
Inside LaserWriter

Introduction

The purpose of Inside LaserWriter is to give you the information that you need to
develop your own applications for Macintosh and other personal computers that take
advantage of the unique features of the Apple LaserWriter laser printer. A complete
version of Inside LaserWriter is under development at Apple, but it is not available at
this time. However, the following Appendices from Inside LaserWriter are available
and are included in this document for your use today. When the final version of Inside
LaserWriter becomes available, you will be sent an update that contains the sections of
Inside LaserWriter that are currently missing.

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

Appendix I

Appendix J

- The Postscript Language Manual

- The Postscript Cookbook

- The Adobe Font Manual

- The Advanced Users Supplement

- The Apple Talk Printer Access Protocol

- Programming and Debugging aids

- Example of the things that you can do with LaserWriter

- Using the Macintosh Print Manager

- Using MacTerminal to talk directly to the Postscript computer in
LaserWriter.

- Postscript File Structuring Conventions

Proposed format for the future
version of Inside LaserWriter

When Inside LaserWriter is completed, it is anticipated that it will contain the following
information:

Chapter 1 - How to develop Macintosh applications that will print successfully on the
LaserWriter by using the standard Macintosh Print Manager programs.

Chapter 2 - How to develop Macintosh applications that will print successfully on the
LaserWriter by using the standard Macintosh Print Manager programs in conjunction
with some limited Postscript commands to do things that are not supported in the Print
Manager.

Chapter 3 - How to develop Macintosh or other PC applications that will print
successfully on the LaserWriter by issuing Postscript commands directly through
AppleTalk without using any of the standard Macintosh Print Manager programs.

Chapter 4 - How to develop Macintosh or other PC applications that will print
successfully on the LaserWriter by issuing Postscript commands directly through the
RS 422 serial connection without using any of the standard Macintosh Print Manager
programs.

In addition, the following appendices are expected to be included:

Appendix A - the Postscript Language Manual

Appendix 8 - the Postscript Cookbook

Appendix C - the Adobe Fonts Manual

Appendix 0 - the Advanced Users Supplement

Appendix E - the Apple Talk Printer Access Protocol

Appendix F - Programming and Debugging aids

Appendix G - Example of the things that you can do with LaserWriter

Appendix H - Using the Macintosh Print Manager

Appendix I - Using MacTerminal to talk directly to the Postscript computer in
LaserWriter.

Appendix J - Postscript File Structuring Conventions

Appendix K - QuickDraw to Postscript Comments

Appendix L - Source of the Apple Header

Appendix M - Syntax of the QuickDraw Translater

Appendix A

The Postscript Language Manual

POSTSCRIPTThi Language Manual

First Edition, Revised
September 1984

Adobe Systems Incorporated

Adobe Systems Incorporated
1870 Embarcadero Road, Suite 100

Palo Alto, California 94303

POSTSCRIPT™ Language Manual
First Edition, Revised

27 September 1984
Copyright © 1984 Adobe Systems, Inc.

All Rights Reserved

POSTSCRIPT is a trademark of Adobe Systems, Inc.

Times and Helvetica4D are trademarks of Allied Corporation.
ITC Friz Quadrata, ITC Souvenir, and ITC Galliard

are trademarks of International Typeface Corporation.

Scribe is a registered trademark of UNILOGIC, Ltd.

The information in this manual is furnished for informational use only,
is subject to change without notice, and should not be construed as a com­
mitment by Adobe Systems, Inc. Adobe Systems assumes no respon­
sibility or liability for any errors or inaccuracies that may appear in this
document.

The software described in this document is furnished under license and
may only be used or copied in accordance with the terms of such license.

Preface i

Preface

POSTSCRIPT is a simple interpretive programming language with
powerful graphics primitives. The primary application of POSTSCRIPT is
to describe the appearance of text, images, and graphic material on printed
pages. Source code in this language communicates a description of how a
page looks to a POSTSCRIPT interpreter. This interpreter converts the
source code into a device specific format required by any raster output
device. Normally, POSTSCRIPT source code is generated by word process­
ing programs, computer aided design programs, and other composition
programs. Programmers write POSTSCRIPT source code directly only
when setting up applications. In this unconventional use of a programming
language, POSTSCRIPT defines a standard, extensible, flexible print file
format, which is the interface between document composition applications
and raster printing devices.

Most print protocol formats used today are extensions of line printer
protocols or terminal protocols. These formats are, by their basic structure,
limited in their capabilities. POSTSCRIPT has been designed with general
graphics capabilities in mind. POSTSCRIPT treats standard text and more
complicated character fonts as special cases of its graphics facilities. In
this environment, graphics and text are not implemented as separate
packages, but as a unified system. This approach leads to a clean design
that allows users freedom and flexibility in creating applications.

This document is written for people interested in interfacing existing
application programs to POSTSCRIPT, in creating new application
programs to generate POSTSCRIPT files, or in creating applications in the
POSTSCRIPT language itself. Upon fIrst reading, you may think that
POSTSCRIPT is an "overkill" design. The POSTSCRIPT language is both
general and powerful. Even though the more powerful facilities of the lan­
guage are rarely used, the language includes them for completeness. It has
been our experience that limiting a language design and restricting its
scope only leads its users into "work-arounds" or "arcane hackery" as
they reach for missing features.

The User's Manual begins with a "Basic Overview" of POSTSCRIPT,
followed by a more detailed "Reference Section." The casual style of the
former is not intended to 'defme POSTSCRIPT's capabilities in an exhaus­
tive way, but instead is meant to give the user the "flavor" of
POSTSCRIPT. Discussion in this chapter focuses largely on basic language
features. The second chapter provides a complete description and precise
semantics for all of POSTSCRIPT's built-in operators, with an in-depth dis­
cussion of the graphics and printing operators.

While reading the first part of the document, you are encouraged to look
ahead to the reference section for additional detail or to fInd answers to
questions you may have.

Table of Contents iii

Table of Contents

1. Introduction. 1
2. Basic Overview. 5

2.1. Basic Ideas and Motivation. 6
2.2. Raster Printer File Fonnats . 8
2.3. The POSTSCRIPT Imaging Model. 9
2.4. Coordinate Systems and Device Independence 11
2.5. PoSTSCRIPT Syntax .. 13
2.6. The POSTSCRIPT Interpreter. 16

2.6.1. Basic Operation. 16
2.6.2. The Assignment Operators 17
2.6.3. Control Operators. 19

2.7. Graphics Operators. 21
2.7.1. The Graphics State '. . 21
2.7.2. Geometric shapes. 22
2.7.3. Transfonnations........................... 23
2.7.4. Character Shapes (fonts) . 24

2.8. Summary....................................... 27
3. Reference Section. 33

3.1. Data Structures and Types . 34
3.1.1. POSTSCRIPT Stacks . 34
3.1.2. POSTSCRIPT Objects. 35
3.1.3. Composite Objects. 38

3.2. Argument and Error Handling . 40
3.3. Immediate and Delayed Execution. 41
3.4. PoSTSCRIPT Operators. 44

3.4.1. Stack Operators . 45
3.4.2. Arithmetic and Math Operators. 49
3.4.3. Polymorphic Operators. 56
3.4.4. Array Operators. 62
3.4.5. Dictionary Operators. 64
3.4.6. String Operators. 69
3.4.7. Relational, Boolean, and Bitwise Operators 72
3.4.8. Control Operators . 77
3.4.9. Type, Conversion, and Property Operators. 82
3.4.10. File Operators .. 87
3.4.11. Virtual Memory Operators 94
3.4.12. Miscellaneous Operators and Functions 96

3.5. Graphics Operators. 98
3.5.1. Graphics State Operators. 101
3.5.2. Coordinate System and Matrix Operators. 103
3.5.3. Character and Font Operators. 112

iv POSTSCRIPT language manual

3.5.4. Path Construction Operators 117
3.5.5. Graphics Output Operators.. 125
3.5.6. Device Setup Operators. 142
3.5.7. Character Cache Management Operators. 144

3.6. Error Operators. 147
A. Font Machinery. 153
B. Implementation Limits 163

Revision History. 167
Operator Index 169
Index. 175

1
INTRODUCTION

2 PosrSCRlPT language manual

POSTSCRIPT is a language for describing the appearance of pages in
documents. The language specifies character shapes (fonts), their place­
ment, and their orientation. It describes graphic shapes (lines and areas). It
also specifies the position, scale, and orientation of scanned images. Al­
though the language is general and flexible, this document emphasizes its
use for the printing application. In particular this manual describes how to
position text on a page, how to generate graphic objects, and how to
manipulate and place scanned images.

In a typical application a POSTSCRIPT source consists of two different
parts. The ftrst part is the prologue. The prologue is application specific
and is written once by a programmer; it becomes the front section for
every POSTSCRIPT source document the application produces. Each
prologue mostly contains definitions that match the output functions of the
application to the capabilities that POSTSCRIPT supports.

For example, if an application generates many instances of a given sym­
bol, then a definition of a subroutine to generate the symbol belongs in the
prologue. When this is done, the application program may insert calls to
that subroutine to place instances of the symbol on the page.

The second part of a POSTSCRIPT source is the script. The script is out­
put by the application program, and is very stylized, repetitive and simple.
It normally consists of operands (numbers and strings) followed by names
of either POSTSCRIPT operators or predeftned subroutines. The script uses
more general facilities of the POSTSCRIPT language only rarely.

There is nothing in the POSTSCRIPT language that formally distin­
guishes the prologue from the script, but we make the distinction in this
document because it is useful for talking about how POSTSCRIPT is typi­
cally used.

The syntax of POSTSCRIPT is simple, and it uses only the printable sub­
set of the ASCII character set (plus the newline marker). POSTSCRIPT uses
no control characters other than the newline marker. We chose this char­
acter subset to maximize machine independence rather than information
density. Restricting ourselves to this representation keeps POSTSCRIPT

files "human readable", and it simpliftes storage and communication of
these files among many different computer systems.

The semantics of the POSTSCRIPT language is as simple as its syntax.
POSTSCRIPT models a stack machine: that is, POSTSCRIPT accepts
operands, which it pushes on an operand stack, and it accepts operators,
which operate on those operands. Within this machine model,
POSTSCRIPT implements the features found in most modem computer lan­
guages. The language supports arrays, mixed mode arithmetic, control
structures, subroutines, symbol tables, and an extensive set of built-in
operators for handling text, graphics, and images.

Introduction

We have accomplished several goals in POSTSCRIPT's design:

1. The language and imaging model are both host machine and
graphics device independent. These properties allow
POSTSCRIPT sources to act as a standard file format for
describing images. Therefore, POSTSCRIPT sources can be
used on a variety of combinations of host computers and
raster output devices. Display devices can range from one bit
per pixel displays to full color displays. Printing devices can
range from low-resolution matrix printers to high resolution
laser printers.

2. A program that generates a POSTSCRIPT source file need not
be complicated or maintain a large amount of state informa­
tion. A program can stream POSTSCRIPT source incrementally
to a file. This attribute of the laIiguage allows even small
machines to generate complex POSTSCRIPT sources.

3. Each application maintains its own view of how text and
graphics are to be generated. The extensive programmability
of POSTSCRIPT caters to the application without forcing it into
a POSTSCRIPT mold. A generating program is able to extend
the laIiguage so that the ftle generated relates directly to the
application and is therefore more natural, readable, and com­
pact.

3

2
BASIC OVERVIEW

6 POSTSCRIPT language manual

There are two complementary approaches toward describing the
POSTSCRIPT language. On one hand, POSTSCRIPT is a programming lan­
guage with powerful built-in graphics functions. On the other,
POSTSCRIPT is a printed page description language that includes general
purpose programming language features. Either of these views could serve
as a basis for describing POSTSCRIPT, but either one taken alone does not
tell the entire story. Both views are equally valid and they interact 'to
provide a complete model for understanding POSTSCRIPT.

This overview will use examples from PosTsCRWi used as a: printed
page description language. Bear, in mind, however, that with a change of
application-specific operators, the POSTSCRIPT language framework could
serve equally well for many other application areas.

Basic Ideas and
Motivation

Let's assume that some computer application program needs to print
pages on a raster printer (a not too unreasonable assumption). Im­
mediately, two different design choices are apparent: it can operate the
printer(s) directly, or it could write a description of the pages in such a
way that a separate process can print the pages from those descriptions.

Theftrst choice does not generalize well. The application must fill itself
with printer device specific details which clutter the application. If a dif­
ferent printer must be used, a large amount of additional printing program
logic must be embedded in the application program. Furthermore, other
programs cannot take advantage of this application program's special
printing capabilities. They must include this code themselves to be able to
perform the same functions. This choice is appropriate only if no alter­
native is available.

With the second choice, we enter the realm of print file formats. These
formats have been around since computers used printers. Once again the
design choices can be divided into two classes. The print file format can
be either static or dynamic.

A static format provides some fIXed set of operations (sometimes called
control codes) together with a syntax regarding the placement of the
operations and the arguments they must take. Some line printer formats
are classic examples of static print fIle formats. The first character of a
record is the control code; it determines paper motion: none, next line,
next page, etc. The rest of the record is the actual character data to be
printed on the chosen line.

Basic Overview 7

A dynamic format allows considerably more flexibility than a static for­
mat. The operator set may be extensible, and the exact meaning of an
operator may not be known until it is actually encountered. A static format
might offer an operation that repeats a flxed number of times, while a
dynamic format might allow a loop with an index variable.

This classiflcation of print file formats into static and dynamic formats
is, admittedly, an oversimplification. Some formats have elements of both
styles, as in a format that is mostly static but which allows macro expan­
sion or limited use of variables. Even though some existing print file for­
mats do fall into this gray area, this static/dynamic distinction can be use­
ful when comparing the capabilities of different formats.

A print format that is primarily static, but which purports to cover a lot
of graphic and text operations, tends to grow operators wildly. A dynamic
format that allows primitive operations to be combined according to the
wishes of the user writing the print fIle will always be superior to it static
format that tried to anticipate all possible needs. As we will see in later
sections, for very complicated page layouts, there may be information that
the printed page description writer cannot know until the page is actually
imaged on its specillc printer. Dynamic formats that allow reading of cru­
cial information and using this information in calculations will clearly be
able to specify more sophisticated images.

. POSTSCRIPT goes all the way over to the dynamic side of this classifica­
tion. POSTSCRIPT includes many graphic operations, and it allows them to
be combined in any possible manner. It not only has variables, but it al­
lows arbitrary computations in the process of interpreting the page
description. It has a rich set of programming language control structures
for combining its elementary elements. Also, while some print file formats
may appear to have these capabilities only through contorted, unintended
uses of some of their features, POSTSCRIPT has provided the complete set
of dynamic features by design, making their use natural and efficient.

Thus we have POSTSCRIPT, a dynamic print format whose page descrip­
tions are actually programs to be run by an interpreter. POSTSCRIPT
programs can degenerate into a form that resembles a static format: a se­
quence of argument, operator, argument, operator, and so on. In fact,
many PoSTSCRIPT programs will have this boring repetitive nature,
having been generated by an application program that knew exactly what
it needed. However, when the need arises, the power is there to be applied
by the knowledgeable application designer.

8 PosrSCRlPT language manual

Raster Printer File
Formats

For any print format, several questions should be asked:

• Is it complete? (Can it describe any printed page?)
• Is it easy to generate?
• Is it easy to interpret?
• Is it easy for a person to understand it?
• Is it valid for more than one printer?
• Is it easy to transmit?
• Is it compact?
• Can pieces of a description already built be used to compose

more complicated pages?
• Can it emulate other formats?

The answers to these questions and the relative importance one attaches
to each one will vary from application to application. However, medium
and high resolution raster printers add new capabilities to computer
generated pages that complicate the questions somewhat.

A raster printer produces its image by writing small dots onto a page.
The size and positioning of these dots is expressed as the printer's resolu­
tion, in terms of how many dots fit in one inch. High resolution refers to
many dots per inch, say 1000 or more. Medium resolution refers to some­
where between 300 to 600 dots per inch. All raster printers form letter
shapes by writing a pattern of these dots for each letter. At medium resolu­
tion and above, this technology enables these printers to form almost any
typeface in any size and at any rotation.

However, many print file formats are incapable of describing pages that
use these capabilities of raster printers. Print file formats that are a hold­
over from the days of impact printing have no notion of scalable letters
and sophisticated graphics. Some print formats that do address these op­
portunities are crippled by their separation of text and graphics, treating
text in such a way that the flexibility inherent in the printer is lost.

To fully evaluate a print me format in terms of the above questions, one
should take into account not only the surface form of the language (which
will answer some of the questions) but also the imaging model of the lan­
guage. An imaging model describes how a picture is made, what opera­
tions are allowed, how the operations may be combined, etc.

Basic Overview

The POSTSCRIPT
Imaging Model

9

The POSTSCRIPT imaging model is a simple and unified view of two­
dimensional graphics borrowed from the graphic arts industry. 1 An image
is built up by placing ink on a page in selected areas. The ink may be in
the form of 1etter shapes, general fl1led shapes, lines, or halftone represen­
tations of photographs. The ink itself may be in color or in black, white, or
any shade of gray. Any of these elements may be cropped to within any
shape as they are placed onto the page. Once a page has been built up to
the desired form, it may be printed on an output device.

POSTSCRIPT maintains an implicit current page that accumulates the
marks made by the POSTSCRIPT imaging operators. When a program
begins, the current page is completely white. As each imaging operator
executes, it places marks on the current page. Each new mark completely
obscures any marks that it may overlay. This method is known as a
painting model; no matter what color a mark has - white, black, gray or
color - it is put onto the current page as if it were applied with opaque
paint. When the showpage or copypage operators are executed, the cur­
rent page is printed on the output device (showpage clears the current
page after printing; copypage leaves the current page unchanged.)

The imaging operators (those that place marks on the current page) are
the fill, stroke, image, and show operators. fill marks an area on the cur­
rent page; stroke marks lines on the current page; image paints a halftone
gray-scale scanned image onto the current page; and the show operators
paint character shapes onto the current page. Each of these operators re­
quires several arguments, some explicit and some implicit.

Chief among the implicit arguments is the current path (used by fill,
stroke and show.) This object describes a sequence of connected and dis­
connected points, lines and curves that together describe shapes and their
positions. The current path is built up through the sequential application of
the path operators, each of which modifies the current path in some way
(mostly by appending one new element to the current path.) Other implicit
arguments to the imaging operators include the current color, current line
thickness, current font (typeface-size-rotation combination), etc. Each im­
plicit argument has its own corresponding set and examine operators; each

1 A detailed, technical description of a similar imaging model has appeared in a paper by John
Warnock and Douglas Wyatt, titled "A Device Independent Graphics Imaging Model for Use with
Raster Devices," in the July 1982 Computer Graphics Volume 16, number 3, pp. 313-320. The
description given here is in terms that a POSTSCRIPf programmer should understand before using
POSTSCRIPf to prepare printed pages.

10 PosrSCRIPT language manual

may be set to a new value at any time. The values held in each of the
implicit arguments at the time that an imaging operator is executed will
affect the behavior of that operator.

The path operators, which include newpath, move to, lineto, curveto,
are, close path and others all modify the current path as they are executed.
None of these operators affects the current page directly; that is left to the
imaging operators. The path operators build up a shape comprised of con­
nected andlor unconnected points, straight line segments and curves.
These shapes are unrestricted - they may be convex, concave, or even
mutually and self intersecting. The positions of these elements in a path
are specified by real numbers; the resolution of the output device in no
way constrains the definition of a path.

POSTSCRIPT programs that make printed pages will contain many in­
stances of the following pattern: build a path using path operators; set any
implicit arguments (if their values need to change); perform an imaging
operation.

There is one additional implicit element in POSTSCRIPT's imaging
model that modifies the foregoing description. POSTSCRIPT maintains a
current clipping path that outlines the area of the current page that may be
imaged upon. Initially, this clipping path outlines the entire imageable
area of the current page; parts of the image description which lie off of the
page (outside the clipping path) are discarded. By using the clip operator,
a POSTSCRIPT program can shrink the current clipping path to any shape
desired. It is quite normal for an imaging operator to attempt to place
marks outside of the current clipping path. Those marks within the clip­
ping area will make it onto the current page; those marks that fall outside
the clipping area will not affect the current page.

Basic Overview

Coordinate Systems
and Device
Independence

11

The arguments to path operators describe points on the page (or outside
of the page) by means of coordinates, i.e., a pair of real numbers x and y
that locate a point within a Cartesian coordinate system superimposed on
the current page. POSTSCRIPT defines a standard, default coordinate sys­
tem that POSTSCRIPT programs may depend on for locating any point on
the page.

Output devices vary greatly in the built-in coordinate systems that they
use to address actual device points within their imageable area. We call
this coordinate space, idiosyncratic to each output device, device space.
Device space origins can be anywhere on the output page; the paper
moves through different printers in different directions; and some devices
even have different resolutions in different directions. Coordinates
specified in a POSTSCRIPT program, however, are device independent
since they refer to locations within an ideal coordinate space that always
bears the same relationship to the current page regardless of the output
device on which printing will be done. We call this coordinate system user
space, as it is the coordinate system that programs use to specify points.
The POSTSCRIPT interpreter automatically transforms points specified in
user space into the device space of the specified device. For the most part,
this transformation is hidden from the POSTSCRIPT program; a program
needs to consider device space only rarely for certain special effects. This
independence of user space from device space is a major contributor to the
device independent nature of POSTSCRIPT page descriptions.

To specify a coordinate system with respect to the current page, we
must know the location of the origin, the orientation of the x and y axes
and the lengths of the units along each axis. Initially, the user space origin
is located at the lower left comer of the output paper, with the positive x
axis extending horizontally to the right and the positive y axis extending
vertically upward (as in standard mathematical practice.) The length of a
unit along the x axis and along the y axis is 1172 of an inch. We call this
coordinate system default user space.

Although the choices made for default user space are arbitrary, the im­
portant point is that they provide a consistent, dependable starting point
for PoSTSCRIPT programs regardless of the output device being used. The
POSTSCRIPT program may then modify its user space into one more
suitable for its needs (if necessary) by applying coordinate transformation
operators. The features of default user space were chosen for their math-

12 POSTSCRIPT language manual

ematical simplicity and convenience. The location and orientation of the
axes follows mathematical tradition and gives positive coordinates to
points on the current page. The unit size, 1172 of an inch, is very close to
the size of a printer's point (a printer's point is actually 1172.27 of an inch)
which is a standard measuring unit used in the printing industry. Note that
the coordinates used in POSTSCRIPT programs may be decimal numbers
containing fractional parts, so that the initial choice of unit size does not
constrain points to any arbitrary grid.

For its convenience, a POSTSCRIPT program may move the user coordi­
nate system with respect to the current page and even change the size of
the x and y units independently. It accomplishes this with the coordinate
transformation operations translate, rotate and scale. translate moves
the user space origin to a new position with respect to the current page
while leaving the orientation of the axes and the unit sizes unchanged.
rotate turns the user space axes about the current user space origin, leav­
ing the unit lengths unchanged in their current directions. scale modifies
the unit lengths independently along the current x and y axes, leaving the
origin location and the orientation of the axes unchanged. (For very
sophisticated users, POSTSCRIPT actually allows any linear transformation
to be specified from user space to device space by means of the setmatrix
operator.) Thus, what may appear to be absolute coordinates in a
POSTSCRIPT program are actually quite changeable with respect to the
current page, since they are described in a coordinate system that may
slide around and shrink or expand.

Basic Overview 13

POSTSCRIPT Syntax

A POSTSCRIPT program is written so as to be readable by people. All
program text and data are written in the printable subset of the ASCn
character set (plus the carriage return character.) This written form
promotes ease of communication between the producer of a POSTSCRIPT
program and the machine on which the POSTSCRIPT interpreter resides,
since any communication network should at least be able to transmit
characters, in addition to making the programs easily read.

There are five distinct syntactic constructs in POSTSCRIPT. These are:

• numbers (reals and integers)
• strings
• names
• procedure bodies and arrays
• comments

POSTSCRIPT treats spaces, tabs, and newlines equivalently: they serve
to separate (or delimit) other syntactic constructs such as names and num­
bers from each other. Any number of these characters appearing in a row
are treated in the same manner as if there were just one. The characters
"(", ")", "<", ">", "[", "]", "{", "}", "I", and "%" are special:
they serve to delimit syntactic entities such as strings, procedure bodies,
and comments. Any of these characters terminates the entity preceding it,
and is not included in it.

Numbers in POSTSCRIPT include signed integers, such as
123 -98 43445 0 +17

reals, such as
-.002 34.5 -3.62 123.6e10 1E-5 -1. 0.0

and radix (integer) numbers, such as
8#1777 16#FFFE 2#1000

These take the form base#number where base is in the range 2 through 36.
The number is then represented in this base with digits ranging from 0
through base-i. Digits greater than 9 are represented by the letters A (or a)
through Z (or z). Note that, although the machine representation of the
number may be negative, these numbers should be considered as unsigned
(positive) integers. This notation is intended for specifying character codes
(when needed), and bit patterns for bitwise operations.

A string in POSTSCRIPT is delimited by balanced parentheses. This
notation is POSTSCRIPT's way of "quoting" a string body. The following
are examples of valid strings.

14

(This is a string)
(Strings may contain newlines
and such.)

POSTSCRIPT language manual

(Strings may contain special characters:*-&A% and
balanced parentheses () (and so on»
(The following string is an "empty" string.)
()
(It has 0 (zero) length.)

To insert unbalanced parentheses into a string the backslash character is
used. "\" is an escape character instructs the scanner to insert the next
character into the string. For example:

(\(\\)

represents the string "(\". Special non-graphic characters can be
represented in strings by using the backs lash escape character. Certain
characters following it have special meaning:

\n LF linefeed (newline)
\ r CR carriage return
\ t HT horizontal tab
\b BS backspace
\ f FF form feed
\ \ \ backslash
\ ((left parenthesis
\ » right parentheSis

\ddd ddd octal byte
\ newline no character - both are ignored

The \ddd form may be used to include any octal character constant into a
string. One, two, or three octal digits may be specified (with high-order
overflow ignored). If the character following the backslash is not one of
the above, the backslash is ignored. The \newline form is used to break a
string into a number of lines, but not have the newlines be part of the
string.

(These\
two strings \

are the same.)
(These two strings are the same.)

(This string has a newline in it.
)
(So does this one.\n)

A string may also. be defined in hexadecimal (base 16) notation by
delimiting a sequence of hex characters (the digits 0 through 9 and the
letters a through f and A through F) with "<" and ">". Each pair of hex
digits defines one character of the string. Spaces, tabs, and newlines are
ignored. For example, "< 9 a 1 fa 3 >" is a 3-character string containing
the characters whose hex codes are 90, If, and a3.

A comment in POSTSCRIPT is preceded by "%" and terminated by a

Basic Overview 15

newline. Outside of a string body, the POSTSCRIPT scanner treats com­
ments as delimiters. The following is a comment:

% this is a comment

A name in POSTSCRIPT is simply a sequence of non-special characters
not contained in a string or comment. That is, any sequence of characters
bounded by delimiters and not containing a delimiter is a name, unless it
can be interpreted as a number in which case it is a number. All printing
characters except the special ones can appear in names, including punctua­
tion characters. The following are examples of valid POSTSCRIPT names:

abc Offset $$ 23A 13-456 *&$ $MyDict myProc @pattern

The forward slash "/" is used to specify a literal name. The slash is not
part of the name itself, but is a prefix which indicates that the following
name is a literal. Hence, the slash character may not be a part of any syn­
tactic name in POSTSCRIPT.

A procedure body begins with a "{" and ends with a balancing "}".
An array begins with a"[" and ends with a balancing "]". Numbers,
strings, names, comments, and other procedure bodies or arrays may occur
between the delimiting braces. An example of a valid procedure body is:

{add 2 d.i.v}

and an example of a valid array is:
[23 45.2 (a string) /aName [(abc) 16#7E] {dup mull]

Note that POSTSCRIPT arrays need not be homogeneous.

16

The POSTSCRIPT
. Interpreter

2.6.1. Basic Operation

PosrScmPTlanguagenu2nual

The POSTSCRIPT interpreter is the process that executes the
POSTSCRIPT language according to the rules listed below. These rules tell
us the order in which operations are carried out, and how the pieces of a
POSTSCRIPT program fit together to produce the desired results. In this
section, we shift our emphasis from POSTSCRIPT the page description lan­
guage to POSTSCRIPT the programming language so as to show the opera­
tion of the interpreter in as simple a manner as possible. We will return to
POSTSCRIPT the page description language in the next section.

The POSTSCRIPT interpreter manipulates entities called POSTSCRIPT

objects. Each of the syntactic types discussed in the previous section
(except comments) corresponds to its own kind of POSTSCRIPT object.
There are also several kinds of POSTSCRIPT object that have no direct syn­
tactic representation (such as dictionary objects and file objects) that are
created through their own creation operators.

The characters in the POSTSCRIPT program, written according to the
syntax given in the previous section, are not themselves POSTSCRIPT ob­
jects. The syntax rules specify how the POSTSCRIPT interpreter groups and
separates these input characters into tokens, which the interpreter can then
convert into POSTSCRIPT objects, with which it can execute the program.
Thus, the interpreter converts a token consisting of digits into a
POSTSCRIPT number object, a token enclosed by parentheses into a
POSTSCRIPT string object, a token beginning with a letter into a
POSTSCRIPT name object, and sequence of tokens surrounded by brackets
or braces into a POSTSCRIPT array object. The POSTSCRIPT interpreter.
proceeds as follows: it scans the input stream (ignoring comments) for the
next token, converts it into a POSTSCRIPT object, and acts on that object
according to its type. If a token is a string, a number, a procedure body, an
array, or a literal name (a name with a "I" prefix), then the interpreter
converts that token to its corresponding POSTSCRIPT object, and pushes
that object onto a stack called the operand stack. If the token is an
evaluated name (a name with no "I" prefix), then the interpreter looks up
that name for its value (more about the details of name lookup later) and
takes action depending on whether or not that value is executable. If the
value is not executable, the interpreter merely pushes the value onto the
operand stack. If the value is executable, then the interpreter executes that
value immediately, before processing the next input token.

For example, if the input stream contains:

Basic Overview 17

123 456 add

then the POSTSCRIPT interpreter reads "123", pushes the number 123 on
the operand stack, reads "456", pushes the number 456 on the operand
stack, and reads "add" as a name. The interpreter then looks up the name
add, finds that it is associated with an intrinsic POSTSCRIPT operator
(which is executable), and executes this operator (which adds two
numbers). The add operator removes 123 and 456 from the operand stack
and pushes their sum, 579, onto the operand stack.

The above example models how the POSTSCRIPT interpreter processes
all operands and operators. In POSTSCRIPT, there is no explicit expression
or statement structure. Instead the POSTSCRIPT interpreter scans its input
in a strictly sequential manner. As it encounters each token, it resolves it
to an operand, which it pushes onto the operand stack, or to an operation,
which it executes. The language is called postfix, since operators follow
their operands. When an operator executes, it expects its operands to have
already been placed on the operand stack, either directly as in the above
example or indirectly by the result of execution of preceding operations.

Example 1: The following is a segment of POSTSCRIPT source that
evaluates the expression (a + b) + (c x d).

a b add c d mul di v

Example 1 shows POSTSCRIPT source that consists of a simple se­
quence of operands and operators. Note that the operands to the div
operator were left on the stack by the preceding add and mul operations.
In this example we assume that a, b, c, and d have values that are numbers
(we will show how this association is made shortly) which are pushed
onto the operand stack by the interpreter.

The operation of POSTSCRIPT is dictated solely by the semantics of the
operators. By constructing powerful operators, POSTSCRIPT provides most
of the facilities found in other programming languages. These facilities are
provided so POSTSCRIPT can be extended to meet the needs of the appli­
cation. In particular, if an application fmds it convenient to assign vari­
ables, redefine operators, process conditionally, build subroutines, or build
shorthand notations for common constructs, then the richness of the
POSTSCRIPT operators makes this possible.

2.6.2. The Assignment Operators

Like most programming languages, POSTSCRIPT allows assignment of
values to variables. Instead of the infix form (e.g., "abc = 38") used by
many languages, POSTSCRIPT accomplishes the same task with· a postfix
assignment operator. For example:

/abc 38 def

Here the POSTSCRIPT interpreter scans left to right and pushes the literal
name abc onto the operand stack, and then it pushes the number 38 onto

18 POsrSCRIPT language manual

the operand stack. The POSTSCRIPT interpreter then looks up the name
def, which is associated with the built-in define operator, and executes it.
This operator associates a value (the top element on the stack) with a key
(the element one below the top of the stack). The define operator then as­
sociates the value 38 with the key abc. This association now may be used
by POSTSCRIPT in future processing. For example the POSTSCRIPT inter­
preter processes

123 abc add

in the following way. First, it pushes the number 123 onto the operand
stack. Next it encounters the name abc and looks it up. Because abc is
associated with the number 38 (just defined), the interpreter pushes the
number 38 onto the operand stack. As in the first example, the interpreter
resolves add to the add operator, which removes the two operands from
the operand stack and pushes their sum, 161, onto the operand stack.

In addition to assigning numbers to names, POSTSCRIPT provides a
mechanism for assigning executable procedures to names. As an example,
let us suppose we wish to have an operator that averages the top two num­
bers on the operand stack. The sequence of code that does this is found
embedded in the following:

123 456 add 2 div

The sequence "add 2 div" is the POSTSCRIPT version of code that
belongs in an "averaging" subroutine. We note here that this subroutine
takes its arguments from the operand stack, and returns its results to the
operand stack. To define and use this code we write:

lave {add 2 div} def
1024 512 ave

"-

then when the POSTSCRIPT interpreter looks up ave it will find the proce-
dure body that executes add 2 div. This procedure body will remove the
numbers 512 and 1024 from the operand stack, and it will push the num­
ber 768 onto the stack.

The above definition structure for procedures allows a programmer to
reference one procedure from the body of another. It also allows recursive
calls of a procedure from itself. For example the following code defines a
recursive "factorial" function. This function expects a number n on the
stack, and will return n! .

Ifact {dup 1 gt {dup 1 sub fact mull if} def

The def operator used in the above examples associated numbers and
procedures to names. def converts string objects to name objects when
used as keys. However, def can associate any POSTSCRIPT object type
with any other object type. Although association between an object and a
name is most common, POSTSCRIPT does not restrict the association to
this case.

The def operator used in the above examples is just one of many
operators that perform assignments. These assignment operators rely on
POSTSCRIPT dictionaries. Dictionaries and the operators that create and

Basic Overview 19

use them provide powerful associative symbol table facilities to the
POSTSCRIPT programmer. These facilities are discussed in detail in sec­
tion 3. For now we will give an overview of what dictionaries are, how
they are used, and how they relate to the operation of the POSTSCRIPT

interpreter.
Dictionaries are associative tables that consist of key-value pairs. In

POSTSCRIPT, dictionaries are used in two ways. In the flrst use, diction­
aries play a role in deflning the naming context or scope for the names
used in programs. In the second use, dictionaries act as associative data
structures for programs.

In POSTSCRIPT there is a root dictionary, which is always present,
called the system dictionary. This dictionary associates each of the
POSTSCRIPT operator names (keys) with the procedure (value) that imple­
ments the operator. POSTSCRIPT also provides another dictionary, called
the user dictionary, that is intended to hold names and values global to a
particular POSTSCRIPT program.

When the POSTSCRIPT intf(rpreter encounters a name while scanning, it
consults a stack called the dictionary stack. This stack always contains the
system dictionary at the bottom and the user dictionary immediately above
it, but it may also contain other dictionaries as required by the application.
The interpreter looks for the name in the dictionary on top of the diction­
ary stack. If it flnds the name, then the interpreter uses the associated
value. If it cannot find the name in this dictionary, then it searches the
other dictionaries in the dictionary stack in order. If the name is not in any
dictionary on the stack, then the POSTSCRIPT interpreter executes the error
operator undefined.

The def operator searches only the dictionary on the top of the diction­
ary stack. In the following:

fa 333 def

The def operator searches the dictionary on top of the dictionary. stack for
a. If it flnds the key a, then it replaces a's previous value with the number
333, thereby redeflning a. If it cannot find the key a in the top dictionary,
then the def operator creates a new definition for a in the dictionary on the
top of the dictionary stack.

POSTSCRIPT has many operators for dealing with dictionaries. Diction­
aries can be created. They can be pushed onto the dictionary stack and
therefore may be used as name contexts for programs. They can be ac­
cessed directly and thus may be used as associative data structures. They
can also be enumerated, giving catalogues of key-value pairs. These and
other uses of dictionaries are discussed in examples and in section 3.

2.6.3. Control Operators

Thus far we have described POSTSCRIPT operators such as add, that
compute values on operands and operators such as def, that perform as­
signments. In addition to these operators, POSTSCRIPT has several

20 PosrSCRlPT language manual

operators that. provide program control. The simplest of these operators is
repeat. The repeat operator expects a procedure body on the top and a
count (a number) just below it on the operand stack. The repeat operator
removes the procedure body and the count from the stack and executes the
procedure body "count" times. An example using repeat is the following:

1 12 34 -3 66 4 {add} repeat

This example is equivalent in function to:
1 12 34 -3 66 add add add add

Both of the above add 1, 12,34, -3, and 66, leaving 110 on the stack.
Most of the control operators in POSTSCRIPT are like the repeat

operator in that they require procedure bodies on the stack and execute
them in ways that depend on the semantics of the operator.

Another example of a POSTSCRIPT control operator is the ifelse
operator. Many computer languages have a construct like

if <boolean> then <statement> else <statement>

In POSTSCRIPT, the ifelse operator provides the if-then-else semantics.
This operator expects three objects on the operand stack. These objects
consist of one boolean and two procedure bodies. The ifelse operator
removes these operands from the stack. If the boolean has the value true,
then the first procedure body pushed onto the stack is executed, otherwise
the second procedure body is executed. For example, the line:

a b eq {a 22 sub} {b 34 add} ife1se

behaves as follows. The eq operator removes the top two operands from
the operand stack and checks to see if they are equal. If they are, it pushes
a boolean object with value true onto the operand stack, otherwise it
pushes a boolean object with value false onto the operand stack. In the
above example, if a = b, the ifelse operator will execute a 22 sub, other­
wise it will execute b 34 add.

The above descriptions of repeat and ifelse give the general flavor of
the way control operators work in POSTSCRIPT. Other POSTSCRIPT con­
trol operators, for, loop, and if, provide operations analogous to for loops,
unconditional loops, and if statements found in other computer languages.

Basic Overview 21

Graphics Operators

We now return to POSTSCRIPT as a page description language. We have
already discussed operators that are executed for the results they return on
the operand stack. The POSTSCRIPT operators that deal with graphics, text,
or images are executed, not so much for the results they return, but for
their side effects. In particular, they are executed to print something.

The POSTSCRIPT graphics and printing operators provide control over
fonts (collections of character shapes), positioning and orientation of text,
positioning and orientation of images, and the definition of geometric
shapes and areas.

2.7.1. The Graphics State

The POSTSCRIPT interpreter maintains a data structure called the
Graphics State. This data structure contains the implicit arguments for the
imaging operators and holds the following items (among others):

Name
CTM

color

cp
path

clip

font

Type
Array

Internal

Numbers
Path

Path

Dictionary

line width Number

line cap Integer

Value Semantics
The current transformation matrix; a matrix that
maps positions from user coordinates to device
coordinates. This matrix is modified by each ap­
plication of the coordinate system operators.
(Initial value: a straightforward matrix transform­
ing default coordinates to device coordinates.)
The internal representation of colors is not ex­
posed to the POSTSCRIPT user. To encode and
decode colors among different color models, see
color related operators in section 3.5.5. (Initial
value: black.)
Current position. (Initial value: undefined.)
The current path as built up by the path construc­
tion operators. Path objects are not directly acces­
sible in POSTSCRIPT. This object is an implicit
argument to the till, stroke, and clip operators.
(Initial value: empty.)
The current boundary against which all output is
clipped. (Initial value: the entire imageable por­
tion of the output device.)
Set of graphic shapes (characters) that define the
current typeface. (Initial value: installation
dependent.)
The thickness (in user coordinates) of lines to be
drawn by the stroke operator. (Initial value: 1.)
A code that defmes the shape of the endpoints of

22 POSTSCRIPT language manual

any open path that is stroked. (Initial value: 0, for
a square butt end.)

line join Integer A code that defmes the shape of a stroked line at
its comers. (Initial value: 0, for mitered joins.)

dash Array, real A description of lengths of portions of dashed
lines to be rendered by the stroke operator in­
stead of the normal solid iine. (Initial value: a
O-length array plus a 0 offset, corresponding to a
normal solid line~)

2.7.2. Geometric shapes

Before we can put filled areas or lines onto the current page, we must
build up the current path in the position where we would like the marks to
be. Here, we have an example of a POSTSCRIPI' procedure body that can
be used to specify a square one inch on a side and one inch in and up from
the lower left comer of a page:

/sq1
(newpath
72 72 moveto % move to 1",1".
144 72 lineto % define edge to 2",1".
144 144 lineto % edge to 2",2".
72 144 lineto % edge to 1",2".
closepath % close back to 1",1"~

) def % define, "sq1" to be a proc that builds a path.

This example usesPOSTSCRIPI" s default user space directly, thus 72
1172 inch units equals 1 inch. Note that this POSTSCRIPT program frag­
ment by itself does not build the path, but only defines a procedure body
to do that job and stores that procedure body in the name '''sq 1 ". When
• 'sq 1" is executed, it will execute its contents in order. The PoSTSCRIPT
operatornewpath takes nothing from the stack, but it initializes the cur­
rent path internal data structure used by POSTSCRIPT to keep track of
geometric shapes. The POSTSCRIPT operator moveto takes x and y coordi­
nates (numbers) from the stack, and enters them as a point in the path. The
lineto. operator is like the moveto operator except that the point given is
connected to the previous ppint in the path. There is also a curveto
operator that adds curved sections to paths. Finally, the closepath operator
behaves like lineto, but it constructs its line to the point most recently
"moved to" .

Now, to fill the square with solid color, we can say:
sql fi1l

To outline the square with a 2 point thick line we can say:
sql 2 setlinewidth stroke

To push an image associated with the name "teapot-pic" through the
path, we can say:

sql clip teapot-pic image

There are details left out of this series of'examples; they are presented to

Basic Overview 23

explain the nature of the imaging mechanisms but not the details of their
use. These details are supplied in Section 3.5.

POSTSCRIPT's path operators are used for making internal general pur­
pose geometric constructs. Path structures are used for making lines and
curves; for filling areas bounded by lines and curves; and as clipping
templates. The topology of a path structure is unrestricted: it can be con­
cave or convex; it can represent multiple regions; it can even intersect it­
self.

POSTSCRIPT paths allow two kinds of curved segment in addition to the
straight line segments introduced in the examples. One simple kind of
curved segment is a circle or a piece of a circle. A more general kind of
curve is called a Bezier cubic, after the French mathematician P. Bezier.
These latter curves are specified by four points: two points represent the
curve's endpoints, and the other two specify how the curve bends between
its ends. In POSTSCRIPT, more complicated curves than these basic types
are built by putting several circular arcs and Bezier cubics end-to-end
within a path.

2.7.3. Transformations

The ability to translate, scale and rotate any graphic object is quite valu­
able for graphics applications. This capability is provided by the
POSTSCRIPT interpreter through the current transformation matrix (CTM)
that it maintains. This transformation matrix maps points from a user coor­
dinate system into a device coordinate system when an object is drawn.
Modifications to this transformation matrix may be viewed as either
modifying the user coordinate system or as modifying the resulting place­
ment of marks on the output device. The POSTSCRIPT coordinate system
operators are implemented so as to make the appropriate modifications to
this transformation matrix.

A typical application will define procedures that outline prototypical
geometric objects. Before painting an instance of such an object, the appli­
cation will modify its user coordinate system via the coordinate operators.
When the path for the object is built, each of its coordinates is mapped
through the resulting transformation into the device coordinate system.

For example, suppose we have made the following definition:
/triangle
{newpath
o 0 moveto
10 0 lineto
5 5 3 sqrt mul lineto
closepath} def

%define an equilateral triangle.

%lower left corner at origin.
%side of triangle is 10.
%apex at (5,5*sqrt(3».

Here, the moveto operator moves the current point to coordinate (0, 0).
The lineto operator defines an edge from this point to coordinate (10, 0),
establishing (10, 0) as the current point. The next lineto operator defines
the next edge of the triangle. Finally, the close path operator closes the
figure by defining an edge back to the point referenced after the newpath
operator.

24 POSTSCRIPT language manual

Now, to create a color-filled triangle at (100, 1(0), we may give the
command:

100 100 trans~ate triang~e fi~~

The translate operator modifies the user coordinate system so that sub­
sequently built objects are translated by the given amounts. The till
operator actually paints the contents of the triangle with the current color
as defined in the Graphics State.

To change the user coordinate system only temporarily, we can say:
gsave 100 100 trans~ate triang~e fi~~ grestore

Here, the gsave and grestore operators isolate the changes to the values in
the Graphics State to the time between execution of these two operators.

2.7.4. Character Shapes (fonts)

A font, in the POSTSCRIPT context, is a dictionary through which the
POSTSCRIPT interpreter can obtain path definitions that generate character
shapes. The interpreter uses a character's code to select which path defmi­
tion represents that character.

A character's shape in POSTSCRIPT is a procedure body that generates a
path representing that character's outline. To print a character, the
POSTSCRIPT interpreter executes the path building procedure correspond­
ing to that character and fills in the path with ink (more or less).

If you have experience with scan conversion of general shapes, then
you may be concerned at the amount of computation the above description
seems to imply. Relax. The above description tells you how to think about
character shapes and fonts. It does not tell you how fonts are implemented.
In fact, the implementation of the POSTSCRIPT interpreter makes character
rendering quite efficient.

To see how all of the above hangs together, the following examples are
instructive.

Example 2: Print the word "PostScript" ten inches from the bot­
tom of the page, and 4 inches from the left edge.

288 720 meveto % set current point to 4*72, 10*72
(PostScript) show % output "PostScript" in the

% current font

In example 2, we are still using the default coordinate system. The
moveto operator is used to specify the current position for character print­
ing. The show operator uses the current font (here, the default font) to
print its argument "PostScript".

A font is made up of descriptions of its character shapes and other
metric information for that font. For· a POSTSCRIPT application
programmer's convenience, each POSTSCRIPI' installation maintains a dic­
tionary of commonly used names associated with its available fonts. For
instance, to use the font "Helveticat>, we can enter:

Basic Overview 25

/Helvetica findfont

The flndfont operator takes the font name and returns a dictionary con­
taining all the information that the POSTSCRIPT interpreter needs to
generate all of that font's characters.

A font specifies the shape of its characters for one standard size. This
standard is arranged so that the height of a singly spaced line of text is 1
unit. In the default coordinate system, this means that the standard font
size is one point. Since nobody can read one point type, the font must be
scaled to be usable. We could scale the font with the coordinate system
operators, but it is usually more convenient to modify the size of the font
itself, rather than change the current transformation matrix. This latter
operation is provided by the POSTSCRIPT operators scalefont and
makefont. scalefont scales a font uniformly; makefont applies more
complicated general transformations to a font. These operators accept on
the operand stack the nominal font dictionary and the desired modifica­
tion, and they return a new font that will render character shapes in the
desired size. For example, the sequence:

/Helvetica findfont 10 scalefont

returns a 10 point Helvetica font on the stack.
To print "PostScript" in Helvetica 14, we could use the following se­

quence:
/Helvetica findfont

14 scalefont

setfont

288 720 moveto

% push 1pt font dictionary
% onto the operand stack.
% push a 14pt scaled font
% onto the operand stack.
% make the scaled font the
% current font.
% set current position to
% 4*72, 10*72.

(PostScript) show % Typeset "PostScript"
% in the current font
% (Helvetica 14pt).

The above example uses POSTSCRIPT operators in a direct way.
However, it is desirable in most applications to define new operators to
help with the application. To illustrate this point, assume that an appli­
cation requires that switching frequently between three fonts: Helvetica,
Helvetica-Oblique, and Helvetica-Bold.

26 POSTSCRIPT language manual

Example 3: Print several sentences down the page, alternating fonts
between Helvetica 10, Helvetica-Oblique 10, and Helvetica-Bold 10.

% Start the prologue section.
% First make some font definitions.

% define "fnr" to be 10 pt Helvetica.
/fnr /Helvetica findfont 10 scalefont def

% define "fni" to be 10 pt Helvetica-Oblique.
Ifni /Helvetica-Oblique findfont 10 scalefont def

% define "fOO" to be 10 pt Helvetica-Bold.
/fOO /Helvetica-Bold findfont 10 scalefont def

% Define some procedures to move to a given
% position, switch fonts, and show the given
% character string.

/shwr {moveto fnr setfont show} def
/shwi {moveto fni setfont show} def
/shwb {moveto fOO setfont show} def

% Start the script section.

(This is in Helvetica.) 288 720 shwr
(This is in Helvetica Oblique.) 288 710 shwi
(This is in Helvetica Bold.) 288 700 shwb
(And more in Helvetica.) 288 690 shwr

Example 3 shows several things. First, it makes the required fonts and as­
sociates them with the names fnr, fui and fnb. Next, it defines three
operators all of which move the current position to a given position,
switch to a particular font, and show the given string. Finally, it sets text
using the operators defined earlier.

This last example is a good model for the structure of POSTSCRIPT

programs. Notice that there is a section of program at the beginning (the
prologue) that makes a number of definitions. Normally, a programmer
makes up this part once for an application, which emits it for each docu­
ment generated by that application. The second part of the program (the
script) is straightforward and can be generated by the application program
itself. The script is unique to each document.

The above example shows how to get things done easily with
POSTSCRIPT. When an application uses a specific number of fonts with
given sizes, it should place appropriate definitions for making and using
those fonts in the prologue. After this is done the application program can
generate calls to its subroutines to switch between the fonts and print the
text.

There are some extra facts to know about fonts. Associated with each
character is its width (a distance to move to print the next character). In

Basic Overview 27

some fonts this spacing is a constant, i.e., it does not vary from character
to character. These fonts are called fixed pitch fonts, or monospacedfonts.
Most fonts, however, have a different width associated with each char­
acter. Such fonts are called variable pitch fonts. In either case,
POSTSCRIPT's show operator moves the current position by the amount of
the character width after it prints the character. This movement ensures
that characters are spaced properly.

The width information for each character is stored in the POSTSCRIPT
dictionary that represents the font. A POSTSCRIPT program may access
this information to obtain a character's width, and the program may use
any of a variety of character printing operators (show, widthshow, ashow,
and awidthshow) to obtain a variety of width modification effects. For
complete control over character placement, a POSTSCRIPT program may
even place each character individually, based on this width information
and the program's own placement algorithm.

Summary

We are now in a position to evaluate POSTSCRIPT along the lines of the
questions given earlier in this chapter.

Is it complete? (Can it describe any printed page?)

The answer is a qualified "Yes". Certainly, any page consisting of
marks on paper can be described in POSTSCRIPT. However, this could be
claimed for any description language that allowed individual dots on a
page to be described, even if tied to a particular device at a particular
resolution. The POSTSCRIPT model of the printed page description is one
in which the page image is ideal, is described once, and is rendered as well
as possible on any raster printer. Even with this stricter model of page
images, the answer for the POSTSCRIPT language is "Yes", as its imaging
model is rich enough to describe all shapes that may be placed on the
page.

So, it becomes necessary to rephrase the question to: What pages can
reasonably be described in this language? Here we can be more specific.
Pages consisting of text (in any typeface, with any linear transformations),
line graphics, and filled area graphics are easy. The simple text handled by
other print formats is very simple in POSTSCRIPT. Pages that contain
photographic images are also easy, provided the program source contains
a sampled description of those photographs. Fine typography, suitable for

28 POSTSCRIPT language manual

books, advertising, documentation, and general printing is where
POSTSCRIPT shines. Due to its programmable nature, precise alignment,
tuning to output device quirks, synthetic images, etc. are all possible.

Although the POSTSCRIPT language is Turing-equivalent (it can per­
fonn any computation that any other programming language can express)
this can lead us into the trap that it is reasonable to do everything in
POSTSCRIPT. Some calculations are more reasonably performed by other
systems, whose operations are oriented to other applications. While one
could express the calculations necessary to render a fractal mountain vista
in POSTSCRIPT, it is probably not practical to do so. Such synthetic
graphics are more appropriately perfonned by specially set up systems.
However, if such systems can output gray-scale sampled images,
POSTSCRIPT is a most appropriate vehicle for printing the results on any
raster output device.

Is it easy to generate?

POSTSCRIPT has been designed to be easy to generate by both program­
mers and by programs. A POSTSCRIPT program's syntactic fonn is print­
able characters, so that it is readable and editable with existing tools. Unit
sizes and coordinate systems are all modifiable to be convenient for the
application. Grouping elementary operations together in procedures allows
levels of abstraction to be built up so that the operations required for a
particular application can be expressed in ways appropriate to that appli­
cation.

POSTSCRIPT can be generated by programs with access to few resources
or by those with access to many resources. Programs that have very little
resources, such as those running on small computers, may proceed by in­
serting a clever preamble at the beginning of a POSTSCRIPT file with
enough procedures to make the output of the page description very simple.
The postfix syntax of POSTSCRIPT mes requires a generating program to
carry very little state about the POSTSCRIPT me as it is being generated.
Thus, even very limited systems can generate high quality output by
taking advantage of the processing power available in POSTSCRIPT.

Depending on the resources available, a program generating
POSTSCRIPT programs can make most of the decisions regarding the ap­
pearance of printed pages itself and express these in precise PoSTSCRIPT
operations, or it can allow procedures written in POSTSCRIPT and included
in the generated program to make those decisions at printing time. The
fIrst case will generally result in more time required to generate the
POSTSCRIPT program, with the POSTSCRIPT execution going very fast.
The second case reverses these efforts, and is very suitable for a resource­
limited generating program. In any case, the computation trade-off be­
tween effort devoted while producing POSTSCRIPT versus effort in execut­
ing POSTSCRIPT is available, and well thought out programs can make use
of these trade-offs to their advantage.

Basic Overview 29

Is it easy to interpret?

The surface design of the POSTSCRIPT language is very simple, and
thus an interpreter for its basic structure is easy. Making that interpreter
run fast is another matter requiring considerable work and insight. As for
the interpretation of POSTSCRIPT's graphics, its very general model (self
intersecting paths, etc.) requires sophisticated implementation. A more
restricted subset of POSTSCRIPT graphics can be handled with a simpler
implementation, but surprisingly innocuous page designs require the full
power of POSTSCRIPT.

Rendering fonts on raster printers pushes the graphics implementation
to its limits. Whereas small inaccuracies in general graphics may not be
noticed, even the slightest imperfections in rendered characters can be
very offensive.

So while simple interpretation of POSTSCRIPT is easy, sophisticated in­
terpretation of POSTSCRIPT with graphics is not. Fortunately, a fast
POSTSCRIPT interpreter with excellent graphics rendering capablities is
available.

Is it easy for a person to understand it?

This question can be understood in two ways: is it easy to understand
the imaging model?, and is it easy to understand page descriptions written
in this format? In the fIrst case, POSTSCRIPT's imaging model is a simple
one with much expressive power. People with graphic arts or computer
science backgrounds should have no difficulty in understanding how
pages are put together in POSTSCRIPT.

Programs in any language are as easy or as hard to understand as the
structure of those programs allow. POSTSCRIPT is written in printable
characters, so at least the surface structure of a POSTSCRIPT program is
easy to read. When things go wrong in a POSTSCRIPT program (e.g.,
during the debugging phase of bringing up a new application program that
emits POSTSCRIPT) being able to read the program source directly is a
great help. Subtle problems can be eliminated by using standard debug­
ging techniques and running POSTSCRIPT programs interactively. In fact,
the highly interpretive nature of POSTSCRIPT allows debugging tools to be
written in the POSTSCRIPT language itself.

Is it valid for more than one printer?

The very nature of POSTSCRIPT is that it is a device independent page
description language. The POSTSCRIPT interpreter is· almost entirely inde­
pendent of any specifIc output device. Sometimes a small amount of
device specific software is needed to interface POSTSCRIPT to a new raster
printer; in practice this is quite simple. Prior to publication of this manual,
POSTSCRIPT has already driven many raster printers, from several dif­
ferent manufacturers and in a wide variety of resolutions.

30 POSTSCRln' language manual

Is it easy to transmit?

The POSTSCRIPT syntax deliberately avoids any machine dependent
quirks in representation by staying within the printable character set. Any
computer file system or communication system worthy of the name must
be able to handle simple character files such as POSTSCRIPT programs.

Is it compact?

POSTSCRIPT programs can be verbose or compact, depending on the
methods used to generate them. Descriptions of very complicated pages of
graphics can be shortened substantially through the appropriate use of pro­
cedure definitions. Simple text pages also do not require much overhead,
since with short names defined for common compound operations on
these pages (such as move-to-next-line), the characters in the PoSTSCRIPT
program that are actually data (the characters to be printed) can be more
than 90 per cent of the characters in the program.

When generating POSTSCRIPT programs for interpreters that have no
file system, so that all data must be in the POSTSCRIPT program itself,
scanned image source (for photographs) can take double the space it might
otherwise need. This is due to POSTSCRIPT's representation of binary data
in hexadecimal form, so that 8 bits of binary data requires two
hexadecimal characters (16 bits worth) for their representation.

Can pieces of a description already built be used to compose
more complicated pages?

Emphatically yes. The design of POSTSCRIPT encourages building
pieces and templates that are used and reused to build up a page image.
Not only can pieces be reused in exactly their original form, but with
parameters, executable forms, translation, rotation and scaling, previously
defined pieces can serve in a myriad of ways for making new composite
pages.

Can it emulate other formats?

There are two distinct ways in which other print formats can co-exist
with POSTSCRIPT .. One is off-line translation, the other is direct emulation.
Off-line translation means that some other program translates a different
print format into POSTSCRIPT. Whenever possible, this is the preferred
technique, since each print file need be translated only once. Direct emula­
tion means that a POSTSCRlPT preamble that implements an interpreter for
the other format be inserted before the other print file. This combination
file is then sent to the POSTSCRIPT interpreter, which in executing the
POSTSCRIPT program actually interprets the other format.

Basic Overview 31

Several popular pre-POSTSCRIPT print file formats have already been
emulated in POSTSCRIPT by these techniques. In general, a print file for­
mat to POSTSCRIPT translator is easy, since the POSTSCRIPT imaging
model is so rich, and the POSTSCRIPT print file is executable.

Some print formats (derived from interactive screen raster graphics) in­
clude operations that require reading bits that were previously written (as
with flood-fill operations or exclusive or-ing existing partial pages.) These
operations are not device independent, and have no analog in
POSTSCRIPT's painting model. Thus, direct emulation of such operations
is not possible with POSTSCRIPT. These operations are usually parts of
some larger sequence of operations that can be succesfully translated into
POSTSCRIPT, e.g., make outline, draw outline, flood-fill can be translated
to make-path, fill in POSTSCRIPT.

In summary, POSTSCRIPT is an interpretive, dynamic, page description
programming language. It has features that fit together well, with the pro­
gramming features designed to be convenient for the page description ap­
plication. The design of the language was also influenced by the need to
answer all of the questions considered here in the affirmative. A careful
examination of the complete problem of computerized raster printing will
reveal why the choices made for the POSTSCRIPT language were made.

3
REFERENCE
SECTION

34

Data Structures and
Types

3.1.1. POSTSCRIPT Stacks

PosrSCRIPT language manual

The POSTSCRIPT interPreter manages four distinct stacks. The operand
stack, the dictionary stack, and the execution stack each contain
POSTSCRIPT objects. The graphics state stack contains snapshots of the
graphics state.

Section 2.6.1 introduced the operand stack. It holds any kind of
POSTSCRIPT object, and it is the temporary holding area for arguments
and results of operators. Section 2.6.1 also introduced the dictionary stack,
which provides the naming context for POSTSCRIPT programs. The dic­
tionary stack can 'hold only POSTSCRIPT dictionary objects. A
POSTSCRIPT program may access (read and write) both the operand stack
and the dictionary stack through POSTSCRIPT operators already intro­
duced.

The execution stack is a structure internal to the POSTSCRIPT inter­
preter. This stack holds procedure bodies (array objects) and other ex­
ecutable objects. At any point in the execution of a POSTSCRIPT program,
the execution stack is the call stack of the program. Because of the in­
timate relationship between the execution stack and the correct operation
of the interpreter, POSTSCRIPT programs are prohibited from writing in the
execution stack; i.e., POSTSCRIPT provides no operators for writing into
this stack directly.

The graphics state stack is also an internal structure. This stack holds
instances of the graphics state, briefly outlined in section 2.7.1, and ex­
plained in detail in section 3.5. Values in the top-most graphics state may
be examined and modified with many of the graphics operators in section
3.5. The stack may be pushed and popped with the gsave, grestore, and
grestoreall operators.

Reference Section 35

3.1.2. POSTSCRIPT Objects

The complete list of object types supported by POSTSCRIPT is:

1. Integer
2. Real
3. Boolean
4. Array
5. Dictionary
6. String
7. Name
8. Operator
9. File

10. FontID
11. Mark
12. Null
13. Save

3.1.2.1. Integer and Real

POSTSCRIPT provides integer and real (floating point) numbers. Most
arithmetic and mathematical operators can be freely applied to numbers of
both types, with automatic type conversion taking place. In addition, ex­
plicit type conversion may be performed when the operand is in range.
Other operators expect only integers (or a subrange of the integers) as
proper arguments. The binary representation of floating point numbers is
not exposed to the user, while the (machine dependent) representation of
integers is exposed through bitwise operations.

3.1.2.2. Boolean

POSTSCRIPT provides objects with boolean values (false and true) for
use in conditional and logical expressions. Booleans are the results of the
relational (comparison) operators, logical operators, and are also returned
as status from a variety of operations. The names true and false return the
two values of this type.

3.1.2.3. Array

POSTSCRIPT arrays are one-dimensional collections of objects. The
main difference between dictionaries and arrays is that dictionaries are ac­
cessed by name of elemerit whereas arrays are accessed by numeric index.
POSTSCRIPT arrays are different from arrays in most other computer lan­
guages. POSTSCRIPT arrays may be heterogeneous; that is, an array's ele­
ments may be any combination of numbers, strings, dictionaries, other ar­
rays, or any other POSTSCRIPT objects. POSTSCRIPT directly provides only
linear arrays, i.e., vectors - arrays with one dimension. Arrays of higher
dimension may be constructed by using arrays as elements of arrays,
nested arbitrarily deeply. All POSTSCRIPT arrays are indexed from 0, so an

36 POSTSCRIPT language manual

array of n elements has indices from 0 through n-l. Note that all accesses
to POSTSCRIPT arrays are bounds checked, and improper references result
in an error. POSTSCRIPT arrays may also be protected to read-only or
execute-only access. POSTSCRIPT's procedure bodies are executable ar­
rays.

The POSTSCRIPT interpreter distinguishes between array storage and an
array object. Array storage is the portion of POSTSCRIPT's virtual memory
where the array's elements are stored. An array object contains a descrip­
tion of the array's length and a pointer to its associated array storage.
Several array objects may point to the same (or portions of the same) array
storage.

3.1.2.4. Dictionary

POSTSCRIPT has operators that manipulate general associative tables
called dictionaries. A dictionary is a table whose elements are pairs of
POSTSCRIPT objects. We call the first element of a pair the key and the
second element the value. Though it is most common to use a name for a
key, any POSTSCRIPT object except a string and null may be used as a key.
A string is automatically converted into a name when used as a key.

The POSTSCRIPT interpreter always keeps one dictionary called the
system dictionary. This dictionary associates the basic operator names
(those defmed in this document) with the internal operations that imple­
ment them. A user cannot modify this dictionary. The interpreter also
keeps a second dictionary called the user dictionary. Any user may freely
modify this dictionary; it provides the outermost modifiable naming con­
text for POSTSCRIPT programs.

The POSTSCRIPT interpreter also maintains a stack called the dictionary
stack. This stack always contains the system dictionary as its bottommost
element and the user dictionary as the element above that. Other diction­
aries that provide additional naming context for a PoSTSCRIPT program
may· also be present on the dictionary stack. We call the topmost diction­
ary on this stack the current dictionary. When the POSTSCRIPT interpreter
encounters an executable name, it searches for that name as a key in the
current dictionary. If the interpreter finds this key in that dictionary, it
proceeds, using the associated value. If the key is not in the current dic­
tionary, the interpreter searches each successive dictionary in the diction­
ary stack (ending, if necessary, with the system dictionary) until it finds
that key. If the interpreter cannot find the name in any of these diction­
aries, it executes the error operator undefined.

3.1.2.5. String

POSTSCRIPT provides a general mechanism for operating on strings of
characters. POSTSCRIPT's string implementation distinguishes between
string bodies, which hold the characters contained in a string, and string
objects, each of which contains the string's length and a ·pointer to an as-

Reference Section 37

sociated string body. The POSTSCRIPT interpreter never puts a string body
on the operand stack; the only access a POSTSCRWf program has to a
string body is via operators that manipulate string objects.

As with an array, the elements of a string (its characters) are indexed
starting at O. Thus, a string whose length is n has valid character indices 0
through n-l. Note that all string accesses are bounds checked, and im­
proper references result in an error. POSTSCRWf uses non-negative in­
tegers in the range from 0 to 255 to represent characters, the elements of
strings. POSTSCRIPT has no distinguished object type for characters; nei­
ther does it have any syntax specifically designed for representing char­
acter values. Generally, an implementation of POSTSCRIPT uses the ASCII

character codes for characters; however, an installation may wish to use
many non-standard characters, such as ligatures, foreign characters, ac­
cents, unusual punctuation, etc. Therefore, the POSTSCRWf language does
not enforce any particular character set encoding; it remains flexible to
accommodate the different requirements of different installations.

3.1.2.6. Name

Names are the most common kind of keys in POSTSCRIPT dictionaries.
Strings cannot be keys, but are converted to names when used as keys.
Key-value pairs are the closest thing POSTSCRIPT has to variables and
values, and names are POSTSCRIPT's most common keys.

A name object is much like a string; and in fact, names and strings may
be used interchangeably in many contexts. However, a name has an im­
portant additional property; uniqueness. Any two names that are lexically
the same are in fact the same name object.

3.1.2.7. Operator

POSTSCRIPT'S built-in commands or functions are operators. Most of
this manual is dedicated to describing the semantics of these built-in
operators. Operators have names (most often they are defined in the sys­
tem dictionary) and their values are procedures in the implementation of
POSTSCRIPT itself that realize their desired function. POSTSCRIPT also has
some internal operators, not documented in this manual, which may be
encountered if a program reads the execution stack.

3.1.2.8. File

Files are readable or writable streams of characters (bytes). They may
be used for running stored POSTSCRIPT programs, reading scanned
images, or almost any other purpose. The exact number of allowed file
streams, and the file naming conventions, tend to be quite implementation
and site specific. POSTSCRIPT always provides standard input and output
streams, however.

38 POSTSCRIPT language manual

3.1.2.9. FontID

F ontIDs are POSTSCRlPT's internal method for identifying and keeping
track of fonts (typefaces). The IDs are necessary for POSTSCRIPT's font
bitmap caching mechanism to operate properly. Most user programs need
not be concerned with (or even aware of) objects of this type. The
detinefont operator creates objects of this type.

3.1.2.10. Mark

Mark objects only allow one value; all marks are equal to each other.
Marks may be used to mark a position on the operand stack, and are
described in detail in the section on stack manipulation operators. Marks
are created with the [and mark operators.

3.1.2.11. Null

The POSTSCRIPT interpreter uses null objects to fill empty or uninitial­
ized positions in composite objects. The array operator creates an array
object whose elements are initialized to null objects. The key null (defined
in the system dictionary) returns a null object.

3.1.2.12. Save

Save objects reference POSTSCRIPT interpreter state snapshots that are
manipulated by the POSTSCRIPT save and restore operators, which are
described in section 3.4.11.

3.1.3. Composite Objects

POSTSCRIPT arrays, dictionaries, and strings are called composite ob­
jects, in that they require extra storage (the "body" part). In the current
implementation of the POSTSCRIPT interpreter, each object consists of a
fixed length part containing its type, some bookkeeping information, and
either a value or pointer. This fixed length part is called the primary part.
For all other objects, the value of the object is carried in the primary part.
For composite objects, the primary part carries a pointer to the value.

The POSTSCRIPT operand stack, for example, is implemented as a
linked list of objects. When the POSTSCRIPT interpreter puts an object
onto the stack, it only stores the primary part. The POSTSCRIPT operator
dup performs the action of duplicating the top element on the operand
stack, i.e., it pushes onto the operand stack an additional object identical to
its former top element. Since objects may contain pointers, the dup
operator does not necessarily duplicate an object's data. In other words, if
an object contains a pointer to its data, only the pointer is copied, not the
data that it points to; i.e., it only duplicates the primary part.

Similarly, when the interpreter puts an object into an array or diction­
ary, it only stores the primary part. Thus, the POSTSCRIPT interpreter deals
more with references than with values. It is important to remember this

Reference Section 39

when writing programs. All object primary parts are the same size; there­
fore, the implementation of stacks and arrays is quite straightforward.
Note that the elements of an array or dictionary are themselves
POSTSCRIPT objects, while the elements of a string are individual charac­
ters which have no direct representation in POSTSCRIPT. Arrays are imple­
mented as a linear sequence of objects. Since all object primary parts have
the same length, indexing into an array is straightforward. POSTSCRIPT
procedure bodies are merely executable arrays. The execution rule for ar­
rays specifies that each element will be executed in turn (see section 3.3).

40

Argument and Error
Handling

POSTSCRIPT language manual

In general, each POSTSCRIPT operator removes the arguments it needs
from the operand stack before it carries out its operation. All of the intrin­
sic operators then type check their arguments before doing any computing.
If an operator discovers a mismatch between the type of an argument on
the operand stack and the type it expects for that argument, it puts all of its
arguments back onto the operand stack and executes the error operator
typecheck. If the operand stack becomes empty prematurely while an
operator is removing its arguments, the operator restores the operands it
removed so far and executes the error operator stackundernow. When a
POSTSCRIPT operator finishes its execution, it pushes its return values
onto the operand stack. If the stack becomes full during this process, the
operator executes the error operator stackovernow. (For the maximum al­
lowed size of the operand stack, see Appendix B.)

Numerical arguments are a tricky issue in any programming language.
POSTSCRIPT numbers include both integers and floating point reals. Inter­
nally, the POSTSCRIPT interpreter does make a distinction between these
two representations 'for numbers. Certain POSTSCRIPT operators require
numeric arguments; some of these further expect arguments to be integers,
non-negative integers, or within some other restricted subrange of the in­
tegers. Some operators will perform implicit conversions from real num­
bers to integers; the descriptions of these operators indicate which conver­
sions they perform and what errors may result. When an argument has the
wrong type, e.g., string supplied but number expected, then an operator
will execute the error operator typecheck. If a conversion is attempted but
cannot be carried out, e.g., negative number supplied but non-negative in­
teger expected or very large floating point number (out of the integer
range) supplied but integer expected, then the operator will execute the
error operator rangecheck.

Note that the POSTSCRIPT operators may perform implicit conversion
only on numbers. In particular, most operators will not convert strings to
numbers. POSTSCRIPT does contain a set of explicit type conversion
operators that can convert values across a wide range of type boundaries.
These are explained in section 3.4.9.

Reference Section

Immediate and
Delayed Execution

41

The POSTSCRIPT interpreter scans POSTSCRIPT programs in a strict left­
to-right manner. As the interpreter encounters a syntactic entity, it takes
some action immediately. When it encounters a number or a string, it nor­
mally pushes that object onto the operand stack. When it encounters a
name, it normally looks up the name in the dictionary stack to determine
whether its value is executable. If the value is executable (operators and
procedure bodies are executable), it executes that value immediately.
Otherwise, it pushes that value onto the operand stack.

The curly brace characters, "{" and "}" delimit a range of
POSTSCRIPT source code that the POSTSCRIPT interpreter does not execute
immediately. Instead, the interpreter builds an executable object composed
of the entire contents of the matching braces, and it pushes this object onto
the operand stack. Subsequent operators may treat this object as they wish:
some operators like if may execute the object; others, like def, may just
store the executable object somewhere. To clarify these points, consider
the following examples. If the PoSTSCRIPT interpreter encounters

labc dup def

it will push the literal name "abc" onto the operand stack (without inter­
preting it further, this is the significance of the "I"), push a duplicate of
this name on top of that, and define the name "abc" to have the name
object "abc" as its value. On the other hand, if the POSTSCRIPT inter­
preter scans

labc {dup} def

it will push the literal name "abc" onto the operand stack as before, push
the executable object consisting of the name dup onto the operand stack,
and defme the name "abc" to have the procedure body consisting of a
single dup as its value. If the POSTSCRIPT interpreter subsequently en­
counters an abc, its behavior will be different depending on which of the
above definitions was used. In the fIrSt case, the interpreter will push the
literal name value "abc" onto the operand stack. In the second case, the
interpreter will execute a dup operation.

Using the curly brace construct is the standard method for defming
functions in POSTSCRIPT. For example, the sequence

lave {add 2 div} def

associates an executable procedure body that averages two numbers on the
operand stack with the name "ave". A later execution of the sequence

40 60 ave

results in the execution of the procedure body on the two arguments, 40

42 PosrSCRlPT language manual

and 60. The POSTSCRIPT interpreter will execute the contents of the pro­
cedure bod),. adding to get the value 100, and diving by 2 to end up with
the result, 50, on the operand stack.

The POSTSCRIPT interpreter implements executable procedure.bodies as
arrays that have their executable flag set. Thus, arrays can be converted to
procedure bodies, and procedure bodies can be converted back to non­
executable arrays quite easily. These facts are important if you wish to
treat executable objects in POSTSCRIPT as data. Also, the POSTSCRIPT in­
terpreter looks up the current associations of the names contained in a pro­
cedure body only when executing that procedure. Thus, in .the example we
have been using in this section, after defining ave to be {add 2 div}, we
could change the defInition of div, and subsequent execution of ave would
use the new definition of div.

POSTSCRIPT draws another fIne distinction between names, commands,
and executable functions. The first point to understand is that the ex­
ecutable property is independent of the type of an object. Thus, executable
is not itself a type, but any object of any type may be either executable or
non-executable. The executable property really matters for arrays, com­
mands, strings, files, and nulls; it is irrelevant when applied to objects of
others types. For example, an executable integer, when executed, merely
puts itself on the operand stack.

Operators are sections of code written in the C Language (or other im­
plementation language) that actually implement the operators built into the
POSTSCRIPT language. New functions defined by POSTSCRIPT source
code, using curly braces and the def operator, are implemented as array
objects that are executable. Both of these kinds of executable code are
generally referenced in PoSTSCRIPT programs by names, which are the
identifiers in the actual POSTSCRIPT source.

For example, consider the POSTSCRIPT source code:
/plusl {l add} def

The POSTSCRIPT scanner will recognize three items at the top level; these
are a literal name, an executable array, and a name. The executable array
in tum is recognized to be composed of two elements, an integer and a
name. The interpreter executes this code by executing each item in tum. It
pushes the literal name "plusl" on the operand stack. It pushes the array
"{1 add}" on the operand stack. Remember that curly braces indicate
delayed execution, i.e., when encountered by the interpreter, the procedure
body is placed on. the operand stack, not on the execution stack. Finally,
the interpreter encounters the name "def". It looks up the name, finds it
in the system dictionary, and discovers that its value is an executable
operator. When a name is looked up, and its value is executable, the inter­
preter executes that value. In the case of an operator, it executes it directly.
In the case of an executable array, it pushes that array on the execution
stack. In this case, the def operator is executed immediately, resulting in
the name plus! being defined as {1 add} in the current dictionary. Now
consider the execution of:

Reference Section 43

5 plusl

The scanner recognizes two items, an integer and a name. The interpreter
pushes the integer 5 on the operand stack, and then it processes the name
plus!. It looks up plus! and finds its value to be the executable array,
{1 add}. Because this array was found as a result of the name lookup, the
interpreter pushes this array onto the execution stack. Now the interpreter
deals with the top item on the execution stack, which is the array just
pushed. It processes the elements of this array in order, by removing the
array's first element, pushing the remainder of the array (if any) back onto
the execution stack, and dealing with the element it took as if it came from
the input stream. So, in the example, the interpreter pushes the integer 1
onto the operand stack, and it processes the name add. The name add is in
the system dictionary, and its value is an executable operator, which the
interpreter executes, resulting in the 5 and 1 being popped from the
operand stack and a 6 being pushed onto it.

Any object that is not executable (even an operator can be set to non­
executable) that is pushed ~nto the execution stack (as by the exec
operator) merely moves itself to the operand stack. Executable objects
other than operators, arrays, strings, files, and nulls also just move them­
selves to the operand stack. The above example demonstrated how ex­
ecutable arrays and executable operators are handled as results of a name
lookup. It remains for us to describe how executable strings are handled.

The POSTSCRIPT interpreter pushes an executable string that is the
value of a name lookup onto the execution stack. From there, the inter­
preter removes the string, scans the fIrst token out of the string, pushes the
remainder of the string (if any) onto the execution stack, and deals with
the token just obtained as if it had just been read out of the input buffer.
Thus, executable strings and executable arrays are treated identically, ex­
cept that the strings are scanned at execution time, whereas the arrays
were pre-scanned.

File streams may also be executable (the standard input stream is an
example). If an executable (readable) file is moved to the execution stack,
the effect is just as if the file had been run, except that the starting posi­
tion in the file is the current stream position. The contents of the file are
scanned and interpreted until an end of file is reached. The file stream is
then closed, and the file is removed from the execution stack.

Null objects may also be executable. Executing a null has no effect (i.e.,
is a "no-op").

Thus, at any given point in a computation, the execution stack may con­
tain the remainders of many executable arrays, strings, and fIle objects.
Non-executable objects may exist on this stack only ephemerally, as their
immediate execution removes them to the operand stack.

44 PosrScmPTlanguager.nanual

POSTSCRIPT
Operators

The POSTSCRIPT operators divide naturally into groups, corresponding
to both the functions and the objects that POSTSCRIPT supports. This sec­
tion is divided into subsections according to these groups. These subsec­
tions describe all of the intrinsic POSTSCRIPT operators. Each operator
description is presented in the following format:

arg1 arg2 ... argN operator result1 ••• resultM

The block of text in this position explains the operator. Arg 1 through
argN are the arguments expected by the operator, with argN being the
topmost element on the operand stack. Resultl through resul~ are
the objects left on the stack as a result of executing the operator with
resul~ being the topmost element left on the stack. Normally the
names indicate the type of the operand or result. For example, the
name num l indicates that the argument or result is a number.

Example:
an examp~e of the use of this operator is given here

Errors: a list of the error operators that this operator might execute
is given in this position.

In addition, the notation "1-" indicates the bottom of the stack. The
notation "-" in the arguments position indicates that the operator expects
no arguments, and a "-" in the results position indicates that the operator
returns no results.

When the notation proc is used for an argument, you must be careful to
supply an executable array (procedure body) without actually executing it
prematurely. Thus, if you have defined myop to be some executable pro­
cedure,use

7 {myop} repeat

rather than
7 myop repeat.

Reference Section 45

3.4.1. Stack Operators

The operand stack is the POSTSCRIPT interpreter's mechanism for pass­
ing arguments to operators and for gathering results from operatorS.
POSTSCRIPT provides a variety of operators that rearrange elements on
this stack. Such rearrangement is often required when the results of one
operator are to be passed as arguments to another operator that expects its
operands in a different order. The group of stack manipulation operators,
in addition to providing the obvious stack operations, allow duplicating
portions of the operand stack (copy), treating a portion of the operand
stack as a circular queue (roll), and treating the operand stack as an index­
able array (index).

• pop
any pop

• dup

removes the top element from the operand stack.

Example:
1 2 3 pop => 1 2
123poppop=>1

Errors: stackunderflow.

any dup any any

• exch

duplicates the top element on the operand stack. Note that dup only
copies the primary part of a composite object, not the storage it refers
to, so array, dictionary, and string bodies are not duplicated. See sec­
tion 3.1.2.

Errors: stackoverflow, stackunderflow.

anYl anY2 exch anY2 anYl

exchanges the top two elements on the operand stack.

Example:
12exch=>21

Errors: stackunderflow.

46

• roll

• index

POSTSCRIPT language manual

anyo N J roJ.J. any (J-l) (mod N) •• any a anYN_l •• any J(mod N)

rotates the positions of the arguments anyN_l through anyo on the
operand stack by the amount J. N must bea non-negative integer,
and J must be an integer. roll first removes the the top two argu­
ments from the· operand stack. roll· is a circular shift of the top N
elemertts on the operand stack. Consider the top N elements to be a
substack. Then, if J is positive, roll shifts the elements from the top
to the bottom of the substack. If J is negative, roll shifts the elements
from the bottom of the subs tack to the top.

Example:
(a) (b) (c) 3 -1 roJ.J. => (b) (c) (a)
(a) (b) (c) 3 1 roJ.J. => (c) (a) (b)
(a) (b) (c) 3 0 roJ.J. => (a) (b) (c)

Errors: rangecheck, stackoverflow, stackunderflow, typecheck.

anYN anyo I index anYN ••• anyo any!

• clear

removes I from the operand stack, counts down to the Ith element
from the top of the stack, and pushes a copy of that element onto the
stack. I must be a non-negative integer.

Example:
(a) (b) (c) (d) 0 index: => (a) (b) (c) (d) (d)
(a) (b) (cj (d) 3. index: => (a) (1)j (0) (d) (a)

Errors: rangecheck, stackunderflow, typecheck.

~ anYl .•• anYN cJ.ear ~

removes all objects from the operand stack.

Errors: (none).

Reference Section 47

• count
~ anY1 .•. anYN count ~ anY1 ••• anYN N

• mark

counts the number of items on the operand stack and pushes this
count onto the stack.

Example:
clear count => 0
clear 1 2 3 count => 1 2 3 3

Errors: stackoverflow.

mark mark

pushes a mark (an object of type marktype, not the mark operator
itself) onto the operand stack. All marks are identical, and the
operand stack may 'Contain many of them at any given time. Marks
are useful for flagging the end of an arbitrarily long list of arguments
that may be passed to some procedures. Another common use for
marks is for debugging or protecting against POSTSCRIPT code that is
suspected of tampering with the operand stack below the level at
which it is called. This technique is not guaranteed to reveal all
problems with suspect code, but it often causes a typecheck error
when faulty stack manipulation occurs. Such debugging code should
explicitly pop a mark off of the operand stack after it has served its
purpose.

Errors: stackoverflow.

• cleartomark
mark -mark1 .• , -markN cleartomark -

pops the operand stack repeatedly until it encounters a mark, which it
also removes from the stack. The notation -mark stands for an object
of any type except marktype.

Errors: unmatchedmark.

48 POsrSCR/PT language manual

• counttomark

mark -mark1 ••• -markN counttomark mark '" -markN N

counts the number of objects on the operand stack starting with the
top element, down to but not including the first mark encountered.
The notation -mark stands for an object of any type except
marktype.

Example:
1 mark 2 3 counttomark => 1 mark 2 3 2
1 mark counttomark => 1 mark 0

Errors: stackoverflow, unmatchedmark.

Reference Section 49

3.4.2. Arithmetic and Math Operators

Since POSTSCRIPT is a general purpose programming language, it
provides the usual complement of arithmetic and mathematical operators.
Although the numeric types Integer and Real are visible to the user, most
arithmetic POSTSCRIPT operators accept either of these numeric represen­
tations. Thus, the descriptions that follow indicate that arguments and
results have the type number; for the most part, a POSTSCRIPT program
need not concern itself with which internal representation is used at any
given time.

The POSTSCRIPT arithmetic operators automatically convert internal
numeric representations from integer to real and vice versa, depending on
how their arguments and results approach the limits of their representa­
tions. Depending on their input arguments, these operators can generate
undefined results. When this happens, they execute the error operator
undetinedresult.

• abs

num abs I num I

• add

return the absolute value of num, the number on the top of the stack.
When in range, the type of the result is the same as the type of the
argument; otherwise the result is real.

Example:
4.5 abs => 4.5
-3 abs => 3
o abe => 0

Errors: staclrunderflow, typecheck .

num! num2 add (num! + num2)

adds the top two elements on the stack. If both arguments are in­
tegers and the result is in range, the result is an integer; otherwise,
the result is a real.

Example:
3 4 add => 7
-3 abe -4 add => -1
9.9 1.1 add => 11.0

Errors: staclrunderflow, typecheck, undefinedresult.

