Inside LaserWriter

Introduction

The purpose of Inside LaserWriter is to give you the information that you need to
develop your own applications for Macintosh and other personal computers that take
advantage of the unique features of the Apple LaserWriter laser printer. A complete
version of Inside LaserWriter is under development at Apple, but it is not available at
this time. However, the following Appendices from Inside LaserWriter are available
and are included in this document for your use today. When the final version of Inside
LaserWriter becomes available, you will be sent an update that contains the sections of
Inside LaserWriter that are currently missing.

Appendix A - The Postscript Language Manual

AppendixB - The Postscript Cookbook

Appendix C - The Adobe Font Manual

.Appendix D - The Advanced Users Supplement

Appendix E - The Apple Talk Printer Access Protocol

Appendix F - Programming and Debugging aids

Appendix G - Example of the things that you can do with LaserWriter

Appendix H - Using the Macintosh Print Manager

Appendix | - Using MacTerminal to talk directly to the Postscript computer in
LaserWriter.

Appendix J - Postscript File Structuring Conventions

Proposed format for the future
version of Inside LaserWriter

When Inside LaserWriter is completed, it is anticipated that it will contain the following
information:

Chapter 1 - How to develop Macintosh applications that will print successfully on the
LaserWriter by using the standard Macintosh Print Manager programs.

Chapter 2 - How to develop Macintosh applications that will print successfully on the
LaserWriter by using the standard Macintosh Print Manager programs in conjunction

with some limited Postscript commands to do things that are not supported in the Print
Manager.

Chapter 3 - How to develop Macintosh or other PC applications that will print
successfully on the LaserWriter by issuing Postscript commands directly through
AppleTalk without using any of the standard Macintosh Print Manager programs.

Chapter 4 - How to develop Macintosh or other PC applications that will print
successfully on the LaserWriter by issuing Postscript commands directly through the
RS 422 serial connection without using any of the standard Macintosh Print Manager
programs.

In addition, the following appendices are expected to be included:

Appendix A - the Postscript Language Manual

Appendix B - the Postscript Cookbook

Appendix C - the Adobe Fonts Manual

Appendix D - the Advanced Users Supplement

Appendix E - the Apple Talk Printer Access Protocol

Appendix F - Programming and Debugging aids

Appendix G - Example of the things that you can do with LaserWriter

Appendix H - Using the Macintosh Print Manager

Appendix | - Using MacTerminal to talk directly to the Postscript computer in
LaserWriter.

Appendix J - Postscript File Structuring Conventions
Appendix K - QuickDraw to Postscript Comments
Appendix L - Source of the Apple Header

Appendix M - Syntax of the QuickDraw Translater

Appendix A

The Postscript Language Manual

POSTSCRIPT™ Language Manual

First Edition, Revised
September 1984

Adobe Systems Incorporated

Adobe Systems Incorporated
1870 Embarcadero Road, Suite 100
Palo Alto, California 94303

POSTSCRIPT™ Language Manual
First Edition, Revised
27 September 1984
Copyright © 1984 Adobe Systems, Inc.
All Rights Reserved

POSTSCRIPT is a trademark of Adobe Systems, Inc.

Times and Helvetica® are trademarks of Allied Corporation.
ITC Friz Quadrata, ITC Souvenir, and ITC Galliard
are trademarks of International Typeface Corporation.

Scribe is a registered trademark of UNILOGIC, Ltd.

The information in this manual is furnished for informational use only,
is subject to change without notice, and should not be construed as a com-
mitment by Adobe Systems, Inc. Adobe Systems assumes no respon-
sibility or liability for any errors or inaccuracies that may appear in this
document.

The software described in this document is furnished under license and
may only be used or copied in accordance with the terms of such license.

Preface i

Preface

POSTSCRIPT is a simple interpretive programming language with
powerful graphics primitives. The primary application of POSTSCRIPT is
to describe the appearance of text, images, and graphic material on printed
pages. Source code in this language communicates a description of how a
page looks to a POSTSCRIPT interpreter. This interpreter converts the
source code into a device specific format required by any raster output
device. Normally, POSTSCRIPT source code is generated by word process-
ing programs, computer aided design programs, and other composition
programs. Programmers write POSTSCRIPT source code directly only
when setting up applications. In this unconventional use of a programming
language, POSTSCRIPT defines a standard, extensible, flexible print file
format, which is the interface between document composition applications
and raster printing devices.

Most print protocol formats used today are extensions of line printer
protocols or terminal protocols. These formats are, by their basic structure,
limited in their capabilities. POSTSCRIPT has been designed with general
graphics capabilities in mind. POSTSCRIPT treats standard text and more
complicated character fonts as special cases of its graphics facilities. In
this environment, graphics and text are not implemented as separate
packages, but as a unified system. This approach leads to a clean design
that allows users freedom and flexibility in creating applications.

This document is written for people interested in interfacing existing
application programs to POSTSCRIPT, in creating new application
programs to generate POSTSCRIPT files, or in creating applications in the
POSTSCRIPT language itself. Upon first reading, you may think that
POSTSCRIPT is an ‘‘overkill’’ design. The POSTSCRIPT language is both
general and powerful. Even though the more powerful facilities of the lan-
guage are rarely used, the language includes them for completeness. It has
been our experience that limiting a language design and restricting its
scope only leads its users into ‘‘work-arounds’’ or ‘‘arcane hackery’’
they reach for missing features. '

The User’s Manual begins with a ‘‘Basic Overview’’ of POSTSCRIPT,
followed by a more detailed ‘‘Reference Section.’’ The casual style of the
former is not intended to define POSTSCRIPT’s capabilities in an exhaus-
tive way, but instead is meant to give the user the ‘‘flavor’” of
POSTSCRIPT. Discussion in this chapter focuses largely on basic language
features. The second chapter provides a complete description and precise
semantics for all of POSTSCRIPT’s built-in operators, with an in-depth dis-
cussion of the graphics and printing operators.

While reading the first part of the document, you are encouraged to look
ahead to the reference section for additional detail or to find answers to
questions you may have.

Table of Contents iii

Table of Contents

5
g
g
23
3

...

1
5
2.1. Basic Ideas and Motivation.c..cu.... 6
2.2. Raster Printer File Formats......................... 8
2.3. The POSTSCRIPT ImagingModel.................... 9
2.4. Coordinate Systems and Device Independence 11
2.5. POSTSCRIPT SYNAX ... ovvvvenvreeeenneneneenannns 13
2.6. The POSTSCRIPT Interpreter..........covvueeneunann. 16
26.1. BasicOperation.............covvvvenenn... 16
2.6.2. The AssignmentOperators 17
2.6.3. ControlOperatorsoeveeeueeeenens 19

2.7. Graphics Operatorscovvtieieeneenennnnenns 21
27.1. TheGraphicsState...........ccvvvenenennn. 21
27.2. GeometricShapes.........c.cvovveeenennennns 22
2.7.3. Transformations..............c.ceueuenunn.. 23
2.7.4. Character Shapes (fonts) 24

2.8 SUMMAIY.....oiviirreinreneeneeneeneenennennens 27
3. ReferenceSection.........c.ovuiiiiiiniinnenennennnnns 33
3.1. Data Structures and Typesocoviinn... 34
3.1.1. POSTSCRIPT StackScevveuveunennnnne 34
3.1.2. POSTSCRIPTObjeCtscvvveienrnnnnnnnns 35
3.1.3. Composite Objects.cvvvvirenennnns 38

3.2. Argument and ErrorHandling 40
3.3. Immediate and Delayed Execution................... 41
3.4. POSTSCRIPTOPErators cvvvveevnenneneanannenns 44
34.1. StackOperatorscooveeenennennnn. 45
3.4.2. Arithmetic and Math Operators............... 49
3.4.3. Polymorphic Operatorscccuvvun... 56
344, ArrayOperators.covveueneenennenns 62
34.5. Dictionary Operatorscooveeuennenn. 64
34.6. String Operators.covvvennennnnenns 69
3.4.7. Relational, Boolean, and Bitwise Operators 72
3.4.8. ControlOperatorscovvvveennnn.. 77
3.4.9. Type, Conversion, and Property Operators. 82
3.4.10. FileOperatorsc.cveeuiueenennnnnn 87
3.4.11. Virtual Memory Operators 94
3.4.12. Miscellaneous Operators and Functions 96

3.5. Graphics Operatorsoovivtin vt eeneeneennns 98
3.5.1. Graphics State Operators. 101
3.5.2. Coordinate System and Matrix Operators. 103
3.5.3. Character and Font Operators 112

v

@ p

PostScripr language manual

3.5.4. Path Construction Operators 117
3.5.5. Graphics Output Operators 125
3.5.6. Device Setup Operators. e 142
3.5.7. Character Cache Management Operators 144
3.6. ErrorOperatorso v vieieiiiii et i 147
FontMachinery.........c.cuiiniiuieniinnnenennnnennnns 153
Implementation Limits oL, 163
RevisionHistory e BN 167
Operator Index e e 169

Index.......... et eeererae ettt ... 175

1

INTRODUCTION

2 PostScripr language manual

POSTSCRIPT is a language for describing the appearance of pages in
documents. The language specifies character shapes (fonts), their place-
ment, and their orientation. It describes graphic shapes (lines and areas). It
also specifies the position, scale, and orientation of scanned images. Al-
though the language is general and flexible, this document emphasizes its
use for the printing application. In particular this manual describes how to
position text on a page, how to generate graphic objects, and how to
manipulate and place scanned images.

In a typical application a POSTSCRIPT source consists of two different
parts. The first part is the prologue. The prologue is application specific
and is written once by a programmer; it becomes the front section for
every POSTSCRIPT source document the application produces. Each
prologue mostly contains definitions that match the output functions of the
application to the capabilities that POSTSCRIPT supports.

For example, if an application generates many instances of a given sym-
bol, then a definition of a subroutine to generate the symbol belongs in the
prologue. When this is done, the application program may insert calls to
that subroutine to place instances of the symbol on the page.

The second part of a POSTSCRIPT source is the script. The script is out-
put by the application program, and is very stylized, repetitive and simple.
It normally consists of operands (numbers and strings) followed by names
of either POSTSCRIPT operators or predefined subroutines. The script uses
more general facilities of the POSTSCRIPT language only rarely.

There is nothing in the POSTSCRIPT language that formally distin-
guishes the prologue from the script, but we make the distinction in this
document because it is useful for talking about how POSTSCRIPT is typi-
cally used.

The syntax of POSTSCRIPT is simple, and it uses only the printable sub-
set of the ASCII character set (plus the newline marker). POSTSCRIPT uses
no control characters other than the newline marker. We chose this char-
acter subset to maximize machine independence rather than information
density. Restricting ourselves to this representation keeps POSTSCRIPT
files ‘‘human readable’’, and it simplifies storage and communication of
these files among many different computer systems.

The semantics of the POSTSCRIPT language is as simple as its syntax.
POSTSCRIPT models a stack machine: that is, POSTSCRIPT accepts
operands, which it pushes on an operand stack, and it accepts operators,
which operate on those operands. Within this machine model,
POSTSCRIPT implements the features found in most modern computer lan-
guages. The language supports arrays, mixed mode arithmetic, control
structures, subroutines, symbol tables, and an extensive set of built-in
operators for handling text, graphics, and images.

Introduction

We have accomplished several goals in POSTSCRIPT’s design:

1. The language and imaging model are both host machine and
graphics device independent. These properties allow
POSTSCRIPT sources to act as a standard file format for
describing images. Therefore, POSTSCRIPT sources can be
used on a variety of combinations of host computers and
raster output devices. Display devices can range from one bit
per pixel displays to full color displays. Printing devices can
range from low-resolution matrix printers to high resolution
laser printers.

2. A program that generates a POSTSCRIPT source file need not
be complicated or maintain a large amount of state informa-
tion. A program can stream POSTSCRIPT source incrementally
to a file. This attribute of the language allows even small
machines to generate complex POSTSCRIPT sources.

3. Each application maintains its own view of how text and
graphics are to be generated. The extensive programmability
of POSTSCRIPT caters to the application without forcing it into
a POSTSCRIPT mold. A generating program is able to extend
the language so that the file generated relates directly to the
application and is therefore more natural, readable, and com-
pact.

2

BASIC OVERVIEW

6 PostScripr ianguage manual

There are two complementary approaches toward describing the
POSTSCRIPT language. On one hand, POSTSCRIPT is a programming lan-
guage with powerful built-in graphics functions. On the other,
POSTSCRIPT is a printed page description language that includes general
purpose programming language features. Either of these views could serve
as a basis for describing POSTSCRIPT, but either one taken alone does not
tell the entire story. Both views are equally valid and they interact to
provide a complete model for understanding POSTSCRIPT.

This overview will use examples from POSTSCRIPT used as a printed
page description language. Bear in mind, however, that with a change of
application-specific operators, the POSTSCRIPT language framework could
serve equally well for many other application areas.

Basic Ideas and
Motivation

Let’s assume that some computer application program needs to print
pages on a raster printer (a not too unreasonable assumption). Im-
mediately, two different design choices are apparent: it can operate the
printer(s) directly, or it could write a description of the pages in such a
way that a separate process can print the pages from those descriptions.

The first choice does not generalize well. The application must fill itself
with printer device specific details which clutter the application. If a dif-
ferent printer must be used, a large amount of additional printing program
logic must be embedded in the application program. Furthermore, other
programs cannot take advantage of this application program’s special
printing capabilities. They must include this code themselves to be able to
perform the same functions. This choice is appropriate only if no alter-
native is available.

With the second choice, we enter the realm of print file formats. These
formats have been around since computers used printers. Once again the
design choices can be divided into two classes. The print file format can
be either static or dynamic.

A static format provides some fixed set of operations (sometimes called
control codes) together with a syntax regarding the placement of the
operations and the arguments they must take. Some line printer formats
are classic examples of static print file formats. The first character of a
record is the control code; it determines paper motion: none, next line,
next page, etc. The rest of the record is the actual character data to be
printed on the chosen line.

Basic Overview 7

A dynamic format allows considerably more flexibility than a static for-
mat. The operator set may be extensible, and the exact meaning of an
operator may not be known until it is actually encountered. A static format
might offer an operation that repeats a fixed number of times, while a
dynamic format might allow a loop with an index variable.

This classification of print file formats into static and dynamic formats
is, admittedly, an oversimplification. Some formats have elements of both
styles, as in a format that is mostly static but which allows macro expan-
sion or limited use of variables. Even though some existing print file for-
mats do fall into this gray area, this static/dynamic distinction can be use-
ful when comparing the capabilities of different formats.

A print format that is primarily static, but which purports to cover a lot
of graphic and text operations, tends to grow operators wildly. A dynamic
format that allows primitive operations to be combined according to the
wishes of the user writing the print file will always be superior to a static
format that tried to anticipate all possible needs. As we will see in later
sections, for very complicated page layouts, there may be information that
the printed page description writer cannot know until the page is actually
imaged on its specific printer. Dynamic formats that allow reading of cru-
cial information and using this information in calculations will clearly be
able to specify more sophisticated images.

. POSTSCRIPT goes all the way over to the dynamic side of this classifica-
tion. POSTSCRIPT includes many graphic operations, and it allows them to
be combined in any possible manner. It not only has variables, but it al-
lows arbitrary computations in the process of interpreting the page
description. It has a rich set of programming language control structures
for combining its elementary elements. Also, while some print file formats
may appear to have these capabilities only through contorted, unintended
uses of some of their features, POSTSCRIPT has provided the complete set
of dynamic features by design, making their use natural and efficient.

Thus we have POSTSCRIPT, a dynamic print format whose page descrip-
tions are actually programs to be run by an interpreter. POSTSCRIPT
programs can degenerate into a form that resembles a static format: a se-
quence of argument, operator, argument, operator, and so on. In fact,
many POSTSCRIPT programs will have this boring repetitive nature,
having been generated by an application program that knew exactly what
it needed. However, when the need arises, the power is there to be applied
by the knowledgeable application designer.

8 PostScripr language manual

Raster Printer File
Formats

For any print format, several questions should be asked:

¢ Is it complete? (Can it describe any printed page?)

¢ Is it easy to generate?

e Is it easy to interpret?

e Is it easy for a person to understand it?

¢ Is it valid for more than one printer?

e Is it easy to transmit?

e Is it compact?

¢ Can pieces of a description already built be used to compose
more complicated pages?

¢ Can it emulate other formats?

The answers to these questions and the relative importance one attaches
to each one will vary from application to application. However, medium
and high resolution raster printers add new capabilities to computer
generated pages that complicate the questions somewhat.

A raster printer produces its image by writing small dots onto a page.
The size and positioning of these dots is expressed as the printer’s resolu-
tion, in terms of how many dots fit in one inch. High resolution refers to
many dots per inch, say 1000 or more. Medium resolution refers to some-
where between 300 to 600 dots per inch. All raster printers form letter
shapes by writing a pattern of these dots for each letter. At medium resolu-
tion and above, this technology enables these printers to form almost any
typeface in any size and at any rotation.

However, many print file formats are incapable of describing pages that
use these capabilities of raster printers. Print file formats that are a hold-
over from the days of impact printing have no notion of scalable letters
and sophisticated graphics. Some print formats that do address these op-
portunities are crippled by their separation of text and graphics, treating
text in such a way that the flexibility inherent in the printer is lost.

To fully evaluate a print file format in terms of the above questions, one
should take into account not only the surface form of the language (which
will answer some of the questions) but also the imaging model of the lan-
guage. An imaging model describes how a picture is made, what opera-
tions are allowed, how the operations may be combined, etc.

Basic Overview 9

The POSTSCRIPT
Imaging Model

The POSTSCRIPT imaging model is a simple and unified view of two-
dimensional graphics borrowed from the graphic arts industry.! An image
is built up by placing ink on a page in selected areas. The ink may be in
the form of letter shapes, general filled shapes, lines, or halftone represen-
tations of photographs. The ink itself may be in color or in black, white, or
any shade of gray. Any of these elements may be cropped to within any
shape as they are placed onto the page. Once a page has been built up to
the desired form, it may be printed on an output device.

POSTSCRIPT maintains an implicit current page that accumulates the
marks made by the POSTSCRIPT imaging operators. When a program
begins, the current page is completely white. As each imaging operator
executes, it places marks on the current page. Each new mark completely
obscures any marks that it may overlay. This method is known as a
painting model; no matter what color a mark has — white, black, gray or
color — it is put onto the current page as if it were applied with opaque
paint. When the showpage or copypage operators are executed, the cur-
rent page is printed on the output device (showpage clears the current
page after printing; copypage leaves the current page unchanged.)

The imaging operators (those that place marks on the current page) are
the fill, stroke, image, and show operators. fill marks an area on the cur-
rent page; stroke marks lines on the current page; image paints a halftone
gray-scale scanned image onto the current page; and the show operators
paint character shapes onto the current page. Each of these operators re-
quires several arguments, some explicit and some implicit.

Chief among the implicit arguments is the current path (used by fill,
stroke and show.) This object describes a sequence of connected and dis-
connected points, lines and curves that together describe shapes and their
positions. The current path is built up through the sequential application of
the path operators, each of which modifies the current path in some way
(mostly by appending one new element to the current path.) Other implicit
arguments to the imaging operators include the current color, current line
thickness, current font (typeface-size-rotation combination), etc. Each im-
plicit argument has its own corresponding set and examine operators; each

1A detailed, technical description of a similar imaging model has appeared in a paper by John
Warnock and Douglas Wyatt, titled ‘A Device Independent Graphics Imaging Model for Use with
Raster Devices,”” in the July 1982 Computer Graphics Volume 16, number 3, pp. 313-320. The
description given here is in terms that a POSTSCRIPT programmer should understand before using
POSTSCRIPT to prepare printed pages.

10 PostScrirt language manual

may be set to a new value at any time. The values held in each of the
implicit arguments at the time that an imaging operator is executed will
affect the behavior of that operator.

The path operators, which include newpath, moveto, lineto, curveto,
arc, closepath and others all modify the current path as they are executed.
None of these operators affects the current page directly; that is left to the
imaging operators. The path operators build up a shape comprised of con-
nected and/or unconnected points, straight line segments and curves.
These shapes are unrestricted — they may be convex, concave, or even
mutually and self intersecting. The positions of these elements in a path
are specified by real numbers; the resolution of the output device in no
way constrains the definition of a path.

POSTSCRIPT programs that make printed pages will contain many in-
stances of the following pattern: build a path using path operators; set any
implicit arguments (if their values need to change); perform an imaging
operation.

There is one additional implicit element in POSTSCRIPT’s imaging
model that modifies the foregoing description. POSTSCRIPT maintains a
current clipping path that outlines the area of the current page that may be
imaged upon. Initially, this clipping path outlines the entire imageable
area of the current page; parts of the image description which lie off of the
page (outside the clipping path) are discarded. By using the clip operator,
a POSTSCRIPT program can shrink the current clipping path to any shape
desired. It is quite normal for an imaging operator to attempt to place
marks outside of the current clipping path. Those marks within the clip-
ping area will make it onto the current page; those marks that fall outside
the clipping area will not affect the current page.

Basic Overview 11

Coordinate Systems
and Device
Independence

The arguments to path operators describe points on the page (or outside
of the page) by means of coordinates, i.e., a pair of real numbers x and y
that locate a point within a Cartesian coordinate system superimposed on
the current page. POSTSCRIPT defines a standard, default coordinate sys-
tem that POSTSCRIPT programs may depend on for locating any point on
the page.

Output devices vary greatly in the built-in coordinate systems that they
use to address actual device points within their imageable area. We call
this coordinate space, idiosyncratic to each output device, device space.
Device space origins can be anywhere on the output page; the paper
moves through different printers in different directions; and some devices
even have different resolutions in different directions. Coordinates
specified in a POSTSCRIPT program, however, are device independent
since they refer to locations within an ideal coordinate space that always
bears the same relationship to the current page regardless of the output
device on which printing will be done. We call this coordinate system user
space, as it is the coordinate system that programs use to specify points.
The POSTSCRIPT interpreter automatically transforms points specified in
user space into the device space of the specified device. For the most part,
this transformation is hidden from the POSTSCRIPT program; a program
needs to consider device space only rarely for certain special effects. This
independence of user space from device space is a major contributor to the
device independent nature of POSTSCRIPT page descriptions.

To specify a coordinate system with respect to the current page, we
must know the location of the origin, the orientation of the x and y axes
and the lengths of the units along each axis. Initially, the user space origin
is located at the lower left corner of the output paper, with the positive x
axis extending horizontally to the right and the positive y axis extending
vertically upward (as in standard mathematical practice.) The length of a
unit along the x axis and along the y axis is 1/72 of an inch. We call this
coordinate system default user space.

Although the choices made for default user space are arbitrary, the im-
portant point is that they provide a consistent, dependable starting point
for POSTSCRIPT programs regardless of the output device being used. The
POSTSCRIPT program may then modify its user space into one more
suitable for its needs (if necessary) by applying coordinate transformation
operators. The features of default user space were chosen for their math-

12 PostScripr language manual

ematical simplicity and convenience. The location and orientation of the
axes follows mathematical tradition and gives positive coordinates to
points on the current page. The unit size, 1/72 of an inch, is very close to
the size of a printer’s point (a printer’s point is actually 1/72.27 of an inch)
which is a standard measuring unit used in the printing industry. Note that
the coordinates used in POSTSCRIPT programs may be decimal numbers
containing fractional parts, so that the initial choice of unit size does not
constrain points to any arbitrary grid.

For its convenience, a POSTSCRIPT program may move the user coordi-
nate system with respect to the current page and even change the size of
the x and y units independently. It accomplishes this with the coordinate
transformation operations translate, rotate and scale. translate moves
the user space origin to a new position with respect to the current page
while leaving the orientation of the axes and the unit sizes unchanged.
rotate turns the user space axes about the current user space origin, leav-
ing the unit lengths unchanged in their current directions. scale modifies
the unit lengths independently along the current x and y axes, leaving the
origin location and the orientation of the axes unchanged. (For very
sophisticated users, POSTSCRIPT actually allows any linear transformation
to be specified from user space to device space by means of the setmatrix
operator.) Thus, what may appear to be absolute coordinates in a
POSTSCRIPT program are actually quite changeable with respect to the
current page, since they are described in a coordinate system that may
slide around and shrink or expand.

Basic Overview 13

POSTSCRIPT Syntax

A POSTSCRIPT program is written so as to be readable by people. All
program text and data are written in the printable subset of the ASCII
character set (plus the carriage return character.) This written form
promotes ease of communication between the producer of a POSTSCRIPT
program and the machine on which the POSTSCRIPT interpreter resides,
since any communication network should at least be able to transmit
characters, in addition to making the programs easily read.

There are five distinct syntactic constructs in POSTSCRIPT. These are:

* numbers (reals and integers)
* strings

* names

¢ procedure bodies and arrays
e comments

POSTSCRIPT treats spaces, tabs, and newlines equivalently: they serve
to separate (or delimit) other syntactic constructs such as names and num-
bers from each other. Any number of these characters appearing in a row
are treated in the same manner as if there were just one. The characters
“(n’ cc)n’ u<u, u>n’ ss[ss’ u]u’ “{u’ u}n, “/s,’ and u%n are special:
they serve to delimit syntactic entities such as strings, procedure bodies,
and comments. Any of these characters terminates the entity preceding it,
and is not included in it.

Numbers in POSTSCRIPT include signed integers, such as

123 -98 43445 0 +17

reals, such as
-.002 34.5 -3.62 123.6el0 1E-5 -1. 0.0

and radix (integer) numbers, such as
8#1777 16#FFFE 2#1000

These take the form base#number where base is in the range 2 through 36.
The number is then represented in this base with digits ranging from 0
through base-1. Digits greater than 9 are represented by the letters A (or a)
through Z (or z). Note that, although the machine representation of the
number may be negative, these numbers should be considered as unsigned
(positive) integers. This notation is intended for specifying character codes
(when needed), and bit patterns for bitwise operations.

A string in POSTSCRIPT is delimited by balanced parentheses. This
notation is POSTSCRIPT’s way of ‘‘quoting’’ a string body. The following
are examples of valid strings.

14 PostScript language manual

(This is a string)

(Strings may contain newlines

and such.)

(Strings may contain special characters:*-&*% and
balanced parentheses () (and so on))

(The following string is an "empty" string.)

0

(It has 0 (zero) length.)

