL] A parameter is invalid.

[ENE TUNREACH] A bridge node could not °be found to pro­
cess the request.

Routines also return any error codes returned by the underlying
A TP or DDP layers.

SEE ALSO
ddp(3N), atp(3N), Inside AppleTalk; "AppleTalk Programming
Guide," inA/UX Network Applications Programming.

WARNINGS

2

The returned zone strings are not NULL-terminated.

February, 1990
RevisionC

Table of Contents

Section 4: File Formats

intro(4) ... introduction to file formats
a. out(4) common assembler and link editor output
aeet(4) .. per-process accounting file format
afm(4) Adobe POSTSCRIPf font metrics file format
aliases(4) .. aliases file for sendmail
al tblk(4) alternate block information for bad block handling
aouthdr(4) a . out header for common object files
appletalkre(4) AppleTa1k® network configuration file
ar(4) ... common archive file format
bzb(4) .. format of Block Zero Blocks
eml(4) ... configuration master list format
eore(4) ... format of core image file
epio(4) ... format of epio archive
dialup(4) .. modem escape sequence file
dir(4) .. format of System V directories
disktab(4) .. disk description file
dpme(4) ... format of disk partition map entries
dump. bsd(4) ... format of a file system dump
errfile(4) .. error-log file format
ethers(4) Ethernet address to hostname database or YP domain
expo rt s(4) NFS file systems being exported
filehdr(4) file header for common object files
finstallre(4) finstall default configuration file
fs(4) ... file systems
fspee(4) syntax for format lines for newform
fstab(4) static information about file systems
fstypes(4) name-mapping information for file systems
gettydefs(4) speed and terminal settings used by getty
group(4) .. group file
HOSTNAME(4) hostname and domainname database
hosts(4) .. host name database
hosts. equiv(4) .. list of trusted hosts
in it tab(4) ... script for the in it process
inode(4) .. format of a System V inode
ioetl. syseon(4) console terminal settings file
issue(4) ... issue identification file
iwmap(4) format of iwprep(l) character map description files

Section 4

linenum(4) line number entries in a common object file
magic(4) magic number file for file command
master(4) ... master kernel configuration files
mtab(4) .. mounted file system table
NETADDRS(4) .. network address database
netgroup(4) .. list of network groups
networks(4N) .. network name database
passwd(4) .. password file
phones(4) remote host telephone number database
plot(4) .. graphics interface
postscript(4) POSTSCRIPT print file format
printcap(4) .. printer-capability database
profile(4) setting up an environment at login time
protocols(4N) .. protocol name database
ptab(4) .. partition table file
rcsfile(4) .. format of an RCS file
reloc(4) relocation information for a common object file
remote(4) ... remote host description file
resol ver(4) .. resolver configuration file
rho st s(4N) ... trusted hosts file format
rmtab(4) remotely mounted file system table
rpc(4) .. RPC program number database
sccsfile(4) ... format of an SCCS file
scnhdr(4) section header for a common object file
servers(4) ... futemet server database
services(4N) ... service name database
slip. config(4) list of slip interfaces supported by a slip server
slip.hosts(4) map user names to host addresses of slip client
slip. user(4) user file created by mkslipuser
svfs(4) format of a System V system volume
syms(4) common object file symbol table format
tar(4) ... format of tar header
term(4) ... format of compiled term file
termcap(4) .. terminal capability database
terminfo(4) terminal capability database
ttytype(4) database of terminal types by port
tzfile(4) ... time-zone information
ufs(4) .. format of a UFS file-system volume
utmp(4) .. utmp and wtmp entry formats
wtmp(4) .. see utmp(4)
ypfiles(4) the Yellow Pages database and directory structure

ii File Formats

intro(4) intro(4)

NAME
intro - introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C struct
declarations for the file formats are given where applicable. Usu­
ally, these structures can be found in the directories
/usr/include or /usr/include/sys.

February, 1990
RevisionC

1

a.out(4) a.out(4)

NAME
a. out - common assembler and link editor output

DESCRIPTION

1

a. out is the output file from the assembler as(1) and the link ed­
itor Id(I). a. out can be executed on the target machine if there
were no errors in assembling or linking and no unresolved exter­
nal references.

The object file format supports user-defined sections and contains
extensive information for symbolic software testing. A common
object file consists of a file header, an optional aout header, a
table of section headers, relocation information, (optional) line
numbers, and a symbol table. The order is given below.

File header.
Optional aout header.
Section 1 header.

Section n header.
Section 1 data.

Section n data.
Section 1 relocation.

Section n relocation.
Section 1 line numbers.

Section n line numbers.
Symbol table.
String table.

The last four sections (relocation, line numbers, symbol table, and
string table) may be missing if the program was linked with the-s
option of Id(1) or if the symbol table and relocation bits were re­
moved by s t r i p(1). Also note that if the program was linked
without the -r option, the relocation information will be absent
The string table exists only if necessary.

When an a. out file is loaded into memory for execution, three
logical segments are set up: the text segment, the data segment
(initialized data followed by un initialized data, the latter actually
being initialized to all O's), and a stack. The text segment begins
at location 0 in the core image; the header is not loaded. If the

February, 1990
RevisionC

a.out(4) a.out(4)

magic number (the first field in the optional aout header) is 407
(octal), it indicates that the text segment is not to be write­
protected or shared, so the data segment will be contiguous with
the text segment. If the magic number is 410 (octal), the data seg­
ment begins at the next segment boundary following the text seg­
ment, and the text segment is not writable by the program. If oth­
er processes are executing the same a . out file, they will share a
single text segment

On the Macintosh II with NUX the stack begins at the end of
memory and grows toward lower addresses. The stack is automat­
ically extended as required. The data segment is extended only as
requested by the brk(2) and sbrk(2) system calls.

The value of a word in the text or data portions that is not a refer­
ence to an undefined external symbol is exactly the value that will
appear in memory when the file is executed. If a word in the text
involves a reference to an undefined external symbol, the storage
class of the symbol-table entry for that word will be marked as an
"external symbol", and the section number will be set to O.
When the file is processed by the link editor and the external sym­
bol becomes defined, the value of the symbol will be added to the
word in the file.

See aouthdr(4), filehdr(4), linenum(4), scnhdr(4), re­
loc(4), and syms(4) for descriptions of the individuals parts.
Every section created by as(1) contains a multiple-of-four
number of bytes; directives to ld(l) can create a section with an
odd number of bytes.

SEE ALSO·
as(I), cc(I), ld(I), ldfcn(3X), aouthdr(4),
filehdr(4), linenum(4), reloc(4), scnhdr(4),
syms(4).

February, 1990
RevisionC

2

acct(4) acct(4)

NAME
acct - per-process accounting file format

SYNOPSIS
#include <sys/acct.h>

DESCRIPTION

1

Files produced as a result of calling acct(2) have records in the
form defined by <sys/acct. h>, whose contents are
typedef ushort comp_t; 1* floating point */

struct
char

} ;

char
ushort
ushort
dev t
time t
comp_t

comp_t

comp_t
comp_t
comp_t
char

acct {
ac_flag;
ac stat;
ac:=uid;
ac_gid;
ac tty;
ac-btime;
ac:=utime;

ac_mem;
ac_io;
ac rw;
ac_comm[8];

/* 13-bit fraction, 3-bit
exponent */

/* Accounting flag *1
1* Exit status *1
/* Accounting user 10 */
/* Accounting group 10 */
1* control terminal */
1* Beginning time */
/* acctng user time in

clock ticks */
/* acctng system time in

clock ticks */
1* acctng elapsed time in

clock ticks *1
/* memory usage in clicks */
/* chars trnsfrd by read/write */
1* number of block reads/writes *1
/* command name */

extern struct acct acctbuf;
extern struct vnode *acctp; 1* vnode of acctng file *1

#define AFORK
#define ASU
#define ACCTF

01
02
0300

/* has executed fork-no exec */
/* used superuser privileges */
/* record type: 00 = acct *1

In ac flag, the AFORK flag is turned on by each fork(2) and
turned-off by an exec(2). The ac comm field is inherited from
the parent process and is reset by ally exec. Each time the sys­
tem charges the process with a clock tick, it also adds the current
process size to ac _ mem, computed as follows:

(data size) + (text size) I (number olin-core processes using text)

The value of ac mem/ (ac stime+ac utime) can be
viewed as an approxllnation to the mean process size, as modified
by text-sharing.

February, 1990
RevisionC

acct(4) acct(4)

The structure tacct, which resides with the source files of the
accounting commands, represents the total accounting fonnat used
by the various accounting commands.

1*
1* total accounting (for acct period), also for day
1*

struct tacct
uid t ta uid; /* userid */
char ta-name[8]; /* login name */
float ta=cpu[2]; /* cum. cpu time,

p/np (mins) */
float ta_kcore[2]; 1* cum kcore-minutes,

p/np */
float ta_con[2]; /* cum. connect time,

p/np, mins */
float ta_du; /* cum. disk usage */
long ta_pc; 1* count of processes
unsigned short ta sc; 1* count of login -

sessions */
unsigned short ta_dc; /* count of disk

samples */
unsigned short ta fee; 1* fee for special

-
services */

} ;

SEE ALSO
acct(1M), acctcom(1M), acct(2), exec(2), fork(2).

BUGS
The ac_mem value for a short-lived command gives little infor­
mation about the actual size of the command, because ac mem
may be incremented while a different command (for exampk, the
shell) is being executed by the process.

February, 1990
Revision C

2

*/

afm(4) afm(4)

NAME
a fm - Adobe POSTSCRIPT font metrics file format

DESCRIPTION

1

a fm files are a standard interchange format for communicating
POSTSCRIPT font metric information to people and programs. The
format is ASCII encoded (for both human and machine readabili­
ty), machine independent, extensible, simple to parse, and simple
to generate. afm files are available for all of Adobe Systems'
POSTSCRIPT fonts.

While somewhat verbose, the format is intended to be easily
parsed, with the ability for applications to quickly skip over items
that are not of interest It should be possible to create simple
line-oriented parsing programs, or tools based on aWk(l) or
sed(1).

Each afm file contains the information for only one font face.
The file begins with global information about the font, followed
by sections with character metrics. The file format is line­
oriented, each line beginning with a property (key) name, fol­
lowed by the values for that property. The general idea is to give
key-value tuples (much like in a POSTSCRIPT font dictionary).

The format is:

key [value value . ..]

Key names are case-sensitive. All keys beginning with a capital
letter are reserved by Adobe Systems. The standard keys are de­
tailed below, but other keys should be allowed and safely ignored
by programs not recognizing them. All standard keys begin with a
capital letter. User-defined nonstandard entries should begin with
a lowercase letter.

The file begins with the line:

StartFontMetrics version

The version described here is 1.0. The last line of the file is:

EndFontMetrics

The following global font keys are defined. Many of them are
defined as in the top level or FontInfo subdictionary of a
PoSTSCRIPT font dictionary; their meanings are described in Ap­
pendix A of the POSTSCRIPT Language Manual. All numeric
values are in the (1000 unit per em) character coordinate system.

February, 1990
RevisionC

afm(4)

FontName string

FullName string

FamilyName string

Weight string

ItalicAngle real

IsFixedPitch boolean

FontBBox llx lIy urx ury

afm(4)

The name of the font as presented
to the PoSTSCRIPT findfont
operator.

The "print name" of the font.

The font family name.

The weight of the font.

The angle (in degrees counter
clockwise from the vertical) of the
dominant staffs of the font.

Indicates monospaced (typewriter)
fonts.

Four integers giving the lower left
comer and the upper right comer
of the font bounding box.

Note: The bounding box
given here is that of the
flattened paths, not of the
Bezier curve descriptions.

UnderlinePosi tion number
The position (from the baseline) to
place an underline.

UnderlineThickness number
Thickness of an underline stroke.

version string Font version identifier.

Notice string Font name trademark or copyright
notice.

Comment string Comment strings may be ignored.

EncodingScheme string a string indicating the default en­
coding vector for this font. The
most common one is AdobeS-
tandardEncoding. Special
fonts may simply state
FontSpecific. In the future,
other schemes may be employed.

CapHeight number Top of capital H.

Febnwuy,1990 2
RevisionC

afm(4) afm(4)

XHeight nwnber

Ascender nwnber

Descender nwnber

Top of lowercase x.

Top of lowercase d.

Bottom of lowercase p.

The individual character metrics are surrounded with the lines
StartCharMetrics and EndCharMetrics and consist of a
list of keys and values separated by semicolons. The characters
are sorted (numeric ascending) by character code. Unencoded
characters follow all of the encoded ones and are distinguished by
having character code -1. Each character gets one line of descrip­
tion. Standard keys are:
Cnwnber

wx width-x

w width-x width-y

Nname

B llx lIy urx ury

decimal value of default POSTSCRIPT

character code (-1 if unencoded).

Character width in x (y is 0).

Character width vector.

PoSTSCRIPT character name.

The character bounding box.

L successor ligature A ligature sequence. The current char­
acter may join with the character
named successor to form the character
named ligature. Note that characters
may have more than one such entry.

Most western language fonts have wx entries rather than w ones.
Note that keys are one letter for brevity. Here too, the set is exten­
sible, with unknown entries ignored. (This leaves room for addi­
tion of new infonnation, for example.) A future revision of this
format will have a specification for kerning information.

FILES
/usr/lib/ps/*. afm AFM files in the TRANSCRIPT distribu­

tion.

SEE ALSO
awk(1), sed(1).

3 February, 1990
RevisionC

aliases(4) aliases(4)

NAME
aliases - aliases file for sendmail

SYNOPSIS
/usr/lib/aliases

DESCRIPTION
This file describes user ID aliases that / etc/ sendmail uses. It
is a series of lines of the form

name: addr 1 , addr2, . . . adtJrn

The name is the name to alias, and the addr's are the addresses to
send the message to. Lines beginning with white space are con­
tinuation lines. Lines beginning with "* are comments.

Aliasing occurs only on local names. Loops cannot occur, since
no message is sent to any person more than once.

FILES
/usr/lib/aliases

SEE ALSO
sendmail(1M).

February, 1990
Revision C

1

altblk(4) altblk(4)

NAME
al tblk - alternate block information for bad block handling

SYNOPSIS
finclude <sys/types.h>
finclude <apple/abm.h>

DESCRIPTION

1

abm is the data structure used by NUX disk device drivers to han­
dle bad blocks for disk partitions that support alternate block bad
block handling. The abm structure can be retrieved through an
ioctl(2) with a request of GD GETABM. The actual contents of
the alternate block map can be-retrieved via the abmi structure
through an ioctl(2) with a request of GD GETMAP. The abmi
structure is described in gd(7). The format of the abm structure
is:

struct abm 1* altblk map info stored in bzb *1

} ;

int

int

abm_size;

abm_ents;

daddr t abm_start;

typedef struct abm ABM;

1* size of map (bytes) *1
1* number of used entries

(bytes) *1
1* start of altblk map

(phys blk num) *1

#define ABM_ENTSIZ (sizeof(long)) 1* size of each

map entry *1
#define NO_ALTMAP ((daddr_t) 0) 1* value of abm off

field if no map *1

#define ABM FREE -1 1* block not used *1
#define ABM BADBLK -2 1* block is bad *1
#define ABM ABM -3 1* part of AltBlkMap *1
#define ABM MAXVAL -16 1* last reserved map value *1

Normally the alternate block area, that area between the end of the
logical partition and the end of the physical partition, will (option­
ally) contain an alternate block map and alternate block data
blocks for alternate block handling. The alternate block map re­
sides anywhere in the alternate block area, in a contiguous set of
blocks. The format of the alternate block map is an array of long
integers. Each indexed location in the array corresponds to a po­
tential alternate block in the alternate block area. A location in the

February, 1990
RevisionC

altblk(4) altblk(4)

alternate block array (map) may either contain the number of a
block in the logical partition of the disk partition which will be
remapped, or it may contain a flag.

The currently recognized flag values are ABM _FREE for available
blocks, ABM BAOBLK if the free block is bad, and ABM ABM to
indicate that-the block is allocated to the alternate block map.
Flag values with in the range of ABM ABM and ABM MAXVAL are
reserved for future use. - -

Alternate block mapping may be disabled through an ioctl(2)
with the request GO _ ALTBLK. A bad block may be alternate
blocked through an ioctl(2) with the request GO _ MKBAO.

FIELD DESCRIPTIONS
abm size

This field contains the size of the alternate block map as
measured in bytes. This value should always be evenly
divisible by ABM ENT S I Z. The value of this field should be
consulted when requesting the contents of the alternate block
map through an ioctl(2).

abm ents
The value of this field represents the byte offset of the next
available entry in the alternate block map as measured from
the beginning of the map. This field is maintained by the
device driver.

abm start
The value of this field is set to NO ALTMAP to indicate that
there is no alternate block map for the corresponding parti­
tion. If the value of this field is not set to NO ALTMAP, then
the value is the physical block number (relative to the start of
the physical partition) of the first block of the alternate block
map.

SEE ALSO
badblk(lM), dp(IM), bzb(4), gd(7).

February, 1990
Revision C

2

aouthdr(4) aouthdr(4)

NAME
aouthdr - a. out header for common object files

SYNOPSIS
*include <aouthdr.h>

DESCRIPTION
aouthdr is an optional a. out header for common object files.
The C structure follows:
/*

* static char ID_aouth[]
*/

typedef struct
short
short
long

aouthdr
magic;
vstamp;
tsize;

n@(i)aouthdr.h 2.1

/* see magic.h */
1* version stamp */
/* text size in bytes,

padded to FW bdry */

n. ,

long
long

Ufdef u3b
long
long

dsize;
bsize;

/* initialized data "" */
/* uninitialized data " " */

iendif

dum1;
dum2; /*Pad to entry point */

long entry; /* entry pt. */
long text_start;/* base of text used

for this file */
long data_start;/* base of data used

for this file */
AOUTHDRi

SEE ALSO
a.out(4).

1 February, 1990
RevisionC

appletalkrc(4) appletalkrc(4)

NAME
appletalkrc - AppleTalk® network configuration file

DESCRIPTION
appletalkrc contains information for configuring an Ap­
pleTalk network. The file is created at boot time by the AppleTalk
startup routine and is configured for EtherTalk™ by default The
format of the file consists of a list of parameters and values, one
per line:

parameter=value

Comments are indicated by a =It character and continue until the
newline. The following parameters are defined:

interface
The name of the default AppleTalk interface. The
value for this parameter can be either ethertalkO
or local talkO.

ethernet
The name of the hardware interface to be associated
with the EtherTalk interface. The value for this
parameter is a string such as aeO.

EXAMPLES
This is the default appletalkrc file created by the AppleTalk
startup routine for a system with one EtherTalk card:

=It AppleTalk configuration file

interface= ethertalkO

ethernet= aeO

FILES
/etc/appletalkrc
/etc/startup.d
/etc/newunix

SEE ALSO
appletalk(1M), newunix(lM).

"Installing and Administering AppleTalk," in A/UK Network Sys­
tem Administration; Inside AppleT alk; "AppleTalk Programming
Guide," in A/UX Network Applications Programming.

February, 1990
RevisionC

1

ar(4) ar(4)

NAME
a r - common archive file format

DESCRIPTION

1

The archive command ar is used to combine several files into
one. Archives are used mainly as libraries to be searched by the
link editor Id(1).

Each archive begins with the archive magic string
idefine ARMAG "!<arch>\n" 1* magic string *1
idefine SARMAG 8 1* length of magic string *1

Each archive which contains common object files (see a. out(4»
includes an archive symbol table. This symbol table is used by the
link editor Id(l) to determine which" archive members must be
loaded during the link-edit process. The archive symbol table (if
it exists) is always the first file in the archive (but is never listed)
and is automatically created or updated by a r.

Following the archive magic string are the archive file members.
Each file member is preceded by a file-member header which is of
the following format
#define ARFMAG "'\n" 1* header trailer string *1

struct ar hdr
{

} ;

char

char
char

char

char
char
char

1* file member header *1

ar date[12];
ar:=uid[6];

ar_mode [8];
ar size[lO];
ar-fmag[2];

1* 'I' terminated file
member name *1

1* file member date *1
1* file member user

identification *1
1* file member group

identification *1
1* file member mode *1
1* file member size *1
1* header trailer string *1

All information in the file-member headers is in printable ASCII.
The numeric information contained in the headers is stored as de­
cimal numbers (except for ar _mode which is in octal). Thus, if
the archive contains printable files, the archive itself is printable.

The a r name field is blank-padded and slash (f) terminated. The
ar date field is the modification date of the file at the time of its
insertion into the archive. Common format archives can be moved
from system to system as long as the portable archive command

February, 1990
RevisionC

ar(4) ar(4)

ar(l) is used.

Each archive file member begins on an even byte boundary; a
newline is inserted between files if necessary. Nevertheless, the
size given reflects the actual size of the file, exclusive of padding.

Notice there is no provision for empty areas in an archive file.

H the archive symbol table exists, the first file in the archive has a
zero length name (that is, ar name [0] = , /'). The contents
of this file are as follows: -

• The number of symbols. Length: 4 bytes.

• The array of offsets into the archive file. Length: 4 bytes
times the number of symbols.

• The name string table. Length: ar size - (4 bytes times
(the number of symbols+ I». The number of symbols and the
array of offsets are managed with sgetl and sputl. The
string table contains exactly as many null-terminated strings
as there are elements in the offsets array. Each offset from
the array is associated with the corresponding name from the
string table (in order). The names in the string table are all
the defined global symbols found in the common object files
in the archive. Each offset corresponds to the location of the
archive header for the associated symbol.

SEE ALSO
ar(1), Id(l), strip(l), sputl(3X), a. out(4).

WARNINGS
strip(1) will remove all archive symbol entries from the header.
The archive symbol entries must be restored via the s option of
the ar(l) command before the archive can be used with the link
editor Id(I).

February, 1990
RevisionC

2

bzb(4)

NAME
bzb - fonnat of Block Zero Blocks

SYNOPSIS
iinclude <sys/types.h>
iinclude <apple/types.h>
iinclude <apple/bzb.h>

DESCRIPTION

bzb(4)

The Block Zero Block structure occupies the first
sizeof (struct bzb) bytes of the dpme_boot_args field
of each NUX disk partition map entry. This structure contains
extra partition identification information that is of interest only to
NUX. The types of data stored in a Block Zero Block include file
system identification and status information. The format of a
Block Zero Block is
struct bzb /* block zero block format

u32 bzb_magic; /* magic number */
u8 bzb_cluster; /* autorecovery cluster

grouping */
u8 bzb type; /* FS type */

*/

ul6 bzb::::inode; /* bad block inode number */

1

ul6 bzb root:l, /* FS is a root FS */
bzb::::usr:l, /* FS is a usr FS */
bzb crit:l, /* FS is a critical FS */
bzb::::rsrvd:l3; /* reserved for later use */

ul6 bzb filler; /* pad bitfield to 32 bits */
time - t bzb::::tmade; /* time of FS creation */
time t bzb tmount; /* time of last mount */ -

bzb::::tumount; /* time of last umount */ time t
ABM bzb_abm; /* altblk map info */

} ;
typedef struct bzb BZB;

#define BZBMAGIC ((u32) OxABADBABE /* BZB magic number */
#define dpme_bzb dpme_boot_args

1*
** File system types
*/
#define FST ((u8) Oxl)
#define FSTEFS ((u8) Ox2)
#define FSTSFS ((u8) Ox3)

/* standard A/UX FS */
/* autorecovery FS */
/* swap FS */

February, 1990
Revision C

bzb(4) bzb(4)

FIELD DESCRIPTIONS
bzb magic

This field should always contain the magic number BZBMAG­
IC. If this field is not set to BZBMAGIC, the information in
the Block Zero Block should be treated as invalid.

bzb cluster
The value of this field determines the autorecovery(8)
cluster to which the associated disk partition belongs.

bzb type
This field identifies the type of NUX file system correspond­
ing to this Block Zero Block. Examples of NUX file sys­
tems are regular file systems, autorecovery file systems,
and swap file systems (for these types, this field's values
would be FST, FSTEFS, and FSTSFS, respectively).

bzb inode
If nonzero, this field contains the number of the inode
corresponding to the bad block file in the corresponding par­
tition that will be used for bad blocking. If this field's value
is zero, there is no bad block inode/file allocated. This file is
made up of blocks that are bad (that is, blocks containing the
contents of this file are all bad). This keeps the bad blocks
out of the free list across f scks. This field is generally used
only for file systems that reside on physical disks that lack
hardware bad blocking or that support hardware bad blocking
but have run out of spare bad blocks. This field is not sup­
ported for swap file systems.

The only supported values for this field are zero and one.

bzb root
When on, this bit indicates that the file system located on the
corresponding partition is a root file system.

bzb usr
When on, this bit indicates that the file system located on the
corresponding partition is a usr file system. If both this field
and the bzb _root are on, the file system is a root/usr file
system.

bzb crit
When on, this bit indicates that the file system located on the
corresponding partition is a critical file system. A critical file
system receives special treatment during the Bad Block por-

February, 1990 2
Revision C

bzb(4) bzb(4)

3

tion of autorecovery. The swap file system is an exam­
ple of a critical file system, and therefore, all swap file system
Block Zero Blocks should have this field sel

If this bit is on, no attempt will be made to create or use a bad
block file for bad block handling.

bzb rsrvd
This field contains bits reserved for later use.

bzb filler
This field is reserved for later use.

bzb tmade
This field contains a time-stamp which indicates when the file
system located on the corresponding partition was created.
This field's value is the standard NUX time-stamp value (as
returned from time(2». The value of this field can be set
and retrieved through calls to ioctl(2). See gd(7) for more
details.

bzb tmount
This field indicates the date the last mount(3) (or equivalent
routine) call was made on the file system located on the
corresponding partition. In some cases, such as on a root file
system during startup, this field should be set to the
mount(3) equivalent date. This field is not updated if a file
system is mounted read-only. The value of this field can be
set and retrieved through calls to ioctl(2). See gd(7) for
more details.

bzb tumount
This field indicates the date the last umount(3) (or
equivalent routine) call was made on the file system located
on the corresponding partition. In some cases, such as root
file system during shutdown, this field should be set to the
umount(3) equivalent date. This field is not updated if an
file system was mounted read-only. The value of this field
can be set and retrieved through calls to ioctl(2). See
gd(7) for more details.

bzb abm
This field is the alternate block map structure for the associat­
ed partition. See altblk(4) for more details about this
structure. The value of this field can be retrieved through
calls to ioctl(2). See gd(7) for more details.

February, 1990
Revision C

bzb(4)

SEE ALSO
dp(lM), pname(lM), altblk(4), dpme(4), gd(7), au­
torecovery(8).

February,1990
Revision C

bzb(4)

4

eml(4) eml(4)

NAME
eml - configuration master list format

DESCRIPTION

1

The Configuration Master List (CML) defines each and every file
in the standard NUX product, and is used to produce and control
the NUX distributions. The CML is also used by au -
toreeovery(8), to bring the system up in (minimum) multiuser
mode.

The CML files are ASCII text files, containing one record (line)
per filename entry, sorted in order by filename. Each record con­
tains multiple tab-separated fields, describing a single file. Each
field contains one or more subfields; if more than one, the
subfields are separated by colons. The first subfield contains ei­
ther a filename, a rule for determining the validity of the file, or
textual information relating to the file. Additional sub fields (if
present) contain recognized values associated with the given rule.

No field may be empty; that is, the first subfield must always con­
tain at least one (nonblank) character. To indicate "no rule," the
character - is used. Value subfields (that is, subfields past number
1) may be null or missing if they do not apply in the given case.
The subfields must occur in the specified order, however. Possible
additional subfields are given in parentheses after each field name.
For example, a partial record might contain

- r:m /unix f - <>:100 =>:529799000 u:root ...

Currently there are 18 recognized fields in a record.

1. master rule
A striilg field indicating the master rule for interpreting the
validity of this file. The legal rules and their "valid if" con­
ditions are

$ If the first character of the master rule field is $, the
field and subfield delimiters (nomlally tab and :) are
substituted, respectively, by the characters represented
by the four hex digits following the $; that is, if the first
line contains $407e, the field and sub field separators
will be @ (hex 40) and I (hex 7c). Any changes to these
delimiters take effect immediately and remain in effect
until the next $ change. The $ rule may be used at any
point in the CML file where the field and subfield delim­
iters must be changed.

February, 1990
RevisionC

cml(4) cml(4)

• signifies a "no-op" condition; the remainder of this
record is to be taken as a comment and no calculations
are to be performed for any field. The * rule is a way to
ignore infonnation for a given file.

Evaluate, in order, the remaining rules in this record to
determine the validity of this file.

2. autorecovery rule[: autorecovery value]
A string fieldindicating the autorecovery rule required for in­
terpreting the validity of this file. The legal rules and their
"valid if" conditions are

r This file is required for autorecovery.

This file is not required for autorecovery.

The following value is recognized.

autorecovery value
A string-indicating the type of use for which the au­
torecovery rule applies. The legal value type is

m Files which are necessary to bring the system up in
multiuser mode.

3. filename
A string field containing the fully qualified filename of the
file being described. A fully qualified filename starts with a
slash and gives the unambiguous placement of the file in the
directory hierarchy. (In some cases a filename can not be
fully qualified. Any filename not beginning with a slash is
assumed to describe a file that may occur in multiple direc­
tories (such as . login). Such files are not used in au­
torecovery .)

4. file type
A string field containing the file type. The legal file types are

d The file is a directory.

f The file is a nonnal file.

b The file is a block special file.

c The file is a character special file.

p The file is a named pipe.

1 The file is a symbolic link.

February, 1990
RevisionC

2

cm1(4) cml(4)

3

s The file is a socket.

S. linked Jtle _name
If the file named by filename is a symbolic link (file_type==
1), this field contains the fully qualified pathname of the file
to which filename is linked. If filename does not exist on
startup, it is created by linking to linked Jtle _name.

If the file named by filename is one of a set of multiple hard
links (file type* d && line count> 1), this field contains the
fully qualified pathname of the aphabetically first file (ASCII
sort order) of the set. If a file does not exist on startup and
linked Jtle _ name == filename, it is created by retrieving a
copy from the eschatology file system. If a file does not exist
on startup and linked Jtle _name * filename, it is created by
linking to linked ..file_name.

If there is no linked Jtle _ name, this field contains -.

6. size rule [: size value 1: size value 2)
A string field indicating the SIze ruie for interpreting the vali­
dity of this file by examining its file length. The legal rules
and their "valid if' conditions are

<> size_minimum ~ actual Jtle _length ~ size_maximum

actualJtle _length = size_exact

0= actualJtle_length = size_exact II actualJtleJength = 0

% size_exact - sizeyct% ~ actualJtle_length ~ size_exact
+ sizeyct%

no size _rule, hence always true

The following values are recognized.

size value 1
-This -is a decimal number which contains the
size minimum or size exact depending on the size rule
specified. For files which do not have lengths (such as
the special files) this value is always O.

size value 2
-This -is a decimal number which contains the

size_maximum or size yct when required by the
size _rule. size yct is a decimal percentage (0 < size yct
< 100). If the rule is <>, an empty field indicates that
there is no set maximum limit.

February, 1990
RevisionC

cml(4) cml(4)

7. time rule[: mtime value]
A string field indiCating the time rule for interpreting the vali­
dity of this file. The legal rules and their "valid if' condi­
tions are

actual mtime = mtime value - -
=> actual mtime ~ mtime value - -

No time rule, hence always true.

The following value is recognized.

mtime value
A decimal number containing the appropriate
modification time of the file, as required by the
time rule.

8. ownership rule[:file user :file group]
A string field contalling the o-wnership rule for determining
the validity of this file. The legal rules and their "valid if"
conditions are

u actual_user = file_user

g actual_group = file Jroup

b actual_user = file_user && actual_group = file_group

No ownership rule, hence always true.

The following values are recognized.

file user
- A string containing the user name.

file group
- A string field containing the group name.

9. permissions rule[: file mode]
A string field containing the permission rule for determining
the validity of this file. The legal rules and their "valid if"
conditions are

== actua(file _mode = file _mode

No permissions rule, hence always true.

The following value is recognized.

file mode
- An octal numeric field containing the read/write and

other file modes. Note that 0 ~file_mode ~ 07777.

February, 1990
Revision C

4

cml(4) cml(4)

5

10. major _minor _ rule[: major _ number: minor _number]
A string field indicating the major/minor rule for interpreting
the validity of this file. The major minor rule, if specified,
is ignored unless the file is a device (file_type = character
or file type = block). The legal rules and their "valid if"
conditions are

actual major number = major number &&
actua(minor = number = minor = number
Not a device, hence, always true.

The following values are recognized.

major number
A decimal number containing the appropriate major
device number required by the major _minor _rule.

minor number
A decimal number containing the appropriate minor
device number required by the major_minor _rule.

11. version rule [: version value: version minimum: version maximum]
A string field indicatliig the version rwe for interpreting the
validity of this file by looking for a version number. If a file
is made up of several modules, the version number used will
be found in the "main" module, as part of a specifically for­
matted "key version string." The legal rules and their
"valid if" conditions are

<> If version number is present,

*<>

*==

version minimum ~ actual version number ~ - --
version maximum

If version number is present,

version minimum = actual version number - --
version_maximum, if defined, is ignored.

Version number must be present, and

version minimum ~ actual version number ~
version maximum

Version number must be present, and

February, 1990
RevisionC

cml(4) cml(4)

version minimum = actual version number - --
version Jnaximum, if defined, is ignored.

No version rule, hence always true.

The following values are recognized.

version value
A -string indicating the formats of version numbers
which are possible for a file. The legal format type is

s An sees (see sccs(I» version number in a "key
version string" of the following form
@(i)Copyright Apple Computer, Inc 1986 Version 1.2

which is produced by a string containing sees
keywords as follows:
%Z%Copyright Apple Computer, Inc 1986\tVersion %1%

where \ t is a tab.

version minimwn
A string field containing the earliest allowable version
number.

version maximum
A string field containing the maximum allowable ver­
sion number. An empty field indicates that there is no
maximum allowable version number limit

12. checkswn rule [: checkswn value]
A string field containing the checksum rule for interpreting
the validity of this file by computing the checksum. The le­
gal rule and its "valid if" condition is

s Compute and compare the checksum, using the algo­
rithm of sum(1), which produces a 16-bit checksum.

No checksum rule, hence always true.

The recognized value for this rule is

checksum value
A decimal number containing the checksum value. An
empty field, with no numeric value whatsoever, indi­
cates that no checksum is to be computed. (The check­
sum value of a zero-length file is 00(00).

February, 1990
Revision C

6

eml(4) eml(4)

13. special rule
A string field indicating any special rules and values required
for interpreting the validity of this file. (Reserved at this
time).

14. reserved 4
Reserved for future use.

15. reserved 3
Reserved for future use.

16. reserved 2
Reserved for future use.

17. reserved 1
Reserved for future use.

18. description
A text field containing a description of the file. The descrip­
tion field may be stored separately from the other fields in a
special description file. In this case, each record in the
description file will contain two tab-separated fields: the full
pathname of the described file followed by a one line descrip­
tion. The description file, like the rest of the CML will be
sorted by filename.

FILES
/etc/esehatology/init2files

Those files which are required by autorecovery.

/ete/esehatology/otherfiles
The balance of the CML (those files not required for au­
torecovery).

fete/eschatology/descriptions
The description file.

SEE ALSO
autorecovery(8).

7 February, 1990
Revision C

core(4) core(4)

NAME
core - format of core image file

DESCRIPTION
The A/UX System writes out a core image of a terminated process
when any of various errors occur. See signal(3) for the list of
reasons; the most common are memory violations, illegal instruc­
tions, bus errors, and user-generated quit signals. The core image
is called core and is written in the process's working directory
(provided it can be; normal access controls apply). A process with
an effective user ID different from the real user ID will not pro­
duce a core image.

The first section of the core image is a copy of the system's per­
user data for the process, including the registers as they were at
the time of the fault. The size of this section depends on the
parameter USIZE, which is defined in
/usr/include/sys/param.h. The remainder represents
the actual contents of the user's core area when the core image
was written. If the text segment is read-only and shared, or
separated from data space, it is not dumped.

The format of the information in the first section is described by
the user structure of the system. defined in
/usr/include/sys/user.h. The important stuff not de­
tailed therein is the locations of the registers. which are outlined in
/usr/include/sys/reg.h.

SEE ALSO
setuid(2), signal(3).

February, 1990
Revision C

1

epio(4) epio(4)

NAME
epio - format of epio archive

DESCRIPTION
The header structure, when the -e option of epio(l) is not used,
is:
struct {

} Hdr;

short h_magic,
h dev;

ushort h~)no,
h mode,
h=uid,
h gid;

short h=nlink,
h rdev,
h=mtime[2),
h namesize,
h=filesize[2);

char h_name[h_namesize rounded to word);

When the -e option is used, the header information is described
by:

sscanf(Chdr,"%6o%6o%6o%6o%6o%6o%6o%6o%111o%6o%111o%s",

&Hdr.h_magic, &Hdr.h_dev, &Hdr.h_ino, &Hdr.h_mode,
&Hdr.h_uid, &Hdr.h_gid, &Hdr.h_nlink, &Hdr.h_rdev,

&Longtime, &Hdr.h_namesize,&Longfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdr. h mtime
and Hdr. h filesize, respectively. The contents of each file
are recorded in an element of the array of varying length struc­
tures, arehi ve, together with other items describing the file.
Every instance of h magic contains the constant 070707 (octal).
The items h dev thfough h mtime have meanings explained in
stat(2). The length of the null-terminated path name h_name,
including the null byte, is given by h_namesize.

The last record of the archive always contains the name
TRAI LER! ! !. Special files, directories, and the trailer are
recorded with h_filesize equal to zero.

SEE ALSO
epio(l), find(l), stat(2).

1 February, 1990
Revision C

dialup(4) dialup(4)

NAME
dial up - modem escape sequence file

DESCRIPTION
fete/dialup contains one or more entries describing the es­
cape sequences for modems specified by the user (more informa­
tion to follow). fete/dialup also contains fields for error
strings or error codes returned by modems after a command has
been issued. IT these fields are not set, the attributes will be set for
an Apple modem by default

The first symbol in an fete/dialup entry must be an identifier
which is taken from mt in remote(4). If an entry is longer than
a single line, the lines in the entry must end with a "\". Com­
mands can be one of the following abbreviations, followed by a
"=" for a string command or "#" for a numeric command, and
then the appropriate command sequence for the particular modem.

ag repeat the last command A/
a s attention to signal for modem AT
at auto call unit type generic
ed return to command mode
er continuous redial X2
dp dial up D
ee echo command E
em escape command +++
dm data mode 0
h u hang up line H
vb verbal command returned from modem Vl

The following are return values from the modem if vb=Vl:

ok the previous command was OK OK
CONNECT et the modem is connected and is online

ne the modem has been disconnected NO CARRIER
e r the previous command is invalid ERROR

EXAMPLES
IT an entry in / ete/ remote looked like this:

apple:br=l200:at=generie:mt=apple

February, 1990
RevisionC

1

dialup(4) dialup(4)

the corresponding entry in / ete/ dialup might look like this:

apple:as=AT:at=generie:dp=D:er=X2:\
hu=H:em=+++; ag=A/;ee=E;dm=O:ed=;:ok=OK:\
et=CONNECT:nc=NO CARRIER: er=ERROR:vb=Vl:

FILES
fete/dialup
fete/remote

SEE ALSO
tip(IC), phones(4), remote(4).

2 February, 1990
Revision C

dir(4)

NAME
dir - format of System V directories

SYNOPSIS
iinclude <sys/types.h>
iinclude <svfs/fsdir.h>

DESCRIPTION

dir(4)

A directory behaves exactly like an ordinary file, save that no user
may write into a directory. The fact that a file is a directory is in­
dicated by a bit in the flag word of its inode entry (see fs(4».
The structure of a directory entry as given in the include file is:

Ufndef
fl:define
fl:endif

struct

} ;

ina t
char

SVFSDIRSIZ
SVFSDIRSIZ

svfsdirect

14

d_ina;
d_name[SVFSDIRSIZ];

By convention, the first two entries in each directory are for "."
and " .. ". The first is an entry for the directory itself. The second
is for the parent directory. The meaning of " .. " is modified for
the root directory of the master file system; there is no parent, so
" .. " has the same meaning as ".".

SEE ALSO
fs(4).

February, 1990
RevisionC

1

disktab(4) disktab(4)

NAME
disktab - disk description file

SYNOPSIS
#include <disktab.h>

DESCRIPTION
disktab is a simple database that describes disk geometries.
The format is patterned after the termcap(4) terminal database.
Entries in disktab consist of a number of colon-separated fields.
The first entry for each disk gives the names that are known for
the disk, separated by I characters. The last name given should be
a long name fully identifying the disk.

The following list indicates the normal values stored for each disk
entry:

Name
bl
ns
nt
nc
rg

Type Description
num Number of blocks per cylinder
num Number of sectors per track
num Number of tracks per cylinder
num Total number of cylinders on the disk
num Rotational gap

This information is used by the newfs(lM) command.

FILES
/etc/disktab

SEE ALSO
newfs(lM), fs(4).

BUGS

1

This file shouldn't be necessary. Instead, the information should
be stored on each disk.