50 POSTSCRIPT language manual

• div
num1 num2 div (num1 / mrin2)

• idiv

. divides the element below the top element on the operand stack by
the top element on the stack. The result is a real.

Example:
3 2 div => 1.5
4 2 div => 2.0

Errors: stackunderflow, typecheck,undefinedresult.

int1 int2 idiv integer-part (int1 / int2>

• mod

divides the element below the top element on the operand stack by
the top element on the stack, and returns only the integer part of the
result onto the stack. Both operands of idiv must be integers. The
result is an integer.

Example:
3 2 idiv => 1
4 2 idiv => 2
-5 2 idiv => -2

Errors: rangecheck, stackunderflow, typecheck,undefinedresult.

int1 int2 mod (int1 MOD int2)

• mnl

returns the integer remainder that results from dividing intl by int2.
The sign of the result is the same as the sign of the dividend intl'
Both operands must be integers. The result is an integer.

Example:
53mod=>2
52mod=>1

Errors: stackunderflow, typecheck, undefinedresult.

multiplies the top two elements on the stack. If both arguments are
integers and the result is in range, the result is an integer; otherwise,
the result is a real.

Errors: stackunderflow, typecheck, undefinedresult.

Reference Section 51

• neg
num neg -num

• sub

• sqrt

reverses the sign of the top element on the stack. When in range, the
type of the result is the same as the type of the argument; otherwise,
the result is a real.

Errors: stackunderflow, typecheck.

subtracts the top element on the operand stack from the element
below it on the stack. If both arguments are integers and the result is
in range, the result is an integer; otherwise, the result is a real.

Errors: stackunderflow, typecheck, undefinedresult.

num sqrt SquareRoot(num)

• exp

returns the square root of the argument. num must be a non-negative
number. The result is a real.

Errors: rangecheck, stackunderflow, typecheck.

exp num num2
1

raises num1 (element below the top element on the operand stack) to
the num2 (top element on the stack) power. The result is a real.

Example:
9 0.5 exp => 3.0
9 -1 exp => 0.111111

Errors: staclcunderflow, typecheck, undefinedresult.

52 PosrSCRlFr language manual

• ceiling

num ceiling Ceiling (num)

• floor

returns the least integer value greater than or equal to num (the
ceiling of num). The type of the result is the same as the type of the
argument (to preserve the range of reals). ceiling is a no-op for argu­
ments of type integertype, and returns a real for real arguments.

Example:
3.2 ceiling => 4.0
-4.8 ceiling => -4.0
99 ceiling => 99

Errors: stackunderflow, typecheck .

num floor Floor (num)

• round

returns the greatest integer less than or equal to num (the floor of
num). The type of the result is the same as the type of the argument
(to preserve the range of reats). floor is a no-op for arguments of
type integertype, and returns a real for real arguments.

Example:
3.2 floor => 3.0
-4.8 floor => -5.0
99 floor => 99

Errors: stackunderflow, typecheck .

num round Round (num)

rounds num to the nearest integer value without type conversion. The
type of the result is the same as the type of the argument (to preserve
the range of reals). The effect of round on an integer is a no-op.

Example:
3.2 round => 3.0
6.5 round => 7.0
-4.8 round => -5.0
-6.5 round = -6.0
99 round => 99

Errors: stackunderflow, typecheck.

Reference Section 53

• truncate

num truncate Truncate (num)

• atan

truncates num toward zero by removing its fractional part. The type
of the result is the same as the type of the argument (to preserve the
range of reals). truncate is a no-op for arguments of type
integertype, and returns a real for real arguments. The cvi operator
(described on page 83) does truncation and type conversion to the
nearest integer.

Example:
3.2 truncate => 3.0
-4.8 truncate => -4.0
99 truncate => 99

Errors: stackunderflow, typecheck.

num1 num2 atan ArcTangent(num1 / num2)

• cos

returns the angle (in degrees between 0 and 360) whose tangent is
num/num2• Note: num1 or num2 may be zero, but not both. The signs
of num1 and num2 determine the quadrant in which the result wi1llie.
The result is a real.

Example:
o 1 atan => 0.0
1 0 atan => 90.0
-100 0 atan => 270.0
4 4 atan => 45.0

Errors: stackunderflow, typecheck, undefinedresult.

num cos Cosine (num)

returns the cosine of the top element of the stack (taken as an angle
in degrees). The result is a real.

Example:
o cos => 1.0
90 cos => 0.0

Errors: stackunderflow, typecheck.

54 POSTSCRIPT language manual

+ sin

num sin Sine (num)

+In

returns the sine of the top element of the stack (taken as an angle in
degrees). The result is a real.

Errors: stackunderflow, typecheck.

num In Ln(num)

+ log

returns the natural logarithm (base e) of the top element of the stack.
The result is a real.

Example:
10 In => 2.30259
100 In => 4.60517

Errors: stackunderflow, typecheck, undefinedresult.

num log Log (num)

+ rand

returns the common logarithm (base 10) of the top element of the
stack. The result is a real.

Example:
10 log => 1.0
100 log => 2.0

Errors: stackunderflow, typecheck, undefinedresult.

rand. int

returns a random number. The rand operator uses a multiplicative
congruential random number generator with period 232 to return suc­
cessive pseudo-random numbers in the range from 0 to 231_1. The
generator is reinitialized by executing srand with 1 .as its argument.
It can bl? set to any other starting point by executing srand with any
other integer argument. The current seed may be interrogated with
the rrand operator.

Errors: stackoverflow.

Reference Section 55

• srand

int srand

• rrand

Initialize random number generator with seed into The generator is
reinitialized by executing srand with 1 as its argument. It can be set
to any other starting point by executing srand with any other argu­
ment. int must be an integer.

Errors: stackunderflow, typecheck.

rrand int

returns the current state of the random number seed (see rand and
srand) ..

Errors: stackoverflow.

56 POSTSCRIPT language manual

3.4.3. Polymorphic Operators

POSTSCRIPT has several operators that apply to objects of different
- types. Some of the operators described in this section operate on diction­

aries, arrays, and strings in analogous ways. Type-specific operators are
described in the sections related only to each type .

• copy

any! ... anYN N copy any! ... anYN any! ... anYN

duplicates the top N elements on the operand stack as a group. N
must be a non-negative integer.

Example:
1 2 3 2 copy => 1 2 3 2 3
1 2 3 0 copy => 1 2 3

Errors: rangecheck, stackunderflow, stackoverflow, typecheck.

array! arraY2
diet! diet 2

string! string2

copy subarraY2
copy diet 2
copy substring2

copies all the elements of the ftrst composite object into the second,
where the composite objects must be of the same type. In the case of
an array or string, the length of the second object must be at least as
great as the fIrst; copy pushes a descriptor for the initial subarray or
substring of the second object containing the copied contents of the
first. In the case of a dictionary, dietz must have a length of zero and
a maxlength at least as great as the length of dietl . copy provides a
"top-level" copy of the values in a dictionary or an array, copying
only references to contained composite objects, not their bodies.
Note that a copy of a composite object is not the same as a dup. dup
merely copies the descriptor (reference) to the same storage (body),
while copy makes a top level copy of the storage into a specified
destination. copy also copies the protection attributes of the source
object.

Example:
/a1 [1 2 3] def
a1 dup length array copy => [1 2 3]

Errors: invalidaccess, rangecheck, stackunderflow, typecheck.

Reference Section 57

• length

array length int
diet length int

string length int

depends on the type of its argument. If the argument is an array or
string, length returns its length. If the argument is a dictionary,
length returns the current number of key-value pairs it contains. (See
also the rnaxlength operator in section 3.4.5 which returns the
capacity of a dictionary.)

Example:
[1 2 4] length => 3
[] length => 0 % an array of zero length
far 20 array def ar length => 20

/mydiet 5 diet def
mydiet length => 0
mydiet /firstkey (firstvalue) put
mydiet length => 1

(abe\n) length => 4 % the "\n" is one character
() length => 0

Errors: invalidaccess, stackunderflow, typecheck.

58 POSTSCRIPT language manual

• foraH

array proe forall
diet proe forall

string proe forall

enumerates the elements of the argument, executing the procedure
body proc for each element. If the first argument is an array or string,
forall pushes element and executes proc for each element in se­
quence. If the first argument is a dictionary, foraH pushes key and
value and executes proc for each key-value pair in the dictionary.
The order in which foraH enumerates the entries in the dictionary is
arbitrary. (New entries in the dictionary created during the execution
of foraH mayor may not be included in the enumeration.) If the first
argument is a string, foraH enumerates the elements of the string as
integer character codes (between 0 and 255, inclusive), not as one~
character strings. If the array, dictionary, or string is empty (i.e., has
length 0), foraH does not execute proc at all. Although forall does
not leave ~y results on the operand stack when it is finished, the
execution of proc may leave arbitrary results there (and may raise
any error). In particular, if proc does not remove the enumerated
arguments from the operand stack, they will accumulate there.

Example:
5 [1 2 3 4 5] {add} forall => 20

Errors: invalidaccess, stackunderflow, typecheck.

Reference Section 59

• get

array index get array index
diet key get value

string index get stringindex

gets a single element from an array, dictionary, or string. If the first
argument is an array or string, get pushes the element of that array or
string specified by index (counting from zero). If index is not a valid
integer index for the array or string, get executes the error operator
rangecheck. If the arguments are diet key, get searches diet for an
entry with key key and pushes the associated value onto the operand
stack. If key is not defined in diet, get executes the error operator
undefined. Elements of arrays and dictionaries are POSTSCRIPT ob­
jects; elements of strings are integer character codes.

Example:
[31 41 59] 0 get => 31
[0 (a mized-type array) [] {add 2 div}]

2 get => [] % an empty array

/~key (myvalue) de£
currentdict /~key get => (myvalue)

(abc) 1 get => 98 % ascii character "b'
(a) 0 get => 97

Errors: invalidaccess, rangecheck, stackunderflow, typecheck,
undefined.

60 PosrScRIFl'language manual

• put

array index value put
diet key value put

string index value put

stores an element into a specific object. If the first argument is an
array or string, put stores value as the element of that array or string
specified by index (counting from zero). index must be a valid in­
teger index for the array or string. If the arguments are diet key value,
put stores value into diet with key. diet need not be on the dictionary
stack. If diet is full and has no current value for key, put executes the
error operator dictfull. The argument value may be of any type for
an array or dictionary, but it must be an integer character code for a
string.

Example:
lar [1 2 3 4] def
ar 2 (abed) put % remember arrays are indexed from zero
ar 2 a10ad pop => 1 2 (abed) 4

1st (abc) def
st 0 8#101 put % modify 'st' to be II Abc", using octal constant

Errors: dictfull, invalidaccess, rangecheck, stackunderflow,
typecheck.

Reference Section

• getinterval

array beg len
string beg len

get interval.
get interval.

61

subarraYb b +1 1 eg .. eg en-
substringb b +1 1 eg .. eg en-

constructs a "subobject" of len elements, whose element values are
the elements indexed by beg through beg+len-l of array or string,
and pushes this new object on the operand stack. This object does not
have its own copy of the elements of the argument; it points within
the same storage as the argument object. Thus if an element is
modified through one of these objects, the corresponding element in
the other object changes as well. Like all POSTSCRIPT arrays and
strings, the subobject's indices start at O. Thus, its indices are 0
through len-I, where

subobjo = objbe
subobjl = Objbe~l

subobjlen_l = objbeq+len-l

The getinterval operator expects beg to be a valid index in array or
string, and len to be a non-negative integer such that beg+len-l is
also a valid index in array or string.

Example:
[1 2 3 4 5] 1 3 getinterva1 => [2 3 4] % the middle three elements

(abede) 1 3 get interval => (bed)
(abede) 0 0 getinterval. => () % an empty string

Errors: invalidaccess, rangecheck, stackunderflow, typecheck .

• putinterval

arraYl beg arraY2
string1 beg string2

put interval.
put interval.

stores all the elements of array2 (string2) into the storage of arrayl
(string1) starting at the element of objl indexed by beg. beg must be
a non-negative integer in the range of valid indices of objl such that
beg+(length of obj2)-1 is also a valid index of obj 1"

Example:
lar [1 2 3 4 5) def
ar 1 [(a) (b) (c») putinterval. % car' is now [1 (a) (b) (c) 5]

1st (abc) def
st 1 (de) putinterval. % Cst' is now "ade".

Errors: invalidaccess, rangecheck, stackunderflow, typecheck.

62 PosrSCRIPT language manual

3.4.4. Array Operators

POSTSCRIPT provides operators to create and access arrays of
POSTSCRIPT objects. In the descriptions in this section, the notation array.

1

means "the element of array at position i" .
The polymorphic operators copy, forall, get, getinterval, length, put,

and putintervaI, described in section 3.4.3, may also be applied to arrays.

• array
int array array-of-size-int

· [

creates an array of size int, each of whose elements is initialized to
contain the Null object, and pushes this array onto the operand stack.
The array operator expects int to be a non-negative integer.

Errors: rangecheck, stackunderflow, typecheck.

- [mark

·]

marks the stack, expecting that the elements of an array to be con­
structed will follow, followed by a "]" operator that does the array
construction. This operator is equivalent to the mark operator. Note
that the "[" character is self-delimiting. This implies that the "["
operator need not be surrounded by blanks (or other delimiters) when
used in a POSTSCRIPT program.

Errors: stackoverflow.

mark -marko ••• -markN_1 array

constructs an array of N elements, with the elements initialized to
-marko, ... , -marl'N_I' and pushes this array onto the operand stack.
The notation -mark means an object of any type except marktype.
This operator is equivalent to the sequence:

counttomark array astore exch pop

Like the "[" character, "J" is also self-delimiting.

Example:
[5 4 3] => % a l-element array, with elements 5, 4, 3
[1 2 add] => % a I-element array, with element 3

Note that the POSTSCRIPT interpreter acts on all the array elements as it
encounters them (unlike its behavior with curly braces), so the add
operator was executed.

Errors: unmatchedmark.

Reference Section 63

• aload
array-of-size-N a~oad arrayo ... arraYN_l array-of-size-N

• astore

successively pushes all N elements of the argument array onto the
operand stack and finally pushes the array itself.

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck.

anyo anYN_l array-of-size-N astore array-of-size-N

• null

stores the arguments any 0 through anyN_l from the operand stack into
the array storage pointed at by the array-oJ-size-N argument, leaving
this array object on the operand stack. The astore operator first
removes the top argument from the stack and determines its length. It
then removes that number of objects from the operand stack, storing
them, highest on the stack into the highest indexed element of the
array through the lowest on the stack into the Oth element of the
array.

Example:
(a) (b) (c) 3 array astore => [(a) (b) (c)]

This creates a three element array, stores the strings "a", "b", and
"c" into its Oth, 1st, and 2nd elements respectively, and leaves the
array object on the operand stack.

Errors: invalidaccess, stackunderflow, typecheck.

nu~~ null

returns a literal object of type nulltype.

Errors: stackoverflow.

64 PosrSCRIPT language manual

3.4.5. Dictionary Operators

The dictionary related operators allow a POSTSCRIPT program to create
. dictionaries, to add key-value pairs to dictionaries, to look up a key in a
dictionary, to enumerate the key-value pairs in a dictionary, to push dic­
tionaries onto the dictionary stack, and to remove dictionaries from the
dictionary stack. There are no operators that explicitly remove items from
dictionaries. (However, see the description of the save and restore
operators, which may restore dictionaries to a previous state.)

In the operator descriptions that follow, the arguments designated key
and value designate key and value arguments respectively. The value ar­
guments may be of any POSTSCRIPT object type. The key argument may
be of any type except null; but if key is a string, it is converted to a name
before being used.

The polymorphic operators copy, forall, get, length, and put, described
in section 3.4.3, may also be applied to dictionaries .

• diet

int diet diet

• begin

creates a dictionary with a maximum capacity of int elements and
pushes the created dictionary object onto the operand stack. int is
expected to be a non-negative integer. If a subsequent dictionary
operation attempts to create a new element within a dictionary that is
already full, it will execute the error operator dictfull.

Errors: rangecheck, stackundertlow, typecheck .

diet begin

pushes diet onto the dictionary stack, making it the current diction­
ary. Remember that the dictionary stack constitues a naming context
for POSTSCRIPT programs, so begining a dictionary may establish a
new context.

Errors: dictstackovertlow, invalidaccess, stackundertlow,
typecheck.

Reference Section 65

• end

end

• def

pops the current dictionary off of the dictionary stack, making the
dictionary below it the current dictionary. If end tries to pop the
bottommost instance of the user dictionary, it executes the error
operator dictstackundertlow.

Errors: dictstackunderflow.

key value def

• store

stores value with key in the current dictionary. If key is already in the
current dictionary, def simply replaces its value. Otherwise, def
creates a new entry for key and stores value with it.

Example:
/ i 1 def % define i to have value 1 in current dictionary
/i i 1 add def % i now has value 2

Errors: dictfull, invalidaccess, limitcheck, stackunderflow,
typecheck.

key value store

searches the dictionary stack from the current dictionary down to the
system dictionary, until it finds key. When the store operator finds
this key, it replaces any previous value associated with the key by
value. If store cannot find the key in any dictionary on the dictionary
stack, it creates a new entry in the current dictionary with key and
value. store differs from def in that store may search the dictionary
stack to any depth, whereas def searches only the current dictionary.

Errors: dictfull, invalidaccess, limitcheck, stackunderflow.

66 POSTSCRIPT language manual

+ known

diet key known boolean

+ load

returns the boolean value true if key is a key in· the dictionary diet;
otherwise returns false. diet does hot have to be on the dictionary
stack.

Example:
/mydiet 5 diet def
mydiet /total 0 put
mydiet /total known => true
mydiet /badname known => false

Errors: invalidaccess, stackunderflow, typecheck.

key load value

• where

searches the dictionary stack (from the top down) for key and returns
the value associated with it. If key is not defined in any dictionary on
the dictionary stack, load executes the error operator undefined.

Example:
/avg {add 2 div} def
/ avg load => {add 2 di v} % the executable array of 3 elements

Errors: invalidaccess, stackunderflow, typecheck, undefined .

key where if found: diet true
if not found: false

searches the dictionary stack from the current dictionary down to the
system dictionary until it finds key. If where finds the key, it returns
the dictionary in which it found the key, and it returns the boolean
value true. If it cannot find this key in any dictionary on the diction­
ary stack, it returns the boolean value false. Note that this operator
returns either one or two result objects on the operand stack, depend­
ing on the boolean value returned.

Errors: invalidaccess, stackoverflow, stackunderflow.

Reference Section 67

• maxlength
dict maxlength int

returns the maximum number of keys that diet may hold, as defined
by the diet operator. (See also the length operator in section
3.4.3 which returns the number of entries a dictionary contains.)

Example:
/mydiet 5 diet def
mydiet length => 0
mydiet maxlength => 5

Errors: invalidaccess, stackunderflow, typecheck.

• systemdict
systemdiet system-dictionary

• userdict

pushes the system dictionary onto the operand stack. That is, a new
dictionary object containing a primary part that points to the system
dictionary is pushed onto the operand stack. The dictionary object
residing on the dictionary stack that points to the system dictionary
remains there.

Errors: stackoverflow.

userdiet user-dictionary

pushes the user dictionary onto the operand stack. That is, a new
dictionary object containing a primary part that points to the user
dictionary is pushed onto the operand stack. The dictionary object
residing on the dictionary stack that points to the user dictionary
remains there.

Errors: stackoverflow.

• currentdict
eurrentdiet dict

pushes the current dictionary (the dictionary on top of the dictionary
stack) onto the operand stack. That is, a new dictionary object that
points to the current dictionary is pushed on the operand stack. The
dictionary object on top of the dictionary stack remains there.

Errors: stackoverflow.

68 PosrSCRlrI language manual

• countdictstack

countdictstack num

returns the number of dictionaries currently on the dictionary stack.
This command is most often used to compute· the size of the array
parameter for· the dictstack command described below.

Errors: stackoverflow .

• dictstack

array dictstack subarray

stores as many elements as the dictionary stack has dictionaries into
the argument array and returns a object describing the initial N­
element subarray of array. where N is the current depth of the dic­
tionary stack. The dictionaries are placed in this array in order. with
the system dictionary in element 0 and the current dictionary in ele­
mentN-l.

Errors: rangecheck. stackunderflow, typecheck.

Reference Section 69

3.4.6. String Operators

The POSTSCRIPT string operators provide basic string manipulation
facilities. POSTSCRIPT's string operators create strings of a given length,
copy existing strings, build string objects that point to substrings of exist­
ing string bodies, search for substrings in a given string, and enumerate
the characters of a given string. In the following descriptions, the notation
stringj denotes the character stored at the i'th position in the string body
pointed at by string.

The polymorphic operators copy, forall, get, getinterval, length, put,
and putinterval, described in section 3.4.3, may also be applied to strings .

• string

int string string

creates a string body whose length is int, initializes its character
values to zeros (ASCII Nulls), and returns a newly created string
object that references this string body. int is expected to be a non­
negative integer.

Errors: limitcheck, rangecheck, stackunderflow, typecheck.

• anchorsearch

string seek anehorseareh if found: s-post s-match true
if not found: string false

(anchored search) is similar to search, but anchorsearch succeeds
only if seek is an initial substring in string. If the initial substring of
string with length equal to that of seek matches seek, the
anchorsearch operator splits string into only two segments, s-post,
the portion of string occurring after the initial seek, and s-match, the
portion of string that matches seek. Like search, if the initial match
fails, anchorsearch pushes the original string back onto the operand
stack, and in any case, anchorsearch returns a boolean value on the
top of the stack that indicates whether the search succeeded or not.

Example:
(abbe) (ab) anehorseareh => (be) (ab) true
(abbe) (bb) anehorseareh => (abbe) false
(abbe) (be) anehorseareh => (abbe) false
(abbe) (B) anehorseareh => (abbe) false

Errors: invalidaccess, stackoverflow, stackundertlow, typecheck.

70 POsrSCRIPT language manual

• search

string seek search if found: s-post s-match s-pre true
if not found: string false

looks for the first occurrence of the string seek within the string
string, returning results of this search on the operand stack. The
result that search leaves on top of the operand stack is a boolean
object that indicates whether the search succeeded or not. The search
operator perfonns a simple equality comparison of seek with succes­
sive substrings of string. If search finds seek within string, it splits
string into three strings, s-post, the substring of string following the
portion that matches seek, s-match, the substring of string that
matches seek, and s-pre, the substring of string that precedes the por­
tion that matches seek. When search succeeds, it pushes these three
string objects followed by the boolean value true onto the stack. If
the search fails, search pushes the original string followed by the
boolean value false onto the operand stack.

Example:
(abbe) (ab) search => (be) (ab) () true
(abbe) (bb) search => (c) (bb) (a) true
(abbe) (be) search => () (be) (ab) true
(abbe) (B) search => (abbe) fa1se

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck.

Reference Section 71

• token

string token if found: s-post token true
if not found: false

strips a token from the argument string (interpreted as POSTSCRIPT
source code). If a valid POSTSCRIPT token is found, token pushes
s-post (the substring of string following the token) the compiled
token, and the boolean value true. If the token was self-delimiting
(i.e., ended in a ")" or "]", etc.), then s-post will include all
delimiters which followed the token; otherwise one delimiting char­
acter (e.g., a space) will be missing from s-post. If no valid
POSTSCRIPT token was found in string (if string contained only
delimiters and comments, for example), token pushes the boolean
value false.

The token operator behaves like the POSTSCRIPT interpreter's scan­
ner. It removes the initial portion of the argument string correspond­
ing to a single POSTSCRIPT syntactic entity. This entity may be
simple: a string, a number or a name; or it may be composite: an
executable array extending from an initial left curly brace through its
matching right curly brace. The token pushed onto the operand stack
is a compiled POSTSCRIPT object that corresponds to the syntactic
entity. Thus, the token pushed for a number is a number object, not
its string representation. The token pushed for a curly brace delimited
section of code is an executable array, all of whose components are
similarly compiled. The token command does not execute this token;
it merely pushes it onto the operand stack. The token command does
not interpret backslash ("\") escape sequences inside string bodies,
since a string object returned by token is a substring of its argument.

See also the description of the token operator for file arguments in
section 3.4.10.

Example:
(15 /abcd de£) token => (/abcd de£) 15 true
«St1) {1 2 add}) token => ({1 2 add}) (St1) true

Errors: invalidaccess, range check, stackoverflow, stackunderflow,
syntaxerror, typecheck, undefinedresult.

72 POSTSCRIPT language manual

3.4.7. Relational, Boolean, and Bitwise Operators

The POSTSCRIPT boolean and relational operators create boolean ob­
jects, provide logical operations on boolean operands, and compare or test
operands. The bitwise operators provide boolean and other operations on
the (machine dependent) binary representations of integers (Le., patterns
of bits) .

• eq

anY1 anY2 eq (boolean: anY1 = any2)

• ne

tests the top two elements on the operand stack for equality and
pushes the boolean value true if so, false if not. Some type conver­
sions are performed by eq: integers and reals can be compared freely,
as can names and strings. If the two arguments have other differing
types, eq pushes the value false. If the arguments are strings or
names, eq compares their lengths and contained characters for
equality. eq compares other composite objects for equality of object
(pointer and length) only, not for equality of objects they point to. If
any! and any2 are both arrays, for example, eq tests whether they
both point to the same array body, not whether their elements are
equal. The one exception to this rule is that all empty (zero length)
arrays are equal.

Example:
4. 0 4 eq => true % a real and an integer
[1 2 3] dup eq => true % an array is equal to itself
[1 2 3] [1 2 3] eq => false % distinct array objects not equal

Errors: invalidaccess, stackunderflow .

anYl anY2 ne (boolean: anY1 -= any2)

tests the top two elements on the operand stack for equality and
pushes the boolean value true if not equal, false if equal. The
remarks for the eq operator regarding operand types, strings and
other composites also apply to ne.

Errors: invalidaccess, stackunderflow.

Reference Section 73

t ge

numl num2 ge
stringl string2 ge

(boolean: numl >= num2)

(boolean: stringl >= string2)

• gt

pushes the boolean value true if the first argument (num l or string l)

is greater than or equal to the second (num2 or string2), false other­
wise. The arguments must have the same type, which must be either
number or string. ge executes the error operator typecheck other­
wise. If both arguments are strings, ge returns the result of compar­
ing the two strings character by character (by comparing the char­
acter code values) to check whether the first string is lexically greater
than or equal to the second string.

Example:
4.2 4 ge => true
(abc) (d) ge => false
(aba) (ab) ge => true
(aba) (aba) ge => true

Errors: invalidaccess, stackunderflow, typecheck.

numl num2 gt
stringl string2 gt

(boolean: numl > num2)

(boolean: stringl > string2)

tIe

similar to ge, except gt checks whether the first argument is greater
than the second.

Errors: invalidaccess, stackunderflow, typecheck.

numl num2 le
stringl string2 le

(boolean: numl <= num2)

(boolean: stringl <= string2)

tIt

similar to ge, except Ie checks whether the first argument is less than
or equal to the second.

Errors: invalidaccess, stackunderflow, typecheck.

numl num2 lt
stringl string2 lt

(boolean: numl < num2)

(boolean: stringl < string2)

similar to ge, except It checks whether the first argument is less than
the second.

Errors: invalidaccess, stackunderflow, typecheck.

74 PosrSCRIPT language manual

• true
true true

pushes a boolean object whose value is true onto the operand stack.

Errors: stackoverflow.

• false
false false

pushes a boolean object whose value is false onto the operand stack.

Errors: stackoverflow.

• not
bool not NOT (bool)
int not bitwi~eNOT(int)

If the argument is a boolean, not pushes its logical negation. If the
argument is an integer, not pushes its bitwise complement (the one's
complement of its binary representation).

Example:
true not => false
false not => true

99 not => -100 % that's 16#FFFFFF9C
52 not => -53 % 16#FFFFFFCB

Errors: stackunderflow, typecheck.

Reference Section 75

• and

bool1 boo12 and
int1 int2 and

(bool1 AND boo12)

(int1 bitwiseAND int2)

• or

If the arguments are booleans, and pushes their logical conjunction
on the operand stack. If the arguments are integers, and pushes the
bitwise and of their binary representations.

Example:
% a complete truth table
true true and => true
true false and => false
false true and => false
false false and => false

99 1 and => 1
52 7 and => 4

Errors: stackunderflow, typecheck .

bool1 boo12 or
int1 int2 or

(bool 1 OR boo12)
(int1 bitwiseOR int2)

If the arguments are booleans, or pushes their logical disjunction
(inclusive or) on the operand stack. If the arguments are integers, or
pushes the bitwise inclusive or of their binary representations.

Example:
% a complete truth table
true true or => true
true false or => true
false true or => true
false false or => false

17 5 or => 21

Errors: stackunderflow, typecheck.

76 PosrSCRIPT language manual

• xor

bool l boo1 2 xor
intI int2 xor

(bool l XOR boo12)

(intI bitwiseXOR int2)

• bitshift

If the arguments are booleans, xor pushes their logical exclusive or
on the operand stack. If the arguments are integers, xor pushes the
bitwise exclusive or of their binary representations.

Example:
% a coq;>l.ete truth tabl.e
true true xor => fal.se
true fal.se xor => true
fal.se true xor => true
fal.se fal.se xor => fal.se

7 3 xor => 4
12 3 xor => 15

Errors: stackunderflow, typecheck .

int shift bitshift (bitshift(int,shift»

pushes the logical shift (left: if shift> 0, right: if shift < 0) of int by
shift bits. shift and int must be integers.

Example:
7 3 bitshift => 56
142 -3 bitshift => 17

Errors: stackunderflow, typecheck.

Reference Section 77

3.4.8. Control Operators

POSTSCRIPT contains several operators that modify its default left-to­
right control flow. These operators provide analogues to the for-loop, do­
loop, repeat-loop, if-then conditional and if-then-else conditional found in
more structured programming languages. Notably absent from
POSTSCRIPT's set of control operators is any general label-goto
mechanism .

• exec

any exec

pushes the argument onto the execution stack, where it will be ex­
ecuted. If the argument is non-executable, then the POSTSCRIPT in­
terpreter will just push the object back onto the operand stack. If the
argument is executable, then the POSTSCRIPT interpreter will execute
that object. The load, get, and forall operators all push a result onto
the operand stack without executing it, even if it is executable. From
there, you may use the exec operator to execute it Also, enclosing a
name in curly braces will cause an executable array consisting of
only that name to be pushed on the operand stack without executing
it However, writing a name in POSTSCRIPT source code without
quoting it as a literal (preceding it with a slash) or surrounding it
with curly braces will cause the interpreter to execute it immediately;
this is not a suitable way to provide that name's value as an argument
to exec. A non-executable argument may be converted to executable
prior to an exec operator by using the cvx operator. See section
3.3 for more details on executable and non-executable objects.

Example:
(3 2 add) cvz exec => 5
[3 2 /add cvz] cvx exec => 5

In this example, the string "3 2 add" is made executable and then
executed (scanned and interpreted). While executing the string, a 3 and
a 2 are scanned and pushed on the operand stack, the name add is
scanned, looked up and executed, resulting in the sum,S, being left on
the stack. The second line creates an executable array and execUtes it.
Note that a cvx is performed on the name add so that name lookup will
take place.

Errors: stackunderflow.

78 PosrSCRlPT language manual

• if

boolean proc if

• ifelse

executes proc if boolea~ is true. Otherwise, proc is ignored. The if
operator pushes no results of its own on the operand stack, but the
proc may do so.

Example:
3 4 lt {(3 is less than 4)}if => (3 is less than 4)

Errors: stackunderflow, typecheck .

boolean proc1 proc2 ifelse -

• repeat

executes proc1 if boolean is true; or proc2 if boolean is false. The
ifelse operator leaves no results of its own on the operand stack, but
the procedure it executes may do so.

Example:
4 3 lt {(TruePart)}{(FalsePart)} ifelse

=> (FalsePart) % since 4 is not less than 3

Errors: stackunderflow, typecheck.

n proc repeat

executes proc n times. The repeat operator removes both arguments
from the operand stack before executing proc for the first time.
repeat leaves no results of its own on the operand stack, but proc
may do so. n must be a non-negative integer.

Example:
4 {(abc)} repeat => (abc) (abc) (abc) (abc)
1 2 3 4 3 {pop} repeat => 1 % pops 3 values - down to the'l
4 {} repeat => % does nothing four times
mark 0 {(won't happen)} repeat => mark

In the last example, a zero repeat count meant that the body is not
executed at all, hence the mark is still top-most on the stack.

Errors: rangecheck, stackunderflow, typecheck.

Reference Section 79

t for

initial increment limit proc for -

tloop

executes proc repeatedly as with ALGOL for-loops, i.e., for initial
step increment until limit do proc. The for operator expects initial,
increment and limit to be numbers, and it maintains an internal loop
counter with initial as its initial value, increment as the increment to
the counter each time around the loop, and limit as the termination
value against which the for operator checks the loop counter. The for
operator pushes the current value of the loop counter onto the
operand stack before it executes proc each time. If increment is posi­
tive, the loop terminates when the loop counter exceeds limit; if
increment is negative, the loop terminates when the loop counter be­
comes less than limit.

Example:
o 1 1 4 {add} for => 10
1 2 6 {} for => 1 3 5
3 -.5 1 {} for ~> 3.0 2.5 2.0 1.5 1.0

In the first example, the value loop counter is added to whatever is on
the stack; so 1,2,3, and 4 are added to 0 in turn. The second example
has an empty loop body, so the values of the loop counter (1,3, and 5)
are left on the stack. The last example counts backwards from 3 to 1 by
halves, leaving the values (3.0, 2.5, 2.0, 1.5, and 1.0) on the stack.

Errors: stackoverflow, stackunderflow, typecheck.

proc loop -

repeatedly executes proc until proc executes a stop (not embedded
within an inner stopped) or an exit (not embedded within an inner
looping construct). If proc does not execute an exit or stop, an in­
finite loop results (which may be broken otily via an external
interrupt; see the interrupt error operator).

Errors: stackunderflow, typecheck.

80

• exit

exit

• stop

stop

• stopped

PosrSCRIPT language manual

transfers control to just beyond the innermost dynamically enclosing
instance of a looping construct, without regard to lexical relationship.
The looping constructs are: for, loop, repeat, forall, and pathforall.
If exit would cause the context of a run or stopped operator to be
left, the exit terminates and the invalidexit operator is executed (still
in the context of the run or stopped). If there is no enclosing looping
construct, PosTSCRIPT prints an error message and executes the
built-in operator quit. .

Errors: invalidexit.

unwinds the execution stack to the innermost dynamically enclosing
instance of a stopped context (without regard to lexical relationship),
which returns true. If there is no active stopped context, PoSTSCRIPT
prints an error message and executes quit. Note that start may ex­
ecute a stopped context.

Errors: (none) .

any stopped boolean

executes any. If any terminates normaiiy, stopped pushes false. If
any terminates because stop was executed, stopped pushes true. In
any event, control continues at the command after stopped; propaga­
tion of the stop does not proceed any further. Most typically. any
will be a procedure body, an executable string, or an executable file
stream.

This mechanism provides an effective way for a PosTSCRIPT
program to catch certain error conditions and retain control. The er­
ror operators might all execute the stop operator (after saving impor­
tant information), and allow programs to recover. Note that there is
no actual connection between the stop/stopped mechanism and error
handling. If information needs to be passed from the point of the
error to the code that catches the stop, this must be performed by
explicit communication.

Errors: stackunderflow, typecheck.

Reference Section 81

• countexecstack
countexecstack num

counts the number of objects on the execution stack and pushes this
count onto the operand stack.

Errors: stackoverflow.

• execstack
array execstack subarray

• quit
quit

• start

store as many elements as the execution stack contains into the argu­
ment array and returns a object describing the initial N-element sub­
array of array, where N is the current depth of the execution stack.
The elements of the execution stack are placed in this array in order,
with the bottom element at index 0 and the top element at index N-l.

Errors: rangecheck, stackunderflow, typecheck.

The definition of quit may be environment or installation dependent.
When POSTSCRIPT is run on a computer with an operating system
and a file system, quit terminates execution of the PosTSCRIPT inter­
preter, returning to the operating system under which PosTSCRIPT is
run. The interpreter may save the current state of the VM, to be res­
tored the next time that POSTSCRIPT is run.

Errors: (none).

start

is executed by the POSTSCRIPT interpreter when it starts up. The def­
inition of start may be environment or installation dependent. By
default, start is defined as "{}", i.e., it does nothing. However, start
may be redefined to do more. Depending on system configuration,
the definition of start may persist from one invocation of
POSTSCRIPT to the next, so the start operator may be used to set up a
useful working environment that will be installed each time
POSTSCRIPT is run. start may install a device, define error operators,
etc.

Errors: (depends on start's definition).

82 PosrSCRIPT language manual

3.4.9. Type, Conversion, and Property Operators

POSTSCRIPT deals with objects of many different types. Accordingly,
POSTSCRIPT contains several operators that deal directly with these types.
Some of these operators convert objects of one type to objects of another
type. Another operator allows a POSTSCRIPT program to determine the
type of any given object.

The type operators give a POSTSCRIPT program a view of the innermost
workings of the POSTSCRIPT interpreter. The types presented here are
more detailed than the types presented elsewhere in this document. For
instance, whereas the rest of this document refers to the Number type, the
type operator returns the finer distinctions of Integer and Real types that
the POSTSCRIPT interpreter actually maintains. Most POSTSCRIPT
programs will not need this power; those that do can have it.

The property operators allow restriction of access to certain
POSTSCRIPT objects, allowing protection of sensitive data or program
components. Composite objects (arrays, dictionaries, and strings) may
have the access restrictions readonly or execute only imposed on them.
Note that executeonly and executable are distinct attributes. Access restric­
tions are properties of a string or array object (not the storage it
references), but of a dictionary body .

• type

any type name

removes the argument from the operand stack and pushes an object
of type nametype whose value corresponds to the argument's type.
The possible results are:

integertype
realtype
booleantype
stringtype
operatortype
nametype
arraytype
filetype
£,onttype
dicttype
marktype"
nulltype
savetype

Errors: stackunderflow.

Reference Section 83

• cvi
num cvi

string cvi
integer
integer

• cvlit

(convert to integer) converts the string, integer or real number on the
stack to its integer representation. The cvi operator truncates any
fractional part to obtain the integer result. (See the round, truncate,
floor, and ceiling operators in section 3.4.2 which remove fractional
parts without type conversion.)

Example:
(3.3El) cvi => 33
-47.8 cvi => -47
520.9 cvi => 520

Errors: rangecheck, stackunderflow, syntaxerror, typecheck,
undefinedresult.

any cvlit Literal (any)

• cvn

(convert to literal) makes the object on top of the operand not ex­
ecutable.

Errors: stackunderflow.

string cvn name

• cvr

(convert to name) converts the string argument on the stack to a
name object that is lexically the same as the string. The name object
is executable if the string was.

Example:
(abc) cvn => /abc
(abc) cvx cvn => abc

Errors: rangecheck, stackunderflow, typecheck.

num cvr real
string cvr real

(convert to real) converts the string, integer or real number on the
stack to its floating point representation.

Errors: rangecheck, stackunderflow, syntaxerror, typecheck,
undefinedresult.

84 POSTSCRIPT language manual

+ cvrs
num base string evrs substring

+ cvs

(convert to string - with radix) expectS a number, base, and string on
the operand stack, overwrites the input string with the string repre­
sentation of num in the given base, and returns a descriptor of the
prefix substring. base is expected to be a positive integer between 2
and 36, inclusive. Digits in the resulting string greater than 9 are
represented with the letters "A" through "Z". If the input string is
too small to hold the result of conversion, cvrs executes the error
operator rangecheck.

Example:
100 8 5 string evrs => (144) % 10010 is 1448
200 16 () cvrs => (C8)

Errors: rangecheck, stackunderflow, typecheck.

any string evs substring

+cvx

(convert to string) converts an object to a string, overwrites the prefix
portion of its string argument with the conversion result, and returns
a descriptor to the prefix substring. If any is a number, cvs returns a
string representation of that number. If any is a boolean, cvs returns
either the string "true" or the string "false". If any is a string, cvs
copies its contents into string and returns that substring of string con­
taining the characters of any. If any is a name or operator, cvs stores
into string the text (print representation) of that name. If any is any
other type, cvs stores into string the text •• --nostringval--' '. If the
input string is too small to hold the result of conversion, cvs executes
the error operator rangecheck.

Example:
123 456 add 20 string evs => (579)
mark () evs => (--nostringval--)

Errors: invalidaccess, rangecheck, stackunderflow, typecheck.

any evz Executable (any)

(convert to executable) makes the object on top of the operand stack
executable without executing it.

Errors: stackunderflow.

Reference Section 85

• executeonly

array
string

executeonly
executeonly

ExeeuteOnly(array)
ExeeuteOnly(string)

the result object allows no further reading or writing of its top-level
elements. Thus, subsequent use of the result as an argument to get,
put, forall, etc., will result in execution of the error operator
invalidaccess. An object may be tested for executeonly status with
the rcheck operator. After execution of executeonly, the result may
only be executed, either explicitly, as an argument to exec, etc., or
implicitly, if it is the value of some name that is encountered, looked
up, in normal execution sequence. The executeonly attribute can only
be removed through the restore operator, if the object was not
executeonly in the snapshot reinstated by the restore.

Errors: invalidaccess, stackunderflow, typecheck.

• readonly

array
diet

string

• xcheck

readonly
readonly
readonly

ReadOnly(array)
ReadOnly(diet)
ReadOnly(string)

the result allows no further writing to the object; that is, its top-level
elements may no longer be replaced by operations such as put.
However, this restriction does not extend to the contents of any of
those elements that are in turn composite. For an array or string, the
readonly attribute applies only to the returned object; for a diction­
ary, however, the dictionary storage itself becomes readonly, regard­
less of how it is accessed. The readonly attribute can only be
removed through the restore operator, if the object was not readonly
in the snapshot reinstated by the restore.

Errors: invalidaccess, stackunderflow, typecheck.

any xcheck boolean

(check whether executable) removes the argument from the operand
stack and pushes the boolean value true if it is executable or false if
it is literal. Note that xcheck checks for executability, not for
executeonly status.

Errors: stackunderflow.

86 PosrSCRIPT language manual

• rcheck

array rcheck boolean
diet rcheck boolean

string rcheck boolean

• wcheck

removes the argument from the operand stack and pushes the
boolean value true if it is readable, or false otherwise. The
executeonly operator returns an result which is not readable. In ad­
dition, some system-maintained dictionaries may not be readable.

Errors: stackunderflow, typecheck .

array wcheck boolean
diet wcheck boolean

string wcheck boolean

(check whe~er writeable) removes the argument from the operand
stack and pushes the boolean value true if it is writeable, or false
otherwise. The readonly and executeonly operators return objects
that are not write able.

Errors: stackunderflow, typecheck.

Reference Section 87

3.4.10. File Operators

This section describes the POSTSCRIPT operators that read, write, and
execute information to, from, and in files. Note that graphics operations
and printing are not accomplished by writing to files. The operations for
generating graphics are discussed in a later section.

POSTSCRIPT files behave like streams; each has an associated current
position that marks where the next read or write operation will take place.
Standard input and output devices, such as the interactive user's terminal,
are treated as files using the same mechanisms.

Exception conditions are treated in a uniform manner by operators that
access files. During reading, if end-of-file is encountered before the
desired item has been read, the fIle is closed and the operation returns an
explicit end-of-file indication. This is likewise done if the file has already
been closed. All other exceptions during reading and all exceptions
(including file already closed) during writing cause ioerror to be ex­
ecuted. There is a limit on the number of streams that can be open simul-
taneously. '

Input and output operations in computer languages are typically quite
dependent on the operating system under which its programs are run.
POSTSCRIPT is no exception. The input and output functions described in
this section are accurate for all current POSTSCRIPT implementations. The
availability of external files and their naming conventions may be environ­
ment dependent.

In addition to the normal files accessible through the operating system
(if any), POSTSCRIPT defines five special files whose names begin with
the character "%" and which may be opened with the file operator. These
are:

%statementedit
The command "(%statementedit)(r) file" waits for the user
to type in one or more lines comprising a complete
POSTSCRIPT statement (that is, a sequence of one or more
tokens with no "{" or "(" left unmatched, terminated by a
newline). Certain editing functions are available during
typein, including backspace character (BS), erase line
(control-U), and retype line (control-R). The tile operator then
returns a new file object that dispenses the entire statement
that was typed in, followed by end-of-file. This file object
may be read· from in the normal ways, either explicitly by
other file operators (e.g., read) or implicitly by converting it
to executable (cvx) and then executing it (exec).· The file
operator executes undetinedfilename if the terminal input
stream (%stdin) reaches end-of-file before any characters
have been read.

%lineedit works similarly to %statementedit, but only one line is
returned, regardless of whether or not it comprises a complete
POSTSCRIPT statement.

88 POSTSCRIPT language manual

%stdin returns a file object designating the standard input. In inter­
active POSTSCRIPT configurations this is usually the user's
terminal; in server configurations this is a communications in­
terface or file being used as the standard source of
POSTSCRIPT program text. This file is unbuffered and
(generally) unedited, and should not be confused with
%statementedit or %lineedit. Closing the %stdin file has no
effect other than to clear any end-of-file indication that may
have been set.

%stdOut, %stderr

• file

return a file object designating standard normal output and
standard error output. %stdOut should be used for all normal
output, and is the file automatically used by the print
operator. %stderr is intended primarily for reporting low­
level errors; in many POSTSCRIP:r configurations, this is the
same as %stdOut .

string1 string2 file file

• closefile

creates a file object for the file named string 1 with access restrictions
according to string2 and pushes this file object onto the operand
stack. Unless string 1 is one of the special file names mentioned ear­
lier, the tile operator will interpret the file name and access code in
an environment dependent manner. The following access code
strings should be available on most systems.

code

rp) v

(w)

meaning

Read only. Sets position to the beginning of the file. The
named file must exist; executes undetinedfilename
otherwise.

Write only. Sets position to the beginning of the file.
Creates a new file if non-existent. Truncates file to the
current position when closed.

Errors: invalidfileaccess, limitcheck, stackunderflow, typecheck,
undefinedfilename .

file close file

closes the file stream file, taking actions according to file's access
mode. The stream referenced by file is no longer a valid file stream
(Le., file status will return false). See the description of file below
for a discussion of access modes.

Errors: ioerror, stackunderflow, typecheck.

Reference Section 89

• read
file read if not end-of-file: byte true

if end-of-file: false

reads one byte from file, pushes it on the stack (as a number), pushes
true, and moves thefile position ahead by one. If the end-of-file con­
dition occurs before a byte has been read, the read operator closes
the file and returns false.

Errors: ioerror, stackunderflow, typecheck.

• readhexstring

file string readhexstring substring boolean

works like readstring, except that characters in file are treated as
(the ASCII print representation of) hexadecimal digits, and pairs of
them are converted to their 0 through 255 values and stored in suc­
cessive character positions of string. The hexadecimal input may be
interspersed with blanks, carriage returns, and other non­
hexadecimal digits. These are ignored; only the hexadecimal charac­
ters are decoded.

Errors: ioerror, rangecheck, stackunderflow, typecheck.

• readline

file string readline substring boolean

reads characters (bytes) from file through the next newline character,
stores them in a prefix substring of the argument string, moves file's
position ahead that number of characters and returns both the read
substring and true. The returned substring does not include the
newline character as its last character. If the input line is longer than
the argument string, readline executes a rangecheck. If readline
encounters the end of file before a newline, the substring (possibly
empty) and false are returned. Thus, after executing a readline and
checking for false, the string length should be tested.

Errors: ioerror, rangecheck, stackunderflow, typecheck.

90 PosrSCRIPT language manual

• readstring

file string readstring substring boolean

• token

reads up to length(string) characters (bytes) from file into string.
readstring returns false if it encounters end-of-file before string is
full; otherwise, it returns true. Essentially, readstring fills the buffer
string with bytes from file until either the buffer is full or an end of
file is encountered, returning the filled portion of the buffer and true
or false accordingly. Note that newline characters are not treated spe­
cially by readstring, they are included among the characters in the
buffer when read.

Errors: ioerror, rangecheck, stackunderflow, typecheck .

file token if found: token true
if not found: false

extracts a token from the file (interpreted as POSTSCRIPT source
code). If a token is found, it pushes the compiled token and true. If a
token is not found, it pushes false and closes file. The token operator
behaves like the POSTSCRIPT interpreter's scanner. It extracts from
the file stream a character sequence that corresponds to a single
POSTSCRIPT syntactic entity. This entity may be simple: a string, a
number or a name, or it may be composite: an executable array ex­
tending from an initial left curly brace through its matching right
curly brace. The token pushed onto the operand stack is a compiled
POSTSCRIPT object that corresponds to the syntactic entity. Thus, the
token pushed for a number is a number object, not its string represen­
tation. The token pushed for a curly brace delimited section of code
is an executable array, all of whose components are similarly com­
piled. The token command does not execute this token; it merely
pushes it onto the operand stack. If the token is terminated by a
delimiting space, tab, or newline, the file is left positioned im­
mediately after the delimiter. However, if the token is self-delimiting
(e.g., "["), the file is left positioned immediately after the self­
delimiter.

See also the description of the token operator for string arguments in
section 3.4.6.

Errors: ioerror, rangecheck, stackoverflow, stackunderflow,
typecheck, undefinedresult.

Reference Section 91

• bytesavailable
file bytesavailable int

• write

returns the number of bytes immediately available for reading from
file; or -1 if that number cannot be determined.

Errors: ioerror, stackunderflow, typecheck.

file byte write

writes a single character (byte) into file at the current position, and
moves the position ahead by one. byte must be an integer, ordinarily
in the range 0 to 255 inclusive (an integer outside this range is
reduced modulo 256). File must be a writable file stream.

Errors: ioerror, stackunderflow, typecheck.

• writehexstring
file string writehexstring

writes all the characters of string into file starting at the current posi­
tion and moves the position ahead that number of characters. The
characters are written as pairs of ASCII characters representing the
hexadecimal values of the characters in string. Thus, if the argument
string is "(abz)", the output tofile is the six characters: "61627a".

Errors: ioerror, stackunderflow, typecheck.

• writestring
file string writestring -

• flush

writes all the characters of string into file starting at the current posi­
tion and moves the position ahead that number of characters.

Errors: ioerror, stackunderflow, typecheck.

flush

causes any buffered output for the standard output stream to be sent
immediately. In general, a program requiring that output be delivered
now should call flush after generating that output.

Errors: ioerror.

92 PosrSCRIPT language manual

• flushtile
file flushfile

• status

If file is an output stream, tlushtile causes any buffered output for
file to be sent immediately. In general, a program requiring that out­
put be delivered now should call tlushtile after generating that out-:
put. If file is an input stream, tlushtile will read and discard data
from file until the end-of-file condition is achieved.

Errors: ioerror, stackunderflow, typecheck.

file status boolean

return true ifJile is still a valid (open) stream,Jalse otherwise.

Errors: stackunderflow, typecheck.

• run
string run -

executes the contents of file named by string. When execution
reaches the end-of-file, or run terminates for some other reason (e.g.,
stop), the file is closed. run leaves no values on the stack, but the
result of executing the contents of string may do so. Note that run is
a convenience operator for the operation

(r) file cvz exec

Errors: ioerror, limitcheck, stackunderflow, typecheck.

• currenttile
current file file

• print

creates a file object that references the input stream from which the
POSTSCRIPT interpreter is currently reading program input. This
operator is necessary when referencing images or other input that
reside in the program file itself.

Errors: stackoverflow.

string print

outputs string on the standard output. The print operator provides
the simplest way to output text to an interactive user.

Errors: stackunderflow, typecheck.

Reference Section 93

• prompt

prompt

• echo

is executed by the POSTSCRIPT interpreter whenever it is ready for a
new line of input (in interactive mode). The initial definition of
prompt is "«PS» print}" .

Errors: (none) .

boolean echo -

sets whether input characters from the standard input are echoed to
the standard output according to the value of boolean. By default, the
POSTSCRIPT interpreter echoes input to the output while opening the
files named %statementedit and %lineedit. One simple operation for
which turning off echoing is appropriate is password input

Errors: stackunderflow, typecheck.

94 POSTSCRIPT language manual

3.4.11. Virtual Memory Operators

The POSTSCRIPT interpreter keeps most of its basic machine storage,
objects, name lookup tables and string character contents, in a memory
structure called its Virtual Memory or VM for short. Depending of system
configuration, this VM may be persistent, that is, it persists beyond a
single execution of the POSTSCRIPT interpreter. When the interpreter
returns to the system from which it was run, it saves the current state of its
VM, and when the interpreter is re-run, it begins by restoring its VM to
that state (slightly modified by start-up).

POSTSCRIPT has a save and restore mechanism that is unique among
interactive programming languages. A save operation causes the
POSTSCRIPT interpreter to remember a snapshot of its complete state: the
values of dictionary items, the keys in dictionaries, and the values in ar­
rays. (The characters contained in strings are not remembered, but string
objects (length and character position) are). The POSTSCRIPT interpreter
does not include the state of stacks, file streams, or graphics output in this
snapshot. A restore oPeration causes the POSTSCRIPT interpreter to revert
back to the state contained in such a snapshot.

Except for changes to the stacks and side-effects such as file operations
and graphics output, the execution of POSTSCRIPT source code between a
save and its corresponding restore is as if the execution had not hap­
pened. These semantics can be useful for encapsulating a section of
POSTSCRIPT source code that makes wholesale changes to variables for
some special purpose. Rather than having to reset each variable in­
dividually, a save and restore pair does the job neatly and efficiently, un­
doing only those modifications that were made within the scope of the
save and its corresponding restore. Since the POSTSCRIPT interpreter runs
other programs within its own environment and these programs are free to
modify substantial portions of that environment, save and restore serve to
insulate the interpreter from any unwanted legacy.

The POSTSCRIPT interpreter's implementation of the save and restore
operators keeps typical execution overhead small. These operators are an
important part of the POSTSCRIPT language, and we encourage their use.
Not only are they convenient to use, but they also conserve resources.
There is a large but fixed limit on the size of the POSTSCRIPT interpreter's
virtual memory. As objects are created by POSTSCRIPT programs, they ac­
cumulate in VM and must be culled from there periodically so as not to
run out of space.· POSTSCRIPT's save and restore mechanism not only
snapshots system state but prunes back VM usage as well. When the
POSTSCRIPT interpreter executes a restore operator, it quickly reclaims all
memory allocated since the corresponding save. A POSTSCRIPT interpreter
that runs program after program, as in a printer server, would be well ad­
vised to wrap a save and restore around each program execution.

Since the VM may be persistent, it may be used to hold a user's state in
terms of new operators defined in dictionaries, default graphics

Reference Section 95

parameters, etc. When the POSTSCRIPT interpreter is started, it restores its
stacks to their initial empty state, it restores the VM back to the topmost
save level (if no saves were performed, this is a no-op), and it executes the
start operator for any special startup actions.

• save
save saveobj

• restore

sets up a snapshot of the interpreter's state and returns a Save object
that refers to this snapshot. Subsequent restore operator execution
must use this Save object to restore back to the state saved at this
time.

Errors: limitcheck, stackoverflow.

saveobj restore

resets the VM to its state at the time the saveobj argument was
generated by a save operator. The save and restore operators must
be issued in a nested fashion.

Errors: invalidrestore, rangecheck, stackunderflow, typecheck.

• vmstatus

vrnstatus level used total

returns three integers describing the state of the POSTSCRIPT VM.
level is the current depth of save nesting. used and total are the num­
ber of bytes used, and the total number available in VM. (Note,
however, that in certain configurations, total may be able to increase
dynamically by obtaining more storage from the operating system).

Errors: stackoverflow.

96 POSTSCRIPT language manual

3.4.12. Miscellaneous Operators and Functions

This section describes the few POSTSCRIPT operators that do not easily
. fit into any other category. In addition, this section also lists several stan­

dard key-value pairs which exist in systemdict and userdict which are
pre-defmed POSTSCRIPT functions (not built-in operators).

+ version

version string

returns the POSTSCRIPT version identifier for a particular version of
the POSTSCRIPT language, implementation, and hardware.

Errors: stackoverflow.

+ usertime

usertime msec

+=
any =

+ stack

returns time in milliseconds (an integer). This time can be used for
interval timing, but may not be accurate for long intervals or time-of­
day uses.

Errors: stackoverflow.

destructively prints the top element of the stack with cvs. Thus, if
any is a string, a name, an operator, a number, or a boolean, = will
print its readable (cvs) representation. If any is an array, dictionary,
mark, savelevel, null, file, or fontID, = will print "--nostringval--".
= is equivalent to the following code:

/= {dup type /stringtype ne
{() cvs}if
print (\n) print

} def

Errors: stackunderflow.

~ anY1 ••• anYN stack ~ anY1 ••• anYN

prints anYN through any 1 using the = routine. stack does not destroy
the contents of the stack, but copies the entire stack and destructively
prints the copy. stack is equivalent to the following:

/stack {count dup 1 add copy {=} repeat pop} def

Errors: stackoverflow.

Reference Section 97 . ----
any = -

• pstack

destructively prints the top element of the stack a little more cleverly
than does =. == will print the contents of arrays, will flag literal
names, and other nice things.

Errors: stackunderflow .

anYN pstack ~ anY1 ..• anYN

prints the entire stack (like stack) using ==.

Errors: stackoverflow.

98 POSTSCRIPT language manual

Graphics Operators

The preceding sections completely describe the general computer lan­
guage aspects of POSTSCRIPT. By themselves, they describe an interpre­
tive programming language of great expressive power. This section
describes the standard extension of the POSTSCRIPT language that deals
with computer graphics. The facilities and operators described here are in­
tended for both display and printer applications.

The POSTSCRIPT interpreter maintains a data structure called the
Graphics State that holds current graphics control parameters. These
parameters define the context in which the graphics commands operate.
For example, the show operator implicitly uses the current font parameter
in the Graphics State, and the fill operator implicitly uses the current color
parameter in the Graphics State.

Graphics States are maintained in a stack. By pushing a new Graphics
State onto this stack (with the gsave operator) a new context with many
different characteristics may be defined without destroying the Graphics
State currently in force. This new context may have a different font, trans­
formation matrix, line style, etc. defined. After some graphics output is
performed, the original Graphics State may be restored by popping this
new Graphics State off its stack (with the grestore operator), making
resets of each changed Graphics State parameter unnecessary.

The complete set of Graphics State parameters is:

Name
CTM

color

cp
path

clip

Type
Array

Internal

Numbers
Path

Path

Value Semantics
The current transformation matrix; a matrix that
maps positions from user coordinates to device
coordinates. This matrix is modified by each ap­
plication of the coordinate system operators.
(Initial value: A straightforward matrix trans­
forming default coordinates to device
coordinates.)
The internal representation of colors is not ex­
posed to the POSTSCRIPT user. To encode and
decode colors among different color models, see
color related operators in section 3.5.5. (Initial
value: black.)
Current position. (Initial value: undefined.)
The current path as built up by the path construc­
tion operators. Path objects are not directly acces­
sible in POSTSCRIPT. This object is an implicit
argument to the fill, stroke, and clip operators.
(Initial value: empty.)
The current boundary against which all output is

Reference Section 99

clipped. (Initial value: the entire image able por­
tion of the output device.)

font Dictionary Set of graphic shapes (characters) that define the
current typeface. (Initial value: installation
dependent.) .

line width Number The thickness (in user coordinates) of lines to be
drawn by the stroke operator. (Initial value: 1.)

line cap Integer A code that defines the shape of the endpoints of
any open path that is stroked. (Initial value: 0, for
a square butt end.)

line join Integer A code that defines the shape of a stroked line at
its comers. (Initial value: 0, for mitered joins.)

screen several A collection of POSTSCRIPT objects that define
current halftone screen pattern for gray and color
output. (Initial value: installation dependent.)

transfer Array An executable procedure that maps user gray
levels into device gray levels, for tuning output
devices's gray response curve. (Initial value: in­
stallation dependent.)

flatness Number A number that determines the smoothness of
Bezier curve renditions on the output device.
This number gives the maximum error tolerance
(in output device pixels) of a straight line seg­
ment approximation of any portion of a Bezier
curve. Smaller numbers give smoother curves at
the expense of more computation. (Initial value:
0.5.)

miter-limit Number A number that determines the maximum length
of mitered line joins for the stroke operator. This
number is the ratio of maximum diagonal
through the join over the line width. Line seg­
ments that meet at sharp angles that would cause
their miter ratio to exceed this number are
beveled instead. (Initial value: 10, for a miter
cutoff below 11 degrees.)

dash Array, Real A description of lengths of portions of dashed
lines to be rendered by the stroke operator in­
stead of the normal solid line. (Initial value: a
O-length array plus a 0 offset, corresponding to a
normal solid line.)

device Internal An internal data structure that describes the cur­
rent output device. Each output device has certain
procedures that allow it to print any shapes and
halftones specified by the rest of the POSTSCRIPT
graphics descriptions. Devices are set through the
device setup operators described in section 3.5.6.
(Initial value: the null output device.)

Each graphics operator description in the following subsections men­
tions which Graphics State parameters it uses.

100 POSTSCRIPT language manual

POSTSCRIPT'S graphics operators form five major groups:

1. Graphics state operators. This group contains operators that
manipulate Graphics States as a whole. They provide con­
venient means of switching between different contexts
defined by the following groups of operators.

2. Coordinate system and matrix operators. The Graphics State
contains a transformation matrix (named CI'M) that maps user
specified coordinates into coordinates appropriate for the out­
put device. The operators in this group manipulate this matrix
to achieve any combination of translation, scaling (including
mirror imaging), and rotation of user coordinates onto device
coordinates.

3. Character and font operators. These operators allow the
specification, selection, and modification of fonts, and the
means to image characters in those fonts on the page.

4. Path construction operators. The POSTSCRIPT graphics
machinery maintains a current path that defines shapes and
line trajectories for output. The operators in this group begin a
new path, add straight line segments, circular arcs and cubic
curves to the current path and close the current path. All of
these operators implicitly reference the Graphics State CI'M
parameter.

5. Output operators. These operators specify the contents of
areas to be output. POSTSCRIPT programs may use a variety
of color models to specify output color and halftone screens.
Scanned images are equivalent to multi-colored sampled ink.
Other operators in this section actually generate images on an
output device. After a path is constructed, and colors, images,
character fonts, line widths, etc. are set, these operators
"push" images or color through the current shape (defined
by the current path) or render line trajectories on the output
device.

Reference Section 101

3.5.1. Graphics State Operators

The operators in this group manipulate entire Graphics States on the
current Graphics State stack. Whenever a POSTSCRIPT save operator ex­
ecutes, it establishes a new stack of Graphics States. The initial Graphics
State on this stack is a copy of the Graphics State in effect at the time of
the save. New Graphics States may be pushed onto and popped off of this
Graphics State stack, but only the corresponding restore operator can
remove the Graphics State that a save operator placed at the bottom of this
Graphics State stack .

• gsave

gsave

is a special case of the save operator. gsave saves only the current
Graphics State, pushing a copy of it onto the Graphics State stack,
whereas save saves the entire state of the POSTSCRIPT interpreter:
values of variables and dictionaries, etc. as well as the values in the
current Graphics State. gsave is useful for creating instances of
predefined shapes with different transfonnations, making possible a
simple restoration of the Graphics State through a matching
grestore. Often, related transfonnations need not be created entirely
from scratch; they may share some common setup which may be
gsaveed. Note that unlike save, gsave returns no Savemark object;
gsaves and grestores work in a strictly stack-like manner.

Errors: limitcheck.

• grestore

grestore

pops the current Graphics State off of the Graphics State stack, in­
stalling the Graphics State in effect at the time of the matching gsave
as the current Graphics State. This operator gives a simple way to
undo complicated transfonnations and state setup without having to
undo all Graphics State values individually.

An attempt to grestore past the most recent save barrier replaces the
current Graphics State with a copy of the Graphics State in effect at
the time of that save.

Errors: (none).

102 POSTSCRIPT language manual

• grestoreall

grestoreal.l.

repeatedly pops the current Graphics State off the Graphics State
stack down to the most recent save barrier. It then pushes a copy of
the Graphics State in effect at the time of that save back onto the
Graphics State stack.

Errors: (none).

Reference Section 103

3.5.2. Coordinate System and Matrix Operators

POSTSCRIPT defines a standard, device independent coordinate system
called default user coordinates or default user space. All shapes and
images manipulated in a POSTSCRIPT program are relative to this coordi­
nate system. POSTSCRIPT transforms coordinates to achieve translation,
scaling, and rotation by means of a 3 x 3 transformation matrix maintained
in the Graphics State called the current transformation matrix or CI'M.2
The default value for this transformation matrix relates the default user
coordinate system to a raster device's built-in coordinate system in the fol­
lowing way. The origin of the default user coordinate system maps to the
lower left comer of the device's image area when viewed in its "preferred
orientation", with the user space's x-axis increasing to the right and the
the user space's y-axis increasing upwards. One unit in default user space
corresponds to 1172 of an inch on the output device.

The preferred orientation of a printer that prints on 8.5 x 11 inch paper
is its portrait orientation, that is, the long side is the y-axis and the short
side is the x-axis. The preferred orientation of a display device is x-axis
horizontal, y-axis vertical. This may be portrait or landscape orientation,
depending on the display's dimensions. In all cases, the active area of the
device is in the first quadrant of the default user coordinate system (non­
negative x, non-negative y).

POSTSCRIPT programs need know nothing about the resolution of the
raster output device on which a printed page is rendered, nor do they need
to know about the manner in which the output device addresses points in
its image area. All placements and measurements are made in user space,
and the default transformation matrix in the Graphics State maps these
locations to the appropriate locations on the output device. Thus, a
POSTSCRIPT program may be used unchanged on any raster output device;
only the default transformation matrix (set outside of the program) is dif­
ferent to achieve proper imaging on all devices.

POSTSCRIPT computations are carried out using floating point number
representation when necessary. Therefore, the units of the default user co­
ordinate system (1172 inch) in no way constrain or affect the resolution of
the output device. For example, if a POSTSCRIPT program says:

72.334 196.121 moveto

then the POSTSCRIPT interpreter renders this position as accurately as pos­
sible in the device's coordinate system.

By modifying the cuttent transformation matrix, simple shapes ex­
pressed in simple orientations can be easily transformed to many varia-

2 Actually, only the fIrst two columns of POSTSCRIPT matrices are meaningful; the third column
of a 3 x 3 matrix always contains 0, 0, 1, and the third element of a row vector is always 1. For this
reason, the POSTSCRIPT operators that deal with matrix values require specifIcation of only the fIrst
two columns. For a complete mathematical explanation of how such a matrix performs geometrical
transformations, see the book Principles of Interactive Computer Graphics by W. M. Newman and
R. F. Sproull.

104 POSTSCRIPT language manual

tions. Many of the graphics operators described in this section achieve
their results by constructing new matrices, postmultiplying them by the
current transformation matrix, and establishing the result as the new trans­
formation matrix.

While an accurate description of these operators may be expressed in
terms of their effect on the transformation matrix, it is often more useful to
think of them in terms of their effect on the current user space. For in­
stance, a 2 2 scale operation doubles the size at which objects are ren­
dered. This is achieved by postmultiplying the current transformation
matrix to yield one that transforms coordinates into positions whose
device coordinate values are double those that would have resulted from
the transformation in effect before the 2 2 scale operation was applied.
Alternatively, we can view the effect of this operation as changing the cur­
rent user coordinate system, so that now a unit in user space represents
twice as much as it did before. We will present the coordinate system
transformation operators from both of these points of view.

A longer example (that uses several operators to be discussed in later
sections) should make these transformation concepts clear.

Reference Section 105

% Define a procedure to construct a unit square path in
% the current user coordinate system.

/box. {newpath
o 0 moveto
0 1 l.ineto
1 1 l.ineto
1 0 l.ineto
cl.osepath

} def

% Modify the current transfor.m matrix so that everything
% subsequentl.y drawn wil.l. be 72 times l.arger,
% that is, each unit wil.l. represent an inch.

72 72 scal.e
% the transfor.m matrix now represents unit
% coordinates as one inch l.ong.

% Draw a 1" X 1" box (72 X 72 defaul.t coordinate units) .

box. fil.l.

% Change the transfor.m matrix again so that the origin
% wil.l. be at 2", 2".
% Since the coordinate system is now in inches we say:

2 2 transl.ate

% Draw the box again.
% This box wil.l. have its l.ower l.eft corner two inches up
% from and two inches to the right of the l.ower l.eft corner
% of the page, and it wil.l. be one inch square.

box fil.l.

This example shows how coordinates expressed in POSTSCRIPT
programs, e.g., the coordinates given to the move to and lineto graphics
operators, are transformed by the current transformation matrix. By com­
bining translations, scalings, and rotations on the transformation matrix,
very simple prototype graphics procedures like box in the example can
generate a myriad of instances.

Transformation matrices are represented in POSTSCRIPT as six-element
array objects. As such, they may be stored, copied, and modified as are
other POSTSCRIPT array objects. Such a six-element array object
[a b c d tx ty] corresponds to a transformation matrix:

a

c
tx

b
d

ty

o
o
1

In the operator descriptions below, an argument given as "matrix" in­
dicates a 6-element POSTSCRIPT array, while reference to "CI'M" in­
dicates the current transformation matrix in the Graphics State.

106 POSTSCRIPT language manual

• matrix
matrix matrix

creates a 6-element POSTSCRIPT array object, fills it in with the
values of an identity matrix, i.e., [1.00.00.0 1.00.00.0], and pushes
this array onto the operand stack. This operator is equivalent to the
sequence:

6 array identmatrix

Errors: stackoverflow.

• initmatrix
initmatrix

sets CTM to the default matrix defined by the current output device.
This matrix transforms default user coordinates to their default posi­
tions on the ,output device.

Errors: (none).

• identmatrix
matrix identmatrix matrix

replaces the contents of matrix with the values of the identity trans­
formation matrix, i.e., [1.0 0.0 0.0 1.0 0.0 0.0] and pushes this
modified matrix back onto the operand stack.

Errors: rangecheck, stackunderflow, typecheck.

• defaultmatrix
matrix defaultmatrix matrix

replaces the contents of matrix with the values of the default trans­
formation matrix for the current output device and pushes this
modified matrix back onto the operand stack.

Errors: rangecheck, stackunderflow, typecheck.

• currentmatrix
matrix currentmatrix matrix

replaces the contents of matrix with the values in CTM and pushes
this modified matrix back onto the operand stack.

Errors: rangecheck, stackunderflow, typecheck.

Reference Section 107

• setmatrix

matrix setmatrix

sets the contents of CTM to the contents of matrix.

Note: matrix should be a matrix that has resulted from a previous
currentmatrix operation or sequence of matrix operations that in­
volved a defaultmatrix operation. Only then can the POSTSCRIPT

program be sure that the matrix will be reasonable with respect to the
current output device.

Errors: rangecheck, stackunderflow, typecheck .

• translate

tx ty trans~ate

tx ty matrix trans~ate matrix

With no matrix ar~ment, translate builds a temporary matrix:

1

o
tx

o
1

ty

o
o
1

and replaces CTM by T * CTM. The effect of this operator on the
user coordinate system is to move its origin, (0, 0), to the position
(tx, ty) in the user coordinate system defined at the time this operator
is executed. The orientation of the user coordinate axes and the unit
scale are unaffected.

If the matrix argument is supplied, translate replaces the contents of
matrix by [1.00.00.0 1.0 tx ty] and pushes this modified matrix back
onto the operand stack with no effect on CTM.

Both IX and ty must be numbers.

Errors: rangecheck, stackunderflow, typecheck.

108 POSTSCRIPT language manual

• scale

sx sy scale -
sx sy matrix scale matrix

• rotate

With no matrix argument, scale builds a temporary matrix:

sx

o
o

o
sy

o

o
o
1

and replaces CTM by S * CTM. The effect of this operator is to make
the x and y units in the user coordinate system the size of sx x-units
and sy y-units in the user coordinate system defined at the time this
operator is executed. The location of the user coordinate origin and
the orientation of the coordinate axes are unaffected.

If the matrix argument is supplied, scale replaces the contents of
matrix by [sx 0.0 0.0 sy 0.0 0.0] and pushes this modified matrix
back onto the operand stack with no effect on CTM.

Both sx and sy must be numbers.

Errors: stackunderflow, typecheck.

ang rotate -
ang matrix rotate matrix

With no matrix argument, rotate builds a temporary matrix:

R=
cos{ang)
-sin(ang)

o

sin(ang)
cos(ang)

o

o
o
1

and replaces CTM by R * CTM. The effect of this operator is to
rotate the user coordinate system axes about their origin by ang
degrees (positive is counterclockwise) with respect to the user coor­
dinate system defined at the time this operator is executed. The loca­
tion of the user coordinate origin and the size of the x and y units are
unchanged.

If the matrix argument is supplied, rotate replaces the contents of
matrix by [cos{ang) sin(ang) -sin(ang) cos(ang) 0.0 0.0], where ang
is interpreted as an angle in degrees, and pushes this modified matrix
back onto the operand stack with no effect on CTM.

The argument ang must be a number.

Errors: stackunderflow, typecheck.

Reference Section 109

• concat
matrix concat

replaces CTM by matrix * CTM.

Example:
sx sy matrix scale cone at

sx sy scale

The two examples have the same effect on the current transformation.

Errors: stackunderflow, typecheck.

• concatmatrix
matrix1 matrix2 matrix3 concatmatrix matrix3

replaces the contents of matrix3 by the result of multiplying
matrix! * matrix2 and pushes the modified matrix3 back onto the
operand stack. This operator does not effect CTM.

Errors: stackunderflow, typecheck.

• transform
x y transform xt yt

x y matrix transform xt yt

With no matrix argument, transform multiplies the row-vector
(x, y, 1) by CTM, i.e., (x, y, 1) * CTM, to yield the row-vector
(xt, yt, 1). If (x, y) is a coordinate in the current user space, then
(xt, yt) is the corresponding coordinate in the output device space
under the current transformation.

If the matrix argument is supplied, transform multiplies the row­
vector (x, y, 1) by the argument matrix, i.e., (x, y, 1) * matrix, to
obtain the row-vector (xt, yt, 1).

The arguments x and y must be numbers.

Errors: stackunderflow, typecheck.

110 POSTSCRIPT language manual

• dtransform

xd yd
xd yd matrix

dtransfo~ xdt ydt
dtransfo~ xdt ydt

With no matrix argument, dtransform (delta transform) behaves like
transform, but uses a copy of CTM with its tx and ty translation
components zero. This operator shows how a positionless vector
(xd, yd) in user space is transformed by the current transformation
into a positionless vector in output device space. This operator is
most useful for determining how distances map from user space to
device space.

If the matrix argument is supplied, dtransform uses it instead of an
implicit reference to CTM.

The arguments xd and yd must be numbers.

Errors: stackunderflow, typecheck .

• itransform

xt yt
xt yt matrix

itransfo~ x y
itransfo~ x y

With no matrix argument, itransform (inverse transform) returns x
and y such that (x, y, 1) * CTM = (xt, yt, 1). This operator thus returns
the position in user space that under the current transformation cor­
responds to the given position in device space.

If the matrix argument is supplied, itransform uses it instead of an
implicit reference to CTM.

The arguments xt and yt must be numbers.

To achieve uniform line weights across an output page, lines should
be positioned at the same relative positions to output device pixels. It
is a simple matter to specify positions in device-independent user
space, yet achieve device-dependent positioning by adjusting user
space positions according to the following method:

Example:
transfo~ round exch round exch itransfo~

When given an (x, y) position in user space, these operations transform
that position to device space, round it to the nearest output pixel bound­
ary,and inverse transform it back to the user space position correspond­
ing to this device.dependent position.

Errors: stackunderflow, typecheck, undefinedresult.

Reference Section

• idtransform
xdt ydt

xdt ydt matrix
idtransfor.m xd yd
idtransfor.m xd yd

111

With no matrix argument, idtransfonn (inverse delta transform)
returns the positionless vector (xd, yd) such that (xd, yd) * CTM =

(xdt, ydt). This combination of dtransfonn and itransfonn gives the
vector in user space that corresponds to the given device space vec­
tor.

If the matrix argument is supplied, idtranform uses it instead of an
implicit reference to CTM.

The arguments xdt and ydt must be numbers.

Errors: stackunderflow, typecheck, undefinedresult .

• invert matrix

matrix! matrix2 invertmatrix matrix2

replaces the contents of matrix2 with the result of inverting matrix1
and pushes the modified matrix2 back onto the operand stack.

Errors: stackunderflow, typecheck, undefinedresult.

112 PosrSCRlPT language manual

3.5.3. Character an~Font Operators

Fonts are collections of graphical symbols accessible through several
POSTSCRIPT operators: In the standard case, a POSTSCRIPT font represents
a typeface of one pa,rticular d~sign. Each installation has a particular set of
fonts which may be used in POSTSCRIPT. Fonts are named with s¢ngs.
Fonts may be named ill arbitrary ways, but typically, a hierarchical
scheme with some agreed upon separator is used (e.g., "-"). For example,
the names of all fonts which were created. from artwork licensed by the
International Typeface Corporation may begin with the letters "ITC" fol­
lowed by the font family (e.g., ~'Souvenir," "Galliard,"
"FrizQuadrata,"), followed by the face or weight (e.g., "Medium,"
"Roman," "BoldItalic"). An entire font name might be
ITC-Souvenir-BoldItalic.

Such names are used as the argument to the tindfont operator. tindfont
returns a dictionary (called a font dictionary) if the font is known to
POSTSCRIPT. Fonts (via, in part, their dictionaries) may be modified by
geometrical transformations like any other POSTSCRIPT graphical object.
The Graphics State contains a notion of the current font which is the set of
character descriptions referenced by the various character imaging
operators (see below).

POSTSCRIPT's font mechanism and the contents of a font dictionary are
given in Appendix A, in addition to the manner in which a users can
define their own fonts. The typical user of fonts in PoSTSCRIPT need not
be concerned with these details.

3.5.3.1. Font Dictionary Operators

The following operators deal with font dictionaries. They are used to
create, find, and scale fonts, and to set and return the current font; part of
the Graphics State .

• currentfont

current font font-diet

pushes the font dictionary of the font that is in the current Graphics
State.

Errors: stackoverflow.

Reference Section 113

• deflnefont

key diet define font font-diet

• flndfont

makes the font-description found in diet into a POSTSCRIPT font.
definefont creates a FontID (an object of type fonttype) for this
font, puts it in diet with key "FID", and makes the dictionary
readonly. This dictionary is placed in the global dictionary
"FontDirectory" with key. The modified dictionary is returned on
the stack.

Errors: dictfull, invalidfont, stackunderflow, typecheck .

key findfont font-diet

looks up (in FontDirectory) the font whose name is on the top of the
stack and pushes its font dictionary on the stack. A detailed descrip­
tion of the contents of a font dictionary may be found in Appendix
A.

Errors: invalidfont, stackunderflow, typecheck .

• scalefont

font-diet seale scale£ont transformed-font-diet

scales the font matrix infont-diet by scale, creates a copy offontdiet,
and pushes the resulting font dictionary on the stack. The font-diet
returned from findfont is a one-unit by one-unit (in user space) font.
(The choice of default user coordinates having one unit equal to one
point results in default fonts in default user space being one-point
fonts.) When scalefont applies its scale argument to such a font, it
results in a font scaled to the number of user space units specified.
For example, a 12 scalefont applied to a default font by results in a
new font description that is 12 units wide by 12 units high. Any
characters shown from this font will take on that size in whatever the
current user-space coordinate system (CTM) specifies.

Errors: stackunderflow, typecheck.

114 POSTSCRIPT language manual

• makefont

font-diet matrix makefont transformed-font-diet

• setfont

transforms the font matrix in Jont-diet by matrix, creates a copy of
Jontdiet, and pushes the resulting font dictionary on the stack.
makefont is more general than scalefont in that it allows an arbitrary
matrix to modify an existing font. To achieve simple, uniformly
scaled fonts, use scalefont. To achieve non-uniformly scaled, trans­
lated, or rotated (in the font itself) fonts, use makefont. For example,
a [10 0 0 8 0 0] matrix applied to a default font by makefont results
in a new font description that is 10 units wide by 8 units high.

Note that the special effects of makefont can also be achieved by
using simple scaled fonts with non-uniform scaling and rotation in
the coordinate system (via scale, rotate, and translate). makefont is
essentially a convenience operator that allows the PosTSCRIPT
program to not have to switch coordinate systems often when show­
ing unusual characters. Particularly for rotated characters, it is often
more convenient to rotate the coordinate system rather than rotate
inside the font.

Errors: stackunderflow, typecheck .

font-diet setfont -

establishes the font to be used for all subsequent character imaging
operators and remains in force until the next setfont, grestore, or
restore operator is executed.

Example:
% find, scale, and set a 10-unit Courier.
/Courier findfont 10 scalefont setfont

Errors: stackunderflow, typecheck.

3.5.3.2. Character Imaging Operators

POSTSCRIPT has several operators for showing strings of characters.
The graphics environment within which a show command is executed af­
fects both the appearance of the character images (i.e., the current font
face specified by setfont) and the size of the images (i.e., both the font's
size and the current transform). The simplest variant of the character im­
aging commands is show which simply lays down a string of characters in
the current font starting at the current point and updating the current point
by the width data for each character. widthshow provides a mechanism
useful for setting justified text. ashow and awidthshow are useful for ap­
plications requiring copy-fitting and uniform letter spacing. Finally,
kshow calls back to the PostScript interpreter between each character, al­
lowing the ultimate in individual letter spacing adjustments.

Reference Section 115

• show

string show

images the characters in string starting at the current point according
to the font face, size and orientation specified by the most recent
setfont. After each character is imaged, the current point is updated
by the amount specified in the width information for the character.
Upon completion, the current point remains at the position that
resulted from the imaging of the last character in the string. There
must be a current point (typically set via the moveto operator) when
show is executed; otherwise is executes the error operator
nocurrentpoint.

Errors: nocurrentpoint, stackundertlow, type check.

• widthshow

numx numy char-code string widthshow

• ashow

images characters in string in a manner similar to show. But for each
instance of the character char-code in string the current point is
modified by adding the vector (numx,numy) in addition to the normal
width of char-code. This operator enables the setting of a justified
string of text in a single command.

Errors: nocurrentpoint, stackundertlow, typecheck.

numax numay string ashow -

images characters in string in a manner similar to show. But for each
character in string the current point is modified by adding the vector
(numax, numay) in addition to the normal width of the character.
This operator enables the fitting of a string of text to a specific width
in a single command.

Errors: nocurrentpoint, stackundertlow, typecheck.

• awidthshow

numx numy char-code numax numay string awidthshow

images characters in string in a manner similar to widthshow. But
for each character in string the current point is modified by adding
the vector (numax,numay) in addition to the normal width of the
character. This operator enables the fitting of a string of justified text
to a specific width in a single command.

Errors: nocurrentpoint, stackundertlow, type check.

116 PosrSCRIPT language manual

• kshow

proc string kshow -

images characters in string in a manner similar to show, but allows
user intervention between characters. If the character codes in string
are co' c l ' ... , cn' kshow will proceed as follows: First it shows Co at
the current point, updating the current point by co's width. Then it
pushes the character codes Co and c l onto the stack and executes
proc. The proc may perform any actions it wishes; typically it will
modify the current point somehow to affect the subsequent place­
ment of cl' If proc modifies the Graphics State, such changes will
remain in effect through subsequent executions of proc. kshow con­
tinues by showing cl' pushing c l and c2 onto the stack, executing
proc, and so on, finishing by pushing c land c onto the stack, ex-

n- n
ecutingproc and finally showing cn'

The name kshow is derived from kern-show. (To kern characters is
to adjust their spacing on a character pair basis to achieve a more
pleasing layout.) While the kshow operator allows user-defined
kerning operations, it is considerably more powerful than a simple
kerning operator, as it allows arbitrary computation between each
character pair.

Errors: nocurrentpoint, stackunderflow, typecheck .

• stringwidth

string stringwidth wx wy

calculates the change in the current point that would OCClli" if string
were given to the show operator with the current font. wx and wy are
the width of string in user coordinates.

Errors: stackunderflow, typecheck.

Reference Section 117

3.5.4. Path Construction Operators

A POSTSCRIPT path is a general purpose construct that defines a
geometric shape. Paths represent outlines of areas to be fIlled with a color
or image, and they represent trajectories along which lines may be drawn.
A path is composed of straight and curved line segments. These segments
may connect to one another, or they may be discontinuous. A continuous
section of a path may be closed, that is, its last segment may connect back
to its starting point, otherwise it is considered open. A single path may
contain discontinuous closed sections, thus representing many areas. A
path may even intersect itself. All paths that can be created through appli­
cation of the path construction operators are legal in POSTSCRIPT.