To insert unbalanced parentheses into a string the backslash character is
used. ‘‘\’’ is an escape character instructs the scanner to insert the next
character into the string. For example:

(W)

represents the string ‘‘(\’’. Special non-graphic characters can be
represented in strings by using the backslash escape character. Certain
characters following it have special meaning:

\n LF linefeed (newline)
\r CR carriage return

\t HT horizontal tab

\b BS backspace

\f FF form feed

A\ backslash

\((left parenthesis
\)) right parenthesis
\ddd ddd octal byte
\newline no character - both are ignored

The \ddd form may be used to include any octal character constant into a
string. One, two, or three octal digits may be specified (with high-order
overflow ignored). If the character following the backslash is not one of
the above, the backslash is ignored. The \newline form is used to break a
string into a number of lines, but not have the newlines be part of the
string.

(These\

two strings \

are the same.)
(These two strings are the same.)

(This string has a newline in it.

QSo does this one.\n)

A string may also be defined in hexadecimal (base 16) notation by
delimiting a sequence of hex characters (the digits O through 9 and the
letters a through f and A through F) with “‘<’’ and ‘“>’’. Each pair of hex
digits defines one character of the string. Spaces, tabs, and newlines are
ignored. For example, ‘“<901fa3>"’ is a 3-character string containing
the characters whose hex codes are 90, 1f, and a3.

A comment in POSTSCRIPT is preceded by ‘‘%’’ and terminated by a

Basic Overview 15

newline. Outside of a string body, the POSTSCRIPT scanner treats com-
ments as delimiters. The following is a comment:
% this is a comment

A name in POSTSCRIPT is simply a sequence of non-special characters
not contained in a string or comment. That is, any sequence of characters
bounded by delimiters and not containing a delimiter is a name, unless it
can be interpreted as a number in which case it is a number. All printing
characters except the special ones can appear in names, including punctua-
tion characters. The following are examples of valid POSTSCRIPT names:

abc Offset $$5 23A 13-456 *&$ $MyDict myProc @pattern

The forward slash “‘/”’ is used to specify a literal name. The slash is not
part of the name itself, but is a prefix which indicates that the following
name is a literal. Hence, the slash character may not be a part of any syn-
tactic name in POSTSCRIPT.

A procedure body begins with a *‘{’’ and ends with a balancing ‘‘}’.
An array begins with a‘‘[’’ and ends with a balancing ‘‘]’’. Numbers,
strings, names, comments, and other procedure bodies or arrays may occur
between the delimiting braces. An example of a valid procedure body is:

{add 2 div}

and an example of a valid array is:
[23 45.2 (a string) /aName [(abc) 16#7E] {dup mul}]

Note that POSTSCRIPT arrays need not be homogeneous.

16 PostScripr language manual

The POSTSCRIPT
Interpreter

2.6.1. Basic Operation

The POSTSCRIPT interpreter is the process that executes the
POSTSCRIPT language according to the rules listed below. These rules tell
us the order in which operations are carried out, and how the pieces of a
POSTSCRIPT program fit together to produce the desired results. In this
section, we shift our emphasis from POSTSCRIPT the page description lan-
guage to POSTSCRIPT the programming language so as to show the opera-
tion of the interpreter in as simple a manner as possible. We will return to
POSTSCRIPT the page description language in the next section.

The POSTSCRIPT interpreter manipulates entities called POSTSCRIPT
objects. Each of the syntactic types discussed in the previous section
(except comments) corresponds to its own kind of POSTSCRIPT object.
There are also several kinds of POSTSCRIPT object that have no direct syn-
tactic representation (such as dictionary objects and file objects) that are
created through their own creation operators.

The characters in the POSTSCRIPT program, written according to the
syntax given in the previous section, are not themselves POSTSCRIPT ob-
jects. The syntax rules specify how the POSTSCRIPT interpreter groups and
separates these input characters into tokens, which the interpreter can then
convert into POSTSCRIPT objects, with which it can execute the program.
Thus, the interpreter converts a token consisting of digits into a
POSTSCRIPT number object, a token enclosed by parentheses into a
POSTSCRIPT string object, a token beginning with a letter into a
POSTSCRIPT name object, and sequence of tokens surrounded by brackets
or braces into a POSTSCRIPT array object. The POSTSCRIPT interpreter
proceeds as follows: it scans the input stream (ignoring comments) for the
next token, converts it into a POSTSCRIPT object, and acts on that object

~according to its type. If a token is a string, a number, a procedure body, an
array, or a literal name (a name with a ‘‘/’’ prefix), then the interpreter
converts that token to its corresponding POSTSCRIPT object, and pushes
that object onto a stack called the operand stack. If the token is an
evaluated name (a name with no ‘‘/’’ prefix), then the interpreter looks up
that name for its value (more about the details of name lookup later) and
takes action depending on whether or not that value is execuzable. If the
value is not executable, the interpreter merely pushes the value onto the
operand stack. If the value is executable, then the interpreter executes that
value immediately, before processing the next input token.

For example, if the input stream contains:

Basic Overview 17

123 456 add

then the POSTSCRIPT interpreter reads ‘‘123’°, pushes the number 123 on
the operand stack, reads ‘‘456’’, pushes the number 456 on the operand
stack, and reads ‘‘add’’ as a name. The interpreter then looks up the name
add, finds that it is associated with an intrinsic POSTSCRIPT operator
(which is executable), and executes this operator (which adds two
numbers). The add operator removes 123 and 456 from the operand stack
and pushes their sum, 579, onto the operand stack.

The above example models how the POSTSCRIPT interpreter processes
all operands and operators. In POSTSCRIPT, there is no explicit expression
or statement structure. Instead the POSTSCRIPT interpreter scans its input
in a strictly sequential manner. As it encounters each token, it resolves it
to an operand, which it pushes onto the operand stack, or to an operation,
which it executes. The language is called postfix, since operators follow
their operands. When an operator executes, it expects its operands to have
already been placed on the operand stack, either directly as in the above
example or indirectly by the result of execution of preceding operations.

Example 1: The following is a segment of POSTSCRIPT source that
evaluates the expression (a + b) + (c x d).
a b add ¢ d mul div

Example 1 shows POSTSCRIPT source that consists of a simple se-
quence of operands and operators. Note that the operands to the div
operator were left on the stack by the preceding add and mul operations.
In this example we assume that a, b, ¢, and d have values that are numbers
(we will show how this association is made shortly) which are pushed
onto the operand stack by the interpreter.

The operation of POSTSCRIPT is dictated solely by the semantics of the
operators. By constructing powerful operators, POSTSCRIPT provides most
of the facilities found in other programming languages. These facilities are
provided so POSTSCRIPT can be extended to meet the needs of the appli-
cation. In particular, if an application finds it convenient to assign vari-
ables, redefine operators, process conditionally, build subroutines, or build
shorthand notations for common constructs, then the richness of the
POSTSCRIPT operators makes this possible.

2.6.2. The Assignment Operators

Like most programming languages, POSTSCRIPT allows assignment of
values to variables. Instead of the infix form (e.g., ‘‘abc = 38’’) used by
many languages, POSTSCRIPT accomplishes the same task with a postfix
assignment operator. For example:

/abc 38 def

Here the POSTSCRIPT interpreter scans left to right and pushes the literal
name abc onto the operand stack, and then it pushes the number 38 onto

18 PosrScript language manual

the operand stack. The POSTSCRIPT interpreter then looks up the name
def, which is associated with the built-in define operator, and executes it.
This operator associates a value (the top element on the stack) with a key
(the element one below the top of the stack). The define operator then as-
sociates the value 38 with the key abc. This association now may be used
by POSTSCRIPT in future processing. For example the POSTSCRIPT inter-
preter processes
123 abc add

in the following way. First, it pushes the number 123 onto the operand
stack. Next it encounters the name abc and looks it up. Because abc is
associated with the number 38 (just defined), the interpreter pushes the
number 38 onto the operand stack. As in the first example, the interpreter
resolves add to the add operator, which removes the two operands from
the operand stack and pushes their sum, 161, onto the operand stack.

In addition to assigning numbers to names, POSTSCRIPT provides a
mechanism for assigning executable procedures to names. As an example,
let us suppose we wish to have an operator that averages the top two num-
bers on the operand stack. The sequence of code that does this is found
embedded in the following:

123 456 add 2 div

The sequence ‘‘add 2 div’’ is the POSTSCRIPT version of code that
belongs in an ‘‘averaging’’ subroutine. We note here that this subroutine
takes its arguments from the operand stack, and returns its results to the
operand stack. To define and use this code we write:

/ave {add 2 div} def
1024 512 ave

then when the POSTSCRIPT interpreter looks up ave it will find the proce-
dure body that executes add 2 div. This procedure body will remove the
numbers 512 and 1024 from the operand stack, and it will push the num-
ber 768 onto the stack.

The above definition structure for procedures allows a programmer to
reference one procedure from the body of another. It also allows recursive
calls of a procedure from itself. For example the following code defines a
recursive ‘‘factorial’’ function. This function expects a number n on the
stack, and will return n! » '

/fact {dup 1 gt {dup 1 sub fact mul} if} def

The def operator used in the above examples associated numbers and
procedures to names. def converts string objects to name objects when
used as keys. However, def can associate any POSTSCRIPT object type
with any other object type. Although association between an object and a
name is most common, POSTSCRIPT does not restrict the association to
this case.

The def operator used in the above examples is just one of many
operators that perform assignments. These assignment operators rely on
POSTSCRIPT dictionaries. Dictionaries and the operators that create and

Basic Overview 19

use them provide powerful associative symbol table facilities to the
POSTSCRIPT programmer. These facilities are discussed in detail in sec-
tion 3. For now we will give an overview of what dictionaries are, how
they are used, and how they relate to the operation of the POSTSCRIPT
interpreter.

Dictionaries are associative tables that consist of key-value pairs. In
POSTSCRIPT, dictionaries are used in two ways. In the first use, diction-
aries play a role in defining the naming context or scope for the names
used in programs. In the second use, dictionaries act as associative data
structures for programs.

In POSTSCRIPT there is a root dictionary, which is always present,
called the system dictionary. This dictionary associates each of the
POSTSCRIPT operator names (keys) with the procedure (value) that imple-
ments the operator. POSTSCRIPT also provides another dictionary, called
the user dictionary, that is intended to hold names and values global to a
particular POSTSCRIPT program.

When the POSTSCRIPT interpreter encounters a name while scanning, it
consults a stack called the dictionary stack. This stack always contains the
system dictionary at the bottom and the user dictionary immediately above
it, but it may also contain other dictionaries as required by the application.
The interpreter looks for the name in the dictionary on top of the diction-
ary stack. If it finds the name, then the interpreter uses the associated
value. If it cannot find the name in this dictionary, then it searches the
other dictionaries in the dictionary stack in order. If the name is not in any
dictionary on the stack, then the POSTSCRIPT interpreter executes the error
operator undefined.

The def operator searches only the dictionary on the top of the diction-
ary stack. In the following:

/a 333 def

The def operator searches the dictionary on top of the dictionary stack for
a. If it finds the key a, then it replaces a’s previous value with the number
333, thereby redefining a. If it cannot find the key a in the top dictionary,
then the def operator creates a new definition for a in the dictionary on the
top of the dictionary stack.

POSTSCRIPT has many operators for dealing with dictionaries. Diction-
aries can be created. They can be pushed onto the dictionary stack and
therefore may be used as name contexts for programs. They can be ac-
cessed directly and thus may be used as associative data structures. They
can also be enumerated, giving catalogues of key-value pairs. These and
other uses of dictionaries are discussed in examples and in section 3.

2.6.3. Control Operators

Thus far we have described POSTSCRIPT operators such as add, that
compute values on operands and operators such as def, that perform as-
signments. In addition to these operators, POSTSCRIPT has several

20 PostScripr language manual

operators that provide program control. The simplest of these operators is

repeat. The repeat operator expects a procedure body on the top and a

count (a number) just below it on the operand stack. The repeat operator

removes the procedure body and the count from the stack and executes the

procedure body ‘‘count’’ times. An example using repeat is the following:
112 34 -3 66 4 {add} repeat

This example is equivalent in function to:
1 12 34 -3 66 add add add add

Both of the above add 1, 12, 34, -3, and 66, leaving 110 on the stack.

Most of the control operators in POSTSCRIPT are like the repeat
operator in that they require procedure bodies on the stack and execute
them in ways that depend on the semantics of the operator.

Another example of a POSTSCRIPT control operator is the ifelse
operator. Many computer languages have a construct like

if <boolean> then <statement> else <statement>

In POSTSCRIPT, the ifelse operator provides the if-then-else semantics.
This operator expects three objects on the operand stack. These objects
consist of one boolean and two procedure bodies. The ifelse operator
removes these operands from the stack. If the boolean has the value true,
then the first procedure body pushed onto the stack is executed, otherwise
the second procedure body is executed. For example, the line:

a b eq {a 22 sub} {b 34 add} ifelse

behaves as follows. The eq operator removes the top two operands from
the operand stack and checks to see if they are equal. If they are, it pushes
a boolean object with value true onto the operand stack, otherwise it
pushes a boolean object with value false onto the operand stack. In the
above example, if a = b, the ifelse operator will execute a 22 sub, other-
wise it will execute b 34 add.

The above descriptions of repeat and ifelse give the general flavor of
the way control operators work in POSTSCRIPT. Other POSTSCRIPT con-
trol operators, for, loop, and if, provide operations analogous to for loops,
unconditional loops, and if statements found in other computer languages.

Basic Overview 21

Graphics Operators

We now return to POSTSCRIPT as a page description language. We have
already discussed operators that are executed for the results they return on
the operand stack. The POSTSCRIPT operators that deal with graphics, text,
or images are executed, not so much for the results they return, but for
their side effects. In particular, they are executed to print something.

The POSTSCRIPT graphics and printing operators provide control over
fonts (collections of character shapes), positioning and orientation of text,
positioning and orientation of images, and the definition of geometric
shapes and areas.

2.7.1. The Graphics State

The POSTSCRIPT interpreter maintains a data structure called the
Graphics State. This data structure contains the implicit arguments for the
imaging operators and holds the following items (among others):

Name Type Value Semantics

CTM Array The current transformation matrix; a matrix that
maps positions from user coordinates to device
coordinates. This matrix is modified by each ap-
plication of the coordinate system operators.
(Initial value: a straightforward matrix transform-
ing default coordinates to device coordinates.)

color Internal The internal representation of colors is not ex-
posed to the POSTSCRIPT user. To encode and
decode colors among different color models, see
color related operators in section 3.5.5. (Initial
value: black.)

cp Numbers Current position. (Initial value: undefined.)

path Path The current path as built up by the path construc-
tion operators. Path objects are not directly acces-
sible in POSTSCRIPT. This object is an implicit
argument to the fill, stroke, and clip operators.
(Initial value: empty.)

clip Path The current boundary against which all output is
clipped. (Initial value: the entire imageable por-
tion of the output device.)

font Dictionary Set of graphic shapes (characters) that define the
current typeface. (Initial wvalue: installation
dependent.)

line width Number The thickness (in user coordinates) of lines to be
drawn by the stroke operator. (Initial value: 1.)
linecap Integer A code that defines the shape of the endpoints of

22 PostScript language manual

any open path that is stroked. (In1t1a1 value 0, for
a square butt end.)

line join Integer A code that defines the shape of a stroked line at

* its corners. (Initial value: O, for mitered joins.)

dash Array, real A description of lengths of portions of dashed
lines to be rendered by the stroke operator in-
stead of the normal solid line. (Initial value: a
O-length array plus a O offset, corresponding to a
normal solid line.)

2.7.2. Geometric shapes

Before we can put filled areas or lines onto the current page, we must
build up the current path in the position where we would like the marks to
be. Here, we have an example of a POSTSCRIPT procedure body that can
be used to specify a square one inch on a side and one inch in and up from
the lower left corner of a page:

/sql
{newpath
72 72 moveto
144 72 lineto
144 144 lineto
72 144 lineto edge to 1",2".
closepath close back to 1",1".
} def % define "sql" to be a proc that builds a path.

This example uses POSTSCRIPT’s default user space directly, thus 72
1/72 inch units equals 1 inch. Note that this POSTSCRIPT program frag-
ment by itself does not build the path, but only defines a procedure body
to do that job and stores that procedure body in the name ‘‘sql’’. When
““sql”’ is executed, it will execute its contents in order. The POSTSCRIPT
operator newpath takes nothing from the stack, but it initializes the cur-
rent path internal data structure used by POSTSCRIPT to keep track of
geometric shapes. The POSTSCRIPT operator moveto takes x and y coordi-
nates (numbers) from the stack, and enters them as a point in the path. The
lineto operator is like the moveto operator except that the point given is
connected to the previous point in the path. There is also a curveto
operator that adds curved sections to paths. Finally, the closepath operator
behaves like lineto, but it constructs its line to the point most recently
““moved to’’.

Now, to fill the square with solid color, we can say:

sql £ill

move to 1",1".
define edge to 2",1".
edge to 2",2".

90 dO P o0 P

To outline the square with a 2 point thick line we can say:
s8gl 2 setlinewidth stroke

To push an image associated with the name ‘‘teapot-pic’’ through the
path, we can say: '
sql clip teapot-pic image

There are details left out of this series of examples; they are presented to

Basic Overview 23

explain the nature of the imaging mechanisms but not the details of their
use. These details are supplied in Section 3.5.

POSTSCRIPT’s path operators are used for making internal general pur-
pose geometric constructs. Path structures are used for making lines and
curves; for filling areas bounded by lines and curves; and as clipping
templates. The topology of a path structure is unrestricted: it can be con-
cave or convex; it can represent multiple regions; it can even intersect it-
self.

POSTSCRIPT paths allow two kinds of curved segment in addition to the
straight line segments introduced in the examples. One simple kind of
curved segment is a circle or a piece of a circle. A more general kind of
curve is called a Bezier cubic, after the French mathematician P. Bezier.
These latter curves are specified by four points: two points represent the
curve’s endpoints, and the other two specify how the curve bends between
its ends. In POSTSCRIPT, more complicated curves than these basic types
are built by putting several circular arcs and Bezier cubics end-to-end
within a path.

2.7.3. Transformations

The ability to translate, scale and rotate any graphic object is quite valu-
able for graphics applications. This capability is provided by the
POSTSCRIPT interpreter through the current transformation matrix (CTM)
that it maintains. This transformation matrix maps points from a user coor-
dinate system into a device coordinate system when an object is drawn.
Modifications to this transformation matrix may be viewed as either
modifying the user coordinate system or as modifying the resulting place-
ment of marks on the output device. The POSTSCRIPT coordinate system
operators are implemented so as to make the appropriate modifications to
this transformation matrix.

A typical application will define procedures that outline prototypical
geometric objects. Before painting an instance of such an object, the appli-
cation will modify its user coordinate system via the coordinate operators.
When the path for the object is built, each of its coordinates is mapped
through the resulting transformation into the device coordinate system.

For example, suppose we have made the following definition:

/triangle $define an equilateral triangle.
{newpath

0 0 moveto %$lower left corner at origin.

10 0 lineto $side of triangle is 10.

5 5 3 sqrt mul lineto $apex at (5,5*sqrt(3)).

closepath} def
Here, the moveto operator moves the current point to coordinate (0, 0).
The lineto operator defines an edge from this point to coordinate (10, 0),
establishing (10, 0) as the current point. The next lineto operator defines
the next edge of the triangle. Finally, the closepath operator closes the
figure by defining an edge back to the point referenced after the newpath
operator.

24 PosrScripr language manual

Now, to create a color-filled triangle at (100, 100), we may give the
command: :
100 100 translate triangle fill

The translate operator modifies the user coordinate system so that sub-
sequently built objects are translated by the given amounts. The fill
operator actually paints the contents of the triangle with the current color
as defined in the Graphics State.
To change the user coordinate system only temporarily, we can say:
gsave 100 100 translate triangle fill grestore

Here, the gsave and grestore operators isolate the changes to the values in
the Graphics State to the time between execution of these two operators.

2.7.4. Character Shapes (fonts)

A font, in the POSTSCRIPT context, is a dictionary through which the
POSTSCRIPT interpreter can obtain path definitions that generate character
shapes. The interpreter uses a character’s code to select which path defini-
tion represents that character.

A character’s shape in POSTSCRIPT is a procedure body that generates a
path representing that character’s outline. To print a character, the
POSTSCRIPT interpreter executes the path building procedure correspond-
ing to that character and fills in the path with ink (more or less).

If you have experience with scan conversion of general shapes, then
you may be concerned at the amount of computation the above description
seems to imply. Relax. The above description tells you how to think about
character shapes and fonts. It does not tell you how fonts are implemented.
In fact, the implementation of the POSTSCRIPT interpreter makes character
rendering quite efficient.

To see how all of the above hangs together, the following examples are
instructive.

Example 2: Print the word ‘‘PostScript’’ ten inches from the bot-
tom of the page, and 4 inches from the left edge.

288 720 moveto % set current point to 4%72, 10*72
(PostScript) show % output "PostScript" in the
% current font

In example 2, we are still using the default coordinate system. The
moveto operator is used to specify the current position for character print-
ing. The show operator uses the current font (here, the default font) to
print its argument ‘‘PostScript”’.

A font is made up of descriptions of its character shapes and other
metric information for that font. For a POSTSCRIPT application
programmer’s convenience, each POSTSCRIPT installation maintains a dic-
tionary of commonly used names associated with its available fonts. For
instance, to use the font ‘“Helvetica’’, we can enter:

Basic Overview 25

/Helvetica findfont

The findfont operator takes the font name and returns a dictionary con-
taining all the information that the POSTSCRIPT interpreter needs to
generate all of that font’s characters.

A font specifies the shape of its characters for one standard size. This
standard is arranged so that the height of a singly spaced line of text is 1
unit. In the default coordinate system, this means that the standard font
size is one point. Since nobody can read one point type, the font must be
scaled to be usable. We could scale the font with the coordinate system
operators, but it is usually more convenient to modify the size of the font
itself, rather than change the current transformation matrix. This latter
operation is provided by the POSTSCRIPT operators scalefont and
makefont. scalefont scales a font uniformly; makefont applies more
complicated general transformations to a font. These operators accept on
the operand stack the nominal font dictionary and the desired modifica-
tion, and they return a new font that will render character shapes in the
desired size. For example, the sequence:

/Helvetica findfont 10 scalefont

returns a 10 point Helvetica font on the stack.
To print ‘‘PostScript’’ in Helvetica 14, we could use the following se-
quence:

/Helvetica findfont push 1lpt font dictionary
onto the operand stack.
push a l4pt scaled font
onto the operand stack.
make the scaled font the

%

%
14 scalefont %
%
%
% current font.
%
%
%
%
%

setfont

288 720 moveto set current position to
4*72, 10%*72.

Typeset "PostScript"

in the current font
(Helvetica 14pt).

(PostScript) show

The above example uses POSTSCRIPT operators in a direct way.
However, it is desirable in most applications to define new operators to
help with the application. To illustrate this point, assume that an appli-
cation requires that switching frequently between three fonts: Helvetica,
Helvetica-Oblique, and Helvetica-Bold.

26 PostScripr language manual

Example 3: Print several sentences down the page, alternating fonts
between Helvetica 10, Helvetica-Oblique 10, and Helvetica-Bold 10.

% Start the prologue section.
% First make some font definitions.

% define "fnr" to be 10 pt Helvetica.
/fnr /Helvetica findfont 10 scalefont def

% define "fni" to be 10 pt Helvetica-Oblique.
/fni /Helvetica-Oblique findfont 10 scalefont def

% define "fnb" to be 10 pt Helvetica-Bold.
/fnb /Helvetica-Bold findfont 10 scalefont def

% Define some procedures to move to a given
% position, switch fonts, and show the given
% character string.

/shwr {moveto fnr setfont show} def
/shwi {moveto fni setfont show} def
/shwb {moveto fnb setfont show} def

% Start the script section.

(This is in Helvetica.) 288 720 shwr

(This is in Helvetica Oblique.) 288 710 shwi
(This is in Helvetica Bold.) 288 700 shwb
(And more in Helvetica.) 288 690 shwr

Example 3 shows several things. First, it makes the required fonts and as-
sociates them with the names fnr, fni and fnb. Next, it defines three
operators all of which move the current position to a given position,
switch to a particular font, and show the given string. Finally, it sets text
using the operators defined earlier.

This last example is a good model for the structure of POSTSCRIPT
programs. Notice that there is a section of program at the beginning (the
prologue) that makes a number of definitions. Normally, a programmer
makes up this part once for an application, which emits it for each docu-
ment generated by that application. The second part of the program (the
script) is straightforward and can be generated by the application program
itself. The script is unique to each document.

The above example shows how to get things done easily with
POSTSCRIPT. When an application uses a specific number of fonts with
given sizes, it should place appropriate definitions for making and using
those fonts in the prologue. After this is done the application program can
generate calls to its subroutines to switch between the fonts and print the
text.

There are some extra facts to know about fonts. Associated with each
character is its width (a distance to move to print the next character). In

Basic Overview 27

some fonts this spacing is a constant, i.e., it does not vary from character
to character. These fonts are called fixed pitch fonts, or monospaced fonts.
Most fonts, however, have a different width associated with each char-
acter. Such fonts are called variable pitch fonts. In either case,
POSTSCRIPT’s show operator moves the current position by the amount of
the character width after it prints the character. This movement ensures
that characters are spaced properly.

The width information for each character is stored in the POSTSCRIPT
dictionary that represents the font. A POSTSCRIPT program may access
this information to obtain a character’s width, and the program may use
any of a variety of character printing operators (show, widthshow, ashow,
and awidthshow) to obtain a variety of width modification effects. For
complete control over character placement, a POSTSCRIPT program may
even place each character individually, based on this width information
and the program’s own placement algorithm.

Summary

We are now in a position to evaluate POSTSCRIPT along the lines of the
questions given earlier in this chapter.

Is it complete? (Can it describe any printed page?)

The answer is a qualified ‘“Yes’’. Certainly, any page consisting of
marks on paper can be described in POSTSCRIPT. However, this could be
claimed for any description language that allowed individual dots on a
page to be described, even if tied to a particular device at a particular
resolution. The POSTSCRIPT model of the printed page description is one
in which the page image is ideal, is described once, and is rendered as well
as possible on any raster printer. Even with this stricter model of page
images, the answer for the POSTSCRIPT language is ‘“Yes’’, as its imaging
model is rich enough to describe all shapes that may be placed on the
page.