February, 1990
RevisionC

dpme(4) dpme(4)

NAME
dpme - format of disk partition map entries

SYNOPSIS
#include <apple/dpme.h>

DESCRIPTION
Starting at physical block 1 (offset 512 bytes) of each disk resides
a disk partition map. This map describes the layout of the parti­
tions for that disk. The disk partition map consists of one or more
disk partition map entries. Each entry corresponds to at most one
disk partition. The format of a disk partition map entry is:

typedef struct
{

u16 dpme_signature;
u16 dpme_reserved_1;

u32 dpme_map_entries;
u32 dpme_pblock_start;

u32 dpme_pblocks;

DPIDENT dpme_dpident;

u32 dpme_lblock_start;
u32 dpme_lblocks;
u32 dpme_reserved_2:

u32 dpme os specific_1:

u32 dpme_os_specific_2:

u32 dpme_os_pic_code:
u32 dpme_writable: 1;
u32 dpme_readable: 1;

u32 dpme_bootable: 1;

u32

u32

u32
u32
u32

u8

u8

u8
u8

u32
char

u32

u32

February, 1990
RevisionC

dpme_in_use: 1;

dpme_allocated: 1;

dpme_valid: 1;
dpme_boot_block;
dpme_boot_bytes;

*dpme_load_addr;

*dpme_load_addr_2;

* dpme_goto_addr;
*dpme_goto_addr_2;

dpme _checksum;
dpme_process_id[16];

dpme_boot_args[32];

dpme_reserved_3[62];

23;

1;

1;

1;
/*
/*

/*

/*
/*

/*

/* Bit 9 through

/* Bit 8 */

/* Bit 7 */

/* Bit 6 */
Bit 5 */
Bit 4 */

Bit 3 */

Bit 2 */

Bit 1 */

Bit a */

1

31 */

dpme(4) dpme(4)

} DPME;

#define DPME SIGNATURE Ox504d

#define DPM OFF 512
#define DPISTRLEN 32

struct dpident
{

} ;

char dpiname[DPISTRLEN);

char dpitype[DPISTRLEN);

typedef struct dpident DPIDENT;

1* Signature value *1
1* byte offset of dp map *1

1* name of partition *1
1* type of partition *1

FIELD DESCRIPTIONS
dpme signature

This field should always contain the magic number
DPME SIGNATURE.

2

dpme reserved 1
This field is not used by NUX.

dpme map entries
This field indicates the size of the disk partition map meas­
ured in units of disk partition map entries. Since each disk
partition map entry is one block big, this field also indicates
the number of blocks in the partition map. The value of this
field is only meaningful for the first entry in the disk partition
map.

dpme-pblock_start
This field indicates the physical block number of the starting
block of the physical partition.

dpmeyblocks
This field indicates the number of physical blocks in the par­
tition. This is usually referred to as the size of the physical
partition.

dpme dpident
This field is a structure that contains two string fields. The
first field, dpiname, contains the name of the partition.
The second field, dpi type, contains the type of the parti­
tion. If the partition name (or type) is less than DPIS­
TRLEN bytes long, it must be terminated by a NULL (binary
zero) byte. An empty partition name or type (first byte
NULL) is legal. These strings are case sensitive.

February, 1990
RevisionC

dpme(4) dpme(4)

dpme lblock start
For NUX PMtitions, this field will always be zero. This field
designates the first data block of the logical partition.

dpme lblocks
This field designates the number of blocks in the data area of
the partition. This is usually referred to as the size of the log­
ical partition. For alternate bad blocking to occur it is neces­
sary for the logical partition to be smaller than the physical
partition. Those blocks between the end of the logical parti­
tion and the end of the physical partition are usually used for
alternate bad blocking.

dpme reserved 2
This field is not used by NUX.

dpme os specific 1
This field is not used by NUX.

dpme os specific 2
This field is not used by NUX.

dpme_os-pic_code
This field is not used by NUX.

dpme writable
This bit indicates that the creating/controlling operating sys­
tem allows writing of the logical disk that comprises this par­
tition. Whether or not the writing is allowed by other operat­
ing systems and/or processors is not defined. Mainly infor­
mative.

dpme readable
This field is not used by NUX.

dpme boot able
This field is not used by NUX.

dpme in use
This field is not used by NUX.

dpme allocated
This bit indicates whether or not an operating system has laid
claim to the partition described by this entry.

dpme valid
This bit indicated whether or not this partition entry is valid
or not

February, 1990
RevisionC

3

dpme(4)

dpme boot block
This field is not used by NUX.

dpme boot bytes
This field is not used by NUX.

dpme load addr
This fieldis not used by NUX.

dpme load addr 2
This field is not used by NUX.

dpme goto addr
This field is not used by NUX.

dpme goto addr 2
This fieldis not used by NUX.

dpme checksum
This field is not used by NUX.

dpmeyrocess_id
This field is not used by NUX.

dpme_boot_args

dpme reserved 3
This field is not used by NUX.

SEE ALSO
dp(IM), pname(IM), al tblk(4), bzb(4), gd(7).

FILES
/dev/rdsk/c?d?s31
/usr/include/apple/dpme.h

BUGS

dpme(4)

It could be argued that the dpme boot args and
dpme_signature fields would more appropriately be named
dpme_os_specific and dpme_magic, respectively.

4 February, 1990
RevisionC

dump. bsd(4)

NAME
dump. bsd - format of a file system dump

SYNOPSIS
finclude <sys/types.h>
finclude <sys/inode.h>
finclude <dumprestor.h>

DESCRIPTION

dump. bsd(4)

The output of dump. bsd(1M) or the input for restore(IM)
contains four distinct items: (1) a header record; (2) two groups of
bit map records; (3) a group of records describing directories; and
(4) a group of records describing files.
The format of the header record and of the first record of each
description is given in the include file <dumprestor. h>.

#define NTREC
#define MLEN
#define MSIZ

#define TS TAPE
#define TS-INODE
#define TS BITS
#define TS-ADDR
#define TS-END
#define TS-CLRI
#define MAGIC
#define CHECKSUM
struct spcl
{

20
16
4096

1
2
3
4
5
6
(int) 60011
(int) 84446

int c type;
time t c=date;
time t c ddate;

spcl;

int c=volume;
daddr t c tapea;
ino_t - c=inumber;
int c magic;
int c=checksum;
struct dinode c_dinode;
int c_count;
char c_addr[BSIZEJ;

struct idates
{

} ;

February, 1990
RevisionC

char id_name [16J;
char id incno;
time t i{~ddate;

1

dump. bsd(4) dump. bsd(4)

2

NTREC is the number of 1024 byte records in a physical block for
the backup device. MLEN is the number of bits in a bit map word.
MS I Z is the number of bit map words.

The T S entries are used in the c type field to indicate what
sort of hCader it is. The types and their meanings are as follows:

TS TAPE Volume label.
TS INODE A file or directory follows. The c dinode field

is a copy of the disk inode and contains bits telling
what sort of file it is.

TS BITS

TS ADDR

TS END
TS CLRI

A bit map follows. This bit map has a 1 bit for
each inode that was dumped.
A subrecord of a file description. (See c addr
later.) -
End of media record.
A bit map follows. This bit map contains a 0 bit
for all inodes that were empty on the file system
when dumped.

MAGIC All header records have this number in c magic.
CHECKSUM Header records checksum to this value. -

The fields of the header structure are as follows:

c _type The type of the header.
c date The date the dump was taken.
c dda te The date the file system was dumped.
c volume The current volume number of the dump.
c _ tapea The current number of this (1024-byte) record.
c inumber The number of the inode being dumped if of type

TS INODE.
This contains the value MAG I C above, truncated
as needed.

c checksum This contains whatever value is needed to make
- the record sum to CHECKSUM.

c dinode This is a copy of the inode as it appears on the file

c count
c addr

system (see fs(5».
The count of characters in c addr.
An array of characters descrlbing the blocks of the
dumped file. A character is zero if the block asso-
ciated with that character was not present on the
file system, otherwise the character is nonzero. If
the block was not present on the file system, no
block was dumped; the block will be restored as a
hole in the file. If there is not sufficient space in

February, 1990
Revision C

dump. bsd(4) dump. bsd(4)

this record to describe all of the blocks in a file,
T S ADDR records will be scattered through the
file-:-each picking up where the last left off.

Each volume, except the last, ends with a tapemark (read as an
end of file). The last volume ends with a TS END record and then
the tapemark. -

The structure idates describes an entry in the file
/etc/dumpdates where dump history is kept. The fields of
the structure are

id name The name of dumped file system, / dev / id _name.
id incno The level number of the dump media (see

dump. bsd(lM».
id ddate The date of the incremental dump in system format

(see types(5».

FILES
/etc/dumpdates

SEE ALSO
dump. bsd(lM), restore(lM), fs(4), types(5).

February,1990
RevisionC

3

errfile(4) errfile(4)

NAME
errfile - error-log file format

DESCRIPTION

1

When hardware errors are detected by the system, an error record
is generated and passed to the error-logging daemon for recording
in the error log for later analysis. The default error log is
/usr/adm/errfile.

The format of an error record depends on the type of error that
was encountered. Every record, however, has a header with the
following format:
struct errhdr {

} ;

short e type;
short e~)en;
time t e_time;

/* record type */
/* bytes in record (inc hdrl */
/* time of day */

The permissible record types are as follows:
#define E GOTS 010 /* start for the UNIX/TS */
#define E-GORT 011 /* start for the UNIX/RT */
#define ESTOP 012 /* stop */
#define E-TCHG 013 /* time change */
#define E CCHG 014 /* configuration change */
#define E-BLK 020 /* block device error */
#define ESTRAY 030 /* stray interrupt */
#define E-PRTY 031 /* memory parity */

Some records in the error file are of an administrative nature.
These include the startup record that is entered into the file when
logging is activated, the stop record that is written if the daemon is
terminated "gracefully", and the time-change record that is used
to account for changes in the system's time-of-day. These records
have the following formats:
struct estart {

} ;

short e_cpu;
struct utsname

#define eend errhdr
struct etimchg {

time_t e_ntime;
} ;

/* CPU type */
e_name; /* system names */

/* record header */

/* new time */

Stray interrupts cause a record with the following format to be
logged:
struct estray

uint
} ;

e_saddr; /* stray loc or device addr */

February, 1990
Revision C

errfile(4) errfile(4)

Generation of memory subsystem errors is not supported in this
release.

Error records for block devices have the following format:
struct eblock {

};

dev_t e_dev;

physadr
short

e_regloc;
e_bacty;

struct iostat {
long io_ops;
long io misc;
ushort io=unlog;

short
short
daddr t
ushort
paddr t
ushort
short

e stats;
e=bflags;
e cyloff;
e=bnum;
e bytes;
e=memadd;
e_rtry;
e_nreg;

/* , 'true' , major + minor
dev no */

/* controller address */
/* other block I/O

activity */

/* number read/writes */
/* number ' 'other' , operations
/* number unlogged errors */

/* read/write, error, etc */
/* logical dev start cyl */
/* logical block number */
/* number bytes to transfer */
/* buffer memory address */
/* number retries */
/* number device registers */

The following values are used in the e_hflags word:
idefine E WRITE
#define E READ
ide fine E NOlO
idefine E PHYS
idefine E FORMAT
ide fine E ERROR

SEE ALSO
errdemon(lM).

February, 1990
Revision C

0 /* write operation */
1 /* read operation */
02 /* no I/O pending */
04 /* physical I/O */
010 /* Formatting Disk*/
020 /* I/O failed */

2

*/

ethers(4) ethers(4)

NAME
ethers - Ethernet address to hostname database or yP domain

DESCRIPTION
The fete/ethers file contains information regarding the
known (48 bit) Ethernet addresses of hosts on the Internet. For
each host on an Ethernet, a single line should be present with the
following items of information:

ethernet-address hostname

Items are separated by any number of blanks and/or tabs. Use 41=

to introduce a single line or midline comment.

The standard form for ethernet-address is x:x:x:x:x:x: where x is a
hexadecimal number between 0 and 255, representing one byte.
The address bytes are always in network order. hostname may
contain any printable character other than a space, tab, newline, or
comment character. The hostnames in the ethers file should
correspond to the hostnames in the / etc/hosts file (see
hosts(4».

The ether UneO routine from the Ethernet address manipulation
library, ethers(3N) may be used to scan lines of the ethers
file.

FILES
fete/ethers

SEE ALSO
ethers(3N), hosts(4).

1 February, 1990
RevisionC

exports(4) exports(4)

NAME
exports - NFS file systems being exported

SYNOPSIS
fete/exports

DESCRIPTION
The file fete/exports describes the file systems which are be­
ing exported to NFS clients. It is created by the system adminis­
trator using a text editor and processed by the mount request dae­
mon mountd(lM) each time a mount request is received.

The file consists of a list of file systems and the netgroup(4) or
machine names allowed to remote mount each file system. The
file system names are left justified and followed by a list of names
separated by white space. The names will be looked up in
/ ete/netgroup and then in / etc/hosts. A file system
name with no name list following means export to everyone. A
"#" anywhere in the file indicates a comment extending to the
end of the line it appears on.

EXAMPLES
/usr clients

/usr/local

/usr phoenix sun sundae

FILES
fete/exports

SEE ALSO
mountd(IM), netgroup(4).

February,1990
Revision C

export to my clients

export to the world

export to only these

machines

1

filehdr(4) filehdr(4)

NAME
f ilehdr - file header for common object files

SYNOPSIS
iinclude <filehdr.h>

DESCRIPTION
Every common object file begins with a 20-byte header. The fol­
lowing C struct declaration is used.
struct filehdr
{

} ;

unsigned short
unsigned short
long
long
long
unsigned short
unsigned short

f magic ;
(:nscns ;
f timdat ;
(~symptr ;
f nsyms ;
(:opthdr ;
f_flags ;

/* magic number */
/* number of sections */
/* time & date stamp */
/* file ptr to symtab *1
/* # symtab entries */
/* sizeof(opt hdr) */
/* flags * /

f _ sympt r is the byte offset in the file at which the symbol table
can be found. Its value can be used as the offset in f seek(3S) to
position an I/O stream to the symbol table. See aouthdr(4) for
the structure of the optional a. out header. The valid magic
number is
#define MC68MAGIC 0520 1* magic number */

The value in f timdat is obtained from the time(2) system
call. Flag bits currently defined are
#define F RELFLG 00001 /* relocation entries stripped */
#define F ::::EXEC 00002 /* file is executable */
#define F LNNO 00004 /* line numbers stripped */
#define F::::LSYMS 00010 /* local symbols stripped */
#define F MINMAL 00020 /* minimal object file */
#define F-UPDATE 00040 /* update file, ogen produced */
#define F SWABD 00100 /* file is "pre-swabbed" */
#define F::::AR16WR 00200 /* 16-bit DEC host */
#define F AR32WR 00400 /* 32-bit DEC host */
#define F::::AR32W 01000 /* non-DEC host */
#define F PATCH 02000 /* "patch" list in opt hdr */
#define F - NODF 02000 /* "patch" list in opt hdr */

SEE ALSO
time(2), fseek(3S), a. out(4), aouthdr(4).

1 February, 1990
RevisionC

finstallrc(4) finstallrc(4)

NAME
finstallrc - finstall default configuration file

SYNOPSIS
/etc/finstallrc

DESCRIPTION
You can use the . finstallrc and /etc/finstallrc files
to specify the default options used with finstall, such as
whether finstall should prompt for which floppy drive to use.
The variables that can be set for finstall are as follows:

CTL ASKDRIVE
determines if finstall should prompt for which floppy
drive to use.

CTL ASKINS TALL
determines if finstall should prompt for the directory to
install the software under.

CTL CHECKS PACE
determines if finstall should check for enough space to
install the software.

CON TRIES
Specifies the number of times allotted to attempt to answer a
prompt

CTL ALLOWRC
determines whether the . finstallrc file should be used.

CTL TAKEDEFAULT
determines if finstall should use default answers.

The default values for these variables are as follows:

CTL ASKDRIVE =1
CTL ASKINS TALL =1
CTL CHECKSPACE =1
CON TRIES =5
CTL ALLOWRC =1
CTL TAKEDEFAULT =0

You can change the value of the default variables with results
described as follows:

CTL ASKDRIVE
!= 0: instructs finstall to prompt for which floppy drive
to use for installation.

February, 1990 1
Revision C

finstallrc(4) finstallrc(4)

= 0: instructs finstall to use the right-hand floppy drive
for installation.

CTL ASKINS TALL
!= 0: instructs finstall to prompt for the installation
directory.
= 0: instructs finstall to use the directory specified by
the software developer as the default installation directory. If
the software developer did not specify a directory, fin­
stall uses the current working directory as the installation
directory.

CTL CHECKS PACE
!= 0: instructs finstall to check for enough space on the
installation directory to install the software.
= 0: instructs finstall to proceed with installation
without checking for available space.

CON TRIES
- n: n specifies the number of times allotted to attempt to
answer a prompt

CTL ALLOWRC
!= 0: instructs finstall to not use a . finstallrc file
in the current working directory.
= 0: instructs finstall to use a . finstallrc file in
the current working directory.

CTL TAKEDEFAULT
!= 0: instructs finstall to print the prompt on the screen
but to use the default answer rather than waiting for a user
response.
= 0: instructs finstall to print the prompt on the screen
and wait for a response from the user.

FILES
/etc/finstallrc
.finstallrc

SEE ALSO
finstall{IM}.

2 February, 1990
RevisionC

fs(4) fs(4)

NAME
f s - file systems

DESCRIPTION
A/UX® supports System V file systems (SVFS) and Berkeley 4.2
file systems (UFS). (See svfs(4) and ufs(4) for details about
file-system organization.) A/UX does not support Macintosh®
file systems as mountable file systems. However, the NUX finder
may read and write these file systems. Please see Inside Macin­
tosh, Volume II for a description of the original Macintosh file sys­
tem and Inside Macintosh, Volume W for a description of the
hierarchical file system (HFS).

mkfs is used to create SVFS file sytems.

newfs is used to create UPS file systems. tunefs can be used
to change the dynamic parameters of a UPS.

SEE ALSO
mkfs(lM), newfs(lM), tunefs(1M), svfs(4), ufs(4).

February, 1990
Revision C

1

fspec(4) fspec(4)

NAME
fspec - syntax for format lines for newform

DESCRIPTION

1

It is sometimes convenient to maintain text files on the A/UX sys­
tem with nonstandard tabs, (i.e., tabs which are not set at every
eighth column). Such files must generally be converted to a stan­
dard format, frequently by replacing all tabs with the appropriate
number of spaces, before they can be processed by A/UX system
commands. A format specification occurring in the first line of a
text file specifies how tabs are to be expanded in the remainder of
the file.

A format specification consists of a sequence of parameters
separated by blanks and surrounded by the brackets <: and : >
Each parameter consists of a keyletter, possibly followed immedi­
ately by a value. The following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file.
The value of tabs must be one of the following:
1. a list of column numbers separated by commas, in­

dicating tabs set at the specified columns;
2. a - followed immediately by an integer n, indicat­

ing tabs at intervals of n columns;
3. a - followed by the name of a "canned" tab

specification.

Standard tabs are specified by t-8, or equivalently,
tI, 9, 17, 25, etc. The canned tabs which are recog­
nized are defined by the tabs(l) command.

ssize The s parameter specifies a maximum line size. The
value of size must be an integer. Size checking is per­
formed after tabs have been expanded, but before the
margin is prefixed.

mmargin The m parameter specifies a number of spaces to be
prefixed to each line. The value of margin must be an
integer.

d

e

The d parameter takes no value. Its presence indicates
that the line containing the format specification is to be
deleted from the converted file.

The e parameter takes no value. Its presence indicates
that the current format is to prevail only until another
format specification is encountered in the file.

February, 1990
RevisionC

fspec(4) fspec(4)

Default values, which are assumed for parameters not supplied,
are t-8 and mO. If the s parameter is not specified, no size
checking is performed. If the first line of a file does not contain a
format specification, the above defaults are assumed for the entire
file. The following is an example of a line containing a format
specification:

* <:t5,10,15 s72:> *
If a format specification can be disguised as a comment, it is not
necessary to code the d parameter.

SEE ALSO
ed(1), newform(1), tabs(I).

February, 1990 2
RevisionC

fstab(4) fstab(4)

NAME
f stab - static information about file systems

SYNOPSIS
iinclude <mntent.h>

DESCRIPTION

1

The file /etc/fstab describes the file systems and swapping
partitions used by the local machine. It can be modified with a
text editor by the system administrator. The file is read by com­
mands that mount, unmount, and check the consistency of file sys­
tems; it is also read by the system in providing swap space. Be­
cause there is an appropriate mount request in the / etc / rc
startup file, any file systems described in /etc/fstab (other
than those of type ignore or with mount option noauto) are
mounted automatically whenever multi-user mode is entered.

The /etc/fstab file consists of a number of lines in the follow­
ing format

fsname dir type opts freq passno

For example

/dev/xyOa / 5.2 rw,noquota 1 2

The fieldfreq is optionally used by dump. bsd(lM) to help report
which file systems need to be dumped. passno is used by
fsck(lM) to help select which file systems to check. For exam­
ple, fsck -p2 checks all the 5.2 file systems listed in
/etc/fstab withpassno greater than or equal to 2.

The entries from this file are accessed using the routines in
getmntent(3), which returns a structure of the following form:
struct mntent {

char *mnt_fsname; /* file system name */
char *mnt dir;
char *mnt _type;

char *mnt _opts;

int mnt_freq;
int mnt _passno;

} ;

/* file system path prefix */
/* 4.2, 5.2, nfs, swap,

or ignore */
/* rw, ro, noquota, quota, noauto,

hard, soft */
/* dump frequency, in days */
/* pass i on parallel fsck */

Fields are separated by white space; a i as the first nonwhite char­
acter indicates a comment.

February, 1990
RevisionC

fstab(4) fstab(4)

The mnt type field determines how the mnt fsname and
mn t opts fields will be interpreted. Here is a listof the file sys­
tem tYPes currently supported, and the way each of them interprets
these fields.

4.2/5.2
mnt fsname

mnt_opts

NFS
mnt fsname

SWAP

Must be a block device.

Valid options are ro, rw, quota, no­
quota, noauto.

The path on the server of the directory to
be served.

Valid options are ro, rw, quota, no­
quota,noauto,hard,soft.

mnt fsname Must be a block device swap partition.

mnt_opts Ignored.

If the mnt opts field contains noauto, the entry will be ig­
nored during a mount -a command, allowing definition of
f stab entries for commonly used file systems not mounted au­
tomatically.

If the mnt_type is specified as ignore then the entry is ig­
nored. This is useful to show disk partitions not currently used.

The /etc/fstab file is only read by programs and never writ­
ten by them; it is the duty of the system administrator to maintain
this file. The order of records in / et c / f stab is important be­
cause fsck, mount, and umount process the file sequentially;
file systems must appear following the file systems they are
mounted in.

Note that listing a file system as type swap will not cause the sys­
tem to mount the file system as a swap area; to do that, you must
use the swap command.

FILES
/etc/fstab

SEE ALSO
dump. bsd(4), fsck(IM), mount(1M), swap(1M),
getmntent(3).

February, 1990
RevisionC

2

fstypes(4) fstypes(4)

NAME
f s type s - name-mapping information for file systems

SYNOPSIS
finclude <sys/fstypent.h>

DESCRIPTION
/ et c / f s type s contains information about file-system types. It
can be modified by the system administrator using a text editor.
The file is used by commands that need to know the type of a
specified file system. It is also used by commands to determine
the location of file-system-dependent utilities.

The /etc/fstypes file consists of lines in the following for­
mat:

numeric-type name-list fpathname-list]

For example:

o 5.2,svfs,s5 /etc/fs/5.2:/etc/fs/svfs

The fields are separated by white space; a f as the first character
indicates a comment. A f after name-list or path-list indicates
that the rest of the line is a comment

The placeholder numeric-type is the integer type that is passed to
fsmount. See fsmount(2). These are defined in
<sys/mount. h>. The name-list is a comma-separated list of
character strings that describe the file-system type. At least one of
these is defined in <mntent. h>. The pathname-list is a colon­
separated list of pathnames. These pathnames indicate where util­
ity programs associated with the file-system type reside. If this
field is empty, the default location is /etc/fs/name-list.

The entries in this file are accessed using fstypent, which reads
the next entry from the file and returns a pointer to a struct
fstypent. This structure is defined in <sys/fstypent>as:

struct fstypent {
int fstype;

} ;

char **typelist;
char *pathlist;

FILES
/etc/fstypes

1 February, 1990
RevisionC

fstypes(4}

SEE ALSO
getmntent(3}, fstypent(3}, fs(4}, fstab(4}.

February, 1990
RevisionC

fstypes(4}

2

gettydefs(4) gettydefs(4)

NAME
gettydefs - speed and terminal settings used by getty

DESCRIPTION
The /etc/gettydefs file contains information used by
getty(1M) to set up the speed and terminal settings for a line. It
supplies information on what the login prompt should look like.
It also supplies the speed to try next if the user indicates the
current speed is not correct by typing an interrupt character.

Each entry in / etc/ gettydefs has the following format:

label# initial-flags # final-flags # flow-control # login-prompt #next-Iabel

Each entry is followed by a blank line. The various fields can
contain quoted characters of the form \b, \n, \c, etc., as well as
\nnn, where nnn is the octal value of the desired character. The
various fields are:

label This is the string against which getty tries to
match its second argument. It is often the speed,
such as 1200, at which the terminal is supposed
to run, but it need not be (see below).

initial-flags These flags are the initial ioctl(2) settings to
which the terminal is to be set if a terminal type is
not specified to getty. The flags that getty
understands are the same as the ones listed in
/usr/include/sys/termio.h (see ter­
mio(7». Normally only the speed flag is required
in the initial-flags. getty automatically sets the
terminal to raw input mode and takes care of most
of the other flags. The initial-flag settings remain
in effect until getty executes login(I).

final-flags These flags take the same values as the initial-flags
and are set just prior to getty executes login.
The speed flag is again required. The composite
flags SANE or SANE2 take care of most of the oth­
er flags that need to be set so that the processor and
terminal are communicating in a rational fashion.
The other two commonly specified final-flags are
TAB3, so that tabs are sent to the terminal as
spaces, and HUPCL, so that the line is hung up on
the final close. Flag attributes are added from left
to right, flags that start with a - are subtracted, e.g.,

1 February, 1990
RevisionC

gettydefs(4} gettydefs(4}

SANE - PARENB. This field specifies what type of
flow control to use on the line. The currently al­
lowed settings are APPLE (for apple flow control),
DTR (for DTR flow control), MODEM (for modem
control), and FLOW (for hardware flow control).
These modes can also be turned off by using the -
as a prefix.

login-prompt This entire field is printed as the login-prompt. Un­
like the above fields where white space is ignored
(a space, tab or newline), they are included in the
login-prompt field.

next-label If this entry does not specify the desired speed, in­
dicated by the user typing a BREAK character, then
get ty will search for the entry with next-label as
its label field and set up the terminal for those set­
tings. Usually, a series of speeds are linked togeth­
er in this fashion, into a closed set; For instance,
2400 linked to 1200, which in turn is linked to
300, which finally is linked to 2400.

IT getty is called without a second argument, then the first entry
of /etc/gettydefs is used, thus making the first entry of
/etc/gettydefs the default entry. It is also used if getty
can not find the specified label. If /etc/gettydefs itself is
missing, there is one entry built into the command which will
bring up a terminal at 300 baud.

It is strongly recommended that after making or modifying
/etc/gettydefs, it be run through getty with the check op­
tion to be sure there are no errors.

The following four symbols define the SANE state.

i define ISANE (BRKINT I IGNPAR I ISTRIP I ICRNL I IXON)

i define OSANE (OPOST I ONLCR)

i define CSANE (CS7 I PARENB I CREAD)

define LSANE (ISIG I ICANON I ECHO I ECHOK)

FILES
/etc/gettydefs

February, 1990
Revision C

2

gettydefs(4)

SEE ALSO
login(1). getty(lM). ioctl(2). termio(7).

3

gettydefs(4)

February. 1990
RevisionC

group(4) group(4)

NAME
group - group file

SYNOPSIS
Jete/group

DESCRIPTION
group contains for each group the following information:

• group name

• encrypted password

• numerical group 10

• a comma separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each
group is separated from the next by a newline. If the password
field is null, no password is demanded.

This file resides in the Jete directory. Because of the encrypted
passwords, it can and does have general read permission and can
be used, for example, to map numerical group IO's to names.

A group file can have a line beginning with a plus (+), which
means to incorporate entries from the yellow pages. There are
two styles of + entries: All by itself, + means to insert the entire
contents of the yellow pages group file at that point; +name means
to insert the entry (if any) for name from the yellow pages at that
point If a + entry has a nonnull password or group member field,
the contents of that field will overide what is contained in the yel­
low pages. The numerical group 10 field cannot be overridden.

EXAMPLES
+myproject:::carolyn, jennifer
+:

If these entries appear at the end of a group file, then the group
myproject will have members carolyn and jennifer, and
the password and group 10 of the yellow pages entry for the group
myproject. All the groups listed in the yellow pages will be
pulled in and placed after the entry for mypro j e ct.

FILES
Jete/group
/etc/yp/group

February, 1990
RevisionC

1

group(4) group(4)

SEE ALSO
passwd(l), setgroups(2), crypt(3), ini tgroups(3),
passwd(4).

BUGS
The passwd(1) command won't change group passwords.

2 February, 1990
RevisionC

HOSTNAME(4) HOSTNAME(4)

NAME
HOSTNAME - hostname and domainname database

DESCRIPTION
HOSTNAME resides in the / etc directory and consists of one line
containing the following items of information

hostname domainname

Items are separated by any number of blanks and/or tabs. There
must be no white space at the beginning of the line.

hostname is the name of the local host machine and domainname
is the name of the Yellow Pages domain on which the local host
resides.

EXAMPLES
magic apple

FILES
/etc/HOSTNAME

SEE ALSO
hostname(l), domainname(l), chgnod(lM).
A/UX Installation Guide
RFC-882, RFC-883, RFC-920, RFC-921, RFC-952, RFC-953,
RFC-973, RFC-974 (DNN Network Information Center, SRI
International)

February,1990
Revision C

1

hosts(4) hosts(4)

NAME
hosts - host name database

DESCRIPTION
The hosts file contains information regarding the known hosts
on the DARPA Internet For each host a single line should be
present with the following information:

official host name
Internet address
aliases

Items are separated by any number of blanks or tab characters. A * indicates the beginning of a comment; characters up to the end
of the line are not interpreted by routines which search the file.
This file is normally created from the official host data base main­
tained at the Network Information Control Center (NIC), though
local changes may be required to bring it up to date regarding
unofficial aliases and unknown hosts.

Network addresses are specified in the conventional . notation us­
ing the inet addr () routine from the Internet address manipu­
lation library,1net(3N). Host names may contain any printable
character other than a field delimiter, newline, or comment charac­
ter.

FILES
fete/hosts

1 February, 1990
RevisionC

hosts. equiv(4) hosts. equiv(4)

NAME
hosts. equiv -list of trusted hosts

DESCRIPTION
hosts. equiv resides in directory fete and contains a list of
trusted hosts. When an rlogin(1) or remsh(l) request from
such a host is made, and the initiator of the request is in
/ete/passwd, then no further validity checking is done. That
is, rlogin does not prompt for a password, and remsh com­
pletes successfully. So a remote user i~ "equivalenced" to a local
user with the same user ID when the remote user is in
hosts.equiv.

The format of hosts. equi v is a list of names, as in this exam­
ple:

hostl
host2
+@groupl
-@group2

A line consisting of a simple host name means that anyone log­
ging in from that host is trusted. A line consisting of +@group
means that all members of that network group are trusted. A line
consisting of -@group means that members of that group are not
trusted. Programs scan hosts. equiv linearly, and stop at the
first hit (either positive for hostname and +@ entries, or negative
for -@ entries). A line consisting of a single + means that every­
one is trusted.

The . rhosts file has the same format as hosts. equi v.
When user x executes rlogin or remsh, the . rhosts file
from X's home directory is conceptually concatenated onto the
end of hosts. equiv for permission checking. However,-@
entries are not sticky. If a user is excluded by a minus entry from
hosts. equi v but included in . rhosts, then that user is con­
sidered trusted. In the special case when the user is root, then
only the / . rhosts file is checked.

It is also possible to have two entries (separated by a single space)
on a line of these files. In this case, if the remote user is
equivalenced by the first entry, then that user is allowed to log in
as any member of the second entry. Thus

sundown john

February,1990
RevisionC

1

hosts. equiv(4) hosts. equiv(4)

allows anyone from sundown to log in as john, and

+@groupl +@group2

allows any member of netgroupl to log in as a member of net­
group2.

FILES
/etc/hosts.equiv

SEE ALSO
rlogin(1), remsh(1), netgroup(4).

2 February, 1990
RevisionC

inittab(4) inittab(4)

NAME
ini t tab - script for the ini t process

DESCRIPTION
The ini t tab file supplies the script for the role ini t plays as a
general process dispatcher. The process that constitutes the ma­
jority of the process dispatching activities of ini t is the line pro­
cess fete/getty that initiates individual terminal lines. Other
processes typically dispatched by ini t are daemons and the
shell.

The ini t tab file is composed of entries that are position depen­
dent and have the following format:

id: rstate : action: process

Each entry is delimited by a newline; however, a backslash (\)
preceding a newline indicates a continuation of the entry. Up to
512 characters per entry are permitted. Comments may be insert­
ed in the process field using the sh(l) convention for comments.
Comments for lines that spawn get t y processes are displayed by
the who(1) command. It is expected that they will contain some
information about the line, such as the location. There are no lim­
its, other than maximum entry size, imposed on the number of en­
tries within the ini t tab file. The entry fields are

id This is one to four characters used to uniquely identify
an entry.

rstate This defines the run level in which this entry is to be pro­
cessed. The entry, run levels effectively corresponds to
a configuration of processes in the system. That is, each
process spawned by ini t is assigned a run level or run
levels in which it is allowed to exist. The run levels are
represented by a number ranging from 0 through 6. As
an example, if the system is in run levell, only those en­
tries having a 1 in the rstate field will be processed.
When ini t is requested to change run levels, all
processes which do not have an entry in the rstate field
for the target run level will be sent the warning signal
(SIGTERM) and allowed a 20-second grace period be­
fore being forcibly terminated by a kill signal (SIG­
KILL). The rstate field can define multiple run levels
for a process by selecting more than one run level in any
combination from 0-6. If no run level is specified, then
the process is assumed to be valid at all run levels 0-6.

February, 1990
Revision C

1

inittab(4) inittab(4)

2

There are three other values, a, b, and c, which can ap­
pear in the rstate field, even though they are not true
run levels. Entries which have these characters in the
rstate field are processed only when the ini t (see
ini t(IM» process requests them to be run (regardless
of the current run level of the system). They differ from
run levels in that ini t can never enter run level a, b, or
c. Also, a request for the execution of any of these
processes does not change the current run level. Furth­
ennore, a process started by an a, b, or c command is
not killed when ini t changes levels. They are only
killed if their line in /etc/inittab is marked off in
the action field, their line is deleted entirely from
/etc/inittab, or init goes into the SINGLE USER
state.

action Key words in this field tell ini t how to treat the pro­
cess specified in the process field The actions recog­
nized by init are as follows:

respawn

wait

once

If the process does not exist, then start
the process (do not wait for its termi­
nation, that is, continue scanning the
inittab file), and when it dies res­
tart the process. If the process current­
ly exists, then do nothing and continue
scanning the inittab file.

When ini t enters the run level that
matches the entry's rstate, start the
process and wait for its termination.
All subsequent reads of the ini t tab
file while ini t is in the same run lev­
el will cause ini t to ignore this en­
try.

When ini t enters a run level that
matches the entry's rstate, start the
process, do not wait for its termina­
tion. When it dies, do not restart the
process. If upon entering a new
run level, where the process is still
running from a previous run level
change, the program will not be res­
tarted.

February, 1990
RevisionC

inittab(4)

boot

bootwait

powerfail

powerwait

off

ondemand

February, 1990
Revision C

inittab(4)

The entry is to be processed only at
the boot-time read of the ini t tab
file. ini t is to start the process, not
wait for its termination; and when it
dies, not restart the process. In order
for this instruction to be meaningful,
the rstate should be the default or it
must match ini t 's run level at boot
time. This action is useful for an ini­
tialization function following a
hardware reboot of the system.

The entry is to be processed only at
the boot-time read by ini t of the
ini t tab file. ini t is to start the
process, wait for its termination and,
when it dies, not restart the process.

Execute the process associated with
this entry only when ini t receives a
power fail signal (SIGPWR see sig­
nal(3».

Execute the process associated with
this entry only when ini t receives a
power fail signal (SIGPWR) and wait
until it terminates before continuing
any processing of inittab.

If the process associated with this en­
try is currently running, send the warn­
ing signal (SIGTERM) and wait 20
seconds before forcibly terminating
the process via the kill signal (SIG­
KILL). If the process is nonexistent,
ignore the entry.

This instruction is really a synonym
for the respawn action. It is func­
tionally identical to respawn but is
given a different keyword in order to
divorce its association with run levels.
This is used only with the a, b, or c
values described in the rstate field.

3

inittab(4) inittab(4)

initdefault An entry with this action is only
scanned when ini t is initially in­
voked. ini t uses this entry, if it ex­
ists, to determine which run level to
enter initially. It does this by taking
the highest run level specified in the
rstate field and using that as its ini­
tial state. If the rstate field is empty,
this is interpreted as 0123456 and so
ini t will enter run level 6. Also, the
initdefault entry can use s to
specify that init start in the SINGLE
USER state. Additionally, if ini t
does not find an initdefault entry
in /etc/inittab, then it will re­
quest an initial run level from the user
at reboot time.

sysini t Entries of this type are executed be­
fore ini t tries to access the console.
It is expected that this entry will be
used only to initialize devices on
which ini t might try to ask the run
level question. These entries are exe­
cuted and waited for before continu­
ing.

process This is a sh command to be executed. The entire pro­
cess field is prefixed with exec and passed to a forked
shas

sh -c 'exec comnwnd'

For this reason, any legal sh syntax can appear in the
process field. Comments can be inserted with the *
comment syntax.

FILES
/etc/inittab

SEE ALSO
sh(l), who(l), getty(1M), exec(2), open(2), signal(3).

4 February, 1990
RevisionC

inode(4) inode(4)

NAME
inode - format of a System V inode

SYNOPSIS
#include <sys/types.h>
#include <svfs/inode.h>

DESCRIPTION
An inode for a plain file or directory in a file system has the fol­
lowing structure defined by <svfs/ inode. h>.

/* 1node structure as it appears on a disk block. */
struct dinode {

ushort di _mode; 1* mode and type of file */

short di nlink; 1* number of links to file */ -
ushort di _uid; /* owner's user 1D */

ushort di _gid; /* owner's group 1D */
off t di size; /* number of bytes in file */ -
char di addr[40]; /* disk block addresses */ -

idefine di gen; di addr[39] - -
time t di atime; 1* time last accessed *1 - -
time t di _mtime; 1* time last modified */ -
time t di ctime; 1* time created *1 - -

} ;

/*
* the 40 address bytes:
* 39 used; 13 addresses

* of 3 bytes each.

*/

For the meaning of the defined types 0 f f _ t and time t see
types(5).

FILES
/usr/include/svfs/inode.h

SEE ALSO
stat(2), fs(4), types(5).

February, 1990
Revision C

1

ioctl. syscon(4) ioctl. syscon(4)

NAME
ioctl. syscon - console terminal settings file

SYNOPSIS
/etc/ioctl.syscon

DESCRIYI10N

1

The file / etc/ ioctl. syscon contains information about the
ioctl states of the A/UX virtual terminal console. This file is
created by ini t(lM) when the system is put into single-user
mode, and it is read by the ini t process when ini t first comes
up.

The information contained in / etc/ ioctl. syscon is used to
set the terminal modes on the initial console emulator. It is used
primarily to preserve reasonable values for terminal settings
across system reboots (instead of using the driver-imposed de­
faults).

The ioctl. syscon file consists of 16 colon-separated fields,
closely resembling the output of the command

stty -g

For example, a sample / etc/ ioctl. syscon file looks like
this:

526:5:bd:3b:O:3:1c:7f:15:4:0:0:0:0:0:0

while the s tty -g command on the console terminal would pro­
duce the following output:

526:5:bd:3b:3:1c:7f:15:4:0:0:0

The primary difference is that the ioctl. syscon file contains
four additional fields corresponding to the termcb structure, an
undocumented artifact of System III. These four fields are always
zero. The remaining fields correspond to the fields of the ter­
mio structure; for an explanation of these fields, see termio(7).

If the / etc/ ioctl. syscon file becomes damaged, the system
may refuse to accept input from the console terminal during the
boot process. To remedy this situation, it is safest simply to re­
move the file altogether from within the A/UX Startup shell en­
vironment, allowing the default settings to be established once
again. The driver defaults are reasonable and will allow the sys­
tem to boot successfully. A corrected version of the file will then
be generated when the system is booted into multi-user mode. See
StartupShell(8) for details on performing NUX file system

February, 1990
Revision C

ioctl. syscon(4)

operations from the NUX Startup shell.