The POSTSCRIPT interpreter allows one path to be constructed at a time;
this path is called the current path. (Remember, it may have several dis­
continuous parts;) Since the current path is built by executing POSTSCRIPT
operators, other paths may be saved and modified by treating them as ex­
ecutable arrays using the basic mechanisms of the POSTSCRIPT language.

The newpath operator initializes the current path to be empty. The path
is essentially an ordered list of points, where adjacent points in this list
mayor may not be connected by a straight line segment, or a Bezier cubic
curve. All points and relative distances specified to the path construction
operators are interpreted in the current user coordinate system. They are
immediately transformed into the corresponding output device coordinates
and are remembered as such in the current path. If the current· transfor­
mation changes during construction of a path, points already entered do
not move in device space. The most recently entered point in the current
path is called the current point. If the current path is empty, there is no
current point.

These path construction operators do not actually draw anything on an
output device. Instead, the current path is an implicit argument to the out­
put operators discussed in section 3.5.5 .

• newpath

newpath

initializes the current path to be empty, causing there to be no current
point.

Errors: (none).

118 POsrSCRlrI language manual

• currentpoint
currentpoint x y

• moveto

returns the user coordinates (x, y) of the current point (if the current
path is non-empty.) Whenever the current point is set, it is trans­
formed to an output device coordinate through the current transfor­
mation. This position remains constant until the current point is set
again. If the current transformation changes without the current point
being set, the currentpoint operator will report a different position if
that device coordinate corresponds to a different user space coordi­
nate.

Errors: nocurrentpoint, stackoverflow, undefinedresult.

x y moveto

starts a new segment in the current path. moveto makes the point
whose user space coordinate is (x, y) the current point without adding
any line segments to the current path. Both x and y must be numbers.

Note: if the previous path command in the current path was a
moveto, then its point is deleted from the current path and the new
moveto point replaces it.

Errors: stackunderflow, typecheck.

• rmoveto

• lineto

(relative moveto) starts a new section in the current path, relative to
the current point. If the current point is (lx, ly), then rmoveto makes
the point (lx+dx, ly+dy) the current point without adding a line seg­
ment to the current path. If the current path is empty, nnoveto ex­
ecutes the error operator nocurrentpoint. Both dx and dy must be
numbers.

Errors: nocurrentpoint, stackunderflow, typecheck.

x y lineto

continues the current path with a straight line segment from the cur­
rent point to (x, y) and makes (x, y) the current point. If the current
path is empty, lineto executes the error operator nocurrentpoint.

Errors: nocurrentpoint, stackunderflow, type check.

Reference Section 119

• rlineto

dx dy rlineto

• arc

(relative lineto) behaves like Iineto, except the new point is inter­
preted relative to the last point in the current path. If the last point in
the current path was (lx, ly), then rlineto adds a straight line segment
to (lx+dx, ly+dy), making (lx+dx, ly+dy) the new current point. If
the current path is empty, rUneto executes the error operator
nocurrentpoint. Both dx and dy must be numbers.

Errors: nocurrentpoint, stackunderflow, typecheck.

x y r ang1 ang2 arc -

• arcn

builds a counterclockwise segment of a circular arc with (x, y) as
center, r as radius, ang1 the angle of a vector from (x, y) of length r
to the first endpoint of the arc, and ang2 the angle of a vector from
(x, y) of length r to the second endpoint of the arc. If there is a
current point, the arc operator includes a straight line segment from
the current point to the first endpoint of this arc and then adds the arc
itself into the current path, making the second endpoint of the arc the
new current point. If the current path is empty, the arc operator does
not produce the initial straight line segment. Angles are measured in
degrees counterclockwise from the positive x-axis of the current user
coordinate system. The curve produced is circular in user space.
Non-uniform scale operations executed before an arc command will
produce elliptical curves on the output device.

Example:
newpath 0 0 moveto 0 0 1 0 45 arc closepath

This constructs a unit radius 45 degree • 'pie slice."

Errors: rangecheck, stackunderflow, typecheck .

x y r ang1 ang2 arcn -

(arc negative) behaves like are, but arcn builds its arc segment in a
clockwise direction.

Example:
newpath 0 0 2 0 90 arc 0 0 1 90 0 arcn closepath

This constructs a 2 unit radius, 1 unit wide 90 degree • 'windshield
wiper swath."

Errors: rangecheck, stackunderflow, typecheck.

120 POSTSCRIPT language manual

• arcto

Xl YI X2 Y2 r arcto xtl ytl xt2 yt2

builds a segment of a circular arc of radius r between two tangent
lines. There must be a current point, (xo' yO>, in the current path;
otherwise arcto executes the error operator nocurrentpoint. ,The
tangent lines are those defined from (xo' yo> to (xl' YI) and from
(Xl' YI) to (X2' Y2)·

The center of the arc is located inside the smaller angle defined by
these two line segments, and the arc built is the smaller of the two
possible arcs from the first tangent point, (xtl , ytl) on the first tangent
line, to the second tangent point (xt2, Y9 on the second tangent line.
arcto includes a straight line segment from the current point to
(xtl , ytl) and the circular arc defined above in the current path, and it
makes (xt2, yt2) the new current point. If the two tangent lines are
collinear, arcto merely includes a straight line segment in the current
path from (xo' yo> to (Xl' y \), considering the arc to be the degenerate
single point arc at that pomt. The return values are for information
only; they are the two tangent points. In the collinear case, these two
tangent points are identical to (Xl' y I).

Example:
newpath 0 0 moveto
o 4 4 4 1 arcto
4 (pop) repeat
4 4 lineto

This constructs a 4 unit wide, 4 unit high right angle with a 1 unit
radius "rounded corner."

Errors: nocurrentpoint, stackunderflow, typecheck,
undefinedresult.

Reference Section 121

• curveto
Xo Yo xl Yl X2 Y2 curveto -

adds a Bezier cubic section to the current path between the current
point and (x2' Y2)' using (xo' yo> and (xl' Y I) as the Bezier cubi~ con­
trol points, and it makes (x2' Y2) the new current point. If the current
path is empty, curveto executes the error operator nocurrentpoint.

The conversion of other cubic spline representations to Bezier cubics
is straightforward. If A , B , C , and A , B , and C are the coef-
fi . f ' x b'x x, &. Y ~..1 th Y '&. Clents 0 a parametnc cu lC equation lor X auu Y, e equatton lor X,

for example, is:

X =A *~ + B *?- + C *t+ current-x x x x

A similar equation is used for Y. The Bezier control points for the
cubic are:

Xo = current-x + Cx /3,0
Xl =xo+(Cx +Bx)/3.0
x2 = current-x + C + B + A x x x

and similarly for the Y components.

Errors: nocurrentpoint, stackunderflow, typecheck.

• rcurveto
dxo dyo dxl dYl dx2 dY2 rcurveto -

behaves like curveto, but the points are interpreted relative to the
current point, (cx, cy). The resulting cmved segment will start at
(cx, cy) and end at (cx+dx2, cy+tiy2)' (cx+dxo' cy+tiyO> and
(cx+dxl, cy+tiyl) determine the shape of the cmve in between the
end points, and (cx+dx2, cy+dy2) becomes the new current point

Errors: nocurrentpoint, stackunderflow, typecheck,
undefinedresult.

• closepath
c~osepath

behaves like lineto, but constructs its line to the point last "moved
to". If the current path is empty, then closepath does nothing.

Errors: (none).

122 POSTSCRIPT language manual

• pathbbox

pathbbox llx lly urx ury

pushes the bounding box of the current path in the current user coor­
dinate system onto the operand stack. The results pushed are four
real numbers: lower left x, lower left y, upper right x, upper right y.
If the current path is empty, pathbbox executes the error operator
nocurrentpoint.

Note: the bounding box of the current path in the device coordinate
system is computed first. This box is then inverse-transformed to the
current user space, and the bounding box of this resulting figure is
what is returned on the operand stack. For rotated or skewed user
coordinate systems, this operator may return a bounding box that is
larger than expected.

Errors: nocurrentpoint, stackoverflow.

• flatten path

f~attenpath

replaces the current path with an equivalent path that preserves all
straight line segments but has all curveto segments replaced by se­
quences of lineto's. This flattening to lineto's is controlled by the
current setting of the flatness parameter in the Graphics State. If the
current path does not contain any curveto segments, flatten path will
leave it unchanged.

Errors: limitcr.eck.

• rQversepath

reversepath

replaces the current path with an equivalent one except that the
points in the path are connected in the reverse order. Consider each
subsequence of the current path that begins with a moveto operation
a sub path. Each subpath thus represents one connected section of the
current path. reversepath leaves the order of the subpaths within the
current path unchanged, however it does reverse the connection
direction within each subpath.

Errors: (none).

Reference Section 123

• strokepath

strokepath

replaces the current path with a path that if filled would produce the
same result as would the current path if stroked. The current path
resulting from the strokepath operator is suitable as the implicit ar­
gument to the clip operator.

Errors: limitcheck .

• charpath

string strokepath-bool charpath

behaves like the show operator, but instead of printing the characters
of string into the current output device, it appends to the current path
a path that describes the outline(s) of the characters in string. The
strokepath-bool value determines how portions of the character defi­
nition that are strOked are treated. If true, charpath applies the
strokepath operator to any portions of the character outline descrip­
tions that are stroked. If false, these portions are added to the result­
ing path unchanged. Thus, if the character contains only filled por­
tions, or if the strokepath-bool is true, then the path that charpath
appends to the current path is suitable as the implicit argument to fill
and clip.

• clippath

If the character contains only filled portions, then the resulting path
may be stroked to output an outlined representation of the character.

Note: as long as output from the charpath operator remains in the
current path, the pathforall operator is disabled.

Errors: nocurrentpoint, stackunderflow, type check.

cl.ippath

sets the current path to one that describes the current clipping outline.
This operator is quite useful for determining the exact extent of the
imaging area on the current output device.

Errors: (none),

124 POSTSCRIPT language manual

• pathforall

mtproc ltproc ctproc cpproc path fora 11 -

enumerates the current path in order, executing one of the four given
procedure bodies for each element in the path. The four basic ele­
ments of a path are movetos, Iinetos, curvetos, and closepaths
(relative variants are converted to absolute positions and arcs are
converted to curvetos ·by the path machinery.) The four procedure
body arguments to pathforall correspond to these four basic ele­
ments. pathforall reads the current path, and for each element in the
path it pushes that element's coordinates (in current user space) and
executes the corresponding argument procedure body. It pushes x y
for both mtproc and itproc, it pushes Xl YI X2 Y2 X3 Y3 for ctproc, and
it pushes no operands for cpproc. An exit executed outside of any
loops in one of the procedures will terminate the pathforall
enumeration.

Among other uses, pathforall allows a PosTSCRIPT program to
recast a path constructed during intricate user coordinate space
changes as one with coordinates from a single, simple user coordi­
nate space.

Note: the pathforall operator is disabled when output from the
charpath operator is in the current path. In this case pathforall
operator executes the error operator invalidaccess.

Errors: stackoverflow, stackunderflow, typecheck.

Reference Section 125

3.5.5. Graphics Output Operators

The operators in this group operate on the current path, define limits on
the output area, and produce output on the attached raster device. Each
output device maintains a current page, which accumulates "ink" at the
places directed by the fill, stroke, show, and image operators. The current
page may be cleared at any time by the erasepage operator, or it can be
printed on the output device by the showpage or copypage operators.

The POSTSCRIPT Graphics State maintains a separate path, the current
clipping boundary, that defines the limits on the area of the output device
that are to be written on, regardless of the extent of an image to be output.
Like the current transformation matrix, the current clipping boundary has
a default value that depends on the output device. This clipping boundary
may be restricted further through the clip operator defined below.

The inside of a path to be filled or used as a clipping boundary can have
different interpretations when the path intersects itself. POSTSCRIPT nor­
mally uses a sophisticated non-zero winding number rule to determine
what is inside and what is outside a path. This rule determines the
, 'insideness" of a point by drawing a ray from that point in any direction
through the path. Starting with zero, we add one each time the ray passes
through a path segment that is clockwise, and we subtract one every time
the ray passes through a path segment that is counterclockwise. If the
result is zero, the point is outside, otherwise the point is inside.

With this rule, a simple convex path yields inside and outside as we
would expect. Now consider a five pointed star, drawn with five con­
tinuous straight line segments intersecting each other. The entire inside of
the star, points and center, are considered inside by the non-zero winding
number rule. For two concentric circles, if they are both drawn in the same
direction, the insides of both circles are inside according to the rule; if
they are drawn in opposite directions, only the "doughnut" shape be­
tween the two circles is inside according to the rule.

Another "insideness" rule used by some other graphics systems is the
even-odd rule. This rule determines the "insideness" of a point by draw­
ing a ray from that point in any direction and counting the number of path
segments that the ray passes through. If this number is odd, the point is
inside; if even, the point is outside.

With the even-odd rule, a simple convex path yields inside and outside
as we would expect just as with the non-zero winding number rule. For the
five pointed star drawn with five continuous straight line segments inter­
secting each other, the points are considered inside, but the center is con­
sidered outside. For two concentric circles, only the "doughnut" shape
between the two circles is inside according to the even-odd rule, regard­
less of whether the circles are drawn in the same or opposite directions.

Unless otherwise stated, any POSTSCRIPT output operator that depends
on "insideness" uses the non-zero winding number rule. There are two
operators however, eofill and eoclip that use the less useful even-odd rule.

126 POSTSCRIPT language manual

• initgraphics

initgraphics

resets several values in the current Graphics State to their default
values:

• the transformation matrix, CTM (as per the output
device)

• the current path (empty)
• the current point (undefined)
• the current clipping boundary (as per the output device)
• the current color (black)
• the current line width (one user space unit)
• the current line cap style (butt end caps)
• the current line join style (miter joins)
• the current dash description (undashed, i.e., solid lines)
• the current miter-limit (10)

The initgraphics operator leaves the other Graphics State parameters
untouched; these include the current output device, font, transfer
function, halftone screen, and flatness setting. This operator affects
Graphics State parameters only, it does not cause any output to the
current page.

initgraphics is equivalent to the POSTSCRIPT sequence:
initmatrix newpath initclip
1 setiinewidth 0 setlinecap 0 setlinejoin
[] 0 setdash 0 setgray 10 setmiterlimdt

Errors: (none) .

• erasepage

erasepage

clears the current output page to user white. User white is typically
the same as output device white, but if an atypical transfer function is
in force, this may fill the current page with a uniform gray shade.
erasepage does not affect the current Graphics State, nor does it
cause any output to be printed on the physical output device.

Errors: (none).

Reference Section 127

• showpage
showpage

prints one copy of the current output page on the attached device and
then performs an erasepage and an initgraphics. Exactly how the
page is printed depends on the output device; see the description of a
particular output device for details on how it handles showpage.

Note: showpage resets values in the Graphics State. The
POSTSCRIPT sequence copypage erasepage avoids this action.

Errors: (none).

• copypage
copypage

• initclip

prints one copy of the current output page on the attached device
without clearing its contents or changing the graphics state (as op­
posed to showpage, which effects an erasepage and an
initgraphics). To print multiple copies of a page, enclose copypage
in a loop.

Note: the non-erasing behavior of copypage is device dependent, as
not all implementations of PoSTSCRIPT can guarantee saving the en­
tire state of a printed page during processing. Low and medium
resolution devices generally can support this behavior, but high
resolution devices (over 1000 spots per inch) when printing compli­
cated pages may not support copypage's non-erasing behavior.
However, all POSTSCRIPT implementations will print the current
page when executing copypage.

Example:
n 1 sub {copypage} repeat showpage

Prints n copies of a page followed by a clearing of the current page.

Errors: (none).

initclip

sets the current clipping boundary path to the default clipping bound­
ary for the output device. This clipping boundary usually cor­
responds to the maximum image area that the output device can
handle.

Errors: (none).

128

• clip
clip

• eoclip

POSTSCRIPT language manual

intersects the inside of the current clipping boundary with the inside
of the current path to produce a new (smaller) current clipping
boundary. The inside of each path is determined by the normal
POSTSCRIPT non-zero winding number rule. The clip operator im­
plicitly closes the current path for this intersection 'if it is not already
closed.

Note: Unlike fill and stroke, clip does not implicitly perform a
newpath after it has finished modifying the current clipping bound­
ary.

Errors: limitcheck.

eoclip

• fill
fill

intersects the inside of the current clipping boundary with the inside
of the current path to produce a new (smaller) current clipping
boundary. The inside of the current path is determined by the even­
odd rule, while the inside of the current clipping boundary has been
determined by the previous clips and eoclips. The eoclip operator
implicitly closes the current path for this intersection if it is not al­
ready closed.

Errors: limitcheck.

paints the inside of the current path (the portion within the current
clipping boundary) onto the current page with the current color. fill
implicitly closes any open sections in the current path. The contents
of the filled area are painted completely by the current color; any
previous contents of that area on the current page are obscured.
Areas may be erased by filling with color set to white. The inside of
the current path is determined by the normal POSTSCRIPf non-zero
winding number rule.

fill implicitly performs a newpath after it has finished painting into
the current page. To preserve the current path after a fill operation,
use the sequence: gsave fill grestore.

Errors: limitcheck.

Reference Section 129

• eofill

eofi11

• stroke

behaves just like fill, except the inside of the current path is deter­
mined by the even-odd rule.

Errors: limitcheck .

stroke

paints a line that follows the current path in the current color into the
current clipping boundary on the page. This line is centered over the
segments of the path, has sides parallel to the path segments, and has
a total width equal (in user space) to the current value of line-width
in the Graphics State. Open sections of the path are capped according
to the current value of line-cap in the Graphics State, and connected
sections of the path are joined according to the current value of line­
join in the Graphics State. To obtain a tiny stroke consisting
primarily of end-caps, a path extending some non-zero fraction of an
output device pixel to give the end-cap an orientation should be used
(see itransform.) stroke can also produce dashed lines (see the
description of setdash).

stroke implicitly performs a newpath after it has finished painting
into the current page. To preserve the current path after a stroke
operation, use the sequence: gsave stroke grestore.

Note: The line-width, line-cap, line-join, miter-limit, flat-tolerance
and dash Graphics State values are consulted only at the time that the
stroke operator is executed. If they change during the time that the
current path is built, only their final values (at stroke time) matter.

Errors: limitcheck.

130 POSTSCRIPT language manual

• image

scan-length scanlines bits/pixel matrix proc image

renders the gray-scale image returned by proc onto the current page
using halftones. image paints the scanned image into a region of the
output page according to the matrix parameter and the current place­
ment of the user space unit square (clipped by the current clipping
boundary). The unit square is that quadrilateral bounded by user co­
ordinates (0,0), (1,0), (1, 1), and (0, 1). Prior to executing the image
operator, this unit square may be positioned, rotated and scaled in
any manner. Typically, the matrix parameter is chosen so that the
scanned image exactly fills this unit square.

The image operator will execute its proc argument as many times as
necessary to receive the gray-scale pixels that comprise the scanned
image input. This procedure must leave a PoSTSCRIPT string on the
operand stack containing the next set of such pixels each time it is
executed. The bits/pixel argument determines how the pixels are
packed into the 8-bit bytes (characters) of the string. Legal bits/pixel
arguments are 1, 2, 4, 8, and 16. If bits/pixel is 8, the pixels fit ex­
actly, one pixel per character. If bits/pixel is less than 8, the earlier
pixels are taken from the high-order bits of the character and the later
pixels are taken from the low-order bits of the character. If bits/pixel
is 16, two successive characters make up one pixel value, with the
earlier character containing the high-order bits of the pixel. A pixel
whose value is zero corresponds to black input, while the highest
value in a pixel (for 8-bit pixels this is 255) corresponds to white
input. This correspondence may be modified on output by suitable
modification of the output transfer function (see the settransfer
operator.)

The image operator will expect to receive a total of scan-length
times scanlines number of pixels from its executions of proc, and it
will terminate once it has received this number. The number of pixels
actually returned by proc each time is given by the length of the
string it leaves on top of the stack (modified by the bits/pixel. A
returned string of zero length indicates a premature termination of
the input, and the image operator will terminate. The proc need not
return a full scanline's worth of pixels, or it may return much more
than a scanline. The proc thus controls the amount of buffering it
provides through the length of the string it returns. Longer strings
returned will result in fewer executions of proc and vice versa.

The image operator imposes an x-axis major indexing order on the
pixels it receives. The first pixel's coordinate in input space is (0, 0),
the next is (1, 0), and so on through (scan-length-I, 0). The next
pixel received is (0, 1), then (1, 1), etc., until the final pixel whose
coordinate is (scan-length-I, scanlines-l). The matrix argument
defines a mapping from the unit square in user space into this input
space, i.e., a coordinate within the unit square times this matrix
yields the corresponding position within the input space.

Reference Section 131

The unit square is closed on the zero edges and open on the one
edges, so that the input coordinate corresponding to unit square coor­
dinate (1, 1) is actually outside of the defined input space. This
matrix arrangement allows any orientation of the input image to be
mapped properly into the user space unit square.

Many scanned image input files are laid out so that their first pixel
corresponds to the upper left comer of the image, the next pixel is the
one to the right of the first on the top scan line, etc., finishing with
the bottom scan line with the last pixel corresponding to the lower
right comer of the image. If there are n pixels per scan line, and m
scan lines, the correct matrix for this image format is:
[n 0 0 -m 0 m]. If the image input file is laid out bottom horizontal
scan line first, top horizontal scan line last, then the correct matrix is
[nOOm 0 0].

The proc technique for returning pixels to the image operator
provides a flexible means of dealing with a variety of image formats.
A simple format involving non-compressed images may require only
a simple readstring arrangement for obtaining the pixels. A com­
pressed format will require a decoder in the proc. Even a completely
synthetic image may be generated by the proc, as it may use the full
range of PosrSCRIPT. Note: any recursive invocation of the image
operator from within the proc is ignored.

A simple way. to include scanned input in a PosTSCRIPT file is to
include an Ascii-hexadecimal encoding of the image input directly
after the line containing the image operator. The currenttile operator
along with the readhexstring operator provide the basic tools to read
this input from the POSTSCRIPT file.

N.B. The use of image after a setcachedevice operation within the
scope of a BuildChar procedure is an error, and results in a calIon
the error operator undefined. The imagemask operator, however, is
valid in this context (see section 3.5.7).

Errors: stackunderflow, typecheck, undefinedresult.

132 PosrSCRIPT language manual

• imagemask

scan-length scanlines invert matri~ proc imagemask -

is similar to the image operator, except it renders the binary image (I
bit per input pixel only) returned by proc onto the current page using
the current color. invert is a boolean. If invert is false, the current
color images where 0 bits appear in the source, I.bits remain trans­
parent. If invert is true, the current color images where I bits appear
in the source, 0 bits remain transparent. Note that unlike the image
operator, which paints opaque color everywhere in its destination,
imagemask leaves some areas (those corresponding to the trans­
parent source pixels) unchanged.

imagemask is useful for loading raster character masks into the
cache device. The image command cannot be used in the cache con­
text, as it paints all colors, whereas masks have no color.

Errors: stackunderflow, typecheck, undefinedresult .

• setlinewidth

num set1inewidth

sets the value of line-width in the current Graphics State to nwn. This
value is interpreted as a scalar distance (number of units) in the user
coordinate. system when the stroke operator executes. If the current
scale in user space is uniform, i.e., x-units are the same length as
y-units, then stroked lines in any orientation will be drawn with a
uniform width. If the current scale in user space is not uniform, e.g.,
x-units are scaled to be twice the siz.e of y-upi!.:S. then strok...P.d lines
will be wider or narrower depending on their orientation. If x-units
are twice the size of y-units, lines perpendicular to the x-axis will be
twice as wide as lines perpendicular to the y-axis.

Errors: stackunderflow, typecheck .

• currentlinewidth

current1inewidth num

pushes the value of line-width in the current Graphics State onto the
operand stack.

Errors: stackoverflow.

Reference Section 133

• setlinecap

integer setlinecap

sets the shape that the stroke command will put at the open ends of
any paths when writing strokes to the output device. integer cor­
responds to the following end-cap shapes:

o. Butt caps; square butt end caps perpendicular to the path
at each open end.

1. Round caps; Semicircular end caps with diameter equal
to the line width centered at each open end.

2. Projecting square caps; similar to butt end caps, but ex­
tend out one-half of a line width in the direction of the
path at each open end.

Note: round end caps will print if a degenerate line (a single point) is
stroked. No output will result if butt or projecting square end caps
are specified for degenerate lines, as their orientation is indeter­
minate.

Errors: rangecheck, stackunderflow, typecheck.

• currentlinecap

currentlinecap integer

pushes the value of line-cap in the current Graphics State onto the
operand stack.

Errors: stackoverflow.

134 POSTSCRIPT language manual

• setlinejoin

integer setlinejoin

sets the shape that the stroke command will insert at the connected
corners of any paths when writing strokes to the output device. in­
teger corresponds to the following line-join shapes:

o. Mitered joins; both edges of the stroke are extended un­
til they meet at an angle at each corner, as in a picture
frame. Caution: path segments meeting at very sharp
angles (less than 10 degrees) can result in long spikes
when mitered. If the ratio of the length of the diagonal
line through a mitered join (the spike length) to the
width of the line would exceed the value of miter-limit
in the current Graphics State, then the stroke operator
makes a bevel join instead of a miter join.

1. Round joins; circular joins with diameter equal to the
line width centered at each corner. Note: stroke outputs
a full circle at each corner if round joins are specified. If
path segments of less than one-half line width meet at
sharp angles, unintentional "wrong sides" of these
circles may show.

2. Bevel joins; the meeting path segments are finished as
with butt end caps, and the resulting notch at the larger
angle between these segments is filled with a triangle.

Note: join styles are significant at angles in a path. When Bezier
curves are stroked, if the flatness has been set sufficiently smooth,
there is no difference in appearance along the curve for all of the join
styles.

Errors: rangecheck, stackunderflow, typecheck .

• currentlinejoin

currentlinejoin integer

pushes the value of line-join in the current Graphics State onto the
operand stack.

Errors: stackoverflow.

Reference Section 135

• setdash

array offset setdash

provides the stroke operator with length information for rendering
subsequent strokes as dashed lines with segment lengths as defined
in array. The length of array determines the interpretation of its con­
tents as follows:

length = 0 An empty array argument turns off dashed strokes. Sub­
sequent strokes will be drawn unbroken.

length> 0 Subsequent strokes will be dashed, with filled and un­
filled sections alternating (first section is filled.) The
O'th array element determines the length of the first
(filled) section. The array elements are used cyclically
for the succeeding section of the stroke. These sections
continue to alternate unfilled and filled. array must con­
tain non-negative numbers, which will be interpreted as
distanc~s (in user space) along the path for each filled
and unfilled portion of the stroke. At least one of the
elements of array must be non-zero.

The offset argument is another length that must be non-negative. This
length starts the dashing "inside" the repeating pattern. The repeat­
ing pattern is cycled, adding up lengths of segments and alternating
filled and unfilled as described above, except no output is produced
until the offset length is exhausted. Output then begins at the begin­
ning of the path, with the remainder of the current dash segment
being output first. This offset argument can be thought of as setting
the phase of the repeating pattern. Note: Dashed lines wrap around
corners and curves just as normal strokes do. Each end of a dash
section is finished with the current line cap and corners are finished
with the current line join. When the stroked path ends, output stops,
even if in mid-dash. POSTSCRIPT does not modify the given lengths
to fit the stroked path in any way; responsibility for ensuring
"correct" dash behavior at stroke ends is entirely up to the user.
Each new path sequence in the current path, i.e., each path part start­
ing with a moveto, begins the dash sequence over again starting with
array element 0 and a filled dash section.

Example:
[] 0 setdash % turn dashing off - solid lines
[3] 0 setdash % 3-unit on, 3-unit off, ...
[2] 1 setdash % Ion, 2 off, 2 on, 2 off, ...
[2 1] 0 setdash % 2 on, 1 off, 2 on, 1 off, ...
[3 5] 6 setdash % 2 off, 3 on, 5 off, 3 on, 5 off, .. .
[2 3] 11 setdash % lon, 3 off, 2 on, 3 off, 2 on, .. .

Errors: limitcheck, stackunderflow, typecheck.

136 POSTSCRIPT language manual

• currentdash

currentdash array offset

• setflat

pushes the current dash array and offset as described for setdash
onto the operand stack.

Errors: stackoverflow .

num setflat

sets the value of flat-tolerance in the current Graphics State to num.
When the stroke, fill or clip operators encounter a curve in the cur­
rent path, they reduce that curve to a series of straight line segments
that approximate that curve on the current output device. The flat­
tolerance value determines the maximum error allowed in output
device pixels for these approximations. A small flat-tolerance value,
e.g., 1, will produce an accurate curve approximation at the expense
of more computation, whereas a larger flat-tolerance value may
produce a cruder approximation with substantially less computation.
A default value for the flat-tolerance value should be set in each
PosrSCRIPT installation depending on the characteristics of the out­
put device.

Errors: stackunderflow, typecheck .

• currentflat

currentf~at nlliu

pushes the value of flat-tolerance in the current Graphics State onto
the operand stack.

Errors: stackoverflow.

Reference Section 137

• setmiterlimit
num setmiterl~t

sets the value of miter-limit in the current Graphics State to num.
This number is the maximum ratio of the length of the diagona1line
through a mitered join to the line width. Miter joins at sharp angles
that would produce spikes whose length ratio would exceed this
value are beveled instead. The value of the angle, A, such that bevels
are performed for angles sharper than A is given by the formula:
miter-join = 11 sin(Al2).

Examples of miter-join values are: 1.415 cuts off miters at angles
below 90 degrees; 2.0 cuts off miters at angles below 60 degrees, and
10.0, which cuts of miters at angles below 11 degrees. The default
value of miter-limit is 10. The miter ratio can never be less than 1.
Setting the miter-limit to 1 results in bevel joins always (when miter
joins are specified). An attempt to set the miter-join to a value less
than 1.0 results in a rangecheck.

Errors: rangecheck, stackunderflow, typecheck.

• currentmiterlimit
currentmiterl~t num

• set gray

pushes the value of miter-limit in the current Graphics State onto the
operand stack.

Errors: stackoverflow.

num setgray

sets the color in the current Graphics State to a gray shade cor­
responding to num. num is expected to be a number between 0 and 1,
with 0 corresponding to black, 1 corresponding to white, and values
in between corresponding to shades of gray perceived as changing
evenly between black and white as the gray value changes from 0 to
1. Note that different output devices render halftones differently; the
setscreen and settransfer operators allow enough flexibility so that
each output device can achieve this smooth change in apparent gray
levels.

N.B. The use of setgray after a setcachedevice operation within the
scope of a BuildChar procedure is an error, and results in a calIon
the error operator undefined (see section 3.5.7).

Errors: stackunderflow, typecheck.

138 POSTSCRIPT language manual

• currentgray

currentgray num

pushes the value of gray in the current Graphics State onto the
operand stack. If the current color is not a pure gray, but has some
color hue, then the value returned is the brightness component of the
current color.

Errors: stackoverflow .

• sethsbcolor

hue saturation brightness sethsbcolor -

sets the color in the current Graphics State to the given hue, satura­
tion, and brightness components. Each operand is expected to be a
number between 0 and 1. A 0 hue corresponds to pure red, 113 cor­
responds to pure green, 2/3 corresponds to pure blue, and 1 cor­
responds 1:0' pure red, with values between these points corresponding
to mixtures of the adjacent colors. The saturation component refers
to the pureness of the color: 0 corresponds to no color (only bright­
ness or gray); 1 corresponds to pure color with no white light mixed
in. Note that a 0 saturation makes the hue component irrelevant. The
brightness component corresponds to the vividness of the color, with
o corresponding to black and 1 corresponding to vivid color. The
brightness is also used as the gray value by devices without color
capability.3

N.B. The use of sethsbcolor after a setcachedevice operation within
the scope of a BuildChar procedure is an error, and results in a call
on the error operator undefined (see section 3.5.7).

Errors: stackunderflow, typecheck .

• currenthsbcolor

currenthsbcolor hue saturation brightness

pushes the three components of the color in the current Graphics
State as per the Hue-Saturation-Brightness model onto the operand
stack.

Errors-: stackoverflow.

3por a complete explanation of the POSTSCRIPf color models and the conversions between
Hue-Saturation-Brightness and Red-Green-Blue please refer to the paper by Alvy Ray Smith, Color
Gamut Transform Pairs, Computer Graphics, Vol. 12, No.3, August 1978. (Our Hue-Saturation­
Brightness model is referre4 to there as Hue-Saturation-Lightness.)

Reference Section 139

• setrgbcolor

red green blue setrgbco1or -

sets the color in the current Graphics State to the given red, green
and blue components. Each operand is expected to be a number be­
tween 0 and 1, with the amount of colored light in each primary
component increasing in proportion to its given value. If all three
components are equal, the corresponding color is a pure gray. If not
all components are equal, the corresponding gray (brightness value)
is computed according to the NTSC video standard.

N.B. The use of setrgbcolor after a setcachedevice operation within
the scope of a BuildChar procedure is an error, and results in a call
on the error operator undefined (see section 3.5.7).

Errors: stackunderflow, typecheck .

• currentrgbcolor

currentrgbco1or red green blue

pushes the three components of the color in the current Graphics
State as per the Red-Green-Blue model onto the operand stack.

Errors: stackoverflow.

140 POSTSCRIPT language manual

• setscreen

frequency rotation spot-function setscreen -

sets the halftone screen definition in the current Graphics State. The
frequency operand is a number that specifies the screen frequency,
the number of halftone dots per inch on the output page. Each
halftone dot will typically comprise many output device pixels. The
rotation argument specifies the number of degrees by which the grid
of halftone dots is to be rotated with respect to the default coordinate
system of the output page. This definition of halftone dot size and
placement is fixed; halftone dots do not scale, translate or rotate ac­
cording to the scale, translate and rotate operators. The
spot-function is a PoSTSCRIPT procedure body that will be called
with a pair of numbers, x and y, each in the range [-1, 1), and which
must return a number that indicates the value of the halftone dot
shape solid function at that point. The values of this function may be
integers or real numbers in the range [-1, 1]. These values indicate
which pixels within a halftone dot are to be blackened for different
gray levels. The highest spot function value positions will be
blackened first for the lightest grays, and the lowest spot function
value positions will be blackened last for the darkest grays.

Each device installation should set up the default screen definition
that works well for that device. It is only a rare POSTSCRIPT program
that would need to specify its own screen definition.

Errors: rangecheck, stackunderflow, typecheck .

• currentscreen

currentscreen frequency rotation spot-function

pushes all the parameters of the current halftone screen onto the
operand stack.

Errors: stackoverflow.

Reference Section 141

• settransfer

gray-trans fer-function settransfer -

The gray-transferfunction is a POsTSCRIPT procedure body that will
be called with single real number in the range [0, 1], and which
returns a single real number in the same range. This function maps
the apparent gray level (specified to the setgray operator) to the ac­
tual device gray level (ratio of white pixels to total pixels in the
halftone dot). This function allows apparent gray levels to be mapped
empirically to the gray reproduction characteristics of a particular
output device. For example, the transfer function {1 exch sub} will
invert the output image. When in doubt, use the empty function, {},
for the transfer function; it will pass its argument back unchanged.

Each device installation should set up the default transfer function
that works well for that device. It is only a rare POSTSCRIPT program
that would need to specify its own transfer function.

N.B. The use of settransfer after a setcachedevice operation within
the scope of a BuildChar procedure is an error, and results in a call
on the error operator undefined (see section 3.5.7).

Errors: stackunderflow, typecheck .

• currenttransfer

currenttransfer gray-trans fer-function

pushes the current gray transfer function onto the operand stack.

Errors: stackoverflow.

142 POSTSCRIPT language manual

3.5.6. Device Setup Operators

The Graphics State contains an entry for the current output device. Each
output device described in this section renders shapes and halftones onto
an output raster in some fashion. Typically, when POSTSCRIPT is started,
one of the first operations requested will be the installation of the main
output device. During later graphics execution, temporary switching to the
null output device or to the cache output device may occur as necessary. It
is possible, however, to change main output devices, if the POSTSCRIPT
processor is connected to more than one physical output device.

One important feature implemented by each output device is its default
transformation matrix. This matrix maps default user coordinates (one unit
equals 1172 inch, origin at lower left corner of the standard output page) to
device coordinates. POSTSCRIPT installs that matrix as the current trans­
formation matrix in the Graphics State when it installs the output device,
or when it executes an initmatrix or initgraphics operator .

• null device

nulldevice

installs the null device as the current output device. The null device
produces no printed output, but it behaves like a normal output
device in all other respects. The null device is often used for exercis­
ing the POSTSCRIPT graphics machinery to load the character cache,
build paths, operate on paths and query their bounding boxes, etc., or
work with the built-in transformation matrix machinery without
producing output. The default transformation matrix for the null
device is the identity transform: [1 00 1 00].

Errors: (none).

Reference Section 143

• framedevice

matrix width height proc framedevice -

installs an output device that writes bits into a full frame buffer as
each output operator (fill, stroke, or image) is executed. This
operator allocates a frame buffer with dimensions 8 * width bits wide
by height bits high, where width and height are according to the par­
ticular physical raster output device. The frame device will use these
dimensions for its default clipping boundary. Note that width is in
bytes while height is in bits. The matrix argument is the matrix that
the frame device will use as the default transformation matrix.

The proc argument is a procedure body that will be executed as part
of the execution of the showpage operator. This procedure body may
report progress, etc., but its most important task is to call a special
POSTSCRIPT operator that will empty the frame buffer onto the
physical output device. Those operators are special for each physical
device, and are not documented in this manual.

Errors: stackunderflow, typecheck.

144 POSTSCRIPT language manual

3.S.7. Character Cache Management Operators

The POSTSCRIPT interpreter manages a character cache for the scan­
converted (bitmap) representations of character shapes. The operators
defined in this section allow management of the character cache and
modification of cache behavior. Most POSTSCRIPT users need not concern
themselves with these operators, and most POSTSCRIPT programs will not
use them. The default operation of the cache is designed for good perfor­
mance for average applications.

The decision to cache a character is made based on the size of the char­
acter and the current state of the character cache. Text in larger sizes will
not normally be cached, as it takes up a large amount of space to do so,
and such text is typically rarely produced. The purging of items from the
cache is done by a least recently used algorithm based on typeface and
transformation information. Fonts become available for caching when a
fontid (FID) is generated for them (by the detinefont operator). Cached
entries for this font will be purged if the fontid is destroyed due to the
execution of a restore. Thus, if a program wants to print a multi-page
document with save/restore pairs around each page (to reclaim string
storage, for example), the tindfonts(and makefonts if possible) for the
document should occur in the program's preamble, outsIde the scope of
the first page itself. The character cache is structured on the basis of four
sets of numbers:

• The amount of storage allocated for character bitmaps.

• The number of distinct fonts for which characters will be
cached. In this context, a font is identified as a combination of
the fontid and the specific matrix which represents the final
size and orientation of the characters on the page (the con­
catenation of the FontMatrix and the CTM at the time of a
show).

• The number of individual characters cached.

• The maximum size of any single character bitmap.

Once one of these parameters reaches its maximum, an operation is per­
formed to remove items from the cache until the value of that parameter
has sufficiently decreased to satisfy the current request for space in the
cache. Each such operation discards an entire fontidIFontMatrix sets and
all its associated bitmaps.

Reference Section 145

• cachestatus

cachestatus bsize bmax msize mmax csize cmax maxbits

returns the current size and maximum limit for bitmap storage, fonts,
and characters, and the maximum size of a single bitmap.

Errors: stackoverfiow .

• setcachedevice

wx wy llx lly urx ury set cachedevi ce

is designed for use in font imaging. setcachedevice installs a device
similar to a frame buffer device, but whose frame storage is in the
POSTSCRIPT character cache. Any output directed to this device will
be saved for later use by the font operators (show, etc.) to achieve
faster character output. The POSTSCRIPT program will not be able to
access the cached item directly, but only indirectly through the font
operators. setcachedevice may only be executed within the context
of a BuildChar call-back (see Appendix A). The BuildChar call­
back occurs within a gsave - grestore sequence, so that the output
device installed before the setcachedevice operation will be
reinstated properly. After execution of a setcachedevice and until the
termination of the BuildChar procedure, use of the operators
setgray, sethsbcolor, setrgbcolor, settransfer, and image will
result in an error (undefined). Use of the imagemask operator,
however, is permitted. The operands to setcachedevice are all num­
bers in the character coordinate space. wx and wy comprise the basic
width vector for this character. Most Indo-European alphabets
(including the Roman alphabet) will have a positive wx and a zero
wy; Semitic alphabets will have a negative wx; some Oriental al­
phabets will have a non-zero wy. llx and lly are the coordinates of the
lower left corner of the bounding box of the character, and urx and
ury are the coordinates of the upper right comer of the bounding box.
If this bounding box is too small, the cached item will be clipped to
the inside of this box.

Errors: stackunderfiow, typecheck, undefined.

146 POSTSCRln language manual

• setcharwidth

wx wy setcharwidth

is similar to setcachedevice. It may only be invoked from within a
BuildChar call-back. Rather than saving a cached character mask,
setcharwidth is used to inform the font machinery that BuildChar
should be called every time this character is imaged. TIlere are no
restrictions on the use of setgray, sethsbcolor, setrgbcolor,
settransfer and image after a setcharwidth. setcharwidth may be
used, for example, by characters which wish to incorporate opaque
white.

Errors: stackunderflow, typecheck, undefined .

• setcachelimit

maxbits setcache1imit

reset the maximum allowable size of a cached bitmap. maxbits is in
bytes of storage required to hold a bitmap. TIle argument is a non­
negative integers.

Errors: limitcheck, rangecheck, stackunderflow, typecheck.

Reference Section 147

Error Operators

Execution of a POSTSCRIPT primitive may result in an error. Errors are
not actually POSTSCRIPT operators, but are POSTSCRIPT procedures of a
special nature. POSTSCRIPT error handlers are defined in a dictionary
called error diet which is defined in systemdict. No other instances of the
error operators or the error dictionary are considered. When a POSTSCRIPT
operator causes an error, the arguments to the offending operator (if any)
are replaced on the operand stack, the name of the offending operator is
pushed on the operand stack, and the designated error operator is· executed
directly out of errordiet that is in systemdict (rather than being looked up
in the context of the entire dictionary stack). Initially, the contents of
errordiet may be changed (to install error handlers appropriate for a given
environment), but errordict may be made readonly (and its contents
similarly protected) to prevent further modification of the error handling
mechanism.

In the initial startup setting, all of the error operators behave in essen­
tially the same manner. They snapshot the state of the operand, dictionary,
and execution stacks, print a message detailing which error occurred,
report on the operator that caused the error (when appropriate), and ex­
ecute a stop. The stop may be caught by a stopped construct.

More complex error handlers may wish to print a break page (dumping
the contents of the stacks and other helpful information), send more infor­
mation back over the output stream, implement a break package, re-raise
stop, etc .

• dietfull

diet full

dictfull occurs when a def, put, or store operator attempts to define
a new entry in a dictionary that cannot hold it (Le., a dictionary
whose length and maxlength are already equal).

This often occurs when an error in planning underestimated the re­
quired size of a dictionary. Increasing the size of the offending dic­
tionary (when the dictionary is created with a diet operator) should
remove the error.

148 POSTSCRIPT language manual

• dictstackoverflow
dictstackoverflow

The dictionary stack has grown too large. Too many begins (without
corresponding ends) have pushed too many dictionaries on the dic­
tionary stack. This error places the current contents of the dictionary
stack in an array on the operand stack and resets the dictionary stack
to contain only the system dictionary and the user dictionary. See
Appendix B for the limit on the size of the dictionary stack.

dictstackoverflow often occurs when a program neglects to end a
dictionary properly.

• dictstackunderflow
dictstackunderflow

An attempt has been made to remove (end) the bottommost instance
of the user dictionary from the dictionary stack.

dictstackunderflow often occurs when a program does not balance
begin and end operations properly.

• execstackoverflow
execstackoverflow

The execution stack has overflowed. Procedure invocation is nested
too deep. This may result from a recursive call that goes too deep for
POsrSCRIPT to handle. See Appendix B for the size of the execution
stack.

• interrupt
interrupt

Processes an external request to interrupt execution of a POsTSCRIPT
program. When POSTSCRIPT is run interactively, it listens to the
user's keyboard, and if the user types a "C (control-C), it executes
this operator. The default definition of interrupt executes a stop .

• invalidaccess

invalidaccess

An attempt has been made to improperly reference an array, diction­
ary. string, or current path which has restricted access (e.g.,
readonly),

Reference Section 149

• invalidexit
invalidexit

An exit command was encountered outside the body of a loop, or
attempted to leave the context of a run or stopped operator.

• invalidtileaccess
invalidfileaccess

The access string specification to a file command was unacceptable.

• invalidfont
invalidfont

Either the argument to findfont is not a valid font name, or the argu­
ment to makefont or setfont was not a proper font dictionary.

• invalidrestore
invalidrestore

• ioerror
ioerror

An improper restore was attempted. One or more of the stacks con­
tains dangling references to elements that would be destroyed by the
execution of the restore.

A system error has occurred while performing an input/output opera­
tion. The offending stream is pushed on the stack but is not closed
(unless the error was raised by closefile).

• limitcheck
limit check

A POSTSCRIPT implementation limit has been exceeded (e.g., too
many file streams have been created, or a path has become too
complex). See Appendix B for the limits of the POSTSCRIPT im­
plementation.

• nocurrentpoint
nocurrentpoint

The current path was empty, and thus there was no current point,
when an operator requiring a current point was executed (e.g. lineto,
curveto, currentpoint, etc.)

150 PosrSCRIF1' language manual

• rangecheck
range check

An array or string index is out of bounds, or number was out of range
(e.g., negative integer supplied when non-negative integer expected,
zero supplied when positive integer expected).

• stackovernow
stackoverflow

Too many entries on the operand stack. This error leaves a single
element on the operand stack: an array containing all of the stack's
contents at the time the error occurred. See Appendix B for the limit
on the size of the operand stack.

This error may result if some frequently-called procedure is not
removing all of its operands from the stack, or if it leaves "garbage"
on the stack. stackovertlow may also be a symptom of an infinite
loop.

• stackundertlow
stackunderflow

An attempt to remove an object from the operand stack failed be­
cause the operand stack was empty. Some operator did not have all
of its required operands on the stack.

• syntaxerror
syntaxerror

PosrSCRIPT code invoked by a run had a syntax error. It ended in
the middle of a string (missing ")") or procedure body (missing
" }").

• typecheck
typecheck

Some operand to the offending command has the wrong type. This is
probably the most frequent error encountered.

• undefined
undefined

A name was not found in some context. This can result by attempting
to look up a name that is not known on the dictionary stack (e.g., by
load or direct name lookup during execution) or by explicitly
referencing a key not known in a dictionary (e.g., by get). Under
special circumstances, certain POsTSCRIPT operators are disabled; at­
tempts to use them will result in an undefined error.

Reference Section 151

• undefinedfilename
undefinedfilename

A stream cannot be created for the file name given to tile or run. The
file does not exist or cannot be opened for reading.

• undefinedresult
undefinedresult

A numeric computation cannot be performed or has a result that can­
not be represented. Possible causes are: numeric overflow or under­
flow, division by zero, or inverse transformation of a singular matrix.
The POSTSCRIPT scanner may raise undefinedresult if it attempts to
create a numeric object out of range. See Appendix B for the max­
imum and minimum values of integers and reals.

• unmatched mark
unmatchedmark

A mark was sought on the operand stack and none was found. This
error can be raised by the cleartomark and counttomark operators.

• unregistered
unregistered

A serious system error has occurred inside POSTSCRIPT. This
problem should be reported.

• VMerror
VMerror

A serious system error has occurred inside POSTSCRIPT. This
problem should be reported.

A
FONT
MACHINERY

154 POSTSCRIPT language manual

POSTSCRIPT provides a powerful mechanism for the specification and
use of typographic fonts. Character bitmaps may be built at runtime from
analytic descriptions of their shapes, thus allowing arbitrary transfor­
mations on the font. These bitmaps may be cached for reasons of ef­
ficiency. Character descriptions may involve fIlling and stroking complex
paths, or downloading a resolution and size dependent raster (using the
image operator) for use as a font. This appendix details the specifics -of
POSTSCRIPT's font building and caching mechanisms, explains how exist­
ing fonts may be modified in certain ways, and explains how users may
specify their own fonts. Most users need not worry about the details of
POSTSCRIPT fonts. The existing font defmitions and the basic font-related
operators will suffice for the vast majority of needs.

Font Dictionaries

Font dictionaries are just POSTSCRIPT dictionaries, but with certain cru­
cial key-value pairs. POSTSCRIPT has several operators that deal with font
dictionaries (see section 3.5.3.1). Some of the contents of a font dictionary
are optional and user-defmable, while other key-value pairs must be
present and have the correct semantics for POSTSCRIPT to operate cor­
rectly.

Font dictionaries are distinguished by a/ont [D, a key-value pair with
key "FID" and value an object of type fonttype. This entry is inserted
into a candidate font dictionary when that dictionary (and a name for that
dictionary) are presented to the definefont operator. definefont takes a
name and a dictionary, checks that the dictionary is a valid font dictionary,
inserts a FID-fonttype pair, makes the dictionary readonly, and associates
the font name with the dictionary in the global dictionary FontDirectory.

POSTSCRIPT also expects the following fields to exist in all font diction­
aries:

FontMatrix matrix This maps the character coordinate system
into the user coordinate system. The fonts
returned by findfont are assumed to be one
unit high. The actual characters may be
defined in some other coordinate systems
(the character coordinate system) and the
FontMatrix maps that system into one unit
in the user coordinate system. For example,
built-in POSTSCRIPT fonts are defined in
terms of a 1000 unit character coordinate

Font Machinery

FontType number

FontBBox array

Encoding array

155

system and their initial FontMatrix is [0.001
o 0 0.001 0 0]. When a font is modified by
the makefont operator, the new matrix is
concatenated with the FontMatrix to yield a
transformed font. Most often, the
FontMatrix is used for uniform scaling of
the font.

indicates where the information for the char­
acter descriptions is to be found and how it
is represented. User-defined fonts should
have FontType 3 (the integer 3). See the
section below on user-defined fonts.

an array of four numbers in the character co­
ordinate system giving lower-left-x, lower­
left-y, upper-right-x, and upper-right-y of
the font bounding box. The font bounding
box is the bounding box of the shape that
would result if all of the characters of the
font were placed with their origins coin­
cident. This information is used in
character-caching and clipping decisions.

The Encoding entry is a vector of 256 names
which maps character codes (the array in­
dices in the range 0 to 255) to character
names (the values in the array). This
encoding vector may be changed by the user
(see details below) to impose different char­
acter encoding schemes: EBCDIC, ISO, or
other character set mappings.

a. POSTSCRIPT Built-In Fonts

POSTSCRIPT's built-in fonts contain the following information:

FontName name

PaintType integer

FontName is the name of the font as
specified to findfont and definefont.

The PaintType indicates how the font is
imaged.

o The character descriptions are filled.
1 The character descriptions are stroked.
2 The character descriptions (designed to

be filled) are outlined.
3 The character descriptions are respon-

156

Metrics

FontInfo

CharStrings

Private

PosrSCRIPT language manual

sible for filling or stroking (or some
combination of those operations) them­
selves.

Arbitrarily changing a font's PaintType will
most likely be· disastrous. The only reason­
able change is from 0 (filled) to 2 (outlined).

dictionary This entry is not present by default, but
provides the means by which users can
change width and sidebearing information
for the font (see Changing Things and Font
Metric Information below).

dictionary (See below.)

dictionary The CharStrings entry associates character
names (keys) with shape descriptions
(values, stored in a protected, proprietary
format). Some characters may appear in the
CharStrings dictionary without being
present in the Encoding v~tor; the user can
remap the font to access these characters.

dictionary The Private entry contains other protected
information about the font.

The FontInfo dictionary may contain the following information:

Notice string

version string

FullName string

FamilyName string

Weight string

ItalicAngle number

isFixedPitch boolean

Trademark or Copyright notice (if
applicable).

Font version number.

The full "print" name of the font.

The name of the "font family" to which it
belongs.

The "weight" of the font (e.g., Bold,
Medium, Light, Ultra, Heavy).

The angle in degrees counter-clockwise
from the vertical of the dominant vertical
strokes of the font.

Indicates that the font is a "typewriter"
font.

Font Machinery .157

UnderlinePosition number Distance from the baseline for positioning
underlining strokes. This number is in units
of the character coordinate system.

UnderlineThickness number Stroke width for underlining. This number is
in units of the character coordinate system.

a.t. Changing Things

Occasionally, users may wish to change certain things in a built-in font.
One common example is the character encoding vector. Note that fonts
which differ in at most their Encoding, Fontinfo, and FontName entries
will share cache space. The way to go about making a user-specified
change is as follows:

1. Make a copy of the font dictionary including all entries except
theFID.

% assumes the dictionary is on the operand stack
dup length dict /newdict ezch def

{1 index /rID ne
{newdict 3 1 roll put}
{pop pop}

ifelse
} forall

% newdict now is such a copy

2. Install the desired changes. For example, re-map the character
codes for printing EBCDIC strings:

% assumes ebcdicencoding is an array
% of 256 names which maps EBCDIC
% codes to POSTSCRIPT character names.

% install this array in the new (copied)
% font dictionary
newdict /Encoding ebcdicencoding put

% install this as a font in the system
% under the name "MyEBCDICFont"
/MyEBCDICFont newdict definefont pop

The basic font metric information may be changed as well. The Metrics
information in the font dictionary is the means by which users can change
the default width and side bearings of characters on an individual basis.
This mechanism differs from ashow, etc., in that the new metrics apply to
the characters in the font for as long as the new font dictionary exists. The
entries in this dictionary may be of three different forms. The keys are the
character names as they appear in CharStrings and Encoding. The values
may be:

1. A single number, indicating a new width only (the x value of
the width vector, with y being zero).

158 PosrSCRlPT language manual

2. An array of two numbers, indicating new left side bearing and
new width (again in x, with the y coordinates zero).

3. An array of four numbers, indicating true vectors (x and y
components) for left side bearing and width.

All of these values are in the character coordinate system of the font.
Here is an example which changes the widths of the digits (0-9) in an

existing font:

1. Make a copy of the existing font dictionary including all
entries except FID, and making room for the Metrics entry.

% assumes the dictionary is on the operand stack
dup 1ength 1 add dict Inewdict exch def

{1 index IFID ne
{newdict 3 1 ro11 put}
{pop pop}

ife1se
} fora11

2. Insert the Metrics dictionary and the desired values.
newdict IMetrics 10 dict put
newdict IMetrics get begin

[/zero lone Itwo Ithree Ifour
Ifive Isix Iseven leight Inine]

{700 def} fora11
end

3. Install the new dictionary as a font in the system
l~angedFont newdict definefont pop

b. User-Defined Fonts

User-defined fonts must be carefully constructed. POSTSCRIPT assumes
that such fonts will be reasonably well-behaved. As mentioned above,
user-defined fonts must have FontType 3 in the font dictionary. When
POSTSCRIPT wants to image a character out of a font, it checks to ~ee if it
has that character in its character cache. If so, PoSTSCRIPr uses the
cached character bitmap and metric information and the rest of the font
machinery is not invoked. If POSTSCRIPT does not have the character
cached because it is too big· to cache or POSTSCRIPT has never encoun­
tered the character before, POSTSCRIPT will invoke the character building
machinery. POSTS~IPT pushes the font dictionary and the character code
(an integer) of the character to be built onto the operand stack, and calls
the procedure BuildChar which must be present in the font dictionary.
BuildChar must use the information at hand (the character code and the
current font dictionary) to construct and present a character back to
POSTSCRIPT. This typically involves determining the character shape
needed, setting the cache device (so that the constructed character will be
cached if possible), supplying character metric information, constructing
the character shape and imaging it.

Font Machinery 159

When BuildChar gets control, the current transformation matrix is the
concatenation of the font matrix (FontMatrix in the current font
dictionary) and the matrix that was the current transformation matrix be­
fore the font machinery was invoked (the user coordinate system). Thus
BuildChar's coordinate system is the character coordinate system, and
the resulting character shapes will be the desired size on the page. Before
imaging the character, BuildChar must allow POSTSCRIPT to cache it if
possible. BuildChar must make a calion setcachedevice or
setcharwidth. POSTSCRIPT mayor may not actually set the cache device;
the BuildChar code has no way of really knowing. If the cache device
was not set, then the character will be imaged onto the page in the current
position. If the cache device was set, the character will be imaged into the
cache and POSTSCRIPT will transfer the image onto the page at the current
position.

Here is a small example of a user font which has only one character, a 1
unit by 1 unit solid box with a width of 2 units along the baseline. This
box is imaged no matter what character code is shown. The character co­
ordinate system is on a 1000 unit scale.

160

/ExampleFontDict 8 dict def
/$workingdict 10 dict def
ExampleFontDictbegin
/FontType 3 def

POSTSCRlF1' language manual

/FontMatrix [0.001 0 0 0.001 0 0] def
/FontBBox [0 0 1000 1000] def
/Encoding 256 array def
o 1 255 {Encoding exch /Box put} for
/CharProcs 1 dict dup begin

/Box {O 1000 lineto 1000 1000 lineto
1000 0 lineto 0 0 lineto
closepath fill

} def
end def
/BuildChar

{$workingdict begin
/charcode exch def
/fontdict exch def
fontdict /CharProcs get

fontdict /Encoding get
charcode get get

gsave
o setgray newpath
2000 0
o 0
1000 1000 setcachedevice

% get the CharProc

% width vector
% lower left
% upper right

exec % do the CharProc
grestore
end

} def
end
/ExampleFont ExampleFontDict definefont pop

% now image two such 12 unit boxes at position 35 25
/ExampleFont findfont 12 scalefont set font
35 25 moveto (AA) show

Font Machinery

Font Metric
Information

a. The Character Coordinate System

161

The character coordinate system is the system in which an individual
character shape is defined. The origin (or reference point) of the character
is the point which is mapped to the current point when the character is
shown. For example, in the POSTSCRIPT sequence

40 50 moveto (ABCD) show

the origin of the 'A' is placed at coordinate (40,50) in the user coordinate
system. After the 'A' is shown, the current point is updated by the width
of 'A' (a vector) and the origin of the 'B' is placed at this new location.

The bounding box of a character is the smallest rectangle (oriented with
the coordinate system axes) which will just enclose the entire character's
analytic shape. The bounding box is often expressed in terms of its lower
left comer and upper right comer, relative to the character origin.

The side bearing of a character is the distance from the character's
origin to the left edge of the character bounding box. Note that this dis­
tance may be negative for characters that kern to the left of their origin.

b. Character Metrics

In POSTSCRIPT, character metric information for built-in fonts may be
accessed procedurally, and modified by the user as detailed above. The
stringwidth operator may be used to obtain character widths. The se­
quence charpath flatten path pathbbox may be used to determine char­
acter bounding boxes and side bearings. The font bounding box appears in
the font dictionary with key FontBBox and value an array of four num­
bers. Character metrics may be changed by registering new width and side
bearing information in a Metrics dictionary within the font dictionary.

The user must be cautioned, however, that arbitrary and wholesale
modifications to the default widths and side bearings of a typeface will
almost certainly be visually disastrous. Determining pleasing and correct
character spacing is a difficult and laborious art. Random stabs at chang­
ing a familiar and accepted set of character metrics should be discouraged
and avoided.

B

IMPLEMENTATION
LIMITS

164 PosrSCRlPT language manual

Implementations of the POSTSCRIPT interpreter may impose certain
limits on the number and size of various objects. Typical POSTSCRIPT
programs should never have to concern themselves with such implemen­
tation limits, but very large or complex programs might encounter them.
The following is a description of the limits of the current implementation
of POSTSCRIPT.

MaxInteger

MinInteger

2147483647 The largest value in the range of type
integertype. This value is 232_1,
16#7FFFFFFF.

-2147483648 The smallest value in the range of type
integertype. This value is _232,

16#8000000. Note that the POSTSCRIPT
scanner will scan the integer represen­
tation of this number as a real, but the
value can be generated internally, or by
scanning a radix constant.

MaxReal 1038 The largest value in the range of type

MinReal _1038

MaxAuTayLength 65535

MaxStringLength 65535
MaxDictLength 2000

MaxNumberDicts 65535

MaxStrearns 6

MaxNameSize 128

llserdictSize 200

OperandStackSize 500

DictStackSize 20

realtype. (Real numbers fall in the
range ±1O±38.)

The smallest value in the range of type
realtype.
Maximum length of an array. This
numberis 216_1.
Maximum length of a string.
Maximum length of a dictionary.
Maximum number of dictionaries al-
lowed.
Maximum number of open file streams.
This number includes PoSTSCRIPT's
standard input, output, and error
streams.
Maximum length of a name (print
length in characters).
The maximum number of elements in
the user dictionary (Le., userdict
maxlength).
The maximum depth of the operand
stack.
The maximum depth of the dictionary
stack.

Implementation Limits 165

ExecStackSize 250 The maximum depth of the execution
stack.

MaxExecLevel

MaxSaveLevel
MaxGSaves

10

15
32

MaxPathElements 15000

MaxDash 11

maximum number of recursive calls of
the POSTSCRIPT interpreter. Certain of
the graphics operators that call out to
POSTSCRIPT procedures use recursive
calls (e.g., pathforall).
The maximum number of active saves.
The maximum number of active gsaves
plus the number of active saves may
not exceed 32.
The maximum number of points
specified in all active path descriptions
(this includes those nested by gsaves).
The maximum size of a dash array
specification (as given to setdash).

Some installations might want to have these values accessible from
within POSTSCRIPT. The following example defmes a dictionary contain­
ing the values detailed above and places in the the user dictionary under
the name "LimitDict."

userdiet /L~tDiet
20 diet dup begin

/Maxlnteger 16#7FFFFFFF def
/Minlnteger 16#80000000 def
/~al 1.0e38 def
/MinReal -1.0e38 def
/MaxArrayLength 65535 def
/MaxStringLength 65535 def
/MaxDietLength 2000 def
/MaxNumberDiets 65535 def
/MaxStreams 6 def
/MaxNameSize 128 def
/OserdietSize userdiet mazlength def
/OperandStaekSize 500 def
/DietStaekSize 20 def
/ExeeStaekSize 250 def
/MaxEzeeLevel 10 def
/MaxSaveLevel 15 def
/MaxGSaves 32 def
/MaxPathElements 15000 def
/MaxDash 11 def

end put

REVISION
HISTORY

168 PosrSCRIFI' language manual

This section is a short list of the major changes that have been made to
the POSTSCRIPT language.

The following changes have taken place since the edition of August
1984:

• This section (the Revision History) has been added.

• imagemask' (3.5.5) and' ~tcharwidth (3.5.7) are new
operators which increase the flexibility of the character cach­
ing machinery.

• The limit on the total number of names in POSTSCRIPT
(MaxNames) has been removed, and the limit on the max­
imum length of a name (MaxNameSize) has substantially in­
creased (Appendix B). The associated error operator
nametableoverflow has been removed (3.6).

• Encoding is now required in a font dictionary, as cache
entries are made based on name rather than character code
(Appendix A).

• The character cache management operator cachestatus has
been changed (the "limit" parameters have been removed).
The trimcache and setcachelimits operators have been
removed, and setcachelimit has been added (Section 3.5.7).

OPERATOR
INDEX

170 POSTSCRIPT language manual

name type page

miscellaneous 97
miscellaneous 96

abs arithmetic 49
add arithmetic 49
aload array 63
anchorsearch string 69
and booleanlrelational 75
arc path construction 119
arcn path construction 119
arcto path construction 120
array array 62
ashow font 115
astore array 63
atan arithmetic S3
awidthshow font 11S
begin dictionary 64
bitshift booleanlrelational 76
bytesavailab1e inpuUOUlput 91
cachestatus character cache 14S
ceiling arithmetic S2
charpath path construction 123
clear stack manipulation 46
cleartolllllIk stack manipulation 47
clip graphics oulput 128
clippath path construction 123
closefile inpuUoulput 88
closepath path construction 121
concat coordinates and matrix 109
concatmatrix coordinates and matrix 109
copy polymorphic S6
copypage graphics oulput 127
cos arithmetic 53
count stack manipulation 47
countdictstack dictionary 68
countexecstack control 81
counttomark stack manipulation 48
currentdash graphics oulput 136
currentdict dictionary 67
currentfile inpuUOUlput 92
currentflat graphics oUlput 136
currentfont font 112
currentgray graphics oulput 138
currenthsbcolor graphics oUlput '138
currentlinecap graphics oUlput 133
currentlinejoin graphics oulput 134
currentlinewidth graphics oUlput 132
currentmatrix coordinates and matrix 106
currentmiterlimit graphics oulput 137
currenlpoint path construction 118
currentrgbcolor graphics oUlput 139

Operator Index 171

currentscreen graphics output 140
currenttransfer graphics output 141
curveto path construction 121
cvi type/conversion/property 83
cvlit type/conversion/property 83
cvn type/conversion/property 83
cvr type/conversion/property 83
cvrs type/conversion/property 84
cvs type/conversion/property 84
cvx type/conversion/property 84
def dictionary 65
defaultmatrix coordinates and matrix 106
defmefont font 113
dict dictionary 64

dictfull error 147
dictstack dictionary 68
dictstackoverflow error 148
dictstackunderflow error 148
div arithmetic 50
dtransform coordinates and matrix 110
dup stack manipulation 45
echo input/output 93
end dictionary 65
eoclip graphics output 128
eofill graphics output 129
eq booleanlrelational 72
erasepage graphics output 126
exch stack manipulation 45
exec control 77
execstack control 81
execstackoverflow error 148
executeonly type/conversion/property 85
exit control 80
exp arithmetic 51
false boolean/relational 74
file input/output 88
fill graphics output 128
findfont font 113
flattenpath path construction 122
floor arithmetic 52
flush input/output 91
flushfile input/output 92
for control 79
forall polymorphic 58
framedevice device setup 143
ge booleanlrelational 73
get polymorphic 59
getinterval polymorphic 61
grestore graphics state 101
grestoreall graphics state 102
gsave graphics state 101
gt boolean/relational 73

172 POSTSCRIPT language manual

identmatrix coordinates and matrix 106
idiv arithmetic 50
idtransform coordinates and matrix 111
if control 78
ifelse control 78
image graphics output 130
image graphics output 131
imagemask graphics output 132
index stack manipulation 46
initclip graphics output 127
initgraphics graphics output 126
initmatrix coordinates and matrix 106
interrupt error 148
invalidaccess error 148
invalidexit error 149
invalidfileaccess error 149
invalidfont error 149
invalidrestore error 149
invertmatrix coordinates and matrix 111
ioerror error 149
itransform coordinates and matrix 110
known dictionIII)' 66
kshow font 116
Ie boolean/relational 73
length polymorphic 57
limitcheck error 149
lineto path construction 118
In arithmetic 54
load dictionIII)' 66
log arithmetic 54
loop control 79
It boolean/relational 73
makefont font 114
mark stack manipulation 47
matrix coordinates and matrix 106
maxlength dictionIII)' 67
mod arithmetic 50
moveto path construction 118
mul arithmetic 50
ne boolean/relational 72
neg arithmetic 51
newpath path construction 117
nocurrentpoint error 149
not boolean/relational 74
null array 63
nulldevice device setup 142
or boolean/relational 75
pathbbox path construction 122
pathforall path construction 124
pop stack manipulation 45
print input/output 92
prompt input/output 93

Operator Index 173

pstack miscellaneous 97
put polymorphic 60
putinterval polymorphic 61
quit control 81
rand arithmetic 54
rangecheck error 150
rcheck type/conversion/property 86
rcurveto path construction 121
read input/output 89
readhexstring input/output 89
readline input/output 89
readonly type/conversion/property 85
readstring input/output 90
repeat control 78
restore input/output 95
reversepath path construction 122
rlineto path cons1ruction 119
rmoveto path construction 118
roll stack manipulation 46
rotate coordinates and malrix 108
round arithmetic 52
rrand arithmetic 55
run inp,ut/output 92
save input/output 95
scale coordinates and ma1rix 108
scalefont font 113
search string 70
setcachedevice character cache 145
setcachelimit character cache 146
setcharwidth character cache 146
setdash graphics output 135
setflat graphics output 136
setfont font 114
setgray graphics output 137
sethsbcolor graphics output 138
setlinecap graphics output 133
setlinejoin graphics output 134
setlinewidth graphics output 132
setmatrix coordinates and malrix 107
setmiterlimit graphics output 137
setrgbcolor graphics output 139
setscreen graphics output 140
settransfer graphics output 141
show font 115
showpage graphics output 127
sin arithmetic 54

sqrt arithmetic 51
srand arithmetic 55
stack miscellaneous 96
stackoverflow error ISO
stackunderflow error 150
start control 81

174 POSTSCRIPT language manual

status input/amput 92
stop COIltrol 80
stopped control 80
store dictionazy 65
string string 69
slringwidth font 116
stroke graphics output 129
strokepath path construction 123
sub arithmetic 51
syntaxerror error 150
systemdict dictionazy 67
token input/output 90
token siring 71
transform coordinates and matrix 109
translate coordinates and matrix 107
true booleanJrelational 74
truncate arithmetic 53
type type/conversion/property 82
typecheck error 150
undefined error 150
undefinedfilename error 151
undefinedresult error 151
unmatchedmark error 151
unregistered error 151
userdict dictionazy 67
usertime miscellaneous 96
version miscellaneous 96
VMerror error 151
vmstatus input/output 95
wcheck typeIconversion/property 86
where dictionazy 66
widthshow font 115
write input/output 91
writehexslring input/output 91
write string input/output 91
xcheck typeIconversion/property 85
xor boolean/relational 76
[array 62
] array 62

INDEX

176

radix notation 13

% comment character 14
%lineedit 87
%statementedit 87
%stderr 88
%stdin 88
%stdout 88

I slash character 15

Cl'M 98, 103, 105
POSTSciuPr Objects 34
POSTSciuPr Types 34

\ backslash character 14
\ escape character 14

Argument handling 40
Array objects 35, 62
Arrays

as vectors 35
executable 35, 39
representation of 38
syntaxof 15

ASCII character set 2,37

Bezier cubics 120
Base conversion 84
Base notation, # 13
Boolean objects 35, 72
Bounds checking 40

Character encoding 155
Character encoding, EBCDIC 157
Character memcs 161
Character set 2
Character widths 161
Characters

{braces} 41
C1i. 10 125 ppmg .,

boundary 10,98,125,127,128
operators 127, 128
path 10, 98, 125, 127, 128

Color, in graphics state 138, 139
Comments, syntax of 14
Composite objects 38
Coordinate systems

character 154
default 11
font 154
origin 11
scaling 11

Cubic splines 120
Current dictionary 36, 67
Current position 98
Current transformation 98, 103, 105

Dash array 99, 135, 136
Dictionary

current 36,67
deftnition of 18

PosrSCRIFr language manual

font 112, 154
objects 36, 64
operators 64
representation of 38
stack 19,34,36,64,68
system 19,36,67
user 36,67

EBCDIC character encoding 157
Encoding vector 155
Error handling 40
Escape character, \ 14
Example

geomemc path 23
multiple fonts 25
simple text 24

Executable definitions 18
Executable, checking for 85
Executable, conversion to 84
Execution 41
Execution stack 34, 81

FID 154
File objects 37,87
File operators 87
Files

%lineedit 87
%statementedit 87
%stderr 88
%stdin 88
%stdout 88
special 87

Fla1ness, in graphics state 99,136
Fla1ness, of Bezier curves 99
Font dictionary 112, 154
FontID 154
Font objects 38
Fonts

built-in 154
changing 26
changing size of 25
character memcs 161
coordinate system 154
encoding vector 155
fixed pitch 26
in graphics state 99
introduction 24
memc information 161
monospaced 26
point size of 25
representation of 24
user defmed 154
user modiftcations 157
variable pitch 26
width information 26

Geometric shapes 22
Graphics operators 21,98
Graphics State 21,34,98,101
Graphics state stack 34,101

Hexadecimal constant 13

Imaging model 9

Index

Input'output operators 87
Integer objects. 35
Integer, conversion to 83
Interpreter

basic operation 16

Line cap 99, 133
Line join 99, 134
Line width 99, 132
Literal, checking for 85
Literal, conversion to 83
Logical values 35, 72

Mark objects 38, 47, 62
Matrix, current transformation 98, 103, 105
Miter limit 99, 137

Name binding 18
Name objects 37
Name, conversion to 83
Names

binding of 18
literal 15
syntaxof 15

Null objects 38, 62, 63
Numbers

radix notation 13
syntaxof 13
type conversion 35, 49, 82
typeof 35

Objects
array 35, 56, 62
bodypart 38
boolean 35, 72
composite 38
determining type of 82
dictionary 36, 56, 64
file 37,87
font 38
integer 35
mark 38,47,62
name 37
null 38, 62, 63
operator 37
primary part 38
real 35
save 38,94
string 36, 56, 69

Octal constant 13
Operand stack 16, 34
Operator

= 96
== 97
[62
] 62
abs 49
add 49
aload 63
anchorsearch 69
and 75
arc 119
arcn 119
arcto 120

array 62
ashow 115
astore 63
atan 53
awidthshow 115
begin 64
bitshift 76
bytesavailable 91
cachestatus 145
ceiling 52
charpath 123
clear 46
cleartomark 47
clip 128
clippath 123
closdile 88
closepath 23, 121
concat 109
concatmatrix 109
copy 56
copypage 127
cos 53
count 47
countdictstack 68
countexecstack 81
counttomark 48
currentdash 136
currentdict 67
currentfi1e92
currentflat 136
currentfont 112
currentgray 138
currenthsbcolor 138
currentlinecap 133
currentlinejoin 134
currentlinewidth 132
currentmatrix 106
currentmiterlimit 137
currentpoint 118
currenlrgbcolor 139
currentscreen 140
currenttransfer 141
curveto 121
cvi 83
cvlit 83
cvn 83
cvr 83
cvrs 84
cvs 84
cvx 84
def 17,65
defaultmatrix 106
defmefont 113
djct64
dictfull 147
dictstack 68
dictstackoverflow 148
dictstackunderflow 148
div 50
dlransform 110
dup 45
echo 93
end 65
eoclip 128

177

178

eofill 129
eq72
erasepage 126
exch 45
exec 77
execstack 81
execstackoverflow 148
executeonly 85
exit 80
exp 51
false 74
file 88
fill 128
findfont 25, 112, 113
flattenpath 122
floor 52
flush 91
flushfile 92
for 20,79
forall 58
framedevice 143
ge 73
get 59
getinterval 61
grestore 24, 101
grestoreall 102
gsave 24, 101
gt 73
identmatrix 106
idiv 50
idtransform 111
if 20,78
ifelse 20, 78
image 130,131,145
imagemask 132, 145
index 46
initclip 127
initgraphics 126
initmatrix 106
interrupt 148
invalidaccess 148
invalidexit 149
invalidfileaccess 149
invalidfont 149
invalidrestore 149
invertaudlix 111
ioerror 149.
itransform 110
known 66
kshow 116
Ie 73
length 57
limitcheck 149
lineto 23,118
In 54
load 66
log 54
loop 20,79
It 73
makefont 114
made 47
matrix 106
maxlength 67
mod 50

POSTSCRIPT language manual

moveto 23, 24, 118
mul 50
ne 72
neg 51
newpath 117
nocwrentpoint 149
not 74
null 63
nulldevice 142
or 75
pathbbox 122
pathforall 124
pop 45
print 92
prompt 93
pstack 97
put 60
putinterval 61
quit 81
rand 54
rangecheck 150
rcheck 86
rcurveto 121
read 89
readhexstring 89
readline 89
readonly 85
readstring 90
repeat 19, 78
restore 95
reversepath 122
rlineto 119
rmoveto 118
roll 46
rotate 108
round 52
rrand 55
run 92
save 95
scale 108
scalefont 25,113
search 70
setcachedevice 145
setcachelimit 146
setcharwidth 146
setdash 135
setflat 136
setfont 114
setgray 137,145
sethsbcolor 138, 145
setlinecap 133
setlinejoin 134
setlinewidth 132
setmatrix 107
setmiterlimit 137
setrgbcolor 139, 145
setscreen 140
settransfer 141,145
show 24,115
showpage 127
sin 54
sqrt 51
srand 55
stack 96

Index

stackoverflow 150
stackunderflow 150
start 81
status 92
stop 80
stopped 80
store 65
string 69
stringwidth 116
s1roke 129
s1rokepath 123
sub 51
syntaxerror 150
systemdict 67
token 71,90
transform 109
translate 107
true 74
truncate 53
type 82
typecheck 150
undefined 150
undefmedfilename 151
undefinedresult 151
unmatchedmark 151
unregistered 151
userdict 67
usertime 96
version 96
VMerror 151
vmstatus 95
wcheck 86
where 66
widthshow 115
write 91
writehexstring 91
writestring 91
xcheck: 85
xor 76

Operators 37
arithmetic 49
array 62
assignment 17
bitwise 72
boolean 72
character cache 144
conditional 77
con1ro1 19,77
coordinates and matrix 103
device setup 142
dictionary 64
error 147
file 87
font 112
graphics 21, 98
graphics output 125
graphics state 101
input/output 87
looping 77
math 49
miscellaneous 96
path construction 117
polymorphic 56
property 82

relational 72
stack manipulation 45
string 69
type 82
type conversion 82
virtual memory 94

Parametric cubics 120
Path, current 98
Paths

Bezier curves in 23
circular arcs in 23
creating a path 22
geometric 22
in graphics state 98
in1roduction to 22
line segments in 22

Primary part, of objects 38
Procedure bodies

syntax of 15
Procedures

defining 18
Prologue, of POSTSCRIPf SOUICe 2

Radix conversion 84
Radix notation, # 13
Real objects 35
Real, conversion to 83

Save objects 38, 94
Scope of names 19
Screen, in graphics state 99, 140
Script, of POSTScRIPT SOUICe 2
Shapes, geometric 22
Side bearings 161
Stack

dictionary 34, 64, 68
execution 34, 81
graphics state 34, 101
operand 16,34,41
operators 45
representation of 38

Standard error file 88
Standard input file 88
Standard output file 88
String objects 36, 69
String, conversion to 84
Strings

hexadecimal 14
representation of 38
syntaxof 13

Syntax 13
System dictionary 36, 67

179

Transfer function, in graphics state 99,141
Transformation matrix, in graphics state 98
Transformation,current 98,103,105
Transformations

in1roduction 23
Type

array 35, 56, 62
boolean 35, 72
dictionary 36, 56, 64
file 37,87

180

font 38
integer 35,49
mark: 38,47, 62
name 37
null 38, 62, 63
of POSTSCRIPT objects 34
operator 37
real 35,49
save 38,94
string 36, 56, 69

Type checking 40
Type conversion 35, 82

arithmetic 49
automatic 35, 49
explicit 82

Type determination 82

User coordinates 103
User dictionary 36, 67
User space 103

Vectors 35
Virtual memory 94
VM 94

POSTSCRIPT language manual

Colophon 181

Colophon

The colophon of a book is traditionally a small design device placed on
the last page of a book or manuscript. There is usually some inscription of
the scribe or printer listing the date, place, and details of publication.

The word colophon is from the Greek word "Kolophon" (KOAO<l>roV),
meaning summit or final touch. Or perhaps, colophon is from the Greek
word "Kolophos" (KOAO<l>roC;), which was the name of the very last island
in the Greek chain of islands; hence the last page was called the colophon.

This manual was written and edited at Adobe Systems Incorporated. It
was produced from a POSTSCRIPI' print file which was created using a
customized version of the Scribe@ Document Production System software,
which is marketed by UNruX3IC, Ltd. Camera-ready copy for this manual
was printed entirely on a POSTSCRIPT printer at Adobe Systems. The
typefaces used in this manual were digitized by Adobe Systems, Inc. The
body type is Times1M, and the fixed-pitch font used in operator defmitions
and examples is Courier.

Stack Operators

POSTSCRIPT™ Cheat Sheet

27 September 1984
A quick reference guide to POSTSCRIPT operators.

Copyright © 1984 Adobe Systems, Inc.

POSTSCRIPT is a trademark of Adobe Systems, Inc.

any

any

anY1 anY2
an_1 ... ao n j

aN ... ao ind

pop

dup any any

pop top element off operand stack

duplicate top element on operand

stack

any 2 any 1 exchange top two elements

aU.1)(mod n) .•. ao an_1 ... aj(mod n) roll n elements jtimes (+ = 'right')

aN ... ao aind index into operand stack (top = 0)

l-any 1··any N

1- anY1 ... anYN

exch

roll

Index

clear

count

mark

1- clear the operand stack

N
mark

count elements on operand stack

push mark onto operand stack

clear operand stack down through

mark
mark ... cleartomark

... mark ... counttomark ... mark ... n

Arithmetic and Math Operators

num abs Inuml

nm add n+m

nm dlv n/m

i j Idlv integer-part(i/j)

i j mod (i MOD j)

nm mul nOm

n neg -n

nm sub n-m

n sqrt Sqrt(n)

nm exp nm

x ceiling Ceiling(x)

x floor Floor(x)

n round Round(n)

x truncate truncate(x)

yx atan ArcTan(y/x)

angle cos Cos(angle)

angle sin Sin (angle)

n In Ln(n)

n log log(n)

rand int

int srand

rrand int

count stack entries from top to mark

absolute value of num
add two numbers

divide two numbers

integer divide

modulus (integer remainder of ilj)

multiply two numbers

change sign of n

subtract two numbers

square root

raise n to mth power

Ceiling of x
Floor of x
round n to nearest integer

Truncate x
ArcTangent(y/x in degrees)

Cosine(ang/e in degrees)

Sine(angle in degrees)

natural logarithm (base e)

logarithm (base 10)

generate pseudo-random number

set random number seed

return random number seed

POSTSCRIPT Cheat Sheet

Polymorphic Operators

anY1 .. anYN N

obj10bj2

dictlstringlarray

arrayldictlstring proc

arraYldietlstring intlkey

arrayldictlstring indexlkey val

copy

copy

length

forall

get

put

27 September 1984

anY1··anYN anY1··anYN

obj2
n

value

arraYlstring ind count getinterval subobj

obj1 ind obj2 putlnterval

Array Operators

n

mark -marko .. -markN_1
array

anyo···any N-1 array-size-N

Dictionary Operators

array array

[mark

] array-size-N

atoad

astore

null

aO ••• aN_1 array

array-size-N

null

copy top N elements of stack

copy complex objeet

length of argument

for each element do proc

get value of int/key in object

put val into objeet

subinterval of array/string starting at
indfor count elements

store al\ of obj2 into obj1 starting at
ind

create array of size n

start array construetion

end array construction

get all elements of array

put elements from stack into array

return a null object

2

int diet diet create dietionary with capacity for int
elements

String Operators

Adobe Systems, Inc.

diet begin

end

key value def

key val store

diet key known boo I

key load val

key where [diet true] orfalse

diet maxlength int

syste md let dict

userdict diet

currentdlct diet

countdlctstack num

array dlctstack subarray

push diet on diet stack

pop diet stack

associate value with key in top dict

define in topmost diet on stack
containing key else use def

test if key in diet

load val of key from diet stack (no
exec)

search diet stack for key

get capacity of diet

put system diet on operand stack

put the user diet on operand stack

copy top diet to operand stack

number of diets on diet stack

copy diet stack into subarray

n string string create string of length n
str patt anchorsearch [post match true] or [str false]

search at front of strfor patt

str patt search [post match pre true] or [str false1
search for patt in str

POSTSCRIPT Cheat Sheet 27 September 1984

str token [post token true] orfalse

Relational, Boolean, and Bitwise Operators

anY1 anY2

anY1 anY2
nlstring nlstring

nlstring nlstring

nlstring nlstring

nlstring nlstring

boollint

boollint1 boollint2
boollint1 boollint2

boollint1 boollint2

int shift

Control Operators

any
bool proc

bool pr~ procF
nproc

jklproc

proc

eq bool

ne bool

ge bool

gt bool

Ie bool

It bool

true true

false false

not NOT(boollint)

and (boollint1 & boollint2)

or (boollint1 OR boollint2)

xor

bltshlft

exec

if
ifelse
repeat

for

loop

exit
stop

(boollint1 XOR boollint2)

bitshift(int,shift)

any stopped boolean

countexecstaek n

array execstaek subarray

quit
start

Type, Conversion, and Property Operators

any type name

numlstring evl int

any evllt literal(any)

string cvn name

numlstring evr real

n radix str evrs sstr

any str evs sstr

any eYX executable(any)

strip token from start of str

test equality

test not equal

test greater or equal

test greater than

test less than or equal

test less than

push boolean value true
push boolean value false

local I bitwise NOT

logicallbitwise AND

logicallbitwise inclusive OR

logicallbitwise exclusive OR

logical shift(+ = left)of int

(execute) move to exec stack

if boolthen proc
if boo/then p~ else procF

execute proc n times

for i=j step k until I do proc

execute procforever

exit innermost active loop

unwind exec stack to stopped

catch execution of stop in any
number of elements on exec stack

copy exec stack into array

exit to system

executed at system startup

return type of operand

convert to integer

turn off executable flag

convert string to name

convert to real

convert to string with radix

convert to string

turn on executable flag

arraYlstring executeonly ExecuteOnly(arraylstring)
protect top-level elements

dictlarraYlstring readonly ReadOnly(dictlarraYlstring)
protect top-level elements

Adobe Systems, Inc.