So, it becomes necessary to rephrase the question to: What pages can
reasonably be described in this language? Here we can be more specific.
Pages consisting of text (in any typeface, with any linear transformations),
line graphics, and filled area graphics are easy. The simple text handled by
other print formats is very simple in POSTSCRIPT. Pages that contain
photographic images are also easy, provided the program source contains
a sampled description of those photographs. Fine typography, suitable for

28 PostScripT language manual

books, advertising, documentation, and general printing is where
POSTSCRIPT shines. Due to its programmable nature, precise alignment,
tuning to output device quirks, synthetic images, etc. are all possible.

Although the POSTSCRIPT language is Turing-equivalent (it can per-
form any computation that any other programming language can express)
this can lead us into the trap that it is reasonable to do everything in
POSTSCRIPT. Some calculations are more reasonably performed by other
systems, whose operations are oriented to other applications. While one
could express the calculations necessary to render a fractal mountain vista
in POSTSCRIPT, it is probably not practical to do so. Such synthetic
graphics are more appropriately performed by specially set up systems.
However, if such systems can output gray-scale sampled images,
POSTSCRIPT is a most appropriate vehicle for printing the results on any
raster output device.

Is it easy to generate?

POSTSCRIPT has been designed to be easy to generate by both program-
mers and by programs. A POSTSCRIPT program’s syntactic form is print-
able characters, so that it is readable and editable with existing tools. Unit
sizes and coordinate systems are all modifiable to be convenient for the
application. Grouping elementary operations together in procedures allows
levels of abstraction to be built up so that the operations required for a
particular application can be expressed in ways appropriate to that appli-
cation.

POSTSCRIPT can be generated by programs with access to few resources
or by those with access to many resources. Programs that have very little
resources, such as those running on small computers, may proceed by in-
serting a clever preamble at the beginning of a POSTSCRIPT file with
enough procedures to make the output of the page description very simple.
The postfix syntax of POSTSCRIPT files requires a generating program to
carry very little state about the POSTSCRIPT file as it is being generated.
Thus, even very limited systems can generate high quality output by
taking advantage of the processing power available in POSTSCRIPT.

Depending on the resources available, a program generating
POSTSCRIPT programs can make most of the decisions regarding the ap-
pearance of printed pages itself and express these in precise POSTSCRIPT
operations, or it can allow procedures written in POSTSCRIPT and included
in the generated program to make those decisions at printing time. The
first case will generally result in more time required to generate the
POSTSCRIPT program, with the POSTSCRIPT execution going very fast.
The second case reverses these efforts, and is very suitable for a resource-
limited generating program. In any case, the computation trade-off be-
tween effort devoted while producing POSTSCRIPT versus effort in execut-
ing POSTSCRIPT is available, and well thought out programs can make use
of these trade-offs to their advantage.

Basic Overview 29

Is it easy to interpret?

The surface design of the POSTSCRIPT language is very simple, and
thus an interpreter for its basic structure is easy. Making that interpreter
run fast is another matter requiring considerable work and insight. As for
the interpretation of POSTSCRIPT’s graphics, its very general model (self
intersecting paths, etc.) requires sophisticated implementation. A more
restricted subset of POSTSCRIPT graphics can be handled with a simpler
implementation, but surprisingly innocuous page designs require the full
power of POSTSCRIPT.

Rendering fonts on raster printers pushes the graphics implementation
to its limits. Whereas small inaccuracies in general graphics may not be
noticed, even the slightest imperfections in rendered characters can be
very offensive.

So while simple interpretation of POSTSCRIPT is easy, sophisticated in-
terpretation of POSTSCRIPT with graphics is not. Fortunately, a fast
POSTSCRIPT interpreter with excellent graphics rendering capablities is
available.

Is it easy for a person to understand it?

This question can be understood in two ways: is it easy to understand
the imaging model?, and is it easy to understand page descriptions written
in this format? In the first case, POSTSCRIPT’s imaging model is a simple
one with much expressive power. People with graphic arts or computer
science backgrounds should have no difficulty in understanding how
pages are put together in POSTSCRIPT.

Programs in any language are as easy or as hard to understand as the
structure of those programs allow. POSTSCRIPT is written in printable
characters, so at least the surface structure of a POSTSCRIPT program is
easy to read. When things go wrong in a POSTSCRIPT program (e.g.,
during the debugging phase of bringing up a new application program that
emits POSTSCRIPT) being able to read the program source directly is a
great help. Subtle problems can be eliminated by using standard debug-
ging techniques and running POSTSCRIPT programs interactively. In fact,
the highly interpretive nature of POSTSCRIPT allows debugging tools to be
written in the POSTSCRIPT language itself.

Is it valid for more than one printer?

The very nature of POSTSCRIPT is that it is a device independent page
description language. The POSTSCRIPT interpreter is almost entirely inde-
pendent of any specific output device. Sometimes a small amount of
device specific software is needed to interface POSTSCRIPT to a new raster
printer; in practice this is quite simple. Prior to publication of this manual,
POSTSCRIPT has already driven many raster printers, from several dif-
ferent manufacturers and in a wide variety of resolutions.

30 PostScript language manual

Is it easy to transmit?

The POSTSCRIPT syntax deliberately avoids any machine dependent
quirks in representation by staying within the printable character set. Any
computer file system or communication system worthy of the name must
be able to handle simple character files such as POSTSCRIPT programs.

Is it compact?

POSTSCRIPT programs can be verbose or compact, depending on the
methods used to generate them. Descriptions of very complicated pages of
graphics can be shortened substantially through the appropriate use of pro-
cedure definitions. Simple text pages also do not require much overhead,
since with short names defined for common compound operations on
these pages (such as move-to-next-line), the characters in the POSTSCRIPT
program that are actually data (the characters to be printed) can be more
than 90 per cent of the characters in the program.

When generating POSTSCRIPT programs for interpreters that have no
file system, so that all data must be in the POSTSCRIPT program itself,
scanned image source (for photographs) can take double the space it might
otherwise need. This is due to POSTSCRIPT’s representation of binary data
in hexadecimal form, so that 8 bits of binary data requires two
hexadecimal characters (16 bits worth) for their representation.

Can pieces of a description already built be used to compose
more complicated pages?

Emphatically yes. The design of POSTSCRIPT encourages building
pieces and templates that are used and reused to build up a page image.
Not only can pieces be reused in exactly their original form, but with
parameters, executable forms, translation, rotation and scaling, previously
defined pieces can serve in a myriad of ways for making new composite
pages.

Can it emulate other formats?

There are two distinct ways in which other print formats can co-exist
with POSTSCRIPT. One is off-line translation, the other is direct emulation.
Off-line translation means that some other program translates a different
print format into POSTSCRIPT. Whenever possible, this is the preferred
technique, since each print file need be translated only once. Direct emula-
tion means that a POSTSCRIPT preamble that implements an interpreter for
the other format be inserted before the other print file. This combination
file is then sent to the POSTSCRIPT interpreter, which in executing the
POSTSCRIPT program actually interprets the other format.

Basic Overview 31

Several popular pre-POSTSCRIPT print file formats have already been
emulated in POSTSCRIPT by these techniques. In general, a print file for-
mat to POSTSCRIPT translator is easy, since the POSTSCRIPT imaging
model is so rich, and the POSTSCRIPT print file is executable.

Some print formats (derived from interactive screen raster graphics) in-
clude operations that require reading bits that were previously written (as
with flood-fill operations or exclusive or-ing existing partial pages.) These
operations are not device independent, and have no analog in
POSTSCRIPT’s painting model. Thus, direct emulation of such operations
is not possible with POSTSCRIPT. These operations are usually parts of
some larger sequence of operations that can be succesfully translated into
POSTSCRIPT, e.g., make outline, draw outline, flood-fill can be translated
to make-path, fill in POSTSCRIPT.

In summary, POSTSCRIPT is an interpretive, dynamic, page description
programming language. It has features that fit together well, with the pro-
gramming features designed to be convenient for the page description ap-
plication. The design of the language was also influenced by the need to
answer all of the questions considered here in the affirmative. A careful
examination of the complete problem of computerized raster printing will
reveal why the choices made for the POSTSCRIPT language were made.

3

REFERENCE
SECTION

34 PostScripr language manual

Data Structures and
Types

3.1.1. POSTSCRIPT Stacks

The POSTSCRIPT interpreter manages four distinct stacks. The operand
stack, the dictionary stack, and the execution stack each contain
POSTSCRIPT objects. The graphics state stack contains snapshots of the
graphics state.

Section 2.6.1 introduced the operand stack. It holds any kind of
POSTSCRIPT object, and it is the temporary holding area for arguments
and results of operators. Section 2.6.1 also introduced the dictionary stack,
which provides the naming context for POSTSCRIPT programs. The dic-
tionary stack can hold only POSTSCRIPT dictionary objects. A
POSTSCRIPT program may access (read and write) both the operand stack
and the dictionary stack through POSTSCRIPT operators already intro-
duced.

The execution stack is a structure internal to the POSTSCRIPT inter-
preter. This stack holds procedure bodies (array objects) and other ex-
ecutable objects. At any point in the execution of a POSTSCRIPT program,
the execution stack is the call stack of the program. Because of the in-
timate relationship between the execution stack and the correct operation
of the interpreter, POSTSCRIPT programs are prohibited from writing in the
execution stack; i.e., POSTSCRIPT provides no operators for writing into
this stack directly.

The graphics state stack is also an internal structure. This stack holds
instances of the graphics state, briefly outlined in section 2.7.1, and ex-
plained in detail in section 3.5. Values in the top-most graphics state may
be examined and modified with many of the graphics operators in section
3.5. The stack may be pushed and popped with the gsave, grestore, and
grestoreall operators.

Reference Section 35

3.1.2. POSTSCRIPT Objects

The complete list of object types supported by POSTSCRIPT is:

1. Integer

2. Real

3. Boolean
4. Array

5. Dictionary
6. String

7. Name

8. Operator
9. File

10. FontID
11. Mark
12. Null
13. Save

3.1.2.1. Integer and Real

POSTSCRIPT provides integer and real (floating point) numbers. Most
arithmetic and mathematical operators can be freely applied to numbers of
both types, with automatic type conversion taking place. In addition, ex-
plicit type conversion may be performed when the operand is in range.
Other operators expect only integers (or a subrange of the integers) as
proper arguments. The binary representation of floating point numbers is
not exposed to the user, while the (machine dependent) representation of
integers is exposed through bitwise operations.

3.1.2.2. Boolean

POSTSCRIPT provides objects with boolean values (false and true) for
use in conditional and logical expressions. Booleans are the results of the
relational (comparison) operators, logical operators, and are also returned
as status from a variety of operations. The names true and false return the
two values of this type.

3.1.2.3. Array

POSTSCRIPT arrays are one-dimensional collections of objects. The
main difference between dictionaries and arrays is that dictionaries are ac-
cessed by name of element whereas arrays are accessed by numeric index.
POSTSCRIPT arrays are different from arrays in most other computer lan-
guages. POSTSCRIPT arrays may be heterogeneous; that is, an array’s ele-
ments may be any combination of numbers, strings, dictionaries, other ar-
rays, or any other POSTSCRIPT objects. POSTSCRIPT directly provides only
linear arrays, i.e., vectors — arrays with one dimension. Arrays of higher
dimension may be constructed by using arrays as elements of arrays,
nested arbitrarily deeply. All POSTSCRIPT arrays are indexed from 0, so an

36 PostScript language manual

array of n elements has indices from 0 through #n-1. Note that all accesses
to POSTSCRIPT arrays are bounds checked, and improper references result
in an error. POSTSCRIPT arrays may also be protected to read-only or
execute-only access. POSTSCRIPT’s procedure bodies are executable ar-
rays.

The POSTSCRIPT interpreter distinguishes between array storage and an
array object. Array storage is the portion of POSTSCRIPT’s virtual memory
where the array’s elements are stored. An array object contains a descrip-
tion of the array’s length and a pointer to its associated array storage.
Several array objects may point to the same (or portions of the same) array
storage.

3.1.2.4. Dictionary

POSTSCRIPT has operators that manipulate general associative tables
called dictionaries. A dictionary is a table whose elements are pairs of
POSTSCRIPT objects. We call the first element of a pair the key and the
second element the value. Though it is most common to use a name for a
key, any POSTSCRIPT object except a string and null may be used as a key.
A string is automatically converted into a name when used as a key.

The POSTSCRIPT interpreter always keeps one dictionary called the
system dictionary. This dictionary associates the basic operator names
(those defined in this document) with the internal operations that imple-
ment them. A user cannot modify this dictionary. The interpreter also
keeps a second dictionary called the user dictionary. Any user may freely
modify this dictionary; it provides the outermost modifiable naming con-
text for POSTSCRIPT programs.

The POSTSCRIPT interpreter also maintains a stack called the dictionary
stack. This stack always contains the system dictionary as its bottommost
element and the user dictionary as the element above that. Other diction-
aries that provide additional naming context for a POSTSCRIPT program
may also be present on the dictionary stack. We call the topmost diction-
ary on this stack the current dictionary. When the POSTSCRIPT interpreter
encounters an executable name, it searches for that name as a key in the
current dictionary. If the interpreter finds this key in that dictionary, it
proceeds, using the associated value. If the key is not in the current dic-
tionary, the interpreter searches each successive dictionary in the diction-
ary stack (ending, if necessary, with the system dictionary) until it finds
that key. If the interpreter cannot find the name in any of these diction-
aries, it executes the error operator undefined.

3.1.2.5. String

POSTSCRIPT provides a general mechanism for operating on strings of
characters. POSTSCRIPT’s string implementation distinguishes between
string bodies, which hold the characters contained in a string, and string
objects, each of which contains the string’s length and a pointer to an as-

Reference Section 37

sociated string body. The POSTSCRIPT interpreter never puts a string body
on the operand stack; the only access a POSTSCRIPT program has to a
string body is via operators that manipulate string objects.

As with an array, the elements of a string (its characters) are indexed
starting at 0. Thus, a string whose length is » has valid character indices 0
through n-1. Note that all string accesses are bounds checked, and im-
proper references result in an error. POSTSCRIPT uses non-negative in-
tegers in the range from O to 255 to represent characters, the elements of
strings. POSTSCRIPT has no distinguished object type for characters; nei-
ther does it have any syntax specifically designed for representing char-
acter values. Generally, an implementation of POSTSCRIPT uses the ASCII

character codes for characters; however, an installation may wish to use
many non-standard characters, such as ligatures, foreign characters, ac-
cents, unusual punctuation, etc. Therefore, the POSTSCRIPT language does
not enforce any particular character set encoding; it remains flexible to
accommodate the different requirements of different installations.

3.1.2.6. Name

Names are the most common kind of keys in POSTSCRIPT dictionaries.
Strings cannot be keys, but are converted to names when used as keys.
Key-value pairs are the closest thing POSTSCRIPT has to variables and
values, and names are POSTSCRIPT’s most common keys.

A name object is much like a string; and in fact, names and strings may
be used interchangeably in many contexts. However, a name has an im-
portant additional property; uniqueness. Any two names that are lexically
the same are in fact the same name object.

3.1.2.7. Operator

POSTSCRIPT’s built-in commands or functions are operators. Most of
this manual is dedicated to describing the semantics of these built-in
operators. Operators have names (most often they are defined in the sys-
tem dictionary) and their values are procedures in the implementation of
POSTSCRIPT itself that realize their desired function. POSTSCRIPT also has
some internal operators, not documented in this manual, which may be
encountered if a program reads the execution stack.

3.1.2.8. File

Files are readable or writable streams of characters (bytes). They may
be used for running stored POSTSCRIPT programs, reading scanned
images, or almost any other purpose. The exact number of allowed file
streams, and the file naming conventions, tend to be quite implementation
and site specific. POSTSCRIPT always provides standard input and output
streams, however.

38 PostScript language manual

3.1.2.9. FontID

FontIDs are POSTSCRIPT’s internal method for identifying and keeping
track of fonts (typefaces). The IDs are necessary for POSTSCRIPT’s font
bitmap caching mechanism to operate properly. Most user programs need
not be concerned with (or even aware of) objects of this type. The
definefont operator creates objects of this type.

3.1.2.10. Mark

Mark objects only allow one value; all marks are equal to each other.
Marks may be used to mark a position on the operand stack, and are
described in detail in the section on stack manipulation operators. Marks
are created with the [and mark operators.

3.1.2.11. Null

The POSTSCRIPT interpreter uses null objects to fill empty or uninitial-
ized positions in composite objects. The array operator creates an array
object whose elements are initialized to null objects. The key null (defined
in the system dictionary) returns a null object.

3.1.2.12. Save

Save objects reference POSTSCRIPT interpreter state snapshots that are
manipulated by the POSTSCRIPT save and restore operators, which are
described in section 3.4.11.

3.1.3. Composite Objects

POSTSCRIPT arrays, dictionaries, and strings are called composite ob-
jects, in that they require extra storage (the ‘‘body’’ part). In the current
implementation of the POSTSCRIPT interpreter, each object consists of a
fixed length part containing its type, some bookkeeping information, and
either a value or pointer. This fixed length part is called the primary par:.
For all other objects, the value of the object is carried in the primary part.
For composite objects, the primary part carries a pointer to the value.

The POSTSCRIPT operand stack, for example, is implemented as a
linked list of objects. When the POSTSCRIPT interpreter puts an object
onto the stack, it only stores the primary part. The POSTSCRIPT operator
dup performs the action of duplicating the top element on the operand
stack, i.e., it pushes onto the operand stack an additional object identical to
its former top element. Since objects may contain pointers, the dup
operator does not necessarily duplicate an object’s data. In other words, if
an object contains a pointer to its data, only the pointer is copied, not the
data that it points to; i.e., it only duplicates the primary part.

Similarly, when the interpreter puts an object into an array or diction-
ary, it only stores the primary part. Thus, the POSTSCRIPT interpreter deals
more with references than with values. It is important to remember this

Reference Section 39

when writing programs. All object primary parts are the same size; there-
fore, the implementation of stacks and arrays is quite straightforward.
Note that the elements of an array or dictionary are themselves
POSTSCRIPT objects, while the elements of a string are individual charac-
ters which have no direct representation in POSTSCRIPT. Arrays are imple-
mented as a linear sequence of objects. Since all object primary parts have
the same length, indexing into an array is straightforward. POSTSCRIPT
procedure bodies are merely executable arrays. The execution rule for ar-
rays specifies that each element will be executed in turn (see section 3.3).

40 PostScripr language manual

Argument and Error
Handling

In general, each POSTSCRIPT operator removes the arguments it needs
from the operand stack before it carries out its operation. All of the intrin-
sic operators then zype check their arguments before doing any computing.
If an operator discovers a mismatch between the type of an argument on
the operand stack and the type it expects for that argument, it puts all of its
arguments back onto the operand stack and executes the error operator
typecheck. If the operand stack becomes empty prematurely while an
operator is removing its arguments, the operator restores the operands it
removed so far and executes the error operator stackunderflow. When a
POSTSCRIPT operator finishes its execution, it pushes its return values
onto the operand stack. If the stack becomes full during this process, the
operator executes the error operator stackoverflow. (For the maximum al-
lowed size of the operand stack, see Appendix B.)

Numerical arguments are a tricky issue in any programming language.
POSTSCRIPT numbers include both integers and floating point reals. Inter-
nally, the POSTSCRIPT interpreter does make a distinction between these
two representations ‘for numbers. Certain POSTSCRIPT operators require
numeric arguments; some of these further expect arguments to be integers,
non-negative integers, or within some other restricted subrange of the in-
tegers. Some operators will perform implicit conversions from real num-
bers to integers; the descriptions of these operators indicate which conver-
sions they perform and what errors may result. When an argument has the
wrong type, €.g., string supplied but number expected, then an operator
will execute the error operator typecheck. If a conversion is attempted but
cannot be carried out, e.g., negative number supplied but non-negative in-
teger expected or very large floating point number (out of the integer
range) supplied but integer expected, then the operator will execute the
error operator rangecheck.

Note that the POSTSCRIPT operators may perform implicit conversion
only on numbers. In particular, most operators will not convert strings to
numbers. POSTSCRIPT does contain a set of explicit type conversion
operators that can convert values across a wide range of type boundaries.
These are explained in section 3.4.9.

Reference Section 41

Immediate and
Delayed Execution

The POSTSCRIPT interpreter scans POSTSCRIPT programs in a strict left-
to-right manner. As the interpreter encounters a syntactic entity, it takes
some action immediately. When it encounters a number or a string, it nor-
mally pushes that object onto the operand stack. When it encounters a
name, it normally looks up the name in the dictionary stack to determine
whether its value is executable. If the value is executable (operators and
procedure bodies are executable), it executes that value immediately.
Otherwise, it pushes that value onto the operand stack.

The curly brace characters, ‘“‘{’’ and ‘‘}’’ delimit a range of
POSTSCRIPT source code that the POSTSCRIPT interpreter does not execute
immediately. Instead, the interpreter builds an executable object composed
of the entire contents of the matching braces, and it pushes this object onto
the operand stack. Subsequent operators may treat this object as they wish:
some operators like if may execute the object; others, like def, may just
store the executable object somewhere. To clarify these points, consider
the following examples. If the POSTSCRIPT interpreter encounters

/abc dup def

it will push the literal name ‘‘abc’’ onto the operand stack (without inter-
preting it further, this is the significance of the ‘‘/°’), push a duplicate of
this name on top of that, and define the name ‘‘abc’’ to have the name
object ‘“‘abc’’ as its value. On the other hand, if the POSTSCRIPT inter-
preter scans

/abc {dup} def

it will push the literal name ‘‘abc’’ onto the operand stack as before, push
the executable object consisting of the name dup onto the operand stack,
and define the name ‘‘abc’’ to have the procedure body consisting of a
single dup as its value. If the POSTSCRIPT interpreter subsequently en-
counters an abc, its behavior will be different depending on which of the
above definitions was used. In the first case, the interpreter will push the
literal name value ‘‘abc’’ onto the operand stack. In the second case, the
interpreter will execute a dup operation.

Using the curly brace construct is the standard method for defining
functions in POSTSCRIPT. For example, the sequence

/ave {add 2 div} def

associates an executable procedure body that averages two numbers on the
operand stack with the name ‘‘ave’’. A later execution of the sequence
40 60 ave

results in the execution of the procedure body on the two arguments, 40

42 PostScript language manual

and 60. The POSTSCRIPT interpreter will execute the contents of the pro-
cedure body, adding to get the value 100, and diving by 2 to end up with
the result, 50, on the operand stack.

The POSTSCRIPT interpreter implements executable procedure bodies as
arrays that have their executable flag set. Thus, arrays can be converted to
procedure bodies, and procedure bodies can be converted back to non-
executable arrays quite easily. These facts are important if you wish to
treat executable objects in POSTSCRIPT as data. Also, the POSTSCRIPT in-
terpreter looks up the current associations of the names contained in a pro-
cedure body only when executing that procedure. Thus, in the example we
have been using in this section, after defining ave to be {add 2 div}, we
could change the definition of div, and subsequent execution of ave would
use the new definition of div. '

POSTSCRIPT draws another fine distinction between names, commands,
and executable functions. The first point to understand is that the ex-
ecutable property is independent of the type of an object. Thus, executable
is not itself a type, but any object of any type may be either executable or
non-executable. The executable property really matters for arrays, com-
mands, strings, files, and nulls; it is irrelevant when applied to objects of
others types. For example, an executable integer, when executed, merely
puts itself on the operand stack.

Operators are sections of code written in the C Language (or other im-
plementation language) that actually implement the operators built into the
POSTSCRIPT language. New functions defined by POSTSCRIPT source
code, using curly braces and the def operator, are implemented as array
objects that are executable. Both of these kinds of executable code are
generally referenced in POSTSCRIPT programs by names, which are the
identifiers in the actual POSTSCRIPT source.

For example, consider the POSTSCRIPT source code:

/plusl {1 add} def

The POSTSCRIPT scanner will recognize three items at the top level; these
are a literal name, an executable array, and a name. The executable array
in turn is recognized to be composed of two elements, an integer and a
name. The interpreter executes this code by executing each item in turn. It
pushes the literal name ‘‘plusl’’ on the operand stack. It pushes the array
‘{1 add}”’ on the operand stack. Remember that curly braces indicate
delayed execution, i.e., when encountered by the interpreter, the procedure
body is placed on the operand stack, not on the execution stack. Finally,
the interpreter encounters the name ‘‘def’’. It looks up the name, finds it
in the system dictionary, and discovers that its value is an executable
operator. When a name is looked up, and its value is executable, the inter-
preter executes that value. In the case of an operator, it executes it directly.
In the case of an executable array, it pushes that array on the execution
stack. In this case, the def operator is executed immediately, resulting in
the name plusl being defined as {1 add} in the current dictionary. Now
consider the execution of:

Reference Section 43

5 plusl

The scanner recognizes two items, an integer and a name. The interpreter
pushes the integer 5 on the operand stack, and then it processes the name
plusl. It looks up plusl and finds its value to be the executable array,
{1 add}. Because this array was found as a result of the name lookup, the
interpreter pushes this array onto the execution stack. Now the interpreter
deals with the top item on the execution stack, which is the array just
pushed. It processes the elements of this array in order, by removing the
array’s first element, pushing the remainder of the array (if any) back onto
the execution stack, and dealing with the element it took as if it came from
the input stream. So, in the example, the interpreter pushes the integer 1
onto the operand stack, and it processes the name add. The name add is in
the system dictionary, and its value is an executable operator, which the
interpreter executes, resulting in the 5 and 1 being popped from the
operand stack and a 6 being pushed onto it.

Any object that is not executable (even an operator can be set to non-
- executable) that is pushed onto the execution stack (as by the exec
operator) merely moves itself to the operand stack. Executable objects
other than operators, arrays, strings, files, and nulls also just move them-
selves to the operand stack. The above example demonstrated how ex-
ecutable arrays and executable operators are handled as results of a name
lookup. It remains for us to describe how executable strings are handled.