FILES
/etc/ioctl.syscon

SEE ALSO

ioctl. syscon(4)

stty(I), init(IM), termio(7), StartupShell(8).

February, 1990
Revision C

2

issue(4) issue(4)

NAME
issue - issue identification file

DESCRIPTION
The file / ete/ issue contains the issue or project
identification to be printed as a login prompt. This is an ASCII
file which is read by program getty and then written to any ter­
minal spawned or respawned from the / ete/ ini ttab file.

FILES
fete/issue

SEE ALSO
login(l).

1 February, 1990
RevisionC

iwmap(4) iwmap(4)

NAME
iwmap - format of iwprep(l) character map description files

SYNOPSIS
/usr/lib/font/device/MAP. *

DESCRIPTION
A map file specifies a character code for a t ro f f character name.
A complete list of the troff character names may be found in
the "nroff/troff Reference" inA/UX Text Processing Tools.

Each map file line has the synopsis:

code charname . ..

where code and charname are described as follows:

code Any valid C eight-bit integer constant, including de­
cimal, octal, and hexadecimal forms.

charname A one or two character name. One character names
are used to specify standard ASCII characters (e.g., a,
b, c, 1,2,3). Two character names are used to specify
special characters. There are two forms of the special
character names in troff input The first is a simple
two character name (e.g., \ -, \ I). The second is a
four character name (e.g., \ (* A, \ (dg). For the two
character name of special characters, you specify the
entire name (i.e., \ - for \ -). For the four character
name of special characters, you specify just the last
two characters (Le., dg for \ (dg).

EXAMPLES
An example map file for specifying the code for a dash, hyphen,
and long dash to the same character is:

055 - by -

Examine the map files in /usr/lib/font/deviw for further
examples.

FILES
/usr/lib/font/deviw

SEE ALSO
iwprep(l).

February, 1990
RevisionC

1

linenum(4) linenum(4)

NAME
linenum -line number entries in a common object file

SYNOPSIS
finclude <linenum.h>

DESCRIPTION

1

The C compiler generates an entry in the object file for each C
source line on which a breakpoint is possible (when invoked with
the -g option; see cc(I». Users can then reference line numbers
when using the appropriate software test system (see sdb(1».
The structure of these line number entries appears below.

struct lineno
{

} ;

union

long
long

unsigned short

l_symndx ;
lyaddr ;
1 addr
l_lnno ;

Numbering starts with one for each function. The initial line
number entry for a function has l_lnno equal to zero, and the
symbol table index of the function's entry is in 1 symndx. Oth­
erwise, l_lnno is non-zero, and lyaddr is the physical ad­
dress of the code for the referenced line. Thus the overall struc­
ture is the following:

1 addr 1 lnno

function symtab index 0
physical address line
physical address line

function symtab index 0
physical address line
physical address line

February, 1990
RevisionC

linenwn(4)

SEE ALSO
cc(l), sdb(l), a. out(4).

February, 1990
Revision C

linenum(4)

2

magic(4) magic(4)

NAME
magic - magic number file for file command

DESCRIPTION

1

The file(l) command identifies the type of a file by using,
among other tests, a test to ascertain whether the file begins with a
certain magic number. The file /etc/magic specifies the magic
numbers are to be tested for, what message to print if a particular
magic number is found, and what additional information is to be
extract from the file.

Each line of the file specifies a test to be performed. A test com­
pares the data starting at a particular offset in the file with a 1-
byte, 2-byte, or 4-byte numeric value or a string. If the test
succeeds, a message is printed. A line consists of the following
fields:

offset A number specifying the offset, in bytes, into the file
of the data which is to be tested.

type The type of the data to be tested. The possible
values are

byte

short

long

A one-byte value.

A two-byte value.

A four-byte value.

string A string of bytes.

The types byte, short, and long may optionally
be followed by a mask specifier of the form
& number. If a mask specifier is given, the value is
AND' ed with the number before any comparisons
are done. The number is specified in C form; for ex­
ample, 13 is decimal, 013 is octal, and Ox13 is
hexadecimal.

test The value to be compared with the value from the
file. If the type is numeric, this value is specified in
C form; if the type is a string, it is specified as a C
string with the usual escapes permitted (for example,
\n for newline).

Numeric values may be preceded by a character in­
dicating the operation to be performed. The charac­
ter may be an =, to specify that the value from the
file must equal the specified value, a <, to specify

February, 1990
RevisionC

magic(4)

message

magic(4)

that the value from the file must be less than the
specified value, a >, to specify that the value from
the file must be greater than the specified value, or
an x to specify that any value will match. If the
character is omitted, it is assumed to be =.
For string values, the byte string from the file must
match the specified byte string; the byte string from
the file which is matched is the same length as the
specified byte string.

The message to be printed if the comparison
succeeds. If the string contains a printf(3S) for­
mat specification, the value from the file (with any
specified masking performed) is printed using the
message as the format string.

Some file formats contain additional information which is to be
printed along with the file type. A line which begins with the
character > indicates additional that tests and messages are to be
printed. If the test on the line preceding the first line with a >
succeeds, the tests specified in all the subsequent lines beginning
with > are performed, and the messages are printed if the tests
succeed. The next line which does not begin with a > terminates
this command.

FILES
/etc/magic

SEE ALSO
file(I).

BUGS
There should be more than one level of subtests, with the level in­
dicated by the number of > at the beginning of the line.

February, 1990
Revision C

2

master(4) master(4)

NAME
ma s te r - master kernel configuration files

DESCRIPTION

1

Master files are used by autoconfig(1M) to obtain device in­
formation that is necessary to configure new kernels. Master files
are located in / etc/master. d.

Master files can contain up to three order-dependent lines of infor­
mation: a device identifier, a dependency statement, and a device
specification. The device-identifier and dependency-statement
lines are optional and precede the device specification, as shown
below:

device-identifier
dependency-statement
device-specification

Device Identifier
The device identifier provides optional information that is useful
only for slot device drivers. Each slot card stores a board ID
number and a version number in its ROM. The device identifier is
used to specify a particular slot card and, optionally, a range of
version numbers, as shown below:

id board-id serial

where board-id is an integer value that matches the board ID that
is stored in a slot card's ROM. For example, board-id with a
value of 8 indicates the EtherTalk™ card. The placeholder serial
is an optional number or number range. If present, serial is com­
pared with the slot card's version number. If the comparison fails,
autoconfig terminates. The placeholder serial can be
specified as:

number
The slot card's version number must match number.

number-
The slot card's version number must be less than or equal to
number.

-number
The slot card's version number must be greater than or equal
to number.

number }-number2
The slot card's version number must be within the range

February, 1990
RevisionC

master(4) master(4)

specified by numberl-number2.

IT serial is not specified, autoconfig does not check the slot
card's version number.

Dependency Statements
Dependency statements can be used to specify modules that must
be included or excluded in the resulting kernel for proper opera­
tion of the subject driver. Dependency statements can have
several forms, from simple to complex:

verb name list
if filename verb namelist
if expression verb name list

The possible values for verb, name list, filename, and expression
are described below:

verb
The keyword include or exclude. include tells
autoconfig to include the modules specified in namelist
in the resulting kernel. exclude tells autoconfig to ex­
clude the modules specified in namelist from the resulting
kernel.

name list
A comma-separated list of module names.

filename
The name of another master file in the current directory or a
period (.), which indicates the current master file. If
filename exists, the modules specified in namelist are includ­
ed in the resulting kernel. If filename does not exist. the
modules specified in namelist are excluded.

expression
An expression constructed from filenames and operators. If
the evaluation of the expression is 1RUE, the modules
specified in namelist are included in the resulting kernel. If
the evaluation of the expression is FALSE, the modules
specified in namelist are excluded. The following operators,
listed from highest to lowest priority, can be used to construct
expression:

&

I

February,1990
RevisionC

NOT
AND

OR

2

master(4) master(4)

3

Parentheses can be used to override the default priority. The
following examples use parentheses to demonstrate the de­
fault priority of the operators:

a I b & c is equivalent to a (b & c)
! a & b is equivalent to (! a) & b

Device Specification
The device specification provides information that autoconfig
must know to produce a complete and working kernel. A device
specification is comprised of the following six fields:

flags
vectors
prefix
major-number
maximum-devices
interrupt-level

The fields must appear on a single line in the master file in the
order shown above and must be separated by one or more blanks
or tabs. Each field is described below:

flags
One or more of the following characters:

a Tell autoconfig to create prefixcnt and
prefixaddr data structures for this module. The
value of prefix is discussed below.

b Tell autoconfig to create a bdev switch entry
for this module.

c Tell autoconfig to create a cdev switch entry
for this module.

1 Tell autoconfig to create a line discipline switch
entry for this module.

m Tell autoconfig to create a Streams entry for
this module.

n Tell autoconfig that this module uses a network
interface (TCPIIP).

popt
Tell autoconfig that this module has an initiali­
zation routine. autoconfig generates code that
calls the initialization routine at the point in the dur-

February, 1990
RevisionC

master(4) master(4)

ing system boot specified by opt, which can be any
of the following characters:

f Call this module's initialization routine
first, before any other initialization occurs.
Interrupts are disabled.

s Call this module's initialization routine
after any pf modules. Interrupts are dis­
abled.

n Call this module's initialization routine
after any pf and ps modules but prior to
enabling interrupts. If popt is not
specified, n is the default.

o Call this module's initialization routine
after enabling interrupts.

1 Call this module's initialization routine be­
fore entering / etc/ ini t.

sTell autoconfig that this module is a software
module that does not drive a hardware device. Of
the other possible values for flags, only the p flag
can be used with the s flag.

t Tell autoconfig that this module is a character
device driver that requires a tty structure. The t
flag must be used with the c flag.

vopt
Tell autoconfig to link this driver to the inter­
rupt vector mechanism. Currently, the only valid
value of opt is s, which tells the kernel to decode
slot-based interrupts and call the interrupt routine of
this driver when the card generates an interrupt.

x Tell autoconfig that this module is a Streams
module. Only the p flag can be used with the x
flag.

Sopt
Specify opt as one of the following characters:

e Tell autoconfig that this module con­
tains a special exit routine.

February, 1990 4
RevisionC

rnaster(4) rnaster(4)

5

vectors

f Tell autoconfig that this module con­
tains a special fork routine.

x Tell autoconfig that this module con­
tains a special exec routine.

The number of interrupt vectors that a particular controller
can generate. For hardware device drivers, this value must be
a nonzero integer. For drivers that receive slot interrupts, this
number is 1 because each controller can generate only one in­
terrupt For software modules, that do not drive a hardware
device this value should be a hyphen (-).

prefix
The prefix used in the driver's open, close, read, write, ioctl,
print, select, and strategy routines. For example, if the
driver's open routine is called bddopen, the prefix is bdd.
The placeholder prefix must be between three and eight char­
acters long. Valid characters are alphanumerics and the
underline U character. To maintain consistency, prefix
should also be the name of the master file.

major-number
The value that is assigned as the major number for the device
driver. This value should always be a hyphen (-). When a
hyphen is specified in this field, autoconfig assigns the
first available major number to the device. Letting auto­
config assign the major number guarantees a unique major
number for each device driver and prevents conflict between
two or more device drivers.

maximum-devices
Either a hyphen (-) for software modules or a nonzero integer
for hardware device drivers. The integer value is the number
of devices the controller supports.

interrupt-level
The highest-priority interrupt level used by the controller.
For software modules, this value should be a hyphen (-). For
slot-based devices, all of which interrupt at spll, this value
should be 1.

February, 1990
RevisionC

master(4) master(4)

EXAMPLES
The following master file is for a block device driver:

if . include SCSI
bca bdd 2 1

The if . include SCSI statement forces the inclusion of
another module, SCSI (the SCSI Manager), on which this device
depends. The b and c flags indicate that the driver is used as
both a block and a character device driver, so autoconfig will
create entries for this device in both the bdevsw and cdevsw
tables. The a flag tells autoconfig to create the bddcnt
and bddaddr data structures.

Because this device receives interrupts via the SCSI Manager, the
hyphen (-) in the second field is used to tell autoconfig that
this device does not receive interrupts directly. The device's
prefix is bdd, and, because the fourth field contains a hyphen,
autoconfig assigns the device driver's major number.

The 2 in the fifth field indicates that there are two devices per
controller, and the 1 in the sixth field indicates that the device's
interrupt level is spll.

FILES
/etc/master.d

SEE ALSO
autoconfig(lM).

Default location of master files

Building A/UX Device Drivers, which is available from APDATM.

February, 1990
RevisionC

6

mtab(4) mtab(4)

NAME
mt ab - mounted file system table

DESCRIPTION
mtab resides in directory Jete and contains a record of all file
systems mounted on this machine. Whenever a mount is done,
an entry is made in the mtab file. umount removes entries. The
table is a series of lines with form identical to that of
/ete/fstab.

FILES
/ete/mtab

SEE ALSO
mount (1M), shutdown(IM), umount(1M), fstab(4).

1 February, 1990
RevisionC

NETADDRS (4) NETADDRS(4)

NAME
NETADDRS - network address database

DESCRIPTION
The NETADDRS file resides in / etc and contains information re­
garding the network addresses of each EtherTalk board on the 10-
eal machine. For each board, a single line should be present with
the following items of information:

unit-number internet-address broadcast-address netmask

Items are separated by any number of blanks and/or tab charac­
ters. Lines must not begin with blanks or tabs. netmask should be
blank if subnets are not being supported.

EXAMPLES
The following is a sample NETADDRS file for a machine on two
networks; only the second is subnetted.

o 89.53 89.0
1 91.1.0.48 91.1.0.0 255.255.0.0

FILES
/etc/NETADDRS

SEE ALSO
autoconfig(lM), ifconfig(lM).
AlUX Network System Administration
RFC-917, RFC-922, RFC-944, RFC-950 (DON Network Informa­
tion Center, SRI International)

February, 1990
Revision C

1

netgroup(4) netgroup(4)

NAME
netgroup -list of network groups

DESCRIPTION
netgroup defines network-wide groups, which are used for per­
mission checking when doing remote mounts, remote logins, and
remote shells. Each line of the net group file defines a group
and has the format

groupname member 1 member2 ...

where member 1 is either another group name or a triple of the
form

(hostname, username, domainname)

Any of three fields can be empty, in which case it signifies a wild
card. Thus

universal (,,)

defines a group to which everyone belongs.

Network groups are accessed through the yellow pages. The data­
base actually used by the yellow pages are in the two files

/etc/yp/domainname/netg. dir
/ etc /yp / domainname / netg . pag

These files can be created from /etc/netgroup using
rna kedbm(1M).

FILES
/etc/netgroup
/ etc/yp/ domainname /netg. dir
/ etc/yp/ domainname /netp. pag

SEE ALSO

1

makedbm(IM), ypserv(1M), getnetgrent(3),
exports(4).

February, 1990
Revision C

networks(4N) networks (4N)

NAME
networks -network name database

DESCRIPTION
The networks file contains information regarding the known
networks which comprise the DARPA Internet. For each network
a single line should be present with the following information:

official network name
network number
aliases

Items are separated by any number of blanks and/or tab charac­
ters. A "#" indicates the beginning of a comment; characters up
to the end of the line are not interpreted by routines which search
the file. This file is normally created from the official network
data base maintained at the Network Information Control Center
(NIC), though local changes may be required to bring it up to date
regarding unofficial aliases and/or unknown networks.

Network number may be specified in the conventional "." nota­
tion using the inet networkO routine from the Internet ad­
dress manipulation library, inet(3N}. Network names may con­
tain any printable character other than a field delimiter, newline,
or comment character.

FILES
fete/networks

SEE ALSO
getnetent(3N}.

BUGS
A name server should be used instead of a static file. A binary in­
dexed file format should be available for fast access.

February, 1990 1
RevisionC

passwd(4) passwd(4)

NAME
passwd - password file

SYNOPSIS
/etc/passwd

DESCRIPTION

1

The passwd file contains for each user the following informa­
tion:

name User's login name; contains no uppercase characters
and must not be greater than eight characters long.

password encrypted password as well as aging information

numeric-user-ID
This is the user's ID in the system and it must be
unique.

numeric-group-ID
This is the number of the group that the user belongs
to.

real-name In some versions of UNIX, this field also contains the
user's office, extension, home phone, and so on. For
historical reasons this field is called the GCOS field.

default-working-directory
The directory that the user is positioned in when they
log in - this is known as the 'home' directory.

shell program to use as Shell when the user logs in.

The user's real name field may contain "&", meaning insert the
login name.

The password file is an ASCII file. Each field within each user's
entry is separated from the next by a colon. Each user is separated
from the next by a newline. If the password field is null, no pass­
word is demanded; if the shell field is null, /bin/ sh is used.

This file resides in directory / etc. Because of the encrypted
passwords, it can and does have general read permission and can
be used, for example, to map numeric user ID to names.

The encrypted password consists of 13 characters chosen from a
64-character alphabet (., /, 0-9, A-Z, a-z), except when the
password is null, in which case the encrypted password is also
null. Password aging is effected for a particular user if his en­
crypted password in the password file is followed by a comma and

February, 1990
Revision C

passwd(4) passwd(4)

a non-null string of characters from the above alphabet. (S uch a
string must be introduced in the first instance by the superuser.)

The first character of the age, M say, denotes the maximum
number of weeks for which a password is valid. A user who at­
tempts to login after his password has expired will be forced to
supply a new one. The next character, m say, denotes the
minimum period in weeks which must expire before the password
may be changed. The remaining characters define the week
(counted from the beginning of 1970) when the password was last
changed. (A null string is equivalent to zero.) M and m have nu­
merical values in the range (}-63 that correspond to the 64-
character alphabet shown above (Le., / = 1 week; z = 63 weeks).
If m = M = 0 (derived from the string. or ..) the user will be
forced to change his password the next time he logs in (and the
"age" will disappear from his entry in the password file). If m >
M (signified, e.g., by the string . /) only the superuser will be able
to change the password.

The passwd file can also have line beginning with a plus (+),
which means to incorporate entries from the yellow pages. There
are three styles of + entries: all by itself, + means to insert the en­
tire contents of the yellow pages password file at that point;
+name means to insert the entry (if any) for name from the yellow
pages at that point; +@name means to insert the entries for all
members of the network group name at that point If a + entry has
a nonnull password, directory, GeOS, or shell field, they will
overide what is contained in the yellow pages. The numeric user
ID and group ID fields cannot be overridden.

EXAMPLES
Here is a sample / etc/passwd file:
root:q.mJzTnu8icF.:O:10:God:/:/bin/csh
ja:6k/7KCFRPNVXg:508:10:Jerry Asher:/usr2/ja:/bin/csh
+melissa:
+@documentation:no-login:
+:: :Guest

In this example, there are specific entries for users root and ja,
in case the yellow pages are out of order. The user me 1 iss a will
have her password entry in the yellow pages incorporated without
change; anyone in the netgroup documentation will have their
password field disabled, and anyone else will be able to log in
with their usual password, shell, and home directory, but with a
GeOS field of Gue st.

February, 1990
Revision C

2

passwd(4) passwd(4)

Appropriate precautions must be taken to lock the
/etc/passwd file against simultaneous changes if it is to be
edited with a text editor; vi pw does the necessary locking.

FILES
/etc/passwd

SEE ALSO

3

login(l), passwd(1), vipw(1M), crypt(3), getpwent(3),
group(4).

February, 1990
RevisionC

phones(4) phones(4)

NAME
phone s - remote host telephone number database

DESCRIPTION
The file fete/phones contains the system-wide private tele­
phone numbers for the tip(1C) program. This file is normally
unreadable and may contain privileged information. The format
of the file is a series of lines of the form

system-name [\ t] * phone-number

The system name is one of those defined in the remote(4) file
and the telephone number is constructed from any sequence of
characters terminated only by a comma (,) or the end of the line.
The = and * characters are indicators that inform the auto-call un­
its to pause and wait for a second dial tone (when going through
an exchange). The = is required by the DF02-AC and the * is re­
quired by the BIZCOMP 1030.

Only one telephone number per line is permitted. However, if
more than one line in the file contains the same system name,
tip(IC) will attempt to dial each one in tum, until it establishes a
connection.

EXAMPLES
As distributed, the file fete/phones contains a dummy entry.
This should be replaced by a line (or lines) in the format described
earlier. For example,

plato *5551234,
hegel *5551235,

FILES
fete/phones

SEE ALSO
tip(1C), remote(4).

February, 1990
RevisionC

1

plot(4) plot(4)

NAME
plot - graphics interface

DESCRIPTION

1

Files of this fonnat are produced by routines described in
plot(3X) and are interpreted for various devices by commands
described in tplot(1G). A graphics file is a stream of plotting
instructions. Each instruction consists of an ASCII letter usually
followed by bytes of binary infonnation. The instructions are exe­
cuted in order. A point is designated by four bytes representing
the x and y values; each value is a signed integer. The last desig­
nated point in an 1, m, n, or p instruction becomes the
, 'current point" for the next instruction.

Each of the following descriptions begins with the name of the
corresponding routine in plot(3X).

m move: The next four bytes give a new current point.

n cont: Draw a line from the current point to the point given by
the next four bytes. See tplot(IG).

p point Plot the point given by the next four bytes.

1 line: Draw a line from the point given by the next four bytes
to the point given by the following four bytes.

t label: Place the following ASCII string so that its first charac­
ter falls on the current point. The string is tenninated by a
newline.

e erase: Start another frame of output.

f linemod: Take the following string, up to a newline, as the
style for drawing further lines. The styles are "dotted",
"solid", "longdashed", "shortdashed", and "dotdashed".
Effective only for the -T4014 and -Tver options of
tplot(1G) (TEKTRONIX 4014 terminal and Versatec
plotter).

s space: The next four bytes give the lower left comer of the
plotting area; the following four give the upper right comer.
The plot will be magnified or reduced to fit the device as
closely as possible.

Space settings that exactly fill the plotting area with unity scaling
appear below for devices supported by the filters of tplot(1G).
The upper limit is just outside the plotting area. In every case the
plotting area is taken to be square; points outside may be display-

February, 1990
RevisionC

plot(4) plot(4)

able on devices whose face is not square.

DASI 300 space(O, 0, 4096, 4096);
DASI 300s space(O, 0, 4096, 4096);
DASI 450 space(O, 0, 4096, 4096);
TEKTRONIX 4014 space(O, 0, 3120, 3120);
Versatec plotter space(O, 0, 2048, 2048);

SEB ALSO
tplot(lG), plot(3X), term(4).

WARNINGS
The plotting library plot(3X) and the curses library
curses(3X) both use the names erase () and move () . The
curses versions are macros. If you need both libraries, put the
plot(3X) code in a different source file than the curses(3X)
code, and/or iundef move () and erase () in the plot(3X)
code.

February,1990
Revision C

2

postscript(4) postscript(4)

NAME
postscript - PoSTSCRIPT print file format

DESCRIYfION
The POSTSCRIPT print file format is a programming language with
powerful graphics primitives for describing printed pages. A
growing number of devices which print POSTSCRIPT page descrip­
tions are available. PoSTSCRIPT printer include the Apple Laser­
Writer@, QMS PS-800, 1200, and 2400, Dataproducts 12R-2665
and 2660, and Linotype Linotronic 100 and 300 typesetters. The
TRANSCRIPT package of UNIX software allows UNIX systems ac­
cess to POSTSCRIPT printers.

The complete POSTSCRIPT language is described in the book

POSTSCRIPT Language Reference Manual
by Adobe Systems Incorporated
published by Addison-Wesley Publishing Company
ISBN 0-201-10174-2,322 pages, illustrated
Library of Congress: QA76.73.P67P67 1985 005.13'3
85-15693

The Reference Manual provides a comprehensive presentation of
of the language, its graphics, and its font facilities, including the
precise semantics of every POSTSCRIPT operator. Also covered
are a set of POSTSCRIPT file structuring conventions which are
used by the TRANSCRIPT system components.

SEE ALSO
transcript(lM).

1 February, 1990
RevisionC

printcap(4) printcap(4)

NAMB
printcap - printer-capability database

SYNOPSIS
/etc/printcap

DBSCRIPTION
pr in t ca p is a simplified version of the te rmc ap(4) database
used to describe line printers. The spooling system accesses the
printcap file every time it is used, allowing dynamic addition
and deletion of printers. Each entry in the database is used to
describe one printer. This database may not be substituted, as is
possible for termcap, because it may allow accounting to be
bypassed.

The default printer is normally Ip, though the environment vari­
able PRINTER may be used to override this. Each spooling utility
supports the flag option -P printer to allow explicit naming of a
destination printer.

For a complete discussion on how setup the database for a given
printer see AIUX Local System Administration ..

CAP ABILITIBS
Refer to termcap(4) for a description of the file layout

Name Type Derault

af str

br nmn

ee nmn

ef str

es nmn

df str

fd bool

ff str

fo bool

gf str

hI bool
ie nmn

if str

is nmn

Ie nmn

If str

10 str
Ip str

Is nmn

February, 1990
RevisionC

NULL
none

0
NULL
0
NULL
FALSE

'''i''
FALSE

NULL
FALSE

0
NULL
0
0
"/dev/console"

"lock"
"/dev/printer' ,

0

Description
Name of accounting file.

If Ip is a tty, set the baud rate (ioctl call).

If Ip is a tty, clear control flag bits (termio. h).

ei fpl ot data filter.

Similar to ee, but set the bits.

Tex data filter (DVI fonnat).

If Ip is a tty, use DTR/DCD flow control.

String to send for a fonn feed.

Print a fonn feed when device is opened.

Graph data filter (plot(3X) fonnat).

Print the burst header page last.
Iflp is a tty, clear input flag bits (termio. h) •

Name of text filter that does accounting.

Similar to i e, but set the bits.
If Ip is a tty, clear the local flag bits (termio. h).

Error logging filename.

Name of lock file.
Device name to be opened for output.

Similar to 1 e, but set the bits.

1

printcap(4) printcap(4)

mx num 1000 Maximum file size (in B UFSIZ blocks). Use 0 for unlimited size.

nd str NUlL Next directory for list of queues (unimplemented).

nf str NUlL Ditroff data filter (device independent troff).

oc num 0 If lp is a tty. clear output flag bits (termi o. h).
of str NUlL Name of the output filtering program.

os num 0 Similar to oc but set the bits.

pc num 200 Price per foot or page in hundredths of a cent.

pl num 66 Page length (in lines).

pw num 132 Page width (in characters).

px num 0 Page width in pixels (horizontal).

py num 0 Page length in pixels (vertical).

rf str NUlL Filter for printing FORTRAN-style text files.

rg str NUlL Restricted group. Only members of the group are allowed access.

rm str NUlL Machine name for remote printer.

rp str "lptt Remote printer-name argumenL

rs bool FALSE Restrict remote users to those with local accounts.

rw bool FALSE Open the printer device for reading and writing.
sb bool FALSE Short banner (one line only).

sc bool FALSE Suppress multiple copies.

sd str "lusrlspoo1/lpd" Spool directory.

sf bool FALSE Suppress form feeds.

sh bool FALSE Suppress printing of burst page header.

st str "status" Status filename.

tf str NULL Troff data filter (cat phototypesetter).

tr str NUlL Trailer string to print when queue empties.

vf str NUlL Raster image filter.

If the local line-printer driver supports indentation, the daemon
must understand how to invoke it

FILTERS

2

The Ipd(8) daemon creates a pipeline offilters to process files for
various printer types. The filters selected depend on the flags
passed to Ipr(l). The pipeline set up is:

-p pr I if Regular text + pr(l)
none if Regular text
-c cf cifplot
-d df CVI (tex)
-g gf plot(3)
-n nf ditroff
-f rf Fortran
-t tf troff
-v vf Raster image

February, 1990
RevisionC

printcap(4) printcap(4)

The if filter is invoked with arguments:

if [-c] -wwidth -1 length -iindent -n login -h
host acct-file

The -c flag option is passed only if the -1 flag option (pass con­
trol characters literally) is specified to 1pr. The values of width
and length specify the page width and length (from pw and pl,
respectively) in characters. The -n and -h parameters specify the
login name and the host name of the owner of the job, respective­
ly. The value of acct-file is passed from the af print cap entry.

If no if filter is specified, the of filter is used instead, with the
distinction that of is opened only once, while if is opened for
every individual job. Thus. if is better suited to performing ac­
counting. The of filter only has the width and length flag options.

All other filters are called as follows:

filter -x width -ylength -n login -h host acet-file

where width and length are represented in pixels. specified by the
px and py entries, respectively.

All filters take stdin as the file and stdout as the printer, may
log either to stderr or syslog(3), and must not ignore SIGINT.

ERRORS
Error messages generated by the line printer programs themselves
(the lp* programs) are logged by syslog(3) using the LPR fa­
cility. Messages printed on stderr of one of the filters are sent
to the corresponding If file. The filters may, of course, use sys­
log themselves.

Error messages sent to the console have both a RETURN and a line
feed appended to them, rather than just a line feed.

SEE ALSO
termcap(4), lpc(1m), lpd(1m). pac(lm), lpr(l), lpq(l),
lprm(1).

February, 1990
RevisionC

3

profile(4) profile(4)

NAME
profile - setting up an environment at login time

DESCRIPfION
If your login directory contains a file named. profile, that file
will be executed (via the shell's exee . profile) before your
session begins; . profiles are handy for setting exported en­
vironment variables and terminal modes. If the file
fete/profile exists, it will be executed for every user before
the . profile. The following example is typical.
trap "" 1 2 3
TZ='/bin/cat /etc/TIMEZONE'
PATH=/usr/lib/acct:/bin:/usr/bin
TERM=mac2
MAILCHECK=60
MAILPATH=/usr/mail/$LOGNAME
export LOGNAME TZ TERM PATH
readonly LOGNAME
umask 022
case "$0" in
-sh I -rsh)

-su)

esac

trap : 1 2 3
cat /etc/motd
trap "" 1 2 3
if mail -e
then

echo "you have mail"
fi
if [$LOGNAME != root]
then

news -n
fi

trap 1 2 3
stty susp ,AZ'
stty erase DEL intr ,AC'
stty ixon

FILES

1

fete/profile
$HOME/.profile

February, 1990
RevisionC

profile(4) profile(4)

SEE ALSO
env(l), login(l), mail(l), sh(l), stty(l), su(l), en­
viron(5), term(5).

February, 1990
RevisionC

2

protocols(4N) prot ocol s (4N)

NAME
protocol s - protocol name database

DESCRIPTION
The protocols file contains information regarding the known
protocols used in the DARPA Internet. For each protocol a single
line should be present with the following information:

official protocol name
protocol number
aliases

Items are separated by any number of blanks or tab characters. A * indicates the beginning of a comment; characters up to the end
of the line are not interpreted by routines which search the file.

Protocol names may contain any printable character other than a
field delimiter, newline, or comment character.

FILES
/etc/protocols

SEE ALSO
getprotoent(3N).

BUGS
A name server should be used instead of a static file. A binary in­
dexed file format should be available for fast access.

1 February, 1990
RevisionC

ptab(4) ptab(4)

NAME
ptab - partition table file

SYNOPSIS
/etc/ptab

DESCRIPTION
The pt ab file contains information regarding the known parti­
tions present on the local machine. It is read and/or modified by
the pname(IM) utility. The system administrator can modify it
with a text editor, though this is not recommended.

For each partition a single line should be present with the follow­
ing information:

name Name of the partition - must not be greater than 32
characters long.

type Type of the partition - must not be greater than 32
characters long. If this field is left empty, the default
type Apple_UNIX _ SVR2 will be assumed.

controller This is the controller number of the disk containing
this partition.

disk This is the disk number (for the specified controller)
of the disk containing this partition.

slice This is the slice (partition) number of the partition.

comment All additional information at the end of the line is
treated as a comment.

The partition table file is an ASCII file. Fields within an entry are
separated from eachother by colons. Each entry is separated from
the next by a newline. Entries are separated by newlines. The
ptab file can also have a line beginning with the sharp character
(f), which means that this line should be treated as a comment and
ignored.

EXAMPLES
Here is a sample /etc/ptab file:

inarne:type:controller:disk:slice[:comment]
iroot::O:O:O:assigned by default
iswap::O:O:l:assigned by default
src::O:O:3
users::l:0:0:on extra disk
Macintosh:Apple_HFS:O:O:13:Mac partition

February, 1990
Revision C

1

ptab(4)

FILES
/etc/ptab

SEE ALSO
dp(lM), pname(lM), getptabent(3).

WARNINGS

ptab(4)

Appropriate precautions must be taken to lock the / etc/ptab
file against simultaneous modifications.

BUGS

2

The current revision of the software will not support colons (:) in
partition names or partition types.

February, 1990
RevisionC

rcsfile(4) rcsfile(4)

NAME
rcsfile - fonnatofan RCS file

DESCRIPTION
An RCS file is an ASCII file. Its content is described by the gram­
mar below. The text is free fonnat; that is, spaces, tabs, and new­
lines have no significance except in strings. Strings are enclosed
by @. If a string contains an @, it must be doubled.

The metasyntax uses the following conventions: 1 (bar) separates
alternatives; { and } enclose optional phrases; { and } * enclose
phrases that may be repeated zero or more times; { and } + enclose
phrases that must appear at least once and may be repeated; non­
tenninal symbols are set in italic font, and literals are set in a
constant-width font.

rcstext

admin

delta

desc

deltatext

num

digit

id

letter

February, 1990
RevisionC

"­.. -

"­.. -

"­.. -

"­.. -

"-.. -
"-.. -
"-.. -
"-.. -

admin (delta) * desc {deltatext}*

head {num};
access {id}*;
symbols {id: num}*;
locks (id: num)*;
comment {string} ;

num
date num;
author id;
state lid};
branches {num}*;
next {num};

desc string

num
log string
text string

{digit{.} }+

0111 ••• 19

letter {idchar } *

AIBI ... lzlalbl ... lz

1

rcsfile(4) rcsfile(4)

idchar

special

.. -.. -

.. -.. -

Any printing ASCII character except space,
tab, carriage return, newline, and special.

; I : I , I @

string ::= @ {any ASCII character, with @ doubled} *@

Identifiers are case sensitive. Keywords are in lowercase only.
The sets of keywords and identifiers may overlap.

The delta nodes form a tree. All nodes whose numbers consist of
a single pair (2.3, 2.1, 1.3, and so forth) are on the trunk and are
linked through the next field in order of decreasing numbers. The
head field in the admin node points to the head of that sequence
which contains the highest pair.

All delta nodes whose numbers consist of 2n fields (n~2) (3.1.1.1,
2.1.2.2, and so forth) are linked as follows. All nodes whose first
(2n)-1 number fields are identical are linked through the next field
in order of increasing numbers. For each such sequence, the delta
node whose number is identical to the first 2(n-l) number fields of
the deltas on that sequence is called the branchpoint. The
branches field of a node contains a list of the numbers of the first
nodes of all sequences for which it is a branchpoint This list is
ordered in increasing numbers.

DISCLAIMER
This reference manual entry describes a utility that Apple under­
stands to have been released into the public domain by its author
or authors. Apple has included this public domain utility for your
convenience. Use it at your own discretion. Often the source
code can be obtained if additional requirements are met, such as
the purchase of a site license from an author or institution.

IDENTIFICATION
Author: Walter F. Tichy, Purdue University, West Lafayette, IN
47907.
Copyright © 1982 by Walter F. Tichy.

SEE ALSO

2

ci(I), co(1), ident(1), rcs(I), rcsdiff(1), rcsintro(1),
rcsmerge(1), rlog(I}, sccstorcs(IM}.

February, 1990
RevisionC

reloc(4) reloc(4)

NAME
reloc - relocation information for a common object file

SYNOPSIS
finclude <reloc.h>

DESCRIPTION
Object files have one relocation entry for each relocatable refer­
ence in the text or data. If relocation information is present, it will
be in the following format
struct reloc
{

long

long
short

r vaddr

r_symndx
r_type

/* (virtual) address of
reference */

/* index into symbol table */
/* relocation type */

/*
* All generics
* reloc already performed to symbol in the
* same section
*/

#define R ABS 0

/*
* DEC Processors VAX 11/780 and VAX 11/750

*
*/

#define R RELBYTE 017
#define R RELWORD 020
#define R-RELLONG 021
#define R PCRBYTE 022
#define R-PCRWORD 023
#define R PCRLONG 024

/*
* Motorola 68000 uses R RELBYTE, R_RELWORD, R_RELLONG,
* R PCRBYTE, and R PCRWORD as for DEC machines above.
*/ -

As the link editor reads each input section and performs reloca­
tion, the relocation entries are read. They direct how references
found within the input section are treated.

R ABS

February, 1990
RevisionC

The reference is absolute, and no relocation is
necessary. The entry will be ignored.

1

reloc(4) reloc(4)

R RELBYTE

R RELWORD

R RELLONG

R PCRBYTE

R PCRWORD

R PCRLONG

A direct 8-bit reference to a symbol's virtual
address.

A direct 16-bit reference to a symbol's virtual
address.

A direct 32-bit reference to a symbol's virtual
address.

A "PC-relative" 8-bit reference to a symbol's
virtual address.

A "PC-relative" 16-bit reference to a symbol's
virtual address.

A "PC-relative" 32-bit reference to a symbol's
virtual address.

On the VAX processors, relocation of a symbol index of -I indi­
cates that the relative difference between the current segment's
start address and the program's load address is added to the relo­
eatable address.

Other relocation types will be defined as they are needed.

Relocation entries are generated automatically by the assembler
and automatically utilized by the link editor. A link editor option
exists for removing the relocation entries from an object file.

SEE ALSO
Id(1), strip(1), a. out(4), syms(4).

2 February, 1990
RevisionC

remote(4) remote(4)

NAME
remote - remote host description file

SYNOPSIS
fete/remote

DESCRIPTION
The systems known by tip(lC) and their attributes are stored in
an ASCII file which is structured somewhat like the termeap(4)
file. Each line in the file provides a description for a single sys­
tem. Fields are separated by a colon (:). Lines ending in a \
character with a newline immediately following are continued on
the next line.

The first entry is the name(s) of the host system. If there is more
than one name for a system, the names are separated by vertical
bars. Following the name of the system are the fields of the
description. A field name followed by an = sign indicates that a
string value follows. A field name followed by a :jj: sign indicates
a following numeric value.

Entries named tip* and eu* are used as default entries by tip,
and the eu interface to tip, as follows: When tip is invoked
with only a telephone number, it looks for an entry of the form
tip300, where 300 is the baud rate with which the connection is
to be made; when the eu interface is used, entries of the form
eu300 are used

CAPABILmES
Capabilities are either strings (str), numbers (num), or boolean
flags (bool). A string capability is specified by capability=value;
for example, dv=/ dev /harris. A numeric capability is
specified by capability#value; for example, xa:jj: 99. A boolean
capability is specified by simply listing the capability.

at (str) Auto call unit type.

br (num) The baud used in establishing a connection to the
remote host. This is a decimal number and the default is
300 baud

em (str) An initial connection message to be sent to the re­
mote host. For example, if a host is reached through a
port selector, this might be set to the appropriate se­
quence required to switch to the host

February,1990 1
RevisionC

remote(4) remote (4)

cu (str) Call unit if making a telephone call. Default is the
same as the dv field.

di (str) Disconnect message sent to the host when a discon­
nect is requested by the user.

du (boof) This host is on a dialup line.

dv (str) Device(s) to open to establish a connection. If this
file refers to a terminal line, tip(lC) attempts to perform
an exclusive open on the device to insure that only one
user at a time has access to the port.

el (str) Characters marking an end-of-line. The default is
NULL. The character - escapes are only recognized by
tip after one of the characters in el, or after a return.

f s (str) Frame size for transfers. The default frame size is
equal to BUFSIZ.

hd (boof) The host uses half-duplex communication; local
echo should be performed.

ie (str) Input end-of-file marks. The default is NULL.

mt (str) Modem type (for use by tip). If mt is specified,
the at field must appear as at="generic". tip will
then look in /etc/dialup for the appropriate modem
escape sequences and call the generic dialup routine. If
mt is not specified, tip will assume that it was compiled
with the appropriate modem interface module

$(cc) -0 tip -D${MODEM}

oe (str) Output end-of-file string. The default is NULL.
When tip is transferring a file, this string is sent at end­
of-file.

pa (str) The type of parity to use when sending data to the
host. This may be one of even, odd, none, zero (al­
ways set bit 8 to zero), or one (always set bit 8 to I).
The default is even parity.

pn (str) Telephone number(s) for this host. If the telephone
number field contains an @ sign, tip searches the
/ etc/phones file for a list of telephone numbers (see
phones(4»).

t c (str) Indicates that the list of capabilities is continued in
the named description. This is used primarily to share

2 February, 1990
RevisionC

remote(4) remote(4)

common capability information.

Here is a short example showing the use of the capability con­
tinuation feature
UNIX-1200:\
:dv=/dev/cuaO:el=~DftU~C~S~Q~O@:du:at=ventel:ie=~$%:\

:oe=~D:brn200:

arpavaxlax:\
:pn=7654321%:tc=UNIX-1200

FILES
fete/remote

SEE ALSO
tip(lC), phones(4).