3

POSTSCRIPT Cheat Sheet

File Operators

any

dictlarraYlstring

arraYldictlstring

filename access

file

file

file string

file string

file string

file

file

file byte

file string

file string

file

file

filename

string

bool

Virtual Memory Operators

saveobj

27 September 1984

xcheck bool

rcheck boolean

wcheck bool

file file

closeflle

read [byte true] or false

readhexstrlng sstr boolean

read line sstr boolean

readstrlng sstr boolean

token [token true] or false

bytesavallable num

write

wrltehexstrlng

wrltestrlng

flush

flushfile

status boolean

run (depends on file)

currentflle file

print

prompt

echo

save saveobj

restore

vmstatus level used total

Miscellaneous Operators and Functions

any

1- anY1 ... anYN

any

1- any 1 ... anYN

Adobe Systems, Inc.

version string

usertlme msec

=

stack 1- any 1 ... any N

pstack 1- any 1 ... any N

check executable flag

check if readable

check if writeable

open file with access (rwa+)

close file stream

read byte from file

4

read hexadecimal into string from file

read line from file

read string from file

strip token from stream

return number of bytes available for
read

write byte to file

write string to file in hex

write string to file

flush the standard output stream

send buffered output immediately or
read to EOF

return status of stream

execute contents of filename

return file of current execution stream

print string on primary output (see
show)

executed when ready for new input:
(PS»print

turn on/off echoing

create system state snapshot

restore system-state to snapshot

report vm status

PS version identifier

return time in milliseconds

destructively print top of stack with

cvs

print stack using = (nondestructive)

destructively print top element

print stack using == (nondestructive)

POSTSCRIPT Cheat Sheet 27 September 1984

Graphics State Operators

gsave

grestore

grestoreall

Coordinate System and Matrix Operators

matrix

matrix

matrix

matrix

tx ty

tx ty matrix

sx sy

sx sy matrix

ang

ang matrix

matrix

m1 m2 m3

xy

x y matrix

xd yd

xd yd matrix

xtyt

xt yt matrix

xdt ydt

xdt ydt matrix

m1 m2

Character and Font Operators

Adobe Systems, Inc.

key diet

key

matrix matrix

Inltmatrlx

Identmatrlx

defaultmatrlx

currentmatrlx

setmatrlx

translate

matrix

matrix

matrix

translate matrix

scale

scale matrix

rotate

rotate matrix

concat

concatmatrlx

transform

transform

dtransform

dtransform

Itransform

Itransform

"Idtransform

Idtransform

Invertmatrlx

m3
xt yt

xt yt

xdt ydt

xdt ydt

xy

xy

xd yd

xy

m2

currentfont diet

deflnefont f-dict

findfont diet

save graphics state for matching

grestore

5

restore graphics state from matching

gsave

restore to bottom-most graphics state

create identity matrix

set transform matrix to device default

fill matrix with identity transform

[1 001 00]

fill in matrix with device default

transform

fill in matrix with current transform

set current transformation matrix to

be matrix

move user origin to (tx,ty) in current
units

fill in matrix with values that translate

by (tx,ty)

scale user coords by sx in x and sy in
y
fill in matrix to scale by sX,sy

rotate user space about origin by ang
(degrees, positive = counterclockwise

fill in matrix to rotate by ang

set current transform to

matrix*currentmatrix

fill in m3 with m1*m2
transform (x, y) by current
transformation

explicit transform of (x,Y) by matrix

(delta transform) like transform but no

translation

explicit delta transform

inverse transform

explicit inverse transform

inverse delta transform

explicit inverse delta transform

fill in m2 with inverse of m1

return diet for current font

register diet as a font dietionary

return diet for font with given name

POSTSCRIPT Cheat Sheet

fdict scale

fdict matrix

fdict

string

nx ny cc string

ax ay string

nx ny cc ax ay string

proc string

string

Path Construction Operators

xy

dx dy

xy

dx dy

x y r ang1 ang2

x y r ang1 ang2

x1 Y1 x2 Y2 r

Xo Yo x1 Y 1 x2 Y 2

dxo dyo dX1 dY1 dX2 dY2

string bool

mtproc Itproc ctproc cpproc

Adobe Systems, Inc.

27 September 1984

scalefont tdict

makefont tdict

setfont

show

wldthshow

ashow

awldthshow

kshow

strlngwldth wxwy

newpath

currentpolnt xy

rnoveto

rmoveto

IIneto

rlineto

arc

arcn

arcto xt1 yt1 xt2 yt2
curveto

rcurveto

closepath

pathbbox

flattenpath

reversepath

strokepath

charpath

cllppath

pathforall

IIx lIy urx ury

return new scaled font diet

return new font dict with transformed

matrix

set current font

output string in current graphics

context

add (nx ny) to width of char cc when
showing string
add (ax ay) to width of each char

when showing string
combined effects of ashow and

widthshow

execute proc between characters

shown from string

6

width (user space) of string in current

font

initialize current path to be empty

return current point in user
coordinates

set current point to (x,Y)

relative moveto (currentpoint + (dx,
dy)

continue path with straight line to (x,

y)

relative lineto

add counterclockwise arc to current

path

add clockwise arc to current path

build tangent arc

add Bezier cubic section to current
path

relative curveto

closes current path with a straight line

to last moveto point

return bounding-box of current path

make current path a polygon

reverse direction of current path

make current path a fillable object (as
if stroked)

add character outline(s) to current
path

sets current path to clipping outline

enumerate current path

POSTSCRIPT Cheat Sheet 27 September 1984 7

Graphics Output Operators

Initgraphics reset graphics parameters

erasepage clear current output page

showpage output current page; erasepage
initgraphics

copypage output current page

Inltcllp set clipping path to device default

clip shrink current clipping boundary to its
intersection with current path

eocllp clip with even-odd inside rule

fill fill the current path with the current
color

eoflll fill with even-odd rule

stroke stroke the current path with the
current
colorllinejoinllinecap/1inewidth/dash

scanlen #Iines blp mtx proc Image render the image returned by proc
onto the current page

scanlen #Iines bool mtx proc Imagemask render the image returned by proc
onto the current page

num setllnewldth set the current line width

currentllnewidth num return the current line width

01112 setlinecap set the shape of line ends for stroke
(buttlroundlsquare)

currentllnecap 01112 return current line cap

01112 setllnejoin set the current line join for stroke
(miterlroundlbevel)

currentllnejoln 01112 return the current line join

array offset setdash set the current dash array

currentdash array offset return the current dash array

num setflat set the current flat tolerance

currentflat num return the current flat tolerance

num setmlterllmit set the current maximum miter ratio

currentmlterllm It num return the current maximum miter
ratio

num setgray set the current color to a gray value
(O=black, 1 =white)

currentgray num return the current gray

hsb sethsbcolor set current color given hue,
saturation, brightness

currenthsbcolor hsb return current color hue, saturation,
brightness

rg b setrgbcolor set current color given red, green,
blue

currentrgbcolor rg b return current color red, green, blue

freq ang spot setsereen set halftone screen

currentsereen freq ang spot current halftone screen

Adobe Systems, Inc.

POSTSCRIPT Cheat Sheet

xfer-func

Device Setup Operators

27 September 1984

settransfer
currenttransfer

nulldevice

xfer-func

mtx w h proc framedevlce

Character Cache Operators

set gray transfer function

current gray transfer function

install device that does no output

install fr~mebuffer device

8

eachestatus bs bm ms mm cs cm maxbits

wx wy IIx Uy urx ury

wxwy

maxbits

Error Operators

Adobe Systems, Inc.

seteachedevlce
setcharwldth
seteachellmlt

dlctfull
dlctstackoverflow
dlctstackunderflow
execstackoverflow
Interrupt

Invalldaccess
Invalldexlt
Invalldflleaccess
Invalldfont
Invalid restore

loerror
IImltcheck
nocurrentpolnt
rangecheck
stackoverflow
stackunderflow
syntaxerror
typecheck
undefined
undeflnedfl1ename
undeflnedresult
unmatched mark

unregistered
VMerror

return size and max for bitmaps mids
and chars

install character cache

inform character cache

set maxbitmap limit in cache

no more room in dictionary

too many begins

too many ends

exec nesting too deep

executed when "e typed to server
(stop)

attempt to store into readonly object

exit not in loop

bad access string

bad font name or diet

improper restore

system i/o error occurred

implementation limit exceeded

path is empty

argument out of bounds

operand stack overflow

operand stack underflow

input ended in string or proc body

argument of wrong type

name not known

file not found

number over/underflow

expected mark not on stack

serious system error

serious system error

Appendix B

The Postscript Cookbook

Cookbook Examples

The POSTSCRIPT Cookbook describes various procedures for producing text
and graphics on the printed page, and includes example PostScript programs to
illustrate these procedures. All these programs (including their comments) are
included in the Cookbook Examples folder on the Inside LaserWriter diskette.

You can send any of these files to the LaserWriter by invoking the Downloading
Program that you can find on the Programming and Debugging Aids diskette. For
detailed instructions, see Appendix F, the section entitled" Instructions for spooling,
editing and downloading a Postscript file from a Macintosh application."

You can also experiment with changing these programs to produce different
results by editing them with a text editor. If you use MacWrite, be sure to invoke
"Save as ... " and select the "Text only" option when saving your files to disk.

POSTSCRIPT™ Cookbook

A Guide to Graphic Imaging

Adobe Systems Incorporated

Adolx: Systems Incorporated
1870 Embarcadero Road, Suite 100

Palo Alto, California 94303

POSTSCRIP1'TM Cookbook
F~tPrinting,Re~ed

7 January 1985
Copyright © 1985 by Adobe Systems, Inc.

All Rights Reserved.

POSTSCRIP1' is a trademarlc: of Adobe Systems, Inc.

Times and Helvetica ® are trademarlc:s of Allied Corporation.

The information in this document is furnished for
informational use only, and is subject to change without

notice and should not be construed as a commitment
by Adobe Systems, Inc. Adobe Systems assumes no

responsibility or liability for any errors or
inaccuracies that may appear in this document

Contents

Simple Geometric Shapes I
Units, Procedures, and the Operand Stack 4
Program 1: Three Squares 9
Program 2: Translated Squares 11
Program 3: Translate, Rotate and Scale 13
Using the arc Operator 14
Program 4: Drawing an Ellipse 17
Program 5: Repeated Lines 19
Program 6: Repeated Shapes 21
Program 7: Expanded and Constant Width Lines 23
Program 8: Drawing Arrows 25
Changing the Appearance of a Stroke 26
Program 9: Centered Dash Patterns 31
Fonts 34
Program 10: Simple Text 37
Program 11: Faces and Sizes 39
Program 12: White Text on a Black Background 41
The makefont Operator 42
Program 13: Condensed, Extended and Obliqued Text 45
Program 14: A Simple Line Breaking Algorithm 47
Program 15: Vertical Text 51
Program 16: Circular Text 53
Program 17: Placing Text Along an Arbitrary Path 57
Miscellaneous 60
Program 18: Drawing a Pie Chart 63
Program 19: Using the image Operator 67
Program 20: Bit Pattern Screens 69
Program 21: Making a Poster 73
Customized Fonts 76
Program 22: Making an Outlined Font 79
Program 23: Re-encoding an Entire Font 81
Program 24: Making Small Changes to Encoding Vectors 85
Program 25: Making a User Dermed Font 89
For Further Reference 92
Index 93

Simple Geometric Shapes

This section will introduce some of the basic POSTSCRIPT
operators that generate geometric shapes. Concepts covered
in this section are paths, path construction, and graphic
output.

In order to "draw" geometric shapes on a page, one must
first construct a POSTSCRIPT path. A path is composed of
straight and curved line segments. It can represent either the
outline of an area to be filled or a trajectory along which
lines can be drawn. POSTSCRIPT accumulates line segments
and curves in a path called the current path. Later sections
will introduce methods for remembering trajectories in paths.
other than the current path.

After a path has been constructed, it may be •• drawn" on the
page. (Merely constructing a path does not actually draw it
on the output page.) To accomplish this one must use the
graphic output operators.

PROBLEM 1: Draw a straight horizontal line which is 400
units long. (Units will be discussed later.)

newpath
100 390 moveto
500 390 lineto

stroke
showpage

EXPLANATION: This example demonstrates the basic
approach used when drawing geometric shapes with
POSTSCRIPT: construct the path first, then "draw" it on the
page. newpath should be the first operator used when
constructing a path. newpath initializes the current path to
be empty. Next, we use the move to and lineto operators to
describe the path. The general form of the moveto and lineto
operators is:

<x> <y> moveto
<x> <y> lineto

moveto starts a new segment in the path; it causes the x,y
coordinate of the point specified to be entered as the
beginning of the new segment. The point specified with the
moveto becomes the current point. The most recently
entered point is known as the current point. Theftrst point in
a path must always be entered with a moveto. line to adds a
straight line segment from the current point to the x,y

1

coordinate of the point specified with the Iineto. lineto also
redefmes the current point to be its coordinate argument.
Now we may draw the shape defined in the path onto the
page. To do this we use the graphics output operator stroke.
stroke paints a line that follows the trajectory specified in
the current path. It also implicitly performs a newpath after
the stroke is done. In other. words, performing a stroke
operation reinitializes the current path. Finally, we would
like to see the page printed on the output device. This is
accomplished by the showpage operator.

PROBLEM 2: Draw a tic-tac-toe board with lines that are 10
units wide and 400 units long.

newpath
100 470 moveto
500 470 lineto
100 330 moveto
500 330 lineto
230 600 moveto
230 200 lineto
370 600 moveto
370 200 lineto

10 setlinewidth
stroke
showpage

% top horizontal
% line
% bottom horizontal
% line
% left vertical
% line
% right vertical
% line

EXPLANATION: This example illustrates the flexibility of
the path construct. First, paths need not be made up of
continuous shapes. In this example there are four
discontinuous shapes (lines).Second, paths may be self
intersecting. In this example there are four intersections. This
example also illustrates the ability to control the stroke width
used when drawing the lines onto paper. This is
accomplished by the setllnewidth operator. This example
program also contains some comments. Comments in
POSTSCRIPT begin with a percent sign (%) and are
terminated with the newline character (i.e. the end of the
line).

2

o

o

PROBLEM 3: Draw a square with sides that are 300 units
long. Outline the square with a line that is 40 units wide.

newpath
200 400 moveto
200 700 lineto
500 700 lineto
500 400 lineto

closepath
40 setlinewidth
stroke
showpage

% lower left corner
% left edge
% top edge
% right edge

EXPLANATION: We have introduced a new path operator
in this example:· closepath. closepatb draws a straight line
segment from the current point to the coordinates of the point
specified in the most recent moveto. (In the above example,
closepath draws a straight line from (500, 400) to (200,
400». closepath also causes POSTSCRIPT to treat the shape
as a closed. continuous shape. The following example
appears to have the same effect as the above program yet its
graphic output is different:

newpath
200 400 moveto
200 700 lineto
500 700 lineto
500 400 lineto
200 400 lineto

40 setlinewidth
stroke
showpage

% lower left corner
% left edge
% top edge
% right edge
% bottom edge

This example uses an explicit lineto instead of a closepath.
The path is not a closed shape, and as a result, stroking the
line leaves a notch in the comer where the path begins and
ends. As a general rule, use closepath on shapes tIult should
be closed.

3

(0,792) -+-------.

(0,0) (612,0)

Figure 1

Units, Procedures and the
Operand Stack

In the previous examples we have been using POSTSCRIPT's
default coordinate system. The default coordinate system is a
. Cartesil!D. coordinate system which means that all locations
are specified by an (x,y) coordinate pair. The default
coordinate system is superimposed on the printed page. The
origin is 19Cated at the lower left comer of the page with the
positive x-axis extending horizontally to the right and the
positive y-axis extending vertically upwards.

Each integral unit in the default coordinate system is equal to
a printer's measurement called a point. There are roughly 72
points to an inch. (No one has been able to agree if there are
72 points per inch or 72.27 points per inch). POSTSCRIPT
hall adopted the 72 points per inch convention.

Figure 1 shows the 8-112 inch by 11 inch output page and
how the default coordinate system is superimposed on the
page. The extreme comers of the page are marked with their
coordinates in points.

Depending upon the application, it may be more convenient
to work in units other than points, such as inches or
centimeters. This can be done very easily in POSTSCRIPT by
derming a procedure to convert from one system of
measurement to another. The following procedure definitions
will allow us to specify our measurements in inches or
centimeters:

linch {72 mull def
Icm {28.3465 mull def

This is our first example of a procedure definition. The
general syntax for a procedure is

I <name> <procedure body> def

A procedure body is a series of POSTSCRIPT operators and
operands enclosed in curly braces.

Once the procedure "inch" has been defined, we may use it
in a POSTSCRIPT program. The following example
illustrates the use of inch:

linch {72 mull def
1 inch 10 inch moveto

EXPLANATION: In order to understand how the procedure
"inch" actually workS, it is important to understand how the

4

'et~ 1 tEj
(a) (b)

72 Wflli 10
lek

72 72

(d) (e)

Figure 2: The Operand Stack

72

(e)

8Ej 72

(f)

POSTSCRIPT operand stack works. The operand stack is one
of POSTSCRIPT's two user accessible stacks (the other being
the dictionary stack). It serves as the mechanism for passing
arguments to procedures and operators and as a "scratch"
space for doing computations.

In the above example, the POSTSCRIPT interpreter fIrst
encounters the procedure defInition for "inch." It associates
the procedure body, {72 mull with the name "inch" (more
on associations later in the section on dictionaries). Then the
interpreter encounters the number I and pushes it onto the
operand stack (see Figure 2a). Next, the interpreter
encounters the name' 'inch. " It looks up the defmition of
"inch" and fmds the procedure body, {72 mull and begins
executing the procedure body. The first thing encountered in
the procedure body is the number 72 which also gets pushed
onto the operand stack (see Figure 2b). Next, the operator
mul is encountered and executed. mul removes (pops) the
top two elements from the operand stack and pushes their
product back onto the operand stack (see Figure 2c). This
resulting number represents 1 inch in points (72). The end of
the procedure body has been reached and the interpreter
resumes interpreting the program. Next, the interpreter
encounters the number 10 and pushes it onto the operand
stack (see Figure 2d). Once again the name "inch" is
encountered, looked up and executed, pushing the number 72
onto the operand stack (see Figure 2e) then mUltiplying the
top two elements on the stack, leaving the number 720 on the
stack (see Figure 2f). Finally the operator moveto is
encountered. Previously we saw that the general form for the
moveto operator is <x> <y> moveto. The <x> and <y>
values are actually taken from the operand stack. moveto
removes the top two elements from the operand stack,
treating the topmost value as <y> and the next-to-the­
topmost value as <x>. After the move to operation, the
operand stack is empty.

5

PROBLEM 4: Draw a vertical line 2 inches from the left
edge of the paper which spans the length of the paper.

linch {72 mull def

newpath
2 inch 0 inch moveto
2 inch 11 inch lineto

stroke
showpage

The illustration of the output page is 1I8th the size of the
actual output page.

6

7

Three Squares

linch {72 mull def

Ilnchsquare

newpath
moveto
o 1 inch rlineto
1 inch 0 rlineto
o -1 inch rlineto

closepath
def

1 inch 6.5 inch inchsquare
3 setlinewidth
stroke

3.75 inch 4 inch inchsquare
fill

6.5 inch 1.5 inch inchsquare
0.75 setgray
fill
showpage

1

In a similar manner to defining "inch", we define a sequence
of path commands into a single name, "inchsquare."

Note that the <x> and <y> values for the initial moveto are
left out We expect that they will be supplied as operands
before each use of "inchsquare." The edges of the box are
specified with the "rlineto" operator so that each path
segment is drawn relative to the previous point in the path.
Thus, with different initial <x> <y> values, this one
procedure will serve to construct a one inch square path
anywhere on the page.

We place the lower left comer of the first square 1 inch from
the left edge and 6.5 inches from the bottom of the page, and
construct the rest of the path. Stroke the square onto the page.

Place another inch square path at a new location
Now fill in this square on the page with black' 'ink".

Place another inch square path at a new location
Change the "ink" to a gray shade. "0 setgray" sets the ink
to black, "I setgray" sets the ink to white.
Finally, print the page on the output device.

9

Translated Squares

linch {72 mull def
/inchsquare

{ newpath
o 0 moveto
o 1 inch rlineto
1 inch 0 rlineto
o -1 inch rlineto

closepath
def

gsave

1 inch 6.5 inch translate

inchsquare

3 setlinewidth
stroke
grestore

gsave
3.75 inch 4 inch translate
inchsquare fill
grestore
6.5 inch 1.5 inch translate
0.75 setgray
inchsquare fill
showpage

2

We redefine the "inchsquare" routine from the previous
program. to always' 'moveto" to the coordinate system origin
(the point (0,0». It might appear that we will lose the ability
to place this box anywhere on the page by doing so but this is
not true.

Make a snapshot of all the parameters that control graphics
output This "gsave" will snapshot all of the default
parameters, since we haven't done anything yet
Imagine that a path is first constructed in a stencil, which is
then used by "stroke" and "fiU" to draw their output on the
page. All positions mentioned in paths are relative to the
placement of this stencil. Initially, the stencil's origin is
placed at the lower left comer of the paper. The "translate"
operation moves the stencil to a new position. This position is
first located within the current stencil, and a new stencil is
positioned with its origin at that position.
We lay down an "inchsquare" at the stencil's origin. By
moving the origin of the coordinate system, we have caused
an absolutely positioned path to be moved around on the
paper.

Restore all the graphics parameters to the values they had at
the last "gsave". In particular, this restores the stencil
position back to the paper's lower left comer.
Remember the defaults again.
Move the stencil (coordinate system) to a new place.

Return to the default coordinate system again.

11

Translate, Rotate and Scale

lunitsquare
{ newpath

o 0 moveto
o 1 lineto
1 1 lineto
1 0 lineto

closepath
def

linch {72 mull def
gsave
1 inch 6.5 inch translate

1.25 inch 1.25 inch scale

unitsquare fill

grestore gsave
4.25 inch 3.75 inch translate

60 rotate

2 inch 2 inch scale unitsquare

1 20 div setlinewidth stroke
grestore

4.5 inch 2 inch translate
-45 rotate
1 inch 2 inch scale
unitsquare .75 setgray fill
showpage

3

The most convenient way to define a graphic shape is to
defme it in a unit size. While it may appear that this definition
will give only a fixed, small square, by using the PostScript
transformation operators, "translate", "rotate" and "scale",
we can use this one defmition to give us a square shape in any
orientation and size, anywhere on the page. Note that this
definition places the lower left corner of the square at the
coordinate system origin. We could have chosen any corner,
or even the center of the square for the origin. When a shape
is defined in this manner, placing the origin can affect the
ease with which the definition can be used later.

Take a snapshot of the default graphics state.
Move the origin to one inch from the left edge and 6-112
inches from the bottom edge of the page.
Change the units to 1-114 inch in both the x and y directions.
PostScript allows the x units and y units to be scaled
differently (anamorphically), thus the two arguments to the
"scale" operator. Although the scale operator allows us this
flexibility, most scale operations are uniform (i.e.,- the x and
y arguments are equal).
The unit square, translated and scaled, is drawn on the page
as shown. Note that we performed the "translate" first, and
the "scale" second. Had we performed these operations in
the opposite order, the "translate" would have translated the
origin in terms of the expanded 1-114 inch long units. The 1
inch translation in x would have moved the origin 72 times
1-114 inches or 91 inches to the right! Always know your
current units when performing these operations.
Get back to normal coordinates, and snapshot them again.
Since units are back to 1n2 inch, this sequence does what
we'd expect.
Rotate the coordinate axes 60 degrees counterclockwise about
the current origin. Now the x axis points up and to the right,
and the y axis points up and to the left.
Change the units to two inches long each along the coordinate
axes. Translate first, rotate next, and scale last is the simplest
order in which to perform these transformations.
Prepare to stroke this path. Careful-the units are 2 inches
long and the linewidth is expressed in terms of units. 1120th
of a 2 inch unit will give us a 1110 inch thick line.

Rotate the axes forty five degrees clockwise.
Let's try an anamorphic scale with the y units twice the
length of the x units.

13

o , •

Using the arc Operator

POSTScRIPT provides a very useful operator, arc, which is
used for constructing arcs of circles. The general form of the
arc operator is:

<x> <y> <radius> <start angle> <end angle> arc

<x> and <y> are the coordinates of the center of the circle,
<radius> is the radius of the circle. <X>, <y>, and <radius>
are all specified in the units of the current user coordinate
system. Since the arc command can draw whole circles or
just segments of circular arcs, it is necessary to specify the
<start angle> and the <end angle> for the circular arc. These
two numbers are specified in degrees (there are a total of 360
degrees in a circle). The arc command draws
counterclockwise ciicular arcs.

PROBLEM 5: Draw several circular arcs on the page.

newpath
306 396 72 0 360 a~c

stroke
newpath

306 396 160 90 270 arc
10 setlinewidth
stroke
newpath

470 110 36 0 360 arc
fill
newpath

72 72 144 0 90 arc
40 setlinewidth
stroke
newpath

430 720 72 270 360 arc
fill
showpage

Note that a moveto was not necessary at the beginning of
each path. The arc operator is unusual in this respect; if the
current path is empty, arc will perform an implicit moveto.

The arc operator can be used in combination with other path
construction operators to produce shapes with curved edges.
To make this task easier, the arc operator has the following
special property: when there is a current point, an implicit
Uneto is inserted from the current point to the beginning
point on the arc. By taking advantage of this property, we
can easily draw shapes such as pie slices.

14

PROBLEM 6: Draw an outlined pie slice.

15

newpath
200 350 moveto
200 350 300 0 30 arc

closepath
10 setlinewidth
stroke
showpage

Drawing an Ellipse

Imtrx matrix def
lellipse

{ lendangle exch def
Istartangle exch def
Iyrad exch def
Ixrad exch def
Iy exch def
Ix exch def

Isavematrix mtrx currentmatrix def
x y translate
xrad yrad scale
o 0 1 startangle endangle arc
savematrix setmatrix
def

newpath 144 400 72 144 0 360 ellipse

newpath 400 400 144 36 0 360 ellipse

newpath 300 180 144 72 30 150 ellipse
stroke

stroke

fill

newpath 480 150 30 50 270 90 ellipse fill

showpage

4

Allocate a matrix for the save matrix operation below.
ellipse adds a counter-clockwise segment of an elliptical arc
to the current path. The ellipse procedure takes six operands:
the x and y coordinates of the center of the ellipse (the center
is defined as the point of intersection of the major and minor
axes), the "radius" of the ellipse in the x direction, the
• 'radius" of the ellipse in the' y direction, the starting angle of
the elliptical arc and the ending angle of the elliptical arc.

The basic strategy used in drawing the ellipse is to translate to
the center of the ellipse, scale the user coordinate system by
the x and y radius values, and then add a circular arc, centered
at the origin with a 1 unit radius to the current path. We will
be transforming the user coordinate system with the translate
and rotate operators to add the elliptical arc segment but we
don't want these transformations to affect other parts of the
program. In other words, we would like to localize the effect
of the transformations. Usually the gsave and grestore
operators would be ideal candidates for this task.
Unfortunately gsave and grestore are inappropriate for this
situation because we cannot save the arc segment that we '
have added to the path. Instead we will localize the effect of
the transformations by saving the current transformation
matrix and restoring it explicitly after we have added the
elliptical arc to the path.

Save the current transformation.
Translate to the center of the ellipse.
Scale by the x and y radius values.
Add the arc segment to the path.
Restore the transformation.

Full ellipse, stroked. Note that the y-axis is longer than the
x-axis.
Full ellipse, filled. Note that the y-axis is shorter than the
x-axis.
Elliptical arc, stroked.

Elliptical arc, filled.

17

Repeated Lines

linch {72 mull def

• 25 setlinewidth
2 setlinecap

gsave
2.125 inch 3.5 inch translate
18

newpath
o 0 moveto
o 4.25 inch lineto

stroke
0.25 inch 0 translate
repeat

grestore

gsave
2.125 inch 3.5 inch translate
18

{ newpath
o 0 moveto
4.25 inch 0 lineto

stroke
o 0.25 inch translate
repeat

grestore

showpage

5

This program prints "graph paper" by repeatedly drawing
horizontal and vertical lines. Each line is moved into place by
a "translate" operation. Since the construction of a grid is so
regular, the "repeat" operator will come in handy.

Each line will be 114 of a point wide .
Set up projecting square end caps for the lines to be drawn.
Each end cap will project half the line width out from the end
of the path, or in this case, will project out 118 of a point. This
projection will fill in the extreme comers of the grid, which
with the simple repetition used below, would have had small
square notches otherwise.
Remember the default coordinate system.
Move into position at the lower left comer of the grid.
The first argument for the "repeat" operator is the number of
repetitions.
The second argument is the sequence of operations to be
repeated. This sequence must be enclosed by braces. The
code here will draw a 4 114 inch vertical line and translate 114
inch to the right to set up for the next vertical line.

The second argument is closed with a right brace, and the
"repeat" operator executes. The code within the braces will
be executed 18 times.
Now return to the default coordinate system.

Move into position at the lower left comer again.

This time, the code sequence draws a 4 1/4 inch horizontal
line and translates 114 inch upward for the next horizontal
line.

This time, 18 horizontal lines are drawn.

19

Repeated Shapes

linch {72 mull def

Iwedge
{ newpath

o 0 moveto
1 0 translate
15 rotate
o 15 sin transla.te
o 0 15 sin -90 90 arc

closepath
def

gsave
3.75 inch 7.25 inch translate
1 inch 1 inch scale
wedge .02 setlinewidth stroke

grestore

gsave
4.25 inch 4.25 inch translate
1.75 inch 1.75 inch scale
0.02 setlinewidth
2 1 13

13 div setgray
gsave

wedge
gsave

fill
grestore
o setgray stroke

grestore
30 rotate

} for
grestore
showpage

6

This program prints a rosette design by defining a section of
that design and printing that section repeatedly. This program
illustrates the "for" and "arc" operators, and it shows how
coordinate transformations Cl!ll be nested so as to use the most
convenient coordinate system for each part of a design.

Define an "ice cream cone" shape by means of the "arc"
operator. This shape will have a 30 degree angle topped off
with a semicircle. Set the path's first point at the current
origin. Next, move the origin to the center of the semicircle
by translating to the right 1 unit, rotating counter-clockwise
by 15 degrees, and translating "up" in the rotated system by
the radius of the semicircle. The "arc" operator includes a
straight line to the initial point of the arc and a curved section
to the end of the arc. Note that the semicircle goes from -90
degrees to 90 degrees in the rotated coordinate system.

Remember the default coordinate system.
Move into position for a sample of the wedge.
Make the edge of the wedge 1 inch long.
Draw the wedge with a 1150 inch thick line.
Get back to default coordinates.

Move into position for the rosette.
Make the edges of the rosette 1 3/4 inches long.
Use a 7/200 inch thick line.
Set up the "for" operator to iterate 12 times, pushing 2 onto
the stack the first time, 3 the next time, ... , and 13 the last
time.
The last argument for "for" is the sequence of operations to
be repeated. This sequence must be enclosed by braces.
Divide the loop index by 13 to set a gray value.
Enclose the "wedge" operation in a "gsave"-"grestore"
pair, as it will mess up the coordinate system.
Save the wedge path for use after the "fill".

Draw a black border around the wedge.
Get out of the coordinate system left by wedge.
Set up for the next section.
Close the last argument and execute the "for" operator.

21

D D

Expanded and Constant Width Lines 7

linch {72 mull def

Icenterbox
{ newpath

o • 5 0.5 moveto
-.5 0.5 lineto
-.5 -.5 lineto
0.5 -.5 lineto

closepath
def

gsave
2.25 inch 6.5 inch translate
1 20 div setlinewidth

115
{ gsave

. 5 mul inch dup scale
centerbox stroke

grestore
for

grestore

Icmtx matrix currentmatrix def
1 50 div inch setlinewidth

6.25 inch 6.5 inch translate
115

{ gsave
. 5 mul inch dup scale
centerbox
cmtx setmatrix stroke

grestore

for

showpage

This program prints two sets of enclosed boxes. Both sets are
generated from a unit box definition under different scales. In
the left set, the width of the lines increases as the size of the
box increases. In the right set, the width of the lines remain
constant even as the size of the box increases.
A unit box described in terms of its center, rather than in
terms of one of its comers, is most convenient for this
example. This procedure creates a 1 unit square path around
the current coordinate system origin.

Remember the original coordinate system.
Place the origin for the expanding linewidth boxes.
Make the lines 1120 of an inch thick.

Set up a "for" loop to execute five times.
Remember the current coordinate system.
Scale the current units by 112 inch times the loop index .
The stroked box has a line width proportional to the current
scale, since the line width is expressed in units.
Return to the translated, unsealed coordinate system.

Return to the original coordinate system.

Store the current transform matrix, i.e., the current coordinate
system, in the variable "cmtx". Set a 1150 of an inch line
width
Place the origin for the constant line width boxes.

Remember the translated coordinate system.
Scale the boxes as before .
Create the box path, but don't stroke it yet
Change the coordinate space back to the original one, where
the line width is truly 1120th of an inch thick. We explicitly
reset only the coordinate space rather than use a "grestore",
since "grestore" resets the current path as well as the current
coordinate system.
After stroking the path, return to the translated coordinate
system.

23

Drawing Arrows

/arrowdiet 13 diet def

farrow
{ arrowdiet begin

/head1ength exch def
/halfheadthickness exeh 2 div def
/halfthickness exeh 2 div def
/tipy exeh def /tipx exeh def
/taily exeh def /tailx exeh def

/dx tipx tailx sub def
/dy tipy taily sub def
/arrowlength dx dx mul dy dy mul add

sqrt def
jangle dy dx atan def
/base arrowlength headlength sub def

/savematrix matrix currentmatrix def

tailx taily translate
angle rotate

o halfthiekness neg moveto
base halfthiekness neg lineto
base halfheadthiekness neg lineto
arrowlength 0 lineto
base halfheadthiekness lineto
base halfthiekness lineto
o halfthiekness lineto
elosepath

savematrix setmatrix
end
def

newpath
318 340 72 340 10 30 72 arrow

fill
newpath

382 400 542 560 72 232 116 arrow
3 setlinewidth stroke
newpath

400 300 400 90 90 200 200 3 sqrt mul 2 div
arrow .65 set gray fill

showpage

8

Local storage for the procedure' 'arrow. "

The procedure "arrow" adds an arrow shape to the current
path. It takes seven arguments: the x and y coordinates of the
tail (imagine that a line has been drawn down the center of
the arrow from the tip to the tail, then x and y lie on this line),
the x and y coordinates of the tip of the arrow, the thickness
of the arrow in the tail portion, the thickness of the arrow at
the widest part of the arrowhead and the length of the
arrowhead.

Compute the differences in x and y for the tip and tail. These
will be used to compute the length of the arrow and to
compute the angle of direction that the arrow is facing with
respect to the current user coordinate system origin.

Compute where the base of the arrowhead will be.

Save the current user coordinate system. We are using the
same strategy to localize the effect of transformations as was
used in the program to draw an ellipse.
Translate to the starting point of the tail.
Rotate the x-axis to correspond with the center line of the
arrow.
Add the arrow shape to the current path.

Restore the current user coordinate system.

Draw a filled arrow with a thin tail and a long arrowhead.

Draw an outlined arrow with a 90 degree angle at the tip. To
get a 90 degree angle, the headthickness should be twice the
headlength.
Draw a gray filled arrow that has an equilateral triangle for its
arrowhead. To get an equilateral triangle, the headlength
should be the square root of 3 divided by 2 times the
head thickness.

25

(a) 0 setlinecap

(b) 1 setlinecap

(e) 2 setlinecap

Figure 3: Different Line Cap Styles

(a) 0 set line join

(b) 1 setlinejoin

(e) 2 setlinejoin

Figure 4: Different Line Join Styles

Changing the Appearance of
a Stroke

In addition to specifying the trajectory for a stroke, the user
can control the way in which the stroke is rendered. We have
already been controlling the appearance of a stroke by
changing its thickness. with the setlinewidth operator. Other
operators that can change the appearance of a stroke are the
setUnecap, setllnejoin, and setdash operators.

POSTSCRIPT offers three kinds of line caps for a stroke: butt,
round, and projecting square. The line caps are placed at the
open ends of the current path when the stroke operator is
executed. Normally when a path is stroked, butt end caps are
used. This means that the open ends of the path are "squared
ofr' p~endicular to the path (see Figure 3a). Round end
caps are actually semicircles, centered at each open end of
the path with diameter equal to the line width (see Figure
3b). Projecting square end caps are similar to butt end caps
but they extend out by one-half of a line width in the
direction of the path at each open end (see Figure 3c).

The default line cap style is a butt end cap. The setlinecap
operator allows the user to change the line cap to any of the
three different styles. The general form for the setlinecap
operator is:

<integer> setlinecap

where the integer 0 specifies butt end caps, 1 specifies round
end caps and 2 specifies projecting square end caps. Any
other integer values will result in a rangeeheek error.

Another way of changing the appearance of a stroke is to
change the line join style. The places in a path where the
different segments connect are known as line joins. The
default line join style is mitered (see Figure 4a). Two
additional styles are available: rounded (see Figure 4b) and
beveled (see Figure 4c). The different styles are discussed in
more detail below.

The setlinejoin operator allows the user to change the line
join style to any of the three styles. The general form for the
setlinejoin operator is:

<integer> setllnejoin

where the integer 0 specifies mitered joins, 1 specifies
rounded joins and 2 specifies beveled joins. Any other
integer values will result in a rangeeheek error.

26

tF ~ ij1
(a) Mitered Line Joins

lfF ~ ~
(c) Beveled Line Joins

Figure 5

Figure 6: Detail of a Mitered Join

Figure 5 gives more detailed illustrations of how the
different line join styles are implemented given different join
angles. The dark solid line represents the path, the light solid
line represents an outline of the stroke applied to the path
and the dotted line represents the line join.

To understand how all the different line join styles are
implemented, begin by imagining that all the segments in the
path are stroked with butt endcaps. Mitered line joins are
slightly more complicated than rounded or beveled joins so
they will be discussed last. Rounded joins are formed by
centering a circle with diameter equal to the stroke width at
each join. Beveled joins are formed by fIlling in the notches
left at each join with a triangle.

Mitered joins are formed by extending the outside lines of
the stroke until they intersect. When two segments of a path
are joined at a sharp angle (usually less than 11 degrees) it's
possible that the mitered join could form a very long
"spike" which might project undesireably into other objects
on the page or possibly project off the page. To avoid this
occurrence there is a value in the graphics state known as the
miter limit which is used in limiting the size of miter spikes.
If a given spike exceeds the miter limit, then the stroke
operator makes a bevel join instead. (The miter limit is
discussed in more detail in the next paragraph.) This is the
case in the third example in Figure 5a which shows different
miter joins.

In order to have better control over mitered joins, the user
should understand the miter limit value. The miter limit is
defined to be the maximum ratio of the length of the line
bisecting the mitered join to the line width (see Figure 6). Let
b be the length of the bisecting line and let w be the line
width. When blw exceeds the miter limit, the line join is
beveled instead of mitered.

The default value of the miter limit is 10. This means that
any miter joins with a bisecting line length larger than 10
times the line width are beveled instead. The miter limit can
be changed with the setmiterllmit operator. The default
form for the setmiterlimit operator is:

<nUIIl> setmlterlimit

where <num> is the ratio. The miter limit ratio is related to
the line join angle by the following formula:

27

(a) []

(b) •••••••••••••••• [3]

(e) ----------- [6

(d) • • • • • • • • • • • [3

(e) • -- . -- . -- [3

Figure 7: Different Dash Arrays

o setclash

0 setdash

3] 0 setdash

6] 0 setdash

9 6] o setdash

<null1> = 11 sin(AJ2)

Therefore another way to think about the miter limit is in
terms of angles: Any line join angle which is less than A will
result in a beveled join instead of a mitered join. For the
default miter limit ratio of 10, any line joins which meet at
an angle of less than 11.4 degrees will be beveled..

Some common miter limit values are: 1.415 which bevels
mitered joins at angles less than 90 degrees; 2.0 which bevels
mitered joins at angles less than 60 degrees and 10.0, the
default, which bevels mitered; joins at less than 11.4 degrees.
The miter limit ratio can never be less than 1 and setting the
miter limit to exactly 1 causes all mitered joins to be beveled.

POSTSCRIPT provides a useful operator for producing
dashed lines called the setdash operator. setdash takes two
arguments: an array describing the dash pattern to be
repeated and an offset which can be used to control how the
pattern is placed on the path.

A dashed stroke consists of alternating filled and unfilled
sections. The array describing the dash pattern contains
numbers which denote the distances along the path for each
filled and unfilled section of the stroke. The array can be of
any length. An array of length zero causes dashing to be
"turned-off' and hence a solid (undashed) stroke is placed
along the path (see Figure 7a). When the array has a length
greater than zero, the following procedure takes place: The
first section of the stroke is always filled and the zeroeth
element of the dash array determines how long it will be.
Thereafter, the elements of the array are used cyclically to
determine the length of each succeeding section of the
stroke.

Figure 7b shows the effect of having a dash array with just
one element Each filled and unfilled section has the same
length. Figures 7c and 7d show the effect of having a two
element array. The filled sections assume the length of the
zeroeth element and the unfilled sections assume the length
of the frrst element Figure 7e shows a three element array
and illustrates how the elements are used cyclically to
produce a different pattern.

In the previous examples of the setdash operator, we used
zero as the offset argument for purposes of clarity. Figure 8
shows the effect of different offset values on the dash line.

28

o 9 1821
(a) I...I...I:::I::=-::::=- Dash Pattern

(b) ::::=-::::=- (18] 0 setdash

(c) -:::::~::::-:: (18] 9 setdash

(d) r::::_::::=-::::: (18] 18 setdash

(e) ::=-:::::-=::::- (18] 27 setdash

Figure 8.' Different Offset VaIues

Please note that in the figure, the lightly dashed lines exist
for clarity only, they are not produced by the setdash
operator. The offset is a length (it must be non-negative)
which can be used to position the beginning of the repeating
pattern on the path.

POSTSCRIPT uses the offset in the following manner:
Imagine that the dashed line pattern that is placed on the path
and the path itself are treated as separate entities. Then the
starting point of the dashed line pattern can be shifted on the
path and the offset is used to control the shift distance.

Figure 8a shows a dash pattern which is repeatedly filled for
18 units and unfilled for 18 units. Figure 8b shows the dash
pattern applied to a path with a zero offset. Figure 8c shows
what happens when an offset of 9 is used; the dash pattern is
shifted towards the starting point of the path by a distance of
9 units. Figure 8d shows the effect of an offset of 18 units.
This time the dash pattern is shifted towards the starting
point of the path by 18 units. Figure 8e shows the effect of an
offset of 27 units.

Dashed lines, like other stroked lines, assume the current line
cap and line join styles. Each fIlled dash segment in the path
is fmished with the current line cap style and whenever a
filled dash segment coincides with a line join in the path it is
given the current line join style.

It is also important to understand that POSTSCRIYI' does not
modify the dash pattern in any way to fit the path "better."
This means that if the end of a dash segment doesn't happen
to coincide with the end of the path, only part of the dash
segment will be printed; POSTSCRIPT will not make any
attempt to "even-out" all the dash segments. This is left up
to the user.

Occasionally it is desirable to have identical looking dash
segments at the end points of a path. This can be
accomplished by adjusting the offset argument to the
setdash operator. Program 9 presents an algorithm to solve
to this problem.

29

- - - - - -

• - - - •

. _---------- .

. - -- - -- - -.
,

.., _-- -

Centered Dash Patterns

/centerdash
{ /pattern exch def

/pathlen pathlength def
/patternlength 0 def
pattern

{ /segmentlength exch def
/patternlength patternlength

segmentlength add def
forall

pattern length 2 mod 0 ne
{ /patternlength patternlength

2 mul def } if
/first pattern 0 get def

/last patternlength first sub def

/n pathlen last sub patternlength
idiv def

/endpart path len patternlength n mul
sub last sub 2 div def

/offset first endpart sub def

pattern offset setdash
def

/pathlength
{ flattenpath

/dis't 0 def
{ /yfirst exch def /xfirst exch def}
{ /ynext exch def /xnext exch def

/dist dist ynext yfirst sub dup mul
xnext xfirst sub dup mul
add sqrt add def

/yfirst ynext def /xfirst xnext def}
{}
{}
pathforall
dist
def

9

The procedure "centerdash" will center a dash pattern on a
path such that the dashes at the end points are identical. It
takes an array describing the dash pattern as its argument.
In order to center the dash pattern on the path we need to
determine the length of the path. (See definition of
"pathlength" below.) First determine the total length of the
repeating pattern by summing the elements of the dash array.

If the pattern array is an odd number of elements double its
length so that we can get identical end points.

Get the length of the first element in the pattern array to be
used in later computations.
Compute length of last part of pattern.

Now we wish to compute the offset provided to the setdash
operator such that the dashes at the end points are identical.
Think of the path as begin composed of 4 different parts: 2
identical end parts, 1 part which is composed of "n"
repeating pattern pieces and 1 part which is the last piece of
the pattern. We can compute the values of the last piece and
the part composed of "n" repeating pattern pieces and solve.
for the end part. The amount of offset is then given by the
difference in length of the first part and the end part.
Set the dashing for the stroke using the offset computed
above.

The procedure "pathlength" computes the length of any
given path. It does so by first "flattening" the path with the
"flattenpath" operator. "flattenpath" converts any curveto
and arc segments in a path to a series of lineto segments.
Then the "pathforall" operator is used to access all the
segments in the path so that the length of each segment can be
determined and added to a total.

The curveto procedure does nothing since there should~'t be
any curveto segments in the path after a flattenpath.

Leave the length of the path on the operand stack.

31

32

Centered Dash Patterns, cont.

5 setlinewidth

newpath
72 500 moveto 378 500 lineto

[30] centerdash
stroke

newpath
72. 400 moveto 378 400 lineto

[30 50] centerdash
stroke

newpath
72 300 moveto 378 300 lineto

[30 10 5 10] centerdash
stroke

newpath
72 200 moveto 378 200 lineto

[30 15 10] centerdash
stroke

newpath
225 390 300 240 300 arc

[40 10] centerdash
stroke

showpaqe

9

Set up a line width.

This example illustrates the centering of a very simple dash
pattern in which the unfilled dashes have the same length as
the filled ones.

This example is similar to the above example except that the
unfilled dashes are longer than the filled ones.

This example illustrates the centering of a dot-dash pattern.

This example illustrates the centering of an asymelric pattern.

This fmal example illustrates the centering of a dash pattern
on an arbitrary path, in this case an arc.

33

origin

"'ll

Times-Roman
Times-Italic
Times-Bold
Times-BoldItalic
Figure 9

FigurelO

-+" ---~

width

(a)

Figurell

~
sne
72pts

'-baseline

-----+
width

(b)

Fonts

Afont is a collection of characters (letters, numerals,
punctuation marks, reference marks, and symbols) which
have a unified design. A/ont family is a group of fonts of
similar design created to be used together. The individual
fonts in a font family are known as font faces.

Every POSTSCRIPT font has a name which is used when
referring to that font in a POSTSCRIPT program. The
POSTSCRIPT font nome is usually a combination of the font
family name and the font face name. For example, the
current Adobe Times font family includes four font faces
whose names are: Times-Roman, Times-Italic, Times-Bold,
and Times-Boldltalic (see Figure 9).

When we vertically measure a font face we use points (recall
that there are approximately 72 points per inch). This
measurement is known as the point size. The point size refers
only to the body size of the font, not to the size of any
particular character in the font. Figure 10 shows the
relationship between body size and actual character size for a
font with a body size of 72 points. The point size is the
minimum amount of space required between lines of text to
ensure that no characters overlap.

Traditional hot metal fonts are most commonly available in a
limited number of point sizes from 5 to 72 points.
PoSTSCRIPT fonts, on the other hand, are available in any
point size imaginable; you can print text in an 8.327 point
font if you wish. POSTSCRIPT has a unique description for
each different font face in a font family. (fhe description is
actually a PoSTSCRIPT dictionary called a font dictionary).
This unique description has no point size associated with it.
Instead, it is one unit high and the user must scale it to get
different point sizes.

Each character in a POSTSCRIPT font has an origin and a
width associated with it. Usually the origin is positioned on
the baseline of the character and slightly to the left of the
character shape. The width of a character usually spans the
shape of the character and includes a little white space on
either side (see Figure lla). Figure llb shows an exception
to both of these rules, but nonetheless demonstrates the
correct origin and width for that character.

34

35

The tendency of the best
typography has been and
still should be in the
path of simplicity,
legibility, and orderly
arrangement.
Theodore Low De Vinne

Simple Text

/Times-Roman findfont 12 scalefont
setfont

318 552 moveto
(The tendency of the best) show
318 552 12 sub moveto
(typography has been and) show
318 552 24 sub moveto
(still should be in the) show
318 552 36 sub moveto
(path of simplicity,) show
318 552 48 sub moveto
(legibility, and orderly) show
318 552 60 sub moveto
(arrangement.) show
318 552 72 sub moveto
(Theodore Low De Vinne) show

showpage

10

Before any text can be "drawn" on the output page, a font
must be selected and scaled properly. This is accomplished by
the first line in the program.

The findfont operator is the first operator used when setting
up a font. findfont takes a PostScript font name as its
argument. (The PostScript font names available will vary
from installation to installation but it is possible to write a
PostScript program to find out what they are). When the
findfont operator has been executed, it pushes a dictionary,
called a "font dictionary," onto the operand stack. This font
dictionary contains the information required by PostScript to
construct characters in the font 1 unit in size.

Once we have this 1 unit font available, we must scale it to
the desired point size. Although this could be accomplished
by using the scale operator, it may be inconvenient since it
will scale everything including the coordinates to be used for
placement of characters on the page. The scalefont operator
scales only the characters in the font. scalefont takes a font
dictionary (the one left on the stack by the findfont operator)
and a number which is used to scale the font. The scalefont
operator pushes a new font dictionary that contains the proper
scaling information in addition to all the other font dictionary
information onto the operand stack.

When PostScript" draws" text onto the page, it uses the
"current font." The current font is set using the setfont
operator. setfont takes a font dictionary (in this case the result
of the findfont-scalefont operations) as its argument.

Finally we wish to draw text on the page. This last step has
two parts to it positioning the text on the page and indicating
which characters are to be drawn at that position. Positioning
the text is accomplished by using the moveto operator.
Indicating which characters are to be drawn is accomplished
by using the show operator. The show operator takes a string
as its argument. The origin of the first character in the string
is placed at the current point and then the current point is
shifted by the width of the character. (This is the reason for
the moveto operation - it sets the current point). This process
is repeated for each character in the string, and when finished,
show will leave the current point positioned after the last
character drawn. Each new line of text to be printed must be
repositioned using the moveto operator.

37

Architecture

In the sense in which Architecture
is an art, Typography is an art.

Beatrice Warde

Faces and Sizes

/smallfont
/Times-Roman findfont 9 scalefont def

/normalfont
/Times-Roman findfont 12 scalefont def

/largefont
/Times-Roman findfont 18 scalefont def

/italicfont
/Times-Italic findfont 12 scalefont def

/boldfont
/Times-Bold findfont 12 scalefont def

234 548 moveto
largefont setfont
(Architecture) show

234 518 moveto
normalfont set font
(In the sense in which) show
italicfont set font
(Architecture) show

234 506 moveto
normalfont setfont
(is an art,) show
boldfont setfont
(Typography) show
normal font setfont
(is an art.) show

234 472 moveto
smallfont set font
(Beatrice Warde) show

showpage

11

For efficiency reasons, programs that use several different
typefaces in different sizes will typically "define" the fonts
that are to be used at the beginning of the program. These
"defined" fonts are then used later throughout the program in
setfont operations. By defining the fonts at the outset, we save
time later by not having to perform findfind-scalefont
operations each time a setfont is done. Here we are setting up
several face and size combinations with fmdfont-scalefont
sequences. The resulting font dictionaries are assigned to
suitably named variables. The variable names have been
chosen to be as descriptive as possible yet actually we could
have chosen any names that adhere to the PostScript name
syntax. We will later use these variables with the setfont
operator.

Begin with the 18 point Times Roman font

Switch to the normal size, 12 point Times Roman.

Switch to the italic face.
Notice that an additional moveto operation is not necessary.
The text is placed where the last show operation left off.

Switch back to the 12 point Times Roman.

Switch to the bold face.

Switch back to the 12 point Times Roman.

Switch to the small point size, 9 point Times Roman.

39

Rest at pale evening ..•
A tall slim tree ...
Night coming tenderly
Black like me.

Langston Hughes

White Text on a Black Background 12

newpath
72 561 moveto
296 561 lineto
296 440 lineto
72 440 lineto

closepath fill

/Helvetica-Bold findfont 14 scalefont
setfont

gsave

1.0 setgray
104 520 moveto
(Rest at pale evening ..•) show
104 502 moveto
(A tall slim tree •.•) show
104 484 moveto
(Night coming tenderly) show
104 466 moveto
(Black like me.) show

grestore

104 398 moveto
(Langston Hughes) show

showpage

Create the black rectangular background. Since the default
color in the Graphics State is black, there is no need to
explicitly set the color.

Usually a bold font will have more presence on a black
background than a medium font.

Save the current Graphics State so that it will be unaffected
by changes in color.
Change the color to white.

The show operator uses the current color in the Graphics
State. Since we are "drawing" white characters on a black
area, it gives the impression of black text on a white
background which has been reversed.

41

Condensed Times Roman

Figure 12

The makefont Operator

Until now, to get different size typefaces, we have used the
scalefont operator. There is another operator, makefont,
which can also be used to scale the master font to any size.
makefont is more general than scalefont since it takes a
PoSTSCRIPT matrix as its argument. By changing the
elements of the matrix, we can transform the master font in
different ways.

A PoSTSCRIPT matrix is really a six element array. The
elements of the matrix can be modified to uniformly scale
the font or they can be modified to achieve more unusual
results. The following two lines of POSTSCRIPT code have
the same effect; both will yield a font which is 12 units in
size:

Ifimes-Roman findfont 12 scalefont
Ifimes-Roman findfont [12 0 0 12 0 0] makefont

Any scalefont operation can also be accomplished with the
makefont operator but the converse is not true. In cases
where a uniform scaling of the font is desired, it is better to
use the scalefont operator.

The zero-eth and third elements of the malrix (matrix and
array elements in PoSTSCRIPT are counted from zero) scale
the fonl The zeroeth element controls scaling in the x­
dimension while the third element controls scaling in the
y-dimension.

The makefont operator can be used with PoSTSCRIPT fonts ..
to create fonts which appear condensed or extended.
(Usually condensed or extended fonts are different designs
not just an optical scaling.) For example, the following will
give us the condensed 12 point font shown in Figure 12:

Ifimes-Roman findfont [9 0 0 1200] makefont

The third element in the malrix is 12 since we want a 12
point font. The zeroeth element in the malrix is 9, a value
less than 12, since we wish to condense the font in the
x-dimension. More examples of condensed and extended
fonts appear in Program 13, page 44.

42

Figure 13

The makeront operator can also be used to create obliqued
fonts. The degree to which a font is obUqued is measured by
the angle between the vertical (90 degrees) and the degree of
slant desired (see Figure 13). The general form for the malrix
used to create an obliqued font is:

[aObaOO]
where a is the point size and b = a x tan(angle).

EXAMPLE: Determine the matrix that will yield a 12 point
font obUqued 20 degrees:

43

tan(20) = 0.36397,
12 x 0.36397 = 4.36764
the resulting matrix is [12 0 4.36764 12 0 0]

or [12 0 20 sin 20 cos div 12 mul12 0 0)

Type is one of the most eloquent
means of expression in every epoch
of style. Next to architedure, it
gives the most characteristic
portrait of a period and the IDost
severe te:stimonyof a nation'S
\\\.\e\\~ t.\a\\\.~. ~e\e't ~e\\tet\~

Condensed, Extended and Ohliqued Text

/master /Times-Roman findfont def

master [12 0 0 12 0 0] make font setfont
234 504 moveto
(Type is one of the most eloquent) show

master [9 0 0 12 0 0] makefont setfont
234 488 moveto
(means of expression in every epoch) show

master [7 0 0 12 0 0] makefont setfont
234 472 moveto
(of style. Next to architecture, it) show

master [15 0 0 12 0 0] makefont setfont
234 456 moveto
(gives the most characteristic) show

master [17 0 0 12 0 0] make font setfont
234 440 moveto
(portrait of a period and the most) show

master [12 0 4.36764 12 0 0] make font
set font

234 424 moveto
(severe testimony of a nation's) show

master [12 0 -4.36764 12 0 0] makefont
set font

234 408 moveto
(intellectual status. Peter Behrens) show

showpage

Set up a standard 1 unit font to be used later in
makefont-setfont operations.
Create a uniformly scaled 12 point font.

Create a condensed 12 point font. -

Create a very condensed 12 point font.

Create an extended 12 point font.

Create a very extended 12 point font.

Create a 20 degree obliqued 12 point font.

Create a -20 degree (backward) oblique 12 point font.

45

13

In every period there have been better or worse types employed
in better or worse ways. The better types employed in better
ways have been used by the educated printer acquainted with
standards and history, directed by taste and a sense of the
fitness of things, and facing the industrial conditions and the
needs of his time. Such men have made of printing an art. The
poorer types and methods have been emplyed by printers
ignorant of standards and caring alone for commercial success.
To these, printing has been simply a trade. The typography of a
nation has been good or bad as one or other of these classes
had the supremacy. And to-day any intelligent printer can
educate his taste, so to choose types for his work and so to use
them, that he will help printing to be an art rather than a trade.
Daniel Berkeley Updike.

A Simple Line Breaking Algorithm 14

/wordbreak () def

/BreakIntoLines
{ /proc exch def

/linelength exch def
/textstring exch def

/breaklen wordbreak stringwidth pop
def

/curlen 0 def
/lastwordbreak 0 def

/startchar 0 def

/restoftext textstring def

restoftext wordbreak search
{/nextword exch def pop
/restoftext exch def
/wordlen nextword stringwidth

pop def
curlen wordlen add linelength It

{ /curlen curlen wordlen add
breaklen add def }
textstring start char
lastwordbreak startchar sub
getinterval proc
/startchar lastwordbreak def
/curlen wordlen breaklen

add def
} ifelse

/lastwordbreak lastwordbreak
next word length add 1 add def

pop exit
ifelse

loop

/lastchar text string length def
text string startchar last char

startchar sub get interval proc
def

Constant used for word breaks (ASCII space).

The procedure "BreaklntoLines" takes a siring of text and
breaks it up into a series of lines, each no longer than the
maximum line length. The algorithm breaks lines at word
breaks (spaces) only. "BrealdntoLines" takes three
arguments: the string of text, the maximum line length and a
procedure to be executed each time the end of a line has been
found. The procedure should be written so that it takes one
argument, a string containing the cmrent line.
Get the typeset length of a word break in the cmrent font.

"curlen" is the cmrent typeset length of the current line.
"lastwordbreak." is the index into the string of text of the
most recent word break: encountered.
"startchar" is the index of the first character on the cmrent
line.
"restoftext" is a temporary variable that holds the remaining
results of the "search" operator (see loop below).

The basic strategy for breaking lines is to search the siring of
text (contained in "restoftext' ') for the next occurring word
break. The pre-string returned by the "search" operator is the
word preceding the word break. The post-siring returned gets
assigned to "restoftext."
If the length of the word returned by the "search" operator -
exceeds the maximum line length when added to the length of
the current line then the substring spanning the cmrent line
(from the first character on the line to the most recent word
break.) is obtained and passed as an argument to the user's
procedure. Otherwise the length of the cmrentline is
incremented by the width of the word.

The "lastwordbreak:" variable is always updated to index
into the text string at the position of the most recent word
break.
The last word· in the text has been found when the "search"
operator fails to match the word break pattern. This
terminates the loop.

Don't forget to process the last line.

47

48

A Simple Line Breaking Algorithm, cont. 14

/Times-Roman findfont 12 scalefont setfont
Iyline 552 def

(In every period there have been better or\
worse types employed in better or worse\
ways. The better types employed in better\
ways have been used by the educated\
printer acquainted with standards and\
history, directed by taste and a sense of\
the fitness of things, and facing the\
industrial conditions and the needs of\
his time. Such men have made of printing\
an art. The poorer types and methods have\
been emplyed by printers ignorant of\
standards and caring alone for commercial\
success. To these, printing has been\
simply a trade. The typography of a\
nation has been good or bad as one or\
other of these classes had the supremacy.\
And to-day any intelligent printer can\
educate his taste, so to choose types for\
his work and so to use them, that he will\
help printing to be an art rather than a\
trade. Daniel Berkeley Updike.)

306
{ 236 yline moveto show

Iyline yline 14 sub def}

BreakIntoLines

showpage

Below is an example of the how the "BreakIntoLines"
procedure might be used.

Use a line length of 306 points.
The procedure provided to "BreaklntoLines" has been
written so that it takes a string as its argument The procedure
uses a global variable' 'yline" to keep track of vertical
positioning on the page. It moves to a specified position on
the page, shows the string in the current font and then updates
the vertical position.
EXERCISE FOR THE READER: If the user specifies a short
enough line length, it is possible for the typeset width of a
single word to exceed the maximum line length. Modify this
algorithm to handle this event gracefully.

49

T S A V L s
E H E E· P
X 0 C R T a
T U 0 T T c

L M I E i
p D M C R n
0 0 A S 9
S B N L
I E H t
T C T A h
I C E E S a
0 E N X n
N N T T M
E T E 0
D E R I R 0

R N E w
V E L e
E D I C E r
R N A V
T 0 E P E c
I N I N a
C T s
A A e
L L
L
y e

t
t
e
r
s

Vertical Text

/vshowdict 4 dict def

/vshow
{ vshowdict begin

/thestring exch def
/lineskip exch def
thestring

{
/charcode exch def
/thechar () dup 0 charcode put def

o lineskip neg rmoveto
gsave

thechar stringwidth pop 2 div neg
o rmoveto

the char show
grestore
} forall

end
def

/Helvetica findfont 12 scalefont
setfont

72 555 moveto
12 (TEXT POSITIONED VERTICALLY) vshow
112 555 moveto
12 (SHOULD BE CENTERED ON) vshow
152 555 moveto
12 (A COMMON CENTER LINE.) vshow
192 555 moveto
12 (VERTICAL TEXT IN CAPITAL) vshow
232 555 moveto
12 (LETTERS HAS MORE EVEN) vshow
272 555 moveto
12 (spacing than lower case letters.)

vshow

showpage

15

Establish a dictionary which can later be used as a local work
space for definitions.

vshow will display text vertically, centering it on a common
center line. vshow takes two arguments, the line skip between
letters and the string to be shown vertically.

The forall command allows us to repeat the same procedure
for each character in the string.
forall pushes the character code onto the operand stack.
Convert the character code to a string.

Move down by the lineskip amount

Move left by half of the character width.

Display the character.

Set up the font we wish to use.

Chose the starting position for the string to be shown. The
text will be centered around the line x = 72 and it will begin
just below the line y = 555.

Notice the order of the arguments in all of the uses of vshow:
the lineskip comes first followed by the string.

51

Circular Text

/outsidecircletext
{ $circtextdict begin

/radius exch def
/centerangle exch def
/ptsize exch def
/str exch def

/xradius radius ptsize 4 div add
def

gsave
centerangle str findhalfangle

add rotate

str
/charcode exch def
() dup 0 charcode put

out side showcharandrotate
forall

grestore
end
def

/insidecircletext
{ $circtextdict begin

/radius exch def
/centerangle exch def
/ptsize exch def
/str exch def

/xradius radius ptsize 3 div sub
def

gsave
centerangle str findhalfangle

sub rotate
str

{ /charcode exch def
() dup 0 charcode put

insideshowcharandrotate
forall

grestore
end
def

16

outsidecircletext places text around a circular arc. The
baseline of the text is placed on the outside of the
circumference of the circle in a clockwise fashion.
outsidecircletext takes four arguments: the string to be
printed, the point size of the font being used, the angle around
which the text should be centered and the radius of the
circular arc. It assumes that the center of the circle is at (0,0).
A radius that is slightly larger than the one specified is used
for computations but not for placement of characters. Using a
slightly larger radius in the computations places the
characters closer together, otherwise the interletter spacing is
too loose.
Save the current graphics state.
Find out how much angle the string subtends and then rotate
to the appropriate starting position for showing the string.
(fhe positive x-axis now intersects the circle where the text
should start.)

For each character in the string, determine its position on the
circular arc and show it

Return to the former graphics state.

insidecircletext works very similarly to outsidecircletext
except that the baseline of the text is placed on the inside of
the circumference of the circle in a counter-clockwise
fashion. insidecircletext takes the same four arguments as
outsidecircletext.

Here we use a radius which is slightly smaller than the
desired radius for computations. This forces the characters to
be placed farther apart to avoid overlapping.

53

54

Circular Text, cont.

/$circtextdict 16 dict def
$circtextdict begin

/findhalfangle
{ stringwidth pop 2 div

2 xradius mul pi mul div 360 mul
def

/outsideshowcharandrotate
{ /char exch def

/halfangle char findhalfangle def
gsave

halfangle neg rotate
radius 0 translate
-90 rotate
char stringwidth pop 2 div neg

o moveto char show
grestore
halfangle 2 mul neg rotate
def

/insideshowcharandrotate
{ /char exch def

/halfangle char findhalfangle def
gsave

halfangle rotate
radius 0 translate
90 rotate
char stringwidth pop 2 div neg

o moveto char show
grestore
halfangle 2 mul rotate
def

/pi 3.1415923 def
end

/Times-Bold findfont 15 scalefont set font
306 448 translate
(Symphony No.9 (from the New World»

15 90 100 outsidecircletext
/Times-Roman findfont 10 scalefont setfont
(Antonin Dvorak)

10 90 84 outsidecircletext
(The New York Philharmonic Orchestra)

10 270 84 insidecircletext
showpage

16

findhalfangle takes one argument, a string, and finds the
angle subtended by that string. It leaves the value of half of
that angle on the stack. The angle is found by computing the
ratio of the width of the string to the circumference of the
circle and then converting that value to degrees.

This procedure shows a character upright on the outside of
the circumference and then rotates clockwise by the amount
of angle subtended by the width of the character.

Rotate clockwise by half the angle taken up by the width of
the character and translate out to the circumference.
Position character upright on outside of circumference.
Center the character around the origin.

Rotate clockwise by the amount of angle subtended by the
width of the character.

insideshowcharandrotate operates in a similar manner to
outsideshowcharandrotate except that the direction of rotation
is counter-clockwise and the characters are placed upright on
the inside of the circle.

55

Placing Text Along an Arbitrary Path 17

/pathtextdiet 26 diet def

/pathtext
{ pathtextdiet begin

loffset exch def
/ str exeh def

/pathdist 0 def
/setdist offset def
/ehareount 0 def
gsave

flattenpath

{movetoproc} {linetoproe}
{eurvetoproe} {elosepathproe}
pathforall

grestore
newpath
end
def

pathtextdiet begin
Imovetoproe

{ Inewy exeh def /newx exeh 'def
/firstx newx def Ifirsty newy def

/ovr 0 def
newx newy transform
/epy exeh def /epx exeh def
def

/linetoproe

Local storage for the procedure' ·pathtext."

"pathtext" will place a string of text along any path. It takes
a string and starting offset distance from the beginning of the
path as its arguments. Note that • 'pathtext" assumes that a
path has already been defined and after it places the text
along the path, it clears the current path like the "stroke" and
"fill" operators; it also assumes that a font has been set
"pathtext" begins placing the characters along the current
path, starting at the offset distance and continuing until either
the path length is exhausted or the entire string has been
printed, whichever occurs first The results will be more
effective when a small point size font is used with sharp
curves in the path.

Initialize the distance we have travelled along the path.
Initialize the distance we have covered by setting characters.
Initialize the character count

Reduce the path to a series of straight line segments. The
characters will be placed along the line segments in the
"linetoproc. "
The basic strategy is to process the segments of the path,
keeping a running total of the distance we have travelled so
far (pathdist). We also keep track of the distance taken up by
the characters that have been set so far (setdist). When the
distance we have travelled along the path is greater than the
distance taken up by the set characters, we are ready to set the
next character (if there are any left to be set). This process
continues until we have exhausted the full length of the path.

Clear the current path.

"movetoproc" is executed when a moveto component has
been encountered in the pathforall operation.
Remember the "first point" in the path so that when we get a
"closepath" component we can properly handle the text.

Explicitly keep track of the current position in device space.

"linetoproc" is executed when a lineto component has been
encountered in the pathforall operation.

57

Placing Text Along an Arbitrary Path, cont. 17

/oldx newx def /oldy newy def
/newy exch def /newx exch def
/dx newx oldx sub def
/dy newy oldy sub def
/dist dx dup mul dy dup mul add

sqrt def
/dsx dx dist div ovr mul def
/dsy dy dist div ovr mul def
oldx dsx add oldy dsy add transform
/cpy exch def /cpx exch def
/pathdist pathdist dist add def
{ setdist pathdist Ie

charcount str length It
{setchar} {exit} ifelse }

/ovr setdist pathdist sub def
exit }

ifelse
loop

def

/ curvetoproc
{ (ERROR: No curveto's after flattenpath!)

print
def

/closepathproc
{ firstx firsty linetoproc

firstx firsty movetoproc
def

/setchar
{ /char .str charcount 1 get interval def

/charcount charcount 1 add def
/charwidth char stringwidth pop def
gsave

end

cpx cpy itransforrn translate
dy dx atan rotate
o 0 rnoveto char show
current point transform
/cpy exch def /cpx exch def

grestore
/setdist setdist charwidth add def
def

Update the old point
Get the new point

Calculate the distance between the old and the new point

dsx and dsy are used to update the current position to be just
beyond the width of the previous character.

Update the current position.
Increment the distance we have travelled along the path.
Keep setting characters along this path segment until we have
exhausted its length.
As long as there are still characters left in the siring, set them.

Keep track of how much we have overshot the path segment
by setting the previous character. This enables us to position
the origin of the following characters properly on the path.

"curvetoproc" is executed when a curveto component has
been encountered in the patbforall operation. It prints an error
message since there shouldn't be any curveto's in a path after
the flattenpath operator has been executed.

"closepathproc" is executed when a closepath component
has been encountered in the pathfotall operation. It simulates
the action of the operator' 'closepath" by executing
"linetoproc" with the coordinates of the most recent
"moveto" and then executing "movetoproc" to the same
point

"setchar" sets the next character in the siring along the path
and then updates the amount of path we have exhausted.
Increment the character count.
Find the width of the character.

Translate to the current position in user space.
Rotate the x-axis to coincide with the current segment

Update the current position before we restore ourselves to the
untransformed state.
Increment the distance we have covered by setting characters.

58

Placing Text Along an Arbitrary Path, cont. 17

/Helvetica findfont 11.5 scalefont setfont

newpath
200 500 50 0 270 arc
200 80 add 500 50 270 180 arc

(If my film makes one more person feel\
miserable I'll feel I've done my job.\
-- WOODY ALLEN) 40 pathtext

newpath
165 360 moveto 315 360 lineto
315 430 lineto 165 430 lineto
closepath
315 390 moveto 355 375 lineto
355 415 lineto 315 400 lineto

1.5 setlinewidth stroke

showpage

Set up the font we wish to use.

Define the path along which we wish to place the text.

Print the string along the path at an offset of 40 points.

Draw an outline shape suggestive of a movie camera.
Draw the box part.

Draw the lens part.

A PROBLEM FOR THE READER: This algorithm places
characters along the path according to the origin of each
character. Rewrite the algorithm so that the characters are
placed according to the center of their width. This will yield
better results around shaIp curves and when larger point sizes
are used.

59

Miscellaneous

The following is a collection of unrelated but very useful
POSTSCRIPT programs.

60

61

Blueberry

Apple
Vanilla Cream

Boston Cream

January Pie Sales

Drawing a Pie Chart

/PieDiet 24 diet def
PieDiet begin

/DrawSliee
{ /grayshade exeh def

/endangle exeh def
/startangle exeh def
/thelabel exeh def

newpath
o 0 moveto
o 0 radius startangle endangle arc

elosepath

1.415 setmiterlimit

gsave grayshade setgray fill grestore
stroke

gsave
startangle endangle add 2 div

rotate
radius 0 translate
newpath

18

Local storage for "DrawPieChart" and its related procedures.

DrawSlice draws an outlined and filled-in pie slice. It takes
four operands: the label for this particular pie slice, the
starting angle for the slice, the ending angle for the slice and
the shade of gray the slice should be.

Create a path which will draw a pie slice.

This guarantees that when we outline the pie slices with a
stroke that we will not get a spike on the interior angles.
Fill the pie slice path with the appropriate gray color. By
using gsave and grestore we don't lose the current path. Since
PostScript paints color onto the page, it is very important that
we fill the pie slice ftrst and then outline it with a stroke.
Draw the tick mark and place the label:
Find the center of the pie slice and rotate so that the x-axis
coincides with this center.
Translate the origin out to the circumference.

o 0 moveto labelps
stroke

.8 mul 0 lineto Draw the tick-mark.

labelps 0 translate
o 0 transform

grestore
itransform
/y exeh def /x exeh def
x y moveto

x 0 It
{ thelabel stringwidth pop neg

o rmoveto
}if

y 0 It { 0 labelps neg rmoveto } if
the label show
def

Move the origin out a little beyond the circumference.
Next we wish to place the label at the current origin. If we
simply draw the text on the page now, it would come out
rotated. Since this is not desired we avoid it by returning to
the previous unrotated coordinate system. Before returning,
though, we would like to remember the position of the current
origin on the printed page. We will accomplish this by using
the transform and itransform operators. Performing a
transform on the origin pushes the coordinates of the origin in
device space onto the operand stack. Performing a grestore
returns us to the previous unrotated coordinate system. Next
we perform an itransform on the two device coordinates left
on the stack to determine where we are in the current
coordinate system.
Make some adjustments so that the label text won't collide
with the pie slice.

63

Drawing a Pie Chart, cont.

/findgray

end

{ /i exch def /n exch def
i 2 mod 0 eq

{ i 2 div n 2 div round add n div }
{ i 1 add 2 div n div }
ifelse

def

/DrawPieChart
{ PieDict begin

/radius exch def
/ycenter exch def /xcenter exch def
/PieArray exch def
/labelps exch def /titleps exch def
/title exch def

gsave
xcenter ycenter translate
/Helvetica findfont titleps

scalefont set font
title stringwidth pop 2 div neg

radius neg titleps 3 mul sub
moveto title show

/Helvetica findfont labelps
scale font setfont

/numslices PieArray length def
/slicecnt 0 def
/curangle 0 def

PieArray
{ /slicearray exch def

slicearray aload pop
/percent exch def
/label exch def
/perangle percent 360 mul def
/slicecnt slicecnt 1 add def
label curangle

curangle perangle add
numslices slicecnt findgray
DrawSlice

/curangle curangle perangle add
def

forall
grestore

end
def

18

Procedure findgray calculates the gray value for a slice. It
takes two arguments: the total number of slices and the
current slice number (Given that there are n pie slices. the
slices are "numbered" from 1 to n). The gray values for the
pie slices range evenly from white to black (i.e. - the values
provided to setgray range from (nln. n-1In •...• lin». Since we
don't want similar values of gray next to each other. fmdgray
"shuffles" the possible combinations of gray.

DrawPieChart takes seven arguments: the title of the pie
chart, the point size to print the title in. the point size to print
the labels for each slice in. a special array (described below
where DrawPieChart is called), the (x.y) center of the pie
chart and the radius of the pie chart

Translate the coordinate system origin to center of pie chart.
Print the title of the pie chart in Helvetica.

Center the title below the pie chart.

Print the individual pie slice labels in Helvetica

A "loop" variable that keeps track of the angle of arc to
begin each pie slice at
Repeat the following for each element in the PieArray.

Push the label and percentage onto the stack.

Convert the percentage into degrees of angle.

Update the current starting angle.

64

Drawing a Pie Chart, cont.

(January Pie Sales) 18 9
[[(Blueberry) .12 1

[(Cherry) .30 1
[(Apple) . 2 6 1
[(Boston Cream) .16 1
[(Other) .04 1
[(Vanilla Cream) .12 1
306 396 100 DrawPieChart

showpage

18

The pie array is an array of arrays. Each array in the pie array
contains a string denoting the label to be printed next to the
pie slice followed by a real number indicating the percentage
of the pie represented by this particular slice.

65

Using the image Operator

/concatprocs
{ /proc2 exch cvlit def

/proc1 exch cvlit def

/newproc proc1 length proc2 length add
array def

newproc 0 proc1 put interval
newproc proc1 length proc2 putinterval
newproc cvx

} def
linch { 72 mul } def
/picstr 3 string def

/imageturkey
{ 24 23 1 [24 0 0 -23 0 23]

{ current file picstr
readhexstring pop } image

def

gsave
3 inch 4 inch translate
2 inch dup scale
{1 exch sub} currenttransfer concatprocs

settransfer

imageturkey
003BOO 002700 002480 OE4940
114920 14B220 3CB650 75FE88
17FF8C 175F14 1C07E2 3803C4
703182 F8EDFC B2BBC2 BB6F84
31BFC2 18EA3C OE3EOO 07FCOO
03F800 1E1800 1FF800

grestore
showpage

19

"concatprocs" takes two procedure bodies as arguments and
concatenates them into one procedure body. The resulting
procedure body is left on the operand stack. "concatprocs"
will be used in constructing a new transfer function below.
Create a new array large enough to accomodate both
procedures.
Place the first procedure at the beginning of the new one.
Place the second procedure at the end of the new one.
Now make this array into an executable object.

String to read the hex strings into (each row is 3 bytes long).

The procedure "imageturkey" will read the image (as hex
strings) from this file and show it on the page. The image of
the turkey is represented as one bit per sample. It is 24
samples wide by 23 samples high and it's first sample is in
the upper left comer of the source image.

The image we generate will be mapped to the unit square in
user space. This unit square has it's lower left corner at the
origin and extends 1 unit in the positive x and y directions. If
we want the image to appear in the center of the page we
must translate the user space origin near the center of the
page. If we want an image that is larger than the default unit
square, we must scale the user space.

Isolate the effects of the "settransfer."
Position the unit square on the page.
Scale it to be 2 inches square.
Since the source samples for our image specify a reverse
image (that is, the samples that correspond to "black" are
specified as l's rather than O's) we specify a transfer function
to reverse this effect. Since some output devices have
complex transfer functions we don't simply want to set the
transfer function. Instead we want to concatenate our new
transfer function with the existing one to achieve our results.
As soon as "imageturkey" is executed, the "currentfile ...
readhexstring" sequence will begin reading bytes from this
file. The safest way to synchronize reading from the program
file with the PostScript interpreter's own reading of this file is
to embed the reading commmands in a procedure, then place
that procedure name followed by a "carriage return"
followed by the bytes to be read in the file.
The "image" command reads exactly the number of bytes
we supplied, and the interpreter picks up its reading here.

67

Bit Pattern Screens

/bitison
{/ybit exch def /xbit exch def
bstring ybit bwidth mul
xbit 8 idiv add get
1 7 xbit 8 mod sub bitshift
and 0 ne} def

/enlargebits
{/bwidth exch def
/bpside exch def
/bstring exch def
0.08 setlinewidth
o 1 bps ide 1 sub

{/y exch def
o 1 bps ide 1 sub

{Ix exch def
x y bitison

{ gsave
x y translate
newpath

o 0 moveto 0 1 lineto
1 1 lineto 1 0 lineto

closepath

if
for

gsave 0 setgray fill grestore
1 set gray stroke grestore

} for
o 0 moveto 0 bpside lineto
bps ide dup lineto bps ide 0 lineto
closepath 0 setgray stroke
} def

/setpattern
{/freq exch def
/bwidth exch def
/bpside exch def
/bstring exch def
/onbits 0 def /offbits 0 def
freq 0

{/y exch def /x exch def
/xindex x 1 add 2 div

bpside mul cvi def
/yindex y 1 add 2 div

bpsidemul cvi def
xindex yindex bitison

20

This function does bit addressing within a string whose
dimensions and contents have been stored into the variables
'bstring', 'bpside', and 'bwidth'. 'bstring' holds the bit
pattern, 'bwidth' is an integer giving the pattern width in
bytes, and 'bpside' is an integer giving the width and height
of the pattern in bits. This function returns 'true' if the bit at
position (xbit, ybit) in bstring is on.

enlargebits prints an enlarged bit pattern, so that we can
illuslrate the bit patterns that we will use in 'setpattern'
below. This routine sets up the global variables needed by
'bitison' defined above, and prints a black square for each on
bit. The squares are one unit in size; the caller of this routine
should scale the units appropriately. Note that the earlier bits
in the pattern are printed in the lower positions. The high
order bit of the first byte of the pattern is the lower left bit,
and the low order bit of the last byte in the pattern is the
upper right bit.

This routine sets up the halftone screen machinery so that a
repeating bitmap pattern will be used for subsequent output.
The screens are device dependent, ie., the caller of this

. routine must understand the device resolution and rotation.

Here, we begin to set up the arguments to 'setscreen'.
This begins the screen function argument to 'setscreen'.
First, we Iransform the (x. y) position into a position to
address into the bit pattern.

69

70

Bit Pattern Screens, cont.

{/onbits onbits 1 add def 1}
{/offbits offbits 1 add def

O}
ifelse

setscreen
{} settransfer

offbits offbits onbits add div
setgray

def

/pat1 <d1e3c5885c3e1d88> def
/pat2 <3e418080e3140808> def

linch {72 mull def

/showpattern
{/pat exch def
pat 8 1 300 32 div setpattern
o 0 moveto 3 inch 0 lineto
3 inch dup lineto 0 3 inch lineto
closepath fill
o 3.5 inch translate 3 8 div inch
dup scale
pat 8 1 enlargebits
} def

gsave 1 inch 1.25 inch translate
pat1 showpattern grestore

gsave 4.5 inch 1.25 inch translate
pat2 showpattern grestore

showpage

If that bit is on, count it and return a high value.
If that bit is off, count it and return a low value.

20

Don't allow correction of gray values, because we want to set
the gray exactly according to the off-bit, total-bits ratio.

By setting the gray this way, exactly the number of on bits
will tum on in the screen.
Finish the definition of 'setpattern'. Use hex-string notation
to set the bit patterns.

Define a routine to make a simple demonstration of the above
functions. Take a pattern and display it as enlarged bits, and
in use filling an area.

On the left, show a weaving pattern.

On the right, show a fish scale pattern.

71

I

l o FF

NOTE: This is oot the actual output page produced by the following POSTSCRIPT program. The
rectangles are scaled down versions of the 8 112" by 11" pages generated by the program.

Making a Poster

IBigPrint
{ Irows exch def

Icolumns exch def
Ibigpictureproc exch def

newpath
leftmargin botmargin moveto
o pageheight rlineto
pagewidth 0 rlineto
o pageheight neg rlineto

closepath clip

leftmargin botmargin translate

o 1 rows 1 sub
{ Irowcount exch def

o 1 columns 1 sub
{ Icolcount exch def

gsave

for
def

pagewidth col count mul neg
pageheight rowcount mul neg
translate

bigpictureproc
copypage erasepage

grestore
for

linch {72 mul} def
Ileftmargin . 5 inch def
Ibotmargin .25 inch def
Ipagewidth 7.5 inch def
Ipageheight 10 inch def

21

"BigPrint" takes a large picture (larger than 8.5" by 11") and
prints it on several pages according to the number of rows
and columns specified. Imagine superimposing a grid
composed of the specified number of rows and columns on
the large image. Then each rectangle in the grid represents an
8.5" by 11" page to be printed. "BigPrint" takes three
arguments: a procedure representing the large picture, the
number of columns and the number of rows.