The POSTSCRIPT interpreter pushes an executable string that is the
value of a name lookup onto the execution stack. From there, the inter-
preter removes the string, scans the first token out of the string, pushes the
remainder of the string (if any) onto the execution stack, and deals with
the token just obtained as if it had just been read out of the input buffer.
Thus, executable strings and executable arrays are treated identically, ex-
cept that the strings are scanned at execution time, whereas the arrays
were pre-scanned.

File streams may also be executable (the standard input stream is an
example). If an executable (readable) file is moved to the execution stack,
the effect is just as if the file had been run, except that the starting posi-
tion in the file is the current stream position. The contents of the file are
scanned and interpreted until an end of file is reached. The file stream is
then closed, and the file is removed from the execution stack.

Null objects may also be executable. Executing a null has no effect (i.e.,
is a ‘“‘no-op”’).

Thus, at any given point in a computation, the execution stack may con-
tain the remainders of many executable arrays, strings, and file objects.
Non-executable objects may exist on this stack only ephemerally, as their
immediate execution removes them to the operand stack.

44 PostScripr language manual

POSTSCRIPT
‘Operators

The POSTSCRIPT operators divide naturally into groups, corresponding
to both the functions and the objects that POSTSCRIPT supports. This sec-
tion is divided into subsections according to these groups. These subsec-
tions describe all of the intrinsic POSTSCRIPT operators. Each operator
description is presented in the following format:

arg, arg, ... arg, operator result, ... resultM

The block of text in this position explains the operator. Arg, through
arg,, are the arguments expected by the operator, with arg,, being the
topmost element on the operand stack. Result, through result, are
the objects left on the stack as a result of executing the operator with
result,, being the topmost element left on the stack. Normally the
names indicate the type of the operand or result. For example, the
name num, indicates that the argument or result is a number.

Example:
an example of the use of this operator is given here

Errors: alist of the error operators that this operator might execute
is given in this position.

In addition, the notation ‘‘+’’ indicates the bottom of the stack. The
notation ‘‘-~’’ in the arguments position indicates that the operator expects
no arguments, and a ‘‘~’’ in the results position indicates that the operator
returns no results. ’

When the notation proc is used for an argument, you must be careful to
supply an executable array (procedure body) without actually executing it
prematurely. Thus, if you have defined myop to be some executable pro-
cedure, use

7 {myop} repeat
rather than
7 myop repeat.

Reference Section 45

3.4.1. Stack Operators

The operand stack is the POSTSCRIPT interpreter’s mechanism for pass-
ing arguments to operators and for gathering results from operators.
POSTSCRIPT provides a variety of operators that rearrange elements on
this stack. Such rearrangement is often required when the results of one
operator are to be passed as arguments to another operator that expects its
operands in a different order. The group of stack manipulation operators,
in addition to providing the obvious stack operations, allow duplicating
portions of the operand stack (copy), treating a portion of the operand
stack as a circular queue (roll), and treating the operand stack as an index-
able array (index).

¢ pop
any PpPop —

removes the top element from the operand stack.
Example:
123 pop=>12
l123poppop=>1
Errors: stackunderflow.

¢ dup

any dup any any

duplicates the top element on the operand stack. Note that dup only
copies the primary part of a composite object, not the storage it refers
to, so array, dictionary, and string bodies are not duplicated. See sec-
tion 3.1.2.

Errors: stackoverflow, stackunderflow.

¢ exch
any, any, exch any, any,

exchanges the top two elements on the operand stack.

Example:
l12exch=>21

Errors: stackunderflow.

46 PosrScript language manual

¢ roll

anyN_; -. any, N J roll any ;1) (mod Ny °* @MYy @Yy g .- @DV 4y

rotates the positions of the arguments any, , through any, on the
operand stack by the amount J. N must be a non-negative integer,
“and J must be an integer. roll first removes the the top two argu-
ments from the operand stack. roll is a circular shift of the top N
elements on the operand stack. Consider the top N elements to be a
substack. Then, if J is positive, roll shifts the elements from the top
to the bottom of the substack. If J is negative, roll shifts the elements
from the bottom of the substack to the top.

Example:

(a) (b) (¢) 3 -1 roll => (b) (c) (a)
(a) (b) (¢) 3 1 roll => (c) (a) (b)
(a) (b) (¢) 3 0 roll => (a) (b) (c)

Errors: rangecheck, stackoverflow, stackunderflow, typecheck.

¢ index
any, ... any, I index any, ... any, any,

removes [/ from the operand stack, counts down to the /th element
from the top of the stack, and pushes a copy of that element onto the
stack. / must be a non-negative integer.

Example:
(a) (b) (c) (d) 0 index
. {a) {b) {c) {d) 3 index

Il II

(a) (b) (c) (d) (4)
{a) {

)
) (b) (e} (d) (a)

>

Errors: rangecheck, stackunderflow, typecheck.

4 clear

F any, ... any, clear +

removes all objects from the operand stack.

Errors: (none).

Reference Section 47

4 count

F any, .

¢ mark

mark

. any, count ~ any, ... anyy N

counts the number of items on the operand stack and pushes this
count onto the stack.

Example:
clear count => 0
clear 1 2 3 count =>1 2 3 3

Errors: stackoverflow.

mark

pushes a mark (an object of type marktype, not the mark operator
itself) onto the operand stack. All marks are identical, and the
operand stack may contain many of them at any given time. Marks
are useful for flagging the end of an arbitrarily long list of arguments
that may be passed to some procedures. Another common use for
marks is for debugging or protecting against POSTSCRIPT code that is
suspected of tampering with the operand stack below the level at
which it is called. This technique is not guaranteed to reveal all
problems with suspect code, but it often causes a typecheck error
when faulty stack manipulation occurs. Such debugging code should
explicitly pop a mark off of the operand stack after it has served its

purpose.

Errors: stackoverflow.

¢ cleartomark

mark ~mark1 ee. ~markN cleartomark —

pops the operand stack repeatedly until it encounters a mark, which it
also removes from the stack. The notation ~mark stands for an object
of any type except marktype.

Errors: unmatchedmark.

48 PostScript language manual

¢ counttomark

mark ~mark1 .ee ~markN counttomark mark ... ~markN N

counts the number of objects on the operand stack starting with the
top element, down to but not including the first mark encountered.
The notation ~mark stands for an object of any type except
marktype.

Example:
1 mark 2 3 counttomark => 1 mark 2 3 2
1 mark counttomark => 1 mark 0

Errors: stackoverflow, unmatchedmark.

Reference Section _ 49

3.4.2. Arithmetic and Math Operators

Since POSTSCRIPT is a general purpose programming language, it
provides the usual complement of arithmetic and mathematical operators.
Although the numeric types Integer and Real are visible to the user, most
arithmetic POSTSCRIPT operators accept either of these numeric represen-
tations. Thus, the descriptions that follow indicate that arguments and
results have the type number; for the most part, a POSTSCRIPT program
need not concern itself with which internal representation is used at any
given time.

The POSTSCRIPT arithmetic operators automatically convert internal
numeric representations from integer to real and vice versa, depending on
how their arguments and results approach the limits of their representa-
tions. Depending on their input arguments, these operators can generate
undefined results. When this happens, they execute the error operator
undefinedresult.

¢ abs

num abs |num]

return the absolute value of num, the number on the top of the stack.
When in range, the type of the result is the same as the type of the
argument; otherwise the result is real.

Example:

4.5 abs => 4.5
-3 abs => 3

0 abs => 0

Errors: stackunderflow, typecheck.

4 add

num, num, add (num1 + numz)

adds the top two elements on the stack. If both arguments are in-
tegers and the result is in range, the result is an integer; otherwise,
the result is a real.

Example:

3 4 add => 7

-3 abs -4 add => -1
9.9 1.1 add => 11.0

Errors: stackunderflow, typecheck, undefinedresult.

50

¢ div

numl

¢ idiv

PostScript language manual

num, div (num, / num,)

_divides the element below the top element on the operahd stack by
the top element on the stack. The result is a real.

Example:
3 2 div=>1.5
4 2 div => 2.0

Errors: stackunderflow, typecheck, undefinedresult.

int, int, idiv integer-part(int, / int))

4 mod

divides the element below the top element on the operand stack by
the top element on the stack, and returns only the integer part of the
result onto the stack. Both operands of idiv must be integers. The
result is an integer.

Example:

3 2 idiv =>1

4 2 idiv => 2
-5 2 idiv => -2

Errors: rangecheck, stackunderflow, typecheck, undefinedresult.

int1 int2 mod (int1 MOD intz)

¢ mul

num, num

1

returns the integer remainder that results from dividing int, by int,.
The sign of the result is the same as the sign of the dividend int,.
Both operands must be integers. The result is an integer.

Example:
5 3 mod => 2
52 mod => 1

Errors: stackunderflow, typecheck, undefinedresult.

*
2 mul (nu.m1 num,)

multiplies the top two elements on the stack. If both arguments are
integers and the result is in range, the result is an integer; otherwise,
the result is a real.

Errors: stackunderflow, typecheck, undefinedresult.

Reference Section 51

¢ neg

num neg -num

reverses the sign of the top element on the stack. When in range, the
type of the result is the same as the type of the argument; otherwise,
the result is a real.

Errors: stackunderflow, typecheck.

¢ sub

num, num, sub (numl - numz)

subtracts the top element on the operand stack from the element
below it on the stack. If both arguments are integers and the result is
in range, the result is an integer; otherwise, the result is a real.

Errors: stackunderflow, typecheck, undefinedresult.
¢ sqrt
num sqgrt SquareRoot (num)

returns the square root of the argument. num must be a non-negative
number. The result is a real.

Errors: rangecheck, stackunderflow, typecheck.

* exp

num,
numl num2 exp numl 2

raises num, (element below the top element on the operand stack) to
the num, (top element on the stack) power. The result is a real.

Example:
9 0.5 exp => 3.0
9 -1 exp => 0.111111

Errors: stackunderflow, typecheck, undefinedresult.

52

¢ ceiling

PostScripr language manual

num ceiling Ceiling (num)

¢ floor

returns the least integer value greater than or equal to num (the
ceiling of num). The type of the result is the same as the type of the
argument (to preserve the range of reals). ceiling is a no-op for argu-
ments of type integertype, and returns a real for real arguments.

Example:

3.2 ceiling => 4.0
-4.8 ceiling => -4.0
99 ceiling => 99

Errors: stackunderflow, typecheck.

num floor Floor (num)

¢ round

returns the greatest integer less than or equal to num (the floor of
num). The type of the result is the same as the type of the argument
(to preserve the range of reals). floor is a no-op for arguments of
type integertype, and returns a real for real arguments.

Example:

3.2 flooxr => 3.0
-4.8 floor => -5.0
99 floor => 99

Errors: stackunderflow, typecheck.

num round Round (num)

rounds num to the nearest integer value without type conversion. The
type of the result is the same as the type of the argument (to preserve
the range of reals). The effect of round on an integer is a no-op.

Example:

3.2 round => 3.0
6.5 round => 7.0
-4.8 round => -5.0
-6.5 round = -6.0
99 round => 99

Errors: stackunderflow, typecheck.

Reference Section 53

¢ truncate

num truncate Truncate (num)

truncates num toward zero by removing its fractional part. The type
of the result is the same as the type of the argument (to preserve the
range of reals). truncate is a no-op for arguments of type
integertype, and returns a real for real arguments. The cvi operator
(described on page 83) does truncation and type conversion to the
nearest integer.

Example:

3.2 truncate => 3.0
-4.8 truncate => -4.0
99 truncate => 99

Errors: stackunderflow, typecheck.

4 atan

num, num, atan ArcTangent (num, / num,)

returns the angle (in degrees between 0 and 360) whose tangent is
numl/num . Note: num_ or num,, may be zero, but not both. The signs
of num, and num,, determine the quadrant in which the result will lie.
The result is a real.

Example:

0 1 atan => 0.0

1 0 atan => 90.0
-100 0 atan => 270.0
4 4 atan => 45.0

Errors: stackunderflow, typecheck, undefinedresult.
¢ COS
num c¢cos Cosine (num)

returns the cosine of the top element of the stack (taken as an angle
in degrees). The result is a real.

Example:
0 cos => 1.0
90 cos => 0.0

Errors: stackunderflow, typecheck.

54

4 sin

PosrScript language manual

num 8in Sine (num)

¢ In

returns the sine of the top element of the stack (taken as an angle in
degrees). The result is a real.

Errors: stackunderflow, typecheck.

num 1ln In(num)

¢ log

returns the natural logarithm (base e) of the top element of the stack.
The result is a real.

Example:
10 1n => 2.30259
100 1n => 4.60517

Errors: stackunderflow, typecheck, undefinedresult.

num log Log (num)

¢ rand

returns the common logarithm (base 10) of the top element of the
stack. The result is a real.

Example:
10 log => 1.0
100 log => 2.0

Errors: stackunderflow, typecheck, undefinedresult.

— rand int

returns a random number. The rand operator uses a multiplicative
congruential random number generator with period 232 1o return suc-
cessive pseudo-random numbers in the range from 0 to 23!-1. The
generator is reinitialized by executing srand with 1 as its argument.
It can be set to any other starting point by executing srand with any
other integer argument. The current seed may be interrogated with
the rrand operator.

Errors: stackoverflow.

Reference Section 55

¢ srand

int srand -—

Initialize random number generator with seed int. The generator is
reinitialized by executing srand with 1 as its argument. It can be set
to any other starting point by executing srand with any other argu-
ment. int must be an integer.

Errors: stackunderflow, typecheck.

¢ rrand

— rrand int

returns the current state of the random number seed (see rand and
srand).

Errors: stackoverflow.

56

PostScripr language manual

3.4.3. Polymorphic Operators

POSTSCRIPT has several operators that apply to objects of different
~ types. Some of the operators described in this section operate on diction-
aries, arrays, and strings in analogous ways. Type-specific operators are
described in the sections related only to each type.

¢ copy

any; ..

.anyy N eopy any, ... any, any; ...any,

duplicates the top N elements on the operand stack as a group. N
must be a non-negative integer.

Example:
1232 copy

=1
1230 copy =

2323
123

Errors: rangecheck, stackunderflow, stackoverflow, typécheck.

array, array, copy subarray,
dict, dict , COPY dict,
string1 string, copy substring,

copies all the elements of the first composite object into the second,
where the composite objects must be of the same type. In the case of
an array or string, the length of the second object must be at least as
great as the first; copy pushes a descriptor for the initial subarray or
substring of the second object containing the copied contents of the
first. In the case of a dictionary, dict, must have a length of zero and
a maxlength at least as great as the length of dict,. copy provides a
“‘top-level’’ copy of the values in a dictionary or an array, copying
only references to contained composite objects, not their bodies.
Note that a copy of a composite object is not the same as a dup. dup
merely copies the descriptor (reference) to the same storage (body),
while copy makes a top level copy of the storage into a specified
destination. copy also copies the protection attributes of the source
object.

Example:
/al [1 2 3] def
al dup length array copy => [1 2 3]

Errors: invalidaccess, rangecheck, stackunderflow, typecheck.

Reference Section 57

¢ length

array
dict
string

length int
length int
length int

depends on the type of its argument. If the argument is an array or
string, length returns its length. If the argument is a dictionary,
length returns the current number of key-value pairs it contains. (See
also the maxlength operator in section 3.4.5 which returns the
capacity of a dictionary.)

Example:

[1 2 4] length => 3

[1 length => 0 % anarray of zero length
/ar 20 array def ar length => 20

/mydict 5 dict def
mydict length => 0
mydict /firstkey (firstvalue) put
mydict length => 1

(abc\n) length => 4 9% the ‘‘\n’’ is one character
() length => 0

Errors: invalidaccess, stackunderflow, typecheck.

58 PostScript language manual

¢ forall

array proc forall -—
dict proc forall -—
string proc forall -—

enumerates the elements of the argument, executing the procedure
body proc for each element. If the first argument is an array or string,
forall pushes element and executes proc for each element in se-
quence. If the first argument is a dictionary, forall pushes key and
value and executes proc for each key-value pair in the dictionary.
The order in which forall enumerates the entries in the dictionary is
arbitrary. (New entries in the dictionary created during the execution
of forall may or may not be included in the enumeration.) If the first
argument is a string, forall enumerates the elements of the string as
integer character codes (between 0 and 255, inclusive), not as one-
character strings. If the array, dictionary, or string is empty (i.e., has
length 0), forall does not execute proc at all. Although forall does
not leave any results on the operand stack when it is finished, the
execution of proc may leave arbitrary results there (and may raise
any error). In particular, if proc does not remove the enumerated
arguments from the operand stack, they will accumulate there.

Example:
5 [1 2 3 4 5] {add} forall => 20

Errors: invalidaccess, stackunderflow, typecheck.

Reference Section 59

¢ get

array index get array,
dict key get value

string index get stringrindex

ndex

gets a single element from an array, dictionary, or string. If the first
argument is an array or string, get pushes the element of that array or
string specified by index (counting from zero). If index is not a valid
integer index for the array or string, get executes the error operator
rangecheck. If the arguments are dict key, get searches dict for an
entry with key key and pushes the associated value onto the operand
stack. If key is not defined in dict, get executes the error operator
undefined. Elements of arrays and dictionaries are POSTSCRIPT ob-
jects; elements of strings are integer character codes.

Example:

[31 41 59] 0 get => 31

[0 (a2 mixed-type array) [] {add 2 div}]
2 get => [] % anempty array

/mykey (myvalue) def
currentdict /mykey get => (myvalue)

(abc) 1 get => 98 % ascii character ‘b’
(a) 0 get => 97

Errors: invalidaccess, rangecheck, stackunderflow, typecheck,
undefined.

60 PostScripr language manual

4 put

array index value put -—
dict key value put -—
string index value put -—

stores an element into a specific object. If the first argument is an
array or string, put stores value as the element of that array or string
specified by index (counting from zero). index must be a valid in-
teger index for the array or string. If the arguments are dict key value,
put stores value into dict with key. dict need not be on the dictionary
stack. If dict is full and has no current value for key, put executes the
error operator dictfull. The argument value may be of any type for
an array or dictionary, but it must be an integer character code for a
string.

Example:

/ar [1 2 3 4] def

ar 2 (abcd) put % remember arrays are indexed from zero
ar 2 aload pop => 1 2 (abcd) 4

/st (abc) def
st 0 8#101 put % modify ‘st’ tobe ‘‘Abc’’, using octal constant

Errors: dictfull, invalidaccess, rangecheck, stackunderflow,
typecheck.

Reference Section 61

¢ getinterval

array beg len getinterval subarraybeg beg+len-1
string beg len getinterval substringbeg beg+len-1

constructs a ‘‘subobject’’ of len elements, whose element values are
the elements indexed by beg through beg+len-1 of array or string,
and pushes this new object on the operand stack. This object does not
have its own copy of the elements of the argument; it points within
the same storage as the argument object. Thus if an element is
modified through one of these objects, the corresponding element in
the other object changes as well. Like all POSTSCRIPT arrays and
strings, the subobject’s indices start at 0. Thus, its indices are 0
through len-1, where

subobj, = ol::jbeg
subobj, = Objbeg+1
subobj . ; = oPJ giren-1

The getinterval operator expects beg to be a valid index in array or
string, and len to be a non-negative integer such that beg+len-1 is
also a valid index in array or string.

Example:
[1 23 45] 13 getinterval => [2 3 4] % the middle three elements

(abcde) 1 3 getinterval => (bcd)
(abcde) 0 0 getinterval => () % anempty string

Errors: invalidaccess, rangecheck, stackunderflow, typecheck.

¢ putinterval

array, beg array, putinterval -—
string, beg string, putinterval -

stores all the elements of array, (string,) into the storage of array,
(string)) starting at the element of objl indexed by beg. beg must be
a non-negative integer in the range of valid indices of obj1 such that
beg-+(length of obj,)-1 is also a valid index of obyj,.

Example:
/ar [1 2 3 4 5] def
ar 1 [(a) (b) (c)] putinterval % ‘ar’ is now [1 (a) (b) (c) 5]

/st (abe) def
st 1 (de) putinterval % ‘st’isnow ‘‘ade’’.

Errors: invalidaccess, rangecheck, stackunderflow, typecheck.

62 PostScripr language manual

3.4.4. Array Operators

POSTSCRIPT provides operators to create and access arrays of
POSTSCRIPT objects. In the descriptions in this section, the notation array,
means ‘‘the element of array at position i’’.

The polymorphic operators copy, forall, get, getinterval, length, put,
and putinterval, described in section 3.4.3, may also be applied to arrays.

¢ array
int arxray array-of-size-int

creates an array of size int, each of whose elements is initialized to
contain the Null object, and pushes this array onto the operand stack.
The array operator expects int to be a non-negative integer.

Errors: rangecheck, stackunderflow, typecheck.

*[
— [mark
marks the stack, expecting that the elements of an array to be con-
structed will follow, followed by a ‘‘]’’ operator that does the array
construction. This operator is equivalent to the mark operator. Note
that the “‘[*’ character is self-delimiting. This implies that the ‘[’
operator need not be surrounded by blanks (or other delimiters) when
used in a POSTSCRIPT program.
Errors: stackoverflow.
+]
mark ~mark, ... ~mark, ,] array

constructs an array of N elements, with the elements initialized to
~mark, ... , ~mark , and pushes this array onto the operand stack.
The notation ~mark means an object of any type except marktype.
This operator is equivalent to the sequence:

counttomark array astore exch pop

Like the “‘[’’ character, *‘]’’ is also self-delimiting.

Example:

[5 4 3] => % a3-element array, with elements 5, 4, 3
[1 2 add] => % a l-element array, with element 3

Note that the POSTSCRIPT interpreter acts on all the array elements as it
encounters them (unlike its behavior with curly braces), so the add
operator was executed.

Errors: unmatchedmark.

Reference Section 63

+ aload

array-of-size-N aload array, ... array, ; array-of-size-N

4 astore

any,

4 null

null

successively pushes all N elements of the argument array onto the
operand stack and finally pushes the array itself.

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck.

an array-of-size-N astore array-of-size-N
Yyn-1 Yy

stores the arguments any, through any_ , from the operand stack into
the array storage pointed at by the array-of-size-N argument, leaving
this array object on the operand stack. The astore operator first
removes the top argument from the stack and determines its length. It
then removes that number of objects from the operand stack, storing
them, highest on the stack into the highest indexed element of the
array through the lowest on the stack into the Oth element of the
array.

Example:
(a) (b) (c) 3 array astore => [(a) (b) (c)]

This creates a three element array, stores the strings ‘‘a’’, ‘‘b”’, and
‘‘c’’ into its Oth, 1st, and 2nd elements respectively, and leaves the
array object on the operand stack.

Errors: invalidaccess, stackunderflow, typecheck.

null

returns a literal object of type nulltype.

Errors: stackoverflow.

64 PostScript language manual

3.4.5. Dictionary Operators

The dictionary related operators allow a POSTSCRIPT program to create
 dictionaries, to add key-value pairs to dictionaries, to look up a key in a
dictionary, to enumerate the key-value pairs in a dictionary, to push dic-
tionaries onto the dictionary stack, and to remove dictionaries from the
dictionary stack. There are no operators that explicitly remove items from
dictionaries. (However, see the description of the save and restore
operators, which may restore dictionaries to a previous state.)

In the operator descriptions that follow, the arguments designated key
and value designate key and value arguments respectively. The value ar-
guments may be of any POSTSCRIPT object type. The key argument may
be of any type except null; but if key is a string, it is converted to a name
before being used.

The polymorphic operators copy, forall, get, length, and put, described
in section 3.4.3, may also be applied to dictionaries.

+ dict
int diet dict

creates a dictionary with a maximum capacity of int elements and
pushes the created dictionary object onto the operand stack. int is
expected to be a non-negative integer. If a subsequent dictionary
operation attempts to create a new element within a dictionary that is
already full, it will execute the error operator dictfull.

Errors: rangecheck, stackunderflow, typecheck.

4 begin
dict begin —
pushes dict onto the dictionary stack, making it the current diction-
ary. Remember that the dictionary stack constitues a naming context

for POSTSCRIPT programs, so begining a dictionary may establish a
new context.

Errors: dictstackoverflow, invalidaccess, stackunderflow,
typecheck.

Reference Section 65

¢ end

— end

¢ def

pops the current dictionary off of the dictionary stack, making the
dictionary below it the current dictionary. If end tries to pop the
bottommost instance of the user dictionary, it executes the error
operator dictstackunderflow.

Errors: dictstackunderflow.

key value def -—

4 store

stores value with key in the current dictionary. If key is already in the
current dictionary, def simply replaces its value. Otherwise, def
creates a new entry for key and stores value with it.

Example:

/i 1 def % definei to have value 1 in current dictionary
/i i 1 add def % inow has value 2

Errors: dictfull, invalidaccess, limitcheck, stackunderflow,
typecheck.

key value store -—

searches the dictionary stack from the current dictionary down to the
system dictionary, until it finds key. When the store operator finds
this key, it replaces any previous value associated with the key by
value. If store cannot find the key in any dictionary on the dictionary
stack, it creates a new entry in the current dictionary with key and
value. store differs from def in that store may search the dictionary
stack to any depth, whereas def searches only the current dictionary.

Errors: dictfull, invalidaccess, limitcheck, stackunderflow.

66

4 known

PosrScripr language manual

dict key known boolean

+ load

returns the boolean value true if key is a key in the dictionary dict;
otherwise returns false. dict does not have to be on the dictionary
stack.

Example:

/mydict 5 dict def

mydict /total 0 put

mydict /total known => true
mydict /badname known => false

Errors: invalidaccess, stackunderflow, typecheck.

key load value

searches the dictionary stack (from the top down) for key and returns
the value associated with it. If key is not defined in any dictionary on
the dictionary stack, load executes the error operator undefined.

Example:
/avg {add 2 div} def
/avg load => {add 2 div} % the executable array of 3 elements

Errors: invalidaccess, stackunderflow, typecheck, undefined.

key where if found: dict true

if not found: false

searches the dictionary stack from the current dictionary down to the
system dictionary until it finds key. If where finds the key, it returns
the dictionary in which it found the key, and it returns the boolean
value true. If it cannot find this key in any dictionary on the diction-
ary stack, it returns the boolean value false. Note that this operator
returns either one or two result objects on the operand stack, depend-
ing on the boolean value returned.

Errors: invalidaccess, stackoverflow, stackunderflow.

Reference Section 67

+ maxlength

dict maxlength int

returns the maximum number of keys that dict may hold, as defined
by the dict operator. (See also the length operator in section
3.4.3 which returns the number of entries a dictionary contains.)