February, 1990
RevisionC

3

resolver(4) resolver(4)

NAME
resolver - resolver configuration file

SYNOPSIS
/etc/resolv.conf

DESCRIPTION
The resolver configuration file contains information that is
read by the resolver routines the first time they are invoked by a
process. The file is designed to be human readable and contains a
list of name-value pairs that provide various types of resolver in­
formation.

On a normally configured system this file should not be necessary.
The only name server to be queried will be on the local machine
and the domain name is retrieved from the system.

The different configuration options are:

nameserver
followed by the Internet address (in dot notation) of a name
server that the resolver should query. At least one name
server should be listed. Up to MAXNS (currently 3) name
servers may be listed, in that case the resolver library queries
tries them in the order listed. If no nameserver entries are
present, the default is to use the name server on the local
machine. (The algorithm used is to try a name server, and if
the query times out, try the next, until out of name servers,
then repeat trying all the name servers until a maximum
number of retries are made).

domain
followed by a domain name, that is the default domain to ap­
pend to names that do not have a dot in them. If no domain
entries are present, the domain returned by
gethostname(2N) is used (everything after the first" .").
Finally, if the host name does not contain a domain part, the
root domain is assumed.

The name value pair must appear on a single line, and the key­
word (e.g. nameserver) must start the line. The value follows the
keyword, separated by white space.

FILES
/etc/resolv.conf

I February, 1990
RevisionC

resolver(4) resolver(4)

SEE ALSO
named(lM), gethostbyname(3N), resol ver(3N).

February, 1990
RevisionC

2

rhosts(4N) rhosts(4N)

NAME
rhosts - trusted hosts file format

DESCRIPTION
The login directory for each user can contain a . rhosts file that
enumerates remote hosts having equivalent account names. (The
hosts names must be the standard names as described in
remsh{lN».

Each line in this file should contain a rhost and a username
separated by a space, allowing additional cases where logins
without passwords are to be permitted.

When you rlogin as the same user on an equivalent host, you
don't need to give a password.

To avoid security problems, the . rhosts file must be owned by
either the remote user or root. Note that, for security reasons, root
is an exception to the above; a superuser on an equivalent host
must still supply the password to remotely login as root unless the
root account has its own private equivalence list in a file
. rhosts in the root directory. Note that a • rhosts file for the
root account is not recommended where secure systems are re­
quired.

Your remote terminal type is the same as your local terminal type
(as given in your environment TERM variable). See rlogin{lN)
for other details concerning the line discipline and escape charac­
ters.

FILES
/ home-directory / . rhosts

SEE ALSO
remsh(IN), rlogin(IN).

1 February, 1990
RevisionC

rmtab(4) rmtab(4)

NAME
rmt ab - remotely mounted file system table

DESCRIPTION
rmtab resides in directory / etc and contains a record of all
clients that have done remote mounts of file systems from this
machine. Whenever a remote mount is done, an entry is made in
the rmt ab file of the machine serving up that file system.
umount removes entries. umount -a broadcasts to all servers,
and informs them that they should remove all entries from rmtab
created by the sender of the broadcast message. By placing a
umount -a command in / etc/ sysini trc, rmtab tables
can be purged of entries made by a crashed host, which upon re­
booting did not remount the same file systems it had before. The
table is a series of lines of the form

hostname :directory

This table is used only to preserve information between crashes,
and is read only by mountd{IM) when it starts up. mountd
keeps an in-core table, which it uses to handle requests from pro­
grams like showmount(1M) and shutdown{IM}.

FILES
/etc/rmtab

SEE ALSO
mount{IM), mountd(1M), showmount(1M),
shutdown(1M), umount{IM).

BUGS
Although the rmtab table is close to the truth, it is not always
100% accurate.

February, 1990
Revision C

1

rpc(4) rpc(4)

NAME
rpc - RPC program number database

SYNOPSIS
/etc/rpc

DESCRIPTION
The rpc file contains user-readable names that can be used in
place of RPC program numbers. Each line has the following
items of information:

server-name program-number [alias ... J

Items are separated by any number of blanks or tab characters.
Use * to indicate the beginning of a comment; characters up to the
end of the line are not interpreted by routines which search the
file.

EXAMPLES

1

rpc 1.1 86/07/07

portmapper
rstatd
rusersd
nfs
ypserv
mountd
ypbind
walld
yppasswdd
etherstatd
rquotad
sprayd
3270_mapper
rje mapper
sel"E;ction svc
database svc
rexd
alis
sched
llockmgr
nlockmgr
x25.inr
statmon
status

100000
100001
100002
100003
100004
100005
100007
100008
100009
100010
100011
100012
100013
100014
100015
100016
100017
100018
100019
100020
100021
100022
100023
100024

portmap sunrpc
rstat rup perfmeter
rusers
nfsprog
ypprog
mount showmount

rwall shutdown
yppasswd
etherstat
rquotaprog quota rquota
spray

selnsvc

rex

February, 1990
RevisionC

rpc(4)

FILES
/etc/rpc

SEE ALSO
rpc(3N).

February, 1990
RevisionC

rpc(4)

2

scesfile(4) seesfile(4)

NAME
sees file -fonnat of an sees file

DESCRIPTION

1

An sees file is an ASCII file. It consists of six logical parts: the
checksum, the delta table (contains information about each delta),
user names (contains login names and/or numerical group ID's of
users who may add deltas), flags (contains definitions of internal
keywords), comments (contains arbitrary descriptive information
about the file), and the body (contains the actual text lines inter­
mixed with control lines).

Throughout an sees file there are lines which begin with the
ASeII SOH (start of heading) character (octal (01). This charac­
ter is hereafter referred to as the control character and will be
represented graphically as @. Any line described below which is
not depicted as beginning with the control character is prevented
from beginning with the control character.

Entries of the form DDDDD represent a five-digit string (a number
between 00000 and 99999).

Each logical part of an secs file is described in detail below.

checksum
The checksum is the first line of an sees file. The form of
the line is:

@hDDDDD

The value of the checksum is the sum of all characters, ex­
cept those of the first line. The @h provides a magic number
of (octal) 06400l.

delta table
The delta table consists of a variable number of entries of the
form:

@s DDDDD/DDDDD/DDDDD
@d <type> <sees ID> yrlmolda hr:mi:se <pgmr> DDDDD DDDDD
@iDDDDD •••
@xDDDDD •••
@gDDDDD •.•
@m <MR number>

February, 1990
RevisionC

sccsfile(4) sccsfile(4)

@c <comments> .••

@e

The first line (@s) contains the number of lines
inserted/deleted/unchanged, respectively. The second line
(@d) contains the type of the delta (currently, normal: D,
and removed: R), the sees ID of the delta, the date and
time of creation of the delta, the login name corresponding to
the real user ID at the time the delta was created, and the
serial numbers of the delta and its predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of
deltas included, excluded, and ignored, respectively. These
lines are optional.

The @m lines (optional) each contain one MR number asso­
ciated with the delta; the @c lines contain comments associ­
ated with the delta.

The @e line ends the delta table entry.

user names

flags

The list of login names and/or numeric group ID's of users
who may add deltas to the file, separated by newlines. The
lines containing these login names and/or numeric group ID' s
are surrounded by the bracketing lines @u and @U. An
empty list allows anyone to make a delta. Any line starting
with a "!" prohibits the succeeding group or user from
making deltas.

Keywords used internally (see admin(1) for more informa­
tion on their use). Each flag line takes the form:

@f <flag> <optional text>

The following flags are defined:
@ f t <type of program>
@ f v <program name>

February, 1990
RevisionC

2

sccsfile(4) sccsfile(4)

3

@f i <keyword string>
@f b
@f m <module name>
@f f <floor>
@f c <ceiling>
@f d <default-SID>
@f n
@f j
@f 1 <lock-releases>
@f q <user defined>
@f z <reserved for use in interfaces>

The t flag defines the replacement for the % Y % identification
keyword The v flag controls prompting for MR numbers in
addition to comments; if the optional text is present it defines
an MR number validity checking program. The i flag con­
trols the warning/error aspect of the "No id keywords" mes­
sage. When the i flag is not present, this message is only a
warning; when the i flag is present, this message will cause a
"fatal" error (the file will not be gotten, or the delta will not
be made). When the b flag is present the -b keyletter may
be used on the get command to cause a branch in the delta
tree. The m flag defines the first choice for the replacement
text of the %M% identification keyword The f flag defines
the "floor" release; the release below which no deltas may
be added. The c flag defines the "ceiling" release; the
release above which no deltas may be added. The d flag
defines the default SID to be used when none is specified on
a get command. The n flag causes delta to insert a
"null" delta (a delta that applies no changes) in those
releases that are skipped when a delta is made in a new
release (e.g., when delta 5.1 is made after delta 2.7, releases 3
and 4 are skipped). The absence of the n flag causes skipped
releases to be completely empty. The j flag causes get to
allow concurrent edits of the same base SID. The 1 flag
defines a list of releases that are locked against editing
(get(1) with the -e keyletter). The q flag defines the re­
placement for the %Q% identification keyword. The z flag is
used in certain specialized interface programs.

comments
Arbitrary text is surrounded by the bracketing lines @ t and
@ T. The comments section typically will contain a descrip-

February, 1990
RevisionC

sccsfile(4) sccsfile(4)

body

tion of the file's purpose.

The body consists of text lines and control lines. Text lines
do not begin with the control character, control lines do.
There are three kinds of control lines: insert, delete, and end,
represented by:

@I DDDDD
@D DDDDD
@E DDDDD

respectively. The digit string is the serial number
corresponding to the delta for the control line.

SEE ALSO
admin(I), cdc(I), comb(I), del ta(1), get(I), help(l),
rmdel(1), sact(1), sccs(1), sccsdiff(1), unget(l),
val(I), what(I),
"sees Reference" in AJUX Programming Languages and Tools,
Volume 2.

February, 1990
Revision C

4

scnhdr(4) scnhdr(4)

NAME
s cnhdr - section header for a common object file

SYNOPSIS
finclude <scnhdr.h>

DESCRIPTION
Every common object file has a table of section headers to specify
the layout of the data within the file. Each section within an ob­
ject file has its own header. The C structure appears below.
struct scnhdr
{

char
long
long
long
long

long

long

s_name[SYMNMLEN]; 1* section name *1
s paddr; 1* physical address */
s=vaddr; 1* virtual address *1
s_size; 1* section size *1
s_scnptr; 1* file ptr to

raw data *1
s_relptr; 1* file ptr to

relocation */
s_lnnoptr; 1* file ptr to

line numbers *1
unsigned short s_nreloc;
unsigned short s_nlnno;

1* * reloc entries *1
1* * line number

entries *1
long 1* flags *1

File pointers are byte offsets into the file; they can be used as the
offset in a call to f seek(3S). If a section is initialized, the file
contains the actual bytes. An uninitialized section is somewhat
different. It has a size, symbols defined in it, and symbols that
refer to it, but it can have no relocation entries, line numbers, or
data. Consequently, an uninitialized section has no raw data in the
object file, and the values for s scnptr, s relptr,
s_lnnoptr, s_nreloc, and s_nlnno are zero. -

SEE ALSO
Id(I), fseek(3S), a. out(4).

1 February, 1990
RevisionC

servers(4) servers(4)

NAME
servers - Internet server database

DESCRIPTION
The servers file contains the list of servers that inetd(IM)
operates. For each server a single line should be present with the
following information:

name of server
protocol
server location

If the server is RPC-based, then the name field should be rpe, and
following the server location are two additional fields, one with
the RPC program number, the second with either a version
number or a range of version numbers.

Items are separated by any number of blanks or tab characters. A
.f indicates the beginning of a comment; characters up to the end
of the line are not interpreted by routines which search the file.

The name of the server should be the official service name as con­
tained in serviees(4N). The protocol entry is either udp or
t ep. The server location is the full pathname of the server pro­
gram.

EXAMPLES
tcp tcp
telnet tcp
shell tcp
login tcp
exec tcp
tcp udp
syslog udp
comsat udp
talk udp
time tcp
rpc udp
rpc udp
rpc udp
rpc udp

FILES
fete/servers

February, 1990
RevisionC

/usr/etc/in.tcpd
/usr/etc/in.telnetd
/etc/in.rshd
/etc/in.rlogind
/usr/etc/in.rexecd
/usr/etc/in.ttcpd
/usr/etc/in.syslog
/usr/etc/in.comsat
/usr/etc/in.talkd
/usr/etc/in.timed
/usr/etc/rpc.rstatd 100001 1-2
/usr/etc/rpc.rusersd 100002 1
/usr/etc/rpc.rwalld 100008 1
/usr/etc/rpc.mountd 100005 1

1

servers(4) servers(4)

SEE ALSO
inetd(IM), services (4N) •

BUGS
Because of a limitation on the number of open files, this file must
contain fewer than 27 lines.

2 February, 1990
RevisionC

services(4N) services(4N)

NAME
services - service name database

DESCRIPTION
The services file contains information regarding the known
services available in the DARPA Internet. For each service a sin­
gle line should be present with the following information:

official service name
port number
protocol name
aliases

Items are separated by any number of blanks or tab characters.
The port number and protocol name are considered a single item;
a / is used to separate the port and protocol (for example,
512/ t cp). A .. indicates the beginning of a comment; characters
up to the end of the line are not interpreted by routines which
search the file.

Service names may contain any printable character other than a
field delimiter, newline, or comment character.

FILES
/etc/services

SEE ALSO
getservent(3N).

BUGS
A name server should be used instead of a static file. A binary in­
dexed file format should be available for fast access.

February, 1990
RevisionC

1

slip. config(4) slip. config(4)

NAME
slip. config - list of slip interfaces supported by a slip
server

SYNOPSIS
/etc/slip.config

DESCRIPTION
The slip. config file must be configured on the slip server
to establish slip connections between the slip client and slip
host. slip(lM) is a program that assigns a tty line to a network
interface for a point-to-point TCP/IP link.

Only the system administrator of the slip server can modify the
/ etc/ slip. config file, which contains the slip server host
address for each of the s lip interfaces supported by the s lip
server. mkslipuser{lM) must then be executed to create the
machine-readable slip. user file from the slip. config data
file. A sample slip. config configuration file is

f slip.config configuration file
f Each line configures a serial line
f
128.120.254.3
128.120.254.3

In this example, the host has two serial interfaces available for
slip use.

SEE ALSO

1

netstat{l), dslipuser{lM), ifconfig(IM),
mkslipuser{lM), slip(IM) slip. hosts(4),
slip. user(4).

February, 1990
Revision C

slip. hosts(4) slip.hosts(4)

NAME
slip. hosts - map user names to host addresses of slip
client

SYNOPSIS
/ete/slip.hosts

DESCRIPTION
The slip. hosts file must be configured on the slip server to
establish slip connections between the slip client and the
slip host slip(lM) is a program that assigns a tty line to a
network interface for a point-to-point TCP/IP link.

Only the system administrator of the slip host can modify the
/ ete/ slip. hosts file, which contains the Internet address
and user name for each user with a s lip connection to the s lip
server. A sample slip. hosts file is

t dialup slip. hosts table
t maps usercodes to host addresses
t
128.120.253.1 joe
128.120.253.2 chris
128.120.253.3 mike
128.120.253.4 linda

The Internet address in the first field is to be used when the user
specified in the second field invokes slip.

SEE ALSO
netstat(I), dslipuser(1M), ifeonfig(lM),
mkslipuser(IM), slip(IM), slip. eonfig(4),
slip. user(4).

February, 1990
Revision C

1

slip. user(4) slip.user(4)

NAME
slip. user - user file created by mkslipuser

SYNOPSIS
/ete/slip.user

DESCRIPTION
The s lip. use r file must be configured on the s lip server to
establish s lip connections between the s lip client and s lip
host. slip(lM) is a program that assigns a tty line to a network
interface for a point-to-point TCP/IP link.

The slip user file / ete/ slip. user is not human readable
and is generated by the command mkslipuser(lM). You can
use the command dslipuser(lM) to display the contents of the
user file, which reports the number of slip users on the system
and the number of available slip interfaces.

SEE ALSO

1

netstat(l), dslipuser(lM), ifeonfig(lM),
mkslipuser(1M), slip(lM), slip. eonfig(4),
slip. hosts(4).

February, 1990
RevisionC

svfs(4) svfs(4)

NAME
svf s - fonnat of a System V system volume

SYNOPSIS
finclude <sys/types.h>
finclude <sys/param.h>
finclude <svfs/filsys.h>

DESCRIPTION
Every SVFS file-system storage volume has a common format for
certain vital information. Each volume is divided into a certain
number of 512-byte sectors. Sector 0 contains the disk partition
map. See dpme(4) for further information on its structure.

Sector 1 is the superblock. The fonnat of a superblock is
/*
* Structure of the superblock
*/

struct filsys
{

ushort s_isize;

daddr t s_fsize;

short s_nfree;

daddr t s_free[NICFREE);
short- s_ninode;

/* size in blocks
of i-list * /

/* size in blocks of
entire volume */

1* number of addresses
in s_free */

/* free block list */
/* number of inodes

ino t
char

in s inode */
s_inode[NICINOD); /* free-inode list */
s flock; /* lock during free

char

char

char

time t

short s dinfo[4);
daddr t s=tfree;
ino t
char
char
long

long
ino t

February, 1990
Revision C

s tinode;
s=fname[6)
s fpack[6)
s=fill [13]

s_state;
s_lasti;

list manipulation */
/* lock during i-list

manipulation */
/* superblock modified

flag *1
1* mounted read-only

flag * /
/* last superblock

update */
/* device information */
/* total free blocks */
/*
/*
/*
/*

total free inodes */
file-system name */
file-system pack name */
ADJUST size of
filsys to 512 */

/* file-system state */
/* start place for

1

svfs(4) svfs(4)

2

ina t s_nbehind;

} ;

idefine
idefine
#define
idefine

FsMAGIC
Fslb
Fs2b
Fs4b

Oxfd187e20
1
2
4

circular search */
/* est i free inodes

before 5 lasti */
/* magic number to

indicate new filesys */
/* type of new filesys */

/* 5 magic number */
/* 512-byte block */
/* l024-byte block */
/* 2048-byte block */

s_type indicates the file-system type. Currently, two types of
file systems are supported: the original 512-byte block system and
the new improved 1024-byte block system. s magic is used to
distinguish the original 512-byte block file systems from the
newer file systems. If this field is not equal to the magic number,
FsMAGIC, the type is assumed to be Fs1b; otherwise, the
s type field is used. In the following description, a block is
then determined by the type. For the original 512-byte block file
system, a block is 512 bytes. For the 1024-byte block file system,
a block is 1024 bytes or two sectors. The operating system takes
care of all conversions from logical block numbers to physical
sector numbers.

s isize is the address of the first data block after the inode list.
The i-list starts just after the superblock, namely in block 2; thus
the i-list is s_isize-2 blocks long. s_fsize is the first block
not potentially available for allocation to a file. These numbers
are used by the system to check for bad block numbers. If an
"impossible" block number is allocated from the free list or is
freed, a diagnostic is written on the online console. Moreover, the
free array is cleared, to prevent further allocation from a presum­
ably corrupted free list

The free list for each volume is maintained as follows. The
s _free array contains, in s _ free [1] ...
s free [s nf ree -1], up to 49 numbers of free blocks.
s - free [OTis the block number of the head of a chain of blocks
constituting the free list. The first long in each free-chain block is
the number (up to 50) of free-block numbers listed in the next 50
longs of this chain member. The first of these 50 blocks is the link
to the next member of the chain.

February, 1990
RevisionC

svfs(4) svfs(4)

To allocate a bloc~ decrement s nfree, and the new block is
s free [s nf ree]. If the new block number is 0, there are no
biOcks left, "i> give an error. If s nfree became 0, read in the
block named by the new block number, replace s nfree by its
first word, and copy the block numbers in the next 50 longs into
the s _free array.

To free a block, check if s_nfree is 50. If so, copy s_nfree
and the s free array into it, write it out, and set s nfree to O.
In any event, set s free [s nf ree] to the numbCf of the freed
block and increment s nfree.

s _ t free is the total free blocks available in the file system.

s ninode is the number of free inumbers in the s inode ar­
my. To allocate an inode, if s ninode is greater than 0, decre­
ment it and return s inode [s- ninode]. To allocate an inode,
if s _ ninode is O,read the i-list, place the numbers of all free
inodes (up to 100) into the s inode array, and then try again.
To free an inode, provided s -ninode is less than 100, place its
number into s inode [s ninode] and increment s ninode.
If s ninode-is already 100, do not bother to enter the freed
inode into any table. This list of inodes is only to speed up the al­
location process. The information as to whether the inode is really
free or not is maintained in the inode itself.

s_tinode is the total free inodes available in the file system.

s flock and s ilock are flags maintained in the memory
cOPy of the file system while it is mounted, and their values on
disk are immaterial. The value of s fmod on disk is likewise im­
material because it is used as a flag to indicate that the superblock
has changed and should be copied to the disk during the next
periodic update of file-system information.

s _ ronly is a read-only flag to indicate write-protection.

s _time is the last time the superblock of the file system was
changed and is the number of seconds that have elapsed since
00:00 January 1, 1970 (GMn. During a reboot, the s time of
the superblock for the root file system is used to set the system's
idea of the time.

s fname is the name of the file system, and s fpack is the
name of the pack. -

February, 1990
RevisionC

3

svfs(4) svfs(4)

Inumbers begin at 1, and the storage for inodes begins in block 2.
Also, inodes are 64 bytes long. Inode 1 is reserved for future use.
Inode 2 is reserved for the root directory of the file system, but no
other inumber has a built-in meaning. Each inode represents one
file. For the format of an inode and its flags, see inode(4).

FILES
/usr/include/svfs/filsys.h
/usr/include/sys/stat.h

SEE ALSO

4

fsck(lM), fsdb(lM), mkfs(lM), dpme(4), ufs(4),
inode(4).

February, 1990
RevisionC

syms(4) syms(4)

NAME
syms - common object file symbol table fonnat

SYNOPSIS
tinclude <syms.h>

DESCRIPTION
Common object files contain infonnation to support symbolic
software testing (see sdb(1». Line number entries, linenum(4),
and extensive symbolic information pennit testing at the C source
level. Every object file's symbol table is organized as shown.

Filename 1.
Function 1.

Local symbols for function 1.
Function 2

Local symbols for function 2.

Static extems for file 1.

Filename 2.
Function 1.

Local symbols for function 1.
Function 2.

Local symbols for function 2.

Static extems for file 2.

Defined global symbols.
Undefined global symbols.

The entry for a symbol is a fixed-length structure. The members
of the structure hold the name (null padded), its value, and other
information. The C structure is
#define
#define
#define

struct
{

union

char

February, 1990
Revision C

SYMNMLEN 8
FILNMLEN 14
DIMNUM 4

syment

/* ways to get a
symbol name */

_n_name[SYMNMLEN] /* names less than
8 chars */

1

syms(4) syms(4)

2

struct 1* names 8 char
or more *1

long n zeroes; 1* -- OL when in
string table *1

long _n_offset; 1* location of name in
table *1

_n_nptr[2]; 1 allows overlaying *1
_n;

long n_value ; 1* value of symbol *1
1* section number *1 short n_scnum ;

unsigned short n type ;
char n-sclass

1* type and derived type *1
I*storage class *1

char
} ;
#define
#define
#define
#define

n numaux 1* number of aux entries *1

n name
n zeroes
n offset
n_nptr

n. n name
n. n n. n zeroes - - - --
n. n n. n offset

=n.=n=nptr[l]

Meaningful values and explanations are given in both syms. h
and Common Object File Format. Anyone who needs to interpret
the entries should seek more infonnation in these sources. Some
symbols require more information than a single entry; they are fol­
lowed by auxiliary entries that are the same size as a symbol en­
try. The format is as follows.
union auxent

struct
{

long
union

struct
{

unsigned short x_lnno;
unsigned short x_size;

} x_lnsz;
long x_fsize;

} x_misc;
union

struct
{

struct

long x lnnoptr;
long x=endndx;
x_fcn;

February, 1990
RevisionC

syms(4)

struct
{

struct
{

struct
{

} ;

syms(4)

unsigned short x_dimen[DIMNUM);
x ary;
x-fcnary;

unsigned short x_tvndx;
x_sym;

char x_fname [FILNMLEN] ;
x_file;

long x_scnlen;
unsigned short x nreloc;
unsigned short x=nlinno;
x_scn;

unsigned short x tvlen;
unsigned short x=tvran[2);
x_tv;

Indexes of symbol table entries begin at zero.

SEE ALSO
sdb(1), a. out(4), linenum(4).
"COFF Reference" in A/UX Programming Languages and Tools.
Volume 2.

WARNINGS
In machines in which a long are equivalent to an int (M68000
and VAX), the long is converted to int in the compiler to
minimize the complexity of the compiler code generator. Thus,
the information about which symbols are declared as long and
which as int cannot be determined from the symbol table.

February, 1990
Revision C

3

tar(4) tar(4)

NAME
tar - fonnat of ta r header

DESCRIJYfION
tar saves and restores files on magnetic tape or floppy disks.
The tar header format is as follows:

* define TBLOCK 512 * define NBLOCK 40 * define NAMSIZ 100
union hblock {

char dummy[TBLOCK];
struct header {

char name[NAMESIZ];
char mode[8];
char uid[8];
char gid[8];
char size[12];
char mtime [12] ;
char chksum[8];
char linkflag;
char linkname[NAMESIZ];

dbuf;
dblock, tbuf[NBLOCK];

SEE ALSO
tar(l).

1 February, 1990
RevisionC

term(4) term(4)

NAME
term - format of compiled term file

SYNOPSIS
term

DESCRIPTION
Compiled terminfo descriptions are placed under the directory
/usr/lib/terminfo. In order to avoid a linear search of a
huge A/UX system directory, a two-level scheme is used:
/usr/lib/terminfo/c/name where name is the name of the
terminal, and c is the first character of name. Thus, act4 can be
found in the file /usr/lib/terminfo/a/act4. Synonyms
for the same terminal are implemented by multiple links to the
same compiled file.

The fonnat has been chosen so that it will be the same on all
hardware. An 8 or more bit byte is assumed, but no assumptions
about byte ordering or sign extension are made.

The compiled file is created with the tic(1M) program, and read
by the routine setupterm. Both of these pieces of software are
part of curses(3X). The file is divided into six parts: the
header, tenninal names, boolean flags, numbers, strings, and string
table.

The header section begins the file. This section contains six short
integers in the fonnat described below. These integers are: (1)
the magic number (octal 0432); (2) the size, in bytes, of the names
section; (3) the number of bytes in the boolean section; (4) the
number of short integers in the numbers section; (5) the number of
offsets (short integers) in the strings section; (6) the size, in bytes,
of the string table.

Short integers are stored in two 8-bit bytes. The first byte contains
the least significant 8 bits of the value, and the second byte con­
tains the most significant 8 bits. (Thus, the value represented is
256*second+first.) The value -1 is represented by 0377, 0377,
other negative value are illegal. The -1 generally means that a ca­
pability is missing from this terminal. Computers where this does
not correspond to the hardware read the integers as two bytes and
compute the result.

The terminal names section comes next. It contains the first line
of the terminfo description, listing the various names for the
terminal, separated by the "I" character. The section is terminat-

February, 1990
Revision C

1

term(4) term(4)

2

ed with an ASCII NUL character.

The boolean flags have one byte for each flag. This byte is either
o or 1 as the flag is present or absent. The capabilities are in the
same order as the file <term. h>.

Between the boolean section and the number section, a null byte
will be inserted, if necessary, to ensure that the number section be­
gins on an even byte. All short integers are aligned on a short
word boundary.

The numbers section is similar to the flags section. Each capabili­
ty takes up two bytes, and is stored as a short integer. If the value
represented is -1, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a
short integer, in the format above. A value of -1 means the capa­
bility is missing. Otherwise, the value is taken as an offset from
the beginning of the string table. Special characters in CONTROL-x
or \c notation are stored in their interpreted form, not the printing
representation. Padding information $<nn> and parameter infor­
mation %x are stored intact in uninterpreted form.

The final section is the string table. It contains all the values of
string capabilities referenced in the string section. Each string is
null terminated.

Note that it is possible for setupterm to expect a different set of
capabilities than are actually present in the file. Either the data­
base may have been updated since setupterm has been recom­
piled (resulting in extra unrecognized entries in the file) or the
program may have been recompiled more recently than the data­
base was updated (resulting in missing entries). The routine
set upterm must be prepared for both possibilities - this is why
the numbers and sizes are included. Also, new capabilities must
always be added at the end of the lists of boolean, number, and
string capabilities.

As an example, an octal dump of the description for the Micro­
term ACT 4 is included:

microtermlact41microterm act iv,
cr=AM, cudl=AJ, ind=AJ, bel=AG, am, cubl=AH,

ed=A_, el=AA, clear=AL, cup=AT%pl%c%p2%c,

cols#80, lines#24, cufl=AX, cuul=AZ, home=A],

February, 1990
Revision C

term(4)

000 032 001 \0 025 \0 \b \0 212 \0 \0 m i

020 0 t e a c t m i

040 t e r m a c t v \0 \0 001

060 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

100 \0 \0 p \0 377 377 030 \0 377 377 377 377 377 377

120 377 377 377 377 \0 \0 002 \0 377 377 377 377 004 \0

140 \b \0 377 377 377 377 \n \0 026 \0 030 \0 377 377

160 377 377 377 377 034 \0 377 377 036 \0 377 377 377 377

200 377 377 377 377 377 377 377 377 377 377 377 377 377 377

520 377 377 377 377 \0 377 377 377 377 377 377 377 377

540 377 377 377 377 377 377 007 \0 \r \0 \f \0 036 \0

560 024 P c P % c \0 \n \0

600 \b \0 030 \0 032 \0 \n \0

Some limitations: total compiled entries cannot
bytes. The name field cannot exceed 128 bytes.

FILES
/usr/lib/terminfo/*/*

compiled terminal capability data base

SEE ALSO
curses(3X), terminfo(4).

February, 1990
Revision C

term(4)

c r

r 0

\0 \0

\0 \0

377 377

006 \0

032 \0

377 377

377 377

377 377

037 \0

035 \0

exceed 4096

3

termeap(4) termeap(4)

NAME
t e rme a p - terminal capability database

SYNOPSIS
/ete/termeap

DESCRIPTION
termeap is a data base describing terminals used, for example
by vi(l). Terminals are described in termcap by giving a set of
capabilities which they have and by describing how operations are
performed. Padding requirements and initialization sequences are
included in termeap.

Entries in termcap consist of a number of colon (:) separated
fields. The first entry for each terminal gives the names which are
known for the terminal, separated by I characters. The first name
is always 2 characters long and is used by older version 6 systems
which store the terminal type in a 16 bit word in a systemwide
data base. The second name given is the most common abbrevia­
tion for the terminal, and the last name given should be a long
name fully identifying the terminal. The second name should con­
tain no blanks; the last name may well contain blanks for readabil­
ity.

CAPABILmES

1

(P) indicates padding may be specified

(P*)

Name

ae

al

am

as

be

bs

bt

bw

cc
cd

ee

eh

el

em

co

er

indicates that padding may be based on no. lines affected

Type Pad?

str (P)
str (P*)
bool

str (P)
str

bool

str (P)
bool

str

str (P*)
str (P)
str (P)
str (P*)
str (P)
num

str (P*)

Description

End alternate character set

Add new blank line

Terminal has automatic margins

Start alternate character set

Backspace if not CONTROL-H

Terminal can backspace with CONTROL-H

Back tab

Backspace wraps from column 0 to last column

Command character in prototype if terminal settable

Clear to end of display

Clear to end of line

Like em but horizontal motion only, line stays same

Clear screen

Cursor motion

Number of columns in a line

Carriage return, (default CONTROL-M)

February, 1990
RevisionC

termcap(4)

es str

ev str

da bool

dB num

db bool

de num

de str

dF num

d1 str

dm str

dN num

do str

dT num

ed str

ei str

eo str

ff str

he bool

hd str

ho str

hu str

hz str

ie str

if str

im str

in bool

ip str

is str

kO-k9 str

kb str

kd str

ke str

kh str

k1 str

kn num

ko str

kr str

ks str

ku str

10-19 str

li num

11 str

February, 1990
Revision C

(P)

(P)

(P*)

(P*)

(P*)

(P)

(P*)

termcap(4)

Change scrolling region (vt100), like em
Like eh but vertical only.

Display may be retained above

Number of millisec of bs delay needed

Display may be retained below

Number of millisec of er delay needed

Delete character

Number of millisec of f f delay needed

Delete line

Delete mode (enter)

Number of millisec of n 1 delay needed

Down one line

Number of millisec of tab delay needed

End delete mode

End insert mode; give : e i =: if i e
Can erase overstrikes with a blank

Hardcopy terminal page eject (default CONlROL-L)

Hardcopy terminal

Half-line down (forward 1!2linefeed)

Home cursor (if no em)
Half-line up (reverse 1!2linefeed)

Hazeltine; can't print -, s

Insert character

Name of file containing is
Insert mode (enter); give: im=: if ie
Insert mode distinguishes nulls on display

Insert pad after character inserted

Terminal initialization string

Sent by "other" function keys 0-9

Sent by backspace key

Sent by terminal down arrow key

Out of "keypad transmit" mode

Sent by home key

Sent by terminal left arrow key

Number of "other" keys

Termcap entries for other non-function keys

Sent by terminal right arrow key

Put terminal in "keypad transmit" mode

Sent by terminal up arrow key

Labels on "other" function keys

Number of lines on screen or page

Last line, first column (if no em)

2

termcap(4) termcap(4)

3

rna str

mi bool
ml str

ms bool

mu str
ne bool
nd str
nl str

ns bool
as bool

pc str
pt bool
se str

sf str

sg num
so str

sr str
ta str

te str

te str

ti str

ue str
ue str
ug num

ul bool

up str
us str
vb str
ve str

vs str

xb bool
xn bool

xr bool

xs bool
xt bool

Arrow key map, used by v i version 2 only

Safe to move while in insert mode

Memory lock on above cursor.

Safe to move while in standout and underline mode

Memory unlock (tum off memory lock).

No correctly working carriage return (DM2500,H2000)

Non-destructive space (cursor right)
(P*) Newline character (default \n)

Terminal is a CRT but doesn't scroll.

Terminal overstrikes

Pad character (rather than null)
Has hardware tabs (may need to be set with is)
End stand out mode

(P) Scroll forwards

Number of blank chars left by so or se

Begin stand out mode

(P) Scroll reverse (backwards)
(P) Tab (other than CONfROL-I or with padding)

Entry of similar terminal - must be last

String to end programs that use em

String to begin programs that use em

Underscore one char and move past it
End underscore mode

Number of blank chars left by us or u e

Terminal underlines even though it doesn't

overstrike

Upline (cursor up)
Start underscore mode

Visible bell (may not move cursor)
Sequence to end open/visual mode

Sequence to start open/visual mode

Beehive (f1=escape, f2=ctrl C)
A newline is ignored after a wrap (Concept)

Return acts like ee \r \n (Delta Data)

Standout not erased by writing over it (HP 264?)
Tabs are destructive, magic so char (Teleray 1061)

A Sample Entry
The following entry, which describes the Concept-100, is among
the more complex entries in the termcap file as of this writing.
(This particular concept entry is outdated and is used as an exam­
ple only.)

February, 1990
Revision C

termcap(4) termcap(4)

cl clOO conceptlOO:is=\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200:\
:al=3*\E AR:am:bs:cd=16*\E AC:ce=16\E AS:cl=2*AL\
:cm=\Ea%+ %+ :co#80:\ :dc=16\EAA:dl=3*\EAB\
:ei=\E\200:eo:im=\E AP:in:ip=16*:li#24:mi:nd=\E=:\
:se=\Ed\Ee:so=\ED\EE:ta=8\t:ul:up=\E;:vb=\Ek\EK:xn:

Entries may continue onto multiple lines by giving a \ as the last
character of a line, and that empty fields may be included for rea­
dability (here between the last field on a line and the first field on
the next). Capabilities in termcap are of three types: Boolean
capabilities which indicate that the terminal has some particular
feature, numeric capabilities giving the size of the terminal or the
size of particular delays, and string capabilities, which give a se­
quence which can be used to perform particular terminal opera­
tions.

Types of Capabilities
All capabilities have two letter codes. For instance, the fact that
the Concept has automatic margins (that is, an automatic return
and linefeed when the end of a line is reached) is indicated by the
capability am. Hence the description of the Concept includes am.
Numeric capabilities are followed by the character "#" and then
the value. Thus co which indicates the number of columns the
terminal has gives the value "80" for the Concept.

Finally, string valued capabilities, such as ce (clear to end of line
sequence) are given by the two character code, an "=", and then a
string ending at the next following ":". A delay in milliseconds
may appear after the "=" in such a capability, and padding char­
acters are supplied by the editor after the remainder of the string is
sent to provide this delay. The delay can be either a integer, e.g.,
"20", or an integer followed by an "*", i.e. "3*". A "*,, indi­
cates that the padding required is proportional to the number of
lines affected by the operation, and the amount given is the per­
affected-unit padding required. When a "*,, is specified, it is
sometimes useful to give a delay of the form "3.5" specify a de­
lay per unit to tenths of milliseconds.

A number of escape sequences are provided in the string valued
capabilities for easy encoding of characters there. A \ E maps to
an escape character, CONTROL-X maps to a CON1ROL-x for any
appropriate x, and the sequences \ n, \ r, \ t r, \ b, and \ f give a
newline, return, tab, backspace and form feed. Finally, characters
may be given as three octal digits after a \, and the characters A

and \ may be given as \,. and \ \. If it is necessary to place a
: in a capability it must be escaped in octal as \ 072. If it is

February, 1990
Revision C

4

termeap(4) termeap(4)

5

necessary to place a null character in a string capability it must be
encoded as \200. The routines which deal with termeap use
C strings, and strip the high bits of the output very late so that a
\200 comes out as a \000 would.

Preparing Descriptions
We now outline how to prepare descriptions of terminals. The
most effective way to prepare a terminal description is by imitat­
ing the description of a similar terminal in termeap and to build
up a description gradually, using partial descriptions with ex to
check that they are correct. Be aware that a very unusual terminal
may expose deficiencies in the ability of the termeap file to
describe it or bugs in ex. To easily test a new terminal descrip­
tion you can set the environment variable TERMCAP to a path­
name of a file containing the description you are working on and
the editor will look there rather than in /ete/termeap.
TERMCAP can also be set to the termeap entry itself to avoid
reading the file when starting up the editor. (This only works on
version 7 systems.)

Basic Capabilities
The number of columns on each line for the terminal is given by
the co numeric capability. If the terminal is a CRT, then the
number of lines on the screen is given by the Ii capability. If the
terminal wraps around to the beginning of the next line when it
reaches the right margin, then it should have the am capability. If
the terminal can clear its screen, then this is given by the el string
capability. If the terminal can backspace, then it should have the
bs capability, unless a backspace is accomplished by a character
other than CONTROL-H, in which case you should give this charac­
ter as the be string capability. If it overstrikes (rather than clear­
ing a position when a character is struck over) then it should have
the 0 s capability.

A very important point here is that the local cursor motions encod­
ed in t e rme a p are undefined at the left and top edges of a CRT
terminal. The editor will never attempt to backspace around the
left edge, nor will it attempt to go up locally off the top. The edi­
tor assumes that feeding off the bottom of the screen will cause
the screen to scroll up, and the am capability tells whether the cur­
sor sticks at the right edge of the screen. If the terminal has
switch selectable automatic margins, the termeap file usually as­
sumes that this is on, i.e. am.

February, 1990
RevisionC

termeap(4) termeap(4)

These capabilities suffice to describe hardcopy and "glass-tty"
terminals. Thus the model 33 teletype is described as

t3133Itty33:eo*72:os

while the Lear Siegler ADM-3 is described as

elladm31311si adm3:am:bs:el=AZ:li*24:eo*80

Cursor Addressing
Cursor addressing in the terminal is described by a em string capa­
bility, with printf(3S) like escapes %x in it. These substitute to
encodings of the current line or column position, while other char­
acters are passed through unchanged. If the em string is thought
of as being a function, then its arguments are the line and then the
column to which motion is desired, and the % encodings have the
following meanings:

%d as in printf, 0 origin
%2 like %2d
%3 like %3d
%. like %c
%+x adds x to value, then %.
% >xy if value> x adds y, no output.
% r reverses order of line and column, no output
% i increments line/column (for 1 origin)
% % gives a single %
%n exclusive or row and column with 0140 (DM2500)
% B BCD (16 * (x / 1 0)) + (x % 1 0) , no output.
%D Reverse coding (x-2* (x%16)), no output. (Delta Data).

Consider the HP2645, which, to get to row 3 and column 12,
needs to be sent \E&a12e03Y padded for 6 milliseconds. Note
that the order of the rows and columns is inverted here, and that
the row and column are printed as two digits. Thus its em capa­
bility is "em=6\E&%r%2e%2Y." The Microterm ACT-IV needs
the current row and column sent preceded by a CONTROL-T, with
the row and column simply encoded in binary, "cm=CONTROL­
T % . %.". Terminals which use "%. " need to be able to back­
space the cursor (bs or be), and to move the cursor up one line
on the screen (up introduced below). This is necessary because it
is not always safe to transmit \ t, \n, CONTROL-D, and \ r, as
the system may change or discard them.