Set up a clipping region for the page we will print on. Since
most printers cannot print to the very edge of the paper, we
will explicitly set up the clipping boundary so that it lies
within the printing boundaries of the printer and we will
compensate for this when we print the large image so that all
parts of the image are indeed printed.

Readjust the origin on the page so that it coincides with the
origin of the clipping boundary.

For each row of pages ...

For each page within that row ...

Translate the large picture so that the desired section will be
imaged on the printed page. We must translate the large
picture in the negative directions so that the lower left corner
of the section to be printed always coincides with the origin.
Execute the large picture.
Since the "showpage" operator has the side effect of
executing the "initgraphics" operator (which would reset the
clipping region), we perform a "copypage erasepage"
sequence instead. The "copypage" prints the page and the
"erasepage" clears the current output page.

These are the dimensions of the clipping boundary .

73

74

Making a Poster, cont.

{ gsave

20 setflat

/Times-Roman findfont 500 scalefont
set font

2.5 inch 11 inch moveto
(SALE) show
/Times-Roman findfont 350 scale font

set font
1.45 inch 4 inch moveto
.5 setgray (50%) show
a setgray (OFF) show
newpath

.5 inch 18 inch moveto
22 inch 18 inch lineto
22 inch 2 inch lineto
.5 inch 2 inch lineto

closepath
gsave

• 75 inch setlinewidth stroke
grestore
10 setlinewidth 1 setgray stroke

grestore
3 2 BigPrint

21

This procedure draws a large sign with a border around it.
The sign is 22.5 inches wide and 19.5 inches high so that it
will fit comfortably on 6 85 inch by 11 inch pages (the final
result will be 2 rows of pages high and 3 columns of pages
wide).
Since the letters being printed are so large, we can increase
the flatness parameter used without degrading the quality of .
the image. This will significantly decrease the computation
time required.

Specify the path for the border.

First paint the border with a thick black stroke .

Then paint a thin white stroke down the cneter of the border.
Print the large picture on a total of 6 pages. The image is
three columns of pages wide and 2 rows of pages high.

75

Customized Fonts

Although a large variety of fonts are available through
POSTSCRIPT, there are situations when users may wish to
modify the existing fonts or create new fonts of their own.
This section presents several examples of modifying existing
fonts to change their rendering style or to change the
encoding of the characters in a font. There is also an example
of creating an entirely new fonl

The basic underlying structure of a font is the font
dictionary. When fonts are modified, the entries in the font
dictionary are changed. When new fonts are created, certain
crucial entries in the font dictionary must be provided. For
details on the entries in a font dictionary and how to modify
them, please refer to the "Font Machinery Appendix" of the
POSTSCRIPT Language Manual.

The basic strategy for modifying an existing font is to create
an entirely new font dictionary and to copy all the references
to entries in the original font dictionary, except for the FlD
entry, into the new dictionary. Then the appropriate fields
should be modified. A definefont operation should then be
performed on the new font dictionary to make it into a
POSTSCRIPT font.

The most important thing to remember when modifying an
existing font is to change the FontName and FlD fields in the
new font dictionary. The FID field automatically gets created
when the define font operator is executed. The FontName
field must be explicitly changed. The same name which
appears in the FontName field should be provided as an
argument to the deflnefont operator. The FontName should
always be a unique name.

One useful modification which can be made to an existing
font is to convert it to an outlined font. This is illustrated in
Program 22, page 78. Another common modification is to
change the encoding vector. The encoding vector is a
mapping of character codes (0-255) to character names. Most
POSTSCRIPT fonts are encoded according to the
POSTSCRIPT default encoding, although there are cases
where other encodings are desireable. One such case is the
EBCDIC encoding. An example of re-encoding a font to use
the EBCDIC encoding is demonstrated in Program 23, page
80. Some POSTSCRIPT fonts contain characters which are
not encoded in the default encoding vector such as accented
characters. In order to print text in a foreign language, it's
necessary to re-encode the font to include the desired

16

accented characters in the encoding vector. In this case, only
a small portion of the encoding vector needs to be changed;
Program 24 on page 84 shows an example of re-encoding a
small portion of the encoding vector.

The last programming example, Program 2S on page 88, in
this section demonstrates how to build a font from scratch. It
shows how to define all the required font dictionary entries
and how to derme character shapes. The font combines
analytic character shapes and bitmap character shapes to
demonstrate the flexibility of POST SCRIPI' fonts.

77

@OJ]~[tOITi)®@ruJ~~ 0 [fU®

@ruJ~~~[ft)®@ruJ~~ 0 [fU@

@ruJ~~n[ft)®@(!J]~~ D 1Ji)@

Making an Outlined Font

/makeoutlinediet 5 diet def
/MakeOutlineFont

{ makeoutlinediet begin
/strokeweight exeh def
/newfontname exeh def
/basefontname exeh def

/basefontdiet basefontname findfont def

/outfontdiet basefontdiet maxlength
1 add diet def

basefontdiet
{ exeh dup /FID ne

{exeh outfontdiet 3 1 roll put}
{pop pop}
ifelse

forall
outfontdiet /FontName newfontname put
outfontdiet /PaintType 2 put
outfontdiet /StrokeWidth strokeweight

put
new fontname outfontdiet definefont pop
end
def

/Helvetiea-Bold /Helvetiea-OutlineO 0
MakeOutlineFont

/Helvetiea-OutlineO findfont 24 sealefont
setfont 72 542 moveto (outline) show

/Helvetiea-OutlineO findfont 36 sealefont
setfont (outline) show

/Helvetiea-Bold /Helvetiea-Outline1
1000 36 div MakeOutlineFont

/Helvetiea-Outline1 findfont 24 sealefont
set font 72 502 moveto (outline) show

/Helvetiea-Outline1 findfont 36 sealefont
setfont (outline) show

/Helvetiea-Bold /Helvetiea-Outline2
1000 24 div MakeOutlineFont

/Helvetiea-Outline2 findfont 24 sealefont
set font 72 462 moveto (outline) show

/Helvetiea-Outline2 findfont 36 sealefont
set font (outline) show

showpage

22

Local storage for the procedure MakeOutlineFont.
MakeOutlineFont takes one of PostScript's standard filled
fonts and makes an outlined font out of it. It takes three
arguments: the name of the font on which to base the outline
version, the new name for the outline font and a strokeweight
to use on the outline.

Get the dictionary of the font on which the outline version
will be based.
Create a dictionary to hold the description for the outline font.
Make it one entry larger to accomodate an entry for the
strokewidth used on the outline.
Copy all the entries in the base font dictionary to the outline
dictionary except for the FlO.

Ignore FlO pair.

Insert the new name into the dictionary.
Change the paint type to outline.
Insert the strokeweight into the dictionary.

Now make the outline dictionary into a PostScript font. We
will ignore the modified dictionary returned on the stack by
the definefont operator.

We will create an outline font based on Helvetica-Bold
named Helvetica-OutlineO. By specifying a stroke weight of
zero, we will always get a one pixel wide outline around each
character, no matter what the font's point size.

Here we are creating a font with a heavier stroke weight. The
stroke weight is always specified in the character coordinate
system (1000 units). The value specified here, 1000136 will
yield a one point wide outline when the font is scaled to 36
points in size. Note that this outline weight changes with
different point sizes.

A strokeweight value of 1000124 yields a one point wide
outline when the font is scaled to 24 points in size. It yields a
1.5 point outline when the font is scaled to 36 points in size
(36124 = 1.5).

79

Decimal Standard EBCDIC Decimal Standard EBCDIC Decimal Standard EBCDIC Decimal Standard EBCDIC
NUIllbI:r Char Char Number Char Char NUIllbI:r Char Char NUIllbI:r Char Char

0 64 @ 128 192
1 6S A 129 a 193 A
2 66 B 130 b 194 B
3 67 C 131 c 195 C
4 68 D 132 d 196 D
5 69 E 133 e 197 E
6 70 F 134 f 198 F
7 71 G 135

~
199 G

8 72 H 136 200 H
9 73 I 137 201 I
10 74 J ¢ 138 202
11 75 K 139 203
12 76 L < 140 204
13 77 M (141 205
14 78 N + 142 206
15 79 0 I 143 207
16 80 P & 144 208
17 81 Q 145 j 209 J
18 82 R 146 k 210 K
19 83 S 147 I 211 L
20 84 T 148 m 212 M
21 SS U 149 n 213 N
22 86 V 150 0 214 0
23 87 W 151 P 215 P
24 88 X 152 q 216 Q
25 89 Y 153 r 217 R
26 90 Z ! 154 218
27 91 [$ 155 219
28 92 \ • 156 220
29 93 I 157 221
30 94 h ; 158 222
31 95 - 159 223
32 96 T 160 224
33 97 a 161 i 225 A!
34 98 b 162 ¢ 226 S
35 # 99 c 163 £ 227 T
36 $ 100 d 164 / u 228 U
37 % 101 e 16S Y v 229 V
38 & 102 f 166 { w 230 W
39 . 103 g 167 x 231 X
40 (104 h 168 a y 232 L Y
41) 105 i 169 z 233 (21 Z
42 • 106 j 170 234 (E
43 + 107 k

%
171 " 235

44 108 I 172 236
45 109 m 173) 237
46 110 n :; 174 fi 238
47 I 111 0 ? 175 11 239
48 0 112 P 176 240 0 49 1 113 q 177 241 Ie 1
SO 2 114 . r 178 t 242 2 51 3 115 179

* 243 3
52 4 116 180 244 4
53 5 117 u 181 245 5 54 6 118 v 182 , 246 6
55 7 119 w 183 247 7
56 8 120 x 184 248 I 8
57 9 121 Y ISS .. 249 " 9
58 122 z 186 .. 250 te
59 ; 123 { # 187 ,. 251 8
60 < 124 I <f!J 188 252
61 125 } 189 %. 253
62 > 126 190 254
63 ? 127 191 l 255

Re-encoding an Entire Font

/reeneodediet 5 diet def
/ReEneode

{ reeneodediet begin
/neweneoding exeh def
/newfontname exeh def
/basefontname exeh def

/basefontdiet basefontname findfont def

/newfont basefontdict max length diet def

basefontdict
{exch dup /FID ne dup /Eneoding ne and

{ exeh newfont 3 1 roll put }
{ pop pop }
ifelse

forall

newfont /FontName newfontname put
newfont /Encoding neweneoding put

newfontname newfont definefont pop
end

} def

/EBCDIC 256 array def
o 1 255 { EBCDIC exeh /.notdef put} for
EBCDIC

dup 64 /spaee put

dup 74 /eent put
dup 75 /period put
dup 76 /less put
dup 77 /parenleft put
dup 78 /plus put
dup 79 /bar put
dup 80 /ampersand put

dup 90 /exelam put
dup 91 /dollar put
dup 92 /asterisk put
dup 93 /parenright put
dup 94 /semieolon put
dup 95 /aseiitilde put
dup 96 /hyphen put
dup 97 /slash put

23

Local storage for the procedure "ReEncode."
ReEncode generates a new font given the name of the font to
be re-encoded, a new name, and a new encoding vector.
ReEncode copies the existing font dictionary, replacing the
FontName and Encoding fields, then generates a new FID and
enters the new name in FontDirectory with the "definefont"
operator. The new name provided can later be used in a
"finMont" operation.
Get the dictionary of the font on which the re-encoded
version will be based.
Create a dictionary to hold the description for the re-encoded
font
Copy all the entries in the base font dictionary to the new
dictionary except for the FID and Encoding fields.

Ignore FID and Encoding pairs.

Install the new name and the new encoding vector in the font

Now make the re-encoded font dictionary into a PostScript
font We will ignore the modified dictionary returned on the
operand stack by the "definefont" operator.

To illustrate how the ReEncode procedure is used, we will
re-encode one of the standard PostScript fonts to support the
EBCDIC encoding. (The EBCDIC encoding used is
referenced in "IBM System!360: Principles of Operation,"
Appendix F.) The first step in doing this is to define an array
containing that encoding. This array is referred to as an
"encoding vector." The encoding vector should be 256
entries long. Since the encoding vector is rather sparse, all the
entries are initialized to "I.notdef." Then those entries which
correspond to characters in the EBCDIC encoding are fllled
in with the proper character name.

81

Re-encoding an Entire Font, cont. 23

dup 107 Icomma put Continuation of the EBCDIC encoding vector defmition.
dup 108 Ipercent put
dup 109 lunderscore put
dup 110 Igreater put
dup 111 lquestion put

dup 122 Icolon put
dup 123 Inumbersign put
dup 124 lat put
dup 125 lquoteright put
dup 126 lequal put
dup 127 I quotedbl put

dup 129 la put dup 134 If put
dup 130 Ib put dup 135 Ig put
dup 131 Ic put dup 136 Ih put
dup 132 Id put dup 137 Ii put
dup 133 Ie put

dup 145 Ij put dup 150 10 put
dup 146 Ik put dup 151 Ip put
dup 147 II put dup 152 Iq put
dup 148 1m put dup 153 Ir put
dup 149 In put

dup 162 Is put dup 166 Iw put
dup 163 It put dup 167 Ix put
dup 164 lu put dup 168 Iy put
dup 165 Iv put dup 169 Iz put

dup 193 IA put dup 198 IF put
dup 194 IB put dup 199 IG put
dup 195 Ie put dup 200 IH put
dup 196 10 put dup 201 II put
dup 197 IE put

dup 209 IJ put dup 214 10 put
dup 210 IK put dup 215 IP put
dup 211 IL put dup 216 IQ put
dup 212 1M put dup 217 IR put
dup 213 IN put

dup 226 IS put dup 230 IW put
dup 227 IT put dup 231 IX put
dup 228 IU put dup 232 IY put
dup 229 IV put dup 233 IZ put

82

Re-encoding an Entire Font, cont. 23

dup 240 /zero put dup 245 /five put
dup 241 lone put dup 246 /six put
dup 242 /two put dup 247 /seven put
dup 243 /three put dup 248 /eight put
dup 244 /four put dup 249 /nine put

pop

/TR /Times-Roman findfont 7 scalefont def
/Times-Roman /Times-Roman-EBCDIC EBCDIC

ReEncode
/TRE /Times-Roman-EBCDIC findfont 7

scale font def

TR set font
013

{ /count exch def
72 count 127 mul add
(Decimal Standard
72 count 127 mul add
(Number Char
for

/yline 538 def
/xstart 82 def
o 1 255

{ /count exch def

560 moveto
EBCDIC) show

560 7 sub moveto
Char) show

/charstring () dup 0 count put def
TR setfont
xstart yline move to
count () cvs show
xstart 28 add yline moveto
charstring show
TRE set font
xstart 56 add yline moveto
charstring show
/yline yline 7 sub def
count 1 add 64 mod 0 eq

{ /xstart xstart 127 add def
/yline 538 def
if

for

showpage

Remove the array from the operand stack.

Now we will print a table comparing the standard PostScript
character set encoding with the EBCDIC encoding. First we
will set up the fonts to be used: Times Roman with the
standard encoding and Times Roman with the EBCDIC
encoding.

Print each column heading in the standard Times Roman.

Print the table of character codes and corresponding
characters.
For each character code from 0 to 255, print the
corresponding standard and EBCDIC characters.

Print the character code in decimal.

Print the corresponding standard character.

Print the corresponding EBCDIC character.
Move down one line.
If we have gotten to the 64th line, move over by a column and
start at the top again. .

83

Boktryckarkonsten ar kallan till praktiskt taget all mansklig odling.
Printing is the source o/practically all human evolution.

Den f6rutan hade de oerh6rda framstegen inom vetenskap
Without it the tremendous progress in the fields 0/ science and

och teknik inte varit m6jIiga.
technology would not have been possible.

VALTERFALK

Making Small Changes to Encoding Vectors 24

/reenesmalldiet 12 diet def

/ReEneodeSmall
{ reenesmalldiet begin

/neweodesandnames exeh def
/newfontname exeh def
/basefontname exeh def

Local storage for the procedure "ReEncodeSmall."

ReEncodeSmall generates a new font given the name of the
font to be re-encoded, a new name, and an array of new
character encoding and character name pairs (see definition of
the "scandvec" array below for the format of this array).
This method has the advantage that it allows the user to make
changes to an existing encoding vector without having to
specify the entire new encoding vector. It also saves space
when the character encoding and name pairs array is smaller
than an entire encoding vector.

/basefontdiet basefontname findfont def Get the font dictionary on which to base the re-encoded
version.

/ newfont basefontdiet maxlength diet def Create a dictionary to hold the description for the re-encoded
font.

basefontdiet
{ exeh dup /FID ne

dup /Eneoding eq
{ exeh dup length array copy

newfont 3 1 roll put }
exeh newfont 3 1 roll put }

ifelse }
pop pop }

ifelse
forall

new font /FontName newfontname put

neweodesandnames aload pop

neweodesandnames length 2 idiv
{ new font /Eneoding get 3 1 roll put}
repeat

newfontname new font definefont pop
end

} def

Copy all the entries in the base font dictionary to the new
dictionary except for the FlD field.

Make a copy of the Encoding field.

Ignore FlD pair.

Install the new name.

Modify the encoding vector. First load the new encoding and
name pairs onto the operand stack.
For each pair on the stack, put the new name into the
designated position in the encoding vector.

Now make the re-encoded font description into a PostScript
font. We will ignore the modified dictionary returned on the
operand stack by the "definefont" operator.

85

86

Making Small Changes to Encoding Vectors, cont. 24

/scandvec [
192 /Oacute
201 /Adieresis
209 /oacute
210 /Ograve
211 /Scaron
212 /ograve
213 /scaron
216 /Edieresis
217 /adieresis
218 /edieresis
219 /Odieresis
220 /odieresis
224 /Aacute
226 /Aring
228 /Zcaron
231 /Eacute
240 /aacute
242 faring
244 /zcaron
247 /eacute
1 def

Iss 72 yline moveto show
/yline yline 28 sub def def

/Times-Roman /Times-Roman-Scand scandvec
ReEncodeSmall

/Times-Roman-Scand findfont 12 scalefont
set font

/yline 500 def
(Boktryckarkonsten \331r k\331llan till \
praktiskt taget all m\331nsklig odling.) ss
(Den f\334rutan hade de oerh\334rda \
framstegen inom vetenskap) ss
(och teknik inte varit m\334jliga.) ss
(VALTER FALK) ss

/Times-Italic findfont 10 scalefont setfont
/yline 500 12 sub def
(Printing is the source of practically \
all human evolution.) ss
(Without it the tremendous progress in \
the fields of science and) ss
(technology would not have been \
possible.) ss
showpage

Define an array of new character encoding and name pairs
that will enable us to print the accented characters in the
Scandinavian Languages. The array is a series of encoding
number and name pairs. The encoding number always
preceeds the character name. By definition, there must be an
even number of elements in this array. The encoding vector
positions for these new characters have been chosen so that
they do not actually replace any of the characters in the
standard encoding.

This procedure shows a string and then skips a line.

Re-encode the standard Times Roman to include the accented
characters for the Scandinavian Languages.
Now we will print some text with accented characters. Since
the accented characters are in the upper half of the encoding
vector we must refer to them by their octal codes.

87

Making a User Defined Font

/BuildCharDict 10 dict def

/ExampleFont 7 dict def
ExampleFont begin

/FontType 3 def
/FontMatrix [1 0 0 1 0 0] def
/FontBBox [0 0 1 1]def
/Encoding 256 array def

o 1 255 {Encoding exch /.notdef put} for
Encoding (a) 0 get /turkey put
Encoding (b) 0 get /bullseye put

/CharacterDefs 3 dict def

CharacterDefs /.notdef {} put

CharacterDefs /bullseye
{ newpath

.5 .5 .375 0 360 arc

.5 .5 .25 360 0 arcn

.625 .5 moveto

.5 .5 .125 0 360 arc
fill
put

CharacterDefs /turkey

24 23 true [24 0 0 -23 0 23]
{<003BOO 002700 002480 OE4940 114920

14B220 3CB650 75FE88 17FF8C 175F14
1C07E2 3803C4 703182 F8EDFC B2BBC2
BB6F84 31BFC2 18EA3C OE3EOO 07FCOO
03F800 1E1800 1FF800>
imagemask

put

25

The following program demonstrates the construction of a
user defined font The font will only have two characters
defined ("a" and "b") and will illustrate how both bitmaps and
analytic shapes may be used as font characters. The character
"a" will print a turkey (constructed as a bitmap), and the
character "b" will print a bullseye.
This dictionary is used by the BuildChar procedure for local
variables.
Allocate the font dictionary. Leave room for the FontID.
Build the required entries in the font dictionary.
FontType 3 tells PostScript that this is a user defined font
Use the identity matrix for the font coordinate system.
The largest character in the font will be 1 unit by 1 unit
Allocate the Encoding array.
Build the encoding vector that will define" a" and "b".
Initialize all entries in the encoding vector with" .notder'.
Associate the name "turkey" with the character code for" a".
Associate the name "bullseye" with the character code for
"b".
Define the various character drawing procedures and put
them in the CharacterDefs dictionary.
There should always be a description for the undefined
character" .notdef" which does nothing.
This procedure provides the analytic description for drawing
a bullseye. The bullseye is centered within the unit square.

This procedure provides the bitmap description for drawing a
turkey.
To print a bitmap as a character in a font, the • 'imagemask"
operator is used. The size of the bitmap is specified (note that
this particular bitmap is not perfectly square: it is 24 bits wide
by 23 bits high). The bitmap itself is specified as a hex string.

89

90

Making a User Defined Font, cont. 25

/BuildChar

end

{ BuildCharDict begin
/char exch def

/fontdict exch def

/charname fontdict /Encoding get
char get def

/charproc fontdict /CharacterDefs
charname get def

1 0 0 0 1 1 setcachedevice

gsave charproc grestore
end
def

/MyFont ExampleFont definefont pop
/showline

{ gsave show grestore
o lines kip rmoveto } def

/MyFont findfont 12 scale font setfont
/lineskip -12 def
72 555 moveto
5 { (ababa babab ababab ababa) showline

(babab ababa bababa babab) showline
repeat

/MyFont findfont 24 scalefont set font
/lineskip -24 def
72 360 moveto
2 { (ababa babab) showline

(babab ababa) showline
} repeat

250 180 moveto
23 rotate
2 { (ababa babab) showline

(babab ababa) showline
repeat

showpage

The procedure BuildChar is called everytime a character from
this font must be constructed.
The character code is provided as an argument to this
procedure.
So is the font dictionary.

Convert the character code to the corresponding name by
looking it up in the encoding vector.

get Now retrieve the procedure by that name from the
CharacterDefs dictionary.
Using the "setcachedevice" operator enables the characters
from this font to be cached.
Call the procedure which renders the character.

Now we are done specifying all the information required to
build a font.

Register the font with PostScript and name it "MyFont"
This procedure makes it more convenient to show a line of
text

Now use the font we have built. Build a 12 point version of
the font.

Note that one of the characters in the string which is shown is
the "space" character. Since we have not defined what the
"space" character should look like, the definition of the
... notder' character is printed instead.
Now build a 24 point version.

Rotate the user coordinate space to an arbitrary rotation.
This shows a rotated version of the font

91

For Further Reference

Foley, James D. and Van Dam. Andries. Fundamentals of
Interactive Computer Graphics. Addison.Wesley, Reading,
Massachusetts, 1982.

mM Systeml360: Priciples of Operation, Ninth Edition,
November 1970.

Newman, William M. and Sproull, Robert F. Principles of
Interactive Computer Graphics. McGraw-Hill, New York,
1979.

POSTSCRIPT Language Manual, Adobe Systems, Inc.

Pratt, Terrence W. Programming Languages: Design and
Implemenlotion. Prentice-Hall, Inc., Englewood Cliffs, N J.,
1975.

Warnock, John and Wyatt, Douglas. "A Device Independent
Graphics Imaging Model for Use with Raster Devices, "
Computer Graphics Volume 16, Number 3, July 1982, pp.
313-320.

92

Accented characters 85
Arc 14,17,89
Arcn 89
Arrows, drawing 25

Beveled line joins 26
BuildChar 89
Butt line caps 26

Centimeter 4
Character origin 34
Character width 34
Circular arcs 14
Circular text 53
Clip 73
Closed shapes 3
Closepath, motivation for 3
Condensed text 42
Copypage 73
Current font 37
Current path 1
Current point 1, 14,37
Currentfile 67
Currentmatrix 17, 23, 25
Currenttransfer 67
Cvlit 67
Cvx 67

Dash patterns 31
Default coordinate system 4
Definefont 76,81,89
Dictionaries, as local storage 51, 53

EBCDIC 77,81
Ellipse 17
Encoding vector 77,81,85,89
Endcaps 26
Erasepage 73
Exit 47
Extended text 42

Face 34,39
FID 76, 81, 85
Findfont 37
Flattenpath 57
Font 34
Font dictionary 37,76,81,85,89

Index

Font family 34
Font name 34, 37
Fonts, defining in prologue 39
For 73

Getinterval 47
Grestore 11,41,73
Grid pattern 19
Gsave 11,41,73

Image 67
Imagemask 89
Inch 4
Intersecting lines 2
Itransform 57

Line breaks 47
Line caps 26
Line joins 26
Lineto 1
Loop 47

Makefont 42, 45
Miter limit 27
Mitered line joins 26
Moveto 1
Moveto, positioning text 37

Newpath 1

Obliqued text 43,45
Operand stack 5
Outline font 77
Outlined fonts 79

Path 1
Path construction 1
Pathforall 57
Pie slice 15
Piechart, drawing a 63
Point 4,34
Point size 34, 39
Procedure, defming a 4
Projecting square line caps 26

Re-encoding a font 77
Readhexstring 67

93

Repeat 19,21
Rlineto 9
Rotate 13
Round line caps 26
Rounded line joins 26

Scale 13,23
Scalefont 37,42
Search 47
Setcachedevice 89
Setdash 26,28,31
Setdash, dash array 28
Setdash, offset 29,31
Setfont 37
Setgray 9,41,73
Setlinecap 19,26
Setlinejoin 26
Setlinewidth 2
Setmatrix 17, 23, 25
Setmiterlimit 27
Setscreen 69
Settransfer 67,69
Show 37,41
Showpage 2
Square path 9, 11
Square, drawing a 3
Stringwidth 47,51
Stroke 2

Text, condensed 42
Text, extended 42
Text, obliqued 43
Transfer function 67
Transform 57
Transformations order of 13
Translate 11, 13, 19,73

Vertical text 51

94

Appendix C

The Adobe Font Manual

Adobe Font Manual

These pages are reproductions
of POSTSCRIPT samples
printed on a 300 dpi
laser printer.

Revision 2
2 October 1984

This manual is intended for informational use only. It is subject to
change without notice and should not be construed as a commitment
by Adobe Systems, Inc. Adobe Systems assumes no responsibility
or liability for errors or inaccuracies that may appear in this
document.

The software described in this document is furnished under license
and may be used or copied only in accordance with the terms of such
license.

Adobe Systems Incorporated
1870 Embarcadero Road, Suite 100

Palo Alto, California 94303

POSTSCRIPTTM Font Manual
Second Edition
2 October 1984

Copyright © 1984 Adobe Systems, Inc.

POSTSCRIPr is a trademark of Adobe Systems, Inc.

Times is a trademark of Allied Corporation.

Helvetica is a registered tradelllllIk of Allied Corporation.

Avant Garde Gothic is a registered tradelllllIk of International Typeface
Corporation.

Table of Contents

Introduction

Typefaces

Encodings

Appendix

General Information
Languages

3
7

Courier Family , . 11
Courier 13
Bold. 15
Oblique . . . 17
Bold Oblique 19

Helvetica Family . 21
Helvetica 23
Bold. 25
Oblique . . . 27
Bold Oblique 29

Symbol 31
Times Family 35

Roman 37
Bold. . . 39
Italic .. 41
Bold Italic 43

WorkSheet
Standard Encoding . . .
Standard Character Set .
Symbol Encoding
Symbol Set

.47

.49

.51

.57

.59

Updates 69

Introduction

1

2

General Information

Font Manual

A font is a collection of characters (letters, numerals, punctuation
marks, reference marks, and symbols) which has a unified design.
POSTSCRIPT, as a graphics language, can reproduce a character as
easily as any other graphic shape, and has a wide variety of
procedures to allow easy handling of characters.

Adobe licenses typefaces from leading designers, such as
Mergenthaler Linotype and International Typeface Corporation.
Thus, POSTSCRIPT can produce text in such popular typefaces as
Times, Helvetica, and Avant Garde Gothic. These typefaces can be
scaled, obliqued, and rotated as desired, giving complete control over
the resulting image.

A considerable amount of information concerning POSTSCRIPT fonts
is available to an application program. Much of this information,
such as character widths, sidebearings, and character bounding
boxes, is of interest to the typesetter. A program can obtain
information about the font by either accessing the POSTSCRIPT font
dictionary or using a POSTSCRIPT operator. For details on how to
obtain font information, refer to the appendix on Font Machinery in
the POSTSCRIPT Language Manual.

This manual presents detailed information on the fonts available with
POSTSCRIPT. The information supplied allows the graphic artist to
design a document and the applications programmer to produce that
document. Further information needed for program implementation
is found in the POSTSCRIPT Language Manual and POSTSCRIPT
Cookbook.

The Font Manual incorporates the following information:

- Samples of each font at various point sizes

- Character widths for each font

- Character encodings

3

Typeface Samples

Width Tables

Character Encodings

4

Adobe publishes quarterly updates to this manual. At the end of the
manual is an appendix reserved for these updates. Any updates
current as of the printing of your manual have been included in this
appendix. You should add new updates to the appendix as you
receive them.

Two kinds of samples are presented in this section of the Font
Manual.

1. Each font family is presented in bodies of text showing the
related faces in that family.

2. Following this is a series of pages showing samples of each face
in the family at various point sizes.

The width tables are printed on the back of the typeface samples.
They show the character set of each typeface along with information
ne~ded for the precise placement of characters on a page. Each
character is shown in relation to the cap height, x-height, and
descender height of the font. Underneath each character is its width;
this is given in points for a character that is one point high. (There
are seventy-two points to the inch.)

The one-point character width is used to obtain the width of a
character at a particular point size. Simply multiply the one-point
width by the point size of the font to get the character's width in
points.

All computer-based systems must internally encode characters as
numbers. The last section of this manual contains several charts and
tables that present POSTSCRIPT'S default character-encoding scheme,
which is based on the USASCII and ISO 6937 standards.

Character codes are used to print a specific character, either by

inserting that code (as a decimal number) into a POSTSCRIPf string or
by directly including that code (as an octal number) in a string. For
more information on printing characters, see "Character and Font
Operators" in the POSTSCRIPT Language Reference Manual and
the text program examples in the POSTSCRIPT Cookbook.

POSTSCRIPf'S encoding can be easily changed. You can assign any
character to any numeric code to produce anything from a variation
of Adobe's default encoding to a completely original system of
codes. This ability is valuable to many applications, since some of
POSTSCRIPT's characters are not encoded in the default system and
can be obtained only by explicitly assigning them a code number.
For example, this applies to all of the accented characters.

There are two types of charts in this section: an encoding grid and a
code list. These charts are given for both the Adobe Standard
Character Set and the Adobe Symbol Set.

The encoding grid is a one-page presentation of Adobe's default
encoding system, arranged in sixteen columns of sixteen characters
each. To obtain the decimal code of a particular character, locate
that character on the grid, multiply its column number by sixteen and
add its row number to that product.

Grid positions marked in dark gray represent codes that are unused
and hence are available for assignment to whatever special characters
are needed by an application. Light gray boxes in the default grid
indicate positions reserved for control characters; these can also be
redefined as necessary, as can any position on the chart.

The code list is a multiple-page chart listing each character with its
description, code name, and octal code. The code name is needed for
reassigning character codes; the octal code can be directly used in a
POSTSCRIPT string.

It should be emphasized that the encoding presented in this section of
the manual is only the default scheme; it may be altered to suit an

5

Language Samples

6

application program. For your convenience, the encoding section
begins with a blank grid which can be used for setting up a
customized code system.

POSTSCRIPT can produce a wide selection of accented characters.
Since there is not enough room in the standard encoding system for
all fifty-six of Adobe's accented characters, these are not assigned
default codes.

If an accented character is needed by an application program, that
character may be assigned one of the unused codes in the default
system. Alternatively, the desired character may replace an
already-encoded character in the grid. Once an accented character
has an assigned code, it may be used from within POSTSCRIPT like
any other character.

The following pages present examples of non-English text produced
with POSTSCRIPT.

Languages

German

French

Spanish

Italian

Zum Bestand wahrhafter Bildung sollte es gehoren, daB Jeder,
der unserer Lettem sich bedient, fiber deren Herkunft sich klare
Vorstellungen machen kann und, indem er sein Wissen den Nach­
fahren weiter gibt, eingedenk dessen bleibt, daB in den Lettem ein
ewiges Srock Menschheitsgeschichte sich dartut, an dem auch er
Teil hat -F. H. Ehmcke

Observons ici que l'reuvre typographique exc1ut l'improvisation;
elle est Ie fruit d'essais qui disparaissent, l'objet d'un art qui ne
retient que des ouvrages acheves, qui rejette les ebauches et les
esquisses, et ne connait point d'etats intermediaires entre l'etre
et Ie non etre. II nous donne par Ia une grande et redoutable le~on.
-Paul Valery

Encarada la tipografia de tal manera, deja de ser un arte menor,
una artesania, para asumir el titulo de ciencia, 0 de filosofia, pues
inc1uye tambien a ia etica, como condici6n dignificante del
destino del hombre sobre la tierra con sus problemas morales
y perfecciones, al fin espiritual de ser algo mas que un peso inutil.
-Raul Rosarivo

E natural vantaggio della stampa il far ciascuna lettera sempre la
stessa, avendone Ie migliaja fuse in matrici percosse da un medesimo
punzone. Ma dalla maestria del punzonista dipende che Ie misure e Ie
parti, che possono esser comuni a piu lettere, sieno precisamente ed
esattamente Ie medesime in esse tutte.
-Giambattista Bodoni

7

Swedish

Finnish

Norwegian

Hungarian

8

Boktryckarkonsten ar kaUan till praktiskt taget all mansklig odling.
Den forutan hade de oemorda framstegen inom vetenskap och
teknik inte varit mojliga. Men ej heller boktryckarkonsten, 80m vi
kanner den, var mojlig utan uppfinningen av stilgjutningskonsten.
Det ar denna 80m ar Gutenbergs stomet.
-V alter Falk

Jos kerran kirjasimia luotaessa pyriman kaOOn keinoin taiteelli­
suuteenja tyylikkyyteen, niin kuin on ollut laita, velvoittaa mma
myos kirjapainoammatin harjoittajia ja talla alalIa tyoskentel
evia pyrkimaan toissaan samaan arvokkaaseen tulokseen.
-Atte Syvanne

Derfor priser jeg Gutenbergs opfmdelse, bogtrykkerkunsten, som
den nr6<1vendige forudsztning for kulterens sejrsgang, for den
udvikling, der har f0rt folkene ind i oplysningens verden, f0rt
dem fra m0rket og tneldom tillyset og friheden.
- Thorvald Stauning

Ama konyvmuvesze feladatat nagy reszben epfteszeti, fc5kent
pedig a sm tiszta ertelmeben grafikai feladatnak em. Ez a
felfogasbeli vaItozas a konyvet egeszen atalakitja es a fejlc5des
iranyat ismet visszatereli a mult kOnyvmuveszerenek
forrasaihoz.
-Emerich Kner

Typefaces

9

10

Courier Family

Courier with Oblique,
Bold and Bold Oblique.

10 point text on
11 point linespacing.

Courier Oblique

Courier Bold

Courier Bo~d Ob~ique

Each single letter is a small, well-balanced figure
in itself. There are bad types, too; however, in a
good type-face each letter rests complete in itself.
To us, who are used to reading, a letter has become
an abstract idea, a mere means of understanding. How­
ever, its characteristic forms reveal that originally
it meant more than that: a symbol, simplified to the
utmost and representing a given thing. And, even more,
that it held a mysterious meaning, acting as a magic
symbol to invoke spirits and subdue powers.
-Romano Guardini

The contemporary typographer regards his work from
the design point of view and concentrates on the
true essence of his task, to create graphic design.
-Emerich Kner

•
Machines exist; let us then exploit them to create
beauty - a modern beauty, while we are about it.
For we live in the twentieth century.
-Aldous Huxley

Nei~her may ~he c~arity o£ ~he sing~e ~et~er be given
up £or the sake o£ rh~.hm, nor may £orma~ beauty be
sacri£iced to mere c~arity or misconceived uti~ity.
-Jan 7:schichold

11

12

The Courier family supports all characters in the Standard Character
Set except the ligatures (ft andfl), the diphthongs (}E, <E, Ie and re)
and the per thousand symbol (%0).

Courier

15 cpi
8 pt.

abcdefghijklmnopqrstuvwxyz _ ~l~B
ABCDEFGHIJKLMNOPQRSTUVWXYZ & L0
1234567890 • $¢Y£fa --­
<%-/*/+i=\At> (@t;§i)
«?: ! ;» <".'," n I, , .") [i l.. S2]
{ - ~ .•• } _. Ac;:~fN6Suac;otl.

13.6 cpi abcdefghijklmnopqrstuvwxyz _ ~10B
8.8 pt. ABCDEFGHIJKLMNOPQRSTUVWXYZ & L0

1234567890 • $¢¥£ja --­
<%-/*/+i=\At> (@t;§!)

12 cpi
10 pt.

10 cpi

12 pt.

8 cpi

15 pt.

«?: !;» < \\. \, "" I , , • "> [i l & g 1
{ - w ••• }._ A<;iHMsua<;5Q

abcdefghijklmnopqrstuvwxyz _ ~10B

ABCDEFGHIJKLMNOPQRSTUVWXYZ & ~0
1234567890 • $¢¥£fa --­
<%-/*/+I=\~f> (@t*§~)

«1 : ! ;» <". \, " " I , , • "> [i (. il II]

{- U • N • } ... A<;Et~OSUa9oft

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890 • $¢¥£fa --­
<%-/*/+I=\~#> (@t;§!)
«?:!;» <".',n,,',""> [ilil~l)

{ - u • N • } ... ACEINOSUa<;6u

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890 • $¢¥£jn --­
<%-/*/+I=\A#> (@t*§~)
«? . I <" , n , '." > [•• g Q] ". • . , " .,,,, I <:.
{ - " . ~~ . } ... ACEINOSUac;ou

13

Courier
l-point wi4th of 0.6

: :1.::::9 ::::3::: :)1:::: :5:::::C::::: 'r.f-::: B:::: n:::: r.\::::::::: :+::::<:: :>::: :~::: :7'\::: :N::: :f::::::::::::
:t . .I: ::~I: ::t .:1:: :t:t:I:::t. :1:: :I:?:I: ::1: ~:I:: :1:.1:: :1;?1:: :1~1: ::1: :1: ::1: :!:::I: :!:::I: :!: :1: :t::1::t: :1::t::!.:t::::::: ::::

14

Courier Bold

15 cpi
8 pt.

abcdefghijk1mnopqrstuvwxyz _ 11~!
ABCDEFGHI.JKLMNOPQRSTUVWXYZ & U

1234567890 • $¢Y£fa --­
<%_/*~+I=\A#> (@t*S!)
«?:!;~ <".',u,,','_"> [.i..'1:]
{-v ••• } ... Ac!!aMOa90d

13.6 cpi abcde£gh1jklmnopqrstuvwxyz _ 11111&
8 . 8 pt. ABCDEI'GHIJKUmOPQRS'rUVWXYZ & z,f2J

1234567890 • $¢Y£fa --­
<%-/*/+I=\AI> (@t*§!)

12 cpi
10 pt.

10 cpi
12 pt.

8 cpi

15 pt.

«?:I;» <".',",,','."> [ic"aQ]
{- v ••• } ••• ~~aOMa951).

abcdefghijklmnopqrstuvwxyz _ 11~B

ABCDEFGHIJKLMNOPQRSTUVWXYZ & ~~
1234567890 • $¢Y£ja --­
<%-/*/+I=\A#> (@t*§i)
«?: ! ;» <". " " " • , , . "> [i to & g]

{ - w } ••• A.cttt90SUac;oQ.

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890 • $¢Y£ja ---­
<%-/*/+I=\A#> (@t*§!)
«? 0 , 0» <" , " , , 0") [••• g] .0., 0'" , 1(,

{ - ~ . " .} ... AC;Ef&OSUacoll

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890 • $¢Y£fn --­
<%-/*/+I=\A#> (@t*§!)
«? 0 , .» <" , " , '." > [•• A g] 0'0' .,,, , 1(.

{ - ~ 0 " ~}... .A.CEI&OSUa<;:ou

15

Courier Bold
l-po~ .i~ of 0.'

. !PT· .. "',.. "m· "y.' 'V"·~··'····'·'···"'··'··'·"··""

:t~l: ::t!':I: ::tw:~I: ::~:: :~I:: :I~:::::::::::::::::::::::::::: ::: ::: ::: ::: ::: ::: ::: ::: ::: ::: :::: ::::: ::: ::: ::: ::: ::::

~ ~.~ ~ ~.~ ~ ~.~ ~ ~~~ ~ ~~~ ~ ~.~ ~ ~I:" ~ ~ J(~ ~i(~ ~~ ~ ~ ~~ ~ ~ ~t ~ ~ ~i~ ~ ~ ~1~ ~ ~ ~i~ ~ ~ ~1~ ~ ~ l.~ ~ ~ n ~ ~ ~6~ ~ ~ ~Ol ~.-- -.- .. -....... -........... __ -......... _. __ . __ .. _._ .. _ _ ... -

16

Courier Oblique

15 cpi
8 pt.

abcdefghijklmnopqrstuvwxyz _ ~lmB

ABCDEFGHIJKLMNOPQRSTUVWXYZ & ~e
1234567890 • $¢¥£fa --­
<t_/*/+/=\A#> (@tt§f)
«?:!;» (". ',",,','."> [il·gj
{ - - . - • } ... AC2!ROSUar;oO

13.6 cpi abcdefghljklmnopqrstuvTllxyz _ ~1fi113
8.8 pt. ABCDEFGHIJKLMNOPQRSTUVWXYZ & U~

1234567890 • $¢¥£fa --­
<t_/*/+/=\AI> (@tt§f)

12 cpi
10 pt.

10 cpi
12 pt.

8 cpi

15 pt.

«?: ! ;» (". " ",. , , , • ") [j l • g 1
{--'-.}_ A9E!NOSUa~oO

abcdefghijklmnopqrstuvwxyz _ ~lB~

ABCDEFGHIJKLMNOPQRSTUVWXYZ & W
1234567890 • $¢¥£fa --­
<%_/*/+/=\A,> (@tt§f)
«?:!;» <". ',",,','-"> (il'fI)
{ - w • ~ • } ••• ACEfROSU!1.I;:6a

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890 • $¢¥£fD --­

<%_/*/+/=\A#> (@tt§f)

«?:!;» <". ',",,','."> [ii-sIll
{ - - . - • } ... Ac;eI&oSUar;o(J

~lflJ13

& l../iJ

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJK~MNOPQRSTUVWXYZ &
1234567890 • $¢¥£fn --­
<%_/*/+/=\A#> (@t*§~)

"''''?'.>'''' (\1 , " , '."> ['.912) ". • • , " ."" , G

{- H, } ••• ACEIiiOSUac;ou.

17

Courier Oblique
l-point width or 0.6

-:,,- --:0' -- -,..,- -- :7'1" --:~- - -'!:'- - --f":!.- - -:f.1" - -:T-- - -: 'T- - -v- ---:r:- -:M- --rt:1- --0- -:r;,:- --r-t- -:0= - --c:::-:- --T,
:~: ::H: ::t~:::~,:: :A:: :~~:: :':~:: :':'-:-':1:: :'~j:: :'~j: ::~~:::I:Y: :~:-\: :j~~I::L _I: ::!7:t::j~t: :t':~: :!~t::1 _.I

--r'1'- ---TT- -- -1" ... 7= - -:y: ---y- --:9- - ----- - -- - -- - -- - -- - -- - -- - -- --- - -- -- ------- --- - -- --- --- -- - --- --- --- --- -- - --- --- ----
:I~': ::t ~': ::t~~I: ::t':~,:::t. :': ::,~: ::::::::::::: ::::::::::: ::: ::: :::::::::::: ::: ::: ::: :::::: ::: ::::::::: ::: ::: ::: ::::

; tq;;;;10:; ;t~; ;~;; ;~;; ;,~;;;

--@----&----or---:R----f-----;p.----;to---'#--- -,.----~- --- --- ------ --- --- --- --- -- --- ---- ----- ---- --- -- ---- -------:; ,: ::; ,: :: ;lL,: :: ;..y-,: ::~ -,:: :,:.,.~: : :,: -~: : :,:m: : :,:. ;:: :,:~ l: : :,:;;: : ~G;: : ~:~;::;::;: : ;: :;: :;: :;: :; ::;: :;.:.:.;: ::: : :: ::: : _._._-------------------------._---------------------------.--_.--- --

18

Courier Bold Oblique

15 cpf
8 pt.

abod.fghijk~opqrBtu~z _ ~1.B

ABCDBFGHIJKUlNOPQRSrUVfiXYZ & U4
1234567890 • $¢¥£f- --­
<i_/*/+I=\A#> (,tISf)
«?:1;» <n. ',w,,','_"> lii.."J
{- ~ . - • } ... ActltR()!JtJ'i900

13. 6 cpf abcdafgb1.jklmnopqrlltuvwxyz _ ~ltd

8. 8 pt. ABCD1l7QBIJlCIMNOPgRS7:f1VfIXY'Z II UI
1234567890 • $~r£f. --­
<i-/*/+/=\"",> (BUSf)

12 cpi
10 pt.

10 cpi
12 pt.

8 cpf

15 pt.

«?: I,·» <". " ";' , I ' • ",. [; l.. a J
C- ~. - • }.- .ACf.tBoslt~9c5()

abcde£ghijklmnopqrstuvwxyz _ ~~#8

ABCDEFGHIJKLMNOPQRS'l'UVfiXYZ & U4
1234567890 • $¢¥£fD --­
<--/*,.+/=\"",> (@t*§f)
«?: ! ;» <". " "" , , , . H> [i i. • QJ
(- ~) ... Af;1!tRO§"Bt;6(j

abcdefghijkl.mnopqrstuvwxyz _ ~1.IIB

ABCDEFGBIJICLMNOPQRS'1!UVWXYZ & ~
1234567890 • $¢¥£f~ --­
<i_/*/+/=\A#> (@t*§f)
« ":I' , .» <" 1 " r '." > [".12] ••. , .,,, , It.

{ - w • - • } ••• AcEtNOSU-i90Q

abcdefghijklmnopqrstuvw-xyz
ABCDEFGHIJKLMNOPQRS'l'UVWXYZ &
1234567890 • $¢¥£fa --­
<%_/*/+/=\A#> (@t*§f)
~.,?, <" , " , , ."> [. .• Q]
" .•. ," ."" It.

{ - N C } ••• A.CEtRo8Ua,t;ou

19

Courier Bold Oblique
I-point "ldtll o~ 0_ 6

--u --'YJ'! _·V _.:y. -:V - -:'7- - -- - _ ... -. _ .. -_. -- _.-. -- - -- - -- _.- _. -_. - -. - _. - .. - _. - _. - -.... - _. - _ _ ... _. - _._ .. --

:t _ :I:::t ~I:: :t':~I: ::~:: :~I:: :I~::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::: :::::::::::::::::::::::::

20

Helvetica Family

Helvetica with Oblique,
Bold and Bold Oblique.

11 point text on
12 point linespacing.

Helvetica Oblique

Helvetica Bold

Helvetica Bold Oblique

I am Typel I bring into the light of day the precious stores of
knowledge and wisdom long hidden in the grave of ignorance.
I coin for you the enchanting tale, the philosopher's moralizing,
and the poet's phantasies; I enable you to exchange the irk­
some hours that come, at times, to every one, for sweet and
happy hours with books - golden urns filled with all manna
of the past. In books, I present to you a portion of the eternal
mind caught in its progress through the world, stamped in an
instant, and preserved for eternity. Through me, Socrates and
Plato, Chaucer and the Bards, become your faithful friends
who ever surround and minister to you.
-Frederic Goudy

The typographer who can serve his art modestly and with a
sensitive understanding of the special demands made by each
type face will be the one to achieve the finest results.
-Paul Renner

Of all arts, architecture is nearest akin to typography.
Both are equally related to their function. In both,
that which wholly fulfils its purpose is beautiful.
-Helmut Presser

No other art Is more justified than typography In looking
ahead to future centuries; for the creations of typography
·beneflt coming generations as much as present ones.
-GIambattista Bodonl

Helvetica is a registered trademark of Allied Corporation.

21

22

The Helvetica family supports all characters in the Standard
Character Set.

Helvetica

6 pt.

8 pI.

9 pt.

10 pI.

12 pI.

14 pI.

18 pt.

abcdeighljklmnopqrstuvwxyz_1B celllill" B--­
ABCDEFGHIJKLMNOPQRSTUVWXYZ & I<:. CE l"
1234567890' $ev£/" <%~VI+I·\·#> (@rt§'1)
«1:1; •• ''',"'',''', [J~ '") {-",} ..• Ac~lfi10~u~

abcdefghijklmnopqrstuvwxyz_1B cefifllllll B--­
ABCDEFGHIJKLMNOPQRSTUVWXYZ & A: CE l0
1234567890 • $¢lI£fa <%-%./*/+I=\iI#> (@t*§')
-?:I; .. c".',"",'-", (ii:1I] {-.-.} ... AQEiNOSOa~O

abcdefghijklmnopqrstuvwxyz _ e ce fi fll t" B --­
ABCDEFGHIJKLMNOPQRSTUVWXVZ & Ie. CE l0
1234567890 • $¢)f.£fa <%-o/ooI*/+I=\iI#> (@t:t:§')
«?:I;» e".',".','·"' [U,i!2] C-·-. } ... A9~iNOsOaq6Q

abcdetghiJklmnopqrstuvwxyz _ ce re ti til t flJ B - -­
ABCDEFGHIJKLMNOPQRSTUVWXVZ & IE CE l0
1234567890 • $¢¥£ta <%-U/+I=\"#> (@t+§'D
«?:!;» ,".',N,:,""> [il, Ill] {-'". } ... ACETf:JOSUagou

abcdefghijklmnopqrstuvwxyz _ ffi ce fi fli f" B - -­
ABCDEFGHIJKLMNOPQRSTUVWXYZ & If. CE t. 0
1234567890 • $¢¥£fa <%-%01*/+1=\"#> (@t'*§~)
((?'I'» (IC' II ".") [., all] {_W'''} A""E·'AIN~ 0' ;t...U" ,. A , • ", Il. y \:) ac;ou

abcdefghijklmnopqrstuvwxyz _ ce ce fi fill", B - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & IE CE t 0
1234567890 • $¢¥£fa <0/0-%01*/+1=\"#> (@t:J:§'D
«?:!;» <".',",,',""> [j{}Q] {~''' .. } ... AQETNOSUac;oQ

abcdefghijklmnopqrstuvwxyz _ 00 00 fi fl It" B - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & tE CE t (2)

1234567890 • $¢¥£fa <%-%0/*/+1=\"#> (@t:J:§1J)
?'I' " , " "." [.. sQ] {_ ,'} AO ("":E""IN-0' SV U" .. " « ... ,» (.,'" > 16 " ... ':(agou

23

Helvetica
l-point widths

·I···U· ... YJ ... W ... X ... y ... Z -. -- -- -- -- - - -- - -- - - ---- ---- ----------------------------- --- - -- ----------------- --- -------- --- --- --- - -
·f ·I···f l··~· -J-.+ . f·· ... -J- -J-..•..•..•.....•........•.....••....•........•.••........ . 0.ii1 i . ·0.722· . '0.001" .. 0:9"44· .. 0:867· . o:erii . ·O,S1-{ ••.••.••..•.••..••.•••.•.••..•.••.....•.....•.....•.••..•..•..••••.......

.. , , " n·····""!:···A··· ... ' ' ... " ... II .•.• ' .•. ' .•. !' ... II• ~····o····'·······

;A;;A;;;A;;;A;;;A;;::::;;;IQI;;;g;;;;r;;;;I~I;;J~I;;;;~;;;I~I;;;;~;;;I~I;;;~;;l;~;;;~.:.I;;;;qI;;;;;;
0.667 0.667 0.667 0.667' 0.667 0.667 0.722 0.667 0.667 0.667 0.667 0.278 0.278 0.278 0.278 0.558 0.722 0.n8 0.n8

;~ ;;;~;; ;~;; ;~I;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;; ;;; ;;; ;;;;;; ;;;; ;;;;;;;;;;; ;;;;;; ;;;;;;;;; ;;;;;;;;; ;;;;
0.722 0.5. 0.5 0.5

.. 7····a···'"'--··· .. ····--···a·········T ~ ·,··· .. ···""··· .. ········1···· ... ·····,····0····,,···· .. •·
;;~;;;I .. :;;;~;;A;;;A;;; .. :;;l;;;;;~l;J~;;}~;;;;~I;;;;1;;;;I~I;;;;I;;;;I~I;;;;~;;;I.;;J1;;;P;;;; .. ~;;;q;;;A
0.558 0.558 0.558 0.558 0.558 0.558 0.5 0.558 0.558 0.558 0.558 0.278 0.278 0.278 0.278 0.278 0.222 0.558 0.556 0.556 0.556 0.556

24

Helvetica Bold

6 pt.

8 pt.

9 pt.

10 pt.

12 pt.

14 pt.

18 pt.

IIbc:defghl/klmnopqrstuvwxyz _. ca fI fli f • 8 - - -
ABCDEFGIfJKLMNOPQRSTUVWXYZ. IE CE t. g
1234587890 • "¥E/a &-UI+,.......... (011m
.1:1;" ," .. :.... [II."") (--. } ••• At;e"AO$U'c;;60

abcdefghijklmnopqrstuvwxyz _ • 011 II n II • B - -­
ABCDEFGHIJKLMNOPQRSTUVWXVZ & /c CE t. "
1234567890 • $¢¥£f'll. <%-%J*I+(=V'#> (@n§1I)
.. 7:1;,. .": ... "','.... [11,,111) {--, } ••• AC;SAOAUac;OO

abcdefghlJklmnopqrstuvwxyz _ • ce fl fl I I " B - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & IE. CE t. 9
1234567890 - $¢¥£fa <%-%oI*/+I=\A#> (@f.I:§1f)
«1:!;. • ".',".,','.... [iLIR] (_.w, } ••• AO~'t:1bSO'c;Oo

abcdefghijklmnopqrstuvwxyz _ Ie Cle fi fll • fJ B - - •
ABCDEFGHIJKLMNOPQRSTUVWXYZ & IE. CE t.1ZJ
1234567890 • $¢¥£fa c%-%J*/+I=\"#> (@tt§~)
.':1;- c"",""',"'" [llolll) {--.-~ } ... ACEifilOSUac;OO

abcdefghijklmnopqrsluvwxyz _ m ce fi fll t s B - - -
ABCDEFGHIJKLMNOPQRSTUVWXVZ & /c CE t.. 0
1234567890 • $¢¥£frt <% ... %oI*I+I=\"!:-_ • t~f*§~)
«1:!;» c".',",,','·'" [iLI2] {_w._ .. } ••• AC;EINOSUac;oO

abcdefghijklmnopqrsluvwxyz _ m m fi fill 9 B - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & IC. CE t. ((J

1234567890 • $¢¥£fa <%-%oI*1+I=\A#> (@t*§m
«?:I;» c".',",,','·"> [il,12] {-"." .. } ••• ACEiNOSUac;ou

abcdefghijklmnopqrstuvwxyz _ ce C2 fi fl If" B - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & IC. CE 1. (?J

1234567890 • $¢¥£fa <% %o/*I+I=\A#> (@t*§IJ)
«?:!;» <".',",,','-") [iL!2] {-v."" } ... ACEiNOS(ja~oO

25

Helvetica Bold
1-polnt wIdIhe

··S··T:···U···'!I···W· ···X···~···Z·· --- - - -- - - -- - --- -- - - -- ----- -----------------_. ---. - --- - -- ----------------------- - ---. ----- -----
·1 .. ~ I··~ ~ .. + +··1 . ~ + +.. ·O.68j . ·0.8;; .. iJ:i22· .. o.w; .. iJ:i4,i .. iI:i67 ... 0.1i8i . ·o.sH .. .

·:A:··:J\···:A:···A .. ····:l:···:l:···· ····C···.:···C····e···I'···l' ... A1···l·····j;:···NI!' ···n···Q' ; ~;;~;;;~;;;::.;;;~;; ;~;;;~;; ;~; ;;E~;;~;;;;~;; ;.1;;; .. ;; ;1.1;;; .. ;; ;~;;;.: .1;;; !~I;; ;I: .. ! ;;;;
0.722 0.722 0.722 0.722 0.722 0.722 0.722 0.&67 0.667 0.667 0.667 0.278 0.278 0.278 G.278 G.811 0.722 o.m 0.778

__ .A ____ _ •• __ ___ ~ _ _ _ _ _ ___ v ____ ~ ___ ,. ____ ~ __ _ I! __ . _ •• ___ v __ . ___ _

:OI:::IQ::~O;::=gJ~::S;::;UI:::JJ;::;U:::IU;::X::Z:::
. 0.'778· . ·0.178 .. ·o.m .. D:i7i .. ·o.i187 .. lii22· . ·am .. lii22· . ·am .. G:eiIi' . iJ:811·

~ a~ ~ ~,tf ~)~ ~ ~ ~Itt ~ ~e~ ~ ~ J~ ~ ~: ··I~ ~ ~ It ~ ~ [~~·I~ ~ ~ J(~]: ~ ~ m ~~ ~n ~ ~~IQ ~~~I·· ~ ~ ~ ~I··· ~~)~ ~ ~j~ ~~ 1~~ t(................................... 9 1 P. ... Q
0.556 0.611 0.556 0.811 0.556 0.333 0.611 0.811 0.278 0.278 0.556 0.278 0.889 G.811 G.811 0.811 0.811 l1.3li9 0.556 0.333 0.611

; ~I; ;;~ ;;;~;; ¥~ ;;~;; ;;; ;;; ;;;;;; ;;; ;;; ;~;;; ;;;;~; ;;;;;; ;;;;;; ;;;;;; ;;;;;; ;;;;;; ;;; ;;; ;;; ;;;;;;;;; ;;; ;;;;;;;
0.556 o.m 0.556 0.556 0.5

~ a~ ~}(~~a~ ~a~~ ~a~~ ~A~~ ~I·· ~ ~~ ~e~ ~~ ~I~~~~~ ~~Ie~ ~~l~ l ~~l~ ~l ~~~(~ t ~)i~ ~~iJ~ ~~:O~ ~~f:f~~ ~ ~ .. .
0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.558 0.556 0.278 0.278 0.278 0.278 0.278 0.278 0.811 0.811 0.611 0.611

26

Helvetica Oblique

6 pt.

8 pt.

9pt.

10 pt.

12 pt.

14 pt.

18 pt.

abcdefgh/jldmnopqrstuvwxyz _ 89 (B"" I I. 8 -_.
ABCDEFGHIJKLMNOPORSTUVWXYZ & IE (E t.8
1234567890 • UII£ja <"'~V.4/_\·1> (@U§fJ
.?:I;- ,",: "::,", {illll} r-... } .. , Ar;~ffI()S~

abcdelghijklmnopqrstuvwxyz _ 89 aJ Ii fI,' II 8 - -­
ABCDEFGHIJKLMNOPQRSTUVWXYZ & IE (E L f?J
1234567890 • $¢'¥£ja <%-%./·/+/=V'#> (@tt§f)
.. 7:1;» ,0.', •• : •.•• [ij"QJ {-':) ... A9E.ifJ6sua¢o

abcdefghijklmnopqrstuvwxyz _ tB C8 fi flI18 8 - -­
ABCDEFGHIJKLMNOPQRSTUVWXYZ & IE (E L RJ
1234567890· $¢¥£fa <%-%..I"/+/=!II#> (@tt§f)
«7:1;» ,".'/.:' [il,'l1] {--·-..} ... A9~ifl6~Ua¢O

abcdefghijklmnopqrstuvwxyz _ IB re fi fill RJ B - -­
ABCDEFGHIJKLMNOPQRSTUVWXYZ & IE CE t 0
1234567890 0 $¢¥£fa <%-U/+/=\II#> (@t:t§f)
«?:I;» ell.',~,: '.". lii/g] (~w'-'} ... Ar;Eff:J6suar;oti

abcdefghijklmnopqrstuvwxyz _ EB ce fi flll13 B - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & IE CE L f?)

1234567890 • $¢¥£fa <%-%,/*/+/=\"#> (@tt§1D
«?,. II I " , '.", l" a97 {--.- } ArE"/AN-O' .xU' .. A ... ," <.,,,, 1(, J ~... y \:) a90u

abcdefghijklmnopqrstuvwxyz _ CB re fi fill e B - - -
A BCDEFGHIJKLMNOPQRSTUVWXYZ & IE CE t 0
1234567890 • $¢¥£fa <%-%01*/+/=\'\#> (@t:t§1f)
«?:!;» <It:,'~, ~ '0"> [j l, iJQ] {_"o: }" 0 0 A9EiNOSUaqoO

abcdefghijklmnopqrstuvwxyz _ a3 re fi fill fJ B - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & IE CE L 0
1234567890 • $¢¥£ja <%rv%oI*/+/=\I'#> (@tt§ff)
«?:!;» <II.', ",,','0"> lit gQ] {-..,.': } •.. AC;EfNOSUar;oO

27

Helvetica Oblique
1-po1nt widths

-'r---fl- --T-F --M=!" -'X- --v --:7 --.. '- -.. ----.. ------ --. --- --- ---. ---- ---. -----. ------ ------ ---. ------- --
- f -1-. - f j - - 'I'VI- - ·1-1f-lff · - . - - _1_ 1_1_ - .",", .. - ... -. -'" - - .. - .. - - - -- .. - - - - - - - - - - - - - - - - - - -. - - -. - - - -. - - - - -. - - - -' - -. -0.61 i --0:722 . - -o.66i - -0:94:4- .. (£66-"- - -o.66i - -o.isi i . -...... - - - - - .. - - . - - - . - . - - - - - - - - . - . - - - - - - - . - - - - - - - - - - . - - - - - - - - .. - - . - . - - - -

~A ~~A ~~~A~~~A~ ~ ~ A ~~ A ~~ ~IG~ ~ g~ ~ ~g~; /R ~;Ig ~;l~ ;I~;; l; ;J;; ~~; ;/'!!t;; ~q;; ~g; ~;~ ~ ~
0.667 0.667 0.667 0.667 0.667 0.667 0.722 0.667 0.667 0.667 0.667 0.278 0.278 0.278 0.278 0.556 0.722 0.778 0.778

::Q~::: :Q~. :: :Q":-: ::i?f:: :c:: :U"::: :,~,:: :U~ -:: :,.:./=:: v:: :7: :::::::::::: ::::::::: ::::::::: ::::::::: :::::::
·f -/---1- j-- -1- f· .~- '-f~-'i -/--'I-Uf -- i '1-' -/-Uf · 'i-I i- .-",",- -----. -.- --.--- - •. -.- --.-- ---. -----. ------ -- ..
-0:778-- -0.778-' '0.778' --o:iis- --0.667- --0:72:[-'0.'122" 0:722- - '0.'122- -0:66-''- -Citii'-"- .-- - -. --'" - - - - - - .. - -. -- -- -' - - -- .. - .. -- -- --

; ;~; ; ;X; ; ; J{ ; ;~ ; ; ; ; ; ; ; ; ;; ; ; ; ; ; ;;
0.722 0.5 0.5 0.5

28

Helvetica Bold Oblique

6 pt.

8 pt.

9 pt.

10 pt.

12 pt.

14 pt.

18 pt.

abcdefghijlrlmnopqrstuvwxyz _ • (10 " " I , .8- - -
ABCDEFGHlJKLMNOPORSTUVWXYZ & IE (E t. fi1
1234567890 • $¢¥£f" d.-%.I"/+I=\~ (~
«1:1;» .".', "n',""' [Ii,"') {--. J ... A~EffjMu.FOd

abcdefghijklmnopqrstuvwxyz _ 1!8 OJ II tIl' 11 8 - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & IE (E I.IiJ
1234567890 • $¢¥£fll <%-%.r/+/=I'III> (@ff§1fJ
«1;1;" "~', .~, ~ '.", [l("~ {_.: }." Ar;£TfjOSUsfou

abcdefghIjklmnopqrstuvwxyz _ Ie De fl fl , 111 8 - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & IE CE L I?J
1234567890 • $¢¥£/11 <%-%..!*/+/=I"#> (@#§1TJ
«1:/;» c", ~"II', '.", [it!!!] {_'R, }." A(fEffJosUst;OO

abcdelghijklmnopqrsfuvwxyz _ Be (8 Ii I1I1 B 8 - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & JE CE L f?J
1234567890 • $¢¥£jll <%-%,,/*/+/=\1111> (@tl§JI)

? , ".. I!/ _~.N A'" -ANN.A~ ',,,, (j A

« :';" t.,,,,· > [jl, 1 { ,}... vEl v;:,Ua9 U

sbcdefghijklmnopqrstuvwxyz _ ES ce fi fill B 8 - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & IE (E L f:1

1234567890 • $¢¥£/11 <%_%oIY+/=\A#> (@t:t§ffJ
? , II ." "" r aRt {-~.-) AI"E"I"Nw O'Svu"" A «.:.;» (., ", . > dl,-J ~ .•• yo SfOU

abcdelghijklmnopqrstuvwxyz _ t!S (B Ii I111 B B - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & IE CE L IZJ
1234567890 • $¢¥£f¥1 <%_%oIY+/=\A#> (@t:t§ffJ
«?:I;» <".','~,','~"> lu,!!!l] {-... .,: } ••• At;EiNOSUagou

abcdefghijklmnopqrstuvwxyz _ B!J CB fi fill B 8 - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & IE CE L {?j

1234567890 • $tt¥£fa <%_%o/*/+/=\A#> (@tt§ffJ
«?:I;» <&&.',"" '/0"> til, i!!J {-..,.,: } ... A9EifJoStJagoCi

29

Helvetica Bold Oblique
l.poinl widthtl

-:A---:O---"----ll--:r- .. r ... a.--:u ... , ... :T- .. -K---r---M·--Ar-·-a-··a---a·--n --··
-~·--I~--·f~---I -I·-·~··jr.f·-j I···~~-··I~··-f"'---I· --j -.j f··j'~···I· j-·-II:":i-··I- ··-Inl···-·
-0:122- - -0.722 --0.122-· -ti.722- -il.iiJ7 .. O:s1,·· ·o:ritj·· 0.122- -0.278 -0.55; - -0.722-· o.s1'·· -0.833- -a.m· -. o.m-· ·ti.w --0.718-· -tim· -..

. -S· -. r· --U -.. \l---W --X -. -~ --Z -----. ---.... -.. -........... -. -...... -..... -.. --.......... -....... . -- - ---- ---- - ---- --- .--- ---- .---- .--
·f -.j f··j -1---1- ·I---f· j ··-1· ·1-··•.....•........ - ·0.687 -. O.S;1· . o:m-· -0.661 .. -0.944·· . ·0:66i . ·ti661· ·0.6i1 .. -... -

... - -..... --- r' ---. - .. -. ··A'-···A·'·-··A""···A· .. ···A·~···A·-··· -.. ~' .. IE.' ··~ ... ···~·····l'··J'··-lA··J·'!.··t.····N"!' ... Q'.-.-Q' -- ..
: . : : . : : : . : . : : : .. : . : : : - : - : : : . : : . : : : . : . : : : ~ ~ : : :1. __ : : : I ... : : : : : ! ... : : :1_ : : : .. : : :1. : : : .. : : :1 ... : : :1. : . : : : ~ .. :1: : : I: .. ! : : : :

0.722 0.722 0.722 0.722 0.722 0.722 0.722 0.667 0.667 0.667 0.667 0.278 0.278 0.278 0.278 o.Sl1 /1722 0.778 0.778

;;~; }i~r;;~;;;:g;;~;;;
0.556 0.778 0.556 0.556 /15

~ :a~ ~ ~,a ~ ~ ~,a; ~ ~ ~a ~ ~ a~ ~ ~,a ~ ~ ~I:·· ~ ~ ~~~ ~ ~ :~~ ~)~ ~ ~ ~Ie. ~ ~ l. ~}. ~ ~ ~f ~ ~r ~ ~t ~ ~1. ~ ~ ij ~ ~ ~ij ~ ~ ~~ ~ ~ ~~ ~ ~ ~ ~
.-.-- ... -.---- .. - .. -- --- ----~-.--- .. _ ... -
0.556 0.556 0.556 0.556 0.556 /1556 0.556 0.556 0.556 0.556 0.556 0.278 0.278 0.278 0.278 0.278 0.278 0.611 0.611 0.611 0.611

30

Symbol

a E9 (b 0 c) = (a E9 b) 0 (a E9 c)

-.(pVq)=-,PA-.q
-,(pAq)=-.PV-.q

£=min(x 1(1 + x);(: 1)
1>0

m

W (E; - ~") = I I CI n { ~' } I· 1 CI n { ~" } 1 if ~'.~" eLand ~' ;(: ~"
1-1

U ZI(t)~M
1.1

~(t) n~(t) = 0 (i ;(:j)

proposition

('v'u)s(p)
(3u)s(p)
('v'u)s(-p)

(3u)s(-p)

-«'v'u)s(p»

-«3u)s(p»

true if and only if

SnT~=0
SnTp;(:0
SnTp=0
SnT~;(:0

SnT~;(:0

SnTp=0

Vc = (l/jroC) I = (l/aC) /- 90° .11Ji = (l/mC) I/O - 90°

31

Symbol supports all characters in the Symbol Set.

32

Symbol

9 pt. a.13'Y&~11Eh~hKA!J.v~o1tpaqru«l><p'X'IICOOl
ABraEZH8IKAMNSOTIPI:TYTcIIX'I'O ill:
=_E~<>S~AV-+±X+=-~~~~

®e0~U:::)~ctc~E~~ If {n} [n] «() t
,- ®©TM ®©TM • • I II I I I I I
,J/OL1.3'v'I! a () _VK~.f.'9t) H U U J.
0123456789 0#%'*" & . !?:;., ... II
~<=>1l'¢==> H +---+ ,,- U

12 pt. a~y&~" e~t1CAJl V~OltpcrC;'tu<l><PX'l'rom
ABr.~EZHE>IKAMNEOIIPl:TYrct»X'¥Q TIL
=_~~<>S~AV-+±X+=-~-~~

®e0nU::::>:::H,LCCEfiB If all [n] «(I) i
I_ @©TM @©TM I II I I I I I
..J/OL..L3'v'lfClO_VNSp9t J ~~ LJ U J.
0123456789 0#%'*" & . !?:;., ... II
~<=>1l'¢::=> H f--~ ,,- u

18 pt. a~'Y()el; 11 8th KAfl. V~01tpO"~'t'\)<I><pX'l'rom
AB rilE ZH 91 KAMNE OIIPl:TYr<l>X'I'Q
= *' = = < > < > 1\ V - + + X + =:: - -, 00 oc:.
® E9 0 n u::)::) ex. c c E~3 If {rl}

I- @©TM @@TM .y. ••• I II
.J/OL.l..3Vlf a () VNS fcJ9t J i r
0123456789 0#%'*" & oJ?:;., 000 II
.u¢:>11<=~ H ~-~ ~- lJ

IlL

[fl] ((l) i
I I I I I
LJ U ~

33

Symbol
I-point widtbs

::A-: :::B-:: :r::: :A:: ::E: ::Z· ::: H-:: :0::: I::: v-:: ::A::: :M' . ::-N: ::: ';i:j'::: -0-:: :rr-:::n::: ~::::r.p
-; ;---; i---; i---A---; ;---; .---; ; ___ ;0,_.; ;---rl"'-;---;1.\;---; ;--; - ;---;I0000(---, -;---; ;-_ir., __ ~ ___ ,J.;
- 0_696 - - -0.66 -- '0:603- - -0:61;" . '0-.652' - -0:65 - -- 0:765 -- -0.741- - -o:3si' - 0:72.4 - - -0.686- - - -0:918- -- -o:i-iJ ---O.64S- - - -ri.7S - - -0.768- - - -0:58 - -o.S9i - -0."632

--1-' --2- --3- -- -7t --- 5 ---6-- -7- --g-- --9 ---0- ----- --#- --=nY:- --- --- - -1--- ,,- -- 0- - - - - - - - --- - -- --. --- - - - - _.­:; ;:::.- .:::. -;:::.~.:::. ;:::. -.:::, -;::: .. :::. -;::: .. :::;;::: . . :::,70.:::;~;:::._.:::. __ .:::,_.:::::::::::::::::::::::::::
-o:s ---o.S ---o:s ---o.S ---0:5 - . -o.S ----o:s- ---o.S ---o:s ---0.5 - - -o:i:i - -oj -. -on3 ----0:5 - -0~i47 - 0:4-li - -0.4- --- - -- -- - - -- - -- - -- - -- - -- - -

~~ ~ ~.~ ~~~ ~ ~~.~ ~.~~~~.;..;.~ ~ ~.<.~ ~ ~.>~ ~ ~ ~~~ ~~ ?~ ~~.A.~ ~ ~.v.~ ~~.~ ~~ ~~~.*~ ~~ ~~~ ~)<~)~~ ~ ~~~:{ ~~.~ ~ ~.S~~ ~~~.~ ~}{ ~
-0.549- - -0:549 - -0:549 - -0.549 - -0-.549' - 0:549 --0.549 -'0.549- - -0.603- - -0.603 --0:549 - -0:549 --0.549 - -0.549- -0:549 - -0.549 - -0.549- - -ojii - -0:7i:i - --O.7ii -

~;~~~,;;; :1;; ;J.;; ;.~;;;:(; ;;.;;;.@:;; ;,~.;; ;:r4.;;; t\; ;.9; ;~~.; ;~~: ;;/f.;~ ;.¢;; :¢;;J~;; ;~~~.~ ~~.~.~~;
0.863 0.2 O.S 0.494 0.329 0_329 0.768 0.768 0.823 0.768 0.768 0.713 0.713 0.713 0.713 0.713 0.713 0.713 0.439

~;~; ~~t~ ~ :~.~~~.? ~~ ;.-b~; ;.~;;; :V.;~};; ;:Y.; ;;.;~;.~~ ~.~t; ;;tt ~ ~.~~~ Jl~; ~l.~ ~~~ ;~;; ~~ ~~; ;~~ ~~;;~;; ~;;
0_658 0.167 0.494 0.768 0.658 0.549 0.713 0.278 0.713 0.823 0.686 0.987 0.79S 0.823 0.713

--(---(----J ----k-' -J- ----)- --J----)-.-. -[- --[,. -1- ---t----J- ---j- --J---J ---{- ---r ---~-----l- ---j- ---1- ----Z--~~ •• - ____ .--- ----- ----.-------- ---- --- ---- ---- --------------- ---- ---- ---- --.- ___ OM .' ___________ • ___ _

-~-;---; -;---' -;---; -;---;-----;-----;- .--,,:: i_MOO; ;--<- -;--- -;--- ;---;----r ---' ---;. ;---;- ;---1 -;---;--;---i -;---; -;---;- ,---; -;--
0:333 -0.384 - 0.384 -0.3s4 -0.384 -0.384 -0.384 -0,3j3 -0,333- -0:3'84 - -0:3'84 - -0:3'84' -0:3'84 - -0:3'84 -0:384 - 0:333 - -0.48 - -0.494- -0:494 - -0.494- - 0:494 - -0.494- -0.494 -

-J ----} ---f ----(---'1- --. -J ----1- ------::-:--&-----------f ---?- --.... - -- - - --- - -- - -.- -_ .. - .. - - .. -.- - -... " - - .. --........ - - - .. - .. - - .. - - .. - - - .. - - - - .. - -
... .;" - -;- -;- .. -" .; -- -;- -;---;- -;- .. _ ... i - - .. ;- ;- r --;- --, .. -- .;- .. ;- 0- reo;- .. -;- .. ;-- .. i-';-" -;,;_ .. -r";-" -;.,.;- --;- ; -- -i- -;- -- .. -- --- --
-0.494- - -0:48- -0.;'74 - 0:686 -- -0.686- - -0.686 --0."s49 . - -0:5 - --0.77S- -- 'o:is- -0:333 -OM4 -0:278 -O.iis- -o.iS - -o:is- --- i .0- -- -0.5" - - - - - -- - -- - -- - -- - -

: :®-: :.: fC\:: : TM:: : -®- : : :@C::::™::::.::::-::::::-:::::--:::::-::::::::::::: : :: : :: : :: : :: : : : ::: : :: ::: ::: ::: ::: :
- f -1- - -~~- - -I- - - -I- - -~ -1- - -1- j _. -1- - - f - - j - ~ - - -I"'f - - j +-1- - -~¥j - - -I.~ --
--0.79 --- -0:79- - - - -0:89-- - - -0:79- - -- 0:79- -- -0.786- --0:46- - -0.753- - -0:;S3- - -0.753 ---0.7S3- -- -- - -- -- - - -- - -- - --- -- - -- - -- - --- --- -- - --- ----

34

Times Family

Times Roman with Italic,
Bold and Bold Italic.

11 point text on
12 point lines pacing.

Times Italic

Times Bold

Times Bold Italic

The graphic signs called letters are so completely blended with
the stream of written thought that their presence therein is as
unperceived as the ticking of a clock in the measurement of time.
Only by an effort of attention does the layman discover that they
exist at all. It comes to him as a surprise that these signs should
be a matter of concern to anyone of the crafts of men. But to be
concerned with the shapes of letters is to work in an ancient and
fundamental material. The qualities of letter forms at their best are
the qualities of a classic time: order, simplicity, grace. To try to
learn and repeat their excellence is to put oneself under training in
a simple and severe school of design.
-William Addison Dwiggins

Architecture began like all scripts. First there was the alphabet.
A stone was laid and that was a letter, and each letter was a
hieroglyph, and on each hieroglyph there rested a group of ideas.
-Victor Hugo

Decisive, too, for the quality of a letter is, that its various parts,
though of limited expressiveness in themselves should combine
into a harmonious unity charged with imagination and feeling.
-Albert Windisch

It can be considered a special merit of our time that creative
forces are again concerned with the problem of type design - a
problem which has been faced by the best artists of every age.
-Walter Tiemann

Times is a trademmk of Allied Corporation.

35

36

The Times family supports all characters in the Standard Character
Set

Times Roman

6pt.

8 pt.

9 pt.

10 pt.

12 pt.

14 pt.

18 pt.

abcdergbljklmnopqrll11~ _ II III A A ,llll.8 - _.
ABmEFOHlJKLMNoPQRSTUVWXYZ 8t A! IB L"
1134567890 • $¢¥£/'I <""""""'+I=\"#> (@tun
«7:1;. i·.'," ft', ' • .., IlL'"] {--, } .•. Aca~ll'46d

abcdefghijk1mnopqrstuvwxyz _ lIB (B fi fi II III S - - -
ABCDEFGHUKLMNOPQRSTUVWXYZ &)£ (E L 0
1234567890 • $¢Y£Ja <9b-%o'*/+I_\iI#> (@t:j:§1D
«1:1;» (".' .ft,,','.") [i/,H] {-•• -. } ... Ac;ntllrOSU4~

abcdefgbijklmnopqrstuvwxyz _ lIB re fi. 11. 1 i fj B - - -
ABCDEFGHUKLMNOPQRSTUVWXYZ & .£ <E L 13
1234567890 • $¢U.fD <%-9'od*I+I=\-II#> (@ttU>
«7: !;» <".' .".:,' .") lii,lI!] {--'''. } ... AC;Et:f:l()SO~Oft

abcdefghijldmnopqrstuvwxyz _ Ie re fi fill f/J B - - -
ABCDEFGHUKLMNOPQRSTUVWXYZ &.tE <E L (2)
1234567890 • $¢¥£/lJ <%-%cI*I+I=\"#> (@t;§,) ?,. ..,,,,, .. [.. 101 {--'''} i/"TOkT;"'l<T'T6,."A « ... ,» <., .. ,' > Il. J J\.\-J.:.ll'IU';)U~vU

abcdefghijldmnopqrstuvwxyz _ ~ re fi fl.! 1 f1S .B - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & }E CE L 0
1234567890 • $¢¥£p:t <%-%0/*1+1=\"#> (@t:j:§~)

? , " , " I '" [10] {_w.n} 0 rP'i<TAl#.~T.(.. A «.:.;» <.,,,,' > il. , ... A'r ll'llu,;:)ua~OU

abcdefghijklmnopqrstuvwxyz re re fi fit 1 f(j S - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & lE <E L 0
1234567890 • $¢¥£,tn <%-%01*1+1=\"#> (@tt§~)

? , " , " , , " 10 _ II} ArE" IN-r..xu" .. A «.:.;» <.,,,, .. > [ii. -] { ,... y U\) a~ou

abcdefghijk1mnopqrstuvwxyz re re fi fi 1 1 ~ 6 - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & .tE CE L 0
1234567890 • $¢¥£ftt <%-%01*1+ I =\A#> (@t:f:§~)
«?: !;» <" . ' , ",,' , ' .") [i l ~Q] {_\J.II C. } ••• AC;EINOSU a~ou

37

Times Roman
l·point widths

:l',::: ~ :::,V,::: y{;:: :X:: :Y;: ::Z:::::::::::::::::: ::: ::::::::: ::: :::::::::::: :::::: ::: :::::: ::: ::::::::::
·ci.6ii·· O.72i·· ·o:hi··· ·0.944'" ·o:hi··· O.72i·· .0:6.li.··.··.·······.····.· ··.··•··.·· .. · •... · .•. ·.·· ·· ··.·· .. ·

.. L. •.. ·A····· "' ... '1\ " "' 1\0 t; .. E" E·· EA ... E···· ·1·' '1'· '1·' .;l L··· N'" ... A·· A····· . : 1\.: : I\. : : I\. : U, .. ,U'
: P!:::.:.::: P!:::.:.::: P!:::.:.::: t .. :: :: :: :: :: .. ::: .. ::: .. ::: .. :: ... t:: .. : .':: :': .. t::! .. :':::::

0.722 0.722 0.722 0.722 0.722 0.722 0.667 0.611 0.611 0.611 0.611 0.333 0.333 0.333 0.333 0.611 0.722 0.722 0.722

M ~. _____ ._ ._ ___ _ ___________________ • __ ,. _______________ _ "0 '." '" ... '0·' ·S···il· ·n···n·· ···z········
·f ~ ... ,0, ... Q ... , ,... ., ... ,. f·· ~ ., ... ,. f·· U,. ,.,Y;..
. O.72i .. ·ojii .. O."72i ... 0.-72i· .. 0.556' .. ci.m .. o:7ii' .. cij2i· . ·0:7ii· .. cij2i· . o.6ii

; ~ ; ; :~; ;; ~; ; ;~;; ; ;; ; ; ; ; ;; ; ;; ; ;; ; ;; ; ; ; ; ;; ; ;; ; ;; ; ;; ; ;; ; ;; ;;; ; ;; ;; ; ; ;; ;;;;;; ;; ; ; ;; ;;; ;;; ; ;; ;;; ;;; ;;; ;;; ;;; ; ; ; ;;; ;
0.722 O.S O.S 0.444

38

Times Bold

6 pt.

8 pt.

9 pt.

10 pt.

12 pt.

14 pt.