Example:

/mydict 5 dict def
mydict length => 0
mydict maxlength => 5

Errors: invalidaccess, stackunderflow, typecheck.

4 systemdict

— systemdict system—dictionary

pushes the system dictionary onto the operand stack. That is, a new
dictionary object containing a primary part that points to the system
dictionary is pushed onto the operand stack. The dictionary object
residing on the dictionary stack that points to the system dictionary
remains there.

Errors: stackoverflow.

¢ userdict

— userdict wuser-dictionary

pushes the user dictionary onto the operand stack. That is, a new
dictionary object containing a primary part that points to the user
dictionary is pushed onto the operand stack. The dictionary object
residing on the dictionary stack that points to the user dictionary
remains there.

Errors: stackoverflow.

¢ currentdict

— currentdict dict

pushes the current dictionary (the dictionary on top of the dictionary
stack) onto the operand stack. That is, a new dictionary object that
points to the current dictionary is pushed on the operand stack. The
dictionary object on top of the dictionary stack remains there.

Errors: stackoverflow.

68 PostScript language manual

¢ countdictstack

— countdictstack num

returns the number of dictionaries currently on the dictionary stack.
This command is most often used to compute the size of the array
parameter for the dictstack command described below.

Errors: stackoverflow.

¢ dictstack

array dictstack subarray

stores as many elements as the dictionary stack has dictionaries into
the argument array and returns a object describing the initial N-
element subarray of array, where N is the current depth of the dic-
tionary stack. The dictionaries are placed in this array in order, with
the system dictionary in element 0 and the current dictionary in ele-
ment N-1.

Errors: rangecheck, stackunderflow, typecheck.

Reference Section 69

3.4.6. String Operators

The POSTSCRIPT string operators provide basic string manipulation
facilities. POSTSCRIPT’s string operators create strings of a given length,
copy existing strings, build string objects that point to substrings of exist-
ing string bodies, search for substrings in a given string, and enumerate
the characters of a given string. In the following descriptions, the notation
string, denotes the character stored at the i’th position in the string body
pointed at by string.

The polymorphic operators copy, forall, get, getinterval, length, put,
and putinterval, described in section 3.4.3, may also be applied to strings.

¢ string

int string string

creates a string body whose length is int, initializes its character
values to zeros (ASCII Nulls), and returns a newly created string
object that references this string body. int is expected to be a non-
negative integer.

Errors: limitcheck, rangecheck, stackunderflow, typecheck.

¢ anchorsearch

string seek anchorsearch if found: s-post s-match true
if not found: string false

(anchored search) is similar to search, but anchorsearch succeeds
only if seek is an initial substring in string. If the initial substring of
string with length equal to that of seek matches seek, the
anchorsearch operator splits string into only two segments, s-post,
the portion of string occurring after the initial seek, and s-match, the
portion of string that matches seek. Like search, if the initial match
fails, anchorsearch pushes the original string back onto the operand
stack, and in any case, anchorsearch returns a boolean value on the
top of the stack that indicates whether the search succeeded or not.

Example:

(abbc) (ab) anchorsearch => (bc) (ab) true
(abbc) (bb) anchorsearch => (abbc) false
(abbc) (bc) anchorsearch => (abbc) false
(abbc) (B) anchorsearch => (abbc) false

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck.

70 PostScript language manual

¢ search

string seek search if found: s-post s-match s-pre true
if not found: string false

- looks for the first occurrence of the string seek within the string
string, returning results of this search on the operand stack. The
result that search leaves on top of the operand stack is a boolean
object that indicates whether the search succeeded or not. The search
operator performs a simple equality comparison of seek with succes-
sive substrings of string. If search finds seek within string, it splits
string into three strings, s-post, the substring of string following the
portion that matches seek, s-match, the substring of string that
matches seek, and s-pre, the substring of string that precedes the por-
tion that matches seek. When search succeeds, it pushes these three
string objects followed by the boolean value true onto the stack. If
the search fails, search pushes the original string followed by the
boolean value false onto the operand stack.

Example:

(abbc) (ab) search => (bc) (ab) () true
(abbc) (bb) search => (c) (bb) (a) true
(abbc) (bc) search => () (bc) (ab) true
(abbc) (B) search => (abbc) false

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck.

Reference Section 71

¢ token

string token if found: s-post token true
if not found: false

strips a token from the argument string (interpreted as POSTSCRIPT
source code). If a valid POSTSCRIPT token is found, token pushes
s-post (the substring of string following the token) the compiled
token, and the boolean value true. If the token was self-delimiting
(i.e., ended in a ‘‘)”’ or ‘“‘]’, etc.), then s-post will include all
delimiters which followed the token; otherwise one delimiting char-
acter (e.g., a space) will be missing from s-post. If no valid
POSTSCRIPT token was found in string (if string contained only
delimiters and comments, for example), token pushes the boolean
value false.

The token operator behaves like the POSTSCRIPT interpreter’s scan-
ner. It removes the initial portion of the argument string correspond-
ing to a single POSTSCRIPT syntactic entity. This entity may be
simple: a string, a number or a name; or it may be composite: an
executable array extending from an initial left curly brace through its
matching right curly brace. The token pushed onto the operand stack
is a compiled POSTSCRIPT object that corresponds to the syntactic
entity. Thus, the token pushed for a number is a number object, not
its string representation. The token pushed for a curly brace delimited
section of code is an executable array, all of whose components are
similarly compiled. The token command does not execute this token;
it merely pushes it onto the operand stack. The token command does
not interpret backslash (‘‘\’’) escape sequences inside string bodies,
since a string object returned by token is a substring of its argument.

See also the description of the token operator for file arguments in
section 3.4.10.

Example:
(15 /abcd def) token => (/abcd def) 15 true
((Sstl) {1 2 add}) token => ({1 2 add}) (Stl) true

Errors: invalidaccess, rangecheck, stackoverflow, stackunderflow,
syntaxerror, typecheck, undefinedresult.

72 PostScrirr language manual

3.4.7. Relational, Boolean, and Bitwise Operators

~ The POSTSCRIPT boolean and relational operators create boolean ob-

jects, provide logical operations on boolean operands, and compare or test
operands. The bitwise operators provide boolean and other operations on
the (machine dependent) binary representations of integers (i.e., patterns
of bits).

¢ eq
any, any, eq (boolean: any, = any,)

tests the top two elements on the operand stack for equality and
pushes the boolean value true if so, false if not. Some type conver-
sions are performed by eq: integers and reals can be compared freely,
as can names and strings. If the two arguments have other differing
types, eq pushes the value false. If the arguments are strings or
names, eq compares their lengths and contained characters for
equality. eq compares other composite objects for equality of object
(pointer and length) only, not for equality of objects they point to. If
any, and any, are both arrays, for example, eq tests whether they
both point to the same array body, not whether their elements are
equal. The one exception to this rule is that all empty (zero length)
arrays are equal.

Example:

4.0 4 eq => true % areal and an integer
[1 2 3] dup eq => true % an array is equal to itself
[1 2 3] [1 2 3] eq => false % distinct array objects not equal

Errors: invalidaccess, stackunderflow.

4 ne
any, any, ne (boolean: any, ~= any,)

tests the top two elements on the operand stack for equality and
pushes the boolean value true if not equal, false if equal. The
remarks for the eq operator regarding operand types, strings and
other composites also apply to ne.

Errors: invalidaccess, stackunderflow.

Reference Section 73

*ge

num, num, ge (boolean: num, >= num,)

1

string, string, ge (boolean: string;, >= string,)

¢ gt

pushes the boolean value true if the first argument (num, or string,)
is greater than or equal to the second (num, or string,), false other-
wise. The arguments must have the same type, which must be either
number or string. ge executes the error operator typecheck other-
wise. If both arguments are strings, ge returns the result of compar-
ing the two strings character by character (by comparing the char-
acter code values) to check whether the first string is lexically greater
than or equal to the second string.

Example:

4.2 4 ge => true
(abc) (d) ge => false
(aba) (ab) ge => true
(aba) (aba) ge => true

Errors: invalidaccess, stackunderflow, typecheck.

num, num, gt (boolean: num, > num,)

string, string, gt (boolean: string, > string,)

¢ le

similar to ge, except gt checks whether the first argument is greater
than the second.

Errors: invalidaccess, stackunderflow, typecheck.

num, num le (boolean: num, <= numz)

string1 string2 le (boolean: stringl <= stringz)

eIt

similar to ge, except le checks whether the first argument is less than
or equal to the second.

Errors: invalidaccess, stackunderflow, typecheck.

num, num, 1t (boolean: num, < numz)

string1 string2 1t (boolean: stringl < stringz)

similar to ge, except It checks whether the first argument is less than
the second.

Errors: invalidaccess, stackunderflow, typecheck.

74 PostScript language manual

¢ true

— true true

pushes a boolean object whose value is true onto the operand stack.

Errors: stackoverflow.
¢ false
— false false

pushes a boolean object whose value is false onto the operand stack.
Errors: stackoverflow.

4 not

bool not NOT(bool)
int not bitwiseNOT (int)

If the argument is a boolean, not pushes its logical negation. If the
argument is an integer, not pushes its bitwise complement (the one’s
complement of its binary representation).

Example:
true not => false
false not => true

99 not => -100 % that’s 16#FFFFFF9C
52 not => -53 % 16#FFFFFFCB

Errors: stackunderflow, typecheck.

Reference Section 75

¢ and

bool1 b0012 and (booll AND boolz)
int, int, and (int, bitwiseAND int,)
If the arguments are booleans, and pushes their logical conjunction
on the operand stack. If the arguments are integers, and pushes the
bitwise and of their binary representations.

Example:

% a complete truth table
true true and => true
true false and => false
false true and => false
false false and => false

99 1 and => 1
52 7 and => 4

Errors: stackunderflow, typecheck.

¢ Or

bool, bool, or (bool1 OR bool.)
int, int, or (int, bitwiseOR int,)
If the arguments are booleans, or pushes their logical disjunction
(inclusive or) on the operand stack. If the arguments are integers, or
pushes the bitwise inclusive or of their binary representations.

Example:

% a complete truth table
true true or => true
true false or => true
false true or => true
false false or => false

17 5 oxr => 21

Errors: stackunderflow, typecheck.

76 PostScript language manual

4 Xor

bool1 bool2 xor (bool1 XOR bool.)
int1 int2 xor (int1 bitwiseXOR int2)

If the arguments are booleans, xor pushes their logical exclusive or
on the operand stack. If the arguments are integers, xor pushes the
bitwise exclusive or of their binary representations.

Example:

% a complete truth table
true true xor => false
true false xor => true
false true xor => true
false false xor => false

7 3 xor => 4
12 3 xor => 15

Errors: stackunderflow, typecheck.
¢ bitshift
int shift bitshift (bitshift (int,shift))

pushes the logical shift (left: if shift > 0, right: if shift < 0) of int by
shift bits. shift and int must be integers.

Example:
7 3 bitshift => 56
142 -3 bitshift => 17

Errors: stackunderflow, typecheck.

Reference Section 77

3.4.8. Control Operators

POSTSCRIPT contains several operators that modify its default left-to-
right control flow. These operators provide analogues to the for-loop, do-
loop, repeat-loop, if-then conditional and if-then-else conditional found in
more structured programming languages. Notably absent from
POSTSCRIPT’s set of control operators is any general label-goto
mechanism.

4 exec

any exec —

pushes the argument onto the execution stack, where it will be ex-
ecuted. If the argument is non-executable, then the POSTSCRIPT in-
terpreter will just push the object back onto the operand stack. If the
argument is executable, then the POSTSCRIPT interpreter will execute
that object. The load, get, and forall operators all push a result onto
the operand stack without executing it, even if it is executable. From
there, you may use the exec operator to execute it. Also, enclosing a
name in curly braces will cause an executable array consisting of
only that name to be pushed on the operand stack without executing
it. However, writing a name in POSTSCRIPT source code without
quoting it as a literal (preceding it with a slash) or surrounding it
with curly braces will cause the interpreter to execute it immediately;
this is not a suitable way to provide that name’s value as an argument
to exec. A non-executable argument may be converted to executable
prior to an exec operator by using the cvx operator. See section
3.3 for more details on executable and non-executable objects.

Example:
(3 2 add) cvx exec => 5
[3 2 /add cvx] cvx exec => 5

In this example, the string “‘3 2 add’’ is made executable and then
executed (scanned and interpreted). While executing the string, a 3 and
a 2 are scanned and pushed on the operand stack, the name add is
scanned, looked up and executed, resulting in the sum, 5, being left on
the stack. The second line creates an executable array and executes it.
Note that a cvx is performed on the name add so that name lookup will
take place.

Errors: stackunderflow.

boolean

¢ ifelse

boolean

¢ repeat

n proc

PostScriprr language manual

proc if —

executes proc if boolean is true. Otherwise, proc is ignored. The if
operator pushes no results of its own on the operand stack, but the
proc may do so.

Example:
34 1lt {(3 is less than 4)}if => (3 is less than 4)

Errors: stackunderflow, typecheck.

proc, proc, ifelse -

executes proc, if boolean is true; or proc, if boolean is false. The
ifelse operator leaves no results of its own on the operand stack, but
the procedure it executes may do so.

Example:
4 3 1t {(TruePart)}{(FalsePart)} ifelse
=> (FalsePart) % since 4isnotlessthan3

Errors: stackunderflow, typecheck.

repeat —

executes proc n times. The repeat operator removes both arguments
from the operand stack before executing proc for the first time.
repeat leaves no results of its own on the operand stack, but proc
may do so. n must be a non-negative integer.

Example:

4 { (abc)} repeat => (abc) (abc) (abc) (abc)

1 2 3 4 3 {pop}lrepeat => 1 % pops 3 values - down to the 1
4 {} repeat => % does nothing four times

mark 0 {(won’t happen)} repeat => mark

In the last example, a zero repeat count meant that the body is not
executed at all, hence the mark is still top-most on the stack.

Errors: rangecheck, stackunderflow, typecheck.

Reference Section 79

¢ for

initial increment limit proc £for -—

¢ loop

proc

executes proc repeatedly as with ALGOL for-loops, i.e., for initial
step increment until limit do proc. The for operator expects initial,
increment and limit to be numbers, and it maintains an internal loop
counter with initial as its initial value, increment as the increment to
the counter each time around the loop, and limit as the termination
value against which the for operator checks the loop counter. The for
operator pushes the current value of the loop counter onto the
operand stack before it executes proc each time. If increment is posi-
tive, the loop terminates when the loop counter exceeds limit; if
increment is negative, the loop terminates when the loop counter be-
comes less than limit.

Example:

0114 {add} for => 10

126 {} for =135

3-.51{} for => 3.0 2.5 2.0 1.5 1.0

In the first example, the value loop counter is added to whatever is on
the stack; so 1, 2, 3, and 4 are added to O in turn. The second example
has an empty loop body, so the values of the loop counter (1, 3, and 5)
are left on the stack. The last example counts backwards from 3 to 1 by
halves, leaving the values (3.0, 2.5, 2.0, 1.5, and 1.0) on the stack.

Errors: stackoverflow, stackunderflow, typecheck.

loop -—

repeatedly executes proc until proc executes a stop (not embedded
within an inner stopped) or an exit (not embedded within an inner
looping construct). If proc does not execute an exit or stop, an in-
finite loop results (which may be broken only via an external
interrupt; see the interrupt error operator).

Errors: stackunderflow, typecheck.

80

+ exit

— exit

¢ stop
— stop

¢ stopped

PostScripr language manual

transfers control to just beyond the innermost dynamically enclosing
instance of a looping construct, without regard to lexical relationship.
The looping constructs are: for, loop, repeat, forall, and pathforall. -
If exit would cause the context of a run or stopped operator to be
left, the exit terminates and the invalidexit operator is executed (still
in the context of the run or stopped). If there is no enclosing looping
construct, POSTSCRIPT prints an error message and executes the
built-in operator quit.

Errors: invalidexit.

unwinds the execution stack to the innermost dynamically enclosing
instance of a stopped context (without regard to lexical relationship),
which returns true. If there is no active stopped context, POSTSCRIPT
prints an error message and executes quit. Note that start may ex-
ecute a stopped context.

Errors: (none).

any stopped boolean

executes any. If any terminates normally, stopped pushes false. If
any terminates because stop was executed, stopped pushes true. In
any event, control continues at the command after stopped; propaga-
tion of the stop does not proceed any further. Most typically, any
will be a procedure body, an executable string, or an executable file
stream.

This mechanism provides an effective way for a POSTSCRIPT
program to catch certain error conditions and retain control. The er-
ror operators might all execute the stop operator (after saving impor-
tant information), and allow programs to recover. Note that there is
no actual connection between the stop/stopped mechanism and error
handling. If information needs to be passed from the point of the
error to the code that catches the stop, this must be performed by
explicit communication.

Errors: stackunderflow, typecheck.

Reference Section 81

¢ countexecstack

— countexecstack num

counts the number of objects on the execution stack and pushes this
count onto the operand stack.

Errors: stackoverflow.

¢ execstack

array execstack subarray

store as many elements as the execution stack contains into the argu-
ment array and returns a object describing the initial N-element sub-
array of array, where N is the current depth of the execution stack.
The elements of the execution stack are placed in this array in order,
with the bottom element at index 0 and the top element at index N-1.

Errors: rangecheck, stackunderflow, typecheck.

¢ quit
— quit —
The definition of quit may be environment or installation dependent.
‘When POSTSCRIPT is run on a computer with an operating system
and a file system, quit terminates execution of the POSTSCRIPT inter-
preter, returning to the operating system under which POSTSCRIPT is
run. The interpreter may save the current state of the VM, to be res-
tored the next time that POSTSCRIPT is run.
Errors: (none).
¢ start
— start -—

is executed by the POSTSCRIPT interpreter when it starts up. The def-
inition of start may be environment or installation dependent. By
default, start is defined as “‘{}’’, i.e., it does nothing. However, start
may be redefined to do more. Depending on system configuration,
the definition of start may persist from one invocation of
POSTSCRIPT to the next, so the start operator may be used to setup a
useful working environment that will be installed each time
POSTSCRIPT is run. start may install a device, define error operators,
etc.

Errors: (depends on start’s definition).

82 PostScripr language manual

3.4.9. Type, Conversion, and Property Operators

POSTSCRIPT deals with objects of many different types. Accordingly,
POSTSCRIPT contains several operators that deal directly with these types.
Some of these operators convert objects of one type to objects of another
type. Another operator allows a POSTSCRIPT program to determine the
type of any given object.

The type operators give a POSTSCRIPT program a view of the innermost
workings of the POSTSCRIPT interpreter. The types presented here are
more detailed than the types presented elsewhere in this document. For
instance, whereas the rest of this document refers to the Number type, the
type operator returns the finer distinctions of Integer and Real types that
the POSTSCRIPT interpreter actually maintains. Most POSTSCRIPT
programs will not need this power; those that do can have it.

The property operators allow restriction of access to certain
POSTSCRIPT objects, allowing protection of sensitive data or program
components. Composite objects (arrays, dictionaries, and strings) may
have the access restrictions readonly or executeonly imposed on them.
Note that execureonly and executable are distinct attributes. Access restric-
tions are properties of a string or array object (not the storage it
references), but of a dictionary body.

¢ type

any type name

removes the argument from the operand stack and pushes an object
of type nametype whose value corresponds to the argument’s type.
The possible results are:

integertype

realtype

booleantype

stringtype

operatortype

nametype

arraytype

filetype

fonttype

dicttype

marktype

nulltype

savetype

Errors: stackunderflow.

Reference Section 83

¢ cvi

num cvi integer
string cvi integer

(convert to integer) converts the string, integer or real number on the
stack to its integer representation. The cvi operator truncates any
fractional part to obtain the integer result. (See the round, truncate,
floor, and ceiling operators in section 3.4.2 which remove fractional
parts without type conversion.)

Example:

(3.3E1) cvi => 33
-47.8 cvi => -47
520.9 cvi => 520

Errors: rangecheck, stackunderflow, syntaxerror, typecheck,
undefinedresult.

+ cvlit

any c¢vlit Literal (any)

(convert to literal) makes the object on top of the operand not ex-
ecutable.

Errors: stackunderflow.

4 cvhn

string cvn name

(convert to name) converts the string argument on the stack to a
name object that is lexically the same as the string. The name object
is executable if the string was.

Example:
(abec) cvn => /abc
(abc) cvx cvn => abe

Errors: rangecheck, stackunderflow, typecheck.

4 CVr

num cvr real
string ecvr real

(convert to real) converts the string, integer or real number on the
stack to its floating point representation.

Errors: rangecheck, stackunderflow, syntaxerror, typecheck,
undefinedresult.

84

4 Cvrs

PostScripr language manual

num base string cvrs substring

4 CvS

(convert to string - with radix) expects a number, base, and string on

‘the operand stack, overwrites the input string with the string repre-

sentation of num in the given base, and returns a descriptor of the
prefix substring. base is expected to be a positive integer between 2
and 36, inclusive. Digits in the resulting string greater than 9 are
represented with the letters ‘‘A’’ through ‘“Z’’. If the input string is
too small to hold the result of conversion, cvrs executes the error
operator rangecheck.

Example:

100 8 5 string cvrs => (144) %momis 1448
200 16 ¢() cvrs => (C8)

Errors: rangecheck, stackunderflow, typecheck.

any string cvs substring

4 CvX

(convert to string) converts an object to a string, overwrites the prefix
portion of its string argument with the conversion result, and returns
a descriptor to the prefix substring. If any is a number, cvs returns a
string representation of that number. If any is a boolean, cvs returns
either the string ‘‘true’’ or the string ‘‘false’’. If any is a string, cvs
copies its contents into string and returns that substring of string con-
taining the characters of any. If any is a name or operator, cvs stores
into string the text (print representation) of that name. If any is any
other type, Cvs stores into string the text ‘‘--nostringval--"’. If the
input string is too small to hold the result of conversion, cvs executes
the error operator rangecheck.

Example:
123 456 add 20 string cvs => (579)
mark () cvs => (~-nostringval--)

Errors: invalidaccess, rangecheck, stackunderflow, typecheck.

any c¢vx Executable(any)

(convert to executable) makes the object on top of the operand stack
executable without executing it.

Errors: stackunderflow.

Reference Section 85

¢ executeonly

array
string

executeonly ExecuteOnly(array)
executeonly ExecuteOnly (string)

the result object allows no further reading or writing of its top-level
elements. Thus, subsequent use of the result as an argument to get,
put, forall, etc., will result in execution of the error operator
invalidaccess. An object may be tested for executeonly status with
the rcheck operator. After execution of executeonly, the result may
only be executed, either explicitly, as an argument to exec, etc., or
implicitly, if it is the value of some name that is encountered, looked
up, in normal execution sequence. The executeonly attribute can only
be removed through the restore operator, if the object was not
executeonly in the snapshot reinstated by the restore.

Errors: invalidaccess, stackunderflow, typecheck.

¢ readonly

array
dict
string

4 xcheck

readonly ReadOnly (array)
readonly ReadOnly(dict)
readonly ReadOnly (string)

the result allows no further writing to the object; that is, its top-level
elements may no longer be replaced by operations such as put.
However, this restriction does not extend to the contents of any of
those elements that are in turn composite. For an array or string, the
readonly attribute applies only to the returned object; for a diction-
ary, however, the dictionary storage itself becomes readonly, regard-
less of how it is accessed. The readonly attribute can only be
removed through the restore operator, if the object was not readonly
in the snapshot reinstated by the restore.

Errors: invalidaccess, stackunderflow, typecheck.

any xcheck boolean

(check whether executable) removes the argument from the operand
stack and pushes the boolean value #rue if it is executable or false if
it is literal. Note that xcheck checks for executability, not for
executeonly status.

Errors: stackunderflow.

86 PostScript language manual

¢ rcheck

array rcheck boolean
dict rcheck boolean
string rcheck boolean

removes the argument from the operand stack and pushes the
boolean value true if it is readable, or false otherwise. The
executeonly operator returns an result which is not readable. In ad-
dition, some system-maintained dictionaries may not be readable.

Errors: stackunderflow, typecheck.

¢ wcheck

array wcheck boolean
dict wcheck boolean
string wcheck boolean

(check whether writeable) removes the argument from the operand
stack and pushes the boolean value true if it is writeable, or false
otherwise. The readonly and executeonly operators return objects
that are not writeable.

Errors: stackunderflow, typecheck.

Reference Section 87

3.4.10. File Operators

This section describes the POSTSCRIPT operators that read, write, and
execute information to, from, and in files. Note that graphics operations
and printing are not accomplished by writing to files. The operations for
generating graphics are discussed in a later section.

POSTSCRIPT files behave like streams; each has an associated current
position that marks where the next read or write operation will take place.
Standard input and output devices, such as the interactive user’s terminal,
are treated as files using the same mechanisms.

Exception conditions are treated in a uniform manner by operators that
access files. During reading, if end-of-file is encountered before the
desired item has been read, the file is closed and the operation returns an
explicit end-of-file indication. This is likewise done if the file has already
been closed. All other exceptions during reading and all exceptions
(including file already closed) during writing cause ioerror to be ex-
ecuted. There is a limit on the number of streams that can be open simul-
taneously. '

Input and output operations in computer languages are typically quite
dependent on the operating system under which its programs are run.
POSTSCRIPT is no exception. The input and output functions described in
this section are accurate for all current POSTSCRIPT implementations. The
availability of external files and their naming conventions may be environ-
ment dependent.

In addition to the normal files accessible through the operating system
(if any), POSTSCRIPT defines five special files whose names begin with
the character ““%’’ and which may be opened with the file operator. These
are:

%statementedit
The command ‘‘(%statementedit)(r) file’’ waits for the user
to type in one or more lines comprising a complete
POSTSCRIPT statement (that is, a sequence of one or more
tokens with no “‘{’’ or *‘(’’ left unmatched, terminated by a
newline). Certain editing functions are available during
typein, including backspace character (BS), erase line
(control-U), and retype line (control-R). The file operator then
returns a new file object that dispenses the entire statement
that was typed in, followed by end-of-file. This file object
may be read from in the normal ways, either explicitly by
other file operators (e.g., read) or implicitly by converting it
to executable (cvx) and then executing it (exec). The file
operator executes undefinedfilename if the terminal input
stream (%stdin) reaches end-of-file before any characters
have been read.