February, 1990
Revision C

6

termcap(4) termcap(4)

7

A final example is the LSI ADM-3a, which uses row and column
offset by a blank character, thus

cm=\E=%+ %+

Cursor Motions
If the terminal can move the cursor one position to the right, leav­
ing the character at the current position unchanged, then this se­
quence should be given as nd (nondestructive space). If it can
move the cursor up a line on the screen in the same column, this
should be given as up. If the terminal has no cursor addressing
capability, but can home the cursor (to very upper left corner of
screen) then this can be given as ho; similarly a fast way of get­
ting to the lower left hand corner can be given as 11; this may in­
volve going up with up from the home position, but the editor will
never do this itself (unless 11 does) because it makes no assump­
tion about the effect of moving up from the home position.

Area Clears
If the terminal can clear from the current position to the end of the
line, leaving the cursor where it is, this should be given as ceo If
the terminal can clear from the current position to the end of the
display, then this should be given as cd. The editor only uses
cd from the first column of a line.

InsertlDelete Line
If the terminal can open a new blank line before the line where the
cursor is, this should be given as al; this is done only from the
first position of a line. The cursor must then appear on the newly
blank line. If the terminal can delete the line which the cursor is
on, then this should be given as dl; this is done only from the
first position on the line to be deleted. If the terminal can scroll
the screen backwards, then this can be given as sb, but just al
suffices. If the terminal can retain display memory above then the
da capability should be given; if display memory can be retained
below then db should be given. These let the editor understand
that deleting a line on the screen may bring non-blank lines up
from below or that scrolling back with sb may bring down non­
blank lines.

InsertlDelete Character
There are two basic kinds of intelligent terminals with respect to
insert/delete character which can be described using termcap.
The most common insert/delete character operations affect only
the characters on the current line and shift characters off the end

February, 1990
RevisionC

termeap(4) termeap(4)

of the line rigidly. Other terminals, such as the Concept 100 and
the Perkin Elmer Owl, make a distinction between typed and un­
typed blanks on the screen, shifting upon an insert or delete only
to an untyped blank on the screen which is either eliminated, or
expanded to two untyped blanks. You can find out which kind of
terminal you have by clearing the screen and then typing text
separated by cursor motions. Type "abe def" using local
cursor motions (not spaces) between the "abc" and the "de f" .
Then position the cursor before the "abe" and put the terminal in
insert mode. If typing characters causes the rest of the line to shift
rigidly and characters to falloff the end, then your terminal does
not distinguish between blanks and untyped positions. If the
"abe" shifts over to the "def" which then move together
around the end of the current line and onto the next as you insert,
you have the second type of terminal, and should give the capabil­
ity in, which stands for "insert null". If your terminal does
something different and unusual then you may have to modify the
editor to get it to use the insert mode your terminal defines. We
have seen no terminals which have an insert mode not falling into
one of these two classes.

The editor can handle both terminals which have an insert mode,
and terminals which send a simple sequence to open a blank posi­
tion on the current line. Give as im the sequence to get into in­
sert mode, or give it an empty value if your terminal uses a se­
quence to insert a blank position. Give as ei the sequence to
leave insert mode (give this, with an empty value also if you gave
im so). Now give as ie any sequence needed to be sent just be­
fore sending the character to be inserted. Most terminals with a
true insert mode will not give ie, terminals which send a se­
quence to open a screen position should give it here. (Insert mode
is preferable to the sequence to open a position on the screen if
your terminal has both.) If post insert padding is needed, give this
as a number of milliseconds in ip (a string option). Any other
sequence which may need to be sent after an insert of a single
character may also be given in ip.

It is occasionally necessary to move around while in insert mode
to delete characters on the same line (e.g. if there is a tab after the
insertion position). If your terminal allows motion while in insert
mode you can give the capability mi to speed up inserting in this
case. Omitting mi will affect only speed. Some terminals (not­
ably Datamedia's) must not have mi because of the way their in-

February, 1990
Revision C

8

termcap(4) termcap(4)

9

sert mode works.

Finally, you can specify delete mode by giving dIn and ed to
enter and exit delete mode, and dc to delete a single character
while in delete mode.

Highlighting, Underlining, and Visible Bells
If your terminal has sequences to enter and exit standout mode,
these can be given as so and se, respectively. If there are
several flavors of standout mode (such as inverse video, blinking,
or underlining; half bright is not usually an acceptable "standout"
mode unless the terminal is in inverse video mode constantly) the
preferred mode is inverse video by itself. If the code to change
into or out of standout mode leaves one or even two blank spaces
on the screen, as the TVI 912 and Teleray 1061 do, then ug
should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as
us and ue respectively. If the terminal has a code to underline
the current character and move the cursor one space to the right,
such as the Microterm Mime, this can be given as uc. (If the
underline code does not move the cursor to the right, give the code
followed by a nondestructive space.)

Many terminals, such as the HP 2621, automatically leave stan­
dout mode when they move to a new line or the cursor is ad­
dressed. Programs using standout mode should exit standout
mode before moving the cursor or sending a newline.

If the terminal has a way of flashing the screen to indicate an error
quietly (a bell replacement) then this can be given as vb; it must
not move the cursor. If the terminal should be placed in a dif­
ferent mode during open and visual modes of ex, this can be given
as vs and ve, sent at the start and end of these modes respec­
tively. These can be used to change, e.g., from a underline to a
block cursor and back.

If the terminal needs to be in a special mode when running a pro­
gram that addresses the cursor, the codes to enter and exit this
mode can be given as ti and teo This arises, for example, from
terminals like the Concept with more than one page of memory. If
the terminal has only memory relative cursor addressing and not
screen relative cursor addressing, a one screen-sized window must
be fixed into the terminal for cursor addressing to work properly.

February, 1990
RevisionC

terrncap(4) termcap(4)

If your terminal correctly generates underlined characters (with no
special codes needed) even though it does not overstrike, then you
should give the capability ul. If overstrikes are erasable with a
blank, then this should be indicated by giving eo.

Keypad
If the terminal has a keypad that transmits codes when the keys
are pressed, this information can be given. Note that it is not pos­
sible to handle terminals where the keypad only works in local
(this applies, for example, to the unshifted lIP 2621 keys). If the
keypad can be set to transmit or not transmit, give these codes as
ks and ke. Otherwise the keypad is assumed to always transmit.
The codes sent by the left arrow, right arrow, up arrow, down ar­
row, and home keys can be given as kl, kr, ku, kd, and
kh respectively. If there are function keys such as ro, fl, ... , f9,
the codes they send can be given as kO, k1, ... , k9. If these
keys have labels other than the default fO through f9, the labels
can be given as la, 11, ... , 19. If there are other keys that
transmit the same code as the terminal expects for the correspond­
ing function, such as clear screen, the terrncap 2 letter codes can
be given in the ko capability, for example,
": ko=cl, 11, sf, sb: ", which says that the tenninal has clear,
home down, scroll down, and scroll up keys that transmit the same
thing as the cl, 11, sf, and sb entries.

The rna entry is also used to indicate arrow keys on terminals
which have single character arrow keys. It is obsolete but still in
use in version 2 of vi, which must be run on some minicomputers
due to memory limitations. This field is redundant with kl, kr,
ku, kd, and kh. It consists of groups of two characters. In each
group, the first character is what an arrow key sends, the second
character is the corresponding vi command. These commands
are h for kl, j for kd, k for ku, 1 for kr, and H for kh. For ex­
ample, the mime would be : rna = '" K j '" Z k '" Xl: indicating arrow
keys left (CONTROL-h), down (CONIROL-K), up (CONTROL-Z),
and right (CONTROL-X). (There is no home key on the mime.)

Miscellaneous
If the terminal requires other than a null (zero) character as a pad,
then this can be given as pc.

If tabs on the terminal require padding, or if the terminal uses a
character other than CONIROL-I to tab, then this can be given as
tao

February, 1990
Revision C

10

termcap(4) termcap(4)

Hazeltine terminals, which don't allow "-,, characters to be print­
ed should indicate h z. Datamedia terminals, which echo
carriage-return linefeed for carriage return and then ignore a fol­
lowing linefeed should indicate nco Early Concept terminals,
which ignore a linefeed immediately after an am wrap, should in­
dicate xn. If an erase-eol is required to get rid of standout (in­
stead of merely writing on top of it), xs should be given. Teleray
terminals, where tabs turn all characters moved over to blanks,
should indicate xt. Other specific terminal problems may be
corrected by adding more capabilities of the form xx.

Other capabilities include is, an initialization string for the ter­
minal, and if, the name of a file containing long initialization
strings. These strings are expected to properly clear and then set
the tabs on the tenninal, if the terminal has settable tabs. If both
are given, is will be printed before if. This is useful where
if is /usr/lib/tabset/std but is clears the tabs first.

Similar Terminals
If there are two very similar terminals, one can be defined as being
just like the other with certain exceptions. The string capability
t c can be given with the name of the similar terminal. This capa­
bility must be last and the combined length of the two entries must
not exceed 1024. Since termlib routines search the entry from
left to right, and since the tc capability is replaced by the
corresponding entry, the capabilities given at the left override the
ones in the similar terminal. A capability can be cancelled with
xx@ where xx is the capability. For example, the entry:

hn I 2621nl:ks@:ke@:tc=2621:

defines a "2621nl" that does not have the ks or ke capabilities,
and hence does not tum on the function key labels when in visual
mode. This is useful for different modes for a terminal, or for dif­
ferent user preferences.

FILES
/ etc/termcap file containing terminal descriptions

SEE ALSO
ex(I), tset(1), ul(I), vi(I), termcap{3X).

BUGS

11

ex allows only 256 characters for string capabilities, and the rou­
tines in termcap (3X) do not check for overflow of this buffer.
The total length of a single entry {excluding only escaped new-

February, 1990
RevisionC

termcap(4) termcap(4)

lines) may not exceed 1024.

The rna, VB, and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that are not
supported by any program.

February, 1990 12
Revision C

terminfo(4) terminfo(4)

NAME
t e rmi n f 0 - tenninal capability database

SYNOPSIS
/usr/lib/terminfo/*/*

DESCRIPTION

1

terminfo is a data base describing tenninals, used for example
by vi(l) and curses(3X). Tenninals are described in ter­
minfo by giving a set of capabilities which they have, and by
describing how operations are perfonned. Padding requirements
and initialization sequences are included in terminfo.

Entries in terminfo consist of a number of" ," separated fields.
White space after each "," is ignored. The first entry for each
tenninal gives the names which are known for the tenninal,
separated by "I" characters. The first name given is the most
common abbreviation for the tenninal, the last name given should
be a long name fully identifying the tenninal, and all others are
understood as synonyms for the tenninal name. All names but the
last should be in lower case and contain no blanks; the last name
may well contain upper case and blanks for readability.

Tenninal names (except for the last, verbose entry) should be
chosen using the following conventions. The particular piece of
hardware making up the terminal should have a root name chosen,
thus "hp2621". This name should not contain hyphens, except
that synonyms may be chosen that do not conflict with other
names. Modes that the hardware can be in, or user preferences,
should be indicated by appending a hyphen and an indicator of the
mode. Thus, a vt100 in 132 column mode would be vt100-w.

The following suffixes should be used where possible:
Suffix Meaning Example
-w Wide mode (more than 80 columns) vt 1 0 O-w
-am With auto. margins (usually default) vt100-am

-nam Without automatic margins vt100-nam
-n Number oflines on the screen aaa-60

-na No arrow keys (leave them in local) c100-na
-np Number of pages of memory c100-4p
-rv Reverse video c100-rv

February, 1990
RevisionC

terminfo(4) terminfo(4)

CAPABILmES
The variable is the name by which the programmer (at the ter­
minfo level) accesses the capability. The capname is the short
name used in the text of the database, and is used by a person up­
dating the database. The Lcode is the two letter internal code used
in the compiled database, and always corresponds to the old
termcap capability name.

Capability names have no hard length limit, but an informal limit
of 5 characters has been adopted to keep them short and to allow
the tabs in the source file caps to line up nicely. Whenever pos­
sible, names are chosen to be the same as or similar to the ANSI
X3.64-1979 standard. Semantics are also intended to match those
of the specification.

(P) indicates that padding may be specified

(G) indicates that the string is passed through tparm with parms
as given (#i).

(*) indicates that padding may be based on the number of lines
affected

(#.)
1

indicates the ith parameter.

Variable Booleans Capname I. Code Description

auto_left_margin,

auto_righcmargin,
beehive~litch,
ceoCstandout~litch,

eaCnewlineglitch,

erase_overstrike,
generic_type,

hard_copy,
has_meta_key,

has_status_line,
insert_nuICglitch,
memory_above,

February, 1990
Revision C

bw

am
xsb
xhp

xenl

eo
gn

hc
km

hs
in
da

bw cub 1 wraps from column 0 to last
column

am Terminal has automatic margins
xb Beehive (f1=escape, f2=etrl C)
xs Standout not erased by overwriting

(hp)
xn newline ignored after 80 cols

(Concept)
eo Can erase overstrikes with a blank
gn Generic line type (e.g." dialup,

switch).
hc Hardcopy terminal
km Has a meta key (shift, sets parity

bit)
hs Has extra status line
in Insert mode distinguishes nulls
da Display may be retained above the

2

terminfo(4)

memory_below, db

move_insert_mode, mir
move_standoucmode, msgr
over_strike, os
status_line_esc_ok, eslok

teleray --&litch, xt

tilde--&litch, hz
transparenCunderline, ul
xon_xoff, xon

Numbers:
columns, cols
iniCtabs, it
lines, lines
lines_of_memory , 1m

magic_cookie --&litch, xmc

padding_baud_rate, pb

virtual_terminal, vt

width_status_line, wsl

Strings:
back_tab, cbt
bell, bel
carriage_return, cr
change_scrolCregion, csr

clear_alCtabs, the
clear_screen, clear
cleeol, el
cleeos, ed
column_address, hpa
command_character, cmdch

3

db

mi
ms
os
es

xt

hz
ul
xo

co
it
Ii
1m

sg

pb

vt

ws

bt
bl
cr
cs

ct
cl
ce
cd
ch
CC

terminfo(4)

screen
Display may be retained below the
screen
Safe to move while in insert mode
Safe to move in standout modes
Terminal overstrikes
Escape can be used on the
status line
Tabs ruin, magic so char (Teleray
1061)
Hazeltine; can not print -, s
underline character overstrikes
Terminal uses xOn/xoff handshaking

Number of columns in a line
Tabs initially every # spaces
Number of lines on screen or page
Lines of memory if> lines.
o means varies
Number of blank chars left by smso or
rmso
Lowest baud where crlnl padding is
needed
Virtual terminal number
(UNIX system)
No. columns in status line

Back tab (P)
Audible signal (bell) (P)
Carriage return (P*)
change to lines # 1 through #2
(vt100) (PG)
Clear all tab stops (P)
Clear screen and home cursor (P*)
Clear to end of line (P)
Clear to end of display (P*)
Set cursor column (PG)
Term. settable cmd char in

February, 1990
RevisionC

terminfo(4)

cursor_address, cup

cursor_down, cudl
cursor_home, home
cursor_invisible, civis
cursor_left, cub 1
cursor_mem_address, mrcup
cursor_normal, cnorm

cursor_right, cufl
cursor_to_11, 11
cursor_up, cuul
cursor_visible, cvvis
delete_character, dchl
delete_line, dll
dis_status_Iine, dsl
down_half_line, hd

enter_alccharsecmode, smacs
enter_blink_mode,
enter_bold_mode,
enter_ca_mode,

enter_delete_mode,
enter_dim_mode,
enter_insert_mode,
enter_protected_mode,
enter_reverse_mode,
enter_secure _mode,

enter_standoucmode,
enter_underline_mode,
erase_chars
exicalccharsecmode,
exicattribute_m ode ,
exicca_mode,

exicdelete_mode,
exicinsert_mode,

February, 1990
Revision C

blink
bold
smcup

smdc
dim
smir
prot
rev
invis

smso
smul
ech
rmacs
sgrO
rmcup

rmdc
rmir

terminfo(4)

prototype
cm Screen reI. cursor motion row # 1

col #2 (PG)
do Down one line
ho Home cursor (if no cup)
vi Make cursor invisible
Ie Move cursor left one space
eM Memory relative cursor addressing
ve Make cursor appear normal (undo

vs/vi)
nd Non-destructive space (cursor right)
11 Last line, first column (if no cup)
up Upline (cursor up)
vs Make cursor very visible
dc Delete character (P*)
dl Delete line (P*)
ds Disable status line
hd Half-line down (forward

1/2 linefeed)
as S tart alternate character set (P)
mb Tum on blinking
md Tum on bold (extra bright) mode
ti String to begin programs that use

cup
dm Delete mode (enter)
mh Tum on half-bright mode
im Insert mode (enter);
mp Tum on protected mode
mr Tum on reverse video mode
mk Tum on blank mode

(chars invisible)
so Begin stand out mode
us S tart underscore mode
ec Erase # 1 characters (PG)
ae End alternate character set (P)
me Tum off all attributes
te String to end programs that use

cup
ed End delete mode
ei End insert mode

4

terminfo(4)

exicstandoucmode, rmso
exicunderline_mode, rmul
flash_screen, flash
form_feed, ff
from_status_line, fsl
iniClstring, isl
inic2string, is2
inic3 string , is3
inicfile, if
insert_character, ichl
inserCline, ill
insercpadding, ip

key_backspace, kbs
key_catab, ktbc
key_clear, kclr
key_ctab, kctab
key_dc, kdchl
key_dl, kdll
key_down, kcudl
key_eic, krmir

key_eol, kel
key_eos, ked
key_fO, kID
key_fl, kfl
key_flO, kflO
key_f2, kf2
key_f3, kf3
key_f4, kf4
key_fS, kfS
key_f6, kf6
key_V, kV
key_f8, kf8
key_f9, kf9
key_home, khorne
key_ie, kiehl

key_iI, kill
key_left, kcubl

5

se
ue
vb
ff
fs
i1
i2
i3
if
ic
al
ip

kb
ka
kC
kt
kD
kL
kd
kM

kE
kS
kO
kl
ka
k2
k3
k4
kS
k6
k7
k8
k9
kh
kI

kA
kl

terminfo(4)

End stand out mode
End underscore mode
Visible bell (may not move cursor)
Hardcopy terminal page eject (P*)
Return from status line
Terminal initialization string
Terminal initialization string
Terminal initialization string
Name of file containing is
Insert character (P)
Add new blank line (P*)
Insert pad after character
inserted (P*)
Sent by backspace key
Sent by clear-all-tabs key
Sent by clear screen or erase key
Sent by clear-tab key
Sent by delete character key
Sent by delete line key
Sent by terminal down arrow key
Sent by rmir or smir in insert
mode
Sent by clear-to-end-of-line key
Sent by clear-to-end-of-screen key
Sent by function key fo
Sent by function key fl
Sent by function key flO
Sent by function key f2
Sent by function key f3
Sent by function key f4
Sent by function key fS
Sent by function key f6
Sent by function key V
Sent by function key f8
Sent by function key f9
Sent by home key
Sent by ins char/enter ins mode
key
Sent by insert line
Sent by terminal left arrow key

February, 1990
RevisionC

terminfo(4)

key_ll,
key_npage,
key_ppage,
key_right,
key_sf,
key_sr,
key_stab,
key_up,
keypad_local,
keypad_xmit,

lab_fO,
lab_fl,
lab_flO,
lab_f2,
lab_f3,
lab_f4,
lab_fS,
lab_f6,
lab_V,
lab_f8,
lab_f9,
meta_on,
meta_off,
newline,

pad_char,
parm_dch,
parm_delete_line,
parm_down_cursor,
parm_ich,
parm_index,
parm_insert_line,
parm_lefccursor,
parm_righccursor,
parm_rindex,
parm_up_cursor,
pkey_key,

pkey _local,

February, 1990
RevisionC

kll
knp
kpp
kcufl
kind
kri
khts
kcuul
rmkx
smkx

lID
Ifl
IflO
If2
If3
lf4
If 5
If6
If7
If8
If9
smm
rmm
nel

pad
dch
dl
cud
ich
indn
il
cub
cuf
rin
cuu
pfkey

pfloc

terminfo(4)

kH Sent by home-down key
kN Sent by next-page key
kP Sent by previous-page key
kr Sent by terminal right arrow key
kF Sent by scroll-forward/down key
kR Sent by scroll-backward/up key
kT Sent by set-tab key
ku Sent by terminal up arrow key
ke Out of keypad transmit mode
ks Put terminal in keypad transmit

mode
10 Labels on funct key fO if not fO
11 Labels on funct key fl if not fl
la Labels on funct key fl a if not fl a
12 Labels on funct key f2 if not f2
13 Labels on funct key f3 if not f3
14 Labels on funct key f4 if not f4
15 Labels on funct key f5 if not fS
16 Labels on funct key f6 if not f6
17 Labels on funct key V if not V
18 Labels on funct key f8 if not f8
19 Labels on funct key f9 if not f9
mm Turn on meta mode (8th bit)
mo Tum off meta mode
nw Newline (behaves like cr followed

by It)
pc Pad character (rather than null)
DC Delete # 1 chars (PG*)
DL Delete # 1 lines (PG*)
00 Move cursor down #1 lines (pG*)
Ie Insert # 1 blank chars (PG*)
SF Scroll forward # 1 lines (PG)
AL Add #1 new blank lines (PG*)
LE Move cursor left #1 spaces (PG)
RI Move cursor right # 1 spaces (pG*)
SR Scroll backward #1 lines (PG)
UP Move cursor up # 1 lines (pG*)
pk Prog funct key # 1 to type string

#2
pI Prog funct key #1 to execute

6

terminfo(4)

pkey_xmit, pfx

princscreen, mcO
prtr_off, mc4
prtr_on, mcS
repeacchar , rep
reseCI string, rsI

reseC2string, rs2

resec3string, rs3

resecfile, rf

restore_cursor, rc

row_address, vpa

save_cursor, sc
scroll_forward, ind
scroll_reverse, ri
secattributes, sgr
seCtab, hts

secwindow, wind

tab, ht

to_status_line, tsl
underline_char, uc

up_half_line, hu

inicprog, iprog
key_aI, kaI
key_a3, ka3
key_b2, kb2
key_cI, kcI
key_c3, kc3

7

px

ps
pf
po
rp
rI

r2

r3

rf

rc

cv

sc
sf
sr
sa
st

wi

ta

ts
uc

hu

iP
KI
K3
K2
K4
K5

terminfo(4)

string #2
Prog funct key # 1 to xmit
string #2
Print contents of the screen
Turn off the printer
Turn on the printer
Repeat char # 1 #2 times. (PG*)
Reset terminal completely to
sane modes.
Reset terminal completely to
sane modes.
Reset terminal completely to
sane modes.
Name of file containing reset
string
Restore cursor to position of
last sc
Vertical position absolute
(set row) (pG)
Save cursor position (P)
Scroll text up (P)
Scroll text down (P)
Define the video attributes (PG9)
Set a tab in all rows,
current column
Current window is lines # 1-#2
cols #3-#4
Tab to next 8 space hardware
tab stop
Go to status line, column #1
Underscore one char and move
past it
Half-line up (reverse
1/2 linefeed)
Path name of program for init
Upper left of keypad
Upper right of keypad
Center of keypad
Lower left of keypad
Lower right of keypad

February, 1990
RevisionC

terminfo(4) terminfo(4)

prtr_non, mc5p pO Turn on the printer for # 1 bytes

A Sample Entry
The following entry, which describes the Concept-1OO, is among
the more complex entries in the terminfo file as of this writing.
concept100 I c100 I concept I c104 I c100-4p I concept 100,

am, bel=~G, blank=\EH, blink=\EC, clear=~L$<2*>, cnorm=\Ew,
cols#80, cr=~M$<9>, cub1=~H, cud1=AJ, cuf1=\E=,
cup=\Ea%p1%' '%+%c%p2%' '%+%c,
cuu1=\E;, cvvis=\EW, db, dch1=\E~A$<16*>, dim=\EE, dl1=\E~B$<3*>,

ed=\E~C$<16*>, el=\E~U$<16>, eo, flash=\Ek$<20>\EK, ht=\t$<8>,
il1=\E~R$<3*>, in, ind=AJ, .ind=~J$<9>, ip=$<16*>,
is2=\EU\Ef\E7\E5\E8\El\ENH\EK\E\200\Eo&\200\Eo\47\E,
kbs=~h, kcub1=\E>, kcud1=\E<, kcuf1=\E=, kcuu1=\E;,
kf1=\E5, kf2=\E6, kf3=\E7, khome=\E?,
lines#24, mir, pb#960D, prot=\EI, rep=\Er%p1%c%p2%' '%+%c$<.2*>,
rev=\ED, rmcup=\Ev $<6>\Ep\r\n, rmir=\E\200, rmkx=\Ex,
rmso=\Ed\Ee, rmul=\Eg, rmul=\Eg, sgrO=\EN\200,
smcup=\EU\Ev 8p\Ep\r, smir=\E~P, smkx=\EX, smso=\EE\ED,
smul=\EG, tabs, ul, vt#8, xenl,

Entries may continue onto multiple lines by placing white space at
the beginning of each line except the first. Comments may be in­
cluded on lines beginning with "#". Capabilities in terminfo
are of three types: Boolean capabilities which indicate that the
terminal has some particular feature, numeric capabilities giving
the size of the terminal or the size of particular delays, and string
capabilities, which give a sequence which can be used to perform
particular terminal operations.

Types of Capabilities
All capabilities have names. For instance, the fact that the Con­
cept has automatic margins (i.e., an automatic return and linefeed
when the end of a line is reached) is indicated by the capability
am. Hence the description of the Concept includes am. Numeric
capabilities are followed by the character "#" and then the value.
Thus eols, which indicates the number of columns the terminal
has, gives the value "80" for the Concept.

Finally, string valued capabilities, such as el (clear to end of line
sequence) are given by the two-character code, an "=", and then
a string ending at the next following ",". A delay in milliseconds
may appear anywhere in such a capability, enclosed in $< .. >
brackets, as in el=\EK$<3>, and padding characters are sup­
plied by t pu t s to provide this delay. The delay can be either a
number, for example, "20," or a number followed by an "*",
like "3*". A "*,, indicates that the padding required is propor-

February, 1990
Revision C

8

terminfo(4} terminfo(4}

9

tional to the number of lines affected by the operation, and the
amount given is the per-affected-unit padding required. (In the
case of insert character, the factor is still the number of lines af­
fected. This is always one unless the terminal has xenl and the
software uses it.) When a "*" is specified, it is sometimes useful
to give a delay of the form "3.5" to specify a delay per unit to
tenths of milliseconds. (Only one decimal place is allowed.)

A number of escape sequences are provided in the string valued
capabilities for easy encoding of characters there. Both \ E and
\e map to an escape character, AX maps to a CONIROL-X for any
appropriate x, and the sequences \ n \ 1 \ r \ t \ b \ f \ s
give a newline, linefeed, return, tab, backspace, formfeed, and
space. Other escapes include \,. for", \\ for \ \, for comma, \: for :,
and \0 for null. (\0 will produce \200, which does not terminate a
string but behaves as a null character on most terminals.) Finally,
characters may be given as three octal digits after a \.

Sometimes individual capabilities must be commented out. To do
this, put a period before the capability name. For example, see the
second ind in the example above.

Preparing Descriptions
We now outline how to prepare descriptions of terminals. The
most effective way to prepare a terminal description is by imitat­
ing the description of a similar terminal in terminfo and to
build up a description gradually, using partial descriptions with vi
to check that they are correct. Be aware that a very unusual termi­
nal may expose deficiencies in the ability of the terminfo file to
describe it or bugs in vi. To test a new terminal description easi­
ly, you may set the environment variable TERMINFO to a path­
name of a directory containing the compiled description you are
working on, and programs will look there, rather than in
/usr/lib/terminfo. To get the padding for insert line right
(if the terminal manufacturer did not document it), a severe test is
to edit / ete/passwd at 9600 baud, delete 16 or so lines from
the middle of the screen, then hit the "u" key several times quick­
ly. If the terminal messes up, more padding is usually needed. A
similar test can be used for insert character.

Basic Capabilities
The number of columns on each line for the terminal is given by
the eols numeric capability. If the terminal is a CRT then the
number of lines on the screen is given by the lines capability.
If the terminal wraps around to the beginning of the next line

February, 1990
RevisionC

terminfo(4) terminfo(4)

when it reaches the right margin, then it should have the am capa­
bility. If the terminal can clear its screen, leaving the cursor in the
home position, then this is given by the clear string capability.
If the terminal overstrikes (rather than clearing a position when a
character is struck over) then it should have the os capability. If
the terminal is a printing terminal, with no soft copy unit, give it
both hc and os. (os applies to storage scope terminals, such as
TEKTRONIX 4010 series, as well as hard copy and APL termi­
nals.) If there is a code to move the cursor to the left edge of the
current row, give this as cr. (Normally this will be carriage re­
turn, CONlROL-M.) If there is a code to produce an audible signal
(bell, beep, etc) give this as bel.

If there is a code to move the cursor one position to the left (such
as backspace) that capability should be given as cubl. Similarly,
codes to move to the right, up, and down should be given as
cufl, cuul, and cudl. These local cursor motions should not
alter the text they pass over, for example, you would not normally
use "cufl=" because the space would erase the character moved
over.

A very important point here is that the local cursor motions encod­
ed in terminfo are undefined at the left and top edges of a CRT
terminal. Programs should never attempt to backspace around the
left edge, unless bw is given, and never attempt to go up locally
off the top. In order to scroll text up, a program will go to the bot­
tom left comer of the screen and send the ind (index) string.

To scroll text down, a program goes to the top left comer of the
screen and sends the ri (reverse index) string. The strings ind
and r i are undefined when not on their respective comers of the
screen.

Parameterized versions of the scrolling sequences are indn and
rin which have the same semantics as ind and ri except that
they take one parameter, and scroll that many lines. They are also
undefined except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge
of the screen when text is output, but this does not necessarily ap­
ply to a cufl from the last column. The only local motion which
is defined from the left edge is if bw is given, then a cubl from
the left edge will move to the right edge of the previous row. If
bw is not given, the effect is undefined. This is useful for drawing
a box around the edge of the screen, for example. If the terminal

February, 1990
Revision C

10

terminfo(4) terminfo(4)

11

has switch selectable automatic margins, the terminfo file usually
assumes that this is on; Le., am. If the terminal has a command
which moves to the first column of the next line, that command
can be given as nel (newline). It does not matter if the command
clears the remainder of the current line, so if the terminal has no
carriage return or linefeed, it may still be possible to craft a work­
ing nel out of one or both of them.

These capabilities suffice to describe hardcopy and "glass-tty"
terminals. Thus the model 33 teletype is described as:

33 I tty33 I tty I model 33 teletype,
bel=AG, eolsi72, er=AM, eudl=AJ, he, ind=AJ, os,

while the Lear Siegler ADM-3 is described as

adm3 I 3 I lsi adm3,
am, bel=AG, elear=AZ, eolsi80, er=AM, cubl=AH,
eudl=AJ, ind=AJ, linesi24,

Parameterized Strings
Cursor addressing and other strings requiring parameters in the
terminal are described by a parameterized string capability, with
printf(3S) like escapes %x in it. For example, to address the
cursor, the cup capability is given, using two parameters: the row
and column to address to. (Rows and columns are numbered from
zero and refer to the physical screen visible to the user, not to any
unseen memory.) If the terminal has memory relative cursor ad­
dressing, that can be indicated by mrcup.

The parameter mechanism uses a stack and special % codes to
manipulate it. Typically a sequence will push one of the parame­
ters onto the stack and then print it in some format. Often more
complex operations are necessary.

The % encodings have the following meanings:

%% outputs '%'

%d print pop() as in printf

%2d print pop() like %2d

%3d print pop() like %3d

%02d

%03d as in printf

%c print pop () gives %c

%s print pop () gives %s

%p[l-9] push ith parm

February, 1990
RevisionC

terminfo(4) terminfo(4)

%P [a-z] set variable [a-z] to pop ()

%g[a-z] get variable [a-z] and push it

%'c' char constant c

%{nn} integer constant nn

%+ %- %* %/ %m

arithmetic (%m is mod): push(pop() op pop(»
%& %1 %~

%= %> %<
%! %-

%i

bit operations: push(pop() op pop(»

logical operations: push (pop() op pop(»

unary operations push(op pop(»

add 1 to first two parms (for ANSI terminals)

%? expr %t thenpart %e elsepart %;

if-then-else, %e elsepart is optional.

else-if's are possible ala Algol 68:

%? c 1 %t b 1 %e c 2 %t b 2 %e c 3 %t b 3 %e c 4 %t b 4 %e %;

c i are conditions, b i are bodies.

Binary operations are in postfix fonn with the operands in the usu­
al order. That is, to get x-5 one would use "gx% {5} %-".

Consider the HP2645, which, to get to row 3 and column 12,
needs to be sent a \E&a12c03Y padded for 6 milliseconds.
Note that the order of the rows and columns is inverted here, and
that the row and column are printed as two digits. Thus its cup
capability is "cup=6\E&%p2%2dc%pl%2dY".

The Microtenn ACT-IV needs the current row and column sent
preceded by a '" T, with the row and column simply encoded in
binary, "cup="'T%pl%c%p2%c". Tenninals which use "%c"
need to be able to backspace the cursor (cubl), and to move the
cursor up one line on the screen (cu u 1). This is necessary be­
cause it is not always safe to transmit \ n, '" D, and \ r, as the
system may change or discard them. (The library routines dealing
with tenninfo set tty modes so that tabs are never expanded, so \t
is safe to send. This turns out to be essential for the Ann Arbor
4080.)

A final example is the LSI ADM-3a, which uses row and column
offset by a blank character, thus "cup=\E=%pl%'
, %+%c%p2%' , %+%c". After sending "\E=", this pushes the
first parameter, pushes the ASCII value for a space (32), adds
them (pushing the sum on the stack in place of the two previous
values) and outputs that value as a character. Then the same is
done for the second parameter. More complex arithmetic is possi-

February, 1990
Revision C

12

terminf 0 (4) terminfo(4)

13

ble using the stack.

If the terminal has row or column absolute cursor addressing,
these can be given as single parameter capabilities hpa (horizon­
tal position absolute) and vpa (vertical position absolute). Some­
times these are shorter than the more general two parameter se­
quence (as with the hp2645) and can be used in preference to
cup. If there are parameterized local motions (e.g., move n
spaces to the right) these can be given as cud, cub, cuf, and
cuu with a single parameter indicating how many spaces to move.
These are primarily useful if the terminal does not have cup, such
as the TEKTRONIX 4025.

Cursor Motions
If the terminal has a fast way to home the cursor (to very upper
left comer of screen) then this can be given as home; similarly a
fast way of getting to the lower left-hand corner can be given as
11; this may involve going up with cuul from the home position,
but a program should never do this itself (unless 11 does) be­
cause it can make no assumption about the effect of moving up
from the home position. Note that the home position is the same
as addressing to (0,0): to the top left corner of the screen, not of
memory. (Thus, the \EH sequence on HP terminals cannot be
used for home.)

Area Clears
If the terminal can clear from the current position to the end of the
line, leaving the cursor where it is, this should be given as el. If
the terminal can clear from the current position to the end of the
display, then this should be given as ed. ed is only defined
from the first column of a line. (Thus, it can be simulated by a re­
quest to delete a large number of lines, if a true ed is not avail­
able.)

Insert/delete line
If the terminal can open a new blank line before the line where the
cursor is, this should be given as ill; this is done only from the
first position of a line. The cursor must then appear on the newly
blank line. If the terminal can delete the line which the cursor is
on, then this should be given as d11; this is done only from the
first position on the line to be deleted. Versions of ill and d11
which take a single parameter and insert or delete that many lines
can be given as i1 and dl. If the terminal has a settable scrolling
region (like the vtl (0) the command to set this can be described
with the c s r capability, which takes two parameters: the top and

February, 1990
RevisionC

terminfo(4) terminfo(4)

bottom lines of the scrolling region. The cursor position is, alas,
undefined after using this command. It is possible to get the effect
of insert or delete line using this command - the sc and rc (save
and restore cursor) commands are also useful. Inserting lines at
the top or bottom of the screen can also be done using ri or ind
on many terminals without a true insert/delete line, and is often
faster even on terminals with those features.

If the terminal has the ability to define a window as part of
memory, which all commands affect, it should be given as the
parameterized string wind. The four parameters are the starting
and ending lines in memory and the starting and ending columns
in memory, in that order.

If the terminal can retain display memory above, then the da ca­
pability should be given; if display memory can be retained below,
then db should be given. These indicate that deleting a line or
scrolling may bring nonblank lines up from below or that scrolling
back with ri may bring down nonblank lines.

InsertlDelete Character
There are two basic kinds of intelligent terminals with respect to
insert/delete character which can be described using terminfo.
The most common insert/delete character operations affect only
the characters on the current line and shift characters off the end
of the line rigidly. Other terminals, such as the Concept 100 and
the Perkin Elmer Owl, make a distinction between typed and un­
typed blanks on the screen, shifting upon an insert or delete only
to an untyped blank on the screen which is either eliminated, or
expanded to two untyped blanks. You can determine the kind of
terminal you have by clearing the screen and then typing text
separated by cursor motions. Type "abc def" using local
cursor motions (not spaces) between the "abc" and the "de f" .
Then position the cursor before the "abc" and put the terminal in
insert mode. If typing characters causes the rest of the line to shift
rigidly and characters to falloff the end, then your terminal does
not distinguish between blanks and untyped positions. If the
" abc" shifts over to the "de f" which then move together
around the end of the current line and onto the next as you insert,
you have the second type of terminal, and should give the capabil­
ity in, which stands for "insert null". While these are two logi­
cally separate attributes (one line vs. multiline insert mode, and
special treatment of untyped spaces) we have seen no terminals
whose insert mode cannot be described with the single attribute.

February, 1990
RevisionC

14

terminfo(4) terminfo(4)

15

terminfo can describe both terminals which have an insert
mode~ and terminals which send a simple sequence to open a
blank position on the current line. Give as smi r the sequence to
get into insert mode. Give as rmi r the sequence to leave insert
mode. Now give as ichl any sequence needed to be sent just
before sending the character to be inserted. Most terminals with a
true insert mode will not give ichI; terminals which send a se­
quence to open a screen position should give it here. (If your ter­
minal has both, insert mode is usually preferable to ichl. Do
not give both unless the tenninal actually requires both to be used
in combination.) If post insert padding is needed, give this as a
number of milliseconds in ip (a string option). Any other se­
quence which may need to be sent after an insert of a single char­
acter may also be given in ip. If your terminal needs both to be
placed into an "insert mode" and a special code to precede each
inserted character, then both smir/rmir and ichl can be given,
and both will be used. The ich capability, with one parameter, n,
will repeat the effects of i chI n times.

It is occasionally necessary to move around while in insert mode
to delete characters on the same line (e.g., if there is a tab after the
insertion position). If your terminal allows motion while in insert
mode you can give the capability mir to speed up inserting in
this case. Omitting mir will affect only speed. Some terminals
(notably Datamedia's) must not have mir because of the way
their insert mode works.

Finally, you can specify dchl to delete a single character, dch
with one parameter, n, to delete ncharacters, and delete mode by
giving smdc and rmdc to enter and exit delete mode (any mode
the terminal needs to be placed in for dchl to work).

A command to erase n characters (equivalent to outputting n
blanks without moving the cursor) can be given as ech with one
parameter.

Highlighting, Underlining, and Visible Bells
If your terminal has one or more kinds of display attributes, these
can be represented in a number of different ways. You should
choose one display fonn as "standout mode", representing a
good, high contrast, easy-on-the-eyes, format for highlighting er­
ror messages and other attention getters. (If you have a choice, re­
verse video plus half-bright is good, or reverse video alone.) The
sequences to enter and exit standout mode are given as smso and
rmso, respectively. If the code to change into or out of standout

February, 1990
RevisionC

terminfo(4) terminfo(4)

mode leaves one or even two blank. spaces on the screen, as the
TVI 912 and Teleray 1061 do, then xmc should be given to tell
how many spaces are left

Codes to begin underlining and end underlining can be given as
smul and rmul respectively. If the terminal has a code to
underline the current character and move the cursor one space to
the right, such as the Microterm Mime, this can be given as uc.

Other capabilities to enter various highlighting modes include
blink (blinking) bold (bold or extra bright) dim (dim or half­
bright) invis (blanking or invisible text) prot (protected) rev
(reverse video) sgrO (tum off all attribute modes) smacs (enter
alternate character set mode) and rmacs (exit alternate character
set mode). Turning on any of these modes singly mayor may not
tum off other modes.

If there is a sequence to set arbitrary combinations of modes, this
should be given as sgr (set attributes), taking 9 parameters. Each
parameter is either 0 or 1, as the corresponding attribute is on or
off. The 9 parameters are, in order: standout, underline, reverse,
blink, dim, bold, blank, protect, alternate character set. Not all
modes need be supported by sgr, only those for which
corresponding separate attribute commands exist.