18 pt.

abcdef&h\Jklmnopqrltuvwxyz _ .. '" II ft It. 8 - -.
ABCDEFGHQKLMNOPQRSTUVWXYZ ... JE <E L I!J
U345678!1O • $¢Y£jII < """"'''1+1=\·/1> (@tl§~
«'1:1;_ ,,' , [II.") { .•••• } ... A..;:J!:lNOSUt~

abcdefghijklmnopqrstuvwxyz _ lie IE fi fi I • e 3-- •
ABCDEFGHIJKLMNOPQRSTUVWXYZ & lE CE L 0
1234567890 • $¢¥£fa <%--%"'*/+!=WI> (@t:j:§1I)
«?:!;. <'.',",,',""> [iZU] { ••. N, } ••• AC;EtN()S(Ja~oO

abcdefgbljklmnopqrstuvwxyz _ III (2 fi 8 II ff 8 - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & JE (E L0
1234567890 • $¢¥£fa <%"'%d*/+I=\I'#> (@t*§1D
«?:!;» <'.',",,',""> £ilI2] {-''', } ... AC;EtNO~(Ja~od

abcdefghijkImnopqrstuvwxyz _ re re fi fll f 0 6 - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & }E (E L 0
1234567890 • $¢¥£jJX <%~%J*/+I=\I\#> (@t;§m
«?:!;» <".',",,',""> [,;,111] {.~'''. } ••• ACEtNOSUa!;ou

abcdefghijklmnopqrstuvwxyz _ re re fi fl. I ~ 6 - - -
ABCDEFGHUKLMNOPQRSTUVWXYZ & IE (E L 0
1234567890 • $¢¥£.fn <%~o/*I+I=\A#> (@t*§m
«?:!;» <".',tt,,',""> [il,!!!!] {_v.II .. } ••• A<;EiNOS(Ja~ou

abcdefghijklmnopqrstuvwxyz re re fi fi I I ~ 8 - - -
ABCDEFGHUKLMNOPQRSTUVWXYZ & IE (E L 0
1234567890 • $¢¥£fn <%"'%oI*I+I=\I\#> (@t:f:§'D

o •• "-,,,,
«?:!;» <".',",,','."> [u,!!.!] {_".II, } ••• A<;EINOSUa~ou

abcdefghijklmnopqrstuvwxyz _ re re fi fI I I ~ 8 - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & .IE <E L 0
1234567890 • $¢¥£fa <%-%0/*1+1=\"#> (@t:I:§m

o •• "-'-'V'
«?:!;» <". ' ," ,,' ,""> [,l !!2] {_"'.II C. } ••• AC;EINOSUa~ofi.

39

Times Bold
I-point widths

~A ~~~~I~~ J~~ ~ ~ ~l~ ~~I~~ ~~I~~ ~;GI~ ~ J~ ~ ~~~~ ~ ~JI~ ~ ~~~ ~J~~ ~~M ~ ~ ~N,~~ ~;(l ~~r,~ ~~IQ ~ ~~g~~ ~ ~
0.722 0-667 0.722 8.722 G.", 0.611 8.778 8.778 0.389 8.5 8.778 0.", 0.944 8.722 0.778 8.611 8.778 8_722

__ .!'.. _____ , _____ !\ _____ •• _____ ~ _____ o ________ " . __ " ___ A ___ •• _ow' _ow' ___ A ___ e. ___ , ____ - ___ , _____ , __ _
-: j{: - -: :A: -- -: j{: - - - :A: -- -: j{: - - - :A: - - -p ---E ---£- --E- --E ---l- --l- --l- --l- -J~ ---N -. '0-" 0 -'
: ~:: A::: ~:: :~::: ~:: :~::: tV!::: __ .I::: ___ I::: .. _ t::. _ .. ::: .. ::: __ ::: __ ::: __ ::: ___ I::: _: _ t::! __ :1::: t __ :1::

8.722 0.722 0.722 8.722 0.722 •• 712 0.722 8.", 8.667 0.667 8.", 8.389 8.389 8.389 8.38' 8.", 0.712 0.778 0.778

~ PI~ ~ ~ IQ ~ ~ J)~ ~ ~ ~~I~ ~ ~ $I~ ~ ~I~ ~ ~ V:I~ ~ J)~ ~ ~ ~PI~ ~ ~It ~ ; ~; ; ~ ~ ; ; ~ ~
0.778 0.778 8.778 0.778 0.556 8.722 8.722 8.712 8.722 8.712 8.",

1.0 1.8 0.722 •• 722 0.556 o.sS6 0.SS6 0.5 8.5 0.5 US 0.5 0.5 0.167 1.0 1.0

40

Times Italic

6pt.

8pt.

9pt.

10 pt.

12 pt.

14 pt.

18pt.

abt:d4,hijk1mMpqrsl/lVWJ9Z _ II: ,. fi jI ,I ~ J - - .
ABCDEFGHUXLMNOPQJlS1VVWXYZ .l;£ (£ L f)
1234567890 • $IVlf" <,*,-%J*I+/-W/> (@#ffJ
.7:1;. ," .••••. : .• , {u·] {-'. j ••• i.t;£jNO$Ud,1JIl

abcdefghijklmnopqrstuvwxyz _ tz tzfift II ;jJ--­
ABCDEFGHIJKLMNOPQRSTUVWXYZ &.£ (E L 0
1234567890 • $;Y£fa <%-%oI*I+/ .. W/> (@ttW
«?:!;» (" .. , n,::''') fjiftl] { __ NO } ••• A9E1No~(jdfjja

abcdefghijkImnopqrstuvwxyz _ Q! a! ft fl , I (J fJ - - -
ABCDEFGHIJKLMNOPQRSTUVWKYZ & IE (E L fi'
1234567890 - $¢¥ifu <%-ifool*I+/=W/> (@t:t§')
«?:I;» (" .. , ",::." > [ii.'!!!] {-_Ho} •.• A<;EiNOSUllfou

abcdeJghijklmnopqrstuvwxyz te (1! ft fill f/J jJ - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & IE (E L ~
1234567890 - $¢¥£p:s. <%-%0/*1+/=\11#:::. A _ (@t:t§fI)
?/. " • ,. [""1 (__ H) 'ir'E'1·>.TAl'oTT~ •• A « ... ,» < > il.- •. .. A y . IvUi)vufOU

abcdefg hijklmnopqrstuvwxyz (£ re fi flz I ~ j3 - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & IE (E L ~
1234567890 • $¢¥£f't1. <%-%o/*/+/=\~#> (@t:t§f[J

? , " {" " " 00 --"} 0 r .. A - A X '" •• A «. :.;» < • , " , • > [ii,~l { A""EINu,)Ua($ou

abcdeJghijklmnopqrstuvwxyz _ a! re fi fl L I ¢ 13 - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & IE (E L @
1234567890 • $¢¥£ft:1. <%-%0/*1+/=\/'0#> (@t:f:§f{)

? , it , " " " ao {_v.,,) 0 -0' x "" «. :.;» < ., " , ~ > {ji,-':j A9EIN .)Uac;ou

abcdeJghijklmnopqrstuvwxyz _ ce (£ fi flz I ~ j3 - - -
ABCDEFGHIIKLMNOPQRSTUVWXYZ & IE (E L @
1234567890 • $¢¥£f1l <%~%o/*/+/=\A#> (@t:t§r!)

o •• "'.-'v-'
«?:I;» <".',",,','-"> [iiggj {_ /I'" } ••• A9EINOSUaqoCt

41

Times Italic

}~I;;;!J:~ ;;h;; /J;; ;A; ;;~; ;;(1;;;~;; ;t;; ;l; ;;~; ;~;.; ;'4;;;rt.:;; a;; ~;; ;IQ~;;!!:~;; ~;;;
0.611 0.611 0.60 0.1Z2 0.611 0.611 0.1Z2 0.1Z2 0.333 0.444 0.60 0.5S6 0.833 0.6tr1 0.1Z2 0.611 0.1Z2 0.611 O.S

: rr-::: 77-:: :17-:: :117-:::V:::V:: 7::
- f-l. ~- -_ILl f - - i Y. f - - i Y.Y. f - -~f -- tL-l- - -,LJI- -- - -- - -- - -- - -- - -- - -- -- - --- -- - -- - --- --- - - - -- - -- - -- - -- - -- - - - - -- - -- - -- - -- - -- - --0.556- --O.ni --o."6ii· --o.8ii --o~ii --0:s56 - -0.5i6- ------------ ----- ----------- ------- --------------------- -------- ------ -----

-: if ---: j{ ---: ~ ---: j ---: j ---:;{ ---p --: 17- --: U- --: Cr- --: i7: --: f- --:,---f --: ;: --:1- : --:A-T- ---0' ---A: . -:/\ --
:PI:::PI:::PI:::PI:::PI:::Pt::t~t::Pt::Pt::Pt::Pt::!.I:::f.I:::~~::~t::~:+~t::~._:I:::~t::PI::
0.611 0.611 0.611 0.611 0.611 0.611 0.6tr1 0.611 0.611 0.611 0.611 0.333 0.333 0.333 0.333 0.5S6 0.6tr1 0.1Z2 0.1Z2 0.721.

::1:\:: :0:-'::::J7i:::: Q::: :T:T-::: T-T::: :{:T-:: :i"r-:: v::: 7::
-tVi---1 -1---Wi---fJl---tUi---IUI---fUi'--IU~--~'I---~--'-----------.-------------------.--.-------------------o.m ---o.m- --0:122 -. -OS- --o.m ---o.m- --0:122 ---o.m- --0.556- - "o".is6- - - -. - - -- - - -. - - -. - - -- - -- - -- - --- -- -. - - --.- - - -- - -- -- - - - - --

; Wi;; ~;;~;; ;~I;;;
0.60 0.444 0.444 0.389

:~:::a:::~::ii,:::~::ii,::::-~::~::i,:::~,:::~::l::~::~£:::,i:::i::~::it::a::/l::a~::jf::p, ----------------------------------~----------.-----.---------------------.----.----------- .. _------_._--------------
O.S 0.5 0.5 O.S 0.5 0.5 0.444 0.444 0.444 0.444 0.444 0.1.78 OZlB 0.1.78 0.1.78 OZlB 0.1.78 0.5 0.5 0.5 0.5 0.5 0.5

42

Times Bold Italic

6 pt.

8 pt.

9 pt.

10 pt.

12 pl.

14 pt.

18 pl.

.th/ghijklna"OJHITBfuvw"YZ _ IE IE ftft I , "J - - -
ABCDEFGHUKIMNOPQRSTUVWXYZ &: IE lE L"
1234567890 • $~¥£fa d-%J*l+!=WI> (@tl§f)
«1:1;» <If. ',"" I, ,.1>>> fu.K] ("--. } ••• Ar;£1So$U6fiJ4

abctkfghtjlclmnopqrstuvwx:yz tB tB Ji ft , , _ ft - - -
ABCDEFGHI}KIMNOPQRSTUVWXYZ & JE (E l._
1234567890 • $¢Ylfa d-%J*/+/=WI> (@tl§f)
«?:I;» <It.', "" ','."~ [i ,Ill] {--:-". } ••• Ar;£lzilo~(]dfotl

abcdefghijklmnopqrstuvwxyz Q! Q! lift' I '* ft - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & IE lE L ~
1234567890 • $tt¥£ps. <%-%01*/+/=\11#> (@tt§f)
«?:I;» (It.',",,', '."~ filEJ {--". j ••• ACElNOSUlzfotl

abcdefghijldmnopqrstuvwxyz _ m lB fi ft ., ;.p - - -
ABCDEFGHIJKIMNOPQRSTUVWXYZ & IE lE ~ 1!1
1234567890 • $¢¥£fa <%-%01*1+/=\'''11> (@t:t§f)
«?:!;» <".',"" ','."> [Ufflj {--': } ••• Ar;£INOS(j~o(J

abcdefghijklmnopqrstuvwxyz _ te (B fi fl ~ I 11 jJ - - -
ABCDEFGHIJKLMNOPQRSTUVWXYZ & JE (E L ~
1234567890 • $¢¥£f'11. <%-%o/*I+/=\A#> (@t:t§ff)
«?:I;» <Ct. ',"" ','."> [i t'2] {-~." .. J ••• A()Ei&oSUofotl

abcdefghijklmnopqrstuvwxyz ll! (J! fi flt I ~ jJ - - -- ..

ABCDEFGHIJKLMNOPQRSTUVWXYZ & IE·(E L ~
1234567890 • $¢¥£fr:s. <%-%0/*1+/=\/\#> (@t:t§1f)
«?:!;» <it. ',"" ','."> Il;,ll2] {_ II" l ... Af;ElfloSUllfoU

43

Times Bold Italic

'X"'U"'y""~"X"Y;"Z""""""""""""""'" .. . - ----- - -- - - --- ---. -- -- -- --- --------. --- ---------------- -------------------------------------- - - ----- --
. +··f i···I· +.+ -1-.. f·· f·· f··· '.iii .. iI.m .. '0:ii1'" iI.·· . ;'.667' . iI.iii· . iI.iii· ... ' "

. :A .. '0·· ... A ... m" . :0" . 77- .. 'U,' ... -h. .. 'U,.' ... V'" 7'" .. .
:~:::I .. 1::: ~i:: :I'PI:: :~I:: :IU;::; . '1:: :IU;::; .~: ::~~:::jL.iI::: :::::: ::: ::: ::: ::: ::: ::: :::::: ::: ::: ::: ::: ::::
"iI.1»·· ·'.iiz"'· iI.m·· ·;'ill" ',-sii" ·'.m·· 0322" ·'.rn· "0:i2i" ·'.6ii .. '.6Ii···

::~: ::~:: ::A:: : j:i=: : }t: :: j.i= : :: . :: : : ~ :: : ~: :: =A: : ::;;: : :/::: ~: : :t::: 'T:::;::: 'I: : :H:: ::,k:: :~::: :A : :: R: ::: :
:~:::~:::~:::~::~:::~:::'t::~j:::~I:::~t::~t::fJ:::~::~:::~::~::J't::!:~:::p.j:::~I:::p.j::~I:::::

II.S 11.5 11.5 11.5 0.5 11.5 11.444 0.444 0.444 0.444 11.444 11.118 11.218 11.118 11.118 0.118 11.118 0.556 0.5 O.S 0.5 0.5

44

Encodings

45

46

Work Sheet

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

47

48

Standard Encoding

3 4 5 6 7

0 @ P

1 A Q a q

2 B R b r ¢

3 C S c s

4 D T d t

5 E U e

6 F V f v

7 G W g § •

8 H X h x

9 I Y 1 Y ¢

J Z
.
J z re

K [k { Q

< L \ 1

= M]

> N "
? 0 0

IE USASCII

EJ Control character
1 Space or blank.

m Not assigned
2Asterisk hangs/rom capital height.
JHyphen.
4ASCII circumflex.
5 ASCII tilde.
6Fraction (shallower than slash).
7 Circumflex accent.
8Tilde accent.

49

50

Standard Character Set

Graphic

"

$

%

&

(.
) .
*
+
, .

I

0-9

, .
<

>

? .

@

A-Z

[.
\

] .

Description

Space, blank

Exclamation mark, screamer

Double vertical quote

Number sign, pound, hash mark

Dollar sign

Percent

Ampersand

Right single quote, apostrophe

Left parenthesis .

Right parenthesis

Asterisk

Plus

Comma.

Hyphen.

Period

Slash, slant, solidus, oblique, stroke

Lining figures .

Colon ...

Semicolon

Less than .

Equal ...

Greater than

Question mark, query

(Commercial) at

Capital alphabet . . .

Left bracket

Backward slash, reverse slash, reverse solidus .

Right bracket.

Code Name

space ..

exclam

quotedbl

numbersign

dollar ...

percent ..

ampersand

quoteright .

parenleft .

parenright .

asterisk

plus ..

comma

hyphen

period

slash

zero-nine

colon ..

semicolon.

less ..

equal .

greater

question

at

A-Z .. .

bracketleft

backslash

bracketright .

Octal
Code

.40

· 41
.42

.43

.44

.45

.46

.47

.50

· 51
.52

.53

.54

.55

.56

· 57
· 60-71

.72

· 73
.74

.75

.76

.77
100

101-132

133

134

135

51

Graphic

1\

a-z .
{

I .
}

i .
¢

£
I.
¥

f
§

..
«

< •

) .
fi

fl

t

*

52

Description

ASCII circumflex (large & hangs from top of zero)

Underscore, underline.

Left single quote ..

Lower-case alphabet

Leftbrace

Vertical line or bar

Right brace

ASCII tilde (large & centered like math operator)

Inverted exclamation mark

Cent sign

Pound sterling

Diagonal fraction bar (shallower than slash)

Yen

florin,~tion(mailiematical)

Section mark

General currency symbol

Single vertical quote ..

Left double quote

Left double angle quote, left guillemet

Left single angle quote, left single guillemet .

Right single angle quote, right single guillemet

fi ligature

flligature

En dash (medium dash)

Dagger

Double dagger

Period centered vertically, dot .

Paragraph mark, pilcrow ...

Code Name

asciicircum

underscore

quoteleft

a-z ...
braceleft

bar ...

braceright .

ascii tilde .

exclamdown

cent ..

sterling

fraction

yen ..

florin .

section

currency
quotesingle

quotedblleft .

guillemotleft

guilsinglleft .

guilsinglright

fi .. .

fl .. .

endash

dagger

daggerdbl

periodcentered

paragraph ...

Octal
Code

136

137

140
141-172
173
174
175
176

· 241
· 242
.243
.244
.245

· 246
· 247
· 250
· 251
.252
· 253
.254

· 255
· 256
.257

· 261
· 262
· 263
· 264

· 266

Graphic Description Code Name Octal
Code

• Bullet (larger than dot) bullet 267

, . Left single quote (on base line) quotesinglbase 270

" . Left double quote (on base line) quotedblbase 271

" Right double quote quotedblright 272
» Right double angle quote, right guillemet guillemotright . 273

Ellipsis, 3-dot leader ellipsis ... 274

%0 Per mill, per thousand . perthousand . 275

l, . Inverted question mark questiondown 277

Grave accent . . . grave . . . 301

Acute accent ... acute . .. 302

Circumflex accent . circumflex 303

Tilde accent tilde 304

Macron accent macron 305

Breve accent breve 306

Dot accent (above) dotaccent 307

Dieresis or umlaut accent dieresis 310

Ring accent ring .. 312

.. Cedilla accent cedilla 313

Hungarian umlaut or double acute accent hungarumlaut 315

Ogonek accent, nasalization sign ogonek 316

Caron or hacek accent . caron 317

Em dash (long dash) emdash 320

1E Capital AE diphthong . AE .. 341
§ Feminine ordinal indicator ordfeminine . 343

L Capital L with slash (stroke) Lslash 350

0 Capital 0 with slash Oslash 351

ill Capital OE diphthong . . . OE .. 352
Q Masculine ordinal indicator ordmasculine 353

53

Graphic Description Code Name Octal
Code

Ie Lower-case ae diphthong ae ... 361
1 • Dotless lower-case i . . . dotlessi 365
t . Lower-case I with slash (stroke) Islash . 370

0 Lower-case 0 with slash . oslash . 371
re Lower-case oe diphthong oe 372
B German double s germandbls . 373

54

Graphic Description Code Name Octal
Code

A Capital A with acute accent Aacute .. Unassigned

a . Lower-case a with acute accent aacute Unassigned

A Capital A with circumflex accent Acircumflex Unassigned

a. Lower-case a with circumflex accent acircumflex Unassigned

A Capital A with dieresis accent . . Adieresis Unassigned

R. Lower-case a with dieresis accent adieresis Unassigned

A Capital A with grave accent . . Agrave Unassigned

a. Lower-case a with grave accent agrave Unassigned

A Capital A with ring accent Aring Unassigned

a. Lower-case a with ring accent. aring Unassigned

A Capital A with tilde accent · . Atilde . Unassigned

ii. Lower-case a with tilde accent atilde Unassigned

<; Capital C with cedilla accent Ccedilla . Unassigned

9· Lower-case c with cedilla accent ccedilla Unassigned

E Capital E with acute accent · .. Eacute Unassigned

e. Lower-case e with acute accent eacute Unassigned

E Capital E with circumflex accent Ecircumflex . Unassigned

e. Lower-case e with circumflex accent ecircumflex Unassigned

E Capital E with dieresis accent .. Edieresis Unassigned

e. Lower-case e with dieresis accent edieresis Unassigned

13 Capital E with grave accent · . Egrave Unassigned

e. Lower-case e with grave accent egrave Unassigned
f Capita) I with acute accent Iacute . Unassigned
i Low- c-case i with acute accent iacute . Unassigned
I Capital I with circumflex accent . Icircumflex Unassigned
i Lower-case i with circumflex accent . icircumflex Unassigned
I Capital I with dieresis accent .. Idieresis Unassigned
r Lower-case i with dieresis accent idieresis . Unassigned

55

Graphic Description Code Name Octal
Code

I Capital I with grave accent · . Igrave Unassigned

i Lower-case i with grave accent igrave Unassigned

N Capital N with tilde accent · . Ntilde . Unassigned

ii Lower-case n with tilde accent ntilde Unassigned

6 Capital 0 with acute accent · . Oacute Unassigned

6 Lower-case 0 with acute accent oacute Unassigned

6 Capital 0 with circumflex accent Ocircumflex Unassigned

0 Lower-case 0 with circumflex accent ocircumflex Unassigned

6 Capital 0 with dieresis accent . . Odieresis Unassigned

0 Lower-case 0 with dieresis accent odieresis Unassigned

0 Capital 0 with grave accent . . Ograve Unassigned

0 Lower-case 0 with grave accent ograve Unassigned

6 Capital 0 with tilde accent · . Otilde . Unassigned

6 Lower-case 0 with tilde accent otilde Unassigned

S Capital S with caron accent · . Scaron Unassigned

s . Lower-case s with caron accent scaron Unassigned

U Capital U with acute accent · . Uacute Unassigned

11 Lower-case u with acute accent uacute Unassigned

-0 Capital U with circumflex accent Ucircumflex Unassigned
11 Lower-case u with circumflex accent ucircumflex Unassigned
(r Capital U with dieresis accent . . Udieresis Unassigned

ii Lower-case u with dieresis accent udieresis Unassigned
U Capital U with grave accent . . Ugrave Unassigned
it Lower-case u with grave accent ugrave Unassigned
y Capital Y with dieresis accent . Ydieresis Unassigned
y Lower-case y with dieresis accent ydieresis Unassigned
Z Capital Z with caron accent · . Zcaron Unassigned
Z . Lower-case z with caron accent zcaron Unassigned

56

Symbol Encoding

Iill] Control character

III Not assigned

3

0

1

2

3

4

5

6

7

8

9

<

>

?

4

-

A

B

X

/).

E

<I>

r

H

I

t}

K

A

M

N

0

5 6

II

e a

P ~

1: X

T 0 't

Y e '\)

<; <l> m

n 'Y
....

11 ~ ... -...

'P t

Z <P

[K

. A. ..
] Jl

..L v

0

12 13

0 N L

+ ~ V

" 9t ®

f.J ©

® TM

00 oc EB IT

f a 0 ...j

... • n

• + u -.

"* :::> 1\

- :::> v

::::: ct ~

c <=

c 1t

- E =>

J- .J e U

IS pace or blank.
2Asterisk at height of math operator.
JMinus.
4Extensionfor radical.
5Approximately equal to, similar to.
6Fraction (shallower than slash).
7Extensionfor upward/downward arrow.
8Extensionfor leftward/rightward arrow.
9Extensionfor left/right brace.

14

0

<)

® J
© r
TM I
L J
(1
I I

l)

r l
I I
L J
r I
~ ~

L J

I

57

58

Symbol Set

Graphic Description

'V

3
%

&

3.

(.
) .
*
+
, .

I .

0-9

, .
<
=

>
? .

A

B

X

!J.

Space, blank

Exclamation mark, screamer ..

Universal quantifier, "For every"

Number sign, pound, hash mark

Existential quantifier, "There exists"

Percent ..

Ampersand .. .

Such that

Left parenthesis .

Right parenthesis

Asterisk (centered like math operator)

Plus

Comma.

Minus

Period

Slash, slant, solidus, oblique, stroke

Lining figures .

Colon ...

Semicolon

Less than

Equal ...

Greater than

Question mark, query

Congruent (same shape and same size)

Capital alpha

Capital beta .

Capital chi

Capital delta

Code Name

space ..

exclam

universal

numbersign

existential .

percent ..

ampersand

suchthat ..

parenleft .

parenright .

asteriskmath

plus ..

comma

minus.

period

slash

zero-nine

colon ..

semicolon.

less ..

equal

greater

question

congruent.

Alpha.

Beta

Chi

Delta

Octal
Code

.40

· 41
.42

.43

.44

.45

· 46
.47

50

· 51

· 52
.53
.54
.55

.56

· 57
· 60-71

.72

.73

.74

.75

.76

.77
100
101
102

103
104

59

Graphic Description Code Name Octal
Code

E Capital epsilon Epsilon 105

<l> Capital phi · . Phi · . 106

r Capital gamma Gamma 107

H Capital eta · . Eta 110

I . Capital iota . . Iota .. 111

t} Alternate lower-case theta. theta1 . 112

K Capital kappa . Kappa 113

A Capital lambda Lambda. 114

M Capital mu · . Mu · .. 115

N Capital nu Nu · .. 116

0 Capital omicron . Omicron 117

IT Capital pi .. Pi .. 120

e Capital theta Theta. 121

P Capital rho Rho .. 122

1: Capital sigma Sigma 123

T Capital tau Tau .. 124

Y Capital upsilon Upsilon 125

~. Alternate lower-case sigma sigma 1 126

n Capital omega, ohm Omega 127

S Capital xi .. Xi 130

'¥ Capital psi Psi · . 131

Z Capital zeta . Zeta 132
[. Left bracket . bracketleft 133
.. Hence, therefore therefore 134
] . Right bracket . . bracketright . 135
.1 Perpendicular . . perpendicular 136

- Underscore, underline. underscore 137
-

Extension for radical radicalex .. 140

60

Graphic Description Code Name Octal
Code

ex Lower-case alpha alpha 141

~ Lower-case beta beta. 142

X Lower-case chi chi 143

0 Lower-case delta delta 144

e. Lower-case epsilon epsilon 145

C\l Lower-case phi · . phi . . 146

y. Lower-case gamma gamma 147

11 Lower-case eta · . eta 150

\. . Lower-case iota . . iota .. 151

<p Alternate lower-case phi phil 152

1C Lower-case kappa ... kappa. 153

"- Lower-case lambda .. lambda 154

J.l Lower-case mu, micron mu 155

v Lower-case nu · .. nu 156

0 Lower-case omicron omicron. 157

1t Lower-case pi . . pi .. 160

e Lower-case theta theta 161

p Lower-case rho rho 162

0' Lower-case sigma. sigma 163

'to Lower-case tau · . tau 164

u Lower-case upsilon upsilon 165

m Alternate lower-case omega omega 1 166
0) Lower-case omega omega 167

~ Lower-case xi .. xi . 170

'If Lower-case psi psi 171

~ Lower-case zeta . zeta 172
{ Leftbrace braceleft 173

I Vertical line or bar bar ... 174

61

Graphic

}

~

I.
00

f

"'" •
•
•
H

t-

i

o

±
"
~

x
oc

•
+

62

Description

Right brace .

Approximately equal, similar, difference

Alternate upsilon . .

Foot, minute, prime.

Less than or equal . .

Diagonal fraction bar (shallower than slash)

Infinity

Florin, function (mathematical)

Club ..

Diamond

Heart ..

Spade ..

Left-and-right arrow

Leftward arrow .

Upward arrow

Rightward arrow

Downward arrow

Degree (hangs from cap height)

Plus or minus

Inch, second, double prime

Greater than or equal . . .

Multiplication

Varies directly as, proportional

Partial differential . . .

Bullet (larger than dot)

Division

Not equal

Equivalent, identical with, congruent

Code Name

braceright .

similar

Upsilon 1

minute

lessequal

fraction

infinity

florin .

club ..

diamond

heart ..

spade ..

arrowboth .

arrowleft

arrowup ..

arrowright

arrowdown

degree.· ..

plusminus .

second ..

greaterequal .

multiply

proportional .

partialdiff .

bullet ..

divide ...

notequal

equivalence

Octal
Code

175
176
241
242
243
244

245
246
247
250

251
252
253
254

. 255
256

. 257
260
261
262

263
264
265
266
267
270
271

272

Graphic

<=

I .

E

~

L
V
QP

©
TM

Description

Nearly or approximately equal

Ellipsis, 3-dot leader

Extension for upward/downward arrow

Extension for leftward/rightward arrow

Carriage return and line feed ...

Aleph, transfinite cardinal number

Fraktur I, imaginary number ...

Fraktur R, real number

Script P, Weierstrass elliptic function

Set (vector) multiplication .

Set (vector) summation

Null set, empty set .

Intersection, product .

Union, sum, join . . .

Contains as proper sub-class, implies

Contains as sub-class

Not contained as proper sub-class within

Contained as proper sub-class within

Contained as sub-class within . .

Member or element of a set . . .

Not a member or element of a set

Angle

Gradient, divergence, curl

Registered (serif version)

Copyright (serif version)

Trademark (serif version)

Product (larger than capital pi)

Long division, square root, radical

Code Name Octal
Code

approxequal . 273

ellipsis .. . 274

arrowvertex . 275

arrowhorizex 276

carriagereturn 277

aleph . . 300

~ . . 301

Rfraktur . 302

weierstrass 303

circlemultiply 304

circleplus . 305

emptyset 306

intersection . 307

union. . . . 310

propersuperset . 311

reflexsuperset 312

notsubset . . 313

propersubset 314

reflexsubset . 315

element . . 316

notelement 317

angle . . . 320

gradient . . 321

registerserif . 322

copyrightserif . 323

trademarkserif 324

product 325

radical 326

63

Graphic

1\

v

=>
J.j.

o
(.
®

©
TM

2-
(.
I
l· r .
I
L .
r
~
L
I
) .
f .
(

64

Description

Dot (centered like math operator)

Negation, logical NOT

Logical AND

LogicalOR

Double left-and-right arrow

Double leftward arrow

Double upward arrow . .

Double rightward arrow .

Double downward arrow

Lozenge, subtotal, diamond .

Left angle bracket

Registered (sans-serif version) .

Copyright (sans-serif version) .

Trademark (sans-serif version)

Summation (larger than capital sigma) .

Extensible left parenthesis: top . .

Extension for left parenthesis

Extensible left parenthesis: bottom

Extensible left bracket: top (ceiling)

Extension for left bracket

Extensible left bracket: bottom (floor)

Extensible left brace: top . .

Extensible left brace: middle

Extensible left brace: bottom

Extension for left/right brace

Right angle bracket . .

Integral

Extensible integral: top

Code Name

dotmath ..

logicalnot .

logicaland .

logicalor

arrowdblboth

arrowdblleft .

arrowdblup

arrowdblright

arrowdbldown

lozenge ..

angleleft ..

registersans

copyrightsans

trademarksans .

summation

parenlefttp

parenleftex

parenleftbt

bracketlefttp

bracketleftex

bracketleftbt

bracelefttp

braceleftmid

braceleftbt

braceex ..

angleright .

integral

integraltp

Octal
Code

327
330
331
332
333
334
335
336
337
340
341
342
343
344

345
346
347
350
351
352
353
354
355
356
357
361
362
363

Graphic Description Code Name Octal
Code

I Extension for integral integralex . . · 364

J Extensible integral: bottom . . . integralbt . . · 365

1 . Extensible right parenthesis: top parenrighttp . · 366

I. Extension for right parenthesis pareiuightex · 367
) . Extensible right parenthesis: bottom parenrightbt . .370

1 . Extensible right bracket: top (ceiling) bracketrighttp .371

1 . Extension for right bracket bracketrightex . · 372
J . Extensible right bracket: bottom (floor) bracketrightbt .373

1 Extensible right brace: top .. bracerighttp . · 374

~ Extensible right brace: middle bracerightmid · 375 .

J Extensible right brace: bottom bracerightbt . · 376

65

66

Appendix: Updates

67

68

Updates
Rerisioo.2

Additions

Corrections

General Information.

Languages.

Courier Family: width tables and clarification of character set.

Symbol: samples.

Standard Encoding and Character Set: the accented characters have
no default positions.

The widths of the following characters have been changed in Times,
Helvetica and Symbol, to be equal to 50% of the widths of the lining
figures (0-9):

Comma
Dot, in Symbol
Period
Period centered vertically, in Times and Helvetica
Space

Courier samples: the point size of the last sample on each page of
graduated text is 15, not 13.3.

Symbol width table: the width of the extender for the vertical arrows
is 0.603, not 0.247.

69

70

Apple Supplement

Revision 2
2 October 1984

Apple QuickDraw Encoding 0 0 0

Apple QuickDraw Character Set

Apple Symbol Encoding 0 0

Apple Symbol Widths 0

Apple Symbol Set 0 0 0 0 0

1. 3.
o 9.
010.
011.

Apple Updates 0 19.

Apple, the Apple logo, and QuickDraw are trademarks of Apple Computer, Inc.

Apple QuickDraw Encoding

0 1 2 3 4 5 6

0 0 @ p ,
NUL DLE SP

1 SOH DCl 1 A Q a

2 " 2 B R b STX DC2

3 ETX DC3 # 3 C s C

4 EOT DC4 $ 4 D T d

5 ENQ NAK % 5 E U e

6 ACK SYN & 6 F V f

7 BEL ETB 7 G W g

8 BS CAN (8 H X h

9 HT EM) 9 I Y 1

10 LF SUB * J Z J

11 VT ESC + K [k

12 FF FS < L \ 1

13 CR as = M] m

14 so RS > N " n

15 SI us / ? 0 0

[ill Additions

7

P

q

r

S

t

u

v

W

x

Y

z

{

I

}

DEL

8 9 10 11 12 13

A A t e 00 " A e 0 +

<; i ¢ $; --,

E ,
£ ~ ~ 1

N t § ¥ f

0 1 • Jl :=::

D fi. ~ a ~

, ,
B L a 0 «

, ,
® n a 0 »

A A © a 0 1t

a 0 TM J

a 6 j!
,
A

0 , Q A a u
,

::1= n 6 ~ U

, A }E ill e u re

,
ii 0 0 e re

The first 33 symbols and DEL do not print.
They refer to ASCII control codes.

Sp and indicate word spaces.

14 15

The following characters from the Standard
Character Set are not included in this encoding:
L. I. S. S. Zand z.

It,

Apple QuickDraw Character Set

Graphic Description

"

$

%

&

(.
) .
*
+
, .

I .

0-9

, .
<

>
? .
@

A-Z

[.
\

] .

Space, blank:

Exclamation mark, screamer

Double vertical quote

Number sign, pound, hash mark

Dollar sign

Percent

Ampersand

Single vertical quote

Left parenthesis .

Right parenthesis

Asterisk

Plus ..

Comma.

Hyphen.

Period .

Slash, slant, solidus, oblique, stroke

Lining figures .

Colon ...

Semicolon

Less than

Equal ...

Greater than

Question mark, query

(Commercial) at

Capital alphabet . . .

Left bracket

Backward slash, reverse slash, reverse solidus ..

Right bracket

Code Name

space ..

exclam .

quoted~l

numbersign

dollar ...

percent ..

ampersand

quotesingle

parenleft

parenright .

asterisk

plus ..

comma

hyphen

period

Octal
Code

.40

. 41

.42

.43

.44

.45

.46

.47

.50

. 51

.52

.53

.54

.55

.56
slash . 57
zero-nine . 60-71

colon. . . 72
semicolon . . 73

less . . . 74
equal . . . 75

greater . . 76
question . 77

at 100

A-Z 101-132

bracketleft 133

backslash 134

bracketright . . 135

Graphic Description Code Name Octal
Code

1\ ASCII circumflex (large & hangs from top of zero) asciicircum 136
Underscore. underline. underscore 137
Grave accent grave . . 140

a-z . Lower-case alphabet a-z . .. 141-172
{ Left brace" . " ... braceleft 173
r • Vertical line or bar bar . .. 174
} Right brace braceright . 175

ASCII tilde (large & centered like math operator) asciitilde 176
it. Capital A with dieresis accent Adieresis 200

0

Capital A with ring accent Aring .. 201 A

C; Capital C with cedilla accent Ccedilla . 202
E Capital E with acute accent . Eacute . 203
liT Capital N with tilde accent Ntilde .. 204
0 Capital 0 with dieresis accent . Odieresis 205
-0 Capital U with dieresis accent . Udieresis 206
4. Lower-case a with acute accent aacute 207
A. Lower-case a with grave accent agrave 210
i. Lower-case a with circumflex accent acircumflex 211
a. Lower-case a with dieresis accent adieresis 212
i. Lower-case a with tilde accent atilde . 213
i. Lower-case a with ring accent . aring . 214
~. Lower-case c with cedilla accent ccedilla 215
e. Lower-case e with acute accent eacute 216
~. Lower-case e with grave accent . egrave 217
~. Lower-case e with circumflex accent ecircumflex 220
e. Lower-case e with dieresis accent edieresis 221
i Lower-case i with acute accent iacute . 222
i . Lower-case i with grave accent igrave . 223

4.

Graphic Description Code Name Octal
Code

i . Lower-case i with circumflex accent . icircumflex 224
i . Lower-case i with dieresis accent idieresis . 225
ii Lower-case n with tilde accent ntilde . 226
6 Lower-case 0 with acute accent oacute 227
0 Lower-case 0 with grave accent ograve 230
0 Lower-case 0 with circumflex accent ocircumflex 231
0 Lower-case 0 with dieresis accent odieresis 232
6 Lower-case 0 with tilde accent otilde . 233
11 Lower-case u with acute accent uacute 234
U Lower-case u with grave accent ugrave 235
U Lower-case u with circumflex accent ucircumflex 236
ii Lower-case u with dieresis accent udieresis 237
t Dagger dagger 240
0 Degree (hangs from cap height) degree 241
¢ Cent sign ... cent .. 242
£ Pound sterling sterling 243
§ Section mark . section 244

• Bullet (larger than dot) bullet . 245 ,. Paragraph mark, pilcrow paragraph 246
B German double s germandbls 247
® Registered registerserif 250
@ Copyright .. copyrightserif . 251
1M Trademark trademarkserif 252 .

Acute accent acute .. 253
Dieresis or umlaut accent dieresis 254

* Notequal notequal 255
lE Capital AE diphthong AE .. 256
0 Capital 0 with slash Oslash 257

Graphic Description

- Infinity ...
± Plus or minus . . .
S Less than or equal .

~ Greater than or equal
¥ Yen
J.L Lower-case mu, micron .
a Partial differential
L Summation (larger than capital sigma) .
II Product (larger than capital pi)
1t Lower-case pi
I . Integral
I Feminine ordinal indicator
II Masculine ordinal indicator
o Capital omega, ohm
Ie Lower-case ae diphthong
fit Lower-case 0 with slash .
l, . Inverted question mark .

i .

..J

f
...

«

»

A

6.

Inverted exclamation mark
Negation, logical NOT . .
Long division, square root, radical
Florin, function (mathematical)

Nearly or approximately equal
Capital delta
Left double angle quote, left guillemet
Right double angle quote, right guillemet
Ellipsis, 3-dot leader ...

Space, blank

Capital A with acute accent

Code Name

infinity ..
plusminus .
lessequal .

greaterequal .
yen
mu

partialdiff .
summation
product

pi
integral ..

ordfeminine .
ordmasculine
Omega

ae ...

oslash .
questiondown

Octal
Code

· 260
· 261
· 262

· 263
.264
· 265

· 266
267

· 270

· 271
· 272

· 273
· 274
· 275
· 276
.277

· 300
exclamdown . 301

logicalnot . . 302
radical .. . 303
florin . . . 304
approxequal . . 305
Delta 306
guillemotleft . . 307
guillemotright . . . 310
ellipsis
space .

Aacute

311

· 312
· 313

Graphic

A
6
<E

"
"

+

o
y
y

I.

< •

> •

fl.

fl

:j:

, .
" .
%0
A
E
A

Description

Capital A with tilde accent

Capital 0 with tilde accent

Capital OE diphthong . .

Lower-case oe diphthong

En dash (medium dash)

Em dash (long dash)

Left double quote .

Right double quote .

Left single quote . .

Right single quote, apostrophe

Division

Lozenge, subtotal, diamond . .

Lower-case y with dieresis accent

Capital Y with dieresis accent . .

Diagonal fraction bar (shallower than slash)

General currency symbol

Left single angle quote, left single guillemet .

Right single angle quote, right single guillemet

fi ligature . . .

flligature

Double dagger

Period centered vertically, dot .

Left single quote (on base line)

Left double quote (on base line)

Per mill, per thousand

Capital A with circumflex accent

Capital E with circumflex accent

Capital A with grave accent . . .

Code Name

Atilde .

Otilde .

OE ..

oe
endash

emdash

quotedblleft .

quotedblright

quoteleft .

quoteright .

divide ..

lozenge .

ydieresis

Ydieresis

fraction .

currency

guilsinglleft .

guilsinglright

fi

fl

daggerdbl ..

periodcentered

quoteSinglbase

quotedblbase

perthousand .

Acircumflex

Ecircumflex .

Agrave ...

Octal
Code

. 314
315
316
317
320
321
322
323
324
325
326
327
330
331
332
333
334
335
336
337
340
341
342
343
344

345
346
347

Graphic Description

E Capital E with dieresis accent

E Capital E with grave accent

f . Capital I with acute accent .

t . Capital I with circumflex accent .

i . Capital I with dieresis accent

1 . Capital I with grave accent . . .

6 Capital 0 with acute accent . . .

6 Capital 0 with circumflex accent

• Apple logo

o Capital 0 with grave accent . . .

11 Capital U with acute accent . . .

Cr Capital U with circumflex accent

U Capital U with grave accent

1 • Dotless lower-case i .

~ .
"

, .

Circumflex accent .

Tilde accent

Macron accent ..

Breve accent ...

Dot accent (above)

Ring accent

Cedilla accent

Hungarian umlaut or dOuble acute accent

Ogonek accent, nasalization sign

Caron or hacek accent

Code Name

Edieresis

Egrave

Iacute ..

Icircumflex

Idieresis

Igrave

Oacute .

Ocircumflex

apple .

Ograve .. .

Uacute .. .

Ucircumflex

Ugrave ..

dotlessi ..

circumflex

tilde

macron

breve ..

dotaccent

ring ...

cedilla

hungarumlaut

ogonek

caron

Octal
Code

· 350
· 351
.352

· 353
· 354
· 355

· 356
· 357

• 360
· 361
.362

· 363
· 364
· 365
.366
.367

· 370
.371
.372

· 373

· 374
· 375
.376

.377

Apple Symbol Encoding

3 4 5 6

0 - n

1 A e a

2 B P ~ P

3 X ~ X 0'

4 /). T 0 't

5 E Y £ '\)

6 <I> ~ <I> m

7 r n 'Y

8 H .-
11 ~

9 I '¥ t

i} z cp

K [K

< A . A ..
- M] Jl

> N ..1 v

? 0 0

Ej Control character

12 13

0 ~ L

3 V
,

" 9\ ®

f.J ©

® TM

00 oc ffi II

f a 0 ~

.. • n

• + u -,

• * ::J A

• - ::J V

~ ex. <=>

c ¢=

c 11

- E =>

.J e ~

I Space or blank.
ZAsterisk at height of math operator.
JMinus.
4 Extension for radical.
SAp proximately equal to, similar to.
6Fraction (shallower than slash).
7Extensionfor upward/downward arrow.
BExtension for leftward/rightward arrow.
9Extensionfor left/right brace.

14 15

0 It

()

® J
© (

TM I
L J
(,
I I

~)

r 1
I
L J
r 1
i ~

L J

I

Apple Symbol Widths
l-polD1 wiIIlIII

-:j\:---. ----. ----Li---· ----. ---~ ·---·~i--: .---~ :---ii---·- - ~--: .---~--- -.--- - :--L,--~--- -. --------n---r---:A.:---E---Z---H---n---I---l(---:A:---M---N--------O---II--::n:--~:--T
·A -;---, , .. -.. , , -......... ,---, .. -_ --- ---, ,---, -- -.---~--·i -,---, ,--, -i-a, ,---T ;
-0S6 ---ci66 -- -oim -- -0:61i - - -fiMJ. - -- iW ---0.;65 -- -0:141- - -o:,si --0.724 -- -cilia6- -- -Oili - ---0.;» ---ci.64s- - --0.75- ---ci76s- - --oji - -O$i - -0.632

::1::::2:::'l.::::~:::5:::6:::1:::8:::n:::o::::::::#:::% ::::*::::/:::"::: 0 ::::::::::::::::::::::::::::
-; , - - -, ,- - -.,.1, - - -,- .- - -, , - - -, ,- - -; ,- - -, ,- - - ,7, - - -, ,- - - ;r --, -,- - - ,- D,_ --r -, - - -, -, - - -,- -,- - - r -,- .
- -0:5 - --ci.s - - -0:5 - --o.s ----0:5 - --o.s ----o:s ---ci.s -- - o",j- -- -cis - --o.is- --ciS - - - 0::a33 - -- 0:5- - -03Kt -OAi i --0.4- - -- - -- - -- - -- - - -- -- - -- - -- - -.

-------l----A---Z-- --::F:---3----'i,:../---~---U----~----n------------~---II---L--------------------------. -~---- --~v.----- ---"..:.J:..---------y_--- ----y_----,,----,.;J----~---~i--- - --- ---------------------------.
: ~ : : ~ :: .! ~ : : ! .. :': : :' ! : : .! ': : :' ! : : :: .. :': : : .. r : : ~ : .. :.: : :.: :': : :,_ ': : : r t1~:.: : :' ... : .::: : .. : .. : : : : ':

0.658 0_167 OAM 0,768 0.658 0.549 0_713 CU78 0.713 0.823 D.686 0.987 0.795 On3 0.713

---------1-----------t-------------I- -------------------ft ----------ott --.
:~:::~ :;:::~:::;: ~:::;E~::~::~:::::::;:::~;:::~ ;:::R~:::;- ;:::;¢:;:;:::::::::::::::::::::::::::::::::::
--iil4i- - -0.603 ---Om- -- -oim- --o:9i7- -- il.6O:i - - --iil- - -- -i.D4i - - -ci.OOJ- - --ri9i'- - - -oim- --o.-m- ----------- ---- ------ -------------.

-~--.-c- -J-- --l---J----j- ---J.-- -)- ---[-- -[- --1-- --t----J--- -1- --j-- -J --- {- --- r ---~--- --l- --j- -- -1- ---z--· - _.
• • • •••• • • ...0 • • •• • 0 00... 0 •• _ 0 o. • 0 ••

- I 1- - - -0- - - -.- - -. -,- - -,- - - - -0- - - -0- - - -, T - - -. ,- - - -,- - - -,- - - - - -; - - - -; - - - - - - r ,- - -.- ,- - - T -, - - -,- - ,- - - i' - - -,- -0- - - r , - - -. -.- _.
0333 -0 -- -0.384 -0.384 - 0.38~ -0.384 -0. -4 -0.333 -0.333- -0384 - -ci:3iU - -03s4 - 0::is4 - -03s4 --0:384 - 0333 --Ii .. --OA94- -0M4 - -ci4!i4- - OM4 --OA94 - - OA94 - .

-J -- --}---f --- -r--- -1- --- J- --- -1- -- -----:-:-:&---- --- --:t- -- -?------ ------ --- ------ --- --- --- --- --- --- --- --- --- ----. -- ---- . _. - --- - - ----- ------ ---- ---- ------ --_.; --- ,- --- . --.- ---~ ----- - --- ----- - ----- --- - --------------- --- _.
_0 i_eo; -;---' i--~- -;---;- _; ___ . ·i-·~- ;---r--;---; ;--~-;---;"i--.;".;.--;,,~--;,;--.;.;.-.~--.;.-".r--i--; _______ . _____________ .
-ci.4M- --OAB- -on .. --oai;" - -ci.6i6- --0.686 -- 0.549 --·-0.5 - --iLm- --cili -oj;, -6.444 -iLl;s" iii78 -035 - -ois- ---in ----o:s- --------------------.

::~r::@:::T-M:::fA'i:::~:::TM::::.::::-::::::-:::::--:::::-:::::.::

-f +--~ -1-- +- -+ --NY.!- --I~l-- +- - f- - H- --14t f - -1++ --~"I---I.f --1-1-- --- --- --- --- ------ -- ---- --- --- --- ----. --0.79 --- -0.19- --- -1i.i9- - -- -0.19- --- ii79 ----Ii;.i - - 0.46 -. -0.;53- ---0:753 - --0_,53 ---0_;53- -- -0_79 - --------------------- --------- -------- .

Apple Symbol Set

Graphic Description Code Name Octal
Code

Space, blank space .. 40
Exclamation mark, screamer exclam 41

V' Universal quantifier, "For every" universal 42
Number sign, pound, hash mark numbersign 43
3 Existential quantifier, "There exists" existential . 44
% Percent .. percent .. 45
& Ampersand ... ampersand 46
;, . Such that suchthat .. 47
(. Left parenthesis . parenleft 50
) . Right parenthesis parenright . 51

* Asterisk (centered like math operator) asteriskmath 52

+ Plus plus .. 53
, . Comma comma 54

Minus minus. 55
Period period 56

J • Slash, slant, solidus, oblique, stroke slash 57
0-9 Lining figures . zero-nine 60-71

Colon ... colon .. 72

Semicolon semicolon. 73
< Less than less 74
= Equal ... equal 75
> Greater than greater 76
? . Question mark, query question 77

- Congruent (same shape and same size) congruent 100
A Capital alpha Alpha. 101
B Capital beta . Beta 102
X Capital chi Chi 103
~ Capital delta Delta 104

1Ut

Graphic Description Code Name Octal
Code

E Capital epsilon Epsilon 105

<I> Capital phi · . Phi · . 106

r Capital gamma Gamma 107

H Capital eta · . Eta 110

I . Capital iota . . Iota .. 111
i} Alternate lower-case theta . thetal . 112

K Capital kappa . Kappa 113

A Capital lambda Lambda. 114

M Capital mu · . Mu · .. 115

N Capital nu Nu · .. 116

0 Capital omicron . Omicron 117

II Capital pi .. Pi .. 120

e Capital theta Theta. 121

P Capital rho Rho .. 122

L Capital sigma Sigma 123

T Capital tau Tau .. 124

Y Capital upsilon Upsilon 125

C;. Alternate lower-case sigma sigma 1 126
n Capital omega, ohm Omega 127
E Capital xi .. Xi 130
'P Capital psi Psi .. 131

Z Capital zeta . Zeta 132
[. Left bracket . bracketleft 133
.. Hence, therefore therefore 134
] . Right bracket . . bracketright 135
1. Perpendicular . . perpendicular 136

- Underscore, underline. underscore 137
-

Extension for radical radicalex .. 140

12.

Graphic Description Code Name Octal
Code

a Lower-case alpha alpha 141

~ Lower-case beta beta. 142

X Lower-case chi chi 143

0 Lower-case delta delta 144

E. Lower-case epsilon epsilon 145

cp Lower-case phi · . phi .. 146

'Y. Lower-case gamma gamma 147

11 Lower-case eta · . eta 150

t . Lower-case iota . . iota . 151

c:p Alternate lower-case phi phil 152

1C Lower-case kappa . . . kappa 153
'}.. Lower-case lambda .. lambda 154

J.l Lower~case mu, micron mu 155

v Lower-case nu · .. nu 156

0 Lower-case omicron omicron. 157

1t Lower-case pi . . pi .. 160

a Lower-case theta theta 161

p Lower-case rho rho 162
(} Lower-case sigma . sigma 163
'to Lower-case tau · . tau 164
'\) Lower-case upsilon upsilon 165
m Alternate lower-case omega omega 1 166
ro Lower-case omega omega 167

~ Lower-case xi . . xi . 170

'V Lower-case psi psi 171

S Lower-case zeta . zeta 172
{ Left brace. braceleft 173

I Vertical line or bar bar ... 174

Graphic

}

I.
00

f ..
+

•
•
B

f-

i

o

±
"
~

x
oc

•
+

14.

Description

Right brace

Approximately equal, similar, difference

Alternate upsilon . .

Foot, minute, prime.

Less than or equal

Diagonal fraction bar (shallower than slash)

Infinity

Florin, function (mathematical)

Club ..

Diamond

Heart ..

Spade ..

Left-and-right arrow

Leftward arrow

Upward arrow

Rightward arrow

Downward arrow

Degree (hangs from cap height)

Plus or minus

Inch, second, double prime

Greater than or equal . . .

Multiplication

Varies directly as, proportional

Partial differential . . .

Bullet (larger than dot)

Division

Not equal

Equivalent, identical with, congruent

Code Name

braceright

similar

Upsilon 1

minute

lessequal

fraction

infinity

florin

club

diamond

heart ..

spade

arrowboth .

arrowleft

arrowup ..

arrowright

arrowdown

degree

plusminus .

second "

greaterequal .

multiply

proportional

partialdiff

bullet ..

divide ..

notequal

equivalence

Octal
Code

175
176
241
242
243
244
245
246
247
250
251
252
253
254
255
256
257
260
261
262
263
264

265
266
267
270
271
272

Graphic

=

I .

c

~

E

E

L
V

®

©

n
..J

Description

Nearly or approximately equal

Ellipsis, 3-dot leader

Extension for upward/downward arrow

Extension for leftward/rightward arrow

Carriage return and line feed ...

Aleph, transfinite cardinal number

Fraktur I, imaginary number ...

Fraktur R, real number

Script P, Weierstrass elliptic function

Set (vector) multiplication .

Set (vector) summation

Null set, empty set

Intersection, product

Union, sum, join . . .

Contains as proper sub-class, implies

Contains as sub-class

Not contained as proper sub-class within

Contained as proper sub-class within

Contained as sub-class within . .

Member or element of a set . . .

Not a member or element of a set

Angle ' .. .

Gradient, divergence, curl

Registered (serif version)

Copyright (serif version)

Trademark (serif version)

Product (larger than capital pi)

Long division, square root, radical

Code Name

approxequal .

ellipsis ...

arrowvertex .

arrowhorizex

carriagereturn

aleph ..

Ifraktur ..

Rfraktur

weierstrass

circlemultiply

circleplus

emptyset

intersection

union ...

propersuperset

reflexsuperset

notsubset ..

propersubset

reflexsubset

element ..

notelement

angle ...

gradient ..

registerserif

copyrightserif .

trademarkserif

product

radical

Octal
Code

273

274

275

276

277

300

301

302

303

304

305

306

307

310

311

312

313

314

315

316

317

320

321

322

323

324

325

326

15.

Graphic Description

1\

v

=>
~
o
(.
®

©
TM

L
(.
I
\.
r .
I
L .
r
i
L
I
•
)

J .

16.

Dot (centered like math operator)

Negation, logical NOT

Logical AND

LogicalOR

Double left-and-right arrow

Double leftward arrow

Double upward arrow . .

Double rightward arrow .

Double downward arrow

Lozenge, subtotal, diamond.

Left angle bracket

Registered (sans-serif version) .

Copyright (sans-serif version) .

Trademark (sans-serif version)

Summation (larger than capital sigma) .

Extensible left parenthesis: top ..

Extension for left parenthesis

Extensible left parenthesis: bottom

Extensible left bracket: top (ceiling)

Extension for left bracket

Extensible left bracket: bottom (floor)

Extensible left brace: top ..

Extensible left brace: middle

Extensible left brace: bottom

Extension for left/right brace

Apple logo

Right angle bracket

Integral

Code Name

dotmath ..

logicalnot .

logicaland .

logicalor

arrowdblboth

arrowdblleft .

arrowdblup .

arrowdblright

arrowdbldown

lozenge ..

angleleft ..

registersans .

copyrightsans

trademarksans .

summation

parenlefttp

parenleftex

parenleftbt

bracketlefttp

bracketleftex

bracketleftbt

bracelefttp

braceleftmid

braceleftbt

braceex ..

apple ...

angleright .

integral ..

Octal
Code

· 327
· 330

331
332
333
334
335
336
337
340
341

.. 342
· 343
· 344
· 345
.346

· 347
· 350
· 351
· 352
· 353
· 354
· 355
.356
.357
.360

· 361
.362

Graphic Description Code Name Octal
Code

r Extensible integral: top .. integraltp .363

I Extension for integral . . . integralex · 364
J Extensible integral: bottom integralbt .365
). Extensible right parenthesis: top parenrighttp . 366
I. Extension for right parenthesis parenrightex 367
) . Extensible right parenthesis: bottom parenrightbt . 370

1 . Extensible right bracket: top (ceiling) bracketrighttp 371
I . Extension for right bracket bracketrightex , · 372
J . Extensible right bracket: bottom (floor) bracketrightbt .373

1 Extensible right brace: top . . bracerighttp . · 374
~ Extensible right brace: middle bracerightmid · 375
J Extensible right brace: bottom bracerightbt . .376

17.

18.

Apple Updates
Revisi ... :/.

Additions

Corrections

Apple Symbol: width table.

Apple QuickDraw Encoding and Character Set: A's octal position is
313, and A's octal position is 347.

19.

20.

Appendix D

The Advanced Users Supplement

Apple LaserWriter™
Advanced User's Supplement

First Edition
January 1985

Adobe Systems Incorporated

Adobe Systems Incorporated
1870 Embarcadero Road, Suite 100

Palo Alto, California 94303

Apple LaserWriter Advanced User's Supplement
13 January 1985

Copyright © 1985 Adobe Systems, Inc.
All Rights Reserved

POSTSCRIPT is a trademark of Adobe Systems, Inc.

LaserWriter and AppleTalk are trademarks of Apple Computer, Inc.

Times and Helvetica® are trademarks of Allied Corporation.

Scribe is a registered trademark of UNll...OGIC, Ltd.

The information in this manual is furnished for informational use only,
is subject to change without notice, and should not be construed as a com­
mitment by Adobe Systems, Inc. or Apple Computer, Inc. Adobe Systems
and Apple assume no responsibility or liability for any errors or in­
accuracies that may appear in this document.

The software described in this document is furnished under license and
may only be used or copied in accordance with the terms of such license.

i

Table of Contents

1. Introduction. 1
2. Basic operation . 2

2.1. The server . 2
2.2. Switches and lights . 3
2.3. Modes of operation . 4

3. Communication. 5
3.1. AppleTalk . 5
3.2. Serial I/O . 6
3.3. Communication dynamics. 9
3.4. Status queries and spontaneous messages. 9

4. Details of server operation . 11
4.1. Power-on test page. 11
4.2. Page types . 11
4.3. Manual feed. 12
4.4. Timeouts . 12
4.5. Interactive mode operation ; . . . 13
4.6. Diablo 630 emulation . 14

5. System parameters 17
5.1. Changing persistent parameters. 17
5.2. Persistent parameters. 18
5.3. Idle-time font scan conversion. 24
5.4. Volatile parameters . 25

6. Known problems. 28

1

Introduction

This is a supplement to the POSTSCRIPT Language Manual giving
detailed information about use of the Apple LaserWriter laser printer.
There are several documents relevant to operation and programming of the
LaserWriter; the three most important are:

• Apple LaserWriter User's Manual - describes how to set up a
LaserWriter in a single standard configurationt namely as a network
printer connected to AppleTalk and accessed from Macintosh and
other AppleTalk hO$ts running various applications. This is strictly
an operations guide; it gives no information about programming the
LaserWriter or communicating with it in any way other than via
AppleTalk.

• POSTSCRIPT Language Manual - describes the .programming lan­
guage that is used to tell the LaserWriter what to print and how to
print it. The LaserWriter is just one of many printers that can be
programmed using PosTScRIPT. This manual limits itself to
describing features 6f the langUage that are available on all
POSTSCRIPT printers.

• Apple LaserWriter Advanced User's Supplement (this document) -
describes all the operating modes and special capabilities of the
LaserWriter, and documents the additions to the PoSTSCRIPT lan­
guage that are used to control them.

Who needs to read this supplement? First, users wishing to access a
LaserWriter from any computer other than a Macintosh will at least need
to know something about how the LaserWriter operates and communicates
(sections 2 and 3). Second, programmers wishing to develop applications
making use of the LaserWriter's special capabilities will need to know
about the POSTSCRIPI' extensions for accessing those capabilities.

This document does not repeat basic operating infonnation given in the
LaserWriter User's Manual t such as how to load paper or change toner
cartridges; nor does it describe the basics of the POSTSCRIPT language.
For these you should refer to the other two documents.

2 Apple LaserWriter Supplement

Basic operation

This section gives an overview of the operation and use of the
LaserWriter. It assumes that you understand the basic operating
procedures given in the LaserWriter User's Manual.

In the following descriptions, we assume that all user-adjustable options
are set to their standard default values. Later sections describe the
machine's operation in more detail and document how to change the op­
tions.

2.1. The server

The principal function of the LaserWriter is to execute PoSTSCRIPT
programs sent to it from another computer. ~sTSCRIPT is a programming
language for describing the appearance of text, graphics, and images on
printed"pages. POSTSCRIPT programs may be composed by human users;
but more tYpically they are generated by application programs running on
other computers. S~ding a POSTSCRIPT program to a LaserWriter usually
causes it to"produce one or more printed pages.

In normal operation, the LaserWriter cycles endlessly through the fol­
lowing sequence of steps. First, it sets up a clean initial execution environ­
ment (virtual memory) for a user's PoSTSCRIPT program, which we will
refer to as a "job". Then it obtains that job over some communication
channel (either AppleTalk or serial I/O) and interprets it on the fly. When
end-of-fIle is encountered or an error occurs, the LaserWriter cleans up
after the user's job and restores the virtual memory to its initial state in
preparation for the next job.

Thus, the LaserWriter's main role is as a server for execution of
POSTSCRIPT programs sent to it by applications running on other com­
puters. Ordinarily, each such program is executed solely for its side-effect,
namely the generation of printed pages. However, under suitable con­
ditions, a program may change some permanent parameters in the
LaserWriter itself, or may perform some computation whose results are
sent back over the communication channel rather than causing hardcopy to
be produced.

Because the LaserWriter is a general-purpose computer, it can be
programmed with the capability to emulate other printers. "That is, it can
be connected in place of some other printer and produce correct hardcopy
results. The LaserWriter has a built-in emulator for the Diablo 630 printer,
which is widely supported by personal computer application programs.

BaSic operation 3

2.2. Switches and lights

The LaserWriter has two switches and four lights visible on the outside
of the machine. Aside from the power switch, there is a four-position
switch that, in combination with some parameters previously established,
controls the mode of operation and the communication discipline.

The switch positions are labelled "1200", "9600", "Special", and
"AppleTalk". These positions are assigned the following meanings, the
details of which are described in later sections:

1200

9600

Special

POSTSCRIPT batch mode operation; serial (RS232/422) com­
munication via either of the two connectors (see section 3.2),
at 1200 baud, with parity ignored.

POSTSCRIPT batch mode operation; serial communication
using parameters established previously. The default
parameters are 9600 baud, parity ignored. Since these
parameters can be set under software control, the "9600"
switch position may select a baud rate different from 9600.

Diablo 630 emulation mode; serial communication using
parameters established previously. The default parameters are
9600 baud, parity ignored.

AppleTalk POSTSCRIPT batch mode operation; AppleTalk communica­
tion.

Changing the switch setting has immediate effect; if a job is in progress,
it is aborted by execution of a PoSTSCRIPT interrupt.

The lights are intended to provide a simple visual indication of what the
LaserWriter is doing; more detailed information is available by querying
the software, as will be described later. The lights on the front panel are
Ready (green), Empty Paper Tray (yellow), and Paper Jam (red); addition­
ally, there is a light on the rear of the machine labelled "Test". The lights
are used in combination to indicate various states of operation.

Ready If the green light is on continuously, the machine is com­
pletely idle and awaiting the next user job to be executed. If
green is flashing and the other lights are off continuously, the
printer is warming up (this should take no longer than two
minutes). If green is alternating with a single quick flash of
the yellow light, the machine is busy executing a user job (or,
immediately after power-on, computing the test page to be
printed). If green is alternating with two quick flashes of the
yellow light, the machine is in the midst of executing a user
job but is suspended waiting for more I/O over the serial or
AppleTalk connection presently being used; usually this in­
dicates that it is waiting for the host machine to send it more
text to be interpreted.

Empty Paper Tray
If the yellow light is on continuously, the paper tray is either

4 Apple LaserWriter Supplement

empty or absent, Of the printer is in manual feed mode waiting
for a sheet of paper to be inserted. Quick flashes of yellow are
described above under green.

Jam If the red light is on, a sheet of paper has failed to feed from
the paper tray or has jammed in the printer. The jam may be
cleared by releasing the top of the printer and removing the
paper; it is not necessary to turn power off while doing this.

Printer failure
If the green, yellow, and red lights are all off, the printer
mechanism or electronics have suffered a failure requiring
manual intervention and possibly a service call.

Digital logic failure
If the "Test" light on the rear of the machine remains on
(either flashing or continuously) more than one second after
power-on, a failure has occurred in the digital electronics and
the machine is inoperable. If the light is flashing, an error
message is being repeatedly transmitted over the 25-pin serial
connector at 1200 baud. This indication may occur in com­
bination with any of the other three lights.

2.3. Modes of operation

There are three basic modes of server operation: batch, interactive, and
emulation. The four-position switch selects among these modes in com­
bination with various communication options. 1

In batch mode, a job consists of the execution of a single file containing
a PoSTSCRIPT program. When end-of-me is reached or the PoSTSCRIPT
program tenninates, the job is finished. The only data transmitted from the
LaserWriter to the host is that generated explicitly by the PoSTSCRIPT
print operator or by errors; in particular, the server provides no echoing,
editing, or other user amenities. Batch mode is the normal way of operat­
ing the LaserWriter as a printing device for another computer.

In interactive mode, a job consists of an arbitrarily long dialogue in
which the user issues a PoSTSCRIPT command and the server generates a
response and prompts for the next command. The state of PoSTSCRIPT's
virtual memory persists until the job is ended by explicit user request.
During user type-in, the server echoes characters and allows some min­
imal editing functions. Interactive mode is the means by which a user may
interact with the LaserWriter from a terminal connected directly to it. This
is useful for experimenting with PoSTSCRIPT and for using the
LaserWriter as a general-purpOse computer. More information about inter­
active mode operation is presented in section 4.5.

In emulation mode, the server emulates the operation of some other
printer, usually a Diablo 630. In this mode, the LaserWriter does not inter-

IMore precisely. the switch selects between batch and emulation modes with various communi­
cation options. Interactive mode is invoked by a procedure given in section 4.5.

Basic operation 5

pret the incoming data as a POSTSCRIPT program, but instead treats it as
text and control codes understood by the printer being emulated. Complete
information about Diablo emulation mode may be found in section 4.6.

Communication

The LaserWriter's connection with the outside world is via either
AppleTalk or a point-to-point serial (RS232/422) link. The setting of the
four-position switch determines the choice of communication discipline,
as described previously.

In the following paragraphs, the connection is referred to as the
"communication channel" (or just "channel' '). The computer at the other
end of the channel is referred to as the' 'host". The host uses the channel
to send the LaserWriter POSTSCRIPT programs to execute or data on
which to operate. (Alternatively, the device at the other end of the channel.
may be a terminal operated directly by a human user.)

It is important to understand that this channel is bidirectional. As well
as reading programs and data from the channel, the LaserWriter may send
output to the channel, either by explicit request of the program being ex­
ecuted (e.g., the POSTSCRIPT print operator) or by some spontaneous
event such as an error. In this context, you should remember that print
results in sending characters to the host computer or terminal, and has
nothing to do with causing printed pages to emerge from the LaserWriter.

3.1. AppleTalk

Before connecting a LaserWriter to an AppleTalk network, it is impor­
tant that you flrst tum the machine off and then set the server mode switch
to "AppleTalk". Never operate a LaserWriter connected to AppleTalk
with the switch set to any but the "AppleTalk" position. Failure to heed
this precaution may leave the machine in an inoperable state or even bring
down the entire network.

Connecting a LaserWriter requires that you use an AppleTalk connector
box with a 9-pin plug, the same as is used with a Macintosh. A connector
box with a 25-pin plug will not work, even though the LaserWriter does
have a 25-pin socket.

While the LaserWriter is attached to AppleTalk, it listens for a connec­
tion request from another AppleTalk host. The server then executes a job
using that connection as its source. Any error messages or other output
produced by print are sent back to the host over the same connection.
Data is carried transparently in both directions; that is, there are no char­
acter codes reserved for AppleTalk communication functions.

6 Apple LaserWriter Supplement

The AppleTalk protocols define an end-of-file indication. When the
POSTSCRIPT interpreter reaches end-of-file, the LaserWriter sends a
matching end-of-file indication back to the host, terminates the current
job, and starts a new one. Thus, more than one job may be sent over the
same AppleTalk connection. The host is permitted to close the connection
any time after sending its end-of-me indication.

While the LaserWriter is busy with one connection, any further connec­
tion requests are refused. This causes the requesting hosts to queue up and
wait for the server to become free. The next request chosen is the one that
has waited the longest.

AppleTalk communication with the LaserWriter is accomplished by
means of the Printer Access Protocol, which makes use of the Apple
Transaction Protocol, Datagram Delivery Protocol, and Name Binding
Protocol. These protocols are published separately by Apple.

A LaserWriter is identified by a three-part name constructed according
to the Name Binding Protocol. The fIrst or object part is the printer's in­
dividual name, which is initially "LaserWriter" but may be set to any
other value by means of the setprintername operator described-in section
5. The second or type part is always "LaserWriter", and the third or zone
part is unspecified.

It is possible to connect more than one LaserWriter to the same
AppleTalk network. If an additional machine has the same name as an ex­
isting one, it will automatically choose a new name, such as
"LaserWriterl" or "LaserWriter2", in order to resolve the conflict.

3.2. Serial I/O

The LaserWriter has two serial channels, one wired to a 9-pin (RS422)
connector and the other to a 25-pin (RS232) connector, either of which
can be used for conventional asynchronous serial communication. (The 9-
pin connector is also used for connecting to AppleTalk; but serial and
AppleTalk communication are incompatible and will never occur at the
same time.)

The signal pin assignments for the 9-pin (RS422) connector are:

1,3 Signal Ground
4 Transmit Data +
5 Transmit Data -
8 Receive Data +
9 Receive Data-

This is compatible with the Macintosh. It is possible to connect a
LaserWriter directly to a Macintosh using an Apple Modem cable and to
communicate with it using Mac Terminal.

The assignments for the 25-pin (RS232) connector are:

Communication

2 Transmit Data
3 Receive Data
4 Request To Send (optional; needed only if host requires it)
7 Signal Ground

20 Data Terminal Ready (optional; needed only if host requires it)

7

The other signals are not used. Technically, the LaserWriter has a "DTE"
type of RS232 interface. This means it can be connected directly to a host
computer or a modem, with no signal reversals required. Connecting to a
terminal requires interposing a "null modem", which at a minimum in­
volves reversing the Transmit Data and Receive Data signals.

When the LaserWriter is in any of the serial I/O modes, it uses one of
the two channels to send and receive serial data encoded in ASCII.2 Cer­
tain character codes serve special purposes, such as control-D to mark
end-of-file. The server performs a job by reading and executing a
POSTSCRIPT program from the serial channel; when the end-of-file char­
acter is received and the program terminates, the server sends an end-of­
me character, ends the job, and starts a new one.

At the beginning of a job, both channels are enabled with independent
baud rate and parity. The first channel to receive a character is the one
chosen for execution of the next job. (The other channel is not disabled; if
characters start to arrive on it, they are buffered and that channel is
selected when the current job is finished.)

The details of the serial communication are determined by three
parameters: channel, baud rate, and parity. These parameters may be
changed by invoking the statusdict operators setsccbatch and
setsccinteractive, described in section 5. Serial communication is
asynchronous, start-stop, with 8 data bits per character (of which the high­
order bit mayor may not be used for parity), one start bit, and two stop
bits.

The 9- and 25-pin connectors are designated in POSTSCRIPT by the in­
tegers 9 and 25. The baud rate is given as an integer, such as 1200 or
9600. The maximum baud rate supported by the software is 9600. The
parity is specified by an integer in the range 0 to 3, as follows:

2 ASCII is the American Standard Code for Information Interchange, a widely-used convention
for encoding characters as binary numbers.

8 Apple LaserWriter Supplement

o Ignore: the high-order bit of each 8-bit character received is ig­
nored, and the high-order bit of each character transmitted is zero.

1 Odd: the high-order bit of each 8-bit character received is
checked for odd parity (a POSTSCRIPT ioerror occurs if it is
incorrect), and each character transmitted has odd parity.

2 Even: like odd, but for even parity.

3 None: all 8 bits of each character are treated as data, and no
checking is performed.

As described in section 2.2, switch setting" 1200" establishes commu­
nication with standard parameters (1200 baud, parity ignored); and switch
settings "9600" and "Special" use parameters established previously. If
no such parameters have been established, the defaults for the latter two
switch positions are 9600 baud, parity ignored. If you are attempting to
make contact with a LaserWriter for the fIrst time and you don't know
how the parameters might have been set by the previous user, you should
start with the "1200" setting. A particular user or installation will likely
want to establish different standard parameters. The facilities for adjusting
these and other parameters are described in section 5.

The serial communication protocol is quite minimal. There are several
character codes reserved for communication functions and not passed
through to POSTSCRIPT:

Control-C interrupt (causes POSTSCRIPT interrupt operator to be
executed)

Control-D end-of-file

Control-Q (XON) start output

Control-S (XOFF) stop output

Control-T status query (see section 3.4)

Return end-of-line

Line-feed end-of-line (but ignored if it immediately follows Return)

As may be inferred, the server makes use of XON/XOFF flow control
and expects the other party to do likewise. For batch mode operation, this
form of flow control is required; in particular, use of the RS232 Data Ter­
minal Ready (DTR) signal for flow control is not supported. Failure to
conform to XON/XOFF flow control will result in occurrence of ioerror
while transferring files longer than about 5000 characters.

There is no way to "quote" the reserved characters (to pass them
through as data to POSTSCRIPT); nor is there any way to transmit charac­
ters in the "high ASCll" range (128 to 255) when the high-order bit is
being ignored or used for parity. Thus, the serial link is not a fully trans­
parent channel. However, this causes no difficulty in normal use since the
POSTSCRIPT language consists entirely of printable characters. The lan-

Communication 9

guage itself provides means for encoding arbitrary characters in strings
(the "\nnn" escape sequence). True binary data, such as images and
encrypted programs, are transmitted in hexadecimal.

Serial data sent from the LaserWriter during execution of a job is fol­
lowed by an end-of-fIle character sent when the job terminates. This en­
ables the application program running on the host computer to
synchronize with the server (if desired) and to correlate a given batch of
output with the job that generated it. Note that there is no necessity for the
application program to wait for one job to fInish before beginning to send
the input for the next job.

3.3. Communication dynamics

It is important to keep in mind that data transmitted by the LaserWriter,
whether generated by the POSTSCRIPT program being executed or by
some spontaneous event such as an error, is logically asynchronous with
respect to the data received. In particular, this means that the host com­
puter must be prepared to consume data generated by the LaserWriter
while waiting to send more data to the LaserWriter. If this is not done, the
LaserWriter and the host may each end up waiting for the other to con­
sume ·some data,and.a deadlock will result.

Data generated by POSTSCRIPT operators such as print is typically not
sent immediately but is buffered until a flush is executed. (A flush is
generated automatically by end-of-job and, in interactive mode, by each
prompt for user type-in.) It is important that a POSTSCRIPT program ex­
ecute a flush whenever it is required that data be sent immediately, such
as when the host must wait for data from the LaserWriter before it can
proceed. Failure to issue a needed flush can also result in a deadlock.

3.4. Status queries and spontaneous messages

At any time, it is possible to query the LaserWriter about what it is do­
ing. Response to this status query is asynchronous with respect to normal
job execution; that is, it is generated immediately regardless of what has
gone on before or how much input data has been buffered. This facility is
intended primarily to enable spooler programs to keep track of the ac­
tivities of LaserWriters under their control.

The status query mechanism works differently depending on whether
AppleTalk or serial communication is in use; but the syntax and semantics
of the response are the same in either case.

In the case of AppleTalk, a request to open a connection to a busy
LaserWriter yields a rejection packet whose data consists of a status mes­
sage. There is also a separate status request packet that yields the same
information. The path over which the status response packet travels is
logically separate from the one through which the server is receiving its
current job.

In the case of serial communication, receipt of a control-T character

10 Apple LaserWriter Supplement

from either channel elicits a one-line status message over the same chan­
nel. This channel need not be the one through which the server is receiv­
ing its current job. The message is bracketed by the text sequences
"%%[" and "]%%" so as to' enable host software to extract it from or­
dinary data generated by the job being executed.

The status message has a standardized syntax that is intended to be
machine-readable. It consists of one or more "key: value" pairs,
separated by semicolons. For example:

"[job: Fred's Mamo; status: busy; source: serial 9)"

The possible values and meanings of the various fields are as follows:

job

status

the name of the job, as stored in the jobname entry in
statusdict. This field is omitted if no job name has been set.
(statusdict is described in section 5.)

idle (no job in progress), busy (executing user's posTSCRIPT
program), waiting (I/O wait in mid-job), printing (paper in
motion), PrinterError: reason (e.g., paper out or jam), in­
itializing (during startup), printing test page .

source . serial 9, serial 25, AppleTalk. This is the source of the job
that the server is currently executing. This field is omitted if
the server is idle.

All messages generated spontaneously by the server (as opposed to
those generated by a user's POSTSCRIPT program) conform to the same
syntax as status messages.3 These are:

"[Error: error; OffendingCommand: operator)"
Error detected by the POSTSCRIPT interpreter (see POSTSCRIPT
Language Manual).

"[PrinterError: reason]"
Problem involving the printer mechanism (paper out, no paper tray,
jam, cover open, etc.) A printer error can occur only when the
machine is actually trying to print a page; in most cases, the server
then waits for the condition to be corrected and proceeds automati­
cally.

"[Flushing: rest of job (to EOF) will be ignored]"
Due to a previous error or other abort (e.g., stop or control-C), the
remainder of the current job is being discarded. Further input is ig­
nored until the next end-of-file indication is received.

"[ezitserver: permanent state may be changed]"
See section 5.

~ote. however, that these messages are sent as ordinary data through the communication
channel. Consequently, they are always bracketed with "%%[" and "]%%" whether the channel
is serial or AppleTalk.

Communication

Details of server
operation

11

Much of the behavior of the LaserWriter is subject to change by the
user. There is a collection of operators and other parameters in a special
POSTSCRIPT dictionary called statusdict. These are mentioned in the
paragraphs below; but complete documentation is deferred to section 5.

4.1. Power-on test page

When the LaserWriter is turned on, it attempts to print a test page con­
taining various simple text and graphics. The test page is not printed if the
dostartpage parameter in statusdict has been set to false or if the printer
takes more than three minutes to warm up. The normal startup time is
about 50 seconds if the test page is printed and about 25 seconds if it, is
not.

Certain information about the current communication parameters is en­
coded in the two graph examples in the middle of the page. The number of
tick marks along the bottom of the line graph corresponds to the current
switch setting, as follows: no ticks = "1200", one tick = "9600", two
ticks = "Special", three ticks = "AppleTalk". The communication
parameters selected by the current switch setting (if not AppleTalk) are
shown in the bar graph. The height of the two bars indicates the baud rates
for the 9 and 25-pin connectors. The color of the bars indicates the parity
settings: dark gray is ignore parity; medium gray (same as apple) is odd
parity; light gray is even parity; white is no parity.

At the top of the page is the printer's AppleTalk name (returned by
printername). At the bottom is the total number of pages that have been
printed since the machine was built. There is a border that is intended to
appear exactly one-half inch from the edges of a standard letter-size (8.5
by 11 inch) page; also, the left border of the apple illustration and the bot­
tom border of the bar graph illustration intersect at the exact center of the
paper. The printer alignment can be adjusted if necessary by invoking the
setmargins operator in statusdict.

4.2. Page types

The imageable region of the page is subject to both hardware limits (the
physical page size) and software constraints (the amount of memory avail­
able for the full page frame buffer). Space is traded off between the frame
buffer and POSTSCRIPT's virtual memory (VM). The built-in LaserWriter
software supports three standard "page types":

12

letter

note

legal

Apple LaserWriter Supplement

an imageable region of 8.0 by 10.5 inches t centered on an 8.5
by 11 inch page (that iSt with 0.25 inch borders on all sides).

an imageable region of 7.6 by 10.1 inches t centered on an 8.5
by 11 inch page. This page type is of interest to jobs that re­
quire unusually large amounts of VM for execution.

an imageable region of 7.0 by 12.5 inchest centered on an 8.5
by 14 inch page.

For all page types, the point (0, 0) in default user coordinate space is the
lower left corner of the entire page, not of the imageable region; that is,
the origin lies some distance outside the lower left corner of the imageable
region.

At the beginning of each job, the software detects whether a letter or
legal size paper tray is installed and sets the default page type automati­
cally. If a legal size paper tray is presentt page type legal is used; other­
wise either letter or note is used according to the pagetype parameter
previously established (the default is letter). A user's job can override the
default page type by explicit execution of the operator letter, note, or
legal.

4.3. Manual feed

It is possible to feed individual sheets of paper manually. If a job sets
manualfeed to true in statusdictt the printer does not take paper from the
paper tray during subsequent showpage operations. Instead, for each page
printed, the yellow light comes on and the printer waits for a sheet of
paper to be inserted into the slot in the right-hand side of the machine
(opposite the paper exit slot). If no paper is inserted within
manualfeedtimeout secondst a timeout error occurs and the job is
aborted.

4.4. Timeouts

There is a timeout facility for limiting the amount of time the server will
remain in various states. There are three timeouts of interest: the job
timeoutt the manual feed timeout, and the wait timeout. At the beginning
of a jobt these timeouts are set to default values (initially Ot 60, and 30
seconds respectively), but a user program can set the timeouts for that job
to other values if desired. The operators for controlling timeouts are lo­
cated in statusdict and are described in section 5.

The manual feed timeout was described above. The job timeout, if non­
zerot limits the total amount of time the job will execute; this is to protect
the server from being tied up by user programs that run for an un­
expectedly long time (or forever). The program itself can rejuvenate the
timer any number of times during the job if that is desirable.

The wait timeoutt if nonzero, limits the time the server will wait to
receive additional input for a job that is in progress; this is to protect the

Details of server operation 13

server from being tied up indefInitely. by a host that crashes or is discon­
nected in the midst of sending a fJ.1e to the server.

If a nonzero job or wait timeout has been set and it expires, the
POSTSCRIPT operator timeout is executed from errordict. With the stan­
dard definition of timeout, this causes a batch job to terminate. The
timeout facility is not ordinarily used when the server is in interactive
mode.

4.5. Interactive mode operation

As was mentioned earlier, it is possible for a human user to interact
directly with the LaserWriter from a terminal. To facilitate this, the
LaserWriter has an interactive mode of operation that provides some
simple user amenities.

A terminal with a standard RS232 interface may be connected directly
to the LaserWriter, usually via its 25-pin connector. When making this
connection, it is generally necessary to use a "null modem" or "modem
eliminator" that reverses the Transmit Data and Receive Data signals. In
place of a terminal, it is possible to use a personal computer running ter­
minal emulation software. For example, a Macintosh running MacTer­
minal can be connected to the LaserWriter's 9-pin connector using an Ap-

. pIe Modem cable.
There are two ways to put the LaserWriter into interactive mode. The

first is to select one of the batch mode switch positions (" 1200" or
"9600' '), make sure the attached terminal is set to the correct baud rate
and parity, and invoke the PoSTSCRlPl' procedure executive. That is, type
"executive" followed by return or new-line. (Since the server in batch
mode, the characters you type are not echoed back to you.) Once you do
this, a POSTSCRIPT herald and prompt should appear:

PostScript(tm) version 23.0
Copyright (c) 1984 Adobe Systems Incorporated.
PS>

Each time the LaserWriter prints the "PS>" prompt, it is waiting for
you to type in a POSTSCRIPI' statement followed by return or new-line. It
then executes that statement and prints another "PS>" prompt. While you
are typing, the LaserWriter echoes the characters you type back to your
terminal (so you can see them). Additionally, you can use the following
special characters while typing:

Backspace

Delete

Control-U

Control-R

Control-C

(control-H) erases QIle character.

(rubout) same as backspace.

erases the current line.

re-displays the current line.

aborts the entire statement and starts over.

14 Apple LaserWriter Supplement

Interactive mode continues until you type control-D (the serial end-of­
file character), execute a PoSTSCRIPT· quit command, or change the
switch setting.

The other way to put the LaserWriter into interactive mode is to
redefme the meaning of the "Special" switch position so that selecting it
invokes interactive instead of emulation mode. For infonnation about this,
see the description of eescratcb parameter 58 in section 5.2.

4.6. Diablo 630 emulation

The LaserWriter is capable of printing text intended for the Diablo 630
daisy wheel printer, which is a product of Diablo Systems, Inc. (a Xerox
company). In Diablo emulation mode, the LaserWriter accepts documents
with Diablo 630 formatting commands and produces hardcopy output.
This capability is intended mainly for use in printing simple text fIles that
are not in PoSTSCRIPT fonn, and for processing output from software
packages that do not directly support POSTSCRIPI'.