%lineedit works similarly to %statementedir, but only one line is
returned, regardless of whether or not it comprises a complete
POSTSCRIPT statement.

88

Yostdin

PostScripr language manual

returns a file object designating the standard input. In inter-
active POSTSCRIPT configurations this is usually the user’s
terminal; in server configurations this is a communications in-
terface or file being used as the standard source of
POSTSCRIPT program text. This file is unbuffered and
(generally) unedited, and should not be confused with
%statementedit or %lineedit. Closing the %stdin file has no

effect other than to clear any end-of-file indication that may
have been set.

Yostdout, Yostderr

¢ file

string1

¢ closefile

return a file object designating standard normal output and
standard error output. %stdout should be used for all normal
output, and is the file automatically used by the print
operator. %stderr is intended primarily for reporting low-
level errors; in many POSTSCRIPT configurations, this is the
same as %stdout.

string2 file file

creates a file object for the file named string, with access restrictions
according to string, and pushes this file object onto the operand
stack. Unless string_ is one of the special file names mentioned ear-
lier, the file operator will interpret the file name and access code in
an environment dependent manner. The following access code
strings should be available on most systems.

code meaning

r Read only. Sets position to the beginning of the file. The
named file must exist; executes undefinedfilename
otherwise.

(w) Write only. Sets position to the beginning of the file.

Creates a new file if non-existent. Truncates file to the
current position when closed.

Errors: invalidfileaccess, limitcheck, stackunderflow, typecheck,
undefinedfilename.

file closefile -—

closes the file stream file, taking actions according to file’s access
mode. The stream referenced by file is no longer a valid file stream
(i.e., file status will return false). See the description of file below
for a discussion of access modes.

Errors: ioerror, stackunderflow, typecheck.

Reference Section 89

¢ read

file read if not end-of-file: byte true
- if end-of-file: false

reads one byte from file, pushes it on the stack (as a number), pushes
true, and moves the file position ahead by one. If the end-of-file con-
dition occurs before a byte has been read, the read operator closes
the file and returns false.

Errors: ioerror, stackunderflow, typecheck.

¢ readhexstring

file string readhexstring substring boolean

works like readstring, except that characters in file are treated as
(the ASCII print representation of) hexadecimal digits, and pairs of
them are converted to their O through 255 values and stored in suc-
cessive character positions of string. The hexadecimal input may be
interspersed with blanks, carriage returns, and other non-
hexadecimal digits. These are ignored; only the hexadecimal charac-
ters are decoded.

Errors: ioerror, rangecheck, stackunderflow, typecheck.

¢ readline

file string readline substring boolean

reads characters (bytes) from file through the next newline character,
stores them in a prefix substring of the argument string, moves file’s
position ahead that number of characters and returns both the read
substring and true. The returned substring does not include the
newline character as its last character. If the input line is longer than
the argument string, readline executes a rangecheck. If readline
encounters the end of file before a newline, the substring (possibly
empty) and false are returned. Thus, after executing a readline and
checking for false, the string length should be tested.

Errors: ioerror, rangecheck, stackunderflow, typecheck.

90

PostScripr language manual

¢ readstring

file string readstring substring boolean

¢ token

reads up to length(string) characters (bytes) from file into string.
readstring returns false if it encounters end-of-file before string is
full; otherwise, it returns true. Essentially, readstring fills the buffer
string with bytes from file until either the buffer is full or an end of
file is encountered, returning the filled portion of the buffer and true
or false accordingly. Note that newline characters are not treated spe-
cially by readstring, they are included among the characters in the
buffer when read.

Errors: ioerror, rangecheck, stackunderflow, typecheck.

file token if found: token true

if not found: false

extracts a token from the file (interpreted as POSTSCRIPT source
code). If a token is found, it pushes the compiled token and true. If a
token is not found, it pushes false and closes file. The token operator
behaves like the POSTSCRIPT interpreter’s scanner. It extracts from
the file stream a character sequence that corresponds to a single
POSTSCRIPT syntactic entity. This entity may be simple: a string, a
number or a name, or it may be composite: an executable array ex-
tending from an initial left curly brace through its matching right
curly brace. The token pushed onto the operand stack is a compiled
POSTSCRIPT object that corresponds to the syntactic entity. Thus, the
ioken pushed for a number is a number object, not its string represen-
tation. The token pushed for a curly brace delimited section of code
is an executable array, all of whose components are similarly com-
piled. The token command does not execute this token; it merely
pushes it onto the operand stack. If the token is terminated by a
delimiting space, tab, or newline, the file is left positioned im-
mediately after the delimiter. However, if the token is self-delimiting
(e.g., “‘["’), the file is left positioned immediately after the self-
delimiter.

See also the description of the token operator for string arguments in
section 3.4.6.

Errors: ioerror, rangecheck, stackoverflow, stackunderflow,
typecheck, undefinedresult.

Reference Section 91

¢ bytesavailable
file bytesavailable int
returns the number of bytes immediately available for reading from

file; or -1 if that number cannot be determined.

Errors: ioerror, stackunderflow, typecheck.

¢ write

file byte write -—

writes a single character (byte) into file at the current position, and
moves the position ahead by one. byte must be an integer, ordinarily
in the range O to 255 inclusive (an integer outside this range is
reduced modulo 256). File must be a writable file stream.

Errors: ioerror, stackunderflow, typecheck.

¢ writehexstring

file string writehexstring -—

writes all the characters of string into file starting at the current posi-
tion and moves the position ahead that number of characters. The
characters are written as pairs of ASCII characters representing the
hexadecimal values of the characters in string. Thus, if the argument
string is ‘‘(abz)’’, the output to file is the six characters: “‘61627a’’.

Errors: ioerror, stackunderflow, typecheck.
¢ writestring
file string writestring -

writes all the characters of string into file starting at the current posi-
tion and moves the position ahead that number of characters.

Errors: ioerror, stackunderflow, typecheck.
¢ flush
— flush -—

causes any buffered output for the standard output stream to be sent
immediately. In general, a program requiring that output be delivered
now should call flush after generating that output.

Errors: ioerror.

92

PostScript language manual

¢ flushfile
file flushfile -

4 status

If file is an output stream, flushfile causes any buffered output for
file to be sent immediately. In general, a program requiring that out-
put be delivered now should call flushfile after generating that out-
put. If file is an input stream, flushfile will read and discard data
from file until the end-of-file condition is achieved.

Errors: ioerror, stackunderflow, typecheck.

file status boolean

4 run

string

return true if file is still a valid (open) stream, false otherwise.

Errors: stackunderflow, typecheck.

ran —

executes the contents of file named by string. When execution
reaches the end-of-file, or run terminates for some other reason (e.g.,
stop), the file is closed. run leaves no values on the stack, but the
result of executing the contents of string may do so. Note that run is
a convenience operator for the operation

(r) file cvx exec

Errors: ioerror, limitcheck, stackunderflow, typecheck.

¢ currentfile

— currentfile file

¢ print

string

creates a file object that references the input stream from which the
POSTSCRIPT interpreter is currently reading program input. This
operator is necessary when referencing images or other input that
reside in the program file itself.

Errors: stackoverflow.

print -—

outputs string on the standard output. The print operator provides
the simplest way to output text to an interactive user.

Errors: stackunderflow, typecheck.

Reference Section 93

¢ prompt

— prompt —

¢ echo

boolean

is executed by the POSTSCRIPT interpreter whenever it is ready for a
new line of input (in interactive mode). The initial definition of
prompt is ‘‘{(PS>) print}’’.

Errors: (none).

echo —

sets whether input characters from the standard input are echoed to
the standard output according to the value of boolean. By default, the
POSTSCRIPT interpreter echoes input to the output while opening the
files named %statementedit and %lineedit. One simple operation for
which turning off echoing is appropriate is password input.

Errors: stackunderflow, typecheck.

94 PostScripr language manual

3.4.11. Virtual Memory Operators

The POSTSCRIPT interpreter keeps most of its basic machine storage,
objects, name lookup tables and string character contents, in a memory
structure called its Virmual Memory or VM for short. Depending of system
configuration, this VM may be persistent, that is, it persists beyond a
single execution of the POSTSCRIPT interpreter. When the interpreter
returns to the system from which it was run, it saves the current state of its
VM, and when the interpreter is re-run, it begins by restoring its VM to
that state (slightly modified by start-up).

POSTSCRIPT has a save and restore mechanism that is unique among
interactive programming languages. A save operation causes the
POSTSCRIPT interpreter to remember a snapshot of its complete state: the
values of dictionary items, the keys in dictionaries, and the values in ar-
rays. (The characters contained in strings are not remembered, but string
objects (length and character position) are). The POSTSCRIPT interpreter
does not include the state of stacks, file streams, or graphics output in this
snapshot. A restore operation causes the POSTSCRIPT interpreter to revert
back to the state contained in such a snapshot.

Except for changes to the stacks and side-effects such as file operations
and graphics output, the execution of POSTSCRIPT source code between a
save and its corresponding restore is as if the execution had not hap-
pened. These semantics can be useful for encapsulating a section of
POSTSCRIPT source code that makes wholesale changes to variables for
some special purpose. Rather than having to reset each variable in-
dividually, a save and restore pair does the job neatly and efficiently, un-
doing only those modifications that were made within the scope of the
save and its corresponding restore. Since the POSTSCRIPT interpreter runs
other programs within its own environment and these programs are free to
modify substantial portions of that environment, save and restore serve to
insulate the interpreter from any unwanted legacy.

The POSTSCRIPT interpreter’s implementation of the save and restore
operators keeps typical execution overhead small. These operators are an
important part of the POSTSCRIPT language, and we encourage their use.
Not only are they convenient to use, but they also conserve resources.
There is a large but fixed limit on the size of the POSTSCRIPT interpreter’s
virtual memory. As objects are created by POSTSCRIPT programs, they ac-
cumulate in VM and must be culled from there periodically so as not to
run out of space. POSTSCRIPT’s save and restore mechanism not only
snapshots system state but prunes back VM usage as well. When the
POSTSCRIPT interpreter executes a restore operator, it quickly reclaims all
memory allocated since the corresponding save. A POSTSCRIPT interpreter
that runs program after program, as in a printer server, would be well ad-
vised to wrap a save and restore around each program execution.

Since the VM may be persistent, it may be used to hold a user’s state in
terms of new operators defined in dictionaries, default graphics

Reference Section 95

parameters, etc. When the POSTSCRIPT interpreter is started, it restores its
stacks to their initial empty state, it restores the VM back to the topmost
save level (if no saves were performed, this is a no-op), and it executes the
start operator for any special startup actions.

4 save
— save saveob]j
sets up a snapshot of the interpreter’s state and returns a Save object
that refers to this snapshot. Subsequent restore operator execution
must use this Save object to restore back to the state saved at this
time.
Errors: limitcheck, stackoverflow.
¢ restore
saveobj restore —
resets the VM to its state at the time the saveobj argument was
generated by a save operator. The save and restore operators must
be issued in a nested fashion.
Errors: invalidrestore, rangecheck, stackunderflow, typecheck.
¢+ vmstatus

— wvmstatus level used total

returns three integers describing the state of the POSTSCRIPT VM.
level is the current depth of save nesting. used and total are the num-
ber of bytes used, and the total number available in VM. (Note,
however, that in certain configurations, total may be able to increase
dynamically by obtaining more storage from the operating system).

Errors: stackoverflow.

96 PostScript language manual

3.4.12. Miscellaneous Operators and Functions

This section describes the few POSTSCRIPT operators that do not easily
~ fit into any other category. In addition, this section also lists several stan-
dard key-value pairs which exist in systemdict and userdict which are
pre-defined POSTSCRIPT functions (not built-in operators).

¢ version

— wversion string

returns the POSTSCRIPT version identifier for a particular version of
the POSTSCRIPT language, implementation, and hardware.

Errors: stackoverflow.

4 usertime

— usertime msec

returns time in milliseconds (an integer). This time can be used for
interval timing, but may not be accurate for long intervals or time-of-
day uses.

Errors: stackoverflow.

¢ =
any = —
destructively prints the top element of the stack with cvs. Thus, if
any is a string, a name, an operator, a number, or a boolean, = will
print its readable (cvs) representation. If any is an array, dictionary,
mark, savelevel, null, file, or fontID, = will print ‘‘--nostringval--".
= is equivalent to the following code:
/= {dup type /stringtype ne
{() cvs}if
print (\n) print
} def
Errors: stackunderflow.
¢ stack
F any, ... any, stack + any, ... anyy

prints any,; through any, using the = routine. stack does not destroy
the contents of the stack, but copies the entire stack and destructively
prints the copy. stack is equivalent to the following:

/stack {count dup 1 add copy {=} repeat pop} def

Errors: stackoverflow.

Reference Section 97

any ==

¢ pstack

F any; .

destructively prints the top element of the stack a little more cleverly
than does =. == will print the contents of arrays, will flag literal
names, and other nice things.

Errors: stackunderflow.

. anyy pstack any, ... anyy

prints the entire stack (like stack) using ==.

Errors: stackoverflow.

98 PostScriprt language manual

Graphics Operators

The preceding sections completely describe the general computer lan-
guage aspects of POSTSCRIPT. By themselves, they describe an interpre-
tive programming language of great expressive power. This section
describes the standard extension of the POSTSCRIPT language that deals
with computer graphics. The facilities and operators described here are in-
tended for both display and printer applications.

The POSTSCRIPT interpreter maintains a data structure called the
Graphics State that holds current graphics control parameters. These
parameters define the context in which the graphics commands operate.
For example, the show operator implicitly uses the current font parameter
in the Graphics State, and the fill operator implicitly uses the current color
parameter in the Graphics State.

Graphics States are maintained in a stack. By pushing a new Graphics
State onto this stack (with the gsave operator) a new context with many
different characteristics may be defined without destroying the Graphics
State currently in force. This new context may have a different font, trans-
formation matrix, line style, etc. defined. After some graphics output is
performed, the original Graphics State may be restored by popping this
new Graphics State off its stack (with the grestore operator), making
resets of each changed Graphics State parameter unnecessary.

The complete set of Graphics State parameters is:

Name Type Value Semantics

CT™M Array The current transformation matrix; a matrix that
maps positions from user coordinates to device
coordinates. This matrix is modified by each ap-
plication of the coordinate system operators.
(Initial value: A straightforward matrix trans-
forming default coordinates to device
coordinates.)

color Internal The internal representation of colors is not ex-
posed to the POSTSCRIPT user. To encode and
decode colors among different color models, see
color related operators in section 3.5.5. (Initial
value: black.)

cp Numbers Current position. (Initial value: undefined.)

path Path The current path as built up by the path construc-
tion operators. Path objects are not directly acces-
sible in POSTSCRIPT. This object is an implicit
argument to the fill, stroke, and clip operators.
(Initial value: empty.)

clip Path The current boundary against which all output is

Reference Section

font

line width

line cap

line join

screen

transfer

flatness

miter-limit

dash

device

Dictionary

Number

Integer

Integer

several

Array

Number

Number

99

clipped. (Initial value: the entire imageable por-
tion of the output device.)

Set of graphic shapes (characters) that define the
current typeface. (Initial value: installation
dependent.)

The thickness (in user coordinates) of lines to be
drawn by the stroke operator. (Initial value: 1.)

A code that defines the shape of the endpoints of
any open path that is stroked. (Initial value: 0, for
a square butt end.)

A code that defines the shape of a stroked line at
its corners. (Initial value: 0, for mitered joins.)

A collection of POSTSCRIPT objects that define
current halftone screen pattern for gray and color
output. (Initial value: installation dependent.)

An executable procedure that maps user gray
levels into device gray levels, for tuning output
devices’s gray response curve. (Initial value: in-
stallation dependent.)

A number that determines the smoothness of
Bezier curve renditions on the output device.
This number gives the maximum error tolerance
(in output device pixels) of a straight line seg-
ment approximation of any portion of a Bezier
curve. Smaller numbers give smoother curves at
the expense of more computation. (Initial value:
0.5.)

A number that determines the maximum length
of mitered line joins for the stroke operator. This
number is the ratio of maximum diagonal
through the join over the line width. Line seg-
ments that meet at sharp angles that would cause
their miter ratio to exceed this number are
beveled instead. (Initial value: 10, for a miter
cutoff below 11 degrees.)

Array, Real A description of lengths of portions of dashed

Internal

lines to be rendered by the stroke operator in-
stead of the normal solid line. (Initial value: a
O-length array plus a O offset, corresponding to a
normal solid line.)

An internal data structure that describes the cur-
rent output device. Each output device has certain
procedures that allow it to print any shapes and
halftones specified by the rest of the POSTSCRIPT
graphics descriptions. Devices are set through the
device setup operators described in section 3.5.6.
(Initial value: the null output device.)

Each graphics operator description in the following subsections men-
tions which Graphics State parameters it uses.

100 PostScripr language manual

POSTSCRIPT’s graphics operators form five major groups:

1. Graphics state operators. This group contains operators that
manipulate Graphics States as a whole. They provide con-
venient means of switching between different contexts
defined by the following groups of operators.

2. Coordinate system and matrix operators. The Graphics State
contains a transformation matrix (named CTM) that maps user
specified coordinates into coordinates appropriate for the out-
put device. The operators in this group manipulate this matrix
to achieve any combination of translation, scaling (including
mirror imaging), and rotation of user coordinates onto device
coordinates.

3. Character and font operators. These operators allow the
specification, selection, and modification of fonts, and the
means to image characters in those fonts on the page.

4. Path construction operators. The POSTSCRIPT graphics
machinery maintains a current path that defines shapes and
line trajectories for output. The operators in this group begin a
new path, add straight line segments, circular arcs and cubic
curves to the current path and close the current path. All of
these operators implicitly reference the Graphics State CTM
parameter.

5. Output operators. These operators specify the contents of
areas to be output. POSTSCRIPT programs may use a variety
of color models to specify output color and halftone screens.
Scanned images are equivalent to multi-colored sampled ink.
Other operators in this section actually generate images on an
output device. After a path is constructed, and colors, images,
character fonts, line widths, etc. are set, these operators
“‘push’’ images or color through the current shape (defined
by the current path) or render line trajectories on the output
device.

Reference Section 101

3.5.1. Graphics State Operators

The operators in this group manipulate entire Graphics States on the
current Graphics State stack. Whenever a POSTSCRIPT save operator ex-
ecutes, it establishes a new stack of Graphics States. The initial Graphics
State on this stack is a copy of the Graphics State in effect at the time of
the save. New Graphics States may be pushed onto and popped off of this
Graphics State stack, but only the corresponding restore operator can
remove the Graphics State that a save operator placed at the bottom of this
Graphics State stack.

¢ gsave

— gsave -—

is a special case of the save operator. gsave saves only the current
Graphics State, pushing a copy of it onto the Graphics State stack,
whereas save saves the entire state of the POSTSCRIPT interpreter:
values of variables and dictionaries, etc. as well as the values in the
current Graphics State. gsave is useful for creating instances of
predefined shapes with different transformations, making possible a
simple restoration of the Graphics State through a matching
grestore. Often, related transformations need not be created entirely
from scratch; they may share some common setup which may be
gsaveed. Note that unlike save, gsave returns no Savemark object;
gsaves and grestores work in a strictly stack-like manner.

Errors: limitcheck.

¢ grestore

— grestore —

pops the current Graphics State off of the Graphics State stack, in-
stalling the Graphics State in effect at the time of the matching gsave
as the current Graphics State. This operator gives a simple way to
undo complicated transformations and state setup without having to
undo all Graphics State values individually.

An attempt to grestore past the most recent save barrier replaces the
current Graphics State with a copy of the Graphics State in effect at
the time of that save.

Errors: (none).

102 PostScripr language manual

¢ grestoreall

— grestoreall -—

repeatedly pops the current Graphics State off the Graphics State
stack down to the most recent save barrier. It then pushes a copy of
the Graphics State in effect at the time of that save back onto the
Graphics State stack.

Errors: (none).

Reference Section 103

3.5.2. Coordinate System and Matrix Operators

POSTSCRIPT defines a standard, device independent coordinate system
called default user coordinates or default user space. All shapes and
images manipulated in a POSTSCRIPT program are relative to this coordi-
nate system. POSTSCRIPT transforms coordinates to achieve translation,
scaling, and rotation by means of a 3 x 3 transformation matrix maintained
in the Graphics State called the current transformation matrix or CTM 2
The default value for this transformation matrix relates the default user
coordinate system to a raster device’s built-in coordinate system in the fol-
lowing way. The origin of the default user coordinate system maps to the
lower left corner of the device’s image area when viewed in its ‘‘preferred
orientation’’, with the user space’s x-axis increasing to the right and the
the user space’s y-axis increasing upwards. One unit in default user space
corresponds to 1/72 of an inch on the output device.

The preferred orientation of a printer that prints on 8.5 x 11 inch paper
is its portrait orientation, that is, the long side is the y-axis and the short
side is the x-axis. The preferred orientation of a display device is x-axis
horizontal, y-axis vertical. This may be portrait or landscape orientation,
depending on the display’s dimensions. In all cases, the active area of the
device is in the first quadrant of the default user coordinate system (non-
negative x, non-negative y).

POSTSCRIPT programs need know nothing about the resolution of the
raster output device on which a printed page is rendered, nor do they need
to know about the manner in which the output device addresses points in
its image area. All placements and measurements are made in user space,
and the default transformation matrix in the Graphics State maps these
locations to the appropriate locations on the output device. Thus, a
POSTSCRIPT program may be used unchanged on any raster output device;
only the default transformation matrix (set outside of the program) is dif-
ferent to achieve proper imaging on all devices.

POSTSCRIPT computations are carried out using floating point number
representation when necessary. Therefore, the units of the default user co-
ordinate system (1/72 inch) in no way constrain or affect the resolution of
the output device. For example, if a POSTSCRIPT program says:

72.334 196.121 moveto

then the POSTSCRIPT interpreter renders this position as accurately as pos-
sible in the device’s coordinate system.

By modifying the curtent transformation matrix, simple shapes ex-
pressed in simple orientations can be easily transformed to many varia-

2Actually, only the first two columns of POSTSCRIPT matrices are meaningful; the third column
of a 3 x 3 matrix always contains 0, 0, 1, and the third element of a row vector is always 1. For this
reason, the POSTSCRIPT operators that deal with matrix values require specification of only the first
two columns. For a complete mathematical explanation of how such a matrix performs geometrical

transformations, see the book Principles of Interactive Computer Graphics by W. M. Newman and
R. F. Sproull.

104 PostScripr language manual

tions. Many of the graphics operators described in this section achieve
their results by constructing new matrices, postmultiplying them by the
current transformation matrix, and establishing the result as the new trans-
formation matrix.

While an accurate description of these operators may be expressed in
terms of their effect on the transformation matrix, it is often more useful to
think of them in terms of their effect on the current user space. For in-
stance, a 2 2 scale operation doubles the size at which objects are ren-
dered. This is achieved by postmultiplying the current transformation
matrix to yield one that transforms coordinates into positions whose
device coordinate values are double those that would have resulted from
the transformation in effect before the 2 2 scale operation was applied.
Alternatively, we can view the effect of this operation as changing the cur-
rent user coordinate system, so that now a unit in user space represents
twice as much as it did before. We will present the coordinate system
transformation operators from both of these points of view.

A longer example (that uses several operators to be discussed in later
sections) should make these transformation concepts clear.

Reference Section 105

% Define a procedure to construct a unit square path in
% the current user coordinate system.

/box {newpath
0 0 moveto
0 1 lineto
1 1 lineto
1 0 lineto
closepath
} def

% Modify the current transform matrix so that everything
% subsequently drawn will be 72 times larger,
% that is, each unit will represent an inch.

72 72 scale
% the transform matrix now represents unit
% coordinates as one inch long.

% Draw a 1" X 1" box (72 X 72 default coordinate units).

box £ill

% Change the transform matrix again so that the origin
% will be at 2", 2".
% Since the coordinate system is now in inches we say:

2 2 translate

% Draw the box again.

% This box will have its lower left corner two inches up

% from and two inches to the right of the lower left corner
% of the page, and it will be one inch square.

box £ill

This example shows how coordinates expressed in POSTSCRIPT
programs, e.g., the coordinates given to the moveto and lineto graphics
operators, are transformed by the current transformation matrix. By com-
bining translations, scalings, and rotations on the transformation matrix,
very simple prototype graphics procedures like box in the example can
generate a myriad of instances.

Transformation matrices are represented in POSTSCRIPT as six-element
array objects. As such, they may be stored, copied, and modified as are
other POSTSCRIPT array objects. Such a six-element array object
[a b ¢ d tx ty] corresponds to a transformation matrix:

a b 0
c d 0
x ty 1

In the operator descriptions below, an argument given as ‘‘matrix’’ in-
dicates a 6-element POSTSCRIPT array, while reference to ““‘CTM’’ in-
dicates the current transformation matrix in the Graphics State.

106

¢ matrix

PostScript language manual

— matrix matrix

creates a 6-element POSTSCRIPT array object, fills it in with the
values of an identity matrix, i.e., [1.0 0.0 0.0 1.0 0.0 0.0], and pushes
this array onto the operand stack. This operator is equivalent to the
sequence:

6 array identmatrix

Errors: stackoverflow.

¢ initmatrix

— initmatrix -—

sets CTM to the default matrix defined by the current output device.
This matrix transforms default user coordinates to their default posi-
tions on the output device.

Errors: (none).

¢ identmatrix

matrix

identmatrix matrix

replaces the contents of matrix with the values of the identity trans-
formation matrix, i.e., [1.0 0.0 0.0 1.0 0.0 0.0] and pushes this
modified matrix back onto the operand stack.

Errors: rangecheck, stackunderflow, iypecheck.

¢ defaultmatrix

matrix defaultmatrix matrix

replaces the contents of matrix with the values of the default trans-
formation matrix for the current output device and pushes this
modified matrix back onto the operand stack.

Errors: rangecheck, stackunderflow, typecheck.

¢ currentmatrix

matrix currentmatrix matrix

replaces the contents of matrix with the values in CTM and pushes
this modified matrix back onto the operand stack.

Errors: rangecheck, stackunderflow, typecheck.

Reference Section 107

¢ setmatrix

matrix

setmatrix —

sets the contents of CTM to the contents of matrix.