Terminals with the "magic cookie" glitch (xmc) deposit special
"cookies" when they receive mode-setting sequences, which af­
fect the display algorithm rather than having extra bits for each
character. Some terminals, such as the HP 2621, automatically
leave standout mode when they move to a new line or the cursor is
addressed. Programs using standout mode should exit standout
mode before moving the cursor or sending a newline, unless the
msgr capability, asserting that it is safe to move in standout
mode, is present.

If the terminal has a way of flashing the screen to indicate an error
quietly (a bell replacement) then this can be given as flash; it
must not move the cursor.

If the cursor needs to be made more visible than normal when it is
not on the bottom line (to make, for example, a non-blinking
underline into an easier to find block or blinking underline) give
this sequence as cvv is. If there is a way to make the cursor
completely invisible. give that as ci vis. The capability cnorm
should be given which undoes the effects of both of these modes.

February. 1990
Revision C

16

terminfo(4) terminfo(4)

17

If the tenninal needs to be in a special mode when running a pro­
gram that uses these capabilities, the codes to enter and exit this
mode can be given as smeup and rmeup. This arises, for ex­
ample, from terminals like the Concept with more than one page
of memory. If the tenninal has only memory relative cursor ad­
dressing and not screen relative cursor addressing, a one screen­
sized window must be fixed into the terminal for cursor addressing
to work properly. This is also used for the TEKTRONIX 4025,
where smeup sets the command character to be the one used by
terminfo.

If your terminal correctly generates underlined characters (with no
special codes needed) even though it does not overstrike, then you
should give the capability ul. If overstrikes are erasable with a
blank, then this should be indicated by giving eo.

Keypad
If the terminal has a keypad that transmits codes when the keys
are pressed, this information can be given. Note that it is not pos­
sible to handle terminals where the keypad only works in local
(this applies, for example, to the unshifted HP 2621 keys). If the
keypad can be set to transmit or not transmit, give these codes as
smkx and rmkx. Otherwise the keypad is assumed to always
transmit. The codes sent by the left arrow, right arrow, up arrow,
down arrow, and home keys can be given as keubl, keufl,
keuul, keudl, and khome respectively. If there are func­
tion keys such as fo, fl, ... , flO, the codes they send can be given
as kfO, kfl, ... , kflO. If these keys have labels other than
the default fo through flO, the labels can be given as If 0 ,
1 f 1 , ... , 1 flO. The codes transmitted by certain other spe­
cial keys can be given: kll (home down), kbs (backspace),
ktbe (clear all tabs), kctab (clear the tab stop in this column),
kclr (clear screen or erase key), kdehl (delete character),
kdll (delete line), krmir (exit insert mode), kel (clear to end
of line), ked (clear to end of screen), kiehl (insert character or
enter insert mode), kill (insert line), knp (next page), kpp (pre­
vious page), kind (scroll forward/down), kri (scroll
backward/up), khts (set a tab stop in this column). In addition, if
the keypad has a 3 by 3 array of keys including the four arrow
keys, the other five keys can be given as kal, ka3, kb2, kel,
and kc3. These keys are useful when the effects of a 3 by 3
directional pad are needed.

February, 1990
Revision C

terminfo(4) terminfo(4)

Tabs and Initialization
If the terminal has hardware tabs, the command to advance to the
next tab stop can be given as ht (usually CONIROL-I). A "back­
tab" command which moves leftward to the next tab stop can be
given as ebt. By convention, if the teletype modes indicate that
tabs are being expanded by the computer rather than being sent to
the terminal, programs should not use h t or ebt even if they are
present, since the user may not have the tab stops properly set. If
the terminal has hardware tabs which are initially set every n
spaces when the terminal is powered up, the numeric parameter
it is given, showing the number of spaces the tabs are set to.
This is normally used by the tset command to determine wheth­
er to set the mode for hardware tab expansion, and whether to set
the tab stops. If the terminal has tab stops that can be saved in
nonvolatile memory, the terminfo description can assume that they
are properly set.

Other capabilities include is I, is 2, and is 3, initialization
strings for the terminal, iprog, the path name of a program to be
run to initialize the terminal, and if, the name of a file contain­
ing long initialization strings. These strings are expected to set the
terminal into modes consistent with the rest of the terminfo
description. They are normally sent to the terminal, by the tset
program, each time the user logs in. They will be printed in the
following order: isl; is2; setting tabs using tbe and hts; if;
running the program iprog; and finally is3. Most initialization
is done with is 2. Special terminal modes can be set up without
duplicating strings by putting the common sequences in is 2 and
special cases in is 1 and is 3. A pair of sequences that does a
harder reset from a totally unknown state can be analogously
given as rsl, rs2, rf, and rs3, analogous to is2 and if.
These strings are output by the reset program, which is used
when the terminal gets into a wedged state. Commands are nor­
mally placed in rs2 and rf only if they produce annoying effects
on the screen and are not necessary when logging in. For exam­
ple, the command to set the vtl 00 into 80-column mode would
normally be part of is 2, but it causes an annoying glitch of the
screen and is not nonnally needed since the terminal is usually al­
ready in 80 column mode.

If there are commands to set and clear tab stops, they can be given
as tbe (clear all tab stops) and hts (set a tab stop in the current
column of every row). If a more complex sequence is needed to

February, 1990
Revision C

18

terminfo(4) terminfo(4)

19

set the tabs than can be described by this, the sequence can be
placed in is2 or if.

Delays
Certain capabilities control padding in the teletype driver. These
are primarily needed by hard copy terminals, and are used by the
tset program to set teletype modes appropriately. Delays embed­
ded in the capabilities er, ind, eubl, ff, and tab will cause
the appropriate delay bits to be set in the teletype driver. If pb
(padding baud rate) is given, these values can be ignored at baud
rates below the value of pb.

Miscellaneous
If the terminal requires other than a null (zero) character as a pad,
then this can be given as pad. Only the first character of the
pad string is used.

If the terminal has an extra "status line" that is not normally used
by software, this fact can be indicated. If the status line is viewed
as an extra line below the bottom line, into which one can cursor
address normally (such as the Heathkit hl9's 25th line, or the 24th
line of a vt100 which is set to a 23-line scrolling region), the capa­
bility hs should be given. Special strings to go to the beginning
of the status line and to return from the status line can be given as
tsl and fsl. (fsl must leave the cursor position in the same
place it was before tsl. If necessary, the se and re strings can
be included in tsl and fsl to get this effect.) The parameter
tsl takes one parameter, which is the column number of the
status line the cursor is to be moved to. If escape sequences and
other special commands, such as tab, work while in the status line,
the flag eslok can be given. A string which turns off the status
line (or otherwise erases its contents) should be given as dsl. If
the terminal has commands to save and restore the position of the
cursor, give them as sc and re. The status line is normally as­
sumed to be the same width as the rest of the screen, e.g., eols.
If the status line is a different width (possibly because the terminal
does not allow an entire line to be loaded) the width, in columns,
can be indicated with the numeric parameter wsl.

If the terminal can move up or down half a line, this can be indi­
cated with hu (half-line up) and hd (half-line down). This is pri­
marily useful for superscripts and subscripts on hardcopy termi­
nals. If a hardcopy terminal can eject to the next page (form
feed), give this as ff (usually CONTROL-L).

February, 1990
RevisionC

terminfo(4) terminfo(4)

If there is a command to repeat a given character a given number
of times (to save time transmitting a large number of identical
characters) this can be indicated with the parameterized string
rep. The first parameter is the character to be repeated and the
second is the number of times to repeat it. Thus,

tparm(repeat_char, 'x', 10)

is the same as "xxxxxxxxxx".

If the terminal has a settable command character, such as the
TEKTRONIX 4025, this can be indicated with cmdch. A proto­
type command character is chosen which is used in all capabili­
ties. This character is given in the cmdch capability to identify it.
The following convention is supported on some UNIX systems:
The environment is to be searched for a cc variable, and if found,
all occurrences of the prototype character are replaced with the
character in the environment variable.

Terminal descriptions that do not represent a specific kind of
known terminal, such as switch, dialup, patch, and net­
work, should include the gn (generic) capability so that programs
can complain that they do not know how to talk to the terminal.
(This capability does not apply to virtual terminal descriptions for
which the escape sequences are known.)

If the terminal uses xon/xoff handshaking for flow control, give
xon. Padding information should still be included so that routines
can make better decisions about costs, but actual pad characters
will not be transmitted.

If the terminal has a "meta key" which acts as a shift key, setting
the 8th bit of any character transmitted, this fact can be indicated
with km. Otherwise, software will assume that the 8th bit is parity
and it will usually be cleared. If strings exist to turn this "meta
mode" on and off, they can be given as smm and rmm.

If the terminal has more lines of memory than will fit on the
screen at once, the number of lines of memory can be indicated
with 1m. A value of Im#O indicates that the number of lines is not
fixed, but that there is still more memory than fits on the screen.

If the terminal is one of those supported by the UNIX virtual ter­
minal protocol, the terminal number can be given as vt.

February, 1990
Revision C

20

terminf 0 (4) terminfo(4)

Media copy strings which control an auxiliary printer connected to
the terminal can be given as me 0: print the contents of the screen,
me4: turn off the printer, and meS: turn on the printer. When the
printer is on, all text sent to the terminal will be sent to the printer.
It is undefined whether the text is also displayed on the terminal
screen when the printer is on. A variation meSp takes one param­
eter, and leaves the printer on for as many characters as the value
of the parameter, then turns the printer off. The parameter should
not exceed 255. All text, including me4, is transparently passed to
the printer while an meSp is in effect.

Strings to program function keys can be given as pfkey, pf1oe,
and pfx. Each of these strings takes two parameters: the function
key number to program (from 0 to 10) and the string to program it
with. Function key numbers out of this range may program
undefined keys in a terminal dependent manner. The difference
between the capabilities is that pfkey causes pressing the given
key to be the same as the user typing the given string; pf10e
causes the string to be executed by the terminal in local; and pfx
causes the string to be transmitted to the computer.

BUGS

21

Hazeltine terminals, which do not allow tilde characters to be
displayed should indicate hz.

Terminals which ignore a linefeed immediately after an am wrap,
such as the Concept and vt100, should indicate xenl.

If e1 is required to get rid of standout (instead of merely writing
normal text on top of it), xhp should be given.

Teleray terminals, where tabs tum all characters moved over to
blanks, should indicate xt (destructive tabs). This glitch is also
taken to mean that it is not possible to position the cursor on top of
a "magic cookie", that to erase standout mode it is instead neces­
sary to use delete and insert line.

The Beehive Superbee, which is unable to correctly transmit the
escape or control-C characters, has xsb, indicating that the f1 key
is used for EsCAPE and f2 for CONIROL-C. (Only certain Super­
bees have this problem, depending on the ROM.)

Other specific terminal problems may be corrected by adding
more capabilities of the form xx.

February, 1990
RevisionC

terrninfo(4) terrninfo(4)

Similar Terminals
If there are two very similar terminals, one can be defined as being
just like the other with certain exceptions. The string capability
use can be given with the name of the similar terminal. The
capabilities given before use override those in the terminal type
invoked by use. A capability can be cancelled by placing xx@
to the left of the capability definition, where xx is the capability.
For example, the entry

2621-n1, srnkx@, rrnkx@, use=2621,

defines a 2621-nl that does not have the srnkx or rmkx capabili­
ties, and hence does not turn on the function key labels when in
visual mode. This is useful for different modes for a terminal, or
for different user preferences.

FILES
/usr/1ib/terrninfo/?/*

SEE ALSO

files containing binary termi­
nal descriptions

tic(IM), curses(3X), printf(3S), terrn(4).

February, 1990
RevisionC

22

ttytype(4) ttytype(4)

NAME
t t yt ype - database of terminal types by port

DESCRIPTION
t t yt ype is a database containing, for each tty port on the sys­
tem, the kind of terminal that is attached to it. There is one line
per port, containing the terminal kind (as a name listed in
termcap(4)), a space, and the name of the tty, minus / dev /.

This information is read by tset(l) and by login(l) to initial­
ize the TERM environment variable at login time.

EXAMPLES

FILES

dw console
3a ttyO
h19 ttyl
h19 tty2
du ttydO

/etc/ttytype

SEE ALSO
tset(l),login(l).

1 February, 1990
RevisionC

tzfile(4) tzfile(4)

NAME
tzfile - time-zone infonnation

SYNOPSIS
#include <tzfile.h>

DESCRIPTION
The time-zone infonnation files used by tzset(3) begin with
bytes reserved for future use, followed by four 4-byte values of
type long, written in a standard byte order where the high-order
byte of the value is written first. These values are, in order:

tzh ttisstdcnt
The number of standard/wall indicators stored in the file

tzh leapcnt
The number of leap seconds for which data is stored in the
file

tzh timecnt
The number of "transition times" for which data is stored in
the file

tzh typecnt
The number of "local time types" for which data is stored in
the file (must not be 0)

tzh charcnt
The number of characters of "time-zone abbreviation
strings" stored in the file

The above header is followed by tzh timecnt 4-byte values of
type long, sorted in ascending order:-These values are written in
standard byte order. Each is used as a transition time (as returned
by time(2» where the rules for computing local time change.
Next come tzh_timecnt I-byte values of type unsigned
char. Each one tells which of the different types of "local time"
types described in the file is associated with the same-indexed
transition time. These values serve as indices into an array of
ttinfo structures that appears next in the file. These structures
are defined as follows:

struct ttinfo

} i

February, 1990
Revision C

long tt_gmtoffi
int tt_isdsti
unsigned inttt_abbrindi

1

tzfile(4) tzfile(4)

Each structure is written as a 4-byte value for t t gmt 0 f f of
type long, in a standard byte order, followed by aI-byte value
for tt isdst and a I-byte value for tt abbrind. In each
structure, tt_gmtoff gives the number of seconds to be added
to Greenwich mean time (GMn, tt isdst tells whether
tm isdst should be set by localtime(3), and tt abbrind
serVes as an index into the array of time-zone abbreviation charac­
ters that follow the ttinfo structure(s) in the file.

Then there are tzh_leapcnt pairs of 4-byte values, written in a
standard byte order. The first value of each pair gives the time (as
returned by time(2» at which a leap second occurs; the second
gives the total number of leap seconds to be applied after the
given time. The pairs of values are sorted in ascending order by
time.

Finally, there are tzh ttisstdcnt standard/wall indicators,
each stored as a I-byte value. They tell whether the transition
times associated with local time types are specified as standard
time or wall-clock time and are used when a time-zone file is used
in handling POSIX-style time-zone environment variables.

localtime uses the first standard-time ttinfo structure in the
file (or simply the first ttinfo structure in the absence of a
standard-time structure) if either tzh timecnt is 0 or the time
argument is less than the first transitiontime recorded in the file.

SEE ALSO
ctime(3), tzic(1M), tzdump(1M).

2 February, 1990
RevisionC

ufs(4)

NAME
u f s - format of a UPS file-system volume

SYNOPSIS
#include <sys/types.h>
#include <sys/time.h>
#include <sys/vnode.h>
#include <ufs/fs.h>
#include <ufs/inode.h>

DESCRIYTION

ufs(4)

Every Berkeley 4.2 file-system (UPS) storage volume (for exam­
ple, a hard disk or a floppy disk) has a common fonnat for certain
vital information. Each volume is divided into a certain number
of blocks. The block size is a parameter of the file system. Sec­
tors 0 to 7 on a file system may be used to contain bootstrap pro­
grams. The first superblock for the file system is located at sector
8.
The actual file system begins at sector 16 with the first alternate
superblock. The layout of the superblock as defined by the in­
clude file <uf s / f s . h> is:

tdefine FS MAGIC Ox01l954

struct fs {

struct fs *fs_Iink;

/* linked list of file systems */

struct fs *fs_rlink;

/* used for incore superblocks */

daddr t fs_sblkno;

/* addr of superblock in filesys */

daddr t fs cblkno; -
/* offset of cyl-block in filesys */

daddr t fs iblkno; -
/* offset of inode-blocks in filesys

daddr t fS_dblkno;

/* offset of first data after cg */

long fs_cgoffset;

*/

/* cylinder group offset in cylinder */

long fs_cgmask;

/* used to calc mod fs_ntrak */

time t fs_time;

/* last time written */

long fs_size;

February, 1990
Revision C

/* number of blocks in fs */

1

ufs(4) ufs(4)

2

long

long

long

long

long

fs_dsize;

/* number of data blocks in fs */

fs_ncg;

/* number of cylinder groups */

fs_bsize;

/* size of basic blocks in fs */

fs_fsize;

/* size of frag blocks in fs */

fs_frag;

/* number of frags in a block in fs */

/* these are configuration parameters */

long

long

long

fs_minfree;

/* minimum percentage of free blocks */

fs_rotdelay;

/* num of ms for optimal next block */

fs_rps;

/* disk revolutions per second */

/* these fields can be computed from the others */

long fS_bmask;

/* "blkoff" calc of blk offsets */

long fs_fmask;

/* "[ragoff" calc of frag offsets */

long fs_bshift;

/* "lblkno" calc of logical blkno */

long fs_fshift;

/* "numfrags" calc number of frags */

/* these are configuration parameters */

long fs_maxcontig;

/* max number of contiguous blks */

long fs_maxbpg;

/* max number of blks per cyl group */

/* these fields can be computed from the others */

long

long

long

long

long

fs_fragshift;

/* block to frag shift */

fs_fsbtodb;

/* fsbtodb and dbtofsb shift constant */

fs_sbsize;

/* actual size of superblock */

fs_csmask;

/* csum block offset */

fs_csshift;

/* csum block number */

February, 1990
RevisionC

ufs(4) ufs(4)

long fs_nindir;

/* value of NINDIR */

long fs inopb;

/* value of INOPB */

long fs_nspf;

/* value of NSPF */

long fs_optim;

/* optimization preference */

long fs_sparecon[2];

/* reserved for future constants */

long fs_state;

/* file-system state */

long fs id[2];

/* file-system id */

/* sizes determined by number of cylinder groups and their sizes */

daddr t fs_csaddr;

/* blk addr of cyl grp summary area */

long fs cssize;

/* size of cyl grp summary area */

long fs_cgsize;

/* cylinder group size */

/* these fields should be derived from the hardware */

long fs_ntrak;

/* tracks per cylinder */

long fs_nsect;

/* sectors per track */

long fs_spc;

/* sectors per cylinder */

/* this comes from the disk driver partitioning */

long fs_ncyl;

/* cylinders in file system */

/* these fields can be computed from the others */

long fs_cpg;

/* cylinders per group */

long fs_ipg;

/* inodes per group */

long fs_fpg;

/* blocks per group * fs_frag */

/* this data must be recomputed after crashes */

struct csum fs_cstotal;

/* cylinder summary information */

/* these fields are cleared at mount time */

February, 1990
Revision C

3

ufs(4) ufs(4)

4

char fs_fmodi

/* superblock modified flag */

char fs_cleani

/* file system is clean flag */

char fs_ronlYi

/* mounted read-only flag */

char fs_flagsi

/* currently unused flag */

char fs_fsmnt[MAXMNTLEN]i

/* name mounted on */

char fs_fsname[6];

/* file-system name */

char fs_fpack[6];

/* file-system pack name */

/* these fields retain the current block allocation info */

long fs_cgrotor;

/* last cg searched */

struct csum *fs_csp[MAXCSBUFS]i

/* list of fs cs info buffers */

long fs_cpc;

/* cyl per cycle in postbl */

short fs_postbl[MAXCPG] [NRPOS)i

/* head of blocks for each rotation */

long fs~agici

/* magic number */

u char fs_rotbl[l]i

/* list of blocks for each rotation */

/* actually longer */

}i

A disk may contain one or more partitions. A disk partition may
contain at most one file system. A file system consists of a
number of cylinder groups. Each cylinder group has inodes and
data.

A BSD file system is described by its superblock, which in turn
describes the cylinder groups. The superblock is critical data and
is replicated in each cylinder group to protect against catastrophic
loss. This is done at file-system creation time. In addition, the
critical superblock data does not change, so the copies need not be
referenced further unless disaster strikes.

February, 1990
RevisionC

ufs(4) ufs(4)

Addresses stored in inodes are capable of addressing fragments of
blocks. File-system blocks of at most size MAXBSIZE can be op­
tionally broken into 2, 4, or 8 pieces, each of which is addressable.
These pieces may be DEV_BSIZE or some multiple of a
DEV BS I ZE unit.

Large files consist of exclusively large data blocks. To avoid un­
due wasted disk space, the last data block of a small file is allocat­
ed as only as many fragments of a large block as are necessary.
The file-system format retains only a single pointer to such a frag­
ment, which is a piece of a single large block that has been divid­
ed. The size of such a fragment can be determined from informa­
tion in the inode by using the blksize(fs, ip, lbn) macro.

The file system records space availability at the fragment level.
To determine block availability, aligned fragments are examined.

The root inode is the root of the file system. Inode 0 can't be used
for normal purposes and historically bad blocks were linked to
inode 1, thus the root inode is 2. (Inode 1 is no longer used for
this purpose; however, numerous dump tapes make this assump­
tion, so we are forced to keep it.) The lost+found directory is
given the next available inode when it is initially created by
mkfs.

fs minfree gives the minimum acceptable percentage of file
system blocks that may be free. If the free list drops below this
level, only the superuser may continue to allocate blocks. This
may be set to 0 if no reserve of free blocks is deemed necessary;
however, severe performance degradations occur if the file-system
is run at greater than 90% full. Thus the default value of
fs minfree is 10%.

Empirically, the best trade-off between block fragmentation and
overall disk utilization at a loading of 90% comes with a fragmen­
tation of 4; thus the default fragment size is a fourth of the block
size.

Cylinder-group Related Limits
Each cylinder keeps track of the availability of blocks at different
rotational positions so that sequential blocks can be laid out with
minimum rotational latency. NRPOS is the number of rotational
positions that are distinguished. With NRPOS 8 the resolution of
the summary information is 2 ms for a typical 3600 rpm drive.

February,1990
Revision C

5

ufs(4) ufs(4)

6

fs_rotdelay gives the minimum number of milliseconds to in­
itiate another disk transfer on the same cylinder. It is used in
determining the rotationally optimal layout for disk blocks within
a file. The default value for fs_rotdelay is 2 ms.

Each file system has a statically allocated number of inodes. An
inode is allocated for each NBPI bytes of disk space. The inode
allocation strategy is extremely conservative.

MAXIPG bounds the number of inodes per cylinder group and is
needed only to keep the structure simpler by having the only a sin­
gle variable size element (the free bit map). Note that MAXIPG
must be a multiple of INOPB(fs).

MINBSIZE is the smallest allowable block size. With
MINBSIZE of 4096t it is possible to create files of size 2"32 with
only two levels of indirection. MINBSIZE must be big enough to
hold a cylinder group blockt so changes to (struct cg) must
keep its size within MINBSIZE. MAXCPG is limited only to di­
mension an array in (struct cg); it can be made larger as long
as that structurets size remains within the bounds dictated by
MINBSIZE. Note that superblocks are never more than size
SBSIZE.

The pathname on which the file system is mounted is maintained
in fs fsmnt. MAXMNTLEN defines the amount of space allocat­
ed in the superblock for this name. The limit on the amount of
summary information per file system is defined by MAXCSBUFS.
It is currently parameterized for a maximum of two million
cylinders.

Per cylinder-group information is summarized in blocks allocated
from the data blocks of the first cylinder. These blocks are read int
from the location indicated by fs csaddrt in addition to the su­
perblock. The size of the summary information is given by
fs cssize.

Note that sizeof (struct csum) must be a power of two in
order for the f s c s macro to work.

Superblock for a File System
MAXBPC bounds the size of the rotational layout tables and is lim­
ited by the fact that the superblock is of size SBSI ZE. The size of
these tables is inversely proportional to the block size of the file
system. The size of the tables is increased when sector sizes are
not powers of twot as this increases the number of cylinders in-

February t 1990
Revision C

ufs(4) ufs(4)

cluded before the rotational pattern repeats (fs cpc). The size
of the rotational layout tables is derived from the-number of bytes
remaining in (struct fs).

MAXBPG bounds the number of blocks of data per cylinder group
and is limited by the fact that cylinder groups are at most one
block. The size of the free-block table is derived from the size of
blocks and the number of remaining bytes in the cylinder group
structure (struct cg).

Inode
The inode is the focus of all file activity in the UNIX® file sys­
tem. There is a unique inode allocated for each active file, each
current directory, each mounted-on file, text file, and the root. An
inode is named by its device/i-number pair. For further informa­
tion, see the include file <uf s / inode. h>.

SEE ALSO
newfs(1M), svfs(4).

February, 1990
RevisionC

7

utmp(4) utmp(4)

NAME
utmp, wtmp - utmp and wtmp entry formats

SYNOPSIS
#include <sys/types.h>
#include <utmp.h>

DESCRIPTION

1

These files, which hold user and accounting infonnation for such
commands as who(l), write(1), and login(l), have the follow­
ing structure as defined by <utmp. h>:
#define UTMP _FILE
#define WTMP_FILE

"/etc/utmp"
"/etc/wtmp"

#define ut name ut user

struct utmp
char
char

ut_user[8];
ut_id[4];

char ut line[12];

short ut_pid;
short ut_type;
struct exit status

short e_termination;

short e_exit;
ut_exit;

time t
char

ut time;
ut_host[16];

} ;

/* Definitions for ut type */
#define EMPTY - 0
#define RUN LVL
#define BOOT TIME
#define OLD TIME
#define NEW TIME
#define INIT PROCESS

1
2
3
4
5

#define LOGIN PROCESS 6

#define
#define
#define
#define

USER PROCESS 7
DEAD PROCESS 8
ACCOUNTING 9
UTMAXTYPE ACCOUNTING

/* User login name */
/* /etc/inittab id

* (usually line #) */
/* device name (console,

lnxx) */
/* process id */
/* type of entry */

/* Process termination
status */

/* Process exit status */
/* The exit status of

a process
* marked as

DEAD PROCESS */
/* time entry was made */
/* host name if remote */

/* Process spawned
by init * /

/* A getty process
waiting for login */

/* A user process */

/* Largest legal value

February, 1990
RevisionC

utmp(4) utmp(4)

/* Special strings or formats used in the ut line */
/* field when accounting for something other than */
/* a process. No string for the ut line field */
*/ can be more than 11 chars + a NULL in length. */
#define RUNLVL MSG "run-level %c"
#define BOOT_MsG "system boot"
#define OTIME MSG "old time"
#define NTIME MSG "new time"

FILES
/usr/include/utmp.h
/etc/utmp
/etc/wtmp

SEE ALSO
login(I), who(l), wri te(l), get ut(3C).

February, 1990
Revision C

2

ypfiles(4) ypfiles(4)

NAME
yp f i 1 e s - the Yellow Pages database and directory structure

DESCRIPTION

1

The yellow pages (YP) network lookup service uses a database of
dbm files in the directory hierarchy at / etc/yp. A dbm database
consists of two files, created by calls to the dbm(3X) library pack­
age. One has the filename extension. pag and the other has the
filename extension . di r. For instance, the database named
hst. nm, is implemented by a pair of files, hst. nm. pag and
h st. nm. di r. A dbm database served by the yP is called a yP

map. A yP domain is a named set of yP maps. Each yP domain
is implemented as a subdirectory of / etc/yp containing the
map. Any number of yP domains can exist. Each may contain
any number of maps.

No maps are required by the YP lookup service itself, although
they may be required for the normal operation of other parts of the
system. There is no list of maps which YP serves; if the map ex­
ists in a given domain and a client asks about it, the YP will serve
it. For a map to be accessible consistently, it must exist on all yP

servers that serve the domain. To provide data consistency
between the replicated maps, an entry to run ypxfr periodically
should be made in /usr/lib/crontab on each server. More
information on this topic is in ypxfr(lM).

yP maps should contain two distinguished key-value pairs. The
first is the key YP LAST MODIFIED, having as a value a ten­
character ASCII oider number. The order number should be the
UNIX time in seconds when the map was built. The second key is
YP MASTER NAME, with the name of the YP master server as a
vaiue. makedbm generates both key-value pairs automatically. A
map that does not contain both key-value pairs can be served by
the YP, but the ypserv process will not be able to return values
for "Get order number" or "Get master name" requests. In ad­
dition, values of these two keys are used by ypx f r when it
transfers a map from a master YP server to a slave. If ypxfr
cannot figure out where to get the map or if it is unable to deter­
mine whether the local copy is more recent than the copy at the
master, you must set extra command line switches when you run
it.

February, 1990
RevisionC

ypfiles(4) ypfiles(4)

yP maps must be generated and modified only at the master
server. They are copied to the slaves using ypxfr(1M) to avoid
potential byte-ordering problems among yP servers running on
machines with different architectures, and to minimize the amount
of disk space required for the dbrn files. The yP database can be
initially set up for both masters and slaves by using ypini t(1M).

After the server databases are set up, it is probable that the con­
tents of some maps will change. In general, some ASCII source
version of the database exists on the master, and it is changed with
a standard text editor. The update is incorporated into the yP map
and is propagated from the master to the slaves by running
/ etc/yp/Makefile. All vendor-supplied maps have entries
in / etc/yp/Makefile; if you add a YP map, edit the this file
to support the new map. The makefile uses rna kedbrn to generate
the yP map on the master, and yppush to propagate the changed
map to the slaves. yppush is a client of the map ypservers,
which lists all the yP servers. For more information on this topic,
see yppush(1M).

SEE ALSO
rnakedbrn(1M), ypinit(IM), yprnake(IM), ypxfr(1M),
yppush(1M), yppoll(lM), ypserv(IM), rpcinfo(1M),
AIUX Network Applications Programming, Appendix E: YP
Protcol Specification.

February, 1990
Revision C

2

Table of Contents

Section 5: Miscellaneous Facilities

intro(5) introduction to miscellaneous facilities
ae(5) ... 3Com 10 Mb/s Ethernet interface
arp(5P) ... Address Resolution Protocol
ascii(5) ... map of ASCII character set
environ(5) ... user environment
eqnchar(5) special character definitions for eqn and neqn
fcnt1(5) ... file control options
font(5) description files for device-independent troff
greek(5) graphics for the extended TrY -37 type-box
icmp(5P) .. Internet Control Message Protocol
inet(5F) ... Internet protocol family
ip(5P) ... Internet Protocol
10(5) ... software loopback network interface
man(5) macros for formatting entries in this manual
math(5) .. math functions and constants
me(5) .. macros for formatting papers
mm(5) macro package for formatting documents
mptx(5) the macro package for formatting a permuted index
ms(5) .. text formatting macros
mv(5) a troff macro package for typesetting viewgraphs and slides
nterm(5) .. terminal driving tables for nroff
prof(5) .. profile within a function
regexp(5) regular expression compile and match routines
stat(5) .. data returned by stat system call
tcp(5P) Internet Transmission Control Protocol
term(5) ... conventional names for terminals
troff(5) description of troff output language
types(5) ... primitive system data types
udp(5P) .. Internet User Datagram Protocol
va1ues(5) .. machine-dependent values

Section 5

intro(S)

NAME
intro - introduction to miscellaneous facilities

SYNOPSIS
#include <sys/socket.h>
#include <net/route.h>
#include <net/if.h>

DESCRIPTION

intro(S)

This section describes miscellaneous facilities (such as macro
packages, character set tables, and so forth) and networking facili­
ties (such as network protocols) available in the system.

Macro packages, character set tables and hardware support for
network interfaces are found among the standard Section Sentries.
Entries describing a protocol family are marked SF, while entries
describing protocol use are marked SP.

NETWORKING FACILITIES
All network protocols are associated with a specific protocol fami­
ly. A protocol family provides basic services to the protocol im­
plementation to allow it to function within a specific network en­
vironment. These services may include packet fragmentation and
reassembly, routing, addressing, and basic transport. A protocol
family may support multiple methods of addressing, though the
current protocol implementations do not. A protocol family is
normally comprised of a number of protocols, one per
socket(2N) type. It is not required that a protocol family sup­
port all socket types. A protocol family may contain multiple pro­
tocols supporting the same socket abstraction.

A protocol supports one of the socket abstractions detailed in
socket(2N). A specific protocol may be accessed either by
creating a socket of the appropriate type and protocol family, or
by requesting the protocol explicitly when creating a socket. Pro­
tocols normally accept only one type of address [annat, usually
determined by the addressing structure inherent in the design of
the protocol family/network architecture. Certain semantics of the
basic socket abstractions are protocol specific. All protocols are
expected to support the basic model for their particular socket
type, but may, in addition, provide nonstandard facilities or exten­
sions to a mechanism. For example, a protocol supporting the
SOCK STREAM abstraction may allow more than one byte of
out-of-=band data to be transmitted per out-of-band message.

February, 1990
Revision C

1

intro(5) intro(5)

2

A network interface is similar to a device interface. Network in­
terfaces comprise the lowest layer of the networking subsystem,
interacting with the actual transport hardware. An interface may
support one or more protocol families or address formats.

PROTOCOLS
The system currently supports only the DARPA Internet protocols
fully. Raw socket interfaces are provided to IP protocol layer of
the DARPA Internet, to the IMP link layer (1822), and to Xerox
PUP-l layer operating on top of 3Mb/s Ethernet interfaces. Con­
sult the appropriate manual pages in this section for more informa­
tion regarding the support for each protocol family.

ADDRESSING
Associated with each protocol family is an address format. The
following address formats are used by the system:
#define AF_UNIX 1 /*local to host (pipes, portals)*/
#define AF INET 2 /*internetwork: UDP, TCP, etc.*/
#define AF-IMPLINK 3 /*arpanet imp addresses*/
#define AF_PUP 4 /*pup protocols: e.g. BSP*/

Note: Only AF_INET is appropriate for this implementa­
tion.

ROUTING
The network facilities provided limited packet routing. A simple
set of data structures comprise a "routing table" used in selecting
the appropriate network interface when transmitting packets. This
table contains a single entry for each route to a specific network or
host. A user process, the routing daemon, maintains this data base
with the aid of two socket specific ioctl(2) commands,
SIOCADDRT and SIOCDELRT. The commands allow the addi­
tion and deletion of a single routing table entry, respectively.
Routing table manipulations may only be carried out by superuser.

A routing table entry has the following form, as defined in
<net / route. h>;
struct rtentry {

u_long rt hash;
so~kaddr rt_dst;
sockaddr rt gateway;
rt_flags; -
rt_refcnt;

} ;

struct
struct
short
short
u_long
struct

rt_use;
ifnet *rt_ifp;

February, 1990
Revision C

intro(5) intro(5)

with rt_flags defined from,
#define RTF UP Oxl
#define RTF-GATEWAY Ox2
#define RTF-HOST Ox4

/*route usable*/
/*destination is a gateway*/
/*host entry (net otherwise)*/

Routing table entries come in three flavors: for a specific host, for
all hosts on a specific network, for any destination not matched by
entries of the first two types (a wildcard route). When the system
is booted, each network interface autoconfigured installs a routing
table entry when it wishes to have packets sent through it. Nor­
mally the interface specifies the route through it is a "direct" con­
nection to the destination host or network. If the route is direct,
the transport layer of a protocol family usually requests the packet
be sent to the same host specified in the packet. Otherwise, the in­
terface may be requested to address the packet to an entity dif­
ferent from the eventual recipient (that is, the packet is forward­
ed).

Routing table entries installed by a user process may not specify
the hash, reference count, use, or interface fields; these are filled
in by the routing routines. If a route is in use when it is deleted
(rt refcnt is nonzero), the resources associated with it will not
be reclaimed until further references to it are released.

The routing code returns EEXIST if requested to duplicate an ex­
isting entry, ESRCH if requested to delete a nonexistent entry, or
ENOBUF S if insufficient resources were available to install a new
route.

User processes read the routing tables through the / dev / kmem
device.

The rt use field contains the number of packets sent along the
route. This value is used to select among multiple routes to the
same destination. When multiple routes to the same destination
exist, the least-used route is selected.

A wildcard routing entry is specified with a zero destination ad­
dress value. Wildcard routes are used only when the system fails
to find a route to the destination host and network. The combina­
tion of wildcard routes and routing redirects can provide an
economical mechanism for routing traffic.

February, 1990
Revision C

3

intro(5) intro(5)

INTERFACES
Each network interface in a system corresponds to a path through
which messages may be sent and received. A network interface
usually has a hardware device associated with it, though certain
interfaces such as the loopback interface, 10(5), do not.

At boot time, each interface which has underlying hardware sup­
port makes itself known to the system during the
autoconfiguration process. Once the interface has acquired its ad­
dress, it is expected to install a routing table entry so that mes­
sages may be routed through it. Most interfaces require some part
of their address specified with an SIOCSIFADDR ioctl before
they will allow traffic to flow through them. On interfaces where
the network-link layer address mapping is static, only the network
number is taken from the ioct1; the remainder is found in a
hardware specific manner. On interfaces which provide dynamic
network-link layer address mapping facilities (for example,
10Mb/s Ethemets), the entire address specified in the ioctl is used.

The following ioctl calls may be used to manipulate network
interfaces. Unless specified otherwise, the request takes an
ifrequest structure as its parameter. This structure has the
form
#define ifr_addr ifr_ifru.ifru_addr /* address */
#define ifr_dstaddr ifr_ifru.ifru_dstaddr /* other end of

p-to-p link */
#define ifr_flags ifr_ifru.ifru_flags /* flags */

struct ifreq
char ifr_name[16]; /* name of interface

(e.g. "ecD") */

} ;

union
struct
struct
short

} ifr_ifru;

sockaddr ifru addr;
sockaddr ifru=dstaddr;
ifru_flags;

SIOCSIFADDR Set interface address. Following the ad­
dress assignment, the "initialization"
routine for the interface is called.

SIOCGIFADDR Get interface address.

SIOCSIFDSTADDR Set point to point address for interface.

SIOCGIFDSTADDR Get point to point address for interface.

4 February, 1990
Revision C

intro(5)

SIOCSIFFLAGS

SIOCGIFFLAGS

SIOCGIFCONF

/*

intro(5)

Set interface flags field. If the interface
is marked down, any processes currently
routing packets through the interface are
notified.

Get interface flags.

Get interface configuration list. This re­
quest takes an ifconf structure (see
below) as a value-result parameter. The
if c _len field should be initially set to
the size of the buffer pointed to by
if c buf. On return it will contain the
length, in bytes, of the configuration list.

* Structure used in SIOCGIFCONF request.
* Used to retrieve interface configuration
* for machine (useful for programs which
* must know all networks accessible).
*/

#define ifc buf ifc_ifcu.ifcu_buf /* buffer address */
#define ifc_req ifc_ifcu.ifcu_req /* array of structures

returned */
struct ifconf {

int

union
caddr_t ifcu_buf;

/* size of associated
buffer * /

struct ifreq *ifcu_req;
ifc ifcu;

} ;

SEE ALSO
routed(1M), socket(2N), ioctl(2).

February, 1990
Revision C

5

ae(5) ae(5)

NAME
ae - 3Com 10 Mb/s Ethernet interface

DESCRIPTION
The ae interface provides host access to an industry standard 10
Mb/s Ethernet.

The host's Internet address is specified at boot time with an
SIOCSIFADDR ioctl. The hosts's Ethernet address is read
from ROM on the Ethernet board using etheraddr(IM). The
ae interface employs the address resolution protocol described in
arp(5P) to dynamically map between Internet and Ethernet ad­
dresses on the local network.

DIAGNOSTICS
ae%d: init failed

The NIC chip on the Ethernet board would not initalize.

ae%d transmitter frozen - resetting

A packet transmission failed to complete within a predetermined
timeout period.

ae%d spurious interrupt

An interrupt was received but no operation was active.

ae%d: can't handle af%d

The interface was handed a message with addresses formatted in
an unsuitable address family; the packet was dropped.

SEE ALSO
etheraddr(lM), inet(5F), intro(5), arp(5P).

FILES

1

/etc/boot.d/ae6
/etc/master.d/ae6
/etc/startup.d/ae6

February, 1990
Revision C

arp(SP) arp(5P)

NAME
a rp - Address Resolution Protocol

DESCRIPTION
a rp is a protocol used to dynamically map between DARPA In­
ternet and 10Mb/s Ethernet addresses on a local area network. It
is used by all the 10Mb/s Ethernet interface drivers and is not
directly accessible to users.

arp caches Internet-Ethernet address mappings. When an inter­
face requests a mapping for an address not in the cache, a rp
queues the message which requires the mapping and broadcasts a
message on the associated network requesting the address map­
ping. If a response is provided, the new mapping is cached and
any pending messages are transmitted. arp itself is not Internet
or Ethernet specific; this implementation, however, is. arp will
queue at most one packet while waiting for a mapping request to
be responded to; only the most recently "transmitted" packet is
kept.

a rp watches passively for hosts impersonating the local host (i.e.
a host which responds to an a rp mapping request for the local
host's address) and will, optionally, periodically probe a network
looking for impostors.

DIAGNOSTICS
"duplicate IP address!! sent from ethernet
address: %x %x %x %x %x %x"

arp has discovered another host on the local network which
responds to mapping requests for its own Internet address.