If the system parameters have not been changed from their default state,
all that is necessary to invoke the Diablo emulator is to set the server
mode switch to the "Special" position and connect one of the

.. LaserWriter.'-s. serial ports to the host's RS232 interface .. Text to be printed
may then be sent at 9600 baud with any parity.

Most of the information about serial communication in section 3.2 also
applies in the case of Diablo emulation. However, the special meanings of
control characters such as control-C, control-D, etc., are disabled; instead,
all characters are treated according to the Diablo 630 protocol. The
LaserWriter still sends XON and XOFF characters to control the flow of
data from the host. Note that not all print drivers in microcomputer operat­
ing systems support the XONIXOFF protocol (e.g., DOS 2.0), and it may
be necessary to obtain a separate software package to support this
protocol. There are several available.

All the parameter settings that can be changed with Diablo commands
are initialized as they are in the Diablo. For information about these com­
mands, refer to the Diablo 630 documentation.

There are other parameters that in the Diablo require setting hardware
switches or changing print wheels; in the LaserWriter these are system
parameters that may be adjusted as described in section 5. The complete
set of persistent parameters pertaining to Diablo emulation is given in the
following table. To change them, refer to section 5.

Parameter
pitch
font
font for bold
auto-linefeed

Initial setting
10
Courier
Courier-Bold
off

The Diablo emulator supports all the standard LaserWriter typefaces.

Details of server operation 13

server from being tied up indefinitely. by a host that crashes or is discon­
nected in the midst of sending a file to the server.

If a nonzero job or wait timeout has been set and it expires, the
POSTSCRIPT operator timeout is executed from error diet. With the stan­
dard definition of timeout, this causes a batch job to terminate. The
timeout facility is not ordinarily used when the server is in interactive
mode.

4.5. Interactive mode operation

As was mentioned earlier, it is possible for a human user to interact
directly with the LaserWriter from a terminal. To facilitate this, the
LaserWriter has an interactive mode of operation that provides some
simple user amenities.

A terminal with a standard RS232 interface may be connected directly
to the LaserWriter, usually via its 25-pin connector. When making this
connection, it is generally necessary to use a "null modem" or "modem
eliminator" that reverses the Transmit Data and Receive Data signals. In
place of a terminal, it is possible to use a personal computer running ter­
minal emulation software. For example, a Macintosh running MacTer­
minal can be connected to the LaserWriter's 9-pin connector using an Ap­

. pIe Modem cable.
There are two ways to put the LaserWriter into interactive mode. The

first is to select one of the batch mode switch positions (" 1200" or
"9600"), make sure the attached terminal is set to the correct baud rate
and parity, and invoke the POSTSCRIPT procedure executive. That is, type
"executive" followed by return or new-line. (Since the server in batch
mode, the characters you type are not echoed back to you.) Once you do
this, a POSTSCRIPT herald and prompt should appear:

PostScript(tm) version 23.0
Copyright (c) 1984 Adobe Systems Incorporated.
PS>

Each time the LaserWriter prints the "PS>" prompt, it is waiting for
you to type in a POSTSCRIPT statement followed by return or new-line. It
then executes that statement and prints another "PS>" prompt. While you
are typing, the LaserWriter echoes the characters you type back to your
terminal (so you can see them). Additionally, you can use the following
special characters while typing:

Backspace

Delete

Control-U

Control-R

Control-C

(control-H) erases Qne character.

(rub out) same as backspace.

erases the current line.

re-displays the current line.

aborts the entire statement and starts over.

14 Apple LaserWriter Supplement

Interactive mode continues until you type control-D. (the serial end-of­
fIle character), execute a POSTSCRIPT quit command, or change the
switch setting.

The other way to put the LaserWriter into interactive mode is to
redefme the meaning of the "Special" switch position so that selecting it
invokes interactive instead of emulation mode. For information about this,
see the description of eescratch parameter 58 in section 5.2.

4.6. Diablo 630 emulation

The LaserWriter is capable of printing text intended for the Diablo 630
daisy wheel printer, which is a product of Diablo Systems, Inc. (a Xerox
company). In Diablo emulation mode, the LaserWriter accepts documents
with Diablo 630 formatting commands and produces hardcopy output.
This capability is intended mainly for use in printing simple text files that
are not in POSTSCRIPT form, and for processing output from software
packages that do not directly support POSTSCRIPT.

If the system parameters have not been changed from their default state,
all that is necessary to invoke the Diablo emulator is to set the server
mode switch to the "Special" position and connect one of the

.. LaserWritet's serial ports to the host's RS232 interface. Textto be printed
may then be sent at 9600 baud with ariy parity.

Most of the information about serial communication in section 3.2 also
applies in the case of Diablo emulation. However, the special meanings of
control characters such as control-C, control-D, etc., are disabled; instead,
all characters are treated according to the Diablo 630 protocol. The
LaserWriter still sends XON and XOFF characters to control the flow of
data from the host. Note that not all print drivers in microcomputer operat­
ing systems support the XONIXOFF protocol (e.g., DOS 2.0), and it may
be necessary to obtain a separate software package to support this
protocol. There are several available.

All the parameter settings that can be changed with Diablo commands
are initialized as they are in the Diablo. For information about these com­
mands, refer to the Diablo 630 documentation.

There are other parameters that in the Diablo require setting hardware
switches or changing print wheels; in the LaserWriter these are system
parameters that may be adjusted as described in section 5. The complete
set of persistent parameters pertaining to Diablo emulation is given in the
following table. To change them, refer to section 5.

Parameter
pitch
font
font for bold
auto-linefeed

Initial setting
10
Courier
Courier-Bold
off

The Diablo emulator supports all the standard LaserWriter typefaces.

Details of server operation 15

The default font is Courier, which is the fixed-pitch font most commonly
used on daisy-wheel printers, and which is most likely to give correct
results for typical microcomputer application programs. Note that the
regular and bold fonts are specified separately. Thus, one could use
Courier for regular printing and Courier-Oblique for bold; then the
"bold" text would print as italic instead.

The LaserWriter emulates the Diablo as closely as possible; however,
there are some differences of which you should be aware:

• The LaserWriter does not have any way· to detect that the end of a
document has been reached other than by noticing that data has
stopped arriving. All Diablo printer settings (margins, tabs, spacing,
etc.) remain in effect for about 30 seconds (or whatever the default
wait timeout is set to) after the last page is processed. Then a Diablo
"reset" operation is automatically perfonned to restore all settings
to standard values; i.e., the margins are cleared, spacing is put back
to standard, and tab settings and any special word processing IIlodes
are cleared.

• The LaserWriter actually prints a page when it either reaches the
bottom of the page or receives a form-feed (control-L) character. If
the last page of a document is not run and does not have a fopn-feed·
at the end, it will not be printed immediately. Instead, it will be
printed when the LaserWriter resets approximately 30 seconds later,
or as part of the next document (at the top of the first page). When
documents are being printed in close succession, care should be
taken to ensure that each one has a final fonn-feed so that they do
not get run together.

• Some word processors produce "bold" by double striking a char­
acter. That will not appear as bold in the LaserWriter. Only the bold
produced by issuing the proper Diablo command sequence (escape-
0) will result in bold characters.

• Times-Roman and Helvetica are narrow fonts that may look
squeezed if no adjustment of page width is made by the word
processor. Very few word processing programs are capable of
producing correctly formatted output using proportionally spaced
fonts such as these.

• The emulator uses exact positioning on the paper. Output from a
word processor that has attempted to compensate for slippage on
vertical movement may appear slightly uneven.

The following Diablo 630 commands are not supported by the
LaserWriter:

• print suppression
• HY-Plot
• extended character set
• the ability to download information for print wheels, including

program mode

16 Apple LaserWriter Supplement

• the ability to override printwheel spacin$ (for proportional spacing),
although the offset for proportional spacmg can be changed

• page lengths other than 11 inches
• paper feeder control
• hammer energy control
• remote diagnostic
• backward printing control (note, however, that "reverse printing" is

supported)

IT you are an mM-pc user, you may wish to issue the following com­
mands to set up serial port 1 for communication with the LaserWriter.
These commands set the baud rate to 9600 and map printer output to the
serial port:

MODE COMl:9600,n,8,1
NODE LPTl :=C0K1:

This by itself is not sufficient to support XONIXOFF flow control. Some
applications may handle this protocol themselves; otherwise a different
printer driver should be installed to avoid communication problems while
printing large documents.

Details of server operation 17

System parameters

The LaserWriter has a fairly extensive collection of parameters that
control its behavior. Some of these parameters are stored in non-volatile
memory (EEROM), so they persist even when the machine is turned off.
Other parameters are volatile, and generally remain in effect only through
the execution of a single job. This section documents both types of
parameters.

To change system parameters requires that you send the LaserWriter a
POSTSCRIPT program containing the necessary commands. To write such
a program requires that you understand at least the fundamentals of the
POSTSCRIPT language, for which you must refer to the POSTSCRIPT

Language Manual.
All system parameters are accessed via a special dictionary called

statusdict, which is separate from systemdict and userdict and is not or­
dinarily on POSTSCRIPT's dictionary stack. The easiest way to gain access
to statusdict is to execute statusdict begin, which pushes statusdict onto
the dictionary stack. Some parameters are read and written by invoking
operators defined in statusdict, while other parameters are accessed as or­
dinary data values (integers, booleans, strings. etc.)

5.1. Changing persistent parameters

Ordinarily, the server brackets each job with save and restore so that
changes made to the virtual memory (VM) by the job do not persist into
the next job. To make permanent changes (e.g .• to install additional fonts).
it is necessary to escape from the normal server and execute a job that is
not bracketed by save and restore. This is also necessary in order to ex­
ecute any of the statusdict operators that change the persistent (non­
volatile) parameters.

The ability to make permanent changes is controlled by a password.
Some LaserWriters are used in a shared environment in which it is un­
desirable for individual users to make changes to a server's persistent
state. In such cases, only a system administrator should be permitted to
make such changes. But in the case of a LaserWriter dedicated to a single
user or a small group of cooperative users, the users should be permitted
to make changes freely.

The system administrator password is a POSTSCRIPT integer. The
default value is zero; but it can be changed to any other value by means of
the operator set password in statusdict.

To exit from the normal server. it is necessary to execute the
POSTSCRIPT command:

password serverdict begin exitserver

18 Apple LaserWriter Supplement

where password is the system administrator password. If the password is
incorrect, an error results. If it is correct, the message

tt [ezitserver: pe~nent state may be changed] tt

appears, and the remainder of the current job is permitted to make per­
manent changes.4 This may be done in either batch or interactive mode.

The POSTSCRIPT program executed between a successful exitserver
and the next end-of-me is permitted to invoke the statusdict operators
that change persistent parameters. Additionally, all changes made by that
program to the state of POSTSCRIPr's VM, such as creating new objects,
storing values into dictionaries, etc., persist until power-off; the modified
VM appears as the initial state of all subsequent jobs.

While executing a job outside the normal server save/restore, the sys­
tem is not protected from harmful changes to the environment that could
cause it to malfunction. (This is to permit the server software itself to be
patched, should that become necessary.) Also, VM consumed by that job
remains in use indefinitely; there is no way to reclaim it other than by
turning the machine off and on.

S.2. Persistent parameters

The statusdict operators for accessing persistent parameters· are
described in this section. The volatile parameters are dealt with in section
5.4.

In order to invoke any of the operators that change persistent parameters
it is fIrst necessary to escape from the normal server environment, as
described in the previous section (otherwise an invalidaccess error will
result.)

• pagecount

pagecount int

returns (i.e., pushes onto the operand stack) the number of pages that
have been printed since the machine was built. (There is no way to
reset this value.) ..

Errors: stackoverflow.

4Actually, a new job is started, but without the usual end-of-file indication on the communi­
cation channel. That is, exitserver performs an implicit restore, clears the operand and dictionary
stacks, etc. Consequently, you must not issue an end to match the serverdict begin.

System parameters 19

• setprintername
string setprintername

takes a string of 31 or fewer characters from the operand stack and
remembers it. This string is printed on the test page at power-on
time, and also defines the name used to identify this LaserWriter on
AppleTalk.

Errors: invalidaccess, range check, stackunderflow, typecheck.

• printemame
string printername substring

takes a string, stores into it the printer name string previously saved,
and returns a string object designating the substring actually used
(default: LaserWriter).

Errors: invalidaccess, rangecheck, stackunderflow, typecheck.

• setsccbatch
channel baud parity setsccbatch -

takes three integers designating channel (9 or 25), baud rate, and
parity (see section 3.2). These determine how serial communication
is to be performed on that channel during subsequent batch jobs
when the switch is in the "9600" position. Note that these
parameters may be set independently for each of the two channels.
The new baud rate and parity do not take effect until the end of the
current job. Setting the baud rate to zero disables the channel; but
disabling both channels is not permitted.5

Errors: invalidaccess, range check, stackunderflow, typecheck.

• sccbatch
channel sccbatch baud parity

takes a channel number (9 or 25) and returns the batch baud rate and
parity previously set for that channel (default: 96000).

Errors: rangecheck, stackoverflow, stackunderflow, typecheck.

5SCC stands for Serial Communications Controller, which is the device that operates the two
110 connectors.

20 Apple LaserWriter Supplement

• setsccinteractive
channel baud parity setsccinteractive -

same as setsccbatch, but sets serial communication parameters to be
used when the switch is in the "Special" position (which selects
either interactive or emulation mode operation with adjustable com­
munication parameters).

Errors: invalidaccess, rangechecIc. stackunderflow, typecheck.

• sccinteractive
channel sccinteractive baud parity

takes a channel number (9 or 25) and returns the "Special"
(interactive or emulation) baud rate and parity previously set for that
channel (default: 300 0).

Errors: rangecheck, stackoverflow, stackunderflow, typecheck.

• setdostartpage
boolean setdostartpage

takes a boolean that determines whether a test page is printed upon
subsequent power-on.

Errors: invalid access, stackunderflow, typecheck.

• dostartpage
dostartpage boolean

returns the start page parameter previously set (default: true).

Errors: stackoverflow.

System parameters 21

• set margins
top left setmargins'

• margins

takes two integer parameters and adds them to the top and left page
margins respectively. treating them in units of pixels in device coor­
dinate space. This is intended only for use at installation time to align
the imageable area on the page. (The left margin parameter is quan­
tized in units of 16 pixels, so it may not be possible to align the
imageable area closer than 8 pixels to the true center of the page.
Also, the printer hardware imposes margins that cause the image to
be clipped if it is moved too close to the edge of the paper; unfor­
tunately, the hardware-imposed margins are no~ symmetrical about
the center of the paper.)

Errors: invalidacces$, rangecheck, stackq.p,dertlow, typecheck.

margins toP left

returns the two margin parameters previQUsly set (default: 00).

Errors: stackoverflow.

• setpagetype
integer setpagetype

takes an integer from the stack specifying the page type to be used
when the letter-size paper tray is installed (see section 4.2). The
values defined at present are 0 for letter and 1 for note.

Errors: invalidaccess, rangecheck, stackundertlow, typecheck.

• pagetype
pagetype integer

returns the page type parameter previously set (default: 0).

Errors: stackoverflow.

• setdefaulttimeouts
job manual feed wait liIetc:lefaulttu.puts -

takes three non-negative integers and sets the default values of
jobtimeout, manualfeedtimeout, and waittimeout respectively (see
section 4,4).

Errors: invalidaccess, rangecheck, stackundertlow, typecheck.

22 Apple LaserWriter Supplement

• defaulttimeouts
defaulttimeouts job manualfeed wait

returns the default job, manual feed, and wait timeouts previously set
(default: 06030).

Errors:stackoverflow.

• set password
old new setpassword success

sets the system administrator password, controlling the ability to es­
cape from the protected server and make persistent environmental
changes (see section 5.1). setpassword takes two integers from the
stack: the old password and the new password; and it returns true if
it was successful and false if unsuccessful.

Errors: stackunderflow, typecheck.

• check password
integer checkpassword boolean

takes an integer from the stack and returns true if that is equal to the
password last set by setpassword. If they are not equ'al,
checkpassword dela}!s one second before·· returning false. If
setpassword has never been called, the correct password is zero.

Errors: stackunderflow, typecheck.

• setidlefonts
mark font sx sy rot nchars .,. setidlefonts

expects the operand stack to contain up to 150 integers in the range 0
to 255, delimited by a mark immediately. below them. Removes the
mark and the integers and remembers them. The integers specify
fonts to be scan-converted during idle time, as is described in section
5.3.

Errors: invalidaccess, rangecheck, typecheck, unmatchedmark.

• idlefonts
idlefonts mark font sx sy rot nchars ...

pushes a mark followed by the integers last passed to setidlefonts
(default: just the mark followed by no integers at all).

Errors: stackoverflow.

System parameters 23

• seteescratch
index value sateesoratoh -

takes an index in the range 0 to 63 and a value in the range 0 to 255,
and writes the value into an array in the EEROM reserved for scratch
use. This is intended for storing persistent infonnation not en­
visioned in the original design of the LaserWriter. Several of these
have already been used; they are described later in this section.

Errors: invalid access, rangecheck, stackunderflow, typecheck.

• eescratch
index aesoratch value

takes an index and returns the EEROM scratch value previously set
(default: 0).

Errors: rangecheck, stackunderflow, typecheck.

• pagestackorder
paqestaokorder boolean

returns false if the first page printed faces the back of the second
page; true if the first page faces away from the second (for the cur­
rent LaserWriter product this.is always false, meaning that pages end
up stacked in reverse order).

Errors: stackoverflow.

Several capabilities have been added to the LaserWriter since the stan­
dard set of persistent parameters (just described) was established, most
notably the Diablo 630 emulator and the sharing of the "Special" switch
position between interactive and emulation modes. New persistent
parameters that control these capabilities have been assigned using the
cells accessed by eescratch and seteescratch. In the next major revision
of the LaserWriter software, these parameters will be assigned names of
their own.

The following eescratch locations have been assigned. Thus, for ex­
ample, to change the meaning of the "Special" switch position from
Diablo emulation to POSTSCRIPT interactive mode, issue the command:

58 1 seteesoratoh

The default value of every eescratch cell is zero.

58 selects the function of the "Special" switch setting: 0 means Diablo
630 emulation mode; 1 means POSTSCRIPT interactive mode; and
other values are reserved for future capabilities.

24 Apple LaserWriter Supplement

59 the value 1 enables the Diablo auto-linefeed feature.

60 selects the Diablo pitch (number of characters per inch). Reasonable
values are 10, 12, and 15; 0 selects 10.

61 selects the "bold" font used for Diablo emulation. This is a font
number taken from the table given in section 5.3, except that if the
number is 0 (selecting Courier) then 1 (selecting Courier-Bold) is
used instead. (To actually select Courier as the "bold" font, use
some illegal font number such as 255.)

62 selects the "normal" font used for Diablo emulation. This is a font
number taken from the table given in section 5.3. The default value
o selects Courier.

63 has an internal use which is not documented.

The EEROM in which the persistent parameters are stored can be writ­
ten only a limited number of times before wearing out. Each location in
the EEROM is capable of approximately 10,000 writes. For this reason,
the EEROM is used only for parameters that are expected to change infre­
quently. (The copy count is an exception; it is implemented in such a way
that the wear is distributed over a large number of locations.)

At power-on time, the contents of the EEROM are checked for consis­
tency, and an entry named eerom in statusdict is used to report the result~
Normally, eerom contains true. If an inconsistency is detected, eerom is
redefined to be a 512-character POSTSCRIPT string into which are read the
entire contents of the EEROM; then the page count is set to zero and all
parameters are reset to default values. If the EEROM fails altogether,
eerom is set to false and the software shifts to a simulation of the EEROM
parameters in RAM; all the operations for setting and reading parameters
continue to work, but the values no longer survive across power-off.

5.3. Idle-time font scan conversion

While the server is waiting for a job to begin (Le., before the Ill'St char­
acter has been received from the source specified by the switch), it utilizes
the available time to scan-convert and cache a standard selection of
characters in commonly-used fonts and point sizes. If a subsequent docu­
ment uses those characters, the document will be processed faster than it
otherwise would be.

The characters scan-converted during idle time are listed below. The
character sets marked with an asterisk are pre-scanned and permanently
resident in ROM.

System parameters 25

• Courier 10* point, full ASCII set (intended for program listings and
other "line printer" applications)

• Times-Roman and Helvetica 10, 12*, and 14 point, alphanumerics
and common punctuation

• Times-Bold and Helvetica-Bold 10, 12, and 14 point, lower-case
letters only

The standard selection of fonts to be scan converted during idle time
may be overridden (except for the ones stored in ROM) by use of the
setidlefonts operator in statusdict. Each font to be scan converted is
specified by a group of five integers:

font sx*lO sy*10 rot/S nchars

where font is a font number taken from the table below; sx and sy are the
scale factors for x and y; rot is the rotation in degrees (applied after
scaling); and nchars is the number of characters to be converted. The font
numbers are:

0 Courier 7 Times-l301dItalic
1 Courier-Bold 8 Helvetica
2 Courier-Oblique 9 Helvetica-Bold
3 Courier-BoldOblique 10 Helvetica-Oblique
4 Times-Roman 11 Helvetica-BoldOblique
S Times-Bold 12 Symbol
6 Times-Italic

The characters converted are the frrsf nchars characters of the following
string, which contains 94 in all:

abcde£ghijklmnopqrstuvwzyz
ABCDEFGHI J,KLMNOPQRSTUVWXYZ
0123456789., ;?: - ()'" !+[] $%&*/ _=@#'{ }<>A_I \

For example, the following group of numbers would cause conversion of
all lower- and upper-case alphabetic characters of Helvetica-Bold in a 12-
point size, narrowed by the ratio 10/12, and rotated by 90 degrees:

9 100 120 18 52

The complete set of fonts to be scan converted is specified as a se­
quence of integers, interpreted in groups of five as just described. If the
sequence is empty, the standard fonts are converted.

5.4. Volatile parameters

statusdict also contains several operators with immediate effects that
do not persist from one job to the next. There are no restrictions on chang­
ing these parameters.

26 Apple LaserWriter Supplement

• setjobtimeout
integer setjobtimeout

takes a non-negative integer and sets the timeout for the current job
in seconds; zero means "never time out". (The job timeout is in­
itially set to the default job timeout returned by defaulttimeouts for
batch jobs and to zero for interactive jobs.)

Errors: rangecheck, stackunderflow, typecheck.

• jobtimeout
jobtimeout integer

returns the amount of time remaining before the job timeout occurs;
zero means the job will never time out.

Errors: stackoverflow.

The remaining statusdict entries are not operators but rather are or­
dinary data values s~ch as. boole~ns? integers, and strings. They may be
read and written in the usual way by PoSTSCRIPT dictionary operators
such as get and put. In general, changes to these entries persist only until
the end of the current job.

• manualfeedtimeout
manualfeedtimeout integer

the manual feed timeout currently in effect (default: the default
manual feed timeout returned by defaulttimeouts).

• waittimeout
waittimeout integer

the wait timeout currently in effect (default: the default wait timeout
returned by defaulttimeouts for batch jobs and zero for interactive
jobs).

• manualfeed
manual feed boolean

a boolean that controls whether paper is to be fed manually (true) or
from the paper tray (false) (default: false).

System parameters 27

• prefeed
prefeed boolean

a boolean that controls pre-feeding of paper from the paper tray. If
prefeed is true, the next sheet of paper is fed immediately upon
completion of each showpage or copypage; if false, the next sheet is
not fed until the next showpage or copypage. To maximize through­
put, the user's program should set prefeed to true at the beginning
of a job and to false immediately before printing the last page of the
job. This feature should be used only by programs that know that
successive showpage operations will be done with a minimum of
computation (a few seconds), such as when printing simple text
documents using only pre-cached fonts. Misuse of this feature can
cause the printer mechanism and the laser to be left running for long
periods of time, resulting in premature wear (default: false).

• jobname

jobname string

• product

a string specifying the name of the current job. If set by the user's
program, this name will appear as part of status responses generated
during the remainder of that job (defilUlt: null).

product string

• revision

a string object which is the name of the laser printer product
(LaserWriter). The rare program that needs to know what type of
printer it is running on should check this string. Also, this string
defines the zone portion of the printer's AppleTalk name.

Errors: stackoverflow .

revision integer

an integer which is the current revIsion level of the machine­
dependent software. (Note that the version operator in systemdict
returns the version number of the machine-independent portion of
POSTSCRIPT.)

Errors: stackoverflow.

There are several additional statusdict entries that are not documented.
They have to do with the operation of the server and are not intended for
execution by user programs.

There is a new convention, established since the most recent revision of

28 Apple La.rerWr~ta Supplement

the POSTSCRIPT Language Manual, for specifying the number of copies to
be printed by each execution of the showpage operator. This convention is
obeyed by most POSTSCRIPT printers, including the LaserWriter.

Each time showpage is executed, the name #Copies is looked up in the
context of the current dictionary stack. The resulting value should be a
non-negative integer specifying the number of copies of each page to be
printed. At the beginning of every job, #Copies is defined to be 1 in
nserdict.

Known problems

The following bugs are known to exist in the initial release of the
LaserWriter software (pOSTSCRIPT version 23.0). These bugs will be
present in the product until the next complete ROM revision. Most of the
problems are relatively obscure. Fortunately, it is possible either to avoid
or to work around the problems that affect the LaserWriter's function.
You should not worry about the bugs that affect only its performance.

• During serial input, if the input buffer becomes full and the
LaserWriter sends XOFF to stop transmission from the host, it oc­
casionally fails to send XON to restart transmission. Assuming the
wait timeout is enabled (as it ordinarily is), this causes the job to
time out and abort, which resets the erroneous buffer full indication
and sends an XON. (The existence of this bug makes it inadvisable
to operate the LaserWriter with the wait timeout disabled, since
communication with the host could become hung up indefinitely.
This bug occurs only under unusual circumstances that are difficult
to describe; it is timing- and data-dependent.)

• If characters are positioned by adjusting the translation component
of currentmatrix rather than by adjusting cnrrentpoint as is or­
dinarily done, character positioning may be as much as one pixel
off, leading to ragged base lines .

• The font cache may work at less than full efficiency due to the
presence of certain characters that are inappropriately locked in the
cache. The performance effects of this bug are slight .

• Redefming any of the built-in fonts or fonts derived from them
causes the font cache to malfunction under certain complex and
hard-to-describe circumstances. The effect is that some characters
are displayed in the wrong font or point size or both. To avoid this
bug, do not define a new font with the same name as any of the
built-in fonts.

Krwwn problems 29

• It is possible to copy an existing font dictionary and then add a
Metrics entry to the copy in order to create a new font with dif­
ferent spacings for the characters. Unfortunately, this does not al­
ways work correctly, because the cache fails to distinguish between
characters belonging to the new and old fonts. To work around this
bug, it is necessary also to change some other entry in the new dic­
tionary. The simplest way to do this is to change the FontBBox
entry to be a new array which is a copy of the FontBBox array from
the original font.

• More than two levels of recursion in character building may cause
the LaserWriter to crash. That is, it's OK to have a user-defined font
whose BuildChar procedure in turn does a show using a built-in
font. But it is unsafe for that user-defined font to be invoked from
the BuildChar procedure of yet another user-defined font.

• The path created by strokepath, or the path created by charpath
for a stroked font (e.g., Courier), may not be completely suitable for
subsequent clipping or filling if round end-caps or joins are used.
Portions of the round end-caps or joins may incorrectly be found to
be "outside" the path thus created

• Images built .in strips may contain seams between the strips under
certain circumstances. .

•. If the procedure passed to image or imagemask fails to return a
string as it is supposed to, the LaserWriter software may cease to
function correctly until the machine is next turned off and on.

• If a gsave is done and a new transfer function is established by
settransfer, the subsequent grestore may not properly restore the
old transfer function. This bug occurs randomly with low probabil­
ity. (This bug does not affect the restoration of the default transfer
function, which is done at the beginning of each job and during any
explicit invocation of letter, legal, or note.)

• If manual feed is invoked too quickly after printing a previous page
using normal feed (from the paper tray), the printer mechanism ig­
nores the request to use manual feed. To avoid this problem, when
switching from normal to manual feed be sure at least 5 seconds
elapse before issuing the next showpage. If necessary, the delay
may be inserted artificially by executing the statement:

usertime 5000 add
{dup usertime lt {pop exit} if} loop

• Exhausting POSTSCRIPT's VM sometimes causes the LaserWriter to
crash and restart rather than simply abort the current job as it
should.

• If a job uses the note page type and then fills the VM close to over­
flowing, a subsequent attempt by the same job to set any page type
causes the LaserWriter to crash and restart.

30 Apple LaserWriter Supplement

• The Diablo 630 emulator may fail to produce any output if it is sent
two or more successive single-page documents that do not end with
form feed characters .

• The automatic recovery from total failure of the EEROM device,
described at the end of section 5.2, does not work properly. If the
EEROM fails, the LaserWriter will not start up after power-on.

Appendix E

The Apple Talk Printer Access Protocol

This section contains:

1. The AppleTalk Printer Access Protocol Specification.

2. The source of an example application that calls the Printer Access Protocol directly.
The application chosen is the application on the Programming and Debugging Aids
disk entitled "Downloading Program". For details on the operation of this program, see
appendix F in the section entitled" Instructions for Spooling, Editing and Downloading
a Postscript file from a Macintosh application." (Note that the program was compiled
under the name PSDump and was subsequently renamed Downloading Program.)

AppleTalk Printer Access Protocol

by

Gursharan S. Sidhu and Alan B. Oppenheimer,
Apple Computer Inc.,
September 4, 1984.

(revised February 15, 1985)

Scope

This document describes in detail the Printer Access Protocol used to access Apple's
laser print server (LaserWriter) over AppleTalk.

I. Introduction

The AppleTalk printer Access protocol (PAP) allows workstations on AppleTalk (e'.g. a
Macintosh) to communicate with the laser print server (LaserWriter). The protocol has
been designed to be frugal in its use of workstation memory and cable bandwidth.
From the architectural point of view, PAP is a client of the name binding (NBP) and
transaction protocols (ATP).

PAP is a connection-oriented protocol. A PAP client in a workstation issues a
PAPOpen call which initiates a connection-establishment dialogue with the server (the
client specifies the server by its complete name). PAP calls NBP to obtain the address
of the server's listener socket from the server's name.

Once a connection has been opened to the server, the PAP client at either end of the
connection can receive data from the other end by issuing PAPRead calls, and write
data to the other end through PAPWrite calls. PAP uses ATP transactions (in
exactly-once mode) to transfer the data.

When the data transfer has been completed a PAPClose call is issued by the PAP
client in the workstation to close the connection.

At any time, the PAP client in the workstation can issue a PAPStatus call to find out the
status of the server.

There are several calls for use only in the server. The first of these is the SLlnit call.
This is issued by the server when it is first started up, after it has completed its internal
initialization and is ready to accept print jobs from workstations. The SLlnit call opens
a service listener socket in the server (PAP does this by calling ATP to open a
responding socket), and causes the server's name to be installed in the server's
names table (PAP does this by issuing a call to NBP).
AppleTalk PAP February 15, 1985

A second call is used by the server's PAP client to indicate to.the server PAP's
connection arbitration code that the server is ready to accept a connection. This would
be done just after the SLinit call or after each printing job has been completed and the
server is idle (and ready to accept another connection). This GetNextJob call primes
the connection arbitration code to accept a connection establishment request over the
AppleTalk.

Two calls PAPRegName and PAPRemName can be used by the PAP client in the
server to respectively, register and remove (deregister) the server's name. This might
be necessary for giving the server more than one name, or to change the server's
name (e.g. at server setup time).

One of the situations that PAP must deal with is the well-known case of half open
connections. Such a connection is said to exist when one of the connection ends
"dies" (or terminates the connection without informihg the other end). Half open
connections must be detected and tom down/closed. For this purpose, PAP maintains
a connection timeout (at each end). Furthermore, each end of an open connection
must send "tickling" packets to the other end on a periodic basis. The purpose of these
packets is to inform the other end that the sender's end is open and "alive". The receipt
of any packet on a connection resets the connection timer at the receiving end. If the

. connection timer expires (Le., no packets have been received since the timer was last
reset) then the decision is made that the other end is dead and.the connection end is
tom down.

The rest of this document contains a detailed discussion of the PAP protocol, its
interaction with (use of) NBP and ATP, and the details of the PAP client interface at the
workstation and server ends.

AppleTalk PAP 2 February 15, 1985

II. The Protocol

The basic model of the server is that it processes jobs from workstations, one job at a
time. While a workstation is being served (Le., its job is being processed by the server)
requests for service from other stations are not accepted (they are informed that the
server is busy). At this time, a connection is said to be open between the workstation
being served and the server. When the server is done with a particular job, the
connection is closed and the server becomes idle. It can now accept requests for
service from other work stations.

Clearly, at any time, the server can have at most one open connection. Also, in a
sense there is a one-to-one correspondence between connections and jobs processed
by the server.

When a server is first started, it goes through its internal initialization and then the
server control software issues an SUnit call to its PAP code. This causes the PAP to
call ATP to open a service listener (SL) socket (this is an ATP responding socket).
Then, PAP calls NBP to register the server's name(s) and bind them to the SL socket.
An ATPGetRequest call is then issued by PAP on this socket (so that the server can
respond to PAPOpen or PAPStatus request packets). But the server is still not ready to
accept a job/connection.

After the SUnit call completes, the PAP client in the server issues a GetNextJob call to
indicate that the server is ready to accept jobs. The server is now in the IDLE state and
is ready to accept jobs/connections.

Connection Establishment (Opening) Phase:

A connection is a logical relationship between two PAP code entities (one in the
workstation and the other in the server). Data can be exchanged by two PAP clients
only after a connection has been established/opened. Since PAP uses ATP to transfer
data, the two communicating PAPs must in the connection establishment phase

: discover the address of the ATP responding socket of the other connection end. Also,
the amount of data that can be transferred in an ATP transaction is of a maximum size
equal to the available receive buffers at the end issuing the read requests. This
maximum size (called the "flow quantum") is sent by each end to the other in the
connection establishment phase.

Connection establishment is initiated by PAP clients in the workstations by issuing a
PAPOpen call. Such a client provides as a can parameter the complete name of the
server. The PAP code obtains the complete internet address of the server's SL socket
by issuing an NBP Lookup call. It opens an ATP responding socket Rw, generates an
8-bit connection identifier ConnlD and then sends a transaction request (TReq), with
PAP-type OpenConn, to the server's SL socket. This packet contains the ConnlD, the
address of socket RW,the flow quantum for the workstation, and a wait time used by
the server for arbitration (discussed later). All packets related to this connection (sent
by either end) must contain this connection identifier.
AppleTalk PAP 3 February 15, 1985

When an ATP TReq of PAP-type OpenConn is received at the server's SL socket, PAP
executes a connection acceptance algorithm. If the server is BUSY (Le. it is processing
a job), then its PAP responds to the "OpenConn" with an ATP response of PAP-type
OpenConnReply indioating "Server busy".

If however, the server is idle, then upon receiving an OpenConn (the first one since the
server went into the idle state), its PAP goes into an arbitration (ARB) state for a fixed
amount of time (approximately two seconds). In the ARB state, the PAP receives all
incoming "OpenConns" and tries to find the one corresponding to the work station that
has been waiting for a connection for the longest amount of time. The idea is to
implement a fairness scheme that accepts the request generated by this station over
those from more recent entrants to the contest.

The time, in seconds, for which a station has been waiting (call it the WaitTime) is sent
with the OpenConn. When the first OpenConn is received since the server went IDLE,
the WaitTime value from that request is loaded into a variable called OldestReq.
During the ARB interval, whenever an OpenConn request is received, its WaitTime is
compared with OldestReq. If WaitTime <= OldestReq then the just received call has
waited less time than a previously received one. In this case, PAP responds to the just
received request with an OpenConnReply indicating "Server busy". If WaitTime >
OldestReq then the just received call has waited longer than the previously received
(and pending) one, In this case" PA~ save$ t~e just-received WaitTimein OldestReq.
Now, the just received OpenConn request(and now the oldest waiting one, so far) is
kept pending until the end of the ARB interval, or until an older request arrives. At the
end of the ARB interval, PAP opens an ATP responding socket Rs and sends an ATP
response of PAP-type OpenConnReply indicating "Connection accepted" to the
selected (and pending) request. This carries the ConnlD received in the "OpenConn",
the address of socket Rs and the flow quantum of the server end [The flow quantum
value for the server end is set by the SLinit call issued when the server is initialized. It
is currently 8 for the LaserWriter]. The connection is now open, and that workstation's
job is being processed. The server is now in the BUSY state.

At the workstation end, if a response of PAP-type OpenConnReplyis received
indicating that the server is busy, then that end's PAP waits some time (approx 2
seconds) and issues another connection opening transaction. Each time it repeats this
process it updates a "wait time" - the time in seconds that it has been trying to open the
connection. The current value of this wait time is sent with each OpenConn. Each of
these OpenConn ATP transaction requests is issued with a retry count of 5 and retry
interval (approx 2 seconds). If the server is dead, or in its 6-second imaging-loop, it will
be unable to respond; then the transaction will terminate without receiving a reply at
all. The workstation's PAP updates the wait time and tries again.

Data Transfer Phase:

Once a connection has been opened PAP's data transfer phase is started. In this
phase, PAP has two functions: to actually transfer data over the connection, and to
detect and tear down half-open connections. The detection of half-open connections is
done by maintaining a connection timer (of the order of 2 minutes) at each end of the
AppleTalk PAP 4 February 15, 1985

connection. This timer is started as soon as the connection is opened. Whenever a
packet of any sort is received from the other end of the connection, tile timer is reset. If
the timer expires (clearly, without receiving a packet from the other end) the connection
is torn down. The presumption is made that the other end has "died" or has closed its
connection.

For this to work properly, it is important that even though no data is being exchanged
on the connection, PAP exchanges control packets to signal that the connection ends
are alive. This process is referred to as "tickling" and the control packets are called
"tickling packets". As soon as a connection is established, each end starts an ATP
transaction with PAP type Tickle. This transaction, known as the "Tickle" transaction
has a retry count of infinity (ATP retry value of 255 is used to signify infinite retries) and
a retry time interval of half the connection timeout. Tickle packets are sent to the other
end's ATP responding socket (Le. Rs or Rw). The receiver of such a packet must reset
its connection timer but must not send a transaction response. These "Tickle"
transactions are cancelled by each end when the connection is closed.

The basic data transfer model used by PAP is "read-driven". By this we mean that
either end sends transaction requests to read data from the other end (another way of
saying this is that each end issues an ATP transaction request to the other end asking
it to send data). When the PAP client at either end of the connection wishes to read
data from the other end, it issues a PAPRead call. This call provides PAP with a read
buffer (of size equal to this end's flow quantum) into which the data is to be read. As a
consequence of this call, PAP calls ATP to send an ATP transaction request with
PAP-type SendData, and the ATP bitmap reflecting the size of the call's read buffer.
This transaction is issued with a retry count of "infinite" (Le. 255) and a retry time
interval (15 seconds). To prevent duplicate delivery of data to PAP's clients, all these
ATP transactions for the transfer of data use ATP's exactly-once mode.

The receipt of an ATP TReq packet with PAP-type SendData implies that there is a
pending PAP Read at the other end. This "send credit" can be remembered by the PAP
code, and used to service any pending or future PAPWrite calls issued by its client.

When a PAP client (at either end) issues a PAPWrite call, PAP examines its internal
data structures to see if it has received a "send credit". If it has, then it takes the data
from the PAPWrite and sends it in ATP Response packets with PAP-type Data (the
EOM-bit is set in the last of these ATP response packets). If no send credit has been
received, then PAP queues the PAPWrite call and awaits a "send credit" from the other
end (Le. the receipt of an ATP request of PAP-type SendData from the other end). The
amount of data to be sent in a PAPWrite call cannot exceed the flow quantum of the
other end (PAPWrite calls that violate this restriction return immedtatedly with an error
message).

When a PAP client issues the last PAPWrite call for a particular job, it must ask PAP to
send an End-of-File (EOF) indication with that call's data. The EOF indication is
delivered to the PAP client at the other end (as part of the received information for a
PAPRead call); this indication notifies the client that the other end is through sending
data on this connection. Note that for this purpose the client can issue a PAPWrite call
with no data to be sent; in this case, just an EOF indication is conveyed to the client at
the other end.

AppleTalk PAP 5 February 15, 1985

Connection Termination (Closing) Phase:

When the PAP client at either end issues a PAPClose call, PAP closes the connection.
Typically, after the workstation's PAP client has completed sending all data to the
server and received an EOF in return, it will issue the PAPClose call. An ATP
transaction request is sent to the other end with PAP-type "CloseConn". An end
receiving a "CloseConn" should immediately send back, as a courtesy, an ATP
transaction response of PAP-type "CloseConn Reply". To close a connection's end, it
is important to cancel any pending ATP transactions issued by that end, including the
"tickle" transaction. Note that the end receiving the "CloseConn" might not necessarily
cancel these pending transactions immediately, as it will probably be at interrupt level.

At the server end (see Figure 1), the receipt of the CloseConn will cause the
connection to be torn down, but the server will conttnue in the BUSY state until it
actually finishes the processing of the data pertaining to the job. When this is
completed, the PAP client in the server issues a GetNextJob call. This call puts the
server back in the IDLE state, and it now is ready to entertain requests for connection
establish ment.

PAP Packet formats:

PAP uses both NBP and ATP. The use of NBP is strictly for the purpose of registering
the server's SL socket and, given a server's name, for determining the address of its SL
socket.

However, packets sent by ATP in response to PAP calls include a PAP header. This is
built using the user bytes of the ATP header, and in some cases by sending four or
more bytes of PAP header in the data part of the ATP packet.

In all cases, the first of the ATP user bytes is the ConnlD, and the second the PAP-type
of the packet. [Permissible values of PAP-type are: OpenConn, OpenConnReply,
SendData, Data, CloseConn, CloseConnReply, Tickle, SendStatus, and StatusReply].
For packets of PAP-type equal to Data, the third ATP user byte is the EOF indication.

Figure 2 illustrates the PAP header for the different types of PAP packets.

AppieTalk PAP 6 February 15, 1985

PAPType Values:

The permissible PAP Type field values are:

OpenConn === 1
OpenConnReply = 2
SendData= 3
Data = 4
Tickle = 5
CloseConn = 6
CloseConnReply = 7
SendStatus = 8
Status Reply = 9

AppleTalk PAP 7 February 15, 1985

III. The Client-PAP Interface

In this section we take each PAP call and list the parameters the client must pass and
the significant interface-level aspects of each call. These calls, while intended to
document a generic client-to-PAP interface, in fact also correspond exactly to those
provided by the Macintosh implementation of PAP.

(i) PAPOpen:

This call is issued by a PAP client in a workstation to start/open a connection to a
specified server. In a Pascal-like form the call is:

where:

FUNCTION PAPOpen (VAR RefNum: INTEGER;
PrinterName: Ptr;
FlowQuantum: 'INTEGER;
StatusBuff: Ptr;
VAR CompState: INTEGER): INTEGER;

RefNum is the connection reference number returned after the
connection has been opened;

PrinterName is a pointer to the entity name (see definition. of entity name
below) of the print server to which the connection is to be
opened;

FlowQuantum is an integer specifying the flow quantum equal to the
number of 512 byte buffers (e.g. if FlowQuantum = N, then
the flow quantum = 512*N bytes; the LaserWriter uses
N = 8);

StatusBuff is a pointer to the buffer structure in which the printer status
is returned to the caller during the opening process (the
details of this data structure are given below);

CompState is an integer that can be monitored by the caller for call
completion and error reporting.

PAPOpen is executed asynchronously. As soon as control returns to the caller, if the
function's returned value equals NoErr, then the caller can monitor for call completion
by examining the variable CompState. While the call is executing, this variable will
have a value greater than zero. When the call has completed, it will take on a value of
zero (no error) or a negative value which is an error code.

An entity name, as defined in the "Calling the AppleTalk Manager from Assembly
Language" section of the AppleTalk Manager chapter in Inside Macintosh, consists of:
the object name length byte, the object name, the type length byte, the type, the zone
length byte and the zone.

The structure of a StatusRec to which StatusBuff is a pointer is given by the Pascal
type declaration:

AppleTalk PAP 8 February 15. 1985

'l'YPE StatusRec = PACKED RECORD
SystemStuff: Longlnt;{PAP internal use}
StatusStr: STR255 {status string}

END;

It is important that the caller clear StatusStr before making the call. While the call is
being processed the caller can monitor StatusStr in which PAP will continuously insert
the status information being returned from the server in PAP OpenConnReply packets.
The PAP client in the workstation might wish to display this string in an appropriate
fashion in order to provide appropriate feedback to the user.

(ii) PAPClose:

This call is issued by the PAP client in a workstation to close the connection specified
by its reference number. In a Pascal-like form the call is:

FUNC'l'ION PAPClose (RefNum: IN'l'EGER): IN'l'EGER;

where:
RefNum is the connection reference number.

This call is executed synchronously. This call cancels any pending PAPRead and
PAPWrite calls for"the indicated connection.

(iii) PAPRead:

This call is issued by the PAP client at either end to read data from the other end over
the connection specified by the reference number. In a Pascal-like form the call is:

where:

FUNC'l'ION PAPRead (RefNum: IN'l'EGER;
ReadBuff: Ptr;

RefNum
ReadBuff

DataSize

EOF

CompState

VAR DataSize: INTEGER;
VAR EOF: IN'l'EGER;
VAR CompState: IN'l'EGER): INTEGER;

is the connection reference number;
is a pOinter to the buffer into which the data is to be
read;
is an integer in which the number of bytes of data read
into the buffer is returned when the call completes;
is an integer in which the end-of-file indication received
from the other end is returned to the caller (a non-zero
value indicates an end of file; otherwise a value of 0 is
returned);
is an integer that can be monitored by the caller for call
completion and error reporting.

It is important to note that PAP assumes that the buffer to which ReadBuff points is of

AppleTalk PAP 9 February 15, 1985

size equal to (no smaller than) the flow quantum specified in the PAPOpen call.

This call is executed asynchronously. As soon as control returns to the caller, if the
function's returned value equals NoErr, then the caller can monitor for call completion
by examining the variable CompState. While the call is executing, this variable will
have a value greater than zero. When the call has completed, it will take on a value of
zero (no error) or a negative value which is an error code.

When the call has completed without error, then the variable DataSize is equal to the
number of bytes of data received into the buffer. When the call completes with error,
the value of this variable has no significance and is unpredictable.

(iv) PAPWrite:

This call is issued by the PAP client at either end to write data to the other end over the
connection specified by the reference number. In a Pascal-like form the call is:

where:

FUNCTION PAPWrite (RefNum: INTEGER;
DataBuff: Ptx;
DataSize: INTEGER;
EOF: INTEGER;

RefNurn
DataBuff
DataSize
EOF

CompState

VAR CompState: INTEGER): INTEGER;

is the connection reference number;
is a pointer to the data to be written;
is equal to the number of bytes of data to be written;
is the end-of-file indication to be sent to the other end (a
non-zero value indicates end of file; otherwise a value of
zero should be sent);
is an integer that can be monitored by the caller for call
completion and error reporting.

It is important to note that if the data size is bigger than the flow quantum of the other
end (value received during the connection establishment phase) the call will return
with an error.

This call is executed asynchronously. As soon as control returns to the caller, if the
function's returned value equals NoErr, then the caller can monitor for call completion
by examining CompState. While the call is executing, this variable will be greater
than zero. When the call has completed, it will have a value of zero (no error) or a
negative value which is an error code.

(v) PAPStatus:

This call is used by a PAP client in the workstation to determine the currrent status of
the print server. It can be used at any time (i.e. whether a connection has been opened
by the PAP client to the server or not). It is executed synchronously, and upon
completion returns a string with the status message sent by the print server. In a
Pascal-like form the call is:
AppleTalk PAP 10 February 15, 1985

where:

FUNCTION PAPStatus (PrinterName: Ptr;
StatusBuff: Ptr): INTEGER;

PrinterName is a pointer to the entity name (see PAPOpen) of the print
server whose status is to be determined;

StatusBuff points to a structure of type StatusRec (see PAPOpen).

In addition to these calls, the server uses the following four calls:

(vi) PAPRegName:

This call is used by the server only. It registers a name (as the entity name for the print
server) on the server's listening socket.

FUNCTION PAPRegName (PrinterName: Ptr): INTEGER;

where:
PrinterName points to a structure of type Entity Name.

(vii) PAPRemName:

This call is used by the server only. It deregisters a name from the server's iistening
socket.

FUNCTION PAPRemName (PrinterName: Ptr): INTEGER;

where:
PrinterName points to a structure of type Entity Name.

(viii) SUn it:

This call is issued by the PAP client in the server to perlorm several functions: to open
a service listening socket and to register the server's name on this service listening
socket. In a Pascal-like form the call is:

FUNCTION SLlnit (PrinterName: Ptr;

where:
PrinterName
FlowQuantum

FlowQuantum: INTEGER): INTEGER;

is the name of the print server;
is an integer specifying the flow quantum equal to the
number of 512 byte buffers (e.g. if FlowQuantum = N, then
the flow quantum = 512*N bytes; the LaserWriter uses
N = 8).

SLinit is executed synchronously.

AppleTalk PAP 11 February 15, 1985

(Ix) GetNextJob:

This call is issued by the PAP client in the server either just after the SLlnit call or when
it has finished processing a job. It closes any open connection, and then puts the
server in the IDLE state and ready to open another connection. In a Pascal-like form
the call is:

FUNCTION GetNextJob (VAR RefNum,

where:
RefNum

(x) PAPUnload:

CompState: INTEGER): INTEGER;

is a variable in which a reference number is returned when
a connection has been opened.

This call can be used at either end, the work station or the server, to cause the PAP
data structures to be unloaded and currently open connection(s) to be closed. It could
be used on the server, if for instance, the communication mode switch is moved from
AppleTalk to RS-232 etc. In the work station, the client would use this before exiting to
the Finder. In a Pascal-like form the call is:

FUNCTION PAPUnload: INTEGER.