Note: matrix should be a matrix that has resulted from a previous
currentmatrix operation or sequence of matrix operations that in-
volved a defaultmatrix operation. Only then can the POSTSCRIPT
program be sure that the matrix will be reasonable with respect to the
current output device.

Errors: rangecheck, stackunderflow, typecheck.

¢ translate

tx ty translate -—

tx ty matrix translate matrix

With no matrix argument, translate builds a temporary matrix:

1 0 0
T= 0 1 0
x ty 1

and replaces CTM by T * CTM. The effect of this operator on the
user coordinate system is to move its origin, (0, 0), to the position
(zx, ty) in the user coordinate system defined at the time this operator
is executed. The orientation of the user coordinate axes and the unit
scale are unaffected.

If the matrix argument is supplied, translate replaces the contents of
matrix by [1.0 0.0 0.0 1.0 ¢x zy] and pushes this modified matrix back
onto the operand stack with no effect on CTM.

Both & and ¢y must be numbers.

Errors: rangecheck, stackunderflow, typecheck.

108

4 scale

PostScripr language manual

sx sy scale -—

sx sy matrix scale matrix

¢ rotate

With no matrix argument, scale builds a temporary matrix:

SX 0 0
S= 0 sy 0
0 0 1

and replaces CTM by S * CTM. The effect of this operator is to make
the x and y units in the user coordinate system the size of sx x-units
and sy y-units in the user coordinate system defined at the time this
operator is executed. The location of the user coordinate origin and
the orientation of the coordinate axes are unaffected.

If the matrix argument is supplied, scale replaces the contents of
matrix by [sx 0.0 0.0 sy 0.0 0.0] and pushes this modified matrix
back onto the operand stack with no effect on CTM.

Both sx and sy must be numbers.

Errors: stackunderflow, typecheck.

ang rotate -—

ang matrix rotate matrix

With no matrix argument, rotate builds a temporary matrix:

cos(ang) sin(ang) 0
R= -sin(ang) cos(ang) 0
0 0 1

and replaces CTM by R * CTM. The effect of this operator is to
rotate the user coordinate system axes about their origin by ang
degrees (positive is counterclockwise) with respect to the user coor-
dinate system defined at the time this operator is executed. The loca-
tion of the user coordinate origin and the size of the x and y units are
unchanged.

If the matrix argument is supplied, rotate replaces the contents of
matrix by [cos(ang) sin(ang) -sin(ang) cos(ang) 0.0 0.0], where ang
is interpreted as an angle in degrees, and pushes this modified matrix
back onto the operand stack with no effect on CTM.

The argument ang must be a number.

Errors: stackunderflow, typecheck.

Reference Section 109

4 concat

matrix

concat —

replaces CTM by matrix * CTM.

Example:
sx sy matrix scale concat

sx sy scale
The two examples have the same effect on the current transformation.

Errors: stackunderflow, typecheck.

4 concatmatrix

matrix1

matrix, matrix concatmatrix matrix

2 3 3

replaces the contents of matrix, by the result of multiplying
matrix, * matrix, and pushes the modified matrix, back onto the
operand stack. This operator does not effect CTM.

Errors: stackunderflow, typecheck.

¢ transform

X y transform xt yt

X y matrix transform xt yt

With no matrix argument, transform multiplies the row-vector
(x, y, 1) by CTM, ie., (x, y, 1) * CTM, to yield the row-vector
(xt, yt, 1). If (x, y) is a coordinate in the current user space, then
(xt, yt) is the corresponding coordinate in the output device space
under the current transformation.

If the matrix argument is supplied, transform multiplies the row-
vector (x, y, 1) by the argument matrix, i.e., (x, y, 1) * matrix, to
obtain the row-vector (xt, yt, 1).

The arguments x and y must be numbers.

Errors: stackunderflow, typecheck.

110 PostScripr language manual

4 dtransform

xd yd dtransform xdt ydt
xd yd matrix dtransform xdt ydt

With no matrix argument, dtransform (delta transform) behaves like
transform, but uses a copy of CTM with its #x and #y translation
components zero. This operator shows how a positionless vector
(xd, yd) in user space is transformed by the current transformation
into a positionless vector in output device space. This operator is
most useful for determining how distances map from user space to
device space.

If the matrix argument is supplied, dtransform uses it instead of an
implicit reference to CTM.

The arguments xd and yd must be numbers.
Errors: stackunderflow, typecheck.

¢ itransform

xt yt itransform x y
xt yt matrix itransform x y

With no matrix argument, itransform (inverse transform) returns x
and y such that (x, y, 1) * CTM = (xt, yt, 1). This operator thus returns
the position in user space that under the current transformation cor-
responds to the given position in device space.

If the matrix argument is supplied, itransform uses it instead of an
implicit reference to CTM.

The arguments xt and yt must be numbers.

To achieve uniform line weights across an output page, lines should
be positioned at the same relative positions to output device pixels. It
is a simple matter to specify positions in device-independent user
space, yet achieve device-dependent positioning by adjusting user
space positions according to the following method:

Example:
transform round exch round exch itransform

When given an (x, y) position in user space, these operations transform
that position to device space, round it to the nearest output pixel bound-
ary, and inverse transform it back to the user space position correspond-
ing to this device-dependent position.

Errors: stackunderflow, typecheck, undefinedresult.

Reference Section 111

¢ idtransform

xdt ydt idtransform xd yd

xdt ydt matrix idtransform xd yd

With no matrix argument, idtransform (inverse delta transform)
returns the positionless vector (xd, yd) such that (xd, yd) * CTM =
(xdt, ydt). This combination of dtransform and itransform gives the
vector in user space that corresponds to the given device space vec-
tor.

If the matrix argument is supplied, idtranform uses it instead of an
implicit reference to CTM.

The arguments xdt and ydt must be numbers.

Errors: stackunderflow, typecheck, undefinedresult.

4 invertmatrix

matrix1

matrix2 invertmatrix matrix2

replaces the contents of matrix, with the result of inverting matrix

1
and pushes the modified matrix, back onto the operand stack.

Errors: stackunderflow, typecheck, undefinedresult.

112 - | PostScript language manual

3.5.3. Character anq,il?j‘ont Operators

Fonts are collections of graphical symbols accessible through several
POSTSCRIPT operators. In the standard case, a POSTSCRIPT font represents
a typeface of one particular design. Each installation has a particular set of
fonts which may be used in POSTSCRIPT. Fonts are named with strings.
Fonts may be named in arbitrary ways, but typically, a hierarchical
scheme with some agreed upon separator is used (e.g., ‘‘-’’). For example,
the names of all fonts which were created from artwork licensed by the
International Typeface Corporation may begin with the letters ‘ITC’’ fol-
lowed by the font family (e.g., ‘Souvenir,”” “‘Galliard,”’
““FrizQuadrata,’’), followed by the face or weight (e.g., ‘‘Medium,”’
‘“‘Roman,”” ‘‘Boldltalic’’). An entire font name might be
ITC-Souvenir-BoldItalic.

Such names are used as the argument to the findfont operator. findfont
returns a dictionary (called a font dictionary) if the font is known to
POSTSCRIPT. Fonts (via, in part, their dictionaries) may be modified by
geometrical transformations like any other POSTSCRIPT graphical object.
The Graphics State contains a notion of the current font which is the set of
character descriptions referenced by the various character imaging
operators (see below).

POSTSCRIPT’s font mechanism and the contents of a font dictionary are
given in Appendix A, in addition to the manner in which a users can
define their own fonts. The typical user of fonts in POSTSCRIPT need not
be concerned with these details.

3.5.3.1. Font Dictionary Operators

The following operators deal with font dictionaries. They are used to
create, find, and scale fonts, and to set and return the current font; part of
the Graphics State.

¢ currentfont

— currentfont font-dict

pushes the font dictionary of the font that is in the current Graphics
State.

Errors: stackoverflow.

Reference Section 113

¢ definefont
key dict definefont font-dict

makes the font-description found in dict into a POSTSCRIPT - font.
definefont creates a Font/D (an object of type fonttype) for this
font, puts it in dict with key ‘‘FID’’, and makes the dictionary
readonly. This dictionary is placed in the global dictionary
‘“‘FontDirectory’’ with key. The modified dictionary is returned on
the stack.

Errors: dictfull, invalidfont, stackunderflow, typecheck.

¢ findfont
key findfont font-dict

looks up (in FontDirectory) the font whose name is on the top of the
stack and pushes its font dictionary on the stack. A detailed descrip-
tion of the contents of a font dictionary may be found in Appendix
A,

Errors: invalidfont, stackunderflow, typecheck.

¢ scalefont

font-dict scale scalefont transformed-font-dict

scales the font matrix in font-dict by scale, creates a copy of fontdict,
and pushes the resulting font dictionary on the stack. The font-dict
returned from findfont is a one-unit by one-unit (in user space) font.
(The choice of default user coordinates having one unit equal to one
point results in default fonts in default user space being one-point
fonts.) When scalefont applies its scale argument to such a font, it
results in a font scaled to the number of user space units specified.
For example, a 12 scalefont applied to a default font by results in a
new font description that is 12 units wide by 12 units high. Any
characters shown from this font will take on that size in whatever the
current user-space coordinate system (CTM) specifies.

Errors: stackunderflow, typecheck.

114

PostScripr language manual

¢ makefont

font-dict matrix makefont transformed-font-dict

¢ setfont

transforms the font matrix in fonz-dict by matrix, creates a copy of
fontdict, and pushes the resulting font dictionary on the stack.
makefont is more general than scalefont in that it allows an arbitrary
matrix to modify an existing font. To achieve simple, uniformly
scaled fonts, use scalefont. To achieve non-uniformly scaled, trans-
lated, or rotated (in the font itself) fonts, use makefont. For example,
a [10 0 0 8 0 0] matrix applied to a default font by makefont results
in a new font description that is 10 units wide by 8 units high.

Note that the special effects of makefont can also be achieved by
using simple scaled fonts with non-uniform scaling and rotation in
the coordinate system (via scale, rotate, and translate). makefont is
essentially a convenience operator that allows the POSTSCRIPT
program to not have to switch coordinate systems often when show-
ing unusual characters. Particularly for rotated characters, it is often
more convenient to rotate the coordinate system rather than rotate
inside the font.

Errors: stackunderflow, typecheck.

font-dict setfont -—

3.5.3.2.

establishes the font to be used for all subsequent character imaging
operators and remains in force until the next setfont, grestore, or
restore operator is executed.

Example:
% find, scale, and set a 10-unit Courier.
/Courier findfont 10 scalefont setfont

Errors: stackunderflow, typecheck.

Character Imaging Operators

POSTSCRIPT has several operators for showing strings of characters.
The graphics environment within which a show command is executed af-
fects both the appearance of the character images (i.e., the current font
face specified by setfont) and the size of the images (i.e., both the font’s
size and the current transform). The simplest variant of the character im-
aging commands is show which simply lays down a string of characters in
the current font starting at the current point and updating the current point
by the width data for each character. widthshow provides a mechanism
useful for setting justified text. ashow and awidthshow are useful for ap-
plications requiring copy-fitting and uniform letter spacing. Finally,
kshow calls back to the PostScript interpreter between each character, al-
lowing the ultimate in individual letter spacing adjustments.

Reference Section 115

4 show

string

show —

images the characters in string starting at the current point according
to the font face, size and orientation specified by the most recent
setfont. After each character is imaged, the current point is updated
by the amount specified in the width information for the character.
Upon completion, the current point remains at the position that
resulted from the imaging of the last character in the string. There
must be a current point (typically set via the moveto operator) when
show is executed; otherwise is executes the error operator
nocurrentpoint.

Errors: nocurrentpoint, stackunderflow, typecheck.

¢ widthshow

numx numy char-code string widthshow —

¢ ashow

images characters in string in a manner similar to show. But for each
instance of the character char-code in string the current point is
modified by adding the vector (numx,numy) in addition to the normal
width of char-code. This operator enables the setting of a justified
string of text in a single command.

Errors: nocurrentpoint, stackunderflow, typecheck.

numax numay string ashow -—

images characters in string in a manner similar to show. But for each
character in string the current point is modified by adding the vector
(numax, numay) in addition to the normal width of the character.
This operator enables the fitting of a string of text to a specific width
in a single command.

Errors: nocurrentpoint, stackunderflow, typecheck.

¢ awidthshow

numx numy char-code numax numay string awidthshow —

images characters in string in a manner similar to widthshow. But
for each character in string the current point is modified by adding
the vector (numax,numay) in addition to the normal width of the
character. This operator enables the fitting of a string of justified text
to a specific width in a single command.

Errors: nocurrentpoint, stackunderflow, typecheck.

116

¢ kshow

PostScript language manual

proc string kshow —

images characters in string in a manner similar to show, but allows
user intervention between characters. If the character codes in string
are €, €, ..., €, kshow will proceed as follows: First it shows c, at
the current point, updating the current point by c,’s width. Then it
pushes the character codes ¢, and c, onto the stack and executes
proc. The proc may perform any actions it wishes; typically it will
modify the current point somehow to affect the subsequent place-
ment of ¢,. If proc modifies the Graphics State, such changes will
remain in effect through subsequent executions of proc. kshow con-
tinues by showing c,, pushing ¢, and c, onto the stack, executing
proc, and so on, finishing by pushing ¢ _, and c_onto the stack, ex-
ecuting proc and finally showing c .

The name kshow is derived from kern-show. (To kern characters is
to adjust their spacing on a character pair basis to achieve a more
pleasing layout.) While the kshow operator allows user-defined
kerning operations, it is considerably more powerful than a simple
kerning operator, as it allows arbitrary computation between each
character pair.

Errors: nocurrentpoint, stackunderflow, typecheck.

¢ stringwidth

string

stringwidth wx wy

calculates the change in the current point that would occur if string
were given to the show operator with the current font. wx and wy are

the width of string in user coordinates.

Errors: stackunderflow, typecheck.

Reference Section 117

3.5.4. Path Construction Operators

A POSTSCRIPT path is a general purpose construct that defines a
geometric shape. Paths represent outlines of areas to be filled with a color
or image, and they represent trajectories along which lines may be drawn.
A path is composed of straight and curved line segments. These segments
may connect to one another, or they may be discontinuous. A continuous
section of a path may be closed, that is, its last segment may connect back
to its starting point, otherwise it is considered open. A single path may
contain discontinuous closed sections, thus representing many areas. A
path may even intersect itself. All paths that can be created through appli-
cation of the path construction operators are legal in POSTSCRIPT.

The POSTSCRIPT interpreter allows one path to be constructed at a time;
this path is called the current path. (Remember, it may have several dis-
continuous parts.) Since the current path is built by executing POSTSCRIPT
operators, other paths may be saved and modified by treating them as ex-
ecutable arrays using the basic mechanisms of the POSTSCRIPT language.

The newpath operator initializes the current path to be empty. The path
is essentially an ordered list of points, where adjacent points in this list
may or may not be connected by a straight line segment, or a Bezier cubic
curve. All points and relative distances specified to the path construction
operators are interpreted in the current user coordinate system. They are
immediately transformed into the corresponding output device coordinates
and are remembered as such in the current path. If the current transfor-
mation changes during construction of a path, points already entered do
not move in device space. The most recently entered point in the current
path is called the current point. If the current path is empty, there is no
current point.

These path construction operators do not actually draw anything on an
output device. Instead, the current path is an implicit argument to the out-
put operators discussed in section 3.5.5.

¢ newpath
— newpath -—

initializes the current path to be empty, causing there to be no current
point.

Errors: (none).

118

PostScrirt language manual

4 currentpoint

— cgurr

4 moveto

entpoint x y

returns the user coordinates (x, y) of the current point (if the current
path is non-empty.) Whenever the current point is set, it is trans-
formed to an output device coordinate through the current transfor-
mation. This position remains constant until the current point is set
again. If the current transformation changes without the current point
being set, the currentpoint operator will report a different position if
that device coordinate corresponds to a different user space coordi-
nate.

Errors: nocurrentpoint, stackoverflow, undefinedresult.

X y moveto —

starts a new segment in the current path. moveto makes the point
whose user space coordinate is (x, y) the current point without adding
any line segments to the current path. Both x and y must be numbers.

Note: if the previous path command in the current path was a
moveto, then its point is deleted from the current path and the new
moveto point replaces it.

Errors: stackunderflow, typecheck.

¢ rmoveto

Ar dy

¢ lineto

rmoveto —

(relative moveto) starts a new section in the current path, relative to
the current point. If the current point is (Ix, ly), then rmoveto makes
the point (1x+dx, ly+dy) the current point without adding a line seg-
ment to the current path. If the current path is empty, rmoveto ex-
ecutes the error operator nocurrentpoint. Both dx and dy must be
numbers.

Errors: nocurrentpoint, stackunderflow, typecheck.

Xy lineto -

continues the current path with a straight line segment from the cur-
rent point to (x, y) and makes (x, y) the current point. If the current
path is empty, lineto executes the error operator nocurrentpoint.

Errors: nocurrentpoint, stackunderflow, typecheck.

Reference Section 119

¢ rlineto
dx dy

4 arc

rlineto -—

(relative lineto) behaves like lineto, except the new point is inter-
preted relative to the last point in the current path. If the last point in
the current path was (Ix, ly), then rlineto adds a straight line segment
to (Ix+dx, ly+dy), making (1x+dx, ly+dy) the new current point. If
the current path is empty, rlineto executes the error operator
nocurrentpoint. Both dx and dy must be numbers.

Errors: nocurrentpoint, stackunderflow, typecheck.

X y r ang, ang, arc -—

4 arcn

builds a counterclockwise segment of a circular arc with (x, y) as
center, r as radius, ang, the angle of a vector from (x, y) of length r
to the first endpoint of the arc, and ang, the angle of a vector from
(x, y) of length r to the second endpoint of the arc. If there is a
current point, the arc operator includes a straight line segment from
the current point to the first endpoint of this arc and then adds the arc
itself into the current path, making the second endpoint of the arc the
new current point. If the current path is empty, the arc operator does
not produce the initial straight line segment. Angles are measured in
degrees counterclockwise from the positive x-axis of the current user
coordinate system. The curve produced is circular in user space.
Non-uniform scale operations executed before an arc command will
produce elliptical curves on the output device.

Example:
newpath 0 0 moveto 0 0 1 0 45 arc closepath

This constructs a unit radius 45 degree *‘pie slice.”’

Errors: rangecheck, stackunderflow, typecheck.

X y r ang; ang, arecn -

(arc negative) behaves like arc, but arcn builds its arc segment in a
clockwise direction.

Example:
newpath 0 0 2 0 90 arc 0 0 1 90 0 arcn closepath

This constructs a 2 unit radius, 1 unit wide 90 degree ‘‘windshield
wiper swath.”’

Errors: rangecheck, stackunderflow, typecheck.

120

4 arcto

PosrScript language manual

X, ¥V X, ¥, T arcto xt1 yt1 xt, vyt,

builds a segment of a circular arc of radius r between two tangent
lines. There must be a current point, (xo, yo), in the current path;
otherwise arcto executes the error operator nocurrentpoint. The
tangent lines are those defined from (x;, y) to (x,, y,) and from

(x5 ¥,) to (x,, ¥,).

The center of the arc is located inside the smaller angle defined by
these two line segments, and the arc built is the smaller of the two
possible arcs from the first tangent point, (x¢,, y¢,) on the first tangent
line, to the second tangent point (xt,, yt,) on the second tangent line.
arcto includes a straight line segment from the current point to
(x5 ¥1) and the circular arc defined above in the current path, and it
makes (x,, yz,) the new current point. If the two tangent lines are
collinear, arcto merely includes a straight line segment in the current
path from (x, y,) to (xp ¥ considering the arc to be the degenerate
single point arc at that point. The return values are for information
only; they are the two tangent points. In the collinear case, these two
tangent points are identical to (x,, y,).

Example:
newpath 0 0 moveto
04441 arcto

4 {pop} repeat

4 4 lineto
This constructs a 4 unit wide, 4 unit high right angle with a 1 unit
radius ‘‘rounded corner.”’

Errors: nocurrentpoint, stackunderflow, typecheck,
undefinedresult.

Reference Section 121

4 curveto

X, ¥0 X ¥ %Y, curveto —

adds a Bezier cubic section to the current path between the current
point and (x,, ¥,) using (x, ¥y and (x, y,) as the Bezier cubic con-
trol points, and it makes (x,, y2) the new current point. If the current
path is empty, curveto executes the error operator nocurrentpoint.

The conversion of other cubic spline representations to Bezier cubics
is straightforward. If A, B, Cx, and A, B, and C_ are the coef-
ficients of a parametric cubic equation for x and y, the equation for x,
for example, is:

X= Ax*t3 + Bx*t2 + Cx*t + current-x

A similar equation is used for Y. The Bezier control points for the
cubic are:

X, = current-x + Cx/ 3.0

x =x,+(C, +Bx)/3.0

x,=current-x +C_+B_+ A
X X X

2
and similarly for the y components.

Errors: nocurrentpoint, stackunderflow, typecheck.

4 rcurveto

dx, dy, dx, dy; dx, dy, =rcurveto -—

behaves like curveto, but the points are interpreted relative to the
current point, (cx, cy). The resulting curved segment will start at
(cx, cy) and end at (cx+dx2, cy+dy,). (cx+dx,, cy+dy)) and
(cx+dx,, cy+dy1) determine the shape of the curve in between the
end points, and (cx+dx,, cy+dy,) becomes the new current point.

Errors: nocurrentpoint, stackunderflow, typecheck,
undefinedresult.

¢ closepath

closepath —

behaves like lineto, but constructs its line to the point last ‘‘moved
to’’. If the current path is empty, then closepath does nothing.

Errors: (none).

122 PostScript language manual

4 pathbbox
— pathbbox 1lx 1lly urx ury

pushes the bounding box of the current path in the current user coor-
dinate system onto the operand stack. The results pushed are four
real numbers: lower left x, lower left y, upper right x, upper right y.
If the current path is empty, pathbbox executes the error operator
nocurrentpoint.

Note: the bounding box of the current path in the device coordinate
system is computed first. This box is then inverse-transformed to the
current user space, and the bounding box of this resulting figure is
what is returned on the operand stack. For rotated or skewed user
coordinate systems, this operator may return a bounding box that is
larger than expected.

Errors: nocurrentpoint, stackoverflow.

¢ flattenpath
— flattenpath -—

replaces the current path with an equivalent path that preserves all
straight line segments but has all curveto segments replaced by se-
quences of lineto’s. This flattening to lineto’s is controlled by the
current setting of the flatness parameter in the Graphics State. If the
current path does not contain any curveto segments, flattenpath will
leave it unchanged.

1mmitnhanl
uinianen,

¢ reversepath

— reversepath -—

replaces the current path with an equivalent one except that the
points in the path are connected in the reverse order. Consider each
subsequence of the current path that begins with a moveto operation
a subpath. Each subpath thus represents one connected section of the
current path. reversepath leaves the order of the subpaths within the
current path unchanged, however it does reverse the connection
direction within each subpath.

Errors: (none).

Reference Section 123

¢ strokepath

— strokepath —

replaces the current path with a path that if filled would produce the
same result as would the current path if stroked. The current path
resulting from the strokepath operator is suitable as the implicit ar-
gument to the clip operator.

Errors: limitcheck.

¢ charpath

string strokepath-bool charpath -—

¢ clippath

behaves like the show operator, but instead of printing the characters
of string into the current output device, it appends to the current path
a path that describes the outline(s) of the characters in string. The
strokepath-bool value determines how portions of the character defi-
nition that are stroked are treated. If true, charpath applies the
strokepath operator to any portions of the character outline descrip-
tions that are stroked. If false, these portions are added to the result-
ing path unchanged. Thus, if the character contains only filled por-
tions, or if the strokepath-bool is true, then the path that charpath
appends to the current path is suitable as the implicit argument to fill
and clip.

If the character contains only filled portions, then the resulting path
may be stroked to output an outlined representation of the character.

Note: as long as output from the charpath operator remains in the
current path, the pathforall operator is disabled.

Errors: nocurrentpoint, stackunderflow, typecheck.

— clippath —

sets the current path to one that describes the current clipping outline.
This operator is quite useful for determining the exact extent of the
imaging area on the current output device.

Errors: (none),

124 PostScripr language manual

+ pathforall

mtproc ltproc ctproc cpproc pathforall -

enumerates the current path in order, executing one of the four given
procedure bodies for each element in the path. The four basic ele-
ments of a path are movetos, linetos, curvetos, and closepaths
(relative variants are converted to absolute positions and arcs are
converted to curvetos by the path machinery.) The four procedure
body arguments to pathforall correspond to these four basic ele-
ments. pathforall reads the current path, and for each element in the
path it pushes that element’s coordinates (in current user space) and
executes the corresponding argument procedure body. It pushes x y
for both mtproc and liproc, it pushes x, y, x, y, x, y, for ctproc, and
it pushes no operands for cpproc. An exit executed outside of any
loops in one of the procedures will terminate the pathforall
enumeration.

Among other uses, pathforall allows a POSTSCRIPT program to
recast a path constructed during intricate user coordinate space
changes as one with coordinates from a single, simple user coordi-
nate space.

Note: the pathforall operator is disabled when output from the
charpath operator is in the current path. In this case pathforall
operator executes the error operator invalidaccess.

Errors: stackoverflow, stackunderflow, typecheck.

Reference Section 125

3.5.5. Graphics Output Operators

The operators in this group operate on the current path, define limits on
the output area, and produce output on the attached raster device. Each
output device maintains a current page, which accumulates ‘‘ink’’ at the
places directed by the fill, stroke, show, and image operators. The current
page may be cleared at any time by the erasepage operator, or it can be
printed on the output device by the showpage or copypage operators.

The POSTSCRIPT Graphics State maintains a separate path, the current
clipping boundary, that defines the limits on the area of the output device
that are to be written on, regardless of the extent of an image to be output.
Like the current transformation matrix, the current clipping boundary has
a default value that depends on the output device. This clipping boundary
may be restricted further through the clip operator defined below.

The inside of a path to be filled or used as a clipping boundary can have
different interpretations when the path intersects itself. POSTSCRIPT nor-
mally uses a sophisticated non-zero winding number rule to determine
what is inside and what is outside a path. This rule determines the
‘““insideness’’ of a point by drawing a ray from that point in any direction
through the path. Starting with zero, we add one each time the ray passes
through a path segment that is clockwise, and we subtract one every time
the ray passes through a path segment that is counterclockwise. If the
result is zero, the point is outside, otherwise the point is inside.