February, 1990 1
Revision C

ascii(5) ascii(5)

NAME
as c i i-map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

DESCRIPTION

1

ascii is a map of the ASCII character set, giving both octal and
hexadecimal equivalents of each character, to be printed as need­
ed. It contains:

000 nul 1001 soh 1002 stx 1003 etx 1004 eot 1005 enq 1006 ack 1007 bel

010 bs 1011 ht 1012 nl 1013 vt 1014 np 1015 cr 1016 so 1017 si

020 dIe 1021 del 1022 dc21023 dc31024 dc41025 nak 1026 syn 1027 etb

030 can 1031 em 1032 sub 1033 esc 1034 fs 1035 gs 1036 rs 1037 us

040 sp

050 (

060 0

070 8

100@

110 H

120 P

130 X
140 •

150 h

160 P
170 x

00 nul

08 bs

10 dIe

18 can

20 sp

28 (

30 0

38 8

40@

48 H

50 P

58 X
60 •

68 h

70 P
78 x

1041

1051

1061 1

1071 9

1101 A

1111 I

1121 Q
1131 Y

1141 a

1151

1161 q

1171 y

1042" 1043 # 1044 $ 1045 % 1046 & 1047'

1052 * 1053 + 1054, 1055 - 1056. 1057 /

1062 2 1063 3 1064 4 1065 5 1066 6 1067 7

1072 :

1102 B

1112 J

1122 R

1132 Z

1142 b

1152 j

1162 r

1172 z

1073 ;

1103 C

1113 K

1123 S

1133 [

1143 c

1153 k

1163 s

1173

1074 <
1104 D

1114 L

1124 T

1134 \

1144 d

1154 I

1164 t

1174 I

1075 =

1105 E

1115 M

1125 U

1135 1
1145 e

1155 m

1165 u

1175

1076 >
1106 F

1116 N

1126 V

1136 A

1146 f

1156 n

1166 v

1176 -

1077 ?

1107 G

1117 0

1127 W

1137

1147 g

1157 0

1167 w

1177 del

01 soh I 02 stx I 03 etx I 04 eot I 05 enq I 06 ack I 07 bel

09 h t I Oa nl I Ob vt I Oc np I Od cr I Oe so I Of s i

11 del I 12 dc21 13 dc3 I 14 dc4 I 15 nak I" 16 syn I 17 etb

1 9 em 1a sub lIb esc lIe f s lId g s 1 e r s I If u s

21 22 " 23 # 24 $ 25 % 26 & 27'

29 2a * 2b + 2c, 2d - 2e • 2f /

31 1 32 2 33 3 34 4 35 5 36 6 37 7

39 9 3a: 3b ; 3c < 3d = 3e > 3f?

41 A 42 B 43 C 44 D 45 E 46 F 47 G

49 I 4a J 4b K 4c L 4d M 4e N 4 f 0

51 Q 52 R 53 S 54 T 55 U 56 V 57 W

59 Y 5a Z 5b [5c \ 5d 1 5e A 5f

61 a 62 b 63 c 64 d 65 e 66 f 67 g

69 i 6a j 6b k 6c 6d m 6e n 6f 0

71 q 72 r 73 s 74 t 75 u 76 v 77 w

79 y 7a z 7b { 7c 7d } 7e - 7f del

February, 1990
Revision C

ascii(5)

FILES
/usr/pub/ascii

February, 1990
Revision C

ascii(5)

2

environ(5) environ(5)

NAME
environ - user environment

SYNOPSIS
extern char **environi

DESCRIJ!fION

1

An array of strings called the environment is made available by
exec(2) when a process begins. By convention these strings
have the form "name=value". The following names are used by
various commands:

PATH The sequence of directory prefixes that sh, time,
nice(1), etc., apply in searching for a file known by
an incomplete path name. The prefixes are separated
by :. login(1) sets

PATH=:/bin:/usr/bin

HOME A user's login directory, set by login(l) from the
password file passwd(4).

TERM The kind of terminal for which output is to be
prepared. This information is used by commands,
such as nroff, more, or vi, which may exploit
special terminal capabilities. See /etc/termcap
or (termcap(4)) for a list of terminal types.

SHELL The file name of the user's login shell.

TERMCAP The string describing the terminal in TERM, or the
name of the termcap file, see termcap(4).

EXINIT A startup list of commands read by ex(l), edi tel),
and vi(l).

LOGNAME The login name of the user.

T Z Time zone information. The format is xxxn z z z
where xxx is standard local time zone abbreviation,
n is the difference is hours from GMT, and z z z is
the abbreviation for the daylight-saving local time
zone, if any; for example, ESTSEDT.

Further names may be placed in the environment by the expo rt
command and "name=value" arguments in sh(l), or by the
setenv command if you use csh(l). Arguments may also be
placed in the environment at the point of an exec(2). It is unwise
to conflict with certain sh(1) variables that are frequently export-

February, 1990
Revision C

environ(5}

ed by • profile files: MAIL, PSI, PS2, IFS.

SEE ALSO
csh(l}, ex(l}, ksh(l}, login(l}, sh(l}, exec(2),
system(3S}, termcap(4}, t ty(7}.

February, 1990
Revision C

environ(5}

2

eqnchar(5) eqnchar(5)

NAME
eqnchar - special character definitions for eqn and neqn

SYNOPSIS
eqn /usr/pub/eqnchar [options] [-]files] I traff
[options]

eqn /usr/pub/cateqnchar [options] [-]files] I traff
[options]

neqn /usr/pub/eqnchar [options] [-]files] I traff
[options]

eqn -Taps /usr/pub/apseqnchar [options] [-]files]
I traff [options]

DESCRIPTION
/usr /pub/ eqnchar contains traff(l) and nraff(l) char­
acter definitions for constructing characters that are not ordinarily
available on a phototypesetter or printer. These definitions are
primarily intended for use with eqn(l) and neqn(l).

For a complete list of input and output characters contained in
/usr/pub/eqnchar, see the "eqn Reference" in A/UX Text
Processing Tools.

/usr /pub/ apseqnchar is a version of eqnchar tailored for
the Autologic APS-5 phototypesetter. If you use apseqnchar,
output will not look optimal on other phototypesetters.
cateqnchar is more "device independent," and should look
reasonable on any device supported by traff(l). You may link
/usr/pub/eqnchar to /usr/pub/cateqnchar or to
/usr/pub/apseqnchar. By default, /usr/pub/eqnchar
is linked to /usr /pub/ apseqnchar.

FILES
/usr/pub/eqnchar
/usr/pub/apseqnchar
/usr/pub/cateqnchar

SEE ALSO
eqn(l), neqn(l), traff(l).
"eqn Reference" in A/UX Text Processing Tools.

1 February, 1990
Revision C

fcntl(5) fcntl(5)

NAME
fcntl- file control options

SYNOPSIS
#include <fcntl.h>

DESCRIPTION
fcntl(2) provides for control over open files. The include file
describes requests and arguments to fcntl(2) and open(2).
Ufndef
#define

fcntl h
fcntl-h

1* POSIX requires types; most applications don't do this yet! *1
#ifndef sys types h
#include~sys7types~h>
#endif I*! sys types_h *1

1* Flag values accessible to open(2) and fcntl(2) *1
1* (The first three can only be set by open) *1
#if defined(SYSV SOURCE) I I defined (POSIX SOURCE)
#ifndef __ sys_file_h --
#define O_RDONLY 0
#define O_WRONLY 1
#define O_RDWR 2
#define a APPEND 010 1* append (writes

guaranteed at the end) *1

1* Flag values accessible only to open(2) *1
#define a CREAT 00400 1* open with file create

(uses third open arg) *1
#define O_TRUNC 01000 1* open with truncation *1
#define O_EXCL 02000 1* exclusive open *1

1* fcntl (2) requests *1
#define F DUPFD 0 1* Duplicate fildes *1
#define F_GETFD 1 1* Get fildes flags *1
#define F_SETFD 2 1* Set fildes flags * 1
#define F_GETFL 3 1* Get file flags *1
#define F SETFL 4 1* Set file flags *1
#define F_GETLK 5 1* Get file lock *1
#define F_SETLK 6 1* Set file lock *1
#define F_SETLKW 7 1* Set file lock and wait *1

1* file segment locking set data type - information passed *1
1* to system by user *1
struct flock {

short
long
long

February, 1990
Revision C

i_whence;
i_start;
i_len; 1* len o means until end of file *1

1

fcntl(5) fcntl(5)

int
} ;

/* file segment locking types */
#define F RDLCK 01 /* Read lock * /
#define (~WRLCK 02 /* Write lock * /
#define F _UNLCK 03 /* Remove locks * /

#endif /* SYSV SOURCE I I _POSIX_SOURCE */

#ifdef BSD SOURCE
/* Additional fcntl(2) request */
#define F GETOWN 8 /* Get owner */
#define F_SETOWN 9 /* Set owner */
#endif /* _BSD_SOURCE */

#ifdef POSIX SOURCE
/* File-access mode mask */
#define O_ACCMODE 03

/* POSIX-defined argument to F SETFD */
#define FD CLOEXEC Ox0001

/* POSIX-defined flag values accesible to open(2) and/or fcntl(2) */
#define 0 NONBLOCK 040000 /* 0 NDELAY POSIX style */
#define O-NOCTTY 0100000 /* don't assign controlling tty */
#endif /* POSIX SOURCE */

#ifdef AUX SOURCE
/* Implementation-define flag values accessible to open(2) */
#define 0 GETCTTY 0200000 /* force controlling tty assignment */
#endif /*-_AUX_SOURCE */
#endif /* fcntl_h */

SEE ALSO
fcntl(2),open(2).

2 February, 1990
Revision C

font(5) font(5)

NAME
font - description files for device-independent troff

SYNOPSIS
troff -Ttty-type ...

DESCRIPTION
For each phototypesetter that troff(l) supports and that is avail­
able on your system, there is a directory containing files describ­
ing the device and its fonts. This directory is named
/usr/lib/font/devtty-type where tty-type is the name of the
phototypesetter. Currently, the supported devices are aps for the
Autologic APS-5, psc for a POSTSCRIPT® device such as the
Apple LaserWriter®, and iw for the Apple ImageWriter® II.

For a particular phototypesetter, tty-type, the ASCII file DESC in
the directory /usr/lib/font/devtty-type describes its
characteristics. A binary version of the file (described later in this
section) is found in the file / us r / 1 ib / f on t / de v tty­
type /DESC. out. Each line of this ASCII file starts with a word
that identifies the characteristic which is followed by appropriate
specifiers. Blank lines and lines beginning with the # character
are ignored.

The legal lines for DESC are:

res num Resolution of device in basic increments
per inch.

hor num Smallest unit of horizontal motion.

ve rt num Smallest unit of vertical motion.

uni twidth num Point size in which widths are specified.

sizescale num Scaling for fractional point sizes.

paperwidth num Width of paper in basic increments.

paperlength num Length of paper in basic increments.

biggestfont num Maximum size of a font.

si zes num num ... List of point sizes available on the
typesetter.

fonts num name ... Number of initial fonts followed by the
names of the fonts. For example

fonts 4 RIB S

FebnllUY, 1990 1
Revision C

font(5) font(5)

2

charset This always comes last in the file and is
on a line by itself. Following it is the list
of special character names for this dev­
ice. Names are separated by a space or a
newline. The list can be as long as
necessary . Names not in this list are not
allowed in the font description files.

res is the basic resolution of the device in increments per inch.
hor and vert describe the relationships between motions in the
horizontal and vertical directions. If the device is capable of mov­
ing in single basic increments in both directions, both hor and
ve rt would have values of 1. If the vertical motions only take
place in multiples of two basic units while the horizontal motions
take place in the basic increments, then hor would be 1, while
vert would be 2. uni twidth is the point size in which all
width tables in the font description files are given. troff au­
tomatically scales the widths from the unitwidth size to the
point size it is working with. sizescale is not currently used
and is 1. paperwidth is the width of the paper in basic incre­
ments. The APS-5 is 6120 increments wide. paperlength is
the length of a sheet of paper in the basic increments. bi gge s t­
font is the maximum number of characters on a font.

For each font supported by the phototypesetter, there is also an
ASCII file with the same name as the font (for example, R, I, cw).
The format for a font description file is

name name

internalname name

special

ligatures name ... O

Name of the font, such as R or CWo

Internal name of the font.

Sets a flag indicating that the font is spe­
cial.

Sets a flag indicating font has ligatures.
The list of ligatures follows and is ter­
minated by a zero. Accepted ligatures
are: ff, fi, fl, ffi, and ffl.

spacewidth num Specifies width of space if something
other than default (1/3 of em) is desired.

charset The charset must come at the end.
Each line following the word charset

February, 1990
Revision C

font(5) font(5)

describes one character in the font. Each
line has one of two formats:

name width kerning code
name "

where name is either a single ASCII
character or a special character name
from the list found in DESC. The width
is in basic increments. The kerning in­
formation is 1 if the character descends
below the line, 2 if it rises above the
letter "a," and 3 if it both rises and des­
cends. The kerning infonnation for spe­
cial characters is not used and so may be
O. The code is the number sent to the
typesetter to produce the character. The
second format is used to indicate that the
character has more than one name. The
double quote indicates that this name has
the same values as the preceding line.
The kerning and code fields are not used
if the width field is a double quote char­
acter. The total number of different char­
acters in this list should not be greater
than the value of biggestfont in the
DESC file (as described earlier).

troff and its postprocessors read this information from binary
files produced from the ASCII files by a program distributed with
troff called makedev. For those with a need to know, a
description of the format of these files follows.

The file DESC. out starts with the dev structure, defined by
dev.h.

/*
dev.h: characteristics of a typesetter
*/

struct dev {
short filesize;

short res;

short hor;
short vert;

February, 1990
Revision C

/* number of bytes in file, */
/* excluding dev part *1
/* basic resolution in goobies

per inch */
/* goobies horizontally */

3

font(5) font(5)

4

short unitwidth;

short nfonts;

/* size at which widths
are given*/

/* number fonts physically
available */

short nsizes; /* number of pointsizes */
short size scale; /* scaling for fractional

point sizes */
short paperwidth; /* max line length in units */
short paperlength; /* max paper length in units */
short nchtab; /* number of funny names

in chtab */
short lchname; /* length of chname table */
short biggestfont; /* max # of chars in a font */
short spare2; /* in case of expansion */
} ;

filesi ze is merely the size of everything in DESC. out ex­
cluding the dev structure. nfonts is the number of different
font positions available. nsizes is the number of different point
sizes supported by this typesetter. nchtab is the number of spe­
cial character names. lchname is the total number of characters,
including nulls, needed to list all the special character names. At
the end of the structure are two spares for later expansion.

Immediately following the dev structure are a number of tables.
First is the sizes table, which contains nsizes+l shorts (a null
at the end), describing the point sizes of text available on this dev­
ice. The second table is the funny char index table. It
contains indexes for the the table whICh follows it, the
funny char strings. The indexes point to the beginning of
each special - character name which is stored in the
funny char strings table. The funny char strings
table -is lChname characters long, While the
funny_char_index_table is nchtab shorts long.

Following the dev structure will occur nfonts (font}.out files,
which are used to initialize the font positions. These {font} .out
files, which also exist as separate files, begin with a font struc­
ture and then are followed by four character arrays.
struct Font { /*
char nwfont; /*
char specfont; /*
char ligfont; /*

char namefont [10]; /*

char intname[10]; /*

characteristics of a font */
number of width entries */
1 -- special font */
1 -- ligatures exist
on this font */
name of this font,
e.g. , R */
internal name of font,
in ASCII */

February, 1990
Revision C

font(5) font(5)

} ;

The font structure tells how many defined characters there are in
the font, whether the font is a "special" font and if it contains
ligatures. It also has the ASCII name of the font, which should
match the name of the file it appears in, and the internal name of
the font located on the typesetting device (intname). The internal
name is independent of the font position and name that troff
knows about. For example, you might say "mount R in position
4", but when asking the typesetter to actually produce a character
from the R font, the postprocessor which instructs the typesetter
would use intname.

The first three character arrays are specific for the font and run in
parallel. The first array, widths, contains the width of each
character relative to uni twidth. uni twidth is defined in
DESC. The second array, kerning, contains kerning informa­
tion. If a character rises above the letter "a," 02 is set. If it des­
cends below the line, 01 is set. The third array, codes, contains
the code that is sent to the typesetter to produce the character.

The fourth array is defined by the device description in DESC. It
is the font index table. This table contains indices into the
width, ke;ning, and code tables for each character. The ord­
er that characters appear in these three tables is arbitrary and
changes from one font to the next. In order for t ro f f to be able
to translate from ASCII and the special character names to these
arbitrary tables, the font index table is created with an
order which is constant for each deVICe. The number of entries in
this table is 96 plus the number of special character names for this
device. The value 96 is 128-32, the number of printable charac­
ters in the ASCII alphabet. To determine whether a normal ASCII
character exists, troff takes the ASCII value of the character,
subtracts 32, and looks in the font index table. If it finds a
0, the character is not defined in thisfont. Ifit finds anything else,
that is the index into widths, kerning, and codes tables that
describe the character.

To look up a special character name, (for example \ (pI, the
mathematical plus sign), and to determine whether it appears in a
particular font or not, the following procedure is followed. A
counter is set to 0 and an index to a special character name is
picked out of the counter position in the
funny char index table. A string comparison is per­
formed - between - the element in the array

February, 1990 5
Revision C

font(5) font(5)

funny char strings [funny char index table
[counter]] and the special character name, ill our example pl, and
if it matches, then troff refers to this character as (96+counter).
When it wants to determine whether a specific font supports this
character, it looks in font index table [(96+counter)], to
see whether there is a 0, meaning the character does not appear in
this font, or number, which is the index into the widths, kern­
ing, and codes tables.

Notice that since a value of 0 in the font index table indi­
cates that a character does not exist, the Oth element of the
width, kerning, and codes arrays are not used. For this rea­
son the Oth element of the width array can be used for a special
purpose, defining the width of a space for a font. Normally a
space is defined by t ro f f to be 1/3 of the width of the \ (em
character, but if the Oth element of the width array is nonzero,
then that value is used for the width of a space.

SEE ALSO
troff(l).

FILES

6

/usr/lib/font/devtry rype/DESC.out
/usr/lib/font/devtry-:rype/jont. out

February, 1990
RevisionC

greek(5) greek(5)

psi 'If
OMEGA .Q

partial a
FILES

/usr/pub/greek

SEE ALSO

nu

PI
SIGMA

PHI

omega

not

v
IT
I:
<I>

co c

300(1), 4014(1), 450(1), greek(1), nroff(l), tc(1).
"Other Text Processing Tools" in AIUX Text Processing Tools.

February, 1990
Revision C

1

icmp(5P) icmp(5P)

NAME
i crop - Internet Control Message Protocol

SYNOPSIS
None; included automatically with inet(5F).

DESCRIPTION

1

The Internet Control Message Protocol, ICMP, is used by gate­
ways and destination hosts which process datagrams to communi­
cate errors in datagram-processing to source hosts. The datagram
level of Internet is discussed in ip(5P). ICMP uses the basic sup­
port of IP as if it were a higher level protocol; however, ICMP is
actually an integral part of IP. ICMP messages are sent in several
situations; for example: when a datagram cannot reach its destina­
tion, when the gateway does not have the buffering capacity to
forward a datagram, and when the gateway can direct the host to
send traffic on a shorter route.

The Internet protocol is not designed to be absolutely reliable.
The purpose of these control messages is to provide feedback
about problems in the communication environment, not to make
IP reliable. There are still no guarantees that a datagram will be
delivered or that a control message will be returned. Some da­
tagrams may still be undelivered without any report of their loss.
The higher level protocols which use IP must implement their own
reliability mechanisms if reliable communication is required.

The ICMP messages typically report errors in the processing of
datagrams; for fragmented datagrams, ICMP messages are sent
only about errors in handling fragment 0 of the datagram. To
avoid the infinite regress of messages about messages etc., no
ICMP messages are sent about ICMP messages. ICMP may how­
ever be sent in response to ICMP messages (for example,
ECHOREPL Y). There are eleven types of ICMP packets which
can be received by the system. They are defined in this excerpt
from <netinet/ ip icmp. h>, which also defines the values
of some additional cOdes specifying the cause of certain errors.
(Comments have been stripped for this listing.)

/*
* Definition of type and code field values
*/

*define ICMP ECHOREPLY 0
*define ICMP UNREACH 3
*define ICMP UNREACH NET 0 - -

February, 1990
Revision C

icmp(SP)

*define ICMP UNREACH HOST 1
*define ICMP UNREACH PROTOCOL 2 - -
*define ICMP UNREACH PORT 3 - -
*define ICMP UNREACH NEEDFRAG 4 - -
*define ICMP UNREACH SRCFAIL 5 - -
*define ICMP_SOURCEQUENCH 4
*define ICMP REDIRECT 5
*define ICMP REDIRECT NET 0 - -
*define ICMP REDIRECT HOST 1 - -
*define ICMP REDIRECT TOSNET 2
*define ICMP REDIRECT TOSHOST 3
*define ICMP ECHO 8
*define ICMP TIMXCEED 11
*define ICMP TIMXCEED INTRANS 0
*define ICMP TIMXCEED REASS 1
*define ICMP PARAMPROB 12
*define ICMP TSTAMP 13
*define ICMP TSTAMPREPLY 14
*define ICMP_IREQ 15
*define ICMP_IREQREPLY 16

icmp(5P)

Arriving ECHO and TST AMP packets cause the system to gen­
erate ECHOREPL Y and TSTAMPREPL Y packets. IREQ packets
are not yet processed by the system, and are discarded. UN­
REACH, SOURCEQUENCH, TIMXCEED and PARAMPROB
packets are processed internally by the protocols implemented in
the system, or reflected to the user if a raw socket is being used;
see ip(5P). REDIRECT, ECHOREPLY, TSTAMPREPLY and
IREQREPL Y are also reflected to users of raw sockets. In addi­
tion, REDIRECT messages cause the kernel routing tables to be
updated; see routing(5N).

SEE ALSO
inet(5F), ip(5P).
Internet Control Message Protocol, RFC792, J. Postel, USC-lSI

BUGS
IREQ messages are not processed properly: the address fields are
not set.

Messages which are source routed are not sent back using inverted
source routes, but rather go back through the normal routing
mechanisms.

February, 1990 2
Revision C

inet(5F) inet(5F)

NAME
inet - Internet protocol family

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>

DESCRIPTION
The Internet protocol family is a collection of protocols layered
atop the Internet Protocol (IP) transport layer, and utilizing the In­
ternet address format. The Internet family provides protocol sup­
port for the SOCK STREAM, SOCK DGRAM, and SOCK RAW
socket types; the SOCK RAW interface provides access to the IP
protocol. -

ADDRESSING
Internet addresses are four byte quantities, stored in network stan­
dard format (on the V AX these are word and byte reversed). The
include file <netinet / in. h> defines this address as a discrim­
inated union.

Sockets bound to the Internet protocol family utilize the following
addressing structure,

struct sockaddr_in {

} ;

short sin_family;
u short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

Sockets may be created with the address INADDR ANY to effect
"wildcard" matching on incoming messages. -

PROTOCOLS

1

The Internet protocol family is comprised of the IP transport pro­
tocol, Internet Control Message Protocol (ICMP), Transmission
Control Protocol (TCP) , and User Datagram Protocol (UDP).
TCP is used to support the SOCK STREAM abstraction while UDP
is used to support the SOCK DGRAM abstraction. A raw interface
to IP is available by creating an Internet socket of type
SOCK RAW. The ICMP message protocol is not directly accessi­
ble.

February, 1990
Revision C

inet(5F) inet(5F)

SEE ALSO
tcp(5P), udp(5P), ip(5P).

CAVEAT
The Internet protocol support is subject to change as the Internet
protocols develop. Users should not depend on details of the
current implementation, but rather the services exported.

February, 1990
Revision C

2

ip(5P) ip(5P)

NAME
i p - Internet Protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

DESCRIPTION
IP is the transport layer protocol used by the Internet protocol
family. It may be accessed through a "raw socket" when
developing new protocols, or special purpose applications. IP
sockets are connectionless, and are normally used with the send­
to and recvfrom calls, though the connect(2N) call may also
be used to fix the destination for future packets (in which case the
read(2) or recv(2N) and wri te(2) or send(2N) system calls
may be used).

Outgoing packets automatically have an IP header prefixed to
them (based on the destination address and the protocol number
the socket is created with). Likewise, incoming packets have their
IP header stripped before being sent to the user.

ERRORS
A socket operation may fail with one of the following errors re­
turned:

[EISCONN]

[ENOTCONN]

[ENOBUFS]

[EADDRNOTAVAIL]

when trying to establish a connection
on a socket which already has one, or
when trying to send a datagram with
the destination address specified and
the socket is already connected.

when trying to send a datagram, but no
destination address is specified, and the
socket hasn't been connected.

when the system runs out of memory
for an internal data structure.

when an attempt is made to create a
socket with a network address for
which no network interface exists.

SEE ALSO
send(2N), recv(2N), intro(5), inet(5F}.

1 February, 1990
Revision C

ip(5P)

BUGS
One should be able to send and receive ip options.

The protocol should be settable after socket creation.

February, 1990
Revision C

ip(5P)

2

10(5) 10(5)

NAME
10 - software loopback network interface

SYNOPSIS
pseudo-device loop

DESCRIPTION
The loop interface is a software loopback mechanism which may
be used for performance analysis, software testing, and/or local
communication. By default, the loopback interface is accessible
at address 127.0.0.1 (nonstandard); this address may be changed
with the SIOCSIFADDR ioctl.

DIAGNOSTICS
lo%d: can't handle af%d. The interface was handed a
message with addresses formatted in an unsuitable address family;
the packet was dropped.

SEE ALSO
intro(5), inet(5F).

BUGS

1

It should handle all address and protocol families. An approved
network address should be reserved for this interface.

February, 1990
Revision C

man(5) man(5)

NAME
man - macros for formatting entries in this manual

SYNOPSIS
nroff -manfiles

troff -man [-rsl]files

DESCRIPTION
These nroff(l)! t roff(l) macros are used to layout the format
of the entries of this manual. The default page size is 8.5"xll",
with a 6.5"xI0" text area; the -rsl flag option reduces these di­
mensions to 6"x9" and 4.75"x8.375", respectively; this option
(which is not effective in nroff(l)) also reduces the default type
size from 10-point to 9-point, and the vertical line spacing from
12-point to 10-point. The -rV2 flag option may be used to set
certain parameters to values appropriate for certain Versatec
printers: it sets the line length to 82 characters, the page length to
84 lines, and it inhibits underlining.

Any text argument below may be one to six "words". Double
quotes (n n) may be used to include blanks in a "word". If text is
empty, the special treatment is applied to the next line that con­
tains text to be printed. For example, . I may be used to italicize
a whole line, or . 8M followed by . B to make small bold text. By
default, hyphenation is turned off for nroff(1), but remains on
for troff(l).

Type font and size are reset to default values before each para­
graph and after processing font- and size-setting macros, e.g., . I,
• RB, • SM. Tab stops are neither used nor set by any macro ex­
cept . DT and . TH.

Default units for indents in are ens. When in is omitted, the previ­
ous indent is used. This remembered indent is set to its default
value (7.2 ens in troff(l), 5 ens in nroff- this corresponds to
0.5" in the default page size) by . TH, • P, and. RS, and restored
by.RE.

• TH t sen

• SH text
• SS text

February, 1990
Revision C

Set the title and entry heading; t is the title, s is
the section number, c is extra commentary, e.g.,
"local," n is new manual name. Invokes . DT
(see below).
Place subhead text, e.g., SYNOPSIS, here.
Place sub-subhead text, e.g., "Options", here.

1

maneS) maneS)

2

• B text
· I text
• SM text

.RI ab

.P

.HP in
· TP in

· IP tin

.RS in

.REk

. PMm

.DT

.PD v

Make text bold.
Make text italic.
Make text 1 point smaller than default point
size.
Concatenate roman a with italic b, and alternate
these two fonts for up to six arguments. Similar
macros alternate between any two of roman,
italic, and bold:

.IR .RB .BR .IB .BI
Begin a paragraph with normal font, point size,
and indent. . pp is a synonym for . P.
Begin paragraph with hanging indent.
Begin indented paragraph with hanging tag.
The next line that contains text to be printed is
taken as the tag. If the tag does not fit, it is
printed on a separate line.
Same as . TP in with tag t; often used to get an
indented paragraph without a tag.
Increase relative indent (initially zero). Indent
all output an extra in units from the current left
margin.
Return to the kth relative indent level (initially,
k=l; k=O is equivalent to k=1); if k is omitted,
return to the most recent lower indent level.
Produces proprietary markings; see mrn(1) .
Restore default tab settings (every 7.2 ens in
troff(1), S ens in nroff(l)).
Set the interparagraph distance to v vertical
spaces. If v is omitted, set the interparagraph
distance to the default value (OAv in troff(l),
1 v in nroff(1)).

The following strings are defined:

*R
*S
*(Tm

® in troff(l), (Reg.) in nroff.
Change to default type size.
Trademark indicator.

The following number registers are given default values by . TH:

IN Left margin indent relative to subheads (default
is 7.2 ens in troff(l), S ens in nroff(1)).

LL Line length including IN.
PD Current interparagraph distance.

February, 1990
Revision C

man(5) man(5)

EXAMPLES
The man macros are provided to process manual pages already
on-line at a given location and to enable users to make their own
manual pages. The preceding section demonstrated the usage of
the macros themselves; the following section provides examples
of command lines typically used to process the completed files.

man macros are designed to run with either nroff or troff.
The first command line will process a file using only macros and
nroff requests:

nroff -TIp -man file I lp

The file is piped to the local line printer, lp.

The next command line will process a file containing tables as
well as macros and nroff requests:

tbl I nroff -TIp -man file I col I lp

Notice that before it is sent to the line printer, the output is first
filtered through col, to process the reverse line feeds used by
tbl.

The final example is a command line that processes an unusual
manual page, one using pic. If the manual pages created with
man are intended for an on-line facility, components requiring
troff, such as pic (or grap) should be avoided since the aver­
age installation of terminals will not be able to process typeset do­
cuments.

pic file I tbl I troff -Taps -man I typesetter

grap precedes pic because it is a preprocessor to pic; the re­
verse order, of course, will not format correctly. The file contains
one or more tables, requiring tbl, but col is no longer necessary
because typeset documents do not use reverse line feeds with
which to make tables. The -T flag option for specifying the out­
put device (terminal type) takes the argument aps here, readying
the document for processing on the APS-5 phototypesetter.

CAVEATS
Special macros, strings, and number registers exist, internal to
man, in addition to those mentioned above. Except for names
predefined by troff(1) and number registers d, m, and y, all
such internal names are of the form XA, where X is one of) ,],
and }, and A stands for any alphanumeric character.

February, 1990
Revision C

3

man(5) man(5)

The programs that prepare the table of contents and the permuted
index for this manual assume the NAME section of each entry
consists of a single line of input that has the following format:

nameL name, name ...] \- explanatory text

The macro package increases the interword spaces (to eliminate
ambiguity) in the SYNOPSIS section of each entry.

The macro package itself uses only the roman font (so that one
can replace, for example, the bold font by the constant-width font
(cw). Of course, if the input text of an entry contains requests for
other fonts (e.g., . I, . RB, \fI), the corresponding fonts must be
mounted.

FILES
/usr/lib/tmae/tmae.an
/usr/lib/maeros/emp.n. Edt] .an
/usr/lib/maeros/uemp.n.an

SEE ALSO
eqn(l), man(l), tbl(I), te(l), troff(I).
"Other Text Processing Tools" in AIUX Text Processing Tools.

BUGS

4

If the argument to . TH contains any blanks and is not enclosed by
double quotes (" ,,), there will be strange irregular dots on the out­
put.

February, 1990
RevisionC

math(5) math(5)

NAME
rna th - math functions and constants

SYNOPSIS
*include <math.h>

DESCRIPTION
This file contains declarations of all the functions in the Math Li­
brary (described in Section 3M), as well as various functions in
the C Library (Section 3C) that return floating-point values.

It defines the structure and constants used by the matherr(3M)
error-handling mechanisms, including the following constant used
as an error-return value.

HUGE The maximum value of a double­
precision floating-point number.

The following mathematical constants are defined for user con-
venience.

M E

M LOG2E

M LOGIOE

M LN2

M LNIO

M PI

M_SQRT2

M_SQRT1_2

The base of natural logarithms (e).

The base-2logarithm of e.

The base-l0 logarithm of e.

The natural logarithm of 2.

The natural logarithm of 10.

The ratio of the circumference of a circle
to its diameter. (There are also several
fractions of its reciprocal and its square
root.)

The positive square root of 2.

The positive square root of 1/2.

For the definitions of various machine-dependent "constants,"
see the description of the <values. h> header file.

FILES
lusr/include/math.h

SEE ALSO
intro(3), matherr(3M), values(5).

February, 1990
Revision C

1

me(5) me(5)

NAME
me - macros for formatting papers

SYNOPSIS
nroff -me [nroff-options ...]
troff -me [troff-options ...]

DESCRIPTION
me is a package of nroff and troff macro definitions that pro­
vides a canned formatting facility for technical papers in various
formats. When producing two-column output on a terminal, filter
the output through col(1).

The macro requests are defined below. Many nroff and troff
requests are unsafe in conjunction with this package; however,
these requests may be used with impunity after the first . pp:

· bp Begin a new page.
· br Break the output line here.
· s p n Insert n spacing lines .
. ls n Line spacing: n=1 single, n=2 double space.
· na No alignment of right margin.
· ce n Center the next n lines.
· ul n Underline the next n lines.
• s z +n Add n to the point size.

Output of the eqn, neqn, refer, and tbl preprocessors for
equations and tables is acceptable as input.

FILES
/usr/lib/tmac/tmac.e
/usr/lib/me/*

SEE ALSO
eqn(1), troff(1), refer(1), tbl(1).

AIUX Text Processing Tools.

REQUESTS
In the following list, initialization refers to the first . pp, .lp,
· ip, . np, . sh, or . uh macro. This list is incomplete.

MACRO INITIAL BREAK? EXPLANATION
NAME VALUE RESET?

.C yes Begin centered block.

. d no Begin delayed text .

· f no Begin footnote.

. 1 yes Begin list .

1 February, 1990
Revision C

me(5)

.q

x.z
.e

. d

· f
. 1

.q

.x

• z
.++mH

• +e T

. le

• 2e

• EN

.EQxy

• GE

• GS

• PE

• PS

• TE

• TH

. TSx

.ae AN -

• b x no

.ban 0

• be no

. bix no

• bu

• bxx no

• ef'x'y' z nn

February, 1990
Revision C

yes

no

yes

yes

yes

yes

yes

yes

yes

no

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

no

yes

yes

no

yes

no

no

me(5)

Begin major quote.

Begin floating keep.

End centered block.

End delayed text .

End footnote.

End list .

End major quote.

End index item.

End floating keep.

Define paper section. m defines the part of the

paper, and can be C (chapter), A (appendix), P

(preliminary, for example, anabstract, table of contents, and so on.),

B (bibliography), RC (chapters renumbered from page

of one each chapter), or

RA (appendix renumbered from page one).

Begin chapter (appendix, and so on, as set by • ++) .

T is the chapter tide.

One-column format on a new page .

Two-column format .

Space after equation produced by eqn or neqn .

Precede equation; break out and add space. The equation

number is y. The optional argument x may be I to indent the

equation (default), L to left-adjust the equation, or C to

center the equation.

End gremlin picture .

Begin gremlin picture .

End pic picture .

Begin pic picture .

End table .

End heading section of table .

Begin table; if x is H the table has a repeated heading .

Set up for ACM style output. A is the Author's name(s),

N is the total number of pages.

Must be given before the first initialization.

Print x in boldface; if no argument, switch to boldface .

Augment the base indent by n. This indent is used to set

the indent on regular text (like paragraphs).

Begin new column .

Print x in bold italics (no-fill only) .

Begin bu11eted paragraph .

Print x in a box (nofi11 only) .

Set even footer to x y z.

2

me(5)

3

• eh'x'y'z ""

• fo'x'y'z ""

. hx
• he'x'y'z ,,,,

. hl

. ix no

• ipxy no

. lp yes

.10

.np

.of'x'y'z

.oh'x'y'z ""

. pd

.pp

· r
.re
.sc

.sh x

no

yes

no

• sk no
.sm x

• sz +n lOp
. th no
. tp no

. ux

. uh
• xpx

no

no

no
no

yes
no

yes

yes
no

yes

no

no
yes

yes

no
no

no

yes

no

no

no

no

yes

no

yes
no

Set even header to x y z.

Set footer to x y z.

me(5)

Suppress headers and footers on next page .

Set header to x y z.
Draw a horizontal line .

Italicize X; if x missing, italic text follows .

Start indented paragraph, with hanging tag x. Indentation
is yens (default 5).
Start left-blocked paragraph .

Read in a file of local macros of the form * x. Must be given

before initialization.
Start numbered paragraph.

Set odd footer to x y z.
Set odd header to x y z.
Print delayed text .

Begin paragraph with the first line indented.

Roman text follows.
Reset tabs to default values.

Read in a file of special characters and diacritical marks. Must be
given before initialization.

Section head follows, font automatically bold. n is the level of section,

and x is the title of the section.
Leave the next page blank. Only one page is remembered ahead .

Set x in a smaller point size.

Augment the point size by n points .

Produce the paper in thesis format. Must be given before initialization .

Begin title page .

Underline argument, even in t ro f f. (No-fill only) .

Like . s h but unnumbered .
Print index x .

February, 1990
Revision C

rom(5)

NAME
rom - macro package for formatting documents

SYNOPSIS
rom [options] [files]

nroff -rom [options] [files]

nroff -em [options] [files]

romt [options] [files]

troff -rom [options] [files]

DESCRIPTION

rom(5)

This package provides a formatting capability for a very wide
variety of documents. The manner in which you type and edit a
document is essentially independent of whether the document is to
be eventually formatted at a terminal or is to be photo typeset.

Full details are provided in A/UX Text Processing Tools.

FILES
/usr / lib/tmae/tmae. m pointer to the noncompacted

version of the package
/usr/lib/maeros/mm[nt] noncompacted version of the

package

SEE ALSO
rom(l), romt(1), nroff(l), troff(l).
"rom Reference" in A/UX Text Processing Tools.

February, 1990
Revision C

1

mptx(5) mptx(5)

NAME
mptx - the macro package for formatting a permuted index

SYNOPSIS
nroff -mptx [options] [files]

troff -mptx [options] [files]

DESCRIPTION
This package provides a definition for the . xx macro used for for­
matting a permuted index as produced by ptx(l). This package
does not provide any other formatting capabilities such as headers
and footers. If these or other capabilities are required, the mptx
macro package may be used in conjuction with the rom macro
package. In this case, the -mptx flag option must be invoked
after the -rom call. For example:

nroff -rom -mptx file
or

rom -mptx file

FILES
/usr/lib/tmac/tmac.ptx pointer to the macro pack­

age
/usr/lib/macros/ptx

SEE ALSO

macro package

rom(l), nroff(l), ptx(l), troff(l), rom(5).

1

"Other Text Processing Tools" in AIUX Text Processing Tools.

February, 1990
Revision C

ms(5) ms(5)

NAME
ms - text formatting macros

SYNOPSIS
nraff -ms [nroff-options .. .]

traff -ms [troff-options ...]

DESCRIPTION
This package of nraff and troff macro definitions provides a
formatting facility for various styles of articles, theses, and books.
When producing 2-column output on a terminal or lineprinter, or
when reverse line motions are needed, filter the output through
col(l). All external ms macros are defined below. Many
nraff and troff requests are unsafe in conjunction with this
package. However, the first four requests below may be used with
impunity after initialization, and the last two may be used even be­
fore initialization:

· bp begin new page
· br break output line
· s p n insert n spacing lines
· ce n center next n lines
· 1 s n line spacing: n= 1 single, n=2 double space
· na no alignment of right margin

Font and point size changes with \ f and \ s are also allowed; for
example, \flword\fP will produce word. Output of the tbl,
eqn, and refer(1) preprocessors for equations, tables, and refer­
ences is acceptable as input.

Full details are provided in AIUX Text Processing Tools.

FILES
/usr/lib/tmac/tmac.x
/usr/lib/ms/x.???

SEE ALSO
eqn(1), refer(l), tbl(1), troff(1).
"ms Reference" in AIUX Text Processing Tools.

REQUESTS
MACRO INITIAL BREAK? EXPLANATION
NAME VALUE RESET?