Switch
On

Issue
GetNextJob

IDLE
State

Get

Open a
Connection

ARB

State

Issue
Sllnit first

OpenConn

BUSY
State

Receive
CloseConn

Issue
GetNextJob

I
I IDLE

State

Figure 1 : Server State Diagram

AppleTalk PAP 12 February 15. 1985

T
ATP
User
Bytes

ATP
Data

r-Sbits1

ConnlD

PAPType

~~~6.~ .. ~o!o~~ 

0 

~_~w.w~ 

r-Sbits1 

OpenConn 
(TReq) 

OpenConnReply 
(TResp) 

Data 
(TResp) 

Status 
(TResp) 

4 v .,-, ConnlD-'----COnnID----- ConnID-- 0 --

·,4· = OpenConn--- ... OpenConnReplylv-----= Data-- = Statu~ 

.~*~~ 0 ------ 0 ------EOF 0-

...:~ .. ATP Responding.,. ...... ATP Responding .................... data bytes······.· <unused> ... . 
Skt Number Skt Number 

.~. Flow quanturn .... --Flow quantum ,- data byte8""~'"- <unused:;:o--u 

_-4 ________ Status -----data bytes. 

Tickle 

(TReq) 

CloseConn 

(TReq) 

String 

CloseCOnnReply 

(TResp) 

SendStatus 

(TReq) 

Status 
String-

SendData 
(TReq) T f-_C_O_n_nl_D--I -4 .. ConnID .. · .. ··· ... ·· Connl[).··················~ ConnID······························· 0 ...................... COnnID····· ... 

ATP PAPType .<"= Tickle- == CloseConn- ... CloseConnReply- = SendStatus- = SendData~" 

User 
Bytes o 

1'~ 

AppleTalk PAP 

Figure 2. PAP packet format 

13 February 15, 1985 





AppleTalk Printer Access Protocol Example Program 

The following is an example of a program that calls the AppleTalk Printer Access 
Protocol. It is the Downloading Program that is available on the Programming and 
Debugging Aids disk. Note that it was compiled under the name PSDump and then 
renamed to be the Downloading Program. 





PROGRAM PSDump; 

Alan B. Oppenheimer 
November 9, 1984 VO.1A 
January 17, 1985 Vl.0A 
February 5, 1985 V1.0B 
COPYRIGHT (C) 1984, 1985 

Update for release ??!! 
Re-link for PAP 1.2C 
APPLE COMPUTER INC. } 

{------------------------------------------------------------------------------
Program to read a postscript text file and dump it to PAP 

-------------------------------------------------------------------------------} 
{$ASM+} 
{$M+} 
{$U-} 

USES 

CONST 

{$U Obj/QuickDraw 
{$U Obj/OSIntf 
{$U Obj/ToolIntf 
{$U Obj/PackIntf 

QuickDraw, 
OSIntf, 
ToolIntf, 
PackIntf; 

number of menus } lastMenu = 3; 
appleMenu = 1; 
FileMenu 256; 
EditMenu = 257; 

menu ID for desk accessory menu } 
menu ID for File menu } 

VAR 

menu ID for Edit menu } 

myMenus: ARRAY [l .. lastMenu] OF MenuHandle; 
code, i : INTEGER;· 
temp, doneFlag: BOOLEAN; 
myEvent: EventRecord; 
RdBuffPtr, WrtBuffPtr: Ptr; 
ServerName, WrtStr: STR255; 
hCurs,wCurs: CursHandle; 
iBeam,watch: Cursor; 
whichWindow: Windo~Ptr; 

{debug: TEXT;lf: CHAR;} 

{ *** PAP Workstation Procedures *** 

FUNCTION PAPOpen ( VAR RefNum : INTEGER; PrinterName : Ptr; 
FlowQuantum : INTEGER; 
StatusBuff : Ptr; VAR Compstate : INTEGER) : INTEGER; EXTERNAL; 

FUNCTION PAPStatus ( PrinterName : Ptr; StatusBuff Ptr ) : INTEGER; EXTERNAL; 

FUNCTION PAPRead ( RefNum : INTEGER; rxBufPtr : Ptr; 
VAR rxBufLen : INTEGER; VAR EOFByte : INTEGER; 
VAR CompState : INTEGER) : INTEGER; EXTERNAL; 

FUNCTION PAPWrite RefNum : INTEGER; txBufPtr : Ptr; 
txBufLen : INTEGER; EOFByte : INTEGER; 
VAR CompState : INTEGER) : INTEGER; EXTERNAL; 

FUNCTION PAPClose ( RefNum : INTEGER) : INTEGER; EXTERNAL; 

FUNCTION PAPUnload : INTEGER; EXTERNAL; 

{ *** End PAP Procedures *** 

PROCEDURE SetUpMenus; 
{ Once-only initialization for menus } 
VAR i: INTEGER; 
BEGIN 

InitMenus; {initialize Menu Manager 
myMenus[l] := GetMenu(appleMenu); 
myMenus [1] AA. menudata[l] := CHR(Applesymbol); 
AddResMenu(myMenus[l],'DRVR'); ( desk accessories 
myMenus[2] := GetMenu(fileMenu); 



myMenus[3] := GetMenu(editMenu); 
FOR i:=l TO lastMenu DO 

InsertMenu(myMenus[i],O); 
DrawMenuBar; 

END; {of SetUpMenus 

PROCEDURE BeSFE; 

CONST ReadSize = 4096; 

TYPE 
ProtoBuf = PACKED ARRAY [l .. ReadSize] OF CHAR; 

VAR Res, FRes, RCount, InEOFByte, OutEOFByte : INTEGER; 
ourPRefNum,ourFRefNum : INTEGER; 
PAPWrBuff : ProtoBuf; 
ReadBuf : PACKED ARRAY [1 .. 512] OF Char; 
ourStatBuf,ourVolName : STR255; 
OpenCompState, RdCompState, WrtCompState INTEGER; 
junk,FCount : LONGINT; 
ourPtr : Ptr; 
openStuff : SFReply; 
ourPoint : Point; 
ourSFTypeList : SFTypeList; 

PROCEDURE IssueReads; 
BEGIN 

IF RdCompState <= 0 THEN 
Res := PAPRead (ourPRefNum,@ReadBuf,RCount,InEOFByte,RdCompState); 

END; 

BEGIN { of BeSFE } 

OutEOFByte := 0; InEOFByte := 0; 
ourPoint.H := 50; ourPoint.V:= 50; 

ourSFTypeList [0] : = 'TEXT'; 
SFGetFile (ourPoint,ourStatBuf,NIL,l,ourSFTypeList,NIL,openStuff); 
IF NOT openStuff.good THEN EXIT(BeSFE)i { User hit cancel} 

Res := PAPOpen (ourPRefNum,@ServerName,l,@ourStatBuf,OpenCompState); 
IF Res < 0 THEN EXIT(BeSFE); { Exit on error} 
REPEAT UNTIL OpenCompState <= 0; 

Res := FSOpen (openStuff.fName,openStuff.vRefNum,ourFRefNum); 
WrtCompState := 0; 
Res : ... PAPRead (ourPRefNum,@ReadBuf,RCount,InEOFByte,RdCompState); 

REPEAT 

FCount := ReadSize; 

REPEAT IssueReads UNTIL WrtCompState <= 0; 

FRes := FSRead (ourFRefNum,FCount,@PAPWrBuf); 
IF FRes <> 0 THEN OutEOFByte := 1; 
Res := PAPWrite (ourPRefNum,@PAPWrBuf,FCount,OutEOFByte,WrtCompState); 

UNTIL FRes <> 0; 

REPEAT IssueReads UNTIL (WrtCompState <= 0) AND (InEOFByte > 0); 

Res := PAPClose (ourPRefNum); 
Res := FSClose (ourFRefNum); 

END; of BeSFE 

PROCEDURE DoCommand(mResult: LongInt); 
VAR name: STR255; 

arefNum,j, theMenu, theItem : INTEGER; 
BEGIN { of DoCommand } 

theMenu := HiWord(mResult); theItem := LoWord(mResult); 
CASE theMenu OF 



appleMenu: 
BEGIN 

GetItem(myMenus[l],theltem,name); 
arefNum :~ OpenDeskAcc(name) 

END; 

FileMenu: 
BEGIN 

CASE the Item OF 
1: EXIT(PSDump); {exit the program} 
2: BEGIN {Start Command} 

BeSFE; 
END; 

END {of CASE theItem}; 
END; 

END; {of menu case 
HiliteMenu(O) ; 

END; {of DoCommand } 

BEGIN {main program } 
InitGraf(@thePort); 
InitFonts; 
FlushEvents(everyEvent,O); 
InitWindows; 
SetUpMenus; 

SetCursor(arrow); 

{ Set up the server name data structure } 
ServerName := 'LaserWriter:LaserWriter@*'; 
ServerName[O] := CHR(ll); {change string length to length of object string} 
ServerName[12] := CHR(ll); {change colon to length of type string} 
ServerName[24] := CHR(O); {change @ to length of zone part of name} 

doneFlag := FALSE; 
REPEAT 

SystemTask; 
temp := GetNextEvent(everyEvent,myEvent); 
CASE myEvent.what OF 
mouseDown: 

BEGIN 
code := FindWindow(myEvent.where,whichWindow); {returns whichWindow} 
CASE code OF 

inMenuBar: DoCommand(MenuSelect(myEvent.where»; 

inSysWindow: SystemClick(myEvent,whichWindow); 

END 
END; 

{ of code case 
{ of mouseDown } 

keyDown,autoKey: 

updateEvt: 
BEGIN 

whichWindow := POINTER(myEvent.message); 
BeginUpdate(whichWindow); 
EndUpdate(whichWindow)i 

END; {of updateEvt } 

END; { of event case } 
UNTIL doneFlag; 

END. 





Appendix F 

Programming and Debugging Aids 





Programming and Debugging Aids 

Inside LaserWriter contains various files and programs of interest to developers of 
applications for the Apple LaserWriter and other POSTSCRIPT printers. Two disks are 
supplied. The first disk, entitled "Screen Fonts", contains a complete set of screen 
fonts and a copy of Font Mover. The second disk, entitled "Programming and 
Debugging Aids" contains the following folders: 

Error Handler 

Font Metrics 

Cookbook Examples 

Downloading Program 

Screen Fonts Disk 

This disk contains a complete set of printer screen fonts, including the roman, bold, 
italic and bold italic faces. Since the standard LaserWriter software derives aI/ 
screen fonts and character widths from the Roman face by using the same width for 
italic and by adding one extra pixel per character for bold, there is an error between 
the screen widths and the printer widths, particularly for bold characters. If you want 
to write an application that computes line breaks exactly and that does line layouts 
exactly, you may want to take advantage of these more accurate screen fonts. Use 
Font Mover to move these fonts into the system file on your startup disk. To do this: 

1. Transfer the font file that you want and Font Mover to your startup disk. 
2. Open up Font Mover by double clicking on the font file. 
3. Copy the fonts that you want by selecting "Copy" from the Font Mover menu. 
4. Select Quit. 

Error Handler 

When the LaserWriter detects an error in a file that it has received, it normally sends 
an error message to the workstation from which the file originated. Unfortunately, the 
current Macintosh printing software has no way to display or otherwise record such an 
error. If you are developing POSTSCRIPT applications, you may wish first to send the 
contents of the Error Handler document to the LaserWriter (by means of the 
Downloading Program. See the downloading instructions in the section entitlied" 
Instructions for spooling, editing and downloading a Postscript file from a Macintosh 
application.", in this appendix). This causes the LaserWriterto report any subsequent 
errors by printing them on a hardcopy page in addition to sending them back to the 
workstation. (Note that you can install the Error Handler only if the LaserWriter's system 
administrator password has not been changed from its standard value of zero.) 



Font Metrics 

In order to produce the most accurate and pleasing printed results, application 
programs require information about the sizes of individual printed characters. While 
this information can be obtained by querying the printer directly, it is often more 
advantageous to obtain it from a separate file. For each of the 13 LaserWriter fonts, the 
Font Metrics folder includes an Adobe Font Metrics file that gives details about all the 
characters in the font. The format of an Adobe Font Metrics (.afm) file is described in the 
POSTSCRIPT Language Manual. These Font Metrics files are in memory based 
MacWrite format. It you read them with Disk Based MacWrite, MacWrite will 
automatically convert them to the Disk Based MacWrite format. If you do this, there is 
no way to convert them back again, so if you need them in memory based MacWrite 
format, make a copy of them first. 

Cookbook Examples 

See the Postscript Cookbook section of this document. 

Downloading Program 

See the next section, entitled" Instructions for spooling, editing and downloading a 
Postscript file from a Macintosh application." 



Instructions for Spooling, Editing and Downloading a 
Postscript file from a Macintosh application. 

In normal use, the Macintosh Print Manager sends a Postscript file to the printer 
each time that it wants to print a document on Lase rWrite r. It is possible to spool that 
file to disk and look at the result for debugging purposes. It is also possible to edit the 
spooled file and then transmit it to the printer. This feature allows advanced users to 
add features to Macintosh documents that are not supported by the current Macintosh 
Print Manager (translation and rotation on the page or rotated text for example). The 
syntax for this spooled Macintosh file will be defined in the final release of Inside 
LaserWriter, but it is not currently available. 

To Spool a Postscript File. 

When a Macintosh application is run to print a document on LaserWriter, the 
Postscript output that is generated can be spooled to a disk file instead of sending it to 
the printer by using the following procedure: 

1. Select "Print" fron the application's file menu in the usual way. 
2. When the print dialog appears, click OK in the usual way. 
3. Immediately press the Control and F keys simultaneously and hold them down 

until the message "Creating Postscript file" appears on the top of the screen. 
4. Quit from the application. 
5. A file labelled "Postscript" should be on the desktop. (If there was a previous file 

labelled "Postscript" on the desktop, it will have been destroyed.) 
6. Rename the file as something other than Postscript if you want to keep it so that it 

is not destroyed the next time that you spool a Postscript file. 



To Edit the Postscript File. 

The Postscript file created above can be edited using Mac Write as follows: 
1 . Open the file labelled "Postscript" with MacWrite available on one of the disk 

drives. 
2. A message saying "should a Carriage return signify a new paragraph or a line 

break?" will appear. Select "Paragraphs". 
3. A message saying "This document is being converted and will open as Untitled" 

will appear. Select "OK". (This is because the file generated is a Text Only file, not a 
full MacWrite file~) 

4. The Postscript file will appear as a MacWrite document. This file is in Postscript 
using the QuickDraw translation routines predefined in the Apple Printer Initialization 
File (LaserPrep) that is downloaded to the printer whenever the printer is power on. 
The syntax of this file is defined in Appendix J of Inside LaserWriter. 

5. Edit the Postscript file in the usual way. 
6. Save the Postscript file by selecting "Save As" from the file menu. 
7. Select ''Text Only" from the save dialog. 
8. Save the document in the usual way. When a dialog comes saying "Should a 

Carriage Return be put at the end of each line or only between paragraphs?", select 
. "Paragraphs". 

To Download the Postscript File and run it. 
(usually resulting. in printing) 

The Postscript file created above can be run on Laserwriter as follows: 
1. Open the application on the diagnostic disk entitled "Downloading Program". 
2. Select "Start" from the file menu. 
3. Select the Postscript file that you want to transmit to the printer and select "Open". 

The Downloading Program will load the Postscript file and transmit it to the LaserWriter 
named "LaserWriter". If your LaserWriter is not named "LaserWriter" you will have to 
use the application "Namer" that comes on the Installation disk' to rename the printer 
back to the name "LaserWriter". 

4. When the wristwatch disappears from the screen, select "Quit" from the File menu 
to get back to the desktop. 



Appendix G 

Example of the things that you can do with 
LaserWriter 





Introducing 

LaserWriter . .. 

Apple's breakthrough 
in visual communication 



Financial Report 
The Watermill Restaurants, Inc. 

C __ 1_9_8_4_Y_e_8_r _i "_R_e_v-_I e_w __ ) 

March 31 

TOTAL RESTAURANT SALES $115,600 

COSTS AND EXPENSES 
Cost of Sales 61,460 

Operating, G. &(\ (see Note 1) 32,722 

Interest (long-term) 251 

94,433 

Income before Federal Taxes 21,167 

Provision for Federal Income Taxes 10,374 

NET INCOME $10,793 

NET INCOME PER SHARE 

CASH DIVIDENDS 

(Dollars in thousands, except per share amounts.) 

Net Income 
(In millions of dollars) 

Dec 17.6 

13.1 
12.1 
10.8 

Note 1. Six restaurants owned by others, including 
certain directors and officers of the Company, are 
managed by the Company under contracts entered 
into in fiscal year 1972. As consideration for managing 

$1.08 

$0.20 

June 30 

$125,790 

65,035 

.36,400 

226 

101,661 

24,129 

12,003 

$12,126 

$1.20 

$0.20 

Total Sales 
(In millions of dollars) 

Sept. 30 

$139,723 

71,994 

40,542 

185 

112,721 

27,002 

13,902 

$13,100 

$1.31 

$0.20 

Dec. 31 

$153,660 

Dec 

76,140 

42,890 

96 

119,126 

34,534 

16,976 

$17,558 

$1.76 

$0.20 

154 
140 

126 

116 

the restaurants, the Company receives 35% of the 
restaurants' net operating income as defined in the 
agreements. The Company compensates the res­
taurant managers out of its management fees. 



THE WATERMILL 
-R EST AU RAN T-

r. 

EMPLOYEE 
TRAINING 

II Food and Customer Services are responsible for 
training new employees. 

II Restaurant managers oversee training and review 
progress frequently with division managers. 

II Newly trained employees are placed in the field 
for·a six-week trial period. 

New 
Employees 

Training 

Food 
Division 

Customer 
Service 
Division 

~Manager 
Input 



THE W ATERMILL News 
The Monthly Newsletter of THE W A TERMILL Restaurants, Inc. 

FEBRUARY 12, 1985 

----.-----
Grand Opening of New 
WATERMILL In Rolling Hills, 
West Virginia 

Rolling·Hills, West Virginia will 
soon be the proud host to a new 
W A TERMILL Restaurant, opening 
in March. A print ad campaign, 
offering a free coupon good for 
one gl~s of wine or a slice of 
our famous Chocolate Toffee 
Pie, will run for two weeks in 
local newspapers prior to the 
opening. 

----.-----
Take a valentine to 

lunch or dinner! • 
Welcome to our new look! 

After market testing in 35 
W A TERMILL sites across the 
country, the new W ATERMILL 
Restaurant logo (see above) 
was unanimously approved 
yesterday by the Board of 
Directors. It will be imple­
mented next quarter. Watch your 
mail for phase-out requirements 
and start planning your inventory 
levels now. Kudos to Kristee 
Kreitman of our design staff for 
the snappy new look! 

VOLUMEXllI 

----.-----
Sign up now for Spring 
courses In pastry milking 

Recent customer surveys 
confIrmed our guess that 
demand for delicate French 
dessert pastries is increasing by 
leaps and bounds. In response 
to the demand, French chef 
Jean-Pierre Dubonnet will 
be teaching pastry·courseS in 
the regional sites during the 
month of April. All master chefs 
are encouraged to attend. 
Registration forms are available 
from Personnel. 

----.-----
35 New Managers Complete 
WATERMILL Training Course 

Corporate Training Division 
is pleased to announce the 
arrival of 35 new managers for 
the East Coast region. The six­
teen men and nineteen women, 
ranging in age from 25 to 38, 
completed their coursework 
at Corporate Headquarters with 
flying colors--the best scores 
overall for an incoming class 
in the company's history. 
Please welcome them aboard! 
They will be honored with 
diplomas and full fanfare at the 
annual Spring Banquet 

NUMBER 45 

-----.----
Special Wine Discounts 
Now Available 

After successful contract 
negotiations last month with 
Sutter Home, Stag's Leap, and 
Trefethen, a new per case 
discount with those California 
wineries will go into effect 
May 1, 1985. Wine stewards 
should look for a special 
March mailing outlining the 
wines included in the discount 
program. 

----.----
THE WATERMIU 

Restaurants-­
Now Celebrating 

25 Years of 
Fine Dining 

(See feature article, page 3) 

Published monthly by THE WATERMILL Publishing Group, Cambridge, MA 02142. Story ideas and letters should be submitted to 
Lynnea Johnson and Elizabeth Yerxa, Managing Editors, THE WATERMILL Publishing Group, P.O. Box 269, Cambridge, MA 02142. 



.::}:, 

::::=:: • 

• 
• • THE W ATERMILL 

-RESTAURANTII 

----------------------GRAND OPENING 

CO.UPON 
Coupon entitles you to one free glass of wine 

or one slice of Chocolate Toffee Pie 

• • 

------ .------
:(;J d;) Our Newest 

Watennill Restaurant v Olmstead St. 

is located at 101 Savoy Ave. 

Cut Here 

:LJ '31 
m .. :CL) 

The Watermill Restaurant is located 
between Olmstead St. and Taylor St. 

on Savoy Ave. Plenty of Free Parking. 
Open llam-12pm Mon. thru Sun. 

THE W A TERMILL 
-RESTAURANT-

ANNOUNCING THE OPENING OF 
THE WATERMILL RESTAURANT 
AT 101 SAVOY AVE. 

First Class Mail 

G-R-A-N-D O-P-E-N-I-N-G 



The Watermill Restaurants, Inc. 

JOB TITLE 

125 West Broadway 
Personnel, Suite 300 
Carnbridge,~a.02142 

DEPARTMENT N'AMEINUMBER LOCATION 

SHIFT m DAYS III SWING m GRAVEYARD SALARY RANGE 

III PERMANENT 13 TEMPORARY (DURATION) 

CAUSE OF REPLACEMENT 

TO WHOM WILL EMPLOYEE REPORT? 

EXPERIENCE 

Form Number 001-0013-00 3/81 

m EXEMPT III NON-EXEMPT 

PAY GRADE 

NAME OF EMP'LOYEE REPLACED 



t 
Performancel 
Functionality 

1979 1980 

Virtual 
machine 

1981 1982 

Floating 
point 

co-processor 

Reduced bus 
68000 

32-bit 
extension 

Genealogy of the MC68000 processor family. The rust chip on the market was a 4-MHz version,denotated by the LA at the 
end of the model number. Its siblings are either faster or have different functional features. 

High-end, 16-bit microcomputers gravitate 
toward MC68000 chips 

Introduced in late 1979, the Motorola MC68000 has cut a wide swath through the field of 16-bit 
microprocessors, emerging as the designers' favorite chip for high-end micro- computer systems. 
Although it still costs considerably more than its two main competitors - the Intel 8086 and the 
Zilog Z8000 - the MC 68ooo's 32-bit internal architecture, speed and sheer elegance, far surpass all 
of the competition. 



The expected explosion 
of computerized graphics 
in- the office ... 

12 _____ _ 

10 

8 

6 _____ _ 

4 ------
2 

o 
1981 

* Billions of Dollars 

$11.84 

1985 

Other 
Applications 

Business 
Graphics 

Cad/Cam 

source: The Yankee Group 



I Press & Media 

1984 Republican Convention 

Last month in Decker Communications 
Report, we featured lessons learned from 
speakers at the Democratic Convention. The 
lessons were different in Dallas. For the 
most part it was as if the media masters 
behind the scenes managed the speakers to 
serve as a colorless setting from which 
President Reagan could sparkle like a dia­
mond.1n contrast to the Cuomo's, 
Jacksons, et. al., there were few stand-
outs. But there were lessons. 

Katherine Ortega: 
Confidence was lacking 

As a keynote speaker, she was out of her 
league. You had to feel sorry for her. Here 
was a good example of why we shouldn't 
thrust people into positions before they're 
ready -- or better yet -- why people should 
always be ready for the positions that are 
thrust upon them. Ortega did not have the 
confidence -- the personal impact -- to carry 
her words. If she had speaking experience, 
had she built up her confidence over the 
years, here speech would have had a much 
different result without changing her words. 

As one commentator said, "she seemed like 
someone giving a valedictory address," That 
doesn't make for memorability. Where we'll 
defInitely hear from Mario Cuomo again, 
we'll not see much of Katherine Ortega 
except for her signature on our money. 

Jeanne Kirkpartick: 
Tough and believable 

On the other hand, she was a pleasant sur­
prise -- a tough speech from a tough lady. 
She was strong, straightforward and forceful. 

What makes her so believable is a good low 
voice that is not affected but reeks of 
credibility. She had very strong eye com­
munication with the crowd -- better than 
almost all the convention speakers. (Sur­
prisingly, neither Democrats and Republicans 

4/DECKER COMMUNICATIONS REPORT 

knew how to use the teleprompters well, ob­
viously a non-partisan issue.) Her phrasing, 
timing, and pausing were excellent, remind­
ing one of Barbara Jordan, another great 
speaker. 

Baker, Kemp, Dole: 
Sincerity but no fire 

This trio of potential 1988 campaign front­
runners seem to have blended together -­
adequate enough, sincere, earnest, but 
lacking the tIre in the belly. And in the 
case of Robert Dole, his fmal "thank you" 
was tossed off as if he had to get off the stage 
quick, and maybe he did. His wife was next. 

Elisabeth Dole: 
Bright but cliched 

She was good -- yet we'd give her mixed re­
views. Introduced by her husband as having 
laryngitis, she did super with the physical 
affliction, and made no excuses or weak 
asides about it. She's obviously a strong and 
bright speaker -- with good voice, bearing 
and posture, and eye communication. Why 
then resort to old cliches, as in her open­
ing, "Thank you for that great introduction, 
Bob. You gave it just like I wrote it." 

George Bush: 
Obvious second fiddle 

In preparation for "The Great Communi­
cator," there was the acceptance speech of 
good old reliable George Bush. He is pro­
fessional, he is polished and he is per­
suasive. Yet he is no burning Bush -- here 
we miss that fIre of enthusiasm and excite­
ment. Perhaps, like Ferraro, he conscious­
ly or unconsciously holds back because he's 
in second position. If so, he is a lesson to 
all of us whom hold ourselves back, whether 
from a perceived lesser position or from 
just a lack of confIdence. Our energy and 
enthusiasm will suffer for it. 



STATE CO ADMINISTRATIVE SERVICES 
MEMBER CLAIM FORM 

INSTRUCTIONS: 

1. Complete one Member Claim Form f~r each patient. 

MAIL THIS FORM WHEN COMPLETED 1 

Stateco Adminstrative Services 
P.O. Box 28367 

2. Attach an itemized bill containing patient's name, provider 
of service's IRS # name and address, type date and 
amount charged for each supply or service for each 
member claim. 

PATIENTS NAME 
Date of Birth SEX 

0 0 

San Jose, Ca. 95159 
Attn: Claims Dept. 

RELATIONSHIP TO 
EMPLOYEE: 

0 0 0 0 LAST FIRST MIDDLE Mo.IDay IYr 
MALE FEMALE SELF SPOUSE CHILD OTHER 

OCCUPATION EMPLOYER 

IF YES, 
(HOSP) PART A (MED) PART B 

COVERED BY MEDICARE? DYES o NO 
Mo. I Day I Yr Mo.1 Day I Yr EFFECTIVE 

DATE 

GROUP NO. COVERAGE AREA PHONE 
CODE CODE NUMBER. 

~ ____ ~ ____ ~ __ ..L-______ -; PROVIDER NAME ~~~~~~~~~~~~ 

EMPLOYEE SOCIAL 
SECURITY NUMBER 

Physician, Laboratory, Pharmacy, Clinic, etc ... 

EMPLOYEE NAME 
ADDRESS _________________________ _ 

LAST 

ADDRESS CITY _____ STATE. __ --'ZIP __ _ 

CITY 

NAME OF EMPLOYER 

ILLNESS 

DYES 0 NO 

STATE 

ACCIDENT 

DYES 0 NO 

ZIP DATE OF 1ST SERVICE Mo. I Day I Yr 

WORK RELATED 

DYES 0 NO 

PREGNANCY RELATED 

DYES 0 NO 

KIND OF ILLNESS DATE OF ONSET 

Mo. IDay I Yr 

DATE OF ACCIDENT HOW ACCIDENT OCCURRED 

Mo. IDay I Yr 
WHAT INJURIES WERE SUSTAINED 

DOES PATIENT HAVE OTHER HEALTH INSURANCE? DYES 0 NO 

POLICY HOLDER'S NAME 
LAST FIRST MIDDLE 

POLICY NUMBER 

INSURANCE COMPANY NAME 
STREET CITY 

I CERTIFY THAT THE INFORMATION ON THIS CLAIM FORM IS TRUE AND CORRECT TO THE BEST OF MY 
KNOWLEDGE. I AUTHORIZE THE RELEASE OF ANY MEDICAL INFORMATION NECESSARY TO PROCESS THIS 
CLAIM FOR THE DURATION MARKED ABOVE. I I 

MEMBER'S SIGNATURE (PARENTS SIGNATURE IF PATIENT IS A MINOR) Mo. Day Yr 

STATE 

So that Stateco can promptly review your claim for benefits, please review the form and the instructions to insure 
it has been completed correctly. 



Appendix H 

Using the Macintosh Print Manager 





Appendix H - Using the Macintosh Printing Manager 

This appendix contains information specific to the LaserWriter and the use of the 
Macintosh Printing Manager and Printer Driver. For more details on printing from the 
Macintosh, refer to the Printing section of the Inside Macintosh Reference Manual. 
Also included is an example of an application that uses each of the print manager 
calls. 

Printing Overview 
The Printing Manager was designed in such a way that the application programmer 
could write printing code that was printer independent. This independence was 
achieved by: 

1. Allowing the application to interface to the Printing Manager through specific calls 
which remain the same even though the internal Printing Manager code changes with 
each particular printer. 

2. Allowing the user to interface directly to the Printing Manager to set the desired 
printing configuration through the use of standard printing dialogs. 

The figure below shows the flow of control for printing on the Macintosh. 

User Input 

Print Record 

C __ ) "Choose Printer" 
Desk Accessory 

Printing 
Manager 

Calls 

Activates selectedPrintingMgr 

~"""'I-_A_Cti_·v_a_te_s __ se_lec_te_d_Prin_·_te_r_Dri_·v_e_r_ 
~'"" 

I DaisyWriter I I LaserWriter I 

Figure 1. Printing Overview 



Below is quick overview of the various items in the above figure. 

Page Setup Dialog 
This is the Printing Managers standard dialog for setting the page size,orientation, etc 
of a print job. It can only be used if the Printing Manager has been opened(see below). 
It will be displayed by a call to PrStIDialog( ... ); 

Print Dialog 
This is the Printing Managers standard dialog for setting the print quality, number of 
copies, pages to print, etc. of a print job. Like the Page Setup Dialog, it can also only be 
used if the Printing Manager has been opened. It will be displayed by a call to 
PrJobDialog( ... ); When the user clicks OK in this dialog, the application should jump to 
its routine that uses the Printing Manager routines for creating the printout. 

Choose Printer Desk Accessory 
This is a desk accessory that will allow the user to switch between available printers 
without having to leave the application. If the application works with the printable page 
size, it will have to handle these printer changes and the resulting page size change . 

. Print Record 
Information that describes the printing job (ie. style, quality, copies, page dimensions, 
etc) is stored in the Print Record. The Printing Manager will use this data to create the 
proper print image. Note that the application should not change any of the 
data in this record. 

Printing Manager 
The Printing Managers internal code is dependent on the printer that is currently 
selected, but the routines the Application calls will always remain constant. 

The standard Printing Manager routines are: 

To open and setup the Printing Manager: 
PrOpen; Prepares Printing Manager for use. 
PrintDefault( ... ); Fills the Print Record with default values. 
PrValidate( ... ); Checks compatability of Print Record and the Printing 

Manager. 

To create a print image or draft print: 
PrOpenDoc( ... ); Initializes a printing port for creating the print image. 
PrOpenPage( ... ); Starts a new page and sets up to receive the print image. 
PrClosePage( ... ); Ends the page that PrPageOpen'ed. 
PrCloseDoc( ... ); Closes the printing port terminates the print imaging 

process. 

To print an image that has been spooled: 
PrPicFile( ... ); Prints the print image if it was spooled to disk. 

To detect or set error conditions during printing: 
PrError; Used to check for possible printing errors. 
PrSetError; Used to cancel the printing process. 



To close the Printing Manager: 
PrClose; Closes the Printing Manager, but not the Printer Driver. 

Printer Driver 
As with the Printing Manager, the Printer Drivers code is dependent on the printer that 
is currently selected, but the routines the application calls will remain constant. 

The standard Printer Driver calls are: 

To open or close the driver. 
PrDrvrOpen; 
PrDrvrClose; 

To make the driver purgeable or not purgeable. 
PrPurge; 
PrNoPurge; 

To get the software version number and Device Control Entry. 
PrDrvrVers; 
PrDrvrDCE; 

To perfrom a variety of operations: Control printer, print bitmaps, stream text, etc. 
PrCtlCall(iWhichCtl, IParam1, IParam2, IParam3); 

In summary, as shown in the figure above: 

1. The User, using the Page Setup Dialog, controls the parameters which determine: 
- Paper size 
- Orientation of printed view 
- Reduction or enlargement of the view 

2. The User, using the Print Dialog, controls the parameters which determine: 
- Number of copies 
- Pages to print 
- Source of paper (ie manual feed, form feed, etc.) 

3. The User, using the Choose Printer desk accessory, selects the printer on which 
they wish to print on. 

4. The Application, on the other hand, just has to be concerned with: 
- Calling PrJobDialog( ... ) when the user selects "Print" from the menu list. 
- Calling PrStIDialog( ... ) when the user selects menu item "Page Setup" . 
- Invoking standard Printing Mgr calls when the user decides to print. 





Using the Printing Manager 

The Printing Manager is the high level interface to the Printer Driver. It is composed of 
code particular to the currently selected printer. You can access the Printing Manager 
calls by linking your object code to PrLink.obj. In your USES section you should 
include the line {$U Obj/MacPrint} MacPrint which is the applications inerface to the 
Printing Manager and the Printer Driver. 

Depending on the specific printer, the Printing Manager has different printing 
capabilities. For instance; 

When printing to the Imagewriter it can print an image in High Resolution, Standard 
Resolution, or Draft (text only). It will spool the image in High or Standard Resolution 
modes and send the text directly to the printer in Draft mode. 

When printing to the LaserWriter, it sends the image directly to the printer. Spooling is 
not an option as when printing to the Imagewriter. Also, it will print the image in only 
one mode - High Resolution. 

Below, a discussion of when to use the Printing Manager calls is presented. For more 
information on the various calls, refer to the Printing section of Inside Macintosh. 

Opening and Closing the Printing Manager 
Use PrOpen to open the Printing Manager and PrClose to close it. PrOpen will open 
the Printing Manager's resource file and and allow you to use all the Printing Manager 
calls. It also opens the Printer Driver. If you are short on memory, bracket every Printing 
Manager call with PrOpen and PrClose. 
Example: 

PrOpen; 
TrueFalse:= PrStIDialog{PrintRecord); 
PrClose; 

This will allow you to use the dialogs and other calls without having the resource file 
continually open along with its associated overhead. Note that normally you would call 
PrOpen during the initialization of the application and PrClose during termination. 

Printing Manager Dialogs 
There are two Printing Manager dialogs, a style dialog and a job dialog. PrStlDialog is 
the dialog which is used to determine the print style (ie. paper size and paper 
orientation, etc.) that is to be used. PrJobDialog is the dialog that is used to determine 
the printing quality (if relevant), number of pages to print, etc. The dialogs are 
customized specifically for each printer, so you should always use the standard 
Printing Manager dialog calls to get the appropriate dialog. You should call the dialogs 
from the "File" menu. When the user selects "Page Setup" call PrStlDialog and when 
they select "Print" call the PrJobDialog and if it returns true, jump to your routine 
containing the printing loop (see below). If you are going to have a menu item such as 
"Print One" where the user can print without going through the dialogs, be sure to call 
PrValidate before entering the printing loop. 



Note: You should never second guess what the Printing Manager is going to do with 
the variables in the Print Record. If you set the Print Record variables directly from your 
own dialog, chances are you will eventually have problems as the Printing Manager 
code gets revised and changed. So don't use your own dialogs to set the Print Record 
variables. This is especially true when printing to the laser printer. 

The Printing Loop 
The printing loop consists of the following Printing Manager calls that actually image 
your text or graphics to the printer. Depending on you particular drawing procedure 
and the way you image pages, the actual printing code will vary, but the basic printing 
loop will always follow the format below. 

PrintPort := PrDocOpen(PrintRecHdl,nil,nil); 
For count := 1 to numCopies do 
Begin 

PrOpenPage(PrintPort, nil); 
CalimyDrawingProc; 
PrClosePage(Pri ntPort); 

End; 
PrDocClose(PrintPort); 

Printing a Spooled File 

{opens the printing grafport } 

{starts a new page} 

{ends the current page} 

{ends the print job} 

With the Imagewriter, when the user printed in High or Standard resoultion, a print file 
containing the print image was spooled to disk first and then later printed. This was 

. done for memory consideration on the 128K Macintosh. The printing loop above would 
create the spooled file and then the application would call PrPicFile to actually print the 
file after it had allocated the memory for the imaging process (sometimes as much as 
20K). Because the user might have selected Draft printing which does not create a 
spooled file the application would call PrPicFile with the following IF statement: 

IF PrintRecHdIM.PrJob.bJDocLoop = bSpoolLoop THEN 
PrPicFile(PrintRecHdl, nil,nil,nil,Status); 

With the LaserWriter, the print file is currently not spooled. All printing occurs in the 
Draft mode so PrPicFile is never utilized. It should however be included in your printing 
code in case it does spool at some future date. 

Checking for Printing Aborts and Errors 
You can check for printing errors by making a call to PrError. It will return either a 
printer specific error or an as error. Your applicatiuon can then take appropriate 
action. 
You can monitor whether the user cancels the printing process with your own dialog by 
installing a pointer to the monitoring procedure in the PrintRecords idleProc variable: 
prlnfoPT.pldleProc. When you detect that the user has selected the cancel button, call 
PrSetError(iPrAbort). This will flag the Printing Manager to terminate the print job so it 
will close all the files and end properly. Do not force printing termination yourself. 



Optimizing For The LaserWriter 

Below is some information that will help you optimize your code for the LaserWriter. 

How to determine which printer is currently selected. 
The printers are designated as: 

Imagewriter = 1 
DaisyWriter = 2 
LaserWriter = 3 

Call PrValidate to insure you have the current Print Record. After this call, byte $947 in 
low memory will contain the negative of one of the three constants above. This value 
corresponds to the current printer. The default value is -1which stands for the 
Imagewriter. 

Using QuickDraw with the LaserWriter 
• Only SrcCopy transfer mode is supported, the other 15 are not. 
• The grafverb "invert" is not supported. 
• Regions are not supported, try to simulate them with polygons. 
• Clip regions should be limited to rectangles. 
• Rotated or Scaled bit images will not print correctly 
• There is a small error in character widths between screen and printer fonts, so don't 

rely on them being exactly the same. Only the end pOints will be accurate. If you are 
in left, right or center justify mode, only those points will be accurate. 

Memory Considerations 
When you print on the LaserWriter, you will only be able to print in Draft mode except 
that the quality will be high as opposed to low quality on the Imagewriter. This means 
that you will not be spooling and therefore your data and printing code will have to be 
resident in memory at the same time. In terms of memory requirements, you will need 
around 15 to 20K just for the Printer Driver, AppleTalk, etc. every time you print. 

Printable Paper Area 
There is a 0.45 inch border that surrounds the printable area of the paper. Note that 
this is different from the print area that was available when using the Imagewriter. The 
value of the printable rectangle is stored in the Print Record in the variable 
prlnfoPT.rPage. 

Speed Considerations 
• Try to avoid using any of the QuickDraw Erase calls (ie. EraseRect, EraseOval, etc.). 

It takes a lot of time to handle the erase function because every bit (90,000 
bits/sq.in.) has to be cleared. Erasing is generally unnecessary because the paper 
does not need to be erased the way the screen does. 

• Printing patterns takes a long time, since the pattern bitmap has to be built. The 
patterns of Black, White, and all the Grays have been optimized for the LaserWriter. 
If you use a different pattern, it will work but just take a little longer to print. Also, 



• Try to aviod changing fonts frequently. Font characters are stored as general 
mathematical functions and it takes 0.5 seconds to build the bit image of a character 
the first time it is used. For the fastest possible printing, use the fonts that have their 
bit image built in to the ROM (Courier 10, Times 12, Helvetica 12) and the fonts 
whose bit image is built whenever the printer is idle (Times and Helevtica 10, 14 
and Times and Helvetica Bold 10,12, 14). See Appendix 0 (the Advanced Users 
Suppliment) for more details. 

• When clipping strings, make sure that the clipping region/rect is greater than the 
bounding box of the text. The reason is that a clipped character will need to be 
rebuilt and this takes time. So beware especially of ascenders and decenders. 

When to validate the Print Record 
You validate the Print Record by calling PrValidate( ... ); You should call it when the 
application starts up and whenever you interface with the Print Record (like when you 
get the printable page size). The dialogs PrStIDialog( ... } and PrJobDialog( ... ) will call 
PrValidate( ... } when they are called. 

Spool-A-Page. Priot-A-Page 
Many applications when printing on the Imagewriter, because of disk space limitations, 
spooled a page and then printed a page. As noted above in Memory Considerations, 
there is not any spooling when printing to the LaserWriter. Inorder to optimize for the 
LaserWriter though, you will probably want to have two sets of printing loops. One 
where you spool a page and then print it (for the Imagewriter) and the other where you 
would just print without any consideration for spooling (for the LaserWriter). Since you 
can tell which printer is currently selected (see above), you will be able to correctly 
switch between the two methods. Note that the majority of applications will not have to 
know what printer they are currently printing on. 

Zero Width QuickDraw Objects that are Filled 
QuickDraw objects that enclose zero pixels and are not framed but filled, will not print 
on the Imagewriter nor show up on the screen, but they are real and will be printed on 
the LaserWriter. 

pPageFrame inPrOpenPage 
This parameter was originally intended to be for scaling the QuickDraw picture of the 
given page which was contained in the spooled file. When printing to the ImageWriter, 
this parameter works fine. When printing on the LaserWriter, this parameter is ignored 
and does not have any effect on the print output. 

Canceling. Pausing the Printing Process 
If you install a procedure for handling the users requests to cancel printing, with the 
option of pausing the printing process, beware of timeout problems when printing to 
the LaserWriter. Communication between the Macintosh and the LaserWriter have to 
be maintained, so if you have a pause option and do not let communication continue a 
no-response error will be generated and the Printing Manager will abort the print 
process. This will probably not make your user very happy. The solution is to check if 
you are printing to the LaserWriter, if so disable the pause option. If printing to the 
Imagewriter, enable this option. 



Using the Printer Driver 

The Printer Driver is the device driver that communicates with the currently selected 
printer through the Printer or Modem Port. For each printer, there will be a different 
Printer Driver. If you are going to print using only the Printer Driver calls, link your code 
with PrScreen.obj. This will give you full access to the Printer Driver calls. Note that if 
you link with PrLink.obj, you will not have access to PrDrvrNoPurge, PrDrvrPugre, 
PrDrvrVers, and PrDrvrDCE. 

Communicating with the Printer Driyer through the Device Manager 
You can communicate with the Printer Driver through the standard Device Manager 
calls: OpenDriver, CloseDriver, Control, and Status. Its driver name and reference 
number are available as predefined constants: 

CONST sPrDrvr = '.Print'; {Printer Driver name} 
iPrDrvrRef = -3; {Printer Driver reference number} 

. If you want to communicate with the Printer Driver in this manner, read the Device 
Manager section of Inside Macintosh for more details. 

Communicating with the Printer priver through the Standard Printing Manager Calls 
You can communicate with the Printer Driver through standard Printing Manager 
routines that allow you to: 

1. Open or close the Printer Driver. 
2. Reset Printer and control its characteristics. 
3. Make the Printer Driver purgeable or unpurgeable. 
4. Obtain information about its software version number. 
5. Obtain information about its Device Control Entry. 
6. Print a bit map on the printer. 
7. Stream text to the printer. 
8. Send "blind 10" (uninterpreted ASCII characters) to the printer. 
9. Send special PostScript characters and commands. 

These capabilities are described in detail below: 

Opening and Closing the Printer Driyer 
PROCEDURE PrDrvrOpen; Opens the driver, you will still need to reset the 

printer to actually print anything. 
PROCEDURE PrDrvrClose; Closes the driver. PrClose of the Printing 

Manager will not close the driver. 

Making the Printer Driver Purgeable Qr Unpurgeable 
PROCEDURE PrNoPurge; Prevents driver from being purged from the 

heap. 
PROCEDURE PrPurge; Allows the driver to be purged (this is the 

default). 



Printer priyer Software Version Number and Device Control EntlY 

FUNCTION PrDrvrDCE: Handle; Returns handle to the drivers DCE. 
FUNCTION PrDrvrVers: INTEGER; Returns the drivers software version number. 

Currently it is 2. 

NOTE: The rest of this section will deal with the standard Printer Driver Control Call 
and the operations you can perform with it. The form of the call is as follows: 

PrCtICall(iWhichCtI: INTEGER; IParam1 ,IParam2,IParam3: LONGINT); 

The parameter iWhichCtl designates the operation to be performed and 
IParam1 ,2,3 depend on the operation that is being performed. 

Printer Control Calls 
The printer controls, iWhichCtl = iPrDevCtl, have been expanded to match those of the 
Printing Manager. The ReSet and PageEnd controls have been renamed DocOpen 
and PageClose, and two new controls have been added - PageOpen and DocClose. 
Below are some control constants which have been predefined for you followed by an 
expalaination of the new control operations. 

CONST IPrRest = $00010000; {resets printer, same as DoclOpen} 
IPrPageEnd = $00020000; {same as PageClose} 
IPrLineFeed = $00030000; {send only carriage return} 
IPrLFSixth = $0003FFFF; {space down 1/6 inch} 

All the Control Calls will take the form: 

PrCtICall(iDevCtl, IParam1 0,0); where IParam1is composed of two integers, ihigh 
and iLow.IParam2 and IParam3 should always be set to 0 on all control calls. 

DocOpen 
You will need to call this once before you transmit data. It opens the printer and 
prepares the driver to transmit data. 

iHigh := 1; 
iLow:= #; 

IParam1 := $00010002; 
PrCtICall(iPrDevCtl, IParam1 ,O,O}; 

{It is a DocOpen operation} 
{number of copies to make of each page} 

{Open the printer & set #copies to 2} 



PageOpen 
This will initialize PostScrip and the driver buffers for a new page 

iHigh := 4; 
iLow := 0; 

IParam1 := $00040000; 

{specify it is a PageOpen operation} 
{does nothing} 

PrCtICAII(iPrDevCtl, IParam1 ,O,O}; {Start a new page} 

Line Feed/Downward Spacing 
Linefeeding through the Printer Driver is quite versitile. There are three methods. 
You can space a specific amount, just send a carriage return (no feed), or space 
1/6 or 1/8 of an inch. The particular method is designated in the iLow integer of 
IParam1. The conventionis that negative numbers signify 1 16th of an inch linefeed, 
zero signifies a carriage return, and a positive number will cause the printer to 
space down 1/72th times the value. The high integer contains the value of 3 to 
designate the Linefeed operation. 

iHigh := 3; 
iLOw := +#, 0, -I; 

Example: 
IParam1 := $00030000; 
IParam1 := $0003FFFF; 
IParam1 := $00030020; 
IParam1 := $00030001; 

IParam1 := $0003FFFF; 

{ specify the Linefeed operation} 
{ specify the amount of linefeed} 

Low word = 0, only send carriage return. 
Low word = -1, space down 1/6 of an inch. 
Low word = +20, space down 20172 of an inch. 
Low word = +1, space down 1/72 of an inch. 

PrCtlCAII(iPrDevCtl, IParam1,0 ,O}; {space down 1/6th of an inch} 

PageClose 
This operation flushes the buffers and sends a signal to the LaserWriter to print the 
page. The number of copies printed is determined by the value specified in the low 
integer of IParam1 during the DocOpen call. 

IParam1 := $00020000; 
PrCtICAII(iPrDevCtl, IParam1 ,0 ,O}; {close the page & print iCopies of it} 

DocClose 
This operation closes the printer connection and releases the driver buffers. 

IParam1 := $00050000; 
PrCtICAII(iPrDevCtl, IParam1 ,0 ,O}; {close the driver} 

BitMap Printing 
This capability allows you to send a bitmap directly to the printer. The call is: 

PrCtICall(iPrBitsCtl, IParam1, IParam2, IParam3}; 



where: 
IParam1 = pOinter to the QuickDraw bitmap. 
IParam2 = pointer to the bounds rectangle of the bitmap. 
IParam3 = 0 for non-square pixels, 1 square pixels. 

An example of this call used to print the screen would be: 

PrCtICall(iprBitsCtl, Ord(@ScreenBits), Ord(@ScreenBlts.bounds), IPaintBits); 
where IPaintsBits is a constant equal to 1. 

Note that when printing to the LaserWriter, IParam3 should always be equal to 1. This 
designates that the bitmap will be printed out with square pixels, which is the only way 
the LaserWriter can print. 

Text Streaming 
The basic 10 capability has been expanded to include six different variations of the 
standard text streaming function. The six variations are designated by the IParam3 
parameter. Below is a table listing the variants. Note that if the selected printer is the 
Imagewriter, only IPAram3 = 0 will be recognized. 

Operation 
ShowBuf 
StdBuf 
HexBuf 
Fill 
PrintF 
PrintR 

IParam1 
BufPtr 
BufPtr 
BufPtr 
FiliByte 
FmtStrPtr 
Hi=Resld ;Lo=lndex 

ShowBuf (IParam3 =0) 

IParam2 
numBytes 
-/+ numBytes 
Hi=Offset; Lo=-/+numBytes 
Hi=numlines; Lo=numBytes 
ArgPtr 
ArgPtr 

IParam3 
o 
1 
2 
3 
4 
5 

This operation takes a pOinter to a text buffer in IParam1 and the length of that buffer in 
Iparam2. This call will stream text to the LaserWriter by imbedding the text in a 
PostScript [ ... ] show call. On the ImageWriter, it will just stream text to the printer. 

StdBuf (IParam3 = 1) 
This operation is simply a "raw 10" call that sends the data to the printer without the 
PostScript Show call as in ShowBuf. It takes a pointer to the data buffer in IParam1 and 
the length of the buffer in IParam2. If numBytes is negative, the data is treated as 
PostScript "text". This means that parentheses and the backslash characters are 
preceeded by the PostScript backs lash escape character and characters> 127 are sent 
as octal. If numBytes is positive the data is sent out without modification. 

HexBuf (IParam3 = 2) 
This operation sends data as ASCII Hex data. It takes a pointer to the data buffer in 
IParam1. The High integer of IParam2 contains a shift count which specifies the 
number of bits to skip over, providing a bit bit addressing capability. The Low integer 
specifies the number of bytes in the data buffer. If the number of bytes is specified as a 
negative number, the data is inverted before sending it to the printer. 

Fill (IParam3 = 3) 



This operation is used for sending the same byte of information to the printer many 
times. IParam1 contains the byte to be sent in the low byte of the low integer. The 
number of times this byte will be written per line -ibytes- is specified in the low integer 
of IParam2. The number of lines to be written -iLines- is specified by the value in the 
high integer of IParam2. Each line is seperated by a carriage return. Thus, the total 
amount of data is iLines X iBytes 

PrintF (IParam3 = 4) 
This is a formatting operation, similar to the PrintF in the 'c' language. Lparam1 points 
to a string with imbedded commands. LParam2 points to the data used by these 
commands. 

PrintR (IParam3 = 5) 
This is the same as PrintF except that the format string is in a string indexed resource. 
The high integer of IParam1 is the resource 10 and the low integer is the index into that 
resource. The resource type is POST = STR#. 

Command 
Meaning 
Ai integer 
"c char 

Ab ptr, integer 

Ah ptr,2 integers 

An 
Ar long,2integers 

Ab integer 
AA 

AR long,2 integers 

Args 

The argument is converted to decimal ascii. 
The argument is a PostScript character. 
Parentheses and backslashes are preceeded by an 
escape character, and characters>127 are sent as 
octal. . 
The arguments compose a buffer and are treated 
exactly as in the StdBuf control call. 
The arguments compose a buffer and are treated 
exactly as in the HexBuf control call. 
A Newline is sent. 
The long is a resource type, the integers a resource 
id/index pair. If the index is zero, the resource is 
treated as a string resource. If it is positive, it is 
treated as a string index resource. If it is negative, 
its size is determined by GetHandleSize. 
The argument is treated as a boolean. 
A single A character is sent. 
Just as "r but the data immediately follows the "R in 
the format string itself. 





Example 

The following is an example of an application program that uses all of the Print 
Manager calls. The application itself can be found on the disk entitled "Programming 
and Debugging Aids" under the name "Example Application". 





{$X-} 
{$U-} 
{$R-} 

{Turn off stack expansion.rhis is a Lisa concept, not needed on Mac} 
{Turn off the Lisa Libraries. This is required by the WorkShop} 
{Turn off range checking} 

Program LaserPrinting; 

(* 

*) 

Jeffery J. Bradford, Macintosh Technical Support, Jan 1985 

This is a printing example which demonstrates how to print using 
the Printing Manager. To use the calls of the Printing Manager 
link with obj/PrLink.obj. 

This program was written to test out printing cases for the LaserWriter. 
If you want to use it to test your own stuff, add the procedure and 
call it from the menu list. (see how the program works - its simple). 
To print just put your procedure into the Case statement in the Print loop. 

The printer dialogs are in a separate menu so you can set up the 
format any way you want and then choose Printing Operation from 
another menu. Also, be sure to select the desired font, style, and 
text size before selecting the print menu item. 

If you follow the steps below, your code should prinl on the Imagewriter 
as well as the LaserWriter without any problem. 

O. Link with obj/prLink.obj. 
O. include {SU Obj/MacPrint } MacPrint; in the USES statment. 

1. PrOpen to open the Printing Mgr resource file. 
2. PrintDefault to set the initial default settings 
2a PrValidate to set the initial default settings also 

now you are ready to print: 
3. PrOpenDoc to open the printing grafport. 
4. PrOpenPage to setup a new page up for printing .. 
5. Draw into printer port whatever you want printed. 
6. PrClosePage to finish the current page print 
7. PrCloseDoc to close and dealocate the printing grafport. 

now you are finished printing 
8. PrClose to close the Printing Mgr resource file 

USES 
{$U Obj/Memtypes 
{$U Obj/QuickDraw 
{$U Obj/OSIntf 
{$U Obj/ToolIntf 
{$U Obj/PackIntf 
{$U Obj/MacPrint 

CONST 
Bit7 - 7; 

{menu stuff} 
AppleMenu 
PrintMenu 
FontMenu 
StyleMenu 
PrDlogMenu­
PrDrvrMenu= 
PicScrMenu-

256; 
257; 
258; 
259; 
260; 
261; 
262; 

MemTypes, 
QuickDraw, 
OSIntf, 
ToolIntf, 
PackIntf, 
MacPrint; 

{print tests for Pr Mgr only} 
PrDrawPicture 1; 
PrMakeQDCalls 2; 
PrFramePage = 3; 
PrFrameText 4; 
PrUseTextBox 5; 
PrBitMap 6; 

{devices} 

TYPE 

the Screen - 0; 
theImageW ··1; 
theDaisyW ··2; 
theLaserW - ·3; 

IconData Array[O •. 95] of integer; 



VAR 

GetStuff ~ Packed Record 
Case Integer of 

0: (aO: Integer); 
I: (bl, bO: SignedByte); 

End; 

{bit map stuff} 
icons: Array[O .. 5] of IconData; 
whichIcon: integer; 
QDPicture: PicHandle; 

{store 6 icons in here} 
(holds icon ID number} 
(handle to the QD Picture} 

(global program stuff} 
Finished: Boolean; {used to terminate the program} 

{font stuff} 
CurntFontID: 
CurntStyleID: 
CurntSizeID: 
PrevFontChked: 

Integer; 
Style; 
Integer; 
Integer; 

{holds the currently selected text font} 
{holds the currently selected text style} 
{holds the currently selected text size} 
{holds the previously sleeted font} ~ 

{printer stuff} 
PrRecordHdl: THPrint; {handle to the prin"t record} 
PrPortStorage: TPrPort; {storage for the printer grafport} 
PrintPort: TPPrPort; {pointer to the printers grafport} 
DefaltPage: Rect; {holds the currently selected printer page size} 
CurPrTest: Integer; {holds the value to the current drawing routine} 
PrDlgPtr: DialogPtr; {pointer to the cancel/pause dialog} 
PrStopDlgRec:DialogRecord;{record for the cance/pause dialog} 

{window stuff} 
DragArea, 
GrowArea, 
Screen: 
aWindow: 

Rect; 
WindowPtr; 
WindowRecord; 
Rect; 

{holds the area where window can be dragged in} 
(holds the area to which a window's size can change} 
{holds the screen dimensions} 
{pointer to text "win·dow} 

WRec: 
errRect: 

(storage for text window record} 
(rect for displaying printer errors} 

{-----------------------------------------------------------------------------
end of global variable definition 

-----------------------------------------------------------------------------} 
{The following procedures contain printing code to: Print text, print graphics,} 
(print a bitmap, print the screen, and test out weird things developers do} 

(-----------------------------------------------------------------------------} 
PROCEDURE FramePage (Where: integer); 
PROCEDURE PrintBitMap (Where: integer); 
PROCEDURE MakeQDCalls (where:integer); 
PROCEDURE ShowAIIQDCalls(Where:integer): 
PROCEDURE ShowQDPic (Where:integer); 
PROCEDURE UseTextBox (Where: Integer); 
PROCEDURE FrameText (Where: Integer); 
PROCEDURE PutPicScrap; 
PROCEDURE PrDrBitMap; 
PROCEDURE PrDrScr wEvtCtl; 
PROCEDURE PrDrscrBitMap; 
PROCEDURE PrDrStreamText; 

FORWARD; 
FORWARD; 
FORWARD; 
FORWARD; 
FORWARD; 
FORWARD: 
FORWARD: 
FORWARD: 
FORWARD; 
FORWARD: 
FORWARD: 
FORWARD: 

{-----------------------------------------------------------------------------} 
PROCEDURE SetPrDialog(Printer: Integer): 
Var IType: Integer; 

IHdl: Handle: 
IRect: Rect; 

Begin 
PrDlgPtr := GetNewDialog(257, @PrStopDlgRec, Pointer(-I»; 

{disable the continue item to start with} 
GetDItem(PrDLgPtr, 3, Itype, IHdl, IRect); 
HiliteControl(ControIHandle(IHdl), 255); 

(if its the laser disable the pause item} 
If Printer = theLaserW then 
begin 

GetDItem(PrDLgPtr, 2, Itype, IHdl, IRect); 
HiliteControl(ControIHandle(IHdl), 255): 

end; 

DrawDialog(PrDlgPtr); 

{get the item} 
{disable it} 

{get the item} 
{disable it} 



End; 

{-----------------------------------------------------------------------------} 
PROCEDURE ChkForCanceOrPause; 
Var Processlt: Boolean; 

itemHit: Inteqer; 
itemHdl: Handle; 
itemRect: Rect; 
Event: EventRecord; 
DlqPtr: DialoqPtr; 

Beqin 
Processlt :- GetNextEvent(EveryEvent, Event); 
If IsDialogEvent(Event) then 

End; 

If DialoqSelect(Event, DlqPtr, ItemHit) then 
Case itemHit of 

1: PrSetError(iPrAbort); 
2: begin end; {pause enable continue disable pause go into repeat loop} 
3: begin end; {continue and enable pause} 

End; 

{-----------------------------------------------------------------------------} 
{Followinq is the Procedure for printinq with the Printing Manager} 

PROCEDURE Printlt(PrintWhat: Integer); 
Var 

numCopies: 
Count: 
TempPort: 
Status: 
dummy: 
thePrinter: 

Integer; 
Integer; 
GrafPtr; 
TPrStatus; 

. boolean; . 
integer; 

{holds the number of copies the user wants} 
{used to count number of copies} 
{holds the current port while print port is used} 
{record for status while spool print.j,ng occors} 
{just a dummy boolean for function assignment} 
{ID of the type of printer} 

Begin 

{get the current port & save it} 
GetPort(TempPort); 

{get the type of printer we are printinq to} 
thePrinter:- GetStuff( {get the high byte} '.\ 

Get r.,../"i--t .. iy.,~ T'o .... L,q..., ~t ... o.y '"'r'tt it"' .t q*7 (,ste c:lQC" ... , .. ~t.~ 
{set our idleproc to handle aborts & pauses; Setup the Dialog also} 

PrRecordHdlAA.prJob.pIdleProc :- @ChkForCancelOrPause; 
SetPrDialog(thePrinter); 

{open up the printer port, port is set automaticly} 
PrintPort :- PrOpenDoc(PrRecordHdl, @PrPortStorage, Nil): 

{loop on the number of copies} 
numCopies := PrRecordHdlAA.prJob.iCopies; 
For count := 1 to numCopies do 
begin 

PrOpenPage(PrintPort, Nil); {Nil- do not scale the drawing} 

Case CurPrTest of 
PrDrawPicture: ShowQDPic (thePrinter);--
PrMakeQDCalls: ShowAllQDCalls(thePrinter); 
PrFramePage: FramePage (thePrinter); 
PrFrameText: FrameText (thePrinter); 
PrUseTextBox: UseTextBox (thePrinter); 
PrBitMap: PrintBitMap (thePrinter); 

End; 

PrClosePage(PrintPort); 
end; 

PrCloseDoc(PrintPort): 
SetPort(TempPort): 

{close PrGrafport} 
{Reset the port} 

{If spooling was selected, print the file now} 
If PrRecordHdlAA.PrJob.bJDocLoop - bSpoolLoop 
then PrPicFile(PrRecordHdl,@PrPortStorage, NIL, NIL, Status); 

{get rid of Cancel dialog} 
CloseDialog(PrDlgPtr); 

End; 



{--------------------------------------------~--------------------------------} 

{AAA} 
{The procedures below print directly to the Driver} 

PROCEDURE PrDrBitMap; 
{This procedure prints directly to the Pr Driver, PrClose & PrOpen are} 
{here only to test the Driver without Pr Manager interference} 
Var 

srcBits BitMap; 
srcRect Rect; 

Begin 
PRCLOSE; {Only calls below needed, if going to directly to PrDriver } 

srcBits.baseAddr:=@icons[O]; 
srcBits.rowBytes:=6; 
SetRect(srcBits.bounds,0,0,48,32); 

{set start address for icon data} 
{set 6 as t of bytes per row} 
{48 X 32 pixels = 6 X 4 bytes} 

PrDRvrOpen; {not needed if PrOpen has been called} 
PrCtlCall(iPrDevCtl, IPrReset, 0, 0); 
PrCtlCall(iPrBitsCtl, Ord(@srcBits), Ord(@SrcBits.bounds), 1); 
PrDrvrClose; 

PROPEN; {open up the Printing Manager again} 
End; 

{-----------------------------------------------------------------------------} 
PROCEDURE PrDrScr wEvtCtl; 
{This procedure prints directly to the Pr Driver, PrClose & PrOpen are} 
{here only to test the Driver without Pr Manager interference} 
Begin. 

PRCLOSE; {Only c'arls below needed, if going to directly to PrDriver 

PrDRvrOpen; {not needed if PrOpen has been called} 
PrCtlCall(iPrDevCtl, IPrReset, 0, 0); 
PrCtlCall(iPrEvtCtl, IPrEvtAll, 0, 0); 
PrDrvrClose; 

PROPEN; {open up the Printing Manager again} 
End; 

{-----------------------------------------------------------------------------} 
PROCEDURE PrDrScrBitMap; 
{This procedure prints directly to the Pr Driver, PrClose & PrOpen are} 
{here only to test the Driver without Pr Manager interference} 

Begin 
PRCLOSE; {Only calls below needed, if going to directly to PrDriver } 

PrDRvrOpen; 
PrCtlCall(iPrDevCtl, IPrReset, 0, 0); 
PrCtlCall(iPrBitsCtl, Ord(@ScreenBits), Ord(@ScreenBits.bounds), 1); 
PrDrvrClose; 

PROPEN; {open up the Printing Manager again} 
End; 

{-----------------------------------------------------------------------------} 
PROCEDURE PrDrStreamText; 
{This procedure prints directly to the Pr Driver, PrClose & PrOpen are} 
{here only to test the Driver without Pr Manager interference} 

Var TxT: Str255; 
len: Integer; 
IParam1: Longlnt; 

Begin 
PRCLOSE; {Only calls below needed, if going to directly to PrDriver } 

TextFont(CurntFontID); 
TextFace(CurntStyleID); 
TextSize(CurntSizeID); 

{test changing the font} 
{test changing the style} 
{test changing the size} 

Txt := 'This is text streaming to the LaserWriter'; 
Len := Length(Txt); 
IParam1 := $0003FFFF; 



PrDrvrOpen: 
VrCtlCall(iPrDevCtl, lPrReset, 0, 0): 

PrCtlCall(iPrIOCtl, Ord(@Txt), LongInt(Len}, 0): 
PrCtlCall(iPrDevCtl, lParaml, 0,0); 

PrCtlCall(iPrIOCtl, Ord(@Txt), LongInt(Len) , 0): 
PrCtlCall(iPrDevCtl, lParaml, 0,0): 

PrCtlCall(iPrIOCtl, Ord(@Txt), LongInt(Len) , 0): 
PrCtlCall(iPrDevCtl, lParaml, 0,0): . 

PrCtlCall(iPrIOCtl, Ord(@Txt), LongInt(Len) , 0): 
PrCtlCall(iPrDevCtl, lParaml, 0,0); 

PrCtlCall(iPrDevCtl, lPrPageEnd, 0, 0); 
PrDrvrClose; 

PROPEN; {open up the Printing Manager again} 
End; 

{-----------------------------------------------------------------------------} 
{BBB} 
{the procedures below are used to draw into the Print Managers port} 

PROCEDURE InitDisplayArea(Where:integer; Var DisplayArea: Rect); 
Begin 

If where - theScreen 
then begin 

DisplayArea :- aWindowA.portRect; 
SetP.ort (aWindow); {to be sure} 
eraseRe~t(DisplayArea); 

end 
else DisplayArea := PrRecordHdlAA.prInfoPT.rPage; 

End; 

{-----------------------------------------------------------------------------} 
PROCEDURE FramePage(Where: integer); 
{This procedure will frame the windoiw or printable page.} 
Var 

DisplayArea: 
TempPort: 
halflen: 

Rect; 
GrafPtr; 
integer; 
integer; 
integer; 
boolean; 

{holds the current port while printport is used} 
{used for centering the text} 

Starth: {horizontal position of centered text} 
Startv: 
dummy: 

{vertical position of centered text} 
{just a dummy boolean for function assignment} 

Begin 
InitDisplayArea(Where, DisplayArea): 

{frame the display area} 
Pensize (3,3); 
FrameRect(DisplayArea); 
pensize(l,l): 

{place some centered text in frame, first 
TextFont(CurntFontID); 
TextFace(CurntStyleID): 
TextSize(CurntSizeID); 

{find the center} 

set the text params} 
{set the printers port font} 
{set the printers port style} 
{set the printers port size} 

starth :- (DisplayArea.right - DisplayArea.left) div 2: 
Halflen := StringWidth('The printable area is enclosed by this frame') Div 2: 
starth .• starth - halflen: 
startv := (DisplayArea.bottom - DisplayArea.top) div 2; 

{move to position & draw} 
MoveTo(starth, startv); 
DrawString('The printable area is enclosed by this frame'}: 

End: 

{-----------------------------------------------------------------------------} 
PROCEDURE PrintBitMap(where: integer); 
{This prints a bit map in the rPage area.} 
Var 



DisplayArea: 
srcBits: 
srcRect: 
dummy: 

Begin 

Rect; 
BitMap; 
Rect; 
boolean; 

InitDisplayArea(Where, DisplayArea); 

{set the bit map up} 
srcBits.baseAddr:-@icons[O]; 
srcBits.rowBytes:-6; 
SetRect(srcBits.bounds,O,O,48,32); 
srcRect:=srcBits.bounds; 

(show it} 
If where = theScreen then 

{set start address for Lisa icon} 
{set 6 as # of bytes per row} 
{48 X 32 pixels = 6 X 4 bytes} 
{set the source bounding rectI 

CopyBits(srcBits,thePortA.portBits, srcRect, DisplayArea ,srcCopy,Nil) {fill scr} 
else 
CopyBits (srcBits,thePortA.portBits, srcRect, DefaltPage, srcCopy,Nil); {full page} 

End; 

{-----------------------------------------------------------------------------} 
PROCEDURE UseTextBox(Where: Integer); 
Var 

DisplayArea: 
Count: 

Rect; 
Integer; 
Rect; 

{used as a counter} 
TextPage: 
TextPtr: 
TextLength: 
TextJustify: 
ViewRect: 

Ptr; 
integer; 
integer; 
Rect; 

{destRect for the text} 
{pointer to the actual text} 
{length of the text} 
{justification for the text} 
{rect for viewing text} 

DestRect: 
TextHandle: 

, 'I'extString: 

Rect; 
TEHandle; 
StringHandle; 

{rect for storing text} 
{handle to text record} 
{store string from resources} 

Begin 
InitDisplayArea(Where, DisplayArea); 

(first setup the text in the 
ViewRect := DisplayArea; 
DestRect :- DisplayArea; 
InSetRect(DestRect,O,4); 

TE record and draw it to the screen} 
{set the display rectI 

TextHandle := TENew(DestRect,ViewRect}; 
TextHandleAA.txFont := CurntFontID; 
TextHandleAA.txFace := CurntStyleID; 
TextHandleAA.txSize := CurntSizeID; 

TextString := GetString(256); 

HLock(Handle(TextString»; 
HLock(Handle(TextHandle»; 
Hlock(Handle(TextHandleAA.hText»; 

For count := 1 to 5 do 
begin 

TESetSelect(O,O,TextHandle); 
TEInsert(pointer(ord4 (TextStringA) +1) , 

length (TextStringAA ), 
TextHandle); 

end; 

TECaIText(TextHandle); 

TextPtr := TextHandleAA,hText A; 
TextLength := TextHandleAA.TELength; 
TextJustify:= 0; 

{make the destRect smaller} 

{get a new record} 
{set font for display} 
{set style for displaying the text} 
{set size for displaying the text} 

{get the test string from resources} 

{lock string down} 
{lock text handle down} 
{lock the char handle down} 

{insert it 5 times} 

{set the place to insert at begining} 
{point to the first character} 
{get the length of the string} 
{pass the string to TextHandle} 

{just to be sure everything is OK} 

{get pointer to the text, its locked} 
{get the length of the text} 
(set the text justification} 

TextBox(TextPtr, TextLength, DisplayArea, TextJustify); {draw the text} 

HUnlock (Handle (TextHandle AA .hText»; 
HUnLock(Handle(TextHandle»; 
HUnLock(Handle(TextString»; 

TEDispose(TextHandle); 
End; 

{unlock the char handle 
{unlock the text handle} 
{unlock the string handle} 

{-----------------------------------------------------------------------------} 
PROCEDURE FrameText(Where: Integer); 



Var Txt: 
len: 
i: 
DisplayArea: 
Frame: 
Start: 
fInfo: 

Str255; 
integer; 
integer; 
Rect; 
Recti 
Pointi 
FontInfo; 

Begin 
InitDisplayArea(Where, DisplayArea); 

{use current settings} 
TextFont(CurntFontID)i 
TextFace(CurntStyleID); 
TextSize(CurntSizeID); 

{always start the text at this point} 
Start.v :- 50i 
Start.h := 50; 

{get the string dimensions} 

{set the font} 
{set the style} 
{set the size} 

GetFontInfo(fInfo); {using current font} 
Frame.right :- StringWidth('Have I been framed correctly- jg') + Start.h; 
Frame. left :- Start.hi 
Frame.bottom:= Start.v + fInfo.descent: 
Frame.top :- Start.v - fInfo.ascent: 

{now draw the stuff} 
InSetRect(Frame, -1, -1); {move it out one pixel} 
FrameRect(Frame): 
Moveto (Start. h, Start. v) i 
DrawString('Have I been framed correctly- jg'): 

End; 

{-----------------------------------------------------------------------------} 
PROCEDURE BuildQDPictu're (where: integer) i 
Var 

OriginalRect: Rect: 
SaveClip: RgnHandlei 

Begin 
SetRect(OriginalRect,0,0,719,363): 
SaveClip :- NewRgn: 
GetClip(SaveClip)i 
ClipRect(OriginalRect)i 

QDPicture := OpenPicture(OriginalRect): 
Pensize(3,3)i 
FrameRect(OriginalRect)i 
PenSize(1,1)i 
MakeQDCalls (where) i 
ClosePicturei 

SetClip(SaveClip); 
DisposeRgn(SaveClip): 

End; 

{this rect holds the initial Pic} 
{get a Rgn to store the clip} 
{save the current clip region} 
{set the clip to the drawing area} 

{start the picture} 

{frame it} 

{draw the QD calls} 
{close it} 

{reset the clip } 
{get rid of new clip} 

{-----------------------------------------------------------------------------} 
PROCEDURE ShowQDPic(Where:integer); 
Var DisplayArea: Recti 
Begin 

InitDisplayArea(Where, DisplayArea); 
BuildQDPicture(where)i 
HLock(Handle(QDPicture»; 
If Where .. theScreen 
then DrawPicture(QDPicture, DisplayArea) 
else DrawPicture(QDPicture, DefaltPage)i 
HunLock(Handle(QDPicture»i 
KillPicture(QDPicture)i 

End; 

{-----------------------------------------------------------------------------} 
PROCEDURE ShowAllQDCalls(Where:integer)i 
Var DisplayArea: Recti 
Begin 

InitDisplayArea(Where, DisplayArea)i 
MakeQDCalls (Where) i 

End; 



{-------.----------------------------------------------------------------------} 
PROCEDURE DrawIcon(whichIcon,h,v: integer): 
{This procedure draws an icon at location h, v} 
Var 

srcBits BitMap: 
srcRect, dstRect Rect; 

Begin 
srcBits.baseAddr:-@icons[whichIcon]; 
srcBits.rowBytes:-6; 
SetRect(srcBits.bounds,O,O,48,32); 
srcRect:-srcBits.bounds; . 
dstRect:-srcRect; 
OffsetRect (ds.tRect, h, v) ; 

{set start address for icon data} 
{set 6 as t of bytes per row} 
{48 X 32 pixels - 6 X 4 bytes} 
{set the source bounding rect} 
{make the destination rect the same} 
{offset from other icons} 

CopyBits(srcBits,thePortA.portBits,srcRect,dstRect,srcOr,Nil): 
End; 

{----------------------~-------------------------------------------~----------} 

PROCEDURE MakeQDCalls(where:integer); 
VAR i: INTEGER; 

tempRect, 
OriginalRect 
myPoly 
myRgn 
myPattern 

BEGIN 

Rect: 
PolyHandle; 
RgnHandle; 
Pattern; 

{SetRect(OriginalRect,O,O,719,363); this rect holds the initial Pic} 

{ draw two horizontal lines across the top } 
MoveTo(O,18); 
LineTo (719, 18); 
MoveTo(O,20): 
LineTo(719,20); 

{ draw divider lines 
MoveTo{O,134); 
LineTo(719,134): 
MoveTo{O,248): 
LineTo{719,248): 
MoveTo(240,21); 
LineTo(240,363): 
MoveTo(480,21): 
LineTo(480,363): 

{ draw title } 
TextFont(CurntFontID); {set the font to currently selected one} 
MoveTo(210,14); 
DrawString('Look what you can draw with QuickDraw'): 

{--------- draw text samples 

MoveTo(80,34); DrawString('Text'); 

TextFace([bold]): 
MoveTo(70,55): DrawString('Bold'); 

TextFace([italic]): 
MoveTo(70,70); DrawString('Italic'); 

TextFace{[underline]); 
MoveTo(70,85); DrawString('Underline'); 

TextFace([outline]); 
MoveTo(70,100); DrawString('Outline'); 

TextFace([shadow]); 
MoveTo(70,115); DrawString('Shadow'); 

TextFace ( [] ) ; { restore to normal 

{ --------- draw line samples ---------

MoveTo(330,34): DrawString('Lines'): 



MoveTo(280,25); Line(160,40); 

PenSize(3,2); 
MoveTo(280,35); Line(160,40); 

PenSize(6,4); 
MoveTo(280,46); Line(160,40); 

PenSize(12,8); 
PenPat(gray); 
MoveTo(280,61); Line(160,40); 

{create a new pattern} 
PenSize(15,10); 
StuffHex(@myPattern,'8040200002040800'); 
PenPat(myPattern); {set as the new pen pattern} 
MoveTo(280,80); Line(160,40); 
PenNormal; 

{ --------- draw rectangle samples 

MoveTo(560,34); DrawString('Rectangles'); 

SetRect (tempRect,510, 40,570,70); 
FrameRect(tempRect); 

OffsetRect(tempRect,25,15); 
PenSize(3,2): 
EraseRect(tempRect): {this is so the top rect will not show thru the next one} 
FrameRect(tempRect): 

OffsetRect(tempRect,25,15); 
PaintRect(tempRect): {this rect is painted so we do not have to erase area} 

OffsetRect(tempRect,25,15); 
PenNormal: 
FillRect(tempRect,gray): 
FrameRect(tempRect): 

OffsetRect(tempRect,25,15): 
FillRect(tempRect,myPattern); 
FrameRect(tempRect): 

{ --------- draw roundRect samples 

MoveTo(70,148): DrawString('RoundRects'): 

SetRect(tempRect,30,150,90,180): 
FrameRoundRect(tempRect,30,20): 

OffsetRect(tempRect,25,15): 
PenSize(3,2): 
EraseRoundRect(tempRect,30,20): 
FrameRoundRect(tempRect,30,20): 

OffsetRect(tempRect,25,15); 
PaintRoundRect(tempRect,30,20); 

OffsetRect(tempRect,25,15); 
PenNormal; 
FillRoundRect(tempRect,30,20,gray); 
FrameRoundRect(tempRect,30,20); 

OffsetRect(tempRect,25,15); 
FillRoundRect(tempRect,30,20,myPattern); 
FrameRoundRect(tempRect,30,20); 

{ --------- draw bitmap samples --------­

MoveTo(320,148); DrawString('BitMaps'); 

DrawIcon(0,266,156); 
DrawIcon(1,336,156); 
DrawIcon(2,406,156): 
DrawIcon(3,266,196); 
DrawIcon(4,336,196); 
DrawIcon(5,406,196); 

{ --------- draw ARC samples ---------

MoveTo(570,148); DrawString('Arcs'); 



SetRect(tempRect,520,153,655,243); 
FillArc (tempRect, 135, 65,dkGray); 
FillArc(tempRect,200,130,myPattern); 
FillArc(tempRect,330,75,gray); 
FrameArc(tempRect,135,270); 
OffsetRect(tempRect,20,O)~ 
PaintArc (tempRect, 45, 90); 

{ --------- draw polygon samples 

MoveTo(80,262); DrawString('Polygons'); 

myPoly:=OpenPoly; {capture QD calls that make up the polygon} 
MoveTo(30,290); 
LineTo(30,280); 
LineTo(50,265); 
LineTo(90,265); 
LineTo(80,280); 
LineTo(95,290); 
LineTo(30,290); 

ClosePoly; ( end of definition of the polygon} 

FramePoly(myPoly); (now use it just like you would a~ rectangle or etc.} 

OffsetPoly(myPoly,25,15); 
PenSize(3,2); 
ErasePoly(myPoly); 
FramePoly(myPo1y); 

OffsetPoly(myPoly,25,15); 
PaintPoly(myPoly); 

OffsetPoly(myPoly,25,15); 
PenNormal; 
FillPoly(myPoly,gray); 
FramePoly(myPoly); 

OffsetPoly(myPoly,25,15); 
FillPoly(myPoly,myPattern); 
FramePoly(myPoly); 

KillPoly(myPoly}; 

( --------- demonstrate regions 

MoveTo(320,262); DrawString('Regions'); 

If where <> theLaserW 
then 

begin 

myRgn:-NewRgn; 
OpenRgn; 

{allocate space of a new region} 
{start saving region defintion calls} 

ShowPen; {OpenRgn calls HidePen so if drawing to screen call ShowPen } 
{if creating a picture delete this call} 

SetRect(tempRect,260,270,460,350); 
FrameRoundRect(tempRect,24,16); {rounded corner rectangle} 

MoveTo(275,335}; {define triangular hole} 
LineTo(325,285); 
LineTo(375,335); 
LineTo(275,335); 

SetRect(tempRect,365,277,445,325); 
FrameOval(tempRect); 

{ oval hole } 

HidePen; (this 
CloseRgn(myRgn); 
PaintRgn(myRgn); 
DisposeRgn(myRgn); 

call would balance the ShowPen call set above} 
{ end of definition of the region} 
{show the region with black pattern} 
{dont need it any more so throw it away} 

end 

else 
begin 

MoveTo(270,300); 
Moveto(275,320); 

end; 

DrawString('Dont use regions'); 
DrawString('on LaserPrinter'); 



{ --------- draw oval samples --------­

MoveTo(580,262); DrawString('Ovals'); 

SetRect(tempRect,510,264,570,294); 
FrameOval(tempRect); 

OffsetRect(tempRect,25,15); 
PenSize(3,2)i 
EraseOval(tempRect)i 
FrameOval(tempRect)i 

OffsetRect(tempRect,25,15)i 
PaintOval(tempRect)i 

OffsetRect(tempRect,25,15)i 
PenNormali 
FillOval(tempRect,graY)i 
FrameOval(tempRect)i 

OffsetRect(tempRect,25,15)i 
FillOval(tempRect,myPattern)i 
FrameOval(tempRect)i 

END; {QDCalls} 

{-----------------------------------------------------------------------------} 
PROCEDURE ChkOnOffItem(MenuHdl:MenuHandle; 
Var i: integer; 

item, fst, lst:Integer)i 

Begin 
For i :- fst to 1st do 

If item - i 

End; 

then CheckItem(MenuHdl, i, TRUE) 
else CheckItem(MenuHdl, i, FALSE); 

{check it on in menu} 
{check it off ~n menu} 

{-----------------------------------------------------------------------------} 
PROCEDURE ProcessMenu in(CodeWord:longint; fromMenu:Boolean); 
Var -

Menu No, 
Item-No: 
NameHolder: 
MenuHdl: 
dummy: 
LDummy: 

Begin 

integer; 
Str255; 
MenuHandle; 
boolean; 
LongInt; 

{menu number that was selected} 
{item in menu that was selected} 
{name holder for desk accessory or font} 
{handle to the menu} 

If CodeWord <> 0 then {go ahead and process the command} 
begin 

Menu No := HiWord(CodeWord)i 
Item:No := LoWord(CodeWord); 

Case Menu No of 

AppleMenu: begin 
GetItem(GetMenu(AppleMenu), Item No, NameHolder); 
If OpenDeskAcc(NameHolder) = 0 
then begin {put up a dialog saying it cannot open it} end; 

end; 

PrDlogMenu: begin 
Case Item No of 

1: begin 
dummy := PrStlDialog(PrRecordHdl)i 

end; 
2: begin 

If PrJobDialog(PrRecordHdl) 
then PrintIt(CurPrTest); 

end; 
{3: line divider} 
4:Finished := true; {terminate the program} 

End; 
end; 

PrintMenu: Begin 
MenuHdl := GetMenu(PrintMenu)i 
Case Item No of 

1: begin-
CurPrTest := PrFramePage; 

{menu handle for PrTests} 



ChkOnOffItem(MenuHdl, 1, 1, 6); 
FramePage(theScreen); 

end; 

2: begin 
CurPrTest := PrFrameText; 
ChkOnOffItem(MenuHdl, 2, 1, 6); 
FrameText(theScreen); 

end; 

3: begin 
CurPrTest := PrMakeQDCalls; 
ChkOnOffItem(MenuHdl, 3, 1, 6); 
ShowAllQDCalls(theScreen); 

end; 

4: begin 
CurPrTest := PrDrawPicture; 
ChkOnOffItem(MenuHdl, 4, 1, 6); 
ShowQDPic(theScreen); 

end; 

5: begin 
CurPrTest := PrUseTextBox; 
ChkOnOffItem(MenuHdl, 5, 1, 6); 
UseTextBox(theScreen); 

end; 

6: begin 
CurPrTest := PrBitMap; 
ChkOnOffItem(MenuHdl, 6, 1, 6); 
PrintBitMap(theScreen); 

end; 
End; 

End; 

FontMenu: begin 
MenuHdl := GetMenu(FontMenu); 
CheckItem(MenuHdl, PrevFontChked, False); 
GetItem(MenuHdl, Item No, NameHolder); 
PrevFontChked := Item-No; 
GetFNum(NameHolder, CurntFontID); 
CheckItem(MenuHdl, Item No, True); 

{menu handle for fonts} 
{uncheck the prev.one} 
{get new font name} 
{save the new font No} 
{get the font ID} 
{check it off in menu} 

end; -

StyleMenu: begin 
MenuHdl := GetMenu(StyleMenu); 
Case Item No of 

l:begin-

{menu handle for style} 

CurntStyleID : = [1; 
ChkOnOffItem(MenuHdl, 1, 

{plain} 
1, 6); 

end; 
2:begin 

CurntStyleID := CurntStyleID + 
CheckItem(MenuHdl, 2, True); 
CheckItem(MenuHdl, 1, False); 

end; 
3:begin 

CurntStyleID := CurntStyleID + 
CheckItem(MenuHdl, 3, True); 
CheckItem(MenuHdl, 1, False); 

end; 
4:begin 

CurntStyleID := CurntStyleID + 
CheckItem(MenuHdl, 4, True); 
CheckItem(MenuHdl, 1, False); 

end; 
5:begin 

CurntStyleID := CurntStyleID + 
CheckItem(MenuHdl, 5, True); 
CheckItem(MenuHdl, 1, False); 

end; 
6:begin 

CurntStyleID := CurntStyleID + 
CheckItem(MenuHdl, 6, True); 
CheckItem(MenuHdl, 1, False); 

end; 

{7: line divider} 

8:begin {9 point} 

[Bold] ; 
{check it off in menu} 
{uncheck it in menu} 

[Italic] ; 
{check it off in menu} 

{uncheck it in menu} 

[underline] ; 
{check it off in menu} 

{uncheck it in menu} 

[outline] ; 
{check it off in menu} 

{uncheck it in menu} 

[shadow] ; 
{check it off in menu} 
{uncheck it in menu} 



CurntSi~eID :- 9: 
ChkOnOffItem(MenuHdl, 8, 8, 13); 

end: 
9:begin {10 point} 

CurntSizeID :- 10: 
ChkOnOffItem(MenuHdl, 9, 8, 13); 

end:' 
10:begin {12 point} 

CurntSizeID :- 12; 
ChkOnOffItem(MenuHdl, 10, 8, 13): 

end: 
11:begin {14 point} 

CurntSizeID :- 14: 
ChkOnOffItem(MenuHdl, 11, 8, 13): 

end: 
12:begin {18 point} 

CurntSizeID :- 18: 
ChkOnOffItem(MenuHdl, 12, 8, 13): 

end: 
13:begin {24 point} 

CurntSizeID :- 24: 

End; 
end: 

PrDrvrMenu:begin 

ChkOnOffItem(HenuHdl, 13, 8, 13): 
end; 

Case Item No of 
1: PrDrBitMap; 
2: PrDrScr wEvtCtl; 
3: PrDrScrBitMap: 
4: PrDrStreamText; 
5: begin end: 

Epd: 
end: 

PicScrMenu:begin 
If Item_No = 1 then PutPicScrap; 

end; 

End: {case of Menu_No} 

HiliteMenu(O): {unhilite after processing menu} 
end: {the If codeword <> O} 

End: {of ProcessMenu_in procedure} 

{-----------------------------------------------------------------------------} 
PROCEDURE DealwthMouseDowns(Event:EventRecord): 
Var Location: integer: 

WindowPointedTo: WindowPtr: 
MouseLoc:Point; 
WindoLoc:integer; 

Begin 
MouseLoc := Event.Where: 
WindoLoc :- FindWindow(MouseLoc, WindowPointedTo); 
Case WindoLoc of 

inMenuBar: ProcessMenu_in(MenuSelect(MouseLoc), True): 

inSysWindow: SystemClick(Event,WindowPointedTo); 

inContent: begin end: 
(*If WindowPointedTo <> FrontWindow 

then SelectWindow(WindowPointedTo) 
else begin {do something} end:*) 

inGrow begin end: 
(*If WindowPointedTo <> FrontWindow 

then SelectWindow(WindowPointedTo) 
else ReSizeWindow(WindowPointedTo,MouseLoc,GrowArea):*) 

inDrag :DragWindow(WindowPointedTo,MouseLoc,DragArea): 

inGoAway :If TrackGoAway(WindowPointedTo,MouseLoc) 
then 

begin 
CloseWindow(WindowPointedTo): 
Finished :- true; 

end: 



End{ of case): 
End: 

{-----------------------------------------------------------------------------} 
PROCEDURE DealwthKeyDowns(Event:EventRecord): 
Var Character:char: 
Begin 

Character:= CHR(Event.message MOD 256); 

If BitTst(@Event.modifier,Bit7) 
then 

begin {key board command} 
ProcessMenu_in(MenuKey(Character) , False); 

end 
else 

End; 

begin {regular keyboard entry} 
(TEKey(Character,TextHandle);} 
{Scrolltext} 

end; 

{-----------------------------------------------------------------------------} 
PROCEDURE DealwthActivates(Event: EventRecord}; 
Var EventMsgWindow:WindowPtr; 
Begin 

EventMsgWindow := WindowPtr(Event.message); 
(DrawGrowIcon(EventMsgWindow);} 

If Odd (Event.modifiers) {then the window is becoming active} 
then 

b~gin . 
SetPort(EventMsgWindow); 
{and activate whatever else you need} 

end 
else 

End; 

begin 
{deactivate whatever you nee~} 

end; 

{-----------------------------------------------------------------------------} 
PROCEDURE DealwthUpdates(Event:EventRecord); 
Var EventMsgWindow, 

TempPort: WindowPtr; 
Begin 

EventMsgWindow := WindowPtr(Event.message}; 
GetPort(TempPort}; {Save the current port} 

SetPort (EventMsgWindow); {set the port to one in Evt.rnsg} 
BeginUpDate(EventMsgWindow}; 

EraseRect(EventMsgWindowA.portRect}; 
{ WhichPrinter; Proc to ID the printer} 

{DrawGrowIcon(EventMsgWindow};} 
EndUpDate (EventMsgWindow); 
SetPort (TempPort); {restore to the previous port} 

End; 

{-----------------------------------------------------------------------------} 
PROCEDURE MainEventLoop; 
Var Event:EventRecord; 

ProcessIt: Boolean; 
Begin 

Repeat 
SystemTask; {so you can support Desk Accessories} 

ProcessIt := GetNextEvent(EveryEvent,Event}; 
If ProcessIt{is true} then {we'll ProcessIt} 

Case Event.what of 

mouseDown 
Key Down 
ActivateEvt: 
UpDateEvt 

End; {of Case} 

DealwthMouseDowns(Event}; 
DealwthKeyDowns (Event); 
DealwthActivates (Event); 
DealwthUpdates (Event); 

Until Finished; (terminate the program) 



End; 

{-----------------------------------------------------------------------------} 

PROCEDURE InitIcons; 
{ Manually stuff some icons. Normally we would read them from a file} 
BEGIN 
{each line contains 48 HEX *s which fill 12 consecutive words up to 96} 

{ Lisa } 
StuffHex(@icons[O, O],'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOlFFFFFFFFC'); 
StuffHex(@icons[0,12],'006000000006018DOOOOOOOB0600000000130FFFFFFFFFA3'); 
StuffHex(@icons[0,24],'18000000004311FFFFF00023120000080F231200000BF923'); 
StuffHex(@icons[0,36],'120000080F23120000080023120000080023120000080F23'); 
StuffHex(@icons(O,48],'1200000BF923120000080F2312000008002311FFFFF00023'); 
StuffHex(@icons[0,60],'08000000004307FFFFFFFFA30100000000260FFFFFFFFE2C'); 
StuffHex(@icons(O,72],'18000000013832AAAAA8A9F065555551538OC2AAAA82A580'); 
StuffHex(@icons[0,84],'800000000980FFFFFFFFF300800000001600FFFFFFFFFCOO'); 

{ Printer } 
StuffHex(@icons[l, 0],'000000000000000000000000000000000000000000000000'); 
StuffHex(@icons[1,12],'00000000000000007FFFFF00000080000280000111514440'); 
StuffHex(@icons[1,24] ,'00020000084000044S4S10400004000017C00004A51S1000'); 
StuffHex(@icons(l,36],'0004000010000004AS4S10000004000b17FEOOF4A51S1003'); 
StuffHex(@icons(l,48],'0184000013870327FFFFF10F06400000021BOCFFFFFFFC37'); 
StuffHex(@icons(l,60],'18000000006B3000000000D77FFFFFFFFFABC000000003S6'); 
StuffHex(@icons[1,72],'8000000001AC87F0000001S8841000CCC1B087FOOOCCC160'); 
StuffHex{@icons[1,84],'8000000001COC000000003807FFFFFFFFF0007800001EOOO'); 

{ Trash Can } 
StuffHex(@icons[2, 0],'OOOOOlFCOOOOOOOOOE0600000000300300000000C0918000'): 
StuffHex(@icons[2,12],'00013849800000026C4980000004C0930000000861260000'); 
StuffHex(@icons[2,24],'0010064FE0000031199830000020E6301800002418E00800'); 
StuffHex(@icons[2,36],'0033E3801C0000180E002COOOOOFF801CC0000047FFEOCOO'); 
StuffHex(@icons(2,48],'-000S00004C0000052S9A4COPOOOS2S0A4COOOOOS2SFA4COO'); 
StuffHex(@icons(2,60],'000524024COOOOOS24924C00600S24924C0090ES24924C7C'); 
StuffHex(@icons[2,72j,'932524924C82A44S24924D01C88S24924CF10C4524924C09'): 
StuffHex(@icons[2,84],'0784249258E70003049233100000EOOOE40800001FFFC3FO'): 

{ tray } 
StuffHex(@icons[3, 0],'000000000000000000000000000000000000000000000000'); 
StuffHex(@icons[3,12],'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO000000007FFFFFFFO'); 
StuffHex(@icons(3,24],'OOOE00000018001A00000038003600000078006AOOOOOOD8'); 
StuffHex(@icons[3,36],'00D7FFFFFFB801AC0000035803S8000006B807FCOOOFFD58'}; 
StuffHex(@icons[3,48],'040600180AB80403FFFOOD58040000000AB8040000000D58'); 
StuffHex(@icons[3,60],'040000000AB807FFFFFFFD5806ACOOO00AB8055800000DS8'); 
StuffHex{@icons[3,72],'06BOOOOOOAB807FCOOOFFD70040600180AE00403FFFOODCO'): 
StuffHex(@icons[3,84],'040000000B80040000000F00040000000E0007FFFFFFFCOO'): 

{ File Cabinet } 
StuffHex(@icons[4, 0],'0007FFFFFC00000800000C00001000001C00002000003400'); 
StuffHex(@icons[4,12],'004000006COOOOFFFFFFD4000080000OACOOOOBFFFFED400'): 
StuffHex(@icons[4,24j,'00A00002ACOOOOA07F02D40000A04102ACOOOOA07F02D400'): 
StuffHex(@icons[4,36],'00A00002ACOOOOA08082D40000AOFF82ACOOOOA00002D400'): 
StuffHex(@icons[4,48],'OOA00002ACOOOOBFFFFED4000080000OACOOOOBFFFFED400'): 
StuffHex(@icons[4,60j,'OOA00002ACOOOOA07F02D40000A04102ACOOOOA07F02D400'); 
StuffHex(@icons[4,72j,'00A00002ACOOOOA08082D40000AOFF82ACOOOOA00002D800'): 
StuffHex(@icons[4,84j,'00A00002BOOOOOBFFFFEE0000080000OCOOOOOFFFFFF8000'): 

{ drawer } 
StuffHex(@icons[5, 0] ,'000000000000000000000000000000000000000000000000'): 
StuffHex(@icons[5,12],'000000000000000000000000000000000000000000000000'); 
StuffHex(@icons[5,24],'OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO00000000000000000'); 
StuffHex(@icons[5,36],'00000000000000000000000000000000000000001FFFFFFO'); 
StuffHex(@icons[5,48j,'0000380000300000680000700000D80000D0003FFFFFF1BO'); 
StuffHex(@icons[S,60],'0020000013500020000016B000201FE01DS0002010201ABO'); 
StuffHex{@icons[5,72],'00201FE01560002000001AC0002000001580002020101BOO'); 
StuffHex{@icons[5,84],'00203FF01600002000001C00002000001800003FFFFFFOOO'); 

END; 

{-----------------------------------------------------------------------------} 
PROCEDURE PutPicScrap; 
Var err: LongInt; 

PicRect: Rect; 
PicHdl: PicHandle; 
PicLen: LongInt; 

Begin 
PicRect := DefaltPage; 
PicRect.bottom := PicRect.bottom Div 2; 



PicRect.right := PicRect.right Div 2; 

BuildQDPicture(theScreen); 

PicHdl := OpenPicture(PicRect); 
DrawPicture(QDPicture, PicRect); 
ClosePicture; 
PicLen := PicHdlAA.PicSize; 

HLock(Handle(PicHdl»; 
err := ZeroScrap; 
err := PutScrap(PicLen, 'PICT', Pointer(PicHdlAj); 
HUnLock(Handle(PicHdl»; 
KillPicture(QDPicture); 
KillPicture(PicHdl); 

End; 

{-----------------------------------------------------------------------------} 
PROCEDURE InitThings; 
Begin 

InitGraf(@thePort); 
InitFonts; 
InitWindows; 
InitMenus; 
InitDialogs(Nil); 
TEInit; 
InitCursor; 
FlushEvents(everyEvent,O}; 
InitIcons; 

{create a graphport to the screen} 
{startup the fonts manager} 
{startup the window manager} 
{startup the menu manager} 
{startup the dialog manager} 
{startup the text edit manager} 
{make the cursor an arrow} 
{clear events from previous program} 
{procedure to init 5 icons} 

Screen := ScreenBits.Bounds; 
Finished := False; 

{set the size of the screen} 
{set program terminator to false} 

End; 

{-----------------------------------------------------------------------------} 
PROCEDURE SetupLimits; 
Begin 

SetRect(DragArea,Screen.left+4,Screen.top+24,Screen.right-4,Screen.bottom-4}; 
SetRect(GrowArea,Screen.left,Screen.top+24,Screen.right,Screen.bottom); 

End; 

{-----------------------------------------------------------------------------} 
PROCEDURE SetupMenus; 
Var 

MenuTopic: MenuHandle; 
Begin 

MenuTopic := GetMenu(AppleMenu); 
AddResMenu(MenuTopic,'DRVR'}; 
InsertMenu(MenuTopic,O); 

MenuTopic := GetMenu(PrDlogMenu}; 
InsertMenu(MenuTopic,O); 

MenuTopic := GetMenu(PrintMenu); 
InsertMenu(MenuTopic,O); 

MenuTopic := GetMenu(PrDrvrMenu); 
InsertMenu(MenuTopic,O); 

MenuTopic := GetMenu(FontMenu); 
AddResMenu(MenuTopic,'FONT'}; 
InsertMenu(MenuTopic,O); 

MenuTopic := GetMenu(StyleMenu); 
InsertMenu(MenuTopic,O); 

MenuTopic := GetMenu(PicScrMenu}; 
InsertMenu(MenuTopic,O); 

{get the apple desk accessories menu} 
{adds all names into item list} 
{put in list held by menu manager} 

DrawMenuBar; 
End; 

{all done 50 show the menu bar} 

{-----------------------------------------------------------------------------} 
PROCEDURE SetupAWindow; 
Type LowMPtr = AInteger; 

Var MenuHdl: MenuHandle; 



DefaultFont: 
NameHolder: 
Foundlt: 
Item No: 
NumItems: 
FontID: 

LowMPtr; 
STR255; 
Boolean; 
Integer; 
Integer; 
Integer; 

Begin 
aWindow :- GetNewWindow(257, @WRec, Pointer(-l»; 

{setup a rect in the window for reporting errors} 
errRect :- aWindow~.portRect; 
errRect.top :- errRect.bottom - 20; 

{check off the default font, LaserWriter 
DefaultFont :s LowMPtr($0984); 
MenuHdl := GetMenu(FontMenu); 
NumItems :- CountMItems(MenuHdl); 
FoundIt := False; 

will set default to Helvetica} 
{set low memory adderess} 
{menu handle for fonts} 
{number of fonts in menu} 

Item No :- 1; 
Repeat 

Get Item (MenuHdl , Item No, NameHolder); 
GetFNum(NameHolder, FontID); 
If FontID = DefaultFont~ then 
begin 

PrevFontChked := Item No; 
CheckItem(MenuHdl, Item No, True); 
FoundIt := true; -

end; 
Item No :- Item No + 1; 

Until (Item_No > NumItems) or FoundIt; 

{get new font name} 
{get the font ID} 

{save the new font No} 
{check it off in menu} 

{check off the font style} 
MenuHdl := GetMenu(StyleMenu); 
Check Item (MenuHdl, 1, True).; 

{menu handle for style} 
{check the plain style} 

{check off the size} 
Check Item (MenuHdl, 10, True)i {check the 12 point} 

{set the global guys} 
CurntFontID :- FontID; 
CurntStyleID := [1; 
CurntSizeID := 12; 

End; 

{the default font} 
{plain} 
{size 12} 

{-----------------------------------------------------------------------------} 
PROCEDURE SetupPrPort; 
Var dummy: boolean; 
Begin 

PrRecordHdl := THPrint(NewHandle(SizeOf(TPrint»); 
PrOpen; 
PrintDefault(PrRecordHdl); 
DefaltPage := PrRecordHdl~~.prInfoPT.rPage; 

End; 

{Make space for the record} 
{open up ptr resource file} 
{fill rec w/default params} 
{default printer page size} 

{------------~----------------------------------------------------------------} 

PROCEDURE SetUpThingsi 
Begin 

SetupLimits; 
SetupMenus; 
SetupPrPort; 
SetupAWindow; 

End; 

{-----------------------------------------------------------------------------} 
BEGIN 

InitThings; 
SetUpThings; 
MainEventLoop; 

{clean up, probably should be in a closing procedure} 
PrClosei 

END. 





Pr Mgr TestR 
Saturday, January 23, 1904 2:06:10 AM 





Input Resource File for Printinq example 

SPrint.Rsre 

Type PMGR - STR 
,0 

LASR Version 1.0 July 31, 1984 

Type BNDL 
,128 
PMGR 0 
2 
ICNt 1 
o 128 
FREF 1 
o 128 

Type FREF 
,128 
APPL 0 

Type ICN. 
,128 
2 

00000000 
00000000 
00000000 
00000000 
000FFFF8 
00100010 
0026FF20 
00400040 
009F6880 
070001FF 
097F7203 
130003E5 
2500024B 
4FFFFF95 
80000029 
FFFFFFD1 
80000061 
FFFFFFC1 
80000041· 
90000E45 
8000004A 
80000E50 
80000050 
8FFFFE50 
88000260 
F80003CO 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
*MASK FOLLOWS 
00000000 
00000000 
00000000 
00000000 
000FFFF8 
001FFFFO 
003FFFEO 
007FFFCO 
00FFFF80 
07FFFFFF 
OFFFFFFF 
1FFFFFFF 
3FFFFFFF 
7FFFFFFF 
FFFFFFFF 
FFFFFFFF 
FFFFFFFF 
FFFFFFFF 
FFFFFFFF 
FFFFFFFF 
FFFFFFFA 
FFFFFFFO 
FFFFFFFO 
FFFFFFFO 
F80003EO 
F80003CO 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 

* apple menu, 14 is apple symbol in HEX 
Type MENU 

,256 
\14 

Type MENU 
,260 
Print Dialoqs 
Paqe Setup Dialoq /S 
Print Dialoq /P 
(-
Quit /Q 



* file menu 
Type MENU 

,257 
Print Mgr 
Frame Page 
Frame Text 
All QD Calls 
QD Picture 
Use TextBox 
Print Bitmap 

·Print driver test menu items 
Type MENU 

,261 
Print Driver 
Bit Map 
Screen wEvt 
Screen wBits 
Stream Text 

• make a scrap of the QDPicture 
Type MENU 

,262 
Ccpy QDPic 
Put in ClipBoard 

* edit menu 
Type MENU 

,258 
Font 

* Font menu 
Type MENU 

,259 
Style 
Plain 
Bold <B 
Italic <1 
Underline <U 
Outline <0 
Shadow <S 
(-
9 Point 
10 Point 
12 Point 
14 Point 
18 Point 
24 Point 

* text window definition 
Type WIND 

,257 
Printer Display 
40 40 330 400 
Visible GoAway 
o 
o 

* Dialog to cancel or pause printing 
* it is used as a rnodeless dialog 
Type DLOG 

,257 
130 125 180 375 
Visible 1 NoGoAway 
256 

• Item list for the print cancel dialog 
Type DITL 

,256 
3 
BtnItem Enabled 
15 10 35 80 

Cancel 

BtnItem Enabled 
15 90 35 160 

Pause 

Btnltem Enabled 
15 170 35 240 

Continue 

• this is the text string 
Type STR 

,256 (4) 
ABCDEFGHIJKu~NOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz 
Type CODE 

BPrintL,O 



Appendix I 

Using MacTerminal to talk directly 
to the Postscript computer in LaserWriter. 





Using MacTerminal to Talk Directly 
to the "PostScript Computer" 

[This guide contains a short series of exercises for those who would like to interact with the PostScript Interpreter 
directly, using MacTerminal as an ascii terminal interface. Interested parties should read the previous 
document, "Apple LaserWriter Advanced User's Supplement" for in depth information on printer operation.] 

1. Start out with the printer OFF, nothing in any of the connector ports and the selector 
switch on the back of the Laserwriter in the1200 baud position. 

2. Cable the Macintosh to the LaserWriter using either a 9 pin to 9 pin cable or a 9 pin 
to 25 pin cable (a standard ImageWriter cable will work). Connect one end of the 
cable to the appropriate port on the printer (9 or 25 pin) and the other end to the 
Macintosh's 9 pin MODEM port. 

3. Turn the printer ON. Several things will happen. First, the green light will blink. 
This is the printer's normal warm-up indicator. Next, the yellow light will blink. 
This is the printer's signal that data is being processed. In this case the printer is 
processing the start-up page. 

4. Start up a disk with MacTerminal on it. For these examples you should also have 
MacWrite handy. 

5. Check to see that the following settings are correct in the "Settings" menu: 

Terminal: VT100; ANSI; Underline; U.S.; 80 column; On-Line; 
Auto Repeat; Auto Wraparound 

Compatablity: Baud Rate = 1200; 8 bits, Parity = none; Handshake = none; 
connection = another computer; connection port = modem 

File Transfer: Transfer Method = text 

6. Now press Control T (The Control key is the one next to the space bar that has a 
symbol on it that looks like a snowflake). This causes printer status to be 
displayed on the screen. It should display something that looks like: 

%% [status: waiting; source serial 9] %% 

7. Press Control D (this will stablize the printer). If you now press Control T again you 
should get 

%%[status: idle]%% 

8. At this point we are ready to 'talk' to PostScript. To get into Interactive PostScript 
mode type the word executive followed by a carriage return. (This win!lQ1 echo 
on your terminal). 

9. The following should print out: 

PostScript (tm) Version 23.0 
Copyright (c) 1984 Adobe Systems Incorporated 
PS> 



10. Hitting more carriage returns (er's) will get you more PostScript prompts' (PS» 

11. You are now 'talking' directly to the PostScript interpreter. For more information on 
the PostScript language see the PostScript Language Reference Manual. 

12. Test to see if the connection is working by typing: 

showpage (cr) 

This should eject a blank peice of paper. 

13. Now try printing something simple. Type the fO~wing characters followed by a 
carriage return in response to the PostScript prompt (PS». 

ITimes-Boldltalic findfont 
72 scalefont setfont 
100 100 moveto 
30 rotate 

(Put your name here) show 
showpage 

Note that you do not get a prompt back right away after the show statement. This 
is because the Postscript interpreter is busy creating a scaled and rotated font. 

This exercise should have created a page with your name printed at an angle. 

14. To get into Batch mode type CONTROL D. Batch allows you to stream many 
lines of PostScript to the printer at once.This can be done from the Interactive 
mode as well. MacTerminal echos all lines of text back to the screen in 
Interactive mode. In non-interactive mode (batch) the file just gets shipped to the 
printer and executed.To test these modes out follow these steps: 

15. Create a PostScript file using MacWrite as a text editor. Start-up MacWrite and 
enter the following code in. Make sure you save it using the SAVE AS function. 
MacWrite defaults to writing files out in MacWrite format, but make sure you 
change this to TEXT format before saving the file. (Identing the following code is 
not important.) 



2 2 scale 
fTimes-Boldltalic find font 27 scalefont setfont 
frays 
{O 1.5 179 

{gsave 
rotate 
o 0 moveto 108 0 Iineto 

stroke 
grestore 

} for 
} def 

125 200 translate 
.25 setlinewidth 
newpath 
o 0 moveto 
(StarLines) true 
charpath clip 
newpath 
54 -15 translate 
rays 
showpage 

16. Write the above text (in Text formatl to your disk as "PSTEST". 

17. Go back to MacTerminal (make sure your settings are correct, see 2a in this 
document). Under the File menu click Send File. A sub-menu screen will 
appear. Click on the file we have just created, PSTEST, and then click Open. 
This proceedure should send the entire file to the printer. If you are still in 
interactive mode you will see the ascii playback on the screen, if you "Control 
O'd" (batch mode) you will not. This file may take a little while to execute but, it's 
worth it. In about two or three minutes the page should print. 

18. You can now experiment with the switch settings. Turn the printer Off and switch it 
to 9600 baud. Set the communication settings in MacTerminal to 9600 and try 
these exercises again. 

19. Normal Macintosh applications that are supported by the LaserWriter Print 
Manager use the AppleTalk connector. This should not be used with any other 
communication link to the printer (ie, don't hook-up AppleTalk and RS232 at the 
same time). The AppleTalk cable hooks up to the 9 pin port on the printer and the 
PRINTER port on the back of the Mac. For further information on this connection 
refer to the appropriate documents on AppleTalk (For further information make 
sure you read "Apple LaserWriter Advanced User's Supplement") 





Appendix J 

Postscript File Structuring Conventions 





POSTSCRIPTN 

File Structuring Conventions 

First Edition 
January 1985 

Adobe Systems Incorporated 



Adobe Systems Incorporated 
1870 Embarcadero Road, Suite 100 

Palo Alto, California 94303 

POSTSCRIPT File Structuring Conventions 
9 January 1985 

Copyright © 1985 Adobe Systems, Inc. 
Al! Rights Reserved 

POSTSCRIPT is a trademark of Adobe Systems, Inc. 

Times and Helvetica® are trademarks of Allied Corporation. 
UNIX is a trademark of AT&T Bell Laboratories. 
Scribe is a registered trademark of UNILOGIC, Ltd. 

The information in this manual is furnished for informational use only, 
is subject to change without notice, and should not be construed as a com­
mitment by Adobe Systems, Inc. Adobe Systems assumes no respon­
sibility or liability for any errors or inaccuracies that may appear in this 
document. 

The software described in this document is furnished under license and 
may only be used or copied in accordance with the terms of such license. 



1 

The POSTSCRIPT language standard as described in the POSTSCRIPT 
Language Manual is a specification of the rules by which PoSTSCRIPT 
operators and operands are combined into valid POSTSCRIPT programs. 
Those rules say nothing about the overall structure of a PoSTSCRIPT 
program, or about how a POSTSCRIPT program can interact with the 
operating system, or how POSTSCRIPT files are actually handled by 
printers. 

Since the language standard is silent about the overall structure of 
POSTSCRIPT files, the structure of a file is specified by conventions rather 
than rules. A POSTSCRIPT file that obeys the structuring conventions is 
called conforming; a POSTSCRIPT file that does not obey the structuring 
conventions is called nonconforming. The structuring conventions have no 
effect on the execution of a file or on the image produced when it ex­
ecutes: if a POSTSCRIPT interpreter is presented with a nonconforming 
file, the execution result will be exactly the same as an equivalent con­
forming file. 

However, some operating systems might not be able to recognize that a 
file is a POSTSCRIPT program unless that file conforms to the structuring 
conventions. Furthermore, some of the processing that is done on 
POSTSCRIPT files, such as editing them, moving pages around, or combin­
·ing small documents into large ones, is much easier to perform on con-
forming flIes. 

POSTSCRIPT document structure is represented by means of 
"comments". The syntax of PoSTSCRIPT comments is described in the 
POSTSCRIPT language manual in Section 2.5. Comments in a PoSTSCRIPT 
file can contain any text at all; they are not processed by the interpreter. 
However, if those comments match certain patterns, they are said to fol­
low the structuring comment convention. Various programs that operate on 
POSTSCRIPT flIes, other than the interpreter, look for comments that obey 
these conventions and use them to assist processing. 

The kinds of processing that are facilitated with the comment conven­
tions of a conforming document include: 

• Managing downloaded fonts and facilitating the "closure" of 
documents. 

• Selecting subsets of the pages of a document to be printed, or 
changing the order in which the pages will be printed. 

• Enabling the proper positioning of other POSTSCRIPT 
programs (e.g., for illustrations to be incorporated by docu­
ment preparation and composition systems). 

Note that compliance with these conventions is not an all-or-nothing 
situation. Applications need not supply all of the entries described here. 
Simple applications on small processors may only be able to specify basic 
header elements, while larger applications might implement the complete 



2 POSTSCRIPT Supplement 

specification. A POSTSCRIPT file is called minimally conforming if it 
obeys the conventions flagged below with a daggert. 

The first line of every POSTSCRIPT file should begin with the characters 
"% ! ". This marks the file as a POSTSCRIPT file. Some operating systems 
such as UNIX have a scheme whereby the first 16 bits of a file are a 
"magic number" that identifies the file type to the operating system ker­
nel. The "% ! " serves also as a 16-bit "magic number" for these systems 
that operate this way. 

The remainder of the first line of a conforming file is the version iden­
tifier, identifying the version number of the structuring convention that the 
file obeys. The version described in the document you are now reading is 
version "PS-Adobe-1.0". A file is taken to be minimally conforming if 
the version identifier begins with the characters "PS-Adobe-". In other 
words, a file is minimally conforming if its first 11 characters are 
"% !PS-Adobe-". 

Following the magic number/version line, are some header comments 
which have meaning for the document as a whole. Each header comment 
is on a line by itself; it begins with the characters "% % " and ends with a 
newline character. A few of these header fields can be deferred to the end 
of the document, if an application program does not· have the ability to 

.. generate them in the header. The header comments are: . . 

%%Title: document-title 
The title of the document, POSTSCRIPT program, or 
file name. 

%%DocumentFonts: fontl font2 ... 
where fontl, font2, etc. are the PoSTSCRIPT font 
names of fonts used by the document. A conforming 
file can also specify" (atend) " instead of the font 
list, indicating that the real DocumentFonts 
specification is in the last few lines of the file. A 
utility program might wish to verify that these fonts 
are resident on a specified printer, and/or download 
them ahead of this job. 

%%Creator: character-string 
The person or program (or both) that created this 
POSTSCRIPT file. This may be different from the per­
son printing the file (see the For comment below). 

%%CreationDate: character-string 
The date and time this POSTSCRIPT file was created. 
The date string may have any form. 

%%Pages: ## The number of pages present in this document. If the 
number is not known, a question mark (?) or a blank 



File Structuring Conventions 3 

field is specified. 1 If the document generates no pages, 
but, for example, is meant to be an included illustra­
tion, the number should be zero (0). The specification 
" (atend) " is allowed. 

%%BoundingBox: llx lly urx ury 
The bounding box (in the default POSTSCRIPT coordi­
nate system) of the printed marks specified by this 
fIle. This may be used by composition programs for 
placing included illustrations. If the fIle is a multi­
page document, these numbers are of less utility, but 
should be unioned over all pages. Here again, the 
specification" (atend) " is allowed. 

%%For: character-string 
The intended recipient of this document. If no For 
field is present, the printer software will normally as­
sume that the fIle is for its Creator. 

For those fiolds specified as "( atend) ", the true values must be given. 
in the last 5 nonblank lines of the conforriung POSTSCRIPT fIle. Note that 
utility programs may need to add, change or duplicate the information in 
the header comments. They should do so by prepending information to the 
previous header. The first occurrence of a header comment item is used; 
all but the first are ignored. The comment-header section ends at the first 
occurrence of a line that does not begin with "%!" or "%%" or by a line 
with the comment %%EndComments. 

The conforming comments after the comment-header section are used 
to signal the boundaries of the various parts of a POSTSCRIPT print fIle. 
They are used by utilities that wish to reverse the page order (for collated 
stacking) or to collect and print a subset of the pages of a document. 

%%EndProlog signals the end of the prolog section of the document. 
(In reversing the pages of a document, the prolog 
should still come first.) 

%%Page: label cardinal 
signals the beginning of a page "body"; where label 

is the page number in the document's internal number­
ing scheme (e.g., vii, 10-34, etc.) and cardinal is the 
absolute page number in terms of pages printed (from 
1 through N for an N-page document). If the number 
in either scheme is not known, a question mark (?) 

INote that static analysis of an arbitrary POSTScRIPT file (e.g., counting the occurrences of 
showpage) is not sufficient to determine how many pages it will print 



4 POSTSCRIPT Supplement 

takes its place. A utility program that collects and 
prints selected pages may take page number specifica­
tions in either form; e.g., "print pages vii and ix" or 
"print the first ten pages and the last ten pages" . 

%%PageFonts: fontl font2 ... 

%%Trailer 

can come directly after the Page marker. Like 
DocumentFonts, PageFonts lists the fonts 
needed by a particular page body. In large or complex 
documents that have a high probability of being seg­
mented, the PageFonts entry provides a finer de­
gree of detail for utility programs to use. Pages with­
out a PageFonts entry are assumed to need all of 
the fonts listed in DocumentFonts. 
signals the beginning of the trailer section of the docu­
ment, after the end of the last page body. The trailer 
continues to the end-of-fIle. This section should al-
ways come last, no matter what page re-ordering takes 
place. . Trailer. s~ctions may do final cleanup of a 
document's state (e.g., a restore). 

A short, skeletal example. of a POSTSCRIPT fIle structured in the above 
manner follows. 

% !PS-Adobe-l. 0 
%%Creator: Anthony Abstract 
%%Title: Tropic of Calculus 
%%CreationDate: Fri Aug 9 11:33:03 1974 
%%Pages: (atend) 
%%DocumentFonts: Times-Roman Times-Italic Times-Bold 
%%Dimensions: 0 0 612 792 
%%EndComments 
... document prolog goes here 
%%EndProlog 
%%Page: 0 1 
'" this might be the title page '" 
UPage: 1 2 
... the first text page of the document 
%%Page: 2 3 
... the last page of the document ... 
%%Trailer 
... document trailer goes here ... 
%%Pages: 3 