With this rule, a simple convex path yields inside and outside as we
would expect. Now consider a five pointed star, drawn with five con-
tinuous straight line segments intersecting each other. The entire inside of
the star, points and center, are considered inside by the non-zero winding
number rule. For two concentric circles, if they are both drawn in the same
direction, the insides of both circles are inside according to the rule; if
they are drawn in opposite directions, only the ‘‘doughnut’’ shape be-
tween the two circles is inside according to the rule.

Another ‘‘insideness’’ rule used by some other graphics systems is the
even-odd rule. This rule determines the ‘‘insideness’’ of a point by draw-
ing a ray from that point in any direction and counting the number of path
segments that the ray passes through. If this number is odd, the point is
inside; if even, the point is outside.

With the even-odd rule, a simple convex path yields inside and outside
as we would expect just as with the non-zero winding number rule. For the
five pointed star drawn with five continuous straight line segments inter-
secting each other, the points are considered inside, but the center is con-
sidered outside. For two concentric circles, only the ‘‘doughnut’’ shape
between the two circles is inside according to the even-odd rule, regard-
less of whether the circles are drawn in the same or opposite directions.

Unless otherwise stated, any POSTSCRIPT output operator that depends
on ‘‘insideness’’ uses the non-zero winding number rule. There are two
operators however, eofill and eoclip that use the less useful even-odd rule.

126 PostScript language manual

4 initgraphics
— initgraphics -—

resets several values in the current Graphics State to their default
values:

o the transformation matrix, CTM (as per the output
device)

e the current path (empty)

® the current point (undefined)

e the current clipping boundary (as per the output device)

e the current color (black)

® the current line width (one user space unit)

¢ the current line cap style (butt end caps)

e the current line join style (miter joins)

© the current dash description (undashed, i.e., solid lines)

e the current miter-limit (10)

The initgraphics operator leaves the other Graphics State parameters
untouched; these include the current output device, font, transfer
function, halftone screen, and flatness setting. This operator affects
Graphics State parameters only, it does not cause any output to the
current page.

initgraphics is equivalent to the POSTSCRIPT sequence:
initmatrix newpath initclip
1 setlinewidth 0 setlinecap 0 setlinejoin
[1 O setdash 0 setgray 10 setmiterlimit

Errors: (none).

¢ erasepage

— erasepage -—

clears the current output page to user white. User white is typically
the same as output device white, but if an atypical transfer function is
in force, this may fill the current page with a uniform gray shade.
erasepage does not affect the current Graphics State, nor does it
cause any output to be printed on the physical output device.

Errors: (none).

Reference Section 127

+ showpage

— showpage -

prints one copy of the current output page on the attached device and
then performs an erasepage and an initgraphics. Exactly how the
page is printed depends on the output device; see the description of a
particular output device for details on how it handles showpage.

Note: showpage resets values in the Graphics State. The
POSTSCRIPT sequence copypage erasepage avoids this action.

Errors: (none).

¢ copypage
— copypage —

¢ initclip

prints one copy of the current output page on the attached device
without clearing its contents or changing the graphics state (as op-
posed to showpage, which effects an erasepage and an
initgraphics). To print multiple copies of a page, enclose copypage
in a loop.

Note: the non-erasing behavior of copypage is device dependent, as
not all implementations of POSTSCRIPT can guarantee saving the en-
tire state of a printed page during processing. Low and medium
resolution devices generally can support this behavior, but high
resolution devices (over 1000 spots per inch) when printing compli-
cated pages may not support copypage’s non-erasing behavior.
However, all POSTSCRIPT implementations will print the current
page when executing copypage.

Example:
n 1 sub {copypage} repeat showpage

Prints n copies of a page followed by a clearing of the current page.

Errors: (none).

— initeclip -—

sets the current clipping boundary path to the default clipping bound-
ary for the output device. This clipping boundary usually cor-
responds to the maximum image area that the output device can
handle.

Errors: (none).

128

¢ clip
— clip

+ eoclip

PostScript language manual

intersects the inside of the current clipping boundary with the inside
of the current path to produce a new (smaller) current clipping
boundary. The inside of each path is determined by the normal
POSTSCRIPT non-zero winding number rule. The clip operator im-
plicitly closes the current path for this intersection if it is not already
closed.

Note: Unlike fill and stroke, clip does not implicitly perform a
newpath after it has finished modifying the current clipping bound-
ary.

Errors: limitcheck.

— eoclip -—

¢ fill
— £ill

intersects the inside of the current clipping boundary with the inside
of the current path to produce a new (smaller) current clipping
boundary. The inside of the current path is determined by the even-
odd rule, while the inside of the current clipping boundary has been
determined by the previous clips and eoclips. The eoclip operator
implicitly closes the current path for this intersection if it is not al-
ready closed.

Errors: limitcheck.

paints the inside of the current path (the portion within the current
clipping boundary) onto the current page with the current color. fill
implicitly closes any open sections in the current path. The contents
of the filled area are painted completely by the current color; any
previous contents of that area on the current page are obscured.
Areas may be erased by filling with color set to white. The inside of
the current path is determined by the normal POSTSCRIPT non-zero
winding number rule.

fill implicitly performs a newpath after it has finished painting into
the current page. To preserve the current path after a fill operation,
use the sequence: gsave fill grestore.

Errors: limitcheck.

Reference Section 129

+ eofill
— eofill -—

behaves just like fill, except the inside of the current path is deter-
mined by the even-odd rule.

Errors: limitcheck.

¢ stroke

— 8stroke -—

paints a line that follows the current path in the current color into the
current clipping boundary on the page. This line is centered over the
segments of the path, has sides parallel to the path segments, and has
a total width equal (in user space) to the current value of line-width
in the Graphics State. Open sections of the path are capped according
to the current value of line-cap in the Graphics State, and connected
sections of the path are joined according to the current value of line-
join in the Graphics State. To obtain a tiny stroke consisting
primarily of end-caps, a path extending some non-zero fraction of an
output device pixel to give the end-cap an orientation should be used
(see itransform.) stroke can also produce dashed lines (see the
description of setdash).

stroke implicitly performs a newpath after it has finished painting
into the current page. To preserve the current path after a stroke
operation, use the sequence: gsave stroke grestore.

Note: The line-width, line-cap, line-join, miter-limit, flat-tolerance
and dash Graphics State values are consulted only at the time that the

stroke operator is executed. If they change during the time that the
current path is built, only their final values (at stroke time) matter.

Errors: limitcheck.

130 PostScript language manual

¢ image

scan-length scanlines bits/pixel matrix proc image —

renders the gray-scale image returned by proc onto the current page
using halftones. image paints the scanned image into a region of the
output page according to the matrix parameter and the current place-
ment of the user space unit square (clipped by the current clipping
boundary). The unit square is that quadrilateral bounded by user co-
ordinates (0, 0), (1, 0), (1, 1), and (0, 1). Prior to executing the image
operator, this unit square may be positioned, rotated and scaled in
any manner. Typically, the matrix parameter is chosen so that the
scanned image exactly fills this unit square.

The image operator will execute its proc argument as many times as
necessary to receive the gray-scale pixels that comprise the scanned
image input. This procedure must leave a POSTSCRIPT string on the
operand stack containing the next set of such pixels each time it is
executed. The bits/pixel argument determines how the pixels are
packed into the 8-bit bytes (characters) of the string. Legal bits/pixel
arguments are 1, 2, 4, 8, and 16. If bits/pixel is 8, the pixels fit ex-
actly, one pixel per character. If bits/pixel is less than 8, the earlier
pixels are taken from the high-order bits of the character and the later
pixels are taken from the low-order bits of the character. If bits/pixel
is 16, two successive characters make up one pixel value, with the
earlier character containing the high-order bits of the pixel. A pixel
whose value is zero corresponds to black input, while the highest
value in a pixel (for 8-bit pixels this is 255) corresponds to white
input. This correspondence may be modified on output by suitable
modification of the output transfer function (see the settransfer
operator.)

The image operator will expect to receive a total of scan-length
times scanlines number of pixels from its executions of proc, and it
will terminate once it has received this number. The number of pixels
actually returned by proc each time is given by the length of the
string it leaves on top of the stack (modified by the bits/pixel. A
returned string of zero length indicates a premature termination of
the input, and the image operator will terminate. The proc need not
return a full scanline’s worth of pixels, or it may return much more
than a scanline. The proc thus controls the amount of buffering it
provides through the length of the string it returns. Longer strings
returned will result in fewer executions of proc and vice versa.

The image operator imposes an x-axis major indexing order on the
pixels it receives. The first pixel’s coordinate in input space is (0, 0),
the next is (1, 0), and so on through (scan-length-1, 0). The next
pixel received is (0, 1), then (1, 1), etc., until the final pixel whose
coordinate is (scan-length-1, scanlines-1). The matrix argument
defines a mapping from the unit square in user space into this input
space, i.e., a coordinate within the unit square times this matrix
yields the corresponding position within the input space.

Reference Section 131

The unit square is closed on the zero edges and open on the one
edges, so that the input coordinate corresponding to unit square coor-
dinate (1, 1) is actually outside of the defined input space. This
matrix arrangement allows any orientation of the input image to be
mapped properly into the user space unit square.

Many scanned image input files are laid out so that their first pixel
corresponds to the upper left corner of the image, the next pixel is the
one to the right of the first on the top scan line, etc., finishing with
the bottom scan line with the last pixel corresponding to the lower
right corner of the image. If there are n pixels per scan line, and m
scan lines, the correct matrix for this image format is:
[7#00 -m 0 m]. If the image input file is laid out bottom horizontal
scan line first, top horizontal scan line last, then the correct matrix is
[n0O0mOO]

The proc technique for returning pixels to the image operator
provides a flexible means of dealing with a variety of image formats.
A simple format involving non-compressed images may require only
a simple readstring arrangement for obtaining the pixels. A com-
pressed format will require a decoder in the proc. Even a completely
synthetic image may be generated by the proc, as it may use the full
range of POSTSCRIPT. Note: any recursive invocation of the image
operator from within the proc is ignored.

A simple way to include scanned input in a POSTSCRIPT file is to
include an Ascii-hexadecimal encoding of the image input directly
after the line containing the image operator. The currentfile operator
along with the readhexstring operator provide the basic tools to read
this input from the POSTSCRIPT file.

N.B. The use of image after a setcachedevice operation within the
scope of a BuildChar procedure is an error, and results in a call on
the error operator undefined. The imagemask operator, however, is
valid in this context (see section 3.5.7).

Errors: stackunderflow, typecheck, undefinedresult.

132

PostScript language manual

¢ imagemask

scan-length scanlines invert matrix proc imagemask —

is similar to the image operator, except it renders the binary image (1
bit per input pixel only) returned by proc onto the current page using
the current color. invert is a boolean. If invert is false, the current
color images where 0 bits appear in the source, 1 bits remain trans-
parent. If invert is true, the current color images where 1 bits appear
in the source, 0 bits remain transparent. Note that unlike the image
operator, which paints opaque color everywhere in its destination,
imagemask leaves some areas (those corresponding to the trans-
parent source pixels) unchanged.

imagemask is useful for loading raster character masks into the
cache device. The image command cannot be used in the cache con-
text, as it paints all colors, whereas masks have no color.

Errors: stackunderflow, typecheck, undefinedresult.

+ setlinewidth

num

setlinewidth -

sets the value of line-width in the current Graphics State to num. This
value is interpreted as a scalar distance (number of units) in the user
coordinate system when the stroke operator executes. If the current
scale in user space is uniform, i.e., x-units are the same length as
y-units, then stroked lines in any orientation will be drawn with a
uniform width. If the current scale in user space is not uniform, e.g.,
x-units are scaled to be twice the size of y-units; then stroked lines
will be wider or narrower depending on their orientation. If x-units
are twice the size of y-units, lines perpendicular to the x-axis will be
twice as wide as lines perpendicular to the y-axis.

Errors: stackunderflow, typecheck.

¢ currentlinewidth

currentlinewidth num

pushes the value of line-width in the current Graphics State onto the
operand stack.

Errors: stackoverflow.

Reference Section 133

¢ setlinecap

integer setlinecap -—

sets the shape that the stroke command will put at the open ends of
any paths when writing strokes to the output device. integer cor-
responds to the following end-cap shapes: '

0. Butt caps; square butt end caps perpendicular to the path
at each open end.

1. Round caps; Semicircular end caps with diameter equal
to the line width centered at each open end.

2. Projecting square caps; similar to butt end caps, but ex-
tend out one-half of a line width in the direction of the
path at each open end.

Note: round end caps will print if a degenerate line (a single point) is
stroked. No output will result if butt or projecting square end caps
are specified for degenerate lines, as their orientation is indeter-
minate.

Errors: rangecheck, stackunderflow, typecheck.

¢ currentlinecap

— currentlinecap integer

pushes the value of line-cap in the current Graphics State onto the
operand stack.

Errors: stackoverflow.

134 PostScript language manual

¢ setlinejoin

integer setlinejoin —

sets the shape that the stroke command will insert at the connected
corners of any paths when writing strokes to the output device. in-
teger corresponds to the following line-join shapes:

0. Mitered joins; both edges of the stroke are extended un-
til they meet at an angle at each corner, as in a picture
frame. Caution: path segments meeting at very sharp
angles (less than 10 degrees) can result in long spikes
when mitered. If the ratio of the length of the diagonal
line through a mitered join (the spike length) to the
width of the line would exceed the value of miter-limit
in the current Graphics State, then the stroke operator
makes a bevel join instead of a miter join.

1. Round joins; circular joins with diameter equal to the
line width centered at each corner. Note: stroke outputs
a full circle at each corner if round joins are specified. If
path segments of less than one-half line width meet at
sharp angles, unintentional ‘‘wrong sides’’ of these
circles may show. '

2. Bevel joins; the meeting path segments are finished as
with butt end caps, and the resulting notch at the larger
angle between these segments is filled with a triangle.

Note: join styles are significant at angles in a path. When Bezier
curves are stroked, if the flatness has been set sufficiently smooth,
there is no difference in appearance along the curve for all of the join
styles.

Errors: rangecheck, stackunderflow, typecheck.

¢ currentlinejoin

— currentlinejoin integer

pushes the value of line-join in the current Graphics State onto the
operand stack.

Errors: stackoverflow.

Reference Section 135

¢ setdash
array offset setdash -—

provides the stroke operator with length information for rendering
subsequent strokes as dashed lines with segment lengths as defined
in array. The length of array determines the interpretation of its con-
tents as follows:

length=0 An empty array argument turns off dashed strokes. Sub-
sequent strokes will be drawn unbroken.

length >0 Subsequent strokes will be dashed, with filled and un-
filled sections alternating (first section is filled.) The
0’th array element determines the length of the first
(filled) section. The array elements are used cyclically
for the succeeding section of the stroke. These sections
continue to alternate unfilled and filled. array must con-
tain non-negative numbers, which will be interpreted as
distances (in user space) along the path for each filled
and unfilled portion of the stroke. At least one of the
elements of array must be non-zero.

The offset argument is another length that must be non-negative. This
length starts the dashing ‘‘inside’’ the repeating pattern. The repeat-
ing pattern is cycled, adding up lengths of segments and alternating
filled and unfilled as described above, except no output is produced
until the offset length is exhausted. Output then begins at the begin-
ning of the path, with the remainder of the current dash segment
being output first. This offset argument can be thought of as setting
the phase of the repeating pattern. Note: Dashed lines wrap around
corners and curves just as normal strokes do. Each end of a dash
section is finished with the current line cap and corners are finished
with the current line join. When the stroked path ends, output stops,
even if in mid-dash. POSTSCRIPT does not modify the given lengths
to fit the stroked path in any way; responsibility for ensuring
‘“‘correct’’ dash behavior at stroke ends is entirely up to the user.
Each new path sequence in the current path, i.e., each path part start-
ing with a moveto, begins the dash sequence over again starting with
array element 0 and a filled dash section.

Example:

[1 0 setdash % turndashing off - solid lines

[3] 0 setdash % 3-unit on, 3-unit off, ...

[2] 1 setdash % 1 on, 2 off, 2 0on, 2 off, ...

[2 1] 0 setdash % 2on,1 off, 2 on, 1 off, ...

[3 5] 6 setdash % 2 off, 3 on, 5 off, 3 on, 5 off, ...
[2 3] 11 setdash % 1on,3 off, 2 on, 3 off, 2 on, ...

Errors: limitcheck, stackunderflow, typecheck.

136 PostScript language manual

¢ currentdash

— currentdash array offset

pushes the current dash array and offset as described for setdash
onto the operand stack.

Errors: stackoverflow.

+ setflat

num setflat -—

sets the value of flat-tolerance in the current Graphics State to num.
When the stroke, fill or clip operators encounter a curve in the cur-
rent path, they reduce that curve to a series of straight line segments
that approximate that curve on the current output device. The flat-
tolerance value determines the maximum error allowed in output
device pixels for these approximations. A small flat-tolerance value,
e.g., 1, will produce an accurate curve approximation at the expense
of more computation, whereas a larger flat-tolerance value may
produce a cruder approximation with substantially less computation.
A default value for the flat-tolerance value should be set in each
POSTSCRIPT installation depending on the characteristics of the out-
put device.

Errors: stackunderflow, typecheck.

¢ currentflat

— currentflat num

pushes the value of flat-tolerance in the current Graphics State onto
the operand stack.

Errors: stackoverflow.

Reference Section 137

¢ setmiterlimit

num setmiterlimit —

sets the value of miter-limit in the current Graphics State to num.
This number is the maximum ratio of the length of the diagonal line
through a mitered join to the line width. Miter joins at sharp angles
that would produce spikes whose length ratio would exceed this
value are beveled instead. The value of the angle, A, such that bevels
are performed for angles sharper than A is given by the formula:
miter-join = 1/ sin(A/2).

Examples of miter-join values are: 1.415 cuts off miters at angles
below 90 degrees; 2.0 cuts off miters at angles below 60 degrees, and
10.0, which cuts of miters at angles below 11 degrees. The default
value of miter-limit is 10. The miter ratio can never be less than 1.
Setting the miter-limit to 1 results in bevel joins always (when miter
joins are specified). An attempt to set the miter-join to a value less
than 1.0 results in a rangecheck.

Errors: rangecheck, stackunderflow, typecheck.

¢ currentmiterlimit

— currentmiterlimit num

pushes the value of miter-limit in the current Graphics State onto the
operand stack.

Errors: stackoverflow.

4 setgray

num setgray -—

sets the color in the current Graphics State to a gray shade cor-
responding to num. num is expected to be a number between 0 and 1,
with O corresponding to black, 1 corresponding to white, and values
in between corresponding to shades of gray perceived as changing
evenly between black and white as the gray value changes from 0 to
1. Note that different output devices render halftones differently; the
setscreen and settransfer operators allow enough flexibility so that
each output device can achieve this smooth change in apparent gray
levels.

N.B. The use of setgray after a setcachedevice operation within the
scope of a BuildChar procedure is an error, and results in a call on
the error operator undefined (see section 3.5.7).

Errors: stackunderflow, typecheck.

138 PostScript language manual

¢ currentgray

— currentgray num

pushes the value of gray in the current Graphics State onto the
operand stack. If the current color is not a pure gray, but has some
color hue, then the value returned is the brightness component of the
current color.

Errors: stackoverflow.

¢ sethsbcolor

hue saturation brightness sethsbcolor —

sets the color in the current Graphics State to the given hue, satura-
tion, and brightness components. Each operand is expected to be a
number between 0 and 1. A 0 hue corresponds to pure red, 1/3 cor-
responds to pure green, 2/3 corresponds to pure blue, and 1 cor-
responds to pure red, with values between these points corresponding
to mixtures of the adjacent colors. The saturation component refers
to the pureness of the color: O corresponds to no color (only bright-
ness or gray); 1 corresponds to pure color with no white light mixed
in. Note that a 0 saturation makes the hue component irrelevant. The
brightness component corresponds to the vividness of the color, with
0 corresponding to black and 1 corresponding to vivid color. The
brightness is also used as the gray value by devices without color
capability.3

N.B. The use of sethsbcolor after a setcachedevice operation within
the scope of a BuildChar procedure is an error, and results in a call
on the error operator undefined (see section 3.5.7).

Errors: stackunderflow, typecheck.

¢ currenthsbcolor

— currenthsbcolor hue saturation brightness

pushes the three components of the color in the current Graphics
State as per the Hue-Saturation-Brightness model onto the operand
stack.

Errors: stackoverflow.

3For a complete explanation of the POSTSCRIPT color models and the conversions between
Hue-Saturation-Brightness and Red-Green-Blue please refer to the paper by Alvy Ray Smith, Color
Gamut Transform Pairs, Computer Graphics, Vol. 12, No. 3, August 1978. (Our Hue-Saturation-
Brightness model is referred to there as Hue-Saturation-Lightness.)

Reference Section 139

4 setrgbcolor

red green blue setrgbcolor -—

sets the color in the current Graphics State to the given red, green
and blue components. Each operand is expected to be a number be-
tween 0 and 1, with the amount of colored light in each primary
component increasing in proportion to its given value. If all three
components are equal, the corresponding color is a pure gray. If not
all components are equal, the corresponding gray (brightness value)
is computed according to the NTSC video standard.

N.B. The use of setrgbcolor after a setcachedevice operation within
the scope of a BuildChar procedure is an error, and results in a call
on the error operator undefined (see section 3.5.7).

Errors: stackunderflow, typecheck.

4 currentrgbcolor

— currentrgbcolor red green blue

pushes the three components of the color in the current Graphics
State as per the Red-Green-Blue model onto the operand stack.

Errors: stackoverflow.

140 PostScript language manual

4 setscreen

frequency rotation spot-function setscreen —

sets the halftone screen definition in the current Graphics State. The
frequency operand is a number that specifies the screen frequency,
the number of halftone dots per inch on the output page. Each
halftone dot will typically comprise many output device pixels. The
rotation argument specifies the number of degrees by which the grid
of halftone dots is to be rotated with respect to the default coordinate
system of the output page. This definition of halftone dot size and
placement is fixed; halftone dots do not scale, translate or rotate ac-
cording to the scale, translate and rotate operators. The
spot-function is a POSTSCRIPT procedure body that will be called
with a pair of numbers, x and y, each in the range [-1, 1), and which
must return a number that indicates the value of the halftone dot
shape solid function at that point. The values of this function may be
integers or real numbers in the range [-1, 1]. These values indicate
which pixels within a halftone dot are to be blackened for different
gray levels. The highest spot function value positions will be
blackened first for the lightest grays, and the lowest spot function
value positions will be blackened last for the darkest grays.

Each device installation should set up the default screen definition
that works well for that device. It is only a rare POSTSCRIPT program
that would need to specify its own screen definition.

Errors: rangecheck, stackunderflow, typecheck.

4 currentscreen

— currentscreen frequency rotation spot-function

pushes all the parameters of the current halftone screen onto the
operand stack.

Errors: stackoverflow.

Reference Section 141

+ settransfer

gray-transfer-function settransfer -—

The gray-transfer-function is a POSTSCRIPT procedure body that will
be called with single real number in the range [0, 1], and which
returns a single real number in the same range. This function maps
the apparent gray level (specified to the setgray operator) to the ac-
tual device gray level (ratio of white pixels to total pixels in the
halftone dot). This function allows apparent gray levels to be mapped
empirically to the gray reproduction characteristics of a particular
output device. For example, the transfer function {1 exch sub} will
invert the output image. When in doubt, use the empty function, {},
for the transfer function; it will pass its argument back unchanged.

Each device installation should set up the default transfer function
that works well for that device. It is only a rare POSTSCRIPT program
that would need to specify its own transfer function.

N.B. The use of settransfer after a setcachedevice operation within
the scope of a BuildChar procedure is an error, and results in a call
on the error operator undefined (see section 3.5.7).

Errors: stackunderflow, typecheck.

¢ currenttransfer

currenttransfer gray-transfer-function

pushes the current gray transfer function onto the operand stack.

Errors: stackoverflow.

142 PostScript language manual

3.5.6. Device Setup Operators

The Graphics State contains an entry for the current output device. Each
output device described in this section renders shapes and halftones onto
an output raster in some fashion. Typically, when POSTSCRIPT is started,
one of the first operations requested will be the installation of the main
output device. During later graphics execution, temporary switching to the
null output device or to the cache output device may occur as necessary. It
is possible, however, to change main output devices, if the POSTSCRIPT
processor is connected to more than one physical output device.

One important feature implemented by each output device is its default
transformation matrix. This matrix maps default user coordinates (one unit
equals 1/72 inch, origin at lower left corner of the standard output page) to
device coordinates. POSTSCRIPT installs that matrix as the current trans-
formation matrix in the Graphics State when it installs the output device,
or when it executes an initmatrix or initgraphics operator.

¢ nulldevice

— nulldevice -—

installs the null device as the current output device. The null device
produces no printed output, but it behaves like a normal output
device in all other respects. The null device is often used for exercis-
ing the POSTSCRIPT graphics machinery to load the character cache,
build paths, operate on paths and query their bounding boxes, etc., or
work with the built-in transformation matrix machinery without
producing output. The default transformation matrix for the null
device is the identity transform: [100 10 0].

Errors: (none).

Reference Section 143

¢ framedevice

matrix width height proc framedevice -—

installs an output device that writes bits into a full frame buffer as
each output operator (fill, stroke, or image) is executed. This
operator allocates a frame buffer with dimensions 8 * width bits wide
by height bits high, where width and height are according to the par-
ticular physical raster output device. The frame device will use these
dimensions for its default clipping boundary. Note that width is in
bytes while height is in bits. The matrix argument is the matrix that
the frame device will use as the default transformation matrix.

The proc argument is a procedure body that will be executed as part
of the execution of the showpage operator. This procedure body may
report progress, etc., but its most important task is to call a special
POSTSCRIPT operator that will empty the frame buffer onto the
physical output device. Those operators are special for each physical
device, and are not documented in this manual.

Errors: stackunderflow, typecheck.

144 PostScripr language manual

3.5.7. Character Cache Management Operators

The POSTSCRIPT interpreter manages a character cache for the scan-
converted (bitmap) representations of character shapes. The operators
defined in this section allow management of the character cache and
modification of cache behavior. Most<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>