.ABx

.AE

.AI

February, 1990
Revision C

y

y

y

begin abstract; if x=no don't label abstract

end abstract

author's institution

1

ros(S)

.AU Y

.Bx n

.BI y

.B2 y

.BT date n

.BXx n

.CM ift n

.CT y,y

.DAx ifn n

.DE y

.DSx y I y

· ID Y 8n,.5i y
.LD y

.CD y

.BD y

.EF x n

.EHx n

.EN Y

.EQx y y

.FE n

.FP n

.FSx n

.HD undef n

· I x n

· IP x Y yoY

· IXx y y

.KE n

.KF n

.KS y

.LG n

. LP y,y

.MCx yoY

.NDx ift n

.NHx y y,y

.NL lOp n

.OFx n

.OHx n

.PI ifTM n

.PP yoY

.PT - %- n

.PXx y

.QP y,y

2

ros(S)

author's name

embolden x; if no x, switch to boldface

begin text to be enclosed in a box

end boxed text and print it

bottom title, printed at foot of page

print word x in a box

cut mark between pages

chapter title: page number moved to CF (TM only)

force date x at bottom of page; today if no x

end display (unfilled text) of any kind

begin display with keep; .x=I,L,C,B; y=indent
indented display with no keep; y=indent

left display with no keep

centered display with no keep

block display; center entire block

even page footer x (3 part as for . t 1)

even page header x (3 part as for. t 1)
end displayed equation produced by eqn

break out equation; .x=L.I,C; y=equation number

end footnote to be placed at bottom of page

numbered footnote paragraph; may be redefined

start footnote; x is optional footnote label
optional page header below header margin

italicize x; if no x, switch to italics

indented paragraph, with hanging tag X; y=indent

index words x y and so on (up to 5 levels)

end keep of any kind

begin floating keep; text fills remainder of page

begin keep; unit kept together on a single page

larger, increase point size by 2

left (block) paragraph .

multiple columns; x=column width

no date in page footer, x is date on cover

numbered header, .x=level, x=O resets, x=S sets to y
set point size back to normal

odd page footer x (3 part as for. tl)

odd page header x (3 part as for • t 1)

print header on 1st page

paragraph with first line indented

page title, printed at head of page

print index (table of contents); x=no suppresses title

quote paragraph (indented and shorter)

February, 1990
Revision C

ms(S)

.R

.RE

.RPx

.RS

.SH

.SM

.TA

.TCx

.TE

.TH

.TL

.TM

.TSx

.ULx

.UXx

on

5n

5n

8n.5n

off

.XAx Y -

.XE

.XP

n

y.y

n

y.y

y.y
n

n

y

y

y

y

n

y.y

n

n

y

ms(S)

return to Roman font

retreat: end level of relative indentation

released paper fonnat; x=no stops title on 1 st page

right shift: start level of relative indentation

section header. in boldface

smaller; decrease point size by 2

set tabs to 8n 160 ... (nroff) 5n IOn ... (troff)

print table of contents at end; x=no suppresses title

end of table processed by tbl

end multi -page header of table

title in boldface and two points larger

thesis mode

begin table; if x=H table has multi-page header

underline x (t r 0 f f)

UNIX; trademark message first time; x appended

another index entry; x=page or no for none; y=indent

end index entry (or series of . IX entries)

.XSx Y -

y

Y.y

Y
Y.y
y.y

paragraph with first line exdented. others indented

begin index entry; x=page or no for none; y=indent

one column fonnat. on a new page .IC on

.2C begin two column fonnat

.)- n beginning of refer reference

. [0 n end of unclassifiable type of reference

• [N n N= l:joumal-artide. 2:book. 3:book-article. 4:report

REGISTERS
Formatting distances can be controlled in ms by means of built-in
number registers. For example, this sets the line length to 6.S
inches:

.nr LL 6.5i

Here is a table of number registers and their default values:

P S point size paragraph 10
vs vertical spacing paragraph 12
LL line length paragraph 6i
LT title length next page same as LL
FL footnote length next. FS S.Si
PD paragraph distance paragraph Iv (if n), .3v (if t)
DD display distance displays 1 v (if n), .Sv (if t)
P I paragraph indent paragraph Sn
QI quote indent next . QP Sn
F I footnote indent next . F S 2n

February, 1990
Revision C

3

ms(5) ms(5)

PO page offset
HM header margin
FM footer margin
FF footnote format

next page
next page
next page
next. FS

o (if n), -Ii (if t)
1i
1i
0(1,2,3 available)

When resetting these values, make sure to specify the appropriate
units. Setting the line length to 7, for example, will result in out­
put with one character per line. Setting FF to 1 suppresses foot­
note superscripting; setting it to 2 also suppresses indentation of
the first line; and setting it to 3 produces an . IP-like footnote
paragraph.

Here is a list of string registers available in ms; they may be used
anywhere in the text:

NAME S1RING'S FUNCTION

*Q quote (" in nroff, .. in troff)

*U unquote (n in nroff, .. in troff)

*- dash (-- in nroff. - in troff)

*(MO month (month of the year)

*(DY day (current date)

** automatically numbered footnote
*' acute accent (before letter)
*' grave accent (before letter)
*~ circumflex (before letter)

*, cedilla (before letter)

*: umlaut (before letter)
*- tilde (before letter)

BUGS

4

Floating keeps and regular keeps are diverted to the same space,
so they cannot be mixed together with predictable results.

February, 1990
RevisionC

rov(S) rov(S)

NAME
rov - a troff macro package for typesetting viewgraphs and
slides

SYNOPSIS
rovt [-:-a] [options] [files]

troff [-a] [-rXl] -rov [options] [files]

DESCRIPTION
This package makes it easy to typeset viewgraphs and projection
slides in a variety of sizes. A few macros (briefly described
below) accomplish most of the formatting tasks needed in making
transparencies. All of the facilities of troff(1), eqn(1), tbl(l),
pic(I), and grap(1) are available for more difficult tasks.

The output can be previewed on most terminals, and, in particular,
on the TEKTRONIX 4014. For this device, specify the -rXl op­
tion (this option is automatically specified by the mvt command
when that command is invoked with the -D4014 option). To pre­
view output on other terminals, specify the -a option.

The available macros are:

• VS [n] [zl [d] Foil-start macro; foil size is to be 7"><7"; n is
the foil number, i is the foil identification, d is
the date; the foil-start macro resets all parame­
ters (indent, point size, etc.) to initial default
values, except for the values of i and d argu­
ments inherited from a previous foil-start mac­
ro; it also invokes the . A macro (see below).

The naming convention for this and the fol­
lowing eight macros is that the first character
of the name (v or s) distinguishes between
view graphs and slides, respectively, while the
second character indicates whether the foil is
square (s), small wide (w), small high (h), big
wide (w), or big high (H). Slides are "skin­
nier" than the corresponding viewgraphs: the
ratio of the longer dimension to the shorter one
is larger for slides than for viewgraphs. As a
result, slide foils can be used for view graphs ,
but not vice versa; on the other hand, view­
graphs can accommodate a bit more text.

February, 1990 1
RevisionC

mv(5)

2

.Vw

.Vh

.VW

.VH

.Sw

.Sh

.SW

.SH

.A

.B

.C

.D

.T

. I

• S

[n] [z1 [d]

[n] [z1 [d]
[n] [z1 [d]
[n] [z1 [d]
[n] [z1 [d]
[n] [z1 [d]
[n] [i] [d]
[n] [z1 [d]
[x]

[m [s]]

[m [s]]

[m [s]]

string
[in] [a [x]]

[P] [I]

mv(5)

Same as . VS, except that foil size is 7" wide x
5" high.
Same as . VS, except that foil size is 5"x7".
Same as . VS, except that foil size is 7"x5.4".
Same as . VS, except that foil size is 7"x9".
Same as . VS, except that foil size is 7"x5".
Same as . VS, except that foil size is 5"x7".
Same as . VS, except that foil size is 7"x5.4".
Same as . VS, except that foil size is 7"x9".
Place text that follows at the first indentation
level (left margin); the presence of x
suppresses the V2 line spacing from the preced­
ing text.
Place text that follows at the second indenta­
tion level; text is preceded by a mark; m is the
mark (default is a large bullet); s is the incre­
ment or decrement to the point size of the
mark with respect to the prevailing point size
(default is 0); if s is 100, it causes the point
size of the mark to be the same as that of the
default mark.
Same as . B, but for the third indentation level;
default mark is a dash.
Same as . B, but for the fourth indentation lev­
el; default mark is a small bullet.
string is printed as an oversize, centered title.
Change the current text indent (does not affect
titles); in is the indent (in inches unless dimen­
sioned, default is 0); if in is signed, it is an in­
crement or decrement; the presence of a in­
vokes the . A macro (see below) and passes x
(if any) to it.
Set the point size and line length; p is the point
size (default is "previous"); if p is 100, the
point size reverts to the initial default for the
current foil-start macro; if p is signed, it is an
increment or decrement (default is 18 for. VS,
. VH, and . SH, and 14 for the other foil-start
macros); I is the line length (in inches unless
dimensioned; default is 4.2" for. Vh, 3.8" for
. Sh, 5" for. SH, and 6" for the other foil-start
macros).

February, 1990
Revision C

rov(5) rov(5)

· DF n f [n f ...] Define font positions; may not appear within a
foil's input text (Le., it may only appear after
all the input text for a foil, but before the next
foil-start macro); n is the position of font}; up
to four "n F' pairs may be specified; the first
font named becomes the prevailing font; the
initial setting is (H is a synonym for G):

DF 1 H 2 I 3 B 4 S
• DV [a] [b] [c] [d]

Alter the vertical spacing between indentation
levels; a is the spacing for . A, b is for . B, c is
for . C, and d is for . D; all nonnull arguments
must be dimensioned; null arguments leave the
corresponding spacing unaffected; initial set­
ting is:

DV 5v 5v 5v Ov
· u str} [str2] Underline str} and concatenate str2 (if any) to

it.

The last four macros in the above list do not cause a break; the . I
macro causes a break only if it is invoked with more than one ar­
gument; all the other macros cause a break.

The macro package also recognizes the following uppercase
synonyms for the corresponding lowercase troff requests:

AD BR CE FI HY NA NF NH NX SO SP
TA TI

The Tro string produces the trademark symbol.

The input tilde (-) character is translated into a blank on output.

See the user's manual cited below for further details.

FILES
/usr/lib/troac/troac.v
/usr/lib/macros/vmca

SEE ALSO
eqn(I), mmt(1), tbl(I), troff(1).
"Other Text Processing Tools" in AIUX Text Processing Tools.

February, 1990
Revision C

3

nterm(5) nterm(5)

NAME
nterm- terminal driving tables for nroff

DESCRIPTION

1

nroff(l) uses driving tables to customize its output for various
types of output devices, such as printing terminals, special word
processing terminals (such as Diablo, Qume, or NEC Spinwriter
mechanisms), or special output filter programs. These driving
tables are written as ASCII files, and are installed in
/usr / lib/nterm/tab. name, where name is the name for
that terminal type as given in term(5).

The first line of a driving table should contain the name of the ter­
minal: simply a string with no embedded white space. "white
space" means any combination of spaces, tabs and new lines. The
next part of the driver table is structured as follows:

bset [integer] (not supported in all versions of nroff)
breset [integer] (not supported in all versions of nroff)
Hor [integer]
Vert [integer]
Newline [integer]
Char [integer]
Em [integer]
Halfline [integer]
Adj [integer]
twini t [character-string]
twrest [character-string]
t wnl [character-string]
hI r [character-string]
hlf [character-string]
fIr [character-string]
bdon [character-string]
bdoff [character-string]
i ton [character-string]
i toff [character-string]
ploton [character-string]
plotoff [character-string]
up [character-string]
down [character-string]
right [character-string]
left [character-string]

February, 1990
Revision C

nterm(5) nterm(5)

The meanings of these fields are as follows:

bset bits to set in the C of lag field of the termio
structure before output.

breset bits to reset in the C of lag field of the ter­
mi 0 structure before output.

Hor horizontal resolution in units of 1/240 of an
inch.

Ve rt vertical resolution in units of 1/240 of an inch.

Newline space moved by a newline (linefeed) character
in units of 1/240 of an inch.

Char quantum of character sizes, in units of 1/240 of
an inch. (fhat is, a character is a multiple of
Char units wide)

Em size of an em in units of 1/240 of an inch.

Halfline space moved by a half-linefeed (or half­
reverse-linefeed) character in units in 1/240 of
an inch.

Ad j quantum of white space, in 1/240 of an inch.
(i.e., white spaces are a multiple of Adj units
wide)

twinit

twrest

twnl

hlr

hlf

February, 1990
Revision C

Note: If this is less than the size of the
space character, nroff will output
fractional spaces using plot mode. Also,
if the -e switch to nroff is used, Adj
is set equal to Hor by nroff.

sequence of characters used to initialize the ter­
minal in a mode suitable for nroff.

sequence of characters used to restore the termi­
nal to normal mode.

sequence of characters used to move down one
line.

sequence of characters used to move up one­
half line.

sequence of characters used to move down
one-half line.

2

nterm(5) nterm(5)

3

fIr sequence of characters used to move up one
line.

bdon sequence of characters used to turn on hardware
boldface mode, if any.

bdo f f sequence of characters used to turn off
hardware boldface mode, if any.

i ton sequence of characters used to turn on hardware
italics mode, if any.

ito f f sequence of characters used to turn off
hardware italics mode, if any.

ploton sequence of characters used to turn on hardware
plot mode (for Diablo type mechanisms), if any.

plotoff sequence of characters used to turn off
hardware plot mode (for Diablo type mechan­
isms), if any.

up sequence of characters used to move up one
resolution unit (vert) in plot mode, if any.

down sequence of characters used to move down one
resolution unit (vert) in plot mode, if any.

right sequence of characters used to move right one
resolution unit (Hor) in plot mode, if any.

left sequence of characters used to move left one
resolution unit (Hor) in plot mode, if any.

This part of the driving table is fixed format, and you cannot
change the order of entries. You should put entries on
separate lines, and these lines should contain exactly two
fields (no comments allowed) separated by white space. For
example,

Cbset 0
breset 0
Hor 24

and so on.

Follow this first part of the driving table with a line contain­
ing the word "charset," and then specify a table of spe­
cial characters that you want to include. That is, specify all
the non-ASCII characters that nroff(l) knows by two char­
acter names, such as -. If nroff does not find the word

February, 1990
Revision C

nterm(S) nterm(S)

"charset" where it expects to, it will abort with an error
message.

Each definition in the part after "charset" occupies one
line, and has the following format:

chname width output

where "chname" is the (two letter) name of the special char­
acter, "width" is its width in ems, and "output" is the string
of characters and escape sequences to send to the terminal to
produce the special character.

If any field in the "charset" part of the driving table does
not pertain to the output device, you may give that particular
sequence as a null string, or leave out the entry. Special
characters that do not have a definition in this file are ignored
on output by nroff(l).

You may put the" charset" definitions in any order, so it
is possible to speed up nroff by putting the most used char­
acters first. For example,

charset
em 1 -
hy 1 -
\- 1 -
bu 1 +

and so on.

The best way to create a terminal table for a new device is to
take an existing terminal table and edit it to suit your needs.
Once you create such a file, put it in the directory
/usr/lib/nterm, and give it the name tab.xyz where
xyz is the name of the terminal and the name that you pass
nroff via the -T flag option (for example, nroff -Txyz).

FILES
/usr/lib/nterm/tab.name

SEE ALSO
nroff(l).

February, 1990
Revision C

4

prof(5) prof(5)

NAME
prof - profile within a function

SYNOPSIS
#define MARK
#include <prof.h>

void MARK (name)

DESCRIPTION
MARK will introduce a mark called name that will be treated the
same as a function entry point. Execution of the mark will add to a
counter for that mark, and program-counter time spent will be ac­
counted to the immediately preceding mark or to the function if
there are no preceding marks within the active function.

name may be any combination of up to six letters, numbers or un­
derscores. Each name in a single compilation must be unique, but
may be the same as any ordinary program symbol.

For marks to be effective, the symbol MARK must be defined be­
fore the header file <prof. h> is included. This may be defined
by a preprocessor directive as in the synopsis, or by a command
line argument, i.e:

cc -p -DMARK foo.c

If MARK is not defined, the MARK (name) statements may be left in
the source files containing them and will be ignored.

EXAMPLES

1

In this example, marks can be used to determine how much time is
spent in each loop. Unless this example is compiled with MARK
defined on the command line, the marks are ignored.

#include <prof. h>

foo(
{

int if j;

MARK (loopl) ;
for (i = 0; i < 2000; i++)

February, 1990
RevisionC

prof(5)

MARK(loop2);
for (j = 0; j < 2000; j++)

SEE ALSO
prof(1), profil(2), moni tor(3C).

February, 1990
Revision C

prof(5)

2

regexp(5) regexp(5)

NAME
regexp - regular expression compile and match routines

SYNOPSIS
#define INIT declarations
#define GETC () getc-code
#define PEEKC () peekc-code
#define UNGETC (c) ungetc-code
#define RETURN (pointer) return-code
#define ERROR (val) errors-code

#include <regexp.h>

char *compile (instring, expbu[, endbuf, eo/)
char *instring, *expbu[, *endbuf;
int eof;

int step (string, exbu/)
char * string , *exbuf;

extern char *locl, *loc2, *locs;

extern int circf, sed, nbra;

DESCRIPTION

1

This page describes general-purpose regular expression matching
routines in the form of ed(l), defined in
/usr / include/ regexp. h. Programs such as ed(1), sed(1),
grep(l), bs(l), expr(l), etc., which perform regular expression
matching use this source file. In this way, only this file need be
changed to maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs that
include this file must have the following five macros declared be­
fore the #include <regexp. h> statement. These macros are
used by the compile routine.

GETC ()

PEEKC ()

Return the value of the next character in
the regular expression pattern. Succes­
sive calls to GETC () should return suc­
cessive characters of the regular expres­
sion.

Return the next character in the regular
expression. Successive calls to
PEEKC () should return the same charac­
ter (which should also be the next charac­
ter returned by GETC (»).

February, 1990
RevisionC

regexp(5)

UNGETC (c)

RETURN (pointer)

ERROR (val)

ERROR
11
16
25
36
41
42
43
44
45
46
49
50

regexp(5)

Cause the argument c to be returned by
the next call to GETC () (and
PEEKC (». No more that one character
of pushback is ever needed and this char­
acter is guaranteed to be the last charac­
ter read by GETC (). The value of the
macro UNGETC (c) is always ignored.

This macro is used on normal exit of the
compile routine. The value of the ar­
gument pointer is a pointer to the charac­
ter after the last character of the compiled
regular expression. This is useful to pro­
grams which have memory allocation to
manage.

This is the abnormal return from the
compile routine. The argument val is
an error number (see table below for
meanings). This call should never return.

MEANING
Range endpoint too large.
Bad number.
\digit out of range.
Illegal or missing delimiter.
No remembered search string.
\ (\) imbalance.
Too many \ (.
More than 2 numbers given in \ { \}.
} expected after \.
First number exceeds second in \ { \}.
[] imbalance.
Regular expression overflow.

The syntax of the compile routine is as follows:

compile Unstring, expbuf, endbuf, eoj)

The first parameter instring is never used explicitly by the com­
pile routine but is useful for programs that pass down different
pointers to input characters. It is sometimes used in the INIT de­
claration (see below). Programs which call functions to input
characters or have characters in an external array can pass down a
value of ((cha r *) 0) for this parameter.

February, 1990
Revision C

2

regexp(5) regexp(5)

3

The next parameter expbu[is a character pointer. It points to the
place where the compiled regular expression will be placed.

The parameter endbuf is one more than the highest address where
the compiled regular expression may be placed. If the compiled
expression cannot fit in (endbuf-expbuf> bytes, a call to ER­
ROR(50) is made.

The parameter eo! is the character which marks the end of the reg­
ular expression. For example, in ed(l), this character is usually a
I.
Each program that includes this file must have a #-define state­
ment for INIT. This definition will be placed right after the de­
claration for the function compile and the opening curly brace
({). It is used for dependent declarations and initializations. Most
often it is used to set a register variable to point the beginning of
the regular expression so that this register variable can be used in
the declarations for GETC (), PEEKC () ,and UNGETC (). Other­
wise it can be used to declare external variables that might be used
by GETC () , PEEKC () , and UNGETC (). See the example below
of the declarations taken from grep(l).

There are other functions in this file which perform actual regular
expression matching, one of which is the function step. The call
to step is as follows:

step (string, expbuJ>

The first parameter to step is a pointer to a string of characters to
be checked for a match. This string should be null terminated.

The second parameter expbuf is the compiled regular expression
which was obtained by a call of the function compile.

The function step returns non-zero if the given string matches
the regular expression, and zero if the expressions do not match.
If there is a match, two external character pointers are set as a side
effect to the call to step. The variable set in step is locI.
This is a pointer to the first character that matched the regular ex­
pression. The variable loc2, which is set by the function ad­
vance, points to the character after the last character that
matches the regular expression. Thus if the regular expression
matches the entire line, locI will point to the first character of
string and loc2 will point to the null at the end of string.

February, 1990
Revision C

regexp(5) regexp(5)

step uses the external variable circf which is set by compile
if the regular expression begins with A. If this is set then step
will try to match the regular expression to the beginning of the
string only. If more than one regular expression is to be compiled
before the first is executed the value of circf should be saved
for each compiled expression and circf should be set to that
saved value before each call to step.

The function advance is called from step with the same argu­
ments as step. The purpose of step is to step through the
string argument and call advance until advance returns non­
zero indicating a match or until the end of string is reached. If
one wants to constrain string to the beginning of the line in all
cases, step need not be called; simply call advance.

When advance encounters a * or \ { \} sequence in the regu­
lar expression, it will advance its pointer to the string to be
matched as far as possible and will recursively call itself trying to
match the rest of the string to the rest of the regular expression.
As long as there is no match, advance will back up along the
string until it finds a match or reaches the point in the string that
initially matched the * or \ { \}. It is sometimes desirable to
stop this backing up before the initial point in the string is reached.
If the external character pointer locs is equal to the point in the
string at sometime during the backing up process, advance will
break out of the loop that backs up and will return zero. This is
used by ed(l) and sed(l) for substitutions done globally (not just
the first occurrence, but the whole line) so, for example, expres­
sions like s/y* / / g do not loop forever.

The additional external variables sed and nbra are used for spe­
cial purposes.

EXAMPLES
The following is an example of how the regular expression macros
and calls look from grep(1):

#define INIT
#define GETC ()
#define PEEKC ()
#define UNGETC(c)
#define RETURN (c)
#define ERROR (c)

#include <regexp.h>

register char *sp=instring;
(*sp++)
(*sp)
(--sp)
return;
regerr ()

(void) compile(*argv,expbuf,&expbuf[ESIZE],'\O');

February, 1990
Revision C

4

regexp(5)

if (step(linebuf,expbuf))
succeed ();

FILES
/usr/include/regexp.h

SEE ALSO
bs(l), ed(l), expr(1), grep(1), sed(l).

BUGS
The handling of circf is awkward.

5

regexp(5)

February, 1990
Revision C

stat(5) stat(5)

NAME
s tat - data returned by s tat system call

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

DESCRIPTION
The system calls stat and fstat return data whose structure is
defined by this include file. The encoding of the field s t mode is
defined in this file also. -
/*
* Structure of the result of stat
*/

struct stat

dev t st dev; - -
ino t st ina; -
ushort st :=mode;
short st nlink; -
short st uid;
short st_gid;
dev t st rdev;

-
off t st size; -
time t st atime; - -
int st spare1;

-
time t st_mtime;
int st_spare2;
time t st ctime; -
int st spare3;
long st :=blksize;
long st _blocks;
long st spare4[2];

} ;

#define S IFMT 0170000 /* type of file */
#define S IFDIR 0040000 /* directory */
#define S IFCHR 0020000 /* character special */
#define S IFBLK 0060000 /* block special */
#define S IFREG 0100000 /* regular */
#define S IFIFO 0010000 /* FIFO */
#define S IFLNK 0120000 /* symbolic link */
#define S IFSOC 0140000 /* socket */
#define S ISUID 04000 /* set user ID on execution
#define S ISGID 02000 /* set group ID on execution
#define S ISVTX 01000 /* save swapped text even

after use */
#define S IREAD 00400 /* read permission, owner */

*/
*/

#define S IWRIT 00200 /* write permission, owner */

February, 1990
Revision C

1

stat(5) stat(5)

#define S IEXEC - 00100 /* execute/search permission,
owner */

#define S IRUSR - 00400 /* read permission, owner */
#define S IWUSR - 00200 /* write permission, owner */
#define S IXUSR - 00100 /* execute/search permission,

owner */
#define S IRWXU (S IRUSR S IWUSR I S IXUSR) - - -

#define S IRGRP - 00040 /* read permission, group */
#define S IWGRP - 00020 /* write permission, group */
#define S IXGRP 00010 /* execute/search permission,

group */
#define S IRWXG (S IRGRP S IWGRP I S IXGRP) -

#define S IROTH - 00004 /* read permission, others */
#define S IWOTH 00002 /* write permission, others */
#define S IXOTH 00001 /* execute/search permission,

others */
#define S IRWXO (S IROTH S IWOTH I S IXOTH) - - -

FILES
/usr/include/sys/types.h
/usr/include/sys/stat.h

SEE ALSO
stat(2), types(5).

2 February, 1990
Revision C

tcp(5P)

NAME
t cp - Internet Transmission Control Protocol

SYNOPSIS
*include <sys/socket.h>
*include <netinet/in.h>

s = socket(AF INET, SOCK_STREAM, 0);

DESCRIPTION

tcp(5P)

The TCP protocol provides reliable, flow-controlled, two-way
transmission of data. It is a byte-stream protocol used to support
the SOCK STREAM abstraction. TCP uses the standard Internet
address format and, in addition, provides a per-host collection of
"port addresses". Thus, each address is composed of an Internet
address specifying the host and network, with a specific TCP port
on the host identifying the peer entity.

Sockets utilizing the tcp protocol are either "active" or "pas­
sive". Active sockets initiate connections to passive sockets. By
default TCP sockets are created active; to create a passive socket
the listen(2N) system call must be used after binding the sock­
et with the bind(2N) system call. Only passive sockets may use
the accept(2N) call to accept incoming connections. Only ac­
tive sockets may use the connect(2N) call to initiate connec­
tions.

Passive sockets may "underspecify" their location to match in­
coming connection requests from multiple networks. This tech­
nique, termed "wildcard addressing," allows a single server to
provide service to clients on multiple networks. To create a sock­
et which listens on all networks, the Internet address
INADDR ANY must be bound. The TCP port may still be
specified at this time; if the port is not specified the system will as­
sign one. Once a connection has been established the socket's ad­
dress is fixed by the peer entity's location. The address assigned
the socket is the address associated with the network interface
through which packets are being transmitted and received. Nor­
mally this address corresponds to the peer entity's network.

ERRORS
A socket operation may fail with one of the following errors re­
turned:

[EISCONN]

February, 1990
Revision C

when trying to establish a connection on
a socket which already has one;

1

tcp(5P) tcp(5P)

[ENOBUF S] when the system runs out of memory for
an internal data structure;

[ETIMEDOUT] when a connection was dropped due to
excessive retransmissions;

[ECONNRESET] when the remote peer forces the connec­
tion to be closed;

[ECONNREFUSED] when the remote peer actively refuses
connection establishment (usually be­
cause no process is listening to the port);

[EADDRINUSE] when an attempt is made to create a sock­
et with a port which has already been al­
located;

[EADDRNOTAVAIL] when an attempt is made to create a sock­
et with a network address for which no
network interface exists.

SEE ALSO
intro(5), inet(5F).

BUGS

2

It should be possible to send and receive TCP options. The sys­
tem always tries to negotiates the maximum TCP segment size to
be 1024 bytes. This can result in poor performance if an interven­
ing network performs excessive fragmentation.

February, 1990
Revision C

term(5) term(5)

NAME
term - conventional names for terminals

DESCRIPTION
These names are used by certain commands (e.g., nroff(I),
mrn(I), man(1), tabs(I) and are maintained as part of the shell
environment (see sh(I), profile(4), and environ(5) in the
variable $TERM:

1520 Datamedia 1520
1620 Diablo 1620 and others using the HyType II printer
1620-12 same, in 12-pitch mode
2621 Hewlett-Packard HP2621 series
2631 Hewlett-Packard 2631 line printer
2631-c Hewlett-Packard 2631 line printer - compressed mode
2631-e Hewlett-Packard 2631 line printer - expanded mode
2640 Hewlett-Packard HP2640 series
2645 Hewlett-Packard HP264n series (other than the 2640 series)
300 DASI/DTC/GSI 300 and others using the HyType I printer
300-12 same, in 12-pitch mode
300s DASI/DTC/GSI300s
382 DTC 382
300s-12 same, in 12-pitch mode
3045 Datamedia 3045
33 TELETYPE Terminal Model 33 KSR
37 TELETYPE Terminal Model 37 KSR
40-2 TELETYPE Terminal Model 40/2
40-4 TELETYPE Terminal Model 40/4
4540 TELETYPE Terminal Model 4540
3270 IBM Model 3270
4000a Trendata 4000a
4014 Tektronix 4014
43 TELETYPE Model 43 KSR
450 DASI 450 (same as Diablo 1620)
450-12 same, in 12-pitch mode
735 Texas Instruments TI735 and TI725
745 Texas Instruments TI745
dumb generic name for terminals that lack reverse

linefeed and other special escape sequences
sync generic name for synchronous TELETYPE

4540-compatible terminals
hp Hewlett-Packard (same as 2645)
lp generic name for a line printer

February, 1990
Revision C

1

term(5) term(5)

tnl200
tn300

General Electric TermiNet 1200
General Electric TermiNet 300

Up to 8 characters, chosen from [-a-z0-9], make up a basic ter­
minal name. Terminal submodels and operational modes are dis­
tinguished by suffixes beginning with a -. Names should general­
ly be based on original vendors, rather than local distributors. A
terminal acquired from one vendor should not have more than one
distinct basic name.

Commands whose behavior depends on the type of terminal
should accept arguments of the form -Tterm where term is one of
the names given above; if no such argument is present, such com­
mands should obtain the terminal type from the environment vari­
able $TERM, which, in turn, should contain term.

See / etc/termcap on your system for a complete list.

SEE ALSO
mm(1), nroff(1), sh(I), stty(I), tabs(1), tplot(IG),
profile(4), environ(5).

BUGS

2

This is a small candle trying to illuminate a large, dark problem.
Programs that ought to adhere to this nomenclature do so some­
what fitfully.

February, 1990
RevisionC

troff(5) troff(5)

NAME
troff - description of troff output language

DESCRIYfION
The device-independent troff outputs a pure ASCII description
of a typeset document. The description specifies the typesetting
device, the fonts, and the point sizes of characters to be used as
well as the position of each character on the page. A list of all the
legal commands follows. Most numbers are denoted as n and are
ASCn strings. Strings inside of brackets ([]) are optional.
troff may produce them, but they are not required for the
specification of the language. The character \ n has the standard
meaning of "newline" character. Between commands, white
space has no meaning. White space characters are spaces and
newlines.

sn

fn

ex

Cxyz

Hn

February, 1990
Revision C

The point size of the characters to be
generated.

The font mounted in the specified posi­
tion is to be used. The number ranges
from 0 to the highest font presently
mounted. 0 is a special position, invoked
by troff, but not directly accessible to
the troff user. Normally fonts are
mounted starting at position 1.

Generate the character x at the current lo­
cation on the page; x is a single ASCII
character.

Generate the special character xyz. The
name of the character is delimited by
white space. The name will be one of the
special characters legal for the typeset­
ting device as specified by the device
specification found in the file DESC.
This file resides in a directory specific for
the typesetting device. (See font(5) and
/usr / lib/ font/ dev*.)

Change the horizontal position on the
page to the num ber specified. The
number is in basic units of motions as
specified by DESC. This is an absolute
"goto" .

1

troff(5)

hn

Vn

vn

nnx

nba

w

pn

* \n

Dl X y\n

2

troff(5)

Add the number specified to the current
horizontal position. This is a relative
"goto".

Change the vertical position on the page
to the number specified (down is posi­
tive).

Add the number specified to the current
vertical position.

This is a two-digit number followed by
an ASCII character. The meaning is a
combination of hn followed by ex. The
two digits nn are added to the current
horizontal position and then the ASCII
character, x, is produced. This is the
most common form of character
specification.

This command indicates that the end of a
line has been reached. No action is re­
quired, though by convention the hor­
izontal position is set to O. troff will
specify a resetting of the x,y coordinates
on the page before requesting that more
characters be printed. The first number,
b, is the amount of space before the line
and the second number, a, the amount of
space after the line. The second number
is delimited by white space.

A w appears between words of the input
document. No action is required. It is in­
cluded so that one device can be emulat­
ed more easily on another device.

Begin a new page. The new page
number is included in this command.
The vertical position on the page should
be set to O.

A line beginning with a pound sign is a
comment.

Draw a line from the current location to
x,y.

February, 1990
Revision C

troff(5)

Dc d\n

De dx dy\n

Da x y u v

D- x Y x y ... \n

x i [nit] \n

x T device\n

x r[es] n h v\n

February, 1990
Revision C

troff(5)

Draw a circle of diameter d with the left­
most edge being at the current location
(x, y). The current location after drawing
the circle will be x+d,y, the rightmost
edge of the circle.

Draw an ellipse with the specified axes.
dx is the axis in the x direction and dy is
the axis in the y direction. The leftmost
edge of the ellipse will be at the current
location. After drawing the ellipse the
current location will be x +dx,y.

Draw a counterclockwise arc from the
current location to x+u,y+v using a circle
of whose center is x,y from the current
location. The current location after
drawing the arc will be at its end.

Draw a spline curve (wiggly line)
between each of the x,y coordinate pairs
starting at the current location. The final
location will be the final x,y pair of the
list

Initialize the typesetting device. The ac­
tions required are dependent on the dev­
ice. An ini t command will always oc­
cur before any output generation is at­
tempted.

The name of the typesetter is device.
This is the same as the argument to the
-T option. The information about the
typesetter will be found in the directory
lusr/lib/font/dev{device} .

The resolution of the typesetting device
in increments per inch is n. Motion in the
horizontal direction can take place in un­
its of h basic increments. Motion in the
vertical direction can take place in units
of v basic increments. For example, the
APS-5 typesetter has a basic resolution of
723 increments per inch and can move in
either direction in 723rds of an inch. Its

3

troff(5)

x p [ause] \n

x s [top] \n

x t [railer] \n

x f [ont] n name\n

x H [eight] n\n

x S [lant] n\n

SEE ALSO
troff(1).

troff(5)

specification is:
x res 723 1 1

Pause. Cause the current page to finish
but do not relinquish the typesetter.

Stop. Cause the current page to finish
and then relinquish the typesetter. Per­
form any shutdown and bookkeeping
procedures required.

Generate a trailer. On some devices no
operation is performed.

Load the font name into position n.

Set the character height to n points. This
causes the letters to be elongated or shor­
tened. It does not affect the width of a
letter.

Set the slant to n degrees. Only some
typesetters can do this and not all angles
are supported.

"nroff/troff Reference" and "Introduction to troff and
mm" in AIUX Text Processing Tools.

4 February, 1990
Revision C

types(5) types(5)

NAME
types - primitive system data types

SYNOPSIS
#include <sys/types.h>

DESCRIPTION
The data types defined in the include file are used in A/UX ® sys­
tem code; some data of these types are accessible to user code:

#ifndef __ sys_types_h
#define __ sys_types_h
/*

* System-dependent parameters and types
*/

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

char *caddr_ti
long clock_ti
short cnt_ti
long daddr_ti
unsigned short dev_ti
short gid_ti
unsigned short ino_ti
long key ti
int label t[13]i
unsigned short mode_ti
short nlink_ti
long off_ti
long paddr_ti
int pid_ti
int ptrdiff_ti
int size_ti
long time_ti
long ubadr_ti
unsigned char uchar_ti
unsigned short ushort_ti
short uid ti
unsigned Tnt uint_ti
unsigned long ulong_ti
unsigned int wchar_ti

#ifndef NULL
#define NULL a
#endif /* NULL */

February, 1990
Revision C

1

types(5) types(5)

/*
*To be excluded from visibility control,
types must end in t.

*/
=ll=ifdef
typdef
typdef
typdef
typdef
=ll=endif /*

SYSV SOURCE
- unsigned int uint;

unsigned" long
unsigned char
unsigned short
_SYSV_SOURCE */

=ll=ifdef BSD SOURCE

ulong;
unchar;
ushort;

typedef
typedef
typedef
typedef
typedef
typedef
typedef
=ll=endif /*

struct fd_set { long fds_bits[l]; }
struct{int r[l];} *physadr;
struct _quad { long val[2]; } quad;
unsigned char u_char;
unsigned short u_short;
unsigned int u_int;
unsigned long u_long;
BSD SOURCE */

=ll=ifdef AUX SOURCE
typedef unisigned long ino_tl;
=ll=endif /* AUX SOURCE */
=ll=endif /* ! __ sys_types_h */

The form daddr t is used for disk addresses except in an inode
on disk (see fs(4». Times are encoded in seconds since 00:00:00
GMT, January 1, 1970. The major and minor parts of a device
code specify kind and unit number of a device and are
installation-dependent. Offsets are measured in bytes from the be­
ginning of a file. The label t variables are used to save the
processor state while another process is funning.

SEE ALSO
fs(4).

2 February, 1990
Revision C

fd set;

udp(SP) udp(5P)

NAME
udp - Internet User Datagram Protocol

SYNOPSIS
*include <sys/socket.h>
*include <netinet/in.h>

s=socket(AF_INET, SOCK_DGRAM, 0);

DESCRIPTION
UDP is a simple, unreliable datagram protocol which is used to
support the SOCK DGRAM abstraction for the Internet protocol
family. UDP sockets are connectionless, and are normally used
with the sendto and recvfrom calls, though the
connect(2N) call may also be used to fix the destination for fu­
ture packets (in which case the recv(2N) or send(2N) system
calls may be used).

UDP address formats are identical to those used by TCP. In par­
ticular UDP provides a port identifier in addition to the normal In­
ternet address format. Note that the UDP port space is separate
from the TCP port space (i.e., a UDP port may not be "connect­
ed" to a TCP port). In addition broadcast packets may be sent
(assuming the underlying network supports this) by using a
reserved "broadcast address"; this address is network interface
dependent.

ERRORS
A socket operation may fail with one of the following errors re­
turned:

[EISCONN] when trying to establish a connection on
a socket which already has one, or when
trying to send a datagram with the desti­
nation address specified and the socket is
already connected;

[ENOTCONN]

[ENOBUFS]

[EADDRINUSE]

February, 1990
Revision C

when trying to send a datagram, but no
destination address is specified, and the
socket hasn't been connected;

when the system runs out of memory for
an internal data structure;

when an attempt is made to create a sock­
et with a port which has already been al­
located;

1

udp(5P) udp(5P)

[EADDRNOTAVAIL] when an attempt is made to create a sock­
et with a network address for which no
network interface exists.

SEE ALSO
send(2N), recv(2N), intro(5), inet(5F).

2 February, 1990
RevisionC

values(5) values(5)

NAME
values - machine-dependent values

SYNOPSIS
#include <values.h>

DESCRIPTION
This file contains a set of manifest constants, conditionally defined
for particular processor architectures.

The model assumed for integers is binary representation (one's or
two's complement), where the sign is represented by the value of
the high-order bit.

BITS (type)
The number of bits in a specified type (for example, int).

HIBITS
The value of a short integer with only the high-order bit set
(in most implementations, Ox8(00).

HIBITL
The value of a long integer with only the high-order bit set
(in most implementations, Ox80000000).

HIBITI
The value of a regular integer with only the high-order bit set
(usually the same as HIBITS or HIBITL).

MAXSHORT
The maximum value of a signed short integer (in most imple­
mentations, Ox7FFF == 32767).

MAX LONG
The maximum value of a signed long integer (in most imple­
mentations, Ox7FFFFFFF = 2147483647).

MAXINT
The maximum value of a signed regular integer (usually the
same as MAXSHORT or MAXLONG).

MAXFLOAT, LN MAXFLOAT
The maximum value of a single-precision floating-point
number, and its natural logarithm.

MAXDOUBLE, LN MAXDOUBLE
The maximum value of a double-precision floating-point
number, and its natural logarithm.

February, 1990 1
Revision C

values(5) values(5)

MINFLOAT, LN MINFLOAT
The minimum positive value of a single-precision floating­
point number, and its natural logarithm.

MINDOUBLE, LN MINDOUBLE
The minimum positive value of a double-precision floating­
point number, and its natural logarithm.

FSIGNIF
The number of significant bits in the mantissa of a single­
precision floating-point number.

DSIGNIF
The number of significant bits in the mantissa of a double­
precision floating-point number.

FILES
/usr/include/values.h

SEE ALSO
intro(3), math(S).

2 February, 1990
RevisionC

THE APPLE PUBLISHING SYSTEM

This Apple manual was written, edited, and composed
on a desktop publishing system using Apple
Macintosh ® computers and troff running on AlUX.
Proof and final pages were created on Apple
LaserWriter® printers. POSTSCRIPT®, the page­
description language for the LaserWriter, was
developed by Adobe Systems Incorporated.

Text type and display type are Times and Helvetica.
Bullets are ITC Zapf Dingbats®. Some elements, such
as program listings, are set in Apple Courier.

Writers: J. Eric Akin, Mike Elola, George Towner, and
Kathy Wallace

Editor: George Truett
Production Supervisor: Josephine Manuele
Acknowledgments: Lori Falls and Michael Hinkson

Special thanks to Lorraine Aochi, Vicki Brown,
Sharon Everson, Pete Ferrante, Kristi Fredrickson,
Don Gentner, Tim Monroe, Dave Payne, Henry Seltzer,
and John Sovereign

030-0785

